Burroughs @

(

B 6000/B 7000
Series

SYSTEM SOFTWARE
OPERATIONAL GUIDE

VOLUME 1

PRICED ITEM

Burroughs believes that the software described in this manual is
accurate and reliable, and much care has been taken in its preparation.
However, no responsibility, financial or otherwise, can be accepted for
any consequences arising out of the use of this material, including loss
of profit, indirect, special, or consequential damages. There are no
warranties which extend beyond the program specification.

The Customer should exercise care to assure that use of the software
will be in full compliance with laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change. Revisions may
be issued from time to time to advise of changes and/or additions.

Correspondence regarding this document should be addressed directly to Burroughs Corporation,
P. O. Box 4040, El Monte, California 91734, Attn: Publications Department, TIO — West.

PREFACE

The SYSTEM SOFTWARE OPERATIONAL GUIDE (SOG), in two volumes, provides
descriptions and operating instructions for the utilities available to users of
the BURROUGHS B 7000/B 6000 series of data processors. Additionally, chapters
documenting other pertinent features of the system are included.

Volume 1 contains information about those utilities of interest to programmers
and systems personnel.

Volume 2 contains information more often required by operations personnel.

A degree of overlap exists between the two volumes of the SOG manual, as
certain subjects are pertinent to both the operations and the technical staffs.
Each volume of the SOG contains a listing of the information available in both

....... g of
volumes.

SOG VOLUME 1

CHAPTER SUBJECT

1 BACKUP

2 CARDLINE

3 COMPARE

4 DUMPALL

5 FILEDATA

6 INTERACTIVE XREF
7 ISAM (Index Sequential Access Methods)
8 LOADCONTROL

9 INTRINSICS

10 PATCH

11 SORT

12 GUARDFILE

13 DCSTATUS

CHAPTER

10
11
12
13
14
15
16

18

19

SOG VOLUME 2

FILECOPY

UTILOADER (B 6000) AND MINILOADER (B 7000)
HARDCOPY AND PRINTCOPY

IADMAPPER

LOADER

LOGANALYZER

LOGGER

LTTABLEGEN

MAKEUSER

MEMORY DUMP PROCEDURE

MEMORY MANAGEMENT

RLTABLEGEN

SECURITY

SOFTWARE COMPILATION

SUMLOG

SWAPPER

SUPERIYV

B 7000 MODULE SELECTION AND RECONFIGURATION

B 7000 SOFTWARE FEATURES

RAILROAD DIAGRAMS

A railroad diagram is a technique used to graphically represent the syntax of
utility input statements, language verbs, and Operator Display Terminal

commands .

Traversing a railroad diagram from left to right, or in the direction

of

the

arrowheads, and adhering to the 1limits illustrated by bridges produces a
syntactically valid statement. Continuation from one line of a diagram to
another is represented by a right arrow ">" appearing at the end of the current

line and the beginning of the next line. The complete syntax diagram is
terminated by a vertical bar "|" or a diamond "<>".
Items contained in broken brackets "< >" are syntactic variables that are

further defined in the manual or require the user to supply the requested

information.

Uppercase items must appear literally. Minimum abbreviations are underlined.

Example

3\

—— A RAILROAD DIAGRAM CONSISTS OF — <bridges>
_1:: <loops>

<optional itemsy—

<required itemsy —

>— AND IS TERMINATED BY A VERTICAL BAR OR DIAMOND. =

The following syntactically valid statements may be constructed from the
diagram:

A RAILROAD DIAGRAM CONSISTS OF <bridges> AND IS TERMINATED BY
A VERTICAL BAR OR DIAMOND.

A RAILROAD DIAGRAM CONSISTS OF <optional items> AND IS
TERMINATED BY A VERTICAL BAR OR DIAMOND.

A RAILROAD DIAGRAM CONSISTS OF «<bridges>, <loops> AND IS
TERMINATED BY A VERTICAL BAR OR DIAMOND.

A RAILROAD DIAGRAM CONSISTS OF <optional items>, <required

itemss, <bridges>, <loops> AND IS TERMINATED BY A VERTICAL
BAR OR DIAMOND.

above

RAILROAD COMPONENTS

<required items)>

No alternate path through the railroad diagram exists
required punctuation.

for required items or

Example

—— REQUIRED ITEM

<optional items)

items shown as a verticai

indicate that the user must make a choice of the
items specified. An empty path through the list allows the <coptional item> to
be absent.

ii1st

Example

— REQUIRED ITEM

<optional item-1>

<optional item-2>

The following valid statements may be constructed from the above diagram:
REQUIRED ITEM

REQUIRED ITEM coptional item-1>

REQUIRED ITEM <optional item-2>

<loops>

A <loop> is a recurrent path through a railroad diagram and has the following
general format:

<——— (bridge) (return character) ——————

{object of the loop)

Example

N

————1:: <optional item—l>_J !
<optional item-2>
The following are some of the statements that can be constructed from the above
diagram:

<optional item-1>

<coptional item-15,<coptional item-1>

<optional item-2>,coptional item-1>
A <¢loop> must be traversed in the direction of the arrowheads, and the limits
specified by bridges cannot be exceeded.
<bridges)>

A ¢bridge> illustrates the minimum or maximum number of times a path may be
traversed in a railroad diagram.

The two forms of <bridges> are as follows:

/ n \ n is an integer that specifies the maximum number
of times the path may be traversed.

/ n* \ n is an integer that specifies the minimum number

of times the path must be traversed.

Example

2\

’

— <optional item-1)> i
L]

<optional item-23

The loop may be traversed a maximum of two times; however, the path for
<optional item-2> must be traversed at least one time.

The following are some of the statements that can be constructed from the above
diagram:

<optional item-1>,<optional item-2>
<optional item-2>,coptional item-2>,<optional item-1>

<optional item-2>

N

BACKUP
TABLE OF CONTENTS

RATIONALE FOR BACKUP FACILITY
PROGRAMMER CONSIDERATIONS
OPERATOR CONSIDERATIONS
SB MESSAGE.
REQUIRES RSVP MESSAGE
OU MESSAGE.
ERROR HANDLING.
BACKUP FILES.
NAMING CONVENTION .
FILE FORMAT

Control Word

Control Record

Blocking
AUTOBACKUP .
AP MESSAGE.
QUEUEING AND UNIT PREFERENCE.
BACKUPBYJOBNR SYSTEM OPTION
PRINTERLABELS OPTION.

FILE PROCESSING

PACK SPECIFICATION.

DISK AND DISKPACK SPOOLING.

FILE REPOSITIONING.

PB ODT MESSAGE.

RJE BACKUP.

SYSTEM/BACKUP STRUCTURE .
SYSTEM/BACKUP COMPILE-TIME OPTIONS.
$IDOPTION

$INFOPTION.

TAPE REPOSITIONING.

1-4-

[7%]

»

E-

I-1- 1
BACKUP

1. RATIONALE FOR BACKUP FACILITY

Slower peripheral devices, such as printers and punches, have typically been
bottlenecks on computer systems. One problem is that a printer or punch may
not be available for assignment when an executing program requires one; another
problem is that the operation of a printer or punch is relatively slow and
therefore ties up the controlling program as well as some of the other system
resources that the program is using. In still other cases, such as an exception
report file or monitoring files, the printer is typically wused infrequently;
therefore, assigning the printer directly to the program would needlessly tie
the printer up and make it unavailable to other programs.

The Burroughs B 7000/B 6000 series of computer systems are dedicated to the
effective use of the overall pool of system resources in a multiprogramming
environment. To use slower peripherals more effectively, these systems provide
the capability of backup files.

When the "backup" technique is used, a program re sting a priater or punch
device is assigned a faster peripheral such tape, disk, or pack. These
peripheral devices simulate a printer or punch; the program writes to them
logically, ©but the physical output operations are less frequent (because
blocking is possible) and therefore, not as time consuming.

The system can be placed in automatic backup mode by means of two system
options; LPBDONLY (for line printer files) and CPBDONLY (for card punch files).
These options may be set or reset by use of the OP+ and OP- messages. With
these options set, logical files whose KIND is set to PRINTER or PUNCH, are
changed to PRINTER BACKUP DISK or PUNCH BACKUP DISK. If a backup device other
than head-per-track disk (which 1is the default device for backup files) is
desired, the alternate device can be specified by use of the Operator Display
Terminal (ODT) SB message.

Statements in Work Flow Language can be used to set the KIND attribute to the
kind or kinds of backup device(s) desired for a job. Such a statement can be
overridden by the SB message.

Another method of creating backup files is by use of the OU message. If a
program requires a line printer or card punch and none is available, the system
operator can specify, in an OU message, the device to be used for backup.
Consequently, a transfer later takes place from the completed backup file to
the printer or punch. This operation can be performed automatically by a
system wutility program (SYSTEM/BACKUP) which makes minimum demands on system
resources yet operates the peripheral devices at efficient speeds.

1-1- 2
BACKUP

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

1-2- 1
BACKUP

2. PROGRAMMER CONSIDERATIONS

A programmer is able to specify (via WFL syntax) a variety of backup media;
DISKPACK as a backup medium is provided along with DISK, TAPE, TAPE7, TAPE9,
and PETAPE. The following syntax diagrams illustrate both "old"” WFL and "new"
WFL usage:

OLD WFL SYNTAX

< OTHERWISE

OR

' —— KIND =

L

| = BACKUP—
EPRIN’I‘ER—— L Back vp— |— prsk—

PUNCH— — PACK—
— TAPE —
— TAPE7 —
— TAPE9 —

— PETAPE —

Semantics
Omitting PRINTER or PUNCH specifies that PRINTER is to be used.

Omitting a backup medium specifies that the MCP is first to try DISK, then s
to try TAPE.

The OR, OTHERWISE, and "," allow concentration of various requests in a
specific order of preference.

NEW WFL SYNTAX

-] BACKUPKIND =—— DISK |

L—-KIND =——[::PRINTER—— , — PACK ————

PUNCH—— —— TAPE —————

— TAPE7

—— TAPE9

— PETAPE ——

— DONTCARE —

1-2- 2
BACKUP

Semantics
Omitting KIND = PRINTER or KIND = PUNCH specifies that PRINTER is to be used.

Using the mnemonic DONTCARE specifies that the MCP is first to try DISK, then
is to try TAPE.

If the programmer specifies the following in an "old" WFL deck:

FILE CF(KIND=PRINTER BACKUP TAPE9 OR PRINTER BACKUP TAPE7);

a printer backup file is opened on a nine-track NRZ tape unit, if one |is
available. If no nine-track unit is available, a search for a seven-track NRZ
unit'is initiated. If neither is available, the operator receives a message

asking for a nine or seven-track tape that can be used for printer backup of
the CF file. At this point, the operator has the option of forcing the file to
a backup device.

The programmer may alternately specify:

FILE OF(KIND=PRINTER OR PRINTER BACKUP PACK OR PRINTER
BACKUP DISK);

in which case, the preference is first for a printer, then tor pack, otherwise
disk.

If the programmer specifies the following in a "new" WFL deck:
FILE LP(KIND=PRINTER, BACKUPKIND=TAPE) ;
a printer file is opened on a tape (any tape) unit if one is available.

The programmer has the option of providing a PACKNAME with a printer file. If
a PACKNAME is specified, the MCP looks for the specified pack. If PACKNAME is
not specified, a system resource pack is selected, if available.

If a programmer specifies the PACKNAME file attribute with a PRINTER or PUNCH
file, the MCP guarantees that if the backup medium is PACK, then it is the
specified pack. The MCP does not accept an OUPKnnn to any other pack. This
restriction reflects the necessity for directing backup diskpack to a pack that
is to be removed and used on another system. Furthermore, the programmer can
prevent AUTOBACKUP from printing and removing that file destined to be

transported by using the BDNAME task attribute and the BDBASE task attribute.

If a system does not have any backup substitutions and if the programmer
specifies that a file 1is to be spooled on one of the following backup media
devices — DISKPACK, TAPE7, TAPE9, PETAPE and/or TAPE - the options LPBDONLY and
CPBDONLY have no effect because the LPBDONLY and CPBDONLY control only
non-direct files requesting a PUNCH or PRINTER.

If the programmer uses a direct file, the file cannot be spooled on any backup
media. If the programmer specifies a backup medium for a direct file, the task
is DSed because backup and direct files are incompatible.

NOTE

The programmer is able to specify on
which medium the backup is to be spooled.

1-3- 1
BACKUP

3. OPERATOR CONSIDERATIONS

If a request for a specific peripheral or backup peripherals cannot be
satisfied (because the peripheral is either not ready or under the exclusive
use of another task), the system operator has the choice of

1. Physically making the requested peripheral available.

2. Waiting wuntil the other task releases the requested
peripheral.

3. Entering the SB (Substitute Backup) message to respecify
which backup media to use.

4. Entering the OU message to direct the file to an available
peripheral.

5. Entering the DS message to terminate tl

>
o
3
.
(*]
[]
"
[
£

SB MESSAGE

The operator can modify, and in some instances override, the programmer’s
choice of the six previously mentioned types of backup media. This option is
invoked by use of the SB message. The following syntax illustrates the SB
message:

Syntax

SB

4

6\ DISK = 6\ DISK
— PACK——{ — _—l — PACK —
— TAPE —| — TAPE —
—— TAPE7 — -— TAPE7 —
— TAPE9 — — TAPE9 —
' — PETAPE — — PETAPE —

Semantics

Diverting backup disk to backup diskpack may result in a better balance between
disk/diskpack channel wutilization, in which case, SB DISK=PACK (ETX) yields
increased system throughput.

1-3- 2
BACKUP

The foiiowing examples illusiraic various SB messages and their actions.

Example 1
SB DISK=PACK

Action: Directs all disk backup to pack (assuming pack backup is already going
to pack).

Example 2
SB DISK=PACK, TAPE=PACK, TAPE7=PACK, TAPE9=PACK, PETAPE=PACK

Action: Directs all backup to pack.

Example 3

SB PACK=DISK, TAPE=TAPE7 TAPEY, TAPE7=TAPE7 TAPEY,
TAPE9=TAPE7 TAPE9, PETAPE=TAPE7 TAPE9

Action: Keeps backup off of PETAPE; wants backup tape files to first try seven
track, then try nine track (all disk and pack backup should be on disk).

If backup media selection is left to the discretion of a programmer or a number
of programmers, leaving the SB message set to what it is after a cold start may
be desirable. Thus, if the operator desires to return to the setting that
existed at cold start, the following SB message can be used:

SB DISK=DISK, PACK=PACK, TAPE=TAPE, TAPE7=TAPE7, TAPE9=TAPE9,
PETAPE=PETAPE

However, SB is not recursive. Thus,
SB DISK=PACK, PACK=DISK

serves to divert backup disk to backup diskpack and to divert backup diskpack
to backup disk in a simple crossover. Files declared backup disk go to
diskpack, and files declared backup diskpack, go to disk.

An error condition occurs if duplicatie eniries appear in the SB message. For
example,

SB DISK=PACK TAPE PACK
causes the error response REDUNDANT SUBSTITUTION.
The current setting of Substitute Backup may be interrogated by inputting

SB
which causes the status of Substitute Backup to be displayed.
The operator could have specified LPBDONLY for the system. In such a case, any
request for a printer by a non-direct file is transformed into a request for
printer backup disk. Any request for a card punch file when CPBDONLY is set,
is transformed into a request for punch backup disk. By setting appropriate

bits in the task attribute OPTION, the programmer can direct that task to
operate as if LPBDONLY and CPBDONLY are set. An MCS, such as CANDE or RJE, can

1-3- 3
BACKUP

also set these bits in the OPTION task attribute of the user tasks it
processes, thereby causing the same action.

When LPBDONLY or CPBDONLY is set and a task opens a non-direct printer or punch

file, the system selects the backup medium specified in the SB message as
opposed to DISK. For example, if LPBDONLY is set and if SB DISK=PACK has been
previously entered, any task opening a non-direct printer file results in a

printer backup pack file being opened.

REQUIRES RSVP MESSAGE

If a backup medium for a file 1is not available, and nothing has been
substituted by the SB message, the MCP generates an RSVP message in the form

<task no.> <filenamey> REQUIRES <output medium> BACKUP
(<backup mediumy)

with the coutput mediums being LP or CP.
If a PACKNAME file attribute has been specified, the message appears as:

<task no.»> <filenamey> REQUIRES <output medium> BACKUP
(<packnamey)

If "old" WFL is used, one or more <backup medium>s may be listed by the RSVP
message, depending on the programmer’s specifications, as defined under
PROGRAMMER CONSIDERATIONS. Only one <backup medium» can be listed for “"new"
WFL.

The REQUIRES RSVP message allows one of the following operator responses:

1. Use OU message, which is a reply to the REQUIRES RSVP
message.

2. Make the specified peripheral type ready. The MCP notes
the status change and wakes up the program.

3. Use SB to equate a backup medium that is present and
available. Initiating an SB causes the waiting process to
search again for an available backup medium.

4. DS the program.

BACKUP

OU MESSAGE

An OU is not subject to SB equating. If the operator inputs <mix no.> OUDK and
the site has head-per—-track disk, the file goes to head-per-track disk
regardless of how SB is set.

The use of the OU message is essentially a reply to an RSVP message indicating
an output medium is required.

Example
<mix no.> OUPK Places the file on the appropriate
diskpack. If the file has PACKNAME set,
the chosen diskpack is the pack with that
name. If no PACKNAME is given, the

system resource pack is used.

<mix no.> OUPKnnn Places the file on the specified pack.
If no PACKNAME has been specified by the
programmer, the programmer can OUPKnnn to
any native mode write-enabled base pack.
If a PACKNAME has been specified by the
programmer, the MCP insists that if the
file goes out on diskpack, it goes to a
native mode write—enabled base pack with
the specified mname; PACKNAME has no
effect with backup media types other than
pack. An OU to a different backup medium
is allowed.

<mix no.> OUMT Places the file on magnetic tape.

<mix no.> OUMTnnn Places the file on the specified magnetic
tape unit of the number nnn.

<mix no.> OUDK Places the file on head-per-track disk.
Responses to inappropriate OU messages are as follows:

IS DIRECT FILE: CANNOT BACKUP

A direct file asking for a line printer or card punch cannot go to backup under
any circumstances. Direct implies that the program can look specifically at
result descriptors and set error maskout. Direct files must therefore deal with
the actual target peripheral.

THAT PK IS NOT PRESENT

An OUPK failed because the PACKNAME specified in the attribute list of the file
could not be found on the system. This message is also generated when a pack
of that name is present but is inappropriate because it is interchange,
write-locked out, or is a continuation pack.

REQUIRES PK WITH CORRECT NAME

An attempt was made to OUPKnnn for a file with the PACKNAME attribute set, and
the PKnnn did not have the correct name.

BACKUP

PK PACK IS NOT PRESENT

An a

it was made to OUPK when no PACKNAME was provided by the programmer and
no des

empt
ignated system resource pack was present.

g
REQD PKUNIT NOT A MOUNTED-BP

The operator directed OUPKnnn to a pack that was not a mounted native mode base
pack. Backup to diskpack must be to a mounted, write—enabled, ready, native
mode base pack.

NEED AN OUTPUT TAPE FOR OUMT

OUMT failed because no tape was in proper state.

NOTE
An OU for a diskpack backup file reguires
a write-enabled native mode base pack. If
the OUed pack is interchange, not

write-enabled, or is a continuation pack,
the OU is not honored.

ERROR HANDLING

The operator has the option of deciding whether or not to continue after an

irrecoverable parity error. On encountering such an error, an ACCEPT (AX)
message is sent to the operator giving the operator the option of continuing or
stopping. If the printout is resumed, all lines read with a parity error are

flagged on the output.

Allowable responses are DS and OK. If DS is entered, processing of the current
backup file is discontinued. If OK is entered, processing continues. If
anything else is entered, the ACCEPT message is repeated.

1-3-

BACKUP

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

1-4- 1
BACKUP

4. BACKUP FILES

NAMING CONVENTION

When a BACKUP DISKPACK is selected, the PACKNAME file attribute can be used to

select a particular native mode pack family. An interchange disk pack family
cannot be used.

The format of a printer backup disk file name is as follows:
BD/<job no.>/<task no.>/<modified filename>

The format of a punch backup disk file name is as follows:
BP/<job no.>/<task no.>/<modified filename>

The ¢modified filenamey refers to three digi 0

ts,
front of the declared printer or punch fil
names. This number is incremented each time a
task.

00 to 999, appended tc the
name to prevent duplicate file
ck

e
backup file is opened by the

If more than one backup disk file is created by a program, the system creates a
"tree" of files in the directory in the following manner:

BD/<job index>
Specific examples are:

BD/0000365/0000366/000TASKFILE

BD/0000365/0000366/001LINE

BD/0000365/0000366/002PRNT
A backup file on tape is labeled BACKUP/«filename>, where <«filename> is the
name of the file as specified by the program creating it. Backup tapes may be

written as multi-reel files and as multi-~file reels. The system intermixes
printer and punch backup files on a backup tape.

BACKUP

FILE FORMAT

Backup DISK, PACK, and TAPE files are variable length record, fixed-length
block files. Each block is 300 words long, with word 298 containing the number
of records in the block and word 299 containing the record number of the first
record. Within a block, each logical record is composed of one control word
followed by zero or more words of data. A terminal control word of all =zeros
indicates that no more records appear in the present block.

Control Word

Each control word is divided into three specific fields. These fields are:
FIELD CONTENTS
[47:28] Identical to the corresponding portion of

an I/0 control word.

[19:3] Character count residue for the data
record (if the record to be printed
consists of complete words, the value of
the field will be zero).

[16:17] Word count for the following data in the
record in full words, not counting the
control word.

Control Record

The first record of the file is a control record containing information that is
not printed or punched. This first record is minimally 12 words long excluding
the control word. The following information describes the words in the first
record:

WORD O0:
Is the control word.

WORD 1:
Is the block character control word which
consists of the following:

FIELD CONTENTS

[47:8] The index to FORMMESSAGE.

[39:8] The index to JOBNAME.

[31:8] The index to CHARGECODE.

[23:8] The index to USERCODE.

(3:1] Al if the file is a backup disk file,

the label type of the file is STANDARD,
and the label entries are not present.

[2:1]

[i:1]

[0:1]

WORD 2:

[5:6]

WORD 3:

[14:15]

WORD 4:

BACKUP

Al if JOBNUMBER is wanted or a 0 if
JOBNUMBER is not wanted.

A1l if LSN = origin is remote or a 0 if
origin is not remote.

Al if control word is valid or a 0 if
control word is not valid.

Is the logical kind of control word which
consists of the following:

CONTENTS

A1l if forms are required or a 0 if forms
are not required.

The above field contained in WORD 2 and
the dependency of the FORMMES SAGE
beginning at WORD 12 are being
eliminated. The information is contained
in WORD 1.

The unit type of the backup file. For
example, 11 (decimal) if card punch or 7
if line printer.

Is a path control word consisting of the
following:

CONTENTS

A1l if the originating unit is a remote
unit or a O if the originating unit is
not a remote unit.

The number of the wunit in the system
which introduced the file. If the origin
was remote, then the number 1is an LSN;
otherwise, it is the physical unit where
introduced.

TRAINID (file attribute). If non-zero,
the user-specified train-printer
character set is used for printing. If O,
the file is generated as if for a drum
printer.

1-4-

1-4-

WORD 5:

WORD 6:

WORD 7:

WORD 8:

WORD 9:

WORDS 10 THROUGH 11

WORD 12:

BACKUP

EXTMODE (file attribute).

LABELTYPE (file attribute).

1/0 mask for page specifications. Refer
to the Input/Output Subsystem Reference
Manual, form number 5001779, for a

complete description of the PAGESIZE,
LINENUM and PAGE file attributes.

The job number of the job being printed.

Contains the level number of the backup
file.

Not presently defined.

FORMMESSAGE (temporary). The FORMMESSAGE
begins at this point; however, this word
may change in the future. The <correct
value of the FORMMESSAGE can be found in
WORD 1.

1-4- 5
BACKUP

Blocking

Records in a backup file are not split across blocks. That is, if the last

record in a given block ended in word 290 and the next record is 12 words long,
then word 291 is a control word containing all zeros. This control word
indicates the end of the present block and indicates that the next record
begins at the start of the next block. The following illustration shows a
typical block of BACKUP records contained within BACKUP files:

0|20 20 WORDS OF DATA 0 | 17 }—17WORDS OF DATA 3 6
CONTROL WORD
= 6-1.2 WORDS OF DATA — 0 | N —NWORDS OF DATA C | 0| 0 P IGNORED DATA

CONTROL WORD END OF
BLOCK

FILE LAYOUT FOR BACKUP FILES ON TAPE

BACKUP

" THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

BACKUP

S. AUTOBACKUP

AP MESSAGE

The AP (AUTOPRINT/AUTOPUNCH) message sets the number of 1line printers and/or
card punches to be made available for the automatic output of backup files.
This message can also be used to select <certain line printers and/or card
punches to be used as preferred AUTOBACKUP units. This number (output devices)
is set to zero at Halt/Load time if the MCP option AUTORECOVERY is reset.

AUTOBACKUP is invoked using the AP message.

Syntax

AP |

—— <numbers>

CP—
L
CP <number>—
L L.

Semantics

The AP message can appear simply as AP, in which case the system responds by
displaying the current number of line printers and card punches available to

AUTOBACKUP. For example:
AP
AP MAX=3;AP-ED LPS=2;AP-ED CPS=1

When a number immediately follows AP, that number is used as the maximum number
of printer AUTOBACKUPs that may run at any one time. Also, when a number and a
device type immediately follow AP, that number is used as the maximum count of
AUTOBACKUPs of that type that may run at one time. For example:

AP3
AP MAX=3;AP-ED LPS=2;AP-ED CPS=1

If the number following the AP is 0, no automatic printing occurs.
When a device and unit number immediately follow the AP, such as

AP LP 12

then the indicated output device is marked as a preferred AUTOBACKUP unit.

AUTOBACKUP always attempts to wuse such a unit before trying to use another
unit.

BACKUP

Only if no APed units are available, is output started to a non-APed unit.
Whenever a unit is APed, the couni ol AUTOBACKUPs allowed for ihai unii type is
automatically increased by one. The number of devices assigned, as described

above, may exceed the number of allowed AUTOBACKUPs. Thus, this sequence of AP
messages

AP 0
AP LP 11
AP LP 11
AP 1

are all equivalent.

When the device is preceded by a hyphen, as in

AP-CP 13
the indicated unit is marked as a "non-APed" or ‘"unpreferred” wunit, and the
count of allowed AUTOBACKUPs for that unit type is automatically decreased by
one (unless it is already 0). Also, when such a message references a device on

which output 1is currently being generated, the activity is allowed to proceed
to a normal termination before the device is disabled.

QUEUEING AND UNIT PREFERENCE

When use of AP results in all line printers being freed of the APed status and
AP is set to O, the queue of disk/diskpack backup yet to be printed is
forgotten. This process does not affect the actual backup files, except that
they are not printed automatically by AUTOBACKUP. If subsequently, any LP is
given AP status or AP is set to a non-zero number, all disk and native mode
diskpacks are searched for backup files queued for primting. The larger the
system, the more time is consumed in the search. A similar situation 1is true
for card punch.

Backup files introduced by Library Maintenance (that is, COPY, COPY&COMPARE,
and ADD) from tape are picked up by this rebuilding of the queues and are
printed in turn.

The taskname that shows in the mix picture for AUTOBACKUP includes the mix
number of the job to be output, even if no output unit has yet been selected.

The number of AUTOPRINT and AUTOPUNCH tasks started (exclusive of PB requests)
is controlled by AP MAX and CP MAX, respectively, and not by the number of APed
units. APed units are treated as preferred units and do not influence the
total number of AUTOBACKUPs started.

Setting AP to O and then to 1 does not erroneously start outputting the print
files for active CANDE jobs.

BACKUPBYJOBNR SYSTEM OPTION

The operator has the option of deciding whether output should be printed in
order of job number or by the old method of smallest job first. This system
option is invoked by the BACKUPBYJOBNR run-time option.

When this option is set, jobs are printed by order of the job number. When
reset, jobs are printed in reverse order of print quantity.

1-5- 3
BACKUP

If BACKUPBYJOBNR is set and output from one card reader is directed to a single
printer (by APing only that printer or by using the PA message), the output is
approximately in the order in which the card decks were entered in the reader.
Discrepancies in this order «can arise because of one of the following three
conditions:

1. AUTOBACKUP does not begin printing a job wunless it has
gone to EOJ. When other jobs with a higher job number are
to be printed, AUTOBACKUP prints the higher jobs rather
than waiting for the job still in the mix.

2. When wraparound occurs (that is, the job numbers go back
to 0000 from 9999), the low job numbers are printed first.

3. Programmatic setting of various attributes select remote
printers or printers with special forms.

Efficiency considerations with BACKUPBYJOBNR come into play if the site turns
AUTOPRINT and AUTOPUNCH on and off. When the AP message is manipulated in such
a way as to reduce the AP max to 0 and the APed LPs io O (or ithe equivaieni for
AUTOPUNCH), then the appropriate AUTOBACKUP queue is deallocated. When the AP
is again enabled, the MCP must go out to the disk and diskpack subsystem to
find everything necessary to print or punch.

This rebuilding of the backup queue is much more efficient if BACKUPBYJOBNR s
set. When set, the MCP does not need to access many extra directories to
determine the size of the disk and diskpack files in the build queue routine.

Changing BACKUPBYJOBNR when AUTOBACKUP is running and print and punch backup
files are queued affects only jobs that subsequently come to EOJ since the old
queue is not destroyed. The order of output is somewhat scrambled during this
transition because part of the queue is by jobnumber and the other part is by
printer backup size. If a site cannot tolerate this interval where part of the
files are being printed via a different priority criterion, the situation can
be avoided by setting (1) AP to 0 and APed LP to 0; (2) changing BACKUPBYJOBNR;
(3) restoring the AP and APed LP to the original value. This process results
in the old queue being destroyed and a new queue being built.

When BACKUPBYJOBNR is reset, and two jobs have the same amount of output, the
jobs are printed in the order they EOJed.

PRINTERLABELS OPTION

If the system option PRINTERLABELS is reset, then the USASI TAPE LABELS output
for all printer files is suppressed. Furthermore, AUTOPRINT attempts to
guarantee that every (labeled) print file is separated from the preceding file
by one, and only one, page eject. Also, within a file, multiple page ejects
are suppressed unless the I/0 transfers some data.

FILE PROCESSING

AUTOPRINT attempts to group formed/nonformed files together by making several
passes over the BD directory. During each pass, AUTOPRINT outputs all files
for the job which have some particular PRINT TRAIN combination. At the start
of each pass, if the first file output 1is either unformed or formed and
labeled, then beginning and ending banners are output around the files in the
group.

1-5- 4
BACKUP

In certain cases (for example, not ready printers), if AUTOPRINT releases the
printer and selects another one, 1t may end up with the same printer. In these
cases, the pass described above may be broken up and a new pass started with a
different set of forms. (This does not happen if AUTOPRINT is DSed.)

The multiple passes described occur for each job and not for the entire print
queue.

Normally, a job has a joblog to be output; thus the first pass prints all
unformed files.

A trailing banner similar to the QT banner is printed if the operator DSes
AUTOBACKUP.

AUTOBACKUP is QTed if a disk I/0 error occurs.

AUTOBACKUP can be QTed while waiting for a disk or pack and while waiting for
an output unit (a line printer or card punch).

NOTE

If a backup file has been QTed, then it
has been terminated. However, the file
does remain in the directory and may be
printed later by a PB ODT message. Refer
to the Operator Display Terminal Manual,

form number 5001704, for further
information on the QT command. The PB
message is discussed later in this
manual .

PACK SPECIFICATION

The system tries to combine all output from one job unless directed to do
otherwise by wuse of task and file attributes (for example, BDBASE in the task
attribute OPTION or the FORMMESSAGE file attribute). The backup 1is printed
together provided the pack containing one of the files is not dismounted or
powered off.

For more efficiency, the use of named pack should be avoided unless sufficient
reason exists. In retrieving files to print from named packs, AUTOBACKUP
incurs extra overhead because it must examine every named pack on the system in
addition to the system resource packs.

A backup file cannot be directed to an INTERCHANGE mode pack. No printer or
punch backup file is allowed to have file attribute INTERCHANGE set to true.

DISK AND DISKPACK SPOOLING

With regards to backup spooled to DISK and DISKPACK, wunless the site has
AUTOBACKUP turned off or the BDNAME or DESTNAME string task attributes set,
backup spooled to DISK and DISKPACK will be automatically queued for printing
when the job has finished. After automatic printing, the file is purged.

If it is necessary to prepare a pack backup file for transport to a Burroughs
4700 series computer system, it is necessary to rewrite the backup file from
disk or a native mode pack to an interchange pack by writing a program that
reads the 300 word blocks of a backup disk/diskpack file and writes an
interchange disk file of 300 word blocks.

BACKUP

FILE REPOSITIONING

AUTOBACKUP can be interrupted from its normal operation to reposition the file
that is being printed or punched. This repositioning is effected by the use of
the ODT AX (accept) message. The following syntax represents the input format.

Syntax

—— ¢<mix no.> AX RS

4

— FS <no. of blocksy —
F— BS <no. of blocksy —

— SU

L— SK <no. of files)—

Semantics

RS - Restart file from the beginning

FS - Forward space n blocks from current position

BS - Back space n blocks from current position

SU - Suppress all carriage control (skips and spaces)
US - Unsuppress (turn off carriage control suppression)

SK - Skip n number of files - valid only for ©backup tape
files.

The number of records in a backup file block is variable because the size of

the records 1is variable and can range between 1 and 100. A common average is
13.

PB ODT MESSAGE

The PB message is used to print or punch backup tape or disk files. The entry
of the PB message forces at least one copy of AUTOBACKUP into the mix
regardless of the AP setting or the number of APed wunits. It is extremely

useful in the event AUTOBACKUP has been QTed, either by the system or by the
operator.

BACKUP

P
Syatax

PB Lm <unit no.> |

<mix no.>

Semantics

When a PB message is entered specifying a tape unit, that tape is rewound and
the backup files on the tape are either printed or punched depending on whether
they are printer backup or punch backup files.

When a mix number is specified, that message causes all backup disk files
generated by that job and its subtasks to be printed and/or punched. If LP is

specified in the message, only printer backup files are output. If CP is used,
only punch backup files are output. All other files are left on disk.

Example
PB 697 LP

Action: Prints all printer backup files generated by job number 697 and its
subtasks.

Example:

PB MT 17

Action: Either prints or punches all files from the tape on unit 17, depending
on whether they are printer backup or punch backup files.

1-6- 1
BACKUP

6. RJE BACKUP

Backup files generated by RJE initiated jobs are placed in directories separate
from those employed at the main system. Specifically, all printer and punch
backup files are placed in their respective REMLP and REMCP directories.
Furthermore, when the RJE terminal option AUTOBACKUP is set, the autobackup
routine of RJE is processed to output these particular REMLP and REMCP backup
files.

A number of similarities do exist between SYSTEM/BACKUP and RJE backup.

Consequently, in order to be aware of these similarities, as well as the
existing differences, the user should refer to the Remote Job Entry (RJE)
System Reference Manual, form number 5001548. Reference should be made

specifically to the *DS, *FM, *QT, *RO, *SO, and *TO RJE input messages.

1-6- 2
BACKUP

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

1-7-

BACKUP

7. SYSTEM/BACKUP STRUCTURE

SYSTEM/BACKUP is an output utility program used to print or punch backup

or disk files. SYSTEM/BACKUP is

tape

invoked by using either the RUN SYSTEM/BACKUP

statement or the PB statement of the Work Flow Language. The SYSTEM/BACKUP

syntax is given below.

WORK FLOW SYNTAX

—— RUN SYSTEM/BACKUP ("<backup statements>") |

OR

—— PB <backup statements) 4

The two syntax diagrams shown above are equivalent; however, a

question
must preceed the second statement when entered through the SPO.

NOTE

Distinct differences between the
SYSTEM/BACKUP PB statement and the PB ODT
message exist. These differences should
be understood before either of these two
items of software are used.

<backup statements>

"

—1— "—— «filename> —J " <optionsy —|
“— ON—— «familyname>

— D— * <disk file>

L—

<job no.>—

-—-MT——[:

"

— «filenamey —— " ~—1— ¢tape file>—

<unit no.>

<disk file>

710"

/ <number> —— ¢numbers><printer/punch filename>

mark

1-7- 2
BACKUP

<tape file>

l——-l"'ILE <number> _J

REEL<number>(<output partss)

— B5500

— B5700

coptions>

[.

CP <unit no.>
— KEY—— <key part>—— <range part>—
— COPIES —— <number>
— DEBUG
— DOUBLE
— ID—— «string>
— ND
— NOINC
— RECORD —— <number>

L—-<string>

— SAVE
— SINGLE

“— LSN—— <numbers

1-7- 3

BACKUP
<output partss
_—l— KIND = —— PRINTER {
' — PUNCH——
L—-MODE = E
-— B ————
<key part>
—— <key start> <key length> —
— ALGOL
+— COBOL
— FORTRAN
— NEWP
‘— REPORT
<range part>
— RANGE <number> ’ T <number> {
_1:: <string>— L— :——I <stringy> —i
L_ — "END"
EQUAL <number>
_1:: <string>

Semantics

When PBing a printer backup tape (PBT) file, the following SYSTEM/BACKUP PB
inputs are available:

* (special character) Is used in order to print disk files for the mix
number of the SYSTEM/BACKUP and is resricted to
direct output only. This feature 1is wuseful when
including a PB card in a WFL deck because it is not
possible to know the job number ahead of time.

FILE <number> Is the number of PBT FILE identified previously by
the MT <unit no.> or by «<filename>.

REEL <number> Is the number of the PBT reel serving as
SYSTEM/BACKUP input.

1-7- 4

KIND

MODE

B5500/B5700

<filename>

ON <«familyname>

BACKUP

Is the specification that tells whether the PBT s

a piintei Oi puinch bLachup.
Specifies whether the PBT is in EBCDIC or BCL mode.

Specifies B 5500 or B 5700, in which case, the PBT
on the specified unit is printed. The output goes
to a normal (that 1is, non-direct) printer file
called BFILE. Any other options in the input
string (RANGE, LP NO., and so forth) are ignored.

Is the name of the backup file that is to be
printed or punched.

If ON «familyname> 1is not used, SYSTEM/BACKUP
searches disk and pack for each file that is to be
printed or punched. If the requested file s

present on both peripheral families, it is be
printed twice. Also, the system family pack DISK is
searched, rather than the user’s family pack. ON

<familynames> causes SYSTEM/BACKUP to print or punch
only the file from that <familyname>.

The following semantic discussion deals with the KEY specification and its

options.

KEY

<key start><key

ALGOL

COBOL

FORTRAN

NEWP

The ALGOL, COBOL,
(symbolic) files

and

length>

Specifies the sequence fields to be wused in
checking range limits.

Are integers that specify the starting column and
number of characters in the sequence field to be
nead in chackineg ranca limitc

used in checking range limits.

Is a key specifier indicating the appropriate
columns for the ALGOL, DCALGOL, DMALGOL, and ESPOL
sequence numbers on compilation listings generated
by these compilers.

Is a key specifier indicating the appropriate
columns for the COBOL sequence numbers on
compilation listings generated by this compiler.

Is a key specifier indicating the appropriate

coiumns for the FORTRAN sequence numbers on
compilation listings generated by this compiler.

Is a key specifier indicating the appropriate
columns for the NEWP sequence numbers on
compilation listings generated by this compiler.

and FORTRAN key specifiers are significant only to printer
therefore, should not ©be wused for punch files. Key

lengths are allowed up to 120 characters. If the RANGE specifies a numeric

range (for example,
regardless of the key

REPORT

RANGE

RANGE 100 53800000) the numbers are limited to 12 digits
length.

Uses the columns used by outputs generated by the
COBOL Report Writer feature.

Denotes the start and stop values of specified
keys. For example, if a printer backup file
contains the following records

BACKUP
RECORD NO. CONTENTS

AAAA
BBBB
CCCC
AAAA
HHHH
DDDD
7777
DDDD

GO NOAAWM B WIN -

and the following PB statement is used to print it
PB «filename> KEY 1 4 RANGE "AAAA" "DDDD"

SYSTEM/BACKUP prints every record from the file,
beginning with the start value through the stop
value. If, however, a key is encountered that s
greater than the stop value, that key is considered
as the stop value. In this example, SYSTEM/BACKUP
prints iines i, 2, 3, 4, and 5.

The S$INCLUDE feature allows the user to specify to
SYSTEM/BACKUP that cards which have been included
in the listing by such a $INCLUDE card are not to
be considered when making the sequence range check
but are to be printed if they fall within the
desired sequence range. This feature is for use
only on listings generated by the ALGOL compiler.
It is more wuseful in cases where included cards
cause the symbolic to be out of sequence. This
feature is invoked by placing a colon between the
sequence range limits as shown in the following
example.

PB MT 83 KEY ALGOL RANGE 12340000 : 23450000;

If blanks are found between the numbers, processing
e na afaean Ta chacw hao +hiao €Cantsen Al d laa
13 ad vUvivlL e. a9 DILUW 1UW L1111 1Ccatltulr © vu 14 VA~

useful, consider the following listing:

%CARD 1 00001000
%CARD 2 10000000
$INCLUDE X 90000000-91000000 10001000
%INCL CARD 1 90000000
%INCL CARD 2 90500000
%INCL CARD 3 91000000
%CARD 3 10002000
%CARD 4 10003000

%CARD 5 20000000

2" END "

EQUAL

COPIES <number>

DEBUG

DOUBLE

ID "string"

NOINCL

RECORD <number>

BACKUP
If it were desired to opnrint the cards in the
sequence range 1000000 - 19999999, the following

statement could be used:

<I>PB <device specifier> KEY ALGOL RANGE 10000000
19999999,

If backup were run without using this feature, it
would stop printing as soon as it hit the card at
sequence 90000000.

Is a range stop indicator for an EBCDIC string
(besides either «<number> or «<string>) which is
equivalent to setting the stop integer to 99999999,

Is used to determine if the <«number> or «<strings
options correspond with the character string length
or the sequence numbers specified in <key startsy
and <key lengthy.

Denotes the number of printer backup copies to be
printed from a directory.

Is a developmental (subject to change at any time)
diagnostic aid intended for debugging purposes.

Specifies the double-spacing of printer backup
files.

Generates the printing of wuser specified block
character headings. This option is valid only when
SIDOPTION is set.

Specifies that backup is to use a non-direct file
for output. Thi s usage is accomplished by
including the parameter ND in the input string.
The file wused 1is <called BFILE and may be label
equated to any allowable medium, such as DISK, PBT,
PRINTER, PUNCH, and so forth. If it is equated to
a disk file, the file 1is Jlocked when backup is
done. THE * option cannot be wused with the ND
option.

Specifies that any cards included in a program by
an $INCLUDE <card are not to be printed. This

option is wuseful only when printing program
listings. A KEY must be specified when using this
option since backup looks for a digit two

characters in front of the sequence numbers.

Specifies that the record count will include the
three header records plus the one blank record of

the file 1label, if it exists. Thus, printing
record 15 of a labeled file that has gone to Backup
actually prints record 11 of the file. For
example, to obtain the first 20 records after the

header and file label records, the bias of four s
used (record 5 24).

1-7- 7

BACKUP
SAVE Prevents the purging of all backup files.
SINGLE Specifies the single-spacing of printer backup
files.
LSN <number> Enables Backup to allow printing RJE files

selectively by destination LSN.

Examples of various PB statements are given below.

Example 1
PB MT 81 B5500

Action: Specifies the printing of B 5500 backup tapes from a specified tape
unit onto a normal output (that is, non-direct) printer file called BFILE. Any
other options in the input string are ignored.

Example 2
PB D 0385 000385/000387/000LINE

Action: Specifies that LINE is the title of the printer or punch output file
from disk. A prefix of BD or BP is assumed; consequently, SYSTEM/BACKUP
constructs the file name by putting BD/ or BP/ first followed by the job number
followed by /<file name> exactly as specified.

Example 3
PB "TARGET"

Action: Specifies that TARGET is the title of a file from disk. The entire file
title, including the backup prefix (BD, BP, or whatever was in the BDNAME
statement used when creating the file) is enclosed in quotation characters. If
this file is a directory, then everything under it is printed.

Example 4
PB MT "TEST"

Action: Specifies that a tape file called TEST is the input to printer or punch
backup. The title of a tape file is simply the name of the printer or punch
file used to write it. Therefore, when a PB message is entered which specifies
a magnetic tape unit, that particular tape is rewound and the backup files on
the tape are printed or punched depending on whether they are printer backup or
punch backup files.

i-7- 8
BACKUP

Example §

PBD *

Action: Prints disk files using the job number under which BACKUP is running.

Example 6
PB MT 83 KEY ALGOL RANGE 12340000 : 23450000

Action: Indicates that cards included in the printout by a $INCLUDE

card are
not to be considered when making the sequence range check.

BACKUP

Example 7
PB MT "REAL" CP

Action: Specifies that a tape file called REAL is to be output to punch backup.
When LP is specified in the PB message, only printer backup files are output.
In contrast to PBing by unit number, SYSTEM/BACKUP prints only the requested
file from the tape and does not print the other files on the tape.

SYSTEM/BACKUP allows for the printing or punching of second and subsequent
backup reels without having to read through the first reel.

When tape backup is required, the MCP looks for an available backup tape. If
one is available, the file is written on that tape. If an uptape backup tape is
required and is not available, the MCP looks for a scratch tape. If a scratch
tape is available, the system designates it as a backup tape and writes the
printer or punch file on it.

Example 8

PB MT83 FILE 2
Action: Causes SYSTEM/BACKUP to begin printing at the second file on the tape
on unit 83. Uptape files on multi-file reels can be printed without having to

print all of the preceding files. The number of the first file to print is
specified to SYSTEM/BACKUP by including FILE <number> in the input string.

1-7-

10

BACKUP

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTNG
PURPOSES .

1-8- 1
BACKUP

8. SYSTEM/BACKUP COMPILE-TIME OPTIONS

$ IDOPTION

The $IDOPTION is a compile time option used to determine whether block
character headings are printed on SYSTEM/BACKUP printer output. When $IDOPTION
is set and the backup files to be printed are located on DISK and PACK, the
titles of the backup files contained on these media are printed in block
characters. Also, when $IDOPTION is set and the backup files to be printed are
located on TAPE, the following message is printed on the listing:

"BACKUP TAPE - UNIT 011"
The number of the tape unit containing that particular backup file is 011,

When the SIDOPTION is set and the ID "string" option is specified in
SYSTEM/BACKUP, the wuser-provided ID "string" of characters (with a maximum

length of €0 characte

« f smrimead i:m Kl1aol L
a) is printed in vioC ciliaracters.

o}

The ID "string" option does not work with the ND option. For example,
PB "B" ND ID "BBB"

generates a syntax error and, as such, is invalid in SYSTEM/BACKUP. The
implementation was not designed to allow non-direct (ND) I/0 with the block
character headings.

When the SIDOPTION is reset, block characters are not printed. The S$SIDOPTION
must be set if any block character headings are to be printed.

$ INFOPTION

$INFOPTION is a compile time option that allows the user to obtain information
(for example, the version number and the file printed) displayed onto the
console; subsequently, that same information is printed on the WFL output when
set at compile time. This option prevents SYSTEM/BACKUP from requiring two
printers, except if DEBUG is set or an error condition occurs. The default

does not have SINFOPTION set; therefore, it still uses two printers.

1-8- 2
BACKUP

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

1-9-
BACKUP

9. TAPE REPOSITIONING

Tape Repositioning is a feature wused to handle cases of

failures during long printer runs, in which several lines or pages of output

from a Printer Backup tape have been lost. The operator
SYSTEM/BACKUP to reposition the tape by entering:

printer jams

<mix no.> HI
at the console. Backup responds
ACCEPT: ENTER SKIP OR UNIT NO.

The syntax for the reply is given below.

Syntax

—=— <miXx no.> AX——{~——~——T—-<unit no.>——T—>< + skip county —>
[LP] “— < - skip county—!
CP

]
L_ _J |
<channel no.>

NOTE

Tape repositioning cannot be

used with
non-direct(ND) files.

Semantics

If the LP or CP followed by a unit number is present, backup begins using this
unit instead of the one it was previously using.

The first number specified is a skip count. The number may be either

positive
or negative, indicating skipping forward or backward, respectively. If a
negative skip count is entered,

the tape is positioned past BOT; SYSTEM/BACKUP
starts printing from the beginning of the tape.

If nothing follows the skip count, then the count is assumed to refer to a
number of lines.

Example
<mix no.»> AX -3
Action: Back up three lines and resume printing.

If the skip count is followed by a number between 1 and 11, the number s
interpreted as a channel number, and the skip count refers to skips to that
particular channel.

or

may inform

1-9- 2
BACKUP

Example
<mix no.> AX -4 3

Action: Back up four skips to channel three.
<mix no.> AX 1 1

Action: Move forward to the next skip to top of page (CHANNEL 1).

NOTE
A skip count must always be present;
however, if another unit number s
specified, the skip count is not

required.

1.

2.

3.

INTRODUCTION.
PRINTING.

PUNCHING.

CARDLINE

TABLE OF CONTENTS

[

CARDLINE

1. INTRODUCTION

The SYSTEM/CARDLINE utility is used to printout or punch
BINARY data deck. 1In addition to a printout of the card

and sequence check are included. Columns 73-80 are
errors.
In addition to the card-to-print function, other utility

accomplished by label equating the input and/or output
The input file is named CARD, and the output file is named LINE.

functions
files of the program.

EBCDIC,
a card count
sequence

can

2-1- 2
CARDLINE

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

CARDLINE

2. PRINTING

Examples
1. To list a card deck with EBCDIC data, use the following:

<I> BEGIN JOB CARDLINE;
RUN SYSTEM/CARDLINE; VALUE = <cintegery;

EBCDIC

<data deck>

<I> END JOB
2. To list a card deck with BINARY data, use the following:

<I> BEGIN JOB CARDLINE;
RUN SYSTEM/CARDLINE; VALUE = cinteger>;

BINARY

<binary datay

BEND card

<I> END JOB

Pragmatics

The VALUE = cinteger> clause appearing in the examples above is used to specify
spacing between output lines.

In example 1, <integer> must be a numeric value of O through 9, inclusive. This
range of values is wused with EBCDIC files and serves to specify the spacing
between output lines. The values 0 and 1 cause single spacing. An <¢integer>
greater than 1 and less than 10 causes the specified <integer> number of lines
to be spaced.

In example 2, <cinteger> must be a numeric value of 10 to 19, inclusive. This
range of values is wused with binary files and serves to specify the spacing
between output lines. The values 10 and 11 cause single spacing. An <cinteger>

greater than 11 and less than 20 causes the specified <integer> number of lines
(MOD 10) to be spaced.

CARDLINE

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

CARDLINE

3. PUNCHING

Examples

1. To punch a BCL, EBCDIC, or BINARY card deck,
is equated to a card punch as follows:

<I> BEGIN JOB CARDLINE;
RUN SYSTEM/CARDLINE;
FILE LINE (KIND=PUNCH);
BCL

<data deck>

<I> END JOB
2. To list a card deck with binary data, use the
<I> BEGIN JOB CARDLINE;
RUN SYSTEM/CARDLINE;

FILE LINE (KIND = PRINTER);
BINARY CARD

<data deck>

BEND card

<I> END JOB

the LINE file

following:

CARDLINE

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

1.

(5]

INTRODUCTION.

OUTPUT FROM COMPARE .

COMPARE

TABLE OF CONTENTS

-t

COMPARE

i. INTRODUCTION

SYSTEM/COMPARE compares one or more pairs of files. The wutility performs a
bit-by-bit comparison on each record or sequence number and record of each pair
of files. If the sequence numbers and/or records are not identical or if one

of the specified files is not present, an appropriate error message is printed.
The comparison of a pair of files is terminated after a specified number of
unsuccessful comparisons have been made, and the utility proceeds to the next
pair of files.

Syntax

——— «filename 1. —— «filename 2>.

N

N

Semantics

<maximum errors>

<sequence number columny> <hypheny <field length>

EBCDIC, BCL, ASCII, and HEX disk files can be compared. Input specifications
are in free-field format. The <filename> must be followed by a period. The
<maximum errors> default is five. The <sequence number column> is the column

in which the sequence numbers of the files begin. The <sequence number column>
is followed by a hyphen (-), which is followed by the field length of the
sequence numbers.

If no sequence information is specified, the files are compared record by
record; a new record is read from each file for each comparison. In sequenced
files, if a difference occurs, both records are printed. If the files are
sequenced, and the sequence numbers agree, but the records do not, the contents
of both records are printed. If the record sequence number of the first file
is greater than the record number of the second file, the record from the
second file is printed, and the next record from the second file is compared
against the first, and vice versa. If a difference occurs when comparing
unsequenced files, the record number at which the difference occurred s
printed.

3-1- 2
COMPARE

Example

<I> BEGIN JOB COMPARE;
RUN SYSTEM COMPARE;
DATA
PROGRAM/ONE. PROGRAM TWO.
PROGRAM/THREE. PROGRAM/FOUR. 73-8
PROGRAM/FIVE. PROGRAM/SIX. 25

<I> END JOB

The output

1.

10.

COMPARE

2. OUTPUT FROM COMPARE

listing contains the following information:

A description of the two files being compared, which
includes the MAXRECORDSIZE, BLOCKSIZE, UNITS, INTMODE,
and CREATIONDATE. 1If the file is not in the directory,
an error message is printed.

If the files differ in blocking specifications (UNITS,
BLOCKSIZE, MAXRECORDSIZE), a message is printed, and no
comparison is made.

The maximum error default is listed.
If sequence information is specified,

otherwise, a message is printed stating

files are assumed.

gL -
£ -
o 3
3
[T ¢)
o Q.
(S9N

€
(1]

.
»
[(Ja~]

o+ -
[+ 23
0
-

.
=3

If any differences occur, a list of the differences s
printed.

If the comparison of the files is terminated because the
maximum error default has been reached, a message is
printed along with the current record number of each file
being compared.

If an end-of-file condition occurs in one file before the
other, a message is printed. The message also indicates
in which file the end-of~file condition occurred.

The number of differences is listed.

The number of records in each file is given.

A "total page" is printed providing the information
described above, except the list of differences.

3-2-

COMPARE

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

DUMPALL
TABLE OF CONTENTS

INTRODUCTION.

<copy verb>

<dmpmt verb>.

<hexdsk verb>

<libmt verb>.
<device-to-device verb>
<file verb>

<teach verb>.

DUMPALL

1. INTRODUCTION

SYSTEM/DUMPALL is a utility program that generates printouts of files, controls
the dumping of tapes, and provides for the copying of files from one media to
another.

Syntax

DUMPALL

i—nuu SYSTEM/DUMPALL ("<control option>") ‘_ —‘ |
9 2 END

<control option>

—T— «<list verb> {

— <copy verb>

— <dmpmt verb>

— <hexdsk verby

F— <libmt verb>

— <device-to-device verby —

— ¢«file verb>

— <teach verb>

DUMPALL
<list verb>
Syntax
LIST —— <filename> L_

— L—— <manual input party—;

—— LISTAN— UL <manual input part>

— LAN

<pack name>——' L—-START———-<record number>—J

T

4

SKIP ¢integery —

L—-<integer 1> —

SKIPTM <cinteger>

L pBL

Semantics for LIST or L

The LIST option provides a graphic printout of the contents of a labeled or
unlabeled file. If the file is titled, the required file parameters may be
specified; otherwise, the titled file obtains its parameters from the file
itself. If the file is unlabeled (UL), the record/character mode (S, N, E, B),
the <maxrecsize>, and the <blocksize> attributes are required. Record/character
mode S (STANDARD) refers to XALGOL, BCL, variable-length records (FILETYPE=5);
N (NONSTANDARD) refers to alpha or even-parity seven-track (PARITY=1) or paper
tape records; E refers to EBCDIC and B to BCL fixed-length records. CHAR
defines «<maxrecsize> and <blocksizes to be a specified number of <characters.
The default is words. SKIP cinteger> specifies the .record number +1 at which
printing begins, and <integer 1> specifies the number of records to print.
Only the last SKIP specification is wused. SKIPIM <cinteger> specifies the
number of tapemarks to be skipped.

DUMPALL

Examples

("LIST IN/FILE")
("L IN/FILE SKIP 306")

("L IN/FILE SKIP 190 25")

("L IN/FILE PACK= INPACKNAME")
("L IN/FILE DBL")

IST UL E 80 80 CHAR SKIPTM 6")
LS 10 56")

L B 80 2400 CHAR")

L N 80 2400 CHAR")

L E 14 420 SKIP 185 25")

SN NSNS~
ikl el

In the last example above, the file to be listed is unlabeled, EBCDIC, 14 words
per record, 420 words per block, printout starts at the 186th record, and 25
records are to be printed.

Semantics for LISTAN or LAN

The LISTAN option provides a graphic printout of an unlabeled or labeled file
in EBCDIC or hexadecimal <characters. LISTAN has the same attributes as the
LIST option.

Examples

("LISTAN IN/FILE")
("LAN IN/FILE")
("LAN UL E 80 80 CHAR SKIPTM 3 DBL")

DUMPALL

<copy verb>

Syntax

—“COPY—I: <filename> [— _J [_ ’]
UL ———— PACK-—[:——:]—-<pack name> TO

DISK |
— PETAPE
— PUNCH
- TAPE —
— TAFED — -
L S18APACK
— INTERCHANGE —
— IC

— SINGLEPACK

— CYLINDERMODE — 1

— CYL
Semantics
The COPY option allows files to be copied to a specified «<devices. For an
unlabeled file, the attribute requirements are identical to the LIST option.

When using DISKPACK, native mode 1is assumed CYLINDERMODE, SINGLEPACK, and
INTERCHANGE default to false.

Examples

("COPY IN/FILE TO DISK")

("COPY IN/FILE TO DISKPACK")

("COPY IN/FILE TO DISKPACK SINGLEPACK CYLINDERMODE")
("COPY UL E 14 70 TO PETAPE")

("COPY UL E 84 5880 CHAR TO PETAPE")

DUMPALL
<dmpmt verb)>
Syntax
————DMPMT——[: <filename> NUL {
UL
BCL
EBC
HEX
Oc’r

Semantics

The DMPMT option causes a tape dump in EBCDIC, BCL, HEX, and/or OCTal. The NUL

attribute returns only the tapemarks, record size in words and characters, and
resulting descriptors.

Examples

("DMPMT UL")

("DMPMT INFILE")

("DMPMT UL HEX")

("DMPMT UL EBC HEX BCL OCT")

4-1- 6
DUMPALL

<hexdsk verb)>

Syntax

—_ HEXDSK—[<filename> l_ i %
uL—8F PACK .

Semantics

The HEXDSK option lists a file in hexadecimal and EBCDIC. The file 1is read
with a <maxrecsize> and <blocksizey> of 30 words.

Example
("HEXDSK INFILE")
<libmt verb)>

Syntax

—— LIBMT '

Semantics

The LIBMT option lists a library tape in hexadecimal. The tape must be UlLed in
(the UL message).

Example

("LIBM n)

DUMPALL

<device-to-device verb>

Syntax
CRD CRD <input file title>
— MT7— — MT7— l—UL
— MT9— — MT9 —
— MIP— |— MTP—
— PTP— — PTP—
+— DSK— +— DSK—
— DPK—' +— DPK—
— DPS —
— DPM—

L—‘<manual input part>——] L—-PACK——[:—-—:]—— <pack name>—-J

>—— ¢output file title> L— -J
— UL ¢manual input part>
I

|
——} |——-SKIPTM"——-<integer>——I

— PACK——— <pack name>

-

CRD = card reader/punch DSK = disk

MT7 = 7-track magnetic tape DPK = disk pack

MT9 = 9-track magnetic tape DPS = disk pack single pack
MTP = PE magnetic tape DPM = disk pack multipack
PTP = paper tape punch

<manual input part>

1

B <maxrecsize>—— <blocksize> L_- ~J
E::(_ CHAR

.

DUMPALL

Semantics

The <device-to-device> option allows the movement of files from hardware device
to hardware device. The input and/or output file can be labeled or unlabeled.
If an input tape is unlabeled, the SKIPTM attribute can be used prior to the
move. Input and output file parameters are used if supplied; otherwise, input
file parameter values are obtained via file attributes, and output file
parameters are those used for the input file. If the input file is empty, the
output file is not created.

Examples

("DSKDSK IN/FILE OUT/FILE")

("MTOMT9 IN/FILE E 14 420 OUT/FILE")

("CRDDSK IN/FILE OUT/FILE E 14 420")

("DSKDPK IN/FILE OUT/FILE PACK = OUTPACKNAME")
("CRDDPS IN/FILE OUT/FILE")

In the example above, if pack is an IC pack(interchange), the "OUT" of OUT/FILE
corresponds to the diskpack name.

("DSKDSK IN/FILE OUT/FILE B 10 150")

("MT9DSK IN/FILE E 80 1200 CHAR OUT/FILE E 14 420")

("MTPDSK UL E 14 420 OUT/FILE B 80 2400 CHAR")

("DPKDSK IN/FILE PACK = INPACKNAME OUT/FILE")

("MTPDPM UL E 80 80 CHAR PACKNAME/FILE E 80 1200 CHAR

CYL SKIPTM 1")

("MT7TMT9 UL B 10 150 NEW/TITLE E 14 420 SKIPTM ")
In the last example, the file is to be copied from seven-track tape to
nine-track tape, the input file is defined as unlabeled, the data written in
BCL, <maxresize> is 10 words, and <blocksize> is 150 words. The output file,
NEW/TITLE, is to be written in EBCDIC with a <maxrecsize> of 14 words and a

<blocksize> of 420 words. Before copying of the file begins, one input
tapemark is to be skipped.

<file verb>

Syntax

—FILE—E <filename> L T %
UL ——M— PACK——[:T—j:T—-<pack name>——J

Semantics

The FILE option lists the values of the initial file attributes, the file
attributes after a RESIDENT test, and the file attributes after a PRESENT test.
The attributes listed are as follows:

KIND, EXTMODE, INTMODE, MAXRECSIZE, MINRECSIZE, BLOCKSIZE,
UNITS, PARITY, FILETYPE, AREAS,

AREASIZE, ROWSINUSE, LASTRECORD, FILEKIND, and CREATIONDATE.

DUMPALL

Example

("FILE IN/FILE")

<teach verb)>

Syntax

—— TEACH

Semantics

The TEACH option causes a printout of the information presented above.

Example

("TEACH")

4-1-

10

DUMPALL

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

FILEDATA
TABLE OF CONTENTS

1. INTRODUCTION.
2. FILEDATA EXECUTION METHODS.
3. TASK REQUESTS

ATTRIBUTES .

CATALOGINFO

CHECKERBOARD.

COPYDECK.

DEFINEOUTPUT.

FILENAMES

HEADERCONTENTS .

HPTRESOURCES .

NOREPORTS

STRUCTUREMAP .

TAPEDIR
4. MODIFIERS

5. NUMERIC REPORT REQUESTS

10

11

12

13

FILEDATA

1. INTRODUCTION

SYSTEM/FILEDATA, a parameter-driven utility program, produces selected reports
regarding files. The reports provide:

1.

2.

A hierarchical list of files.
A map of files showing their storage layout.

A disk checkerboard displaying permanent files and the
space around them.

The status of all head-per-track (HPT) disk.
Specified attributes of a file or a group of files.
A list of file names contained in a tape directory.

A file suitable for use in a library maintenance copy
deck.

A raw (HEX) dump of disk file headers.

A list of the catalogue information about a file.

5-1-

FILEDATA

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

FILEDATA

2. FILEDATA EXECUTION METHODS
The FILEDATA utility program may be executed in three ways: (1) by ODT
commands, (2) by a WFL card deck, or (3) through a CANDE terminal by the use of
WFL commands or the CANDE LFILES command. (Refer to the B 7000/B 6000 Series
CANDE Reference Manual, form 5010259, for a description of the LFILES command.)

The following syntax diagrams illustrate how SYSTEM/FILEDATA is executed wusing
WFL statements and ODT commands. Additional syntax diagrams describing
frequently used syntactic elements follow the WFL and ODT diagrams.

5-2- 2
FILEDATA
WFL Syntax
—— «<I> RUN SYSTEM/FILEDATA
(" <parameter list> ")
(" ") ; VALUE = «numeric report request>
(" 1 RAW "y —
1 MAP
— NOMAP
1 DISK
|~—-—NAM]E'. = ¢directory name> —
— NAME = <directory name>
“— <packname>
ODT Syntax
DIR
DIR

——-IC——[::PK———-<unit number>

NAME =—— ¢pack name>

— <pack name>

/T— RAW
/1 MAP
L— NOMAP
—/1T\— DISK
L—-NAME——-=———-<directory name> —
— NAME—— =—— «directory name>

— ¢<parameter list>

— ¢<numeric report request>

FILEDATA

TD—

PUNCH —

SPO——

<unit no.>

_

<unit no.> T

<tape name>—J

—— <cinteger>

<task request>

1

—— ATTRIBUTES

— CATALOGINFO

— COPYDECK
— DEFINEOUTPUT ——
— FILENAMES
—— HEADERCONTENTS —
— HPTRESOURCES —
— NOREPORTS

— STRUCTUREMAP ——

— TAPEDIR

<tape name>

— CHECKERBOARD —

/17— any alphanumeric character

5-2- 4
FILEDATA

<parameter list>

y

<numeric report request>

L— <task request>—

I——-:<modifiers>—-—

<numeric report request>

—— ¢integer>

<identifier>

— L 17— any alphanumeric character —
<file title>
—— «filename> %
L—-ON <family name>—J
<file name>
713N /
<«file identifiers> -
.
<12\ /
(<usercode>)—— <file identifier>

«<file no.>

—— JFILE<3 digit integer>

FILEDATA

<file identifier>

———{—_—fl7L—-<any alphanumeric character> i

»—L /17— cany EBCDIC character except quote> —— vl

<family name>

c<identifiery {

DISK

PACK

<directory name>

2— /
<file id> / |
l L—"_J L—-ON <family name>—J
L n—/
(<usercode>)——[:—— <file idy—— /=—

<file id> is a <file identifier>.

<directory name> 1is a subset of a «<«filename>. For example, given the
<filename> A/B/C/D:
A/=, A/B/=, A/B/C/=

are the only valid «directory name>s.

FILEDATA

Examples:

<I>RUN SYSTEM/FILEDATA ("FILENAMES:LEVEL=2 TITLE =SYMBOL")
<I>END

<I>RUN SYSTEM/FILEDATA ("1;ATTRIBUTES:DIR=MYSELF ALL;0")
<I>END

<I>RUN SYSTEM/FILEDATA(" ");VALUE=1
<I1>END

DIR 1
DIR COPYDECK: CATALOGUE; CHECKERBOARD; 0
DIR-

™D 115
TD SPO TIO
TD PUNCH TIO/FILEO0O1

Semantics
DIR and TD are ODT commands that run SYSTEM/FILEDATA.

DIR is used to obtain disk directory information and TD is wused for library
tape directory information.

The default destination of a FILEDATA generated report is the line printer.
The default destination may be overridden by including the key word SPO or
PUNCH. SPO causes the output to be directed to the requesting terminal; PUNCH
causes the punching of a COPY&COMPARE card deck (with no FROM or TO part) which
can subsequently be used by library maintenance.

FILEDATA can report on the status of a tape using the TD ODT command or the
TPDIR «<task request>. The desired tape may be specified by tape name or by
drive number. The latter method must be used if the nth reel of a multireel
library dump is required.

Using the SPO option, each tape is reportied, in turn, in the order the requests
were entered. Entering "AQUIT" in place of "ANEXT" (each occurs at the pause
for a new page) causes the program to be terminated, possibly with some still
unreported tapes.

If the head of the input string is not a number or a <task request>, the input
is processed as PACKDIR. PACKDIR accepts only those keywords shown below.
Anything else is treated as a pack name. The reports include the FILENAMES and
STRUCTUREMAP reports and, optionally, the CHECKERBOARD and HEADERCONTENTS
reports.

DISK: Specifies that the directory to be listed resides on HPT disk.
Default is native mode disk packs.

MAP: Specifies that the report is to include a sorted listing of
allocated disk segments (CHECKERBOARD). The default is NOMAP.

NOMAP : Suppresses listing of allocated disk segments (default value).

FILEDATA
RAW: Specifies that each header is to be printed in HEX.
NAME: Specifies the (qualified) name of the directory to be listed.

For disk packs, the first level of the name must be the pack
name. No blanks, quotes, or parens may occur anywhere in the
name.

Examples:
RUN SYSTEM/FILEDATA("DISK MAP RAW")
is equivalent to
RUN SYSTEM/FILEDATA("FILENAMES;STRUCTUREMAP;CHECKERBOARD;
HEADERCONTENTS ")
RUN SYSTEM/FILEDATA("PACK! MAP")
is equivalent to

RUN SYSTEM/FILEDATA ("FILENAMES : PACKNAME=PACK 1 ; STRUCTUREMAP ;
CHECKERBOARD")

FILEDATA

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES .

FILEDATA

3. TASK REQUESTS

In the following discussions of <task request>s, certain key words are listed.
A minimum obbreviation exists for each key word. Beyond the minimum, additional
letters may be used up to and including the entire word. If additional letters
are used their spelling must be correct. The minimum keyword abbreviation is
indicated in the syntax diagram by the appearance of underscores.

FILEDATA
ATTRIBUTES
Syntax
——— ATTRIBUTES L
ABBREVIATED
ALL
—— CATALOGUE
—— DOUBLE

F— «<file attribute>

—— LASTACCESSDATE

—— LEVEL—— = <¢integer>
WESONLY

——EDATABASE— = ¢filetitle>

/1 PRINTER

—— PUNCH

—— SCREEN

DATABASE—'— = ¢file titley>—

L DIRECTORY —

—— PACKNAME—— = <¢identifiery —

TAPE = [_ <tape name>

<unit nop

—— TIMESTAMP

FILEDATA

<file attribute>

———— AREAS |
—— AREASIZE

—— BLOCKSIZE

t—— CREATIONDATE —————

——— CRUNCHED

—— CYCLE

—— FILEKIND

—— FILEORGANIZATION —
+— FILETYPE

—— INTMODE

—— LASTRECORD ———

—— MAXRECSIZE

—— SAVEFACTOR

—— SECURITY

—— UNITS

—— VERSION

«file attribute> may be any one of the above valid file attribute names. A
complete description of all file attributes may be found in the B 7000/B 6000
Series I/0 Subsystem Reference Manual, form 5001779.

Semantics

ATTRIBUTES produces a report showing various requested attributes of a file or
group of files.

FILEDATA

CATALOGINFO

Syntax

—— CATALOGINFO

Semantics

CATALOGINFO lists the catalogue

output is the creation date,
controlled segments,

information about a file.

last access date,

Included in the
and hierachical names.

file kind, status, class,

FILEDATA

CHECKERBOARD

Syntax

——— CHECKERBOARD

i .

-

L— NEWDATABASE=<filetitle>—

—— DATABASE=<filetitle> —

—— PACKNAME=cidentifier>—

JNITS

[

Semantics

CHECKERBOARD produces a disk checkerboard displaying permanent files and the

space around them. It includes family index, base address, end addess, length,
area, file name, and space between rows.

FILEDATA
COPYDECK
Syntax
— COPYDECK —>
|
L~ 1
CATALOGUE
—— LEVEL—— =—— ¢integer>
—— NAMESONLY

—— NEWDATABASE=¢filetitle>

- 1——— PRINTER

PUNCH

DATABASE—1— =c¢filetitle> —

—— DIRECTORY —

—— TITLE—————

—— PACKNAME=<¢identifiers

———-TAPE=——[: <tape name)
<unit no.>

Semantics

COPYDECK produces a file suitable for use in a library maintenance copy deck.
The file is sent to the card punch by default.

FILEDATA
DEFINEOUTPUT
Syntax
—— DEFINEOUTPUT — I
L.
EAGESIZE—J——: {integer)
L LINEWIDTH
PREFIX = $ {hex string) $ —
— SUFFIX—
MEDIATYPE— = — PRINTER ——
PUNCH
SCREEN
$PQ
MV1776 Ty

Semantics

DEFINEOUTPUT is used to reformat a repurt’s output. This <task reguest> allows

the programmer to explicitly control line width, page size, and output media.
Additionally, a prefix and/or suffix may be specified

for each outnut lina
Sullilx may b2 specitie g Ifor each gutput line,

FILEDATA
FILENAMES
Syntax
—— FILENAMES
CATALOGUE
—— LEVEL—— =—— <¢integer>
—— NAMESONLY

—— NEWDATABASE=<filetitle>

- 1\——— PRINTER

— PUNCH

—— SCREEN

SPO
TTY

—— DIRECTORY —

—— TITLE——

—— PACKNAME=cidentifier>

Semantics

FILENAMES produces a hierarchical

dates,

size

-——-TAPE=——[: <tape name)
<unit no.>

in segments, security class,

DATABASE ——— =«¢filetitley —

list of files,

status,

including access and
and file kind.

creation

FILEDATA

HEADERCONTENTS

Syntax

—— HEADERCONTENTS

n —

CATALOGUE

—— LEVEL—— =—— ¢integer>

—— NEWDATABASE=<filetitle>

—"1——— PRINTER

—— PUNCH

—— SCREEN

DATABASE——— =«¢filetitle> —

—— DIRECTORY —

—— TITLE——

—— PACKNAME=c¢identifier>

———-TAPE:——[: <tape name> —]

<unit no.>

Semantics

HEADERCONTENTS produces a HEX dump of file headers, row address words, and
CLASSB security information.

FILEDATA

HPTRESOURCES

Syntax

HPT

Semantics

HPTRESOURCES produces a report on the status of all HPT disk
system.

attached

to

the

FILEDATA
NORFPORTS
Syntax
—— NOREPORTS: NEWDATABASE = (filetitle) 1
%TABASE —a—— = (filetitle)
DIRECTORY—
TITLE
——— PACKNAME = (identifier)
TAPE =—[(tape name) ————————
MV1777 {unit no.) ——————

Semantics

NOREPORTS generates a NEWDATABASE without generating any reports. This
NEWDATABASE can then be used in future runs of FILEDATA.

5-3- 12
FILEDATA
STRUCTUREMAP
Syntax
—— STRUCTUREMAP
]
L_ 1
CATALOGUE
—— LEVEL—— =—— cinteger>
—— NAMESONLY

Semantics

STRUCTUREMAP produces a map showing file storage

address.

—— NEWDATABASE=<filetitle>

—T—— PRINTER

—— PUNCH

SCREEN

DATABASE——— =c<filetitley—]

—— DIRECTORY —

—— TITLE ———

—— PACKNAME=cidentifiers

———-TAPE=~—T—-<tape name>

L—-<unit no. >

The report contains the filename,

areas,

layout

by
area class,

family

family

segment address, size in segments, and number of segments on the family.

index

and
index,

5-3- 13
FILEDATA
TAPEDIR

Syntax

——1—— TAPEDIR —

— :T <tape name>
—— TPDIR ——

<unit no.>—

. .

Semantics

TAPEDIR reads library maintenance tape directories and prints
unit number, serial number, <creation date,
TAPEDIR may only be requested by a
information is accessible.

the tape name,
tape type, and a list of files.
priviieged wuser as security wusercode

FILEDATA

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

FILEDATA

4. MODIFIERS

<modifier>s specify options for task requests. Each task request permits

a

different set of «modifierss. <modifier>s apply to all reports until

overridden by another <modifier>.

The <modifier>s are:

ABBREVIATED

ABBREVIATED causes the titles of the requested attributes to be abbreviated

on the output listing. For example, AREASIZE is output as ASIZE.
ALL
ALL specifies that all of the attributes of the specified files are to

listed.

AREAS

be

AREAS is the number of words in the file header allocated for row addresses.

AREASIZE

AREASIZE is the number of logical records in an area of a disk file.

The

most current file is the one with the highest CYCLE and the highest VERSION

of that CYCLE.

CATALOGUE

Reports the existence of non-resident catalogued files as well as (defauit)

resident files.

CREATIONDATE

CREATIONDATE indicates the date the file was created. The date is given
the form mm/dd/yy.

CRUNCHED

CRUNCHED is listed as an attribute of a permanent disk file which
returned the unused portion of its last area of the file to the system.

in

has

FILEDATA

CYCLE
CYCLE and VERSION are used to identify generations of a permanent file. The

most current file is indicated by the highest CYCLE and the highest VERSION
of that CYCLE.

DATABASE

This requests information for the <task> to come from an existing file of
raw information which NEWDATABASE created at some time in the past.

DOUBLE

DOUBLE causes the output generated by FILEDATA to be double-spaced.

FILEKIND
FILEKIND describes the internal structure and/or purpose of a record of a
disk file or the kind of label on a tape. (Refer to the B 7000/B 6000

Series I/0 Subsystem Reference Manual, form 5001779, for a listing of the
various FILEKINDS.)

FILEORGANIZATION
FILEORGANIZATION is the organization under which the file was opened.

FILEORGANIZATION is shown only if FILEKIND > OR = VALUE(DATA).

FILETYPE
FILETYPE specifies the format of the records and the structure of the file.

(Refer to the B 7000/B 6000 Series I/0 Subsystem Reference Manual, form
5001779, for a description of the various FILETYPEs.)

INTMODE
INTMODE lists the internal character size of the file. (For a description

of the values and mnemonics, refer to the B 7000/B 6000 Series I/O Subsystem
Reference Manual, form 5001779.)

LASTACCESSDATE

LASTACCESSDATE is the date the file was last accessed. The date is printed
in the form mm/dd/yy.

FILEDATA

LEVEL

LEVEL specifies the number of 1leading file names to be printed. For
example, LEVEL=2 reports on A/B but only shows that the directory X/Y exists
although the file X/Y/Z is present.

LINEWIDTH

LINEWIDTH defines the length of an output line.

MAXRECSIZE

MAXRECSIZE is the maximum size of records in the logical file.

MEDIATYPE

MEDIATYPE specifies the output device.

MINRECSIZE

MINRECSIZE is the minimum size of records in the logical file.

NAMESONLY

NAMESONLY indicates that header information is to be neither extracted nor
processed in any report.

NEWDATABASE

NEWDATABASE saves the current DATABASE under a specified <filenames>.

PACKNAME

PACKNAME changes the source of information from the HPT disk system to the
named disk pack. The entire pack is used in the report. This <modifier>
overrides DATABASE, DIRECTORY, and TAPE.

PAGESIZE

PAGESIZE specifies the number of output lines per page.

PREFIX

PREFIX allows the user to specify a hexadecimal string that subsequently
precedes each line of output.

FILEDATA

PRINTER

Output is to go to the line printer, single-spaced, 58 lines per page (six
lines per inch), 132 characters per line.

PUNCH

Output is to go to a standard 80-column card punch.

SAVEFACTOR

SAVEFACTOR indicates the expiration date of a file in terms of the number of
days past the creation date.

SCREEN

Output is sent to a remote terminal assumed to be a CRT screen device with
24 lines per page and 80 characters per line. A read occurs at the end of
each page to allow user ,action.

SECURITY

SECURITY lists the security type of a file. (Refer to the B 7000/B 6000
Series I/0 Subsystem Reference Manual, form 5001779, for a discussion of
security.)

SPO

Output goes to the system console, assumed to be 80 columns by 24 lines per
page.

SUFFIX

SUFFIX allows the user to specify a hexadecimal string that subsequently s
appended to each line of output.

TAPE

TAPE allows information to be extracted from library maintenance tapes. It
also assumes the <modifier> NAMESONLY and overrides DATABASE, DIRECTORY, and

PACKNAME. Multiple reel tapes function best when the wunit number s
specified.

FILEDATA

TIMESTAMP '

The date and time the last alteration was made to the file.

TITLE or DIRECTORY

These <modifier>s allow the user to report on less than the full disk
system.

TTY

Output is sent to a remote terminal assumed to be a hard copy device with 80
characters per line.

UNITS

UNITS indicates the UNITS attribute of the file. (Refer to the B 7000/B
6000 Series I/0 Subsystem Reference Manual, form 5001779, for a discussion
of the UNITS attribute.)

VERSION

VERSION and CYCLE are used to identify generations of a permanent file. The
most current file is indicated by the highest CYCLE and the highest VERSION
of that CYCLE.

FILEDATA

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

FILEDATA

5. NUMERIC REPORT REQUESTS

In order to cut down the amount of input which must be supplied, especially for
standard functions such as LISTDIRECTORY, a <numeric report request> has been
included. <numeric report request>s allow reports to be requested by number.
Such a number may be entered via a VALUE=<numeric report request> or in the
regular ¢parameter list>. A <task> requested via a VALUE=<numeric report
request> is performed before the <parameter list>, if any, is processed.
Numeric requests in the ¢parameter list> are treated like any other «<task>
request.

Example
RUN SYSTEM/FILEDATA ("O;ATTRIBUTES:DIR=MYSELF ALL; 1 ")

Semicolons are used to separate <numeric report request>s and <task request>s.
<numeric report request>s may not contain <modifier>s. <numeric report
request>s are implemented as executable statements within SYMBOL/FILEDATA. New
reports are defined by modifying SYMBOL/FILEDATA and recompiling a new
SYSTEM/FILEDATA. Reports for O and 1 are presently defined (1 is equivalent to
the FILENAMES «<task> and O includes the <taskys FILENAMES, STRUCTUREMAP, and
CHECKERBOARD) .

Future systems releases utilize odd numbers for reports. Even numbers should
be chosen for installation defined reports.

Each request, numeric or standard, goes through an input scanner and the

results are reported prior to any line printer listings. These results include
the assumed <task> identifier, a listing of input for each «<task>, and any
error messages. If any errors do occur, this <task> and any subsequent <task>s

are checked for input syntax only; no reporting is done.

FILEDATA

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

INTERACTIVE XREF
TABLE OF CONTENTS

GENERAL INFORMATION .
INTRODUCTION.
FILES
OPERATION .
IDENTIFIER SPECIFICATION.
RANGES .
COMMANDS .
LOAD.
SYMBOL .
LOCATE.
REFERENCES .
EXPAND.
SUMMARY .
MERGE and COINCIDENCE .

MERGE.

COINCIDENCE.

DECLARATIONS.

WHATFILES

HELP.

TERMINAL.

SET and RESET .

STOP.

APPENDIX 6A.
APPENDIX 6B.

APPENDIX 6C.

11
12

12

29

30

6-1- 1
INTERACTIVE XREF

1. GENERAL INFORMATION

INTRODUCTION
A cross reference of a program contains an entry for each identifier declared
in the program. This entry is referred to as the header line information.

Each entry consists of the following:

1. The alphabetic name.

2. The declared type of the identifier.

3. The environment.

4. The stack location.

5. The sequence number of the declaration.

INTERACTIVEXREF allows interactive access to this information and to detailed
information about the identifiers.

FILES

INTERACTIVEXREF obtains information from files generated by
SYSTEM/XREFANALYZER.. The INTERACTIVEXREF information files are given the
titles XREFFILES/<code file name>/DECS and XREFFILES/<code file name>/REFS.
<code file name> is the name of the code file that was being generated by the
compiler when the INTERACTIVEXREF information files were «created. The <code
file name> is normally prefixed by OBJECT/ if compiled through CANDE.

The compiler dollar option called XREFFILES causes INTERACTIVEXREF information
to be produced. This option exists in the ALGOL, NEWP, ESPOL, and FORTRAN
compilers. When XREFFILES is set, and XREF is not set, the XREFANALYZER is run
by the compiler to produce INTERACTIVEXREF information files. When both
XREFFILES and XREF are set, the XREFANALYZER is run to produce both the
information files and a printed output. When XREF only is set, the XREFANALYZER
is run to produce printed output. In no case is the normal XREFANALYZER run if
any syntax errors are encountered by the compiler.

The XREFFILES may also be produced by running XREFANALYZER with a negative task
value. The XREFANALYZER input file (TITLE=XREF/<code file name>) must be
specified when initiating XREFANALYZER.

Information from the original symbol file used in the compile is needed by
several commands.

NOTE

Because the wrong symbol file can be
loaded (see SYMBOL command), caution
should be exercised.

VERSION information is included in the XREFFILES. INTERACTIVEXREF checks the
VERSION compatibility of the XREFFILES and displays an appropriate error
message if the XREFFILES were created with an incompatibile XREFANALYZER.

INTERACTIVE XREF

PERATION

The INTERACTIVEXREF must be run from a terminal. Commands may be entered one
at a time, or multiple commands may be placed on the same line, separated by

semicolons. A command line may be continued by terminating it with a percent
sign (%) and continuing on the next line.

When a command is printing information on the terminal,
by hitting BREAK. When the command is not printing,
entering the CANDE command ?HI. In either case,
current input line (if any) are ignored.

it may be discontinued
it may be discontinued by
the remaining commands on the

INTERACTIVE XREF

IDENTIFIER SPECIFICATION

Syntax

<identifier spec>

<identifiery L_ _J 1
<identifier qualificationy

<identifier qualificationy

4

—7— AT FIRST

— AT—— «<seq no>
— IN—— <procedure spec>
— OF —— «procedure spec>
— AT—— <¢seq no>—— IN—— «procedure spec>—
<procedure spec>
OF
——— «procedure identifier> 1

Semantics

In many commands, the program must be told exactly which identifier the user
has in mind. This declaration, however, becomes complicated because the same
identifier may be re-declared in many different procedures or blocks.

<identifier> may be an alphanumeric identifier, which starts with a letter and
is composed entirely of letters and digits. In an ALGOL program, an identifier
of the form B.0002 is acceptable.

<identifier qualificationy> is useful when the same identifier is re-declared in
many different procedures or blocks. It allows the user to specify which
occurrence of the identifier is intended. The possible identifier
qualifications are:

AT FIRST
Selects the first occurrence of the identifier
which was encountered by the compiler.

AT <¢seq no>

Selects the occurence of the identifier which is
declared or used closest to the specified sequence
number and which was not declared beyond the
specified sequence number. If all occurrences of
the identifier were declared beyond the specified
sequence number, the closest occurrence is chosen.
If an exact match is not found, a warning will be
printed. This identifier qualification gives

6-1- 4
INTERACTIVE XREF

undefined results if the source file seen by the
compiler has not been seguenced properly (see
Appendix 6B).

IN «<procedure spec>

Finds a use of the <identifier> in the specified
procedure. It 1looks first for an cidentifier>
declared by the specified procedure. Failing this,
a global identifier referenced by the procedure is

sought. Failing this, an <identifier> declared in
a procedure nested within the specified procedure
is sought. If these searches fail, an error
occurs.

OF <«procedure spec>

Looks for an occurrence of the identifier which is
declared by the specified procedure. Note that an
occurrence of the identifier declared by a
procedure contained within the specified procedure
is not acceptable.

AT <seq no» IN ¢procedure spec>

From those occurrences of the identifier which are
declared or wused within the specified procedure,
the one which is declared or used closest to the
specified sequence number is selected. This option
is useful as an alternative to AT <seq no> when the
specified procedure, but not the entire source, is
properly sequenced (see Appendix 6B).

The <procedure spec> need only be long enough so that its outermost environment
is the "best <candidate" of the possible environments specified by that
identifier. The best candidate is defined as follows:

1. If only one environment exists (for example, module or
procedure) with this name, use it.

2. If more than one environment exist with this name, limit
the possible candidates to the most global.

3. If equally global environments exist for this name, use
the first.

If more than one environment exists for a specified name, a warning of possible
ambiguity and the chosen environment are output.

Example
JOE
HARRY
HARRY
FRANK
TOM
STEVE
BOB
STEVE

HARRY

The environments are the following:

INTERACTIVE XREF

JOE

HARRY OF JOE

HARRY

FRAN

TOM OF FRANK

STEVE OF TOM OF FRANK

BOB OF FRANK

STEVE OF BOB OF FRANK

HARRY OF STEVE OF BOB OF FRANK

"TOM" locates "TOM OF FRANK." TOM is a unique environment.

"STEVE"

1
1
level, th

oca
1€ver, <

tes "STEVE OF TOM OF FRANK." Since both STEVES are at the same
iTs

t is used and a warning is emitted.

""th

"STEVE OF BOB" locates "STEVE OF BOB OF FRANK." BOB is a unique environment.

"HARRY" locates "HARRY", because it is the most global, and outputs a warning.

TEVE is "STEVE OF TOM

"HARRY OF STEVE" is an error. The environment -sed for
l) and no HARRY exists in

OF FRANK" (the first of the STEVES on the same I
that environment.

o]
ve

"HARRY OF STEVE OF BOB" locates "HARRY OF STEVE OF BOB OF FRANK." BOB is a
unique environment.

"HARRY OF JOE" locates "HARRY OF JOE." JOE is unique.

INTERACTIVE XREF

RANGES

Syntax

<range Spec>

] |

<subrange spec>
._J

<subrange spec>

<procedure spec>

- L—-THRU <procedure spec>—

(<procedure spec>)

no>
L—-- <sequence no>—]

|
L— _ END

<sequence

Semantics

Sometimes restricting a request to a certain subset of the source file s
useful. Ranges have been implemented for this purpose. Ranges may be specified
in terms of either sequence numbers or environments (procedure names).

Sequence numbers and environments may not be intermixed in the same range
specification.

A sequence number range consists of any number of sequence numbers and/or

sequence number pairs. This type of range gives undefined results if the

source file seen by the compiler has not been sequenced properly (see Appendix
6B) .

INTERACTIVE XREF

An environment range consists of a list of procedure specifications and

variations of procedure specifications. The variations are as follows:
<procedure spec> Include the specified procedure
and all procedures nested

within it.

<procedure spec> THRU <procedure spec>

Include all procedures (in
order of declaration) from the
first specified procedure

through the second.

(<procedure spec>) Include only the specified
procedure; mnot the procedures
nested within it.

If 2 minus sign precedes any of the above, it means those procedures should not
be included. If the first item of the range begins with a minus sign, the
range starts out including all procedures, rather than not including any.

If a range begins with an asterisk (*), it has the effect of inserting the
current default reference range at the start of the range. (See RANGE command

description.)

If a range begins with a minus asterisk (-*), it has the effect of inserting
the complement of the «current default reference range at the start of the

range.

Examples
500-900, 2300-END

Include all sequence numbers from 500 through 900 and
2300 through 99999999.

JOE, (SAM), B.0004 OF TOM
Include global procedure JOE and all procedures declared
within it, global procedure SAM but not the procedures

declared within it, and the block within global
procedure TOM named B.0004 by the compiler.

-JOE

Include everything but global procedure JOE and all
procedures declared within it.

6-1- 8
1NTERACTIVE XREF

Specifies the <complement of the current default
reference range.

*, JOE
Specifies the current default reference range as well as

global procedure JOE and all procedures declared within
it.

INTERACTIVE XREF

2. COMMANDS

Syntax

—— LOAD

4

— SYMBOL
— LOCATE
— REFERENCES —-——
— EXPAND
— SUMMARY
— MERGE

— COINCIDENCE —
— DECLARATIONS —
— LIST

— RANGE

—— QUALIFY

— WHAT

— WHATFILES
— HELP

— TERMINAL ————
— SET

— RESET

— STOP

Semantics

The command descriptions appear in an order appropriate for the first time
reader. An attempt has been made to write each command description in a way
that does not depend on the other descriptions. The order of appearance does
not necessarily reflect the usefulness of a particular command (that is, the
DECLARATION command will probably be used more than the LOCATE command).

INTERACTIVE XREF

LOAD

Syntax

~—— LOAD—— «<filename,

Semantics

This command 1loads the INTERACTIVEXREF information files. The file name

specified 1is that of the object file being generated by the compiler when the
XREF information files were generated. The titles of the XREF information files

are constructed from this file name and are loaded. To prevent confusion, this
command nullifies any previous SYMBOL command.
NOTE

When compiling a CANDE work file, the
<filename> is of the type
"CANDE/CODE" ¢<number> .

INTERACTIVE XREF

SYMBOL

Syntax

—— SYMBOL—— <«filename>

. .

Semantics

This command loads the symbol file from which text for define expansion, text
corresponding to a given reference, and text for the LIST command is taken. If
none of these items is desired, a symbol file need not be loaded.

The symbol file loaded should be the source that was being compiled when the
INTERACTIVEXREF information files were generated. It is desirable, but not
necessary, that the symbol file and the XREF information files correspond

exactly. If discrepancies are found when processing a command that requires
information from both sources, a warning or error is issued.

INTERACTIVE XREF

LOCATE

Syntax

— LOCATE—— <¢identifier spec> |

Semantics

The specified identifier is found and described in terms of environment (where
declared), compiler class (REAL, INTEGER, and so forth), sequence number (where
declared), aliases, and so on. Other commands such as REFERENCES also print
out this header line information when a specified identifier is found.

Examples
1. LOCATE I AT 47362000

Locates the I declared or wused closest to sequence
number 47362000.

2. LOCATE J IN SAM

Looks for an identifier J declared by global procedure
SAM. Failing this, looks for a global identifier J
referenced by SAM, and failing this, looks for an

T

identifier J declared by a procedure nested within SAM.

3. LOCATE K OF JOE OF HARRY

If an identifier K deciared by procedure JOE of global
procedure HARRY is not found, an error results.

INTERACTIVE XREF

REFERENCES

Syntax

—— REFERENCES

/I— cidentifier spec>

——fTL—-:————-RANGE———-<range spec>
I\ . CHANGED

D . ALIASES

1 . TEXT

L— ¢integer> e

1 : ——— ENVIRONMENTS L_ _J L_
<number> ONLY —

: —— GLOBALENVIRONMENTS
L—~0NLY

—T— : —— PRINTER

/T . — REMOTE

N FILE <file name>
Semantics
References to the specified identifier are listed. If no identifier s
specified, and the previous command was LOCATE, REFERENCES, EXPAND, or SUMMARY,
then the identifier specified in that command is used. This identifier, which

is remembered from command to command, is known as the "work identifier"”.

Unless modified by some of the options described below, the references are
printed in the form familiar from printed XREFs. The 8-digit sequence number of
each line where the identifier is referenced is printed. It is preceded by an
asterisk (*) if the value might be changed by the statement and followed by a
pound sign (#) if the reference occurred as part of an expanded define. The
available options are as follows:

RANGE Allows the user to restrict the range
over which references are to be printed.
If this option is not specified, then the
default reference range, as specified by
the RANGE command, is used. The default
value of the default reference range is
the entire program.

CHANGED

ALTASES

TEXT

ENVIRONMENTS

GLOBALENVIRONMENTS

PRINTER

REMOTE

FILE

Examples

REFERENCES ABD

INTERACTIVE XREF

Only those references where the value of
the identifier might be changed by the
statement is listed.

Causes a merged list of references to the
identifier and all of its aliases (if

any) to be listed. Those sequence
numbers where an alias is referenced are
marked with a plus sign. Currently, only

ESPOL keeps track of aliases.

Causes the text from the symbol file to
be printed with each reference. If an
integer is specified with this option, a

sample of that many lines of text,
centered at the line <containing the
reference, is printed with each

reference. Note that the symbol file must
be loaded to use this option.

Causes the names of the environments

(procedures and blocks) where the
references occur to be printed,
appropriately interleaved with the

references. If modified by NUMBER, then
only that many levels of environments are
listed. If modified by ONLY, then only
the environments, and not the references,
are printed. Note that ENVIRONMENTS ONLY
and TEXT are mutually exclusive.

Similar to ENVIRONMENTS, except that
references are broken down only by global
environment (global procedure). Note that
GLOBALENVIRONMENTS ONLY and TEXT are
mutually exclusive.

Causes output to go to the line printer,
by way of a file internally named LINE.

For use when the output is to go to both
the line printer and the terminal.

Causes all referenced text lines from the
symbol file to be output to the user
specified disk file; this file cannot

alreadv exist. It is made with the same
filetype as the file loaded by the symbol
command. If no symbol file is loaded, an

error message is output to the terminal.

A list of references to ABD is printed.

INTERACTIVE XREF

REF K1 IN JOE :CHANGED :TEXT

REF

Locates the identifier K1 used in procedure JOE, prints
a list of those references where the value of KI might
be changed and the line of text corresponding to each
reference.

:TEXT 3 :ENVIRONMENTS :PRINTER

Prints a list of references to the work identifier.
Three lines of text are printed with each reference. The
references are grouped by the procedures within which
they occur, and preceding each group is the name of the
procedure. References that occur in the main program
appear at the start of the list. The output goes to the
line printer.

INTERACTIVE XREF

EXPAND

Syntax

—— EXPAND |

/T— . —— FULL
. PARAMETERS —
. BLOCKED
T . PRINTER
| /T . REMOTE
—JZD—W:: <identifier spec>—

AT «seq no>

Semantics

The text of the specified declaration is written out (expanded) if the
identifier is an item such as a define, array, or file, which has text
associated with its declaration. If no identifier is specified, and the
preceding command was LOCATE, REFERENCES, EXPAND, or SUMMARY, then the
identifier specified in that command is used. This identifier, remembered from
command to command, is known as the work identifier. If no identifier is
specified and the work identifier is empty, an error occurs.

Unless the command is modified by certain options described below, the action
taken is as follows. The first time an identifier that is or has just been
specified is expanded, the text of the declaration is given. Subsequent
requests to expand the work identifier cause this text to be scanned for
occurrences of other defines. If such nested defines are found, they are
replaced by their text. This process may be repeated, one step at a time, until
the text is completely expanded (no more nested defines are found), a new work
identifier 1is specified, or the work identifier 1is nullified. Once the
expansion is compiete, a message to that effect 1is printed. Subsequent
requests to expand the work identifier cause the final version to be printed.

The expansion of defines is context sensitive. When a define is used within a
procedure or block more local than that in which it was declared, this inner
procedure or block may have re-declared some of the identifiers wused in the
text of the define. Unless the identifier was specified using a qualification
such as AT<seq no>, which gives some indication as to what context should be
used, a context must be chosen. If the define is referenced, the context of the
first reference is used. If the define is never referenced, it is expanded in
the context of its declaration. In either case, a warning message is printed.

INTERACTIVE XREF

The following options are available:

Examples

AT¢seq no>

FULL

PARAMETERS

BLOCKED

PRINTER

REMOTE

EXPAND UNLOCK
The text
EXPAND :FULL

The text
expanded

Restarts the expansion of the work identifier in
the context of the reference nearest <seq no».

Causes the text to be completely expanded before
it is printed.

If the identifier being expanded is a
parameterized define, and if it is ©being
expanded in the context of a reference, then
actual parameters are extracted from the text of
that reference and substituted for the formal
parameters in the expansion. Even if the
expansion was complete before the actual
parameters were inserted, it reverts back to the
incomplete state because the actual parameters
may contain identifiers that are defines.

NOTE
If both FULL and PARAMETERS are specified, the
actual parameters are inserted before the full
expansion is done.

PARAMETERS works only if the define was
referenced directly and not by another define.

Normally, the first expansion 1is printed out
exactly as it appears in the symbol file
(including comments). Subsequent levels of
expansion are biocked according to a simple
scheme that indents at BEGINSs and puts

statements on separate lines. This option
requests that the first expansion also be
blocked.

Causes output to go to the line printer by way
of a file internally named LINE.

Causes output to come to the terminal, even if
it is also going to the line printer.

of the identifier UNLOCK is printed.
: PRINTER

of the current work identifier 1is completely
and written to the line printer.

Limitations
1.

2.

INTERACTIVE XREF

The symbol file is needed for this command.

The room available for storing expansion text is limited.
The first level of expansion is always completely printed
out. Higher levels may be truncated if internai storage is
insufficient.

For any given expansion, expansion of nested defines s
carried out in one and only one context. Also, text is
not syntaxed completely, and declarations cannot be
distinguished from other statements. Thus, higher levels
of expansion of defines that contain declarations may be
incorrect.

INTERACTIVE XREF

SUMMARY

Syntax

—— SUMMARY — <¢identifier spec> |

Semantics

A summary of the number and kinds of references to a given identifier s
printed. If no identifier is specified and the preceding command was LOCATE,
REFERENCE, EXPAND, or SUMMARY, then the identifier specified in that command is
used. This identifier, remembered from command to command, is known as the work

identifier. If no identifier is specified and the work identifier is empty, an
error occurs.

INTERACTIVE XREF

MERGE and COINCIDENCE

Syntax
————— MERGE .
L COINCIDENCE
19— (identifier spec> {
- — : ——— RANGE—— «<range spec>
T . — CHANGED
T . ALIASES
N TEXT
) L—-<integer>
1 : —— ENVIRONMENTS
- L—-<number>*—] l-—>ONLY——
L . —— GLOBALENVIRONMENTS —
ONLY

T . —— PRINTER
T . — REMOTE
T — . ——— FILE— «<file names

MERGE

Semantics

A merged list of the references to the specified identifiers is
avoid confusion, the work identifier is nullified.

the command REFERENCES apply.

All

produced. To
options described under

INTERACTIVE XREF

Examples
MERGE 1, J1, ABC OF SAM :ENVIRONMENTS

Prints a merged list of references to the identifiers I,
J1, and ABC OF SAM. The references are grouped by the
procedures within which they occur, and the name of the
procedure precedes each group.

MERGE A, G :ALIASES

Prints a merged list of references to the identifiers A
and G, any aliases of A, and any aliases of G.

INTERACTIVE XREF

COINCIDENCE

Semantics

A list is produced of those places where all specified identifiers appear on
the same line. To avoid confusion, the work identifier is nullified. All
options described under the command REFERENCES apply, but some may be ambiguous

and therefore require further explanation.

CHANGED Produces a list of those lines where

all the specified

identifiers

appear, and where one or more might
be changed by the statement within

which it appears.

ALIASES Produces a list of those

lines where

all specified identifiers and all of

their aliases appear.

ENVIRONMENTS ONLY
GLOBALENVIRONMENTS ONLY Only environments in

which all

specified identifiers appear on the

same line is printed.

Caution must be used when employing the COINCIDENCE command; although the
identifiers may be used in the same statement or expression, the statement or

expression may be split across a line boundary.

Examples
COINCIDENCE K, D1

A list of those lines where both K and D1
printed.

COINCIDENCE STACK, TASK :CHANGED

In this example, STACK is an array and TASK

appear is

is defined

to be STACK[13]. The above command produces a list of

those places where the value of TASK might

Note that the command REF TASK :CH produces

as defines are never marked as stored-into.

changed.

[~an $ e e
nui: output,

6-2- 15
INTERACTIVE XREF
DECLARATIONS
Syntax
—— DECLARATIONS |_ >
(identifier)
—— (identifier)
. ——LITERAL
|
1

MV1454

__/1__

— . —— CLASS —

. —— LEVELS

. —— iDSONLY

: —— SUMMARY
: —— SHORT

: —— PRINTER
. —— REMOTE

Lo oo\
\ iailge spec / R

— USED
—— UNUSED +— {range spec)
ONLYUSED {range spec)

KEYWORD — (alpha identifier)

. —— DISPLACEMENTS

L {alpha identifier)

{hex int)

L—— (hex int)

(hex int)

L—(hex int)

{integer)

{ references)

(expand)

(sort)

: —— FILE —— (file name)

INTERACTIVE XREF

<references>

—— REFERENCES
|
1
/— . —— CHANGED
T — ALIASES
— TEXT

L—-<integer>
ﬂl—r . —— ENVIRONMENTS L , !

- ¢numbery — “— ONLY —

. —— GLOBALENVIRONMENTS L
ONLY —————— |
L/ T— —— RANGE—— <range spec>
<expand>
——— EXPAND |
/T . —— FULL
IN— . —— BLOCKED —
| -
L—/—l\——-.———-<integer>—°—
<sort>
—— SORT — 1 SEQNUMBER {
1 ADDRESSCOUPLE —

1 ALPHABETICAL —

Semantics

A specified set of declarations is isolated and listed along with optional
information. The options available fall into three categories: (1) those which
select the set of declarations; (2) those which specify the output to be
produced for each selected declaration; and (3) those which specify the order
and destination of the output. To avoid confusion, the work identifier s

nullified.

The defaults,

Options

INTERACTIVE XREF

if no options are specified, are as follows:

1. All declarations are included.

2. The header line (name, environment where declared,
compiler class, sequence number where declared, aliases,
and so forth) is printed for each declaration.

3. The output
and comes

that control

¢identifier>

is ordered alphabetically by identifier name
to the terminal.

the selection of the set of declarations are:

Restricts the set to the occurrences of a
given identifer.

<identifier>-<identifiery

<identifier>

DECLARED

USED

UNUSED

ONLYUSED

CLASS

CLASS -

Restricts the set to a given alphabetic range.
The identifier pair must be ordered
alphabetically.

: LITERAL

Restricts the set to those identifiers that
contain this specified identifier as a
substring.

Restricts the set to those identifiers
declared within the specified range.

If no range specification is included,
restricts the set to those identifiers
referenced somewhere in the program. If a

range is specified, restricts the set to those
referenced within the range.

If no range specification is included,
restricts the set to those identifiers
declared but never referenced; otherwise,

restricts the set to those not referenced
within the specified range.

Restricts the set to those identifiers only
used within the specific range and not
referenced elsewhere.

Restricts the set to a particular compiler
class or group of compiler <classes. The
compiler class must appear exactly as it does
in a header line, for example, BOOLEAN ARRAY,
INTEGER, FORMAL NAME REAL, and so forth. Only
one compiler c¢lass may be specified for each
CLASS option; however, the compiler class may
contain more than one <alpha identifier> (for
example, REAL PROCEDURE). CLASS may be
specified as often as desired, thus specifying
a group of classes.

Restricts the set to all compiler «classes
except those specified in the alpha identifier

Options
are:

KEYWORD

KEYWORD -

LEVELS

DISPLACEMENTS

that specify the output to be produced for each selected declaration

IDSONLY

REFERENCES

EXPAND

SUMMARY

SHORT

INTERACTIVE XREF
list.

Restricts the set to a group of compiler
classes which contain the specified alpha
identifier. For example, KEY BOOLEAN causes
BOOLEAN, BOOLEAN ARRAY, BOOLEAN PROCEDURE, and
so on, to be included. KEYWORD and CLASS may
be specified as often as desired to generate
the desired group of classes.

Selects a group of compiler classes which do
not <contain the specified alpha identifier.
For example, KEY- BOOLEAN includes exactly the
complement of the <classes included by KEY
BOOLEAN.

Restricts the set to those identifiers that
have stack «cells with lexicographical levels
as specified.

Restricts the set to those identifiers that
have stack cells with displacements as
specified.

Displays only identifier names and not any of
the other header information. The output is
displayed in ascending alphanumeric order,
with a default field width of 20. The field
width may be altered by specifying an optional
field width.

References to the selected declaration are
listed. This option may itself be modified by
any of the options listed under the REFERENCE
command, except PRINTER or REMOTE, with the
same effects.

The text of the selected declaration is
written out (expanded) if the identifier is an
item such as a define, array, or file, which
has text associated with its declaration. This
option may itself be modified by the options
FULL and BLOCKED, as described under the
command EXPAND. Note that only the first or
the final expansion may be obtained. (If a
full expansion of a define is requested, it is
done in the context of its first use.) EXPAND
may be modified by an integer, which allows
specification of an approximate limit on lines
of text printed for each declaration. The
default is ten.

A summary of the number and kinds of
references to the selected declaration is
printed.

The aliases of the selected declaration are
not printed. Currently, only ESPOL keeps track
of aliases; for other languages, SHORT has no
effect.

INTERACTIVE XREF

Options that specify the order and destination of output are:

SORT Controis the order 1in which the selected
declarations are printed. When SORT s
followed by SEQNUMBER, the output shows the
declarations sorted on sequence number where
declared. When SORT is followed by
ADDRESSCOUPLE, the output shows the
declarations sorted first on address couple
(lex level and displacement of stack cell),
then on sequence number where declared. When
SORT is followed by ALPHABETICAL, the output
shows the declarations sorted first
alphabetically, then in order of occurrence.
(This is the same output that would be
produced if SORT were not specified.) When
SORT is followed by more than one item,
multiple sets of output are produced.

PRINTER Causes output to go to the line printer by way
of a file internally named LINE.

REMOTE Causes output to come to the terminal, even if
it is also going to the line printer.

FILE The FILE option is only valid when wused with
the REFERENCE option. Its semantics are
explained with the REFERENCE command.

Examples
DECLARATIONS :DECLARED JOE
Lists all identifiers declared within procedure JOE.

DEC :DECLARED -JOE :USED JOE :KEYWORD ARRAY

Lists all arrays global to procedure JOE and used within
JOE.

DEC :DECLARED -JOE :USED JOE :KEYWORD PROCEDURE %
:REFERENCES. TEXT. RANGE JOE

Lists all procedures global to procedure JOE which are
called by JOE, along with the sequence numbers and text
where they are called within JOE.

DEC J
Lists all declarations of the identifier J.

DEC STBR:LIT

Lists all declarations containing substring STBR.

INTERACTIVE XREF

DEC :DECLARED (B.0000) :CLASS DEFINE

Lists all global defines. The example assumes that the
main program is a block; if it is a procedure, the
procedure name should appear in the parentheses.

DEC :LEVEL 2 :DISPLACEMENTS 12-1A :SORT ADDRESSCOUPLE

Lists all lex level 2 identifiers with displacements
between 12 and 1A, sorted by address couple.

DEC :DECLARED 201000-203000 :EXPAND :PRINTER
Lists all declarations declared between 201000 and
203000. The text of each declaration that can be
expanded is printed below it, and output goes to the
line printer.

DEC FAULT - FAULT999

Lists all declarations beginning with FAULT but not
greater than FAULT999.

DEC :KEY PROCEDURE :DECLARED (B.0000)
:REF. GLOBALENVIRONMENTS ONLY

Lists all global procedures, each accompanied by a list
of global procedures from which it is called.

DEC :UNUSED

Lists all identifiers that are declared but not used.

INTERACTIVE XREF

LIST
Syntax
—— LIST S
- |
I\ <seq no>
L— <integer>——} ——— <seq NnoO>—
— - END
— <procedure id>
— ¢interface id>
—T— . —— PRINTER
T\ . REMOTE
L/ — . —— FILE— <filename>

Semantics

Text is listed from the symbol file. If no sequence numbers are specified, the
entire file 1is listed. If sequence number(s) and/or sequence number pair(s)
are specified, only those lines are listed. When the sequence number, or first
sequence number of a pair, 1is followed by a left broken bracket (<) and an
integer,the command backs up that many records before beginning to list. Entire

procedures and interfaces may be listed by using the procedure or interface
identifiers in place of the sequence range.

The available options are:

PRINTER Causes output to go to the line printer by way of a
file internally named LINE.

REMOTE Causes output to come to the terminal even if it s
also going to the line printer.

FILE Causes all lines in the sequence range or all lines
of the requested procedures or interfaces to be
written to the user-requested disk file; this file
cannot already exist. It is made with the same file
type as the file loaded by the symbol command.

INTERACTIVE XREF

RANGE

Syntax

—— RANGE — T

L—-<range spt:c>——--I

Semantics

-

Range is used to restrict the range over which references are listed. The

default reference range is used when processing a REFERENCE command or a MERGE,
COINCIDENCE, or DECLARATIONS command with no specified range.

The RANGE command establishes a new default reference range; the default

of which is the entire program. A RANGE command
specification only prints the current default

value
not containing a range
reference range.

INTERACTIVE XREF

QUALIFY

Syntax

—— QUALIFY

1
L—-<identifier qualification>—J

Semantics

This command establishes a new default identifier qualification (the default
value is AT FIRST). When an identifier specification is encountered that does

not have an explicit identifier qualification, the default identifier
qualification is wused to locate the identifier. A QUALIFY command not
containing an identifier qualification only prints the current default
identifier qualification.

Note that when an identifier specification has an explicit identifier
qualification, the default qualification is overridden, rather than

supplemented.

INTERACTIVE XREF

WHAT

Syntax

—— WHAT

1

Semantics

This command describes the current work identifier to be wused in subsequent
REFERENCES, EXPAND, or SUMMARY commands when no identifier is specified.

INTERACTIVE XREF

WHATFILES

Syntax

—— WHATFILES

4

Semantics

Tells which INTERACTIVEXREF information files are loaded as well as which
symbol file is loaded.

INTERACTIVE XREF

HELP

Syntax

—— HELP L—- _J
: —— PRINTER

e

Semantics

A list of all commands, each with a short description, is displayed at the
terminal. The listing goes to the printer when the PRINTER option is used.

6-2- 27
INTERACTIVE XREF
TERMINAL
Syntax
—— TERMINAL |
LINE[—_—:I<integer>

——PAGE—W:j—i:]—-<integer>———

—— WAIT

—— CONTINUOUS
Semantics
Attributes that control the format of output coming to the terminal may be
specified. If no attributes are specified, the current terminal specifications
are displayed. The initial values of PAGE and LINE are taken from the file

attributes of the remote file when it is opened.

Attributes that may be specified are:

LINE

PAGE

WAIT

The maximum width of an output line, expressed in
characters; value must be between 72 and 132.

On screen terminals, having output grouped into
pages of a given number of lines and having the
program wait for some response after each page is
a convenient way to look at the output. PAGE is
the number of lines on each page and 1is relevant
only if WAIT has been specified.

The output is grouped into pages as described
above. After each page, except the last page, the
program stops and waits for input from the
terminal. If the input is blank, the next page is
printed; otherwise, the command is aborted, as if
a break on output had occurred.

CONTINUOUS Turns WAIT off.

Examples

INTERACTIVE XREF

TERM LINE 80

Sets the maximum width of an output line to the terminal

to 80 characters.
TERM PAGE 23 WAIT

Causes the program to wait after each output page of
lines is printed. Note that the count starts at
beginning of each command.

23
the

INTERACTIVE XREF

SET and RESET

Syntax
| SET 1 CONTEXTWARNING
L RESET— L ENVIRONMENTS —

Semantics

The user may set or reset the following run-time options:

CONTEXTWARNING When the EXPAND command
define in the context

forced to expand
its first use,

warning is printed. If the
the warning is suppressed.

SET.

ENVIRONMENTS When the description (or
non-global identifier
description of the

The default

environment,

procedure(s) within which

included. If the option

is declared

is reset, environment

information is not included. Default

INTERACTIVE XREF

STOoP

Syntax
— STOP

Semanticre

Use of the STOP command terminates the program.

A

INTERACTIVE XREF

APPENDIX 6A
LOAD DURING INITIALIZATION

If, when the INTERACTIVEXREF program is initialized, it finds that the title of
it attempts to load XREF information files

file LOAD has been label equated,
corresponding to the code file with that title. If, in addition, the title of
file SYMBOL has been label equated, the program attempts to load a symbol file

using that title.

Example
RUN $SYSTEM/INTERACTIVEXREF; FILE LOAD=OBJECT/IBFRITZ; %
FILE SYMBOL=IBFRITZ

This CANDE command initiates the INTERACTIVEXREF. The XREF
information files for OBJECT/IBFRITZ are loaded, and

IBFRITZ is loaded as the symbol file.

This feature may be used in conjunction with the CANDE DO command to save
typing when the same XREF information files are used often.

(3]

INTERACTIVE XREF

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

INTERACTIVE XREF

APPENDIX 6B
USE WITH IMPROPERLY SEQUENCED SOURCE

Care has been taken to maintain the environment information such that it s
valid even if the source seen by the compiler was improperly sequenced or had
no sequence numbers. The source might be improperly sequenced if, for example,
it came from several different files by means of a SINCLUDE, and each file had
its own sequencing scheme.

The environment information in each header line <clearly identifies an
identifier even if the sequence number is meaningless. The ENVIRONMENTS ONLY
and GLOBALENVIRONMENTS ONLY reference options «clearly list those procedures
within which an identifier is wused. If individual procedures are properly
sequenced, then the ENVIRONMENTS and GLOBALENVIRONMENTS reference options give
the procedure names and sequence numbers where the references are located. As
references are sorted first by procedure, then by sequence number, all
references within a given procedure are grouped together.

All forms of identifier qualification work except AT<seq no>. The form AT<segq
no> IN «procedure spec> has been provided especially for cases where the
specified procedure is sequenced properly and contains nested blocks and/or
procedures that redeclare some of its identifiers.

Environment ranges work regardless of the sequencing of the source. Sequence
number ranges produce undefined results if the source was improperly sequenced.

The EXPAND and LIST commands, the TEXT reference option, and the EXPAND
declaration option do binary searches on the SYMBOL file to obtain needed text;
therefore they work only if the needed text is from the currently loaded SYMBOL
file and if that file is properly sequenced.

INTERACTIVE XREF

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

6-C- 1
INTERACTIVE XREF

APPENDIX 6C
USE WITH FORTRAN

FORTRAN does not keep track of environments for XREF; therefore, no environment
information is included in the header line. The ENVIRONMENTS and
GLOBALENVIRONMENTS reference options are not available nor are environment
ranges or identifier qualifications with the exception of AT FIRST and ATcseq
no>.

The EXPAND command is not available for FORTRAN XREFs.

A number (FORTRAN label) or an identifier containing dollar signs ($) s
accepted as a valid identifier when FORTRAN XREF files are loaded.

INTERACTIVE XREF

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

[*)

INDEX SEQUENTIAL ACCESS METHOD

TABLE OF CONTENTS

INTRODUCTION.

TRUCTURE OF ISAM FILES
PRIME DATA AREA

DATA OVERFLOW AREA.
TABLES FOR LOCATING DATA.
DATA RECORD LINKS

MANAGEMENT OF OVERFLOW AREAS.

GENERAL IMPLEMENTATION INFORMATION.

PROGRAM INTERFACE

Primitive ISAM Procedure

Standard ISAM Procedure.
PRACTICAL CONSIDERATION
ISAM PROCEDURES.

ISOPEN

ISCLOSE.

ISREAD

ISWRITE.

ISREADNEXT

ISREWRITE.

ISKEYWRITE

ISDELETE .
ISAM 1/0 RESULT INFORMATION.

PRIMITIVE METHOD.

CONDITION CODES FOR PL/I KEYED 1/0.

FILE STATUS IN COBOL.
PLANNING FOR ISAM FILES.
MAXIMUM NUMBER OF RECORDS
COARSE TABLE SIZE

FINE TABLE SIZE

INFO RECORD SIZE.

|
[\

|
—

7-2- 1
7-2- 1
7-2- 2
7-2- 2
7-2- 2
7-3- 1
7-3- 1
T7-3- 1
7-3- 1
7-3- 2
7-3- 3
7-3- 3
7-3- 6
7-3- 7
7-3- 8
7-3- 9
7-3- 10
7-3- 11
7-3- 12
7-4- 1
7-4- 1
7-4- 4
7-4- 6
7-5- 1
7-5- 1
7-5- 1
7-5- 2
7-5- 2

AREAS AND AREASIZE.

MINIMUM RECORD SIZE .

MAXIMUM RECORD SIZE
BLOCKSIZE .
EXCLUSIVE USE .
FINE TABLE RATIO.
KEY LENGTH.

KEY OFFSET.

INDEX SEQUENTIAL ACCESS METHOD

1. INTRODUCTION

The material contained in this chapter documents a set of software routines
that implement indexed sequential access methods of storage and retrieval of
data records. Indexed sequential, hereinafter referred to as ISAM, provides
the ability to process a file sequenced by a key in both random and serial
fashion. This material is intended for use as a reference document for
experienced programmers; it is not intended for use as a primer.

The ISAM facility is only used by the COBOL (with or without the S$ANSI74
option), PL/I, and ALGOL compilers; the COBOL74 compiler does not use this
facility.

INDEX SEQUENTIAL ACCESS METHOD

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

INDEX SEQUENTIAL ACCESS METHOD

2. STRUCTURE OF ISAM FILES

ISAM files are bound by normal file convention and must wutilize features
available to all files. Burroughs Data Management Software (DMSII) provides
additional capabilities beyond the scope of ISAM. For ISAM, the file is

considered to <consist of three logical sections, which are defined in the
following subsections.

PRIME DATA AREA

A prime data area is the occupied portion of the file, 1immediately after
creation of the file. The maximum size of this area (in records) can be
determined by multiplying two file attributes: AREAS and AREASIZE. AREAS and
AREASIZE must be specified when creating (opening output) an ISAM file and do
not need to be specified at any other time. The amount of file space reserved
for nondata purposes (coarse and fine tables) is determined by the attributes
AREAS and AREASIZE. The number of prime data area rows 1is specified by the
AREAS attribute. The number of records in each prime data area row is
specified by the AREASIZE attribute. ISAM files do not assume the default
values of a normal file for AREAS and AREASIZE because these should be
carefully chosen for optimum performance. At file creation time, all unused
space contained in the final row of the prime data area is incorporated into
overflow space for the final row, and totally unused prime data area rows are
incorporated into the file overflow area.

DATA OVERFLOW AREA

This portion of the file is the unoccupied data area. Records added after file
creation are always placed in an overflow area. Two types of physical overflow
areas are provided. Area overflow space may be provided in each row containing
prime data and 1is specified when the file is created (opened output). When
records are deleted, the occupied space can be returned to the overflow pool
where the record resides. The deleted record option is set at file open when
the file is created and specifies the disposition of the space occupied by the
deleted record. A file overflow area may also be specified at file open when
the file is created. Records are placed in the file overflow area only after

all available overflow space in the specific row where the record would
normally reside has been filled.

INDEX SEQUENTIAL ACCESS METHOD

TABLES FOR LOCATING DATA

Two levels of tables are used by the ISAM procedures: fine tables and <coarse
tables. Each prime data area row of the file contains a fine table. The fine
table is a list of keys and file addresses with one-to-one correspondence. One
key (and address) 1is placed in the table for each N records, where N is a
program selected value at file creation time. The fine table is stored at the
physical end of its corresponding file area.

The entire file has one coarse table that contains pairs of keys and addresses.
Each key entry is identical to the first key entry of the corresponding fine
table and the address entry is the address of the fine table rather than the
address of a data record. The coarse table is stored at the physical beginning
of the file overflow area. Therefore, an ISAM file must have at least one
physical row of file overflow space.

DATA RECORD LINKS

ISAM data records are linked together in a logical sequence. Each record
contains both forward and backward links to its logical successor and
predecessor. A link is an address of a data record. The first data record

contains a backward link that is zero, and the last data record contains a
forward link that is zero. Locating data records makes use of forward links.
Inserting and deleting data records makes use of both links. Data record links
are the innermost level of file structure in an ISAM file.

The coarse table serves to locate a fine table, and the fine table locates a
data record. The data record links are utilized in following the trail to the
desired record when necessary. Data records are not physically moved to
accommodate additions and deletions. Instead, 1links are modified as file
changes are handled in a logical rather than physical fashion. Since links are
physically contained in every data record, ISOPEN must increase the record size
to provide space for the links. Increasing record size is accomplished by
rounding the original up to the nearest full word and then adding one more word
to contain the links.

MANAGEMENT OF OVERFLOW AREAS

When the file is created, unoccupied space may be reserved in each prime data
area row and at least one entire row reserved for overflow records. The fine
table that corresponds to a row also contains information that provides a link
to the next available unoccupied space. Overflow space that is reserved at
file creation is allocated in a serial fashion. If deleted record space is
made available for reuse (an option selected by the program), the deleted
record(s) are linked into the available record chain for the corresponding area
and reassigned on a last in, first out (LIFO) ©basis. Record space made
available for reassignment is reused prior to assignment of unused space.

The coarse table contains the link to the next available space in the file

overflow area. Space assignment in the file overflow area is the same as
overflow assignment in a prime data row. New records are not placed in the
file overflow area if they can be placed in the prime data area. A given

record is never eligible for placement in more than one prime data area row,
and the only alternative placement for it is in the file overflow area.

INDEX SEQUENTIAL ACCESS METHOD

3. GENERAL IMPLEMENTATION INFORMATION
ISAM is implemented by a set of procedures that are bound into the intrinsic
file. Symbolics for these procedures are contained in the PLINTRINSICS symbol
file. The procedures called directly from programs are as follows:

1. ISOPEN - Open and set up file.

2. ISCLOSE - Close file.

w

ISREAD - Randomly read a record.

4. ISWRITE - Add a record to the file.

5. ISREADNEXT - Read the next sequential record.
6. ISREWRITE - Rewrite the record just read.

7. ISKEYWRITE - Randomly rewrite a record.

8. ISDELETE - Delete a record.

These procedures must be utilized to OPEN, CLOSE, <create, and access ISAM
files. Files that are not indexed sequentially may not be accessed by these
procedures. Normal file (non-1SAM) OPEN, CLOSE, READ, and WRITE statements are
not disallowed; however, the use of normal I/0 statements may be detrimental to
the integrity of the ISAM file. The ISCLOSE should be used to close the ISAM
file.

PROGRAM INTERFACE

The following paragraphs define the two ways of invoking ISAM procedures.

Primitive ISAM Procedure

The primitive ISAM procedure is a direct call on the procedure by name, passing

the required parameters and receiving the procedure results. This method,
which provides the primitive interface, allows the highest amount of selection
and control. ALGOL must use the primitive method; COBOL may select either

primitive or standard.

Standard ISAM Procedure

The standard interface simplifies programming effort by allowing normal, higher
level language, input/output statements such as READ and WRITE. PL/I must
utilize the standard method; COBOL may select standard or primitive. Different
features are implemented specifically for PL/I and COBOL and are uniquely
available in a particular language. This implementation level is intended to
meet requirements of a language standard.

INDEX SEQUENTIAL ACCESS METHOD

ISAM procedures must be utilized directly by the programmer for the primitive

method but may be wutilized indirecctly by the programmer using the standard
method. Indirect means the compiler supplies the procedure call and does not

imply loss of efficiency.

Functionally, ISAM file options are similar to file attributes but exist only
for ISAM files. Unlike file attributes, ISAM file attributes may not be set or
modified by control <cards or programatic file attribute statements. The
options are set at file creation when the file is opened output.

ISAM procedures return an information word to reflect the results of the ISAM
invocation. For the standard implementation, the compiler emits code for
observing the results and initiating appropriate action. The programmer must
detect the exception conditions in the primitive implementation. ISAM error
conditions do not cause program termination in the primitive method but may
cause termination in the standard method. The program normally contains
provision for processing the exceptions in both methods. The primary
difference between the methods is in the detection and analysis of the
condition.

PRACTICAL CONSIDERATION

In an unstable environment, ISAM files can become volatile (a condition where
the coarse table, fine tables, or data record links do not concur). This
situation can exist when the physical file (on disk or disk pack) has not yet
been wupdated to reflect the changes that have been made to buffers in memory.
If an event occurs that prevents writing the updated buffers into the physical
file, the file may suffer a loss of integrity. Use of the standard method
helps prevent this situation. In those cases where the program terminates
prematurely (invalid index, divide by zerc, DSed, and others), the standard

method performs an orderly close of the ISAM file while the primitive method
may not be able to properly close the file. However, the file must be opened

INPUT-OUTPUT and writes or deletions must occur as prior conditions. File
damage is by no means a certainty, and two file options are available to
further reduce such possibility. See the WAITUPDATEIO and PHYSICALUPDATE

options of the ISOPEN discussion.

ISAM files may not be specified as input or output files to the SORT, except in
PL/I. They must be read and written by input or output procedures. Other
system software may also encounter similar situations when attempting to
process ISAM files in a direct fashion without use of the ISAM procedures.

ISAM files may be accessed simultaneously by several programs, if they all open
the file as INPUT. Only one program may access the file while it is open
OUTPUT or INPUT-OUTPUT.

Direct I/0 is used by ISAM procedures to access the data. Therefore, the ISAM
file must be a direct file. In the primitive method, the program must declare
the file as direct. The compiler properly declares the file in the standard
method. The direct arrays used by the ISAM procedures are created by ISOPEN
and returned by ISCLOSE. The program does not need other direct arrays or
record areas (in COBOL) to access the data.

ISAM files may not be used in an IPC environment where the file is passed from
one task to another.

INDEX SEQUENTIAL ACCESS METHOD

ISAM PROCEDURES

The following subsections discuss the system procedures that collectively
institute the ISAM methodology. Each procedure is defined in terms of its
function or functions within the general ISAM operating method and in terms of
the interaction, if any, with other ISAM procedures. Direct knowledge of these
procedures and their parameters is not needed for the standard program
interface.

The language reference manuals for PL/I (form 5001530) and COBOL (form 5001464)

should be consulted for the description of all syntax and operations on ISAM
files using the standard program interface.

ISOPEN
This procedure opens an ISAM file for INPUT, OUTPUT, or INPUT-OUTPUT. ISAM
files require additional information not provided for non ISAM files. ISOPEN
utilizes and creates the additional information according to the method of file
opening. Non-ISAM files may not be opened by this procedure.
PROGRAM CALLING SEQUENCE:
ALGOL: RS := ISOPEN(FILE, VALUE, STACK) ;
COBOL: (NON-STANDARD)
COMPUTE RS = ISOPEN (FILE, VALUE, STACK).

RS is the result word returned to the program. It is type BOOLEAN in
ALGOL and 77 level COMP-1 in COBOL.

FILE is the ISAM file being opened. It must be declared as a DIRECT
FILE in ALGOL and COBOL.

VALUE specifies how the file is to be opened.
1 = open as INPUT

2

open as OUTPUT
3 = open as INPUT-OUTPUT

INPUT and INPUT-OUTPUT require an existing ISAM file. OUTPUT always means
creation of a new file.

INDEX SEQUENTIAL ACCESS METHOD

OUTPUT requires specification of additional file information. High order
bits in this parameter (VALUE) are utilized to convey certain information
used for file creation. Bits and fields contained in this parameter are as
follows:

47:1 Separate key (PL/I only).

46:15 Offset of the key, in bytes, from the start of the
record. It is the true (zero relative) offset. A
value of zero means the start of the record.

31:2 Open action (open input or I/0 only).

0o - Open the file.

1 - Use PRESENT attribute to open.
2 - Use AVAILABLE attribute.

3 - Not used.

29:14 Actual key length in bytes.
15:4 Mode of key. Values are:

0 - BINARY (6-byte maximum)
1 - 8-Bit character
2 - 8§-Bit unsigned numeric (max 11 bytes)
3 - 8-Bit MSD signed numeric (max 11 bytes)
4 - 8-Bit LSD signed numeric (max 11 bytes)
5 - 4-Bit characters
6 - 4-Bit unsigned numeric (max 5 bytes)
7 - 4-Bit MSD signed numeric (max 6 bytes)
8 - 4-Bit LSD signed numeric (max 6 bytes)
11:1 Duplicate key option. If zero, records with

duplicate keys may not be added to the file. If one,
duplicates are chained in first in, first out (FIFO)
sequence. A duplicate key condition exists when the
keys in two records are equal.

10:1 Deleted record option. If zero, deleted records are
physically delinked and their record space becomes
available for reuse. If one, deleted records are
flagged by having 4"FF" (all bits on) placed in the
first byte of the record. Records marked as deleted
can be retrieved using READNEXT if bit 2 of this
parameter word equals 1.

9:1 Sequence option. If zero, the file is in ascending
sequence. If one, the file 1is in descending
sequence.

8:6 Fine table ratio. During file creation, this field
controls the number of entries made in the fine
table(s). It specifies the number of unique records
to be added to the file between fine table entries.

2:1 See deleted record option. If zero, deleted records
are not "seen" by the program. If one, deleted

records may be "seen" if the deleted record option is
set and READNEXT is used.
1:2 Open type (previously described).

0 - invalid

1 - INPUT

2 - OUTPUT

3 - INPUT-OUTPUT

INDEX SEQUENTIAL ACCESS METHOD

STACK specifies the first of four consecutive words in the programs
stack. The location of the first word is utilized by ISOPEN to build
data descriptors in all four words. The location is retained in the FIB
for use as long as the file remains open. The program must provide the
space by declaring the four consecutive stack locations preferably with
four type REAL variables in ALGOL and four usage COMP-1 in COBOL. The
four words are not usable by the program while the ISAM file is open. A
program reference to any of the four words during the time the file is
open causes immediate program termination with an invalid operator.

Additional file information is conveyed to ISOPEN by use of the first of
the four consecutive words.

47:24 Number of overflow records per prime record area row.
This field is wused only when the file is opened
output. At file creation, this field 1is wused to
increase the AREASIZE specified for the file. The
new, larger AREASIZE becomes a permanent attribute of
the file. Unoccupied space, large enough to contain
the number of records specified by this field, s
allocated in each row of the file.

23:1 Wait update I/0 option. If one, this option causes
ISAM procedures to wait for I/0 completion of all
outstanding I/Os before returning to the program.
This option is not available if ANSI74 is set in
COBOL.

22:1 Physical update I/O option. If one, this option
causes the ISAM procedures to initiate I/0s for all
buffers and tables that have been modified and need
to be rewritten. This option is not available if
ANSI74 is set in COBOL.

21:6 Unused at present but reserved for future
implementation.
15:16 Number of file overflow area rows. This field s

used only when the file is opened output. At file
creation, this field is used to increase the AREAS
attribute specified for the file. The new, larger
area becomes a permanent attribute. Any areas
represented by this field are not used to contain
prime data. Prime data area rows unused at file
creation are, however, placed in the file overflow
area pool. Therefore, when in doubt, it is better to
make the AREAS attribute larger.

ISCLOSE

This pr
normal

may not

INDEX SEQUENTIAL ACCESS METHOD

ocedure closes an ISAM file in an orderly but necessary fashion.

The

CLOSE statement is not sufficient to oproperly close an ISAM file.
Certain additional file information is saved within the file by this procedure,
and the four consecutive stack words are cleared or restored. Non-ISAM files

be closed by this procedure.

PROGRAM CALLING SEQUENCE:

ALGOL: RS := ISCLOSE (FILE, TYPE);
COBOL: (Non-Standard)
COMPUTE RS = ISCLOSE (FILE, TYPE).

RS is the result word returned to the program. It is type BOOLEAN
ALGOL and 77 level COMP-1 in COBOL.

FILE is the ISAM file to be closed.
TYPE is a numeric value that specifies how the file is to be closed.

0 - Close the file and release it from the program. This
is a normal <close. The file does not remain on disk
unless it has been locked previously.

entered into the

is
previous file with

I - Close the file with lock. The file
directory and remains on disk. Any

a duplicate name may be removed.

2 - Close the file and purge its entry from the directory.
Any disk space occupied by the file becomes available
for reassignment by the system.

in

INDEX SEQUENTIAL ACCESS METHOD

ISREAD

This procedure reads a record in a random fashion wusing the program-supplied
key. If the program-supplied key matches a record in the file, the matching
record is returned. When no matching record exists, the next logically

sequential record is returned.
PROGRAM CALLING SEQUENCE:
ALGOL: RS := ISREAD (FILE, KEY, AREA);
COBOL: (non-standard)
COMPUTE RS = ISREAD (FILE, KEY, AREA).

RS is the result word returned to the program. It is type BOOLEAN in
ALGOL and 77 level COMP-1 in COBOL.

FILE is the ISAM file.

KEY is supplied by the program and is used to find a record with a
matching key.

AREA is supplied by the program and provides space to contain the
record. The area must be as large or larger than the record. Before
returning to the program, the matching (or next logical) record s
placed in the program-supplied area.

The file must be opened INPUT or INPUT-OUTPUT in order to read records.
This procedure may not be used to read non-ISAM files. The ISAM file must
be opened by ISOPEN prior to use of this procedure to read records.

INDEX SEQUENTIAL ACCESS METHOD

ISWRITE

This procedure writes a record, using the provided key, from the provided area.
This procedure never overwrites or rewrites previously existing records but
always adds (or attempts to add) records to the file.

When the file is opened OUTPUT, a new file is created; this procedure is wused
to create coarse and fine tables in addition to placing records into the file.
Records must be presented in the sequence specified by the program during file

creation. Duplicate record acceptance depends on the setting of the duplicate
key option.

When the file is opened INPUT-OUTPUT, a previously existing file 1is wutilized.

Records need not be presented in any special sequence. The records are written

into area overflow or file overflow space and appropriately linked into the
file.

PROGRAM CALLING SEQUENCE:
ALGOL: RS := ISWRITE (FILE, KEY, AREA);
COBOL: (non-standard)
COMPUTE RS = ISWRITE (FILE, KEY, AREA).

RS is the result word returned to the program. It is type BOOLEAN in
ALGOL and 77 level COMP-1 in COBOL.

FILE is the ISAM file.

KEY is supplied by the program and is used to identify the record. The
key contained in the record must match the parameter.

AREA is supplied by the program and provides space to contain the
record. The area must be as large or larger than the record. The
record contained in this area is logically placed in the file.

The file must be opened OUTPUT or INPUT-OUTPUT. This procedure may not be

used for non-ISAM files. The file must be opened by ISOPEN prior to
execution of this procedure.

INDEX SEQUENTIAL ACCESS METHOD

ISREADNEXT
This procedure reads the next logically sequential record.
to the program 1is the record whose key
the most recent record obtained by ISREAD or ISREADNEXT.
PROGRAM CALLING SEQUENCE:

ALGOL: RS := ISREADNEXT(FILE, AREA);
COBOL: (non-standard)
COMPUTE RS = ISREADNEXT (FILE, AREA).

RS is the result word returned to the program. It
ALGOL and 77 level COMP-1 in COBOL.

FILE is the ISAM file.

AREA is supplied by the program to provide space for

area must be
the program,
must be opened
files may not be accessed with this procedure.
by ISOPEN.

as large or larger than the record.
the next logical

The purpose of this procedure is to provide a
capability. In combination with ISREAD and

sequentially processed and updated for all or part

immediately follows

record is placed in the
INPUT or INPUT-OUTPUT to use this procedure.
The file must be

sequential
ISREWRITE,
of any

The record returned
in sequence after

type BOOLEAN in

the record. The
Before returning to
area. The file
Non-I1SAM
opened

processing
records may be
ISAM file.

ISREADNEXT may be used to read an entire ISAM file in a sequential manner.

INDEX SEQUENTIAL ACCESS METHOD

ISREWRITE

The ISREWRITE procedure replaces the record previously read with the data
currently in the record area. The immediately preceeding file operation must
be ISREAD or ISREADNEXT. The key contained in the record to be rewritten must
match the key in the record that was read by the immediately preceeding file
operation.

PROGRAM CALLING SEQUENCE:
ALGOL: RS := ISREWRITE(FILE, AREA);
COBOL: (non-standard)
COMPUTE RS = ISREWRITE (FILE, AREA).

RS is the result word returned to the program. It is type BOOLEAN in
ALGOL and 77 level COMP-1 in COBOL.

FILE is the ISAM file.

AREA is supplied by the program to provide space for the record to be
rewritten. The area must be as large or larger than the record. Before
returning to the program, the record contained in the area replaces or
rewrites the latest record read.

The file must be opened INPUT-OUTPUT and must be an ISAM file. The purpose
and function of this procedure 1is to provide an wupdate capability.
Additional records may not be added to the file by ISREWRITE,

INDEX SEQUENTIAL ACCESS METHOD

ISKEYWRITE

The ISKEYWRITE procedure provides a random access update capability for ISAM

files.

It replaces a currently existing record from the file with the record

provided by the program.

PROGRAM CALLING SEQUENCE:

ALGOL: RS := ISKEYWRITE(FILE, KEY, AREA);
COBOL: (non-standard)
Compute RS = ISKEYWRITE (FILE, KEY, AREA).

RS is the result word returned to the program. It is type BOOLEAN in
ALGOL and 77 level COMP-1 in COBOL.

FILE is the ISAM file.

KEY is supplied by the program and is used to find a record with a
matching key. This key must also match the key contained in the record
area.

AREA is supplied by the program to provide space for the record to be
written. The area must be as large or larger than the record. Before
returning to the program, the record contained in the area replaces or
rewrites the record identified by the program supplied key.

The file must be opened INPUT-OUTPUT and must be an ISAM file. This
procedure provides update capability and does not add additional records to
the file.

INDEX SEQUENTIAL ACCESS METHOD

ISDELETE
This procedure is used to drop or delete records from the file. When duplicate
records are allowed, the first (oldest) record is deleted. This procedure

provides random access delete capability.
PROGRAM CALLING SEQUENCE:
ALGOL: RS := ISDELETE(FILE, KEY);
COBOL: (non-standard)
COMPUTE RS = ISDELETE (FILE, KEY).

RS is the result word returned to the program. It is type BOOLEAN
ALGOL and 77 level COMP-1 in COBOL.

FILE is the ISAM file.

KEY is supplied by the program and is used to find a record with
matching key.

in

a

The file must be opened INPUT-OUTPUT and must be an ISAM file. This

procedure deletes the first (and oldes<t) record with a matching key.

The

record may be physically or logically deleted depending on the DELETED

RECORD OPTION.

INDEX SEQUENTIAL ACCESS METHOD

4.

(]

SAM 1/0 RESULT INFORMATION

The ISAM procedures return result values to the calling program which indicate
success or failure of the program request. The value returned is a 48-bit
word. In the primitive method, the word is type BOOLEAN in ALGOL and COMP-1 or
COMP in COBOL. In the standard method, PL/I uses CONDITION CODES and COBOL
uses FILE STATUS. The B 7000/B 6000 Series PL/I Reference Manual, form 5001530,
describes CONDITION CODES. FILE STATUS 1is described in the B 7000/B 6000
Series Cobol Reference Manual, form 5001464.

PRIMITIVE METHOD

The value returned for the primitive method is a 48-bit word that is non-zero
when an exception condition exists and zero when no exception condition occurs.
Specific, individual bits are utilized to indicate the exception condition. 1If
several different exceptions occur, the corresponding bit is turned on for each
condition and creates the possibility of reporting back several exceptions for
a single request. The rightmost and least significant bit (bit 0) is used for
a specific purpose. Bit 0 is turned on when any exception condition occurs and
turned off when no exception exists. The remaining bits convey the following
meanings:

1:1 A hardware error, a parity error for example, occurred
while processing the request. Another bit (7, 8, 9, or
ten) is set to further define the problem.

2:1 An attempt was made to read or write beyond
end-of-file.

3:1 No record was found in the file whose key matches the
requested key.

4:1 No space is available in the file to contain the record
just written. (Applies for adding records to the file;
does not apply to file creation.)

5:1 A request was made to add a record to the file, and the
key contained in the record matched a record that
existed in the file. Refer to bit 6.

6:1 A record was added to the file (the key of the record
matched an existing record of the file). The duplicate
key option permits or disallows this situation. When
duplicates are allowed, both bit 5 and bit 6 are on to
indicate adding a duplicate record. See also bit 5.

7:1 A hardware error occurred in reading a data record.
Bit 1 is also on.

8:1 A hardware error occurred in writing a data record.
Bit 1 is also on.

9:1 A hardware error occurred in reading an ISAM table.
Bit 1 is also on.

10

11:

12:

13:

14:

15:

16:

17:

18:

)
\D

20:

21:

22

23:

24

1

-

INDEX SEQUENTIAL ACCESS METHOD

A hardware earrnr naccurred in writing an 1SAM tahle
A hardware errozv alal M e} g

Bit 1 is also on.
This bit is not used.

An attempt was made to open the ISAM file, and the
parameters passed to ISOPEN failed to meet one or more
requirements. The "first of four stack words"
parameter must be an SIRW. The file must be declared
in a block that will be entered no sooner than the
block where the four stack words reside. The file must
not reside in a different stack from the program doing
the open. The block containing the four stack words
must also contain a file, array, or something that
causes a tag-6 word for the block. The tags of all
four stack words must be zero. The key must be defined
to be contained in the records, have a size greater
than zero, and have a valid mode.

An attempt was made to open a non-ISAM file.

The file has not been opened or the open type does not
permit the request. For example, a write on file
opened INPUT.

A rewrite was requested, and the key of the record
being rewritten does not match the key in the last
record read or the previous request was not a read or
read next.

The ISAM file is being created, and the record just
written did not maintain proper file sequence. Records
must be presented in sequence during file creation. A
duplicate record also causes this bit to be set when
duplicates are not allowed.

The number of AREAS specified is not large enough to
contain the data records written in the prime data area
during file creation.

ISOPEN is requested to open an already open file.

In an IPC environment, one program closed an ISAM file
and another attempted an I/0 after the file was closed

A write is requested, and the key supplied does not
match the key contained in the supplied record.

The ISAM file is not a direct file.

An attempt was made to write a record containing the
deleted record indicator (hex FF in first byte).

This bit indicates a PL/I program error condition. The
program is requesting an I/O that is not allowed for
keyed files. An on condition is raised in the PL/I
program.

This bit is on if ISOPEN is requested (by way of open
action) to open the ISAM file using the PRESENT or
AVAILABLE file attributes; this bit also indicates that
the desired file could not be located. Refer to bits

43

46:

1

INDEX SEQUENTIAL ACCESS METHOD
43:8.

This field contains the result of testing the PRESENT
or AVAILABLE file attributes in the ISOPEN procedure.
If the file could not be opened, bit 24:1 is also on.

This bit is on if the physical update I/0 action is on,
the wait wupdate I/0 option is off, and an I/0 error
occurred as the result of doing an update I/0 in the
previous invocation of an ISAM procedure. Bit 1:1 is
on, and 8:1 or bit 10:1 is on.

INDEX SEQUENTIAL ACCESS METHOD

CONDITION CODES FOR PL/I KEYED 1/0

CODE

0806

0809

1303

1304
1305
1306
1307
2401
2402
2403
2404
2405

2406

2407
2408
2409
2410
2411
2412
2413
2505

2506

2507

2510

2511

CONDITION

End-of-file occurred.

End-of-file occurred on keyed write during
creation.

file

A hardware error occurred on an I/0 while processing a

KEYED 1/0 request.

A hardware error occurred on a keyed record read.
A hardware error occurred on a keyed record write.
A hardware error occurred on a keyed table read.
A hardware error occurred on a keyed table write.
The record for the supplied key was not found.

No space exists to add the record to the file.

An attempt was made to add a duplicate record.

A duplicate record was added to the file.

Not used for keyed I/0.

An attempt was made to create a file with records
in sequence.

Not used for keyed 1/0.
Read did not precede rewrite.
Not used for keyed 1/0.

Kevfrom
J

does not match record key

Record contains hex FF in first byte.

Keyto variable is shorter than key in file.
Key or keyfrom is longer than key in file.
Parameter error occurred on keyed file open.

An attempt was made to open an existing nonkeyed
as a keyed file.

not

file

Conflicting file usage occurred. (For example, read on

file opened output.)

Keyed 1/0 was attempted when the file was in

improper state.

The keyed file is not a direct file.

an

2512

2513

INDEX SEQUENTIAL ACCESS METHOD
An illegal 1/0 was attempted on a keyed file.

An attempt was made to open a nonpresent file.

INDEX SEQUENTIAL ACCESS METHOD

FILE STATUS IN COBOL

COBOL FILE STATUS is available in the standard implementation only. A COBOL
compiler control card (dollar option card) which sets the ANSI74 option enables
the use of FILE STATUS and indexed I/0. FILE STATUS is a two character EBCDIC
item where the first character indicates the problem area, if any, and the
second character provides further definition.

CODE DEFINITION

00 Indicates no problem or exception exists.

02 A duplicate record was added to the file.

10 End-of-file occurred while processing the request.

21 An attempt was made to write a record out of sequence

during file creation.

22 An attempt was made to add a duplicate record to the
file.

23 The record required to fulfill the request cannot be
found. For sequential files, improper sequence of

requests can cause this exception condition.
30 A hardware error occurred while processing the request.
90 An attempt is being made to use the file in an

incorrect manner (for example, write on a file opened
input).

INDEX SEQUENTIAL ACCESS METHOD

5. PLANNING FOR ISAM FILES

ISAM provides a specific set of capabilities that must be considered during

preparation for application programs and systems. Trade-offs can be made to
favor a particular course of action. All features of the ISAM procedures are
not available to every mode of operation and language. The following

discussion of various items is intended to provide some practical insight into
ISAM usage.

MAXIMUM NUMBER OF RECORDS

The maximum number of records that can be contained in a single ISAM file s
16,777,215. Some space is required for a coarse table, fine tables, and an
INFO record. Data records can occupy the remaining space.

COARSE TABLE SI1ZE
One coarse table is created for the entire file.

Coarse table size is determined by the number of prime data area rows used
during file creation; however, the number of rows used cannot exceed the number
of AREAS requested because the coarse table cannot expand. Not more than 999
prime data area rows may be requested because at least one row is required for
file overflow. One entry is made in the coarse table for each prime data area
row. The table is contracted when fewer prime data area rows are used than
specified.

For file creation, a few more areas than needed should be specified. Key

length also has a direct effect on table size. The default number of areas is
one.

All units are bytes (8-bit characters).
Coarse table size = (number of table entries * (key length + 3)
+ 24 + BLOCKSIZE - 1) DIV BLOCKSIZE * BLOCKSIZE.
Record space loss to coarse table = coarse table size DIV

BLOCKSIZE * number of records per block.

INDEX SEQUENTIAL ACCESS METHOD

FINE TABLE SIZE

One fine table is created for each prime data area row. A prime data area is a
row of the file that was written into while the file was being created. All
other rows of the file are allocated to file overflow and do not <contain fine
tables. In a given file, all fine tables have identical size. A fine table
ratio is specified to determine the number of entries in each fine table. The
ratio may range between 1 and 63; the default value is 1. When duplicate
records are permitted, only the first record in the duplicate set is eligible
for entry 1n the fine table or is counted in meeting the fine table ratio. Key
length also directly affects fine table size.

COMPUTING FINE TABLE SI1ZE
All units are bytes (8-bit characters).
Fine table size = (number of table entries * (key length + 3)
+ 24 + BLOCKSIZE - 1) DIV BLOCKSIZE * BLOCKSIZE.
Record space loss to fine table = fine table size
DIV BLOCKSIZE * number of records per block

* number of fine tables.

INFO RECORD SIZE

The first record of each ISAM file is a special record that contains attribute
type information and is essential for proper access of the ISAM data records.
The current length of the INFO record is 7 words. One data record space 1is
normally required to contain the INFO record but more may be used if the data
record length is less than 7 words (42 bytes).

AREAS AND AREASIZE

The file attributes AREAS and AREASIZE are more important for ISAM files than
other normal files. Both attributes must be specified when creating a new file
and are not needed at other times. The default value is 1 for either attribute
(normal file defaults are different). AREAS indicates the number of prime data
area rows expected and cannot exceed 999. AREASIZE, as specified by the
program, gives the number of data records per area. The AREASIZE attribute is
increased to allow the fine table to be written in the same area (or row) of
the file as the data it represents. AREASIZE is also increased by the number
of overflow records per area which are specified by the program. The AREAS
attribute is increased by the number of file overflow areas specified by the
program. This increase is very similar to allowing the file to expand via the
flexible attribute and does not affect coarse table size. When the ISAM file

is closed, the AREAS and AREASIZE attributes are reset to their original
values.

INDEX SEQUENTIAL ACCESS METHOD

MINIMUM RECORD SIZE

ISAM does not provide for variable length records. Therefore, the attribute
MINRECSIZE should be zero or identical to the attribute MAXRECSIZE.

MAXIMUM RECORD SIZE

The value chosen for the MAXRECSIZE attribute is entirely dependent wupon the
needs of the program and the absolute limits allowed by the system. ISAM
increases the value of this attribute by at least 1 word (6 bytes) and at most
11 bytes. The program should not set this file attribute, except when creating
the file. When the ISAM file is closed, the MAXRECSIZE attribute is reset to
its original wvalue. The maximum usable values are 65,534 words or 65,535
characters.

BLOCKSIZE

The BLOCKSIZE attribute is used in association with the MAXRECSIZE attribute to
determine the number of records per block. BLOCKSIZE is always changed by
ISAM. When the program specifies a non-zero value for BLOCKSIZE, ISAM retains
the number of records per block specified by the program. The BLOCKSIZE is

increased to accommodate larger records. When the program specifies a
BLOCKSIZE of zero, ISAM computes a value for BLOCKSIZE specifically to conserve
disk storage space. ISAM computes the smallest number of records, after

MAXRECSIZE has been increased, that exactly fits into a multiple of 30-word
disk segments. The BLOCKSIZE attribute is reset to its original value when the
file is closed.

EXCLUSIVE USE

The EXCLUSIVE attribute is set true by ISAM when the file is opened 1/0. ISAM
files may not be shared except when all programs open the file as input only.

FINE TABLE RATIO

The program may select any value between 1 and 63 with 1 being a table entry
for each record for the fine table ratio. The most successful choice is highly
data and program dependent. Lower ratios are favorable when the file s
volatile, and ratios that are close to the number of records per block perform
well for files that are more constant. Programatic reorganization of the file
may be performed after a number of changes have occurred in order to improve or
restore performance.

INDEX SEQUENTIAL ACCESS METHOD

KEY LENGTH

Some key types (modes) allow specific maximum key lengths of 5,
Character keys of 4-bit

6, or 11 bytes.
or 8-bit characters are limited only by the 14-bit
field that contains key length. The maximum usable key lengths are (1) 8-bit
for 1020 bytes and (2) 4-bit for 508 bytes (1016 hex characters). Shorter keys
yield faster performance.

KEY OFFSET

A 15-bit field is allowed which permits an offset of 32767 for 8-bit characters
and 16382 for 4-bit characters.

2.

INTRODUCTION.

LD INPUT COMMAND.

TABLE OF CONTENTS

LOADCONTROL

1. INTRODUCTION

LOADCONTROL is a utility procedure contained in the MCP and is initiated by the
LD Operator Display Terminal (ODT) input message.

LOADCONTROL provides two major functions. The first function copies control
cards and associated data decks, if any, to magnetic tape. The second function
causes the card images on tape to be processed by the system at a later time as
a stream of control cards and data decks.

LOADCONTROL

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

LOADCONTROL

2. LD INPUT COMMAND

Syntax

LD LMT’J |

Semantics

All options of the LD input command require an input file titled CONTROLDECK.
The last image of the file must be ?END CONTROL.

The LD option causes the input file to be copied to the Halt/Load unit and
causes the control cards contained within the file to be processed.

The LD MT option causes the input file to be copied to an output tape titled
CONTROLDECK. .The tape contains 14-word card-image records and is identified as
a load control tape by the fact that byte 31 (USASI tape type) of the VOL1
label record is a 4. The tape may be used as input to the LD option.

[5]

()

LOADCONTROL

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

1.

MATHEMATICAL INTRINSICS
TABLE OF CONTENTS
INTRODUCTION.
RELATED INFORMATION MANUALS
RELATED PUBLICATIONS.
CONTENTS AND ORGANIZATION OF THIS DOCUMENT.
LISTING OF CONSTANTS.
EXPONENTIATION.
DISCUSSION OF INTRINSIC FUNCTIONS
GROUPING OF INTRINSIC FUNCTIONS
SINGLE-PRECISION INTRINSICS
ALGAMA .
ARCOS . .
ARCTAN. . .
ARSIN .
ATAN2
cos
COSH.
COTAN .
ERF .
ERFC.
EXP
EXPONENT.
GAMMA .
LN.
LOG10
RANDOM.
SIN .
SINH.
SQRT.
TAN .

TANH.

3. DOUBLE-PRECISION INTRINSICS

DARCOS .
DARSIN.
DATAN
DATAN?2.
DCOS .
DCOSH
DERF .
DERFC
DEXP.
DGAMMA .
DLGAMMA
DLOG.
DLOG10.
DSIN.
DSINH
DSQRT .
DTAN.

DTANH

EXPONENT -- DOUBLE PRECISION.

4. COMPLEX INTRINSICS.
CABS..
CCOS .
CEXP.
CLOG.
CSIN.
CSQRT .
EXPONENT--COMPLEX
APPENDIX 9A

APPENDIX 9B

MATHEMATICAL INTRINSICS

1. INTRODUCTION

This chapter describes the mathematical intrinsics for the B 7000/B 6000 series
of computers.

RELATED INFORMATION MANUALS

The compiler languages in which the mathematical intrinsics are wused are
described in the following manuals:

B 7000/B 6000 ALGOL Reference Manual, form 5001639;

B 7000/B 6000 Series FORTRAN Reference Manual, form 5001506;

B 7000/B 6000 Series COBOL Reference Manual, form 5001464; and
B 7000/B 6000 Series BASIC Reference Manual, form 5001407.

RELATED PUBLICATIONS

The following publications provide information on mathematical intrinsics:
IBM System/360 FORTRAN IV Library Subprograms C28-6596.

Computer Approximations, John Wiley & Sons Inc., New York, 1968
(Edited by the Society of Industrial and Applied Mathematics).

The Art of Computer Programming, Knuth, Vol. 2 (Chapter 3 is
on the generation of pseudorandom numbers).

CONTENTS AND ORGANIZATION OF THIS DOCUMENT

This document describes the mathematical algorithms used in the software
system. These algorithms are part of the Master Control Program (MCP), but the
compiiers in which intrinsics are used may not refer to them by names given in
this document. For example, in FORTRAN, the function CDABS actually refers to
the intrinsic CABS described herein. For informaticn about the wuse of these
intrinsics by the various compilers, refer to the respective compiler and
language documents. In general, the names given to the intrinsics in this
document are those commonly accepted for mathematical functions.

LISTING OF CONSTANTS

Certain specialized constants, such as pi and e, are used throughout the
algorithms. A list of these constants is given in Appendix 9A. These values
are stated in both single and double precision, where necessary; the

appropriate value should be chosen depending on whether the algorithm under
consideration is single or double precision.

MATHEMATICAL INTRINSICS

EXPONENTIATION

Several procedures are used in exponentiation and are called implicitly by the
compilers. These procedures, because of their similarity, are listed
singularly under the heading EXPONENT in each section.

DISCUSSION OF INTRINSIC FUNCTIONS

A brief description of each intrinsic function is given. In each case, this
description is followed by the algorithm used in computing the function.

Additionally, notes are sometimes provided regarding the derivation of the
algorithm.

GROUPING OF INTRINSIC FUNCTIONS

The descriptions of the intrinsic functions are grouped into three sections, as
follows:

Section 2: Single-Precision Intrinsics
Section 3: Double-Precision Intrinsics
Section 4: Complex Intrinsics

Within each section, the intrinsics are arranged in alphabetical order.

MATHEMATICAL INTRINSICS

2. SINGLE-PRECISION INTRINSICS

ALGAMA

The ALGAMA function is the natural logarithm of the GAMMA function and s
defined for positive real numbers. The algorithm used varies depending on the
value of x.

For x < 3.28
ALGAMA(x) = LN (GAMMA(x))

For x »>= 3.28, the calculation is more direct, relying on Stirling’s
approximation:

GAMMA (x)=(e**(-x)*x**(x-1/2)*SQRT(2*pi))g(x)

where the function g(x) is an error polynomial.

ARCOS

ARCOS is the inverse cosine function. A number between -1 and 1 is wused, and
the angle returned has that cosine in radians. The angle is chosen between 0
and +pi.

The arccosine is calculated entirely using the arcsine intrinsic and the
identities of trigonometry, as follows:

ARCOS (x)= pi/2-ARSIN(x).

The value of pi/2 is given in Appendii 9A.

ARCTAN
ARCTAN is the arctangent function of mathematics. A number is wused that
returns the angle with that tangent in radians. The angle is chosen between

-pi/2 and +pi/2. The arctangent is also called the inverse tangent.

ARSIN
ARSIN is the arcsine function of mathematics. A number between -1 and 1 s
used, and the angle returned has that sine in radians. The angle is chosen

between -pi/2 and +pi/2. Arcsine is also called the inverse sine.

The arcsine is calculated for x in the range 0 to .5 only. If x is outside
this range, x is first reduced to being in the range, as follows:

If x < O, the relationship ARSIN(x) = -ARSIN(-x) is used.

Then, if x >.5 = SIN(30 degrees) = SIN(pi/6), x is further reduced to be in the
range by the identity

ARSIN(x)= pi/2-2(ARSIN(SQRT(1-x)/2))

The value of pi/2 is listed in Appendix 9A.

MATHEMATICAL INTRINSICS

ATAN2

ATAN2 is the arctangent of the quotient of two numbers but is adapted to fall
in the range of -pi to +4+pi by choosing it in a quadrant determined by the signs
of X and Y, the two values it is given. In effect, this function 1is wused in
complex arithmetic as follows: given a complex number x4+iy, ATAN2 (x,y) returns
the argument of that number between -pi and pi.

ATAN2 is defined for all real x and y values except when x=y=0 and is
calculated from the function ARCTAN, as follows:

If y = 0, then ATAN2(x,0)

sign(x)*pi/2.

If y < 0, then ATAN2(x,y)

ARCTAN(x/y) 4+ sign(x)*pi.

If y > 0, then ATAN2(x,y)

]

ARCTAN(x/y).

In these cases, Sign(x) is a function that has the value +1 if x >= 0 and the
value -1 otherwise.

COs

The cosine of a real number is computed by the use of the algorithm for sine
and the identity

COS(x) = SIN(x + pi/2).

COSH

Depending on the value of the argument, the hyperbolic cosine of a real number
is computed either directly from the definition by the use of the intrinsic EXP
or by approximation.

COTAN

The trigonometric cotangent accepts a number, expressed in radians, and returns
its cotangent.

The meihod used for caicuiating the cotangent is identical with the meihod for
calculating the tangent except that since cotangent is the reciprocal of the
tangent, the final calculation for the function 1is obtained by wuse of the
relationships in the following table:

OCTANT COTAN(x)

0 T/R
1 R/T
2 (-R)/T

3 (-T)/R

MATHEMATICAL INTRINSICS

ERF
The error function (ERF) is used in <calculating probability. The function
accepts any number and returns a value between -1 and 1. The error function is

defined as follows:
ERF(x)=2/SQRT(pi)* (INTEGRAL(e**((-t)**2)dt)from 0 to x).

This function is slightly different from the "normal” probability curve -
Gauss’s probability integral, which is

phi(x) = 1/SQRT(2*pi)* (INTEGRAL(e**(((-t)**2)/2)dt) from 0 to x).
The relationship between them is that

ERF(x)=2*phi (SQRT(2)*x).

ERFC
ERFC is the complement of the error function.

ERFC=1-ERF

EXP

The exponential function (EXP) raises an argument x to the base of e=2.71828...
(see Appendix 9A). Thus, EXP(x) = e**x.

EXPONENT

Single-precision exponentiation is performed by the intrinsic RTOR
(real-to-real).

GAMMA

The GAMMA function is defined for positive numbers by the integral
GAMMA (x)=INTEGRAL((t**(x~-1)*e**(-t))dt) from O to infinity.

In addition, this integral can be extended analytically onto the complex plane
and yields a function that exists at all points except the negative integers
and O; it is real for all other negative numbers. Therefore, the intrinsic
GAMMA(x) accepts any number except 0 or a negative integer as an argument.

LN

The LN function is the natural logarithm of a positive real argument. This
function results in a positive number if given an argument greater than one and
results in a nonpositive number otherwise.

MATHEMATICAL INTRINSICS

LOG10

The common logarithm (log to the base 10) is computed by using the intrinsic LN
(for the natural logarithm) by use of the identity

LOG10(x)=LN(x)*LOG10(e).

The value of the common logarithm of e is listed in Appendix 9A.

RANDOM

The intrinsic RANDOM generates a pseudorandom real number x in the range 0 <= x
< 1. The number is generated by the mixed congruential method, which is
designed to give a uniform distribution. RANDOM is the starting point for
procedures that generate a pseudorandom number satisfying a given distribution
function. RANDOM takes one parameter, an integer called by name, and returns a
real number between O and 1. RANDOM is the only intrinsic described herein
that takes a call-by-name input parameter. That is, the parameter is both used
by RANDOM and changed by it to the value that is normally to be used for input
the next time the intrinsic is called. Therefore, the parameter for RANDOM s
generally given an initial value that is thereafter changed to give succeeding
values by the procedure itself.

Starting values to obtain a good sequence of pseudorandom numbers can generally
be obtained by picking odd numbers close in value to 2**19, 2#%*20, or 2**2].

The procedure for RANDOM generates integers in the range of O to 2**(39-1) and
then returns those integers divided by 2%*39. Calling the value given to
RANDOM as an integer variable N, it is changed as follows:

ABS(N):=(A * ABS(N) + 116177073375) MOD (2**39),

where A is a constant dependent on the sign of N (which is never changed) and

the operator ":=" is the replacement operator.
The value of A is given as follows:

For nonnegative N: A=152587890725

For negative N: A=277626315293
These values allow two different pseudorandom sequences depending on whether
the starting value was positive or negative. .

Then RANDOM(N) = ABS(N)/(2**39).

SIN

The trigonometric sine of an angle, expressed in radians, accepts a number and
returns a value between -1 and +1.

SIN(x) = SIN(pi-x)

MATHEMATICAL INTRINSICS

SINH

The hyperbolic sine (SINH) of a real number is computed either directly from
the definition by the use of the intrinsic EXP or by an approximation,
depending on the value of the argument. .

SQRT

The square root (SQRT) of a nonnegative number results in a nonnegative number.
The algorithm for 'square root is essentially the traditional Newton-Raphson
method; however, an initial estimate is first derived.

TAN

The trigonometric tangent (TAN) of a number, expressed in radians, returns a
positive or negative number depending on the argument. To compute the tangent
of an angle, the angle is reduced 1f 1t is outside the range 0 1o pi.

TANH

The hyperbolic tangent (TANH) of a real number is computed either directly from
the definition by the use of the intrinsic EXP or by approximation, depending
on the value of the argument.

MATHEMATICAL INTRINSICS

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

MATHEMATICAL INTRINSICS

3. DOUBLE-PRECISION INTRINSICS

Many double precision intrinsics are calculated in the same way as the
equivalent single precision intrinsics with all references to single precision
intrinsics changed to references to double precision ones or with all
references to the arithmetic operations assumed to be to double precision
operations.

DARCOS

DARCOS is the inverse cosine function that accepts a double precision number
between -1 and 1 and returns the angle which has that cosine in radians. The
angle is chosen between O and +pi.

The double precision arccosine is caicuiated using the arcsine intrinsic and
the identities of trigonometry as follows:

ARCOS(x) = pi/2-ARSIN(x).

The value of pi/2 is given in Appendix 9A.

DARSIN

DARSIN is the double precision inverse sine intrinsic that accepts a number
between -1 and 1 and returns the angle which has that sine in radians. The
angle is chosen between -pi/2 and +pi/2.

The double precision arctangent takes a real number argument in radians. The
argument, x, is reduced to the range Ocx¢l, where l=tan(45 degrees)=tan(pi/4),

as in the calculation of ARCTAN.

DATAN2

DATAN2 is calculated from DATAN in the same way as ATAN2 is calculated from
ARCTAN.

DCOS

DCOS is computed from DSIN in the same way as COS is calculated from SIN:

DCOS(x) = DSIN(x + pi/2)

DCOSH

DCOSH is the double precision hyperbolic cosine of a real number and is
computed either directly from the definition by the use of the intrinsic DEXP
or by approximation, the same as COSH.

MATHEMATICAL INTRINSICS

DERF

DERF is the double precision error function used in calculating probability.
The function accepts any number and returns a value between -1 and 1. DERF is
defined the same as ERF.

DERF(x)=2/SQRT(pi)*(INTEGRAL(e**((-t)**2)dt) from 0 to x)

DERFC
DERFC is the complement of the double precision error function.

DERFC=1-DERF

DEXP

The double precision exponential function (DEXP) is calculated similarly to the
single precision exponential function. It is converted to an exponent to the
base 2 and written as 2**I*2**F, where I is the integer portion and F the
fractional portion of the exponent.

DGAMMA

DGAMMA is the double precision equivalent of the GAMMA function previously
described as:

GAMMA (x) =INTEGRAL({t**(x-1)){e**(-t))dt)from O to infinity.
In addition, this integral can be extended analytically onto the complex plane
and yields a function that exists at all points except the negative integers

and O; it is real for all other negative numbers. Therefore, the intrinsic
DGAMMA(x) accepts any number except O or a negative integer as an argument .

DLGAMMA

DLGAMMA returns the double precision natural log of the GAMMA function.

DLOG

The double precision natural logarithm (DLOG) is calculated in a similar way to
LN in single precision.

DLOG10

The common logarithm is computed in double precision by the use of the same
identity as in single precision.

DLOG10(x) = DLOG(x)*DLOG10(e)

The value of DLOG10(e) is given in Appendix 9A.

MATHEMATICAL INTRINSICS

DSIN

The sine of a double precision argument is reduced to O<=x<pi/2 by the method
used in calculating the single precision sine.

DSINH

DSINH is the double precision hyperbolic sine of a real number and is computed
either directly from the definition by the use of the intrinsic DEXP or by
approximation, depending on the value of the argument (the same as SINH).

DSQRT

The square root of a double precision argument is computed in two steps: (1)
the single precision square root of the most significant half of the argument
is computed using the algorithm for finding the single precision square root;
and (2) one additional Newton-Raphson iteration, using the originai doubie
precision argument, double precision arithmetic, and the single precision
square root is computed. The exponent is shifted if necessary.

DTAN
DTAN is the double precision trigonometric tangent of a number, expressed in
radians. It returns a positive or negative number depending on the argument.

The calculation of the DTAN is the same as that of the TAN.

DTANH

The double precision hyperbolic tangent (DTANH) of a real number 1is computed
either directly from the definition by the use of the intrinsic DEXP or by

approximation, depending on the value of the argument (in the same manner as
TANH) .

EXPONENT -- DOUBLE PRECISION

Double precision exponentiation is performed similarly to single precision
exponentiation by the use of two routines: RTOD (real-to-double) and DTOD
(double-to-double). In either case, the result is double precision.

MATHEMATICAL INTRINSICS

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES .

MATHEMATICAL INTRINSICS

4. COMPLEX INTRINSICS

All of the complex intrinsics are derived by the use of the real intrinsics.
In this description, several methods are used to write a complex number. When
a complex number is to be described as a simple variable, the letter z is used.
Several equivalent ways of writing z exist; for example,

z = x + iy, where x and y are real numbers and i = SQRT(-1).

z=re**(i*phi) where r and phi are the absolute value and the displacement,
respectively. They are related to x and y by the relationships

r COS(phi) and
r SIN(phi)
so, r**2 = x**2 + y**2 and TAN(phi) = x/y).

-0 n

X
y
(a

These identities also indicate DeMoivre’s formula:
e**(i*phi) = COS(phi) + iSIN(phi).

These basic relationships are used to determine most of the complex algorithms.

CABS

The absolute value of a complex number z is defined to be ABS(r) (see the
definitions at the beginning of this section).

Therefore,
CABS(x + iy) = SQRT(x**2 + y**2).

If ABS(x) >= ABS(y), the right side is evaluated as
SQRT(1 + (y/x)**2)*ABS(x).

Otherwise, the right side is evaluated as

SQRT(1 + (x/y)**2)*ABS(y).

CCOS

The cosine of a complex number z is calculated by the use of the identity for
COS (a+b) on the number x+iy. Then the identities COS(iy) = COSH(y) and
SIN(iy)=iSINH(y) are applied. These relationships are derived by the ‘use of
the definitions at the beginning of this section. When the definitions of the
hyperbolic sine and cosine are substituted in the equation, the algorithm
becomes

CCOS(x+iy) = (+0r-)1/2 SQRT(1-SIN**2(x)) (e**y + e**(-y)) - i/2*
SIN (x)*(e**y - e**(-y)).

The value of x is taken modulo 2pi before the sine intrinsic is called. The

negative sign is taken on the square root if the original x was in the second
or third quadrants.

9-4- 2
MATHEMATICAL INTRINSICS

CEXP

By the use of DeMoivre’s relationship (see the introduction to this
and the basic identity that COS**2(x) = 1 - SIN**2(x),
exponential can be calculated as follows:

section)
the value of the

e**(x+iy)=e**x ((+or-)SQRT(I-SIN**2(y))+i SIN(y)).

The value of y is taken modulo 2(pi) before the sine intrinsic is called. The

negative sign on the square root is chosen if the original y is in the second
or third quadrants.

CLOG

The complex natural logarithm (CLOG) of a number is calculated by the wuse of
DeMoivre’s relationship and the relationships between x, y, r, and phi (see the
introduction to this section). Since the complex logarithm 1is not a

single-valued function, the value returned by CLOG is in the range from -pi

: to
+pi.
The algorithm is basically
CLOG(x+iy) = LN(r)+i*phi,
where phi is chosen to fall in the principal range noted and both r and phi are

as previously defined. The logarithm is computed as a real number. The value
of phi is computed with the real intrinsic ATAN2, which is designed for use in
this application. Then the algorithm becomes

CLOG(x+iy) = LN(SQRT(x**2+y**2))+ i ATAN2(y,x).

CSIN

The sine of a complex number z is calculated by the use of the identity for
SIN(a+b) on the complex number x+iy. Then the identities COS(iy) = COSH(y) and

SIN(iy) = SINH(y) are applied. These relationships are derived by use of the
definitions at the beginning of this section. When the definitions of the

hyperbolic sine and cosine are substituted in the equation, the algorithm
becomes

CSIN(x+iy)=(+0r-)1/2*SQRT(1-COS**2(x))*(e**y+e**(-y))

+i/2 COS(x)*(e**y-e**(-y)).
The value of x is taken modulo 2pi before <calling the COS intrinsic. The

negative sign is taken on the square root if the original x was in the third or
fourth quadrants.

MATHEMATICAL INTRINSICS

CSQRT

The complex square root of a number is calculated first by using DeMoivre's
relationship and taking its square root.

CSQRT(z)=(r)**1/2(COS(phi/2) + i SIN(phi/2)).

Using the half-angle formulas for the cosine and sine and rearranging the above
relationship, the following is derived:

CSQRT(z)=SQRT(r (14COS(phi))/2)+(SQRT(r(1-COS(phi))/2)*i).

The identity x/r=COS(phi) and algebraic manipulation result in the algorithm
that is used.

For x >= 0, let r = CABS(x+iy), then
CSQRT (x+iy)=SQRT((r+x)/2)+iy/(2 SQRT((r+x)/2)).
If x < 0, then the trigonometric functions in the polar form are complemented
and the following algorithm results, where r = CABS (x+iy):
(SQRT(x+iy)=y/(2*SQRT((t+ABS(x))/2))+ i SIGN(y)*SQRT((r+ABS(x))/2).

SIGN(y) is a function that has the value +1 if y is nonnegative and the value
-1 otherwise.

EXPONENT--COMPLEX

Exponentiation of a complex number is performed by two routines: CTOR, for
complex numbers to a real power, and CTOD, for complex numbers to a double
precision power. The only difference between the double precision power and
the real power 1is that computations are performed by the use of the double
precision intrinsics. Because the final result must be a complex number and no

double precision complex exists, exponentiation to a double precision power may
result in little increased accuracy at a high cost in time, depending on the
particular case.

MATHEMATICAL INTRINSICS

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

MATHEMATICAL INTRINSICS
APPENDIX 9A.

COMMON CONSTANTS
This appendix lists common constants used in computing the intrinsics. Real
and, where necessary, double precision values are given for each of the
constants. Since fewer double precision intrinsics than real intrinsics exist,
some of the constants are unnecessary in the double precision cases.

Constant Single-Precision Value Double-Precision Value
pi 3.14159265359 3.1415926535897932384626
pi/2 1.57079632697 1.5707963267948966192313
pi/6 .523598775598 .52359877559829887307711
SQKT(3) 1.732050807570 1.7320508075688772935275
LN(2) .693147180560 .69314718055994530941723
e 2.71828182846 2.7182818284590452353603
LOG10(e) .434294481903 .43429448190325182765113
TAN(pi/24) .267949192431 .267919243112270647253
LN(SQRT(2pi)) .918938533205

LOG2(e) 1.4426950409
pi/4 .785298163397
3(pi)/4 2.35619449019
SQRT(2)/2 .707106781187
TAN(pi/40) .0787017068246
TAN(pi/20) .158384440326
TAN(3pi/40) .240078759080
TAN(pi/10) .324919696234

MATHEMATICAL INTRINSICS

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

MATHEMATICAL INTRINSICS
APPENDIX 9B.

STORAGE ESTIMATES AND PERMISSIBLE ARGUMENT RANGE

This appendix lists the storage estimates (in words placed in the stack) for
the code of each of the intrinsics. Although many of the descriptions of
intrinsics in this document indicate that one intrinsic may call another during
its execution, these storage estimates include all such calls. Where those
calls are not included, an asterisk (*) is placed next to the storage estimate.

In listing permissible argument ranges, several abbreviations are wused. The
word "All" signifies that all single precision numbers (or double precision
numbers if the intrinsic is double precision) are permitted. "All" is often
modified in some obvious manner. Where an intrinsic has more than one
argument, the requirements for each are listed separated by commas. The
notation (0,0) means that both the first and second arguments are zero.

Intrinsic Intrinsic Name Storage Estimate Permissible

Para. No. {(In Woids) Argumeni Range

1 ALGAMA 36* All positive

2 ARCOS 9* (-1,1)

3 ARCTAN 47 All

4 ARSIN 51% (-1,1)

5 ATAN2 70 All except (0,0)

6 cos 39 All

7 COSH 27* All

8 COTAN 58 All

9 ERF 84 All

10 EXP 44 All

11 EXPONENT (RTOR) 30* All for exponent,
all for base except
negative numbers to

non-integral exponent

12 GAMMA 64+ All except negative
integers and 0

13 LN 49 All positive

14 LOG10 51 All positive

15 RANDOM 16 ABS < 2**39

16 SIN 37 All

17 SINH 25* All

18 SQRT 31 All nonnegative

19 TAN 58 All

20 TANH 26" All

21 DATAN 103 All

22 DATAN2 29+ All except (0,0)

23 DCOS 100 All

24 DEXP 103 All

25 DLOG 96 All positive

26 DLOG10 100 All positive

27 DSIN 96 All

28 DSQRT 43 All nonnegative

MATHEMATICAL INTRINSICS

29 EXPONENT For both;
(RTOD) 30* All for exponent
(DTOD) 30+ All nonnegative tor

base

30 CABS 15* All

31 CCOoSs 20* All

32 CEXP 16* All

33 CLOG 7* All

34 CSIN 21+ All

35 CSQRT 20* All

36 EXPONENT For both;
(CTOR) 55* All for base
(CTOD) 69* All real or double

precision for exponent

*Does not include storage space for intrinsics called by this
intrinsic, if necessary.

PATCH
TABLE OF CONTENTS
INTRODUCTION. ..10-1-
FILES USED BY SYSTEM/PATCH. 10-2-
DOLLAR ($) CARDS RECOGNIZED BY SYSTEM/PATCH 10-3-
$Cards. L L L. L oL L. 0. 10-3-
$& Cards. .10-3-
$# Cards. L 10-3-
$: Cards. L L L L. 10-3-
$- Cards. Lo 10=-3=-
§* CARDS. 10-3-
§. Cards. L L o 0000 L L Lo i0=-3-
$§. BCL.o ... 103
$. BRIEF.10-3-
$§. COBOL. L ... 10-3-
$. COMPARE. 10-3-
$. COMPILE.10-3-
$. CONFLICT .10-3-
$. COUNT. 10-3-
$. CYCLE. 10-3-
$. DELETE 10-13-
$. DISK o L ..o 10-3-
$. DISK § 10-3-
$§. DUMP L L ... 10-3-
$. EOF. 10-3-
$. ERRLIST.10-3-
$. EXECUTE.10-3-
$. FILE, $§. DISK §, and §. PATCHDECK. 10-3-
$. GUARD. L 103
$. INSERT 10-3-
$. LABEL.10-3-

$. LIST10-3-

5.
$.

LISTI.
LISTN.
LISTP.

MOVE .
NEW.

OUT.
PATCHDECK .
SINGLE .
SQUASH
TOTAL.

VERSION and $. CYCLE

4. EXAMPLE OF SYSTEM/PATCH INPUT .

5. DEBUG COMPILE-TIME OPTION .

$. Options Available With The DEBUG Opticn.

®»w e e’ »®m e

BUG.

. CANDE.

DISCARD.
END.
EQUATE .
PDUMP .

10-3-

10-3-

10-3-

10-3-

10-3-

10-3-

10-3-

10-3-

10-3-

10-3-

10-3-

10-3-

10-4-

10-5-

10-5-

10-5-

10-5-

10-5-

10-5-

10-5-

0-5-

9

9
10
10
10
12
12
12
12
12
12

13

(%)

10-1- 1
PATCH

1. INTRODUCTION

The patch merge program (SYSTEM/PATCH) is an ALGOL utility program wused to
merge one or more patch decks into a single patch deck (on disk or pack) which

may be used as the input CARD file for an ALGOL, ESPOL, DCALGOL, COBOL, or
FORTRAN compilation.

SYSTEM/PATCH merges all input patch records by sequence number. Only numeric
or blank sequence numbers are accepted. The program allows resequencing and
patching into resequenced areas of a patch.

10-1-~ 2
PATCH

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

CARD

LINE

NEWTAPE

PATCH

PATCHES

TAPE

PATCH

2. FILES USED BY SYSTEM/PATCH

The input file containing patches to be merged
by the program.

The output printer file.

The output disk file created by merging the
PATCH file with the TAPE file.

The output disk file <containing the merged
patches.

The output disk file <containing the input
specified by the $. OUT option.

The symbolic disk file to which the patches
and $ options of GO TO, SEQ, MERGE, and the §.
options of INSERT, MOVE, COMPARE, LISTN,
CYCLE, VERSION, and NEW are applied.

10-2-

1

10-2- 2
PATCH

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

10-3- 1
PATCH

3. DOLLAR ($) CARDS RECOGNIZED BY SYSTEM/PATCH

Seven categories of dollar cards are acceptable as input to SYSTEM/PATCH. These
categories are distinguished by a wunique character, or blank, immediately
following the dollar sign. Each category is described as follows:

$Cards

The following compiler dollar option cards are recognized by SYSTEM/PATCH:

SEQ <sequence base> +/- <sequence increment>
VvOID

VOIDT

MERGE

GO TO

BUMP TO

These option functions are performed by SYSTEM/PATCH and not by the compiler.
For this reason, they are (except for MERGE) erased from the card they are on
before that card is written to the patch file. SYSTEM/PATCH <creates SET and
POP VOIDT cards as needed to simulate the functions of these options.

10-3- 2
PATCH

All ovilier options are passcd to the host compiler wvia the PATCH file, but
ignored by SYSTEM/PATCH. Such compiler options as AREACLASS, INSTALLATION,
LEVEL, LIMIT, VERSION, INCLUDE, MAKEHOST, and CHECKPOINT are checked for format
since their associated parameters could cause invalid actions if improperly
specified. Unlike the compilers, if no option action is present, SET is
assumed.

A dollar card is defined to be a card with a dollar sign in column 1 (or column
7 for COBOL). A dollar sign in any other column is not recognized. Normally,
SYSTEM/PATCH protects a dollar card from being suppressed by a card with the

same sequence number in a succeeding patch. This protection is removed for
dollar cards which have nothing on them.

$& Cards

$& cards are $ cards that the user does not want SYSTEM/PATCH to handle.
SYSTEM/PATCH replaces the & <character by a blank and puts the card into the
PATCH file.

Example
$& SET SEQ 90000 + 1000
becomes

$ SET SEQ 90000 + 1000

$# Cards

$# cards are patch delimiter cards. Each individual patch within the input
deck must be immediately preceded by a card with a $# in columns 1 and 2
(columns 7 and 8 for COBOL; that is, when the COBOL control option is set). The
remainder of the card may be used for comments. (See discussion of LABEL,
MARK, and COUNT control options in later paragraphs.)

$: Cards

$: cards are comment cards. They are listed if LISTP is SET and written to the
output PATCHES file if OUT is SET; otherwise, they are ignored. They can occur
anywhere in the patch input; no limit exists on the number that can occur.

$- Cards

$- cards are used to patch a patch. A $- card is treated as a regular card, in
that it must have a sequence number and may delete a card in a previous patch
at that sequence number; however, it is not included in the PATCH file. The

effect is to let the original source filter through with the original patch
number (if any) without changing an established patch or repunching the source
and losing the patch number.

10-3- 3
PATCH

$* CARDS

$* cards contain WFL commands (without commenis) which SYSTEM/PATCH puts into
an array and performs an ALGOL ZIP WITH ARRAY. SYSTEM/PATCH modifies the $*
cards by putting a semicolon at the end of each statement and precedes each
statement with a question mark. By placing a hyphen in column 80 of a $* card,
the user can suppress the insertion feature described above (for that card).

$. Cards

$. cards are control cards to SYSTEM/PATCH which are similar to compiler §
cards. They are used to control SYSTEM/PATCH and are not included in the PATCH
file. Many of these options may be SET, RESET, or POPped in a manner similar to
the compiler options. If no action is specified, SET is assumed. The text
field of a $.CARD consists of columns 3 thru 80 (9 thru 80 if $.COBOL is set).
Parsing of this text field is terminated by a percent character. Unlike
compiler options, no action is taken on options not specifically mentioned.
Listed below are the $. options and a description of each.

$. BCL

When the CARD file has some input that is BCL punched, BCL should be SET before
such input and RESET afterwards. SYSTEM/PATCH does a software translation of
the specified input. This is not necessary if the intmode of the card file is
BCL. The BCL option may be SET, RESET, or POPped. The default value is RESET.

$. BRIEF

This option is used with the COMPARE option to suppress printing of more than
six consecutive voided lines. The first card voided, the last card voided, and
the number of cards voided is printed instead. BRIEF may be SET, RESET, or
POPped. The default value is RESET.

$. COBOL

This option tells SYSTEM/PATCH to expect input in COBOL format: Sequence
numbers in columns 1 through 6, dollar signs in column 7. After this option is
SET, all special $ cards recognized by SYSTEM/PATCH must be in column 7, but
the card actually setting this option must have a $. starting in column 1.
This option may be SET, RESET, or POPped. The default is RESET.

$. COMPARE

This option causes SYSTEM/PATCH to compare the PATCH file with the TAPE file,
listing all patch cards and cards affected in the TAPE file. COMPARE may be
SET, RESET, or POPped. The default value is RESET.

$. COMPILE

The COMPILE option causes SYSTEM/PATCH to ZIP the compilation of the TAPE file
with the PATCH file if no fatal errors are discovered. The CARD and TAPE files
are label equated automatically by SYSTEM/PATCH. Other information for the
compile must be passed by $* cards supplied by the user.

10-3- 4
PATCH

$. SET COMPILE
$* COMPILE A/B WITH ALGOL LIBRARY
$* ALGOL FILE NEWTAPE(TITLE = S/A/B)

COMPILE may be SET, RESET, or POPped. The default value is RESET. COMPILE and
EXECUTE may not be SET at the same time.

$. CONFLICT

This option controls printing of patch conflicts (cards deleted in previous
patches by cards in later patches). When SET, these conflicts are listed in the
LISTP output section. CONFLICT may be SET, RESET, or POPped. The default value
is SET.

$. COUNT

Syntax

$. COUNT <number>

Semantics

If the action is SET or no action is specified, the COUNT option must be
followed by an unsigned integer number. If the action is RESET or POP, the
COUNT option must not be followed by this number. When SET, SYSTEM/PATCH gets
the number of cards to be found in each patch from the $# card for that patch.
It checks the number found against the number specified and issues an error if
the numbers differ. The specified card count on the $# card must begin in the
column specified by the number in the §. COUNT command. This allows
flexibility in that different areas on the $# card may be used to specify the
card count for different patches. $ cards are counted, non $§ cards are counted,
and $. cards with MOVE or INSERT commands are counted.

$. CYCLE
Refer to the $. VERSION opiion.
$. DELETE
Syntax
DELETE———[cinteger> J —
SET — <integer> - <integer>
RESET —

POP ——

10-3- 5
PATCH

Semantics

When SET, SYSTEM/PATCH deletes the patches specified im the number list.
Patches already processed are not affected. Each patch may have its DELETE
option SET, RESET, or POPped as desired. A deleted patch is listed if LISTP s

SET but is otherwise ignored. DELETED patches are not included in the PATCHES
file.

$. DISK

Syntax

$. DISK «<«file title>

Semantics

This option tells SYSTEM/PATCH to get input from the file specified. Input

from this file 1is expected to be in the same format as all other input to
SYSTEM/PATCH with the following exceptions:

1. The input from the specified file may not contain §. DISK, §$. DISK
$, §. PATCHDECK , or $. FILE commands.

2. If the file specified has a maxrecsize 15 (11 if intmode is BCL),
SYSTEM/PATCH does not change the MARK numbers even if MARK is SET.
This allows MARK numbers already present to be preserved.

Example
$. DISK X/Y/Z

Label equation is allowed for file title specification of one node for §$.FILE,
$.DISK, §.PATCHDECK, and $.DISK$ commands.

Other $. commands may appear on the same §$. <card after §.FILE, $.DISK,
$. PATCHDECK, and $.DISKS.

Example

? BEGIN JOB PATCHER(STRING PATCHFILE);

RUN SYSTEM/PATCH;

FILE TAPE(TITLE = SYMBOL/SOURCE ON PACKO1);
FILE INPUT(TITLE = #PATCHFILE);

DATA CARD

$#PATCH SEPARATOR CARD 1

$ SET LIST MERGE NEW

$#PATCH SEPARATOR CARD 2

$.FILE INPUT COMPARE

? END JOB

CANDE, SPO, or WFL input would be:
START PATCH/RUN (" PATCH/SOURCE/23 ON PACKO02 ")

The result of this START command is a SYSTEM/PATCH run in which the file
PATCH/SOURCE/23 ON PACKO2 is used, and a compare listing is generated.

10-3- 6
PATCH

$. DISK $

Refer to the $. FILE option.

$. DUMP

If the first fatal error occurs in patch N (N > 1) and DUMP is SET,
SYSTEM/PATCH merges the first N-1 patches and locks them on a disk file. If
the PATCH file had the title X/Y/Z, then this file has the title DUMP/X/Y/Z.
The §$. DISK option can then be used to restart the merge without rereading the
first N-1 patches. DUMP may be SET, RESET, or POPped. The default value s
RESET.

$. EOF

This option tells SYSTEM/PATCH that this is the end of all input. $. EOF may
occur in any input file. Option actions have no effect on it.

$. ERRLIST

This option is only for execution from a remote terminal. If ERRLIST is SET,
all errors and warnings are displayed at the the terminal. If ERRLIST is RESET,
this listing is suppressed. ERRLIST may be SET, RESET, or POPped. The default
value is SET. If execution is not from a remote terminal, changing the value
of ERRLIST has no effect.

$. EXECUTE

The EXECUTE option tells SYSTEM/PATCH to ZIP a specified program if no fatal
errors are discovered. This option uses the $* cards in a similar manner to the
COMPILE option, except that no label e¢quation occurs. The terminal END JOB
control statement is supplied by SYSTEM/PATCH. EXECUTE may be SET, RESET, or

POPped. The default value is RESET. EXECUTE, and COMPILE may not be SET at the
same time.

$. FILE, $. DISK $, and $. PATCHDECK

Syntax

$. FILE <file title>
$. DISK $ <«file title>
$. PATCHDECK <file title>

Semantics

These commands are synonymous. They are extensions of the CARD file. When one
of these commands is encountered, SYSTEM/PATCH reads from the specified file
until it reaches end-of-file or until another $. FILE, DISK $, PATCHDECK, or
DISK command is encountered. The differences between these commands and the $.
DISK command is that input from these commands is marked if MARK is SET. Each
may be nested within the others up to 10 levels. Each may contain $. DISK
commands. If LISTP is SET, the file title of the disk file from which a record
is read is printed to the right of the sequence number in the printer listing.
Titles of files specified by $.DISK §, $.PATCHDECK, and $.FILE commands can be
label equated. Refer to $.DISK for this feature.

10-3- 7
PATCH

Examples
$. FILE MY/FILE ON MYPACK

$. PATCHDECK A/B
$. DISK $ MY/OTHER/FILE ON MYPACK

$. GUARD

Syntax

$. GUARD ¢m> - <n> <comment>

Semantics

The GUARD option specifies that all patch cards within the specified sequence
range (<m>-<n>) are to be filagged in a special report in the printcr output
with the specified <comment>. The <comment> may be any character string. The
GUARD option must be the last control option specified on the $. card. No more
than 100 areas may be guarded in this manner. If a fatal error occurs, no GUARD
output is generated.

$. INSERT
Syntax 1
—— $.INSERT «<fileid> <first> <hyphen> <last> AT c¢baseinc> -
Syntax 2
—— $.INSERT <fileid> <first> AT <baseinc> —]
<patch card(s) to the inserted material>
|
]

$. L_»POP —-} INSERT <last>
RESET

<baseinc>

LT] |
’ NEXT — +—— <inc>

10-3- 8

PATCH
<fileid>
T 1'
<intname>
T—— ctitley — " —
NOTE
<hyphen> indicates the character "-".
Semantics
The INSERT command serves two functions. Syntax 1 is used to insert a copy of

a portion of the virtual TAPE file (the TAPE file plus previous patches) at the
base specified and to insert a portion of an external file (indicated by

<fileid>) at the base specified. Syntax 2 allows text that is being INSERTed
to be patched.

<baseinc> must be either a number or the mnemonic NEXT. <baseinc> specifies
the starting sequence number at which the INSERTed text is to be put. If no
increment (+<inc>) is specified, then the last value of the sequence increment
is wused. Since the base and increment used for the INSERT command are the same
as the base and increment used for handling the SEQ §$ option and the MOVE
command, their values may be changed during the INSERT by a $ integer card or §
tinteger card via syntax 2. They are not reset to their default values wuntil
the next patch ($# card).

The NEXT version of specifying the base has two meanings. If the value of SEQ
is SET, then NEXT simply means to use the nresent value of the sequence base.
If the value of SEQ is RESET, then NEXT means to use the sequence number of the
last card in this patch plus the value of the increment as the base.

NOTE

An INSERT may not be done while VOID s
SET, MERGE is RESET, or while doing a
MOVE. VOID may not be SET, MERGE may not
be RESET, a MOVE may not be done, a $ GO
TO may not occur, and SEQ may not be
changed while INSERTing. §$ cards may not
occur in text INSERTed from an external
file. If the INSERT is from an external
file, then VOIDT may be SET when the
INSERT begins but may not be changed
during the INSERT. If the INSERT is not
from an external file, then VOIDT may not
be in a SET state at any time during the
INSERT. INSERT commands may not be
nested. The range to be INSERTed may not
overlap the destination range if the
INSERT is from the virtual TAPE file.
The destination range may not overlap
sequence numbers in the virtual TAPE
file.

10-3- 9
PATCH

$. LABEL

Syntax

$. LABEL <number>

Semantics

If the action is SET or no action is specified, the LABEL option must be
followed by an unsigned integer number. If the action is POP or RESET, the
COUNT option must not be followed by this number. When SET, SYSTEM/PATCH gets
the label to be used for a patch from the column on the $# card for that patch
specified by the unsigned integer of the LABEL command. The label information
is terminated by the first blank character. If COBOL is SET, this label

information is right justified in column 80 for a maximum length of 8. If
COBOL is not SET, the label information is prefaced by a percent character and
right-justified in column 72. If a nonblank character is present in the

destination field (of the card to be labeled), the label for that card is
suppressed.

$. LIST

The LIST option tells SYSTEM/PATCH to list the created PATCH file (if no fatal

errors occured) in the LINE file. LIST may be SET, RESET, or POPped. The
default value is RESET.

$. LISTI
If LISTI is SET, SYSTEM/PATCH lists input inserted from external files, as

specified by the INSERT option, in the LISTP section of the LINE file. LISTI
may be SET, RESET, or POPped. The default value is SET.

$. LISTN

Syntax

1

LISTN———W::<integer> —J
SET — <integer> - ¢integer>

RESET —

POP ——

10-3-~ i0
PATCH

Semantics

If the value of LISTN is SET, then ranges of the virtual NEWTAPE file (that is,
the NEWTAPE file SYSTEM/PATCH creates or the NEWTAPE file SYSTEM/PATCH would
create if NEW had been SET) as specified by the <number lists> are listed in the
LINE file. If <number list> is <empty>, then the complete virtual NEWTAPE file
is listed.

If the value of LISTN is RESET, then ranges of the virtual NEWTAPE file as
specified by the «number 1list> are not listed in the LINE file. If <number
listy is <empty>, then none of the virtual NEWTAPE file is listed. This allows
the user to RESET all or parts of ranges that were previously SET.

LISTN may be SET, RESET, or POPped as desired. The default value is RESET with
an <empty> number list (no portion of the virtual NEWTAPE file is listed).

$. LISTP

If LISTP is SET, SYSTEM/PATCH lists the input to the LINE file. All § cards, $#
cards, $: cards, $& cards, $* cards, $- cards, and $. cards are listed in this
section as they are found. LISTP may be SET, RESET, or POPped. The default
value is SET.

$. MARK

The MARK option is for use with ALGOL, ESPOL, and DCALGOL symbolics. When SET,
SYSTEM/PATCH places the mark level information in columns 81 thru 90 (81 thru
88 for ESPOL symbolic files) of the merged patch. This information is taken as
the first item immediateiy after the first nonbiank ("noise”) character string
on each $# card.

Example

$. MARK LABEL 5 COUNT 3
$#12XYZ 27.380.056

In this example, all cards from this patch (except cards read in from a file
specified by a $ DISK command) contain 27.380.056 in columns 81 thru 90 in the
merged patch. These cards are also labeled %XYZ in columns 69 thru 72 (see
$.LABEL). SYSTEM/PATCH also checks to see that this patch has exactly 12 cards
in it (see $.COUNT).

$. MOVE

Syntax #1

—— $.MOVE «first> <hyphen> <last> TO <baseinc> |

10-3- 11
PATCH

Syntax 2

—— $.MOVE <first> TO <baseinc>]

<patch card(s) to the moved material>

S. L—.POP __J MOVE <last>]
RESET

<baseinc>

—T— <base>

l——-NEXT—-———- L—

_

+ <inc»

NOTE

"o

<hypheny indicates the character "-

Semantics

MOVE commands move portions of the virtual TAPE file (that is, the TAPE file
plus previous patches) to a range beginning at the base specified. This is
done by putting SET and POP VOIDTs around the range to be moved and creating a
copy of the moved text at the new range. Syntax 2 allows text that is being
MOVEd to be patched.

<baseinc> must be either a number or the mnemonic NEXT. <baseinc> specifies
the starting sequence number at which the MOVEd text is to be put. If no
increment is specified, then the last value of the sequence increment is wused.
Since the base and increment used for the MOVE command are the same as the base
and increment used for handling the SEQ $§ option and the INSERT command, their
values may be changed during the MOVE by a $ integer card or $ +integer card in
syntax 2. They are not reset to their default values until the next patch ($#
card).

The NEXT version of specifying the base has two meanings. If the value of SEQ
is SET, then NEXT simply means to use the present value of the sequence base.
If the value of SEQ is not SET, then NEXT means to use the sequence number of
the last card in this patch plus the value of the increment as the base.

NOTE

A MOVE may not be done while VOIDT or
VOID is SET, MERGE is RESET, or while
doing an INSERT; nor may SEQ be changed
or a $ GO TO occur while doing a MOVE.
MOVE commands may not be nested. The
range to be MOVEd may not overlap the

10-3- 12
PATCH

destination range and the destination
range may not ovgy‘lap sequence numhers in

the virtual TAPE file.)

$. NEW

If NEW is SET and SYSTEM/PATCH finds no fatal errors, the PATCH file is merged
with the TAPE file to create the NEWTAPE file. The NEWTAPE file contains no §
cards (even $ cards passed through as $& cards are not included). The blocking
factors of the NEWTAPE file are those that a compiler created NEWTAPE would
have. NEW may be SET, RESET, or POPped as desired. The default value is RESET.

$. outr

When OUT is SET, $ cards, $* cards, $# cards, $: cards, $- cards, $. cards with
MOVE or INSERT options, and regular patch cards are written to the output disk
file PATCHES. This file is locked after all input has been processed. OUT may
be SET, RESET, or POPped to allow the user to select only specific portions of
the input. The default value for OUT is RESET.

$. PATCHDECK

Refer to the $. FILE option.

$. SINGLE

When SET, SYSTEM/PATCH single spaces the output to LINE, When RESET this
output is double spaced. SINGLE may be SET, RESET, or POPped. The default value
is SET unless SYSTEM/PATCH was compiled with the compiler user option DOUBLE
SET, in which case the default value is RESET.

$. SQUASH

SQUASH may be SET, RESET, or POPped. When SET, each patch in the LISTP listing
is separated by a line of equal signs. When RESET, ecach patch is listed
beginning on a new page. The default value for SQUASH is SET.

$. TOTAL

Syntax

$. TOTAL <number>

Semantics

If the action is SET or no action is specified, the TOTAL option must be
followed by an unsigned integer number. When all input has been processed and
the value of TOTAL is SET, SYSTEM/PATCH checks the number of patches actually
found against the number specified. If a discrepancy occurs, a fatal error is
issued and the PATCH file is not locked. TOTAL may be SET, RESET, or POPped.
The default value is RESET.

10-3- 13
PATCH

$. VERSION and $. CYCLE

Syntax

—— $.VERSION—— ¢version numbers L_ _—J |
<cycle number>

—— $.CYCLE—— <cycle number> !

Semantics

When used, SYSTEM/PATCH concatenates the «version number>, the <cycle number>,
and the <patch numbers (from the $# card) and uses this as the mark number. If
the TAPE file is an ESPOL symbolic or has an intmode of BCL, the periods (.)
are not used as separators in this concatenation. All three numbers (¢version
numbery> , <cycle number> , and <patch number>) must be in the correct range.
Both a «version number> and a <cycle number> must be specified. Each may be
changed separately at any time. The <patch number> can only be changed at the
beginning of each patch by the $# card.

10-4- 1
PATCH

4. EXAMPLE OF SYSTEM/PATCH INPUT

RUN SYSTEM/PATCH
FILE TAPE(TITLE=SYMBOL/PATCH ON SYSPACK)
FILE PATCH(TITLE=SYSTEM/PATCH/NEWPATCH)
FILE PATCHES (TITLE=SYSTEM/PATCH/NEWPATCHES)
FILE INCL1 (TITLE=(USCODE) INCLUDE/FILE/1)
FILE INCL2 (TITLE=(USCODE) INCLUDE/FILE/2)
FILE NEWTAPE(TITLE=SYMBOL/NEW/PATCH ON SYSPACK)
DATA

SET NEW COMPARE BRIEF EXECUTE LIST
$* RUN MY/PROGRAM ON MYPACK
$* FILE CARD(KIND=DISK,TITLE=KARD/FILE)
s# DOLLAR CARDS

GO N D N D N D D N

$ SET MERGE

$ SET NEW

$ SET LISTP

$ SET LINEINFO

$ SET SEQERR NEWSEQERR

$: THESE ARE SOME STANDARD $ CARDS FOR A COMPILE
$. MARK TOTAL 5 OUT DELETE 5

$# N-O-1-S-E_ W-O-R-D 27.099.001

$. PATCHDECK MY/PATCH/FILE ON MYPACK

$

4 GARBAGE 27.099.002
<patcﬁ cards>

$. VERSION 28.020

$# BUZZZZZ 001

$. MOVE 50000-52000 TO 600100+100
$. MOVE 800000 TO NEXT+20

<patches to the moved material>

POP MOVE 8001000

INSERT INCL1 0-500 AT 900000 + 30

INSERT INCL2 6000-7000 AT NEXT

INSERT "MY/THIRD/INCL/FILE ON MYPACK" 61000 AT NEXT+300

APAHP

<patches to the inserted material>

RESET INSERT 75000

INSERT 2100-2500 AT NEXT % THIS IS A COMMENT
MORE_NOISE 2

THIS IS A COMMENT ABOUT THIS PATCH

. FILE A/B

POP MARK RESET LISTP

DISK § MY/OTHER/A/B ON MYPACK2

EOF

. THIS CARD WILL NOT BE READ BY SYSTEM/PATCH
. NOR THIS ONE

END

VNP PPN PN A

10-4-
PATCH

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

10-5- 1
PATCH

5. DEBUG COMPILE-TIME OPTION

A compile-time option DEBUG is available to facilitate the debugging and
development of SYSTEM/PATCH. When SYSTEM/PATCH is compiled with a $§ SET DEBUG
card in the symbolic, the flow of control through many critical procedures and
the values of many important variables may be traced at will.

$. Options Available With The DEBUG Option

$. BUG

Syntax

BUG L_-<integcr> __J |
L—-SET————

<integer> - ¢cinteger>

RESET —

POP—

Semantics

The <number list> specifies which BUG options are to be SET, RESET or POPped.

The specific action of each BUG option is subject to change and can be found in
the BUG DIRECTORY near the beginning of the symbolic.

$. CANDE

CANDE may be SET, RESET or POPped. The default value is RESET. This option only
concerns input from a remote terminal using CANDE, and changing its value has
no effect when input is initiated from cards. When SET, the wuser may input
text that has sequence numbers by typing the sequencing numbers first.

Example

$# PATCH 005

$. SET COMPARE
500$ SET VOIDT
01000$ POP VOIDT

Is equivalent to:

$# PATCH 005
$. SET COMPARE
$ SET VOIDT

00000500
$ POP VOIDT

00001000

10-5- 2
PATCH

$. DISCARD

This command causes SYSTEM/PATCH to close the LINE printer file with purge. The
effect is to eliminate all printer output up to this point.

$. END

When SYSTEM/PATCH encounters a $. END option, it treats this as the end of all
input to be merged for this particular set of patches. If no errors occur,
SYSTEM/PATCH then creates the PATCH file and does the COMPARE and other
optional output that may have been specified. It then starts reading from the
primary input file (CARD file or remote file) and expects input for another
SYSTEM/PATCH RUN. This capability allows multiple SYSTEM/PATCH runs in one
run. Refer to $. EQUATE option.

$. EQUATE

Syntax

$. EQUATE TAPE = <file title>
$. EQUATE PATCH = <file title>
$. EQUATE PATCHES = <file title>
$. EQUATE NEWTAPE = <file title>

Semantics

The EQUATE option causes SYSTEM/PATCH to change the title of one of the four
files specified above to the title given. This option must be the last option
on the $. card. When used with the $. END option, multiple SYSTEM/PATCH runs
may be done in one run against different pieces of software with different
PATCH, PATCHES, and NEWTAPE files created. Separate printer files are created
for each run.

$. PDUMP

This option may be SET, RESET, or POPped. The default value fo
When PDUMP is SET, SYSTEM/PATCH takes a PROGRAMDUMP on any err

LIl ANV HN J

SORT
TABLE OF CONTENTS
INTRODUCTION.
OVERALL SORT DESIGN .
DISK ONLY MODE.
DISK SORTING.
Stringing Phase
Merging Phase
TAPE ONLY MODE.
TAPE SORTING.
Stringing Phase
Merging Phase
INTEGRATED TAPE DISK (ITD) SORTING.
MEMORY ONLY MODE.
MEMORY SORTING.
USE OF SORT IN COBOL LANGUAGE
COBOL SORTING
SORT MODE .
OBJECT-COMPUTER.
SELECT .
SD .
SORT .
SORT INPUT/OUTPUT PROCEDURE LOGIC FLOW
MERGE MODE.
COBOL SORT EXAMPLE.
USE OF SORT IN ALGOL LANGUAGE .
ALGOL SORTING .
SORT STATEMENT.
Sort Parameters
<output optiony.
<input option>

<number of tapes>.

11-2-
11-2-
11-2-
11-3-
11-3-
11-3-
11-3-
11-4-
11-5-
11-5-
11-6-
11-6-
11-6-
11-6-
11-6-
11-6-
11-6-
11-6-
11-6-
11-6-
11-7-
11-7-
11-7-
11-7-
11-7-
11-7-

11-7-

<compare procedure>. 11=-7-
<record length>.00 11=-7-
<size specifications>. 11-7-
<restart specifications> 11-7-
Input, Output, and Compare Procedures in ALGOL Sorts. 11-7-
Sort Mode L L. oL 1=
MERGE STATEMENT .11=-7-
ALGOL SORT EXAMPLE. .. . 11=-7-
8. USE OF SORT IN PL/I LANGUAGE. 11-8-
PL/I SORTING. ... 11-8-
SORT STATEMENT. 11-8-
Sort Parameters11-8-
<sort identifier>. 11-8-

<key optiony 11-8-
<input option> .. 11-8-
<output optiom>. 11-8-
<memory option>. .. 11-8-

PL/1 SORT EXAMPLE .11-8=-
9. EFFICIENT USE OF THE SORT 11-9-
SORT EFFICIENCY .11-9-
Core Estimate . 11-9-
Number of Work Tapes. 11-9-
User Input/Output Files 11-9-
Character Sets. .11-9-
Comparison Technique. 11-9-
Variable-Length Records 11-9-
SORT MODE ... 11-9-
KINDS OF SORTS. 11-9=
Record Sort 11-9=
Tag Sort. 11-9-
RECORD SORT VS TAG SORT . 11-9-
SUGGESTIONS FOR MORE EFFICIENT SORTING. 11-9-

10. SORT RECOVERY CONSIDERATIONS 11-10-

RESTART .

Language Syntax Extensions.

RESTART PARAMETER VALUES.

RESTARTING DURING STRINGING PHASE .

ERROR RECOVERY.
Error Recovery
Error Recovery
Error Recovery
Error Recovery
Error Recovery

Error Recovery

of Control File Input Errors
of Control File Output Errors.
of Workfile Input Errors

of Workfile Output Errors.

of User Output File Errors

of Workfile Input-Errors during User Output.

11. MISCELLANEOUS INTERNAL INFORMATION .

SORT DISK FILES

SORT MEMORY ALLOCATION.

MISCELLANEOUS INFORMATION .

APPENDIX 11A.

SORT ERROR MESSAGES

APPENDIX 11B.

FILE NAMES.

SORT STATISTICAL ARRAY.

APPENDIX 11C.

APPENDIX 11D.
COMPANALYZER.
INLINECOMP.

STRINGING PROCEDURES.

OPTIONS

11-10-
11-10-
11-10-
11-10-
i1-10-
11-10-
11-10-
ii-10-
11-10-
11-10-
11-10-
11-11-
11-11-
11-11-
11-11-
11-A-
11-A-
11-B-
11-B-
11-B-
11-C-
11-D-
11-D-
11-D-
11-D-
11-D-

11-1- 1
SORT

1. INTRODUCTION

This section describes the design and use of the MCP SORT facility, hereafter
referred to as SORT. Sections 2 through 5 give a detailed design description
of all phases of the SORT. Sections 6 through 9 provide a wuser’s guide to
writing efficient sorts in various modes and languages. The appendices supply
reference information pertinent to sorting.

OVERALL SORT DESIGN

SORT is a procedure of the MCP. This procedure is designed to sort or merge a
number of files into a single file of ordered records.

SORT workfiles are selected by the user. Workfiles may reside on disk or tape

(cr both) or in memory. the SORT procedure uses these workfiles to order
records of a single input file.

The SORT can also merge a set of presorted files into a single ordered file.
Sorting is performed in two phases:

1. The sorting or stringing phase.

2. The merging phase.
When SORT is activated, it initially determines array sizes, number of tapes,
buffer sizes, and blocking information from parameters provided by the user.
SORT begins reading records from the input file and sorts them into groups,
calied "strings"”, on the sort workfiles.
After the last input record is read, the merging phase begins. The strings of
sorted records are merged into larger strings until the result is one string

containing the ordered input file. The ordered input file is written to the
user’s output file, and the SORT terminates.

11-1- 2
SORT

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING
PURPOSES

11-2- 1
SORT

2. DISK ONLY MODE

DISK SORTING

When this sorting mode is specified, all SORT workfiles are maintained on disk.
The size of the disk workfile may be specified by a user-supplied disk
estimate. If this estimate is not supplied, the default disk size for ALGOL
and PL/I is 600,000 words and for COBOL, 900,000 words. Normally, SORT
allocates 20 disk areas, with varying area sizes depending on the wuser’s disk
estimate.

Disk estimates must be large enough to accommodate the user’s input file. The
amount of disk required for merging depends on several factors. However, a
safe disk estimate is 1.5 to 2 times the input file size.

Stringing Phase

Strings are written serially to the SORT workfile, titled DISKF, as they are
formed during the stringing process. For each string, a disk control word is
retained for use during the merge phase. A disk file, titled DISKC, is
allotted for these control word records.

If disk space is exhausted during the stringing phase, the SORT is aborted.

Merging Phase

The disk merging phase begins after completion of the stringing phase and
merges strings into Jlonger strings on disk. As each new merged string is
formed, a new control word is built. When the number of strings remaining to
be merged is less than or equal to the number of strings that can be merged at
one time, SORT writes the records to the user’s file or output procedure.

During the merging phase, "wraparound” on the workfile is possible. Wraparound
means merged records are written at the beginning of the workfile. Wraparound
is possible because the strings occupying the space at the beginning of the the
workfile have already been handled by the merge operation. This wraparound
means that sorting can be done into the same disk file being wused for input.
This action is not recommended because a Halt/Load on a program fault leaves
the disk file in an undefined state. A preferred method is to sort into a new
file of the same name that will be locked at sort completion. 1In all cases,
exhausting disk space (such as sorting a larger file into a crunched file)
causes an abort.

11-2- 2
SORT

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING
PURPOSES

11-3- 1
SORT

3. TAPE ONLY MODE

TAPE SORTING

In a tape only sort, all SORT workfiles are maintained on magnetic tape. From 3
to 8 tapes may be used as workfiles; the user specifies the number of tapes to
be used. The sorting method used for tape sorting is the polyphase
merge/reverse technique.

Unlike a disk only sort where strings are written serially on the workfile as
they are formed, special string distributions and string sequencing techniques
are required for a tape sort. String distributions are based on a generalized
Fibonacci number series. The string sequencing (ascending or descending) is
specifically designed for reverse tape reads.

Stringing Phase

Initially, in the stringing phase, one work tape is designated as the first
merge output tape and thus is not used during the stringing process. For
example, in a three-tape sort, strings are written to only two tapes. Strings
are then dispersed to the stringing tapes in the special pattern until the
current level in the distribution is <catisfied. The distribution is
transferred to the next level and stringing continues. When the last input
record is strung, the stringing phase is complete.

A special string sequencing pattern is required by SORT because of the reverse,
tape-read technique used in the merging phase. The pattern is as follows:

1. Strings are written to an individual tape in alternating
sequence (ascending, descending, ascending, and so on).

2. In an ascending sort, all tapes except the tape with the
odd number of strings (that is,the last tape) begins with
a descending string. The odd tape begins with an
ascending string. In a descending sort, the sequence
pattern is reversed.

The following example depicts the stringing phase of a five-tape ascending
sort.

11-3- 2
SORT

Example
Tape 1 Tape 2 Tape 3 Tape 4
13 Strings D D D A
Distribution Is: 2,4,4,3 A A D
D A
A

» »O»

D = descending string. = ascending string.

During the stringing phase, SORT moves cyclically on the tapes - that is, from
tape 1 to tape n - looking for a tape to string. If the distribution is
satisfied on a given tape, SORT moves to the next tape. When the distribution

is satisfied on all tapes, the Fibonacci distribution is transferred to the
next level.

At the completion of the stringing phase, if the number of strings distributed
is 1less than the desired Fibonacci distribution level, the tapes are padded
with "dummy” strings to fill out the distribution. The dummy strings are
recorded internally but are not physically written on the tapes.

Merging Phase

The merging phase of the tape sort uses the "polyphase merge/reverse tape read"”
technique. In the polyphase method, strings from working tapes are merged to a
designated output tape until one of the tapes contains no more strings. This
tape now becomes the output tape and thus, is the end of a merge pass or level.
The string totals on the remaining tapes now correspond to the next lower level
in the distribution table. The merging operation continues until one final
string can be written to the user’s file.

11-4- 1
SORT

4. INTEGRATED TAPE DISK (ITD) SORTING

The ITD or disk/tape mode of sorting uses disk work files with tape backup. In
ITD mode, the user supplies both a disk estimate and a number of work tapes.

SORT begins stringing records on disk; however, if disk is exhausted during
stringing operations, a special merge is performed to tape, and SORT is not
aborted. This merge creates strings on tape in the normal tape distribution,
but the number of strings written on tape is less than that resulting from a
tape only sort. Stringing then resumes normally on disk wuntil disk is
exhausted again. When the stringing phase is complete, a regular tape merge is
performed.

During an ITD sort, label equations are not used for the internal tape files
used during the stringing phase. If SORT requires a scratch tape, either a
scratch tape may be mounted or the sort program may be terminated.

If disk is exhausted during the merging phase of an ITD sort, the strings are
merged to tape, and the remaining merging operations are completed on tape.

Advantages of the ITD sort mode include the ability to <circumvent a limited
disk resource to sort large files and a reduction in tape merge time because of
the use of disk to consolidate many short strings into a few longer strings.

11-4- 2
SORT

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING
PURPOSES

11-5- 1
SORT

S. MEMORY ONLY MODE

MEMORY SORTING

To initiate a memory only sort, the wuser does not specify tapes and
specifically sets the disksize to zero. Failure to set disksize to zero
results in the default value for disk being utilized, and a disk only sort
occurs.

SORT does not open sort files and attempts to read the user input into memory.
If sort memory is filled before the last user input record is read, the SORT
terminates with SORT ERROR 3. If the specified amount of memory can contain all
input records, it proceeds normally to produce user output.

When a memory only sort is desired, the correct specification for sort memory
size is the number of records to be sorted multipled by the size of a record
(in words). For COBOL sorts, the user determines the size from the SD
description and rounds the size up to the number of words required to contain
the record.

The core sort is of particular value when the number of records to be sorted is
smali.

11-5- 2
SORT

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

11-6-
SORT

6. USE OF SORT IN COBOL LANGUAGE

COBOL SORTING

The SORT procedure

is activated by executing the SORT or MERGE COBOL verbs.
This section describes

the required COBOL constructs for use of these verbs.
(Refer to the B 7000/B 6000 Series COBOL Reference Manual, form 5001464, for
additional information.)

1

11-6- 2
SORT

COBOL Sort Syntactic Definition
IDENTIFICATION DIVISION

ENVIRONMENT DIVISION
CONFIGURATION SECTION

OBjE(T-COMPLITER object computer entry

) WORDS |
. MEMORY SIZE integer-} { MODULES f
[. DISK SIZE integer-2 %ES }]
INPUT-QUTPUT SECTION.
FILE-CONTROL. SORT DISK TAPI
SELECT file-name-1 ASSIGN TO[mlrger»}] ‘ SORT DISKPACK At ’ 1
R I SORT DISKPACKS AND imtewerd | JAPES
SORT-TAPE : ger SORT-TAPE
(SORT-TAPES SORT-TAPES ’
MERGE

DATA DIVISION.
FILE SECTION
SD file-name-1

- AN , data-name-1 10} ’dﬁ'a'“”m*'j} "HARACTE
- RECORD CONTAINS [{imeger-s } O]) integer-6 ¢ RS

. DATA {E:-((zg';[[))SISARI} record-name-1 [rccmd-nume-l] ..]

Ol récord-name-1

PRb('l{leRii DIVISION.

[%%;L] file-name-1

ON {[A)%S(’LF‘%%G} KEY data-nume-3 [data-nanme-4 .] ..

JASCENDING | Y dataename-S ata-name-
[4 ON \ DISCINDING { KEY data-name-S [data-name b] ..] ..

{USING !'llg‘vnu!nw.’_ ‘ [||R0U("”, section-name-2 }
INPUT PROCEDURE IS section-name-1 THRU
FGIVING file-name-2 [' THROUGH . scclinn-numc-d] !
! UTPUT PROCEDURE S section-name-3)TIIRL' f
MEMORY size Vformutl]
literabl§
- | tormula-2 ("
DISK SIZE data-name-8
literal-2 ‘_
Iunnul.l 3 l
RESTART {S d.n.: -name-9 (
L " Ill('h“ 1 ’-‘

section-name- |
RELEASE record-name-1 [FROM identifier-1]
section-name-3

RrT['RN file-name-1 RECORD [INTO identifier-2 ‘1 .
AT END statement (l‘ LSE sulcmenl}

MV1414

11-6- 3
SORT

SORT MODE

OBJECT-COMPUTER

If the MEMORY SIZE specification is omitted, SORT assumes a size of 12,000
words . If the DISK SIZE specification is omitted, SORT assumes a size of
900,000 words.

SELECT

If a file is assigned to integer—3 SORT-TAPES, then integer-3 must be between 3
and 8 inclusive. If a file is assigned to SORT DISK and integer-4 TAPE, TAPES,
SORT-TAPE, or SORT-TAPES, then integer—-4 must be between 3 and 8 inclusive.
Integer—-3 has no meaning when the file is assigned to MERGE or SORT DISK.

le is assigned to

No additiona! SELECT statement options are permitted when a file
in any other SELECT

a sort/merge hardware device. File-name-1 must not be used
entries.

i
n

SD

File-name-1 must have been previously assigned to a sort/merge device in a
SELECT statement and may not be used in any other DATA DIVISION entries.

The RECORD CONTAINS clause specifies the length of the logical records to be
sorted. The data-name-1/integer-5 option is used to designate variable length
records where the actual length of each record is specified by a decimal number
contained in a four-character field at the beginning of the record.
Data-name-1/integer-5 defines the minimum record length of the file;
data-name-2/integer—6 defines the maximum length. Data-name-2/integer—6 may be
used alone to define a file of fixed-length records; however, this use is not
required, as the absence of a RECORD CONTAINS clause designates a file of
fixed-length records. The record length is then determined by the first 01
level entry. Data-name-1 and data-name-2 may be used to specify the minimum
and maximum record lengths at execution time and must contain the desired
values prior to the execution of any SORT statement for file-name-1.

The DATA RECORD clause is used for documentation purposes only.

SORT

The ON ASCENDING/DESCENDING KEY clause defines the keys to be used in the sort.
The order of precedence of the sort keys is determined by the order of
appearance within the SORT statement (data-name-3 is the major sort key, and so
forth).

Sort keys are subject to the following rules:

1. Each key must be defined within a record description of
file-name-1.

2. Sort keys may not be variable length.

11-6- 4

SORT
3. All signed. numeric elementary items are compared
algebraically; all negative values are considered lower
than positive values. Anything else 1is compared as

alphanumeric. DISPLAY keys are compared according to the
EBCDIC collating sequence. DISPLAY-1 keys are translated
to EBCDIC and compared according to the EBCDIC collating
sequence.

4. KEY items cannot contain, nor can they be subordinate to,
entries that contain the OCCURS clause.

5. All records presented to SORT must have a fixed length,
and the key(s) must be in the same location within each
record. An INPUT PROCEDURE may be wused to modify any
records that do not meet these standards.

6. The data names may be qualified.

The USING/INPUT PROCEDURE portion of the SORT statement specifies the input to
the SORT. If file-name-2 is used, the minimum and maximum record sizes must be
consistent with file-name-1.

The INPUT PROCEDURE defines sections of user code which are executed to select
or alter records prior to the actual sorting. The RELEASE statement passes the
current logical record to the SORT. At least one RELEASE statement is required
in the INPUT PROCEDURE.

The GIVING/OUTPUT PROCEDURE portion of the SORT statement specifies the output
from the SORT. If file-name-3 is used, a file is created containing the sorted
records. The minimum and maximum record sizes must be consistent with
file-name-1.

The OUTPUT PROCEDURE defines sections of user code which are entered when the
sorting process is complete. The RETURN statement causes the sequential
retrieval of one sorted record from the SORT. A. least one RETURN statement is
required in the OUTPUT PROCEDURE.

INPUT and OUTPUT procedures are subject to the following rules:

1. INPUT and OUTPUT PROCEDURES must not contain SORT
statements.

(8]

: T NIUTQYANAN ... _ — P
remainde ROCEDURE DIVISION must not coniai

e r e
tatements th cause the transfer of control to, or to
points within, the INPUT and OUTPUT PROCEDURES (for
example, GO, PERFORM, or ALTER statements).

nda
“

&>

Th of ¢ P
s at s

3. The INPUT and OUTPUT PROCEDURES may transfer control to
points outside the range of the procedures; however,
control must always return to the procedures.

4. A STOP RUN statement may not be executed in or by an
INPUT or OUTPUT PROCEDURE. Such execution results in
program failure.

5. Any attempt to execute a RELEASE or RETURN statement when
the program is not under the control of a SORT statement
results in program failure.

The logic chart on the following page shows the interaction of the SORT
facility with a COBOL procedural sort.

SORT

SORT INPUT/OUTPUT PROCEDURE LOGIC FLOW

Sort 1.
Sort 2.
Sort 3.
IP1.
IP2.

IP3.

IP4.

Sort 4,

Sort 5.

Sort 6.
IPS.
1P6.

Sort 7.
Sort 8.

Sort 9.

Sort 10.

OP1.
Sort 11.
Sort 12.

OoP2.

OP3.

OP4 .

Sort 13,

Sort 14.

Begin SORT initialization phase.

Open SORT workfiles.

Go to beginning of the user’s INPUT PROCEDURE.
Open input file.

Read input file record (at end, go to IP6.)

If record is to be used, place in record area of
sort file; otherwise, go to IP2.

RELEASE sort file record (transfer to sort 4).

Place the RELEASED re

[(§)

AVSSSS .

ord in gortin nrocecs
orgd 1n sortain P

Execute internal sorting, creating strings on SORT
workfiles.

Return to INPUT PROCEDURE at IPS.

"

Execute "using" logic then go to IP2.

Execute AT END logic including close of input file
(transfer to sort 7).

Complete SORT stringing of all input records.
Begin merge phase of SORT.

Merge all strings on SORT workfiles until one
string remains.

Go to beginning of OUTPUT PROCEDURE.

Open output file (transfer to sort 11).
Execute final internal merging operation.

Pass merged record to OUTPUT PROCEDURE at OP2.

RETURN sort file record to user record area (at
end, go to OP4).

Execute user logic (transfer to sort 11).

Execute AT END including close of output file
(transfer to sort 13).

Close all SORT workfiles.

Exit from SORT.

11-6-

5

11-6- 6
SORT

MERGE MODE

The rules for using the MERGE mode are the same as those for wusing the SORT
mode, with the following exceptions:

1. The INPUT PROCEDURE option of the SORT statement may not
be used.

2. At least two file names must appear in the USING portion
of the SORT statement.

J. A maximum of eight files can be wused as input to the
merge.

4. All input files must be compatible with SD record

descriptions as to key locations and record lengths.

An example of a COBOL disk sort including the actual input and output files s
given on the following two pages.

SORT

COBOL SORT EXAMPLE

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. B-6700.

OBJECT-COMPUTER B-6700
DISK SIZE 20000 WORDS
MEMORY SIZE 3000 WORDS.

INPUT-OUTPUT SECTION.

FILE-CONTROL.
SELECT NEWTRANS ASSIGN TO CARD-READER.
SELECT CREDITFILE ASSIGN TO 5000 DISK.
SELECT DEBITFILE ASSIGN TO 5000 DISK.
SELECT SORTFILE ASSIGN TO SORT DISK.

DATA DIVISION.

FILE SECTION.

FD NEWTRANS VALUE OF ID "TRANSACTIONS".
01 NEWIR SZ 80.
FD CREDITFILE VALUE OF ID "NEW"/"CREDITS"

BLOCK CONTAINS 15 RECORDS.
01 CR-REC SZ 80.
FD DEBITFILE VALUE OF ID "NEW"/"DEBITS"
BLOCK CONTAINS 15 RECORDS.
01 DR-REC SZ 80.
SD SORTFILE.
01 SRT.
03 CODE-KEY PIC 99.
03 ACCOUNT-KEY PIC 9(10).
03 DATE-KEY PIC 9(6).
03 FILLER PIC X(62).
PROCEDURE DIVISION.
SORTIT SECTION.
SRTRN.
SORT SORTFILE ON DESCENDING KEY CODE-KEY
ASCENDING KEY ACCOUNT-KEY DATE-KEY
USING NEWTRANS
OUTPUT PROCEDURE RECORDS-OUT.
ENDIT. STOP RUN.
RECORDS-OUT SECTION.
CREDITS-OUT.
OPEN OUTPUT CREDITFILE DEBITFILE.
LOOP-CR.
RETURN SORTFILE AT END GO TO XIT.
IF CODE-KEY > 49
WRITE CR-REC FROM SRT INVALID KEY GO TO IVK
ELSE GO TO LOOP-CR.
LOOP-DR.
WRITE DR-REC FROM SRT INVALID KEY GO TO IVK.
RETURN SORTFILE AT END GO TO XIT
ELSE GO TO LOOP-DR.
XIT.
CLOSE CREDITFILE LOCK DEBITFILE LOCK.
GO TO ENDIT.
IVK.
DISPLAY "xxERROR TERMINATIONxx".
DISPLAY CODE-KEY ACCOUNT-KEY.
ENDIT. EXIT.

11-6-

7

11-6-

Input File to be Sorted:

121000000233040770
121000000233040970
121000000233041270
031200000042041270
031200000042041370
031200000042041670
031200000042040970
551000000012050170
551000000012052370
551000000012051470
551000000012050570
471000000012050570
471000000012052270
720900000243060270
720900000243061970
720900000243062170
710900000243062170
710900000243062670
124000000035062670
900000000017070370

Sorted Output Files:

New/Credits Output File

900000000017070370
720900000243060270
720900000243061970
720900000243062170
710900000243062170
710900000243062670
551000000012050170
551000000012050570
551000000012051470
551000000012052370

New/Debits Output File

471000000012050570
471000000012052270
121000000233040770
121000000233040970
121000000233041270
124000000035062670
031200000042040970
031200000042041270
031200000042041370
031200000042041670

SORT

11-7- 1
SORT

7. USE OF SORT IN ALGOL LANGUAGE

ALGOL SORTING
The SORT procedure 1is activated by executing either the SORT or MERGE
statements. This section describes the form and use of these statements.

(Refer to the B 7000/B 6000 ALGOL Reference Manual, form 5001639, for exact
syntactic definitions.)

SORT STATEMENT

The SORT statement provides a means for data, as specified by the «<input

option>, to be sorted and returned to the program, as indicated by the <output
option>. The order in which data are returned is determined bys the <compare
procedure>. All procedures required by the SORT are in the form of standard

procedures but have specific parameter requirements

When the SORT statement is executed, the input and output files must be closed.
The format of the SORT statement is as follows. (The symbol "::=" denotes "is
defined as".)

<sort statement> ::= SORT (<output optiony,
<input optiony,
<number of tapes>,
<compare procedure>,
<record length>,
<size specificationsy)
<restart specifications>

<output option> t:= <file designatory|
<output procedure>

<output procedure> ::= ¢procedure identifier>

<input option> ::= «file designatory|
<input procedure>

<input procedure> ::= <procedure identifier>
<number of tapes> ::= <carithmetic expressiony
<compare procedure> ::= ¢procedure identifiery

<record lengthy ::= <carithmetic expression>

11-7- 2
SORT

<size specifications) ti= ocempty> |
<memory size>|
<memory size><disk size|
<memory size><pack size>

<pack size> ::= PACK «<size>

<size> pi= cempty> |
<arithmetic expressiony

<restart specifications> ::= <empty> |
[RESTART = <arithmetic expressiony]

Sort Parameters

<output option>

If a <file designator> is specified as the <output option>, the file is opened
and SORT writes the sorted output on this file. On completion of the SORT
statement, the file is closed.

If an coutput procedure> is specified as the <output option>, SORT <calls this
procedure once for each sorted record and once to allow end-of-output action.
This procedure must be untyped and must use two parameters. The first
parameter must be <call-by-value Boolean, and the second parameter must be a
one-dimensional array with a lower bound of zero. The Boolean parameter s
FALSE as long as the second parameter contains a sorted record. When all
records have been returned, the first parameter is TRUE, and the second
parameter must not be accessed.

In addition, SORT accumulates various statistics while sorting. This array of
statistics is available in the record array parameter if the last Boolean
parameter is TRUE. This statistical information is accessible only when wusing
the <output procedure> option. (Refer to Appendix B.)

<input option>

If a <file designator> is used as the <input option>, the file is opened, and
the records in that file are used as input to SORT. This file is closed after
all records in the file have been read by SORT.

If an <input procedure> is used as the <input option>, the procedure is called
to furnish input records to SORT. This <input procedure> must be a Boolean
function with a one dimensional array as its only parameter. This procedure,
on each call, either inserts the next record to be sorted into its array
parameter or returns the value TRUE, indicating the end of the input data.

When a TRUE is returned by the <input procedure> SORT does not use the contents
of the array parameter and does not call the <input procedure> again.

11-7- 3
SORT

<number of tapes>

If an integrated tape/disk sort is desired, the <«number of tapes> must be
greater than zero, and this value specifies the number of tape files to be used

in the sorting process. If the value of the <arithmetic expression> is less
than three, three tapes are used. If the value of the <arithmetic expressiony
is greater than eight, eight tapes are used; otherwise, the number of tapes

specified by the <carithmetic expressiony is used.

<compare procedure>

The <compare procedure> is called by SORT to determine which of two records
should be wused next in the sorting process. This procedure must be a Boolean
function with two parameters. Both parameters must be one-dimensional arrays.
The Boolean value returned by the function should be TRUE if the array given as
the first parameter is to appear in the output before the array given as the
second parameter.

For the actual comparison, two strings may be compared according to the EBCDIC
collating sequence by using a string relation, or an arithmetic comparison may
be performed by using an arithmetic relation. Also, different keys or fields
in the records may be compared. The comparison technique is determined
entirely by the user in the <compare procedure>.

<record length>

The <record length> represents the length in words of the largest item that is
presented to SORT. If the value of the <carithmetic expression> is not a
positive integer, the largest integer not greater than the absolute value of
the expression 1is wused; that is, a <record length> of 12 would be used if an
expression had a value of -12.995. If the value of the <arithmetic expression>
is zero, the program terminates.

<size specifications)

The <size specifications> allow the programmer to specify the amounts of memory
and disk or pack storage that may be used.

The <memory size>, if present, specifies the number of words of memory to be
used in sorting. If <memory size> is unspecified, a default size of 12,000
words is assumed.

The «disk size>, if present, specifies the amount of disk storage, in words, to
be wused for the workfile. If <disk size> is unspecified, a default size of
600,000 words is assumed.

The <pack size>, if present, specifies the amount of storage on system resource
pack, in words, to be used for the SORT workfile. If <size> is not specified,
a default size of 600,000 words is assumed.

11-7- 4
SORT

<restart specifications)

The <restart specifications> give SORT the ability to resume processing at the
most recent checkpoint following the discontinuance of a program. The program
must provide the logic to restore and maintain necessary information for it to

continue from the point of interruption (such as, stack variables, arrays,
files, and pointers).

The restart capability is implemented only for disk sorts.

Input, Output, and Compare Procedures in ALGOL Sorts

SORT functions by <calling the input, output, or compare procedures (as
appropriate) contained in the user program. The SORT passes array descriptors
to the desired procedure of the user program. The descriptor normally points
to a record area that is a portion of an array large enough to contain many
records. If the user program is negligent in accessing the record area passed
to the program, adjacent record areas may be accessed and compared incorrectly,
or record content may be inadvertently modified. A SEGMENTED ARRAY ERROR,
INVALID INDEX, or INVALID OPERATOR are other 1likely consequences of such
action.

Sort Mode

The combination of «disk size> and <number of tapes> determines the sort mode
as follows:

Number of tapes Disk size Mode
not = 0 0 tape only
not = 0 not = 0 ITD
0 not = 0 disk only
0 0 memory only

MERGE STATEMENT

The MERGE statement causes data in all files specified by the «<merge option
list> to be combined and returned. The <compare procedure> determines the
sequence in which the data are combined.

The format of the MERGE statement is as follows:

<merge statementy

]

MERGE (<output option>,
¢<compare procedure>,
<record lengthsy,
<merge option listy)

<merge option listy ::= <merge optiony|
<merge option list>,<merge option>

<merge optiony

<input option>

The MERGE statement merges two to eight presorted inputs into a single file.

The inputs must be sorted in the same sequence, but the files may be of
different lengths,

The <output option>, <compare procedure>, <record length>, and <input option>
are as specified for the ¢sort statements.

1
SORT

Because no sort workfiles are «created, the «¢size specifications)
required on the merge.

An example of an ALGOL disk sort, including the actual input and output
appears on the following two pages.

ALGOL SORT EXAMPLE
BEGIN

COMMENT THIS IS AN EXAMPLE OF AN ASCENDING DISK SORT. THE
PROGRAM SORTS A CARD FILE WITH NAMES IN THE FIRST TWELVE
COLUMNS AND OUTPUTS THE SORTED FILE ON THE LINE PRINTER.
IF COLUMN 80 CONTAINS AN "S", THAT CARD IS THROWN AWAY
AND NOT SORTED. THE SORT USES AN INPUT PROCEDURE OPTION,
AN OUTPUT FILE OPTION, A MEMORY SIZE OF 10000 WORDS, AND A
DISK SIZE OF 100000 WORDS.

FILE CARD(BUFFERS=2,MAXRECSIZE=14,BLOCKSIZE=14);
FILE LINE(MYUSE=2,KIND=39,BUFFERS=2,MAXRECSIZE=20);

DEFINE SKIPCODES="S"#,SKIPFIELD=POINTER(R[13],8)+1#%;
BOOLEAN PROCEDURE INPRO(R); ARRAY R[O0];

BEGIN

LABEL GETACARD,XIT, EOFL;

GETACARD: READ(CARD, 14 ,R[*])[EOFL] ;
IF SKIPFIELD = SKIPCODE THEN GO TO GETACARD
ELSE BEGIN
REPLACE POINTER(R[13],8)+2 BY " "
% PAD BLANKS
GO TO XIT;
END;

EOFL: INPRO := TRUE;
XIT:END;

BOOLEAN PROCEDURE COMP(R1,R2); ARRAY R1,R2{0];
COMP := POINTER(R1,8) LSS POINTER(R2,8) FOR 12;

SORT(LINE, INPRO, 0,COMP, 14,10000,100000); % SORT CALL

END.

1-7- 5

are not

files,

11-7-

6

GLENN

JACK
EARL

ROLLIE
STEVE

DAVE
JOEL
HARRY
SHERRY
RICHARD
DICK
BILL
DON

JIM

CAROLYN

BILL
CAROLYN
DAVE
DICK

EARL
GLENN

JACK
JIM
JOEL
RICHARD
ROLLIE
SHERRY
STEVE

SORT

INPUT FILE TO BE SORTED

SORTED OUTPUT

#0001
#0002
#0003
#0004
#0005
#0006
#0007
#0008
#0009
#0010
#0011
#0012
#0013
#0014
#0015
#0016
#0017
#0018
#0019
#0020

11-8- 1
SORT

8. USE OF SORT IN PL/I LANGUAGE

PL/1I SORTING

PL/I sorting is performed by the execution of the SORT statement. This section
describes the form and use of this statement. (Refer to the B 7000/B 6000
Series PL/I Reference Manual, form 5001530, for exact syntactic definitions.)

SORT STATEMENT

The SORT statement provides a means for data to be sorted and returned to the
program according to the specified options.

The format of the SORT statement is as follows:

&ort statement) 11 = SORT (ort identifier) [On] (ort option)
(sort option) = (key option) [{input option)]
[{output option)] [{memory option)]

&key option) :: = {{Ascending/Descending } [Key]
{Gidentifier) .. } } ...
Gnput option) ::= USING FILE {{file expression))
INPUT ({entry constant)}
utput option) :: = GIVING FILE ({file expression))
OUTPUT ({{entry constant))
{memory option) :: = ENVIRONMENT (TAPES = {constant expression),

CORESIZE = (constant expression),
DISKSIZE = {constant expression))
MV1778

Sort Parameters

<sort identifier>

The <sort identifier> must be an aggregate that describes the individual
records to be stored; it may not be controlled or based.

<key option)>

Because the <key option> specifies the order in which records are to be sorted
and the keys to be used in the sort, the key option must always appear in the

SORT statement. The order of precedence of the keys is determined by the order

of appearance of the key in the <key option>. Sort keys are subject to the
following rules:

1. Each key must be defined in the «<sort identifier>.
2. No variable-length keys are allowed.

3. All records must be of some fixed length, and the keys
must be in the same location in each record.

11-8- 2
SORT

<input option)>

The <input option> may either be a file designation or an input procedure
designation. If the «<input option> is not explicitly stated, the <input
option> USING FILE (SYSIN) is assumed. If an explicit file designation s
used, the file must be declared as an input file. The input file passed to the
SORT must be CLOSED PRIOR to the call of the SORT. If an input procedure is
used, the procedure must have SORTINPUT declared in the <options list> of the
procedure declaration. The input procedure is subject to the following rules:

1. The input procedure must have one parameter; it must be
declared as CHAR(*).

2. The input procedure must return a bit (1) value.

3. A FALSE value (’0’B) must be returned by the input
procedure until the end of the input data is encountered;
at that time, a TRUE value (’1°'B) must be returned.

4. As long as a FALSE value is being returned, the input

procedure inserts the next record to be sorted into its
parameter.

<output option)>

The <output option> may either be a file designation or an output procedure
designation. If the <output option> is not explicitly stated, the <output
option> GIVING FILE (SYSPRINT) is assumed. If a file designation is used, the
file should be declared as an output file. The SORT then writes the sorted
output to this file. As with an input file, the output file must be CLOSED
PRIOR to the call of the SORT. If an output procedure is used, the procedure
must have SORTOUTPUT declared in the <options list> of the procedure
declaration. The output procedure is subject to the following rules:

1. The output procedure must have two parameters. The first
parameter must be declared as BIT (1), and the second
parameter must be declared CHAR (*).

2., The first parameter contains a FALSE value (’0’B) as long
as the second parameter contains a sorted record. When
all records have been returned to the output procedure by
SORT, the first parameter contains a TRUE value (’1’B),
and the second parameter is not accessed.

<memory option>

The <memory option> specifies the number of tapes to be used by the SORT as
well as the CORESIZE and the DISKSIZE to be allocated for the sort. The
options may appear in any order, and any or all of the options may be deleted.
The default values for any option not explicitly stated are as follows:

TAPES = 3
CORESIZE = 12000
DISKSIZE = 600000

The number of tapes used in the sorting process must be greater than or equal
to three and less than or equal to eight.

SORT

An example of PL/I sort, including the actual input and output
follows:

PL/I SORT EXAMPLE

SORTEXAMPLE: PROC; /* OPTIONS (MAIN) */

DCL AA FILE INPUT RECORD ENV (KIND=’READER’, MAXRECSIZE=80);
DCL BB FILE OUTPUT RECORD ENV (KIND=’PRINTER’,MAXRECSIZE=132);

DCL 1 COURSES,

2 DEPT CHAR (5),
2 COURSENAME CHAR (20),
2 INSTRUCTOR CHAR (10),
2 REQUIRED CHAR (1);

SORTIN: PROC(A) RETURNS (BIT (1)) OPTIONS (SORTINPUT);
DCL A CHAR (*);
ON ENDFILE (AA) GO TO EOF;

LOOP: READ FILE (AA) INTO (COURSES);
IF REQUIRED = '*’ THEN RETURN ('0’B);
ELSE GO TO LOOP;

EOF: RETURN (’'1’B);
END SORTIN;

SORT COURSES ON
ASCENDING KEY (COURSES.DEPT, COURSES.COURSENAME,
COURSES . INSTRUCTOR)

INPUT (SORTIN)
GIVING FILE (BB);

END SORTEXAMPLE;

11-8-

files,

is

3

as

11-8-

The ol

MUS

ACCT
MATH
MATH
ACCT
ACCT
HIST

4

*
i

owing

is a listing of th
TRIGONOMETRY
AMERICAN HISTORY
MIXED CHORUS
ELECTRONICS
CALCULUS 1
READING COMP
CALCULUS 11
STATISTICS
MATRIX THEORY
WESTERN CIV
MUSIC APPREC
SURVEYING
ACCOUNTING 1
BUSINESS LAW
ALGEBRA
INSTRUMENTAL MUSIC
ACCOUNTING 11
LINEAR ALGEBRA
CALCULUS 1

COST ACCOUNTING
ACCOUNTING I
AMERICAN HISTORY

g

SORT

input

After execution of the above PL/I SORT,

ACCT
ACCT

ACCT
ACCT
BUS
ENG
ENG
ENGL
HIST
HIST
MATH
MATH
MATH
MATH
MATH
MATH
MUS
MUS

ACCOUNTING 1
ACCOUNTING 1

ACCOUNTING 11
COST ACCOUNTING

LV O A A I A

BUSINESS LAW
ELECTRONICS
SURVEYING
READING COMP
AMERICAN HISTORY
AMERICAN HISTORY
ALGEBRA

CALCULUS 1
CALCULUS 1
CALCULUS 11
MATRIX THEORY
TRIGONOMETRY
INSTRUMENTAL MUSIC
MUSIC APPREC.

to th
LAMBERT
JERONIMO
PAINTER
SHERIDAN
GUILFORD
WOODS
GUILFORD
GALLOP
WATHAU
GREENLEAF
PAINTER
SHERI1DAN
BLOCK
BAILEY
MULBERRY
BLAIR
BLOCK
GUILFORD
AMSDALE
BLOCK
ANOLA
LIVERMORE

the output appears as follows:

ANOLA
BLOCK

BLOCK
BLOCK

AD AT A

BAILEY
SHERIDAN
SHERIDAN
wWOOoDS
JERONIMO
LIVERMORE
MULBERRY
AMSDALE
GUILFORD
GUILFORD
WATHAU
LAMBERT
BLAIR
PAINTER

ie PL/1

. % # »

*

[2B R 2K R BN R 4

» # & @

% % B % B B B KRR RE N

* # &

11-9- 1
SORT

9. EFFICIENT USE OF THE SORT

SORT EFFICIENCY

This section explains some of the factors that affect the overall efficiency of
the sorting process.

Core Estimate

In sorting, production of a small number of long strings is desired, because
fewer merge passes will be required. Appendix B illustrates that the
user—supplied memory estimate determines stringing and merging vector sizes
which, in turn, control string length and merging.

Generally, a memory

e recommended. Memeory estimates
of 20,000 or more are

e is
arge systems.

<
>

timate of 4000 or mer
recommended only on 1

Number of Work Tapes

Above a certain number, the number of work tapes provided results in decreases
in total sorting time. However, this decrcase in sorting time does not justify
their use. Gains made by using more than five sort tapes are marginal. The
sort tape limit is eight tapes.

User Input/Output Files

A large portion of sort time is consumed in communicating with user files. The
1/0 procedures on these files should be made as efficient as possible. The
files should be blocked in large increments (greater than 500 words).

Character Sets

Since character set "translation" is required when sorting with BCL records,
use of the EBCDIC character set is recommended whenever possible.

Comparison Technique

Tte comparison method is an important factor when sorting. Because the compare
procedure may be called millions of times in very large sorts, the procedure
should be made as efficient as possible.

In COBOL, the length and number of keys directly affects the amount of time
required for comparison. A large number of keys scattered in the record should
not be used because setup time increases comparison overhead. Arithmetic or
numeric comparisons are generally faster than string comparisons.

In ALGOL, the compare procedure should return TRUE when the two arrays are
unequal, and the first array must precede the second array. A FALSE should be
returned when the arrays are equal or when the second array must precede the
first array.

11-9- 2
SORT

Variable-Length Records

Variable-length records should be edited into fixed-length records by an

input
procedure.

SORT MODE

Table 9-1 illustrates some characteristics of various sort modes.

Table 9-1. Characteristics of Sort Modes.

Disk Only Tape Only ITD

Disk only Input file may be Disk develops

is generally the indefinite length. longer strings on

fastest mode. tape.

Disk is the most A particular machine Input file may be

reliable peripheral. configuration is definite length.
required.

Less operator
intervention is required.

Sort is limited by
disk resource.

KINDS OF SORTS

Two kinds of sorts are record and tag.

Record Sort

A record sort is the usual method of sorting. A record sort occurs unless the

user intentionally causes a "tag sort". A record sort is defined as a sort in
which records are continually handled throughout the stringing and merging
phases. In other words, the sort algorithms are only concerned with the
varinoue lLkave huut tha amtien wann~e r

arious keys, but the entire record (including the keys) is carried along
throughout the sorting process.

Tag Sort

A tag sort is more sophisticated than a record sort and, under <certain
conditions, can be substantially faster. The basic idea of a tag sort is that
only the key(s) plus the address of each record is handled throughout the
sorting process. The data records remain in place until the final merge of the
tags begins; at that time, the addresses contained within the tags are used to
retrieve the records in the correct sequence.

11-9- 3
SORT

In creating a tag sort, the user is required to provide an INPUT PROCEDURE that
filters the incoming records, writing them to a disk file after extracting the
sort key(s) and appending the disk address of the location of the entire
record. This tag is then submitted to the stringing phase. Figure 9-1 shows
the extraction of the key(s) from the incoming record and the building of the
tag.

INPUT RECORD

KEY KEY KEY
2 1 3
] I
| | C_
i L I
L_______...__.._..'_.| I
N]
—y — g
Loy
Y ¢4
a1l Disk
“1%]°| ADDRESS
INPUT TaG) |
PROCEDURE (TAG) t +| SORT
I
|
— e
MV1415

Figure 9-1. Creating a Tag.

The keys are arranged by the INPUT PROCEDURE in a contiguous string. This
structure eliminates the need to "bounce” over the record in accumulating the
keys whenever a compare is required. The information actually handled by the
SORT is smaller than in a record sort (only the key[s] and disk address are
handled).

During the final merge phase, the OUTPUT PROCEDURE uses the address portion of
the tag to access the records and do whatever is required.

11-9- 4
SORT
Figure 9-2 shows a functional diagram of a tag sort that has a nondisk
file(s). The input file must be copied in its entirety to disk
™ “eur Tl ™ Toutpur !
FILES I FILES
I
COMPARE
(RECORDS) PROCEDURE (RECORDS) :
(TAGS) |
(RECORDS)

——————— = — — — —

MV1416

S A I

—

Figure 9-2.

PROCEDURE

OUTPUT
PROCEDURE

(TAGS)

SORT WORK FILES

Tag Sort, Nondisk Input File.

11-9- 5
SORT

Figure 9-3 shows the functional diagram of a tag sort that has a disk file as
its input medium. The input file is read twice: once by the INPUT PROCEDURE (in
a serial fashion) for the stringing phase, and once again by the OUTPUT
PROCEDURE (in a random fashion) for the final merge phase.

INPUT
FILE (S)

s

OUTPUT
FILES

COMPARE
PROCEDURE

(RECORDS) (RECORDS)

(TAGS)

INPUT
PROCEDURE

OUTPUT
PROCEDURE

(RECORDS)

(TAGS)

|

SORT WORK FILES

))

Figure 9-3. Tag Sort, Disk Input File.

Q!
I
7

MV1417

RECORD SORT VS TAG SORT

The decision to do a record or tag sort depends on many variables (such as,
site disk capacity, record size, and time allotted to write the sort). If the
sort is for "production” and is heavily used, both record and tag sorts should
be used to determine which sort produces the best results.

11-9- 6
SORT

SUGGESTIONS FOR MORE EFFICIENT SORTING

Selection of SORT parameters is not always a simple matter when the amount of
data varies widely from run to run and the user is concerned with total system
efficiency. Sorting can be a significant part of the work load of a computer
installation and should be used judiciously. In many instances, the default
parameters do not provide efficient wutilization of system resources. The
relative priority of the job should be a definite consideration in the
selection of SORT parameters. Memory size is certainly the most volatile SORT
parameter. Because the SORT may have a 65,535-record Sort Vector and can do a
65,535-order merge with as many as 256 buffers per string, the upper 1limit on
the amount of memory which could be wutilized is 1.099 trillion words;

therefore, something less than maximum sorts must be considered. Providing
more memory (until the sort is entirely completed in memory) should yield
faster sorts. However, some sets of data reach a point where slower sorts

occur as memory size is increased. A point of diminishing return usually occurs
before an entirely in-memory sort is reached.

Some general guidelines for disk sorting are as follows:

Fast Sorts - Memory size should provide enough space
to contain at least 2,000 records.

Reasonably Fast Sorts — Memory size should provide enough space
to contain at least 1,200 records.

Adequate Sorts - Memory size should provide -enough space
for 600 records as a general rule.

To use the above guidelines, the sort record size must be converted to the
number of words required to contain a single record. For example, a
one—-character record requires one word, and fifteen 6-bit characters require
two words, while fifteen 8-bit characters require three words. When record
size is converted to words, three additional words must be added to record size
(used by SORT) and then this new record size must be multiplied by the desired
number of records. After memory has been computed for the number of records
times record size, 1,500 words must be added for sort working space.

Some general guidelines for tape sorting are as follows:

Fast Sorts - Memory size should provide enough space
for 300 records per work tape

Reasonably Fast Sorts - Memory size should provide enough space
for 200 records per work tape.

Adequate Sorts - Memory size should provide enough space
for 100 records per work tape.

Record size must be converted to words with three additional words added (as
stated above) and then multiplied by the number of tapes specified in the SORT
statement. Again, 1,500 words must be added to provide for sort working space.

11-9- 7
SORT

Tape sorts are similar to disk sorts in that providing more memory generally
yields faster sorts. However, the point of diminishing return is more data
dependent for tape sorting. Generally, using more sort work tapes rather than
providing large additional increments of memory is more efficient. Providing
more memory and more tapes is ideal when speed is the most important factor.
Tape sorts should run satisfactorily in the background while other jobs are in

the mix. Use of good tapes when doing tape sorts is highly recommended.

ITD sorts are capable of improving tape sorts by a substantial factor (50
percent or more). The reason for this degree of improvement is that fewer
strings are created on tape which causes tape merging to be completed much
sooner. The amount of improvement depends on the inherent sequence of the data
and the amount of disk provided. In most cases, 100,000 words of disk (or
less) is sufficient to obtain the increased speed from an ITD sort.

Disk sorting speeds can be affected by the amount of disk specified by the
program. This <circumstance results from SORT being unable to merge as many
disk strings because insufficient disk is available to contain the output of
the merge phase. SORT. therefore, merges fewer strings (when possible) and
attempts to reduce the risk of being terminated with a SORT ERROR 5.
Estimating a proper amount of disk is difficult because of the gaps created by
unfilled buffers at the end of strings. However, a method for estimating disk
space is suggested below:

1. Convert the record size to words as stated above (do not
add three additional words).

2. Multiply the record size (in words) by the number of
records to be sorted.

3. The number obtained by step 2 should then be multiplied

by:
a. 2.25 to obtain a safe estimate.
b. 1.5 to obtain a near minimum estimate.
¢c. 3.5 or more if a restartable sort is being done.
Much of the memory used by SORT is nonoverlayable or save space. For this

reason, SORT can have a definite impact on the throughput of other jobs that
are executing concurrently with the SORT. Sorting programs that contain lengthy
INPUT or OUTPUT procedures can contribute in large measure to this condition.
The use of INPUT or OUTPUT procedures should not be discontinued but should be
considered in proper perspective for the job to be accomplished. Overall
system performance can be improved, in some <cases, by having the INPUT
procedure produce a file which is read by SORT and having SORT produce a file
which is processed by the OUTPUT procedures. The process of calling INPUT or
OUTPUT procedures does not present any undue burden to SORT or the system.

Blocking factors of input and output files can have a definite effect on sort
timings even if INPUT or OUTPUT procedures are used to read or write the files.
To prevent this I/0 bound situation, the output file should contain
approximately 100 (or more) records per block; 50 (or more) records per block
is usually sufficient for the input file. Sorts have been run as much as four
times faster when input and/or output file blocking was improved. Other cases
could be stated in which both larger and smaller improvements were seen.

Historically, sorts are characterized as being processor bound during the
stringing phase and I/0 bound during the merge phase. SORT can and does
operate in this fashion; however, it always attempts to be processor bound in
both the stringing and merge phases. Unless the memory size specified is

11-9- 8

SORT
relatively small (for the particular sort), SORT achieves the goal of ©being
processor bound. When this condition is ohtained, speed improvements can be
realized only by methods that reduce processor time. When INPUT or OUTPUT
procedures are wused, they are candidates for this kind of improvement. The
largest potential gain lies in improvement of the COMPARE procedure. The

COMPARE procedure is <called many times for each record; the INPUT or OUTPUT
procedures, however, are called only once for each record. Programs ean obtain
improvement by simplifying the individual keys and consolidating them into a
single key. In ALGOL sorts, partial word compares are normally faster than
string compares when characters within a word are tested. COBOL sorts should
use 8-bit characters for string comparison (translate them to 8-bit on input
and back to 6-bit on output) whenever possible. Decreasing the amount of
processor time helps system throughput as well as reducing sort timings. With
certain kinds of sorts characterized by small keys and large record sizes, tag
sorting may be advantageous. The total amount of disk required to complete the
job is probably smaller also, because the SORT requires less. Retrieving the
output records is likely to be the most time-consuming factor and is highly
data dependent.

Knowledge of the particular sort and experimentation can provide better
retrieval methods.

SORT

APPENDIX 11A.

SORT ERROR MESSAGES

SORT ERROR MESSAGES

All error messages are displayed on the system display in the form:

<job number> SORT ERROR #NN

Error Number
1

2

10

11

12

13

14

Definition
The record size specified was zero.

Count of sort input records and output records does
not agree (internal sort problem).

Insufficient memory was specified for a memory
sort. Disk size and number of tapes are both zero.

Sort disk was exhausted during the stringing phase
and no tapes were specified.

Sort disk was exhausted during the merge phase and
no tapes were specified.

Input file passed to SORT was already open (the
input file must be closed when passed to SORT).

During a tape or ITD sort the block number of the
last record read from a sort work tape did not
match the expected block number.

The output file passed to the SORT was not large
enough to contain the output, and the SORT was
unable to expand the output file. (Increase the
size of the output file or decrease the number of
records to be sorted.)

The output file passed to SORT was already open
(the output file must be <closed when passed to
SORT) .

An irrecoverable I/0 error occurred while reading a
sort work tape or work disk file.

An irrecoverable I/0 error occurred while writing a
sort work tape or work disk file.

An irrecoverable I/0 error occurred while reading
or writing control records in the SORT control
file.

An irrecoverable I/0 error occurred while writing
the user output file.

An irrecoverable I/0 error occurred while reading

11-A-

1

11-A- 2

15

16

17

19

84

SORT
the user input file.

A restart was attempted, but the record size (or
character size of the record) did not match the

originating sort. When a restartable sort is not
able to «continue, it saves restart information so
that this error occurs on subsequent restart
attempts.

A restart was attempted, and the wuser input file
reached end-of-file before the restart record was
read. The user input file 1is shorter at restart
time than the original file.

A restart was attempted, but the SORT was unable to
obtain the necessary restart information from the
control file. (May be due to parity errors.)

The SORT is terminating because an irrecoverable
error occurred while reading the sort workfile and
some output records have already been passed to the
user OUTPUT procedure. This error termination only
occurs for restartable sorts with OUTPUT
procedures. Since the sort is restartable, a
restart should be made so that the SORT does the
neccessary recovery.

This error occurs because the control file 1is not
large enough to contain all control records. It is
an internal sort error and can be circumvented by
specifying more disk and/or a different memory
size.

The following errors appear on the display like any other sort error

The SORT does not

30

31

32

33

terminate as a result of these errors.

The control file is not large enough to contain two
copies of the control records. Two copies are
maintained for sorts with error recovery. This
error is an internal sort problem and can be
circumvented by specifying more disk and/or a
different memory size. The SORT continues when
this error occurs; however, this function of error
recovery is disabled.

An irrecoverable I/0 error occurred while writing
the control file for an error recovery sort. One
copy of the control records is discarded, and the
SORT continues wusing one copy of the control
records.

An irrecoverable I/0 error occurred while writing
the sort workfile. Error recovery mode is
abandoned, and the SORT <continues as a normal
restartable sort.

Insufficient disk space was provided for the
workfile to contain three copies of the data. This
situation only happens when error recovery mode is
requested. The SORT continues as a normal
restartable sort with error recovery reset.

message.

11-B- 1
SORT

APPENDIX 11B.

SORT RUN-TIME INFORMATION

FILE NAMES

The following list shows the file names associated with the sort workfiles
during execution of the sort.

Sort Disk Files = SORT/DISKC

SORT/DISKF
Sort Tape Files SORTOM<task number>
SORTIM<task number>
SORT2M<¢task number>
SORT3M<ctask number>
SORT4M<ctask number>
SORT5M<task number>
SORT6M<ctask number>
SORT7M<task number>

]

SORT STATISTICAL ARRAY

The sort statistical array contains data collected while the SORT was
executing. A copy of the array is written into a file titled SORT/STATISTICX
and in some cases is returned to the user program. A program SYMBOL/SORTSTAT
(source language) or SYSTEM/SORTSTAT (object code) is provided on the system
release tapes. This program reads the SORT/STATISTICX file and produces a
report from the sort statistical information. The sole purpose of this program
is to guide those users who are intercsted in the sort statistical information.
Any other wuse of this program or the sort statistical information is left
entirely to the user. When the contents of the sort statistical array are
changed, those changes are reflected in the SYMBOL/SORTSTAT and SYSTEM/SORTSTAT
program. The MCP must be compiled with the $§ option SORTSTAT set. This option
must be set prior to the first reference to the option.

The following describes the content of the sort statistical array. (Unless
otherwise specified, units are words.)

WORD EXPLANATION OF CONTENTS

0 A code word containing various parameters used by
the SORT.

1 Sort memory size specified by user program.

2 St{inging matrix size determined by SORT in record
units.

3 Output block size of sort workfile.

4 Input block size of sort workfile.

5 Disk input. Contains six fields of eight bits.

Each field reflects the number of rows (mod 256)
for various types of disk files.

11-B- 2

10

11
12

13

14
15
16

17
18
19
20

21

22

23

24-29

SORT

Disk output. Contains six fields of eight bits.
Each field reflects the number of rows (mod 256)
for various types of disk files.

Merge matrix size determined by SORT in record
units.

Number of strings created during stringing phase.

Processor Time.

[47:24] - Stringing phase (units of 2.4
microseconds).
[23:24]) - Beginning of sort (units of 2.4

microseconds).

Time check 1. Beginning of sort (units of 2.4
microseconds).

Run date. TIME (15).

Time check 2. End of stringing phase (units of 2.4
microseconds).

Time check 3. End of merge phase (units of 2.4
microseconds).

MCP level.
Disk size specified by user program.

Number of comparisons (calls on user compare
procedure) during sort.

Record size specified by user program.

Number of input records.

Number of work tapes specified by the program.

Work tape or merge input unit types. Contains eight
fields of six bits. Each field reflects the unit
type of the merge file or work tape.

Unit information. Contains 10 fields of three bits
that reflect the recording density of a specific
file and two fields of six bits that reflect the
unit type of the input and output file.

Disk workfile. Contains six fields of eight bits.
Each field reflects the number of rows (mod 256)
for various types of disk files.

Not used.

Program name. Format is standard form
representation of file names.

11-B- 3
SORT

The following example illustrates the actual sort statistics for the COBOL sort
program illustrated previously.

S T A T I S T |

SORTINFO
FUNCTION: SORT DATE: 8/6/76 TIME: 15:5:20.95 MCP: MARK 2.8.0
DESCRIPTION
RECORD COUNT: 20 RECORD . S1ZE (CHARS) : 80 SOURCE LANGUAGE: COBOL
INPUT OPTION: FILE OUTPUT OPTION: PROCEDURE
USER PARAMETERS:
MEMORY SI1ZE: 12000 DISK SIZE (WORDS): 20000 NO. WORK TAPES: 0
CONFIGURATION:
INPUT : CARD READER
SORT DISK: MODULAR DISK
ALLOCATION:
SORT DISK BLOCK SIZE(WORDS): 840 SORT TAPE BLOCK SIZE(WORDS): 0
STRINGING VECTOR SIZE: 549 MERGING VECTOR SIZE: 5
PERFORMANCE STATISTICS: SUMMARY STRINGING MERGING
NO. COMPARISONS: 60 60 0
COMPARISONS PER RECORD: 3.00 3.00 0.00
NO. STRINGS CREATED: DISK 0 TAPE 0
AVERAGE STRING LENGTH({RECORDS) : DISK 0.00 TAPE 0.00
NO. MERGE PASSES REQUIRED: DISK 0.00 TAPE 0.00
TIMING ANALYSIS: ELAPSED PROCESSOR INPUT/OQUTPUT
STRINGING PHASE: 0: 0:38.81 0: 0: 0.52 0: 0: 2.02
MERGING PHASE: 0: 0: 0.00 0: 0: 0.00 0: 0: 0.00
TOTAL: 0: 0:38.81 0: 0: 0.52 0: 0: 2.02
RECORDS PER MINUTE: 30.92 2305.26 593.66
INPUT RECORD SEQUENCE: DISK 0.00 % TAPE 0.00 %

MV1418

11-C-

1

SORT

APPENDIX 11C.

SORT COLLATING SEQUENCE

EBCDIC FRCDIC HEX. ERCDIC ERCDIC HEX.
GRAPHIC | INTERNAL | GRAPHIC GRAPHIC INTERNAL [GRAPHIC

BLANK 0100 0000 | 40 F 1100 0110 | C6
[0100 1010 | 4A G 1100 0111 7
. 0100 1011 4B H 1100 1000 | C8
< 0100 1100 | 4C l 1100 1001 9

(0100 1101 4D
+ 0100 1110 | 4k (HMZ 1101 0000 DO
! 0100 1111 4F J 1101 0001 DI
K 1101 0010 | D2
& 0101 0000 50 L 1101 0011 D3
| 0101 1010 SA M 1101 0100 D4
$ 0101 1011 5B N 1101 0101 DS
* 0101 1100 5C o) 1101 0110 | D6
) 0101 1101 SD P 1101 0111 D7
; 0101 1110 SE Q 1101 1000 D8
0101 1111 SF R 1101 1001 D9
- 0110 0000 | 60 ¢ 1110 0000 EO
/ 0110 0001 61 S 1110 0010 E2
: 0110 1011 6B T 1110 0011 E3
% 0110 1100 6C U 1110 0100 E4
- 0110 1101 6D v 1110 0101 ES
> 0110 1110 6F W 1110 0110 E6
? 0110 1111 6F X 1110 0111 E7
Y 1110 1000 E8
; 0111 1010 7A z 1110 1001 E9

4 0111 1011 7B
@ 0111 1100 7C 0 1111 0000 FO
' 0111 1101 7D I 1111 0001 Fl
= 0111 1110 7E 2 1111 0010 F2
" olll 1111 7F 3 1111 0011 F3
4 1111 0100 F4
(+)PZ 1100 0000 | €O 5 1111 0101 Fs
A 1100 0001 Cl 6 1111 0110 F6
B 1100 0010 | €2 7 1111 0111 F7
C 1100 0011 3 8 1111 1000 F8
D 1100 0100 | c4 9 1111 1001 Fo

E 1100 0101 cs

MV1413

11-D- 1
SURT

APPENDIX 11D.
B 7000 COMPARE ANALYSIS

COMPANALYZER

Enhanced SORT performance is provided through the use of the SORT compile-time
option, COMPANALYZER. When set, COMPANALYZER causes code to be included in the
SORT which performs analysis of ithe compare procedure provided by the wuser.
This analysis attempts to move the compare procedure local to the environment
of the SORT in order to reduce the overhead of compare procedure entry, which
normally occurs via an SIRW.

In order to successfully complete the analysis, address couples of local and

global reference must be oproperly mapped intc a new environment so that the
SORT may use normal IRW referencing for compare procedure entry. If the

compare procedure cannot be moved local to the SORT, the optimization is
terminated and the SORT continues to run in the normal manner referencing the
user’s compare procedure with an SIRW.

INLINECOMP

INLINER is a SORT procedure whose purpose is to recognize in-line compare
procedures in ALGOL and to map them into existing structures within the
existing SORT program.

Functionally, INLINER builds a code word in the manner of the COBOL compiler.
This process allows the existing mechanisms (for COBOL in-line cases) to be
utilized and prevents extensive duplication of code.

Significant savings are achieved in single-key cases by completely eliminating
all calls on the user’s compare procedure.

INLINER is required to build one of two types of code words depending on the
class of the compare being performed (that is, numeric or character). The
user’s object code is examined, and a determination of the class is made.

A copy of the compare procedure is moved local to the SORT by the COMPMOVERL
procedure. During this process, the code string is examined and an in-line
determination is made.

The user is advised to run with both COMPANALYZER and INLINECOMP set, since

significant savings in sort times wusually result with relatively little
overhead.

STRINGING PROCEDURES

The stringing procedures are reorganized and optimized in order to take
advantage of B 7000 hardware features.

11-D- 2

SORT
OPTIONS
All existing B 6000 options have been retained in the B 7000 SORT. In
addition, four options have been added:
COMPANALYZE
INLINECOMP
COMPTRACE
DEBUGDUMP
The above option cards are embedded in the MCP symbolic and require
recompilation in order for the default value to be changed.
COMPANALYZER (SET) When reset, causes omission of COMPMOVEL
and associated procedures on

recompilation of the MCP.

INLINECOMP (SET) When reset, causes omission of INLINER
and associated procedures on
recompilation of the MCP.

COMPTRACE (RESET) When set, produces debugging aids for
COMPMOVERL and INLINER.

DEBUGDUMP (RESET) When set, produces debugging aids for
COMPMOVERL and INLINER.

Both COMPMOVERL and INLINER are produced by default. INLINER is dependent on
COMPMOVERL; therefore, compilation of the SORT with COMPANALYZER reset causes
an implicit resetting of INLINECOMP. INLINER may be explicitly omitted by

recompiling with INLINECOMP reset.

11-10- 1
SORT

10. SORT RECOVERY CONSIDERATIONS

This section describes use of the restart feature of SORT in detail and
provides information about error recovery during sorting.

RESTART

The SORT can resume processing at the most recent checkpoint following the
discontinuance of the program. Operation of the SORT in this mode provides the
necessary restarting information for the SORT and requires certain program
inputs (defined in subsequent text). The program must provide logic to restore
and maintain stack variables, arrays, files, pointers, and so forth, that are
defined for and by the program. In other words, the program must provide the
means to restore everything necessary for it to continue from the point of
interruption. This capability may be simple or complex and is entirely program
dependent.

Restart capability is implemented for disk sort only; however, a partially
restartable ITD sort may also be possible. When tape files are not in the tape
phase of any ITD sort, it functions as a disk sort. After the data are written
from disk to tape (during an ITD sort), the SORT cannot be restarted. A sort
can be started as a disk-only restartable sort with insufficient disk provided
to accomplish the sort. When this situation exists, the SORT terminates with
SORT ERROR 4 or 5. After error termination, the sort is restarted as an ITD
sort by indicating a RESTART and specifying the number of tapes desired. Any
other kind of restart is impossible under this condition. If a restartable
sort terminates during the first output of data from disk to tape (possibly as
a result of an irrecoverable tape I/0 error), the SORT can be restarted and the
data written to tape as if no problem had occurred.

When using the SORT in restartable mode, unique file titles should be given to
the two sort disk files. This procedure is accomplished by using the title
attribute of the files. (This procedure is described in subsequent text.)
Conflicts may arise when two or more sorts use identical file titles for their
sort disk files.

11-10- 2
SORT

rt a previocus PSR B

When the SORT is attempting to resta a previously incomplete sori, a minimai
amount of information 1is verified to ensure that continuation is compatible
with the previous sort. The two items verified are sort record size and
character size of the sort record characters. For ALGOL programs, record size
is explicitly specified by the program while character size is zero (default

t
i

size is eight). COBOL programs use the SD to determine sort record and
character size. When record size or character size does not match the previous
sort, error termination occurs. Modification of other sort parameters (except

number of tapes as previously stated) is allowed. Different values for memory
size or disk size are ignored and the original values are used. However, both
values must be valid non-zero values. Different procedures can be specified
(for input, output, or comparing) if desired, and files may be interchanged
with INPUT or OUTPUT procedures. The program requesting the restart need not
be the originating program. Because the SORT can only attempt to meet the user
request and cannot determine appropriateness of requests, the user must ensure
that the desired results are obtained.

11-10- 3
SORT

Language Syntax Extensions

Implementation of restart and I/0 error recovery requires extensions to the
SORT statements in the COBOL and ALGOL compilers.

The extended syntax for COBOL is as follows:

SORT file-name-1

ON {ASCENDING/DESCENDING}

KEY data-name-1 {, data-name-2} ...

{, ON {ASCENDING/DESCENDING}

KEY data-name-3 [, data-name-4] ...] ...

{USING file-name-2/INPUT PROCEDURE IS
section-name-1 [{ THROUGH/THRU }section-name-2] }
{GIVING file-name-3/QUTPUT PROCEDURE IS
section-name-3 [{ THROUGH/THRU }section-name-4]}
[MEMORY SIZE {formula/data-name-5/literal-1}]
[DISK SIZE {formula/data-name-6/literal-2}]
[RESTART IS {formula/data-name-7/literal-3}]

The value of the 1least significant (rightmost) five bits of the formula
DATA-NAME-7 or LITERAL-3 is passed to the SORT to indicate the desired sort
action. Detail information concerning COBOL sort is contained in the B 7000/B
6000 Series COBOL Reference Manual, form 5001464.

The syntax for ALGOL is as follows:

<sort statement> ::= SORT (¢output option>,
<input optiony,
<number of tapes>,
<compare procedure>,
<record length>,
<size specificationsy)
¢<restart specificationsy

<restart specificationsy ::= cempty>|
[RESTART=carithmetic expression>]

The value of the least significant (rightmost) five bits of the restart
expression is passed to the SORT to indicate desired action. Refer to the B
7000/B 6000 ALGOL Reference Manual, form 5001639, for more information
pertaining to the SORT statement.

11-10- 4

SORT

RESTART PARAMETER VALUES

The SORT inspects various bits of the restart parameter to dete
requested restart action. The user must supply proper file title attributes for

the two disk
Individual bits

workfiles if these files were previously label

and combinations of bits can be set by the program
1 4

the SORT. The bits and their meanings are as follows:

Bit O:

Bit 3:

On. The program is restarting a previous sort. The
SORT tries to open its two disk files and obtain
restart information. After successfully obtaining
this information, the SORT continues from the last
known restart point.

Off. The SORT is starting from the beginning. If
the sort is a restartable sort and previous sort
files with identical titles exist, those sort files
are removed and replaced by new sort files.

On. The program is requesting a restartable sort.
The SORT saves its two internal files and can be
restarted on program request. If bit 2 is on, bit 1
is set by default.

Off. A normal sort is reqrested, and no sort files
are saved (unless bit 2 is on, which sets bit 1 by
default).

On. The program is requesting a restartable sort
and desires extensive error recovery (from I/0
errors). With this option set, if I/0O errors occur
while accessing either of the two sort files, the
sort attempts to backtrack and remerge strings as
necessary. To wuse this option, the program must
provide at least three times as much disk space as
required to contain the input data. When less
space is provided, the SORT emits the message
"change to restartable only mode" and continues the
sort without further capability to backtrack.

. Recovery from internal errors is not

tad
v v,

of f
reques
This bit has meaning only if a restartable sort is
requested. Use of this option controls the SORT
during the stringing phase as the wuser input is
being read by the SORT. Use of this bit determines
how the SORT restarts (when a restart is requested)
only if the restart occurs while the SORT is in the
stringing phase.

On. The program desires the SORT to restart at the

beginning of the user’s input. This restart is the
equivalent of starting an entirely new sort. In
case the restarted sort had passed from the

stringing phase into the merge phase, it continues
from the merge phase. This bit may be set during a
restart even if it was not initially set. Once
set, it cannot be reset by subsequent restarts.

Off. The program desires the ability to restart at

rmine the

equated.
to control

Bit 4:

When a program is

SORT

the last restart point that occurred during the

stringing phase. If the SORT is still

in

the

stringing phase, it skips over the records already

AAAAAAAA 3

processed and continues from the last

res

tart

point. This process is described in more detail in
subsequent text. If the SORT is in the merge phase,
it continues from the last merge phase restart
point. Use of this option (by not setting the bit)
is normally 1less efficient than not wusing the

option because more strings are created duri
stringing phase.

This bit is reserved for expansion and
currently used by the SORT.

initially starting a sort and desires rest

restart value should be:

1.

Decimal 2 (bit I on) if a restartable s
desired that is capable of restarting at an
during the stringing or merge phase.

Decimal 10 (bits 1 and 3 on) if a restartabl

ng

is

art

ort

A\
4

¢

1
noin
pon

the
not
ab

S
t

sort

is desired that can restart at any point during the

merge phase but only at the beginning
stringing phase.

Decimal 4 or 6 (bit 2 on or bits 1 and 2 on)
restartable sort is desired that can
extensive recovery from internal sort 1/0

or merge phase.

Decimal 12 or 14 (bits 2 and 3 on or bits 1,
3 on) if a restartable sort is desired t

of

i
att

the

f a
empt

errors
and can restart at any point during the stringing

2,
hat

attempt extensive recovery from internal sort

errors and can restart at any point during

merge phase but only at the beginning
stringing phase.

Decimal 1, 3, 5, or 7 (significant bits are

of

bi

and
can

I1/0

the
the

t O

on and bit 3 off) if a previously incomplete sort
prior
incompleted sort must have been capable of restart,

is desired that can be restarted. The
and the two sort disk files must be prese

the sort files. The previous setting of

nt.

bi

A
restart is attempted using the values obtained from

t 3

controls the SORT if it is restarted during the

stringing phase. The previous values of bit
2 are used.

s 1

and

Decimal 9, 11, 13, or 15 (significant bits are bits
0 and 3 on) if a restart is desired of a previously
incomplete sort and if a restart from the beginning
of input is desired during the stringing phase.
capable

The prior incompleted sort must have been
of restart, and the two sort disk fiies
present. A restart is attempted using the
obtained from the sort files. Bit 3 is
remains set through all subsequent restarts.
1 and 2 take on their previous values.

mus

t be

values

set

and
Bits

11-10-

ility

5

the

11-10- 6

SORT
7. Decimal! 0 or 2 f(nc bits gn ¢or bit 2 on) causcs the
SORT to do a normal sort with no restart

capability.

RESTARTING DURING STRINGING PHASE

Restarting during the stringing phase (while SORT is still reading input
records) requires special consideration. If SORT has passed a file, a seek is
done or records are read until the desired restart point is reached. An INPUT
PROCEDURE presents a different problem, however, because the program must find
the proper restart record. To accomplish this desired result, the SORT places
values in the first word of the array passed to the INPUT PROCEDURE. The
values are negative or positive integers in binary form or zero to indicate
that nothing special is happening. A positive integer is placed in the first
word (word 0) to tell the INPUT PROCEDURE the relative number of the next
record desired by the SORT (if the SORT has previously processed and saved 99
records it requests record number 100). A positive non-zero integer occurs in
the first word only once and is then on the first call to the INPUT PROCEDURE.
SORT places a negative non-zero integer in the first word to inform the INPUT
PROCEDURE that SORT has just established a restart point. The number returned
represents (in absolute value) the number of records saved (for restart

purposes) by SORT. This information can be used by the program to establish
its own separate restart points.

11-10- 7
SORT

ERROR RECOVERY

SORT contains extensive internal error recovery ability for irrecoverable 1I/0
errors that occur as a result of accessing a sort disk file. The sort disk
files under discussion are the workfiles which contain the data being sorted
and the control file which contains control information for SORT. These two
files are referenced as the workfile and control file respectively; their
internal names and external titles are described in subsequent text.

I/0 error recovery logically segments into several areas of interest related to
the file in question and the kind of error encountered. The degree of recovery
possible is always dependent on the request for error recovery by the program.
When error recovery is requested, SORT maintains two copies of each record in
the control file and makes a second copy of the original strings of input data
in the workfile. With error recovery, the control file is logically segmented
into two files with a duplicate record maintained in both halves of the file
while the workfile is logically segmented into thirds. Duplicate records are
created in the workfile during the stringing phase only and are used for error
recovery when the primary copy of the original string is unreadable. Data are
not duplicated during the merge phase, and error recovery 1is accomplished by
backtracking to remerge previously merged data. In no case, is error recovery
attempted beyond one level of recovery. (If recovery is attempted while
recovering from a prior error, SORT terminates.) A discussion of the primary
areas of error recovery is presented in the following paragraphs.

Error Recovery of Control File Input Errors

An attempt is made to obtain the record by rereading the "error" record several
times. If the error record is unreadable and error recovery is not requested,
the SORT terminates. If error recovery is requested, the SORT attempts to read
its duplicate copy of the error record.

Error Recovery of Control File Output Errors

An attempt is made to successfully write the error record. If writing 1is not
successful after several retries and error recovery is not requested, SORT
terminates. If error recovery is requested, SORT marks as bad disk (XD) the
row of disk containing the error record. SORT retains the other copy of the
XDed row for subsequent use. If possible, SORT continues in full error
recovery mode; otherwise, SORT displays SORT ERROR 31 and continues in error
recovery mode for the workfile. Further error recovery for the control file is
no longer possible. In either case, if SORT is unable to write the error
record after the bad row has been XDed, SORT terminates. Only one disk row is
marked as bad disk on an error so that it is not possible to get into a loop
and XD large quantities of disk.

11-10- 8
SORT

Error Recovery of Workfile Input Errors

An attempt is made to obtain the record by rereading the error record several
times. If the error record is unreadable and error recovery is not requested,
SORT terminates. If error recovery is requested and the data have been
duplicated, an attempt is made to read the duplicate copy. If the error record
was written by the merge phase and no duplicate copy exists, SORT attempts to
recreate the string of information containing the error record. Before
backtracking to the previous merge, SORT writes and reads a test record in the
error record location. If the test is unsuccessful, SORT marks as bad disk the
row of disk containing the error record location. After testing and possible
XDing of disk, SORT backtracks to the desired point for restarting the merge
phase. At most, one row of disk is marked as bad disk for each occurrence of an
input error for the workfile.

Error Recovery of Workfile Output Errors

An attempt is made to successfully write the error record. If writing 1is not
successful after several retries and error recovery is not requested, SORT
terminates. If error recovery 1is requested, SORT marks the row of disk

containing the error record as bad disk. If possible, SORT continues in full
error recovery mode; otherwise, SORT displays SORT ERROR 32 and continues with

error recovery reset. If the SORT is in the stringing phase, an attempt is
made to write the error record and if the attempt 1is wunsuccessful, SORT
terminates. If SORT is in the merge phase, it backtracks to the desired point
of restarting the merge phase. At most, one row of disk is XDed for each

occurrence of an output error for the workfile.

Error Recovery of User Output File Errors

When the program has given the SORT an output file (rather than an OUTPUT
PROCEDURE), the SORT closes and purges the output file and restarts the output
from the first output record. If the output file is a disk file and
insufficient space was allocated to contain the data, the SORT either: (1) sets
the FLEXIBLE attribute before restarting the output, or (2) if setting the
FLEXIBLE attribute is not possible, terminates with SORT ERROR 8. Output error
recovery is not dependent on program request for error recovery.

Error Recovery of Workf

le Input-Errors during User Qutpnt

When the user’s output is a file, the file is closed and purged, and SORT
attempts to remerge the desired string. If the output is a procedure and error
recovery is specified, SORT repositions itself to remerge the desired string
and subsequently terminates with SORT ERROR 19. When SORT is restarted, it

remerges the desired string and starts user output with the first output
record.

1i-11- 1
SORT

11. MISCELLANEOUS INTERNAL INFORMATION

This section contains information about the SORT disk files and memory
allocation as well as miscellaneous information concerning restart and error
recovery.

SORT DISK FILES

data and control records.

The control file is normally a very small disk file whose size is based on the
maximum number of strings which can be produced for the sort currently being
executed.

Control file records are three words; blocks are 90 words. The maximum number
of control file rows is 64, and the number of physical blocks per row is four
(unless the amount of disk provided is extremely large). The last two rows of
the control file contain restart information when restartable sorts are
requested. The internal name for the control file is DISKC and the title is
SORT/DISKC. When a restartable sort is desired, file attribute equation should
be used to give a unique title to the control file. An example is:

<I> FILE DISKC (TITLE=JOBNAME/SORTCONTROL)

Other attributes that may be set by use of file attribute equation are limited
to assignment of the control file to disk pack. Use of other attributes is not
prohibited, but the SORT cannot function unless extreme care is exercised. A
high probability of failure exists if attributes such as AREAS, AREASIZE,
MAXRECSIZE, BLOCKSIZE, and so forth, are modified by file attribute equation.

The workfile is used by SORT to contain the data or records being sorted.
Workfile size 1is provided explicitly or implicitly by the user program. SORT
first determines a desired blocksize and then computes the number of disk rows
provided by the user. The maximum number of rows SORT ailocates to the
workfile is 183; partial rows are rounded up to a full row. Row sizes do not
exceed 1,320 segments unless an extremely large amount of disk is provided.
The internal name for the workfile is DISKF and the title is SORT/DISKF. When
a restartable sort is requested, file attribute equation should be used to give
a unique title to the workfile. An example is

<I> FILE DISKF (TITLE=JOBNAME/SORTWORK)

Other attributes that may be set by use of file attribute equation are limited
to assignment of the workfile to disk pack and the ability to provide a new
BLOCKSIZE and MAXRECSIZE. Use of other attributes is not prohibited, but the
SORT cannot function unless extreme care is exercised. A high probability of
failure exists when attributes such as AREAS, AREASIZE, and so forth, are
modified by file attribute equation.

SORT recognizes changes in BLOCKSIZE. However, BLOCKSIZE and MAXRECSIZE must
agree in order to open the file. The ability to modify this value is provided
as a means of overriding the normal memory allocation algorithms of SORT.
However, <care should be exercised in the use of this ability to modify the
buffer size of the SORT. When the buffer size is increased, the number of disk
segments per disk row is proportionately increased, and SORT proceeds using the
larger disk rows. If the buffer size is decreased, the number of disk segments
per disk row is proportionately decreased, which may result in a workfile not
large enough to accomplish the sort. One method of alleviating this condition

1i-11- 2
SORT

a larger quantity of disk. Modification of the buffer size is
SORT

is to specify
usually less effective than providing a different memory size for use by
always data dependent, and with some ordering of data,

However, sorts are
better sort may possibly be obtained by judicious selection of buffer size.

a

SORT

SORT MEMORY ALLOCATION

SORT attempts to stay within the memory estimate provided by the user
sorting with only six records in memory. Memory allocation

proceeds (in general) through the following steps:

the extent

1.

of

Memory size provided by the program is reduced by
1,500 words. The reduced size is used for all
subsequent calculations. The reduction is a
generous estimate of the amount of space required
for working storage and the space required for
various SORT procedures.

A buffer size is selected for the internal disk
and/or tape files. SORT tries to select buffer
sizes so that it does not become I/0 bound. For
disk sorting, SORT normally allocates two buffers
per string. For tape sorting with N tapes, SORT
allocates 1/Nth of memory as buffers for each tape.

During executions of the stringing phase, two
output buffers are normally allocated; thus, the
remainder of memory is left for the sort vector.
During execution of the merge phase, virtually all
available memory is used to contain buffers.

11-11-

even

3

to

11-11- 4

MISCELLANEOUS

SORT

INFORMATION

A number of conditions exist in SORT for restart and error recovery.
are documented elsewhere; however, the following text lists

these conditions
the most salient.

1.

The sort vector size limit is 65,535 and is not
required to be a power of two.

The order of merge limit is 65,535.

The limit for a disk string is 549,775,813,887
records, and the maximum number of blocks that can
be <contained in the sort workfile is also
549,775,813,887. The tape limit allows an
unlimited string length but limits the number of
blocks that can be obtained on any single worktape
to between 2,097,151 and 4,294,967,295 depending on
the number of records per block. (Reel switches may
or may not occur; however, this discussion assumes
a large tape reel.) The ultimate limit for tape
sorting is the stated tape limit times the number
of sort work tapes specified.

The file title for sort work tapes is SORTATAPEn
(where n is a number between zero and seven). This
feature eliminates the necessity for operator
intervention to resolve DUP FILE messages.

When SORT has been given some work disk to use, it
attempts to recognize the condition where the input
data is less than 40 percent in sequence and
switches comparison from ascending to descending or
vice versa. SORT remembers the change of mode and
processes the data accordingly. The switch is done
as often as necessary in order to produce longer
strings. Given a set of input data in exact
reverse sequence, SORT produces two strings (rather
than the maximum use of strings) and completes the
sort much faster.

Restart capability can be excluded from SORT by
resetting the RESTART option in the SORT portion of
the MCP symbolic and by recompiling the MCP.
Omitting the code associated with RESTART/ERROR
recovery results in sorts that run between 2 and 15
percent faster with an average improvement of 6 to
10 percent. Disk and ITD sorts are the only sorts
measurably improved by this omission.

Disk buffer size and disk record addressing have
been specifically chosen to reduce disk latency for
the sort work disk. Whether the SORT is I/0 bound
or compute bound is also dependent on many other
associated factors.

Some of

12-7-
GUARDFILE

7. SYSTEM/GUARDFILE INPUT EXAMPLE
An example SYSTEM/GUARDFILE input request for a database is shown below.
output from the SYSTEM/GUARDFILE program, indicating the contents of
guardfile created by this deck, is also shown.
% CARD DECK FOR TESTING DATA MANAGEMENT SECURITY FUNCTIONS
DEFAULT = NO; % WE WANT THIS TO BE A PRIVATE DATABASE -
% ONLY THOSE PROGRAMS AND USERCODES ACTUALLY
% IN THE GUARDFILE MAY ACCESS THE DATABASE
DEFINE OK = ALL EXCEPT (CLOSELOCK); % DONT WANT TO OVER-WRITE DATABASE
PACKNAME = DMPACK; % ONLY PROGRAMS RUNNING FROM HERE CAN ACCESS D-BASE

USERCODE STEWART=RW,DMVERBS=0K % UNLESS USING ONE OF THE FOLLOWING PROG.
USTING PROGRAM

[OBJECT/FIND =RW, DMVERBS=ALL EXCEPT (FIND),
OBJECT/LOCK =RW, DMVERBS=ALL EXCEPT (LOCK),
OBJECT/OPENINQUIRY =RW, DMVERBS=ALL EXCEPT (OPENINQUIRY),
OBJECT/ASSIGN =RW, DMVERBS=ALL EXCEPT (ASSIGN),
OBJECT/CREATESTORE ~ =RW, DMVERBS=ALL EXCEPT (CREATESTORE),
OBJECT/DELETE =RW, DMVERBS=ALL EXCEPT (DELETE),
OBJECT/LOCKSTORE =RW, DMVERBS=ALL EXCEPT (LOCKSTORE),
OBJECT/REMOVE =RW, DMVERBS=ALL EXCEPT (REMOVE),
OBJECT/OPENUPDATE =RW, DMVERBS=ALL EXCEPT (OPENUPDATE),
OBJECT/CLOSELOCK =RW, DMVERBS=ALL EXCEPT (CLOSELOCK),

OBJECT/OPENINITIALIZE=RW, DMVERBS=ALL EXCEPT (OPENINITIALIZE),
OBJECT/OPENTEMPORARY =RW, DMVERBS=ALL EXCEPT (OPENTEMPORARY),
OBJECT/GENERATE =RW, DMVERBS=ALL EXCEPT (GENERATE)

| H
PROGRAM TESTDEFINE ON TESTPACK = RW, DMVERBS=0OK EXCEPT(GENERATE) ;
PROGRAM A,B,C=RO;
PROGRAM (USR)X/Z = NO; % DONT LET HIM IN AT ALL
PROGRAM *A/B = RW,DMVERBS=0K EXCEPT (INSERT);
PROGRAM "HYPHEN-ATED" = RO;
PROGRAM "USING" = RO USING USERCODE "USING" = RW;

PROGRAM THIS/IS/A/NAME/WHICH/IS/TOO/BIG/TO/PRINT/
ON/A/SINGLE/LINE = RW DMVERBS=ALL EXCEPT (OPENINITIALIZE);

1

The
the

12-7- 2
GUARDFILE

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

GUARDFILE

8. SYSTEM/GUARDFILE OUTPUT EXAMPLE

GUARDFILE VERSION 002 DEFAULT ACCESS=NO PACKNAME DMPACK

USING USERCODE STEWART = RW
DMVERBS : ASSIGN CREATESTORE DELETE FIND GENERATE INSERT

USING

USING

USING

USING

USING

USING

USING

USING

USING

PROGRAM

PROGRAM

PROGRAM

PROGRAM

PROGRAM

PROGRAM

PROGRAM

PROGRAM

PROGRAM

LOCK LOCKSTORE OPENINITIALIZE OPENINQUIRY
OPENTEMPORARY OPENUPDATE REMOVE

(STEWART)OBJECT/FIND ON DMPACK = RW

DMVERBS : ASSIGN CLOSELOCK CREATESTORE DELETE
GENERATE INSERT LOCK LOCKSTORE
OPENINITIALIZE OPENINQUIRY OPENTEMPORARY
OPENUPDATE REMOVE

(STEWART)OBJECT/LOCK ON DMPACK = RW

DMVERBS: ASSIGN CLOSELOCK CREATESTORE DELETE FIND
GENERATE INSERT LOCKSTORE OPENINITIALIZE
OPENINQUIRY OPENTEMPORARY OPENUPDATE
REMOVE

(STEWART)OBJECT/OPENINQUIRY ON DMPACK = RW
DMVERBS : ASSIGN CLOSELOCK CREATESTORE DELETE FIND
GENERATE INSERT LOCK LOCKSTORE
OPENINITIALIZE OPENTEMPORARY OPENUPDATE

REMOVE

(STEWART)OBJECT/ASSIGN ON DMPACK = RW

DMVERBS : CLOSELOCK CREATESTORE DELETE FIND
GENERATE INSERT LOCK LOCKSTORE
OPENINITIALIZE OPENINQUIRY OPENTEMPORARY
OPENUPDATE REMOVE

(STEWART)OBJECT/CREATESTORE ON DMPACK = RW
DMVERBS: ASSIGN CLOSELOCK DELETE FIND GENERATE
INSERT LOCK LOCKSTORE OPENINITIALIZE

OPENINQUIRY OPENTEMPORARY OPENUPDATE
REMOVE

(STEWART)OBJECT/DELETE ON DMPACK = RW

DMVERBS : ASSIGN CLOSELOCK CREATESTORE FIND
GENERATE INSERT LOCK LOCKSTORE
OPENINITIALIZE OPENINQUIRY OPENTEMPORARY
OPENUPDATE REMOVE

(STEWART)OBJECT/LOCKSTORE ON DMPACK = RW

DMVERBS : ASSIGN CLOSELOCK CREATESTORE DELETE FIND
GENERATE INSERT LOCK OPENINITIALIZE
OPENINQUIRY OPENTEMPORARY OPENUPDATE
REMOVE

(STEWART)OBJECT/REMOVE ON DMPACK = RW

DMVERBS : ASSIGN CLOSELOCK CREATESTORE DELETE FIND
GENERATE INSERT LOCK LOCKSTORE
OPENINITIALIZE OPENINQUIRY OPENTEMPORARY
OPENUPDATE

(STEWART)OBJECT/OPENUPDATE ON DMPACK = RW

DMVERBS: ASSIGN CLOSELOCK CREATESTORE DELETE FIND
GENERATE INSERT LOCK LOCKSTORE
OPENINITIALIZE OPENINQUIRY OPENTEMPORARY
REMOVE

12-8-

12-8- 2
GUARDFILE

USING PROGRAM (STEWART)OBJECT/CLOSELOCK ON DMPACK = RW
DMVERBS : ASSIGN CREATESTORE DELETE FIND GENERATE
INSERT LOCK LOCKSTORE OPENINITIALIZE
OPENINQUIRY OPENTEMPORARY OPENUPDATE
REMOVE

USING PROGRAM (STEWART)OBJECT/OPENINITIALIZE ON DMPACK = RW
DMVERBS: ASSIGN CLOSELOCK CREATESTORE DELETE FIND
GENERATE INSERT LOCK LOCKSTORE
OPENINQUIRY OPENTEMPORARY OPENUPDATE
REMOVE

USING PROGRAM (STEWART)OBJECT/OPENTEMPORARY ON DMPACK = RW
DMVERBS: ASSIGN CLOSELOCK CREATESTORE DELETE FIND
GENERATE INSERT LOCK LOCKSTORE
OPENINITIALIZE OPENINQUIRY OPENUPDATE
REMOVE

USING PROGRAM (STEWART)OBJECT/GENERATE ON DMPACK = RW
DMVERBS : ASSIGN CLOSELOCK CREATESTORE DELETE FIND
INSERT LOCK LOCKSTORE OPENINITIALIZE
OPENINQUIRY OPENTEMPORARY OPENUPDATE
REMOVE
USING PROGRAM (STEWART)TESTDEFINE ON TESTPACK = RW
DMVERBS : ASSIGN CREATESTORE DELETE FIND INSERT LOCK
LOCKSTORE OPENINITIALIZE OPENINQUIRY
OPENTEMPORARY OPENUPDATE REMOVE

USING PROGRAM (STEWART)A ON DMPACK = RO
USING PROGRAM (STEWART)B ON DMPACK = RO
USING PROGRAM (STEWART)C ON DMPACK = RO

USING PROGRAM (USR)X/Z ON DMPACK = NG

USING PROGRAM *A/B ON DMPACK = RW
DMVERBS : ASSIGN CREATESTORE DELETE FIND GENERATE LOCK
LOCKSTORE OPENINITIALIZE OPENINQUIRY
OPENTEMPORARY OPENUPDATE REMOVE

USING PROGRAM (STEWART) "HYPHEN-ATED" ON DMPACK = RO

USING PROGRAM (STEWART)USING ON DMPACK = RO
USING USERCODE USING = RW

USING PROGRAM (STEWART)THIS/IS/A/NAME/WHICH/
1S/TO0/B1G/TO/PRINT/ON/A/SINGLE/LINE ON DMPACK = RW
DMVERBS : ASSIGN CLOSELOCK CREATESTORE DELETE FIND
GENERATE INSERT LOCK LOCKSTORE OPENINQUIRY
OPENTEMPORARY OPENUPDATE REMOVE

GUARDFILE
TABLE OF CONTENTS

INTRODUCTION.

Guarding Programs And Data Files.
Guarding Data Bases

SYSTEM/GUARDFILE INPUT.

<access specificationy.

<dmverb specificationy.

Default and Define Specifications

Using Clause.

MULTIPLE PROGRAM NAMES AND/OR USERCODES
PACKNAMES

USERCODES

RUNNING THE SYSTEM/GUARDFILE PROGRAM.
SYSTEM/GUARDFILE INPUT EXAMPLE.

SYSTEM/GUARDFILE OUTPUT EXAMPLE

12-6-
12-7-

12-8-

(=

12-1- 1
GUARDFILE

1. INTRODUCTION

SYSTEM/GUARDFILE is a utility program that creates guardfiles. A guardfile
describes the access rights of various users and programs to a program or data
file or a database. These are collectively referred to as "structure" in this
section. When access to a structure 1is controlled by a guardfile,
attempt to OPEN that structure causes the MCP to examine the access
the guardfile before granting or denying access to the structure.

every
rules in

The SYSTEM/GUARDFILE utility creates a guardfile but does not attach it to a
structure. To "guard" a structure, one of the following steps must be taken.

Guarding Programs And Data Files

Programs and data files may specify access rights by wusing either file
attributes or a WFL SECURITY statement:

FILE X(SECURITYTYPE=GUARDED,
SECURITYGUARD=MY/GUARD ON Y)

FILE (SECURITYTYPE=CONTROLLED,
SECURITYGUARD=MY/GUARD/ON Y)

or
SECURITY X GUARDED MY/GUARD ON Y

SECURITY CONTROLLED MY/GUARD ON Y

Guarding Data Bases

To guard an entire database, make the ACCESSROUTINES PUBLIC and apply the DASDL
GUARDFILE construct to the database name.

For a database called MYDB:

MYDB (GUARDFILE="MY/GUARD ON Y")

To apply different access rights to different structures within the database,

use the DASDL GUARDFILE construct to attach the appropriate guardfile to a
logical database:

LDB DATABASE (. . .) GUARDFILE="MY/GUARD ON Y"

R “or to the B 7000/B 6000 Series DMSII DASDL Reference Manual, form 5001480,
tor a more detailed explanation of DASDL syntax and semantics.

NOTES
1. The guardfile may be created either
before or after it is attached to a
structure; none of the above

techniques reads the guardfile until
the guarded structure is opened.

12-1-

v]

GUARDFILE

Family substitution deoes not apply
to the search for the guardfile when
a structure is opened. An ON clause
is absolutely necessary if guardfile

is not on DISK.

If the guardfile is not prefixed by
an asterisk, the usercode directory
of the accessed structure (not the
user accessing the structure) s
searched; if the pguardfile 1is not
found there, the system directory is
searched.

If the guardfile specified is not
found or the guardfile is malformed,
the file is treated as if
SECURITYTYPE=PRIVATE.

The same guardfile may be attached
to several files.

GUARDED is a synonym for CLASSB.

CONTROLLED is a synonym for CLASSC.

2,

Syntax

<guardfile input>

GUARDFILE

SYSTEM/GUARDFILE INPUT

———— ¢default statement> ;

<input request>

<input request>

12-2-

’

1

——————PROGRAM—t:]—I:: <name list> __J
— USERCODE [<name listy>]

— USING PROGRAM———————[: <name listy———
USERCODE ——— [<name listy]—
ACCESSCODE —

<name list>

—— «<simple name> <access

i

specification>

<usercode>

<program name> —

ON

<familynamey —

1

12-2- 2
GUARDFILE

Semantics

The input to SYSTEM/GUARDFILE consists of a series of «<input request>s
describing in detail the access rights any user or program is to have. Unless

otherwise indicated by a <default statement>, unmentioned wusers and programs
have no access to the file.

The SYSTEM/GUARDFILE program assumes that the 80-character

input record
contains data pertinent to the usercode/program entries.

SYSTEM/GUARDFILE does not accept sequenced input.

A percent sign terminates scanning of an input record. When a percent sign s
encountered by the program, all remaining information on the input record to
the right of the percent sign is ignored by the program.

Each <¢input request> describes the access rights for one or more users or one
or more programs. If two input requests apply to an attempted access, the
first request is used. If no default statement is used, no access is permitted
to users and programs not listed in the guardfile.

GUARDFILE

<access specification)

Syntax

<access specification>

12-2-

MV1780

<access right>

L= (access right)

DMVERBS =

(dmverb specification) —-j

NO
[RO—
L RW—

- X0 —

Semantics

The access specification consists of two
The following describe access rights:

dmverbs.

<empty>
NO
RO
RW

AL
wo

Examples

USERCODE A
USERCODE B

basic

Assumes DEFAULT value

No access permitted
Read-only access permitted
Read-write access permitted

Execuie-oniy access permiiied

Write-only access permitted

RO;
RVW;

’

User A may read but not

file.

entities: access

r
I

-y

or code

write the

User B may read and write the file.

Other users may not access the file.

rights

3

and

12-2- 4
GUARDFILE

USERCODE A = RO;

FROGRAM X = RW;
All users other than A may both read
and write the file if and only if
they are executing program X.

Usercode A may only read the file
even when running X; the first card
prevails.

USERCODE A = RO;

User A may only read the file.

12-2- 5

GUARDFILE
<dmverb specification)>
Syntax
<dmverb specificationy
ALL |
— ALL EXCEPT (—'— ¢verb listy——)—

— «defined identifier>

’

— (—L— ¢verb list>)

<verb list>

<verb list> |

Semantics

The following apply only to DMS II DATABASEs, not to ordinary files:

<empty> Assumes DEFAULT values
ALL All verbs permitted
ALL EXCEPT (<verb listy) All verbs permitted

except those in
<verb lisi>
<defined identifier> Uses specified values
<verb list> Specified verbs allowed
or not allowed

For a database, the data management operations to be allowed any wuser or
program may be specified. Table 12-2-1 illustrates the dmverbs that may be
specified along with certain default values associated with dmverbd
specifications and access rights. Any item in the first column of Table 12-2-1
can be used for the <verby> in <dmverb specificationy.

Certain combinations of access rights and dmverb specifications are not
permitted. This limitation is because an access right of read-only implies
that the database may be opened for inquiry only (no modification of the
database is permitted). Thus, some verbs (such as STORE, REMOVE, and so forth)
are not permitted. Therefore, if an access right of read-only is assigned to an
entry and a dmverb specification that includes verbs not in the standard
read-only verb list (see Table 12-2-1) is requested, an error is given.

For data management usage, the access rights execute—only and write-only have
no meaning. Access rights of execute-only and write-only are interpreted to
mean no access.

12-2- 6

LOCK
OPENINQUIRY
OPENUPDATE
ASSIGN

DELETE
GENERATE
INSERT

REMOVE
CREATESTORE
LOCKSTORE
OPENINITIALIZE

GUARDFILE

Table 12-2-1.

Verb List 1 Verb List 2 Verb List 3
Default for

Read-Only

Default for List for
Read-Write ALL

E TR - A T o T T A
E - S - T o T

E

NOTES

When an access right of read-only s
specified for an entry, the database may
only be opened INQUIRY.

Dmverbs not shown in this table are not
available for security purposes. Verbs
such as FREE, CREATE, and so forth, are
not secured since their use does not
alter the database.

12-2- 7
GUARDFILE

Examples

USERCODE A RW, DMVERBS = ALL;

User A may use all data management
operations.

USERCODE A

It

RO, DMVERBS = (OPENINQUIRY,FIND);

User A may open the database for
inquiry only, and after it has been
opened, may only execute a FIND (all
other DMVERBS are disallowed).

USERCODE A = NO, DMVERBS = (FIND);
Since the access right NO does not
apply to data management, a syntax
erfor is given.

USERCODE A = RO, DMVERBS = (DELETE);

Since the DELETE operation is not
consistent with the access right RO,
a syntax error is given.

Default and Define Specifications

Syntax

<default statement

LJAL. |
I— DEFAULT = caccessright>

aLLCssI e

1 PACKNAME = <familyname>

DEFINE <defined identifier> = <dmverb specificationy —

Semantics

The SYSTEM/GUARDFILE program accepts default values for access rights,
packnames, and dmverb specifications. The defaults and definitions, if
present, must precede any program or usercode input specifications.

The DEFAULT access right applies to any program or usercode not named in the
guardfile as well as to individual entries for which no access specification is
given. If the MCP examines the guardfile and does not find an entry
corresponding to the program and/or usercode attempting to access the guarded
file, the DEFAULT access specified is assumed.

The PACKNAME default specifies the family name to be wused for every program
named in the input without an ON <familyname> clause.

12-2- 8
GUARDFILE

The DEFINED dmverb specifications may be used in conjunction with the program
and/or usercode entries that follow them. These are a shorthand method «
spelling the data management verb lists. After the list is given once (in th

DEFINE statement), the "definition” <can be wused to represent those verbs
thereafter.

If no applicable <default statement> is presented to the SYSTEM/GUARDFILE
program, then the following default values are assumed:

The default access right is no access.

The default dmverb specification is either wverb list 1 or

verb list 2, depending on the access right assigned to the
entry.

The default pack name is DISK.

Using Clause

Frequently, combinations of programs and usercodes must be specified when
specifying file security. For example, certain programs may be coded such that
one user may use them for reading a file or searching a database, while another
user might be allowed to update the file or database with the program. Also,
particular usercode may be allowed access only via a particular
USING clause is used to indicate these combinations.

a
program. The

In all cases where conflicting <input request>s are given, the first

is the one
used.

File Examples

USERCODE A = RO;
USERCODE B USING PROGRAM SAFEPROGRAM = RVW;

No user other than A or B may access
the file in any way.

User A may only read the file.

User B may read or write the file,
but only using SAFEPROGRAM.

DEFAULT = XO;

Any user may execute the program
(this is operationally equivalent to
having the security of the file
PUBLIC SECURED).

PROGRAM X = RO, USING USERCODE A = RVW;

No user may access the file except
through program X.

Only A may use X to both read and
write the files; other wusers are
restricted to reading.

12-2-
GUARDFILE

DEFAULT = NO;

USERCODE C USING ACCESSCODE D = RW;
Only users running under usercode C,
who know the accesscode D (and
corresponding password), have
read/write access to the CONTROLLED
file. All other wusers are denied
access.

Database Examples

DEFAULT = RO;
DEFINE STANDARD = ALL EXCEPT (OPENINITIALIZE,GENERATE, CLOSELOCK) ;
PROGRAM DB/SEARCH=RO USING USERCODE USR = RW,DMVERBS=STANDARD;

Any user with a usercode other than
USR (or running without a usercode)
can only access the database via
program DB/SEARCH (or any other
program) on a read-only basis.
Since no dmverb specification was
associated with the program, verb
list 1 (of Table 12-2-1) is assumed
by default.

Program DB/SEARCH, when executed
under usercode USR may access the
database on a read-write basis using
the dmverb list specified as
STANDARD in the SYSTEM/GUARDFILE
default statement.

PROGRAM DB/SEARCH=RW,DMVERBS=ALL USING USERCODE USR=RO;

Program DB/SEARCH may access the
database on a read-write basis,
using any and all dmverbs, unless
the program is being executed by
user USR; in that case, only read
access is permitted. Since no dmverb
specification appears in the
modifier, the default read-only verb
list is assumed for user USR.

USERCODE USR=NO USING PROGRAM DB/SEARCH=RO;

User USR is not permitted access to
the database wunless it is via the
program DB/SEARCH.

When program DB/SEARCH is executed
by user USR, the data base may be
accessed on a read-only basis (open
inquiry). Use of any verbs other
than those specified in verb list |1
of Table 12-2-1 is not permitted.

12-2- 10
GUARDFILE

THIS PAGE 1S INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

12-3- 1
GUARDFILE

3. MULTIPLE PROGRAM NAMES AND/OR USERCODES

Programs may be grouped into classes by function. For example, a group of
programs whose sole function 1is to search a file or database and provide
reports based on current information might be considered as "inquiry" programs.
Other programs may periodically update low security items within the file or
database, and still others may manipulate restricted information.

The SYSTEM/GUARDFILE program permits programs and/or usercodes to be grouped
together to provide a shorthand method of specifying security.

The programs may be listed either with or without brackets. The access
specification applies to all preceding items in the list, whether bracketed or
not, which have no access specification of their own. The USING clause applies
only to the immediately-preceding item or bracketed list of items.

Each name in the list is followed by a comma. An access specification may be
specified for each name in the list or may be omitted.

If no access specification is supplied for any name in the list, the DEFAULT
values of access rights and dmverbs are used.

If access specifications are stated for some of the names in the list, then one
of the following applies:

1. The access specification stated for the current name
being processed is applied to all previous names in the
list for which no access specification was stated. The
list is processed backwards until a name for which an
access specification was stated is found or until the
beginning of the list is encountered.

2. If any portion of the access specification is stated,
the access specification is treated as complete for the
purpose of insertion into previous elements of the name
list. Therefore, if either the access right or the
dmverb specification is stated for an item in the name
list, subsequent access specifications are not applied
to that item.

Examples
USERCODE [A,B,C = XO];

A,B and C all have execute-only
access rights.

USERCODE [A = RO, B,C = RW];

A has read-only rights; B and C have
read and write access.

12-3-

GUARDFILE

USERCODE [U,V] USING PROGRAM [X,Y = RO, Z = RW];

U and V have the same access rights.
They may have read-only access via
programs X and Y or read-write
access via program Z. Otherwise,
they have no access.

PROGRAM [A/B,A/C=RO,A/D,A/E,A/F=RW,DMVERBS=ALL];

In the above example, programs A/B
and A/C are assigned an access right
of read-only. A/B gets a read-only
access right because it precedes A/C
for which an access right is
specified, and because no access
right is specified for A/B. Programs
A/B and A/C have default dmverb
specifications corresponding to verb
list 1 of Table 12-2-1 because no
dmverb specification is stated.

Similarly, programs A/D, A/E, and
A/F have read-write access rights
and have dmverb specifications of
ALL.

Program A/B is not reassigned an
access right of read-write because
of the intervening specification for
program A/C.

Also, program A/C is not assigned a
dmverb specification of ALL even
though the dmverb option is omitted
from the access specification of
A/C.

PROGRAM [A/B,A/C,A/D=RO] USING USERCODE
[USR1,USR2=RW, DMVERBS=STANDARD] ;

This example shows a bracketed name
list used for usercodes and program
names. Such a list may appear in
either the primary entry or the
USING clause or both. Programs A/B,
A/C, and A/D may access the database
on a read-only basis unless they are
executed with users USRI or USR2, in
which case they may access the
database on a read-write basis.

A family name may be used when specifying the names of

GUARDFILE

4. PACKNAMES

guardfile. For example:

PROGRAM A/B ON PCK = RO;

includes the pack name PCK as part of the program name entry. The MCP

the following rules governing pack names:

i.

A family name of DISK (A/B ON DISK) is equivalent to
having no family name at all. Thus A/B ON DISK is
interpreted as simply A/B.

If the program entry in the guardfile has a pack name
other than DISK, then any programs that initiate the
guardfile search must reside on the specified pack.
Thus, if the guardfile entry specifies program A/B ON
PCK and the actual program running is A/B ON OTHERPCK,
no access is permitted.

If the program entry in the guardfile does not have a
pack name (or the pack name is DISK), then the program
that initiates the guardfile search may reside on any
media. Thus, if the guardfile entry specifies program
A/B, and the actual program running is A/B ON OTHERPCK,
the access permitted is that specified in the guardfile.

program entries

12-4- 1

in the

employs

12-4- 2
GUARDFILE

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

12-5-~ 1
GUARDFILE

5. USERCODES

The SYSTEM/GUARDFILE program automatically appends the usercode under which it
is executed to any program names which are specified in the input request. The
user may, however, specify a system file or another wusercode in the input
request when necessary.

For example, the input requests:

PROGRAM (USR1)A/B = RO;
PROGRAM *A/B = RW;

may be specified.
At run time, the MCP compares the security information in the guardfile with

the program name and ensures that they are the same before granting access.
This procedure means that:

1. A guardfile entry without a usercode, when compared with
a program name with a usercode, results in access being
denied.

2. A guardfile entry with a usercode, when compared with a
program name without a usercode, also causes access to
be denied.

For example:
PROGRAM *A/B = RO;

creates this entry in the guardfile. When program *A/B is executed with or
without a wusercode, an access right of read-only is returned. When program
(USR)A/B is executed, no access is perimitted. Running program *A/B under

usercode USR does not change the name of the program (the task attribute) to
(USR)A/B;

12-5- 2
GUARDFILE

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING PURPOSES.

12-6- 1
GUARDFILE

6. RUNNING THE SYSTEM/GUARDFILE PROGRAM
SYSTEM/GUARDFILE has three files that may be label-equated:

CARD The input file.
LINE The printer file.
GUARD The output guardfile. This file should be
label-equated to have the desired title,
Example
?RUN SYSTEM/GUARDFILE
?FILE GUARD (TITLE=MY/GUARD ON XX)
?DATA CARD
<input cards>
?END

LISTING AN EXISTING GUARDFILE
The SYSTEM/GUARDFILE program may be used to list the contents of an existing

guardfile. When the SYSTEM/GUARDFILE program is executed with a task value

greater than 0, the LIST-ONLY option is invoked. The required guardfile should
be label-equated to the desired file.

Example

?RUN SYSTEM/GUARDFILE; FILE GUARD=MYGUARDFILE ON MYPACK;VALUE=1;

12-6- 2
GUARDFILE

DEBUGGING OPTIONS

A DEBUGGING toggle may be set in the SYSTEM/GUARDFILE program by executing the
program with a taskvalue less than zero. Under the DEBUGGING option, the line
number (in the SYSTEM/GUARDFILE program) at which an error is detected is shown
along with the error message.

DEFINE IDENTIFIER

A DEFINE identifier may be any alphanumeric character string beginning with a
non-digit which is not a reserved word in the SYSTEM/GUARDFILE program.

Reserved words are:

ACCESSCODE
ALL
DEFAULT
DEFINE
DMVERBS
EXCEPT

USERCODE
USING
wo

Xo

[]

INTRODUCTION.

GENERAL INFORMATION .

EXECUTION .

DCSTATUS
TABLE OF CONTENTS

13-1- 1
DCSTATUS

1. INTRODUCTION

SYSTEM/DCSTATUS is a DCALGOL program that makes use of the DCSYSTEMTABLES
installation intrinsic to produce run-time "snapshots” of the Data Comm tables
maintained by the MCP and the DCP.

No attempt will be made to interpret the results generated by the DCSTATUS
program because understanding these results requires an understanding of NDL as
well as at least a casual understanding of the DCP.

13-1- 2
DCSTATUS

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING
PURPOSES .

13-2- 1
DCSTATUS

2. GENERAL INFORMATION

DCSTATUS must be supplied with an option list which specifies those elements of
the datacom subsystem which are to be analyzed. The options are in the
following hierarchy: ALL, DCP, CLUSTER, LINE, STATION. Each higher order item
is inclusive of all lower order items. For example, if CLUSTER is specified,
the analysis is performed on all lines and stations on that <cluster. The
options TERMINAL, TABLES, MODEM, NETWORK, GRAPH, and FILE do not fit into this
hierarchy.

Output from DCSTATUS is normally sent to the line printer (internmal file name
is LINE). The program will, however, detect if the file LINE has been label
equated to KIND=REMOTE, as is the case for the DCSTATUS command in CANDE and
the DP command in DIAGNOSTICMCS. In this case the output format is modified to
fit a 72-character line width.

The DCSYSTEMTABLES intrinsic does not lock the various tables that it accesses.
It is therefore possible that the contents of the tables may change while the
intrinsic is accessing them. In addition, more than one call on the intrinsic
is used to obtain the contents of all the various tables. Although infrequent,
the influence of timing may occasionally cause the results produced by DCSTATUS
to appear conflicting.

By use of the FILE statement, analysis can be performed on network definition
files other than the currently active network files. Note that analysis of
non-active network files precludes reporting information requiring active
network files; that 1is, the following are the only allowable options for
non-active network files:

DCP «dcp number> NDL

STATION <station number> NDL
TERMINAL

MODEM

GRAPH

NETWORK

13-2- 2
DCSTATUS

Syntax

<dcstatus options>

ALL I

— DCP—— <dcp no.>

L—' __j NDL
<dcp no.>
— CLUSTER «dcp no.>——[: ,::(— <cluster no.>—

— <line specs>

<modem no.>

<lsn> NDL

— TERMINAL
|——-—<remote type index>
— TABLES
— GRAPH
l-—-<dc file prefixy
— NETWORK

L— «dc file prefix>

— FILE L
<dc file prefix>

<line specs>

—— LINE— «<dcp no.> J L_| <line no.>—]
<cluster no.> :

L

<dc file prefix>

DCSTATUS

13-2- 3

~—— ¢filename> |

L ON— <familynames —

13900

Semantics

Several options

separated by semicolons may be specified for

execution. The meaning of each option is as follows:

TABLES

ALL

CLUSTER

LINE

MODEM

TERMINAL

Produces a raw hexadecimal dump of the DCC
tables and the DCP line and station tables.

Produces a complete analysis of the datacom

network. Analysis of the 1line and station
tables together with an analysis of each remote
type is performed. All other options are a

subset of this option.

Produces an analysis of cluster, lines, and
stations on all DCPs or a specific DCP. Use of
the NDL option causes reporting to be based
upon the information in the NIF and DCPCODE
files instead of the current datacom tables.

Produces an analysis of the lines and stations
on the designated cluster.

Produces an analysis of the designated line and
its stations.

Produces an anlysis of modem information for a
specific modem or for all modems defined in the
network.

Produces a station analysis. If no LSN s
specified, all stations will be analyzed. The
normal sources of information for this option
are the datacom tables in main memory or in DCP
local memory. [If the NDL option 1is specified
then the sources of information are the NIF and
DCPCODE files.

Produces a listing of the NDL specifications of
the terminals. The <remote type index> is the
index used by the MCP to index into a table
which describes each terminal specified in the
NDL. Terminals are numbered in the sequence in
which they appear in the NDL terminal
definitions.

.

a

single

13-2-

GRAPH

NETWORK

FILE

DCSTATUS

Produces a graph of the datacom network showing
the relationship between the DCP’S, clusters,
lines (names, addresses, and phone numbers for
dial-in lines) and stations (names and LSNs).
Since the graph information is obtained from
the NIF and DCPCODE files, this option may be
used whether datacom is running or not. If a
<dc file prefixy> is not specified, then the one
currently being used by the system will be
GRAPHED. ON ¢familyname> may be used in the <dc
file prefixy specification.

Produces a brief tabular network configuration
report. Information in the report includes:
DCP, cluster, line, station, terminal, and MCS
data.

Can be used to direct analysis at a non-active
NIF and DCPCODE files. Since the graph
information is obtained from the NIF and
DCPCODE files, this option may be used whether
datacom is running or not. If a «<«dc file
prefix> is not specified then the one currently
being used by the system will be used. ON
<familyname> may be wused in the «<«dc file
prefix> specification.

13-3- 1
DCSTATUS

3. EXECUTION
A typical WFL statement for execution of DCSTATUS may look like:
RUN SYSTEM/DCSTATUS(" <dcstatus options> ");
DCSTATUS may be executed remotely via the CANDE DCSTATUS command and the

DIAGNOSTICMCS DP command. Refer to the documentation on these programs for
syntax.

13-3- 2
DCSTATUS

THIS PAGE IS INTENTIONALLY LEFT BLANK FOR FORMATTING
PURPOSES

Documentation Evaluation Form

Title: __B 7000/B 6000 Series System Software Form No: 3011661

Operational Guide, Volume | Date: June 1980

Burroughs Corporation is interested in receiving your comments
and suggestions regarding this manual. Comments will be util-
ized in ensuing revisions to improve this manual.

Please check type of Suggestion:
O Addition O Deletion O Revision 0O Error

Comments:

From:
Name
Title
Company
Address

Phone Number Date

Remove form and mail to:

Burroughs Corporation
Documentation Dept., TIO - West
P.O. Box 4040
El Monte, CA 91734

2" BINDER

—

1%’ BINDER
1 BINDER

=

B 6000/B 7000 Series

SYSTEM SOFTWARE OPERATIONAL oc_om

VOLUME 1

5011661

Printed in U.S.A.

5011661

June 1980

Printed in U.S.A.

	001
	002
	003
	004
	005
	006
	007
	008
	01_01-00
	01_01-01
	01_01-02
	01_02-01
	01_02-02
	01_03-01
	01_03-02
	01_03-03
	01_03-04
	01_03-05
	01_03-06
	01_04-01
	01_04-02
	01_04-03
	01_04-04
	01_04-05
	01_04-06
	01_05-01
	01_05-02
	01_05-03
	01_05-04
	01_05-05
	01_05-06
	01_06-01
	01_06-02
	01_07-01
	01_07-02
	01_07-03
	01_07-04
	01_07-05
	01_07-06
	01_07-07
	01_07-08
	01_07-09
	01_07-10
	01_08-01
	01_08-02
	01_09-01
	01_09-02
	02_01-00
	02_01-01
	02_01-02
	02_02-01
	02_02-02
	02_03-01
	02_03-02
	03_01-00
	03_01-01
	03_01-02
	03_02-01
	03_02-02
	04_01-00
	04_01-01
	04_01-02
	04_01-03
	04_01-04
	04_01-05
	04_01-06
	04_01-07
	04_01-08
	04_01-09
	04_01-10
	05_01-00
	05_01-01
	05_01-02
	05_02-01
	05_02-02
	05_02-03
	05_02-04
	05_02-05
	05_02-06
	05_02-07
	05_02-08
	05_03-01
	05_03-02
	05_03-03
	05_03-04
	05_03-05
	05_03-06
	05_03-07
	05_03-08
	05_03-09
	05_03-10
	05_03-11
	05_03-12
	05_03-13
	05_03-14
	05_04-01
	05_04-02
	05_04-03
	05_04-04
	05_04-05
	05_04-06
	05_05-01
	05_05-02
	06_01-00
	06_01-01
	06_01-02
	06_01-03
	06_01-04
	06_01-05
	06_01-06
	06_01-07
	06_01-08
	06_02-01
	06_02-02
	06_02-03
	06_02-04
	06_02-05
	06_02-06
	06_02-07
	06_02-08
	06_02-09
	06_02-10
	06_02-11
	06_02-12
	06_02-13
	06_02-14
	06_02-15
	06_02-16
	06_02-17
	06_02-18
	06_02-19
	06_02-20
	06_02-21
	06_02-22
	06_02-23
	06_02-24
	06_02-25
	06_02-26
	06_02-27
	06_02-28
	06_02-29
	06_02-30
	06_0A-01
	06_0A-02
	06_0B-01
	06_0B-02
	06_0C-01
	06_0C-02
	07_01-001
	07_01-002
	07_01-01
	07_01-02
	07_02-01
	07_02-02
	07_03-01
	07_03-02
	07_03-03
	07_03-04
	07_03-05
	07_03-06
	07_03-07
	07_03-08
	07_03-09
	07_03-10
	07_03-11
	07_03-12
	07_04-01
	07_04-02
	07_04-03
	07_04-04
	07_04-05
	07_04-06
	07_05-01
	07_05-02
	07_05-03
	07_05-04
	08_01-00
	08_01-01
	08_01-02
	08_02-01
	08_02-02
	09_01-001
	09_01-002
	09_01-01
	09_01-02
	09_02-01
	09_02-02
	09_02-03
	09_02-04
	09_02-05
	09_02-06
	09_03-01
	09_03-02
	09_03-03
	09_03-04
	09_04-01
	09_04-02
	09_04-03
	09_04-04
	09_0A-01
	09_0A-02
	09_0B-01
	09_0B-02
	10_01-001
	10_01-002
	10_01-01
	10_01-02
	10_02-01
	10_02-02
	10_03-01
	10_03-02
	10_03-03
	10_03-04
	10_03-05
	10_03-06
	10_03-07
	10_03-08
	10_03-09
	10_03-10
	10_03-11
	10_03-12
	10_03-13
	10_04-01
	10_04-02
	10_05-01
	10_05-02
	11_01-001
	11_01-002
	11_01-003
	11_01-01
	11_01-02
	11_02-01
	11_02-02
	11_03-01
	11_03-02
	11_04-01
	11_04-02
	11_05-01
	11_05-02
	11_06-01
	11_06-02
	11_06-03
	11_06-04
	11_06-05
	11_06-06
	11_06-07
	11_06-08
	11_07-01
	11_07-02
	11_07-03
	11_07-04
	11_07-05
	11_07-06
	11_08-01
	11_08-02
	11_08-03
	11_08-04
	11_09-01
	11_09-02
	11_09-03
	11_09-04
	11_09-05
	11_09-06
	11_09-07
	11_09-08
	11_0A-01
	11_0A-02
	11_0B-01
	11_0B-02
	11_0B-03
	11_0C-01
	11_0D-01
	11_0D-02
	11_10-01
	11_10-02
	11_10-03
	11_10-04
	11_10-05
	11_10-06
	11_10-07
	11_10-08
	11_11-01
	11_11-02
	11_11-03
	11_11-04
	12-07-01
	12-07-02
	12-08-01
	12-08-02
	12_01-00
	12_01-01
	12_01-02
	12_02-01
	12_02-02
	12_02-03
	12_02-04
	12_02-05
	12_02-06
	12_02-07
	12_02-08
	12_02-09
	12_02-10
	12_03-01
	12_03-02
	12_04-01
	12_04-02
	12_05-01
	12_05-02
	12_06-01
	12_06-02
	13_01-00
	13_01-01
	13_01-02
	13_02-01
	13_02-02
	13_02-03
	13_02-04
	13_03-01
	13_03-02
	replyA
	xBack

