Burroughs @

B 800 Systems
MCP

Memory Dump Analysis

USER’S GUIDE

PRICED ITEM |

rrrrrrrrrrrr

“The names used in this publication are not of individuals living or
otherwise. Any similarity or likeness of the names used in this publi-
cation with the names of any individuals, living or otherwise, is purely
coincidental and not intentional.”

Burroughs believes that the software described in this manual is
accurate and reliable, and much care has been taken in its preparation.
However, no responsibility, financial or otherwise, can be accepted for
any consequences arising out of the use of this material, including loss
of profit, indirect, special, or consequential damages. There are no
warranties which extend beyond the program specification.

The Customer should exercise care to assure that use of the software
will be in full compliance with laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change. Revisions may
be issued from time to time to advise of changes and/or additions.

Any comments or suggestions regarding this publication should be forwarded to Systems Documentation, Technical
Information Organization, TIO-East, Burroughs Corporation, F.O0. Box CB7, Malvemn, Pennsylvania 19355,

'TABLE OF CONTENTS

Section Title Page
Introduction iii
1 MCP CLEAR/START TROUBLE
SHOOTING 11
2 MIX TABLE ANALYSIS 21
MAT - Mix Attribute Table
Analysis 2-2
TDT - Task Detail Table Analysis 2-3
3 CURRENT TASK ANALYSIS 3-1
Control Stack 34
4 SLICE MEMORY MAPPING 41
5 PERIPHERAL - 1/0
DESCRIPTORS 5-1
6 ANALYSIS OF MCP TRAIL 6-1
7 SLICE DESCRIPTOR TABLE
OVERVIEW ' 7-1
Memory 7-3
Management Flags for SDT 7-3
LIST
Table Title Page
31 Communicate Verbs 3-3
51 PHT (Peripheral Handler Table)
Disk 5-5

Section

8
9
10
1"

12

B

OF TABLES

Table

52

81
124

Title

MCP SLICES
B 800 MEMORY LAYOUT
MCP NUCLEUS
DESCRIPTION OF MICRO
SLICES
B 800 CMSMCP FILE
APPENDIX A
APPENDIX B
MCP Logic Errors Worksheet
Mix Worksheet

MAT Analysis

TDT Analysis
Current Task Worksheet
Slice Memory Mapping
Worksheet
Peripheral 1/O Descriptor
Worksheet

Title

PHT (Peripheral Handler Table)
Non Disk

Table of MCP Slices

Field Contents

8-1
9-1
10-1

1141
121

Page

5-6
8-1
121

e
(11}

INTRODUCTION

The intent of this document is to provide additional information to system
software support personnel on how to analize B 800 system dumps. It is assumed
that the reader is already familiar with the B 800/CMS wvirtual machine
structure. This manual should not be expected to provide all the information
required for a compiete analysis of a memory dump. However, the information
should enable the support person to:

1. Investigate hardware/software status from clear/starts caused by hardware
malfunctions, user program logic errors, or MCP failures.

2. Gain additional insight into the status of the system at the time of the

failure.

[

3. Suggest methods for correcting or detouring the problem.

L. Better document the field trouble reports (FTR) when reporting clear/starts
or other system faults.

In some cases, the information obtained from the dump analysis may not provide
enough data to exactly define the failure or the cause. However, in reviewing
documentation from several failures, similarities may appear which may lead to
the cause of the failure.

A list of some of the terms and acronyms used in this document is contained in
Appendix A. The information is based on the 3.01.50 B 800 CMS MCP release.

SECTION 1
MCP CLEAR/START TROUBLESHOOTING

The objective of this troubie shooting is to analyze certain areas in a system
dump, enabling the documenting of an FTR, and to attempt to gather as much
knowledge as possible about the status of the system at the time of the MCP
failure.

The following is a guide to information that should be documented on an FTR.
Analyses of the following areas should be kept on each reported failure and
reviewed with other reports in a search for patterns and similarities. The steps

are*
=2 =

1. Obtain a copy of the SPO log from the last warmstart banner. Review the
log for possible error messages from the MCP. Make note of the patch level
from the warmstart banner.

2. Verify from the MAT that the task entries do exist. The MCP may just be
starting or terminating a task. (Refer to Mix Table Worksheet.)

3. lIdentify the contents of BMAR, MPCR, and ERROR. These values can be
obtained from 0S register Jocations ©0083@, @0084@, and @0085@
respectively.

'k, ldentify the current slice (0S register @000Ce) .

5. Determine whether the memory links are correct and identify the micro
slices in the micro extent area. (Refer to Slice Memory Mapping section.)

6. ldentify the current task TID (0S register @000A@) and its status.

7. If the current task is a user program, provide a brief functional
description of the program. Analyze the current task for the last MCP
communicate. (Refer to Current Task section.)

8. Identify the hardware configuration.

9. ldentify any devices with queued {/0s and their status. (Refer to
Peripheral 1/0 Descriptor section.)

10. Examine the MCP trail for the history of MAD and interrupts. This trail
helps identify the last path taken by the MCP up to the failure. (Refer to
MCP trail section.)

In some cases, the preceding information, by itself, does not provide enough
data to exactly define the cause of the problem. Only through the review of

11

12

documentation from several failures do similarities start to develop.
Investigation into these similarities produces new ideas and theories which,
when investigated, may result in clearly defining a set of operations
reproducing the failure or finding of a possible detour around the failure.

SECTION 2
MIX TABLE ANALYSIS

The objective is to extract the mix table information from a Hex dump.

Every attempt should be made to accompany each system dump with the SPO listing
from the last warmstart banner tc the system failure. I!n cases where the SPO
listing should be verified against the system dump, or if the SPO listing is not
available, the mix entries can be extracted from the Hex system dump by using
the mix attribute table (MAT) and the task detail tabie (TDT).

The MAT is a task management table located in the operating system table region.
It is the mechanism by which the operating system controls task switching and
priorities of tasks. Each entry is one D-word long and a maximum of 16 entries
are divided into priority classes A, B, and C. |In between each class is a wall,
GFFFF@.

The task detail table is the logical extension of the mix and, as such, contains
a great amount of task-related data. The TDT is an overlayable data segment
owned by the SCL task. It is comprised of one entry per task and is indexed by
the task number.

Summarize the mix contents as follows by locating the information in the MAT and

TDT as subsequently described.

Independent Runners:

Task No. Priority Task ID Status
F - C - Data comm -
E - c - Working set bailiff -
D- € - Help/CTM -
C- € - SCL Loader -

B - C - Data comm space handler-

A- € - Log -

9- B SYS-SUPERUTL -

Use the following table to identify the status for each of the independent
runners previously listed.

2-1

User programs:
Task No. Priority Task 1D Status

8 - - -

o
]
]
]

0o - - -

Identify the priority, task name, and status for each task number.

MAT - MIX ATTRIBUTE TABLE ANALYSIS

Complete the following:
The operating system register at location @000E@ = .

The contents of this register identify the first D-word in the mix attribute
table (MAT) and should be equal to @FFFF@. The format of the MAT is: wall
(FFFF), C tasks, wall (FFFF), B tasks, wall (FFFF), A tasks, wall (FFFF). If no
B or A tasks are in the mix, the walls are next to one another. Each entry is
one D-word long. The objective is to extract the priority and wait key status
for each task.

C FFFF
B FFFF
A FFFF ' \ FFFF

Each entry in the MAT can be defined as abcd where:

a = task state cd = wait key status
= 0 - runnable ‘ = 00 - running
= L - short wait = 03 - virtual memory lock

= 8 - suspended swappable cd =
= (- suspended swapped

TTMO O >
|

tas

9-

k ID = mix number- 1
super utility

log

DC space

SCL loader

help task

W.S. bailiff

DC Q handler

SCL loader lock
open/close lock
M.H. accept,display
EOJ lock

1/0 wait

logging initiated by WMST

logging initiated recall

operator stopped
suspended by pause
no user disk

no file

duplicate file

task waiting restore
rstinp

swpint

help task not in use

help task waiting CTM

task being loaded

DC result Q suspended

DC space handler is idle

task wait on accept

task wait zip with pause

task wait event timer
access mode restriction

waiting device
directory full
task wait for ds/dp
waiting SYSMEM file

task wait for device assignment

DC wait key

wait MCS ailow/disaiiow
wait on DC buffer space
wait on subnet Q limit

wait station Q limit
wait MCS EOQOJ

wait MCS Q limit
wait DC reload

wait on sysconfig access

wait trace buffer
VM wait on /0

TDT - TASK DETAIL TABLE ANALYSIS

The task detail table is found by locating data segment
task.

1.

The base memory address of the slice descriptor table (SDT)

The objective is to extract the task ID for each task.

contained in 0S register location @0017@ = .

1

of

the

is

SCL-loader

the value

2. The preceding memory location identifies the base of the SDT. The
SCL-loader is the thirteenth entry in this table. To locate the SCL loader
slice descriptor add @3C@ to the base address of the SDT, giving

3. Each SDT entry is five D-words long. Using the address just evaluated,
extract the SCL loader slice descriptor.

(SCL slice descriptor)

] 2 3 b 5

L. D-word 4 identifies the memory location of the SCL loader task control
block. Proceed to that memory location and extract two D-words.

(first two words of SCL loader TCB)

1 2

5. D-word 2 of the SCL TCB identifies the memory location of the data segment
table Dbase for the SCL loader. Since data segment numbers are
zero-relative and the data segment desired is number 1, add @OL@ to this
memory address.

(SCL data segment 1)

6. This memory location finds the SCL loader segment descriptor (four D-words
iong) . Extract four D-words.

(TDT segment descriptor)

~4
.

D-word 4 for the TDT segment descriptor identifies the memory address where
the task detail table information can be found. The TDT can now be mapped.
Each entry in this table is 23 D-words long and is indexed by the task
number .

D-word 1 = task history and is defined as:

abcd where a = 0 - SPO initiated
= 8 - regular zip
= 2 - 2ip with DS
=C - zip with pause
c = son's task ID
d = father's task ID

D-words 5 - 8 contains the pack ID in ASCII.
D-words 9 - 14 contains the task ID in ASCI}.

Mark off sets of 23 D-words on the Hex dump and extract the task history,
pack-1D, and task-ID. Only if a user task is present in the mix is there a TDT
entry. The number of user tasks should have been determined by the MAT
analysis.

5

(ASC1 1)

8

9

(ASC1t 1)

14

2-5

SECTION 3
CURRENT TASK ANALYSIS

This section utilizes the current task worksheet located at the end of this
manual.

Part 1 concerns current task information in low memory. (What program was
running? What was it doing?)

This part can be compieted with a minimum of effort. The resulting information
may be adequate in many cases as a preliminary analysis. it may, for example,
establish a pattern of repeated failures while executing a certain program or at
a certain point in a program. This could be helpful for reporting, reproducing,
or detouring a system failure.

Current Write down the contents of memory
task-1D location @000A@ from a Hex dump.
(word @000AR) Task-1D values of 0-8 correspond to

mix numbers of 1-9. Task-1Ds greater
than 8 are not assigned to a user
Mix no. task. Thus, if current task-ID is
(task=1D + 1) greater than 8, the remainder of this
worksheet does not apply.
The SPO log listing accompanying the
" Program name dump gives the disk codefile name
for this task. |f the SPO log is not
available, the codefile name can be
found in the task detail table in the

dump (see Mix Table Worksheet).

Current Write down the contents of memory

task TCB location @000B@. This gives the starting
(word @000B@) address in memory of the task control
also referred block (TCB) for the currently executing
to as TBC base program. ’

During a particular execution of a
program, the MCP and interpreters build
a TCB and use it for the
storage and exchange of information about
the task's progress. The TCB is examined
in part 2 of this worksheet.

Several important virtual registers used by the interpreter during program
execution are located in low memory for convenient access by the interpreter.
There are several S-registers used by the interpreters, but we are particularly
interested in these:

31

Code

segment
number (PSN)
(word @009LE)

Code
displacement

in bytes (PCA)

(word @0093@)

Code
segment
address

(word @009AR)

Code

segment

size (bytes)
(word @009B@)

Current
S-op
(word @OOAD@)

Line-count
or BiL-flags
(word @00B6@)

Line-count
(decimal)

Words @9L4@ and @93@ (PSN and PCA)
contain program segment number and

program current address, which together

constitute the next instruction
pointer.

Words @9A@ and @9B@ contain the
absolute memory address and size
in bytes of the current program
code segment.

Word @AD@ contains the actual
S-opcode being executed by the
S-interpreter.

Word @B6@ contains BIL flags for
an MPLI| program, or line-count
for a COBOL/RPG program. To use
the latter, convert
from Hex to a decimal number.
|f non-zero, this identifies, in
the compile listing, the iine of
source code being
executed. (in order for this
line-count to be meaningful, or
non-zero, the program
must have been compiled with
$line-code if COBOL, or with a
1 in column 16 of H-spec if RPG).

Part 2 concerns current task information from TCB.

If further information about the current task is required, one or more of the
component parts of _its task control block must be examined. The communicate
parameter, data segment table, and control stack can eack be examined

independently.

The first step is to select the part of the TCB to be considered. Go to the
beginning of the current task control block in the dump. Its address (TCB base)
was found in part 1. Extract seven D-words from the dump.

(Tce)

] 2 3 4 5 6 7
PSN/ISN DST DST MCH-TOS MCH
base limit recover active
verb

PSN/ISN (D-word 1) - program and interpreter identification.

The low-order (rightmost) byte of this word is either @108 (for an MPL!I
program) or @1i@ (for a COBOL/RPG program). The high order (ieftmost) byte of

this word tells, via the slice descriptor table (SDT), where the task's program
control block (PCB) is located.

The communicate parameter area (CPA) concerns the task's most recent request for
MCP assistance.

A ''communicate" is a request from a task for the MCP to perform a function
(usually a logical 1/0 operation such as file open/close or a read from a disk
file). Often, when a sysdump is taken, the S-interpreter is executing a
communicate for the current task. For a COBOL program, the current S-op code is
@2fe. The S-interpreter executes this op code by placing the request
(communicate verb and object), in the communicate parameter area (CPA) within
the TCB, then calling on the MCPs master communicate handler (MCH) routine to
perform the requested function.

To find the CPA, add MCH active verb (D-word 7)
to the TCB base (found at @000B@)

giving the CPA address

The contents of the D-word at this address is

The high order (leftmost) byte of this word is the communicate verb (see
communicate verb table 3-1 which follows for values). The low order (rightmost)
byte of this word is the communicate object, usually the data segment of a file
information block (FIB). For example, a value of @8203@ means mean that the MCP
was requested to read (verb 82) the file thats FIB is data segment 3.

Table 3-1. Communicate Verbs

Class Verb Bits Communicate (byte O = verb, byte 1 = object)

- - -———— e = - - - - - - - -

B 00-0F file assignment (object = FIB segment number)
B 01 file open

B 02 file close

c 10-2F field oriented 1-0 (object = segment number)
c " 01 zip

c " 02 display

c " o4 pause

34

" Table 3-1. Communicate Verbs (Cont.)

Class Verb Bits Communicate (byte O = verb, byte 1 = object)

c " 08 conditional
C 20 accept '

D 30-3F data communications
£ Lo date-time
£ 41 terminate
E L2 wait
E L3 system status

70-7F machine dependent (B800)

F N configurator slice
A 80-9F file type 1-0 (object = FIB segment number)
A " 01 conditional communicate
A 80 test status -
A 82 read (not console)
A 84 write (not console)
A 86 rewrite
A 88 delete
A 8A stream control
A 8c start

A 8E overwrite

A 90 read-write

A 92 read (console)

A 9k write (console)

A 96 get

A 98 put

A 9A redef ine workarea

CONTROL STACK

The control stack is concerned with the unused returns from subroutine calls.

The control stack is used by both the interpreter and MCP during the execution
of the task. The interpreter stores return addresses for subroutine jumps on its
part of the stack. To some extent, the history of a program's execution can be
determined from its subroutine "nesting'" at a given point in time, especially if
the program was written in a well-structured fashion.

For COBOL/RPG tasks, the first portion of the control stack (the interpreter's
part) is also called the "perform stack." It consists of entries four D-words
long with the following format:

1 2 3 4
line- byte segment K
count offset number

The line-count field (D-word 1) is a Hex number. Its decimal equivalent relates
the return address to the source program compile listing. The return address,
stored in the stack as segment number and byte offset, is used by the
interpreter to find the next S-op code upon exiting from a subroutine. The K
value in a stack entry is used by the interpreter to distinguish between exits
from overlapping subroutines.

To extract the COBOL/RPG perform stack from a Hex dump:
add MCH-TOS recover (D-word 6 of TCB)

to the TCB base (found in part 1 at @000B@)
giving

subtract @01@ giving

Go to the resulting address in the dump and mark off one record. It represents
the boundary between the interpreter's part of the stack and the MCP's part.

Next, go to the address given in D-word 3 of the TCB (DST 1imit). The control
stack begins here, immediately following the data segment table. Extract
repeated four D-word entries from the dump up to the boundary marked previously
(there may be one word left over).

Line- Byte Segment K
count offset number

36

NOTE

There may be more than 10 perform stack entries
but this occurs infrequently.

When analyzing the perform stack, remember that the oldest entry is at the
beginning of the stack, which was written down first, while the most recent
stack entry is at the bottom of the 1list of entries just recorded. Also,

remember to convert the line-count values to decimal before applying them to a
compile listing.

SECTION 4
SLICE MEMORY MAPPING

The objective is to determine which micro slices and task control slices are in
memory and their sizes. This information is to be used in conjunction with the
Slice Memory Mapping Worksheet to be found at the end of this manual.

Pseudo extent, micro extent, and slice extent areas of memory can be mapped by
this process Pseudo extent ranges from the addresses contained in 0S registers
@O00F@ to @O0I0@. Micro extent ranges from the addresses contained in 0S$
registers @0010@ to @0011@. Siice extent ranges from the addresses contained in
0S registers @0011@ to @0012@.

Memory usage can be determined by mapping out each memory link to and from the
slice descriptor table. Each memory slice begins with a pointer into the SDT.
The SDT provides the slice number and length of this slice. Adding the beginning
address of the slice to the slice length produces the starting address of the
next memory slice.

To begin mapping memory, the address of the slice descriptor table base must be
known. This base address can be found in operating system register @017@. The
start of micro extent area must also be known and can be found in 0S register
@0010@. By proceeding to the start of micro extent in the Hex dump, the D-word

value points to the SDT entry for this slice of memory. By examining this entry

in the slice descriptor table, both the slice number and slice length can be
determined. (A1l calculations are in Hex.)

Slice number The slice number can be calculated by
subtracting the address of the SDT-base from
the address of this slice's SDT entry. Dividing
this answer by @05@ gives the slice number.

Address of the The address of the next slice is
next slice calculated by using information from the
SDT entry for this slice. Each SDT entry
is five D-words long. By adding D-word 3
and D-word 4 together the memory address
of the next slice is given.

Repeating this process identifies the following memory slices:
For example:

0S register @0017@ = DCFE SDT-base

0S register @OOOF@ = 2218 start of pseudo slices

go to address 2218. Contents of D-word 2218 = DEED

42

address into SDT for this slice's SDT entry

calculate slice number SDT entry = DEED
subtract SDT base = DCFE
giving 1EF

divide by @05@ giving 63 (slice number)

slice number @63@ SPO-Console controller

Go to address DEED (pointer into SDT for this slice)
extract 5 D-words: B810 0607 O03AL 2219 0001
D-word 1 2 3 b 5

D-word 3 = O03AL4
added to D-word 4 = 2219
‘giving 258D (beginning address of the
next slice)

repeat this process but use the beginning address of the next
slice instead of 0S register @000F@.

SECTION 5
PERIPHERAL - 1O DESCRIPTORS

The objective is to determine any queued 1/0 for a specified drive, the 1/0 task
number, the op code issued, and, if an error, the DDP status word. This is done
using the Hex dump. This information is used in conjunction with the worksheet
contained in the back of this manual.

This information is obtained by examining the PHT entry for the selected device.
The interrupt scan control table (1SCT) should be. scanned by the port number to
extract the PHT memory address. Known information for this objective must be:

device = on port number =

Results are: 1/0 queued? (Y) (N)

task # = op code = error =
task # = op code = error =
task # = ____ op code = error =
task # = ___ opcode=____ error=
task # = op code = error =

To begin analyzing an 1/0 descriptor, the interrupt scan control table (1scT)
must be located. The ISCT memory location is contained in 0S register @0043e.
Fill in:

The operating system register at location @00L3@ =

The contents of this register identify the beginning memory address of the ISCT.
Each entry is 1 D-word long and the 12 entries correspond to ports 1 through 12.
The ISCT gives the PHT memory address for that port. A non-zero entry identifies
which ports have been warmstarted. Locate the memory address found in the ISCT
register @O0OL3@ and fill in the following blanks:

Port Address Port Address
! - 7
2 - 8
3 9

541

Port Address Port Address

L 10
5 - n
6 12

Extract the PHT memory address from the ISCT corresponding to the port number.
This address identifies the beginning of this device's entry in peripheral
handler tables (PHT) 5-1 and 5-2. Each PHT entry varies in Jlength depending
upon the device. The first D-word can be used to verify the port number and the

device kind, this is defined as abcd where ab equals port number (zero relative)
and cd equals device kind.

Then add @01@ to the PHT address from above giving

This result identifies the memory address of the device controller for this
device.

Then add @03@ to the PHT deress from above, giving

This result identifies the maximum queue number and the current queue number.
The maximum queue number tells how many devices are on this port. The current
queue number identifies which of these devices is in use. For example, there can
be a 100 TPl drive and a 18 MB fixed disk configured on the system (DKA, DKB,
DFC, and DFD). The maximum queue number equals 3 and, if the current queue
number equals 2, then DFC is the unit to which the 1/0 has been directed.

Next, add ©02@ to the PHT address from above, giving

This result identifies the /0 descriptor's memory address. A value of @0000@
indicates that no 1/0s are queued. A non-zero value points to the memory
address of the descriptor. The 1/0 descriptor is six D-words long. Proceed to
this address and extract four D-words as follows:

(queued 1/0 descriptor)
1 2 3 L

|f additional 1/0s are queued for this device, D-word 2 points to the next 1/0
descriptor or back into the PHT table for the device.

D-word 1 is used to identify the task number and op code. It is defined as abcd
where ab equals interlock and cd equals op-code.

Convert interlock into bits =
7 6 5 4 3 2 1 0
a b
bit 7 = 0 - peripheral handler finished
bit 6 = 1 - key not found (DK)/end-of-file (MT)
bit 5 = 1 - permanent error
bit 7 = 1 - in use by peripheral handler
bit 6 = 1 - task waiting 1/0

bit 5 =} - waiting for W.S.B.

bit 4 - 1 = task number = mix number - |
bit 0 =1 - 1/0 needed
=0 - 1/0 no longer needed
Op code is 1 byte and defined as:
Disk Tape LP Card
00 read read n/a read
01 write write write n/a
02 indirect read rewind n/a n/a
5-byte key
42 indirect read n/a n/a n/a
i3-byte key
82 indirect read n/a n/a n/a
21-byte key
C2 indirect read n/a n/a n/a
29-byte key -
03 write with raw check write TM n/a n/a
O4 firmware load backspace n/a n/a
05 zero disk erase n/a n/a
06 directory search read status n/a n/a
" 07 read with no data n/a n/a n/a
) or allocate
'08 n/a search for TM n/a n/a
then read
OA n/a search for TM n/a n/a
08 n/a write TM then n/a n/a

write data
The op code for label processing is:
80 label read
81 label write

83 console label write

If an error occurred, D-word 3 may contain an error code defined as abcd:

where ab = 80 - character count (MT)/EOF (CRD)
= 81 - parity error (MT,DK)/read error (CRD)
= 82 - timeout/seek error
= 83 - address error
= 84 - illegal rewind (MT)
= C0 - end-of-file (CRD)/no file
= 85 - end-of-tape (MT)
= 86 - write inhibit
= C7 - control card other than end (CRD)

For card (A9114) cd equals hardware status:

cd = 10 - early feed cell

cd = 08

leading edge cell

= 04 - trouble
= 02 - no feed
= 01 - ready

For line printers, D-word four should be converted into bits as follows:

5141312 11109 8 7 6 5 bk 3 2

' 0
bit 0 = 1 - execute specified format control after print
bit 1 = 1 - execute specified format control before print
bit 2 = | - execute specified format control only
bit 4 = 0 - vertical tab with ...

bit 5 = 0 - top of form

bit 5 = 1 - channel number in bits 8 - 15
bit 4 = 1 - line advance with ...

bit 5 = 0 - advance 1 line.

bit 5 =1 - count in bits 8-15

Note: channel number is 0-11 for channels l-lé

54

Table 5-1. PHT (Peripheral Handler Table) Disk

DDP No. FPB device kind

.absolute address of controller

buffer descriptor address

max Q number curr Q number
Q
header
C
interlock (see below)* Q number Q
current descriptor link header
final descriptor link 1
Q
header
n

next PHT-entry address

controller
data area

directory
ireciory

information

block
drive
0
non-file directory address directory
length of non-file directory information
file directory address block
length of file directory for
disk file header disk address drive
length of disk file header]
directory
information
block
drive
n

NOTE: One line = one D-word entry.
See Q header interlock table

Table 5-2. PHT (Peripheral Handler Table) Non Disk

DDP No. FPB device kind

absolute address of controller

buffer descriptor address

max Q number curr Q number
Q
header
0
s ece o olse
interlock (see below) Q number Q
current descriptor link : header
final descriptor link 1
Q
header
n

next PHT-entry address

controller
data area

note: one line = one D-word entry.

Q header interiock tabie (this description covers ail PHTs)

bit 156 =0 Q header

bit b =1 Q not empty

bit 14 =0 Q empty

bit 13 = 1 current status is ready
bit 13 =0 current status is not ready
bit 12 = 1 last status is ready

bit 12 =0 last status is not ready
bit 11 = 1 waiting help task

bit 10 = 1 CTM required

bit 9 =1 timeout in progress

bit 8 =1 timeout first part

bii 7 =1 EOF

bit 6 =1 device assigned by CTM

bits 5, 4, 3 are undefined
bits 2, 1, O are Q number

SECTION 6
ANALYSIS OF MCP TRAIL

The objective is to examine the MCP trail up to the time of the clear/start.

The MCP trail consists of 32 entries with each entry being two D-words long. ‘The
trail is circular in fashion; that is, after entry 256 has been made, the next
available entry is back at the starting pecint of the trail overiaying any
previous entry. Two registers are used to help examine the MCP trail. Contents
of register @0014@ point to the beginning of the trail. The content of register
@0L54@ is a relative pointer intec in the trail which can identify where the next
entry will be made:

Add 0S register @0014@

to 0S register @OL54@
giving the next available entry.

Subtracting @02@ from this answer identifies the last entry into the trail.

The format of the trail is as follows:

Caiier Current B
ID TID register

D-word 1 2
Current TID = current task # = current mix # - |
Caller IDs = 01, 02, 03, Ok or 05
B register is dependent upon caller ID.
Caller 1D = 0) - branch-find B register = MAD
Micro program address descriptor (MAD) entries can be of two types:
1. Absolute memory address.
2. Offset and slice number.
The distinction between the two types of MADs is made by converting the B

register to bits (bit numbering - right to left, starting with 0). If bit 15 =
1, then MAD = absolute memory address = 0, then MAD = offset and slice number.

6-1

The absolute memory address is the value represented by bits 14-0.

The offset and slice number can be evaluated by converting the B register into
bytes. The leftmost byte equals the offset, and the rightmost byte equals the
slice number. |In addition, caller ID equals 02 minus MC timeout; and the B
register equals PHT entry address.

By going to the PHT entry address and examining its value, the device port
number and device kind experiencing the timeout can be identified. For example:

Caller ID = 03 - MC timeout B register = max Q #/current Q #

The maximum and current queue numbers are part of the PHT entry. The maximum
queue number tells how many devices are on this port. The current queue number
identifies which of these devices is in use. For example, a 100 TPl drive and a
18 MB fixed disk could be configured on the system (DKA, DKB, DFC, and DFD). -
The maximum queue number is 3 and, if the current queue number equals 2, then
DFC is the unit experiencing the timeout. (Queue numbering is relative to
zero.) Next: »

Caller ID = O4 - MC-Q-loop. B register = Q header address

If a device should have an |/0 queued because the unit is Not Ready, when the
unit is made ready, the queue header address points to the memory address of the
queued i/0 descriptor. The MCP trail reflects this change of status with this
entry. Next,

Caller ID = 05 - PH-IRQ B register = device status

The device status can be examined to determine the actual condition of a device
from the MCP point of view. Selected devices are defined below. The device
status should be converted to bits. Number the bits from right to ieft starting
with O. :

Printer: bit 0 - not ready bit §-7 - not used
1 - end of page 8-12 - port # (0 relative)
2-3 - not used 13-14 - not used
L - print 16 - data request, 10C
complete ready to receive
Disk: bit 0 - search good bit 6 - parity error
1 - write inhibit 7 - timeout
2 - seek error 8-12 - port number (0 relative)
3 ~ illegal address 13 - read after write check
L - file not open 14 - index mark
5 - seek incomplete 15 - sec.or mark
SPO: bit 0 - not ready bit 5-7 - not used
1 - input request 8-12 - port number (0 relative)
2 - end-of-message 13-14 - not used
3 - error 15 - data request
4L - service too late

Console as data
bit O

]

2

3
4

5

entry:

carrier staill
over speed
interrupt not
honored

ready

keyboard ready
printer ready

DEK as entry station:

bit 0

Tape DMAC (PE):
bit 0
1
2
3
4
5

Disk Pack:
. bit

HWN=O

EWwWN -

buffer full
parity error

not used

framing error
service too late

— not ready

— busy or RWD

— file protect

- EOT

- BOT

— blank tape timer

— link parity error
— time out error

read after write error

— search greater/equal
— search good

bit 6 - forms ready
] - carrier buffer ready
8-12 - port number O relative)
13 not used
14 - end-of-paper
15 - data request, ready
to receive data
bit § not used
6-7 - station address
8-12 - port # (0 relative)
13-14 - not used
15 exception bit
bit 6 — tape mark
7 — CER
8-12 — port (O relative)

13 — 1600/800 BPI
14 — tape error
15 — op successful

bit 5 — local

6-7 — MTR use
8-12 — port (O relative)
1315 — MTR use

Note

Link parity is a parity error on a data transfer from the B 9387 to the B 800.

Time out is a no response from the B 9387 to a command by the B 800.

The entries in the MCP trail for disk pack do not reflect drive related errors,such as
aseek error. They only reflect errors in communication between the B 9387 and the
B 800, results of search operations, results of read after write operations, and of the
B 9387 going to a local state. These are all DDP oriented errors. If a disk pack drive
is the suspected problem area, the system log and any related SPO messages must

be used to determine any drive error related information.

6-3

SECTION 7
SLICE DESCRIPTOR TABLE OVERVIEW

The slice descriptor table (SDT) is an MCP table located in the upper portion of
memory. |t keeps track of the location of the following structures for the MCP:

1. The task control blocks (TCB) for each mix number.
2. The micro slices of the MCP.

3. The program control blocks (PCB) for each user task.

The slice descriptor table is created at warmstart/restart time from information
passed from warmstart to the O0S-build module of the MCP. The SDT is created
using either the warmstart configuration entered by the operator or a restart
configuration entry located on the current system disk if the system is brought
up by the restart or clear/start.

- The SDT has an entry for each possible user task (nine entries for nine user
tasks); seven entries for the MCP independent runners, a variable number of
entries for all the MCP slices used in the system while running, and nine
entries for each possible user program control block. There is a pointer to the
absolute D-word location of the SDT base 1located in the operating system
registers at location @0017@. There is a second pointer to the base of the
program control block section of the SDT located in the 0S registers at location
@0019@.

The purpose of the slice descriptor table is to point to the current absolute
position of the TCBs, MCP slices, and PCBs either in memory or disk. The memory
management flags located in the first byte of each 10-byte entry (five D-words)
in the SDT indicate that the slice, TCB, or PCB is either in memory or on disk.
The various MCP virtual memory management routines use this table to maintain
the current location of these structures.

The following illustrates the pointers to, location of, and internal information
concerning the slice descriptor table (SoT) .

Base of memory 0000
<€CLLLLLLLCLL <<<<<<<<< | 0017

0019 | >>>>>>>>>>5>>>> | >>>>>>

first 256 D-words
0S registers

micro slice area

TCB and PCB slice area

overlayable area

data comm space area

€CCCLLCLCLCELCLCLCLLLCLCLCLCLC L LK<

0S tables:
base of SDT task control block
entries

MCP slice entries

€€ <C<CLCLLLCLCLCLLLCLCLLCLCLCLLCLCLCLCLLCL <LK

base of PCB " | program control block <<<<<<
: entries
Top of memory " remaining 0S tables
memory addr XXXX

Format of a slice descriptor table entry.

Byte o] . z.| 3 "15 6 | 7 8 |9
mm | disk disk length memory pointers/
flags Jflag address base counters

D-word 0 1 ' 2 3 L

length = 10 bytes /. 5 D-words

MM flags byte O Flags which determine type
of slice and location (disk
or memory) .

Disk flag Most significant - Flag which, when set,
bit of most indicates slice is on
significant digit a disk pack (system

of byte 1 disk is a pack).

Length

Memory base

Pointers/
counters

bytes L and 5

bytes 6 and 7

bytes 8 and 9

Slice length in D-words.

The absolute D-word memory
address of the base of the

slice;

indicate that the slice is

if MM flags

in memory.

The base

is a TCB or a

device controller slice

if TCB - most significant byte
is slice number of program

parameter block. Least

signific

ant byte is slice
number of interpreter slice.
If slice is not a TCB, both

bytes combine to give
a user count for the

slice,

if it is a device

controller.

MEMORY MANAGEMENT FLAGS FOR SDT

The

The
the

only structures described in the slice descriptor table are:

Micro slices.

Controller micro slices.

Ask control blocks.

Program control blocks.

value of the memory management flags for these structures depends on whether
slice is in main memory, page memory, or absent from memory:

‘?ﬁatim Micro stice| controtier TCB PCB
memc;r:; @A8R eB8e gcae ec2@
page eACE @BCe ecee @E6@
absent @28@ e38e eL2@ @62@

7-3

The detailed structure of the slice descriptor table (SDT) is:

1.

74

The first nine entries are locations for up to nine task control blocks for
user tasks. If an entry is not in use, it should consist of all zeros. If
in use, a valid entry is located in the same relative position as the task

mix number. (For example, position 1 equals mix number 1, position 9
equals mix number 9).

- Seven entries are for the MCP independent runner tasks in mix number order.

That is:

mix 10 = super utility (SU)

mix 11 = system logging (LOG)
mix 12 = data comm space handler
mix 13 = SCL loader

mix 14 = help task

mix 15 = working set bailiff
mix 16 = data comm queue handler task

The total complement of basic slices used by the system is given. Some are
permanently stored in the operating system nucleus; for example, the
controllers for disk and SP0. The rest are brought into micro memory slice
area as they are needed or, if they are controllers, when the device is
opened for input/output. In any case, all possible slices, known or
warmstarted, have positions assigned in the remaining area of the slice
descriptor table.

The last 10 positions of the slice descriptor table are the program control
blocks for super wutility and up to nine user tasks. There is a separate
pointer to the base of these 10 positions located in the operating system
registers at @0019@. The first PCB entry in this area is for the system
super utility, followed by the nine entries for the user PCBs. An all-zeros
entry indicates the PCB is not in use.

Table 8-1
change due to recompilation or patches.

Slice
Numbers
Hex Dec

NN—J-—:—u—-—-—-—-—o.—o..-—-a—-—d-u-—l

o-ﬂmanw:amoowox\nrww—-o

W O~ OO =W N — O

SECTION 8
MCP SLICES

is a list of the slice descriptor

table entries.

Table 8-1. Table of MCP Slices

TCB
TCB
TCB
TCB
TCB
TCB
TCB

mix
mix
mix
mix
mix
mix
mix

slice
slice
slice
slice
slice
slice
slice
TCB slice mix
TCB slice mix
Super utility
Logger TCB
DC-space-handler TCB
SCL/loader TCB

Help task TCB

WSB task TCB

DC queue handler TCB
BIL-SI

coBOL-SI
COBOL-INT~-slice
BlL-auten

Open-close
Printer-open
Printer-close
Card-open

Card-close
Tape-open-1
Tape-close-1
Disk-open-1
Disk-close-1
Debug-COBOL-SI
Class-D-slice
Date-time
Accept-slice
Alloc-slice

— I I e e I W

o
WO O~ O\ W N —

Le

(D Words)

‘Hex

var
var
var
var
var
var
var
var
var
var
var
var
var
002E
0023
var

0229
0237
01AE
04A5
01E4
025E
0121
0268
0301
0213
0377
1909
1C2F
02A3
02A2
02CE

ngth
Dec

ies
ies
ies
ies
ies
ies
ies
ies
ies
ies
ies
ies
ies
00L6
0035

ies

0553
" 0553
0430
1189
0484
0606
0289
0619
0769
0531
0902

6409

4815
0675
0674
0718

Remarks

BIL/MPL!I interpreter
COBOL/RPG interpreter

MICR subsystem

The

length may

8-1

82

22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31

33
34
35
36
37
38
39
3A
38
3C
3D
3E
3F
Lo
L2
L3
L

Lr

L6
k7
L8
kg

LB
Le
LD
LE
LF
50
51
52

5k
55

Table 8-1.

0S-to-SCL
MH-slice
RTC-slice
D/T-comm-slice
Di-slice
Zip/display-slice
EOJ-slice
DC-slice
Loader-slice-#1
Loader-slice-#2
Loader-slice-#3
Loader-slice-#U4
Loader-slice-#5
DC-space
DS-slice
RTC-date-fix
Stop-slice
Go-slice
Power-off
OL-slice
AD-slice
DMAC-disk-slice
SPO-slice
DC-ch-30
DC-ch-31
DC-ch-32
DC-ch-33
DC-nucleus
DC-task-EO0J-slice
DC-loader
Help-task-slice
Working-set-bailiff
Clear-start
Configurator
0S-tracer
DC-tOJ-siice
Reconstruct
RY-slice
XD-slice
DC-sh-slice
DC-eh-slice
DC-LDR2-slice
DC-LDR3-slice
DC-LDRL-slice
AD-disk
Indexed-slice
PE-table
DC-no-DCOM-slc
Disk-open-2
Disk-open-3
Disk-close-3
Tape-open-2

Table of MCP Slices (Cont.)

0174 0372
01CO OLLB
0171 0369
0141 0321
0317 0791
0298 0664
025A 0602

042A
03D1
02D1
0322 0802
0123 0291
00AA 0170
OVFF 0311
009B 0155
01A9 0425
0154 0340
0206 0518
0260 0621
036C 1004
0178 0376
01FD 0509
03D2

1066
0977
0727

03A9
03AA
0633 1587
0068 0107
027F 0639
03E1 0993
02E4 0740
OF92 3986
0083 0131
017¢C 0380
0238 0568
0165 0357
0121 0289
0397 0919
00AA 0170
0238 0568
01E2 0LB2
0117 0279
0312 0786
0000 0000
0B31 2865
0201 0513
0053 0083
02DA 0730
049A 1178
0498 - 1176
02A5 0677

0938

0978 -
032C 0812
0937

-RTC controller

date/time request chg

MX function

-disk controller
-spo controller

+9

+1
+2
+3
+4
+5
+6
+7
+8
+9

+10 +10

Table 8-1. Table of MCP Slices (Cont.)

Tape-open-3
Tape-close-2
Tape-close-3
EQJ-slice-2
E0J-slice-3
Dealloc-slice
0S-susp-slice
Stream-slice
Index-open-1
Index-open-2
Index-open-3
Index-open-4
Index-close-1
SPO-console
Interp-subs
Console-slice
Index-open-5
Sort-slice-1
Sort-slicer2
Sort-slice-3
DC-ch-3L
DC-ch-redefl
DDE-SPO
DDE-con
Log-task-slice
SSC-slice
Disk-pack-ctlr
Large-scrn-SP0O
FD-slice
Int-mul-div
DC-pre3i-ioad
R/W-console
Log-write-slice
Pack-nuc-end

0206
02B6
013A
0200
021F
0277
0295
0251
027A
0237
0278
02F9
0323
03C6
O00F
075D
024A
0416
0587
0000
023D
0368
049A
0600
OLDA
0206
0218
01DE
020C
029D

02C6

026C
0119
00A7 :

0694
069k
0314
0512
0543
0631
0661
0593
0634
0567
0635
0761
0803
0966
0015
1885
0586
1046
1415
0000
1
0872
1178
15636
1242
0726
0539
oL78
0524
0669

n71n0
Ujiv

0620
0281
0167

console controller

-DDE SPO controller
-DDE cons controller

-disk pack controller
-TD830 SPO controller

Any warmstarted controllers are loaded

.in this area of the slice descriptor table.

These controllers are any device other than

the disk and the SPO controllers

PCB entries
first PCB
second PCB
third PCB
fourth PCB
fifth PCB
sixth PCB
seventh PCB
eighth PCB
ninth PCB
tenth PCB

vari
vari
vari
vari
vari
vari
vari
vari
Covari
¢ vari

es
es
es
es
es
es
es
es
es
es

SYS-SUPERUTL

SECTION 9

B 800 MEMORY LAYOUT

The following is a description of the B 800 memory layout:

0000 0000
SL9 registers page-int-subs
0100 007A
page-com-subs
OL6A
page-COBOL-int
MCP nucleus
1278
page-bil-int
1B25
DC-nucleus 2000,
BVM 2158

controllers

h—pSeudo extent

micro slices

h— | CTO €Xtent

TCBs & PCBs

p— | ce extent

over lappable memory
s-code § data segments

. 0C extent

oxIO—X

M3

9-1

DC space
NDL s-code, tables, buffers

EVM
0S tables

MCP trail, MAT, ISCT
SDT, PHT, MCP data

eom

Related notes:

Beginning of virtual memory is 1B25 if data comm is not present and 2156 if
data comm is present.

DC extent equals end of virtual memory (EVM) if data comm is not present.

The only absolute addresses are SL9 registers, MCP nucleus, DC nucleus, and

page interpreters. All other addresses vary depending on the program mix
and the hardware configuration.

Page memory and micro memory are both 8K words. When the MCP is in control
of the system, page memory constitutes the first 8K words of main memory.
When an interpreter is in contrcl of the system micro memory ! constitutes
the first BK words of main memory. Micro memory) is treated as read only
memory and is never written to. Switching between the two memories is
performed by a string of micro code as control is being transferred.

SECTION 10
MCP NUCLEUS

The MCP nucleus basic routines (by absolute memory address) are given in

section.

010C

01C3

02AC

oLDO

05E7

05F6

They are:

General routines.
Read/wr ite memory, common routines used by
controllers, and common register manipulations.

Byte handling routines.
Manipulation of fixed format tables (such as PPB,
FPB) .

Access/manipulate 0S structures.

Binary multiple, divide, and modulo.

Accepts a slice number and returns an absolute
memory address. Locates desired 0S system buffers
and manipulates TCB stack. Works with debug trail
and link checking.

0S EPAR.

This is the central task switching routine

of the system. The MAT is scanned for the highest
priority task which can be run. |If none exists, then
service 1/0 interrupts and continues to scan. If a
task is found, then the 0S state alters to reflect

the task and the CPU is switched.

interpreter common subs.
Used when control is given up by the interpreter
and back to the MCP.

Virtual memory.

Get/put micro slices.

Get/put pseudo slices.

Get/put space.

Expand/shrink slice.

Get/put segments.

DC get/put space.

Get/put DC nucleus.

Thrashing detection (0882 - 08C2)

Garbage man (08c3 - 08F1)
Cleans up the available chain from slice extent
to DC extent after all gets, puts, and
detected thrashing conditions.

this

10-1

0A38 Working set bailiff.
Resident portion of WSB.
It cleans micro memory of all micro
slices except controllers. This feature is used if
there is insufficient memory space
available for the IR WSB. After space has been
made available, the IR WSB is loaded.

OA6E Master interrupt processor (MIP).
MIP interfaces with all device controllers and the
peripheral handler. Control is transferred
to the 1/0 controller if an interrupt needs
service.

OAE1 Media controller (MC).
MC recognizes media insertion. It also facilitates
device timeout for recovery from DDP/device
limitations. The timeout logic in the various
controllers is device/operation dependent. Controllers
for devices that do not require timeout servicing
contain their own timeout logic. MC initiates
automatic retry of |/0 after correction of a
not ready condition has been encountered.

0C50 Peripherial handler (PH).
PH handles the 1/0 interface with read/write, open/close,
virtual memory, and loader. It inserts the buffer
descriptor into the queue and initiates the 1/0 if
possible. It also removes the buffer descriptor from
the queue and initiates the next descriptor. PH
optimizes the seeks for disk. By comparing the disk
addresses in the buffer descriptors queued, new 1/0s
are added to the queue in the correct slot in an
attempt to keep the disk arm moving in one direction.
PH halts 1/0s if VM demands control to slide
memory affecting buffers, FiBs, and so on. The 1/0 is
resumed once the VM operation is complete.

ODCA SCL handler.
This routine expands the SCL-LDR-TCB slice by 268 bytes
to create an |/0 descriptor and buffer for SCL input.
Once space has been obtained, the 1/0 is initiated.
Preceding blanks are removed from the message until
the first alpha character. SCL now scans through
the legal SCL op table for a valid verb to obtain the
op code. It also checks for communication from
SYS-SUPERUTL and for MICR functions (GR, GK, NR).
Based on the SCL entry, control passes to the
appropriate slice: (Di-slice, OL-slice, RY-slice).
After the function is complete, the SCL buffer area is

removed by VM shrink and control is given back
to MCH.

102

0F65

1709

1A1F

1AC9

1B24

1B23

1B25

Master communicate handler (MCH).

It is the function of this routine to interrogate
the verb of a CPA and cause the correct communicate
class to be alerted. Minimal syntaxing of the verb
is performed based on value range. Further decoding
is done by the class decode.

Resident logger.

This routine moves SCL messages to the log message
queue. It also transfers |/0 counts from the logger
TCB to the log files.

,,,,,

Performs soft DPM read error, tests for parity errors,

and writes memory contents to DMFILOO.
Ninty D-words reserved for nucleus patch area.
End of nucleus.

Interp-trail

These two words are used by the interpreters to store info when they leave and return to the

2 MHZ page. On leaving, they update the first word with the operating system destina-
tion and zero out the second word. On returning, they write the page destination into the
second word. |f word two is zero at the time of a clear/start, execution was in the MCP. |f

word two is non-zero, execution was in the interpreter.

End of nucleus.

103

SECTION 11
DESCRIPTION OF MICRO SLICES

The following is a brief description of the slices pointed to in the slice
descriptor table. Some functions are segmented into multiple slices. For
example, tape open is performed by tape-open-1, tape-open-2, and tape-open-3.
This is done to minimize the amount of micro memory required to perform a
function, as only one of the slices of a multiple slice function is required to
be in memory at any one time.

Hex/Dec

OA/10 Logger TCB
This is the task control block for the independent runner
portion of log task. The data segments are:
0. Log message queue.
Size is 572 D-words.
1. Log file FPB.
Size is 32 D-words.
2. Log file FIB.
This FIB is for the log file marked as active.
3. Log file 2 FIB.
This FIR ic for the log file marked as next active.
L. Log file work area.
Size is 90 D-words.

08/11 DC-space-handler TCB
This is the task control block for DC-space-handler slice
and is also used by the data comm loader. The data segments
are:
0. DC-loader FPB for NDLSYS.
Size is 32 D-words.
1. DC-loader FIB for NDLSYS.
2. DC-loader FPB for NDL-interpreter for DCP O.
Size is 32 D-words.
DC-loader FIB for NDL-interpreter for DCP O.
. DC-loader FPB for NDL-interpreter for DCP 1.
Size is 32 D-words.
. DC-loader FIB for NDL-interpreter for DCP 1.
. DC-loader space handler area.
. DC-loader FC area.

& w
.

~ onuT

0C/12 SCL-loader TCB
This is the task control block for the independent runner

Hex/Dec

portion of the SCL-loader. It is also used by many other
slices of the MCP. The data segments are:
. Configuration tabie.
Task detail table.
. SPO output buffer.
Error message table.
Iinitiating message input buffer.
Loader FPB for code file.
. Loader FIB for code file.
. Loader FPB for virtual memory file.
Loader FIB for virtual memory file.
. Six-B-tab buffer.
Work buffer used by many slices.
Loader getseg-ppa2 buffer.
Used by loader for DST, CST, CCB, and TCB working
storage area.
11. Message-group-1.
0S message table.
12. Message-group-2.
Interpreter message table.
13. Message-group-3.
Data com message table.
14. SCL work buffer.
15. Trace buffer.
16. Allocate-deallocate work buffer.
17. Open-close work buffer 1.
18. Open-close work buffer 2.
19. Indexed open work buffer.
20. Power off work buffer.
21. Through 29. Sort work buffers.
One work buffer for each mix number 1 through 9.
30. Through 40. Indexed key work area.
One area for each mix number 1-11 for key building.
L1. System status work buffer.
L42. Work area for sysconfig file.
L3. FIB for sysconfig file.
LL. FPB for sysconfig file.

.

- .
= W oo~ EWN —~O

0D/13 Help task TCB
Task control block for the independent runner help task.
The data segments are:
0. HT-card-BD-SD.
1/0 buffer for help task.
1. HT-1abel-SD.
Buffer used for label syntax.

OE/14 WSB task TCB
Task control block for the independent runner portion of
working-set-bailiff. This TCB has no data segments.

OF/15 DC queue handler TCB
Task control block for the data comm result queue processor,

Hex/Dec

10/16

11/17

12/18

13/19

14/20

15/21

16/22

17/23

which is part of the DC-nucleus. This TCB has no data
segments.

BIL-SI

This slice is the interpreter for BIL and MPL!| programs.
It is loaded at warmstart time to micro memory 1 (logical
page) and is not overlayable. The slice descriptor shows
an absolute memory in mml but no slice length.

COBOL-SI

This slice is the interpreter for COBOL and RPG programs.
It is loaded at warmstart time to micro memory 1 (logical
page) and is not overlayable. The slice descriptor shows
an absolute memory in mm! but no slice length.

COBOL-INT-slice

Interprets COBOL ''compare for class' and RPG "move sign'
constructs. This slice was part of COBOL-S! prior to 3.1
release.

BlL-auten
processes MPLI| data comm authenticator communicates.

Open-close

This slice is the common entry point to all open and close
communicates. |t checks the communicate for syntax and
decodes it.

Printer-open ,
Processes open communicates for line printers, serial
printers, console, and keyboard files.
Provides:
1. Device allocation.
2. FIB construction.
3. Priming of the device.

Printer-close
Processes close communicates for line printers, serial
printers, console, and keyboard files.
Provides:
1. Completion of outstanding physical 1/0s and
label writing.
2. FIB removal.
3. Release of hardware device (not done if half
close) .

Card-open
Processes open communicates for all card devices.
Provides:

1. Device allocation.

2. Construction of the FIB.

3. Priming of the device.

11-3

114

Hex/Dec

18/24

19/25

1A/26

1B/27

1C/28

10/29

1E/30

1F/31

20/32

Card-close
Processes close communicates for all card devices.
Provides:
1. Completion of outstanding physical 1/0s and
label writing.
2. Removal of the FIB.
3. Release of hardware device (not done if half
close).

Tape-open-1
First phase of tape open communicate processing.
Provides: : :
1. Location of FPB and configuration table.
2. Decode of FPB parmeters.

Tape-close-1
First phase of tape close communicate processing.
Provides!
1. Completion of outstanding physical 1/0s.
2. Decode of close parmeters.
3. Label writing.
L. Handling of change reel.

Disk-open-1
First phase of disk open communicate processing for all
types of disk files except indexed.
Provides:
1. Syntax of open verb.
2. Routines for error handling during open.

Disk-close-1
First disk close communicate processing phase for all
types of disk files except indexed.
Provides:
1. Completion of outstanding physical |/0s.
2. Decoding of close parameters.

Debug-COBOL-SI

This slice is used by engineering for development. The
final release MCP file does not contain any code for this
slice.

Class-D-slice
PSL interpreter.

Date-time
Processes operator requests to change either the date and
that was entered at warmstart or a prior DT message.

Accept-slice

Processes AX messages for SYS-SUPERUTL and application
programs.

time

Hex/Dec

21/33
22/34

23/35

24/36

25/37

26/38

27/39

28/k0

29/4)

2A/42

2B/43

Alloc-slice
Gains disk space from the available table and updates
the disk file header.

0S-to-SCL
Formats SP0 messages for fatal errors to a task (DS or DP
messages) .

MH-slice :
Formats all SP0 messages except DS or DP and clear/start.

RTC-slice
Controller for real time clock.

D/T-comm-slice
Processes date and time request communicates from
application programs.

Dl-slice
Processes operator requests for MX.

Zip/display-slice
Processes zip and display request communicates from
application programs.

EOJ-slice
First phase of end-of-job processing.
Provides: .
1. Interface to DS or DP SCL commands.
2. Processing of terminate communicates.

3. Processing of abort program loads.

DC-slice

This slice attempts to get a data comm buffer, move

data from a SPO buffer into it, and enqueue the message to
the MCS queue.

Loader-slice-]

First phase of processing a load program request.

Provides:
1. Determination if request is part of load utility
or SYS-SUPERUTL.
2. Opening of code file.
3. Updating of slice descriptor table.

Loader-slice-2
Second phase of processing a program load request.
Provides:
1. Gains in disk space for virtual memory file.
2. Updating of task detail table.
3. Updating of mix attribute table.

115

Hex/Dec

2C/bLb

2D/45

2E/46

2F /47

30/48

31/49

32/50

33/51

34/52

116

Loader-slice-3 .
Third phase of processing a program load request. This
slice builds the task control block.

Loader-slice-4

Fourth phase of processing a program load request.
Provides:
1. Determination if a program contro) block exists.
2. Building of a program control block if one does not
exist.

3. Link task control block to program control block.

Loader-slice-5
Fifth phase of processing a program load request.
Provides:
1. Error recovery for load failures.
2. Updating of the task detail table in the case of a
zip.
3. Determination if a debug interpreter is needed.

DC-space

This slice is set to the size of the data comm area in
memory, calculated when a NDLSYS program is loaded.

It contains the data comm buffers, NDL S-code, and NDL tables.
There is no micro code in this slice.

DS-slice
Processes DS, DP, and PR SCL commands.

RTC-date-fix
Updates date at end-of-day (2400 hours).

Stop-slice
Processes requests to stop an executing program.

Go-slice

Processes requests to restart a program that is suspended
by:

ST command.

. Pause communicate.

. No user disk condition.

Special forms request.

. No file condition.

Duplicate file condition.

O\ N —
. .

Power -of f
Processes requests for an orderly shut down of an entire
disk.

Hex/Dec

35/53

36/54

L-slice
Processes requests by:
1. OL SCL command.
2. Configuration table maintenance to print out status
of a peripheral it has just recognized.
3. Help task to print out status of a peripheral that
has gone Not Ready while in use.

(=}

AD-slice
Processes assignment of a peripheral to a program by an
operator in the following cases:
1. Unlabeled input file.
2. Special forms.
. No file condition.
. Duplicate file condition.
. Printer unavailable.
No user disk.

o\ W

DMAC-disk-slice
Disk controller for fixed, cartridge, and super mini units.

SPO-slice
Controller for TCL201 SPO.

DC-CH-30

Processes data comm communicates with a verb value of 30.
This slice is entered from the master communicate
handler. The adverb values are:

Communicate . Adverb
queue (0]0]
queue.depth 01
set.input.limit 02
set.queue.limit 03
exchange.reference oL
fetch.message 05
get.message.space 06
release.message.space 07
read.header 08
wr ite.header 09
read.text OA
write.text 0B
copy.text oc
continue.station oD
continue. task OE
route.input OF
route.output 10
allow.input 11
disallow. input ' 12
allow.output ' 13
disallow.output 14
set.output.limit 15

11-7

Hex/Dac

3A/58 DC-ch-31
Processes data comm communicates with a verb value of 31.
This slice is entered from the master communicate
handler. Their adverb values are:

Communicate Adverb
line.count 00
station.count 01
" modem.count 02
terminal.count 03
subnet.count oL
line.number 05
station.number 06
queue . nuumber 07
line.description o8
station.description 09
modem.description OA
terminal.description OB
subnet .description oc
line.stations oD
subnet.stations OE
line.status OF
station.status 10
task.name 11
task.number 12
recall 13
clear 14

38/59 DC-CH-32 .
Processes data comm communicates with a verb value of 32.
This slice is entered from the master communicate
handler. The adverb values are:

Communicate Adverb
redefine.line 00
redefine.station 01

3C/60 DC-ch-33
Processes data comm communicates with a verb value of 33.
This slice is entered from the master communicate
handler. The adverb values are:

Communicate Adverb
enable.input 00
disable.input 01
enable.output 02
disable.output 03
receive oL
send 05
accept 06

118

Hex/Dec
3D/61

3E/62

3F/63

Lo/64

L1765

DC-nucleus
This is a collection of data comm routines invoked from
the data comm communicate slices. This slice is assembled
at an absolute address. Part of the DC-nucleus is the
PMLC (programmable multi Tine control), which is a con-
troller for the DCP. The job of the PMLC is to service all
interrupts from any DCP. The four types of interrupts
are:

1. 7PM or 8PM parity error.

2. SPM parity error.
3. Result queue needs service.
4. DC system needs memory space.

DC-task-EOJ-slice
This:
1. Detachs the current task from all subnet queues.
2. Detachs the current task from all station gueues.
3. Sends a detach message to the MCS indicating the
task being detached.

DC-loader
First phase of loading a data comm subsystem.
Provides:
1. Get space for the DC queue handler TCB.
2. Get space for the DC space handler TCB.
3. Opening of the NDLSYS file.
L, Size calculation of DC-space-slice and allocation of
memory for it.

Help-task-slice .

This slice is an independent runner that interfaces with:
1. A1l 1/0 controllers because of a not ready

condition while in use.

. OL-slice.

. MH-slice.

. Virtual memory. -

. Reconstruct.

Provides:
1. Printing of Not Ready message for all devices

when required.

2. Configuration table maintenance.

v EwN

Working-set-bailiff
The working set bailiff is composed of two modules. One is
resident in the MCP-nucleus and the other is a micro slice
and an independent runner.
The functions of the independent runner module are:
1. Evict task run structure from memory to backing
store for one of the following reasons:
1) Operator stops the task.
2) Virtual memory routine senses there is
insufficient memory available to
fullfill a request for memory allocation.

119

Heoy /Dan

3) Thrashing is detected.
L) A program is loaded.
2. Restore task's runstructure from backing store to
memory for the following reasons:
1) Operator "GOs'" a stopped task.
2) SCL has information for the task (AD, AX) .
3) The task can be run and the current task has
released required system resources.
One task is evicted at a time until memory requirements
are satisfied. The priority with which tasks are evicted
is to evict the lowest priority task that is:
1. Stopped.
2. Long-waited.
3. Runnable.
One task is restored at a time until one does not fit. The
priority with which tasks are restored is:
1. Task receiving SCL information.
2. Highest priority runnable task.

L2/66 Clear-start
Provides:
1. Access to system disk sector 31 which contains the
restart information.
2. Display of the Clear/Start message.
3, Loading of WS-1 to memory and then passing control to

HE 3
L. Called by power-off slice to display the PO
message and re-enter warmstart if the system disk

was powered off.

43/67 Configurator :
: Processes requests by some utilities for the names of all
disks on-line.

LL4/68 0S-tracer
Invoked by a "GT" SCL command which gives a trace of all
communicates on a line printer. The trace listing has 10
columns of D-words. The first column is the current task's
mix number, the second column is the absolute address of
the current task's communicate parameter area, and the last
eight columns contain the communicate.

L5/69 DC-EO0J-slice

This:
1. Puts PMLC in load/clear mode.
2. Zeroes PMLC controller address in PHT.
3. Zeroes DC registers.
. Removes DC-queue handler's TCB from memory.
5. Removes DC-space handler's TCB from memory.
6. Removes DC-space from memory.

11-10

Hex/Dec

7. Removes DC-nucleus from memory.
8. Removes all DC micro slices from memory.

L6/74 Reconstruct
Called by help task when an unacceptable integrity
flag is encountered. It:
1. Locates pointers to file list, DFH, available
table.
2. Steps through DFH:
1) If codefile found, resets user count and
deallocates second area if applicable.
2) if data file found, resets user count. This
includes VM and DM files except for DMFILOO.
3) If MCP file found, resets user count if not
systems disk.
L) If reserved entry found, deallocates all areas
indicated.
3. Rewrites label to indicate good integrity.

L7/ RY-slice
Processed RY and SV SCL commands.

4B/72 XD-slice
Processed XD SCL commands to remove bad sectors from
disk.

49/73 DC-SH-slice
This slice gets space from the data comm reserve
buffer pool and links this space to the
available buffer pool.

LAa/74 DC-EH~-slice
This slice handles errors reported by the PMLC
controller and prints them on the SPO.
Example: SPM PARITY ERROR.

LB/75 DC-LDR-2
This:
1. Loads NDLSYS file.
2. Calls DC-pre3i-load if necessary.

Lc/75 DC-LDR-3
This:
1. Half-closes NDLSYS file.
2. Updates configuration table.

Lp/76 DC-LDR-4
This:
1. Opens NDLDCP file.
2. Loads NDLDCP file.

3. Half closes NDLDCP file.

11-11

LE/T77 AD-disk
Process request to assign a peripheral to a program
by an operator in the following cases:

. Unlabeled input file.

. Special forms.

. No file condition.

. Duplicate file.

Printer unavailable.

No user disk.

o Wi —

LF/79 Indexed-slice
Processes communicates for indexed files.

50/80 PE-table
‘This slice has read-write tables necessary
for tape DMAC. They are loaded into tape DMAC
DDP at warmstart time. The tables are:
1. Binary to binary.
2. EBCDIC to ASCHI.
3. ASCI! to EBCDIC.

51/81 DC-no-DCOM-SLC
This slice is called as a result of a task
data comm communicate being received by the
MCP when the data comm subsystem is not present.
If this condition exists, a 91 is placed in
the CD status key and control is passed
back to the task.

52/82 Disk-open-2
Provides:

1. Location of FPB and configuration table.

2. Start of construction of FIB.

3. Search of disk directory for the file name in the
case of an old file or search of the available
table for an available disk area in the case of a
new file.

53/83 Disk-open-3
This:
1. Builds disk file header.
2. Calculates number of areas and their sizes.
3. Completes construction of the FIiB.

54/84 Disk-close-2
Provides:
1. Updated DFH.
2. Deallocation of disk space.

11-12

Hex/Dec

55/85 Tape-open-2
This:
1. Loads tape controller in memory
2. Searchs tape(s) for file.
3. Starts construction of FIB.

56/86 Tape-open-3
Provides:
1. Completion of FIB construction.
2. Processing of label handling.

57/87 Tape-close-2
This:

Rewinds tape.
Purges label.
. Marks tape saved if ciosed with iock.
. Desolves FIB.

EWN -

58/88 Tape-close-3
This slice is called by EOJ or tape-close-1
to close a half closed file.

59/89 EOJ-slice-2
This slice deallocates the virtual memory file
or changes it to a dump file if the task was DP'd.

5A/90 EOJ-slice-3
This slice dissolves the TCB and PCB, if the user
count is zero, and closes the codefile.

5B/91 Dealloc-slice
This slice returns unused disk space to the avaiiabie

table.

5C/92 0S-susp-slice
Processes task suspensions by the operating system.

5D/93 Stream-slice
Processes stream access communicates.

S5E/94 Index-open-1
This slice is the first phase of indexed file open
communicate processing.

This:
1. Checks FPB syntax.
2. Reads in KFPB.
3. Fills-in fields in extended FPB.
5F/95 Index-open-2

This slice builds the DFH for a new key-file.

60/96 Index-open-3
This slice builds the FIB.

11-13

Hex/Dec

61/97 I ndex-open-L
This slice reconstructs the rough table if an old
file is being opened.

62/98 Index-close-1
This slice is called from disk-close-1 if the file
to be closed is a indexed file and one the following
conditions exists:
1. The file is being locked.

1) New file - build KFPB.

2) 0'd file - merge if opened |/0 or extend
and merge bit is set.

2. The close adverb is remove.

1) New file - build KFPB.

2) 01d file - merge if opened |/0 or extend
and merge bit is set.

3) 0ld and new file - the old file should
already be purged, the new file is now
locked.

3. The close adverb is release and the file is old.

1) No name is inserted in KFPB.

2) Merge if opened |1/0 or extend and merge
bit is set.

4. The file is being half-closed.

1) New file - build KFPB.

2) 01d file - establish link to data file.

3) No merge is allowed.

Close with purge or release and file is new does
not invoke this slice.

63/99 SPO-console
Controller for 120 cps console/SPO.

N
£
~
—
(o]
(@]

Interp-subs

This slice is the interface for the interpreters to relinquish
control of the machine to the operating system and

through which control is returned back to them. It is loaded
to micro memory 1 (logical page) at warmstart time and is

not overlayable. The slice descriptor shows an absolute
memory address in MM1 but the slice length is invalid.

65/101 Console-slice
Controller for 120 cps console files.

66/102 Index-open-5
This slice completes the open if an old file is
being accessed output sequential.

67/103 Sort-slice-]

This slice is called by SORTINTRINS, an MPLII program, with
a micro library call. Tags are built from user-specified

11-14

Hex/Dec

- 68/104

69/105

6A/106

6B/107

6C/109
6D/109

6E/110

6F/111

keys and are written to a 5760-byte work

to a 5760 ea. When this
work area is full, these tags are sorted into ascending or
descending order and then written to a work file named
BS.FILE. These blocks of sorted data are called strings.
This routine loops until the input file is at EOF and then

returns back to SORTINTRINS.

ar
<

Sort-slice-2
This slice is called by SORTINTRINS, an MPLI | program, with
a micro library call. The strings in work file BS.FiLE,
created by sort slice 1, are continually merged by way

of a four-way table merge until there is only one string
left. From this tag file a full record data file, tag file,
or key file is generated depending on the type of sort
requested. If a merge of two or more files is requested,

the entire merge is done by SORTINTRINS.

Sort-slice-3
This slice is for future use. No code exists for it in the
MCP file.

DC-ch-34

Processes data comm communicates with a verb value of 34,
This slice is entered from the master communicate
handler. The adverb values are:

Communicate Adverb
DCP.reload : 00
DCP.program.names 01
DCP.program.count 02
DCP.description 03
DCP.program.terminals oL

DC-CH-redef2
This slice checks for consistency of parameters
after a redefine.

DDE-SPO
Controller for the DDE SPO.

DDE-con
Controller for DDE console files.

Log-task-slice
This slice maintains the log files for both SPO
and maintenance entries.

SSC-slice
Processed requests by privileged users for a system
status (MPL construct).

11-15

Hex/Dec

11-16

70/112

71/113

72/114

73/115

J4/116

Disk-pack-ctlir
Controller for disk pack.

Large-scrn-SP0
Controller for the TD 830 SPO.

FD-slice
Processes SCL command to define the format of output
to a serial printer.

Int-mul-div
This slice processes decimal arithmetic for the
interpreters.

DC-pre3i-load
This slice loads a NDLSYS file that was compiled prior
to 3.1 NDL compiler release.

SECTION 12
B 800 CMSMCP FILE

The B 800 CMSMCP file is a single area file which has all the microcode
necessary to operate the system, with the exception of the NDL data comm
processor micro code which is loaded into the data comm processor if an MCS s
executed. The NDL data comm micro code is handled as a separate system file.

internai structure of the B 800 CHMSMCP file is broken down into three portions.
The first portion is a one-sector available table which is used in the plant to
mark areas of the MCP file that they have removed for testing and analysis
purposes. This area should never contain any entries on a field level MCP file.
The next portion of the file is a 2h-sector slice descriptor table describing
the various MCP slices located in the third portion of the file. Each sector of
this slice descriptor table contains 11 entries of 16 bytes each. The format of
the B 800 MCP slice descriptor is given in table 12-1. This table is used by the
warmstart routine to build the slice descriptor table (SDT) in memory and by
patch in altering the disk slices. Note that there are two slice descriptor
tables; one in the MCP file and one in memory. It is important not to confuse
them.

Table 12-1. Field Contents

Byte Offset Data Notes
Within Entry Code

0- 3 0S slice-ID as (1)
4 micro slice number bi (2)
5 slice descriptor offset in sector bi (3)

6 - 7 sector no. of table for this slice entry bi (L)

8 - 9 offset in MCP file of the start of the slice bi (5)

10 - 11 length of the slice in D-words bi

12 - 13 . location to load in memory bi (6)

14 - 15 date slice assembled (mm/dd) de (7)

as=ASCI | bi=BINARY de=DECIMAL

related notes:

1. The 0S slice ID is the first four characters of the slice name given by the
assembler programmers when the slice is declared to the assembler. For
example,the first slice (slice 0) ID is 0S-S. This is the first four
characters of the slice name O0S-SUBS, the name given to the system
registers and basic subroutines slice. Similarly, the second slice (slice
1) is identified as WS-i which is the first four characters of the slice
name WS-1| used as a section of the warmstart function.

12-1

122

b N W Y W [kPR PX) l\-..‘-_...- [o PSRPR ¥
VAIG Ve s P IGIM WUV LD \ W)

2. The micro slice number is the relative slice number of this descriptor from
the start of the slice descriptor table in the MCP file (starting at zero).

3. The slice descriptor offset in sector is the base zero relative location of
this slice descriptor in this sector.

L. This is the sector number within the MCP file slice descriptor table in
which this slice entry occurs.

5. O0Offset within the MCP file of the start of the data contained in this micro
slice, in sectors, starting at base zero.

6. With the one exception of 0S-SUBS, this field, if not zero, indicates the
absolute memory address in D-words at which this micro slice is loaded. |If
zero, the slice can be loaded in the slice area of memory (between base of
the base of virtual memory and slice extent) at loader discretion. This
field is zero for 0S-SUBS because this slice starts at absolute memory
address zero.

7. Date slice assémbled indicates the month and the day of the month when this
slice was last assembled for this version of the MCP.

The third portion of the MCP file consists of the disk copies of all micro
slices used in the system. It includes the interpreter for BIL/MPLII, COBOL,
pocket select language (PSL), and data comm interfacing to the NDL system, as
all the MCP siices needed to manage the system. The siices are formatted in
three ways:

packed - 90 micros per sector
unpacked - 45 micros per sector
data slices - tables or ASC!| data

A packed micro slice is one which is either part of the operating system nucleus
(0S-SUBS, 0S-NUCLEUS, DC-NUCLEUS) or is a free-standing piece of micro code
which does not run under the operating system (warmstart, clear/start, and patch
slices, for example). These slices, since they exist as separate entities or as
part of the fixed nucleus, do not need an internal addresses 'fixed up'" when
they are loaded into the system and are therefore packed 90 micros to a sector.

Unpacked slices, however, are those which are loaded intoc main memory at
different addresses -depending on the system operating state at the time the
slice is needed. Since these slices must 'call® and '"jump" both within
themselves and to the routines within the fixed address area of the operating
system nucleus, each executable micro is followed by a flag word which indicates
to the loader (the disk DMAC control) whether the preceding mi<ro instruction
needs its '"address part" fixed to point to a- address relative to the base of
where this slice is located in memory or whether it should be left undisturbed.
It is left undisturbed when it is either a non-address type micro or it refers
to an absolute address within the 0S nucleus. A micro requiring "fix up'" is
suffixed by a D-word containing @8000@. Otherwise, it is followed by a word
containing @0000@.

£ data slice is one that contains only ASC!!| data in the form of a look-up table
or a table of operating system messages. Since these tables are accessed only
in a look-up manner and do not contain direct executable micro code, they are
packed with 180 bytes of data or table per sector.

12-3

BMAR
BVM

" CPA
cps

D-word

DDP

1/0
ISCT
ISN

MA
MAD
MAT
mB
mC
MCH

AMOD

B LA

MM
MPCR

os

PCA
PCB
PHT
PSN

SDT

TCB
DT
TID
TOS
TPI

VM

APPENDIX A

memory address register
beginning of virtual memory

communicate parameter area
characters per second

two bytes

data communications
device dependent port
data segment table

end of virtuai memory

fetch communicate
file information block
file parameter block

input/output
interrupt scan control table
interpreter segment number

memory address

micro address descriptor

mix attribute table
megabyte

media controller .
master communicate handler

actar nanteral nrasaram
mﬂotﬂl LSRNl Pl Usl ar

memory management
micro program count register

operating system

program current address
program control block
peripheral handler table
program segment number

slice descriptor table

task control block
task detail table
task ID

top of stack
tracks per inch

virtual memory

APPENDIX B
MCP LOGIC ERRORS WORKSHEET

This should be used as a checkoff sheet when documenting an FTR.

BMAR @0083@ =
MPCR eooBLe =
ERROR @0085@ =
CURRENT SLICE @000C@ =

HARDWARE CONF IGURATION:

Review:
SPO log
mix worksheet
slice memory worksheet
peripheral 1/0 descriptor worksheet
MCP_ trail

B-1

MIX
PART

WORKSHEET

1 ma = memory address

MAT ANALYSIS
ster @000E@ = . Proceed to this memory address and
extract the MAT.

0S regi

C FFFF

B FFFF

A FFFF

FFFF

TDT ANALYSIS

0S regi

ster €0017@ = locates

Add @3C@e giving locates

add @03@ giving locates
Proceed to this memory address.

Contents = , locates

add @01@ giving locates
Proceed to this memory address.

Contents =

add @0L@ giving

add @03@ giving locates

Proceed

to this memory address.

Contents = locates

the SDT-base ma
the SCL-loader SDT entry

the TCB ma

the start of the TCB

the DST in the SCL TCB

ma of data segment O of SCL-LDR

ma of data segment 1 of SCL-LDR

the start of TDT

the start of TDT

Proceed to this ma and mark off sets of 23 D-words on the hex

dump D-

words in the table.

5 (Asci11) 8

‘v

(ASCi1 1) 14

B2

MIX WORKSHEET
PART 2

Summarize the mix contents in the tables below.

Independent runners:

TASK # PRIORITY TASK ID STATUS
F - C - data comm ‘ -
E - C - working set bailiff -
b - € - help / CTM -
C- € - SCL loader -
B - c - data comm space handle -
A - c - log -
9 - B - super utility -

Identify the status for each of the independent runners above.

User programs:
TASK # PRIORITY TASK 1D STATUS

8 - - -

7.. - -

0 - - -

Identify the priority, task name, and status for each task #.

CURRENT TASK WORKSHEET

0S register @000A@ = task number
add @01@ giving mix number
program name from mix worksheet
0S register @00B6@ = line-count in hex
0S register @OOAD@ = current s-opcode
0S register @000B@ = current TCB ma
Proceed to this location and extract 7 D-words
(Tcs)
1 2 3 4 5 6 7
PSN/ISN DST DST MCH-TOS MCH
BASE LIMIT RECOVER ACTIVE

. VERB
To find the CPA, add MCH active verb (D-word 7)

to the TCB base (found at @000B@)

giving the CPA address

The contents of the D-word at this address is
This is the communicate verb (refer to MCP manual section 5)

To extract the COBOL/RPG perform stack from a hex dump,

Add MCH-TOS recover (D-word 6 of TCB)

to the TCB base (found in part 1 at @000B@)
giving
subtract @01@ giving
Go to this resulting address in the dump and mark off one
D-word. It represents the boundary between the interpreter's
part of the stack and the MCP's part.

Proceed to contents of D-word 3 and mark off sets of 4 D-words

LINE- BYTE SEGMENT "K" LINE- BYTE SEGMENT "K"
COUNT OFFSET NUMBER COUNT OFFSET NUMBER
1 2 3 L 1 2 3 L

B4

SLICE MEMORY MAPPING WORKSHEET

Beginning address »
of this siice is {) (if starting use register @000F@)

Contents of this
location is (SDT entry) go to SDT entry
and extract 5 D-words
Subtract address

of SDT-base () '
@oolye 1 2 3 b
giving
add D-word 3
Divide by @05@ slice to D-word 4
giving number giving
v
v
< beginning address of next slice<
v
v

Beginning address
of this slice is ()

Contents of this
location is (SDT entry) go to SOT entry
and extract 5 D-words
Subtract address

of SDT-base ()
@oo17e 1 2 3 L
giving
add D-word 3
Divide by @05@ slice to D-word &
: giving number giving
v
< beginning address of next slice<
v
v

Beginning address
of this slice is ()

Contents of this
location is (SDT entry) go to SDT entry
and extract 5 D-words
Subtract address

of SDT-base ()
@0017@ : 1 2 3 b
giving
add D-word 3
- Divide by @05@ slice to D-word L
giving number giving

v
v
< beginning address of next slice<

e

B-5

PERIPHERAL /O DESCRIPTOR WORKSHEET

0S register @00L3@ = ma of ISCT.
Proceed to this ma and extract 12 D-words.

1 2 3 L 5 6 ports

7 8 9 10 11 12 ports

Selected device

Select the ma corresponding to the port on which this device is
located.

Add @02@ giving ma of the current 1/0

contents = ma of 1/0 descriptor
Proceed to this ma and extract 4 D-words.

(queued 1/0 descriptor)

1 2 3 L

(queued 1/0 descriptor)
1 2 3 b

(queued 1/0 descriptor)
1 2 3 L

D-word 1 contains the interlock and op code.
D-word 2 contains the next |/0 descriptor ma or an ma pointing
back to the PHT. :

Selected device

Select the ma corresponding to the port on which this device is
located.

Add @02@ giving ma of the current 1/0

contents = ma of 1/0 descriptor
Proceed to this ma and extract 4 D-words.

(queued 1/0 descriptor)

1 2 3 4

(queued 1/0 descriptor)
] 2 3 L

(queued 1/0 descriptor)
! 2 3 L

D-word 1 contains the interlock and op code.

D-word 2 contains the next 1/0 descriptor ma or an ma pointing
back to the PHT.

B-6

Documentation Evaluation Form

Title: B 800 Systems MCP Memory Dump Analysis Form No: 1118452

User’s Guide Date: January, 1981

Burroughs Corporation is interested in receiving your comments
and suggestions regarding this manual. Comments will be util-
ized in ensuing revisions to improve this manual.

Please check type of Suggestion:
0O Addition O Deletion 0 Revision : O Error

Comments:

From:
Name
Title
Company
Address

Phone Number’ Date

Remove form and mail to:

Documentation Dept, TIO - East
Burroughs Corporation
Box CB7
Malvern, PA 19355

2" BINDER

1%’ BINDER
P— 1 BINDER

4

,_ o 3diNH S.43Isn
siskjpuy dwing Asoway JOW
- swidishg 008 4

1118452

Printed in U.S.A.

Printed in U.S.A. February 1981 ' 1118452

	001
	002
	003
	004
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	06-01
	06-02
	06-03
	07-01
	07-02
	07-03
	07-04
	08-01
	08-02
	08-03
	09-01
	09-02
	10-01
	10-02
	10-03
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	12-01
	12-02
	12-03
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	replyA
	xBack

