Burroughs

B 900/CP 9500
Systems

MEMORY DUMP

USER’'S GUIDE

(Relative to 3.04.23 Release)

Copyright ©1982Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

The names, places, and/or events depicted herein are
not intended to correspond to any individual, group
or association existing. living. or otherwise. Any sim-
ilarity or likcness of the names. places, and/or events
with the names of any individual, living or otherwise,
or that of any group or association is purely coinci-
dental and unintentional.

Burroughs cannot accept any financial or other
responsibilities that may be the result of your use
of this information or software material,
including direct, indirect, special or consequential
damages. There are no warranties extended or
granted by this document or software material.

You should be very careful to ensure that the use of this
software material and/or information complies with the
laws, rules, and regulations of the jurisdictions with
respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

This edition also includes the information released under the following:

PCN 1118478-001 (November 26, 1981)

Correspondence regarding this publication should be forwarded using the
Remarks form at the back of the manual, or may be addressed directly to
TIO East Documentation, Burroughs Corporation, P.O. Box CB7, Malvern,
Pennsylvania, 19355, U.S. America.

1118478

LIST OF EFFECTIVE PAGES

Page

iii thru xiv
1-1,1-2

2-1 thru 2-5
2-6

3-1 thru 3-6
4-1 thru 4-3
4-4

5-1 thru 5-12
1 thru 6-6
1 thru 7-13
14

1 thru 8-23
24

1 thru 9-26
0-1 thru 10-14
1t-1 thru 11-22
12-1 thru 12-10
A-1 thru A-8
B-1 thru B-5
B-6

C-1 thru C-3
C4

D-1, D-2

E-1 thru E-9
E-10

F-1 thru F-5
F-6

6
7
7
8
8
9
1

Issue

Original
Original
Original
Blank

Original
Original
Blank

Original
Original
Original
Blank

Original
Blank

Original
Original
Original
Original
Original
Original
Blank

Original
Blank

Original
Original
Blank

Original
Blank

iii

1118478

Section

TABLE OF CONTENTS
Title

INTRODUCTION .
MEMORY DUMPS .
Introduction
Creation of Dump Flles
Dumps Created By Operating System
Dumps Created By GT MD .
ROM Dump Files .

SYSANALYZER PROGRAM .
Introduction
Dump File Requlrements
SYSANALYZER Syntax
SYSANALYZER Cxample
SYSANALYZER Conventions .
Formats of Titles
Error Message Format
Byte Reversal Format
Print Format . .
ROMANALYZER

SOFTWARE OVERVIEW
Operating System (OS)
Operator Interface (OI)
Data Access (DA) . .
Job Management (JM) .
Processor Interface (PI) .
Monitor .
Activity Management (AM) ..
Data Communication Activity (DCA)
Data Storage Subsystem .
The Task Processor (TP) .
Data Comm Processor (DCP)
Scheduler .
Host Control . .
Request Queue Process .
Result Queue Initiation .
Line Manager .
The NDL Process

INTERPROCESSOR COMMUNICATION (PI)

Mailboxes

Sending a Message
OS to TP
TP to OS
OS to DCP
DCP to OS
Transferring Data .

vi

Section

5

~J

TABLE OF CONTENTS (CONT.)
Title

SYSTEM SOFTWARE THEORY OF OPERATION
OS Overview

Activities

Actions .

Kernel .

VM . ..

Processor Interface (PI) -
AM_ACTION_LIST Pointers .
Status Block Linking .
Linking . .
Available . . .

Work Block/Link Block
Segment Table

Task Processor

HEADING INFORMATION
Introduction
Title Page
Dump File Parameters
Analyzer Level .
Version String
System Error Value
Frozen Processor
Frozen State .
Processor Types .
Remaining Dump File Parameters .
Dump File MAP Definitions
Dump File MAP .

VIRTUAL MEMORY .
Introduction .
DA_PROG NAMTAB
DA_INTERP_NAMTAB .
DA_MISC_NAMTAB .
Mix Tabie

Port Table . . .
Peripheral Table (PHT) .
Peripheral Table (Cont.) .
Peripheral Table (Cont.) .
Peripheral Table (Cont.) .
Peripheral Table (Cont.) .

OPERATING SYSTEM

Introduction .

Initial Dump Analysis .
Activities . . .
AM.ACTION. LIST
History Communicate Table .
PI Data .

DA_CT .

Activities . ..
State Save Area .

Page

1 1 i 1 1
bt ek e

PITNEN

— O 60 0o G0 th

U’IU’I(I‘IU‘I(J‘IML{IMMMUI(JI
w

o
——

Q\O\@O\

o
SRR N I C I LI

NP QR

=L

(AR
[NS\

o=
ENEN

LoUarhhdib~t AL

2 O l\]}]|\l|\l\ll\l\‘l\]\]\]~\]\4

SN SN I UL

OOOOOOOOO'OOOOOOO

% %
o

1118478

Section

TABLE OF CONTENTS (CONT.)

Title

8 (Cont.) AM.ACTION. LIST .

10

AM.ACTION.LIST Entries (Cont)
AM.ACTION.LIST Entries (Cont.) .
AM.ACTION.LIST Entries (Cont.)
AM.QUEUE.HEAD . .
Segment Table

History Communicate Table

PI Data . .

DA_CT (Conﬁguratlon Table)
WB.LB.HEAD . .
FIB . .

ODT Data Segment

DATA COMMUNICATIONS

Introduction .

DCA Memory . .
Resident DCA Memory
Virtual DCA Memory . .
User Job Table (Linked Block ID = 1)
MCS Table (Linked Block ID = 2) .
LSNTAB (Linked Block ID = 3)
LLNTAB (Linked Block ID = 4)
SUBTAB (Linked Block ID = 5)
NDL (Linked Block ID=6) .
DCP (Linked Block ID=7) . .
DCPCON (Linked Block ID = 8)
LSN INFO (Linked Block ID =9) .
MCSNAME (Linked Block ID = A)

DCP Memory . .
Reserved Pointer Area

Line Information Area

Line Number

Buffer Memory . .
Available Buffer Pool (ABP)
Result Queue .
Request Queue .
Subnet Queue

TASK PROCESSOR
Introduction ..
Initial Dump Analysis .
Task Processor On Bus nn .
Mailbox Descriptions
Interpreter Save Area
Pointer Fields
Space Analysis
Blocks
ICB Analysis .
PCB Analysis .
TCB Analysis
TCB Descriptor . .
TCB Segment Table

vii

TABLE OF CONTENTS (CONT.)

Section Title Page
10 (Cont.)Job Quewe1013
OSRequestTask10-13
Term Tasks Task 10-13
Ready Queue, Terminating Queue Locked Queue 10-13
Computing Amount of Space Owned by a Task 10-13
11 DISK MANAGEMENT 1141
Introduction 114
Initial Dump Analysis 11-1
First Felds 111
Task Information 113
Task Stacks 115
Task Stack Data for stk Pack Devxces B B
Manager Stack 115
Port Table B | B
Controller Identlﬂ’ers A T B Y
Controller Dependent Parameters P B)
Host Device Port Table 117
Disk Pack Port Table 11-7
Command Table 117
Command Results 118
General Command Layout 118
Command Types B B
Read . . . e A
Write b O
Write with Data or Data Panty Check 11410
Search1110
Initialize11-10
LockDoor 1111
Unlock Door11-11
Read RelocationMap 11-11
Read Statistics11-11
Clear Statistics11-11
Read Result Descriptor 11-11
Read DFH.11-11
Write DFH1111
Locate PseudoPack 11-11
Locate File11-12
Locate Header . . . B B Y)
Create Temporary Entry . O B
Allocate Area . . . S b B)
Crunch File11-12
Purge Entry 11-12
Power Off Disk11-13
AVR Disk . . . O B B
Initialize Cylinder Data Flelds o B B K
Verify Cylinder11-13
Relocate Bad Sector11-13
Drive Table11-13
Drive Table Layout 11-14
Device Dependent Data Area 11-16
Disk Cartridge 1l-16

viit

1118478

Section

11 (Cont.)

12

;»

TABLE OF CONTENTS (CONT.)
Title

Host Devices

Disk Pack Data Area .
Result Descriptors

Control Information .

RD Data . . .

Disk Pack RD

Null Result Descriptors . . .
Disk Cartridge Drives Data Constants .
Host Data Constants .
Recommended Problem Solvmg Procedures

System Hang . .
FO0000 Clearstart

BUFFER MEMORY
Introduction . . .
I/O Buffer Space Calculatmn
Section Layout
Preceding Memory Descnptor Format
Trailing Memory Descriptor Format .
Analyzer Listing
Hle Table Structure
Hle Table Entry
File Table Extension Entrv
Buffer Descriptor Format .
Key Hle Table Format
Key File Extension Format . . .
SYSIO Descriptor Table Format .
Available Table .

OS ERROR INDICA

Banks Cand D
Clearstarts
Bank E - Clearstart Numbers

TASK PROCESSOR SAVE ERRORS .
SYSANALYZER ERROR MESSAGES

USER TASK ANALYSIS
Virtual Memory
Task Processor Processor Number
Operating System .
Buffer Memory .

A GUIDE FOR TROUBLESHOOTING SYSTEM FAILURES

Suggestions/Hints ..
If the System Can’t be Re- Warmstarted
Persistent Problem .
A large Number of Chips Seem to be Farlmg
Environment is Important . ..
Check Connections

System Configuration 1

Page

. 11-16
. 1117
. 11-18
. 11-18
. 11-18
. 11-18
. 11-19
. 11-19
. 11-20
. 11-21
. 11-21
. 11-21

12-1
12-1
12-1
12-4
12-5
12-6
12-6
12-6
12-

12-7
12-7
129

_12-10
©12-10
. 12-10

S

S

COUDD

IR
DD = e

eoesiesBesNeslivsles
NN

cl
S

ix

Section Title

E (Cont.) Condition 1: Clearstart - Dump Created
Condition 2: Clearstart - Dump Not Created .
Condition 3: System Hung - No Response to SPO Messages
Condition 4: Task Processor Marked Not Ready Dump
Created . . . e . .
System Conﬁguratlon 2
Condition 1: Clearstart - Dump Created
Condition 2: Clearstart - Dump Not Created .
Condition 3: System Hung - No Response to SPO Messages
Condition 4: Task Processor Marked Not Ready Dump
Created .
System Conflguratlon 3
Non-OS Processors
OS Processor .

F GLOSSARY OF COMMON TERMS

Page

E-3
E-3

E4
E-4
E4
E-5

E-6
E-7
E-8
E-9

1118478

Figure

] 1 I'MLII]%LIJ](»(JJ

oo b i LA

O\O’\O‘\LIIIU](JI(AU

DG
B W — O

LIST OF ILLUSTRATIONS
Title

Software Functional Block Diagram
DCP Internal Organization .

OS Overview .

Status Block Layout

Action List Pointers

Status Block Linking .
Normal and Suspension Queue Lmks .
AM.QUEUE.HEADS . . , . .
W.B./L.B. and Available Area Lmkmg .
Segment Table Block Diagram

Task Processor Job Control Activity
Title Page Messages .

Dump File Parameters . . .

Dump File Map Definitions .

Dump File Map .

Processor State Decode . . .
Sample DA_ PROG_NAMTAB Sect10n
Sample DA_INTERP_NAMTAB Sectlon
Sample DA_MISC_ NAMTAB Section .
Sample Mix Table Entry .

Sample of Copy In Memory Sectlon of a Dump F]le

Sample of Port-Table Entry

A Typical Peripheral Table (PHT) Entry ina Dump Flle

Format of Processor State Save Area
IC Memory Map .

Sample of Beginning of Operatmg System Portlon of a Dump

Status Block Entry Example

Example of the History Communicate Table Portlon of a

Memory Dump

N, ¢4

PI Data Example . .
Sample DA_CT Dump Flle Entrv
File Information Block Example .
Sample ODT Data Segment .

TP Input Mailbox Format for Funct1on 07 ..
TP Input Mailbox Format for Functions 08, 09, FF

TP Output Mailbox Format

Example of How to Read NEXT and LAST Fields .

TP Task Record Text .

Sample Disk Management Sectlon In1t1al Entrles

Sample Task Information Entry .
Sample Command Table Section .

Sample Initial Entry in Buffer Memory Sectlon of a System

Dump .

Memory Dump Sample Showmg Sectlon Layout

Sample File Table Extension Entry .

5-12

7-10
7-10
7-10
7-11
7-11
7-12
7-13

8-3

84

8-6

8-15
8-15
8-17
8-19
8-21
10-3
10-3
104

. 10-10
. 10-14

11-2
114
11-8

12-3
12-5
129

xi

Xii

LISTOF TABLES
Title

Status Block Action Name Values

DC Subsystem Table in Virtual Memory .

Drive Status
Drive Identifiers .
Command Status Semantlcs

Page

8-8
9-2

11-14
11415
C11-15

INTRODUCTION

This manual is a guide which will assist Burroughs personnel in identifying and resolving certain prob-
lems with the B 900/CP 9500 system. It gives both a system overview and a detailed discussion of
the contents of a system memory dump, probably the single most effective tool available for the task
of analyzing problems.

This manual is divided into 12 sections and 6 appendices, A through E.

Section 1 provides an overview of the methods by which a system dump file can be created.

Section 2 explains the operation of the SYSANALYZER program which is used to convert the numbers
and symbols from a hexadecimal memory dump into a format that is more easily read.

Sections 3, 4, and 5 give an overview of system operation. Section 3 is a software overview, section
4 discusses interprocessor communication, and section 5 discusses the theory of operation for the sys-

tem software.

Sections 6 through 12 discuss the actual memory dump as it appears after it has been converted using
SYSANALYZER,

Section 6 is titled Heading Information. This section discusses the general information contained in
the first four pages of a memory dump.

The next six sections of the manual discuss the major divisions of the memory dump. They are dis-
cussed in this manual in the order in which they appear in the dump. They are:

Section 7 - Virtual Memory
Section 8 - Operating System

Section 9 - Data Communications

Section 11 - Disk Management

Section 12 - Buffer Memory
The appendices supply detailed information which is frequently needed as reference.
Appendix A lists operating system error messages.
Appendix B gives task processor error messages.
Appendix C is a list of, and an explanation of, SYSANALYZER error messages.
Appendix D gives techniques for user task analysis.

Appendix E is a guide for trouble-shooting system failures. This is to assist a field engineer in making
initial efforts to correct problems.

Appendix F is glossary of terms.

It is assumed that the support personnel using this manual are familiar with CMS concepts and the
implementation of these concepts on the B900/CP 9500 system. It should be understood that this
document is not a substitute for a properly trained software support person.

1118478 xiii

Related Documents

The following manuals may be of assistance in understanding system operations:
CMS Software Operation Guide, form 2015228-001
CMS Data Communications Reference Manual, form 1090909

CMS Master Control Program (MCP) Reference Manual, form 2007555-001

X1iv

SECTION 1
MEMORY DUMPS

INTRODUCTION

A system memory dump is a file created on disk containing the contents of the system memory. The
system memory dump, in conjunction with system log files, are the most essential tools to aid in the
analysis of system failures. It is very important that a memory dump be taken each time an unexplained
system failure occurs. It is equally important that the dump be taken properly and contain useful infor-
mation. This section details when a memory dump file creation occurs. Printing of the dump file is
performed by the SYSANALYZER program, and is covered in Section 2 of this manual.

CREATION OF DUMP FILES

System dumps are produced in three distinct ways. They may be created automatically by the operating
system when the system detects a failure (such as Task Processor/Data Comm Processor Logically Not
Ready, or a CLEARSTART takes place); the memory dump may be requested by the operator using
the GT MD intrinsic, explained in Section 9 of the CMS Software Operations Guide (SOG), form
2015228; and thirdly, the memory dump may be manually created by using the ROM/PRAM dump
facility. This option is to be used when a system hang occurs. (System hang is defined as a condition
where the system is unable to communicate with the operator.) It is also used when the system fails
to automatically create a dump. Operation of the ROM/PRAM dump facility is explained in Section
9 of the CMS SOG.

DUMPS CREATED BY OPERATING SYSTEM

Dumps produced by the operating system are written into a previously-assigned disk file named
SYSDMFILEnn. This file is assigned space by the monitor startup procedure of the OS. The decimal
number nn is determined by startup in the following steps.

Startup attempts to open, initialize, and close the file SYSDMFILEOQO; if a duplicate file condition oc-
curs on the file close attempt, the file just created is purged and an attempt is made to create
SYSDMFILEOL. This procedure is repeated until a successful close occurs or no file number is found
to be available. The maximum number of system dump files allowed on the system disk is six
(SYSDMFILEOO through SYSDMFILEOS). This procedure ensures that previous valid dump files are
not destroyed by subsequent warmstarts. If startup is unable to find sufficient disk space, an appropri-
ate warning message, ‘‘SYSDMFILE NOT CREATED MAX NO EXCEEDED,” is displayed on the
Operator Display Terminal, and the system continues the warmstart. The normal operator action is
to first reorganize the system disk so that sufficient space is available, and then re-warmstart the system
to create a valid dump file. The OS monitor dump action can only write into a dump file created at
the last warmstart by the OS monitor startup action.

NOTE
An unused system dump file is removed automatically as part of the system
disk power-off procedures. If the system is not powered off in an orderly
manner, or if the system hangs, an empty dump file will remain on disk.

DUMPS CREATED BY GT MD

The GT MD intrinsic will dump the system memory to the current dump file while the system continues
normal operation. This can be useful in gauging system performance, and for certain types of failures
that do not cause fatal error conditions, such as with programs that do not appear to be executing.

1118478 1-1

ROM DUMP FILES

A system can be dumped to disk by use of the hardware ROM/PRAM dump facility. This ROM dump
must be reformatted by a utility, ‘ROMCONVERT,* to be identical in layout to a dump file created
by the operating system. In this form it can be analyzed by SYSANALYZER. Operating instructions
for ROMCONVERT are contained in the CMS SOG.

1-2

SECTION 2
SYSANALYZER PROGRAM

INTRODUCTION

SYSANA_LYZER is a program which selects and prints data from a system dump file. It also performs
some basic dump analysis by highlighting suspected system errors. This section describes how to use
the SYSANALYZER program, and includes the format of the printed output.

DUMP FILE REQUIREMENTS

The SYSANALYZER program requires as input either a system-created dump file or a ROM dump
file which has been converted into the format required by SYSANALYZER. This conversion process
is performed by the ROMCONVERT utility.

The 3.04 version of SYSANALYZER also requires that the dump file being analyzed must have been
created on a system executing under 3.04 MCP control.

1118478 2-1

SYSANALYZER SYNTAX

Parameter values are supplied to SYSANALYZER through a single BOJ initiating message. The syntax
of this message is depicted in the railroad diagram below. The options may be entered in any order;
the analysis takes place in the option sequence depicted in the diagram.

SYSANALYZER {
’]
MFID(<PACKID >) 3
— FID(<FILE-ID >)
ALL
VM
0S
& ?
()
DC
?
(DCA)
DCP
BUF
TP
!
DK
BM
HEX
&)
(0s)
DC
TP
DK
BM
ﬁ ?
— BUS N

ED2644

2-2

CAUTION
The options ALL and HEX are advised for analysis requested by the user.
ALL produces a formatted full-system analysis and a hexadecimal dump;
HEX produces a hexadecimal dump. The user is advised to ignore the more
specific analysis options, except when otherwise requested.

The following points should be noted:

1. If the user enters the “FID()’ option and/or the “MFID()"’ with no other options following,
only the header page and dump file information are output by the analyzer program.

2. If the initiating message contains no options (consists only of the string SYSANALYZER), the
system analyzer uses default values equivalent to ‘“MFID(< system pack >), FID (SYSDMFIL00),
ALL;” If all options are omitted, the semicolon is not included in the message.

3. If the DK option is selected, a Hex dump of the disk processor will automatically follow the for

= = st

matted version.

Option Meaning

MFID() The <packid> specified is the pack on which dump file resides.
FID() The <file-id> specified is that of the dump file to be analyzed.
ALL Perform analysis of:

Virtual Memory (see VM)
Operating System (see OS)
Data Comm Processor (see DC)
Task Processor (see TP)

Disk Processor (see DK)

Buffer Memory (see BM)

VM Perform analysis of virtual memory.
0S Perform analysis of operaiing sysiem. If no suboptions are specified, use ali suboptions.
Suboptions of OS:

(A) Activity management.

M) Memory associated with OS processor.

DC Perform an analysis of each data comm processor. If no suboptions are specified, use all suboptions. To
restrict analysis to individual DCPs, use the ‘“BUS’’ option.
Suboptions of DC:
(DCA) Include analysis of data-comm-related parts of operating system.
(DCP) Include analysis of data-comm-related parts of disk processor.
(BUF) Include analysis of data-comm-related parts of buffer memory.

TP Perform an analysis of each task processor. To restrict analysis to individual task processors, use the
“BUS’’ option.

DK Perform analysis of disk processor.
BM Perform analysis of buffer memory
VM Perform analysis of virtual memory.

HEX Print an unformatted hexadecimal dump of the memory or memories specified. If no suboptions are
specified, print a full hex dump of the system.
Suboptions for HEX:
(OS) Print a hex dump of memory associated with the operating system.
(DC) Print a hex dump of memory associated with the data comm processor.
(TP) Print a hex dump of memory associated with the task processor(s).
(DK) Print a hex dump of memory associated with the disk processor.
(BM) Print a hex dump of buffer memory.

BUS(n) Each “n” is a hexadecimal character that corresponds to a given physical bus address. When the BUS
option is specified, only the specified bus addresses are considered to be in the dump file.

1118478 2-3

The BUS(n) option allows analysis of the specific task processor(s) or data comm processor(s) that the
user wishes to examine. When this option is not used, all task processors are analyzed as a result of
TP, and all data comm processors are analyzed as a result of DC.

The OS processor memory must be available if the DC(DCA) or VM option is specified. To do a com-
plete analysis of a DCP when the BUS (n) options is used, the bus address of the OS processor must
be specified, as well as the bus address of the given DCP.

The BUS (n) option may be used together with the ALL option. This causes a comprehensive analysis,
but only of the bus addresses specified.

SYSANALYZER EXAMPLE

The following initiating messages result in the same analysis. The actual sequence of analysis is repre-
sented by the order of the options in the second message.

BOJ Message 1: SYSANALYZER FID(THISFIL), MFID(THATPCK), ALL;

BOJ Message 2: SYSANALYZER MFID(THATPCK), FID(THISFIL), ALL;

SYSANALYZER CONVENTIONS
The reader should be aware of the following conventions which apply to the printed output:

FORMATS OF TITLES

Titles boxed in asterisks are titles of analysis options, suboptions, and headings of individual data
structures.

ERROR MESSAGE FORMAT

Error messages are printed on the extreme left hand portion of the output listing, and are preceded
and trailed by three dollar signs.

BYTE REVERSAL FORMAT

Data declared to be two-byte is stored in memory byte-reversed by the BDS processor. In order to
provide a consistent approach to output, the following rules concerning byte reversal have been fol-
lowed:

1. All data read from the dump file is printed in byte-reversed form (as it was found in the dump
file).

2. Addresses that are calculated by the analyzer and printed in front of a dump area (in the same
columns as data titles) are printed in a byte-forward manner.

24

PRINT FORMAT
The formatted analysis uses a global print routine to produce the printed output. The 120-character-
wide print line is logically divided into a 40-character and an 80-character area. The 40-character area

is used to display titles (and addresses) right-justified preceding the appropriate data. The 80-character
area is used to print the data. The data is always printed as follows:

<two bytes> blank <two bytes> blank ... <two bytes>.
If the number of bytes is odd, the last <two bytes> are printed as < <single byte> blank>. The

routine will continue on to succeeding lines, as necessary, if more than 32 bytes are to be printed. This
routine is not used when data is printed in a table format.

NOTE

Disk addresses are NOT byte-reversed.

ROMANALYZER

A ROM-generated program may be analyzed directly by the program ROMANALYZER at those times
when it is not possible to run ROMCONVERT. ROMANALYZER is explained in detail in the System

Operation Guide.

1118478 2-5

SECTION 3
SOFTWARE OVERVIEW

The system firmwarc comprises all necessary modules to provide full CMS support. This includes:
1. Operating system (OS).
2. Data storage subsystem.
3. Task processor control routines and language interpreter.

4. System-dependent initialization routines.

5. Data communication control, messsage handling and line protocols.

Figure 3-1 illustrates the interrelationship of the above modules. Initialization routines are not included
in the figure, as they are a stand-alone function.

OS PROCESSOR TASK PROCESSOR
Jos MEMORY
MONITOR MANAGEMENT MANAGEMENT
00T == — {— OPERATOR ACTIVITY DATA COMM TASK PROC
INTERFACE MANAGEMENT ACTIVITY MANAGEMENT
ICMD
YOO}] DATA PROCESSOR PROCESSOR JoB
wLp ACCESS INTERFACE INTERFACE CONTROL
MY
INTERPS
DCcP
DATA STORAGE PROCESSOR
INTERFACE
DPC
FDC
2:3 — e e o == DISK CONTROL LOGIC
DMTR OTHER ACTIVITIES
DFCM
44— INTERACTION BETWEEN ACTIVITIES
4P |INTER-PROCESSOR COMMUNICATION
~-=—— PERIPHERAL iNTERFACE
ED2631
\ . . :
Figure 3-1. Software Functional Block Diagram

3-1

OPERATING SYSTEM (0S)

The operating system resides in one processor/memory set. This processor maintains an interface to
all I/0 devices except the data storage subsystem and the data communication lines. The operating
system is divided into the following modules:

1. Operator Interface (OI).

2. Data Access (DA).

3. Job Management (JM).

4. Processor Interface (PI).

5. Monitor (MN).

6. Activity Management (AM).

7. Data Comm Activity (DCA).

OPERATOR INTERFACE (Ol)
The operator interface module provides a communications interface between the system and a variety
of operating processes; an example of such an interface is that between an operator and a user pro-
gram. Included in the duties of this module are:

1. Collecting information.

2. Syntaxing messages.

3. Formatting messages.

4. Routing messages.

5. Providing system information to the operator.

6. Handling all 1/0 to the Operator Display Terminal (ODT).

DATA ACCESS (DA)

The data access module provides the logical/physical interface for I/0O devices (line printer, ICMD),
and the logical interface to the data storage subsystem. Included in the duties of this module are file
management and buffer memory management.

JOB MANAGEMENT (JM)

The job management module provides an orderly system environment for user jobs. It tracks the state

of each job from beginning to end, and synchronizes the occurrence of multiple commands to the same
job.

3-2

PROCESSOR INTERFACE (Pi)

The processor interface module, in conjunction with the corresponding module in other subsystem pro-

cessors, provides the processor-to-processor communication link. Through the use of memory mail-
boxes, messages are transferred between processors.

MONITOR

The monitor module provides the capability to r

ACTIVITY MANAGEMENT (AM)

The activity management module provides the environment needed for intermodule cooperation. This

nnvurnr\mnnt cnr\nl-nc tha -nfnrfannc needed to access sy

ceNnIr~raa
11U LiiRIVALL SAVC I B S Loy s 90 w2 5 4

LIVwVUIVA LV Uuvweoo Ojst\rlll Aeauux\,\,o “lld lll\-\'llalllomb V‘lll\yh Dllabl\«
the OS modules to communicate with one another. It could be loosely regarded as the interpreter of
the remainder of the system.

DATA COMMUNICATION ACTIVITY (DCA)
The DCA module comprises four major submodules:

1. Data Comm Communicate Handler (DCCH).

2. Data Comm Loader (DCL).

3. Result function.

4. End-of-job function.
The data comm communicate handler (DCCH) provides the logic necessary to perform the functions
indicated by a data comm communicate. These functions can be issued by an MCS or by a data com-
munications user program. The primary function of the DCCH is to validate parameters, enforce user-
defined limits, provide message routing to/from the data communication programs, and control the

message interface to the DCP.

The data comm loader primes the necessary control and routing tables to be used by the other DCA
modules, and loads the DCP microcode and NDL tables.

The result function provides message handling for messages sent from the DCP. This module routes
messages and control information to the assigned programs.

The end-of-job function performs the necessary housekeeping and deallocation of resources when a
program terminates.

1118478 3-3

DATA STORAGE SUBSYSTEM

The data storage subsystem resides in a processor/memory pair separate from the operating system.
It works in conjunction with the operating system (OS) to provide the system with a highly efficient
mechanism for controlling high speed storage media. Logical as well as physical control routines are
incorporated into this subsystem. In addition, the data storage subsystem controls the display and
maintenance routine (DMTR) module. All disk subsystems, other than the industry-compatible mini
disk (ICMD), are connected to the data storage and maintenance processor (DS&M).

THE TASK PROCESSOR (TP)
User programs are executed in a separate processor known as a task processor. This processor is
managed by the OS processor and requires the OS processor to initiate and control all its I/0 requests.
Jobs are assigned to the task processor by the job management module of the OS processor. The com-
plete set of necessary firmware is known as the Interpreter Control Program or ICP. This set of firm-
ware falls into two categories: control/support logic and language interpreters. The control/support
logic can be further characterized as follows:

1. Operating system communication (PI).

2. Local memory management (PM, VM),

3. Job Control (JC).

4. Processor Management (PM).

The MPLII interpreter is required for execution of system utility programs. The COBOL/RPG inter-
preter is a user option that is specified in the WARMSTART information area of SYSCONFIG.

DATA COMM PROCESSOR (DCP)

The DCP firmware is produced by using the NDL compiler and the NPC900 program, and resides
in the DCP. The DCP is composed of three major modules:

1. Scheduler.
2. Host control.

3. Line manager.

The internal organization of the DCP is shown in figure 3-2.

34

RESULT Q NDL S-OP

INITIATION HANDLER
os
PROCESSOR REQUEST Q INTERRUPT INTERRUPT
INTERFACE PROCESS SCHEDULER HANDLER
HosT SCHEDULER LiNE
CONTROL "1 MANAGER
ED2632
Figure 3-2. DCP Internal Organization

The scheduler module assigns processing time to the line manager and host control on a predetermined
basis.

HOST CONTROL

The host control module is responsible for all external interfaces and provides support for:
1. Request queue processing.
2. Result queue initiation.

3. Processor interface.

REQUEST QUEUE PROCESS

The request queue process submodule is primarily responsible for routing messages fror.n.the DC_CH
portion of the OS data comm activity module to the directed station. Additionally, it initiates station

and line functions as requested.

1118478 3-5

RESULT QUEUE INITIATION

The result queue initiation submodule takes complete messages, station functions, or line functions,
and places them on the data comm activity (DCA) result queue, indicating that a complete message
has been accumulated from a data comm line or that the requested station or line function has been
handled. It then signals the DCA via PI.SEND.

LINE MANAGER

The line manager module determines if a given data comm line is currently active, and yields control
to the appropriate NDL process (s-op handler, interrupt scheduler, or interrupt handler) at the appro-
priate time. If the NDL process module is in control and an interrupt or a pause s-op is detected,
the line manager module transfers control to the scheduler module. When the expected interrupt occurs,
the line manager returns control to the NDL process.

THE NDL PROCESS

The NDL process is logically partitioned into three sections: s-op handling, interrupt scheduling, and
interrupt handling.

The s-0p handler performs logical functions and initiates control of the physical data comm line. When
code being processed by the s-op handler requires or anticipates an external event, control is relin-
quished to the interrupt scheduler.

The interrupt scheduler conditions the necessary hardware and logic functions to expect the event.

The interrupt handler is invoked when the event (interrupt) occurs on the data comm line adapter. The
interrupt handler performs implicit functions such as parity generation and checking, format validation,
and translation. The interrupt handler invokes the NDL s-op handler to return the results of the last
event that occurred.

SECTION 4
INTERPROCESSOR COMMUNICATION (PI)

This section is intended to describe the mechanisms used in interprocessor communication. The specific
uses made within each processor are described in section 10 of this document.

Interprocessor communication utilizes the processor interconnect bus hardware via the interface control
(not covered in this manual). The interested reader is referred to the B 900/CP 9500 Field Engineering
Technical Manual Volume 3 (form 1129418).

The interface between the DS&M and the OS does not use the mechanisms described in this section.
A special interrupt mechanism exists between the DS&M and the Data Access activity of the OS.

MAILBOXES

The task processor and the DCP both have two mailboxes. The ““output mailbox’’ is used for commu-
nications to the OS processor, and the “input mailbox ’ is used for communications from the OS pro-
cessor.

Each mailbox carries traffic in one direction, but has a standard layout of bytes and their functions:

Field Bytes Use

Text 16 Contains the actual text passed. For a CMS communicate this will be the

communicate parameter area (CPA).
Request function This is the action id or name that this message was directed to.
Request processor This is the bus address that this message was directed to.
Result processor This is the bus address that this message originated from.

Result function This is the action id or name that this message originated from.

Where appropriate, this will contain the task id of the job initiating this
communication.

System mix number

Reserved 1
Flags 1 These flags define the status of the mailbox.

The values are as follows:

MSB 7 = Request message

6 = Unused data comm processor

5 = Task processor error

4 = Task processor rejected

3 = Operating system accepted

2 = Given to operating system

1 = Task processor accepted
LSB 0 = Given to task processor

The request and result function fields contain an action name or action id dependent on the original
request. In general, a response to a previous communication is directed to an action id, and an original
request is directed to an action name. For CMS communicates, this id is @FF@.

The flags are used to specify current ownership of the mailbox. The OS processor always uses the mail-
box in the other processors.

See Section 10 of this manual for further details of mailbox functions.

1118478 4-1

SENDING A MESSAGE
OS TO TP

The procedure is as follows:

OS 1. Check status of input mailbox of desired TP. If not ok then wait.

OS 2. When ok, insert text. Reset OS accepted. Set given TP.

OS 3. Interrupt TP. Wait.

TP 4. If handler not available, mark mailbox as TP rejected, interrupt OS; OS will reset TP re-
jected, set OS accepted. Wait, then retry.

TP 5. If handler is available, will set TP accepted, initiate appropriate function, and interrupt
0S; OS will mark box as OS accepted, and finish the send function.

TP TO OS

The flow is almost a reverse of the above:

TP
TP
OS

TP

1.

2.

3.

4.

Set up output mailbox (if owned by TP).
Set given OS, interrupt OS.
Copy message in, set given TP, interrupt TFP.

Set TP accepted, inform caller.

0S TO DCP

OS
OS
OS

OS

1.

2.

3.
4.

If OS doesn’t own mailbox, wait.
Copy message into mailbox.
Set given TP, request message, reset other flags.

Interrupt DCP.

DCP 5. Set given OS, reset request message, interrupt OS.

OS 6. Set OS accepted.

DCP TO OS

42

DCP 1. If output mailbox is not owned by the DCP, look for something else to do.

DCP 2. Else, set up mailbox, clear flags.

DCP 3. Set given OS, interrupt OS, forget it.

OS 4. Copy in, set given TP. Continue.

TRANSFERRING DATA

Data transfer is not a PI function; however, interprocessor communication is usually needed before
such a transfer can take place.

Data is transferred via the bus under the control of the OS processor. During transfers from disk to
any memory, the requesting processor is responsible for freezing the appropriate memory area, and
is expected to leave it alone until informed otherwise by the OS processor. This mechanism is transpar-
ent for data file I/0 as buffer memory is an OS-managed entity, but is not transparent for code or
data segment 1/0.

Note that any processor may attempt a remote access. Each processor is required to adhere to the re-
strictions imposed by the OS processor.

1118478 4-3

SECTION 5
SYSTEM SOFTWARE THEORY OF OPERATION

0S OVERVIEW

The OS may be considered to operate using three levels:
Activities
Actions

The kernel (nucleus)

Activities are groups of actions and are committed to specific functions, specifically:
OI -Operator Interface
JM -Job Management
DA -Data Access
DC -Data Comm
MN -Monitor

AM -Activity Management

An action is a region of code which may be given control of the OS processor. In practice, an action
is a procedure that is executed by the Activity Management procedure “INVOKE.”’ The different types
of actions are defined as follows:
AVAILABLE ACTION: A region of code that is called upon to perform some specific functions.
EXECUTING ACTION: An instance where it was decided to use a specific available action.
CRITICAL ACTION: An action that cannot be invoked if it is already executing.

CONTINUOUS ACTION: An action that never yields the processor voluntarily.

KERNEL

The kernel, or nucleus, is a microcoded area that contains commonly used routines. Some of these
routines have responsibility for interactivity communication. With the exception of the monitor activity,
no activity may directly contact another, it must call a specific nucleus routine to perform the switch.
(See figure 5-1.)

1118478 5-1

ACTIVITY

-0

CONTROL ALL INTER-ACTION REQUIREMENTS

CONTROL MEMORY REQUIREMENTS BY INVOKE OF VM IF NECESSARY

MAINTAIN TABLES FOR ACTIONS: -
AM.ACTION LIST

>0

>»00

LONG/SHORT DELAY
EVENTQ
CREATE ACTION STATUS BLOCKS
ACTIVITY
MANAGEMENT
COMM
AM.NUCLEUS CONTROL
STACK
FRAME
CREATE WORK BLOCKS
AM.ACTIONS l
IN SCOPE ONLY
TO ITS ACTION
RTC OR AM.
MAXIMUM 4
PER ACTION
M LREATE LINK BLOCKS
iN SCOPE
Pl TO ACTIVITY

OR AM.

E 48

ED2833

PROVIDE GET/RETURN SPACE FUNCTIONS.
MAINTAIN DESCRIPTORS AND LINKS.

1

SCANS

UPDATES PROC
MAILBOX FLAGS i/PMAILBOX O/P MAILBOX
ARRAY ARRAY

| |
l

1. FILL I/P MAILBOX OF A PROCESSOR.
2. ACCEPT ACK.
3. READ O/P MAILBOX OF A PROCESSOR.

DECODE MESSAGE TYPE.
a. PASS ON COMMUNICATE.
b. POST TO WAITING ACTION.
c. BECOME REQUESTED ACTION.

Figure 5-1. OS Overview

The nucleus is considered part of the AM (Actmty Management) act1v1ty, and is permanently resident
along with the other activity management functions: AM actions, real time clock (RTC), virtual mem-
ory (VM), and processor interface (PI) at the low end of page 0.

Routines within it maintain tables, lists, and queues on behalf of AM, and also control the invocation,
scheduling, and deallocation of actions. These routines will apply available memory for use by actions,
invoking if necessary the more complex VM routines to make the space.

A crom Lo oo o 6hgagie Wlaal?? o nnantad far cvery action The cize of o ctatie hlack YN
An area KnoOwii as a atatua block”’ is created for every action. The size of a atatua block is specific
o givan aetios Ac bt o £ €7 b cdatiic WIacl So Aividad fog shioan 1o ot o1 candt ool aia

to a given action. As shown in figure 5-2, each status block is divided into three logical sections: comm

area, control area, and stackframe. Of these, only the size of the stackframe may vary from action
to action. The status block, as its name implies, is used to hold the status of the action when it be-
comes suspended, as well as the communication parameters it receives or wishes to send to another
action or micro routine.

POINTS TO THE NEXT

VARIABLE — ENTRY ON THE SUSPENSION
LENGTH QUEUES
DEFaGTH STACK FRAME
ACTION
STATUS
LINK 2 POINTS TO THE ENTRY ID OF THE
NEXT ENTRY NUMBER ON NORMAL-QUEUE
FIXED LENGTH LINK1 * \F THIS SB IS ON NORMAL-QUEUE EXCEPT
AT 27 BYTES IF THIS ENTRY IS PI.RECEIVE.
CONTROL
AREA
FIXED LENGTH
el COMM AREA
ED2635

Figure 5-2. Status Block Layout

One to four workblocks may be associated with an action. They are accessible only to the action and
activity management, and are used to hold the data pertinent to the action. It is possible for a work-
block to hold data which may be used to supplement comm area data when one action calls another.

A link block is a work block which an action or AM has deemed necessary to be in scope to the whole

of an activity. Before an action may manipulate the contents of a link block, its status must be re-
turned to that of a work block.

VM

_VM is responsible for making space if required, maintaining descriptors and links for these, and return-
ing space.

1118478 5-3

PROCESSOR INTERFACE (Pl)

PI controls interprocessor communication. It scans two arrays, one for input, one for output. On de-
tection of a processor’s readiness to send or receive a communication, it will;

1. Read that processor’s output mailbox.

2. Write to that processor’s input mailbox if a message is available.

Message transfers in either direction are monitored by a system of acknowledgements.
AM__ACTION__LIST POINTERS

In order to keep track of the location of the status blocks, a list of pointers to them is kept resident
in memory. The maintenance of this list is the responsibility of routines within the nucleus. The list
consists of 100 two-byte entries @00@-@64@. Each entry is the absolute memory address of its associ-
ated status block. The first fifteen entries are for resident actions (one continuous, and fourteen
critical). Refer to figure 5-3.

. PAGE 0
FEFF

s _
Bt
3

| RESIDENT
LTI ARER
19 230A —_»{ |
C ’/ \
AM.NUCLEUS |— N J ooco
M / \\
A ~ ~
AM.ACTIONS | L ~
N 4 ~
T / S~
A
RTC 1 7~ ~
N / ~
s s ~
M . J ~.
~ ﬁ —~
Pl _.E@'gzﬂ@v E@P:)':g E@'g;n@v oG o000 E@NDLg 0 0000 06000000 0OOSDOGCSEOSIOGOOLOIDS E@N;;?@v
i 1 A 1 1

ED2634

Figure 5-3. Action.List Pointers

5-4

The continuous action may, in fact, be any of four which are designated ‘‘continuous.’’ Only one may
run at a time, so they share a status block. This status block is permanently located in a fixed location
within AM resident area. The continuous action will always run to completion without yielding the
processor to another action. Entries @01@ thru @0D@ are for the “‘critical’’ actions; @OE@ is a
critical action reserved for future use. These are actions of which only one invocation may exist at
any time. These actions may yield the processor.

Entries @0F@ thru @64@ are assigned on an as-required basis. They will always be in overlayable
memory. However, all status blocks with their associated work and link blocks, will always be located
on page 0.

STATUS BLOCK LINKING

OS operation consists of the serial running of actions, with interspersed nucleus code. Within the nu-
cleus is ‘‘scheduler’’ code, which determines the order in which actions are given control. Scheduler
scans through the status blocks to find one which indicates by its status byte that the associated action
is ready to run.

All current actions will be linked together in a circular list, only critical actions which are active will
be included. The linking mechanism is the “LINK1”’ byte, containing the ‘‘entry number’’ of the next
action on the list. (Refer to figure 5-4.)

AM.ACTION.LIST.POINTERS

14 15 18 17 18
- I | I 1 |
MEMORY MEMORY ceceocccecsee
ADDRESS ADDRESS
— i [i 1 |
STATUS BLOCK STATUS BLOCK
14 ET
y]
{LINK) 16 (LINK) n

Figure 5-4. Status Block Linking

1118478 5-5

9-G

AM.NORMAL.HEAD

AM.SHORT.DELAY

[—AM.LONG.DELAV

LINK 2 ENTRIES

e LINK 1 ENTRIES

l————————— ENTRY NUMBER ON AM.ACTION.LIST

ED2637

Figure 5-5. Normal and Suspension Queue Links

o7 05 13 1 18 08 60

05 13 —— 1 T 1B 08 80 o7

— FF 08 —— 1B — FF FF FF FF
LONG DELAY
SHORT DELAY

It may be that an action wishes to invoke a critical action which is already running, or wait for some
t

system event to occur. In these cases, a queueing mechanism is used, and the entry number or the
next action in the queue will be in the status block ‘‘LINK2’’ byte. There are a large number of possi-
ble queues, as can be seen from a look at the dump. The above description is only intended to describe
the linking mechanism for each queue, as shown in figures 5-5 and 5-6.

The entry number, then, is used as an index into the AM.ACTION.LIST pointer table which contains
the absolute memory locations of the status blocks of current actions.

AM.QUEUE.HEADS

CONTINUOUS| CRITICAL DCA MISC JM ol] EVENT |PROCESSOR
QUEUE QUEUE QUEUE QUEUE QUEUE QUEUE QUEUE QUEUE QUEUE
S.8 S.B
ENTRY 11 ENTRY 1A
LINK 1 LINK 2
iC 14
s.8. s.B,
ENTRY 1C ENTRY 14
LINK 1 LINK 2
1D FF
S.B.
ENTRY 1D
LINK 1
FF
ED2638

Figure 5-6. AM.QUEUE.HEADS

1118478 5-7

LINKING

Structures within overlayable memory are linked together in two distinct lists, depending on their form.
Although the linking system is basically similar, there are some differences as outlined below.

AVAILABLE

Each available block of memory contains within it a descriptor. This descriptor is five bytes long and
is the first five bytes in the block. It contains type (available), size (physical), and absolute address
of next available descriptor. The chain starts from the available head pointer which points to the avail-
able table. This table contains one entry for each page of memory; thus, available memory linking is
on a per-page basis. The entry in the table for each page points to the descriptor of the first piece
of available memory on that page. The last available area on a page is linked to @FFFF@.

WORK BLOCK/LINK BLOCK

Each work or link block is immediately preceded by a three-byte descriptor indicating type and size.
The main information about the block is held in a 10-byte descriptor. This descriptor also holds a
pointer to the next descriptor in the chain. The head of the chain is pointed to by the ‘“WB.LB Point-
er.”” (Refer to figure 5-7.)

It should be noted that the size may be indicated differently in the 10-byte descriptor and the three-
byte descriptor. The three-byte descriptor contains ‘‘physical size,” while the 10-byte descriptor con-
tains ‘“logical size.”” The discrepancy occurs as follows:

1. Area of 200 bytes needed.

2. Thirteen bytcs must be added for descriptors; look for 213 bytes.

3. Find available of 217 bytes.

4. Since surplus bytes <35 (minimum requirement for ‘‘available” descriptor), use this area.
5. Create and mark 3-byte descriptor with size = 207 bytes (physical).

6. Create and mark 10-byte descriptor with size = 203 bytes (logical) and pointer to start of area
(not to 3-byte descriptor).

NOTE
Such a three-byte descriptor always immediately precedes the area it de-
scribes. The 10-byte descriptor may be anywhere.

5-8

W.B/L.B LINKING AND AVAILABLE AREA LINKING

FFFF
! I I I l AVAILABLE
AVAILABLE
WORK BLOCK/LINK BLOCK
10-BYTE DESCRIPTOR
L
1
N
K WORK BLOCK/LINK BLOCK
T WITH INBUILT 3 BYTE DESCRIPTOR NOTE
o INBUILT DESCRIPTORS ARE
N I l AS FOLLOWS:
E
X FOR AVAILABLE — 5 BYTES
T CONTAINING:
o TYPE
E SIZE = PHYSICAL SIZE
s LINK TO NEXT AVAILABLE
c DESCRIPTOR.
T 1T 1T 1T 17T T T T 7170
suBEEEEEEREE FOR WORK BLOCK/LINK BLOCK — 3 BYTES
CONTAINING:
I TYPE
SIZE.
10-BYTE DESCRIPTOR OTHER ATTRIBUTES ARE HELD
IN THE 10 BYTE DESCRIPTOR.
CONVENTION DECREES THAT
ALL W.B/L.B ARE TO BE
ON THE SAME PAGE
R AVAILABLE TABLE
PG PG PG PG
0 1 2 3
I I o THERE IS AN AVAIL.HEAD POINTER
" FOR EACH PAGE.
WB.LB AVAIL
HEAD HEAD
0000
ED2639

Figure 5-7. W.B./L.B. and Available Area Linking

1118478 5-9

SEGMENT TABLE

All OS data segments must reside on page 0. Code segments may be on any page. A segment table
exists in the resident area for determining the presence and location of either structure. (Refer to figure
5-8.) This table contains 136 entries which for any given release will be in the same order. It is indexed
into by the segment number. Before accessing a segment, a test is performed on its descriptor to deter-
mine if that segment is present. If so, its location in memory, held within the descriptor, is valid.
If not, the disk address and size will indicate its location on disk. An absent segment will have a mem-
ory address of @FFFF@.

PAGE 0
¢ FFFF PAGE? FFFF
OVERLAYABLE
AREA CODE SEGMENT
DATA BLOCK
INTRINSICS
0000
PAGE 1
FFFF
RESII:%PEII{ SEGMENT TABLE CODE SEGMENT
@A7@ ENTRIES BY 9 BYTES
T \
/ N
/ ~o
‘ / 0000 \\ INTRINSICS
/ ~
/ N
/ ~
~
~
~N
ENTRY D 02 DO OA | 4C 02 85 C4 A0 00
i
ENTRYC 00 04 L OD | EB A, O1 04 FF , FF 01
ENTRY B 10 87 10 | E6 01 84 B2 04 02
L
ENTRY A 00 aC 03 | FE O A4 04 C1 01
A i
ng \ g v v e
FROZEN/ SIZE DISK PRESENT/ MEMORY PAGE
JELLED ADDRESS ACCESS/ ADDRESS
COUNT TYPE
ED2640

Figure 5-8. Segment Table Block Diagram

5-10

TASK PROCESSOR
Communications between the OS and the TP take place through PI, except for movements of data
which are initiated by a PI message but are performed by actions internal to OS or TP.

Messages received from the input mailbox of the TP go to one of four functions. These functions are
interpreter load, monitor, command handler, or data move.

The interpreter load function is responsible for loading the interpreters at warmstart time. The monitor
function handles polling from the OS. The command handler function breaks down its own parameters
to determine the precise request being made by the OS. Data move is responsible for the movement
of data between the OS and the TP.

Responses to OS communications are returned to the OS by way of PI. The action in the OS to which
the response is to be routed is part of the data contained in the output mailbox of the TP.

The TP does not run with the same action structures as the OS. Only the interface mechanisms are
common to both. The rest of the TP may be considered a completely separate entity. Figure 5-9 is
a block diagram of the TP, showing the OS-to-TP interface, the TP functions, and the TP-to-OS inter-
face, via PI.

A task record is maintained for each TP task. Only two tasks are considered to be “‘resident’’ and
have task records permanently assigned These tasks are named ‘‘OS REQUEST TASK’’ and ““TER-
MINATE TASKS TASK.”’ Entry numbers indicating TP-relevant tasks are found in the JOB QUEUE.

Abtlask is a pointer to a system task, and may be converted to a user mix number by use of the mix
table.

1118478 5-11

s

Pi

TP JOB-CONTROLACTIVITY
COMMAND | DATA
INT.LOAD MONITOR HANDLER MOVE
08 09 07 FF
00 01|08 04 03
AUN PREPARE GETSEG GET
REMOVE SIZE FPB #
I
- —_—
un B E——
INTERP)
ACTION REMOVE |
——— J L
Pl
DECODE REMOVED
os
ED2641

5-12

Figure 5-9. Task Processor Job Control Activity

SECTION 6
HEADING INFORMATION

INTRODUCTION

This section presents a description of the first four pages encountered in a system dump. The first page
is the title page, which identifies the dump file being analyzed, and indicates when the dump was cre-
ated. The second page, titled “‘Dump File Parameters,”” contains data detailing the structures found
within the dump. Page three is a brief section containing dump file map definitions, and page four
is the dump file map. The dump file map provides the status of the processors and associated memories
at the time the dump was taken. The relevant fields in initial dump analysis are discussed in the fol-
lowing paragraphs in the order in which they appear in the dump.

TITLE PAGE

The title page contains information relevant to the dump file being analyzed. The initiating message
to the SYSANALYZER program is printed first. This will indicate which portions of the dump were
requested to be printed. The fields ‘‘dump file creation date’’ and ‘‘dump file creation time’’ can be
used to determine if the dump was created by the ROM/PRAM routine or by the system. If these
fields contain a valid date and time, the dump was created by the system. This could have occurred
either automatically, due to a system failure, or by the operator’s use of the GT MD intrinsic. If the
date is given as 11 11 11 and the time is given as 24.00.00, the dump was most likely created by the
ROM/PRAM dump routine. It is also possible that the failure occurred prior to the input of the date.
On a remote SPO system it is not mandatory to enter in the date and time; therefore, the dump could
contain 11 11 11 as the date and 24.00.00 as the time. Refer to figure 6-1 for an example of a title

page.

BOJ MESSAGE ALL,HEX
DUMP FILE PACK 1D 0600000
DUMP FILE 1ID SYSDMFILEOG
DUMP FILE CREATION DATE 82 08 13
DUMP FILE CREATION TINME 14 12 05
ANALYSIS DATE 82 08 13
ANALYSIS TIME 14 13 04
KEVISION LEVEL 03.04.10

Figure 6-1. Title Page Messages

1118478 6-1

DUMP FILE PARAMETERS

This area contains pointers to various structures within the operating system, most of which are used
in a hexadecimal dump analysis. Some of the fields in the dump file parameters sections are irrelevant
for an initial dump analysis. Those that are most important are:

Version String
System Error Value
Frozen Processor
Frozen State

The dump file parameter fields are discussed in the following paragraphs in the order in which they
appear in the dump file. Refer to figure 6-2 for a sample dump file parameter page.

ANALYZER LEVEL

The analyzer level is a one-byte field which is checked by SYSANALYZER. If the level in the dump
file does not match the SYSANALYZER level, an analysis of the dump will not be performed.

VERSION STRING
This field identifies the level of the MCP in use when the dump file was created.

SYSTEM ERROR VALUE

This field gives the first two digits (byte) of the clearstart number if the dump was created by a clear-
start (refer to Appendix A for clearstart numbers and their meanings); otherwise, the field contains

@FFr@.
FROZEN PROCESSOR

This field gives the bus address of a processor that has been frozen by the operating system. Other
sections of the dump may show why the processor was frozen.

FROZEN STATE

The contents of this field indicate the state of the frozen processor identified in the preceding field,
““frozen processor.”’ The values for the processor state are found under “‘Dump File Map Definitions.”
It should be noted that a fatal failure in a task or DCP processor always results in an attempt to pro-
duce a system dump file.

PROCESSOR TYPES

The processor types field is a 16-byte array. Each byte represents a zero-relative bus address. An
unused entry contains @FF@. Valid entries are described under Dump File Map Definitions.

REMAINING DUMP FILE PARAMETERS

The remaining dump file parameters are used for in-depth analysis, generally in conjunction with a
hex dump.

KRR RARRAAK AR RARRARN A AR

DUMP FILE PARAMETERS
ARRE AR AR AR AN AR AR A A AR

ANALYZER LEVEL

VERSION STRING

SYSTEM ERROR VALUE

FROZEN PROCESSOR

FROZEN STATE

PROCESSOR TYPES

DATE & VIME

ACTION LIST POINTER

NUMBER OFf ACTIONS

COMM BASE POINTER

CURRENT ID POINTER

VM BASE PAGEL O

VM BASE NON PAGE O

WAITING HEAD POINTER

NCRMAL MEAD POINTER

QUEUE HEAD POINTER

NUMBER OF CRITICAL QUEVUES

LAST QUEUE POINTER

NUMBER OF SCHEDULE QUEUES

LONG DELAY POINTER

SHORT DELAY POINTER

WB/LB HEAD POINTER

WwB/LB ENTRY SIZE

AVAILABLE HEAD POINTER

AVAILABLE ENTRY SIZE

SEGMENT TABLE POINTER

SEGMENT TABLE ENTRIES

SEGMENTY ENTRY SIZE

INTERRUPT HANDLER POINTER

INTERRUPT HANDLER SI1ZE

MAX USER JOBS

DC DATA POINTER

DC DATA END ADDRESS
C

1] DA TLTe o

ADDRESS POINTER

BLFFER

Qs
R QU

UE ADDRESS
DC POINTER POINTER
HISTORY COMM TABLE POINTER
PI POINTER
IC WS
ID JM
ID DA PROG NAMTIAB
ID DA INTERP NAMIASB
ID DA MISC NAMTASB
ID DA LWAIT
Ip 01
Ip sm
DC LINE POINTER
NUMBER OF EVENT QUEUES
PORT TABLE POINTER
PERIPHERAL TABLE POINTER
DA.CT.POINTER
ID D€ LIST
DA BUFFER POINTER
NUMBER OF P1 QUEUES
ODT SEG PTR
PERIPHERAL tLOCKS

03

3033 3034 3233 3033 3230 3130 3030
FF

FF

FF

FFO1 0304 0303 0305 02FF FFEFF FEFF FFEF
0813 8219 1412 0572

0a23

64

0F5¢C

115¢C

1384

4803

3024

2F24

3124

Figure 6-2. Dump File Parameters

1118478

03042303201000

DUMP FILE MAP DEFINITIONS

The type key may indicate the type of area that is dumped, or it may indicate termination. The type
key values are as follows:

@01@: Page of memory

@02@: Data block/work block/linked block area. Data block is part of the operating system’s vir-
tual memory file; work block/linked block are defined in Section 3.

@03@: Terminated with no errors

@04@: Terminated due to parity errors

The validity flags and their meanings are:

@FF@ Incomplete: The area that follows is the last area dumped, and is probably incomplete
because of a system or disk crash.

@00@ Valid: The area that follows has been completely dumped with no errors

@0l@ Invalid: The area that follows had disk errors during dump. Go on to the next id sector.
The same area will be dumped again. Only one retry will be done before the dump
is terminated and a type key of ‘‘terminated with parity errors’’ is written.

The processor state values are outlined in figure 6-3.
DUMP FILE MAP

This table provides the status of all the processors and memories on the system at the time the dump
was created. Using the fields bus address, processor type, and last address, the configuration of the
system can be ascertained. The ‘‘Last Address’’ field is used to calculate the amount of memory as-
signed to each processor. A normal 64K page will have the value @FOFF@ (byte-reversed), and for
depopulated boards, the last address should be on a 16K boundary. If the last address is any value
other than previously stated, it means that an error was detected when attempting to dump that page.
The error being detected is at the address contained in “Last Address.”” The amount of buffer memory
assigned can be ascertained by a processor type of 05 (BM). In a ROM/PRAM dump, buffer memory
is not evident. A dump file map is shown in figure 6-4; see figure 6-5 for an example of a processor
status decode section.

Ak EARARRAA AR NR R A I AAR R A AN AN

DUMP FILE MAP DEFINITIONS
AARRAARAXANANARARAARANAR AR

TYPE KEY

VALIDITY FLAGS

PROCESSOR STATE

Figure 6-3. Dump File Map Definitions

AARNANAAR AR KA I &

DUMP FILE MAP
Ak ARk AR A AR ARAR

BUS PAGE PROCESSOR

KEY FLAGS ADDRESS ADCRESS STATE
Akd AAAAR RABRARA L ARRAARR ARAARARAA

c1 00 Q1 00 FF
01 00 01 01 FF
01 00 01 02 FF
01 00 01 03 FE
01 00 (V4 00 FE
01 oo 02 01 FF
01 00 02 02 FF
01 00 02 03 FE
01 00 03 co FF
01 60 04 0o FF
01 oo 04 01 FF
01 00 04 02 EF
01 00 04 03 FF
c1 00 05 00 FF
01 ao 05 01 FE
01 (0]¢] 05 02 F¥
G1 00 05 03 Ff
61 00 06 00 FF
01 00 06 0t FF
U1 00 06 02 FF
01 00 06 C3 FF
01 00 Q7 0o EF
01 00 a7 01 FF
a1 00 08 oo FF
02 00 00

03]y 00

01 — PAGE OF MEMORY

02 - DATA BLOCK

03 — TERMINATED WITH NO ERRORS

04 — TERMINATED DUE TO PARITY ERRORS

00 -~ VALID

01 - INVALICD
FF — INCOMPLETE

00 — FROZEN
01 - FROZEN

FF — 0.K.

PROCESSOR
STATUS
ARAARAR AR
81021181
81021181
81021181
81008FA2
81008FA2
81008FA2
81008FA2
81008F73
81008F64
81008F64
81008F64
81008F64
81028F05
81028F05
81028F05
81028F05
81008F06
51008F06
81008F06
81008F06
2100DF 17
2100DF17
A1008F18

Figure 6-4. Dump File Map

1118478

PROCESSOR

TYPE

BESRARR AR A

0s
oS
0s
os
P
TP
P
TP
DK
TP
TP
TP
TP
TP
P
TP
Lid
TP
TP
TP
TP
BM
BM
DC

01
01
01
01
03
03
03
03
04
03
03
03
03
03
03
03
03
03
03
03
03
as
05
02

LAST
ADDRESS
AAkANARA
FOFF
FOFF
FOFF
FOFF
FOFF
FOFF
FOFF
FUFF
FOFF
FOFF
FOFF
FOFF
FOFF
FOFF
FOFF
FOFF
FOGFF
FOFF
FOFF
FOFF
FOFF
FOFF
FF3F
FOFF
FEFF
FFFF

/ REGISTER STATE SAVED
/ REGISTEK STATE UNSAVED
02 — UNFROZEN / SOFTWARE ERROR

DISK
RECORD
AARRA %
06003
0171
020F
044D
o588
g7zz2e9
0897
GAQS
0873
OCE?
QELF
OfFBD
1128
1299
1407
1575
16€E3
1851
198F
1820
1C98
109
1F77
1FD4
2142
2204

6-5

RARNBEARERAPARRARARARNE AR

PROCESSOR STATUS DECODE

R AN RARARARARRBANRRRA AR

PROCESSOR
PROCESSOR
PROCESSOR
PROCESSOR
PROCESSOR
PROCESSOR
PROCESSOR

PROCESSOR

ON
ON
ON
ON
ON
ON
ON

ON

BUS
eus
BUS
BUS
BUS
BUS
8us

BUS

01
02
03
04
0s
a6
a7

[¢}.3

Figure 6-5. Processor Status Decode

NPRG CONNECTED
0S SUBSYSTER
NPRO CONNECTED
0S SUBSYSTEM
NPRC CUNNECTED
DISK SUBSYSTEM
NPRO CONNECTED
DISK SUBSYSTEW
NPRO CONNECTED
NPRO CONNECTED
FROZEN

RAM FETCH

NPRO CONNECTED
RAM FETCH

RAM STATE

10S CONNECTED
RAM STATE

108 CONNECTED
RAM STATE

10S CCNNECTED
RAR STATE

I0S CONNECTED
RAR STATE

RAR STATE

RAR STATE
CONTROLS 1/0
FROZEN
CONTROLS 1/C

KEMOTE ACCESS
CONTROLS 1/0
LOCAL ACCESS

LCCAL ACCESS
CONTROLS 1/0
LOCAL ACCESS

LOCAL ACCESS
LOCAL ACCESS
LOCAL ACCESS

RAM STATE

RAM FETCH
RAM FETCH
RAM FETCH
RAR FETCH
RAR FETCH
RARM FETCH

READ WITH CLEAK

LOCAL ACCESS

SECTION 7
VIRTUAL MEMORY
INTRODUCTION

This section of the manual provides a field-by-field description of the Virtual Memory portion of a
dump. This area of the dump is composed of six tables, which are maintained by the MCP, indicating
the status of the system at the time the dump was taken. The tables are:

DA_PROG_NAMTAB - Program Name Table
DA_INTERP_NAMTAB - Interpreter Name Table

DA_MISC_NAMTAB - Miscellaneous Name Table
MIX TABLE

PORT TABLE

Under heavy system activity, it is possible for some of these tables to be swapped out to disk (backing
store). When this condition occurs, these tables are located towards the end of the SYSMCP file. In
a system dump, both “Copy in Memory” and “Copy on Backing Store” are printed unless the tables
have been swapped out of memory. When both are present, Copy in Memory is the most recent version
and is the one which should be analyzed. Copy on Backing Store is never printed in a ROM dump.

The reason for this is that the links which point to the location on backing store are cleared in the
process of taking a ROM dump.

Initial analysis of the Virtual Memory section consists of scanning the MIX TABLE, PORT TABLE,
and the Peripheral Table (PHT).

An examination of the MIX table shows the number of programs in the mix and their status. More
specifically, the “MIX PROCESSOR™ field gives thc bus address of the task processor executing a
specific program. The Port Table identifies the devices on the “soft” ports. The PHT indicates the
physical status of all peripherals connected to the system. This table should be used in conjunction
with the Device Configuration Table (DA _CT), which gives the logical status of the peripherals.

A detailed description of the virtual memory tables and their fields as they appear in a dump is contained
in the subparagraphs which follow.
DA_PROG_NAMTAB

This table is a list of all open code files. A sample DA _PROG_NAMTARB is supplied in figure 7-1.
DA_INTERP_NAMTAB

This table is a list of all loaded interpreters. A sample DA_INTERP_NAMTAB is supplied in figure
7-2.

DA_MISC_NAMTAB

This table is a list of all opened miscellaneous files: for example, log files, SYSLANGUAGE, SYSDM-
FILEnn, etc. Refer to figure 7-3 for an example of the DA_MISC_NAMTAB.

1118478 71

MIX TABLE

The mix table is an internal array record of each job. It has one entry for each program in the system.
The job management activity of the operating system controls the maintenance of this table. The fol-

lowing fields are used by Job Management in per

forming its functions. These fields appear in the dump

analysis in front of the first mix table entry break down.

Sample Mix Table entries are outlined in figures 7-4 and 7-5.

7-2

MAX JOBS

NULL MIX RUNNING

JOB COUNT

MCS COUNT

TEMPORARY 1D

NEXT MiX NUMBER

COUNT WAIT JOBS

RESTART D

INTERPRETER ARRAY 0,1

SUPER FUNCTION

This fleld indicates the maximum number of
Jobs (in hex) allowed In the mix.

This fleld Is set true (8FF8) [If the
current Job requires a null mix In which to
run.

This field indicates the number of Jobs In
the mix, Including SUPER=-UTILITY.

Contains the number of MCSs running in the
mixe

This field temporarily holds values during
the loading of a job.

This fleld Is the mix number of the next
Job to be loaded.

This fleld contains the number of Jobs
walting to be assigned a processor to run
ine

This fleld contalns the action Iid of the
restart action.

Thic fleld contains the flile Information
block ids of the Interpretere.

This fleld contains the current SUPER=-
UTILITY function, such as PD. {f the fleld
Is blank, the SUPER=UTILITY Is idle.

The following flelds are contalned in a mix table record:

MIX TABLE ENTRY/TASK ID

PROGRAM FIB ID

This field contains an Index Into the mix
table. It points to the mix table entry
for this job (itself).

This fleld contains the id of the flle
information block for the program (code)
flle« It Is used In opening and closing
the program file. The left hand byte Is
the entry number In the DQ_PROQ_NAMTAB.

1118478

VM FIB ID

INTERPRETER FIB 1D

MiX NUMBER

MIX FLAGS

This fleld contains the id of the flle
Information block for the virtual memory
filee It is used In opening the VM file.
The left hand byte is the entry number 1In
the virtual list and should be the same as
the task ide.

This fleld contalns the Id of +the file
Information block for the Interpreter file.
It Is used In opening and closing the
Interpreter file. The left hand byte Is an
Index fnto the DA_I NTERP__NAMTAB.

This field contains the mix number assigned
to the task at load time. This {s the
number the user uses to refer to the job.
Note that this Is In hex.

These reflect the state of a job.

Any reasonable combination of these flags
Is permitted.

880006€ EOJ terminating

€4000@

DP terminating

€2000@ : DS terminating

€10008 : Terminating (accompanied by
one of the above)

608008 : BOJ/EOJ message suppress

@0400€ : Data comm job

€0200@ : MCS

€0100€ : Multicopy

€00808 : Thrashing

@00408 : Null mix required

@00208 : Paused

600106

Terminate with lock

7-3

7-4

Mix Flags 2

MIX STATE

MIX PROCESSOR

MIX INTERPRETER

MIX PRIORITY

€0008& : EX pending

€00048@ PR pending

€00028 : ST pending
€0001@ : GO pending

€0000@ : None of the above

If this field = 01 then the task is a
remote SPO handlere.

This reflects the current state of the job.
possible values are:

€01@ : Loading

6026 : Waiting (not assigned to a TP)

eo3e

..

Awalting run

eo4a Executing

€058 : Awalting remove

@068 : Stopped

€078 : Unloading

@o8@ : Awalting suspend
€09@ : Suspended

This fleld indicates the processor which is
running this jobe

This field holds the index Into the
interpreter assoclated with this job (Index
into interpreter array)e.

The low order digit of this flield indicates
the priority of the Job as follows:

Priority C
Priority B
Priority A
: lilegal priority

we oo e

NN -

A 8C8 In the high order digit Indicates
that this Job may open any fille; @88 In
this digit means this job can open any file
but systeme.

MIX TCB SIZE This fleld indicates the size of the task
control block. I+ Is used by Job
Management when passing the job to the task
processor to rune.

MIX PARENT POINTER This fleld contains the task id of the
parent job if this job was started by a zlp
with pause.

REAL STORE Holds the working set estimate specified at
Job execution (if given).

SPO SIZE Reserved for future use.

PORT TABLE

This table lists the number of devices associated with a port and the number of users for the device
and the actions executing for the port.

The “index” is the index into the DA _CT table. DEVICES gives the number of devices associated with
this port, thus the number of entries in the DA_CT, index 00 point to first entry in DA_CT. If
DEVICES = 2, two entries will appear in DA_CT, both controlled by the controller indicated in port
table TYPE column.

NOTE
Variations from above are devices that do not appear in DA_CT. They are:
Entry 00 = PJ
Entry 01 = DP
Entry 02 = TOD
Entry 03 = ODT

Refer to figure 7-6 for a sample Port Table.

PERIPHERAL TABLE (PHT)

This table contains device status information. The individual fields of an entry are explained below.

The first grouping of four data items contains information about the disk file header locks. These locks
prevent concurrent access to the disk file headers for a particular file during Open, Close, or Disk Area
Allocation. Each lock is three parts: a SYSMEM flag, task byte, and a FILETAG.

Refer to figure 7-7 for an example of a PHT entry. An explanation of the individual entries fol -
lows:

1118478 7-5

PERIPHERAL TABLE (Cont.)

NUMBER
PERIPHERAL
LOCK

SYSMEM
FLAGS

TASK BYTES

LOCK BYTES

ENTRY/DA CT INDEX

FORCE STATE STATUS

STATUS

UNIT/PORT TABLE INDEX

This byte contalns the number of lockss Thlis value Is
used by the dump analyzer to compute the sizes of the
individual lists that comprise the locks. This value
Is the number of bytes in the SYSMEM flag and task byte
lists and Is one-fourth the size of the lock byte list.

These flags are used by OPEN SYSMEM LOCK as an
indication that all directory activity for a unit being
locked has ceased. When Open wants to OPEN SYSMEM LOCK,
the SYSMEM flag Is set (@FF@) for each lock that Is not
available (an available lock has its corresponding
four-byte FILETAG entry in the lock bytes binary zeroed
out). The Open delays until all of thes SYSMEM flags
have been reset. It then continues with the Open.

The task bytes contaln the Internal task number of the
Jjob that is currently holding a locke When a lock Is
freed, the lock maintenance code nsures that the task
id of the lock holder matches the task id of the lock
freer. If they do not match, a clearstart results.

The lock bytes contain the FILETAGs for the files
that have currently locked headers. When Open, Close,
or Allocate attempt to unlock or lock a flle header,
the FILETAG Is passed from the FiB.

The contents of this fieid is an index into
the configuration table, DA CT.

This field indicates whether the device Is
physically ready, physically not ready, or
unavalilable :

a00@ : Physicaily not ready
€01@ : Physically ready
@rF@ : Not avallable

This field indicates the status of a
device. The analyzer only lists this field
for the devices that are marked physically
not ready. The flag values are:

(MSB) 0 : Device post needed
1 ¢ AVR needed
2 : Last status noticed
3 : lllegal PO flag

This fleld Is an index into the port table,
as follows. The righthand digit Is the port
number and the lefthand digit Is the device
number within that ports

PERIPHERAL TABLE (CONT.)

QUEUE HEAD,
TAIL, & CURRENT

QUEUE STATUS

AM.ACTION.LIST INDEX

RETURN STATUS

MSB

1118478

These flelds point to the queue of 1/0°s
that are outstanding for this device. If
the queue contains any entries, they are
analyzed here.

This field reflects the status of this /0.

@008 : New
€01@ : In process = by the controller
@02@ : Complete

€038 : Complete and dequeued
(delinked from queue but stil)
In buffer memory)

This field contains the action id of the 0S
actlion associated with this 1/0.

This is a three-byte field which Is the 1/0
status returned for the last operation
performed. (This field isonly valid with a
queue status of 2 or 3.) This fleld Is
decoded as follows:

byte 1 : @008 Controller error (internal to DP)

ao1@ Command successful

€028 Command unsuccessful

@03@ Device error, aborted command
€048 Not used

@058 Descriptor error

byte 2 : @008 No error

€01@ Seek timeout

@028 Head off cylinder

€03€ Sequence error (Internal to DP)
@04& Parlity

€058 Sector not found

a06@ |llegal address

@07& Status word error(internal to DP)

PERIPHERAL TABLE

7-8

(CONT.)

€08@ Data error (in compare)

@09@ Write Inhiblted

byte 3 : Retry count

OP CODE This fleld contains the op code of the
command the device was executing. The
following Is a list of acceptable 1/0
commands :
0 Read data 9,10 Search less than or equal
1 Write data 11,12 Search greater than or equal
3,4 Search less than 13 Initialize
5,6 Search greater than 14 Lock door
7,8 Search equal 15 Unlock door

SIZE PARAMETER

DEVICE-DEPENDENT
PARAMETERS

For Disk:

During a search operation the 2 bit Is used
to condition read operations. |f set, the
hit sector will be read; if reset, It will
not be read.

This Is a 6=hyte fleld. The first two
bytes indicate size. The second two bytes
Indicate BUS/PAGE, and the last two bytes
indicate offsete.

This is a 2-byte field Iindicating total
buffer slzee.

Byte 1-3 Sector address
4 Key length
5 Key displacement
6 Key record length
7-9 MIR status

For Tape Descriptor Format:

The tape 1/0 descriptor differs from the

disk 1/0 descriptor format in the Return

Status fields, the CPCODE, and the Device
Dependent Parameters.

RETURN STATUS
Byte 1 - Command Status
eooe - 1/0 Control ler Error
@01@ - 1/0 Completed ok
a03@ - 1/0 Device Error

PERIPHERAL TABLE (CONT.)

8048 - Tape Mark Read (end of file)
€05@ - |/0 Descriptor Format Error
8068 - End of Tape Sensed

@078 -)/0 Complete with a Short Block

Byte 2 - Error Status
€0C& - No Error
€01@ - Not Ready Error
€028 - Parlity Error
€038 ~ Tape Hard Error
@048 - Attempt to Backspace over BOT
&05@ - Data Error
8068 - Attempt to Backspace over Tape Mark
&07@ - Device Timeout
€088 ~ Attempt to Write to Write Disable Tape
€098 - Gap Timeout
@0A@ ~ Service Late Error

Byte 3 - Retry Count

OPCODES
€00€ -~ Read
@018 - Write
8028 - Write Tape Mark
€038 ~ Skip to Tape Mark
8048 - Read to Tape Mark
€058 - Back Space One Record
€068 - Skip One Record
807€ - Rewind With Wait
808& - Rewind NC Wait
8098 - Fixed Length Erase
80A8 - Backspace TC Tape Mark
a0B@ - Stream Dump

Device Dependent Parameters
Bytes 0,1 - Amount of Bytes short if a Read Encounters a
short blocke.

1118478

IZSEEREEE IR R 2 2R

VIRTUAL MEMORY
Y2122 2R3 L

RARANA AR AN AR AN

CA PROG NAMTAB
kR ARARARA R AN N AR

COPY ON BACKING STORE
AAhE AR RAKANAR ARRAR

COPY IN MEMORY
2R h Ak ARRAAN

PACKID
AkhARAR
PACKID
ARAAN AR

0000000

FILENAME
ARAKBR AR

FILENARME
AR AAAAR

SYS—=SUPERUTL

Figure 7-1. DA_PROG_NAMTAB

IS E2RZ22sRSR RS SR

DA INTERP NAMTASB
Ph A A A AR AR AR A A kAR

COPY ON BACKING STORE
AARAk AR KARAAAR RBARR

COPY IN MEMORY

AARE RA AhkAkA K

PACKID

ARRAARR
0000000
0000000
PACKID

ARRAN AR
0000000
0000000

FILENARE
ARAARARA
SYSMPL1I
SYSCOBOL
FILENANE
AR ARAAR
SYSMPLIL
SYScoBOL

Figure 7-2. DA_INTERP_NAMTAB

Ak kAR kA Rk A&k %

DA MISC NAMTAB

AhkAhARA AR A RA A NAR

COPY ON BACKING STORE

RAEA kA Ahkh kAR kA hkA K

COPY IN MEMORY
AARAR AD AAAKAR

PACKID

AAR AN AR
00006000
0000000
0000000
PACKID

AAARRRA
0000000
0000000
0000000
6000000

FILENARE
ARAkAAAR
SYSLANGUAGE
SYS-L06-02
SYS-L0G-03
FILENAME
ARk ARAK
SYSLANGUAGE
SYS-L06-01%
SYS-L06-02
SYSDMFILEQO

Figure 7-3. DA_MISC_NAMTAB

7-10

ENTRY-NURBER
AAABAAARARR AR
ENTRY-NURMBER
ARARAARBAARR

0o

ENTRY-NUMBER
AAARA AR AARRA
]y
01
ENTRY-NUMBEK
ARKANRBARR AR
0o
01

ENTRY-NUMBER
AAARRARAAARD
00

a2
03

ENTRY-NUMBER
AR RAANRARRAR
00
01
02
03

1118478

Ak kRAR AR

MIX TABLE
ISEEEER S

COPY ON BACKING STORE
AAhEk AR ARNRAAIR ARARR
MAX JOBS

NULL MIX RUNNING

J0B COUNT

MCS COUNT

TEMPORARY 1D

NEXT MIX NUMBER

COUNT WAILIT JOBS
RESTART 1ID
INTERPRETER ARRAY O
INTERPRETER ARRAY 1
SUPER FUNCTION

COPY IN MEMORY

AARR AR AhhkAR

MAX JOBS

NULL MIX RUNNING
JO0B COUNT

MCS COUNT

TEMPORARY 1D

NEXT MIX NUMBEK
COUNT WAIT JOBS
RESTART ID
INTERPRETER ARRAY O
INTERPKETER ARRAY 1
SUPER FUNCTION

FF
FF
Fr
FF
FE
FF
FF
FF
FFFF
FFEF

1A
00
01
00
0c¢
oo
00
Oe
0301
030¢€

Figure 7-4. Mix Table - Copy on Backing Store

MIX TABLE ENTRY / TASK ID (0O
PROGRAM FIB 1D 0100
VM FIB 1D 0400
INTERPRETER FIB 1ID 0300
MIX NUMBER 01
MIX FLAGS 0000
MIX FLAGS2 00
MIX STATE D04
MIX PROCESSOR 02
MIX INTERPRETER Ot
MIX PRIORITY (2
MIX TCB SIZE 7F02
MIX PARENT POINTER 00
REAL STORE 0000
SPO SIZE 000U

0000000/SYS-SUPERUTL

0000G00/sSYSMPLLI

EXECUTING

PRIORITY B

Figure 7-5. Mix Table - Copy in Memory

CAN OPEN ANYTHING

7-11

cl-L

AhRAAkREkAN A K

PORT-TABLE
AhkhkAkARhkkh

ENTRY
ARBAK
0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
000A
0008
oooc¢
0o00o
000E

INDEX
A ARE
FF
(]
FE
FE
06
FF
FF
o7
FF
FF

DEVICES
ARAAARR
to
06
00
co
o1
00
00
U4
00
ao
ao
0o
oo
[+1¢}
00

USER
COUNT
Ak xRS
00

00

00

[oJ¥]

00

00

0o

00

00

00

00

00

00

uo

00

ACTION
TYPE

ReA kAR

00
03
00
0o
36
[\
oo
3
(4]4]
00
00
oo
1147
[V]9]
0o

DA DP CONTROL

DA LP CNTRL

DA KT CNTRL

Figure 7-6. Port Table

AM_ACTION.LIST
INDEX
ARAAIRARAARARSD
FF

03

FF

FF

Ff

FF

FF

FF

FF

FF

8LYSIITI

€l-L

AR RAANA NN AN IR AI NN TR R K

FERIPHEKAL TABLE PHT
FARER AR RRANN A AR AN AR T AR

NUMSER PERIPHERAL LOLKS OA
SYSMENM FLAGS GO0OGO 0000 0000 DOGu UJuu
TASK BYTES UCGU 0GUO OvLu 000U 0000
LGCK BYTES 0000 GOUO uwuGD LOLC 000L OCLUO LOLOC GOOO 000U OVOG 0GJ0 0000 00CO0 0000 GCOO 000U
C0UL0 0GJ0 GO00 LODOL

ENTRY/DA CT INDEX GO
FORCE STATE STATUS OO DEVICE PHYSICALLY NOT REMDY
STATUS 00
UNIT/PCRT TABLE INDEXx 032
QUEUE HEAD FFEF FFFF
QUEUE TAIL FFEF FFEF
QUEUE CURRENT FFEF FEFF

ENTRY/DA CT INDEX 01
FORCE STATE STATUS CO DEVICE PHYSICALLY NOT READY
STATUS 00
UNIT/PCRT TABLE INDEX (3
QUEUE HEAD FFFF FFFF
GUEUE TATIL FFET FEFF
QUEUE CURKENT FFEF FFFF

ENTRY/DA CT INDEX 02
FORCE STATE STATUS 00 DEVICE PHYSICALLY NOT READY
STATUS 00
UN1T/PORT TABLE INDEX 04
GUEUE HEAD FFEF FFFF
QUEUE TAIL FFFF FEFF
QUEUE CURRENT FFEF FFEFF

ENTRY/DA CT INDEX O3
FORCE STATE STATUS (00 DEVICE PHYSICALLY NOT READY
STATUS 00
UNIT/PORT TAELE INDEX 04
QUEUE HEAD FFEF FEEF
QUEUE TAIL FFEF FFEF
QUEUE CURRENT FFEF FEFF

ENTRY/DA CT INDEX 04
FCRCE STATE STATUS 01 DEVICE PHYSICALLY READY
STATUS 04
UNIT/PORT TABLE INDEX 05
QUEUE HEAD (001 25A8
QUEUE TAIL 00071 25A%
QUEUE CURRENT 0001 2548

QUEUE STATUS 01
AM _ACTION.LIST INDEX 18

RETURN STATUS 0100 00 COMPBAND COMPLETE NO ERROR
FORWARD LINK FFEF FEFF

BACKWARD LINK FFFF FFFF

oP CODE 01 WRITE
BUFFER ADDRESS F1Ft 0001 GUOO
SI2E PARAMETER F1F ¥
DEVICE DEPENDENT PARAMETERS (1243 D202 0004 FFFF FF

Figure 7-7. Peripheral Table

SECTION 8
OPERATING SYSTEM
INTRODUCTION

The Operating System section of the dump examines the structures within the MCP. This portion of
the dump file provides a history of what the MCP was doing before the dump was taken, and shows
what section of the MCP (if any) detected an error.

The Operating System portion of the dump file is subdivided into the following sections:

ACTIVITIES

AM.ACTION.LIST

AM.QUEUE.HEAD

SEGMENT TABLE

HISTORY COMMUNICATE TABLE

PI DATA

DEVICE CONFIGURATION TABLE (DA_CT)
WB.LB.HEAD - Work Block/Link Block Head

FIB - File Information Block

AVAILABLE TABLE - Available Table Map
OVERLAYABLE MEMORY - Overlayable Memory Map
AVAILABLE MEMORIES - Available Memory Map
ODT DATA SEGMENT

INITIAL DUMP ANALYSIS

In an initial analysis of the OS section of the dump, these are the sections to be considered:

ACTIVITIES

AM.ACTION.LIST

HISTORY COMMUNICATE TABLE
PI DATA

DA_CT

The remaining sections are explained in the order in which they appear in the dump.

ACTIVITIES

This is the area in which the processor register values are saved when a failure is detected. If a clear-
start occurs, the clearstart number appears in the ERROR NUMBER field. (Refer to Appendix A for
an explanation of these error numbers.) This information gives a general idea of what caused the clear-
start.

The fields ACTION ID and ACTION NAME contain the ID and the name of the action that is in
error. If these fields contain @FF@ and the other register values are @00@, then the OS processor
did not detect an error and therefore was not the reason for the dump to occur.

NOTE
If an action was marked ‘‘IN ERROR,” it does not necessarily mean that
this action had failed. It may mean, instead, that this was the action that de-
tected the error. For example, this action may have picked up bad data from
some other area of the MCP, or read an area of corrupted memory.

1118478 8-1

The MAX register is the next entry to be checked. This register is explained further in figure 8-1. It
contains the bus address and the page of the processor that the OS processor was accessing at the time
of the failure. If the OS processor detects a memory error, that error may be in any of the processors
attached to the system. This is because any processor can access any other processor via the Processor
Interface Bus.

The IC Status Word fields should be interrogated next. These words identify the status of the processor
and the type of failure which occurred. Refer to the IC Memory Map, figure 8-2.

The IC FIRST ERROR REGISTER identifies the memory address within a page of memory that the
processor was addressing at the time of the failure. In the case of a memory parity error, this register
contains the address of the failing memory.

AM.ACTION.LIST

This area interprets the status blocks of all the actions that were active prior to the dump being taken.
If the problem was a clearstart, the ACTION ID and the ACTION NAME found in the STATE SAVE
AREA identifies the action in error. The status block of this action contains pertinent information.
More specifically, the Caller Field within the status block contains the action number of the action
that invoked it. This may help to identify the reason for the failure.

The LINKI1 and LINK2 fields identify the sequence of events leading up to the clearstart.

The last field to interpret in the initial analysis of this section is the TASK ID/MIX TABLE INDEX.
This field identifies the task in the MIX Table on whose behalf the action was running. A @20@ in
this field indicates that the action was invoked by a system resource.

HISTORY COMMUNICATE TABLE

This table identifies the last 10 communicates performed. The table is cyclic, the highest entry number
is the item which occurred most recently.

This information is useful as it indicates the type of 1/0 the system was performing before the clear-
start occurred.

For example, if heavy disk I/0 had been occurring, it is possible the failure is in the disk area.
Pl DATA

In this section of the dump file, the PI DEAD PROCESSORS field indicates any ‘‘dead’’ processors
on the system. The field is byte-reversed and bit-oriented.

For example, if a task processor on bus address 5 had been frozen for some reason, this field contains
1000. When this is byte-reversed it becomes 0010, the fifth bit being set. This indicates the processor
on bus address 5 is frozen.

DA_CT

This table provides the logical status of the peripherals on the system. This information is used in con-
junction with the Peripheral Handling Table to‘determine both the physical and logical status of the
peripherals.

The other fields in the Operating System portion of the dump file are used for more in-depth analysis
of errors. The method. of using them is explained in detail in the remainder of this section.

8-2

Length Byte

Byte Description In Bytes Note Reversed?
1 Clearstart/TP/DCP/OS Error No. 1 1

2 AM ACTION LIST entry No. 1 1

3 Action Name in error 1 1,2

4-5 M1 Register 2 Yes
6-7 WR Register 2 Yes
89 M2 Register 2 Yes
10-11 B32 Register 2 Yes
12-13 MAX Register 2 3 Yes
14-15 MXA Register 2 Yes
16-17 MXB Register 2 Yes
18-19 B1FL Reaister 2 Yes
20 BO Register 1

21 REQ Register 1

22-29 XY Register 8 Yes
30-35 J,K,L Registers 6 Yes
36 AD Register 1

37-38 Top of stack (UMR3) 2 Yes
39-40 Top of X stack (UMRX3) 2 Yes
41-42 2nd on stack {UMR4) 2 Yes
43-44 2nd on X stack (UMRX4) 2 Yes
45-46 3rd on stack (UMR5) 2 Yes
47-48 3rd on X stack {(UMRX5) 2 Yes
49-50 Bottom of stack (UMRB6) 2 Yes
51-52 Bottom of X stack (UMRX6) 2 Yes
53 IC Error Status 1 3

54 IC Status 1 1 3

55 IC Status 2 1 3

56 iC Staius 3 i 3

57 IC Status 4 1 3,4

58 IC Status 5 1 34

59 MA Lines Least Significant Byte 1 45

60 MA Lines Most Significant Byte 1 4,5

61 XMA Lines Least Significant Byte 1 45

62 XMA Lines Most Significant Byte i 4.5

Notes:

1. Task Processor Error Numbeis are defined in Appendix B.
Clearstart Numbers are defined in Appendix A.

2. This field will contain a 00 or FF for Task Processor entries.
The AM ACTION LIST names are listed in table 8-1.

3. See figure 8-2.

4. This field will contain FF on 1 MHz. processors.

5. This field is known as the FIRST ERROR Register.

Figure 8-1. Format of Processor State Save Area

1118478

NAME PAGE ADDRESS MSB 7 6 5 4 3 2 1 0 LsB
PROC 2ND ROM REQ REQ PG1
IC STATUS 1 0 FFFB AVAIL emROR | FREEZE v] o 0 TATUS
DATA WRITE
2ND READ WRITE BOUND MEM
ERROR STATUS| © FFFC ERROR
ERROR PARITY | PARITY | ERROR LIMIT MKRD READ
LOCAL=1 READ ROM R E
IC STATUS 3 0 FFFD WITH ENL%LE BUS ADD 5$
REMOTE CLEAR RAM 8 4 l 2 1
1 I 1
POSS POSS CONTRL
IC STATUS 2 0 FFFE 0s DISK AL OF BYS ADDRESS OF THIS IC
PROC PROC PERIPH 8 4 2 1
BUS MOM
2ND FRZ2 REFRESH 10 CLEAR CMND
IC STATUS 4 1 FFF9 CNTRL FRZ
ERROR | rReeze SET |noTusep) FREEZE | FREEZE | FREEZE | FREEZE
MANDA- | OPPOR- BUS BUS
IC STATUS 5 1 FEFA ? Pz"gf;y RE?‘;ESH TORY | TUNISTIC DEST F;\ézge REG
REFRESH | REFRESH | FREEZE FREEZE
MA MA MA MA MA MA MA MA
MA LSB 1 FFFC 7 5 5 p 3 2 . 0
MA MA MA MA MA MA MA MA
MA MSB 1 FFFD e 4 12 12 1 10 o 4
XMA LSB 1 FFFE 0 0 0 0 XMA XMA XMA XMA
3 2 1 o
XMA XMA XMA XMA XMA XMA XMA
XMA MSB 1 FEFF 15 14 13 o 1 10 9 8
MAX
RD Ic BUS ADDRESS PAGE SELECT
ROM | WiTH | & 0
CLEAR 8 4 2 1 8 4 2 1
UMARX
i | |
c PAGE SELECT
0 0 EN 0 0 0 0 0 0 0 o
8 a 2 1

ED2713

Figure 8-2. IC Memory Map

ACTIVITIES
STATE SAVE AREA

For each processor on a B 900/B 5900 system, there is an area in the dump known as the State Save
Area. This area is used to store the contents of the NPRO registers and IC registers at the time a
failure is detected within that processor. For initial dump analysis, this area is one of the most impor-
tant areas for the purpose of identifying the cause of a failure. The important fields in this area are
listed in the introduction to this section.

If no error is detected by a specific processor, the contents of these registers are: OS, DCP, and Disk
Processor: the first three bytes are @FF@, the register values are 0. Task Processor: the State Save
Area address is 0, the area is not printed.

The format of the State Save Area is detailed in figure 8-1. An example of the State Save Area is
presented in figure 8-3. This information is also contained in the maintenance log file. Refer to
B 900/ B 5900 F. E. Handbook, form 1127297, for the format of maintenance entries.

AM.ACTION.LIST

This structure is a list of status blocks associated with actions awaiting processor time or an external
event. The information contained in a status block is as follows:

ENTRY NUMBER This Information Is formulated by the system
dump analyzer. It Is the Index Into the actlion
liste This index into the action list is the
action id.

STATUS BLOCK ADDRESS This information Is formuljated by +the system
dump analyzer. |t Is the OS memory address of
the status blocke.

COMM AREA This Is the area which Is used to communicate
information to other actions.

TASK ID

MIX TABLE INDEX This field contains the task id of the Job on
whose behalf this action 1is executing. @208
denotes that the action Is on behalf of a system
function, not a task function.

PARAMS This field contalns the parameters which were
passed to activity management by the action. If
the status of this action is "WAITING REPLY,"
the second byte of this field will contain the
Actlon ID of the action invoked by this actione.

TIME This field contains the time of day at which the
action was started (hour, minute, second,

hundredths).

NAME This fleld contains the name of the action which
owns the status blocke Table 8-1 is a complete

1118478 8-5

ARA AR ARRARARARXRAR RS ARANRA R A AARAR

saatdd OPERATING SYSTEM aassss
ARAAARARAAARRARARRAABSARARARARR AR

AR RAEARRAR

ACTIVITIES
ARAAARRRRA

8-6

STATE SAVE AREA
STATE SAVE AREA ADDRESS
ERROR NUMBER
ACTION ID

ACTION NAME

M1

WR

m2

B32

MAX

mXA

mXB

BIFL

BO

REQ

Xy

J

K

L

AD

TOP OF STACK

TGP OF XSTACK

2ND ON STACK

ZND ON XSTACK

3RD ON STACK

3IRD ON XSTACK
BOTTOM OF STACK
BOTTOM OF XSTACK
IC — ERROR STATUS
IC — STATUS WCRD 1

IC — STATUS WORD 2
IC — STATUS WORD 3
IC — STATUS WORD &
IC — STATUS WORD 5
1¢ - FIRST EKkROR REG

€724
Ff
FF
FF
00Go
0coo
0000
0000
00060
0000
0000
0000
00
oo
0060 0000
0000
00060
0000
00
000u
00600
000G
0000
00006
0060
0000
000G
00
00
00
00
FF
FF
FFFF FEFF

END OF LIST EXCEEDED

Figure 8-3. Sample of Beginning of Operating System Portion of a Dump

AM.ACTION.LIST ENTRIES (Cont.)

list of possible values and the actlon they
denote. The analyzer prints the appropriate id.

CALLER This field contains the action id (index Into
AM.ACTION.LIST) of the action that invoked this
actlon. @FF@ = invoked without wait, €008 = TP
Invoked.

SB_STACK__(FFSET This fleld contains the offset of the current
stackframe (see glossary).

This is a pointer fram beginning of "comm area"
to a locatlion in the stackframe. This may
elther be as an offset, or 2 memory address:
This may be determined by the value, since
stackframes are required to be kept small.
Typlically, If the value 1Is dlsplayed as nn0OC
(byte reversed = 00nn) this would be an offset.
If an action is in use, or recently used, one
would see an address. Conventionally, on yield
this value would be returned to an offset.

LINKI This field contains the scheduling Ilinke That
Is, the action Id (index into AM.ACTION.LIST) of
the next action on the scheduling list.

LINK2 This fleld contains the suspension linke.

STATUS This field contains the status of the action.
The possible contents of this field are shown
below. The fleld Is also interpreted by
SYSANALYZER.

Value Status Value Status

a00& Avallable
@01@ Waiting reply (walting @0B& Walting Conditlonal Post

for an Invoked action) (walting for a task processor
to finish)
8028 Waiting critical action €0C& Lonely wait (waiting to become
a03@ Walting W action the only actlion running; used
@04@ Waiting W reply with "GT MD".)

@058 Waliting post (waiting €0D& Event walt
for an action in 0S to

post a reply)
€068 Long delayed 80E® Waiting mallbox
@078 Short delayed 80F@ Waiting processor (waiting for
an interrupt from a task
processor)
eB& Walting Interrupt 810@ Ready
€09& $3$$ IN ERROR $$$ Xe10@ Invalid

1118478

Value
o1
02
03
04
05
06

07

0D

10
1
12
13
14
15

16

Action
M_VM
AM__RTC
DA DP_CONTROL
DA_OSVM 10
DA _ERRLOGGING
MN LOG INIT
m_PROC__POLL
DC RSLT FN
DC_LOAD
DC_EOJ
JM_::(E START
AM__SYSTEM_ERR
MN QUICK LOG
FUTURE USE
P I_SE ND
P I_RECE IVE
MN_LOG iR
M EX
0 I_AC(IPT
] I_Z IPDISPLAY
0)_SYSMESSAGE
0 l_AX
] I_REQtE STS
0 I__ROUTI NG

O1_SYSSTATUS

Table 8-1. Status Block Action Name Values

Value

1A

18

1C

1D

1E

1F

20

21

22

23

24

25

26

27

2A

2C

2E

2F
30
3

32

Action
AM_UN IMPLCOMM
DA__RD
DA AD
DA CL
UN IMP_SQ.

DA OL

DA_PG

DA_PO

DA RY

DA_SF

DA SN

DA SV
DA__RTN__DEV ICE
DA_CMS_START
DA_CMS_RWR ITE
DA_CMS_READ
DA_CMS_WR iTE
DA_CMS_DELETE
DA CMS STRMIO
DA_CMS_OPEN
DA_CMS_CLOSE
DA_S YSOPEN

DA SYSI0
DA_SYSCLOSE

DA_ADDAREA

Value

33

34

35

36

37

39

3A

3E

3F

40

41

42

43

44

45

46

47

48

49

4A

48

Action
DA_DI.MPTOVM
DA_SY SPRINT
DA_F ILESEND
DA__LPCNTL
DA M DK CNTL
MN_TRAP_I NIT
MN_TRACE_I NIT
MN_TRACE_ST(P
MN_PROC__STATS
MN_SH ITCH
MN_MEM DUM
DC_VERB30
DC_VERBBI
DC_VER832
m_VERB 33
DC_VERB}4
DC__SPO
JM_M | XACCESS
01_SCL_LOGON
DA_NANE_F 1BID
JM_J(B_RUNN ING
JM_J0B REMVED
JM_GO
JM_PR

M STOP

Value

4C

4D

4E

4F

50

51

52

53

54

55

56

57

58

59

S5A

58

5C

5D

1118478

Action
JM_DS DP
JM_THRASHING
JM_DC_JOBREM
DC_VERB3F
AM WAIT
DC_JoB LOG
JM_TP_ERROR
AM_T IMER
DA_CMS_TS T_ST
JM_PAUSE
AM_DT
AM DATE TIME
DA_RE S_A VR
AM CMS ERROR
DA_LP_A VR
DA__DK_A VR
DA_I CMD__A VR

DA_HSP_CNTRL

Table 8-1. Status Block Action Name Values (Cont.)

Value
5E
5F
60
61
62
63
64
65
66
67
68
69

6A

6E

Action
JM_SUP_ACCEPT
JM_EOJ
M MIX
01_DCI_INT
(o} I_ODT__DC 1
DA_GE T_DC_hEM
DA SO
DA TO
Pl_DEAD PROC
01_SCL READQ
0 I_S G___RU N
0)_SCL_LOGOFF
DA_R EDE F_R EAD
DA__RL
DA__AF’
MN_LOG__L G LS
DA_VF

DA MERGE

Value

70

n

72

73

74

76

77

78

79

TA

B

7C

88

89

8A

8B

Action
DA_RUF_EN
DA_DEV_STATS
DCEDCP;ERROR
DA_MT_CNTRL
DA_MT_AVR
DA_CT_CNTRL
DA CT AWR
DA_CHNG_REEL
JM_SPO_S 1ZE
DA_I NI T_TRK
AM_CMPLX WAIT
DC_TSTEVNT
01 TEST S Q
PI_REVIVE
DA 10 LINKER
MN_HOOKUP

MN_DUMMY

8-9

AM.ACTION.LIST ENTRIES (Cont.)

PROC. W8

EVENTS

EVENT TASK

ATTACHED OWNER

ATTACHED ID

ATTACHED TYPE

ATTACHED BASE

SB SPO 1D
SB SPO TAG

VMREQ

Pl REQUEST FUNCTION,
Pl REQUEST PROCESSOR,
Pl RESPONSE PROCESSOR,
Pl RESPONSE FUNCTION,
Pl MIX NUMBER

Pl RESULT,
Pl FLAGS

This field contains the assoclated processor bus
address number in the high order digit. O means
i+ was invoked at WARMSTART. The number of
assigned work blocks In the Ilow order digit
uses bit pattern 1 bit per WB, not binary count.

Control Information pertaining to the action
assocliated with the status block. This fleld is
used by activity management. Valid when the
action Is waiting on an event or when the action
caused an event. If this field contains &FF@,
the event has occured; if this fleld contains
€008, the event has not yet occured; If this
action caused an event, then this fleld contains
the event number.

This field contalns the task Id associated with
the event described in the previous field; but
it Is only used if action enabled event.

The owner of the attached data structure. If
the attached type Is a work block or a data
block, this Is an action ID. 1f the attached
type is a link biock, this is an action list
name.

The ID of the attached data structure.

The type of the attached data structure. This
is elther a work block (00), a link block (01),
or a data block (05).

The memory address of the attached data
structure.

Reserved for future use.
Reserved for future use.

This field contains the last virtual memory
request. Only valid when waiting on VM.

Original processor request links. More detall
will be found in 10, Task Processor.

These are the result areas for Interprocessor
commun icationse More information can be found
in section 10, Task Processor.

AM.ACTION.LIST ENTRIES (Cont.)

STACK ENTRIES

SEGMENT NO

SEGMENT OFFSET

LAST.L

NUMBER OF
PARAMS

ADDR OF PARAMS

LOCAL
VARIABLES

AM.QUEUE.HEAD

This structure is an array of queue heads for system resources.
dump analyzer by queue name and queue contents.
IDs (index into the AM.ACTION.LIST). An empty

1118478

AM.LAST. QUEUE

AM<WAITING.HEAD

AM+ NORMAL «HEAD

AM.LONG.DELAY

AM.SHORT.DELAY

These flelds are duplicated for additional
stackframes and if the outer level declares no
local variables. A sample status block entry is
shown in figure 8-4.

Fleld contalning the segment number within
the MCP file. Refer to the Segment Table.

Contains the return address (of fset within
the segment).

Contains the location of the cal ling segment
number in the stack frame. (Not valid for
outer level.)

Contains the number of parameters in use by
the stack frame. (Not valld for outer level.)

Contalns the address of the parameters Iin use.

Local variables used by the action. The number
and type are determined by the procedure In use.

This field glves the memory address of the head
of the last queue to be serviceds Currently
(3.04) this address is not Interpreted.

This field is a pointer to a |list of actions
walting to start. The analyzer lists the actlion
Ids of all actions currently in the waiting
liste A single entry of @FFe& in the
AM.WAITING.HEAD field signifles that the list of
waiting actions is empty.

This fleld is a pointer to an action which Is
the top of a circular list. The analyzer lists
the whole circle which Is a set of action Ids.

This fleld Is a pointer to actions which have
been delayed for seconds. The analyzer |ists
all such actionse A single entry of @&FFe
Implies an empty list.

This Is a pointer to a list of actions which
have been delayed for milliseconds. The
analyzer lists the ids of all such actions. A
single entry of @FF@ implles an empty list.

The array is decoded by the system
The queue contents are shown as a list of action
queue is shown as having a single entry of @FF@.

8-11

C1-8

ErARRAR AR AR AR N

AM _ACTION.LIST

ARRAAAARRA DA AL

ENTRY-NUMBER

STATUS BLOCK ADDRESS
coMm

TASK 10 / MIX TAEBLE INDEX
PARAMS

TIME

NAME

CALLER
SB.STACK.OFFSET
LINKT

LINKZ

STATUS

PROC.WB

EVENTS

EVENT TASK

ATTACHED OWNER
ATTACHED ID

ATTACHED TYPE
ATTACHED BASE

s8 SPO ID
S8 SPO TAG
VMREQ

PI REQUEST FUNCTION
Pl REQUEST PROCESSOR
PI RESPONSE PROCESSOR
P1 RESPONSE FUNCTION
Pl MIX NUMBER

PI RESULT

Pl FLAGS

SEGMENT NO
SEGMENT OFFSET
LAST.L

NUMBER OF PARAMS
ADDR OF PARAMS
LOCAL VARIABLES

oo

Fu17

C301 00CO 0209

20

0ouu 0
1411 5000

13

FE

2718

tF

Fr

10

20

00

00

00

FF

oo

0000

00

0000

6000

88

01

02

FE

20

00

GO0
STACK ENTRIES
AARRE AAAREAR

00

216¢

0625

0o

0000 0000 0000
000U 0000 0000
0000 0000 0COO
3000 0000

<40u D000 G000 CGUL 0902

MN DUMMY

READY

G000 0000 0000 G000 KOO0 0000 0003 0000 0000 0000 00OC outo 0000
0000 0000 0000 U000 0000 DODO 0000 0000 0000 000C 0CGOO 0000 00uO
0000 0000 00UO GUOO 0000 0OUO 0000 D000 LODO 00GG 00GO 0000 0000

Figure 8-4. Status Block Entry Example

SEGMENT TABLE

This structure is an array of code and data block descriptors. The analyzer decodes each descriptor
of this table for the user. The descriptors indicate the segment’s ID, frozen/jelled count, size, disk ad-
dress, present/access/type, memory address, and page.

HISTORY COMMUNICATE TABLE

This table is a trace of the last ten communicates received by the OS. Each table entry comprises the

following fields:

ENTRY This fleld contalns a number incremented by 1.
Its purpose Is to show the order In which +the
commun icates were received.

TASK iD This fieid is

index
Using this information along with the mix +table
will reveal which job Issued the communicate.

info The mix Ttabie.

BUS ADDR This field indicates the processor which was
running the task that issued the communicate.

VERB This parameter Is held In byte 0 of the CPA and
which of the possible

Is used to

indicate

functlons Is requirede.
the range 0 - 255. For

MCP MANUAL .

01 : OPEN

02 : CLOSE

11 : ZIP

12 : DISPLAY

13 : ZIP & DISPLAY
14 : PAUSE

15 : ZIP & PAUSE

16 : DISPLAY & PAUSE

17 : ZIP, PAUSE & DISPLAY

1A : CONDITIONAL DISPLAY

1B : ZIP & CONDITIONAL D|SPLAY
1C : DISPLAY WITHOUT LOGGING
20 : ACCEPT

21 : SUPER.ACCEPT

30 : MCS CONTROL COMMUNICATE
31 : MCS INTERROGATES

3 : MCS REDEFINITION

33 : USER DATA COMM

34 : MCS DCP ORIENTED COMMUN ICATE

1118478

The

40
41
42
43
50-6F
70-7F
80
82
84
86
88
8A
8C
8E
90
92
94
96
98

It may take values In

full details see the CMS
current list of CMS
communicates Is given below:

e e es ee 44 oo ee e se e es ss se s s se

FrTY

DATE-TIME

TERMINATE

WAIT

SYSTEM STATUS
RESERVED FOR EXPANSION
RESERVED FOR SYSTEM UTILITY FUNCTIONS
TEST STATUS

READ (NOT CONSOLE)
WRITE (NOT CONSOLE)
REWR|TE

DELETE

STREAM CONTROL

START

OVERWRITE

READ-WRITE

READ (CONSOLE)

WRITE (CONSOLE)

GET

PUT

8-13

0B JECT

ADVERB

This parameter Is held in byte one of the CPA.
Most commonly, It is an index into the task®s
data segment table giving access to data which
characterizes the entity upon which the function
is to be performed. For file type /0
communicates, for instance, it Is the DST Index
for the associated file information block.

This parameter, If 1t exists, consists of a
variable number of bytes starting at byte 2, and
comprising the remainder of the CPA.

Refer to figure 8-5 for an example of the History Communicate Table.

Pl DATA

Refer to figure 8-6 for an example of the PI Data Area.

8-14

Pl MAILBOX PAGES

Pl ACTIVE
INPUT MAILBOXES

Pl ACTIVE
OUTPUT MAILBOXES

P} DEAD PROCESSORS

Pl WAITING
MAILBOX 1IDS

This structure Is an array of constants which Is
a)ist of processor numbers. These are listed
to be used as labels for the following arrays,
active input mallboxes, active output mailboxes
and waliting mailbox ids.

This array |is used by task processors To
indicate that their output mailbox contains a
message for the 0S. A request is Indicated by
an @808 and a response Is Indicated by a @€00@.
@FFe@ is used to denote an 1idle mallbox. The
array Is ordered underneath the mallbox pages
field.

This array indicates the outstanding mailbox
ACKs. An acknowledgement is indicated by a 00.
The processor related to the acknowledgement can
be found In the equivalent position In the
active Input array above. Again @FF@ Is used to
denote the ldle state.

This fleld indicates which processors have gone
not ready. Each bit represents a bus address (1

relative).
NOTE

This field Is byte-reversed.

This array indlcates actlons which are waiting
for a mailbox acknowledgement. Each byte of
this array Is an action id (index Into the
AM ACTION LIST)e The index into this table (0
refative) Is the processor number associated
with the actione.

RARA NS ARRA DA AR RARARBN AN AR

HISTORY COMMUNICATE TABLE
FAERRARARAARRAR A AR AR A A AR

AAAEAA K

F1 DATA

AA kAR AR

Figure 8-5. Example of

ENTRY
AR 2R T
13
14
15
0c
oe
Oe
OF
10
it
12

P1 MAILBOX PAGFS 0102
Pl ACTIVE INPUT MAILBGXES FFFF
P1 ACTIVE QUTPUT MALILBOXES FFEF
P1 DEAD PRCCESSORS (000D
PI WAITING MAILGSOX IDS FFFP
Pl FREE MAILBOXES FFFF

PI QUEUE COUNT 03

Pl INVOKED OO

Pl DATA (Cont.)

1118478

P) FREE MAILBOXES

TASK BUS
1p ADDR
242s KRAA
ac 04
ac 04
oc 04
/] G4
oc 04
0c 04
(t14 04
oc 04
ac 04
oc 04

0304
FEEFF
FFFF

FEFF
FFFF

050¢
FEFF
FEFF

FFEF
FFFE

G708
FFFF
FFFE

FFFE
FFFF

A 13
*d
02
a2
41
84
82
82
84
82
82
&4

RB OBJECY ADVERSE

LR RARSA R AAAR RS

CLOSE 22 1010F006300000000000006000000
CLOSE 21 1010F0030000000000G00U0000GO0
TERMINATE &0 06001003000000000C03C00000G0
WRITE 21 10109C03000006000G0000000000
READ 22 0000507300000000000000000000
READ 22 00109F03000000G0000000000000
WRITE 21 10109F0300000000060000000000
READ 22 000CS €7300000000000000000000
READ 22 0010F0030000C00G000GO0000C00
WRITE 21 10167 0030600000GG00000000000

09Y0A C8OC GDOE UFFF

F
f

12
F

FEE FEEF FEFF EFF S
FFF FEFF FFFF FFIE

FEF FEFF FRFF FFEF
FEF FEEF FFFF FF

Figure 8-6. PI Data Example

This Is an array of
mallbox for a processor s avallable.
Indicates available.)

flags indicating

the History Communicate Table Portion of a Dump

If the
(€FF &

8-15

DA_CT (CONFIGURATION TABLE)

This table contains one entry per device. This information is used by data access when performing
opens, OLs and other SCL commands. Each entry of the table contains the following fields:

ENTRY/PHT {NDEX This fleld 1s an index Into the peripheral
table.
CMS DEVICE TYPE This fleld contalns the device type, such

as BM cartridge. The analyzer Interprets
this fleld into both SPO mnemonic and
English name.

TASK 1D This fleld indicates the task Id (index
into the AMJACTION.LIST). @FF@ in this
field means that no actlon is currently
assoclated with this entry; it [Is only
valid during job load, when I+ contains
task 1d of job being loaded.

FILE OPEN This fleld contains the number of files
open on the device.

STATUS This fleld indlcates the logical status of
the device. This is a 2-byte fleld, the
second of which Is not used. The following
is a decode of this fleld as shown by the
system dump analyzer.

MSB 7 - Reserved
Multifile

- Purged

Unlabel led

- System

- SV or PO pending
- Asslgned

LSB O - Ready

—_ N W s IO
]

SPO MNEMONIC This fleld contains the associated mnemonic
for thls device (DMA, DKB, etc.).

FILE ID For a disk device, this fleld contains the
(pack id>. For a line printer, it is
(flleld) 1f a file Is currently open on the

printer.
SERIAL NUMBER thru These flelds contain label information
LOG UNIT found on the device.

Refer to figure 8-7 for an example of a DA_CT entry.

8-16

AARRRARANR AR KRR AR A AR ANRA AN AA AR AR AAR

DEVICE CONFIGURATION TABLE ODA-CT
AAAR N AN AR R AR R AN R A AN R AR A RN AR AR A AR A A

ENTRY/PHY INDEX
(MS DEVICE 7JYPE
TASK 1D

FILE OFEN

STATUS

SPC MNEMONIC

FILE 1D
ALLOCATION UNIT
PACK TAG/LOG UNIT
SECTORS/TRACK

ENTRY/PHT INDEX
CMS DEVICE TYPE
TASK 1D

FILE OPEN

STATUS

SPO MNEMONIC

FILE 1D
ALLOCATION UNIT
PACK TAG/LOG UNIT
SECTORS/TRACK

ENTRY/PHT INDEX
C(MS DEVICE TYFE
TASK 1ID

FILE OPEN
STATUS

SPO MNEMONIC
FILE ID

SERIAL NUMHER
ALLOCATION UNIT
PACK TAG/LOG UNIT
SECTORS/TRACK

Figure 8-7. Sample DA_CT Dump File Entry

WB.LB.HEAD

0000
CE
FF
0000
4000
DMA

FF
20
38

0001
Ce
FF
0000
400G
oMB

FF
20
3B

0002
ce
FF
0000
4000
DKC

123456
01
20
20

MULTI-FILE

DM-3/6 MINI

MULTI-FILE

DK-CARTRIDGE

MULTI-FILE

This field is a pointer to a linked list of work and link blocks currently allocated. The analyzer decodes
each entry on the list and breaks out the descriptor address and type, and the size, link, type, address

and owner of the work or link block.

1118478

8-17

FiB

OWNER The owner fram the WB.LB.HEAD of DA__TASKnn_LlST
using this FiB. DA TASK LIST will indicate the
user taske

1D Segment number of the FIB.

FILE STATE The values In this fleld reflect the open/close

state of the flle as follows:

€008 = half closed - new file
€018 = half closed - old file
€028 = open - new file
€038 = open = old file
8048 = belng opened
@058 = half closed - printer backup file
COMM IN PROGRESS A flag indicating If a communicate Is currently
In progress using this FIB (Flag = 1 Indicates
In progress)
FILE TAG INFO MSB 7 : Extended file
6 : Overflow file

{exists on more than one pack)
5=0 : Confliguration table of fset

FILE TAG DIRECTORY For multiple-pack files, this field contains a
pointer to the disk flle header (DFH); this DFH
wib} point to the next packe

FILE TAG PACKTAG Pseudo pack tag appended to the orliginal file
name by pseudo pack impiementation.

FILE USAGE This Is a bit map.

MSB 7-5 : value 001 = normal/shared
111 = Jocked
: value 001 = shared
3 : value 001 = locked
2-0 : value 001 = normal/shared user
111 = locked user

FT ADDRESS PAGE Memory page on which the associated file
resldes.
FT ADDRESS BUS Memory address of the assoclated file table.

Other fields are considered self-explanatory. Refer to figure 8-8 for an example of the FIB entry.
8-18

fFis
xR
OWNER
10
FILE STATE
COMM IN PROGRESS
FILE TAG INFO
FILE TAG DIRECTORY
FILE TAG PACKTAG
FILE USAGE
ORGANIZATION
ACCESS
MYUSE
€ms PEVILE TYPE
FPB SEGMENT NUMBER
FPB SIZE
OTHERUSE
LAST COMMUNICATE
RECORDS /BLOCK
RECORD SIZE
WORK AREA SEGMENT
MORK AREA OFFSET
WORK AREA LENGTH
MAX WRITTEN
MAX POSSIBLE
CURRENT RECORD
CUR REC INVALID
‘CURRENT BLOCK
SECTORS /BLOCK
BLOCK COUNT
BACKUP RECORD BUFFER
MAX NUMBER BUFFERS
NUMBER BUFFERS ALLOCATED
BYTES/BUFFER
OFFSEY WITHIN RECORD
RECORD WITHIN BLOCK
DYNAMIC ACCESS
EOF FLAG
OUTPUT ALLOWED
SPARE CHARACTERS
TRANSLATION NEEDED
MS OPEN
ORG DEVICE
FLAGS
PB FILE NUMBER
BUFFER AHEAD NUMBER
FILE ID
PB LP DEVICE TYPE
¥T ADDRESS PAGE
KEY USAGE 31 FT ADDRESS BUS
KZY fILE Ta5 3335 0021
KEY FILS EYSFER 3330 3034 3790 01CF 3030 3034
7030 1234 2700 2103 2030 7034
3030 3034 3320 0107 3030 3034
303) 3734 3200 0198 3C33 3034
3330 3034 38950 01DF 303C 3034
203D 3034 %605 3183 3230 3034
JPDATED 2D
KEY FILE TABLE 47DRES5 §201 FI01
KEY FILE TA3LE ADDRESS 2 0201 2007
DUPLICATES ALLOWED FF
READ STATUS O©1
KEY QFFSET 3J00
NULL KEY FILE CQ
ROUGH TABLE IN MEwoRy Ff
PRESENT SZCTAR COSC 64
LAST ACCESS 3¢
CURRENT 8328 1 00
CYPRENT SECTOR 1 02%C 64
CURRENT OFFSST 1 43
CURRENT ®ex 1 2001 E3
CURRENT AREA 2 (O
CURRENT SECTOR 2 COSC &4
CURRENT OFFSET 2 CC
CUR?ENT RN 2 23020 29
CURPENT KEY 3719
FEEF FFFF FFFF FFFF FFFF FFFF
ENTRY SIZE 5

ROUGH TABLE SIIZE 7300 02

AEA NUMBER SECTIR OFFSET
LEL R R R R EE Axkhthk hkhbdw
39 9330
20 0000

0s
112
03
4]
84
7500
20
20
02
01
01
(]
[¢]:]
SEOD
03
82
0100
8400
0o
45605
B400
0001
0001
0000
00
[le[1] 4]
0100
0000
0000
01
01
8400
0000
0000
00
(4]
FF
0000
oo
00
39
00
39
FFEF
5359
43
0007
7DAS

OPEN OLD

SEQUENTIAL

A8
A8
81

80

00

EF

534C 414E 4755 4147 4520

3700 0101
2730 0105
3800 0109
3850 0100
3920 0181

0100
2104
J1p¢®
010¢C
21¢e9d
01€E4

3034
3034
3034
3034
3034
0Cs57

3702
37C3
1320
3800
333C
39023

3030
3030
3039
3030
3032
13237

FFFF FFFF FFFF FFFF FFFF FFFF

KEY ENTRY
LA R 2 EE]

33030303530
FFFFFFFFFE

Figure 8-8. File Information Block Example

1118478

OK—ANY DISK

3030
3032
3020
3030
30290

3234
1334
3234
3034
3034

3034 I9FF FFFF FFFF FFFF FFFE FFFF FFFF FFEF FEFF FFFF FFFF FFFF

3720
2An
ENgs

32300
3320
3930

182
2104
2104
J210E
01g2

FFEF FFFF

ODT DATA SEGMENT

The fields of this portion of the formatted dump file are explained in the following list. A sample
of this section is shown in figure 8-9.

SYSCONFIG Twenty bytes which contaln ZIP text taken from the
ZIP TEXT SYSCONF IG file.

REMOTE TASK One byte which contains the task ID of the program ogged
1D on as remote SPO.

CONTROLLING Not used.
SPO ID

CONTROLLING Not used.
SPO TAG

SPO ACTIVE This |s a 2-byte field; each bit indicates if the
ARRAY assoclated task is a REMOTE SPO operation.

ODT FLAGS This Is a 1-byte field. The significance of Its blts
is as follows:
Bit 7 (MSB) ODT in shutdown mode

Bit 6 Remote SPO 1s allowed

Bit 5 Processing PO message

Bit 4 0l routine In shutdown

Bits 2 & 3 Not used

Bit 1 A remote SPO exists

Bit+ O Local SPO in use
ACTIVITY This is a one-byte field. The significance of each bit
FLAGS is as follows:

Bit+ 7 (MSB) 0! START complete

Bit 6 0| SYSMESSAGE down

Bit 5 Not used

Bits 3 & 4 00 - No local SPO exists
0t - Local SPO exists

Bit 2 SYS10 buffer WB exists
Bit 1 Dictionary is open by Ol
Bit O SYSOONFIG is open by Ol

DICTIONARY This Is the FIB ID of the dictionary file.
FI8 ID

SYSIO WB ID This is the ID of the work block being used for SYSIO.

ROUTING This is the ID of the link block entry at the head of
LIST HEAD the routing 1ist.

ROUT ING This is the ID of the link block entry at the tall of the
LIST TAIL routing list.

SPO QUEUE This is the ID of the link block entry at the head of
HEAD the SPO queue. This Is a holding area for messages .

8-20

ARV B ok 063000 300 0

ODT DATA SEGMENT
AARNERER SR ARAR AR

SYSCONFIG 2IP TEXT FFFF
REMOTE TASK i0 FF
CONTROLLING 3P0 ID FF
CONTROLLING SPO TAG FF
SPU ACTIVE ARRAY 0000
00T FLAGS> 41
ACTIVLITY FLAGS A
DICTIONARY FiB 1D 0200
$Y510 v8 40 01
ROUTING LIST HEAD 98
ROUTING LIST TAIL vy8
ODT LIST HEAD Y4
007 LIST TAIL 98
3P0 QUEUE HEAD dQ
SCL QUEUES HEADS guoo0
SP0 QUEUE TAIL 04
SCL QUEUES TAILS w000
RUUTING POST 1D 16
00T POST ID FF
SPO CHANNEL ID 43
LUNG MSG INDEX 0700
ADORESS UF MS6 OUT 55C5
HS6 OUT DATA. w000
M56 IN 4130
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
CONSOLLDATED >TATUS 49
TRANSHIT STATUS 40
RECEIVE STATUs 4o
DCI FLABS 02
PROC FLAGS. 4o
RECEIVE CHax 15
DCI TRANSHIT iD 19
CHARACTER COUNT 00
TIMER VALUE Duo07
MESSAGE TYPE 00
HS6 OUT LENGTH 1CO0O
nS6 OUT INDEX 0700
MSG IN INDEX 0300
MSE IN LENGTH 1000
HS6 IN wB ID FF
SENO PROGRESS 0u
TERMINAL SEQUENCE 1411
HEADER SEWUENCE 0141
LINEFEED SEQUENCE 1822
ERROR SEQUENCE 0141
CLEAR & SCROLL 0141
1853
Figure

1118478

FFFF FFFF FFEF

aaoo

a004

0004
a244
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FF

0301
3002
2024
3002
3002
18438

8-9.

0004

0040

0040
5320
FEEF
FFFF
FFEF
FFFF
FFFF
FFFF
FFFF

1840
1822
1842
1853

0guo

0000

0000
3033
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

1822
2F 23
3820
1848

FFFF FFFF FFFF FFFF FFFF FFFF

REMOTE SPO ALLOVED
LOCAL SPO IN USE

Ul START COMPLETE
LUCAL SPU EXISTS
OICTIONARY 1S OPEN 8Y OI

v000 0000 0000 Ouu0d 0UO0 uo0Q

0000 0000 0000 0v00 0DOO u00O0

0ouo
4059
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

uo0o
3803
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

0u00
2Fa 4
FFFF
FEFF
FFFF
FFFF
FEFF
FFFF
FFFF

a000
554D
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

0000
2E32
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

0000
3130
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

RECEIVE REDUEST

TRANSMIT UNDERVAY

2037 2020 20
1048 1822 6B23 3C45 5252 3E

oouo

o000
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

ouuo

ouuo
FFFF
FEFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFE

dJuoo

gooo0

Juoo
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FEFF

0000
FFEF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF
FFFF

000u

FFFF
FFFF
FFFF
FFFF
FEFF
FEEF
FFFF
FFFF

0000

FFFF
FFEF
FFFF
FFFF
FFEF
FFFF
FFFF
FEFF

1848 1B22 2021 1B4B 1B22 2022 1B43 1822 2023 1888 1822 2023

1853 1B40 1853 1B4B

Sample ODT Data Segment

8-21

SPO QUEUE
TAIL

SCL QUEUES
TAILS

ROUT ING
POST 1D

0DT POST
1D

SPO CHANNEL
1D

LONG MSG
I NDEX

ADDRESS OF
MESSAGE OUT

MSG IN

CONSOL I DATED
STATUS

TRANSMIT
STATUS

RECEIVE
STATUS

DC! FLAGS

PROC FLAGS

8-22

Thls 1s the 1D of the link block entry at the tail of
the SPO queue.

Not used.
This Is the ID of the status block that is handling
message routing.

This is the ID of the status block that is handling ODT
output messages. It Is used by the routing action.

This Is the physical channel for the ODT device.
This Is the index into output messages that are longer
than one screen.

This Is a 2-byte address of the message being sent
to the ODT.

Input message fram the ODT.

This is a 1-byte fleld. The significance of the bits
fs:

Bit 7 (MSB) Transmit request
Bit &6 Recelve request
Bit 5 Timer A request
Bit 4 Timer B request
Bit+ 1,2,3 Not used

Bit 0 Recelve error

ODT DCI status for Transmit state.

ODT DCI! hard status for Recelve state.

This Is a 1-byte field. The significance of the bits
is:

Bit 7 (MSB) DCI 1s finlshed

Bits 4,5,6 Not used

Bit 3 Transmit inside recelve
Bit 2 Transmit desired
Bit+ 1 Transmit underway
Bit O Receive underway

This iIs a 1-byte field. The significance of the bits
Is:
Bit 7 (MSB) An error was logged

Bits 5,6 Not used

Bit 4 Explicit line feed
Bits 1,2,3 Not used

Bit O Error in message

1118478

RECEIVE
CHAR

DCl
TRANSMIT
1D

CHARACTER
COUNT

TIMER VALUE

ME SSAGE
TYPE

MSG OUT
Length

MSG OuUT
INDEX

MSG IN
INDEX

MSG IN
Length

MSG N WB
ID

SEND
PROGRESS

TERMINAL
SEQUENCE

HEADER
SEQUENCE

L INEFEED
SEQUENCE

ERROR
SEQUENCE

CLEAR &
SCROLL

This Is the last character recelved from the 0DT.

This Is the ID of the status block that Is handiing ODOT
output messges. This Information Is used by ODT DCI
interrupt action.

This Is the count of the number of characters received
from the ODT.

This Is a value used to prime a hard timer In the ODT
DCl.

This Is a value used to indicate various internal
message types; for example system messages or ODT

e b o o -
COMT oI MESSageSe.e

This s the length of the ODT output message In bytes.
Index to the current character being output to the 0DT.
Index to the current character being Input from the ODT.
This Is the length of the ODT message in bytes.

This is the ID of the work block where the incaming ODT

message Is beling placed.

This Is an iInternal value used to step through the
transmission sequence.

Each of these sequences Is a serles of control characters
used by the ODT control ler to manipulate the ODT screen
under varlous circumstances.

8-23

SECTION 9

. L] -’

DATA COMMUNICATIONS
INTRODUCTION

The data communications portion of a system dump is divided into three sections. Each section repre-
sents one of the major parts of the B 900/CP 9500 Data Comm (DC) Subsystem. These sections are:

DCA MEMORY (Data Comm Activity Memory)
DCP MEMORY (Data Comm Processor Memory)
BUFFER MEMORY

This section examines these three parts in detail. They are discussed in the order in which they appear
in a printed dump file.

DCA MEMORY

DCA memory is part of OS MEMORY and is maintained by the MCP. This area is divided into two
subsections. Both subsections reside in OS MEMORY but they are managed differently.

The first and most important area of DCA MEMORY is the resident data segment. This segment of
memory forms the nucleus of the DC subsystem. It maintains an address directory for tables located
in Buffer Memory (BM) and Virtual Memory (VM), and for various other size values and fields neces-
sary to maintain the DC subsystem.

The second area of DCA MEMORY is part of VM, and contains the tables responsible for driving
the DC subsystem. The information in these tables is extracted from the NDLSYS file at the time the
Message Control System is loaded.

RESIDENT DCA MEMORY

A list and description of the DCA MEMORY fields resident in OS MEMORY follows. These items
are discussed in the order in which they appear in the printed dump. The contents of the 2-byte fields
are printed in byte-reversed order.

NOTE

In reading a printed dump, it is very important to understand the limits and
basic operation of Virtual Memory. Table 9-1 gives the Data Comm tables
which are maintained in VM. At the time a dump is taken, the contents of
these tables may be in memory or they may be ‘‘swapped out’’ and located
in disk memory (referred to as backing store). Any table or field may yield
its space to another user. The VM algorithm determines which tables and
fields are swapped out. If a table or field is in backing store when a dump
is taken, the dump gives the address in resident memory at which it was last
located. It is particularly important to keep this concept in mind if a Hex
dump becomes necessary.

1118478 9-1

RESERVED

MCS LOADED

DCP LIMIT

BUFFER SIZE

STATION COUNT

USER DC LOGS

Table 9-1. DC Subsystem Table in Virtual Memory

USER JOB table ID =1
MCS table ID =2
LSNTAB table ID =3
LLNTAB table ID =4
SUBTAB table ID =5
NDL table ID =6
DCP table ID =7
DCPCON table 1D =8
LSN INFO table ID=9
MCS NAME table 1D =A

This 1-byte field Is reserved for speclial use.
At the present time, this field is set to 1 if a
DC.RECONFIG has been used since the loading of
the DC subsystem.

Binary count of the number of Message Control
Systems (MCSs) physical ly loaded.

This 2-byte fleld contains the highest logical
DCP number (defined in NDL).

This 2-byte fleld is the slze (in bytes) of the
Data Comm Buffer as determined iIn the OCP
SECTION of the NDL. It is Incremented by 4 when
the DATA COMM LOAD ACTION is performed.

This 1-byte field contalns the total number of
stations defined in the NDL. Both real and
dummy stations are Included In this count.

This Is a 4-byte field broken out 1In the dump
listing as two 2-byte flelds, USER DC LOG!1 and
USER DC LOG2. Together these two flelds make up
a 32-bit field, each bit representing one of the
32 possible (maximum) TASK IDs (user jobs).

NOTE

Only 26 Jobs are supported by the 3.04 MCP.

1118478

LINE COUNT

DC EOJ ACTION ID

LFN BLOCK SIZE

LSN BLOCK SIZE

XLSN BLOCK SIZE

USER JOB LAST ADDRESS

When a user Job Is executed and goes to BOJ, the
appropriate bit is set; the bit Is reset when
the job ends (DS, DP, or EQJ). The format for
these flelds Is as follows:

USER DC LOG!1 Byte 1 (bits 7-0)
Byte 2 (bits 15-8)
USER DC LOG2 Byte 3 (bits 23-16)
Byte 4 (bits 31-24)

This i-byte fieid contains the totai number of
subnet queues which are defined In the FILE
SECTION of the NDL.

This 1-byte field contains the total number of
lines which are defined in the NDL.

This™ 1-byte fileld 1Is initialized to 6&FF@
when the DC.LOAD.ACTION.ID Is performed during
the loading of the DC subsystem. This fleld
holds the ACTION.ID If and when the DC.EOJ
action Is suspended. Suspension of the DC.EOJ
actlon occurs when the last MCS 1Is terminating
and any one of the COBOL ACTIVE flags of the
User Job Table is set.

A 2-byte field containing the size of +the Ilink
blocks used to hold the |ist of logical file
names. The list of logical file names can be
found In the Work Block/Link Block Iist in the
Operating System section of the dump.

A 2-byte field containing the size of the |ink
blocks used to hold the list of Loglical Station
Names. The list of Logical Station Names can be
found In the Work Block/Link Block list 1In the
Operating System section of the dump.

A 2-byte field contalning the size of the link
blocks used to hold the list of Extended Station
tables. The Extended Station tables can be found
in the Work Block/Link Block list in the
Operating System section of the dump. action ID
stored In this field is used to reinstate the
Jobe.

This 2-byte fleld is the OS MEMORY ADDRESS at
which the User Job Table was last located. The
contents of the User Job Table are described
later In this section. If It becomes necessary
to check the Hex dump, remember that this +table
may have been swapped out, and this address may
be invalid. (LINKED BLOCK ID = 1)

94

TASK TO MIX TABLE

MCS ID TABLE

MCS TABLE
LAST ADCRESS

LSN CONVERSION
LAST ADDRESS

LSN INFO
LAST ADDRESS

LINE CONVERSION
LAST ADCRESS

SUBNET |INFO
LAST ADDRESS

DCP CONVERSION
LAST ADDRESS

DCP TABLE
LAST ADCRESS

This 1s a 32-byte array (one per allowable task
number) that can be used to find a Job's
external mix number when its TASK=ID s known.
The job's task number Is used as a O-relative
Index Into the array In order to obtaln the mix
number. This table Is inltlallzed to all Os.

This 32-byte array (one byte for each allowable
task number) can be wused to find a task's
relative MCS number when its task number |is
known. The MCS task number is used as a O-
relative index into the array to obtain the
relative MCS number. This table is Initialized
to all 6FFes.

This 2-byte fleld is the 0S MEMORY ADORESS at
which the MCS +able was last located. The
contents of this table are described later In
this section. If it becanes necessary +o check
the Hex dump, i+ should be remembered that this
table Is stored in Virtual Memory and,
consequenily, the Hex address may not be valid.
(LINKED BLOCK ID = 2)

This 2-byte field is the 0S MEMORY ADDRESS at
which the LSN conversion table (LSNTAB) was last
iocated. The contents of LSNTAB are described
later In this section. (LINKED BLOCK ID = 3)

This 2-byte field is the OS MEMORY ADDRESS at
which the LSN INFO table was last located. The
contents of this table are described later In
this section. (LINKED BLOCK ID =9)

This 2-byte field is the OS MEMORY ADDRESS at
which the Logical Line (LLN) Conversion Table
was last located. The contents of this table

are described later in this section. (LINKED
BLOCK ID = 4)

This 2-byte fleid is the OS MEMORY ADDRESS at
which the SUBNET INFO table was last located.
The contents of this table are described later
In this section. (LINKED BLOCK ID = 5)

This 2-byte fleld shows the last address for the
DCPCON Table. (LINKED BLOCK ID = 8)

This 2-byte field shows the last address for the
DCP Table. The contents of the OCP Table are
described later In this sectlion. (LINKED BLOCK
ID=7)

NDL DATA This 2-byte fleld glves the last 0OS MEMORY

LAST ADDRESS ADDRESS of the NOL Table. The contents of the
NOL Table are described later in +this section.
(LINKED BLOCK 1D = 6)

MCS NAME This 2-byte field gives the last 0S MEMORY
LAST ADDRESS ADDRESS at which the MCS NAME +table was last
locatede The contents of this table are
discussed iater in this section. (LINKED BLOCK

iD = A)

ABP ADDRESS This 4-byte field Is the of fset, page, and bus
address of Information about the Avallable
Buffer Pool. The first two bytes of this fleld
contain the offset, the third byte Is +he page
number, and the last byte is an address pointing
to where buffer pool Information Is stored.

This second location has a 12-byte fleld divided
Into five groups:

Read With Lock Word (RLW) 1 byte: 00 = unlocked

01 = locked
Processor 1D 1 byte
Buffer Count 2 bytes
ABP Head Polnter 4 bytes: page, bus, address
ABP Tail Pointer 4 bytes: page, bus, address

The APB TAIL ROINTER field Is printed by the
dump at the beginning of the ABP area in the
BUFFER section.

REQUEST Q ADDRESS This 4-byte fleld gives three pleces of
Information. The first two bytes contain +the
offset, the next byte Is the page number, and
the last byte gives the beginning address where
Information describing the first REQUEST Q Is
stored. The Information avallable Is:

Read With Lock Word (RLW) 1 byte: 00 = unlocked

FF = locked
Request Q Head Address 4 bytes: page, bus, address
Request Q Tall Address 4 bytes: page, bus, address

There can be up to nine request queues (one for
each DCP) numbered 0 through 8. Request queues
are printed by the dump in the BUFFER section.

SUBNET Q ADDRESS This 4-byte field is divided Into three
sectionst flrst two bytes contain the of fset,
the next byte Is the page number, and the last
byte Is the beginning address at which
Information describing the first subnet queue Is

1118478

9-6

RESULT QUEUE ADDRESS

DOC BUF MEM ADDRESS

RESERVED

LINE INFO SIZE

PHYSICAL DCP LIMIT

DC LIST ID

stored. There Is one subnet queue for each file
defined in the NDLSYS fiie. The information Iis
supplied In 10 bytes, divided into four flelds:

Queue Limit 1 byte
Queue Count 1 byte
Subnet Q Head Address 4 bytes: page, bus, address
Subnet Q Tall Address 4 bytes: page, bus, address

The subnet queues are printed in the dump and
are located in the BUFFER section.

This 4-byte field contalins the offset in the
first two bytes, the page number In the next
byte, and the last byte contains the bus address
where information describing the result queue Is
stored. There is only one result queue In a
data comm subsystem. It Is used to return
Iinformation to the 0S processor.

Ten bytes describe the result queue:

Read With Lock word 1 byte: 00 = locked

FF = un!ocked
Processor 1D 1 byte
Result Q Head Address 4 bytes: page, bus, address
Result Q Tall Address 4 bytes: page, bus, address

The result queue is printed by the dump 1in +the
BUFFER section.

This 4-byte field Is the page, bus, and offset
In buffer memory where the data comm buffers

begin.
These four bytes are currently unused.

This 2-byte field Is the size of each line Info
area. Each line Info area Iimmediately precedes
its respective line table In DOCP memory, and
contains the additional tine information needed
by the OCP. (For a description of line
information area flelds, see OCP Memory
Section.)

This 2-byte fleld contalns the highest physical
OCP number attached to the system.

This 1-byte field contalns the value used to
identify the elements in the data comm |Inked
block iist In OS Memory, and is used when any
data canm iinked blocks are accessed.

VIRTUAL DCA MEMORY

This is the second part of the DCA Memory area. Descriptions of the tables and fields within Virtual
Memory follow. The items are given in the order in which they appear in the printed dump.

USER JOB TABLE (LINKED BLOCK ID = 1)

This table has an entry for each job declared in the mix. For each job, the following fields of informa-
tion are printed in the dump listing:

OUTPUT L IMIT/COUNT This array contalns 32 entries, one for each
al lowable task number. Each entry consists of
two bytes: The leftmost byte Is the current
value of the task's output 1imit; the rightmost
byte is the current value of the task's output
caunt. These values are Initiallzed to @028 and
@00€, respectively, for each user job by the NDL
coppiler. The user job's task ID Is used as an
Index Into this array.

COBOL ACTIVE FLAGS This 4-byte field consists of 32 bits, one for
each al lowable task number. Each +time a user
Job is actively executing VERB33, a bit Is set
for that job's task number. This flag will
prevent the last MCS from golng to EOJ and
terminating the whole DC subsystem while VERB33
Is active for a task. DC.EOQJ suspends itself If
any of these bits are set.

The layout of the 32 bits In memory Is as
follows:

Bits 7 015 8 23 16 31 24
[11 11 11]
Byte 0 Byte 1 Byte 2 Byte3

WAITING QUEUE This array contains an entry for each allowable
task number. Each entry contains the queue
reference that the task is walting on, or @FFFF@
if the task Is not walting on a queue. The
Job's task number Is used to Index this array.

LAST COMM This 32-byte array contalns an entry for each
al lowable task number. Each entry contains the
active ADVERB of every VERB33 action being
performed. At the end of the VERB33 action, the
entry Is restored to @FF@. The Job's task ID Is
used to Index this array.

IPC ORIGIN STATION This array contains 32 2-byte entries, one for
each al lowable task number. This array Is used
by the IPC communicate to save the LSN of the
sending IPC program. The LSN can be cross-
referenced by using the LSN INFO Table. The
Job's task ID is used to Index this array.

1118478 9-7

LAST QUEUE This 32-byte array contains an entry for each
allowable task number, and 1Is wused with the
Complex Walt function of MPLII and COBOL. The
queue identity number for which the job has been
suspended is stored in this fleld. This field
works with a round-robin event scanner, lookling
for all or any one of the subnet queues which
were specifled In the Complex Wait statement.
The Job's task ID is used to Index thls array.

MCS TABLE (LINKED BLOCK ID = 2)

This table contains an entry for each MCS declared in the mix. For each MCS, the following fields
of information are printed in the dump listing:

MCS This Is the relative MCS number. This value |Is
not stored in the table, but rather, is used as
an Index Into the table.

MRA This 1-byte field is the ID of the linked block
that contalns the MCS message reference area.
It can be used as an index into the linked block
list to reference the MRA.

QUEUE HEAD This 4-byte fleld is the bus, page, and offset
address of the head of the MCS queue.

QUEUE TAIL This 4-byte fleld Is the bus, page, and offset
address of the tall of the MCS queue.

QUEUE COUNT This 2-byte field contains the current number of
messages on the MCS queue.

TASK 1D This 1-byte field holds the MCS's internal task
number .
MSG REF This i-byte fieid is the size of the MRA iink

block defined In the MCS source program. The
value In this field reflects the size of the
Message Reference Area (MRA) as It was deflined
In the MPLI| MCS program. Refer to sectlions 10
and 12 of the MPLI|I Reference Manual, form
2007363, for additional Information.

LSNTAB (LINKED BLOCK ID = 3)

This is the logical station conversion table. This table contains an entry for each station defined in
NDL. For each station the following fields of information are printed in the dump listing:

LSN The logical statlon number as defined 1in NDL.
This is used as the Index when using the LSNTAB.

PROCESSOR This 2-byte fleld holds the number of the
9-8

STATION TABLE ADDRESS

DISK TABLE SIZE

ORIGINAL OWNER

CURRENT OWNER

LLN

physical DCP to which this station Is attached.
If +this flield contains @FFFE@, the OCP s
unloaded due to an error condition in the
processor. If this field contains 6FFFF@, the
station was not declared to be attached to a
line In the NDL, or was detached by a
REDEF INE.STATION cammun icate.

This 2-byte fleld contains the address of the
Statlon Table In DCP MEMORY. Refer to the
Processor field to determine which OCP Memory to
reference in the dump.

This 1-byte field contalns the size (in bytes)
of the Station Table on disk for this station.

This 1-byte field contains the relative MCS
number of the MCS that was assigned to this
station In +he NDL file. |f no MCS was assigned
In NDL, this fleld is Initialized to €FF@8, and
will later be assigned the relative MCS number
of the first MCS to access this station. I f
this is a single-MCS system, then this fleld Is
initialized to €004.

This 1-byte fleld contains the relative MCS
number of the MCS that currently owns this
station. it is initialized to the value of the
orlginal owner.

This t-byte field contains the logical line
number of the line that this station Is
currently attached to. |If the station Is not
currently attached to a line, this fleld
contains &FF@.

LLNTAB (LINKED BLOCK ID = 4)

This is the logical line conversion table. This table contains an entry for each line defined in NDL.
For each line the following fields of information is printed in the dump:

1118478

LLN

PROCESSOR

LINE TABLE ADDRESS

This is the logical line number as defined in
NDL. This value 1Is used as the index (into the
LLNTAB.

This 2-byte fleld contains the physical DCP
number to which this line is attached. |f this
field contains @FFFE@, the DCP has become
unloaded due to an error condition 1In the
processor.

This 2-byte fleld contains the address where the
Line Table is found In DCP Memory. Refer to the
PROCESSOR fleld to determine which DCP to
reference In the dump.

9-9

DISK TABLE SIZE This 2-byte fleld contains the size (in bytes)
of the Line Table on disk for this line.

RECONF |G PENDING This 1-byte fleld is a flag used to prevent two
MCSs from simultaneously redefining the same
iline, or from executing RELOAD while
RECONF IGURATION or another RELOAD Is executing.
This flag s set to @FF8 1f a REDEFINE or RELOAD
Is executing for this Iine; otherwise, it Is set
to @008a.

SUBTAB (LINKED BLOCK ID = 5)

This table contains an entry for each subnet declared in NDL. For each subnet, the following fields
of information are listed:

SUBNET The relative subnet number as declared 1In NDL.
This Is used as the Index Into the Subnet Table.

ORI GINAL OWNER This i-byte fleld contalns the relative MCS
number of the MCS +that was assigned to this
subnet in the NDL file. |f no MCS was assigned
In the NDL, this fleld Is inftialized to 6&FFaE,
and later will be assigned the relative MCS
number by the first MCS to access this subnet.
I1f this Is a system subnet, this fleld Is
initiaiized to @008.

CURRENT OWNER This field contains the relative MCS number of
t+he MCS that currently owns this subnet. |+ s
inttialized to thls value by the original owner.

ATTACHED
MIX TABLE INDEX This 4-byte fleld contains 32 bits, one for each
al lowable task number. A bit is set for each
user Job that Is currently attached to this
subnet. Task numbers range from O to 31 and are
printed here as a set of 32 decimal digits.

NDL (LINKED BLOCK ID = 6)

This table contains information that points to the various structures and data within the NDLSYS file.

MODEM COUNT This 1-byte field contalns the number of modems
defined In the NDL.

TERMINAL COUNT This 1-byte field contains the number of
terminals defined In the NDL.

STATION TABLE SIZE This 1-byte fleld contains the size of each of
the Station Tables in the NDLSYS flle.

NDLSYS FIB 1D This 2-byté field contains the ID of the system
FIB for the NDLSYS file.

1118478

RECON FiIB

LINE TABLE
ADDRESS

LINE DISP ADDRESS

STATION TABLE ADDRESS

STATION DISP ADDRESS

MODEM TABLE ADCRESS

MODEM TABLE LENGTH

TERM TABLE ADDRESS

TERM TABLE LENGTH

FILE TABLE ADDRESS

EX-STATION TABLE

ADDRESS

EX-STATION TABLE

LENGTH

EX-TERM TABLE ADDRESS

This 2-byte field contains the ID of the system
FIB for the RECON file.

This 2-byte fleld contalns the disk file record
number In the NDLSYS flle at which the Line
Tables begin. Line Tables are on disk in LLN
order. Full details of the format of the NDLSYS
file will be found in the Data Comm Subsystem
Reference Manual (form 1090909).

This 2-byte field contains the disk fiie record
number 1In the NDLSYS file of the Line
Displacement Table. This table contains a 2-
byte pointer to each Line Table. Index Into
this table Is by LLN.

This 2-byte fleld contains the disk file record
number In the NDLSYS file at which the Station
Tables begin. Station Tables are on disk 1In
order of LSN.

This 2-byte field contalns the disk file record
number In the NDLSYS file at which +the Station
Displacement list begins. This table contains a
2-byte pointer to each Station Table. I ndex
into this table Is by LSN.

This 2-byte field contains the disk file record
number in the NDLSYS file at which the Modem
Tables beglin.

This 2-byte fleld contains the length 1In bytes
of the Modem Tabies disk area.

This 2-byte fleld contains the disk file record
number in the NDLSYS file at which the Terminal
Tables begin.

This 2-byte fleld Is the total length (in bytes)
of the Terminal Table on disk.

This 2-byte field contains the disk file record
number In the NDLSYS file at which the File
(subnet) Tables begin.

This 2-byte field contains the disk file record
number in the NDLSYS file at which the Extended
Station tables begin.

This 2-byte field contains the total length (in
bytes) of the Extended Station Tables disk area.

This 2-byte field contains the disk file record
number In the NDLSYS file at which the Extended
Terminal Tables begin.

9-11

EX~-TERM TABLE LENGTH This 2-byte fleld contains the total length (In
bytes) of the Extended Terminal Tables disk

area.
STATION NAME TABLE This 2-byte field contalns the disk file record
DISK ADDRESS number in the NDLSYS flle at which the station

name table begins. The names are arranged
alphabetically within the table and each entry
Is 12 bytes long, space fllled on the right.

STATION NAME TABLE This 2-byte fleld contains the total length (in
LENGTH bytes) of the station name tables disk area.

FILE NAME TABLE This 2-byte fleld contalns the disk file record
ADDRESS number In the NDLSYS file at which the File Name

Table begins. The file (subnet) names are
arranged alphabetically within the table, and
each entry is 12 bytes long, space filled on the

right.
FILE NAME TABLE This 2-byte field Is the total length (in bytes)
LENGTH of the File (Subnet) Name Table on disk.

DCP TERMINALS ADDRESS This 2-byte fieid contains the disk file record
number in the NDLSYS file at which the ocP
Terminals (FORMAT B) segment begins. This
segment contalns Information concerning the DCP
code flles and their associated terminals.

DCP TERMINALS LENGTH This 2-byte fleld contalns the total length (in
bytes) of the OCP Terminals (FORMAT B) disk

Informatione.

DCP (LINKED BLOCK ID = 7)

This table contains an entry for each DCP declared in NDL. For each DCP, the following fields of
information are displayed:

DCP The logical DCP number. This is used as the
Index into the DCP table.

FILENAME This 2-byte fileld contalns the name of the
codefile that Is currently loaded Into this OCP.

PHYSICAL DCP NUMBER This 2-byte fleld contains the physical DCP
number assoclated with this logical DCP. If the
DCP was never loaded or Is frozen, this fleld
contains @FFFF@.

9-12

DCPCON (LINKED BLOCK ID = 8)

The DCP Conversion Table is an 8-byte array (one byte for each allowable DCP) that can be used

to find a DCP’s logical DCP number when its physical DCP number (bus address) is known.

The physical DCP number is used as an index into the array to obtain the logical DCP number.

LSN INFO (LINKED BLOCK ID = 9)

This table contains additional information for each station declared in the NDL. For each station, the
following fields of information are displayed:

LSN

OUTPUT QUEUE

OUTPUT SUB Q

INPUT QUEUE

ATTACHED MIX TABLE
INDEX

The logical station number as defined in NDL.
This is used as an Index Into the LSN |INFO
table.

This 1-byte fleld contains the output routing
for this station. A value of @FF8 Indicates
that output to this station will be routed to
the MCS queue (MCS pafflclpaflng)- A value of
€00@ Indicates that output for this station Is
routed directly to the statlion queue (MCS non-
participating). A value of GFE@ indicates that
output to this station will be routed to the IPC
subnet queue.

This 1-byte field contalns the valid subnet
queue number for this dummy station. This field
Is used to support the IPC Interface.

This 1-byte field contalns the subnet number of
the subnet queue that this station's input will
be routed to. @FF@ indicates that this
station's input will be routed to the MCS queue
(MCS participating).

This 4-byte field contains 32 bits, one for each
allowable task ID. A bit Is set for each user
Job that is currently attached to this station.
Task numbers range from 0 to 31, and the field
is printed as a string of 32 decimal numbers.

MCSNAME (LINKED BLOCK ID = A)

This table contains the number of MCSs defined in the NDL, and the name of each MCS. This infor-

mation is displayed as follows:

1118478

MCS

PACK ID

This Is the relative MCS number. It Is used by
the system as an index into the MCS Name |ist.

This 7-byte field contalns the Pack ID specified
in NDL for this MCS.

9-13

F1LENAME This 12-byte field contains the MCS File ID.

MCS-COUNT This 1-byte field contains the number of MCSs
defined In NDL. For single-MCS systems, this
field contains @FFE.

DCP MEMORY

The second part of the Data Comm Section is DCP Memory. The DCP memory contains the micro-
code generated by the NCP900 or NCP900P program, the global data area, and the line- and station-
related information. These data areas are divided into two subsections, the first being the Reserved
Pointer Area, and the second being the Line Information Area. If the DC subsystem has more than
one DCP, the lowest bus address is dumped first, followed by the next higher DCP bus address.

RESERVED POINTER AREA

This area contains all of the address and stack pointers necessary to maintain this DCP. In addition,
this area contains the global data area; and holds information pertaining to PI, line and station sizes,
processor registers, SAVE state, and processor status information. In short, the majority of key DCP
information is contained in this area. This information is displayed as follows:

DCP ADDRESS This is the bus address of +this DCP and 1is
determined by the Analyzer.

ERRORFORCE, These three flelds are wused by the mlcrocode
INTERRUPTFORCE, when forced through low memory by the processor.
CLEARFORCE

0S PROCESSOR ID This two-byte field Is the bus address of the 0S

Processor. It Is not byte-reversed.

INPUT MAILBOX (IMB)
IMB REQUEST FUNCTION

IMB REQUE ST PROCESSOR These fields are the standard
IMB RESULT PROCESSOR Pl fields. Layout and content
IMB RESULT FUNCTION of mallboxes Is covered in
iMB SYSTEM MiX NUMBER Section 10. The oniy vaiues
IMB AWAI TING MA|LBOX that are used by the DCP for
IMB FLAGS request function are 87C@
OUTPUT MA!LBOX (OMB) (dummy po!l! response) and €08@
OMB REQUEST FUNCTION (DCP waking up DCA to look at
OMB REQUE ST PROCESSOR result queue).

OMB RESULT PROCESSOR
OMB RESULT FUNCTION
OMB SYSTEM MIX NUMBER
OMB AWAI TING MAILBOX
OMB FLAGS

MY MAILBOX FLAG
NM FLAG

DCP 1D This field is initalized by the Data Comm Loader
and should be the Processor ID of this DCP.

9-14

1118478

NDLSYS DATE STAMP, These two flelds are used to check that the NPC

RANDOM NUMBER microcode file and the NDLSYS file are a matched
pair. During NPC900, the random number Is
Inserted into both NDLSYS and the microcode
file(s) that is (are) being generated.

LINE INFO AREA SIZE This field contalns the size In bytes of the
LINE INFO area.

PRI LINE INFO This 1-byte field is the size of the extra area

AREA SIZE needed for multi-MCS control information. These
flelds are present In the primary LINE tNFO area
only.

DCP END ADDRESS This Is the address In DCP Memory of the end of

the mlcrocode.

DCP TABLES DCP tables are loaded at the top of DCP Memory.

BEGIN ADDRESS This address points to the bottom of the +table
area. (This should be greater than DCP end
address.)

BUFFER MEMORY This Is the location of the first page of data

READ ADDRESS comm buf ferse.

BUFFER MEMORY This Is the location of the first page of data

RWL ADDRESS comm buf fers with the RWL bit set.

PTR TO REQUEST Q PTR This Is the address of the Request Queue

pointer.
Bits 7 o7 07 015 8
[11 1t 10]
Page Bus Offset
PTR TO RESULT Q PTR This Is the location of the Result Queue
pointere.
Bits 7 07 07 015 8
[11 11 11]
Page Bus Of fset

PTR to AVAIL.POOL PTR This is the location of the data conm Available
Pool pointer.

Bits 7

- O
-~ N

07 0 15 8
11 11 |
Page Bus Offset

9-15

9-16

LINE VECTOR TABLE

HC LINE NEXT POINTER

HC LOOP FLAG

HC LINE FUNCTION

MAY STATION TABLE SIZE |

HC L INE CHANGE COUNTER

HC L INE BACKWARD
PO INTER

HOST LINE PRIORITY

Pl SEND Q HEAD

DCP RESULT Q
HEAD ADDRESS

DCP RESULT Q
TAIL ADDRESS

DUMMY STATION TABLE

LINE INO
BASE ADDR TABLE

This 1s an array of 16 2-byte entries, one per
port. Each entry is the address of the related
Line Table entry. Unused ports have an address
of 8FFFF8. Port O Is used for Interprocessor
communication (Pl). This port should have an
entry of @FFFFEQ.

NOTE

For entries HC LINE NEXT POINTER
through HOST LINE PRIORITY, for
the puposes of SCHEDULER, host
control (HC) is treated as an
additional line, and has a
pseudo LINE |INFO area. This
group of fields is that area.

This Is the forward link to the next |line. As
HC is always the "last line," this points to the
first line In the queue for Line Manager.

Unused .

Address of code to be executed by host control
when it galins control.

HC only runs every nth cycle (currently every
10th). This counter controls the size of the
cycle.

This is the backward iink to the previous HC
l1ne.

This fleld is always 0.

DCP memory address of the head of the Pl queue.

Address in buffer memory of the head of the DCP
result queue.

Address in buffer memory of the tall of DCP
result queue.

Used as a work area during Station Table
operations.

This table contains the address of the Line
Table entries in LLN order. All unused entries
are fllled with @FFFFE.

RELOAD IN PROGRESS

ENHANCEMENT BYTES

NPC VERSION

STATE SAVE AREA

ERROR NUMBER

This 1-byte fleld Is set to @FF&@ by the 0S +to
request that the DCP enter 1ts IDLE state In
preparation for reloading. This fleld is reset
(8008) by the DCP when It Is "idle".

Reserved.

This Is the version of the NDL Post Compller
(NPC) used to generate the microcode flle
currently In the DCP.

I f the DCP develops a problem or becomes "hung,"
this area al lows the same degree of debugging as
any other processor. A detalled description of
the State Save Area Is contained in the O0S
Processoir ssction.

This fleld in the State Save Area Is special +to
the DCP processor. Error numbers and their
meanings are:

@008 : Hardware error.

@018 : Interrupt error.
An unexpected interrupt has occurred.

8028 : NDL error.
The DCP has detected an error In the
supplied NDL that makes further execution
unsafe.

@038 : Initialize error.
TI_- NAD L

he OCP branched to address 0, and has

gone through Initialize code twice.

Errors @02@ and @03@ will probably require TIO
or plant resolution.

The values in the State Save Area have no
meaning unless the data conm was active at the
time of the dump.

LINE INFORMATION AREA

Information regarding the lines under control of this DCP is held in three parts. The first part is the
““Line Number”’ area. This area holds all pointer information work areas, flags, etc. The second part
is the standard CMS ‘‘Line Table.”” The third part is the ‘‘Station Table’’ entries for all stations on

this line.

LINE NUMBER

1118478

NEXT POINTER

This 2-byte field contalns the absolute address
of the next Iine info area in the "Round Robin"
queue.

PORT NUMBER

FUNCTION

RETURN PO INTER

BACKWARD PO INTER

PRIORITY CODE

PRIORITY PTR

ACTIVE STATION PTR

ACTIVE STATION

ACTIVE STATION
VECTOR PTR

WORK! +hru WORK3

CURRENT BUFFER

THIS BUFFER SIZE

THIS BUFFER SIZE SAVE

SAVE PO INTER

Thls 1is the physical port numbere. I+ Is
maintained as a blt+ mask where Port 2 = @048,
port 7 = €808.

This Is +he address of the microcode that
hand les the anticipated event. |If the line has
never been made ready, this fleld will be O.

The code address to return to when the active
function completes.

Points to the previous entry in the "Round
Robin" 1ist. Only used in queue delinking.

The line priority to be used when placing this
line Into the top-down Manager queue.

Points to the next iine at the highest priority.
If fhis is the only one, then this fleld will
point to Itself. This fleld Is used iIn the Line
Manager for top-down schedullng.

Contalns the DCP memory address of the Statlon
Table entry of the currenly active station (If
any).

Contalns +he RSN of +the currently actlive
station (the NDL variable "STATION").

Contalns the DCP memory address of the current
station’s Station Vector In the Line Table. The
Station Vectors are contalned in the CMS table
station descriptors. This fleld is redundant
for the dump reader, as the appropriate entry
can be readily found by use of the RSN fleld.

Temporary storage areas.

Absolute address of the base of the current
buffer.

Contalns the remaining buffer size. This fleld
Is updated at buffer crossover.

This Is used to store "THIS BUFFER SIZE" at
buffer crossover time. This 1Is necessary to
enable the system to correctly handle a

BACKSPACE after the last character has been
stored.

Used by subroutines that enter the Manager. This
Is not the normal mode of entry. It Is used
when a needed return address sits on the top of
the NBDS stack and the future integrity of the
stack 1s In danger due to an Impending yleld +to
another llne.

1118478

BUFFER SIZE

BUFFER COUNT

TERMINAL NUMBER

INPUT CHARACTER

CHARACTER

TIMEOUT

TEXT SIZE

RETURN TO PO INTER

CRCL

BCC CRCM

ADAPTOR DESCRIPTOR

DATA SET DESCRIPTOR

MESSAGE HEADER/LENGTH

TERMINAL SAVE Q LIMIT

YIELD COUNTER

AT LEAST TWO
CHARACTERS

Contalne the remalnling buffer space. This s
malntained In twos complement and Incremented
with each character stored. A value of @FFFF@

indicates overfiow.

The absolute address of the next character
position to be read from or written to.

Contalns the logica! terminal number assoclated
1

with the currently active station.

Sury Oy

Contalns the translated and checked Image of the
last character on the Iine. (NDL CHAR)

Contains the last character as it appeared on
The iine. (NDOL LCHAR)

Used to store S-OP~-defined times.

Contains the current amount of text accumulated
or transmitted so far. This 1Is malntalned In
ones compiement form. |t is updated only on
buffer crossover by the amount in
THIS.BUFFER.SIZE.

Contains an S-OP address where control will be
returned when current function is completed.

Holds lower byte during CRC calculations.

Holds BCC or upper CRC byte during BCC/CRC
generation.

A copy of the DC! hardware register.
A copy of the DC| hardware register.
Contains MAXINPUT for the current terminal.

Contalns the limit for the Output Save Queue of
a given station. The limit Is speciflied in the
station's Terminal Table. Because the terminal
tables are not stored In DCP memory, the

TERMINAL SAVE Q LIMIT 1is stored in the Line
Configuration area and updated at station change

time.
Used to ensure that a high speed line does not

monopolize a data comm processor's time.

Used to determine if certain BDLC receive S$-OPs
have recelived at least two characters.

9-19

9-20

STREAM A

STREAM B

ADAPTOR ABORT INFO

Used to buffer TRANSMIT TEXT data fram data comm
space to the adaptor.

Same as Stream A.

This Is two 1-byte flelds which contain
Information to be copled to the RESERVED and
SUBQ flelds of a Line Not Ready result header
{with adaptor fault event set). These fields
are also valld In the case where a function Is
returned with the result UNABLE TO INITIATE
caused by an adaptor mismatch. The following
Information Is helpful:

Corresp.
Subnet Reserved
Queue Description Fleld Description
0 No CTs after n/a
8 seconds
1 No adaptor 0 Delay operation
present
1 Transmi+t
2 Recelve
Switched line establish
dialout
4 Dlalout
5 Adaptor lost
2 Adaptor not n wWhere n = |D of adaptor
dialout capable
3 Line address n where n = ID of adaptor
requires dual ENDC
4 LEM link parity 0 Read

ME SSAGE HEADER PO INTER

HOST WORK! thru 4

DUMMY TALLY,
DUMMY DESCRIPTOR,
DUMMY STATION POINTER

i Write
Contalns the absolute address of the message
area currently In use.

Used as host control work areas.

Used In place of STATION TALLY,
DESCRIPTOR, and STATION POINTER when an
station has been chosen.

STATION
Invalld

FLAGS These flelds reflect the state of the line.
Individual bytes contaln the following flags.
Bits Message Meaning
FLAG 1 7 NOT USED
6 CRC The CRC toggle In NDL. If TRUE,

hor zontal parity Is generated.
If FALSE, horizontal parity Is
not generated.

1118478

FLAG 2

FLAG 3

Bits
5
4

Message
NO.TRANSLATE
SYNCS

FULL DUPLEX

TRANSPARENT

MIDDLE SHIFT MODE
UPFER SHIFT MODE

RCV TEXT

ZERO TIMEOUT

INPUT FLAG

LINE CONTROL

SPACE AVAIL

HOR IZONTAL .0DD

CRC.1

SYNC/ASYNC

FUNCTION IN
PROGRESS

VERT ICAL EVEN

Meaning
No translation

Store recelived syncs
Set for full duplex

Line is In transparent mode
Set/Reset by binary = TRUE/FALSE

When using caseshift translation,

these flags define the shlft mode
In effect.

Set while recelve text 1s In pro-
gress so that the common recelve
manager can distinguish a RCV
text from a RCV character.

The last recelve Instruction had
0 as Its time value. (0 requires
speclal handling In the manager.)

If set line had no output space
for half-duplex, this Implies that
llne Is In Ilne control or input
request mode.

Set when NDL Is running the line
control or auxiliary llne control
of the program for this line.

Message space Is avallable. Set
after successful getspace, or on
entering an output request

Set If using odd horlzontal.
parity.
Indicates CRC polynomial in use:

XHRT6+xCH #1545 * 241
X*E 6+ xHH] 2+ x**5 41

0
1

TRUE implles ASYNC.

I1f set, HC does not get a message
off +the request queue for +hls
iine« Aiso, Inhibits $~0Ps
from Interrupting the line, irre-
spective of the state of the |lne
(busy).

Set If even vertical parity is
present.

9-21

9-22

FLAG 4

Bits

Message

NEW CHAR PRSNT

STA.NRY.PENDING

LN.NRY. PFENDING

XMT/RCV LAST

ABORT IN PROGRESS

FLAG.FILLING

WAIT FLAG

AUX ACTIVE

AUX

I GNORE BREAK

FLAG EXPECTED

OLD TRANSPARENT

ADAPTOR IN USE

Meaning

Set If recelve manager received
new character from l[ine.

A Make-Station-Not-Ready request

has been made for this station. It
will be done after THIS.FUNCTION.
implies that line (busy) Is TRUE.

As above, but for line.

Indicates whether the most recent
function was a transmit or recelve.
Used In byte variable and toggle
accessing for values that are maln-
t+ained on the adaptor (1 for each
slde XMIT and RCY). True = RCV.

In a multi-MCS environment, the DCP
Is In the process of Informing all
MCPs that a line abort has occurred.

The BDLC line Is currently flag
filled.

Set If line Is In Waite
Set If auxiliary line 1Is In llne
queue.

Indlicates that this Line
Information area Is an auxilliary
of a full-duplex pair.

Indicates to the transmit
messenger that the S-OP wishes

to Ignore a brea& condition on

an ASYNC line and underflows
on a SYNC line.

The recelver expects a BOLC flag.

Reflects the state of transparent
for the most recent XMIT/RCV.
Alds 1In the retrieval of the
character, since transparent could
have changed state fram the time
the character was received and
its access.

An instruction requiring the
presence of a line adaptor has
been executed.

1118478

FLAG 5

FLAG 6

Bits

Message

NOT USED

Meaning

TERMINATING BLOCK Set If terminating block.

NO LINE CTRL

DCIB TRUE

HOST MCS FLAG

NOT USED

INV FRAME

ABORT LINE

LINE LINKED

LINE LOAD

LINE STREAM

LINE BITS

TERMINATING

DISABLE OUTPUT

NOT USED
NOT USED

NOT USED

INVALID QSR

Set if shouldn't re-write line
control after pending resolution.

Set If the line adaptor is DCIB.

Indicates logical state of the
assoclated MCS.

Set if the BDLC line has recelved

an finvalid frame. Its use 1s
Internal to the routine that pro-

cesses recelve errors. Should be
0 outside that routine.

Set if LEM line error occurred
dur Ing Make-Line-Ready process
before Line Linked is set.

Set If Line Ready process has
linked line Into line list.
Line can be made Not Ready at
this point.

Indicates which stream fleld
must next be loaded with trans-
mit data: O = String A

1 =string B

Indicates which stream fleld is
current: 0 = string A
1 = string B

Set if line Is BDLC.

Set If Terminate Disable Input
I's being processed to distinguish
It from a Terminate. Error is
common codee.

Set when the DCP firmware notices
a pecullar condition on the line
adaptor.

9-23

9-24

COUNT A

COUNT B

PRIMARY POINTER

CO LINE POINTER

LNE PENDING MCS 1D

LNE LOG LN RDY COUNT

LNE HOST MCS 1D

LNE MCS LOG STATE

LNE SNR MCS DATA

LNE LNR MCS DATA

LINE TABLE

STATION TABLE

The number of characters In stream A.
The number of characters In stream B.

Address of the LINE INFO AREA of the primary
line of a full-duplex pair. For half-duplex
palr, for a half-duplex lline, or for the
primary, this will point to Itself.

Address of the LINE INFO AREA of the aux llne of
a ful i-duplex pair. For a half-duplex line, this
fleld |s @FFFF8. For the aux tine of a full-
duplex pair, this tleld points to Its primary.

This 1-byte fleld Is used If an MCS Is making a
line Ready/Not Ready, and holds the MCS relative
routing number of the requesting MCS. This fleld
is used later (when the action Is finlshed) to
route the result of the line condition back to
the parent MCS.

This 1-byte field Is used to hold the number of
I1nes the MCS has ready.

This 1-byte fleld Is used as a Save Area for the
MCS 1D, and is used in relationship with any
pending operation {such as making a line Ready)-
when the operation (function) Is completed, this
fleld Is copled Into the result descriptor
header.

This array Is 16 bytes long, and 1s used to hold
information on the state of the lines (one byte
for each line). @00& indicates the line is Not
Ready, €FF@ Indicates that It Is Ready.

This 2-byte fleld Is used to hold the MCS data
fleld of a MAKE.STATION.NOT.READY message header
if that header encounters a Pending condition.
This fleld wil! be copled to a new header and
returned to the MCS when the Pending condition
is resolved.

Same as above, for MAKE.LINE.NOT.READY.

The meaning of the contents of +this table are
ldentical to that described In the NDL tables in
this section of the manual. For information on
the usage of the Line Table, refer to the Data
Commun Ications Subsystem Reference Manual, form
1090905,

This table Is identical to the area described In
+he NDL tables found in this sectlion. For

addi tional Information on the Station Table,
refer to the Data Communications Subsystem
Reference Manual .

BUFFER MEMORY

The third and last area of the data comm dump section is the set of data comm buffers. Buffers are
listed in relation to the structure to which they belong. All buffers are laid out in the following manner:

Byte Description

0-3 Link to next buffer in this message with @FFFFe
the last buffere.

A - 7 1€ 4+ht
5 . [N R

+* £ mand
" 1

uG LR - b
to the next message. |
the field Is @FFFF@.

{ & messags, 1T polnt

t Is not the first buffer,

5

8 -n Message text.

NOTE
In the first buffer of a message, the
first 36 bytes contaln the MCS header.

AVAILABLE BUFFER POOL (ABP)

The Available Buffer Pool is a set of buffers. The size was allocated by the DC BUFFER field of
SYS.CONFIG and by the NDLSYS file using the DCP section buffer fields. All buffers are dumped
to allow a trace of a recent message. By using the two link fields, buffers can be linked forward or
backward. Information on the linking fields follows.

ABP READ WITH LOCK A 1-byte fleld used by +the Read-With-Lock
hardware (8008 = unlock, @FF@ = |ocked).

ABP PROCESSOR 1D This contalns the ID of the processor using the
ABP.

ABP COUNT This field contains the number of buffers In the
ABP.

ABP HEAD This field points to the head of the ABP.

ABP TAIL This field points to the tail of the ABP.

The ABP buffers are located here in the printed dump.
RESULT QUEUE

The result queue area is laid out similarly to the ABP. The fields are identical in function to those
of the ABP.

1118478 9-25

REQUEST QUEUE

The request queue for each DCP number is given here. The fields are identical in function to those
of the ABP.

SUBNET QUEUE

The contents of each subnet (NDL file) is given here. The fields have the following significance:

QUEUE NUMBER Analyzer developed reference (logical Q no.).

QUEVE LIMIT The current queue Iimit for this subnet.
Default value Is 2.

QUEUE COUNT The number of messages In this subnet queue.
QUEUE HEAD/TAIL The addresses of the head and tall of the subnet
queue.

9-26

SECTION 10

W .

TASK PROCESSOR
INTRODUCTION

This section of the manual provides a field-by-field description of the Task Processor (TP) portion of
the dump. Data contained in the TP section includes:

Input and output mailboxes used to communicate with the OS processor

Pointers used to locate system and task structures in the task processor memory
State Save Area, used to store information when a nonrecoverable error is detected
Analysis of memory utilization

Breakdown of interpreter and task run structures

Status information for each task

A section titled ‘“Task Processor on BUS nn,”’ is printed for each TP on the system. The first indica-
tion of a task processor failure is usually the message, ‘“Task Processor <BUS ADDRESS>
LOGICALLY NOT READY,” displayed on the SPO. In this instance, the procedure discussed in the
following paragraphs should be performed.

INITIAL DUMP ANALYSIS

There can be one of two reasons for a task processor to be in a LOGICALLY NOT READY state.
The first reason is that the task processor detected an internal failure and stopped communication with
the OS processor.

The second possible reason is that the OS processor failed to receive a response from the task processor
which the operating system had polled.

In both of these cases, the OS freezes the task processor and attempts to create system dump.
ever, it should be noted that, in the first case, a processor maintenance entry will be logged. This entry

contains the same information as the State Save area.

The initial step in dump analysis is to identify the bus address of the failing task processor. This can
be achieved by looking at the system log or by examining one of the following fields in the system
dump:

Frozen Processor field found in the Dump File Parameters section (page 2 of the formatted dump
file)

Dump File Map (third section in the dump file)

PI Dead Processor found in the PI Data Area of the dump’s OS section (which follows the History
Communicate Table). ,

The Save State Address is always primed. If the OS detected the error, the Save State information
will be invalid and will be initialized to 3 bytes of @FF@, 49 bytes of @00@, and 10 bytes of @FF@.

If the task processor detected the error, the Save State information will be valid.

If the error number is @47@, the error was hardware-detected. Interrogation of the IC Status fields
found in the State Save Area will indicate the type of hardware failure. More detail on State Save
Area analysis is contained in section 8 of this manual.

1118478 10-1

If the error number did not indicate a hardware failure, the fields IMB FUNCTION and IMB FLAGS
should be examined. These fields indicate the last function that was performed and the current status
of the input mailbox. Possible entries and their messages are discussed later in this section.

Repeat this step for the OMB REQUEST FUNCTION and the OMB FLAGS. If the reason for the
error cannot be determined, further analysis will be required. The rest of the task processor fields are
detailed in the following subparagraphs in the order in which they appeared in the dump.

TASK PPROCESSOR ON BUS nn

ACOUNT This |s the address resolution count. The
Information shown here Is used in the detection
of thrashing.

STATE SAVE AREA This fleld will always be primed to the address
ADDRESS of the State Save Area.

MAILBOX DESCRIPTIONS

The Input Mailbox is used for messages from the OS to the TP. The Output Mailbox is used for mes-
sages from the TP to the OS. For a full explanation of mailboxes and their use in interprocessor com-
munication see section 4.

INPUT MAILBOX (IMB) This area is used to store the message passed.

TEXT The oxact usage !s defined by the request
function fleld. The text area contains the
Fetch Communicate Message (FCM) If communicate
Information Is indicated in the request function
flelde.

IMB REQUEST FUNCTION This fleld is used to indicate the type of
Information In the text area. When the request
bi+ (MSB) is set in the IMB flags, the OS s
requesting the task processor to perform a
function.

These functlons are as follows:
€07€ Command handler.

e8e Interpreter load.
€09¢ Monitor actlon.
6FFe Data move function.

Parameters to these functions .are In the IMB
text ares, as shown in figures 10-1 and 10-2;
responses are shown In flgure 10-3.

¥ the TP had previously requested, by means of
I+s output mailbox, action In the 0S, there may
be a result to be passed back to the TP. In
+his case, the request function will be the

10-2

TASK PROCESSOR INPUT MAILBOX
TEXTAREA =18 BYTES

FOR NON INTERP ACTIONS THE COMM.AREA CONTENTS WILL VARY
DEPENDING ON WHETHER THEY ARE RECEIVED FROM THE 08 OR ARE TO
GO TO THE 0S. THEY ARE ALSO ACTION DEPENDENT.

0S —»COMMAND HANDLER (FUNCTION ID = 07)

BYTEO= 00 RUN (LOAD)
01 PREPARE TO SUSPEND
02 PREPARE TO WAIT LONG
03 REQUEST FPB NO.
04 REQUEST SEG. SIZE
05 PREPARE TO MONITOR
06 PREPARE TO REMOVE JOB

BYTE o 1 2 3 4 5 -] 7 8 9 10 1" 12 13 14 15
RUN | o0 M OF |eriORITY] $12EOFTCE | PRIORITYHELD IN2L8B. 1=C, 2=8, 3=A.
PREPARE FILEIDOF REMOVE a5 o “RM DATA STRUCTURES.”
SUSPEND o1 VM FILE SAVE 02 DESIGNATES “SAVE DATA STRUCTURES.” 01 DESIGNATES UC
TASK FiB
GET FPB NO. 03 D NO.
TASK SEG
GET SEG NO. 04 D NO.
PREPARE FILEIDOF REMOVE “ TRUCTURES.” 01 DESIGNATES “RM DATA STRUCTURES".
REMOVE 08 VM FILE SAVE 02 DESIGNATES “SAVE DATA STRUCTURES. DE: ES
ED2646a
. .
Figure 10-1. TP Input Mailbox Format for Function 07
TASK PROCESSOR INPUT MAILBOX
TEXT AREA = 16 BYTES
OS > MONITOR ACTION {FUNCTION-ID = 09)
BYTE 0 = OP.CODE = 02 REQUEST “BUSYNESS” FACTOR
ELSE CONSIDERED AS PROCESSOR POLL.
0S-» COMMUNICATE REQUESTOR (FUNCTION-ID = FF) NOTE: REQUEST BIT IN FLAGS IS RESET.
BYTES 13,14,15 = FCM
0S-®INTERPRETER LOAD (FUNCTION ID = 08). INVOKED AT WARMSTART.
BYTE \] 1 2 3 4 5] 7 8 9 10 1 12 13 14 15
FILE ID OF
INTERP FILE PAGE | BUS ADDRESS 81ZE
— ; =
OF INTERP.SEG.TABLE
NOTE:
SINCE AT WARMSTART THE 08 WILL SUSPEND WAITING ON A RESPONSE
TO THIS REQUEST, FAILURE OF THE TP TO PROVIDE S8UCH A RESPONSE IS
FATAL TO WARMSTART. THE SYSTEM WILL HANG,
ED26468b
Figure 10-2. TP Input Mailbox Format for Functions 08, 09, FF

TASK PROCESSOR OUTPUT MAILBOX

TEXTAREA = 16 BYTES
RESPONSES
BYTE 0 1 2 3 4 5 [7 [° 10 1 12 13 14 15
| |
| ! ‘
‘ [elolels] o1 NA 47
l | RESPONSE FROMACTION 07,
I TO OP-CODE 00 o
| l BAD * svs10 RESULT
| ‘ | |
Taskip | o1 NA NA g; Je——coop a8
[RESPONSE FROM ACTION 07, TO OP-CODE 01 OR 08.
TASKID RESULT NA g; je——— BAD a8
! (NOTE)
|
FPB NO. SEG SIZE RESPONSE FROM ACTION 07, TO OP-CODE 03.
| [|
|
SEG SIZE RESPONSE FROM ACTION 07, TO OP-CODE 04.
|
NOTE: BYTE 4 = 01 — SUSPENDED
06 — REMOVED
ACK 00
RESPONSE FROM ACTION 08.
NACK———» FF - 1 —

ED2647

104

IMB REQUEST PROCESSOR

IMB RESULT PROCESSOR

IMB RESULT FUNCTION

IMB SYSTEM MIX NUMBER

Figure 10-3. TP Output Mailbox Format

action ID of the requesting action, the request
bit will not be set, and the IMB text area will
contain the response.

This fleld contains the bus address of the
processor orlginating the request. (Not used by
task processors)

This fleld contains the bus address of the
processor this message went to. (Not used by
task processor.)

This fleld contains the 1D of the action that Is
+o receive the result. When the function fleld
points to a TP action, the ID Is an index Into
the status block address array.

Refer to the "SB address array" description In a
later subsection.

This fleld contains the mix number of the number
of the job ldentified in the OS processor Mix
Table. Information passed Is associated with
this Job.

1118478

IMB AWAITING MA|LBOX

IMB FLAGS

Not used.
The blt assignments of the flags are as follows:

MSB 7 - Request
6 - Unused DCP

5 = TP error

4 - Rejected by TP

3 = Accepted by 0S

2 - Glven to 0S

1 - Accepted by TP
LSB 0 - Given to TP

The following flag values Indicate the most

common transaction sequence and may help to
ldentlfy the status of +the text area:

8088 Mailbox owned by 0S
1@ Mallbox contains data for TP
@848 TP has accepted the Input message

€06€ may also be seen in the flags flelde This
indicates a successful data move by the TP.

The meanings of the flags without the ™" bit
are also as above except that the text contains
a response from the 0S rather than a request.

OUTPUT MAILBOX (OMB) TEXT

OMB REQUEST FUNCTION

Text same as for Input Mallbox.

This fleld Is used to indicate the type of
Information contained in the maiibox text area.
Values here represent actlon-IDs In the 0S.

When the flags request bit is set, the following
flag values are used:

@15@ REQ-SYSMESSAGE TP request to display information on the

0DT/Remote SPO.

€308 REQ.IO TP request to bring a structure into its
memory.
€47€ REQ.RUNNING TP Informing the OS that a job has been

€48€ REQ.REMOVE

loaded or restarted, and should now be
marked as executing.

TP informing OS that a task has been
suspended or terminated as requested.

84D&@ REQ.THRASHING TP informing O0S +that a thrashing

condition exists.

10-5

€528 REQ.JOB.ERROR TP informing OS that an error has been
detected. Probably DS-DP condition.

8Be& REQ.MONITOR Invokes DUMMY action in OS to confirm DP
stil! allve.

6FF@ REQ.COMMUNICATE First byte of text = communicate.

OMB request processor, OMB result processor, OMB
result function, OMB awaiting mailbox, system

mix number are the same as IMB.
OMB FLAGS The bit assignments of the flags are as follows:
MSB 7 : Request
6 : Unused DCP
5 : TP error
4 : Rejected by 0S
3 : Accepted by 0S
2 : Glven to 0S
1 : Accepted by TP
0 : 0OS acknowledgment

LS8

The following flag values Indicate the most
common transaction sequence, and may help to
identify the status of the next area.

€028 Mallbox owned by TP

@4@ Mallbox contalns data for 0S

@1@ O0S has accepted the mailbox request
€028 Mallbox owned by TP

The meanings of the flags without the ™" bit
are the same as above except that the text
contains a response from the TP rather than a
request.

S1GNAL OUT LOCATION This 1s the location where the task processor
sets a flag to alert the 0S to check the

mallboxe.

ERROR OFFSET This fleld points to the location In the task
processor code where the error was detected.

INTERPRETER SAVE AREA

INTERP KDUMP, These are flelds used by the Interpreter to save
INTERP SINTFLAG, off Information during Interrupt handling, erce.,
INTERP SICOUNT, to enable control to be reinitiated at the
INTERP LDUMP,

correct place.
INTERP TCBPTR,

INTERP TCBPAGE,
INTERP RTRNDUMP,
INTERP JDUMP,
INTERP COMMPTR

10-6

POINTER FIELDS

1118478

0S BUS

Current Task

0S Request Task

Terminate Tasks Task

Current Message

Terminate Queue

Task References
First Job

Ready Queue

Please Yleld

Allocates Called
Allocates ldled
Al locates Measure
Page Reference

Last Page

Blocks Lock

ICB First Page

ICB First Location

This fleld contains the bus address of the
operating system Interrupt handling to enable
control to be reinitiated at the correct place.

This fleld contains the ID of the task which has
control of the task processor.

This field points to the task requested by the
0S.

This fleld points to the task which Is
terminatinge.

This fleld polnts to the malilbex contalning 2

message for the current taske.

This fleld polnts to the tasks walting to be
terminated.

This Is a Iist of user jobs or TP-created tasks.
This field points to the first user task.

This field points to the next job which will
obtain control of the task processor.

The OS Is requesting the task processor to give
up control of the current task. Possible values
are:

érre
€008

0S requesting processor to yleld control
No request from 0S

These fields are used to determine processor
activity.

This fleld polnts to the pages of the task
processor.

This fleld Indicates the number of pages on +he
task processor.

€008 = Unlocked; €FF@ = Either a TCB, PCB, or
ICB Is In the process of being created/deleted.
While In a locked state no one may make or
delete from this block.

This one byte fleld points to the page of the
first ICB.

This fleld polnts to the location on the page of
the first ICB.

10-7

ICB Last Page

ICB Last Location

Mailout Lock

0S Processor

Task Processor

H Bugspace Location
Bugspace Location
Num Debug Text

Task Run Space

No Task Space

Segments
Task Kind

SPACE ANALYSIS

This area reflects the state of each page of memory in the task processor. Since hardware memory
addressing is not continuous across pages, memory management of each page is effected independently.

This fleld points to the last ICB on the list on
a particular page.

This field points to the location on the page of
the fast ICB.

The PCB and TCB pointer flelds, which are the
next eight entries, are the same as the |[CB
pointer fields above.

A value of €FF@ Indicates a locked condition.
This lock Is used to control access to the
mallbox which can be used by only one task at a
time.

This fleld contains the bus address of the O0S
processor .

This field contains the bus address of the task
processor .

These fields will always have a value of zero.
They are regarded as reserved flelds.

This fleld contalns the address of the next task
to be loaded.

A value of 8FF@ means there Is no space to load
a task on this processor.

These are compller-related flelds.

For each page of memory present, the following fields are listed:

10-8

Page Number

First Space,
Last Space

Lock

This fleld Indicates the memory page in the task
processor.

These flelds contain the addresses of the lowest
and highest spaces In the page. The spaces of a
page are linked forward and backward In memory
address order. Therefore, the spaces of a page
can be searched in either direction.

A value of €F@ means locked. Since each page
has I+s own lock, memory management Iin several
pages can proceed concurrently. This lock Is

Task Waiting

First Available

GS Count

Blocks

used to control memory allocation on each page
of memory In the task processor. This lock can
be used by only one task at a time.

This field contalns the task record addresses of
tasks walting on a locke

This fleld contains the address of the lowest
addressed available space. All the available
spaces In a page are linked together in memory
address orders

This Is the Get Segment Count that Is used In
detection of thrashing.

The number of PCBs, TCBs, or ICBs contained on
that page.

Each page of memory in the Space Analysis section contains a table of the space allocation of the
memory on that page. It contains the column headings NEXT, LAST, SIZE, STATE, and USED. The
information under these headings is explained as follows:

NEXT

LAST

SIZE

STATE

USED

1118478

The NEXT fleld Is the forward Iink to
adjacent spaces. LAST (preceding entry)
+ SIZE = NEXT (unless NEXT = NULL).

The LAST fleld is the backward |ink to
adjacent spaces. An example of how +to
read the NEXT and LAST fields Is given In
figure 10-4.

This field Is the size of the space In
bytes, 1iInclusive of +the space record
Itself.

The state of the space can be either
available, over layable, or non-

overlayable.

This fleld Is a usage count for S-
SEGMENTS.

8078@ = used, 600€ = avallable.

10-9

PAGE NUMBER 02
FIRST SPACE 0000
LASY SPACE FFES8
LOCK 00
TASK WAITING 00CGO
FIRST AVAILABLE 1476
GS COUNT O8
BLOCKS 0001
ARCOUNT A4FF

NEXT LAST SI1ZE STATE USED
ANEE AR AR AARR AARSR E 2 2 24
0008 0000 0Cos FF NON OVERLAYABLE 07
0167 0000 015¢ 80 OVERLAYABLE 07
02A9 0008 0142 80 OVERLAYABLE 07
0497 0167 C1EE 80 OVERLAVABLE 07
0776 02A9 o2of 80 OVERLAYABLE 07
090 0497 022a 80 OVERLAYABLE 07
0FB9 0776 0619 80 OVERLAYABLE 07
1134 09A0 0181 80 OVERLAYABLE 07
146t 0FB9 0334 80 OVERLAYABLE 07

C_Fe3a 1134 EACC 00 AVAILABLE 00 |
FFES 146E- 00AE FF NON OVERLAVABLE 07
0000 FF3A 0008 FF NON OVERLAYABLE 07

A sample space allocation table is shown above. Assume that you wish to locate the last area of
AVAILABLE space in the Hex dump. The line of information relating to this area has been outlined
so that it will stand out. This piece of memory, of size EACC (in Hex), is located between two ad-
dresses of 146E. These addresses are the NEXT of the preceding line(?) and the LAST of the line which
follows(2). This indicates that the available entry is located at 146E in this page.

Figure 10-4. Example of How to Read NEXT and LAST Fields

10-10

BLOCKS

There are three kinds of blocks: Interpreter Control Blocks (ICBs), Program Control Blocks (PCBs),
and Task Control Blocks (TCBs). There is an analysis section for each kind of block in the dump.

ICB ANALYSIS

This area contains interpreter information. There is an ICB ANALYSIS section for each interpreter
in a task processor. A description of the fields as they appear in this section is as follows:

iCB Page This fieid indicates the page where the iCB is
located.

ICB Location This field Indicates the location of the ICB on
the page.

Space Next, These are forward and backward memory links In

Space Previous the space record.

Space Size This field indicates the size of the ICB In
bytes.

Space State The space state can be eilther avallable,

over layable, or non-over|ayable.

Space Used 8078 Iindicates recently "used", and @008
indicates "available."

The BLOCK HEADER is comprised of the next six fields appearing in the dump. This area precedes
all ICB, PCB, and TCB records. These fields provide a description of the block, and are linked to

previous blocks of similar type on a task processor page. The fields are named Next Page, Next Loc,

AVRS VAUV AS UL Siiiilikl Vit & ASK pIUROSVUL pase. 1ivialad § T+ 3041 ANvAL L Qpvy 1YvAL U

Prev1ous Page, Previous Loc, Kind, and ID.

The following fields appear in the dump after the Block Header:

ICBS Users This fleld contains the number of users for a
particular ICB In a task processore.

ICBS Flags Not used.

ICBS CST BASE Contains the first byte of the ICB file
descriptor. This Is the starting location of
the ICB file.

ICBS CST Limit Contains the last byte of +the ICB flle
descriptor. This is the ending location of the
ICB flle.

PCB ANALYSIS

This area contains information regarding the programs assigned to a specific task processor. The fields
in this section are the same as those of the ICB Analysis area.

1118478 10-11

TCB ANALYSIS

The standard Block Header fields are followed by a TCB descriptor and a segment table.
TCB Descriptor

Priority This fleld iIndicates the external priority of
the user task, where

ao1e = C
a02e = B
Q038 = A
| Seg Interpreter segment number.
| Off Offset Into the Interpreter segment.
CST Size Size of the code segment table.
CST Sector Offset of the code segment table.
IST Size Size of the interpreter segment table.
IST Sector Offset of the interpreter segment table.
DST Offset Offset into the data segment.
PPA Size, Size and of fset of program parameter area. For
PPA Sector COBOL, this area Is the COP table. Not used by
MPL.
CH Return Not used.

Data Stack Pointer Job-related parameters.

thru
Control Stack Limit

Flags The flag blts are:

MSB 7 & 6 Used for thrashing detection

5 Not maintained
4 DS or DP condition
3 Suspend
2 Save data structures
1 Remove
LSB 0 Long wait
Sintmask Not maintalned.
FCM
SPSA Seg S-program start address segment number and
and displacement.
SPSA Off

10-12

TCB SEGMENT TABLE

The layout is as in a PCB. The disk address field points to the offset within the appropriate disk file
from where the data segment is to be loaded. This could be the VM file, the code file, or a “‘zero
fill,”” depending on the current state of the program. FIB segments are replaced by FPB segments. The
FPB is CMS standard. These are listed after the TCB segment table. The STE number is an Analyzer-
computed field to cross reference the FPB to the segment table.

JOB QUEUE

Contains status information for each task.

OS REQUEST TASK

Contains information similar to an output mailbox that has not been serviced yet.
TERM TASKS TASK

Contains information regarding tasks waiting to be terminated by job management.

READY QUEUE, TERMINATING QUEUE, LOCKED QUEUE

The task processor has three queues: Ready Queue, Blocks Lock (waiting), and Terminate Queue. A
pointer to the head of these lists is in the pointer fields. Each queue is in prioirity order, highest to
lowest.

COMPUTING AMOUNT OF SPACE OWNED BY A TASK
A task uses memory for a task record, PCB, TCB, and present segments. The size of these areas can

be found as follows:

__________ 4 =
Iask recoru >

PCB size slze of PCB record plus present segments.

Use the "PCB ID" field In task to find PCB
record. Size field of preceding "space" record
contalns the size of the PCB (including block
header, space record, and segment descriptors).

Segment size = size specifled In the segment descriptor If
the absent bit (bit 6 In flag) Is not set.

10-13
1118478

v1-01

MAILBOX TEXT = 16 BYTES
VALID VALUES INBYTE 14.

BYTE o 1 2 3 4 5 6 7 8) 10 1 12 13 14 15 19
VERB ADVERB OF VARIABLE LENGTH ! FF L— CMS COMMUNICATE
- NOT APPLICABLE 70 l&—— YIELD ON INTERRUPT
NO. OF I' e
SEGS n 4BYTE ENTRIES 7 YIELD FOR GETSEG
WHERE n = NO. OF SEGS *
cMms : SEG | LINE NO.IF cOBOL
-———————— : J

EVENTINHEX NOT APPLICABLE NO ROCEDURE IN MPL OFFSET |

cMs . YIELD FORSYS-MESSAGE
EVENTINHEX NOT APPLICABLE "l 15 (USED ONLY BY SORT)

“'EACH 4-BYTE ENTRY
p ~ —_ NOTE:
NOTE THAT THE CMS COMMUNICATE WILL
SEG SEG APPEAR IN THIS FORM IN THE TP OUTPUT
TYPE FILE-ID NO. MAILBOX (FIRST 16 BYTES ONLY).
07 = DATA l I work
| BLock !
08 = CODE | | D
09=INTERP |

ED2650

Figure 10-5. Task Record Text

SECTION 1

DISK MANAGEMENT
INTRODUCTION

Details concerning the B 900/CP 9500 disk subsystem are provided in this section of the dump. The
configuration and physical status of all disk drives attached to the system can be ascertained, as well
as commands handled by the disk drives. The following structures are contained in this section:

TASK STACK - information relating to internal disk processor’s operation
State Save Area

Pointers to structures within the disk processor’s memory

PORT TABLE - configuration of 1/0 channels

COMMAND TABLE- 1/0 command data

DRIVE TABLE - containing actual drive status
INITIAL DUMP ANALYSIS

If the disk processor encounters a hardware error causing the processor to freeze, the Hex display indi-
cates ““FO0000”’ on the lower banks of lights. Two common causes of a frozen processor are the system
disk going ‘“NOT READY,” and the disk processor detecting a memory parity error. In these
situations, a ROM/PROM dump needs to be taken, followed by an examination of the Disk Manage-
ment section of the dump.

The important areas to interrogate in this section of the dump are the DRIVE TABLE, the COM-
MAND TABLE, and the PORT TABLE. The DRIVE TABLE entries provide the result status of the
last 1/0 command issued on all drives attached to the system. Any I/0 errors are indicated in these

entries. The last I/O performed on each disk drive is identified in the COMMAND TABLE. Lastly,
the PORT TABLE defines the existing disk drive configurations.

If a failure has been detected within the disk processor, then the State Save Area needs to be studied.
The error number identifies the cause of the failure. If this field has a value of @00@, then a hardware
error has occurred. Further analysis of the State Save Area as outlined in section 8 of this manual
will assist in identifying the type of failure detected.

Following is a detailed description of the tables found in the Disk Management Section.

FIRST FIELDS

The first items encountered in the Disk Management section of a dump are explained as follows and
shown in figure 11-1.

0S PAGE This is a 9~byte fleld, of which the first +two
bytes (reversed) are the bus and page of the 0S
Processor, with the IC enable bit set.

0S INTERFACE AREA This 1is the base address of the disk/0S
processor Interface area within the 0S processor
page O.

1118478 11-1

REARRARARA AR A AR AN AR R BN AR AN AR kR

*aaakrt [ISK MANACEMENT *axxtsax
AARARRARNAP R R AR ARNA R AN AR R R AR AR AR

0S PAGE
0S INTERFACE AREA

STATE SAVE AREA
STATE SAVE AREA ADDRESS
ERROR NUMBER
ACTION ID

ACTION NAME

M1

WR

M2

B32

MAX

MXA

MX8

BIFL

BO

REQ

XY

J

K

L

AD

TOP OF STACK

TCP OF XSTACK

eND ON STALK

2ND ON XSTACK

3RD ON STACK

3RD CN XSTACK
BOTTIOM OF STACK
BOTTOM OF XSTACK
IC — ERROR STATUS
IC — STATUS WORD 1
IC — STATUS WORD 2
IC — STATUS WCRD 3
IC - STATUS WORD 4
IC — STATUS WORD 5
IC — FIRST ERROR REG

bP SI1ZE

CURR TASKS
MAX DRIVES
TASK INFO PTR
TASK STACK PTR
MGR STACK PIR
PORT TBL PTR
mDp TBL PTR
DRIVE TBL PTR
RD AVAIL PTR
RD INUSE PTR

Figure 11-1. Sample Disk Management Section Initial Entries

00cv 3A00 GOOO 0OOGO OO
E366

3A00
Ff
FF

FF END OF LIST EXCEEDED

0000
00006
GOou0
000G
0000
060G
0000
0000
00

00

0000
6ouo
couu
0000
00

0000
000u
G000
0000
Couo
0000
00uo
0000
00

00

00

00

FF

FF

FFFF

0000 0000 000G

FFEF

6D9A
04

10

ED56
3p57
BS02
FD69
AD6C
cD6D
c€r9s
FFFF

TASK INFORMATION

STATE SAVE AREA

DP SIZE

Ul

ASKS

o
ol
Pl
-

MAX DRIVES

TASK INFO PTR
thru
DRIVE TBL PTR

RD AVAIL PTR

RD INUSE PTR

Refer to the State Save Area In the 0S Processor
section, section B.

This fleld is a 2-byte entry, reversed, that
contains the number of bytes of code and data In
use by the DSCP. Addlitionally, If the DFCM Is
connected to the system, this fleld Is the base
of a 5,760-byte buffer used to +transfer data
to/from the DFCM.

This field is a 1-byte entry that represents the
drive that was told to execute a command on the
last pass through the drive scheduler. I+ does
not represent the drive that might be currently
executing a command.

This fleld Is a 1-byte entry that represents the
maximum number of drives +that the DSCP will
allow for the amount of memory present. In 32K,
8088& drives are allowed; in 64K, @10@ drives are
al lowed.

These fields are 2-byte reversed entries
polnting to the named structure.

This fleld is a 2-byte reversed entry pointing
to the start of the avallable result descriptor
space. 6FFFF8 means that no space Is available.

This fleld Is a 2-byte reversed entry pointing
to the start of the result descriptor space that

currentiy contains vaiid resuit data. @&FFFFé
means that no space is in use.

The Task Information Table consists of up to 16 5-byte entries. If the DSCP memory contains 32KB
on page 0, there will be eight entries; otherwise, the Task Information Table will contain 16 entries.

Each entry of this table corresponds to a drive: entry 0, drive O; entry 1, drive 1; etc.

Each entry of the table has the format:

1118478

Byte

Length Meaning/Contents

1 Status: @008 = Runable

€01@ = wWaliting 1/0

éFFe = Idie
2 Task stack base address, two bytes, reversed
2 "L" register value used as a pointer into

the +task stack

STATUS NOTES:

Runable implies that the command will be given control on some future pass through the task sched-
uler. At this point, the command may be complete, and the OS still needs to be given the result, or

the command may not even be started. For a CMS type command (see Commands), it may mean that
an intermediate 1/0 operation is complete.

Waiting 170 implies that the task is executing a command on the drive, and that the command is cur-
rently in progress.

Idle is self-explanatory.

Refer to figure 11-2 for a sample Task Information Entry and an explanation of the decoding.

TASK |NFORMATION 56C3 FFEB 5600 00
5608 FF17 5818 58
56CD FF43 5900 DO
5602 FF6F SAT9 SA
5607 0198 5B9F 5B
560C FFC7 5C00 00
56E1 FFF3 5000 00
56E6 FF1F 5F00 00

Example of Decoding

56C3 FFEB 5600 00

L 1

IDLE <—— BASE ~———> L REGISTER
ADDRESS OF

56EB

Figure 11-2. Sample Task Information Entry

11-4

TASK STACKS

The task stacks are 300-byte entries, one per drive, and represent the call and return stack for the task.
Each entry on the stack is a 2-byte reversed address which is used to transfer control to the routine
pointed to by the address. Additionally, temporary data is put onto the stack for convenience purposes.
The task information ‘L’ register value points to the next available 2-byte task stack entry. All task
stack entries are ‘“POP”’ed and ‘““PUSH”’ed in a first-in-last-out (FILO) manner.

TASK STACK DATA FOR DISK PACK DEVICES

The disk pack devices use the task stack for additional command parameters and data. The portion
of a task stack used by a disk pack device is pointed to by the Drive Table for the disk pack device
(see Drive Table, Disk Pack Devices, MY.L Field). The format of the Task Stack Pack Area is shown
below. (Note: add the value of the MY.L field from the Drive Table to the ‘‘byte’’ offsets below to
arrive at the memory address of the data.)

Byte Length Meaning/Contents

Buffer fragment length
Buffer fragment page
Buffer fragment base

Total transfer size. Note: Drive Table buffer
size = number of bytes transferred so far

8 1 Block level transfer - HSTLTA block types
currently expected.

N &N O
NNNDN

@08 = NSBR block expected
@408 = NSBW block expected
€208 = TD block expected, but not required

9 1 Block level transfer - HSTLTA block types
al owed after a transfer delay occurs
@08 = NSBR block allowed

8408 = NSBW block allowsd

10 2 Address of Read Transfer routine for this
command

12 2 Address of Write Transfer routine for this
command

14 4 Search Command Hit Sector address

18 2 Search Command HIt Sector offset

20 14 A copy of the original values of

bytes O through 13 +to be restored
to bytes 0 through 13 if a retry is
required

MANAGER STACK

This is a 50-byte entry that contains run-time pointers and data for the Scheduler and Task Manager
routines. The format of this structure is the same as for the task stacks. However, only the manager
routines use it.

1118478 11-5

PORT TABLE

The port table entries each describe a port on the DSM processor. The entries consist of 43-byte

elements, with the following format:

Byte Length Meaning/Contents

(o] 1 Controller ID

1 1 The O-relative drive number of the first
drive on the port

2 1 The number of drives on the port. Note the
following relationship: first drive plus
number of drives = the first drive on the
next port

3 40 Control {er-dependent parameters

CONTROLLER IDENTIFIERS

The following values may be found in the Controller ID field of the Port Table:

ID CONTROLLER TYPE DRIVE TYPE PORT ASSIGNMENT

852€@ Standard disk In drive Any port 3 thru 7
Host Controller Table

@608 1 drive IMB B9489-1/11 Any port 3 thru 7
BSMD

6628 1 drive cartridge disk B9480-11 Any port 3 thru 7
100 TPI

8648 1 drive cartridge disk B9481-11 Any port 3 thru 7
200 TPI

8668 1 drive cartridge disk B9480-21 Any port 3 thru 7
100 TPI

@88 2 drive 1MB B9489-12 Any port 3 thru 7
BSMD

@6A€ 2 drive cartridge disk B9480-12 Any port 3 thru 7

86C8 2 drive cartridge disk B9481-12 Any port 3 thru 7

86E@ 2 drive cariridge disk B9480-12 Any port 3 Thru 7

@6F& 201! fixed B9493-18/37 Any port 3 thru 7

é&1e@ DMIR N/A Port 2

ase OFCM N/A Port 7

@A8 DISK PACK DDP IN DRIVE Any port 3 thru 7

TABLE

6FE@ O0S PORT N/A Port O

6FF@ N/A N/A Port 1, Not used

6FF@ N/A N/A Any port that does not

CONTROLLER DEPENDENT PARAMETERS

contain a device

Some controller firmware routines keep port-dependent information in the Port Table. The firmware
for host and disk pack devices use this area of the Port Table. The formats are as follows:

11-6

Host Device Port Table

If the Port Table ID is @52@, the following information applies:

Byte

R S

1

If byte 5 is Search (@A8@) then:

7

- - aa
Ut AW O o

For all commands:

Disk Pack Port Table

If the first byte of the port table entry

Byte

N oo

COMMAND TABLE

Length

[-

1

P N

N -

N = s s ma

Length

N = = o

Meaning/Contents

Current hardware command string length
Current hardware command

Current port relative drive

Current sector address

Current 1/0 length

Search NULL character

Search type (greater than, less than, etc.)
Search starting sector address

Tag of fset within first sector

Search tag length

Search 1/0 length

Current port relative drive

Port busy flag (FF = true, 00 = false)
Prepare-To-Load (PTL) flag
Power-On-Reset (POR) in progress flag
Base address of the first drive table for
the first drive on this port

is @8A@, the following information applies:
Meaning/Contents

"AD" register setting for this port

Complement of byte 4

Current active port relative drive

Address of status byte for this port

(B9387 status is reflected as "PMA™)

Subsystem Pol| In Progress flag

Drive states (drive 0 to 7), 1 byte each
ao0e = Idle
@01@ = Queued, command ready to send
6FF@ = In progress, B93B7 has the command

This area is used to store the command information fetched from the OS processor. Each entry of
the table is 18 bytes, and is indexed by drive number. All disk processor commands and layout are
described in the following paragraphs. A sample command table section is shown in figure 11-3.

1118478

CONMHAND TABLE ENGRY O 61A3 0000 0000 DOOQU OGJO 000U 000U OO0uY Ovu0d J00V
LOMHAND TABLE ENTRY 1 61B5 ¢000 0000 0000 0000 0000 u00Y 00uO 0000 uUQOO
CUNNMAND TABLE ENTRY 2 61C7 0000 0000 2000 0u0d 0000 0009 0040 00UO0 0000
COMNAND TABLE ENTRY 3 6109 0000 0000 0000 0000 0000 0000 000U 0u0d OUOOD
COMMAND TABLE ENTRY 4 61EB 0300 8000 0300 0000 BuDO0 BAC1 0200 O4FF FFFF
LURMAND TABLE ENTRY 5 61FD 6000 v000 DOUO 00060 0wDO 00U 0%0C Ouud VODO
LUNNAND TABLE ENTRY 6 620F 0G00 0000 0000 0000 00a0 0003 0000 OuuO Gudo
7 0

LUMMAND TABLE ENTRY 6221 00 0000 00y0 0000 0000 000u 000U OuvwO 0000

Figure 11-3. Sample Command Table Section

COMMAND RESULTS

The results of a command are relayed to the OS processor in three ways: 1) through Command Status
(see Drive Table), 2) through result descriptors (see Drive Table), and 3) through result parameters.

The semantics of Command Status are explained in the Drive Table description.
If a disk device error occurs, the error information is maintained in a result descriptor structure, and
the unique result descriptor identifier is returned in the last three command parameters, bytes 16

through 18.

The result parameters are command dependent, and are returned to the OS processor in bytes 10
through 15 of the command parameters.

GENERAL COMMAND LAYOUT
There are five types of system commands, as follows:
1. Read.
2. Write.
3. Search.
4. Initialize.
5. Lock/unlock door.

Some commands have a specific format, but in general, they have the following format. Any deviations
from the general format are identified in the individual command descriptions.

Byte Length Meaning/Contents

1 1 Opcode

2 2 Buffer fragment size

4 2 Buffer fragment page

6 2 Buffer fragment base

8 2 Total buffer size: note the following
relation: |f buffer fragment size equals
total buffer size, then the transfer Is not
to/ from fragmented buffers, but contiguous
memory .

10 3 Starting sector address.

There are two types of commands: System and CMS. System commands require no preliminary pro-
cessing before being executed by disk drive controller firmware. CMS commands are commands that

manipulate disk directory structures, and may be made u

WRITE, and SEARCH). The commands are as follows:

Opcode

8004
eole
e02e
€03e
048

é056
ao6e

€078
eme

Lo
80A8

eoBe
aoce

aoDe
aoce
&0Fe
8108
alle
128
a13e
a14¢
e15e
atee
a17e
aige
a19e
81A8
4188
aice
a26e
eéz7e
exe
ene
82Ae

READ

Type

SYS
SYS

SYS
SYS

SYS
SYS

SYS
SYS
SYS
SYS
SYS
SYS
SYs
SYS
SYS
CMS
CMS
CMS
CMS
CMS
SYS

SYS
SYS

Description

Read Data

Write Data

Write Data and Check data or data parity
Search less than tag argument

Search less than tag argument and read
hit sector

Search Greater than tag argument

Search greater than tag argument and read
hit sector

Search equal to tag argument

Search equal to tag argument and read hit
sector

Search less than or equal to tag argument
Search less than or equal to tag argument
and read hit sector

Search greater than or equal to tag
argument

Search greater than or equal to tag
argument and read hit sector

Initialize

Lock Door

Unlock Door

Read Sector Relocation Map

Read Device Statistics

Clear Device Statistics

Read Result Descriptor

Read Disk File Header (DFH)

Write DFH

Locate pseudo pack

Locate file

Locate file and read DFH

Create temporary entry

Allocate file area

Crunch file

Purge file

Power off disk

AVR disk with label read

InTtialize disk pack cylinder data

Verify disk pack cylinder

Relocate disk pack bad sector

p of many system commands (READ,

READ transfers data from a disk device to memory. READ uses the standard command format.

1118478

11-9

WRITE

WRITE transfers data from memory to a disk device. WRITE uses the standard command format.

WRITE WITH DATA OR DATA PARITY CHECK

This command performs a WRITE operation, and then reads the data back from disk to check it.
If the device is a 3/6 BSMD, then thc data parity is checked. If the device is a cartridge disk device,
then the data read back is compared to the data written. If the device is not one of these types, the
command defaults to a normal write. This command uses the standard format.

SEARCH

The SEARCH commands search the disk for the occurrence of a tag with a given relationship to a
tag argument. Search uses the standard command format with the following changes:

Byte Length Meaning/Contents

8 2 Number of sectors to search; two bytes,
reversed

10 3 Starting sector address

13 1 Key length

14 1 Key of fset within tag argument

15 1 Tag argument length

Search returns the following result parameters:

Byte Length Meaning/Contents
10 3 Hit Sector address
13 1 Offset of Hit Tag within the Hit Sector

INITIALIZE
INITIALIZE is valid for cartridge type devices and disk pack devices.

DISK CARTRIDGE DEVICES Initlallze for disk pack devices causes sector
addresses to be written to one cylinder of the
device, and the sector data flelds written with
a data pattern. The command parameters are as
fol lows:

Byte Length Meaning/Contents

8 2 Number of tracks to initlalize
10 3 Starting sector address of starting track
DISK PACK DEVICES Inttialize for disk pack devices causes

sector addresses to be written to one cyllinder
of the device, and the sector data fields
written with a data pattern. The command
parameters are as follows:

Byte Length Meaning/Contents

10 3 Starting sector address of cylinder
13 2 Data pattern, 2 bytes reversed

11-10

LOCK DOQOOR

This command causes the door of a 3/6 BSMD device to be locked. All command parameters are ig-
nored except the OPCODE.

UNLOCK DOOR

This command causes the door of a 3/6 BSMD device to be unlocked. All command parameters are
ignored except the OPCODE.

READ RELOCATION MAP

This command transfers the relocation map of host (SDHC) type devices to the buffer. This command
uses the standard format.

READ STATISTICS

This command transfers the statistics of host (SDHC) type devices to the buffer. This command uses
the standard format.

CLEAR STATISTICS

This command clears the statistics of host (SDHC) type devices. All command parameters are ignored
except for the OPCODE.

READ RESULT DESCRIPTOR

This command finds the correct result descriptor and transfers it to the buffer. The command
parameter format is as follows:

Byte Length Meaning/Contents

10 1 Result descriptor identifier

READ DFH

This command returns an adjusted DFH to the OS processor buffer. The The command parameter
format is as follows:

Byte Length Meaning/Contents

10 2 DFH directory Index

WRITE DFH

WRITE DFH writes the actual header to disk when given a directory index and an adjusted DFH in
the buffer. The command parameters are the same as for READ DFH.

LOCATE PSEUDO PACK

LOCATE PSEUDO PACK searches the PPIT on a given unit for a 7-byte pack ID and returns the
pack tag and logical unit number. The command parameters are the standard format. The result pa-
rameters are as follows:

1118478 11-11

Byte Length Meaning/Contents

10 1 Pack tag
1" 1 Logical unit number

LOCATE FILE

LOCATE FILE searches a Directory Name list for the 13-byte File ID in the buffer and returns the
directory index of the DFH if the ID is found. The command parameters are the standard format.
The result parameters are as follows:

Byte Length Meaning/Contents

10 2 DFH directory index

LOCATE HEADER

LOCATE HEADER is identical to LOCATE FILE, except that a successful LOCATE will return an
adjusted DFH. The command parameters are the standard format. The result parameters are the same
as LOCATE FILE.

CREATE TEMPORARY ENTRY

CREATE TEMPORARY ENTRY searches the Name List for an available entry, updates the corre-
sponding header entry, and returns the header and directory index if the disk had an available entry
to use. The command parameters are the standard format. The result parameters are the same as LO-
CATE TILE.

ALLOCATE AREA

ALLOCATE AREA allocates an area for the specified DFH. The command parameters are as follows:

Byte Length Meaning/Contents

10 2 Directory Index
12 2 Area size in sectors
14 1 Area number

The result parameters are as follows:
Byte Length Meaning/Contents

10 3 Starting sector address of area Just allocated

CRUNCH FILE

CRUNCH FILE alters the specified DFH to return excess space to the non-file directory. If the last
area is not on the specified unit, only the file pointers are updated. The command parameters are the
same as for READ DFH.

PURGE ENTRY

PURGE ENTRY returns the specified directory entry to the available list, and returns all disk space
allocated to the file on this disk to the non-file directory. The command parameters are the same as
for READ DFH.

11-12

POWER OFF DISK

This command causes the disk to be logically powered off. The following steps are taken:
1. The door is unlocked (if applicable).
2. The Label Integrity flag is reset.
3. The tables for the drive are initialized.

All comménd parameters are ignored except the OPCODE.

AVR DISK

This command performs the automatic volume recognition functions, such as label verification, setting

the integrity flag, and reconstruction. The command paramcters arc the standard format.
INITIALIZE CYLINDER DATA FIELDS

This command is valid for disk pack devices only. This command writes the sector data fields of the
specified cylinder with the specified data pattern. The command parameters are the same as for the
INITIALIZE command for disk pack devices. The result parameters are as follows:

Byte Length Meaning/Contents

13 3 Sector address where the first/worst error
occurred (if an error occurred)

VERIFY CYLINDER

This command is valid for disk pack devices only. This command verifies the cylinder data fields and
error protection codes of the specified cylinder. The command and result parameters are the same as

for INITIALIZE CYLINDER DATA FIELDS.
RELOCATE BAD SECTOR

This command is valid for disk pack devices only. This command causes the specified sector to be
relocated to a spare on the cylinder. The command parameters are as follows:

Byte Length Meaning/Contents

10 3 Sector to be relocated
13 2 Data pattern

DRIVE TABLE

The drive table holds all data relative to its corresponding drive. The drive table is divided into two
parts: the general data area and the device-dependent data area. The general data area is standard
among all drives. The device-dependent area is different for each of the three types of drives: disk
cartridge, host, and pack. Each of the areas is described as follows.

1118478 11-13

DRIVE TABLE LAYOUT

Byte Length Meaning/Contents

1 1 Drive Status (Refer to Table 11-1)

2 1 Orive ldentifler (Refer to Table 11-2)
3 1 The Port for this Drive

4 1 DFMC Participating Flag

5 2 Command Entrance Routline Address

7 1 Command Status (Refer to Table 11-3)
8 1 Monitor Status (Refer to Table 11-3)
9 1 Command Retry Count
10 1 Result Descriptor Index
1 2 Result Descriptor Size
13 15 Command Parameters (Refer to Command Table)
p.:} 210 Device~Dependent Data Area

Table 11-1. Drive Status

Bit Set Meaning Reset Meaning Notes
0 Ready Not Ready

1 Write Inhibit Not Write Inhibit

2 Temporarily Not TNA *

Available (TNA)

3 Disk iIn Danger Disk Not in Danger

4 Disk Expiring Disk Not Expiring

5 Mandatory Interrupt Not Mandatory Interrupt

6 Spare

7 Spare

*TNA applies to 3/6 devices only, and Implies that the door of the
other drive Is open.

Bits 2 through S are for SDHC devices only.

11-14

The drive IDs declare the type of drive present, and sometimes match the

Table).

1118478

Table 11-2. Drive Identifiers

ldentifier Drive Type Drive Name Control ler Type

53¢ B9493-20 20 MB 211 FD SDHC, @52e
€54¢e B89493-80 80 MB 211 FD SDHC, @52a
€568 B9489-21/23 3/6 BSMD 2DR SDHC, @52e
857¢ B9493-40 40 B 211 FD SDHC, @€52¢
8608 B9489-1/11 IMB BSMD 1DR SAME

a62e B3480-11 100TP! CART ! DR SAME

a64e B9481-11 200TPl CART 1 DR SAME

8668 B9481-21 100TP! CART 1 DR SAME

a6se B9489~12 M8 BSMD 2 DR SAME

6AQ B9480-12 CART 2 DRIVES SAME

e6ce B9489-12 CART 2 DRIVES SAME

86Eé B9480-22 CART 2 DRIVES SAME

@cre B9483-18/37 2011 FD SAME

érs e 205 DPD DPIOC, @BAe
€8e 206 DPD DPIOC, @8A8
ésse 207 FD DPIOC, @8Ae

Table 11-3. Command Status Semantics

COMMAND STATUS

Value

00
01
02

03
04
05

MONITOR STATUS
Value

00
01
02
03
04
05

06
07
08
09

Meaning

Control ler error - internal to DP

Command successful

Command incomplete, legal unsuccessful result
(1+0., SEARCH tag not found)

Device error - command aborted

Spare

1/0 descriptor error

Meanling

No error

Seek tIimeout

Head off cylinder (Seek error)

Sequence error - internal to DP

Disk data/address parity error

Disk address not found

Illegal address in 1/0 descriptor
Status word error - Internal to DP

Data error in COMPARE

Attempt to write to write~inhibited disk

port controller ID (See Port

11-15

DEVICE DEPENDENT DATA AREA

The byte offsets given here are a continuation of the offsets found in the general data area description.
The values of some of the fields in the Drive Tables can be found in the discussion of the specific
device type.

Disk Cartridge

The following table defines the remaps of the device-dependent data area for disk cartridge devices.

Byte Length Meaning/Contents

p.:] 2 Pointer to the Next Phase routine

30 2 Total buffer size

32 2 Fragment size

34 2 Fragment page

36 2 Fragment base

» 2 Least significant two bytes of the current
sector address

40 1 One Buffer flag

41 1 Most significant byte of the current sector
address

42 1 Last Transfer flag

43 1 Current retry count

44 1 Dual 2011 flag

45 1 Sectors per track

46 1 Compiiment of the "AD" register setting

47 1 Current controller status

48 1 Opcode

49 1 Drive address on the port

50 1 Current Search size

51 1 Current Search flags

52 1 Current Search of fset

53 1 Current Search Hit Sector address

54 2 Current cy!inder number

HOST DEVICES

Byte Length Meaning/Contents

3 180 Search Hit Sector buffer

208 4 Search Hit address

212 1 Search Hit offset

213 1 Hardware opcode

214 2 Fragment size

216 2 Fragment page

218 2 Fragment base

220 2 Address of Command Complete routine for this
command

222 2 Address of Transfer routine for this command

224 2 Transfer length

226 1 211 type device flag

277 1 One buffer flag

23 1 Address of drive on port

11-16

If the”Search Hit Sector buffer contains
can be found in the DAR:

Byte

229
230
231
232
236
23

Byte

3
2
30
31
3
50

DISK PACK DATA

1118478

Byte

3.8

32
34

42
43
44
45
46
47

50
51
52
54
56

60

Length

1
1
1
4
1
1

Length

N N - e -

AREA

Length

NRNRN= = N o=t et DA N ~ = oo

N

Meaning/Contents

SDHC last status
Last Class 2 Status Interrupt
Error mask

Hardware status, DC status bytes 1, 2 and 3

Port Polling flag
Drive status for Polling process

the device attribute record (DAR

Meaning/Contents

DAR Check Byte 1

DAR Check Byte 2

DAR Confidence Test results
Drive ID bytes

DAR for Drive 0

DAR for Drive 1

Meaning/Contents

@08&, Command Block Type byte
80Ce, Command Block Count byte
Current B9B7 Opcode

Current B9387-Relative Unit
Current command variants
Current 1/0 length

Current sector address

@1e, Write Block Type Byte
Write Block count byte

Search Null Character

Search Relationship

Search Tag Offset within sector
8008, not used

Reason for last transfer delay
€008, not used

Last short result descriptor info byte
Value of "L" register at command start
MY.L, the current value of the "L" register
Polnter to the Port Table of the port to

which this drive is connected

Address of the current result descriptor

for this drive
Result descriptor identifler

11-17

RESULT DESCRIPTORS

There can be two result descriptor lists: AVAILABLE and INUSE. The AVAILABLE list contains all
result descriptors not containing data, and the INUSE list has all the result descriptors containing data
when the dump was taken.

The INUSE list can be expected to have all result descriptors that are currently being used to store
error information. Typically, this list is empty, as data from INUSE result descriptors would have been
fetched by the OS processor, and the descriptors would have been returned to the AVAILABLE list.

A result descriptor is divided into two parts: control information and data. The control information

is used to maintain the result descriptor lists, and the data portion contains the drive-related failure
data.

CONTROL INFORMATION

The format of the CONTROL INFORMATION is as follows:

Name Byte Length Meaning/Contents

LINK 1 2 Link to the next RD on this |ist; @FFFF@
implies that the end of the list has been
reached.

INDEX 3 1 Index. This Is the unlque RD identifler.

ORIVE 4 1 Drive. !f the RD Is avallable, this fleld

is &FF@; otherwise, it Is the drive number
of the drive whose data Is in the RD.

RD DATA

The RD Data portion of a result descriptor contains the information describing the error, and the for-
mat of the data depends upon the type of device that owns the RD.

Disk Pack RD

Byte Length Meaning/Contents

B9387 Opcode

B93B7-relative unit number, 0-7

B9387 command descriptor variants

Starting sector address

1/0 operation length

Last byte read from the B90O disk pack DDP
Last byte expected to have been read from the
DDP - see note 4

15 1 DDP status after last byte read from DDP
B900 error number - see note !

& O UV wWN —
- b N e =

-

o)}
-

17 1 B9387 longitudinal parity byte

18 1 Host-computed longitudinal parity byte
19 1 Last CIO command sent - actual value
20 1 Status response to last Cl10 command

11-18

21
22
23
24

Notes:

3.
4.

01
02
03
04

05

o1

Direction of transfer - see note 2

B937 long result descriptor byte 0
B9387 long result descriptor byte 1

44 B9387 long result descriptor bytes 3 - 45

— s

Bad vertical parity error on B900 input transfer
Bad longitudinal parity error on B900 Input transfer
DDP 2.0~-second timer expired before B9387 response
Host block count different from B93B7 block count
on input or output transfer

Software 2.3-second counter expired while waiting
for B9387 response; DDP timer failed

Incorrect Block Type cn B20C Input +ransfer

Count byte did not correspond to type byte on B900
input transfer

From B900 DDP toc 8300 DSM processor

From B300 DSM processor to B900 DDP to DSM processor

This is the actual Hex value sent to the DDP
If the error number Is 06 (Bad Type Byte), then this fleld
has the following meanings:

01

02
03
04

Expected TD, long RD, short RD, READ OK, READ retry,
READ correction, or READ uncorrectable

Expected TD, long RD or short RD

Expected long RD or short RD

Expected TD during SEARCH

NULL RESULT DESCRIPTORS

A result descriptor is termed a ‘“Null RD”’ when it contains error data, but the error occurred before
a command was sent to the drive. An example of this is a mandatory interrupt on a 3/6 device, which
occurs when the BSMD is placed in the drive and the door shut. In these cases, the status of the device
changes from Not Ready to Not Ready-Mandatory Interrupt. In order for the OS to display the man-
datory interrupt message with device status, the DSCP places the status in a NULL RD, and changes
the device status in the OS. The OS sees the status change, and issues the READ RESULT command

to the DSCP, with the unique result descriptor identifier parameter as @FF@ (hence, NULL). This
causes the DSCP to return the correct RD.

A NULL RD in the INUSE List is indicated by an index value greater than @E0@.

DISK CARTRIDGE DRIVES DATA CONSTANTS

Disk cartridge constants are:

Field Name Values Meanings
Search Flags 01 Dual search required
02 Pattern search
Control ler Status 00 Seek mode
01 Command mode
02 ldle

1118478

11-19

HOST DATA CONSTANTS

Host data constants are:

Fleld Name Yalues Meanings
Current Hardware CMD 8Al8 Read
eCEe@ Write
8A8 @ Search
8A28 Read search result
6ADE Read relocation map
GAEQ Read statistics
aA4e Read DAR
8A78 Read device status
[[30]] Abort command
6rse Clear Statistics
ar2e Set Write Protect
eFie Reset Write Protect
ecie Unlock door
ecae Lock door
acse Reset MTR
Control ler Status a008 ldle
eote Pending
a02e Busy
Error Mask as5ea Read After Write Check in
progress, drive Write
inhiblited
&|le Read After Write Check
falled, Drive Write enabled
B9387 Opcode eole Read
@028 Write
€03@ Search
ai0e Initiallize
el1e Verify
al12e Initiallize Data Fleld
e14e Relocate Sector
@208 Test operation (soft poll)
ao0e Initialize C/W parameters
Command Variants 0008 Walt for Seek to complete
a00008€ Do not walt for seek to
complete
Search Relatlions eole Less than
0286 Equal to
a038 Less than or equal to
a04e Greater than
8058 Not equal to
8068 Greater than or equal to
Task States ao0e Idle
arre In process
aole Queued
Blocks Expected ao08e NSBR expected
a408e NSBW expected
820e TD expected

11-20

RECOMMENDED PROBLEM SOLVING PROCEDURES

The Disk Processor can be involved in two types of system problems. These are a system hang and
a @F00000@ clearstart. What follows are some recommended procedures for determining if the prob-
lem is due to a hardware failure or a software failure.

System Hang

If the system hangs such that the time-of-day is still displayed, and if the processor displays continue
to cycle, and the SPO transmits but does not respond, then perform the following steps:

1. Take a ROM dump and run ROMCONVERT and the SYSANALYZER on the converted dump.
2. Determine which disk is the system disk from the Configuration Table portion of the OS dump.
3. Find the Drive Status field in the Drive Table for the system disk.

4. If bit 1 of the drive status is set, meaning ‘‘Ready,’’ then the hang is due to some other factor.

5. If bit 1 of the drive status is reset, meaning ‘““Not Ready,”’ then the hang might be due to a
not-ready system disk.

6. If the system disk is a SDHC 211 type device, then the Last Status field of the Drive Table
contains the status that caused the disk to go not ready.

7. Additionally, check the Result Descriptor Inuse list to see if an RD belongs to the system disk.
If so, then this RD might contain more information about what caused the system disk to go
not ready.

8. If the system disk is a B9387 DPDC disk pack device, then find the Port Table entry for the
DPIOC.

9. Locate the address of the Status Byte field in the Port Table.
10. Find the byte having this address in the disk processor Hex dump.

11. If this byte is @00@, the system disk was made Not Ready because the B9387 went off line
for one of three reasons:

1) Someone placed the B9387 off line at the B9387.
2) A cabling problem exists that caused the off-line signal to change states (noise, cable fell off).

3) The B9387 controlware detected a temperature warning condition and will power, or has pow-
ered, itself off.

FOOOOO Clearstart

A @F00000@ clearstart may be caused by three things: 1) a real hardware failure; 2) corrupted buffer
memory buffer addresses; 3) corrupted 1/0 descriptor buffer address. To determine which of these

J) U

things occurred, perform the following steps:
1. Take a ROM dump, run ROMCONVERT and SYSANALYZER on the dump.

2. Locate the Disk Processor Save State Area.

1118478 11-21

3. If the IC error and status information indicate that a real error occurred, and MAX, MXA and
MXB contain valid bus/page data, then a real error did occur at the IC First Error Reg address.

4. Otherwise, if MAX, MXA, MXB do not contain valid bus/page data, then the problem is a soft-
ware error.

11-22

SECTION 12
BUFFER MEMORY

INTRODUCTION

Buffer memory is a global system resource used for file buffers, system I/O descriptors, data comm
buffers, and queues. The amount of buffer memory is specified in the dependent portion of the SYS-
CONFIG file.

This section first discusses the technique for determining the amount of buffer space being allocated.
This is followed by a detailed examination of the Buffer Memory section of a memory dump.

The system uses the top page (or more) of OS memory as buffer memory. The system reserves buffer
memory for the data comm buffers at WARMSTART. The amount reserved is that specified in SYS-
CONFIG. The data comm buffers are analyzed and listed as part of the data comm section. No refer-
ence 1s made to them here.

The remainder is used as OS buffer memory. This must be at least 2048 (2K) bytes. Buffer memory
can be a maximum of 1024 KB.

Great care must be taken when assigning buffer memory. The performance of the B 900/CP 9500 can
be seriously degraded if inappropriate values are specified in the buffer memory portion of SYSCON-
FIG. If too much buffer memory is allocated for user programs, the MCP is forced to do more seg-
ment overlaying. This is a result of not enough available MCP memory. If an insufficient amount of
buffer memory is allotted for user programs, the programs will ‘‘wait on buffer space.”’

/0 BUFFER SPACE CALCULATION

There are three ways to determine the amount of required buffer memory. The first method is to ex-
periment with different buffer allocations until an optimum system performance is attained. This is
an inconvenient procedure and possibly inaccurate.

The second method is to load the system with a mix of jobs that will reflect a maximum throughput
condition required by the user. At this point, a memory dump should be taken using the “GT MD”
intrinsic. Examine the “AVAILABLE COUNT” field found at the beginning of the buffer memory
section in the dump. Multiply this value by 195 (the size of each buffer plus descriptors). Remember
to byte-reverse and convert to decimal the value in the field before multiplying. This result will indicate
the amount of available memory. Subtract the amount of available memory from the amount specified
in SYSCONFIG. This is the amount of required buffer memory. It is advisable to add a safety factor
of 2K to this amount.

The third and most accurate method requires knowing the block sizes and the number of buffers
needed for each opened file on the system. With this information, use the following procedure:

1118478 12-1

1/0 BUFFER SPACE CALCULATION
250 plus the following equation for Opened Files
1. Number of buffers divided by 4 rounded up, plus

2. Block slize divided by 180 rounded up, times the number
of buffers, plus

3. 1 1f not indexed, or
3 1f indexed file, times

4. 195
Example #1 - Indexed file, 6 buffers, block size = 270
1. 6/4 =15, r =2
2. 270/180 = 1.5, r =2, 2x6=12
3. 3
4. 2+ 12+ 3 =17, 17 x 195 = 3315 bytes

3315
+250

3565 1/0 Buffer space for 1 opened file

Example #2 - Non-Indexed file, 1 buffer, block size = 180
1. 1/4= c25, r=1

2. 180/180 =1, r =1
3. 1
4. 1 +1+1 =3, 3x 195 =285 bytes

285 file
+250 base

535 bytes |/0 space for 1 open file
Example #3 - Both 1 and 2 opened
3315 for file 1

B5 for file 3
+250 base

3850 bytes needed

12-2

OS buffer memory is organized in sections. Currently each section is 180 bytes in size (plus control

fields). These sections are linked together in four categories:

File table entries

Key file table entries

System I/0 descriptors (Not yet implemented)
Available sections

These are controlled by a set of pointers located in the first 34 bytes of the buffer memory as follows:

DA BUF POINTER POINTER 4 BYTES
AVAILABLE HEAD 4 BYTES
AVAILABLE TAIL 4 BYTES
FILE TABLE HEAD 4 BYTES
FILE TABLE TAIL 4 BYTES
KEY FILE TABLE HEAD 4 BYTES
KEY FILE TABLE TAIL 4 BYTES
SYS10 DESC HEAD 4 BYTES
SYSIO DESC TAIL 4 BYTES
AVAILABLE COUNT 2 BYTES

A sample of these entries in an actual memory dump is shown in figure 12-1.

Wb M 63k W 6 W3k JE 36 6 2 M b 96 IE 36 3E 3 E M IE 2 3 2 K AN

nanxunn BUFFEX MEMORY o2 s %% %x
S 30 M I3 066 630 0K 06 06 6 96 36 0606 B 3% 06 3 3% 36 0 06 3¢ ¢

DA BUF POINTER POI

AVAILABLE
AVAILABLE

FILE TABLE
FILE TABLE

KEY FILE TABLE
KEY FILE TABLE
SYS 10

SY3 Iv
AVAILABLE C

Figure 12-1. Sample Initial Entry in Buffer Memory Section of a System Dump

All but the Available Count are full system addresses, laid out as follows:

This layout is due to the byte reversal of the NBDS.

1118478

NTER
HEAD

TALL.

HEAD
TAlL
HEAD
TAIL
HEAD
TAIL
QUNT

0

w301
0301
4301
0301
0901
FFFF
FFFF
0501
u301
S5Fa0

15
[

Of fset

1860
6163
1107
5265
0A8Y
FFFF
FFFF
3064
$D64

12-3

The exact usage of these tields 1s as tollows:

DA_?UF_?OINTER POINTER Contalns the address of the start of 0S Buffer
memory.

AVAILABLE HEAD Contalns the address of the first 180-byte
section In the chaln of those sections that are
avallable for use.

AVAILABLE TAIL Contains the address of the last avallable
sectlon.
FILE TABLE HEAD Contalns the address of the first file table in

the flle table chain.

FILE TABLE TAIL Contalns the address of the last file table In
the file table chain.

KEY FILE TABLE HEAD Contalns the address of the first key file table
in the key flle table chalne.

KEY FILE TABLE TAIL Contalns the address of the last key file table
in the key file table chalne.

SYS 10 HEAD Not malntalned.
SYS 10 TAIL Not maintained.
AVAILABLE COUNT Contalns the number of sectlions that are

currently avallablee

SECTION LAYOUT

Each section includes three parts: a preceding memory descriptor, the actual data, and a trailing de-
scriptor:

PRECEDING DESCRIPTOR 7 BYTES
f)r' DATA 7« 180 BYTES
TRAILING DESCRIPTOR 8 BYTES
ET2652

There are two links, a preceding link and a trailing link, because PIMOVE expects the link to immedi-
ately precede the section and to point to the next link, while the I/0 device controllers require the
size of the next section and the link to follow the section, and the link to point to the first byte of
the next section (for performance reasons). A sample section of a memory dump containing this infor-
mation is shown in figure 12-2.

12-4

89036 3 06 36 36 3006 3696 38 6 28 6 23 3% 3 I o6 2 PRECEEDING TRAILING

FILE TABLE ENTRY (FTE) FLAGS SIZE LINK SIZE LINK
ARG 30 IK 0 036 A3 36 X3 KR RN K NN %% %R R I X2 IEZE LR & 3 % 3% 3% % % % X R
d1 B40D 0301A4CB BU40O0 03015566

Figure 12-2, Memory Dump Sample Showing Section Layout

These fields are used as follows:

FLAGS

SIZE

LINK

1118478

Deflnes the current use of thls section:
@08 : Available sectlion
€01@ : File table section
8028 : File table extension section
€038 : Key file table section
8048 : Key file table extension
@05@ : SYSIO descriptor table section
8108 : Buffer section

This entry contains the size of the section that
followse. In this Implementation this fleld
always equals 180. This fleld Is Implemented so
that I f the size of buffer sections change, code
does not have to change.

This entry contalns the address of the preceding
descriptor for the next structure of a similar
type, except for buffer sections where this |ink
points to +he next Ilnk In the preceding
descriptor of the next section of the buffer.
The degree of linking varies according to the
section type and use. All sectlons reserved for
buffers are not Iinked together. Only those
sectlons assoclated with a particular buffer are
Iinked. Conversely, all flle table sections,
key table sections, avallable sections, and
system 1/0 descriptor sections are |inked
together. All flle table extension sectlions
belonging to the same file table are Iinked
together. The link entry of the last section of
any chalin contains @FFFFFFFF@.

F1E
11
0002

12-5

TRAILING MEMORY DESCRIPTOR FORMAT

The trailing descriptor consists of three fields. These are as follows:

SIZE

LINK

ANALYZER LISTING

The analyzer lists the descriptor fields in a standard manner for all sections. This layout consists of
one line of titled information comprising the flag field, the preceding descriptor information, the trail-

SIZE: 2 bytes
LINK: 4 bytes
FTE (VAL IDATION): 2 bytes

This entry contains the size of the next section
of the file table or the particular buffer. |If
the preceding section Is the last section of the
file table or the buffer, this entry contains
a@rFFFFa.

For buffer sections, the |link entry In the
trailing memory descriptor Is used to address
the first byte of the next section of that
particular buffer. The link entry of the last
section for that particular buffer contains
@FFFFFFFFa.

For file table sections, this entry points +to
the preceding descriptor of the file +table
extension sectlion associated with the flle
table. If no file table extension section exists
for this file table, this entry contains
8FFFFFFFFa.

For file table extension sections, this entry
addresses the preceding descriptor of the next
file table extension section for the file table.
This entry in the last flile table extension
section for the file table contalns @FFFFFFFF@.

For all other section +types, this entry
addresses the preceding descriptor of the next

sectlion of the same type. The last sectlon of a

particular type contains @FFFFFFFF@.

ing descriptor information, the address of the section, and the validation field.

FILE TABLE STRUCTURE

File table information is kept in two structures, the file table and the file table extension.

A file table entry is built when a CMS data file is first opened and it is maintained until a close reduces
the user count to zero. Each file table entry (FTE) has one or more file table extensions linked to it.
Each extension has four entries (FTEE). Each entry is a buffer descriptor that points to and controls

a data buffer.
12-6

The exact layouts are described in the following subsections.

FILE TABLE ENTRY

A file table entry section contains the following information:

DA FILE TAG

COMMON_EOF

TOTAL_DESC

NUM USFRS

SHARED RECORD SIZE

SHARED BLOCK SIZE

AREA | NFORMAT ION

This 4~byte fleld Is an internal identifier for
the file.

This 3~byte fleld holds the shared EOF for all
users.

This 1-byte field holds +the number of
descriptors allocated.

The number of users of +hi

s file,

This 2-byte fleld holds the common record size
for shared flle users.

This 2-byte field holds the common block slze
for shared file users.

There are 16 entries, one for each possible area
(disk only). Each entry includes the following:

UNIT 1 byte The DA CT Index of the device
ADDRESS 3 bytes Disk address
SI1ZE 3 bytes Number of blocks In this area

FILLER

55 bytes reserved for future use.

FILE TABLE EXTENSION ENTRY

Each file table extension contains up to four buffer descriptors. The FTEE includes:

Map

Buffer Descriptors

These four 1-byte fields contain the task IDs of
the owners of these descriptors. If a
descriptor Is unassigned, the corresponding byte
will be 8FF@. The first byte refers to the
first descriptor, etc.

These are 40 bytes each, and are described in
detall In the next subsectlion.

A sample from an actual memory dump is shown in figure 12-3.

BUFFER DESCRIPTOR FORMAT

Each buffer descriptor is laid out and analyzed as follows:

1118478

12-7

12-8

Descriptor

Block ID

FiB 1D

Lock

Flags

Unit No
Queue Status
Action ID

Return Status

Forward Link,
Backward Link

Opcode

Buffer Address

Size Parameter

This number Is developed by the analyzer.

This 3-byte flield contains the block number In
the file of the Information In this buffer.

The first byte Is the FIB ID, the second the
owner.

Contains the ID of the owner of the block when
it Is lockeds If It Is @FFFF@, the block is not

locked .

These define the state of the buffer as follows:
MSB 7 : Buffer allocated
6 : Move outstanding
5 : Shared buffer

4 : Buffered ahead

3 : Walting

2 : Updated

1 : Printer backup

0 : Record outstanding

LsSB
Unit number for this 1/0 (index into DA CT).
Status of descriptor in queue (see PHT section).
Actlon 1D of requestor If walting.

The 1/0 status (see PHT section).

Links for queueing. These are 1/0 descriptors.
They are two-way links for possible future use.
Presently, everything is linked in the forward
direction.

Operation requested. (See PHT section for
normal operations, and Command Table section for

specialized disk operations).

Address of first section of buffer:

Size 2 bytes
Bus & page 2 bytes
Address 2 bytes

Total size of buffer in bytes.

Device Dependent Parameters

Device-dependent parameters, 9 bytes.

Note that the address In |/0.DESC = @FFFF@ 1f no buffer exists.

FRELEEUING

TRAILING

FALE TABLE EXTENSION ENTRY (FIEE) FLAGS SIZE LINK SIZE LINK AUDRESS HAP FTE FTEE
AU ASN TR0 00 00N 000 N N D SN O RERNSE ARSENBAREN HERRENNN AN [TTEI S -na nan mxnse
02 B400 FFFFFFFF 0400 FFFFFFFF 03015566 000610FF 0000 o000
DESCRIPTOR 01
BLOCK 40 8200 40
FIB 10 1205
LOCK FFFF
FLAG>. 80
UNIT NUMBER 04
QUEUE STATUs 43 COMPLETE AND DEQUEUED
ACTLION 1D OF
RETURN 53TATUS 0100 w00 CUMMAND COMPLETE NO EQMOR
FORWARD LINK 0301 5377
SACKWARD LINK QU001 CAda
0P CODE dJu READ
BUFFER ADDRESS o400 u301 1Fs7
SIZE PARAMETER 8400
DEVICE DEPENDENT PARAMETERS UuiD 3302 0004 0000 uo
ALLOCATED UNCONDITIONAL I/0 NOT SHARED
NOT N USE NOT UPDATED NOT PRINTV BACKUP
PRECEEDING TRAILING
FLAGS Si/F LINK STZF L INK ADQNRESS
REARAE HNRN ARNW NN RNas ARARESS
10 B400 F=FFFFFF B400 FFFFFFFF 03011F67
DATA GY2E 3443 6984 90A9? JAUC 414E 4755 4147 4520 5459 5045 2048 4153 2054
414E 5920 4340 4152 4143 5445 5253 454E 4420 FFCO FFAU 2056 4552 4220
4945 5320 5550 Y441l 5445 4454 484y 5320 4954 454D 2043 414E 4E4F 5420
5241 4ES55 4CH1 S443 444D 4953 2040 4a5Y4 4348 2046 UF5H H4ENH 2049 4E20
5445 5354 5245 UY3I4F 5645 5257 2043 4F4D 504C 4554 4544 FFCO 2057 4FS2
4CUS 04T 4FU4L 4445 4453 H420 FFCU 4Y4E 5320 2D00

Figure 12-3. Sample

KEY FILE TABLE FORMAT

1118478

KFILETAG 4
NUM USERS 1
MAX KEYFILE SIZE 3
KEY SIZE i
KEY ENTRY SIZE 1
AREA INFO
_Address 3
Length 2
INDX REG EXISTS 1
OVRFLW REG EXISTS 1
RUF TBLE 10
INDX_REG 10
OVRFLW_REG 10
HIGHEST RECORD
Area 1
Sector 3
Of fset 1
Key
SPARE 25
KEYFILE_REG FRMT
Starting
Sector 3
Slze 3
Starting Area 1
Distance to
End Area 3

File Table Extension Entry

bytes Unique identifier for file
byte # of users with keyflie open
bytes Write EOF
byte Actuai size of key
byte Key size reserved (5,13,21,29)
Array [16] of record
bytes
bytes
byte Set If Index reglon exists
byte Set 1f overflow reglon exists
bytes See KEYFILE REG FRMT below
bytes See KEYF ILE:REG}'RMT below
bytes See KEYFILE REG FRMT below
Read EOF
byte
bytes
byte (of fset In the sector)
Array (28] of byte
(last key value end)
bytes
Record
bytes
bytes Number of sectors In starting area
byte
bytes Starting sector In starting area

NOT BUFFERED AHEAD:
NOT OQUTSTANDING

QF4F 2040
I54E 5852
4245 2058
YENS 5728
4820 8549

12-9

KEY FILE EXTENSION FORMAT

SYSIO DESCRIPTOR TABLE

Keyflile
User
Updated
Lock
End List
List Walting Lock
Actlion ID

Take Lock

Spare

Not Maintained in 3.04 releases.

AVAILABLE TABLE

Lists available buffer space.

12-10

Array (7] of record

2 bytes F1B_ID and TID

1 byte Flag for this user

1 byte TID of next user (begin of list)

1 byte Next available slot In lock list
Array [7] of record

1 byte

1 byte

143 bytes

FORMAT

BANKS C AND D

APPENDIX A

OS ERROR INDICATORS

The display on these control panel banks is an indication of processor business (normally a communi-

cate count).

CLEARSTARTS

When the operating system encounters an error condition, it performs an error-handling routine which
terminates with a clearstart. This causes a 3-byte field to be displayed on the hex display and on the
ODT if its data path is still runable. The three bytes displayed are:

BANK E -Error number as described below.

BANK F -Index into the AM.ACTION.LIST for the action in error.

BANK G -Id of the action in error.
BANK E -CLEARSTART NUMBERS

1118478

a00e

€018

€02é

a038

€04¢

8056€

eoce

a078e

eBe

DEADLOCK ERROR - An action Is attempting to get on a
queue behind its parent which Is waiting for it +to
finish.

NO NUMBERS ERROR - A normal actlion was invoked when
there were already one hundred normal actlons In the
mix, and Activity Management could not assign it a
unique ID; only 100 ACTION numbers are available.

BAD ACTION ID ERROR - A non-existing action was
Invoked.

BAD SEG ID ERROR - An attempt to access a non-existing
segment (work block, link block, data block, or code
block) occurred.

TOO MANY WB ERROR - An action tried to get a work block
when It already had four.

CALL FROM FS ERROR - An actlon called an Activity
Management routine from force state which Is not
allowed In force state.

CALL BY CONT ERROR - A continuous actlion called an
Activity Management routine which is not allowed for
continuous actions.

CALL NOT NORM ERROR - An action attempted to get on a
queue when 1t was already on a queue.

WB AT FINISH ERROR - An action attempted to finish when
1t stil! owned a work block.

809 &

60A8

8088

aoce

eope

80t

@oFé

:n
<
[

ale

e128

€138

e148

ai15e

a16e

e178

aige

BAD POST ERROR - An actlon called "POST-RESULT" passing
an action ID of a non-existing actlion, or of one which
Is not awalting a post.

BAD DEQUEUE ERROR - An action attempted to dequeue from
a queue where It was not present.

BAD STOP INT ERROR - An actlon called "STOP-INTERRUPTS"
when It was not proccessing Interrupts (not In force
state).

BAD AWAIT INT ERROR - An action called "AWAIT-
INTERRUPT," speclifying a channel which was being
serviced already by some other actlon.

ZERO DIVIDE ERROR - An action called "ABS.DIVIDE"
passing a zero divisore.

PARITY ERROR - A parity error was detected by the O0S
processor. The State Save of a 2-MHz machine will have
the address of the offending memory location |lIsted
under "IC - First Error Reglister" in the dumpe.

BAD CLEAR ERROR - Software sent mlcro execution to
address zero on any page.

PREV MARKED ERROR - An attempt was made to mark a work
or link block with the state which It was already In
(Jelled, frozen, unjelled, or unfrozen).

MARK COUNT ERROR - An attempt was made to freeze or
Jell a code or data block which already had 15
outstanding freezes or Jells agalnst it.

MEM CORRUPT ERROR - A virtual memory descriptor has
been corrupted.

BAD CHANNEL ERROR - A call to "AWAIT-INTERRUPT" or
"STOP- INTERRUPTS" was made which specifled an [llegal
channel number.

STK OVERFLOW ERROR =~ An action <called Activity
Management with I+s stack pointer pointing beyond Its
al located space.

CONT VM ERROR - A continuous actlon required virtual
memory for any reason.

BAD ENQUEUE ERROR =~ An action attempted to enqueue to a
non-existing queue.

CB FREEZE ERROR - An attempt was made to freeze a Code
Blocke.

VM REQUEST ERROR - The function which virtual memory

1118478

ave

81Ae

aiBe

eice

e1De

61Ee

eiFe

e20e

was requested to perform does not exist.

YM LOCATE ERROR - The Work Block or Link Block which
virtual memory was requested to load In memory does not
oxlst.

VM 10 ERROR = An 1/0 error was reported in an attempt
to read/write to the MCP file.

The exact error and the sector in error can be found as
follows:

Determine the action running in the 0s
(AM.ACTION.LIST). The action should be AM_VM. The comm
fleld can be decoded as follows:

Drive number Byte 1

MTR status Bytes 2-3
Sector address Bytes 4-6
Unused Bytes 7-9
Retries Byte 10

Drive number is as In disk processor, where 0 Is A, 1
Is B, eeeee, 7 Is He MIR status Is defined In the Disk
Management sectlon of this manual (section 11).

The same Information exists In the disk processor
memory. |f necessary, it can be decoded.

The normal recovery action is to utilize a different
system disk to warmstart from, then take appropriate
action with the failing disk, depending on the nature
of the fallure. FE assistance may be required.

NO AVAIL MEM ERROR - Sufficient available memory cannot
be obtained to satisfy the virtual memory request due
to the number of jelled or frozen memory blocks.

COMPACT VMFIL ERROR - Virtual memory was unable to
relocate a work or link block within the Backing Store
portion of the MCP file.

0S VMFIL FULL ERROR - The Backing Store portlon of the
MCP file Is completely fllled.

COMPACT MEM ERROR - Virtual memory was unable to create
a block of contiguous avallable space of sufficlent
slze to satisfy the request, due to the presence of
frozen memory blocks.

BAD BLK TYPE ERROR = An unrecognizable block type was
encountered by virtual memory In the process of
compacting memory.

WARMSTART ERROR - An error encountered by the Data

e21e

a22a

a23e

a24e

a258

a268

ezre

axe

avea

a2Ae

a2Be

a2ce

208

Access activity of the operating system during the
startup process.

SYSCONFIG ERROR - An error was encountered while trying
40 access the SYSCONFIG file. An open or read error
results In this error.

POWER OFF ERROR - A call to SYSTEM_FRROR was made to
stop the system because a Power Off command was
recelved rather than because of an error. No error
display is made.

ATTACH BLOCK ERROR - An action attempted to attach a
non-existent structure, attach a structure with one
already attached, or locate a data block with one
already attached.

DETACH BLOCK ERROR - An action attempted to detach a
structure that was not attached.

INTRANSIT ERROR =- Virtual memory cannot locate a
section of memory it just allocated.

MEMORY LIMIT ERROR - The hardware detected that the
processor attempted to address a memory (RAM or ROM)
+hat Is not In the system; often indicates a disk drive
and/or media problem.

BOUNDARY ERROR - The hardware detected that the
processor tried to access the IC memory map when it did
not intend to, or that the processor tried to lncrement
through address @FFFF@ on any page.

FILE TYPE ERROR - This error |s generated when the Data
Access actlivity, SYS OPEN, is requested to open a file
that Is not a system flle.

NO SIZE VMFL ERROR - This error Is generated when an
attempt is made to open a WM file which has a file size
of zeroe.

VMFL IS OPEN ERROR - This error Is generated when an
attempt Is made to open a VM file which 1Is already
opens.

SYSFL OPEN ERROR ~ This error is generated when an
attempt Is made to open a system file which has a flle
type other than SYSTEM, LOG, CODE, or [NTERPRETER,
which Is already open.

NAMTAB OVER ERROR = This error |Is generated when an
attempt is made to open a system file with the maximum

number of files already opened for that file type.

Reserved.

1118478

azee

azre

a30e

83ia

e32e

@336

@34e

e35e

@368

@
Y
-

exe

52]

a3A8

a38e

a3ce

a3De

ILLEGAL WRITE ERROR - This error Is generated when an
attempt is made to perform a SYS-i0 write to a fiie
that Is not opened with a usage of read/write.

INVALID OP ERROR - This error Is generated when an
attempt Is made to perform a SYS-10 operation with an
opcode other than read, write, or search.

Reserved.

CLOSE ADV ERROR - This error is generated when a SYS-
CLOSE with purge of a file with +type other than
miscel laneous, |ist, NDLSYS, or VM-FILE is attempted.

NOT VMFILE ERROR - This error Is generated when an
attempt is made to add an area to a system file other
than a VWM file, or to dump to a file other than a VM
file.

ADD ZERO SIZE ERROR - This error Is generated when an
attempt Is made to add an area of size zero to a VM
file.

QUEUE MAINT ERROR - This error 1Is generated If an
illegal descriptor was sent to a physical 1/0 module,
or If an invalld unit number was detected.

10 DESC ERROR = This error 1Is generated if the 1/0
handler sent an il lega! descriptor.

Reserved.

DA PHT OVER ERROR - This error is generated when there
are more than 20 devices on the system.

KEYFILE FRMT ERROR =~ An error was encountered in
accessing the keyfile (of an lIndex pair) that could
only occur as a result of the keyfile being formatted

Incorrectiy.

DA OUTCOME ERROR = This error Is generated when an
unrecognized output from the 1/0 subsystem Is recelved.

DA BUFF MEM ERROR - This error Is generated when an
internal data access error Is detected during a buffer
memory operation.

DA SCL ERROR - This error Is generated when an
unrecognized output from a utility or the 1/0 subsystem
procedure Is recelvede.

Reserved

Reserved.

a3t

a3re

a40e

e41e

6428

e43a

448

8456

e468@

e478

e49¢

04A0

e40De

@4E8

e4re

508

e51a

START Ol ERROR - A problem has occurred [n "START-0I"
(operator Interface); probably a bad outcome In trying
to access a system flle (SYSMCP, SYSCONFIG,
SYSLANGUAGE) «

Reserved.
Reserved.
Reserrved.
Reserved.
Reserved.
Reserved.
Reserved.

JM START OPEN ERROR - An Interpreter file open has
falled.

JM START TP ERROR - The load of an Interpreter to a
task processor has falled.

JM START READ ERROR - A read from an Interpreter flle
has falled.

JM OPEN PROG ERROR - Open of a program file has
resulted In the return of an unexpected fallure value.

JM OPEN INTRP ERROR = Open of an interpreter flle has
resulted In an unexpected outcome value for fallure.

JM OPEN VM ERROR = Open of a VM file has resulted in an
unexpected fallure value being returned.

(1Y}

JM
do

[
PAUSE ERROR =
n

ot make sense.

JM TP ERROR ~ The task ID or mix number given by the
Invoker of the task procesor error action Is Illegal,
or a request made of a task processor has been rejected
by it.

JM ACCESS ERROR - Information passed to the MIX=-ACCESS
action is Invalid (In all cases, the task id).

JM MX NAME ERROR - Information used to get a task name
from DA (through DA.NAME.FIBID) gave a bad result.

Error could be in JM or DA software.

Reserved.

JM ST ERROR - This error Is detected by the STOP action

1118478

a52e

538

8544

e558

as6e

a57¢

e8¢

598

a5Ae

e5se

e5Ee

864¢

€656

8668

a6te

a6Fe

indicating that a specified job is in an invalid state.

JM SUPER ERROR - A startup time detected error

indicating that the Initial load of SYSSUPERUTIL was
unsuccessful.

JM DSDPFLAGS ERROR - A job belng DS-ed or DP-ed has the
state flags in disarray.

JM EOQJ ERROR - The end of job code has been entered for
& job whose state f!ags make nc senss.

JM TERMFLAG ERROR - The terminate flag was set with no
terminate condition existing.

Reserved.

JM DCJOBREM ERROR = The DC Job removed action has been
called for a Job whose flags say it Is not terminating.

JM JOBRUN ERROR - A TP has notified the OS that a newly
loaded Job 1s running when no such notification was
expected.

Reserved.

JM SELECT ERROR - The processor selected for the load
of a Job has falled for unexpected reasons.

JM TASK ID ERROR - A task processor sent a task ID +to
the OS that does not exist.

Reserved.
Reserved.

DC RWL ERROR - The DCA (Data Comm Activity) attempted
to access one of the queues, but was stopped because
the READ=W|TH-LOCK flag was set.

DC 10l Error - The result function has found an Invalid
message type on the system result queue. This problem
could be caused by running with an Incompatible version
of MCP- and NPC-generated code files.

Reserved.

P! PROCESSOR ERROR - An attempt was made to send a
message to an il legal bus address (X15, for example).

Pl TP TASK ID ERROR - The TP was asked to do something
for a task that is not running on that TP.

A-8

a70e

e

a72e

a788

198

@6a

@7a

@se

98

a8

asBa

&ce

eroe

éri1e

MOVE RESULT ERROR - An unidentiflied result was returned
from PI_MOVE by the TP.

Reserved.
Reserved.
Reserved.
Reserved.

BAD DFH LOCK ERR - OPEN or CLOSE attempted to read a
disk file header without having acquired the disk flle
header locke

ZERO ALLOC ERR - The system attempted to allocate a 0-
slzed area on disk.

BAD ALLOC ERR -~ The system attempted to allocate an
area with an area number greater than 16.

BAD INDEX ERR - The system attempted to access a disk
flie header with a directory Index greater than 2805.

Reserved.

BAD DFH ERR -~ The system attempted to write a disk file
header with an improper value In the FLAGS or EOF
fleld.

BAD PACK TAG ERR - A PPIT search operation returned an
invalid pack tag to the system.

Reserved.

DISK PROC ERROR - The disk processor detected an error.
To determine the reason for the error, a ROM dump must
be taken and analyzed: The Save Area of the dump

contains the IC Status which will indicate the type of
error. Figure 8-1 of this manual should be helpfule

SUZIP FAIL ERR - On an unattended system, the program
to be zipped at system startup time encountered a Load
fallure. The following two bytes of the display give
the FCM value for the zlp fallure.

1118478

APPENDIX B

TASK PROCESSOR SAVE ERRORS

The task processor error numbers defined below are reported as the “‘Error Number’’ in a processor
entry of the error log or in the dump’s State Save Area for a task processor.

8008

aoie

a026

e€03e

8048

€058

ao7e

acse

eooe

alo08

elie

a12e

a13e

Hardware detected error.

FS YIELD PROC - Force state has been detected while
entering PM function YIELD PROCESSOR. This function
should not galin control while In force state.

ILL CALL AP - Two actions are allowed to call ™M
function ASSIGN PRIORITY; these are JC |INTERP ACTION
and JC COMMAND HANDLER. These errors Iindicate the
cal ler was nelther.

FS ASG PRIOR - Force state has been detected while
entering PM function ASSIGN PRIORITY. This function
can not gain control while in force state.

FS INVOKE - Force state has been detected while
entering PM function INVOKE. This function can not
galn control while In force state.

FS FINISH =~ Force state has been detected while
entering PM function FINISHED. This function can not
gain control while in force state.

been Invcked +c take a

status block (SB) off the linked lists; but the SB can
not be located. Assume that the SB is still on a queue
which Is In error.

Reserved

Reserved

ENQ ILL Q - An invalid queue name has been passed to PM
function ENQUEUE.

Reserved

DEQ ILL Q - An Invalld queue name has been passed to PM
function DEQUEUE.

ILL POST - A PM POST has been invoked on a SB that does
not have a status of WAITING POST.

DEQ NOT HEAD - A SB has invoked DEQUEUE to get off a
queue while it Is not at the head of the queue.

B-1

al4e

e15e

alce

a17e

a18e

a198

alee

€208

e21a

822e

e23e

824e¢

825¢

€26e

ez7a

FS PRE POST - Force state has been detected while
entering PM function PRE POST CALLER. This function
cannot galn control while In force state.

FS MEMSPACE - Force state has been detected while
entering PM function MEM SPACE. This function cannot
galn control while In force state.

FS MARK - Force state has been detected while entering
PM function MARK. This function cannot gain control
while In force state.

MEM SP NO WB - A JC or Pl action has called MEM SPACE
to allocate a WB when the maximum IImit of four has
already been allocated.

FS FREE SPACE - Force state has been detected while
entering PM function FREE SPACE. This function cannot
galn control while In force state.

ILL FREE SPACE - A SB has called FREE SPACE to
deal locate a structure, and FIND WB was unsuccessful In
locating the structure.

TASK LIMIT EXCEEDED - More than the legal amount of
tasks allowed In the mix have been Invoked.

FS LINK WB - Force state has been detected whiie
entering PM function LINK WB. This function cannot
gain control while In force state.

ILL INVOKE - An action has been called by [INVOKE, but
the action name does not exist (is out of bounds).

MARK CODE SEG -~ MARK has been called to modify a
structure of type SCODE. Only W Is authorized to do
this.

INVOKE W ~ VM has been cal led by INVOKE; W cannot be
Invoked.

INV TOO MANY ACT - An actlion being Invoked Is non-
critical; yet, due to lack of space In the SB ADDR
ARRAY, it has overflowed Into the area reserved for
critical actions.

AP NOT ON LIST - A search of the Ilst heads by the
actlon ASSIGN PRIORITY was unsuccessful In locating the
SB of the task.

DEALLOC TYPE - Work block being deal located was neither
type Normal, SB, ICB, TCB, or PCB. Invalid use of
DEALLOCATE.

ILL TRANSFER WB ~ TRANSFER WB was called to give wup

1118478

exe

éxe

@306e

asia

8336

a34a

a3s5e

esee

asre

axe

exe

a3ce

a3pe

a3ce

ownership of a WB,but was not successful in locating
Ite

ILL LINK WB -~ LINK WB was called to delink a WB and
relink I+, but WB was not found.

Reserved

WB NOT FOUND - FIND WB has not found a specifled WB,
and the error flag was on. In some cases, not finding
a WB Is not an error, but it is In this case.

FS LOCATE SSEG - Force state has been detected while
entering PM function LOCATE SSEG. This function cannot
gain control while in force state.

ILLEGAL JOB COMMAND - The 0OS processor has requested
the TP to perform an invalid job command.

ILLEGAL [N REQ - The OS requested an invalid function
of the task processor.

INTERPRETER NOT LOADED - The OS requested the +task
processor to run a task for which there is no
Interpreter.

ILL MARK REQ - MARK has been called In order to mark a
WB, but FIND WB was not able to locate the WB.

FS GET SEGS - Force state has been detected while
entering PM function GET SEGS. This function cannot
gain control while in force state.

WS FATAL - No entry in the warmstart table (planted at
startup time) has been found for thls task processor
during START PM.

INV ILL INT TASK - An Interpreter action has been
detected having an illegal action ID. This means the
ID Is not In the range of SB ADDR SLOTS set aside for
INTERP ACTIONS. (INVOKE)

MARK DATA SEG - MARK has been cal led to modify an s=-
data type structure. Only WM is authorized to do this.

GET SEGS MANY - An Interpreter requested an Invalid
number of segments (0 or more than 3) or requested more
than one code segment.

GET SEGS KIND - The Interpreter requested an Invalld
type of segment (not a data or a code segment).

INVALID INTERPRETER NEED - The Interpreter requested an
Invalid NEED. Valid NEEDs are: Commun icate, Get
Segment, Yield, Program Error, or System Message.

B-4

Q40

e418

e42e

466

478

8508

as18

8528

as53e

854e@

558

a578

8588

a8

860@

a618a

Reserved

CLEAR START ERR - Indicates that START PM has been
entered for a second time. START PM Is not reentrant.
(HARD ERROR)

Reserved

SOFTWARE ERROR - Task processor execution led to an
11legal software operation.

HARDWARE ERROR - The TP went logically Not Ready due to
a hardware-detected error: Parity Error, Memory Limit
Error (the TP attempted to address a nonexistent
memory), Boundary Error (the TP +ried to Increment
addressing through the end of a memory page: @FFFF@).

WS PAGE O SIZE - The size of page 0 Is too small to
support the execution of the ICP.

WS END OF TABLE - the Warmstart Table loaded by the 0S
Is corrupted.

VM TID ERROR - FIND WB was unable to find the TCB of
the task. (W ACT CODE of W)

W ERROR = Descriptors exist for data and

code segments in a TCB, PCB, or ICB; if the type passed
Is nelther of these, error is noteds (FIND SSEG DESC
of W)

DISK 10 ERROR - FIND SSEG DESC was unsuccessful In
locating the segment descriptor. (DO DISK 10 of VM)

GETSEGSP ERROR - FIND SSEG DESC was unsuccessful In
attempting to relocate the seg table. (GET SEG SPACE)

UP DISK of W).
SETUP2.DSK.ERROR - In procedure SET.UP.DISK, which s
building a SYSIO COMM to bring In segs, the FIND SSEG

DESC rountine was unsuccessful. (SET UP DISK of W)

CHECK VIC ERROR - W victim segment has no associated
descriptor; FIND SSEG DESC falled.

WM MO ROOM - W was [nvoked for other than LOCATESEGS.
(CHECK NO ROOM). Segments can not fit In memory.

NO MEMORY - MAKE SPACE has been unsuccessful. (W ACT
CODE)

VICTIM SEG ABS - A segment chosen as a victim by W has

1118478

662

a63e

a64e

8658

e66@

a678

e67e

ecse

eco8e

3
@

ale

an associated descriptor which shows the segment

absent. {(CODE DATA VICTiM)
DO COMP ILL TYPE - Durlng the actual compacting part of

W, the next block of memory has been found to have an
11legal type. (DO COMPACTING)

SEG COMP NO WB - In DO COMPACTING, SEG COMPACT has been
called, which called FIND SSEG DESC, and fatled to find
the descriptor table. (SEG COMPACT)

GETSPACE TYPE ERR - A segment type 1Iis out of range,
meaning It Is neither W FILE, PROG FILE, INT TYPE,
ZERO, or GARBAGE FILL. (GET SEG SPACE in WM)

Reserved

W GETSEGS NOTCB - VM has cal led FIND SSEG DESC to find
the ICB/TCB/PCB for a segment, and it was unsuccessful.
(W GET SEGS in VM)

Reserved
Reserved

SRCH UPSEGS ADDR - The last pass of the virtual memory
algorithm has searched through memory, and was not
successful In locating space.

SRCHUPSEG NOTCB - FIND SSEG DESC has failed. (SEARCH
UPDATED SEGS)

JC INTERP COM - TCB fla
ACTION)

JC ILL OP CODE - Command handler action has detected
that a command is out of range. Bad parameter.

APPENDIX C
SYSANALYZER ERROR MESSAGES

An error detected in the dump file by the SYSANALYZER, or an error in the analysis, causes an error
message to be generated within the analysis printout. These error messages are identified by one string
of three dollar signs before the message, and another after the message: ‘‘$$$ ERROR MESSAGE
$$%.”’ Messages without three dollar signs are merely warnings.

$$$ NO xx ID.TABLE ENTRY $$$

No ID.TABLE entry (as documented in the dump file map) was found for the memory type requested.
The memory types (‘‘xx’’) are defined as follows:

OS -Operating System
TP -Task Processor
DC -Data Comm Processor

DK -Disk Processor
BM -Buffer Memory

$$$ CIRCULAR LIST ERROR $$$
A list that circled back on itself did not circle back to the beginning.

$$$ REVERSE LINK ERROR $$$

In a list that has forward and reverse links, a forward link was followed from entry <a> to entry
, but the reverse link in entry did not point to <a>.

$$$ QUEUE TAIL ERROR $%$%

While analyzing a queue having a head and a tail, the tail was found not to be pointing at the last
entry reached via the forward links.

$$$ TABLE SIZE NOT MODULO 8 $$%

If this message occurs during the TCB analysis, it means that the difference between the stack base
and the DST base in a certain TCB is not modulo 8.

If this message occurs during the ICB/PCB analysis, it means that the difference between the Code
Segment Table (CST) limit and the CST base in a certain PCB is not modulo 8.

$$$ QUEUE LINK GREATER THAN QUEUE SIZE $$%

The queue link points beyond the end of the table of status blocks through which the queue is linked.
$$$ STE LENGTH NOT EQUAL SD SIZE $$$

The segment table entry length is not equal to the segment descriptor size.

$$$ SD OWNER NOT EQUAL PD/BD OWNER $$%

The segment descriptor owner is not equal to the physical descriptor/block descriptor owner.

1118478 C-1

$$$ SD WB.ID NOT EQUAL PD/BD WB.ID $%$

The segment descriptor work block ID is not equal to the physical descriptor/block descriptor work
block ID.

$$$ SD SEGMENT NUMBER INCORRECT $$$

The segment table entry number does not equal the segment number.
$$$ LIST INDEX GREATER THAN LIST SIZE $$$%
List index is greater than the list size.

$$$ DYNAMIC ARRAY DECLARATION ERROR $$$

An attempt to declare data space dynamically in order to perform an analysis resulted in a value either
zero or greater than 5000 bytes. The data declaration does not occur, and the specific subsection of
analysis is skipped.

$$$ LIST SHOULD NOT BE CIRCULAR $$$
A straight list has been detected to circle back on itself.

$$$% DISK READ ERROR $$$

An “ERROR”’ status has been returned to SYSANALYZER while it was trying to read from disk.
Analysis continues at the next logical startup point.

$$$ SEGMENT TABLE ID MISMATCH 5
The value of a segment-id, as passed to the SYSANALYZER in the dump file’s header record, does

not match the value built into SYSANALYZER in order to print the names of the various segments
in the segment table.

$$$ ADDRESS ERROR $$$

When the value of the indicated address is added to the indicated length or offset, the sum exceeds
the last address for the page of memory involved. (The last address for the page is determined from
the Dump File Map.)

$$$ TYPE INCORRECT s

The least digit of the physical descriptor type is incorrect. For TCB analysis, it should be 7; for PCB
analysis, 8; and for ICB analysis, 9.

$$$ P.STATUS /=WAIT.CRIT.INV $$$

The status field of the status block does not equal @04@.
$$$ ID'S DO NOT MATCH $$$

The preceding and trailing IDs do not match.

$$$ SIZES DO NOT MATCH s

The preceding and trailing sizes do not match.
C-2

$$% SIZE LESS THAN 7 $$$%

The preceding size is less than 7.
$$$ FORWARD PD ID ERROR $$$
The forward physical descriptor ID is not @06@.
$$$ REVERSE PD ID ERROR $$$

The reverse physical descriptor ID is not @06@.
$$$ FORWARD PD SIZE ERROR 55

If 6 is added to the status block size array entry that is indexed by the action name, the result does

1 tha § A hucinal A Tt Qs
not equai tne iorward pnysical acscriptor sizc.

$$$ REVERSE PD SIZE ERROR $$$%

If 6 is added to the status block size array entry that is indexed by the action name, the result does
not equal the reverse physical descriptor size.

1118478 C3

APPENDIX D

USER TASK ANALYSIS

To assist in tying a user job to all of the various control and parameter blocks associated with it, use
the following outline:

VIRTUAL MEMORY

1. From the mix table, locate the desired job and record the following information:
1) Task ID.
2) Mix Processor.

3) Program FIB ID (least significant byte = PCB ID). The PCB ID can be used t

PCB in the task processor.

TASK PROCESSOR <PROCESSOR NUMBER>

1. Scan the TCB.heads for BH.ID = <task ID>. NOTE: scan all memory pages.
2. Beneath each TCB are the FPBs associated with that task, if any.

The least significant byte of the ““SD’’ number of each FPB is the associated FIB segment num-
ber (FIB ID).

OPERATING SYSTEM

1. Scan the WB.LB.HEAD for “owner” of DA.TASK <task ID> LIST.
NOTE: Convert < task id> to decimal.

- L A 945 h g A Fag

can the FIB List below the WB.LB.HEAD for:

[354
w2

1) “Owner’’ as determined in step 1 above.
2) “ID” (FIB ID) as determined in step 2 for Task Processor number above.
3) Assemble a DA.FILE-TAG from FIB entries:

a. File tag info (1 byte).

b. File tag directory (2 bytes).

c. File tag packtag (1 byte).
NOTE: DA.FILETAG = <file tag info> <file tag directory> < file tag packtag>.

BUFFER MEMORY
Scan FTE entries for DA.FILETAG as assembled in step 3) above.

The FTEEs associated with the FTE are immediately following it.

1118478 D-1

D-2

NOTE
Four FTEE descriptors will be listed, and the map of the FTE will indicate
the number of them that are active. The associated 180-byte buffer sections
and their contents will follow each descriptor. The buffer sections are linked
together by the “‘trailing link,”> which points to the address of the next buffer
section. The last buffer section of an FTEE will be linked to @FFFF
FFFF@. The FTEE itself will have a trailing link of Fs unless there is more
than one FTEE associated with an FTE.

APPENDIX E
A GUIDE FOR TROUBLESHOOTING SYSTEM FAILURES

INTRODUCTION

Some initial steps should be taken in any trouble-shooting effort. It is not always possible to do all
of the things suggested but the more of these suggestions that are followed the easier the task of trou-
ble-shogting will be.

1. Record all information which appeared on the ODT and on the lighted displays when the error
occurred.

2. Get a dump.
If the system clearstarted and created a dump file in the process, this will be indicated by messages

which appear on the ODT. If no messages have appeared and the system will still respond, take

i 3 Gminating ONA e L 10 Lo
a dump using the GT MD command. IF the ODT is not communicating, a ROM dump should be

Once the dump exists it is ready to be converted into a readable format.

If the dump is a system dump (created automatically or by GT MD), it can be converted using the
SYSANALYZER program.

If the dump is taken using the Hex keypad (a ROM dump), it should have ROMCONVERT run
against it. The output of this procedure is then used as input for the SYSANALYZER program.

There are times when ROMCONVERT can not be run. In this case, run ROMANALYZER against
the ROM dump.

(Directions for all these procedures are contained in the System Operations Guide.)

3. Acquire the log file of the activities on the system when the problem occurred (use the PL com-

lllllllll

4. Make a copy of the SYSCONFIG file.

5. Talk with the personnel at the site and make a note of any unusual activity when the failure oc-
curred.

6. If a clearstart occurred and the error message is available (the number in Bank E of the Hex
display), the meaning of the message should be established using Appendix A to decode the num-
ber.

SUGGESTIONS/HINTS

The suggestions which follow have been accumulated from successful field engineers and are included
here in the hope that they may be of help to others.

IF THE SYSTEM CAN'T BE RE-WARMSTARTED

Try the redundancy switch(es), OS and/or DISK, to confirm that the problem is in the suspected
primary processor.

Coldstarting is a good test of the hardware. It is a good idea to:
Replace the system files (RP).
1118478 E-1

If it will not damage the customer’s operation too much, re-initialize the fixed. disk, and then load
the system files from the BYOORL1 disk using the LD command.

PERSISTENT PROBLEM

Run the appropriate MTRs. Be sure to check the MTR configuration against the configuration
shown when CONFIGURER is run.

A LARGE NUMBER OF CHIPS SEEM TO BE FAILING

The problem may be a wire to that card/circuit or a track on that card.
ENVIRONMENT IS IMPORTANT

If the room is too hot the disk platters may expand and the disk can not be read properly.
If the air is too dry, static may be causing problems and static mats may be needed.

Review the log files for the date and time of failures. It may turn out that the customer is working
after hours or on weekends when in-house air conditioning is switched off.

CHECK CONNECTIONS

Check the power supply. Hot or discolored fuses indicate that the connection is bad. This can cause
low line voltages which can, in turn, affect the system memory.

All 1/O cables and 1/0 cable plugs should be checked to be surc that they are firmly seated.

The examples which follow are intended to be helpful for problems on different system configurations.
It should not be assumed that all types of problems have been addressed.

In following the outlines for the different system configurations, follow the instructions only to
the point where a reason for the failure is found.

SYSTEM CONFIGURATION 1
System aborts with a SPO and a printer
CONDITION 1: CLEARSTART - DUMP CREATED
1. Analyze clear start message.
2. Wil system WARMSTART?
1) If no:
a. Analyze WARMSTART fallure code.

b. Replace system flles, and rewarmstart.
c. Run MTRs.

2) If yes:
a. Print and analyze log files.

b. Print and analyze KA and LR of all disks on line at time
of CLEAR/START.

CONDITION 2:

1.

2.

c« Run MTR.
de Print dump file.
e. Analyze approprlate areas for hardware errors.

3) 1f reason for CLEAR/START is not found in steps a or b,
submit FTR.

CLEARSTART - DUMP NOT CREATED

Analyze clear start message.
Take ROM dump.

Will system WARMSTART?

1) If no:

a. Analyze WARMSTART fallure code.
b. Relace system files, and rewarmstart.
c. Run MTRs.

2) If yes:
a. Print and analyze log files.
be Print and analyze KA and LR of all disks on line at time of
CLEAR/START.
C+ Run ROMANALYZER and analyze IC status words.
de Run ROMCONVERT and SYSANALYZER.
e. Run MTRs.
f. Analyze appropriate areas for hardware errors.

if reason for CLEAR/START Is not found in steps a or b, submi+ FTR.

CONDITION 3: SYSTEM HUNG - NO RESPONSE TO SPO MESSAGES

1118478

1.

2.

Attempt a ROM dump.

1) |If ROM does not take dump, run MTR.

2) If ROM dump is taken, attempt to WARMSTART.
Will system WARMSTART?

1) If no:

a. Analyze WARMSTART fallure code.
b. Replace system flles.
¢+ Run MTRs.
2) If yes:
a. Print and analyze log files.
be Print and analyze KA and LR of all disks online at t+ime of
CLEAR/START.
C. Run ROMANALYZER, and analyze IC status words.
de Run ROMCONVERT and SYSANALYZER.

e. Run MTRs.
a. Analyze appropriate areas for hardware errors.

3) If reason for "hang" Is not found In steps a or b, submit FTR.

CONDITION 4: TASK PROCESSOR MARKED NOT READY - DUMP
CREATED

Does the system have an MPL processor available?

1. |If yes:
1) Print and analyze log files.
2) Print and analyze a KA and LR of all disks online at time
of fallure.
3) "PO" system and run MTR.
4) Run SYSANALYZER and analyze approprlate areas.

5) |f the reason for the task processor being marked not ready
is not found In steps 1), 2), or 3), submit FTR.
2. |f no:
1) "PO" system and WARMSTART.
2) Will the task processor run "PL"?
a. |f yes:
a) Print and analyze log files.
b) Print and analyze a KA and LR of all disks oniine
at time of fallure.
c) Run MTR.
d) Run SYSANALYZER and analyze appropriate areas.
e) |f the reason for the task processor being marked
not ready Is not found In above step, submit FTR.
b. If no:
a) Replace system flles.
b) Run MTRs.

SYSTEM CONFIGURATION 2

System aborts on a system without a printer

CONDITION 1: CLEARSTART - DUMP CREATED
1. Analyze CLEAR/START message.
2. Will system WARMSTART?

1) If no:
a. Analyze WARMSTART fallure code.
b. Replace system files.
c. Run MTRs.
2) If yes:
a. Run PL with display option and analyze any entriese.
b. Run MTR.
c. |f the reason for the CLEAR/START is not found by steps N

E-4

CONDITION

CONDITION 3:

1118478

-~

Z:

1.

2.

4.

5.

1.

2.

or 2), submit FTR.

a) Run KA and LR to printer backupe

b) Copy dumpfile, printer backup flles, and log files to a
removable disk, and transport to a system with a
printer for further analysis.

¢) |If the reason for the CLEAR/START is not found by the
above step, submit FTR.

CLEARSTART - DUMP NOT CREATED

Analyze CLEAR/START message.
Set the OPERATE/MEM DUMP switch to MEM DUMP.

Interrogate the contents of +he 0S processoir page O of fsets 000F
through 001C memory. (Refer to CMS S0G.)

See NOTE 2 for 0S save state area.
Take ROM dump.
Will system WARMSTART?

1) 1f no:
a. Analyze WARMSTART fallure code.
b. Replace system files.
ce« Run MTRs.

2) If yes:

a. Run PL with display option and analyze any entrles.

b. Run MTR.

c« Run KA and LR to printer backup.

d. Copy printer backup files and log flles to a different
removable disk than used for the ROM dump, and transport to
a system with a printer for further analysise.

e. |f the reason for the CLEAR/START is not found in the above
step, submit FTR.

SYSTEM HUNG - NO RESPONSE TO SPO MESSAGES

Attempt to display the contents of the OS processor page 0O
of fsets 000F through 001C memory. (Refer to CMS SO0G.)

1) If ROM does not display, run MTR.

2) If ROM does display, analyze using layout described in step 3
of the previous condition.

Attempt a ROM dump.

1) If dump not taken, run MTR.

2) |f dump taken, attempt to WARMSTART

b.

If no:

a) Analyze WARMSTART failure code.

b) Replace system flles.

c) Run MTRs.

If yes:

a) Run PL with display option and analyze any entrles.

b) Run MTR.

c) Run KA and LR to printer backup.

d) Copy printer backup flles and log files to a different
removable disk than used for the ROM dump, and
transport to a system with a printer for further
analyslis.

e) |f the reason for the "hang" Is not found In the pre—
vious step, submit FTR.

CONDITION 4: TASK PROCESSOR MARKED NOT READY - DUMP

CREATED

Does the system have an MPL processor available?

1.

2.

If yes:

1)

23
<

Run PL with "dispiay™ option and anaiyze any entries.
Run MTR.

3) Run KA and LR to printer backup of all disks online at time
of fallure.

4) Copy printer backup flles, log files and memory dumpfile to
removable disk, and transport to a system with printer for
further analysis.

5) 1f the reason for the fallure was not found In the above
step, FTR.

If no:

1) "PO" system and WARMSTART.

2) Will the task processor run PL with the display option?

a. If yes:

a) Analyze any entries.

b) Run MTR.

c) Run KA and LR to printer backup of all disks online
at time of fallure.

d) Copy printer backup files, log files, and memory
dumpfile to removable disk and transport to a
system with printer for further analyslis.

e) |f the reason for the fallure Is not found In the
above step, submit FTR.

b. If no:
a) Replace system flles.
b) Run MTRs.

SYSTE

M

System aborts with no SPO and no printer.

It will be very difficult to determine the time and type of f

a failure has occurred, the following steps can be followed:

1118478

1. Attempt to display the contents of 0S and disk processors save
state areas. See NOTE 2.

1) If ROM does not display, run MTR.

2) If ROM displays, analyze using the layout provided in system
configuration 2 condition 2.

2. Attempt a ROM dump, Fhen run the MTR.

3« WIII the system WARMSTART?

1) 1f no:

Analyze the WARMSTART error code.

b. Replace system files.
2) |If yes:
a- Run KA and LR to printer backup of all disks on line at
time of fallure via the remote SPO.
b. Copy printer backup files and log files to a different

NOTE 1:

NOTE 2.

removable disk.

If there was not sufficlent disk space at WARMSTART time to
create an empty dump file, a dump will not be taken in the
event of a CLEAR/START, even If the system had the abiiity
to do so. Thls case does not apply for this part of the
outline because a R(M dump would not reflect the condition
of the memory at the t+ime of the fallure.

Disk Processor Hard Errors: When causing freeze, these will|
display "FOO000" on the hex Indicators: an unexpected "not
ready”, (select lock, 211 relocation +table full, for
example) can cause the system to eventual ly hang waiting on
virtual memory.

IC status Is stored at the end of disk processor memory,
Indicated by "DP-SIZE" in a dump. It Is stored as status 1,

error status, status 3, status 2.

"DP-SIZE" Is located at memory address €003A8 on page 0 of
the disk processor.

ailure on this system cofiguration. Once

NON-OS PROCESSORS

Errors on these processors cause values to be saved at the following addresses in their own memories:

Address Length Stored |tem
0008 1 ERROR IND{CATOR
000C 1 BO
000D 1 REQ
000E 2 81FL
0010 2 B32
0012 1 AD
0013 2 J
0015 2 K
0017 2 L
0019 8 XY
0021 2 M1
0023 2 M2
0025 2 WR
0077 2 MAX
00 2 MXA
0028 2 Mx8
0020 2 UMAR3
002F 2 UMAR4
0031 2 UMARS
0033 2 UMARG
NOTE

ERROR INDICATOR = 00 = Hardware detected error.

0

PROCESSOR

Hard errors on the OS processor cause values to be saved at the following addresses on page 0:

1118478

Address

000F

0011

0013

0015

0017

0019

001A

oot

001C

Stored |tem

M1

M2

MAX

UMR2

UMRX2

STATUS 1

ERROR STATUS

STATUS3

STATUS2

Length

E-9

1118478

APPENDIX F

GLOSSARY OF COMMON TERMS

This glossary only includes terms and abbreviations that are global to the system. Many terms are ex-
plained in the appropriate place within the ‘““SYSANALYZER output’ sections of _thls document.
Throughout this document, the first definition will be implied unless explicitly specified otherwise.

Several terms are described as ‘“CMS standard.’”’ These are further described

NOTE

in the CMS MCP Manual.

ABP

Act fon

Activity

AMCACTION.LIST

AVR

8DS

BSMD
coC
CMS
CPA

Critical

CST

DA

DA CT

Avallable Buffer Pool. The poo! of available data
comm buffers. Managed by DCA.

A discrete unit of code achleving a single
function.

A logically related group of system functlons
comprised of a set of Interdependent actions.

Activity Management. An OS activity. See Section
8 for a concise description.

A linked 1ist of status blocks, one block per
actlve 0S action.

Automatic Volume Recognition. CMS standard.

Basic Data System . The underlying mlcroprocessor
see "NBDS" and "NPRO."

Block Descriptor. See Task Processor, Section 10.
Burroughs Super MIni-DIske.

Cartridge Disk Control.

Caomputer Management System. CMS standard.
Communicate Parameter Area. CMS standard.

An action Is known as critical if i+ Is not re-
entrant. Area of an action, known as a reglon, may
be critical without the whole action being
critical. Both actions and regions may be critical
because they Invoke a critical action.

Code Segment Table. CMS standard.

Data Access. The 0S activity handling all data
operations. See Sectlon 8.

Data Access Confliguration Table.

DCA

DCI

DCP

DMTR

DSM

oP

DscP

-
@

FPB

Frozen

HCT

JC

Data Comm. Usually used with reference to data
storage areas of the data comm activity.

Data Comm Activity. OS activity for handiing all
data comm communlcates. See Sectlon 8.

Data Communications Interface control. That part of
the DCP hardware that enables the connectlon of an
external line to the data comm processore.

Data Communications Processors

Display and Malintainance Test Routine control.
That part of +the DS&M processor hardware
responsible for handling the hexadecimal keypad,
the displays, and the MIR switches.

Data Storage and Malntenance processore.

Disk Processor. Same as DS&M.

Data Storage Control Program. The firmware that
executes In the DS&M.

Fixed Disk Control.

Fiie information Biocke For a user fiie this Is a
reflection of a user FPB.

File Parameter Block. CMS standard.

1. A frozen processor Is an NPRO that has
deliberately stopped Itself.

2. A frozen segment Is an element of managed memory
(in any processor) that cannot be swapped out or
moved.

History Communicate Table.

Interface Control. The hardware interface to the
Processor Interconnect Bus.

Interpreter Control Block. CMS standard.
Industry Compatible Mini-Disk.

Interpreter Control Programe The firmware that
runs in the task processor.

Job Control. The ICP activity that schedules and
controls the executlon of user Jobs within the task
processor e

1118478

Jel led

M

LB

Mallbox

Mmcp

MCS

Mix Number

3

Monitor

MSB

NBDS

NPRO

obT

ol

0s

A jelled segment is an element of managed memory
that may not be swapped out, but which may be
moved. See frozen.

Job Management. The OS activity for job related 0S
functions. See Section 8.

Linked Block.

Least Significant Bit or Byte (depending on the
context).

The communication area of +two processors. The
content and use of mallboxes Is covered in sectlons
2 and 10.

Master Contro! Program. Generic Burroughs term for
an operating system. See CMS MCP Manual for
speci fic CMS implementations.

Message Control System. A user program responsible
for controlling al! or part of a data comm networke.

External user reference to a running Job. Mix
numbers are assigned from 1 t0 99 in a round-robin
manner .

NOTE

Internally the system uses a (different) +task ID.
Both are kept In the mix table.

Monitor.
The 0S activity responsible for system and error
logging and the detection of peripheral device

errors. See Section 8.

Most Significant Bit or Byte, depending on the
context.

An n-channel! BDS processor. See also BDS and NPRO.

The standard processor module. An extended n-
channe! BDS microprocessor.

Operator Display Terminal.

Operator Interface. The OS activity handling all
operator messages. The activity also handles /0
to the ODT directly. See Section 1.

Operating system. That portion of the MCP +that
runs in the OS processor, and the processor itself.
See Section 8.

F-3

F4

PCB

PO

PHT

Pl

PIB

Port

Region

RSO

RTC
SB
SCL
SD

Section

Program Control Blocke.

1. Physical Descriptor. Used in relation to task
and buffer memories.

2. MCP utllity to report all or part of a disk
directory.

Perlipheral Handling Table. Used by DA to manage
all peripherals attached to the system (other than
data comm).

Processor Interface. A group of related modules of
code appearing as one activity In all processors
(other than the DS&M) +that communicate with one
another. Pl provides a processor Yo processor
commun ication capability via the processor
Interconnect buse.

Processor Interconnect Bus. The hard bus
connecting the IC modules of each processor
subsystem.

Processor Interface Control. Same as PIB and IC.

Processor Management. The ICP activity responsible
for the contro! of the task processor.

Power Off. The MCP intrinsic used to request the
system to logical ly release a disk peripheral.

The 1/0 path of the NBDS. Each NBDS has the
capability of addressing eight ports. Port O (and
port 1 in the 0OS processor and DS&M) Is reserved
for Interprocessor communication.

A sub portion of an action. The term Is normal ly

oniy used in the context of c

Remote SPO Operation. A system capablility to allow
the ODT function to be transferred to a remote
device via an MCS.

Real Time Clocke Also known as TOD (Time Of Day).
Status Block. See status blocke

System Control Language. Standard CMS.

Segment Descriptor.

A portion of buffer memory. Usually a part of a

buffer of user data. Currentiy a section is 180
bytes.

1118478

SPO

Stack frame

Status Block

STE

Task ID

TCB

TOD

WLP

Work Block

Alternative mnemonic for ODT.

An internal save area maintained for every action
on a soft stack.

A standard storage area reflecting the current
status of an action. Active entries appear In the
AM.ACTION.LIST.

Segment Tabie Entry.

The internal reference to a job. This number Is a
direct Index into the mix table. See mix number.

Task Control Blocke CMS standard.

Time Of Day. Alternative name for the real +ime
clock.

Task Processor.

Virtual Memory.

Work Blocke

Wide Line Printer. 1/0 control for line printers.

A Work Block Is owned by an action, and Is used for
a varlety of data storage purposes.

Documentation Evaluation Form

[o]

Title: B 900/CP 9500 Systems Memory Dump Form No: 1118478
Users Guide Date: November. 1982

Burroughs Corporation is interested in receiving your comments
and suggestions regarding this manual. Comments will be util-
ized in ensuing revisions to improve this manual.

Please check type of Suggestion:

O Addition O Deletion O Revision O Error

Comments:

From:
Name
Title
Company
Address

Phone Number Date

Remove form and mail to:

Documentation Dept, TIO - East
Burroughs Corporation
Box CB7
Malvern, PA 19355

- 2" B'NDE?’”———M—_——F"—.

1%" BINDER ——r
!o— 178INDER —

-

3aIN9 S¥IsN
_ ANAG 0NN -
swaishs 0056 d)/006 8

1118478

© “Printedin USA.

4%

N

£ 3 .
Printed in U.S.A. ‘ November 1982 1118478

	0001
	0002
	0003
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	01-01
	01-02
	02-01
	02-02
	02-03
	02-04
	02-05
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	C-03
	D-01
	D-02
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	F-01
	F-02
	F-03
	F-04
	F-05
	replyA
	xBack

