
Information

Processing Systems

STREAM PROCEDURE

REFERENCE MANUAL

Burroughs
B 5500

INFORMATION PROCESSING SYSTEM

STREAM PROCEDURE
REFERENCE MANUAL

Equipment and Systems Marketing Division

Sales Technical Services

Systems Documentation

Burroughs Corporation ~
Detroit, Michigan 48232 ~

In Canada: Burroughs Business Machines Ltd., Toronto, Ontario

COPYRIGHT© 1964 BURROUGHS CORPORATION

PREFACE

One of the programing languages utilized by the Burroughs B 5500 Information

Processing System is Extended ALGOL 60. This language has been patterned after

familiar programing concepts and fitted into the structure of ALGOL 60. ALGOL

60 was designed to describe computational processes and is an excellent tool for

this purpose. However, the formulation of this language was restricted to areas

which are machine independent. Implementation of machine-dependent elements was

recognized to be the responsibility of the individual computer manufacturer.

For example, ALGOL 60 alone is incomplete when a computer is to be used for the

execution of computational processes since the means of communicating data to

and from a particular computer are not provided.

On the other hand, Extended ALGOL 60 provides the B 5500 programmer with complete

input/output facilities, STREAM PROCEDURE statements which allow the use of B 5500

char~cter mode functi~n2' the abi 1 ity to perfor:!:'l_~Y..'!1.!?g_!i_C:,.,~ebuggi~g, plus other

useful miscellaneous facilities including the ability to perform partial-word

ar i thmet i c and d_oub l~~p'_~~C:.~_~_~,~,=,~r _i_~J1~et i.e. ALGOL 60, together wi th these Burroughs

extensions is referred to in Burroughs literature as Extended ALGOL.

This publication completely describes the STREAM PROCEDURE portion of Extended

ALGOL. It is assumed that the reader is familiar with ALGOL 60 and the B 5500

Information Processing System.

iii

SECTION

2

3

iv

TABLE OF CONTENTS

TITLE

INTROQUCT ION • •

GENERAL CONCEPTS • • • •

Information Streams

Addressing Control

Stream Procedure Language Description

Stream Procedure Operation

THE STREAM PROCEDURE DECLARATION • •

Syntax

Semantics.

Stream Procedure Heading •

Stream Block ••

THE STREAM STATEMENT • •

General.

Syntax

Semantics ••

Transfer Operation Control

Stream Address Statement

Syntax • •

Semantics

Types of Stream Address Statements •

Set Address Statement •

Store Address Statement

Recall Address Statement

Skip Address Statement

. . . .

. . . .

PAGE

vii

1- 1

1-1

1-2

1-6

1-6

2-1

2-1

2-2

2-2

2-4

3-1

3-1

3-1

3-1

3-2

3-3

3-3

3-4

3-4

3-4

3-8

3-10

3-12

SECTION

TABLE OF CONTENTS (cont)

TITLE

Destination String Statement

Syntax •

Semantics

Source String Transfer •

Transfer Words (WDS)

Transfer Character (CHR)

Transfer and Convert Operation

Input Convert (OCT)

Output Convert (DEC) •

Transfer and Add (ADD) ••

Transfer and Subtract (SUB) •

Transfer Character Portion

Transfer Character Portion (ZON)

Transfer Character Portion (NUM) •

Litera 1- Transfer • • • •

Literal Characters

'Literal Bits

Stream Go To Statement

Syntax

Semantics

Skip Bit Statement

Syntax • • •

Semantics

Stream Tally Statement ••••••••••

Syntax • • •

Semantics

· · ·
· · ·

· · ·

·
·

·

PAGE

3-13

3-13

3-14

3-15

3-15

3-17

3-18

3-19

3-21

3-22

3-24

3-26

3-27

3-28

3-30

3-30

3-32

3-34

3-34

3-34

3-34

3-34

3-35

3-36

3-36

3-37

v

SECTION

TABLE OF CONTENTS (cont)

TITLE

Stream Nest Statement •

Syntax •

Semantics

Stream Release Statement

Syntax • .

PAGE

3-37

3-37

3-37

3-38

3-38

Semantics 3-38

Conditional Stream Statement 3-39

Syntax . . 3-39

Semantics 3-40

Source Wi th Literal . . 3-41

Source With Destination . 3-41

Source Bit 3-42

True/False Toggle 3-42

Source For Alpha 3-43

APPENDIX A - STREAM PROCEDURE APPLICATIONS. • • • • • • • • • • • • • • A-l

vi

INTRODUCTION

The STREAM PROCEDURE is a programing aid which has been added to ALGOL to faci1itate

the use of the character mode on the B 5500. The STREAM PROCEDURE can be considered

a specia1-purpose form of a standard ALGOL procedure and enab1es the programmer

to consider operations upon strings of characters as we11 as word operations.

Some of the prob1ems to which the STREAM PROCEDURE can be app1ied are those invo1ving

comp1ex editing of information on input/output operations, packing and unpacking

of data for more effective information storage, and scanning operations for com­

parison of data. These are but a few of the many app1ications in which the STREAM

PROCEDURE can be of significant va1ue to the programmer.

The method for using a STREAM PROCEDURE is genera11y the same as the method defined

for a standard ALGOL procedure. Each STREAM PROCEDURE must be defined by a decla­

ration and activated by a standard procedure statement. There are, however, several

differences between a standard ALGOL procedure and a STREAM PROCEDURE. The major

difference occurs in the statement forms that may be used for each type of pro­

cedure declaration.

The standard ALGOL statements operate in the word mode, and the STREAM PROCEDURE

statements function in the character mode. Since the statements which are defined

for each type of procedure operate in two different modes, they cannot be used

interchangeably.

In other words, a standard ALGOL statement cannot be used within a STREAM PRO­

CEDURE declaration, and a stream statement may not be used outside of a STREAM

PROCEDURE dec1aration.

The discussion which fo11ows will detail the various aspects of the Janguage con­

structs which have been defined for the STREAM PROCEDURE language.

vi i

It is convenient to approach the description of the programing language by examining

four main areas of di scussion: ~::~~~_~~! C?~.~~pts, t~e_st~~am dec: l~L~_t_ion, the

s~rea~~tat~f!l~.~_!._s, and the STREAM PROCEDURE __ applicati._()!}_s. The survey of general

concepts will cover the basic ideas concerning streams of information, a brief

outline of the STREAM PROCEDURE language, address index control, and a short

description of STREAM PROCEDURE operations. The discussion pertaining to the

stream declaration describes the detailed syntax for the STREAM PROCEDURE decla­

ration and the corresponding explanations and rules for using the various con­

structs defined by the syntax. The stream statements discussion will detail the

syntax and the characteristics for each statement which has been defined for

the stream language. The final area, STREAM PROCEDURE applications, will describe

the methods for building a STREAM PROCEDURE, and provide several examples of

STREAM PROCEDURES.

vii i

SECTION 1

GENERAL CONCEPTS

INFORMATION STREAMS.

1-1. Several methods can be used to supply data to a program. The data may be

in two forms, edited or non-edited. Edited data is supplied either as the result

of a READ statement, or as interim results. Non-edited data may be supplied in

the form of a record image in a buffer area. In either case, the data should be

viewed as a stream of information.

1-2. A stream of information is, in reality, a string of bits combined in some

specified fashion to form meaningful patterns of data. Two higher levels of

organization may exist in a stream of information: characters and words. A

character is a specific combination of six bits. The bit structure in a char-

acter is represented below where each block represents a bit.

B A 8 4

B BIT
A BIT
8 BIT

------- 4 BIT

2

2 BIT
1 BIT

1-3. The next level of organization possible is the word. Each word is composed

of eight characters. The structure of a word is illustrated below.

CHARACTER
o

---~---
I I I I I I

CHARACTER CHARACTER CHARACTER CHARACTER CHARACTER CHARACTER
23456 7

1-4. A stream of information might be considered as a string of bits which have

been combined to form characters, and the characters further combined to produce

words or other meaningful structures. A stream of information is often referred
1-1

to as a string. The input is called the source string and the output is cal led

the destination string. A stream of information is illustrated below.

~
)

B A 8 4 2 1 B A 8 4 2 1 B A 8 4 2 1 B A 8 4 2 1 B A 8 4 2 1 B A 8) }

This stream of information could represent, for instance, the following data.

I J o N E S b b J o E b b W • b 7 8 o 7 6 b 8 3 2 6 N • b E • b S T ~ t

The STREAM PROCEDURE operates upon a stream of information by passing it through

a register, modifying the information in a specific manner, and returning the

information to a predetermined storage area. This process is illustrated below.

ADDRESSING CONTROL.

1-5. Once a STREAM PROCEDURE has been given a stream of information, the pro-

cedure will control the flow of this information. To accomplish this task, three

addressing indexes have been specified for the stream language. These are:

a~ The source index~

b. The destination index.

c. The control index.

The first two indexes, the source and destination indexes, might be referred to

as the information addressing indexes. The control index might be referred to

as the program addressing index.

1-6. The source index contains the address of the information to be processed by

the STREAM PROCEDURE. This index is denoted in the STREAM PROCEDURE language by

1-2

the symbol, SI. The source index is composed of three registers: the M, G and

H registers. The M register is 15 bits in size and contains the address of the

current word in the source string. The G register is three bits in size and con­

tains the address of the character currently being referenced in the source word.

The H register is also three bits in size, and indicates the bit position within

the character currently being referenced.

1-7. The destination index contains the address of the location in memory where

the processed information will be stored. This index is represented in the language

by the symbol, 01. The destination index is also comprised of three registers:

the S, K and V registers. The organization of the destination index is ana1ogous

to that of the source index, where the S register contains the address of the

word current1y being referenced in the destination string, the K register indi­

cates the character position in the word, the V register ref1ects the location of

a specific bit position in the character.

1-8. To provide a better understanding of the stream information address indexes,

the various portions of the indexes are labe1ed by the following subscripts:

w for word, c for character, and b for bit. The fo11owing summarizes the detai1s

of the various portions of the information addressing indexes, SI and 01.

SIw or OIw - source or destination area word address.

SIc or OIc - source or destination character position in a word.

SIc - a for the 1eftmost character in the word.

SIc - 7 for the rightmost character in the word.

SIb or OI b - source Or destination bit position in the character.

SIb - a for the 1eftmost bit in the character (B bit in the zone

portion of a character).

SIb - 5 for the rightmost bit in the character (1 bit in the numeric

portion of a character). 1-3

1-9. The operation of the information addressing indexes, SI and 01, proceeds

in the following manner. In the bit-addressing operation, the bit portion of

the address index will overflow when the number 5 is exceeded. The bit portion

of the address index overflows into the character portion of the index, thereby

increasing the character count by one. Upon exceeding the number 7, the character

portion of the address index overflows into the word portion of the address index.

This will cause the word portion of the address index to be increased by one.

This process is illustrated below.

1-10. Assume that an information address index is set to the following arbitrary

address.

WORD CHARACTER BIT
(W) (C) (B)

If the B portion of the index is increased by one, the B portion of the index is

thereby exceeded.

+1

B BIT + 1

W C B

The B portion automatically overflows into the C portion and the B portion is

set to zero.
+1

B fB RESULT

W C B

If the C portion of the index is then increased by one, the limit of the C por-

tion is thereby exceeded.

1-4

B CHARACTER + 1

w C B

The C port i on automatically overf lows into the W portion and the C portion is set

to zero.

+1

1 1 346 G RESULT

w C B

Thus the information address indexes can be counted up as illustrated above.

1-11. The control index contains the address of the program word and the syllable

within that program word. The symbol defined in the language for this index is

CI. There are two parts of the control index and these are identified by sub-

scripts in the following manner:

CIw - address of the program control word.

CIs - program syllable in the program word being referenced.

CIs - 0 for the leftmost syllable.

CIs - 3 for the rightmost syllable.

1-12. The control index is composed of the C and L registers. The C register is

15 bits in length and contains the program word currently being executed. The L

register is two bits in length and contains the address of the syllable currently

being executed. There are four syllables in each program word. The operation of

the control index is directly analogous to program-word addressing in the word

mode.

1-5

STREAM PROCEDURE LANGUAGE DESCRIPTION.

1-13. The declaration for the STREAM PROCEDURE is composed of declarations and

statements. The statements used in a STREAM PROCEDURE are of a special nature,

and are covered briefly at this point in order to provide the proper orientation

for the material which follows. The stream statements provide methods for

addressing various portions of a string of information, transferring characters

or portions of characters to specified areas, unconditional transfers within a

STREAM PROCEDURE, and for performing various kinds of simple arithmetic.

STREAM PROCEDURE OPERATION.

1-14. The general operation of a STREAM PROCEDURE occurs as follows. The STREAM

PROCEDURE declaration is defined, and then each time it is to be used, a (stream

call statement) is given. Information is supplied to the procedure in two ways.

The procedure may receive either the actual value of some parameter or the address

where the value of this parameter is located or to be located. The STREAM PRO­

CEDURE proceeds to operate upon the information, using the statements which have

been provided for the STREAM PROCEDURE. Characters are transferred, destination

areas are filled with edited information, portions of characters or strings are

modified, and so on, until the information supplied to the STREAM PROCEDURE has

been exhausted or a programed conditional transfer effected. Exit is then made

to the main program for resumption of word mode operations.

1-6

SECTION 2

THE STREAM PROCEDURE DECLARATION

SYNTAX.

2-1. The following is the syntax used for the STREAM PROCEDURE declaration.

(stream procedure declaration) .. - STREAM PROCEDURE (stream procedure heading)

(stream block) , (type) STREAM PROCEDURE

(stream procedure heading)(stream block)

(stream procedure heading) ::= (procedure identifier)(stream formal parameter

part);(value part)

(stream formal parameter part) ::= «formal parameter list»

(stream b1ock) ::= (stream b10ck head); (compound stream tai1)

(stream block head) ::= BEGIN (stream declaration) I (stream block head)

(stream declaration)

(compound stream tail) · .­.. - (stream statement) END I
(stream statement) ; (compound stream tail)

(stream declaration) ::= (stream variable declaration) I (label declaration)

(stream variable declaration) ::= LOCAL (stream variable list) I (empty)

(stream variable list) · .-· .- (stream simple variable)

(stream variable list) , (stream simple variable)

(1abel declaration) ::= LABEL (label list)

< 1 abe 1 1 i s t) .. -.. - (1 abe 1) I (1 abe 1 1 i s t) , (1 abe 1)

2-1

< 1 abe 1) .. -.. - < ide n t i fie r)

(procedure identifier) ::= (identifier)

(formal parameter list) ::= (formal parameter) I (formal parameter list)

(parameter delimiter)(formal parameter)

(formal parameter) ::= (identifier)

(value part) ::= VALUE (identifier);1 VALUE (identifier list> , (identifier);

(identifier list) ::= (identifier) I (identifier list) , (identifier)

(parameter delimiter) ::= ,I>"(letter string)"(

(letter string) ::= (letter) I (letter string)(letter) I (space) I
(letter string)(space)

SEMANTICS.

2-2. There are two main constructs to be considered in the STREAM PROCEDURE

declaration: the (stream procedure heading) and the (stream block).

STREAM PROCEDURE HEADING.

2-3. The (stream procedure heading) has the following general format:

(procedure identifier) (FP1, FP2, FP3, ••••• , FPn);

VALUE FPl, FP2;

2-4. The reserve words STREAM PROCEDURE specify that this structure is a pro-

cedure declaration and, specifically, a STREAM PROCEDURE declaration. The (stream

procedure heading) contains an identifier which provides a name that is unique

to the block within which the procedure appears.

2-5. The (formal parameter part), indicated by (FPl, FP2, •••• , FPn), should

2-2

contain a list of all of the parameters to be used within the STREAM PROCEDURE.

The (value part), shown as VALUE FPl, FP2; specifies those formal parameters

whose value will be supplied to the STREAM PROCEDURE.

2-6. The operation of formal parameters specified for a STREAM PROCEDURE is as

follows. When the STREAM PROCEDURE is called, it will be called by a (stream

call procedure statement) which is defined in the Extended ALGOL Reference Manual.

The stream call procedure statement must have a one-for-one correspondence of

actual parameters to the formal parameters of the STREAM PROCEDURE declaration.

When the (stream call procedure statement) is executed during program operation,

the parameters will be placed in the program stack. The following example will

serve to illustrate how the stack will appear.

STREAM PROCEDURE TEST (Pl, P2, P3, P4);

VALUE Pl, P2;

BEGIN

LOCAL TEMP, TEMP1;

END;

2-7. The stack that would be developed for the (stream procedure declaration)

above would be:

11007
11006
11005
11004
11003
11002
11001
11000

ffil
P2
Pl

TEMP
TEMPl
MS c.vJ

CELLS ASSIGNED TO THE PARAMETERS
AND THE LOCAL VARIABLES

2-3

All parameters and (stream simple variable)'s are then accessed relative to the

RCW. P3 and p4 are call-by-name parameters because they are not listed in the

value part. They would therefore be placed into the stack as data descriptors.

PI and P2 are call-by-value parameters and would be placed into the stack as

values. TEMP and TEMPl will be either descriptors or operands according to pro­

gram use.

STREAM BLOCK.

2-8. The (stream block) has the same format as that of a standard ALGOL block.

The only difference is in the types of statements which are provided for forming

the respective blocks. The general format for a (stream block) is illustrated

below:

BEGIN LABEL Ll, L2, ••• , Ln;

LOCAL Vl, V2, ••• , Vn;

(stream statement)

(stream statement)

(stream statement) END

2-9. The (label declaration) has the same purpose in a STREAM PROCEDURE as in a

standard ALGOL procedure: to declare all labels which are to be used within this

procedure.

2-10. The (stream variable declaration) is used to specify the variables which

are LOCAL to the (stream block).

2-11. The concept of LOCAL as it applies to the STREAM PROCEDURE should be explained

mor~ fully at this point. The variables which are declared LOCAL to the STREAM

2-4

PROCEDURE are all of a temporary nature and used only within the (stream block)

for housekeeping and similar purposes. Variables which are declared LOCAL may

not be passed in or out of the procedure as formal parameters. An example of a

complete STREAM PROCEDURE declaration is provided to il1ustrate this concept.

STREAM PROCEDURE PACKIT (A, B, C, SOR, DEST); VALUE A, B, C;

BEGIN LABEL Ll, L2, L3;

LOCAL TANKA, TANKB, TANKC;

Ll: (stream statement) ; •••

L2 : (stream statement) , ...

L3: (stream statement) END

2-5

SECTION 3

THE STREAM STATEMENT

GENERAL.

3-1. The (stream statement)s provide the language for expressing character mode

operations.

SYNTAX.

3-2. The following is the syntax used for the stream statements.

(stream statement) .. -.. - (unlabeled stream statement)

(label) : (stream statement)

(unlabeled stream statement) ::= (unconditional stream statement) ~.~

(conditional stream statement)*

(unconditional stream statement) ::= (stream address statement) I ~,-

SEMANTICS.

(destination string statement)

(strea~ go to statement)

(stream tally statement)

(stream nest statement) I
(compound stream statement)

(skip bit statement) I
(stream release statement)

3-3. The syntax listed above indicates that there are several different types

of (stream statement)s. Some of these statements have several different formSe

Before presenting a detail discussion of the (stream statement)s and the various

forms of these statements, the operation of the information addressing indexes

during transfer operations should be discussed.

* The (conditional stream statement) is defined in paragraphs 3-75 through 3-81.

3-1

TRANSFER OPERATION CONTROL.

3-4. There are two operations which are common to a large portion of the STREAM

PROCEDURE language: transfer of characters and transfer of words. The operation

of the information addressing indexes, SI and 01, can be critical during transfer

of characters or words.

3-5. Before any transfer of words is made, SI and

character of a word (SIc and OIc must equal zero).

illustrated below.

IF SIb I 0 OR SIc j 0 THEN SIw ~ SI + w

IF D Ib I 0 OR DIc j 0 THEN DIw ~ DIw +

IF SIb = 0 AND SIc = 0 THEN SIw - SIw

IF DIb = 0 AND DIc = 0 THEN DIw ~ DIw

DI must be set to the first

This is done automatically

1 ;

1 ;

SIb - SI c - 0

DIb - DIc -0

(no change)

(no change)

as

3-6. After this adjustment to the information addressing indexes has been made,

words may be transferred from the source string or a literal to the destination

string.

3-7. Before any transfer of characters is made, SI and DI must be set to the first

bit of a character (SIb and DIb must be equal to zero). This is accomplished

automatically as foliows:

IF SIb I 0 THEN SIc - SIc + 1; SIb - 0 (overflow into SIw may occur)

(no change)

IF DIb I 0 THEN DIc - DIc + 1; DIb - 0 (overflow into DIw may occur)

(no change)

3-8. After this adjustment in the information addressing indexes has been made,

characters may be transferred from the source string or a literal to the destination

string.

3-2

3-9. To summarize the above concepts, whenever information is being transferred

from the source string or from a literal to the destination string, care must be

taken to ensure that overflow does not occur since this will cause information to

be either misplaced or destroyed. As each of the (stream statement)s is discussed

in the paragraphs that follow, care will be taken to indicate areas where trouble

of this nature may occur.

STREAM ADDRESS STATEMENT.

SYNTAX.

3-10. The following is the syntax used for the stream address statement.

(stream address statement) ::= (set address statement) I (store address

statement) I (skip address statement) I
(recall address statement)

(set address statement) .. -.. - SI ~ (source address part) I
01 ~ (destination address part)

(source address part) ::= LOC (stream simple variable) I SC

(destination address part) ::= LOC (stream simple variable) I DC

(store address statement) .. -.. - (stream simple variable) ~ (stream address index)

(stream address index) ::= SI I 01 I CI

(stream simple variable) ::= (variable identifier)

(skip address statement) ::= 01 ~ 01 (stream arithmetic expression)

51 ~ SI (stream arithmetic expression)

(stream arithmetic expression) ::= (adding operator) (stream primary)

(adding operator) ::= + I -
3-3

(stream primary) ::= (unsigned integer) I (stream simple variable)

(recall address statement) ::= (stream address index) ~ (stream simple variable)

(unsigned integer) .. -.. - (digit) I (unsigned integer) (digit)

(variable identifier) ::= (identifier)

SEMANTICS.

3-11. There are four types of the (stream address statement), as indicated by

the syntax: (set address statement), (store address statement), (recall address

statement), and (skip address statement). Each type of the (stream address state-

ment) has its own particular format and operating conventions; therefore, the

various types will be discussed individually.

TYPES OF STREAM ADDRESS STATEMENTS.

3-12. SET ADDRESS STATEMENT. The (set address statement) has four different

forms. For convenience of explanation, these four forms may be grouped according

to usage. The first two forms cause the source or destination indexes to be

set to the address of a variable. This address is the stack address of the v~ri-

able. The variable then becomes either the source or destination string. The

first two forms have the following general format:

S1 ~ LOC (Stream Simple Variable) this form sets the source index to

the stack address of the variable

indicated by the stream simple

variable.

01 ~ LOC (Stream Simple Variable) - this form sets the destination index

to the stack address of the variable

indicated by the stream simple

variable.

3-4

These two forms provide the programmer with the ability to set the source or

destination indexes to some particular location in the stack.

3-13. The above two forms provide the programmer with very rapid access to infor-

mation, particularly for purposes of comparison. However, there are some con-

siderations that should be noted before any use is made of these forms of the

(set address statement). If the variable specified by the variable identifier

is a call-by-value parameter or a LOCAL variable, the stack location may contain

a value. If the variable is a call-by-name parameter, then the stack location

will contain an address. In either case, because the source or destination index

is set to a stack location, care should be exercised with regard to any sub-

sequent stream transfer operations which reference this location. This is be-

cause the stack also contains program control information. If information is

transferred into the stack indiscriminately, these control words may be destroyed,

thereby causing serious programing problems. The operation of each of these two

forms of the (set address statement) is illustrated below.

3-14. Assume the information address index is set to some location in memory

I NF OR MAT ION
ADDRESS INDEX

MEMORY

B R B 7. ~'---'-+-'-'-~-t<
w C B

and the statement SI ~ LOC Vl is executed, where Vl is an actual parameter or

LOCAL variable. The information address index, in this case SI, will now point

to the location of Vl in the stack.

INFOR,'v1ATION
ADDRESS INDEX

STACK

14 ,2,5,6,31 8 8-...... ~-I--_V.;.....;..1_-----t
w C B 3-5

Again assume the information index is set to some location in memory and the

INFORMATION
ADDRESS INDEX

MEMORY

B B B ---t.~ J-~.J...J...-~...L.L..'-+-I
w C B

statement SI ~ LOC V2 is executed, where V2 is an actual parameter (call-by-name) or

a LOCAL variable. The information address index, in this case SI, will now point

to a memory location whose address had been contained in a stack location (V2).

V2 III

INFORMATION
ADDRESS INDEX

STACK

4171164

31621
31622
31623
31624
31625
31626

MEMORY

53 0 0 -..... -t-~~....;...&....:;....&....;....of..(
w C B

If the word in the stack (V2) is an operand, the word and character portions will

be set to the appropriate valUe and the bit portion will be reset to zero. TC
J.I

the word is a descriptor, only the word portion is set, and the character and bit

pointers are reset to zero.

3-15. The last two forms of the (stream address statement) have the following

general format:

SI ~ SC - this form sets the source index to the value of the next 18

bits in the source string.

01 ~ DC - this form sets the destination index to the value of the next

3-6
18 bits in the destination string.

These two forms of the (set address statement) provide the programmer with the

ability to set the source or the destination indexes from the source or destination

string. The programmer must make certain that the portion of the string which

is used to set an index is binary information. If a string of alpha characters

is accessed to set the address indexes, a serious error will result in the actual

address that is placed in the indexes. The operation of each of the above forms

of the (set address statement) is discussed in the paragraphs that follow.

3-16. Assume that an information address index contains the address of a specified

information string (see below), and the statement SI~C is now executed. The bit

---...... 11574

C B

CHARACTER 5 CHARACTER 6 CHARACTER 7

5 5 7 7

BIT ON BIT OFF

pointer is adjusted to zero and the character pointer is counted up one, if nec-

essary (SIb I 0). The address index, SI in this case, is set to the value of the

next 18 bits of the string. The first three bits set the character portion of the

index, and the next 15 bits set the word portion of the index. The bit portion

of the index is set to zero.

3-7

-CHARACTER 5 CHARACTER 6 CHARACTER 7 -

~
.- - - - e ,- -- - --e , i_ I- } ~ U • } ~ ~ V - - - - - - - - ~ ~

~'" ~

1 1 5 7 7

C B

3-17. STORE ADDRESS STATEMENT. There are three forms of the (store address state-

ment). The first two forms enable the programmer to store the settings of the

source or destination indexes. The third form is used to store the setting of

the control index. The first two forms have the following format:

Stream Simple Variable ~ S1 - this form of the (store address statement)

places the address currently in the S1 into

the location indicated by the variable identi-

fier, in the 18 least significant bits.

Stream Simple Variable ~ 01 - this form of the (store address statement)

places the address presently in the 01 into

the location indicated by the variable identi-

fier, in the 18 least significant bits.

These two forms provide the means for temporarily storing the addresses of the

source or destination indexes. Before execution of these forms of the (store

address statement), an adjustment may occur in the information address index in

order to ensure that it is pointing to the first bit of a character. This adjust-

3-8

ment is discussed in detail in paragraphs 3-4 through 3-9. The operation of these

two forms of the (store address statement) is illustrated below.

3-18. Assume that an information address index is set to some location in memory

INFORMATION
ADDRESS INDEX

MEMORY

B 0 G --t~_ ~~~~..,,-r-:~:-::::-:::"~~
W C B

and the statement Ql~I is executed, where Q1 is a LOCAL variable. The address

presently contained in the index, 01 in this case, is stored in the stack loca-

tion which has been assigned to Q1. The word portion is stored in the 15 least

significant bit positions. The character portion is stored in the next three

high-bit positions.

STACK LOCATION OF Ql

INFORMATION ADDRESS INDEX 2 2 S ~ 2

W C B

3-19. The last form of the (store address statement) provides the programmer

with the ability to store the setting of the control index. This form of the

(store address statement) has the following format:

Variable Identifier ~ CI - this form of the (store address statement) places

the address currently in the CI into the location

indicated by the variable identifier. CI is the

C register and the L register.

3-9

3-20. The operation of the above form of the (store address statement) proceeds

in exactly the same manner as the first two forms of the (store address statement).

The word-address is stored into the 15 least significant positions of the word,

and the syllable position into the next two high-order positions of the word.

STACK LOCATION OF THE
VARIABLE IDENTIFIER { 2 ,

C REGISTER L REGISTER

1 5 4 7 2 2

,r , , , r , ",
1 5 4 7 2

3-21. RECALL ADDRESS STATEMENT. The (recall address statement) has three forms

which are the counterparts of the (store address statement). The first two forms

allow the programmer to set the source or destination indexes to the location of

some variable. The third form is used to recall a previous setting of the con-

trol index. The first two forms have the following formats:

SI - Variable Identifier - this form of the (recall address statement) sets

the source index to the value of the variable

specified by the variable identifier.

01 - Variable Identifier - this form of the (recall address statement) sets

the destination index to the value of the variable

specified by the variable identifier.

The variable identifier, indicated in the above two forms, may be of two types;

either a formal parameter, or a quantity which has been declared as LOCAL. The

operation of these two forms of the (recall address statement) is discussed below.

3-10

3-22. Assume that an information address index is set to some arbitrary address

INFORMATION
ADDRESS INDEX

MEMORY

B ~ Q --.~ I-~~~~~~
w C B

and the statement 01 ~ Ql is executed. The address index, 01 in this case, is

set to the value of Ql. The word portion of the index is set to the value of

the 15 low-order bits. The character portion of the index is set with the next

three high-order bits.

STACK LOCATION OF Ql

INFORMATION ADDRESS INDEX

w c B

3-23. The third form of the (recall address statement) provides the programmer

with the ability to recall the address of some previously stored control index

setting. The format of this form is as follows:

CI ~ Variable Identifier - this form of the (recall address statement) sets

the control index to the value of the variable

specified by the variable identifier.

This form of the (recall address statement) is the counterpart of the third (store

3 - 11

address statement) discussed earlier. The programmer must use this form to set

the address of the control index with variables that had been stored previously

by the (store address statement). If other variables are used, they might be

outside the scope of the STREAM PROCEDURE in question, thereby causing erroneous

results. The operation of this form is directly analogous to the operation of the

first two forms of the (recall address statement).

3-24. SKIP ADDRESS STATEMENT. There are two forms of the (skip address state-

ment), one each for controlling the source and destination indexes. The general

format for each is as follows:

01 ~ 01 + (simple stream variable or integer)

SI ~ SI + (simple stream variable or integer)

These two forms of the (skip address statement) change the source or destination

indexes according to the value of the simple variable or integer. The statement

gives the programmer the ability to skip over portions of the source or desti-

nation string at will. This procedure provides a very flexible means of editing

varied forms of data. In one case, an entire string could be edited; in another,

selected portions of the string can be selected for editing. The operation of

this statement is illustrated below.

3-25. Assume the information address index is set to some specified location

B
w C B

and the statement 51 ~ SI + X is executed, where X has a value of 4.

3-12

B
W C B

DESTINATION STRING STATEMENT.

3-26. The (destination string statement) provides the programmer with the ability

to transfer various types of information to the destination. Information may be

transferred to the destination string in one of two ways. Information may be

transferred from the source string or from a literal representation given in the

program.

SYNTAX.

3-27. The following is the syntax used for the destination string statement.

(destination string statement) ::= OS ~ (transfer part)

(transfer part) ::= (source string transfer) I (literal transfer)

(source string transfer) ::= (repetitive indicator) (transfer type)

(repetitive indicator) ::= (repeat part) I (stream simple variable)

(repeat part) ::= (empty) I (unsigned integer)

(transfer type) ::= (transfer word) J (transfer characters) I (transfer and

convert) I (transfer and add) I (transfer character

portions)

(transfer words) ::= WDS

(transfer characters) ::= CHR

3-13

(transfer and convert) ::= (input convert) I (output convert)

(input convert) ::= OCT

< 0 u t put con ve r t) :: = 0 E C

(transfer and add) ::= ADD I SUB

(transfer character portions) ::= ZON J NUM

(literal transfer) ::= (literal character) I (literal bits)

(literal characters) ::= (unsigned integer) LIT (string)

(literal bits) ::= (ri) SET I (ri) RESET

(string) ::= "(proper string)" I "(string bracket character)"

(proper string) ::= (single character) I (proper string) (single character)

(single character) ::= (visible string char ac ter) I (single space)

(visible string character) ::= •) I] , (~ & S ;'~] ~ #

/ I ,) I + A / , ~ x =

C 0 , E J F G H I @ J K L

N 0 p Q R I I I S T U V W

y Z 0 2 I 3 I 4 5 6 7 8

(single space) .. -.. - [a single unit of horizontal spacing which does not con-

tin a visible string character1

(string bracket character) ::= "

SEMANTICS.

3-28. The general format for the (destination string statement) is:

3-14

B

M

X

9

(destination string statement) ::= DS - (transfer part)

where OS represents the destination string and the (transfer part) represents

one of the two major types of transfer available for use with this statement.

Information is transferred to the destination string in the manner specified by

the {transfer part). The limit of (ri) is 63.

SOURCE STRING TRANSFER.

3-29. The first type of (transfer part) of the (source string transfer) trans­

fers a specific portion of the source string to the destination string. The

(source string transfer) format is:

(source string transfer) ::= (ri) (transfer type)

where (ri) is a repetitive indicator and is formed by an unsigned integer or a

simple stream variable. The (transfer type) is a general representation which

may take on several different forms. These types are as fo11ows:

a. Transfer words.

b. Transfer characters.

c. Transfer and conver t.

d. Transfer and add.

e. Transfer and subtract.

f. Transfer portions of characters.

Each of these types will be considered in detail in the paragraphs that follow.

3-30. TRANSFER WORDS (WOS). This (transfer type) transfers a specific number of

words from the source string to the destination string. The number of words

transferred depends upon the value of the repetitive indicator. When this (trans-

fer type) is used, the general format for the (destination string statement) is:

OS - (r i) WOS
3-15

The source and destination indexes are adjusted accord~ng to the conventions

described previously in paragraphs 3-4 through 3-9. After the address indexes

have been adjusted, (ri) source words are transferred to the destination string.

The transfer affects SI and 01 as follows:

51 +- SI + ri w w

The operation of this form of the (destination string statement) is illustrated

below.

3-31. Assume the statement OS +- 3 WDS is executed and the configuration of the

source and destination areas is:

51

,r
?

WORD NO. 1 WORD NO. 2 WORD NO. 3 l
\ \

SOURCE AREA

DESTINATION AREA

After execution of the above statement, the configuration of the source and

destination areas would be:

3-16

SI

"

WORD NO. 1 WORD NO. 2 WORD NO. 3
}
? SOURCE AREA

~ I ~
WORD NO. 1 WORD NO. 2 WORD NO. 3 DESTINATION AREA

~.

01

3-32. TRANSFER CHARACTER (CHR). When used with the transfer character option,

the (destination string statement) places a specified number of characters in the

destination string, where the number of characters transferred depends upon the

value of the repetitive indicator. When this option is used, the general format

for the (destination string statement) is as follows:

OS ~ (ri) CHR

The source and destination indexes are adjusted according to the conventions

described for character transfer in paragraphs 3-4 through 3-9. After the address

indexes have been adjusted, (ri) source characters are transferred to the desti-

nation string. The transfer affects SI and 01 as follows:

SIc ~ SIc + (ri) (overflow into SIw may occur)

Dlc ~ Dlc + (ri) (overflow into Dlw may occur)

The operation of this form of the (destination string statement) is illustrated

below.

3-17

3-33. Assume the statement OS ~ 12 CHR is executed and the configuration of the

source and destination areas is:

SI

,r
~

b b S T R E A M b b D A T A b b > }
SOURCE AREA

l DESTINATION AREA

h

01

After execution of the above statement, the configuration of the source and

destination areas would be:

SI

"
b b S T R E A M b b a A T A b

\
b) SOURCE AREA

\

////~
~

S T R E A M b b 0 A T A \ DESTINATION AREA
)

H

OI

3-34. TRANSFER AND CONVERT OPERATION. There are two forms of the (transfer type)s

for transfer and convert operations. These two forms have been specified to

handle both input and output conversions.

3-18

Input Convert (OCT).

3-35. When used with this (transfer type), the (destination string statement)

converts (ri) characters of input data from decimal to octal and transfers this

data to the destination string in units of words. The general format for this

statement is:

os ~ (ri) OCT

The adjustment of the SI is as shown for character transfer operations, and

the adjustment needed for the DI is as shown for word transfer operations,

both of which have been covered previously in paragraphs 3-4 through 3-9.

After these adjustments have been made, (ri) decimal source characters are

transferred and converted to an octal word in the destination string. The value

of (ri) must be less than or equal to 8.

3-36. If the value of the source field is zero, the sign of the destination

field is set to plus; otherwise, the sign is obtained from the zone bits of

the least-significant character of the source field. These zone bits are inter­

preted as follows: If BA=lO; the sign is-minus; otherwise, the sign is plus.

All other zone bits of the source characters are ignored.

3-37. The decimal source field is treated as an integer, and the resulting desti-

nation octal word is an integer. The flag bit, exponent sign, and exponent of

the octal word are each set to zero. The transfer affects the SI and 01 in the

following manner:

SIc - SIc + (ri) {overflow into SIw may occur}

01 ~ 01 + 1 w w

The operation of the above form is illustrated below.

3-19

3-38. Assume that the statement OS - 4 OCT is to be executed and the configuration

of the source and destination areas is:

sr

" -

.~ o 2 5 5 4 o 9 5 SOURCE AREA

\ DESTINATION AREA

.~

or

After execution of the above statement, the configuration of the source and

destination areas is:

sr

SE
F ---, J t

SO -----I J EE

01

3-20

037) ~
~

.~
j~

SOURCE AREA

DESTINATION AREA

NOTE

SE - SIGN OF THE EXPONENT
F - FLAG BIT

SO - SIGN OF THE OPERAND
EE - EXPONENT

Output Convert (DEC).

3-39. When used in this form, the (destination string statement) operates in a

manner exactly opposite to that of the Input Convert (OCT) statement. The general

format for the statement is:

os ~ (ri) DEC

The adjustment of the SI is as shown for word transfer and the adjustment of

the 01 is as shown for character transfer, listed previously in paragraphs 3-4

through 3-9. After these adjustments have been made, an octal source word is

transferred and converted to (ri) destination characters. The value of (ri)

must be less than or equal to 8.

3-40. If the value of the octal source word is zero, the sign of the word is

stored as plus in the zone bits of the least-significant destination character

(BA=lO is minus). All other zone bits in the destination field are ignored.

3-41. The mantissa of the octal source word is treated as an integer, with

the flag bit, exponent sign, pnd the exponent of the word being ignored. If

the value of the octal mantissa is larger than can be converted in (ri) char­

acters, the most-significant characters in excess of (ri) will be lost. The

true/false toggle is set to false if any characters are lost; otherwise, it is

set to true. The transfer affects the SI and 01 as follows:

SIw ~ SIw +

Ole ~ Ole + (ri) {overflow into OIw may occur}

3-42. Assume that the statement DS +- 3 DEC is to be executed and that the source

and destination areas have the following configuration:

3-21

SI

01

~--SO

F
SE---

EE

~~

037 SOURCE AREA

{ DESTINATION AREA

After execution of the above statement, the configuration of the source and

destination areas is:

SI

01

SC
F

SE

037 SOURCE AREA

\.)

II IIi.r:rsl I DESTINATION AREA

3-43. TRANSFER AND ADD (ADD). When used in the (destination string statement),

this (transfer type) algebraically adds a specified number of characters of the

source string to the same number of characters in the destination string. The

general format of this statement is:

3-22

os - (ri) ADO

where (ri) has the same meaning as before. The adjustment of the SI and 01 is as

shown for character transfer, discussed previously in paragraphs 3-4 through 3-9.

After the appropriate adjustment of the address indexes has been made, a source

field of (ri) characters is transferred and algebraically added to a destination

field of (ri) characters.

3-44. The signs of the two fields are the zone bits of their respective least­

significant ,characters. (If BA=10, the sign is minus; otherwise, the sign is

plus.) All other source zone bits are ignored. All other destination zone bits

are set to zero. The sign of the result is stored in the zone bits of the least­

significant destination character.

3-45. A result of zero is given a sign of plus except when the destination field

is minus zero and the source field is zero with either sign. If overflow occurs

in the destination field, the true/false toggle is set to true; otherwise, it is

set to false. The transfer affects the SI and 01 as follows:

SIc - SIc + (ri) (overflow into SIw may occur)

OIc - OIc + (ri) (overflow into D1w may occur)

The operation of this form of the (destination string statement) is illustrated

below.

3-46. Assume that the statement OS - 6 ADO is to be executed and the configura­

tion of the source and destination areas is as shown below:

3-23

S1

,~

+

~ 4 3 2 1 5 2 4 6 SOURCE AREA

+ 1 4 o 1 2 0 2 1 3 DESTINATION AREA

~~

Dr

After execution of the above statement, the configuration of the source and

destination areas would be:

S1

H

+ ~
-4 j --2- --1-- ~ ~ ~ ~ --- -

--- ~
~ .. , .. ~~~

+)

4 o 5 5 2 3 6 5 i
l

DESTINATION AREA

~~

Dr

3-47. TRANSFER AND SUBTRACT (SUB). When used in the (destination string state-

ment), this (transfer type) algebraically subtracts a certain number of characters

in the source string from the same number of characters in the destination string.

The general format of this statement is:

3-24

os ~ (ri) SUB

The adjustment of the SI and 01 follows the conventions established for charac­

ter transfer, listed previously in paragraphs 3-4 through 3-9. After adjustment

of the address indexes has taken place, a source field of (ri) characters is

transferred and algebraically subtracted from a destination field of (ri) char­

acters. The signs of the two fields are the zone bits of their respective least­

significant characters. (If BA=lO, the sign is minus; otherwise, the sign is

plus.) All other source zone bits are ignored. All other destination zone bits

are set to zero. The sign of the result is stored in the zone bits of the least­

significant destination character.

3-48. A result of zero is given a sign of plus except when the destination field

is minus zero and the source field is zero with either sign. If overflow occurs

in the destination field, the true/false toggle is set to true; otherwise, it is

set to false. The transfer affects the SI and 01 as follows:

SIc ~ SIc + (ri) (overflow into SIw may occur)

Dlc ~ Dlc + (ri) (overflow into DIw may occur)

The operation of this form of the (destination string statement) is illustrated

below.

3-49. Assume that the statement OS ~ 7 SUB is to be executed and the configura­

tion of the source and destination areas is:

3-25

SI

,Ir

T

~ 4 0 6 5 2 3 6 5 SOURCE AREA

T 1 3 1 2 3 1 2 4 6 DESTINATION AREA

.~

01

After execution of the above statement, the configuration of the source and

destination areas would be:

SI

"
4 0 6 5 2 3 6 5 { SOURCE AREA

I ~ DESTINATION AREA

Dl

3-50. TRANSFER CHARACTER PORTION. This transfer type has two forms. The first

form transfers the zone bits from the source string to the destination string.

The second form transfers the numeric bits from the source string to the des-

tination string. Each of these forms is discussed in detai 1 below.

3-26

Transfer Character Portion (ZaN).

3-51. The adjustment of the SI and 01 is as shown for character transfer, dis-

cussed in paragraphs 3-4 through 3-9. After the adjustment of the address

indexes has taken place, the zone bits of (ri) source characters are transferred

to the zone portions of (ri> destination characters. The numeric portion of

the destination characters is not affected. ~hen this (transfer type) is used,

the general format of the (destination string statement) is:

os (ri) ZON

The transfer affects the SI and 01 as follows:

SIc"" SIc + (ri) {overflow into SIw may occur}

OIc DIc + (ri) (overflow into OIw may occur)

The operation of this form of the (destination string statement) is shown below.

3-52. Assume that the statement OS 4 ZaN is to be executed and the configura-

tion of the source and destination areas appears as shown below:

SI

, .
B • J 1- - - - - /
A • • 10 10 - - - - 1
8 ~
4 > SOURCE AREA

2 " 1 ~

v .J

4 '\.,
DESTINATION AREA

2 /
1 ""-

H

01
3-21

After execution of the above statement, the configuration of the source and

destination areas is as shown below:

SI

" B • 0 0 • ~
A • I. 0 0 - \
8 5
4 I

SOURCE AREA

2 ~
I f

~~
B I. la~ • I
A • • 0 0 ~
8 ~
4 ~

DESTINATION AREA

2 ~
1 ~

~~

01

All numeric bits remain unchanged.

Transfer Character Portion (NUM).

3-53. The adjustment of the SI and 01 is as shown for character transfer, dis-

cussed in paragraphs 3-4 through 3-9. After the address indexes have been

adjusted, the numeric portion of (ri) source characters are transferred to the

numeric portion of (ri) destination characters. The zone bits of the destina-

tion characters are set to zero. If the zone portion of the least significant

source character is minus (BA=lO), the true/false toggle is set to true; other-

wise, it is set to false. When this (transfer type) is used, the general format

of the (destination string statement) is:

OS - (ri) NUM

The transfer affects the SI and 01 as follows:

3-28

SI ~ SI + (ri) (overflow into SIw may occur) c c

DIe ~ Ole + (ri) (overflow into OIw may occur)

The operation of this form of the (destination string statement) is illustrated

below.

3-54. Assume that the statement as - 5 NUM is to be executed and that the con-

figuration of the source and destination areas is as shown below:

S1

"
B \
A
8 Ie • I
4 1 SOURCE AREA

2 I • ... • ~

1 • • ,--
\

B (
A)
8 }

4 DESTINATION AREA

2
1

~.

01

After the above statement has been executed, the configuration of the source

and destination areas appears as shown on the next page.

3-29

S1

"
B • 0 I. • • \
A • • 0 0 • 8 I • • - - - - - - ,
4 - - - - - - - -) SOURCE AREA

2 - - • -• - - - f
1 • - - - • - - - ')

B - - - - - S
A 1- - - - - \
8 - - - • • - - -)

4 - ---- - - - I DESTINATION AREA
2 - - - - -• -•)
1 - --• - - -•)

a

01

LITERAL TRANSFER

3-55. The second type of transfer defined for the (destination string statement)

is the literal transfer. This (transfer type) allows the placement of two types

of literals in the destination string: characters or bits.

3-56. LITERAL CHARACTERS. The adjustment of the 01 is as shown for character

transfer, discussed in paragraphs 3-4 through 3-9. The S1 does not need adjust-

ment because the characters being placed in the destination string are contained

in the STREAM PROCEDURE code, not in the source string. When this (transfer

type) is used, the general format for the (destination string statement) is:

OS +- (ri) LIT "string"

where the (ri) specifies how many characters of the ("string") following the

reserved word LIT will be placed in the destination string.

3-30

3-57. After adjustment of the 01, (ri) literal characters from ("string") are

transferred to the destination string. The (ri) should be an integer in value

and should be equal to the number of characters in the (llstring ll). If (ri) is

greater than the number of literal characters, repetitive left-to-right use is

made of the (llstringll) unti 1 the designated number of destination characters is

fi lled. If (ri) is less than the number of characters in the ("string"), the

rightmost characters of the ("string") are ignored. The transfer affects SI

and 01 as follows:

SI - SI (no chan ge)

Ole - Ole + (ri) (overflow may occur into Dlw)

The operation of this form of the (destination string statement) is illustrated

be low.

3-58. Assume that the statement OS - 4 LIT "DATE" is to be executed and that the

configuration of the program string and the destination area is as shown below:

CI

~r

: i

I
I I

o IA T;E
I : •

PROGRAM STRING

)
~ DESTINATION AREA
)

J~

01

After execution of the above statement, the configuration of the program string

and the destination area is:

3-31

Cl

PROGRAM STRING

DESTINATION STRING

01

This statement does not affect the S1. It should be noted that the literal

string was placed in the program string during compilation.

3-59. LITERAL BITS. When used in combination with this (transfer part), the

destination string statement turns a specified number of bits on or off. The

general format for this statement is as follows:

OS ~ (ri) SET

OS ~ (ri) RESET

The number of bits to be operated upon is indicated by (ri). The reserved word

SET causes a bit to be turned on, and the reserved word RESET causes a bit to be

turned off. The effect of this operation upon the SI and 01 is as follows:

SI ~ SI

01 ~ 01 + (ri) (overflow into Ole may occur, as well as overflow into OIw)

The operation of this form of the (destination string statement) is illustrated

below.

3-32

3-60. Assume that the statement DS - 6 RESET is to be executed and the con-

figuration of the destination area is as shown below:

I~
CHARACTER 0

I I I ;
;e!ep;e CHARACTER 2 CHARACTER 3
I I I I

DESTINATION AREA

After execution of the statement, the configuration of the destination area is:

CHARACTER 7

D 1

.......
L.t\

I~ A 8 4 2 1
; : T T T

t)bOiObio
I I I I I
! ! I I I

~~

CHARACTER 1 CHARACTER 2
~

~
DESTINATION AREA

This statement does not affect SI. Now assume that the statement DS - 4 SET

is to be executed and the configuration of the destination area is as shown below:

I~ B

CHARACTER 0 CHARACTER 1 CHARACTER 2 DESTINATION AREA

01

After execution of the statement, the configuration of the destination area is:

3-33

I~ B A 8 4 2 1
: l : : : { CHA.~ACTER 7 CHARACTER 0 CHARACTER 1 -lo:e:e_-, I , I , I t
1 ! I I I

DESTINATION AREA

~~

01

This statement does not affect SI.

STREAM GO TO STATEMENT.

SYNTAX.

3-61. The syntax used with the (stream go to statement) is:

(stream go to statement) ::= GO TO (label)

SEMANTICS.

3-62. This statement causes an unconditional transfer within the STREAM PRO-

CEDURE. It is directly analogous to the GO TO statement defined in ALGOL,

except that the label must be LOCAL to the STREAM PROCEDURE in which the (stream

go to statement) appears. An example of this statement is:

GO TO START

When the above statement is executed, control is transferred to the point in the

program indicated by the label START.

SKIP BIT STATEMENT.

SYNTAX.

3-63. The following is the syntax used with the (skip bit statement).

3-34

(skip bit statement) ::= SKIP (repetitive indicator) (source or destination

bit)

(source or destination bit) ::= SB DB

SEMANTICS.

3-64. The (skip bit statement) allows the programmer to skip specified bits in

the source string or the destination string. The general formats for this state-

ment are as follows:

(skip bit statement) ::= SKIP (ri) SB

::= SKI? (ri) DB

where (ri) is the repetitive indicator, SB specifies the (ri) source bits which

will be skipped in the source string, and DB indicates the same action for the

destination string. This statement affects the SI and 01 as follows:

(SB) SI ~ SI + (ri) (overflow into SIc and SIw may occur)

(DB) 01 ~ 01 + (ri) (overflow into Dlc and Dlw may occur)

The operation of this statement is illustrated below.

3-65. Assume the statement SKIP 5 SB is to be executed and the configuration

of the source area is as shown below:

SI

: ; ; I I
I I I I I I I I

R!~IAI41?1 1 RI~IA,4!?!1 SOURCE AREA
1- i"~ -; "; -; "I - r .: -: " ; - i "I c:
• ' , , , , _ ' , I I I _ J

After execution of the statement, the configuration of the source area is:

3-35

SI

" I : ; I i i I I I I ~ I I I I I I I I I

B;A~8:4:2;1 B:AI8:412: 1 \ : : ~ : : r : ~ ! I (
SOURCE AREA

01 is not affected by this statement. Now assume the statement SKIP 7 DB is

to be executed and that the configuration of the destination area is as shown

below:

DESTINATION AREA

DI

After execution of the statement, the configuration of the destination area is:

DESTINATION AREA

DI

SI is not affected by this statement.

STREAM TALLY STATEMENT.

SYNTAX.

3-66. The following is the syntax used with the (stream tally statement).

(stream tally statement) ::= TALLY ~ (stream primary) I
TALLY - TALLY + (stream primary)

(stream simple variable) ~ TALLY

3-36

SEMANTICS.

3-67. The STREAM PROCEDURE is designed with character manipu1ation operations

in mind, but it is sometimes necessary to perform arithmetic operations within

the STREAM PROCEDURE. Therefore, the ta11y statements have been designed to

hand1e such operations. Loca1 variab1es can be initia1ized and incremented with

these statements. TALLY has a va1ue which is modu1o-64; a11 overf1ows are 1ost.

3-68. The operation of this statement is il1ustrated by the fo11owing examp1es:

TALLY +- ABLE

TALLY +- TALLY +

TALLY +- TALLY + BETA

GAMMA +- TALLY

STREAM NEST STATEMENT.

SYNTAX.

3-69. The fo11owing is the syntax used with the (stream nest statement).

(stream nest statement) ::= (repetitive indicator) ((compound nest»)

(compound nest) ::= (nest) I (nest) ; (compound nest)

(nest) ::= (stream statement) I (jump out statement) I (1abe1)

(jump out statement)

(jump out statement) ::= JUMP OUT I JUMP OUT (number of nests) TO (1abe1)

(number of nests)

SEMANTICS.

.. -.. - (empty) I (unsigned integer)

3-70. This statement serves as a repetitive control statement where 100ps can be

described, and the number of passes through these 100ps is indicated by the (ri).

The genera1 format for this statement is as fo11ows:

3-37

(stream nest statement) .. -.. - (ri) ((stream statements»

The (stream nest statement) may be formed from (stream statement)s, (compound

stream statement)s, and a statement called the (jump out statement). A (jump

out statement) may only appear in a (stream nest statement). It transfers

control to the statement immediately beyond the next right parenthesis. In

the case of nested (stream nest statement)s, the (jump out statement) escapes

from the innermost statement only. An example of the (stream nest statement)

containing the (jump out statement) is as follows:

(stream nest statement) ::= (ri) (BEGIN SNS; JUMP OUT END);

The SNS refers to other (stream nest statement)s. The (jump out statement) may

be labeled in the same manner as any other (stream statement).

3-71. The operation of the (stream nest statement) is illustrated in the follow-

ing examples:

25 (IF SC = "E" THEN JUMP OUT; SI SI + 1 ; TALLY TALL Y + 1)

6 (IF SB = TH E N BEG I NOS 8 0 E C; VI.... TA L L Y; J UM POUT END TAL L Y TAL L Y + I)

L : 4 (IF SC = 110 11 THEN 4 (IF SC = "1" THEN JUMP OUT 2 TO L»

STREAM RELEASE STATEMENT.

SYNTAX.

3-72. The syntax for the (stream release statement) is:

(stream release statement)

SEMANTICS.

.. -.. - RELEASE ((formal parameter))

3-73. The formal parameter of a (stream release statement) must be replaced at

program execution time by a file identifier, through the substitution of an actual

parameter. The file identifier may represent either an input or an output fi Ie.

3-38

If the identifier represents an input file, the (stream release statement) causes

one buffer of the file to be filled with new data. If the identifier represents

an output file, the (stream release statement) causes the contents of one output

buffer to be transferred to the appropriate output device. The operation of the

(stream release statement) is illustrated below.

3-74. Assume that the statement RELEASE (CARD); is to be executed and. that the

buffer areas for the above-named file have the following configuration:

BUFFER
AREA 1

t
BUFFER AREA PRESENTLY

BEING REFERENCED

BUFFER
AREA 2

BUFFER
AREA N

After execution of the statement, the configuration of the buffer areas is:

BUFFER
AREA 1

BUFFER
AREA 2

t
BUFFER AREA PRESENTLY

BEING REFERENCED

BUFFER
AREA N

If the file pertains to input information, then buffer area 1 is refilled with

the next record. If the file pertains to output information, then information

from buffer area 1 is transferred to the appropriate output unit.

CONDITIONAL STREAM STATEMENT.

SYNTAX.

3-75. The following is the syntax used with the (conditional stream statement).

3-39

(conditional stream statement) .. -.. - (stream if clause)

(unconditional stream statement) I
(stream if clause) I
(label) : (unconditional stream statemPnt\

--- - - I

(conditional stream statement) ELSE I

(stream statement)

(s t ream i f c 1 au se) :: = I F (t est) TH EN

(test) ::= (source with literal) I (source with destination) I (source bit) I
(true-false toggle) I (source for alpha)

(source for alpha) .. -.. - SC = ALPHA

(source with literal) ::= SC (relational operator) " (single character) " I

(source with destination)

(source bit) ::= SB

SC (relational operator) II (string bracket character)11

.. -.. - (repetitive indicator) SC (relational operator) DC

(true-false toggle) ::= TOGGLE

SEMANTICS.

3-76. The (conditional stream statement) allows the programmer to carry out

various tests on the destination and source strings. There are five tests that

may be made: compare source string with a literal, compare source string with

the destination string, test for presence or absence of source bit, test setting

of the true-false toggle, and test the source string for alpha content. The

relational operators defined for the standard language also hold for the STREAM

PROCEDURE. The general format of the (conditional stream statement) is as

fo 11 ows:

3-40

(conditional stream statement) = IF test THEN (stream statement)

This statement operates in the following manner. If the test is true, the state­

ment following THEN is executed; otherwise, the statement is ignored. The five

types of tests available to this statement are discussed in the paragraphs that

fo 11 ow.

3-77. SOURCE WITH LITERAL. This test causes one source character to be compared

against one literal character. The general format of the (conditional stream

statement) when this test type is used is:

(source with literal) = IF SC P "literal" THEN (stream statement);

where P is a relational operator and the IlJiteral" is any allowable ALGOL char­

acter. The adjustment of SI is the same as that shown for character transfer,

discussed previously under TRANSFER OPERATIONS CONTROL. After the adjustment of

the SI, one character from the source string is tested against one literal char­

acter. The true/false toggle reflects the logical value of the test. The test

affects the SI and DI as follows:

S I ... S I (n 0 c han ge)

01 ... 01 (no change)

The operation of this form of the (conditional stream statement) is illustrated

in the following example:

IF SC = "Ell THEN GO TO BLAZES;

3-78. SOURCE WITH DESTINATION. This test compares a specified number of source

characters with the same number of destination characters. (P will stand for a

relational operator.) The number of characters to be compared is specified with

3-41

a repetitive indicator, or (ri). When this type of test is used, the general

format for the (conditional stream statement) is:

(source with destination) = IF (ri) SC P DC THEN (stream statement);

The adjustment of the SI and 01 is the same as that shown for character trans­

fer, discussed in paragraphs 3-4 through 3-9. After the adjustment takes place,

(ri) source characters are compared with a like number of destination characters.

The true/false toggle reflects the logical value of this comparison. The com­

parison affects SI and 01 as follows:

SIc - SIc + (ri) (overflow into SIw may occur)

Dlc - Dlc + (ri) (overflow into DIw may occur)

The operation of this form of the (conditional stream statement) is illustrated

in the following example:

IF 8 SC > DC THEN GO TO HOME;

3-79. SOURCE BIT. When this test is used, the (conditional stream statement)

causes one source bit to be tested for equality with a literal value of 0 or 1.

The general format for this statement is:

(source bit) ::= IF SB THEN (stream statement);

The true/false toggle reflects the logical value of this test. This test does

not affect 01 or S1. The operation of this form of the (conditional stream

statement) is illustrated in the following example:

IF SB THEN S I - S I + l;

3-80. TRUE/FALSE TOGGLE. When this test is used, the (conditional stream state­

ment) tests the true/false toggle for equality with one of the logical values,

3-42

TRUE or FALSE. The general format of this statement is:

(true/false toggle) ::= IF TOGGLE THEN (stream statement);

There is no adjustment of either the 51 or 01. The value of TOGGLE is not affected

by this test. The operation of this form of the (conditional stream statement)

is illustrated in the following example:

IF TOGGLE THEN OS ~ X ZON;

3-81. SOURCE FOR ALPHA. This form of the (conditional stream statement) tests

one source character to determine if it is a letter or digit. The true/false

toggle reflects the result of this test. The general format for this statement

is as follows:

(source for alpha) ::= IF SC = ALPHA THEN (stream statement);

The operation of this form of the (conditional stream statement) is illustrated

in the following example:

IF SC = ALPHA THEN SI ~ SI + 1;

The comparison affects SI as follows:

SI ~ S1 (no change)

3-43

APPENDIX A

STREAM PROCEDURE APPLICATIONS

The formation and application of a STREAM PROCEDURE can best be shown

through the use of examples. Two examples of STREAM PROCEDURE formation and

application are given in the following material.

EXAMPLE 1.

STREAM PROCEDURE MOVECHARACTERS(N,SOURCE,SSKIP,OEST,DSKIP);

VALUE N,SSKIP,DSKIP;

BEGIN

SI+-SOURCE;

SI SI+SSKIP;

OS+-N CHR;

END;

D 1+-0 EST ;

DIt-()I+OSKIP;

Stream Procedure Movecharacters will move N characters from the sskip­

th character in "SOURCE" to the dskip-th character in "DEST".

EXAMPLE 2.

REAL STREAM PROCEDURE COMPARE (WORD1,WOR02);

VALUE WORD1,WOR02;

BEGIN

SI WORD 1; 01 WORD2;

IF 8 SC ~ 0 C TH E N

BEGIN

SI SI - 8; 01 01 - 8; TALLY -1;

IF 8 SC = DC THEN TALLy 2

END;

A-I

A-2

COMPARE - TAllY

END COMPARE;

Stream Procedure Compare wi 11 compare the 8 chr word in word 1 to

the 8 chr word in word 2 and sets the value of compare to:

o if word

if word

2 if word

is less than word 2

is greater than word 2

is equal to word 2

Burroughs

1021318 5-65 PRINTED IN U. S. AMERICA

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	A-01
	A-02
	xBack

