
Burroughs

BSS

ESPOL
REFERENCE MANUAL

Burroughs

85500

INFORMATION PROCESSING SYSTEM

ESPOL

REFERENCE MANUAL

BUSINESS MACHINES GROUP
SALES TECHNICAL SERVICES
SYSTEMS DOCUMENTATION

Burroughs Corporation ~
Detroit, Michigan 48232 ~

COPYRIGHT © 1966 BURROUGHS CORPORATION

AA 850936

SECTION

1

2

3

4

TABLE OF CONTENTS

TITLE PAGE

INTRODUCTION. ix

ESPOL CONSTRUCTS VS. EXTENDED ALGOL

CONSTRUCTS. 1-1

General 1-1

Constructs Common to Extended ALGOL and

ESPOL . 1-1

Extended ALGOL Constructs Not Included

in ESPOL. . • . 1-1

PROGRAM DESCRIPTION .

Syntax.

Semantics .

DESCRIPTION OF VARIABLES.

Syntax.

Semantics .

Variables .

Elemental Variables

Subscripted Variables .

DESCRIPTION OF VARIABLE DECLARATIONS.

Syntax.

Semantics .

Simple Variable Declaration .

OWN • • • .

Type.

Identifier Expressions.

Array Declarations.

OWN .

Type.

Identifier Expressions.

Name Declaration.

OWN • .

Identifier Expressions.

The Name Variable MEMORY.

2-1

2-1

2-1

3-1

3-1

3-2

3-2

3-2

3-2

4-1

4-1

4-2

4-2

4-2

4-2

4-3

4-5
4-5
4-5
4-5
4-8

4-8

4-8

4-8

iii

SECTION

5

6

7

8

iv

TABLE OF CONTENTS (cont)

TITLE

ARITHMETIC AND BOOLEAN EXPRESSIONS.

General

NUMBERS . .

Syntax. .

Semantics

ESPOL PRIMARIES .

Syntax. . . .

Semantics . .

(Octal Representation) .. .

(Expression»).. .. .

*(Primary)

POLISH (Polish String») ..

WORD MODE SYLLABLES AND OPERATORS .

General

Descriptions of Operations Caused by

Polish Codes. .

Arithmetic Operators ..

PAGE

5-1
5-1

6-1

6-1

6-1

7-1
7-1
7-1
7-1
7-2
7-2
7-2

8-1

8-1

8-6

8-7
ADD (+) - Add Single Precision. . 8-7
SUB (-) - Subtract Single

Precision

MUL (x) - Multiply Single

Precision

/ - Divide Single Precision

8-7

8-7

8"'7

DIV (IDV) - Integer Divide. . 8-7
MOD (RDV) - Remainder Divide. 8-7

Logical Operators

AND (LND) - Logical AND

OR (LOR) - Logical OR .

EQV - Logical Equivalence .

8-7
8-7
8-7
8-7

NOT (LNG) - Logical Negate. . 8-8

Relational Operators .. 8-8

SECTION

8 (cant)

TABLE OF CONTENTS (cant)

TITLE

GTR (>) - Test Greater Than

GEQ (» - Test Greater Than

Equal
EQL (=) - Test Equal.

LEQ «) - Test Less Than or

Equal . .

LSS «) - Test Less Than ..

NEQ (~) - Test Not Equal.

Branch Operator

BRT - Branch Return .

Store Operators . .

·
or

·

STD (-) - Store Destructive .

SND (STN) - Store Non-

Destructive .

· ·

· ·

ISD - Integer Store Destructive .

ISN - Integer Store Non-

Destructive .

Bit Operators ..

DIA xx - Dial A •

PAGE

8-8

8-8

8-8

8-8

8-9

8-9

8-9

8-9

8-10

8-10

8-10

8-11

8-11

8-11

8-11

DIB xx - Dial B 8-12

TRB xx (TFR xx) - Transfer Bits. 8-12

CFE xx (FCE xx) - Compare Field

Equal

CFL xx (FCL xx) - Compare Field

Low .

RFB - Reset Flag Bit ..

SFB - Set Flag Bit ...

TOP - Test for Operand. .
SSP (RSB) - Set Sign Plus

· . ·
SSN (SSB) - Set Sign Negative

CSB (CHS) - Change Sign Bit ·
CTC (CCK) - C TO C Transfer ·
CTF (CFX) - C TO F Transfer ·

·
·

·
·

8-12

8-13

8-13

8-13

8-13

8-13

8-13

8-13

8-14

8-14

v

SECTION

8 (cont)

vi

TABLE OF CONTENTS (cont)

TITLE

FTC (FCX) - F TO C Transfer .

FTF (FFX) - F TO F Transfer .

Subroutine Operators ..

MKS - Mark Stack.

XIT - Exit.

RTN (RNO)

RTS (RSP)

- Return Normal .

- Return Special ..

Stack Operators

XCH - Exchange ..

DUP - Duplicate .

DEL - Delete. . .

Miscellaneous Operators .

LOD - LOAD. . .

INX - Index .

COC - Construct Operand Call.

CDC - Construct Descriptor Call .

'COM - Communicate . .

PRL - Program Release .

ZPI - Conditional Halt.

STF - Set F .

STS - Set S .

RDF - Read F •.

RDS - Read S.

LLL - Link List Lookup. . . •

RRR (IPS) - Read Ready Register.

TIO - Test I/O.

Control State Operators .

INI (ITI) - Interrogate

Interrupt .

IOR - I/O Release . . , .
IIO - Initiate I/O. · · ·
IPI (INA) - Initiate Pl · · ·
IP2 (INB) --Initiate P2 . . · · ·

PAGE

8-14

8-14

8-14

8-14

8-14

8-15

8-16

8-18

8-18

8-18

8-18

8-18

8-18

8-19

8-19

8-19

8-19

8-19

8-20

8-20

8-20

8-20

8-20

8-20

8-21

8-23

8-24

8-24

8-24

8-24

8-24

8-24

SECTION

8 (cont)

9

10

11

12

13

14

15

TABLE OF CONTENTS (cont)

LABELS.

TITLE

HP2 (HLB) - Halt P2 .

RTM (RTR) - Read Timer.

General .

IN-LINE CHARACTER MODE STATEMENT.

Syntax.

Semantics . .

PROCEDURES.

PAGE

8-25

8-25

9-1

9-1

10-1

10-1

10-1

11-1

General . 11-1

Procedure Parameters. 11-1

Save Procedures Vs. Non-Save Procedures. 11-2

SUBROUTINES .

General .

Subroutine Declaration.

Syntax.

Semantics .

Subroutine Call Statement and Subroutine

Function Designator .

Syntax. .

Semantics .

Subroutine Call Statement .

Subroutine Function Designator.

SWITCH DESIGNATORS.

General .

DESIGNATIONAL EXPRESSIONS .

Syntax.

Semantics .

ESPOL INTRINSICS.

General .

12-1

12-1

12-1

12-1

12-1

12-2

12-2

12-2

12-2

12-3

13-1

13-1

14-1

14-1

14-1

15-1

15-1

vii

TABLE OF CONTENTS (cant)

SECTION TITLE PAGE

APPENDIX A - ESPOL STATEMENT EXAMPLES. A-I

APPENDIX B - REFERENCE FOR EXAMPLES OF CODE

GENERATED BY ESPOL. . . . B-1

APPENDIX C - CHARACTERISTICS OF PROGRAMS GENERATED BY ESPOL. C-l

APPENDIX D - OPERATING CHARACTERISTICS OF THE

TABLE

8-1

8-2

viii

ESPOL COMPILER. . . .

LIST OF TABLES

TITLE

Operations Caused by Polish Codes .

Association Between A-Register Bits and

Peripheral Units

D-l

PAGE

8-1.

8-22

INTRODUCTION

Executive Systems Problem Oriented Language (ESPOL) was designed to

include many features of Extended ALGOL. There are differences be-

tween the languages, of course, since the purposes of the lan~uages

are different. For example, it is not the purpose of Extended ALGOL

progr~ms to deal with problems related to interrupt handling, storage

allocation, overlay, etc., but this is the purpose of the DF MCP. How­

ever, since the languages are similar, this document describes ESPOL

in terms of Extended ALGOL constructs, whenever possible.

Use of this document requires a thorough knowledge of Extended ALGOL.

In addition, knowledge of the operational characteristics of the

B 5500 is required. The reader is consequently assumed to be com-

pletely familiar with at least the information in the pUblications:

a. Extended ALGOL Reference Manual for the Burroughs B 5500.

b. A Narrative Description of the Burroughs B 5500 Disk File

Master Control Program.

Because of the similarity between Extended ALGOL and ESPOL, con­

structs which are common to both languages are not always defined.

(See Extended ALGOL Reference Manual for constructs not defined.)

Constructs which are not common to both languages and constructs

which have different definitions in ESPOL than in Extended ALGOL

will be metalinguistically defined if such definitions are required

for clarity. Metalinguistic formulas will be preceded by an under­

lined number. The numbers have the following meanings:

a. 1 - defined the same for ESPOL and Extended ALGOL.

b. 2 - defined differently for ESPOL than Extended ALGOL.

c. 2 - defined only for ESPOL.

ix

SECTION 1

ESPOL CONSTRUCTS VERSUS EXTENDED ALGOL CONSTRUCTS

GENERAL.

Constructs which are in ESPOL in the same fashion as in Extended

ALGOL and Extended ALGOL constructs which ESPOL does not include are

noted in this section. ESPOL constructs which are only similar to

Extended ALGOL and those which exist only in ESPOL are cov'ered in the

following sections.

CONSTRUCTS COMMON TO EXTENDED ALGOL AND ESPOL.

Constructs which are common to both Extended ALGOL and ESPOL are

listed below (see Extended ALGOL Reference Manual for details).

a. The use of COMMENT.

b. Strings.

c. Partial word designators.

d. Function designators.

e. Assignment statements.

f. GO TO statements.

g. Dummy statements.

h. Conditional statements.

i. Iterative statements.

j. SWITCH declarations.

k. DEFINE declarations.

1. FORWARD reference declarations.

m. STREAM procedure declarations.

n. STREAM statements.

EXTENDED ALGOL CONSTRUCTS NOT INCLUDED IN ESPOL.

Extended ALGOL constructs which are not included in ESPOL are listed

below.

a. Standard functions.

b. Type transfer functions.

c. Nested blocks.

d. I/O statements.

e. FILL statements.

1-1

f. FILE declarations.

g. FORMAT declarations.

h. LIST declarations.

i. Diagnostic declarations.

1-2

SYNTAX.

SECTION 2

PROGRAM DESCRIPTION

The syntax for (program) is as follows:

2 (program) ::= (block) • (space)

2 (block) ::= (unlabeled block)

1 (unlabeled block) ::= (block head); (compound tail)

1 (block head) ::= BEGIN (declaration) I (block head);

(declaration)

1 (compound tail) ::= (statement) END I (statement);

(compound tail)

2 (declaration) ::= (variable declaration)

(switch declaration) I
(procedure declaration)

(label declaration) I

(stream procedure declaration)

(subroutine declaration) I
(define declaration) I
(forward reference declaration)

2 (statement) ::= (unconditional statement)

(conditional statement)

(iterative statement) I
(in-line character mode statement)

2 (unconditional statement) ::= (compound statement)

(basic statement)

SEMANTICS.

The general design of an ESPOL program is much the same as that of

an Extended ALGOL program. Although ESPOL allows no nested blocks,

it utilizes declarations, simple variables, variables with subscripts,

assignment statements, iterativ'e statements, labels, etc.

2-1

SYNTAX.

SECTION 3

DESCRIPTION OF VARIABLES

The syntax for (variable) is as follows:

2 (variable) ::= (simple variable) I (array variable) I
(name variable)

2 (simple variable) ::= (elemental variable)

3 (array variable) ::= (elemental variable) I
(subscripted variable)

3 (name variable) ::= (elemental variable) I
(subscripted variable)

1 (elemental variable) ::= (simple variable identifier)

(array identifier) I (name identifier)

3 (simple variable identifier) ::= (variable identifier)

2 (array identifier) ::= (variable identifier)

1 (name identifier) ::= (variable identifier)

1 (variable identifier) ::= (identifier)

2 (subscripted variable) ::= (array identifier)

[(subscript list)] I (name identifier)

[(subscript expression)] I
(array identifier) [(row designator)]

1 (subscript list) ::= (subscript expression)

(subscript expression)

(subscript list),

1 (subscript expression) ::= (arithmetic expression)

2 (row designator) ::= * I (subscript list), *

3-1

SEMANTICS.

VARIABLES.

ESPOL provides three classes of variables: simple variables, array

variables, and name variables. Basically, the different variables

are characterized in the following manner. Simple variables are like

simple variables in Extended ALGOL and are used to represent operands.

Array variables when subscripted are like subscript variables in Ex­

tended ALGOL and are used with operations dealing with data descrip-

tors having non-zero size fields. Array variables with no subscript

have no ALGOL counterpart and are used when dealing with data de-

scriptors with non-zero size fields and program descriptors. Name

variables which also have no Extended ALGOL counterpart are used

when dealing with data descriptors having zero size fields.

ELEMENTAL VARIABLES.

Elemental variables are related to exactly one memory location. In

the case of simple variables, that one location is presumed to con-

tain an operand, as in Extended ALGOL. In the case of array vari-

ables, the one location is presumed to contain a program descriptor

or a data descriptor with a non-zero size field. In the case of

name variables, the one location is presumed to contain a data de­

scriptorwith a zero size field.

When an elemental variable occurs as a primary, the value represented

is the contents of the one memory location related to that variable.

The occurrence of an elemental variable in a left-part list denotes

that a value is to be stored in the location related to the elemental

variable. For examples of codes generated by the ESPOL Compiler to

perform the above operations, see appendix A, part A.

SUBSCRIPTED VARIABLES.

Subscripted variables provide a means to reference locations through

use of indexed descriptors.

When an array identifier (or name identifier) fo~lowed by a bracketed

(subscript list) is used as a primary, the value represented is the

contents of the location for which the address can be derived through

use of the descriptor related to the array identifier {or name

3-2

identifier) and the subscript list. In the case of an array variable,

the value represented is accessed as an operand; in the case of a

name variable, the value is accessed as a descriptor.

When an array identifier followed by a bracketed (row designator) is

used as a primary, the value represented is the dope-vector element

for which the address can be derived through use of the descriptor

related to the array identifier and row designator.

The occurrence of a (subscripted variable) in a left-part list de­

notes that a value is to be stored in a location for which the ad­

dress can be derived through use of the descriptor related to the

array (or name identifier) and the bracketed subscript list.

For examples of code generated by the ESPOL Compiler to perform the

above operations, see appendix A, part B.

3-3

SECTION 4
DESCRIPTION OF VARIABLE DECLARATIONS

SYNTAX.

The syntax for (variable declaration) is as follows:

3 (variable declaration) ::= (simple variable declaration)

(array declaration)

(name declaration)

1 (simple variable declaration) ::= (local or own type)

(identifier expression list)

1 (local or own type) ::= (type) I OWN (type)

1 (type) ::= REAL I INTEGER I ALPHA I BOOLEAN

3 (identifier expression list) ::= (identifier expression) I
(identifier expression list),

(identifier expression)

1 (identifier expression) ::= (identifier) I (identifier) =
(relative address expression)

3 (relative address expression) ::= (variable identifier)

(variable identifier)

(adding operator)

(unsigned integer) I
(rR or rF indicator)

(unsigned integer)

1 (adding operator) ::= + I -

3 (rR or rF indicator) ::= (empty) I + I -

2 (array declaration) .. - (kind) ARRAY (array list) I .. -
(kind) ARRAY (fill array) I
(kind) ARRAY (array list), (fill

3 (kind) .. - (empty) I (local or own type) .. -

array)

4-1

2 (array list) (identifier expression)

[(dimension information)]

(identifier expression)

[(dimension information)]

(array list),

1. (dimension information) ::= (save row size)

(dimensions indicator)

1. (save row size) ::= (unsigned integer)

3 (dimensions indicator) ::= * (dimensions indicator), *

3 (fill array) ::= (identifier expression) [(save row size)] -

(value list)

I (value list) ::= (initial value) (value list), (initial value)

I (initial value) ::= (number) I (string) OCT (octal number)

3 (name declaration) ::= NAME (name list) OWN NAME (name list)

ARRAY NAME (name list) I OWN ARRAY NAME

(name list)

3 (name list) ::= (identifier expression list)

SEMANTICS.

SIMPLE VARIABLE DECLARATION.

OWN. The use of OWN in a declaration causes a variable to be assigned

a permanent PRT location in cases where a stack location would

normally be assigned. This ability may be desired when declaring

variables in procedures.

TYPE. All simple variables in ESPOL have a (type), either REAL,

ALPHA, BOOLEAN, or INTEGER, according to how they are declared.

However, ESPOL pays less regard to a variable's type than does Ex­

tended ALGOL. The only distinction made in ESPOL because of type is

when a value is to be stored. In this regard, an integer store

operator is used when storing values for variables declared INTEGER,

and regular store operators are used when storing values for variables

declared BOOLEAN, ALPHA, or REAL. Consequently, other than for

4-2

storing options, the only advantage of the various "types" is for

documentation.

IDENTIFIER EXPRESSIONS. Identifier expressions allow the programmer

to specify the address or relative address of a variable. That is,

the address specified by an identifier expression is the address of

the location represented by a variable when it appears as an elemen­

tal variable.

In appearance, identifier expressions are used in ESPOL declarations

as identifiers are used in Extended ALGOL declarations.

An identifier expression is interpreted as follows:

a. If the identifier expression is an identifier alone, the

Compiler will reserve a location for the variable in the

program's PRT or stack. The location reserved will be the

next available PRT location if the variable is declared in

the outer block or if the variable is declared as OWN in a

procedure, the location reserved will be the next available

stack location (the first procedure local variable is as­

signed the address rF* + 1); a zero will be placed in the

location reserved upon procedure entrance.

b. If an identifier expression is of the form <identifier) =
<relative address expressions), no location is reserved for

the variable. This notation specifies that the declared

variable is to be assigned the location determined by the

relative address expression. The relative address expres-

sions may be in any of the following forms:

1) <variable identifier).

2) <variable identifier) <adding operator)

<unsigned integer).

* The notation rF stands for the F-register setting and rR the
R-register setting.

4-3

J) (rR or rF indicator) (unsigned integer).

c. If form I is used, the variable being declared will be as­

signed the same address as that of the variable in the

relative address expression.

d. If form 2 is used, the variable will be assigned the address

of the variable in the relative address expression, adjusted

according to the value of (adding operator) (unsigned

integer) •

e. If form J is used, the address is assigned in the following

manner~ If (rR or rF indicator) is empty, the address as-

signed will be the (unsigned integer), relative to rR.

Otherwise, the address will be the value of (relative

address expression), relative to rF.

The following examples illustrate the use of identifier expressions.

4-4

Example 1:

REAL A;

Comment:

Example 2:

If this declaration were in the outer block, a PRT

location would be reserved for the variable A. If

the declaration were in a procedure, a stack location

would be reserved for A.

REAL B = A;

Comment:

Example J:

This declaration would cause B to reference the same

location as the variable A.

REAL C = A+J;

Comment: This declaration would cause C to reference the

memory location for which the address is three

greater than the address of the variable A.

Example 4:

REAL D = 15;

Comment: This declaration would cause D to reference the 15th

location of the PRT (i.e., rR+15).

Example 5:

REAL E = +15;

Comment: This declaration would cause E to reference the stack

location at rF + 15 (i.e., the 15th word above the

word at which rF is pointing).

Example 6:

REAL F = -19;

Comment: This declaration would cause F to reference the stack

location at rF-19 (i.e., the 19th word below the word

at which rF is pointing).

ARRAY DECLARATIONS.

OWN. The use of OWN in an array declaration causes the location

for the array descriptor to be assigned a permanent PRT address in

cases where a stack location would normally be assigned.

TYPE. Type has the same meaning with respect to subscripted array

variables as it does to simple variables. For INTEGER arrays,

however, integer store operators are only used when storing values

in subscripted array variables. Regular store operators are used

when storing values in elemental array variables.

If no type is given for an array, REAL is assumed.

IDENTIFIER EXPRESSIONS. Identifier expressions have the same function

in array declarations as they do in simple variable declarations.

The identifier expression in an array declaration, of course, decides

the address of the location which is represented by the array vari-

able when used in its elemental form. For arrays which will be

referenced through use of subscripted variables, the subject location

should contain a data descriptor with a non-zero size field.

4-5

ESPOL arrays fall into two groups and can be referred to either as

standard arrays or save arrays. Standard arrays are those for which

the program must provide array descriptors and assign memory. Save

arrays are those for which the Compiler provides array descriptors

and assigns memory.

Arrays are distinguished by the way in which they are declared.

That is, when declaring standard arrays, a dimension indicator (i.e.,

asterisk) is used to denote the number of dimensions; when a save

array is declared, an unsigned integer is used to specify the save

row size.

4-6

a. Standard Arrays.

1) When a standard array is declared in ESPOL, a memory

location is reserved for the array in the PRT or stack,

depending upon how and/or where it is declared. Actual

placement of a descriptor in the reserved cell must be '

done programmatically.

2) Standard arrays may be declared to have one or more

dimensions. When more than one dimension is specified,

the program must, of course, supply all dope vectors

(i.e., vectors of descriptors) needed. In fact, all

information about a standard array, such as its size

and the memory it uses, must be determined program­

matically.

b. Save Arrays.

1) When a SAVE array is declared, ESPOL assigns an absolute

core area for the array and provides the array descrip­

tor. Because of this action, it is required that the

memory location for a SAVE array descriptor be in the

PRT.

2) SAVE array may have only one dimension. The size of

the array is egual to the save row size designated at

declaration time. Except in the case of fill arrays,

a SAVE array will be initialized to zeros at run time.

c. Fill Arrays. A fill array is a save array which is declared

together with the values to which it is to be initialized.

A fill array must occur as the last array to be declared

in any specific array declaration. Values occurring in

the value list are used at run time to initialize the speci­

fied save array. Values from the value list are taken from

left to right and assigned, starting at element zero.

Zeros are assigned to high-order array elements if the

value list is not of sufficient size.

The following examples demonstrate the use of array declarations.

Example 1:

ARRAY A

Comment: This declaration would cause a memory cell to be

reserved for the A array. The reserved cell would

be in the PRT if this declaration occurred in the

outer block, or in the stack if the declaration

occurred in a procedure.

Example 2:

ARRAY B

Comment: This declaration specifies that reference to B should

cause reference to the memory location at rF + 15,

and that B should be referenced as a two-dimension

array.

Example 3:

ARRAY C = 4

Comment: This declaration specifies rR + 4 as the address for

a two-dimension C array. It also causes a PRT cell

to be set up for the 25-element D save array which

will be initialized to zeros at run time, and causes

a PRT cell to be set up for the fill-type E save

array as well as specifying that E is to be initial­

ized to the fill list at run time.

4-7

NAME DECLARATION.

A name declaration is much the same as a simple variable declaration

in appearance. Name declarations, however, use the words NAME or

ARRAY NAME rather than a type. The use of ARRAY NAME as opposed to

NAME does not make a functional difference in a name declaration.

The word ARRAY is allowed only for documentary purposes and would

generally be used if the variable being declared were to be sub­

scripted when used.

OWN. OWN has the same function in a name declaration as in a simple

variable declaration.

IDENTIFIER EXPRESSIONS.

Identifier expressions have the same function in name declarations

as in simple variable declarations. The only difference is that the

location determined by the expression is in this case for a name

descriptor.

The following example demonstrates the use of name declarations.

NAME A = +4, B = 15, C;

ARRAY NAME AA = +4, BB = 15, CC;

Comment: Reference to A and AA will cause reference to the

location at rF + 4, Band BB will cause reference to

rR + 15, and C and CC will each cause reference to

reserved PRT locations. The word ARRAY in the second

declaration is strictly for documentary purposes and

has no other function. As is the case with other

variable declarations (save array declarations ex­

cluded), the required contents of the specified loca­

tions must be provided programmatically.

THE NAME VARIABLE "MEMORY."

The identifier MEMORY has special significance ~n ESPOL in that it

is recognized to be a NAME variable which is assigned memory loca­

tion 200. The DF MCP initializes location 200 to a word containing

101 in the left-most three bits and zeros in all remaining bits.

The identifier M has been made synonymous with MEMORY. The iden­

tifier M may be declared to have another meaning in a procedure.

4-8

SECTION 5

ARITHMETIC AND BOOLEAN EXPRESSIONS

GENERAL.

ESPOL expressions are in most ways much like Extended ALGOL expres­

sions, but there are significant differences. Expressions in Ex­

tended ALGOL (excluding designational expressions) are considered to

have either an arithmetic value or a logical value. Generally speak-

ing, an ESPOL expression can be considered to have both an arithmetic

value and a logical value. The arithmetic value of an expression

involves only the right-most bit of the result. If the right-most

bit is 1, the expression is TRUE; otherwise it is FALSE. Arithmetic,

logical, or relation operators can be used with, or in, any expres­

sion because ESPOL recognizes both arithmetic and logical values for

expressions. For example, consider the following statements:

a. Sl: A - B + C;

b. S2: A - A > B· ,
c. S3: If A + B THEN A - B ELSE B - C;

d. s4: A - NOT (A + B) ;

e. S5: A -TRUE;

In Sl, A is set to the sum B + C. In S2, A is set to 1 if A is

greater than B; otherwise A is set to O. In S3, the sum A + B is

determined and if the right-most bit of the sum is 1, the condition

is TRUE; otherwise it is FALSE. In s4, the sum A + B is determined

and then negated. (That is, all bits in the sum that are 0 are set

to 1 and all bits that are equal to 1 are set to 0; the flag bit is

not affected.) In S5, A is set to 1. (FALSE has a value of 0.)

The sequence in which operations are performed is determined by the

following rules of precedence.

Each operator has the following precedence associated with it.

a. First - NOT.

b. Second - x / MOD DIV.

c. Third - + - INX.

d. Fourth - < < = ~ > >.

5-1

e. Fifth - AND.

f. Sixth - OR.

g. Seventh - EQV.

When operators have the same orders of precedence, the sequence of

operation is determined from left to right.

The expression between a left parenthesis and matching right paren­

thesis is evaluated by itself and this value is used in subsequent

calculations. Consequently, the desired order of execution within

an expression can always be arranged by appropriate positioning of

parentheses.

No two operators may be adjacent.

It should be noted that there is neither an exponentiation operator

nor an implication operator in ESPOL.

The operator INX is a binary operator, generally used for indexing

purposes, and is not an Extended ALGOL operator. It is used as the

other arithmetic operators (for example: X INX Y). Using this ex­

ample, the function of INX is as follows: The low-order fifteen

bits of X are added to the low-order fifteen bits of Y. Overflow is

suppressed (i.e., the remaining bits in Yare unaffected).

sequent result is a modified value of Y.

5-2

The con-

SYNTAX.

SECTION 6

NUMBERS

The syntax for (number) is as follows:

2 (number) ::= (decimal number) I (octal representation)

2 (decimal number) ::= (integer) (decimal fraction)

(decimal fraction) I
(integer)

(unsigned decimal number)

1 (integer) ::= (unsigned integer) I + (unsigned integer) I
(unsigned integer)

1 (unsigned integer) ::= (digit) I (unsigned integer) (digit)

1 (digit) ::= 0 I 1 I 2 I J I 4 I 5 I 6 I 7 I 8 I 9

1 (decimal fraction) ::= (unsigned integer)

J (unsigned decimal number) ::= (unsigned integer)

(decimal fraction)

(unsigned integer)

(decimal fraction)

3 (octal representation) ::= @ (octal number)

1 (octal number) ::= (octal digit) (octal number) (octal digit)

1 (octal digit) ::= 0 I 1 I 2 I 4 I 5 I 6 I 7

SEMANTICS.

Numbers in ESPOL are, in general, represented in the same fashion as

numbers in Extended ALGOL. Two exceptions are:

a. ESPOL does not provide a "powers of ten notation."

b. ESPOL does prov'ide an octal number notation.

6-1

The octal number notation, that is, the octal representation, consists

of the symbol @ followed by an octal number containing from one to

sixteen octal digits. If the octal number contains fewer than six-

teen octal digits, leading zeros are presumed.

6-2

SYNTAX.

SECTION 7
ESPOL PRIMARIES

The syntax for (primary) is as follows:

2 (primary) .. -.. - (unsigned decimal number) (octal representation)

(variable) I (function designator) I
(assignment statement) I (concatenate expression)

(string) I <logical value) I (expression») I
* (primary) I [(variable)] I POLISH

(Polish string») I (subroutine function designator)

1 (Polish string) ::= (Polish component)

(Polish component)

3 (Polish component) ::= (Polish code) I

(Polish string),

{(expression) not beginning with x, /,

+, or -} I .<identifier)

1 (subroutine function designator) ::= (subroutine identifier)

3 (subroutine identifier) ::= (identifier)

SEMANTICS.

ESPOL, for the most part, recognizes the same forms of primaries as

are recognized by Extended ALGOL. There are exceptions, of course,

in that expressions are primaries and ESPOL expressions can differ

from expressions in Extended ALGOL. Also, ESPOL has some primaries

which do not exist in Extended ALGOL.

ESPOL primaries which do not have Extended ALGOL counterparts are

described in the following paragraphs.

(OCTAL REPRESENTATION).

(octal representation) may be used as a primary and is recognized to

have an octal value as described in section 6.

7-1

(EXPRESSION»).

The (expression) enclosed within parentheses represents an Arithmetic­

Boolean type expression as described in section 5.

*(PRIMARY).

The * (primary) primary is a special notation which specifies that a

load operation is to be executed after the (primary) (immediately

following the asterisk) has been placed in the top of the stack.

(See appendix B for examples of codes generated for this construct.)

The [(variable)] primary is a special notation which specifies that

the (variable) enclosed within the brackets is to be obtained through

use of a descriptor call operation. (See appendix B for examples of

codes generated for this construct.)

POLISH (POLISH STRING»).

The Polish primary provides the ability to explicitly generate object

code, although no code for branching is allowed. ALGOL-type expres­

sions are allowed in a (Po'lish string) and will generate the same

code as they would as primaries outside of the Polish string. The

identifier P is synonymous with POLISH unless it is declared by

the programmer to have another meaning.

The construct .(identifier) indicates that a literal call is to be

performed which will place in the top of the stack the relative

address of the (identifier)'s location.

The word POLISH itself causes no code to be generated. For example,

A - POLISH; would cause the top word in the stack to be stored in

A's location if the address of A was represented by a relative

address. However, if the address of the (left part) was represented

by a descriptor, then that descriptor would be stored in the location

addressed by the word in the top of the stack.

Other codes may be generated by using the (Polish code)s which are

discussed in section 8.

7-2

SECTION 8

WORD MODE SYLLABLES AND OPERATORS

GENERAL.

Table 8-1 provides a list of Polish codes together with their opera­

tions.

Polish Codes

ADD or +

AND or LND

BRT

CCX or CTC

CDC

CFE xx or FCE xx

CFL xx or FCL xx

CFX or CTF

CRS or CSB

COC

COM

CSB or CRS

CTC or CCX

Table 8-1

Operations Caused by Polish Codes

Operation

Single Precision Add

Logical AND

Logical AND

rB. [33:l5J - rAe [33:l5J

Construct Descriptor Call

Compare Field Equal (xx = no. of bits

to compare)

Compare Field Low (xx = no. of bits

to compare)

rB. [18:l5J - rAe [33:l5J

Change Sign Eit

Construct Operand Call

Communicate

Change Sign Eit

rE. [33:l5J - rAe [33:l5J

8-1

Polish Codes

CTF or CFX

DEL

DIA xx

DIB xx

DIV or IDV

DUP

EQL or =

EQV

FCE xx or CFE xx

FCL xx or CFL xx

FCX or FTC

FFX or FTF

FTC or FCX

FTF or FFX

GEQ or >

GTR or >

HLB or HP2

8-2

Table 8-1 (cont)

Operations Caused by Polish Codes

Operation

rB. [18:15J - rAe [33:15J

Delete

Dial rA (xx = bit to be dialed)

Dial rB (xx = bit to be dialed)

Integer Divide

Duplicate

Test rB = rA

Logical Equivalence

Compare Field Equal (xx = no. of bits

to compare)

Compare Field Low (xx = no. of bits

to compare)

rB. [33:15J rAe [18:15J

rB. [18:15J - rAe [18:15J

rB. [33:15J <E- rA. [18:15J

rB. [18:15J rAe [18:15J

Test rB > rA

Test rB > rA

Halt P2

Polish Codes

HP2 or HLB

IDV or DIV

IIO

INA or IPI

INB or IP2

INI or ITI

INX

IOR

IPI or INA

IP2 or INB

IPS or RRR

ISD

ISN

ITI or INI

LEQ or <

LLL

LND or AND

LNG or NOT

Table 8-1 (cont)

Operations Caused by Polish Codes

Operation

Halt P2

Integer Divide

Initiate I/O

Initiate PI

Initiate P2

Interrogate Interrupt

Index

I/O Release

Initiate PI

Initiate P2

Interrogate Peripheral Status

Integer Store Destructive

Integer Store Non-Destructive

Interrogate Interrupt

Test rB < rA Test

Link List Lookup

Logical AND

Logical NOT

8-3

Polish Codes

LOD

LOR or OR

LSS or <

MOD or RDV

MKS

MUL or X

NEQ or ~

NOP

NOT or LNG

OR or LOR

PRL

RDF

RDS

RDV or MOD

RFB

RNO or RTN

RRR or IPS

RSB or SSP

8-4

Table 8-1 (cont)

Operations Caused by Polish Codes

Operation

Load

Logical OR

Test rB < rA Test

Remainder Divide

Mark Stack

Single Precision Multiply

Test rB ~ rA

No-Op

Logical NOT

Logical OR

Program Release

Read rF (rB. [18:l5J - rF)

Read rS (rB. [33:l5J rS)

Remainder Divide

Reset Flag Bit

Return Normal

Interrogate Peripher~l Status

Reset Sign Bit (positive)

Polish Codes

RSP or RTS

RTM or RTR

RTS or RSP

SFB

SND or STN

SSB or SSN

SSN or SSB

SSP or RSB

STD or +-

STF

STN or SND

STS

SUB or -

TFR xx or TRB xx

TIO

TOP

TRB xx or TFR xx

XCH

Table 8-1 (cont)

Operations Caused by Polish Codes

Operation

Return Special

Read Timer

Return Special

Set Flag Bit

Store Non-Destructive

Set Sign Bit (negative)

Set Sign Bit (negative)

Reset Sign Bit (positive)

Store Destructive

Set rF (rF ~ rB. [18:l5J)

Store Non-Destructive

Set rS (rS +- rB. [33:l5J)

Single Precision Subtract

Transfer Bits (xx = number

Test I/O Channel

Test for Operand

Transfer Bits (xx = number

Exchange

of bits)

of bits)

8-5

Polish Codes

XIT

ZIP or ZPl

ZPl or ZIP

+ or ADD

= or EQL

> or GEQ

> or GTR

< or LEQ

< or LSS

x or MUL

-I or NEQ

~ or STD

- or SUB

Table 8-1 (cont)

Operations Caused by Polish Codes

Operation

Exit

Conditional Halt

Conditional Halt

Single Precision Add

Test rB = rA

Test rB > rA

Test rB > rA

Test rB < rA

Test rB < rA

Single Precision Multiply

Test rB ~ rA

Store Destructive

Single Precision Subtract

Real Divide (Single Precision)

DESCRIPTIONS OF OPERATIONS CAUSED BY POLISH CODES.

The following paragraphs describe the operations listed in table 8-1

which are caused by their corresponding Polish codes.

8-6

ARITHMETIC OPERATORS.

ADD (+) - ADD SINGLE PRECISION. The operands in rA and rB are added

algebraically and the sum is left in rB.

SUB (-) - SUBTRACT SINGLE PRECISION. The operand in rA is algebra­

ically subtracted from the operand in rB and the difference is left

in rB.

MUL (x) - MULTIPY SINGLE PRECISION. The operands in rA and rB are

algebraically multiplied and the result is left in rB.

/ - DIVIDE SINGLE PRECISION. The operand in rB is algebraically

divided by the operand in rA and the quotient is left in rB.

DIV (IDV) - INTEGER DIVIDE. The operand in rB is algebraically

divided by the operand in rA and the integer part of the quotient is

left in rB.

MOD (RDV) - REMAINDER DIVIDE. The operand in rB is algebraically

divided by the operand in rA to develop an integer quotient. The

remainder after the division is left in rB.

LOGICAL OPERATORS.

AND (LND) - LOGICAL AND. Corresponding bits (excluding flag bits)

of the words in rA and rB are compared. If corresponding bits are

both 1, the bit in rA is set to 1. If corresponding bits are not

both 1, the bit in rA is set to O. After all bits are tested, the

flag bit of the word in rB is transferred to the flag bit position

in rA, and. rB is marked. empty.

OR (LOR) - LOGICAL OR. Corresponding bits (excluding flag bits) of

the words in rA and rB are compared. If either of the corresponding

bits is 1, the bit in rA is set to 1. If the corresponding bits are

both 0, the bit in rA is set to O. After all bits are tested, the

flag bit of the word in rB is transferred to the flag bit position

in rA, and rB is marked empty.

EQV - LOGICAL EQUIVALENCE. Corresponding bits (excluding flag bits)

of the words in rA and rB are compared. If corresponding bits are

8-7

both 1 or both 0, the bit in rB is set to 1. If corresponding bits

in rA and rB are different in value, the bit in rB is set to O.

After all bits are tested, rA is marked empty. The flag bit in rB

is left unaltered.

NOT (LNG) - LOGICAL NEGATE. Each bit in rA (excluding the flag bit)

is complemented; that is, all bits equal to 0 are set to 1 and all

bits equal to 1 are set to O. The flag bit is left unaltered.

RELATIONAL OPERATORS.

GTR (» - TEST GREATER THAN. The operand in rB is algebraically

compared with the operand in rAe If the value of the operand in rB

is greater than the value of the operand in rA, bit [47:1J in rB is

set to 1 and all other bits in rB are set to 0. If the value of the

operand in rB is less than or equal to the value of the operand in

rA, all bits in rB are set to 0.

empty.

In either case, rA is marked

GEQ (» - TEST GREATER THAN OR EQUAL. The operand in rB is algebra~

ically compared with the operand in rAe If the value of the operand

in rB is greater than or equal to the value of the operand in rA,

bit [47:1J in rB is set to 1 and all other bits in rB are set to

O. If the value of the operand in rB is less than the value of

the operand in rA, all bits in rB are set to O.

is marked empty.

In either case, rA

EQL (=) - TEST EQUAL. The operand in rB is algebraically compared

with the operand in rAe If the value of the operands in rB and rA

are equal, bit [47:lJ in rB is set to 1 and all other bits in rB are

set to 0; otherwise, all bits in rB are set to O. In either case,

rA is marked empty.

LEQ «) - TEST LESS THAN OR EQUAL. The operand in rB is algebra­

ically compared with the operand in rAe If the value of the "operand

in rB is less than or equal to the value of the operand in rA, bit

[47:1J in rB is set to 1 and all other bits in rB are set to-O. If

the value of the operand in rB is greater than the value of the

operand in rA, all bits in rB are set to O.

marked empty.

8-8

In either case, rA is

LSS «) - TEST LESS THAN. The operand in rA is algebraically compared

with the operand in rB. If the value of the operand in rB is less

than the v'alue of the operand in rA, bit [47:1] in rB is set to 1 and

all other bits in rB are set to O. If the value of the operand in

rB is greater than or equal to the value of the operand in rA, all

bits in rB are set to O. In either case, rA is marked empty.

NEQ (+) - TEST NOT EQUAL. The operand in rB is algebraically com­

pared with the operand in rAe If the value of the operands in rA and

rB are not equal, bit [47:1] in rB is set to 1 and all other bits in

rB are set to 0; otherwise, all bits in rB are set to O.

case, rA is marked empty.

In either

BRANCH OPERATOR.

BRT - BRANCH RETURN. The presence bit of the word in rA is tested.

If the presence bit is 0, the presence bit interrupt is set and the

operation is terminated.

operations are performed.

If the presence bit is 1, the following

a. The S register is set to the v'alue of the field at [18:l5J

in rAe

b. The C register is set to the value of the field at [33:15J

in rAe

c. The L register is set to O.

d. The Mark Stack Control Word addressed by rS is read from

memory.

e. The R register and F register are set to the contents of

their respective fields of the Mark Stack Control Word.

Also, the mark stack flip-flops and program level flip-flop

are set to the value of their respective positions of the

Mark Stack Control Word.

f. The S register is decreased by 1.

g. The registers rA and rB are marked empty.

8-9

STORE OPERATORS.

STD (-) - STORE DESTRUCTIVE. If the flag bit and the presence bit

of the word in rA are both 1, the contents of rB are stored in the

memory cell addressed by the 15 low-order bits of rAe The A and B

registers are marked empty.

If the flag bit of the word in rA is 1 and the presence bit is 0,

the presence bit interrupt is set and the operation is terminated.

If the flag bit of the word in rA is 0, the 10 low-order bits of the

word in rA are used as a relative address, except that no addressing

relative to the C register takes place. If the syllable calls for

addressing relative to the C register, the absolute address is con-

structed relative to the R register instead. The contents of rB are

stored in the memory cell addressed after appropriate indexing of the

relative address. The A and B registers are set to empty.

If the VARF flip-flop is set, the processor is set to subprogram

level after the relative address operation and VARF is reset.

SND (STN) - STORE NON-DESTRUCTIVE. If the flag bit and the presence

bit of the word in rA are both one, the contents of rB are stored in

the memory cell addressed by the 15 low-order bits of rAe The A

register is set to empty.

If the flag bit of the word in rA is 1 and the presence bit is 0, the

presence bit interrupt is set and the operation is terminated.

If the flag bit of the word in rA is 0, the 10 low-order bits of the

word in rA are used as r.elative address, except that no addressing

relative to the C register takes place. If the syllable calls for

addressing relative to the C register, the absolute address is con-

structed relative to the R register instead. The contents of rB are

stored in the memory cell addressed after appropriate indexing of

the relative address. The A register is set to empty.

If the VARF flip-flop is set, the processor is set to subprogram

level after the relative address operation, and VARF is reset.

8-10

ISD - INTEGER STORE DESTRUCTIVE. If the flag bit and the presence

bit of the word in rA are both 1 or if the flag bit of the word in

rA is 0, the word in rB is made an integer.

If an integer overflow occurs, the integer overflow interrupt is set

and the operation is terminated. If integer overflow does not occur,

a store operation is performed.

If the flag bit of the word in rA is 1 and the presence bit is 0, the

presence bit interrupt is set and the operation is terminated.

If the VARF flip-flop is set, the processor is set to subprogram

level after the relative address operation, and VARF is reset.

ISN - INTEGER STORE NON-DESTRUCTIVE. If the flag bit and the pres-

ence bit of the word in rA are both 1 or if the flag bit of the word

in rA is 0, the word in rB is made an integer.

If an integer overflow occurs, the integer overflow interrupt is set

and the operation is terminat~d. If integer overflow does not occur,

a store operation for the Store Non-Destructive operator is performed.

If the flag bit of the word in rA is 1 and the presence bit of the

word in rA is 0, the presence bit is set in the interrupt register,

and the operation is terminated.

If the VARF flip-flop is set, the processor is set to subprogram

level after the relative address operation, and VARF is reset.

BIT OPERATORS.

DIA xx - DIAL A. If the six high-order bits of the operator (i.e.

the bits equal to the binary representation of xx) are not 0, the

three most significant bits of the operator are placed in the G

reglster and the three next most significant bits of the operator

are placed in the H register. If all of the six high-order bits are

zero, no action takes place. If the H register is set to 110 or

Ill, the operation of subsequent operators using this register is

not specified.

8-11

DIB xx - DIAL B. If the six high-order bits of the operator (i.e.

the bits equal to the binary representation of xx) are not 0, the

three most significant bits of the operator are placed in the K

register and the three next most significant bits of the operator

are placed in the V register. If all of the six high-order bits of

the operator are 0, a set variant operator takes place. If the V

register is set to 110 or Ill, the operation of subsequent operators

using this register is not specified.

TRB xx (TFR xx) - TRANSFER BITS. A field in rA, starting at the bit

position addressed by the G and H registers, replaces a correspond­

ing length field in rB, starting at the bit position addressed by

the K and V registers, and proceeding towards the low-order bit

positions.

The length of the field transferred is specified by the six high­

order bits of the operator (i.e., the bits equal to the binary

representation of xx). The transfer of bits is terminated by the

transfer of the specified number of bits or when either the A or B

register has been exhausted.

The contents of the G, H, K, and V registers after the operation are

the same as prior to the operation. The A register is set to empty.

CFE xx (FeE xx) - COMPARE FIELD EQUAL. A field in rA, starting at

the bit position addressed by the G and H registers, is compared with

a corresponding length field in rB, starting at the bit position

addressed by the K and V registers, and proceeding towards the low­

order bit positions.

The length of the fields in the registers is specified by the six

high-order bits of the operator (i.e., the bits equal to the binary

representation of xx). The comparison is terminated by the compari-

son of the number of bits specified or by the comparison of the low­

order bit of either register.

If all of the corresponding bits of the fields compared are equal,

the low-order bit of rA is set to 1 and all other bit positions of

8-12

rA are set to O. If any of the corresponding bit positions of the

fields compared are not equal, all bit positions of rA are set to

O. The contents of the B, G, H, K, and V registers after the opera­

tion are the same as prior to the operation.

CFL xx (FCL xx) - COMPARE FIELD LOW. A field in rA, starting at the

bit position addressed by the G and H registers, is compared with a

field in rB, starting at the bit position addressed by the K and V

registers, and proceeding towards the low-order bit positions.

The length of the fields in the registers is specified by the six

high-order bits of the operator (i.e., the bits equal to the binary

representation of xx). The comparison is terminated by the compari­

son of the number of bits specified or by the comparison of the low­

order bit position of either register.

The magnitude of the field compared in rB is less than the magnitude

of the field compared in rA, the low-order bit of rA is set to 1 and

all other bit positions are set to 0; otherwise, all bit positions

of rA are set to O. The contents of the B, G, H, K, and V registers

after the operation are the same as prior to the operation.

RFB - RESET FLAG BIT. The flag bit of the word in rA is set to O.

SFB - SET FLAG BIT. The flag bit of the word in rA is set to 1.

TOP - TEST FOR OPERAND. If rA is full, a stack push-down occurs.

The flag bit of the word in rB is tested. If the flag bit is 0,

bit [47:lJ in rA is set to 1 and all other bits in rA are set to 0;

otherwise, all bits in rA are set to O. In either case, the word in

rB is left unaltered and rA is marked full.

SSP (RSB) - SET SIGN PLUS. The sign bit of the word in rA is set to

O.

SSN (SSB) - SET SIGN NEGATIVE. The sign bit of the word in rA is

set to 1.

CSB (CHS) - CHANGE SIGN BIT. The sign bit of the word in rA is

complemented.

8-13

CTC (CCK) - C TO C TRANSFER. The field at [33:l5J in rA is trans­

ferred to the field at [33:l5J in rB. The remainder of rB is un­

altered and rA is marked empty.

CTF (CFX) C TO F TRANSFER. The field at [33:l5J in rA is trans­

ferred to the field at [18:l5J in rB. The remainder of rB is un­

altered and rA is marked empty.

FTC (FCX) F TO C TRANSFER. The field at [18:l5J in rA is trans­

ferred to the field at [33:l5J in rB. The remainder of rB is un­

altered and rA is marked empty.

FTF (FFX) - F TO F TRANSFER. The field at [18:l5J of rA is trans­

ferred to the field at [18:15J of rB. The remainder of rB is un­

altered and.rA is marked empty.

SUBROUTINE OPERATORS.

MKS - MARK STACK. The contents, if any, of rA and rB are pushed

into the stack in memory. A Mark Stack Control Word is constructed

and stored in the top of the stack in memory. The F register is set

to the address of the cell in which the Mark Stack Control Word has

been stored. If the mark stack flip-flop is 0 and the processor is

in the subprogram level, the Mark Stack Control Word is also stored

in the cell addressed by the contents of the R register plus seven.

The mark stack flip-flop is set to 1.

XIT - EXIT. Registers A and B are marked empty. The word addressed

by the F register, the Return Control Word, is placed in the B

register.

If the flag bit of the word in rB is 1, the operation is continued.

If the flag bit is 0 and the processor is in the normal state, the

flag bit interrupt is set, and the operator is exited with the Return

Control Word left at the top of the stack. If the flag bit is 0 and

the processor is in the control state, the operator is terminated

but the interrupt is not set.

The C, L, G, H, K, and V registers are set to the contents of their

respective fields of the Return Control Word in the B register. The

8-14

S register is set to the contents of the F register field of the

Return Control Word in the B register.

The word now addressed by the S register, the Mark Stack Control

Word, is read from memory into the B register. The Rand F registers

are set to the contents of their respective fields of the Mark Stack

Control Word. The mark stack flip-flop and the program level flip­

flop are set to the contents of their respective positions of the

Mark Stack Control Word. The S register is decreased by 1 and the

A and B registers are set to empty.

The mark stack bit of the word in rB is examined. If this bit is 0,

the operation is completed. If the mark stack bit is 1, the program

level bit is examined. If the program level bit is 0, indicating

program level, the operation is completed.

If the program level bit is 1, indicating subprogram level, the word

addressed by the F register field of the Mark Stack Control Word, the

previous Mark Stack Control Word, is placed in rB. The mark stack

bit is examined. If the mark stack bit is 1, the process of reading

the previous Mark Stack Control Word and examining its mark stack

bit is repeated until a Mark Stack Control Word with the mark stack

bit set to 0 is placed in rB. The contents of rB is stored in the

cell addressed by the contents of the R register plus seven. The

operation is completed.

RTN (RNO) - RETURN NORMAL. If rA is empty, a word is placed in the

A register by stack adjustment and the A register is set to full.

If both rA and rB are full, the B register is set to empty.

If the flag bit of the word in rA is 1 and the presence bit 0, the

presence bit interrupt is set and the operation is immediately term­

inated.

The word addressed by the F register, the Return Control Word, is

placed in the B register.

If the flag bit of the word in rB is 1, the operation is continued.

If the flag bit is 0 and the processor is in the normal state, the

8-15

flag bit interrupt is set and the operator is exited, with rA and rB

marked full. If the flag bit is 0 and the processor is in the con­

trol state, the operator is terminated but the interrupt is not set.

The C, L, G, H, K, and V registers are set to the contents of their

respective fields of the Return Control Word in rB. The S register

is set to the contents of the F register field of the Return Control

Words in rB.

The word addressed by the S register, the Mark Stack Control Word,

is read from memory. The Rand F registers are set to the contents

of their respective fields of the Mark Stack Control Word. The mark

stack control flip-flop and the program level flip-flop are set to

the word. The S register is decreased by 1.

The mark stack bit of the word in rB is examined.

the operation is completed.

If this bit is 0,

If the mark stack bit is 1, the program level bit is examined. If

the program level bit is 0, indicating program level, the operation

is completed.

If the program level bit is 1, indicating subprogram level, the word

addressed by the F register field of the Mark Stack Control Word,

the previous Mark Stack Control Word~ is placed in rB. The contents

of rB are stored in the cell addressed by the contents of the R

register plus seven. The operation is compl,eted.

The subsequent action of the return operation is similar to that of

the operand or description call syllable. If the syllable indication

in the Return Control Word indicates an operand call syllable, the

subsequent action is as for an operand call. If the syllable indica­

tion in the Return Control Word indicates a descriptor call syllable,

the subsequent action performed is as for a descriptor call.

RTS (RSP) - RETURN SPECIAL. If rA is empty, a word is placed in rA

by stack adjustment and rA is set to full. If both rA and rB are

full, rB is set to empty. If the flag bit of the word in rA is I and

8-16

the presence bit is 0, the presence bit interrupt is set and the

operation is immediately terminated.

The word addressed by the S register, the Return Control Word, is

placed in rB.

If the flag bit of the word in rB is 1, the operation is continued.

If the flag bit is 0 and the processor is in the normal state, the

flag bit interrupt is set and the operator exited, with rA and rB

marked full. If the flag bit is 0 and the processor is in the con­

trol state, the operator is terminated but the interrupt is not set.

The C, L, G, H, K, and V registers are set to the contents of their

respective fields of the Return Control Word in the B register. The

S register is set to the contents of the F register field of the

Return Control Word in rB.

The word addressed by the S register, the Mark Stack Control Word,

is read from memory. The Rand F registers are set to the contents

of their respective fields of the Mark Stack Control Word. The mark

stack flip-flop and the program level flip-flop are set to the con­

tents of their respectiv'e positions of the Mark Stack Control Word.

The S register is decreased by 1.

The mark stack bit of the word in rB is examined. If this bit is

0, the operation is completed. If the mark stack bit is 1, the

program level bit is examined. If the program level bit is 0, in­

dicating program level, the operation is completed.

If the program level bit is 1, indicating subprogram level, the word

addressed by the F register field of the Mark Stack Control Word, the

previous Mark Stack Control Word, is placed in rB. The mark stack

bit is examined. If the mark stack bit is 1, the process of reading

the previous Mark Stack Control Word with the mark stack bit set to

o is placed in rB. The contents of rB are stored in the cell ad-

dressed by the contents of the R register plus seven.

is completed.

The operation

8-17

The subsequent action of the return operation is similar to that of

the operand or descriptor call syllable. If the syllable indication

in the Return Control Word indicates an operand call syllable, the

subsequent action performed is as for an operand call. If the syl­

lable indicator in the Return Control Word indicates a descriptor

call syllable, the subsequent action performed is as for a descriptor

call.

STACK OPERATORS.

XCH - EXCHANGE. The contents of rA and rB are exchanged one for the

other.

DUP - DUPLICATE. Stack adjustment occurs, if necessary, so that one

register (rA or rB) is full and the other is empty. Then the con­

tents of the full register are copied in the empty register and

both registers are left marked full.

DEL - DELETE. The top word in the stack is deleted in one of the

following ways, depending upon existing conditions.

a. If rA is full, it is marked empty.

b. If rA is empty and rB is full, rB is marked empty.

c. If rA and rB are both empty, rS is decremented by 1.

MISCELLANEOUS OPERATORS.

LOD - LOAD. If the flag bit and the presence bit of the word in rA

are both 1, the word in rA is replaced by the contents of the cell

addressed by the 15 low-order bits of rAe

If the flag bit of the word in rA is 0, the 10.10w-order bits of the

word in rA are used as a relative address. The contents of rA are

replaced by the contents of the memory cell addressed after appropri­

ate indexing of the relative address.

If the flag bit of the word in rA is 1 and the presence bit is 0,

the presence bit interrupt is set and the opera~ion is terminated.

If the VARF flip-flop is set, the processor is set to subprogram

level after the relative address operation, and VARF is reset.

8-18

INX - INDEX. The 15 low-order bits of the word in rB are arith-

metically added to the 15 low-order bits of the word in rAe The

remainder of the word in rA is left unchanged, overflow is lost, and

the B register is marked empty.

COC - CONSTRUCT OPERAND CALL. The contents of rA and rB are ex-

changed one for the other. The flag bit of the word in rA is set

to 1. The subsequent action of this operator is identical to that

of an operand call syllable after the operand call syllable has

caused a word to be read from memory.

CDC - CONSTRUCT DESCRIPTOR CALL. The contents of rA and rB are ex-

changed one for the other. The flag bit of the word in rA is set

to 1. The subsequent action of this operator is identical to that

of a descriptor call syllable after the descriptor call syllable has

caused a word to be read from memory.

COM - COMMUNICATE. The word at the top of the stack is stored in

the cell addressed by the contents of rR plus nine. The word is

deleted from the stack and the communicate interrupt is set.

The operator is a no-op in the control state.

PRL - PROGRAM RELEASE. If the flag bit and the presence bit of the

word in rA are both 1, the contents of the cell addressed by the 15

low-order bits of the word in rA are placed in rAe If the processor

is in the control state, the presence bit of the word obtained from

memory is set to 0, and the word is stored back into the cell from

which it was obtained.

If the flag bit of the word in rA is 0, the 10 low-order bits of

the word in rA are used as a relative, except that no addressing

re~lative to the C register takes place. If the syllable calls for

addressing relative to the C register, the absolute address is con-

structed relative to the R register instead. The contents of the

cell addressed after appropriate indexing of the relative address

are placed in rAe If the processor is in the control state, the

presence bit of the word obtained from memory is set to 0 and the

word is stored back into the cell from which it was obtained.

8-19

If the processor is in normal state, the continuity bit of the word

obtained from memory is inspected. If the continuity bit is 1, the

continuity bit interrupt is set. If the continuity bit is 0, the

program release interrupt is set and the A register is set to empty.

If the processor is in normal state, the address just used is stored

in the cell addressed by the contents of rR plus nine. The address

is stored in the 15 low-order bits of the word and all other

bits are set to O.

ZPI - CONDITIONAL HALT.

If the OPERATOR switch on the maintenance panel is in the STOP posi­

tion, the processor is halted by stopping the processor clock;

otherwise, this operator is a no-oPe

STF - SET F. The A register is set to the STF code. Then rF is set

to the value of the field at [18:15J of rB, and rA and rB are marked

empty. The processor is set to subprogram level if it is not al­

ready so set.

STS - SET S. The A register is set to the STS code. Then rS is set

to the value of the field at [33:15J of rB, and rA and rB are marked

empty.

RDF - READ F. The A register is set to the RDF code. Then the field

at [18:l5J of the rB is set to the value of rF, and rA is marked

empty.

RDS - READ S. The A register is set to the RDS code. Then the field

at [33:15J of rB is set to the v'alue of rS, and rA is marked empty.

i
LLL - LINK LIST LOOKUP. This operator causes a scan of a linked list

of indefinite length and tests a field in each link word against a

corresponding test field in rAe

When the LLL operator is executed, the following conditions are re­

quired for rA and rB.

8-20

The word

The word

in rA

Field

[0:9J
[9:24J

[33: 1 5J

in rB

Field

[0:33J
[33:15J

must

must

have the following format.

Function Contents

None Irrelevant

Test Field Test Value

None Zeros

have the following format.

Function Contents

None Irrelevant

Initial Link Address Core Address

The complete test field, or any portion of the more significant end

of the test field, in rA can be used. Bits on the less significant

end are effectively eliminated from the test field by setting them

to 0 in the test word in the top of the stack.

The word addressed by the initial link address is read from memory

into rB. The test field of the word in rB is compared with the

field in the corresponding position in rAe

If the field in rB is greater than or equal to the field in rA, the

address that was used to access the link is placed in rA as a present

Data Descriptor, with the remainder of the word set to O.

word is left in rB and the operator is exited.

The list

If the field in rB is less than the field in rA, the link address in

rB is used to access the next word from memory. The process continues

indefinitely until a link word meeting the test condition is found.

RRR (IPS) - READ READY REGISTER. This operator places in the top

of the stack a word representing the current Ready status of the

peripheral equipment. One bit in the word is associated with each

peripheral unit. This bit is set to 1 if the associated unit is

Ready, or to 0 if the associated unit is Not Ready.

8-21

The stack is adjusted so that rA is empty. Then the low-order bits

of rA are set to reflect the current s-tatus of the peripheral units,

and the remaining bits are set to O. Finally, rA is marked full and

the operation is terminated.

Magnetic tape transport units are indicated as READY only when the

tape is stationary and they are otherwise ready. They are indicated

as NOT READY if the tape is still indexing to a stop following an

operation.

Table 8-2 shows the association between the bits in rA, numbered from

from right to left, and the peripheral units.

Table 8-2

Association Between A-Register Bits and Peripheral Units

A-Register Unit Peripheral Unit
Bit Position Des.

1 1 (MTA) Magnetic Tape

2 3 (MTB) Magnetic Tape

3 5 (MTC) Magnetic Tape

4 7 (MTD) Magnetic Tape

5 9 (MTE) Magnetic Tape

6 11 (MTF) Magnetic Tape

7 13 (MTH) Magnetic Tape

8 15 (MTJ) Magnetic Tape

9 17 (MTK) Magnetic Tape

10 19 (MTL) Magnetic Tape

11 21 (MTM) Magneti¢ Tape

12 23 (MTN) Magnetic Tape

13 25 (MTP) Magnetic Tape

14 27 (MTR) Magnetic Tape

15 29 (MTS) Magnetic Tape

16 31 (MTT) Magnetic Tape

8-22

Table 8-2 (cont)

Association Between A-Register and Peripheral Units

A-Register Unit
Peripheral Unit

Bit Position Des.

17 4 (DRA) Drum 1

18 8 (DRB) Drum 2

19 6 (DKA) Disk File Control 1

20 12 (DKB) Disk File Control 2

21 22 (LPA) Printer 1

22 26 (LPB) Printer 2

23 10 (CPA) Card Punch

24 10 (CRA) Card Reader 1

25 14 (eRB) Card Reader 2

26 30 (SPo) SPO-Keyboard

27 18 (PPA) Paper Tape Punch 1

28 18 (PRA) Paper Tape Reader 1

29 20 (PRB) Paper Tape Reader 2

30 20 (PPB) Paper Tape Punch 2

31 16 (DCA) Data Communication Control

TIO - TEST I/O. This operator interrogates the I/O channels to de­

termine which channel is currently in-line to be assigned next, that

is, which is the lowest-numbered currently available input/output

control unit. If necessary, pushdown occurs and a literal is placed

in rAe The literal indicates the next assigned channel in the

following way.

Literal

o
1

2

3

4

All channels

Channel I is

Channel 2 is

Channel 3 is

Channel 4 is

Channel

are busy.

due for assignment.

due for assignment.

due for assignment.

due for assignment.

8-23

CONTROL STATE OPERATORS.

INI (ITI) - INTERROGATE INTERRUPT. If any interrupt bit is set, the

C register is loaded with the 6-bit address which corresponds to the

highest priority interrupt bit that is set. The interrupt bit

creating this address is reset.

S register is set to 64.

The L register is cleared and the

If no interrupt bit is set, control continues in sequence.

IOR - I/O RELEASE. When this operator is executed, rA is assumed to

contain a descriptor or a relative address. If a relative address

is used, addressing is performed. If a descriptor with a 0 presence

bit is used, the syllable exited without performing its described

operation and the presence bit interrupt is not set.

Execution of the operator causes the word addressed by rA to be

placed in rAe Then the presence bit of the word is set to 0 and

returned to the cell from which it was obtained.

marked empty.

Register A is

IIO - INITIATE I/O. The word in rA is stored in location 8 and rA

is set to empty. An initiate I/O signal is sent to central control

for selection of an I/O channel. The processor procee~s to the next

syllable.

IPI (INA) - INITIATE Pl. When this operator is executed, an initiate

control word is required in rAe Execution of the operator causes rS

to be set to the 15 low-order bits in rAe Bit [32:1J is transferred

to the mode flip-flop. Then the word addressed by rS is read and

remaining registers are restored using the information in the in­

terrupt words.

IP2 (INB) - INITIATE P2. The initiate control word in rA is stored

in memory location 8 and rA is set to empty. An initiate P2 signal

is sent to the central control unit and processor 1 proceeds to the

next syllable.

8-24

The central control unit sends a control signal to processor 2.

Under control of this signal, the initiate control word is trans-

ferred from memory location 8 to rA in processor 2.

then performs the initiate operations.

Processor 2

If processor 2 is not idle or not available, the P2 busy interrupt

is set.

HP2 (HLB) - HALT P2. This operator causes processor 2 to store its

registers just as if a P2 interrupt had occurred. If processor 2 is

busy, the halt operator in processor I is held up. The operator in

processor I is completed after all appropriate processor 2 registers

are stored for interrupt. Processor 2 is left idle.

If processor 2 is not ready or is absent, the halt P2 operation is

immediately terminated.

RTM (RTR) - READ TIMER. The 6-bit timer setting, together with the

time internal interrupt setting as the 7th (most significant) bit,

is placed in rA as an integer.

8-25

GENERAL.

SECTION 9

LABELS

ESPOL requires, as does Extended ALGOL, that labels be declared in a

label declaration, with exception of labels used in in-line character

mode statements. In ESPOL, however, labels have applications which

are not provided, nor needed, in Extended ALGOL. Depending upon the

application intended, ESPOL labels may appear in one of the following

five forms.

a. (label) : (statement)

b. (label) · . (statement) · .
c. (label) (number) . (statement) .
d. (label) * . (statement) .
e. (label) · .. (value list) · ..

For general use in labeling statements throughout a program, forms a

and b are used; forms c, d, and e have special functions. All labels,

except those appearing as in form e, can be referenced for the

purpose of transferring control.

Form a, the single colon label, is used only when it is not necessary

that a label reference the beginning of a word; this is the case only

when the labeled statement will receive control through means of a

syllable branch. (Syllable branches may span up to 1023 syllables.)

Form b, the double colon label, is used when it is necessary that a

label reference the beginning of a word; this is the case when the

labeled statement may receive control through means other than a

syllable branch. When neces~ary, no-ops are generated in the code

string at compile time to adjust so that a double colon label will

reference the beginning of a word.

Form c, the address label, is used when it is necessary that a label

reference a specified word address within a program segment. The

(number), between the colons in this form of label, specifies the

relative address within a segment which the label references. The

9-1

(number) in any given address label may never specify an address

less than that specified in a previous address label in the same

segment. This label form was implemented primarily for the purpose

of labeling B 5500 interrupt locations; in the outer block of a

program, the (number) between the colons specifies an absolute core

address.

Form d, the asterisk label, is required by the ESPOL Compiler to

specify the first executable statement in a program, following the

code for interrupt locations.

Form e, the triple colon label, is in no way intended to be used for

the purpose of transferring control. This form of the label was

implemented to provide a facility for C-relative constants (i.e.,

constants that appear in a code segment and are referenced relative

to rC). A triple colon label may be used only as an (expression)

in a (Polish string); when so used, it will cause reference to the

location marked by the label. It is the responsibility of the

programmer to ensure that the area in a code segment occupied by

constants is not entered for execution.

9-2

SECTION 10

IN-LINE CHARACTER MODE STATEMENT

SYNTAX.

The syntax for (in-line character mode statement) is as follows:

3 (in-line character mode statement) ::= (stream parameter

statement) BEGIN

(stream statement) END

1 (stream parameter statement) ::= STREAM (stream statement

parameter list»)

3 (stream statement parameter list) .. - (-MKS parameters):

(+MKS parameters)

(-MKS parameters)

(+MKS parameters)

1 (-MKS parameters) ::= (stream parameter list)

3 (+MKS parameters) ::= (stream parameter list)

1 (stream parameter list) .. - (stream parameter expression) .. -
(stream parameter list),

(stream parameter expression)

1 (stream parameter expression) ::= (parameter identifier)­

(expression)

(parameter identifier)

3 (parameter identifier) ::= (identifier)

1 (stream statement) ::= (unlabeled stream statement) I
(label) (unlabeled stream statement)

SEMANTICS.
"-The in-line character mode statement provides a means for entering

character mode operation without the use of a stream procedure.

The (stream statement) used in an in-line character mode statement is

defined as in Extended ALGOL. The (stream par~meter statement)

requires explanation.

10-1

The stream parameter statement causes the stack to be set up as in-

dicated in the stream parameter list. The colon represents the Mark

stack Control Word. If no colon is present, a colon is assumed to

be at the extreme left.

Each (parameter identifier) in a (stream parameter list) of a stream

parameter statement represents a stack location which can be refer­

enced through use of that parameter identifier; every variable in

the following stream statement must appear as a (parameter identifier)

in the stream parameter list.

The contents of a given stack location is initially determined by

the (stream parameter expression).

When a stream parameter expression appears as (parameter identifier) -

(expression), the value in the stack location represented by the

parameter identifier is the value of the expression. It is permis-

sible for the (parameter identifier) in such an expression to be

identical to an identifier used outside of the in-line character

mode area; no relationship is assumed. Identifiers, if any, in the

(expression) part of a (stream parameter list) must, of course, have

meaning outside of the in-line character mode area.

No declarations are required or allowed in an in-line character mode

statement. Labels may be used and are considered declared by default.

An example of an in-line character mode statement is as follows:

10-2

STREAM (PI - [A], P2 - B, G);

BEGIN

SI - LOC P2;

SI - SI + 7 ;
IF SC = "1ft THEN GO TO

SI - LOC G;

SI +- SI + 7;
SKIP 2 SB;

FINI;

FINI:

END;

DI - PI;

DI - DI + 5;
IF SB THE:N BEGIN

DI - DI + 1;

DS - 2 LIT ftON";

END

ELSE DS - 3 LIT "OFF";

10-3

GENERAL.

SECTION 11

PROCEDURES

Procedure declarations in ESPOL are essentially the same as procedure

declarations in Extended ALGOL.

ciple difference.

There are, however, areas of prin-

a. The (procedure body) of an ESPOL procedure must be a com­

pound statement or a block.

b. The (procedure body) of an ESPOL procedure cannot contain

procedure declarations other than stream procedure declara­

tions.

c. A program segment is generated for every procedure declara­

tion even though it may not contain declarations.

d. ESPOL has SAVE procedures and non-save procedures.

e. ESPOL requires that the specifications part of a procedure

declaration contains only:

1) (type)· (identifier list).

2) NAME (identifier list).

3) (array specification).

PROCEDURE PARAMETERS.

In ESPOL, as in Extended ALGOL, procedure parameters may be call-by-

value or call-by-name. When a procedure parameter is a call-by-

value parameter, the actual parameter in the procedure statement may

be any expression. When a procedure parameter is a call-by-name

parameter, the actual parameter in the procedure statement must be

pro~ided according to the following rules.

a. If a formal parameter is specified to be REAL, BOOLEAN,

ALPHA, or INTEGER, then its corresponding actual parameter

may be any expression {e.g., a (primary»).

11-1

b. If a formal parameter is specified to be an array, then

its actual parameter may be an array identifier, an array

row, or a POLISH primary (i.e., a construct of the form

POLISH (Polish string»).

c. If a formal parameter is specified NAME, then its corres­

ponding actual parameter may be a (variable) or a POLISH

primary.

SAVE PROCEDURES VERSUS NON-SAVE PROCEDURES.

A SAVE procedure is declared if a (procedure declaration) is preceded

by the word SAVE. If the word SAVE does not precede a (procedure

declaration), the procedure is a non-save procedure.

When a SAVE procedure is declared, ESPOL assigns an absolute area in

core for the procedure and generates an appropriate procedure de­

scriptor for the PRT area.

When a non-save procedure is declared, no absolute area in core is

reserved; however, a procedure descriptor is provided. The procedure

descriptor for a non-save procedure has the following special charac­

teristics:

a. The address field at [33:l5J contains the core address of

the area which was reserved for the first SAVE segment de­

clared in the program (i.e., the address of the first SAVE

procedure or SAVE array declared).

b. The field at [18:l5J contains the disk address of the disk

area reserved for the procedure.*

* The disk addresses placed in procedure descriptors are relative
to a zero base. This is done under the assumption that during
execution, the program will be residing on the first module of
disk, starting at address zero.

11-2

It is assumed that the first SAVE segment in an ESPOL Program will

be a SAVE procedure designed to bring ov'erlayable segments into core

from disk, if such action is required. For further explanation,

see the section covering the ESPBIT procedure in A Narrative Descrip­

tion of the Burroughs B 5500 Disk File Master Control Program.

11-3

GENERAL.

SECTION 12

SUBROUTINES

The subroutine facility provides a means whereby a specified code

stream can be entered, and returned from, through use of branching

operations. The code stream utilized, i.e., the subroutine, is

defined in a subroutine declaration. Subroutine entrance is caused

due to the occurrence of a subroutine call statement or a subroutine

function designator.

SUBROUTINE DECLARATION.

SYNTAX.

The syntax for (subroutine declaration) is as follows:

1 (subroutine declaration) ::= SUBROUTINE

(subroutine identification)

(subroutine body) I REAL SUBROUTINE

(subroutine identifier)

(subroutine body) I
BOOLEAN SUBROUTINE

(subroutine identifier)

(subroutine body)

3 (subroutine identifier) ::= (identifier)

3 (subroutine body) ::= (statement)

SEMANTICS.

A subroutine declaration associates a subroutine identifier with a

program statement which is to be performed whenever the subroutine

identifier appears as such in the program. If a subroutine is not

declared REAL or BOOLEAN, then the subroutine identifier must sub-

sequently appear only as a (subroutine call statement). If a sub-

routine is declared REAL or BOOLEAN, then the following requirements

exist:

12-1

a. The last statement in the subroutine body must be an assign­

ment statement with the (subroutine identifier) as the

(left part).

b. The subroutine identifier must subsequently appear only as

a (subroutine function designator).

It should be noted that when control is transferred to the body of

a subroutine, an operand is placed in the stack for use when branch-

ing back after completion of the subroutine. Consequently, if a

subroutine is exited by a means other than "falling out" in the

normal fashion (e.g., if exit were gained through use of a GO TO

statement), then the branching operand must be explicitly deleted

from the stack.

SUBROUTINE CALL STATEMENT AND SUBROUTINE FUNCTION DESIGNATOR.

SYNTAX.

The syntax from (subroutine call statement) is as follows:

(subroutine call statement) ::= (subroutine identifier)

(subroutine function designator) ::= (subroutine identifier)

SEMANTICS.

The subroutine call statement and the subroutine function designator

are used to establish conditions necessary for branching to and from

code defined by subroutine declarations.

SUBROUTINE CALL STATEMENT.

The subroutine call statement is used when calling a subroutine which

was not declared REAL or BOOLEAN. The subroutine call statement is

used with a SUBROUTINE like a procedure statement is used with a

procedure which was not declared with a (type).

12-2

SUBROUTINE FUNCTION DESIGNATOR.

The subroutine function designator is used when calling a subroutine

which was declared REAL or BOOLEAN. The subroutine function designa­

tor is a form of (primary) and has the value assigned to the sub­

routine identifier by the last statement in the subroutine body.

The subroutine function designator is used with subroutines as a

function designator is used with a procedure declaration with a

type.

12-3

GENERAL.

SECTION 13

SWITCH DESIGNATORS

Switches in ESPOL are declared in the same fashion as in Extended

ALGOL. The first valid value for a switch designator in ESPOL is

zero. It should be noted, however, that ESPOL allows any particular

switch declaration to be referenced by a maximum of one switch des­

ignator.

13-1

SYNTAX.

SECTION 14

DESIGNATIONAL EXPRESSIONS

The syntax for (designational expression) is as follows:

2 (designational expression) ::= (simple designational expression)

2 (simple designational expression) ::= (label) I
(switch designator)

«designational

expression») I
POLISH «Polish string»)

1 (switch designator) ::= (switch identifier)

[(subscript expression)]

1 (switch identifier) ::= (identifier)

2 (label) ::= (identifier)

SEMANTICS.

ESPOL designational expressions differ from Extended ALGOL designa­

tional expressions in two ways.

a. ESPOL allows only simple designational expressions.

b. ESPOL allows a Polish primary as a designational expression.

The simple designational expressions which are common to both

Compilers are used in ESPOL and Extended ALGOL in the same fashion.

The Polish primary as a designational expression requires explana­

tion.

When a statement of the form GO TO POLISH «Polish string») occurs in

a program, the Polish primary is evaluated and a "syllable branch

forward unconditional tt operator is executed. Consequently, the

expression POLISH «Polish string») should place in the top of the

stack a word to be used by the syllable branch operator <i.e., a

literal for an rC relative branch or a descriptor for an absolute

branch) .

14-1

GENERAL.

SECTION 15

ESPOL INTRINSICS

The intrinsics which are provided in ESPOL are listed below, with

appropriate definitions. Given that XP is an expression, the in-

trinsics are defined as follows:

a. ABS (XP) - produces the absolute value of XP.

b. NABS (XP) - produces negative the absolute value of XP.

c. FLAG (XP) - produces the value of XP with the flag bit set

to 1.

d. NFLAG (XP) - produces the value of XP with the flag bit

set to O.

e. SIGN (XP) - produces one of three integerized values depend­

ing upon the value of XP (+1 for XP > 0, 0 for XP = 0, -1

for XP < 0).

f. HUNT (XP) - causes a flag bit search starting at the abso­

lute address specified by the 15 low-order bits of XP

and continuing, if necessary, to consecutively higher

addressed locations. The final result is a word with the

absolute address in the low-order 15 bits of the first

location which contained a value with a flag bit of 1; the

high-order three bits of the result are set to 101.

15-1

APPENDIX A

ESPOL STATEMENT EXAMPLES

Shown below are examples of ESPOL statements together with the code

generated by them.

For all examples, the following declarations are assumed to have

preceded.

REAL R;

INTEGER I;

NAME N;

ARRAY NAME AN;

ARRAY RA [* J ;

INTEGER ARRAY IA [lOJ;

ESPOL Statement

R - I;

I - R;

RA - IA;

IA - RA;

PART A

Code Generated

OPDC I

LITC R

STD

OPDC R

LITC I

ISD

LITC IA

LaD

LITC RA

STD

LITC RA

LOD

LITC LA

STD

A-I

ESPOL Statement

N - RA;

RA - N;

IA - AN;

ESPOL Statement

R - RA [I];

R - AN [IJ;

R - RA [OJ;

R - AN [0 J ;

A-2

PART B

Code Generated

LITC RA

LOD

LITC N

STD

DESC N

LITC RA

STD

DESC AN

LITC IA

STD

Code Generated

OPDC I

OPDC RA

LITC R

STD

OPDC I

DESC AN

INX

LOD

LITC R

STD

//

LITC 0

OPDC RA

LITC R

STD

OPDC AN

LITe R

STD

ESPOL Statement Code Generated

RA [I] ~ R; OPDC I

DESC RA

OPDC R

XCH

STD

AN [I] ~ R; OPDC I

DESC AN

INX

OPDC R

XCH

STD

A-J

APPENDIX B

REFERENCE FOR EXAMPLES OF CODE GENERATED BY ESPOL

Shown below are examples showing the majority of ESPOL constructs,

together with the code generated for them.

For all examples, the following declarations are assumed to have

preceded.

REAL R;

INTEGER I;

NAME N;

ARRA Y NAME AN;

ARRAY RA [* J ;

INTEGER ARRAY IA [lOJ;

DEFINE P = POLISH #;

ESPOL Statement

R - I;

I - R;

R - N;

R - AN;

R - P;

Code Generated

OPDC I

LITC R

STD

OPDC R

LITC I

ISD

DESC AN

LITC R

STD

DESC AN

LITC R

STD

LITC R

STD

B-1

ESPOL Statement Code Generated

R ~ I; DESC R

OPDC I If R is call

XCH by name in a

STD PROCEDURE

R - P; DESC R} If R is call

XCH by name in a

STD PROCEDURE

R ~ RA [0] ; LITC 0

OPDC RA

LITC R

STD

R +-- RA [I] ; OPDC I

OPDC RA

LITC R

STD

R +-- AN [0]; OPDC AN

LITC R

STD

R - AN [I]; OPDC I

DESC AN

INX

LOD

LITC R

STD

R +-- * I; OPDC I

LOD

LITC R

STD

B-2

ESPOL Statement Code Generated

R- * N; DESC N

LOD

LITC R

STD

R - * RA; LITC RA

LOD

LOD

LITC R

STD

R - * AN [0 J ; OPDC AN

LOD

LITC R

STD

R - * AN [IJ; OPDC I

DESC AN

INX

LOD

LOD

LITC R

STD

R - * RA [OJ; LITC 0

OPDC RA

LOD

LITC R

STD

R - * RA [IJ; OPDC I

OPDC RA

LOD

LITC R

STD

B-3

ESPOL Statement Code Generated

R- [Il ; DESC I

LITe R

STD

R - [N]; DESC N

LITe R

STD

R - [AN]; DESC AN

LITe R

STD

R- [RA]; LITC RA

LOD

LITe R

STD

R ~ [AN[O]]; DESC AN

LITC R

STD

R ~ [AN[I]]; OPDC I

DESC AN

INX

LITC R

STD

R +- [RA[OJ] ; LITe 0

DESC RA

LITC R

STD

R - [RA[I]]; OPDC I

DESC RA

LITe R

STD

B-4

ESPOL Statement Code Generated

R .0- * [I] ; DESC I

LOD

LITC R

STD

R .0- * [N J ; DESC N

LOD

LITC R

STD

R .0- * [AN]; DESC AN

LOD

LITC R

STD

R +- * [RA] ; LITC RA

LOD

LOD

LITC R

STD

R +- * [AN [0]] ; DESC AN

. LOD

LITC R

STD

R .0- * [AN [I]] ; OPDC I

DESC AN

INX

LOD

LITC R

STD

R - * [RA[O]]; LITC 0

DESC RA

LOD

LITC R

STD
B-5

ESPOL Statement Code Generated

R- * [RA[O]] ; LITC 0

DESC RA

LOD

LITC R

STD

R - * [RA[I]]; OPDC I

DESC RA

LOD

LITC R

STD

B-6

APPENDIX C

CHARACTERISTICS OF PROGRAMS GENERATED BY ESPOL

The information in programs generated by the ESPOL Compiler can be

considered to fall into two categories: save information and non-

save information. The save information includes, in addition to

SAVE arrays and SAVE procedures, the code for interrupt locations,

the stack, and the PRT. The non-save information includes non-save

procedures.

FORMAT OF INFORMATION ON DISK.

When the program generated by the ESPOL Compiler is written on disk,

it is written on a file on the user disk which has the (file

identification prefix) MCPbbbb and the (file identification) DISKbbb.

FORMAT OF SAVE INFORMATION. The appearance of the save information

in the file MCP/DISK is a word for word image of the save informa-

tion as it is required in core. That is, the save information starts

in the first word of the file (i. e. , word loca t ion zero of the file)

and continues through consecutively higher addressed words as far as

required. Specifically, the information is located in the following

manner.

The code for interrupt locations is contained in the file at the

locations which correspond with the interrupt location addresses.

The PRT information starts at word location 200.

The outer block code starts immediately following the PRT information.

It should be noted that, since branch operations may be performed to

transfer control from interrupt locations to the outer block, the

distance from interrupt locations to the outer block should not

exceed 1023 words.

The SAVE procedure and SAVE array information starts immediately

following the outer block code. Within the area containing the SAVE

arrays and SAVE procedures, the arrays and procedures occur in the

order in which they occurred in the source language program.

C-l

FORMAT OF NON-SAVE INFORMATION. The non-save procedures follow the

save information. Each non-save procedure starts at the beginning

of a disk segment. The first disk segment in the file MCP/DISK is

considered to be at disk address zero. Using this base, the disk

segment address at which any non-save procedure starts is the

address specified at [18:15J in the procedure's descriptor in the

PRT.

FORMAT OF PROGRAMS ON CARDS.

When the program generated by ESPOL is punched on cards, the cards

are punched in alpha mode (i.e., the cards are not binary cards) and

they have the following format:

Columns

1-3

4-8

9-72

73

74-75

76-80

C-2

Field Content

For save information: zero s.

For non-save information: the digits

following DECK on the $ card.

Zeros.

One to eight words of code, in alpha­

numeric code.

Zero.

Number of words of code in this card,

in octal.

For save information: starting core

address of first word of code on this

card is increased by 96.

For non-save information: starting

address of first word of code on this

card; the address of the first word

of each non-save segment is set to

zero.

FORMAT OF SAVE INFORMATION. Save information appears in the first

cards of the card output file; each card is formatted as shown above.

The address field in columns 76 through 80 contains a value 96

greater than the actual address of the first word of code on the

card; the machine language one-card ESPOL DECK LOADER which loads an

ESPOL generated deck requires the address be increased by 96.

The code address specified in columns 76 through 80, decreased by

96, is the address of the core locations in which the code is to be

placed for execution. The appearance of the save information on

cards, according to its specified addresses, is a word-for-word

image of the save information as it is required in core. The

required format of save information in core is as described above

under FORMAT OF INFORMATION ON DISK.

TRANSFER CARD. Immediately following the cards containing save in­

formation is a transfer card. This card is used by the ESPOL DECK

LOADER. The transfer card provides the final "boot strap" that

transfers control to the save information after it has been read

into core.

C-J

APPENDIX D

OPERATING CHARACTERISTICS OF THE ESPOL COMPILER

INITIATING THE ESPOL COMPILER.

The ESPOL Compiler is initiated through use of an EXECUTE card

containing ? EXECUTE ESPOL/DISK.

$ CARD FOR ESPOL.

ESPOL has two types of $ cards: (1) a $ card which specifies I/O

options, such as is used with the Extended ALGOL Compiler and (2)

a $ VOID card.

The format of I/O option $ cards for ESPOL is the same as that for

$ cards in Extended ALGOL. That is, a $ must appear in column 1

followed either by the word CARD or the word TAPE. The remainder of

the card may contain any of the following option words, in a free

field format:

LIST

PRT

NEW TAPE

DECK (digit) (digit)

DEBUGN

STUFF

INTRINSIC

The words CARD and TAPE are used with the ESPOL Compiler for the

same purpose as with the Extended ALGOL Compiler. That is, CARD is

used when the source program is on cards alone and TAPE is used when

compiling from tape using the card file as a patch deck. Also, the

words LIST, PRT, NEW TAPE, and DEBUGN provide the same actions for

ESPOL as they do for the Extended ALGOL Compiler. The word DECK,

which is not an ALGOL option, may be used to specify that the

program generated by the compilation should be punched on car~s

rather than written on disk. Once the DECK option is set, it will

not be revoked due to subsequent $ cards which do not specify the

option.

D-l

The use of the STUFF option causes a card to be punched, with the

following format, for each procedure, array, or variable assigned to

the PRT by the Compiler.

Columns Field Content

1-4 Decimal class, where:

10 = Procedure

12 = Stream Procedure

13 = Boolean Stream Procedure

14 Real Stream Procedure

15 = Integer Stream Procedure

17 = Boolean Procedure

18 = Real Procedure

19 = Integer Procedure

21 = Boolean

22 = Real

23 = Integer

25 = Boolean Array

26 = Real Array

27 = Integer Array

30 = Name

5-8 Decimal PRT address

9-80 Identifier, left justified, with blank fill

The production of these output cards is initiated by the appearance

of the word STUFF on a $ card. The introduction of another $ card

not containing the word STUFF will inhibit the punching of these

cards.

The INTRINSIC option is turned on by the appearance of the word

INTRINSIC on a $ control card signifying to ESPOL that it is

compiling an intrinsic file and enabling it to produce a disk file

in the format expected by the MCP.

An intrinsic program (i.e., the symbolic input to ESPOL when using

the $INTRINSIC option) is subject to the following restrictions:

D-2

a. The outer block of the program may contain only declara­

tions; no statements are allowed.

b. Only Non-Save Procedures may be declared.

and Stream Procedures are prohibited.

SAVE Procedures

c. No SAVE array may be declared.

d. Any variable declared in the outer block must be equated to

an R or F relative address through use of a (relative

address expression) in its declaration.

It may be noted that the $INTRINSIC option is required when compiling

the symbolic file for the intrinsics of the B 5500 Programing System.

When compiling these intrinsics, the ESPOL file DISK should be

equated to INT/DISK.

The $ VOID card has the format $ VOID (sequence number) where the $

is in column 1 and the (sequence number) is recognized to be the

field of eight consecutive characters starting with the first non-

blank character following the word VOID. A VOID card in an ESPOL

patch deck causes cards on the symbolic input tape to be deleted from

the compilation and, if a NEW TAPE is being created during the com-

pilation, the vDided cards are not written on the new tape. Card

images on a symbolic input tape which are affected by a VOID card

are those with sequence numbers equal to or greater than the sequence

number of the VOID card and less than the value in the (sequence

number) field.

FILES IN ESPOL.

For purposes such as creating label equation cards, it is of value to

have information about file declarations. ESPOL has seven files.

The card input file is declared:

FILE IN CARD (5, 10);

The tape input file is declared:

FILE IN TAPE ftOCRDIMGff (2, BUFFSIZE);

D-J

The disk output file for compiled code is declared:

FILE OUT DISK DISK [990J "MCP" "DISK" (2, 30, SAVE 999);

The card output file for compiled code is declared:

FILE OUT DECK 0 (2, 10);

The line printer file is declared:

FILE OUT LINE 1 (2, 15);

The new-tape output file for updated source programs is declared:

SAVE FILE OUT NEWTAPE "OCRDIMG" (1, BUFFSIZE, SAVE 1);

The disk input/output file used during the first pass of a compila­

tion is declared:

FILE OUT CODE DISK SERIAL [l:lJ (1,1023);

NOTIFICATION OF SYNTAX ERRORS.

During an ESPOL compilation, syntax errors are printed in the same

format as during an ALGOL compilation. The meanings of the syntax

error messages are provided as the first information on the symbolic

card image tape for the ESPOL Compiler.

It should be noted that if any syntax errors occur during a compila­

tion, a DIV BY ZERO error will terminate the compilation before the

second pass of the compilation begins. (The second pass organizes

the save and non-save information into its proper format and causes

the compiled programs to be written on disk or cards.)

EXECUTING A PROGRAM GENERATED BY ESPOL.

To'execute a program generated by the ESPOL Compiler, one of the

following procedures must be followed.

EXECUTING A PROGRAM WRITTEN ON DISK. If the vrogram generated

during an ESPOL compilation is written on disk, it must be DUMPed,

through use of a DUMP control card, to a tape with the (library tape

name) SYSTEMb. Then the DF MCP LOADER must be executed.

D-4

The DF MCP LOADER searches for a tape with the (library tape name)

SYSTEM which contains the file MCP DISK. It then reads the tape and

copies the program information onto disk starting at word zero of

the first disk module.

After the DF MCP LOADER has loaded the program from tape to disk,

the one-card DISK LOAD BUTTON must be executed. The DISK LOAD

BUTTON causes the first IJJ disk segments of information to be read

into core from the first disk module, places that information in

core starting at word zero, and then causes control to be transferred

to core location 16 (decimal).

EXECUTING A PROGRAM WRITTEN ON CARDS. If the program generated

during an ESPOL compilation is written on cards, it may be loaded

to core and executed through use of the ESPOL DECK LOADER.

The first card of the DF MCP LOADER deck is a copy of the ESPOL

DECK LOADER. The ESPOL DECK LOADER reads all of the ESPOL cards

which contain save information (and the transfer card), places the

save information in its designated core locations, and then transfers

control to core location 16 (decimal).

D-5

Burroughs

1032638 10-67 Printed in U.S. America

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	01-01
	01-02
	02-01
	03-01
	03-02
	03-03
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	05-01
	05-02
	06-01
	06-02
	07-01
	07-02
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	09-01
	09-02
	10-01
	10-02
	10-03
	11-01
	11-02
	11-03
	12-01
	12-02
	12-03
	13-01
	14-01
	15-01
	A-1
	A-2
	A-3
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	C-1
	C-2
	C-3
	D-1
	D-2
	D-3
	D-4
	D-5
	back

