
Burroughs

BSS

TERMINAL USER'S GUIDE

Printed in U. S. America

Burroughs
B 5500

TIME SHARING SYSTEM
TERMINAL USER'S GUIDE

Burroughs Corpora.tion
Detroit, Michigan 48232

6-69 1038205

COPYRIGHT ® 1969, 1968 BURROUGHS CORPORATION

Burroughs Corporation believes the program described in this
manual to be accurate and reliable, and much care has been
taken in its preparation. However, the Corporation cannot
accept any responsibility, financial or otherwise, for any con­
sequences arising out of the use of this material. The infor­
mation contained herein is subject to change. Revisions may
be issued to advise of such changes and/or additions.

Correspondence regarding this document should be forwarded using the Remarks Form at the back of the manual, or may be addressed
directly to Systems Documentation, Sales Technical Services, Burroughs Corporation, 6071 Second Avenue, Detroit, Michigan 48232.

ii

SECTION

1

2

3

TABLE OF CONTENTS

TITLE

INTRODUCTION.

SYSTEM DESCRIPTION.

General.

Compiler Oriented Hardware .

Multiprocessing Master Control Program .

Dynamic Resource Allocation.

Automatic Program Segmentation "Paging".

Hardware Organization.

SOFTWARE SYSTEMS.

General.

The Master Control Program .

The Command and Edit Language Processor.

Programming Languages.

USING THE TIME SHARING SYSTEM .

General.

User Identification.

Commands .

Error Messages .

Log-In .

Files.

File Names.

File Types.

Sequence Numbers.

Work File •

User Library.

Accessing Other User's Files.

Entering Data.

Paper Tape Input .

Special Characters .

Backspacing.

Deleting a Line.

PAGE

· vi

• 1-1

• 1-1

· 1-1

• 1-3

• 1-3

· 1-5-

· 1-6

· 2-1

· 2-1

· 2-1

· 2-4
· 2-4

· 3-1

· 3-1

· 3-1

· 3-2

· 3-2

· 3-2

3-4

· 3-5
· 3-5
· 3-5
• 3-6

· 3-6

· 3-6

· 3-7
· 3-9

· 3-9

• 3-10

• 3-10

iii

TABLE OF CONTENTS (cont)

SECTION TITLE PAGE

3 (cont) Comments 3-11
Running a Program. 3-11

4 TIME SHARING COMMANDS 4-1
General. 4-1
Typographic Conventions. 4-1
APPEND 4-3
BYE. 4-5
CHANGE 4-6
CHARGE 4-8
COMPILE. 4-9
COpy 4-11
CREATE 4-15
DELETE 4-16
EXECUTE. 4-18
FILES. 4-19
FIX. 4-20
GUARD. 4-23
HELLO. 4-26
LIST 4-27
LOAD 4-30
LOCK 4-31
MAKE 4-32
MERGE. 4-34
PRINT. 4-36
PUNCH. 4-38
REMOVE 4-39
RENAME 4-41
RESEQ. 4-42
RUN. 4-44
SAVE 4-47
SCHEDULE 4-48
SEQ. 4-49

iv

SECTION

4 (cont)

TABLE OF CONTENTS (cont)

STATUS

STOP

TAPE .

TITLE PAGE

· 4-51
· 4-53
· 4-54

TO . • · • •• ••.•••••. · 4 - 5 6
TYPE . . •. ..•.•.• 4-58

UNLOCK . • · . •• .•..•. 4-59
WHATS ••.

APPENDIX A - CHARACTER SET .

APPENDIX B - RESERVED WORDS. • .

APPENDIX C - THE FILE SECURITY SYSTEM.

APPENDIX D - COMMAND AND EDIT SYNTAX • •

LIST OF ILLUSTRATIONS

FIGURE TITLE

1-1 Hardware Organization • •

· 4-60

. A-I

. B-1

• • • C-l

D-l

PAGE

v

INTRODUCTION

Recent improvement in the productivity of current generation computer

systems has directed attention not only to making the computer op­

eration more efficient and self-regulating, but also to distributing

the solutions more dynamically to problems within a given system.

One of the most innovative approaches to the question of quick

"turnaround" time has evolved as the Burroughs time sharing concept.

Time sharing, or time slicing, is Burroughs technique for sharing

the resources of the B 5500 computer system concurrently among an

extensive number of simultaneous computer users. The objective of

the time sharing system is to provide a response to every user within

a given time interval.

In the Burroughs B 5500 Time Sharing System, programs are successively

rolled into memory from the rapid access head-per-track disk, are

exeouted for a short time interval, and are then roJ.led out again.

Each user of the system therefore receives a "slice" of computer

time and, within a brief cycle of time, all programs receive a res­

ponse from the B 5500.

The following advantages are gained from the Time Sharing System

(TSS) :

vi

a. The first and most important effect of the B 5500 TSS

is improved personal effectiveness in problem solving.

The individual user now has instantaneous access to the

computer without inhibiting its ability to service other

users at the same time.

b. On-line programming and testing becomes a practical

reality. The B 5500 TSS eliminates the traditional

bottleneck to new application development, that is,

computer access for testing and debugging.

c. The full power of commonly based application programs

is available to all users of the system thereby

reducing programming effort and file maintenance.

d. Additional convenience and effectiveness are a by-product

of locating the time sharing terminal right in the user's

office. This, in essence, places the full power of a

large-scale scientific and information processing system

at the user's fingertips.

e. The full advantage of powerful programming languages

designed to service every user need:

1) COBOL for servicing business and information

processing.

2) ALGOL and FORTRAN IV for servicing the needs of

scientific and engineering applications in their

most advanced state.

3) BASIC for developing an immediate system "usability"

for people who have never used a computer before ...

easy-to-learn and a highly effective problem-solving

tool.

f. Allowing a user these dynamic system features is a set

of generalized software, including compilers of the above

mentioned languages, led by an operating system, a system

commonly known as the Master Control Program (MCP). The

MCP maintains overall control of the system allowing the

user to communicate with it through the Command and Edit

language processor (CANDE) as described later in this

manual.

g. The time sharing operation can co-exist with normal,

multiprocessing "production" jobs back at the central

computer site. The B 5500 TSS eliminates the need for

separate ffspecial purpose" computers to service the

vii

needs of information processing, scientific work, and

conversational time-sharing. All of these functions

are accomplished in a single advanced computer system,

the Burroughs B 5500.

The Burroughs B 5500 Time Sharing System incorporates, as realities,

the most advanced state-of-the-art techniques in the industry. This

manual is intended as a functional description of those technqiues

and their application to the problem solving requirements of bus­

iness, education, science, and industry.

viii

GENERAL.

SECTION I

SYSTEM DESCRIPTION

The Burroughs B 5500 embodies a successful implementation of a

spectrum of advanced design objectives. Burroughs approach to

computer system design has been to totally integrate both hardware

and software. The success of this approach was realized through

a policy of cross-training the computer design teams. Hardware

engineers were educated in the intricacies of software architecture

and software designers learned the subtleties of hardware design.

These people were then merged into a single design team. This

merger resulted in a system which featured:

a. Compiler Oriented Hardware.

b. Multiprocessing Master Control Program.

c. Dynamic Resource Allocation.

d. Automatic Program Segmentation.

e. Homogeneous Hardware Organization.

COMPILER ORIENTED HARDWARE.

Traditionally, most competent systems programmers have rejected

the use of high-level compiler languages because the ease and con­

venience of their use demanded too great a sacrifice in compiling

and operating efficiency.

The Burroughs B 5500, by contrast, has proved to be a complete

unity of high-level languages with efficient hardware operation.

It is a computer that, for all practical purposes, evolved without

a need for assemb~y languages. Its operating environment involves

the use of ALGOL, COBOL, FORTRAN, and BASIC.

A technique called "Polish notation" was adopted as the basic archi-

tecture for both the hardware and the software. Polish notation

simplifies problem program expressions by eliminating the need for

conventional rules of arithmetic precedence and "bracket grouping"

of values within an expression. Using Polish notation, the

1-1

expression: E:= (A+B) Ie becomes: AB + el E:=

The rule that applies is: follow two arithmetic values with the

operation designated to work with those values. Thus every mathe-

matical operator automatically works on the most recently obtained

pair of operands.

High level Polish notation is the "machine language" of the

Burroughs B 5500 System. The approach which makes Polish nota-

tion possible and powerful in its hardware implementation utilizes

the Push Down Stack structure of these systems to allow programs

to be considered as strings of elements which correspond to values,

literals, and operators in the compiler languages.

The Push Down Stack is the hardware implementation of the Polish

string software design architecture. In hardware terms, it con­

sists of two registers (at the top of the stack) and a contiguous

area of memory that permits the stack to extend beyond the regis-

terse Working with a Polish string, the stack allows an arithmetic

operator to work with whatever happens to be in the registers at

a moment in time.

This unity of software and hardware design results in dramatic

efficiencies in program compilation and execution. The algorithm

for program compiling is simply a matter of translating the source

program into a Polish string object program, which is also a high-

lev~l lari~tiage representation. The effect is to-produce eJCtremely

fast one-pass compilations of high-level languages. In addition,

the hardware is designed to efficiently execute the specific object

program code produced. This removes the need for storing and re-

trieving intermediate problem expressions, and allows straight-line

non-redundant object execution.

The full power of Polish notation and the Push Down Stack is brought

to bear on problem solving in both the Time-Sharing and the multi­

processing batch mode of operation on the Burroughs B 5500. The

1-2

machine language of the system is compiler-oriented, thereby re­

moving the need for wasteful analysis of the program source langu­

age, thus speeding compilations and producing highly efficient

machine code.

MULTIPROCESSING MASTER CONTROL PROGRAM.

The prime criterion for successful implementation of a compre­

hensive Master Control Program operating system is a clear iden-

tification of the need for such a capability. Burroughs identified

that need in the late 1950's. At that time the design objective

was set to develop a computer system capable of controlling its

own resources and scheduling work on a dynamic basis. In this

manner, a number of programs should feasibly be concurrently

executed in less time than if they were executed serially. More-

over, at any moment in time more of the computer's physical re­

sources should be in use by the multiplicity of programs than any

single job could utilize. The result of this has been highly effi-

cient utilization of the B 5500's problem solving facilities.

The Master Control Program operating system has provided an advanced

multiprogramming/multiprocessing capability for Burroughs users for

a number of years. Since many of the features of the standard MCP

have been chosen as the nucleus of time-sharing systems in the

industry, Burroughs enjoys a significant advantage in its proven

capability. These features have been subjected to the most rigorous

field testing possible, and they have been producing practical

results in customer installations for years.

A Time Sharing System is perhaps the most sensitive to down time

of all possible computer operating modes. When a system simulta-

neously servicing a multiplicity of remote users suffers a condition

causing th9 system to go out of operation, the whole user community

suffers immediately and dramatically. Burroughs has a powerful

answer to this need for continuous, uninterrupted remote service,

dynamic resource allocation (fail soft or graceful degradation).

1-3

Dynamic resource allocation was originally developed as an integral

part of the multiprocessing MCP. In past years, it has served

two key functions:

a. First, it has allowed new components to be added to the

system with an immediate speed-up in throughput. As

new devices are added to the B 5500, the Master Control

Program immediately and automatically recognizes that

it now has "more machine." More important, the MCP

immediately begins using the new resources to process

work faster than before. Further, this is accomplished

without having to regenerate the operating system, re­

write the programs, recompile the programs, or do any­

thing except connect the components to the configurations.

b. Second, it allows the B 5500 to continue producing

results in the face of circumstances which might ordi-

narily prove disastrous to other systems. Much as it

senses and reacts to additions to the system resources,

it also recognizes deletions from the system and reacts

by re-routing the work around the trouble spot. A memory

module, an I/O channel, a peripheral device, or even a

central processor (in a two processor system) can be taken

off-line and the rest of the system can be made to continue

producing results.

The Master Control Program continually checks the status of' the

total system, and it automatically fits object programs to those

system components that are available at any moment in time. Com-

prehensiv8 but compact "availability tables" keep the MCP informed

of the number of tapes, disks, printers, I/O channels, and other

devices that are available and ready; and changes in the status

of the system are easily detected because of advanced hardware/

software integration.

1-4

As soon as the MCP has the status information, it can allocate

the system's resources accordingly; The moment a Burroughs user

plugs in a new memory increment, or another I/O channel, or even

an additional central processor, the program that originally re­

quired 10 minutes may now take as little as 3 or 4 minutes to

run to completion. More important, when a component is taken

off-line for any reason, the system continues to function. The

B 5500 continues responding with problem solutions to the whole

network of remote users.

The B 5500 Time Sharing System effectively alleviates the most sen-

sitive criticism of time sharing: accessibility and guaranteed

response on a continuous stream of problem-solving demands.

AUTOMATIC PROGRAM SEGMENTATION "PAGING."

The computer industry has set as its objective, freeing the problem

programmer as much as possible from the physical limitations of

computer hardware. This objective has taken many forms and suffered

various degrees of success and failure, particularly when the

question of ifpracticalityff is raised in connection with a parti­

cular feature and/or computer system. Burroughs B 5500 Time

Sharing System addresses virtually all of the facilities required

to satisfy the "hardware independence" objective, and provides

practical and workable answers. A number of these facilities have

been explored above.

Automatic Program Segmentation is one of the most powerful of

Burroughs' third generation "realities." It provides a creative

solution to two questions:

a. How can a multiprocessing computer system efficiently

use its memory all of the time?

b. How can the computer handle programs that exceed its

physical memory capacity?

1-5

Burroughs B 5.500 Time Sharing System provides "virtual memory"

for unlimited program size. Automatic Segmentation has, in fact,

been a working reality on the standard B 5500 MCP for years, and

it has been a practical reality. This capability is based on the

use of compilers as program pre-processors. These Burroughs com­

pilers logically segment all programs at compilation time and

create a detailed record of how the segmenting was performed.

The effect of Automatic Program segmentation is to allow the pro­

grammer complete freedom from the physical limitations of hardware

memory in developing application solutions.

HARDWARE ORGANIZATION.

The hardware architecture which makes multiprocessing and dynamic

resource allocation practical is centered around two exchanges ...

the memory exchange and the input/output exchange. These central

controls operate as small integrated computers charged with res­

ponsibility for allocating the total resOUrces of the system to

job processing.

Each processor (on a dual processor system) accesses memory through

the exchange. Likewise, the maximum of four input/output channels

can access memory without interfering with the processors. The

channels in turn, can access any of the peripheral devices through

the input/output exchange.

MEMORY

Figure 1-1. Hardware Organization

1-6

The exchanges contain the logic and registers to "float" the demand

for accesses to whichever channel path happens to be free to handle

it. With these floating channels and memory paths, both processors

and all four channels can be executing memory accesses simultane­

ously. Therefore, under control of the Master Control Program

operating system, the data paths and configuration of the system

are continuously optimized to answer the demands of the moment.

This is accomplished automatically, without programmer awareness

or concern.

A maximum configuration of the Burroughs B 5500 allows for:

a. Two central processing units.

b. Eight independent memory modules (each 4,096 words).

c. Four floating input/output channels.

d. Sixteen magnetic tape drives.

e. Two billion characters of on-line disk storage.

f. Two line printers.

g. Two card readers.

"h
.L.L • Two paper tape readers.

i. One card punch.

j. One paper tape punch.

k. One supervisory consolee

1. 240 communications line buffers.

The B 5500 Data Communications Network can expand dynamically to

meet growing time sharing requirements. And the expansion or con­

traction of the system is accomplished without reprogramming or

recompiling. The Time Sharing Master Control Program balances

the current total program mix against the available system confi­

guration, for the most efficient operation under continuously

changing conditions.

1-7

SECTION 2

SOFTWARE SYSTEMS

GENERAL.

The software systems of the Burroughs B 5500 Time Sharing System

consists of the Master Control Program, the Command and Edit lan­

guage processor, and the programming languages.

THE MASTER CONTROL PROGRAM (MCP).

The primary purpose of the MCP is the efficient distribution of

sy~tem resources among the users. It is capable of controlling

its own resources as well as scheduling work on a dynamic basis.

In this manner, a number of programs should feasibly be executed

concurrently in less time than if they were executed serially.

Moreover, at any moment in time, more of the computer's physical

resources should be in use by the multiplicity of programs than

any single job would normally utilize. The result of this has

proven highly efficient utilization of the B 5500's problem solving

facilities.

Memory in the B 5500 TSS is divided into two distinct areas by a

"fence" or pre-determined boundary. The MCP and the Command and

Edit language processor are run on one side of the fence. Jobs

which are initiated by remote users are run on the other side of

the fence and are swapped in and out of core; i.e., they are tem­

porarily suspended and rolled out of core to disk to make room for

other remote jobs. There are five main conditions which cause

remote programs to be rolled out:

a. The program is input limited, that is, it is waiting for

data which has not yet been entered from the remote unit.

While the user transmits additional data needed to con­

tinue processing, the program resides on disk and makes

its memory resources available to other users.

b. The program is output limited, that is, it has generated

2-1

enough data to fill the disk buffer area assigned to it.

Therefore, the program turns its resources back to the

system while the current data is transmitted to the user.

The next time it receives its share of computer time, it

can again generate additional data for transmission to

the remote terminal.

c. The program has used the slice of time allocated to it

without encountering an input or output limited condition.

d. The program has reached completion.

e. The program is forced out to make room for an entering or

re-entering job.

When a job first enters the mix, it is assigned to an area in core

which minimizes conflict with other active jobs and is then given

an immediate time slice. If necessary, jobs in core are rolled out

to make room for it, unless they too are getting their first time

slice. In that case, Lhe new job is placed at the head of the

queue or jobs waiting for a time slice.

Some of the other important features of the MCP are:

2-2

a. Priority scheduling lets the individual user program

govern its relationship and importance to other jobs

"h
OJ.

being concurrently executed in the system. With multi-

level priorities, each job's importance is recognized by

the system and is given attention based on its ranking at

the moment. In addition, job priorities can be changed

dynamically, while processing, to answer more urgent

demands on the system.

Automatic file recognition allows all program and data

files to be addressed by name rather than by physical

input/output unit. In this manner, jobs can be allowed to

use any device that happens to be available at the moment.

This greatly facilitates the initiation and execution of

jobs in a community of remote users and, at the same time,

permits practical multiprocessing to be accomplished on

regular production jobs.

c. True device independence allows magnetic tape and disk to

be used as backup or "pseudo" devices for card readers,

punches, and printers. This means that jobs are not

delayed waiting for access to a busy peripheral unit.

Instead, such jobs automatically (or at operator option)

stream out to a backup device. It also means that tradi-

tional "satellite computer" operations such as card-to­

tape, card-to-disk, tape-to-print, and the like, are now

accommodated on a single computer system.

d. Comprehensive logging is a standard by-product of MCP

processing.

follows:

The log can provide a breakdown of time as

1) By job - the time used for processing and input/output.

2) By job - the time used by each physical device to

execute the job. This includes the processor, card

readers and punches, printers, magnetic tapes, and

magnetic disks.

J) By device - the amount of time each physical unit

was used by the system ... and a summary of errors

incurred by each unit.

4) By type of job - the amount of time and number of

times the system was used for compilations (for each

compiler), executions, and runs.

5) By job mix - the amount of time the system was run

with a given number of jobs currently in the mix.

2-J

The accounting facilities of the Time Sharing System will then

generally ensure that all time and disk': space used by the remote

users is accounted fore The time includes that involved for library

maintenance, file editing, line usage and command language pro­

cessing, as well as that related to the running of programs.

THE COMMAND AND EDIT LANGUAGE PROCESSOR.

Running with the MCP in an area of resident memory is the Command

and Edit (CANDE) language processor. CANDE serves as the interface

between the remote user and the MCP. The user communicates with

the system using established Command and Edit verbs by which he

can attach himself to the system, create and manipulate files, and

compile and run desired programs which he either wrote or updated

from his remote unit.

PROGRAMMING LANGUAGES.

Users of the B 5500 TSS have full language compatability of the

following:

a. B 5500 Time Sharing ALGOL provides a fail-safe version

of B 5500 Extended ALGOL, including string manipulation

capabilities.

b. FORTRAN IV implemented to the specifications of FORTRAN

IV, version 13.

c. B 5500 COBOL implemented to the specifications of D.O.D

d.

COBOL 61, with extensions.

1
BASIC since it is widely accepted in the industry as a

language which is easily understood and can be used by

people without computer experience. In addition to serving

as a learning tool for the computer layman, it can be

readily applied to many business and scientific problems.

1. Developed at Dartmouth College

2-4

Programs written in these languages are automatically segmented on

the logical boundaries of the language; e.g., ALGOL programs being

segmented according to blocks, COBOL programs according to para­

graphs, and FORTRAN programs according to subroutines. These

segments allow a program of virtually unlimited size to be exe­

cuted within a relatively small amount of memory.

2-6

SECTION 3

USING THE TIME SHARING SYSTEM

GENERAL.

Input to the system consists of messages typed in at the remote

terminal. Each message must be ended with a left arrow (~). After

a left arrow has been typed, the system responds with a carriage

return and a line feed to automatically position the teletype for

the next line of input. Any carriage returns and line feeds typed

by the user are ignored by the system. The system will not accept

messages which are more than 72 characters in length (i.e., one

Teletype line).

USER IDENTIFICATION.

Before the user can utilize the system capabilities, he must first

present his user code and password to the system. The password

gets typed into an area that the Teletype has blacked out to ensure

that only authorized persons gain access to the system. CANDE

will check the user's identification against its file of authorized

If the code entered is not in the file, the user will be

so informed by CANDE and he will be prevented from using the system

until a correct log-in procedure is entered. If the code is in

the list of authorized users, CANDE will log the station in, record

its current log-in time, and consider the station to be a bona fide

user. (See LOG-IN for a fUrther description of this procedure;)

After a successful log-in, the user code is used to identify the

accounting information for the session as well as any files created.

In addition~ the user has the option of also entering a charge

code which is added to the accounting information but is not used

as verification by the system. This can be used to further assist

internal billing and accounting.

3-1

COMMANDS.

Each command in the Command and Edit language consists of a verb

and, in most cases, a list of parameters. The parameters in the

list are separated from the verb and from each other by commas

or blanks. In the examples contained herein, commas will be used,

but they are not required.

When CAN DE has finished processing a command, it will type a

message either confirming successful completion of the command or

indicating an error. Errors terminate the processing of a command

and the entire line must be retyped correctly. After certain verbs,

a number sign (#) is used to indicate completion. The user should

not type anything between the time he types the command and the

time the response from CAN DE is typed.

It should be noted that more than one command may be included on a

single line if the commands are separated by semicolons. However,

if an error is contained in a command, any fUrther commands on

that line are ignored.

ERROR MESSAGES.

Error messages consist of the word ERR followed by a colon and

usually a one word error description, such as ERR:NOFILE. The user

can request further information about the error by typing a ques­

tion mark followed by a left arrow. The error messages that may

result from improper use of a given verb are discussed in the

section containing the description of that verb.

LOG-IN.

Before he is allowed to use the system, the user must make contact

with the computer and submit proper identification.

a connection, the following steps should be taken:

To establish

a. To turn the Teletype on and obtain a dial tone, push the

ORIG (originate) button~

3-2

b. Dial the computing center. When the computer accepts

the call, the ringing changes to a high-pitched tone

and the system types:

BSSOO TIME SHARING

If the phone keeps ringing, the system is temporarily unavailable.

If a busy signal is heard, the system is loaded to capacity@ In

either case, re-dialing is necessary.

After a connection is made, the system initiates the log-in

sequence which consists of the following steps:

a. The system types

ENTER USER CODE, PLEASE-

and the user complies by entering the user code assigned

to him.

b. The system then responds with

AND YOUR PASSWORD

and blacks out seven spaces on the next line into which

the user must enter his password.

v. If the system recognizes the user code and password; it

proceeds to step d.

types

BADCODE

If it does not recognize them, it

ENTER USER CODE, PLEASE-

and the log-in procedure begins again. If the user does

not enter his user code within 30 seconds or if he fails

to log-in correctly on his second try, he is disconnected.

3-3

d. If it has been speci£ied that a charge code be requested,

the system types

ENTER CHARGE CODE, PLEASE-

and the user enters the charge code for the session.

e. Whether or not a charge code is requested, the system

signals its readiness to accept a command by typing

YOU HAVE LINE logical line number, user name

mm/dd/yy, time

The logical line number is the systems recognition of

the line dedicated to the user.

Example:

FILES.

B5500 TIME SHARING

ENTER USER CODE, PLEASE-usercode~

AND YOUR PASSWORD

(user enters password
in blacked out area)

ENTER CHARGE CODE, PLEASE-charge~

07/23/68 6:20 PM

A file is any collection of information

uni t. It is the primary means by which he establishes continuity

3-4

between one session at the Teletype and the next, the "session"

being that sequence of activities mutual to the system and the

user between one log-in and the next log-out.

FILE NAMES.

Each file in the system has a unique identification consisting of

a file name and a user code. When a file is created, the user

supplies the file name and CANDE adds his user code to form a

complete file identifier. File names may be from one to six

characters long. The first character must be a letter and any

remaining characters must be a combination of letters and digits.

If more than six characters are used, the right-most characters

are truncated.

Examples:

FILE TYPES.

X

FILEI

JONES

D2.3XY8

Associated with every remote file is a file type. The file types

are: ALGOL, COBOL, BASIC, FORTRAN, and SEQ (sequenced). The

first four types specify that the file contains a program written

in that language. A sequenced file may contain any kind of data

including source code of given programs or parts of programs. Data

files also may contain any kind of data but, unlike the other five

types, they do not contain sequence numbers.

SEQUENCE NUMBERS.

All files which are edited by CANDE must contain sequence numbers.

A sequence number is defined as a positive integer containing a

maximum of eight digits which must appear as the first item on a

teletype line. It is used to identify the line for editing and to

specify the lines position in the file. Even if the lines are

3-5

typed out of order, CANDE will arrange them in ascending numerical

sequence. Except for programs written in BASIC, the sequence num-

bers are not considered to be a part of the data in a file.

WORK FILE.

The Command and Edit language allows the user to create or modify

the contents of only one file at a time. That file is referred to

as the work file. Changes and additions made to the work file do

not become permanent unless the user issues a SAVE command. In

this way, a file can be created, used, and then discarded if it is

no longer needed. Similarly, an existing file can be modified

and used without affecting the original copy of the file. If a

SAVE command for the modified version is not issued, the original

version remains on disk and can be used again. The original file

is only changed permanently when a SAVE is typed.

Changes are kept in the work file until either another file is
.)

specified as the work file or the users session is terminated. The

work file, therefore, can be used like any other file; that is, it

may be further changed, listed, compiled, or run. For example, a

source file could be loaded and modified, and then compiled and

tested until it was completely debugged before it was finally

saved, thus ensuring that the running version of the program was

available at all times.

USER LIBRARY.

The set of files that a user creates and saves are referred to as his

user library. Each file in the library must have a different name.

If an attempt is made to create a new file with a name that is

currently being used, the system will notify the user via an error

message. The necessary change or remove options must be exercised.

ACCESSING OTHER USERiS FILES.

A user may not access files in another user's library unless the

owner of the library has authorized him to do so. To do this, the

3-6

owner uses the GUARD command to create a GUARD file which is a

specially formatted file containing user codes and program names

belonging to other users. He then associates the GUJL~D file with

specific files in his library through the GUARD and LOCK commands.

These files, called private files, can then be accessed by the users

and programs listed on the GUARD file. Those files which do not

have associated GUARD files are called sole user files and can be

accessed only by the user who created them. In addition, files may

be made available to all users with the UNLOCK command.

Once he has been authorized to do so, a user accesses a file in

another user's library by using the file name followed by either a

slash (/), or the word LIBRARY, and then by the user code of the

owner of the file. It should be noted that a user can only read

another user's file; he carinot write on them or perform library

maintenance.

The file security system is further described in appendix C.

ENTERING DATA.
T'_-+- ____ 7" 1-._
~a. lJ a. !!1a. y IJ 0;:;: entered from the remote ",..." I

........ ..L.L....L. V either by keyboard or paper

tape. Data entered by hand (keyboard) must include sequence numbers.

Once a work file is specified, all lines beginning with a sequence

number are added to the work file.

Errors in the work file may be corrected by using the FIX command or

by retyping the line in error using the same sequence number. The

new line will overwrite the old. To delete a line which is already

part of the work file, the sequence number and then a left arrow

must be typed.

Example:

MAKE SAMPLE BASIC -

FILE:SAMPLE TYPE:BASIC -- CREATED

"THIS IS AN EXAMPLE OF A BASIC PROGRAM

100 X=5 -

3-7

3-8

150 Y=7-

200 B=X+Y-

250 PRI~1T X,Y,A-

175 A=X+Y-

300 END--

"LIST WILL CAUSE THE SYSTEM TO SORT THE WORK FILE­

"AND TYPE IT OUT.-

LIST-

FILE:SAMPLE!- TYPE:BASIC --05/25/68 6:46 PM.

100 X=5

150 Y=7

.!12 A=X+Y

200 B=X+Y

.R.2Q PRIMT X,Y,A

300 END

END LIST 1.0 ~

"SINCE LINE 200 IS NOT USED, T1' CAN :g~ ELI~I~L~TE!}-

20<Y-

"CORRECT MISSPELLING AT LINE 25<Y-

250 PRINT X,Y,A-

"NOW WHAT DO WE HAV~

LIST-

FILE:SAMPLE - TYPE:BASIC --05/25/68 6:48 ~M.

100 X=5

150 Y=7

.l2.2 A=X+Y

250 PRINT X~Y.A

300 END

END LIST 1.0 SEC.

"LOOKS OK NOW-

PAPER TAPE INPUT.

Most teletypes have an attached paper tape reader which can be used

to enter input as an alternative to the keyboard. Thus, programs

and data may be created and stored off-line and then entered at

relatively high speed when the terminal is connected to the B 5500

Time Sharing System.

for the system.

The paper tape must be in the proper format

After the paper tape punch is turned on, 10 or 20 rub-outs should be

typed to provide a leader for mounting the tape ~n the reader. Since

reading the tape causes the teletype to print, each line punched into

the tape must end with a left arrow (~), a carriage return, a line­

feed, and one or two rub-outs. (The rub-outs, which are ignored by

the system, make it easier to visually locate a particular record

on the tape.) It should be noted that an X-OFF character is not

needed. After all lines have been punched, 10 or 20 more rub-outs

should be typed to provide a space in which the reader may be turned

off.

Since the records from paper tape are read directly into the work

file, system commands (with the exception of the FIX command) may

not be punched in the tape. For further information, see the des-

cription of the TAPE command.

SPECIAL CHARACTERS.

The characters on the remote unit which are not letters or digits

are called special characters. The special characters which can

be used with the B 5500 Time Sharing System are listed in appendix

A. Use of the other special characters will result in errors.

The left arrow (~), the backspace (,), and the delete (!) are always

recognized by the system to function as described. All other valid

special characters may be used in data, comments, and certain commands

but are illegal elsewhere except for the following uses:

CHARACTER

Backspaces one character.

Deletes the current line.

3-9

Blank 1
or)

?

"
+

BACKSPACING.

Marks the end of an input message.

Separates commands within an input message.

Separate parameters within a command.

Indicates successful completion of a command.

Requests additional information from CANDE.

Introduces a comment.

Specifies increment for the SEQ verb.

Used in lists of sequence numbers.

The apostrophe (,) is used as a backspace to delete the most recently

typed character. Repeated use of the backspace will delete a corre-

sponding number of characters, but only to the start of the current

line. Thus,

MAKE XYZ'2

would appear to CANDE db

MAKE XY2

and

MAKE't t 'LIST

would appear to CANDE as

LIST

DELETING A LINE.

.A.n entire line can be deleted by typing an exclama tion point I • \
\ !) •

After a delete is typed, the system types DEL and positions the print

head at the start of the next line so that the user can continue his

input. The delete cannot be used repeatedly, thus only the current

3-10

Example:

COMMENTS.

X=SQRT(X**2+ZIDEL

100 X=SQRT(Y**2+Z**2)

Lines which begin with quotation marks (,,) are treated as comments,

the contents of which have no effect on the use or operation of

the file being created. When the user has finished a comment, he

can continue to type in data, commands, or further comments.

Examples:

"THIS IS A COMMENT?

"IT BEGINS WITH A " AND IS COMPLETELY IGNORED ~

RUNNING A PROGRAM.

Two following steps are involved in running a program from a source

file.

a. Compilation. The source file is translated into machine

instructions which form an object file.

b. Execution. The machine instructions in the object file are

executed.

The Command and Edit language allows the user to specify either

compilation or execution with the COMPILE and EXECUTE verbs, or

using the RUN command, to request that CANDE do whatever is necessary

to execute the program.

.. -tIl three cf these ~ , , -
a...L..LVl'V

or, by default, to specify the work file.

specify a particular file

If the command specifies

a file which was loaded to form the work file, the version of the

file on disk is used, not the work file.

following had been done:

For instance, if the

3-11

LOAD TEST

FILE:TEST - TYPE:BASIC

END LOAD 1.1 SEC. -----

100 X=Y**2

then the command

RUN TEST

LOADING

would cause the old version of TEST without the change at line 100

to be run, whereas

RUN

would cause the work file version of TEST to be run, which includes

the change.

If an error occurs during a compilation or execution, CANDE prints

an error message and identifies the sequence number of the line

which c.:aused the error.

Anything not beginning with a question mark which is entered after

a RUN or EXECUTE command and before the completion of an execution

is assumed to be data for the program and is put in a special file.

When the program requests data from the teletype, it will use any

data that has already been entered before requesting further input

from the teletype.

During a run, ?STATUS may be used to ask for information about the

program. It is not considered to be data (see the STATUS command).

Anything else following a question mark is ignored.

for an)T reason, the user wishes to discontinue his

has started running, he should type a WRU (control E) or a BREAK,

depending on whether or not the teletype is typing under system

control. If it is typing, the BREAK is used. If it is not, WRU

should be used. In either case,

the system will type

-USER DS-ED, LINE NO sequence number

3-12

and then a number sign (#) when it is ready for further input.

Compilations can be terminated by a BREAK or WRU like any other

program.

command.

BREAK can also be used to suppress the output from a LIST

However, the programs run by CANDE to process such commands

as LIST, PRINT, APPEND, MERGE, COPY, DELETE, and RESEQ are not

terminated by a BREAK or WRU.

In the rare event that something does go wrong with the system, a

HALT/LOAD is performed. This causes all processing on the system

to be halted and the system to be reinitialized. Data can be lost

from the work file and any user programs which were running must be

restarted.

After a HALT/LOAD, the system types

P
L

o
P

RESTARTING . . PLEASE WAIT

and then asks the user for his user code and password to log him back

on the system. If the user had data in the work file, CANDE will

usually be able to recover it. However, the last few records should

be listed to ensure that nothing was lost.

3-13

SECTION 4

TIME SHARING COMMANDS

GENERAL.

The commands available with the Burroughs B 5500 Time Sharing System

are described in this section. These commands give the computer

system direction as to specific actions which must be executed in

order to perform the required tasks. The commands are presented

in alphabetical order to make access to them more convenient to the

user.

TYPOGRAPHIC CONVENTIONS.

The following conventions have been used throughout this manual to

describe the syntax of the Command and Edit verbs:

a. Upper case letters and special characters in a given

format denote the literal occurrence of the characters

represented. For example,

MAKE f

denotes the literal occurrence of the verb MAKE followed

by a file name.

b. Lower case letters denote variable elements of a command.

For instance, f in the above example indicates that the

verb MAKE must be followed by the name of a file.

the above construct could be written as

MAKE UTIL2

where UTIL2 is an acceptable file name.

Thus

c. Ellypsis marks, ... , denote the occurrence of the imme­

diately preceding syntactical item one or more times.

For example,

SCHEDULE f l ,f
2

, ... f n

indicates that the verb SCHEDULE must be followed by a

4-1

file name which in turn mayor may not be followed by

one or more file names to form a longer list.

It also should be noted that, in the examples to follow, characters

typed by the system are underlined. Those characters not underlined

are understood to have been typed by the user.

4-2

NOTE

The complete Command and Edit syntax

is also provided in COBOL format in

appendix D.

APPEND.

Records from a given file may be copied onto the end of the existing

work file with the APPEND (or ADD) command. The format is as follows:

1. APPEND f

2 . APPEND f, q

where f is a file name and q is
a list of one or more elements,
in any combination, of the fol­
lowing two forms:

a. s

b.

where s, 8
1

, and
s2 are sequence
numbers and s2
> sl' ~

In addition, the last element of
the list q may be one of the fol­
lowing two forms:

a. END

b. s TO END

where s is a se­
quence number.

If no sequence numbers are specified, the entire file is appended.

Otherwise, only the specified portions are added. The appended

lines are given sequence numbers equal to their old sequence num­

bers, plus the highest sequence number originally in the work file.

If this results in a sequence number of more than eight digits, the

error message

ERR:TOOBIG

4-3

APPEND
continued

is typed, and the remaining lines are not appended.

Example:

LIST TA-

FILE:TA - TYPE: SEQ --6L28L68 7:20 PM

10 TEN. ---
20 TWENTY.

END LIST .=..2. SEC • -----
MAKE Tl-

FILE:Tl - TYPE: SEQ CREATED -
100 ONE.-

200 TWO.-

JOO THREE.-

APPEND TA; LIST-

it

FILE:Tl - TYPE:SEg --6L l sL68 7:22 PM

100 ONE.
-- ---

200 TWO.

300 THREE.

J1.Q TEN .

..:gQ TWENTY.

END !d.§.! 1.0 SEC.

4-4

BYE.

The BYE verb terminates a useris session. The format is:

After the user types BYE, the system responds with

ON FOR !!l MIN, !!2 SEC.

C&E USE n
J

SEC.

OFF AT time -- --
GOODBYE usercode

and then performs a disconnect. The user may also log-out by

pressing the CLR (clear) button or by typing an End-of-Transmission

character (control D). In either of these cases, the system re­

sponse cannot be given.

Example:

BYE)-

ON FOR n.. MIN, ~ SEC.

C&E USE ~ SEC.

OFF AT 6:48 PM.

GOODBYE HARRY

4-5

CHANGE

CHANGE.

The remote user can change his password or various file parameters

using the CHANGE command. The format of the CHANGE command is:

1. QHANGE PASSWORD

2. CHANGE fl TO f2

3. CHANGE f TYPE TO t

4. CHANGE TO f

5 · CHANGE TYPE TO t

where f, f l' and f2 are file names, t is a

file type, and s is a security file name.

The CHANGE command can be used to change the user's password. The

system will ask the user for his old password, his choice for a new

password, and a verification (re-entry) of his new password. If an

error is made in entering the old password or verifying the new one,

the system types

ERR:BADCODE

and the change procedure must be started again. Successful comple­

tio1l of the change procedure is signaled by a number sign (#).

Example:

CHANGE PASSWORD ~

ENTER OLD PASSWORD, PLEASE

KK1OOOO{

NEXT ENTER NEW PASSWORD

xxxxxxx

(old password entered)

(new password entered)

PLEASE REPEAT YOUR. NEW PASSWORD, FOR VERIFICATION

(new password entered)
/I

ff

The CHANGE command can also be used to change the name or the type of

4-6

either a library of file or the work file.

CHANGE
continued

The use of TO or TYPE TO causes the name or the type of the specified

file to be changed to the file name or file type given in the com­

mand. If an attempt is made to change a file name to a name that

is already in use, the error message is:

ERR:file name

If a file name does not appear immediately after the verb, the change

applies to the work file. A successful change is indicated by a

number sign (#).

Example:

LIST FILES~

FILE: STUFF TYPE: SEQ

FILE:UTIL TYPE:FORTRAN

tCHANGE STUFF TYPE TO COBOL~

tCHANGE STUFF TO UTIL~

ERR:UTIL

CHANGE UTIL TO UTIL2~

#CHANGE STUFF TO UTIL1~

#LIST FILES~

FILE:UTILl

FILE:UTIL2

TYPE: COBOL

TYPE: FORTRAN

12/17/67

03/21/68

12/17/67

03/21/68

4-7

CHARGE

CHARGE.

The CHARGE command changes the charge code during a user's session.

Its format is:

CHARGE c

where c is the charge
code of up to seven
alphanumeric characters.

Proper information is entered in the log to reflect a change of

charge code.

Example:

CHARGE lES500+-

4-8

COMPILE

COMPILE.

To compile a source program and create an object file, the user

issues a COMPILE command. The format is:

COMPILE f,c

where f is the file name

and c is the compiler name.

If a file name is not given, the work file is compiled; otherwise,

the specified file is compiled and the resultant object file is

saved. If the work file is compiled, the object file is kept with

the work file so that both source and object versions can be saved

with a SAVE command. It should be noted that a SAVE command is

ignored if data has not been entered into the work file since it was

created or last saved. Thus,

LOAD X;COMPILE;SAVE7-

is not necessary to save the object version of X.

should be used is

The command which

COMPILE X~

which will automatically cause the object file to be saved.

The compiler name may be ALGOL, COBOL, FORTRAN or BASIC, or an

abbreviation consisting of a colon followed by the first letter of

the compiler name. It is required when files of type SEQ or type

DATA are compiled but can be used for any type file and will override

the original file type.

If the work file is not declared when needed, the error message is:

ERR:WRKFILE

If a source version o~ the file named is not in the library, the

error message is:

ERR: NOFILE

4-9

COMPILE
continued

When the file is found, CANDE types

COMPILING

and, when the compilation is finished,

END COMPILE n SEC.

is typed indicating the amount of processor time used during the

compilation.

Example:

4-10

COMPILE TEST02~

COMPILING

200 Y:UNDEFINED

END COMPILE 1 SEC. ---
#LIST TEST02 200~

FILE:TEST02 - TYPE:ALGOL --05/22/68

200 X: =X/Y;

END LIST 1.0 SEC. ----
LOAD TEST02~

FILE:TEST02 LOADED

200 X:=X*X;-­

COMPILE~

COMPILING

END COMPILE 1 SEC. ---

COpy

COPY.

The COpy command is used to copy a file onto the work file or onto

a peripheral unit. The format of" the COpy command is:

1. COpy f TO h

2. COpy

3· COpy q

4. COpy r

5. COpy q r

6. COpy f

7 · COpy f q

8. COpy f r

9. COpy f q r

where f is

a. a file name
b. file name / user code
c. file name LIBRARY user

h is the hardware type, and

a.
b.
c •

2 - designates printer
3 - designates PQ~ch
4 - designates tape

code

q is a list of one or more elements, in
any combination, of the following forms:

a. END
b. s TO. END

where s is a sequence number.

r is

a. RESEQ

b. RESEQ sl - s2

c . RESEQ base

d. RESEQ sl - s2 + increment

e. RESEQ base + increment

f. RESEQ sl TO s2

g. RESEQ sl TO s2 + increment

where s2 may be the word END. A list of
the above would require 64 cases.

4-11

I

COpy
continued

When a COpy TO hardware command is entered by a user, a copy of

the file is placed on disk and identified by placing either a 2,

3, or 4 (for files to be printed, punched, or placed on tape) in

front of the file names. Only alphanumeric files can be printed

or punched. Files copied to tape are placed on multi-file tapes,

identified as user cOde/file name, and are blocked (56, 10). These

are processed by the program HARD/CANDE, which is initiated by the

installation operator. The output will be sent to the user from

the computing center. After the system schedules the output,

CANDE responds with a number sign. If there are files to copy,

the program asks:

FILE NAMES?

and the operator enters either a YES or NO via an AX message, de­

pending on whether or not he wishes a list of names of all files

waiting to be copied. The program will then ask:

WHATS NEXT?

and the acceptable responses are:

a. ALL.

b. STOP.

c. Hardware type.

d. User code.

e. File name/ user code.

f. Hardware type user code.

g. Hardware type file name/user code.

The corresponding actions taken by the program are:

a. COpy all files.

b. Terminate.

c. COpy all files designated for the specified unit.

d. COpy all files for this user.

4-12

ee COpy the designated file (may be to more than

one unit).

f. COpy all files belonging to the user which are

designated for the specific unit.

g. COpy the file.

COpy

continued

The acceptable entries for hardware types are PRINTER, PUNCH, or

TAPE.

When files are copied to tape, they are blocked (56, 10). All the

files for a given user are placed on one tape using the user code

as the multi-file identification and the file name as the file

identification. Thus, a file identified on disk as file name/user

code will appear on tape as user cOde/file name. When a file is

punched, it is preceded by a blank card, a card identifying the

file, and another blank card.

After a file is copied, the copy on disk is removed. The program

will continue to ask "whats next", until told to stop or until all

files are copied.

After the copy has been performed, CANDE will type:

END COpy.

Within the rules of file security, the COpy command may be used to

access files in another user!s library by including his user code

after the file name. If the user issuing the COpy command has not

been authorized by the other user to access his files, the COpy

will not be performed and CANDE will type:

ERR:user code

If the file is not in the library, CANDE types:

ERR:file name

If there is no work file, the error message is:

4-13

I

COpy
continued

Examples:

4-14

ERR:WRKFILE

LIST EXAMP-

FILE:EXAMP - TYPE:SEQ --06/06/68

100 THIS -- ---
200 HERE -- ---
300 IS

400 AN EXAMPLE -- --
END LIST 1.0 SEC. -- --- ----
MAKE GOOD; COpy EXAMP 100,300-ENDr

FILE:GOOD ~ TYPE:SEQ _ CREATED

WAIT.

END COpy .n SEC.

LISrp--

FILE:GOOD - TYPE:SEQ --07/24/68

100 THIS

300 IS

400 AN EXAMPLE -- -- ~~-~

CREATE.

The CREj\~TE command creates a nel,-J file and establishes

file. The formats of the CREATE command are:

- . -'- --'-- ---' -

2. CREATE f t

3. CREATE f SIZE n

4. CREATE f t SIZE n

where f is a file name, t is a file

type, and n is the number of lines

to be contained in the file.

..; +

...!... tI as

CREATE

4-15

DELETE

DELETE.

The DELETE verb is used to delete all or part of the current con-

tents of a work file. The format is:

1 . DELETE ALL

2. DELETE q

where q is a list of one or more
elements, in any combination, of
the following two forms:

a. s

b.

where s, sl' and s2 are
sequence numbers and
s2 > sl·

In addition, the last element of
the list q may be one of the
following two forms:

a. END

b. s TO END

where s is a sequence
number.

If there are no parameters following the DELETE verb, the ALL

option is assumed. The parameter ALL causes the contents of the

work file to be removed, but does not affect the file name asso­

ciated with the work file.

If sequence number parameters are used, an entry of the form s

causes the Jine with that sequence number to be deleted~ An entry

of the form sl-s2 causes the deletion of all lines from the first

through the second sequence number, inclusively. The use of the

word END is equivalent to using the highest sequence number in the

file. Thus, if the last entry is END, the last line in the file

will be deleted and, if the last entry has the form s TO END, all

lines with a sequence number greater than or equal to the sequence

4-16

DELETE
continued

number will be deleted. The sequence numbers must be arranged in

ascending numerical order. If one is out of order, it is flagged as

an error by the message:

ERR:SEQNUM

A maximum of nine sequence numbers are allowed in a given list. A

request to delete non-existant records according to sequence number

reference is ignored.

After the specifield lines have been deleted, CANDE will type END

DELETE.

Example:

MAKE TRASH~

FILE:TRASH - TYPE:SEQ

100 EXAMPLE OF~

200 DELETE VERB~

DELETE ALL~

WAIT.

END DELETE . n

100 THIS~

200 WILL~

300 BE~

400 USED~

500 AS AN~

600 EXAMPLE~

700 OF THE~

800 DELETE~

SEC .

CREATED

DELETE 200,400-550,700 TO END~

WAlT.

END DELETE .n SEC.

LIS~

FILE:TRASH - TYPE: SEQ

100 THIS

300 BE

600 EXAMPLE

END LIST 1.0 SEC.

--06/16/68

4-17

EXECUTE

EXECUTE.

The work file or an object file on disk can be executed by using

the EXECUTE (or the DO) command. Its formats are:

1 . EXECUTE

2. EXECUTE f

J. EXECUTE flu
4. EXECUTE f LIBRARY u

where f is the object file name and

u is the user's code. The above may

be repeated with DO instead of EXECUTE.

The program is run from the object file associated with the file

specified in the command. If authorized to do so, a user may exe-

cute the object versions of files in another user!s library by

rulluwiIlg the fi~e name w~th either a slash (I) or-the word LIBRARY

and thenLhe user code.

message is:

:1f' there is no object file, the errOT

ERR:NOFILE

If the object file is found, the message typed by CANDE is:

RUNNING

When the program is finished, the message is:

END file name n SEC.

This indicates the processor time used to execute the job.

Example:

4-18

EXECUTE TES~

RUNNING

END TEXT 1.1-.6 SEC.

FILES

FILES.

The FILES command is used to obtain the names of the files in the

user's library. Its formats are:

1. FILES

2. LIST FILES

The name of all the files in the user's library are listed. The end

of the list is indicated by a number sign (#).

Examples:

FILES-r-

LINKS SANTA

LIST FILES

LINKS SANTA

4-l9

FIX

FIX.

The FIX command is used to delete or replace a portion of a line

of input. It has the following formats;

1. FIX s d 1 d n

2. * s d 1 d n

where s is the sequence number,
d is a delimiter, 1 is the old
string, and n is either a new
string or is blank.

A FIX command causes CANDE to replace the characters specified by

the old string with the characters in the new string. It does this

by searching the line specified by the sequence number from left

to right until it finds a string of characters in the line which is

identical to the old string specified in the FIX command. It then

discards those characters and. if a new string WAS included in the

command, it inserts the characters of the new string in their place.

Therefore, any given string of characters in a line may be deleted

or replaced by another string.

The delimiter is used to mark the beginning and end of the old string.

It may be any valid non-blank character that does not appear in

the old string. The first non-blank character after the sequence

number is taken as the delimiter. Everything, including blanks,

between the first two appearances of the delimiter is taken as the

old string. Everything following its second appearance is taken as

the new string. Neither of the strings may exceed 63 characters

in length. If the FIX command results in a record of more than 72

characters, the record is truncated to 72 characters.

CANDE does not apply the change when it is entered. Instead, it

stores the contents as a record with other data entries in the work

file. Then, when a command which affects the work file is issued,

such as LIST, Ru~, SAVE, etc., all the changes that have been stored

4-20

FIX
continued

are made, and any errors in the FIX commands are noted e Thus,

error messages are typed following the first command which uses the

work file. Except for causing error messages to be typed; FIX

commands in error are ignored, and processing continues as if they

had not been entered.

Since CANDE initially treats a FIX command as if it were a record

in the work file, more data or another command may be entered after

the FIX command has been terminated by a left arrow (~). Further­

more, the FIX command may not be combined with other commands

through the use of the semicolon, as described under COMMANDS.

If the specified string cannot be found, the following message is

typed:

Examples:

FIX IGNORED -- SEQUENCE NUMBER sequence number

MAKE X~

FILE:X TYPE:SEQ -- CREATED

100 THIS IS A SAMPL~

200 TO SHOW HOW FIX~

300 WORKS~

"CHANGE -SAMPLE- TO -EXAMPLE-~

FIX 100 . S.N EX~

uREPLACE -HOW-~

FIX 200 #HOW#THE WAY IN WHICH~

LIS'r--

FILE:X ~ TYPE:SEQ --04/29/68

100 THIS IS AN EXAMPLE -- ----
200 TO STHE WAY IN WHICH HOW-FIX

300 WORKS

"OOPS- THE LETTERS -HOW- ARE A PART OF SHOW AND THE­

"FIX CHANGED THEM BECAUSE THEY CAME FIRST IN THE LINE-

4-21

FIX
continued

4-22

*200 $THE WAY IN WHICH$­

*300 .S.ING-

LIST*-

FILE:X ~ TYPE:SEQ --04/29/68

100 THIS IS AN EXAMPLE -- --- ----
200 TO SHOW FIX -----
300 WORKING

GUARD

GUARD.

The GUARD command permits the user to build or modify a guard file

to allow other users or user~s programs to read or read/write to

a file. Its format is:

GUARD

CANDE starts by typing:

NEW OR OLD GUARD FILE?

and the user responds with the word NEW if he wishes to create a new

guard file, or OLD if he wishes to update an existing guard file.

CANDE then types

GUARD FILE NAME?

and the user types the name of the old file or the name he wants to

use for the new file. If a current guard file is being updated,

CANDE types:

ADD, DELETE, LIST, SAVE, OR QUIT?

The user then responds with his applicable choice causing CANDE to

again type:

ADD, DELETE, LIST, SAVE, OR QUIT?

With the exception of QUIT, the user can type any of these words in

any order until he accomplishes everything he wants to do with the

file. Actions are taken for each option as follows:

a. ADD is used to add user codes and/or program names to the

file. After ADD is typed, CANDE will respond:

READ ONLY NAMES?

4-23

GUARD
continued

4-24

The user may then enter a list of user codes and/or program

names which will be added to the file. These user codes/

program names will be allowed to read but not change those

files with which this guard file is associated.

names must be entered in the format

file name/user code (of the owner of the file)

Program

The items in the list must be separated by commas or blanks.

If the user does not wish to add any read-only names to the

guard file, he should type a group mark (-).

Next, CANDE will ask for

READ/WRITE NAMES?

Any user codes and/or program names entered in this case

will be able to access and change those files with which

this guard file is associated.

b. DELETE causes the program to type:

NAMES TO BE DELETED?

The user then enters those user codes and/or program names

he wishes to remove from the guard file.

c. LIST produces a listing of all the user codes in the file.

d.

Read only names are preceded by an R in parentheses and

read/write names are preceded by a W.

SAVE must be typed to save the guard file. The file can be

saved more than once, in which case only the version last

saved remains on disk.

e. QUIT causes the program to terminate. Any additions or

deletions made since the last SAVE will not be entered into

the guard file.

GUARD
continued

When a new file is being created, the program first asks for READ

only names and then for read/write names just as it does for an ADD.

It then asks

ADD, DELETE, LIST, SAVE, OR QUIT?

and the user may use any of the options described above.

Example:

GUARlY­

RUNNING

NEW OR OLD GUARD FILE?OLD--- ----

LOCK FILE NAME?YAL~

ADD, DELETE, LIST, SAVE, OR QUIT?

LIST-

ill ALICE

ill WHITE

ill RABBIT

(W) HATTER

ADD, DELETE, LIST, SAVE, OR QUIT?

ADD-

READ ONLY NAMES?RED, QUEEN~

READ/WRITE NAMES?~

ADD, DELETE, LIST, SAVE, OR QUIT?

DELETEl-

NAMES TO BE DELETED?

HATTER-

ADD, DELETE, LIST, SAVE, OR QUIT?

SAVEl-

LOCK FILE SAVED

ADD, DELETE, LIST, SAVE, OR QUIT?

QUIT-

THANK YOU.

END GUARD 1.1 SEC.

4-25

HELLO

HELLO.

The HELLO verb is used to initiate a log-in sequence.

is:

The format

The HELLO verb causes the session of the current user to be ter­

minated and a new session initiated without physically performing

a terminal disconnect.

4-26

LIST

LIST.

The LIST command is used to list the contents of a file. Its format

lS:

1. LIST

2. LIST f

3. LIST q

4. LIST f q

5. LIST flu
6. LIST f LIBRARY u

7. LIST flu q

8. LIST f LIBRARY u q

where f is a file name, u is a user

code, and q is a list of one or more

elements in any combination, of the

followlng two forms:

a. s

be

where s, sl' and s2 are sequence

numbers and s2 > sl"

In addition, the last element of the

list q may be one of the following

two forms:

a. END

b. s TO END

where s is a sequence number.

Without a file name, the LIST command lists the work file. With a

file name, the specified file is listed. If a list of sequence num-

bers is not included, the entire file is listed. Otherwise, the lines

with the specified sequence numbers are listed. An entry of the form

s causes that line to be listed. An entry of the form sl-s2 will

cause a listing of all lines with sequence numbers in the range from

4-27

LIST
continued

the first sequence number through the second sequence number. The

word END is equivalent to the highest sequence number in the file.

A maximum of nine sequence numbers are allowed in the list.

than nine are entered, the message typed is:

ERR: TOOMANY.

Any extra entries will be ignored.

If more

The sequence numbers in the list must be in ascending numerical

sequence. If a sequence number is out of order, CANDE types:

ERR : SEQNUM .

Requests to list non-existent records according to sequence number

reference are ignored.

Examples:

4-28

LIS~

ERR: vlRKFILE

LOAD X;LIS~

FILE:X - TYPE:ALGOL

END LOAD 1.1 SEC.

LOADING

FILE:X ~ TYPE:ALGOL --09/24/67

100 BEGIN REAL X,Y;

200 X:=Y:=5;

300 X:=X/Y:

40'0 END.

END LIST 1.1 SEC.

LIST 50-250,END~

FILE:X ~ TYPE:ALGOL --09/24/67
100 BEGIN REAL X,Y;

200 Y~-v.-t:::. - -d ,

400~

END LIST 1.0 SEC. -- --- ----
LIST X 100, 250 TO END

FILE:X - TYPE:ALGOL --09/24/67

100 BEGIN REAL X,Y;

300 x:=x!Y;
400 END. -- ---

LIST
continued

4-29

LOAD

LOAD.

The LOAD command loads an existing file as the work file. The

format is:

LOAD f

where f is
the file name.

If the load is successful, CANDE types:

FILE:file name TYPE:file type -- LOADING

END LOAD 1.0 SEC.

If, however, the file is not in the user's library, the message

typed is:

ERR:file name

Examples:

1. LOAD-

ERR:NOFILE

LOAD BIGFIL­

FILE:BIGFIL - TYPE:SEQ

END LOAD 1.0 SEC. -- --_._-" .. _- ----
2. LOAD JUNK­

ERR: JUNK

LOADING

JUNK IS NOT IN YOUR LIBRARY -----

LOAD JUNKY-

FILE:JUNKY - TYPE:ALGOL LOADING

4-30

LOCK

The LOCK command restores a file to its original locked status, or

attaches a guard file to a file. Its formats are:

1. LOCK f

2. LOCK f WITH g

3. LOCK SOURCE f

4. LOCK SOURCE f WITH g

5. LOCK OBJECT f

6. LOCK OBJECT f WITH g

where f is a file name andg is a guard

file.

Only the owner may access his files with locked status (all files

start off as locked). Only the programs and the users listed in the

guard file may access the file (see GUARD to create a guard file).

The owner may access without being in the guard file.

Examples:

1. LOCK SOURCE EXAMP~
LOCK EXAMP~

2. LOCK SOURCE EXAMP WITH USEFLE~

4-31

MAKE

MAKE.

The MAKE command creates a new file and establishes it as the work

file. The formats of the MAKE command are:

1. MAKE f

2. MAKE f t

3. MAKE f SIZE n

4. MAKE f t SIZE n

where f is a file name, t is a file

type, and n is the number of lines

to be contained in the file.

The file type may be ALGOL, COBOL, FORTRAN, BASIC, or SEQ which can

be abbreviated as :t, where t is the first letter of the type. For

instance, :A would be equivalent to ALGOL. If no type is specified,

then sequenced (SEQ) is assumed.

A MAKE command which includes a SIZE specification may be immediately

followed by the SAVE verb to reserve an area of the specified size.

The output files for BASIC programs must be reserved in this way.

After the file has been declared with the MAKE verb, CANDE responds

with:

FILE:file name - TYPE:type -- CREATED

If a file with the specified name already exists, CANDE types:

Examples:

4-32

FILE:file name - TYPE:file type -- DUPLICATE NAME

1. MAKE GROOVY BASIC-

Ti'TT Ti'. r!.DAA1TV
~' ...L.LJ.LI • \..A~\..V V y .L

2. MAKE-

ERR: NOFILE

CREATED

FILE NAME REQUIRED

MAKE FAB~

FILE:FAB - TYPE:SEQ DUPLICATE NAME

FAB ALREADY EXISTS IN YOUR LIBRARY

MAKE FAB2 :8

FILE:FAB2 - TYPE:SEQ

CREATED

MAKE
continued

4-33

MERGE

MERGE.

An existing file

command. It has

can be merged into the work file by using

the following formats:

1. MERGE f

2. MERGE f q

J. MERGE f r

4. MERGE f q r

where f and r are defined as in the

COpy command, yielding 48 cases. q

is a list of one or more elements,

in any combination, of the following

two forms:

a. s

b.

where s, sl' and s2 are sequence

numbers and S0 > S1.
?- ..L

In addition, the last element of the

list q may be one of the following

two forms:

a. END

b. s TO END

where s is a sequence number.

the MERGE

The specified file, or the indicated portions of it, will be merged

into the work file according to sequence numbers. In case of dup-

licate sequence numbers, the record in the work file maintains

priority. A successful merge is indicated by a number sign.

The numbers in the sequence list must be in ascending numerical

order. END is equivalent to the last sequence number in the list.

A maximum U.l nine entries are allowed in the list. If" the work f'ile

has not been declared, the message typed is:

ERR:WRKFILE

4-34

Example:

LIST USA-<-

FILE:USA - TYPE:SEQ --07/04/68

100 ONE.

200 TWO. -----
300 THREE.

END LIST ..:..2. SEC.

MAKE XYZ~

FILE:XYZ ~ TYPE:SEQ

200 TWO.X~

400 FOUR.X~

600 SIX.X~

MERGE USA~

itLIS~

CREATED

FILE:XYZ - TYPE:SEQ --11/07/68

1 (\(\ (\1\T"li'
..L\J\J '-'.l'J.J..J. -----
200 TWO.X

300 THREE.

400 FOUR.X

600 SIX.X

MERGE
continued

4-35

PRINT

PRINT.

The PRINT command is used to print a line(s) or a file. It is dif-

ferent from the LIST command in that it suppresses the heading and

causes CANDE to type only a number sign (#) when finished. The

formats are:

1. PRINT

2. PRINT f

3. PRINT q

4. PRINT f q

5. PRINT flu

6. PRINT f LIBRARY u

7. PRINT flu q

8. PRINT f LIBRARY u q

where f is a file name, u is a user code,

and q is a list of one or more elements

in any combination, of the following two

forms:

a. s

b. sl- s 2

where s, sl' and s2 are sequence numbers

and s2 > sl·

In addition, the last element of the list

q may be one of the following two forms:

a. END

b. s TO END

where s is a sequence number.
I

The PRINT command causes the work file, or a se-

quence range to be printed. Only the sequence numbers specified will

be printed. This can be from one to nine sequence numbers.

4-36

Examples:

PRINT

ERR:WRKFILE

LOAD X;PRIN~

FILE:X - TYPE:ALGOL

END LOAD 1.1 SEC. -- --- ----
100 BEGIN REAL X,Y;

200 X:=Y:=S

300 x:=x!Y;

400 END. -----

PRINT SO-2S0,ENDr

100 BEGIN REAL X,Y;

200 X:=Y;=S;

400 END. -----

PRINT X 100, 250 TO END

100 BEGIN REAL X y.
------~

300 X:=X!Y;

400 END. -----

LOADING

PRINT
continued

4-37

PUNCH

PUNCH.

The PUNCH command may be used to punch the work file or a file on

disk to paper tape. The format is:

PUNCH f

where f is
the file name.

After entering a PUNCH command, the user must turn on the paper tape

punch. The system will then send 10 rubouts, the name of the file,

40 rubouts, the contents of the file, and 40 more rubouts. Each line

of data is ended with a carriage return, a line feed, a group mark,

and a rubout. The tape can therefore be read back to the system

using the TAPE command by initially positioning it in the first set

of 40 rubouts.

If the specified file +-1.-_. ,,",
U...i..l.C error message is:

ERR:NOF'ILE

4-38

REMOVE

REMOVE.

The REMOVE command is used to remove files from the user's library.

It s fOY'rna t lS;

REMOVE s

where s is a list of one or more
elements, in any combination, of
the following three forms:

a. f.

b. SOURCE f •

c. OBJECT f •

where f is the file name
of the file being removed.

If the optional words SOURCE and OBJECT are not used, both versions

of the files named in the list are removed. The SOURCE and OBJECT

options are included to indicate that the files following them in

the list shou_ld have only the source or object versions removed.

These options apply to all files following them in the list until

another option is invoked or until the end of the list. For example,

REMOVE FILEl, FILE2, SOURCE FILE3, FILE4, OBJECT FILE5

would result in the removal of both versions of FILEI and FILE2,

the source versions of FILE3 and FILE4, and the object version of

FILE5. Note that all files for which both the source and object

versions are to be removed must appear in the beginning of the list.

If the source version is removed, a file can only be run or executed.

A maximum of nine entries, i.e., file names and uses of the SOURCE

and OBJEOT options, are allowed in the list.

exceeded, CANDE will respond with

ERR:TOOMANY

If this maximum is

and will ignore the extra entries. After the REMOVE command has

4-39

REMOVE
continued

been executed" a number sign is typed to indicate that CANDE is

ready for the next command.

Reference to a non-existent file will be noted by the message:

Examples:

4-40

ERR:file name

1. REMOVE FILE1,FILE2,FILE3-

it
"BOTH VERSIONS OF ALL THREE FILES HAVE BEEN REMOVED.-

2. REMOVE FILE1,SOURCE FILE2,OBJECT FILE3-

it
"BOTH VERSIONS OF FILEl HAVE BEEN REMOVED~

"ONLY THE SOURCE VERSION OF FILE2 HAS BEEN REMOVED­

"THE OBJECT VERSION, IF PRESENT, REMAINS ON DISK­

"FILE3 -SAME AS FILE2 WITH SOURCE AND OBJECT REVERSED-

J . RE~10VE OBJECT FILEl, FIL:22 ,FILE3'--

11
1t.

"OBJECT VERSIONS OF ALL THREE FILES HAVE BEEN REMOVED-

"SOURCE VERSIONS, IF PRESENT, REMAIN ON DISK-

RENAME

RENA1viE.

The RENAME command changes the name of the work file. The format

is:

RENAME f

where f is the

new file name.

RENAME may be used to give the work-file a new name so that a sub­

sequent SAVE will not destroy an existing file. A number sign (#)

is used to indicate that the renaming has been performed. If there

is no existing work file, CANDE responds with

Example:

ERR: WRKFILE

LIST FILES~

TESTX

LOAD TESTX~

FILE:TESTX - TYPE:BASIC

~ 1.Q!Q 1.0 SEC.

RENA!vf..E TSTING~

tLIST FILES~

TSTING

#300 X=Y~

RENAME TESTER~

tSAV~

FILE:TESTER - TYPE:BASIC

LIST FILES~

TSTING TESTER

t

LOADING

SAVED

4-41

RESEQ

RESEQ.

The RESEQ verb is used to change sequence numbers in the work file.

It has the following formats:

1. RESEQ f

2. RESEQ f b

3. RESEQ f sl-s2

4. RESEQ f b+i

5. RESEQ f sl+s2+i

where f is the file name, b is

the base number, sl and s2 are

sequence numbers, and i is the

increment. If a file name is

not specified, RESEQ will op-

erate on the work file.

If a base number is used, the entire file will be resequenced using

the base number as the first sequence number and increasing each

successive number by the increment. If the base number and/or the

increment are not given, they are assumed to be 100.

If a pair of sequence numbers is used, the lines between the two

sequence numbers are resequenced using the given increment.

After the file has been resequenced, the number sign is typed. If

resequ_encing results in a sequence number of

resequencing is abandoned and the message

ERR: TOOBIG

is typed. This leaves the last lines of the file with incorrect

sequence numbers. A correct RESEQ must be given before proceeding.

Example:

4-42

MAKE TEST02 :F~

FILE:TEST02 - TYPE:FORTRAN CREATED

1f\ D"li'AT T T..;.­
..LV .L\..JJ.t"1..1..J ..L, U

20 I=I/J..;.-

30 END..;.­

RESEQ +30..;.­

.ELIS~

FILE:TEST02 - TYPE:FORTRAN --10/19/67

100 REAL I,J

1..1Q I=I/J

160 Bill.
END ll§.! ..:..2. SEC.

RESEQ 100-130 +20..;.­

#140 J=I**2..;.-

LIS~

FILE:TEST02 - TYPE:FORTRAN --10/19/67

100 REAL I,J

120 I=I/J

140 J=I**2

RESEQ
continued

4-43

RUN

RUN.

The RUN command causes CANDE to take whatever actions are necessary

to run the specified program. It has the following formats:

1. RUN

2. RUN f c

3. RUN flu

4. RUN f LIBRARY u

where c is the compiler name or

is blank, f is the file name,

and u is the user's code.

CANDE will run the specified file by executing the object version

if it is available or, if there is no object version, by compiling

and executing the source version. If a file name is not included

in the RUN command, the work file will be run.

If RUN f requires f to be compiled, the resulting object file is

executed but not saved. However, if the work file is compiled with

RUN, the object file is kept in the work file so that, if the work

file has been changed since it was created or last saved, both

versions can be saved.

The compiler name can be ALGOL, COBOL, FORTRAN, BASIC or an abbre­

viation consisting of a colon followed by the first letter of the

compileris name. It is required for files of type SEQ, but in any

case, it will override the original file type and can be used for

any file type.

If it has been arranged through the file security system, object files

belonging to another user can be executed by including his user code

in the RUN command. Note that one user can only execute the object

version of another users file. He cannot compile the source version.

Therefore, a RUN command specifying a file in another users library

is equivalent to an EXECUTE command specifying that file.

4-44

RUN
continued

The messages typed by CANDE are the same as those typed for the

COMPILE and EXECUTE commands. Thus, if compiling is necessary, the

messages arez

COMPILING

END COMPILE ri SEC~

The messages for execution are:

Examples:

RUNNING

END file name n SEC.

LIST EXAMP-

FILE:EXAMP - TYPE:BASIC --11/17/67

100 LET x=Y=4-----
150 PRINT iiX=iiX, "Y=ilY_

200 END

END LIST 58 SEC ..

LOAD EXAMP-

FILE:EXAMP - TYPE:BASIC

END LOAD 82 SEC. -- --- -- ---
FIX 150. "Y=" . X~

LIST-

LOADING

FILE:EXAMP - TYPE:BASIC --11/25/67

100 LET X=Y=4 ----
150 PRINT "X="X,X*y

200 END

END LIST 1.0 SEC. -- --- ----
RUN EXAMP­

RUNNING

x=4 Y=4

END EXAMP .4 SEC. ---
RUN-

(original version)

(new version)

4-45

RUN
continued

4-46

COMPILING

END COMPILE 1 SEC.

RUNNING

x=4

END EXAMP .4 SEC. ---

SAVE

SAVE.

The SAVE command causes a copy of the current work file to be saved

on disk for future use. Its format is:

B
The SAVE command does not clear the work file, but merely establishes

a permanent disk file which reflects the work file at the time the

SAVE was entered. Any previous copies of the file are removed. If

the work file is saved more than once, only the version last saved

remains on disk.

If the work file has not been changed since it was initially created

or last saved, the SAVE command is ignored. If the save is performed

and there is an object version of the work file which agrees with t4e

source version, both versions are saved. otherwise, the object file

is not saved and the disk space allocated for it is returned to the

system. Wnenever a save is done, the old versions of both the source

and object files are removed.

Each file is saved as a locked file unless the user has previously

specified a different form of file security through the use of the

GUARD, LOCK, and UNLOCK commands.

When the file is saved, CANDE types:

FILE:file name - TYPE:file type --SAVED

If there is no work file, CANDE types:

Example:

ERR:WRKFILE.

LOAD TESTX~

FILE:TESTX - TYPE:ALGOL

END LOAD 1.0 SEC.

LOADING

010 COMMENT **ALGOL PROGRAM**;~

SAV~

FILE:TESTX - TYPE:ALGOL SAVED

4-47

SCHEDULE

SCHEDULE.

Jobs may be added to the schedule of jobs to be run in the back­

ground mode by using the SCHEDULE command. The format is:

where the f's
are file names.

The object versions of the files named are scheduled to be run in

background mode. This means that the job cannot send output to or

receive input from the Teletype. A number sign is typed after

the jobs have been scheduled. When the job has finished running,

the message

file name FINISHED

is sent to the Teletype if the user is still cfrnnected to the

system.

If the file is not present or does not have an object version,

the message typed is:

ERR:NOFILE

Example:

SCHEDULE SDOlB,SDOIA~

4-48

The SEQ verb is used to request CANDE to type the sequence numbers

for the user as he is inputting his file. It has the following

formats, :

1. SEQ

2. SEQ i.,
.L

J. SEQ +i2

4. SEQ i l + i2

where i
l

is a line number

and i is
2

an increment whose

value is no greater than 500,000.

The first integer gives the starting line number and the second,

which is always preceded by a plus sign, gives the increment be-

tween successive sequence numbers. If the increment is missing,

100 is assumed. If the starting sequence number is missing, the

highest currently in the work flle plus the incre-

ment is used. When automatic sequencing is used, the user must

wait for the sequence number to be typed before entering his data.

Automatic sequencing is terminated by typing a group mark (~)

immediately after the sequence number. CANDE will type a number

sign (#) to indicate that it is ready for further input.

Example:

MAKE XBASIo-

FILE:XBASIC = TYPE:SEQ == CREATED

"OOPS-- NEED A BLANK OR COMMA BETWEEN PARAMETERS~

MAKE X BASIC-

FILE:X - TYPE:BAStC

SEQ-

100 DIM X(20)~

200 Y=J*X(2)~

CREATED

4-49

SEQ
continued

4-50

300 Z==Y**2~

400-

#150 INPUT X­

#SEQ~

400 I==I+l-

500 ENlY-

600-

STATUS

STATUS.

The STATUS command is used to obtain the present status of the user

or his programs. The format is:

1. STATUS

2. STATUS f

3. ? STATUS

where f is the

file name.

A STATUS command with a file name is used to request information

about a job which has been scheduled. It will return either the time

the job has been in the schedule or the processor time it has used

running. If the file has not been scheduled, the error message is:

ERR:file name

If a file name is not included and the user is not running or com-

piling a program~ the STATUS command returns the date, the time of

day, the time at which the user logged-in, the charge code being used

(if any), the elapsed time since he logged in, the processor time he

has used, and the status of any jobs he has scheduled.

If the user has a job running, the STATUS command may be used to find

out how long it has been running. In this case, the STATUS verb must

be preceded by a question mark to distinguish it from data for the

program.

Example:

STATUS

12/29/67 10:42

ON AT 10:30

ON LINE 12 MIN

PROCESSOR TIME 31 SEC

4-51

STATUS
continued

4-52

SCHEDULED ITEMS

JOBI RUNNING 10 SEeS ---

STATUS JOBl-

JOBI SCHEDULED ~ MIN

it'

RUN JOB2-

RUNNING

?STATUS-

JOB2 RUNNING 28 SECS ---

STOP

STOP.

A scheduled job may be terminated by the STOP command. The for­

mat is:

If the program is running, it is aborted and CANDE responds

file name ... USER DS-ED. USED n SECS

where n is the number of seconds used by the program before it

was discontinued.

If the program is not yet running, it is removed from the schedule

and CANDE responds:

file name REMOVED FROM SCHEDULE.

If a schedule co~~and has not been issued for that file, the

response is:

ERR:file name

Example:

STOP SDOlfr-

SDOlB REMOVED FROM SCHEDULE

4-53

TAPE

TAPE.

The TAPE command is used to specify that a paper tape file is to be

read. Its formats are:

1. TAPE

2. TAPE SEQ

J. TAPE SEQ i l

4. TAPE SEQ +i2

5. TAPE SEQ i l + i2

where i l is a line number and

i2 is an increment whose value

is no greater than 500,000.

The system will type an OK message and then send an X-ON character

which initiates the tape reader if it is set to AUTO-START. If the

reader is not set for AUTO-START, the user must manually start the

reader after the OK message. After the tape has been read, the user

must turn off the reader and type ?END- to terminate the tape mode.

The system responds with a number sign to indicate that it is no

longer in tape mode. All system output to a user in tape mode is

suppressed between the time the X-ON and the # are sent~

When the SEQ option is not used, the data is treated the same way as

ordinary input. Each line must have a sequence number, but the lines

may be out of order. Corrections, in the form of FIX commands or

retyped lines, may be included on the tape. When SEQ is used, the

first line is given a sequence number equal to the base, and the

sequence number for each succeeding line is increased by the incre-

mente In the latter case, the lines must be in order and they

cannot contain sequence numbers or FIX commands.

A work file must be specified by the use of LOAD or MAKE verb before

the TAPE command may be typed. If this sequence is not followed, the

system will type:

ERR:WRKFILE

4-54

Example:

MAKE WORK COBOL~

FILE:WORK TYPE:COBOL

TAPE~

OK

?END-

CREATED

TAPE
continued

4-55

TO.

The TO command is used to send a message to other dialed-in users or

to the computer operator at the central site. The formats are:

1. TO SPO m

2 •. TO ALL m

3. TO u m

4. TO i l
m

where m is the message,

u is a user code, and

i
l

is a logical line

number. SS can also be

used in place of TO.

Depending upon whether SPO, ALL, a user code, or a logical line

number is used in the command, the message will be typed at the

operator's console, at the terminals of all the users logged on, at

the terminals of any users logged on with the specified user code,

or at the terminal connected to the specified line. SPO is a mnemo-

nic for supervisory printer, the name given to the operator's con-

sole. In all cases, the message is typed in the following format:

FROM sender's user code (sender's logical line number) message

TO SPO I NEED A SCRATCH TAPE

If there are no users connected with the given user code, or if the

specified line is not logged in, CANDE will respond with either

user code NOT ON

or

logical line number NOT ON

4-56

TO
continued

If the receiving user is in operation, such as running a program,

CANDE will type to the sending user:

user code BUSY

In either case, CANDE will discard the message.

4-57

TYPE

TYPE.

The TYPE cdmmand is used to change the file type associated with

the w·ork file.

TYPE t

where t is
the file type.

The file type options are ALGOL, COBOL, FORTRAN, BASIC, and SEQ

which may be abbreviated with the first letter of the type pre­

ceded by a colon.

If a work file has not been assigned to the user, the following

error message is given:

been changed.

Example:

4-58

ERR:WRKFILE

w 1 til a number I "\ sign \ff) after ~he Il~e ~ype has

LOAD IRS+-

FILE:IRS - TYPE:SEQ

END LOAD 1.0 SEC.

TYPE BASIC:LIST-

LOADING

FILE:IRS - TYPE:BASIC --04/15/68

100 x=4 ----

200 PRINT X**Y

300 END

END L.lST .8 SEC.

UNLOCK

UNLOCK.

The UNLOCK command allows any user to access a file - for read/only

(if SOURCE), owner may access in or execute/onlY (if OBJECT) . The

any manner.

Example:

The formats are:

1. UNLOCK

2. UNLOCK

3. UNLOCK

where f is a

UNLOCK SOURCE EXAMP~

UNLOCK EXAMP~

f

SOURCE f

OBJECT f

file name.

4-59

WHATS

WHATS.

The WHATS command returns the name and type of a file and, for a file

saved on disk, the number of records it contained. Its formats are:

1. WHATS

I
2. WHATS f

where f is a file name. I
If the file name is not included or is included and is the work file

only, the answer returned is:

FILE: file-name TYPE:type --- WRKFILE

If the file name is included and is that of a file saved on disk, the

answer returned is:

FILE: f'ile-name TYPE:type --- CONTAINS integer RECORDS

Examples:

WHATS XYZ~- (assuming XYZ to have been SAVEd)

FILE:XYZ TYPE:COBOL CONTAINS 2Q RECORDS

or

WHATS~

FILE:XYZ TYPE:COBOL WRKFILE

4-60

APPENDIX A

CHARACTER SET

The following characters define the character set acceptable to the

system. They are arranged by columns in collating sequence with

the blank low and the ? high:

Blank / A J T 3

B K U 4

[% c L V 5

(= D M W 6

&] E N X 7

$ 11 F 0 y 8

* # G P Z 9

) @ H Q 0 ?

I R 1

+ , S 2

Three other characters are acceptable to the system as control char-

acters only. They are the group mark (+-) , the backspace (r) , and

the delete
/ . '\

\ ~) .

A-I

APPENDIX B

RESERVED WORDS

The following is a list of all words used in the Command and Edit

language. Words preceded by an asterisk are reserved and may not

be used as file names.

A *COBOL FIX *OBJECT SCHEDULE

ADD COMPILE *FROM PASSWORD *SEQ
*ALGOL COPY FORTRAN PRINT SIZE

ALL CREATE GUARD PRINTER *SOURCE
APPEND D HELLO PUNCH STATUS
B DELETE LIBRARY REMOVE STOP

*BASIC DO LIST RENAME TAPE
BYE *END LOAD RESEQ *TO
c EXECUTE LOCK RUN *TYPE
CHANGE F' MAKE S UNLOCK
CHARGE *FILES MERGE SAVE WHATS

B-1

APPENDIX C

THE FILE SECURITY SYSTEM

The B 5500 Time Sharing System uses the file security system developed

for the Data Communications MCP. This system recognizes one privileg-

ed user who is allowed access to all files in the system. On the

Time Sharing System he is defined to be the installation running the

computer.

All other users are subject to the constraints of the file security

system. For them, there are three levels of file security:

a. A locked file may be accessed only by the person who created

it. This type of security is created by the use of the

SAVE command. All files start as locked files.

b. A guarded file may be accessed by the users and programs

listed in/the guard file associated with the file. A guard­

ed file can be created by the use of the GUARD and the LOCK

commands.

c. An unlocked file can be read (or executed, if the file has

an object version) by anyone, but it can only be changed by

the person who created it. Unlocked files are created by

the use of the UNLOCK command.

The security status of a file is treated in much the same way as the

file name or the file type. In effect, the security status is loaded

with the file and, if not changed by the user, remains with it when

the file is saved, even if the file name has been changed.

A guard file can specify two levels of access for either programs or

users:

a. Read only - the program or user may only read the file (or

execute if object code).

b. Read/write - the program or user may read from or write into

the file (not allowed on object code).

C-l

APPENDIX D

COMMAND AND EDIT SYNTAX

\APPEND(
tADD ~ file-name [1 1 t user-code] LIBRARY~

[sequence-list]

BYE

CHANGE

I
PASSWORD

[file-name]

CHARGE charge-code

lTO File-name(1
TYPE TO type~

COMPILE [file-name] [compiler]

COpy
(file-name TO hardware-unit

l [file-name [kIBRARA user-COde]] [sequence-list]

[RESEQ U~:~~e\J L+ incrementJ]

DELETE 1" [ALL] !
sequence-list~

l' DEXOECUTE (I 11/ (
~ Lfile-name L LIBRARY~ user-COde]]

GUARD

HELLO

sequence-number delimiter old-string

delimiter [new-string]

I

1
PRINT {
LIST \ [file-name [l{IBRARY(user-COde]] [sequence-list]

D-l

[LIST]FILES rL~ file-name!
tfile-type~

LOAD file-name

APPENDIX D (cont)

l

· · · J

LOCK [~~~~~g~~J file-name [WITH guard-file-name]

~MAKE t file-name [type] [SIZE integer]
fCREATE ~

MERGE file-name

[RESEQ

user COde] [sequence-list]

[+ increment]]

REMOVE [l~~~~g~~J file-name-l, [file-name-2] ••.

l'· rl· losBouJTRECcTE~'J. 'I I file -name-J , [file-name-4] · •. J

RENAME file-name

RESEQ [file-name] [+ increment]

RUN [file-name]
\[c~~pilerJ
{ [KIBRARY}

I

user-code] ~

SAVE

SCHEDULE file-name-l [, file-name-2J ...

SEQ [base] [+ increment]

D-2

APPENDIX D (cant)

STOP

TAPE [SEQ [base] [+ increment]]

~ ;~L code 1 message
tline number

TYPE type

UNLOCK [1
SOURCE tJ
OBJECT \

file-name

WHATS [file-name]

D-J

Q)

c

-0

{,
0>.
e I o I

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS

REMARKS FORM

TITLE: ___________ _

CHECK TYPE OF SUGGESTION:

DADDITION DDELETION DREVISION

FORM: ________ _
DATE:

DERROR

o ~---
GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION: -::>

u

r--
I FROM:
I
I
!

NAME
TITLE
COMPANY _______________ _

ADDRESS

DATE _____ _

STAPLE

FOLD DOWN SECOND FOLD DOWN

I
I
I
I
I
I
I
I
I
I

«

---~-------------------------~--

attn: Soles Technical Services
Systems Documentation

BUSINESS REPLY MAIL
First Closs Permit No. 817, Detroit, Mich. 48232

Burroughs Corporation
6071 Second Avenue
Detroit, Michigan 48232

--
FOLD UP FIRST FOLD UP

~
I
I
I
I
I
I
I
I
I
I
I

1038205 669 Printed in U. S. America

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	2-01
	2-02
	2-03
	2-04
	2-05
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	4-39
	4-40
	4-41
	4-42
	4-43
	4-44
	4-45
	4-46
	4-47
	4-48
	4-49
	4-50
	4-51
	4-52
	4-53
	4-54
	4-55
	4-56
	4-57
	4-58
	4-59
	4-60
	A-01
	B-01
	C-01
	D-01
	D-02
	D-03
	replyA
	replyB
	xBack

