
Information
Processing Systems

Printed In U. S. America

Burroughs
B 5500

INFORMATION PROCESSING SYSTEMS

MASTER CONTROL PROGRAM

REFERENCE MANUAL

Burroutahs Corporation
Oetrolt, Michigan 48232

6-69 1042462

COPYRIGHTO 1969 BURROUGHS CORPORATION

Burroughs Corporation believes the program described in this
manual to be accurate and reliable, and much care has been
taken in its preparation. However, the Corporation cannot
accep~ any responsibility, financial or otherwise, for any con­
sequences arising out of the use of this material. The infor­
mation contained herein is subject to change. Revisions may
be issued to advise of such changes and/or additions.

Correspondence .regarding this document should be forwarded using the Remarks Fonn at
the back of the manual, or may be addressed directly to Systems Documentation, Sales
Technical SelVices, Bunoughs Corporation, 6071 Second Avenue, Detroit, Michigan 48232.

SECTION

1

2

3

4

TABLE OF CONTENTS

TITLE

INTRODUCTION.

MASTER CONTROL PROGRAM.

General •

Program Reference Table (PRT)
for the MCP .

OPTION Word .

Array Information Table (AIT)

STATION Table Format.

THE DISK.

General .

Disk Layout •

Disk Directory.

DALOC •

Available-Disk Table.

MCP CLASSIFICATION AND ORGANIZATION
OF CORE STORAGE .

General •

Memory Links.

LOGGING .

General •

Abort Table •

Format of the System/Log.

System/Log Specifications .

Log Entry Specifications.

Code Word •

Control Card Information.

Compiler and Object Program
Information •

Special Records and Log Initialization.

Record Zero •

Record n + 1.

Initializing the Log.

PAGE

vii

· 1-1

· 1-1

• 1-1

· 1-6

· 1-7
· 1-8

• 2-1

2-1

2-1

• 2-4

· 2-8

• 2-11

· 3-1

· 3-1

· 3-2

· 4-1
· 4-1
· 4-1
· 4-2

· 4- 2

· 4-3

· 4-6
· 4-6

· 4-6
· 4-10
• 4-10

· 4-10
• 4-10

iii

SECTION

5

6

iv

TABLE OF CONTENTS (cont)

TITLE

Format of the Remote Log

Remote Log Specifications •••

Log Entry Specifications .•

Type 1 Log-Out Entry. • • .

Type 2 Log-In Entry • •

Type 3 Control Card Entry
(31 Characters or Less) •

Type 4 Control Card Entry

PAGE

'. . 4-10
· . 4-10
· . 4-11
· . 4-11

· 4-12

4-12

(32 Characters Up to 72 Characters). 4-12
Type 5 Job Statistics . . • . . . • . • . 4-13

Type 6 Abort Information Entry.. .. 4-14
Creation of Remote Log Entries ..

File Maintenance Procedures •

The WR Keyboard Input Message .

I/O CONTROL

General

I/O Queue (LOCATQUE, UNIT) ..

Input Output Assignment Tables.

4-15

· · 4-17
· . 4-18

5-1

· . 5-1

· . 5-1

· . 5-4
Logical Unit Numbers•••• 5-4

File Parameter Block (FPB) -
Addressed by R + 3 5-9
File Information Block (FIB).. . ••.• 5-12

File Tank • . . . • . • • • . . • •. .. 5-17
Label Equation Table (Used by SHEET ~~) • • • 5-18

MCP OPERATIONAL TABLES.

General . .

PRT [*, *] . .
BED [*]' .

· 6-1

· . 6-1

· . 6-1

· 6-5
Jobs Actually Running (JAR) [*,*] . . 6-7

S LA T E [*] 6 - 9

SHEET [*] 6-11

Segmen t Dic tionary and Related PRT Cel~ls
as Created by a Compiler.. ... 6-14

Fields and Their Values for the Seg-
ment Dictionary and Related PRT Cells. . 6-16

SECTION

7

8

9

TABLE OF CONTENTS (cont)

TITLE PAGE

Format of First 30 Words (1 Disk
Segment) of all Program Files . • 6-17

Method for Declaring Array Space .•.•• 6-17

NFO . . • . .

LOOKQ . . . • .

MESSAGEHOLDER

. • • • • 6-18

. • • . • 6-19

. · 6-20

Inquiry: Array DCB [16J and the ORR Word •• 6-20

Handling an Inquiry Request Interrupt • • • • 6-21

Handling a Fill with Inquiry.. • •••. 6-21

The ORR Word.
BINARY CARDS .•••

General • •
H/L Card.

ESPOL Transfer Card • •

· 6- 21

• 7-1

• 7-1

• 7-1

· 7- 8

ESPOL Load Card . • • . • • • 7-10
Initialization · . • • • • . • 7 -14

LIBRARY MAINTENANCE • · . · . . . 8-1

General • 8-1
Format of a Library Tape. · . . . • • 8-1
Format of Library Maintenance Segment
for Load Information (SHEET Entry) ••

INTERRUPT HANDLING. •
General . • • .

8-3

• 9-1

• 9-1
Presence Bit Interrupt Action • • • • . • 9-1

APPENDIX A - MCP COMMUNICATES • • . • • .

APPENDIX B - STANDARD B 5500 LABEL RECORD
· .
· .

·
• • • • A-I

• • • • B-1
APPENDIX C - CCMASKI - CCMASK2 - MIXMASK - INFOMASK •

APPENDIX D - USASCII X3.4 - 1967 STANDARD CODE ••••
· .
· .

INDEX . • • • • • • . • • • ·
• • C-l

• • D-l

· • one

v

FIGURE

2-1

3-1

3-2

3-3

4-1

4-2
4-3

4-4
7-1
8-1

8-2

TABLE

5-1
7-1
7-2
7-3
7-4

vi

LIST OF ILLUSTRATIONS

TITLE

Layout of Disk Below the Directory

Links for Available Area (3 Words) Field
Values and Functions • • _

Links for In-Use Area (2 Words) Field
Values and Functions • • • • _ • • • _

PAGE

2-7

· 3-3

3-5
Core Memory at Halt-Load Time:· Modules
0, 1, 3, and 4 On Line _ • • • _

Disk File Log Entry_
· · · . · . 3-7
. 4-4

General Format of each of the Three Types of
Log Entries. ••• • • •• ••

Format of General Program Information in a Log
Entry, including the Code Word • • • • • •

Format of One File Information Record. •

Detailed Flowchart of the H/L Card •

Format of a Library Tape • • • •

Format of the Library Maintenance Segment
for Load Information • • • • • • • • • • •

LIST OF TABLES

TITLE

. . . 4-5

· 4-7
· 4-8

. • • 7-6

• 8-2

8-3

PAGE

I/O Assignment Table • 5-4
H/L Button Card. ••• • 7-2
ESPOL Transfer Card. • • 7-8
ESPOL Load Card. • •• ••••••••••••• 7-10
Initialization Code Brought in by H/L Card ••••• 7-14

INTRODUCTION

Frequently, a lack of adequate information results in much time

being spent resolving software problems. This manual is an aid in

solving these problems. It includes assorted items of information

about the Master Control Program (MCP) Tables, segments, links,

words, and related material, which, together with a listing of the

MCP, will make it easier to define software problems.

Specifically, this reference manual is divided into nine sections,

which focus on the MCP Tables, the Disk, MCP classification and

Organization of Core Storage, Logging,MCP Operational Tables, Binary

Cards, Library Maintenance, and Interrupt Handling. In addition,

there are four appendices which supplement the text.

vii

SECTION I

MASTER CONTROL PROGRAM TABLES

GENERAL.

An MCP is a modular supervisory computer program which takes over

repetitive functions, some being logically complex, to make computer

programmers and operations more productive and efficient. The MCP

provides the overall coordination and control processing that is

so important to total production through the maximum use of all

B 5500 components. Operator intervention is nearly eliminated

because complete management of the system is assumed by the MCP,

a comprehensive operating system that provides simultaneous Input/

Output (I/O) operations and multiprocessing. By controlling the

sequence of processing, initiating all I/O operations, and pro­

viding automatic handling procedures to meet virtually all pro­

cessing conditions, the MCP can obtain maximum use of the system

components at all times. Since so many functions are performed

under this centralized control, changes in schedule, system config­

uration, and program sizes can be readily accommodated. Thus,

greater overall production and efficiency is achieved.

All versions of MCP handle the primary functions of control pro­

grams: loading, interrupts, I/O control, selection and initiation

of program I/O error conditions, system log, storage allocation,

overlay, and multiprogramming. The MCP is composed of tables

(i.e., arrays) and of procedures with an outer block which coor-

dinates their operation.

compose the MCP.

Section I focuses on the tables which

PROGRAM REFERENCE TABLE (PRT) FOR THE MCP.

The PRT contains the locations reserved for variables, data de­

scriptors, and program descriptors which give information about

data arrays and other program information. These locations are

likely to change in future MCP's. Brackets [J indicate a

descriptor. Otherwise, the variable is an operand.

1-1

Word

RRRMECH

[SLATE]

NSLATE

LSLATE

AVAIL

MSTART

MEND

TOGLE

[BED]

PIMIX

P2MIX

DATE

CLOCK

XCLOCK

1-2

Contents

Mask word used by STATUS to check I/O devices.

Descriptor pointing to SLATE array.

Pointer to last entry which was started

from SLATE.

Pointer to last entry placed in the SLATE.

Contains the address of the stopper for

available storage links; its value is the

highest available address -1.

Contains the address of the first area of

storage after the end of the MCP SAVE Pro­

cedures and the outer block code.

Pointer to last storage link in memory.

Word containing the following mask bits:

HP2TOG, STATUSBIT, SHEETFREE, STACKUSE, STOREDY,

USEHSPACEREADY, HOLDFREE, NSECONDREADY, ABORT­

ABLE, BUM PTUT I ME , KEYBOARDREADY, NOBACKTALK,

QTRDY, INTFREE, SPOENDULLOG, REMOTELOGFREE.

Descriptor pointing to BED array.

Mix index of normal state job for which work

is being done by Processor I in either normal

or control state.

Mix index of the normal state job for

which work is being done by Processor

2 in normal state.

Contains current date (YYDDD -- BCL).

Contains the number of time interval interrupts

processed since Halt/Load (H/L) multiplied

by 64.

External clock which is set by system operator

and tells the time of day (maintained in 60ths

of a second).

READY

[PRT]

[JAR]

[INTRNSC]

INTSIZE

[INTABLE]

[SHEET]

JOBNUM

[PRYOR]

NOPROCESSTOG

[NFO]

[ISTACK]

[PROCTIME]

[IOTIME]

[CHANNEL]

[FINALQUE]

[LOCATQUE]

Contents

Contains the contents of the ready register

on the last read.

Descriptor pointing to PRT array.

Descriptor pointing to Jobs Actually Running

(JAR) array.

Descriptor pointing to the INTRNSC array.

Used to determine row size for each mix index

in INTABLE.

Descriptor pointing to the INTABLE array.

Descriptor pointing to SHEET array.

Pointer to the last entry in the BED. The

number of entries in the BED is equal to

JOBNUM (in decimal) DIV 2 + 1.

Descriptor pointing to the PRYOR array, which

is a table containing priorities for each

mix index.

<0 if normal state processing is allowed.

Descriptor pointing to the NFO array.

Descriptor pointing to the independent stack.

Descriptor pointing to the PROCTIME array.

PROCTIME[l] contai.ns processor time for job

with mix index = 1.

Descriptor pointing to the IOTIME array. IOTIME

[1] contains I/O time for job with mix index

= 1.

Descriptor pointing to the CHANNEL array.

CHANNEL[l] contains logical unit of last

descriptor sent out on channel 1.

Descriptor pointing to the FINALQUE array.

Descriptor pointing to the LOCATQUE array.

1-3

IOQUEAVAIL

[IOQUE]

[UNIT]

[TINU]

[WAITQUE]

NEXTWAIT

FIRSTWAIT

[LABELTABLE]

[MULTITABLE]

[RDCTABLE]

[PRNTABLE]

ILL

INQCT

PINGO

READQ

RRNCOUN~r

[TRANSACTION]

LEFT OFF

MESSAGEHOLDER

BYPASS

1-4

Contents

Pointer to the first available space in IOQUE.

Descriptor pointing to the IOQUE array.

Descriptor pointing to the UNIT array.

Descriptor pointing to the TINU array.

A QUEUE of units for which there are I/O

requests but no I/O channel is available.

Pointer into WAITQUE at next available slot.

Pointer at next unit to be used when a channel

becomes available.

Descriptor pointing to the LABELTABLE array.

Descriptor pointing to the MULTITABLE array.

Descriptor pointing to the RDCTABLE array.

Descriptor pointing to the PRNTABLE array.

The head of the queue through which all data

communication output passes.

Counter of unprocessed data communications

interrupts.

Used to link tanked MCP input messages

together.

The head of the queue of all "sought"

terminal/buffers.

Count of Read-Ready-Normal data communi.cations
interrupts.

Descriptor pointing to the TRANSACTION array.

Used by OLAY for overlaying core.

Used by SPOUT and MESSAGEWRITER to link. SPO

messages.

Used by ENTERUSERFILE to locate the ends of the
regular and bypass directories.

NEXTSLOT

DISKBOTTOM

[DBARRAY]

DBADR

DIRECTORYFREE

IOMASK

SAVEWORD

CORE

KEYBOARDCOUNTER

NUMESS

Contents

Variable used to indicate the next available

position for file entry in the disk directory.

Variable set to the highest address of the

directory.

Descriptor pointing to the DBARRAY. The array

used with the DB feature of the DEBUGGING

option.

Variable used to contain the disk address

for the DB feature.

Variable used to interlock the directory.

Variable used as a mask to sleep until the

complete I/O action is finished.

Used to indicate which "in-use" device is to

be saved.

Used by SELECTRUN to determine if a job should

be introduced into the mix.

Count of unprocessed keyboard requests.

Initialized to -100; counts +1 for each SPOUT

message waiting to go to the SPO.

STATIONMESSAGEHOLDER

[STATION]

[FS]

TUMAX

[ATTACHED]

[USERCODE]

LOOKQ

Beginning of link-list of messages waiting to

go to remotes.

Descriptor pointing to the STATION array.

Descriptor pointing to the FS array.

Number of columns in the STATION array.

Descriptor pointing to the ATTACHED array.

Descriptor pointing to the USERCODE array.

Used to link user codes, masks, and times for

. remotes.

1-5

[UNITCODEJ

MCP

MIXMASK

INFOMASKl
INFOMASK2

CCMASKl
CCMASK2

OPTION

[USERDISKJ

OPTION WORD.

Contents

Descriptor pointing to the UNITCODE array.

Variable containing the user identification

of the privileged user.

Mask for legal input mix messages from remotes.

Masks for legal input (from remotes) keyboard

messages not requiring a mix index.

Masks for legal control card reserved words

from remote stations.

Contains the OPTION word.

Descriptor pointing to the USERDISK array.

'Word stored in MCP PRT to set and reset options. The OPTION word

is also stored as the first word in DIRECTORYTOP. The OPTION word

can be set or reset via the COLD START Routine or via the keyboard.

°Etion Field Ke~board Mnemonic

USEDRA [47: 1 J DRA

USEDRB [46: 1 J DRB

BOJMESS [45: 1 J BOJ

EOJMESS [44: 1 J EOJ

OPNMESS [43: 1 J OPEN

TERMGO [42: lJ TERMNATE

GIVEDATE [41: 1 J DATE

GIVETIME [40: 1 J TIME

SAMEBREAKTAPE [39: 1 J ONEBREAK

AUTO PRINT [38 : 1 J AUTOPRNT

CLEAR'WRS [37: 1J CLEAR'WRS

DISCONDC or [3 6 : 1 J DISCONDC
NOTIFYOP

GOPNMESS [35: 1 J COMPLFILE

CLOSEMESS [34: 1 J CLOSE

None [33: 1J ERRORMSG

RETMSG [32: 1 J RET

1-6

Option Field KeI:board Mnemonic

LIBMSG [31 : 1 J LIBMSG

SCHEDMSG [3 0 : 1 J SCHEDMSG

SECMSG [29 : 1 J SECMSG

DSKTOG [28: 1J DSKTOG

RELTOG [27 : 1 J RELTOG

PBDREL [26: 1 J PBDREL

CHECKLINK [25: 1 J CHECK

DSKMSG [24: 1J DISKMSG

DKLOG [23: 1J DISKLOG (TSS only)

LIBERR [22: 1 J LIB ERR (TSS only)

USEPBD [21: 1J PBDONLY

SVPBT [20: 1 J SAVEPBT

MOD3IOS [2: 1J (Cannot be accessed
through keyboard.)

ARRAY INFORMATION TABLE (AIT).

One AIT is associated with each program.

WORD 0

o

Field

[0: 9J

[19:39J

REMAINING WORDS

POINTER (i.e., INDEX) TO LAST
CURRENT AIT ENTRY

8 9

Contents

o

Index to last current AIT entry.
(INTEGER) •

BLOCK ABSOLUTE PRT ADDRESS
COUNTER ARRAY DESCRIPTOR OR

OF

47

FILE DESCRIPTOR 0/1

o 1 23 8 18 33 47

1-7

Field

[0: lJ

[1: 2J

[3: 5J

[8: 10J

[18: l5J

[33: l 5J

LABEL WORD

Contents

Flag bito

o = array.
1 = run time error entry.
2 = file"

Number of dimensions.

Block cOlmter (i.e., nesting depth when file or

array is declared).

Absolute address of file or array descriptor or of

Run Time Errors* (RTE) cell containing label word.

Save indicator (l=SAVE) for arrays or for RTE.

The operand constructed by GOTOSOLVER.

Field

[CFJ

[FFJ

[8: 10J

Contents

R-relative address of the label descriptor.

Proper F Register setting. If 0, then outer block.

Block Counter setting.

The operand is usually contained in the stack or in the PRT (for

RTE). It is used to represent action labels or rormal labels.

STATION TABLE FORMAT.

The Station Table Format is a Dump debugging aid. It is formatted

as follows:

Field

[0: IJ

[1 :lJ

Contents

Flag bi t (off).

Output in process by STATIONMESSAGEWRITER.

*Error type:

1 = integer overflow.
2 = exponent overflow.
4 = invalid index.
8 = divide by zero.

16 = flag bit.

1-8

Field

[2: 1]

[3: 1]

[4: 4]

[8: 1]

*[9: 4]

*[13 : 1]

*[14: 4]

[18: 4]

[22: 1]

*[23 : 1]

*[24: 1]

*[25: 1]

[26: 1]

*[27: 1]

*[28: 1]

[29 : 1]

*[30: 1]

[31: 1]

[32:1]

Contents

SPO Console input request flag (Bit 32 should be

on also).

Not used.

TU index into STATION for next control station. If

not a control station, its own index.

Not used.

TU address for this word.

DTCU Translator bypassed: Translate=l, omit trans­

late=O. (Translation: ASCII to BCL or Baudot to

BCL.)

Buffer address for this word.

Buffer index into STATION for next control station.

If not a control station, its own index.

Station busy.

Adapter sensed "abnormal" condition.

Read-Ready Buffer.

Group mark or IFAL ending: Group mark=O, IFAL=l.

Break.

Write ready: l=Write without group mark ending.

(Additional write required to clear buffer.) O=Group

mark finish write.

l:nput error.

Write in-process.

Station not ready.

Mix messages not desired flag (l=no mix message,

O=output mix messages.)

SPO Console flag. (When this bit is on, all input

is treated as if it had originated at the SPO.)

*Indicates hardware-defined fields.

1-9

Field

[33: IJ
[3 4 : 1 J

[35: 3J

[38 : 5J

[43: 1 J
[44: IJ

[45: 1 J
[46: 1J
[47: 1J

1-10

Contents

Not usede

Message Delete action required.

Not used.,

Exclusive user's mix index. (=31 if station is

a SPO Console)

Tanked input.

Tanked MCP input being entered.

Station assigned to a job.

Station logged-in.

Not used.

GENERAL.

SECTION 2

THE DISK

A disk file or system memory is a prerequisite to the use of the

MCP. The disk file is used by the MCP as an auxiliary storage

area. Therefore, it is necessary to be acquainted with its organ-

ization.

Disk storage is divided into two categories: system disk and user

disk. System disk is the disk area reserved for:

a. The DF MCP program and tables.

b. The disk directory.

c. The available-disk list, and other DF MCP uses.

User disk is the area used for remaining facilities. Data files,

scratch files, and library programs, including the B 5500 problem

oriented compilers, may be stored in the user disk area. This

section presents that disk information which is applicable to the

B 5500 MCP Tables.

DISK LAYOUT.

An area on disk to be used for a particular file must be explicitly

reserved for that file. A program must specify the amount of disk

required for a file. The DF MCP allows a single file to occupy

from one to twenty separate areas on disk. The number of areas

and their size is specified by the program that creates the file.

The fact that a file is stored in more than one area does not in

any way affect the way it is referenced by a program. Regardless

of the number of areas used, a program always addresses a file as

though it were one continuous string of records.

The disk layout is dealt with in the following manner:

2-1

MCP

012

Segment

o

1

MCP starts at
segment 2

ESPDISK

ABORT

DIRECTORYTOP

o

1

2

4

5

6

2-2

-

ESP
DISK

Field

ABORT
DIRECTORY DIRECTORY USER TOP

993 999 y

Contents

Not used.

Copy of HIL Button Card.

Storage of operating system.

Used by the MCP for scratch pad.

Location of the Abort Table (Segments 993

=) 998).

Contains parameters for MCP.

Segment 999 on disk.

Contents

OPTION word.

DATE (in BCL).

Number of electronic storage

units.

Highest address of directory (Y).

Last number used for control

deck.

First control deck queued (locat­

ion in directory).

Segment Contents

DIRECTORYTOP (cont)

7

8

9

10 =) 15

Field

[10J .[0:16J

• [16:16J

.[32 : 16J

[llJ .[0:16J

.[16:16J

.[3 2 : 16J

[12J .[0:16J

.[16:16J

.[32:16J

[13J .[0:16J

.[16:16J

.[32:16J

[14J .[0:16J

.[16:16J

.[32 : 16J

[15J .[0:16J

.[16:3 2 J

Contents

Last control deck queued (locat­

ion in directory).

Next number available for printer

backup disk.

Multiprocessing core factor.

Specify which data communications

stations are similar to the SPO.

Not used .

TU 1, buffers 0 =) 15.

TU 2, buffers 0 =) 15.

TU 3, buffers 0 =) 15.

TU 4, buffers 0 =) 15.

TU 5, buffers 0 =) 15.

TU 6, buffers 0 =) 15.

TU 7, buffers 0 =) 15.

TU 8, buffers 0 =) 15.

TU 9, buffers 0 =) 15.

TU 10, buffers 0 =) 15.

TU 11, buffers 0 =) 15.

TU 12, buffers 0 =) 15.

TU 13, buffers 0 =) 15.

TU 14, buffers 0 =) 15.

TU 15, buffers 0 =) 15.

Not used.

Entries are made in words 10 =)
15 by the procedure MARKSPOSTA.

2-3

Segment

DIRECTOHYTOP (cont)

Word Field

16

17 =) 28

29

DIRECTORY

USER

DISK DIRECTORY.

Contents

Contents

The Boolean variable HOLDFREE

is used to interlock the DI-

HECTORYTOP.

Q value for data communications

input.

Reserved for expansion.

Contains USERDISKSL during re­

starts and breakouts.

Area used by MCP to maintain di­

rectory of entire in-use disk.

Area used for storage of system

log, compilers, and all other

user files.

The MCP maintains, on disk, a disk directory which provides infor-

mation about all permanent files on the disk. Each directory sec-

tion is composed of 16 segments which contain information for up

to 15 files. These sections are allocated as needed in the disk

directory area specified by the user.

The 16th segment in a section contains the names (i.e., file iden­

tification) of each file defined in that section. In the first

name position, @114 indicates last entry, and @14 means available

entry.

1003

2-4

The preceding 15 segments are referred to as file headers.

FILE HEADERS

1017

NAME
SEGMENT

1018

NAME SEGMENT

Contains up to 15 pairs of names for each file defined in this

section. The names are in the same order as the files in the pre­

ceding 15 segments. There are two words for each file header.

FILE HEADERS

o

1

2

3

4

Field

[0: 15 J
[15 : l5J

[3 0 : l 2J

[42: 6J

[1: 1 J
[2: 10 J
[12:l8J

[3 0 : l8J
[l:'lJ

[2: 7J
[9: 1 J
[10: 1 J
[11:25J

[36: 6J

Contents

Record length.

Block length.

Records per block.

Segments per block.

Row length in segments.

File creator or user code.

= 0 Free file.

> 0 Public file, sole user file,

private file.

< 0 Security file.

If 1, then file is new format. *

Save factor (binary).

Date of last access (binary).

Creation date (binary).

= 1 if file interlock.

Used by library maintenance.

If 1, then file is new format.

If 1, then file is a program.

Reserved for expansion - bits set

to zero.

File type (used by Time Sharing System) .

= 0, Unknown

= 1, BASIC

= 2, ALGOL

= J, COBOL

*Effective with Mark VIII, change 41, page 3, Systems Note No. 229,
June 21, 1968.

2-5

Word

4 (cont)

5

6

7

8

9

Field

[42:6J

[l:lJ

[1:48J

[6:42J

10 through 29

2-6

Contents

= 4, FORTRAN

= 5, TSPOL

= 6, XALGOL

= 7, SEQ

= 8, DATA

= 9, LOCK (Securi ty) •

Open count.

= 1, PRIVATE file.

= 0, SOLE user file or SECURITY file (see

H[2J.[1:lJ).

= 12, INFO file if H[6J = 12, and H[2J I 0;

PUBLIC file if H[6J = 0 and H[2J = 0;

FREE file if H[6J = 12 and H[2J = o.

File ID if SECURITY file (see H[2J and

R[5J).

Number of logical records (EOF pointer).

Number of segments per row, as specified in

file declaration.

Number of rows, as specified in 1:'ile

declaration.

Binary disk addresses of rows (zero if not

assigned) •

The layout of the disk below the directory is presented in figure

2-1.

o
DISK
AD DR

1

2

NOT USED

H/L BUTTON CARD

INTERRUPT CODES

MCP'S
PRT

OUTER BLOCK CODE

SAVE CODE

NON-SAVE CODE

ESPDISK
(MCP SCRATCH PAD AREA)

MCP DIRECTORY TOP
AND DIRECTORY

DIRECTORYTOP (999)

DISKTOP

Figure 2-1. Layout of Disk Below the Directory

2-7

The MCP scratch pad area begins at the first segment beyond the

last segment used for non-save code. Initially, ESPDISKAVAIL is

set = 0, and DISKTOP is set to the address of the first usable

segment in the scratch pad area. DISKTOP will contain the address

of the first usable segment in the contiguous scratch pad area.

If DISK~[,OP + 1 ever becomes equal to the address of DIRECTORYTOP,

then a PUNT message of NO MCP DISK will be initiated and the system

will haIt.

DALOC.

NOTE

GETESPDTSK will return the address

of an available segment in the MCP

scratch area as an operand.

FORGETESPDISK (segment address) will

return the address specified by "seg­

ment address", which must be an operand,

to an available scratch area.

DALOC is a two dimensional array used to manage overlay storage

both on drums and disk. It has MIXMAX + 1 rows, each of which is

initially nine words long, and is expandable as required.

DALOC INX PIMIX points to the DALOC Row for PIMIX which has the

following construction:

WORD 0

INDEX LIMIT

o 18 JJ 47

2-8

WORD 1

o

WORD 2

o

Word 0

INDEX

LIMIT

Word 1

9 12

DISK ADDRESS
«0 IF DRUM)

18 24

NOTE

47

30 42 47

Words 3 and 4, 5 and 6, 7 and 8, etc.

are identical in construction and use

to words 1 and 2.

Field

[18: l5J

[33: l5J

Contents

Pointer to the first evenly numbered

word (2, 4, 6, etc.) which may be used

to locate some overlay storage.

Pointer to the last (largest) evenly

numbered word which is being used for

this PlMIX.

Contains the disk address of the base of a 500 segment section of

overlay storage. One such section is made available at SELECT RUN

time. If this word is negative, the overlay storage referenced is

on the drum.

2-9

Word 2 Field

[2: 7J

[9: 3J

[18: 6J

[24: 6J

[30: 6J

[36: 6J

[42: 6J

Contents

Contains the next relative address

available within the sub-section indi­

cated by the following field (9:3).

Indicates which of the following sub­

sections (100 segments each) is active

(0 through 4).

SUb-section number 1.

Sub-section number 2.

Sub-section number 3.

SUb-section number 4.

Sub-section number 5.

Each sub-section controls 100 segments

of overlay storage. The number in each

field indicates the number of times the

system has allocated space from the

applicable 100 segments of a sub-section.

When an area referenced by a descriptor has been overlaid, bits 33:6
of the descriptor contain a value used to locate the odd-numbered

word in the DALOC Row for this mix index, which contains the base

disk address of the 500 segment section in which the information

has been placed. Bits 39:9 of the descriptor contain the offset,

which, when added to the base, gives the absolute disk address of

the information.

When a previously overlaid area is made present again, these two

fields are transferred to the F field of the descriptor. This

will assure that subsequent overlays of this data will return to

the same place on disk.

If we say DESC is defined as the descriptor, then the disk address to

2-10

which we must re-over1ay is calculated as

DALOC[P1MIX,DESC.[33: 6]x2-1]+DESC.[39:9]

AVAILABLE-DISK TABLE.

The Available-Disk Table is a two part, Fine/Coarse Table. While

the Fine Table is maintained on disk in ESPDISK, the Coarse Table

is kept in core memory.

The format of the Fine Table in ESPDISK is as follows:

WORD 29

o 3

WORD 2

o 3

WORD 1

o 3

WORD 0

o

DKSZ DISKA

r
24

DKSZ DISKA

r
24

DKSZ DISKA

24

NUMBER OF VALID ENTRIES IN
THIS 30 WORD TABLE (1-29)

47

47

47

47
2-11

The format of the Coarse Table in core memory is as follows:

WORD a

WORD 1

The Coarse

Fine Table

DISKA

DKSZ

I
~ J

ESAD UNUM

a 16 21 47

--

DKSZ DISKA

r
0 3 24 47

Table is expandable in two word increments, as additional

entries are

Field

[23: 25]

[3: 20]

required.

Contents

Absolute disk address of a section

of available disk.

Size of the available area starting

at DISKA.

In the Coarse Table, there are copies of the entry for the largest

area in the associated Fine Table.

ESAD [1: 15]

UNUM [16: 5]

2-12

Address of the associated Fine Table

in ESPDISK.

Number of valid entries in the Fine

Table. UNUM must agree with word a
of the Fine Table.

SECTION 3

MCP CLASSIFICATION AND ORGANIZATION OF CORE STORAGE

GENERAL.

Certainly, if core storage is to be put to use efficiently, it must

be classified and organized. Basically, storage is organized

through the use of memory links.

The MCP classifies core areas containing information which must

remain in place as non-overlayable storage. For example, the MCP

has routines and tables that must frequently be used when handling

interrupt conditions and other control functions. The space that

would be momentarily gained by overlaying such information would

not be worth the time required to make the information present when

needed again.

There is also a need for certain kinds of object program information

to remain in fixed locations while a program is being processed.

This requirement holds for all information which will be referenced

by the MCP through the use of absolute addresses; for example,

control fields which contain absolute addresses of program segments.

Overlayable storage refers to information in core storage that

must be present when needed. It is often the case that all infor­

mation pertaining to a program cannot be in core at the same time.

This ~s most often the case when programming for operating systems

with less than maximum core. However, the majority of the infor­

mation related to object programs, and most information in the

MCP, may be used relatively infrequently. With respect to such

information, the major factor determining its necessity to be pre­

sent in core is that it must be present when needed.

Since the B 5500 programs are stored on disk during the time they

are processing, individual program segments are read into core as

they are needed. If the area used by the program segment is to be

overlaid, there is an exact copy of it on disk. The MCP has only

to mark the segment absent in appropriate places, and the area it

3-1

occupied can be used for other segments. If the segment is needed

again, it can be read into core from disk.

Available storage is storage currently not in use. Such storage

can be assigned as needed. Section 3 deals with the memory links

which are used by the MCP.

MEMORY LINKS.

Memory links are used by the MCP to keep track of the assignment

of core areas. There is an available memory link in every unas­

signed area. A memory link for available storage occupies three

words. These words provide the following information:

a. They specify that the area is available.

b. They specify the size of the area.

c. They provide the address of the following available area.

When core storage is classified and organized for the first time

after a H/L, the MCP performs operations to determine what memory

modules are available on the system in a contiguous area from mem­

ory address O. Links are set up so that the areas in those modules

which are not present are never assigned, and, consequently, never

addressed. Permanent MCP program segments related to initialization

routines may be in core after initialization, but they are over­

layable; all other core is marked available.

Figures 3-1, 3-2, and 3-3 present information necessary to

deal successfully with memory links.

3-2

WORD 1

0 1 ADDRESS OF ADDRESS OF
PREVIOUS AREA NEXT AREA

0 1 2 9 15 18 33

Field Field Value Contents

[0: lJ 0

[1: lJ 1

[~: lJ NA*

[3: 6J NA

[9: 6J NA

[15: 3 J NA

[18:l5J Address

[33: l 5J Address

*NA=Not Applicable

Figure 3-1.

Flag bit.

Availability.

Address of first word of link

for previous area.

Address of first word of link

for next area.

Links for Available Area (3 Words) Field
Values and Contents (Sheet 1 of 2)

47

3-3

WORD 2

o

Field

[0:18J

[18:l5J

[33: 1 5]

WORD 3

o

Field

[0: 33J

[33: l 5J

3-4

Field Value

o

Varies

Address

Field Value

o

Address

ADDRESS
SIZE OF OF NEXT

THIS AREA AVAILABLE
AREA

18 33

Contents

Zeros required by LLL operator.

Size of available area.

Address of second word in link

for next available area.

ADDRESS OF
PREVIOUS

AVAILABLE
AREA

33

Contents

None.

Address of second word in link

for previous available area.

Figure 3-1. Links for Available Area (3 wordsl Field
Values and Contents (Sheet 2 of 2

47

47

WORD 1

S

0 0
A
V TYPE MIX

E

o 1 2 9

Field Field Value

[0: 1] 0

[1: 1] 0

[2: 1] Oil

[3: 6J 0-7

[9: 6J o - MIXMAX

NA

ADDRESS ADDRESS
OF OF

PREVIOUS NEXT
AREA AREA

15 18 33 47

Contents

Flag bit.

Availability.

Save (1 = save area).

Type of area:

0 = miscellaneous data.

1 = program.

2 = data.

3 = IIO buffers.

4 = ALGOL FIB.

S = MCP data communications area.

6 = COBOL FIB.

7 = intrinsic segment.

Mix index of program using area.

Intrinsics and MCP always have MIX

field = O. Re-entrant program code

has the mix of the first job.

None.

Figure 3-2. Link for In-Use Area (2 Words) Field
Values and Contents (Sheet 1 of 2)

3-5

Field

[18:15J

[33: 15J

WORD 2

o 1

Field

[0: 33J

[33: 1 5J

3-6

Field Value

Address

Address

.

Field Value

Varies

Address

Contents

Address of first word of link for

previous area.

Address of first word for next area.

ADDR

33

Contents

Type 2 data-overlay address

on disk.

Size of program segments and

intrinsics.

47

If data or file tank, address of

array descriptor.

If object program, segment number.

If it is a data communications'

buffer area, READQ or ILL link word.

If MCP program segment, PRT address.

If intrinsic, segment number for

the job which first made it present.

Figure 3-2. Link for In-Use Area (2 Words) Field
Values and Contents (Sheet 2 of 2)

00000

00001

03720

03721

03722

30000

30001

30002

W
I

-.J

MODULE 0

1 0 1 000 477 7 5 037 2 0

o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0 1 7 7 7 7

o 0 0 0 0 0 1 4 0 5 4 3 0 0 0 1

00000 0 0 0 0 0 047 7 7 6

MODULE 3

2 0 000 0 1 7 7 7 7 4 7 7 7 5 l
o 0 0 0 0 0 1 7 7 7 447 7 7 6 i

I o 0 0 0 0 0 0 000 0 037 2 1 j

17777

47775

47776

47777

MODULE 1

100 0 0 0 0 3 7 203 0 0 0 0

MODULE 4

1 000 0 0 3 0 000 0 0 0 0 0

o 0 0 0 0 0 7 7 777 037 2 1

000 0 000 0 0 0 0 3 0 0 0 1

Figure 3-3. Core Memory at H/L Time: Modules 0, 1, 3, and 4 On Line

GENERAL.

SECTION 4
LOGGING

MCP maintains a computer log recording the system time and other

information concerning the program.

performed automatically by the MCP.

The maintenance of the log is

Records are written on the

log file in the order in which the information becomes available.

The log information is written in a file on user disk called SYSTEM/

LOG.

The first record in the log is used by the MCP. The value of the

first field in this record specifies the number of records written

in the log. The value of the second field specifies the record

capacity of the log. The third and fourth fields are used in con­

junction with the warning messages supplied by the MCP which specify

when the log is half full or full. The fifth field contains the

word "DSKLOG. tI

The MCP writes several types of records for every job. These are:

a. BOJ and EOJ records.

b. File records.

c. Idle time and H/L records.

A program to print the log is provided. However, any program can

read the log file. Consequently, each installation can provide

its own log printing program, and format the output as desired.

Section 4 is a detailed presentation of the logging procedures and

formats for the B 5500 Systems.

ABORT TABLE.

The Abort Table is kept by the MCP to log-off abort jobs.

used by NSECOND in termination. The Table is located at

DIRECTORYTOP - 6.

Contents

o XCLOCK

It is

4-1

1

2

Contents.

DATE

"ABORT"

The next three entries are repeated for each job in the mix. If

the mix number is not assigned, the entries are zeroed.

Relative Location

3xMIX + 1

3xMIX + 2

3xMIX + 90

3xMIX + 91

3xMIX + 92

FORMAT OF THE SYSTEM/LOG.

Contents

Process time.

I/O time.

IDLETIME (from the JAR).

First name of object program.

Second name of object program.

[1:23J start time, and [24:24J pointer

to location of control card in ESPDISK

to be written into the SYSTEM/LOG.

A program to print the log is provided by Burroughs Corporation.

However, any program can read the log file. Consequently, each

installation can provide its own log printing program, and format

the output as desired.

SYSTEM/LOG SPECIFICATIONS.

Log information for programs run on a B 5500 System is written in

a file on user disk. The log file occupies one area on disk, and

has the (file identification prefix) SYSTEM and the (file identifi­

cation) LOG. It is the user's responsibility to provide this file.

The file SYSTEM/LOG is blocked. There are six logical records per

physical record. The logical records are five words (i.eu, 40

characters) in length; the physical records are 30 words in length.

1. Mix index.

4-2

LOG ENTRY SPECIFICATIONS.

Entries in the log can be considered to fall into one of four cate­

gories:

a. Compile-and-Go entries,

b. Compile-Only entries,

c. Execute entries, and

d. Disk log entries.

With respect to these categories, the following rules determine how

a program is entered in the log.

a. If a Compile-and-Go run is made and the program being com­

piled contains no syntax errors, the log information for

both the compiler and the object program is listed in a Com­

pile-and-Go entry.

b. If a Compile-and-Go run is made and the program being com­

piled contains syntax errors, or if a Compile-for-Syntax

run is made, or if a Compile-to-Library is made, the log

information for the compiler is listed in a Compile-Only

entry.

c. If an Execute run (i.e., library call-out) is made, the log

information for the object program is listed in an Execute

entry.

d. If the DISKLOG compile time option for the MCP is set, disk

files will be logged at the time the files are removed from

the disk (e.g., after a CC REMOVE) under the following con­

ditions:

1) When a scratch file is CLOSEd.

2) When a file is CLOSEd after obtaining more space.

J) When a file is LOADed from a library tape with the same

(multi-file identification) / (file identification) as

a file on disk.

4-3

4) When the operator enters a log-out istruction, LNDK.

The LNDK message logs out all disk files and resets

their creat~on date (R[J].[JO:18]) and the creation

time (R[1].[25:2J]).

Figures 1+-1 and 4-2 present the disk file and the general format

for log entries. The first log entry starts in the record with

relative address 1.

TYPE:

CODE:

WORD

--

4-4

MFID FID

1 WORD 2 WORD 3

1 RECORD

Entry

Type Code

MFID

FID

User Code

Creation Date

Creation Time

Date Logged

USER

CODE

WORD 4

'rime Logged

:'~umber of Segments

o

CREA- CREA- DATE TIME NUMBER

TION TION OF

TIME TIME LOGGED LOGGED SEGMENTS

WORD 5 WORD 6 WORD 7 WORD 8 WORD 9 WORD

.. -
1 RECORD

Description

=8

First Name of File (7 CRR)

Second Name of File (7 CRR)

(7 CHR)

In Form YYDDD (BCD)

1/60 Second (OCT)

In Form YYDDD (BCD)

1/60 Second (OCT)

(OCT)

Reserved for Expansion

Figure 4-1. Disk File Log Entry

0

10
~

~

C
0
D
E

CONTROL CARD
INFORMATION

1st 72
COLUMNS OF
COMPILE
CARD

C
0
D
E

COMPILE-AND-GO ENTRY

COMPILER INFORMATION
~

,
GENERAL

: FILE PROGRAM
INFOR- I INFOR-

I MATION MATI ON ,
C
0
D
E

OBJECT PROGRAM
INFORMATION

~

I GENERAL I FILE PROGRAM
INFOR- I INFOR-

'MATION MATI ON I

- -- -- .. . - - .. - -- 2 RECORDS - - 2 RECORDS - N RECORDS 2 RECORDS -
(CODE = 3) (CODE = 1 OR 2) (CODE = 0)

COMPILE-ONLY ENTRY
CONTROL CARD

INFORMATION

C 1st 72

~

0 COLUMNS OF
D COMPILE
E CARD

... -

C
0
D
E

-

COMPILER INFORMATION
~

• •
GENERAL ,
PROGRAM ,FILE

INFOR- .INFOR-

MATI ON ,MATION

•
-- ---2 RECORDS "2 RECORDS -N RECO RDS

(CODE = 3)

CONTROL CARD
INFORMATION

.Ao..

C 1st 72
0 COLUMNS OF
D EXECUTE
E CARD

- --2 RECORDS
(CODE = 3)

(CODE = 1 OR 2)

EXECUTE ENTRY

C
0
D
fE

--2

OBJECT PROGRAM
INFORMATION
~

I

GENERAL I
• FILE PROGRAM
I INFOR-

INFOR- •
MATI ON • MATION

I

.. - --.. -- -RECORDS M RECORD
(CODE = 0)

NOTE

N = Number of files declared by compiler.

S

M RECORD

M = Number of files declared by object program.

Figure 4-2. General Format of each of the
Three Types of Log Entries

S

4-5

CODE WORD.

As shown in Figure 4-2, each log entry contains:

a. Control card information, and

b. Compiler and/or object program information.

The code word preceding each group of information denotes the type

of information. Information preceded by a 1 pertains to the ALGOL

Compiler; information preceded by a 2 pertains to the COBOL Com­

piler; and information preceded by a 0 pertains to an object pro­

gram. Code 4 denotes the end-of-log information.

CONTROL CARD INFORMATION.

Control card information is contained in the first two records of

a log entry, starting at the second word of the first record. This

information is a copy of the contents of the first 72 columns of the

COMPILE Card or EXECUTE Card that caused the particular run to be

schedulc~d .

The word immediately preceding the control card information is a

code with the integer value J.

COMPILEH AND OBJECT PROGRAM INFORMATION.

Compiler information and object program information have identical

formats., Therefore, the format for this information will be dis­

cussed under the general name "program information".

Program information falls into two categories:

a. General program information, and

b. File information.

The general program information is contained in two records. The

file information requires a variable number of records, depending

upon the number of files declared by the program. There is one

record required in the log for each file declared by the program.

Each record of file information, however, has the same format.

4-6

Figure 4-3 shows the format of general program information. Figure

4-4 shows the format of one record of file informa.tion.

NO. OF
CODE FILES

DECLARED

1 WORD

Entry

CODE

NO. OF FILES
OPENED

PROCESS TIME

I/O TIME

DATE

START TIME

STOP TIME

FINISH CODE

RFE

, GENERAL PROGRAM INFORMATION

PROCESS I/O PRO- START FINISH RATED DATE RFE TIME TIME TIME TIME CODE

1 WORD

1 RECORD 1 RECORD

Description

INTEGER: 1 = ALGOL, 2 = COBOL, 3 = obj. prog.,
5 = printer backup, 6 = FORTRAN,
8 = disk log

INTEGER

INTEGER: Time in 60ths of a second.

INTEGER: Time in 60ths of a second.

BCL: YYDDD format* (e.g., 65046).

INTEGER: 60ths of a second since H/L time.

INTEGER: 60ths of a second since H/L time.

INTEGER: 0 = EOJ, 1 = SYNTAX ERROR, 2 = DS-ed.

(Reserved for Expansion).

*The YYDDD format provides that the YY characters specify the last

two digits of the year, and the DDD characters specify the number

of the day of the year.

Figure 4-3. Format of General Program Information
in a Log Entry, including the Code Word.

4-7

R MULTIPLE
F FILE
E IDENTI-

FICATION

--
WORD 1

--

Entry

MULTIPLE FILE
IDENTIFICATION

R
F
E

- -.. ~

FILE IDENTIFICATION

REEL NO.

DATE

CYCLE

C
U FILE Y R N R LENGTH OF

IDENTI- REEL DATE C F 0
N F TIME FILE

FICATION NO. L E E I E WAS OPENED
E T

- - .. :.... - -. .. ~ - .. --WORD 2 WORD 3 WORD 4 WORD 5

-

pescription

BCL:

BCL:

BCL:

BCL:

BCL:

Located in second through eighth cha­

racters of WORD l~

Located in second through eighth cha­

racters of WORD 2.

Located in first through third cha­

racters of WORD 3.

Located in fourth through eighth cha­

racters of WORD 3.

Located in first and second charac­

ters of WORD h.

NOE (Number of errors BINARY:
while handling file)

Located in fifth and sixth characters

of WORD h.

UNIT

LENGTH OF TIME FILE
WAS OPENED

BINARY: Located in seventh character of WORD 4.
(See list below for meanings of the

values of UNIT.)

INTEGER: Time in 60th of a second.

RFE (Reserved for expansion.)

Figure 4-4. Format of One File Information Record

4-8

The values of UNIT specify what unit was used by the subject file.

The values are now defined.

Value

o
1

2

3
4

5
6

7

8

9

10

11

12

13
14

15
16

17
18

19
20

21

22

23
24

25
26

27
28

29
30

31

ILO Unit

Not opened

MTA

MTB

MTC

MTD

MTE

MTF

MTH

MTJ

MTK

MTL

MTM

MTN

MTP

MTR

MTS

MTT

DRA

DRB

DKA

DKB

LPA

LPB

CPA
--
CRA

eRB

SPO

PPA

PRA

PPB

PRB

DCA

4-9

SPECIAL RECORDS AND LOG INITIALIZATION.

Additional information concerning log maintenance for the MCP

includes the following:

RECORD ZERO. The first record in SYSTEM/LOG (i.e., the record with

relative address 0) is used by the MCP when making log entries.

The ·val.ue of the first word in record zero specifies the number of

records written in the log. The value of the second word specifies

the record capacity of the log. The third and foUrth words are

used in conjunction with the warning messages supplied by the MCP

which signify when the log is half-full and full. The fifth word

contains, in BCL, "DISKLOG".

RECORD N + 1. The first word of the record immediately following

the last log entry contains a code with the value 4. This record

denotes the end-of-log information, and it is not included in the

value contained in the first word record of record zero.

INITIALIZING THE LOG. If a user program wishes to initialize the

log (i.e., set up the log so that the MCP considers the log empty),

the following actions are performed:

a. The first, third, and fourth words in record zero

must be set to zero.

b. The first word in record 1 must be set to 4.

FORMAT OF THE REMOTE/LOG.

The topic of formatting the Remote Log is dealt with by giving the

necessary specifications for the log. The log entry specifications

are presented as six types. In addition, the two part partition

of the :file REMOTE/LOG is discussed wi th the file maintenance pro­

cedures and with the WR keyboard input message.

REMOTE LOG SPECIFICATIONS.

The remote log information for the data communications' facilities

is wri t t:; en in a file on the user disk. The file has the (file

identification prefix) REMOTE and the (file identification) LOG.

4-10

The file REMOTE/LOG is blocked and is confined to one area on the

disk. There are five logical records per physical record. A logi­

cal record is five words in length or 40 characters; a physical

record is 30 words in length. It is the user's responsibility

to provide this file. Logging for data communications is bypassed

if the system does not provide a REMOTE/LOG file.

LOG ENTRY SPECIFICATIONS.

Entries in the Remote Log are of six types:

Type 1

Type 2

Type :3

Type 4

Type 5

Type 6

Log-out entry.

Log-in entry.

Control card entry of less than 32 characters.

Control card entry of 32 characters or more, but

not greater than 72 characters.

Job statistics entry.

Abort information entry.

Types 1, 2, and 3 each require one logical record in the log.

Types 4, 5, and 6 require two logical records per entry.

TYPE 1 LOG-OUT ENTRY.

The following information is entered into the file REMOTE/LOG when

a data communications' station logs out.

1 Record

Word a Station number ([9:4]=TU,[14:4]=BUF).
Code = 1.

Word 1 User identification (as specified by the
File Security System).

Word 2 Current date (YYDDD-BCL).

Word 4 Unused.

4-11

TYPE 2 LOG-IN ENTRY.

The MCP enters the following information in the file REMOTE/LOG

when a data communications' station logs in.

1 Record

Word 0 [9: 9J
[42: 6J

station number ([9:4]=TU,[14:4]=BUF).
Code = 2.

Word 1 User identification (as specified by the
File Security System).

Word 2 Current date (YYDDD-BCL).

Word 3 Time of day at log-in.

Word 4 Unused.

TYPE 3 CONTROL CARD ENTRY (31 CHARACTERS OR LESS).

The MCP enters the following information (or type 4 information)

in the file REMOTE/LOG when a job is selected to run. Every RUN

or EXECUTE from a remote station is logged.

1 Record

Word 0

Word 1

[9: 9~
[18:24
[42: 6

Station number ([9:4]=TU,[14:4]=BUF).
RUN NUMBER * .
Code = 3.

through Contents of control card.
Word 4

TYPE 4 CONTROL CARD ENTRY (32 CHARACTERS AND UP TO 72 CHARACTERS).

The MCP enters the following information (or type 3 information)

in the file REMOTE/LOG when a job is selected to run. Every RUN

or EXECUTE from a remote station is logged.

2 Records

Word 0

Word 1

Station number ([9:4]=TU,[14:4]=BUF).
RUN NUMBER * .
Code = 4.

through Contents of control card.
Word 9

*Entries in the file REMOTE/LOG corresponding to entries in the file
SYSTEM/LOG have the same RUN NUMBER, where a job's RUN NUMBER is de­
fined to be its start time (in 60ths of a second) as specified in
the System Log.

4-12

TYPE 5 JOB STATISTICS.

The MCP enters the following information in the file REMOTE/LOG

when a station detaches from a job.

Field

o [2: 1 J

[18:24J

[42 : 6J

1

2

3

4

5

6

7 [3 : 21]

Contents

1 if this station attached by entering

an EXECUTE or RUN card; 0 if attached

by READ, SEEK or WRITE.

Station number ([9:4J=TU, [14:4J=BUF).

RUN NUMBER (as specified in the types

3 or 4 entries).

Code = 5.

User code.

First name of the object program

(seven characters).

Second name of the object program

(seven characters).

Processor time in 60th of a second;

i.e., processor time used for this

station, out of total used by job.

Pro-rated time in 60th of a second;

i.e., pro-rated time used by this

station, out of total used by job.

I/O time in 60th of a second;

i.e., I/O time used by this station,

out of total used by job.

Start date; i.e., date when job

attached to this station (in binary).

4-13

Word

7 {cont}

8

9

Field

[27 : 21 J

Contents

Stop date; i.e., date when job detached

from station {in binary}.

Attach time; i.e., time when job

attached to station.

Detach time; i.e., time when job

detached from station.

TYPE 6 ABORT INFORMATION ENTRY.

The form of a type 6 entry is:

Field

o [2: 1 J

[9: 9 J

[18:24J

[42: 6J

1

2

3

4

5

6

4-14

Contents

1 if this station attached by entering

an EXECUTE or RUN Card; 0 if attached

by READ, SEEK or WRITE.

Station number ([9:4J=TU, [14:4J=BUF).

Run number.

Code = 6.

User code.

First name of object program.

Second name of object program.

Processor time in 60ths of a second;

i.e., processor time used by this station

out of total used by job.

Pro-rated time in 60ths of a second;

i.e., pro-rated time used by this station

out of total used by job.

I/O time in 60ths of a second; i.e., I/O

Field

6 (cont)

7 [J : 21]

8

9

Contents

time used by this station out of total

used by job.

Start date; i.e., date when job attached

to this station (in binary).

Stop date; i.e., date of last R/L

(in binary).

Attach time; i.e., time when job

attached to station.

Detach time; i.e., time at last R/L.

CREATION OF REMOTE LOG ENTRIES.

As indicated above, log-in, log-out, and control card entries are

made at the time at which they occur. This is possible since the

information contained in those entries is immediately available.

The information contained within a job statistics' entry is accumu­

lated during the time that a remote terminal is attached to a pro-

gram. The entry is recorded in the Remote Log at the time a pro-

gram and remote terminal become detached from one another.

It is the responsibility of the object program to dictate which

remote station is to be charged for any particular "slice" of a

program's processor, I/O, and pro-rated time. The task involved

in specifying the station to be charged is, however, an easy one.

The procedure involved in slicing times is as follows.

The MCP maintains a table, called USERSTA, which contains one loca­

tion for each program in the mix. The contents of a given program's

location in this table is the station address of the remote station

presently specified to be charged for the time used by that program.

When a program enters the mix, its location in the USERSTA Table

is set to the address of station 0/0, a non-existent remote termi­

nal. The times assigned to station % are those which the program

4-1.5

does not assign to any given station; i.e., they are unassigned

time. Then from that time until the address in that program's

USERSTA location changes, station % is charged for all processor,

I/O, and pro-rated times charged to the program. When the address

in the program's USEHSTA location changes, the remote terminal

whose address is then specified begins being charged for the times

assigned to the program, etc.

The way in which a program designates the address to be placed in

USERSTA. (i.e., the way in which a program designates the station

to be charged) is to perform either a passive or active interrogate

statement referencing the station. In ALGOL, this involves a

statement of the form STATUS (TUBUF,O) or STATUS (TUBUF,~l). In

COBOL, it involves a statement such as MOVE FILENAME FROM TU, BUF

TO STATUSWORD or MOVE FILENAME FROM TU, BUF AFTER CHECK ~ro STATUS­

WORD. Each time such an interrogate is performed, the MCP checks

to see if the terminal buffer address currently in the program's

USERSTA location is different from the one specified in the interro­

gate statement. If it is, the old station is charged with all

times since the previous change in USERSTA and the new station is

established as the new recipient of time.

It should be noted that, if a program wishes to designate certain

times as being unassigned (i.e., assigned to station 0/0), it

should perform a passive interrogate on station 0/0.

Whenever a station is detached from a program, a .job statistics

entry is recorded in the log. The entry, of course, contains all

the timl=s which were allotted to the station in the manner des­

cribed above.

The file REMOTE/LOG is partitioned in two parts. If.!!. is an integer

specifying the number of 30 word segments used by the file, then

the first n-ABRTLNGTH segments are reserved for remote terminal

log-entries. The record capacity of this area in logical records

is 6 x (n-ABRTLNGTH). The abort information is written in the

remaining ABRTLNGTH segments of the file. The parameter ABRTLNGTH

4-16

(MCP Sequence No. 00908000) specifies the number of segments used

in maintaining abort information and must not exceed 34. A remote

terminal requires an entry in the Abort Table for each program to

which it is attached; the maximum number of entries accommodated

is 3 x ABRTLNGTH -1. In the event that a H/L is necessary, the

abort area of the file REMOTE/LOG is checked to determine if any

remote terminals were attached prior to the H/L sequence. Abort

information is formatted as a type 6 entry, and placed in the first

(n-ABRTLNGTH) segments.

FILE MAINTENANCE PROCEDURES.

To retain information for the file REMOTE/LOG, a FILE CARD group

should appear in the Cold Start Deck (see Burroughs B 22QQ Elec­

tronic Information Processing System Operation Manual, Form 1024916,

pages 3-9 through 3-11).

The first record of the file REMOTE/LOG (i.e., the record with

relative address 0) describes the remainder of the file.

of record 0 are:

Contents

Record 0
File

REMOTE/LOG

Word 0

Word 1

Word 2
through
Word 4

Value of word equals the number of

logical records written in the file

REMOTE/LOG.

Value of word equals the record capacity

(in logical records) of the file REMOTE/

LOG.

Reserved for system use.

A user program must initialize word 0 of the file REMOTE/LOG to 0

and word 1 to the record capacity of the file. For example, if the

FILE Card in the FILE CARD group of the Cold Start Deck has the

form

FILE REMOTE/LOG,lxlOOO

4-17

then a user program must initialize Record 0, Word 0 to 0 and

Record 0, Word 1 to 6000.

The B 5500 operator is notified when the log is half-full and when

the log is full. Should the log become full, wrap around will

occur. If the log is not present, the operator will be notified

the first time the log is accessed.

Operator notification is via the SPO and the messages are:

#R:EMOTE/LOG FULL

This message is typed when the log is full. Wrap­

around will occur the next time the log is accessed.

#DUMP REMOTE/LOG

This message :is typed when the log is half-full.

#NULL REMOTE/LOG

This message :is typed the first time the remote log

is accessed and is not present.

THE WR KEYBOARD INPUT MESSAGE.

If the rile with (file identification prefix) REMOTE and (file

identification) LOG is not on disk and the operator enters a WR

keyboard input message, then 1000 segments are obtained for the

file RKMOTE/LOG and it is entered in the disk directory. The

first IOOO-ABRTLNGTH segments are reserved for log-entries; the

record capacity in logical records of this area equals 6 ~ (1000-

ABRTLNG'1~H). The remaining segments are reserved for information

pertinent to remote terminals currently attached to programs for

abort logging if necessary. An entry is made in this section of

the file: for each remote terminal attached to a job. The maximum

number of such entries is 3 x (ABRTLNGTH-I). The message

#REMOTE LOG ON DISK

is typed out on the SPO when the REMOTE/LOG has been placed on disk

and initialized.

4-18

GENERAL.

SECTION 5
I/O CONTROL

The I/O Control functions of the MCP are logically divided into

two parts:

a. Processing of I/O requests made by the object program,

and,

b. Processing of situations resulting from a hardware action;

i.e., an independent interrupt.

The first covers opening the files, reading and writing files, with

special regard to problems offered by the disk files, and closing

the files. The second describes the processing of I/O results,

hardware errors, and error routines. Section 5 focuses on the

detailed MCP Table information which is applicable to I/O Control.

I/O-QUEUE (LOCATQUE, UNIT).

IOQUE, FINALQUE, and LOCATQUE together with UNIT forms the I/O­

QUEUE. An I/O request for logical unit U requires three words of

space in the I/O-QUEUE. If the request occupies position S in the

I/O-QUEUE, then IOQUE(S) contains the I/O descriptor for the re­

quest. FINALQUE(S) contains the I/O descriptor skeleton to be used

at I/O complete time to rebuild the original I/O descriptor. LO­

CATQUE(S) points to the location of the I/O descriptor at the time

of request. The spaces not used in the I/O-QUEUE are linked to­

gether through IOQUE. The first available entry is pointed to by

IOQUEAVAIL.

All entries in LOCATQUE have the following format:

MIX NOT
ER LUN INDEX ADDRESS 1 0 1 INDEX USED

012 8 11 12 18 33 47

5-1

Field

5 [0: 3J

MIX INDEX [3: 5J

[8: 3J

ER [11 : 1 J

LUN [12:6J

INDEX [18:l5J

ADDRESS [33: l 5J

Contents

Descriptor identification bits.

MIX INDEX of program which requested

the I/O operation.

Not used.

Error retry in process.

Logical unit number of unit on which

the I/O is to be executed.

Index into I/O-QUEUE of next I/O request

on this unit. @77777 if no additional

requests occur.

Address of the I/O descriptor used for

this request at time request was made.

If buffering is being used by the object

program, the descriptors are rotated

and the I/O descriptor may not remain

in its original location.

All entries in UNIT have the following format (this is a SAVE

array) :

p::~
O...:l ERROR

TYPE ~~ NOT FLAG WAIT VARIES INDEX :INDEX
CODE ~~ READY

BIT

o 5 13 14 15 16 18 33 47

5-2

Word Field

o [0: 1 J

Type code [1: 4 J

Error field [5: 8J

0/1 [13 : 1 J

0/1 [14: 1 J

0/1 [15 : 1 J

Varies [16: 2J

INDEX [18:15J

Contents

Flag bi t.

0 = card reader.

1 = line printer.

2 = magnetic tape.

3 = drum.

4 = disk.

5 = spo.
6 = card punch.

8 = paper tape punch.

9 = paper tape reader.

10= data communications.

Error field of last I/O done on this

unit.

Not ready bit 0 = unit ready.

1 = unit not ready.

Error flag bit 0 = no errors.

1 = errors.

Waiting for I/O channell = I/O

awaiting an I/O channel.

I/O in process bits 00 = unit not

in process.

11 = unit in process.

01 = for line printer

only. I/O

complete but

awaiting printer

finish.

Index of first I/O request for which

service is not complete. @77777 if

5-3

Word Field

INDEX (cont)

[33: l 5J

Contents

none. This is the first entry in the

QUEUE.

Index of last I/O request (entry in the

QUEUE) for which service is not complete.

INPUT OUTPUT ASSIGNMENT TABLE.

The I/O Assignment Table is presented as table 5-1. The discussion

which f:ollows the table focuses on the logical unit numbers for

each I/O unit.

LOGICAL UNIT NUMBERS.

The MCP associates one unique logical unit number with each I/O

unit, which is different from the hardware unit number. The logical

unit numbers assigned the I/O units were determined by the format

of the result of the Read-Ready-Register (RRR) operator. The re­

sult of' the RRR operation is stored in the field [17:3lJ. Num­

bering from right to left, bit [47:lJ is numbered 0, and bit [22:lJ

is numbered 25.

UNIT

MTA

MTB

MTC

MTD

MTE

MTF

MTH

MTJ

MTK

5-4

Table 5-1

I/O Assignment Table

LOGICAL UNIT
NUMBER

0

1

2

3

4

5

6

7

8

RRRMECH BIT

47

46

45

44

43

42

41

40

39

UNIT

MTL

MTM

MTN

MTP

MTR

MTS

MTT

DRA

DRB

DKA

DKB

LPA

LPB

CPA

CRA

CRB

SPO

PPA

PRA

PRB

PPB

DCA

xxx (Used by
ZIP)

CDA

CDB

CDC

CDD

MTX

CDE through CDZ, ex-
cluding CDI and CDO,
and CD2 through CD9.

Table 5~1 (cont)

I/O Assignment Table

LOGICAL UNIT
NUMBER

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27
28

29

30

31

32

33

34

35

36

37 through 64

RRRMECH BIT

38

37

36

35

34

33

32

31

3 0

29

28

27

26

25

24

23

22

21

20

19
18

17

5-5

TINU is an array used by the I/O routines and provides information

about the I/O units. The entries in TINU are ordered according to

logical unit number. Information about the unit with logical unit

number, LUN, is in TINU [LUNJ. All entries in TINU have the following

format:

o J

o

o

Unit
mnemonic

HARDWARE
UNIT

NUMBER

8 11

Field

[0: JJ

[8:.5J

[11:17J

[18:l2J

[JO:18J

LUN R/w UNIT MNEMONIC

lJ 24 2.5 JO 47

Contents

Not used.

Unit number recognized by hardware.

Not used.

This field contains the logical unit

number indicator, which has the f'ollowing

characteristics. The expression

(O&TINU [LUNJ . [.5:ll:7J /@lOOOOOOOOOOOO)

will produce a result with all zeros, ex­

cept in the bit location corresponding to

the RRR result bit location designated

for the unit represented by TINU [LUNJ.

Error count for unit while open.

Three character abbreviation for the unit

represented by TINU [LUNJ. For example,

CRA.

LABELTABLE, MULTITABLE, and RDCTABLE contain label information by

logical unit number .

.5-6

The LABELTABLE is the primary table in the group. The entry of a

unit into this table specifies one of the following:

a. The unit is NOT READY.

b. The unit is READY and contains a file that can be used

for output (e.g., a line printer file, or a magnetic

tape file with a write-ring)~

c. The unit is READY and contains an input file not in-use

(the LABELTABLE entry in this case would include the

file identification of the input file), or

d. The file is READY but in-use.

The MULTITABLE contains the multiple file identification of the

file, if any, on the unit represented by the table entry. The RDC

Table contains the reel number, purge date, and cycle number of

the file, if any, on the unit represented by the table entry. In­

formation in the LABELTABLE, the MULTITABLE, and the RDCTABLE is

obtained from the standard labels on the files, if the files are

so labeled. Otherwise, the information can be supplied through the

use of Label Equation Cards or operator messages. The STATUS Pro-

cedure has the primary responsibility of maintaining these tables.

LABELTABLE [IJ contains the file identification for logical unit I.

MULTITABLE [IJ contains the corresponding multi-file identification.

RDCTABLE [IJ contains the corresponding reel number ([14:l0J), cre­

ation date ([24:l7J), and cycle ([4l:7J). If UNIT I is assigned

to a program, RDCTABLE [IJ, [8:6J contains a mix index.

entries into the LABELTABLE include:

Entry

@114

-@14

@2l4

@3l4

+

Contents

Unit not ready.

Unit in use by system.

Unit is RW/L or saved.

Uni,t con tains an unlabeled tape.

Unit available.

Special

5-7

Contents

Unit in use.

o Scratch.

For units 0 through 15:

PRNTABLE [IJ contains a 1 in [30:18J if the file is labeled, and,

if assigned to a program, the address of the top I/O descriptor in

[15:15J. PRNTABLE [IJ . [l:lJ is 1 if the unit has a write ring.

UNIT[SJ contains the F field pointing to the first I/O j_n IOQUE.

IOQUE[S] (waiting I/O descriptors) contains the F field pointing

to next :rio. If none, @77777 and C field points to UNIT[S].

IOQUEAVATL points to the first open space in IOQUE; each then

points to the next.

FINALQUE[S] (skeleton descriptors) contains the result expected.

LOCATQUE[SJ contains the location of the top I/O descriptor.

DATA COMMUNICATION BUFFER

PRIMARY
MEMORY
LINK

5-8

FILE WORD
DATACOM

I/O STATUS LINK COUNT WORD

NOTE

With respect to File Link, [FF]

= link to next buffer, and [CF]

= address of top IOD.

DATA
BUFFER

NON-DATA COMMUNICATION BUFFER

PRIMARY
MEMORY
LINK

SECONDARY FILE LINK
WORD MEMORY [FF]

LINK [CF] COUNT

NOTE

For input, READQ link; for output, ILL

link. [FF] = points to previous entry.

[CF] = points to next entry - the Data­

com status word is the first word of

the Data Buffer.

FILE PARAMETER BLOCK (FPB) - ADDRESSED BY R+3.

nATA

BUFFER

Each program has an FPB, which is created when a program is com-

piled. It is later modified by the SELECTION Routine during the

"fix-up" before a program is initiated. The FPB for a program has

an entry for every file to be used· by the program.

When a file is declared in a program, that is, when the source

program associates the file identifier with a file name and file

handling techniques, the compiler assigns the file identifier a

file number. This file number, rather than the file identifier, is

then used in all references made to the corresponding file by the

object program. For each file member, and in file number order,

there is an entry in the program's FPB. Each entry in the FPB

contains the file identifier, the multiple file identification, and

the file identification for the particular number. The location

and size of the FPB are placed in an entry of the program's zero

5-9

segment. When the SELECTION Procedure is performing "fix-up" op­

erations, it uses this information to obtain the FPB. The FPB

must be used at this time to process Label Equation Cards, if any.

Label Equation Cards are special program parameter cards that can

be used at run time to associate a file name with a file identi­

fier used in the source language representation of a program. Each

Label Equation Card contains the file identifier concerned and

the equation information. The equation information includes the

multiple file identification and the file identification to be

associated with the file identifier. When SELECTION obtains a

program's FPB, it also obtains all Label Equation Cards for the

program, if any. Then the file identifiers in the FPB entries are

compared with the file identifiers on Label Equation Cards. If a

match is found, information in the FPB is replaced with the corres­

ponding information from the Label Equation Card. It is in this

way that file names associated with files represented by file

identifiers can be decided at run time. After all Label Equation

Cards for a program have been handled, SELECTION modifies the FPB

again by removing the file identifier entries, which are no longer

required. Then a descriptor containing the address of the compacted

FPB is placed in a specified location in the object program's PRT.

Using this description and a file number, the object program is

able to make all necessary references to FPB entries.

WORD I

MFID

o 6 47

Field yon ten ts

o [0: 6J Not used .

.5-10

MFID

WORD 2

o
FID

o

WORD 3

o

REEL

DATE

WORD 4

CYCLE

o

Field

[6 : 42 J

6

Field

[0: 6J
[6: 42 J

REEL

Field

[0: l8J

[18:3 0 J

12

Contents

Seven characters multi-file identifica­

tion.

FID

47

Contents

Not used.

Seven character file identification.

DATE

18 47

Contents

Reel number in three character alpha.

Creation date in five characters.

ERRORS LU + 1 TYPE

24 36 42 43 47

5- 11

Word

Cycle

Error

LU + 1

Forms

Type

WORD 5

Word

File open

Field

[0: 12J

[24:12J

[36 : 6J

[42 : 1]

[43:5J

Field

[1: IJ

[2: 46J

Contents

Cycle number (two characters).

Total number of errors for this file.

Logical unit number plus one. Zero

indicates unit not assigned.

1 = types of forms messages.

o = CP/CR.

1 = LP only.

2 = MT.

3 = DG (designated).

4 = LP/PBT.

5 = specified unit (unlabeled).

6 = PBT only.

7 = PT.

8 = PT unlabeled.

9 = MT unlabeled.

10 = disk.

11 = SPO.

12 = disk serial.

13 = disk update.

14 = data communications .

. L5 = PBD only.

16 = PBT/PBD.

17 = LP/PBD.

18 = LP/PBT/PBD.

19 = REMOTE

Contents

1 = file is open.

I/O time on this unit.

FILE INFORMATION BLOCK (FIB).

At run time, there is one FIB generated for each file to be used by

a program.o An FIB is genera ted by an obj ec t program at each

5-12

program point corresponding to a file declaration in the source

language representation of the program. Initially, the FIB con­

tains only the information about file handling techniques provided

in the source program. When a file is put to use, I/O routines

use a file's FIB to store information pertinent to the file such

as block counts, ,record counts, etc. At the point when a file's

FIB is created~ a buffer descriptor area, containing an I/O descrip­

tor for each buffer area to be used for the file, is also created.

o

1

2

3

4

Field

Field

[l:llJ

[12:12J

[24:12J

[36:12J

[l:lJ

[2:1J

[3:2J

[.5:1J

[6:1J

[7:1J

[8:4J

o = CR

1 = LP

Contents

Beginning file.

Beginning reel.

} USE Routines (see note).
Ending file.

NOTE

Contents

starting index, BEFORE Routine.

Ending index, BEFORE Routine.

Starting index, AFTER Routine.

Ending index, AFTER Routine.

Ending reel.

1 = USE Routines present.

1 = labels omitted.

EOR rerun: 00 = no,

01 = output tape,

10 = scratch tape.

1 = optional.

1 = no I/O part.

1 = sort file.

Internal type code.

.5-13

Word

5

5-14

Field

2 = MT

3 = DR

4 = DK

5 = SPO

6 = SPO

7 = PBT

8 = PP

9 = PR

10 = DC

11 = CD

12 = PBD

[12:1J

[13:11J

[24:1J

[25:2J

[30:18J

[l:lJ

[18:15J

Contents

o = bits [13:11J are the file number.

1 = bits [13:11J are the FPB index.

See above.

1 = release unit at CLOSE.

Disposition of file.

00 = rewind.

01 = no rewind.

10 = RW/LK.

11 = RW and release.

Access mode.

0 = seri,al.

1 = random.

2 = update.

Save factor.

Used by File Security to indicate (in

ALGOL and COBOL I/O ERROR Routines) that

we do not have a parity, but an invalid

user condition.

Used by PRNPST/DISK to contain a count of

the number of writes used.

Word

6

7

8

9

10

11

12

13

Field

[40:1J

[41:1J

[42:1J

[43:1J

[44:1J

[45:1J

[46:2J

[15:10J

[33:15J

[l:lJ

[3:45J

[1:9J

[10:9J

[19:1J

[20:1J

[21:1J

Contents

1 = at end of file.

1 = CLOSED, unit retained.

1 = CLOSED, unit released.

1 = input.

1 = reverse.

Not used.

o = unblocked.

1 = TECH A.

2 = TECH B.

3 = TECH C.

Block count.

Record count.

Relative PRT location of descriptor for

hash totals.

Number of rows.
} for disk files.

Size of rows.

Block already checked (COBOL).

Rerun control (number of records).

Rerun control counter.

Number of records per block.

Number of records in current block.

Number of buffers requested.

Number of buffers assigned.

1 = bad key.

1 = seek given.

1 = read (first operation) for COBOL only.

5-15

Word

14

15

16*

17

18

19*

Field

[22:1J

[23:1J

[24:1J

[25:1J

[26:1J

[27:1J

[28:10J

[38:1J

[39:5J

[44:3J

[47:1J

[24:6J

[30:10J

[40:8J

[3:15J

[18:15J

[33:15J

* With flag bit off.

5-16

Contents

1 = open.

1 = write block back.

o = alpha (mode).

1 = reverse (direction).

1 = memory inhibit (for input).

1 = input.

Current reel number.

1 = forms.

External type code.

Not used.

1 = COBOL.

Descriptor for disk file header in core.

If file is open, 30 words. (See note.)

Error use input index~

Error use input end index~

Logical unit number.

Special select counter.

Block count.

Copy of current original I/O descriptor.

Number of words left in the buffer.

Buffer size.

TECH C buffer length.

Maximum record length.

Final I/O descriptor for program release

(FINALQUE) •

FILE TANK.

NOTE

FIB[14J has a special use for printer backup

files.

[18:l5J Pointer to current l8-word psuedo­

buffer; i.e., area where next buffer load

will go (count backwards).

[33:l5J Pointer to last available pseudo­

buffer.

When FIB[14J.[FFJ = FIB[14J.[CFJ, then a

PBIO must be done.

FIB[5J.[18:l5J contains a count of the num­

ber of writes (number of pseudo-buffers) used

in this file. Used to put in I/O descriptor

for use at print time to catch parities, dis­

crepancies, etc.

ALGOL (Addressed by a descriptor located in the file's PRT cell.)

o

1

2

3

4

5

6

N

Contents

Pointer to label (parity action label).} not used

Pointer to label (EOF action label~ by COBOL

Pointer to FIB[OJ.

Pointer to read-in label if input.

Pointer to build label if output.

Pointer to top I/O descriptor.

Top I/O descriptor.

Remaining I/O descriptors.

5-17

COBOL

Words ~~ through N are loca ted in the PRT for COBOL obj ec t programs.

Words 0 and 1 are not present.

LABEL EQUATION TABLE (USED BY SHEET [13J).
Entries in the Label Equation Table are:

Field

o

Contents

Multi-file identification (seven

charac t ers) •

1 File identification (seven characters).

2

3

5-18

[0: 18J

[18:30 J
[0 : 12 J

[42 : 1 J

[43: 5J

Reel number (BCL three characters)~

Creation date (BeL five characters).

Cycle (BCL two characters).

Forms message required bit.

File types:

o = card punch or card reader.

1 = line printer.

2 = labeled magnetic tape.

3 = specific uni t.

4 = line printer or printer backup tape.

5 = unlabeled specific unit.

6 = printer backup tape.

7 = paper tape.

8 = unlabeled paper tape.

9 = un.labeled magnetic tape.

J.O = random disk.

J.l = SPO.

12 = serial disk.

13 = update disk.

Word

4

5-11

12

13

14

26

27

28

29

Field

[0:6J

[6:42J

Contents

14 = data communications.

15 = printer backup disk.

16 = printer backup tape or printer

backup disk.

17 = line printer or printer backup disk.

18 = line printer, printer backup tape

or printer backup disk.

19 = remote.

Number of characters in the internal file

name.

First seven characters of the internal

file name.

Remainder of the internal file name (as

required) •

Equals ? if this is the last entry; other­

wise, entries 14 through 25 are the same

as above for the next file.

Disk address of the next Label Equation

entry. If there is no other entry, it

equals O.

5-19

SECTION 6

MCP OPERATIONAL TABLES

GENERAL.

The MCP must have certain information about the object programs

it is running and the equipment it is controlling. This information

is stored in various tables and is updated during execution time.

This section deals with the tables and procedures which sustain the

operation of the MCP.

PRT[*,*].
The PRT is a two dimensional array. The rows of the PRT array are

the PRT's of the object programs in the current mix. The rows of

the PRT array are ordered according to the MIX indexes of the pro­

grams in the mix. Access can be made to the PRT of a given program

by accessing the PRT array with a row subscript equal to the pro­

gram's MIX index; e.g., PRT [MNDX, 7J references the eighth word

in the PRT of the program which has the MIX index MNDX.

Word [I, *J of the PRT array is:

1 0 1

0 1 2 8

Field

[0: 3J

[3: 5J

[8: 10J

[18:15J

[33: 1 5J

WORD
COUNT

ADDRESS OF
FIRST WORD OF
PRT FOR JOB
WITH MIX
INDEX I

18 33

Contents

Identification.

Size of PRT.

Address of first word in PRT of

object program (R+O).

47

6-1

Format of Object Program's PRT:

R+O

I

2

3

4

5

6

7

10

11

12

13

14

6-2

Contents

"EEEEEEEE"

5 000 ••.• 0

FPB

SD

BC

AIT

MSCW

INCW

COM/PRL

SIZEERROR/
OWN ARRAY
TABLE

ALGOLWRITE/
COBOLFCR

Description

Used by MCP to denote beginning of PRT.

Used by ANALYSIS for branch to non­

present label.

"Memory" for normal state.

Descriptor pointing to FILE PARAMETER

BLOCK.

Descriptor pointing to SEGMEN~r

DICTIONARY.

Descriptor pointing to BLOCK CONTROL

intrinsics.

Descriptor pointing to ARRAY INFOR­

MATION TABLE.

Mark Stack Control Word.

Initiate Control Word.

Location to store constants for the

Communicate and Program Release

operators.

Data descriptor pointing to R+O. F

field points to location of stack

bottom.

Descriptor pointing to OAT in ALGOL.

COBOL [FFJ points to the PRT cell re­

served for SIZE ERROR indicator.

Program descriptor pointing to write

intrinsics for ALGOL, and to FCR for

COBOL.

Cell

15

16

17

20

21

22

23

24

25

26

Contents

ALGOLREAD

ALGOLSELECT/
COBOLREAD

o

BLOCKCTR

JUNK

EXITR

LISTRTN

ERROR
COUNT

SAVE TIME

Description

Program descriptor pointing to read

intrinsics for ALGOL.

READ/WRITE descriptor pointing to

select descriptor for ALGOL.

ZERO.

Block level counter (starts at 1 with

outer-most block of symbolic programs).

Temporary storage location for use by

software.

Character mode descriptor which refer­

ences the first syllable of the program;

i.e., the outermost block which is gen­

erated by the compiler.

Used to obtain next element of a list.

Program descriptor of block number 2;

i.e., the block which corresponds to

the outermost block of the symbolic

program.

Storage location used by compiler to
store the error count. First PRT

location assigned by compiler.

Length of time to save object code.

Cells 22 through 25 are used in this context by ALGOL.

6-3

The PRT contents of a FORTRAN object program are:

Cell

R + 0
1

2

3
4

5
6

7
10

11

12

13

14

15

16

17

20

21

22

23

24

25

26

27

30

31

32

33

34

35

36

37
40

41

42

6-4

Contents

EEEEEEEE
Used by . LABEL.

500000000 ... 0

FPB

SD

BC

AIT

MSCW

INCW

COM/PRL

R + 0, stack

OWNARRAY description

ALGOL WRITE

ALGOL READ

ALGOL FILE CONTROL

o
BLOCKCTR

JUNK

BAS EN SIZE

LISTRTN

CLASN

HOLTOG

Powers of ten

21 word ARRAY

ERR

SQRT

ARSIN

EXP

SIN

ALOG

TAN

ATAN

GAMMA

DATAN

DCOS

for any fo~matted output and for use by ZIP.

Cell Contents

R + 43 DSIN

44 ATAN2

45 CABS

46 DMOD

47 DEXP

50 DSQRT

BED [*] .
The BED array, the SLEEP, and COMPLEXSLEEP procedures are used to

suspend the processing of an object program until a certain condi­

tion exists. Two word entries into the BED are made through use

of the SLEEP Routine. The last entry in the BED is pointed to by

JOBNUM. The BED is also used by the NOTHINGTODO Routine to restart

jobs which have been temporarily suspended. Entries made by the

SLEEP Routine are:

WORD 1

1 0 1

012

Contents

5

MIX

o

rF

Address

Field

[0: 3J

[3: 5J

MIX

[8 : 10 J
[18:l5J

[33: l 5J

ADDRESS

rF OF WORD
TO BE

TESTED

8 18 33 47

Description

Descriptor identification bits.

MIX INDEX of suspended program.

Size field.

F Register setting for suspended program.

Address of word to be tested to determine

if the necessary condition is satisfied.

6-5

WORD 2

o

o

o

MASK

Field

[0: 1 J
[1 : 47J

MASK WORD

47

Contents

Flag bit (cannot be used for mask bit).

Contains ones in bit positions which

indicate when the needed condition is

present. All other bits are set to

zero.

Entries made via the COMPLEXSLEEP Routine are:

WORD 1

ADDRESS OF

0 a 0 MIX
WORD TO BE

rF TESTED

o 1 2 8 18 33 47

Word Field Contents

0 [0: 3J Operand identification bits.

MIX [3: 5J MIX INDEX of suspended program.

0 [8:10J Size field.

rl!""' [18:15J F Register setting for suspended program.

6-6

Address

WORD 2

o

Program
Descriptor

Field

[33: l 5J

Contents

Value to be tested against the result

from the procedure called by accessing

word 2.

ACCIDENTAL ENTRY PROGRAM DESCRIPTOR

Field

[0: 48J

47

Contents

Program descriptor which, when accessed,

will return a value of 1 if the suspended

program can be reactivated. It returns

a value of b (zero) if it cannot be re­

activated.

As conditions dictate, NOTHINGTODO searches the BED to determine if

a program can be reactivated. Essentially, the following statements

indicate how the test is made.

NTl · - Index of entry to be tested; · -
NT2 · - BED [NT1J · -
NT3 · - BED [NTl + lJ · -
IF NOT (NT2 AND NT3) (; NOT o THEN START JOB;

BED is ordered by priority.

JOBS ACTUALLY RUNNING: (JAR) [*, *] .

The SELECTION routine will fill the JAR from the SHEET when enough

space is available to run a job. Entries in the JAR are ordered by

mix index and are:

6-7

Field

o

1

2 [1: lJ

[1: 2J

[8 : 10 J

[18:l5J

[33: l 5J

3 [8:10J

[33:l5J

I ...

[1:23J

5 [24:24J

6 [18:l5J

6-8

Contents

Object program's first name (seven char­

acters). If this is a compiler, this

entry is < o.

Object program's second name (seven char­

acters). If this job is in the process

of being DS-ed, this entry is < O.

After SELECTION, if this program was

compiled using COBOL = 1.

During SELECTION, as follows:

o = normal.

2 = job has been XS-ed.

3 = job has been ES-ed.

o = go job (from Compile-and-Go).

1 = compiler (Compile-and-Go).

2 = execute job.

3 = compiler (syntax check - set to 2

later).

4 = compiler (Compile-to-Library).

5 = run job.

99 = aborted job (from Initialize).

1023 = syntax errors.

Skeleton disk address (if JAR [2J • [8:l0J

= 1, 2, or 4) for the skeleton SHEET for

GO part.

Priority.

Scheduled identification for this job.

Estimated processor time.

Estimated I/O time.

Starting date for the log (binary).

Starting time for the log.

Size of log information in ESPDISK.

Word Field

6 [33: 1 5J

7

8

9

10-29

Contents

Location of the first record of the log

information in ESPDISK. If [2J [8:40J

= 0, then this is the compile log infor­

mation.

Idle time.

Length of each row of the code file.

Number of rows.

Disk address for each row of the code

file.

The code for a given program may be located by using the JAR entries

beginning at JAR [lOJ. The Segment Dictionary for any given normal

state program contains a disk address in the [33:15J field which

is the address of that segment, relative (by disk segment) to the

JAR [lOJ entry. If any given relative address exceeds the JAR [8J

length, then the next row (JAR [llJ, JAR [12J, etc.) is automatically

chosen for the location of the code on the disk. The following for­

mula may be used to locate a given segment of code on the disk for

a given program:

Assume RD = the relative disk address from Segment Dictionary

entry [33:15J field.

DISK SEGMENT ADDRESS = (JAR [PIMIX, (RD DIV JAR [PIMIX, 8J)

+ 10J) + (RD MOD JAR [PIMIX, 8J)

Mix indexes which are inactive are indicated by a zero entry in

JAR [MIXJ. If a breakout has been done, JAR [lOJ = 0, and the Seg­

ment Dictionary addresses point to the copied code file in backup

storage.

SLATE [*].
The SLATE is a queue of requests to run independent MCP routines

whose functions are not directly related to object programs; e.g.,

STATUS, CONTROLCARD, SELECTION, and RUN.

6-9

MCP routines which desire to run independent routines cause entries

to be made in the SLATE by calling the INDEPENDENTRUNNER Routine and

passing the address of the program descriptor for that routine and

a parameter for the routine. INDEPENDENTRUNNER then makes the two

necessary entries into the SLATE. The first word of an entry is a

parameter to the routine. The second word of an entry is the PRT

address of the routine. NSLATE and LSLATE are pointers into the

SLATE. NSLATE points at the last entry which was started, and

LSLATE points at the last entry placed in the SLATE.

Routines noted in the SLATE are called out by the NOTHINGTODO Routine

on a first-in, first-run basis. All entries in the SLATE have the

format:

WORD 1

PARAMETER

o

[0:48J varies according to routine. The parameter is for the

Independent Routine.

WORD 2

ADDRESS

a 33

47

47

If word 2 is negative ([l:lJ = 1), this program was comp~led by

COBOL.

6-10

o

Address

SHEET [*J.

Field

[0:33J

[33:15J

Contents

Address points to the program descriptor of

the Independent Routine.

The SHEET provides information to the SELECTION Routine to introduce

jobs into the mix. Entries in this table are made by the CONTROL­

CARD Routine. Entries in the SHEET are:

Word

o

1

2

3

4

Field

[1:2J

[8:10J

[18:15J

[33:15J

[8:10J

[33:15J

Contents

Object program's first name (seven charac­

ters). If this is a compiler, this word is

< O.

Object program's second name (seven char­

acters).

o = normal, waiting.

2 = job has been XS-ed.

3 = job has been ES-ed.

o = go job (from Compi1e-and-Go).

1 = compiler (for Compi1e-and-Go - set to

2 later).

2 = execute job.

3 = compiler (for syntax check).

4 = compiler (for Compi1e-to-Library).

5 = run job.

Skeleton disk address (if SHEET [2J •

[8:10J = 1, 2, or 4).

Priority (same as SHEET [18J).

Schedule identification for this job.

Estimated processor time.

Estimated I/O time.

6-11

Word

5

6

7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

6-12

Field

[1:23J

[24:24J

[l:lJ

[18:l5J

[33:l5J

Contents

Starting date for the log (binary).

Starting time for the log.

1 = new format for Label Equation Cards.

FPB Information.

Location of the first part of the log.

Stack size.

Disk address of Label Equation entries

applicable to this entry only.

Disk address of Label Equation entries

presented when program was compiled, and

applicable to all executions of this job.

Estimated processor time.

Estimated I/O time.

Priority.

Common value.

Estimated core requirement.

Stack size

Time to save program (on Compile-to­

Library) •

Remote station address, if any, other­

wise, o.

Word

24

25

26

27

28

Field

[3l:l7J

Contents

Time this job was entered in the SHEET

(for TS message).

User code ..

29 Disk address for next SHEET entry (= 0,

if this is the last entry).

The word, field, and contents for the format of segment zero for the

programs is:

Word Field

o

1

2

3

4

5

6

7 [18:15J

[33:15J

8

9

10

11

12

Contents

Relative location of the Segment Dic­

tionary.

Size of the Segment Dictionary.

Relative location of the PRT. If < 0

then job compiled by COBOL.

Size of the PRT.

Relative location of the File Parameter

Block.

Size of the File Parameter Block.

Starting segment number.

new format, else O.

Core requirement/64.

Number of files.

[l:lJ = 1 if

6-13

Word

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Field Contents

Disk address of Label Equation entries

presented when program was compiled and

applicable to all executions.

Estimated processor time (from

compilation) .

Estimated I/O time (from compilation).

Priority (from compilation).

Common value (from compilation)e

Estimated core requirements (from

compilation) .

stack size (from compilation).

SEGMENT DICTIONARY AND RELATED PRT CELLS AS CREATED BY A COMPILER.

Each program has a Segment Dictionary containing one entry for every

program segment in the program, and one word for every intrinsic

used. The first word in the Segment Dictionary is referenced as

word zero. The entry for any particular segment is located in the

6-14

Segment Dictionary word that corresponds to that segment's number;

e.g., the entry for segment 3 would be in the fourth word of the

Segment Dictionary.

A Segment Dictionary entry as created by a compiler contains the

following information, except for entries for intrinsics.

a. The relative address of the segment within the program

file on disk. Relative address zero is reserved for a

special segment which contains such information as a

pointer to the PRT, a pointer to the Segment Dictionary,

a pointer to the program parameter block, etc.

b. The size of the segment.

c. An index into the PRT of the first program descriptor

that references the segment.

d. A flag specifying whether or not the segment is a type

2 segment.

Entries for intrinsics provide no segment size and have the intrin­

sics number in lieu of the relative disk address. Otherwise, they

are the same.

Although each Segment Dictionary entry may have one or more program

descriptors in the PRT, some have none; e.g., fill segments. The

program descriptor entries in the PRT, as created by a compiler,

contain the following:

a. The relative address within the segment pertinent to

the program descriptor.

b. The index into the Segment Dictionary of the entry lor

the segment to which the program descriptor pertains.

This index is equal to the number of the segment.

c. A link (index) to the next program descriptor which

addresses the same segment.

6-15

d. A stop bit if the program descriptor entry is the last

one pertaining to the segment.

FIELDS AND THEIR VALUES FOR THE SEGMENT DICTIONARY AND THE RELATED
PRT CELLS.

This topic is dealt with by focusing on the fields and the values

of, first, the Segment Dictionary, and, second, the PRT. The

fields and their values for the Segment Dictionary are:

Field

[0: lJ

[1: lJ

[2: lJ

[3: lJ

[4: 4 J

[8: 10J

[18 :15J

[33: 1 5J

Field Value

1 for type 2 segments (DATA), otherwise, O.

1 for intrinsics, otherwise, O.

Reentrant bit.

Link to program descriptor in PRT (links to first

entry in link-list).

If program segment, size of segment; if present, its

location in core. For intrinsics, it is mean­

ingless.

Disk address of segment or intrinsic number

(relative).

The fields and their values for the rela ted PRT Cells are::

Field

[0 :4J

[4: 2J
[6: lJ

[7 : 11 J

6-16

Field Value

Non-present program descriptor bits.

Mode and argument bits.

Stop bit showing end of link list.

If stop bit is on to indicate that it is the last

entry, this field contains the index into the

Segment Dictionary. Otherwise, it is a link (in­

dex) to the next program descriptor that references

the segment.

Field

[18:15]

[33: 1 5]

Field Value

Index into Segment Dictionary of the entry per­

taining to the segment.

Relative address within the program segment per­
tinent to the program descriptor.

FORMAT OF FIRST 30 WORDS (1 DISK SEGMENT) OF ALL PROGRAM FILES.
The first 30 words, starting at relative address 0 (zero), of all

program files must have the following format:

o

1

2

3

4

5

6

7

8-29

Field

[33: 15]

[18:15]

Contents

Location of Segment Dictionary.

Size of Segment Dictionary.

Location of PRT (0 if compiled

using COBOL).

Size of PRT.

Location of File Parameter Block.

Size of File Parameter Block.

Starting segment number.

Number of files.

Core requirement/64.

Not used.

NOTE
The locations noted above are specified accord-

ing to their relative address within the

program file. Sizes are expressed in terms

of number of words.

METHOD FOR DECLARING ARRAY SPACE.
The calIon the DF MCP to declare array space is nearly identical

to the call made when using the MD MCP. With the exception that

a different literal value is used to specify the type of storage,

6-17

the same parameters are required in the stack. However, when the

DF MCP is called, an operand callan a block control intrinsic pro­

gram descriptor is used rather than a communicate operator.

The fol~Lowing parameters are required in the stack:

a. Mark Stack Control Word.

h. Descriptors pointing to the array descriptors for

each array being declared.

c. Sizes of the array dimensions.

d. Number of dimensions.

e. Number of arrays being declared.

f. TYPE of storage.

With these parameters in the stack, an operand calIon the block

intrinsic program descriptor will cause the array space setup. The

values for TYPE are defined as follows:

NFO.

o Regular array space (overlayable).

I - SAVE array space (non-overlayable).

2 - OWN array space.

J = SAVE and OWN array space.

NFO contains the following for each active mix index and is used

for reconstructing the PRT for stack overflow conditions. NDX

represents the number of entries per job in the NFO Table.

6-.18

NFO [(MIX-I) times NDX] = File Parameter Block data

descriptor.

NFO [(MIX-I) times NDX+I] = Segment Dictionary name

descriptor.

NFO [(MIX-I) times NDX+2J = Location of bottom of stack

(word containing all B's).

NFO [(MIX-I) times NDXJ . [1:17J = Clock time at BOJ.

NFO [(MIX-I) times NDXJ [18:l5J = Core estimate DIV 64.

NFO [(MIX-I) times NDXJ [33:l5J = Location of stackbottom.

LOOKQ.

LOOKQ i q a variable in the MCP's PRT which will point at the first

entry for a logged-in user of a remote device. Each entry is ten

words long, including the memory link. Each entry links to the

next and will eventually point back to LOOKQ. The format of the

LOOKQ word is:

Field Contents

[0: 9 J 0

[9: 9 J @777

[18:l5J Address of

[33: l 5J Address of

LOOKQ entry:

Word Field

o

1

[0: 9J

[9: 9J

[18:l5J

[33 : l5J

2

3

secondary link word for last entry.

secondary link word for first entry.

Contents

Memory link word for save memory

type.

Secondary link word.

o

Terminal and buffer number.

Address of next entry.

Address of previous entry.

User code.

CCMASKI

6-19

Word Field Contents

4 CCMASK2

5 INFOMASKI

6 INFOMASK2

7 MIXMASK

8 Time when user logged in (sec/60) •

9 Not used.

MESSAGEHOLDER.

The MESSAGEHOLDER is dealt with as follows:

Field

[18:15J

[33: 1 5J

Contents

Points at the last buffer added to the SPO queue.
The first word of each message starting at MESSAGE-

HOLDER [33:15J is a memory link address of the next

message in the SPO queue that is to be printed. The

last message in the SPO queue will contain zeroes

in the first word.

Points at the SPO message that is currently being

printed or the next SPO message to be printed.

A maximum of 100 messages of varied length (length depends on the

routine that calls SPOUT) may be placed in the SPO queue. NUMESS +

100 equals the number of messages left in the SPO queue. If NUMESS

equals -,100, then the SPO queue is empty. The messages must contain

a group mark (-). If not, when SPOUT is called, the memory follow-

ing the message will be printed and destroyed.

INQUIRY: ARRAY DCB [16J AND THE ORR WORD.

DCB is a. table used by the data communications' handling procedures.

Initially, all words in DCB = O. There are two pointer words used

in conjunction with DCB. These pointer words are NEXTINQ and

CURRINQ. NEXTINQ points at the word in DCB that will be used when

handling the next Inquiry Request Interrupt. CURRINQ points at the

6-20

word in DCB that will be used when handling the next COM9; i.e.,
the next FILL (array row) WITH INQUIRY statement.

HANDLING AN INQUIRY REQUEST INTERRUPT.
When an Inquiry Request interrupt occurs, DeB [NEXTINQJ is tested

to see if it equals zero. If it is zero, a buffer area is obtained

and its address is placed in DCB [NEXTINQJ • [33:l5J. Then a read

is performed to handle the interrupt, and the number of words in

the message is placed in DCB [NEXTINQJ . [18:l5J. If DCB [NEXTINQJ

were not zero, it would already be set-up with the address and

size of an available buffer area.

If after the read is performed, the result descriptor shows that

input was received, DCB [NEXTINQJ • [1:1] is set to 1, DCB [NEXTINQJ

• [14:4J is set to the terminal unit number of the unit that pro­

vided the message, and the ORR word (see below) is set to note that

the TU is "output ready" or "output possible."

If the result descriptor shows an "output ready" condition (i.e.,

ready for another line of a message), DeB and NEXTINQ are left as

is, and the ORR word is set to indicate the "output ready" condi­

tion.

HANDLING A FILL WITH INQUIRY.

When a communicate indicates that an inquiry message is requested,

DCB [CURRINQ] is tested for a value less than zero; i.e., tested

to see if DCB [CURRINQ] • [1:1] = 1. If DCB [CURRINQ] is less

than zero, the message from the buffer area addressed by DCB

[CURRINQJ • [33:l5J is supplied to the requestor, together with

the TU number in DeB [CURRINQJ • [14:4]. CURRINQ is then incremen-

.ted to the next location. The space for buffer area addressed by

the previous CURRINQ word is returned. If DCB [CURRINQ] is not

less than zero, the requestor is put to COMPLEXSLEEP waiting on

DCB ICURRINQ] < O.

THE ORR WORD.

The ORR word indicates the "output ready" status and "output possi-

ble" status of all TU's. A unit is "output ready" and "output

6-21

possiblE~" if the TU is wai ting for a message. If it is handling

one linE~ of output and will be coming back for another, it is "out­

put possible," but not ffoutput ready." The following tests provide

"output ready" and ffoutput possible" information.

IF (TWO (TU) AND ORR) ~ a THEN OUTPUT READY

IF (TWO (TU + 15) AND ORR) ~ THEN OUTPUT POSSIBLE

NOTE

TWO is a function such that TWO (X) = 2 * X.

6-22

GENERAL.

SECTION 7

BINARY CARDS

Once after every Halt/Load {H/L} operation, the initial operations

call the INITIALIZE Routine into action. The Routine reads from

disk into core the information which was entered into the system

through the MCP load deck and stored on disk by the Cold Start

Routine. This information is placed in certain MCP PRT variables.

The Routine initializes and updates the tables used by MCP {PRT,

SHEET, etc.}, and performs the first organization and classification

of core storage. It also creates the Available-Disk Table.

After these operations, the MCP prints the H/L messages on the SPO.

During initialization, the field used to maintain the ready or not

ready status of the peripheral units is set to indicate that all

units are in not ready status. The first execution of the N-Second

Routine sets the indicators properly.

This section on Binary Cards presents the H/L Button Card, the

ESPOL Transfer and Load Cards, and the Initialization Code brought

in by the H/L Card.

H/L CARD.

Information in the log is not lost due to H/L operations. When the

log becomes half full, a message is typed to notify the operator.

When the log is almost full, an MCP routine is fired up which

changes the name of the SYSTEM/LOG and which initializes a new

SYSTEM/LOG. The new name that is given to SYSTEM/LOG is (M) (D)

(C)/SYSLOG where (M) = a two digit number representing the month of

the year, (D) = a two digit number representing the day of the

month, and (C) = a three digit number that is incremented each time

the name changing routine is invoked. A keyboard message which

gives the new name is written after the name has been changed. For

example,

**** NEW LOG FILE IS l230007/SYSLOG

Table 7-1 presents the H/L Button Card, and figure 7-1 presents a

flow chart of the H/L Card.

7-1

20 01+41

3410

0360

21 7500

0000

0000

22 0211

0014

4131

23 7012

7007

042].

24 4411

0054

4131

7-2

Table 7-1

H/L Button Card

Mark Stack

Literal 702

Literal 74

4231 Branch Forward Unconditional

Word Mode

Program

Descriptor

0023

Interrogate Interrupt

Literal 3

Branch Backward Unconditional

0435 Exit

Operand Call F-2

Descriptor Call F-l

B Store Destructive

0014 Literal 3

Initiate I/O

Literal 13

Branch Backward Unconditional

4155 Dial A 41

(40-0)

(22-0)

(22- 0)

25 6461

1065

0000

26 0074

0131

0064

27 0000

0062

0064

30 0000

0066

0104

31 0000

0072

0124

Table 7-1 (cont)

H/L Button Card

Dial B 64

Transfer Bits 10

Literal 0

0425 B Not Equal to A

Literal 17

Branch Backward

Literal 15

4131 Branch Backward

Literal 0

Operand Call 14

Literal 15

4131 Branch Backward

Literal 0

Operand Call 15

Literal 21

4131 Branch Backward

Literal 0

Operand Call 16

Literal 25

Conditional (22- 3)

Unconditional (23-3)

Unconditional (24-3)

Unconditional (24-3)

4131 Branch Backward Unconditional (24-3)

7-3

32 0000

0076

0144

33 .5140

0000

4070

34 .5140

0000

4770

3.5 .51;~0

0000

4770

36 7700

0000

0000

7-4

'l'able 7-1 (cont)

niL Button Card

Literal 0

Operand Call 17

Literal 31

4131 Branch Backward Unconditional

Disk File Read Descriptor

7 Segments

from address specified

0137 in 0137

Disk File Read Descriptor

77(8) Segments

from address specified

0461 in 0461

Disk File Read Descriptor

77(8) Segments

from address specified

4223 in 4223

Character Mode

Program

Descriptor

0037

(24-3)

37 0153

0204

0405

40 0167

0106

0441

41 0163

0106

0441

42 0157

0106

0441

43 0600

0172

0520

Table 7-1 (cont)

H/L Button Card

Recall Source Address F-l

Recall Destination Address

Transfer Words 04

0000 Exit Character Mode

Descriptor Call 35

Operand Call 21

Mark Stack

0440 Literal 9

Descriptor Call 34

Operand Call 21

Mark Stack

0010 Literal 2

Descriptor Call 33

Operand Call 21

Mark Stack

0660 Literal 14

Literal 140

Operand Call 36

Literal 124

F-2

4131 Branch Backward Unconditional (17-0)

7-5

-.....1
I
0\

MA~K-:I
STACK AT -

00001

00035 '" 5140000047704223

THIS PLACES THE L TSL: 700 IN WORD
00002, THE DISK DATA DESC IN WORD
00003, AND THE ROW IN WORD 00004.
"F" IS SET TO 00004.

PLACE:-i
BRANCH TO---' CALL DISK

DATA PLACE RCW
IN STACK AND

BRANCH TO
WORD 23

702 . WORD 40 - DESCRIPTOR
FROM CELL

35 TO STACK
IN STACK SYLLABLE

o

TI-E LTSL: 700 THAT IS STORED
IN WORD 4223 WI LL BE USED AS
A DISK ADDRESS. AND. THERE·
FORE, HAS THE BCD VALUE
0000070.

CALL DISK
DESCRIPTOR

TO STACK
FROM F-1

(00003)

INTERROGATE
LOOP OF

IIN6. LTSL:
3, BBUL

STORE LTSL:
700 IN WORD
4223 DELETE

DATA DESC AND
L TSL FROM STACK

NOTE: THIS DISK OPERATION IS
READING 63 SEGMENTS FROM DISK
ADDRESS 0000070 TO CORE ADDRESS
04224.

A DISK READ
OPERATION
ISNOWIN
PROGRESS

~RANCH:l DIALA
(G,H)

TO PRINT
AT BIT
#23

24-3 -

PLACE LTSL:
3

IN STACK

ON I/O
FINISHED IN­

TERRUPT, BRANCH
TO CELL 27, 30,

31, OR 32

DIALB
(K,Ui

TO"PR1NT
AT BIT

#S

NOTE: THE DISK DESCRIPTOR
5140000047704223 IS IN WORD
NO.3 BY ITS POSITION IN THE
STACK.

INITIATE I/O
OPERATION AS
SPECIFIED BY
WORD 00003

PLACE LTSL:
o

IN STACK

TRANSFER 8
BITS FROM

RESULT DESC.
TO LOWER 8

BITS OF B

CALL LTSL
700 TO STACK

FROM F-2
(00002)

SRANCHTO
WORD 22:D

CALL RESULT
DESCRIPTOR
FOR THIS I/O

CHANNEL
TO STACK

PLACE
LTSL: 0 IN

STACK FOR A
COMPARISON

VALUE

Figure 7-1. Detailed Flowchart of the H/L Card (Sheet 1 of 2)

~

-..J
I

-..J

COMPARE
B +" A

THIS WILL NOW REPEAT ABOVE INITIATION OF A DISK
READ OPERATION INTO .CORE MEMORY AT 642 FROM" DISK
ADDRESS 0000007 of 63 SEGMENTS. TI-E RESULT DESCRIPTOR
RETURNS FROM INITIATION 00 DISK OPERATION. IF OK, THE
"c" REGISTER IS RETURNED TO 41-2. OTI-ERWISE, TI-E I/O
OPERATION IS REINITIATED.

CALL DISK
DESCRIPTOR
FROM"WORD

24 TO STACK

PLACE RCW
IN STACK AND

BRANCH TO
WORD 23

REW6
(RETURN)

TO 40-2 AND
STACK IS

EMPTY

MARK STACK
AT 00001

00034 = 5140000047700461
THIS WORD IS STORED IN
WORD 00003 OF TI-E STACK

THIS NOW REPEATS ABOVE OPERATION OF A DISK READ
OPERATION INTO CORE MEMORY ADDRESS 0140 FROM DISK
ADDRESS 0000000, 7 SEGMENTS. TI-E RESULT DESCRIPTOR

MARK STACK
AT 00001

PLACE
LTSL: '.Z

IN STACK

PLACE LTSL:
7

IN STACK

00033 5140000040700137

CALL DISK
DESCRIPTOR
FROM WORD
33 TO STACK

IS TI-EN CHECKED, AND, IF OK, TI-E "c" REGISTER IS RETURNED
TO 42-2. OTI-ERWISE, TI-E I/O OPERATION IS REINITIATED.

PLACE RCW
IN STACK AND

BRANCH TO
WORD 23

THIS SETS ON TO TI-E ADDRESS OF 140.

RECALL
SOURCE

ADRS
FROM

F-1

Figure 7-1.

MARK STACK
AT 00001

PLACE
LTS~: 114"
rNSTACK

THIS SETS "s" TO THE ADDRESS OF 14.

RECALL
DESTINATION

ADDRESS
FROM F-1

TRANSFER
4 WORDS

FROM 140
T014

PLACE A
140

IN STACK

PLACE RCW
IN STACK AND

BRANCH TO
WORD 37

THIS WILL TRANSFER THE FIRST 4 WORDS OF CODE
BROUGHT INITIALLY FROM SEGMENT NO. 0 OF DISK
TO WORDS 14, 15,16, 17.

EXIT CHAR
MODE, RETURN

TO 43-2

BRANCH TO
WORD 17-0

AND EXECUTE
CODE JUST

PLACED Tt£RE

Detailed Flowchart of the H/L Card (Sheet 2 of 2)

ESPOL TRANSFER CARD.

This is an alphanumeric card, which is the final card in the MCP

Load Deck and the COLD START Deck. Table 7-2 presents this card.

Table 7-2

ESPOL Transfer Card

11 7500 Word Mode

0000 Program

0000 Descriptor

0012

12 0004 Literal 1

5355 Dial A 53 (C Field)

3061 Dial B 30 (F Field)

1765 Transfer Bits 1510

13 7006 Operand Call F-l

0004 Literal 1

0421 B Store Destructive

0435 Exit

14 7700 Character Mode

0000 Program

0000 Descriptor

0015

7-8

15 0253

0104

16 0051

0000

17 0441

0700

20 0.040

4131

Table 7-2 (cont)

ESPOL Transfer Card

--Recall Source Address F-2

Recall Destination
Address F-l

7752 Begin Loop 6310 The 3969
words

7705 Transfer Words 6310) starting
at 00160
are re-
located.

End Loop

Exit Character Mode
~

0441 Mark Stack

0046 Operand Call 11

Mark Stack

Literal 160

0100 Literal 20

0062 Operand Call 14

Literal 10

Branch Backward Unconditional (16- 2)

0000

0000

NOTE

20 is overlaid by character

mode transfer in 15-3.

7-9

ESPOL LOAD CARD.

This card is a binary card, which is the first card of the MCP Load

Deck or the COLD START Deck. The card is presented in table 7-3.

20 0104

4411

0020

21 5240

1200

4000

22 4455

0211

0020

23 7700

0000

0000

7-10

Table 7-3

ESPOL Load Card

Literal 21

INITIATE I/O

Literal 4

4231 Branch Forward Unconditional

Card Read Descriptor

Alpha 128 Words

CRA

0044

Dial A 44 (Bit 20)

Interrogate Interrupt

Literal 4

4131 Branch Backward Unconditional

Character Mode

Program Descriptor

0024

(22- 0)

(22-0)

24 0453

0304

0243

25 0000

0065

0100

26 0110

4131

0055

27 0000

0062

0050

30 0000

0066

0030

Table 7-3 (cont)

ESPOL Load Card

Recall Source Address F-4

Recall Destination Address F-3

Call Repeat Field F-2

0005 Transfer Words

Exit Character Mode

Transfer bits 00

Literal 20

4131 Branch Backward Unconditional (22- 0)

Literal 22

Branch Backward Unconditional (22-0)

Dial A 00

0055 Dial A 00

Literal 0

Operand Call 14

Literal 12

4231 Branch Forward Unconditional (32- 2)

Literal 0

Operand Call 15

Lite-ral 6

4231 Branch Forward Unconditional (32- 2)

7-11

31 0000

0072

0010

32 0000

0076

7561

33 0010

0231

0010

34 0004

0107

2025

35 0106

2025

3355

7-12

Table 7-3 (cont)

]~SPOL Load Card

Literal 0

Operand Call

Literal 2

16

4231 Branch Forward

Literal 0

Operand Call 17

Dial B 75

Unconditional (32-2)

0165 Transfer Bits 01

Literal 2

Branch Forward Conditional (34- 0)

Literal 2

4131 Branch Backward Unconditional (33- 2)

Literal 1

Descriptor Call 21

Duplicate

0044 Literal 11

Operand Call 21

Duplicate

Dial A 33

4061 Dial B 40

36 2565

2025

2265

37 1765

2025

1465

40 5361

1765

0000

41 0106

2025

1555

42 0165

2255

7261

Table 7-3 (cant)

ESPOL Load Card

Transfer Bits

Duplicate

Transfer Bits

2025 Duplicate

Transfer Bits

Duplicate

Transfer Bits

5355 Dial A 53

Dial B 53

Transfer Bits

Literal 0

0044 Literal 11

Operand Call

Duplicate

Dial A 15

2261 Dial B 22

Transfer Bits

Dial A 22

Dial B 72

0465 Transfer Bits

25

22

17

14

17

21

01

04

7-13

Table 7-3 (corit)

ESPOL Load Card

0441 Mark Stack

0116 Operand Call 23

0500 Literal 120

4131 Branch Backward Unconditional (20-0)

INITIALIZATION.

The B 5500 System is initiated when the machine operation performs

an H/L operation by pressing the HALT switch, then the LOAD switch.

The operation automatic~lly caused Processor one to go into control

state and a portion of code to be read into the first locations of

core memory in module zero. Control is then automatically trans­

ferred to core address 16 and the system is in operation. Initial

operations cause the INITIALIZE Procedure and permanent segments

of the DC MCP to be read from disk into core. The DC MCP then per­

forms various initialization functions, including performing the

first organization and classification of core storage, and creating

the Available-Disk Table. Table 7-4 presents the format for the

Initialization Code brought in by the H/L Card.

Table 7-4

Initialization Code Brought in by H/L Card

14 7700 Charac·ter Mode

0000 Program

0000 Descriptor

0015

7-14

Table 7-4 (cont)

Initialization Code Brought in by H/L Card

15 0253 Recall Source Address F-2~

0104 Recall Destination
address F-l

7752 Begin Loop 63
10 Starting

) at 00160,
7705 Transfer Words 6310 the 3969

words are
relocated
beginning

16 0051 End Loop at 00020.

0000 Exit Character Mode

-0000

0000

17 0441 Mark Stack

0700 Literal 160
8

0100 Literal 20
8

0062 Operand Call 14
8

NOTE
Enter at 17-0 from branch command

43-3 of the H/L Card.

Operating Conditions:

a. Timer can be on.

b. Printer Finished or Keyboard Request will stop the program.

c. Will work on any I/O Channel.

7-15

GENERAL.

SECTION 8
LIBRARY MAINTENANCE

Procedures are available to maintain the user program library, con-

struct requested library entries, and to update the associated

tables. Section 8 deals with library maintenance action by pro~

viding a detailed depiction of the format for a library tape and

the format of a library maintenance segment used for load informa­

tion.

FORMAT OF A LIBRARY TAPE.
The contents for each physical record determines the format of a

library tape. Figure 8-1 presents this information in a sequential

manner, providing a place for everything from tape label to tape

mark.

8-1

8-2

PHYSICAL
RECOHD NO.

1

2

3

5

6

7

8

9"

10

11

N

CONTENTS

TAPE LABEL

TAPE MARK

LAST ENTRY DENOTED BY AN
@14 1023 WORDS MAX SIZE

TAPE MARK

COPY OF RECORD
NO. 1 LABEL

LABEL FOR FILE NO. 1

TAPE MARK

FILE HEADER FROM DIRECTORY
30 WDS

CONTEN1'S OF FILE (ROW BY ROW)
IF ROW> 900 WDS THEN 900 WD
BLKS ELSE ROW SIZE BLOCKS

TAPE MARK

LABEL (COpy OF
RECORD NO. 6)

LABEL FILE NO. 2

TAPE MARK

ETC.

TAPE MARK, LAST
RECORD ON TAPE

TWO WORDS
PER ENTRY

REPEATED FOR
EACH FILE

F~gure B-1. Format of a L~brary Tape

FORMAT OF LIBRARY MAINTENANCE SEGMENT FOR LOAD INFORMATION SHEET
ENTRY •

The SHEET entry for load information requires a specific format for

each library maintenance segment. Figure 8-2 provides the format

for a segment to illustrate the arrangement of words and programs.

[OJ.[2:6J = UNITNO = 23, 24 or ~ 32 •

• [8:lJ = 1, DUMP EXPIRED FILES •

• [FFJ = T, no, indicating LOAD, DUMP, etc. (see MCP

procedure RESWDS).

TAPE LABEL

MULTI-FILE ID

FILE ID

MULTI-FILE ID

[28J FILE ID

ESPDISK ADDRESS LINK

Figure 8-2. Format of the Library Maintenance

Segment for Load Information

8-3

GENERAL.

SECTION 9

INTERRUPT HANDLING

Interrupts are initiated by the hardware itself when the computer

is operating in normal state and certain conditions are encountered.

The MCP also provides facilities that allow programs to have rerun

points. If a program requests a breakout, all processing of object

programs is halted. Subsequently, all of memory and overlay storage

is written on magnetic tape; then, in the case of a breakout, object

programs are re-initiated and continue processing.

When a program is to be restarted at a rerun point, no programs may

be on the system. Also, all files related to the program(s) to be

restarted must be in place on the units where they were at breakout

time. At such a time, a restart request will be handled by reading

the restart information and restoring core to the condition that

existed when the breakout occurred.

stored.

Then, overlay storage is re-

Finally, only that program is restarted. Other programs, which may

have been in process when the breakout occurred and which are re-

flected in the restored memory and overlay storage, are terminated.

The BREAKSTART Procedure is the primary procedure used to perform

breakouts and restarts. Section 9 focuses on the handling of a

Presence Bit Interrupt in the operation of B 5500 Hardware and

Software.

PRESENCE BIT INTERRUPT ACTION.

When a Presence Bit Interrupt is detected, control is transferred

to the Presence Bit Routine. The fact that a Presence Bit Interrupt

occurred means that a program has executed a syllable that caused

an attempt to access information described by a descriptor with a

zero presence bit. The following action takes place:

a. Presence Bit Interrupt is set in Central Control by the

attempt of a normal state program to access a non-present

data descriptor. This is a descriptor with bit [2:lJ = O.

9-1

9-2

b. This being a syllable-dependent interrupt, it is sensed

at SECL (Syllable Execution Complete Level) time. This

causes an SFIL (Store for Interrupt Level) operator to be

placed into the T Register.

c. The B Regist'er is pushed down.

d. The A Register is pushed down.

e. If you are in character mode, build and push down an

ILCW (Interrupt Loop Control Word).

f. Build and push down an ICW (Interrupt Control Word).

g. Build and push down an IRCW (Interrupt Return Control Word).

h. Build an INCW (Initiate Control Word) and place it in the

object (normal state) program's PRT at R + 10 (octal).

i. Force an INI (Interrogate Interrupt) operator into the

T Register.

j. Transfer to either Cell 55 (octal) or Cell 67 (octal),

depending on whether this was a Presence Bit on PI or

P2. Set the R Register to zero.

100 (octal).

Set the S Register to

k. Place an 18 (decimal) in the TOS (Top of Stack) at

Cell 101 (octal).

1. Transfer to the MCP Outer Block Label PIPROCESS.

m. Set the S Register to point at the IRCW stored in the

object (Normal state) program's stack at step g, above.

n. Set the F Register to zero.

o. Branch forward as many syllables as indicated by the

number placed in the top of stack at 101 (octal in k,

above) .

p. In this case, we will end up at the call MAKEPRESENT

(ANALYSIS). Note that ANALYSIS is a typed (REAL) pro­

cedure. Before entering MAKEPRESENT, we actually enter

ANALYSIS, returning with a value to be passed as a para­

meter to MAKEPRESENT.

9-3

APPENDIX A

MCP COMMUNICATES

To use the communicate operator, a normal state program first places

a parameter in its stack. The word at the top of the stack is then

stored in the cell addressed by R + 9. The Communication Interrupt

Bit is set and the MCP routine that handles this interrupt first

locates R + 9 of the program that caused the interrupt. Then, accor­

ding to this code value, the MCP transfers control to the section

of the MCP designed to handle a communicate interrupt with that code.

The operator is treated as a NOOP in control state. The following

is a list of the codes used by the communicate operator:

o

1

2

3

4

5

6

7

8

9

10

11

Description

Invalid End-of-Job in COBOL or FORTRAN.

TIME «variable») function in ALGOL.

DATA «data name») function in COBOL.

SLEEP call (wait) two parameters passed.

Return specific array (pass array name

and dimensions).

ZIP WITH or PERFORM WITH array row or file name.

Normal End-of-Job.
SIGNOFF.

Calls COM5 which calls

WHEN function (pass number of seconds).

Fill array row.

ZIP (program-id) or PERFORM (program-id).

Fill with inquiry. (Not applicable to data
communications systems.)

Block Exit (ALGOL storage return).

ALGOL I/O Function. Pass parameter as follows:

A-I

A-2

12

13

14

1.5

16

17

18

19

20

21

22

23

24

2.5

26

27

28

29

30

31

APPENDIX A {cont}

Description

0 = f'ile open. 1 = parity message.
2 = End-of-File message. 3 = End-of-Tape message.
4 = data communications. .5 = return disk.
6 = close file. 7 = process RER.
8 = select error. 9 = space.

10 = refill. 11 = read label.
12 = IOREQ. 13 = rotate buffers.

BREAK or HERUN.

COBOL I/O Functions {OPEN and CLOSE only}.

Invert overlayable status of an array row.

DISPLAY.

ACCEP'l"' .

COBOL I/O errors {called from COBOLFCR or

Sort Intrinsic}.

Inquiry Write {Not applicable to data

communications.}

Printer Backup Routine {PRNPBT}.

Tape swap for tape sort.

Get Space for sort.

Return space from sort.

Load Control {LDCNTRL}.

Return one row of a disk file.

Return old copy of OWN array.

Invalid arguments to intrinsics {LN, SQRT, etc.}.
ALGOL only.

COBOL data communications interrogate.

ALGOL data communications interrogate.

Miscellaneous errors {error terminate}.

Directory search statement and label equation.

ALGOL DELAY function.

Code

32

33

34

APPENDIX A (cont)

Description

Data communications seeks, detaches, and

interrogates.

FORTRAN PAUSE statement.

FORTRAN error terminate.

A-3

1

2

2

3

3

4

4

5

5

6

6-7

7

7-8

Character
(word)

1-8

1

2-8

1

2-8

1-3

4-8

1-2

3-7

8

1-5

6-8/1-4

5

6-8/1-2

APPENDIX B
STANDARD B 5500 LABEL RECORD

Character
(record)

1-8

9

10-16

17

18-24

25-27

28-32

33-34

35-39

40

41-45

46-52

53

54-58

Field
Description

Must contain bLABELbb.

Must be zero.

Multi-file identification.

Must be zero.

File identification.

Reel-Number (within file).

Date-Written (creation date).

Cycle-Number (to distinguish

between identical runs on

the same day).

Purge-Date (date this file

can be destroyed).

Sentinel (1 = End-of-Reel,

o = End-of-File).

Block Count.

Record Count.

Memory-Dump-Key (1 = memory
dump follows label).

Physical Tape Number.

The remainder of the information contained in the label record

varies for ALGOL and COBOL files as follows:

B-1

Word

8

8

9

9

Word

8

9-?

B-2

Character
(word)

3

4-8

1-5

6-8

Character
(word)

3-8

l-?

APPENDIX B (cont)

ALGOL FILES

Character
(record)

59

60-64

65-69

70-72

COBOL

Character
(record)

59-64

65-??

Rield
Description

Blocking Indicator:

blocked = 1 for (fixed logical)

(fixed physical)

= 3 for (fixed physical)

(fixed logical)

not blocked = 0

Buffer Size (number of words).

Maximum

words) •

Zeroes.

FILES

Record Size (number

Field
Descriptiol!

of

Reserved for File-Control-Routine

- not currently being used.

Users Portion - may be of any for­

mat desired by the user and may

be up to 8,120 characters in

length for tape files, up to 16

characters in length for card

file, and up to 56 characters in

length for printer files.

APPENDIX C

CCMASKl - CCMASK2 - MIXMASK - INFOMASK

CCMASKs are used to check the validity of a control card entered
via data communications. The variables CCMASK are used if a special

mask is not provided by REMOTE/USERS. The CCMASK Table shows the

card column used to set the bit in REMOTE/USERS, the associated bit

with each control function, and those bits which are set in the

standard mask. The MIXMASK is used in a similar way to check those

input messages which mayor must have a mix number preceding them.

INFOMASKl and INFOMASK2 are used to check the validity of those

input messages which do not include a mix index. The three mask

tables are now presented.

The format for the CCMASK Card is as follows:

Column Word CCMASKl Bit Standard Mask

1-23 Not used 0-22
24 INFO 23 no
25 USE 24 no
26 RELEASE 25 no
27 FREE 26 no
28 PUBLIC 27 no
29 USER 28 no
30 RUN 29 yes
31 COMPILE 30 yes
32 EXECUTE 31 yes
33 DUMP 32 no
34 UNLOAD 33 no
35 ADD 34 no
36 LOAD 35 no
37 REMOVE 36 no
38 CHANGE 37 no
39 UNIT 38 no
40 END 39 yes
41 DATA 40 no
42 LABEL 41 no
43 FILE 42 yes
44 EXPIRED 43 no
45 Not used 44
46 Not used 45
47 Not used 46
48 Not used 47

C-l

APPENDIX C (cont)

Column Word CCMASK2 Bit Standard Mask ---
49 Not used 0
50 Not used 1
51 PROCESS 2 yes
52 IO 3 yes
53 PRIORITY 4 no
54 COMMON 5 yes
55 CORE 6 no
56 STACK 7 no
57 SAVE 8 yes
58 Not used 9
59 Not used 10
60 Not used 11
61 ALGOL 12 yes
62 XALGOL 13 no
63 FORTRAN 14 yes
64 LONALG 15 yes
65 BASIC 16 no
66 Not used 17
67 WITH 18 no
68 COBOL 19 yes
69 LIBRARY 20 no
70 SYNTAX 21 no
71 FROM 22 no
72 TO 23 no

The format of the MIXMASK Card is as follows:

Column Word MIXMASK Bit Standard Mask

1 Not used 0
2 DS 1 no
3 IL 2 no
4 OU 3 no
5 OK 4 no
6 FM 5 no
7 AX 6 no
8 FR 7 no
9 OF 8 no

10 TI 9 yes
11 WY 10 yes
12 RM 11 no
13 UL 12 no
14 ST 13 no
15 IN 14 no
16 OT 15 yes
17 QT 16 no
18 PR 17 no
19 PS 18 no

C-2

APPENDIX C (cont)

Column ~ MIXMASK Bit Standard Mask

20 XS 19 no
21 ES 20 . no
22 SM 21 yes
23 HR 22 yes
24 CT 23 no
25 XT 24 no
26 TL 25 no
27 SS 26 no
28 WU 27 no
29 WA 28 no
30 HM 29 no
31 CU 30 no

The format of the INFOMASK Card is as follows:

Column Word INFORMASK1 Bit Standard Mask

1 Not used 0
2 PG 1 no
3 MX 2 yes
4 DD 3 no
5 RW 4 no
6 PD 5 yes
7 DB 6 no
8 DP 7 no
9 DT 8 no

10 DS 9 no
11 PT 10 no
12 RS 11 no
13 EI 12 yes
14 CC 13 yes
15 PB ,14 no
16 RY 15 no
17 TR 16 no
18 OL 17 yes
19 LN 18 no
20 WD 19 yes
21 WT 20 yes
22 LR 21 no
23 RO 22 no
24 So 23 no
25 TO 24 yes
26 Sv 25 no
27 LD 26 no
28 CD 27 yes
29 RD 28 no
30 RN 29 no
31 ED 30 no
32 CI 31 no
33 TF 32 yes

C-3

APPENDIX C (cont)

Column Word INFOMASK1 Bit Standard Mask ----

34 SF 33 no
35 TS 34 yes
36 RR 35 no
37 QV 36 no
38 "EX 37 yes
39 PI 38 yes
40 LO 39 yes
41 LI 40 yes
42 SS 41 yes
43 SM 42 yes
44 HM 43 yes
45 TC 44 yes
46 zz 45 yes
47 BO 46 yes
48 WP 47 no

Col!:!!!!!! Word INFORMASK2 Bit Stand'ard Mask

49 Not used 0
50 WU 1 no
51 LF 2 no
52 LC 3 no
53 LS 4 no
54 XI 5 no
55 WR 6 no
56 WM 7 yes
57 BK 8 no
58 BS 9 no
59 US 10 no
60 SC 11 no
61 CL 12 no
62 QT 13 no
63 WI 14 no
64 CU 15 no

c-4

APPENDIX D

USASCII X3.4 - 1967 STANDARD CODE

b
7 • 0 0 0 0 1 1 1 1

~
.. 0 0 1 1 0 0 1 1

B • bS
..

0 1 0 1 0 1 0 1

~~4 b
3

b
2

b
1 ~ 0 1 2 3 4 5 6 7 , ~- ~ Row

0 0 0 0 0 NUL DLE SP 0 ~' P , p

0 0 0 1 1 SOH DCl ! 1 A Q a q

0 0 1 0 2 STX DC2 II 2 B R b r

0 0 1 1 3 ETX DC3 # 3 C S C 5

0 1 0 0 4 EOT DC4 $ 4 D T d t

0 1 0 1 5 ENQ NAK % 5 E U e u

0 1 1 0 6 ACK SYN 8 6 F V f v

0 1 1 1 7 BEL ETB / 7 G W 9 w

1 0 0 0 8 BS CAN (8 H X h x

1 0 0 1 9 HT EM) 9 I Y i y

1 0 1 0 10 LF SUB ,.. : J Z i z

1 0 1 1 11 VT ESC + ; K [k {
1 1 0 0 12 F'F FS , L '" I I

I

1 1 0 1 13 CR GS - = M] m }
1 1 1 0 14 SO RS > N " n ..-

1 1 1 1 15 SI US / ? 0 - 0 DEL

NUL Null DLE Data Link Escape (CC)
SOH Start of Heading (CC) DCl Device Control 1

STX Start of Text (CC) DC2 Device Control 2

ETX End of Text (CC) DC3 Device Control 3

EOT End of Transmission (CC) Dc4 Device Control (stop)

ENQ Enquiry (CC) NAK Negative Acknowledge (CC)

ACK Acknowledge (CC) SYN Synchronous Idle (CC)

BEL - Bell (audible or atten- ETB End of Transmission
signal) Block (CC)

BS Backspace (FE) CAN Cancel

HT Horizontal Tabulation EM End of Medium
(punched card skip) (FE)

D-l

LF

VT

FF

CR

SO

SI

DEL

APPENDIX D (cont)

Line Feed (FE) SS Start of Special Sequence

Vertical Tabulation (FE) ESC Escape

Form Feed (FE) FS File Separator (IS)

Carriage Return (FE) GS Group Separator (IS)

Shift Out

Shift In

Delete*

RS Record Separator (IS)

US Unit Separator

NOTE

(CC) Communication Control.

(FE) Format Effector.

(IS) Information Separator.

(IS)

The numbers in the left hand vertical column are the count contained

in DA1F through DA4F or DB1F through DB4F. The numbers in the top

horizontal row are the count contained in Dn5F through Dn6F.

o 1 2

o • ~ hI. 0

A x: DISCON.
1

>
1

2 ~ ~ " 2

~ Yoo: # 3

4 ~ ~ • 4

5 lXo ~ '" 5

6 ~ ACK ~ &I 6

7 G W S 7

8 H X (8

9 I Y) 9

10 J Z * :

11 K [+ ;

MULTI
12 L x , <

13 M] - =

14 ~ + >

~
0-

j ?
QM 15

*In the strict sense, DLE is not a control character.

D-2

Abort 'rabIe, 4-1

Address, 6-1, 6-5, 6-6, 6-11

absolute, 1-8

Disk, 6-12

Disk segment, 6-9

relative, 6-15

ALGOL, 5-17, A-I, B-1

Areas,

auxiliary storage, 2-1

core, 3-1

Array, 1-7

Date, 1-2

Bed, 6-5

Bits, 6-16, 9-1, C-l

Flag, 1-8

Block,

File Information (FIB), 5-12

File Parameter (FPB), 5-9

Buffer, 6-20

Pseudo, 5-17

Card,

Binary, 7-1

Control entry, 4-11

Control information, 4-5

ESPOL Load, 7-10

ESPOL Transfer, 7-8

execute, 4-4

file group, 4-16

H/L, 7-2

CCMASKl, C-l

CCMASK2, C-1

Cells,

PRT, 6-16

Run Time Error (RTE) , 1-8

INDEX

COBOL, 5-17, 6-14, 6-17, A-I, B-1

Code,

USASCII Standard, D-l

Initialization, 7-14

Internal Type, 5-16

Type, 5-3

Word, 4-5

Communicates,

MCP, A-I

Compile, 4-4, 4-5

-and-Go entry, 4-4

-Only entry, 4-4

Compiler, 6-14

Components,

B 5500, 1-1

Computer,

Programmers, 1-1

Control,

Central, 9-1

I/O, 5-1

Count,

error, 6-3

Counter,

Block, 1-7

Cycle, 4-7

DALOC, 2-8

Date,

Start, 4-14

Stop, 4-14

Deck,

Cold Start, 4-16

Descriptors, 6-18

data, 1-1

I/O, 5-16

one

INDEX (cont)

program, 1-1, 6-7, 5-17

Dictionary,

Segment, 6-16, 6-18

Dimensions, 1-8

Directory, 2-4

Disk, 2-1, 2-4, 4-17

Layout of Disk Below the, 2-7

Directory top, 1-6

Disk, 2-1

System, 2-1

User, 2-1

DSKLOG, 4-1

En t ry , 2,-12

Abort Information, 4-13

Compile-and-Go, 4-4

Compile-Only, 4-4

Control Card, 4-5

Log-In, 4-11

Log-Out, 4-10

Run-Time Error, 1-5

Entries,

Creation of Remote Log, 4-14

PRT, 6·-16

Field,

Error, 5-3

Fields, 3-1

Control, 3-1

File, 1-8

Subject, 4-8

Files,

Program 6-17

FINALQUE:I 5-8

Flag,

Mix-message Ready; 1-8

FORGETESPDISK, 2-8

two

Format,

Station Table, 1-8

FORTRAN, 6-3, A-l

GETESPDISK, 2-8

Handling,

Interrupt, 9-1

Hardware, 9-1

Header,

File, 2-4

Holder,

Message, 6-20

Identification,

File, 4-7

Multiple File, 4-7

INDEX, 5-3

Mix, 5-2

Indicator,

Save, 1-8

INFOMASK, C-1

Information,

Compiler and Object
Program, 4-5

Format of Library Maintenance
Segment for Load, 8-3

Program, 4-5

Initialization,

Special Records and Log, 4-9
Inquiry,

Array DCB [16J and the
ORR Word, 6-20

Handling a Fill with, 6-21

Integer, 1-7

Interrogate,

Passive, 4-15

Interrupt,

Emergency, 9-1

Handling an Inquiry
Request, 6-21

Independent, 5-1

Presence Bit, 9-1

Syllable-dependent, 9-2

Intrinsics, 6-16

IOQUEAVAIL, 5-8

JAR, 6-7

Key,

Memory-Dump, B-1

LABELTABLE, 5-7

Layout,

Disk, 2-1

Links,

Memory, 3-2

List,

Available-Disk, 2-1

LOCATQUE, 5-8

Log,

Initializing the, 4-9

Remote, 4-11

Logging, 4-1

LOOKQ, 6-19

Mask, 6-16

Maintenance,

Library, 8-1

Memory,

Core, 3-7

Message,

WR Keyboard Input, 4-17

Messages, C-l

MIXMASK, C-l

Modules, 3-7

MULTITABLE, 5-7

NFO, 6-18

INDEX (cont)

Numbers,

Logical Unit, 5-4

Read Ready Register (RRR) , 5-4

Parameter, 6-10, 6-18, 9-3, A-I

Pointer, 6-15

PRNTABLE, 5-8

Procedure,

Breakstart, 9-1

Procedures,

File Maintenance, 4-16

Program,

Master Control (MCP), 1-1

User, 4-16

Programs,

B 5500, 3-1

Format of Segment Zero for, 6-13

PRT, 6-2

Queue,

I/O, 5-1

RDCTABLE, 5-7

Record,

n+l, 4-19

Standard B 5500 Label, B-1

Register, 9-2

Requests,

I/O, 5-1

Restart, 9-1

Ring,

Write, 5-7

Routine,

File-Control, B-2

Selection, 6-9

Segment, 2-4

Name, 2-4

Size of, 6-16

three

:INDEX (cont)

SHEET, 6·-11

SLATE, 6·-9

Space,

Method for Declaring
Array, 6-17

Specifications,

Log Entry, 4-3, 4-10

System Log, 4-2

Statement,

Interrogate, 4-15

Statistics,

Job, 4·-12

Storage,

Available, 3-2

MCP Classification and
Organization of Core, 3-1

Systems,

Format of the System
Log for B 5500, 4-2

Table,

Array Information (AIT) , 1-7

Available-Disk, 2-11

Label Equation, 5-18

Program Reference (PRT) , 1-1

USERSTA, 4-15

Tables,

Input Output Assignment, 5-4

MCP, 1·-1

MCP Operational, 6-1

Tank,

]i'ile, 5-17

Tape,

Format of a Library, 8-2

Time,

Attach, 4-14

four

Clock, 6-19

Detach, 4-14

Save, 6-3

TINU, 5-6

Unit, 4-8, 5-3

Values,

Field, 3-3

Variables, 1-1, C-l

Word,

Code, 4-5

Label, 1-8

Option, 1-6

The ORR, 6-21

Pointer, 6-20

Zero,

Record, 4-9

Relative Address, 6-15

Q)
c

0)
c

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS

REMARKS FORM

TITLE: ______ . _____ _

CHECK TYPE OF SUGGESTION:

DADDITION DDELETION DREVISION

FORM: ______ _
DATE:

DERROR

...2 o ~---
GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION: -::J

U

FROM: NAME
TITLE
COMPANY -----------­
ADDRESS

DATE _____ _

STAPLE

FOLD DOWN SECOND FOLD DOWN

---------------.-----------------~----------------------------~---~--------~---------------

attn: Sales Technical Services
Systems Documentation

~ BUSINESS REPLY MAIL ~
L~ss Permit No. 817, Detroit, Mich. 48232

Burroughs Corporation
6071 Second Avenue
Detroit, Michigan 48232

-------~--,--------~---------------
FOLD UP FIRST FOLD UP

1042462 6-69 Printed in U. S. America

	000
	001
	002
	003
	004
	005
	006
	007
	008
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	8-01
	8-02
	8-03
	8-04
	9-01
	9-02
	9-03
	9-04
	A-1
	A-2
	A-3
	A-4
	B-1
	B-2
	C-1
	C-2
	C-3
	C-4
	D-1
	D-2
	I-1
	I-2
	I-3
	I-4
	replyA
	replyB
	zBack

