
Burroughs~

PRICED ITEM

Printed in U.S.A. September 1981 5011034

Burroughs~

B 5900 System

REFERENCE MANUAL

Copyright © 1981, Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

Printed in U.S.A. September 1981 5011034

ii

Burroughs believes that the information described in this publication
is accurate and reliable, and much care has been taken in its prepa­
ration. However, no responsibility, financial or otherwise, can be
accepted for any consequences arising out of the use of this material,
including loss of profit, indirect, special, or consequential damages.
There are no warranties which extend beyond the program specification.

The Customer should exercise care to assure that use of the information
in this publication will be in full compliance with laws, rules and
regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change. Revisions may
be issued from time to time to advise of changes and/or additions.

Correspondence regarding this publication should be forwarded using the
Remarks form at the back of the manual, or may be addressed directly to

TIO West Documentation, Burroughs Corporation,
1300 John Reed Court, City of Industry

California 91745
U.S.A.

B 5900 Reference Manual

LIST OF EFFECTIVE PAGES

Page Issue

Title Original
ii Original
iii Original
iv Blank
v thru xv Original
xvi Blank
xvii Original
xviii Blank
1-1 thru 1-14 Original
2-1 thru 2-16 Original
3-1 thru 3-17 Original
3-18 Blank
4-1 thru 4-77 Original
4-78 Blank
5-1 thru 5-27 Original
5-28 Blank
6-1 thru 6-35 Original
6-36 Blank
A-1 thru A-9 Original
A-10 Blank
B-1 thru B-2 Original

5011034 iii

B 5900 Reference Manual

TABLE OF CONTENTS

Section Title Page

INTRODUCTION . xvii
SYSTEM DESCRIPTION 1-1
General 1-1
B 5900 System Hardware Organization 1-1

Central Processor 1-2
Input/Output and Peripherals 1-4

B 5900 Operator Console V 1-9
B 5900 Peripheral Devices 1-12

2 DATA REPRESENTATION 2-1
General 2-1

Internal Character Codes 2-2
Number Bases 2-2

Supported Data Types 2-4
Data Words 2-4

Operands (Single-Precision and Double-Precision) 2-4
Tag 4 Words 2-7
Uninitialized Operand 2-7

Program Code Words 2-7
Descriptors 2-8

Data Segment Descriptor 2-8
Code Segment Descriptor 2-9

Indirect References 2-10
NIRW (Normal Indirect Reference Word) 2-10
SIRW (Stuffed Indirect Reference Word) 2-11
Indexed DD (Indexed Data Descriptor) 2-12
PCW (Program Control Word) 2-13

Stack Linkage Words 2-13
MSCW (Mark Stack Control Word) 2-14
RCW (Return Control Word) 2-14
TSCW (Top of Stack Control Word) 2-16

3 STACK CONCEPT AND REVERSE POLISH NOTATION 3-1
The Stack 3-1

Base and Limit of Stack 3-2
Bidirectional Data Flow in the Stack 3-2

Stack Push . 3-2
Stack Pop 3-2

Double-Precision Stack Operation 3-2
Top-Of-Stack Register Conditions 3-3
Stack Adjustments 3-3
Data Addressing 3-4

Data Descriptor 3-4
Presence Bit 3-5
Indexed Bit . 3-5

Invalid Index 3-5
Valid Index 3-5
Read-Only Bit 3-5
Copy Bit 3-5

5011034 v

vi

B 5900 Reference Manual

TABLE OF CONTENTS (Cont)

Section Title

3 (Cont) Reverse Polish Notation
Polish String
Rules for Evaluating a Polish String
Simple Stack Operation
Program Structure in Local Memory
Local Memory Area Allocation

The B 5900 Processor State
Stack History and Addressing Environment
Expression Stack
Executable Code Streams . .
General Boolean Accumulators
Miscellaneous

4 B 5900 OPERATOR SET .
Preliminary Information

Expression Stack Control
Arithmetic Operators . .

ADD (Add) P(80) . .
SUBT (Subtract) P(81)
MULT (Multiply) P(82)
MULX (Extended Multiply) P(8F)
DIVD (Divide) P(83)
IDIV (Integer Divide) P(84) . .
RDIV (Remainder Divide) P(85)
CHSN (Change Sign) P(8E)
NORM (Normalize) V(8E)

Relational Operators
LESS (Less Than) P(88)
LSEQ (Less Than Or Equal To) P(8B)
EQUL (Equal To) P(8C)
NEQL (Not Equal To) P(8D)
GREQ (Greater Than Or Equal To) P(8A)
GRTR (Greater Than) P(89) . . .

Type Transfer Operators
NTIA (lntegerize Truncated) P(86)
NTGR (lntegerize Rounded) P(87)
SNGL (Set to Single-Precision Rounded) P(CD)
SNGT (Set to Single-Precision Truncated) P(CC)
XTND (Set to Double-Precision) P(CE)
NTGD (lntegerize Double-Precision Rounded) V(87)

Scaling Operators
Scale Left Operators
SCLF (Scale Left) P(CO)
DSLF (Dynamic Scale Left) P(Cl)
Scale Right Operators
SCRS (Scale Right Save) P(C4)
DSRS (Dynamic Scale Right Save) P(C5)

Page

3-5
3-6
3-6
3-8

3-11
3-11
3-12
3-12
3-14
3-15
3-16
3-17

4-1
4-1
4-1
4-2
4-2
4-2
4-2
4-2
4-2
4-2
4-3
4-3
4-3
4-3
4-3
4-3
4-3
4-3
4-3
4-4
4-4
4-4
4-4
4-4
4-4
4-5
4-5
4-5
4-5
4-6
4-6
4-6
4-7
4-7

B 5900 Reference Manual

TABLE OF CONTENTS (Cont)

Section Title Page

4 (Cont) SCRT (Scale Right Truncate) P(C2) 4-7
DSRT (Dynamic Scale Right Truncate) P(C3) 4-7
SCRR (Scale Right Rounded) P(C8) . . . 4-7
DSRR (Dynamic Scale Right Rounded) P(89) 4-8
SCRF (Scale Right Final) P(C6) 4-8
DSRF (Dynamic Scale Right Final) P(C7) 4-8

Logical Operators 4-8
LNOT (Logical Not) P(92) 4-8
LAND (Logical And) P(90) 4-9
LOR (Logical Or) P(91) 4-9
LEQV (Logical Equivalence) P(93) 4-9

Relational Operator 4-9
SAME (Logical Equality) P(94) . 4-9

Literal Operators 4-9
ZERO (Insert Literal Zero) P(BO) . 4-9
ONE (Insert Literal One) P(Bl) 4-9
LT8 (Insert 8-Bit Literal) P(B2) 4-9
LT16 (Insert 16-Bit Literal) P(B3) 4-10
LT48 (Insert 48-Bit Literal) P(BE) 4-10

Type Transfer Operators 4-10
ST AG (Set Tag) V(B4) 4-10
JOIN (Set Two Singles to Double) V(42) . 4-10
SPLT (Set Double to Two Singles) V(43) 4-11

Evaluate Word Structure Operators . 4-11
RT AG (Read Tag) V(B5) 4-11
CBON (Count Binary Ones) V(BB) 4-11
LOG2 (Leading One Test) V(8B) 4-11

Word Manipulation Operators 4-11
BSET (Bit Set) P(96) . 4-12
OBST (Dynamic Bit Set) P(97) . 4-12
BRST (Bit Reset) P(9E) 4-13
DBRS (Dynamic Bit Reset) P(9F) . 4-13
ISOL (Field Isolate) P(9A) 4-13
DISO (Dynamic Field Isolate) P(9B) 4-13
INSR (Field Insert) P(9C) . 4-14
DINS (Dynamic Field Insert) P(9D) . 4-14
FLTR (Field Transfer) P(98) . 4-14
DFTR (Dynamic Field Transfer) P(99) 4-15

Special Interpretations 4-15
OCRX (Occurs Index) V(85) . 4-15

Reference Generation and Evaluation Operators 4-16
Evaluation of Indirect References 4-16

Address Couple Parameters 4-16
NIRWs 4-17
SIRWs 4-17
Indexed Word ODs 4-17
PCWs. 4-17
IRW Chains 4-18

5011034 vii

B 5900 Reference Manual

TABLE OF CONTENTS (Cont)

Section Title

4 (Cont) Reference Chains

viii

Reference Generation Operators .
NAMC (Name Call) P(40)-P(7F)
STFF (Stutl) P(AF)
INDX (Index) P(A6)
MPCW (Make PCW) P(BF) ..

Read Evaluation Operators . . .
VALC (Value Call) P(OO)-P(3F) .
NXLV (Index and Load Value) P(AD)
NXLN (Index and Load Name) P(A5) .
EV AL (Evaluate) P(AC)
LOAD (Load) P(BD)
LOOT (Load Transparent) V(BC) .

Store Evaluation Operators . . .
Normal Store Operators
STOD (Store Delete) P(B8) . .
STON (Store Non-Delete) P(B9)

Overwrite Operators
OVRD (Overwrite Delete) P(BA)
OVRN (Overwrite Non-Delete) P(BB)
RDLK (Read Lock) V(BA) . .

Special Evaluation Operator . . .
STBR (Step and Branch) P(A4)

Processor State Operators
Preliminary Information

Code Stream Pointer Distribution
System Stack Control

Branching Operators
Static Branches
BRUN (Branch Unconditional) P(A2)
BRTR (Branch True) P(Al)
BRFL (Branch False) P(AO)
Dynamic Branches
DBUN (Dynamic Branch Unconditional) P(AA)
DBTR (Dynamic Branch True) P(A9)
DBFL (Dynamic Branch False) P(A8)

Stack Structure Operators
Procedure Entry Operators . . .

MKST (Mark Stack) P(AE) . .
IMKS (Insert Mark Stack) P(CF)
ENTR (Enter) P(AB) .

Procedure Exit Operators . . .
EXIT (Exit) P(A3)
RETN (Return) P(A 7)
MYST (Move to Stack) V(AF)

Page

4-18
4-19
4-19
4-19
4-19
4-20
4-21
4-21
4-22
4-22
4-23
4-24
4-25
4-26
4-26
4-27
4-27
4-27
4-28
4-28
4-28
4-28
4-28
4-28
4-29
4-29
4-29
4-29
4-30
4-30
4-30
4-30
4-30
4-31
4-31
4-31
4-31
4-32
4-32
4-32
4-33
4-34
4-34
4-35
4-36

B 5900 Reference Manual

TABLE OF CONTENTS (Cont)

Section Title Page

4 (Cont) Top-Of-Stack Operators 4-37
DLET (Delete Top-Of-Stack) P(B4) 4-37
EXCH (Exchange Top-Of-Stack) P(B6) 4-38
DUPL (Duplicate Top-Of-Stack) P(B7) 4-38
RSUP (Rotate Stack Up) V(B6) 4-38
RSDN (Rotate Stack Down) V(B7) 4-38

Processor State Manipulation Operators 4-38
Read State Operators 4-38

RTFF (Read True-False Flip-Flop) P(DE) 4-38
RCMP (Read Compare Flip-Flop) V(B3) 4-38
WHOI (Read Processor ID) V(4E) 4-39
RTOD (Read Time of Day Clock) V(A7) 4-39
RPRR (Read Processor Register) V(B8) 4-39

Set State Operators 4-39
SXSN (Set External Sign Flip-Flop) P(D6) 4-39
EEXI (Enable External Interrupts) V(46) . 4-40
DEXI (Disable External Interrupts) V(47) 4-40
SINT (Set Interval Timer) V(45) 4-40
WTOD (Write Time of Day Clock) V(49) 4-40
SPRR (Set Processor Register) V(B9) 4-40
IDLE (Idle Until Interrupt) V(44) . 4-41
RUNI (Turn On Running Light) V(41) 4-41

Read and Set State Operator 4-41
ROFF (Read and Reset Overflow Flip-Flop) P(D7) 4-41

Data Array Operators 4-41
Searching Operators 4-41

LLLU (Linked List Lookup) V(BD) 4-41
SRCH (Masked Search for Equal) V(BE) 4-42

Pointer Operators 4-43
Length 4-43
Source 4-43
Destination . 4-44

Character Transfer Operators 4-44
TUND (Transfer Characters Unconditional Delete) P(E6) 4-45
TUNU (Transfer Characters Unconditional Update) P(EE) 4-45

Character Relational Operators 4-45
Scan Operators 4-45
Transfer Operators 4-45
Character Sequence Compare Operators 4-46
Character Set Membership Operators 4-47
Scan Operators 4-48
Transfer Operators 4-49
Character Sequence Extraction Operator 4-50

SISO (String Isolate) P(D5) 4-50
Character Set Translate Operator . 4-50

TRNS (Translate) V(D7) 4-50
Decimal Character Sequence Operators 4-51

5011034 ix

Section

4 (Cont)

x

B 5900 Reference Manual

TABLE OF CONTENTS (Cont)

Pack Operators
PACD (Pack Delete) P(Dl)
PACU (Pack Update) P(D9)

Unpack Operators
Unpack Absolute Operators .

Title

UABD (Unpack Absolute Delete) V(Dl)
UABU (Unpack Absolute Update) V(D9)

Unpack Signed Operators
USND (Unpack Signed Delete) V(DO) .
USNU (Unpack Signed Update) V(D8)

Input Convert Operators
ICVD (Input Convert Delete) P(CA)
ICVU (Input Convert Update) P(CB)

Word Transfer Operators
Word Transfer Protected Operators . .

TWSD (Transfer Words Delete) P(D3)
TWSU (Transfer Words Update) P(DB)

Word Transfer Overwrite Operators . . .
TWOD (Transfer Words Overwrite Delete) P(D4)
TWOU (Transfer Words Overwrite Update) P(DC)

Edit Operators . .
Table Edit Mode
Single Edit Mode
Source
Destination . . .

Enter Edit Mode Operators
Enter Table Edit Operators
TEED (Table Enter Edit Delete) P(DO)
TEEU (Table Enter Edit Update) P(D8)
Enter Single Edit Operators
Normal Enter Single Edit Operators . .
EXSD (Execute Single Edit Operator Delete) P(D2)
EXSU/EXPU (Execute Single Edit Operator, Update/Pointer Update)
P(DA)/P(DD)

Character Skip Operators .
Skip Forward
Skip Reverse

Character Insert Operators
INSU (Insert Unconditional) E(DC)
INSC (Insert Conditional) E(DD) .
INOP (Insert Overpunch) E(D8)
INSG (Insert Display Sign) E(D9)
ENDF (End Float) E(D5) . . .

Character Move Operators
MCHR (Move Characters) E(D7)
MVNU (Move Numeric) E(D6)
MINS (Move with Insert) E(DO)
MFLT (Move with Float) E(Dl)

Page

4-51
4-52
4-52
4-52
4-52
4-52
4-53
4-53
4-53
4-53
4-53
4-53
4-53
4-54
4-54
4-54
4-54
4-54
4-54
4-54
4-54
4-55
4-55
4-55
4-55
4-56
4-56
4-57
4-57
4-57
4-58
4-58

4-58
4-58
4-59
4-59
4-59
4-59
4-60
4-60
4-60
4-61
4-61
4-61
4-61
4-62
4-62

B 5900 Reference Manual

TABLE OF CONTENTS (Cont)

SeCtion Title

4 (Cont) Miscellaneous Operators

5011034

RSTF (Reset Float Flip-Flop) E(D4)
ENDE (End Edit) E(DE)
NOOP (No Operation) P(FE) V(FE) E(FE)
PUSH (Push Down Stack Registers) P(B4)
HALT (Conditional Processor Halt) P(DF) V(DF) E(DF)
NVLD (Invalid Operator) P(FF) V(FF) E(FF) .

External Communication Operators
CUIO (Communicate with Universal 1/0) V(4C)
SCNI (Scan In) V(4A) .
SCNO (Scan Out) V(4B)

Interrupts
Preliminary Information .
Interrupt Entry Sequence

Interrupt Parameters
ID Parameter
P2 Parameter .

Superhalt
Interrupt Definition

Operator Dependent Interrupts
MCP Service .

Presence Bit
Paged Array
Stack Overflow

Error Reporting .
Invalid Operator
Undefined Operator
Invalid Stack Argument
Invalid Argument Value
Invalid Code Parameter
Invalid Reference
Invalid Reference Chain
Invalid Index .
Memory Protect . .
Divide by Zero
Exponent Underflow
Exponent Overflow
Integer Overflow
Stack Underflow .
Bottom-Of-Stack .
Stack Structure Error
Code Segment Error
Invalid Program Word

Alarm Interrupts
Local Memory Uncorrectable Error
Global Memory Uncorrectable Error
Loop Timer
Hardware Error .

External Interrupts .

Page

4-63
4-63
4-63
4-63
4-63
4-63
4-63
4-64
4-64
4-64
4-64
4-64
4-64
4-65
4-66
4-66
4-66
4-66
4-66
4-66
4-68
4-68
4-69
4-69
4-69
4-70
4-70
4-70
4-70
4-70
4-70
4-71
4-71
4-72
4-72
4-72
4-72
4-72
4-72
4-72
4-72
4-73
4-73
4-73
4-74
4-75
4-76
4-76
4-76

xi

xii

B 5900 Reference Manual

TABLE OF CONTENTS {Cont)

Section Title

5 SYSTEM CONCEPT
Functional Description

Data Processor . .
ALU and Register Stack
Rotation and Field Isolation Unit
Literal PROM
Rotator
Dynamic Address Controller . . .
Tag and Lexical Level Controller
Latch
D-Bus
Control Logic
Bus Controller

The Program Bus Controller
Asynchronous Bus Request Controller

Data Processor Maintenance Mode
Stored Logic Controller

Control Store . .
Sequence Store . .
Condition Select
State Select Module
Subroutine Stack

Program Controller
Syllable Prep Module
Operator Mapping Module
Parameter Prep Module
PC Control Module

Memory and Memory Controller
Memory Controller Functional Description

Timing Section
Message Level Interface Port (MLIP)

Controller
Status Tester
Longitudinal Parity Generator
Longitudinal Parity Checker
Strobe Logic
Timers
MLI Bus Transceiver
Parity Generator/Checker
MLI/MLIP Word Selector
Odd/Even Byte Selector
MLIP Write/Read Buffers
16-Bit Word Selector
C-Bus Decode
C-Bus Register

Maintenance Processor and Interrupt Timers
Error/Event Logic

Maintenance Processor Control Memory
Data Exchange Logic

Page

5-1
5-1
5-1
5-1
5-2
5-2
5-2
5-3
5-3
5-3
5-4
5-5
5-5
5-5
5-6
5-6
5-6
5-7
5-9

5-10
5-12
5-14
5-14
5-15
5-15
5-17
5-17
5-18
5~18

5-19
5-19
5-21
5-21
5-21
5-21
5-21
5-21
5-22
5-22
5-22
5-22
5-22
5-22
5-22
5-22
5-22
5-25
5-26
5-26

B 5900 Reference Manual

TABLE OF CONTENTS (Cont)

Section Title Page

6 B 5900 INPUT/OUTPUT DAT A COMMUNICATION SUBSYSTEM 6-1
MLIP General Information 6-1
IODC Subsystem General Information . 6-1
B 5900 1/0 Device Operation Processes 6-5
1/0 Operations 6-6

Interrupt 6-6
Shared Data Structures 6-6

IOCB 6-8
MLIP Control Word 6-9
Command Queue Headers 6-16
Horizontal Queue Heads/Horizontal Queue Array 6-18
Result Queue Heads/Result Queue Array 6-19
Control of Data Structures 6-20

MLIP/Memory Interface 6-20
MLIP/DLP Interface 6-21

MLIP Commands 6-21
Error Handling 6-23

Categories of Errors 6-23
Error IOCB/Error IOCB Command Queue 6-24
Error IOCB Result Parameters . 6-25

System Independent Parameters 6-26
System Dependent Parameters 6-26

MLIP Algorithms 6-27
MLIP Idle Loop 6-27
MLIP CUIO 6-27
Enqueueing an IOCB Chain in a Command Queue 6-27
Initiate Queue 6-28
Removing a Command Queue from a Horizontal Queue 6-28
Adding a Command Queue to a Horizontal Queue 6-28
Attempting to Connect to a DLP . 6-29
Dequeueing an IOCB from a Command Queue 6-29
Initiating an IOCB 6-30
Get DLP Result 6-30
Adding an IOCB to a Result Queue 6-31
Poll Request/Turnaround 6-31
MLIP Operations 6-32
Data Transfer 6-33

GLOSSARY OF MLIP/IODC OPERA TING TERMS 6-34
A OPERATORS B-1
B DATA REPRESENTATION B-1

5011034 xiii

Figure

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9
1-10
1-11
1-12
1-13
1-14
2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
3-1
3-2
3-3
3-4
3-5
3-6
3-7
4-1
5-1
5-2
5-3
5-4
5-5
5-6
5-7
5-8

xiv

B 5900 Reference Manual

LIST OF ILLUSTRATIONS

Title

B 5900 CPC Backplanes
Backplane Organization of Processor Modules
B 5900 System Architecture
B 5900 Processor Internal Architecture
Basic IODC Configuration
Expanded IODC Configuration
Single I/O Base Configuration (Single MLIP Interface)
I/O Base Module
B 5900 IODC MLI and Test Bus Interfaces
B 5900 I/O and Console Subsystem Schematic
B 5900 Operator Display Console
B 5900 Operator Keyboard
Console Operating Controls
Block Diagram of Basic B 5930 System
B 5900 Word Structure . . .
Character and Digit Formats
B 5900 Word Formats . . .
Single Precision Operand Format, Arithmetic Interpretation
Single Precision Operand Format, ICW Interpretation
Double Precision Operand Format, Arithmetic Interpretation
Tag 4 Word Format
Uninitialized Operand Format . .
Data Descriptor Word Format . .
Segment Descriptor Word Format
Normal Indirect Reference Word Format
Stuffed Indirect Reference Word Format
Indexed Data Descriptor Word Format
Program Control Word Format
Mark Stack Control Word Format .
Return Control Word Format . . .
Top of Stack Control Word Format
Top of Stack and Stack Bounds Registers
Reverse Polish Notation Flow Chart
Stack Operation
Object Program in Memory
Addressing Environment Example
Topmost Activation Record Example
Processor Code Stream Pointer
Stack State Transformation Produced By Interrupt Entry
Functional Block Diagram of the Data Processor
Functional Block Diagram of the Tag and Lexical Level Controller
Stored Logic Controller Modular Block Diagram
Control Store Block Diagram
Sequence Store Block Diagram
SLC Condition Select Block Diagram
State Select Module Block Diagram
Functional Block Diagram of the Program Controller Module

Page

1-1
1-2
1-3
1-4
1-5
1-6
1-7
1-8
1-9

1-10
1-11
1-11
1-12
1-14
2-1
2-2
2-3
2-5
2-5
2-6
2-7
2-7
2-9
2-9

2-10
2-11
2-12
2-13
2-14
2-15
2-16

3-1
3-7
3-9

3-11
3-13
3-14
3-16
4-65

5-2
5-4
5-7
5-8

5-10
5-11
5-13
5-14

Figure

5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
6-1
6-2
6-3
6-4
6-5
6-6
6-7
6-8
6-9
6-10
6-11
6-12
6-13
6-14
6-15
6-16
6-17
6-18
6-19
6-20
6-21

Table

3-1
3-2
3-3
4-1
6-1
A-I
A-2
B-1

5011034

B 5900 Reference Manual

LIST OF ILLUSTRATIONS (Cont)

Title

Syllable Prep Module Block Diagram . .
Operator Mapping Module Block Diagram
Parameter Prep Module Block Diagram .
Memory Controller Block Diagram . . .
Block Diagram of the Message Level Interface Port
Maintenance Processor, Interrupt Controller, and Error Logic Modular Layout
Interrupt Controller Block Diagram . . .
Maintenance Processor Control Logic . .
IODC Base Module With One OLP
B 5900 IODC Base Module Organization
B 5900 IODC and System Organization
Multiple IODC Cable Connections
Command and Result Chaining
IOCB Format
IOCB Mark - IOCB
OLP Address Word Format . .
OLP Command/Result Lengths Word Format
MLIP State and Result Word Format .
Command Queue Header Format
Command Queue Header Mark - lOCC
Horizontal Queue Array · .
Queue Mark - lOCE - Horizontal Queue Header Word
Result Queue Array
Queue Mark - IOCF - Result Queue Header Word
MLIP Command Word
MLIP Status Word
Returned MLIP IOCB Result Descriptor .
ERROR IOCB Result . .
Memory Word Characters

LIST· OF TABLES

Title

Simplified Rules for Generating a Polish String
Evaluation of Polish String A 7 B C + X : =
Description of Stack Operation
Decimal Register ID Encoding
MLIP Control Field - Valid Commands
Operators, Alphabetical List
Operators, Numerical List
Data Representation

Page

5-16
5-16
5-17
5-19
5-20
5-23
5-24
5-26

6-2
6-3
6-4
6-5
6-7
6-8
6-8

6-12
6-13
6-14
6-16
6-17
6-18
6-19
6-19
6-20
6-21
6-22
6-23
6-26
6-33

Page

3-6
3-8

3-10
4-39
6-11
A-1
A-5
B-1

xv

B 5900 Reference Manual

INTRODUCTION

The B 5900 is designed to extend the family of Burroughs large systems computers downward into the medium
systems cost and performance range. The B 5900 reduces the size and environmental requirements for a large
computer system. In comparison with the B 6800, the B 5900 requires 76 percent less Floorspace, and 80 per­
cent less power consumption and air conditioning. The B 5900 utilizes large scale integration devices through­
out and subsequently requires only a single cabinet to house the entire system.

The B 5900 system utilizes the same dynamic storage allocation concept that has proven successful in Bur­
roughs Large Systems previously. This concept utilizes a Descriptor method of segmentation which allows var­
iable length segments of data to be used. This method is more efficient than "fixed-size" paging concepts.

The B 5900 system contains the capability to be interfaced with, and to operate from GLOBAL™ memory ap­
plications.

The sections of this manual are organized in the following manner:

SECTION I, SYSTEM DESCRIPTION, discusses the design of the B 5900 Central Power Cabinet and the
independent sub-systems and architecture.

SECTION 2, DATA REPRESENTATION, discusses data representation and word formats.

SECTION 3, STACK CONCEPT, discusses stack concept as implemented in large systems and reverse polish
notation.

SECTION 4, B 5900 OPERA TOR SET, details the implementation of the large system operator set as it ap­
plies to the B 5900.

SECTION 5, SYSTEM CONCEPT, discusses the functional aspects of the B 5900 system.

SECTION 6, INPUT/OUTPUT DAT A COMMUNICATION SUBSYSTEM, discusses the IODC subsystem in­
terfaces.

APPENDICES, Operator set (alphabetical and numerical representation), and Data representation

The B 5900 operation is performed by a specially designed microprogram. Since the microprogram encom­
passes a large part of the functional explanation, discussion will make reference to microprogramming. Under
no condition will an attempt to describe microprogramming be made. Microprogram references will be included
only to clarify or explain machine operation that can not be adequately described from a hardware point of
view. If a part of the system can be discussed in both hardware and microprogram terms, this manual will
use the hardware explanation.

GWBAL Is a trademark of Burroughs Corporation

5011034 xvii

GENERAL

B 5900 Reference Manual

SECTION 1
SYSTEM DESCRIPTION

This manual describes the B 5900 Information Processing system. The B 5900 is designed to open an entry
level position in Burrough's large systems computers. Object code compatible with B 6000/B 7000 series sys­
tems, the B 5900 utilizes advanced architecture and employs medium and large scale integration (MSI AND
LSI) logic devices.

This manual explains how the B 5900 Information Processing System achieves flexibility and efficiency through
a comprehensive system approach to problem solving, without considering the areas of computer logic or cir­
cuit design. The B 5900 is a compiler oriented system, designed to accept the high level problem-solving lan­
. guage compilers such as ALGOL, COBOL, FORTRAN, and PL/I.

The B 5900 system operates under the control of a Master Control Program (MCP), which automatically han­
dles memory assignments, program segmentation, and subroutine linkages. The use of the MCP eliminates
many arduous programming tasks which are likely to produce errors. The compilers operate under the control
of the MCP, as do the object-programs that result from the use of the compilers. The programs are debugged
and corrected in the source language.

B 5900 SYSTEM HARDWARE ORGANIZATION

This section discusses the Central Processing Cabinet (CPC) of the B 5900 and the various modules located
in the cabinet. The central processor, the local memory modules, and the IODC subsystem are housed in this
single cabinet.

There are six backplanes in the Central Cabinet. One Central Processor, one Local IC Memory (up to 512
KWords), three I/O Base Modules, and an optional 512 KWord IC Memory. Figure 1-1 shows the basic config­
uration of the Central Processing Cabinet backplanes and interface boxes. A minimum of two I/O Base Mod­
ules are configured in the basic B 5930 system.

5011034

PA~EL l~i]1'1'1i1'f 1i:[1

PANEL
H

PANEL
J

PANEL
K

MV4600

··················· . ·················
···················

1!1 1 11~ I :1;~
···················

i1'.;'1'1i:"i"1:1~
·-·············-···

MOD - 1/0 BASE MOD - 1/0 BASE MOD - 1/0 BASE

PANEL D PANEL E PANEL F

MOD-MEM CPU MOD-MEM

PANEL B PANELA PANEL C

RACK A

Figure 1-1. B 5900 CPC Backplanes

·······-···········

I~:! .• }~ . !i!:J PA~EL
·-·················
···················

i ijt . i_l!_,i_i}J PA~EL

. ·······-·········

1~:1 11: li1IJ PA~EL
···················
·········-·········

1-1

CENTRAL PROCESSOR

B 5900 Reference Manual
System Description

The Central Processor is comprised of 17 cards resident in a 24-slot backplane. The remaining seven slots are
for interface adapters to other subsystems. The Processor is designed as a set of individual functional modules:
The Stored Logic Controller (SLC; 5 boards), the Data Processor (DP; 4 boards), the Message Level Interface
Port (MLIP; 2 boards), the system Clock (1 board), the Program Controller (PC; 2 boards), the Maintenance
Processor (MP; 1 board), and the Interrupt/Timer (I/T; 2 boards). The interface adapters are the optional Host
Global Memory Interfaces (3 boards), the Memory Controls (2 boards plus 1 located in the memory module),
and 2 more slots for Memory Control in case the extended memory option is utilized. The modules of the
Central Processor reside in the designated slots as shown in Figure 1-2.

The Central Processor has two main buses. The 52-bit Main Data Bus (M-bus) and the 30-bit Control Bus
(C-bus). The M-bus is used to transfer data between the separate processor modules. The C-bus originates
in the SLC and carries uni-directional command information to the other modules.

The processor contains the generation circuitry for the system clock pulse. The clock card contains a 20.0
megahertz oscillator. The system clock frequency for the B 5900 system is 5.0 megahertz. This frequency prop­
agates clock pulses every 200 nanoseconds. There are two minor clocks pulses of 100 nanoseconds and 50
nanoseconds.

!AAA
24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

I- I-a: a:

I
0 0
0.. 0..
UJ UJ a: a: a: a: a:
(.) (.) a: UJ UJ UJ UJ UJ
<(<(0

..J ..J ..J ..J ..J
N - u. u.

~
..J ..J ..J .J ..J a: a: a: a: a: a: 0 0 0 0 0 UJ UJ

UJ UJ UJ UJ UJ a: a: a: a: a: ..J ..J
..J .J I- I- (.) I- I- I- I- I- ..J ..J
..J ..J ~ ~ a: 0 z z z z z 0 0 0 0 a: a: 0 0 0 0 0 a: a: a: a: a: a:

I a: a: ..I ..I UJ UJ 0.. (.) (.) (.) (.) (.) I- 0 0 0 0 ::? ::? I-I- I- UJ UJ UJ ~ ~ ~ ~ ~ z z Cl) Cl) Cl) Cl) z z > > I- I- (.) 0 0
Cl) Cl) Cl) Cl)

0 0 UJ UJ z <.:l <.:l <.:l <.:l <.:l (.) (.)
UJ UJ UJ UJ

(.) (.) ..I ..I I- I- <(0 0 0 0 0 (.) (.) (.) (.)
0.. 0.. ..J ..I ..J ..I ..J ::!: ::!: 0 0 0 0 >- >- UJ UJ :::> :::> z <(<(a: a: a: a: a: a: c.: a: a:

<.:l <.:l a: UJ Cl Cl Cl Cl Cl UJ UJ UJ UJ UJ a: a: a: a: a: 0.. 0.. 0.. 0..
0 0 <(<(a: a: I- ~ UJ UJ UJ UJ UJ Ii:: Ii:: I- I- I-
::!: ::!: ~ Cl) UJ UJ ~ (.) a: a: a: a: a: <.:l <.:l <(<(<(<(0.. 0.. 0..

Cl)
I- I- 0 0 0 0 0 0 0 0 I- I- I- I- <(<(<(<(<(

UJ UJ UJ UJ
~ ~

<(..J t; t; I- t; I- a: a: <(<(<(<(Cl Cl Cl Cl Cl ::!: ::!: ::? ::? ::? (.) Cl) Cl) 0.. 0.. Cl Cl Cl Cl <(<(<(<(<(

MV4601

Figure 1-2. Backplane Organization of Processor Modules

Figure 1-3 shows the overall system architecture of the B 5900. The system communicates by way of the MLI
1/0 interface, a Global Memory interface, and an expansion memory interface. The MLI and maintenance in­
terfaces are provided with the basic system. The additional memory interfaces are available as adapters.

Figure 1-4 depicts the internal architecture of the B 5900 processor. The modules which make up the processor
communicate by way of the two above mentioned buses (M-bus and C-bus). The Data Processor also uses
the M-bus for certain internal operations. The Bus Control module, located in the Data Processor, responds
to program controlled allocation of the M-bus by the SLC, and asynchronous requests for data transfer by
the memory modules. Data on the M-bus, in the memory and in the register files, is positive when true. That
is, the logic level for Data is positive if logical ONE and negative if logical ZERO.

1-2

B 5900 Reference Manual
System Description

CONSOLE ODT'S

• ,-------------------,
I ~ I
1

_10 DEV1cE5.. uio BASE ~ HOST CONSOLE PORT
1

I 1 MLI PO:T 0 - 512K WORDS I
I

LOCAL MEMORY II

IODEV~
"4--- - -~ UIO BASE

I ~ ~ I
I MLI PORT 1 GLOBAL MEMORY PORT I I PROCESSOR - I

~---------=---=----J I MLI PO~ EXPANSION - MOD. I

I I I ~o DEVICES u10 BASE I
I MLI PORT 3 ~ I
I ~ ~~~~~~~~SORY ' '1

-1----- EITHER OR ...
..!_0 DEVICE~ 1----------i I - - UIO BASE I

L _______________ J
MV4602

Figure 1-3. B 5900 System Architecture

The C-bus is a 30 wire control bus that transfers commands from the SLC to the other modules in the proces­
sor. The interpretation of the command on the C-bus is controlled by a 3-bit field that indicates which module
must respond to the command.

The B 5900 has several maintenance features which include the integrated Maintenance Processor which runs
at system clock speed, and an external Maintenance Interface Processor located in the operator console. All
PROMs and RAMs in the processor are parity checked; all data buses in the system are parity checked on
every clock cycle of the machine operation. All registers can be read and set from the Maintenance Processor.
The memory subsystem includes single-bit error correction and multiple-bit error detection. Memory error cor­
rection occurs in-line, without affecting the system, and the hardware logs memory errors.

5011034 1-3

512K WORDS
LOCAL

MEMORY
OR

GLOBAL
MEMORY

r __ j __ _
I MEMORY I
I EXPANSION I
I ADAPTERS I

I I
I LOCAL I
I MEMORY!

I OR I
IGlOBAL I
I MEMORYI

512K WORDS
LOCAL MEMORY

1
MEMORY

CTRL

-ERROR
CORRECTION

-ERROR

LOGGING

4MLI
PORTS

tlii ..
HOP -

- MU
-

INTF.

-

B 5900 Reference Manual
System Description

STORED LOGIC PROGRAM
CNTL CONTROLLER

CONDITION - P AND Q

LOGIC REGISTER

STORED LOGIC - PARAMETER

RAMS
PREP.

- OPERATION
DECODE

-
-
-
-
-
-

D BUS TO CONSOLE

l l 1
DATA PROCESSOR MP -

REGISTER FILE - MAINTENANCE

ALU INTERFACE

ROTATOR - SYSTEM AND
MASK INTERRUPT

TAG CNTL CONTROLLER

LEX LEVEL CNTL - SYSTEM CLOCK

INTF

Lf_[~~-!-~ _ J _ f__. +--L- 1-1-- -L ·~;~:J:,W;~::~
MV4603

Figure 1-4. B 5900 Processor Internal Architecture

The 200 nanosecond system clock has a 35 nanosecond pulse width. The structure of the processor is such
that one data transformation occurs with each clock. All module-to-module communications are relative to the
low-to-high transition of the system clock. The system and minor clocks may be stopped or single pulsed inde­
pendently. The processor clocks may be stopped without affecting the memory clocks so as to retain any valid
data in memory.

The 1/0 function is supported by the SLC. During an l/O burst, no other processing occurs. Because there
is only a single interface to memory (the M-bus), simultaneous processing and I/O transfer are prevented.

INPUT/OUTPUT AND PERIPHERALS

The Input/Output Data Communications (IODC) subsystem interfaces peripheral devices with the host B 5900
system. The IODC subsystem can be maintained without regard to the host system architecture.

The basic IODC subsystem configuration is shown in Figure 1-5. The Host is the central processor that con­
trols the activity of the IODC subsystem by supplying commands, granting access for data transmissions, and
receiving results. The portion of the CPU that directly controls the subsystem is designated as the Message
Level Interface Port (MLIP). The MLIP communicates with the IODC subsystem by way of Message Level
Interfaces. The unit at the opposite end of the MU inside of the 1/0 base is the Connection Module (Conmod)
which is a collective name for a group of units that are responsible for connecting the host to subsystem desti­
nations (Base Control Card, Distribution Card, and in a multiple processor system a Path Selection Module).
These destinations are called Data Link Processors (DLP) and are the units that control the activity of periph­
eral devices and data communication channels. Certain destinations in the IODC base module have DLPs as
their peripheral devices and are called Network Support Processors (NSP). The Connection Module is con­
nected to the DLPs by way of Data Link Interface (DLI). The The DLP communicates to peripherals across
requisite Peripheral Interfaces (PI).

1-4

B 5900 Reference Manual
System Description

HOST

HDP

~---Mll

CON MOD

Dll--~ UIO

DLP

----Pl

PERIPHERAL

MV4604

Figure 1-5. Basic IODC Configuration

Figure 1-6 shows an expanded view of the Connection Module within the IODC subsystem. The basic unit
within the Conmod is the Distribution Card (DC). This unit follows the MU Protocol to connect a host to
a DLP and converts the asynchronous MU to the synchronous DU. 1/0 units reside within the Base Module
(BMOD). (See Figures 1-7 and 1-8.J A maximum of 8 DLP are capable of existing in a Base Module. The
maximum number of Base Modules that can exist within the subsystem is dependent on the host capabilities
and requirements. A maximum of 6 Distribution Cards can also be present within a single Base Module. Each
DC is connected to a separate MUP; either within the same host system or within multiple hosts.

If more than one DC is present within a Base Module, the Path Selection Module is required. The PSM con­
trols access from the DC to the DLP and assures that a DLP communicates to the proper host system.

The Base Control Card (BCC) is an optional 1/0 unit that provides a mechanism for identifying the base mod­
ules to the hosts. The BCC provides masking that disables one or more MU, assigns DLPs to particular hosts,
and disables or enables the maintenance interface to each unit within the base module.

The Base Control Card, the Path Selection Module, and all Distribution Cards present within the base module
are connected by way of the Connection Module Interface (CMI). If the Connection Module consists of a sin­
gle Distribution Card without the Base Control Card, this interface does not exist.

The Line Expansion Module (LEM) is a collective name for several 1/0 units that provide fan-out capability
on the MLI. The MLI can not be daisy-chained. A single unit must reside at each end of the point-to-point
interface. Therefore, without the LEM, a single MUP can communicate to a single DC and, to a maximum
of 8 DLPs. The LEM provides interface capability from a single MUP to a maximum of 8 DCs (64 DLPs)
using up to 9 MLis and an exchange mechanism.

5011034 1-5

1-6

MU

B
A
s
E

M
0
D
u
l
E

I
L
MV4605

HOST

HOP

~

[
DC

OLP

I

OLP

T

-T
PSM

1 --
1
OLP

T

-T
OLP

T

B 5900 Reference Manual
System Description

LEM

T
TTTTTTT

MU .. --~

MLI
..... TO OTHER

I l oc·s

BCC DC

l - .. DU _...

l
OLP OLP

T T
.~

l
OLP OLP

T

Figure 1-6. Expanded IODC Configuration

HOST
1---i

HOP

J
\

MLI

B 5900 Reference Manual
System Description

DLPADAPTER
AD~BASECONTROLCARD

ADP-TTL DIST CD ---

FOREPLANE TERMINATOR

PANEL/BASE MLI CABLE~

INTERFACE 1 I
PANEL

!
I 0, .. FROM HOST---- I .:-- -- __ J

---{] RIBBON CABLE

TO PERIPHERALS -: I , -[]0 RIBBON CABLE

11

u
0

TO CONSOLE --0 0 RIBBON CABLE-MAI NT (REF)

MAINT TERM OR _J 11
TO NEXT MAINT
BUS CABLE

MV4606

w
u.

DLPADAPTER
(8MAX)

IFJ (REF)

ADP-MAINTENANCE CARD

w
u.

Figure 1-7. Single 1/0 Base Configuration (Single MLIP Interface)

5011034 1-7

1/0 BASE MODULE

////

AOP-TTL DISTRIBUTION/
CARD

PANEL/BASE MU ___ ,///

CABLE

INTERFACE PANEL

MV4607

B 5900 Reference Manual
System Description

ADP-MAINTENANCE CARD

~-- DLP

TO HOST
HOP

INTERCONNECT CARD (REF)

Figure 1-8. 1/0 Base Module

FOREPLANE JUMPER (REF)

/

~RIBBON CABLE
/ (REF)

TO
PERIPHERAL

UNIT

The IODC provides a standard maintenance program. The special hardware used for this purpose is shown
in Figure 1-9. The primary unit is the Maintenance Card (MC). This unit generates the master clocks for the
base module within which it is housed. It also contains most of the common maintenance functions used by
IODC. The MC communicates to all other units within the same base module by way of the Maintenance Inter­
face. The Maintenance Card is connected to the Maintenance Interface Processor (MIP) by way of the Test
Bus. Up to 63 MCs are connected on this bus. The MIP drives diagnostic routines across the Test Bus to
the Maintenance Cards. Figure 1-9 shows how the front-end MLI and back-end Test Bus interface into 1/0
base modules within the overall IODC subsystem.

1-8

MLI

MU

B 5900 Reference Manual
System Description

BASE

m
D D
L L
p p

BASE

DU

D
L
p

Ml

HDP

MU
D D D

c L L
p p

MU

Pl Pl
BASE

LEGEND --- D

HDP HOST DEPENDENT PORT c
MLI MESSAGE LEVEL INTERFACE
DC DISTRIBUTION CARD
DLP DATA LINK PROCESSOR
DLI DATA LINK INTERFACE
Ml MAINTENANCE INTERFACE
MC MAINTENANCE CARD
MIP MAINTENANCE INTERFACE PROCESSOR
Pl PERIPHERAL INTERFACE

MV4608

Figure 1-9. B 5900 IODC MLI and Test Bus Interfaces

M
c

TEST BUS

M
c

f] M
c

Figure 1-10 shows the 1/0 and Console subsystems schematically. Details of the configuration are specified
and described below.

B 5900 Operator Console V

The Operator Console V provides a central location for all system operating controls. The locating of normal
operating controls at a single central location is efficient, and provides a logical place for the system operations
staff to function.

The Console V is integrated into an 1/0 backplane, providing the means for the user to access the console
for normal operator functions or the mini-disk for maintenance purposes.

The operator set of the B 5900 is microprogrammed to provide compatibility with the B 6000/B 7000 operator
set. Any program written on a B 5900 system with Burroughs large systems compilers and MCPs will run on
any other system in the large systems product line.

The microprogram is loaded by way of floppy disk every time power is applied. Special microprograms can
be loaded by the Field Engineer to perform maintenance and diagnostic routines.

5011034 1-9

Mll-3

a:
0 ~Ll-2 (/)
(/) w u
0
a:
a.

Mll-1

Mll-0 --
MP

_HCP -
I

MV4609

[]t
TffflT

-N
u::i!::i! uuuuww

I- :ii; 0 al ..J ..J

l.1..L..L.l.J.

J
1111

uuu8
I- :::iE 0 al

J l I l

J
1111

uuu8
I- :ii; 0 al

_l ..l _l

J

~n
Ill II I
Q.
..J
0
I- uuu 0
0 :Eo~

I l J I

+

B 5900 Reference Manual
System Description

-...

___ ...,..' 5-8 BASES

I

u
I-

l
24 CARD BASE --

~ r-

I

u
I-
_l

24 CARD BASE

I

u
I-
_l

24 CARD BASE
N
M
N

(/)

a:

l

u
I-
.l

24 CARD BASE

CONSOLE V

IQQQQQQ1 IQQQQQQt

B [ODT/ J
MAINT

•
__.

rnrn
..:.

MINI DISK
UNIT

--

HCP INTERFACE

Figure 1-10. B 5900 1/0 and Console Subsystem Schematic

OPERATORS
DISPLAYS

MAINTENANCE
INTERFACE
PROCESSOR

Figure 1-11 shows the B 5900 Operator Display Console. The operating system functions in two modes: Nor­
mal(ODT) mode and Maintenance mode. The operator display console has two stations. The left display is
for ODT operation only and the right display can be used for maintenance or ODT operation. Both displays
have a locking device that disables keyboard function but does not disable the operator control panel. Figure
1-12 is a representation of the B 5900 operator keyboard. The keyboard indicator LEDs are located above and
to the left of the Control, Specify, Local, Receive, and Transmit buttons. The labels on the indicators are
valid for ""formal (ODT) mode. In Maintenance mode LT AI indicates activity on the flexible disk system. ENQ
indicates flexible disk error. The FORMS, LOCAL, RCV, and XMT are not used and any indication may be
due to ODT problems.

The keyboard is used by a system operator to enter commands and data to the operating system. The
operators console and keyboard are commonly referred to as an Operators Display Terminal (ODT).

1-10

MV4611

B 5900 Reference Manual
System Description

Figure 1-11. B 5900 Operator Display Console

.__L_0_A_' __ 0_N_O __ F0_0_M_S __ L_0_c_A_L __ 0_v ___ 0_M_T I I CTRL I ISPCFY 11 LOCAL I EJ B

Figure 1-12. B 5900 Operator Keyboard

When the operator needs to communicate with the operating system, the keyboard is used to write data which
is displayed on the screen. The screen is capable of displaying 1920 characters, which are arranged in a matrix
that consists of 24 rows of characters. Each row of characters contains 80 character positions. A cursor moves
from left to right, and from top to bottom on the screen. The display screen has automatic line-feed, and car­
riage-return features so that the operator is not required to control these functions. When the operator writes
data on the screen, the last character written must be the End-of-Text special character (ETX) which moves
the cursor to the first letter of the text to be transmitted, and indicates to the system where the communication
is to stop.

5011034 1-11

B 5900 Reference Manual
System Description

The controls for the B 5900 system consist of six indicator/switch pushbuttons shown in Figure 1-13. The func­
tion of each control is as follows:

• The ENABLE pushbutton allows the use of the POWER ON and POWER OFF pushbuttons. If the
ENABLE pushbutton is not depressed then the other two pushbuttons listed are inoperative, and have
no effect on system operation. If the ENABLE pushbutton is depressed then the other two push­
buttons are operative. The purpose of the ENABLE pushbutton is to prevent accidental system
operation by inadvertent depression of one of the control buttons.

• The POWER OFF pushbutton is used to remove source power from the Central Processing Cabinet
and the Console. The Console may be strapped so that it remains on when the POWER OFF is de­
pressed.

• The POWER ON pushbutton is used to apply source power to the Central Processing Cabinet and
to the Console. The POWER ON pushbutton does not apply power to peripherals or other cabinets.

• The RUNNING indicator is illuminated when the system is operating normally. If power is on and
the light is not illuminated a looping condition is indicated.

• The IO ACTIVE indicator is connected to the Message Level Interface and illuminates when there
is activity on these interfaces.

• The POWER FAIL indicator is illuminated when a power failure occurs in the main cabinet.

~
~

MV4612

POWER
FAIL

Figure 1-13. Console Operating Controls

B 5900 Peripheral Devices

The basic B 5930 system includes the following components:

• Central Processing Cabinet
•Console V. operators' console with dual displays, two ICMD mini-disks, and the Maintenance Interface

Processor.
• 2 1/0 base modules with space for up to 16 DLPs.
• 1 Line Printer DLP
• 1 Magnetic Tape DLP
• 2 Disk Pack DLPs
• 1 ODT DLP
• 1 Line Support Processor
• 1 Quad Line Adapter supporting four communication lines and four Electrical Interfaces

1-12

B 5900 Reference Manual
System Description

Additional peripheral devices available for the B 5900 include the following:

Card Reader and OLP
Card Punch and OLP
PE Magnetic Tape and OLP
NRZ Magnetic Tape and OLP
GCR/PE Magnetic Tape and OLP
SN Disk and OLP
Line Support Processor
Network Support Processor

Each B 5900 basic system is equipped with two 1/0 base modules, and is expandable to four base modules
with additional OLP configuration. (See Figure 1-14.) Each 1/0 base module provides space for up to eight
DLPs. Since a basic system provides expansion to four 1/0 bases, each capable of housing eight DLPs, the
maximum single processor system provides up to 32 OLP positions. Each peripheral oriented OLP requires
a single OLP address position in an 1/0 base. The basic B 5900 requires five OLP address positions to house
the basic peripheral oriented DLPs in that configuration (that is, ODT OLP, Line Printer OLP, Magnetic Tape
OLP, and two Disk Pack DLPs. See Figure 1-14).

5011034 1-13

B 5900 Reference Manual
System Description

CONSOLE ODT
AND

MAINTENANCE
DISPLAY

DUAL
MINI DISK

CENTRAL SYSTEM CABINET

I : p

' 0 R
I I D I

MEMORY MEMORY T N
I I T

l l E
R

~EMORY MEMORY
ONTROL CONTROL OLP OLP

BUS STRUCTURE

,--;

~L~
t- MLI CENTRAL f--

PROCESSOR MLIP 1-- MLI (OPTIONAL)
MODULES t-

~~-
(OPTIONAL) y I I

J___

ODT : OPERATOR DISPLAY TERMINAL

MLIP : MESSAGE LEVEL INTERFACE PORT

MJ_I : MESSAGE LEVEL INTERFACE

~
"'- _..)

0
-

\... ~ r
1/0 BASE MODULE

T j> p

A A A
p c c
E K K

OLP OLP OLP

1/0 BASE MODULE

L a I---' tz-t-s u
A

.........,
IZ+-p

D
.........,

IL+-
LA 1-1 t"Z+-

1/0 BASE MODULE

I I I I I l
I

1/0 BASE MODULE

L-----------------------------·
L--------------------------------J

ADDITIONAL 1/0 SUBSYSTEM CABINET

MV4613

Figure 1-14. Block Diagram of Basic B 5930 System

1-14

B 5900 Reference Manual

SECTION 2
DATA REPRESENTATION

GENERAL

All data in the B 5900 system is in binary form. The basic unit of data is the word (see Figure 2-1), which
consists of 52 consecutive binary bits. All words of data in the B 5900 system have three distinct parts: a
parity bit, three tag bits, and 48 bits of information field. The 52 bits in a word are numbered for identification.

Bit number 51 (the most significant bit in a word) is the parity bit. The parity bit is used to give the word
odd parity. If the number of binary ONEs present in the tag and information fields is an even number then
the parity bit is a binary ONE value. If the number of binary ONEs present in the tag and information fields
is an odd number then the parity bit is a binary ZERO value. The B 5900 system uses the parity bit to monitor
the quality of data in a word. Logic circuits count the number of bits in a word and compare the count against
the parity bit state. If the result of the comparison is not equal, then the B 5900 system recognizes that a
parity error has occurred. The process of parity checking is an automatic function of the system. The parity
bit for a word is not directly available to the user because it is used only when words are transferred from
one module to another. Data that is internal to a module has already been tested for parity.

Bits 50, 49, and 48 are the tag field. The tag field is used to identify the type of interpretation that is to be
applied to the data that is present in the information field of the word. There are eight different values that
may be present in tag field, and each value specifies a different interpretation to be used. The tag field values
are defined in the following paragraphs.

BIT 51 IS THE
PARITY BIT

BITS48,49,
AND 50 ARE
THE TAG
FIELD

MV4614

5011034

{

'-

51 47

50 46

49 45

48 44

43 39 35 31 27 23 19 -t----- t----

42 38 34 30 26 22 18

41 37 33 29 25 21 17

40 36 32 28 24 20 16

BITS 0 TO 47 ARE THE INFORMATION FIELD

Figure 2-1. B 5900 Word Structure

15 11 1 3

14 10 6 2

13 9 5 1

12 8 4 0

2-1

B 5900 Reference Manual
Data Representation

INTERNAL CHARACTER CODES

The B 5900 uses several different character codes (See Figure 2-2). The primary internal character code is Ex­
tended Binary Coded Decimal Interchange Code (EBCDIC). EBCDIC is an 8-bit alphanumeric code containing
four zone bits, followed by four numeric bits.

The primary -charactil code used for Data Communications Subsystems is the American Standard Code for
Information Interchange (ASCII). ASCII may be either a 6-bit, 7-bit, or 8-bit alphanumeric code. Within the
B 5900 system, numeric data may be compacted by deleting the zone bits and retaining the numeric portion
of the character. When data is compacted it is said to be packed.

NUMBER BASES

CHARACTER FORMATS

MSD ZB NB

Z4 N4

Z2 N2

Z1 N1

EBCDIC
CHARACTER

LSD

NUMBER BASE FORMATS

MSD
8

4

2

LSD

HEXADECIMAL
DIGIT

MV4615

MSD8
D LSD

OCTAL
DIGIT

BINARY
DIGIT

Figure 2-2. Character and Digit Formats

Number bases used in the B 5900 system are base 10 (decimal), base 16 (hexadecimal), base 2 (binary), and
base 8 (octal) (see Figure 2-2). Because the system utilizes these various number bases in performing its func­
tions, it is necessary that the user of the system be familiar with the number bases, and know how to convert
a value from one number base to any of the others. A brief discussion of the number systems used is given
below.

The decimal numbering system is based on the numeric digits 0 through 9, and on the powers of 10. Similarly,
the binary numbering system is based on the numeric digits 0 and l, and on the powers of 2. In this case,
a decimal digit may have any value from 0 through 9, and a binary digit may have a value of 0 or 1.

The octal numbering system is based on the numeric digits 0 through 7, and on the powers of 8. An octal
digit may have any value from 0 through 7. Furthermore, 2 raised to the third power is 8, the base of the
octal numbering system. Because the octal numbering base is a multiple of the binary numbering base, octal
to binary and binary to octal conversions are easily accomplished.

2-2

B 5900 Reference Manual
Data Representation

The hexadecimal numbering system is based on the numeric digits 0 through 9, and alpha characters A through
F; where A equals decimal 10, B equals decimal 11, and so forth to F, which equals decimal 15. Hexadecimal
numbering is also based on the powers of 16. 2 raised to the fourth power is 16, the base of the hexadecimal
numbering system. Because the hexadecimal numbering base is a multiple of the binary numbering base, a
hexadecimal number can be converted to a binary number conveniently.

A B 5900 word contains 48 bits in the value field (see Figure 2-3). These 48 bits can be converted into hexadec­
imal, octal, or EBCDIC values by arrangements of the 48 bits in the proper order. A Hex digit is equivalent
to four binary digits, that is, binary 1111 is equal to hexadecimal F. Since a hexadecimal digit contains four
binary digits, the value field of a B 5900 word contains 12 complete hexadecimal digits (48/4= 12). The same
value field can also be considered to contain 16 octal digits (48/3= 16), or 6 EBCDIC characters (48/8=6).

From the preceding discussion it is clear that the choice of 48 bits for the value field of a B 5900 word was
not a random choice, but was chosen because the number is a multiple of the common character codes and
number bases used in the B 5900 system.

OCTAL FORMAT
MSD

47 44 41 38 35 32 29 26 23 20 17 14 11 8 5 2

46 43 40 37 34 31 28 25 22 19 16 13 10 7 4 1

45 42 39 36 33 30 27 24 21 18 15 12 9 6 3 0
LSD

PARITY TAG
INFORMATION

HEXADECIMAL FORMAT
MSD

47 43 39 35 31 27 23 19 15 11 7 3

46 42 38 34 30 26 22 18 14 10 6 2

45 41 37 33 29 25 21 17 13 9 5 1

44 40 36 32 28 24 20 16 12 8 4 0 LSD

PARITY TAG

INFORMATION

EBCDIC FORMAT
MSD

47 43 39 35 31 27 23 19 15 11 7 3

46 42 38 34 30 26 22 18 14 10 6 2

45 41 37 33 29 25 21 17 13 9 5 1

44 40 36 32 28 24 20 16 12 8 4 0 LSD

PARITY TAG

INFORMATION

MV4616

Figure 2-3. B 5900 Word Formats

5011034 2-3

SUPPORTED DATA TYPES

B 5900 Reference Manual
Data Representation

Supported data types are words that are distinguished by operator code and therefore interpreted according
to the data type definition.

Words have 3 tag bits and 48 information bits. The information bits are numbered from 0 to 47, starting with
the low-order bit. A field of a word is denoted [first:length]. First is the bit number of the high-order bit of
the field (first is less than or equal to 47), and length is the field length in bits (length is less than or equal
to 48).

Dynamic fields are wrapped around from the lowest-order bit to the highest-order bit. If the field length is
greater than the first bit down to the remaining lower order bits, the field is continued starting from the high­
est-order bit (47). The following sequence illustrates the field [first:length] in the case where length exhausts
the remaining lower-order bits (length > first + 1):

47 ,46, ... ,first, ... ,0,47 ,46, ... ,last, ... , 1
< - length - >

Word types are distinguished by tag value and frequently by additional type bits in the word. The following
paragraphs define the data type name, tag, type bit identification, field interpretation, and semantics of each
word type.

In this manual, word types are referred to by type name. The data type, double-precision, consists of two
words. The term, "item", is used instead of "word" to refer to an entity whose type is variable.

DATA WORDS

A data word has an even tag value. Data words are computational arguments that do not provide reference
or control values to operators.

An important aspect of data words is that they can be stored in memory by Normal Store (as opposed to
Overwrite) operations. All odd tagged words are protected from Normal Writes.

Operands (Single-Precision and Double-Precision)

The great majority of data words dealt with by programs are operands. There are two operand types: single­
precision which are single words with a tag of 0, and double-precision which are pairs of consecutive words,
both with a tag of 2. Single-precision operands and double-precision operands are both referred to as operands.

Neither operand type has a unique interpretation applied to it. Operators, according to their function, apply
different interpretations depending on operand characteristics. For example, operands are interpreted as nu­
meric values by arithmetic operators, as bit vectors by word manipulation operators, and as character se­
quences by string operators. See Operator Definitions for operand interpretations that are applied by each op­
erator group. Figures 2-4 through 2-6 are operand word formats.

2-4

5011034

~ 43 39

0 SM E
~ x 42 38

0 SE p

_1:i 41 37

0
44 40 36

MV4617

B 5900 Reference Manual
Data Representation

35 31 27 23 19

34 30 26 MANTISSA

33 29 25 21 1 7

32' 28 24 20 16

15 11

14 10

13 9

12 8

Slngle Precision Operand, Arithmetic Interpretation (Tag of O)

SM
SE
EXP
MANTISSA

[47: 1]
[46: 1]
[45: 1]
[44: 6]
[38:39]

Not used
Mantissa sign (O=positive, 1 =negative)
Exponent sign (O=positive, 1 =negative)
The power of 8 to which the mantissa is scaled
The magnitude of the number before scaling

7

6

5

4

Figure 2-4. Single Precision Operand Format, Arithmetic Interpretation

47 43 39 35 31 27 23 19 15 11 7

0

3

2

1

0

3

'ICWLENGTH
34 SEQUENCE SIZE ~ l-----1 ICW OFFSET --2

0 I
I I I

- ij
I

45 41 37 33 _ __fl t--~ ---:r 13 9 '>'

0
44 40! 36 32 28 24 16 12 8 4

MV4618

Single Precision Operand, Index Control Word Interpretation (Tag of 0)

ICW LENGTH
SEQUENCE SIZE
ICW OFFSET

[47 :16]
[31 :16]
[15:16]

The length of an element in the sequence
The number of elements in the sequence
The offset from the base of the record to
the start of the sequence

Figure 2-5. Single Precision Operand Format, ICW Interpretation

I

0

2-5

2-6

1ST
V\ORD

2ND
V\ORD

MV4619

~ 43

0 SM E
.~ x 42

1 SE
p

..AS 41

0
44 40

47 43

0
HI 42

EXP
1

45 41

0
44 40

B 5900 Reference Manual
Data Representation

_39 35 31 27 23 19

38 34 30
l6 MANTISSA

37 33 29 25 21 17

36 32i 28 24 20 16

39 35 31 27 23 19

38 34 30 26 MANTISSA

37 33 29 25 21 17

36 32i 28 24 20 16

15

14

13

12

15

14

13

12

Double Precision Operand, Arithmetic Interpretation

SM
SE
EXP
MANTISSA

HI EXP
MANTISSA

[47: 1]
[46: 1]
[45: 1]
[44: 6]
(38:39]

[47: 9]
[38:39]

First Word

Not used
Mantissa sign (O=positive, 1 =negative)
Exponent sign (O=positive, 1 =negative)
The low order 6 bits of the exponent
The integral portion of the mantissa

Second Word

The high order 9 bits of the exponent
The fractional portion of the mantissa

11

10

9

8

11

10

9

8

Figure 2-6. Double Precision Operand Format, Arithmetic Interpretation

7 3

6 2

5 1

4 0

7 3

6 2

5 1

4 0

Tag 4 Words

B 5900 Reference Manual
Data Representation

Tag 4 words are data words, but the only interpretation applied to them is as a 48-bit vector by a class of
computational operators.

Tag 4 words are not fetched normally to the expression stack as operands, and they are not valid arguments
for arithmetic computational operators. However, they may be stored in memory by Normal Store operators.
B 5900 treatments of tag 4 and tag 6 data words are identical.

47 43 39 35 31 27 23 19 15 11 7 3

1
46 42 38 (INTERPRETED AS A BIT VECTOR) 10 6 2

0 I
45 41 37 3tl_ 29 25 21 11 13 9 5 1

0
4oi J 44 36 --1_8 ~ .. 1.0 .J&. 12 ...J!J ..!.oJ

MV4620
Figure 2-7. Tag 4 Word Format

Uninitialized Operand

Uninitialized operands are words that have tag values of 6. Like Tag 4 Words, they are interpreted as 48-bit
vectors by a class of computational operators, but no other interpretation is applied.

Uninitialized operands are not fetched normally to the expression stack as operands, and they are not valid
arguments for arithmetic computational operators. However, they can be stored over by normal store
operators.

47 43 39 35 31 27 23 19 15 11 7 3

1
46 42 38 (INTERPRETED AS A BIT VECTOR) 10 6 2

1
45 41 37 33 29 25 21 17 13 9 5 1

0
~ .M. 36 32' 28 .J..4 20 _!§] 12 8 4 0

MV4621

Figure 2-8. Uninitialized Operand Format

PROGRAM CODE WORDS

Variable length operator sequences are stored in arrays of program code words called code segments. Each
program code word possesses six 8-bit containers called syllables, numbered 5 to 0 from high-order to low­
order. (The mapping of each operator into syllables is specified in Section 4.) Program Code Words have a
tag value of 3.

5011034 2-7

DESCRIPTORS

B 5900 Reference Manual
Data Representation

Memory is organized into variable size segments (arrays) that are either data segments or program code seg­
ments. Specially treated arrays such as stacks and Segment Dictionaries are important examples of data seg­
ments.

Data Segment Descriptor

A data segment is an array of elements. An element is either a single word, a double word pair, or a "sub­
word" character requiring 4 or 8 bits. Data Descriptors (DDs) are words that describe data segments. Data
Descriptor fields contain the static and dynamic characteristics of the data segment that are required for its
management. Data Descriptors have a tag value of 5 and an indexed bit of 0.

The element-size field of the DD specifies the type of array element: single-precision, or double-precision;
EBCDIC (8-bit), or hex (4-bit). The length field contains the number of elements in the array. The length of
the array in words can be deduced from element-size and length. The term "Word DD" is used for Descriptors
whose element-size values are single-precision or double-precision. The term "string DD" is used for Descrip­
tors whose element-size values are EBCDIC or hex.

Memory management of the data segment utilizes a presence bit, an address field, and a copy bit. The copy
bit distinguishes two classes of DDs: Mom (original) and copy Descriptors. If the array is present, the address
field of both classes is the base memory location of the data segment. The address of a Mom contains a soft­
ware encoded value referencing the data segment in virtual memory, however the address of a copy Descriptor
references a Mom Descriptor for the array.

Generally, there is one Mom DD for an array, and copies are created by most of the operators which fetch
DDs to the top of the stack. However, functional operator definition does not require precisely one Mom DD
for each array, and a Mom DD can be brought to the top of the stack without being transformed into a copy.

A data segment may be paged, in which case it consists of a number of 256-word pages-the last page of which
may be smaller. The Descriptor to a paged data segment (called a paged Descriptor) has a paged bit of 1.
If a paged Descriptor is present, its address field references a data segment consisting of Descriptors called
page Descriptors to the individual pages of the array. When a paged Descriptor is indexed, another level of
indexing must be performed so that the resulting indexed Descriptor references the specified element of the
specified page. (See the INDX operator definition for a discussion of the indexing of paged Descriptors).

2-8

1

0

1

MV4622

PR
c

PR
47

c
~

0
~

PG
4•

0 (index)
PG
RO
SIZE

LENGTH
ADDRESS

RO
~ 39

s 12 38

I
z
E 11 37

40 36

B 5900 Reference Manual
Data Representation

35 31 27 ~ 19

LENGTH 26 22 18

33 29 25 21 17

32' ..lll 24 20 16

15 11 7

ADDRESS
6

13 9 5

12 8 4

Date Descriptors (Tag value is 5 and indexed bit is 0)

(47:1]
[46:1]
(45:1]
(44:1]
(43:1)
(42:3)

(39:20)
(19:20]

Present bit (O=absent, 1 =present)
Copy bit (O=Mom, 1 =copy)
Indexed bit (0: unindexed)
Paged bit (O=non-paged, 1 =paged)
Read only bit (O=Read Write, 1 =Read only)
The type of array element (O=single-precision, 1 =double­
precisfon, 2=hex, 4=EBCDIC, 3,5,6,7 are invalid)
The number of elements in the array
Address interpretations and their contexts: 1) present:
the memory address of the base word of the data
segment; 2) absent and copy: the memory address of
the associated Mom Descriptor; 3) absent and Mom: a
software encoded secondary memory address

Figure 2-9. Data Descriptor Word Format

Code Segment Descriptor

3

2

1

0

A code segment is a stream of program code words referenced by a code segment Descriptor. The term seg­
ment Descriptor is used for code segment Descriptor and data Descriptor for data segment Descriptor. The
tag value of a segment Descriptor is 3.

The segment length field contains the number of code words in the segment. Memory management utilizes
a presence bit and the address field. If the code segment is present, the address field contains the base memory
location of the segment, otherwise, it contains a software encoded secondary memory address.

MV46'-

5011034

0

1

PR

SEG LENGTH
ADDRESS

[47:1)
[46:14]
(32:13)
(19:20]

31 27 23 19 15 11

SEG 22 12
LENGTH ~~---"+--- ADDA ESS --'--<>----

29 25 21 17

28 24 20 16

Segment Descriptor (tag value is 3)

Present bit (O=absent, 1 =present)
Reserved for future implementation

13

12

The number of code words in the segment
Address interpretations and their contexts are: present,
the memory address of the base word of the data
segment; absent, a software encoded secondary memory
address

Figure 2-10. Segment Descriptor Word Format

2-9

INDIRECT REFERENCES

B 5900 Reference Manual
Data Representation

There are four indirect reference data types: Normal Indirect Reference Words (NIRWs) and Stuffed Indirect
Reference Words (SIRWs), which point to locations in the addressing environment; Indexed Data Descriptors
(Indexed DDs), which point to individual elements of data segments; and Program Control Words (PCWs),
which provide code stream pointers and initial execution state values.

NIRW (Normal Indirect Reference Word)

An NIRW is a dynamic address couple form which references a location in the current addressing environ­
ment. An NIRW has a tag value of 1, and bit 18 must be 0.

The only field in an NIRW is an encoded address couple, whose dynamic interpretation yields values for Lam­
bda and Delta. Lambda specifies a lexical level in the current addressing environment. Delta is the offset to
the referenced location from the base of the activation record at level Lambda. The location referenced by
an NIRW can vary according to the addressing environment at the time of its interpretation.

0

0

1

MV4624

O (type bit)

ADDRESS COUPLE

11

ADDRESS
COUPLE

NIAW (tag is 1 end bit 18 is 0)

(47:29]
(18: 1]

(17 :4]
(13:14]

Not used·
Constant value 0
Not used
The address couple of the referenced location in the
current addressing environment.

Figure 2-11. Normal Indirect Reference Word Format

Address couples are encoded in 14 bits with a "floating fence" between Lambda and Delta. Taking advantage
of the fact that Lambda must be less than or equal to the lexical level (LL), the number of high-order bits
interpreted as the Lambda value varies with the value of ll at evaluation time. The remaining low-order bits
are interpreted as the Delta value. The following table gives explicit ranges:

Bits Left
II Range of Fence Lambda Range Delta Range

(0,1) 1 (0 to LL) (0 to 21 2)

(2,3) 2 (0 to LL) (0 to 211)

(4 to 7) 3 (0 to LL) (0 to 210)

(8 to 15) 4 (0 to LL) (0 to 29)

2-10

B 5900 Reference Manual
Data Representation

The Lambda value is the reverse of the bits to the left of the fence, and the Delta value is taken from the
bits to the right of the fence. Following are examples of address couple interpretation. Each pair is the same
address couple, but notice the effect of the dynamic fence, indicated by the colon (:).

1. First Pair

a. at LL= l, 1:0000000010011 => (1,19)
b. at LL=13, 1000:0000010011 => (1,19)

2. Second Pair

a. at LL= 5, 101:00001000000 => (5,64)
b. at LL= 3, 10:100001000000 => (1,2112)

SIRW (Stuffed Indirect Reference Word)

An SIRW, like an NIRW, references a location in an addressing environment. The form of the reference is
such that an SIRW always points to the same location, regardless of the state of the current addressing envi­
ronment. SIRWs have a tag value of l, and bit 18 must be 1. (Bit 18 is 0 for an NIRW).

An SIRW has three fields: stack number, displacement, and offset. The memory location referenced by an
SIRW is computed by the following function:

Base address (stack number) + displacement + offset.

Base address (stack number) is the address of the bottom of the stack. Base + displacement yields the address
of the base word of an activation record, and offset is the index of the referenced location relative to that
base.

Note that the Base + displacement expression is a Lexical Link, and offset corresponds to NIRW Delta.

5011034

35 31 27 11

0
STACK e DISPLACEMENT OFFSET 2

NUMBER
0

45 41 37 33 :z9 25 9

1
44 36 321 28 24 8 4 0

MV4625

SIRW (Tag value of 1 and bit 18 is 1)

STACK NUMBER

DISPLACEMENT

(1 I type bit

OFFSET

(47:2]
[45:10]

[35:16]

[19:1]
[18:1]
[17:5]
[12:13]

not used
The identification of the stack containing the referenced
location
The displacement from the base of the stack to the
base of the activation record
not used
Constant value 1
not used
The offset from the base of the activation record to the
referenced location

Figure 2-12. Stuffed Indirect Reference Word Format

2-11

B 5900 Reference Manual
Data Representation

Indexed DD (Indexed Data Descriptor)

Indexed DDs reference an individual element of a data segment. The interpretation of an Indexed DD is a
variation of the interpretation of a DD. The tag of an Indexea DD is 5, and its Indexed bit is 1.

An Indexed DD is a copy and cannot be paged. Its element-size, presence bit, and address field are interpreted
identically to those of a DD. The term Indexed Word DD is used for Indexed DDs whose element-size values
are single-precision or double-precision, and Indexed String DD (or Pointer) is used for Indexed DDs whose
element-size values are EBCDIC or hex.

The interpretation of the index to the referenced element depends on element-size. For Indexed Word DDs,
the index field is the word index from the base of the array ·to the single-precision word or to the first word
of the double-precision word pair. For Pointers, the index field consists of two sub-fields: word index, the
index from the base of the array to the word containing the referenced character, and char index, the character
index within the word. For EBCDIC Pointers, char index must be in the range (0 to 5), and for hex Pointers,
it must be in the range (0 to 11). Char index 0 is the highest-order character in the word.

2-12

1

0

1

MV4626

PR
copy
Indexed
paged
RO
SIZE

INDEX

PR
.Al

1
...4§.

1
..MJ

0
.MJ

char index

word index

ADDRESS

RO
43 39 35 31 27 23 19 15 11 7 3

s 12 38 ~INDEX --- 26 22 18
ADDRESS

6 2

I
I z 11 37 331 29 25 21 "~ 9 5 1

E J 40 36 28 24 20 16 12 8 4 a

Indexed DD (tag is 5 and indexed bit is 1 l

[47:1)
[46:1)
[45:1)
[44:1)
[43:1)
[42:3]

[39:20)

[39:4)

[35:16)

[19:20)

Presence bit {O=absent, 1 =present)
Copy bit (always 1; denotes a copy)
Indexed bit (always 1; denotes indexed)
Paged bit (always O; denotes non-paged)
Read only bit {O=Read Write, 1 =Read Only)
The type of array element (O=single-precision, 1 =double­
precision, 2=hex, 4=EBCDIC, and (3,5,6,7) are invalid
values)
Used if element-size is single or double-precision: the
word index from the base of the array to the referenced
word
Used if element-size is EBCDIC or hex: the index within
the word of the referenced character
Used if element-size is EBCDIC or hex: the index from
the base of the array to the word containing the
referenced character
Address interpretations (and their contexts) are: 1 l
present, the memory address of the base word of the
array; 2) absent, the memory address of the associated
mom data Descriptor

Figure 2-13. Indexed Data Descriptor Word Format

B 5900 Reference Manual
Data Representation

PCW (Program Control Word)

A Program Control Word (PCW) contains the initial code stream pointer and execution state values associated
with an activation record in the program. A PCW establishes the execution state for an activation record when
it is entered (when it becomes the topmost activation record). The PCW has a tag value of 7.

The PCW code stream pointer consists of the fields SOLL, SDI, PWI and PSI. (See Figure 2-14.) The LL
field of the PCW indicates the lexical level at which the activation record is to run. The control state attribute
specifies execution in normal or control state.

A PCW also contains a stack number field, the identification of the stack in which the PCW is stored. Stack
number is not required by the operator set.

~~~~µ~~~~~'l----~~43"-__,3~9~ P 1~"1------"3~1~~11+--~2~3._c_s~1~9•~L---'-'1~~~.~"'"-----~'1------'3~ 
~ STACK ~ ~ ~l--__3(lj PWI t----"2"'12 _0_1s.,__L_14iil---'1 SDI --2i 

1 

NUMBER -1 
1 I ( SOLL 

~~---'-'4i+----'3~1,__..-33~---~ ---24----2~1._,_L~1~1,__...-13~~·~9t-----'"'+-~-1' 

44' 40 36 32' 28 24 20 16 12 

MV4627 

PCW (tag value is 7) 

not used 
STACK NUMBER 

[47:2] 
[45:10] The identification of the stack in which the PCW is 

stored 
PSI 

PWI 

cs 

INVALID LL 

LL 
SOLL 

SDI 

[35:3] 

[32:13] 

[19:1 J 

[18:1 J 
[17:4] 
[13: 1 J 

[12:13] 

The Program Syllable Index code stream pointer 
component 
The Program Word Index code stream pointer 
component 
The initial value of the Control State Boolean (O=normal 
state, 1 =control state) 
Must be zero 
The lexical level at which the activation record runs 
The Segment Dictionary lexical level code stream pointer 
component 
The Segment Dictionary Index code stream pointer 
component 

Figure 2-14. Program Control Word Format 

STACK LINKAGE WORDS 

There are three data types utilized for stack linkage. An MSCW (Mark Stack Control Word) and an RCW 
(Return Control Word) are the two words which contain stack linkage values for an activation record in the 
addressing environment. A TSCW (Top of Stack Control Word) is used to preserve processor state in a stack 
in which there is no current processor activity. 

There are five word types that have a tag of 3; These are the three stack linkage words, Segment Descriptors, 
and Program Code Words. There are not any type bits within the words, which based only on tag value are 
not distinguishable from each other. The five word types are distinguished by context. The integrity of execu­
tion and addressing environment state depend on this. 

5011034 2-13 



B 5900 Reference Manual 
Data Representation 

MSCW (Mark Stack Control Word) 

A Mark Stack Control Word (MSCW) contains the History Link and Lexical Links for an activation record. 
The MSCW is the base word in the activation record. All links to the MSCW point to it. 

The 11 field indicates the lexical level of the activation record containing the MSCW. The History Link is a 
displacement down the stack to the prior activation record. The entered bit indicates whether the activation 
record is inactive (containing only a History Link) or entered (fully linked into the addressing environment). 

Two fields comprise the Lexical Link pointer to the activation record which is the immediate global addressing 
space. Stack number is the identification of the stack containing the activation record. Displacement is the 
offset from the base of the stack number stack to the base of the activation record. (Note that an SIRW con­
tains stack number and displacement fields with the same semantics). 

The restart bit is the value to which the processor RS Boolean will be set when the current activation record 
is exited. 

~ RS L 
43 39 35 31 27 23 __ia !_§ 11 7 3 

0 ~ E L 
STACK I 22 ill 14 HISTOf~Y -1, 

t- DISPLACEMENT 
NUMBER I 

LINK 
1 

45 

1 
3;l 

MV4628 

STACK NUMBER 

DISPLACEMENT 

RS 

E 
LL 
HISTORY LINK 

4J 37 

T 
401 36 

(47:2] 
(45:10] 

[35:16] 

[19:1] 

(18 :1] 
[17:4] 

[13:14] 

L 
3tl 29 25 21 1 13 9 5 

J L 
28 24 20 1§ 12 8 4 

MSCW (tag value of 3) 

not used 
Identifies the stack containing the activation record to 
which the Lexical Link points 

1 

0 

The displacement down the stack number stack from the 
base of the activation record addressed by the Lexical 
Link to the base of the stack 
The value to which the RS (Restart) Boolean will be set 
when the activation record is exited 
The entered bit (O=inactive, 1 =entered) 
The lexical level at which the activation record runs 
The displacement down the containing stack from the 
MSCW to the base of the prior (initiating) activation 
record 

Figure 2-15. Mark Stack Control Word Format 

RCW (Return Control Word) 

An RCW is stored directly above the MSCW at the base location plus one of an entered activation record. 
The RCW preserves code stream pointer and execution state to be restored when the activation record is 
exited. An RCW has a tag value of 3. 

The RCW code stream pointer consists of the fields SDLL, SDI, PWI and PSI. Preserved execution state con­
sists of control state, the CS Boolean, the 4 processor state Booleans (defined in General Boolean Accumula­
tors), and LL, the lexical level of the activation record initiating this activation record. 

2-14 



B 5900 Reference Manual 
Data Representation 

The True False Occupied Flip-Flop (TFOF) is not required in the B 5900. General operator restart capability 
is provided by the RS (restart) Boolean, which is preserved in the MSCW. 

5011034 

0 

1 

1 

MV4629 

EX 
OF 
TF 
FL 

PSI 

PWI 

TF 

cs 
invalid II 
LL 

SOLL 

SDI 

[47:1) 
[46:1) 
[45:1) 
[44:1) 
[43:8) 
[35:3) 

[32:13) 

[19:1) 
[18:1) 
[17:4) 

[13:1) 

[12:13) 

cs 
p 31 27 23 

s 0 
I 4 30 PWI 22 

L 
33 29 20 21 

L 
32' 28 24 20 16 

RCW (tag value of 31 

External Sign Flip-Flop 
Overflow Flip-Flop 
True False Flip-Flop 
Float Flip-Flop 
not used 

L + 
- _1_Q_ SDI 

t 
12 

The Program Syllable Index code stream pointer 
component 
The Program Word Index code stream pointer 
component 
The Control State Boolean 
Constant value 0 

7 

I 
I 

0' 

The lexical level of the activation record which initiated 
this activation record. 
The Segment Dictionary lexical level code stream pointer 
component 
The Segment Dictionary Index code stream pointer 
component 

Figure 2-16. Return Control Word Format 

0 

2-15 



B 5900 Reference Manual 
Data Representation 

TSCW (Top of Stack Control Word) 

A TSCW preserves processor state in a stack where no current processor activity exists (inactive stack). The 
tag of a TSCW is 3. 

The S register (the pointer to the top expression in the current stack) and the F register (the current MSCW 
pointer) are preserved in specific fields of the TSCW. Stack height holds the displacement from the base of 
the stack up to S. SF disp holds the displacement down the stack from S to F. LL indicates the lexical level 
of the topmost activation record when the stack was last active. The processor state Booleans and the CS 
Boolean are also preserved in the TSCW. 

2-16 

0 

1 

1 

MV4630 

EX 
OF 
TF 
FL 

EX 

TF 

STACK HEIGHT 

cs 
invalid II 
LL 

SF DISP 

[47:1] 
[46:1] 
[45:1] 
[44:1] 
[43:8] 

[35:16] 

[19:1] 
[18:1] 
[17:4] 

[13:14] 

cs 
35 31 27 23 

0 

STACK HEIGHT 22 

l 
33 29 25 21 

l 
32• 28 24 20 

TSCW (tag value of 3) 

External Sign Flip-Flop 
Overflow Flip-Flop 
True False Flip-Flop 
Float Flip-Flop 
not used 

L 
11 

l 
18 14 SF DISP 

17 13 9 

16 12 

The displacement from the base of the stack to the top 
of the expression stack 
The CS Boolean 
Constant value 0 
The lexical level of the topmost activation record when 
the stack was last active 
The displacement from the top of the expression stack 
down to the historical chain pointer (F) 

Figure 2-17. Top of Stack Control Word Format 



B 5900 Reference Manual 

SECTION 3 
STACK CONCEPT AND REVERSE POLISH NOTATION 

THE STACK 

The stack is the memory storage area assigned to a job, and provides storage for the basic program and data 
references for the job. The stack also provides for temporary storage for data and job history. When a job 
is activated, registers A, B, X, and Y, which are located in the Data Processor module, are linked to memory 
locations of the stack of the job (see Figure 3-1). This linkage is established by the Stack Pointer Register 
(S register), which contains the memory address of the last word placed in the stack. The four top-of-stack 
registers (A,B,X, and Y) extend the stack to provide quick access for data manipulation. Another stack pointer 
value (the F register) always points to the most recent MSCW in the stack. 

HARDWARE 
REGISTERS 

STACK 
MEMORY 
BUFFER 
AREA 

MV4631 

INPUT/ 
OUTPUT 

r----TOP'-O~ACKRWSTIRS-- --, 

PATH OF DATA 
TO STACK 

I A x 

I B s l 
I I L_ _ ______ _J 

STACK AREA 
ASSIGNED 
TO PROGRAM 

STACK AREA 
CURRENTLY 
IN USE 

WORDntx 

TOS WORD 

MOST RECENT MSCW 
MSCW 

STACK LIMIT REGISTERS I 
I LOSA F I 

--'~~~--''--~~t-~w_o~R_D_n~ ........ ,__~,~ BOSA _J L ___ _ 

Figure 3-1. Top of Stack and Stack Bounds Registers 

The number of words in the memory portion of the stack is equal to the difference between the values of 
the S register, and BOSR (S minus BOSR). Data are brought into the stack through the top-of-stack registers 
in such a manner that the last word placed in the stack (as indicated by the value of the S register) is the 
first word to be extracted from the stack (last in first out method). The total capacity of the top-of-stack regis­
ters is two words or two operands. Loading a third word into the top-of-stack registers causes the first word 
to be pushed from the top-of-stack into the memory portion of the stack. The stack pointer value in the S 
register is incremented by one as a word or operand is pushed into memory, and is decremented by one when 
a word operand is withdrawn from the stack. As a result, the S register continually points to the last word 
placed into the memory portion of the job stack. 

5011034 3-1 



B 5900 Reference Manual 
Stack Concept and Reverse Polish Notation 

BASE AND LIMIT OF STACK 

The stack of a job is bounded, for memory protection, by two registers: the base-of-stack register (BOSR) 
and the limit-of-stack register (LOSR). The contents of BOSR define the base of the memory portion of the 
stack, and the contents of LOSR define the upper limit of the memory portion of the stack. The job is inter­
rupted if the S register is set to a value that is present in either LOSR or BOSR. If the S register equals 
or exceeds the value of LOSR, a stack overflow interrupt occurs. 

BIDIRECTIONAL DATA FLOW IN THE STACK 

The contents of the top-of-stack registers are maintained by the microprogram to meet the requirements of 
the current operator. If the current operator requires data transfer into the memory portion of the stack, the 
top-of-stack registers receive the incoming data, and surplus contents in the top-of-stack registers are pushed 
down into the memory portion of the stack. "Pushing" data into the memory means that the bottom word 
or operand in the top-of-stack register is transferred to the next word or operand in sequence in the memory 
portion of the stack. Pushing data down into the memory portion of the stack makes room in the top-of-stack 
registers to contain the incoming data that is required by the current operator. 

Data is also brought automatically from the memory portion and placed in the top-of-stack registers when the 
operator requires that the top-of-stack registers be filled. This function, called a pop function, is the opposite 
of the push function described in the previous paragraph. A pop transfers the last operand or word in the 
memory portion of the stack into the second word position in the top-of-stack registers. The word or operand 
in stack memory is then deleted by decrementing the S register. The "push", and "pop" functions, described 
in the following paragraphs, comprise the maintenance of the top-of-stack registers. 

Stack Push 

A stack push occurs when a third word or operand is loaded into the top-of-stack registers, and both the A 
register and B register already contain stack words or operands. A push consists of moving data from the 
top-of-stack registers to the local memory portion of the stack. Moving data to the local memory portion of 
the stack makes room in the top-of-stack registers so that a third operand may be loaded into the top-of-stack 
registers. 

Stack Pop 

A stack pop up occurs when an operand or word is moved from local stack memory to the top-of-stack portion 
of the stack. A pop can only occur when a machine operator is executed by the DP. The operator which is 
to be performed requires that words or operands be present in the top-of-stack registers, and that such words 
or operands may not be present in the proper top-of-stack registers. 

DOUBLE-PRECISION STACK OPERATION 

The top-of-stack registers are operand-oriented rather than word-oriented. Therefore, calling a double-precision 
operand into the top-of-stack registers causes two memory words to be loaded into the top-of-stack registers. 
The first word is loaded into the B register, where the tag bits are checked. If the value indicates double­
precision, the second word is loaded into the Y register. The two registers are concatenated, or linked togeth­
er, to form the double-precision operand. A double-precision operand located in the B and Y registers reverts 
to two words when pushed down into the stack memory. 

3-2 



B 5900 Reference Manual 
Stack Concept and Reverse Polish Notation 

TOP-OF-STACK REGISTER CONDITIONS 

Two logical indicators are used to exhibit the condition of the top-of-stack registers. These two indicators are 
the A Register Occupied Flip-flop (AROF), and the B Register Occupied Flip-flop (BROF). The interpretations 
of these two flip-flop indicators are as follows: 

AROF BROF Meaning 

0 0 Neither the A, nor the B register contains valid 
data. The top word in the stack is presently 
located in the local memory address specified 
by the contents of the S register. 

0 1 The B register contains the top word in the 
stack, and the contents of the A register are 
not valid. The second word in the stack is 
presently located in the local memory address 
specified by the contents of the S register. 

1 0 The A register contains the top word in the 
stack, and the contents of the B register are 
not valid data. The second word in the stack is 
presently located in the local memory address 
specified by the contents of the S register. 

1 1 The A register contains the top word in the 
stack, and the second word in the stack is 
presently in the B register. The third word in 
the stack is in the local memory address 
specified by the contents of the S register. 

STACK ADJUSTMENTS 

Each machine operator that is executed by the processor contains the requirements to adjust the top-of-stack 
registers so that they contain the appropriate data for the required operation. The following conventions are 
used to show what stack adjustment is required: 

(ADJ 0,0) 
Both the A and B registers are to be adjusted so that their contents are not valid. The top word in the 
stack is to be located in the local memory address specified by the contents of the S register. 

The processor will use the state of the AROF and BROF flip-flops to determine if the stack must be 
pushed down to achieve the required adjustment. The 0,0 portion of the convention notation shows what 
the logical states of AROF and BROF must be to satisfy the requirements of the adjustments. The first 
0 in the expression of the notation defines what the logical state of the AROF flip-flop must be at the 
conclusion of the stack adjustment. The second 0 in the expression defines what the logical state of the 
BROF flip-flop must be at the conclusion of the stack adjustment. The ADJ portion of the convention 
notation reads "adjust the stack until AROF and BROF meet the logical states ... ". 

(ADJ 0,1) 
The A register is to be adjusted so that its contents are not valid. The top word or operand in the stack 
is to be present in the B register, and the second word or operand in the stack is to be located in the 
local memory address specified by the contents of the of the S register. 

5011034 3-3 



B 5900 Reference Manual 
Stack Concept and Reverse Polish Notation 

(ADJ 1,0) 
The A register is to be adjusted so that it contains the top word or operand in the stack. The B register 
must not contain valid data. The second word or operand is located in the local memory address specified 
by the contents of the S register. 

(ADJl,1) 
The A register is to be adjusted so that it contains the top word or operand in the stack. The B register 
is to be adjusted so that it contains the second word or operand in the stack. The third word or operand 
in the stack is to be in the local memory address pointed at by the contents of the S register. 

(ADJ 0,2) 
The A register is to be adjusted so that its contents are not valid. The B register condition is immaterial 
to the operation. The top word in the stack is present in the B register if BROF is set. 

(ADJ 1,2) 
The A register is to be adjusted so that it contains the top word in the stack. The B register condition 
is immaterial to the operation. The second word in the stack is located in the B register if BROF is set. 

(ADJ 1,3) 
The A register is adjusted so that it contains the top word in the stack only when the original stack condi­
tion is AROF reset and BROF reset (0,0). If there is any original condition other than (0,0), no stack 
adjustment will occur. 

Some machine operations require that several stack adjustments must be performed during the course of the 
operation. Such operations merely pause at the appropriate place until the adjustment is completed, and then 
continue the sequence. 

Stack push and stack pop, which were previously defined, are intrinsic functions of the stack adjustments. 
That is, a push or pop may be implied by the current state of the top-of-stack registers, and by the required 
stack adjustment. When a stack push or pop is implied, such operations will be performed as an integral and 
automatic function of the stack adjustment procedure. 

DATA ADDRESSING 

The B 5900 data processor provides three methods for addressing data or program code: 

Data Descriptor (DD)/Segment Descriptor (SD) 
Normal Indirect Reference Word (NIRW) 
Stuffed Indirect Reference Word (SIRW) 

Data Descriptors (DD) and Segment Descriptors are used to address information located outside of stacks. 
Data Descriptors address data; Segment Descriptors address executable code. NIRWs and SIRWs are used 
to address information located within stacks. NIRWs address information located within the stack of a job. 
SIRWs are able to address information located in any stack. 

Data Descriptor 

In general, the Descriptor describes and locates data associated with a given job. The Data Descriptor (DD) 
is used to fetch data to the stack or to store data from the stack into an array located outside the stack area 
of the job. The formats of the Data and Segment Descriptors are given in Section 2. The address field in each 
of these Descriptors is 20 bits in length; this field contains the absolute address of an .array in either local 
memory or in the disk file, as indicated by the presence bit. If the presence bit is set, the referenced data 
is in memory; if reset, it is in the disk file. 

3-4 



B 5900 Reference Manual 
Stack Concept and Reverse Polish Notation 

PRESENCE BIT 

A presence bit interrupt occurs when the job references data by means of a Descriptor in which the presence 
bit is equal to 0. (An indication that the data is located in a disk file rather than in local memory.) The Master 
Control Program (MCP) recognizes the presence bit interrupt and transfers data from disk file storage to local 
memory. After the data transfer to local memory is completed, the MCP sets the presence bit in the Descriptor 
to l, and places the new local memory address into the address field. The interrupted job is then resumed. 

INDEXED BIT 

A Data Descriptor describes either an entire array of data words, or a particular element within an array of 
data words. If the Descriptor describes the entire array, the indexed bit in the Descriptor is 0, indicating that 
the Descriptor has not yet been indexed. The length field of the Descriptor defines the length of the data array. 

Invalid Index 

A particular element of an array is described by indexing an array Descriptor. Memory protection is ensured 
during indexing operations by performing a comparison between the length field of the Descriptor and the in­
dex value. An invalid index interrupt results if the index value exceeds the length of the local memory area 
defined by the Descriptor, or if the index is less than 0. 

Valid Index 

If the index value is valid, the length field of the Descriptor is replaced by the index value, and the indexed 
bit in the Descriptor is set to 1 to indicate that indexing has taken place. The address and index fields are 
added together to generate the absolute machine address whenever an indexed Data Descriptor in which the 
presence bit is set is used to fetch or store data. 

If the element-size of the Descriptor has a value of double-precision the index value is doubled before index­
ing. 

Read-Only Bit 

The read-only bit specifies that the local memory area described by the Data Descriptor is a read-only area. 
If the read-only bit of a Descriptor is set, and the area referenced by that Descriptor is used for storage pur­
poses, an interrupt results. 

Copy Bit 

The copy bit identifies a Descriptor as a copy of a mom Descriptor and is related to the presence bit action. 
The copy bit links multiple copies of an absent Descriptor (a condition resulting from the presence bit being 
oft) to the mom Descriptor. The copy bit mechanism is invoked when a copy is made in the stack. If it is 
a copy of the original absent Descriptor, the processor sets the copy bit and inserts the address of the mom 
Descriptor into the address field. Thus, multiple copies of absent Data Descriptors are all linked back to the 
mom Descriptor. 

REVERSE POLISH NOTATION 

Reverse Polish notation is an arithmetical or logical notation system using only operands and operators ar­
ranged in sequence or strings, thus eliminating the necessity of defining the boundaries of any terms. Figure 
3-2 presents a flow chart for conversion to reverse Polish notation. Table 3-1 is a guide for generating Polish 
string from an expression source. 

5011034 3-5 



B 5900 Reference Manual 
Stack Concept and Reverse Polish Notation 

Table 3-1. Simplified Rules for Generating a Polish String 

Name Action 

Variable or constant Place variable or constant in string 
being built and examine next symbol. 

Operator separator "(" or "[" Place in delimiter list and examine next 
symbol. 

Arithmetic or Boolean operator and Place operator in the delimiter list and 
last-entered delimiter list symbol were examine next source symbol. 
as follows: 

An operator of lower priority. 

A left bracket "[" or 
parenthesis "(". 

A separator. 

Nothing (delimiter list 
empty). 

Arithmetic or Boolean operator and Remove the operator from the delimiter 
last-entered delimiter list symbol were list and place it in the string being 
as follows: an operator of priority equal built. Then compare the next symbol in 
to or greater than the symbol in the the delimiter list against the source 
source. expression symbol. 

POLISH STRING 

The essential difference between reverse Polish notation and conventional notation is that operators are written 
to the right of the operands instead of between them. For example, the conventional B + C is written BC+ 
in reverse Polish notation: A=7x(B+C) becomes A 7 B C + x :=. 

Any expression written in reverse Polish notation is called a polish string. In order to fully understand this 
concept, the user should know the rules for evaluating a polish string. 

RULES FOR EVALUATING A POLISH STRING 

The following is the procedure for evaluating a polish string: 

1. Scan the string from left to right. 
2. Note the operands and the order in which they occur. 
3. When an operator is encountered perform the following: 

a. Record the last two operands encountered. 
b. Execute the required operation. 
c. Discard the two operands. 
d. Consider the result of (2) as a single operand. 

3-6 



B 5900 Reference Manual 
Stack Concept and Reverse Polish Notation 

D. L DELIMITER LIST 
P. N. S. POLISH NOTATION STRING 

PLACE 
SYMBOL 
IN P N.S. 

MV 1594 

LEFT PARENTHESIS 
OR BRACKET 
"("OR"[" 

PLACE 
"("OR"[" 

IN D.L. 

SCAN NEXT 
SOURCE ITEM 

DELETE 
"("OR"[" 
FROM THE 
D.L 

EXAMINE FIRST 
ITEM OF SOURCE 
STATEMENT 
STRING, 

• 

RIGHT PARENTHESIS 
OR BRACKET 
.. , .. OR H)H 

NO 

MOVE LAST 
ENTERED D.L. 
SYMBOL FROM 
D. L. TO P.N.S. 

INSERT 
SOURCE 
SYMBOL 
IN D;L. 

PRIORITIES 

3 

2 

1 

0 

OPERATORS 

X, I 

+,-
>. <. = (BOOLEAN) 

: = (REPLACEMENT) 

SOURCE 
EMPTY 

OP~RATOR 

l+.-.x.1.=.>.<1 

STOP 

YES 

MOVE LAST 
ENTERED D.l. 
SYMBOL FROM 
D. L. TO P. N.S. 

LAST ENTERED 
D. L. SYMBOL IS 
a) LOWER PRIORITY 
b) "("OR"[" 
c) D.L. IS EMPTY 

NO 

MOVE LAST 
ENTERED D.L. 
SYMBOL FROM 
D.L. TO P.N.S. 

Figure• 3-2. Reverse Polish Notation Flow Chart 

5011034 3-7 



B 5900 Reference Manual 
Stack Concept and Reverse Polish Notation 

Following this procedure, the reverse Polish string A 7 B C + x := results in A assuming the value 7 x (B+C) 
(See Table 3-2). 

NOTE 
Because replacement operators vary depending upon the language used, ~. =, and 
: = are equivalent for this discussion. 

SIMPLE STACK OPERATION 

All program information must be in the system before it can be used. Input areas are allocated for information 
entering the system, and output areas are set aside for information exiting the system; array and table areas 
are also allocated to store certain types of data. Thus data is stored in several different areas: the input/output 
areas, data tables (arrays), and the stack. Since all work is done in the arithmetic registers, all information 
or data is transferred to the arithmetic registers and the stack. 

Table 3-2. Evaluation of Polish String A 7 B C + X : = 

Operands Being 
Symbol Remembered Order of 

Step Being Symbol Occurrence (1 or 2) Occurring Operation 
No. Examined Type Before Operation Operation Results 

1 B Operand 

2 c Operand 1 B 

3 + Add 2 c B+C (B+C) 
Operator 1 B 

4 7 Operand 1 (B+C) 

5 x Multiply 2 7 7x(B+C) 7x(B+C) 
Operator 1 x(B+C) 

6 A Name 1 7x(B+C) 

7 - Replace 2A A:=7x(B+C) A=7x(B+C) 

At this point, an ALGOL assignment statement and the reverse Polish notation equivalent will be related to 
the stack concept of operation. The example is Z : = Y + 2x(W + V) where : = means "is replaced by". In terms 
of a computer program, this assignment statement indicates that the value resulting from the evaluation of the 
arithmetic expression is to be stored in the location represented by variable Z. 

When Z := Y+2x(W+V) is translated to reverse Polish notation, the result is ZY2WV+x+:=. Each element 
of the example expression causes a certain type of operator to be included in the machine language program 
when the source problem is compiled. The following is a detailed description of each element of the example, 
the type of operator compiled, and the resulting operation (see Figure 3-3 and Table 3-3). 

In the expression above, Z is to be the recipient of a value, the address of Z must must be placed into the 
stack just prior to the store command. This is accomplished by a name call operator (NAMC) which places 
a Normal Indirect Reference Word (NIRW) in the stack. The NIRW contains the address of Z in the form 
of an "address couple" that references the memory location reserved in the stack for the variable Z. 

3-8 



VI 
0 

0 
w 
.j:>. 

w 
-b 

OPERATORS 

"A" REGISTER 

"B" REGISTER 

CORE STACK 

AREA 

CBIL N+5 

CBILN+4 

CBIL N+3 

CBIL N+2 

CBIL N+1 

CBIL N 

MV1595 

B 
B 

ALGOL STATEMENT z y + 2 

eoLISHSTRIN~ /w/v 
NAMC 

z 

IRWZ 

INV 

VALC 

y 

y 

IRWZ 

LT8 

2 

t8 
VALC 

w 

w 

2 

VALC 

v 

v 

w 

x 
+ 

ADD 

G;J 
B 

J 
I -1 y I I I ~ I~ 

- IRWZ IRW Z 

z s- z z z 

y y y y 

w w w w 

v I I v I I v I I v I I 

CURRENT BASE INDEX LEVEL (CBIL) REPRESENTS 
RELATIVE MEMORY ADDRESSING WITHIN THE STACK 
MEMORY AREA (D [QQ] + S). 

z 

y 

w 

v 

IRWZI I 

z 

y 

w 

I I v t---' 

Figure 3-3. Stack Operation 

llRWZ 

~ 
I v 

(W+V) ; 

MULT 

INV 

2x(W+V) 

2 

y 

IRWZ 

z 

y 

w 

v 

ADD 

INV 

Y+2(W+V) 

2 

y 

IRWZ 

z 

y 

w 

v 
-

STOD 

[;] 
G 

2 

y 

IRWZ 

jv + 2(W + ~ 

y 

w 

v 

OPERATOR TYPES 

VALC 
~AMC 
l!T8 
STOD 

VALUE CALL 
NAME CALL 
LITERAL (8 BIT) 
STORE DESTRUCTIVE 

~ 
~ 

Q 
~ t:I:' 
<II VI 

;~ 
= ~ 0. <II 

~O' 
<II '"I 
<<II 
<II = '"I 0 
~ <II 

"C s:: 
~~ 
c;.;· = 
:::r a 
z 
0 

g. 
0 = 



B 5900 Reference Manual 
Stack Concept and Reverse Polish Notation 

Table 3-3. Description of Stack Operation 

Reverse 
Polish Syllable 

Execution Notation Type Function of Syllable During 
Sequence Element Compiled Running of the Program 

0 Stack location of program variable 
illustrated. 

1 z Name call for Z Build an IRW that contains the address 
of Z and place it on the top of the 
stack. 

2 y Value call for Y Place the value of Y in the top of the 
stack. 

3 2 Literal 2 Place a 2 in the top of the stack. 

4 w Value call for W Place the value of W in the top of the 
stack. 

5 v Value call for V Place the value of V in the top of the 
stack. 

6 + ADD Operator Add the top two words in the stack 
and place the sum in the B register as 
the top of the stack. 

7 x MULT Operator Multiply the two top-of-stack operands. 
The product is left in the B register as 
the top of the stack. 

8 + ADD Operator Add the top two words in the stack 
and leave the sum in the B register as 
the top of the stack. 

9 - Store Delete Store an item into memory. The 
(STOD) Operator address in which to store is indicated 

by an IRW or a DD; the address can 
be above or below the stored. Item is 
removed from the stack. 

Since Y is to be added to a quantity, Y is brought into the top of the stack as an operand by way of a value 
call (V ALC) operator that references Y. The value 2 is then brought to the stack, with an eight-bit literal oper­
ator (LT8). Since W and V are to be added, the respective variables are brought to the stack with value call 
operators. The ADD operator adds the two top operands and places the sum in the top of the stack. This 
example assumes, for simplicity, single-precision operands not requiring use of the X and Y registers which 
are used in double-precision operations. 

The multiply operator is the next symbol encountered in the reverse Polish string; when executed, it places 
the product "2x(W+V)" in the top of the stack. The next operator, ADD, when executed, leaves the final 
result "Y+2x(W+V)" in the top of the stack. 

The store operator completes the execution of the statement Z : = Y + 2x(W + V). The store operation examines 
the two top-of-stack operands for an IRW or Data Descriptor. In this example, the IRW addresses the location 
where the computed value of Z is to be stored. The stack is empty at the completion of this statement. 

3-10 



B 5900 Reference Manual 
Stack Concept and Reverse Polish Notation 

PROGRAM STRUCTURE IN LOCAL MEMORY 

When a problem is expressed in a source language, portions of the source language fall into one of two 
categories. One describes the constants and variables that will be used in the program, and the other describes 
the computations that will be executed (see Figure 3-4). When the source program is compiled, variables are 
assigned locations within the stack, whereas the constants are embedded within the code stream that forms 
the computational part. A program residing in memory occupies separately allocated areas. "Separately allo­
cated" means that each part of the program may reside anywhere in memory, and the actual address is deter­
mined by the MCP. In particular, the various areas are not assigned to contiguous memory areas. Registers 
within the processor indicate the bases of the various areas during the execution of a program. 

MV 1596A 

D[4] 

D[3] 

D[2] 

D[1] 

D[O] 

_.., 
_.., 
_.., 

~ 

OBJECT 
PROGRAM 
STACK 
CONTAINING 
VARIABLES 
AND DYNAMIC 
STATUS 

OBJECT 
PROGRAM 
SEGMENT 
DICTIONARY . . . 

S. D. PROG. 

S. D. PROG 

SEG. DES. 0. B. 

MCP STACK 
AND 
SEGMENT 
DICTIONARY 

OBJECT 
PROGRAM __... CODE -- SEGMENT 
(n + 1) 

OBJECT 
PROGRAM _.. 
CODE -- SEGMENT 

!-----' (n) 

OBJECT 
PROGRAM 
CODE _.. 
OUTER -- BLOCK 
CODE 
SEGMENT 

Figure 3-4. Object Program in Memory 

LOCAL MEMORY AREA ALLOCATION 

The separately allocated areas of a program are as follows: 

Program Segments 
These are sequences of instructions (operators) that are p~rformed by the processor in executing the pro­
gram. Program segments are distinct form data areas in that they contain no data and are not modified 
by the processor in the execution of the program. 

Segment Dictionary 
This is a table containing one word for each program segment. This word tells whether the program seg­
ment is in local memory or on disk, and gives the corresponding local memory or disk address of the 
program segment. 

5011034 3-11 



B 5900 Reference Manual 
Stack Concept and Reverse Polish Notation 

Stack Area 
This is the pushdown stack storage, which contains all the variables and Data Descriptors associated with 
the program, including control words which indicate the dynamic status of the job as it is being executed. 

THE B 5900 PROCESSOR STATE 

Implemented on the B 5900 system is an operator set that is large system code compatible such that any object 
program that runs to correct termination on the B 6800 will do likewise on the B 5900. Since the BCL (Bur­
roughs Common Language) character set and vector mode are not supported in the B 5900, object programs 
which deal with BCL or use vector mode are excluded. 

STACK HISTORY AND ADDRESSING ENVIRONMENT 

The addressing environment of the executing code stream consists of a set of local addressing spaces contained 
within stacks. These are called activation records (referred to as lexical regions elsewhere), and each consists 
of a set of variables addressed by an index relative to the base of the activation record. 

Activation records are managed by use of two linked lists: the historical chain and the current lexical chain. 
History and lexical Links address the base word in the activation record. 

The historical chain is a chronologically ordered list which consists of History Links connecting each activation 
record to the immediately preceding activation record. An historical chain pointer to the most recently initiated 
activation record is all that is required to access any activation record in the stack. 

There may be inactive or partially initiated activation records in the stack. These are linked into the historical 
chain only, whereas other activation records, called entered activation records, are linked into both the histori­
cal and lexical chains. 

The Lexical Link of an entered activation record points to the activation record which is its immediate global 
addressing space. Immediate global addressing space is defined in terms of the static program structure as fol­
lows: if BO and Bl are blocks in the program, BO contains Bl, and activation records ARO and ARl correspond 
to BO and Bl, then ARO is the immediate global addressing space of ARI. 

The Lexical Link is the head of a lexical chain down to the most global addressing space of the activation 
record. That lexical chain defines the addressing environment associated with execution of the code stream 
bound to the activation record. The position of the activation record in its own lexical chain is its lexical level, 
where zero is the end of the chain (its most global level). 

History links always point to an activation record in the same stack, but Lexical Links may point to an activa­
tion record in another stack. Therefore, an addressing environment may be mapped into a "cactus stack" 
structure. 

The current addressing environment is the set of activation records addressed by the lexical chain whose head 
is the activation record bound to the executing code stream. It is called the topmost activation record and 
is the first entered activation record on the historical chain. The lexical level of the topmost activation record 
is noted LL, and there are LL+ 1 activation records in its environment. A lexical chain pointer to the topmost 
activation record is required for accessing the current environment. 

A general reference to an item in the current environment takes the form of an (Lambda, Delta) address cou­
ple, where Lambda is a lexical level and Delta is an offset to the referenced item from the base of the activa­
tion record at level Lambda. Address couples are the means of addressing variable locations in the current 
environment by the executing code stream. 

3-12 



B 5900 Reference Manual 
Stack Concept and Reverse Polish Notation 

Processor management of the activation records in the stack utilizes the following logical registers: 

F 

LL 

The historical chain pointer to the most recent activation record in the stack. All activation records (inac­
tive or entered) are accessible by following History Links from F. 

The lexical level in the current addressing environment of the topmost activation record - the level at 
which the processor is running. 

D[LL] 

D[O] 

The lexical chain pointer to the topmost activation record. Activation records in the current addressing 
environment are accessible by following Lexical Links from D[LL]. 

A pointer to the most global activation record in the current addressing environment. System 
considerations require accessibility of the D[O] activation record. 

Addressing is optimized by setting the remainder of the D registers from the D[LL] lexical chain, so that the 
definition of the D register array is: 

D[i] 
A pointer to the activation record at level i in the current addressing environment for i = LL down to 
0, and LL <= 15. 

Figure 3-5 is an example of an addressing environment example. The figure illustrates that the Lexical Link 
from the level 2 activation record is to another stack. Though it is not illustrated in the figure, it is possible 
that a cactus stack structure could be above the level 2 activation record. 

(LEXICAL LINK) (HISTORY LINK) 

UNACTIVE) 

D[LL] -----11 ... • LEVEL LL AR 

LEVEL LL AR 

D[LL-1) _____... 
LEVEL LL-1 AR -----

2 [ADDRESSED BY (2,2)) 

D[2)~ 0 LEVEL 2 AR 

MV4632 (TO ANOTHER STACK) 

Figure 3-5. Addressing Environment Example 

5011034 3-13 



B 5900 Reference Manual 
Stack Concept and Reverse Polish Notation 

EXPRESSION STACK 

Operator definition assumes an expression stack. Initial arguments are taken from and results are pushed onto 
this expression stack. The concepts of the expression stack and the current addressing environment are merged 
by treating the topmost activation record as the expression stack. 

Variables local to the activation record are initialized by execution of operators which push items onto the 
expression stack. This "stack building code" is usually the first operator sequence executed following comple­
tion of entry into the activation record. At the conclusion of stack building code, the height of the expression 
stack is n words, where there are n local variable locations in the activation record. 

The stack which contains the expression stack is identified by an integer value called Stack Number. The base 
and limit of the stack are obtained from the stack Descriptor. Activation records may occur in the stack below 
the topmost stack. The term, expression stack, describes that portion of the stack from the base of the topmost 
activation record to the limit of the stack. 

Figure 3-6 shows a typical configuration of the topmost activation record after completion of stack building 
code and subsequent operator execution. 

s ... (TOP OF EXPRESSION STACK) 

j j 

N+2 

N+1 

J (N LOCAL VARIABLES) 7 i. 

2 (BASE OF EXPRESSION STACK) 

1 

D [LL]__. 0 (STACK LINKAGE WORDSI 

MV4633 

Figure 3-6. Topmost Activation Record Example 

Processor management of the expression stack utilizes the following logical registers: 

SNR 
The stack number identification of the stack containing the expression stack. 

s 
The address of the top word in the expression stack. 

Validity checking of stack accessing uses the followin~ optimization registers: 

BOSR 
The base address of the stack containing the expression stack. 

3-14 



B 5900 Reference Manual 
Stack Concept and Reverse Polish Notation 

LOSR 
The topmost (limit) address of the expression stack. 

The B 5900 optimizes stack accesses by use of registers which hold the two top-of-stack items. The register 
contents are not addressable by way of an address couple, and are available only as dynamic arguments to 
operators. 

EXECUTABLE CODE STREAMS 

Variable length operator sequences are stored in arrays of program code words called code segments. Each 
program code word contains six 8-bit containers called syllables. (The mapping of operators into syllables will 
be specified in Section 4, Operator Set). 

For each code segment there is a Descriptor which points to its memory location and specifies its length in 
words. Code Segment Descriptors for a program are collected in an array called a Segment Dictionary. 

The term "code stream pointer" is used to describe a reference to the entry point of an operator sequence 
in a code segment. A code stream pointer consists of the following components: An address couple (SDLL, 
SDI) references the code segment Descriptor. SDLL is the Segment Dictionary lexical level. A user program 
Segment Dictionary is usually the level 1 activation record in its addressing environment, and the operating 
system Segment Dictionary is at level 0. SDI is the Segment Dictionary index to the code segment Descriptor 
relative to the base of the specified Segment Dictionary. The entry point in the code segment is indicated by 
PWI, the program word index relative to the base of the code segment, and PSI, the program syllable index 
of the first operator. 

The processor code stream pointer consists of the following component registers: 

SDLL (Segment Dictionary Lexical Level) 
The lexical level at which the current Segment Dictionary is addressed. 

SDI (Segment Dictionary Index) 
The index in the Segment Dictionary to the current code segment Descriptor. 

PWI (Program Word Index) 
The index in the code segment to the code word containing the next operator. 

PSI (Program Syllable Index) 
The index in the code word to the next operator syllable. 

Validity checking of code segment accessing uses the following optimization registers: 

PBR (Program Base Register) 
The memory address of the base of the current code segment. 

PLR (Program Limit Register) 
The memory address of the last word of the current code segment. 

Figure 3-7 illustrates the processor code stream pointer. 

5011034 3-15 



• 
• 
• 

SDI 

• 
• 
• 

D[SDLL] __... f'J 

MV4634 

a, 
~ 

B 5900 Reference Manual 
Stack Concept and Reverse Polish Notation 

- 1-i 

(CODE SEGMENT , 
DESCRIPTORS) ' 

'--

SEGMENT DICTIONARY 

PLR___. 

• 
• 
• 

PWI 

• 
• 
• 

PBR__.O 

0 ••• PSI • •• 
x 

(PROGRAM CODE WORDS) 

CODE SEGMENT 

Figure 3-7. Processor Code Stream Pointer 

5 

Processor state also includes two Boolean attributes of the executing code stream and a global processor Halt 
Boolean: 

CS (Control State) 
While CS is set, external interrupts are disabled. When it is reset (Normal State), they are enabled and 
may occur between operator executions. 

RS (Restart State) 
If RS is set, the current operator was initiated at a restart state distinct from the normal initial state 
implied by RS being reset (Initial State). 

HALT 
If HALT is enabled, processor execution will stop upon execution of a HALT (Conditional Processor 
Halt). If it is disabled, a HALT is treated as a NOOP (no operation). 

GENERAL BOOLEAN ACCUMULATORS 

Processor state includes four Boolean accumulators which are generally used by several operator groups. The 
use and definition of these four accumulators listed below will be discussed in Section 3, Operator Set. 

TFFF 
The True False Flip-Flop. 

OFFF 
The OverFlow Flip-Flop. 

EXTF 
The External Sign Flip-Flop. 

FLTF 
The Float Flip-Flop. 

The Boolean TFOF (True False Occupied Flip-flop) is not required in B 5900. TFOF is used by Point~r com­
pare operators to indicate that the operator has been restarted subsequent to a Paged array interrupt, but that 
the compare result was already determined. B 5900 provides a general operator restart mechanism using the 
RS Boolean. (See Executable Code Streams above.) This mechanism replaces the use of TFOF. 

3-16 



B 5900 Reference Manual 
Stack Concept and Reverse Polish Notation 

MISCELLANEOUS 

Processor state includes the time of day clock and the processor identification: 

TOD 
The time of day clock, with values in 2.4 microsecond units. 

PROC 
The processor identification, composed of: 

ERL 
The Engineering Release Level. 

SER NO 
The system serial number. 

ID 
The processor identification number. 

5011034 3-17 





B 5900 Reference Manual 

SECTION 4 
B 5900 OPERATOR SET 

PRELIMINARY INFORMATION 

Although operators are fetched from code segments, a code stream is considered to be a sequence of syllables 
fetched without regard to word boundaries. The two cases where word boundaries are relevant will be dis­
cussed separately with the operators LT48 (Insert 48-bit literal) and MPCW (make PCW). 

An operator is composed of an op code and up to four parameters. Op codes are generally one syllable and 
parameters, if any, are in the syllable following the op code. Parameter mapping into syllables varies, and ex­
plicit specifications appear in this section for operators requiring parameters. In this manual, the term "param­
eter" is to describe items in the code stream. 

In those diagrams specifying op code and parameter interpretation, the operator name represents its op code 
value .. Vertical bars (I) denote syllable boundaries, and colon (:) denotes parameter boundaries. Double vertical 
bars (II) denote word boundaries. 

The following is an example diagram illustrating a 3-syllable operator, and includes 2 single-syllable 
J?arameters. 

op name Pl P2 

The next diagram shows a 3-syllable operator, two syllables of which are a single parameter. 

op 
name 

I 
Pl 

The final diagram shows a 3-syllable operator including two parameters which are mapped into 2 syllables. 
Pl is 3 bits and P2 is 13 bits. 

op : J2 name Pl: 
3: 13 

EXPRESSION STACK CONTROL 

Most operators require stack items from the top of the expression stack; however, regardless of whether or 
not stack items are required, the operators leave their results on the top of the stack. Stack items required 
by operators, called arguments, are used and then deleted from the stack. To avoid excessive repetition, dele­
tion of arguments is assumed for all operators, unless explicitly noted. 

The expression stack utilizes the set of locations whose addresses are in the range {D(LL)+l to LOSR}. The 
topmost activation record stack linkage word at D[LL] and D[LL] + 1 is excluded. If the top of the stack is 
less than D[LL]+ 1 and an operator attempts to to use an expression stack argument, a Stack Underflow inter­
rupt is generated. If an operator pushes a result onto the stack and at the conclusion of the push the top of 
the stack is equal to LOSR, a Stack Overflow interrupt is generated. This checking is assumed for all 
operators. 

5011034 4-1 



ARITHMETIC OPERATORS 

B 5900 Reference Manual 
B 5900 Operator Set 

Arithmetic operators require either one or two operands on top of the stack. If the items are not operands, 
an Invalid Stack Argument interrupt is generated. 

Binary operators will generate a single-precision result if both operands are single-precision and a double-preci­
sion result if either or both operands are double-precision. Where required, single-precision is extended to dou­
ble-precision prior to the operation by appending a second word of all zeros. The numeric value of the operand 
is not changed. 

ADD (Add) P (80) 

ADD requires two operands on top of the stack. The numeric values of the two operands are algebraically 
added and rounded, and the result is left on top of the stack. If the result is too large to be represented, an 
Exponent Overflow interrupt is generated. 

SUBT (Subtract) P(81) 

SUBT requires two operands on top of the stack. The numeric value of the top item is algebraically subtracted 
from the numeric value of the second item and rounded, and the result is left on top of the stack. If the result 
is too large to be represented, an Exponent Overflow interrupt is generated. 

MUL T (Multiply) P(82) 

MULT requires two operands on top of the stack. The numeric values of the two operands are algebraically 
multiplied and rounded, and the result is left on top of the stack. If the result is too large to be represented, 
an Exponent Overflow is generated. If the result is too small to be represented, an Exponent Underflow inter­
rupt is generated. 

MULX (Extended Multiply) P(SF) 

MULX requires two operands on top of the stack. Any single precision operand is extended to double-preci­
sion before the numeric values are algebraically multiplied and rounded. The double-precision result is left on 
top of the stack. If the result is too large to be represented, an Exponent Overflow interrupt is generated. 
If the result is too small to be represented, an Exponent Underflow interrupt is generateJ. 

DIVD (Divide) P(83) 

DIVD requires two operands on top of the stack. The numeric value of the second item is algebraically divided 
by the numeric value of the top item and rounded, and the result is left on top of the stack. If the divisor 
(top-of-stack operand) equals zero, a Divide by Zero interrupt is generated. If the result is too large to be 
represented, an Exponent Overflow interrupt is generated. If the result is too small to be represented, an Ex­
ponent Underflow interrupt is generated. 

IDIV (Integer Divide) P(84) 

IDIV requires two operands on top of the stack. The numeric value of the second item is algebraically divided 
by the numeric value of the top item. The fractional part of the floating point quotient is discarded, and the 
integer part is left on top of the stack represented as an integer. 

If the divisor (top-of-stack operand) equals zero, a Divide by Zero interrupt is generated. If the result is too 
large to be represented as an integer, an Integer Overflow interrupt is generated. 

4-2 



B 5900 Reference Manual 
B 5900 Operator Set 

RDIV (Remainder Divide) P(85) 

RDIV requires two operands on top of the stack. The numeric value of the second item is divided by the 
numeric value of the top item. The integer quotient with remainder is generated but only the remainder is 
left on top of the stack. The sign of the result is the same as the sign of the second item (the dividend). 

If the divisor (top-of-stack operand) equals zero, a Divide by Zero interrupt is generated. If the result is too 
large to represented as an integer, an Integer Overflow interrupt is generated. 

CHSN (Change Sign) P(BE) 

CHSN requires an operand on top of the stack. The sign of the operand is complemented and the result is 
left on top of the stack. 

NORM (Normalize) V(BE) 

NORM requires an operand on the top-of-stack; otherwise an Invalid Stack Argument interrupt is generated. 
If the operand is single precision, it is converted to normalized single-precision representation. If the operand 
is double-precision, it is converted to normalized double-precision representation. 

If the top-of-stack is not an operand, an Invalid Stack Argument interrupt is generated. If the result is too 
small to be represented, an Exponent Underflow interrupt is generated. 

RELATIONAL OPERATORS 

The relational operators all require two operands on top of the stack; otherwise an Invalid Stack Argument 
interrupt is generated. The numeric value of the second item is algebraically compared to the numeric value 
of the top item, and a Boolean result is left on top of the stack. True is represented by a single-precision 
integer l, and false is represented by a single-precision integer 0. 

LESS (Less Than) P(88) 

LESS leaves a true result if the second from top-of-stack operand is algebraically less than the top operand; 
otherwise LESS leaves a result of false. 

LSEQ (Less Than Or Equal To) P(88) 

LSEQ leaves a true result if the second from top-of-stack operand is algebraically less than or equal to the 
top operand; otherwise LESQ leaves a result of false. 

EQUL (Equal To) P(8C) 

EQUL leaves a true result if the second from top-of-stack operand is algebraically equal to the top operand; 
otherwise a false results. 

NEQL (Not Equal To) P(8D) 

NEQL leaves a true result if the second from top-of-stack operand is algebraically not equal to the top oper­
and; otherwise a false results. 

GREQ (Greater Than Or Equal To) P(8A) 

GREQ leaves a true result if the second from top-of-stack operand is algebraically greater than or equal to 
the top operand; otherwise a false result. 

5011034 4-3 



B 5900 Reference Manual 
B 5900 Operator Set 

GATA (Greater Than) P(89) 

GRTR leaves a true result if the second from top-of-stack operand is algebraically greater than the top operand 
and a false result otherwise. 

TYPE TRANSFER OPERATORS 

The following type transfQrmations may be invoked on the top-of-stack operand: 

• Convert to single-precision integer using NTIA, NTGR. 
• Convert to single-precision floating point using SNGT, SNGL. 
• Convert to double-precision integer using NTGD. 
• Convert to double-precision floating point using XTND. Additionally, a Data Descriptor may be con­

verted to single-precision by SNGT or to double-precision by XTND. 

NTIA (lntegerize Truncated) P(86) 

NTIA requires an operand on top of the stack; otherwise an Invalid Stack Argument interrupt is generated. 
The operand is converted to single precision integer representation by truncation, and the result is left on top 
of the stack. If the result is too large to be represented as an integer, an Integer Overflow interrupt is gener­
ated. 

NTGR (lntegerize Rounded) P(87) 

NTGR requires an operand on top of the stack; otherwise an Invalid Stack Argument interrupt is generated. 
The operand is converted to single precision integer representation by rounding, and the result is left on top 
of the stack. If the result is too large to be represented as an integer, an Integer Overflow interrupt is gener­
ated. 

SNGL (Set to Single-Precision Rounded) P(CD) 

SNGL requires an operand on top of the stack; otherwise an Invalid Stack Argument interrupt is generated. 
The operand is converted to normalized single-precision representation by rounding and is left on top of the 
stack. If the result is too large to be represented in normalized single-precision form, an Exponent Overflow 
interrupt is generated. If the result is too small to be represented in normalized single-precision form, an Expo­
nent Underflow interrupt is generated. 

SNGT (Set to Single-Precision Truncated) P(CC) 

SNGT requires an operand or Data Descriptor on top of the stack; otherwise an Invalid Stack Argument inter­
rupt is generated. If the top-of-stack item is an operand, it is converted to normalized single-precision represen­
tation by truncation and left on top of the stack. If the result is too large to be represented in normalized 
single-precision form, an Exponent Overflow interrupt is generated. If the result is too small to be represented 
in normalized single-precision form, an Exponent Underflow interrupt is generated. 

If the top-of-stack item is a Data Descriptor, the element-size of the Descriptor must be single-precision or 
double-precision; otherwise an Invalid Stack Argument interrupt is generated. A single-precision Descriptor is 
left on the stack unchanged. The element-size of a double-precision Descriptor is set to single-precision, and 
if unindexed, the length field of the Descriptor is multiplied by 2. The modified Descriptor is left on top of 
the stack. 

4-4 



B 5900 Reference Manual 
B 5900 Operator Set 

XTND (Set to Double-Precision) P(CE) 

XTND requires an operand or a Data Descriptor on top of the stack; otherwise an Invalid Stack Argument 
interrupt is generated. 

If the top-of-stack operand is double-precision, it is left on the stack unchanged. If the operand is single-preci­
sion, it is converted to double-precision representation by appending a second word whose fields are initialized 
to zero and by changing the tag of both words to 2; the double-precision result is left on the stack and its 
numeric value is unchanged. 

If the top-of-stack item is a Data Descriptor, it must be single-precision or double-precision; otherwise an Inva­
lid Stack Argument interrupt is generated. A double-precision Descriptor is left on the stack unchanged. The 
element-size of a single-precision Descriptor is set to double-precision, and when unindexed, the length field 
of the descriptor is divided by 2; any remainder is discarded. The modified Descriptor is left on top of the 
stack. 

NTGD (lntegerize Double-Precision Rounded) V(87) 

NTGD requires an operand on top of the stack; otherwise an Invalid Stack Argument interrupt is generated. 
The operand is converted to double-precision integer representation, and the result is left on top of the stack. 
If the result is too large to be represented as a double-precision integer, an Integer Overflow interrupt is gener­
ated. 

SCALI NG OPERATORS 

The following are in the Scaling operator group. 

Scale Left Operators 

Scale left operators perform multiplication of an operand on top of the stack by ten raised to a power specified 
by a scale factor. The scale factor may be a dynamic argument or a static parameter. 

The item to be scaled must be an operand; otherwise an Invalid Stack Argument interrupt is generated. An 
NTGD (integerize double-precision rounded) operation is performed if required, and if the operand cannot be 
integerized, an Integer Overflow interrupt is generated. 

If the scale factor is a dynamic argument, it must be an operand; otherwise an Invalid Stack Argument inter­
rupt is generated. It is integerized with rounding if required, and if it cannot be integerized, an Integer Over­
flow interrupt is generated. Both the static scale factor parameter and the integerized dynamic scale factor 
must be in the range (0 to 12); otherwise the original operand to be scaled is left on top of the stack, and 
OFFF (overflow flip-flop) is set to 1. 

The result of the multiplication is left on top of the stack represented as a single-precision or double-precision 
integer, depending on its magnitude. The result is single-precision for the range (0 to 238), and double-precision 
for the range (239 to 277). If it is greater than or equal to (278), an indeterminate double-precision integer is 
left on top of the stack, and OFFF (Overflow Flip-Flop) is set to 1. 

Scale left stack arguments (the operand to be scaled and the dynamic scale factor) are required to be opera~s. 

The dynamic scale factor is checked to verify that the integer value is in the range (0 to 12), rather than the 
value modulo 16. 

For all scale factor values, scale left operators correctly produce a single or double-precision integer result, 
depending on its magnitude. 

5011034 4-5 



SCLF (Scale Left) P(CO) 

B 5900 Reference Manual 
B 5900 C>perator Set 

The top-of-stack operand is multiplied by ten raised to the power specified by the scale factor. The resultant 
single-precision or double-precision integer is left on top of the stack. The scale factor is a parameter: 

I SCLF I Scale Factor 

DSLF (Dynamic Scale Left) P(C1) 

The operand to be scaled is multiplied by ten raised to the power specified by the scale factor. The resultant 
single-precision or double-precision integer is left on top of the stack. Both arguments are required on top 
of the stack: 

scale factor 

operand to be scaled 

Scale Right Operators 

Scale right operators perform division of an operand on top of the stack by ten raised to a power specified 
by a scale factor. The scale factor may be a dynamic argument or a static parameter. The results of the divi­
sion are the quotient represented as an integer, the remainder represented as a decimal (hex character) se­
quence, or a combination of the two. 

The item to be scaled must be an operand; otherwise an Invalid Stack Argument interrupt is generated. An 
NTGD (integerize double-precision rounded) operation is performed if required, and if the operand cannot be 
integerized, an Integer ()verflow interrupt is generated. 

If the scale factor is a dynamic argument, it must be an operand; otherwise an Invalid Stack Argument inter­
rupt is generated. It is integerized with rounding if required. If it cannot be integerized, an Integer ()verflow 
interrupt is generated, and if the result is a valid integer but not in the range (0 to 12), an Invalid Argument 
Value interrupt is generated. If the scale factor is a parameter and it is not in the range (0 to 12), an Invalid 
Code Parameter interrupt is generated. 

Scale right operators leave on top of the stack either the quotient of the division, the remainder, or both the 
quotient and remainder. The quotient is represented as a single-precision integer if its magnitude is in the range 
(0 to 238) and as a double-precision integer for the range (239 to 277). The magnitude of the quotient cannot 
exceed 277 • The remainder is a single-precision operand interpreted as a left-justified decimal (hex) sequence. 
The number of significant decimal digits is equal to the scale factor, and each digit is in the range (hex "O" 
to hex "9"). Scale right stack arguments (the operand to be scaled and the dynamic scale factor) are required 
to be operands. 

The dynamic scale factor is checked to verify the integer value is in the range (0 to 12), rather than the value 
modulo 16. 

For a scale factor of zero, scale right operators whose results include the quotient produce either a single­
precision or a double-precision integer result, depending on the magnitude of the operand. Scale right operators 
with results that include the remainder produce a remainder of zero. 

4-6 



B 5900 Reference Manual 
B 5900 Operator Set 

SCRS (Scale Right Save) P(C4) 

SCRS leaves the quotient on top of the stack and the remainder is left second from the top of the stack. The 
operand to be scaled is required on top of the stack, and the scale factor is a parameter: 

I SCRS I Scale Factor 

DSRS (Dynamic Scale Right Save) P(C5) 

DSRS leaves the quotient on top of the stack and the remainder is left second from the top of the stack. The 
scale factor and the operand to be scaled are required on top of the stack: 

scale factor 

operand to be scaled 

SCRT (Scale Right Truncate) P(C2) 

Only the quotient is left on top of the stack. The. operand to be scaled is required on the stack, and the scale 
factor is a parameter: 

SCRT Scale Factor 

DSRT (Dynamic Scale Right Truncate) P(C3) 

Only the quotient is left on top of the stack. The scale factor and the operand to be scaled are required on 
top of the stack: 

scale factor 

operand to be scaled 

SCRR (Scale Right Rounded) P(CB) 

If the most significant digit of the remainder is greater than or equal to five, the magnitude of the quotient 
is rounded up; that is, if the quotient is 1, it rounds to 2. If the quotient is -1, it rounds to -2. Only the 
quotient is left on top of the stack. The operand to be scaled is required on top of the stack, and the scale 
factor is a parameter: 

SCRR Scale Factor 

5011034 4-7 



B 5900 Reference Manual 
B 5900 Operator Set 

c 
DSRR (Dynamic Scale Right Rounded) P~) 

If the most significant digit of the remainder is greater than or equal to five, the quotient is rounded up, and 
only the quotient is left on top of the stack. The scale factor and the operand to be scaled are required on 
top of the stack: 

scale factor 

operand to be scaled 

SCRF (Scale Right Final) P(C6) 

Only the remainder is left on top of the stack. EXTF (External Sign Flip-Flop) is set to 1 if the mantissa 
sign of the operand to be scaled is negative; otherwise the EXTF is 0. OFFF (overflow flip-flop) is set to 
1 if the quotient is any non-zero value; otherwise the OFFF is 0. 

The operand to be scaled is required on top of the stack, and the scale factor is a parameter: 

I SCRF Scale Factor 

DSRF (Dynamic Scale Right Final) P(C7) 

Only the remainder is left on top of the stack. EXTF (External Sign Flip-Flop) is set to 1 if the mantissa 
sign of the operand to be scaled is minus; otherwise EXTF is 0. OFFF (Overflow Flip-flop) is set to 1 if the 
quotient is any non-zero value; otherwise OFFF is 0. 

The scale factor and the operand to be scaled are required on top of the stack: 

scale factor 

operand to be scaled 

LOGICAL OPERATORS 

Logical operators require one or two top-of-stack items. They may be of any type. The items are interpreted 
as 48-bit vectors unless one or both are double-precision operands. Then they are interpreted as 96-bit vectors, 
and if only one of two items is double-precision, the other is extended with 48 0 bits. 

The logical operation is applied in parallel to each bit of the vectors, and the result is left on top of the stack. 
The tag of the result is determined as foliows: If the operation is applied to double-precision items, the result 
is double-precision. Otherwise, the tag of the result is the tag of the top-of-stack item for the unary operator 
LNOT and the tag of the second-from-top item for the binary operators. 

LNOT (Logical Not) P(92) 

LNOT requires a single top-of-stack item. All bits of the vector are complemented, and its tag remains un­
changed. 

4-8 



LAND (Logical And) P(90) 

B 5900 Reference Manual 
B 5900 Operator Set 

LAND requires two top-of-stack items. The logical AND of the two bit vectors is left on top of the stack. 

LOR (Logical Or) P(91) 

LOR requires two top-of-stack items. The logical OR of the two bit vectors is left on top of the stack. 

LEOV (Logical Equivalence) P(93) 

LEQV requires two top-of-stack items. The logical EQV (equivalence) of the two bit vectors is left on top 
of the stack. 

RELATIONAL OPERATOR 

SAME (Logical Equality) P(94) 

SAME requires two top-of-stack items. If all corresponding bits of the two items (including tag bits) have the 
same value, a true result is left on top of the stack; otherwise a false result is left. If both items are double­
precision, the bit vector interpretation includes the second words. Note that if only one item is double-preci­
sion, the result is necessarily false. 

True and false are repr~sented in the same way as in arithmetic relational operators. True is a single-precision 
integer 1, and false is a single-precision integer 0. 

LITERAL OPERATORS 

Literal operators place a single-precision constant on top of the stack. They do not use any initial top-of-stack 
items. 

ZERO (Insert Literal Zero) P(BO) 

ZERO leaves on top of the stack a single-precision word with all bits initialized to zero. 

ONE (Insert Literal One) P(B1) 

ONE leaves on top of the stack a single-precision word with bit zero set to ONE and all other bits initialized 
to ZERO. 

L TS (Insert 8-B it Liter a I) P (82) 

LT8 leaves on top of the stack a single-precision word with the field [7:8] set from its one syllable parameter 
and all other bits initialized to ZERO. 

LT8 Constant 

5011034 4-9 



B 5900 Reference Manual 
B 5900 Operator Set 

L T16 (Insert 16-8 it Litera I) P (83) 

LT16 leaves on top of the stack a single-precision word with the field [15: 16] set from its two-syllable 
parameter and all other bits initialized to ZERO. 

I LT16 Constant 

L T48 (Insert 48-8it Literal) P(8E) 

LT48 leaves on top of the stack a single-precision word whose 48 bits are set from its six-syllable parameter. 
The parameter is taken from the first code word following the LT48 op code. "Padding" syllables from the 
op code to the end of the word containing the op code are ignored when they occur. 

.....-L_T_4_8_...--i~-n~~~~~~-~1-~1--.--C-o-n~st-a-nt--.--~1-~1 
...__ __ _._--f I ----'----'----------'-----! 

TYPE TRANSFER OPERATORS 

STAG (Set Tag) V(84) 

ST AG requires a tag value and an object item on top of the stack, leaving as the result an item whose tag 
is the tag value and whose 48 bits are copied from the object item. 

tag value operand 

object item 

The tag value must indicate an operand; otherwise an Invalid Stack Argument interrupt is generated. The tag 
of the object item is set from field [3:4] of the first word of the tag value operand. There is no restriction 
on the initial type of the object item. 

JOIN (Set Two Singles to Double) V(42) 

JOIN requires two operands on top of the stack; otherwise an Invalid Stack Argument interrupt is generated. 
A double-precision item is constructed from the two operands, and the result is left on top of the stack. 

The first and second words of the double-precision result are taken from the first words of the second and 
top operands respectively. The following possibilities arise from combinations of single-precision and double­
precision operands: 

sp(wl) - dp(w2,wl) I dp(wl,w2) - dp(w3,wl) 

sp(w2) sp(w3) 

sp(wl) - dp(w2,wl) I dp(wl,w2) - dp(w3,wl) J 
dp(w2,w3) dp(w3,w4) 

4-10 



B 5900 Reference Manual 
B 5900 Operator Set 

SPLT (Set Double to Two Singles} V(43} 

SPLT requires an operand on top of the stack; otherwise, an Invalid Stack Argument interrupt is generated. 
Two single-precision items are constructed from the operand and left on top of the stack. 

If the operand is single-precision, it is left on the stack and a single precision integer 0 is pushed on the stack 
above it. If the operand is double-precision, the two words of the operand are converted to two single-preci­
sion items. The first word is pushed on the stack first, and the second word is left on top of the stack. 

sp(wl) sp(O) dp(wl,w2) 

sp(wl) 

EVALUATE WORD STRUCTURE OPERATORS 

RTAG (Read Tag} V(85} 

sp(w2) 

sp(wl) 

RT AG requires one item on top of the stack, and the result is a single-precision integer whose value is the 
tag of the item. 

CBON (Count Binary Ones} V(BB} 

CBON requires an operand on top of the stack; otherwise an Invalid Stack Argument interrupt is generated. 
The number of bits in the operand which have the value 1 are counted. If the operand is double-precision, 
all% bits are examined. On top of the stack, CBON leaves a single-precision integer whose value is the ls 
count. 

LOG2 (Leading One Test} V(88} 

LOG2 requires one item on top of the stack and leaves in place of it a single-precision integer indicating that 
the leading bit in the item has the value 1. If all bits in the item are 0, LOG2 leaves an integer O; otherwise, 
the integer value is the bit number plus one of the highest-order 1-bit. Only the first word of a double-precision 
operand is examined. 

WORD MANIPULATION OPERATORS 

Word manipulation operators provide the capability to alter any "partial field" of a word in the stack, called 
the destination, in cases based on a field of another word in the stack called the source. The following 
operations are provided: 

1. Set a single destination bit, 
2. Reset a single destination bit, 
3. Create a destination whose low-order field is set from a field of the source, 
4. Set a field of the destination from the low-order field of the source operand, 
5. Set a field of the destination from a field of the source. 

5011034 4-11 



B 5900 Reference Manual 
B 5900 Operator Set 

Destination and source items may be of any type, and the altered destination item is left on top of the stack. 
If the source is a double-precision item, the field is taken from its first word, and the second word is discarded. 
If the destination is a double-precision item, the bit or field altered is in its first word, and the second word 
is retained unchanged in the double-precision result. The following terms are used for bit or field specifications: 

Db 
The destination bit to be set or reset, or the high-order bit of the destination field. 

Sb 
The high-order bit of the source field. 

Len 
The length of both the source and destination fields. 

There are static and dynamic operators corresponding to each of the five operations. The static operators take 
Db, Sb, and Len specifications from parameters as required, and the dynamic operators take them from top­
of-stack operands. 

If dynamic Db, Sb, and Len specification items are not operands, an Invalid Stack Argument interrupt is gen­
erated. These items are integerized with rounding if integerizing is required, and if they cannot be integerized, 
an Integer Overflow interrupt is generated. All Db and Sb values must be in the range (0 to 47), and Len 
values must be in the range (0 to 48). Static operators generate an Invalid Code Parameter interrupt if any 
of these values are invalid, and dynamic operators generate an Invalid Argument Value interrupt if any values 
are invalid. 

The effect of word manipulation operators are shown as an assignment to a field of the destination word. The 
remainder of the destination word is not changed. Note that Len = 0 is a valid specification of a null field; 
in this case the destination will not be altered at all. 

BSET (Bit Set) P(96) 

BSET sets the following single-destination bit: destination [Db: 1] 
top of stack item, and Db is specified by a parameter: 

BSET Db 

OBST (Dynamic Bit Set) P(97) 

1. The destination is the only required 

OBST sets the following single-destination bit: destination.[Db: 1] : = 1. The required initial stack state includes 
Db: 

Db 

destination item 

4-12 



BRST (Bit Reset) P(9E) 

B 5900 Reference Manual 
B 5900 Operator Set 

BRST resets the following single-destination bit: destination.[Db: 1] : = 0. The destination is the only required 
top of stack item, and Db is specified by a parameter: 

I BRST I Db 

DBRS (Dynamic Bit Reset) P(9F) 

DBRS resets the following single-destination bit: destination [Db: 1] : = 0. The required initial stack state in­
cludes Db: 

Db 

destination item 

ISOL (Field Isolate) P(9A) 

ISOL creates a single-precision destination word initialized to 0, and then sets the low-order field of the word 
from a field of the source in the following manner: destination := O; destination.[Len-l:Len] := source.[­
Sb:Len]. The source is the only required top of stack item, and Sb and Len are specified by parameters: 

I ISOL I Sb Len 

DISO (Dynamic Field Isolate) P(9B) 

DISO creates a single-precision destination word initialized to 0, and then sets the low-order field of the word 
from a field of the source in the following manner: destination := O; destination.[Len-l:Len] := source.[­
Sb:Len]. The required initial stack state includes Len and Sb: 

Len 

Sb 

source iten 

5011034 4-13 



INSR (Field Insert) P(9C) 

B 5900 Reference Manual 
B 5900 Operator Set 

INSR sets a field of the destination from the low-order field of the source in the following manner: destination 
[Db:Len] := source [Len-l:Len]. The required initial stack state includes only the source and destination: 

source item 

destination item 

Values for Db and Len are specified by parameters: 

INSR I Db Len 

DINS (Dynamic Field Insert) P(9D) 

DINS sets a field of the destination from the low-order field of the source in the following manner: destination 
[Db:Len] := source [Len-l:Len]. The required initial, stack state includes Len and Db (except for DINS, where 
the source item is required on top of the stack): 

source item 

Len 

Db 

destination item 

FL TR (Field Transfer) P(98) 

FLTR sets a field of the destination from a field of the source in the following manner: destination [Db:Len] 
.- source [Sb:Len]. The required initial stack state includes only the source and destination: 

source item 

destinatioQ item 

Values for Db, Sb, and Len are specified by parameters: 

FLTR Db Sb Len 

4-14 



B 5900 Reference Manual 
B 5900 Operator Set 

DFTR (Dynamic Field Transfer) P(99) 

DFTR sets a field of the destination from a field of the source in the following manner: destination [Db:Len] 
source [Sb:Len]. The required initial stack state includes Len, Sb and Db: 

Len 

Sb 

Db 

source item 

destination item 

SPECIAL INTERPRETATIONS 

The following paragraphs define special interpretations applied to certain operators. 

OCRX (Occurs Index) V(85) 

OCRX is intended to aid COBOL in generating indices to sequences within a linear record structure. For ex­
ample, assume that a record R contains a sequence S with elements s[l] to s[n]: 

S[1) S[2[ I S[o] ~ 
!----OFFSET~ f.LENGTH.j 

The index for s[i] relative to the base of R can be computed by the following function: Relative Index (offset, 
length, i) = offset + (i-1) *length; where i is in the range (1 to n). 

OCRX leaves on top of the stack the result of the Relative Index function applied to values derived from two 
top-of-stack arguments: 

Index Control Word 

sequence index 

The Index Control Word (ICW) must be a single-precision word. The ICW contains the argument values offset 
and length as well as the sequence size (n in the example). ICW interpretation is: 

ICW Sequence ICW 

Length Size Offset 

[47:16) [31:16) [15: 16] 

5011034 4-15 



B 5900 Reference Manual 
B 5900 Operator Set 

ICW length [47:16] 
The length of an element in the sequence 

Sequence size [31: 16] 
The number of elements in the sequence 

ICW offset [15:16] 
The offset from the base of the record to the start of the sequence 

The sequence index (i in the example) is integerized with rounding when required. If the ICW is not a single­
precision word or if the sequence index is not an operand, an Invalid Stack Argument interrupt is generated. 
If the sequence index cannot be integerized, an Integer Overflow interrupt is generated. 

OCRX first checks for valid application of the Relative Index function by confirming that sequence index is 
in the range (1 to sequence size). If it is not, an Invalid Index interrupt is generated. Otherwise, OCRX leaves 
a single-precision integer on top of the stack. The value of this integer is as follows: Relative Index (ICW 
offset, ICW length, sequence index). 

REFERENCE GENERATION AND EVALUATION OPERATORS 

The primary concern of this operator group is the generation and evaluation of indirect references and chains 
of indirect references. The group consists of reference generation operators (generators) and two kinds of oper­
ators that evaluate references either to read a target item onto the stack (read evaluators) or to store an item 
from the stack into a target location (store evaluators). 

Evaluation of Indirect References 

Read and store evaluators share the general capability of processing a chain of indirect references in order 
to locate a target item. Reference chains may be composed of address couple parameters, IRWs (NIRWs and 
SIRWs), Indexed Word ODs and PCWs. 

The definition of valid target items and allowable reference chains is dependent upon the function of the partic­
ular operator, but the evaluation of each element of a reference chain and of IR W chains is common to the 
operator group. The following sections define the evaluation of each reference form, the IRW chain evaluation, 
and the notation used for each operator to specify allowable reference chains and valid target items. 

ADDRESS COUPLE PARAMETERS 

11 7 3 

10 6 2 

PAR 
13 9 5 1 

12 B 4 0 

An address couple parameter is interpreted identically to the address couple component of an NIRW. 
Evaluation of the parameter consists of reading the item in the stack addressed by (Lambda, Delta). 

4-16 



B 5900 Reference Manual 
B 5900 Operator Set 

When an address couple is evaluated, Lambda must be less than or equal to LL, and for Lambda=LL, the 
address of the referenced stack location must be less than or equal to the address of the top-of-stack; other­
wise, an Invalid Reference interrupt is generated. Note that the result of address couple evaluation may vary 
according to the current addressing environment. 

NIRWS 

Evaluation of an NIRW consists of replacing it by the item in the stack referenced by the NIRW address cou­
ple. 

When an NIRW is evaluated, Lambda must be less than or equal to LL, and for Lambda=LL, the address 
of the referenced stack location must be less than or equal to the address of the top-of-stack; otherwise, an 
Invalid Reference interrupt is generated. Note that the result of NIRW evaluation may vary according to the 
current addressing environment. 

SIRWS 

Evaluation of an SIRW consists of replacing it by the item contained in the memory location referenced by 
the SIRW. Presence Bit interrupts are generated if either the stack vector array or the referenced stack is 
absent. 

The result of evaluation of an SIRW is constant regardless of the current addressing environment. No validity 
check is performed during SIRW evaluation. SIRWs are created from NIRWs, and the NIRW components 
are verified at that time. 

INDEXED WORD DDS 

The evaluation of a Data Descriptor as an indirect reference is possible only if it is an Indexed Word DD. 
In that case, the Indexed Word DD is replaced by the item contained in the memory location that the Indexed 
Word DD addresses. 

If an operator (for example, NXLV) has to read a word referenced by an Indexed Word DD and if the Indexed 
Word DD is present, the word it references can be accessed. If the Indexed Word DD is absent, the associated 
mom DD is read; if the mom DD is absent, a Presence Bit interrupt is generated; if the mom DD is present, 
the referenced word can be read. 

In cases where Indexed Word DD evaluation produces an operand, the el~ment type of the operand is deter­
mined by the element-size field of the Indexed Word DD (the last if a sequence of Indexed Word DDs was 
evaluated). The element-size value of single-precision or double-precision overrides the tag of the target oper­
and. All operators which evaluate Indexed Word DDs obey this convention. 

PCWS 

In the context of reference chain evaluation, evaluation of a PCW consists of an accidental entry. The PCW 
is assumed to point to a function with no parameters, whose returned value will be either the target of the 
chain or another valid reference. The net result of the accidental entry is that the PCW is replaced by the 
item the PCW function returns. 

Evaluation of the PCW requires an operator-generated entry into the environment and code stream referenced 
by the PCW. Under normal conditions, the function will terminate with a RETN (return) operator which leaves 
an item on top of the stack. If it does not, the item on top of the stack is used incorrectly, as if it were 
another result. 

5011034 4-17 



B 5900 Reference Manual 
B 5900 ()perator Set 

As a result of accidental entry and subsequent return, the processor executes the operator which initiated the 
accidental entry. The operator will normally restart from its initial state, and the accidental entry result will 
be a valid initial state for the operator. VALC (Value Call) is a notable exception; its restart state is unique 
from its initial state. 

IRW CHAINS 

The term IRW is used for a reference which is either an NIRW or an SIRW. Throughout this group of 
operators, those which evaluate multiple references will evaluate a sequence of one or more IRWs, called an 
IRW chain, wherever a single IRW may be evaluated. 

Evaluation of the IRW chain consists of successive IRW evaluations, starting with the head of the chain, until 
IRW evaluation does not produce an IRW. The net result is that the head of the chain is replaced by the 
non-IRW result. 

The only restriction on IRW chain evaluation is that once an SIRW is evaluated, an NIRW may not be 
evaluated. Thus, a valid IRW chain may be an NIRW chain, an SIRW chain, or an NIRW chain --> SIRW 
chain (an NIRW chain whose result is the head of an SIRW chain). If in IRW chain evaluation SIRW 
evaluation produces an NIRW, an Invalid Reference Chain interrupt is generated. 

REFERENCE CHAINS 

Operators which evaluate reference chains start from an initial reference and apply successive reference 
evaluation, according to a set of chaining rules, until a target item is produced. For each such operator, the 
set of initial references and targets will be specified using the following notation: 

<Initial Reference> 
::= (set of reference items) 

<targets> 
::= (set of target items) 

Chaining rules are specified by showing the valid evaluation results for each reference form which may be 
a part of the chain. The form of such specification is: 

reference --> (evaluation results) 

In this specification, where "-->" indicates an evaluation of the reference as defined in the preceding sections. 
Evaluation results can include reference forms or an Initial Reference, any of which is subsequently evaluated, 
or a target. Evaluation of the chain will continue until a target is encountered or until reference evaluation 
produces an item which is not a valid result. If chain evaluation terminates with an invalid item, an Invalid 
Reference Chain interrupt is generated. 

4-18 



B 5900 Reference Manual 
B 5900 Operator Set 

Chaining rule notation is illustrated by the following example: 

<Initial Reference> 
::= (IRW Chain, Indexed Word DD) 

<target> 
::= (Operand) 

<IRW Chain> 
--> (Indexed Word DD); PCW; <target> 

(Indexed Word DD) 
--> (Indexed Word DD); <target> 

PCW 
--> <Initial Reference> 

REFERENCE GENERATION OPERATORS 

NAMC (Name Call) P(40)-P(7F) 

NAMC is a literal operator for transforming an address couple in the code stream into an NIRW. 

An NIRW is created, the address couple is copied into it, and the NIRW is left on top of the stack. Since 
NAMC does not evaluate the address couple, the Lambda component is not validated. 

STFF (Stuff) P(AF) 

STFF converts the NIRW on top of the stack into an SIRW. If STFF encounters an SIRW on top of the 
stack it terminates leaving the SIRW. If the top-of-stack item is not an NIRW or SIRW, an Invalid Stack 
Argument interrupt is generated. 

If Lambda> LL, or Lambda= LL and address(stack location) > address(top-of-stack), an Invalid Reference in­
terrupt is generated. Otherwise, the SIRW is constructed to point to the word in the stack addressed by (Lam­
bda, Delta). The unused fields are reset to 0. 

INDX (Index) P(A6) 

INDX applies an integer index to a Data Descriptor (DD) and leaves on top of the stack an Indexed DD point­
ing to the specified element. If the DD is a Word DD, the result will be an Indexed Word DD, and if it is 
a string DD, the result will be a Pointer. The DD may be a copy DD on the stack initially, or an IRW chain 
may address the DD (mom or copy): 

<Descriptor Indication> 
::= (IRW chain, copy DD (target)) 

<target> 
::= (mom DD, copy DD) 

IRW chain 
--> <target> 

5011034 4-19 



B 5900 Reference Manual 
B 5900 ()perator Set 

INDX requires the descriptor indication and an operand index value on top of the stack in either order: 

descriptor indication 

index value 

OR 

index value 

descriptor indication 

If the index value is not an operand or the Descriptor Indication is not a copy DD (of a valid element-size) 
or the head of an IRW chain, an Invalid Stack Argument interrupt is generated. If an IRW chain does not 
produce a DD (of a valid element-size), ati Invalid Reference Chain interrupt is generated. The index value 
is integerized with rounding if required. If it cannot be integerized, an Integer Overflow interrupt is generated, 
and if the result is a valid integer but not in the range (0 to DD.length-I), an Invalid Index interrupt is gener­
ated. (Both DD length and the index value are assumed to be in DD element-size units). 

An Indexed Word DD or a Pointer is constructed according to the value of DD element-size. If it is single­
precision or double-precision, an Indexed Word DD is constructed with the index value copied into its index 
field. If the DD has a double-precision element-size, the index is doubled before being copied into the index 
field. If the DD is EBCDIC or hex, a Pointer is constructed with its word index and char index fields com­
puted to reference the sub-word element. If the computed word index exceeds 215 , an Invalid Index interrupt 
is generated. 

The Indexed DD is marked as a copy. If the data segment is present, the address field is set to point to the 
base address of the segment. If it is absent, the address field is set to the address of the mom Descriptor. 
Present, read only, and element-size fields are copied into the Indexed DD from the original DD. 

If the data segment is paged, INDX resolves the paging by performing another level of indexing. If the DD 
is a Word DD, the referenced page number is (index DIV 256) and if the DD is a string DD, the referenced 
page number is (word index DIV 256). The specified page Descriptor is fetched, and its index field or its word 
index and char index fields are set as follows to reference the specified element relative to the base of the 
page. If the DD is a Word DD, the index field is set to (index MOD 256), and if the DD is a string DD, 
the word index field is set to (word index MOD 256) and the char index field is unchanged. The read only 
bit and the element-size field of the <target> paged Descriptor are copied into the page Descriptor, the copy 
and indexed bits are set, and the paged bit is reset. The presence bit and the address field of the page Descrip­
tor remain in the resulting Indexed DD, with the address field modified to reference the associated mom page 
Descriptor if the page Descriptor was an absent mom DD. INDX will never generate an Indexed DD with 
the paged bit set. 

MPCW (Make PCW) P(BF) 

MPCW is a literal operator which constructs a PCW at the top of the stack from a 6-syllable parameter in 
the code stream. The parameter is taken from the first code word following the MPCW op code. "Padding" 
syllables from the op code to the end of the word containing the op code are ignored. 

4-20 

MPCW 
ignored 
if any ,__ ____ _ skeleton PCW 



B 5900 Reference Manual 
B 5900 Operator Set 

The parameter is assumed· to be a valid PCW skeleton. It is inserted at the top of the stack and tagged as 
a PCW. Stack number, the only dynamic PCW field, is copied into the PCW from SNR. 

READ EVALUATION OPERATORS 

VALC (Value Call) P(OO)-P(3F) 

V ALC evaluates a reference chain whose head is an address couple in order to locate a target operand which 
is left on top of the stack. 

Reference chain evaluation performed by VALC is: 

<Initial reference 

<target> 

(address couple) 

IRW chain 

.. -

.. -
--> 

--> 

Indexed Word DD --> 

Word DD 

PCW 

--> 

--> 

(address couple) 

(operand) 

IRW chain 
Indexed Word DD 
Word DD 
<target> 

Indexed Word DD 
Word DD 
PCW 
<target> 

Indexed Word DD 
Word DD 
<target> 

Indexed Word DD (see discussion below) 

IRW chain 
Indexed Word DD 
Word DD 
<target> 

If reference evaluation produces an item which is not a valid result according to the above chain evaluation 
rules, an Invalid Reference Chain interrupt is generated. 

If reference evaluation produces a Word DD, VALC will attempt an INDX (index) operation on the Word 
DD using the top item on the stack as an index value. If that item is not an operand, an Invalid Stack Argu­
ment interrupt is generated. If the indexing is successful, the resultant Indexed Word DD is evaluated (see 
INDX for further specification and possible error conditions). 

The result of V ALC is a single-precision or double-precision operand which is left on top of the stack. The 
target is placed directly on the stack except in the following cases where type conversion is performed before 
the modified target is left on the stack: 

1. If one or more Indexed Word DDs are evaluated, the element-size of the last Indexed Word DD 
specifies single-precision, and the target is a double-precision operand, the first addressed target word 
is placed on the stack with a tag of 0. 

2. If one or more Indexed Word DDs are evaluated, the element-size of the last Indexed Word DD 
specifies double-precision, and the target is a single-precision operand, the addressed target and its 
successor from memory are placed on the stack with a tag of 2. 

5011034 4-21 



B 5900 Reference Manual 
B 5900 Operator Set 

NXLV (Index and Load Value) P(AD) 

NXLV performs an INDX (index) operation to produce an Indexed Word DD and then evaluates the Indexed 
Word DD. The result must be an operand; otherwise, an Invalid Reference Chain interrupt is generated. The 
operand is treated exactly as is the V ALC target. It is placed directly on top of the stack except in two cases 
where type conversion is performed before th~ modified target is left on the stack. (See preceding V ALC target 
discussion). 

The required initial stack state is the same as that for INDX except that the DD must be a Word DD: 

Descriptor Indication 
::= {IRW chain, copy Word DD (target)} 

<target> 
::= (mom Word DD, copy Word DD) 

IRW chain 
--> <target> 

Descriptor Indication 

index value 

OR 

index value 

Descriptor Indication 

If the index value is not an operand or the Descriptor Indication is not a copy Word DD or the head of an 
IRW chain, an Invalid Stack Argument interrupt is generated. If an IRW chain does not produce a Word DD, 
an Invalid Reference Chain interrupt is generated. If the index value cannot be integerized, an Integer Over­
flow interrupt is generated. If the result is a valid integer but aot in the range (0 to DD length-I), an Invalid 
Index interrupt is generated. 

NXLN (Index and Load Name) P(A5) 

NXLN performs an INDX (index) operation to produce an Indexed Word DD and then evaluates the Indexed 
Word DD. The result must be a DD (whose element-size may be of any defined value); otherwise, an Invalid 
Reference Chain interrupt is generated. The DD is marked as a copy. If it is an absent mom DD, its address 
field is set to the memory address of the mom. The DD is left on top of the stack. 

4-22 



B 5900 Reference Manual 
B 5900 Operator Set 

The required initial stack state is the same as that for INDX except that the DD must be a Word DD as shown 
in the following example: 

Descriptor Indication 
::= (IRW chain, copy Word DD (target)) 

<target> 
::= (mom Word DD, copy Word DD) 

IRW chain 
--> <target> 

Descriptor Indication 

index value 

OR 

index value 

Descriptor Indication 

If the index value is not an operand or the Descriptor Indication is not a copy Word DD or the head of an 
IRW chain, an Invalid Stack Argument interrupt is generated. If an IRW chain does not produce a Word DD, 
an Invalid Reference Chain interrupt is generated. If the index value cannot be integerized, an Integer Over­
flow interrupt is generated. If the result is a valid integer but not in the range (0 to DD length-I), an Invalid 
Index interrupt is generated. 

EVAL (Evaluate) P(AC) 

The purpose of EV AL is to evaluate an indirect reference chain in order to locate a specific target and then 
leave the reference, whose evaluation produced the target, on top of the stack. 

Reference chain evaluation performed by EV AL is: 

<Initial Reference> 
::= (IRW chain, Indexed Word DD) 

<target> 
::= (Operand, DD, Pointer) 

IRW chain 
::= (Indexed Word DD); PCW; <target> 

Indexed Word DD 
--> (No evaluation - See below) 

PCW 
--> <Initial Reference> 

5011034 4-23 



B 5900 Reference Manual 
B 5900 ()perator Set 

If a target is located, the reference whose evaluation produced the target is left on top of the stack as the 
result. If an Indexed Word DD is encountered, it is left as the result without being evaluated. In effect, In­
dexed Word DDs are treated as if they had been evaluated and a target had been the result. 

If reference evaluation produces an item which is not a valid result according to the above chain evaluation 
rules, an Invalid Reference Chain interrupt is generated. 

LOAD (Load) P(BD) 

LOAD performs a single evaluation of the Initial Reference, and if the result is a target, it is left on top of 
the stack: 

<Initial reference> 
::= (IRW, Indexed Word DD) 

<target> 
.. - (Operand, tag 4 word, Uninitialized Operand, IRW, any Data Descriptor) 

IRW 
--> <target> 

Indexed Word DD 
--> <target> 

If the item on top of the stack is not an Initial Reference, an Invalid Stack Argument interrupt is generated, 
and if the reference evaluation result is not a target (it is a PCW or tag 3 word), an Invalid Reference Chain 
interrupt is generated. If the Initial Reference is a double-precision Indexed Word DD and the target is not 
an operand, an Invalid Reference Chain interrupt is generated. 

If the Initial Reference is an IRW referencing a word with a double-precision tag or if the Initial Reference 
is a double-precision Indexed Word DD, both the addressed target word and its successor from memory are 
fetched. If the successor word has an odd tag, a Memory Protect interrupt is generated; otherwise, the two 
words are left on top of the stack as a double-precisio'n operand. 

If the Initial Reference is a single-precision Indexed Word DD addressing a double-precision operand, the ad­
dressed target word is left on top of the stack with a tag of 0. 

If the Initial Reference is an IRW or a single-precision Indexed Word DD addressing a mom DD, the DD 
is left on top of the stack marked as a copy. When it is absent, the address field is set to the memory address 
of the mom DD. 

In all other cases, the addressed target word is left on top of the stack without conversion. 

4-24 



B 5900 Reference Manual 
B 5900 Operator Set 

LOOT (Load Transparent) V(BC) 

LODT performs a single evaluation of the Initial Reference and leaves the result on top of the stack, with 
no restriction placed on the type of the result, as shown in the following example: 

<Initial reference> 
::= (IRW, Indexed Word DD, Operand) 

<target> 
.. - (any item) 

IRW 
--> <target> 

Indexed Word DD 
--> <target> 

If the Initial Reference is an IRW or an Indexed Word DD, it is evaluated normally. When the Initial Refer­
ence is an operand, the operand is integerized with rounding if required, and the result is interpreted as a 
memory address from which the target is fetched. 

If the item on top of the stack is not an Initial Reference, an Invalid Stack Argument interrupt is generated. 
If an operand Initial Reference cannot be integerized, an Integer Overflow interrupt is generated, and if the 
result is a valid integer but not in the range (0 to 219), an Invalid Argument Value interrupt is generated. 

If the Initial Reference is an IRW or an operand addressing a word with a double-precision tag, or if the Initial 
Reference is a double-precision Indexed Word DD, LODT will leave the addressed target word and its succes­
sor from memory on top of the stack as a double-precision operand. If the Initial Reference is a single-preci­
sion Indexed Word DD addressing a double-precision operand, the addressed target word is left on top of the 
stack with a tag of 2 and a second word of 0. In all other cases, the addressed target word is left on top 
of the stack without conversion. 

LODT restricts the Initial Reference to an IRW, an Indexed Word DD, or an operand, which is integerized 
and confirmed to be in the range (0 to 219) before being used as an address. 

LODT obeys the normal convention that Indexed Word DD element-size overrides the tag of a target operand. 

5011034 4-25 



B 5900 Reference Manual 
B 5900 Operator Set 

STORE EVALUATION OPERATORS 

Normal Store Operators 

Normal store operators evaluate a reference chain in order to store some item from the stack (the store object) 
into a Data Word target location. The store object may be of any type. Reference chain evaluation performed 
by store operators is: 

<Initial reference> 
::= (IRW chain, Indexed Word DD) 

<target> 
::= (Operand, tag 4 word, Uninitialized Operand) 

IRW chain 
--> Indexed Word DD; PCW; <target> 

Indexed Word DD 
--> Indexed Word DD; <target> 

PCW 
--> <Initial Reference> 

The Initial Reference and the store object are required on top of the stack. Although, the Initial Reference 
is assumed to be the top item and the store object the second item, if the top item is a Data Word (even 
tag), the second item is assumed to be the Initial Reference. Note that a Data Word store object and the Initial 
Reference may be in either·order, but if the store object has an odd tag, the Initial Reference must be the 
top item and the store object the second item. 

Initial Reference 

any store object 

OR 

Data Word store object 

Initial Reference 

If the top-of-stack item is not a Data Word or an Initial Reference, or if the top item is a Data Word and 
the second item is not an Initial Reference, an Invalid Stack Argument interrupt is generated. If any reference 
evaluation produces a tag 3 item or an Indexed Word DD is marked read only, a Memory Protect interrupt 
is generated. If reference evaluation produces an item which is not otherwise a valid result according to the 
above chain evaluation rules, an Invalid Reference Chain interrupt is generated. 

The stc!""! object is written into the target location. Normal store evaluation operators will not write into a 
location containing an odd tagged word. 

4-26 



B 5900 Reference Manual 
B 5900 Operator Set 

Type conversion between double-precision operands and single-word items (single-precision operands, tag 4 
words, uninitialized operands) depends on the type of the store object (the store type) and the type associated 
with the target location (the target type). The target type is determined as follows: if one or more Indexed 
Word ODs are evaluated, the target type is the element-size value of the last Indexed Word DD; otherwise, 
the target type is single-word if a single-word item is currently stored in the target location and double-preci­
sion if a double-precision operand is in the target location. 

If the store type is double-precision and the target type is single word, a SNGL (set to single-precision, 
rounded) operation is performed on the store object, and the resultant single-precision operand is stored into 
the target location. 

If the store type and the target type are double-precision, both words of the store object are stored into the 
target locations. If the store type is single-word and the target type is double-precision, the single-word stare 
object is extended to double-precision by changing its tag and appending a second word initialized to 0. Both 
words of the pair are stored into the target locations. 

Where two double-precision words are written, if the second (adjoining) target location contains an odd tagged 
word, a Memory Protect interrupt is generated. 

STOD (Store Delete) P(B8) 

A normal store operation is performed. Both the Initial Reference and the store object are deleted from the 
stack. 

STON (Store Non-Delete) P(B9) 

A normal store operation is performed. The store object is left on top of the stack, and the Initial Reference 
is deleted. If the store object has been converted during the normal store operation, it is left on the stack 
in the converted form. 

OVERWRITE OPERATORS 

Overwrite operators perform a single evaluation of the Initial Reference and store some item from the stack 
(the store object) into the resultant target location. There are no restrictions on either the store object or the 
initial contents of the target location: 

<Initial reference> 
::= (IRW, Indexed Word DD) 

<target> 
.. - (any item) 

IRW 
--> <target> 

Indexed Word DD 
--> <target> 

5011034 4-27 



B 5900 Reference Manual 
B 5900 Operator Set 

The Initial Reference and the store object are required on top of the stack. The Initial Reference is assumed 
to be the top item and the store object the second item, but if the top item is a Data Word (even tag), the 
second item is assumed to be the Initial Reference. A Data Word store object and the Initial Reference may 
be in either order, but if the store object has an odd tag, the Initial Reference must be the top item and the 
store object the second item. 

Initial Reference 

any store object 

OR 

Data Word store object 

Initial Reference 

If the top-of-stack item is not a Data Word or an Initial Reference, or if the top item is a Data Word and 
the second item is not an Initial Reference, an Invalid Stack Argument interrupt is generated. If the Initial 
Reference is an Indexed Word DD marked read only, a Memory Protect interrupt is generated. 

Overwrite operators are oblivious to double-precision. If the store object is double-precision, only the first 
word is stored, with a tag of 2. If an IRW addresses a double-precision item or an Indexed Word DD specifies 
double-precision, only the first word of the target location is overwritten. Each case may produce an unpaired 
double-precision word in memory. 

OVRD (Overwrite Delete) P(BA) 

An overwrite operation is performed. Both the Initial Reference and the store object are deleted from the 
stack. 

OVRN (Overwrite Non-Delete) P{BB) 

An overwrite operation is performed. The store object is left unchanged on top of the stack, and the Initial 
Reference is deleted. 

RDLK {Read Lock) V {BA) 

RDLK is identical to OVRD except for the stack state at termination. The flashback, the word which was 
in the memory location into which the overwrite occurred, is left on top of the stack. The flashback is a single 
word and may be an isolated word of a double-precision item. 

SPECIAL EVALUATION OPERATOR 

STBR {Step and Branch) P{A4) 

If the former STBR operator encoding is encountered, an Undefined Operator interrupt is generated. 

PROCESSOR STATE OPERATORS 

This section deals with operators which interact with logical processor state, primarily the state of the current­
ly executing code stream and the state of the stack in which the processor is running. 

4-28 



Preliminary Information 

B 5900 Reference Manual 
B 5900 Operator Set 

CODE STREAM POINTER DISTRIBUTION 

The processor code stream pointer is initialized by the distribution of PCW or RCW code stream pointer com­
ponents according to the following steps: 

1. SOLL and SDI are set from the sdll and sdi fields of the PCW or RCW, respectively, and the refer­
enced code segment Descriptor (SD) is fetched. The address of the code segment Descriptor is relative 
to the updated display register values. If the tag of the code segment Descriptor is not 3, a Code Seg­
ment Error interrupt is generated. 

2. For PCWs, the PWI and PSI values are verified as follows. If PCW PWI is not in the range (0 to 
SD segment length-I), an Invalid Index interrupt is generated, and if PCW PSI is not in the range 
(0 to 5), an Invalid Argument Value interrupt is generated; otherwise, PWI and PSI are set from PCW 
PWI and PCW PSI, respectively. For RCWs, PWI and PSI are unconditionally set from RCW PWI 
and RCW PSI, respectively. 

3. If the code segment Descriptor is present, PBR is set from SD.address, PLR is set from PBR + 
SD.segment length-I, and the processor is conditioned to perform the next execution from the new 
code segment. If the Descriptor is absent, a Presence Bit interrupt is generated. The code stream 
pointer distribution is still completed in this case. The RCW constructed for the interrupt contains 
the pointer just distributed, and exit from the interrupt will complete the intended distribution from 
the then-present segment Descriptor; 

The B 5900 confirms that PCW PWI and PCW PSI are in a valid range. RCW PWI and RCW PSI are not 
checked. Although the RCW is not fully secure, it is initially created by ENTR (enter) from valid PSI and 
PWI values. 

System Stack Control 

The reserved stack location (0,2) is assumed to always contain the Stack Vector Descriptor (SVD), an unin­
dexed Data Descriptor for the stack vector array, which contains Descriptors for all stacks on the system. 
Stack Descriptors are also unindexed Data Descriptors. 

A stack is accessed by its stack number as follows: The Stack Vector Descriptor is accessed and indexed 
by the stack number; If the stack number is not in the range (0 to SVD length-I), an Invalid Index interrupt 
is generated; otherwise, the stack Descriptor is fetched. 

Both Lexical Links and SIRWs reference the base of an activation record by the pair (stack number, displace­
ment). The stack is accessed, and the computation stack Descriptor.address + displacement yields the MSCW 
address. 

BRANCHING OPERATORS 

Branching operators provide for altering the code stream pointer component of the processor. These operators 
may change the point of execution in the current code segment or establish a new code segment with an initial 
point of execution. 

Branches may be conditional or unconditional. Conditional branches alter the code stream pointer or continue 
sequential execution depending upon a Boolean interpretation of an item in the stack. The item may be of 
any type; the Boolean interpretation of the item is true if its low order bit is set to 1 and false otherwise. 
For double-precision items, the low-order bit of the first word is tested. 

Branching operators are classified as static or dynamic branches as discussed in the following two sections. 

5011034 4-29 



Static Branches 

B 5900 Reference Manual 
B 5900 Operator Set 

Static branches always branch to a point within the current code segment. That point is indicated by a 2-sylla­
ble parameter. Op name stands for the particular static branch operator encoding: 

op op: T 
name psi: op pwi 

3 : 13 

The high-order 3 bits of the parameter are interpreted as the new PSI value, and the low-order 13 as the new 
PWI value. If the branch is taken and op pwi is not in the range (0 to SD.segment length-1), where SD is 
the current code segment Descriptor, an Invalid Index interrupt is generated. If the branch is taken and op 
psi is greater than 5, an Invalid Code Parameter interrupt is generated. If the branch is not taken and either 
of the above tests fails, the result is undefined. 

BRUN (Branch Unconditional) P(A2) 

Processor registers PSI and PWI are set from the parameters, and the processor is conditioned to execute 
next the operator at that point in the current code segment. 

BRTR (Branch True) P(A 1) 

The top-of-stack item is interpreted as a Boolean value. If the value is true, processor registers PSI and PWI 
are set from the parameters, and the processor is conditioned to execute next the operator at that point in 
the current code segment. If the value is false, sequential execution continues. 

BRFL (Branch False) P(AO) 

The top-of-stack item is interpreted as a Boolean value. If it is false, processor registers PSI and PWI are 
set from the parameters, and the processor is conditioned to execute next the operator at that point in the 
current code segment. If it is true, sequential execution continues. 

Dynamic Branches 

Dynamic branches take their code stream pointer values from a branch destination item on top of the stack. 
They may branch to a computed point within the current code segment or to a point in an arbitrary code 
segment. 

Branching within the current code segment is indicated if the branch destination item is an operand. It is inte­
gerized with rounding, if required, to produce a single-precision integer. If the operand cannot be integerized, 
an Integer Overflow interrupt is generated; otherwise it is interpreted as the code segment index in units of 
half-words (3 syllables). 

dyn pwi [13:13] 
The new PWI value 

alignment [O: 1] 
The alignment bit (O=word boundary, l=half word boundary) 

4-30 



B 5900 Reference Manual 
B 5900 Operator Set 

The new PSI value is 0 (the word boundary) if the alignment bit is 0 and 3 (the half-word boundary) if the 
alignment bit is 1. If the branch is taken and dyn-pwi is not in the range (0 to SD.segment length-1), where 
SD is the current code segment Descriptor, an Invalid Index interrupt is generated. If the branch is taken and 
the integer value of the operand is not in the range (0 to 213), an Invalid Index interrupt is generated. If the 
branch is not taken and either of the above tests fails, the result is undefined. 

Branching to a point in an arbitrary code segment is indicated if the branch destination item is a PCW, or 
an NIRW chain to a PCW. The PCW code stream pointer is distributed as disclosed as above. PCW control 
state is ignored. 

If the top-of-stack item is not an NIRW, PCW, or operand, an Invalid Stack Argument interrupt is generated. 
If NIRW chain evaluation does not produce a PCW, an Invalid Reference Chain interrupt is generated (an 
SIRW is invalid), and if PCW II is not equal to LL, an Invalid Argument Value interrupt is generated. 

DBUN (Dynamic Branch Unconditional) P(AA) 

A branch destination item is required on top of the stack. If it is an operand, the branch is within the current 
code segment. When the item is a PCW, or an NIRW chain to a PCW, the branch is to an arbitrary code 
segment. 

DBTR (Dynamic Branch True) P(A9) 

The second from top-of-stack item is interpreted as a Boolean value. If the value is true, a branch is executed 
using the top-of-stack branch destination item exactly as in DBUN. If it is false, sequential execution contin­
ues. 

The required initial stack state is: 

branch destination 

DBFL (Dynamic Branch False) P(A8) 

The second from top-of-stack item is interpreted as a Boolean value. If false, a branch is executed using the 
top-of-stack branch destination item exactly as in DBUN. If true, sequential execution continues. 

The required initial stack state is: 

branch destination 

Boolean 

STACK STRUCTURE OPERATORS 

Stack structure operators provide for procedure entry and exit and for changing the site of activity of the pro­
cessor by establishing a new running stack. Stack Structure Operators are involved in setting, saving, and re­
storing processor state components and linkage of activation records in the stack, both historical and lexical. 

5011034 4-31 



B 5900 Reference Manual 
B 5900 Operator Set 

PROCEDURE ENTRY OPERATORS 

In general, executing a procedure call requires a code sequence which performs the following steps: 

1. Execution of MKST (mark stack) initializes the MSCW at the base of the new activation record; 
2. The PCW for the procedure, or a reference to the PCW, is pushed onto the stack (in the location 

which the RCW will subsequently occupy); 
3. Parameters to the procedure are built by operators which push items onto the stack (executed in the 

environment of the caller); 
4. Execution of ENTR (enter) completes the stack linkage in the activation record, making it the new 

topmost activation record, while saving the environment of the caller and instating the environment 
of the procedure; 

5. Stack building code initializes the local variables of the procedure, and the procedure body is 
executed. 

MKST (Mark Stack) P(AE) 

MKST builds an inactive MSCW on top of the stack, and inserts it at the head of the historical chain. The 
History Link field is set to the displacement down the stack to the MSCW addressed by the F register. All 
other fields are initialized to 0, this includes the entered bit which marks the MSCW inactive. F is set to point 
to the new MSCW on top of the stack. 

IMKS (Insert Mark Stack) P(CF) 

IMKS builds an inactive MSCW exactly as does MKST (mark stack), except that the new MSCW is inserted 
"underneath" the two top-of-stack items. IMKS produces the effect of having saved the top two stack items, 
deleted them from the stack, invoked MKST, and then pushed the two items back onto the stack. 

The following diagram illustrates the stack state transformation produced by IMKS: 

(INITIAL STACK STATE! 

ITEM A 

ITEM B 

ITEM C 

4-32 

(FINAL STACK STATE) 

ITEMA 

ITEM B 

INACTIVE MSCW 

ITEM C 

HISTO 
LI 

RY 
NK 

l 



ENTR (Enter) P(AB) 

B 5900 Reference Manual 
B 5900 Operator Set 

The initial stack state for ENTR assumes prior execution of MKST (or IMKS). An inactive MSCW is required 
at the stack location addressed by F, and either a PCW or the head of an IRW chain to a PCW is required 
at the F + 1 stack location. The following diagram illustrates the initial stack state: 

s 

F 

D[LL) 

n PARAMETER LOCATIONS 

TO A PON 

INACTIVE MSON HISTORY 
1--------------1-t---, LINK 

TOPMOST 
ACTIVATION RECORD 

STACK 
LINKAGE 
WORDS 

If the item addressed by F does not have a tag of 3, when the entered bit of the item is 1 (indicating an entered 
MSCW), or if the top-of-stack address is less than or equal to F, a Stack Structure Error interrupt is generated. 
If the F+ 1 stack location is not a PCW or the head of an IRW chain, an Invalid Stack Argument interrupt 
is generated, and if IRW chain evaluation does not produce a PCW, an Invalid Reference Chain interrupt is 
generated. If PCW ll is greater than 15, a Stack Structure Error interrupt is generated. 

ENTR consists of the following functional tasks: 

1. Complete the MSCW and insert it at the head of the lexical chain formerly headed by the immediate 
global activation record. 

2. Construct an RCW which saves the current processor code stream pointer and Boolean accumulators. 
3. Initialize processor state for the procedure being entered, including code stream pointer and addressing 

environment. 

(1) Complete the MSCW: 

The activation record containing the PCW is the immediate global addressing space (global AR) of the proce­
dure being entered. ENTR completes the lexical chain which defines the procedure's addressing environment 
by constructing the Lexical Link to point to the global AR. Stack number and displacement are set to address 
the base word. 

The global AR is identified by the form of reference to the PCW (the final reference if an IRW chain is 
evaluated). If the reference is an NIRW, the global AR is the activation record at level NIRW.Lambda in 
the addressing environment at invocation of ENTR. If it is an SIRW, stack number and displacement point 
directly to the global AR. If there is no reference to the PCW (the F + 1 stack location initially held the PCW), 
then the global AR is assumed to be the activation record at level PCW 11-1 in the addressing environment 
at invocation of ENTR. In this case, if PCW 11 is not in the range (1 to LL+l), an Invalid Argument Value 
interrupt is generated. 

PCW ll is copied into MSCW ll, MSCW entered is set to 1, and the completed MSCW is stored back at the 
F stack location. Note that MSCW restart and MSCW History Link are not altered by ENTR. 

5011034 4-33 



(2) Construct the RCW: 

B 5900 Reference Manual 
B 5900 Operator Set 

Processor state values stored in the RCW are the four Boolean accumulators (TFFF, OFFF, EXTF, and 
FLTF), the processor code stream pointer (SDLL, SDI, PSI, PWI), Control State (CS), and Lexical Level 
(LL). The RCW is stored at the F + 1 stack location. 

(3) Initialize Processor State: 

LL is set from PCW.11 and D[LL] is set from F to address the base of the activation record. The processor 
CS Boolean is set from PCW control state. Any applicable display registers are updated to reflect the ad­
dressing environment described by the values of D[LL] and LL. 

The processor code stream pointer state is initialized from the PCW. 

PROCEDURE EXIT OPERATORS 

There are two operators for deleting an activation record and returning execution to the prior topmost activa­
tion record. RETN (return) assumes termination of a function and leaves the top-of-stack item as a result, 
whereas EXIT assumes termination of a procedure and does not leave a result. 

EXIT (Exit) P(A3) 

EXIT deletes the topmost activation record from the stack and restores processor state for the prior topmost 
activation record. The base location of the topmost activation record is addressed by D[LL], and the prior 
topmost activation record is identified by the first entered MSCW on the historical chain whose head is D[LL]. 

If D[LL] <= BOSR+ 1, a Bottom of Stack interrupt is generated, and if the tag of the D[LL] or D[LL]+ 1 
item is not 3, a Stack Structure Error interrupt is generated. Otherwise, the base of the prior topmost activa­
tion record is located by following the historical chain from D[LL] until the first entered MSCW is encoun­
tered. If a History Link is evaluated which points to a location less than BOSR, or if the tag of a stack item 
addressed by a History Link is not 3, or if the 11 field of the first entered MSCW is not equal to the 11 field 
of the RCW in the initial topmost activation record, a Stack Structure Error interrupt is generated. 

The topmost activation record is deleted from the .stack by setting the top-of-stack pointer, S, to D[LL)-1. 
F is reset to address the first MSCW on the historical chain whose head is D[LL], whether or not it is entered. 
D[LL] is reset to address the base of the prior topmost activation record. Remaining processor state is reset 
by distributing values saved in the RCW at the initial D[LL] + 1 stack location. The four processor Boolean 
accumulators (TFFF, OFFF, EXTF, FLTF), CS (control state), and 11 are reset from their saved values in 
the RCW. Any applicable display registers are updated to reflect the addressing environment described by the 
new values of D[LL] and LL. 

The processor code stream pointer is initialized from the RCW. If MSCW restart = 1, the processor is condi­
tioned to execute in restart state the operator addressed by the new code stream pointer. 

4-34 



B 5900 Reference Manual 
B 5900 Operator Set 

The following diagram illustrates the stack state transformation produced by EXIT. In the initial state, F is 
shown pointing to the same location addressed by D[LL], but that is not required: 

s_... 

D[LL) ,F 

TOSm ITEM 

TOPMOST AR 
(AT LEVEL m) 

RCW 

MSCW 

TOSn ITEM 

PRIOR AR 
(AT LEVEL n) 

RCW 

MSCW 

BEFORE EXIT (LL=m) 

(HISTORY 
LINKS) 

• 

s TOSn ITEM 

TOPMOST AR 

(AT LEVEL n) 

RCW 

MSCW 

AFTER EXIT (LL=n) 

• 
• 
• 

The B 5900 generalizes the MSCW restart mechanism for both EXIT and RETN. If MSCW restart = 1, the 
processor is conditioned to execute the operator being returned to in a unique restart state. 

The B 5900 EXIT requires that the D[LL]+ 1 stack item have a tag of 3, and that the first entered MSCW 
on the historical chain be at RCW.ll. 

RETN (Return) P(A7) 

RETN is exactly the same as EXIT, except that it assumes that the terminated activation record is a function 
and that the initial top-of-stack item is to be the result of the function. RETN therefore retains the initial top­
of-stack item and pushes this item back onto the top of the stack after the topmost activation record is deleted. 

The following diagram illustrates the stack state transformation produced by RETN: 

s 

D[LLl,F 

5011034 

TOSmlTEM 

TOPMOST AR 
(AT LEVELm) 

RCW 

MSCW 

TOSn ITEM 

PRIOR AR 

(AT LEVEL n) 

RCW 

MSCW 

BEFORE RETURN (LL=m) 

(HISTORY 
LINKS) ,___ __ 

s 

• 
• 
• 

DILL).F 

TOSmlTEM 

TOSn ITEM 

TOPMOST AR 
(AT LEVEL n) 

RCW 

MSCW 

AFTER RETURN (LL=n) 

4-35 



B 5900 Reference Manual 
B 5900 ()perator Set 

The B 5900 implementation of V ALC will allow re-entry to a restart state, such that RETN is not required 
to complete the V ALC operation on the top-of-stack item it leaves as the result. 

MVST (Move to Stack) V(AF) 

MYST changes the site of activity of the processor by deactivating the current stack and activating a destina­
tion stack. A Top of Stack Control Word (TSCW) stored at the base location of an inactive stack is used 
to preserve processor state sufficient to activate the stack. 

MYST consists of the following functional tasks: 

(1) Deactivate the current stack: 

The current stack TSCW is constructed from the four Boolean accumulators (TFFF, OFFF, EXTF, FLTF), 
Control State (CS), Lexical Level (LL), and relative specifications for S and F register values. S is indicated 
by stack height, computed from S - BOSR, and Fis indicated by S-F displacement. At conclusion of MYST, 
the current stack is marked inactive by storing the TSCW at its base location. 

(2) Identify the destination stack: 

MYST requires a single-precision operand on top of the stack to specify the stack number of the destination 
stack; otherwise, an Invalid Stack Argument interrupt is generated. The operand is integerized with rounding 
if required. If the operand cannot be integerized, an Integer Overflow interrupt is generated, and if the result 
is a valid integer but not in the range (0 to Stack Vector Descriptor.length-I}, an Invalid Index interrupt is 
generated. Otherwise, MYST fetches the stack Descriptor and insures that the stack is present. 

Collision with another processor, which could be running in the destination stack, is prevented by a "Read 
with Lock" operation. The processor ID is written into the base location of the destination stack as a single­
precision integer, while the read flashback reflects the prior status of the stack. If the flashback item has a 
tag of 3, it is interpreted as the destination TSCW; otherwise, (when the stack is active), a Stack Structure 
Error interrupt is generated. 

(3) Restore destination stack state: 

SNR is set from the stack number, and BOSR and LOSR are set from the stack Descriptor fields address 
and address+length-1. The TSCW is distributed as follows: 1) The four processor Boolean accumulators 
(TFFF, OFFF, EXTF, FLTF), Control State (CS), and Lexical Level (LL), are set from their saved values 
in the TSCW; 2) S is set from TSCW stack height + BOSR and F from S - TSCW SF disp; 3) the resultant 
F value is less than BOSR, a Stack Structure Error interrupt is generated. 

D[LL] is set to point to the first entered MSCW (MSCW entered= 1) on the historical chain whose head is 
F. If in following the historical chain, a History Link is encountered which points to a location less than 
BOSR, when the tag of a stack item addressed by a History Link is not 3, or if the ll field of the first entered 
MSCW is not equal to TSCW ll, a Stack Structure Error interrupt is generated. 

The display registers are updated to reflect the addressing environment described by the new values of D[LL] 
and LL. 

4-36 



B 5900 Reference Manual 
B 5900 Operator Set 

The following example illustrates the current stack transformation produced by MYST after the destination 
stack number has been deleted from the stack (the transformation of the destination stack is the opposite of 
that of the current stack): 

s TOS ITEM TOS ITEM • • 
• • • 
• 
• 
• 
• 
• 

STACK 

TOPMOST AR 
HEIGHT 

TOPMOST AR 
• 
• 
• DILL) • 
• 
• 
• 
• 
• 
• ST ACK BASE ___.. PROCESSOR ID STACK BASE • TSCW 

BEFORE MOVE STACK AFTER MOVE ST ACK 
(ACTIVE) (INACTIVE) 

NOTE 
The code stream pointer state of the processor is absent noticeably from the func­
tioning of MYST. At termination, the code stream bound to the original stack will 
continue execution. Because of this fact, MYST is executed only within an MCP 
intrinsic, which consists of the operators MYST and EXIT. The call to the intrinsic 
preserves the code stream pointer for the current stack in the RCW constructed 
by ENTR. The EXIT following MYST then establishes the processor code stream 
pointer for the destination stack by distributing its corresponding RCW. 

MYST requires a single-precision operand, which is integerized if required and must produce a valid stack 
number. 

MYST requires that the first entered MSCW on the historical chain from F (in the destination stack) be at 
the lexical level specified in the TSCW; otherwise a Stack Structure Error interrupt is generated. 

TOP-OF-STACK OPERATORS 

These operators alter the top-of-stack state, while leaving the remaining processor state unchanged. There is 
no restriction on the type of stack item which will be acted upon, but as operator arguments, the items must 
be at or above D[LL] + 1. 

DLET (Delete Top-Of-Stack) P(B4) 

DLET requires one item on top of the stack and deletes it from the stack: 

TOS item 1 
--DLET--> 

xx 

5011034 4-37 



B 5900 Reference Manual 
B 5900 Operator Set 

EXCH (Exchange Top-Of-Stack) P(86) 

EXCH requires two items on top of the stack and interchanges their order in the stack: 

TOS iteml TOS item2 
--EXCH--> 

TOS item2 TOS iteml 

DUPL (Duplicate Top-Of-Stack) P(87) 

DUPL requires one item on top of the stack, creates an exact copy, and leaves both items on top of the stack: 

II --DUPL--> 

~ 
TOS iteml 

TOS iteml 

RSUP (Rotate Stack Up) V(86) 

RSUP requires three top-of-stack items. The third from top item is "rotated up" to become the top of stack 
item: 

TOS iteml TOS item3 
TOS item2 --RSUP--> TOS iteml 
TOS item3 TOS item2 

RSDN (Rotate Stack Down) V (87) 

RSDN requires three top-of-stack items. The top item is "rotated down" to become the third from top of 
stack item: 

TOS iteml TOS item2 
TOS item2 --RSDN--> TOS item3 
TOS item3 TOS iteml 

PROCESSOR STATE MANIPULATION OPERATORS 

This set of operators either places processor state register values on top of the stack, sets registers from top­
of-stack item values or performs a combination of the two. Operators are classified as read state, set state, 
or read and set state. 

READ STATE OPERATORS 

RTFF (Read True-False Flip-Flop) P(DE) 

RTFF leaves on top of the stack a single-precision word with the value of TFFF (True-false Flip-flop) in the 
low-order bit. The high-order 47 bits of the result are 0. 

RCMP (Read Compare Flip-Flop) V(83) 

If the former RCMP operator encoding is encountered, an Undefined Operator interrupt is generated. 

4-38 



B 5900 Reference Manual 
B 5900 Operator Set 

WHOI (Read Processor ID) V(4E) 

WHOI leaves on top of the stack a single-precision word containing the processor identification number. 

RTOD (Read Time of Day Clock) V(A7) 

RTOD leaves on top of the stack a single-precision integer containing the value of the time of day clock. The 
range of values is (0 to 235) in units of 2.4 microseconds. 

RPRR (Read Processor Register) V(B8) 

RPRR requires a single-precision operand on top of the stac1'< otherwise, an Invalid Stack Argument interrupt 
is generated. The operand is interpreted as a processor register identification (register ID), and the result left 
on top of the stack is a single-precision integer whose value is that of the specified register. 

Readable processor registers are associated with register IDs which are a subset of integers in the range (0 
to 63). The register ID operand is integerized with rounding, if required. If the operand cannot be integerized, 
an Integer Overflow interrupt is generated, and if the result is a valid integer but not a valid register ID value, 
an Invalid Argument Value interrupt is generated. Table 4-1 specifies the decimal register ID encoding. 

Table 4-1. Decimal Re~ister ID Encoding 

Decimal 
Register ID Register Name Status 

0, LL D[O], D[LL] OK 
32 PWI OK 
36 LOSR OK 
37 BOSR OK 
38 F OK 
48 PBR OK 
52 s OK 
53 SNR OK 
54 SDLL&SDI OK 

RPRR requires an operand to specify the register ID, and it must evaluate to a valid register ID value. The 
result is a single-precision integer having the value of the specified register. 

If an invalid register ID value is encountered, an Invalid Argument Value interrupt is generated. 

The value of S produced by RPRR is the address of the top stack word in memory. Depending on the state 
of top-of-stack registers, this value may address the logical top, second or third from top of stack item. RPRR 
will ensure that the value of S produced will address the logical top-of-stack item by pushing any items in 
top-of-stack registers (except its parameter) into memory before returning the value of S. 

SET STATE OPERATORS 

The following paragraphs define the Set State Operators. 

SXSN (Set External Sign Flip-Flop) P(D6) 

SXSN sets EXTF (external sign flip-flop) to the value of bit 46 of the top-of-stack item. There is no restriction 
on the type of the top item, and it is left on the stack unchanged. (Bit 46 is interpreted as the mantissa sign 
of an arithmetic operand). 

5011034 4-39 



B 5900 Reference Manual 
B 5900 Operator Set 

EEXI (Enable External Interrupts) V(46) 

EEXI conditions the processor to respond to external interrupts and resets the processor CS Boolean to 0 
(normal state). 

DEXI (Disable External Interrupts) V(47) 

DEXI conditions the processor to ignore all external interrupts and sets the processor CS Boolean to 1 (control 
state). 

SINT (Set Interval Timer) V(45) 

SINT arms and sets the interval timer using the integer value of an operand on the top of the stack. If the 
item on the top of the stack is not a single-precision operand, an Invalid Stack Argument interrupt is gener­
ated. 

The operand is integerized with rounding, if required. If it cannot be integerized, an Integer Overflow interrupt 
is generated. When the result is a valid integer, but not in the range (0 to 210), an Invalid Argument Value 
interrupt is generated. Otherwise, the interval timer is set to the resultant value. 

WTOD (Write Time of Day Clock) V(49) 

WTOD sets the time of day clock from the integer value of an operand on top of the stack. If the item on 
top of the stack is not a single-precision operand, an Invalid Stack Argument interrupt is generated. 

The operand is integerized with rounding if required. If it cannot be integerized, an Integer Overflow interrupt 
is generated, and if the result is a valid integer but not in the range (0 to 235), an Invalid Argument Value 
interrupt is generated. Otherwise, the time of day clock is set to the resultant value. The clock counts time 
in units of 2.4 microseconds. 

SPRR (Set Processor Register) V(B9) 

SPRR requires two single-precision operands on top of the stack; otherwise an Invalid Stack Argument inter­
rupt is generated. The top operand is interpreted as a processor register identification (register id), and the 
contents of the specified register are set to the value of the second operand. 

The required initial stack state is: 

register value operand 

register ID operand 

Setable processor registers are associated with register IDs which are a subset of integers in the range (0 to 
63). Both operands are integerized with rounding, if required. If either cannot be integerized, an Integer Over­
flow interrupt is generated. If the results are valid integers, but the register ID is not a valid value or the 
register value exceeds the register capacity, an Invalid Argument Value interrupt is generated. 

Refer to Table 4-1 for decimal register ID encoding. 

If the register ID operand selects D[LL], the register value operand must address a MSCW. If it does not, 
an Invalid Argument Value interrupt is generated. SPRR requires that both items be operands and that they 
evaluate to valid values. 

4-40 



B 5900 Reference Manual 
B 5900 Operator Set 

SPRR will push items in the top-of-stack registers other than its parameters into memory before altering S. 
Thus decrementing S will cut back the logical top of stack, and incrementing S will extend the stack, with 
the new locations at the logical top of the stack. 

Setting D[LL] will result in a correctly updated environment. This requires that the new value address an 
MSCW. 

IDLE (Idle Until Interrupt) V(44) 

IDLE loops internally until an external interrupt signal is present. At that time, IDLE invokes the interrupt 
procedure and terminates. The CS flip-flop is not examined or altered. 

RUNI (Turn On Running Light) V(41) 

RUNI sets the running light indicator, which is reset by the hardware after a non-critical interval. 

READ AND SET STATE OPERATOR 

Below is the read and set state operator description. 

ROFF (Read and Reset Overflow Flip-Flop) P(D7) 

ROFF leaves on the top of the stack a single-precision word with the value of OFFF (overflow flip-flop) in 
its low-order bit. The high-order 47 bits of the result are 0. OFFF is unconditionally reset to 0. 

DATA ARRAY OPERATORS 

Operators in this group perform functions on arrays specified by Data Descriptor stack arguments. The func­
tions applied generally consist of sequential processing of one or more arrays of word or character elements. 
Termination occurs when an element length has been exhausted or when a specific condition is satisfied. 

Data in one or more of the argument arrays may be modified, the arrays may be processed so that a result 
is produced, or both actions may occur. Results are indicated by items left on the top of the stack or by the 
setting of one or more processor Boolean accumulators. 

SEARCHING OPERATORS 

There are two searching operators. LLLU (linked list lookup) follows an explicitly linked list searching for 
the first element whose data component is greater than or equal to an argument value, and SRCH (masked 
search for equal) follows an implicitly ordered list backwards searching for the first word which is bit-wise 
equal to an argument after both the word and argument have been masked. 

LLLU (Linked List Lookup) V(BD) 

LLLU processes an array as an explicitly linked list and applies the following interpretation to each word in 
the array: 

Data Comp [47:28] 
The atomic data component 

Link Comp [19:20] 
The link component (an index from the base of the array to the next element in the list) 

5011034 4-41 



B 5900 Reference Manual 
B 5900 Operator Set 

LLLU requires an initial index, an unindexed single-precision Data Descriptor (DD), and an argument value 
on top of the stack: 

index 

sp DD 

argument 

The index and argument must be operands and are integerized by rounding, if required. The element-size field 
of the DD must be single-precision. If the DD is absent, it will be made present. An Invalid Stack Argument 
interrupt is generated in the following three cases: if either the index or the argument is not an operand; if 
the second from top-of-stack item is not a single-precision DD; or if the DD is indexed or paged. If the index 
or argument cannot be integerized, an Integer Overflow interrupt is generated. 

An Invalid Index interrupt is generated whenever an index value is used to fetch a word from the list, if it 
is not in the range (0 to DD length-I). The initial index is applied to the DD, and the first word of the list 
is fetched. Starting with that word, LLLU applies the following iterative loop. 

If the link component equals 0, a single-precision negative one is left on top of the stack to signal failure. 
If the link is greater than 0 and the data component is greater than or equal to the absolute value of the argu­
ment value, the trail link is left on top of the stack. The trail link is a single-precision integer index of the 
word whose link points to the current word. If this case occurs for the first word of the list, the index of 
the first word itself is left. 

The iteration is repeated for the next word in the list if the link is greater than zero and the data component 
is less than the absolute value of the argument. Failure termination will occur when the link equals 0 even 
if the data component of the same word exceeds the absolute value of the argument. 

LLLU requires that the argument be an operand and that DD element-size is equal to single-precision. 

SRCH (Masked Search for Equal) V(BE) 

SRCH scans an array from an indexed starting point back towards the base for a word which is bit-wise equal 
to an argument value after both have been masked. The masking and comparison are on 51 bits, the word 
and its tag. 

SRCH requires a single-precision Data Descriptor, a mask, and an argument on top of the stack: 

sp Data Descriptor 

mask 

argument 

The top-of-stack item must be a non paged Data Descriptor whose element-size field specifies single-precision; 
otherwise an Invalid Stack Argument interrupt is generated. If the Descriptor is an unindexed DD, it is indexed 
by DD.length-I. If the Descriptor is an unindexed DD and DD length = 0, the search is not done and a single­
precision -1 is left of top of the stack to indicate failure. 

4-42 



B 5900 Reference Manual 
B 5900 Operator Set 

Both the mask and argument are 51 bit operands. The argument is logically ANDed with the mask before it 
is used for comparison. The array is scanned from the word addressed by the Indexed DD back to the base 
of the array. Each word is first logically ANDed with the mask and then compared to the (masked) argument 
until an equal comparison occurs or the array is exhausted. 

If the search succeeds, the single-precision integer index of the matching word is left on top of the stack. 
If the array is exhausted, a single-precision negative one is left on top of the stack to signal failure. 

SRCH requires that the element-size field of the Data Descriptor specify single-precision. 

POINTER OPERATORS 

Pointer operators provide functions for scanning, transferring, comparing, and editing of a source element se­
quence or a source and destination element sequence. The,. sequences consist of word or character elements 
in data arrays, or of character elements in operands. Sequential processing terminates when an element length 
is exhausted or in some cases when a condition is satisfied before the length is exhausted. 

All pointer operators require initial stack arguments which specify the length and the source element sequence, 
and most require an argument which specifies the destination element sequence. Each pointer operation in­
cludes an "update" operator which leaves on top of the stack at termination a reference to the source, the 
destination if applicable, and the length if termination is possible before the length is exhausted. 

For all transfer operations other than word tran.11fers, the destination tags remain unchanged. 

The following sections define requirements and treatment of length, source, destination arguments, and the 
form of the updated results for each. These definitions are applicable to all pointer operations except word 
transfer .and unpack operations. Exceptions are defined under those operator groups. 

Length 

The length argument must be an operand; otherwise an Invalid Stack Argument interrupt is generated. It is 
integerized with rounding when required. If it cannot be integerized, an Integer Overflow interrupt is gener­
ated. All length values less than one are equated to zero, and all pointer operators terminate immediately if 
the length is zero. 

An updated length result is a single-precision integer indicating the number of elements remaining to be pro­
cessed at termination. It is produced by update operators which may terminate before the length is exhausted. 
If the initial length is negative, the updated length is zero. 

Source 

The source argument must be an operand, or a DD or Indexed DD of any valid element-size; otherwise, an 
Invalid Stack Argument interrupt is generated. 

A source operand is interpreted according to element-size conventions defined below as a hex or EBCDIC 
sequence containing 6, 12, or 24 characters (for sp EBCDIC, sp hex, dp EBCDIC, or dp hex respectively). 
The operand is logically concatenated with itself as required to form an indefinite length sequence. An updated 
source operand is the original operand circularly rotated left such that the left-justified element is the next 
element to be processed in the event that termination does not occur. 

A source Descriptor is used in the form of a Pointer. If the source argument is a DD, it is indexed by zero 
to create an Indexed DD no check for invalid index is made. If the element-size of an Indexed DD is single­
precision or double-precision (word), it is changed to hex or EBCDIC according to element-size conventions. 
An updated source Pointer references the next character which would have been processed if termination had 

5011034 4-43 



B 5900 Reference Manual 
B 5900 Operator Set 

not occured. If the source element-size value is changed to hex or EBCDIC, the updated Pointer contains 
the modified element-size. If the updated word index value is greater than 215 , an Invalid Index interrupt is 
generated. 

For all pointer operations (except word transfer overwrite), a Paged Array interrupt is generated if an odd­
tagged word is read from the source array. 

Destination 

A destination argument must be a DD or an Indexed DD of any valid element-size; otherwise, an Invalid Stack 
Argument interrupt is generated. If a destination argument is marked Read-only, operators which store into 
the destination sequence will generate a Memory Protect interrupt. 

A destination Descriptor is used in the form of a Pointer. If the destination argument is a DD, it is indexed 
by zero to create an Indexed DD. If the element-size of an Indexe<;i DD is word, it is changed to hex or 
EBCDIC according to element-size conventions. An updated destination Pointer references the next character 
to be processed in the event that termination does not occur. If the destination element-size value is changed 
to hex or EBCDIC, the updated Pointer contains the modified element-size. If the updated word index value 
is greater than 215 , an Invalid Index interrupt is generated. 

For all pointer operations which require a destination (except word transfer overwrite), a Paged Array interrupt 
is generated if a write is attempted into a destination array location which contains an odd-tagged word. 

Pointer operators which do not require a destination sequence interpret a source operand as an EBCDIC se­
quence and change a source word Descriptor to an EBCDIC Pointer. Pointer operators which require both 
source and destination sequences use the following conventions. 

A source operand is interpreted as a hex sequence if the destination argument is a hex Descriptor and as an 
EBCDIC sequence otherwise. A source word Descriptor is changed to a hex Pointer if the destination argu­
ment is a hex Descriptor and to an EBCDIC Pointer otherwise. A destination word Descriptor is changed to 
a hex Pointer if the source argument is a hex Descriptor and to an EBCDIC Pointer otherwise. 

If the source and destination arguments are Descriptors whose element-size values are hex or EBCDIC but 
not equal, an Invalid Stack Argument interrupt is generated. As with the Word Transfer operators, the TRNS 
(Translate) operator is an exception to element-size conventions'. 

The pointer operators treat all source or destination DDs correctly by indexing by zero and do not generate 
an error interrupt for a paged DD. 

CHARACTER TRANSFER OPERATORS 
Character transfer operators transfer hex or EBCDIC characters from the source to the destination. The num­
ber of characters transferred is specified by the length. TFFF is unconditionally set to 1. 

The required initial stack state is: 

Length 

Source 

Destination 

4-44 



B 5900 Reference Manual 
B 5900 Operator Set 

TUND (Transfer Characters Unconditional Delete) P(E6) 

TUND leaves no results on the stack. 

TUNU (Transfer Characters Unconditional Update) P(EE) 

TUNU leaves the updated source on top of the the stack and the updated destination second from top of the 
stack. 

CHARACTER RELATIONAL OPERATORS 

Character relational operators sequentially apply a relational comparison of each source character to a delimit­
er character supplied by a stack argument until a relation fails or the length is exhausted. TFFF indicates the 
cause of termination. It is reset to 0 if a relation fails and set to 1 if the length is exhausted (that is, all source 
characters satisfy the relation). 

The delimiter argument must be a single-precision operand; otherwise an Invalid Stack Argument interrupt is 
generated. It is interpreted as a single right-justified character (EBCDIC if the source is an operand or 
EBCDIC Descriptor, and hex if the source is a hex Descriptor). 

The binary value of the source character is compared to the binary value of the delimiter character. All pointer 
operators accept any source operand. 

SCAN OPERATORS 

Character relational scan operators apply the sequential comparison of each source character to the delimiter 
character as defined earlier in this section. 

The required initial stack state is: Delimiter Length Source 

The following operators leave no results on the stack: 

SGTD (Scan While Greater Delete) V(F2) 
SGED (Scan While Greater Than or Equal Delete) V(Fl) 
SEQD (Scan While Equal Delete) V(F4) 
SNED (Scan While Not Equal Delete) V(F5) 
SLED (Scan While Less Than or Equal Delete) V(F3) 
SLSD (Scan While Less Than Delete) V(FO) 

The following operators leave the updated length on top of the stack and the updated source second from 
top of the stack: 

SGTU (Scan While Greater Update) V(FA) 
SGEU (Scan While Greater Than or Equal Update) V(F9) 
SEQU (Scan While Equal Update) V(FC) 
SNEU (Scan While Not Equal Update) V(FD) 
SLEU (Scan While Less Than or Equal Update) V(FB) 
SLSU (Scan While Less Than Update) V(F8) 

TRANSFER OPERATORS 

Character relational transfer operators apply the sequential comparison of each source character to the delimit­
er character as defined above. Each source character which satisfies the relation is transferred to the destina­
tion sequence. 

5011034 4-45 



B 5900 Reference Manual 
B 5900 Operator Set 

The required initial stack state is: 

Delimiter 

Length 

Source 

Destination 

The following operators leave no results on the stack: 

TGTD (Transfer While Greater Delete) P(E2) 
TOED (Transfer While Greater Than or Equal Delete) P(El) 
TEQD (Transfer While Equal Delete) P(E4) 
TNED (Transfer While Not Equal Delete) P(E5) 
TLED (Transfer While Less Than or Equal Deletef P(E3) 
TLSD (Transfer While Less Than Delete) P(EO) 

The following operators leave the updated length on top of the stack, the updated source second from top 
of the stack, and the updated destination third from top of the stack: 

TGTU (Transfer While Greater Update) P(EA) 
TGEU (Transfer While Greater Than or Equal Update) P(E9) 
TEQU (Transfer While Equal Update) P(EC) 
TNEU (Transfer While Not Equal Update) P(ED) 
TLEU (Transfer While Less Than or Equal Update) P(EB) 
TLSU (Transfer While Less Than Update) P(E8) 

CHARACTER SEQUENCE COMPARE OPERATORS 

Character sequence compare operators apply a relational comparison of the destination sequence to the source 
sequence. TFFF is set to 1 if the relation of the destination to the source is satisfied and reset to 0 if the 
relation fails. 

The required initial stack state is: 

Length 

Source 

Destination 

The binary values of each corrc:sponding destination and source character are compared. The destination se­
quence is equal to the source sequence if each destination character is equal to the corresponding source char­
acter or the initial length is zero. The destination is strictly less (greater) than the source, if for the first (left­
most) pair of unequal characters, the destination character is strictly less (greater) than the source character. 

4-46 



B 5900 Reference Manual 
B 5900 Operator Set 

The following operators terminate when the actual relation is determined. No results are left on the stack. 

CGTD (Compare Characters Greater Delete) P(F2) 
COED (Compare Characters Greater Than or Equal Delete) P(Fl) 
CEQD (Compare Characters Equal Delete) P(F4) 
CNED (Compare Characters Not Equal Delete) P(F5) 
CLEO (Compare Characters Less Than or Equal Delete) P(F3) 
CLSD (Compare Characters Less Than Delete) P(FO) 

The following operators terminate only when the length is exhausted. They leave the updated source on top 
of the stack and the updated destination second from top of the stack (the update forms reference the first 
character after the end of the sequence as determined by the length). 

CGTU (Compare Characters Greater Update) P(FA) 
CGEU (Compare Characters Greater Than or Equal Update) P(F9) 
CEQU (Compare Characters Equal Update) P(FC) 
CNEU (Compare Characters Not Equal Update) P(FD) 
CLEU (Compare Characters Less Than or Equal Update) P(FB) 
CLSU (Compare Characters Less Than Update) P(F8) 

CHARACTER SET MEMBERSHIP OPERATORS 

Character set membership operators test source characters for membership in a character set supplied by a 
stack argument. The relations applied are inclusion and exclusion, and source characters are sequentially tested 
until the relation fails or the length is exhausted. TFFF indicates the cause of termination: it is reset to 0 
if a relation fails and set to 1 if the length is exhausted (that is, all source characters satisfy the relation). 

The character set argument must be a Word DD or an Indexed Word DD; otherwise, an Invalid Stack Argu­
ment interrupt is generated. If the set argument is a Word DD it is indexed by zero. 

The character set is interpreted as a bit array indexed by the source character. If the selected bit is 1, the 
character is included in the set; otherwise, it is excluded from the set. 

The bit array is addressed by adding the indexed address from the character set DD to the WORD INDEX 
field of the source character that is being checked. The BIT INDEX field of the source character is then ad­
justed to reference the bit which determines the required relation. 

5011034 4-47 



B 5900 Reference Manual 
B 5900 Operator Set 

For example: Mem[base address+index + Wordindex(c)].[Bitlndex(c):l] 

4 8 
Word Bit 

2 4 
Index Index 

1 2 
[7:3] [4:5) 

16 1 

Bit Format of EBCDIC Character (C) 

0 8 
Word Bit 

0 4 
Index Index 

0 2 
= 0 [3:4] 

0 1 

Bit Format of Hex Character (C) 

Word Index and Bit Index are computed from the binary representation of the source character (C) as follows: 

EBCDIC Word Index 
value of 3 high-order bits 

Bit Index 
31 - (value of 5 low-order bits) 

HEX Word Index 
0 

Bit Index 
31 - (4 bit value) 

If the set array is paged and the word address computation extends beyond the end of the page, the result 
is indeterminate. 

In the following operator names, the relation "while source included in set" is referred to as "while true", 
and "while excluded from set" is referred to as "while false". 

SCAN OPERATORS 

Character set membership scan operators apply the sequential membership test of each source character to 
the character set as defined previously. 

4-48 



B 5900 Reference Manual 
B 5900 Operator Set 

The required initial stack state is: 

Character set 

Length 

Source 

The following operators leave no results on the stack: 

SWTD (Scan While True Delete) V(D5) 
SWFD (Scan While False Delete) V(D4) 

The following operators leave the updated length on top of the stack and the updated source second from 
top of the stack: 

SWTU (Scan While True Update) V(DD) 
SWFU (Scan While False Update) V(DC) 

TRANSFER OPERATORS 
Character set membership transfer operators apply the sequential membership test of each source character 
to the character set as defined previously Each source character which satisfies the relation is transferred to 
the destination sequence. 

The required initial stack state is: 

Character set 

Length 

Source 

Destination 

The fo!lowing operators leave no results on the stack: 

TWTD (Transfer While True Delete) V(D3) 
TWFD (Transfer While False Delete) V(D2) 

The following operators leave the updated length on top of the stack and the updated source second from 
the top of the stack, and the updated destination third from the top of the stack: 

TWTU (Transfer While True Update) V(DB) 
TWFU (Transfer While False Update) V(DA) 

5011034 4-49 



B 5900 Reference Manual 
B 5900 Operator Set 

CHARACTER SEQUENCE EXTRACTION OPERATOR 

SISO (String Isolate) P(D5) 

SISO extracts a character sequence from the source, creates an operand containing the extracted sequence 
right-justified with leading 0-fill (if required), and leaves the operand on top of the stack. The length specifies 
the number of characters in the extracted sequence. 

The required initial stack state is: 

Length 

Source 

The result may be a single-precision or double-precision operand depending on the length and the source char­
acter type. If the source is EBCDIC, the result is single-precision if the length is less than or equal to 6, and 
and double-precision if length is in the range 7 to 12. If the source is hex, the result is single-precision if the 
length is less than or equal to 12, and double-precision for 13 to 24. An Invalid Argument Value interrupt 
is generated if the source is EBCDIC and length is greater than 12, or if the source is hex and length is greater 
than 24. SISO leaves the resulting operand on top of the stack, except in the case of a Paged Array interrupt, 
in which case it leaves the updated length on top of the stack, and the updated source second from top of 
the stack. 

CHARACTER SET TRANSLATE OPERATOR 

TRNS (Translate) V(D7) 

TRNS sequentially accesses characters from the source sequence, maps each character into a specified charac­
ter set, and stores the translated character into the destination sequence. The character set mapping is indi­
cated by a translate table argument. 

The required initial stack state is: 

Translate table 

Length 

Source 

Destination 

The translate table must be a Word DD or an Indexed Word DD; otherwise, an Invalid Stack Argument inter­
rupt is generated. If it is a Word DD, it is indexed by 0, and no check for invalid index is made. Element­
size conventions differ from the other pointer operators. A source operand is interpreted as an EBCDIC se­
quence, and a source or destination word Descriptor is changed to an .EBCDIC Pointer. Source and destination 
element-size values may differ. 

4-50 



B 5900 Reference Manual 
B 5900 Operator Set 

The translate table is interpreted as an array of words, each containing four right-justified eight-bit characters. 
The translate table is indexed by the source character, and the selected eight-bit character is stored into an 
EBCDIC destination, or the four low-order bits of the character are stored into a hex destination. The charac­
ter is indexed by the address equation: 

Mem [table address + table index + Word Index (C)] [Field Index (C):8] 

Word Index and Field Index are computed from the binary representation of the source character (C) as fol­
lows: 

EBCDIC Word Index 
value of 6 high-order bits 

Field Index 
8 to the power (4 minus the value of 2 low-order bits) minus 

HEX Word Index 
value of 2 high-order bits 

Field Index 
8 to the power (4 minus the value of 2 low-order bits) minus 

If the translate table is paged and the word address computation extends beyond the end of the page, the 
result is indeterminate. 

TRNS always leaves the updated source on top of the stack and the updated destination second from top of 
the stack. 

DECIMAL CHARACTER SEQUENCE OPERATORS 

Decimal character sequence operators interpret hex or EBCDIC sequences as decimal sequences, and provide 
conversion functions among various decimal representations. 

A decimal digit is defined to be a hex (four-bit) character in the range hex "O" to hex "9", and a digit se­
quence is an unsigned sequence of decimal digits. Interpretation of hex or EBCDIC character sequences as 
decimal sequences and their mapping into corresponding digit sequences is defined in the following paragraphs. 

The numeric field (low-order four bits) of each character in an EBCDIC sequence is interpreted as a decimal 
digit. The corresponding digit sequence is the sequence of numeric fields with the zone fields (high-order four 
bits) removed. The sign is determined by the zone field of the right-most character. Hex "D" is negative, 
and any other value is positive. 

A hex decimal sequence is signed if the left-most hex character is in the range (hex "A" to hex "F"). Hex 
"D" is negative, and any other sign value is positive. The corresponding digit sequence is the hex sequence 
with the left-most sign removed. The length of the hex decimal sequence excludes the sign; thus length+ 1 
hex characters are processed. 

A hex decimal sequence is unsigned if the left-most character is a decimal digit, and the corresponding digit 
sequence is identical to the hex sequence. 

PACK OPERATORS 

Pack operators perform a conversion from the source EBCDIC or hex decimal sequence to a decimal operand 
containing the corresponding digit sequence right-justified with leading 0-fill. The operand is left as a result 

5011034 4-51 



B 5900 Reference Manual 
B 5900 Operator Set 

on the stack, and TFFF is set to indicate the sign of the source sequence: !=negative, and O=positive or 
unsigned. 

The required initial stack state is: 

Length 

Source 

The result is a single-precision operand if length is less than or equal to 12, and double-precision if length 
is from 13 to 24). If length is greater than 24, an Invalid Argument Value interrupt is generated. 

PACO (Pack Delete) P(D1) 

PACD leaves the decimal operand on top of the stack. However, in the case of a Paged Array interrupt, PACD 
leaves the updated length on top of the stack, the updated source second from the top of the stack, and the 
partial result third from top of the stack. 

PACU (Pack Update) P(D9) 

PACU leaves the updated source on top of the stack and the decimal operand second from top of the stack. 
However, in the case of a Paged Array interrupt, PACU leaves the updated length on top of the stack, the 
updated source second from top of the stack, and the partial result third from top of the stack. 

UNPACK OPERATORS 

Unpack operators interpret the source operand as a left-justified digit sequence and store the corresponding 
hex or EBCDIC decimal sequence into the destination. The required initial stack state is: 

Length 

Source operand 

Destination 

If the source is not an operand, an Invalid Stack Argument interrupt is generated. If length is greater than 
24, an Invalid Argument Value interrupt is generated. 

UNPACK ABSOLUTE OPERATORS 

Unpack absolute operators store the destination decimal sequence in an unsigned form. For an EBCDIC desti­
nation, the zone field of each character including the right-most is set to hex "F". For a hex destination, 
the digit sequence is stored with no sign character. 

UABD (Unpack Absolute Delete) V(D1) 

UABD leaves no results on the stack. 

4-52 



B 5900 Reference Manual 
B 5900 Operator Set 

UABU (Unpack Absolute Update) V(D9) 

UABU leaves the updated source operand on top of the stack and the updated destination second from top 
of the stack. 

UNPACK SIGNED OPERATORS 

Unpack signed operators store the destination decimal sequence in a signed form. The source operand sign 
is determined by EXTF (External Sign Flip-Flop), where 1 =negative and O=positive. 

Hex "D" is used as the negative sign character and hex "C" as the positive sign. For an EBCDIC destination, 
the sign is inserted into the zone field of the right-most character, and all other zone fields are set to hex 
"F". For a hex destination, the sign is inserted as the left-most character (length+ 1 hex characters are trans­
ferred). 

USND (Unpack Signed Delete) V(DO) 

USND leaves no results on the stack. 

USNU (Unpack Signed Update) V(D8) 

USNU leaves the updated source operand on top of the stack and the updated destination second from top 
of the stack. 

INPUT CONVERT OPERATORS 

Input convert operators perform a conversion from the source EBCDIC or hex decimal sequence to a numeric 
operand containing the signed integer value of the corresponding digit sequence. The operand is left as a result 
on the stack. 

The required initial stack state is: 

Length 

Source 

If the length is greater than 23, an Invalid Argument Value interrupt is generated. If the integer absolute value 
of the source decimal sequence is less than 813 , a single-precision integer is produced, and TFFF is set to 
1; otherwise a double-precision integer is produced, and TFFF is reset to 0. 

ICVD (Input Convert Delete) P(CA) 

ICVD leaves the integer operand on top of the stack. However, in the case of a Paged Array interrupt, ICVD 
leaves the updated length on top of the stack, the updated source second from top of the stack, and the partial 
result third from top of the stack. 

ICVU (Input Convert Update) P(CB) 

ICVU leaves the updated source on top of the stack and the integer operand second from top of the stack. 
However, in the case of a Paged Array interrupt, ICVU leaves the updated length on top of the stack, the 
updated source second from top of the stack, and the partial result third from top of the stack. 

5011034 4-53 



B 5900 Reference Manual 
B 5900 Operator Set 

WORD TRANSFER OPERATORS 

Word transfer operators transfer word elements from the source to the destination. The number of words is 
specified by the length. TFFF is unconditionally set to 1. 

The required initial stack state is: 

Length 

Source 

Destination 

A source operand is interpreted as a word or pair of words logically concatenated with itself indefinitely. 
Source and destination Descriptors are used as Indexed·· Word ODs. ODs are indexed by O; Pointers whose 
Character Index is greater than 0 are changed to point to the next word; that is, word index is incremented 
by 1 and Character Index is set to 0. An updated source or destination reflects the modified form. 

WORD TRANSFER PROTECTED OPERATORS 

A word transfer operation is performed as defined above. If an odd-tagged word is read from the source or 
a store is attempted over an odd-tagged word in the destination, a Paged Array interrupt is generated. Source 
words are transferred with tags. 

TWSD (Transfer Words Delete) P(D3) 

TWSD leaves no results on the stack. 

TWSU (Transfer Words Update) P(DB) 

TWSU leaves the updated source on top of the stack and the updated destination second from top of the stack. 

WORD TRANSFER OVERWRITE OPERATORS 

Source words are transferred with tags to the destination, regardless of tag value (a Paged Array interrupt 
cannot occur). 

TWOD (Transfer Words Overwrite Delete) P(D4) 

TWOD leaves no results on the stack. 

TWOU (Transfer Words Overwrite Update) P(DC) 

TWOU leaves the updated source on top of the stack and the updated destination second from top of the 
stack. 

EDIT OPERATORS 

Edit operators provide for manipulating and editing a source and destination character sequence. The se­
quences consist of character elements in data arrays or operands. Most edit operators process source and des­
tination characters sequentially until a length is exhausted. 

4-54 



B 5900 Reference Manual 
B 5900 Operator Set 

There are two modes in which edit operators are executed, and each is initiated by an Enter Edit operator. 
The Enter Edit operator provides the source and destination. The operator may specify update, which causes 
a reference to the source and destination (if applicable) to be left on top of the stack at termination of edit 
mode. 

Table Edit Mode 

A sequence of edit operators is executed until terminated by ENDE (end edit). Each acts on the source and 
destination supplied by the table enter edit operator, and length is a parameter for each edit operator requiring 
it. If update is specified, the updated source and destination are left on the stack by ENDE. 

Single Edit Mode 

A single edit operator acts on the source and destination supplied by the enter single edit operator. Length 
is also supplied at entry, whether or not it is required by the edit operator. If update is specified, the updated 
source and destination are left on the stack at termination of the edit operator. 

The following paragraphs define requirements and treatment of source, destination arguments, and the form 
o1 the updated results for each. These definitions are applicable to both Table and Single edit mode. 

Source 

The source argument must be an operand, or a DD or Indexed DD of any valid element-size; otherwise an 
Invalid Stack Argument interrupt is generated. 

A source operand is interpreted according to element-size conventions defined below as a hex or EBCDIC 
sequence containing 6, 12, or 24 characters (for single-precision EBCDIC, single-precision hex and double-pre­
cision EBCDIC, or double-precision hex respectively). An updated source operand is the original operand cir­
cularly rotated left such that the left-justified element is the next element which would have been processed 
if termination had not occured. 

A source Descriptor is used in the form of a Pointer. If the source argument is a DD, it is indexed by zero 
to create an Indexed DD and no check for invalid index is made. If the element-size of an Indexed DD is 
single-precision or double-precision (word), the element-size is changed to hex or EBCDIC according to 
element-size conventions. An updated source Pointer references the next character to be processed if termina­
tion does not occured. If the source element-size value is changed to hex or EBCDIC, the updated Pointer 
contains the modified element-size. If the updated word index value is greater than 215 , an Invalid Index inter­
rupt is generated. 

For all edit operators, a Paged Array interrupt is generated if an odd-tagged word is read from the source 
array. 

Each edit operator which uses the source internally updates it at termination, such that a group of edit 
operators (in table edit mode) sequentially process the source characters. Character skip operators may ad­
vance or back up the source to alter the normal sequential processing. 

Destination 

A destination argument must be a DD or an Indexed DD of any valid element-size; otherwise, an Invalid Stack 
Argument interrupt is generated. If it is marked read only, edit operators which store into the destination se­
quence will generate a Memory Protect interrupt. 

5011034 4-55 



B 5900 Reference Manual 
B 5900 Operator Set 

A destination Descriptor is used in the form of a Pointer. If the destination argument is a DD, it is indexed 
by zero to create an Indexed DD. If the element-size of an Indexed DD is word, it is changed to hex or 
EBCDIC according to element-size conventions. An-updated destination Pointer references the next character 
which would have been processed if termination had not occured. If the destination element-size value is 
changed to hex or EBCDIC, the updated Pointer contains the modified element-size. If the updated word index 
value is greater than 215 , an Invalid Index interrupt is generated. 

For all edit operators, a Paged Array interrupt is generated if a write is attempted into a destination array 
location which contains an odd-tagged word. 

Each edit operator (except skip source characters) internally updates the destination at termination, such that 
a group of edit operators (in table edit mode) sequentially process destination characters. Character skip 
operators may advance or back up the destination to alter the normal sequential processing. 

A source operand is interpreted as a hex sequence if the destination argument is a hex Descriptor and as an 
EBCDIC sequence otherwise. A source word Descriptor is changed to a hex Pointer if the destination argu­
ment is a hex Descriptor and to an EBCDIC Pointer otherwise. A destination word Descriptor is changed to 
a hex Pointer if the source argument is a hex Descriptor and to an EBCDIC Pointer otherwise. 

If the source and destination arguments are Descriptors whose element-size values are hex or EBCDIC but 
not equal, an Invalid Stack Argument interrupt is generated. 

ENTER EDIT MODE OPERATORS 

The following paragraphs discuss Enter Edit Mode operators. 

Enter Table Edit Operators 

Enter Table Edit operators supply the source and destination sequences, and a reference to the sequence, or 
table, of edit operators to be executed. Each edit operator acts on either the source, destination, or a combina­
tion of the two, supplied at entry, and length is a parameter for each edit operator requiring it. 

The required initial stack state is: 

Edit Table 

Source 

Destination 

If the Edit Table argument is not a Data Descriptor, an Invalid Stack Argument interrupt is generated; other­
wise it is interpreted as follows: 

p 
35 31 27 23 19 15 11 

1 c 
·a 

E 
34 EWI 26 22 18 ADDRESS 6 

0 s 
I :1 .13 29 25 21 17 13 9 

1 

4-56 



p [47: 1] 
Presence bit 

c [46: l] 
Copy bit 

I [45: l] 
Indexed bit 

PAG [44: 1] 
Paged bit 

[43: 5] 
Not used 

ESI [38: 3] 

B 5900 Reference Manual 
B 5900 Operator Set 

Edit table syllable index of the first edit operator 

EWI [35:16] 
Edit table word index of the word containing the first edit operator 

ADDRESS [19:20] 
Address 

If the table Descriptor is unindexed, it is indexed by zero no check for invalid index is made. If the ESI field 
is not in the range of 0 to 5, an Invalid Argument Value interrupt is generated. If the Descriptor is marked 
as paged, an Invalid Stack Argument interrupt is generated. Otherwise, Edit operators are fetched from the 
edit table, starting from the ESI syllable of the EWI word, until completion of an ENDE (End Edit) operator. 
The normal code stream is then resumed with the operator following the Enter Table edit operator. 

If any word fetched from the edit table does not have a tag value of 0 or 3, an Invalid Program Word interrupt 
is generated. The length of the edit table may not be known and no length check is applied. If an ENDE 
is not encountered before the table array page is exhausted, results are indeterminate. 

TEED (Table Enter Edit Delete) P(DO) 

For the TEED operator, the edit mode terminator ENDE leaves no results on the stack. 

TEEU (Table Enter Edit Update) P(D8) 

For the TEEU operator, the edit mode terminator ENDE leaves the updated source on top of the stack and 
the updated destination second from top of the stack. 

In the case of a Paged Array interrupt, any operator executed in Table Edit mode will leave the updated length 
on top of the stack, the updated edit pointer second from top of the stack, the updated source pointer third 
from top of the stack, and the updated destination pointer fourth from top of the stack. 

Enter Single Edit Operators 

Enter Single Edit operators supply the source and destination sequences and the length for the edit operator 
which follows it in the code stream. Each argument must be on the stack and must meet type restrictions, 
although an argument may not be required by the edit operator. 

5011034 4-57 



B 5900 Reference Manual 
B 5900 Operator Set 

The length argument must be an operand; otherwise, an Invalid Stack Argument interrupt is generated. The 
operand is integerized with rounding if required. If it cannot be integerized, an Integer Overflow interrupt is 
generated. All length values less than one are equated to zero, and all edit operators requiring length terminate 
immediately if it is zero. 

Normal Enter Single Edit Operators 

These enter single edit operators require length, source, and destination on top of the stack: 

Length 

Source 

Destination 

EXSD (Execute Single Edit Operator Delete) P(D2) 

For the EXSD operator, the subsequent edit operator leaves no results on the stack. 

EXSU/EXPU (Execute Single Edit Operator, Update/Pointer Update) 
P(DA)/P(DD) 

For the EXS and EXPU operators, the subsequent edit operator leaves the updated source on top of the stack 
and the updated destination second from top of the stack. 

EXPU requires length and a single Descriptor specifying both source and destination on top of the stack. 

Length 

Source/Destination 

Treatment of the Source/Destination argument and restrictions on its type are the same as those applied to 
the destination by other Enter Edit mode operators. The element-size convention applied is that a single-preci­
sion or double-precision Descriptor is changed to an EBCDIC Pointer. 

The subsequent Edit operator leaves the updated Source/Destination Pointer on top of the stack. 

CHARACTER SKIP OPERATORS 

Character skip operators advance or back up the source or destination sequence. Length indicates the number 
of characters to be skipped, and the direction is statically indicated by the particular operator. A read only 
source or destination may be skipped. A negative length argument is equated to zero. 

4-58 



B 5900 Reference Manual 
B 5900 Operator Set 

Length is a parameter for Table Edit mode only: 

Skip op Length 

(Table edit) 

Skip op 

(single edit) 

Skip Forward 

Character skip forward operators advance the source or destination sequence. A Pointer is incremented by 
length characters. Each word in the array from the initial to the final point is accessed, and a Paged Array 
interrupt is generated if a word has an odd-tag. A source operand is circularly rotated left by length characters. 
If the operator SFSC is entered by the EXPU operator, an Undefined Operator interrupt is generated. 

SFSC (Skip Forward Source Characters) E(D2) 
SFDC (Skip Forward Destination Characters) E(DA) 

Skip Reverse 

Character skip reverse operators back up the source or destination sequence. A Pointer is decremented by 
length characters. If the resultant word index is less than zero, a Paged Array interrupt is generated. If a Paged 
Array interrupt is generated, the updated version of the pointer which caused the fault has a word index of 
21 5 and a character index of 0. A source operand is circularly rotated right by length characters. If the operator 
SRSC is entered by the EXPU operator, an undefined Operator interrupt is generated. 

SRSC (Skip Reverse Source Characters) E(D3) 
SRDC (Skip Reverse Destination Characters) E(DB) 

CHARACTER INSERT OPERATORS 

Character insert operators store a character or a sequence of characters into the destination sequence, in some 
cases conditionally based on the value of FLTF (float flip-flop) and EXTF (external sign flip-flop). Each char­
acter is a parameter, except for a fixed sign character. 

If the destination is marked read only, a Memory Protect interrupt is generated. Several insert operators do 
not allow a hex destination. Insert operators that allow a hex destination, store only the numeric field of a 
parameter character. 

INSU (Insert Unconditional) E(DC) 

INSU stores a sequence composed of length repetitions of the parameter character (Char) into the destination. 

5011034 4-59 



B 5900 Reference Manual 
B 5900 Operator Set 

Length is a parameter for table edit mode only: 

INSU I Length l Char 

(Table Edit) 

INSU J Char 

(Single edit) 

INSC (Insert Conditional) E(DD) 

INSC stores a sequence composed of length repetitions of a selected parameter character into the destination. 
If FLTF=O, Zero Char is selected; if FL TF= l, Nonzero Char is selected. 

Length is a parameter for Table Edit mode only. 

INSC Length Zero Char Non-Zero Char 

(Table edit) 

INSC I Zero Char I Non-Zero Char 

(Single Edit) 

INOP (Insert Overpunch) E(D8) 

INOP stores hex "D" into the zone field of the destination character if EXTF= 1; the destination character 
is not altered if EXTF=O. In either case the destination Pointer is advanced 1 character. If the destination 
element-size is hex, an Invalid Stack Argument interrupt is generated. 

INSG (Insert Display Sign) E(D9) 

INSG stores Minus Char into the destination if EXTF= 1, and stores Plus Char if EXTF=O. If the destination 
element-size is hex, an invalid Stack Argument interrupt is generated. 

Minus Char and Plus Char are parameters. 

INSG Minus Char Plus Char 

4-60 



ENDF (End Float) E(D5) 

B 5900 Reference Manual 
B 5900 Operator Set 

If FLTF=O, ENDF stores a selected parameter character into the destination; Minus Char is selected if 
EXTF= l, and Plus Char is selected if EXTF=O. If FLTF= 1, no character is stored, and the destination Point­
er is not advanced. FLTF is unconditionally reset to ZERO. 

Minus Char and Plus Char are parameters. 

I ENDF I Minus Char Plus Char 

CHARACTER MOVE OPERATORS 

Character move operators transfer characters from source to destination with editing. They may conditionally 
store into the destination a sequence of repeated parameter characters based on the value of FL TF (Float Flip­
flop), the source character, and EXTF (External Sign Flip-flop). 

If a Character Move operator is entered by the EXPU operator, an Undefined Operator interrupt is given. 

If the destination is marked read only, a Memory Protect interrupt is generated. If the destination element­
size is hex, only the numeric field of a parameter character is stored. 

MCHR (Move Characters) E(D7) 

MCHR transfers length characters from the source to the destination. Length is a parameter for Table Edit 
mode only. 

MCHR Length 

(Table edit) 

MCHR 

(Single edit) 

MVNU (Move Numeri·c) E(D6) 

For an EBCDIC source and destination,. MVNU transfers length numeric fields from the source to the destina­
tion, setting each zone field to hex "F". For a hex source and destination, MVNU transfers length hex charac­
ters (in this case MVNU is identical to MCHR). 

5011034 4-61 



B 5900 Reference Manual 
B 5900 Operator Set 

Length is a parameter for Table Edit mode only. 

MVNU I Length 

(Table edit) 

MVNU 

(Single edit) 

MINS (Move with Insert) E(DO) 

MINS performs a leading zero suppression function from the source to the destination for length characters. 
In the following definition, the "source numeric field" is the numeric field of an EBCDIC character or the 
entire hex character. 

While FLTF=O and the value of the source numeric field is zero, the Zero Char parameter is transferred to 
the destination. If the value of the source numeric field is nonzero, FLTF is set to I, and while FLTF= I, 
the source numeric field is transferred to the destination. In the latter case, the zone field of each EBCDIC 
destination character is set to hex "F". 

Length is a parameter for Table Edit mode only. 

MINS 1 Length l Zero Char 

(Table edit) 

MINS I Zero Char 

(S_ingle edit) 

MFL T (Move with Float) E(D1) 

MFL T performs a signed leading zero suppression function from the source to the destination for length source 
characters. MFLT is functionally equivalent to MINS (Move With Insert) except for conditional insertion of 
a sign character into the destination sequence. 

While FLTF=O and the value of the source numeric field is zero, the Zero Char parameter is transferred to 
the destination. If FLTF=O and the value of the source numeric field is nonzerp, FLTF is set to I, the Plus 
Char or the Minus Char is inserted in the destination sequence, and the source numeric field is transferred 
as in MINS. If EXTF=l, the Minus Char is selected and if EXTF=O, the Plus Char is selected. 

While FLTF= 1, the source numeric field is transferred to the destination, as in MINS. 

4-62 



B 5900 Reference Manual 
B 5900 Operator Set 

The number of characters stored into the destination sequence is normally length+ 1. Length characters are 
stored only if FL TF is initially 0 and for length characters, all source numeric fields are zero, or if FL TF 
is initially 1. 

Length is a parameter for Table Edit mode only. 

MFLT Length Zero Char Minus Char Plus Char 

(Table edit) 

MFLT Zero Char Minus Char I Plus Char 

(Single edit) 

MISCELLANEOUS OPERATORS 

The following operators are not generally interpreted as belonging to a specific group. 

RSTF (Reset Float Flip-Flop) E(D4) 

RSTF unconditionally resets FLTF (Float Flip-flop) to 0. 

ENDE (End Edit) E(DE) 

ENDE terminates Table Edit mode. If update was enabled by the Enter Edit operator, ENDE leaves the up­
dated source on top of the stack and the updated destination second from top of the stack. 

Pointers are updated as if a zero length operation occurred. In particular, string DDs will be indexed and word 
DDs will be changed to pointers. 

NOOP (No Operation) P(FE) V(FE) E(FE) 

No action is performed. 

PUSH (Push Down Stack Registers) P(B4) 

The contents of the two top-of-stack registers are pushed onto the memory stack. This action is necessary 
to make the items in the top of stack registers addressable. 

HALT (Conditional Processor Halt) P(DF) V(DF) E(DF) 

HALT causes processor execution to halt if the processor Halt Boolean is enabled. If it is disabled, HALT 
is identical to NOOP (no operation). 

NVLD (Invalid Operator) P(FF) V(FF) E(FF) 

An Invalid Operator interrupt is· unconditionally generated. 

5011034 4-63 



B 5900 Reference Manual 
B 5900 Operator Set 

EXTERNAL COMMUNICATION OPERATORS 

CUIO (Communicate with Universal 1/0) V(4C) 

CUIO requires an Input/Output Control Block (IOCB) data Descriptor on top of the stack and passes the ad­
dress field of the IOCB Descriptor to the Message Level Interface Port (MLIP). An IOCB Descriptor must 
be an unindexed, non-paged word Descriptor. The first word of the referenced IOCB array must be a single­
precision operand containing an IOCB mark, hex "lOCB", in the field [47:16]. 

If the top-of-stack item is not a valid IOCB Descriptor, an Invalid Stack Argument interrupt is generated. If 
the first word of the IOCB array is not a single-precision operand with a valid IOCB mark, an Invalid Argu­
ment Value interrupt is generated. Otherwise, the IOCB Descriptor address field is transmitted to the MLIP, 
and CUIO terminates when the MLIP acknowledges receiving the address. 

1 1 
47 43 39 :i!j 31 27 23 19 15 11 7 J 

1 
46 42 38 ~ JO 26 22 18 14 10 6 2 

1 
45 41 37 ~ 29 25 21 17 13 9 5 1 

1 1 
-"' _A.CL 36J 32] 28 24 20 16 12 8 4 0 

IOCBMARK 

SCNI (Scan In) V(4A) 

SCNI requires a single-precision operand on top of the stack; otherwise, an Invalid Stack Argument interrupt 
is generated. The address field ([19:20]) of the operand is passed to the Global System Control (GSC) of the 
Global Memory Module as a scan in request. The full word response from the GSC is left on top of the stack. 

The request sub-field [19:4] must equal binary "1011". If the request bit [15: l] is 0, the GSC response will 
be from the Response Buffer; if it is l, the response will be from the Message Buffer. The request is checked 
by the GSC; if invalid, the result will be a Global Memory Uncorrectable Error for invalid address. 

SCNO (Scan Out) V(4B) 

SCNO requires two single-precision operands on top of the stack; otherwise, an Invalid Stack Argument inter­
rupt is generated. The address field ([19:20]) of the top-of-stack operand is passed to the Global System Con­
trol (GSC) of the Global Memory Module as a scan out request, and the second from top-of-stack operand 
is passed as the scan out data. 

The request sub-field [19:5] must equal binary "10110". The request is checked by the GSC; if invalid, the 
result will be an Invalid Address interrupt. 

INTERRUPTS 

PRELIMINARY INFORMATION 

The B 5900 invokes and passes information directly to the software operating system (the MCP) by use of 
interrupts. Depending on the nature of the interrupt, the code stream generating the interrupt will or will not 
be resumed subsequent to MCP processing of the interrupt. 



There are three classes of interrupts: 

B 5900 Reference Manual 
B 5900 Operator Set 

1. Operator Dependent interrupts: Invoked directly by the current operator to request an MCP service 
required by the operator or to report a programming or operator fault; 

2. Alarm interrupts: Triggered by hardware fault detection during operator execution; 
3. External interrupts: Invoked between operators to report events which are independent of the execut­

ing code stream. 

Alarm and External interrupts are asynchronous with operator execution, indicating respectively hardware fault 
and MCP attention conditions, whereas ODI conditions are detected directly by operators or from parsing of 
the code stream. 

INTERRUPT ENTRY SEQUENCE 

An interrupt is implemented as a parameterized accidental entry to a fixed MCP procedure. That procedure 
must be visible at the address couple (0,3) in the addressing environment for any executing code stream. Exit 
from the MCP interrupt procedure will return execution to the interrupted code stream. 

Generation of the interrupt procedure entry parallels a normal procedure entry sequence. (See Procedure Entry 
Operator heading.) An inactive MSCW is built on the stack, with its History Link pointing to the base of the 
current topmost activation record (F register contents). An NIRW containing the fixed address couple (0,3) 
and the two interrupt parameter words (see Figure 4-1) are pushed onto the stack above the inactive MSCW. 
The interrupt procedure entry is completed by invoking the ENTR (enter) operator. 

Figure 4-1 illustrates the stack state transformation produced by the interrupt entry sequence (F is shown 
pointing to the same location as D[LL] in the initial state, but that is not required). 

s --.i P2 PARAMETER 

ID PARAMETER 

NIRW TO (0,3) 
H~S"!"ORY 

F ____. INACTIVE MSCW 
LINK 

s TOS ITEM TOS ITEM 

TOPMOST AR t TOPMOST AR 
~ If 

~ /., 

RCW RCW 

D[LL),F MSCW D[LL) ___.. MSCW -
STACK STATE STACK STATE PRECEDING 

BEFORE INTERRUPT ENTR TO MCP INTERRUPT PROCEDURE 

MV4635 

Figure 4-1. Stack State Transformation Produced By Interrupt Entry 

For External interrupts, the RCW created by ENTR (and stored at the F+ 1 stack location) points to the next 
operator in the current code stream, and for Alarm interrupts, it points to the operator which was executing 
when the fault was detected. For most Operator Dependent interrupts, the RCW will point to the operator 
which generated the interrupt. In Single Edit mode, the executing operator is considered to be the Enter Single 
Edit operator, not the Edit operator; similarly, for variant operators the "95" operator is pointed at. The only 
exception is for a subset of Presence Bit interrupts (see discussion under MCP Service heading). 

5011034 4-65 



Interrupt Parameters 

B 5900 Reference Manual 
B 5900 Operator Set 

Information passed to the MCP interrupt procedure is contained in two parameter items in the stack. The first 
is a single-precision operand interpreted as an interrupt identification literal (ID). The second item, called the 
P2 parameter, varies according to the nature of the interrupt. ID interpretation differs from Pl (it is generally 
simplified with fewer special state bits), P2 passes a relevant diagnostic item. For Alarm memory errors, the 
memory address is passed in the P2 parameter, but the direct operator identification and operator state are 
not reported. 

ID PARAMETER 

The first interrupt parameter is the single-precision interrupt identification literal (ID parameter). For all inter­
rupts, bit (ID [28: 1]) specifies an interrupt, and the interrupt (int) class field (ID [26:3)) indicates the class of 
interrupt with values (l=Operator Dependent, 2=Alarm, 4=Extemal). The values 0, 3, 5, 6, and 7 are invalid. 

Further interpretation of the ID parameter depends on the interrupt class value and is defined under the Inter­
rupt Definition heading with each class of interrupt. 

Interpretation of the low-order interrupt type field of the ID parameter depends on the interrupt class. The 
ODI interrupt type is vertically encoded; each value from 0 to a maximum interrupt type value identifies a 
specific interrupt. 

P2 PARAMETER 

The second interrupt parameter, the P2 parameter, varies according to the specific interrupt type. For a given 
interrupt, the P2 parameter will be an item of fixed or varying type, or the P2 parameter will contain no infor­
mation. 

Interrupt Definition will specify interpretation individually for all interrupts in which P2 is meaningful. Where 
the P2 parameter contains no information, it will not be explicitly specified. 

Superhalt 

Special detection exists to prevent a non-terminating interrupt loop. For example, such a loop could be gener­
ated and continued indefinitely if the ENTR operator (invoked by the interrupt entry sequence) generates an 
interrupt which subsequently invokes the ENTR to generate an interrupt. 

An effectively non-terminating interrupt loop, called a Superhalt condition, is defined to be a sequence of more 
than four interrupt invocations without an EXIT or RETN operator being executed during that sequence. 
When a Superhalt condition is detected, the maintenance console is notified, and the processor is immediately 
halted. 

INTERRUPT DEFINITION 

The following paragraphs discuss the three interrupt definitions. 

Operator Dependent Interrupts 

Operator dependent interrupts are invoked directly by the current operator to request an MCP service required 
by the operator or to report a programming or operator fault. The RCW created by the interrupt entry will 
point to the operator generating the interrupt except for a subset of Presence Bit interrupts. 

4-66 



B 5900 Reference Manual 
B 5900 Operator Set 

The Operator Dependent ID parameter identifies the type of interrupt, and indicates by the retry bit whether 
or not the interrupted code stream may be resumed subsequent to MCP interrupt processing. Retry is set if 
the stack state at the time of the interrupt is still consistent with the required state for operator retry. That 
state may be the initial or restart state as noted by the restart bit in the interrupt MSCW. ID also includes 
a state bit, P2 double, which indicates that the P2 parameter is a single-precision first word of a double-preci­
sion item. 

Operator Dependent ID (int class = 1) 

E mode bit [28: 1) 
Constant value 

int class [26:3J<D 
Constant value 1 = Operator Dependent 

retry (19:1] 
If 1, the stack state is still consistent with the state required for operator retry. If 0, stack arguments 
have been consumed; an attempt to retry will produce an error condition. 

P2 double [18:1] 
If 1, the P2 parameter is a single-precision first word of a double-precision item. If 0, the tag of the P2 
parameter correctly indicates its type. 

int type (4:5) 
The type of Operator Dependent interrupt, where: 

0 = Presence Bit 
1 = Paged Array 
2 = Stack Overflow 
3 = Invalid Operator 
4 = Undefined Operator 
5 = Invalid Stack Argument 
6 = Invalid Argument Value 
7 = Invalid Code Parameter 
8 = Invalid Reference 
9 = Invalid Reference Chain 

10 = Invalid Index 
11 = Memory Protect 
12 = Divide by Zero 
13 = Exponent Underflow 
14 = Exponent Overflow 
15 = Integer Overflow 
16 = Stack Underflow 
17 = Bottom of Stack 
18 = Stack Structure Error 
19 = Code Segment Error 
20 = Invalid Program Word 

Operator Dependent interrupts fall into two classes: those which request an MCP service, and those which 
report error conditions arising from programming or operator faults. 

5011034 4-67 



B 5900 Reference Manual 
B 5900 Operator Set 

MCP SERVICE 

Presence Bit, Paged Array, and Stack Overflow interrupts are requests for an MCP service which is an exten­
sion of the hardware operators. For all such intel'tJ.lpts, ID retry= 1, and in the normal case, the operator gener­
ating the interrupt will be resumed subsequent to MCP interrupt processing. 

Presence Bit 

Presence Bit is used by operators to gain access to a data array or program code segment which is not present 
in memory. An element of a data array is accessed through an Indexed DD, which may be directly encoun­
tered by an operator or may be the result of a dynamic indexing operation on an Un-indexed DD. A program 
code segment is accessed through a segment Descriptor. 

A Presence Bit interrupt is generated when access is required under the following conditions: 

1. An Indexed DD is absent and the associated mom DD is absent (Indexed DD present=O and Memory 
[Indexed DD address] present=O); 

2. An Indexed DD is dynamically generated from an absent DD and: 

a. The DD is a mom (DD present=O and DD copy=O) or 
b. The DD is a copy and the associated mom DD is absent (DD present = 0 and DD copy 1, 

and Memory [DD address] present = 0); 

3. A segment Descriptor (SD) is absent (SD present=O). 

A Presence Bit interrupt is not generated if the Descriptor is an absent copy, but the associated mom Descrip­
tor is present. In that case the address field of the associated mom is used to make the required access. 

Presence Bit interrupts generated for absent Data Descriptors will return as the P2 parameter either an absent 
copy data Descriptor (Indexed DD or DD), or a single-precision integer. Presence bit interrupts generated for 
absent code segment Descriptors will return as the P2 parameter an item with a TAG of 3, a Presence bit 
of 0, a Copy bit of 1, and an address field containing the address of the absent code segment Descriptor. 

P2 parameter 
Action required by MCP 

data desc 
Make the referenced array present 

segment desc 
Make the referenced code segment present 

sp integer 
For n=integer value: examine n stack items immediately below the interrupt MSCW, and for each item 
which is an absent Data Descriptor, make the referenced array present and replace the absent Data De­
scriptor by the present Data Descriptor ( n counts 1 for a double-precision item) 

The RCW created by an ODI interrupt entry normally points to the operator generating the interrupt. An ex­
ception occurs for Presence Bit on a code segment Descriptor generated by the stack structure operators 
ENTR, EXIT, RETN, and by dynamic branches. In these cases the RCW points to the code stream entry 
point being entered or returned to. 

When an absent stack vector or stack Descriptor is encountered, a Presence Bit interrupt is generated with 
P2 holding the absent Descriptor and PbitAction = Exit. In most cases of SIRW evaluation, the operator may 

4-68 



B 5900 Reference Manual 
B 5900 Operator Set 

be re-executed from its initial state. In other cases (for example, V ALC) and in updating the stack addressing 
environment, re-executing the operator in restart state is sufficient to correctly implement the operator/MCP 
Presence Bit interface. 

Paged Array 

Paged Array is used by operators which process data arrays to indicate an attempted access beyond the end 
of the array. Operators which access a data array sequentially rely on the following assumptions: 

1. A logical data array exists in memory as a set of 1 or more physical array pages managed by the 
MCP; 

2. The elements of an array page are operands; 
3. The next sequential word in memory after the last element of an array page has an odd tag. 

Sequential processing of data arrays may be performed by pointer or edit operators. A Paged Array interrupt 
is generated by these operators when an odd-tagged item is read from an array or a store is attempted into 
an array word containing an odd-tagged item. If the odd-tagged access marks the end of the logical array, 
an error condition exists, and the operator cannot be resumed. If it marks the end of an array page but not 
the end of the logical array, the operator is resumed on the next page of the array. 

Access to data arrays is through Indexed DDs (Indexed Word DDs or Pointers). An Indexed DD pointing to 
the "next element" of the array, the element whose attempted access produced an odd-tagged item, is the 
interface between the operator and the MCP interrupt procedure. Paged array interrupts return as the P2 pa­
rameter a single-precision integer, and the following MCP action is required: For n = integer value, examine 
n stack items immediately below the interrupt MSCW, and for each item which is ·an Indexed DD referencing 
an odd-tagged word, replace it by an Indexed DD correctly referencing the next array element ( n counts 1 
for a double-precision item). 

Since B 5900 operators may have restart entry points unique from their initial entry points, preservation of 
partial results through interrupt processing can be implemented. Therefore; only the fixing of the Indexed DD 
stated above is required by the MCP for Paged Array interrupts. 

Stack Overflow 

Stack Overflow indicates that a push onto the expression stack has caused the size of the stack to equal its 
limit. The interrupt is a request to the MCP to extend the array in memory for the stack, and all operators 
may be resumed subsequent to MCP Stack Overflow processing, under the assumption that the stack size has 
been extended. 

A Stack Overflow interrupt is generated when a word is pushed onto the expression stack, and at completion 
of the push~ the address of the top of stack word (or, in the case of a push of a double-precision operand, 
the address of either the top-of-stack or second from the top-of-stack word) is equal to LOSR (Stack Descrip­
tor address + Stack Descriptor length - 1). If a Stack Overflow condition occurs on pushing the first word 
of a double-precision item, the second word is pushed before the interrupt is generated. 

For the interrupt entry sequence to complete without overwriting a value in memory, the array for the stack 
must include at least five words beyond the limit addressed by LOSR. Stack Overflow is not generated when 
a push completes with the top-of-stack address strictly greater than LOSR. 

ERROR REPORTING 

This set of interrupts reports error conditions arising from programming, compiler or operator faults. For all 
such interrupts if ID retry= l, operator arguments consistent with required initial state remain in the stack. 
In all cases the RCW created by the interrupt entry will point to the operator generating the interrupt. 

5011034 4-69 



B 5900 Reference Manual 
B 5900 Operator Set 

Invalid Operator 

An Invalid Operator interrupt is unconditionally generated by execution of NVLD (Invalid Operator). No other 
operator generates this interrupt. Below are definitions of some interrupt cases. 

1. Attempted execution of undefined encoding -> Undefined Operator 
2. Stack arguments of incorrect type -> Invalid Stack Argument 
3. Invalid stack argument value -> Invalid Argument Value 
4. Invalid code parameter value -> Invalid Code Parameter 
5. Invalid indirect reference sequence -> Invalid Reference Chain 

B 5900 generates Invalid Operator only for execution of NVLD. 

Undefined Operator 

An Undefined Operator interrupt is generated for the attempted execution of an undefined operator encoding. 

Invalid Stack Argument 

An Invalid Stack Argument interrupt indicates an invalid initial stack state for an operator. It will be generated 
by any operator which places data type restrictions on its dynamic stack arguments if one or more items on 
top of the stack do not have the required type(s). Argument type restrictions are in terms of the data types 
defined in Section 2 according to tag value and, in some cases, additional type bits within the word. 

For all Invalid Stack Argument interrupts, the stack item which violates type restriction is passed as the P2 
parameter. If two or more items are of incorrect type, only one is passed as P2. If the incorrect item is double­
precision, the first word is passed as a single-precision operand with ID P2 double= 1. 

Invalid Argument Value 

An Invalid Argument Value interrupt indicates that the data.type of a dynamic stack argument is correct, but 
its value is not within a valid range. It will be generated if an operand argument interpreted as an integer 
produces an invalid value or if a field of a structured type has an undefined or invalid value. 

The stack item having an invalid value is passed as the P2 parameter. If that item is double-precision, the 
first word is passed as a single-precision operand with ID P2 double= 1. 

Invalid Code Parameter 

An Invalid Code Parameter interrupt indicates that a code stream parameter has an invalid value. It will be 
generated if a parameter interpreted as an integer produces a value greater than the maximum valid value. 
The invalid value is passed as the P2 parameter in the form of a single-precision integer. 

Invalid Reference 

An Invalid Reference interrupt indicates an attempted evaluation of an invalid address couple reference to an 
item in the current addressing environment. It is generated during evaluation of an NIR W or an address couple 
parameter under the following conditions: 

4-70 

1. The Lambda (lexical level) component is greater than LL (the lexical level at which the processor 
is running), 

2. For Lambda= LL, the address of the referenced stack location is greater than the address of the top­
of-stack. 



B 5900 Reference Manual 
B 5900 Operator Set 

If the invalid reference is an NIRW, the NIRW is passed as the P2 parameter. If the invalid reference is an 
address couple parameter, the P2 parameter is a single-precision operand whose low-order field is the address 
couple. 

Invalid Reference Chain 

An Invalid Reference Chain interrupt indicates that evaluation of an indirect reference produced an unexpected 
result. It is generated by operators which evaluate chains of one or more references if evaluation of an address 
couple parameter, NIRW, SIRW, or Indexed Word DD produces an item which is neither a valid reference 
in the chain nor a valid target item which terminates the chain. 

The definition of valid target items varies according to the function of the operator. If an operator performs 
only a single reference evaluation, an Invalid Reference Chain interrupt is generated if the result is not a target. 
If an operator evaluates a sequence of references, the definition of valid reference chains also varies according 
to the function of the operator. In this case, an Invalid Reference Chain interrupt is generated if evaluation 
of a given reference is not a target or another valid reference in that context. 

The invalid reference evaluation result is passed as the P2 parameter. If that item is a double-precision oper­
and, the first word is passed as a single-precision operand with ID P2 double= 1. 

Invalid Index 

An Invalid Index interrupt is generated if an integer value used to index a logical array of elements is not 
within a valid index range for that array. Invalid Index conditions may exist for indexing data Descriptors, 
code segment Descriptors, the stack vector Descriptor, or linear record structures by the operator OCRX. The 
P2 parameter varies depending on the type of array and the form of the index as noted in the following cases. 

Data Descriptor (DD) 
Invalid Index is generated if the index value is not in the range 0 to DD length-I, or if, in indexing a 
string DD or updating a Pointer, the computed word index is not in the range 0 to 2' 5 • For normal DD 
indexing cases, a copy of the DD is passed as the P2 parameter. For Pointer updating by pointer and 
edit operators, the P2 parameter is a copy of the Pointer, where the word index field is the computed 
index modulo 216• 

Code Segment Descriptor (SD) 
Invalid Index is generated by branching operators if the program word index component is not in the 
range 0 to SD seg length-1. If the new code stream pointer is specified by a PCW (dynamic branches, 
ENTR), the PCW is passed as the P2 parameter. If branching within the current code segment is indi­
cated by a top-of-stack operand (dynamic branches), P2 is the operand, and if indicated by a parameter 
(static branches), P2 is a single-precision operand, where the low-order field is the parameter. 

Stack Vector Descriptor (SYD) 
Invalid Index is generated during stack accessing if the stack number is not in the range 0 to SYD 
length-1. An indexed copy of the SYD, where the index field is the invalid stack number, is passed as 
the P2 parameter. 

Linear Record Structure 
Invalid Index is generated by the operator OCRX if the sequence index operand is not in the range 
to ICW sequence size. The single-precision ICW is passed as the P2 parameter. 

Dynamic Branch Operand 
If a dynamic branch within the current code segment is indicated by an operand on top of the stack 
and if the operand, after rounding if necessary, is not in the range (0 to 213), an Invalid Index interrupt 
is generated. The integerized operand is passed as the P2 parameter. 

5011034 4-71 



\ 
B 5900 Reference Manual 

B 5900 Operator Set 
\ 

\ 

\ 
Memory Protect 

A Memory Protect interrupt indicates an invalid attempt to write into a memory location. It is generated under 
the following conditions: 

1. A write is attempted by store, overwrite, pointer, or edit operators, where where the memory location 
is referenced by an Indexed DD marked read only. The Indexed DD is passed as the P2 parameter; 

2. Store operators encounter a tag 3 item in evaluating a reference chain or in writing a double-precision 
item, the second word location contains an odd-tagged item. The tag 3 or odd-tagged item is passed 
as the P2 parameter. 

Divide by Zero 

A Divide by Zero interrupt is generated by arithmetic divide operators if the numeric interpretation of the top­
of-stack operand (the divisor) yields a value of 0. 

Exponent Underflow 

An Exponent Underflow interrupt is generated by arithmetic and numeric type transfer operators if'the result 
of a rounding, truncation, or normalization function is too small to be represented by the machine. 

Exponent Overflow 

An Exponent Overflow interrupt is generated by arithmetic and numeric type transfer operators if the result 
of a rounding, truncation, or normalization function is too large to be represented by the machine. 

Integer Overflow 

An Integer Overflow interrupt indicates that an operand required to have an integer value cannot be repre­
sented as an integer. It is generated if the integer nllmeric value of the operand, after truncation or rounding 
if necessary, is not in the range (-24 to 238) for single-precision or (-279 to 277) for double-precision. 

The operand is passed as the P2 parameter. If it is double-precision, the first word is passed as a single-preci­
sion operand, with ID P2 double= 1. 

Stack Underflow 

Stack Underflow indicates that an operator attempted to pop an argument from an empty expression stack. 
The expression stack is the set of locations whose addresses are in the range (D[LLJ+ 1 to LOSR), and a Stack 
Underflow interrupt is generated if the address of the top-of-stack is less than D[LLJ+ 1 when a pop is at­
tempted. 

Bottom-Of-Stack 

A Bottom-of-Stack interrupt indicates an attempted exit from the last activation record in the stack. It is gener­
ated by EXIT or RETN if at operator entry, D[LLJ < = BOSR + 1. The word at the D[LL] stack location is 
passed as the P2 parameter. 

Stack Structure Error 

A Stack Structure Error interrupt indicates an invalid condition in the stack linkage structures used to control 
procedure entry, procedure exit, and move stack operations. 

4-72 



B 5900 Reference Manual 
B 5900 Operator Set 

The operators ENTR (including invocation on accidental entry), EXIT, RETN, and MYST will generate Stack 
Structure Error interrupts under any of the following conditions: 

Stack [ADDR] 
the stack item addressed by ADDR; 

History Link 
the address computed from a History Link; 

Lexical Link 
the address computed from a Lexical Link. 

The item passed as the P2 parameter depends on the error condition, as noted. 

If (stack [D[i]], stack [History-Link], or Stack [Lexical-Link] is not equal to a MSCW); or if (ENTR: 
Stack [F] is not equal to the inactive MSCW); or if (EXIT,RETN: Stack D[LL]+l is not equal to the 
RCW); or if (MYST: Stack[base] is not equal to the TSCW), then P2=invalid stack item. 

If EXIT,RETN: RCW ll or MYST: TSCW ll is not equal to MSCW ll, for the first entered MSCW on 
the historical chain whose head is the History Link corresponding to the RCW or derived from the 
TSCW, then RCW or TSCW. 

If (History-Link is less than the BOSR value, then P2=MSCW containing the History Link); or if MYST: 
Computed F address is less than the value of BOSR, then P2=F address); or if (ENTR: top of stack 
address is less than F, then P2=TOS address; or if PCW 11 is greater than 15, then P2=PCW). 

For all Stack Structure Errors, the RCW created by the interrupt entry will point to the operator generating 
the interrupt. 

Code Segment Error 

A Code Segment Error interrupt indicates that in distributing a PCW or RCW code stream pointer, an invalid 
code segment Descriptor is accessed. It is generated if the tag of the stack item accessed at D[sdll]+sdi is 
not 3, where sdll,sdi are the code stream pointer components of a PCW or RCW. The invalid item is passed 
as the P2 parameter. 

Invalid Program Word 

An Invalid Program Word interrupt indicates that a word accessed from the current code segment is not a 
Program Code Word. It is generated in Table Edit mode if the tag of the word is not 0 or 3 and in all other 
modes if the tag is not 3. 

The invalid item is passed as the P2 parameter. The interrupt RCW will point to the first syllable of the invalid 
word if the last valid operator occupied the final syllable(s) of the preceding Program Code Word. It will point 
to an opcode syllable of the preceding Program Code Word if that operator required syllables from the invalid 
word. 

Alarm Interrupts 

Alarm interrupts are triggered by hardware fault detection, and the RCW created by the interrupt entry will 
point to the operator which was executing when the fault was detected. 

The Alarm ID parameter identifies the type of interrupt, and indicates by the retry bit whether or not the 
interrupted operator may be retried. Retry is set if the stack state at the time of the interrupt is still consistent 

5011034 4-73 



B 5900 Reference Manual 
B 5900 ()perator Set 

with the required initial state for the operator. More than one fault condition may be reported by a single 
Alarm interrupt. However, combinations exclude Local and Global Memory Uncorrectable Errors occurring 
together, as they are mutually exclusive. 

Alarm ID (int class = 2) 

E mode bit [28:1] 
Constant value 1 

int class (26:3] 
Constant value 2 = Alarm 

retry [19: 1) 
If l, the stack state is still consistent with the required state for operator retry. If 0, stack arguments 
have been consumed, and an attempt to retry will produce an error condition. 

int type (4:5) 
The type of Alarm interrupt composed of: 

invadd (4:1] 
1 =Invalid Address 

LM error [3:1] 
l=Local Memory Uncorrectable Error 

GM error (2: l] 
l=Global Memory Uncorrectable Error 

hardware error [ 1: 1) 
1 =Hardware Error 

loop timer [0: l] 
1 =Loop Timer 

LOCAL MEMORY UNCORRECTABLE ERROR 

The P2 parameter identifies the memory address and the nature of the error. For read data errors, the word 
read from memory is pushed onto the stack immediately below the interrupt MSCW. Single bit read data errors 
are corrected by hardware and will not be reported by an interrupt, unless correction is disabled. 

P2 parameter: 

LM error type (47:7) 
The Local Memory error field composed of: 

LM single bit [ 43: ll 
1 =single bit read data error 

LM multi bit (42:1) 
1 =multiple bit read data error 

addr PE (41:1] 
l=address parity error 

4-74 



address [19:20) 

B 5900 Reference Manual 
B 5900 Operator Set 

The memory address for the local memory operation 

GLOBAL MEMORY UNCORRECTABLE ERROR 

The P2 parameter identifies the memory address and the nature of the error. For read data errors, the word 
read from memory is pushed onto the stack immediately below the interrupt MSCW. Single bit read data errors 
are corrected by hardware and will not be reported by an interrupt, unless correction is disabled. 

P2 parameter: 

GM error type [47:7] 
The Global Memory error field composed of: 

write single [ 4 7: 1 ] 
1 =single bit write transmission error 

write multi [ 46: 1] 
1 =multiple bit write transmission error 

GM single bit [ 45: 1 l 
1 =single bit read transmission error 

GM multi bit [ 44: 1] 
1 =multiple bit read transmission error 

read single [ 43 : 1 ] 
1 =single bit read data error 

read multi [42:1] 
1 =multiple bit read data error 

addr PE [ 41 : 1] 
1 =address parity error 

address [19:20) 
The memory address 

5011034 4-75 



LOOP TIMER 

B 5900 Reference Manual 
B 5900 Operator Set 

This interrupt indicates an effectively infinite loop by an operator. It is triggered by expiration of a timer whose 
interval is sufficient for valid execution of any operator. A Loop Timer interrupt indicates an operator fault 
except for LLLU (linked list lookup), which may encounter a data-driven, non-terminating loop. 

HARDWARE ERROR 

This interrupt indicates a hardware detected error which is uncorrectable. 

[31 :32) CPU Detected Parity Error 
BitO = DPl MBUS 
Bit I = DP2 MBUS 
Bit2 = HDP I MBUS 
Bit3 = IT I MBUS 
Bit4 = MClA MBUS 
Bit5 = MC2A MBUS 
Bit6 = MCIB MBUS 
Bit7 = MC2B MBUS 
Bit8 = PC I MBUS 
Bit9 = HGMI MBUS 
BitlO = SLCS MBUS 
Bit 11 = IT2 MBUS 
Bit 12 = DP3 PROM 
Bit 13 = DP4 CBUS or PROM 
Bit14 = DPI CBUS or PROM 
BitlS = GND 
Bit16 = DP3 MBUS 
Bit 17 = DP4 MBUS 
Bit18 = GND 
Bit19 = HARDERR (Bad Mem Cntl) 
Bit20 = SLC I RAM 
Bit21 = SLC2 RAM 
Bit22 = SLC4 RAM or PROM 
Bit23 = SLCS RAM 
Bit24 = SOFTERR (Stk Over) 
Bit25 = HDP2 CBUS or PROM 
Bit26 = ITI CBUS 
Bit27 = MC2A CBUS 
Bit28 = MC2B CBUS 
Bit29 = PC I PROM 
Bit30 = PC2 CBUS 
Bit3 I = HGMI CBUS 

External Interrupts 

External interrupts are invoked between operators to report events which are independent of the executing 
code stream. The RCW created by the interrupt entry will point to the next operator in the interrupted code 
stream. 

The External ID parameter identifies the type of interrupt. More than one external event may be reported 
by a single External interrupt. 

4-76 



External ID ( int class = 4 ) 

E mode bit [28: 1] 
Constant value 

int class [26:3] 
Constant value 4 = External 

int type [3:4] 

B 5900 Reference Manual 
B 5900 Operator Set 

The type of External Interrupt composed of: 

global alarm [3: 1] 
l=Global Alarm 

IO [2:1] 
1=1/0 Finished 

global [1:1] 
1 =Global Attention 

int timer [O: 1] 
1 =Interval Timer 

External interrupt are masked by the CS (control state) flip-flop except for the Global Alarm. 

5011034 4-77 





B 5900 Reference Manual 

SECTION 5 
SYSTEM CONCEPT 

FUNCTIONAL DESCRIPTION 

The various modules of the Central Processing Cabinet are discussed individually in the following paragraphs. 

DATA PROCESSOR 

The Data Processor is a four card module occupying the number 6 to 9 slots of panel A in the B 5900 back­
plane. The Data Processor performs all arithmetic and logical operations in the B 5900. The machine state is 
contained in 16 registers in the AMD2901B processors used in the Data Processor. The DP consists of these 
submodules. 

Arithmetic Logic Unit and Register Stack (Data Path). 
Literal and Field Isolation Unit. 
Tag and lexical level Controller 
Latch 
Control Logic 

The Data Processor is two major modules that communicate with the other modules of the B 5900 by way 
of the M-bus. The Stored Logic Controller is hardwired to the DP. The SLC controls ALU and Stack functions 
by direct control signals. Operations by the ALU and Stack are performed independently of the data transfer 
taking place on the M-bus. The internal data path in the 2901 Processor chip provides this capability. The 
Isolation unit is controlled by a command field of the C-bus. The input to the Isolation unit is entered on 
the M-bus and the result is placed on the D-bus. Therefore, arithmetic or logic operations with data in the 
stack or literal data do not require C-bus or M-bus resources, while a field isolation operation requires the 
full machine bus capabilities. 

ALU AND REGISTER STACK 

The ALU and Register Stack consists of 12 AMD2901 4-bit slice processors. This module contains a 48-bit 
ALU capable of eight binary, logical, and arithmetic operations, sixteen 48-bit registers configured as a two 
port, two address RAM, a 48-bit sidecar register (Q register) capable of storing and shifting temporary data, 
and a variety of multiplexors and tri-state drivers which enable the module to interface directly to the M-bus. 
In addition to the AMD2901s there are four carry-lookahead units that improve arithmetic performance. A dec­
imal adjust function is attached to the AMD2901 inputs. The decimal adjust logic consists of an auxiliary carry 
register and control gates. When the decimal adjust line is one, subtraction of the B input from the A input 
of the ALU is suppressed if the auxiliary carry for that slice is one. These 16 chips form the entire arithmetic 
section of the B 5900 processor. 

Figure 5-1 is a functional block diagram of the B 5900 Data Processor module. 

5011034 5-1 



C BUS 

M BUS 

MV4636 

LITERAL PROM 

CONTROL 

B 
B 

48-BIT 
ROTATOR 

· B 5900 Reference Manual 
System Concept 

16X48 
REGISTER FILE 

A B 

MUX 
R S 

R S 
ALU 

~, __ ___ _J 

Figure S-1. Functional Block Diagram of the Data Processor 

ROTATION AND FIELD ISOLATION UNIT 

TAG/LL 
FILE 

A B 

DBUS 

LATCH 

M 
BU 

This module consists of a 48 bit rotator and masker. The module can perform any rotation from 0 to 48 bits, 
and can apply data from the literal PROM to logically AND the rotated result. The rotation is End Around 
and is controlled by the dynamic address control logic. The output of the Isolation unit is placed on the D-bus 
and returned to the 2901 at the D inputs (Data in). 

LITERAL PROM 

The Literal PROM is a 1 K by 48-bit PROM that contains patterns which are used as constants in ALU calcu­
lations, or as input to the field isolation portion of the rotation unit. The Literal PROM may be addressed 
dynamically or statically from the C-bus. The literal data is placed on the D-bus and is used in both arithmetic 
and logical operations in the 2901 ALU. All the Literal PROM addressing is controlled by the dynamic address 
controller. 

ROTATOR 

The Rotator consists of 48 4-bit shifters arranged in a 3 level rotation pattern. The Rotator implementation 
is that of a truncated 64-bit barrel shifter, and is controlled by eight control lines. These eight lines cause a 
left shift of from 1 to 48 positions. Because of the nature of the shifter, some rotations are duplicated, that 
is, two different 8-bit patterns result in the same rotation. The 8-bit number supplied t6 control the rotator 
is not related to the number of bits rotated. In the Dynamic Address Controller, a PROM (the rotate PROM) 
is used to map binary numbers from 0 to 47 into the proper rotation 8-bit number. 

5-2 



B 5900 Reference Manual 
System Concept 

DYNAMIC ADDRESS CONTROLLER 

The Dynamic Address Controller commands the rotation and literal PROM units. The control lines for the 
Rotator and Literal PROM originate from the SLC (static control) or from a combination of SLC static data, 
and the contents of counter registers in the Dynamic Address Controller. The Dynamic Address Controller 
contains two 8-bit counters that are loaded from, or returned to the M-bus under SLC control. The counters 
address the Rotator, the Literal PROM, or both simultaneously. The counters are incremented or decremented 
at the end of the cycle by the SLC. The SLC controls multiplexors that allow selection of combinations of 
counters and SLC bits when forming Literal PROM and Rotation addresses. The rotation address is passed 
through a Mapping PROM prior to being applied to the Rotator. This allows the mapping out of the hardware 
dependent rotation addresses (see Rotator heading) and allows the interpretation of addresses in different ways; 
that is, a one in a counter can be interpreted as a one bit, or one byte, rotation, depending on certain static 
SLC bits on the Rotate PROM address. 

TAG AND LEXICAL LEVEL CONTROLLER 

In order to facilitate the handling of tags and lexical level data, this module contains both storage for tags 
and lexical levels, and logic to perform lexical level address computation. The storage section consists of 16 
4-bit words, one for each register in the stack. These words may contain a tag or lexical level depending on 
the contents of the related word in the stack. The B 5900 supports four resident display registers ( D registers 
) in the hardware. These registers reside in the stack. The D registers supported are D[O], D[l], D[2], and 
D[LL]. 

D[O]. through D[2] must reside in register stack addresses 0 to 2. D[LL] may reside. in any of the other regis­
ters. D[LL] is the register in which the lexical level that the machine is running is displayed. In an address 
computation, the processor must add an offset (Delta) to one of the D registers. The proper register is selected 
by a Lambda value coming from the Program Controller. The lexical level Controller is instructed to obtain 
the Lambda-Delta pair from the Program Controller, decode it on the first clock of an address computation 
sequence and place the Delta value on the D-bus along with selecting the proper D register to be added to 
the Delta value. The data path ALU is used to peiform the addition required to generate an address on the 
second (and final) clock of an address computation sequence. 

The tag and lexical level control is also capable of placing a tag on the D-bus in bit positions [3:4) and reading 
tags in that position from the M-bus. The tag register is a two port register. It is possible to command the 
controller to place one tag in M-bus position [50:3) and another on condition lines to the SLC to allow dual 
tag comparison in the SLC. Figure 5-2 is a block diagram of the Tag and lexical level Controller. 

LATCH 

The Data Processor contains a latch function that allows asynchronous requestors to deposit data for use by 
the DP, and is a 51-bit latch which serves as an interface between the system M-bus and the internal D-bus 
(51-bit) in the DP. The latch is loaded asynchronously by a requestor or under SLC control using the LATCH 
control bit. The Latch is capable of operating in one of two modes. If the LATCH bit is 1 or a MHLD signal 
is present, the LATCH is open and its outputs will follow its inputs. When the MHLD signal is removed, 
or the cycle during which the LATCH bit was on ends, the latch closes, holding the data at its inputs. This 
data will remain in the latch until another LATCH command or MHLD command is received. The output of 
the latch is connected to the D-bus. The outputs can be in one of two modes. When the latch is open (LATCH 
is 1 or MHLD) the output drivers are enabled, the outputs of the LITERAL and ISOLATE units are disabled 
automatically. When the latch is closed, its outputs are enabled on cycles where the LITERAL and ISOLATE 
units are not being used (that is, OP DEF not 0). When LITERAL or ISOLATE units are used, the DMOD 
field allows D DAT A or D TAG to be modified, or when an LDREAD is requested; the latch outputs are 
disabled. 

5011034 5-3 



B 5900 Reference Manual 
System Concept 

COU/LD C[24:1] >-1 COUNT(U/DI 

LO 
COUNTER t-----. 
CONTROL t----; 

LCNTL C[23:2) >-1 1--1 

M[7:8] -- .... 

"0" --./ 

CLEAR 

SEL 

2X1 

RD 
r--" 

I 

• 
C-0 

SBIT 0 
MUX 

COUNTER 

/e~ 

COUNTER 
LOGIC 

"O"' ~ ./ ~ 

2X1 

MUX 

C-1 r----.- I 8 BIT 0 ..._.......__ 

COUNTER 
M[15:8) ... _.e-........ _... 

MV4637 

SEL 

I-­

COUNTER~ 
CONTROL 

• • 

COUNT (U/DI 

STATIC/DYNAMIC 
SELECT 

MR C[17:10] >~-------11-.i MDA (9:10) 
PROM 

ADDRESS 

I 
l 

COUNTER 
SELECT 

.. 
2X1 
MUX --i 

IMSELJ 
C[18:1) 

.MR [9:2) 

SEL 

2X1 
MUX 

4X1 
MUX 

lrSEt 

DYNAMIC GROUP 
SELECT 

MOS C[10:1) 

--
TO LIT 
PROM 

L.!TOM ADDRESS 
I ROTATE ADDRESS ~~ -- -- - ------
1 ST~EL MAPPING 

I ROT C[5:6J> ,.....,._____.~~~ fo-= ~~t~f~g~ 
---.: MAPPING t-------.t--~ 
1 ~ PROM -._ I RDS C[7:1) ~: 

I 
I 
I 
I 
l 

2X1 
MUX ~ 

I 
ASEL C[6:1) 

Figure S-2. Functional Block Diagram of the Tag and Lexical Level Controller 

D-BUS 

The D-bus is the internal data bus of the DP. The DP uses the D-bus to obtain all input data to the 2901 
data path and the tag registers. There are several D-bus sources, these include: 

Tags 

5-4 

These are placed on the D-bus in bit position [3:4] by the tag file. They are controlled by the DMOD 
field of the SLC and have the highest priority on the bus in case of conflict. 



Lambda and Delta 

B 5900 Reference Manual 
System Concept 

The output of the lex level controller which can be read by the SLC command LDREAD, or placed 
on the D-bus automatically during the second clock of an ADTRAN sequence. This operation has second 
priority in case of bus conflict. 

Rotation and Literals 
The output of the Isolation unit, or the Literal PROM. These values are placed on the D-bus whenever 
the DP is selected on the C-bus and one of the above sources is not enabled. 

Latch 
The latch is the primary means of sending data to the DP registers from other parts of the machine. 
The latch outputs have highest priority when the latch is open. When closed, it is the default source 
on the D-bus when none of the above sources are enabled. 

The D-bus is entirely internal to the DP and is not shared with any other module. It is parity checked when 
it is connected to the M-bus through the latch. 

CONTROL LOGIC 

The Control Logic decodes commands on the C-bus and generates the proper signals to control the submo­
dules. The Control Logic samples the OP field of the micro control word every machine cycle, and if the DP 
is being addressed, generates the proper enable signals. 

BUS CONTROLLER 

The Bus Controller ensures the proper CPU module (PC, DP, MLIP, MP, or MC) can gain control of the 
M-bus. There are two methods of gaining control of the M-bus to transfer data: 

Programmed Control 
Control of the bus can be assigned to a specific module under control of the SLC. The SLC microword 
contains a 3-bit field that defines only one module to be enabled on the bus. 

Asynchronous Control 
Control of the bus can be gained by memory modules for transfer of data into the Latch. This transfer 
is transparent to the SLC. The other modules in the machine are frozen by the MP which gates the sys­
tem clock for the duration of the transfer. One HOLD signal is generated by wire-ORing the outputs 
of the memory controls. Selection of the unit to be enabled is performed by scanning the INV ADRn 
status lines from the async (memory) requestors. 

The bus control consists of two major modules: 

The Program Bus Controller 

The program bus controller enables the tri-state controls of the module indicated by the mode lines from the 
SLC. The program bus controller can be disabled by an Async request. The following signals are inputs to 
the program bus controller. 

BUS(3) 
Bus select lines from the SLC define which tri-state outputs to enable: The selections available are; 

DP 0 
PC 1 
M(L or G) 2 
MLIP 3 

5011034 

SPARE 
Iff 
SPARE 
Adapters 

4 
5 
6 
7 

5-5 



B 5900 Reference Manual 
System· Concept 

Asynchronous .Bus Request Controller 

The Asynchronous bus controller accepts a HOLD signal and generates the proper tri-state enable signal to 
the proper MC. The controller also generates a signal to hold the program bus controller. The input is MHLD/. 
Up to three modules may be selected in async mode, depending on the state of the INV ADRn lines from 
the requesting module. The requestor must bring its MHLD line low prior to the clock during which it wishes 
to gain control of the bus. The module must hold MHLD TRUE until it is serviced. The highest priority mod­
ule is serviced first. All other modules must hold their MHLD signal TRUE to be considered for service on 
the next clock. 

DATA PROCESSOR MAINTENANCE MODE 

There are two signals that control the data processors state in maintenance mode, these are the HCPMODE 
signal and the ABORT signal. There are three ways of accessing state in maintenance mode. These are shift 
registers, registers (and counters), and PROMs. In HCPMODE shift registers are placed under direct control 
of the MP and are read and altered. The registers remain frozen even with clocks running if not selected by 
the Maintenance Processor. Registers, such as the stack in the 2901, are controlled by the ABORT signal. 
This allows reading of register contents, but does not allow the registers to be updated. To update registers, 
microprogramming in the SLC must be present that specifies the desired register ONLY to be updated, all 
other states remain the same. In DISPLAY mode, both HCPMODE and ABORT are on, and all flip-flops 
in shift registers are readable and setable, while all registers are readable. In UPDATE mode, only HCPMODE 
is on, registers are set under control of the SLC. All shift registers in the data processor are cleared to logic 
0 by the GCLR/ (General Clear) signal. 

STORED LOGIC CONTROLLER 

The Stored Logic Controller is a 5-card module that resides in the number 12 to 16 slots of the B 5900 Central 
Processor backplane. 

The Stored Logic Controller (SLC) provides the Micro Control Word to execute in the rest of the machine 
as well as determines the next state of the machine. The SLC uses two types of cycles in determining the 
next state. The first cycle is the assumed cycle and every micro-statement begins with this cycle. In this cycle, 
the next state is assumed, even before conditions are received from the various modules of the machine. When 
the conditions become valid, two paths are available. If the conditions verify the assumed choice, then no 
change is made and the next cycle type is another assumed cycle of the next state. If the conditions contradict 
the assumed choice, the SLC enters the second cycle type; that is, the corrective cycle. In this cycle the cor­
rect state must be chosen according to the known conditions. A penalty of one clock cycle is paid whenever 
the corrective cycle is enacted. A corrective cycle is always followed by a preferred cycle of the correct next 
state. 

The selected conditions also determine if the work being done in the present machine cycle should be aborted. 
If so, the abort signal from the SLC to the rest of the modules becomes active. A penalty of one clock cycle 
is paid for this abort of the present cycle. If the SLC enters a corrective cycle (aborting the next cycle}-in 
addition to the abort of the present cycle-only one clock cycle is paid for the abort. The SLC contains the 
following modules as shown in Figure 5"3. 

5-6 

Control Store 
Sequence Store 
Condition Select 
State Select 
Subroutine Stack 



COMMAND STORE 

94 X6K 

J 

B 5900 Reference Manual 
System Concept 

SEQUENCE ADDRESS -
PREF.ADDA. INDICES 

& CONTROL 

SEQUENCE STORE 
52 X 4K 

J l 
ALTER. ADDA. 

COND 
SEL 

~NEXT ADDRESS 
BITS 

1 ~ ' • • 
SUB STACK 

CONTROL 3COND COND 
STATE SELECT - SELECT 

RETURN .. 
~ 

ADDRESS 

I I T :J I 

* i • 
C BUS DIRECT ABORT ENTRY XRUPT EOP DIRECT M BUS 

COMMANDS COMMANDS VECTOR CONTROL CONDS CONDS 

MV4638 

Figure 5-3. Stored Logic Controller Modular Block Diagram 

CONTROL STORE 

This module contains the Control Memory (CM) and its associated circuitry. The Micro Control Word and 
fields which are necessary for sequencing are housed in the CM in a 8k by 94 RAM matrix. This memory 
uses 4K by 1 static RAM chips. To achieve the SK height, two layers of 4K by 94 are tri-stated together 
using chip selects with a thirteenth address bit. The module has buffers for the 13 address lines and a Com­
mand Register to staticize the RAM outputs. Additional hardware provides maintenance capabilities for the 
CM. Buffers to and from the M-bus provide a data path to write and read the memory in maintenance mode. 
Parity is checked separately in the three partitions of CM due to implementing the CM on three different SLC 
boards. SLC boards 1 and 2 are logically identical boards and are interchangeable. The difference is the inter­
pretation of the fields implemented on the different boards by the system. Figure 5-4 is a functional block 
diagram of the Control Store. 

There are three major fields in the CM. The concurrent part of the Micro Control Word basically is the direct 
control to the DP. The shared part of the Micro Control Word is the C-bus. The third field is used by the 
SLC to sequence through the microprogram. The individual fields and the boards they reside on are as follows: 

SLCl 

CM[93:32] 
CM[93:01] Odd Parity for CM[93:32] 
CM[92:03] M-bus Controller 
CM[89:01] Latch Open 
CM[88: 15) Preferred Address 
CM[73:01] Assumed Select 
CM[72: 11) Sequence Memory Address 

5011034 5-7 



SLC2 

CM[61:32J 

B 5900 Reference Manual 
System Concept 

CM[61:01] Odd Parity for CM[61:32] 
CM[60:31] Micro Control Word 

SLC3 

CM[29:30) 
CM[29:01J C-bus parity 
CM[28:03] C-bus address 
CM[2S:26] C-bus command 

B 
u 
F ADDA 
F 
E 
R 

SYS CLOCK 

p 
A 
R 
I 
T 
y 

WRITE ENABLE 

COMMAND RAM DATA 

SK X94 

SOME 

DIRECT 

COMMAND 
REGISTER 

B M u 
F DATA IN 
F B 

E u 
R DATA s 

OUT 

BUFFER 

NEXT SYS PAR SEQ PREF c BUS DIRECT DIRECT ex - HCP WRITE 
ADDA CLK ERR ADDA ADDA COMMAND COMMAND (UNCLKC) 

MV4639 

Figure S-4. Control Store Block Diagram 

5-8 



SEQUENCE STORE 

B 5900 Reference Manual 
System Concept 

This module contains the Sequence Memory (SM) and its associated circuitry. The SM is a 4K by 52 RAM 
matrix of 4K by 1 static RAMs. As with the CM, the SM has buffers to and from the M-bus to provide data 
paths to read and write the memory in maintenance mode. The SM is housed on two boards, SLC4 and SLC5, 
along with logic from other SLC modules. 

The fields of the sequence memory are the condition select field, the indices field, and the three alternate ad­
dress fields. This memory is partitioned both horizontally and vertically to obtain these fields. The three alter­
nate address fields are contained in the "upper half'' of the sequence memory while the condition select and 
indices are contained in the "lower half'. Because of this architecture, all fields of the sequence memory are 
not available at the same time. The lower half containing the indices and condition select fields are usable 
during a SLC assumed cycle. When a SLC corrective cycle is needed, the most significant bit of the sequence 
address is modified to make the upper half of the memory available. Since these alternate addresses are not 
needed in the preferred cycle, this allows for a significant decrease in memory width. The upper and lower 
halves of the sequence memory differ only in the most significant bit of address and that the control memory 
views the sequence memory as twice as long but only half as tall. The condition select field is used in the 
Condition Select module to eventually select the three desired conditions. The indices are used by the State 
Select module to determine the next address. 

One location of the sequence memory is shared by all states of the Control Memory which have an uncondi­
tional next state. The fields in this location cause the SLC to neglect the condition logic and to take the next 
address dictated by the assumed select field of the CM. 

The fields of the SM are defined as follows: 

Sequence Memory Lower 2K (assumed cycle) 

SM[51:01] Odd Parity for SM[51:33] (on SLC 4) 
SM[50:01] Try7 
SM[49:03] Index7 
SM[46:01] Try6 
SM[45:03] lndex6 
SM[42:01] Try5 
SM[41:03] Index5 
SM[38:01] Try4 
SM[37:03] Index4 
SM[34:01] Try3 
SM[33:03] Index3 
SM[30:01] Try2 
SM[29:03] lndex2 
SM[26:01] Tryl 
SM[25:03] Indexl 
SM[22:01J TryO 
SM[21:03] IndexO 
SM[18:01J Odd Parity for SM[l8:19] (on SLC5) 
SM[17:06] Condition Group 2 Select 
SM[ll:06] Condition Group 1 Select 
SM[05:06] Condition Group 0 Select 

5011034 5-9 



B 5900 Reference Manual 
System Concept 

Sequence Memory Upper 2K (corrective cycle interpretation) 

SM[51:01] Odd Parity for SM[51:33] (on SLC4) 
SM[50:02J Unused 
SM[48:01] Alt Addr 3 Return Offset Bit 
SM[47:01] Alt Addr 3 Enter Bit 
SM[46:13] Alt Addr 3 
SM[33:01] Alt Addr 2 Return Offset Bit 
SM[32:01] Alt Addr 2 Enter Bit 
SM[31:13] Alt Addr 2 
SM[l8:01] Odd Parity for SM[18:19] (on SLC5) 
SM[l7:03] Unused 
SM[l4:01] Alt Addr 1 Return Offset Bit 
SM[l3:01] Alt Addr 1 Enter Bit 
SM[12:13] Alt Addr 1 

WRITE DATA 

Lr. 
u 

~ 

M 

WRITE ENABLE ., 
~ 

SEQUENCE RAM 

4K X52 

ADDRESS 

DATA OUT 

UPPER 2K WORD 

BUFFER 

( 

• • • 
ALT ALT ALT 
ADDA ADDR ADDR 
3 2 

MV4640 

CONDITION SELECT 

LOWER 
2KWORD 

• 
PARITY t--

• • 
INDICES COND 

SELECT 
BITS 

PARITY 
ERROR 

BUFFER 

MAINT 
ADDA 

Figure 5-5. Sequence Store Block Diagram 

F 
F 

DATA ., B -- --

ENA__., - -

ENABLE 

BUFFER 

u 
s 

MASN UPPER SEQ ex 
2K ADDA HCP 

A conditional microstatement can look at up to three conditions. The Condition Select Module has the B 5900 
condition set divided into three groups. The Sequence Memory has three fields (condition select fields) each 
of which selects 1 out of 56 conditions for one condition group. 

5-10 



B 5900 Reference Manual 
System Concept 

Some conditions are found only in one group and are called unique conditions. Groups were deliperately ar­
ranged because unique conditions of the same group cannot be tested in the same machine cycle. Some condi­
tions are available to all three groups and are called common conditions. As long as the total number of condi­
tions (three) is not violated, a common condition can always be tested since they do not have the grouping 
problems of unique conditions. · 

Some conditions are gated together to form more sophisticated conditions. This is accomplished through the 
use of gate arrays (Programmable Logic Arrays or PALS). The output from these arrays are referred to as 
encoded conditions. Encoded conditions are a function of up to ten input conditions but still count as one 
condition. 

A few conditions become valid very late in the machine cycle and are stored and used in the next microinstruc­
tion. This means that if one of these late conditions is selected, the state of what occurred in the previous 
machine cycle is tested. Figure 5-6 illustrates the Condition Select module. 

3 SELECTED 
CONDITIONS 

p 

CONDA 

GROUP 

A 

SELECT 

COND. 

SETA 

DIRECT 
COND 

DIRECT 
CONDITIONS 

MV4641 

5011034 

GROUP A GROUP B 
SELECT BITS SELECT BITS 

j CONDB • 
DECODE] [DECODE] 

SEL 
GROUP SEL 

TSEN B ~ TSEN 
SELECT 

CONDt 

A UNIQUE 
SET B 

C UNIQUE 

COMMON COMMON 

TOTAL 
CONDSET 

ENCODED LATE 
COND COND 

CONDITION LATE 
ENCODING STORAGE 

Figure 5-6. SLC Condition Select Block Diagram 

CONDC 

GROUP 

c 
SELECT 

COND p 
SET C 

BUS 
COND 

MBUS 
CONDITIONS 

-

CONDITION 
SELECT BITS 

GROUPC 
SELECT BITS 

[DECODE] 

SEL 

TSEN 

5-11 



STATE SELECT MODULE 

B 5900 Reference Manual 
System Concept 

This module determines the next address of the SLC microprogram. This module contains Index Selectors, 
an Index Register, an Address Select PROM, and Address Selectors. 

There are eight possible next addresses for the SLC. These possible next addresses are: preferred address from 
CM, three alternate addresses from the SM, return address from subroutine stack, entry vector from the Pro­
gram Controller, microinterrupt address, and an external interrupt address. 

In an assumed cycle, the microprogram can only have the preferred address, the return address, or an entry 
vector as the next address. This selection is achieved in the PROM with assumed select line from the CM 
and the stack=O line from the Subroutine Stack as addresses. 

Assumed SUBSTK Next 
Select Zero? Address 

0 x ~ Preferred 
1 0 ~ Entry Vector 
1 1 ~ Return 

The preceding table shows that if the assumed select line is 0, the preferred address is selected. If the assumed 
select is 1, the state of the subroutine stack must be interrogated. If the stack is empty (0), this is interpreted 
as the end of the operator and an EOP (End of Operation) signal is generated from the PROM. If the stack 
is not empty, it is interpreted as a normal return from a subroutine and the return address is selected. 

When the SLC is in a corrective cycle, the value of the Index Register overrides the assumed selection and 
selects the correct next address according to the following table. 

Index Cycle Type Next Address 

0 corrective invalid case 
1 corrective preferred 
2 corrective return 
3 corrective unused 
4 corrective alternate 
5 corrective alternate 2 
6 corrective alternate 3 
7 assumed assumed choice 

The Index column does not refer to the index number but to the binary value of the selected index. When 
the selected index equals 7, this tells the PROM that the assumed selection fs correct and the next cycle type 
will be another assumed cycle. Any index value other than 7 causes a corrective cycle. 

The module receives a group of signals from the SM which are the indices. These indices are arranged into 
8 groups of 4 bits each. The 3 selected conditions from the Condition Select Module in tum select 1 of the 
8 index groups. This selected 4-bit index has 3 bits of address select data and 1 bit of abort present cycle 
information. If the abort bit of the selected index is 0 the next system clock is masked to give the rest of 
the system time to abort the present cycle. If the address select portion of the index does not equal 7, the 
SLC abo.ts the next cycle by going into a corrective cycle. This also masks the clock because of the extra 
accessing time required in the CM. If the 4-bit selected index is all ones, then there are no aborts, no clocks 
are masked, the assumed address is the next address, and the next cycle is an assumed cycle. 

5-12 



B 5900 Reference Manual 
System Concept 

Interrupt routines are entered through this module. Micro and external interrupt detection signals are sent by 
the Interrupt Logic module. These lines address the PROM. The PROM is coded to give microinterrupts high­
est priority. When this signal is active, the PROM gives address selection bits which select the address 
dedicated to appropriate routine. The external interrupt is similar except it is lower in priority than the microin­
terrupt and also has a mask signal which prevents the external interrupt from being serviced. This mask line 
comes from the Program Controller and is active during edit mode. The SLC also insures that external inter­
rupts are serviced only between operators. 

When the SLC goes into a corrective cycle, the most significant address bit of the sequence memory address 
field is forced to one. This makes the three alternate addresses available by going into the upper 2K of memory 
as explained in the Sequence Memory section. This also means that the condition select bits and the indices 
in the lower 2K become invalid. To circumvent this problem, the selected index is captured in a register which 
is clocked by an unmaskable clock. 

The actual address selection is made by multiplexers which are selected by bits of the address select PROM. 
The outputs of these multiplexers are tri-stated with buffers of the maintenance address from the Maintenance 
Processor (MP). The MP also controls this tri-stating. 

INDICES -- I I l 
INDEX SEL 

INDEX SEL INDEX -. SEL ABORT -2 1 14--. TSEN T~N 0 TSEN PRESENT 
SELECT SELECT SELECT SELECT 

l I J 
INDEX 1 ABORT -

+ 
LOOK AHEAD 

NANO 

' I MASK JSELCOND-

INDICES 

INDEX REGISTER 
CLK 

CLK PROM ..... PARITY PAR ERR..-

INDEX l 
- STORE CHECK 

1 EOP 
~ ~ ~ 

NEXT ADDA_.. 

ADDRESS SEL MAP 
SEL 

EN 
NEXT ADDRESS SELECT 

PROM 

Ii~ p ~ • L µ l l~ 
ABORT MICRO. EXT EXT PREF CON UP AAJ AA2 AA1 PREF RTN EV MAIN MACM 

XRUPT XRUPT MASK RTN CLK 2K ADDA ADDA ADDA ADDA 

MV4642 

Figure 5-7. State Select Module Block Diagram 

5011034 5-13 



SUBROUTINE STACK 

B 5900 Reference Manual 
System Concept 

This module facilitates microprogram subroutining. The module is a last in - first out (LIFO) stack. The stack 
is pushed down with the modified present address to the control memory during states that call subroutines. 
States that call subroutines are identified by an extra bit added to the calling state address. If this bit is high, 
then a call state is identified. Another bit following the enter bit is a return address offset bit. This bit is added 
to the least significant 4 bits of the calling state address which becomes the return address in the stack. These 
two bits are used by the subroutine mechanism only, but are a part of the preferred address (from the control 
memory) and the three alternate addresses (from the sequence memory). Calling can occur in the preferred 
cycle or correction cycle, as can returning. In a return, the address at the top of the stack becomes the next 
address to the control memory. The stack is then popped. Provisions are made for handling 14 levels of sub­
routine nesting. Subroutine stack overt1ow error condition is reported when the stack capacity is exceeded. 

No stack action is taken upon a return when the stack is empty. The SLC interprets this as an EOP. The 
stack can be conditionally flushed with the Program Controller C-bus interface. 

PROGRAM CONTROLLER 

The Program Controller provides facilities to map operators into entry vectors for the SLC and to extract and 
build parameter words from the code stream to transfer to the DP. 

Upon receiving an EOP from the SLC, the PC begins working on the next operator. While the SLC executes 
the present operator, the PC fetches the next operator and gets the entry vector and parameter word associated 
with it. Figure 5-8 is the Program Controller block diagram. 

The PC consists of the following modules: 

Syllable Prep 
Operator Map 

Parameter Prep 
Control 

M BUS M BUS 

NEW CODE PSI 
PSI WORD HIST 

~ 

SYLLABLE PREP 

SYLLABLE 

-. 

M BUS ] LAMBDA/ 
DELTA 

PARAMETER • WORD VALC 
PAR 

CONTROL 
PARAMETER PREP 

SYLLABLE j 
PRESENT PSI 

t CONTROL 

MV4643 

OPERATOR MAPPING 

• ENTRY 
VECTOR 

-
STORED CONTROL MODULE 

CONTROL 

~ t ' 
PCFETCH CONDS EOP ABT PCLD NOP 

r----
c 

I-- B 
u 
s ......_ 

Figure 5-8. Functional Block Diagram of the Program Controller Module 

5-14 



SYLLABLE PREP MODULE 

B 5900 Reference Manual 
System Concept 

This module extracts one syllable at a time from program code words and keeps track of where in the code 
stream the PC is operating. To minimize the effect of word boundaries in the code stream, the PC can hold 
two program code words in buffers. One buffer is a working register which does all the syllable alignment. 
The other buffer is a latch which holds the second word until the code register has emptied. The code register 
is loaded such that shifting one bit position effectively shifts the code word 1-byte (syllable). By this method 
of shifting and by using the 50ns clock, the PC has the potential to process 4 syllables in one machine cycle. 

The PC also utilizes shift registers to monitor the present program syllable index (PSI). By shifting a bit in 
a PSI register whenever the code register is shifted, the PC can keep track of the byte index into the code 
word. This counter enhances performance since no decoding of PSI value is necessary for control purposes. 

Because of the shift method for extracting syllables, special circuitry is necessary for PSI initialization. To 
accomplish this, another counter is used, that is loaded with the decoded new PSI value. By forcing the code 
register and PSI ring counter to shift as the initial PSI ring counter decrements, the proper alignment is accom­
plished in the code register. 

The PC must keep track of the PSI at the beginning of every operator for possible use by the SLC. To do 
this, the present PSI is stored in a register at the beginning syllable of every operator. The output of this regis­
ter is the next operator PSI history. This information is available to the SLC and is also stored again in a 
different register when the next operator is started. The output of this register becomes the present operator 
PSI history and is also available to the SLC. The PC also checks the tag of the code word and generates 
an error condition when the SLC executes an incorrect code word. The PC also manages a register which 
indicates the Present Operator PWI value. This register is loaded by the SLC when a Branch Condition has 
taken place. The PC adds 1 to this register whenever an operator that just started has crossed a Word 
Boundary relative to the last operator executed. 

The PC makes its own memory accesses. When the code register empties, the next word in the buffer is loaded 
in the code register and a PC memory request is sent to the Memory Control. Figure 5-9 is a functional block 
diagram of the Syllable Prep Module. 

OPERATOR MAPPING MODULE 

This module contains a lK by 24 PROM, an output register, and parity checkers. The PROM is addressed 
by the selected syllable from the Syllable Prep module and also by two feedback bits from the output register. 
These two bits are the most significant bits of address and divide the memory into 4 256 address portions. 
The four sections of memory contain data for primary mode, edit mode, and variant mode operators. One 
256 address portion is not used (addresses 000 - 255). This memory contains basically an entry vector and 
control bits for each operator. The entry vector is the starting address to the algorithm in the microprogram 
which implements the operator. Figure 5-10 shows the Operator Mapping Module block diagram. 

The edit and variant b!ts provide information to the control module and address the PROM. Edit, variant, 
and primary mode operators are housed in the same memory. All locations in the variant and edit sections 
of the PROM memory always return to the primary mode. 

5011034 5-15 



MV4644 

5-16 

p 

A 
R 

T 
y 

ERR 

PAR 
ERR 

MBUS 

B 5900 Reference Manual 
System Concept 

MBUS MBUS 

DATA IN DATA OUT 

BUFFER IN 

CODE 
WORD 

CODE REG 

LATCH 

NEW PSI 

SHIFT 

LOAD 

BUFFER OUT 

INITIAL PSI 

ZERO 

PSI HISTORY 

4 

I 

ENABLE 

SYL SHIFT 
CODE 

LOAD 
CODE 

XFER LOAD PRES TSENPC 
PSI PSI PSI 

Figure 5-9. Syllable Prep Module Block Diagram 

MV4645 

CODE SYL 

OPMAP 

1K X 28 

OPMAP REGISTER 

VARIANT 

p 

A 
R 

EDIT 

CONTROL 

T 
y 

ENTRY PAR LOAD 
BITS VECTOR ERR OPMAP 

Figure 5-10. Operator Mapping Module Block Diagram 



B 5900 Reference Manual 
System Concept 

PARAMETER PREP MODULE 

This module contains registers to build and hold parameter words. After a PROM output register is loaded 
with the location addressed by the operator code, the syllables of parameters, if any, are loaded one by one 
into the parameter building register. When the last parameter syllable is loaded, the PC is through with that 
operator and will have the code register pointing at the operator code of the next operator and waits for the 
EOP. The Parameter prep module is diagrammed in Figure 5-11. 

After an EOP, the system clock starts the PC on the next operator. This also causes the contents of the build­
ing register to load into the holding register. The holding register provides the appropriate delay for the 
operator being executed to obtain its parameter word. 

ENABLE 

LOAD 
~ 

CLEAR_., 
~ 

TSEN PAN PAR 
XFER CLR 

MV4646 

M BUS 

+ 
DATA OUT l 

BUFFER OUT 

• 
PAR3 PAR2 PAR1 

PARAMETER HOLDING 

~ • PAR3 PAR2 PAR1 

PARAMETER BUILCllNG 

~ • 

LOAD LOAD LOAD LOAD 
SYL4 SYL3 SYL2 SYL 1 

• 

LAMBDA/ 
DELTA 

• 

VALC PAR 

-~ 

VALC 
HOLD 

• 
VALC 

REG 

~ 

SYL 

__ LOAD 

~ 

VALC VALC 
LOAD XFER 

Figure 5-11. Parameter Prep Module Block Diagram 

PC CONTROL MODULE 

This module is responsible for the ti1,11ing and control of the PC. Relying on the fast clock for performance, 
the PC must keep track of the relationship of the fast clock to the system clock. To do this, a ring counter 
is clocked with the fast clock. This provides phases of the system clock. The· ring counter is synchronized 
to the system clock. 

Another critical timing period is the machine cycle immediately following an EOP. This indicates the first clock 
cycle of the next operator to the PC and to commence decoding. The signal which accomplishes this is called 
SYNC/ and is set by a system clock after an EOP. 

5011034 5-17 



B 5900 Reference Manual 
System Concept 

The PC must have a signal which indicates that the operator is finished being decoded and the parameter word 
has been built. The DONE/ signal does this and renders the other modules inactive until SYNC/ goes active 
again. 

To prevent the Syllable Prep module from running ahead of its memory accesses after completing a code word, 
the PC waits until memory supplies another code word. The signal IDLE/ renders all modules inactive until 
memory responds with PCLD/. Then modules again are active until they are DONE/. 

MEMORY AND MEMORY CONTROLLER 

The B 5900 memory is a high speed, single bit error correcting RAM memory with storage capability of up 
to 512 thousand words (1 million if extended memory option is utilized). 

Memory Control boards 1 and 2 are located in the B 5900 CPU backplane. Memory Control board 3 is located 
in the B 5900 memory backplane along with 5, 10, 15, or 20 RAM storage boards, a Regulator board, and 
a Terminator board. 

MEMORY CONTROLLER FUNCTIONAL DESCRIPTION 

The MC receives commands from the SLC by way of the 30-bit C-bus. In addition, the Program Controller 
may request a memory cycle by way of a direct interface. Memory Controller address, Write data, and Read 
data are transferred between the B 5900 system and the MC on the M-bus. Various control signals between 
the MC and other system modules are communicated by way of direct interfaces. 

Memory Controller board number 1 (MC/l) contains Write and Read data latches and buffers as well as Read 
data error correction and detection circuitry. Write data latches store write information from the M-bus upon 
receipt of a Write Data Available signal on the C-bus. The latched Write data and the check bits are buffered 
and transferred on the M-bus. Read data syndrome bits are generated from the Read data and Read check 
bits to determine if an error is present. Single bit and multiple bit errors are detected and single bit errors 
are corrected, when error correction is enabled. The corrected Read data is transferred to the M-bus. Odd 
parity is checked on M-bus transfers to MC/1, except during maintenance modes, and is generated for M-bus 
transfers from MC/1. 

Memory Controller board number 2 (MC/2) contains the control signal and address interface between the Mem­
ory and the B 5900 system. Cycle types are decoded and assigned priorities, and the cycle initialization is syn­
chronized to the system clock. Control signals between MC/1 and MC/2 are transferred over two frontplane 
cables. Odd parity is checked and generated in the same manner as MC/1. 

Memory Controller board number 3 (MC/3) generates the timing signals for all cycles (including Refresh) re­
quired by the storage boards, MC/1, and MC/2. A Cycle Start signal from MC/2, or a Refresh signal will enable 
the shift register that generates the internal timing for the Memory Controller. 

The 128K X 12 RAM storage board assemblies contain % dynamic RAMs, and Read data, Write data, and 
control signal buffers. 

The Regulator assembly contains a -5 Volt regulator, + 12 Volt regulator and control sequence circuitry. Power 
on/off sequencing, over and under voltage detection/shutdown, current limiting and power interface signals are 
provided in this module. Power control signals interface to the Regulator by way of a backplane connector. 
Figure 5-12 represents the Memory Control module functional block diagram. 

5-18 



C-BUS 

M-BUS 

M SY STE 

BACKP LANE 

RAWD c ---
±5V c PS_... 

MV4647 

--

REGULATOR/ 
CONTROL -

SEO MODULE 

Timing Section 

B 5900 Reference Manual 
System Concept 

128K I l .... 
126K X 

1--

r---1 
12 

.. 
~ 128K X 

12 
1--

t----1 

MEMORY 

X 58 TO 512 X 58 

-~--~ 128KX I 12 

----~ 
~ 

128K X 
CONTROL 1------~ 

~ ~ 
12 

128K X 
t--

t-- 12 

POWER TO 
~STORAGE 128K X 

BOARDS 12 
t--..--

1 ST 

Figure S-12. Memory Controller Block Diagram 

---~ 
t_j 

----~ 
Ll 

ORAGE CARDS 

The Timing Section accepts interface control signal's from the B 5900 CPU and generates all timing signals 
for all cycles for the Module Control Assemblies, storage board assemblies, and the MC output interface. If 
the decoded operation control signals from the CPU indicate that a memory cycle is requested, and an abort 
present cycle signal is not received, the cycle type signals will cause the appropriate timing sequence to be 
initialized. The Timing Section also contains the 15 microsecond memory-refresh counter and gating signals. 

MESSAGE LEVEL INTERFACE PORT (MLIP) 

The MLIP functions are divided into the hardware module groups as shown in the MLIP block diagram, Figure 
5-13. The modules are the following: 

Controller 
Status Tester 
Longitudinal Parity Checker 
Strobe Logic 
Timer 
MLI Bus Transceiver 
Parity Generator/checker 
MLI/MLIP Word Selector 
Odd/Even Byte Selector 
MLIP Write/Read Buffer 
16-Bit Word Selector 
C-bus Decode 
C-bus Register 

5011034 5-19 



Vo 

N 
0 ~ 

PARITY r-
GEN/CHK. 

~ rr:o .____ ffi 1-4---
Cl)> 

0 ::::> -

:J !c ... ID W u r- - Cl) 
::!: 0 _J z 

a. ::!: <( 
a: -...___!:__ -.. PARITY t---

GEN/CHK. 

('-:::::. ~~ .___ w 
Cl)> - ::::> -

- I- ..... ID ~ 
_J a: ~ - -Cl) 
::!: 0 _J z 

a. ::!: <( 
a: 
I--

PARITY 
~ t---i 

GEN/CHK. 

('-.q ~14--,____ w 
U>> 

N ::::> -
- I- ..... ID ~ 
_J a: ~ - Cl) 
::!: 2 _J z 

::!: <( 
a: -\.......) ...__!::_ 

PARITY ... t---
GEN/CHK. 

f"':1 
~ 

.___ ffi~ 
Cl)> .., ::::> -

- I- .. ..... ID ~ 
_J a: - - Cl) 
::!: 0 _J z 

a. ::!: <( 
a: 

' ..) ,__!::;_ 

MV4648 

,.....; 
.-

("'C 

ODD/EVEN 
BYTE SELECTOR 

WRITE 
DATA 

BUFFER 

• 
51-BIT 

__... r--- MLl/HDF -
LONG. PARITY __., LONG. PARITY HOLDING WORD ~ GENERATOR - CHECKER __., 

REGISTER - SLOT 

READ _., DATA - -Cl) Cl) 1 j_ BUFFER ::::> ::::> 
ID ID 

r--<1 
a. :J 

16-BITWORD 0 
:c ~ 

SELECTOR 

~ 

C-BUS 
DECODE 

l [STATUS TESTER~ ~ 
C-BUS 

CONTROLLER r REGISTER 

[ TIMER ~ ~ 
i... 

"-"' 

'-"' 

Figure S· 13. Block Diagram of the Message Level Interface Port 

~ 

14--

Cl) 

::::> 
ID 

::ii! 

~ 

'-..) 

~ 

14-" 

Cl) 

::::> 
ID 

14-- u 

,,.... 

t:C 
Vi 

en,§ 
'< 
~~ 
(1) (1) 

3~ 
'"I 

(1 (1) 

0 ::s ::s (') 
(') (1) 

.g s:: 
...+ $l) 

~ 
e:.. 



CONTROLLER 

B 5900 Reference Manual 
System Concept 

The Controller handles the asynchronous communications between the CPU and the MLI, the special timing 
and protocol required to send and receive information from the MLI and, on command from the SLC, the 
proper assembling and disassembling of the 16-bit word of information. 

The SLC initiates the SEND cycle with two sequential commands. During the first command, the SLC pres­
ents 51 bits of information on the M-bus and a command to the Controller to initiate a SEND cycle. The SLC 
supplies on the M-Bus the port number, the start byte location, and the number (0-8) of bytes to send. The 
next command requires the SLC to supply on the M-Bus the data required to send to the MLI. The SLC 
can then continue its normal sequencing. The Controller stores the M-bus word in the Register and sends 16-bit 
words starting at the location specified for the number of bytes requested. 

To initiate the READ cycle, the SLC sends a command to the Controller. The SLC supplies on the M-Bus 
the port number, the start byte location, and the number (0-8) of bytes to be read. The SLC can then continue 
normal sequencing. 

The Controller reads the 16-bit MLI-bus into the MLI data Transceiver asynchronous to the MLIP timing. 
Upon the detection of the MLI data, the Controller will store the word into the bit field specified by the SLC 
and decrement the receive count. When the count reaches 0, the FINISH signal is generated. The SLC can 
then initiate another read command and simultaneously read the MLIP data. 

Following the SEND and READ cycles, the SLC sends a command to the MLIP Controller to send the Longi­
tudinal Parity Word (LPW). The SLC supplies on the M-Bus the port number the start byte location of 0, 
and two bytes to be read. The MLIP will send the value of the LPW to the MLI with the appropriate protocol. 

STATUS TESTER 

This module compares the status of the MLI previous state with that of the present state transmission. This 
module will make the comparison at the time of the Data Link Processor strobe. The previous state status 
is updated at the time of the Start 1/0 (SIO) strobe. 

LONGITUDINAL PARITY GENERATOR 

When commanded, this device will generate an accumulative parity for each vertical bit for the transmission 
and reception of MLI data. The Controller is in command of this module. A command from the SLC is used 
to clear the previous parity value, and a command from the MLIP Controller will generate the vertical parity 
of the input in conjunction with the parity of previous inputs. 

LONGITUDINAL PARITY CHECKER 

This device will test the LPW generated by the MLIP versus the one received from the DLP. The test is 
accomplished by generating the LPW of the incoming value with the stored value. 

STROBE LOGIC 

This device is designed to synchronize the DLP strobe with the system clock. 

TIMERS 

Two analog timers are used in the MLIP. The first timer is used to timeout the DLP response to a MLIP 
command. The timeout period is preset to 8 microseconds. The timer is set by the MLIP strobe IO signal 
and reset by General Clear. The second timer is used to timeout the DLP busy. The timeout period is preset 

5011034 5-21 



B 5900 Reference Manual 
System Concept 

to 2 seconds. The timer is set by a SLC command and reset by General Clear. The timers generate a condition 
of a timeout error in their normal reset state. 

MU BUS TRANSCEIVER 

This device connects outputs from the MLIP and inputs to the MLI bidirectional data bus. It is under com­
mand of the MLIP Controller. 

PARITY GENERATOR/CHECKER 

This module generates the odd parity to be sent with the MLI write data and tests for odd parity on the MLI 
read data. 

MLl/MLIP WORD SELECTOR 

This module determines the input for the longitudinal parity generator whether sending or receiving MLI data. 

ODD/EVEN BYTE SELECTOR 

This module determines if the start location for loading the system memory word is odd or even. 

MLIP WRITE/READ BUFFERS • 

These modules transfer the M-bus data in and out of the MLIP register. The write buffer is controlled by 
the MLIP Controller while the read data buffer is controlled by the bus controller. 

16-BIT WORD SELECTOR 

This module, under command of the Controller, reads a 16-bit word from the 51-bit register and also the LPW. 
This determines the MLI word for transmission. 

C-BUS DECODE 

The module monitors the C-bus destination code. When the proper code for the MLIP is detected the decoder 
enables the C-bus register to read the C-bus commands. 

C-BUS REGISTER 

This module stores the commands for the MLIP from the control bus. 

MAINTENANCE PROCESSOR AND INTERRUPT TIMERS 

The following modules are shown in Figure 5-14. 

The Interrupt Controller 
The Error and Event Logic 
The Maintenance Processor 

The first two modules contains all external interrupt and microinterrupt logic. 

There are 3 interrupt counters: 

5-22 

Interval Timer (12 bits) 
Loop Timer (one shot approximately 2 seconds) 
Time of Day (TOD) Timer (36 bits) 



5011034 

SLC { 
PC 

1 MC 

HOP { 

B 5900 Reference Manual 
System Concept 

CBUS 

MBUS 

MCP BRANCH CONDITION 

INITIATE MICRO-INTERRUPT 

PROGRAM CODE ERROR 

LOCAL MEMORY ERRORS 

10 FINISHED 

--
INTERRUPT 

CONTROLLER 

{ GLOBAL MEMORY ERRORS 
HCMI 

GLOBAL MEMORY INTERRUPT -- IT1 

SLC 

SLC 

MV4649 

~ ~~~T 
~ SUPER HAL TED 

' SYS PERR 
J WE [2:3] 

t MAINT ADDRESS 

EVENTS 

-
---

ERROR LOGIC 

IT2 

-.. 
--~ 

MP 

CONTROLLER 

~ 

TO CONSOLE 
HALT 

EVENT LOGIC - CLK 

---

-

-------
__.. -

- I 

COM MAN 

COM MAN 

DATA 

STATUS 

ACK NOW 

SERVICE 

D 

D STROBE 

LEDGE STROBE 

REQUEST 

Figure 5-14. Maintenance Processor, Interrupt Controller, and Error Logic Modular Layout 

5-23 



B 5900 Reference Manual 
System Concept 

The SLC sets and arms the Interval Timer. If the Interval Timer goes to 0 while armed, it generates an Interval 
Timer Interrupt and disarms itself. Whenever the SLC acknowledges an External interrupt, it automatically 
disarms the Interval Timer. Figure 5-15 shows the Interrupt Controller block diagram. 

In normal mode (non-maintenance), the loop timer is a free running counter. Every occurrance of EOP sets 
it. If it times out, a Loop Timer interrupt is generated. 

POLL INTERRUPT 

EPOLL INTERRUPT 

MABUS 

CBUS 

MBUS 

10 FINISHED INTERRUPT 

INTERVAL TIMER INTERRUPT 

GLOBAL MEMORY INTERRUPT 

TOD INTERRUPT 

EXTERNAL INTERRUPT 

10 FINISHED INTERRUPT 

GLOBAL INTERRUPT 

GLOBAL ALARM INTERRUPT 

ADDRESS PARITY INTERRUPT 

INVALID ADDRESS INTERRUPT 

MBE INTERRUPT 

TX1 INTERRUPT 

TX2 INTERRUPT 

LOOPTIMER INTERRUPT 

PC INTERRUPT 

ERROR INTERRUPT 

MV4650 

.. .. 
-. -

-. -
--

--
-
-
----

MONITOR BUFFER -. --
-

EXTERNAL 

INTERRUPT 
LOGIC 

..... ---

MICRO 
INTERRUPT 

LOGIC 

Figure 5-15. Interrupt Controller Block Diagram 

The TOD counter is set by the operator from the Console. If TOD is not reset, it counts up to 45 hours. 
The External interrupts are sent to the SLC as branching conditions and they are handled in two groups. 
Within each group all conditions are sampled and cleared simultaneously. 

Group 1 contains: 

1. Interval Timer Interrupt (masked by Normal/Control State flip-flop) 
2. IO finished Interrupt (masked by Normal/Control State flip-flop) 
3. Global Memory Interrupt (masked by Normal/Control State flip-flop) 

5-24 



Group 2 contains: 

B 5900 Reference Manual 
System Concept 

1. POLLREQ Interrupt (cannot be masked by Normal/Control State flip-flop) 
2. EPOLLREQ Interrupt (cannot be masked by NormaVControl State flip-flop) 

The Normal/Control State flip-flop provides the common mask for all External interrupts. Loading of the Nor­
mal Control State flip-flop is done from the M-bus under control of the SLC. The microinterrupt logic collects 
all microinterrupt signals, and stores them in separate flip-flops as branching conditions to be used later by 
the SLC. The occurrance of a microinterrupt generates the signal "Initiate Microinterrupt" which forces the 
SLC to a fixed location that is common to all microinterrupt handlers. 

The microinterrupts are as follows: 

Address Parity Error 
Multiple Bit Error 
Invalid Address Error 
Loop Timer 
Program Error 
Scan Bus Read Error (TX l) 
Scan Bus Write Error (TX2) 
Bus Detected Parity Errors (M-bus, C-bus, PROMs) 

Only Global Memory Alarm can occur simultaneously with every one of the other microinterrupts. If two mi­
crointerrupts occur simultaneously, Global Memory Alarm has higher priority. 

When any kind of interrupt routine is entered, a soft counter maintained in the register file is incremented 
by one. The counter is set to 0 when an EXIT or RETURN operator is executed, that is, a return from inter­
rupt. 

If the count reaches the value of five, the microprogram branches to the Superhalted state, and interrupts the 
console. 

ERROR/EVENT LOGIC 

This logic provides the means of halting the system clocks under Maintenance Processor control. Events are 
selected from the console and are active only if the Event logic is enabled. The event signals are described 
as follows and are primarily used for the maintenance function. 

EOP 
This signal is generated by the SLC at the end of an operator. EOP will allow the system user to check 
the result of a single operator. This event is maskable by setting the correct mask bit in the clock snake. 

Superhalted 
The Superhalted signal inhibits the system clock under MP control and is setable from the SLC. Super­
halt is non maskable. 

HOLD-1/ 
This signal is valid at the end of a memory cycle. HOLD-1/ is maskable from the clock snake. 

5011034 5-25 



MABUS CONSOLE BUS 

-

SNAKE IN 

RESULT 

B 5900 Reference Manual 
System Concept 

-. MBUS 

• - -M[51:8) T 
r+ 

BYTE BYTE BYTE 

5 4 3 

J 

-

BYTE 

2 

SNAKE IN RESULT DATA RAM ADD SNAKE ~ v BUFFER 

'l 
SEL SEL SEL 

[ 

COMMAND DATA 

M BUS+ CONSOLE DATA 

~ 
CONTROL 1--LOGIC 
MEMORY 

..._PREFERRED ADDA BUFFERS I-- CONTROL , 
NEXT ADDA 

HCP 
CONTROL 
MEMORY 

HCP [9:10] 

MV4651 

Figure 5-16. Maintenance Processor Control Logic 

MAINTENANCE PROCESSOR CONTROL MEMORY 

1 -
l 

BYTE BYTE . 
1 0 

TO 
SLC 

L_, MA --

The Control Memory contains command vectors necessary to execute the MP Control algorithms. A command 
vector consists of a command field and a next address field. The command field contains the control signals 
needed on the various internal and external interfaces for the proper execution of the commands. The next 
address field, together with branching conditions generated internally and in other modules, determines the 
address of the next command vector. 

DATA EXCHANGE LOGIC 

The Data Exchange Logic consists of an 8-bit data buffer that can be inserted serially between the input and 
the output of any shift register of the system that is under the control of the Maintenance Bus. 

The Data Buffer is also connected in serial fashion to a 44-bit shift register called the HCPBUFFER. The 
HCPBUFFER provides data to and reads data from the M-bus as well as the maintenance address register 
that is under the control of the MP Control Memory. 

5-26 



B 5900 Reference Manual 
System Concept 

The Data Buffer also transmits and receives data and control to and from the Console. The combination of 
the MP Control Memory and the Data Exchange logic allows the Console to read ad set any storage element 
of the system, and thus makes the following operations possible: 

AlterDisplay any register or memory word 
Initialize the system to any given state 
Run System Test from the Console 

5011034 5-27 





B 5900 Reference Manual 

SECTION 6 
B 5900 INPUT/OUTPUT DATA COMMUNICATION SUBSYSTEM 

MLIP GENERAL INFORMATION 

The MLIP is a semi-autonomous control device, which is used to create and control interfaces between the 
software Master Control Program (MCP) and the Input/Output Data Communication (IODC) subsystem. Semi­
autonomous means that the MLIP must be initiated into operation by the MCP, through execution of a CUIO 
operator code. Once the MLIP is initialized into operation, the microprogram takes command, and subsequent 
MLIP operations are determined by the microprogram logic, rather than by the MCP. 

In addition to creating and controlling IODC interfaces, the MLIP also performs other system functions that 
involve the use of timers or time-counting circuits. Some of these timing functions are controlled by inputs 
to the MLIP from the software operating system and others are automatic functions of the MLIP logic circuits. 

IODC SUBSYSTEM GENERAL INFORMATION 

Peripheral I/O devices in a B 5900 system (see Figures 6-1 and 6-2) are controlled by Data Link Processor 
(DLP) adapters. A unique DLP adapter is used for each type of peripheral device connected to a B 5900 sys­
tem. A DLP adapter contains micro-coded control programs which are unique to the type of I/O device the 
DLP controls. 

DLP adapters are card-package modules which plug into a IODC-Base module backplane of the Central Pro­
cessing Cabinet. The IODC subsystem is connected to the MLIP module of the CPU by means of external 
25-wire Message Level Interface cables. There are from 1 to 4 MLI cables connected to the MLIP module, 
and each MLI cable interfaces one IODC-Base module to the MLIP module. (See Figure 6-3.) The system 
is able to run on just one UIO base module. Two are used to preclude inherent delay due to required intercom­
munication between an NSP and an LSP that would have to be located in the same base module. Also, this 
would require an additional distribution card and path select module. 

The 25-line MLI cable contains 17 lines used to transfer a word of data (16-bits of data plus an odd-parity 
bit) between the MLIP and the UIO subsystem. This cable also contains 4 lines used to send DLP sequence 
counts and result status to the MLIP module. One line of the MLI interface is a system strobe-signal line, 
used by the MLIP to initiate actions in the IODC subsystem logic. Another line is a strobe signal line used 
by the IODC subsystem to to initiate actions in the MLIP logic. The remaining 2 lines are used for various 
synchronizing logic levels and signals, during an MLI line communication process. 

5011034 6-1 



B 5900 Reference Manual 
B 5900 Input/Output Data Commmiication Subsystem 

BASE CONTROL CARD (BCC) --~ 

PATH SELECTION MODULE (PSM) --~ 

IODC BASE MODULE 

0 

INTERFACE PANELJ 

I I 
I I 

--Qf1-~~BLE ___ _J I 
TO MLIP f ~J I 

t--{](}-~l~BLE _____ J 

MAINTENANCE CARD ---~ 

DATA LINK --­
PROCESSOR (DLP) 

FOREPLANE-

COMMON 
FRONT-END 
CARD (CFE) 

PERIPHERAL 
DEPENDENT 
CARD (PDC) 

TO/FROM ~I l RIBBON CABLE 
PERIPHERAL ~----u >-------------------------------' 
DEVICE 11 

TEST BUS TO MIP 0 RIBBON CABLE-MA INT 
t---------------------------------J 

TERM OR TO NEXT~ 11 
MAINT BUS CABLE 

MV4652 

6-2 

Figure 6-1. IODC Base Module With One DLP 



IODC BASE MODULE -

INTERFACE PANEL -

MV4653 

5011034 

B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

COMMON FRONT­
END CARD 

MAINTENANCE CARD 

-- DLP MODULE 

PERIPHERAL DEPENDENT BOARD 

MLI INTERFACE 

TO/FROM MLIP 

- INTERCONNECT CARD 

Figure 6-2. B 5900 IODC Base Module Organization 

FOREPLANEJUMPERS 

/OPTIONAL JUMPER 

TO 

PERIPHERAL 

UNIT 

6-3 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

~ 
~ 

0 CONSOLE ODT 
AND 

MAINTENANCE ~ 
DISPLAY r DUAL 

MINI DISK 

CENTRAL SYSTEM CABINET 

1/0 BASE MODULE 
I 1 p p 
I 0 R T p 
I I D I A A A 

MEMORY MEMORY T N p c c 
I I T 

K 

l l E E K 
R 

MEMORY MEMORY 
....C.ONTROL CONTROL OLP OLP OLP OLP OLP 

BUS STRUCTURE 1/0 BASE MODULE 

L a 1--l IL+-s u 
.--I p A 

1--l ~ 
D t------1 ~ 

~L_I_ LA 1--l IL+-
CENTRAL ~ ~LI 

PROCESSOR MLIP .__ 
MLI (OPTIONAL) 

MODULES ....- L 
1/0 BASE MODULE 

~ 
(OPTIONAL) 

-.- I 

1/0 BASE MODULE 

,___ 

ODT : OPERATOR DISPLAY TERMINAL 

MLIP : MESSAGE LEVEL INTERFACE PORT 

MLI : MESSAGE LEVELiNTERFACE 

L-----------------------------· 
L--------------------------------J 

ADDITIONAL 1/0 SUBSYSTEM CABINET 

MV4613 

Figure 6-3. B 5900 IODC and System Organization 

6-4 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

INTERFACE~ LINE EXPANSION MODULE 
PANEL 

I r I 

--n,..r, BASE MLI CABLE o - --1- 0 I 
TO/FROMMLIP - !-+---------, I I 

LLJ I 

11 l 0 
-

0 -1° i 
INTRA _n.-rl BASE MLI CABLE I 0 1 Io+- -1 

PANEL MLl~r U• 1-+---------1 L 1 1 1 
JUMPER I -L_I I - o o I I at--, I 

II I I II L.J I I 

LEM EXCHANGE 
DISTRIBUTION CARD 

c -, 

I 
I 
I 
I 
I 
I 

a. 
Cl 
<( 

1-z 
(( 
:? 

I 1 : I 
L_fll..rk-~ASE M~ABL':__ __ IL ..._ ___ _j-+--+---"'-1--1---+--------1----

IJ "LJ I - - - - - I A.>-- I II L _____ --1------J 
.-'°, BASE MLI CABLE j _______ J 

r---{I f-f---------

l 1( I 
TO/FROM I Dr'"J RIBBON CABLE . ...--.. 
MAINTENANCE I 1-rfl~ r 0 VDISTRIBUTION CARD 

INTERFACE w I ~I I 
PROCESSOR al I <( I I 0 

51 ~I~ I 
~1 51~ I 
:?I a:lu 
~I ~I I 

,.._ 
a. 
Cl 
<( 

1-z 
(( 
:? 

? 

~I ~ Lo("J RIBBON CABLE I ......... 
~I c,__j ~i+-------------------1----i 

~I II ~l ____ _____, 

MAINT--_j 
TERMINATOR 

MV4654 

: I 
1 _ --o(j- BAS~MLl.£ABLi:_ ____ J 

II 
Figure 6-4. Multiple IODC Cable Connections 

B 5900 1/0 DEVICE OPERATION PROCESSES 

1/0 peripheral device operations begin when the MLIP module uses one of its MLI interface cables to commu­
nicate with the IODC subsystem. This interface communication must follow an established MLI interface pro­
tocol. The protocol requires that at least 4 MLI data words of IODC control information, in fixed word for­
mats, be passed from the MLIP module to the IODC-Base and DLP logic. The entire process of meeting the 
requirements of the MLI protocol is commonly referred to as a connection sequence. 

The 4 required data-words transferred during a connection sequence are: 

An MLI Address word, which identifies the Base module and DLP addressed. 

Two Descriptor-link words, which identify the MLI (host system) making the connection, and contain 
the memory address of the Input/Output Control Block that initiated the connection sequence. 

5011034 6-5 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

A Longitudinal Parity Word, which is used to verify that the preceding 3 words are valid connection 
sequence words. 

An MLIP module 1/0 device initiation process begins when the Data Processor module executes a CUIO oper­
ator code, and transfers the starting memory address of an IOCB to the MLIP logic. The MLIP then causes 
a connection sequence to be performed. 

1/0 OPERATIONS 

Input/output operations are provided by the Message Level Interface Port (MLIP). The MLIP interfaces with 
the software through the CUIO operator and the 1/0 Finished external interrupt. This section describes the 
details of that interface. The MLIP also communicates with the Message Level Interface. 

The CUIO operator is used to inform the MLIP about one or more 1/0 operations (IOCBs) which are to be 
performed. 

A CUIO operator causes the CPU to evaluate a present, unpaged, unindexed Word DD on top of the stack 
and to verify that the referenced operand contains an IOCB mark. If the operand does not contain an IOCB 
mark, an invalid operand interrupt will be generated. If the operand contains the IOCB mark, the address of 
the operand will be passed to the MLIP. When the MLIP indicates that it has received the address, the CUIO 
operator will execute to completion. 

The MLIP reads the memory word addressed by the CUIO operator and also verifies that the memory word 
contains an IOCB mark. (If the memory word does not, the MLIP will use the Error IOCB to indicate the 
error.) The MLIP verifies the validity of the Descriptor in the Command Queue Pointer word of the IOCB 
and also that the area it references is a Command Queue (by checking the control word for its queue mark) 
and then enqueues the IOCB (or the chain of IOCBs linked together) in the Command Queue. After the IOCB 
is enqueued, the MLIP determines if it should initiate the first command in the queue. 

INTERRUPT 
The MLIP raises an interrupt line to indicate to the CPU that an I/O Result Queue requires attention. (This 
interrupt interface does not contain any reference to a specific IOCB or Result Queue.) 

The MLIP will raise the interrupt line upon completion of an IOCB with any of following conditions: 

• The Cause 1/0 Finish Event bit of the MLIP control field in the IOCB is set. 
• The Exception bit of the MLIP result in the IOCB is on. The CPU is executing the IDLE operator 

(optional). 
• The Command Queue of the completing IOCB is empty. 

SHARED DATA STRUCTURES 
All communication between the MCP and the MLIP is through the use of the defined structures called 1/0 
Control Blocks (IOCBs) and Command Queue Headers. An IOCB contains the information necessary to per­
form one 1/0 operation. A Command Queue Header contains the information necessary for the MLIP to main­
tain the queue structures. Each IOCB can be linked with other IOCBs to form two types of linked structures: 
Command Queues and Result Queues. The queues allow the MLIP to execute chains of separate 1/0 
operations without direct MCP intervention. Command Queues are reference'd by way of Command Queue 
Headers. Result Queues are referenced by way of Result Queue Heads. 

6-6 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

Figure 6-5 depicts a structure with five IOCBs. IOCBs #1 and #2 represent I/Os which have completed and 
are linked together in one Result Queue. The Result Queue is Last In First Out (LIFO); in this example, IOCB 
#1 completed before IOCB #2. IOCB #3 is active and has been removed from the Command Queue. IOCBs 
#4 and #5 are linked in the Command Queue. IOCB #4 will be initiated next. 

In addition, Command Queue Headers can be linked together in a Horizontal Queue. 

,.... IOCB #1 (COMPL) RESULT 0 HEAD 

NULL - NEXT LINK r=l RES.O.H. J 
- COM.O.H. PTR. 

RES.O.H. PTR. 

-
IOCB #2 (COMPLl 

L__ NEXT LINK 

COM.0.H. PTR. 

RES.0.H. PTR. 

IOCB #3 (ACT) 

NEXT LINK (1) 

COM.0.H. PTR. 

RES.0.H. PTR . 

COMMAND 0 HEADER .... - IOCB #4 (Q'ED) 
COM.0.H. 

NEXT LINK r--
O.H. PTA - COM.0.H. PTA. 
Q.T. PTA 

RES.0.H. PTA. 

~ -.. 
IOCB #5 (O'ED) 

NEXT LINK .... NULL 

- COM.0.H. PTA. 

RES.O.H. PTA. --.. 

MV4709 

Figure 6-5. Command and Result Chaining 

5011034 6-7 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

IOCB 

The IOCB is a combination of MCP and MLIP work areas that contain both Data Descriptors and formatted 
operands. The Data Descriptors must be present and unpaged. The format of the IOCB is shown in Figure 
6-6. 

----, 
0 [CW CONTROL WORD 

[DLPAW DLP ADDRESS WORD 

2 [CCHP COMMAND QUEUE HEADER POINTER 

3 [SE LFP IOCB SELF POINTE:R 

4 [DLPCP DLP 1/0 COMMAND POINTER 

5 [DLPRP DLP 1/0 RESULT POINTER 

6 [DLPCRL DLP COMMAND/RESULT LENGTHS 

7 [RM RESULT MASK 

8 [ROHP RESULT QUEUE HEAD POINTER 

9 [NL NEXT IOCB LINK 

A [CDP MLIP CURRENT DATA AREA POINTER 

B [CL MLIP CURRENT 1/0 LENGTH 

c [MRSLT MLIP STATE AND RESULT 

D [STIME 1/0 START TIME 

E [FTIME 1/0 FINISH TIME 

F MCP 
• 
• 

MV4710 

Figure 6-6. IOCB Format 

Word zero, the Control Word, is a formatted operand containing the sixteen bit "IOCB mark" and the MLIP 
control field. It is initialized by the MCP and remains unchanged during the 1/0. Figure 6-7 depicts the IOCB 
Mark hex lOCB. 

(IOCB MARK) 

0 0 1 1 0 0 0 
47 43 39 35 31 ~7 23 19 15 11 7 3 

0 0 0 1 0 0 0 0 
46 42 38 34 30 26 22 18 (MLIP CONTROL) -----3.i 

0 0 0 0 1 0 0 0 
45 41 37 33 29 25 21 17 13 9 5 1 

0 1 0 
401 

0 1 0 0 0 
44 36 32 28 24 20 16 12 B 4 0 

MV4711 

Figure 6-7. IOCB Mark - lOCB 

6-8 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

MLIP Control Word 

Format of the MLIP Control field is given below. 

[0: 1] Queue at Head 
If this bit is on during the execution of the CUIO operator, the MLIP will insert the IOCB (or the chain 
of IOCBs) at the front of the Command Queue. 

[1:1] MLIP/DLP Command 
If this bit is on, the IOCB contains a command to be interpreted by the MLIP. When this bit is off, 
the command is directed to the DLP identified by the DLP Address Word. The exact nature of the com­
mand is indicated in the DLP 1/0 Command, which is accessed by way of the DLP I/O Command Point­
er. 

[2: 1] Attention 
If this bit is on, at the completion of the operation the MLIP will build an MLIP result that has both 
the attention and exception bits on. 

[3: 1] Cause 1/0 Finish Interrupt 
If this bit is on, the MLIP will cause the 1/0 finish CPU interrupt at the completion of the operation. 
If this bit is off, the MLIP will decide to cause the 1/0 finish interrupt using other criteria. 

[4:1] Memory Override/Memory protect 
If this bit is on, the MLIP will ignore the tag of memory words during transfer. If this bit is off, the 
MLlP will stop data transfer if attempting to read or write an odd-tagged word. 

[5:1] Input 
If the DLP goes to Read status and this bit is not on, the MLIP will flag a DLP status error and not 
allow the data transfer. 

[6: 1] Output 
If the DLP goes to Write status and this bit is not on, the MLIP will flag a DLP status error. To effect 
the echo command, both the Input and Output bits must be on; if both bits are off, an attempt to transfer 
data will cause a DLP status error and no data will be transferred. 

[7: 1] Output Zeros 
If this bit is on and the Output bit is on, the MLIP will send all zeros to the DLP. The MLIP will send 
bytes of zeros until its Current 1/0 Length counter is 0. It is an error if this bit is on at the same time 
the Input bit is on. The only valid incidence of "Output Zeros" is for magnetic tape erase. (Magnetic 
tape erase is the only operation where the DLP throws away the data that it gets from the host.) This 
feature is implemented as a general command so that the MLIP can remain transparent to the characteris­
tics of the different DLPs. 

[10:3] Tag Control 
The values of this field define how the tag is handled during data transfer. 

010 Transfer double byte tag. 

5011034 

Tags are treated as two additional bytes of data. On output, the 3 bits of tag are placed in the 3 
least significant bits of the most significant byte; the other 13 bits are set to 0. On input, the 3 
least significant bits of the most significant byte are placed in the tag bits of the word; the other 
13 bits are ignored. 

6-9 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

100 Force tags to single (0). 
Tags are not treated as data to be transferred. On input, the tag of each word is set to 0. On output, 
the tag of each word is skipped. 

110 Force tags to double (2). 
Valid on input only, performs as force tags to single except the tag of each word is set to double 
(2). 

111 Force tags to code (3). 
Valid on input only; the tag of each word is set to code (3). 

[ 11: 1) Word/Character-oriented Transfer 
If this bit is on, the MLIP Current Data Area pointer must be a word DD and the MLIP Current 1/0 
Length word will describe the length of transfer in words. If this bit is off, the MLIP Current Data Area 
pointer must be an EBCDIC string DD and the MLIP Current 1/0 Length word will describe the length 
of transfer in characters. 

(12: 1) Memory Direction 
If this bit is on, the MLIP will transfer data backward into memory. If this bit is off, the data transfer 
will be forward. If this bit is on and either the Word-Oriented Transfer bit or the Output bit is on, an 
invalid MLIP control field error will be returned. 

[13:1) Continue Count at End of Length 
When this bit is on (and the Input bit is true), the MLIP will not terminate data transfer when the MLIP 
Current 1/0 Length is zero; rather, it will allow the DLP to send data but will not store the additional 
data in memory. The Current 1/0 Length will continue to be decremented. If this bit is on and the Output 
bit is on, an invalid MLIP control field error will be returned. 

(14:1) Ignore Count Error 
If this bit is on, the MLIP will not se.t the Count Error Exception bit in the MLIP result field when 
the MLIP Current 1/0 Length is not equal to zero at the finish of the 1/0. 

(15: 1] Don't Count 
If this bit is on, the MLIP does not increment the active count when initiating the command or decrement 
the active count when it completes. This bit is intended for "cancel" operations. 

(16:1) Ignore Suspend All Queues 
If this bit is on, the MLIP will not suspend the IOCBs Command Queue when adding an IOCB to a 
Result Queue, regardless of the setting of the Suspend All Queues flag. 

[17:1) Immediate 
If this bit is on when the MLIP is looking at the first command in the queue (which occurs after the 
enqueueing step of the CUIO operator, because of an 1/0 finish, or while handling horizontally queued 
Command Queues), the MLIP will attempt to initiate the command regardless of the value of the active 
count or state of the Suspended bit of the queue. If the DLP is busy when the MLIP attempts to connect, 
the MLIP will, if necessary, attempt to add the Command Queue to a Horizontal Queue. 

(19:2] Reserved 
This field must be zero. 

The following table gives all valid combinations of the MLIP control field. Generic classifications such as 
MLIP OP, TEST, do not necessarily correspond to such classifications as TEST and READ, of the first four 
bits of the DLP 1/0 Descriptor. The bit value X means that the bit can be either on or off. 

6-10 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

Table 6-1. MLIP Control Field - Valid Commands 

17 16 IS 14 13 12 II 10 9 8 7 6 s 4 3 2 0 

I 
~ 

~ 
i Q 

I = ~ ~ 
~ ~ -eii fl2 

~ 
Ii.I ~ Ii.I 

§ ~ '"' a = ::;,Ii.I 

i 
~ !:! 0 ""' fl2 6l I;.) 

~ ;:;- ~ < 
Q ~5 I;.) 

I ~ I ~ t!l ~ 
Q 

~ 
~ ~..:i ~ ; ~ 

0 ii;" 
TAG ~ ::;, :J Ii.I 

t:I ..:i < 5 -< Q CONTROL 0 :! I;.) :! 

MLIPOP x x x 0 0 0 x I 0 0 0 0 0 0 x x I x 

TEST x x x 0 0 0 x I 0 0 0 0 0 0 x x 0 x 
INPUT x x 0 x x 0 I 0 I 0 0 0 I I x x 0 x 

x x 0 x x 0 x I 0 0 0 0 I x x x 0 x 
x x 0 x x 0 x I I 0 0 0 I x x x 0 x 
x x 0 x x 0 x I I I 0 0 I I x x 0 x 
x x 0 x x I 0 I 0 0 0 0 I x x x 0 x 

OUTPUT x x 0 x 0 0 I 0 I 0 0 I 0 I x x 0 x 
x x 0 x 0 0 x I 0 0 0 I 0 x x x 0 x 
x x 0 x 0 0 x I 0 0 I I 0 x x x 0 x 

ECHO x x 0 x 0 0 x I 0 0 0 I I x x x 0 x 

5011034 6-11 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

Word one, the DLP Address Word, is a formatted operand containing the address that the MLIP must send 
during the connection sequence to identify the path to the proper DLP. The conversion from unit number to 
address, the path to the unit, is done by the MCP when initializing the IOCB. Figure 6-8 shows the DLP ad­
dress word. 

0 

0 0 

0 0 

0 0 

MV4712 

Port 

(OLP ADDRESS> 

0 0 0 0 0 BCC 0 
47 43 39 35 31 ~1 23 19 ..12. 11 1 3 

0 0 0 0 0 s p 
LEM 0 L 

D 
46 42 38 34 30 26 y 22 018 ...li 10 E 2i t- L ~ 1= t- R M 

0 0 0 0 0 D T 0 0 p 
45 41 37 33 29 25 21 17 13 9 5 

0 
401 

0 0 0 0 0 0 
44 36 32 28 24 20 16 12 8 4 

Contains a binary value from 0 to 7 which identifies the MLIP port 
to be used. 

p 
1 

0 

LEM Port 

BCC 

LEM 

OLP 

Contains a binary value from 0 to 7 which identifies a UIO base con­
nected to the MLIP port. 

Indicates that the command is for the Base Control Card within the 
addressed UIO base. 

Indicates that the command is for the Line Expansion Module. 

In the absence of either the BCC or LEM bit being equal to one (1 ), 
contains a binary value from 0 to 7 which identifies the OLP within 
the addressed UIO base. 

Note that if the OLP address specifies a non-present port, a "OLP NOT 
PRESENT" result will be returned. 

Figure 6-8. DLP Address Word Format 

Word two, the Command Queue Header Pointer, contains a present, unpaged, unindexed Word DD which 
points to the Command Queue Header. This word is initialized by the MCP and is unchanged during the 1/0. 

Word three, the IOCB Self-pointer, is a present, unpaged, unindexed Word DD which points to the IOCB, 
itself. This word is used by the MLIP whenever it has to link the IOCB into a queue. The IOCB Self Pointer 
is initialized by the MCP and remains unchanged during the 1/0. 

Word four, the DLP 1/0 Command Pointer, contains a present, unpaged Word DD which points to the area 
containing the DLP 1/0 Descriptor. The Descriptor may be either indexed or unindexed, depending upon the 
memory management requirements of the system. The DLP 1/0 Command Pointer and the data to which it 
points are initialized by the MCP and remain unchanged during the 1/0. 

Word five, the DLP 1/0 Result Pointer, contains a present, unpaged Word DD which points to the area into 
which the MLIP will place the DLP 1/0 result Descriptor. The Descriptor may be either indexed or unindexed, 
depending upon the memory management requirements of the system. The DLP 1/0 Result Pointer is initialized 
by the MCP and remains unchanged during the 1/0. 

6-12 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

Word six, the DLP Command/Result Lengths, is a formatted operand containing the length of the DLP com­
mand (sixteen bits) and the DLP result (sixteen bits) in bytes. The rest of the word is reserved. Both values 
must be an even number of bytes. The lengths are to be used by the MLIP as maxima when sending the 
command and receiving the result. The command length is DLP dependent and will have to be known by the 
MCP when initializing the IOCB. If the DLP continues to indicate "send Descriptor status" after the entire 
array has been sent, the MLIP will disconnect the DLP (leaving the DLP hung) and indicate an "unexpected 
DLP status" error to the MCP. The result length, which is DLP and operation dependent, will have to be 
known by the MCP when initializing the IOCB. If the result returned by the DLP is longer than the length 
provided by the MCP, the MLIP will disconnect the DLP (leaving it hung) and indicate an "unexpected DLP 
status" error. This word is initialized by the MCP and remains unchanged during the 1/0. Figure 6-9 depicts 
the DLP Command/Result Lengths word format. 

0 0 0 0 
47 43 39 35 31 27 23 19 15 11 7 3 

0 0 0 0 0 
46 42 38 34 (COMMAND LENGTH.!!, t--(RESULT LENGTH--2.. 

0 0 0 0 0 IN BYTES) IN BYTES) 
45 41 37 33 29 25 21 17 13 9 5 1 

0 0 0 
4oi 

0 0 
_4'1_ 36 32 28 24 20 16 12 8 4 0 

MV4713 

Figure 6-9. OLP Command/Result Lengths Word Format 

Word seven, the Result Mask, contains a formatted operand. The DLP 1/0 result (first 48 bits) is ANDed with 
the logical complement of this word; if the result is non-zero, the Exception and DLP error bits are set in 
the MLIP result word. Note that the ANDing process does not affect the DLP result, which is returned to 
the host in the original form of the DLP result. The Result Mask is initialized by the MCP and is unchanged 
during the 1/0. 

Word eight, the Result Queue Head Pointer, contains a present, unpaged indexed Word DD which points to 
the Result Queue Head in the Result Queue Array. This word is initialized by the MCP and is unchanged 
during the 1/0. 

Word nine, the Next IOCB Link, contains either a present, unpaged, unindexed Word DD pointing to the next 
IOCB in the command or result chain, an operand with a value of 1 indicating that the IOCB has been initiated 
by the MLIP, or an operand equal to zero 0 indicating a null (end) link. The MCP initializes the Next IOCB 
Link to zero or to a valid Descriptor pointing to another IOCB. 

Word ten, the MLIP Current Data Area Pointer, contains a present, unpaged, indexed EBCDIC string or Word 
DD pointing to where the data transfer will begin (or resume). The Data Area Pointer is initialized by the 
MCP and is updated by the MLIP as each block of data is transferred. The format of the Descriptor must 
agree with the Word/Character Oriented Transfer bit of the MLIP control field; that is, word-oriented 1/0 re­
quires a word DD while character-oriented 1/0 requires a string DD. If no data is to be transferred, this word 
may be an operand equal to zero. If the 1/0 is in a backwards direction and is character-oriented, the Current 
Data Area pointer must be initialized to the beginning of the first character beyond the end of the 1/0 area. 

Word eleven, the MLIP Current 1/0 Length, contains an integer value representing the amount of data left 
to be transferred. The MCP initializes the length to the amount of data to be transferred (which must be non­
negative and less than 220). The value may represent words or bytes, depending on the Word/Character-Ori­
ented Transfer bit in the MLIP control field. The MLIP decrements the length as data is transferred. When 
the value is in terms of words, the MLIP will decrement the count by the number of full words of data trans­
ferred. If either the Input or Output bits of the MLIP control field are true and the length is initially 0, the 

5011034 6-13 



B 5900 Reference Manual 
B 5900 Input/Output Data Commonication Subsystem 

MLIP will terminate the 1/0 without connecting to the DLP. No error will be reported in this case. The MLIP 
normally terminates data transfer when the value of the length becomes 0. However, if the Continue Count 
at the End-of-Length bit of the MLIP control field is on during an input operation, the MLIP will not terminate 
the 1/0; instead, it will continue to accept data from the DLP, but it will not store the data in main memory. 
The MLIP Current 1/0 Length will be negative in this .case. This feature exists so that the true length of a 
physical tape record can be discovered (usually for the use of tape parity retry). 

Word twelve, the MLIP State and Result, contains a formatted operand of sixteen bits of MLIP/MLI state 
and thirty-two bits of MLIP result information. The word must be initialized to zero by the MCP. Figure 6-10 
is representation of a MLIP State and Result word format. 

6-14 

47 43 39 35 31 27 23 19 15 11 7 

0 
(MLIP STATE) 34 30 26 (MLIP RESULT) 10 6 

0 
45 41 37 33 29 25 21 17 13 9 5 

0 
40i 44 36 32 28 24 20 16 12 8 4 

MV4714 

The MLIP Result field contains the following bits: 

[0:1) Exception 
This bit is the OR of bits 5:5. 

[1 : 1] Attention 
This bit is set if the Software Attention bit is set in the MLIP control 
field. 

(2 :1) OLP error 
This bit is set if any bit is on in the first 48 bits of the OLP result Descriptor 
after ANDing the logical complement of the Result Mask. 

[3:11 MLIP/MLI error 
This bit is set if any MLIP/MLI error (bits 21 :16) is set. 

[4:1] MLIPtHardware error 
This bit is set for other errors detected by the MLIP. The error type, as 
well as any parameters related to the error will be reported in an Error 
IOCB 

[5:1] Completed after queue suspended 
This bit is set if the 1/0 finished while the Command Queue was marked 
as suspended. 

Bits (21 :16] represent the MLIP/MLI error field. Included errors are: 

[6:1] Memory protect 
This bit is set while transferring data only when the Memory Override 
bit of the MLIP control field equals zero (memory protect) and when either 
of the following occurs: 

1. on output a word with an odd tag (bit 48=1) is read or; 
2. on input an attempt is made to write over a word with an 

odd tag (bit 48=1 ). 

Figure 6-10. MLIP State and Result Word Format 

3 

2 

1 

0 



5011034 

B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

This bit is also set if the MLIP finds a protected word while reading the 
OLP command or writing the OLP result. Although this result is most 
likely an MCP error, the OLP will be left in an unknown state and the 
"MLIP hung the OLP" bit (19) will also be turned on. 

(7:1) Count error 
This bit is set if the Input or Output bit is set in the MLIP control field, 
the MLIP Current 1/0 Length is not equal to zero when the 1/0 finishes, 
and the Ignore Count Error bit of the MLIP command is not set. 

(11 :4) IOCB index 
If the Improper IOCB Word bit (12) is on, this field contains the word 
index in the IOCB. 

(12:1) Improper IOCB word 
This bit is set if the MLIP discovers errors in the format of an IOCB word; 
for example, an incorrect tag. 

(13:1) Invalid MLIP control field 
This bit is set if the MLIP discovers inconsistent control bits; which are, 
tag transfers with character-oriented 1/0. 

(14:1) MLI vertical parity error 
This bit is set if the MLIP detects a parity error on the MLI. 

(15:1) MLI LPW error 
This bit is set if the MLIP detects an incorrect LPW on the MLI. 

(16:1) Unexpected OLP status 
This bit is set whenever the OLP presents the MLIP with an unexpected 
status. The MLIP will disconnect, leaving the OLP hung. 

[17:1) Non-present OLP 
This bit is set whenever the OLP address references a non-present OLP. 

(18:1) OLP busy 
This bit is set whenever the OLP shows a busy status while attempting 
to initiate the command and the Command Queue cannot be linked 
horizontally. 

(19:1) MLIP hung the OLP 
This bit is set if the reaction of the MLIP to a OLP error is an attempt 
to hang the OLP. 

[20:1) MLI time out 
This bit is set if the MLIP times out an operation to the OLP. The MLIP 
will wait eight milliseconds for a strobe to be issued by a OLP. If a base 
busy condition is encountered during a connection sequence, the MLIP 
will wait two seconds for the base to go not busy before causing a timeout 
error. 

[21 :1) Invalid MLIP command 
This bit is set if the operation is an MLIP command and the command 
value is undefined. 

(27 :6) Reserved 
This field must be zero. 

(31 :4) OLP status 
If the Unexpected OLP Status bit [16:1] is on, or the command was "read 
OLP status", this field will contain the value of the OLP status. 

Figure 6-10. MLIP State and Result Word Fonnat (Cont) 

6-15 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

The MLIP State field is used by the MLIP to record the information required to continue communication with 
the DLP. The format and content of this information may differ on the different implementations of the MLIP. 

Word thirteen, the 1/0 Start Time Word, is initialized to an operand by the MCP. When the MLIP activates 
the IOCB, it stores the value of the Time of Day register into this word. 

Word fourteen, the 1/0 Finish Time Word, is initialized by the MCP to be an operand. When the IOCB com­
pletes, the MLIP copies the value of the Time-of-Day register into this word. 

The Time-of-Day register is visible to both the CPU and the MLIP. If the clock is reset during the time that 
an 1/0 operation is taking place, this accounting may be incorrect. The MCP will be responsible for any adjust­
ment required by resetting the Time-of-Day register. 

Additional words beyond these may be used by the MCP for MCP purposes. The MLIP will not access any 
of these additional words. 

Command Queue Headers 

The Command Queue Header is a 5-word structure used by the MLIP to maintain the current state of a Com­
mand Queue. At the request of the MCP, by way of the CUIO operator, the MLIP enqueues 1/0 commands 
in a Command Queue and then with the cooperation of an DLP initiates them. 

The MLIP can add IOCBs to either the head or the tail of the Command Queue. When the MLIP adds an 
IOCB (or a chain of IOCBs) to the head of the queue, the chain of commands is followed by way of the 
Next IOCB Link of IOCBs until the last IOCB is found. Then the MLIP puts the Head IOCB Link of the 
Command Queue Header in the Next IOCB Link of last IOCB and places the IOCB Self-pointer of the first 
IOCB into the Head IOCB Link. If the Head IOCB Link was zero (the Command Queue was originally emp­
ty), the Tail IOCB Link must also be set using the Self-pointer of the last IOCB. When the MLIP adds an 
IOCB (or chain of IOCBs) to the tail of a Command Queue, the MLIP must again link down the chain of 
commands and find the new end IOCB. Once this rs done, the IOCB Self Pointer of the first of the new IOCBs 
is placed in the Next IOCB Link of the last IOCB already in the queue (found by the Tail IOCB Link). Then 
the Tail IOCB Link is updated with the Self Pointer of the last IOCB that was found by the MLIP linking 
down the chain of commands the MLIP had been given to enqueue. Again, if the queue was empty, the Head 
IOCB Link must also be initialized using the self pointer of the first IOCB in the chain. 

The MLIP can only remove an IOCB from the head of the Command Queue. When the MLIP removes an 
IOCB from the queue, the Next IOCB Link is copied from the IOCB into the Head IOCB Link in the Com­
mand Queue Header, and an operand with a value of 1 is written into the Next IOCB Link of the IOCB. 
If the Next IOCB Link was already 0 (the last command in the chain), the Tail IOCB Link in the Command 
Queue Header is set to 0. 

The format of the Command Queue Header is shown is Figure 6-11. 

0 (CW QUEUE CONTROL WORD 

1 (HEAD HEAD IOCB LINK 

2 (TAIL TAIL IOCB LINK 

3 [HQHP HORIZONTAL QUEUE HEAD POINTER 

4 (HQL HORIZONTAL QUEUE LINK 

MV4715 

Figure 6-11. Command Queue Header Format 

6-16 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

Figure 6-12 shows the Command Queue Header Mark - lOCC. Word zero, the Queue Control Word, is a for­
matted operand. 

47 43 39 35 31 27 23 19 15 11 7 3 

0 
(COMMAND QUEUE ~ (INACTIVE f-(ACTIVE.!!. !-(ACTIVE -2, (CONTROL 

HEADER MARK) COUNT) COUNT) LIMIT) FIELD) 
0 4J 45 37 33 29 25 21 17 13 9 5 

0 T 
44 401 36 32 28 24 20 16 12 8 4 

MV4716 

Oueue Control Word Control Field bits are as follows: 

[0:1) Suspended 
If this bit is on, the MLIP will only initiate an enqueued command if the 
Immediate bit is on in the MLIP control field. This bit is turned on by 
the MLIP whenever an 1/0 from the queue finishes with an error, or when­
ever an IOCB command finishes while the global MLIP Suspend All 
Queues flag is true and the Ignore Suspend All Queues flag in the control 
field of the IOCB is false. The Suspended bit can be turned off by the 
MCP using an MLIP command. 

[1 :1) Waiting 
If this bit is on, the Command Queue has been dynamically linked into 
the Horizontal Queue. 

[2:1) Horizontal Queue Present 
If this bit is on. the Command Queue can be put into a Horizontal Queue. 
This bit must be consistent with the Horizontal Queue Head Pointer. 

[7:5) Reserved (Must be zero) 

The Active Limit is a non-zero count of the maximum number of IOCBs which 
can be active in the queue. 

The Active Count is a count of the number of IOCBs which are currently active 
in the queue. 

The Inactive Count is a count of the number of IOCBs which are in the queue 
but not active (such as, pending). 

The MCP initializes the Horizontal Queue Presence bit, the Active Limit, and 
the Command Queue Header Mark to their proper values; the MCP initializes 
all other bits to 0. 

Figure 6-12. Command Queue Header Mark - lOCC 

--1 

1 

0 

Word one, the Head IOCB Link, is either zero (indicating a null queue) or a present, unpaged, unindexed 
word DD pointing to the first IOCB in the queue. The MCP must initialize the Head IOCB Link to zero. 

Word two, the Tail IOCB Link, is either zero (indicating a null queue) or a present, unpaged, unindexed Word 
DD pointing to the last IOCB in the queue. The MCP must initialize the Tail IOCB Link to zero. 

5011034 6-17 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

Word three, the Horizontal Queue Head Pointer, is either zero (if the Command Queue cannot be part of a 
Horizontal Queue) or a present, unpaged, indexed Word DD pointing to the Horizontal Queue Head in the 
Horizontal Queue Array. The MCP initializes this word, which is never altered by the MLIP. 

Word four, the Horizontal Queue Link, contains either a zero or a present, unpaged, unindexed Word DD. 
This word is used to dynamically link Command Queues in the Horizontal Queue. The MLIP is responsible 
for maintaining this word, but the MCP must initialize it to zero. 

Horizontal Queue Heads/Horizontal Queue Array 

The Horizontal Queue Array is an array consisting of a header word and any number of Horizontal Queue 
Heads. This array is used to associate Command Queues which share a common path (DLP) and have had 
commands blocked by a busy DLP. This enables the MLIP to do horizontal (path) queuing. The Horizontal 
Queue Heads are referenced by the Horizontal Queue Head Pointer in each Command Queue Header. 

Whenever the MLIP attempts to initiate a command from a Command Queue which has a reference to a 
Horizontal Queue Head and the DLP is busy, the MLIP will, if necessary, enqueue the Command Queue in 
the Horizontal Queue. To maintain the Horizontal Queue in First-in First-out (FIFO) order, the MLIP will 
link down the queue and add the Command Queue to the tail. Whenever the MLIP completes an 1/0 command 
and can initiate no more new commands from the Command Queue, it will check the Horizontal Queue refer­
enced by the Command Queue. If the Horizontal Queue has Command Queues linked into it, the MLIP will 
work down the Horizontal Queue, initiating the appropriate number of commands from each of the Command 
Queues that are horizontally linked, and will remove (de-link) the command queues from the horizontal queues. 

The header word is an operand that is not looked at by the MLIP and will be formatted by the MCP t~ meet 
the requirements of memory management. The header word may consist of a "queue mark" in [47:16] (hex 
lOCE) and a queue array length in [19:20]. Each Horizontal Queue Head in the array is either a zero (indicating 
an empty queue) or a present, unpaged, unindexed Word DD which points to the first Command Queue 
Header in the Horizontal Queue. The MLIP maintains the Horizontal Queue Heads, but they must be initial­
ized to zero by the MCP. 

The format of the Horizontal Queue Array is shown in Figure 6-13. 

0: HEADER WORD 

1: QUEUE ONE HORIZONTAL QUEUE HEAD 

... 

n· QUEUE N HORIZONTAL QUEUE HEAD 

MV4717 

Figure 6-13. Horizontal Queue Array 

6-18 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

Figure 6-14 is a representation of the Horizontal Queue Header Word. 

(QUEUE MARK) 

0 0 1 1 0 0 0 
47 43 39 35 31 ~7 23 19 15 11 7 3 

0 0 0 1 1 0 0 0 
46 42 38 34 JO 26 22 18 (QUEUE LENGTH)----2i 

0 0 0 0 1 0 0 0 
45 41 37 33 29 25 21 17 13 9 5 1 

0 1 0 
401 

0 0 0 0 0 
44 36 32 28 24 20 16 12 8 4 0 

MV4718 

Figure 6-14. Queue Mark - lOCE - Horizontal Queue Header Word 

Result Queue Heads/Result Queue Array 

The Result Queue Array is an array consisting of a header word and any number of Result Queue Heads. 
The header word is an operand that is not looked at by the MLIP. It will be formatted by the MCP to meet 
the requirements of memory management. It may consist of a "queue mark" in [47:16] (hex lOCF) and a queue 
array length in [19:20]. Each Result Queue Head in the array is either a zero (indicating an empty queue) or 
a present, unpaged, unindexed Word DD pointing to the first IOCB in the Result Queue. The Result Queue 
Array is created by the MCP, which initializes the header word and sets all the Result Queue Heads to zero. 

The Result Queue is a Last-in First-out (LIFO) queue of completed 1/0 commands. The Result Queue Head 
points to the last completed IOCB and the Next Link in the IOCB points to the next to the last, continuing 
to completion of the queue. The MLIP adds an IOCB to a Result Queue by exchanging the value in the Result 
Queue Head with a copy of the Self-pointer of the IOCB and writing the original value of the Result Queue 
Head into the Next Link word of the IOCB. The MCP can empty a Result Queue by "readlocking" the Result 
Queue Head with a zero. The Descriptor returned by the readlock points to the first IOCB in the Result 
Queue. (To guarantee correctness, the MCP must wait until the Next Link word of the first IOCB in the queue 
does not contain an operand with a value of 1. 

The format of the Result Queue Array is shown in Figure 6-15. 

0: HEADER WORD 

1: QUEUE ONE RESULT QUEUE HEAD 

... 

n: QUEUE N RESULT QUEUE HEAD 

MV4719 

Figure 6-15. Result Queue Array 

5011034 6-19 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

Figure 6-16 is the Result Queue Header Word format. 

(QUEUE MARK) 

0 0 1 1 0 0 
47 43 39 35 31 

0 0 0 1 1 0 0 

0 
27 23 19 15 11 

0 

1 3 

46 42 38 34 30 26 22 11 (QUEUE LENGTH)-----.!, 

0 0 0 0 1 0 0 0 I 
45 41 31 33 29 25 21 17 13 9 5 1 

0 1 0 
40i 

0 1 0 0 0 
44 36 32 28 24 20 16 12 8 4 0 

MV4720 

Figure 6-16. Queue Mark - lOCF - Result Queue Header Word 

Control of Data Structures 

The MLIP cannot create memory structures. The MCP is responsible for allocating space in memory for each 
structure. Additionally, the MCP is responsible for initializing static conditions in the Command Queue Header 
(active limit, horizontal queue present). The MCP is also responsible for initializing the dynamic links in all 
Command, Horizontal, and Result Queues to zero. When an IOCB is created, the MCP is responsible for 
initializing it. 

The MCP initiates an 1/0 by executing the CUIO operator, which transfers the address of the IOCB that the 
MCP wants executed to the MLIP. It is the responsibility of the MLIP to enqueue the IOCB into the Com­
mand Queue, initiate the operation, and when the operation is done, enqueue the IOCB in the Result Queue. 
Once the MCP has initiated an IOCB (or chain of IOCBs), the MCP can alter that IOCB (or chain) only in 
well-defined circumstances, as follows: 

• If the IOCB has been returned to the MCP in a Result Queue. 
• If the IOCB has been returned to the MCP as a result of a "return queue" MLIP command. 
• If the MCP is doing necessary clean up following these commands: 

A "clear DLP" MLIP command. 
A cancel command to a DLP. 

The MCP can alter or move a Horizontal Queue Head only when there are no "active" references to it. This 
case applies when all the Command Queues that reference the Horizontal Queue Head have no outstanding 
active commands and no enqueued inactive IOCBs. The MCP can alter or move a Command Queue Header 
only when it has no outstanding active commands and it is not linked into the Horizontal Queue. 

MLIP/MEMORY INTERFACE 

The MLIP is considered to be an independent memory requestor. All the memory areas shared between the 
MCP and the MLIP are referenced by way of valid Data or String Descriptors. The MLIP uses Data Descrip­
tors which are incremented or decremented serially; however, the MLIP never creates a Data Descriptor from 
an absolute address or converts an unindexed Data Descriptor into an indexed one. 

6-20 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

MLIP/DLP INTERFACE 

All information sent to the UIO subsystem by the MLIP, except for the Descriptor link, comes from the IOCB 
or arrays referenced by Descriptors in the IOCB. The Descriptor link, comprised of a host return field and 
the absolute address of the IOCB, are built by the MLIP and are invisible to the MCP. The MLIP will create 
the host return field such that its host identification corresponds to the processor ID of its CPU. 

The MLIP considers any Descriptor link that is returned by an DLP which does not correspond to a valid 
IOCB as an invalid link and takes the appropriate actions to inform the MCP of the error. 

MLIP COMMANDS 

The MLIP/DLP Command bit in the MLIP control field tells the MLIP whether or not the MLIP should 
execute the command or pass the command on to a DLP. If the MLIP/DLP command bit is true, the MLIP 
accesses the first word pointed to by the DLP 1/0 Command Pointer and interprets it. 

The format of the MLIP command word is shown in Figure 6-17. 

1 0 0 0 0 0 0 0 0 0 
47 43 39 35 31 27 23 19 15 11 7 3 

0 1 0 0 0 0 0 0 0 0 0 
46 42 (MLIP 34 30 26 22 18 14 10 6 2 

1 0 
COMMAND 

0 0 0 0 0 0 0 0 0 
45 41 37 33 29 25 21 17 13 9 5 1 

0 1 0 0 0 0 0 0 0 0 
44 40 36 32 28 ~ 20 -1§. 12 _a_ 4 _a,; 

MV4721 

Figure 6-17. MLIP Command Word 

Valid MLIP Commands, as illustrated in figure 6-17, are (represented in hexadecimal data): 

01 Wait for error (Error IOCB) 
This command indicates that the IOCB is an "Error" IOCB. The MLIP stores the absolute reference 
to the IOCB and completes the 1/0 whenever the MLIP encounters an error that cannot be directly re­
lated to or described in another IOCB. 

02 Clear DLP 
The MLIP performs a "selective clear" of the DLP specified in the DLP Address Word of the IOCB 
and then places the IOCB in the Result Queue. 

03 General Clear 
The MLIP performs the MLI master clear handshake on all MLI PORTS and then places the IOCB in 
the Result Queue. 

04 Set the Suspend All Queues flag 
The MLIP sets the Suspend All Queues flag and then places the IOCB in the Result Queue. (See the 
discussion of the Suspended bit in the Command Queue Header Queue Control Word.) The MCP normal­
ly requests that the MLIP set the Suspend All Queues flag at the beginning of a memory dump to prevent 
the initiation of further I/Os. 

5011034 6-21 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

05 Reset the Suspend All Queues flag 
The MLIP resets the Suspend All Queues flag and then places the IOCB in the Result Queue. The MCP 
normally requests that the MLIP reset the Suspend All Queues flag at the end of a memory dump. 

06 Read DLP status 
The MLIP connects to the DLP specified in the DLP Address Word of the IOCB and read its status, 
which is returned in the MLIP State and Result word of the IOCB. The MLIP then places the IOCB 
in the Result Queue. 

07 Activate queue (resets the Suspended bit of a Command Queue) 
The MLIP accesses the Command Queue Header referenced by the Command Queue Header Pointer 
and resets the suspended bit. The activate queue IOCB is added to the Result Queue referenced by its 
Result Queue Head Pointer. If appropriate, the MLIP will initiate the first IOCB in the activated Com­
mand Queue. 

08 Return queue 
The MLIP accesses the Command Queue Header referenced by the Command Queue Header Pointer 
and replaces the Head IOCB Link and the Tail IOCB Link with zeros. The original Head IOCB Link 
is put in the first word of the area pointed to by the DLP 1/0 Result Pointer. The return queue IOCB 
is then added to the Result Queue. The MLIP does not remove the Command Queue from the Horizontal 
Queue, if currently linked. The Inactive Count field of the Command Queue Header is set to zero. 

09 Read MLIP status 
The MLIP returns one word of status information, the format of which is shown below, in the first word 
of the area pointed to by the DLP I/O result pointer. 

Figure 6-18 shows the MLIP status word. 

6-22 

0 0 
47 43 39 35 31 27 23 19 15 11 1 

0 
(MLIP (HOST 0 0 

(SYSTEM~ ~FIRM-~ t-RETURN 6 22 18 14 (PORTS s 

TYPE) WARE FIELD) 
PRESENT) 

0 REV) 0 0 I 

45 41 -· 33 29 25 21 17 13 9 5 

0 0 0 
..M. 1Q. ~ 32 ..1_8 ~ 20 16 12 8 4 

MV4722 

System Type 
Thia field identifies the type of MLIP and is always a hexadecimal 02. 

MLIP Firmware Revision 
This field identifies the level of the MLIP firmware. 

Host Return Field 
This field contains the Host Return Field sent by the MLIP to DLPs. 
The Host Return Field is a bit vector which uniquely identifies the MLIP 
to the IODC subsystem. 

Ports Present 
This field contains a bit vector which identifies which MLI port adapters 
are present. A bit "on" indicates that the corresponding port is present. 

Figure 6-18. MLIP Status Word 

3 

2 

1 

0 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

OA Discontinue (Error IOCB) 
If there is an active Error IOCB, the MLIP causes it to complete with the "discontinued" error code. 
The MLIP returns one word of result information, the format of which is shown below in Figure 6-19, 
in the first word of the area pointed to by the OLP 1/0 Result Pointer. 

0 0 0 0 0 0 0 0 0 0 0 0 
47 43 39 35 Jl 47 23 -~ -- - __!_2. t--- 11 ' J 

0 0 0 0 0 0 0 0 0 0 0 0 0 
46 42 38 34 30 26 22 18 14 10 6 2 

0 0 0 0 0 0 0 0 0 0 0 0 0 
45 41 37 33 29 25 21 - ______!_1. _ ___11. tl 5 1 

f--

l 0 0 0 0 0 0 0 0 0 0 0 0 (NE) 
44 40: 36 32' 28 24 20 16 12 4 0 

NE: IF THIS BIT IS 0, THE ERROR IOCB WAS DISCONTINUED. 
IF THIS BIT IS 1, THERE WAS NO ERROR IOCB TO DISCONTINUE. 

MV4723 
ne: If this bit is 0, the Error IOCB was discontinued. 

If this bit is 1, there was no Error IOCB to discontinue. 

In either case, the Discontinue IOCB completes with no errors. Note that 
a discontinued Error IOCB is handled exactly as any other Error IOCB report­
ing a valid error. 

Figure 6-19. Returned MLIP IOCB Result Descriptor 

OB Deactivate Queue (sets the Suspended bit of a- Command Queue) 
The MLIP accesses the Command Queue Header referenced by the Command Queue Header Pointer 
and sets the suspended bit. The deactivate queue IOCB is added to the Result Queue referenced by its 
Result Queue Head Pointer. 

ERROR HANDLING 

The following chapters discuss the IODC error handling characteristics. 

CATEGORIES OF ERRORS 

Errors visible to the MLIP can be placed into three categories: errors which reflect only the logical correctness 
of an 1/0, errors which reflect the logical correctness of the 1/0 and pinpoint a specific failure in the hardware, 
and errors which cannot be associated with an 1/0 operation for some reason. The logical correctness of an 
1/0 operation is reported in the MLIP State and Result word of the IOCB associated with the 1/0 operation. 
Specifically, bits [4:3] indicate if the MLIP has detected any errors. 

The DLP Error bit [2:1] indicates a OLP detected error, which is described in more detail in the OLP result. 
The MLIP/MLI Error bit [3:1] indicates an error detected by the MLIP; these errors are specified by bits 
[31:26] of the same word. Errors which are reported by bits 2 or 3 are of the first category. 

5011034 6-23 



B 5900 Reference Manual 
B 5900 Input/Output Data Commurtication Subsystem 

The MLIP/Hardware Error bit [4:1) indicates that the 1/0 logically failed because of a hardware failure de­
tected by the MLIP. The exact nature of the failure is not reported in the IOCB associated with the 1/0 
operation; rather, the failure is returned in the result Descriptor of an IOCB reserved for that purpose (the 
"Error" IOCB). All the IOCB reports is the status of the 1/0. The requesting process only needs to know 
that the 1/0 failed; it does not need to know how it failed. For example, a failure because of a read data 
multiple-bit error at address X. That information is useful to the maintenance logging procedure of the MCP 
(which does not need to know much about what 1/0 operation caused the hardware failure); therefore, the 
information is separated into two IOCBs. This eliminates the necessity of reserving many words in the IOCB 
for storing hardware error parameters. 

The third category of errors includes the "Invalid Descriptor Link" and the "Invalid Queue Word." The 
MLIP does not have any IOCB in which to report these errors, therefore, the Error IOCB is used. 

ERROR IOCB/ERROR IOCB COMMAND QUEUE 

The Error IOCB and the Command Queue with which it is associated are designed to handle the communica­
tion of error information from the MLIP to the MCP. However, because of the special nature of the Error 
IOCB, both the MLIP control options in the IOCB and the Control Word of the Command Queue must be 
constructed taking the following precautions. 

The MLIP has only one address register into which to store the reference to the Error IOCB. As a result, 
the MLIP has an Active Limit of one for the Command Queue of the Error IOCB. The MLIP will hang, after 
an attempt to communicate with the maintenance processor, whenever it has an error to report and does not 
have a reference to an Error IOCB. Therefore, the MCP will have preferably more than one Error IOCB en­
queued in the Command Queue. The MCP must set the Ignore Suspend All Queues bit in all Error IOCBs 
to prevent the suspension of the Command Queue in the event that the Suspend All Queues flag is on. 

Whenever the MLIP uses an Error IOCB, it will not set the DLP Error, the MLIP/MLI Error, the MLIP/ 
Hardware Error, or the Completed After Queue Suspended bits. As long as the MCP has not set the Attention 
bit in the MLIP control field, the MLIP has no reason to set the Exception bit in the MLIP State and Result 
word; consequently, the completion of the Error IOCB will not suspend its Command Queue, which allows 
the MLIP to then initiate a new Error IOCB out of the queue. The Cause 1/0 Finish Event bit of the MLIP 
control field of the IOCB must be set for the MCP to ensure that the MLIP will raise the 1/0 finish interrupt 
line. 

Error IOCBs must be able to store the information that the MLIP generates. The "DLP" 1/0 Result Pointer 
reference an area that is currently, 32 words long. This reference is MCP dependent and can be updated in 
later versions. The format of the result is also MCP dependent. The girst word contains the System Independ­
ent Parameter Word. The following nine words contain the contents of the X, B, Y, Temp 1, Temp 2, Temp 
3, and Q registers and the C 0, and C l 8-bit counters, respectively. Because the operation is considered to 
be a test, the MLIP Current Data Area Pointer can be an operand and the MLIP Current 1/0 Length can 
be initialized to zero. 

The MLIP uses the Error IOCB whenever it discovers an error in enqueueing or dequeueing an IOCB in a 
Command Queue, in traversing a Horizontal Queue, in a memory reference, in verifying one of the references 
of the IOCB to other structures (the Command Queue Pointer, the Result Queue Pointer, or the Next Link), 
or when receiving a bad Descriptor link from a DLP. (Errors found with the DLP Command Pointer, the DLP 
Result Pointer, or the MLIP Current Data Area Pointer are reported as an ~'Improper IOCB Word" error, 
with the "IOCB index" set in the MLIP State and Result word of the IOCB with the error.) 

6-24 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

The information returned by the MLIP in the Error IOCB differs with the type of errors; however, all errors 
that can be associated with another IOCB will have that IOCB identified in the Error IOCB. An enqueueing 
error always returns the absolute address of the IOCB that was referenced by the CUIO operator (even though 
the error may have been discovered while following the links of an IOCB linked behind the first IOCB) and 
also the address of the offending word. Errors found while verifying the integrity of queue structures may re­
turn the absolute address that points into the middle of the structure if one of the elements of the structure 
is in error. Only errors that occur while transferring data to or from memory, which will have the address 
of the error and the error type placed in an Error IOCB, will also have an error indication in the original 
IOCB. 

ERROR IOCB RESULT PARAMETERS 

The result area of the Error IOCB contains error parameters that describe the error that occurred and give 
the context within which the error occurred. These error parameters are of two types: system independent 
error parameters, and system dependent error parameters. 

System independent error parameters provide the MCP with information as to the type of error that occurred, 
and with any information necessary for error recovery. 

System dependent error parameters provide information not required by the MCP but used for logging pur­
poses. The format of these parameters varies from one system to another. 

5011034 6-25 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

System Independent Parameters 

The first result word is a system independent error parameter. This word tells the MCP whether the error 
is a logging type error, or one that may require MCP action. If MCP recovery action is required (for example, 
as in the case where a DLP sends an invalid Descriptor Link ), then a DLP ADDRESS will be provided. 
Word zero of ERROR IOCB result information contains the following fields as shown in Figure 6-20. 

0 
47 43 39 35 31 27 23 19 15 11 ' 3 

0 (MLIP 0 
(SYSTEM:?. ~FIRM-~ 1-(ERROR 6 22 OLP ADDRESS FIELD -2 

TYPE) CODE) 
0 

0 

MV4724 

WARE 
REV) 0 

45 41 ,, 33 29 25 21 17 13 9 5 

0 
44 40 36 32 28 24 20 16 12 8 4 

System type 
This field identifies the type of MLIP that detected the error. This is 
always represented by a hexadecimal 02. 

MLIP Firmware Revision 
This field contains the revision number of the MLIP firmware. Its value 
may dictate how the system dependent information is to be decoded. 

Error Code 
This field indicates the type of error being reported. The error codes 
are in hexadecimal as follows: 

01 Invalid Descriptor Link 
02 Descriptor Link Parity Error 
03 Descriptor Link LPW Error 
04 OLP Address Mismatch 
05 Host Return Field Mismatch 
06 GPW Parity Error 
07 Poll Request All Port Timeout 
08 Connection Timeout Error 
09 Nonexistent Request Error 
10 Queuing Error 
20 Memory~ardware Error 
40 Error IOCB Discontinued 
80 Multiple Completion Attempted 

OLP Address Field 
This field contains the OLP address for Error Codes hexadecimal 01 
through OF. 

Figure 6-20. ERROR IOCB Result 

System Dependent Parameters 

1 

0 

From word 1 to 31 of the result contains information in the required format defined in Error IOCB/Error IOCB 
Command Queue heading. This format is dependent on the particular system that generates it. The system 
type field and MLIP revision field determine the format currently defined. 

6-26 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

MLIP ALGORITHMS 

The following chapters discuss algorithms performed by the MLIP. 

MLIP IDLE LOOP 

The MLIP waits for requests from two sources: the CPU through the CUIO operator, and the OLP subsystem 
through the MLI interface. OLP requests cannot originate without first having received commands from the 
MLIP through IOCBs. 

MLIP CUIO 

The CUIO operator in the CPU passes an address to the MLIP. Once the MLIP receives the address, the 
CUIO operator may be completed. The address received by the MLIP is passed to the Enqueueing procedure. 
The Enqueueing procedure verifies all links in the chain passed to the MLIP, verifies the Command Queue 
Head or Tail Pointers as required, and upon detecting no errors, places the chain either at the head or tail 
of the Command Queue, depending upon the state of the Queue at Head bit of the Control Word of the first 
IOCB in the chain. If enqueueing is completed successfully, the MLIP attempts to initiate IOCBs from the 
Command Queue in which the IOCB chain was enqueued, according to the criteria explained in the discussion 
under the heading Initiate Queue. 

ENOUEUEING AN IOCB CHAIN IN A COMMAND QUEUE 

The IOCB chain to be enqueued (which may contain only one IOCB) is checked to ensure that the chain is 
correct. The MLIP checks that each IOCB in the chain contains an IOCB Mark in the Control Word of each 
IOCB, and that each Next IOCB Link is a valid Descriptor which points to an IOCB. This process is repeated 
until the MLIP finds the last IOCB in the chain. The last IOCB in the chain contains a null Next IOCB Link 
(tag=O). If the chain is found to be correct, the MLIP evaluates the Descriptor in the Command Queue Head 
Pointer word of the first IOCB in the chain and ensure that the reference is a valid Descriptor. If the Descrip­
tor is valid, the Queue Mark in the Command Qutrue Header Control Word is checked to ensure that it is 

· indeed a Command Queue. 

If all links, Descriptors and marks have been found to be correct, enqueueing may proceed. If the Command 
Queue Head Pointer is null (tag=O), the chain becomes the queue. The Command Queue Head Pointer is re­
placed by the Self-pointer of the first IOCB in the chain to be added, and the Command Queue Tail Pointer 
is replaced by the Self Pointer of the last IOCB in the chain to be added, and the enqueueing is completed. 
If the queue is not empty, the IOCB chain is placed at the head of the queue if the Queue at Head bit of 
the Control Word of the first IOCB in the chain is set, and at the tail of the queue if the Queue at Head 
bit is not set. To place the chain at the head of the queue, the MLIP replaces the Next IOCB Link word 
of the last IOCB in the chain with the contents of the Command Queue Head Pointer. The Command Queue 
Head Pointer is then replaced by the Self-pointer of the first IOCB in the chain. The enqueueing is then com­
pleted. To place the chain at the tail of the queue, the Command Queue Tail Pointer is evaluated (if it is a 
valid Descriptor) and the IOCB to which it points is verified to contain an IOCB Mark in the IOCB Control 
Word. If these criteria are met, the chain is linked into the tail of the Command Queue by first replacing the 
contents pf the Next IOCB Link word of the tail IOCB in the queue with the Self-pointer of the first IOCB 
in the chain. Then the Command Queue Tail Pointer is replaced by the Self Pointer of the last IOCB in the 
chain to be added. The enqueueing is then complete. At this point, the MLIP increments the Inactive Count 
field of the Command Queue Control Word by the number of IOCBs added to the chain. 

If any of the validity checks performed failed, the chain is not placed into the Command Queue. The Error 
IOCB is used to report an enqueueing error, and to report the absolute address of the first IOCB in the chain 
to be added, and the absolute address of the word that failed to pass a validity check. 

5011034 6-27 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

INITIATE QUEUE 

The Control Word of the Command Queue to be initiated is first verified to contain a Queue Mark. If it does 
not, the queue cannot be initiated, and the Error IOCB is used to report the error. Next, the Head IOCB 
Link word of the Command Queue is referenced. If it is null (tag=O), there is nothing more to do in this queue. 
If the Head IOCB Link word is a valid Descriptor, the Control Word of the IOCB is accessed. If the Control 
Word contains an IOCB Mark, the MLIP Control field is interpreted. If the Immediate bit in the MLIP control 
field is not on, and the Active Count field is not less than the Active Limit field of the Command Queue Con­
trol Word, or the Suspended bit of the Command Queue Control Word is on, there is nothing to do in this 
queue. (The Suspend All Queues flag does not cause a queue to be suspended during the initiation of the 
queue, but only when an IOCB is added to a result queue.) 

If the MLIP Control field indicates that the IOCB is a DLP command (MLIP/DLP Command bit equal to zero) 
and the Waiting bit in the Command Queue Control Word is one, this queue is known to be linked into a 
horizontal queue and there is nothing more for the MLIP to do in this queue or in the horizontal queue struc­
ture. If the MLIP/DLP Command bit indicates a DLP command, and the queue is not marked waiting, the 
MLIP attempts to connect to the DLP specified in the DLP Address Word. If the connection is established, 
and the DLP is busy, the MLIP attempts to place the Command Queue in a horizontal queue (see explanation 
on adding to a horizontal queue). If the DLP is not present, a Non-Present DLP Error is stored into the IOCB 
MLIP State and Result word, and the IOCB is taken out of the queue and placed into the result queue. (A 
busy DLP indicates a "Disconnect" status.) 

If the DLP is present and attempting to send a Descriptor link to the MLIP, the MLIP must save the address 
of the command queue header, tum the line around and handle the DLP request (see Poll Request/Turnaround 
description), restore the saved queue header address, and begin the queue initiation process all over again. 
If the DLP is present, but not in the Idle state, the IOCB is taken out of the Command Queue, an Unexpected 
DLP Status error along with the DLP status is placed into the IOCB MLIP State and Result word, the IOCB 
is added to the result queue, and the MLIP disconnects from the DLP. If the DLP is present and in the Idle 
state, or if the MLIP/DLP Command bit in the MLIP Control field indicates this IOCB is an MLIP command, 
the IOCB is taken out of the command queue and initiated, and the queue initiation process is followed again 
until there is nothing more to do in this queue. 

When there is nothing more to do in the queue, if there is a horizontal queue (indicated by the Horizontal 
Queue Presence bit in the Command Queue Control Word), the Horizontal Queue Head Pointer in the Com­
mand Queue header is used to reference the Horizontal Queue Head. If the horizontal queue is not empty 
(an empty queue is indicated by a tag=O in the horizontal queue head), the first Command Queue in the 
horizontal queue is removed from the horizontal queue and queue initiation proceeds with this new Command 
Queue. Command Queues are removed from the horizontal queue and initiated in this manner until the 
horizontal queue has been emptied or the DLP goes to a non-Idle state after receiving a command Descriptor. 
At this time, if the MLIP is connected to a DLP, it will disconnect. 

REMOVING A COMMAND QUEUE FROM A HORIZONTAL QUEUE 

The Command Queue referenced by the Horizontal Queue Head is removed from the horizontal queue by first 
verifying the Queue Mark in the Command Queue Control Word, and then storing the Command Queue 
Horizontal Queue Link into the Horizontal Queue Head. The Command Queue Horizontal Queue Link is then 
set to 0, and the Waiting bit in the Command Queue Control Word is reset to ZERO. 

ADDING A COMMAND QUEUE TO A HORIZONTAL QUEUE 

If the Horizontal Queue Presence bit in the Command Queue Control Word is not on, the command queue 
cannot be placed in a horizontal queue, and the IOCB must be taken out of the queue. A DLP Busy error 
is placed into the MLIP State and Result Word of the IOCB, and the IOCB is placed into the result queue. 

6-28 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

The MLIP will then disconnect from the DLP. If the Horizontal Queue Presence bit is on, the command queue 
is placed into the horizontal queue only if the Immediate bit in the MLIP Control field of the IOCB Control 
Word is on, or if the Active Count field of the Command Queue Control Word is zero; otherwise, completion 
of an outstanding IOCB from this command queue will ultimately result in this command queue being initiated. 
To place the command queue into the horizontal queue, the Horizontal Queue Head Pointer of the Command 
Queue is used as a reference to the Horizontal Queue Head (after performing a validity check). If the Horizon­
tal Queue Head is null (tag=O), the Horizontal Queue Head is replaced by the Command Queue Head Pointer 
word of the IOCB. 

If the Horizontal Queue Head is not null, the last Command Queue in the Horizontal Queue is found by verify­
ing the Queue Marks of the Command Queues in the Horizontal Queue and evaluating references to the next 
Command Queue in the chain using the Horizontal Queue Link pointer word in the Command Queue Header 
(after ensuring that it is a valid Descriptor). The Horizontal Queue Link of the last Command Queue in the 
Horizontal Queue is null (tag=O). If the tail of the Command Queue was successfully located, the new Com­
mand Queue is added by replacing the Horizontal Queue Link word of the tail Command Queue with the Com­
mand Queue Head Pointer of first IOCB in the Command Queue to be added to the Horizontal Queue. The 
Horizontal Queue Link word of the Command Queue being added is then set to zero. The horizontal queuing 
is then completed. If any of the validity checks failed, the error is reported through the Error IOCB. The 
error parameter indicates an enqueueing error, the absolute address of the Command Queue that was to be 
placed into the horizontal queue, and the absolute address of the word that failed a validity check. The Com­
mand Queue cannot then be added to the Horizontal Queue. 

ATIEMPTING TO CONNECT TO A DLP 

An MLIP/Distribution Card handshalcing procedure is necessary to establish connection to a DLP. During the 
connection protocol, several error conditions may arise, such as a timeout, indicating that no base is there 
(a DLP address parity error indication, or a port busy indication). In the case of timeouts and address parity 
errors, the IOCB must be dequeued, the appropriate error is marked in the MLIP State and Result word of 
the IOCB, and the IOCB is added to the result queue. A port busy condition arises when another system 
is accessing the same base through another distribution card .. The MLIP response to port busy is simply to 
wait for the DLP connection to be established as soon as the base becomes not busy. When the connection 
appears to have been established after a port busy, if the DLP STC= 10, the connection was not established, 
the port is still busy, but another base attached to a LEM is requesting MLIP attention. The MLIP response 
is to disconnect from the busy base, save the queue head address (for a DLP command) or the IOCB address 
(for an MLIP command), handle the Poll Request from the requesting base, restore the address, and attempt 
to reinitiate the operation. 

DEOUEUEING AN IOCB FROM A COMMAND QUEUE 

If the Don't Count bit of the MLIP Control field of the IOCB Control word is zero, the Active Count field 
of the Command Queue Control Word is incremented by one. The Inactive Count field of the Command Queue 
Control Word is decremented by one. The IOCB is dequeued by replacing the Command Queue Head IOCB 
Link with the contents of the IOCB Next IOCB Link word. The Next IOCB Link word of the IOCB is then 
replaced by an operand with a value of one, to mark the IOCB as "in process". If the Command Queue Head 
IOCB Link is now null (tag=O), the Command Queue Tail IOCB Link is made null by storing into it a zero. 

5011034 6-29 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

INITIATING AN IOCB 

The Time-of-Day register is stored into the IOCB 1/0 Start Time Word. If the MLIP/DLP Command bit of 
the MLIP Control field of the IOCB Control Word indicates this IOCB is an MLIP command, the MLIP per­
forms the indicated operation (see the explanation of MLIP operations). If this IOCB contains a DLP com­
mand, the MLIP performs certain validity checks of the various control bits and variables. In particular, if 
either the Input or Output bit of the MLIP Control field is on, the following tests are performed: 

1. If the MLIP Current 1/0 Length word of the IOCB is zero, nothing is sent to the DLP and the IOCB 
is placed into the result queue with no DLP errors and no data transferred. 

2. If the transfer is flagged to be character-oriented by the Word/Character-Oriented Transfer bit of the 
MLIP Control field of the IOCB Control Word, the MLIP Current Data Area Pointer is an EBCDIC 
string DD and the Tag Control field of the MLIP Control field of the IOCB Control Word requires 
tags to be either 0, 2, or 3. If the transfer is flagged to be word-oriented by the Word/Character Ori­
ented Transfer bit of the MLIP Control field of the IOCB Control Word, the MLIP Current Data Area 
Pointer is a valid Word DD and the Tag Control field may indicate any of the force tag options or 
one of the transfer tag options. 

The MLIP must now do any initialization required by its particular implementation to the MLIP State field 
of the MLIP State and Result word of the IOCB. The DLP command Descriptor can now be sent to the DLP 
by evaluating the Descriptor in the DLP 1/0 Command Pointer word of the IOCB. It must contain a valid 
Descriptor which points to an area of memory where the MLIP finds the DLP command Descriptor. Since 
the DLP command Descriptors vary in length from DLP to DLP and from operation to operation, the MLIP 
must know how many characters of command Descriptor to send, as a DLP broken in this state takes all of 
memory if the MLIP cooperated; hence, the MLIP obtains the command Descriptor length in the DLP Com­
mand/Result Lengths word of the IOCB by isolating the length from the appropriate field. Additionally, the 
command length must be even, as the MLIP sends the DLP. command two characters at a time. As the MLIP 
sends the command Descriptor to the DLP, the command length is decremented. If the length is zero and 
the DLP requests more command Descriptor data, the MLIP disconnects from the DLP, and places the IOCB 
into the result queue with an Unexpected DLP Status error (which also returns the DLP status). 

After sending the DLP the command Descriptor, the MLIP sends the command Descriptor LPW word, and 
then generates the Descriptor link using the absolute memory address of the IOCB and the processor ID to 
generate the host return field, sends the Descriptor link and Descriptor link LPW to the DLP. 

GET OLP RESULT 

Like the command Descriptor, the DLP result Descriptor is of variable length. Consequently, the MLIP must 
evaluate the Descriptor in the DLP 1/0 Result Pointer word of the IOCB to find where to place the DLP result 
Descriptor. Additionally, the MLIP gets the result Descriptor length from a field in the DLP Command/Result 
Lengths word of the IOCB. The result length must also be even, as the DLP sends the result Descriptor two 
characters at a time. As the DLP sends the result Descriptor, the MLIP decrements the length counter. If 
the length is zero, and the DLP wants to send more result Descriptor characters, the MLIP disconnects from 
the DLP, and place the IOCB into the result queue with an Unexpected DLP Status error (which also returns 
the DLP status); otherwise, the first word of the DLP result Descriptor (up to 48 bits) is then ANDed with 
the complement of the contents of the Result Mask word of the IOCB. If the result of the AND is not zero, 
the DLP Error bit is set in the MLIP State and Result word of the IOCB. The MLIP reads the result Descrip­
tor LPW and marks any LPW errors in the MLIP State and Result word of the IOCB. The IOCB is then 
placed into the result queue. · 

6-30 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

ADDING AN IOCB TO A RESULT QUEUE 

Before the IOCB is actually added to the result queue, several housekeeping chores must be performed. First, 
the Command Queue Head Pointer of the IOCB is evaluated to find the Command Queue Header. Next, the 
Suspended bit of the Command Queue Control Word is set if lhe Suspend All Queues flag is set, and the 
Ignore Suspend All Queues bit in the IOCB Control Word is reset. 

If the Suspended bit of the Command Queue Control Word is on, the Completed After Queue Suspended bit 
of the MLIP State and Result Word of the IOCB is set. If the Attention bit in the IOCB Control Word is 
on, the Attention bit in the MLIP State and Result Word of the IOCB is also set. 

The Count Error bit and the MLIP/MLI Error bit is set in the MLIP State and Result Word of the IOCB 
if either the Input bit or the Output bit is on in the IOCB Control Word, and if the Ignore Count Error bit 
is off in the IOCB Control Word and if the MLIP Current 1/0 Length word in the IOCB is not equal to zero. 
The Exception bit in the MLIP State and Result Word of the IOCB and the Suspended bit in the Command 
Queue Control Word is set if any of the bits in the [5:5] field of the MLIP State and Result Word are on. 

The Active Count field of the Command Queue Control Word is decremented if the Don't Count bit of the 
IOCB Control Word is not on. The contents of the Time-of-Day register is placed into the 1/0 Finish Time 
Word. 

The Result Queue Head Pointer word of the IOCB is evaluated as a reference to the Result Queue Head. 
The IOCB Self-pointer is stored into the Result Queue Head with a readlock operation, and the previous con­
tents of the Result Queue Head are placed into the IOCB Next Link word. 

The MLIP causes an 1/0 Finish Interrupt in the CPU if the Exception bit in the IOCB MLIP State and Result 
word is on, the Cause 1/0 Finish Event bit in the IOCB Control Word is on, the Active Count field of the 
Command Queue Control Word is zero, the Exception bit of the IOCB MLIP State and Result word is not 
on, and the Command Queue Head IOCB Link word is null (tag=O) (end of chain condition), or the CPU 
is executing the Idle operator (optional). 

POLL REOUESTfTURNAROUND 

Poll Request connects to a DLP that has requested MLIP attention. Turnaround handles a DLP that is already 
connected to the MLIP and has either Data or Result Descriptor information to send. Poll Request reads the 
Global Priority Word from the MLI and saves the DLP Address field so the MLIP will know which DLP 
is connected, and then completes the MLI connection algorithm. Turnaround, since the MLIP is already con­
nected, has the DLP Address available. 

Once connected, the DLP first transmits to the MLIP the Descriptor Link and Descriptor link LPW. The 
MLIP then must verify the Descriptor link to ensure its validity. The Descriptor link is invalid if the LPW 
was incorrect, the Host Return Field is incorrect, the IOCB address field of the Descriptor link does not refer­
ence a word in memory with an IOCB Mark, or the DLP Address Word of the IOCB does not match the 
DLP Address field of tt\e Global Priority Word· (or in the case of Turnaround, the DLP Address of the DLP 
to which the MLIP is connected). If the Descriptor link is invalid for any of the above reasons, the MLIP 
disconnects from the DLP (which leaves the DLP "hung") and reports the invalid Descriptor link through 
the Error IOCB. 

If the Descriptor link is valid, the MLIP verifies that the DLP request is proper, as follows: 

If the OLP goes to Read Status, the MLIP verifies that the Input bit of the IOCB Control Word is on, 
and then handle the input burst. 

5011034 6-31 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

If the DLP goes to Write Status, the MLIP verifies that the Output bit of the IOCB Control Word is 
on, and then handle the output burst. 

If the DLP goes to Send Result Descriptor Status, the MLIP gets the result Descriptor (see explanation 
on Get Result Descriptor, which adds the IOCB to the result queue); if the DLP is still connected (the 
MLIP disconnects if any errors are encountered in getting the result Descriptor or in adding the IOCB 
to the result queue), the MLIP initiates the command queue that the IOCB referenced through the Com­
mand Queue Head Pointer. 

If the DLP does not go to Read Status, Write Status, or Send Result Descriptor Status, or if the Read 
Status or Write Status is invalid due to the Input or Output bit values, the MLIP places an Unexpected 
OLP Status Error into the MLIP State and Result word of the IOCB, place the IOCB into the result 
queue, and disconnects from the DLP (which will probably leave the DLP hung). 

If the MLIP performed an Input Burst or an Output Burst, the MLIP updates its burst parameters in 
the IOCB and disconnects. 

MLIP OPERATIONS 

There are various commands upon which the MLIP is capable of acting. These commands are flagged in the 
IOCB Control Word if the MLIP/DLP Command bit is on. The actual command, however, is found by 
evaluating the reference contained in the DLP 1/0 Command Pointer word, which points to a. memory area 
where the MLIP may actually find its command. The MLIP then fetches the command word, and verifies that 
it is one that the MLIP recognizes. If it is not a valid command, the MLIP Invalid Operation bit and the MLIP/ 
MLI Error bits are turned on in the IOCB MLIP State and Result word, and the IOCB is placed into the 
result queue. 

If the command is in fact a valid one, the MLIP performs immediately the command, as follows: 

Test Wait For Error Operation 
The MLIP first checks to see if it already has a pending Wait For Error operation. If not, the MLIP 
saves the IOCB address, and uses the error IOCB to report various types of errors, when they occur. 

Master Clear Operation 
The MLIP first ensures that it is not connected to any· DLPs, and disconnect if it is connected. The 
the MLI Master Clear sequence is implemented, and the IOCB is placed into the result queue. 

Set/Reset Suspend All Queues flag Operation 
This operation either sets or resets, as indicated, the Suspend All Queues flag. The IOCB is then placed 
into the result queue. 

Activate Queue Operation 
The Command Queue Head Pointer reference in the IOCB is used to reference a Command Queue. The 
Queue Mark is then verified, and the MLIP resets the Suspended bit in the Command Queue Control 
Word. The IOCB is then placed into the result queue. If the Suspend All Queues flag is on at this time, 
at least the next IOCB in the Command Queue could be initiated, as the command queue is not sus­
pended, even if the Suspend All Queues flag is· on, when any MLIP operation is placed into a result 
queue. 

Deactivate Queue Operation 

6-32 

The Command Queue Head Pointer reference in the IOCB is used to reference a Command Queue. The 
Queue Mark is then verified, and the MLIP sets the Suspended bit in the Command queue Control word. 
The IOCB is then placed into the result queue. 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

Return Queue Operation 
The Command Queue Head Pointer reference in the IOCB is used to reference a Command Queue 
Header. The Queue Mark is then verified. The first word of the area pointed to by the DLP 1/0 Result 
Pointer is then replaced by the contents of the Command Queue Head IOCB Link word. Null links (ze­
ros) are then placed into the Command Queue Head IOCB Link word and the Command Queue Tail 
IOCB Link words. The IOCB is then placed into the result queue. 

Clear DLP Operation and Read DLP Status 
The MLIP checks that it is not connected to a DLP; if it is connected to the wrong DLP (which should 
show a status of "Idle" or "Disconnect"), it disconnects. If MLIP is not then connected to the correct 
DLP, it attempts to connect to the DLP as explained elsewhere. If the connection is successful, and this 
is a Clear DLP Operation, the DLP is selectively cleared. If this is a Read DLP Status OP, the current 
DLP status is placed into the DLP Status field of the MLIP State and Result Word of the IOCB. If the 
connection is not successful, the appropriate error is noted in the MLIP State and Result Word of the 
IOCB. The IOCB is then placed into the result queue. 

DATA TRANSFER 

The MLIP considers memory words to be divided into six characters plus a tag. The characters labels are 
shown in Figure 6-21. 

47 43 39 35 31 ~ l 23 19 15 11 l 3 

I 

I I 
TAG t-CHAR. O~ t-CHAR.1~ t-CHAR. 2i!i t-CHAR. 3~ t-CHAR.4° t-CHAR.5?.. 

I 

45 41 37 33 29 25 21 "+" 5 1 

44 40 36 32 28 24 20 16 12 B 4 0 

MV4725 

Figure 6-21. Memory Word Characters 

For forward operations data transfers are left to right; that is, the first character accessed in the word is the 
TAG if tag transfer is specified or Character 0 if tag transfer is not specified. Character 5 is the last character 
accessed. For backward operations, the opposite is true; character 5 is the first character accessed and charac­
ter 0 (or the tag) is the last. 

Data transfer can begin at any character position of a word. If the transfer does not begin at the left hand 
edge of the word for a forward operation or the right hand edge for a backward operation, the prior contents 
of the word (which are left of the beginning character for forward or to the right of the beginning character 
for backward) must not be changed. 

Similarly, data transfer can end at any character position. In character-oriented operations, a partial word is 
filled with the prior contents of the word. In word-oriented operation, partial words are zero filled. 

5011034 6-33 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

GLOSSARY OF MLIP/IODC OPERATING TERMS 

The following are some miscellaneous terms and mnemonics useful in understanding MLIP/IODC concepts: 

MLIP 
Message Level Interface Processor - portion of CPU logic which controls operations between the Data 
Processor and the IODC and its associated DLPs. 

IODC 
Input/Output Data Communication - subsystem utilized for 1/0 and Datacomm operations, common to 
the MLI interface specifications. 

IOCB 
Input/Output Control Block - a contiguous area of memory containing the necessary information for the 
performance of an 1/0 or MLIP operation. 

CUIO 
Communicate with Universal 1/0 - a variant mode operator (954C) which starts an operation to the MLIP 
or IODC using a Data Descriptor found in the top of the stack pointing to the first word of the IOCB. 

IOCB MARK 
A value of 4"10CB" found in [47:16] of the first word in an IOCB used by the logic to verify this is 
actually the first word of an IOCB. 

ERROR IOCB 

MLI 

An IOCB set aside by the MCP to be used by the MLIP to terminate an 1/0 operation when normal 
error termination is not possible. 

Message Level Interface - a 25 line bi-directional interface between the MLIP and the IODC containing 
data and control information. 

MLIP/CPU INTERFACE 
Connection between CPU and MLIP, primarily Zl bus, Z5 bus, C register, and micro-module address 
lines. 

MLIP/IODC INTERFACE 

DLP 

Connection between IODC and MLIP called MLI. 

Data Link Processor - a specialized micro-processor used to transfer information to and from a peripheral 
device. 

POLL TEST 
Process of MLIP connecting to IODC. 

POLL REQUEST 
Process of IODC reconnecting to MLIP following operation initiated by MLIP. 

GLOBAL PRIORITY WORD 

6-34 

A word returned to MLIP during POLL REQUEST indicating priority of each DLP requesting connec­
tion to the MLIP. 



B 5900 Reference Manual 
B 5900 Input/Output Data Communication Subsystem 

COMMAND QUEUE 
A linking together of IOCBs in the order in which they will be performed. 

RESULT QUEUE 
A linking together of IOCBs as the 1/0 operation is completed. 

COMMAND QUEUE HEADER 
A structure used to maintain the current state of a command queue. 

RESULT QUEUE HEADER 
A structure used to maintain the current state of the completed 1/0 operations. 

5011034 6-35 





B S900 Reference Manual 

APPENDIX A 
OPERATORS 

Table A-1. Operators, Alphabetical List 

Name 

ADD 

BIT RESET 
BIT SET 
BRANCH FALSE 
BRANCH TRUE 
BRANCH UNCONDITIONAL 

CHANGE SIGN BIT 
COMPARE CHARACTERS EQUAL DELETE 
COMPARE CHARACTERS EQUAL UPDATE 
COMPARE CHARACTERS GREATER OR EQUAL DELETE 
COMPARE CHARACTERS GREATER OR EQUAL UPDATE 
COMPARE CHARACTERS GREATER DELETE 
COMPARE CHARACTERS GREATER UPDATE 
COMPARE CHARACTERS LESS OR EQUAL DELETE 
COMPARE CHARACTERS LESS OR EQUAL UPDATE 
COMPARE CHARACTERS LESS DELETE 
COMPARE CHARACTERS LESS UPDATE 
COMPARE CHARACTERS NOT EQUAL DELETE 
COMPARE CHARACTERS NOT EQUAL UPDATE 
CONDITIONAL HALT (all modes) 
COUNT BINARY ONES 
COMMUNICATE WITH UNIVERSAL 1/0 

DELETE TOP-OF-STACK 
DISABLE EXTERNAL INTERRUPT 
DIVIDE 
DYNAMIC BRANCH UNCONDITIONAL 
DYNAMIC FIELD INSERT 
DYNAMIC FIELD ISOLATE 
DYNAMIC FIELD TRANSFER 
DYNAMIC SCALE LEFT 
DYNAMIC SCALE RIGHT FINAL 
DYNAMIC SCALE RIGHT ROUND 
DYNAMIC SCALE RIGHT SAVE 
DYNAMIC SCALE RIGHT TRUNCATE 

ENABLE EXTERNAL INTERRUPTS 
END EDIT 
END FLOAT 
ENTER 
EQUAL 
ESCAPE TO 16-BIT INSTRUCTION 
EVALUATE 

5011034 

Mnemonic Hexadecimal 
Code 

ADD so 
BRST 9E 
BSET 96 
BRFL AO 
BRTR Al 
BRUN A2 

CHSN SE 
CEQD F4 
CEQU FC 
CGED Fl 
CGEU F9 
CGTD F2 
CGTU FA 
CLEO F3 
CLEU FB 
CLSD FO 
CLSU FS 
CNED FS 
CNEU FD 
HALT DF 
CBON 9SBB 
CUIO 9S4C 

DLET BS 
DEXI 9S47 
DIVD S3 
DBUN AA 
DINS 90 
DISO 9B 
DFTR 99 
DSLF Cl 
DSRF C7 
DSRR C9 
DSRS cs 
DSRT C3 

EEXI 9S46 
ENDE DE 
ENDF DS 
ENTR AB 
EQUL SC 
VARI 9S 
EVAL AC 

A-1 



A-2 

B 5900 Reference Manual 
Operators 

Table A-1. Operators, Alphabetical List (Cont) 

Name Mnemonic 

EXCHANGE EXCH 
EXECUTE SINGLE MICRO, SINGLE POINTER UPDATE EXPU 
EXECUTE SINGLE MICRO DELETE EXSD 
EXECUTE SINGLE MICRO UPDATE EXSU 
EXIT EXIT 
EXTENDED MULTIPLY MULX 

FIELD INSERT INSR 
FIELD ISOLATE ISOL 

GREATER THAN GRTR 
GREATER THAN OR EQUAL GR~Q 

INDEX INDX 
INDEX AND LOAD NAME NXLN 
INDEX AND LOAD VALUE NXLV 
INPUT CONVERT DELETE ICVD 
INPUT CONVERT UPDATE ICVU 
INSERT CONDITIONAL (edit mode) INSC 
INSERT DISPLAY SIGN (edit mode) INSG 
INSERT MARK STACK IMKS 
INSERT OVERPUNCH (edit mode) INOP 
INSERT UNCONDITIONAL (edit mode) INSU 
INTEGER DIVIDE IDIV 
INTEGERIZE ROUNDED NTGR 
INTEGERIZE TRUNCATED NTIA 
INTEGERIZE ROUNDED DOUBLE-PRECISION NTGD 
INV AUD OPERATOR (all modes) NVLD 

LEADING ONE TEST LOG2 
LINKED LIST LOOKUP LLLU 
LESS THAN LESS 
LESS THAN OR EQUAL LSEQ 
LITERAL CALL ONE ONE 
LITERAL CALL ZERO ZERO 
LITERAL CALL 8-BITS LT8 
LITERAL CALL 16-BITS LT16 
LITERAL CALL 48-BITS LT48 
LOAD LOAD 
LOAD TRANSPARENT LOOT 
LOGICAL AND LAND 
LOGICAL EQUAL SAME 
LOGICAL EQUIVALENCE LEQV 
LOGICAL NEGATE LNOT 
LOGICAL OR LOR 

MAKE PROGRAM CONTROL WORD MPCW 
MARK STACK MKST 
MASKED SEARCH FOR EQUAL SRCH 
MOVE CHARACTERS (edit mode) MCHR 
MOVE NUMERIC UNCONDITIONAL (edit mode) MVNU 

Hexadecimal 
Code 

B6 
. DD 

D2 
DA 
A3 
8F 

9C 
9A 

8A 
89 

A6 
AS 
AD 
CA 
CB 
DD 
09 
CF 
08 
DC 
84 
87 
86 
9587 
FF 

958B 
95BD 
88 
8B 
Bl 
BO 
B2 
B3 
BE 
BD 
95BC 
90 
94 
93 
92 
91 

BF 
AE 
95BE 
07 
06 



5011034 

B 5900 Reference Manual 
Operators 

Table A-1. Operators, Alphabetical List (Cont) 

Name Mnemonic 

MOVE TO ST ACK MYST 
MOVE WITH FLOAT (edit mode) MFLT 
MOVE WITH INSERT (edit mode) MINS 
MULTIPLY MULT 

NAME CALL NAMC 

NO OPERATION (all modes) NOOP 
NORMALIZE NORM 
NOT EQUAL NEQL 

OCCURS INDEX OCRX 
OVERWRITE DELETE OVRD 
OVERWRITE NON-DELETE OVRN 

PACK DELETE PACD 
PACK UPDATE PACU 
PUSH DOWN STACK REGISTERS PUSH 

READ AND CLEAR OVERFLOW FLIP-FLOP ROFF 
READ PROCESSOR IDENTIFICATION WHOI 
READ PROCESSOR REGISTER RPRR 
READ TAG FIELD RTAG 
READ TIME-OF-DAY CLOCK RTOD 
READ TRUE/FALSE FLIP-FLOP RTFF 
READ WITH LOCK RDLK 
REMAINDER DIVIDE RDIV 
RESET FLOAT (edit mode) RSTF 
RETURN RETN 
ROTATE STACK DOWN RSDN 
ROTATE STACK UP RSUP 
RUNNING INDICATOR RUNI 

SCALE LEFT SCLF 
SCALE RIGHT FINAL SCRF 
SCALE RIGHT ROUNDED SCRR 
SCALE RIGHT SAVE SCRS 
SCALE RIGHT TRUNCATE SCRT 
SCALE-IN SCNI 
SCAN-OUT SCNO 
SCAN WHILE EQUAL DELETE SEQD 
SCAN WHILE FALSE UPDATE SEQU 
SCAN WHILE FALSE DELETE SWFD 
SCAN WHILE FALSE UPDATE SWFU 
SCAN WHILE GREATER OR EQUAL DELETE SGED 
SCAN WHILE GREATER OR EQUAL UPDATE SGEU 
SCAN WHILE GREATER DELETE SGTD 
SCAN WHILE GREATER UPDATE SGTU 
SCAN WHILE LESS OR EQUAL DELETE SLED 
SCAN WHILE LESS OR EQUAL UPDATE SLEU 

Hexadecimal 
Code 

95AF 
Dl 
DO 
S2 

40 
through 
7F 
FE 
95SE 
SD 

95S5 
BA 
BB 

DI 
D9 
B4 

D7 
954E 
95BS 
95B5 
95A7 
DE 
95BA 
S5 
D4 
A7 
95B7 
95B6 
9541 

co 
C6 
cs 
C4 
C2 
954A 
954B 
954F 
95FC 
9504 
95DC 
95Fl 
95F9 
95F2 
95FA 
95F3 
95FB 

A-3 



A-4 

B 5900 Reference Manual 
Operators 

Table A-1. Operators, Alphabetical List (Cont) 

Name 

SCAN WHILE LESS DELETE 
SCAN WHILE LESS UPDATE 
SCAN WHILE NOT EQUAL DELETE 
SCAN WHILE NOT EQUAL UPDATE 
SCAN WHILE TRUE DELETE 
SCAN WHILE TRUE UPDATE 
SET DOUBLE TO TWO SINGLES 
SET EXTERNAL SIGN 
SET INTERVAL TIMER 
SET PROCESSOR REGISTER 
SET TAG FIELD 
SET TO DOUBLE-PRECISION 
SET TO SINGLE-PRECISION ROUNDED 
SET TO SINGLE-PRECISION TRUNCATED 
SET TWO SINGLES TO DOUBLE 
SKIP FORWARD DESTINATION CHARACTERS (edit mode) 
SKIP FORWARD SOURCE CHARACTERS (edit mode) 
SKIP REVERSE DESTINATION CHARACTERS (edit mode) 
SKIP REVERSE SOURCE CHARACTERS (edit mode) 
STORE DESTRUCTIVE 
STORE NON-DELETE 
STRING ISOLATE 
STUFF ENVIRONMENT 
SUBTRACT 

TABLE ENTER EDIT DELETE 
TABLE ENTER EDIT UPDATE 
TRANSFER UNCONDITIONAL DELETE 
TRANSFER UNCONDITIONAL UPDATE 
TRANSFER WHILE EQUAL DELETE 
TRANSFER WHILE EQUAL UPDATE 
TRANSFER WHILE GREATER OR EQUAL DELETE 
TRANSFER WHILE GREATER OR EQUAL UPDATE 
TRANSFER WHILE GREATER DELETE 
TRANSFER WHILE GREATER UPDATE 
TRANSFER WHILE LESS OR EQUAL DELETE 
TRANSFER WHILE FALSE DELETE 
TRANSFER WHILE FALSE UPDATE 
TRANSFER WHILE TRUE DELETE 
TRANSFER WHILE TRUE UPDATE 
TRANSFER WHILE LESS OR EQUAL UPDATE 
TRANSFER WHILE LESS DELETE 
TRANSFER WHILE LESS UPDATE 
TRANSFER WHILE NOT EQUAL DELETE 
TRANSFER WHILE NOT EQUAL UPDATE 
TRANSFER WORDS OVERWRITE DELETE 
TRANSFER WORDS OVERWRITE UPDATE 
TRANSFER WORDS DELETE 

Mnemonic 

SLSD 
SLSU 
SNED 
SNEU 
SWTD 
SWTU 
SPLT 
SXSN 
SINT 
SPRR 
STAG 
XTND 
SNGL 
SNGT 
JOIN 
SFDC 
SFSC 
SRDC 
SRSC 
STOD 
STON 
SISO 
STFF 
SUBT 

TEED 
TEEU 
TUND 
TUNU 
TEQD 
TEQU 
TGED 
TGEU 
TGTD 
TGTU 
TLED 
TWFD 
TWFU 
TWTD 
TWTU 
TLEU 
TLSD 
TLSU 
TNED 
TNEU 
TWOD 
TWOU 
TWSD 

Hexadecimal 
Code 

95FO 
95F8 
95F5 
95FD 
95D5 
95DD 
9543 
D6 
9545 
95B9 
95B4 
CE 
CD 
cc 
9542 
DA 
D2 
DB 
D3 
B8 
B9 
D5 
AF 
81 

DO 
D8 
E6 
EE 
E4 
EC 
El 
E9 
E2 
EA 
E3 
95D2 
95DA 
95D3 
95DB 
EB 
EO 
E8 
E5 
ED 
D4 
DC 
D3 



B 5900 Reference Manual 
Operators 

Table A-1. Operators, Alphabetical List (Cont) 

Name Mnemonic 

TRANSFER WORDS UPDATE TWSU 
TRANSLATE TRNS 

UNPACK ABSOLUTE DELETE UABD 
UNPACK ABSOLUTE UPDATE UABU 
UNPACK SIGNED DELETE USND 
UNPACKED SIGNED UPDATE USNU 

VALUE CALL VALC 

WRITE TIME-OF-DAY WTOD 

Table A-2. Operators, Numerical List 
Hexadecimal Code Name 

PRIMARY MODE 

· 00 thru 3F VALUE CALL 
40 thru 7F NAME CALL 

80 ADD 
81 SUBTRACT 
82 MULTIPLY 
83 DIVIDE 
84 INTEGER DIVIDE 
85 REMAINDER DIVIDE 
86 INTEGERIZE TRUNCATE 
87 INTEGERIZE ROUNDED 
8S LESS THAN 
S9 GREATER THAN OR EQUAL 
SA GREATER THAN 
SB LESS THAN OR EQUAL 
SC EQUAL 
8D NOT EQUAL 
SE CHANGE SIGN BIT 
SF EXTENDED MULTIPLY 

90 LOGICAL AND 
91 LOGICAL OR 
92 LOGICAL NEGATE 
93 t,OGICAL EQUIVALENCE 
94 LOGICAL EQUAL 
95 ESCAPE TO 16-BIT INSTRUCTIONS 
96 BIT SET 

5011034 

Hexadecimal 
Code 

DB 
95D7 

95Dl 
95D9 
9500 
95D8 

00 
through 
3F 

9549 

Mnemonic 

VALC 
NAMC 
ADD 
SUBT 
MULT 
DIVD 
IDV 
RDIV 
NTIA 
NTGR 
LESS 
GREQ 
GRTR 
LSEQ 
EQUL 
NEQL 
CHSN 
MULX 

LAND 
LOR 
LNOT 
LEQV 
SAME 
VARI 
BSET 

A-5 



Hexadecimal Code 

97 .. " 
98 ... 

'99.._ 
. 9-A .. , 

9S 
9C .. 
'9n._ 
9E .. 

'-9E. 

A-0, 
Al 
·~ . 
. A3--~ 

·..Af_ 
A6. 

--A:i . 
.. 

AS. 
A9. 
AA 
-AB~ 

AC 
Ai}. 
AE. 

··.AF~. 

BO. 
Bl 
B2 
Bl. 
B4, 
-a-~ 

'•·B6 .... 
-·--si. 
.. BS-
"B9-. 
BA 
BB. 

··an_ 
BE-

. BF 

CO. 
Cl .. 
C2 
C3 
C4 
cs 
C6. 
C7 
cs 
C9 

-----CA.. 
A-6 . ...., 

B 5900 Reference Manual 
Operators 

Table A-2. Operators, Numerical List (Cont) 
Name 

DYNAMIC BIT SET 
FIELD TRANSFER 
DYNAMIC FIELD TRANSFER 
FIELD ISOLATE 
DYNAMIC FIELD ISOLATE 
FIELD INSERT 
DYNAMIC FIELD INSERT 
BIT RESET 
DYNAMIC BIT RESET 

BRANCH FALSE 
BRANCH TRUE 
BRANCH UNCONDITIONAL 
EXIT 
INDEX AND LOAD NAME 
INDEX 
RETURN 
DYNAMIC BRANCH FALSE 
DYNAMIC BRANCH TRUE 
DYNAMIC BRANCH UNCONDITIONAL 
ENTER 
EVALUATE DESCRIPTOR 
INDEX AND LOAD VALUE 
MARK STACK 
STUFF ENVIRONMENT 

LITERAL CALL ZERO 
LITERAL CALL ONE 
LITERAL CALL 8-BITS 
LITERAL CALL 16-BITS 
PUSH DOWN STACK REGISTERS 
DELETE TOP-OF-STACK 
EXCHANGE 
DUPLICATE TOP-OF-ST ACK 
STORE DELETE 
STORE NON-DELETE 
OVERWRITE DELETE 
OVERWRITE NON-DELETE 
LOAD 
LITERAL CALL 48-BITS 
MAKE PROGRAM CONTROL WORD 

SCALE LEFT 
DYNAMIC SCALE LEFT 
SCALE RIGHT TRUNCATE 
DYNAMIC SCALE RIGHT TRUNCATE 
SCALE RIGHT SAVE 
DYNAMIC SCALE RIGHT SA VE 
SCALE RIGHT FINAL 
DYNAMIC SCALE RIGHT FINAL 
SCALE RIGHT ROUNDED 
DYNAMIC SCALE RIGHT ROUNDED 
INPUT CONVERT DELETE 

Mnemonic 

DBST 
FLTR 
DFTR 
!SOL 
DISO 
INSR 
DINS 
BRST 
DBRS 

BRFL 
BRTR 
BRUN 
EXIT 
NXLN 
INDX 
RETN 
DBFL 
DBTR 
DBUN 
ENTR 
EVAL 
NXLV 
MKST 
STFF 

ZERO 
ONE 
LT8 
LT16 
PUSH 
DLET 
EXCH 
DUPL 
STOD 
STON 
OVRD 
OVRN 
LOAD 
LT48 
MPCW 

SCLF 
DSLF 
SCRT 
DSRT 
SCRS 
DSRS 
SCRF 
DSRF 
SCRR 
DSRR 
ICVD 



Hexadecimal Code 

CB 
cc 
CD 
CE 
CF 

00 
DI 
02 
03 
D4 
05 
D6 
07 
08 
D9 

-OA 
DB 
DC 
DD 
DE 
DF 

EO 
EI 
E2 
E3 
E4 
E5 
E6 
E8 
E9 
EA 
EB 
EC 
ED 
EE 

FO 
FI 
F2 
F3 
F4 
F5 
F8 
F9 
FA 
FB 
FC 
FD 
FE-," 
FF 

5011034 

B 5900 Reference Manual 
Operators 

Table A-2. Operators, Numerical List (Cont) 
Name 

INPUT CONVERT UPDATE 
SET TO SINGLE-PRECISION TRUNCATED 
SET TO SINGLE-PRECISION ROUNDED 
SET TO DOUBLE-PRECISION 
INSERT MARK STACK 

TABLE ENTER EDIT DELETE 
PACK DESTRUCTIVE 
EXECUTE SINGLE MICRO DELETE 
TRANSFER WORDS DESTRUCTIVE 
TRANSFER WORDS OVERWRITE DELETE 
STRING ISOLATE 
SET EXTERNAL SIGN 
READ AND CLEAR OVERFLOW FLIP-FLOP 
TABLE ENTER EDIT UPDATE 
PACK UPDATE 
EXECUTE SINGLE MICRO UPDATE 
TRANSFER WORDS UPDATE 
TRANSFER WORDS OVERWRITE UPDATE 
EXECUTE SINGLE MICRO SINGLE POINTER UPDATE 
READ TRUE/FALSE FLIP-FLOP 
CONDITIONAL HALT 

TRANSFER WHILE LESS DELETE 
TRANSFER WHILE GREATER OR EQUAL DELETE 
TRANSFER WHILE GREATER DELETE 
TRANSFER WHILE LESS OR EQUAL DELETE 
TRANSFER WHILE EQUAL DELETE 
TRANSFER WHILE NOT EQUAL DELETE 
TRANSFER UNCONDITIONAL DELETE 
TRANSFER WHILE LESS UPDATE 
TRANSFER WHILE GREATER OR EQUAL UPDATE 
TRANSFER WHILE GREATER UPDATE 
TRANSFER WHILE LESS OR EQUAL UPDATE 
TRANSFER WHILE EQUAL UPDATE 
TRANSFER WHILE NOT EQUAL UPDATE 
TRANSFER UNCONDITIONAL UPDATE 

COMPARE CHARACTERS LESS DELETE 
COMPARE CHARACTERS GREATER OR EQUAL DELETE 
COMPARE CHARACTERS GREATER DELETE 
COMPARE CHARACTERS LESS OR EQUAL DELETE 
COMPARE CHARACTERS EQUAL DELETE 
COMPARE CHARACTERS NOT EQUAL DELETE 
COMPARE CHARACTERS LESS UPDATE 
COMPARE CHARACTERS GREATER OR EQUAL UPDATE 
COMPARE CHARACTERS GREATER UPDATE 
COMPARE CHARACTERS LESS OR EQUAL UPDATE 
COMPARE CHARACTERS EQUAL UPDATE 
COMPARE CHARACTERS NOT EQUAL UPDATE 
NO OPERATION 
INV AUD OPERATOR 

Mnemonic 

ICVU 
SNGT 
SNGL 
XTND 
IMKS 

TEED 
PACD 
EXSD 
TWSD 
TWOD 
SISO 
SXSN 
ROFF 
TEEU 
PACU 
EXSU 
TWSU 
TWOU 
EXPU 
TRFF 
HALT 

TLSD 
TGED 
TGTD 
TLED 
TEQD 
TNED 
TUND 
TLSU 
TGEU 
TGTU 
TLEU 
TEQU 
TNEU 
TUNU 

CLSD 
CGED 
CGTD 
CLEO 
CEQD 
CNED 
CLSU 
CGEU 
CGTU 
CLEU 
CEQU 
CNEU 
NOOP 
NVLD 

A-7 



A-8 

Hexadecimal Code 

VARIANT MODE 

.~ 
·9542 
"9543.-

954:5 
9546 .. 
9547 

. 9549 
952f'A..., 

.. 954B 

954C 
.·954E. 

9585. 
9587. 
958B .. 
958E 
95A7 
951\.Ii 
95B4 
95B5 
95B6 
95B7 
951tlk 
95B9. 
95BA 

. 95BB. 
95BC 
95BD-
95BE 
9500 
95Dl 
9·502 
95D3 

. 95f>4-
95D§. 
95D7 
95D&_ 

. 95D9. 
95DA 
95DB 
95DC. 

·9500 
95DF 
95F-O .. 
'95Jll. 
95F2 

. 95F3 
···95F4 

95F5 
9jpg, 
9§F.9. 

B 5900 Reference Manual 
Operators 

Table A-2. Operators, Numerical List (Cont) 
Name 

RUNNING INDICATOR 
SET TWO SINGLES TO DOUBLE 
SET DOUBLE TO TWO SINGLES 
SET INTERVAL TIMER 
ENABLE EXTERNAL INTERRUPTS 
DISABLE EXTERNAL INTERRUPTS 
WRITE TIME-OF-DAY 
SCAN-IN 
SCAN-OUT 
COMMUNICATE WITH UNIVERSAL I/O 
READ PROCESSOR IDENTIFICATION 
OCCURS INDEX 
INTEGERIZE, ROUNDED, DOUBLE-PRECISION 
LEADING ONE TEST 
NORMALIZE 
READ TIME-OF-DAY 
MOVE TO STACK 
SET TAG FIELD 
READ TAG FIELD 
ROTATE STACK UP 
ROTATE STACK DOWN 
READ PROCESSOR REGISTER 
SET PROCESSOR REGISTER 
READ WITH LOCK 
COUNT BINARY ONES 
LOAD TRANSPARENT 
LINKED LIST LOOKUP 
MASKED SEARCH FOR EQUAL 
UNPACK SIGNED DELETE 
UNPACK ABSOLUTE DELETE 
TRANSFER WHILE FALSE DELETE 
TRANSFER WHILE TRUE DELETE 
SCAN WHILE FALSE DELETE 
SCAN WHILE TRUE DELETE 
TRANSLATE 
UNPACK SIGNED UPDATE 
UNPACK ABSOLUTE UPDATE 
TRANSFER WHILE FALSE UPDATE 
TRANSFER WHILE TRUE UPDATE 
SCAN WHILE FALSE UPDATE 
SCAN WHILE TRUE UPDATE 
CONDITIONAL HALT 
SCAN WHILE LESS DELETE 
SCAN WHILE GREATER OR EQUAL DELETE 
SCAN WHILE GREATER DELETE 
SCAN WHILE LESS OR EQUAL DELETE 
SCAN WHILE EQUAL DELETE 
SCAN WHILE NOT EQUAL DELETE 
SCAN WHILE LESS UPDATE 
SCAN WHILE GREATER OR EQUAL UPDATE 

Mnemonic 

RUNI 
JOIN 
SPLT 
SINT 
EEXI 
DEXI 
WTOD 
SCNI 
SCNO 
CUIO 
WHOI 
OCRX 
NTGD 
LOG2 
NORM 
RTOD 
MYST 
STAG 
RTAG 
RSUP 
RSDN 
RPRR 
SPRR 
RDLK 
CBON 
LODT 
LLLU 
SRCH 
USND 
UABD 
TWFD 
TWTD 
SWFD 
SWTD 
TRNS 
USNU 
UABU 
TWFU 
TWTU 
SWFU 
SWTU 
HALT 
SLSD 
SGED 
SGTD 
SLED 
SEQD 
SNED 
SLSU 
SGEU 



Hexadecimal Code 

95FA 
95FB 
95FC 
95FD 
95FE 
95FF 

EDIT MODE 

DO 
Dl 
D2 
D3 
D4 
D5 
D6 
D7 
D8 
D9 
DA 
DB 
DC 
DD 
DE 
DF 
FE 
FF 

5011034 

B 5900 Reference Manual 
Operators 

Table A-2. Operators, Numerical List (Cont) 
Name 

SCAN WHILE GREATER UPDATE 
SCAN WHILE LESS OR EQUAL UPDATE 
SCAN WHILE EQUAL UPDATE 
SCAN WHILE NOT EQUAL UPDATE 
NO OPERATION 
INVALID OPERA TOR 

MOVE WITH INSERT 
MOVE WITH FLOAT 
SKIP FORWARD SOURCE CHARACTERS 
SKIP REVERSE SOURCE CHARACTERS 
RESET FLOAT 
END FLOAT 
MOVE NUMERIC UNCONDITIONAL 
MOVE CHARACTERS 
INSERT OVERPUNCH 
INSERT DISPLAY SIGN 
SKIP FORWARD DESTINATION CHARACTERS 
SKIP REVERSE DESTINATION CHARACTERS 
INSERT UNCONDITIONAL 
INSERT CONDITIONAL 
END EDIT 
CONDITIONAL HALT 
NO OPERATION 
INVALID OPERATOR 

Mnemonic 

SGTU 
SLEU 
SEQU 
SNEU 
NOOP 
NVLD 

MINS 
MFLT 
SFSC 
SRSC 
RSTF 
ENDF 
MVNU 
MCHR 
INOP 
INSG 
SFDC 
SRDC 
INSU 
INSC 
ENDE 
HALT 
NOOP 
NVLD 

A-9 





EBCDIC 
Graphic 

BLANK 
[ 

< 
( 
+ 
I 
& 
] 
$ 

* 
) 

I 

' % 

> 
? 

# 
@ 

.. 
(+)PZ 

A 
B 
c 
D 
E 
F 
G 
H 
I 

(!)MZ 
J 
K 
L 
M 

5011034 

B 5900 Reference Manual 

APPENDIX B 
DATA REPRESENTATION 

Table B-1. Data Representation 

Decimal EBCDIC Hex. EBCDIC 
Value Internal Graphic Card Code 

64 0100 ()()()() 40 No Punches 
74 0100 1010 4A 12 8 2 
75 0100 1011 4B 12 8 3 
76 0100 1100 4C 12 8 4 
77 0100 1101 4D 12 8 5 
78 0100 1110 4E 12 8 6 
79 0100 1111 4F 12 8 7 

80 0101 ()()()() 50 12 
90 0101 1010 5A 11 8 2 
91 0101 1011 5B 11 8 3 
92 0101 1100 5C 11 8 4 
93 0101 1101 5D 11 8 5 
94 0101 1110 5E 11 8 6 
95 0101 1111 5F 11 8 7 

96 0110 ()()()() 60 11 
97 0110 0001 61 0 1 
107 0110 1011 6B 0 8 3 
108 0110 1100 6C 0 8 4 
109 0110 1101 6D 0 8 5 
110 0110 1110 6E 0 8 6 
111 0110 1111 6F 0 8 7 

122 0111 1010 7A 8 2 
123 0111 1011 7B 8 3 
124 0111 1100 7C 8 4 
125 0111 1101 7D 8 5 
126 0111 1110 7E 8 6 
127 0111 1111 7F 8 7 

192 1100 ()()()() co 12 0 
193 1100 0001 Cl 12 1 
194 1100 0010 C2 12 2 
195 1100 0011 C3 12 3 
196 1100 0100 C4 12 4 
197 1100 0101 C5 12 5 
198 1100 0110 C6 12 6 
199 1100 0111 C7 12 7 
200 1100 1000 cs 12 8 
201 1100 1001 C9 12 9 

208 1101 ()()()() DO 11 0 
209 1101 0001 Dl 11 1 
210 1101 0010 D2 11 2 
211 1101 0011 D3 11 3 
212 1101 0100 D4 11 4 

Octal 

60 
33 
32 
36 
35 

37 

34 
76 
52 
53 
55 
56 
57 

54 
61 
72 
73 
74 
16 
14 

15 
12 
13 
17 
75 
77 

20 
21 
22 
23 
24 
25 
26 
27 
30 
31 

40 
41 
42 
43 
44 

B-1 



EBCDIC 
Graphic 

N 
0 
p 
Q 
R 

s 
T 
u 
v 
w 
x 
y 
z 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

B-2 

B 5900 Reference Manual 
Data Representation 

Table B-1. Data Representation (Cont) 
Decimal EBCDIC Hex. EBCDIC 
Value Internal Graphic Card Code 

213 1101 0101 05 11 5 
214 1101 0110 D6 11 6 
215 1101 0111 07 11 7 
216 1101 1000 08 11 8 
217 1101 1001 D9 11 9 

224 1110 0000 EO 0 8 2 
226 1110 0010 E2 0 2 
227 1110 0011 E3 0 3 
228 1110 0100 E4 0 4 
229 1110 0101 E5 0 5 
230 1110 0110 E6 0 6 
231 1110 0111 E7 0 7 
232 1110 1000 E8 0 8 
233 1110 1001 E9 0 9 

240 1111 0000 FO 0 
241 1111 0001 Fl 1 
242 1111 0010 F2 2 
243 1111 0011 F3 3 
244 1111 0100 F4 4 
245 1111 0101 F5 5 
246 1111 0110 F6 6 
247 1111 0111 F7 7 
248 1111 1000 F8 8 
249 1111 1001 F9 9 

Octal 

45 
46 
47 
50 
51 

62 
63 
64 
65 
66 
67 
70 
71 

00 
01 
02 
03 
04 
05 
06 
07 
10 
11 



Title: 

Documentation Evaluation Form 

B 5900 System Reference Manual Form No: ...;;..50.;.;1;;.;1;;.;0;..;;;.3....;.4 _____ _ 
September 1981 

Date:.------------

Burroughs Corporation is interested in receiving your comments 
and suggestions regarding this manual. Comments will be util­
ized in ensuing revisions to improve this manual. 

Please check type of Suggestion: 

0 Addition 0 Deletion D Revision 0 Error 

Comments: 

From: 

Name -------------------------------~ 
Title 

Company -------------------------------
Address 

Phone Number --------------

Remove form and mail to: 

Burroughs Corporation 
Documentation Dept., TIO -West 

1300 John Reed Court 
City of Industry, CA 91745 

U.S.A. 





..,... ____ 2 .. BINDER ----.-

t---:----11'" BINDER --:---I 
1 · .. · ·r-:. , .. BINDER --I I 

5011034 

Primlld ln U.SA. 

I I 
Prtntld In U.S.A. ~1981 


