
Bu:r:roughs

86500
Information Processing Systems
REFERENCE MANUAL

Burroughs
B 6500

INFORMATION PROCESSING SYSTEMS

Printed in U.S. America

REFERENCE MANUAL

Burroughs Corporation
Detroit, Michigan 48232

$5.00

9-69 1043676

COPYRIGHT© 1969 BURROUGHS CORPORATION

The infonnation contained herein is subject to change
without notice. Revisions may be issued to advise of

such changes and/or additions.

Correspondence regarding this document should be forwarded using the Rema1'ks Fonn at
the back of the manual, or may be addressed directly to Systems Documentation, Sales
Technical Services, Burroughs Corporation, 6071 Second Avenue, Detroit, Michiigan 48232.

SECTION

l

TABLE OF CONTENTS

TITLE

INTRODUCTION.

SYSTEMS DESCRIPTION .

General.

Description of Units .

System Options and Requirements.

Auxiliary Cabinet .

System Power.

Peripheral Control Cabinet.

System Organization.

Master Control Program .

Clocks.

Processor.

Processor States.

Control State .

Normal State.

Features.

Interrupt System .

Interrupt Handling.

Operator Dependent Processor Interrupts .

Operator-Independent Processor Interrupts .

External Interrupts .

Main Memory.

Memory Words.

Memory Cycle Times.

Second Level Memory.

Input/Output Mul~iplexor .

Multiplexor Configuration .

Data Switching Channels .

Peripheral Controls .

System Expansion.

Peripheral Control Bus.

Processor Initiated I/O Operations.

PAGE

. xxvii

. l-l

. l-l

. l-l

. l-5

. l-6

. l-6

. l-8

. l-9

. l-9

. l-9

. l-12

. l-12

. l-12

. l-12

. l-13

. l-13

. l-14

. l-15

. l-15

. l-16

. l-16

. l-17

. l-17

. l-17

. l-17

. 1-17

. l-18

. l-18

• l-18

. l-19

. l-21

iii

SECTION

1 (cont)

2

3

iv

TABLE OF CONTEN'TS (cont)

TITLE

Peripheral Control.

Data Communications Processor .

Data Communications Adapters.

Real Time Adapter.

DATA REPRESENTATION .

General.

Internal Character Codes.

Number Bases .

Hexadecimal and Octal Notation .

Number Conversion .

Coded to Decimal Conversion.

Decimal To Coded .

Decimal and Hexadecimal Table Conversion .

Hexadecimal to Decimal .

Decimal to Hexadecimal •

Order of Magnitude.

Data Types and Physical Layout.

Character Type .

Operands .

Mantissa Field .

Logical Operands .

Operators .

STACK AND POLISH NOTATION~

The Stack .

General.

Base and Limit of Stack.

Bi-Directional Data Flow In the Stack.

Double-Precision Stack Operation .

Data Addressing .

Data Descriptor.

PAGE

• 1-21

. 1-21

. 1-22

• 1-24

2-1

2-1

. 2-1

2-2

. 2-2

. 2-4

. 2-4

. 2-4

. 2-5

. 2-5

. 2-5

. 2-7

. 2-8

. 2-8

. 2-9

. 2-10

. 2-12

. 2-12

. 3-1

. 3-1

. 3-1

. 3-2

. 3-2

. 3-2

. 3-3

. 3-3

SECTION

3 (cont)

TABLE OF CONTENTS (cont)

Presence Bit.

Index Bit .

Invalid Index.

Valid Index.

TITLE

Read-Only Bit.

Copy Bit •

Polish Notation.

General .

Rules for Generation of Polish String .

Polish String .

Rules for Evaluating a Polish String.

Simple Stack Operation.

Program Structure In Memory .

Memory Area Allocation •

Stack-History and Addressing-Environment
Lists .

Mark Stack Control Word Linkage.

Stack Deletion .

Relative-Addressing.

Base of Addressing-Level Segment.

Absolute Address Conversion .

Multiple Variables With Common
Address Couples .

Address Environment Defined .

Mark Stack Control Word Linkage .

Stack History Summary.

Multiple Stacks and Re-Entrant Code .

Level Definition .

Re-Entrance.

Job-Splitting.

Stack Descriptor .

Stack Vector Descriptor.

Presence Bit Interrupt ..

PAGE

3-4

3-4

3-4

3-4

3-5
3-5
3-5
3-5
3-7
3-8

3-8

3-9

3-14

3-14

3-16

3-16

3-16

3-18

3-20

3-20

3-20

3-21

3-21

3-21

3-22

3-22

3-22

J-22

3-23

3-24

3-24

v

SECTION

4

vi

TABLE OF CONTENTS (cont)

TITLE

MAJOR REGISTERS AND CONTROL PANELS.

General .

Panel A .

A Register .
B Register .
c Register .
x Register .
y Register .
p Register .

Panel B .
Row A.

Row B.

Row C.

Family A.

Arithmetic Control.

Row D.

Family B.

Family c.
Row E.

Family D.

Family E.

Row F.

Row G.

Row H.

Interrupt Controller .

Stack Controller .

Memory Controller.

Program Controller .

Transfer Controller.

General Maintenance Control ...

Power Controls.

General Clear and Halt-Load Function.

Processor Register Clear.

• .

PAGE

4-1

4-1

4-1

4-1

4-1

4-2

4-2

4-2

4-2

4-2

4-2

4-2

4-5
4-5
4-5
4-6
4-6
4-6
4-6
4-6
4-7

4-7

4-8

4-8

4-9

4-9

4-10

4-10

4-11

4-11

4-12

4-12

4-14

SECTION

4 (cont)

TABLE OF CONTENTS (cont)

TITLE

Multiplexor Register Clear.

MDL Register Clear.

MDL Control Switches.

Display Select Switches .

Clock Controls.

Single Pulse Switch .

Pulse Train Switch.

Indicators BO, Bl, B2 .

MDTR/Normal Switch.

FF Reset Switch .

Halt Load and Load Select Switches.

Processor Maintenance Controls (Panel E) .

Start Switch.

Conditional Halt Switch .

Stop Switches .

SECL Switch .

INT-I Switch.

EXT-I Switch.

Normal/Control State Switches .

Parity Switch .

Unit Clear Switch .

Local/Remote Switch .

ADJ (o,o) Switch.

Read IC Switch ..

Read IC Operation .

Write IC Switch .

Write IC.

Read Proc Reg Switches.

Multiplexor Registers and Flip Flops .

Row B.

Row C .

Row D .

Row E .

PAGE

. 4-14

4-14

. 4-14

. 4-14

. 4-15

. 4-15

. 4-15

. 4-15

. 4-15

. 4-16

. 4-16

. 4-16

. 4-16

. 4-17

. 4-17

. 4-17

. 4-17

• 4-17

• 4-18

. 4-18

. 4-18

. 4-18

. 4-18

• 4-18

. 4-19

. 4-19

. 4-19

4-20

. 4-22

.4-22

. 4-23

. 4-23

• 4-23

vii

SECTION

4 (cont)

5

viii

TABLE OF CONTENTS (cont)

Row F.

Row G.

Row H.

TITLE

MPX Maintenance Control Panel.

Write SPM.

Read SPM .

Write Main Memory.

Read' Main Memory .

Executing I/O Descriptors.

Single Cycle.

Recycle .

Logic Card Testing .

Operators Control Console .

Operator Panel .

Power On (Switch Indicator, White) .

Power Off (Switch, Brown).

Halt Switch (Switch/Indicator, Red).

Running (Indicator, Yellow).

Load Select (Switch/Indicator, Yellow) .

Load {Switch, Brown) .

Card Load OperatJon .

Disk Load Operation .

Visual Message Control Center .

Keyboard Control Keys.

Memory Tester .

Non-Test .

Test .

SYSTEM CONCEPT .

General .

Processor .

Operator Families.

PAGE

. 4-24

. 4-24

. 4-26

. 4-26

. 4-27

. 4-27

. 4-28

. 4-28

4-29

. 4-29

. 4-30

. 4-32

. 4-32

. 4-32

. 4-32

. 4-32

. 4-32

. 4-33

. 4-33

. 4-33

. 4-33

. 4-34

. 4-34

. 4-36

. 4-40

. 4-41

. 4-41

• 5-1
. 5-1
• 5-1

• 5.;..1

SECTION

5 (cont)

TABLE OF CONTENTS (cont)

TITLE

Program Controller.

Transfer Controller .

Stack Registers.

Internal Data Transfer Section .

Mask and Steering.

Mask and Steering Example.

Arithmetic Controller .

High Speed Adder .

Interrupt Controller.

Operator Dependent Interrupts.

Memory Protect.

Invalid Operand .

Divide by Zero.

Exponent Over.flow and Underflow .

Invalid Index .

Integer Overflow.

Bottom of Stack .

Presence Bit.

Data-Dependent Presence Bit.

Procedure-Dependent Presence
Bit.

Program Restart.

Segmented Array .

Programed Operator ..

Operator Independent Interrupts.

External Interrupts.

Processor to Processor.

Interval Timer.

Stack Overflow.

Multiplexor Interrupts.

Scan Bus Control.

Priority Handling Example .

PAGE

5-2

5-3

5-3

5-3

5-5
5-6
5-6
5-6
5-8

5-9
5-10

5-11

5-11

5-11

5-12

5-13

5-13

5-13

5-14

5-14

5-15

5-15

5-15

5-17

5-17

5-18

5-18

5-18

5-19

5-19

5-19

ix

SECTION

5 (cont)

x

TABLE OF CONTENTS (cont)

TITLE

Priority Handling With IIHF Set.

I/O Finished Data Communications .

General Control Adapter.

External MPX .

Alarm Interrupts.

Loop .

Memory Parity.

MPX Parity .

Invalid Address.

Stack Underflow.

Invalid Program Word .

Interrupt Handling .

String Operator Controller .

Control State/Normal State .

Input/Output Multiplexor .

Scan Bus.

Command Data Register .

Scratch Pad Memory.

Tag Register.

Memory Exchange .

Interrupt Network .

Time of Day Registere

Channel Assignment Control.

Character Translator.

Peripheral Control Interface.

Data Communications Interface .

System Clock Control and MDL Processor.

System Clock.

Maintenance Diagnostic Processor .

Display Mode.

Diagnose Mode .

Detect Mode .

PAGE

. 5-20

. 5-20

. 5-21

. 5-21

. 5-21

. 5-22

. 5-2·2

. 5-22

. 5-24

. 5-24

. 5-24

. 5-25

. 5-25

. 5-27

. 5-29

. 5-29

. 5-29

. 5-29

. 5-Jl

. 5-Jl

. 5-Jl

. 5-31

. 5-Jl

. 5-Jl

. 5-33

. 5-JJ

. 5-JJ

. 5-JJ

. 5-34

. 5-34

. 5-34

. 5-34

SECTION

5 (cont)

6

TABLE OF CONTENTS (cont)

TITLE

Information Flow From Card Reader To
Main Memory.

Alpha Card Read .

Binary Card Read.

EBCDIC Card Read.

Memory and MPX Controller.

Memory Bus .

Scan Bus .

Address Adder .

Integrated Chip Memory.

Main Memory.

Organization.

Memory Protection .

Cabinet Configuration .

Interface .

Priority.

Memory Registers.

Memory Addressing .

Memory Interlacing.

Memory Testing.

Stack Controller.

PROGRAM OPERATORS .

General.

Syllable Addressing and Syllable
Identification .

Syllable Format and Addressing. .

P and T Registers .

Operation Types .

Name Call.

Value Call .

Operators.

Word Data Descriptor .

String Descriptor.

PAGE

5-35

5-35

5-35

5-36

5-36

5-39
5-40

5-40

5-40

5-41

5-41

5-42

5-43

5-43

5-43
5-46

5-46

5-46

5-47

5-47

6-1

6-1

6-1

6-1

6-1

6-2

6-3

6-3

6-3

6-5
6-7

xi

SECTION

6 (cont)

7

xii

TABLE OF CONTENTS (cont)

TITLE

Segment Descriptor. . .

Mark Stack Control Word . .

Program Control Word ..

Return Control Word . .

Indirect Reference Word

Stuffed Indirect Reference Word .

Step Index Word

PRIMARY MODE OPERATORS

General .

Arithmetic Operators ..

Add (ADD) 80
Subtract (SUET) 81
Multiply (MULT) 82 . ' . . .
Extended Multiply (MULX) 8F.

Divide (DIVD) 83

Integer Divide (IDIV) 84

. .

. . . .

Remainder Divide (RDIV) 85

Integerize, Truncated (NTIA) 86 ..

Integerize, Rounded (NTGR) 87
Type-Transfer Operators . . .

Set to Single-Precision, Truncated

. .

. .

. .

. .

. .

.

PAGE

6-9

6-10

6-11

6-12

6-14

6-14

6-16

7-1
7-1
7-1
7-2

7-3
7-3
7-3
7-4
7-4

7-5
7-5
7-6
7-6

(SNGT) CC........... 7-6
Set to Single-Precision, Rounded
(SNGL) CD. . • •

Set to Double-Precision (XTND) CE ...

Logical Operators . .

Logical And (LAND) 90. " .
Logical Or (LOR) 91. " .
Logical Negate (LNOT) 92
Logical Equivalence (LEQV) 93. . ,, .

Relational Operators. •. .
Logical Equal (SAME) 94. . .
Greater Than (GRTR) 8A

. .

. .

. .

. .

. .

. .
.

.

.

.

.

.

.

.

.

.

.

.

.

7-7
7-7
7-8
7-8
7-8
7-8
7-8

7-9
7-9
7-9

SECTION

7 (cont)

TABLE OF CONTENTS (cont)

TITLE

Greater Than or Equal (GREQ) 89 ..

Equal (EQUL) 8C.

Less Than or Equal (LSEQ) 8B

Less Than (LESS) 88.

Not Equal (NEGL) 8D.

Branch Operators. ~ ...

Branch False (BRFL) AO

Branch True (BRTR) Al.

Branch Unconditional (BRUN)A2

Dynamic Branch False (DBFL) A8 .

Dynamic Branch True (DETR) A9 ..

Dynamic Branch Unconditional (DBUN) AA

Step and Branch (STER) A4. . .

Universal Operators

No Operation (NOOP) FE ...

Conditional Halt (HALT) DF .

Invalid Operator (NVLD) FF •

Store Operators

Store Destructive (STOD) B8 ..

Store Non-Destructive (STON) B9.

Overwrite Destructive (OVRD) BA ..

Overwrite Non-Destructive (OVRN) BB ...

Stack Operators

Exchange (EXCH) B6 .•...•.......

Delete Top Of Stack (DLET) B5

Duplicate Top Of Stack (DUPL) B7 .

Push Down Stack Registers (PUSH) B4.

Literal Call Operators

Lit Call Zero (ZERO) BO

Lit Call One (ONE) Bl.

Lit Call 8 Bits (LT8) B2

Lit Call 16 Bits (LTl6) BJ

Lit Call 48 Bits (LT48) BE .

PAGE

7-9

7-9

7-9

7-10

7-10

7-10

7-10

7-10

7-10

7-11

7-ll

7-11

7-12

7-12

7-12

7-12

7-12

7-12

7-13

7-13

7-13

7-13

7-13

7-13

7-14

7-14

7-14

7-14

7-14

7-14

7-14

7-14

7-14

xiii

SECTION

7 (cont)

xiv

TABLE OF CONTENTS (cont)

TITLE

Make Program Control Word (MPCW) BF ..

Index and Load Operators ...

Index (INDX) A6

Index and Load Name (NXLN) A5
Index and Load Value (NXLV) AD . .

Load (LOAD) BD

Scale Operators

Scale Left (SCLF) CO .

Dynamic Scale Left (DSLF) Cl .

Scale Right Save (SCRS) C4 ..

Dynamic Scale Right Save (DSRS) C5 ..

Scale Right Trun~ate (SCRT) C2 ..

Dynamic Scale Right Truncate (DSRT) CJ .

Scale Right Final (SCRF) C6

Dynamic Scale Right Final (DSRF) C7.

Scale Right Rounded (SCRR) CS ...•.

Dynamic Scale Right Round (DSRR) C9.

Bit Operators ~ .

Bit Set (BSET) 96

Dynamic Bit Set (DEST) 97.

Bit Reset (ERST) 9E

Dynamic Bit Reset (DBRS) 9F ..

Change Sign Bit (CHSN) SE.

Transfer Operators•..

Field Transfer (FLTR) 98

Dynamic Field Transfer (DFTF) 99

Field Isolate (ISOL) 9A.

Dynamic Field Isolate (DISO) 9B.

Field Insert (INSR) 9C

Dynamic Field Insert (DINS) 9D ..

String Transfer Operators . . • . . . ~ .

Transfer Words, Destructive (TWSD) DJ ..

Transfer Words, Update (TWSU) DB .

PAGE

7-15

7-15

7-15

7-16

7-16

7-16

7~17

7-17

7-17

7-17

7-lS

7-lS

7-18

7-18

7-18

7-lS

7-19

7-19

7-19

7-19

7-19

7-20

7-20

7-20

7-20

7-21

7-21

7-21

7-22

7-22

7-2J

7-2J

7-2J

SECTION

7 (cont)

TABLE OF CONTENTS (cont)

TITLE

Transfer Words, Overwrite Destructive
(TWOD) D4.

Transfer Words, Overwrite Update (TWOU) DC .

Transfer While Greater, Destructive

PAGE

7-23

7-23

(TGTD) E2. 7-24

Transfer While Greater Update (TGTU) EA. 7-24

Transfer While Greator or Equal,
Destructive (TGED) El. 7-25

Transfer While Greater or Equal, Update
(TGEW) E9. 7-25

Transfer While Equal, Destructive (TGED) E4. 7-25

Transfer While Equal, Update (TEGU) EC . 7-25

Transfer While Less or Equal,
Destructive (TLED) E3. 7-25

Transfer While Less or Equal, Update
(TLEU) EB. 7-25

Transfer While Less, Destructive (TLSD) EO . 7-25

Transfer While Less, Update (TLSU) ES. 7-26

Transfer While Not Equal, Destructive

(TNED) ES. 7-26

Transfer While Not Equal, Update (TNEU) ED . 7-26

Transfer Unconditional, Destructive
(TUND) E6.

Transfer Unconditional, Update (TUNU) EE .

String Isolate (SISO) DS .

Compare Operators .

Compare Characters Greater, Destructive
(CGTD) F2.

Compare Characters Greater, Update
(CGTU) FA.

Compare Characters Greater or Equal,
Destructive (CGED) Fl.

Compare Characters Greater or Equal,
Update (CGEU) F9.

Compare Characters Equal, Destructive
(CEGD) F4.

7-26

7-26

7-26

7-27

7-27

7-27

7-28

7-28

7-28

xv

SECTION

7 (cont)

xvi

TABLE OF CONTENTS (cont)

TITLE

Compare Characters Equal, Update
(CEGU) FC. . . . •

Compare Characters Less or Equal,
Destructive (CLED) F3

Compare Characters Less or Equal,
Update (CLEU)_ ·: FB

Compare Characters Less, Destructive
(CLSD) FO. . . . • . . . • . . •

Compare Characters Less, Update
(CLSU) F8. . ·. . . • • . . • . .

Compare Characters Not Equal, Destructive

PAGE

7-28

7-28

7-28

7-28

7-28

(CNED) F5. 7-29

Compare Characters Not Equal, Update
(CNEU) FD. • • •

Edit Operators

Table Enter Edit, Destructive (TEED) DO .•.

Table Enter Edit, Update (TEEU) D8

Execute Single Micro, Destructive
(EXSD) D2.

Execute Single Micro, Update (EXSU) DA .

Execute Single Micro, Single Pointer
Update (EXPU) DD

Pack Operators.

Pack, Destructive (PACD) Dl

Pack, Update (PACU) D9

Input Convert Operators . . .

Input Convert, tlestructive (ICVD) CA • .

Input Convert, Update (ICVU) CB .•.....

Read True False Flip Flop (RTFF) DE ...

Set External Sign (SXSN) D6 •....

Read And Clear Overflow Flip Flop (ROFF) D7.

Subroutine Operators•

Value Call (VALC) 00 =) 3F .

Name Call (NAMC) 40 =) 7F

7-29

7-29

7-29

7-30

7-30

7-30

7-30

7-30

7-30

7-Jl

7-31

7-31

7-32

7-32

7-32

7-32

7-32

7-32

7-33

SECTION

7 (cont)

8

TABLE OF CONTENTS (cont)

TITLE

Exit Operator (EXIT) A3 ...

Return Operator (RETN) A7 ..

Enter Operator (ENTR) AB . .

Evaluate (EVAL) AC . • . . .

Mark Stack Operator (MKST) AE.

Stuff Environment (STFF) AF ...

Insert Mark Stack Operator (IMKS) CF .

VARIANT MODE OPERATION AND OPERATORS . . .

General .

Operators . .

Set Two Singles to Uouble (JOIN) 9542.

Set Double to Two Singles (SPLT) 9543 ..

Idle Until Interrupt (IDLE) 9544

Set Interval Timer (SINT) 9545

Enable External Interrupts (EEXI) 9546 .

Disable External Interrupts (DEXI) 9547.

Scan Operators.

Read Time Of Day Clock .

Read General Control Adapter .

Read Result Descriptor ..

Read Interrupt Mask.

Read Interrupt Register. . .

Read Interrupt Literal .

Interrogate Peripheral Status ..

Interrogate Peripheral Unit Type

Interrogate I/O Path . .

Scan Out (SCNO) 954B ..

Set Time Of Day Clock. .

Set General Control Adapter.

Initiate I/O. (Control State Only)

PAGE

7-36

7-36

7-36

7-36

7-40

7-40

7-40

8-1

8-1

8-l

8-1

8-l

8-2

8-2

8-2

8-2

8-2

8-3

8-4

8-4

8-6

8-7

8-8

8-9

8-10

8-12

8-13

8-14

8-14

8-15

Read Processor Identification (WHOI) 954E. . 8-17

xvii

SECTION

8(cont)

xviii

TABLE OF CONTENTS (cont)

TITLE PAGE

Interrupt Other Processor (HEYU) 954F. . 8-17

Occurs Index (OCRX) 9585 8-17

Integerized, Rounded, Double-Precision
(NTGD) 9 587. 8-19

Leading One Test (LOG2) 958B 8-19

Move To Stack (MVST) 95AF. 8-19

Set Tag Field (STAG) 95B4. 8-20

Read Tag Field (RTAG) 95B5 8-21

Rotate Stack Up (RSUP) 95B6.

Rotate Stack Down (RSDN) 95B7 ..

Read Processor Register (RPRR) 95B8 ..

Set Processor Register (SPRR) 95B9 .

Read With Lock (RDLK) 95BA ...

Count Binary Ones (CBON) 95BB ...

Load Transparent (LODT) 95BC ..

Linked List Lookup(LLLU) 95BD ...

Masked Search For Equal (SRCH) 95BE.

Unpack Absolute, Destructive (UABD) 95Dl

Unpack Absolute, Update (UABU) 95D9 ...

Unpack Signed, Destructive (USND) 95DO .

Unpack Signed, Update (USNU) 95D8

Transfer While True, Destructive (TWTD)
95D3 · · · · . · · 0

• • • • • • • • • •

Transfer While True, Update (TWTU) 95DB.

Transfer While False, Destructive (TWFD)
9 5D2

Transfer While False, Update (TWFU) 95DA

Translate (TRNS) 95D7

Scan While Greater, Destructive (SGTD)
9 5F2

Scan While Greater, Update (SGTU) 95FA .

Scan While Greater or Equal,
Destructive (SGED) 95Fl.
Scan While Greater or Equal, Update
(SEGU) 95F9.

8-21

8-21

8-22

8-23

8-23

8-23

8-23

8-23

8-24

8-25

8-26

8-26

8-26

8-26

8-27

8-27

8-27

8-27

8-28

8-28

8-29

8-29

SECTION

8 (cont)

9

TABLE OF CONTENTS (cont)

TITLE

Scan While Equal, Destructive
(SEQD) 9 5 F 4

Scan While Equal, Update (SEQU) 95FC .

Scan While Less or Equal, Destructive
(SLED) 95FJ. . . · · · · · ·
Scan While Less or Equal, Update
(SLEU) 95FB.

Scan While Less, Destructive (SLSD)

PAGE

8-29

8-29

8-29

8-29

95FO 8-29

Scan While Less, Update (SLSU) 95F8. 8-29

Scan While Not Equal, Destructive (SNED)
95F5 8-JO

Scan While Not Equal, Update (SNEU) 95FD . 8-30

Scan While True, Destructive (SWTD) 95D5 . 8-JO

Scan While True, Update (SWTU) 95DD. 8-JO

Scan While False, Destructive (SWFD)
9 5D4.

Scan While False, Update (SWFU) 95DC .

EDIT MODE OPERATION AND OPERATORS ..

General .

Edit Mode Operators .

Move Characters (MCHR) D7 ..

Move Numeric Unconditional (MVNU) D6 .

Move With Insert (MINS) DO

Move With Float (MFLT) Dl .•....

8-30

8-30

9-1

9-1

9-1

9-1

9-2

9-2

9-3

Skip Forward Source Characters (SFSC) D2 • . 9-3

Skip Reverse Source Characters (SRSC) DJ 9-4

Skip Forward Destination
DA
Skip Reverse Destination
DB
Reset Float (RSTF) D4 •.

End Float (ENDF) DS . ..

Characters (SFDC)
Characters (SRDC)

Insert Unconditional {INSU) DC

Insert Conditional (INSC) DD .

9-4

9-4

9-4

9-4

9-4

9-5

xix

SECTION

9 (cont)

10

11

APPENDIX A

APPENDIX B

APPENDIX c
APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

xx

TABLE OF CONTENTS (cont)

TITLE

Insert Display Sign (INSG) D9.

Insert Overpunch (INOP) DB

End Edit (ENDE) DE

PAGE

9-5

9-5

9-6

INPUT/OUTPUT MULTIPLEXOR AND PERIPHERAL CONTROLS . 10-1

General .

Operation .

Descriptor Formats ..

Address Word . .

Area Descriptor.

I/O Control Word

Result Descriptor ..

Peripheral Units and Associated Peripheral

. 10-1

. 10-1

. . 10-2

. . . 10-J

. . 10-J

. 10-J

. . . 10-4

Controls. 10-5

Console ...

Card Reader. .

Card Punch . .

Line Printers ...

Magnetic Tape Subsystem. • .

Disk File Subsystem.

Paper Tape

. . 10-5

. . 10-7

. 10-10

. . . 10-12

. 10-14

. . . 10-20

. 10-24

B 6500 DATA COMMUNICATIONS SYSTEM .. . 11-1

General 11-1

Data Communications Processor (D.C.P.) .. 11-1

Adapter Cluster . . . " 11-J

Line Adapter. " 11-5

- OPERATORS, ALPHABETICAL LIST . . . A-1

- OPERATORS, NUMERICAL LIST PRIMARY MODE . . . B-1

- CONTROL WORD FORMATS ,, . . . C-1

- SCAN FUNCTION CODE WORDS D-1

- DATA REPRESENTATION. E-1

- B 6500 EBCDIC/HEX CARD CODE. F-1

- HEXADECIMAL-DECIMAL CONVERSION TABLE . G-1

FIGURE

1-1

1-2

1-3

1-4

1-5

1-6

1-7

1-8

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

2-10

2-11

2-12

J-1

3-2

3-3

3-4

3-5

3-6

J-7

A

B

LIST OF ILLUSTRATIONS

TITLE

Auxiliary Cabinets.

B 6500 Power Supply .

Peripheral Control Cabinet.

B 6500 Schematic Diagram.

Possible Magnetic Tape Subsystem.

Possible Disk File Subsystem.

Input/Output Subsystem.

Organization of Data Communications Processor
Remote Lines.

Basic Word Structure.

Number Base Graphic Characters.

Binary to Hexadecimal and Octal Conversion.

Relationship of Octal, Decimal and Hexadecimal
Numbers .

Hexadecimal and Octal To Decimal.

Decimal 101310 To Hexadecimal And Octal .

HEX and DEC Table Conversion.

Order of Magnitude Table.

(-4259) in 8, 6, and 4-Bit Code .

Single-Precision Operand.

Single-Precision Operand.

Double-Precision Operand.

Logical Operand .

Top of Stack and Stack Bounds Registers .

Polish Notation Flow Chart.

Stack Operation .

Object Program in Memory.

Stack History and Addressing Environment List .

Stack Cut-Back Operation on Procedure Exit.

D Registers Indicating Current Addressing
Environment .

PAGE

1-6

1-7

1-8

1-11

1-19

1-20

1-20

1-22

2-1

2-2

2-3

2-3

2-4

2-5

2-6

2-7

2-8

2-10

2-11

2-11

2-12

J-1

3-6

3-11

3-15

3-17

3-17

3-18

xxi

FIGURE

3-8

3-9

3-10

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

4-11

4-12

4-13

5-1

5-2

5-3

5-4

5-5

5-6

5-7

5-8
5-9

5-10

5-11

5-12

5-13

xxii

LIST OF ILLUSTRATIONS {cont)

TITLE

ALGOL Program With Lexicographical Structure
Indicated.

Addressing Environment Tree of ALGOL
Program.

Multiple Linked Stacks .

Processor Display Panels .

Processor Display Panel.

Processor/Multiplexor Display Panel.

Panel C General Controls .

Address Register .

Panel E

Panel B.

Panel D MPX Control Panel.

Operators Control Console.

Visual Message Control Center.

Keyboard Format.

Memory Tester.

Memory Tester.

B 6500 Processor Organization.

B 6500 Processor Block Diagram .

Internal Data Transfer Section .

Mask and Steering.

Arithmetic Control .

Presence Bit Interrupt .

B 6500 Scan Bus Priority Control .

Stack Format •

String Op Controller .

E Register Functions .

Multip1exor Block Diagram.

Command Data Register and Scratch Pad Memory .

Data Information Flow.

PAGE

3-19

3-19

3-23

4-1

4-3

4-4

4-13

4-21

4-22

4-25

4-31

4-35

4-36

4-40

4-40

4-42

5-2

5-4

5-7

5-8

5-9

5-16

5-23

5-26
5-28

5-28

5-30

5-32

5-37

FIGURE

5-14

5-15

5-16

5-17

5-18

5-19

5-20

5-21

6-1

6-2

6-J

6-4

6-5

6-6

6-7

6-8

6-9

6-10

6-11

6-12

6-13

6-14

7-1

7-2

7-3
7-4

7-5

7-6

7-7

LIST OF ILLUSTRATIONS (cont)

TITLE

Memory Controller Decoding.

Memory Organization .

Information Transmission.

B 6500 Memory Configuration .

Memory Module Selection .

Memory Registers.

Interlace Addressing.

Hardware Stack Adjustment .

Program Word.

Program Word, Syllable Addressing .

Syllable Decode Table .

Word Data Descriptor.

String Descriptor (Non-indexed) ..

Byte/Word Index Field .

Segment Descriptor.

Mark Stack Control Word .

Program Control Word.

Return Control Word .

Stuffed Indirect Reference.

Normal Indirect Reference Word.

Program Level Bit Assignment.

Step Index Word .

Flow of Value Call Operator .
Flow of Value Call Operator (cont) .

Flow of Exit Operator .
Flow of Return Operator .
Flow of Enter Operator.

Flow of Evaluate Operator .
Flow of Stuff Environment Operator.

PAGE

5-38

5-41

5-42

5-44

5-45

5-46

5-47

5-48

6-1

6-2

6-J

6-5

6-7

6-8

6-9

6-10

6-11

6-12

6-14

6-15

6-16

6-16

7-34

7-35

7-37
7-38

7-39

7-41

7-42

xxiii

FIGURE

8-1

8-2

8-3

8-4

8-5

8-6

8-7
8-8

8-9
8-10

8-11

8-12

8-13

8-14

8-15

8-16

8-17
8-18

8-19

8-20

8-21

8-22

8-23

8-24

8-25

8-26

8-27

8-28

10-1

10-2

10-3

10-4

xxiv

LIST OF ILLUSTRATIONS (cont)

TITLE

Read Time-Of-Day Code Word.

Time of Day Word.

Read General Control Adapter Code Word.

Read Result Descriptor Code Word.

Result Descriptor .

Read Interrupt Mask Code Word .

Interrupt Mask Word .

Read Interrupt Register Code Word .

Interrupt Register Word .

Read Interrupt Literal Code Word.

Interrupt Literal Word.

Interrogate Peripheral Status Code Word .

Status Vector Word.

Interrogate Peripheral Unit Type Code·-Word.

Unit Type Code Word .

Interrogate I/O Path Code Word.

I/O Path Result Word.

Set Time Of Day Clock Code Word .

Time Of Day Word.

Set General Control Adapter Code Word .

Initiate I/O Code Word.

Area Descriptor .

I/O Control Word.

Index Control Word.

Index Word.

Top of Stack Control Word (TSCW).

Stack Rotation Up .

Stack Rotation Down .

Input/Output Subsystem.

I/O Descriptor Formats.

Result Descriptor Format.

Console Control Center

PAGE

8-2

8-3

8-4

8-5

8-5

8-6

8-6

8-7

8-7
8-8

8-9

8-9
8-10

8-11

8-11

8-12

8-13

8-14

8-14

8-15

8-15

8-16

8-16

8-18

8-18

8-20

8-21

8-21

10-1

10-2

10-5

10-6

FIGURE

10-5

10-6

10-7

10-8

10-9

10-10

10-11

10-12

10-13

10-14

10-15

10-16

10-17

10-18

10-19

10-20

10-21

10-22

l0-23·

10-24

10-25

10-26

10-27

10-28

11-1

11-2

11-3

LIST OF ILLUSTRATIONS (cont)

TITLE

Single Line Control Result Descriptor.

Single Line Control I/O Control Word .

Card Reader.

Card Reader I/O Control Word .

Card Read Result Descriptor.

Card Punch .

Card Punch I/O Control Word.

Card Punch Result Descriptor .

Line Printer .

Line Printer I/O Control Word.

Line Printer Result Descriptor .

Free Standing Magnetic Tape Unit .

Cluster Tape Unit.

Magnetic Tape Configuration.

I/O Control Word Magnetic Tape .

Magnetic Tape Result Descriptor.

Basic Disk File Subsystem.

Disk File Configurations .

Disk File I/O Control Word .

Disk File Result Descriptor.

B 9120 Paper Tape Reader .

B 9220 Paper Tape Punch.

Paper Tape I/O Control Word and Operations .

Paper Tape Result Descriptor .

B 6500 System Configuration Including Data
Communications .

DCP Block Diagram.

Adapter Cluster.

PAGE

10-7

10-7

10-8

10-8

10-9

10-10

10-11

10-11

10-12

10-13

10-13

10-15

10-15

10-17

10-18

10-19

10-21

10-21

10-23

10-23

10-25

10-26

10-27

10-28

11-2

11-4

11-6

xxv

TABLE

1-1

3-1

3-2

6-1

10-1

10-2

10-3

10-4

10-5

11-1

xxvi

LIST OF TABLES

TITLE

B 6500 Central Units Chart.

Evaluation of Polish String BC + 7 x A:=

Description of Stack' Operation.

Sub-Field Lengths .

F Field Codes .

Peripherals and Controls.

Available Magnetic Tape Subsystems.

Magnetic Tape Operations.

Disk File Subsystem Types .

Data Communications Terminal Compatibility.

PAGE

1-2

3-9

3-12

6-16

10-4

10-6

10-16

10-18

10-22

11-7

INTRODUCTION

The Burroughs B 6500 is a medium to large, high speed Information

Processing System.

system include:

Some features that are incorporated in this

a. Monolythic Circuitry.

b. Memory expandable to 524,288 words.

c. Memory Cycle Times of 1.2 microseconds or 600 nanoseconds.

d. Peripheral configuration expandable to 256 units.

e. Dual Input/Output Multiplexor permitting up to 20 simul­

taneous Input/Output (I/O) operations.

f. Data Communication Software for remote computing and file

manipulation.

g. Disk File storage over J6 billion bytes {8-bit characters).

A unique hardware design, developed from years of successful ex­

perience with the B 5000 series, has resulted in the parallel de­

sign of the B 6500 hardware and software. Where traditionally hard­

ware was designed prior to software development, parallel design

assures that the hardware contains all necessary logic for effi­

cient software packages, which in turn optimizes hardware capa­

bilities. The B 6500 design affords a general "re-entrant" tech­

nique which permits multiple users to share a common object program.

In addition, the systems further expand the use of hardware stack

organization used in the B 5500. For example, the Segment Diction­

ary, a separate table for each program in the B 5500, has been

placed in the base of the program stack in the B 6500. This part

of the stack is used for multiple executions of the same program,

thus implementing in the hardware many of the bookkeeping functions

required to implement Master Control Program (MCP) re-entrancy.

xxvii

To provide dynamic storage allocation, the B 6500 system employs

and expands upon the Burroughs descriptor method of segmentation,

first used on the B 5500, in lieu of some form of fixed-sized

"paging" technique.

Designed to bring the user simplified programing, operational ease,

and complete freedom of system expansion, the B 6500 offers a choice

of three problem-oriented languages: COBOL for business applica­

tions and ALGOL and FORTRAN for solution of mathematical problems.

Operator intervention is minimized by the MCP, which provides for

complete system management.

The complete flexibility of programing and control of the proces­

sing pattern provides the B 6500 with smooth growth potential.

Starting with a minimum configuration, the user may expand his

system in small increments to accommodate a growing work-load.

With each addition, the MCP automatically adjusts to attain in­

creased system production and efficiency, expanding system multi­

programing capabilities.

This reference manual describes the hardware characteristics of the

B 6500 system. Because of the design concept of the B 6500, there

exists a strong interdependence between the hardware and the Master

Control Program (MCP). This material pertains only to the hardware

considerations, whereas the MCP is discussed in a separate manual.

xxviii

GENERAL.

SECTION l

SYSTEMS DESCRIPTION

This manual explains how the B 6500 Information Processing System

achieves flexibility and efficiency through a comprehensive system

approach to problem solving without considering the areas of com­

puter logic or circuit design. The program-independent modular

system design efficiently uses available units to process programs

and also permits system configuration changes without the need to

reprogram or recompile. This approach also offers the user the ad-

vantages of simplified programing, ease of operation and a com­

plete freedom of system expansion. The B 6500 is a compiler orien­

ted system designed to accept the common languages; ALGOL, COBOL,

and FORTRAN. The systems automatically handle memory assignments,

program segmentation and subroutine linkages, eliminating many of

the arduous programing tasks that are likely to produce errors.

The programs are debugged and corrected at the source language

level.

DESCRIPTION OF UNITS.

The B 6500 system configuration varies with application and work­

load requirements. The basic system includes one processor, one

maintenance test routine processor, one system control and one desk

console. The maximum system configuration includes 2 processors,

32 memory modules, 2 input/output multiplexors, 20 peripheral con­

trols, 8 data communications processors, and 256 peripheral units.

The central units are defined in table 1-1. The peripheral units

available with this system along with their characteristics, are

listed in Section 9. The Data Communication Sub-System is de­

fined in Section 10.

1-1

Style

Number

B 6503

B 6504

B 6506

B 6503-l

B 6504-l

B 6506-l

B 6713

B 6713-l

B 6714

B 6714-l

J3 6716

B 6716-l

B 6000

l-2

Table l-·l

B 6500 Central Units Chart

Description

Basic System

Basic System

Basic System

Second Processor

Second Processor

Second Processor

Multiplexor, 4 data switch­

ing channels

Additional data switching

channel

Multiplexor, 4 data switch­

ing channels

Additional data switching

channel

Multiplexor, 4 data switch­

ing channel

Additional data switching

channel

Optional Memory Control

Cabinet

Notes

2.5 megahertz clock

5.0 megahertz clock

5.0 megahertz clock

2.5 megahertz clock

5.0 megahertz clock

5.0 megahertz clock

l allowed per B 6503

system

Table l-l (cont)

B 6500 Central Units Chart

Style

Number Description Notes

B 6001-2 98,304 Bytes (16,384 words) l.2 microsecond mem-

ory for B 6503 and

B 6504 systems.

B 6002-2 196,608 Bytes (32,768 words)

B 6003-2 294,912 Bytes (49,152 words)

B 6004-2 393,216 Bytes (65,536 words)

B 6005-2 491,520 Bytes (81,920 words)

B 6006-2 589,824 Bytes (98,304 words)

B 6007-2 688,128 Bytes (114,688 words)

B 6008-2 786,432 Bytes (131,072 words) B 6008-2 is the max-

imum memory size per-

mitted for the B 6503

system.

B 6010-2 983,040 Bytes (163,840 words)

B 6012-2 l,179,648 Bytes (196,608 words)

B 6016-2 1,572,864 Bytes (262,144 words)

B 6020-2 l,966,080 Bytes (327,680 words)

B 6024-2 2,359,296 Bytes (393,216 words)

B 6032-2 3,145,728 Bytes (524,288 words)

l-3

Table 1-1 (cont)

B 6500 Central Units Chart

Style

Number Description Notes

B 6001-3 98,304 Bytes (16,384 words) 600 nanosecond mem-

ory for the B 6506

systems.

B 6002-3 196,608 Bytes (32,768 words)

\

B 6003-3 294,912 Bytes (49,152 words)

B 6004-3 393,216 Bytes (65,536 words)

B 6005-3 491,520 Bytes (81,920 words)

B 6006-3 589,824 Bytes (98,304 words)

B 6007-3 688,128 Bytes (114,688 words)

B 6008-3 786,432 Bytes (131,072 words)

B 6010-3 983,040 Bytes (163,840 words)

B 6012-3 1,179,648 Bytes (196,608 words)

B 6016-3 1,572,864 Bytes (262,144 words)

B 6020-3 1,966,080 Bytes (327,680 words)

B 6024-3 2,359,296 Bytes (393,216 words)

B 6032-3 3,145,728 Bytes (524,288 words)

1-4

SYSTEM OPTIONS AND REQUIREMENTS.

The following list of requirements and options are available for

the B 6500 systems:

a. A minimum of one special D.C. module is required in a

B 6500 system. It can be installed in the following

cabinets:

l) Multiplexor.

2) Processor.

3) Peripheral Control.

4) Data Communications.

b. A minimum of one +12 volt inverter module is required

in a B 6500 system. It can be installed in the following

cabinets:

l) Multiplexor.

2) Processor.

J) Peripheral Control.

NOTE

This module precludes

the use of any other

module in a cabinet.

c. A Flip Flop display supply module is required on the

system and must be installed in the Multiplexor cabinet.

d. The Memory cabinets each must contain a special Memory

supply for developing the regulated voltages required

for the memory operation.

e. Each cabinet must contain an inverter for supplying power

to its regulators. A 600 amp inverter is required in the

Processor, Multiplexor and Data Communications cabinets.

All other cabinets require a 400 amp inverter.

1-5

AUXILIARY CABINET.

Peripheral unit exchanges are located within auxiliary cabinets on

the B 6500 system. This cabinet canaccommodatevarying combinations

of exchanges depending on their physical size. Two of the various

combinations that are possible are shown in figure l-1.

Figure l-1. Auxiliary Cabinets

The following exchanges are available for use on the B 6500 system.

a. Tape Exchange

2Xl0

2X8

4Xl6

b. Disk File Exchange

lX2

2X5

4Xl0

4X20

SYSTEM POWER.

Main power is supplied to the system by l to 15 free standing A.C.

power cabinets. Each power cabinet can furnish enough power for

eight B 6500 cabinets. The power cabinets receive 3 phase A.C. from

the wall breakers and convert it to 220 volt pulsating direct cur­

rent. Each B 6500 cabinet contains an Inverter which supplies the

regulated supply voltage required for use in its own component

sections.

1-6

The AC module contains an AC control, the AC/DC converter and a

OV/UV indication panel. Refer to figure l-2 for a typical B 6500

power supply configuration.

AUX. CAB.

400A
INVERTER

MEM
SUPPLY

MEM
REGULATOR

MEMORY

A. C. MODULE

A.C.
CONTROL

OV/UV
INDICATOR

~
FF

DISPLAY
MODULE

MPX

A.C.
CONVERTER

1------~' SEQUENCE CONT. I
MAINT ./DISPLAY

~ 600A
INVERTER

±12V.
SUPPLY

DATA COMM. PROCESSOR

Figure 1-2. B 6500 Power Supply

c:J
SPECIAL

D.C.
MODULE

PERP. CONTROL

1-7

PERIPHERAL CONTROL CABINET.

The PC cabinet can accommodate up to 10 peripheral controls. A max-

imum of 5 large controls can be used with 5 small controls, however,

more than 5 small controls are possible if used in place of the

large controls.

The following controls are available:

a. Large

1. Magnetic tape

2. Disk file

3. Console Display

b. Small

1. Card reader

2. Card punch

3. Line printer

4. Paper tape reader

5. Paper tape punch

The large control has a two byte buffer and the small control con­

tains a one byte buffer, therefore either 8 or 16 bits may be

transferred in parallel to the Multiplexor at a time. Local opera-

tions are performed by attaching a "Control switch" plug-on and two

"Indicators" plug-ans to various cards in the control.

1-8

SMALL
CONTROLS

Figure 1-3.

LARGE
CONTROLS

OR
SMALL
CONTROLS

Peripheral Control Cabinet

SYSTEM ORGANIZATION.

Computer systems are generally organized around a central system

that controls memory accesses, establishes I/O priority etc. In

the B 6500 system this central control function has been distributed

throughout the system by providing each peripheral unit with an

associated control (figure 1-4). These peripheral controls, in

conjunction with the multiplexor, provide independent but controlled

access to main memory for each peripheral unit. The peripheral

activity is supervised by the MCP which assigns outgoing data to

the proper units or calls for required input data from others.

Because the MCP is constantly aware of the available environment,

the user program is efficiently executed whether units have been

deleted for preventive maintenance or added because of increased

work loads.

MASTER CONTROL PROGRAM.

The Master Control Program (MCP) provides overall system coordination

and control of processing on the B 6500 system, minimizing operator

intervention. The MCP obtains maximum use of the system components

by controlling the sequence of processing, initiating all input/

output operations and providing automatic handling procedures to

meet virtually all processing conditions. Because many functions

are performed under MCP control, changes in scheduling, system con­

figuration and program size are readily accommodated.

CLOCKS.

The MCP for the B 6500 makes use of two hardware clocks: The real

time clock and the interval timer. The real time clock has a 2.4
microsecond resolution and counts up to 24 hours. It is used by

the MCP logging routines to provide extremely accurate timing in­

formation and also can be read by application programs. This clock

is associated with the multiplexor and runs continuously, even when

the processors are halted. The interval timer is a clock (one in

each processor), which provides a predetermined timed interrupt for

"time-slicing", loop hang-up etc. This interval varies from 512

microseconds to one second, in 512 microsecond intervals.

1-9

MEMORY
MODULE

1

1-10

16,384 TO 524,288 WORDS
(98,304TO3,145,728 BYTES)

MEMORY
MODULE

2

:
UPTO

32
MODULES

MEMORY
MODULE

32

DATA
..--------i COMMUNICATIONS

PROCESSOR

DATA
..---------;COMMUNICATIONS

INPUT/
OUTPUT

MULTIPLEXOR

PROCESSOR
1

PROCESSOR

INPUT/
OUTPUT

MULTIPLEXOR

DATA

PROCESSOR

DATA
COMMUNICATIONS

PROCESSOR
DATA

COMMUNICATIONS
PROCESSOR

SWITCHING
CHANNELS
4-10

DATA
SWITCHING
CHANNELS
4-10

DATA

UP TO
16

ADAPTER
CLUSTER
NO. 16

- ADAPTER- - r
c LU STE RS ___ A __ D A""'"PT=E"'"R ____ ___._-=D"""'"A-=T A--

l l-16ADAPTER
CLUSTERS PER

DCP

CLUSTER COMMUNICATIONS
NO. 2 NETWORK

ADAPTER
CLUSTER

NO. 1

DATA
COMMUNICATIONS
NETWORK

ADAPTER DA TA
CLUSTER COMMUNICATIONS

L---!...!N.!;:O:..:..!l_..r----i NETWORK

COMMUNICATIONS 1-------------1

PROCESSOR

DATA
COMMUNICATIONS

PROCESSOR ADAPTER
CLUSTER
NO. 16

DATA
COMMUNICATIONS
NETWORK

Figure 1-4. B 6500 Schematic Diagram (sheet 1 of 2)

CARD CARD PAPER
PRINTER PRINTER TAPE READER PUNCH

READER

CARD CARD PAPER

READER PUNCH
PRINTER PRINTER TAPE

PC PC
PC PC READER

PC

CONS CARD CARD PAPER

DISP READER PUNCH PRINTER PRINTER TAPE

PC PC PC PC PC READER
PC

OPT CONS PAPER PTR DISP CARD CARD PRINTER PRINTER TAPE KYBD
TERM READER PUNCH READER FOR CD

Figure l-4.

PAPER
TAPE
PUNCH

PAPER
TAPE
PUNCH
PC

PAPER
TAPE
PUNCH
PC

PAPER
TAPE
PUNCH

l - 16 TAPE UNITS

MAGNETIC TAPE EXCHANGE

TAPE TAPE TAPE
PC PC PC

DISK DISK DISK
PC PC PC

DISK FILE EXCHANGE

l - 20 ELECTRONICS
UNITS

UP TO 5 MORE

TAPE
PERIPHERAL CONTROLS

PC

TAPE
CLUSTER

UP TO 4 MORE
PERIPHERAL CONTROLS

B 6500 Schematic Diagram (sheet 2 of 2)

1-ll

, .

PROCESSOR.

The B 6500 system accommodates either one or two processors, both

capable of accessing any portion of total memory.

All B 6500 processors are parallel machines; the B 6503 has a clock

frequency of 2.5 megahertz, the B 6504/6506 a clock frequency of

5 megahertz Processors with different cl-0ck rates cannot be in-

termixed on the same system. The processor is basj_cally word ori-

ented, but has extensive multiword string manipulation capabi­

lities for 4-bit, 6-bit, and 8-bit characters.

PROCESSOR STATES.

The processor operates in either of two states: control state for

the MCP or normal state for user programs and certain MCP functions.

In a dual-processor system either processor may handle external

interrupts.

time.

Both processors may be in control state at the same

CONTROL STATE. Entry into a control state occurs when the proces-

sor enters or returns to a procedure marked as a control state

procedure, or executes a Disable External Interrupts operator. In

control state the handling of external interrupts is inhibited

while the processor executes privileged instructions not available

in normal state. Exit from control to normal state occurs when-

ever the MCP initiates a normal state procedure, exits back to a

normal state procedure or executes an Enable External Interrupt

operator. After an interrupt, return to the user's program may or

may not be to the program that was operating when the interrupt

occured.

NORMAL STATE. Normal state excludes use of privileged instructions

required by the MCP and allows external interrupts. Exit from nor­

mal state occurs as a result of a Disable External Interrupt op­

erator or by a call to a control state procedure; e.g., to initiate

I/O. Many MCP functions are executed in normal state.

l-12

FEATURES.

Some of the processor features are:

a. Program code cannot be modified while in residence.

b. Hardware stack features provide efficient handling of

temporary storage and subroutine requirements.

c. Control bits in each word provide efficient MCP or hard­

ware action, depending upon the state of the control bits.

d. Memory protection, which prevents one program from affect­

ing another, is provided by a combination of hardware and

software features. Hardware features include detection

of program attempts to index beyond an assigned data area.

Another feature includes the use of a memory protect bit

in each word to prevent a user program from altering pro­

gram segments, data descriptors, segment descriptors, mem­

ory links, MCP tables, etc. The memory protect bits are

set by the software. Attempts to alter information with

this protect bit set will inhibit the write operation and

generate an interrupt.

e. The B 6500 processor is designed to implement higher-level

languages and to function under MCP control.

f. Major registers and control flip-flops in each of the pro­

cessors contribute to system multiprocessing capabilities.

INTERRUPT SYSTEM.

The method of detecting and servicing system interrupts contributes

to the ability of the B 6500 to process a mix of independent pro-

grams in an efficient manner. Under the constant, automatic man-

agement of the MCP, multiprocessing is the normal mode of operation.

With one processor in the system, multiprograming (interlevel pro­

cessing) is employed. A dual processor B 6500 System combines both

multiprograming and parallel processing. The ability to multi­

program, parallel process, or both is defined as multiprocessing.

1-13

Extensive interrupt facilitiea initiate specific routines in the

Master Control Program (MCP). Since the MCP maintains a central

communications control, the interrupt transfers control to the MCP

initiating operations that can proceed simultaneously with compu­

tation. Some MCP functions are: data transfer control, input/

output control, error detection, etc.

There are two interrupt conditions: :Internal (Processor Dependent)

or External (Processor Independent). Each processor in the B 6500

system is provided with a private internal interrupt network to han­

dle the processor dependent interrupt. Interrupts generated with­

in the processor are fed into this network and retained until ser­

viced by that processor. The processors also share the handling of

external interrupts generated by input/output operations occuring

on either Multiplexor. The command structure in conjunction with a

stack provides for implementation of string notation and automatic

linking of subroutines.

INTERRUPT HANDLING.

An interrupt causes the processor to initiate the f'ollowing sub­

routine:

l-14

a. Mark the stack.

b. Insert an Indirect Reference Word into the stack, which

addresses a reserved location of the stack where a link

to the MCP interrupt routine has been stored.

c. Push all pertinent registers into the stack.

d. Insert into the stack an integer value defining the in­

terrupt.

e. Insert a second parameter into the stack, giving other in­

formation about the interrupt.

f. Execute an Enter operator.

The MCP processes the interrupt when it recognizes the Enter Op-

era tor. The MCP reactivates the interrupted object program by re-

turning through the normal subroutine mechanism.

OPERATOR DEPENDENT PROCESSOR INTERRUPTS.

The interrupts listed below are set only by the action of operators.

a. Presence bit.

b. Invalid index.

c. Exponent underflow.

d. Exponent overflow.

e. Interger overflow.

f. Divide by zero.

g. Invalid operand.

h. Bottom of stack.

i. Sequence error.

j . Segmented array.

k. Memory protect.

1. Programed operator.

Within a processor, only one operator dependent interrupt is set at

any one time.

OPERATOR-INDEPENDENT PROCESSOR INTERRUPTS.

The operator-independent interrupts include:

a. Memory parity.

b. Stack overflow.

c. Invalid address.

d. Interval timer.

e. Instruction timeout.

f. Scan buss parity.

g. Stack underflow.

h. Invalid program word.

i. MPX parity.

j. Loop.

1-15

EXTERNAL INTERRUPTS.

External interrupts are fed into the processor interrupt system.

If the interrupt network is disabled on one processor, the external

interrupt signal is routed to the other, since both processors in

a dual-processor system are able to respond and process external

interrupts independently and simultaneously. The ability of either

processor to handle interrupts is made possible because of a dis­

tributed interrupt network and the ability of both processors to be

in control state at the same time. The activities of two proces-

sors in control state are coordinated (interlocked) by the software

through the use of the Read With Lock mechanism. If both proces­

sors are handling interrupts, additional interrupt~' are retained

for future processing.

A unique literal value is assigned to each external interrupt con­

dition. This literal value is transmitted to the processor and

placed into the stack as the processor acknowledges the external

interrupt and enters the interrupt sequence.

The external interrupts include:

a. Processor to Processor.

b. I/O Finish.

c. Data Comm. Att'n Needed.

d. General Control Adapter.

e. External Interrupt (piggyback MPX).

f. Change of peripheral-unit status.

MAIN MEMORY.

Main memory is expandable from one to eight modules on a B 6503

system, and from one to 32 modules on B 6504 and B 6505 systems.

Each memory module contains 16,384 words permitting a current max­

imum memory size of 524,288 words. Future provisions will allow

for over one million words of storage.

1-16

MEMORY WORDS.

Each memory word contains 48 information bits, three control bits,

and a parity bit. The three control bits are used to identify de­

scriptors, provide memory protection, describe the type of data,

and provide other control functions. The twenty-bit binary combi­

nations can provide up to l,048,576 memory addresses, though pre­

sently only 524,288 are used. Odd parity is used to check validity

of information storage and transfers in the B 6500 system.

Each system has a memory test facility used for fault detection and

isolation. When the unit test facility is used to check one of

the modules, the others are available to the system.

MEMORY CYCLE TIMES.

The memory cycle time is 600 nanoseconds for the B 6506 systems

and l.2 microseconds for the B 6503 and B 6504 systems.

SECOND LEVEL MEMORY.

Burroughs unique head-per-track disk file subsystem provides the

user with virtually unlimited expansion capability. The 20 to 60

millisecond average access time of the various disk file models

permits extremely large programs and data segments to be stored on

the disk and brought into main memory by the MCP when required.

INPUT/OUTPUT MULTIPLEXOR.

The Input/Output Multiplexor and associated peripheral control

modules are used to control the transfer of data between memory

and all peripheral equipment, independent of the processor. The

multiplexor receives instructions from the processor and, with i~s

associated peripheral controls, executes these instructions. One

or two multiplexors may be used with the B 6500 System. Each multi­

plexor is capable of processing up to ten simultaneous I/O opera­

tions with up to 20 peripheral units.

MULTIPLEXOR CONFIGURATION.

Each multiplexor provides four separate and independent units:

l-17

a. Data switch~ng channels which provide the necessary

linkage between the peripheral device (excluding data

communications) and main memory.

b. Data communications processors which permit interfacing

of remote devices to the B 6500.

c. A real time adapter which permits interfacing of real

time devices such as wind tunnels and rocket stands.

d. The peripheral system configuration tables for software

use.

DATA SWITCHING CHANNELS.

The number of data switching channels determines the number of

simultaneous I/O operations that can be performed. The channels

float, assigned by the multiplexor to peripherals upon initiation

of an operation and released to the multiplexor for reassignment

upon completion.

PERIPHERAL CONTROLS.

Two types of peripheral controls are available, large and small.

The large controls are used with high-speed devices such as mag­

netic tape, disk files, and display consoles; the small controls

are used with slower peripherals such as printers, card readers,

and card punches. The large controls contain a two byte buffer

and the small a one byte buffer. Each multlplexor can accommodate

up to ten large and ten small controls.

a large control position.

SYSTEM EXPANSION.

A small control may occupy

The maximum configuration with two multiplexors (20 controllers per

multiplexor) can be expanded further through the use of disk file

and magnetic tape exchanges. Figure 1-5 illustrates a possible mag­

netic tape subsystem. Figure l-6 illustrates a possible disk file

subsystem.

1-18

PERIPHERAL CONTROL BUS.

A peripheral control (P.C.) bus extends from the multiplexor to the

various peripheral controls (figure l-7).

two-byte groups can be sent along the bus

control every l.2 microseconds.

1/0
MULTI­

PLEXOR

1/0
MULTI­

PLEXOR

APPROP.
TAPE
P.C.

1OR2
TAPE

CLUSTERS

APPROP.
TAPE
P.C.

·Only 10 tape P.C.'s per 1/0 Multiplexor.

The 11th shown here is for illustration purposes only.

APPROP.
TAPE
P.C.

LARGE PERIPHERAL CONTROLS

4 X 16 TAPE EXCHANGE

APPROP.
TAPE
P.C.

APPROP.
TAPE
P.C.

APPROP.
TAPE
P.C.

APPROP.
TAPE
P.C.

APPROP.
TAPE
P.C.

LARGE PERIPHERAL CONTROLS

Information in one- or

to or from any peripheral

APPROP.
TAPE
P.C.

APPROP.
TAPE
P.C.

APPROP.
TAPE
P.C.

APPROP.
TAPE
P.C.

Figure l-5. Possible Magnetic Tape Subsystem

1-19

1/0
MULTI-

PLEXOR

1/0
MULTI-

PLEXOR

1-20

MODEL MODEL MODEL
B 6373 - B 6373 B 6373 1---: P.C. DISK FILE DISK FILE DISK FILE
P.C. P.C. P.C.

I I
2 X 10 EXCH.

1111
l TO 10

ELECTRONICS UNITS

1TO5

DISK MODULES PER
ELECTRONICS UNIT

l TO 5
DISK
MODULES

l ELECTRONICS UNIT

l
MODEL
B 6373 - - -

1---1
DISK FILE P.C. P.C. P.C.

P.C.

PERIPHERAL CONTROLS
LARGE

MODEL - B 6373
MODEL MODEL
B 6373 B 6373

P.C.
DISK FILE DISK FILE DISK FILE
P.C. P.C. P.C.

I l l
[Nl x N

2
EXCHANGE

I I 1 I I I I I
1 TO 20 ELECTRONICS UNIT

l TO 5

DISK MODULES

PER
ELECTRONICS UNIT

- - - -
P.C. P.C. P.C. P.C.

PERIPHERAL CONTROLS
LARGE

I

MODEL MODEL

B 6373 B 6373

DISK FILE DISK FILE
P.C.. P.C.

I

l]

r-1.-i Vl
I-

:c z v
~ t--- ::i

0 Vl

z"'
~ NV
t--1 oz

)(1-------i I- 0 - ""' z t--- I-v

............ ~

MODEL
-· B 6373
P.C. DISK FILE

P.C.

Figure l-6. Possible Disk File Subsystem

INPUT/OUTPUT
MULTIPLEXOR

DATA
SWITCH
CHNLS.

Figure l-7.

MODEL
B 6110

P.C.

APPROP.
TAPE
P.C.

MODEL
B 6240

P.C.

APPROP.
TAPE
P.C.

M/T
CLUSTER

• Total per side is 10 with a
maximum of 5 large per side

1 TO 10 1/0
UNITS OR SUB­
SYSTEMS REQ.
SMALL
PERI PH. CONTLS.

l TO 10

• PERIPH. CONTLS.

l TO 10

CONSOLE
DISPLt1Y
TERMINAL
B 9342-1

l TO 10 1/0 UNITS OR
SUBSYSTEMS REQ. LARGE
PERIPH. CONTl.S.

Input/Output Subsystem

MODEL
B 6340

P.C.

APPROP.
TAPE
P.C.

V>

~
::i I-
0 z 0 ::i .,.., :E

I-

8~~~
- 0 D.. LI.I

CARD
PUNCH

B 9213

MODEL
B 6210

P.C.

MODEL
B 6373

P.C.

PROCESSOR INITIATED I/O OPERATIONS.

Either processor can initiate an I/0 operation on either multi­

plexor (in a two processor/two-multiplexor configuration) by ex­

ecuting an Initiate I/O command. This command transfers a Unit

Number Word and an Area Descriptor to the multiplexor via the scan

bus. The multiplexor then fetches the I/O Control Word located

at the Area Base Address (in the Area Descriptor) and initiates

the peripheral operation. An I/0 Finished Interrupt is set after

the peripheral operation is completed. The Result Descriptor is

returned when either processor executes a Read Result Descriptor

command.

PERIPHERAL CONTROLS.

Up to 20 peripheral controls can be used with each I/O multiplexor.

The peripheral controls are housed in one or two B 6500 peripheral

control cabinets. Each cabinet can accommodate 10 controls, five

of which can be large controls and five small controls.

lowing peripheral controls are available:

a. Magnetic Tape.

b. Card Reader.

c . Card Punch.

d. Line Printer.

e. Paper Tape Reader.

f. Paper Tape Punch.

g. Disk File.

h. Console Monitor and Keyboard.

DATA COMMUNICATIONS PROCESSOR.

The fol-

Because the B 6500 is designed for continuous multiprocessing, the

systems readily accommodate applications and procedures requiring

data communications. Realtime operations, remote computing, remote

inquiry, and on-line programing become additions to the multipro­

cessing job mix of the B 6500. The data communications processor

is the heart of the data communications network.

1-21

The Data Communications Processor (DCP) is a small special purpose

computer which contains sufficient registers and logic to perform

all basic functions associated with sending and receiving data. Up

to four DCP's can be connected to an I/O Multiplexor, with each DCP

capable of accommodating from one to 256 communications lines (fig­

ure 1-8). In a two Multiplexor system, this provides a B 6500 with

the ability to service 2048 data communications lines.

~~DATA

[

ADAPTER
,...........,._ CLUSTER \~~F~6 COMMUNICATIONS

1-16
ADAPTER
CLUSTERS

1-16
ADAPTER
CLUSTERS

1-16
ADAPTER
CLUSTERS

DATA DATA DATA DATA
COMMUN- COMMUN- COMMUN- COMMUN-
ICATIONS !CATIONS !CATIONS !CATIONS
PROCESSOR PROCESSOR PROCESSOR PROCESSOR

1/0 MULTIPLEXOR

NO. I ~- NETWORK

ADDITIONAL ADAPTER
CLUSTERS 2 THROUGH 15

ADAPTER
CLUSTER
NO. 16

~-----1 TO 16
LINES
~~

Figure 1-8. Organization of Data Communica­

tions Processor Remote Lines

DATA COMMUNICATIONS ADAPTERS.

Each communications channel requires an adapter which provides the

logic to interface with a Data Set or to connect directly to a

communications line. The following adapters are available:

1-22

a. B 6650-1 with the following characteristics:

1) Direct or modem connect.

2) Asynchronous.

3) Up to 600 BPS.

4) Two wire or 100 series modem.

5) Serial by bit transmission.

6) Half-Duplex mode.

b. B 6650-2 with the following characteristics:

1) Direct or modem connect.

2) Asynchronous.

3) Up to 1800 BPS.

4) Two wire or 202 series type Data Set.

5) Serial by bit transmission.

6) Half-Duplex mode.

c. B 6650-3 with the following characteristics:

1) Modem connect.

2) Synchronous.

3) Up to 2400 BPS.

4) 201 series type Data Set.

5) Serial by bit transmission.

6) Half-Duplex mode.

d. B 6650-4 same as B 6650-3 except: up to 4800 BPS.

e. B 6650-5 same as B 6650-3 except: up to 9600 BPS.

f. B 6650-6 Touch-Tone® Telephone Input.

g. B 6650-7 Audio Response.

h. B 6650-8 Automatic Dial Out.

® Registered Service Mark of A.T.T Co.

1-23

REAL TIME ADAPTER.

An optional real time adapter may be attached to an I/O multi­

plexor. Real time devices require custom engineering for inter­

face with the real time adapter and the software.

l-24

SECTION 2

DATA REPRESENTATION

GENERAL.

Several data representations are used in the B 6500 Information

Processing Systems for word and character oriented data. Each word

contains 48 information bits, three tag bits and one parity bit

(figure 2-l). The data field may be a 48 bit single-precision oper­

and, or a sequence of characters in 8-bit, 6-bit or 4-bit format.

The tag bits in positions 50 through 48 are control bits which

identify descriptors, provide memory protection, etc. The tag bits

are inaccessible to normal state (user) programs. The parity bit

in position 51 assures correct information transfer between the

processor and main memory or from the scratch pad to main memory.

5 5 4 4 4
0 9 8 7

~\
L CONTROL FIELD

PARITY BIT

Figure 2-l.

INTERNAL CHARACTER CODES.

0

~
v

DATA FIELD

Basic Word Structure

Extended Binary Coded Decimal Interchange Code (EBCDIC) is the pri­

mary internal character code of the B 6500. EBCDIC is an 8-bit

alphanumeric code containing 4 zone and 4 numeric bits. The Ameri-

can Standard Code for Information Interchange (ASCII) is the pri­

mary data communication code. In addition, the Burroughs Common

Language Code (BCL) provides interface compatibility with peri­

pheral units. The pack operator allows greater packing density of

numeric information by storing 4-bit digits in both the numeric and

zone bit positions BCL and EBCDIC codes (figure 2-9).

2-l

NUMBER BASES.

Because the arithmetic operators are implemented in octal (base 8)

and data display in registers and certain printed forms is Hexa­

decimal (base 16), an understanding of both octal and hexadecimal

numbering systems is useful. A brief discussion of binary and de-

cimal numbering systems is also included.

The decimal system is based on the ten digits, O, l, 2, J, 4, 5, 6,

7, 8, and 9, and upon the powers of ten. Similarly, the binary

system is based upon the two digits, 0 and l, and the powers of two.

Two raised to the third power (23) is 8, the base of the octal

system. Likewise, 2 raised to the fourth power (~~ 4) is 16, the

base of the Hexadecimal system.

system is shown in figure 2-2.

The decimal range for each number

DECIMAL

BINARY

OCTAL

DECIMAL

HEXADECIMAL

Figure 2-2.

0 2 3 4 5 6 7 8 9 10 11 12 13 14 '.15

0

0 2 3 4 5 6 7

0 2 3 4 5 6 7 8 9

0 23456789A BCD E F

Number Base Graphic Characters

The digits 0 through 9 and the alphabetic characters A through F

are used to cover the 16 character requirement for the hexadecimal

numbering system. The letter A is assigned a value of 10, B equals

11 etc., to F which equals 15.

HEXADECIMAL AND OCTAL NOTATION.

Since binary words are cumbersome to display, the more efficient

methods of Hexadecimal and Octal notation are employed. The hexa-

decimal representation of a binary word is obtained by dividing the

bits into groups of four with each group assigned a successive power

of 16. A binary to octal conversion is obtained by dividing the

bits into groups of three and assigning successive powers of 8 to

each group (figure 2-J).

2-2

HEXADECIMAL

BINARY

OCTAL

BINARY

324
288

Nx8
5

Figure 2-J.

Nx8
3 Nx8

2
Nx8

1 NxBO Nx8-l

Binary to Hexadecimal and Octal Conversion

The relationship between octal, decimal and hexadecimal is shown in

figure 2-4 using the decimal number 101310 (equivalent to 17658 and

3F5
16

where the subscript 8, 10, or 16 indicates the base).

17658 - 1x8
3 + 7 x 8

2
+ 6 x 8

1 + 5 x 8°
1 x 512 + 7 x 64 + 6x8 + 5 x 1

512 + 448 + 48 + 5 101310

101310= 1 x 10
3 + 0 x 10

2
+ 1x10

1
+ 3 x 1°

1 x 1000 + 0 x 100 + 1 x 10 + 3 x 1
1000 + 0 + 10 + 3 101310

3f:5
16 - 0 x 16

3
+ 3 x 16

2
+ F x 16

1
+ 5 x 16° =

0 x 4096 + 3 x 256 + F x 16 + 5 x 1
0 + 768 + 240 + 5 101310

Figure 2-4. Relationship of Octal, Decimal and Hexadecimal Numbers

2-3

NUMBER CONVERSION.

CODED TO DECIMAL CONVERSION.

The conversion to base ten of the integral value of a number whose

base is other than ten may be accomplished by the addition of com-

puted place positions as shown in figure 2-4. Another method of

conversion is by repeated multiplications and additions as shown in

figure 2-5. The multiplier is the decimal value o:f the desired

number base when using this system.

DECIMAL TO CODED.

The conversion of a Decimal number to any other base is accomplished

by repeatedly dividing the number by the desired number base and

retaining the successive remainders (figure 2-6).

2-4

x ! h ~AN OCTAL NUMBER± MULTIPLY BY 8)

'. = x
1 ~ l

120 + 6 = 126
x 8
1008 + 5 = 101310

3 F 5
16

(HEXADECIMAL NUMBER - MULTIPLY BY 16)

x~!h~ L x ~! l
1008 + 5 = 101310

Figure 2-5. Hexadecimal and Octal To Decimal

126 63
al 101310 - REMAINDER 5 161 101310 - REMAINDER - 5

15 3
al 126 - REMAINDER 6 161 63

- REM=lH~
0

al 15 - REMAINDER 7

1
161 3 REMAINDER -I

0

Bl REMAINDER 1 3 F 5
16

~
1 7 6 58

Figure 2-6. Decimal 1013
10

To Hexadecimal and Octal

DECIMAL AND HEXADECIMAL TABLE CONVERSION.

(Use figure 2-7 for following computations.)

Hexadecimal to Decimal. Find the decimal value for each hexadecimal

digit according to its position.

equivalent.

Add these to obtain the decimal

Decimal to Hexadecimal. Find the next lower decimal number and its

Hexadecimal equivalent. Subtract and use difference to find the

next decimal value and hexadecimal equivalent until the complete

number is developed.

2-5

2-6

6 5

HEX DEC HEX DEC HEX

0 0 0 0 0
1 1,048,576 1 65,536 1
2 2,097,152 2 131,072 2

3 3,145,728 3 196,608 3
4 4,194,304 4 262,144 4

5 5,242,880 5 327 ,680 5

6 6,291,456 6 393,216 6

7 7,340,0~2 7 458,752 7
8 8,388,608 8 524,288 8

9 9,437,184 9 589,824 9

A 10,485,760 A 655,360 A

B 11,534,336 B 720;896 B

c 12,582,912 c 786,432 c
D 13,631,488 D 851,968 D
E 14,680,064 E 917,504 E
F 15,728,640 F 983,040 F

HEXADECIMAL TO DECIMIAL

4 3 2 1

DEC HEX DEC HEX DEC HEX

0 0 0 0 0 0
4,096 1 256 1 16 1

8,192 2 512 2 32 2

12,288 3 768 3 48 3
16,384 4 1,024 4 64 4

20,480 5 1,280 5 80 5
24,576 6 1,536 6 96 6
28,672 7 1,792 7 112 7
32,768 8 2,048 8 128 8
36,864 9 2,304 9 144 9
40,960 A 2,560 A 160 A

45,056 B 2,816 B 176 B

49,152 c 3,072 c 192 c
53,248 D 3,328 D 208 D
57,344 E 3,584 E 224 E
61,440 F 3,840 F 240 F

DECIMAL TO HEXADECIMAL

10131~3 tt F 516

- 768 .Q___j
245

- 240
-5

Figure 2-7. HEX and DEC Table Conversion

DEC

0

1

2

3
4

5

6

7
8

9
10

11
12
13
14
15

ORDER OF MAGNITUDE.

The order of number magnitude in relation to the 39 bit mantissa,

decimal numbers and powers of base 16, 8, and 2 are shown in figure

2-8.

REGISTER NUMERIC
BIT SET EQUIVALENT HEX. OCIAL ~

0 1 1.0 16° 80 20
1 2 0.5
2 4 0.25

81 23----1 3 8 0.125
161 4 16 0.062 5

5 32 0.031 25
82 26-6 64 0.015 625

7 128 0.007 812 5
162 8 256 0.003 906 25

83 29-9 512 0.001 953 125
10 1 024 0.000 976 562 5
11 2 048 0.000 488 281 25

163- t---a4 212-12 4 096 0.000 244 140 625
13 8 192
14 16 384

85 215---1 15 32 768
16

4 16 65 536
17 131 072

86 218--18 262 144
19 524 288

165 20 1 048 576
87 221-21 2 097 152

22 4 194 304
23 8 388 608

166 - ~8 224-24 16 n7 216
25 33 554 432
26 67 108 864

89 227-, 27 134 217 728
167

28 268 435 456
29 536 870 912

810 230-30 1 073 741 824
31 2 147 483 648

168
32 4 294 967 296

811 233-33 8 589 934 592
34 17 179 869 184
35 34 359 738 368

169 - ~12 236-36 68 719 476 736
37 137 438 953 472
38 274 an 906 944

813 239-39 545 755 813 888

Figure 2-8. Order of Magnitude Table

2-7

DATA TYPES AND PHYSICAL LAYOUT.

CHARACTER TYPE.

Character representation may be 8-bit bytes, 6-bit characters, or 4-

bit digits. The 8-bit EBCDIC (Extended Binary Coded Decimal Inter­

change Code) is the primary B 6500 code. When 8 or 6-bit numeric

characters are used, the sign of the number is in the zone bits of

the least significant character. For 4-bit digits, the sign is the

most significant digit of the number. The number (-4259) is repre-

sented as 8, 6, & 4-bit characters in figure 2-9.

8-BIT BYTE EBCDIC CODE)
TAG

ZN ZN ZN ZN ZN N

0 0 4 2 5 9

6-BIT CHARACTER (BCL CODE)

!!.-E~o---------2-----3__,..._4 __ ·---s-----6----7--....

0 B 4 B~ B 4 B ~ ~4
0 A 2 A 2 A ~ A 2 A 2

0 8 1 8 1 8 1 8 lLSJ ~ ~

0 0 0 0 4 2 5 9

4-BIT DIGITS (PACKED EBCDIC OR BCL)

TAG
-"-

0 2 3 4 5 6 7 8 9 11

8

0 4

0 2

0

0 0 0 0 0 0 0 4 2 5 9

Figure 2-9. (-4259) in 8, 6, and 4-Bit Code

2-8

Table 2-2

Negative Sign Bit Configuration

Size Sign Location Negative Positive

8-Bit Zone, least significant char. 1101 Any bit con-

figuration
6-Bit Zone, least significant char. 10 other than the

4-Bit Most significant digit 1101 negative com-

binations.
--

OPERANDS.

Operands may be used to represent either numeric or logical infor­

mation in the B 6500 system. An operand may be single or double­

precision. The tag bits of a memory word (bits 50, 49, 48) when

zero, denotes a single-precision operand, and when two (bit 49 set),

a double-precision operand. The structure of a single-precision

operand is illustrated in figure 2-10 in a hexadecimal register

format. Note that since the exponent is an octal scale factor, the

single-precision operand is also shown in octal for reference.

Figure 2-11 illustrates the double-precision operand in hexadecimal

register format.

An integer is a single-precision-operand with an exponent of zero.

The maximum value of an integer is +7777777777777 8 , 549755813887
10

or 7FFFFFFFFF
16

.

As an example, the decimal number 12 (148 , c
16

,) might be repre­

sented in any of the following forms:

a. In OCTAL format:

0000000000000014

1010000000000140

1020000000001400

1131400000000000

(INTEGER)

}(Floating point, or REAL)

2-9

b. In HEXADECIMAL format:

(INTEGER) oooooooooooc

208000000060 l
210000000300 (Floating Point)

2Al800000000

TAG EXPONENT MANTISSA
J>. -

47 [El
t--

50 46 38
t---

49 ~ 1--1

144 J 48 J J

5

4

OCTAL
POINT

Figure 2-10-A. Single Precision Operand

[50: 3 J
[47: 1 J
[46: 1 J
[45:1]

[44: 6]

Tag field = 0 for Single Precision Operand.

Unused.

Sign of operand = 1 for negative.

Sign of exponent = 1 for negative.

Exponent.

The exponent is a binary number which with its sign, is an octal

scale factor for the mantissa. The exponent is used for automatic

scaling of operands when performing arithmetic, comparison and

integer operations. The range of the exponent is from +63 to -63

for single-precision operands.

MANTISSA FIELD.

The mantissa is the significant part of the operand. The magnitude

of the operand is obtained by multiplying the value contained in the

mantissa by eight raised to the value of the exponent sign and ex­

ponent as follows:

2-10

V = + M x 8 + E

V = Value of number

+M= Mantissa with sign

+E= Exponent with sign

The range of numbers that can be expressed in single-precision is

(s1 3 -1) x s+6J to l x s- 51 and zero.

TAG EXPONENT MANTISSA ,-/-.. ~_,,,_ _________________ __________________ --...

OCTAL
POINT

Figure 2-10-B. Single Precision Operand

TAG EXPONENT MANTISSA
,-.A-.. ~ ,,_ ____________ _... ____________ -....

47 39] 3
.---

50 46 38 2
~

49 45 l
t---

[44 48 4 0

TAG EXPONENT (EXTENSION) MANTISSA
~ ~,,_ ____________ ,.,..... ____________ -.....

47 39} 3

50 38 2___.,
49 l__
48 4 0

FIRST
WORD

OCTAL
POINT

SECOND
WORD

Figure 2-11. Double-Precision Operand

[50:J] Tag Field = 2 for double-precision operands.

The first word of the operand is identical to the single-precision

operand except for bit position 49, which indicates that this is one

of a pair of words.

The fractional part of the mantissa is contained in the mantissa· ex­

tension field of the word.

2-11

The 15-bit exponent of a double-precision operand is formed by the

concatenation of the exponent extension with the exponent.

ponent extension is more significant than the exponent.

LOGICAL OPERANDS.

The ex-

Logical operands have one of two values: true (on) or false {off).

Logical values are the result of Boolean operations or relational

operations. Relational operators generate a logical value as the

result of an algebraic comparison of two arithmetic expressions.

Bit number zero (o) represents the logical value. Relational op­

erators set bit number zero, and conditional operators use bit zero

for the decision. Logical (Boolean) operators consider each bit,

from 47 to bit O, as an individual logical value, operating on the

whole word. A logical value is expressed in the Jfollowing form

(figure 2-12).

47

50 46

49 45

49 44

Figure 2-12.

[50:J] = 0 TAG = S.P. OPERAND

[0:1] = 1 TRUE, 0 FALSE

OPERATORS.

3

:2

,4

0

Logical Operand

The operators used in the B 6500 systems are divided into three

major categories; Primary, Variant and Edit. Details regarding

the format and function of these operators are found in Sections

6, 7, 8, and 9.

2-12

THE STACK.

GENERAL.

SECTION 3

STACK AND POLISH NOTATION

The stack is an area of memory assigned to a job to provide storage

for basic program and data references for the job. It also pro-

vides for temporary storage of data and job history. When a job

is activated, four high-speed registers (A, X, B, and Y) are linked

to the job's stack (figure 3-1). This linkage is established by

the stack-pointer register (s), which contains the memory address

of the last word placed in the stack. The four top-of-stack reg­

isters {A, X, B and Y) extend the stack to provide quick access for

data manipulation.

IN/OUTPUT TOP OFSTACKREGiSTE-R - -- -- I
PATH OF DA

4

TA__._I....... A x I
TO STACK

I y s I
L_ --- ___ I

STACK AREA
ASSIGNED
TO PROGRAM

WORDntx

TOS WORD

STACK AREA.,___ ____ ,
CURRENTLY
IN USE

WORDn

STACK
MEMORY

AREA

TOS WORD

l STACK LIMIT REGISTER

LOS

Figure 3-1. Top of Stack and Stack Bounds Registers

3-1

Data are brought into the stack through the top-of-stack registers in

such a manner that the last operand placed into the stack is the

first to be extracted. Total capacity of the top-of-stack register

is two operands. Loading a third operand into the top-of-stack reg-

isters causes the first operand to be pushed from the top-of-stack

registers into the stack. The stack-pointer register (s) is in­

cremented by one as each word is placed into the stack and is de­

cremented by one as each word is withdrawn from the stack and placed

in the Top-of-Stack registers. As a result, the S register con-

tinually points to the last word placed into the job's stack.

BASE AND LIMIT OF STACK.

A job's stack is bound, for memory protection, by two registers, the

Base-of-Stack register (BOSR) and the Limit-of-Stack register (LOSR).

The contents of BOSR defines the base of the stack:, and the LOSR

defines the upper limit of the stack. The job is :Lnterrupted if the

S register is set to the value contained in either LOSR or BOSR.

BI-DIRECTIONAL DATA FLOW IN THE STACK

The contents of the top-of-stack registers are maintained automa­

tically by the processor to meet the requirements of the current

operator. If the current operator requires data transfer into the

stack, the top-of-stack registers receive the incoming data, and

the surplus contents of the top-of-stack registers, if any, are

pushed into the stack. Words are brought out of the stack into the

top-of-stack registers for operators which require the presence of

data in the top-of-stack registers, but do not explicitly move data

into the stack.

DOUBLE-PRECISION STACK OPERATION.

The top-of-stack registers are operand-oriented rather than word-

oriented. Calling a double-precision operand into the top-of-stack

registers loads two memory words into the top-of-stack registers.

The first word is loaded into the A register, where its tag bits

are checked. If the value indicates double-precision the second

3-2

word is loaded into X. The A and X registers are concatenated, or

linked together, to form the double-precision operand. The B and Y

registers concatenate when a double-precision operand is moved to

the B register. The double-precision operand reverts to single

words as it is pushed from the B and Y registers into the stack.

The concatenation is repeated when the double-precision operand is

returned from the stack into the top-of-stack registers.

DATA ADDRESSING.

The B 6500 Processor provides three methods for addressing data or

program code:

a. Data Descriptor (DD)/Segment Descriptor (SD).

b. Indirect Reference Word (IRW).

c. Stuffed Indirect Reference Word (SIRW).

The Data Descriptor (DD) and Segment Descriptor (SD) provide for

addressing data or program segments located outside of the job's

stack area. The Indirect Reference Word (IRW) and the Stuffed

Indirect Reference Word (SIRW) address data located within the

job's stack. The IRW and SIRW address components are both relative.

The IRW addresses within the immediate environment of the job rel­

ative to a display register (described later in Non-local Addres­

sing). The SIRW addresses beyond the immediate environment of the

current procedure, and addresses relative to the base of the job's

stack. Addressing across stacks is accomplished with an SIRW.

DATA DESCRIPTOR.

In general, the descriptor describes and locates data or program

code associated with a given job. The Data Descriptor {DD) is

used to fetch data to the stack or store data from the stack into

an array located outside the job's stack area. The formats of the

Data and Segment Descriptors are illustrated in Section 6. The

ADDRESS field of both descriptors is 20 bits in length and contains

the absolute address of an array in either system main memory or

in the backup disk file as indicated by the Presence bit (P). The

referenced data is in main memory when the presence bit is set.

3-3

PRESENCE BIT.· A Presence Bit interrupt occurs when the job ref­

erences data with a descriptor which has its P bit and copy bit

equal to ZERO. The Master Control Program (MCP) recognizes the

Presence Bit Interrupt and transfers data from the disk file to

main memory. After the data transfer to main memory is completed,

the MCP marks the descriptor present by setting the P-bit to ONE,

and places the new maiti memory address into the ADDRESS field of

the descriptor. The interrupted job is then reactivated.

INDEX BIT. A Data Descriptor describes either an entire array of

data words, or a particular element within an array of data words.

If the descriptor describes the entire array, the Index bit (I-bit)

in the descriptor is ZERO, indicating that the descriptor has not

yet been indexed. The LENGTH field of the descriptor defines the

length of the data array.

INVALID INDEX.

A particular element of an array may be described by indexing an

array descriptor. Memory protection is ensured during indexing op-

erations by performing a comparison between the LENGTH field of the

descriptor and the index value. An Invalid Index Interrupt results

if the index value exceeds the length of the memory area defined by

the descriptor, or if the index is less than zero.

VALID INDEX.

If the index value is valid, the LENGTH field of the descriptor is

replaced by the index value, and the I-bit in the descriptor is set

to ONE to indicate that indexing has taken place. The ADDRESS and

INDEX fields are added together to generate the absolute machine

address whenever a present, indexed Data Descriptor is used to

fetch or store data.

The Double-Precision bit (D) is used to identify the referenced

data as single or double-precision and has a direct affect on the

indexing operation. The D-bit equal to ONE signifies double-pre-

cision and causes the index value to be doubled before indexing.

3-4

READ-ONLY BIT. The Read-Only bit (R) specifies that the memory area

described by the Data Descriptor is read-only area. J\.11. interrupt

results when an area is referenced through a descriptor with inten­

tions of storing with the R bit set to ONE.

COPY BIT. The Copy bit (c) identifies a descriptor as a copy of

a master descriptor and is related to the presence bit action. The

copy-bit links multiple copies of an absent descriptor to the one

master descriptor. The copy-bit mechanism is invoked when a copy

is made in the stack, of an absent-Data Descriptor. If the Absent­

Data Descriptor is the original (master) descriptor, the processor

sets the copy bit to ONE and inserts the address of the· master de­

scriptor into the ADDRESS field. Thus, multiple copies of absent­

data descriptors are all linked back to the master descriptor.

POLISH NOTATION.

GENERAL.

To understand the B 6500 stack, Polish notation must be understood.

A problem that exists with most forms of mathematical notation is

defining the boundaries of specific terms. This is eliminated with

the use of parentheses, brackets, and braces. The expression 5Z +

7/2Z and (5z + 7)/2Z express different functions of Z, but one

could easily be used when the other was intended. However, with a

complex equation, it becomes necessary to duplicate the use of the

few types of delimiters that exist.

Polish notation is an arithmetical or logical notational system

using only operands and operators arranged in sequence or string

which eliminates the necessity for defining the boundries of any

terms. Figure 3-2 presents a flow chart for conversion to Polish

notation.

3-5

\....J
I
0\

EXPRESSION

YES

NO

YES

PLACE
SYMBOL IN

DELIMITER LIST
AND

PROCEED

I

REMOVE
LAST ENTERED
D.L. SYMBOL

I -

YES

LAST ENTERED D. L.
SYMBOL IS:
1 • LOWER PRIORITY
2. LEFT BRACKET
3. SEPARATOR
4. LIST EMPTY

NO

LAST ENTERED
D. L. SYMBOL IS:

1 • = PRIORITY
2. PRIORITY

YES

PLACE SYMBOL I I REMOVE LAST ENTERED
IN THE POLISH REMOVE D.L. SYMBOLS AND

NOTATION STRING LAST ENTERED I I PLACE INTO P.N.S.
AND D. L. SYMBOL I I UNTIL LIST IS EMPTY

PROCEED I I -

I J f f I I I r , * 1 1 I POLISH NOTATION STRING I I DELIMITER LIST I L ______________________ __

Figure 3-2. Polish Notation Flow Chart

RULES FOR GENERATION OF POLISH STRING.

The source of expression is:

Name Action

Variable Place variable in string being

built and examine next symbol.

Operator-Separator

Arithmetic or Boolean operator

and last entered delimiter list

symbol was:

a. An operator of lower

priority.

b. A left bracket " [" or

parenthesis "(".

c. A separator.

d. Nothing (delimiter list

empty.

Arithmetic or Boolean operator

and last entered delimiter list

symbol was: an operator of pri-

ority equal to or greater than

the symbol in the source.

A right bracket "]" or paren­

thesis tt)n.

Place in delimiter list and ex­

amine next symbol.

Place operator in the delimiter

list and examine next source

symbol.

Remove the operator from the de­

limiter list and place in the

string being built. Then compare

the next symbol in the delimi-

t er list against the source ex­

expression symbol.

Pull from delimiter list until

corresponding left bracket or

parenthesis.

3-7

POLISH STRING.

The essential difference between Polish and conventional notation

is that operators are written to the right of the operands instead

of between them. For example, the conventional B + C is written

B C + in Polish notation: A = 7(B+C) becomes BC + 7 x A =·

Any expression written in Polish notation is called a Polish string.

In order to fully understand this concept, the rule for evaluating

a Polish string should be known.

RULES FOR EVALUATING A POLISH STRING.

The rule is summarized in a few steps:

a. Scan the string from left to right.

b. Remember the operands and the order in which they occur.

c. When an operator is encountered:

1) Record the last two operands encountered.

2) Execute the required operation.

J) Disregard the two operands.

4) Consider the result of (2) as a single operand, the

first of the next pair to be operated upon.

Following this rule, the Polish string BC + 7 x A :=results in A

assuming the value 7 (B + c) {table J-1).

J-8

Table 3-l

Evaluation of Polish String BC + 7 x A .-

Operands Being
Remembered and

Symbol Their Order of
Being Symbol Occurence (l or 2) Operation Results of

Step Examined Type Before Operation Taking Place Opera.ti on

a. B Operand

b. c Operand l B

c. + Add 2 c B + c (B + c)
Operator l B

d. 7 Operand l(B + c)

e. x Multiply 2 7 7 x (B + c) 7 x (B+C)

Operator l(B + c)

f. A Name l 7(B + c)

g. . - Replace 2A

Operator l 7(B + c) A : :;::7 (B + c) A=7(B + C)

SIMPLE STACK OPERATION.

All program information must be in the system before it can be used.

Input areas are set aside for information entering the system and

output areas are set aside for information exiting the system, array

and table areas are allocated to store certain types of data. Thus

data is stored in several different areas: The input/output areas,

data tables (arrays), and the stack. Since all work is done in the

arithmetic registers, all information or data is transferred to the

arithmetic registers and the stack.

3-9

At this point, an ALGOL assignment statement and the Polish nota­

tion equivalent will be related to the stack concept of operation.

The example is Z: =Y + 2x (w +V) , where : = means "is replaced by. " In

terms of a computer program, this assignment statement indicates

that the value resulting from the evaluation of the arithmetic ex­

pression is to be stored in the location representing the variable

z.

When Z~=Y + 2x(W+V) is translated to Polish notation, the result is

Y2WV+x+Z:=. Each element of the example expression causes a cer-

tain type of syllable to be included in the machine language pro-

gram when the source problem is compiled. The following is a de-

tailed description of each element of the example, the type of

syllable compiled, and the resulting operation (see figure 3-3 and

table 3-2).

In the example statement, Y is added to a quantity; therefore, Y

is brought to the stack as an operand. This is accomplished with

a Value Call (VALC) syllable that references Y. The value 2 is

then brought to the stack, with an eight bit literal syllable (LTB).

Since W and V are to be added~ the respective variables are brought

to the stack with Value Call syllables. The ADD operator adds the

two top operands and places the sum in the top of stack. This ex-

ample assumes single-precision operands for simplicity not requiring

use of the "X" and uyu registers which are used in double-precision

operations.

The multiply operator is the next symbol encountered in the Polish

string and when executed, places the product "2x(V+W)" in the top

of the stack. The next symbol, ADD, when executed leaves the final

result "7+2x(W+V)" in the top of the stack.

Since Z is to be the recipient of a value, the address of Z must be

placed into the stack just prior to the store command. This is ac-

complished with a name call syllable which places an Indirect Refer­

ence Word (IRW) in the stack. The IRW contains the address of Z in

the form of an "address couple" that references the memory location

reserved in the stack for the variable Z.

3-10

\...)
I
f-1
f-1

•A• REGISTER INVALID

11 811 REGISTER INVALID

CORE STACK
AREA

CBIL N +5

CBIL N + 4

CBIL N + 3

CBIL N + 2

CBIL N + 1

CBIL N

i!:

y

w

v

s .

VALC

y

y

INVALID

r

y

w

v

~

s

I-

ALGOL STATEMENT Z := Y
POLISH NOTATION STRING Y 2 W

LTS

2

EE

~

y

w

v

s ~

VALC

w

w
2

y

r

y

w

v

t-i

s

t-J

VALC

v

v

w

2

y

z
y

w

v

+
v

~

I-"

s

2
+

x

ADD

INVALID

{W+V)

2

y

z
y

w

v

s ~

Figure 3-J. Stack Operation

MULT

INVALID

2(W+V)

2

y

z
y

w

v

s

SYLLABLE T't'PES

VALC VALUE CALL
NAMC NAME CALL
LTS LITERAL (8 BIT)
STOD STORE DESTRUCTIVE

ADD

INVALID

Y+2(W+ V)

2

y

z
y

w

v

s ..

I

NAMC

z

IRW Z

Y+2(W+V)

2

y

z
y

w

v

t-

le--

STOD

INVALID

INVALID

2

y

• Y+2(W+V)

y

w

v

Execution

Sequence

0

l
I

2

3

4

5

6

3-12

Table,J-2

Description of Stack Operation

Polish ~

Notation Syllable Type Function of Syllable Dur-

Element Compiled ing Running of the Program

Stack location of pro-

gram variables illustrated.

y Value call Place the value of y in

for Y. the top of the stack.

2 Literal 2. Place a 2 in the top of

the stack.

w Value call Place the value of w in

for w. the top of the stack.

v Value call Place the value of v in

for V. the top of the stack.

+ Operator Add. Add the two top words in

the stack and place the

result j~n B register as

the top of the stack.

x Operator Mul- Multiply the two top Of

tiply. the stack operands. The

product is left in the B

register as the top of

the stack. (The A reg-

ister contains the multi-

plier and the B register

the multiplicand.)

Execution

Sequence

7

8

9

Table 3-2 (cont)

Description of Stack Operation

Polish

Notation

Element

+

z

Syllable Type

Compiled

Operator Add.

Name call on

z.

Function of Syllable Dur­

ing Running of the Program

Add the two top words in

the stack and leave the

result in the B register

as the top of the stack.

Build an Indirect Ref-

erence Word that contains

the address of Z and

place it in the top of

the stack.

Operator Store Store an item into mem-

Destructive. ory. The address to store

into is indicated by an

Indirect Reference Word

or a Data Descriptor.

The address can be above

or below the item stored.

The Store syllable completes the execution of the statement Z:=Y +

2x(W+V). The store operation examines the two top of stack operands

looking for an IRW or Data Descriptor. In this example the IRW ad-

dresses the location where the computed value of Z is to be stored.

The stack is empty at the completion of this statement.

3-13

PROGRAM STRUCTURE IN MEMORY.

When a problem is expressed in a source language, portions of the

source language fall into one of two categories. One describes the

constants and variables that will be used in the program, and the

other the computations that will be executed. When the source pro­

gram is compiled, variables are assigned locations within the

stack whereas the constants are embeded within the code stream that

forms the computational part. A program residing in memory occupies

separately allocated areas. Separately allocated means that each

part of the program may reside anywhere in memory, and the actual

address is determined by the MCP. In particular, the various

areas are not assigned to contiguous memory areas. Registers with­

in the processor indicate the bases of the various areas during the

execution of a program.

MEMORY AREA ALLOCATION. The separately allocated areas of a program

are:

J-14

a. Program Segments -- Sequences of instructions (syllables)

that are performed by the processor in executing the pro-

gram. Note that there is a distinction between program

segments and data areas. The program segments contain no

data, and are not modified by the processor as it executes

the program.

b. Segment Dictionary -- This is a table containing one word

for each program segment. This word tells whether the

program segment is in main memory or on the disk, and gives

the corresponding main memory or disk address of the pro­

gram segment.

c. Stack Area -- This is the pushdown stack storage, which

contains all the variables associated with the program,

including control words which indicate the dynamic status

of the job as it is being executed.

d. MCP Stacks and Segment Dictionary -- This area contains

variables pertinent to the MCP. It also contains the MCP

segment dictionary entries. Figure J-4 shows in basic

form the separately allocated areas of a program.

OBJECT
OBJECT PROGRAM
PROGRAM CODE D [4]---+
STACK SEGMENT
CONTAINING (n + 1)
VARIABLES D [3]---..

AND
~

DYNAMIC
D [2]--... STATUS

OBJECT
PROGRAM
CODE
SEGMENT

OBJECT (n)

PROGRAM
SEGMENT ~

DICTIONARY

S. D. PROG. OBJECT

S. D. PROG.
PROGRAM
CODE

D [1) ----- SEG. DEC. 0. B. OUTER

D [OJ

MCP STACK
AND

SEGMENT
DICTIONARY

Figure J-4.

BLOCK
CODE
SEGMENT

~

Object Program in memory

J-15

STACK-HISTORY AND ADDRESSING-ENVIRONMENT LISTS.

One very important aspect of the B 6500 is the retention of the

dynamic history for the program being processed. Two lists of pro-

gram history are maintained in the B 6500 stack, the stack-history

list and the addressing-environment list. The stack-history list

is dynamic, varying as the job proceeds along different program

paths with changing sets of data. Both lists are generated and

maintained by B 6500 hardware.

MARK STACK CONTROL WORD LINKAGE. The stack history is a list of

Mark Stack Control Words (MSCW), linked together by their DF fields

(figure 3-5). A MSCW is inserted into the stack as a procedure is

entered, and is removed as that procedure is exited. Therefore,

the stack history list grows and contracts with the procedural

depth of the program. Mark Stack Control Words identify the por-

tion of the stack related to each procedure. When the procedure

is entered, its parameters and local variables are entered in the

stack following the MSCW. When executing the procedure, its para­

meters and local variables are referenced by addressing relative

to the MSCW.

STACK DELETION. Each MSCW is linked to the prior MSCW through the

contents of its DF field to identify the point in the stack where

the prior procedure began. When a procedure is exited, its portion

of the stack is discarded. This action is achieved by setting the

stack-pointer register (s) to address the memory cell preceding the

most recent MSCW (figure 3-6). This top-most MSCW, addressed by

another register (F), is deleted from the stack-history list by

changing F to address the prior MSCW, placing it at the head of

the stack history.

This is an efficient and convenient means of subroutine entry and

exit.

3-16

,.., ,..,

s ·I TOS WORD I
PROCEDURE B ADDRESS

F ,.., ,.., ENVIRONMENT

~ ~ MSCW =~ Dl~~ST
PROCEDUR~ ~ _

~--i......::.D..:..::IS:..:....P~=--=:a.-

PROCEDURLD LJ_
~--=~o::=:

PROCEDUR~--
11 MSCW i--~..;..;;__.._.,__

OUTER PROG BL,CK ~I. -
~ (MSCW) l~~L-....::;.D..:..::IS:.;..P_...__...,_

STACK
HISTORY

LIST

OF

Figure 3-5. Stack History and Addressing Environment List

s

F

Figure J-6.

-DISCARDED
PORTION

TOS WORD OF STACK

STACK
HISTORY

LIST

Stack Cut-Back Operation on Procedure Exit

J-17

RELATIVE-ADDRESSING. Analyzing the structure of an ALGOL program

results in a better understanding of the relative·- addressing pro-

cedures used in the B 6500 stack. The addressing environment of an

ALGOL procedure is established when the program i:s structured by

the programmer, and is referred to as the lexicographical ordering

of the procedural blocks (figure J-8). At compile time, the lex-

I

Figure 3-7.

3-18

ADDRESS
ENVIRONMENT

STACK LIST

"' AREA _
MEMORY I

s r--JroswoRol= = .=_ __ _

F
MSCW

PCW-B

Y3

MSCW

0 REGISTERS

~
031

I
vs

06 MSCW _

05

04 PCW-D

PROCEDURE D

---J---,--
03 V4 PROCEDURIE C

02
01 MSCW DISP

DO
PCW-C

PCW-A
V2
Vl

MSCW DISP

:_TER PRC:LOCK

-- =:j __

D Registers Indicating Current Addressing Environment

BEGIN
REAL Vl;
REAL V2;
PROCEDURE A;

BEGIN
REAL V3;
PROCEDURE B;

[

BEGIN
V3-3;
V1-V3;

END;

8
END;

PROCEDURE C;

C;
END;

BEGIN ~~~~~~~~~~~

REAL V4;
PROCEDURE D;

D;
END;

BEGIN
REAL VS;
V4-.-4;
V5 5;
A;
V2 V4;

END;

LEXICOGRAPHICAL LEVEL 2

-a= 2, 8 = 2
~= 2, 8 = 3
_.a= 2, 8 = 4

LEXICOGRAPHICAL LEVEL 3
_,a= 3, 8 = 2
_,a= 3, 8 = 3

LEXICOGRAPHICAL LEVEL 4

.-a= 2, 8 = 5

LEXICOGRAPHICAL LEVEL 3

.-a= 3, 8 = 2
_a= 3, 8 = 3

LEXICOGRAPHICAL LEVEL 4
.-a= 4, 8 = 2

Figure J-8. ALGOL Program With Lexicographical Structure Indicated

PROCEDURE 8

- - LEXICOGRAPHICAL LEVEL 4

PROCEDURE A
LEXICOGRAPHICAL LEVEL 3

OUTER PROGRAM BLOCK
LEXICOGRAPHICAL LEVEL 2

Figure J-9. Addressing Environment TrAe of ALGOL Program

3-19

icographical ordering is used to form address couples.

couple consists of two items:

a. The addressing level (.f R) of the variable,

An address

b. An index value (s) used to locate the specific variable

within its addressing level.

The lexicographical ordering of the program remains static as the

program is executed, thereby allowing variables to be referenced

via address couples as the program is executed.

Base of Addressing-Level Segment.

The B 6500 processor contains an array of D Registers (DO through

DJl) which address the base of each addressing-level segment (fig­

ure J-7). The local variables of all procedures are addressed rel­

ative to the D registers.

Absolute Address Conversion.

The address couple is converted into an absolute memory address

when the variable is referenced. The addressing .level portion of

the address couple selects the D Register which contains the ab­

solute memory address of the MSCW for the environment (addressing-

level) in which the variable is located. The index value of the

address couple is added to the contents of the D Register to gen­

erate the absolute memory address.

Multiple Variables With Common Address Couples.

The address couples assigned to the variables in a program are not

unique. This is true because of the ALGOL scope-of-definition

rules, which imply that two variables may have identical address

couples if there is no procedure within which both of the variables

can be addressed. This addressing system works because, whereas

two variables may have the same address couples, there is never any

doubt as to which variable is being referenced within any particular

procedure.

3-20

Address Environment Defined.

There is a unique MSCW which each D Register must address during the

execution of any particular procedure. The D Registers must be

changed, upon procedure entry or exit, to address the correct MSCWs.

The list of MSCWs which the D registers address is the addressing

environment of the procedure.

Mark Stack Control Word Linkage.

The addressing environment of the program is maintained automatically

by linking the MSCWs together in accordance with the lexicographical

structure of the program. This linkage is the Stack Number (stack

No.) and Displacement (DISP) fields of the MSCW, and is inserted

into the MSCW whenever the procedure is entered. The addressing

environment list is formed by linking each Mark Stack Control Word

to the MSCW immediately below the declaration for the procedure

being entered. This forms a tree-structured list which indicates

the addressing environment of each procedure (figure 3-7 and 3-9).

This list is used to update the D Registers whenever a procedure

entry or exit occurs.

STACK HISTORY SUMMARY. The entry and exit mechanism of the Proces-

sor hardware automatically maintains both the stack history and

address-environment lists to reflect the current status of the pro­

gram. Interrupt response is a procedure entry. Therefore, the

system is able to respond to, and return from, interrupts conven­

iently. Upon recognition of an interrupt condition, the proces­

sor creates a MSCW, inserts an indirect reference word into the

stack to address the interrupt-handling procedure, inserts a lit­

eral constant to identify the interrupt condition and a second para-

meter, and initiates an MCP interrupt-handling procedure. The D

Registers are updated upon entry into the interrupt-handling pro­

cedure, to display all legitimate variables. Upon return, the D

Registers are updated to display variables of the former procedure.

3-21

MULTIPLE STACKS AND RE-ENTRANT CODE.

The B 6500 stack mechanism provides a facility to handle several

active stacks. These stacks are organized in a tree structure.

trunk of this tree structure is a stack which contains MCP global

quanti ti.es.

LEVEL DEFINITION. A program is a set of executable instructions,

The

and a job is single execution of a program for a particular set of

data. As the MCP is requested to run a job, a level-I branch of

the basic stack is created. This level-I branch contains the Des-

criptors the executable code and Read-only Data segments for the

program. Emerging from this level-I branch is a level-2 branch,

containing the variables and data for this job. Starting from the

job's stack and tracing downward through the tree-structure, one

finds first the stack containing the variables and data for the

job (at level 2), the program code to be executed (at level 1), and

the MCP's stack at the trunk (level 0).

RE-ENTRANCE. A subsequent request to run another execution of an

already-running program requires that only a level-2 branch be

established. This level-2 stack branch sprouts from the level-I

stack of the already-running program. Thus two jobs which are

different executions of the same program have a common node, at

level-I, describing the executable code. It is in this way that

program code is re-entrant and shared. It comes about simply from

the proper tree-structured organization of the various stacks with-

in the machine. All programs within the system are re-entrant, in-

eluding all user programs as well as the compilers and the MCP

itself.

JOB-SPLITTING. The B 6500 stack mechanism also provides the faci-

lity for a single job to split itself into two independent jobs.

A most common use of this facility occurs when there is a point in

a job where two relatively large independent processes must be per­

formed. This splitting could be used to make full use of a multi­

processor configuration, or to reduce elapsed time by multiprogram­

ing the independent processes.

3-22

A split of this type establishes a new limb of the tree-structured

stack, with the two independent jobs sharing that part of the stack

which was created before the split was requested. The process is

recursively defined, and can happen repeatedly at any level.

STACK DESCRIPTOR. Stack branches are located by an array of descrip­

tors, the stack vector array {figure 3-10). There is a data des-

criptor in this array for every stack branch. This data descriptor,

the stack descriptor, describes the length of the memory area as­

signed to a stack branch, and its location in either main memory or

disk.

STACK
VECTOR
ARRAY

DDn

004
003
002
001
ODO

-

JOB
STACK

_NO. n

Figure J-10.

JOB JOB JOB
STACK STACK STACK
NO. 3 _ _ NO. 2,.. _NO. l

M

MSCW

SEGMENT
DESCRIPTORS

PY
SD

...,
STACK VECTOR
DESCRIPTOR

D
REGISTERS - -
Pd

04
03
02

DO

Multiple Linked Stacks

A stack number is assigned to each stack branch. The stack number

is the index value of the stack descriptor in the stack vector array.

J-23

STACK VECTOR DESCRIPTOR. The stack vector array's size and location

in memory is described by the stack vector descriptor. This des-

criptor is located in a reserved position of the stack's trunk

(figure J-10). All references to stack branches are made through

the stack vector descriptor, indexed by the stack number.

PRESENCE BIT INTERRUPT. A Presence Bit Interrupt results when an

addressed stack is not present in memory. This Presence Bit

Interrupt facility permits stack overlays and recalls under dynamic

conditions. Idle or inactive stacks may be moved from main memory

to disk as the need arises, and when subsequently referenced gen­

erates a Presence Bit Interrupt to cause the MCP to recall the non­

present stack from disk.

3-24

SECTION 4
MAJOR REGISTERS AND CONTROL PANELS

PROCESSOR REGISTERS.

GENERAL.

The Processor Registers and Flip Flops are displayed in the Display

Cabinet of the system as shown in figure 4-1. Panel A displays the

stack registers. Panel B is shared with the Multiplexor. Panels

C, D, and E contain indicators and switches for the entire system.

Figure 4-1. Processor Display Panels

PANEL A (Refer to figure 4-2)

A REGISTER. The A register is a 51 bit information register that

holds one complete word. This register is the TOP OF STACK when

AROF on indicates that it contains a valid word. It is used in

many ways, arithmetic, boolean, character string, addressing, in­

dexing, camparing, etc.

B REGISTER. The B register is a 51 bit information register con-

sidered as the second word in the Stack when the A Register is valid.

It, too, has multiple usage such as arithmetic, boolean, character

string, addressing, etc. The B register is valid when BROF is on.

4-1

C REGISTER. The C register is a 51 bit information register for

general purpose use. It may contain an address, an IRW, an inI'or-

mation word, a character or the "flash back" from a memory cycle.

X REGISTER. The X register is a 51 bit information register used

basically as the second word of a double-precision operand.

Y REGISTER. The Y register is the counterpart of the X register

for double-precision operands.

register operand.

It is the second-word of the B

P REGISTER. The P register is a 51 bit instruction register.

PANEL B (Refer to figure 4-J).

Panel B indicators are shared by the Processor and Multiplexor

Flip Flops.

The PROC/MPX switches located on Panel C (Refer to figure 4-4)

control the display mode of this panel.

Panel B is divided into related family and control. groups. The

Maintenance Diagnostic Logic (MDL) Processor is common to both

display modes.

ROW A. This contains the Flip Flops for addressing the IC memories

in the Memory Controller.

BRSO =) BRS7 Base read select 0 thru 7

IRSO =) IRS7 Index read, select 0 thru 7

BWSO =) BWS7 Base write select 0 thru 7

IWSO =) IWS7 Index write select 0 thru 7

DRSO =) DRS5 Display read select 0 thru 5

DWSO =) DWS5 Display write select 0 thru 5

ROW B. This row contains the Flip Flops for the MDL Processor.

There are three registers AOl =) AlO, BOl =)BOS, and COl =) COS

associated with this processor. Each has a dual purpose depending

on the use of MDL on I/O testing or system testing.

Flip Flops in Row B are for MDL control.

4-2

The other

P±&OR
...-.+-ro-_9 J-0 0 :

1

-o-9-_:::J : d ! e To-9_J....-! o--i!..--0...,...1
1

0-9-.,._J _o.,....j ~---.
e o:o o 0

1
0!0 QJo!oio QJo,oio QJOj

0 ol0Jo Ol0lo[0 0J0Lnio OLOJO[{)_Qj
TAG 4'5 ·)'(- 39 36 ')f-J 30)f ~ 21 ~ 15 12 9 6 ¥· 0

a M&llTD--------.
le o oJO o!OOloiolo oiOlo!QOlo!i-~
o oro o 01oro~9Jolo 1r-8 9JojorO 9Jo1
CB OLof o oLoJoL0 nJoLn!Q o~o1~ 01
TAG 45 42 39 36 33 30 ~--¥- 21 ~ 12 ¥ 6 LY- --¥

CREGISTEA--------.

1(±) o Qf O! o ro QJ o ro1 o gJ01 o ro- QJ or~
0 oio rgJolo!o gJojoio QJ010:0 gjo:
oG oLnJo 0LoJ0[0 0Jol0Jo 0~0Joln mJ
TA 45)(39 36 33 30 ¥-~ 21 ¥- 15 12 ¥· 6 ¥-¥

)(REGISTER

le o oIO o JO-QJ o ic51 o oJOl o ro- Ql o l~
o oio o ojo!o olojo!o o!o\o!O o!Oj
0 oloJO 0LoJoCC5oJol0r8 0L0Jo[Q~0:
TAG 4'5 42 39 36 33 30 27 24 21 ~ 15 12 9 6 3 ~

Y REGISTER-------

1© o 9JO oJ6 Qjoi6lo QJ6lo!O-Q]oi<B
o o!o o 01·010 o!ojoio o!o/o!o 0!0

1

1

o oLnJO OLn!o[n" 0Joln!6 oLnJoL0~ U)J
TAG 45 -~ 39 36)fJ 30 ·~ 21 ·¥-J 15 12 ·¥· 6 ¥-¥·

PREGISTE"------.....

lo o QfO! o 16 QJ o 161 o Qf61 o fO 9J o i'~
+ Of OrQJOjO!OrQJojoi-

1

o r.QJOjO!O QjO
+ + {)JO 0LOJOLO_QJOL0J0 (±):OJo!o o:

TAG 45)f- 39 36 33 30 27 24 21 18 15 12 L.:9_ 6 ~"3---¥

Figure 4-2. Processor Display Panel

4-J

4-4

""°'EiM>R
K tff .. WltlTE SELECT- IC MEM READ SELECT

© e e o o o o o o Q1Q Q Q, Q, o Q, Q, Q Q, Q,
OOOOOOOOO~QQ~QOQQQQQ
OOOOOOOOQQQQQQQQQQQQ
00000000000000000000

4 1W 4 OR 4 fl 4

0000 000000 0 0000
MAOF" BOif' llO!>

QQOQOQQQQQQQQQQQOOOO
00000000000000000000
5555o~~~~5555~55oooe
TNFF FECH ERR2 L02F MA'OI MA04 MA07 MAIO llO<tF I08F AO!F A06F A09F C02F C0'5F C08F

CORE ADDRESS :re NO STRIN<i NO __ _,

'------------MDL DISPLAY-------------'
------FAMILY A ARITH CONTROL-o o o o o o o o o o o o o o o o o o o e

TR03 JRA! QROO(N) QR04 QIUO NCR4 EBRO MVRO QRl4 CCAA A2CA EA~il OCA

00000000000000000000
TRXI TR02 BBSZ JRA2 QR07 QR03 QR09 NCR3 EARO MBR2 QRl3 CTAA A2AA EA!;z QTAA

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0_() 0
XXAI TP.01 QRl5 JRAI QR06 QROI QROS NCR2 MVR2 MBRI QRl.2 MCA /11:.AA AA~iZ'.(2.) EAC

00000000000000000000
STRA TR JRA4 RA QR05QOOO~lNCR5 NCRI MYRi MllR QR11 MAA ATAAAASZ(l)EATA

00 0 00000000
QB3F TB3F J87F JB.3F QCIF' TR03 JC07 JC03 OC7F LL03 acer: QROV EBTB FSL.ci6) FSP.ctz)AAIZ FC

00000000000000000000
QB2F TB2F JB6F JB2F STRK TR02 JC06 JC02 QC6F LL02 QC4F Cl NA EATB FSL~ FSRC(I) ECSC FCBC(I

QQQQQQQQQQOQOO~Q~~Q~
00000000000000000008
TB4F TBOF JB4F JBOF STRC TROO JC04 JCOO LL04 LLOO NCSF AASI ATBB FSLC(l)FCB8(1) ECB·B FCBS{I

FAMILY B -~-----FAMILY C ----~

~--FAMILY D ----...-------- FAMILY E -------------.

'----·PROGRAM CONTROL: '-------TRANSFER CONTROL-------

Figure 4-J. Processor/Multiplexor Display Panel

A

B

c

D

E

F

G

H

ROW C. This row contains Family A Flip Flops and one half of the

Arithmetic Controller Flip Flops.

Famil~ A.

TROO =) TROJ

JRAO =) JRA4

QROl

QROO(A)

QR02

QROJ =) QR07

QR08 =) QRlO

QRll =) QR14

QR15

QROO/QROl

QROO(N)/CINA

NCRO

MERO

MYRO

E.ARO

EBRO

STRA

XXAl

TRXl

=) NCR5

=) MBR2

=) MYR2

Contains the OP Code

Sequence Count used in the OP Code flow

Pre-Carry INTO Adder

Carry-in set control

High-speed clock phase control

Logic control

Temporary storage

Q Counter

Interrupt flip flop

Carry-in reset control

Multiple control

N Counter

B Register Mantissa Field Extension

Y Register Mantissa Field Extension

Extension of A Register Exponent Field

Extension of B Register Exponent Field

Family A Strobe F.F. (turned on by the Program
Controller thru the ZlO bus)

Function Parallels STRA

Function Parallels TROl

Arithmetic Control.

All other Flip Flops in this Controller are used for logic control.

They are:

BBSZ FCBB (2)

AASl FSRC (1)

ETBT FSRC (2)

EATB AAlZ

BTBB ECBC

ATBB ECCB

FSLC (1) ECBB

FSLC (2) FCBC (1)

4-5

FSLC (_5)

FSLC {6)

FCBB (l)

FCBl (2)

FCBS (l)

FCBS (2)

ROW D. This row contains the Family B and C Flip Flops.

Family B.

TBOF =) TB4F

JBOF =) JB6F

QBlF =) QB4F

Family C.

TROO =) TROJ

JCOO =) JC07

LLOO =) LL04

STRC

STRJ

STRK

QClF =) QC8F

NCSF

Contains the OP Code

Sequence Count used in the OP Code flow

Logic Control

Contains the OP Code

Sequence Count used in the OP Code flow

Lexicographical level Flip Flops for the

Program flow

Strobe Family C (Sub-routine)

Strobe Family J (Value Call)

Strobe Family K (Name Call)

Logic Control

Normal Control State Flip Flop OFF signifies

Normal State

The Control State Flip Flop extends the Operator set to include

some additional Operators and disables external interrupt detection

by the Processor.

CRUN Family C Run Flip Flop

ROW E. This row contains the Family D and E Flip Flops.

Family D.

4-6

TDOF Family D Strobe

TDlF =) TD4F - Contains the OP Code

JDOF =) JD7F - Sequence Count used in OP Code flow

QDIF =) QD9F, QDAF, QDBF Logic Control Flip Flops

Family E.

OPRS Family E Strobe

OPRl =) OPR4 - Contain the OP Code

JEOl =) JE16 Sequence Count used in OP Code flow

DIGl =) DIGS - Length Field

ICRl =) ICR8 - Input Convert

OBOl =) OB04 - Octal Buffer Bit

0101 =) 0104 - Octal l bit

0201 =) 0204 - Octal 2 bit

DBOl =) DB08 - Digit Buffer Bit

DlOl =) Dl08 - Digit l Bit

D20l =) D208 - Digit 2 Bit

CNOl =) CN16 - Counter

QEOl =) QEOJ - Logical Control

ROW F. This row contains the Family U (String OP) Flip Flops.

Family U is the hardware logic for the STRING OP CONTROLLER.

OPRl =) OPR8 - Contains the OP Code for this controller

KFOl =) KFOJ - Extension of Sequence count for family F

JFOO =) JFOJ - Sequence Count used in Family F OP Code flow

KGOl =) KGOJ - Extension of Sequence count for family G or H

JGOl =) JG08 - Sequence Count used in Family G or H OP Code flow

VARF Variant Flip Flop to alter the OP Code

DSZl Destination Size Less Significant Bit

DSZ2 Destination Size More Significant Bit

SSZl Source Size Less Significant Bit

SSZ2 Source Size More Significant Bit

DIOl =) DI08 - Destination Character Pointer

SIOl =) SI08 - Source Character Pointer

EDIT Edit Mode for String OPS

4-7

NVLF

JGIF

JFIF

QFOl

QF02

QF03

QF04

QHOl =) QROl

XROF

RPZE

DGSF

LHFF

EROl =) EROS

Invalid OP Code

JG Interrupt State

JF Interrupt State

Invalid OP Interrupt

Presence Bit Interrupt

Memory Protect Interrupt

Segmented Array Interrupt

Logical Control

Register Occupied

Logical Control

Logical Control

Logical Control

E Register Flip Flops (used for Memory Cycle

requests during String OP Code flow)

EXTF External Sign

FLTF Float

TFFF True False

OFFF Overflow

ROW G. This row contains the Flip Flops for the Interrupt Con­

troller, the Stack Controller and the Memory Controller.

Interrupt Controller.

JIOO =) JI04

SOlF

PTPI

4-8

Sequence Count for Controller Flow

Stack Overflow

Processor to Processor Interrupt

QilF, QI2F

EXIA

EXIE

ITAR

SUFL

SDIS

SCCl, SCC2

ICFF

HLTD

LOAD

SCIL

LTBO, LTBl

Stack Controller.

JOlF =) JOJF

ACTS

QSlF, QS2F

AROF

BROF

Logical Control

External Interrupt A (MPX-A)

External Interrupt B (MPX-B)

Interval Timer Armed

Stack Underflow

Syllable Dependent Interrupt

Scan Counter Bit 1 and 2

Interrupt Controller Run

Halted

Load

Scan Interlock

Load Timer Bit

Sequence Count for Controller flow

Address Couple to ZS bus

Logical Control

The A Register Contains a Valid Word

The B Register Contains a Valid Word

Memory Controller.

SMOO =) SM20 Address Adder Output Flip Flops. These are for

display only. (No Manual Set or reset Controls)

TRIP Trip Control Invalid Address

TIMO =) TIM2 Invalid Address Timer

MAOF Memory Address Obtained

SPEF Scan Bus Parity Error

MWRC Memory Write Control

REQF Memory Request

CZAF Carry Zero Control

SUBF Address Adder Subtract

4-9

PETO =) PET2

MI48

LPBF

MPEF

Information Parity Test Control Register Bit

Memory Protect Bit

Line Parity Bit from Memory

Memory Parity Error

ROW H. This row contains the Flip Flops for the Program Controller

and Transfer Controller.

Program Controller.

JPOF =) JPJF

PROF

VARF

TEEF

EDIT

CPIO, CPil

CTIR

SECF

INFF

PSRO =) PSR2

QPlF, QP2F

SSRO =) SSR2

CSRO =) CSR2

4-10

Sequence Count for Controller Flow

The P register contains a Valid Word

Variant Mode FF (used to escape to 16 Bit

Instruction)

Table Enter Edit

Edit Mode

A 2 bit counter used to back up the PIR (Program

Index Register)

A 1 bit counter used to back up the TIR (Table

Index Register)

Seel (Syllable Execute Complete Level) Saved

Inhibit Fetch FF (used to inhibit bringing a new

program word to the P register)

Program Syllable Register 0=)5 Pointer (Points to

next syllable to be executed from the P register)

Logic Control

Syllable Saved Register 0 (used to save the current

position of PSR when in Table Mode)

Command Syllable Register 0=)5 (used to save the

current position of PSR)

Transfer Controller.

TOAO =) TOAS Top of Aperature Flip Flops (used to select top bit

of 4S bit field to be transferred thru the steering

and mask network)

TOMO =) TOMS

DISO =) DISS

YTZ6

XTZ6

CTZ6

BTZ6

ATZ6

Z6LS

Z6T9

Z6L9

Z6T9

Top of Mask Flip Flops (used to select top bit of

4S bit field to Le inhibited thru the steering and

mask network)

Displacement Flip Flops (used in steering network

to logically displace bits of a 4S bit field)

Gating Flip Flops to the Z6 bus. (Allows the

contents of the various registers to be gated to

this bus)

Z6 Bus Lower to ZS Bus (Allows bits 13:14 to be

transferred)

Z6 Bus Top to ZS Bus (Allows bits 39:20 to be

transferred)

Z6 Bus Lower to Z9 Bus (Allows bits 3S:l6 to be

transferred)

Z6 Bus Top to Z9 Bus (Allows bits 39:20 to be

transferred)

GENERAL MAINTENANCE CONTROLS.

The maintenance control panel shown in figure 4-4 is panel C. It

contains the indicators and necessary controls for maintenance of

the B 6SOO system. Units which cannot be controlled from this

panel have their own local maintenance controls.

4-11

POWER CONTROLS.

Power supplied to the B 6500 system can be controlled by two se­

quence control circuits. (Sequence Control Circuit A and B). There

are two sets of power control switches located on the upper-right

corner of panel C. These are the power-on switch and the power-off

switch. One set controls sequence control A, and the other controls

sequence control B. Besides the power on and off switches there is

a set of three toggle switches .labeled connect-disconnect, "A", "B",

or "C". These switches establish the mode in which the "Power on

and off" switches are used. When switches A, B, and C are in the

disconnect position they indicate that power section "A", "B", and

"C" are controlled independently by their respective switches. When

switch "C" is in the connect position, we can connect power section

"A", and "B" to a third section "C" and have a common control.

Lamp indicators "l, 2, 4, and 8 11 indicate the failure of one of 15

AC modules. For example, if AC module #7 has failed, indicators

labeled "l", "2" and "4" will turn on.

GENERAL CLEAR AND HALT-LOAD FUNCTION.

On the upper-right corner of the control panel there are two push­

button switches labeled "General CJ_ ear A, and General Clear B".

The domain of each of these switches depends on the positions of

switches A, B, And C are in the disconnect mode, i::;ection A is

cleared with the "GEN CLEAR A" switch, and section B is cleared

with the "GEN CLEAR B" switch. If a third section "C" exists, it

will have its own general clear. If switches A, B, and C are in

the connect positions, sections A, B, and C are cJ_eared whenever

either one of general clear switch A or B is depressed.

There is no direct clear switch located at the operator's console;

however, system's general clear from this unit is provided through

the "load" switch. Whenever the load switch is depressed, the

system is automatically cleared before the load command is executed.

4-12

The "HALT", "LOAD", and "CARD LOAD SELECT" switches are duplicated

at the maintenance panel (panel c) for convenience of operation.

These switches are located in the lower-left corner of panel C.

System's clear through Load Switch: When the "load" switch at

either the console or the maintenance panel is depressed, a clear

signal is generated. Both sections A and B are cleared. When the

load switch is released, the load logic generates the load command

which is transmitted to the data processors.

IQ Q c5WEOTR~I
8 4 2 l OFF ON GEN CLEAR 6 6 6 CONNECT~

A B -C - DISCONNECT OFF ON GEN CLEAR

IQ ()) 6cOEAb ()) 0 1

16 e>G~ c61rc6r~r01
D C T TOD AC B MC

'O 0 ~MDL fb)TROL~ 0 0 I
LOAD STOP RUN DIAGNOSE HALT CYCLE LOCK CLEAR

r511 ~ ~kOCK@NTRO~ ~If ~l

cQ) 0 N~MAL ~ Pol Mol p~~FF
LO SLCT PULSE MDL DISPLAY PROC-2 MPX-2 j PROC-2

Qi Q Q 0 019.T1 ;~~FF
PULSE

Figure 4-4. Panel C General Controls

4-13

PROCESSOR REGISTER CLEAR.

A set of six pushbutton switches is provided for individual clear

of registers A, B, C, X, Y and P of the Data Processor selected

by the display select switch.

MULTIPLEXOR REGISTER CLEAR.

The Multiplexor registers may be individually cleared with the

switches listed below:

a. Switch D clears the Data Register.

b. Switch C clears the Command Register.

c. Switch T clears the Tag Register.

d. Switch TOD clears the Time of Day Register.

MDL REGISTER CLEAR.

The MDL registers may be individually cleared with the switches

listed below:

a. Switch MC clears the Core Address.

b. Switch B clears the TC No.

c. Switch AC clears the String No.

MDL CONTROL SWITCHES.

This group of switches is used for loading and controlling the

Maintenance Diagnostic Logic.

DISPLAY SELECT SWITCHES.

This group of switches is composed of three toggle switches located

in the lower-right corner of the panel. The function of these

switches is as follows:

4-14

a. On-Off Switch: This switch enables or disables the

display logic.

b.

c.

Processor Select Switch: This is a three-position toggle

switch which selects which of two processors is scanned by

the MDL.

Multiplexor Select Switch: This is a three-position toggle

switch which selects which of two multiplexors is scanned

by the MDL.

CLOCK CONTHOLS.

The clock control switches provide the means of inhibiting the

system clock to the various components of the system.

Clock toggle switches when activated in the "up" position inhibit

the following.

a. SYST

b. PROC-l

c . MPX-l

d. MDL

e. Display

f. PROC-2

g. MPX-2

SINGLE PULSE SWITCH.

Entire system

Processor #l

Multiplexor #l

Maintenance Diagnostic Processor

Display Logic

Processor #2

Multiplexor #2

This switch is used to produce a single clock when the clock has

been inhibited.

PULSE TRAIN SWITCH.

This switch is used to produce a train of pulses. Each depression

produces all the clock pulses that normally appear within a 500 nano

second period.

INDICATORS BO, Bl, B2.

These indicators indicate the logical time division of the Pulse

Train.

MDTR/NORMAL SWITCH.

This switch is used to change the system from a normal mode of op­

eration to that of Maintenance Diagnostic Logic.

4-15

FF RESET SWITCH.

This switch when depressed indicates that a flip-flop in the unit

selected is to be reset.

HALT, LOAD, and LOAD SELECT SWITC~ES.

The function of these switches is the same as their corresponding

switches at the console. The Halt Switch is used to halt the system

in an orderly manner. The Load Switch is used to perform a Load

Operation as per the positions of the Load Select Switch. The Load

Select Switch is used to select a Disk or Card Load operation.

The indicator is lit when Card Load is selected.

NOTE

For a detailed description

of the Load operation refer

to the description of the

Operators panel (Section 4).

PROCESSOR MAINTENANCE CONTROLS (Panel E).

Each processor is provided with an independent maintenance control

panel. These controls are additions over and above the console

controls (Halt, load, power on/off etc.) and the general systems

controls (Panel c).

The I. C. Memory registers of the processor are not displayed by

the system's display unit; however, certain switch controls located

on the processor control panel allow control and display of these

registers.

The control switches provided on the processor control panel and

their related functions are described in this section.

made to figure 4-6 which shows a front view of Panel E.

START SWITCH.

Reference is

The start switch is a pushbutton type switch which functions to

start, a halted processor, to execute the next operator syllable

4-16

pointed to by "PSR", 11 PIR 11
, and "PER". This switch is active only

when the processor's clock is enabled and when depressed activates

the nsECL" switch to cause the execution of' the next operator syl­

lable to be initiated in the normal manner.

CONDITIONAL HALT SWITCH.

This switch is a 2 position toggle switch which functions to enable

the conditional halt operation to stop the data processor. The

conditional halt operator functions as a "No-Op" when executed with

the "CONDITIONAL HALT 11 switch in the down position and functions to

stop the data processor when in the up position.

STOP SWITCHES.

The following set of' stop switches enable the data processor to

stop upon the occurrence of' specified conditions. The exact action

of' these switches is modified by the position of' the "STOP MODE"

switches.

SECL SWITCH.

The SECL switch when in the "up" position causes the processor to

stop after the execution of each operator syllable.

the "INFL" (inhibit fetch level).

It activates

INT-I SWITCH.

The stop on internal interrupt switch (INT-I) causes the data

processor to stop upon the occurrence of' an internal interrupt

condition, when in the uup" position. The data processor stops

displaying both the Pl and P2 interrupt parameters in the A and B

registers just prior to entering the interrupt procedure.

EXT-I SWITCH.

The stop on external interrupt switch (ECT-I) causes the data

processor to stop upon the occurrence of' an external interrupt,

when in the "up" position and if' the interrupt system is so enabled.

The data processor stops displaying the Pl and P2 interrupt param­

eters in the A and B registers, just prior to entering the inter-

rupt procedure.

l+-17

NORMAL/CONTROL STATE SWITCHES.

These are 2 position toggle switches which function to enable the

stop switches to function when the data processor is in control

state, normal state or both.

PARITY SWITCH.

This switch enables the processor to stop on a memory parity error.

UNIT CLEAR SWITCH.

The unit clear switch is a pushbutton type switch which functions

to clear the flip-flops of the related data processor, when de­

pressed.

LOCAL/REMOTE SWITCH.

This switch is a 2 position toggle switch which pl.aces the data

processor to a local state, when placed in the "LOCAL" position.

The processor unit functions normally when in the local state ex­

cept for the following:

a. The scan bus is isolated from the system functionally,

so that manual intervention within the processor will

not interfere with the rest of the system.

b. The facilities of the "READ PROC REG" switches are

enabled.

ADJ (o,o) SWITCH.

This is a pushbutton switch which activates the Push Down Stack Reg­

ister operator to cause all TOS registers to be stored in memory,

therby saving the contents of the A and B registers so that these

registers may be used to subsequently manipulate the data proces­

sor's I.C. memory via the maintenance panel switches (READ-IC and

WRITE-IC). The ADJ (o,o) switch is active only when the proces-

sor's clock is enabled.

READ IC SWITCH.

This is a pushbutton switch which initiates a Read Processor Reg-

4-18

ister operator to read the contents of a processor IC memory reg­

ister into the A register (19:20). The address of the selected IC

memory register must be placed into the B register prior to de-

pressing this switch. The "READ IC" switch is active only when

the processor's clock is enabled.

READ IC OPERATION.

a. Adjust O,O.

b. Load the address in the B register.

c. Turn BROF on.

d. Depress the READ IC pushbutton; the contents of the

addressed cell will appear in the A register.

WRITE IC SWITCH.

This switch is a pushbutton switch which activates a Set Proces­

sor Register operator to cause the contents of a processor IC

memory register to be replaced with the contents of the A register.

(19:20). The address of the selected IC memory register must be

placed into the B register prior to depressing this switch. The

"WRITE IC" switch is active only when the processor's clock is

enabled.

WRITE IC.

a. Adjust O,O.

b. Load the address in the B register.

c. Load the information to be written in the A register.

d. Turn on AROF and BROF.

e. Depress the WRITE IC pushbutton; the contents of the

A register will be written in the cell addressed.

4-19

READ PROC REG SWITCHES. These switches enable the read out and

display of the related processor register (IC memory register).

The register's contents are displayed only while the switch is de­

pressed, releasing the switch allows the processor to revert to its

prior state. The "READ PROC REG" switches activate a DC read out

of the IC memory cells and as a result are enabled only when the

processor is in "LOCAL". The "READ PROC REG" switches along with

their functions are listed below:

a. Switch s is

b. Switch F is

c . Switch PER

d. Switch PIR

e. Switch BOSR

f. Switch LOSR

4-20

the read s register switch.

the read F register switch.

is the read PER register switch.

is the read PIR register switch.

is the read BOS register switch.

is the read LOS register switch.

NOTE

These IC memories are dis­

played in the SM register.

8
3

BINARY 4
2 DECODE FOR DESIRED

WEIGHT 2 REGISTER
5

4 0

+

0 = DISPLAY REG 0 =) 15

l = DISPLAY REG 16 =) Jl

2 = INDEX REG 0 =) 7

J = BASE REG 0 =) 7

Register Decimal Hexidecimal

Name Usage Address Address

DOO 0=) 00=)

DJl Display Jl lF

FIR Program Index J2 20

SIR Source Index JJ 21

DIR Destination Index J4 22

TIR (BUFJ) Table Index J5 2J

LOSR Limit of Stack J6 24

BOSR Base of Stack J7 25

F MSCW Address JS 26

BUF Used for Temporary Storage J9 27

PER Program Base 48 JO

SER Source Base 49 Jl

DER Destination Base 50 J2

TBR (BUF2) Table Base 51 JJ

s Top of Stack Address 52 J4

SNR Stack Number 5J J5

FDR Program Segment Descriptor Index 54 J6

TEMP Temporary Storage 55 J7

Figure 4-5. Address Register

h-21

r;p READ PROC REG ~

000
s F PBR

000
PIR BOSR LOSR

TOP MOD

0 ~
DJ-0.0

CONDITIONAL
HALT

0 ~ OJ
READ-IC PARITY INT-I

0 0 ~
WRITE-IC CONTROL EXT-I

STATE

0 OJ 0
START NORMAL SECL

STATE

l(Q) LOCAL I
~

CLEAR REMOTE

Figure 4- 6. Panel E

MULTIPLEXOR REGISTERS AND FLIP FLOPS.

The MPX Registers and Flip Flops are displayed on Panel B as seen

in figure 4-7.
mode.

ROW B.

This panel is shared with the Processors f'or display

This row contains the logical elements f'or Maintenance Diagnostic

Logic. Each flip flop may be used in one of' two ways, I/O testing

or Data Processor testing.

4-22

FLIP FLOP

FECII

AROF

ESTF

TNFF

MAOF

LPF

CERF

ERRl

ERR2

USE ON I/0 TEST

OFF FOR I/0

NOT USED

TAPE VERTICAL PARITY

"TEST NOT" FLIP FLOP

MEMORY ACCESS OBTAINED

BAD RECORD MEMORY

CONTROL PARITY ERROR

SOLID ERROR

INTERMITTENT ERROR

SEQUENCE COUNT

MEMORY ADDRESS

USE ON DP TEST

ON FOR DP

A,C REGISTER OCCUPANCY

END OF STRING FLIP FLOP

"TEST NOT" FLIP FLOP

MEMORY ACCESS OBTAINED

MEMORY INFO PARITY BIT

CONTROL PARITY ERROR

SOLID ERROR

INTERMITTENT ERROR

SEQUENCE COUNT

MEMORY ADDRESS

LOlF, L02F

MAOl =) MAlO

BOlF =) B08F

AOlF =) AlOF

TAPE READ CONTROL DATA

CHARACTER BUFFER WORD BUFFER COMMAND-DATA

ROW C.

This row contains the 51-bit data register used in I/O operations

along with the following control flip flops:

PSYF - Processor Sync

PSRF - Processor Scan Request

SAOF - Scan Access Obtained

MATF - Mark Access Time

STEF - Scan Transmission Error

ROW D.

Scan Bus Control Flip Flops

This row contains the 60-bit Command Register used in I/O operations.

Refer to figure 4-7 for a detailed description of this register.

ROW E.

This row contains the 10 sets of Associative Tag Register flip flops

used for Scratch Pad Memory assignment. Also within each set of

flip flops is the corresponding Read Scratch Pad Memory (RSPM) flip

flop.

Row E also contains (5) MTRI flip flops, one for each pair of Tag

registers.

4-23

ROW F.

This row contains the following MPX Control flip flops:

IC 1 =) 8 Initiate Count Cycle for operational sequence flow.

KY 1 =) 5 Key Register flip flops used as comparitor selection of

Scratch Pad Memory slots.

LK 1 =) 5 Link Register used on initiate cycle for Key Register

selection.

Al =) A8

Bl =) B8 Input Translator Digit Bits

Cl =) CB
Dl =) D8

ESCF

EICF

RRDF

PCTF

RCDF

MTOF

AP2F

LSAF

ROW G.

Enable service cycle

Enable initiate cycle

Read result descriptor

Service priority control

Read SPM to Command data register

Memory time zero

Address plus 2 store

Least significant address

This row contains the Time of Day Register and the Interrupt status

bit flip flops.

TIME OF DAY 0 =) 43 - This register contains 44 fl.ip flops of

which 36 are used for time-of-day. The other 6 are used when the

entire register is being used during MTR logic card test.

IS 0 =) 9 - Interrupt status bits.

4-24

ROW
MULTIPUJUI"

e e o o o o o o o olo o o o o o o o o o
00000000000000000000 A
00000000000000000000
00000000000000000000

~ ~ rOOOOOOOOOOOOOOOO
~AOF 901F BOSF

QQOQOQQ9QQQQ~QQQOOOO
QQQQOQ~QQQ~Q~QQQOOOO e
00000000000000000000
TNFF FECH ERR2 L02F MA()\ MA04 MA07 ~10 8041' 908 AO'!JF AOf>F A09F C02F C05F C08F

CORE ADORE$$ TEST CASE STRING---

c

D

E

F
IC KY LI< MW

rs

G

H

Figure 4-7. Panel B

4-25

ROW H.

This row contains the following control fl.ip flops:

MAPL - Memory address parity error level.

MIPL - Memory information parity error.

SPEL - Scan parity error.

SIPL - Scan bus information parity.

CRF - Clear Flip Flop.

SIF2 - Scan In Flip Flop.

MANF - Memory access needed.

MROF - Memory read obtained.

MAOF - Memory access obtained.

ANXF - Allow Next Service Cycle Control.

IOCB - Input/Output Complete Bus.

STCB - Start Channel Bus.

ADP2 - Address Even Bus.

RDAB - Result Descriptor Available Bus.

LSAL - Least Significant Address.

MINS - Minus Bus Level

SI06 =) SI07

MPX MAINTENANCE CONTROL PANEL.

Panel D as seen in figure 4-8 is used for local maintenance opera­

tions with the Multiplexor. Four types of operations can be accom­

plished using this panel:

a. Reading and writing the MPX scratch pad memory.

b. Reading and writing main memory.

c. Executing I/O descriptors.

d. Logic Card testing.

The requirements for these operations are twofold; the MPX must be

in local using the Local/Remote switch, the MPX display mode must

be active as well as system clock.

The following paragraphs will deal with the operational use of these

maintenance switches to accomplish the above 4 modes.

4-26

WRITE SPM.

Single or Continuous writing into a SPM location addressed by the

tag word is accomplished as follows:

a. Put MPX in Local mode.

b. Scan-in Tag word in the Tag Reg.

c. Scan-in the same Tag word into the Key Reg.

d. Scan-in the desired contents into the Command and Data

R~gisters (112 bits).

e. Put Read/Write switch on the MPX maintenance control panel

to the WRITE position.

f. Put Memory/SPM switch on the MPX maintenance control panel

to the SPM position.

g. Activate Maintenance Mem/SPM Enable switch on the MPX

maintenance control panel.

h. If single cycle operation is desired, press Start button

for each SPM write cycle.

i. If continuous recycling is desired, activate the Recycle

switch and press Start button to commence recycling.

j. To stop recycling, place Recycle switch to OFF position.

READ SPM.

Single or Continuous reading of a SPM location is accomplished the

same as writing except for 2 steps.

Step 4 - Omit

Step 5 - Put the Read/Write switch to the READ position and

proceed as in WRITE SPM mode.

WRITE MAIN MEMORY.

Single words can be written to main memory from the Data Register

in the following manner:

a. Put MPX in Local mode.

b. Scan-in Memory Address into Command Reg.

c. Scan-in any desired bit pattern into the Data Reg. (Pattern

will not clear out of the Data Reg. after each write op­

era ti on.)

d. Put Read/Write switch on the MPX maintenance control panel

to the WRITE position.

e. Put Memory/SPM switch on the MPX maintenance control panel

to the MEM position.

f. Activate Maint. Mem/SPM Enable switch.

g. Press Start button for each memory write cycle.

NOTE

Activating Memory Request

Inhibit switch will disable

all logic that might set

MANF including local ma~ntenance.

READ MAIN MEMORY.

Main memory cells may be read either singly or continuously from

one address or consecutive addresses in the following manner:

4-28

a. Put MPX in Local mode.

b. Scan-in Memory Address into Command Reg.

c. If recycle, use "Write SPM" maintenance logic to write

Command/Data Reg. into SPM (highest priority TAG Word with

zeros.)

d. Put Read/Write switch on the MPX maintenance control panel

to the READ position.

e. Put Memory/SPM switch on the MPX maintenance control panel

to the MEM position.

f. Activate Maint. Mem/SPM Enable switch.

g. If single read cycle operation is desired, press Start

button for each memory read cycle.

h. If continuous recycling is desired, activate the Recycle

switch and press Start button to commence recycling.

i. To manually stop recycling place Recycle switch in OFF

position.

j. If stop on error is desired during recycling, activate the

Error Stop switch. If a memory parity error or time out

occurs, recycling will stop with the Error flip-flop set.

Pressing the Start button will clear the error and restart

the cycling.

k. Note that activating Memory Request Inhibit switch will

disable all logic that might set MANF including local

maintenance.

1. Activating the Inhibit Memory Address Count switch, if so

desired, will cause retention of the original memory ad-

dress with each cycle. Otherwise, the memory address will

be updated with each memory cycle.

EXECUTING I/O DESCRIPTORS.

SINGLE CYCLE. A single execution of an I/O descriptor found in the

Command/Data register is defined below:

a. Put MPX in Local mode.

h-29

b. Scan-in Area and I/O Descriptors into Command/Data Reg­

isters. The specified Unit Designate wiLL select the chan­

nel on which the descriptor :is to be executed.

c. Utilize single "Write SPM" procedure for any SPM location

using a code of 00001 in Key and Tag Registers.

NOTE

There must be at }east

one other Tag word avail­

able at the beginning

of the test.

d. Place Maintenance Mern/SPM Enable switch in OFF position.

e. Place Maintenance Descriptor Enable switch in ENABLE posi­

tion.

f. Press Start Button once to execute a single maintenance

descriptor once for each depression of the Start button.

RECYCLE. Continuous executions of I/O descriptor found in the Com­

mand Data Register are accomplished as follows:

4-JO

a. Steps l through 5 are the same as Maintenance Descriptor

(single) procedure.

b. Activate Recycle switch.

c. Press Start button to commence recycling of the same main­

tenance descriptor. A new cycle will be intitiated upon

completion of the previous I/O operations defined by the

maintenance descriptor.

d. To manually stop recycling place Recycle switch to OFF

position.

e. If stop on error is desired during recycling activate

the Error Stop switch. Upon detection of a result des-

criptor error Erom the P.C. or an error in initiating the

channel, recycling will stop with the Error flip-flop set.

Pressing the Start button will clear the error and restart

the cycling.

Figure 4-8.

I ENABLE CARD TEST START I
~ ~
OFF MEM INHIBIT OFF

r~r ADRS-rfrl

NORMAL NORMAL

~MAI NT DESCRIPTOR -
ENABLE

~
OFF

000
IMCF RECF ERRF

0
RE~LE ER@STOP

RT OFF O~F
MA I NT MEM/SPM

BLE MEM WRITE

~ 0 0
OFF SPM READ

CLEAR

Panel D MPX Control Panel

4-Jl

LOGIC CARD TESTING.

Logic Card testing is accomplished by using a MDL test case tape,

the Time of Day (TOD) register and a special single card slot lo­

cated on the MPX backplane. The testing procedure is activated by

putting the card test enable switch up, loading the TOD with the

appropriate test code and activating the card test start switch.

The output of the card under test wil.l be displayed in the 44 flip

flops that represent the TOD register.

OPERATORS CONTROL CONSOLE.

The Operators Control Console as seen in figure 4-9 contains an

operators panel and a visual message control center for communica­

ting with the Operating system. A total of 8 devices, such as In­

put Display or TC 500, may be used for this communication.

OPERATOR PANEL.

The operator panel includes the following switches and indicators.

POWEH ON (Switch Indicator, White). 1'his Switch/Indicator initiates

the power on cycle for all Central System units.

lit and remains lit as long as power remains on.

The indicator is

NOTE

a. The peripheral units power muE;t

be turned on and off at each

peripheral unit.

b. When power is turned on, Disk

Load is selected.

POWER OFF (Switch, Brown). This switch initiates the power off

cycle for all Central System units.

HALT (Switch/Indicator, Red). Halt the system stopping all I/O

operations in an orderly manner.

processors have been halted.

4-32

The indicator is lit when all

RUNNING (Indicator, Yellow). This indicator is lit when the system

is running. The run state is established by 2 second run multi's

in each processor. Each processor multi is triggered by that pro­

cessor executing an interrogate peripheral unit status operator.

The run indicator is lit when the multi in any processor which is in

remote is ON. If all processors are in local, the run indicator

will also be lit.

LOAD SELECT (Switch/Indicator, Yellow). This switch selects between

Disk Load and Card Load. Each time the switch is depressed, the

selection is changed.

lected.

The indicator is lit when Card Load is se-

LOAD (Switch, Brown). The Load button is used to perform a 1.oad

operation of the system.

follows:

Two types of load can be performed as

Card Load Operation.

The Card Load operation is used for initiating the system via the

card reader. This type of initiation is used for reading a cold

start deck or test routine decks. The following actions occur when

the button is depressed and then released:

a. The load timer in the Processor interrupt controller is

triggered to produce an 800 nanosecond (LSIG) signal

which is sent to MPX-A.

b. Address registers LOSR, BOSR, F, STKNR, and Display 0 are

set to Zero.

c. Register S is set to 8192.

d. PDR (Program Dictionary Index) is set to a value of 4.

e. PIR (Program Index Register) is set to a value of l.

f. The Processor is forced into an idle state to await an ex­

pected I/O finished interrupt.

4-33

g. g. The MPX responds to the LOAD signal by jamming the appro­

priate unit number into the Command/Data register. The

MPX sequence control logic is set to IC 02 and the card

read cycle is started.

h. The information (a bootstrap program) on the EBCDIC punched

card is read into the 1st twelve memory locations. This

information must contain tag fields (6 chr/wd plus tag).

i. At the end of the successful card read, the MPX sends an

I/O finished interrupt to the Processor. It responds by

entering a hardward interrupt handling procedure. Memory

cell DO J (absolute cell OOJ) contains a portion of the

bootstrap program that is subsequently used to handle the

interrupt and then causes the remaining card deck to be

loaded.

Disk Load Operation.

The Disk Load operation is used for initiating the system by reading

8192 words from the 1st segments of disk memory. This type of an

operation is used to bring the 1st portion of the operating system

to core memory.

The same hardward functions take place as for card read except for

two things:

a. A disk unit number is placed in the Command/Data register

because the Load select switch selected a DISK LOAD.

b. The I/O finished interrupt reflects a disk operation in­

stead of a card operation.

VISUAL MESSAGE CONTROL CENTER (Refer to Figure 4-10).
The Visual Message Control Center consists of one or more Input

Display Modules each of which contains an input keyboard and a

video output screen.

4-J4

"'""- ~-~'="= ~ ,,.. h - <

• I! ii~·~:~.

Figure 4-9. Operators Control Console

4-35

Figure 4-10. Visual Message Control Center

KEYBOARD CONTROL KEYS.

The following is a list of the keyboard control keys and their func­

tion. Refer to figure 4-11.

Key Function

LOC Places the system in the Local Mode, which

lights the Local indicator.

REC Places the system in the Receive Mode, which

lights the Receive indicator.

XMIT Places the system in the Transmit Mode, which

lights the Transmit indicator.

4-36

Key

PRINT

X ETX

t> us

<] RS

'.HOME

LINE ERASE

Function

Causes the printer mode to be entered. This

mode causes the Transmit light to blink. Re­

turns to Local Mode on completion of the print.

End of text character. Places the end of text

character at the cursor location.

a. Shifted - Places the system into the form

compose mode and blinks the Local light.

b. Unshifted - Takes the system out of' the form

compose mode.

Shift-In - Places a Shift-In (SI) character at

the cursor location if the system is in the Form

Compose Mode.

Shift-Out - Places a Shift-Out (so) character

at the cursor location if the system is in the

Form Compose Mode.

Causes the cursor to be moved to the home (upper

left) position.

a. If the system does not have forms option, or

if it is in the Form Compose Mode, Line

Erase erases all data in the line except

tab flags. Data is erased from the cursor

position (including the cursor position) up

to and including the last character in the

line.

b. If the system has Forms Options and is not

in the Form Compose mode, Line Erase erases

all data (except tab flags) that are not

bracketed by Shift-In/Shift-Out.

4-37

Key

LINE ERASE

(cont)

' CLEAR

ERASE LOCK

TAB

TAB CLEAR

+ (Line Feed)

4-38

c •

a.

Function

Line Erase will not function unless Erase

Lock is depressed simultaneously with Line

Erase.

Unshifted - Clear erases all data on the

screen except tab flags and with Forms

Option data bracketed by Shift-In/Shift-Out.

b. Shifted - Clear erases all data on the

screen and all tab flags.

c. Clear will not function unless Erase Lock

is depressed at the same time as Clear.

Erase Lock is used as an interlock for Clear

and Line Erase. Erase Lock must be depressed

to permit operation of the Clear or Line Erase.

a.

b.

a.

Unshifted - Tab causes the cursor to move

forward to the next tab stop location. If

no tab stop is found on a line, the cursor

moves to the left edge of the next line.

Shifted - Shifted Tab is Tab Set. Tab Set

causes a tab stop flag to be entered at the

cursor position in all lines.

Unshifted - Tab Clear causes the removal of

the tab stop flag located at the cursor

position in all lines.

Line Feed moves the cursor down one line. When

the cursor is in the bottom line, L.F. causes

it to reappear in the top line.

t (Reverse Line Feed)

~ (Backspace)

~ (Forward Space)

REPT

Reverse Line Feed moves the cursor

up one line. When the ,..cursor is in

the top line, RLF causes it to reap­

pear in the bottom line.

Backspace cursor one character. When

the cursor is at left edge of page,

B.S. causes it to reappear at right

edge of page in the same line.

Forward Space moves the cursor one

space to the right. If the cursor is

at right edge of page, F.S. causes it

to reappear at the left edge down

shifted one line. If the cursor is

located in last position of bottom

line, F.S. causes it to reappear in

the Home position.

If the Repeat key (REPT) is depressed

along with any other key except LOC,

REC, XMIT, TAB CLEAR or CLEAR, that

key will be repeated at a rate of

about 15 Hertz. Depressed in conjunc­

tion with LOC, REC, XMIT, TAB CLEAR

or CLEAR Repeat has no effect.

4-39

XMIT ETX
x

HOME CLEAR

' '
~ # $ O/o & ~ ERASE BACK

2 3 4 5 6 7 8 9 ~ SPACE

ERROR
REPT

RESET

LINE ERASE
ERASE LOCK E R T p

LOC FORM TAB
TAB

CLEAR
x

F J L

REC
RS
<I ! t SHIFT ~

] < > SHIFT
x c v B N M

PRINT
us - -SPACE BAR

~

Figure 4-11. Keyboard Format

MEMORY TESTER.

The B 6500 includes a Memory Tester for diagnosing and testing any

of the Memory modules attached to the system.

Figure 4-12. Memory Tester

The Memory tester is located in a small cabinet, with its display

panel as shown in figure 4-12. The tester can be used in 2 modes,

Non-Test or Test (figure 4-lJ).

4-40

NON-TEST.

Three types of operations:

TEST.

a. Single cycle read or read/write.

b. Search memory(s) for specific data; search for equal or

unequal.

c. Sample a given address for changes.

The following operations performed using the test pattern switches:

a. None of the patterns selected checks for parity errors

using the read only operation.

b. #1 Test-pattern selected enables a fixed test pattern.

c. #2 Test-pattern selected runs an all "one" test.

d. #J Test-pattern selected runs an all "zero" test.

e. #4 Test-pattern selected runs a checkerboard pattern

writing two zeros then two ones.

f. #5 Test-pattern selected runs the checkerboard complement

pattern test.

g. #6 Test-pattern selected runs the bit complement pattern

test.

h. #7 Test-pattern selected runs the complement bit complement

pattern test.

i. #8 Test-pattern selected runs the full walking "one" pat­

tern floating one test.

j. #9 Test-pattern selected runs the full walking "zero" pat­

tern floating zero test.

k. #12 Test-pattern selected runs the memory clear pattern ?=

Master reset test.

4-41

----------------MEMORY TEST Pmn------,----------

©
START

NOT EQVALISEARCH INHIBIT © 9 0NORMAL @
HALT EQUAi.. SAMPLE HALT1ruvCHGE

©
BIT RESET

© ~~ ©
WORD PROTECTED O'RIC>E PROTECT WRITE' REQUEST

©
CLEAR

l,~~f'© © © © © © ©o"©'©'o© © © © © © © © I
L UT 50 47 44 41 38 35 32 2 9 26 23 20 17 I+ 11 8 5 2

©©©©©©©©©©©©©©©©©
49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4 I

©©©©©©©©©©©©©©©©©©
51 48 45 42 39 36 33 30 27 24 21 18 15 12 9 6 3 0

I©©©©©©©©©'~©'©©©©©©©© I
WRITE CLEAR 50 47 44 41 38 35 32 29 26 23 20 17 14 11 8 5 2

©©©©©©©©©©©©©©©©©
49 46 43 40 37 34 31 28 25 22 19 16 13 10 7 4 I

©©©©©©©©©©©©©©©©©©
51 48 45 42 39 36 33 30 27 24 21 18 15 12 9 6 3 0

I © © © © I l©DU©O'©
ME.M NOT RE.ADY ME M ERROR PARITY ERROR COMPARE. MONITOR ADRS CLEAR 19 lb

WORD ADDRESS I
©©©©

11 8 5 2

r- CYCLE CONTROL---.,~- TEST CONTROL © ©
I © © © "~ © S~E I B~~~~t~l© ©

MRQF MABF MAOF' ~ COMPLETE ~T 81T 26-51 NORM 17 14

«~©©©©
13 10 1 4 I

~~©©©©
12 9 6 3 0

'TIME COUNTER~PHASEr MICR

©© ©
32 4 4

©©©©©
16 2 2 16 2

©©©©©©
64 8 I I 8 I

I REQUEST DELAY:;-r MODULE LOCK.-.. ,-----WORD LOCK

~ i I z 4 B 1~ 32 \ ~ @ @ ~ {[Y) ~
~SASS I lb 11 5

y ~. ~ ~' ~ ~ ~ <r ~
0 @~ORM ~~ 0 0 0

17 14 12 9 6 3

I

@~ORM
0

'® I
TEST PATTERN

I © @MANUAL INSERT © ~CHECKERBOARD © ~ COMPL- BIT COMPL © ~WALK'G-1
NONTI:ST

© © © © @ALL-I {{Y CHK'BD COM PL ~FULL WAU(G-l @wALK'G-0

0 © @ALL-0 © @sir COMPLEME"lT © @FULL WALK'G-·O © @MEM CLEAR

TEST ON

Figure 4-13. Memory Tester Panel

4-42

GENERAL.

SECTION 5

SYSTEM CONCEPT

The B 6500 system consists of one or more Processors, one or more

I/O multiplexors, Main Memory, a Memory Tester, one or more Power

modules, an Operators Console, a Maintenance Diagnostic Processor,

a Display Panel, one to four Peripheral Control cabinets and the

associated Peripheral equipment for Input/Output. This section

generally defines the overall system hardware operation.

PROCESSOR.

The Processor produces the objective results of a program by per­

forming the necessary arithmetic and logical functions of the pro­

gram flow.

The Processor contains two major divisions: the Functional Re-

sources and Operator Algorithms (figure 5-1). The Functional Re-

sources are referred to as the "hardcore" of the Processor.

OPERATOR FAMILIES.

The Functional Resources are the Arithmetic Unit, Data Registers,

Address Processor Unit and Seven Functional Controllers. The op-

erator algorithms provide the logic required to control the func­

tional flow of the program. The ten groups of these operators are

called the Operator Family Controllers.

The Operator Family Controllers and Functional Controllers are

linked by 13 busses (zo through Zl2). These busses provide for

data movement and signal routing within the processor (figure 5-2).

A bus is a group of wires used to transmit signals from one place

to another. The busses within the transfer controller are etched

on a single card connecting the same bit of all "hard registers"

together, i.e., Bit 1 of Registers A, B, C, X and Y are all on the

same physical card.

5-1

FUNCTIONAL RESOURCES I OPERATOR ALGORITHMS

ADDRESS MEMORY OP. FAMILY OP FAMILY
ARITHMETIC PROC UNIT CONTROLLER CONTROLLER - A CONTROLLER - F

UNIT (960 BIT I. C •
(48 BIT ADDER) MEMORY & 20 PROGRAM OP. FAMILY OP. FAMILY

BIT ADDER) SEQUENCE CONTROLLER - B CONTROLLER - G

CONTROLLER OP. FAMILY OP. FAMILY

DATA REGISTERS STACK CONTROLLER - C CONTROLLER - H

(A, B, c I x, y AND p ADJUST OP. FAMILY OP. FAMILY
51 BITS EACH) CONTROLLER CONTROLLER - D CONTROLLER - I

INTERRUPT OP. FAMILY OP. FAMILY
CONTROLLER CONTROLLER - E CONTROLLER - J

ARITHMETIC STRING TRANSFER OPERATOR
CONTROLLER CONTROLLER CONTROLLER

Figure 5-l. B 6500 Processor Organization

The operators are grouped into ten groups called the Operator Fam-

iJies (figure 5-l). The grouping of related operators into families

minimizes the logic required in the processor. The Ten families of

operators with a brief purpose for each are:

a. Family A OPS - Arithmetic Operators

b. Family B OPS - Logical Operators

c. Family c OPS - Sub-routine Operators

d. Family D OPS - B 6500 Word Oriented Operators

e. Family E OPS - Scaling Operators

f. Family F,G,H, OPS - String Operators

g. Family J OPS - Value Call

h. Family K OPS - Name Call

PROGRAM CONTROLLER (Refer to Figure 5-2).

the program flow in the following manner:

This controller controls

first, it controls the

transfer of a program word to the P register via the Memory Control-

ler and ZJ bus in the Transfer Controller. This word contains six

8-bit instruction syllables. It also selects and decodes the syl-

lab1.e to be executed, and furnishes this OP code to all the Family

Controllers thru the ZlO bus. The Program controJLler strobes the

proper OP family allowing that OP family to proceed thru its logical

5-2

steps performing the function of that operator. At the completion

of the operator a SECL (syllable execute complete level) is sensed

by the Program Controller which then decodes the next syllable of

the P register.

TRANSFER CONTROLLER (Refer to figure 5-2). The Transfer Controller

has two major sections: a hard register section, referred to as

stack registers, for data and program information, and an internal

data transfer section. Six busses, Zl thru z6, are used for the

normal data movement to and from the hard registers. Zl, Z2 and

ZJ are input busses to these registers and z4, ZS and z6 are output

busses. The capacity of each bus is 51 bits.

Two special busses are used for arithmetic operations. Z7 is used

for transferring data from the A, B or Y registers to the AA reg­

ister of the high speed adder. ZO is used for transferring data

from the CC register of the high speed adder to the B, C or Y reg­

isters as shown in figure 5-5·

Stack Registers.

Each information register has 51 bit positions. Registers A, B, C,

X and Y are for information handling during program flow. Register

P contains one B 6500 program word. The P register contents are

never written into Main Memory.

The ZJ and Z4 busses provide for bi-directional data flow between

the hard registers and Main Memory or the Multiplexor.

The A and B registers are the Top of Stack registers, while X and Y

are normally second-word information registers for double-precision

operands. Register C is a general purpose register which provides

temporary storage during syllable execution.

Internal Data Transfer Section (Refer to figure 5-J).

The internal transfer section permits the following data transfers

between stack registers:

5-3

\Jl
I
+-

'

ARITHMETIC
CONTROLLER

FAMILY A
ARITHMETIC

OPS

FAMILY B FAMILY C
LOGICAL SUB-ROUTINE

OPS OPS

PROGRAM CONTROLLER
(SYLLABLE DECODE)

~

FAMILY D
WORD ORIENTED

OPS
L

I

"J' ~10 BUS

L

::I

FAMILY E
SCALING

OPS

I

OPERATOR DEPENDENT INTERRUPTS 4 t ~11 BUS

EXTERNAL
INTERRUPTS

~//
~

INTERRUPT
CONTROLLER

ALARM
~ INTERRUPTS

STACK
ADJUST

CONTROLLER

FAMILY J
VALUE CALL

OP

MEMORY CONTROLLER

TRANSFER CONTROLLER
INTERNAL
TRANSFER

INPUT r:::w OUTPU
REG BUS ~ .

1
RE

1
G B~S

l6

MEMORY INFO

DISPLAY
REG
0~31

IC
MEM
0~7

ADDRESS
A l"'\l"'\Cn
l'"\VVl:I\

l9

Figure 5-2. B 6500 Processor Block Diagram

STRING
OPERATOR

CONTROLLER

•
FAMILY K FAMILY F, G, H

NAME CALL STRING
OP OPS

FROM CONTROLLERS
AND FAMILY OPS

~Vmsus
I

(MEMORY CYCLE)

MEM
INTER-
FACE I TO MEMORY

MPX I TO MPX
INTER- •
FACE

TO MEMORY

OR MPX

a. A direct, full-word transfer path using the Z5 and Z2

busses.

b. A logical transfer path to create the results of the Fam­

ily B (logical) operators, using the z4 and Z3 busses. The

logical transfer path also provides one additional full

word transfer path between registers.

c. A steering Network and Mask network providing a field dis­

placement between stack registers using the z6 and Zl

busses.

d. An Insert Matrix providing character-handling operators

with the ability to store into any of the 4, 6 or 8-bit

fields using the Z5 and Z1 busses.

e. A transfer path to the address adder of MEMORY/MPX Control-

ler via the Z6 to ZS or Z9 buss es. This path extracts one

of four fields, (39:20), (35:16), (19:20) or (13:14),

from a stack register during execution of operator syllables.

f. A data movement path to and from the high speed adder via

the ZO and Z7 busses.

Mask and Steering.

The mask and steering network moves bit fields from register to reg-

ister, via the Z6 and Zl busses. All bits are transferred to and

from the busses in parallel. Two pointers set up a "window" de-

fining the upper and lower limit of the bits being transferred to

the accepting data register. A displacement register shifts the

bits to the right, 0 to 47 bits from the position previously held

in the sending data register .. The three controls used to steer and

mask are:

a. TOA (TOP OF APERATURE) - the highest bit position of the

accepting field (highest bit of the window).

5-5

b. TOM (TOP OF MASK) - the highest bit position to be inhibi­

ted on the transfer (lowest bit of the window).

c. DIS (DISPLACEMENT) - a right shift of the bits through the

steering matrix.

The registers TOA, TOM, and DIS are set by the operator families or

other controllers.

Mask and Steering Example.

Assume the C register contains a stuffed indirect reference word

(SIRW) and it is necessary to extract the STKNR (:3tack number) field

(bits 45:10) and place these bits into the INDEX field of the C

register. The logic sets the window TOA := 29, TOM := 19, as shown

in figure 5-4. The displacement register is set to 16: DIS := 16.

The actual starting bit of the field is calculated as: TOA + DIS =
29 + 16 = 45.

All Bits in the C register are gated to the Z6 bus. The bits (ex­

cept tag) are then shifted 16 places to the right with only the bits

that align with the window appearing on the Zl bus. The Zl bus is

then gated to the C register with the masked fields destroyed or

retained depending on the operation performed.

ARITHMETIC CONTROLLER (Refer to figure 5-2). The Arithmetic Control-

ler is a Functional Controller between the Stack Registers (A, B, C,

X and Y) and the Mantissa Adder. This Controller is enabled by the

Arithmetic Family Operators and other operator families that re­

quire the use of these facilities.

High Speed Adder.

Figure 5-5 depicts the logical flow of data to and from the high

speed adder. The adder is made up of three 48-bit registers AA,

BB, and CC and the associated add logic. The add logic receives

its input from the AA and BB registers. The add J_ogic output is

fed into the CC register which feeds either the BB register or the

hard registers via the ZO bus.

5-6

4 BIT PACKED NUMERIC

INSERT

r r

6 BIT (BCL)

l 8 BIT (EBCDtC)

INSERT
MATRIX

~6

MASK L r STEERING L TO 1----i ~l J 1 l
~

NETWORK NETWORK ~8

OR
~9

DIRECT TRANSFER 1 jcONTRO~
J n NETWORK ~5

~6

LOGICAL TRANSFER l
~3 NETWORK f ~4

~o

~ ~ "' L /1 r 1
1 c I ~7

~ ~ ~ ~ ~ -~ /1 r l

~
1 A r

~ ~ ~ ~ ~ ~ /1 f l
B J

~ ~ ~ ~ ~ /1 r x 1
l r

~ ~ ~ ~ ~ L J y l
1 J

• ~ r p l l

} MEMORY
INTERFACE

ADDRESS
ADDER

HIGH
SPEED

l-_

ADDER

Figure 5-3· Internal Data Transfer Section

5-7

I ~1 45 I IJ C REG J
STKNR

l l l 1 l ~

Z6 BUS J
l l 1 1 l

45
STEERING (DIS= 16) l

TOM= 19

19

J MASK
20

WINDOW

Zl BUS

1 1 1 1 1

STKNR

Figure 5-4. Mask and Steering

INTERRUPT CONTROLLER (Refer to figure 5-2). The Interrupt Control-

ler provides a method intervening in the program flow when a pre­

determined condition arises.

This controller sets up the necessary control words in the stack for

entry into the Interrupt-handling procedure. Two identifying words

are placed in the stack by the operator or the Interrupt controller.

5-8

Internal interrupts are divided into two groups, operator dependent

and operator independent interrupts.

The operator dependent interrupts are divided into two classes. Bit

24 of the interrupt ID identifies the interrupt as class 1, where

the values of PIR, PSR, PER and PDR are "consistent". Bit 23 iden-

tifies class 2 interrupts where the values were changed by the op­

era tor before the interrupt.

STACK REGISTERS

REG C

REG A

REG 8

REG X

REG Y

Z7

zo
BUS

A
R
I
T
H
M
E
T
I
c

c
0
N
T
R
0
L
L
E
R

Figure 5-5.

Operator Dependent Interrupts.

t
I
I
L_

AA

R
E
G

BB

R
E
G

ADDER

ADD
LOGIC

cc
R
E
G
I
s
T
E

- - _____ J

Arithmetic Control

These interrupt conditions are sensed by the operator and normally

results in a premature termination of the operator under control of

the operator's own logic. The operator inserts both Pl and P2 para­

meters into the TOS and activates the interrupt controller. PIR and

5-9

PSR are reset to the beginning of the current operator before the

interrupt, thus the operator is restarted upon return to the in­

terrupted procedure.

The operator-dependent interrupts are:

a. Memory Protect

b. Invalid Operand

c. Divide by Zero

d. Exponent Overflow

e. Exponent Underflow

f. Invalid Index

g. Integer Overflow

h. Bottom of Stack

i. Presence Bit

j . Sequence Error

k. Segmented Array

1. Programed Operator

Memory Protect.

This interrupt occurs when:

5-10

a. A STORE, OVERWRITE, or READ/LOCK is attempted using a Data

Descriptor that has the read only bit on (bit 43). The op-

eration is terminated prior to the memory access, leaving

the descriptor in the A register.

b. A STORE is attempted into a word in memory that has a tag

field representing PROGRAM CODE, RGW, MSCW, or SEGMENT

DESCRIPTOR. The memory write is aborted when bit 48 is

detected in the "flashback" word that is placed into the

C register. The operation is terminated leaving the

original addressing word in the A register.

24 0 BIT .------.--, x~I -----1-x I

Memory Protect Interrupt ID

Invalid Operand.

This interrupt occurs when operators attempt to use the wrong types

of control words or data. When control words and data are accessed,

they are checked to meet the necessary requirements of the operator

being executed. When the interrupt occurs, the operator is termi-

nated prematurely.

24 BIT

Ix I

Invalid Operand Interrupt ID

Divide by Zero.

This interrupt results when a division operator is attempted with

the divisor equal to zero. This interrupt terminates the operation

prematurely, leaves the A register cleared, the interrupt ID in the

B register and PSR and PIR backed up to point to the initiating

operator.

Divide by Zero Interrupt ID

Exponent Overflow and Underflow.

These interrupts occur when the capacity of the exponent field is

exceeded for either single or double-precision arithmetic results.

The interrupt ID is dependent on the exponent sign and both clear

the A register.

24 3 BIT

I x I Ix I

Exponent Overflow Interrupt ID

5-11

24 4 BIT
..------.1....--x --, -----..--, x -.--I ____,,

Exponent Underflow Interrupt ID

Invalid Index.

This interrupt is caused by an attempt to index by less than zero

or not less than the upper bound (length) in the operations:

Family

a. Occurs Index (A)

b. Link List Lookup (B)

c. Index (c)
d. Move Stack (c)
e. Display Update (c)
f. Dynamic Branch (c)
g. Stuffed IRW (pseudo) (c)
h. Index and Load Name (c)
i. Index and Load Value (c)

If an index outside the prescribed bound is attempted, the operator

is terminated. Backing up PSR, PIR is only done on the first two

operators.

5-12

24 23 5 BIT
____ ___,..l_o_(_o ____ f x-f ---, 0 ~~~FF

Invalid Index Interrupt ID

NOTE

:rf bit 23 is on,

bit 24 is off'.

Integer Overflow.

This interrupt occurs upon detection of attempted uses of operands

greater than integer maximum value by operators that require inte-

gers. In general, the checking is performed before the operand is

converted into an integer by reducing the exponent field.

lowing operators may invoke this interrupt.

a. Integer Divide (both SP and DP)

b. Integerize Truncated

c. Integerize Rounded

d. Occurs Index

e. Integerize Rounded, Double Precision

If the interrupt is invoked, the operator is terminated.

24 6 BIT -----1 x--.--. I ---.--I x--...,...1----.1

Integer Overflow Interrupt ID

Bottom of Stack.

The fol-

This interrupt is used to inform the Operating System that a RETURN

or EXIT Operator has caused the program stack to be cut back to its

base. If the condition arises, the operator will terminate with the

last accessed RCW (Return Control Word) left in the A register.

24 7 BIT

Ix I
Bottom of Stack Interrupt ID

Presence Bit.

This interrupt is used to inform the system that an attempt has been

made to access a quantity not present in main memory. All operators

that access memory with descriptors have the ability to set this

interrupt. Special consideration is given to this type of an in-

terrupt for data or procedure-dependent descriptors.

5-lJ

...-~--..-4_6-.---.-2_4 __ 2_3-.---~-~~---8--~~~---.BIT

____ I 0_1 ____ l_0_f_0 ___ f _____ I x_l ___ f 0;Ro~FF

Presence Bit Interrupt ID

Special Consideration-Presence Bit Interrupts.

There are two classes of presence bit interrupt conditions.

a. Data Dependent

b. Procedure Dependent

Each class requires that the PIR and PSR value for the RCW be man­

ipulated differently.

Data-Dependent Presence Bit. The Data-Dependent Presence Bit In-

terrupts are incurred while the processor is seeking data from with­

in its current procedural environmento Recovery is achieved by re­

executing the operator upon return from the "P-bit" interrupt-han­

dling procedure.

The P-bit procedure makes the non-present reference present prior

to returning to the interrupted program. The PIR and PSR setting

for the current operator are saved in the RCW for data-dependent

presence-bit interrupts.

Procedure-Dependent Presence Bit. The Procedure-Dependent Presence

Bit Interrupts are incurred when the processor attempts to enter a

new procedural environment or to return to an old procedure. These

interrupts occur during display up-date and when trying to "digest"

a non-present segment descriptor. Recovery is achieved by the exit

operator mechanism after the P-bit procedure has made the refer­

enced area present. The processor has not yet fetched the first op­

erator of the new procedure when this presence bit interrupt occurs;

therefore, the PIR and PSR settings from the PCW or RCW, depending

on whether an entry or exit was being performed, are saved when fab­

ricating the RCW upon entry into the P-bit interrupt procedure.

5-14

Program Restart. In order to restart some operators after a pre-

sence bit interrupt, it is necessary for the P-bit procedure to

return either an IRW or D.D. The "RT-bit" in the presence bit I.D.

(Pl) indicates to the P-bit procedure whether to perform an exit

or return operator when returning to the interrupt program. The

"RT-bit" is manipulated by the hardware prior to honoring the pre­

sence bit interrupt. Figure 5-6 (Presence Bit Inte~rupt Table)

illustrates the (PSR, PIR), exit/return and "RT-bit" relationship

to the various presence bit interrupt conditions.

Segmented Array.

This interrupt is used by the string operators as an upper limit

boundary detection. Arrays in main memory may be segmented into

groups of 256 words each, bounded on both ends by memory link words.

Each word read from memory during string operator executions is

checked for the presence of bit 48 (memory protect). If the bit is

on, the segmented-array interrupt is set. String operator interrupts

leave a special parameter in the A register. This indicates how

many words in the stack, below the parameter, will be needed to

restart the operation after the new segment of data has been brought

to main memory.

2 1 0 BIT

I 0 I 0 I 0 I 0 ;Ro~FF
A Register Parameter

24 10

txl Jxl
Segmented Array Interrupt ID

Programed Operator.

This interrupt is used as detection for invalid operator codes.

Primary codes BC, E7, EF, F6, and F7 are detected and cause the

interrupt. Each family controller detects these codes. Any invalid

code not detectable will result in a loop timer interrupt. The pro-

gramed operator interrupts are used as communicate operators to

the system.

5-15

\.rl
I
f-l
0\

RT Bit
Presence Bit (3) Returning PIR,PSR Software

Interrupt Condition (bit 46) Operator New RCW Function

Stack Vector (5) DESC Int. Locate not pre-
Stack Vector D.D. I. D. sent D.D. via
during data the IRW, make
reference (1) IRW D.D. present,

(stuffed) 0 Exit s (4) return I_ W n
where noted.

(2) IRW Int. 1 Return s (4)
(stuffed) n

Data

Dependent Data Descriptor (1) D.D. Int. 0 Exit s (4) Search stack for
(copy) I.D. n during data copies of not

reference present D.D.,
(2) D.D. Int. 1 Return s (4) make Mom and

(copy) I.D. n
copies present,
return D.D.

Stack Vector D.D. Int. 0 Exit From where noted. -
Stack Vector D.D. (copy) I.D. RCW/PCW
during display

Procedure
update

Dependent Segment
Descriptor - S.D. Int. 0 Exit From Locate S. D.

(copy) I. D. RCW/PCW (Mom) via copy
-. ..., D~ An W'..;,..,.,,..::i l I I I I I I I~! ~~~~=;o:~;;~ I

(1) Value Call or Enter
(2) All operators except Value Call, Enter, Move Stack, and Branch Return
(J) RT bit is packed in the Int. I.D. (P1)
(4) Sn indicates the FIR and PSR point to current operator syllable
(5) Move Stack or Branch Return operators

Figure 5-6. Presence Bit Interrupt

10 0 BIT

lolololojo(olololololol

Programed Operator Interrupt ID

Operator Independent Interrupts.

These interrupts are induced by conditions outside the operator or

processor logic. They are divided into two groups, External In-

terrupts and Alarm Interrupts.

External Interrupts.

These interrupt conditions are anticipated and inform the system

of some change in the external environment. They normally result

in a momentary interruption of a program process which will be

continued after handling or recording the interrupt condition. The

external interrupts are recognized by the hardware operators. The

program sequence controller senses the interrupt condition, inhibits

activation of the next operator, and initiates an interrupt pseudo-

operator in its place. PIR and PSR fields of the RCW address the

next operator syllable so that the program will be restarted with

the execution of the next syllable upon continuation.

interrupts are:

a. Processor to Processor interrupt

b. Special Control interrupts

1) Interval timer

2) Stack overflow

c. Multiplexor interrupts

1) I/O finish

2) Data Communications

J) General Control Adapter

4) Change of Peripheral Status

The external

5-17

Processor to Processor.

This interrupt is used to interrupt another Processor on the system.

When a Processor executes a HEYU operator, an external interrupt is

sent to all oth~r system processors. When the interrupt is recog-

nized by a Processor, its interrupt controller clears the A register

and sets the B register equal to the ID.

cedure entry is then executed.

The normal Interrupt Pro-

BIT

Processor to Processor Interrupt ID

This interrupt is also used to initiate an Idle Processor on the

system. It could also cause another Processor to suspend its op-

eration on a program whose stack is about to be overlayed.

Interval Timer.

This interrupt is used for programmatic time slicing. The interval

timer is activated by the SINT (Set Interval Timer) operator. The

timer is set to the value of bits 10:11 of the B register and de-

crements every 512 microseconds until equal to zero. At this time,

if the timer is still armed, the interrupt is set, leaving the ID

in the B register and A register cleared. The max:Lmum interval is

1 second. The timer is disarmed whenever the Processor handles an

External interrupt.

22 0 BIT r-------r-1 x--r-----1--x I

Interval Timer Interrupt ID

Stack Overflow.

This interrupt is used to inform the operating system that the Stack

Controller has sensed the use of the highest address allotted for

this program's stack (LOSR, limit of stack register). The program

is halted to allow the Operating system the option of allocating a

5-18

larger stack area or aborting the program. The interrupt controller

leaves the A register cleared, the interrupt ID in the B register

and PIR backed up if PROF is on.

22 1 BIT
~~------Tl~x~I --~---r---ilxl

Stack Overflow Interrupt ID

Multiplexor Interrupts.

The MPX interrupts may be handled by any system processor. A

priority is established between multiplexors and processors to

determine which Processor responds when an interrupt is present.

This is necessary when multiple Processors and Multiplexors are

present because they all share a common SCAN BUS.

Scan Bus Control.

Scan bus control is established by a closed loop circuit in which a

control "bit" is passed from one Processor to another on every Jrd

clock pulse.

A Processor may initiate a scan-bus operation when it has the con­

trol bit and the IIHF (inhibit external interrupt flip flop) is off.

Priority Handling Example.

Assume MPX-A and MPX-B have I/O finished interrupts occuring at the

same time. Both Processors are operating with IIHF off and could

therefore respond to an external interrupt. If both Processors were

allowed to respond, a SCAN-IN of the interrupt literals would be

attempted simultaneously on one common bus.

The 2nd priority established, is a left to right (LTRP), or right

to left (RTLP) priority which allows a multiplexor to place its

interrupt in the appropriate Processor. Figure 5-7 is a hypothetical

system configuration that will be used for explanation.

5-19

Each of the Left-to-Right or Right-to-Left priorities are only true

for one Processor at one time. LTRP 1s normally used to allow MPX-A

to set its interrupt in Processor #1. RTLP is normally used to al­

low MPX-B to set its interrupt in Processor #2.

The priorities may be passed to another Processor when the IIHF is

on. IIHF on in a Processor, causes the Priority to be passed and

inhibits the interrupt controller from responding to any MPX in-

terrupts. The priorities in a Processor are re-established when

IIHF is reset.

Priority Handling With IIHF Set.

Assume Processor #1 had its IIHF set because it was in Control state.

Setting this flip flop in Processor #1 causes the LTRP to be passed

to #2. Now assume identical timed interrupts appear in both MPX-A

and MPX-B. Both are recognized by the interrupt Controller in Pro-

cessor #2. The interrupt controller in Processor #2 now assigned

MPX-A the 1st priority and will subsequently SCAN-IN the interrupt

literal from MPX-A while making MPX-B hold its interrupt line on.

(The MPX interrupts are not reset until a SCAN-IN is performed.)

The RTLP priority could also be passed to Processor #1 should it

enter normal state while Processor #2 is in Control state, thus each

system Processor is capabJ_e of handling external interrupts from

either Multiplexor.

I/O Finished Data Communications.

Both interrupts are handled by the Interrupt Controller as follows:

5-20

a. A SCNI (SCAN-IN) operator is forced into the Processor at

the next SECL to read the interrupt literal into the B

Register.

b. An identification bit (20) is placed into the interrupt

ID, the A register is cleared and PIR is backed up.

c. The normal operation of entry to the Interrupt Handling

Procedure is then executed.

20 7 6 5 4 1 0 BIT

...__ J _x _J _______ J
0 ___ l 0....-.J_o ..__l 0 __ J _.._J 0__.l___.0 l

0 ~ R
0~F F

I/O Finished/Data Communications Interrupt ID

NOTE

Bits 1:2 identify which MPX

the literal was read from.

MPX-A=Ol, MPX-B=lO.

Bits 7:4 identify type of
interrupt.

lOOl=I/O finished

OOOl=DCP #l

OOlO=DCP #2

OOll=DCP #J

llll=Change of status

General Control Adapter.

This interrupt indicates a special control device such as an Analog

device, a plotter, or some machine being controlled by the system

wished to communicate to the Processor.

External MPX.

This interrupt will be used when a second Multiplexor is connected

to one of the 4 word-interfaces of a Multiplexor, and it wishes to

have one of its interrupts recognized.

Alarm Interrupts.

These interrupt conditions are not anticipated and inform the system

of some detrimental change in environment. They normally result from

either a programing error or hardware failure. The alarm interrupt

conditions are recognized upon occurrence by the interrupt control-

ler. The interrupt controller seizes control of the machine, clears

the activated operator family, marks the TOS registers full and ac-

tivates the pseudo interrupt operator. In either case the current

operator is terminated prematurely. The alarm interrupts are:

5-21

a. Loop

b. Memory Parity

c. MPX Parity

d. Invalid Address

e • Stack Underflow

f. Invalid Program Word

Loop.

This interrupt is invoked if the Processor hardware fails to pro­

vide a SECL (Syllable execute complete level) at least every 2 sec-

onds. This could occur if an attempt is made to execute an invalid

operator. Should the interrupt occur, the ID is left in the B reg-

ister, the A regibter is cleared and PIR is backed up.

25 0 BIT
..--~, x~(-----rj---.x , .

Loop Interrupt ID

Memory Parity.

This interrupt is invoked if the Memory Controller detects an even

number of bits being transmitted between the Processor and Memory.

Should the interrupt occur, the ID is left in the B register, the A

register is cleared and PIR is backed up.

25 1 BIT ...--_,_,_,)(,-----,-x ,-
Memory Parity Interrupt ID

MPX Parity.

This interrupt is the same as Memory Parity except it is used for

Processor/Multiplexor transfer.

25 2 BIT

Ix I Ix l I
MPX Parity Interrupt ID

5-22

U1
I
N
\...J

SCAN BUS
CONTROL

"BIT"
ONLY ON
IN 1
CABINET AT
A TIME

PROC #1

EXIB

EXIA

' ----

DCP #1

RTLP

---LTRP

-

EXTERNAL INTERRUPT
PRIORITY

INTERRUPT
LINES

---·-- -----
MPX

A
MPX

B

-

SCAN BUS - COMMON TO ALL CABINETS

RTLP

LTRP ----

Figure 5-7. B 6500 Scan Bus Priority Control

PROC #2

~/

DCP #2

Invalid Address.

This interrupt is set by the Memory Controller upon detecting an

attempt to access a non-existent Memory module by a failure to ob­

tain an acknowledgement to a memory request within 8 clock periods.

The Memory Controller initiates the. interrupt and the Interrupt Con­

troller leaves the ID in the B register with the A register clear

and PIR backed up.

25 3 BIT

Ix I
Invalid Address Interrupt ID

Stack Underflow.

This interrupt is invoked if the Stack Controller detects an attempt

to move the S register to an address less than BOSR (Bottom of Stack

Register} during stack adjustment. Should the interrupt occur, the

ID will be left in the B register, the A register is cleared and

PIR backed up.

25 4 BIT

Stack Underflow Interrupt ID

Invalid Program Word.

This interrupt is invoked if one of the following conditions is en­

com;itered:

5-24

a. A word with a tag not equal to 3 is placed in the P reg­

ister for execution. (Except in Table mode}.

b. The Variant operator is decoded as the second part of a

2-syllable variant operator.

c. The Processor is in EDIT mode and a family strobe is emit-

ted for another operator family. Should the interrupt

occur, the ID is left in the B register, the A register is

cleared and PIR is backed up.

25 5 BIT

Ix I Ix I

Invalid Program Word Interrupt ID

Interrupt Handling.

The occurrence of an interrupt condition causes the processor to

enter an interrupt handling procedure after marking the stacks and

inserting two interrupt parameters into the stack. The procedure

entered is called from a reserved location (DO+ J), relative to

the base (trunk) of the MCP stack. Figure 5-8 depicts the stack

format just prior to and after entering the interrupt procedure.

The two interrupt parameters Pl and P2 that are inserted into the

stack as the interrupt condition is recognized are used to supply

information describing the interrupt condition. The Pl parameter

identifies the interrupt type and instructs the interrupt procedure

how to return to the interrupted program. The P2 parameter supplies

supplementary information about the interrupt condition (e.g., in

the case of some presence bit interrupts P2 is a copy of the non­

present descriptor).

The interrupt procedure is entered by inducing an enter operator

with an IRW pointing to DO + J at F + 1. The hardware expects to

find a PCW at DO +J; however, an IRW or IRW chain pointing to a PCW

are legitimate conditions.

STRING OPERATOR CONTROLLER. The String Controller controls the char-

acter handling operators. It is integrated with the F, G, and H

family hardware (figure 5-9). This controller is unique in many

ways. One of the ways is by having the E register initiate memory

cycle requests via the memory controller, during logical stepping

5-25

OBJECT
PROGRAM

STACK

MCP
STACK

OBJECT
PROGRAM

STACK

MCP
STACK

BOSR

DO

DO

5-26

,,.....,._,

OBJECT PROGRAM CODE
P2

l I 11~ p:IIl I I I I I rp
PBR PIR

Pl

IRW DO+ 3

MSCW

OBJECT
PROGRAM

DATA

TSCW

SEG DESC.

PCW

RCW

MSCW

PSR

INTERRUPT HANDLING PROCEDURE CODE

--~ I I I I I I I I I I I I I I

STACK FORMAT PRIOR TO CALLING THE INTERRUPT PROCEDURE.

,,.....,.,_,

P2

Pl

RCW

MSCW

TSCW

MSCW

J
I.

PBR
PIR
PSR

INTERRUPTED OBJECT PROGRAM CODE

T I

INTERRUPT HANDLING PROCEDURE CODE

STACK FORMAT AFTER ENTERING THE INTERRUPT PROCEDURE

Figure 5-8. Stack Format

I~

~
(

of the operator flow. This allows simultaneous logic flow with mem-

ory cycles, to accelerate the logic flow.

is shown in figure 5-10.

The E register decoding

The String OP Controller contains one OP code register for all

three families. There are two sequence registers; the JF registers

are used for the Family F sequence flow together with a sequence

extension register KF. The JG registers are used for the Family G

and H sequence flow together with a sequence extension register KG.

CONTROL STATE/NORMAL STATE. Any B 6500 Processor has the ability to

perform in either Normal or Control state. The difference between

the two states is the inhibiting of external interrupts while per­

forming in control state as well as enabling a few privileged opera­

tors. The Normal Control State flip flop (NCSF) and Inhibit Inter­

rupt flip flop (IIHF) are both set when operating in control state.

The Processor switches to control state upon entering a procedure

via a control state program control word or by the execution of

disable external interrupt operator. Likewise it switches to normal

state when entering a procedure via a normal state program control

word or by the execution of the enable external interrupt operator.

Tne Operators that are enabled in Control State are:

a. Set Interval Timer

b. Scan Out

5-27

5-28

STRING OP CONTROLLER

OPBF

8

FAMILY F

JF3 JF2

FAMILY G, H

JG3 JG2

Figure 5-9.

E
REG

1

2

3

4

5

9

10

11

12

13

14

15

Figure 5-lO.

I OP4F I OP2F OPlF

OP CODE REG.

4 2

E REG.

JFOJ
KF3

JFl
KF2

KFl

KG3

JGl JGo] KG2

KGl

String OP Controller

FUNCTION REG

READ y
II B

" c
" x
II A

WRITE-PROTECT y

" B
II c
II x
" A

OVER-WRITE x
II A

E Register Functions

INPUT/OUTPUT MULTIPLEXOR.

The Input/Output Multiplexor and associated peripheral control

modules are used to control data transfers between memory and all

peripheral equipment, independent of the processor. The multi-

plexor receives instructions from the processor and, together with

its associated peripheral controls, executes them. Each multiplexor

is capable of processing up to ten simultaneous I/O operations from

up to 20 peripheral controls, handling a combined maximum of 256

peripheral devices (figure 5-11).

SCAN BUS.

The Scan Bus is the communications link between various components

as seen in figure 5-11. It consists of 20 Address lines, 48 data

Information lines, 1 Parity line and 11 Control lines. MPX or Data

Communications operations are initiated via the Scan Bus.

COMMAND DATA REGISTER.

This 113 bit register is used with the Scratch Pad Memory for the

control of Input Output data flow. The command portion of this reg­

ister accepts an I/O Command from the Processor via the SCAN BUS

and uses the data portion to accept or send information to the I/O

devices via the peripheral control cabinets. Commands and partial

data words are shuttled to and from the scratch pad memory between

data character times. Full words are read or written to Main Mem-

ory without Processor intervention.

is shown in figure 5-12.

An expanded Command Data word

SCRATCH PAD MEMORY.

The Scratch Pad contains 120 bits of IC memory per word. The I/O

MPX may contain from 4 thru 10 such words. These words provide

temporary storage locations between command data word character

collection times. In this way one Command Data register can ser­

vice up to 10 simultaneous I/O operations. A fixed assignment (1

through 10) is given during the initiation of the I/O request and

remains as such until the end of the I/O operation. The unit des­

ignate field as seen in figure 5-12 reflects this assignment.

5-29

Vt
I

\.,.)

0

DATA
COMM

PROCESSORS

PROCESSOR

MEM BUS

INFO

SCAN BUS

4 WORD
INTERFACE

s
c
A

I •IN

B
u
s

MAIN
MEMORY

MEMORY INTERFACE

MEMORY EXCH.

SYSTEM CLOCK AND
MDL PROCESSOR

TRANSLATOR

COMMAND/DATA REG----'

SCRATCH PAD
MEMORY

120 BITS/WO
4 ,.10 WDS

TAG
REGISTER

MPX
INTERRUPT
NETWORK

Figure 5-11. Multiplexor Block Diagram

TIME
OF

DAY REG

161NFO
LINES

\ PERIPHERAL
CONTROL
INTERFACE

PERIPHERAL
DEVICES

TAG REGISTER.

The Tag Register (5 FF/SPM SLOT) associates a Scratch Pad Memory

word with a specific I/O channel. This assignment is made when

the initial I/O request is received from the Processor.

MEMORY EXCHANGE.

The Memory Exchange allows sharing of the Memory Interface lines

between the MPX and Data Communications Processors. The Memory

Exchange has 8 control lines, 20 address lines, 51 data lines and

1 parity line to the Memory interface.

INTERRUPT NETWORK.

The MPX Interrupt Network informs the Processors of an interrupt

condition in the MPX. This indication remains true until one of

the Processors reads the interrupt by a SCAN-IN command.

TIME OF DAY REGISTER.

The Time of Day Register is comprised of 36 flip flops used to

accumulate increments (2.4 µsec) of time. The system Processors

set or read these registers via the SCAN BUS.

CHANNEL ASSIGNMENT CONTROL.

The Channel Assignment Control assigns a priority to specific I/O

devices. This is a fixed physical assignment as per system re-

quirements.

CHARACTER TRANSLATOR.

Data flow between the MPC and Peripheral devices is translated in

one of three ways:

a. Direct (no translation in the MPX)

b. 6 bit INTERNAL to BCL or vice versa

c. 8 bit EBCDIC to BCL or vice versa

5-31

V1
I

u
l\)

COMMAND REGISTER DATA REGISTER
TAG

CHARACTER POSITIONS (681T FORMAT)

111 91 0 1 2 3 4 5 6

119

-

MEMORY
ADDRESS

111

112

90 50 147

89 I 791 87 I 86 I 85 I 84 I 831 82

92188 I 78177 I 76 I 75174 59 511511 48

BUFFER LENGTH ~PARITY FOR DATA WORD

STANDARD
TAG FIELD I ERROR FIELD

CONTROL BIT

CONTROL/UNIT (59 -.66)
ERROR FIELD

SCRATCH PAD MEMORY

SAME AS ABOVE

1---UNIT ,-- DESIGNATE FIELD

- -- - - -
Figure 5-12. Command Data Register and Scratch Pad Memory

7

0

0

-......

PERIPHERAL CONTROL INTERFACE.

The Peripheral Control Interface consists of 16 INFO lines and 12

Control lines which are bussed to all of the Peripheral controls.

Four additional control lines are sent to each Peripheral Control

for a total of 80. The additional control lines are:

a. BUSY/ - PCn

b. ARL - PCn (Access Request Level)

c. AGL - PCn (Access Granted Level)

d. CDL - PCn (Channel Designate Level)

The 16 info lines are used bi-directionally for 8-bit byte, or byte

pair, transmission.

DATA COMMUNICATIONS INTERFACE.

The Data Comm Interface consists of ~ 20-wire cables sharing 2

word interfaces. Busses 2 and 4, l and J share the same memory

request logic. Data Comm is routed through the MPX only to uti­

lize the Memory Exchange of the Multiplexor.

SYSTEM CLOCK CONTROL AND MDL PROCESSOR.

The Multiplexor cabinet contains hardware that makes up the MDL

Processor and System Clock.

SYSTEM CLOCK. The system clock is generated by a 10 megahertz

crystal oscillator and shaped into 25 and 45 nanosecond width

pulses. A Central Control divides and controls the basic clock for

distribution to the entire system as follows:

a. Processor

Type

B

c

Basic Clock

5 megahertz

2.5 megahertz

Arithmetic Clock

5 megahertz

2.5 megahertz

5-JJ

b. I/O Multiplexors

5 megahertz 25 nanosec width

l.67 megahertz 25 nanosec width

c. Memory

5 megahertz 25 nanosec width

d. Peripheral Control

1.67 megahertz 45 nanosec width

e. Data Communications Processor

5 megahertz 25 nanosec width

MAINTENANCE DIAGNOSTIC PROCESSOR. The Maintenance Diagnostic Logic

Processor (MDL) is a special purpose computer composed of an I/O

Channel and a Data Processor. It is used for fault detection and

isolation in the B 6500 Processor, B 6500 Multiplexors and the Per-

ipheral Controls. The MDL Processor provides for three modes of

operation: Display, Diagnose, and Detect.

Display Mode.

In this mode the MDL scan-out of eight flip flops per word pro­

gresses continuously in a loop under control of the display logic.

!t is used for indication and control of Processor and MPX flip

flops.

Diagnose Mode.

In this mode the MDL Processor reads test cases from a tape unit,

thru an I/0 Channel, to memory. The MDL uses this information for

logical testing of system components and halts at the end of a

string of test cases when a failure is diagnosed.

Detect Mode.

This mode of operation is initiated in the same manner as diagnose

mode; however, the test procedure is halted after the first failure

of a test case.

5-34

INFORMATION FLOW FROM CARD READER TO MAIN MEMORY.

The information flow between a Card Reader and main memory is

shown in figure 5-13. Three types cards may be read from the card

reader.

ALPHA CARD READ.

Cards punched in the Alpha mode are decoded in the card reader

from Card Code to 6-bit BCL EXTERNAL code. The character is

transmitted to the information register in the Card Reader Control

in the Peripheral Control Cabinet. The information (1 character)

is held until the Multiplexor honors an access request and places

the appropriate SPM word in its Command/Data register. I/O des­

criptor control bits 42 {translate) and 41 (6 or 8 bit) steer the

character through the appropriate translator and place it in the

next character position of the Data register. The data register

can store 6 or 8 characters depending on the translator used.

When the data register receives the last character of a word, a

memory request cycle is initiated to write this full 52 bit word

in memory. A tag field read is optional on this type of a card

read, with any tag code {the first character of a word) allowable

in this mode of operation.

BINARY CARD READ.

Cards punched in the binary mode contain twice as much information

as those punched in Alpha mode. Each card column contains two char-

acters. Positions 12, ll, O, 1, 2 and 3 provide for one row of

characters on the upper half while positions 4, 5, 6, 7, 8, and 9

provide for another row of characters on the lower half. Control

bits 42 and 41 equal to zero bypasses the translator and causes

direct transfer of information into the Data Register. The infor-

mation contained in one card column is strobed twice (once for each

half of the card) and presented to the multiplexor as two 6-bit

char.ac ters. Tag read is optional in this mode but the only allow-

able code is Program tag (3).

5-35

EBCDIC CARD READ.

Cards punched in the EBCDIC mode are read in a similar fashion

as binary mode, upper and lower half. However, the actions within

the Peripheral Control are quite different. Three translations are

required within the control before an 8 bit EBCDIC code is present-

ed to the MPX data register. The first two occur as the upper and

then lower halves of the card are strobed into the information

register. The information register at this point represents the

12, 11, o, 9 and 8 card punches directly and a binary configuration

of punches 1 thru 7 as seen in figure 5-lJ. The information reg-

ister is then decoded into EBCDIC code as it is presented to the

information lines on its way to the Data register. When 6 bytes

are collected in the data register, a memory request cycle is in-

itiated to write the full 52 bit word. Tag read is optional in

this mode with any tag code being permissable.

NOTE

Two other codes are available

for use on the B 6500 system.

They are ICT and BULL codes.

Both are decoded by a special

Alpha/Binary decoder (in the

Card Reader) to BCL code.

MEMORY AND MPX CONTROLLER.

The Memory Controller responds to 21 commands decoded from nine

INPUT lines. Figure 5-14 shows the 4 types of Memory Controller

cycles that respond to these INPUT lines. During a core memory

write, the contents of the cell being written are "flashed" back

to the Processor. Certain Write operations are aborted by the

memory if the memory protect bit (48) is on.

5-J6

\Ji
I

\.....:)

~

CARD READER

CHR. A= 12 · l

ALPHA/
BINARY

D
E
c
0
D
E
R

ALPHA CARD READ

8 CARD COL/WD IN MEMORY

16 BIT BCL
EXTERNAL

t

~

CARD READ CONTROL
(IN PC CABINET)

INFO
REG

6 BIT BCL EXT ·7 I
BCL
TO

INT.
6 BIT

MULTIPLEXOR

~
T
A
G

--m

1/0 DESCRIPTOR
BIT 42 = 1 (TRANSLATE)

41 = 0 (6 BIT)
= l (8 BIT)

DATA REGISTER
(1) 52 BIT WORD

I
I

I I ____ __J r-- -- - -, - I

UPPER
HALF

6 BIT UPPER HALF
OR LOWER

HALF BINARY7

HALF I J LJ I f
CHR. A= 11·3 rn

BINARY CARD READ I ™
4 CARD CO l/WD IN MEMORY

I

I 1/0 DES CR I PT OR

BIT 42 = 0 t DIRECT
BIT41=0\

6 BIT BINARY71

DIRECT
(1) 52 BIT WORD

I 6 BIT
6 TO 8 BIT

/TRANSLATE
1/0 DESCRIPTOR

BIT 42 = 0
Ll

UPPER
HALF

CHR. A= 12·1

EBCDIC CARD READ

8 CARD COL/WD IN MEMORY

UPPER

I OR
LOWER
HALF

x 112

Figure 5-lJ.

8 BIT EBCDIC

BIT 41=1 I
~ (1) 52 BIT WORD

I
Data Information Flow

MEMORY

8-6 BIT CHARACTERS
PLUS ANY TAG CODE

OR
6-8 BIT CHARACTERS
PLUS ANY TAG CODE

12-4 BIT DIGITS
(6 BYTES)

PLUS PROGRAM
TAG ONLY

6-8 BIT (BYTE)
CHARACTERS
PLUS ANY
TAG CODE

5-38

Z12
BUS
INPUT
LINES

TYPE OF
REQUESTING

OPERATOR

READ

OVERWRITE,
STACK ADJ. I

READ WITH
LOCK

0
1 MEMORY

1
3 CONTROLLER
4
5
6 RESPONDS TO MPRC TO MEMORY
z 21 COMMANDS (PREVENTS MEMORY WR 8

____.
ITE WHEN
,48) IS Z12-6 IS TRUE AND BIT (

DETECTED IN WORD BE I NG
WRITTEN INTO)

MEMORY CONTROLLER MEMORY
CONTROLLER Z 12 LEVELS PROCESSOR REGISTERS

FUNCTION 8 7 6 5 4 3 2 1 0

1 0 0 1
1 0 0 1

READ ONLY 1 0 0 1
1 0 0 1
1 0 0 1
1 0 0 1

1 1
1 1

OVERWRITE• 1 1
1 1
1 1

NOTE

When the Overwrite function

is used the Memory write is

not aborted if the addressed

area has the protect bit on.

The Read With Lock operator

exchanges the contents of the

A register with the contents

of memory addressed by the

B register.

USED

A
B
c
x
y
p

A
B
c
x
y

Figure 5-14. Memory Controller Decoding

PROTECTED
WRITE

(PSEUDO)

STORE
OPERATORS

1 1 1

PROTECTED••
1 1 1
1 1 1

WRITE 1 1 1
1 1 1

NOTE

When this function is used

Memory write is aborted by

detection of Protect bit.

(no indication of abort

is given).

1 1
PROTECTED 1 1
WRITE/READ 1 1

••• 1 1
1 1

A
8
c
x
y

A
8
c
x
y

Figure 5-14. Memory Controller Decoding (cont)

The Memory/MPX Controller contains the following sections:

a. B 6500 Memory and MPX interface.

b. Address Adder.

c. Integrated Chip Memory.

The interface consists of two sections:

bus.

a memory bus and a scan

MEMORY BUS. The MEMORY BUS contains 20 address lines, 51 data (in-

formation) lines, 1 parity line and 8 control lines. It transmits

information bi-directionally between MEMORY and Processor "hard

registers" A, B, C, X, Y and P.

Control of the memory interface is thru the Zl2 bus which is pro­

duced by FUNCTIONAL CONTROLLERS and FAMILY OPERATOR CONTROLLERS

5-39

when a memory cycle is desired.

SCAN BUS. The SCAN BUS contains 20 address lines, 48 data infor-

mation lines, 1 parity line and 11 control lines. It provides

an asynchronous communication path between the B 6500 Processors

and B 6500 Multiplexors or B 6500 Data Communication Processors.

ADDRESS ADDER.

The Address Adder is a 20-bit parallel adder with inputs from the

Z8 and Z9 busses, the Carry flip flop and the Subtract flip flop.

The busses derive their addressing information from the 48 IC mem­

ories or from the '''hard registers" via the Z6 bus in the transfer

controller. The Carry flip flop and Subtract flip flop are used

to modify the output address.

The output of the Address Adder is an input to the Memory Address

register for memory selection or an input to one of the 20 bit IC

memories.

INTEGRATED CHIP MEMORY.

The Memory Controller contains 48 IC memories, each containing 20

bits. Thirty-two of these display the current address of an object

program. These D registers (DO thru DJl) provide for multiple le­

vels of addressing. The D registers are controlled by Display

READ/WRITE SELECT logic.

The other 16 IC memories are divided into two groups, base and

index (o thru 7). Each is a 20-bit memory used by Family Operator

logic and Program sequence flow for base and index addressing:

a. PER (o) PIWGRAM BASE

b. SER (1) SOURCE BASE

c . DER (2) DESTINATION BASE

d. TBR (BUF2) (J) TABLE BASE

e. s (4) TOP OF STACK ADDRESS

f. SNR (5) STACK NUMBER

g. PDR (6) PROGRAM DICTIONARY INDEX

h. TEMP (7) TEMPORARY STORAGE

5-40

i. PIR

j . SIR

k. DIH

1. TIR

m. LOSR

n. BOSR

0. F

p. BUF

MAIN MEMORY.

ORGANIZATION.

(BUFJ)

(o) PROGRAM INDEX

(1) SOURCE INDEX

(2) DESTINATION INDEX

(3) TABLE INDEX

(4) LIMIT OF STACK

(5) BASE OF STACK

(6) POINTS TO TOP MSCW

(7) TEMPORARY STORAGE

Main memory in the B 6500 is organized so that any memory module

can send information to, or receive information from both proces­

sors and both I/O multiplexors over any one of four information

busses (see figure 5-15).

MEMORY MEMORY MEMORY
MODULE MODULE ------ MODULE

l 2 n

vo
MULTI- 11~ ..d~ <D PLEXOR,",

l

PROCESSOR ./h _Lb. -$ l ~ 'V

PROCESSOR .'1~ L~ -¢
2 ~"' ...

1/0
MULTI- L~ l't'\ _Lj

PLEXOR '-J -.;;;;;:;;;r

2

Figure 5-15. Memory Organization

5-41

The modules examine each word that is placed on the bus to deter­

mine whether that particular module is being addressed; if it is,

linkage is set to receive the word. This eliminates the need for

a central control to establish a linkage directing the word to the

proper module. Two hundred nanoseconds after the memory cycle is

initiated, the module grants access. In another 200 nanoseconds,

the word is available to the bus, and 200 nanoseconds later the

word is in the processor or I/O multiplexor register. Operation

of each memory module is independent of the operation of any other

memory module.

four modules.

Memory cycles can occur simultaneously within all

Information is transmitted along the bus in parallel, as illustrated

in figure 5-16.

20 BIT ADDRESS
6 BITS FOR 0-63 MODULES

14 BITS FOR MEMORY ADDRESSES 0-16,383

INFORMATION BUSS 6 CONTROL BITS
(READ, WRITE, BUSY, ETC.)

52 INFORMATION BITS

Figure 5-16. Information Transmission

MEMORY PROTECTION.

Memory protection prevents one program from affecting another with

a combination of hardware and software features. One of the hard-

ware features is automatic detection of an attempt by a program

to index beyond its assigned data area. Another is a memory pro-

tect bit in each word to prevent user programs from writing into

memory words which have the protect bit set. (The protect bit

is set by the software.) Any attempt to alter protected data is

inhibited and an interrupt is generated. Thus a user program

cannot change program segments, data descriptors, or any program

words or MCP tables during execution.

5-42

CABINET CONFIGURATION.

The B 6500 Main Memory consists of 1 to 32 memory modules con­

taining 16,384 words each. Up to three modules and associated hard­

ware can be housed in one Memory Cabinet (49,152 words). Each cab­

inet has a memory controller which responds to six requestors for

memory accesses. The requestors are:

a. Processor #1 or #2

b. Multiplexors A or B

c . Memory Testor

d. MDL Processor

INTERFACE.

The requesting unit's memory interface contains five hubs (except

for the MDL Processor). Each hub has 80 bus lines for bi-direction-

al communication with memory. Each memory cabinet has six hubs,

one hub for each possible requestor. A typical maximum size system

is shown in figure 5-17. Notice how the hubs within the requestors

are all tied to the same address and information flow lines. Take

the example of a Processor requesting access to Memory module zero

in cabinet zero. The Processor places the address and information

on the busses. It is seen by all of the memory controls, but

only accepted by module zero because of the address decoding in

Memory Cabinet zero. This means that each Memory Control must have

the ability to accept addresses from six different requestors and

connect them to one of three memory modules. This is accomplished

by a crosspoint control located within the memory control (figure

5-18). There are three sets of crosspoint controls for each

requestor within each memory control. Three requestors may gain

simultaneous access to the same memory cabinet if they are addres­

sing separate memory modules.

PRIORITY.

A priority system, which is activated prior to the crosspoint con­

trols, prevents conflicts when more than one requestor is addres­

sing the same memory module.

5-43

\Jl
I
~
~

MEM
CAB

1

MEM
CAB
0

80 LINE
BUS

PROC
H1

MEM
CAB

2

*

•

I
ME:M

I CAB *
5

*

**

~
CTJ_:_J

MEM
CAB

7

MEM
CAB

6

Figure 5-17.

*

•

L]M AB
9

[]M AB
8

I

MEM
CAB

10

*

*

**

•

MAY ONLY CONTAIN
2 MODULES IN A
524,288 WORD
SYSTEM

ADDRESS
DECODER
UNIT DESIGNATE
AND DATA FLOW

* MEMORY CONTROL

lMEM
LCAB

f
FUTURE

EXPANSION

--,
I

_ _J

REQUEST OR
UNIT

~
6 HUBS

MDL ONLY CONTAINS
ONE HUB

MEMORY
BUS

INTERFACE

ADDRESS
AND
DATA
LINES

B 6500 Memory Configuration
~

5 HUBS

REQ
*1

REQ
112

REQ
#3

REQ
#4

REQ
#5

CROSSPOINT
CONTROL

CROSSPOINT
CONTROL

CROSSPOINT
CONTROL

\

MOD.
L

16384
WORDS

MOD.
M

16384
WORDS

MOD.
N

16384
WORDS

\

I
I
I
I
I
I
l
I
I
I
I

' I

'
' I I
I
I
I

L MEMORY CABINET _J

Figure 5-18. Memory Module Selection

Request hub #l has the highest priority and any of the six request­

ing units can be attached to this point by the Field Engineer.

5-45

MEMORY REGISTERS.

Each Memory module contains 2 core stacks, a MIR (a 52-bit memory

information register), and the appropriate timing and control logic

necessary for reading and writing (figure 5-19). 'rhe memory cycle

is divided into two parts, a destructive read where the information

is read into the MIR's, and a write into the cores from the MWR's.

The MWR's are loaded from one of the six requesters. When a mem­

ory protect bit (48) is on during the read portion of the cycle,

and the operation is not overwrite, the information is rewritten

from the MIR's.

REQ 1 r-------,
I
I

MEMORY ADDRESSING.

REQ 2

REQ 3

REQ 4

REQ 5

REQ 6

I
I
I
I
I
I

Figure 5-19.

MWR

STACK

[, ___ M IR __

I
STACK J I

I
I

MEMORY I
MODULE ------

Memory Registers

Memory modules are addressed by 20 bits (figure 5-20). Bits 0

thru lJ are used for word selection and bits 14 thru 19 are used

for module selection.

MEMORY INTERLACING.

Each memory module has the ability to interlace every other word

to the next consecutive module. Interlacing is controlled by a

pluggable jumper located on each module and provides the advantage

of faster memory accesses when consecutive words are addressed.

5-46

Interlacing saves time because the next consecutive access may be

requested in an adjacent module while the first module is finishing

its cycle. Bit 14 of the module select address is exchanged with

bit zero when interlacing is used. Examples of module and word

selection when psing the interlace option are shown in figure 5-20.

This feature can be quickly enabled or disabled by a field engineer.

HEXADECIMAL
ADDRESS

00000
00001

04000
04001

08000
08001

ocooo
ocooo
10000
10001

MEMORY TESTING.

INTERLACE MODULE ADDRESS
00000 0
04000 l

00001 0
04001 l

08000 2
ocooo 3

08001 2
ocooo 3
10000 4
14000 5

WORD

0
0

l
l

0
0

l
l

0
0

MODULE
SELECT

~ 15

18 14

17 13

16 12

11

10

9

8

Figure 5-20. 'Interlace Addressing

WORD
SELECT

7

6

5

4

3

2

l

0

Each system includes a test facility which can exercise any of the

memory modules. When the test facility is being used with one of

the memory modules, the other modules can be used by the system,

if the module being tested is not interlaced. If it is, the option

must be disabled before testing can take place.

STACK CONTROLLER.

The B 6500 provides automatic stack adjustment as required by the

opera tors. These requirements are suppl.ied to the Stack Controller

on the Zll bus from the Operator Families and other Functional Con­

trollers.

The Stack Controller manipulates data between Main Memory and the

A and B registers on both pop-up and push-down cycles. The X and Y

registers are included in the adjustment cycles when double-preci­

sion operands are involved.

5-47

A typical program stack is shown in figure 5-21. The Stack Con­

troller determines whether a pop-up or push-down cycle will be

initiated. All other Controllers remain idle until an ADJC (Adjust

complete) is sent to the Controller that initiated the adjustment.

AROF

BROF

LOSR

s

F

BOSR

5-48

PUSH­
UP

A REG

B REG

I /-
1 ~
I h-

...0
PUSH_ I h

DOWN I ,.0 ,.0

I ~
I /'.:

,.0

I /'.:
1--~-1--~~~~~---~-~~,.0

/'.:

X REG

Y REG

STACK CONTROLLER FUNCTIONS

COMMAND OPERATION RESULT

MSCW

TSCW

Figure 5-21.

SOFTWARE
ALLOCATED

MEMORY
AREA

AROF

Zl 10 EMPTY A AND B 0
Zill EMPTY A, FILL B 0
Zl 12 EMPTY B, FILL A l
Zl 13 FILL BOTH l
Zl 14 EMPTY A 0
Zl 15 FILL A l

NOTE:

0 = UNOCCUPIED
1 =OCCUPIED
- = STATUS WILL NOT BE USED BY

THE OPERATOR CAUSING THE
ADJUSTMENT

Hardware Stack Adjustment

BROF

0
1
0
1
-
-

GENERAL.

SECTION 6

PROGRAM OPERATORS

The machine language operators are composed of syllables in a

program string. The operators are divided into three major classes,

Primary, Variant and Edit: The operators are either Primary Mode,

Variant Mode, or Edit Mode.

SYLLABLE ADDRESSING AND SYLLABLE IDENTIFICATION.

SYLLABLE FORMAT AND ADDRESSING.

A machine language program is a string of syllables which are nor­

mally executed sequentially. Each word in memory contains six

8-bit syllables. The first syllable of a program word is labeled

syllable 0 and is formed by bits 47 thru 40 (figure 6-1).

SYLLABLE
0

47 43

46 42

45 4 1

44 40

SYLLABLE
l

39 35

38 34

37 33

36 32

P AND T REGISTERS.

SYLLABLE
2

31 27

30 26

29 25

28 24

Figure 6-1.

SYLLABLE
3

23 l 9

22 1 8

2 1 1 7

20 l 6

1111111111111111111111111

llllllllllllll,1111111111

Program Word

SYLLABLE
4

l 5 l l

l 4 l 0

1 3 9

1 2 8

SYLLABLE
5

7 3

6 2

5

4 0

The P Register contains the currently active program word. The T

Registers are the control (instruction) registers. There is one

four-bit T register in each operator family. These registers con­

tain the operation to be executed in a particular operator family.

The four high-order bits of the operator syllable are decoded to

select the operator family to receive the strobe pulse, (execute

pulse). The PSR (Program Syllable Register) points to the next

syllable to be used and also determines when a new program word is

required in the P register.

6-1

When a new program word is required it is brought from the memory

location indicated by the sum of PBR (Program Base Register) and

PIR (Program Index Register). This program word is placed in the

P register and PSR is set to the first syllable of the next op-

era tor. PIR is incremented by l to address the next required pro-

gram word (figure 6-2).

l
PROGRAM
SEGMENT

PROGRAM WORD ... n ~
PROGRAM WORD

PROGRAM WORD

PROGRAM WORD

PROGRAM WORD

3
2

l

0

0

3

2

0

2 3

"P" REGISTER

3
2

l

0

r-
1

4 5

PROGRAM INDEX REGISTER

r - - - - --c: PROGRAM BASE REGISTER
I
I

--'

ADDRESS
ADDER

'------~

3

2

l

0

OPERATOR FAMILY T REGISTERS

OPERATOR FAMILY "T" REGISTERS

Figure 6-2. Program Word, Syllable Addressing

OPERATION TYPES.

3
2

1
0

Operations are grouped into 3 classes: Name call, Value Call, and

operators. The two high-order bits (bits 7 and 6) determine whether

a syllable begins a Value Call, Name Call or operator (figure 6-J).

6-2

(BITS 7 & 6) Syllable # of

Identification Type Syllables Function

00 Value Call 2 Brings an operand into

the stack.

01 Name Call 2 Brings an IRW into the

stack.

lX Other Operators l => 12 Performs the specified

operation.

Figure 6-3. Syllable Decode Table

NAME CALL. Name Call builds an Indirect Reference Word in the

stack.

empty.

Stack adjustment takes place so that the "A" register is

The six low-order bits of the first syllable of this opera-

tor are concatenated with the eight bits of the following syllable

to form a 14-bit address couple. The address couple is placed,

right-justified, into the "A" register, with the remainder of the

"A" register set to zero. The TAG field of the "A" register is

set to 001 and the register is marked full.

VALUE CALL. Value Call loads into the top of the stack the operand

referenced by the address couple formed in the same manner as in

the Name Call operator. If the referenced Memory Location is an

Indirect Reference Word or a Data Descriptor, additional memory

accesses are made until the operand is located. The operand is

then placed in the top of stack registers. The operand may be

either single or double-precision, causing either one or two words

to be loaded into the stack.

OPERATORS. Operators vary from 1 to 12 syllables in length. The

first syllable of each operator determines the number of additional

syllables forming the operator. Upon completion of each operator,

the program counter addresses the first syllable beyond all of the

syllables comprising the operator.

6-J

Operators work on data as either full words (48) data bits plus

tag bits) or as strings of data characters. Word operators work

with operands (single or double-precision) in the top of the stack.

String operators are used for transferring, comparing, scanning,

and translating strings of digits, characters, or bytes. In ad-

dition, a set of micro-operators provides a means of formating

data for input/output.

The string operators use source and destination pointers which are

located in the stack. These pointers set the following hardware

registers:

a. Source Base Register (SER).

b. Source Word Index Register (SIH).

c. Source Byte Index Register (SIB).

d. Source Size Register (ssz) •

e. Destination Base Hegister (DER).

f. Destination Word Index Register - (DIR).

g. Destination Byte Index Register - (DIE).

h. Destination Size Register (DSZ).

In some of the string operators the source pointer may not be used.

In this case, an operand may be in the stack; its characters are

circulated as it is being used.

String operators have an optional Update function, producing up-

dated source and destination pointers and count. At completion of

an operation the source and destination pointers are updated as

follows:

6-4

a. If the source is an operand it is left in the stack.

b. If the pointer is a descriptor, the Word Index fields and

Byte Index fields are updated from SIR/DIR and SIB/DIB.

The String Size fields are updated from SSZ/DSZ.

c. If the pointer is a Data Descriptor or a non-indexed

String Descriptor, it is converted to an Indexed String

Descriptor and updated.

If both the source and destination descriptors have size fields

equal to zero, the size registers indicate 8-bit character size.

When both a source and destination are required and the size field

of one is equal to zero and the other is not, then the size field

of the non-zero descriptor is used.

If neither size field is equal to zero and the size fields are not

equal and the operator is not Translate, the invalid operand inter-

rupt is set and the operator is terminated. The size field is con-

sidered equal to zero when the source is an operand.

WORD DATA DESCRIPTOR.

Word Data descriptors refer to data areas, including input/output

buffer areas. The Word data descriptor defines an area of mem-

ory starting at the base address contained in the descriptor. The

size of the memory area in operands is contained in the length

field of the descriptor. Word Data descriptors may directly refer­

ence any memory word address from zero through 1,0485,575 (current

maximum is 524,288 words). The structure of the Word Data descrip­

tor is illustrated in figure 6-4 and contains the following:

39 35 31 27 19 15 11 7 3

LENGTH/INDEX MEM/DISK ADDRESS
38 34 30 26 22 18 14 10 6 2

37 33 29 25 21 17 13 9 5

36 32 28 24 16 12 8 4 0

Figure 6-4. Word Data Descriptor

a. Bit 50:3, a tag of 101.

b. Bit 47:1, the presence bit, indicates the presence or

absence of data in main memory. A zero causes a presence

bit interrupt whenever the descriptor is used by a pro-

cessor to obtain non-present data. A one indicates that

the data described is in main memory.

6-5

6-6

c.

d.

e.

Bit 46:1, the copy bit. A zero indicates that this is the

original descriptor for the particular data area. A one

indicates that this descriptor is a copy of the original

descriptor.

Bit 45:1, the indexed bit. A zero indicates that an in-

dexing operation is required before the descriptor may be

used to obtain data. A one indicates that indexing has

already taken place and the index value is stored in bit

positions 39:20 (Length/Index).

Bit 44:1, the segmented bit. A zero indicates that the

data is not segmented.

divided into segments.

A one indicates that the data is

f. Bit 43:1, the read-only bit. A zero indicates that the

data may be referenced for reading or writing. A one in-

dicates that the area cannot be used for data storage.

g. Bit 42:2, a zero indicates a word data descriptor.

h. Bit 40:1, the double-precision bit. A zero indicates sin-

gle-precision operands, a one indicates double-precision

operands.

i. Bit 39:20, contains either the length of the memory area

(If bit 45 = 0) or an index value (if bit 45 = 1). If

bit 45 equals zero, the descriptor has not been indexed.

This field is used for size checking during the indexing

operation. If bit 45 equals one, the descriptor has been

indexed. For a double-precision operation, the index is

doubled after index size checking, and the result is stored

in the index field.

j. Bit 19:20, contains either a main memory or disk address.

If the presence bit (bit 47) equals one, this field contains

the memory address of data. If the presence bit equals

zero and the copy bit (bit 46) equals zero, this field

contains the disk address of the data. I:f the presence

bit equals zero and the copy bit equals one, this field

contains the memory address of the original descriptor.

STRING DESCRIPTOR.

String Descriptors refer to strings of 4-bit digits, 6-bit charac-

ters or 8-bit bytes. The String Descriptor defines an area of

memory starting at the base address contained in the descriptor.

The size of the memory area in characters is contained in the

length field of the descriptor. The structure of the String Des-

criptor is illustrated in figure 6-5 and contains the following

information:

39 35 31 27 23 ~~t~t~t~ 19 15 11 7 3
LENGTH IN CHARACTERS ltlt,.•---M--+-E-M-/D-1-.-.-IS_K_A-t-D-D_R_E-+-SS--1
38 34 30 26 22 :;:;:;:;:;:;:;:;:::: 18 14 10 6 2

37 33 29 25 21 if 11----17"'-+--13-+--9+---5-+--""'"'1

36 32 28 24 20 t~j~\ll\tl, 16 12 8 4 0

Figure 6-5. String Descriptor (Non-indexed)

a. Bit 50:3, a tag of 101.

b.

c •

d.

Bit 47:1 the presence bit. A zero causes a presence bit

interrupt if the descriptor is used to access data. A

one indicates the data is present in main memory.

Bit 46:1, the copy bit. A zero indicates that this is

the original descriptor for the particular data area. A

one indicates that this descriptor is a copy of the ori­

ginal descriptor.

Bit 45:1, the indexed bit. A zero indicates indexing

is required. A one indicates that indexing has taken

place and the word and character index are length/index

field (see figure 6-6).

6-7

6-8

e.

f.

g.

Bit 44:1, the segmented bit.

data area is not segmented.

is segmented.

Bit 43:1, the read only bit.

A zero indicates that the

A one indicates that the data

A zero indicates that the

data may be referenced for reading or writing.

indicates that the data can be read only.

A one

Bit 42:3, character size field. 100 indicates 8-bit bytes,

011 indicates 6-bit characters, and 010 indicates 4-bit

digits.

h. Bit 39:20, contains either the length of the memory area

(bit 45=0) or an index value (bit L~5=1). When bit 45

equals zero, this field contains the length of the area

in digits, characters or bytes,. This field is used for

size checking during indexing operations. When bit 45

is equal to one, bits 39:4 contain a byte index and bits

35:16 contain a word index as illustrated in figure 6-6.

35 31 27 23

WORD INDEX
34 30 26 22

33 29 25 21

32 28 24 20

Figure 6-6. Byte/Word Index Field

i. Bit 19:20, contains either a main memory or a disk address.

If the presence bit (bit 47) is one, the field containsa

memory address of the data. If both the presence bit and

the copy bit (bit 46) are equal to zero, the field contains

the disk address of the non-present data. If the presence

bit is zero and the copy bit is one, the field contains

the memory address of the original descriptor.

SEGMENT DESCRIPTOR.

The segment descriptor (figure 6-7) describes a program segment

and contains the following information:

39 35 31
LENGTH

38 34 30

37 33 29

36 32 28

27

26

25

24

19 15 11 7 3
MEM/DISK ADDRESS

18 14 10 6 2

17 13 9 5

16 12 8 4 0

Figure 6-7. Segment Descriptor

a. Bit 50:3, a tag of 011.

b. Bit 47:1, the presence bit. A zero indicates that the

segment is absent from main memory.

c. Bit 46:1, the copy bit. A zero bit indicates that this

is the original segment descriptor. A one indicates that

this is a copy of the original segment descriptor.

d. Bit 45:1, unused.

e. Bit 44:5, unused.

NOTE

unused bits may be

either zero or one.

f. Bit 39:20, specifies the length of the program segment

in words.

g. Bit 19:20 contains either the main memory address or the

disk file address. If the present bit (bit 47 equals one,

the field contains the main memory address of the program

segment. If both the presence bit and the copy bit (bit 46)

6-9

equal zero, the field contains the disk address of the

non-present program segment. If the presence bit equals

zero and the copy bit equals one, the field contains the

absolute memory address of the original program segment

descriptor.

MARK STACK CONTROL WORD.

The Mark Stack Control Word (MSCW), with the Return Control Word,

provides a linking mechanism for the history of previous control­

register settings through the stack.

The MSCW is placed in the stack by the Mark Stack operator. The

MSCW is organized as illustrated in figure 6-8 and provides the

following data:

6-10

....,.,.,..,....,.....,~=1--·-1--is l\lil!lil\i!J.---1-j1 i---7--_3__,

2

45 41 33 29 25

44 40 32 28 24 12 8 4 0

Figure 6-8. Mark Stack Control Word

a. Bit 50:3, a tag of 011.

b.

c.

Bit 47:1, the different-stack bit. A zero indicates that

the stack-number field refers to the current stack. A

one indicates that the stack-number field refers to a

different stack.

Bit 46:1, the environment bit. A zero indicates an in-

active MSCW, generated directly by the Mark Stack operator.

The procedure entry has not been performed. A one denotes

an active MSCW generated upon entry into a procedure, at

which time the environment fields (stack number, displace­

ment, and value fields) are stored into the Mark Stack

Control Word.

d. Bit 45:10, the stack-number field, contains the number of

the stack from which the PCW was obtained at procedure­

entry.

e. Bit 35:16, the displacement field, which, when added to

the stack base address, locates the Mark Stack Control

Word of the prior lexicographic level.

f. Bit 19:1, the value bit. A zero indicates that the MSCW

was generated during any operation that will be restarted

g.

from the beginning. A one indicates that the operator

must continue after the Exit or Return which refers to

this MSCW (e.g., an accidental entry by a Value Call).

Bit 18:5, the LL field denotes the lexicographical level

at which the program was running when the procedure was

entered.

h. Bit 13:14, denotes the stack history. This field locates

in the stack, the preceding MSCW (i.e., the previous "F"

register setting).

PROGRAM CONTROL WORD.

The Program Control Word (PCW), and the Mark Stack Control Word

are used during entry into a procedure. The organization of the

PCW is illustrated in figure 6-9 and contains the following:

rnrnmm s. D. INDEX
13 91 5

44 40 32 28 24 12 8 4 0

Figure 6-9. Program Control Word

6-11

a. Bit 50:3, a tag of 111.

b. Bit 47:1, unused~

c. Bit 46:1, unused.

d. Bit 45:10, stack number containing the PCW.

e. Bit J5:J, defines the program syllable within the word

located by PIR.

f. Bit J2:13, an index to the Program Base Register.

g. Bit 19:1, normal state (zero) or control state (one).

h. Bit 18:5, the level of the procedure being entered.

i. Bit 1J:l4, the segment descriptor index. Bits 12 through

zero specify the value to be added to thE~ address located

by either D register zero or one. When bit lJ equals zero,

D register zero is selected; when bit 13 equals one, D

register one is selected.

RETURN CONTROL WORD.

The Return Control Word and the Mark Stack Control Word are used

for subroutine handling. The Return Control Word stores the en-

vironment to which the subroutine will return. The organization

of the Return Control Word is illustrated in figure 6-10 and

contains the following:

H/HH E . s . HHHH

: ::llllililllll~l!illll!lill
31 27 23 N ·1911:--rnrn 15

P. I. R. LL
30 26 22 18 14

29 25 21 17

28 24 20 16

11 7

10 6
.D. NDEX

13 J _:1 5j

121 8 4

Figure 6-10. Return Control Word

6-12

3

2

0

a. Bit .50: 3' a tag of 011.

b. Bit 47:1, External Sign flip flop.

c. Bit 46:1, Overflow flip flop.

d. Bit 4.5:1, True/False flip flop.

e. Bit 44:1, Float flip flop.

NOTE

L~ 3: 1 will probably be TFOF,

True/False flip flop oc-

cupied flip flop.

f. Bit 43:8 unused.

g. Bit 3.5:3, the program syllable of the operator to be ex­

ecuted after return from the subroutine.

h. Bit 32:13, the PIR setting of the operator to be ex­

ecuted next in the calling routine.

i. Bit 19:1, a normal state (zero) or control state (one)

procedure.

j. Bit 18:.5, the level of the calling procedure when the HCW

is generated (at procedure entry).

k. Bit 13:14, the segment descriptor index. Bits 12 through

zero specify the value to be added to the address located

by either D register 0 or 1. When bit 13 = zero, D reg-

ister zero is selected; when bit 13 = one, D register one

is selected.

6-13

INDIRECT REFERENCE WORD.

Referencing a variable within the current addressing environment

of a procedure is accomplished through the ad.dress couple in the

Indirect Reference Word (IRW), and the Segment Descriptor Index of

the Program Control Word (PCW). Both references are relative to

the D Register specified by the address couple.

of the IRW is shown in figure 6-12.

STUFFED INDIRECT REFERENCE WORD.

The bit format

Reference to variables outside the current environment is accom-

plished by a (stuffed) SIRW. This addressing is relative to the base

of the stack in which the variable is located.

The SIRW contains the stack number, the location (DISP) of the

MSCW, and the displacement of the variable relative to the MSCW.

The absolute memory location of the variable is formed by adding

the contents of DISP and displacement to the base address of the

referenced stack from the stack descriptor. The contents of the

SIRW (with the exception of displacement) is dynamic and is accu­

mulated as the program is executed. The stack number and DISP

fields are entered into the SIRW by a special operator (STFF).

The bit format of SIRW is shown in figure 6-11.

;:; =~ :;:~:~:;:~=~=~=~=~ :;: :: :: :::: :: :

·1---43---3-9-1-llllll!!ili--3-5 --t--~I---
25 33 29

11 7 3

INDEX FIELD
10 6 2

111111111111 9 5

44 40 32 28 24 J!lllll!ll!ll 12 8 4 0

Figure 6-11. Stuffed Indirect Reference

6-14

111111111111 AD?iE ss: cou~LE
!l!l!lll\I\.

l 3 9 5

l 2 8 4 0

Figure 6-12. Normal Indirect Reference Word

a. Bit 50:3, a tag of 001.

b. Bit 47:1, unused.

c. Bit 46:1, the environment bit. A one indicates a Stuffed

IRW. A zero indicates a Normal IRW.

d. Bits 45:10, stack number. When bit 46 equals one, speci­

fies the number of the stack containing the address.

e. Bit 45:26, unused, when bit 46 equals zero.

f. Bit 35:16, displacement field. When bit 46 equals one,

this value added to the stack base address locates a

Mark Stack Control Word.

g. Bit 19:6, unused.

h. Bit 13:14, index field. When bit 46 equals one, the index

value is added to the contents of the D register specified

by the Mark Stack Control Word. Bit lJ is always zero.

i. Bit lJ:l4, when bit 46 equals zero, is divided into two

functional fields (figure 6-lJ). Each field is variable

in length. The first sub-field, designated LL, selects

one of the D registers. The second sub-field is an index

value which is added to the contents of the selected D

register to form an absolute address. The lengths of the

sub-fields are defined by the current program level as

shown in Table 6-1.

6-15

Table 6-1

Sub-Field Lengths

Program Length of LL Length of Index

Level F'ield (Bi ts) Field _{_Bitsl

0-1

2-J

4-7

8-15

16-Jl

PROGRAM LEVEL
0-1

13

INDEX
FIELD
12-0

.

PROGRAM LEVEL
2-3

13
2

12

INDEX
FIELD
11-0

Figure 6-lJ.

2

1

2

J

4

5

PROGRAM LE VE L
4-7

4

13

12

11

INDEX
FIELD
10-0

1

lJ

12

11

10

9

PROGRAM LEVEL
8-15

4
11

1----i
8

10 INDEX
FIELD

~ 9-0
2

12

Program Level Bit Assignment

NOTE

The bit order of the

LL field is inverted.

STEP INDEX WORD.

1

2

PROGRAM LEVEL
16-31

4
11

t-----1
8

10 INDEX
16 FIELD

13 9 8-0

12

The Step Index Word figure 6-14 is used by the Step and Branch op-

erator, to increase efficiency in iteration loops.

the following information:

Figure 6-14. Step Index Word

6-16

It contains

a. Bit 50:3, a tag of 100.

b. Bit 47:12, the value of the increment to be added to the

current value field.

c. Bit 35:16, the final value, used to terminate the iteration

loop.

d. Bit 19:4, unused.

NOTE

These bits must be zero.

e. Bit 15:16, the current value or count.

6-17

GENERAL.

SECTION 7

PRIMARY MODE OPERATORS

This section defines the primary operator's functions. In each

case the operator's name, mnemonic, and hexadecimal code is shown.

The universal operators are also included in this section.

ARITHMETIC OPERATORS.

The arithmetic operators usually require two operands in the top

of stack registers. These operands are combined by the arithmetic

process specified with the result placed in the top of the stack.

The operands may be either single-precision, double-precision, or

intermixed. The specified arithmetic process adapts automatically

to the data environment, with single-precision process invoked if

both operands are of the single-precision type and a double-pre­

cision process invoked if either operand is of the double preci­

sion type.

Each double-precision operand occupies two words. The second word

of the operand is an extension of the first word of the operand,

i.e., the mantissa of the first word of the operand may be an in­

teger but the mantissa of the second word is always a fraction.

When the top of stack registers are full, the first word of the

first operand occupies the A register, the second word of the first

operand occupies the X register. The first word of the second

operand occupies the B register, the second word of the second op­

erand occupies the Y register. Therefore, double-precision arith­

metic processes operate on four words in the stack instead of two

as in single-precision operations. Double-precision arithmetic

leaves a two-word result in the top of the stack.

Add, Subtract, and Multiply operations with two integer operands

yield an integer result if no overflow occurs. If one or both

operands is non-integer, or if the result generates an overflow,

the result is non-integer.

7-1

Upon entry into any operator the hardware stack-adjust function

fills or empties the top of stack register as required by the

operator. If either register contains an incorrect word, the

operator is terminated with an invalid operand interrupt.

ADD (ADD) 80.

The operands in the A register and the B register are added alge-

braically with the sum left in the B register. At the end of the

operation the A register is marked empty, and the B register is

marked full.

If only one of the operands is double-precision the single-preci-

sion operand's extension register is set to zero. The B register

is marked as a double-precision operand at completion of the op­

eration.

If the mantissa signs and the exponents are equal, the mantissas

are added and the sum placed in the B register. If the sum exceeds

13(26) octal digits, the mantissa of the sum is shifted right one

octade, rounded, and the exponent is algebraically increased by

one.

If the exponents are equal but the mantissa signs are unequal, the

difference of the mantissas with the appropriate sign is placed in

the B register.

If the exponents are unequal, the operands are first aligned. If

the alignment causes the smaller operand to be shifted right 14(27)
octal places, the larger operand is the result.

If the alignment causes the smaller operand to be shifted right,

but less than 14(27) octal places, the digits of the smaller oper­

and shifted out of the register are saved and used to obtain the

rounded result.

If the signs of the operands are equal, the mantissas are added

and the sum placed in the B register. If the sum does not exceed

13(26) octal digits, the last digit shifted out of the register

7-2

is used to round the result. If the sum is 14(27) octades the

mantissa in B (Y) is rounded to 13(26) digits.

If the signs of the operands are unequal, an internal subtraction

takes place with the rounded result placed in the B register.

If the result has an exponent greater than +63 (+32,767), the ex-

ponent overflow interrupt is set. If the result has an exponent

less than -63 (-32,767) the exponent underflow interrupt is set.

SUBTRACT (SUET) 81.

The operand in the A register is algebraically subtracted from the

operand in the B register with the difference left in the B reg-

ister. The operation is the same as for the Add operator except

for initial sign comparisons.

MULTIPLY (MULT) 82.

The operand in the A register is algebraically multiplied by the

operand in the B register.

register.

The rounded product is left in the B

If the mantissa of either operand is zero, the B register is set

to zero.

If both mantissas are non-zero, the product of the mantissas is

computed. If the product contains more than 13(26) digits, it is

normalized and rounded to 13(26) digits. A mantissa of all sevens

is not rounded.

If the result has an exponent greater than +63 (+32,767), an ex­

ponent overflow interrupt is set. If the result has an exponent

less than -63 (-32,767), an exponent underflow interrupt is set.

EXTENDED MULTIPLY (MULX) SF.

The operands in the A and B registers are algebraically multiplied

and a double-precision product is placed in the B and Y registers.

The A register is marked empty and the B register marked full.

7-3

The actions outlined for Multiply operations also apply to this

operator.

If either or both operands are double-precision, then a normal

double-precision operation occurs.

DIVIDE (DIVD) 83.
The operand in the B register is algebraically divided by the

operand in the A register, with the quotient left in the B regis-

ter. After the operation the A register is marked empty, and the

B register is marked full.

If the mantissa of the B register is zero, the B register is set

to zero. If the A register mantissa is equal to zero, the divide

by zero interrupt is set.

nated.

In either case the operation is termi-

If the mantissas of both operands are non-zero, they are normalized

and the operand in the B register is divided by the operand in the

A register. The quotient is developed to 14(27) digits, rounded

to 13(26) digits, and left in the B register.

If the result has an exponent greater than +63 (32,767) the exponent

overflow interrupt is set. If the result has an exponent less than

-63 (32,767) the exponent underflow interrupt is set.

INTEGER DIVIDE (IDIV) 84.
The operand in the B register is algebraically divided by the op­

erand in the A register and the integer part of the quotient is

left in the B register. After the operation the A register is

marked empty and the B register is marked full.

If the mantissa of the B register is zero, the B register is set

to zero. If the mantissa of the A register is zero, the divide by

zero interrupt is set. The operation is terminated in either case.

If the mantissas of both operands are non-zero, the!y are normalized.

If the exponent of the B register is algebraically less than the

7-4

exponent of the A register after both operands have been normalized,

the B register is set to zero. If the exponent of the B register

is algebraically equal to or greater than the exponent of the A

register the divide operation proceeds until an integer quotient

or a quotient of 13(26) significant digits is calculated.

If an integer quotient is developed, the quotient is left in the

B register with zero exponent for S.P. and the exponent set to 13

for D.P. If a non-integer quotient is developed, the integer

overflow interrupt is set.

REMAINDER DIVIDE (RDIV) 85.
The operand in the B register is algebraically divided by the op-

erand in the A register to develop an integer quotient. The re-

mainder of this Division is left in the B register. If this re-

mainder is an integral value it is in the form of an integer (ex-

ponent = 0 for S.P., 13 for D.P.). After the operation the A

register is marked empty, the B register is marked full.

If the mantissa of the B register is zero, the B register is set

to zero. If the mantissa of the A register is zero the divide by

zero interrupt is set. In either case the operation is terminated.

If both mantissas are non-zero, both operands are normalized. If

the exponent of the B register is algebraically less than the ex­

ponent of the A register after both operands have been normalized,

the operand in the B register is the result. If the exponent of

the B register is algebraically equal to or greater than the ex­

ponent in the A register, the divide operation proceeds until an

integer quotient is developed and the remainder is then placed in

the B register.

If a non-integer quotient is developed, the integer overflow in­

terrupt is set and the operation is terminated.

INTEGERIZE, TRUNCATED (NTIA) 86.

The operand in the B register is converted to integer form without

rounding and left in the B register.

7-5

If the operand in the B register can not be integ19rized, i.e., the

exponent is greater than the number of leading zeros in the oper­

and, the integer overflow interrupt is set and the operation is

terminated.

INTEGERIZE, ROUNDED (NTGR) 87.
The operand in the B register is converted to integer form. Round­

ing takes place if the absolute value of the fraction is greater

than 4. The rounded result is left in the B register.

If the operand in the B register can not be integerized, i.e., the

exponent is greater than the number of leading zeros in the oper­

and, the integer overflow interrupt is set and the operation is

terminated.

The operand is rounded if necessary by adding one to the mantissa.

If a non-integer results from this operation, the integer overflow

interrupt is set.

TYPE-TRANSFER OPERATORS.

SET TO SINGLE-PRECISION, TRUNCATED (SNGT) CC.

The operand in the B register is set to a single-precision operand,

or in the case of a data descriptor, the double-precision bit is

set to zero.

If the word in the B register is a non-indexed, double-precision

data descriptor, the double-precision bit is cleared to zero and

the length field multiplied by 2.

If the double-precision operand in the B register has an exponent

greater than +63 the exponent overflow interrupt j_s set. If the

exponent is less than -63 exponent underflow is set, and the op­

eration is terminated.

If the operand in the B register is a double-precision operand

with an exponent less than +63 or greater than -63 the operand is

normalized, and the tag field in the B register is set to single

precision.

7-6

If the word in the B register is not an operand or a Data Descrip­

tor, then the invalid operand interrupt is set and the operation

terminated.

If the operand is single-precision, it is normalized and the opera­

tion is terminated.

SET TO SINGLE-PRECISION, ROUNDED (SNGL) CD.

The operand in the B register is changed to a rounded, single­

precision operand.

If the double-precision operand in the B register has an exponent

greater than +63 the exponent overflow is set. If the exponent is

less than -63 the exponent underflow is set. In either case the

operation is terminated.

If the operand in the B register is a double-precision operand with

an exponent less than +63 or greater than -63 the operand is nor­

malized, the tag field in the B register is set to single-precision,

and the operand in the B register is rounded from the Y register.

The Y register is set to zero.

If a carry is developed during the rounding operation the operand is

adjusted and the new exponent is checked as above.

If the operand is a single-precision operand, the operand is nor­

malized and no rounding occurs. The action is as stated for the

Set to Single-Precision, Truncated.

SET TO DOUBLE-PRECISION (XTND) CE.

The word in the B register is set to a double-precision operand with

the Y register set to zero. If a single-precision data descriptor

is present in the B register the double precision bit is set to one.

If the word in the B register is a data descriptor with both the

index bit and double-precision bit zero, the double-precision bit

is set to one and the length field is divided by two.

7-7

If the operand in the B register is a double-precision operand

the operation is complete. If it is a single-precision operand

the tag field in the B register is set to double-precision and the

Y register is set to all zeros.

If the word in the B register is not an operand or a Data Descrip­

tor, then the invalid operand interrupt is set and the operation

terminated.

LOGICAL OPERATORS.

LOGICAL AND (LAND) 90.

Each bit of the B operand, except for the tag bits, is set to one

where a one appears in the corresponding bit posit:ions in both the

A operand and the B operand. The other information bits of the B

operand are set to zero. The tag of the B operand is not disturbed,

unless the tag of the A operand specifies double-precision, in which

case,the B operand tag is set to double-precision.

LOGICAL OR (LOR) 91.

All bit positions of the B operand except the tag bits, are set to

one if the corresponding bit position in either the A operand or

the B operand is one, otherwise the bit is set to zero. The tag

bits are set to the value of the second item in the stack except

when the A operand is double-precision, in which case, the B reg­

ister tag is set to double-precision.

LOGICAL NEGATE (LNOT) 92.

Every bit in the A operand is complemented except the tag field,

which remains unchanged.

LOGICAL EQUIVALENCE (LEQV) 93.

Each bit of the B operand is set to 1 except the tag bits, when

the corresponding bits of the A operand and the B operand are equal.

Each bit of the B operand is set to 0 except the tag bits, when the

corresponding bits of the A and B operands are not equal. The tag

field is normally set to the value of the second item in the stack

except when the A operand is double-precision, in which case the

B register tag is set to double-precision.

7-8

RELATIONAL OPERATORS.

The relational operators perform algebraic comparison on the op­

erands in the A register and the B register. The single precision

result is left in the B register. The result is an operand in in­

teger form with the value one if the relationship has been met or

an operand with all information bits set to zero ~f the relation­

ship was not met. All relational operations compare the B operand to

the A operand.

LOGICAL EQUAL (SAME) 94.

All bits, including tag bits, of the A operand and B operand are

compared. If all bits are equal, a single precision operand with

bit zero set to one and all other information bits set to zero is

stored in the B register. Otherwise, a single-precision operand

with all information bits set to zero is stored in the B register.

GREATER THAN (GRTR) SA.

If the B operand is algebraically greater than the A operand, the

B register is set to an integer form one.

the B register are zero.

Otherwise, all bits in

GREATER THAN OR EQUAL (GREQ) S9.

If the B operand is algebraically greater than or equal to the A

operand, the B register is set to an integer form one.

all bits in the B register are zero.

EQUAL (EQUL) SC.

Otherwise,

If the operands in the B and A registers are algebraically equal,

the B register is set to an integer form one.

in the B register are zero.

LESS THAN OR EQUAL (LSEQ) SB.

Otherwise, all bits

If the B operand is algebraically less than o~ equal to the operand

in the A register, the B register is set to an integer form one.

Otherwise, the B register bits are all zero.

7-9

LESS THAN (LESS) 88.

If the operand in the B register is algebraically less than the

operand in the A register, set the B register to an integer form

one. Otherwise, the bits in the B register are all zero.

NOT EQUAL (NEGL) 8D.

If the operand in the B register is not algebraically equal to the

operand in the A register, set the B register to an intege~ form

one. Otherwise, the bits in the B register are all cleared to

zero.

BRANCH OPERATORS.

Branch instructions break the normal sequence of serial instruction

fetches. Branching may be either relative to the base address of

the current program segment or to a location in another program

segment. Branch operators may be conditional or unconditional.

BRANCH FALSE (BRFL) AO.

If the low order bit of the A register is zero, the Program Index

Register and Program Syllable Register are set from the next two

syllables in the program string.

vanced three syllable positions.

Otherwise, PIR and PSR are ad-

The two syllables following the ac tua~L operator syllable form the

new PIR and PSR settings as follows: The three high order bits are

placed into Program Syllable Register and the next 13 low order

bits are placed in the Program Index Register. The Program Regis­

ter (P) is marked empty to cause an access to the new program word.

BRANCH TRUE (BRTR) Al.

If the low order bit of the A register is one, the Program Index

Register and Program Syllable Register are set from the next two

syllables in the program string.

vanced three syllable positions.

Otherwise, PIR and PSR are ad­

The Branch True Operator uses

the two syllables as described for the Branch False operator.

BRANCH UNCONDITIONAL (BRUN) A2.

Program Index Register and the Program Syllable Register are set

7-10

from the next two syllables of the program string. The Branch

Unconditional operator uses the two syllables as described for the

Branch False operator.

DYNAMIC BRANCH FALSE (DBFL) AS.

If the low order bit of the B register is zero and the word in the

A register is a Program Control Word, or an indirect reference to

one, branch to the specified syllable of that program segment.

If the low order bit of the B register is zero and the word in the

A register is an operand, PIR and PSR are set from this operand.

If the word in the A register is an operand, it is used in the

following manner: The operand is made into an integer. If it is

negative or is greater than 16,384, the invalid index interrupt is

set and the operation is terminated. If bit zero of the operand

is zero, PSR is set to zero, otherwise PSR is set to three. The

next higher order 20 bits are placed in the Program Index Register.

The Program Register is then marked empty to cause access to the

new program word.

DYNAMIC BRANCH TRUE (DETR) A9.
If the low order bit of the B register is one and the word in the A

register is a Program Control Word, or an indirect reference to one,

branch to the specified syllable of the program segment.

If the low order bit of the B register is one and the word in the A

register is an operand, PIR and PSR are set from this operand.

The operand in the A register is used in this operator in the man­

ner described for the Dynamic Branch False operator.

DYNAMIC BRANCH UNCONDITIONAL (DBUN) AA.

If the word in the A register is a Program Control Word or an in­

direct reference to one, branch to the specified syllable of the

program segment.

If the word in the A register is an operand, PIR and PSR are set

from this operand.

7-11

The operand in the A register is used in this operator in the same

manner described for the Dynamic Branch False operator.

STEP AND BRANCH (STER) A4.

The increment field of the step-index word addressed by the contents

of the A register, is added to its current-value field. If the

current-value field is then greater than the final-value field,

Program Index Register and Program Syllable Register are set from

the next two syllables from the program string. Otherwise, Program

Index Register and the Program Syllable Register are advanced three

syllables. The step-index word is replaced in memory.

If no SIW is in memory, and if an operand is found, it is

left in the stack. The A register is set to zero, PIR/PSR are ad-

vanced and the next operator is executed. If no operand is en-

countered, the invalid operand interrupt is set.

UNIVERSAL OPERATORS.

NO OPERATION (NOOP) FE.

No operation takes place when this syllable is encountered. PIR

and PSR are advanced to the next operator.

valid in Variant Mode and Edit Mode.

This operator is also

CONDITIONAL HALT (HALT) DF.

This operator halts the processor if the conditional halt switch

is in the ON position. If the conditional halt switch is OFF, the

operator is treated as a NOOP.

Variant Mode and Edit Mode.

This operator is also valid in

INVALID OPERATOR (NVLD) FF.

This operator sets the invalid operand interrupt.

in Variant Mode and Edit Mode.

STORE OPERATORS.

It is also valid

The store operators use the words in the A register and B register.

The operand in the B register is stored in memory at the location

addressed by an Indirect Reference Word or a Data Descriptor. If

the A register contains an operand a hardware interchange takes

7-12

place so that the operand is in the B register.

STORE DESTRUCTIVE (STOD) BS.

If the word in the A register is an operand the A and B operands are

interchanged. The Data Descriptor or IRW in the A register is the

address in memory where the operand in the B register (B, Y regis­

ters) is stored. After the operand is stored, the A register and

the B register are marked empty and the operation is complete.

If the word addressed by the Indirect Reference Word is a Program

Control Word, accidental entry occurs.

If the word addressed by the Data Descriptor has the memory protect

bit on (bit 48), the memory protect interrupt is set and the opera­

tion is terminated.

If the presence bit in the Data Descriptor is zero the presence bit

interrupt is set.

tion is restarted.

After the data has been made present the opera-

STORE NON-DESTRUCTIVE (STON) B9.

This operator functions the same way as the Store Destructive opera­

tor except that at the completion of this operator the operand is

left in the B register.

OVERWRITE DESTRUCTIVE (OVRD) BA.

This operator functions the same way as the Store Destructive,

except that it overrides memory protection checks.

OVERWRITE NON-DESTRUCTIVE (.ovRN) BB.

This operator functions the same way as the Store Non-Destructive,

except that it overrides memory protection checks.

STACK OPERATORS.

EXCHANGE (EXCH) B6.

The operands in the A register and the B register are exchanged.

The A and B registers may contain either operands or control words.

The control words are treated as operands by this operator.

7-lJ

DELETE TOP OF STACK (DLET) B5.

This operator marks the A register empty.

DUPLICATE TOP OF STACK (DUPL) B7.

The operand found in the B register is copied into the A register.

The A register is marked full.

PUSH DOWN STACK REGISTERS (PUSH) B4.

This operator stores the valid word/words from the A register and/

or B register into the memory portion of the stack. The A and B

registers are marked empty.

LITERAL CALL OPERATORS.

LIT CALL ZERO (ZERO) BO.

This operator sets the A register to zero and marks the register

full. The result is a single-precision operand.

LIT CALL ONE (ONE) Bl.

This operator sets the A register low order bit (bit 0) to one,

leaving all other bits set to zero. The A register is marked full.

The result is a single-precision operand.

LIT CALL 8 BITS {LT8) B2.

The syllable following the operator is the literal value to be

placed in the A register bits 7:8. The rest of the A register is

set to zero. The A register is marked as full and the Program

Syllable Register is set to the syllable following the literal.

LIT CALL 16 BITS (LT16) BJ.

The next two syllables following the operator are a 16-bit literal

value that is placed in the A register bi ts 15: 16 .. The rest of

the register is set to zero. The A register is marked full and

PSR is advanced past the 16-bit literal.

LIT CALL 48 BITS (LT48) BE.

The next program word is placed in the A register, and the A reg­

ister tag is set to zero. The A register is marked full, and PIR

and PSR are advanced to the program syllable following the 48-bit

literal value. This operator requires that the 48 bit literal in

7-14

the program string be word synchronized if the operator syllable is

in any syllable position other than syllable 5, the syllables in­

tervening are not executed and are filled with invalid OP-Codes.

MAKE PROGRAM CONTROL WORD (MPCW) BF.

This operator performs a Lit Call 48 Bits as described above; how­

ever, the tag is set to a PCW (lll) and the Stack Number Register

is placed in bits 45:10. The A register is marked full.

INDEX AND LOAD OPERATORS.

INDEX (INDX) A6.

The Index operator places the integerized value of the B register

into the 20-bit length/index field of the Descriptor in the A reg­

ister. The Descriptor is marked indexed (bit 45 is set to one).

The A register is marked full and the B register is marked empty.

If the word in the A register is an operand, the A operand is ex-

changed with the B operand. If the word in the A register is

neither a Descriptor nor an Indirect Reference Word Pointing to a

Descriptor, the invalid operand interrupt is set and the operation

is terminated.

If the indexing value is negative or greater than or equal to the

length field of the Descriptor the invalid index interrupt is set

and the operation is terminated.

If the descriptor is segmented, the index is part~tioned into two

portions by dividing it by the proper divisor determined by the

type of data referenced by the descriptor, (d. p. word-128, s. p.

word-256, 4-bit digit-3072, 6-bit character-2048, or 8-bit byte-

1536). The quotient is used as an index to the given descriptor to

fetch the array-row descriptor.

the row descriptor.

The remainder is used to index

If the Double-Precision bit (bit 45) in the Descriptor is one,

the index value in the B register is doubled. The balance of the

operation is as described in the first paragraph of this operator.

7-15

INDEX AND LOAD NAME (NXLN) AS.

This operator performs an Index operation, then a-f'ter the word in

the A register is indexed, the Data Descriptor pointed to by this

word is brought to the A register. The Copy bit (bit 46) of the

Data Descriptor is set to one and the A register is marked full.

If the presence bit (bit 47) is off, the address of the original

descriptor is placed in ~he address field of the stack copy. If

the word accessed by the index word in the A register is not a Data

Descriptor the invalid operand interrupt is set and the operation

is terminated.

If the Data Descriptor accessed by the indexed word in the A reg­

ister has the Index bit (bit 45) set to one the invalid operand

interrupt is set and the operation is terminated.

INDEX AND LOAD VALUE (NXLV) AD.

This operator performs an Index operation, then af'ter the word in

the A register is indexed the operand pointed to by this descriptor

is brought to the A register. The A register is marked full.

If the word accessed is other than an operand the invalid operand

interrupt is set and the operator is terminated.

LOAD (LOAD) BD ..

The Load operator places the word addressed by the IRW or INDEXED

DATA DESCRIPTOR in the A register.

If at the start of this operator the A register contains other than

a Data Descriptor or an Indirect Reference Word pointing at a Data

Descriptor, the invalid operand interrupt is set and the operation

is terminated.

If the word pointed at by the Data Descriptor is another Data Des­

criptor, that Data Descriptor is marked as a copy (Copy bit [bit 46]

is set to one) and if the presence bit (bit 47) is off, the address

of the original is placed in bits 19:20 of the copy in the stack.

7-16

SCALE OPERATORS.

Higher-level languages such as COBOL require integer arithmetic.

The Scale Operators provide the means of aligning decimal points

prior to performing the arithmetic operations. In addition, the

Scale Right operators provide for binary to decimal conversions.

SCALE LEFT (SCLF) CO.

This operator uses the second syllable as the scale factor. The

operand to be scaled is placed in the B register and integerized.

The resulting integer is then multiplied by 10 raised to the power

specified by the scale factor.

If scaling of a single-precision operand results in overflow the

single-precision operand is converted to a double-precision inte-

ger. A double-precision integer is defined as a double-precision

operand with an exponent equal to lJ.

If scaling of the operand results in an exponent greater than lJ,

(double-precision operand), the overflow FF is set to one.

DYNAMIC SCALE LEFT (DSLF) Cl.

This operator performs the same operation as the Scale Left opera­

tor; however, scale factor is taken from the A register rather than

the program syllable following the operation syllable. The op-

erand in the A register is integerized before the scale.

SCALE RIGHT SAVE (SCRS) C4.

This operator uses its second syllable as the scale factor. The

operand to be scaled is placed in the B register and is then in-

tegeriz ed. The resultant integer is then effectively divided by

10 raised to the power specified by the scale factor.

The quotient resulting from the division is left in the A register.

The operand in the B register is

to decimal (4 bit digits) and is

are both marked full.

the remainder which is converted

left justified. A and B registers

If the scale factor is greater than 12, the invalid operand inter­

rupt is set and the operation is terminated.

7-17

DYNAMIC SCALE RIGHT SAVE (DSRS) C5.
This operator performs the same operation as the Scale Right Save

operator; however, the scale factor is obtained from the A regis­

ter rather than the program syllable following the operation syl­

lable. The operand in the A register is integerized before being

used.

SCALE RIGHT TRUNCATE (SCRT) C2.

This operator performs a Scale Right function using its second syl­

lable as the scale factor. The B register is marked as empty at

the conclusion of this operator.

DYNAMIC SCALE RIGHT TRUNCATE (DSRT) CJ.

This operator performs the same operation as the Scale Right Trun­

cate except that the scale factor is found in the A register and

is first integerized by the operator.

SCALE RIGHT FINAL (SCRF) C6.

This operator performs a Scale Right operation except that the

quotient in the A register is deleted by marking the A register

empty. The sign of the quotient is placed in the external sign

flip flop.

If the quotient was non-zero at the conclusion of the operation the

overflow flip flop is set.

DYNAMIC SCALE RIGHT FINAL (DSRF) c7.
This operator performs a Scale Right Final operation with the scale

factor found in the A register which is integerized by the opera­

tor before use.

SCALE RIGHT ROUNDED (SCRR) C8.

This operator performs a Scale Right operation and the quotient is

rounded by adding one to it if the most significant digit of the

remainder is equal to or greater than five. The re~mainder is de­

leted from the stack by marking the B register empty.

7-18

DYNAMIC SCALE RIGHT ROUND (DSRR) C9.

This operator performs a Scale Right Rounded operation with the

scale factor found in the A register.

BIT OPERATORS.

The Bit operators are concerned with a specified bit in the A reg­

ister and/or B register.

BIT SET (BSET) 96.

This operator sets a bit in the A register. The bit that is set

is specified by the program syllable following the operation

syllable.

If the program syllable defining the bit to be set has a value

greater than 47, the invalid-operand interrupt is set and the op­

eration is terminated.

DYNAMIC BIT SET (DEST) 97.

This operator performs a Bit Set Operation upon the bit specified

by the operand in the top of stack register. This word is integer­

ized before using it as a bit number.

If the word in the top of stack register is not an operand an in­

valid operand interrupt is set and the operation is terminated.

If after being integerized the operand is less than zero or greater

than 47, an invalid operand interrupt is set and the operation is

terminated.

BIT RESET (ERST) 9E.

This operator resets a bit in the A register. The bit that is reset

is specified by the syllable following the operation syllable.

If the program syllable defining the bit to be reset has a value

greater than 47, an inval1d-operand interrupt is set and the opera­

tion is terminated.

7-19

DYNAMIC BIT RESET (DBRS) 9F.

This operator performs a Bit Reset operation upon/the bit specified

by the operand in the top of stack register.

If the word in the top of the stack register is not an operand an

invalid operand interrupt is set and the operation is terminated.

If after being integerized the operand is less than zero or greater

than 47, an invalid operand interrupt is set and the operation is

terminated.

CHANGE SIGN BIT (CHSN) 8E.

The sign bit (bit 46) of the top-of-stack operand is complemented,

i.e., if it is a one it is set to zero, if zero it is set to one.

TRANSFER OPERATORS.

The Transfer Operators transfer any field of bits from one word in

the stack to any field of another word in the stack.

FIELD TRANSFER (FLTR) 98.

This operator uses its following three syllables to establish the

pointers used in the field transfer. This is done in the following

manner: The second syllable of the operator is K. The third syl­

lable of the operator is G. The fourth syllable of the operator

sets the L register.

The field in the A register, starting at the bit position addressed

by G is transferred into the B register starting at the bit position

addressed by K. The length of the field in the A and B registers

is defined by L. When the specified number of bits have been trans­

ferred, the A register is set to empty the B register is marked full

and the operation is complete.

If the second or third syllables of the operator are found to be

greater than 47 or the fourth syllable is greater than 48, the in­

valid operand interrupt is set and the operation is terminated.

7-20

DYNAMIC FIELD TRANSFER (DFTR) 99.

This operator performs a Field Transfer operation with the exception

that the B register operand is L. The B register is then reloaded

from the stack and this operand is G. The B register is again

loaded from the stack and this operand is K.

If any of the three operands is a non-integer, it is first integer­

ized. Each is checked for a value less than zero or greater than

47 or 48 as specified in Field Transfer above. If either of these

conditions exist in any one of the three operands, an invalid op­

erand interrupt is set and the operation is terminated.

FIELD ISOLATE (ISOL) 9A.

This operator isolates a field of the word in the A register placing

it right justified in the B register. The balance of the B regis-

ter is cleared to zeros.

register is marked full.

The A register is marked empty and the B

The operator uses its second and third syllables as the BIT pointers.

The second syllable of the operator addresses the starting bit of

the field in the A register. The third syllable of the operator

specifies the length of the field to be isolated.

If the value of the second syllable is greater than 47 or the value

of the third syllable is greater than 48 an invalid operand inter­

rupt is set and the operation is terminated.

DYNAMIC FIELD ISOLATE (DISO) 9B.

This operator performs a Field Isolate operation except that the

first item in the stack specifies the length of the field to be

isolated. The second operand in the stack addresses the bit in the

word of the third item in the stack that is to be isolated.

If after being integerized the value of the first item in the stack

is less than zero or greater than 47 an invalid operand interrupt

is set and the operation is terminated.

7-21

If after being integerized the value of the second item in the

stack is less than zero or greater than 48 an invalid interrupt is

set and the operation is terminated.

FIELD INSERT (INSR) 9C.

This operator inserts a field from the A register into the B regis­

ter word. The field in the A registBr is right justified with the

length of the field specified by the third syllabJ_e of the operator.

The second syllable of the operand addresses the starting bit of the

field in the B register. At completion the A regj_ster is marked

empty and the B register is marked full.

If the value of the second syllable of the operator is greater

than 47 an invalid operand interrupt is set and the operation is

terminated.

If the value of the third syllable of the operato~ is greater than

48 an invalid operand interrupt is set and the operation is ter­

minated.

DYNAMIC FIELD INSERT (DINS) 9D.

This operator performs a Field Insert operation except the first

item in the stack is used as the insert field data. The second

item in the stack is used to specify the length of the field. The

third item in the stack is used to address the starting bit in the

receiving field in the B register. When operation is complete the

A register is marked empty and the B register is marked full.

If after being integerized the value of the second item in the

stack is less than zero or greater than 48 an invalid operand inter­

rupt is set and the operation is terminated.

If after being integerized the value of the third item in the stack

is less than zero or greater than 47 an invalid operand interrupt

is set and the operation is terminated.

7-22

STRING TRANSFER OPERATORS.

String Transfer operators give the system the ability to transfer

characters or words from one location in memory to another location

in memory. The source and destination pointers are set from String

Descriptors in the stack.

TRANSFER WORDS, DESTRUCTIVE (TWSD) DJ.

This operator requires three items in the top of the stack, an op­

erand, a String Descriptor or operand, and a String Descriptor.

The first operand is integerized and used as the count or repeat

field. The second item is either the source data or a descriptor

which points at the source string and the third item is used to

address the destination string. The number of words specified by

the repeat field are transferred from the source to the destina­

tion. At completion of the operation the A and the B registers

are marked empty.

This operation calls the Execute Single Micro, Transfer Words, and

End Edit operators before continuing with the program string.

If the memory protect bit is found on during the execution of the

Transfer Words operator, the segmented array interrupt is set and

the operation is terminated.

TRANSFER WORDS, UPDATE (TWSU) DB.

This operator performs the Transfer Words operator except that at

the completion of the transfer of data, the source and destination

pointers are updated to point to the location in memory where the

transfer ended. The A and B registers are both marked full.

TRANSFER WORDS, OVERWRITE DESTRUCTIVE (TWOD) D4.

This operator performs a Transfer Words, Destructive operation,

overriding the memory protection checks.

TRANSFER WORDS, OVERWRITE UPDATE (TWOU) DC.

This operator performs a Transfer Words, Update operation, over­

riding the memory protection checks.

7-23

TRANSFER WHILE GREATER, DESTRUCTIVE (TGTD) E2.

This operator transfers characters from a location in memory point­

ed to by the source pointer, to a location in memory pointed to by

the destination pointer, until the number of characters specified

has been transferred or the compare fails.

The first item in the stack is used as the delimiter. The second

item in the stack is the maximum number of characters to be trans­

ferred. The third item in the stack is the source data or a source

pointer and the fourth item in the stack is the destination pointer.

The delimiter character is retained while a call Execute Single

Micro operator initiates this operation. The character count is

placed in the repeat field register as the EXSD is completed. The

source and destination strings are checked for memory protection.

The source character is then compared with the delimiter. The

result of the compare is set in the True/False flip flop. If the

condition is met the TFFF is set to one, if it is not met it is

set to zero.

If the number of characters transferred was equal to the repeat

field the True/False flip flop will remain set to one. The A

and B registers are marked empty and the operation is complete.

If the comparison fails, the number of characters not transferred

is placed in the A register and the True/False flip flop is set to

zero.

If the first operand in the stack is not a S.P. operand an invalid

operator interrupt is set and the operation is terminated.

If either the source or destination word has a memory protect bit

on (bit 48=1) the segmented array interrupt is set and the opera­

tion is terminated.

If the second item in the stack is a descriptor it is used as the

source pointer and the length field or repeat field is set to 1,048,

575. All comparisons are binary (EBCDIC Collating Sequence).

TRANSFER WHILE GREATER UPDATE (TGTU) EA.

7-24

This operator performs a Transfer While Greater operation and up­

dates the source pointer and destination pointer to point at the

next characters in the source and destination strings. The Repeat

count is updated to give the number of characters not transferred.

If the operation is terminated because the relationship is not met,

the source pointer points at the character that failed the com­

parison.

TRANSFER WHILE GREATER OR EQUAL, DESTRUCTIVE (TGED) El.

This operator performs a Transfer While operation using the relation

greater than or equal to.

TRANSFER WHILE GREATER OR EQUAL, UPDATE (TGEW) E9.

This operator performs a Transfer While Greater or Equal operation.

The source pointer, destination pointers, and count are updated

at the conclusion of the operator.

TRANSFER WHILE EQUAL, DESTRUCTIVE (TEGD) E4.

This operator performs a Transfer While operation with the relation

used in comparison being equal.

TRANSFER WHILE EQUAL, UPDATE (TEGU) EC.

This operator performs a Transfer While Equal operation. The source

pointer, the destination pointer and count are updated at the con­

clusion of the operator.

TRANSFER WHILE LESS OR EQUAL, DESTRUCTIVE (TLED) EJ.

This operator performs a Transfer While operation, using the Less

than or Equal comparison.

TRANSFER WHILE LESS OR EQUAL, UPDATE (TLEU) EB.

This operator performs a Transfer While Less or Equal operation.

The source pointer, destination pointer and count are updated at

the conclusion of the operator.

TRANSFER WHILE LESS, DESTRUCTIVE (TLSD) EO.

This operator performs a Transfer While operation using the Less

than comparison.

7-25

TRANSFER WHILE LESS, UPDATE (TLSU) ES.

This operator performs a Transfer While Less operation. The source

pointer, destination pointer and count are updated at the conclusion

of the operator.

TRANSFER WHILE NOT EQUAL, DESTRUCTIVE (TNED) E5.
This operator performs a Transfer While operation, with the not

equal comparison.

TRANSFER WHILE NOT EQUAL, UPDATE (TNEU) ED.

This operator performs a Transfer While Not Equal operation. The

source pointer, the destination pointer and count are updated at

the conclusion of the operator.

TRANSFER UNCONDITIONAL, DESTRUCTIVE (TUND) E6.

This operator performs a Transfer While Greater or Equal, Destruc­

tive operation forcing a zero delimiter. This causes all charac­

ters to be equal or greater than the delimiter thus transfer will

continue for the length of the repeat field.

TRANSFER UNCONDITIONAL, UPDATE (TUNU) EE.

This operator performs a Transfer Unconditional operation. The

source pointer, the destination pointer and count are updated at

the conclusion of the operator.

STRING ISOLATE (SISO) D5.

This operator places in the top of the stack, right justified, the

number of characters specified by the repeat field. The first item

in the stack is the number of characters in the repeat field. The

second item in the stack is either an operand or a descriptor used

as the source pointer.

This operator calls and executes the Execute Single Micro, Single

Pointer operation before proceeding as above.

If the number of bits to be transferred is greater than 48 the item

is double-precision.

If the number of bits is greater than 96 an invalid operand inter­

rupt is set and the operation is te~1inatedG

7-26

If the source data has the memory protect bit (bit 48) set to one

the segmented array interrupt is set and the operation is terminated.

COMPARE OPERATORS.

The Compare Operators perform the specified compare of two strings

of data. The True/False flip flop is conditioned by the results

of the compare.

COMPARE CHARACTERS GREATER, DESTRUCTIVE (CGTD) F2.

This operator compares the characters of the two character strings.

If the characters in the B string are greater than the characters

in the A string the True/False flip flop is set to one. If not

the True/False flip flop is set to zero.

The first item in the stack is an operand which contains the length

of the fields being compared. The second item in the stack is an

operand or a descriptor pointing at the character string to be

compared against. The third item in the stack is a descriptor

pointing at the character string to be compared.

The operator compares characters until it encounters a pair which

are unequal. If the B string character is greater than the A string

character, the TRUE/FALSE F.F.is left set otherwise it is reset.

Memory access then continues until the repeat count is exhausted.

If the Repeat count is less than or equal to zero, the True/False

F.F. is reset.

If either of the data strings has the memory protect bit on (bit

48=1) the segmented array interrupt is set and the operation is

terminated.

All comparisons are by the binary character position in the col­

lating sequence.

COMPARE CHARACTERS GREATER, UPDATE (CGTU) FA.

This operator performs a Compare Characters Greater operation. The

source pointer and destination pointer are updated at the conclusion

of the operator.

7-27

COMPARE CHARACTERS GREATER OR EQUAL, DESTRUCTIVE (CGED) Fl.

This operator performs the Compare Characters ope.ration with the

comparison being greater than or equal. If the repeat count < O,

the True/False flip flop is set to zero.

COMPARE CHARACTERS GREATER OR EQUAL, UPDATE (CGEU) F9.

This operator performs a Compare Character Greater or Equal opera-

ti on. The source pointer and destination pointer are updated at

the conclusion of the operator.

COMPARE CHARACTERS EQUAL, DESTRUCTIVE (CEGD) F4.

This operator performs the Compare Characters operation using the

Equal comparison. If the repeat count < O, then TFFF is set to one.

COMPARE CHARACTERS EQUAL, UPDATE (CEGU) FC.

This operator performs a Compare Characters Equal operation. The

source pointer and destination pointer are updated at the conclu­

sion of the operator.

COMPARE CHARACTERS LESS OR EQUAL, DESTRUCTIVE (CLED) FJ.

This operator performs the Compare Characters operation with the

Less than or Equal comparison.

is set to zero.

If the repeat count < O, then TFFF

COMPARE CHARACTERS LESS OR EQUAL, UPDATE (CLEU) FB.

This operator performs a Compare Characters Less or Equal opera­

tion. The source pointer and destination pointers are updated at

the conclusion of the operator.

COMPARE CHARACTERS LESS, DESTRUCTIVE (CLSD) FO.

This operator performs the Compare Characters operation with the

Less than comparison.

to zero.

If the repeat count < O, the TFFF is set

COMPARE CHARACTERS LESS, UPDATE (CLSU) F8.

This operator performs a Compare Characters Less operation. The

source pointer and the destination pointer are updated at the con­

clusion of the operator.

7-28

COMPARE CHARACTERS NOT EQUAL, DESTRUCTIVE (CNED) F5.

'Ilhis operator performs the Compare Characters operation using the

Not equal relation. If the repeat count ~ O, then TFFF is set to

zero.

COMPARE CHARACTERS NOT EQUAL, UPDATE (CNEU) FD.

This operator performs a Compare Characters Not Equal operation.

The source pointer and the destination pointer are updated at the

conclusion of the operator.

EDIT OPERATORS.

TABLE ENTER EDIT, DESTRUCTIVE (TEED) DO.

This operator is used to control edit micro-instructions. These

edit micro-instructions are contained in memory as a table and not

as part of the normal program string. Upon entering this operator

program execution is transferred to a table of micro-instructions.

The last micro-instruction in this table must be the End Edit op-

erator (see section 9). The table contains Edit Mode operators.

The first item in the stack is a descriptor pointing to the table

of Edit Micro-Instructions. The second item in the stack is a S.P.

operand or a descriptor pointing at the source string. The third

item in the stack is a descriptor pointing at the destination.

If the first item in the stack is not a descriptor the invalid

operand interrupt is set and the operation is terminated.

If the second item in the stack is a S.P. operand it is the source

string.

If the third item in the stack is not a descriptor the invalid op­

erand interrupt is set and the operation is terminated.

If the destination pointer descriptor has the Read Only bit set to

one (bit 43) the memory protect interrupt is set and the operation

is terminated.

7-29

If the length is less than 13 the operand in the top of the stack

is a single-precision operand. If the operand is 13 or greater

the result is a double-precision operand.

If the length is not less than 25 an invalid operand interrupt is

set and the operation terminated.

If the second item in the stack is an operand it is the source

string, and is composed of 8-bit bytes.

If the source data has the memory protect bit (bit 48) set to one

the segmented array interrupt is set and the operation is terminated.

PACK, UPDATE (PACU) D9.

This operator performs a Pack operation, updating the source pointer

at the completion of the operator.

INPUT CONVERT OPERATORS.

INPUT CONVERT, DESTRUCTIVE (ICVD) CA.

This operator converts either 6-bit BCL code, 8-bit EBCDIC or 4-bit

digit code to an operand for internal arithmetic operations.

The first item in the stack is an operand that is integerized to

form the repeat field. The second item in the stack is a descrip­

tor used as a source pointer.

The Input Convert operator calls on the Pack operator. After this

operation is complete the 4-bit digit operand is converted to an

operand of the equivalent binary value.

The sign of the converted operand is then set from the True/False

flip flop. If the converted operand is a single-precision operand

the True/False flip flop is then set to one. If the converted

operand is a double-precision operand the True/False flip flop is

set to zero.

7-31

At the completion of the operator ~he B register is marked full.

The tag field is set to indicate either a single 9r a double-pre­

cision operand.

If the item in the top of stack after being integerized is greater

than 23 the invalid operand interrupt is set and the operation is

terminated.

INPUT CONVERT, UPDATE (ICVU) CB.

This operator performs an Input Convert operation. The source

pointer is updated at the completion of the operator.

READ TRUE FALSE FLIP FLOP (RTFF) DE.

This operator places the status of the True/False f:lip flop into

the low order bit position of the A register. The rest of the A

register is set to all zeros.

completion of this operator.

The A register is marked full at

SET EXTERNAL SIGN (SXSN) D6.

This operator places the mantissa sign of the top word of the stack

in the External Sign flip flop. This operand is not deleted from

the stack at the end of the operation~

READ AND CLEAR OVERFLOW FLIP FLOP (ROFF) D7.

Places the status of the Overflow flip flop in the least significant

bit of the A register, sets the rest of the A register to zero,

marks the register full and sets the Overflow flip flop to zero.

SUBROUTINE OPERATORS.

VALUE CALL (VALC) 00 =) 3F.

This operator loads into the A register the operand addressed by

the address couple formed by the concatenation of the six low order

bits of the first syllable and the eight bits of the following syl-

lable. The A register is marked full. Figures 7-1 and 7-2 are

simplified flow charts of the Value Call operator.

This operator makes multiple memory accesses if the word accessed

is either an indexed descriptor, Program Control Word, or an In­

direct Reference Word.

7-32

If the word accessed is an indexed Data Descriptor the word ad­

dressed by the Data Descriptor is brought to the top of the stack.

If the double-precision bit (bit 40) in the Data Descriptor is

equal to one, the other half of the double-precision operand is

brought to the X register.

If the word accessed by the Data Descriptor is another indexed Data

Descriptor the word addressed by that Data Descriptor is brought to

the top of the stack, and the above paragraph is repeated.

If a Data Descriptor does not address an operand SIW or another in­

dexed Data Descriptor an invalid operand interrupt is set and the

operation is terminated.

If the word accessed by the Value Call is an Indirect Reference

Word the word addressed by the IRW is accessed and evaluated. If

the word is an operand it is placed in the top of the stack.

If the word accessed by the Indirect Reference Word is another IRW

the operation continues as described above.

If the word accessed by the Indirect Reference Word is an indexed

Data Descriptor the operator proceeds as described above for Data

Descriptors.

If the word accessed by the Indirect Reference Word is a Program

Control Word an accidental entry into the subroutine addressed by

the PCW is initiated. A Mark Stack Control Word and a Return

Control Word are placed in the stack and an entry into the program

is made. Upon completion of the program a Return operator will

re-enter the flow Value Call at the label IRW, figure 7-2.

NAME CALL (NAMC) 40 =) 7F.
This operator builds an Indirect Reference Word in the A register.

The address couple is formed by concatenating the 6 low order bits

of the first syllable and the 8 bits of the following syllable.

The A register is marked full and the operation is complete.

7-33

7-34

REMEMBER
ALL

VALUE
CALL
DATA

PLACE
OPERAND

IN
"A" REGISTER

OBTAIN OTHER
HALF OF OPERAND

IN

OP.
COMPLETE

YES

Figure 7-1.

ADJ.
(0,2)

NORMAL

OBTAIN
WORD ADDRESSED

BY IRW

Flow of Value Call Operator

"ACCIDENTAL
ENTRY"

(CALL ON A
PROCEDURE)

OBTAIN WORD
ADDRESSED

BY DESC.

NO

Figure 7-2.

OBTAIN
WORD

ADDRESSED
BY DESC.

NO

OBTAIN
STACK VECTOR

DESC.

OBTAIN WORD
ADDRESSED

BY
SIRW

NO

YES

Flow of Value Call Operator (cont)

7-35

EXIT OPERATOR (EXIT) AJ.

This operator returns to a calling procedure from a called proce­

dure resetting all control registers from the Return Control Word

and the Mark Stack Control Word. ThE~ Exit opera tor does not re-

turn a value to the calling routine.

fied flow chart of the Exit operator.

Figure 7-3 shows a simpli-

RETURN OPERATOR (RETN) A7.

This operator performs an Exit operator with the exception that

an operand or name in the B register is returned to the calling

procedure. If a name is returned, and the V bit (bit 19) in the

MSCW is on, the name is evaluated to yield an operand as described

in VALC. Figure 7-4 shows a simplified flow chart of the Return

operator.

ENTER OPERATOR (ENTR) AB.

This operator is used to cause an entry into a procedure from a

calling procedure. Entry is to the program segment and syllable

addressed by the Program Control Word. Figure 7-5 shows a simpli­

fied flowchart of the Enter operator.

The Enter operator accesses the Indirect Ref'erence Word at F + 1

which points to the Program Control Word. The operator then builds

a Return Control Word into the stack at F + 1.

EVALUATE (EVAL) AC.

This operator loads the A register with an indexed Data Descriptor

or an Indirect Reference Word that addresses A "target", which

may be an SIW, an Un-Indexed Data Desc, a String Desc, or an op­

erand. The "target" may be referenced through a chain of descrip­

tors, accidental entries, or Indirect Reference Words. In any

case memory accesses will continue to be made until the target is

located. The A register is left containing the Data Descriptor or

the Indirect Reference Word which addresses the target.

is a simplified flow chart of the Evaluate operator.

7-36

Figure 7-6

ADJ (0, O)

OBTAIN
RCW

AT (F + 1)

SET UP
REGISTERS TO RETURN
TO PRIOR PROCEDURE I

SAVE BOSR AND CUT
BACK THE STACK

OBTAIN WORD
ADDRESSED

BY (F)

COMPUTE
ADDRESS OF

PREVIOUS
MSCW

NO

Figure 7-J.

OBTAIN PREVIOUS
MSCWAND

SAVE ADDRESS

NO

OBTAIN SEG. DESC.
ADDRESSED BY PDR.

SET PBR TO ADDRESS

YES OBTAIN NEW
STACK AND

SAVE
ADDRESS INFO

OBTAIN NEW
MSCW

IN S. D. & CAUSE A FETCH

OPER.
COMPLETE

Flow of Exit Operator

7-37

7-38

ADJ (0, 1)
(SAVE RETURNED VALUE)

OBTAIN
RCW

AT (F + 1)

SET UP
REGISTERS TO RETURN
TO PRIOR PROCEDURE I

SAVE BOSR AND CUT
BACK THE STACK

OBTAIN WORD
ADDRESS

BY (F)

COMPUTE ADDRESS
OF PREVIOUS
MSCW AND

SAVE VALUE BIT

Figure 7-4.

OBTAIN PREVIOUS
MSCW AND

SAVE ADDRESS

NO

OBTAIN SEG. DESC.
ADDRESSED BY PDR

SET PBR TO ADDRESS IN
S.D. & CAUSE FETCH

OPER.
COMPLETE

AND SAVE
ADDRESS INFO

UPDATE D.,U
AND OBTAIN
NEW MSCW

GO TO EVAL
OPERATOR

&
SET "T" REG.
TO VALC OP.

Flow of Return Operator

NO

ADJ (0, 0)
AND OBTAIN WORD

ADDRESSED BY

OBTAIN WORD
ADDRESSED BY

IRW

SAVE OFF PRESENT
REGISTER SETTINGS

(RCW)

DISTRIBUTE
PCW

REGISTER SETTINGS

STORE
RCWAT
(F + 1)

STUFFED

YES

Figure 7-5.

OBTAIN NEW
PROGRAM

STACK

OBTAIN
MSCW

AT
F)

COMPLETE THE MSCW
AND STORE IT BACK

AT (F)

OBTAIN WORD
ADDRESSED BY

NEW PDR

PLACE PROGRAM
ADDRESS IN

PBR AND FORCE
A FETCH

OPER.
COMPLETE

Flow of Enter Operator

7-39

An indexed Data Descriptor is left in the A register when the tar­

get is referenced by an indexed Data Descriptor; a ;tuffed Indir­

ect Reference Word is left in the A register when the target is

referenced by Indirect Reference Words.

If the A register does not contain a Data Descriptor or an Indir­

ect Reference Word at the start of this operator an invalid operand

interrupt is set and the operation is terminated.

MARK STACK OPERATOR (MKST) AE.

This operator places a Mark Stack Control Word in the B register

containing a pointer to the previous Mark Stack Control Word in

the stack. It adjusts the stack to push the MSCW into Memory.

This operator is used to mark the stack when entry into a procedure

is anticipated.

STUFF ENVIRONMENT (STFF) AF.

This operator changes a normal Indirect Reference Word to a stuffed

Indirect Reference Word so that a quantity may be referenced from

a different addressing environment. The displacement field locates

the MSCW below the quantity and the index field locates the quan-

tity relative to the MSCW. Figure 7-7 shows a simplified flow

chart of the Stuff Environment operator.

If the word in the A register at the start of the operator is not

an Indirect Reference Word an invalid operand interrupt is set

and the operation is terminated.

If when creating this stuffed IRW other than a MSCW is accessed a

sequence error interrupt is set and the operation is terminated.

INSERT MARK STACK OPERATOR (IMKS) CF.

This operator builds a Mark Stack Control Word and places it below

the two top-of-stack quantities.

7-40

ADJ (1, 2)

OBTAIN
STACK VECTOR
DESCRIPTOR AT

DO+ 2

OBTAIN WORD
ADDRESSED BY

SIRW

SAVE THE
IRWIN

11A11 REGISTER

OBTAIN WORD
ADDRESSED BY

SIRW

OPER.
COMPLETE

MARK DESCRIPTOR
AS A COPY AND

SAVE IT IN THE
"A" REGISTER

OPER.
COMPLETE

Figure 7-6. Flow of Evaluate Operator

7-41

7-42

ADJ (1, 2)

OBTAIN WORD
ADDRESSED

BY
"D" REGISTER

YES

COMPUTE DISP. FIELD
SET LL FIELD TO ZERO

AND MARK IRW
AS STUFFED

OPER.
COMPLETE

NO

OBTAIN~
ST ACK VECTOR
DESCRIPTOR .l~T

DO+ 2

SAVE J STACK
BASE

ADDRESS

Figure 7-7. Flow of Stuff Environment Operator

SECTION 8

VARIANT MODE OPERATION AND OPERATOHS

GENEHAL.

The Variant Mode of operation extends the number of operation codes.

These operators are not used as often and require two syllables;

the first is the "Escape TO 16 Bit Instruction" (VAHI) operator.

When the VARI operator is encountered the following syllable is

the actual operation and the syllable pointer is positioned beyond

the two syllables. The VARI operator is valid only for the syl-

lables covered in this section.

Variant codes EO thru EF are detected and cause a programed op-

erator interrupt. All other unassigned variant codes cause no

action and result in a loop timer interrupt.

Variant Mode operations are both word and string-oriented operators.

OPERATORS.

SET TWO SINGLES TO DOUBLE (JOIN) 9542.

The operands in the A and B registers are combined to form a double­

precision operand that is left in the B and Y registers.

The operand in the A register is placed in the Y register. The A

register is marked empty and the B register tag field is set to

double-precision.

SET DOUBLE TO TWO SINGLES (SPLT) 9543.
The SP(DP) operand in the B register is changed to two single-pre­

cision operands which are placed in the A and the B registers, both

registers are marked full.

If the operand in the B register is a single operand, the A register

is set to zero and the A and B registers are marked full. Both the

A and the B register tag fields are set to single-precision.

8-l

If the operand in the B register is a double-precision operand the

Y register operand is placed in the A register and the tag fields

of both the A and B registers are set to single-precision.

IDLE UNTIL INTERRUPT (IDLE) 9544.
This operator suspends processor program execution until restarted

by an external interrupt.

rupts.

IIHF is reset to allow external inter-

SET INTERVAL TIMER (SINT) 9545. (Control State Oper.)

This operator places the 11 low-order bits of the B register into

the Interval Timer register, and arms the timer. The Interval

Timer decrements each 512 microseconds,- interrupting the proces-

sor when it reaches zero and is still armed. The Interval Timer

is disarmed when the processor is interrupted by an external inter­

rupt.

The operand used to set the Interval Timer is integerized before

the 11 low-order bits are used. If the operand can not be integer-

ized an integer overflow interrupt is set and the operation is

terminated.

ENABLE EXTERNAL INTERRUPTS (EEXI) 9546.
This operator causes the processor to enter normal state allowing

it to respond to external interrupts. This is accomplished by

setting the Normal-Control State (NCSF) and the Interrupt Inhibit

(IIHF) flip flops to zero.

DISABLE EXTERNAL INTERRUPTS (DEXI) 9547.
This operator causes the processor to ignore external interrupts.

This is accomplished by setting the Interrupt Inhibit flip flop to

one and entering control state.

SCAN OPERATORS.

The Scan operators communicate between the processor and the I/O

Data Com., or General Control Subsystems via a two section scan bus.

One section consists of 32 address and control line:s and the other

section, 48 data lines. The Scan-In functions read information

8-2

from the subsystem to the top of stack register in the processor.

The Scan-Out functions write information from the top of stack

registers in the processor to the subsystem.

Parity is checked during transmission of both address and infor­

mation, and a SCAN-BUS parity error interrupt is generated if the

check fails.

READ TIME OF DAY CLOCK.

This operation transfers the time-of-day register from the multi-

plexor to the B register. It is important to note that if the

system has multiple multiplexors only one time-of-day clock is

active. MPX A responds when a multiplexor is not designated.

As this operation is initiated, the A register contains the code

word shown in figure 8-1.

~\llllllll

:::: 111111111

48 >>~

Figure 8-1. Read Time-Of-Day Code Word

The time-of-day word resulting from this operation is shown in

figure 8-2. The B register is marked full and the A register is

marked empty at the completion of this operation.

Figure 8-2. Time of Day Word

8-3

READ GENERAL CONTROL ADAPTER.

This operation places the contents o:f one of the three general con-

trol registers into the B register. Figure 8-3 shows the format

of the function code word that is present in the A register as the

operation is initiated.

a a :::::::::::: 1 ===========~ a rn:::::?i

:: : :: : ::

11111111111~111111111111~·1111111111111
16

0

12 lllllillllll.

0

a lllllllllllll
0

4 111111111111

1

o

Figure 8-3. Read General Control Adapter Code Word

There are four General Control designations:

a. z
b. z
c. z
d. z

=

=

=

-

0001,

0010,

0100,

1000,

GCA A

GCA B

GCA C

GCA D

The N field can address or read one of four, 48-bit general control

adapter registers. The registers and their addresses are:

a. N = oo, Input Register.

b. N = 01, Interrupt Mask.

c. N = 10, Interrupt Register.

d. N = 11, Output Register.

The A register is marked empty, the B register contains the word

read from the general control adapter and is marked full as this

operation is completed.

READ RESULT DESCRIPTOR.

This operation places a result descriptor into the B register from

the multiplexor specified.

shown in figure 8-4.

8-4

The A register contains the code word

~::1111111111
Figure 8-4. Read Result Descriptor Code Word

Multiplexor designations are:

a.

b.

z = 0001,

z = 0010,

MPX A

MPX B

At the completion of this operation the B register contains the re­

sult descriptor shown in figure 8-5. The B register is marked full

and the A register is marked empty. The result is not defined if

the multiplexor has no result descriptor.

Figure 8-5. Result Descriptor

The result descriptor error field is divided into a standard error

field and unit error field. The unit error field bit assignments

are defined individually for each peripheral control:

a. Bit o, Exception.

b. Bit 1' Attention.

c. Bit 2, Busy.

d. Bit 3' Not ready.

e. Bit 4, Descriptor Error.

f. Bit 5, Memory Address

g. Bit 6, Memory Parity Error.

h. Bit 16, Memory Protect.

8-5

The "U.N." field in figure 8-5 is the unit number field.

field is the character count field.

READ INTERRUPT MASK.

The "C. C."

This operation places the interrupt mask word into the B register

from the multiplexor specified. The A register contains the code

word shown in figure 8-6.

Figure 8-6. Read Interrupt Mask Code Word

a.

b.

z = 0001,

z = 0010,

MPX A

MPX B

The B register contains the interrupt mask word as shown in figure

8-7 at the completion of this operator.

full, the A register is marked empty.

1 ~~1111111111

The B register is marked

1111111!/ :

3

2

0

Figure 8-7. Interrupt Mask Word

The mask bit assignments are:

a.

b.

c.

d.

8-6

Bit O,

Bit 1,

Bit 2,

Bit J,

Status Change.

D.C.P. - 1.

D.C.P. - 2.

D.C.P. - J.

e. Bit 4, D.C.P. - 4.
f. Bit 9, I/O finished.

The bit is set in the interrupt mask if recognition of the inter­

rupt is inhibited.

READ INTERRUPT REGISTER.

This operation places an interrupt register word into the B regis-

ter from the multiplexor specified.

code word shown in figure 8-8.

The A register contains the

Figure 8-8. Read Interrupt Register Code Word

a. Z = 0001 MPX A

b. Z = 0010 MPX B

The B register contains the interrupt register word as shown in

figure 8-9 at the completion of this operation and is marked full,

the A register is marked empty.

i I 1:1:111:1111111111 : : .

::::::::::::::::::: INT. REGISTER
t?\): 9 l _5l 1

/}ilk 8 4 0

Figure 8-9. Interrupt Register Word

8-7

The interrupt register bit assignments are:

a. Bit o, Status Change.

b. Bit 1, D.C.P. - 1.

c . Bit 2, D.C.P. - 2.

d. Bit J, D.C.P. - J.
e. Bit 4, D.C.P. - 4.
f. Bit 9, I/O Finish.

The bit is set in the Interrupt Status Register if the interrupt is

pending.

READ INTERRUPT LITERAL.

This function places the interrupt literal word into the B register

from the multiplexor specified.

word shown in figure 8-10.

The A register contains the code

ttI1 ° 19 ° 1 s 0
11 \Ii? 1

flt@ 0
18 ° 14 ° 10 titit 1

llif@ 0
17 ° 13 ° 9 fttt l

JJt t 0 0 m~rn~~~ l 0

Figure 8-10. Read Interrupt Literal Code Word

Multiplexor designations are:

a. Z = 0001 MPX A

b. Z = 0010 MPX B

At the completion of this operation the B register contains the

interrupt literal word as shown in figure 8-11 and is marked full,

the A register is marked empty.

8-8

4

Figure 8-11. Interrupt Literal Word

The interrupt literal bit assignments are:

a. Bits 3(4), 0001 = MPX A.

0010 = MPX B.

b. Bits 7(4), 0001 = D.C.P.

0010 = D.C.P.

0011 = D.C.P.

0100 = D.C.P.

1.

2.

3.

4.

0

1001 = Multiplexor I/O finished.

1111 = Status Change.

INTERROGATE PERIPHERAL STATUS.

This operation places one of eight possible status vector words

into the B register from one of the multiplexors. A B 6500 may

have up to 256 peripheral units designated in the system. This

configuration requires eight status vector words, each indicating

the ready status of 32 units. Vector word 0 interrogates the status

of units 0 through 31, vector 1 the status of units 32-63, etc.

The A register contains the code word shown in figure 8-12.

Figure 8-12.

::::::::::::::::::::: 0

:/:/:/:: 0

::::'.:'.:::\:/ 0

:::\:/:/: 0

Interrogate Peripheral Status Code Word

8-9

Multiplexor designations are:

a. Bit 0 M = O,

M = 1,

All multiplexors are to respond.

Multiplexor designated by Z to respond.

b. Bit 4(4); Z = 0001 MPX A

Z = 0010 MPX B

c . Bits ll(J), N = Status vector number, 0 thru 7.

At completion of this operation, the B register contains the status

vector word addressed by the value of N with the status vector word

in a format shown in figure 8-lJ. The B register :is marked full

and the A register is marked empty.

31 27 23 19 15 11
T

STATUS BITS
30 26 22 18 14 10

29 25 21 17 13 9 111111111111: : : 11111!!1!!1!1

~111111111111 32 28 24 20 16 12 8

Figure 8-lJ. Status Vector Word

A status-change bit is assigned to each line printer or display

unit and indicates completion of paper-motion or input request.

The X bit in the status vector word is on if the word is valid.

INTERROGATE PERIPHERAL UNIT TYPE.

This operation places the peripheral unit type word into the B

register from one of the multiplexors.

code word shown in figure 8-14.

8-10

The A register contains the

Figure 8-14. Interrogate Peripheral Unit Type Code Word

a. M = O, All multiplexors to respond.

b. M = l, Multiplexor designated by Z respond.

When M = l, the Z field MPX designations are:

a. Z = 0001, MPX A.

b. Z = 0010, MPX B.

Upon completion of this operator the B register contains the peri­

pheral unit type word as shown in figure 8-15 and is marked full;

the A register is marked empty.

Figure 8-15. Unit Type Code Word

The following codes identify the units:

Code Unit

a. 00 No unit.

b. 01 Disk File.

c . 02 Display.

d. o4 Paper-Tape Reader.

8-11

Code

e. 05

f. 06

g. 07

h. 09

i. OB(ll)

j. OD(13)

k. OE(l4)

l. OF(l5)

m. lD(29)

n. IE(30)

o. lF (31)

p. 26(38)

q. 27(39)

Unit

Paper-Tape Punch.

Buffered, Line-Printer I, BCL Drum.

Unbuffered, Line-Printer, BCL Drum.

Card Reader.

Card Punch.

Magnetic Tape(7 track). }

Magnetic Tape (9 track N.R.Z.).

Magnetic Tape (9 track P.E.).

Magnetic Tape (7 track). }

Magnetic Tape (9 track N.R.Z.).

Magnetic Tape (9 track P.E.).

With status
vector in­
formation.

No status
vector in­
formation.

Buffered Line-Printer, EBCDIC-subset drum.

Unbuffered Line-Printer, EBCDIC-subset drum.

INTERROGATE I/O PATH.

This operation determines the availability or absence of an access

to a specified unit. The result word is placed in the B register.

The A register contains the code word shown in figure 8-16.

\//\/ 0 ::::\:\:\:\:\

llililiilllll~lllllllllllll.
ili-i:iliiilii:::ii!ll!ii·i 16

Figure 8-16. Interrogate I/O Path Code Word

Primary Multiplexor designations are:

a. M = O, All multiplexors respond.

b. M = l, Multiplexor designated by Z to respond.

8-12

Multiplexors designations with M=l are:

a.

b.

z = 0001,

z = 0010,

Multiplexor A.

Multiplexor B.

At the completion of this operation the B register contains the

result word shown in figure 8-17 and is marked full; the A reg­

ister is marked empty.

:: 1111111111111

::::;::::::::::::::::. 0 ;:::;:::::: 0

15 11 :::::::::::::::::::::: 7 .~.i:~.i:!~.:i~:i.='='.='·~·i:~.~:, z . UN IT :::\:/:::\ 0
14 10 ·:::;:::;:::::;::::::: 6 {))

NU M BE R '.)/}:/ 0 .~.~:~.: ·.~.=.=.~.=.~.;.· :.;=::~.: ::~.=.=.i.=.~.= ... ~.~. Z •
13 9 :;::::::::::::::::::: 5

0

: 1111:111111 49 :;:;:;:;:;:;:;:;:;:;:·

0
48 :::::::::::::::::::::: 16 1 2111111111!111 O a llll!llllllll O 4 1111111~111111 A . 0

Figure 8-17. I/O Path Result Word

The A bit indicates path availability:

a.

b.

A = O,

A = 1,

No path available.

Path is available.

The Z field identifies the multiplexor when a path is available:

a.

b.

z = 0001,

z = 0010,

Path is via multiplexor A.

Path is via multiplexor B.

A data channel consists of a data switching channel and a peri­

pheral control.

SCAN OUT (SCNO) 954B.
Scan Out places bits 0-19 of the top-of-stack word on the scan-bus

address lines, and the second stack word on the scan-bus informa-

tion lines. An Invalid Address interrupt results if the address-

word is invalid. The A and B registers are empty upon successful

completion of a Scan-Out.

8-13

SET TIME OF DAY CLOCK.

This operation transfers the time of day information from the B

register to the time of day register in the multiplexor (figure 8-19).

The code word shown in figure 8-18 is in the A register. MPX A

responds when a multiplexor is not designated. An invalid-operand

interrupt results if the processor is not in control state.

At the completion of this operation the A and B registers are

marked empty.

::::::::;::::::::::: 0

:::::::::::;:::;:::: 0

:::::::::::::::::::: 0

:::::::::::::::::::: 0

16

0 ::::::::::;:::::::::;: 0 :;:;:::::::;:::::::::: 0

l 2 ::::/:/:/: 8 4 /:::::::::::;:::::

Figure 8-18. Set Time of Day Clock Code Word

2
lll1l,c\l!\l

1 35 31 27 23 l 9 l 5 l l 7
0-
~ 34 30 26 22 l 8 14 10 6
0 TIME OF DAY

~
W\I\\\\\\\\\\\\

33 29 25 21 l 7_J l 3 '9 5
0

3

48 ::::::::::::::::::~t 32 28 24 20 16J l 2 B 4 0

Figure 8-19. Time of Day Word

SET GENERAL CONTROL ADAPTER.

0

This operation sets one of three addressable general control adap-

ter registers from the word in the B register. The three general

control adapter registers that can be set are the output register,

interrupt mask register and the interrupt register~

8-14

The A register contains the code word shown in figure 8-20 and the

B register contains the output, the interrupt mask or the interrupt

word.

!,/f lil!lf I'~ : : : : : :.1':.~'./.,1\ .. '
1

.

1

:.
1

::.

1

.f :
11

'.:~:l.1.~; .. i.'.ll~i.J1.i.1J.11.11.f !.1~1.l.1.1.111.i1.l.1f .1

L:
: •• :~ .• 1 .. :.:)·:.:i:::il·:.::.:.:1.·.::1.:.·:.:::i· .. :i::'i: .. :.:1 .. :'.:i.:·.i.'. : 1

1
6<

" 12 I@:mm:::::::::tm
0

a ·mtilm z · 4111111111111
1

0

Figure 8-20. Set General Control Adapter Code Word

Multiplexor designations are:

a. Z = 0001, MPX A.

b. Z = 0010, MPX B.

Output, interrupt, or interrupt mask register designations are:

a. N = 00, Output.

b. N = 01, Interrupt mask register.

c. N = 10, Interrupt register.

At the completion of this operator both the A and B registers are

marked empty.

INITIATE I/O. (Control State Only}.

This operation initiates an I/O unit specified by the code word

in the A register. The code word format is shown in figure 8-21.

:: ::11,: :'ii''.: :11111
12 ~I!Il~It: 0

s lllllllllllll
0

4 1111111111!1! o

Figure 8-21. Initiate I/O Code Word

8-15

The B register holds the area descriptor and has the format shown

in figure 8-22. The area descriptor points to the base address

of the I/O area where the I/O control word is located (figure 8-2J).

At completion of this operator the A and B registers are marked

empty.

39 35 3 1 27 23 1 9 1 5 1 1 7 3
0 BUFFER AREA

50 38 34.J. 30 26 22 1 8 1 4 1 o_._ 6 2
I I

0 LE NGTH BASE ADORE SS

49 37 33 29 25 2 1 1 7 1 3 9 5
0

48 36 32 28 24 20 1 6 1 2 8 4 0

Figure 8-22. Area Descriptor

The I/O control word pointed to by the area descriptor is trans-

ferred to the multiplexor. It is divided into a standard control

field and a unit control field. The unit control field bit assign-

ments are defined individually for each control:

Figure 8-23. I/O Control Word

8-16

Bit Assignment Bit=O Bit=l

a. 47, Reserved ----- -----
b. 46, Reserved ----- - ----
c . 45, Attention No Yes

d. 44, Read/write write read

e. 43, Memory Inhibit No Yes

f. 42, Translate No Yes

g. 41, Frame length 6-bit 8-bit

h. 40, Memory protect No Yes

i. 39, Backward transfer No Yes

j . 38, Test No Yes

k. 37-36, Tag field transfer 37=1 36=0

1. 37-36, Store program tag 37=0 36=1

m. 37-36, Store single-precision tag 37=0 36=0

n. 37-36, Store double-precision tag 37=1 36=1

READ PROCESSOR IDENTIFICATION (WHOI) 954E.

This operator places in the A register a single-precision operand

containing the value of the processor ID register. The register is

marked full.

INTERRUPT OTHER PROCESSOR (HEYD) 954F.

This operator sets the processor interrupt register of the other

processor.

OCCURS INDEX (OCRX) 9585.

This operator places in the B register a new index value calculated

from the Index Control Word (ICW) in the A register (figure 8-24)

and the operand in the B register (figure 8-25).

8-17

47 43 39 35 3 1 27 23 1~\?f?It 1 5 1 1 7 3

0

34 30 26 22 1~ 1 4 1 0 6 2 50 :\:::;:::::::;::::: 46 42 38
....--~- ·~~---ie--~-----t--~--

0 SIZE

',~illllil!
OFF SET

33 29 25 2 1 17 1 3 9 5

32 tltIJ 28 24 20 1~ 1 2 8 4 0 44 40 36

LE NG TH
49 /:/:\:\ 45 41 37

- - ·:·:-:·:·:·:·:·:·:·:·:··~-4----+--+----r
0 :::::::::::::::::::::::

48 :\:/::;::::::;:

Figure 8-24. Index Control Word

47 43 39 35 31 27 23 1 9 1 5 1 1 7 3

50 46 42 38 34 30 26 22 1 8 14 10 6 2

I NDEX
49 45 41 37 33 29 25 21 17 1 3 9 5

48 44 40 36 32 28 24 20 1 6 1 2 8 4 0

Figure 8-25. Index Word

The index word in the B register is integerized: if the index is

greater than the maximum integer value (549,755,813,887) the in­

teger overflow interrupt is set and the operation terminated.

The length field of the ICW is multiplied by the index value minus

1, and that value is added to the offset field of the ICW. This

result is the new index. The A register is marked empty and the

B register is marked full.

If either the ICW or the operand has a value of zero, the invalid­

index interrupt is set and the operation is terminated.

If the index value is less than zero or greater than the size field

of the ICW, the invalid-index interrupt is set and the operation

is terminated.

8-18

INTEGERIZED, ROUNDED, DOUBLE-PRECISION (NTGD) 9587.

This operator creates a double-precision, rounded integer in the

B register from the operand in the B register. The B register is

marked full. If the word in the B register at the start of this

operator is not an operand, the invalid-operand interrupt is set

and the operation is terminated.

If the operand in the B register is larger than 8t26-l in absolute

value, the integer-overflow interrupt is set and the operation is

terminated.

The B register is marked as a double-precision operand (tag bits

set to 010) and the exponent is set to lJ.

LEADING ONE TEST (LOG2) 958B.

This operator locates the most significant "one" bit of the word

in the B register and places the location of that bit into the B

register (bit number+ l).

If a one bit is not sensed the B register is set to zero.

The B register is marked full.

MOVE TO STACK (MVST) 95AF.

This operator causes the processor's environment (or addressing

space) to be moved from the current stack to the program stack

specified by the operand in the B register.

The operator builds a Top of Stack Control Word (figure 8-26) and

places it at the base of the current stack as addressed by the Base

of Stack Register.

The operand in the B register is integerized and checked for in-

valid index against the stack vector. The value in the B register

is added to the address field of the stack vector Descriptor

(at D[0]+2), to address the descriptor for the new stack.

8-19

DSF 'ililiiiill DFF

ES - EXTERNAL SIGN FLIP-FLOP
0 - OVERFLOW FLIP-FLOP
T - TOGGLE, TRUE-FALSE FLIP-FLOP
F - FLOAT FLIP-FLOP
DSF - DELTA 5-REGISTER FIELD; VALUE OF rS RELATIVE TO BOSR
N - NORMAL-CONTROL STATE FLIP-FLOP
LL - ADDRESSING LEVEL
DFF - DELTA F-REGISTER FIELD; VALUE OF rF RELATIVE TO rS

Figure 8-26. Top of Stack Control Word (TSCW)

The Da.ta Descriptor for the requested stack is accessed. If its

presence bit is on, the address field is placed into the Base of

Stack Register. The Top of Stack Control Word is brought up and

the stack is marked "active" by storing the processor ID at the

base of the stack.

are updated.

The TSCW is distributed and the D registers

If during the integerization the operand in the B register is too

large, the integer-overflow interrupt is set and the operation is

terminated.

If the index value is less than zero or greater than the length

field of the Data Descriptor for the stack vector array, an invalid

index interrupt is set and the operation is terminated.

SET TAG FIELD (STAG) 95B4.

This operator sets the tag field (bits 50:J) in the B register to

the value of bits 2:3 of the operand in the A register. At the

completion of the operation the A register is marked empty and the

B register is left full.

8-20

READ TAG FIELD (RTAG) 95B5.
This operator replaces the word in the A register with a single­

precision operand equal to the tag field of that word. The tag

bits are placed in bits 2:3. The A register is marked full.

ROTATE STACK UP (RSUP) 95B6).
This operator permutes the top three operands of the stack so that

the first operand has become second, the second has become the

third, and the third has become the first (see figure 8-27).

BEFORE ROTATION AFTER ROTATION

rA WORD ONE rA WORD THREE

rB WORD TWO rB WORD ONE

S----+ WORD THREE s~ WORD TWO

Figure 8-27. Stack Rotation Up

ROTATE STACK DOWN (RSDN) 95B7.
This operator permutes the top three operands of the stack so that

the first has become third, the second has become the first, and

the third has become the second (see figure 8-28).

BEFORE ROTATION AFTER ROTATION

rA WORD ONE rA WORD TWO

rB WORD TWO rB WORD THREE

S---+ WORD THREE S---+ WORD ONE

Figure 8-28. Stack Rotation Down

8-21

READ PROCESSOR REGISTER (RPRR) 95B8.

This operator reads the contents of one of the eigkt Base registers,

eight Index registers or one of the 32 D registers into the A

register.

The six low order bits of the A register selects the processor reg­

ister to be read.

The decoding of these six bits is as follows:

a. Bits 5 & 4 = 10 = Index Register

b. Bits 2:3 = o, = PIR

= 1, = SIR

= 2, = DIR

= 3' = TIR, BUFJ

= 4, = TOSR

= 5' = BOSR

= 6, = F

= 7' = BUF

c . Bits 5 & 4 = 11 = Base Register

d. Bits 2: 3 = o, = PBR

= 1, = IBR

= 2' = DBR

= J, = TBR, BUF2

= 4, = s
= 5, = SNR

= 6, = PDR

= 7, = TEMP

If Bit 5 is zero, bits 4:5 select the D register equal to the

binary value of the bits. (i.e., Bits 4:5 = 00101 selects D reg-

ister 5.)

8-22

The A register at the completion of this operation contains the

contents of the register that was selected and is marked full.

SET PROCESSOR REGISTER (SPRR) 95B9.

This operator places the contents of the address field of the A

register into one of the eight Base registers, eight Index regis­

ters or 32 D registers selected by the six low-order bits of the

word in the B register.

The decoding of the six bits is the same as in the Read Processor

Register operator.

The A and B registers are marked empty.

READ WITH LOCK (RDLK) 95BA.

This operator performs the same operation as the Overwrite opera­

tor (see section 7) with the exception that the word which was in

memory before the overwriting is left in the B register.

COUNT BINARY ONES (CBON) 95BB.

This operator counts the number of one bits in the S.P.(D.P.) op­

erand in the A register. At the completion of the operation the

total count is left in the A register with the register marked full.

LOAD TRANSPARENT (LODT) 95BC.

This operator performs a Load operator (see section 7) if the word

in the A register is a Data Descriptor or an Indirect Reference Word.

If it is not either of these, bits 19:20 of the A register are used

as the address to bring an operand to the A register.

action does not occur.

LINKED LIST LOOKUP (LLLU) 95BD.

This operator searches a linked list of words.

Copy bit

The operator starts with an operand in the top of the stack as the

index pointer. The second word in the stack is a non-indexed Data

Descriptor to the array containing the linked list.

in the stack is an operand that is the argument.

The third word

8-23

The base address of the linked list, the length of the list and

the argument value are saved throughout the entire operator process.

The word addressed by the base address plus the index value is read

and checked for a value of zero in the address (Link) portion of

the word (zero denotes the end of the linked list). If the link

is non-zero, bits 47:28 are compared to the argument value. If

the argument of the linked-list word is less than the argument

value, the actions of this paragraph are repeated using the link as

the new index.

When the value of the argument field of the linked-list word is

equal to or greater than the argument value the operation is com-

plete. The index pointing to the word whose link points to the

argument which satisfies the test is left in the A register and is

marked full .

If the value of the link portion of the linked list word is equal

to zero, the A register is set to minus one (-1), and marked full

as the operation is completed.

If the index value in the linked list word is greater than the

length value from the descriptor, an invalid index interrupt is

set and the operation is terminated.

When the first word in the stack at the start of this operator is

not an operand an invalid-operand interrupt is set and the opera­

tion is terminated.

If the Data Descriptor has been indexed, the invalid-operand inter­

rupt is set and the operation is terminated.

MASKED SEARCH FOR EQUAL (SRCH) 95BE.

At the start of this operator the word in the A register must be a

Data Descriptor. The operand in the B register is a 51 bit mask.

The Data Descriptor in the A register and the mask in the B regis­

ter are saved and the 51 bit argument word is placed into the B

8-24

register. If the descriptor is indexable (bit 45 equal to zero),

the index bit (bit 45) is set and one is subtracted from the length

field. If bit 45 is equal to one the data descr~ptor is already

indexed, therefore, that index is the starting value.

The word addressed by the descriptor is placed in the A register

and ANDed with the mask word. The result of this AND function is

tested to determine if it is identical to the argument word.

If the comparison is not equal the index field of the descriptor

is decreased by one and the operation is repeated. If the index

field is equal to zero, the A register is set to a minus one value

and marked full. The B register is marked empty.

If an equal comparison is made, the A register contains the index

pointing at the last word compared and is marked full.

register is marked empty.

UNPACK ABSOLUTE, DESTRUSTIVE (UABD) 95Dl.

The B

This operator unpacks a string of 4-bit digits into 6-bit characters

or 8-bit bytes. At the start of the operator the word in the A

register defines the length of the operand in the B register which

is the string of digits to be unpacked.

The third word in the stack is a string descriptor addressing the

destination of the string.

As the specified number of digits are transferred to the destination,

zone fill is as follows:

a. If the destination size is 6 bits (BCL), the characters are

transferred to the destination with the two zone bits set

to zero.

b. If the destination size is 8 bits (EBCDIC) the bytes are

transferred to the destination string with the four zone

bits set to 1111.

c. If the destination size was O, it is set to 8-bits and

handled as in (b) above.

8-25

UNPACK ABSOLUTE, UPDATE (UABU) 95D9.

This operator performs an Unpack Absolute operati.op, and at the

completion of the operation, the destination pointer is updated

and left in the stack.

UNPACK SIGNED, DESTRUCTIVE (USND) 95DO.

This operator performs an Unpack operation, with an added function,

if the External Sign flip flop is set then a zone of 10 is set in

the last character for 6-bit or a zone of llOl is set in the last

byte for 8-bit.

If the destination size is 4-bit, the first digit position of the

destination string is set to llOl if the External Sign flip flop

is set. If the External Sign flip flop is zero the first digit

is set to 1100.

UNPACK SIGNED, UPDATE (USNU) 95D8.

This operator performs an Unpack Signed operation:, and at the com­

pletion of the operator, updates the destination pointer.

TRANSFER WHILE TRUE, DESTRUCTIVE (TWTD) 95DJ.

This operator transfers characters from the sourcE~ string to the

destination string for the number of characters specified by the

length operand while the stated relationship is met. If the rela­

tionship is not met the transfer is terminated at that point. The

relationship is determined by using the source character to index

a table. If the bit indexed is a one the relationship is true.

The operator uses the top four words in the stack to set up regis­

ters.

The stack words are used as follows: The top word addresses the table;

the second word is the length of the string to be transferred; the

third word in the stack is an operand or a descriptor, addressing

the source string or a single-precision operand which is the source

string' the fourth word in the stack is a descriptor pointing at

the destination string.

8-26

The table is indexed as follows to obtain the decision bit:

The source character is expanded to eight bits, if necessary, by

appending two or four leading zero bits. The three high-order bits

of these eight select a word from the table, indexing the table

pointer. The remaining five bits of the expanded source character

select a bit from this word by their value.

TRANSFER WHILE TRUE, UPDATE (TWTU) 95DB.

This operator performs a Transfer While True operation and updates

the source pointer, the destination pointer and repeat count.

If all the characters specified by the length field are transferred,

the True/False flip flop is set to one (true); otherwise, it is

set to zero (false).

TRANSFER WHILE FALSE, DESTRUCTIVE (TWFD) 95D2.

This operator performs a Transfer While operation testing for a

zero bit in the table.

TRANSFER WHILE FALSE, UPDATE (TWFU) 95DA.

This operator performs a Transfer While False operation, updating

the source pointer, the destination pointer, and the repeat count.

If all the characters specified by the length field are transferred,

the True/False flip flop is set to one (true); otherwise, it is set

to zero (false).

TRANSLATE (TRNS) 95D7.

This operator translates the number of characters specified as they

are transferred from the source string to the destination string.

The translation uses a table containing the translated characters.

The word in the top of the stack is a descriptor that addresses

the translation table. The second operand in the stack specifies

the length of the string. The third word in the stack is a des­

criptor addressing the source string (or an operand which is the

source string) and the fourth word in the stack is a descriptor

8-27

addressing the destination string. The source and destination are

updated at the end of the operation.

The translation occurs as follows: The specified string character

is used as an index into the table to locate a character. The

located character is transferred to the destination string.

The least significant 32 bits of each table word provide 4 eight

bit characters. The table sizes are as follows:

a. 4-bit digits provide a 4 word table length.

b. 6-bit characters provide a 16 word table length.

c. 8-bit bytes provide a 64 word table length.

SCAN WHILE GREATER, DESTRUCTIVE (SG~rD) 95F2.

This operator scans a string while the characters in the source

string are greater than a delimiter character; or until the num­

ber of characters specified have been scanned.

At the completion of this operator if all the characters have been

scanned the True/False flip flop is set to one. If the scan was

stopped by the delimiter test before the end of the string the True/

False flip flop is set to zero.

At the start of this operator the delimiter character is right

justified in the top word of the stack. Tl1e length of the string

to be scanned is the second word of the stack. 1'he source pointer

is the third word in the stack.

If the second word in the stack is a descriptor, it is the source

pointer and the length of the character string is set to 1,048,575.

SCAN WHILE GREATER, UPDATE (SGTU) 95FA.

This operator performs a Scan While Greater operation, and updates

the count and the source pointer. The updated source pointer lo-

8-28

cates the character that stopped the scan. The number of characters

not scanned is placed in the A register, and the register marked

full.

SCAN WHILE GREATER OR EQUAL, DESTRUCTIVE (SGED) 95Fl.

This operator performs a Scan While operation while the characters

in the source string are equal to or greater than the delimiter

character.

SCAN WHILE GREATER OR EQUAL, UPDATE (SEGU) 95F9.

This operator performs a Scan While Greater or Equal operation and

updates the count and the source pointer.

SCAN WHILE EQUAL, DESTRUCTIVE (SEQD) 95F4.

This operator performs a Scan While operation while the characters

in the source string are equal to the delimiter character.

SCAN WHILE EQUAL, UPDATE (SEQU) 95FC.

This operator performs a Scan While Equal operation and updates the

count and the source pointer.

SCAN WHILE LESS OR EQUAL, DESTRUCTIVE (SLED) 95FJ.

This operator performs a Scan While operation while the characters

in the source string are equal to or less than the delimiter char­

acter.

SCAN WHILE LESS OR EQUAL, UPDATE (SLEU) 95FB.

This operator performs a Scan While Less or Equal operation and

updates the count and source pointer.

SCAN WHILE LESS, DESTRUCTIVE (SLSD) 95FO.

This operator performs a Scan While operation while the characters

in the source string are less than the delimiter character.

SCAN WHILE LESS, UPDATE (SLSU) 95F8.

This operator performs a Scan While Less operation, and updates

the count and the source pointer.

8-29

SCAN WHILE NOT EQUAL, DESTRUCTIVE (SNED) 95F5.
This operator performs a Scan While operation while· the characters

in the source string are not equal to the delimiter character.

SCAN WHILE NOT EQUAL, UPDATE (SNEU) 95FD.

This operator performs a Scan While Not Equal operation, and

updates the count and the source pointer.

SCAN WHILE TRUE, DESTRUCTIVE (SWTD) 95D5.
This operator uses each source character as an index into a table

to locate a bit in the same fashion as the transfer while True

operators. If the bit located is a one, the relationship is true

and the scan continues.

The first word in the stack is a descriptor addressing the table.

The second and third words in the stack are as they are for all

Scan While operators.

SCAN WHILE TRUE, UPDATE (SWTU) 95DD.
This operator performs a Scan While True operation and updates the

count and the source pointer. The number of characters not scanned

is placed in the A register.

SCAN WHILE FALSE, DESTRUCTIVE (SWFD) 95D4.

This operator performs a Scan While False operation, except the re­

lation is true if the bit found by indexing into the table is zero.

SCAN WHILE FALSE, UPDATE (SWFU) 95DC.
This operator performs a Scan While False operation, and updates

the count and the source pointer.

8-JO

SECTION 9

EDIT MODE OPERATION AND OPERATORS

GENERAL.

The purpose of the Edit Mode operators is to perform editing func-

tions on strings of data. The editing functions are those which

are normally involved in preparing information for output. They

include such operators as Move, Insert, and Skip, in the form of

micro-operators in either the program string or in a separate table.

In the program string, they are single micro-operators and are

entered by use of the Execute Single Micro or Single Pointer oper-

a tors (see section 7). If the micro-operators are in a table, the

table becomes the program string that is to be executed. This

table is entered by means of the Table Enter Edit operators (see

section 7), and is exited through the End Edit micro-operator as

defined later in this section.

When using any of the Edit micro-operators the proper pointers must

be in the stack. Each of the micro-operators assume that if a

source pointer is used, a source pointer String Descriptor or the

source string itself as an operand will be present in the stack.

If a destination pointer is used a String Descriptor must be pre­

sent in the stack.

If the source or destination data has the memory protect bit (bit

48) equal to one, the segmented-array interrupt is set and the

current micro-operator is terminated.

EDIT MODE OPERATORS.

The Edit Mode operators are described in the following paragraphs

of this section.

MOVE CHARACTERS (MCHR) D7.

This micro-operator transfers characters from the source string

to the destination string.

If the operator was entered by the Table Enter Edit operator (see

9-l

section 7), the number of characters to be transferred is specified

by the syllable following the operator syllable.

If the operator is entered by the Execute Single Micro operator

(see section 7), the number of characters to be transferred is

specified by the operand in the top of the stack.

MOVE NUMERIC UNCONDITIONAL (MVNU) D6.

This micro-operator transfers the four low-order bits of the char­

acters of the source string to the destination string. If the

destination string character size is 6 bits (BCL) the zone bits

are set to 00. If the destination string character size is 8 bits

(EBCDIC) the zone bits are set to llll.

If the operator was entered by use of the Table Enter Edit operator

(see section 7) the number of characters to be transferred is

specified by the syllable following the operator syllable.

If the operator is entered by executing the Execute Single Micro

operator (see section 7), the number of characters to be trans­

ferred is specified by the operand in the top of the stack.

MOVE WITH INSERT (MINS) DO.

This micro-operator performs a Move Numeric Unconditional or an

insert operation under the control of the Float flip flop.

In Table Edit mode the second syllable is the repeat value and the

third syllable is the character to be inserted under control of the

Float flip flop.

In Execute Single Micro mode the repeat field value is the top

word of the stack and the insert character is in the syllable fol­

lowing the micro-operator syllable.

If the Float flip flop is zero and the numeric portion of the

source characters is zero, the insert character is moved to the

destination string.

If the Float flip flop is zero, or if the Float flip flop is on,

9-2

the Float flip flop is set and the source character, with numeric

zone, is moved to the destination.

The number of characters transferred from the source string to the

destination string is defined by the repeat value.

MOVE WITH FLOAT (MFLT) Dl.

In Table Edit mode the second syllable is the repeat value (the

number of characters to transfer). The third, fourth, and fifth

syllables are the three insert characters. In single-micro mode,

the three insert characters are in the second, third, and fourth

syllables.

If the Float flip flop is zero and the numeric portion of the char­

acter in the source string is zero, the first-insert character is

transferred to the destination string.

If the Float flip flop is zero and the numeric portion of the char~

acter in the source string is not zero the Float flip flop is set.

If the External Sign flip flop is a one, the second-insert charac-

ter is transferred to the destination string. If the External

Sign flip flop is zero the third-insert character is transferred to

the destination string. Then the numeric version of the source

character is transferred.

If the Float flip flop is one the numeric equivalent of the source

character is transferred to the destination.

This operation continues for the number of characters defined by

the repeat field value.

This operator can be entered by the Execute Single Micro operator,

with the repeat field value in the top word of the stack.

SKIP FORWARD SOURCE CHARACTERS (SFSC) D2.

This micro-operator increments the source pointer registers.

If this micro-operator or any of the following Skip micro-operators

9-3

is entered by the execution of the Execute Single Micro operator

the number of characters to be skipped is specifiecl by the operand

in the top of the stack. If entry is by the execution of the

Table Enter Edit operators, the number of characters to be skipped

is specified by the syllable following the micro-operator syllable.

SKIP REVERSE SOURCE CHARACTERS (SRSC) DJ.

This micro-operator decrements the source pointer registers.

Also see Skip Forward Source Characters micro-operator, second

paragraph.

SKIP FORWARD DESTINATION CHARACTERS (SFDC) DA.

This micro-operator increments the destination pointer registers.

SKIP REVERSE DESTINATION CHARACTERS (SRDC) DB.

This micro-operator decrements the destination pointer registers.

RESET FLOAT (RSTF) D4.

This micro-operator sets the Float flip flop to zero.

END FLOAT (ENDF) D5.

This micro-operator transfers the character in the second syllable

of this operator to the destination string if the Float flip flop

is zero and the External Sign flip flop is one.

If the Float flip flop is zero and the External Sign flip flop is

zero then the character in the third syllable of this operator is

transferred.

If the Float flip flop is equal to one, then it is reset and no

characters are transferred.

INSERT UNCONDITIONAL (INSU) DC.

This micro-operator places an insert character into the destination

string the number of times specified by the repeat value. When

entered by a Table Enter Edit operator, the REPEAT is in the sylla­

ble following the micro-operator syllable, and the insert character

is in the next syllable.

9-4

If this micro-operator is entered by an Execute Single Micro op­

erator, the character to be inserted is in the second syllable and

the repeat value is specified by the operand that is in the top of

the stack.

INSERT CONDITIONAL (INSC) DD.

This micro-operator inserts a string consisting of one of two char­

acters into the destination. The length of the string is given by

the repeat value from the table or the stack.

If the Float flip flop is zero the first insert character is in­

serted into the destination string.

If the Float flip flop is one the second insert character is in­

serted into the destination string.

The insert characters follow the repeat value syllable in Table

Enter Edit operation or the micro-operator syllable in Execute

Single Micro operations.

INSERT DISPLAY SIGN (INSG) D9.

This micro-operator places in the destination string the character

defined by the syllable following the micro-operator syllable if

the External Sign flip flop is equal to one.

If the External Sign flip flop is equal to zero this operator places

in the destination string the character defined by the third syll­

able of this operator.

INSERT OVERPUNCH (INOP) DB.
This micro-operator places a sign overpunch in the destination string

character of either 10 for BCL or 1101 for EBCDIC if the External

Sign flip flop is equal to one.

If the External Sign flip flop is equal to zero the operator leaves

the destination string character unaltered.

9-5

END EDIT (ENDE) DE.

This operator terminates a string of Edit micro-operators in Table

Enter Edit operation mode.

The micro program string in the table must end with the End Edit

operator.

9-6

SECTION 10

INPUT/OUTPUT MULTIPLEXOR AND PERIPHERAL CONTROLS

GENERAL.

The internal processing speed of the B 6500 is complemented by

equally powerful input/output (I/O) hardware to achieve a well­

balanced computing system. Transfer of all data between memory

and all peripheral devices is controlled by the I/O multiplexor,

independent of the processor. One or two of these multiplexors

may be attached to a B 6500, each one capable of processing up to

ten I/O operations simultaneously, from any of 28 peripheral

devices.

OPERATION.

A peripheral control bus extends from the multiplexor to the

various peripheral devices. Attached along this bus are from

one to 20 peripheral controls (figure 10-1). Information in one

or two-byte groups can be sent along the bus to or from any peri­

pheral control every l.2 microseconds~

INPUT/OUTPUT
MULTIPLEXOR

DATA
SWITCH
CHNLS.

Figure 10-1.

CARD
READER

MODEL
B 6110

p .c.

APPROP.
TAPE
P.C.

LINE
PRINT

MODEL
B 6240

P.C.

APPROP.
TAPE
P.C.

M/T
CLUSTER

* Total per side is 10 with a
maximum of 5 large per side

1 TO 10 1/0
UNITS OR SUB-
SYSTEMS REQ.
SMALL
PERI PH. CONTLS.

~TO 10

* PERI PH. CONTLS.

1TO10

CONSOLE
DISPLAY
TERMINAL
B 9342-1

1 TO 10 1/0 UNITS OR
SUBSYSTEMS REQ. LARGE
PERIPH. CONTLS.

Input/Output Subsystem

CARD
PUNCH

B 9213

MODEL MODEL
B 6340 B 6210

P.C. p .c.

APPROP. MODEL
TAPE B 6373
P.C.

P.C.

10-1

Either processor can initiate an operation on either multiplexor,

in a two processor/two multiplexor configuration, by executing a

Scan In/Out instruction. This instruction transfers an address

Word and a Data Word to the multiplexor. If the address Word spe-

cifies an Initiate I/O operation, then the data word is an Area

Descriptor. The multiplexor fetches the I/O Control Word located

at the Area Base Address (from the Area Descriptor) and initiates

the peripheral operation. Upon completion, the I/O Finish Interrupt

is set. The Result Descriptor is returned when processor executes

a Read Result Descriptor command.

DESCRIPTOH FORMATS.

The formats of the Address Word, Area Descriptor, and I/O Control

Word, respectively, are illustrated in figure 10-2~

47 0 0

-UNIT
0 NO. F z

0

44 20 16 12 8
10 M

4 0

ADDRESS WORD

le I 19 l H
BUFFER I AREA A

R --1 f----~LENGTH BASE

s WORDS ADDRESS
l_ l_ l.

l 20 l 0

AREA DESCRIPTOR

llll!l!l!I!
45

44 40 36 32 0

1/0 CONTROL WORD

Figure 10-2. I/O Descriptor Formats

10-2

ADDRESS WORD.

When M of the address word equals O, all active multiplexors re­

spond to the descriptor. When M equals 1, the multiplexor spe­

cified by the Z field responds to the command. (The 2-bit Z field

designates a specific multiplexor.) When Z equals 01 and Mis 1,

multiplexor A is selected. When Z equals 10 and M is 1, multiplexor

B is selected. All other bit combinations in the Z field are not

used. F-field codes are listed in table 10-l.

AREA DESCRIPTOR.

The area base address specifies the base address of the memory area.

Buffer length indicates the size of the area. The first word

of the area is the I/0 Control Word.

I/O CONTROL WORD.

The I/0 Control Word contains a standard control field and a unit

control field. Bits 35 - O,

for each peripheral control.

the unit control field, are unique

Bits 45 - 36, the standard control

field, are defined as follows:

Bit

45
44
43

42

41

40

39

38

37
36

Assignment

Attention

Read/Write

Memory Inhibit

Translate In Unit

Frame Length

Memory Prote.c t

Backward

Test

1001 (Tag bit

Bit ::::: 0

No

Write

No

No

6-bit

No

No

No

011' field) SStt

0

orree double-precision.

single-precision.

Store program tags.

""-------Tag field transfer.

Bit ::::: 1

Yes

Read

Yes

Yes

8-bit

Yes

Yes

Yes

Scan
Op er.

OUT

IN

F Bits Mnem.
8765

0000 IOIL

0011

0100

0000

0001

0010

0011

0100

0110

1111

STOD

SSIM

IIOP

IPST

RTOD

SRIR
SRIM

IPUT

SRIL

RESULT DESCRIPTOR.

Table 10-1

F Field Codes

Multiplexor
Operation

Designated MPX to Initiate an I/O Operation.
Bits 16 through 9 contain Unit Designate.

Set the Time Of Day Register.

Set the Interrupt Mask Register.

Interrogate I/0 path for upcoming Initiate
I/O operation.

Interrogate Peripheral Status of the desig­
nated Status Vector.

Read Result Descriptor.

Read Time of Day Register.

Read Interrupt Register or Interrupt Mask
Register.

Interrogate Peripheral Unit Type.

Read Interrupt Literal.

The format of the Result Descriptor is shown in figure 10-J.

Bits 47:20 indicate the final memory address at which the I/O

operation terminated. Bits 16:17 the error field, is subdivided

into a standard error field and a unit error field. The unit

error field bit assignments, bits 15:9 are unique for each peri­

pheral control. The standard error field bit assignments, bits

6:7 and 16 are as follows:

10-4

Bit

16

6

5

4

3
2

1

0

44

l l r -1
MEMORY
ADDRESS

1 l
I I

Figure 10-J.

Assignment

Memory Protection Error

Memory Parity Error

Memory Address Error

Descriptor Error

Not Ready

Busy

Attention

Exception

lcHAR I c
0 UNIT ERR~R u NO.

N FIELD
T l

28 24 16 I 0

Result Descriptor Format

PERIPHERAL UNITS AND ASSOCIATED PERIPHERAL CONTROLS.

Up to 256 I/O devices may be attached to a 2 multiplexor system.

These devices communicate with the multiplexor through a maximum

of 20 peripheral controls. One peripheral control cabinet houses

10 controls, 5 large and 5 small. Table 10-2 lists the peripheral

controls available excluding magnetic tape and disk file which are

listed separately.

CONSOLE.

The Console Control Center (figure 10-4) includes the Supervisory

Display and Keyboard, which allows the operator to communicate with

the system. The B 6340 Single Line Control connects the Console

Control Center and the multiplexor. Up to eight units can be ser-

viced by one Single line control. Figures 10-5 and 10-6 depict the

I/O Control word and the result descriptor for the Single Line

Control.

10-5

Style

B 9111
B 9112
B 9120
B 9213
B 9220
B 9242-1
B 9243-1
B 9342-1
B 9342-2

10-6

PC PC
Per!P_heral Units Style Type Peripheral Controls

800 CPM Card Reader B 6110 Small Card Reader Control
1400 CPM Card Reader B 6110 Small Card Reader Control
500-1000 CPS Pa_p__er Ta_Qe Reader B 6120 Small Pa_.Q_er Ta_.Q_e Reader Control
300 CPM Punch B 6210 Small Card Punch Control
100 CPS Pa_E_er Ta~e Punch B 6220 Small Paper Ta!!_e Punch Control
860 LPM Printer (120 Prt. Pos.) B 6240 Small Line .Printer Control

1100 LPM Printer(120 Prt.Pos., 44 Ch.' B 6240 Small Line Printer Control
Console Display Terminal B 6340 Large Console Display & Optional
Optional Printer/Keyboard Printer

Table 10-2. Peripherals and Controls

6:7

7

7 & 9
10

11

12

Figure 10-4. Console Control Center

47 27

25 17

28 24 16

Standard Error Field

Memory Access Error

Information Parity Error

Control Message

No ETX

Unit ID - B9J42-l

15 11 7

14 10 6

13 9

12 0

45

44

43

42

41

15 Time Out

16 Memory Protect Error (Read Only)

24:8 Unit Designate

27:3 Char. Count

47:20 Memory Address

Figure 10-5. Single Line Control Result Descriptor

43 39

42 38

41 37

44 40 36

= ATTENTION

= l READ 40 = 0

= 0 WRITE 39 = 0

= 0 38 = 0

= 0 37 = 0 } l 8 bit 36 0 tag bit field = =

Figure 10- 6. Single Line Control I/O Control Word

CARD READER.

The B 6110 Card Reader Control can be used with either the B 9111

(800 cpm) or B 9112 (1400 cpm) card readers (figure 10-7). The

input hopper and the output stacker have a capacity of 2400 cards

each. The card readers accept alpha, binary or EBCDIC card codes.

Alpha card code is converted to BCL by the card reader, which is

then converted into internal BCL or EBCDIC by translators in the

multiplexor. EBCDIC card code is converted to internal EBCDIC by

the card reader control (B 6110). When reading binary punched

cards no translation is made.

10-7

The card readers can read 51, 60, or 80 column punched cards.

Optional features include the ability to read 40 column Treasury

checks and round holes in Postal Money Orders. Cards of varying

thickness are acceptable; however, card thickness and length must

be consistent during any one run. Figures 10-8 and 10-9 depict

the I/O control word and the result descriptor for card reader

operations.

Figure 10-7. Card Reader

42

41 37

44 40 36

Figure 10-8. Card Read I/O Control Word

10-8

44 = 1

40 = 1

39 = 0

38 = 0

Alpha

42 = 1

41 = 0

41 = 1

Binary

42 = 0

41 = 0

37 = 0

Memory

6 bit

8 bit

protect

EBCDIC

42 = 0

41 = l

37 tag bit

36 field

Figure 10-8. Card Read I/O Control Word (cont)

6:7

7
8

7 & 9

10

16

24:8

27:3

47:20

47 27

25

28 24

Standard Error Field

Memory Access Error

Read Check

Validity Error

17

16

Control card (alpha only)

Memory Protect Error

Unit Designate

Character Count

Memory Address

7

10 6

9

8 0

Figure 10-9. Card Read Result Descriptor

l0-9

CARD PUNCH.

The B 6210 Card Punch Control is used with the B 9213 Card Punch

(figure 10-10), which can punch either binary, alpha, or EBCDIC

code at a rate of JOO cards per minute. Pre-punched cards may be

used, but previously punched columns cannot be repunched. The

card punch has a 1000 card capacity input hopper and three output

stackers (primary, auxiliary and error) which have a capacity of

1200 cards each. Stacker selection is accomplished programmatically.

Figures 10-11 and 10-12 depict the I/O control word and the result

descriptor for the card punch operation.

Figure 10-10. Card Punch

10-10

44 = 0

38 = 0

44

42

41

38

37

36 32

32 = 1 Auxiliary stacker

Alpha

42 = 1

41 = 0 6 bit

41 = 1 8 bit

Binary

42 = 0

41 = 0

37 = 0

EBCDIC

42 = 0

41 = 1

37 tag bit

36 = 0 field

Figure 10-11. Card Punch I/O Control Word

47 27 7

10 6

25 17

28 24 0

Figure 10-12. Card Punch Result Descriptor

10-11

6:7

7
7 & 10

24:8

2l:J

41:20

Standard Error Field

Punch Check

Memory Access Error

Unit Designate

Character Count

Memory Address

Figure 10-12. Card Punch Descriptor (cont)

LINE PRINTERS.

Two line printers (figure 10-13) are available for use on the

B 6500 system. The B 9242 prints 860 lines per minute (LPM) and

the B 9243, 1100 LPM. Both printers are available with either

120 or 132 print positions. Both have vertical skipping and end­

of-page formatting controlled by a punched paper tape. The B 6240

Line Printer Control connects the printer to the multiplexor.

Translators in the multiplexor convert internal BCL or EBCDIC into

BCL for transmission to the printer control- Figures 10-14 and

10-15 show the Printer I/O control word and result descriptor.

Figure 10-13. Line Printer

10-12

43 35 31

42 38 34 30

41 37 33

44 36 32

44 = 0

43 = 0 Print

43 = l Space - Inhibit Data Tran sf er

42 = l Translate to BCL

41 = 0 6 bit; 41 = l 8 bit

38 = 0

37 } tag bit

36 = 0 field

35:5 Skip to Channel l => ll

31 = l Double Space } only if 35:5
JO = l Single Space equals zero

Figure 10-14. Line Printer I/O Control Word

47 27 7

6

25 17 9

28 24 12 8 0

Figure 10-15. Line Printer Result Descriptor

10-lJ

6:7

8:2

9:3

24~8

27:3

47:20

Standard Error Field

Bit Transfer Error

Print Check

Unit Designate

Character Count

Memory Address

Figure 10-15. Line Printer Result Descriptor (cont)

MAGNETIC TAPE SUBSYSTEM.

A magnetic tape subsystem can include from one to four tape controls

servicing from one to sixteen magnetic tape units. Within a single

tape system all tape units must be used at the same speed and all

controls must be of the same type.

A magnetic tape exchange is required when more than one control or

more than six magnetic tape units are used.

The number of magnetic tape units on a system is limited only by

the number of exchanges and peripheral controls employed. The user

may choose either 7-channel tape or 9-channel tape which may be

intermixed, provided this is not attempted on the same subsystem.

The user may also select any of four packing densities up to 1600

bits per inch and transfer rates from 9,000 to 240,000 bytes per

second.

A choice of physical construction may be made between two free

standing devices which house one tape unit per cabinet (figure 10-

16), or the cluster unit (figure 10-17) which houses up to :four

tape units per cabinet. The magnetic tape units are capable of

reading and spacing in either a forward or reverse direction.

Table 10-3 lists the available magnetic tape subsystems.

10-18 shows possible configurations of these subsystems.

10-14

Figure

72KB MTU 144/192/240KB MTU

Figure 10-16. Free Standing Magnetic Tape Unit

Figure 10-17. Cluster Tape Unit

10-15

Table 10-J

Available Magnetic Tape Subsystems

Appropriate
Peripheral

Control Exchanges
Description of Magnetic

Style Tape Subsystems Style Quantity Style Type Function

B 9381-2,3,4 9 channel B 6381-1 1 None None 1 Tape
36KB Cluster 800/200* BPI, 45 JPS, Operation

2 to 8 Tape Stations B 6381-1 1 or 2 B 6481 2x8 2 Tape
Operation

B 9382-2,3,4 9 channel B 6381-2 1 None None l Tape
72KB Cluster 1600 BPI, 45 JPS, Operation

2 to 8 Tape Stations B 6381-2 1 or 2 B 6481 2x8 2 Tape
Operation

B 9380-2,3,4 ' 7 channel B 6381-3 1 None None 1 Tape
36KC Cluster 200/556/800 BPI, 45 IPS, Operation

2 to 8 Tape Stations B 6381-3 I or 2 B 6480 2x8 2 Tape
Operation

B 9391 72 KC Either 1 to 6, I to 10, or B 6391-3 1 None None I Tape
Free Stand 'g 1 to 16 Tape Units, 7 Channel, Operation
Tape Unit 200, 556, and 800 BPI, B 6391-3 1 or 2 B 6490 2xl0 2 Tape

90 JPS Operation
B 6391-3 1 to 4 B 6492 4xl6 4 Tape

Operation

B 9392 72KB Either 1 to 6, 1 to 10 or 1 to B 6393-1 I None None I Tape
Free Stand'g 16 Tape Units, 9 channel, Operation
Tape Unit 800/200* BPI, 90 JPS B 6393-1 I or 2 B 6490 2xl0 2 Tape

Operation
B 6393-1 I to 4 B 6492 4xl6 4 Tape

Operation

B 9394-1 Either 1 to 6, or 1 to 10 Tape B 6391-4 1 None None 1 Tape
24, 66, or Units, 7 channel, 200, 556 or Operation
96KC 800 BPI, 1 20 JPS B 6391-4 1 or 2 B 6490 2xl0 2 Tape
Free Stand'g Operation
Tape Unit

B 9394-2 Either 1 to 6, 1 to IO or 1 to B 6393-3 I None None 1 Tape
96 KB 16 Tape Units, 9 channel, Operation
Free Stand'g 800/200* BPI, 120 IPS B 6393-3 1 or 2 B 6490 2xl0 2 Tape
Tape Unit Operation

B 6393-3 1 to 4 B 6492 4xl6 4 Tape
Operation

B 9393-1 I to 8 Tape Units B 6393-2 l B 6493-1 lx8 1 Tape
144KB 9 channel Operation
Free Stand'g Phase Encoded 2 Tape
Tape Unit 1600 BPI, 90 IPS B 6393-2 1 or 2 B 6493-2 2x8 Operation

B 9393-2 1 to 8 Tape Units B 6393-2 1 B 6493-1 lx8 1 Tape
192KB 9 channel Operation
Free Stand'g Phase Encoded 2 Tape
Tape Unit 1600 BPI, 120 JPS B 6393-2 1 or 2 B 6493-2 2x8 Operation

B 9393-3 1 to 8 Tape Units B 6393-2 1 B 6493-1 lx8 1 Tape
240KB 9 channel Operation
Free Stand'g Phase Encoded 2 Tape
Tape Unit 1600 BPI, I SO JPS B 6393-2 l or 2 B 6493-2 2x8 Operation

* A Model B 6681 (for Clusters) or B 6691 or B 6692 (for Free Standing Units) Optional Adapter must
be attached to each peripheral control on a 9 channel 800 BPI tape system to pirovide 200 BPI capability.

10-16

1/0
MULTI­

PLEXOR

1/0
MULTI­

PLEXOR

APPROP.
TAPE
P.C.

1OR2
TAPE

CLUSTERS

• Only 10 tape P .C. 's per 1/0 Multiplexor.

The 11th shown here is far ii I us trot ion purposes only.

APPROP.
TAPE
P.C.

Figure 10-18.

LARGE PERIPHERAL CONTROLS

4 X 16 TAPE EXCHANGE

APPROP.
TAPE
P.C.

APPROP.
TAPE
P.C.

APPROP.
TAPE
P.C.

LARGE PERIPHERAL CONTROLS

APPROP.
TAPE
P.C.

APPROP.
TAPE
P.C.

APPROP.
TAPE
P.C.

APPROP.
TAPE
P.C.

APPROP.
TAPE
P.C.

APPROP.
TAPE
P.C.

Magnetic Tape Confie;uration

Figure 10-19 shows the B 6500 magnetic tape I/0 control word. This

word is used to depict the various types of magnetic tape operations

possible that are listed in table 10-4. When an operation is

finished the result descriptor returned is shown in figure 10-20.

10-17

44

43

42

41

40

39

38

10-18

= 1

= 0

= 1

= 1

= 0

= 1

= 0

= 0

37:2

35:2

OPERATION STANDARD CONTROL FIELD

44 43 42 41 40 39 38 37 36

READ BCL 1 0 1 0 0 0 0 0 0

READ BINARY 1 0 0 0 0 0 0 0 0

READ EBCDIC 1 0 0 1 0 0 0 0 0

SPACE 1 1 0 0

WRITE BCL 0 0 1 0 0 0 0

WRITE BINARY 0 0 0 0 0 0 0

WRITE EBCDIC 0 0 0 1 0 0 0

ERASE 0 1 0 0 0 0 0

WRITE TM 0 0 0 0 BIT 35 = 0 AND 34 = 1

REWIND 0 1 1 0

TEST 1

Table 10-4. Magnetic Tape Operations

43 39

42 38

41 37

44 40 36

Tape Read

Tape Write

Memory Inhibit

Translate

35 31

34 30

33 29

32 28

6 bit; = 1 8 bit

27 23

26

Memory Protect

Forward; = 1 Backward

Tag bit field

Equal to zero

16

Figure 10-19. I/O Control Word Magnetic Tape

33:4 Format

100¢ 800 BPI

101¢ 555 BPI (7 track only)

110¢ 200 BPL

1111 1600 BPI (9 track only)

000¢ Unit selected density

JO = 0 even parity

= 1 odd parity

9 Track Read only

CRC Correction 29 = 1

28:2 If 29 = 1 then track to be corrected.

Space Only

23:8 decimal value of number of records to be

spaced, 100 max.

Figure 10-19. I/O Control Word Magnetic Tape (cont)

47 27

25

28 24

6:7 Standard Error Field

7 Memory Access Error

17

16

15 11 7

14 10 6

13 9

12 8 0

8 End of tape or beginning of tape

9 Read - end of file; write - lock out

10 Incomplete Record

11 Oversized Record

Figure 10-20. Magnetic Tape Result Descriptor

10-19

11:2

7 & 10 & 11

12

lJ
1.5

16

24:8

27:3

47:20

Density (test only)

00 - 800 BPI

01 - 200 BPI

10 - .5.5.5 BPI

11 - BPI

Mag tape parity error

CRC correction possible, bits 15:3 defines track

Non-present option

6 ft. blank tape

Memory Protect Error (read only)

Unit Designate

Character Counter

Memory Address

Figure 10-20. Magnetic Tape Result Descriptor (cont)

DISK FILE SUBSYSTEM.

The Disk File Subsystem is an extremely high-speed,, modular, ran­

dom information storage system. A basic system consists of one

electronics unit and from one to five storage units, see figure

10-21. If more than one basic subsystem is used then an exchange

may be installed to connect the two subsystems to a disk file

control. Figure 10-22 shows various disk file configurations al­

lowed on a B 6.500 system. The exchanges involved are located

within the auxiliary cabinets that are attached to the peripheral

control cabinets. Each of the disk file controls are the large

size controls, therefore, they must be located only in positions

zero through four in the PCC.

The various types of disk file subsystems and their capacities

and speeds are indicated in table 10-5. Figures 10-23 and 10-24

indicate the disk file I/O control word and the disk file result

descriptor.

10-20

1/0
MULTI-

PLEXOR

1/0
MULTI-

PLEXOR

ELECTRONICS UNIT
STORAGE MODULES

Figure 10-21. Basic Disk File Subsystem

PERIPHERAL CONTROLS
LARGE

MODEL MODEL MODEL MODEL MODEL MODEL MODEL MODEL

f-- B 6373 - B 6373 B 6373 - B 6373 B 6373 B 6373 B 6373 B 6373
DISK FILE P.C.

DISK FILE DISK FILE
P.C.

DISK FILE DISK FILE DISK FILE DISK FILE DISK FILE
P.C. P.C. P.C.

I I
2 X JO EXCH.

JIJI
J TO JO

ELECTRONICS UNITS

J TO 5

DISK MODULES PER
ELECTRONICS UNIT

l TO 5
DISK
MODULES

l ELECTRONICS UNIT

I
MODEL
B 6373 - - -

1----1 P.C. P.C. P.C. DISK FILE
P.C.

Figure 10-22.

P.C. P.C. P.C.

1 l l
r NJ x N

2
EXCHANGE

I 1 1 1 l I I I
J TO 20 ELECTRONICS UNIT

l TO 5

DISK MODULES

PER
ELECTRONICS UNIT

- - - -
P.C. P.C. P.C. P.C.

PERIPHERAL CONTROLS
LARGE

P.C.

I I
l]

-
P.C.

Disk File Configurations

P.C.

.--J--,

::c
u
~ ~

N ~ z 1------1
x ~

z ~

...__,_._..

MODEL
B 6373
DISK FILE
P.C.

VI
I-z
::> I-

0 VI z NU oz LI')
::>
I-1-0 0 u

~"' I- ~~ I-
u ~ 0.. w

~

10-21

Table 10-5

Disk File Subsystem Types

Disk !Electronic Exchange Peripheral
Unit Control

Style Description Style Style Type Function Style Quantity

B 9372-11 10.87 mill. bytes or 89371-7
14.5 mill. char. - 20 ms

B 9375-10 Data Memory Bank **
133 mill. char. or B 9371-8
100 mill. hytes - 23 ms

B 9376-10 Addt'l 26.6 mill. char. ••
or 20 mill. byte Incre- B 9371-8
ments - 23 ms

B 6471 N1xN2 4x20 with B 6373 1 to 4
B 9375-12 ** Data Memory Bank Appropriate B 7373 133 mill. char. or B 9371-9 Adapters &

100 mill. bytes - 40 ms Extension*

B 9376-12 Addt'l 30.5 mill. char. **
or 22.8 mill byte Incre- B 9371-9
ments - 40 ms

B 9375-13 Data Memory Bank ••
133 mill. char. or B 9371-10
100 mill. bytes-60 ms

B 9376-13 Addt'l 26.6 mill. char. ••
or 20 mill. byte Incre- B 9371-10
ments - 60 ms

* A B 6471-5 or B 7471-5 Control Adapter (N 1) is required for each control in the subsystem and a
B 6471-6 or B 7471-6 EU Adapter (N2) is required for each electronic unit in the subsystem. The
B 6471-7 or B 7471-7 Exchange Extension is required to go above 10 EU adapters on the sub­
system.

** Data Memory Banks and Increments include an electronic unit for every 5i disk modules; however
additional optional EU's may be ordered for more paths to the disk modules, using stated EU style
numbers.

10-22

43 39 31

42

41 37

44 40 36 0

44 = l } Disk File READ

43 = 0

44 = l } READ CHECK

43 = l

44 = 0 } WRITE

43 = 0

42 = 0

41 = l

40 = l Memory Protect

39 = l Maintenance Segment

37 }
Tag Bit

36 Field

31:24 Disk File ADDRESS (decimal)

Figure 10-23. Disk File I/0 Control Word

47 27 15 11 7

6

25 17 9

28 24 16 8 0

Figure 10-24. Disk File Result Descriptor

10-23

6:7 Standard Error Field

7 Memory Access Error

8 Unit busy

9 Write lock out

7 & 9 Disk Read Error

11 Went not ready

15 Time out

16 Memory protect (READ only)

24:8 Unit Designate

27:3 Character counter

47:20 Memory ADDRESS

Figure 10-24. Disk File Result Descriptor (cont)

PAPER TAPE.

The B 9120 Paper Tape Reader, figure J.0- 25, is capable of reading

punched paper tape at a rate of 1000 characters per second and

metalized mylar tape or fanfold tape at a rate of 500 characters

per second. Baudot and BCL to EBCDIC code translation is automatic.

All other codes are read directly into memory and may be translated

programmatic ally. The reader can accommodate 5-, 6-, 7-, or 8

channel tape as selected by the operator.

7/8, or 1 inch are interchangeable.

Tape widths of 11/16,

The paper tape punch, see figure 10-26, is capable of punching a

standard paper tape format in either BCL or Baudot code. The punch

accommodates 5-, 6-, 7-, or 8 channel tape at a maximum rate of

100 characters per second, punching ten characters to the inch.

Standard tape widths of 11/16, 7/8, and 1 inch may be used in

either the oiled paper tape, dry paper tape, metalized mylar tape,

or laminated mylar tape.

Each paper tape I/O control, reader or punch, can accommodate only

one paper tape unit each. The controJ_s are the small size controls

which can be set into a PCC cabinet as either a right hand or a

left hand control.

10-24

Figure 10-25. B 9120 Paper Tape Reader

10-25

Figure 10-26. B 9220 Paper Tape Punch

Figure 10-27 indicates the paper tape control word and the various

paper tape operations possible on the B 6500. Figure 10-28 in­

dicates the paper tape result descriptor.

10-26

43 39 35

42 38 34

37

44 36

44 = 1 Tape read

= 0 Tape punch

43 = 1 Inhibit data transfer

42 = 1 Translate

39 = 0 Forward; = 1 Backward

38 = 1 Test

37:2 Tag field bits

35 & 36 Formats:

10 - 8 bit no parity

00 - 7 bit info plus 1 parity

01 - 6 bit info plus 1 parity

44 43 42 41 40 39 38 37 36 35 34

READ BCL 1 0 1 0 0 0 0 0 0 0 1

READ BINARY 1 0 0 0 0 0 0 0 0 0 0

WRITE BCL 0 0 1 0 0 0 0 0 0 0 1

WRITE BINARY 0 0 0 0 0 0 0 0 0 0 0

PUNCH LEADER 0 1 0 0 0 0 0 0

FWD SPACE 1 1 0 0 0 0

BKWD SPACE 1 1 0 1 0 0

REWIND 0 1 1 0

Figure 10-27. Paper Tape I/O Control Word and Operations

10-27

10-28

47 27

25

28 24

6:7 Standard Error Field

7 Memory Access Error

8 Read - EOT or BOT

Punch - Low Tape

17

16

7 & 9 Read - tape parity error

10 Incomplete record

16 Memory protect error

7

10 6

9

8 0

Figure 10-28. Paper Tape Result Descriptor

SECTION 11

B 6500 DATA COMMUNICATIONS SYSTEM

GENERAL.

The B 6500 Data Communications System is comprised of one or more

of each of the following units:

a. Data Communications Processor (D.C.P.).

Each B 6500 Peripheral Control Multiplexor accommodates

up to 4 D.C.P. 's through the word interfaces. The word

interfaces provide access to the B 6500 main memory.

b. Adapter Cluster.

One Adapter Cluster services up to 16 Line Adapters

which may have dissimilar characteristics. A maximum

of 16 Adapter Clusters may be connected to one Data Com­

munications Processor. It is also possible to connect

an Adapter Cluster between two Data Communications Pro­

cessors. This allows the Adapter Cluster to be serviced

from either D.C.P.

c. Line Adapter.

Each communication line requires at least one Line Adap­

ter. With some types of terminals two Line Adapters may

be required. Up to 16 Line Adapters are accommodated by

one Adapter Cluster.

The B 6500 Data Communications System can service a maximum of 2048

communications lines. A typical system configuration is shown in

figure 11-1.

DATA COMMUNICATIONS PROCESSOR (D.C.P.).

The Data Communications Processor (D.C.P.) is a special purpose

processor. It handles the transmitting and receiving of messages

over the many data communications lines. A part of that task is

answering calls, terminating calls, observing the formal line dis­

ciplines, polling operations and the formatting of messages.

11-1

j-1

fl
N

MEMORY
MODULE

1

MEMORY MEMORY
MODULE MODULE

2 ~ 32

I
I

UP TO
32

MODULES

l
I
I
I
I

J

T

I
I
I
l

WJ
DATA

1/0 I SWITCHING I PERIPHERAL CONTROL BUS
MULTIPLEXOR CHANNELS

PROCESSOR
1

PROCESSOR
2

4-10

1-16 ADAPTER CLUSTERS

1-16 ADAPTERS 1-16 ADAPTERS 1-16 ADAPTERS
DATA

1/0 SWITCHING PERIPHERAL CONTROL BUS~
MULTIPLEXOR CHANNELS

4-10 ADAPTER I
I CLUSTER -

DATA

...
------COMMUNICATIONS------------­

PROCESSOR

DATA
~-------1 COMMUNICATIONS

PROCESSOR

. r ··· oArA
I I COMMUNICATIONS

1-16 ADAPTER CLUSTERS

PROCESSOR •••

DATA J-16 ADAPTERS 1-16 ADAPTERS 1-16 ADAPTERS
~---------1 COMMUNICATIONS

PROCESSOR

Figure 11-1. B 6500 System Configuration Including Data Communications

The Data Communications Processor is a stored program computer

obtaining its program instructions either from B 6500 main mem-

ory or from an optional local memory. Through the use of the local

memory the throughput of the D.C.P. is significantly increased due

to the reduction in instruction fetch time.

If the optional local memory is not present, the Data Communications

Processor shares the B 6500 system main memory with the other units

of the B 6500. The memory allocation for the D.C.P. is controlled

by the B 6500 Master Control Program. Data exchanges occur

when the B 6500 processor initiates a D.C.P. operation and

when the D.C.P. finishes an operation, i.e. I/O complete signal

from the D.C.P.

The internal form of the Data Communications Processor is shown in

figure 11-2. The Data Communications Processor is an elementary

micro-programed processor. Two-address and three-address instruc­

tions, operating on 8-bit bytes, are used by the Data Communications

Processor. The byte organization fits into a basic half-word

(three byte) structure permitting efficient half-word transfers

within the Data Communications Processor. The functions of the

D.C.P. are accomplished with a small array of intercommunicating

registers, a simple arithmetic-logical unit and an eight word

scratchpad memory.

For complete information on all Data Communications Processor reg­

isters and memories, refer to the Data Communications Processor

Reference Manual.

ADAPTER CLUSTER.

The Adapter Cluster is the interface between the Data Communications

Processor and the data-communication Line Adapters. Each Adapter

Cluster services up to 16 Line Adapters. Data transmission rates

of from 45.5 B.P.S. to 4800 B.P.S. are handled by the Adapter Clus­

ter simultaneously.

11-3

~
I

+-

I
CLUSTER

:INTERFACE

L ___ ..J

AA AC Al

x y D IAI llllAO

HALF WORD TRANSFERS~--------......

ORD

MEMORY 1

HALF 1woRD

INTERRUPT
BRANCH TO BEGIN,.. - -1 AND SCAN

CONTROL r - - - _ INTERRUPT
L_IBA TO MPX

,----- ,--' .---' ----- j I I>' - ,

I -· - - - - _ r - I

0

o500 I - - - - - - -'ADD i- LSCAN BUS I
(----- L--...1 ' ---J B 6500 r- - - - 1

-·-"'
MAI llMA

0

I - - - - - -'-- -

OPERATION•-

ADDRESS - 8 ~ ~ 8 6500 I
REGISTER ,l I MEMORY BUS I

"/ I INTERFACE I
8-..-.J (VIA MPX) I

I L----.....1
I

ACCESS
CONTROL

WORD REGISTER

I

'---------------_.§~~~
MEMORY 2

INSTRUCTIONS

WORD REG

Figure ll-2. DCP Block Diagram

Figure 11-3 shows a block diagram of the Adapter Cluster. The

Adapter Cluster basic functions are:

a. Line termination: Scanning, clocking and temporary stor-

age.

b. Character assembly and dis~ssembly.

c. Synchronization attainment and maintenance.

d. Timer operation to maintain line discipline.

e. Some character recognition logic. (Mainly synchronization

characters for the various line disciplines).

f. Provide the ability to exchange information with one or

two Data Communications Processors.

The Adapter Cluster functions in a manner that makes it appear

transparent to most characters and message formats. However as

stated in item (e) above it does recognize the SYN characters in

order to attain and retain synchronization when operating in the

synchronous mode.

LINE ADAPTER.

The Line Adapter types that are provided allow the Data Communica­

tions Processor to interface with data sets, Voice Response Systems

and the direct connection to remote devices. Each Line Adapter

terminates one line. The Line Adapter handles the exchange of

bits or characters between the Adapter Cluster and the data com­

munication line. The buffer of each type of Line Adapter contains

either one bit or one character, depending on the type. Table 11-1

shows a table of terminal compatibility.

For more detailed information on all phases of the Data Communica­

tions Processor refer to the Data Communications Processor Refer­

ence Manual.

11-5

~
~
I
0\

REAL TIME
CLOCK AND
DESIGNATE
CONTROL

0

! l

2

IC MEMORY= 48 BITS/ ADAPTER

0 1 2 3 4 5 6 7 8 9 10 11 12

BI/ \

3 4 5 6 7 8 9 10

13 14 15

11 12

SUB-SYSTEM
CLOCK (5 MHz)

CROSSPOINTS

/, I~
DCP #1

~Jri
I +----+
R DCP #2

~ ~ENANCE

13 14 15

ADAPTER INTERFACES TO AND FROM 16 DATA COMMUNICATION LINES

Figure ll-J. Adapter Cluster

f-1
f-1
I

'1.

Table 11-1

Data Communications Terminal Compatibility

Dir.

Leased Switched Conn. Asynch. Synch.

TWX Service x x

w. E. Model 33 x x x x

w. E. Model 3.5 (also 8Al x x x x
Sel Calling)

w. E. Model 37 x x x x

B 93.51 Series Display x x x x x

B 93.52 Series Display x x x x x

Model 28/83B3 (or equiv. x x x
Western Union Service)

TC _500 Terminal x x x x

Modem

Type Speed Range

811B Up to 1.50 BPS

lOJ Up to 110 BPS

103 Up to 110 BPS

103 Up to 16.5 BPS

103, Up to 2400 BPS

202 or

201

103, Up to 2400 BPS

202 or

201

Up to 110 BPS

202 Up to 1200 BPS

f-1.
f-1.
I
00

B 300/B 340/B 500

B 2500/B 3500

B 5500

Honeywell 120

IBM 1030

Automatic Calling Unit

Table 11-1 (cont)

Data Communications Terminal Compatibility

Dir.

Leased Switched Conn. Asynch. Synch.

x x x x

x x x x

x x x x

x x

v x x A

x

Modem

Type Speed Range

201 Up to 2400 BPS

201 Up to 2400 BPS

201 Up to 2400 BPS

201 Up to 2400 BPS

202 Up to 14.8 CPS

801

APPENDIX A

OPERATORS, ALPHABETICAL LIST

NAME MNEMONIC

ADD ADD

BIT RESET ERST

BIT SET BSET

BRANCH FALSE BRFL

BRANCH TRUE BRTR

BRANCH UNCONDITIONAL BRUN

CHANGE SIGN BIT CHSN

COMPARE CHARACTERS EQUAL DESTRUCTIVE CEQD

COMPARE CHARACT:ERS EQUAL, UPDATE CEQU

COMPARE CHARACTERS GREATER OR EQUAL,

DESTRUCTIVE CGED

COMPARE CHARACTERS GREATER OR EQUAL,

UPDATE CGEU

COMPARE CHARACTERS GREATER, DESTRUCTIVE CGTD

COMPARE CHARACTERS GREATER, UPDATE CGTU

COMPARE CHARACTERS LESS OR EQUAL,

DESTRUCTTVE CLED

COMPARE CHARACTERS LESS OR EQUAL,

UPDATE CLEU

COMPARE CHARACTERS LESS, DESTRUCTIVE CLSD

HEXADECIMAL

CODE

80

9E

96

AO

Al

A2

SE

F4

FC

Fl

F9

F2

FA

FJ

FB

FO

A-1

APPENDIX A (cont)

OPERATORS, ALPHABETICAL LIST

NAME

COMPARE CHARACTERS LESS, UPDATE

COMPARE CHARACTERS NOT EQUAL,

DESTRUCTIVE

COMPARE CHARACTERS NOT EQUAL,

UPDATE

CONDITIONAL HALT (all modes)

COUNT BINARY ONES

DELETE TOP OF STACK

DISABLE EXTERNAL INTERRUPT

DIVIDE

DUPLICATE TOP OF STACK

DYNAMIC BIT RESET

DYNAMIC BIT SET

DYNAMIC BRANCH FALSE

DYNAMIC BRANCH TRUE

DYNAMIC BRANCH UNCONDITIONAL

DYNAMIC FIELD INSERT

DYNAMIC FIELD ISOLATE

DYNAMIC FIELD TRANSFER

DYNAMIC SCALE LEFT

A-2

MNEMONIC

CLSU

CNED

CNEU

HALT

CBON

DLET

DEXI

DIV

DUPL

DBRS

DEST

DBFL

DETR

DBUN

DINS

DISO

DFTR

DSLF

HEXADECIMAL

CODE

F8

F5

FD

DF

95 BB

B5

95 47

83

B7

9F

97

AS

A9

AA

9D

9B

99

Cl

APPENDIX A (cont)

OPERATORS, ALPHABETICAL LIST

NAME

DYNAMIC SCALE RIGHT FINAL

DYNAMIC SCALE RIGHT ROUND

DYNAMIC SCALE RIGHT SAVE

DYNAMIC SCALE RIGHT TRUNCATE

ENABLE EXTERNAL INTERRUPTS

END EDIT (edit mode)

END FLOAT (edit mode)

ENTER

EQUAL

ESCAPE TO 16-BIT INSTRUCTION

EVALUATE DESCRIPTOR

EXCHANGE

EXECUTE SINGLE MICRO, SINGLE POINTER

UPDATE

EXECUTE SINGLE MICRO, DESTRUCTIVE

EXECUTE SINGLE MICRO, UPDATE

EXIT

EXTENDED MULTIPLY

FIELD INSERT

FIELD ISOLATE

MNEMONIC

DSRF

DSRR

DSRS

DSRT

EEXI

ENDE

ENDF

ENTR

EQUL

VARI

EVAL

EXCH

EXPU

EXSD

EXSU

EXIT

MULX

INSR

ISOL

HEXADECIMAL

CODE

C7

C9

C5

CJ

95 46

DE

D5

AA

8C

95

AC

B6

DD

D2

DA

AJ

8F

9c

9A

A-3

APPENDIX A (cont)

OPERATORS, ALPHABETICAL LIST

NAME MNEMONIC

FIELD TRANSFER FLTR

GREATER THAN GRTR

GREATER THAN OR EQUAL GREQ

IDLE UNTIL INTERRUPT IDLE

INDEX INDX

INDEX AND LOAD NAME NXLN

INDEX AND LOAD VALUE NXLV

INPUT CONVERT, DESTRUCTIVE ICVD

INPUT CONVERT UPDATE ICVU

INSERT CONDITIONAL (edit mode) INSC

INSERT DISPLAY SIGN (edit mode) INSG

INSERT MARK STACK IMKS

INSERT OVERPUNCH (edit mode) INOP

INSERT UNCONDITIONAL (edit mode) INSU

INTEGER DIVIDE IDIV

INTEGERIZE, ROUNDED NTGR

INTEGERIZE, TRUNCATED NTIA

INTEGERIZE, ROUNDED DOUBLE-PRECISION NTGD

A-4

HEXADECIMAL

CODE

98

SA

95 44

A6

A5

AD

CA

CB

DD

D9

CF

DB

DC

94

97

96

95 97

APPENDIX A (cont)

OPERATORS, ALPHABETICAL LIST

HEXADECIMAL

NAME MNEMONIC CODE

INTERRUPT OTHER PROCESSORS HEYD 95 4F

INVALID OPERATOR (all modes) NVLD FF

JOIN TWO SINGLES TO DOUBLE JOIN 95 42

LEADING ONE TEST LOG2 95 SB

LINKED LIST LOOKUP LLLU 95 BD

LESS THAN LESS SS

LESS THAN OR EQUAL LSEQ SB

LIT CALL ONE ONE Bl

LIT CALL ZERO ZERO BO

LIT CALL S BITS LTS B2

LIT CALL 16 BITS LT16 BJ

LIT CALL 48 BITS LT4S BE

LOAD LOAD ED

LOAD TRANSPARENT LODT 95 BC

LOGICAL AND LAND 90

LOGICAL EQUAL SAME 94

LOGICAL EQUIVALENCE LEQV 93

LOGICAL NEGATE LNOT 92

LOGICAL OR LOR 91

A-5

APPENDIX A (cont)

OPERATORS, ALPHABETICAL LIST

NAME MNEMONIC

MAKE PROGRAM CONTROL WORD MPCW

MARK STACK MKST

MASKED SEARCH FOR EQUAL SRCH

MOVE CHARACTERS (edit mode) MCHR

MOVE NUMERIC UNCONDITIONAL (edit mode) MVNU

MOVE TO STACK MVST

MOVE WITH FLOAT (edit mode) MFLT

MOVE WITH INSERT (edit mode) MINS

MULTIPLY MULT

NAME CALL NAMC

NO OPERATION (all modes) NOOP

NOT EQUAL NEQL

OCCURS INDEX OCRX

OVERWRITE DESTRUCTIVE OVRD

OVERWRITE NON-DESTRUCTIVE OVRN

PACK DESTRUCTIVE PACD

PACK UPDATE PACU

PUSH DOWN STACK REGISTERS PUSH

A-6

HEXADECIMAL

CODE

BF

AE

95 BE

D7

D6

95 AF

Dl

DO

82

40 =) 7F

FE

8D

95 85

BA

BB

Dl

D9

B4

APPENDIX A (cont)

OPERATORS, ALPHABETICAL LIST

M!'jEMONIC

READ AND CLEAR OVERFLOW FLIP-FLOP ROFF

READ PROCESSOR IDENTIFICATION WHOI

READ PROCESSOR REGISTER RPRR

READ TAG FIELD RTAG

READ TRUE/FALSE FLIP-FLOP RTFF

READ WITH LOCK RDLK

REMAINDER DIVIDE RDIV

RESET FLOAT (edit mode) RSTF

RETURN RETN

ROTATE STACK DOWN RSDN

ROTATE STACK UP RSUP

SCALE LEFT SCLF

SCALE RIGHT FINAL SCRF

SCALE RIGHT ROUND SCRR

SCALE RIGHT SAVE SCRS

SCALE RIGHT TRUNCATE SCRT

SCAN IN SCNI

SCAN OUT SCNO

SCAN WHILE EQUAL, DESTRUCTIVE SEQD

HEXADECIMAL

CODE

D7

95 4E

95 BB

95 B5

DE

95 BA

85

D4

A7

95 B7

95 B6

co

C6

cs

C4

C2

95 4A

95 4B

95 4F

A-7

APPENDIX A (cont)

OPERATORS, ALPHABETICAL LIST

HEXADECIMAL

NAME MNEMONIC CODE

SCAN WHILE EQUAL, UPDATE SEQU 95 FC

SCAN WHILE FALSE, DESTRUCTIVE SWFD 95 D4

SCAN WHILE FALSE, UPDATE SWFU 95 DC

SCAN WHILE GREATER OR EQUAL,

DESTRUCTIVE SGED 95 Fl

SCAN WHILE GREATER OR EQUAL,

UPDATE SGEU 95 F9

SCAN WHILE GREATER, DESTRUCTIVE SGTD 95 F2

SCAN WHILE GREATER, UPDATE SGTU 95 FA

SCAN WHILE LESS OR EQUAL,

DESTRUCTIVE SLED 95 FJ

SCAN WHILE LESS OR EQUAL, UPDATE SLEU 95 FB

SCAN WHILE LESS, DESTRUCTIVE SLSD 95 FO

SCAN WHILE LESS, UPDATE SLSU 95 FB

SCAN WHILE NOT EQUAL, DESTRUCTIVE SNED 95 F5

SCAN WHILE NOT EQUAL, UPDATE SNEU 95 FD

SCAN WHILE TRUE, DESTRUCTIVE SWTD 95 D5

SCAN WHILE TRUE, UPDATE SWTU 95 DD

SET EXTERNAL SIGN SXSN D6

SET INTERVAL TIMER SINT 95 45

A-8

APPENDIX A (cont)

OPERATORS, ALPHABETICAL LIST

SET PROCESSOR REGISTER

SET TAG FIELD

SET TO DOUBLE-PRECISION

SET TO SINGLE-PRECISION, ROUNDED

SET TO SINGLE-PRECISION,

TRUNCATED

SKIP FORWARD DESTINATION

CHARACTERS (edit mode)

SKIP FORWARD SOURCE CHARACTERS

(edit mode)

SKIP REVERSE DESTINATION

CHARACTERS (edit mode)

SKIP REVERSE SOURCE CHARACTERS

(edit mode)

SPLIT DOUBLE TO TWO SINGLES

STEP AND BRANCH

STORE DESTRUCTIVE

STORE NON-DESTRUCTIVE

STRING ISOLATE

STUFF ENVIRONMENT

MNEMONIC

SPRR

STAG

XTND

SNGL

SNGT

SFDC

SFSC

SRDC

SRSC

SPLT

STER

STOD

STON

SISO

STFF

HEXADECIMAL

CODE

95 B9

95 B4

CE

CD

cc

DA

D2

DB

DJ

95 43

A4

B8

B9

D5

AF

A-9

APPENDIX A (cont)

OPERATORS, ALPHABETICAL LIST

NAME MNEMONIC

SUBTRACT SUET

TABLE ENTER EDIT, DESTRUCTIVE TEED

TABLE ENTER EDIT, UPDATE TEEU

TRANSFER UNCONDITIONAL, DESTRUCTIVE TUND

TRANSFER UNCONDITIONAL, UPDATE TUNU

TRANSFER WHILE EQUAL, DESTRUCTIVE TEQD

TRANSFER WHILE EQUAL, UPDATE TEQU

TRANSFER WHILE GREATER OR EQUAL,

DESTRUCTIVE

TRANSFER WHILE GREATER OR EQUAL,

UPDATE

TRANSFER WHILE GREATER, DESTRUCTIVE

TRANSFER WHILE GREATER, UPDATE

TRANSFER WHILE LESS OR EQUAL,

DESTRUCTIVE

TRANSFER WHILE FALSE, DESTRUCTIVE

TRANSFER WHILE FALSE, UPDATE

TRANSFER WHILE TRUE, DESTRUCTIVE

TRANSFER WHILE TRUE, UPDATE

TRANSFER WHILE LESS OR EQUAL, UPDATE

A-10

TGED

TGEU

TGTD

TGTU

TLED

TWFD

TWFU

TWTD

TWTU

TLEU

HEXADECIMAL

CODE

81

DO

D8

E6

EE

E4

EC

El

E9

E2

EA

EJ

95 D2

95 DA

95 DJ

95 DB

EB

APPENDIX A (cont)

OPERATORS, ALPHABETICAL LIST

HEXADECIMAL

NAME MNEMONIC CODE

TRANSFER WHILE LESS, DESTRUCTIVE TLSD EO

TRANSFER WHILE LESS, UPDATE TLSU EB

TRANSFER WHILE NOT EQUAL, DESTRUCTIVE TNED E5

TRANSFER WHILE NOT EQUAL, UPDATE TNEU ED

TRANSFER WORDS OVERWRITE DESTRUCTIVE TWOD D4

TRANSFER WORDS OVERWRITE UPDATE TWOU DC

TRANSFER WORDS, DESTRUCTIVE TWSD DJ

TRANSFER WORDS, UPDATE TWSU DB

TRANSLATE TRNS 95 D7

UNPACK ABSOLUTE, DESTRUCTIVE UABD 95 Dl

UNPACK ABSOLUTE, UPDATE UABU 95 D9

UNPACK SIGNED, DESTRUCTIVE USND 95 DO

UNPACKED SIGNED, UPDATE USNU 95 DB

VALUE CALL VALC 00 => JF

A-11

PRIMARY MODE.

HEXADECIMAL

CODE

DF

FE

FF

00 => JF

40 =) 7F

Bo

Bl

B2

BJ

B4

B5

B6

B7

BB

B9

BA

BB

Be

APPENDIX B

OPERATORS, NUMERICAL LIST PRIMARY MODE

NAME MNEMONIC

CONDITIONAL HALT (UNIVERSAL OPERATOR) HALT

NO OPERATION (UNIVERSAL OPERATOR) NOOP

INVALID OPERATOR (UNIVERSAL OPERATOR) NVLD

VALUE CALL VALC

NAME CALL NAMC

ADD ADD

SUBTRACT SUET

MULTIPLY MULT

DIVIDE DIVD

INTEGER DIVIDE IDIV

REMAINDER DIVIDE RDIV

INTEGERIZE, TRUNCATED NTIA

INTEGERIZE, ROUNDED NTGR

LESS THAN LESS

GREATER THAN OR EQUAL GREQ

GREATER THAN GRTR

LESS THAN OR EQUAL LSEQ

EQUAL EQUL

B-1

PRIMARY MODE.

HEXADECIMAL

CODE

SD

SE

SF

90

91

92

93

94

95

96

97

9S

99

9A

9B

9C

9D

9E

B-2

APPENDIX B (cont)

OPERATORS, NUMERICAL LIST PRIMARY MODE

NAME

NOT EQUAL

CHANGE SIGN BIT

EXTENDED MULTIPLY

LOGICAL AND

LOGICAL OR

LOGICAL NEGATE

LOGICAL EQUIVALENCE

LOGICAL EQUAL

ESCAPE TO 16-BIT INSTRUCTION

BIT SET

DYNAMIC BIT SET

FIELD TRANSFER

DYNAMIC FIELD TRANSFER

FIELD ISOLATE

DYNAMIC FIELD ISOLATE

FIELD INSERT

DYNAMIC FIELD INSERT

BIT RESET

MNEMONIC

NEQL

CHSN

MULX

LAND

LOR

LNOT

LEQV

SAME

VARI

BSET

DEST

FLTR

DFTR

ISOL

DISO

INSR

DINS

ERST

PRIMARY MODE.

HEXADECIMAL

CODE

9F

AO

Al

A2

AJ

A4

A5

A6

A7

AS

A9

AA

AB

AC

AD

AE

AF

BO

APPENDIX B (cont)

OPERATORS, NUMERICAL LIST PRIMARY MODE

DYNAMIC BIT RESET

BRANCH FALSE

BRANCH TRUE

BRANCH UNCONDITIONAL

EXIT

STEP AND BRANCH

INDEX AND LOAD NAME

INDEX

RETURN

DYNAMIC BRANCH FALSE

DYNAMIC BRANCH TRUE

DYNAMIC BRANCH UNCONDITIONAL

ENTER

EVALUATE DESCRIPTOR

INDEX AND LOAD VALUE

MARK STACK

STUFF ENVIRONMENT

LIT CALL ZERO

MNEMONIC

DBRS

BRFL

BRTR

BRUN

EXIT

STER

NXLN

INDX

RETN

DBFL

DETR

DBUN

ENTR

EVAL

NXLV

MKST

STFF

ZERO

B-3

PRIMARY MODE.

HEXADECIMAL

CODE

Bl

B2

BJ

B4

B5

B6

B7

BB

B9

BA

BB

BD

BE

BF

co

Cl

C2

CJ

B-4

APPENDIX B (cont)

OPERATORS, NUMERICAL LIST PRIMARY MODE

LIT CALL ONE

LIT CALL 8 BITS

LIT CALL 16 BITS

PUSH DOWN STACK REGISTERS

DELETE TOP OF STACK

EXCHANGE

DUPLICATE TOP OF STACK

STORE DESTRUCTIVE

STORE NON-DESTRUCTIVE

OVERWRITE DESTRUCTIVE

OVERWRITE NON-DESTRUCTIVE

LOAD

LIT CALL 48 BITS

MAKE PROGRAM CONTROL WORD

SCALE LEFT

DYNAMIC SCALE LEFT

SCALE RIGHT TRUNCATE

DYNAMIC SCALE RIGHT TRUNCATE

MNEMONIC

ONE

LT8

LT16

PUSH

DLET

EXCH

DUPL

STOD

STON

OVRD

OVRN

LOAD

LT48

MPCW

SCLF

DSLF

SCRT

DSRT

PRIMARY MODE.

HEXADECIMAL

CODE

c4

C5

C6

C7

cs

C9

CA

CB

cc

CD

CE

CF

DO

Dl

D2

DJ

D4

D5

APPENDIX B (cont)

OPERATORS, NUMERICAL LIST PRIMARY MODE

NAME

SCALE RIGHT SAVE

DYNAMIC SCALE RIGHT SAVE

SCALE RIGHT FINAL

DYNAMIC SCALE RIGHT FINAL

SCALE RIGHT ROUND

DYNAMIC SCALE RIGHT ROUND

INPUT CONVERT, DESTRUCTIVE

INPUT CONVERT, UPDATE

SET TO SINGLE-PRECISION, TRUNCATED

SET TO SINGLE-PRECISION, ROUNDED

SET TO DOUBLE-PRECISION

INSERT MARK STACK

TABLE ENTER EDIT, DESTRUCTIVE

PACK DESTRUCTIVE

EXECUTE SINGLE MICRO, DESTRUCTIVE

TRANSFER WORDS, DESTRUCTIVE

TRANSFER WORDS OVERWRITE DESTRUCTIVE

STRING ISOLATE

MNEMONIC

SCRS

DSRS

SCRF

DSRF

SCRR

DSRR

ICVD

ICVU

SNGT

SNGL

XTND

IMKS

TEED

PACD

EXSD

TWSD

TWOD

SISO

B-5

PRIMARY MODE.

HEXADECIMAL

CODE

D6

D7

DB

D9

DA

DB

DC

DD

DE

EO

El

E2

EJ

E4

E5

E6

ES

B-6

APPENDIX B (cont)

OPERATORS, NUMERICAL LIST PRIMARY MODE

NAME

SET EXTERNAL SIGN

READ AND CLEAR OVERFLOW l1'LIP-FLOP

TABLE ENTER EDIT, UPDATE

PACK UPDATE

EXECUTE SINGLE MICRO, UPDATE

TRANSFER WORDS, UPDATE

TRANSFER WORDS OVERWRITE UPDATE

EXECUTE SINGLE MICRO, SINGLE POINTER

UPDATE

READ TRUE/FALSE FLIP-FLOP

TRANSFER WHILE LESS, DESTRUCTIVE

TRANSFER WHILE GREATER OH EQUAL,

DESTRUCTIVE

TRANSFER WHILE GREATER, DESTRUCTIVE

MNEMONIC

SXSN

ROFF

TEEU

PACU

EXSU

TWSU

TWOU

EXPU

RTFF

TLSD

TGED

TGTD

TRANSFER WHILE LESS OR EQUAL, DESTRUCTIVE TLED

TRANSFER WHILE EQUAL, DESTRUCTIVE TEQD

TRANSFER WHILE NOT EQUAL, DESTRUCTIVE TNED

TRANSFER UNCONDITIONAL, DESTRUCTIVE TUND

TRANSFER WHILE LESS, UPDATE TLSU

PRIMAHY MODE.

HEXADECIMAL

CODE

E9

EA

EB

EC

ED

EE

Ii'O

FL

F2

F4

F5

F8

F9

FA

APPENDIX B (cont)

OPEHATORS, NUMERICAL LIST PRIMARY MODE

TRANSFER WHILE GREATER OR EQUAL,

UPDATE

TRANSFER WH.ILE GREATER, UPDATE

TRANSFER WHILE LESS OR EQUAL, UPDATE

TRANSFER WHILE EQUAL, UPDATE

TRANSFER WHILE NOT EQUAL, UPDATE

TRANSFEH UNCONDITIONAL, UPDATE

COMPARE CHARACTERS LESS, DESTRUCTIVE

COMPARE CHARACTERS GREATER OR EQUAL,

DESTRUCTIVE

COMPARE CHARACTERS GREATER, DESTRUCTIVE

COMPARE CHARACTERS LESS OR EQUAL,

DESTRUCTIVE

COMPARE CHARACTERS EQUAL, DESTRUCTIVE

COMPARE CHARACTERS NOT EQUAL,

DESTRUCTIVE

COMPARE CHARACTERS LESS, UPDATE

COMPARE CHARACTERS GREATER OR EQUAL,

UPDATE

COMPARE CHARACTERS GREATER, UPDATE

MNEMONIC

TGEU

TGTU

TLEU

TEQU

TNEU

TUNU

CLSD

CGED

CGTD

CLED

CEQD

CNED

CLSU

CGEU

CGTU

B-7

PRIMARY MODE.

HEXADECIMAL

CODE

FB

FC

FD

VARIANT MODE.

95 42

95 43

95 44

95 45

95 l~6

95 47

95 4A

95 4B

95 4E

95 4F

95 85

95 87

95 SB

B-8

APPENDIX B (cont)

OPERATORS, NUMERICAL LIST PRIMARY MODE

NAME

COMPARE CHARACTERS LESS OR EQUAL,

UPDATE

COMPARE CHARACTERS KQUAL, UPDATE

COMPARE CHARACTERS NOT EQUAL, UPDATE

SET TWO SINGLES TO DOUBLE

SET DOUBLE TO TWO SINGLES

IDLE UNTIL INTERRUPT

SET INTERVAL TIMER

ENABLE EXTERNAL INTERRUPTS

DISABLE EXTERNAL INTERRUPTS

SCAN IN

SCAN OUT

READ PROCESSOR IDENTIFICATION

INTERRUPT OTHER PROCESSORS

OCCURS INDEX

INTEGERIZE, ROUNDED, DOUBLE-PRECISION

LEADING ONE TEST

MNEMONIC

CLEU

CEQU

CNEU

JOIN

SPLT

IDLE

SINT

EEXI

DEXI

SCNI

SCNO

WHOI

HEYU

OCRX

NTGD

LOG2

VARIANT MODE.

HEXADECIMAL

CODE

95 AF

95 B4

95 B5

95 B6

95 B7

95 BS

95 B9

95 BA

95 BB

95 BC

95 BD

95 BE

95 DO

95 Dl

95 D2

95 DJ

95 D4

95 D5

APPENDIX B (cont)

OPERATORS, NUMERICAL LIST PRIMARY MODE

MOVE TO STACK

SET TAG FIELD

READ TAG FIELD

ROTATE STACK UP

ROTATE STACK DOWN

READ PROCESSOR REGISTER

SET PROCESSOR REGISTER

READ WITH :t;_,OCK

COUNT BINARY ONES

LOAD TRANSPARENT

LINKED LIST LOOKUP

MASKED SEARCH FOR EQUAL

UN.PACK SIGNED , DESTRUCTIVE

UNPACK ABSOLUTE, DESTRUCTIVE

TRANSFER WHILE FALSE, DESTRUCTIVE

TRANSFER WHILE TRUE, DESTRUCTIVE

SCAN WHILE FALSE, DESTRUCTIVE

SCAN WHILE TRUE, DESTRUCTIVE

MNEMONIC

MVST

STAG

RTAG

RSUP

RSDN

RPRR

SPRR

RDLK

CBON

LODT

LLLU

SRCH

USND

UABD

TWFD

TWTD

SWFD

SWTD

B-9

VARIANT MODE.

HEXADECIMAL

CODE

95 D7

95 D8

95 D9

95 DA

95 DB

95 DC

95 DD

95 FO

95 Fl

95 F2

95 FJ

95 F4

95 F5

95 F8

95 F9

95 FA

95 FB

B-lO

APPENDIX B (cont)

OPERATORS, NUMERICAL LIST PRIMARY MODE

NAME

TRANSLATE

UNPACK SIGNED, UPDATE

UNPACK ABSOLUTE, UPDATE

TRANSFER WHILE FALSE, UPDATE

TRANSFER WHILE TRUE, UPDATE

SCAN WHILE FALSE, UPDATE

SCAN WHILE TRUE, UPDATE

SCAN WHILE LESS, DESTRUCTIVE

SCAN WHILE GREATER OR EQUAL,

DESTRUCTIVE

SCAN WHILE GREATER, DESTRUCTIVE

SCAN WHILE LESS OR EQUAL, DESTRUCTIVE

SCAN WHILE EQUAL, DESTRUCTIVE

SCAN WHILE NOT EQUAL, DESTRUCTIVE

SCAN WHILE LESS, UPDATE

SCAN WHILE GREATER OR EQUAL, UPDATE

SCAN WHILE GREATER, UPDATE

SCAN WHILE LESS OR EQUAL, UPDATE

MNEMONIC

TRNS

USNU

UABU

TWFU

TWTU

SWFU

SWTU

SLSD

SGED

SGTD

SLED

SEQD

SNED

SLSU

SGEU

SGTU

SLEU

VARIANT MODE.

IIEXADECIMAL

CODE

95 FC

95 FD

EDIT MODE.

DO

D1

D2

DJ

D4

D5

D6

D7

D8

D9

VARIANT MODE.

DA

DB

DC

APPENDIX B (cont)

OPERATORS, NUMERICAL LIST PRIMARY MODE

NAME

SCAN WHILE EQUAL, UPDATE

SCAN WHILE NOT EQUAL, UPDATE

MOVE WITH INSERT

MOVE WITH FLOAT

SKIP FORWARD SOURCE CHARACTERS

SKIP REVERSE SOURCE CHARACTERS

RESET FLOAT

END FLOAT

MOVE NUMERIC UNCONDITIONAL

MOVE CHARACTERS

INSERT OVERPUNCH

INSERT DISPLAY SIGN

SKIP FORWARD DESTINATION CHARACTERS

SKIP REVERSE DESTINATION CHARACTERS

INSERT UNCONDITIONAL

MNEMONIC

SEQU

SNEU

MINS

MFLT

SFSC

SRSC

RSTF

ENDF

MVNU

MCHR

INOP

INSG

SFDC

SRDC

INSU

E-ll

VARIANT MODE.

HEXADECIMAL

CODE

DD

DE

B-12

APPENDIX B (cont)

OPERATORS, NUMERICAL LIST PRIMARY MODE

INSERT CONDITIONAL

END EDIT

MNEMONIC

INSC

ENDE

p = PRESENCE BIT

1 = PRESENT IN

MAIN MEMORY

0 = NOT PRESENT

MAIN MEMORY

READ ONLY BIT

l = READ ONLY

0 = READ/WRITE

APPENDIX C

CONTROL WORD FORMATS

:::
39 35 31 27 19 15 11 7 3

LENGTH/INDEX MEM/DISK ADDRESS
38 34 30 26 18 14 10 6 2

37 33 29 25 17 13 9 5

36 32 28 24 16 12 8 4 0

DATA DESCRIPTOR

c = COPY BIT I = INDEX BIT s = SECiMENTED

BIT

1 = A COPY l = INDEXED 1 = AHEA

SEGMENTED

IN 0 = ORIGINAL 0 = NON INDEXED 0 = NOT

SEGMENTED

42 & 41 D = DOUBLE-PRECISION BIT

MUST ::::: 00 1 = DOUBLE-PRECISION DATA

FOR DATA DESC. 0 = SINGLE-PRECISION DATA

NORMAL INDIRECT REFERENCE WORD

C-1

APPENDIX C (cont)

CONTROL WORD FORMATS

.. ·.·,• ..

i---4_3-r-_39--t:!lllj:j!iil-----~-----f·:-:·:<<·:1 35 31 27 23

DISPLACEMENT
34 30 26 22

33 29 25 21

44 40 32 28 24 20 1<:/
!\:::;:;::

STUFFED INDIRECT HEFEHENCE WORD

11 7 3

INDEX FIELD
10 6 2

9 5

12 8 4 0

: :: llllllllllll!lll!l!i!!il:l---::-+--:-:-t-----1

..........,~......__..._..._1_5t !!lll!i!!\!l--_11--f--_7 __ 3_

D.S. = DIFFERENT

STACK BIT

l= A NON-CURRENT

STACK

33 29 25

32 28 24 12 8 4

MARK STACK CONTHOL WORD

E. = ENVIRONMENT V. = VALUE BIT

1 ::: ACTIVE MSCW 1 == RETUHN A VALUE

2

0

0 = THIS CURRENT

STACK

0 = INACTIVE MSCW 0 = HESTART FHOM BEGIN

~ !i!l!i!!i!! Jii/iii/ill
1

43 39 :mm::::: 35 mmmml--3_1_.___2_7 ____ :

r-2Q_ :!!!!!!!!!!!............. ::::::4~5~J~c K4

42

1 Nl
0 3~78 .. ==_.=! __ := .. =: __ :~_:·.!_:·.=_.:!_;_.= .. :

1

·_ .. :···:!·: ... =···.

1

= ... =··!:~ .. =·.1.•_.:!~_.=_=;:_ .. =_.:;:_.: __ .:

1

:··:p_:: __ .=· ... = ... =s ... =_.~3: .. ·:··.=

4

3R· .. =· .. :~._.:, I .i;l.!!:·.!· ... 1.1.:1 .. 1:1.1:1

3

t l.~6
;

49
:111111111111111111111111

29 25

48 ?HU/))) 44 40 36 H~>>~>><~ 32

,,.,.,..,.......-#~~--::-'-tllliiiiiili :~ :
S. D. INDEX

131 91 5

28 24 12 8 4

PROGRAM CONTROL WORD

C-2

3

2

0

APPENDIX C (cont)

CONTROL WORD FORMAT

N = NORMAL/CONTROL STATE F/F

l = CONTROL STATE

SD = Segment Descriptor

0 = NORMAL STATE

31 27 23
N. u I~

15 19;::-/:>
P.1.R. LL

l l 7 3

30 26 22 18 14 ::: 10 6 2
..... D. NDEX

29 25 21 17 131 91 51 l

28 24 20 16

RETURN CONTROL WORD

E. S. = EXTERNAL SIGN 0 = OVERFLOW F/F Tr = TRACE MODE

BIT

l = NEGATIVE l = OVERFLOW T = TRUE/FALSE F/F

0 = POSITIVE 0 = NO OVERFLOW l = TRUE

0 = FALSE

TFOF = TRUE/FALSE F/F

OCCUPIED F/F

l = TFFF VALID

0 = TFFF NOT DETERMINED

F = FLOAT F/F N = NORMAL/CONTROL F/F

l = FLOAT l = CONTROL STATE

0 ::;: NO FLOAT 0 = NORMAL STATE

35 31 27

FINAL VALUE
34 30 26

33 29 25 9 5

32 28 24 8 4 0

STEP INDEX WORD

C-J

P = PRESENCE BIT

1 = PRESENT IN

MAIN MEMORY

0 = NOT PRESENT

MAIN MEMORY

IN

R = READ ONLY BIT

1 = READ ONLY

0 = READ/WRITE

c-4

APPENDIX C (cont)

CONTROL WORD FORMATS

39 35 31 27 23 :~:~:~:~{:~:~:f
LENGTH IN CHARACTERS ~:~f~:~~:t:
38 34 30 26 22 :~:~:~:~:~m~:~

37 33 29 25 21 ~~ltf 1

19 15 11 7 3

MEM/DISK ADDRESS
18 14 10 6 2

17 13 9 5
.t---~~--~----~-

36 32 28 24 20 {~@lli 16 12 8 4 0

STRING DESCRIPTOR (NON-INDEXED)

C = COPY BIT I = INDEX BIT

1 = A COPY

0 = ORIGINAL 0 = NON-INDEXED

SIZE = 4 =) 8-BIT BYTE

SIZE = 3 =) 6-BIT CHARACTER

SIZE = 2 =) 4-BIT DIGIT

23

22

21

20

STRING DESCRIPTOR (INDEXED)

S = SEGMENTED

BIT

1 = STRING

SEGMENTED

0 = NOT

SEGMENTED

APPENDIX C (cont)

CONTROL WORD FORMATS

p = PRESENCE BIT c = COPY BIT I = INDEX BIT s = SEGMENTED

BIT

l = PRESENT IN l = A COPY l = INDEXED l = STRING

MAIN MEMORY SEGMENTED

0 = NOT PRESENT IN 0 = ORIGINAL 0 = NOT

MAIN MEMORY SEGMENTED

R = READ ONLY BIT SIZE = 4 =) 8-BIT BYTE

l ~ READ ONLY SIZE = 3 =) 6-BIT CHARACTER

0 = READ/WRITE SIZE = 2 =) 4-BIT DIGIT

C-5

APPENDIX D

SCAN FUNCTION CODE WORDS

(SCAN IN)

,~:: illlili
Function Code Read Time of Day Clock (0011)

Time of Day (Binary) Word Returned

0

Function Code Read General Control Adapter (0101)

z = 0001, GCA A is to respond N = oo, Read GCA Input Register

z = 0010, GCA B is to respond N = 01, Read GCA Interrupt Mask

z = 0100, GCA c Register

1000, GCA
N = 10, Read GCA Interrupt Register z = D
N = 10, Read GCA Output Register

D-1

APPENDIX D (cont)

SCAN FUNCTION CODE WORDS

(SCAN IN) (cont)

47 43 39 35 3 1 27 23 1 9 1 5 1

50 46 42 38 34 30 26 22 1 8 1 4 1

I NDEX
49 45 41 37 33 29 25 2 1 1 7 1 3

48 44 40 36 32 28 24 20 1 6 1 2

a. G.C.A. Register Word Returned

b. G.C.A. Register Word Sent To Multiplexor

0
5

~::11111111

1

0

9

8

Function Code Read Result Descriptor (0010)

D-2

7 3

6 2

5

4 0

APPENDIX D (cont)

SCAN FUNCTION CODE WORDS

(SCAN IN) (cont)

Result Descriptor Word Returned

Bit 0 == Exception

Bit 1 = Software Attention

Bit 2 = Busy

Bit 3 = Not Ready

Bit 4 = Descriptor Error

Bit 5 = Memory Address Error

Bit 6 = Memory Parity Error

Bit 16 = Memory Protection Error

Bits 15:9 are Unit Error Field (see MPX section)

Function Code Read Interrupt Mask (10100)

D-3

APPENDIX D (cont)

SCAN FUNCTION CODE WORDS

(SCAN IN) (cont)

Bit 9 =

Bit 1 =
Bit 2 =
Bit 3 =
Bit 4 =

Bit 0 =

D-4

I~ :il/1111111

Interrupt Mask

Multiplexor I/O Finish

Data Comm. Processor 1

Data Comm. Processor 2

Data Comm. Processor 3

Data Comm. Processor 4

Status Change

1111/i/
1
1 :

Word Returned

3

2

0

Function Code Read Interrupt Register (0100)

8 4 0

Interrupt Register Word Returned

(SCAN

Bit 9

Bit 1

Bit 2

Bit J

Bit 4

Bit 0

Bits

Bits

IN)

=

=
=
=
=

=

(cont)

Multiplexor

Data Comm.

Data Comm.

Data Comm.

Data Comm.

APPENDIX D (cont)

SCAN FUNCTION CODE WORDS

I/O Finish

Processor 1

Processor 2

Processor J

Processor 4

Status Change Interrupt

: ::ll!!lilll
Function Code Read Interrupt Literal (1111)

:::::
7 3

0
50 \ ://' I·:·: INTER RUPT1

:/: ::::: 6 2

0 ::::::: :;;::::::: LITERAL
49 51 l

0 48 :?:::::: {\// 4 0

Interrupt Literal Word Returned

1:2 = 01 = Multiplexor A

10 = Multiplexor B

7:4 = 0001 = D.C.P. 1

0010 = D.C.P. 2

0011 = D.C.P. J

0100 = D.C.P. 4

1001 = I/O Finished

1111 = Status Change

D-5

APPENDIX D (cont)

SCAN FUNCTION CODE WORDS

(SCAN IN) (cont)

r---- ::::::::::::::::::::

0 ::::::;:/:/:

~!}:!!:Ii!!.!
a41-!t!JF:!:

48 ::::::::::::::::::::

M = 0 =
M = 1 =
z = 01 =
z = 10 =
N = 0 =>

:;:::::::;::;::;::::: 0

}\:\:\ 0

'.:/:/:/:'. 0

:/:/:;:/: 0

Function Code Interrogate Peripheral Status (0001)

All Multiplexors to respond

Multiplexor designated by z to respond

Designates Multiplexor A

Designates Multiplexor B

7 Status Vector Number (in Binary)

!!llllllllil11---::-l t---::~-:
3

-~ St-T-A-'...;;..~+-S-B.....:.~_;_~ S1--.....:.:..;;..:f..--:=-
7

+--~: l!iil!ii!lil1

[~!ll!illllll 32 28 24 20 16 12 8 4]Jtif x . 0

Unit Status Word Returned

X = 0 = Status word not present

X = 1 = Status word present

D-6

APPENDIX D (cont)

SCAN FUNCTION CODE WORDS

(SCAN IN) (cont)

1 2 IIf]ff 0
8 111111111111 ° 411111\llllill M . 0

Function Code Interrogate Peripheral Type (OllO)

Unit Type Word Returned

T.C. = 00 = No Unit

Ol = Disk File

02 = Display

04 = Paper Tape Reader

05 = Paper Tape Punch

06 = Line Printer, Buffered, BCL drum

07 = Line Printer, Unbuffered, BCL drum

08 = Card Reader

OA = Card Punch

OB = Magnetic Tape (7 track) l oc = Magnetic Tape (9 track NRZ)

OD = Magnetic Tape (9 track P.E.)

Exchange

ID = Magnetic Tape (7 track) l IE = Magnetic Tape (9 track NRZ)

IF = Magnetic Tape (9 track p. E.)

Serial or Cluster

D-7

(SCAN IN) (cont)

APPENDIX D (cont)

SCAN FUNCTION CODE WORDS

T.C. (cont) = 26 =Line Printer, Buffered, EBCDIC drum

27 =Line Printer, Unbuffered, EBCDIC drum

15 11 lllli.11!·!!1 °
~~IT 1 0 111111·-!·li! O

N~~BER 9 lll!lllll!lll O

0
12 :::::::::::::::::::::: 8

: !i!!ll illll: : : : :!11\li ii\\11

0 ://:\:/ M.
4 :::::::::::::::::::::: 0

Function Code Interrogate Input/Output Path (oooo)

A

A

z
z
z

0

0

4 9 :\:\:::::/

0
4a::::::::::::::::::::::

= 0 =

= 1 =

= 01 =

= 10 =

= 11 =

D-8

No Path

Path is

Path via

Path via

Path via

19

iiilillilllil

:: 1111111111111

16

:::::::::::::::::::::: o UUH 0 :::::::::::
15 1 l :::::::::::::::::::::: 7 ; ; ... · 3)((

u NIT :?/:/:/ 0 @!!jl!ll z . /HU

14 10 \:/)\: 6 ~<>~~ 21 .. ·····:;·'.:· :1 .. :· ... =':···:·.=~.: ... =: .• 1· .. ···:'·· =:.:!······:'.·· :1·:· .. ·=l.:·:; .. :i NUMBER /)\:\ 0 i.~1.i1.i[.~1·.i! Z.
13 9 ::::::::::::::::::::: 5 ::;:;::::::

Input/Output Path Word Returned

Available

Available

Multiplexor A

Multiplexor B

Either Multiplexor

(SCAN OUT)

a--:\tlf I!!\\::
~f\I\\\\\\l
~:::::::::::::::::::::
0 :::::::::::::::::::::

48 :::::::::::::::::::::

APPENDIX D (cont)

SCAN FUNCTION CODE WORDS

:::::::::::::::::::: 0

:::::::::::::::::::: 0

:::::::::::::::::::: 0

@itt 0

: : : : : : : :!111111111111~ l lll\1111111~111"11
0 ;:::::::::\:/: 0 :::::::::::::::::::::: 0

16 l 2 :::::::::::::::::::::: 8 ::::::::::::::::::::: 4 /:/:\\: 0

Function Code Set Time of Day Clock (0011)

,....---,
0

.__..2Q.
0

~
0

48

35 31 27 23 1 9 l 5 l l 7 3

34 30 26 22 l 8 14 l 0 6 2

l·!jjjI)j jj,jj\I

TIME OF DAY
33 29 25 21 17 l 3 9 5

:::::::::::::::::::~. ·········· 32 28 24 20 l 6 l 2 8 4 0

Time of Day Word (Binary) To Multiplexor

]]]f 1 0 0 :: l ;:;:;:;:::::: z ;:;:;:;:;:;:

\}}::

0

: : :
1
:
3
: ::~i· .. :':~·.::,:.'::i':::l::'::

1

:1::i:!::·
1

·:~:.1: ::::'''.L9:::)'.ll:i·':i.~ .. \1.:i .. '.i:'·i:i .. l .. 1.l:)·':i.:l .. ~5: :l.:.=!:::1 .. =1:~:1.1.:1.:.1.:il.:!:!.:!:,~.:1 ;! ·:;: .. 1·: .• 1::!.:i: .. !.:;!:!.:l.:,l.:1! .. i.:

jJJ/i//!;J/ll!liii/ :-
1
-
7

+-----'·

Hft~t 16 ° 12 ~IIIIIItI:ti 0
8 IIIlI~ z . 4111111111111

1
0

Function Code Set General Control Adapter (0101)

D-9

APPENDIX D (cont)

SCAN FUNCTION CODE WORDS

(SCAN OUT) (cont)

z = 0001 = GCA A is to Respond

z = 0010 = GCA B is to Respond

z = 0100 = GCA c
z = 1000 = GCA D

N = 00 = Set GCA Output Register

N = 01 = Set GCA Interrupt Mask Register

N = 10 = Set GCA Interrupt Register

:: : :: : ::,1111111111~111111111111~·111111111111:
16 ° 12 111111111111.

0
a lllllllllllll

0
4 IJllllllllll 1 o

Function Code Set Interrupt Mask (0100)

lfflJ : 2

3

Interrupt Mask Word Sent To Multiplexor

Bit 9 = Multiplexor

Bit 1 = Data Comm. Processor 1

Bit 2 = Data Comm. Processor 2

Bit 3 = Data Comm. Processor 3

Bit 4 = Data Comm. Processor 4

Bit 0 = Status Change Interrupt

D-10

(SCAN OUT) (cont)

0

0

0

APPENDIX D (cont)

SCAN FUNCTION CODE WORDS

:: : :lllil : : 1111 : : Jiii!
12 ~lI{f lll: 0

a lllllllllllll
0

4 1111111111111
1

o

Function Code Initiate I/O (oooo)

39 35 31 27 23 1 9 15 1 1 7 3

BUFFER AREA
38 34 _L 30 26 22 1 8 14 10..L 6 2

I I

LENGTH BASE ADDRESS

37 33 29 25 21 17 1 3 9 5

36 32 28 24 20 16 1 2 8 4 0

Area Descriptor Word Sent To Multiplexor

D-11

CODES.

BCL

GRAPHIC EXTERNAL

Blank 01 0000

. 11 1011

[11 1100

(11 1101

< 11 1110
-(,-- 11 1111

& 11 0000

$ 10 1010

* 10 1100

) 10 1101

; 10 1110

< 10 1111

- 10 0000

I 01 0001

'
01 1011

% 01 1100

= 01 1110

J 01 1110
ti 01 1111

00 1011

@ 00 1100

: 00 1101

> 00 1110

> 00 1111

APPENDIX E

DATA REPRESENTATION

BCL EBCDIC

INTERNAL INTERNAL

11 0000 0100 0000

01 1010 0100 1011

01 1011 0100 1010

01 1101 0100 1101

01 1110 0100 1100

01 1111 0100 1111

01 1100 0101 0000

10 1010 0101 1011

10 1011 0101 1100

10 1101 0101 1101

10 1110 0101 1110

10 1111 0101 1111

10 1100 0110 0000

11 0001 0110 0001

11 1010 0110 1011

11 1011 0110 1100

11 1101 0111 1110

11 1110 0101 1010

11 1111 0111 1111

00 1010 0111 1011

00 1011 0111 1100

00 1101 0111 1010

00 1110 0110 1110

00 1111 0111 1101

HEXADECIMAL

GRAPHIC

40

4B

4A

4D

4c

4F

50

5B
5C

5D

5E

5F

60

61

6B

6C

7E

5A

7F

7B

7c

7A

6E

7D

E-1

BCL

GRAPHIC EXTERNAL

+ 11 1010

A 11 0001

B 11 0010

c 11 0011

D 11 0100

E 11 0101

F 11 0110

G 11 0111

H 11 1000

I 11 1001

x (Mul t.) 10 1010

J 10 0001

K 10 0010

L 10 0011

M 10 0100

N 10 0101

0 10 0110

p 10 0111

Q 10 1000

R 10 1001

~ 01 1010

s 01 0010

T 01 0011

u 01 0100

v 01 0101

w 01 0110

x 01 0111

y 01 1000

z 01 1001

I

E-2

APPENDIX E (cont)

DATA REPRESENTATION

BCL EBCDIC

INTERNAL INTERNAL

01 0000 1100 0000

01 0001 1100 0001

01 0010 1100 0010

01 0011 1100 0011

01 0100 1100 0100

01 0101 1100 0101

01 0110 1100 0110

01 0111 1100 0111

01 1000 1100 1000

01 1001 1100 1001

10 0000 1101 0000

10 0001 1101 0001

10 0010 1101 0010

10 0011 1101 0011

10 0100 1101 0100

10 0101 1101 0101

10 0110 1101 0110

10 0111 1101 0111

10 1000 1101 1000

10 1001 1101 1001

11 1100 0110 1101

11 0010 1110 0010

11 0011 1110 0011

11 0100 1110 0100

11 0101 1110 0101

11 0110 1110 0110

11 0111 1110 0111

11 1000 1110 1000

11 1001 1110 1001

HEXADECIMAL

GRAPHIC

co
Cl

C2

CJ

c4

c5

C6

c7

cs

c9

DO

Dl

D2

DJ

D4

D5

D6

D7
DB

D9

6D

E2

EJ

E4

E5
E6

E7
EB

E9

GRAPHIC

0

l

2

3

4

5
6

7

8

9

?

a.

b.

c.

APPENDIX E (cont)

DATA REPRESENTATION

BCL BCL EBCDIC HEXADECIMAL

EXTERNAL INTERNAL INTERNAL GRAPHIC

00 1010 00 0000 1111 0000 FO

00 0001 00 0001 1111 0001 Fl

00 0010 00 0010 1111 0010 F2

00 0011 00 0011 1111 0011 F3

00 0100 00 0100 1111 0100 F4

00 0101 00 0101 1111 0101 F5

00 0110 00 0110 1111 0110 F6

00 0111 00 0111 llll 0111 F7

00 1000 00 1000 1111 1000 F8

00 1001 00 1001 1111 1001 F9

00 0000 00 1100 0110 1111 ALL OTHER

CODES

notes)

NOTES

EBCDIC 0100 1110 also translates to BCL 11 1010.

EBCDIC 1111 is translated to BCL 00 0000 with an

additional flag bit on the most significant bit

line (8th bit). This function is used by the un-

buffered printer to stop scanning.

EBCDIC 1110 0000 is translated to BCL 00 0000

with an additional flag bit on the next to most

significant bit line (7th bit). As the print

drums have 64 graphics and space this signal can

be used to print the 64th graphic. The 64th

graphic is a "CR" for BCL drums and a "~" for

EBCDIC drums.

(see

E-3

E-4

APPENDIX E (cont)

DATA REPRESENTATION

d.. The remaining 189 EBCDIC codes are translated

to BCL 00 0000 (?code).

e. The EBCDIC graphics and BCL graphics are the

same except as follows:

1)
2)

3)
4)

5)

BCL

>

x (multiply)

<

EBCDIC

' (single quote)

(not) --,
__ (underscore)

1-:tj
I
f-l

NUM

81

1

2

3

4

5
6

7
8

81

82

83

84

85

86

87

NUM

z
0
N
E

HEX

0

1

2

3

4

5

6

7
8

9

A

B

c
D

E

F

HEX

z
0
N
E

+
-

0
9 9 9

0 1 2

NUL] DLd

SOH DCl

STX DC2

ETX DC3

HT LF

BS ETB

DEL ESC

CAN

EM

FF FS

CR GS ENQ

so RS ACK

SI us BEL

0 1 2

9 9 9
0

-
+

+ + +
- - -

0 0 0
9 9 9 9 9

3 4 5 6 7

spj &j -
lLJ

SYN

EOT
~

< I > . - -
[J l"""'f1 .

-1. .
0 $ ' .#

DC4 < * % @

NAK () t -
+ ; > =

SUB l 1 ? Tl

3 4 5 6 7

9
0

-
+

+ + + +
- - - -

0 0 0 0

8 9 A B c D E F HEX NUM

[1 1~1 ~} 1 IL [0 0 81

a j J"V A J 1 1 1

b k s B K s 2 2 2

c 1 t c L T 3 3 3

d m u D M u 4 4 4 t:D

e n v E N v 5 5 5 0\
\Jl

f 0 w F ¢ w 6 6 6
0
0

g p x G p x 7 7 7 M
t:D >

h q y H Q y 8 8 8 0 '"d
t:I '"d
H M

i r z I R z 9 9 9

A 82

0 z
.......... t:I
::r:l H
M :><
:><

B 83 1-:tj
0

c 84 >
~

D 85
t:I

0

E 86 0
t:I

F 87
M

8 9 A B c D E F HEX NUM

9 9 9 9
0 0 0 0 0 0

- - - - - -
+ + + + + +

APPENDIX F {cont)

B 6500 EBCDIC/HEX CARD CODE

Use of the B 6500 EBCDIC/HEX Card Code Chart.

F-2

a. Locate the desired EBCDIC graphic code within the table.

b. The two-part Hexadecimal Code is read as follows:

1) The first part is found in the vertical column

above or below the desired EBCDIC code.

2) The second part is found in the horizontal row

either to the right or left of the desired EBCDIC

code.

a) Examples:

SYN = 32

F = C6

c. The two-part Card Code is found in the same manner as HEX

(b) except the zone and numeric bits are read from the

very outer portion of the table.

1) Examples:

SYN = 9 2

F = + 6

2) The card code exceptions to the above procedure

are enclosed in heavy lines on the chart and are

defined below:

a) 00 = + 0981 (NUL)

b) 10 = + -981 (DLE)

c) 20 = 0981

d) JO = + -0981

e} 40 = BLANK

f) 50 = + (&)
g) 60 = (-)

APPENDIX F (cont)
B 6500 EBCDIC/HEX CARD CODE

h) 70 = + - 0

i) co = + 0 ({) (6)
j) DO = - 0 (}) (~)
k) EO = 0 82 (\.)

1) FO = 0 (o)

m) 61 = 0 1 (/)
n) El = -09 1

o) 6A = + - (~)

F-3

APPENDIX G

HEXADECIMAL-DECIMAL CONVERSION TABLE

The table in this appendix provides for direct conversion of

decimal and hexadecimal numbers in the ranges:

Hexadecimal Decimal

000 to FFF 0 to 4095

For numbers outside the range of the table, add the following

values to the table figures:

Hexadecimal Decimal

1000 4096

2000 8192

3000 12288

4000 16384

5000 20484

6000 24576

7000 28672

8000 32768

9000 36864

AOOO 40960

BOOO 45056

cooo 49152

DOOO 53248

EOOO 57344

FOOO 61440

G-1

G)
I

N

APPENDIX G (cont'd)

000

010

020

030

040

050

060

070

080

090

OAO

OBO

oco
ouo
OEO

OFO

iOO
110

120

130

140

150

160

170

180

190

lAO

180

1CO
100

H.O

1FO

0

0

16

32

48

64

80

96

112

128
144

160

176

192

208

2'?4

240

256

272

288

304

320

336

352

368

384

400

416

432

448

464

480

496

17

33

49

65

81

97

113

129

145

161

177

193

209

225

241

257

273

289

305

321
337

353

369

385

401

417

433

449

465

481

497

2

2

18

34

50

66

82

98

114

130

146

162

118

194

210

226

242

258

274

290

306

322

338

354

370

386

402

418

434

450

466

482

498

3

3
19

35

51

67

63

99

115

131
t47

163

179

195

211

'?27

243

259

275

291

307

323

339

355

371

387

403

419

435

451

467

483

499

4

4

20

36

'52

66

84

100

116

132
148

164

180

196

212

228

244

260

276

292

308

324

340

356

372

388

404

420

436

452

468

484

500

5

5

21

31

53

69

85

101

117

133
149

16 '5

181

197

213

229

245

261

277

293

309

325
341

357

37 3

389

405

421

437

45 3

469

485

501

6

~
22

3e
54

70

86

102

118

134

150

166

182

198

214

230

246

26!

27~

294

31'

326

342

358

374

390

406

422

436

454

476

486

502

7

7

23

39

55

71

87

103

119

135

151

167

183

199

215

231

247

263

279

295

311

327
343

359

375

391

407

423

439

455

471

487

50 3

8

8

24

40

56

72
88

104

120

136

152

16R

184

200

216

232

248

264

280

296

312

328
344

360

376

392

408

424

440

4'56

472

488

504

9

9

25

41

57

73

A9

105

121

137
153

169

185

201

217

233

249

2~5

281

297

313

329
345

361

377

39 3

409

425

441

457

473

489

505

A

10

26

42

138

74

90

106

122

138

154

170

1.136

202

218

234

250

266

282

298

314

330
346

362

378

394

410

426

442

4'38

474

490

506

8

11
27

43

59

75
91

107

123

139

15'5

171

187

203

219

235

251

267

283

299

315

331
347

363

379

395

411

427

443

459

475

491

507

c

12
28

44

60

76

92

108

124

140

156

172

188

204

220

236

252

268

284

300

316

332

348

361J

380

396

412

428

444

460

476

492

508

D

13

29

4S

61

77

93

109

125

141

157

173

189

205

221

231

253

269

285

301

317

333
349

365

38 t

397

413

IJ29

445

461

477

493

509

E

14
30

46

62

76

94

110

126

142

158

174

190

206

222

238

254

270

286

302

318

334

350

366

382

398

414

430

446

462

478
494

510

F

15
31

47

63

79

95

111

121

143

159

175

_J 91

207

223

239

255

271

287

303

319

335

351

367

38 3

399

415

431

IJ47

46 3

479

495

511

G)
I
w

APPENDIX G (cont'd)

0

200

210

220

230

240

250

260

270

280

290

2AO

2~0

2CO
2UO

2f.0

2FO

300

310

320

330

340

350

360

370

380

390

3A0

380

3CO

300

3EO

3f"O

512

528

544

560

576

592

608

624

640

656

672

688

704

720

736

752

766

784

800

816

832

846

864

880

896

912

928

944

960

976

992

1008

513

529

545

561

577

593

609

625

641

657

673

689

705

721

7 37

753

769

785

801

817

833

849

865

881

897

913

929

945

961

977

993

1009

2

514

530

546

562

57R

594

610

626

642

658

674

690

706

722

738

754

770

786

802

818

834

850

866

882

898

914

930

946

962

978

994

1010

3

515

531

547

563

579

595

611

627

643

659

675

691

707

723

7 39

755

171

787

803

819

835
85,

867

883

899

915

9 3 t

947

963

979

995

1011

4

516

532

548

564

580

596

612

628

644

660

676

692

708

7'?4

740

756

772

788

804

820

836

852

668

884

900

916

932

948

964

980

996

1012

5

517

533

549

565

581

597

613

629

645
661

671

693

709

725

741

757

773
789

805

821

837

853

869

885

901

917

933

949

965

981

997

1013

6

518
53Q

550

566

582

598

614

630

646

662

676

694

710

726

742

758

774

790

806

822

838

85•

870

886

902

918

934

950

966

982

996

1014

7

519

535

551

567

583

599

615

6 31

647

663

679

695

711
727

743

759

775
79t

807

823

839

855

87t

887

903

919

935

951

967

983

999

1015

8

520

536

552

568

584

600

616

632

648

664

660

696

712

728

744

7Fi0

716

792

808

8::i4

840

856

872

688

904

920

936

952

968

984

1000

1016

9

521

537

553

569

585

601

617

633

649

665

681

697

713

729

745

761

777
79 3

809

825

841

8S7

873

889

905

921

937

953

969

985

1001

1017

4

522

538

554

570

586

602

618

634

650

666

682

698

714

730

746

762

778
794

810

826

842

858

874

890

906

922

938

954

970

986

1002

1018

B

523

539

555

571

587

603

619

6 35

651

667

683

699

715

731

747

763

719

795

811

827

843

859

875

891

907

923

939

955

971

987

1003

1019

c

524

540

556

572

588

604

620

636

652

668

684

700

716

732

748

764

780
796

812

828

844

860

876

892

908

924

940

956

972

988

1004

1020

0

525

541

557

573

589

605

621

631

653

669

685

701

717

733

749

765

781

797

813

829

845

861

877

893

909

925

941

957

973

989

1005

1021

E

526

542

558

574

590

606

622

638

654

610

686

702

718

734

750

766

782

798

814

830

846

862

878

894

910

926

942

958

974

990

1006

1022

F

527

543

559

575

591

607

623

639

655

671

687

703

719

735

751

767

783

799

815

831

847

863

879

895

911

927

943

959

975

991

1007

1023

C>
I
~

APPENDIX G (cont'd)

0

400

410

420

4 30

440

450

460

470

480
490

4AO

480

4CO
400

4EO

4FO

500

510

520

530

540

550

560

570

580
590

SAO

580

5CO
500

SEO
5FO

1024
1040

1056

1072

1088
1104

1120

1136

1152
1168

1184

1200

1216
1232

1248

1264

1280
1296

1312

1328

1344

1360

1376

1392

1408

1424

1440

1456

1472
1488

1504

1520

1025
1041

1057

1073

1089

1105

1121

1137

1153
1169

1185

1201

1217
1?. 33

1249

1265

1281
1297

1313

1329

1345

1361

1377

1393

1409

1425

1441

1457

1473
1489

1505

1521

2

1026
1042

1058

1074

1090

1106

1122

1138

1154

1170

1186

1202

1218
1234

1250

1266

1282
1298

1314

1330

1346

1362

1378

1394

1410

1426

1442

1458

1474
1490

1506

1522

3

1027
1043

1059

1075

1091
1107

1123

1139

1155
1171

1187

1203

1219

1235

1251

1267

1283
1299

1315

1331

1347

1363

1379

1395

1411

1427

1443

1459

1475
1491

1507

1523

4

1028
1044

1060

1076

1092
1108

1124

1140

1156
1172

1188

1204

1220

1236

1252

1268

1284
1300

1316

1332

1348

1364

1380

1396

1412
1428

1444

1460

1476
1492

1508

1524

5

1029

1045

1061

1077

1093
1109

1125

1141

1157
1173

1189

1205

1221
1237

1253

1269

1285
1301

1317

1333

1349

1365

1381

1397

1413
1429

1445

1461

1477
1493

1509

1525

6

1030
1046

1062

1076

1094

1110

1126

1142

115e
1174

1190

1206

1222
1238

1254

1270

1286
1302

1318

1334

1350
1366

1382

1396

1414
14 30

1446

1462

147~

1494

1510

1526

7

1031
1047

1063

1079

1095

1111

1127

1143

1159
1175

1191

1207

1223
1239

1255

1271

1287
1303

1319

1335

1351
1367

1383

1399

1415

1431

1447

1463

1479
1495

1511

1527

8

1032
1048

1064

1080

1096

1112

11~8

11 Ll4

1160
1176

1192

1208

1224
1240

1256

1272

1286
1304

1320

1336

1352
1368

13R4

1400

1416

1432

1448

1464

1480
1496

1512

1528

9

1033
1049

1065

1081

1097

1113

1129

1145

1161
1177

1193

1209

1225
1241

1257

1273

1289
1305

1321

1337

1353
1369

1385

1401

1417

1433

1449

1465

1481
1497

1513

1529

A

1034
1050

1066

1082

1096
1114

1130

1146

1162
1118

1194

1210

1226
1242

1258

1274

12QO

1306

1322

1338

13'54
1370

1386

1402

1418
14~4

1450

1466

1482
1498

151. 4

1530

8

1035
1051

1067

1083

1099

1115

1131

1147

1163
1179

1195

1211

1227
1243

1259

1275

1291
1307

1323

1339

1355

1371

1387'

1403

1419
1435

1451

1467

1483
1499

1515

1531

c

1036
1052

1068

1084

1100
1116

1132

1148

1164
1180

1196

1212

0

1037
1053

1069

1085

1101
1117

1133

1149

1165
1181

1197

1213

1228 1229
1244 1245

1260 4 1261

1276 1277

1292

1308

1324

1340

1356

1372
.,oo
.&.JUI,.)

1404

1420
1436

1452

1468

1484
1500

1516

1532

1293
1309

1325

1341

1357

1373
• ""ein I. ~07

1405

1421

1431

1453

1469

1485
1501

1517

1533

E

1038
1054

1070

1086

1102
1118

1134

1150

1166
1182

1198

1214

1230
1246

1262

1278

f

1039
1055

1071

1087

1103
1119

1135

1151

1167
1183

1199

1215

1231
1247

1263

1279

1294 1295

1310 1311

1326 1327

1342 1343

1358 1359
1374 1375

i390 i39i

1406 1407

1422 1423

1438 1439

1454 1455

1470 1471

1486 1487
1502 1503

1518 1519

t534 1535

G>
I
tn

APPENDIX G (cont'd)

0

600
610

620

630

640

650

660

610

680
690

6AO

680

6CO
600

6EO

6FO

700

710

720

7 30

740

750

760

770

780

790

7AO

780

7CO
700

7EO

HO

1536
1552

1568

1584

1600

1616

1632

1648

1664
1680

1696

1112

1128
1744

1760

1776

1792
1808

1824

1840

1856

1872

1888

1904

1920

1936

1952

1968

1984

?.000

2016

2032

1537
1553

1569

1585

1601

1617

1633

1649

1665
1681

1697

1713

1729

1745

1761

1777

1793
1809

1825

1841

1857

1873

1889

1905

1921

1937

1953

1969

1985

2001

2017

2033

2

1538
1554

1570

1586

1602

1618

1634

1650

1666
1682

1698

1714

1730

1746

1762

1778

1794

1810

1826

1842

1858

1874

1890

1906

1922

1938

1954

1970

1986
2002

2018

2034

3

1539
1555

1571

1567

1603

1619

1635

1651

1667

1683

1699

171 '5

1731
1747

1763

1779

1795

1811

1827

1843

1859

1875

1691

1907

1923

1939

1955

1971

1987
2003

2019

2035

4

1540
1556

1572

1588

1604

1620

1636

1652

1668
1684

1700

1716

1732
17118

1764

1780

1796

1812

1828

1844

1860

1876

1892

1908

19?4

1940

1956

1972

1988
2004

2020

?036

5

1541
1557

1573

1589

1605

1621

1637

1653

1669
1685

1701

1711

1733
1749

1765

1781

1797

1613

1829

1845

1861

1877

1893

1909

1925

1941

1957

1973

1989

2005

2021

2037

6

154i
1558

1574

1590

1606

1622

1638

1654

1670

1686

1702

171~

1734
1756

1766

1782

119e

1814

1830

1846

1862

1878

1894

1910

1926

1942

1958

1974

199C
2006

:?.022

2038

7

1543
1559

1575

1591

1607

1623

1639

1655

1671
1687

1703

1719

17 35

1751

1767

1783

1799

1815

1831

1847

1863

1879

1895

1911

1927

1943

1959

1975

1991
2007

2023

20 39

e

1544
1560

1576

1592

1608

1624

1640

1656

1672
1688

1704

1720

1736

1752

1768

1784

1800

1816

1832

1848

1864

1880

1896

1912

1928

1944

1960

1976

1992

2008

2024

2040

9

1545
1561

1577

1593

1609

1625

1641

1657

16 'l' 3

1689

1705

172 t

1737

1753

1769

17S5

1801

1817

1833

1849

1865

1881

1897

1913

1929

1945

1961

1977

1993
2009

2025

2041

A

1546
1562

1578

1594

1610

1626

1642

16'38

1674
1690

1706

1722

1738

17'34

1770

11e6

1802
1818

1834

1850

1866

18A2

1898

1914

1930

1946

1962

1978

1994

2010

2026

2042

B

1547
1563

1579

1595

1611

1627

1643

1659

1675
1691

1707

1723

1739

1755

1771

1787

1803

1819

1835

1851

1867

1883

1899

191 '5

1931

1947

1963

1979

1995

2011

2027

2043

c

1548
1564

1580

1596

1612

1628

1644

1660

1676
1692

1708

1724

1740

1756

1772

1788

1804

1820

1836

1852

1868

1884

1900

1916

1932

1948

1964

1980

1996

2012

2028

2044

D

1549
1565

1581

1597

1613

1629

1645

1661

1677
1693

1709

1725

1741
1757

1773

1789

1805

1821

1837

1853

1869

1885

1901

1917

1933

1949

1965

1981

1997

2013

2029

2045

E

1550
1566

1582

1598

1614

1630

1646

1662

1678
1694

1710

1726

1742
1758

1774

1790

1806

1822

1838

1854

1870

1A86

1902

1918

1934

1950

1966

1982

1998

2014

2030

2046

F

1551
1567

1583

1599

1615

1631

1647

1663

1679
1695

1711

1727

1743

1759

1775

1791

1807

1823

1839

1855

1871

1887

1903

1919

1935

1951

1967

1983

1999

2015

2031

2047

G'>
I
0-

APPENDIX G (cont'd)

0

800 2048

810 2064

820 2080

830 2096

840 2112

850 2128

860 2144

870 2160

860 2176

890 2192

6AO 2208

8BO 2224

8CO 2240

800 2256

8EO 2272

8FO 2288

900 2304

910 2320

920 2336

9 30 2352

940 2368

950 2384

960 2400

970 2416

980 2432

990 2448

9AO 2464

980 2480

9CO 2496

900 2512

9EO 2526

9f0 2544

2049

2065

2081

2097

2113

2129

2145

2161

2177

2193

2209

2225

2241

2257

2273

2289

2305

2321

2337

2353

2369

2385

240t

2417

2433

2449

2465

2481

2497

2513

2529

2545

2

2050

2066

2082

2098

2114

2130

2146

2162

2178

2194

2210

2226

2242

2258

2274

2290

2306

2322

233A

2354

2370

2386

2402

2418

2434

2450

2466

2482

2498

2514

2530

2546

3

2051

2067

2083

2099

2115

2131

214 7'

2163

2179

2195

2211

2227

2243

2259

2275

2291

2307

2323

2339

2355

2371

2387

2403

2419

2435

2451

2467

2483

2499

2515

2531

2547

4

2052

2068

2084

2100

2116

2132

2148

2164

2180

2196

2212

2228

2244

2260

2276

2292

2308

2324

2340

2356

2372

2388

2404

2420

2436

2452

2468

2484

2500

2516

2532

2548

5

2053

2069

2085

2101

2117

2133

2149

2165

2181

2197

2213

2229

2245

2261

2277

2293

2309

2325

2341

2357

2373

2389

2405

2421

2437

2453

2469

2485

2501

2517

2533

2549

6

2054

207'

2086

2102

2118

2134

2150

2166

2182

n9e
2214

2230

2246

:?262

:?27@

2294

231Q

2326

2342

2358

2374

2390

2406

2422

2438

2454

2470

2486

2502

2518

?534

2550

7

2055

2071

2087

2103

2119

2135

2151

2167

2183

2199

2215

2231

2247

2263

2279

2295

2311

2327

2343

2359

2375

2391

2407

2423

2439

2455

2471

2487

2503

2519

2535

2551

8

2056

2072

2088

2104

21 :?0

2136

2152

2168

2184

2200

2216

2232

2248

2264

2280

2296

2312

23?8

2344

2360

2376

2392

2408

2424

2440

2456

2472

2488

2504

2520

2536

2552

9

20H

2073

2089

2105

2121

2137

21§3

21'9

2185

2201

2217

2233

2249

2265

22e1

2297

2313

2329

2345

2361

2377

2393

2409

2425

2441

2457

2473

2489

2505

2521

2537

2553

A

2058

2074

2090

2106

2122

2138

2154

2170

21136

2202

2218

2234

2250

2266

2282

2298

2314

2330

2346

2362

2378

2394

2410

2426

2442

2458

2474

2490

2506

2522

2538

25'54

8

2059

2075

2091

2107

2123

2139

2155

2171

2187

2203

2219

2235

2251

2267

2283

2299

2315

2331

2347

2363

2379

2395

2411

2427

2443

2459

2475

2491

2507

2523

2539

2555

c

2060

2076

2092

2108

2124

2140

2156

2172

2188

2204

2220

2236

2252

2268

2284

2300

2316

2332

2348

2364

2380

2396

2412

2428

2444

2460

21176

2492

2508

2524

2540

2556

D

2061

2077

2093

2109

2125

2141

2157

2173

2189

2205

2221

2237

2253

2269

2285

2301

2317

2333

2349

2365

2381

2397

2413

2429

2445

2461

2417

2493

2509

2525

2541

2557

E

2062

2078

2094

2110

2126

2142

2158

2174

2190

2206

2222

2238

!254

2270

2266

2302

2318

2334

2350

2366

2382

2398

2414

2430

2446

2462

2478

2494

2510

2526

2542

2558

F

2063

2079

2095

2111

2127

2143

2159

2175

2191

2207

2223

2239

2255

2271

2287

2303

2319

2335

2351

2367

2383

2399

2415

2431

2447

2463

2479

2495

2511

2527

2543

2559

Q
I
'-I

APPENDIX G (cont'd)

0

AOO
AlO

A20

A30

A40

A50

A60

A70

A80
A90

AAO

ABO

ACO

ADO

Al:.O

AFO

BOO
810

B20

8 30

840

850

860

870

880

890

BAO

BHO

BCO

BOO

BEO
Bf O

2560
2576

2592

~606

2624

2640

2656

2672

2688

2704

2720

2736

2752

2768

2784

2800

2816

2832

2848

2864

2880

2896

2912

2928

2944
2960

2976

2992

3008

3024

3040

3056

2561
2577

2593

2609

2625
2641

2657

2673

2689

2705

2721

2737

2753

2769

2785

2801

2617

2833

2849

2865

2881

2897

2913

2929

2945

2961

2977

2993

3009

3025

3041

3057

2

2562
257'8

2594

2610

2626

2642

2656

2674

2690
2706

2722

2736

2754

277'0

2766

2802

2818
2834

2850

2866

2882
2898

2914

2930

2946

2962

2978

2994

3010

3026

3042

3058

3

2563
2579

2595

2611

2627
2643

2659

2675

2691
2707

2723

2739

2755

2771

2767

2803

2819

2835

2851

2867

2883

2899

2915

2931

2947

2963

2979

2995

3011

3027

3043

3059

4

2564
2580

2596

2612

2628
?644

2660

2676

2692
2708

2724

2740

2756

2772

2788

2804

2820
2836

?852

2868

2884

2900

2916

2932

2948
2964

2980

2996

3012

3028

3044

3060

5

2565
2561

2597

2613

2629
264'5

2661

2677

2693
2709

2725

2741

2757

2773

2769

2805

2621
2837

2853

2869

2865

2901

2917

2933

2949

2965
. 2981

2997

3013

3029

3045

3061

6

2566
2582

2598

2614

2630
2646

2662

2678

2694

2710

2726

2742

2758

2774

2790

2806

2822
2838

?854

2870

2886

2902

2918

?934

2959

2968

2982

299l5

3014

3030

3046

3062

T

2567
2583

2599

2615

2631
2647

2663

2679

2695

2711

2727

2743

2759

2775

2791

2807

2823
2839

2855

2871

2687

2903

2919

2935

2951
2967

2983

2999

3015

3031

3047

3063

8

2568
2584

2600

2616

2632
2648

2664

2680

2696

2712

2728

2744

2760

2776

2792

2808

2824
2840

2856

2872

2688

2904

2920

2936

2952
2968

2984

3000

3016

3032

3048

3064

9

2569
2585

2601

2611

2633
2649

2665

2681

2697

2713

2729

2745

2761

2777

2793

2809

2825
2841

2857

2873

28B9

2905

2921

2937

2953
29~9

29e5

3001

3017

3033

3049

3065

A

2570
2586

2602

2618

2634
2650

2666

2M2

2698

2714

2730

2746

2762

2778

2794

2810

2826
2842

2858

2874

2690

2906

2922

2938

2954

2970

2986

3002

3018

3034

3050

3066

8

2571
2587

2603

2619

2635
2651

2667

2683

2699

2715

2731

2747

2763

2779

2795

2811

2827
2843

2859

2875

2691
2907

2923

2939

2955

2971

2987

3003

3019

3035

3051

3067

c

2572
2588

2604

2620

2636

2652

2668

2684

2700
2716

2732

2748

2764

2780

2796

2812

2828

2844

2860

2876

2892
2908

2924

2940

2956
2972

2988

3004

3020

3036

3052

3068

0

2573
2589

2605

2621

2637

2653

2669

2685

2701

2717

2733

2749

2765

2781

2797

2813

2829
2845

2861

2877

2893

2909

2925

2941

2957

2973

2989

3005

3021

3037

3053

3069

E

2574
2590

2606

2622

2638
2654

2670

2686

2702

2718

2734

2750

2766

2782

2798

2814

2830
2846

2862

2878

2694

?.9t0

2926

2942

2958
2974

2990

3006

3022

3038

3054

3070

F

2575
2591

2607

2623

2639

2655

2671

2687

2703

2719

2735

2751

2767

2783

2799

2815

2831
2847

2863

2879

2895

2911

2927

2943

2959

2975

2991

3007

3023

3039

3055

3071

G>
I
co

APPENDIX G (cont'd)

0

coo
c10

C20

C30

C40
cso
C60

C70

C80
C90

CAO

CBO

cco
CIJO

CEO
CFO

000

010

020

030

040

050

060

070

080

090

OAO

DBO

oco
ODO
DEO
OFO

3072
3088

3104

3120

3136
3152

3168

3184

3200

3216

3232

3248

3264

3280

3296

3312

3328
3344

3360

3376

3392
3408

3424

3440

3456

3412

3468

3504

3520

3536

3552

3568

3073
3089

3105

3121

3137

3153

3169

3185

3201
3217

3233

3249

3265

3281

3297

3313

3329
3345

3361

3377

3393
3409

3425

3441

3457

3473

3489

3505

3521

3537

3553

3569

2

3074
3090

3106

3122

3138
3154

3170

3186

3202
3218

3234

3250

3266

3282

3298

3314

3330
3346

3362

3378

3394
3410

3426

3442

3458

3474

3490

3506

3522
3538

3554

3570

3

3075
3091

3107

3123

3139

3155

3171

3187

3203

3219

3235

3251

3267

3283

3299

3315

3331
3347

3363

3379

3395

3411

3427

344 3

3459

3475

3491

3507

S523

3539

3555

3571

4

3016
3092

:HOS

3124

3140

3156

3172

3188

3204

3220

3236

3252

3268

32A4

3300

3316

3332
3348

3364

3360

3396

3412

3428

3444

3460

3476

3492

3508

3524

3540

3556

3572

5

3077
3093

3109

3125

3141
3157

3173

3189

3205

3221

3237

3253

3269

3285

3301

3317

3333

3349

3365

3381

3397
3413

3429

3445

3461

3477

3493

3509

3525

3541

3551

3573

6

307~

3094

3110

3126

314!

3158

3174

3190

3206

3222

3238

3254

3270

3286

3302

3318

3330
3350

3366

3382

3398

3414

343()

3446

3462

34re

349Q

3510

3526

3542

3558

3574

7

3079
3095

3111

3127

3143
3159

3175

3191

3201

3223

3239

3255

3271

3287

3303

3319

3335

3351

3361

3383

3399

3415

3431

3447

3463

3479

3495

3511

3527

3543

3559

3575

a

301!0
3096

3112

3128

3144

3160

3176

3192

3208
3224

3240

3256

3212

3288

3304

3320

3336

3352

3368

3384

3400

3416

3432

3448

3464

3480

3496

3512

35:?8

3544

3560

3576

9

3081
3097

3113

3129

3145
3161

3177

3193

3209

3225

3241

32,7

3273

3289

3305

3321

3337

3353

3369

3385

3401
3417

3433

3449

3465

3461

3497

3513

3529

3545

3561

3577

A

3082
3098

3114

3130

3146

3162

3178

3194

3210
3226

3242

3258

3274

3290

3306

3322

3338
33';4

3370

33~6

3402
3418

3434

3450

3466

3482

3498

3514

35 30

3546

3562

3578

B

3063
3099

3115

3131

3147
3163

3179

3195

3211
3227

3243

3259

3275

3291

3307

3323

3339
3355

3371

3387

3403
3419

34 35

3451

3467

348 3

3499

3515

35 31

3547

3563

3579

c

3084
3100

3116

3132

3148
3164

3180

3196

3212
3228

3244

3260

3276

3292

3308

3324

3340
3356

3312

3388

3404
3420

34 36

3452

3468

3484

3500

3516

3532

3548

3564

3580

D

3085
3101

3117

3133

3149

3165

3181

3197

3213
3229

3245

3261

3277

3293

3309

3325

3341
3357

3373

3389

3405

3421

34 37

3453

3469

3485

3501

3517

3533

3549

3565

3581

E

3086
3102

3118

3134

3150
3166

3182

3198

3?.14

3230

3246

3262

3278

3294

3310

3326

3342

3358

3374

3390

3406
3422

3438

3454

3410

3486

3502

3518

3534

3550

3566

3582

r

3087
3103

3119

3135

3151
3167

3183

3199

3215

3231

3247

3263

3279

3295

3311

3327

3343
3359

3375

3391

3407
3423

3439

3455

3471

3487

3503

3519

3535

3551

3567

3583

Q
I

'°

APPENDIX G (cont'd)

0

EOO
f 10

f 20

E30

E40

ESO

E60

E70

E80

E90

EAO

EBO

ECO
EDO

EEO
EFO

FOO
flO

F20

F 30

f 40

F50

F60

f70

F60

F90

FAO

FBO

FCO
FDO

H.O

HO

3584
3600

3616

3632

3648

3664

3680

3696

3712 -

3128

3744

3760

3776
3792

3808

3824

3840

3856

3872

3888

3904

3920

3936

3952

3968

3964

4000

4016

4032

4046

4064

4080

3585
3601

3617

3633

3649

3665

)681

3697

3713
3729

3745

3761

3777

3793

3809

3825

3841

3857

3873

3889

3905

3921

39 37

3953

3969

3985

4001

4017

40 33

4049

4065

4081

2

3586
3602

3618

3634

3650

3666

3682

3698

3714

3730

3746

3762

3778

3794

3810

3A26

3842

3858

3874

3890

3906

3922

3938

3954

3970

3986

4002

4018

4034

4050

4066

4062

3

3587
3603

3619

9635

3651

!667

3683

3699

3715

3731

3747

3763

3779

37'95

3811

3827

3843
3859

3875

3891

3901

3923

3939

3955

3971
3987

4003

4019

40 35

4051

4067

4083

4

3588
3604

3620

3636

3652

3668

3684

3700

3716

3732

3748

3764

3760

3796

3812

3828

3844

3860

3816

3892

3908

3924

3940

3956

3972

3988

4004

4020

4036

4052

4068

4084

5

3589
3605

3621

3637

3653
3669

3685

3701

3717
3733

3749

3765

3781

3797

3813

3829

3845

3861

3877

3893

3909

3925

3941

3957

397 3

3989

4005

4021

40 37

4053

4069

4085

6

359$
3606

3622

3638

3654

3670

3686

3702

3716

3734

3750

3766

3782
3798

3814

3830

3846

3862

3878

3894

3919

3926

3941

3956

3974

3991

4006

4022

4038

4054

407"

4086

7

3591
3607

3623

3639

3655

3671

3687

3703

3719
3735

3751

3761

3783

3799

3615

3831

3847

3863

3879

3895

3911

3927

3943

3959

3975

3991

4007

4023

40 39

4055

4071

4087

8

3592
3608

3624

3640

3656

3672

3688

3704

3720

3736

3752

3768

3784

3800

3816

3832

3848

3864

3880

3896

3912

3928

3944

3960

3976

3992

4008

4024

4040

4056

4072

4088

9

3593
3609

3625

3641

3657

3673

3689

3705

3721
3137

3753

3769

3785

3801

3817

3833

3849

3865

3881

3897

3913

3929

3945

3961

3977

3993

4009

4025

4041

4057

4073

4089

A

3594
3610

3626

3642

3658

3674

3690

3706

3722

3738

3754

3770

3786

3M2

3818

3834

3850
3666

3882

3898

3914

3930

3946

3962

3978

3994

4010

4026

4042

4038

4074

4090

B

3595
3611

3627

3643

3659

3675

3691

3701

3723
3739

3755

3771

3787

3803

3819

3835

3851
3861

3883

3899

3915

3931

3947

3963

3979

3995

4011

4027

4043

4059

4075

4091

c

3596
3612

3628

3644

3660

3676

3692

3708

3724

3740

3756

3772

3788

3804

3820

3836

3852

3868

3884

3900

3916

3932

3948

3964

3980

3996

4012

4028

4044

4060

4076

4092

0

3597
3613

3629

3645

3661

3677

3693

3709

3725
3741

3757

3773

3789

3A05

3821

3837

3853
3869

3885

3901

3917

3933

3949

3965

3981

3997

4013

4029

4045

4061

4077

4093

E

3598
3614

3630

3646

3662

3678

3694

3710

3726
3742

3758

3774

3790

3A06

3822

3838

3854

3870

38~6

3902

3918

3934

3950

3966

3982

3998

4014

4030

4046

4062

4078

4094

F

3599
3615

3631

3647

3663

3679

3695

3711

3727

3743

3759

3775

3791

3807

3823

3839

3855

3871

3887

3903

3919

3935

3951

3967

398 3

3999

4015

4031

4047

4063

4079

4095

INDEX

Absolute Address Conversion, J-20

Adapter Cluster, 11-3

Add, 7-2

Adder High Speed, 5-6
Address Adder, 5-40

Address Environment, 3-21

Address Word, 10-3

ADJ (op) Switch, 4-18

Alarm Interrupts, 5-21

Alpha Card Read, 5-35
Area Descriptor, 8-16, 10-3

A Register, 4-1

Arithmetic Control, 4-5
Arithmetic Operators, 7-1

Auxilliary Cabinet, 1-6

Base and Limit of Stack, 3-2

Base of Addressing-Level Segment,
J-20

Binary Card Read, 5-35

Bit Operators, 7-19

Bit Reset, 7-19

Bit Reset Dynamic, 7-20

Bit Set, 7-19

Bit Set Dynamic, 7-19

Bit Sign Change, 7-20

Bottom of Stack, 5-13

Branch False, 7-10

Branch False Dynamic, 7-11

Branch Operators, 7-10

Branch True, 7-10

Branch True Dynamic, 7-11

Branch Unconditional, 7-10

Branch Unconditional Dynamic, 7-11

B Register, 4-1

one

Card Load Operation, 4-33

Card Punch, 10-10

Card Reader, 10-7

Channel Assignment Control,
5-31

Character Codes, Internal, 2-1

Character Translator, 5-31

Character Type Data, 2-8

Clear and Halt Load, 4-12

Clock Controls, 4-15

Clocks, 1-9

Coded to Decimal Conversion,
2-4

Command Data Register, 5-29

Compare Characters Equal De­
structive, 7-28

Compare Characters Equal Up­
date, 7-28

Compare Characters Greater­
Destructive, 7-27

Compare Characters Greater or
Equal Destructive, 7-28

Compare Characters Greater or
Equal Update, 7-28

Compare Characters Greater
Update, 7-27

Compare Characters Less De­
structive, 7-28

Compare Characters Less or
Equal Destructive, 7-28

Compare Characters Less or
Equal Update, 7-28
Compare Characters Less Updatet
7-28
Compare Characters Not Equal
Destructive, 7-29
Compare Characters Not Equal
Update, 7-29
Conditional Halt, 7-12
Conditional Halt Switch, 4-17

INDEX (cont)

Console, 10-5

Controller, Interrupt, 4-8

Controller, Memory, 4-9, 5-36

Controller, MPX, 5-36

Controller, Program, 4-10

Controller, Stack, 4-9

Controller, String Operator, 5-25

Controller, Transfer, 4-11

Control Panels, 4-1

Control State, 1-12

Control State/Normal State, 5-27

Copy Bit, 3-5

Count Binary Ones, 8-23

C Register, 4-2

Data Addressing, 3-3

Data Communications Adapters, 1-22

Data Communication Interface, 5-33

Data Communications Interrupt, 5-20

Data Communications Processor,
1-21, 11-1

Data Communications System, 11-1

Data-Dependent Presence Bit, 5-14

Data Descriptor, 3-3

Data Representation, 2-1

Data Switching Channels, 1-18

Data Types and Physical Layout,

2-8

Decimal to Coded Number Conversion,
2-4

Decimal to Hexadecimal Table Con­
version, 2-5

Delete Top of Stack, 7-14

Description of Units, 1-1

Descriptor Formats, 10-2

two

Detect Mode (MDP), 5-34

Diagnose Mode (MDP), 5-34

Disable External Interrupts,
8-2

Disk File Subsystems, 10-20

Disk Load Operation, 4-34

Display Mode (MDP), 5-34

Display Select Switches, 4-14

Divide, 7-4

Divide by Zero Interrupt, 5-11

Duplicate Top of Stack, 7-14

Dynamic Branch False, 7-11

Dynamic Branch True, 7-11

Dynamic Branch Unconditional,
7-11

EBCDIC Card Read, 5-36

Edit Mode Operation, 9-1

Edit Mode Operators, 9-1

Enable External Interrupts, 8-2

End Edit, 9-6

End Float, 9-l+

Enter Operator, 7-36

Equal, 7-9

Evaluate, 7-36

Exchange, 7-13

Execute Single Micro Destruc­
tive, 7-30

Execute Single Micro Single
Pointer Update, 7-30

Execute Single Micro Update, 7-30

Executing I/O Descriptors, 4-29

Exit Operator, 7-36

Exponent Overflow and Underflow
Interrupt, 5-lJ~

INDEX (cont)

External MPX Interrupt, 5-21

EXT-I Switch, 4-17

Family A, 4-5

Family B, 4-6

Family c ' 4-6

Family D, 4-6

Family E, 4-7

Features, Processor, 1-13

FF Reset Switch, 4-16

Field Insert, 7-22

Field Insert Dynamic, 7-22

Field Isolate, 7-21

Field Isolate Dynamic, 7-21

Field Transfer, 7-20

Field Transfer Dynamic, 7-21

General Control Adapter Interrupt,
5-21

Greater Than, 7-9

Greater Than or Equal, 7-9

Halt Load and Load Select Switches,
4-16

Halt Switch, 4-32

Hexadecimal Notation, 2-2

Hexadecimal to Decimal Table Con­
version, 2-5

Idle Until Interrupt, 8-2

Index, 7-15

Index and Load Name, 7-16

Index and Load Operators, 7-15

Index and Load Value, 7-16

Index Bit, 3-4

Index, Invalid, 3-4

three

Index, Valid, 3-4

Indicators BO, Bl, B2, 4-15

Indirect Reference Word, 6-14

Information flow (Card Reader
to Memory), 5-35

Initiate I/o, 8-15

Input Convert Destructive, 7-31

Input Convert Operators, 7-31

Input Convert Update, 7-32

Input/Output Multiplexor, 1-17,
5-29

Insert Conditional, 9-5

Insert Display Sign, 9-5

Insert Mark Stack Operator,
7-40

Insert Overpunch, 9-5

Insert Unconditional, 9-4

Integer Divide, 7-4

Integerized Rounded D.P., 8-19

Integerize Rounded, 7-6

Integerize Truncated, 7-5

Integer Overflow Interrupt,
5-13

Integrated Chip Memory, 5-40

INT-I Switch, 4-17

Internal Character Codes, 2-1

Internal Data Transfer Section,
5-3

Interrogate I/O Path, 8-12

Interrogate Peripheral Status,
8-9

Interrogate Peripheral Unit
Type, 8-10

Interrupt Controller, 4-8, 5-8

Interrupt Handling, 1-14, 5-25

Interrupt Network, 5-31

INDEX (cont)

Interrupt Other Processor, 8-17

Interrupt System, 1-13

Interrupts, Alarm, 5-21

Interrupts, External, 1-16, 5-17

Interrupts, Operator Dependent,
1-15, 5-9
Interrupts, Operator Independent,
1-15
Interval Timer Interrupt, 5-18

Invalid Address Interrupt, 5-24

Invalid Index Interrupt, 5-12

Invalid Operand Interrupt, 5-11

Invalid Operator, 7-12

Invalid Program Word Interrupt,
5-24

I/O Control Word, 10-3

I/O Descriptor, Execute Recycle,
4-30
I/O Descriptor, Execute Single
Cycles, 4-29

I/O Finished Interrupt, 5-20

I/O Operations, Processor Initi­
ated, 1-21

Job-Splitting, 3-22

Keyboard Control Keys, 4-36

Leading One Test, 8-19

Less Than, 7-10

Less Than or Equal, 7-9

Level Definition, 3-22

Line Adapter, 11-5

Line Printer, 10-12

Linked List Lookup, 8-23

Lit Call Zero, 7-14

four

Lit Call One, 7-14

Lit Call 8 Bits, 7-14

Lit Call 16 Bits, 7-14

Lit Call 48 Bits, 7-14
Literal Call Operators,

Load, 7-16

Load Select Switch, 4-33

Load Switch, 4-33

7-14

Load Transport, 8-23

Local/Remote Switch, 4-18

Logical And, 7-8

Logical Equal, 7-9

Logical Equivalence, 7-8

Logical Negate, 7-8

Logical Operands, 2-12

Logical Operators, 7-8

Logical Or, 7-8

Logic Card Testing, 4-32

Loop Interrupt, 5-22

Magnetic Tape Subsystems, 10-14

Main Memory, 1-16, 5-41

Maintenance Control General,
4-11

Maintenance Diagnostic Proces­
sor, 5-34

Make PCW, 7-15

Mantissa Field, 2-10

Mark Stack Control Word, 6-10

Mark Stack Control Work Link­
age, 3-16

Mark Stack Operator, 7-40

Mask and Steering, 5-5

Mask and Steering Example, 5-6

INDEX (cont)

Masked Search for Equal, 8-24

Master Control Program, 1-9

MDL Control Switches, 4-14

MDL Register Clear, 4-14

MDTR/Normal Switch, 4-15

Memory Addressing, 5-46

Memory and MPX Controller, 5-36

Memory Area Allocation, 3-14

Memory Bus, 5-39

Memory Cabinet Configuration, 5-43

Memory Controller, 4-9

Memory Cycle Times, 1-17

Memory Exchange, 5-31

Memory Interface, 5-43

Memory Interlacing, 5-46

Memory Organization, 5-41

Memory Parity Interrupt, 5-22

Memory Priority, 5-43

Memory Protect Interrupt, 5-10

Memory Protection, 5-42

Memory Registers, 5-46

Memory Second Level, 1-17

Memory Stack Controller, 5-47

Memory Tester, 4-40

Memory Tester Non-Test Operation,
4-41

Memory Tester Test Operation, 4-41

Memory Testing, 5-47

Memory Words, 1-17

Move Characters, 9-1

Move Numeric Unconditional, 9-2

Move TO Stack, 8-19

Move With Float, 9-3

Move With Insert, 9-2

five

MPX Maintenance Control Panel,
4-26

MPX Operation, 10-1

MPX Parity Interrupt, 5-22

Multiple Stacks and Re-Entrant
Code, 3-22

Multiple Variables (Common Add­
ress Couples), 3-20

Multiplexor Configuration, 1-17

Multiplexor, Input/Output, 1-17

Multiplexor Interrupts, 5-19

Multiplexor Register Clear,
4-14

Multiplexor Registers and Flip
Flops, 4-22

Multiply, 7-3

Multiply (extended), 7-3

Name Call, 6-3, 7-33

No Operation, 7-12

Normal/Control State Switches,
4-18

Normal State, l-12

Not Equal, 7-10

Number Bases, 2-2

Number Conversion, 2-4

Occurs Index, 8-17

Octal Notation, 2-2

Operands, 2-9

Operation Types, 6-2

Operators Control Console, 4-32

Operator Dependent Interrupt,
5-9

Operator Families, 5-1

Operator Independent Interrupts,
5-17

INDEX (cont)

Operator Panel, 4-32

Operators, 6-3

Operators Introduction, 2-12

Options and Requirements for
System, 1-5

Order of Magnitude, 2-7

Overflow FF, Read and Clear, 7-32

Overwrite Destructive, 7-13

Overwrite Non-Destructive, 7-13

Pack Destructive, 7-30

Pack Operators, 7-30

Pack Update, 7-31

Panel A, 4-1

Panel B, 4-2

Paper Tape, 10-24

Parity Switch, 4-18

Peripheral Control,

Peripheral Control

1-21

Bus, 1-19

Peripheral Control Cabinet, 1-8

Peripheral Control Interface, 5-33

Peripheral Controls, 1-18

Peripheral Units, 10-5

Polish Notation, 3-5

Polish String, 3-8

Polish String, Rules for
ating, 3-8

Polish String, Rules for
ating, 3-7

Power Controls, 4-12

Power Off Switch, 4-32

Power On Switch, 4-32

Power.,, Sy st em, 1-6

P Register, 4-2, 6-1

Presence Bit, 3-4

evalu-

gen er-

six

Presence Bit Interrupt, 3-24,
5-13

Primary Mode Operators, 7-1

Priority Handling Example, 5-19

Priority Handling with IIHF
set, 5-20

Procedure-Dependent Presence
Bit, 5-14

Processor, 1.-12

Processor Features, 1-13

Processor Initiated I/O Opera­
tions, l-21

Processor Maintenance Controls
(Panel E) , 4-16

Processor Register Clear, 4-14

Processor States, 1-12

Processor System Concept, 5-1

Processor to Processor Inter­
rupt, 5-18

Program Controller, 4-10, 5-2

Program Control Word, 6-11

Programed Operator, 5-15

Program Operators, 6-l

Program Restart, 5-15

Program Structure in Memory,
3-14
Pulse Train Switch, 4-15

Push Down Stack Registers, 7-14

Read GCA, 8-4

Read IC Operation, 4-19

Read IC Switch, 4-18

Read Interrupt Literal, 8-8

Read Interrupt Mask, 8-6

Read Interrupt Register, 8-7

Read Main Memory, 4-28

INDEX (cont)

Read Only Bit, 3-5
Read Processor Identification,
8-17

Read Processor Register, 8-22

Read Processor Register Switches,
4-20

Read Result Descriptor, 8-4

Read SPM, 4-27

Read Tag Field, 8-21

Read Time of Day Clock, 8-3
Read With Lock, 8-23

Real Time Adapter, 1-24

Recycle Execution I/O Descriptor,
4-30

Re-Entrance, 3-22

Register, A, 4-1

Register, B, 4-1

Register, c ' 4-2

Register, P, 4-2

Register, x, 4-2

Register, Y, 4-2

Relational Operators, 7-9

Relative-Addressing, 3-18

Remainder Divide, 7-5

Reset Float, 9-4

Result Descriptor, 10-4

Return Control Word, 6-12

Return Operator, 7-36

Rotate Stack Down, 8-21

Rotate Stack Up, 8-21

Rules for Generating Polish
String, 3-8

Running Indicator, 4-33

Scale Left, 7-17

Scale Left Dynamic, 7-17

Scale Operators, 7-17

Scale Right Dynamic Final, 7-18

Scale Right Dynamic Save, 7-18

Scale Right Dynamic Truncate,
7-18

Scale Right Final, 7-18

Scale Right Round Dynamic, 7-19

Scale Right Rounded, 7-18

Scale Right Truncate, 7-18

Scan Bus, 5-29, 5-40

Scan Bus Control, 5-19

Scan Operators, 8-2

Scan Out, 8-13

Scan While Equal, Destructive,
8-29

Scan While Equal, Update, 8-29

Scan While False, Destructive,
8-30

Scan While False, Update, 8-30

Scan While Greater, Destructive,
8-28

Scan While Greater, Update, 8-28

Scan While Greater or Equal,
Destructive, 8-29

Scan While Greater or Equal,
Update, 8-29

Scan While Less, Destructive,
8-29
Scan While Less or Equal, De­
structive, 8-29

Scan While Less or Equal, Update,
8-29

Scan While Less, Update, 8-29

Scan While Not Equal, Destructive,
8-30
Scan While Not Equal, Update,
8-30

seven

INDEX (cont)

Scan While True, Destructive,
8-30
Scan While True, Update, 8-30

Scratch Pad Memory, 5-29

SECL Switch, 4-17

Second Level Memory, 1-17

Segmented Array, 5-15

Segment Descriptor, 6-9

Set Double to two Singles, 8-1

Set External Sign, 7-32
Set GCA, 8-14

Set Interval Timer, 8-2
Set Processor Register, 8-23

Set Tag Field, 8-20

Set Time of Day Clock, 8-14

Set to Double-Precision, 7-7
Set to Single-Precision Rounded,
7-7
Set to Single-Precision Truncated,
7-6
Set Two Singles to Double, 8-1

S~ngle Cycle Execution I/O Des­
criptor, 4-29

Single Pulse Switch, 4-15

Skip Forward Destination Charac­
ters, 9-4

Skip Forward Source Characters,
9-3
Skip Reverse Destination Charac­
ters, 9-4

Skip Reverse Source Characters,
9-4
Stack 3-1

Stack, Base and Limit, 3-2

Stack, Bi-Directional Data Flow,
3-2

Stack Controller, 5-47

Stack Deletion, 3-16

Stack Descriptor, 3-23

Stack, Double-Precision Operation,
3-2
Stack-History and Addressing­
Environment Lists, 3-16

Stack History, Summary, 3-21

Stack Operators, 7-13

Stack Overflow Interrupt, 5-18

Stack Registers, 5-3

Stack, Simple Operation, 3-9

Stack Underflow Interrupt, 5-24

Stack Vector Descriptor, 3-24

Start Switch, 4-16

States, Processor, 1-12

Step and Branch:• 7-12
Step Index Word:• 6-16

Stop Switches, l~-17

Store Destructive, 7-13
Store Non·-Destructive, 7-13
Store Operators:• 7-12

String Descriptor, 6-7

String Operator Controller, 5-25

String Transfer Operators, 7-23

Stuff Environment, 7-40

Stuffed Indirect Reference Word,
6-14

Subroutine Operators, 7-32

Subtract, 7-3

Syllable Addressing, 6-1

Sy~Llable Format, 6-1

Syllable Identification, 6-1

System Clock, 5-33

System Clock Control and MDL Pro­
cessor, 5-33

eight

INDEX (cont)

System Concept, 5-1

System Description, 1-1

System Expansion, 1-18

System Options and Requirements,
1-5

System Organization, 1-9

System Power, 1-6

Table Enter Edit Destructive,
7-29
Table Enter Edit Update, 7-30

Tag Register, 5-31

Time of Day Register, 5-31

Transfer Controller, 4-11

Transfer Operators, 7-6

Transfer Unconditional, Destruc­
tive, 7-26

Transfer Unconditional, Update,
7-26
Transfer While Equal, Destruc­
tive, 7-25

Transfer While Equal, Update,
7-25
Transfer While False Destruc­
tive, 8-27

Transfer While False, Update,
8-27

Transfer While Greater, Destruc­
tive, 7-24
Transfer While Greater or Equal,
Destructive, 7-25

Transfer While Greater or Equal,
Update, 7-25
Transfer While Greater Update,
7-24
Transfer While Less, Destruc­
tive, 7-25

Transfer While Less, Update,
7-26

Transfer While Less or Equal, Des-
tructive, 7-25
Transfer While Less or Equal, Up-
date, 7-25
Transfer While Not Equal, Destruc-
tive, 7-26

Transfer While Not Equal, Update,
7-26

Transfer While True, Destructive,
8-26

Transfer While True, Update, 8-27
Tran sf er Words Destructive, 7-23
Transfer Words, Overwrite Des­
tructive, 7-23

Transfer Words, Overwrite Update,
7-23
Transfer Words, Update, 7-23

Translate, 8-27

T Register, 6-1

True False FF, Read, 7-32

Type Transfer Operators, 7-6

Unit Clear Switch, 4-18

Universal Operators, 7-12

Unpack Absolute Destructive, 8-25

Unpack Absolute Update, 8-26

Unpack Signed Destructive, 8-26

Unpack Signed Update, 8-26

Valid Index, 3-4
Value Call, 6-3

Varient Mode Operation and Opera­
tors, 8-1

Visual Message Control Center, 4-34

Word Data Descriptor, 6-5

Write IC Operation, 4-19

nine

INDEX (cont)

Write IC Switch, 4-19

Write Main Memory, 4-28

Write SCM, 4-27

x Register, 4-2

y Register, 4-2

ten

Q)

c

~
-0

O>
c
0
0 -:::>
u

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS

REMARKS FORM

I TITLE:------------
• I
I
I
I :----

CHECK TYPE OF SUGGESTION:

0ADDITION 0DELETION 0REVISION

I-

FORM: ______ _
DATE:

0ERROR

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:

FROM: NAME
TITLE
COMPANY----------­
ADDRESS

DATE _____ _

STAPLE

FOLD DOWN SECOND FOLD DOWN

---··------------------------

attn: Sales Technical Services
Systems Documentation

BUSINESS REPLY MAIL
First Class Permit No. 817, !Detroit, Mich. 48232

Burroughs Corporation
6071 Second Avenue
Detroit, Michigan 48232

·---·------------------------
FOLD UP FIRST FOLD UP

1043676
9-69 Printed in U.S. America

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-31
	07-32
	07-33
	07-34
	07-35
	07-36
	07-37
	07-38
	07-39
	07-40
	07-41
	07-42
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	11-1
	11-2
	11-3
	11-4
	11-5
	11-6
	11-7
	11-8
	a-01
	a-02
	a-03
	a-04
	a-05
	a-06
	a-07
	a-08
	a-09
	a-10
	a-11
	b-01
	b-02
	b-03
	b-04
	b-05
	b-06
	b-07
	b-08
	b-09
	b-10
	b-11
	b-12
	c-1
	c-2
	c-3
	c-4
	c-5
	d-01
	d-02
	d-03
	d-04
	d-05
	d-06
	d-07
	d-08
	d-09
	d-10
	d-11
	e-1
	e-2
	e-3
	e-4
	f-1
	f-2
	f-3
	g-1
	g-2
	g-3
	g-4
	g-5
	g-6
	g-7
	g-8
	g-9
	ix-01
	ix-02
	ix-03
	ix-04
	ix-05
	ix-06
	ix-07
	ix-08
	ix-09
	ix-10
	z_00
	z_01
	z_back

