
-. -._ .. .;.·

. -"~ ,;
I ~

.· B-· ·. - « · .· , .. - .·.· · .. ·· · · .· · - · h": -, -
· .·. 1J,JJE~Q. ·· ·· -·· ·II·

. . .-·· ••• ·· : . .. ·.-·· .• • .f ..

· ·

. : ..

I .

- ·., . '
-,:··.

J· •• ! ...
'"··.·. '·.

· .. • '·

,;·

"LA:NGUAG&· REFERENCE. MANUAL ... · . . ··"·· .. ·· - -. . - .. '· ·_.: ,

~·- . ·.:.~- • . .· •. -~.. :t•
·'

·(RILA11Vi _TO· "MARK·· 11~6·· RELIASEt
' .'

,·.
. :· ,, .. · .. '

; "·, ·.··-
:•-

·.· ...
.. '.. · .

. ,, __ ,

.: ...

. : ' ·. _,.,:I_

. ::
;· : _ ,_ . .• ~

·.-:, :· ~·,... . . .
-: .

.) -

• ... ;.-
. -.;· .. · .. •

. · .. '·

1;· •:·

.. ~:~ .

; ,; .,};~Y~~i;i':,f
·,

• I ' ' /'

. .

. ,jfqot•t·'H~6·
\'"•.

, . ·!.

·,v
·· . ..,_,,,.

· Burroughs

· B 6700 l 87700

NOL
LANGUAGE REFERENCE. MANUAL·

(RELATIVE TO MARK 11.6. IELEASE)

' ! .. '

. $7.00' ,• '•

.. · '

Printed in '!.S. America . 1-75 .5000953.;U.6

THIS MANUAL CONTAINS A TOTAL OF 288 ~AGES, AS LISTED BELOW;

Page No.

Title
A • •
i
ii blank ••.•
I I I thru v ti
vii I bl~nk
1-1 thru 1- t 0
2-1 thru 2-3

. 2-4 blank •
3-1 thru 3-16
4-1 thru 4-2
5-1 thru 5-187
5-18Q blank •

l~sue

Original
Original
Or~9J.,,al
0 r t·gJ ga~l :.
Or igf tlal ·
Original
Original
Original
Original
Original
Original
Original
Original

-..~ ...
. '•

' '

' '

Page N.o.

6-1 thru 6-19 •
6-20 blank .
A-1 thrLi A-4 .•
a-1, thru.· B•S .~· •••

. 'b~6bl~nk ••••
C-1 thru C-2 • • •
D-1 thrli D-7
D-8 !;>lank
e-1 tHru E~s ·
E-6 blank • • .
lndex-1 thru lndex-11
index-12 blank

Original
Original
Original
Original
Original
Original
Original
Original
Original
Orig i na 1
Original
Original.

COPYRIGHT © 1970; 1971, 1975 _BURROUGHS CORPORATION

A '. I.

Burroughs believes · that the information described in this
manual is· accurate and· reliable, and much care has been
taken in its preparation. However, no responsibility, f mancial
or otherwise, is accepted for any consequences. arising out of
the use of this material. The information contained herein is
subject to charige. Revisions may be issued to advise of such
·changes and/or.additions.

5000953·

_.,. .

.__,,

. . ..

v··
;\,......r·

PREFACE

This document provides reference data for the experienced programmer who is familiar with the B 6700/ ·
B 7700 Network Definitio~ Language (NOL) and the B 6700/B 7700 Data ·communications System. ·

This reference manual is divided into the following six chapters and. five appendixes.

• Chapter 1, INTROl>UCTION", describes where the NOL Manual fits into the existing Data
Communications System documentation, and defines the scope ofNDL.

• Chapter 2, NDL SYNTAX CONVENTIONS, explains the syntactical notation used in defining the
Network Definition Language. ·

e Chapter 3, LANGUAGE COMPONENTS: describes the elements that form the most primitive
structures of the language.

• Chapter 4, SOURCE PROGRAM STRUC,'TURE, describes the basic structure of an NOL program.

• Chapter 5, DEFINITIONS, describes the various definitions that make up ah NOL program.

• Chapter 6, VARIABLES, describes the program variables available. to the NDL programmer.
. '

• Appendix A, RESERVED WORDS, is a list of "words" that have been set aside for specific
. purposes within the Network Definition Language. · ·: · ·

• Appendix B, TRANSMISSION CODES, provides useful data transmis$iOn code tables . . ·. . ,;, -.· .

• App·cndix C, SOURCE INPUT FORMAT AND CODING FOitM, describes the ·input format and
coding form to be used by the programmer. · ·

•·Appendix D, COMPILE-TIME OPTIONS, describes the compiler options ~vaiiableto the user .

. • Appendix E, COMPILER SOURCE AND OBJECT FILES,·descrihes how~ompiler communication
is handled through various input and output files.

. .

The information in the following documents pertains to and supplements the material presented· in this
. reference manual: . ' . . .

. Title

·· B 6700/B 7700 Data Communications Functional Description

B 6700/B 7700 DCALGOL Ref~rence Manual

B 6700 Input/Output Subsystem Information Manual

Form No .

5000060

5000052

5000185

i/ii .·

a1apter

2

3

. . .

TABLE OF CONTENTS

Page

PREF ACE '. " .· . • .. ,. .. I ~ •..•••• ·- .• ••• -•••••• ; .• ., •· :ii • • • . i .
- ' '

INTRODUCTION•.................. , · .. · · ·; .· ..

General · ... ·· .. ~ '. .•....... · , ~
Scor'e of NOL -...... · -· -. -.. _ · .. _ .. ~. ~· .. _ .. -~- .. , ··-··· .-~--. i. _ ••• ".·. ··-·.· •.• · .••

Use of"'' NOL _ " ~ _ ~ .. ·· ... · · ... ·.-.. ~·:: _ ·
Message Confrol System (MCS) ·~ ••......
Data Comm Controller (DCC) , .•........
NDL Compiler ; · ••...

DCP Interaction With the Main System > , ; •·
OCP T3.bles · . ~ . ~ .:-.. -. · -...... _ · · . _ :·-.-~ ... ~ _; .. .

NDL SYNTAX CONVENTIONS
. - . . - . -

,• ,; .- , · ... -: • ·._ . -· . - '~
. . - . •. .. .' ·: ; . -

Syntax Conventions· .. · · · ... · •...... · .. > : . : .··.: .. ; ·.
K W d ' . ' ·' ' ey or s•....... , · , ... ; •.. , .. ; , ... · .. · .•... ;
Syntactic Variables ; : ..• ; . ; ...• •
Constnicf Terminat,or : ; ~ .·. , ... ; •......

LANGUAGECOMPONENTS . : : ..•.. , . ·• ..••.. ' · .. ;

Language Components .• · .· .. · ... : .· : , .. , . •, , ·. :· · .. · ,
Character -... · · ; ; · ~
lden tifier , .. ,, ; ,•.. : , ; , , ; .. ~, .' ::· :..
l'nteger . .. · ~-.·-....... ~ .· .. · .. -.... -.. -..... · ~-~ .. : ... -.· -~~· ... -.. ~ ..
Label , ~ . ; , , ~•...... ~-. ~ .. .
··Remark.· · ·; ; ·.: : .·.·.; ,•...... ·.····. ';,·,: ' .. .
Space ,, · : : ·• , ~ ' ·
String .. , , ... ~ · · .. , ... _. · : : ..•......... ., .. ::· .. '.• ... ; ..
System Identifier · .• ;•...• : .. ~•.....•.... : :
·TALLY Number . '. ; ... · · ·. ~ :· . .. · · · •.... ·.· ..•.. · ..•.. • .. ·

· ~=le N~~b~r· . '; : : : '..: : : : '.: : : : '. : : : : : : : : : : : : : : :·.:.: : : : : : : ; :: ~ : : '. : : :.:: : : : : : :
. . .

1-1

1-1
l-1
1-1
l-'-5

. 1-5
1-:-5
1-7
1-7

2-1

2.:.1
2'-2
2-2
2..::.2

3-l

3~1

3~2

3-7
3--8.
3-9

3-10
3-11
3-12
3.:__13
3-14
3-15
3-16

.. .4 SOURCE PROGRAM STRUCTURE .. ~ ~•...•.... •.;....4-:-1

. , ND L Program Unit ... ; < '' .. ; ; ... ' , '_ .o' , 4-,-- l

s· . DEFINITIONS · , . - ·. ' : - .
• • •.• •••.• • .. • .- · •••••• ~ •••• ·-· .. - •••• -· -· -.= ~ .,._. ••••. , •• _..-••• -. 5-1

CONSTANT·DEFIN'It10N · · · .. <~ .·- •.• · .•• ··~ ; .••.••• >~.... 5-2
CONTROL DEFINITION . ~ . ~ ; ; . . : •· .•. ~ ... : , 5-4

Assignment Statement "·•..... ; ·.~.,. 5~6
· BREAK Statement ; : ... · : ... ~ ·" ...•..... ,• ; ; • ; · 5...,.g
COD-E·Stat~ment · . .-- ... -.-- . ·. ~ ·.:·. -. , .. ~--_. -~ ... ·-·- "'- ; ~ . ~ ._. ·. ~ .: ·. ~· _·~· .. ~ .. 5-9
Compound Statement· ·'· .. ·.•.... · .. • ... ·.... ..5...,.10
CONTINUE Statement ..•............ < , ... : , . · • . ', . :• 5-11
DELAY Statement•..... ; • ; .' : ...•... ;/ 5-:-12
ERROR Switch State~el'lt ... , .. <;;. / ; ... , . · ... ' ~ .. ·...... · 5-13

iii

. ---·-·-·-·--'.

. .

TABLE OF CONTENTS (Cont)

Chapter Page

iv

5 DEFINITIONS (Cont)

FINISH Statement ... , . . 5-16
FORKStatcn1cnt -....................................... 5--17
GO TO Statc1ncnt · ... , . .-................ ; . 5--18
IDLE Staternent , ~ . • · . 5--20.
IF Staterncnt•.. ,·•... : . 5-21
INCREMENT Statement • 5-23
INITIALIZE Statement ~ 5-24
INITIATE Statement . , , ;: .. ;. . . . 5-25
PAUSE Statement ~ , :........................ 5-28
RECEIVE Statement•........ , .: . , . • ; . . . 5-29 ·
SHIFT Statement , _ : .. ; ; ; ; .. •. ; • . 5-39
SUM Statement ...•.•... • . . . • . . 5-40
TRANSMIT Statement-•........... ·. • . . 5'-,-42
WAIT Statement ; ..•........ ·, · : .•............ , . ; . . 5-44

DCP DEFINITION · .. • · ; -.................. • .-·· 5-45
DCP EXCHANGE Statement • . 5-46
DCP MEMORY Size Statement • . 5-51
DCP TERMINAL Statement · :' ; . 5-52

FILE DEFINITION ; ~ . ; · 5--56
. FILE FAMILY Statement , ... ·•....... ; ; .. ; 5--57

LINE DEFINITlON , , ...•.. ; . • . . 5- 58
LINE ADAPTER Class Statement ; . 5--60
LINE ADDRESS Statement ... : >. 5-62
LINE ANSWER Statement ,: , . . 5-63
LINE DEFAULT Statement .. ·; ~-•.•............... , . _;_... 5-64
. LINE ENDOFNUMBER Statement ... ;- •. . . . 5-65
LINEMAXSTATIONS Statement •......................... 5-66
LINEMODEM Statement · ; • 5-67 .
UNE PHONEStatement , ·•..• ; . • . ·. 5-68

· LINESTATION Statement , ... , , ; 5-69
LINE TYPE Statement .. ·•. · • • 5-70

Mes DEFINITION•............. ~•. ;•.... ; 5-73
MODEM DEFINITION < ; 5~74

· MODEM ADAPTER Statement•.•.........•.. ·. 5-75
MODEM LOSSOFCARRIER Statement ...•.... ; .•........ , .•...... ~ , . : .. '. . 5-78
MODEM NOISEDELA Y. Statement . . . ; 5-79
MODEM TRANSMITDELAY Statement ·'· ; : 5--'80

REQUEST DEFINITION ;• ~ . 5-81
Assignment Statement ·•.........................• •· .•..•. d •• ; • ; • • 5-83

. BACKSPACE Statement , , . ,; ; '~ • , 5-85
BREAK Statement , · , .. · ;1 •••••• ·• ~ ••• ·.•.• • • • • 5~86
CODE Statement · · ... · ...• "· ..• -~· ,·,. . . 5-87
Compound Statement • · 5-88
CONTINUE Statement '. ; .': ...•............. ; 5-89
DELAY Statement -...... · · · , •...... · .. · .. , • 5-90
ERROR Switch Statement•............ , ; \ • 5-91

• . ,#/I •

. "

.,,. .

.....__.,,!

TABLE OF C()NTENTS (Cont)

Chapter Page

s DEFINITIONS (Cm1t)

FETCHStatement · "S-94.
FINISH Statement ... , ~ '.;;•. ;;·.". • • · ·; · · · S-95
FORK Statement ; • ·;.- · · .: .• .•. ·. • .. • .. · • •. · ···· 5-96
GETSPACE State.ment · :; .. • .. ~ ...•... ; •. · .•• ; •.. • .. · ·... S-97
GO TO Statement ; .•........... ; .-. · ·; •.. • ;."; ... ; , .. ·· .. · 5~98
IF Statement · · ...•.. , .. · .. • _; • · ···.·· .. ~ · .. ·5-.100 .
INCREMENT Statement : , ~. ~ .-; ; ; · · · · · .. · 5-:102
INITIALIZE Statement-· · ..•..•.. ;· ·. ··· · · · 5-104
INITIATE Statement. ~ .. ! •••• · •••••••••••••.• · ••••••• •··• .• • ~ ... •.• -. ~.·· ···~ .• • ~ • • .• • 5-106
PAUSEStatement ·······~···.············.··· .. ·····•······~~··············· 5-108 ·
RECEIVE Statement '. ·. • .· ... ~ · · .· · ·: • · · '. · .·._;_. · · ... · · 5-109
SHIFT Statement•. ~•.. ~ .. ·.·:·. · · · • ·, ··•·· · · :.· · · ~·. · · · · · 5-12.l
STORE Statement '.•.... ; · '. · · · · · • ··· ··· · · · · · · · · · · · 5--122
SUM Statement · ; · ; · ·· • • · · · · ·· · ·· ·. · · · ·· · ·:· · · .·. ! ·• • . 5-·124
TERMINATE Statenwnt ·••.• ;•... :•.. '5-126
TRANSMIT Statement · • , ··' · · · · · · • · · · · · · · · · · · · · ·. 5 ,_: J 30
WAIT Statement : ... · · · · · · · · · · · • · · ·; · · · ~ · · · · · · · · 5--133

STATION DEFINITION ·. · · · · · · · · · · · · · · • · · · · · · ·. 5-134
STATION ADAPTER Statement· · . · · .· · · · · · · · · · ·· · · · · · 5.:.. t36
STATION-ADDRESS Staterrictjt :· ~ .. ~. ·· · · ·. · · · · · · · ·. · ·.·. · · · · · ~ · · ·. 5-138
STATION CONTROL Character Statement ..•...... · · • · · · · • • · ·; • · .• · · ·. 5~139
STATION DEFAULT Statement ... : ~. · · .·. · · · · • · · • · · · ··· · · · · 5-140
STATION.ENABLEINPUTStatement , , · · · · · · · · · · ··· · • 5-141

·STATION FREQUENCY Statement ; ... ; · · .. , · · • · · · · · · · · 5-142
. STATION INITIALIZE Statement•................ · • ·.• ·.· · · • · · · · · 5-143
. STATION LOGICALACK Statement ... · ·. · · · · · · · · · · · · · · · 5-144

STATION MCS Statement•.............. ~ • ... · · · · · · · • · · · · · · 5-145
STATION MODEM Statement ·; ·, · · · · · · · · 5-146
STATION MYUSE Statement•..............•.. : . : .. ·. ·. · ·. · .· ... · · · 5-141
Si'~TION PAGE.Sta:~e~ent ~. ~ · .. · ... · .. · ... • · .. ·. · · ·· · · ·· ~ · ·. 5:;--148
STATION PHONE Statement · ..•..... '. • •. · · · · · • · 5-149
STATION RETRY Statement · ~ ... · • · · · · • · ; · · · · .. · · · 5.....,. J 50
STATION TERMINAL Type Statement ~ • .. ·. • · · · · · · · 5.:...151
STATION WIDTH Statement · · ·. · · · · · · · · · · · · 5-152

'TERMINALDEFINl'.flON , ~ ..•... ; ; · · · · · · · · · · · · · · · · 5-.153
TERMINAL ADAPTER Statement · .. · · · ·~ · · · · · · · · · · · · · 5-156
TERMINAL ADDRESS Size Statement · · · ·. · · · · · · · · · · · · · 5-157
TERMINAL BACKSPACE Character Statement · · · · · · · · · · ··· 5-158
TERMINAL BUFFERSize Statement •....•........ • • .•. · · · • ·· · · · · · ·. · · · · · 5-159
TERMINAL CA~RIAGE Character State~ent · ·" · · · · · · : ·"·. · · 5-160
TERMINAL CLEAR Character Statement • ..•........ ·. · · · · ·· · · · · · -~ · 5....:161
TERMINAL CODE Statement · · · · · · · · · , · · · · · · · · · · · · · 5 '-162

· TERMINAL CON'i'KOL Statem.ent · ... ·. ·· ... ~ . • · ·. · · ··. · : .. · ·~-. · · •. · · · · · 5--163'
TERMi.NAL DEFAULT Statement , ... · · · .. · · · .. · · · · · · · · · · · · 5-164
TERMINALDUPLEXS.tatement ...•....... • ... :. ~ , · ;,. · · ·; · ·.· · · · ·; · 5-166 ·
TERMINAL END Character Stater:nent ·: ...•...... ·,. · · · · · · · · · · • · · · · · ~ 5~167
TERMINAL HOME Character:Statement · ... : ... ;' .. ; • ·; · · · ·•· .· · · · · 5-'168

\ ' ' ' ' ' .·
,' v

,•, .

TABLE OF CONTENTS (Cont).

Chapter

5 DEFINITIONS (Co1it)

TERMINAL ~llegal Character Statement- ... -.... ·~ .. · •. ;·-· .··. ·. ~ .. ·.
TERMINAL INHIBITSYNC Statement ,•............
TERMINAL lnter-Cllaracter Delay .Statement . ,•.......
TERMINAL LINEDELETE Character Statement · .•......... ~•.•.•..
TERMINAL LINEFEED Character Statement ._•......... ,
TERMINAL MAXINPUT Statement•.
TERMINAL PAGE Statement ~ •.....•......
TERMINAL PARITY Statement ••.. ,
TERMINAL REQUEST Statement , . , ,
TERMINAL SCREEN Statement ~•.... -_ .•. _ ~ ~ ... · -~ _. . -~- -.
TERMINAL TIMEOUT Statement · , . ••. ,
TERMINAL TRANSMISSION Nurntier Length Statement
TERMINAL TURNAROUN,D Statemen~ .. · .. ,•.... ·. : .. , ...•.. , .. .
TERMINAL WIDTH Statement•..
TERMINAL WRU Character Statetnent•.

TRANSLATETABLE DEFINITION · ~ ~ ; ... :

VARIABLES ·.
• • •••••• ·• e • e •, •• • . e 9 • !' 9 I ••••• ~ 9 • e e • e e •. ' e • .•••••• e • e • 'e •.••

General . ·. . . . -. . . , . ·, . . ·. . " . .. ~ ~;. "• . • ; • ~ • ~" . ";· . , ; .
Functi9n o·f Vatiaqles· ~ ~ : . . ; '·· ·. ·· .
Scope of Variables· ...•.. ·." .. · .•........ · ,•......... · .. ;•. ·.
Description of Vatiables ; . ·. >. ; .. · '. : ... , '. ~ > ~ •·•

Page.

5:....169
5--170
5-171

·5-172
5-173
5-174
5-175

. 5-176
5...:..177
5-178

·S-179
5-180
.5-181
5-182.
5:--183
5-184

6-1

''6-1
6-1
6-2

. 6-2

Appendix Page
,.

A Reserved Words " ~ ~ . ; ... ·~. · ; , · ; . . . A-1
B Transri1isslon Codes ; ;•.. · ~ ~ .• '. ·... . .. B.:._ I
C Source Input Forltiat and Coding.Form .· .. ;, ~ C-l
D Compile:.. Time Options ; • • •.. ; ; ... ,. : . ~ .• , '. . . . D-1
E Compiler Source and Object Files · •..•............ ,•..........•.. ·. E.:_ 1

· Figure

1-1
1-2
1~3

1-4
5-1
D-1
E-1

vi

Index - . . .
.. · · /' •

LlST OF ILLUSTRATIONS
.....

Title

.. · B 6700/B 7700 Data Communications System Documentation Hierarchy ·~ ..•.••..
Network Characteristics:•..•....... .- ·
NOL Sphere oflnfluence ; ·, ..•.. ,. ... :. ;· :.
.Transfer of Control Within the DCP• ; .. , . ; , . · · . .
Adapter Clusters Exchange ~ . ~ ; •... • ,. .. .
Option Control Card · , : ,• .,.- .. · · .• : . · ;"
NOL Compilation System .•................... •'•.. · ... , :.:. · . · ·.

Index-I

Page

1-2
1-3
1-4
1-7

5-50
D-4
E-2.

...

.... ..,,,,,;,/'

........,, .

,..__;/ .

Table

LiSt OF TA8tES

Title· Page

5-1 Relational Operators•. -~,................................ 5-22
5-2 Allowable Combinations for (receive statement) , , ,.. 5-:-38
5-3 Available Linc Adapters ~ ,............. . 5--61
5-4 Table of (communication type number)s ; ; ·............ · 5...;.77
5-5 Relational Operators- . 5-101
5-6 Allowable Combinations for (receive statement) ·. 5-:-118
6-1 Table of Variables · · ... ~ . ~· , .. ·· ·· .•....... · 6,-4
E-1 NDL Compiler Files , • E-4

vii/viii

1. INTRODUCTION

GENERAL

This document is one of several documents concerning the B 6700/B 7700 Data Communications System.
The hierarchy of these documents is illustrated in figure I· I. Note that information ·contained in the
B 6700/B 7700 Data Communications Functional Description, form no. 5000060, and B 6700 Input/
Output Subsystem Information Manual, form no. 5000185, is prerequisite to this document.

SCOPE OF NOL

The Network Definition Language (NOL) source program describes a <¥ta communications network physi­
cally, logically, and functionally. Physical components of a data coinm\mications network include the hard­
ware specifications and capabilities of the various elements which compJ\se the network. The logical charac­
teristics of a network are the associations among the various components'~· fa data communications subsystem
(user programs, Message Control Systems, etc.), application-oriented chara 'teristics (page size and width, · ·
special-purpose characters, etc~), arid the symbolic names used to reference hysical elements within the ·
network. Figure 1-2 illustrates the physical und logical characteristics in the rrelation to the network ele- ·
men ts. Figure 1-3 illustrates the sphere ofinfluence of a NOL source progrartl\on the logical and physical ·
components of a Data Communications_ System. The area enclosed by the bro\en lfrieis the "glol>al sphere
of influence." The shaded area indicates the "local sphere of influence." The a""trows indicate the flow of
information. · , ·. . · · . . . · · \ ·· .

. . . .

NDL also specifies the functional behavior of the network or the way in which e.ac.i c.ia:ta communications
line is to be controlled. These specifications consist of individual routines, allowing the NOL programmer to
implement the protocol required to meetthe physical characteristics and application~ of the types of term­
inals that have been defined. The routines are compiled into a set of instructions whi :h the Data Communica­
tions Processor (DCP) executes to perform the functions described by the NOL progrt.

The NOL source.program is transformed into two files containing the information requi~ed to ope'rate the
defined network: . • . · . \ · · . '

\

a. The Network Iflformation File (NIF), containing the logical and physical specifications ofthe network.
. . .

b. The DCP Code File (DCPCODE), containing the Data Conununi~ation Processor (DCP) hardware
instructions for operating the network. ·

USEOFNDL

Once the data communications hardware has been installed on a B 6700/B 7700 system, several software
systems are required to generate and operate the data communications network. These packages, iilustrated
in figure 1-3, consist of one or more Mes·sage C_ontrolSystems(MCS),the Data Comm Controller (DCC), and
the NOL compiler. The purpose, functi9n, and use of each of these software· items are described in the follow-
irig paragraphs. ·

l~I

I
N

r-
ALGOL LANGUAGE.

REFERENCE
MANUAL
(5000649)

1·
. DCALGOL ··

REFERENCE
MANUAL
(5000052)

\. (

NDL
REFERENCE

MANUAL
(5000953)

DATA COMMUNICATIONS
FUNCTIONAL DESCRIPTION

(5000060)

I/O SUBSYSTEM
INFORMATION MANUAL

(5000185).

1
USERDATA-MAKEUSER

REFERENCE.
MANUAL
(50oo797)

··· ..]
CANOE LANGUAGE

·INFORMATION
·MANUAL·
-(5000318)

1
CANOE

OPERATIONS
.MANUAL
·(5000615)

]
CANOE

·REFERENCE
CARD

(5000581-002)

1
DCP H DCP REFERENCE . REFERENCE

MANUAL CARD
(1054384) . (5000581-006) .

I l
RJE SYSTEM. MCSII USER'S GUIDE

INFORMATION INFORMATION
MANUAL MANUAL
(5000300) (5000219)

Figure 1-1. B 6700/B 7700 Data Communkatio~~ System Documentation Hierarchy·

((.({
,

-~ -

--,,

Network Physical Logical
Elements Characteristics Characteristics

DCPs Memory size . Set of terminals controlled by each DCP
Reconfiguration capabilities

Physical location (address)
Station line assignments LINEs Transmission speed

Type of line and connection AutOma.tic answer.capability

Physical delays
,.

MODEMs Transmission speed and type Symbolic name
Continuous vs. controlled carrier :·.

STATIONs Tenninal characteristics
Symbolic name ·
Logical attribu.tcs

· Associated Message Control System

TERMINALs ·
Transmission code, speed and type Transmission numbers
Parity Special characters · ..

Figure 1-2 .. Network Ch.aracteristics

1-3

---· -·----'--

-I
~

OBJECT·
,PROGRAM I I

((

NETWORK
INFORMATION

FILE

NDLSOURCE
PROGRAM

NDL
COMPILER

Figure 1-3. NDL Sphere of Influence

((I

DC.'P
CODE

((

M~ge Control System (MCS)

An MCS is a special purpose DCALGOL program which may be a Burroughs.;.supplied MCS (SYSTEM/CANOE,
SYSTEM/RJE, or SYSTEM/DIAGNOSTICMCS), or a user-written program. The primary function of an
MCS is, as its name implies, to control the flmv of data communications messages between the terminal and
the main system. Information from the DCP, such as terminai input and status information, is fol"Warded to
the MCS via the DCC. Messages from the MCS to the DCP, such as terminal output or network changes, are
performed by the MCS invoking an intrinsic function called DCWRITE. This intrinsic, as well as the format
of all MCS and DCP messages, is described in the B 6700/B 7700 DCALGOL,Reference Manual, form no.
5000052. Each station which is defined by the NDL source program must have one, and only one, control­
ling MCS.

Data Comm Controller (DCC)·

The DCC is the basic interface between the DCP and the main system. It exists as a subset of the basic
B 6700/B 7700 Master Control Program (MCP) and operates as an independent task or stack, one such task
for each active DCP.

Before a defined data communications network may be utilized, the DCPs Which comprise the network must
·be initialized. As each DCP is initialized, the portion of the NOL-defined network whiCh utilizes that DCP
becomes active.

Once initialized, each DCC stack transfers messages between the associated DCP and the proper MCS.

NOL Compiler

Whereas the DCC and an MCS are required to operate a data communications network, the NOL compiler
is used to generate the tables and DCP code which, to a large extent, control the.way in which the network
functions.

The NDL source program, thei1, must sl.1pply the NDL compiler with information ·which wilJ allow the com­
piler to produce the proper NIF and DCPCODE files to operate all of the Data Comm Processors and their
sub-components within the network. (In figure 1-3, the shaded areas indiCate the areas of the data communi­
cations subsystem which are influenced by the NDL source program.) Although an NDL program may con­
tain up to 11 discrete sections, it functionally consists of two interdependent pieces ofinformation: the
network description and the DCP programs.

NETWORK DESCRIPTION

The NDL programmer uses various sections of the NDL source program to describe the logical and physical
characteristics of the network .. The information supplied in those sections is used, in part, to supply the DCC
with the proper tables and DCP code that are used to operate the network.

The NDL compiler performs consistency checks across the various definitions fo ensure that the defined
network is logically structured .. For example, a line must not be associated with a particular modem if the
defined speed range and transmission type of the modem do not permit a proper interface to the line. Simil­
arly, a terminal defined to operate in an asynchronous mode must not be associated with a line which uses a
synchronous adapter.

All of the information supplied by the NDL definitions is recorded within the NIF file. This enables an MCS
or user program to gain access to many of the logical characteristics of the network, as well as permitting
dynamic reconfiguration of the network by an MCS.

1-5

These definitions are also used to modify or include special areas or DCP code which are network dependent.
For example, the OCP code for transmitting or receiving characters on a synchronous line is differcut from
such code for trahsmitting or receiving on an asynchronous line. In addition, if any dial-out type lines are
defined within the network, extra code must be generated for performing dial-out functions. ihus, the NOL
compiler "tailors" the resultant DCPCODE file to fit all the requirements of the defined network.

DCP PROGRAMS

Once a data communications network is logically and physically defined, the functional operation of each
line and station within the network must be described. These descriptions, called CONTROLdcfinitions
and REQUEST definitions, arc individual programs which arc executed by the OCP when required to perform
the necessary line discipline. Each line must have one associated CONTROL definition, and each terminal
may have one or more associated REQUEST definitions.

The CONTROL and REQUEST definitions consist of NDL statements which the compiler transforms into
the DCP instructions to be executed when performing a particular network function. A RECEIVE REQUEST
definition is invoked wh~n input from a terminal is to be processed, and a TRANSMIT REQUEST definition
is executed when output .to a terminal has been requested by an MCS or user program. The line CONTROL
definition is utilized to determine when and for which of the stations on the line a REQUEST definition is
to be executed.

Since an NDL source program must handle many lines, the DCP must share its processing capabilities among
the lines it services. Due to the fact that the data communications subsystem operates in a real-time environ-
ment, few network functions, if any, require the dedicated use of the DCP for an extended length of time. 'V
A RECEIVE REQUEST, for example, usually spends most of the time waiting for a character to be sent from_,.
a terminal. Likewise, a TH.ANSMIT REQUEST can only operate as fast as the line speed p,ermits. Thus, while
.a REQUEST th.•finition is waiting for an external l'Wnt. or interrupt, from a line, the DCP is free to continue
execution of a REQUEST or CONTROL definition for another line.

The allocation of the DC'P for the servicing of its many lines is one of the duties of the basic DCP operating
system and the CONTROL definitions. Figure 1-4 illustrates the means by which the control of the DCP
is transferred between the operating system and the CONTROL and REQUEST definitions.

Line Control

Each CONTROL definition, or "Line Control Procedure," must perform two functions. First, it must select
which station on the line is to receive attention next, and second, it must decide what particular function is
to be performed for that station. If the function to be performed is an output request, control is transferred
to the TRANSMIT REQUEST for the station. If the function is an input operation, the station's RECEIVE.
REQUEST is executed. Network functions which do not involve the reception or transmission of messages,
such as status or network changes, are performed by invoking a common subprogram, or macro, within the
OCP operating system itself.

Request Definitions

For each type of termin;il which is capable of output, a TRANSMIT REQUEST must be named within the
terminal definition. Likewise, if a terminal h;_is input capabilities, a RECEIVE REQUEST must be supplied
and named. Typically, many stations may share the same REQUEST definitions, just as many lines may
utilize the same CONTROL definition. In some cases, more than one set of REQUEST definitions may be
desired, and defined, for ;i station.

1-·6

.v_.

DCP · DCP Initialization Line !nitiate Request -- Terminal
Operating

u•

Request Control -.. Terminate Request
System Procedure - Routine

T I

I

1
DCP -
Common
Macros ----

Figure 1-4. Transfer of Control Within the DCP

The functions of a REQUEST definition may be as simple -or as complex as the application of the station
dictates. One of the basic design goals of the DCP is to free the main system from the burden of performing
basic terminal receptions and transmissions. However, by the proper application and coding of the CONTROL
and REQUEST statements in NDL, a significant amount of intelligent mes~age processing may be performed ·
by the DCP, thereby allowing more of the main system's resources to be free to perform other work.

The NOL programmer must keep in mind, however, that the DCP runs at a finite rate, and that 'it is
operating in real-time. Thus, if too much time is spent processing a message, other lines may· fail to be
serviced quickly enough to avoid transmission errors. Several NOL statements are provided to "break up"
long strings of NDL code to ensure that the DCP may properly service all of its lines ..

When a REQUEST definition has terminated the processing of an input or output function, it usually branches
back to the beginning of the CONTROL definition. The CONTROL definition then selects the next station
to be serviced and the process continues.

Thus, the functioning DCP can be visualized as a small multiprogri;imming system, where each line has its own
program and operating environment and runs asynchronously and independently of the other liries. The

CONTROL definition and its associated REQUEST definitions form the "main program" for.each line, and
the common DCP macros are "sub-programs." ·

DCl> INTERACTION WITH THE MAIN SYSTEM

Although the DCP is a self-contained and asynchronous device with respect to the main system, it is not an
autonomous unit, and requires the active participation of the main system and its resources to· properly func­
tion. In particular, main memory storage space is required to contain tables and messages. In addition, the
DCP requires the allocation of a pool of message areas in main memory for the gathering of input from term­
inals and reporting of error conditions.

DCPTables

The NOL compiler constructs a series of tables which reflect the physical and lo:gical characteristics of the
network as defined by the NOL source program. The DCP uses these tables for the storage of status informa­
tion, and for.determining what types of functions are to be performed for each of the many different lines
and stations which the DCP controls.

The compiler places a d,isk image of these tables.within the DCPCODE file along with the DCP code itself.
When the DCP is initialized, the tables are loaded into· main memory by the DCC, which also provides the

1-7

OCP with a reference to the tables. If several OCPs exist which sham hardware-exchanged adapter clusters,
two DCPs may utilize the same set of tables if the network description indicates this mode of operution. In
the case where a DCP is not "exchanged" in this manner, c1.1ch OCP uses its own unique set of tables.

Each set of tables can be divided into two sets of information. Each line has a table, and each station l1as a
table. The OCP uses a "line descriptor" to reference each line table. The descriptors for all lines controlled
by the DCP are stored within a vector, which is then indexed by the physical line adapter address. Each line
descriptor contains information concerning the status of the line (not ready, connected, busy, etc,), physical
characteristics of the line (dial-out, switched, etc.), logical characteristics (automatic answer, etc.), and a , ·
reference to the CONTROL definition which is used for the line. In addition, the line descriptor contains.·
the memory address of the actual line tabJe. ·

Each line table contains additional information describing the logical and physical characteristics of the line.
Much of the information in the line table can be referenced and/or modified directly by the NOL CONTROL
and REQUEST definitions. Other information is reserved Jor use by the DCP operating system.

Immediately following the line information in the line table is a vector of station descriptors, one such
descriptor for each station which can exist on the line. Similar to the line descriptor, each station descriptor
addresses a table of information for a particular station. The DCP references the proper station table by
indexing into the line table by the proper relative station address, or "station index," and using the addressed
station descriptor to reference the proper station table. When a line CONTROL Procedure "selects" a station
for the purposes of initiating a REQUEST definition. it.is actually selecting the proper station table for use.
Just as the line table contains a reference to the proper CONTROL ·definition to execute, the station table
contains references to the appropriate TRANSMIT a11d RECEIVE REQUEST definitions. It should now be
apparent that each station assigned to a particular line must utilize the same Line Control Procedure, since
the stations on the line all share a common line descriptor and line table: However, each station may have a
different set of REQUEST definitions, since these routines are station oriented. . ~· . .

Although each station table is of a fixed size, the line tables will vary in siie directly proportional tO the
number of stations which can potentially exist on the line. The NOL source program specifically defines
the maximum number of stations for each line, as well as which stations are assigned to what line. Not all
station descriptors may be utilized for a given line, i.e., the number of real stations on a line at any given
moment may be less than the true capacity of the line. A line inay be declared with such "holes" when the
NDL program is compiled, or a line may be reconfigured into such a state by an MCS. In some cases, a line
may exist with no stations at all. At no time, however, may more stations be assigned to a line than the max­
imum number defined by the NDL program. Thus, it is the requirement of the DCP operating system and/or
the CONTROL definitions to ensure that a selected station actually exists, or is valid, as defined by the cur-

. rent state of the network.

Just as a line may have n.ovalid stations, it is possible a~d often desirable to define "spare" stations which
have no line assignment .. Such stations cannot be referenced or utilized by the DCP until they are logically
assigned to a line by a reconfiguration request. Again, any such reconfiguration request will be disallowed
by the DCC if the characteristics of the station conflict with those of the line to which it is being assigned,
or with the stations which already exist on that line~ Also, since the size of the line table cannot be altered,
there must exist a "hole" or unused position on the line for the station.

Alternatively, an existing station may be .subtracted from a line, thereby leaving a "hole," and either left
in limbo with no line assignment, or moved to fill an existing "hole" on an.other line. Thus, stations which· ·
have special characteristics for a particular application may be logically moved about within .the network
while the data communications system is operating and without the further use of the,NDL compiler.

1-8

.. ~

;.

~

DCP MESSAGE MAINTENANCE

With one exception, all functions performed by the DCP are the direct result of a DCP request message· being
sent to the DCP, usualJy by an MCS. In the case or terminal output; for example; a ''write.request'' is sent
to the DCP, which then invokes the action described within the request message itself by means of the. appro­
priate station's TRANSMIT REQUEST definition. If spontaneous input from a terminal is to be received,
there is normaHy no MCS request message associated with the input operation. When a station operates in
this mode, the terminal is described as being "enabled for input," or simply, "enc1bled."

The process of gathering "enabled input messages," i.e., spontaneous input messages, is controlled by the
CONTROL definition, and, of course, by the RECEIVE REQUEST defined for the terminal.. In addition,
the "enabled" state of a station is initially defined for each station, and may be dynamically changed by the'
controlling MCS.

When a station is enabled, and the RECEIVE REQUEST is invoked, the DCP must then acquire a message
area in main memory in which to store the received message text. Such an area, which is called an "enable
input space," is obtained by a DCP macro called GETSPACE. Since the DCP cannot directly participate in
the main system memory management functions, a pool of such "enable input'' spaces is maintained by the
DCC.· This pool of messages, sometimes referred to as the "available space pool," c~msists of a set of q·ueues,
each of which contains a linked list of available message areas of the s~me size. The NOL compiler computes
the size of the enable input space required for each terminai based on the defined WIDTH, MAXINPUT, and
BUFFERSIZE statements within the terminal definition. All terminals of a given size are assigned the use of
the same queue. In order to reduce the number of different queues required, the NOL cornpiler roi.mds each. ·
terminal's input size up to a multiple of 16 words.

The available space areas are used for several purposes other than terminal enabled ·input. Error messages
from the DCP and "switched line status" result messages are also spontaneous innature and require an enable
input space. In addition, it is possible for an NDL Request definition to invoke the .GETSPACE macro and
simply store the contents of variables in the obtained message space in order to.communicate with the con­
trolling MCS.

When the DCJ;> GETSPACE macro is invoked, an area which is greater than or equal to the required message
size is delinked from a message queue and assigned to the station. If no suitably sized areas exist wjthin the
space pool, a "no space" condition results, and the RECEIVE REQUEST must abort reception of input.

' . . ' ..
The number of messages assigned to each queue is initially defined by the NOL compiler. By default, two
areas are assigned to each size queue, although the NOL program may specify an aiternate allotment on a
terminal by terminal basis.

The DCC has the responsibility of maintaining the available space pool so that GETSPACE may always ob­
tain a message area. As each available space area is returned to the DCC by the .DCP in the riormal course of
completing an input operation, the queue from which the area was obtained is restored so that it contains
the same riumber of areas as defined by the NOL compiler. Circumstances may arise, however, where all of
the areas within a queue have been exhausted, but none of the areas has yet been returned to the DCC so that
the queue can be replenished. In such ari event, the DCP sets a global "space alarm'' flag which is sensed by
the DCC and causes it to immediately examine and replenish all of the available space qtieues. In addition,
the DCC will then increase the target number of messages In each totally depleted queue, in order to reduce
the possibility of future space alarms. During extended periods of DCP inactivity, the DCC will attempt to
reduce the number of messages in each queue down toward the originally defined· target value.

1-9

The DCC attempts to maintain the available space pool within the constraints specified by the NOL compiler.
However, some networks may require more than the default number of message areas for some k.rminals ·
if too many "no space" conditions occur. In such an event, the NDL program should specify a larger number
of message areas for the affected terminals. Since the behavior of a network is difficult to predict under all
circumstances, the NOL programmer will have to directly observe the effects of different message space spec­
ifications, and adjust the specifications so that the network operates efficiently without requiring excessive
memory resources.

1-10

-·

.__..

,V
'--"

2.

SYNTAX CONVENTIONS

NDL SYNTAX CONVENTIONS

NOL Syntax Conventions

SYNT;·,~..; CONVENTIONS

The syntax diagram is the method used to depict the Network Definition Language syntax .. This method
affords a very concise and lucid exposition of syntax, including defaults, alternatives, and iterations; it is
rigorous without being cumbersome. There are few formal rules to remember: the basic rule is that any
path traced along the forward directions of the arrows produces a syntactically valid command. The
following examples illustrate the technique:

_c~~:~;;rBOATLGENTLYTDOWN[- E ; L.·.·. ~·.STREAM.·
THE OLD ' . MILL

Valid constructs from this syntax diagram include:

ROW THE BOAT DOWN-STREAM.
ROW, ROW, ROW YOUR BOAT GENTLY DOWN THE STREAM.
ROW, ROW, ROW, ROW THE BOAT DOWN THE OLD STREAM.
ROW YOUR BOAT DOWN THE OLD, MILL STREAM.
ROW THE BOAT DOWN THE OLD, MILL STREAM.

The following convention is used to control iterations of options or constructs:

.... ------- ... 1------' 2 .___ ___

ACROSS THE-------'-"---.---_..,..:BIG -----------.------~.MISSOURI

1------WIDE --· ------

"-----1~MUDDY ------~

The "bridge" over the "2" can be crossed a maximum of two times, so a maximum of two commas (and
three adjectives) can appear. Valid productions include:

ACROSS THE BIG MISSOURI
ACROSS THE BIG, WIDE MISSOURI .
ACROSS THE BIG, WIDE, MUDDY MISSOURI

From the above example~ it should be noted that the number of iterations is controlled by the ''number"
in the feed-back loop. When the "number" is not shown, there is no limit to the iterations. For example,

2-1

NOL Syntax Conventions

SYNTAX CONVENTIONS

Continued

ACROSS THE --~---'-•-....-----=· BIG-------..-_.__..__ __ .,. MISSOURI

,___-----11:-·. WIDE-----~
~-----... MUDDY ------...I-

would include the following valid combinations:

ACROSS THE BIG BIG WIDE WlDE MISSOURI
ACROSS THE BIG MISSOURI
ACROSS THE MUDDY MUDDY MUDDY MUDDY MISSOURI

If a comma were included in the above example, valid combinations would be as follows:

ACROSS THE BIG, BIG, MUDDY MISSOURI
ACROSS THE BIG, WIDE, WIDE, MUDDY MISSOURI

Key Words

Boldface symbols and uppercase letters in syntax diagrams indicate symbols and words which appear
literally in the instniction. ·

Syntactic Variables

In the syntax diagrams, left and right broken brackets f()) are used to contain syntactic vanahles that
represent information to be supplied by the programmer. A particular variable may represent a single
character, a simple construct (such as an integer or text string), or a relatively complicated construct.

The following is an example of a syntactic variable that appeara in a syntax diagram .

DEFAULT .., = ------ (default line identifier)--------------

Braces ({ }) are used to enclose syntactic variable expressions defined by the meaning of the English ·
language expression contained within the braces. For example, the following syntactic variable expression

ADAPTER--------= -----ti• .. { (integer) value of I thru 8 ~------------

would include the following valid constructs: .

ADAPTER= 1.
ADAPTER=6.
ADAPTER= 8.

Construct Terminator

Most constructs in the Network Definition Language must be terminated by a period (.). This is illustrated
in the syntax diagrams as follows: \.,_;

The period is part of the syntax and must appear following the construct.

2-'-2

. NDL Syntax Conventions

SYNT.:~~X CONVENTIONS

Contim:ed

Some constructs, however, do not require a tetminator, and can be followed by another construct. This is
illustrated as follows:

The vertical bar (I) is not part of the syntax, but merely indicates the tennination of the construct.

i

2-3/2-4

. .I
.J

. I

H

LANGUAGE COMPONENTS

Syntax

Examples

A
450
6110
IF
"86700"
SYSTEM/CANOE
30MILLI

Semantics

3. LANGUAGECOMPONENTS

..
--~
--~
......
_.....

--
--
-
---~
_ _..

......
~

......
~

~

-
_..

-

(bit nu

(bit vana

(byte ll

(charac

(identifi

(integer

(label)

(NDLp

(re1111l1'k

(reserve

(space)

(string)

(system

(tally n

(time)

mber)

· ble)

ariable)

ter)

ler)

)

rogram unit)

)
dword)

identifier)

umber)

number (toggle)

Language Components ·

LANGl1 AGE COMPONENTS.

-1
j

-,

•· -.-

. --
_..

--:-
· _ _.. .
...... --

. --. :'-•

..... '

_..

. --
......

~

.....

(bit variable)s, (bit number)s, and (byte variable)s are all described in chapter,6.

A complete list of the t.f'eserved wdrd)s_ is contained in appendix A.

(NDL program unit) is described in chapter 4.

All other (Janguage component)s · are described in this chapter.

3-1

Language Components

CHARACTER

CHARACTER

Syntax

Examples

0
Q
A

Semantics

• ... ~
(digit)

(hexadecimal character)

'------.1-~(letter)

'-----'--...,.(single character)--__,;,---'--:...,

-

In all in~tances, a. {fharacter). is 8? entity whose exact form depends on the context_ of .its usage. The
normal inference ts that of an 8-btt EBCDIC character. ·. ·

(/etter)s and (digit) s are usually Used to create (!denti/ier) s and f.!tring) s.

' """'l

Wherever (single character) occurs in the NDL syntax, an 8-bit character is needed. It is unique in that it
may be forined using two (hexadecimal character)s. . · · . · .· .

3-2

·V
~·

DIGIT

Syntax

Language C()mponents

~HARACTER

,,.}git) '

{one of the EBCDIC characters, 0 through 9, inclusive}--------------------........

Examples

0
s
9

Semantics

Whenever the item of (digit) appears in the NDL syntax, one of the IO.numeric EBCDIC characters. from '
0 through 9 is required. · . . · · · · · · · · . .

' ' l
I

I
i

... ;',

Langu~ge Components

CHARACTER
(hexadecimal character)

HEXADECIMAL CHARACTER

· Syntax

Examples

0
s
9
A
c
F

-.... -
---..
-
--

·-
_..j (digit)

I
A

B

c
.. D -

E --
F

Semantics ~

(hexadecimal character) s are defined as consisting of the characters in the decimal digit set plus the char- ""'-"".
acters A, B1 C, D, E, F. (hexadecimal character)s are generally used to define program values in terms of
the hexadecimal (radix 16) number system, where A is equivalent to IOin the decimal system, Bis equival-
ent to 11 in the decimal system, etc.

--~

3-4

v
......_....

LETTER

Syntax
. ,.

Language Components
CHARAcrER· ·.

(tetit'P)

{one of the EBCDIC characters, A through Z, inclusive}-----~ ------------~ ..

Examples

A
Q
z

Semantics

Whenever the item of (letter) apl)ears in the NOL syntax; one C)f the 26 alph~betic EBCDIC chatactel'S
from A through Z is required. ·· \. · · ·· ·

·"."

. ; .

Language Components

CHARACTER
(single character)
'

SINGLE CHARACTER

Syntax

:
"_.{any EBCDIC character except the quote C;Jj . . llP "--------...,.-,Ar----.--1.--.tj .

'---•4"...,.(hexadecimal character)...,...(hexadecimal dzaracter)_...,; _ _._ ___ _.J

Examples

"A''
4"FF".

Semantics

The primary purpose ofhaving a syntactical item of (Yinglc; character) in NDL is for use ht those places of
syntax requiring an 8-bit character, which can be any combination of bits from "all ofr' through "all on."

For ·ease of programming and recognition of usage, the NOL pr()grammer may use either nonnal EBCDIC
graphic characters or (/1exadecimal character)s to create the needed bit pattern.

3-6

.............

-·

IDENTIFIER

· Latiguage Components . · · ·

IDENTIFIER

Syntax

(letter)-----.-----_;__---.:,_'-----~___:--_,..,--~---~

Examples

A
QV
X3
867.00
MINIMIZER

Semantics

~--___,16 (letter)---------...-----
(m~t)~-------..,...-~

' . . : .

(identifier) s have no intrinsic meaning. They are used to give· syinbolic names to various definitions in·
· NDL.

An (!dentifier) must start With a (letteT) , which can be followed. by an~ combinati~ri of '(letter) s al1d
V (digit)s. . ·· · · ' . · ~. .

'--" The maximum length ofan (Identifier) is 17 characters.

3-7

'.':..

.. / ..

Language Components

INTEGER.

INTEGER

Syntax

__ _._t __ tft\--....(digu>-----.......] ______ -...-------------..i .. I
Examples

0
37
511
12345678901

Semantics

An ljnteger) is a positive whole number; i.e., fractions or fractional parts, exponents, etc. are not allowed.

TI1e maximum (integer) allowed is 99999999999.

3-8

... ABEL

Syntax

Examples

0
22
123
99999999999

Semantics

Language Components

LABEL

A (label) is used to indicate where "execution can branch" within a given (control definition) or (request
definition) . ·. . · .

(label)s are "local" in scope; that is, each (label) must be unique only within a given (control definition)
or (request definition). For example, the (label) 22 could appear more than once in an NDL program so
long as it does not appear more than once in the same (control definition) or (request definition).

3-9
I
!
l

Language Components

REMARK

REMARK

Syntax

%---------~•{EBCDI~chatactersJ---------------...,. --.,..;-~

Example

% mis IS·A REMARK

Semantics
. \ . .

-

(remark)s can appear anywhere in the source program: When the C9111Piler encounters the J;>ercellt sign
(%),it skil>s immediately to the ne:Xt sourc:e record before continuing the oompilation proeess.

3-10

"-1 .

v
. ..__.

v

SPACE.

Syntax

Language Components

SPACE

___ + ~ p EBCDIC graphic space, hexadecimal 40l -......_ ___ I --..----------------.... ..ii

Semantics
. .. . ,.

The NDL compiler looks at a contiguous sequence of (space) s in a source program as a single (space)
(except when contained in a ~tring)). Therefore, wherever a single spilCe is allowed, the programmer can · j
use multiple (space)s.toimprove readability of the program.· . · · · .· · .

. • .

. .

.. ..

3-11

Language Components

STRING

STRING

Syntax

- .. __.t ____ .. ._~· {any EBCDIC character except the quote('')} _ __,,~,, ___ _.____. . .,...,.-'1 ·.

' .

~ 4 _,.. __,f.....__-t.,~ (hexadecimal ·character) (hexadecimal character)

Examples

"THIS IS A STRING"
"AND" "SO" "IS" t'THIS"
"AND SO" 4"C9E2" .. THIS"
4 .. C2F6F7FOFO"
"%*+?/@(BIG B)"

Semantics

.. ,, _ ___.

Only (hexadecimal clwracte1) (4-hit) and EBCDIC character (8·bit) (~tring)s can be constructed.

EBCDIC character (''Iring) s arc restricted in that they cannot contain the quote(") character.

The maximum allowed length of a ~tring) is 128 8-bit characters(l024 bits).

3--12

. ··----:-'

SYSTEM IDENTIFIER

Syntax

Examples

A
86700
SITE/MCS
SYSTEM/RJE/DOWNTOWN
X/Y/ZEBRA

Semantics

Language Components

SYSTEM IDENTIFIER

(system identifier)s have no intrinsic meaning. They are used to give symbolic names to various definitions
in NOL. A ~ystem identifier) is different from an (identijler) in that it is usually used to reference items
belonging to the system and not simply to the NDL program. ·

A maximum of 14 (identifier)s, each separated by a slash(/), is allowed.

3-13

Language Components

TALLY NUMBER
'

TALLY NUMBER

Syntax

Examples

0
1
2

Semantics

I

(tally riumber) is required to ·designate one of the three (byte variable) TALL Vs; for example,
TALLY(O). .

i
; '

3-14

v
. -_,..::.

., ...

.v
\....;.;;

.TIME

Syntax

Examples

0
SMIN
30SEC
200MILLI
9MICRO

Semantics

SEC~------------1--""""'

. MILLI-----------. ~

MICR0--------1--"~

Language Components

TiME

_J

(time) is used to express or define an increment of time. MIN denotes minutes, SEC denotes seconds,
MlLLI denotes milliseconds, and MICRO denotes microseconds.

The maximum amount of time that can be specified is 6 minutes 42 seconds. ·

3-15

Language Components

10GGLE NUMBER

TOGGLE NUMBER

Syntax

Examples

0
4
7

Semantics

..

~

-
~

...

...

o~-------r-------------~..-i
l --......,......;-.,...---...i

2 -------.-i
3-------...t

4---......,......;--~

5-------...
6-------.......
7---------

(toggle number) is required to designate one of the eight (bit variable) TOGs. For example, TOG[S].

3-16

--.......

'v ~-

NOL PROGRAM UNIT

Syntax

4. SOURCE PROGRAM STRUCTURE

Source Program Structure·

NDl. PROGRAM UNIT

~.__---(constant definition)---..,............,._.

1----a~ (MCS definition) ____...,.

....___. .. (translate table definition)

--------- (control definition)------._;._-L _______ .;..__..;.._ ___ ..;.._ __ -.c

....._~ (request definition)-----' .___.~(modem definition)-.. _ __,_,__.

...___.,---11., (DCP definition)--1------------..-..--------_...,.

....._....._.~(file definition)_....__,

4-'-l

Source Program S tructurc

NDL PROGRAM UNIT

Continued

Examples

CONSTANT ...
MCS ...
TRANSLATETABLE ...
CONTROL .. .
REQUEST .. .
MODEM .. .
TERMINAL ...
STATION .. ,
LINE .. .
DCP .. .
FILE .. .

Semantics

The NDL source program is divided into 11 programsections ordered as shown. An NDL program
must include the control and request sections (in any order), and the terminal, station, line, and DCP .
sections. Each section is described in detail in chapter 5 of this manual. ·

4-2

----.

·--·

-.

·-

Definitions

DEFINMONS

5. DEFINITIONS

DEFINITIONS

The NDL definitions, which comprise the 11 program sections of the source program structure showri in
Section 4, are listed in alphabetical order and described in the same order:

a. CONSTANT
b. CONTROL
c. DCP
d. FILE
e. LINE
f. MCS
g. MODEM
h. REQUEST
i. STATION
j. TERMINAL
k. TRANSLATETABLE

5-1

J

Definitions

CONSTANT

CONST ANT DEFINITION

Syntax

CONSTANT [(mnsta11t identifier)-=·-......,. (constant identifier).......,,....._.....__ _____ •

(string) ____ __,

Examples

CONSTANT NUL = 4"00".
CONSTANT SOH = 4"01 ",STX= 4"02".
CONSTANT C1 = SOH 4"00" STX, C2 = "123"4"F4".

Semantics

The <constant dejl11itio11) equates each of one or more (identifier)s with a (string). Once that equation is
made, any subsequent appearance of the (constant ident~f1e1) is syntactically and semantically equivalent
to the <string). . ·

If a (constant identifier) appears after the equal sign, it must have been defined previously in the program.

Supplementary Examples

Examples of Valid (rnm/011/ dc•.flnition)s

Example t

CONSTANT GREETING= ''WELCOME TO 8 6700 TIME SHARING.".

This example equates the (string) "WELCOME TO 8 6700 TIME SHARING." to the (constant identifier)
GREETING. · · ·

Example 2

CONSTANT

CR = 4"0D", % A CARRIAGE RETURN
LF · = 4"25'', % A LINE FEED
CRANDLF :: CR LF, % A CARRIAGE RETURN AND A LINE FEED
DELETELINE ="DELETED" CR LF. %THESTRING "DELETED",

% A CARRIAGE RETURN, AN.D
% A LINE FEED.

This example references other< constant identifiers)s to define a (constant identifie1). (String)s and
(constant identifie1)s may be interspersed to define a (constant identifier). · ·

Examples of Invalid (constant definition)s

Example l

CONSTANT BADCNST = 4"123".

The above (constant definition) would cause a syntax error to be generated, because the (string) is not
properly formed. The length of the (string) must be a multiple of eight bits. .

S--2

--·

Example 2

CRANDLF = CR LF, % LINE I
CR = 4•'0D". % LINE 2
LF = 4"25". % LINE 3

Definitions

CONSTANT

Continued

This example would cause a syntax error to be generated, because the (constant idPt1tifier) s LF and CR are
referred to in line 1, but not declared until line 2 and line 3. A (constant identifier) must be declared
before any reference to that (constant identifier) can be made. ·

5-3

Definitions

CONTROL

CONTROL DEFINITION
'

Syntax

CONTROL__.(control id<'lllijh'r) ~: ~--t.., (ermr .nvilc/1 statement)-_...;... ___________......,.

(label)-..:

5--4

(break statement)---...c

(code statement)--·_...___..,..

(compound statement)-.....,

(continue statement)---­

(delay statement)---..-..i

(finish statement)----.....

(fork statement)------1~

(go to statnnenl)--'--.....,

(idle statement) ------...i
(if statement)----'--~

(increment statement)--...i

(initialize statement) --...i
(initiate statement)------11-..

(pause statement) ----11-.i

(receive statement)--....... -..

(shift statement)---~

(sum statement)---....... -.i

\transmit statement) ---­

(wait statement)---.....

Examples

CONTROL CONTENTION:
INITIATE REQUEST.
INITIATE ENABLEINPUT.
ll>LE.

CONTROL POLL:

Semantics

5: IF STATION GTI~ OTHEN
BEGIN

IO: STATION= STATION -- 1.
INITIATE REQUEST.
INITIATE ENABLEINPUT.
END.

ELSE
BEGIN
STATION = MAXST ATIONS.
GOTO 10.
END.

GOTO 5.

Definitions

CONTROL

Continued

A (t'O//frol dl',fflliliun) is an algorithm that dcscrihcs till' ;illocation or the USC of a logical line to lht• .
stntions assi!!llL'd to dial line. It is the (co111w/ clcJl11itio11) that tkcides if and when a station's lfrcciw
Request or Transmit Request should hL' initiated.

A single (coJ1tro/ definition) must control the logical line resource for all of the stations on a half-duplex .
line. In tliL' case or full duplex. one (control definition) must control the primary line, and one additional
(control definition). can be designated to control the auxiliary line. (One (control definition) could be
designated as the control for both the primary and auxiliary lines. If a (contro(rhfinition) is not desig­
nated as the control for an auxiliary line, then a default equivalent to an (idle statement) is used.) The
programmer, however, cannot directly define a particular (control definition) for a logical line in its
(line definition). Instead, for each (terminal definition), a single (control definition) must be defined.
(Two (control definition)s can be named if the (terminal duplex statement) specifies DUPLEX=TRUE.)
Next, in each (station definition), a (terminal definition) must be defined for the station (by means of
the (station terminal statement)). Finally, each (station definition) is assigned to a logical line (in the
(line station statement) of the (line definition)). This last as. sociation must be such that each station (i.e.,
(station definition)) assigned to the logical line references (indirectly through its (terminal definition)) ·
the same (control definition) s as every other station assigned to the line. .

A (control definition) fo1 a given line can deal only with one station at a time .. All statements executed
apply to and affect only one station ;:tssigned to the line. The (control definiti011) chooses the station
with which it wishes to deal by setting the value of the (byte variable) STATION to the chosen station's
station index. ·

(control ident~(ler) has the same syntactic form as(ident~(ier).

The statements in a (control definition) are executed sequentially. In some cases, however, it is desirable
to alter the order of execution of statements within the procedure. A (control statement) preceded
by a (label) is one means of accomplishing this. The (go to statement) is used to transfer control to a

V (label)ed (control statement). ·

5-5

Definitions

CONTROL

Assignment Statement

ASSIGNMENT STATEMENT

Syntax

FORM 1 - LOC:ICAL ASSK;NMl·'.NT

(assi}(1wb/e hit l'ariah/1•) __,. .. == ~· ·.(bit l'ariab/e)

· · TRUE

FALSE

....

FORM 2 - VALUE ASSIGNMENT

(assignable byte variable) ... =---(byte variable)---.--.---------------r-,.....

(integer)---~

(single character - · · . . (integer) ___,.

+ Jf (byte variable)

(single character)

(trans/atetable identifier)...,. (_.,_(byte variable)--.)

{receil'e "address" statement}----------.....

Examples

TOG [O] = TRUE.
TOG [1] =TOG [O].
LINE (BUSY)= FALSE.
RETRY= STATION (TALLY).
STATION= MAXSTATIONS.

TALLY [OJ= STATION (FREQUENCY)-TALLY [l].
CHARACTER = TRANSTABLEID (CHARACTER).
STATIO~ =RECEIVE ADDRESS (TRANSMIT) [ADDERR:999).

Semantics

FORM 1

This form causes the value on the right side of the equal sign to replace the current value of (assignable
bit variable). ·

FORM 2

Value assignment causes a calculated value on the right of the equal sign to be stored in the (assignable
hyte 11ariable). Arithmetic calculations are done in modulo 255 arithmetic.

(assignable byte variable) = (translatetable identifier) <(byte variable)>.

This construct is the means to invoke user-defined character translation. User-defined translation is
effected by three areas of the NDL source program.

a. In a (trans/atetablc definition) the programmer must define the contents of a translation
table and associate a (tra11slatetable identifier) with it. ·

5--6

''"-""'····

. __ ,.
·1

I

·~

Definitions

CONTROL

Assignment Statement - Continued

b. In the (terminal definition) of a terminal type that requires special character translation
the programmer should suppress automatic character translation by using either of the
following forms of (terminal code statement): ·

CODE= BINARY.

or

CODE= EBCDIC.

c. In a (contr~1/ def!nition) or <reqm·~t dlfi11itio11), the programmer invokes th~ translation
by usmg this option of the value assignment. Any (byte variable) can be designated as
containing the character to be translated.

The (translatetable identifier) identifies the translation table to be used. An (assignable byte variable)
is designated to the left of the equal sign, identifying where the resulting translated chantcter is to be
stored.

If N is the (source size) (defined in the {translate table definition)), then the N low-order bits of the
(byte variable) are used as an i_ndex into the translation table. The eight-bit character thus indexed is
stored in the (assignable byte variable). . . · ·

(assignable byte variable)= {receive "address" statement}.

This construct attempts to RECEIVE the address characters of a terminal, ... ··d store in (assignable byte.
variable) the station index of a station whose address characters are equal to those received. The ·
~receive "address" statement} is the same as described in the semantics of the RECEIVE ADDRESS
option of the (receive statement). The optional syntax in the {receive "address" statement} invokes
the same actions as described in the <receiJ1e statement) semantics except for ADDERR. Any action
specified for ADDERR is taken if no valid station assigned to the tine is found with address diameters
equal to those received.

5 . .:..7

Definitions

CONTROL

Break Statement

BREAK STATEMENT

Syntax

BREA!K __ ..,..,(..,. * -----r--t•> • ~NULL - ..-)

L(break time) t · L...<delay time)__J ·
Examples

BREAK (*,NULL).
BREAK (200 MILLI, 3 SEC).
BREAK (*, 3 SEC).
BREAK (100 MILLI, NULL).

Semantics

The (break statement) causes binary zeros to be transmitted on the line, thus changing the state of the
line to a "spacing" condition for a specified time.

(break time) specifies the (time) to break. An asterisk indicates that a standard break of 2 character
times should be used.

(delay time) specifies the (time) to delay subsequent to the break and prior to when control
continues.

5--8

--·

v - CODE STATEMENT

Syntax

CODE~---j~~=~. ASCII f.
l_.BINARY-----'-

Semantics

Definitfons

CONTROL

Cude Statement

....

CODE=ASCll invokes the ASCII-to-EBCDIC translation for receive.d data.amt the EBCDIC-to-ASCH
translation for transmitted data.

CODE=BINARY inhibits anv character translation on data transmitted or received ...

Pragmatics

The (code statement) allows a programmer to either invoke or inhibit on a Iogi~al line the DCP ASCII-to­
EBCOIC character code translation for input, and the EBCDIC-to-ASCII chal'.ilcter code translation for
output. Any (rerminal definition) that names, in its \(erminal c_cmtrol statement),"a \control defillition)
that utilizes the (code .statement), must .define ASCII(BINARY) as its chara~ter code in the (terminal
code statement). (Refer to tl1e (terminal code statement) in this chapter.). ·

Once that translation has been invoked on a logical line, the transJation continues until such time that it is
inhibited. If translation is inhibited, translation will be inhibited on that line until invoked again by execu._
tion of CODE= ASCII, or if control is transferred to a (request definition) which executes one of the
following: CODE=ASCII, TERMINATE NORMAL, TERMINATE LOGICALACK, TERMINATE .
WGICALACK(RETURN), TERMINATE ERROR, TERMINATE ENABLEINPUT, or (while executing a
Receive Request) TERMINATE NOINPUT. . .

·S--9

Detinitiohs

CONTROL

Compound Statement

COMPOUND STATEMENT

Syntax

BEGIN ---'--......... (control statement)---.____..___.,..,. END ---------

Examples

IJEGIN % EXAMPLE l
INITIATE TRANSMIT.
TRANSMIT EOT.
FINISH TRANSMIT.
END.

IF STATION (VALID) THEN
IF STATION (READY) THEN

BEGIN . % EXAMPLE 2
INITIATE TRANSMIT.
TRANSMIT "ON THE AIR".
FINISH TRANSMIT ..
END.

Semantics

111e (compound ste1tc•mc111) groups several statements together to form a logieal sequence. To execute .
more than one statement when t11e condition of an (if statement) is satisfied, a (compound statement)
must be used. · ·

5-10

·-

__

CONTINUE STATEMENT

Syntax

Semantics

Definitions

CONTROL

Continue Statement

TI1e (continue statement) can appear in only those (control deftnition)s and .(request definition)s
written to communicate with full duplex tenninal types. This statement causes the co-line to resume
processing, if, and only if, it had been suspended by a (wait statement) or a (receive statement) with a
CONTINUE option specified. If the co-line had not been suspended, this statement acts as a no-op. The .
(continue statement) has no effect upon the line on which it was executed. ·

Pragmatics

Refer to the (fork statement) pragmatics.

5-11

Definitions

CONTROL

Delay Statement

DELAY STATEMENT

Syntax

DELAY ------- (----.....,.(delay time)--------1.,..) ----------.,..

Example

DELAY (10 MICRO).

Semantics

The (delay statement) provides a means to delay a specified period of time before control proceeds to the
next statement. The (control definition) is suspended in a "sleep" state for the (delay time) specified.

Pragma,tics

The "sleep" state induced by the (delay statement) allows the DCP to service Cluster Attention Needed
(CAN) interrupts for other logical lines. ·

5-12

Definitions

CONTROL

Error Switch Statement

ERROR SWITCH STATEMENT

Syntax

ERROR__.. (~ (switch m1111/}('r) __...].....,,. = -....- BREA.K----....... :t··. (labd)

BUFOVFL--~...,. ABORT

LOSSOFCARRIER NULL

PARITv-----1~

STOPBIT-------M

TIMEOUT---......,

Ex11mples

ERROR (OJ = BREAK:O,BUFOVFL:NULL,LOSSOFCARRIER:ABORT
PARITY:999, STOPBIT:999, TIMEOUT:NULL.

ERROR (1) = BREAK:NULL.
ERROR [99) = BUFOVFL:NULL.

Semantics

The (error switch statement) is a non-executable statement that allows the programmer to define a
set of default actions that are to be taken in a (recei11e statement) if the specified errors occur.

(switch number) has the syntactic form of (integer).

BREAK

The BREAK option variatiqns cause actions as described if a break, that is, at least 2 character-times of ·
a spacing line condition, is detected by the adapter cluster while receiving:

BREAK: NULL
BREAK: (label)

BREAK:ABORT

BUFOVFL

causes no action. Execution proceeds as if the break did not occur. .
· sets TRUE the (bit l'ariable) BREAK[RECEIVE] , and branches control

to (label). ,
sets TRUE the (bit variable) BREAK[RECEIVE], and executes an
implicit TERMINATE ERROR.

The BUFOVFL option variations cause actions as described if the DCP is unable to service a cluster
Attention Needed (CAN)interrupt before the Adapter Cluster receives another character (thus destroying
the previous character):

BUFOVFL:NULL

BUFOVFL: (!abet)
BUFOVFL: ABORT

causes no action. Execution proceeds as if the error condition did not
occur.
sets TRUE the (bit variable) BUFOVFL, and branches control to (iabe1).
sets TRUE the (bit variable) BUFOVFL, and executes an implicit
.TERMINATE ERROR. . .

5-13

Dcfintions

CONTROL

Error Switch Statement · · Continued

LOSSOFCARRIER

The LOSSOFCARRJER option varilltions cause actions as described if a loss of carrier is detected while
receiving.

LOSSOFCARRIER:NULL

LOSSOFCARRIER: (label)

LOSSOFCARRIER: ABORT

causes no action. Execution proceeds as if the error
did not occur. .
sets TRUE the (bit variable) LOSSOFCARRIER, and
branches control to (label). . ·
sets TRUE the (bit variable) LOSSOFCARRIER, and
executes an implicit TERMINATE ERROR.

There is one exception to the actions described above. If a loss of carrier is detected while receiving, and
if the terminal is modem-connect, and if the terminal's (station definition) references a (mndem
definition) that contains the statement LOSSOFCARRIER=DISCONNECT, then an implicit disconnect
is done, regardless of the action associated with LOSSOFCARRIER in the (error switch statement).

PARITY

The PARITY option variations cause actions as described if a parity bit error is detected by the adapter
cluster:

PAIUTY:NULL

PARITY: (lal>e!)

PARITY:ABORT

STOPBIT

causes no action. Execution proceeds as if the error did
not occur.
sets TRUE the (bit l'<lriahh1 PARITY, and branches control
to (label). ·
sets TRUE the (bit Pariable) PARITY, and executes a
TERMINATE ERROR.

The STOP BIT option· variations cause the described actions if a stop bit error is detected by the adapter
cluster: ·

STOP BIT: NULL

STOPBIT: (label)

STOPBIT:ABORT

TIMEOUT

causes no action. Execution proceeds as if the error did
not occur.
sets TRUE the (bit JJariable) STOPBIT, and branches control
to (label). · . . . · · ·
sets TRUE the (hit JJariable) STOPBIT, and executes a · ·
TERMINATE ERROR.

The TIMEOUT option variations cause the actions described if the tillle required to receive a character
exceeds the (timeout time). The (timeout time) is ct.efinedin the (terminal timeout statement); .
but can be overridden by including the ((timeout time)) or (NULL) syntax options in the f(eceive
statement).

TIMEOUT: NULL

TIMEOUT: (lahel)

TIMEOUT: ABORT

5-14

causes no action. Execution proceeds as if the error did
not occur. . .
sets TRUE the (hit Fariable) TIMEOUT, and branches
control to (label).
sets TRUE the (hit variable) TIMEOUT, and executes a
TERMINATE ERROR.

Definitions

CONTROL

Error Switch Statem:; ··t - Continued

Pragmatics

An (error switch statement) must be associated with a (receive statement) by means of a (switch number)
reference before any of the default actions will be invoked. The (error switch statement) can appear in a
(control definition) as many times as the programmer deems convenient providing the following · ·
restriction is observed: Within a given (control definition) 7 (e~rorswitch statement)f must have a
unique (switch number), and all (error switch statement)s must precede all executable statements in the
procedure. ·

5-15

Definitions

CONTROL

Finish Statement

FINISH STATEMENT

Syntax

FINISH ---1•~ TRANSMIT -,-----------------:------,r"----_.

L (--.-,---an...-- NULL -----.-,) :=J ...
Examples

FINISH TRANSMIT.
FINISH TRANSMIT (NULL).
FINISH TRANSMIT (3 SEC).

Semantics

-----..... (delay time)---__,J

The purpose of the (finish statement) is to take a line out of the transmit ready state and prepare the line
to receive information. The adapter cluster delays a period of time Jong enough for the last character
TRANSMITted to be transmitted, plus 2 milliseconds, before the line is put in a receive ready state. Al­
though the (finish statement) puts the line in a receive ready state, the cluster hardware invokes a delay
that inhibits any data from being received for 25 milliseconds. An INITIATE RECEIVE construct should
precede any subsequent (receive statement), to override the 25 mi!iisecon<l hardware delay.

The (delay time) option allows the programmer to specify a software delay of (time) before execution
continues in thl' (mntrol definition).

For example. the statement

FINISH TRANSMIT (3 SEC).

is equivalent to

FINISH TRANSMIT.
DELAY (3 SEC).

The FINlSH TRANSMIT (NULL) construct is equivalent to FINISH TRANSMIT.

5-· 16

·-·

·.~

Definitions

CONTROL

F ·)rk Statement

FORK STATEMENT

Syntax

FORK

Exam1>le

FORK 10.

Semantics

TI1e (J<>rk statement) is.allowed in only those (control definition)s and (request definition)s thatare
written to communicate With full duplex terminal types. This statement can be executed in the
(control definition) or (fequest definition) or the auxiliary line or the priniary line. The execution of this
statement causes the co-line control, if not busy, to branch to and begin executing code in the (control
definition) that executes the FORK at the (label specified, while control on the FORKing line executes
an implicit PAUSE (i.e., a (pause statement)> and continues executing in parallel. The co-line is determined
busy or not busy by testing the BUSY bit (i.e., UNE(BUSY) or AUX(LINE(BUSY)), whichever is appro­
priate). If the co-line is busy, the (fork state11wnt) acts as a no-op.

Pragmatics

Synchronization problems can occur between the primary and auxiliary lines as a result of the (fork
statement) ext~cuting the implicit PAUSE. The implicit PAUSE yields ust• of the DCP; to allow processing to
proceed on other lines. Thus, processing on the co-line is actually started before the FORKing line exits
the (fork statement). As a result, the programmer must, by some means (e.g., by setting and testing line
TOGs), l'ffect the synchronization of the lines. This is especially critical if the .code contains (wait
statement)s and (continue statement)s. The following example illustrates how full duplex lines could
"hang" as a result of poor synchronization.

FORK 10.
WAIT.

10: CONTINUE.
WAIT.

Assume that the primary line executes the FORK 10. At that point, the primary line temporarily yields
use of the DCP to other lines. The auxiliary line starts up and executes the CONTINUE. Since primary
control is still at the (fork statement) and is not in a (wait statement), the auxiliary line CONTINUE acts
as a no-op. Next, the auxiliary line executes the WAIT. When the primary line is given use of the pro­
cessor again, it executes its WAIT. At this point, the primary and auxiliary lines are "hung," each WAITing
for a CONTINUE from its co-line.

5-17

Definitions

CONTROL

Go To Statement

GO TO STATEMENT

Syntax

GO-L-To_J_[__ (/abe/)

(byte variablc)-.---r---11.,.ili>-(

[,]
Examples

GO 10.
GOTO 10.
GO TO TOGS, (0, t, 2, 3).
GO TO STATION (5, 9, 12).

Semantics

\

\

...

'fl1t' (_g<> to stafcmem) alters the path of control, that is, the sequential flow of statement execution, within
a (con I rot de.flni tio11).

GO TO (label)

This form of the (go to statement) unconditionally transfers control to the (label) specified.

GO TO (byte 11ariahle) ...

This form of the (go tn statement) provides a convenient means of dynamically selecting one or more
\l11bt·!)s to which control could branch. The (label) to br.mch to is selected by using the (byte variahle)
as an index value. If N represcnls the number of (lal>d)s in the (go to statement). then the (label)s are
m1mbcrcd 0 to N-1. The (label) corresponding to lhc index value is the (label) to which control
branches. If the index value is greater than N-1, then control continues at the statement following the
<._gv to stateme11t).

Supplenientary Example

GO TO STATION (5, 9, 12).
% EXECUTION CONTINUES HERE IF STATION> 2.

5: TOG [OJ =TRUE.

9: TOG [l] =TRUE.

12: TOG [2) =TRUE.

5-18

\ .

··W. . ·\:..-;•-. ·t"'.·

- >· ·--~;·?.-~;·-~ ._; /~, .. ·-:~ :·(~.L .. , -:: . -r
.... ·.-::-: '.·· ,. Definitions .

··--·II"··'·····'
-~ i'n"'lTROL .; ... •·:···

·) ...

Go To Statement Continued

TI1is example illustrates the "GO TO (byte variable) ... "option of the (gu to statement). The value of .
STATION detennines·the next statement to be executed. If the value of STATION is 0, rnntrol branches
to th~ (l(lh¢1YS:ifthev~lue of STATION is 1, control.branches to(/abel)9;and if the vaiue of STATION

.. -js i, ~on"'tf.bt branches to (label) 12. If the value of STATION is greater than 2, control continues at the
next sequential statement.

5-19

1 .. &

Definitions

CONTROL ·:.- •. ,

Idle Statement

IDLE STATEMENT

Syntax

IDLE---------------

Scmantks

Th1.: l'x1.:cution of the \idle statement) causes a· logical line to he suspended in an idle state. Specifically,
IDLE ~aus1.•s the LINE(BUSY) (bit l'ariable) to be set FALSE, the line to be suspended in a "sleeping" and
"ready" status, and all subsequent inbound data to be discarded.

Pragmatics . •

TI1e (idle statement) suspends the execution of a (control definition) foi'a logical line. Normally, this
statement should be executed only when there are no outbound messages queued for any stations on the
line and none of the stations on the line are ENABLED for input (or possibly, if the programmer wants any
available inbound data discarded). Consider the following example of the contention-type (control
definition) taken from the Burroughs SYMBOL/SOURCENDL program ..

CONTROL CONTENTION:

INITIATE REQUEST.
INITIATE ENABLEINPUT.
IDLE.

In this t'xampk', IDLE is l'Xccutcd only after it has hl.'en determined (hy means or INITIATE REQUEST
and INITIATE ENABLEINPUT) that tlw station is not QUEUED and not ENABLED for input.

Onl:L' a linl' is in an idle state, the line remains in an idle state until one of the following circumstances
rn.-rurs:

a. If the line TYPE is DIALIN and the line becomes connected (as a result of ANSWER =TRUE
in the (line definitim9 , a DIALOUT (TYPE = 98) DCWRITE from the MCS, or an ANSWER THE
PHONE (TYPE= 100) DCWRITE from the MCS), the (control definition) is initiated for the .
line.

b. If any of the following station-oriented DCWRITEs are exec:uted for any station assigned to the
line, then the (mn trol definition) is initiated for the line. ·

I. ENABLE INPUT (TYPE= 35)
2. DISABLE INPUT (TYPE= 36)
3. SET CHARACTERS (TYPE= 39)
4. SET TRANSMISSION NUMBER (TYPE = 40)
5. SET/RESET LOGICALACK (TYPE= 43)
6. NULL STATION REQUEST (TYPE= 48)
7. SET/RESET SEQUENCE MODE (TYPE= 49)

c. If a WRITE request or a READ request is found in the DCP's Request Queue (placed there as a
result of the MCS executing a WRITE (TYPE= 33) DCWRITE or a READ-ONCE ONLY
ITYPE = 34) DCWRITE, or the 1/0 intrinsics) for a station on the line, then the appropriate
\request definition) is initiated for the line.

5 .. ::!0

'·.'. -·:

·~.

IF STATEMENT

Syntax

Definitions

CONTROL

If Statement

IF~N-o-T-.-.-:.:~~ET
--.--THEN · .·. . .,...

L(mntml St(lt<'J11<'111)J L ELSE--(co11tro/st(l/c•mt'llt)j

{,pit 1•ariah/c)J

(hrte mriah/e\--.-.- LSS

(integer)--~

(si11g/t• cl11Jract<•r)

Examples

IF TRUE THEN.

LEQ

EQL

NEQ

GEQ

GTR

{,py te 1·arial>le)

(i111ega)--...i

(si11glc• characta)

IF TOG[O] THEN TOG[O] = FALSE.

IFTALLY[O] LSS TALLY[l] THEN TALLY[O] = TALLY[l].

IF CHARACTER= 4"FF" THEN
INITIATE BREAK.

ELSE
BEGIN
CHARACTER= 4"00".
GO TOO.

IF STATION(READY) THEN
IF STATION(QUEUED) THEN

LINE (TOG[O]) =TRUE.
ELSE

GO TO 10.

ELSE IDLE.

Semantics

The (jf statement) causes a condition (i.e., a Boolean expression) to be evaluated. The subsequent path of
program control depends on whether the condition is evaluated as TRUE or FALSE.

If the condition is TRUE, the (control statement) following the THEN, if present, is executed. Program
control then resumes at a statement that follows the (if statement).

If the condition is FALSE, the (control statement) following the ELSE is executed or, if the ELSE
(rontrol statement) is omitted, program control resumes at the (cqntrol statement) following the
(1.f statement). · . . .

Definitions

CONTROL
If Statement - Continued

. The (control statement) can be any legal (control statement). including the (if statement) and.
(compound statement). The meanings of the relational operators are contained in table 5-1. The follow-
ing diagrams illustrate the (if statement) semantics. ·

rTRUE~ . r.--t
IF {condition l THEN (control statement) (control statement)

LFALSE +

rTRUE-i 1 . 9 .
IF {condition J THEN (control statement) ELSE (control statement) (control statement)

LFALSE + u .

Table 5-1. Relational Operators

RELATIONAL OPERATOR MEANING SYNONYMS

LSS Less than <and LS

LEQ Less than or.equal to LE

EQL Equal to =and EQ

NEQ Not equal to NE

GEQ Greater than or equal to GE

GTR Greater than >and GT

5-22

·-~

Definitions

CONTROL

Increment Statement

INCREMENT STATEMENT

Syntax

INCREMENT --l•~SEQUENCE. L
· [....------__,..-:NULL---...--'" }=:J .

· . [SEQERR_,J j(/abel)----__,f

Examples

INCREMENT SEQUENCE.
INCREMENT SEQUENCE [SEQERR: NULL].
INCREMENT SEQUENCE [NULL).
INCREMENT SEQUENCE [999].

Semantics

The (i11creme11t statement) causes the sequence number stored in the DCP Station Table to be increased by
the value of the increment (also stored in the DCP Station Table), providing that the station is in scc1ucnce
mode: otherwise, this statement is a no'iOp.

When using the INCREMENT SEQUENCE constmct, provision should be made for taking action if the
increment caused the seque.nce number to exceed (erflow) the size of the sequence number field. The
programmer can take such action by including the o tional syntax. Failure to include overflow action
results in an implicit .TERMINATE ER~OR if an over ow Occurs. .

The SEQERR:NULL and NULL options are semantical y equivalent. These options set the SEQERR
(bit variable) TRUE, and control continues at the next, equential instri.iction;

The SEQERR:(/abel) and (label) options are semanticaUv equivalent. They cause the SEQERR (bit
variable) to be set TRUE, and control to branch to (label, . .

Regardless of whether error action is specified or not, an O\ irflow of the sequence number field destroys
the contents of that field. ·

Pragmatics

SEQUENCE MODE

A station is considered to be in sequence mode whenever its SE• UENCE (bit variable) toggie is TRUE.
SEQUENCE can be set TRUE only as a result of the controlling fCS executing the SET/RESET
SEQUENCE MODE (TYPE = 49) DCWRITE. In addition, the T PE 49 DCWRITE also stores the starting
sequence number and increinentin the appropriate fields of the L ~P Station Table. · ·

Sequence mode can be ilsed for any application that the NDL prog. •mm.er may see fit. Its use, however,
requires common conventions between the NDL programmer and tl ' MCS programmer. Burroughs has
utilized sequence mode constructs in two ((equest definition)s of S'. MBOL/SOURCENDL: . ·
READTELETYPE and WRITETELETYPE. Both require the coopera ·on of SYSTEM/CANOE to effect
the execution of those statements. The reader is referred to those (req '!Sf definition) s as an example of a
particular application that Burroughs has implemented~ Other ·statemen · relative to sequence mode are the
(transmitstatement) (TRANSMIT SEQUENCE coristmct) and the (stor statetnent) (STORE SEQUENCE
construct). ·

5-23

Definitions

CONTROL

Initialize Statement

INITIALIZE STATEMENT

Syntax

INITIALIZE ------......-----.;: BCC J
==========:~R-Y---~--.~J

Examples

INITIALIZE BCC.
INITIALIZE CRC.
INITIALIZE RETRY.

Semantics

lNITIAUZE BCC

The INITIALIZE BCC construct causes the (byte variable) BCC to be initialized for purposes of
accumulating a Block Check Character. The value to which BCC is initialized is dependent upon the
horizontal parity defined for the station's associated (terminal definition) (in the (terminal parity
statement)). If horizontal parity is defined as HORIZONTAL:ODD, then BCC is initialized to all ones
(i.e., 4"FF"). If defined as HORIZONTAL: EVEN. then INITIALIZE BCC initializes BCC to alJ zeroes
(i.e .. 4"00").

INITIALIZE CRC

Till' INlTIALIZE CRC construct initializes CRC to the initial value required for calculating the

•·

Cyclic Redundancy Check. Any ([erminal definition) referencing a ifonfrol definition) (in the (terminal
control statement)) that contains this instruction must define the horizontal parity (in the (terminal parity
statement)) as HORIZONTAL:CRC(16); otherwise a syntax error is generated.

INITIALIZE RETRY

The INITIALIZE RETRY construct causes the value stored in DCP INITIAL RETRY to be stored in DCP
RETRY.

5-24

-·

Definitions

CONTROL

Initiatr Statement

INITIATE STATEMENT

Syntax

INITIATE--r---"-., RECE)VE----.---.---~------------..--.--
I

i------i~-TRAlNSMIT ----

1----1~~ REQUEST--~--i

(~NULL 111>)

l_...(delay time)__J

i--__..EN~BLEINPtVT

i----i~-B~EAK~/--------~-----~-~-~
i; \

Examples

INITIATE RECEIVE. I
INITIATE TRANSMIT t3 SEC).
INITIATE REQUEST (NULJ-,).
INITIATE ENABLEINPUT/
INITIATE BREAK. 1'

(

')

/

Semantics (

INITIATE RECEIVE 1 I '1

T. he INITIATE RECEIVE const l~~ causes t/1je adapter cluster to initiate a receive delay calculated for the
station. After the delay, the ha lware is rea .y to receive information. ·

, I . .

The amount of time delayed, 1 -~ferred \to as the Initiate Receive delay, is unique to each station and is cal­
culated at compilc~time for c· .:Jt stati{m. The algorithm that the compiler uses to calculate the Initiate
Receive delay is described : the folk('ing three paragraphs.

a. If the (mod.em .!finition rfferenced in. the (station definition) (in the (s~ation. m~dem stat~ment)
defines them· .em NOISED/ELAY as being greater than zero, then the Imt1ate Receive delay 1s
2 millisecon. less than the combined (time)s defined in the (modem noisedelay statement) and
the (mode transmitdelay statement). .

b. If the rri .· 1em NOISEDELAY is defined as zero and the modem TRANSMITDELAY is defined as
being 1 '; than 7 milliseconds, then the Initiate Receive delay is zero.

I

c. If th ,nodem NOISEDELA Y is defined as zero and the modem TRANSMITDELA Y is defined as
bei. 1 equal to or greater than 7 milliseconds, then the Initiate Receive delay is the lesser of
15/.illiseconds or (1.5 milliseconds+ modem TRANSMITDELAY).

The NU , .J option or the (delay time) option can be used to override the calculated Initiate Receive delay.
NULJ,-{ 1mediately readies the hardware so that it can receive information. (delay time) specifies a (time)
to bf/{ ed in place of the Initiate Receive delay. ' v/

~I . \ 5-25

// ,'I
I ,

Definitions

CONTROL

Initiate Statement - Continued

Pragmatics

An INITIATE RECEIVE instruction should precede the first (receive statement) following a transmission.
If it does not, there is a possibility that execution of the (receive statement) will be delayed for a period
of time of up to 25 milliseconds. The cause of the 25-millisccond delay is described under the semantics
of the (finish statement) .

INITIATE TRANSMIT

The INITIATE TRANSMIT construct causes the Adapter Cluster to be put in a transmit state after a cal­
culated delay. The amount of time delayed is referred to as the Initiate Transmit Delay, and is unique to
each station. It is derived by taking the greater of the NOISED ELA Y (time) specified for the modem con­
figured at the system end, or the TURNAROUND (fime) specified by the station's associated (terminal
definition) . This construct must be executed prior to any attempt to transmit information.

The NULL option or the (delay time) option can be used to override the calculated Initiate Transmit
delay. NULL causes the adapter cluster to be put in a transmit state immediately. (delay time) specifies
a (time) to be used in place of the Initiate Transmit delay.

INITIATE REQUEST

The INITIATE REQUEST construct conditionally initiates the next function as indicated by the message
at the head of the Station Queue. The initiation of the function is conditional, subject to the following:
the station must be valid, ready, and queued. Specifically, STATION(VALID), STATION(READY), and
STATION(QUEUED) must be TRUE; otherwise; the instruction acts as a no-op.

The specific function invoked by this construct is dependent upon the type of message at the head of the
Station Queue. Most commonly the message is a WRITE (TYPE=33) DCWRITE, thus causing the Transmit
Request for the station to be entered. A READ-ONCE ONLY (TYPE=34) OCWRITE message at the head
of the Station Queue would cause control to enter the Receive Request for the station. Other messages
(unrelated to input or 0'1tput) Invoke their specific function and then transfer control to the beginning of
the (control definition). For example, a SET SEQUENCE MODE (TYPE=49) DCWRITE message wouid
cause control to enter the subroutine of the DCP that handles setting sequence mode and, when finished,
control would be transferred to the beginning of the (control definition).

The (delay time) option allows the programmer to specify that an implicit (delay statement) for the .
(time) specified, be executed before initiation of the next function from the Station Queue. For example, ·
the statement

INITIATE REQUEST (3 SEC).

is equivalent to

IF STATION(VALID) THEN

IF STATION(READY) THEN

IF STATION(QUEUED) THEN

BEGIN
DELA Y(3 SEC).
INITIATE REQUEST.
END.

The INITIATE REQUEST (NULL) construct is equivalent to INITIATE REQUEST.

5-26

\.._,) -·

INITIATE ENABLEINPUT

Definitions

O>NTROL

Initiate Statement --- Continued

·n1c INITIATE ENABLEINPUT constmd conditionally transfers control to the receivl! miucst appropriate
for the station (that is, the station referenced by the (byte l't1riablt') named STATION). The transfer of
control is conditional subject to the following: the station must be valid, ready, and enabled for input.
More specifically, STATIONCVALID), STATION(READY), AND STATION(ENABLED), must be TRUE:
otherwise, the instruction acts as a no-op.

The NOL programmer can initially enable a station for input by means of the (station enableinput
statement). Additionally, after DCP initialization, the station's MCS can enable or disable the station for
input by means of the TYPES 35 and 36 DCWRITEs. ·

(NULL) and ((delay time)) allow the programmer to. specify that an implicit (delay stateme'?t), for time
specified, be executed before the transfer of control. (delay time) has the syntactic form of time). For
example, the statement

INITIATE ENABLEINPUT (3 SEC).

is equivalent to:

IF STATION(VALID) THEN

IF STATION(READY) THEN

IF STATION(ENABLED) THEN

BEGIN
DELAY (3 SEC).
INmA TE ENABLEINPUT.
END.

The (NULL) option specifies zero delay.

INmATE BREAK

The INITIATE BREAK construct causes binary zeroes to be transmitted on the line, thus changing the
state of the line to a "spacing" condition. The line remains in the spacing condition until some subsequent
construct causes the adapter cluster to change the state of the line. Constructs that would change the
line's state are INITIATE TRANSMIT, INITIATE RECEIVE, FINISH TRANSMIT, BREAK, and IDLE.

5-27

Definitions

CONTROL

Pause Statement

PAUSE STATEMENT

Syntax

Semantics

The (pause statement) suspends a (contr~l definition) in a "sleep" state for a minimum period of time
(200 microseconds for the B 6358 Model II DCP, and 6 microseconds for the B 6350 Model I DCP) to allow
the DCP to service other lines. It is recommended that a (pause statement) be used in any kind of loop
that would tie up processor time and thereby prevent the servicing of other lines. The failure to do so
results in a high number of timeout faults.

Pragmatics

Instances may occur in which the DCP requires an even greater period of "sleep" to service other lines.
Repeated timeout faults, despite utilization of the (pause statement) , are indications of such conditions.
A greater period of "sleep" time can be effected by means of a (delay statement), with the (time) speci-
fied greater than "sleep" time effected by the (pause statement). . .

5-28

\._/ -··

.. v
~,

RECEIVE STATEMENT

Syntax

Examples

RECEIVE.

B<.T-------·-- --·-·-

l'llARACTER-·------

CRC~ j
TRAN--------~-

(•(ring)--'---------

RECEIVE CHARACTER.

Definitions

CONTROL

Receive Statement

---- -··~--------··
_il-__ l'_R_R_O_. R-•-l--'11-:,;,,,,111/wh·:~I~--. -•+_] ·

l..1.rn·11c/1 1111111/.,•r>-··-··------- -

Al>l>l'RR-----·--..-------.,......

BCCERR

BUFOVFL----i

~. ::::~:LE
CRCERR ----i

END----.i

FORMATERR

LOSSOFCARRIER

PARITY-----<~

$TOPBIT--­

TIMEOUT----i

TRANERR-·­

WRIJ -·-·- ·

:t(/11/11'/)

NULL

ABORT

RECEIVE (3 SEC) ADDRESS (RECEIVE) (0, ADDERR:lO].

RECEIVE (NULL) [

PARITY :999,
LOSS OF CARRIER~999,
END,
WRU:NULL
] .

RECEIVE CRC [ERROR [lf, CRCERR:lO].

5-29

Definitions

CONTROL

Receive Statement ·-··Continued

Semantics

The (receive statement) causes the adapter cluster to attempt to receive information from the apr;ropriate
logical line.

The following two syntax items define a maximum amount of time that the adapter cluster should wait for
receipt of the first character, and then each subsequent character, if applicable, before assuming that the
terminal has "timed out." If neither of these options is included; the (timeout time) defined (in the
(terminal timeout statement)) for the station's (terminal definition) is implicitly used as the (timeout
time) in this statement.

(NULL)

This option specifies that the adapter cluster should wait an infinite amount of time.

((timeout time))

The (timeout time) defines a (time) that the adapter cluster shouldwait for a character. If this (time) is
exceeded before receipt of a character, and the TIMEOUT syntax appears, then the action specified for
TIMEOUT is taken (refer to TIMEOUT). If the (timeout time) is exceeded and TIMEOUT syntax does not
appear, an implicit TERMINATE ERROR is executed.

. .
The following syntax options define the nature of the information to be received, the amount of informa-
tion to be received, and how the information is to be handled. If these options are omitted, it is semanti­
cally equivalent to specifying CHARACTER (i.e., "RECEIVE." is semantically equivalent to "RECEIVE
CHARACTER.")

ADDRESS

The proper number of address characters (as defined by the station's (terminal definition) in the (terminal
address size statement)) are received and checked for agreement against the actual address characters
defined in the (pation address statement). If the address characters do not correspond, an address error
condition results . If the ADDERR syntax appears then the specified action is taken; otherwise, an implicit
TERMINATE ERROR is executed.. (Refer to the ADDERR semantics.)

ADDRESS (RECEIVE)

This option is equivalent to ADDRESS, except that ADDRESS (RECEIVE) must be used wheil: an address
pair is defined in the (station address statement) and the programmer needs to check for the proper
receive address. · ·

ADDRESS (TRANSMIT)

This option is equivalent to ADDRESS, except that ADDRESS (TRANSMIT) must be used when an address
pair is defined in the (station address statement) and the programmer needs to check for the proper
transmit address.

BCC

One character is received and checked against the (byte variable) BCC. If the character received and BCC
are not equal, a Block Check Character error condition results .. If the BCCERR syntax appears, then speci-
fied action is taken; otherwise an implicit TERMINATE ERROR is executed.· ·

_..,··

Presumably, if the RECEIVE BCC instruction appears, the programmer has defined horizontal parity in the ~
(terminal parity statement), and the accumulated Block Check Character is contained in BCC. V

5-30
\

.\

···'1-J

Definitions

CONTROL

Receive Statement - Continued

CHARACTER

One character is received and stored in CHARACTER.

CRC

Two characters are received. The first character is checked against CRC(O], and the second compared
against CRC[1). If the characters received and CRC are not equal, a Cyclic J{edundancy Check error •
condition results. If the CRCERR syntax appears, then specified action is taken; otherwise art implicit
TERMINATE ERROR is executed. . . .

Presumably, if the RECEIVE CRC construct appears, the prograrrtmerhas defined horizontal parity · · .·
HORIZONTAL:CRC(16) in the (tenninalparity statement), and the Cyclic Redundancy Check is contained
in CRC[O] and CRC[1].

TRAN
The proper number of transmission number characters (as defined by the station's assoCiated (terminal
definition) in the (terminal transmission number length statement)) are received and checked for agree­
ment with the Receive Transmission Number maintained in the DCP Station Table. If the characters
received and the Receive Transmission Number are not equal, a transmission number error results. If the
TRANERR syntax option appears, then specified action is taken; otherwise, an implicit TERMINATE
ERROR is executed.

(string)

The number of characters as indicated by the length of the (string) arc received and checked against those
characters in the (string). If the (string) and the characters received are not equal, then a format error
condition results. If the FORMA TERR syntax option appears, then that action is taken; otherwise an im­
plicit TERMINATE ERROR is executed ..

The following syntax options specify actions to be taken upon either the receipt of defined characters or
occurrences of specific error conditions:

ERROR[(switch number)]

Associates a previously defined Error Switch with the (receive statement). This allows the programmer to
associate a set of previously defined error actions with the (receive statement), thus reducing the amount
of coding required for eac.h (receive statement). BREAK, BUFOVFL, LOSSOFCARRIER, PARITY. ·
STOPBIT, and TIMEOUT syntax options are not allowed if the ERJtOR[(switch number)] syntax appears · ·
in the (receive statement). Refer to the (e"or switch statement) for more information. . ·

(switch number)

Semantically equivalent to ERROR[(switch number)].

5-31

Definitions

CONTROL

Receive Statement - Continued

"ADDERR

The ADDERR option variations 1.:ausc the followinp. actions if m1 address error is detected when attempting
to recdw thl' addn·ss charade rs or a terminal:

ADDERR

ADDERR:NULL

ADDERR: (label)

ADOERR:ABORT

BCCERR

sets TRUE the ADDERR (bit variable) and branches control to the next
sequential statement.

· causes no action. Execution proceeds as· if the error condition did not
occur.

sets TRUE the ADDERR .(bit variable) and branches control to (label).

Not allowed.

The BCCERR option variations cause the following actions if the character received is not equal to the
data stored in BCC.

BCCERR

BCCERR:NULL

BCCERR: (label)

BCCERR:ABORT

BREAK

sets TRUE the (bit variable) BCCERR9 and branches control to the next
sequential statement.

causes no action. Execution proceeds as if the error condition did not
occur.

sets TRUE the (bit variable) BCCERR and branches control to Qabel).

Not allowed.

The BREAK option variations cause the following actions if a break, that is, at least two character-times
of a spacing line condition, is detected by the adapter cluster while receiving:

5-32

BREAK sets TRUE the (bit variable) BREAK[RECEIVEJ, and branches control

BREAK:NULL

BREAK: (label)

BREAK:ABORT

to the next sequential statement. ·

causes no action. Execution proceeds as if the break did not occur.

sets TRUE the (bit variable) BREAK [RECEIVE], and branches control
to (label). · .

sets TRUE the (bit variable) BREAK[RECEIVE] 1 and executes an
implicit TERMINATE ERROR.

v
.............

Definitions

CONTROL

Rcccjvc St11tcmcn, "· Contiri\ted

BUFOVFL

·n1e BUFOVf'Loption variations cau~c the following actions if the DCP is unable to service a Cluster
Attention Needed (CAN) interrupt before the adapter cluster receives another character (thus. destroy­
ing the previous character):

BUFOVFL

BUFOVFL:NULL .. · . ·

BUFOVFL: (label)

BUFOVFL:ABORT

CONTINUE

sets TRUE the (bit variable) BUFOVFt, and branches control .to the next
sequential statement.

'
causes no. action. Execution proceeds as if the error condition did not
occur.

. sets TRUE the (bit variable) BUFOVFL, and branch,es conJrol to
· ·· (label). . . , .. · .· · ·

sets TRUE the (hit variable) BUFOVFL, and executes an implicit
. TERMINATE ERROR. :

This option is allowed only in (receive statement)s of (control defllzition)s and (request deflnition)s
that are written to communicate· with full duplex terminal types. .CONTINUE syntax causes action as
described below if the .co-lil)e executes a (c&niinue statement)· before all information specified by the
(receive statement) is received. . · · · . ·. ·· . · . ·

CONTINUE

CONTINUE:NULL

CONTINUE: (label)

CONTINUE:ABORT

CONTROL

branches control to the next sequential statement.

causes no action. Execution proc~eds as if the (continue state",,.,ent) had .
not been executed;

branches control td;(label);.

Not allowed.

The CONTROL option variations cause the following acfons if the control character 6f the station (as
defined in· the .(station control character .vtateinent)> is·rcei_ved: · . . ·

CONTROL · sets TRUE the (bit variac fe) CONTROLFLAG, and branches control

CONTROL: NULL

CONTROL: (label)

CONTROL: ABORT

to the next sequential stat ~ment.

sets TRUE the (b.it varitibl,;. · CONTROlFLAG. and executiori continues
·as ifthechatacter was not t estation's control character.

~)

sets TRUE the (bit variable) CQNTROLFLAG; and branches control to
(label). . · · . : · · · ·

Not allowed.

• 5-33

~
' I

. i
J

..
...

. .l

. ~

Definitions

CONTROL

Receive Statement - Continued

CRCERR

TI1c following CRCERR option variations cause the following actions if the first character received docs
not equal CRCfOI, or the second character received docs not el1ual CRCI 11. (This item is.appropriate
only for the RECEIVE CRC fonn or the (rec(•ive slatemem); refer to the CR~ option.)

END

CRCERR sets TRUE the (bit variable) CRCERR, and branches conttol to the next
sequential statement.

CRCERR:NULL

CRCERR: (la he I)

CRCERR:ABORT

causes no action. Execution proceeds as if the error did not occur.

sets t~UJ~: !he (bit vaJ1able) _~RCERR, and branches control to (label).

Not allowed. ··

The END option variations cause the following actions if the "end" character of the station (as defined
by the (tenninal end character statement) in the (terminal definition) associated with the station)
is received: · · - - ·

END

END:NULL

END:(/abe/)

END: ABORT

·Ca\lSeS control to branch to the nextsequeiltial statement.

causes no action. E~ecution PrPCeeds as ifthe ch1u:actet was·n~t th~ .
.. end" character. · · ·

branches control to (label).

Not allowed.

FORMATERR
. . . .

The following variations of the FORMATERR option cause the following actions if the characters received
are not equal to those in the (string) (this item is apprO'priate only for the RECEIVE (string) construct of _
the (receive statement)>: ' . · _

FORMATERR

FORMATERR:NULL

. FORMATERR: (label)-·.·

FORMATERR:ABORT

5-34
.· ~·

.· \.

sets TRUE the (bit variable) FORMATERR, and
branches control to the next sequential statement.

causes no action. Execution proceeds as if the
error did not occur;

sets TRlm'the <bit variable) ·FoRMATERR, and
branches control to (label).

not allowed.

Definitions

CONTROL

Receive Statement -- Continued

LOSSOFCARRIER

The LOSSOFCARRIER option variations cause the following actions if a loss of carrier is detected while
receiving.

LOSSOFCARRIER

LOSSOFCARRIER:NULL

LOSSOFCARRIER: (lahel)

LOSSOFCARRIER:ABORT

sets TRUE the (bit variable) LOSSOFCARRIER, and branches
control to the next sequential statement.

causes no action. Execution proceeds as if the error did not
occur.

sets TRUE the (bit variable) LOSSOFCARRIER, and branches
control to (label). .

sets TRUE the (bit variable)LOSSOFCARRIER, and executes
an implicit TERMINATE ERROR.

There is one exception to the actions described above. If a loss of carrier is detected while receiving,
and if the terminal is modem-connect, and if the terminal's (Hation definition) references a (modem
definition) that contains the statement LOSSOFCARRIER=DISCONNECT, then an implicit dis­
connect is done, regardless of the action specified.

PARITY

The PARITY option variations cause the following actions if a parity bit error is detected by the adapter
cluster:

PARITY

PARITY:NULL

PARITY: (label).

PARITY:ABORT

STOPBIT

sets TRUE the (bit variable) PARITY, and branches control to the
next sequential statement. ·

causes no action. Execution proceeds as if the error did not occur.

sets TRUE the (bit variable) PARITY, and branches control to
~~o. . .

·.sets TRUE the (bit variable) PARITY, and executes a
TERMINATE ERROR.

The STOPBIT option variations cause the described actions if a stop bit error is detected by the adapter
cluster:

STOPBIT

STOPBIT:NULL

STOPBIT: (/ahel)

STOPBIT:ABORT

sets TRUE the (bit variable) , and branches control to the next
sequential statement;

causes no action. Execution proceeds as if the error did not occur.

sets TRUE the (bit variable) STOPBIT, and branches control to
(label) . .

sets TRUE the (bit variable) STOPBIT, and executes a
TERMINATE ERROR.

5-35

lkfinilions

CONTROL
Receive Statement - Continued

TIMEOUT'

The TIMEOUT option variations cause the actions described if the time required to receive a character
e~ceeds the (timeout time). The (timeout time) is defined in the (terminal tilneout statement), but
can be overridden by including the ((timeout time)) or (NULL) syntax options in the (receive
statemen9.

TIMEOUT

TIMEOUT:NULL

TIMEOUT: (labeO

TIMEOUT: ABORT

TRANERR

sets the (bit l'ariahle) TIMEOUT, and branches control to the
next sequentiaJ statement. ·

causes no action. Execution pr~cceds as if the error did not occur ..

sets TRUE the (bit variable) TIMEOUT, and branches control to
(label). .

sets TRUE the (bit variable) TIMEOUT, and executes a
TERMINATE ERROR. . ·

The TRANERR option variations cause the described actions if the characters received and the
Receive Transmission Number stored in the Station Table are not equal (this item is aJlowed only in
the RECEIVE TRAN construct of the (receive statement)):

TRANE RR

TRANERR:NULL

TRAN ERR: (label)

TRANERR:ABORT

WRU

sets TRUE the (bit variable) TRANERR, and branches control
to the next sequential statement.

causes no action. Execution proceeds as if the error did not occur.

sets TRUE the (bit variable) TRANERR, and branches control to
(label). .

not allowed.

The WRU option causes the following actions if the WRU character of the station is received (the
(i;tation WR U character statement) defines the WRU character):

WRU sets TRUE the WRU (bit variable), and branches control to the
next sequential statement.

WRU:NULL

WRU: (label)

WRU:ABORT

5-36

sets TRUE the WRU (bit 1>ariable), arid execution proceeds as if
the ~haracter received was not the WR U character.

sets TRUE the (bit variable) WRU, and branches control to ·
(label).. . · ·

not allowed.

-··

Definitions

CONTROL

Receive Statement -- Coniinued

(single clum11·11·1)

The (.'iingle cllaracte1) syntax causes the following actions ff a character received is equal t:.> the (single
character) : . · ·

(single character) branches control to the next sequential statement.

(single character) :NULL causes no action. Execution proceeds as if the character received
was not equal to the (single character).

(single characte1): (label) branches control to (lah<'f).

(single character) :ABORT not alJowed.

The allowable combinations of the (receive statement) syntax options are defined in table 5·2. The (NULL)
and ((timeout.time)) options are allowed in any form of the (receive statement). AIJowed combinations
of the other syntax options are denoted by a "X" in the appropriate columns and rows.

Supple~entary Examples

Statement

RECEIVE (3 SEC) [TIMEOUT: 10].

RECEIVE ADDRESS [ADDERR:99}.

RECEIVE CHARACTER [CONTINUE: 10,
CONTROL:20,
TIMEOUT:3.0,
"*":40].

Explanation

Causes the adapter cluster to attempt to receive a ·
character. If the character is not received within
3 seconds, the (bit variable) TIMEOUT is set
TRUE and control branches to 10.

If the character(s) received do not equal those
defined in the (~tatio11 address stat em en t). the
(hit l'ariablc? ADDERR is set TRUE, and control
branches to _99.

This statement would only be allowed in a
(control definition) or (request dc~finitlon) that is
written to communicate with full duplex terminal
types because it contains the CONTINUE option.

CONTINUE: 10 would cause a branch to l 0 if the
co-line (control definition) executes a (continue
statement) before a character is received. ·

CONTROL:20 would setCONTROLFLAG TRUE
and branch to 20 if the character received is the

· station's control character. ·

TIMEOUT:30 would set TIMEOUT TRUE and
branch to 30 if a character is not received within
the <timeout time) defined in the (terminal
timeout statement). .

"*":40 would cause a branch to 40 if the character
teceived·is the asterisk character.

5-37.

Definitions

CONTROL

Receive Statement - Continued

Statement

RECEIVE[ERROR[O]).

RECEIVE(OJ

Explanation

An attempt is made to receive one character and
store it iri CHARACTER. If any errors described
in the associated (error switch statement) occur
while receiving, then the action defined in that
(error switch statement) is taken.

Same as above.

Table 5--2. Allowable Combinations for (receive statement)

..

" r...J ~ -" "
Q.) = <:.,)

(.1J = < ~
..J 0 ..J ~ u E- " 1::1

" ~ 0 C(~ t: " ~·

= = ~ z Cl:: " "" >- 0 (.1J <:.,) = - ·~ 0 t: = @ ~ r...J L.Ll < 0 E- E- (.1J fl} c:i.. z
0 Q u (.1J

~ z z u Q fl} " ~ ~ < Cl:: s:::
Q u Cl:: 0 0 " ~ 0 9 < - Cl:: ·-< = = = u u u ~ c:i.. fl} E- E- ~ ~

ADDRESS x x x x x x x x
ADD RESS(RECEIVE) x x x x x x x x
ADDRESS(TRANSMIT) x x x x x x x x
BCC x x x x x x x x
CHARACTER x x x x x x x x x x x
CRC x x x x x x x x
(string) x x x x x x x x
TRAN x x x x x x x x

5-38

v
""-'''

·Definitions

CONTROL
Shift Statement

SHIFT STATEMENT

Syntax

SHIFT------.-----:UP J
'----~~---··· DOWN~~~~-~

Semantics

.. .

The (.<thift statement) is to be used in a (control definition) that communicates with stations using the
Bandot (5-hit) character code set. (The character code set is defined in the (terminal code statement) of
the associated (terminal definition)). ·

SHIFT UP indicates that received characters are to be translated to their respective uppercase graphics
(usually referred to as FIGS).

SHIFT DOWN indicates that receive characters arc to be translated to their respective lowercase graphics
(usually referred to as LTRS).

If the station does not use Baudot code, the (shift statement) aets as a no-op.

Pragmatics

In the Baudot character code set, most bit patterns have two graphic representations: one is referred to as
FIGS (the uppercase graphic), and the other as LTRS (the lowercase graphic).

When transmitting to a terminal that uses Baudot code, the terminal prints LTRS until it receives a specially
designated character indicating that it should shift to printing FIGS. The terminal continues printing the ·
FIGS until it receives a specially designated character indicating that it should resume printing the LTRS.

When the information is received from a terminal that uses. Baudot, the same conventions hold true; that is,
the terminal communicates whether FIGS or LTRS follow by the transmission of a designated character.
The terminal initially transmits L TRS.

5-39

Definitions

CONTROL

Sum Statement

SUM STATEMENT

Syntax

SUM

Examples

SUM AI.

-=- Al

- BCC

~ CHARACTER

~ RETRY

-=- TALLY

-- sin le character < g)

SUM CHARACTER.
SUM "A".
St.JM TALLY [1] .

...
j

~

-
-

~ [•(tally number) .. J -
--

Semantics \.,,_)

The purpose of the (sum statement) is to affect the calculation of the horizontal parity check (whether. that_.
hl~ a Block Check Character or a Cyclic Redundancy Check). The specific effect cf the (sum statement) is .
dependent upon two factors: the SUMmcd item, and whether the station's (terminal definition) for which
f(ontrol definition) is running, defines horizontal parity as CRC(16).

Following is a description of the effect that each form .of the <sum statement) has on the calcuJation of the
horizontal parity check. Any reference to CRC means CRC[O] and CRC[l] collectively.

SUM

Semantically equivalent to SUM CHARACTER.

SUM Al

If the horizontal parity check is a BJock Check Character or is undefined, the contents of AI are exclusively
OR-ed with the contents of BCC, and the. result is stored in DCC.

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
computed with the contents of Al and CRC, and the resu]t is stored in CRC.

SUM DCC

If the horizontal parity check is a Block Check Character or is undefined, then the contents of DCC are
exclusively OR-cd with itself, and the result is stored in DCC. (The resuJt in BCC would be zero in this
case.)

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
computed with the contents of CRCI 0 I and CRC, and the result is stored in CRC. . "-1

5-40

. v_.

SUM CHARACTER

Definitions .

CONTROL

Sum Statement - Continued

If the horizontal parity check is a Block Check Character or is undefined, the contents of CHARACTER are
exclusively OR-ed with the contents of BCC, and the result is stored in BCC.

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
computed with the contents of CHARACTER and CRC, and the result is stored in CRC.

SUM RETRY

If the horizontal parity check is a Block Check Character or is undefined, the contents of RETRY are exclu­
sively OR-ed with the contents of BCC, and the result stored in BCC.

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Reduhdan~y Check algorithm is
computed with the contents of RETRY and CRC, and the result is stored in CRC.

SUM TALLY [(tally number)]

If the horizontal parity check is a Block Check Character or is undefined, the contents of TALLY ((tally
number)] are exclusively 0 R-ed with the contents of BCC, and the result is stored in BCC.

lf the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
computed with the contents of TALLY I (tally number) I and the result is storedin CRC.

SUM (single character)

If the horizontal parity check is a Block Check Characte.r or is undefined, the (single character) is exclu­
sively OR-cd with the contents of BCC, and the result is stored in BCC. ·

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check, the Cyclic
Redundancy Check algorithm is computed with the (single character) and C:RC, and the.result is. stored in
CRC. .

5-41

Definitions

CONTROL

Transmit Statement

TRANSMIT STATEMENT

Syntax

<[RECEIVE...,.->

. TRANSMIT J ..

BCC --------------...i
CHARACTER~~~_,_........__,__,_---

CRC---------------..,..

SEQUENCE_,__,__,__,__,__,__,__,___.~

TRAN_,__,_,._.._,_,._.._,__,_,._..~~--11~

Examples

TRANSMIT.
TRANSMIT CHARACTER IBREAK:NULLI.
TRANSMIT SOH STX 4 .. 00"IBREAK:IO];
TRANSMIT TRAN.
TRANSMIT ADDRESS (TRANSMIT) I BREAK I ~

Semantics

=t<1abe1>.
· NULL

The (transmit statement) causes the adapter cluster to transmit information to a terminal. The following
group of syntax options specifies the information to be transmitted. All options except CHARACTER
use the (byte variable) CHARACTER as a temporary -storage area; thus, any information contained in . ·.
CHARACTER before execution of the (transmit statement) shall be destroyed by the (transmit statement)·.
If none of the first group of options is chosen, itis semantically equivalent to specifying CHARACTER
(i.e., "TRANSMIT." is equivalent to ''TRANSMIT CHARACTER/'). .

ADDRESS

The proper number of characters (as ~pecified by the station's associated (terminal definition) in the
(terminal address size statement)) are taken from the address field in the Station Table and transmitted.

ADDRESS (RECEIVE)

This option is equivalent to ADDRESS, except that ADDRESS (RECEIVE) must be· used when an
address pair is defined in the (station address statement) and the programmer wants to transmit the
receive address. ·

5-42

v

'Definitions

CONTROL

Transmit Statement - Continued .

ADDRESS (TRANSMIT)

This option is equivalent to ADDRESS, except that ADDRESS (TRANSMIT) must be used when an
address pair is defined in the (station address statement) and the programmer wants the transmit address
transmitted. '

BCC

Thl' BCC option causes the contents of the (byte variable) BCC to be transmitted.

CHARACTER

The CHARACTER causes the contents of the (byte variable) CHARACTER to be translllittcd.

CRC

This option causes two bytes to be transmitted; the contents of CRC [OJ are transmitted first, followed
by CRC [1]. If the station's associated (terminal definition) does not define horizontal parity as
CRC ([16)), the use of this (option) causes a syntax error to be generated at compile time.

SEQUENCE

The SEQUENCE option causes the character representation of the value stored in .the Sequence field
of the Station Table to be transmitted if the station is in sequence mode (i.e., this (bit vanable) SEQUENCE
is TRUE); otherwise, the (transmit statement) is a no-op. · · · . ·

TRAN

The proper number of transmission number characters (as defined by th.e station ~s associated (terminal
clefi11itio11) in till' (terminal transmission numba length statement)) ure extrackd from tlw Transmit
Transmission Number field iii tlw·Station Table and then transmitted.

(<;1 rill'~)

Each churacler of the (~·tring) is transmitted.

The BREAK syntux allows the programmer to specify action if a "break" is received from the terminal
while the adapter duster is still transmitting. lfthis option is omiftedand a break occurs, an implicit
TERMINATE ERROR is executed. The following describes the actions of the three syntactical forms: . .

BREAK sets TRUE the (bit variable) BREAK [TRANSMIT] , and causes
a branch of control to the next statement.

BREAK: (/abel) sets TRUE the (bit variable) BREAK (TRANSMIT), and causes
a branch of control to (label). .

BREAK:NULL causes no action. Execution proceeds as if the break did not occur.

5-43

Definitions

CONTROL
Wait Statement

WAIT STATEMENT

Syntax

WAIT~--~---,---,~---,___,~___,~___,___,~~~~~~~~~___,-.;..___,....,_~~--.r--___,___,

.,. (-__..,.. ... (wail time)--...---------------4,._--1..,. ...)_J
...._ __,.. ... :--... .,...,... (label)----J

Examples

WAIT.
WAIT (3 SEC).
WAIT (5 MILLl:6).

Semantics

The (wait statement) is only alJowed in (control definition)s that are written to communicate with
full duplex terminal types. Execution of this st~t~ment causes the (control definition) to be suspended
until the co-line executes a (continue statement). The optional syntax effects the statement as described
below: . · ·

(wait time)

(wait time): (la/id)

Pragmatics

defines the maximum amount of (time) that the (control
definition) should be suspending waiting for the (continue ·
statement). If (wait time) is exceeded and the co-line has ·.
not executed a (continue statement). execution resumes at
the next sequential statement.

smnc as ahovl' l;xccpt l~x1.~n1tio11 resllllll~s at (label) if a ·
(mnti11ue statement) is not executed within (wail time).

Refer to the (fork statement) pragmatics.

. 5-44

\._} --

._ .. -

.V -- DCP DEFINITION

Syntax

DCP-----(DCP number)--.........

Example

DCP J:
MEMORY = 8196.
EXCHANGE = 2.

Definitions ·

DCP

----""~--t,.. (DCP exchange statement)----.-.

(DCP memory size. statement)

(DCP terminal statement)----1~

TERMINAL = SOMETERMINALNAME.

Semantics

The (DCP definition) is the means by which the programmer defines attributes of each Data Communi­
cations Processor (DCP) in the Data Communications System.

The (DCP number) identifies the DCP and must correspond to an address (ranging from 0 through 7) .
wired into each DCP by the· field engineer. The attributes of the DCP are defined subsequently l>y means ·
of (DCP statement)s. A maximum of eight DCP definitions may appear in the NOL source program.

Each (DCP statement) is described subsequently.

5-45

Definitions

DCP
DCP Exchange Statement

OCPEXCHANGESTATEMENT

Syntax

EX Cit ANGE • = -------1 ... (DCPnumber).;...· --,--------------.._..

Example

EXCHANGE = 4.

Semantics

The (DCP exchange statement) specifies that the DCP shares hardware-exchanged adapter clusters with
another DCP. (DCP number) defines the other DCP. . · . ·

This statement is required in any (DCP definition) referenced· by a (DCP exchange statement) in another
(DCP definition), or i.n any (DCP definition) that does not have lines defined for it in the (line definition)
section of the source program.. · · . . . ·. ·

Pragmatics

The maximum number of DCPs that can share a set ofadaptei' clusters is 2. The definitions of bothDCPs
that share adapter clusters must contain a (DCP excha_nge statement) naming the (DCP number) of the
OCP with Which it shares the adapter clusters; For example, if DCP I and DCP 2 share adapter clusters,
the1t tbe definition of DCP l must contain the statement ·

EXCHANGE = 2.

and the definition of DCP 2 must contain the statem~nt

EXCHANGE = I.
If a DC:P shares adapter clusters w.ith another DCP, then any adapter cluster connect~d to. either of the

· DC'Ps must be shared by both. ·A UCP is not allowed to share only a portion of its adapter clusters ..

LINE SECTION REQUIREMENTS

If two DCPs share adapter clusters, itisrequired.that the {line deftnition)s for each DCP be given addresses
(by means of a (line address statement)) such that both DCPs do not have lines defined on the same .
cluster. · ··

The following program segment would cause the compiler to generate a syntax error because both DCPs
have lines defined on adapter cluster o~ .

5-46

. ____,.·

,i• ., .. ·~. ''
.. ·.··, ··· _ .. ·

l>etmilioltS > · ·
. DCP:.

• DCP Exchange Statement - Continued

LINE.L100:

ADDRESS= 1:0:~. %ADDRESS·= (DCP):(Al>APTERCLUsTER):(UNE)~·
·,

LINE L20l:

· ADDRESS =i . 2:0: 1 •. _

' . ,... . .~:

OCP 1:

MEMORY = 8192 ..
EXCHANGE = 2.. .

DCP2:.

MEMORY = 8192. ·.
EXCHANGE = I. .

MCS RECONFIGURATION

The EXCHANGE CLUSTERS (TYPE::;:.,l29) DCWRITE f~nction allows a Me8Sage Control System to.
transfer control of any or all adapter clusters, that are exchanged by two DCPs, from the DCP that cur- .
rently controls. the. d.~signat.ed adapter clusters to· the DCP with which it is exchanged~ This aspect of the
reconfiguration feature m11y be invoked. in c:>rder: ~o prov.ide ariiilst~llation with the abiiity to effect ·

. ..load-leveling" between two DCPs that share hardware-exchanged adapter cluster$ or to· transfer all of
the work load of a DCP:to its partner if the DCP malfunctions. For more information regarding recon-
figuration, refer to the ·o 6.700/B 7700 DCALGOL Reference Manual, form no. 5000052. ·:.. · .

Supplementary Example .. · '··

The following is a program segment describing the data communications system illustrat~d in· figure 5~ l .
This example iJJustr.ttcs how the :(line definition) and (DCP definition) sections can be wr-itt~n to .
describe a data communicutions system in which two OCPs share hardware-exchanged adapter clusters. ·

.. · .,
....

·. ·,
', .. , ' ··.:·::· ;

. _,.

. ·"

... ...
~ .. ~· ·. . ', .

. . '

'!:. ·•

. ·:·

: '-: ~ .

., . : ." .. ';

5-47

.<('
'•, ,_'

Definitions

DCP

DCP Exchange Statement - Continued

%
?:STATION DEFIN ITJON SECTION. -
%

%

STATION DEFAULT ALLSTATIONS: ·

STATION STAI:

DEFAULT = ALLSTATIONS.
TERMINAL= rrY:

STATION STA2:

DEFAULT·= ALLSTATIONS ..
TERMINAL= TTY.

STATION STA3:

DEFAULT = ALLSTATIONS.
TERMINAL= TTY;

STATION STA4:

DEFAULT = ALLSTATIONS. ·
TERMINAL= TTY.

STATION STAS: .

·DEFAULT = ALLSTATIONS.
TERMINAL= TfY. '

. .

STATION STA6:

DEFAULT = ALLSTATIONS.
TERMINAL= TTY.

%LINE DEFINITION SECTION. ·
%
7t!'lo%%%%%%%%%%%% LINES FOR OCP 0 . %%%%%%%%%%%%%%%%%%%%%%% .

5-48

LINELOOO: .

ADDRESS = 0:0:0. .
ADAPTER = l(DIRECT).
STATION. = STAI. .

·'LINE LOOI:

ADDRESS = 0:0: I.
ADAPTER = l(DIRECT).
STATION = STA2. .

%%%%%%%%%%%%%%%%

%
%DCP DEFINITION SECTION:
%

. Deflilitions

DCP

· DCP Exchange Statement - Continued

LINE L020:

ADDRESS . = 0:2:0.
ADAPrER = l(DIRECT).
STATION =STAS.

LINE L02t:

ADDRESS.= 0:2:1.
ADAPTER = l(DIRECT).
STATION = STA6 .

. LINES FOR DCI> I %%%%%%fl!o%%%%%"1rl'/0%%%"/o"/il!o

LINE LI 10:

ADDRESS = 1:1:0~
ADAPTER = l(DIRECT).
STATION = STA3. .

LINE Lltt:

ADDRESS = l:l:l. .
ADAPl'ER = l(DlRECT).
STATION = ST~4.

· DCPO: ·

MEMORY , .. · = 8192 •.
. EXCHANGE = 1. .

DCP 1:

MEMORY =':8i92. :
EXCHANGE. = .0 •.

;·· .. 5-49

Definitions

DCP
OCP Exchange Statement - Continued

DCPs

DCP 0

DCP 1

5-50

ADAPTER
CLUSTERS

. CLUSTER

0

CLUSTER

l

CLUSTER

2

LiNES

. Figure 5-1. Adapter Clusters Exchange

TELETYPE
TERMINAL STATIONs

"STAI"

"STA2"

"STA3"

"STA4"

"STAS"

"STA6"

DCP MEMORY SIZE STATEMENT

Syntax

Definitions

DCP

DCP Memory Size Statement

MEMORY .. =------...,.(integer)-----------------.-.

Examples

MEMORY = 4096.
MEMORY= 0.

Semantic.~

The (DCP memory size statement)· defines the number of words of local memory in the DCP being
defined. · ·

A zero value for (integer) indicates that the DCP has no local memory and that all code generated for
the DCP shall reside in main system memory. A nori-zero value for (integer) that is less than the at'noimt
of local memory required, as de.termined by the compiler, results in a compile-time error.

5-51

Definitions

DCP

DCP Terminal Statement

DCP TERMINAL STATEMENT

Syntax

TERMl'NAL ____..=
i . : · l

• (terminal identifier) [- -

. . (_... MSGSPACE _.. =,(integer)__....)j

Examples

TERMINAL = TELETYPE. .
TERMINAL = M33, TD800 (MSGSPACE = S), TELETYPE (MSGSPACE:;:: 2).

Semantics

The purpose of the (DCP terminal statement) is twofold. Each· aspect of this statement is discussed in
the subsequent two paragraphs.

The primary purpose of the (DCP terminal statement) is to provide the· means of specifying which
terminal types in the data communications network that the DCP must be able to control. Only those
terminal types specified in this statement will have the object code required to control them included
in the object code generated for the DCP. If this statement is omitted from a DCP definition, the com­
piler includes the object code required to control all terminal types in the data communications network.

The second purpose of the (DCP terminal statement) is to provide a means of specifying the initial
number of message spaces allotted for each terminal type controlled by theDCP.

The (terminal identifier) must name a terminal type defined by a (terminal definition), and specifies
a terminal type for wl11ch the DCP must have access to the controlling code.

The (MSGSPACE = (integer) l option specifies the number of message spaces initially allotted for the
terminal type. If this option is omitted, two message spaces are allotted by default.

Pra3matics

....

Note that if any terminal type is not named in the (DCP terminal statement), the data communications
network may not be reconfigured (by means of a reconfiguration.DCWRITE in an MCS) such that it adds
that terminal type to those terminal types controlled bi the DCP. Refer to the supplementary example
that follows.

Supplementary Example

The program segment below illustrates the pragmatics. A station whose terminal type is SCREEN DEVICE
cannot be added on the spare line L003 of DCP l, because DCP l does not have the code available to
control SCREENDEVICE.

5-52

%
o/£0NTROL & REQUEST DEFINITION SECTION.
% '

REQUEST READTTY: ·

REQUEST WRlTETTY:

REQUEST READSCREENDEVICE: .

REQUEST WRITESCREENDEVICE:

~

%
%TERMINAL DEFINITION SECTION.
%

TERMINAL DEFAULT DEFAULTLIST:

BLOCK = FALSE.
SCREEN = FALSE.
TURNAROUND = 0.
ICTDELAY = 0.
TRANSMISSION = 0.
DUPLEX = FALSE.·
TIMEOUT = 3SEC.
ADDRESS = 0.
PAGE = 0.
CODE = ASC67.
INHIBITSYNC = FALSE.'.
BUFFER = NULL.·
MAXINPUT = 80.
WIDTH = 72.
PARITY = NULL.
ADAPTER = 4.

v WRU = ENQ.
.._ END = ETX(DYNAMIC)~

BACKSPACE = BS(DYNAMIC).
CONTROL = CONTENTION.

.. . .

'

Definitions

DCP

DCP Terntinal Statement ·- Contiltued

{
The o. bject code generated from these state- l
merits is required to control T'IY tenninal ~
types. '. . J

{
The object code generated from th. ese.state- }
ments is required to control SCREENDEVICE
tenninal types. ·. ·

5-53

Definitions

DCP

OCP Terminal Statement - Continued

%

TERMINAL TTY:

DEFAULT
REQUEST

= DEFAULTLIST.
= WRITETIY:TRANSMIT,READTTY:RECEIVE.--------

TERMINAL SCREENDEVICE:

DEFAULT
SCREEN
REQUEST

= DEFAULTLIST.
= TRUE.
= WRITESCREENDEVICE:TRANSMIT,READSCREENDEVICE: +---1

RECEIVE.

These statements specify the (request
definitions) required to control the.
defined tenninal type. The object code
generated by the procedures named here
must be accessible by a DCP that has the
terminal type attached to any of its lines.

o/oSTATION DEFINITION SECTION.
%

STATION DEFAULT ALLSTATIONS:

EN AB LEIN PUT = TRUE.
WGICALACK = FALSE.
MCS = SYSTEM/CANOE.
CONTROL = QM.
RETRY = IS.
MYUSE = OUTPUT,INPUT.

STATION STAI:

DEFAULT = ALLSTATIONS.
TERMINAL = TIY.

STATION STA2: l A (line definition) naming any of these l
stations must be a (line definition) for · .

DEFAULT = ALLST ATIONS. DCP 0. DCP 1 does not have access to
TERMINAL TIY. code required to control terminals

STATION STA3: associated with these stations. ·

DEFAULT = ALLSTATIONS.
TERMINAL = TIY.

STATION STA4:

DEFAULT ALLSTATIONS.
TERMINAL = SCREEN DEVICE. l A (line definition) naming any of these l STATION STAS: stations must be a (line definition) for
DEFAULT = ALLSTATIONS. . DCP 1. DCP 0 does not have access to
TERMINAL = SCREENDEVICE. code required to control tenninals

STATION STA6: associated with these stations. ·.

DEFAULT = ALLSTATIONS.
TERMINAL = SCREENDEVICE.

5-54

Definitions

DCP

DCP Terminal Statement -- Continued

%
%LINE DEFINITION SECTION.
%%%%%'Yr/Y,/Y,/'/t·%%%%% LINES FOR DCP 0 %%%'70%%%%%%%%%%%%%%%%%%%

LINE LOOO:

ADDRESS
ADAPTER
STATION

LINE LOOl:

ADDRESS
ADAPTER
STATION

LINE L002:

ADDRESS
ADAPTER
STATION

= 0:0:0.
= l(DIRECT).
= STAL

= 0:0:1.
= 1 (DIRECT).
= STA2.

= 0:0:2.
= l(DIRECT).
= STA3.

LINE L003: % THIS IS A SPARE LINE

ADDRESS =
MAXSTATIONS =

0:0:3.
1.

The (line station statement) of any (line
definition) for DCP 0 must name a station
that has a TIY terminal type associated with
it. DCP 0 <locs not have access to code
required to control SCREENDEVICE ter­
minal types.

V %%%%%%%'Yo%%%%%%%% LINES FOR DCP 1 %%%%%%%%%%%%%%%%%%%%%

%

LINE L100:

ADDRESS
ADAPTER
STATION

LINE LIOt:

ADDRESS_
ADAPTER
STATION

LINE L102:

ADDRESS
ADAPTER
STATION

=
=
=

=
=
=

=
=
=

%DCP DEFINITION SECTION.
%

DCPO:

MEMORY
TERMINAL

DCP 1:

MEMORY
TERMINAL

=
=

=

1 :0:0.
l(DIRECT).
STA4.

1:0:1.
l(DIRECT).
STAS.

1:0:2.
l(DIRECT).
STA6.

8192.
TTY.

8192.
SCREENDEVICE.

The (line station statement) of any \line
definition) for DCP 1 must name a station
that has a SCREENDEVICE terminal type
associated with it. DCP I does not have
access to code required to control TTY
terminal types.

{
The effect of this statement is that this DCP }
has access to control code for TTY terminal
types only.

{
The effect of this statement_ is that this DCP }
has access to control code for SCREEN­
DEVICE terminal types only.

5-55

Dl'l.initions

FILE

FILE DEFINITION

Syntax

fl LE --------~(.file idc11 I ificr)----11•is- : ------- (file family statement) .,..----11•""11

Example

FILE NETWORK: FAMILY = STATIONIDl, STATION 102, FILEIDl.

Semantics

The (file definition) provides the means to define a data communications file and specify the stations
associated with that file. The (Jlle identifie1) is the external name (TITLE) of the file, and has the syntacti-
cal form of a (system identifier). .

A single-station file is a file that has one station associated with it. A single-station rile can; but need not.
be formally defined in a (file definition). The reason that a single-station file docs not need to be defined
is that each station is itself a fik. Tl1e external name (TITLE) of such a file wirnld be the (station identi­
fie1) of the station.

A multi-station file is, as the name implies, a file that has more than one station associated with it. Multi­
station files must be defined in (.file defl11itio11)s.

Pragmatics

A general discussion of data communication files and their peculiarities can be found in chapter 2 of the
!U_J]_Q9 Input/Ou.1Q!_tt Subsystem Information Manual. form no.5000185, under the heading "DATA
COMM FILES." The informati:Jn contained in that discussion is a prerequisite to understanding the
significance of (tile dej/J1itio11) s. Chapter 3 of the same manual contains a table that lists all file attributes
and provides an explanation of each attribute. Attributes relative to data commumcation files are found
by examining the "KIND" column of the table for the key word "Datacom." The information found
in the explanation of each data communications-relative attribute is also a prerequisite.

A detailed discussion of data communications object job 1/0 can be found in appendix B of the B 6700/
B 7700 DCAL.~OL Reference Manual, form no. 5000052, under the semantics of STATION ASSIGNMENT
TO FILE (TYPE= 64). The information found there is not considered a prerequisite; however, it does
contribute toward a deeper understanding of data communications files and data communications object
job 1/0.

5--56

·-·

Definitions

FILE

File Family Statement

FILE FAMILY STATEMENT

Syntax

FAMILY .,.. = -~-.... +-.....---:P.(/i,le identifiei') =:J
,____--t1 ... (station identifier) __.. __ J_, .

••

Example

FAMILY = STATIONIDl, STATIONID2, FILEIDt.

Semantics

The (flle family statement) defines the stations associated with a data communications file .. Jf a (file
identifier) is nanied, all of the stations associated with the file named will also be associated with the ,
file being defined. Any duplication of an (iden(f(ier) in a (file family statement) is ignored.

Supplementary Example

The following example is the(fl/e definition) section of a hypothetical NDL program. Assume that thl'
stations STATION I, STATION2, STATION3, STATION4, STATIONS, STATION6, STATION7, and
STA TION8 have been defined in the (station definition) section.

FILE TTYS:
FAMILY = STATIONl, STATION2, STATION3.

FILE CRTS:
FAMILY = STATION4, STATIONS, STATION6.

FILE EXECUTIVES:
FAMILY= STATIONl, CRTS, STATION6, STATION 7.

1 ' '
FILE THE/ENTIRE/NETW~jRK:

FAMILY = ST ATIONj, STATIONS, TTYS, CRTS.

j

(

\

I TT.. · YS is the (ident. if1er) of this}
file. The F AMIL YSIZE is 3.

· STATION 1, ST ATION2, and
STA TIONJ are the stations
associated with this file.

I CRTS also has a F AMIL YSIZE }
of 3. . The stations associated
with the file are STATION4,
STATIONS, and STATION6.

EXECUTIVES has a FAMILY-
SIZE of 5. The stations
associated with the file are
STATIONl, STATION4,
STATIONS, STATION6, and
STATION7.

THE/ENTIRE/NETWORK has
a F AMIL YSIZE of 8. The
stations associated with THE/
ENTIRE/NETWORK are
STATION1,STATION2,
STATION3, STATION4,
STATIONS, STATION6,
STATION7, and STATIONS.

5-57

Definitions

LINE

LINE DEFINITION

Syntax

LINE ..- (tin<' id<'t1tifkr)1111>:

L DEFAULT.....,. (<l<'fuult lint' identifier)J

Examples

LINE 1TYDIALIN:
TYPE
ADAPTER
MODEM
ANSWER
PHONE
ADDRESS
STATION
MAXSTATIONS

= DIALIN.
= 1 (MODEM).
= TTYMODEM.
=TRUE.
= 2139686521.
= 0:0:0.
= TTYSTATION.
= 1.

LINE DEFAULT LINEDEFAULTLISTI:
ADAPTER = 1 (MODEM).
ANSWER = TRUE.
ENDOFNUMBER = FALSE.
MAXSTATIONS = 1.
TYPE = DIALIN.
MODEM = TIYMODEM.

Semantics

~ (lim' adufller dass statnnent)

~ (li11e addr£'ss statement)

- (line answer statement)

... (line default statement) . ~

-Ao. (line endofnumber statement)

(line maxstations statement)

"'." (line modem statement)

~ (line phone statement)

(line station statement)

..;: (line tv e statement .P)

(line identifier) and (default line identifier) both have the same syntactical form as (identifier).

Each form of the (line definition) syntax is described subsequently.

5-58

'._I _,

l _I

• I

--
--
-
~ --
........

--
~
~

--
a

v ·--·

Definitions

LINE

Continued

LINE (line idrnlificr) : ...

TI1is form of the (line definition) defines the attributes of a logical line in the data communications
network. Linc at tributes arc defined in one of the following ways:

a. Each attribute is defined explicitly by means of a (line statement) in the (line definition).
b. Each attribute is defined implicitly by an explicit reference to a set of default attribute values.
c. Some of the line attributes are defined implicitly as in b, and the remainder are defined

explictly as in a.

Some (line statement)s must be defined for each (line definition); others do not. Some of the statements
may or may not require definition, depending upon the appearance of other statements. The semantics
portion of each (line statement) states, among other things, whether the attribute must be defined and
its effect upon the requirements of other attribute definitions. ·

To define the attributes of a line as described in item a above, this syntax form must be used.

To define the attributes of a line as described in items b and c above, this syntax form, the following
syntax form, and the (line default statement) must be used in conjunction (this is described under.the
following syntax form).

LINE DEFAULT (default line identifier) : . . .

This syntax form is referred to as a Default (line definition). Its purpose is to decrease the number of
source statements required to define all of the logical lines in the data communications system. This is
accomplished in the following manner. Attributes common to several logical lines are defined by means
of a Default (line definition). Associated with each Default (lined. efinition) is a. (default lin.e identifie1).
Subsequent to the Default (line definition), any (line definition) that has those attributes in common c..:an
reference the (default line identifier), instead of repeating the list. (A (default line identifier) is .
referenced by means of a (line default statement).) The NOL compiler uses the last definition of a line
attribute. and therefore the programmer can reference a Default (line definition) and change any
attributes by redefining them in the (line definition). . · . ·

In appearance, the Default (line definition) is similiar fo the (liiie definition). The differences are that
the reserved word DEFAULT follows the reserved word LINE, and that there are no statements that are
required to be defined in a Default (line definition). ·

. 5-59

Definitions

LINE

Line Adapter Class Statement

LINE ADAPTER CLASS STATEMENT

Syntax

ADAPTER--t .. ~= __,...{(integer) value of 1thru8}----. -r-'1 ~-=-(-M_O..._D_E_M_)~~-------.... -:=t--. ·
...__ --4:.,.(DIRECT)-----~

Examples

ADAPTER = 5.

ADAPTER = 4 (MODEM).

Semantics

The <tine adapter class statement) identifies the Adapter Class of the line adapter for the logical line and,
optionally, names the connection type (i.e:, modem connect or direct connect).

The Adapter Class must be compatible with the (co1111111i11ication type n111nbe1) specified in the (\'fation
adapter statement) of any station assigned to the line. (Note that all stations assigned to a line must
have the same (<·0111111w1icatio11type1111111/Jer) defined.) Table 5-3 lists the compatible Adapter Classes
for each (commu11icatio11 type m1111ba). F<.:ir example, a line having stations assigned to it that define
a (co1111111111icatio11 t,1pe numh<'r) of 4 can name as an Adapter Class either 1, 2, 3, 4, or 5 (refer to
table 5-3). On the other hand, a line having stations assigned to it that defines 15 as the (communication
type number) can name only 5 as an Adapter Class. ·

If the connection type is named in the statement, it is considered by the compiler as documentation
only. The compiler determines whether the line ad;1pter or a modem-connect line adapter, by the presence
or abseHcc or a (line 111ode111 statement) for the (line defl11ition). A syntax error is generated, however,
if DIRECT is 11a1m'd an<l a (!in<' inodc111 statc11u•111) is present.

Pragmatics

LINE ADAPTERS AND ADAPTER CLASSES

There are 13 available line adapters. Three of the t 3 are special-purpose line adapters; they are used
for Touch-Tone® telephone input, Audio-Response lines, and Automatic Callihg Units (ACU). The
remaining l 0 arc general-purpose line adapters.

The 13 available line adapters are divided into eight "Adapter Classes.'' The Touch-Tone® , Audio­
Rcsponsc, and ACU line adapters comprise Adapter Classes 6, 7, and 8, respectively. The lO general- ·
purpose line adapters comprise Adapter Classes l through 5. Adapter Classes l through 5 differ primarily
in the maximum transmission speed at which the line adapters may be operated. Adapter Classes l
through 5 each consist of two line adapters, one being a "direct connect," and the other bei1i.g a "modem
connect.'' The direct connect has a terminal attached to it by means of a two-wire or four-wire direct
wnncction. The modem connect has a terminal attached to it through modems using an RS232t
defined interface. Refer to table 5-3 for the Adapter Class and the use of each line adapter.

t A technical specification published by the Electronic Industries Association establishing the interface
requirements between modems and terminals or computers.

5-60

-·

Definitions

LINE

Line Adapter Class Statemert - Continued

Table 5-3. Availabk Linc Adapters

MARKETING
NUMBER* CONNECTION USE CLASS

B 6650-1 Direct Two-wire direct connect, asynchronous 1
I bit-serial transmission up to a maxi-

mum line speed of 600 BPS, simplex or
half-duplex.

B 6650-1 Modem Modem-connected with 100-Series type 1
modem using RS232-defined interface,
asynchronous bit-serial transmission

I

up to a maximum line speed of 600
BPS, simplex or half-duplex. (Two
required for full duplex.)

B 6650-2 Direct Same as B 6650-ID, except maximum
,..,
t.

line speed is 1800 BPS.

B 6650-2 Modem Same as B 6650-1 M, except with 202- 2
Series type modem and up to a maxi-
mum line speed of 1800 BPS.

B 6650-3 Direct Same as B 6650-1 D, except maximum 3
line speed is 2400 BPS.

B 6650-3 Modem Modem-connected with 202-Series (asyn- 3
chronous) or 20 I-Series (synchronous)
modem using RS232-dcfined interface,
bit-serial transmission up to a maxi-
mum line speed of 2400 BPS, simplex
or half-duplex. (Two required for
full duplex.)

B 6650-4 Direct Same as B 6650-1 D, except maximum 4
line speed is 4800 BPS.

B 6650-4 Modem Same as B 6650-3M, except maximum 4
line speed is 4800 BPS.

B 6650-5 Direct Same as B 6650-1 D, except maximum 5
line speed is 9600 BPS.

B 6650-5 Modem Same as B 6650-3M, except maximum 5
line speed is 9600 BPS.

B 6650-6 For Touch-Tone® t~lephone input. 6

B 6650-7 For Audio-Response line. 7

B 6650-8 For Automatic Calling Unit (ACU). 8

*The above marketing numbers refer to B 6700 line adapters. B 7700 line adapters have similar
numbers, the difference being a leading 7 instead of a 6; e.g., B 6650-1 for B 6700, and B 7650-1 for
B 7700. In this table only, a distinction is made between modem-connected line adapters and direct-
connected line adapters by affixing either a D (for direct-connected) or an M (for modem-connected)
to the field marketing numbers (under the "Use" column) which require that distinction.

5-61

Definitions

LINE

line Address Statement

LINE ADDRESS STATEMENT

Syntax

ADDRESS....P.=.,..(DCPnumbe,,....: _,,,..(adapter cluster number)_..: _.<line adapter number)

Example

AO DRESS= 2:0: 15.

The above example would appear in the (line· d<'finition) of the line at the 15th line adapter position in
adapter cluster number 0 of DCP number 2.

Semantics

The (line address statement) identifies the DCP number, the adapter cluster number, and the line
adapter number of the defined logical line. If two DCPs share hardware-exchanged adapter clusters
(as defined by the <DCP exchange statement) in a (DCP definition)), then the (DCP number) defined in
this statement is the DC'P initially expected to service the adapter cluster of which the line is a part. This
statement, which is required, must be defined explicitly in each (line definition).

5-62

·~ ·-

Definitions

LINE

Line Answ~r Statement

LINE ANSWER f.TATEMENT

Syntax

ANSWER .., = ---_,..---:TRUE •

..._---FALSE------j

Semantics

The (line answer statement) defines whether or not (TRUE or FALSE, respectively) the DCP is to
automatically answer an incoming call. This statement is required if the (line type statement) in the
(line definition) defines the line configuration as DIALIN only, or DIALIN and DIALOUT.

...

If ANSWER= FALSE, an incoming call causes the following actions to be taken by the DCP.A SWITCHED
STATUS RESULT (CLASS = 7) message is sent to the MCS of the station that is the first entry in the
Line Table for that line. (Unless an MCS has reconfigured the line so that it changes the first entry, the first
entry in the Line Table will be the entry for the first station listed in the (line station S!ateinent). of
the (line definition).) The message has a bit set in it that indicates the line is in a "ringing" status.
Presumably, upon notification of a line in a ringing status, the MCS programmer instructs the DCP to
answer the phone, or it takes appropriate action to dear tlw line. ·

If ANSWER= TRUE, an incoming call causes the DCP to take the following actions.A SWITCHED STATUS
RESULT (CLASS= 7) message is sent .to the controlling MCS of the station that is the first entry in the
Line Table for that line. In this case the message has a bit set indicating that there has beeri an incoming
call, and that the DCP is in the process of answering the call.

An MCS may change the value of ANSWER after DCP initialization, by means of a SET/RESET
AUTO-ANSWER (TYPE = l 02) DCWRITE. .

5-63

Definitions

LINE

Line Default Statement

LINE DEFAULT STATEMENT

Syntax

DEFAULT ... = ------1 .. (default line identifier)---------------_..

Example

DEFAULT= DFLTLISTl.

Semantics

The (line default statement) allows the programmer to specify the (default line identifier)of a set of .
default line attributes to be used for a (line definition) whose description is incomplete. It is advantageous
to group attributes that several lines have in common under a Default (line definition) and list the remain­
ing attributes under each individual (line definition) . The compiler will then refer to the Default
(line deflnition)to complete the (line definition). The (line default statement) is not required to appear
in a (line definition) ; however, a (line definition) must define all required attributes if a (line default
statement) does not appear.

The (line default statement) can appear in a (line definition) or a Default (line definition). Thus,
(line default statement)s can be "nested" to combine the attributes of one or more Default (line
deflnitions)s.

5-64

~ -·

- '

--·

Definitions

LINE

Line Endofnumbzr Statement

LINE ENDOFNUMBER STATEMENT

Syntax

ENDOFNUMBER

Semantics

., = ----.---:TRUE

--~~~FALSE-~~--t

The (line endofnumber statement) applies only to (line definition)s that specify the Automatic Caliing
Unit (ACU) Adapter Class in its (line adapter class statement) (e.g., ADAPTER= 8). This statement is
required for those (line definition)s, and specifies whether or not (TRUE or FALSE, respectively) the
ACU has an "end of number" option.

....

5-65

Definitions

LINE

Line Maxstations Statement

LINE MAXSTATIONS STATEMENT

Syntax

MAXSTATIONS .,.. = --------t ... (integer)---------------~

Example

MAXSTATIONS = 25.

Semantics

The (line maxstations statement) specifies the number of stations that may be assigned to the defined line.
If this statement does not appear for a line having assigned stations (the (line station statement) lists all
stations initially assigned to a line), it is assumed that MAXSTATIONS is the number of stations explicitly
specified as assigned to the line in the (line station statement). The (integer) specified must not equal 0,
exceed 255, or be less than the number of stations listed in the (line station statement) (if the (line station
statement) is defined). ·

Pragmatics

This statement informs the compiler of the maximum number of station descriptors required in the Line
Table of the DCP's table structure. By defining MAXSTATIONS to be greater than the number of stations
listed in the (line station statement), an MCS may reconfigure more stations onto the line at some point
in time after DCP initialization. For information regarding reconfiguration, refer to the B 6700/B 7700 ~
DCALGOL Reference Manual, fom1 number 5000052.

5-66

Dclinitions

LINE

Line Modem Statement

LINE MODEM STATEMENT

Syntax

MODEM ------- = --------4~ (modem identifier)-·------------1~

Example

MODEM = BELL103A.

Semantics

The (line modem statement) specifies the modem type that exists on the system end of the physical line.
(The (~tation modem statement) in a (~talion defi11itio11) specifies the modem type connected to the line
on the terminal end.)

Pragmatics

The compiler references other portions of the program with this statement, checking for consistency. If,
for exam pk, the (!nodem dejlnition} of the (modem identifier) specified in this statement lists any
(co1111111111ication type number) s in its (modem adapter statement) that are not compatible with the ·
Adapter Class specified in the (line adapter class statement) of the (!ine definition), then a syntax error .
is generated. Another situation that causes a syntax error to be generated is if the compiler discovers that
the modl'lll type specified in this statement is not compatible, in respect to the (communicatio11 type
number), with the modem type specified in the (station definition) of a station assigned to the line.

5-67

Definitions

LINE

Line Phone Statement

LINE PHONE STATEMENT

Syntax

PHONE ------ = -------a..(lnteger)--------------------

Example

PHONE= t 2136572385.

Semantics

The (line plume statement), implemented for documentation purposes only, documents the telephone
number of a DIALIN type line. This statement is optional fn a (/.ine dffinition).

5-68

'._/ ·-

·-

Definitions

UNE

Line Station Statement

LINE STATION STATEMENT

Syntax
+--· ------ t _______ _

STATION ------- = ----"""----l'll!li»ll!o-(station identifier)------------------.. -. .

Examples

STATION= RJEl.
STATION= DAKOTA/KID, BIDS.

Semantics

The (line station statement) is the means by which the NDL programmer associates one or more stations
with a line. A station that is associated with a particular line is said to be "assigned" to that line.

. .
This statement is required in those (line definiti01f) s that specify DUPLEX .in the (fine type statement).
In all other variations of (line type statement), this statement is optional. ·

If more than one station is named, each station must have the same (communication type number)
<le fined in its respective ('itation adapter statement). .

5-69

Definitions

LINE

Line Type Statement

LINE TYPE STATEMENT

Syntax

.__ __ DIALIN -------------.,...---_.._---~

.__ ___ DIA LOUT .., : --11•~(/ine identifier) ·---111...i

------DUPLEX ---t•• --1.,•(line identifier)---

Examples

TYPE= DIALIN.
TYPE= DIALOUT:ACULINE.
TYPE= DUPLEX:AUXLINE.
TYPE= DIALIN. DIALOUT:AUTOCALL, DUPLEX:SUPERVISORY.

Semantics

The (line type statement) provides the 1;ompilcr with specific information concerning special logical line
configurations. This statement is required for (line deflnition)s whose lirie utilize either dial-in, dial-out,
or full duplex hardware facilities.

DIALIN . \._I

This form identifies the line as a dial-in line. A line that may be dialed from a remote site is a dial-in line._..
The appropriate (line type statement) for this configuration would be:

TYPE=DIALIN.

A logical line defined in this manner must include the (line answer statement) and the (fine modem
statement). The (line dejl11itio1'f; for such a line could appear as follows:

LINE DIALUPLINE:

TYPE
ADDRESS
MODEM
STATION
ANSWER
ADAPTER

= DIALIN.
= 0:0:0.
= TTYIO.lA.
= DIALUPSTATION.
=TRUE.
= l(MODEM).

DIA LOUT

This form identifies the line as a dial-out line. A dial-out line. is defined as a line that can become connected
to a remote site as a result of a Message Cor1trol System issuing a DIALOUT (TYPE= 98) DCWRITE to the
line (thereby causing an Automatic Calling Unit (ACU) to dial the .phone number of the remote site). The
TYPE=DIALOUT: (line idenUfler) syntax of the statement specifies such a configuration. The (lir.ze
identifier) names the (line definition) that defines the associated ACU. The following example illustrates
how the (fine defl11itio11) s coul<l appear for a dial-out configuration.

5-70

LINE DIALOUTLINE:
TYPE
ADDRESS
MODEM
ADAPTER

= DIALOUT:ACULINE.
= 0:0: I.
= TTY103A.
= · 1 (MODEM).

v ··-

Definitions

LINE

Linc Type Statement Continued

UNI· A< 1 IUNI·.:
l•'Nl>Ol·N llMBl'.I{ -­ A•'ALSE.

= ():f>:S.
·- 8.

AUUR FSS
AUAPTEI~

The (!ill<' d1·//111tio11) for the dial-nut line tnust include a (line modem statement) and cannot include a
(line stalio11 s1att'lll<'11/). The (Iii/<' tlc.fi11ilim1) for the ACU must include a (line endofnumher statement).
and it must define ;111 address (in t hl' <.fine address stalement)) that is on the same adapter cluster as the
as..:;ociakd dial-out Iim·.

DUPLEX

This form identifies the line as the primary of a line pair, for purposes ·of simultaneous transmission and
receptions. The \li11e identifier) riames the auxiliary line's (line definition). The line referenced as the
auxiliary cannot contain a (/ine t,rpe statement) nor a {,fine station statement).. .· ·

The following is an example of how full duplex primary and auxiliary lines could be defined.

LINE DUPLEXPRIMARY:
TYPE = DUPLEX:DUPLEXAUXILIARY.
ADDRESS = 0:0:5.
MODEM . = SUPERMODEM.
ST\ TION = MODEL37.
ADAPTER = 1.

LINE DlJPLEXAUXILIARY:
ADl>RESS = 0:0:6.
ADAPTER = 1.

Pragmatics

COMBINH) < 'ON1:1<;URATIONS

A dial-in/dial-out lilll' is characterized by both the ability to be dialed from a remote site, and the ability
to become connected to a remote site as a result of a Message Control System issuing a DIALOUT
<TYPE= 98) DCWRITE. This type of configuration requires the DIALIN and DIAWUT: (line identifier)
~ptions to appear in the (Jine type statement). The folJowing example· illustrates how a dial-in and dial-out
(line definition) could appear: . .

LINE IOLINE:
TYPE
ADDRESS
MODEM
STATION
ANSWER
ADAPTER

LINE AUTOCALLUNIT:
ENDOFNUMBER
ADDRESS
ADAPTER

= OIALIN,DIALOUT:AUTOCALLUNIT.
= 0:1:0.
= TTY103A.
= REMOTEITY.
=TRUE.
= l(MODEM).

= FALSE.
= 0: 1: 1.
= 8.

-5-71

Definitions

LINE

Line Type Statement - Continued

Thl' full duplex syntax could hl' comhirwd with tl1L' dial-in and dial-out syntax as foilows:

5--72

LINE IODUPLEX:
TYPE
ADDRESS
MODEM
STATION
ANSWER
ADAPTER

LINE AUXLINE:
ADDRESS
ADAPTER

LINE AUTOCALLUNIT:

= Dlt\LIN,DIALOUT:AUTOCALLUNIT,DUPLEX:AUXLINE.
= 0:2:0.
= SUPERMODEM.
= REMOTEDUPLEXDEVICE.
=TRUE.
= l(MODEM).

= 0:2: I.
= l(MODEM).

ENDOFNUMBER = FALSE.
ADDRESS = 0:2:2.
ADAPTER = 8.

.v_,.

Definitions

MCS

MCS DEFINITION

Syntax

MCS---1.,• (MCS identifier) .,_ : --1111>.., CONTROL ---tP.111>'" = ~ TRUE ---r-- ·
L__.. FALSE_J ·

Examples

MCS SYSTEM/CANDE:CONTROL = FALSE.
MCS SYSTEM/DIAGNOSTICMCS:CONTROL = TRUE.

Semantics

The purpose of the (MCS definition) is twofold: First, the (MCS definition) adds the (MCS identifier) to
the list (contained in the Network Information File) of valid Message Control System (MCS) programs; and
second, the (MCS definition) specifics whether or not (CONTROL= TRUE, or CONTROL= FALSE.
respectively) the named MCS is allowed to execute a limited set of DCWRITE functions that perform DCP
diagnostic functions in addition to the standard DCWRITEs. (MCS identifier) has the syntactic form of a
(system identifier). .•

Pragmatics

A list of valid MCSs is maintained in the Network Information File in order to restrict unauthorized
DCALGOL programs from becoming an MCS. (A DCALGOL program becomes an MCS when it success­
fully executes an INITIALIZE PRIMARY QUEUE (TYPE= 0) DCWRITE.) The MCS declaration is one
means of adding a name of an MCS to that list. (One other means is the (station MCS statement) in
a (station definition).) . .

The diagnostic DCWRITE functions allow an MCS to perform on-line tests of components in the Data
Communications System. Those DCWRITEs that may be utilized in an MCS when CONTROL= TRUE
have DCWRITE TYPE numbers greater than 159. ·

5-73

Definitions

MODEM

MODEM DEFINITION

Syntax

MODEM ___ ..,.._ (modem identifier) --..:a..,.....,(modem adapter statement)---~......,

Example

MODEM MABELL103A:
ADAPTER=4.
LOSSOFCARRIER = DISCONNECT.
NOISEDELA Y = 0;
TRANSMITDELA Y = 0.

Semantics

(modem /ossofcarrier statement)

(modem noisedelay statement)--. ...

(modem transmitdelay statement)

The (modem clefiniti01~ defines the attributes of a modem type in the data communications system.
The (!1wdem identifier) names the (modem definition), and has the syntactic form of (identifier). The
\llWtfrm statcment)s arc described subsequently. . .

5-74

-~·

··~

· . Definitions·

MODEM

Modem Adapter Statement

MODEM ADAPTEI~ STATEMENT

Syntax

• 4 I
ADAPTER--...' -----1.- \ c111111111111in1/io11 1.1·111' 1111111/>er) . llD> •

(---<.1·n1111111111irnlio11 /_l'JI<' 1111111/lc•r) _... , __...(C'<~ll/1111111icatio11 type 1111111/.Jc•r /....,..)J
Examples

ADAPTER = J ,2,3,4 ..
ADAPTER = 10.
ADAPTER = (2,3), (4,S), 6,7.

Semantics

The (modem adapter statement) defines one or more combinations of character format, sy11chronous/ ·
asynduonous communication. and line speed (in the case of asynchronous communications) with which the
mmkm is compatible. This is done hy supplying one or more t.[ommunication type number) s (or number
pairs). ·

Table 5-4 lists the allowed (communication type number)s and the characteristics associated with each.
For cxampk. the statement . · . ·

ADAPTER = 4.

defines an I I-hit charadcr format, asynchronous communication, at a line speed of I IO bits per second.

If the modem is to be tised in a full duplex mode, and the primary and auxiliary lines have different
characteristics, then one or more (communication type number). pairs must be supplied~ For example, the
statement · ·

ADAPTER = (11,6).

defines for the primary line a I 0-bit charact~r format, synchronous communication, at a speed of 1800 bits
per second. The characteristics associated with the auxiliary line are the same as for the primary line,
except that the auxiliary line runs at a line speed of 150 bits per second.

Pragmatics

COMMUNICATION TYPE NUMBERS

A (communication ~vpe number) is an integer that has associated with it a set of attributes that define
three line characteristics. Those characteristics are the format of the characters transmitted (start informa­
tion, data information, parity inforniation, and stop information), whether the line is to be driven
synchronously or asynchronously, and the speed of the transmissions (fo the case of asynchronous
communications). ·Table 5-4 lists the allowed lfommunication ·type number)~ and. the line characteristics
associated with each. . · . . ·

Most of the electronics that directly control a line are located in the adapter cluster that contains the line
adapter for that line (rather than being located in the line adapter itself). The adapter cluster is somewhat
general purpose in its design in that it can run at various line speeds and handle various character fortnats.
The DCP can cause the adapter cluster to function in a suitably special-purpose way (with respect to a
single line) by supplying it a number derived from the (fommuniciztion type number):

5-75

Definitions

MODEM

Modem Adapter Statement - Continued

There are three areas in an NDL program that require the programmer to supply one or more (communica-
tion type numl>er)s: · ·

a. In the ~nodC'm adapter statemem) of each (.rnodem 'definition) ,

b. In the (terminal adapter statement) for each (!erminal definition), arid

c. In the ~'>talion adapter statement) for each ~talion deftnition).

As it encounters each area, the NOL compjler cross-checks to determine ff the areas are compatible iti their
description. If inconsistencies in component compatibility arise, syntax errors are generated •. Restrictions
are described in the (tem1i11al adapter statement) and (Hation adapter statement) semantics! ·

EXPLANATION OF TABLE 5-4

Table 5-4 lists the allowed (communication type number)s in the column labeled "COMM. TYPE NUM."
To the right of each (communication type number) are the three line characteristics associated with it,
under the columns labeled "SPEED (BPS)," "CHARACTER FORMAT," and. "SYNCHRONOUS OR
ASYNCHRONOUS." The rightmost column,Jabeled "COMPATIBLp ADAPTER CLASSES~":is
referenced and described in the (line definition) section of this chapter.

' .. '.

. ,,'

5-76

-~ .

•

COMM.
TYPE SPEED
NUM. (BPS)

I 45.5
2 56.9
3 75.0
4 110.0.
5 134.5
6 150.0
7 300.0
8 600.0
9 1200.0

10 1200.0
11 1800.0
12 2400.0
13 3600.0
14 4800.0
15 9600.0

·-~ 16 2000.0
17 2000.0
18 2000.0
19 2400.0
20 2400.0
21 2400.0
22 4800.0
23 4800.0
24 4800.0
25 9600.0
26 9600.0
27 9600.0
28 40.0
29 16.0
30 40.0

·Definitions

MODEM

· Modem Adapter Statement -·- Continued

TabJe 5-4. Tab1e of (commu11icatio11 type number)s

CHARACTER FORMAT

CHAR. SYNCHRONOUS COMPATIBLE
SIZE START DATA PARJTY STOP OR ADAPTER CLASSES

(BITS) INFO. INFO. INFO. INFO. ASYNCHRONOUS 1 2 3 4 5 .6 7 8

7.5 1 5.0 -- 1.5 ASYNC. xxxxx
7.5 1 5.0 -- 1.5 ASYNC. xxxxx
7.5 1 5.0 - 1.5 ASYNC. xxxxx

11.0 1 7.0 1 2 ASYNC. xxxxx
9.0 1 6.0 l 1 ASYNC .. xxxxx

10.0 1 7.0 1 1 ASYNC. xxxxx
10.0 l 7.0 1 1 ASYNC. xxxxx
10.0 l 7 .. 0 1 l ASYNC. XX X·X X
10.0 1 7.0 1 1 ASYNC. xx xx
6.0 1 4.0 -- 1 ASYNC. xx xx

10.0 1 7.0 l l ASYNC. xx xx
10.0 l 7.0 I 1 ASYNC. xxx
10.0 1 7.0 1 1 ASYNC. xx
10~0 I 7.0 I 1 ASYNC~ ·. xx
10.0 . l 7.0 1 1 ASYNC. x
7.0 -- 6.0 l -- SYNC xxx
8.0 -- 7.0 l -- SYNC. xxx
9.0 -- 8.0 1 -- SYNC. . xx x
7.0 -- 6.0 1 -- SYNC. xxx
8.0 -- 7.0 l -- SYNC. xxx
9.0 -- 8.0 1 . -- ·sYNC. xxx
7.0 -- 6;0 1 -- ·SYNC. xx
8.0 -- 7.0 l -- SYNC. xx.·
9.0 -- 8.0 1 -- SYNC.· xx
7.0 -- 6.0 l -- SYNC. x
8.0 -·- 7.0 l -- SYNC~ x
9.0 --·· 8.0 l -- SYNC. x
4.0 -- 4.0 -- SYNC. x
8.0 -- . 7.0 I -- SYNC.· x
4.0 -- 4.0 -- - SYNC. x

5-77

Definitions

MODEM

Modem Lossofcarrier Statement

MODEM LOSSOFCARRIER STATEMENT

Syntax

LOSSOFCARRIER ---- = ---1•• DISCONNECT-------·------•

Pragmatics

Certain modems (Western Electric (Bell System) 103 series modems, and possibly others) maintain con­
tinuous carrier in both directions while the line is properly connected. As such, CF (Carrier Detected)
and CB (Clear to Send) are maintained TRUE while connected. Additionally, if each modem is equipped
with both the Initiate Disconnect and the Respond to Disconnect options, each modem employs the
"long space disconnect" convention. This convention allows one modem to determine if the other is
disconnecting, and itself go "on-hook" and drop CC (Data Set Ready).

Two problems arisl', however, when only one such modem is configured at the system end, and the
terminal is interfaced with an acoustic coupler at the terminal end. At the time of making a connection,
establishment of carril'r is difficult. In fact, the system modem may detect carrier from the coupler while
the telephone receiver is near the coupler and before the receiver is properly seated. In this case, CF and
CB arc raised prematurely, and if the system takes this as a cue to begin transmission of a greeting, the
two signals (the data transmitted from the system, and carrier from the acoustic coupler) interact with
each other, and the system modem detects loss of carrier. At the time of terminating a call, if the terminal
initiates the disconnect and has no "long space disconnect" facility, or if the terminal operator docs not
use it, the system modem detects only loss of carrier. In this case, the system modem drops CF and CB,
the modem remains "off-hook" and maintains CC (Data Set Ready). Thereafter, any incoming calls
would receive a "busy" signal.

The (modem lossofcarrier statement) is implemented for such a configuration. If this statement is
included in the definition of a modem, special logic is invoked, in addition to the normal logic, when
dealing with that modem type.

ln the case of the system calling out, normal logic waits for CC to be raised by the modem. If CC is raised
within 25 seconds, the line is immediately released as connected. A timeout of 25 seconds causes CD
(Data Terminal Ready) to be dropped, the modem goes "on-hook," and the line reverts to a disconnected
state. The special logic is invoked after CC is found TRUE. With the 25-second timeout in effect, the
special logic then waits until CF and CB are both raised by the modem. After CF and CB are detected,
the logic then delays approximately 5 seconds before notifying the system that the line is connected.
This gives the terminal operator sufficient time to place the receiver in the acoustic coupler.

In the case of a terminal-initiated disconnect, that condition is detected in the normal logic by either the
"long space disconnect" adapter cluster interrupt or by a CC (Data Set Ready) FALSE condition. In
addition to the normal logic, the special logic also interprets CF FALSE or CB FALSE as a terminal-
initiatcd disconnect. ·

5-78

-·

Definitions

MODEM

Modem Noiscc'.;.:lay Statement

MODEM NOISED ELA Y STATEMENT

Syntax

NOISEDELAY ., = ---1.,.ll>- (delay time)-----------------,....

Examples

NOISEDELAY = 0.
NOISED ELA Y = 200 MILLI.

Semantics

The (modem noisedelay statement) defines the amount of time that should be delayed when the modem
enters a Clear to Send (CB) status to avoid receiving "noise" on the line, (delay time) must be expressed
as (time), and affects the amount of time delayed after an INITIATE RECEIVE or INITIATE TRANSMIT
construct is executed and before the next statement is executed in a (control definition) or (request
definition). The (delay time) defined in this statement is used in a compiler algorithm that calculates the
Jelay. The compiler algorithm is discussed in the semantics of the INITIATE RECEIVE and INITIATE
TRANSMIT constructs under the (initiate statement). This statement must appear in each (modem
definition).

5-79

D~finitions

MODEM

Modem Transmitdday Statenwnl

MODEM TRANSMITDELAY STATEMENT

Syntt1x

TRANSMITDELA Y .., = ---~ (delay time)--------------_..,

Examples

TRANSMITDELA Y = 0.
TRANSMITDELA Y = I SO MICRO.

Semantics

The (modem transmitdelay statement) defines the amount of time required for the .modem to switch to
a Clear to Send (CB) state after receiving a Request to Send (CA). (delay time) must be expressed as
(1ime) and affects the amount of time delayed after an INITIATE RECEIVE or INITIAT.E TRANSMIT
conslrud is l'Xecutcd and before the next statement is executed in a (control definition) or (request
de.f'initio11). The (<iday time) de tined in this statement is used in a compiler algorithm that calculates the
delay. Tiu.~ compiler algorithm is discussed in the semantics of the INITIATE RECEIVE and INITIATE
TRANSMIT constructs of the (initiate statement). This statement must appear in each (modem definition).

5--80

.~-

REQUEST DEFINITION

Syntax

Definitions

REQUEST

REQUEST (rc>qu£'st identifier)__...:_._ ___ (t•rror switch statement) -------'-----'---.!

I

L...1.---------....... (assignment statement)--_,

(label)_.: (backspace statement)

(break statement) -----a...i

(code statement) __ __.,...

(compound statement)

(continue statement) -.-..i

(delay statement) ·---""'

(fetch statement)---..,...

(finish statement) ---""'

(fork statement)---.....,.

(getspace statement)--...i

(go to statement)---..i

(if statement) ___;..-w

(increment statement)

(initialize statement) --""'

(initiate statement)--..-..

(pause statement) ___ ...,

(receive statement) --""'

(shift statement) __ __.....,.

(store statement) __ __...,...

(sum statement) ---­

(terminate statement)-..-.i

(transmit statemem) --..i
(wait statement) .,.

5-81

Definitions

REQUEST

Continued

Example

REQUEST READTTY:

Semantics

INITIATE RECEIVE.
RECEIVE TEXT [END!.
TERMINATE NORMAL.

(request definition)s, sometimes referred to as Requests, are coded line disciplines (protocols) that are
µsed in communicating with the various tcrmiilal types in the data communications network. A (request
definition) must be coded for each capability of a terminal type; if it is possible for a terminal type to
send input to the system and receive output from the system, then two (request definition)s must be .
specified for that terminal type in its (terminal definition). The input (request definition) is generally
referred to as the "Receive Request," and the output (request definition) the "Transmit Request." (The
specific (request definition) to be used for each of these capabilities is specified by the (terminal
request statement). ·

When there is a message to be sent to a particular station on a line, the (control definition) initiates
the Transmit Request specified for the (terminal definition) associated with the station. The Transmit
Request procedure handles the transmission of the message. If the transmission of the message is successful,
the Transmit Request is terminated, and a branch of control is made back to the (control definition) for
the initiation of the next Request.

lf the terminal associated with a station is allowed to input data; the (control definition) designated for
that line normally initiates the Receive Request specified for the terminal type. \f the terminal has
information to transmit, the Receive Request procedure obtains a message space in which to store the
received text, receives and stores the text, and then terminates in a manner that forwards the message to
the MCS. lf the terminal has nothing to transmit, the Receive Request procedure usually notes that there
was no input, and terminates. In either case, upon termination, control returns to the (control definition)
for the initiation of the next Request.

(request identifier) has the syntactk form of (identifier).

Statements in (request definition)s are executed sequentially. In ·some cases, however, it is desirable
to alter the order of execution of statements within the procedure. A (request statement) preceded by a
(label) is one means of accomplishing this. The (go to statement) is used to transfer control to a
(label)ed (request statement). ·

A (request statement) must be appropriate for the type of Request in which it appears. That is, some
(request statement) s are allowed only in Receive Requests, some are allowed only in Transmit Requests,
and some are allowed in either type. Subsequently, the semantics portion of each statement defines,
among other things, in which type of (request definition) the statement can appear.

5-82

·-·

·--

. Definitions

REQUEST

Assignment Statement

ASSIGNMENT STATEMENT

Syntax

FORM I LOCICAL ASSIGNMENT

(ussignable bit variable) -----= -r:(bit varia.ble.)

TRUE-----elOot

FALSE---_...

FORM 2 - VALUE ASSIGNMENT

(assignable h yte variable)_... =.,.....~(byte variable)--.--.----------------r__.,..

Examples

TOG (OJ = TRUE.
TOG 11 I = TOG [0] •

(integer)--...,.

(single character) - (integer)·----P'I

+=rt:(byte variable)

(single character)

(translate table identifier) (__..(byte variable)_.,..)

{receive "address" statement} -----------

LINE (BUSY) = FALSE.
RETRY = STATION (TALLY).
TALLY (0) = STATION (FREQUENCY) -TALLY [l].
CHARACTER = TRANSTABLEID (CHARACTER).
STATION (TALLY) = RECEIVE ADDRESS (TRANSMIT) [ADDERR:999].

Semantics

FORM l

This form causes the value on the right side of the equal sign to replace the current value of (assignable
bit variable). . . ·

FORM2

Value assignment causes a calculated value on the right of the equal sign to be stored in the (assignable
byte variable). Arithmetic calculations are done in modulo 255 arithmetic. .

(assignable byte variable)= (translatetable identifier) ((byte variable)).

This construct is the means to invoke user-defined character translation. User-defined translation is
effected by three areas of the NOL source program.

a. In a (translatetable definition), the programmer must define the contents of a translation
table and associate a (translate table identifier) with it.

5-83

Definitions

REQUEST

Assignment Statement · Contimll~d

b. In till' (terminal dcfi11itio11) of a terminal type that requires special character translation,
the programmer should suppress automatic character translation by using either of the
following forms of till' (te.rrninal code statement):

CODE = BINARY.

or

CODE = EBCDIC.

<.:. In a (control definition) or (request definitiQn), the programmer invokes the translation
by using this option or the value assignment. Any (byte variable) can be designated as con­
tain inµ, the character to be translated.

The (tnmslatctable identifier) identifies the translation lablc to be used. An (assignable byte
variable) is designated to the left of the equal sign, identifying where the resulting translated
character is to be stored.

Ir N is the (mu rec size) (defined in the (translate table definition)), then the N low-order bits
of the (byte l'ariable) arc used as an index into the translation table. The eight-:bit character
thus indexed is stored in the (assignable byte variable). .

(assignahle byte Pariable) = {receh'c "address" statement}.

This construct attempts to RECEIVE the address characters of a terminal, and store in (assignable byte
Pariable) the station index of a station whose address characters are equal to those received. The {receive
"address" stakmcntf is the same as described in the semantics ofthc RECEIVE ADDRESS construct
of the (recch'e state111c111) The optional syntax in the {receive "address" statement} invokes the same
:.ictions as described in till' (recefrc stateme11t) semantics except for ADDERR. Any action specified for
ADDERR is taken if no valid station assigned to the line is found with address characters equal to those
received.

5-·84

_..

.. ..J::,,,.J
BACKSPACE STATEMENT

Syntax

Semantics

Definitions

REQUEST

Backspace Statement

The (backspace statement) causes the message text pointer to be moved backwards one character. This
statement can only appear in a Receive Request. The (backspace statement) may be executed repeatedly;
however, the message text pointer will never be stepped back so far that it points into the Jl_lessage header.

·' ·.: ..

5-85

Definitions

REQUEST

Break Statement

BREAK STATEMENT

Syntax

BREAK ---I ... (L ... * 1111: t ,------.. NULL ..) .

(break time)~ l_(delay time)_j

Examples

BREAK (*. NULL).
BREAK (200 MILLI. 3 SEC).
BREAK(*. 3 SEC).
BREAK (100 MILLI. NULL).

Semantics

The (break statement) causes binary zeroes to be transmitted on the line, thus changing the state of the
line to a "spacing" condition for a specified time.

The (break time) specifies the (time) to break. An asterisk indicates that a standard break of 2 character
times should be used. ·

The (delay time) specifies the (time) to delay subsequent to the break and prior to when control
continues.

5-86

. v ._

C..:Ol>E STATEMENT

Syntax

CODE----• ~ASCII t
l_...BINARY-------

Semantics

Definitions

REQUEST

Code Statement

...

CODE=ASCIJ invokes the ASCII-to-EBCDIC translation for received data and the EBCDIC-to-ASCII
translation for transmitted data.

CODE=BINARY inhibits any character translation on data transmitted or received.

Pragmatics

The (code statement) allows a programmer to either invoke or inhibit on a logical line the DCP ASCII­
to-EBCDIC character code translation for input, and the EBCDIC-to-ASCII character code translation
for output. Any (terminal definition) that names, in its (terminal contro! statement), a (control
definition) that utilizes the (code statement), must define ASCII (BINARY) as its character code in
the (terminal code statement). (Refer to the (terminal code statement) in this chapter.)

Once that translation has been invoked on a line, the translation continues until such time that it is
inhibited. If translation is inhibited, translation will be inhibited on that line until invoked.again by any
of the following constructs: CODE= ASCII, TERMINATE NORMAL, TERMINATE LOGICALACK,
TERMINATE LOGICALACK(RETURN), TERMINATE ERROR, TERMINATE ENABLEINPUT~ or
(while executing a Receive Request) TERMINATE NOINPUT .

5-87

Definitions

REQUEST

Compound Statement

COMPOUND STATEMENT

Syntax

BEGIN __ __,l.__--4 \.r<'</ Ii<'.\' I .\'I ti I l'llU'll I > ------'"---I END

Exam pk

BEGIN
INlTIATE TRANSMIT.
TRANSMIT TEXT.
FINISH TRANSMIT.
END.

Semantics

Tile (compound statenient) groups several statements together to form a logical sequence .. To execute
more than one statement when the condition of an (if statement) is satisfied, a (compound statement)
must be used.

5 -·88

--

._...

Definitions

REQUEST

. Contim.ie Statement

CONTINUE STATEMENT

Syntax

Semantics

The (continue statement) can appear in only those (request definition) sand (control definition) s
written to communicate with full duplex terminal types. This statement causes the co-line to resume .
processing, if, and only if, it had been suspended by a (wait statement), or a (receive statement) with a
CONTINUE option specified. If the co-line had not been suspended, this statement acts as a no-op. The
(continue statement) has no effect upon the line on which it was executed.

Pragmatics

Refer to the (fork statement) pragmatics.

5-89

Definitions

REQUEST

Delay Statement

DELAY STATEMENT

Syntax

DELAY ------• (----....,.(delay time), ___ _,..,) -·--------1., ..

Examples

DELAY (3 SEC).
DELAY (0).

Semantics

The (delay statement) provides a means to delay a specified period of time before control proceeds to the
next statement. The (request definition) is suspended in a "sleep" state for the (delay time) specified.

Pragmatics

The "sleep'; state inJuce<l by tile (delay statement) allows the DCP to service other logical lines.

5-90

v -

. v
'--'

ERROR SWITCH STATEMENT

Syntax

Definitions

. REQUEST

Error Switch Statement

ERROR-.[__. (switclt 1111111her)_.,] ___...=~~ BREAK----....... : t. <1ahd)

BUFOVFL----... . . ABORT

LOSSOFCARRIER NULL

STOPBIT-----e"

TIMEOUT---...,

Examples

ERROR 101 = BREAK: 0, BUFOVFL: NULL, LOSSOFCARRlER: ABORT, PARITY: 999,
STOPBIT: 999. TIMEOUT: NULL.

ERROR 111 = BREAK: NULL.
, ERROR 199) = BUFOVFL: NULL .

Semantics

Tile (aror swilclt statement) is a non-executable statement that allows tile programmer lv dcline a set of.
default actions that are to be taken in a (receive statemem) if the specified errors occuL <,switch number)
has the syntactic form of (integer). The semantics of each option is (.le-scribed subsequently. ·. ·

BR~AK
The BREAK option variations cause the following actions if a break, that is, at least two character-times of
a spacing line condition, is detected by the adapter cluster while receiving: .

BREAK: NULL

BREAK: (label)

BREAK: ABORT

BUFOVFL

causes no action. Execution proceeds as if the break did not occur. ·

sets TRUE the (!Jit Pariabic) BREAK [RECEIVE}, and brdnches .
control to <.Jabel). . .

sets TRUE the (bit variable) BREAK [RECEIVE), and executes an·
implicit TERMINATE ERROR. .

The BUFOVFL option variations cause the following actions if the DCP is unable to service a Cluster
Attention Needed (CAN) interrupt before the adapter cluster receives another character (thus destroying
the previous character):

BUFOVFL:NULL

BUFOVFL: (label)

causes no action. Execution proceeds as if the error conditions did not
occur.

sets TRUE the (bit variable) BUFOVFL, and branches control to
(label). .

5_.:.91

Definitions

REQUEST

Error Switch Statement - Continued

BUFOVFL:ABORT

LOSSOFCARRIER

sl.!ls TRUE the (bit JJariable) BUFOVFL, and executes an implicit
TERMINATE ERROR.

The LOS&OFCARRIER option variutions cause the following actions if a loss of carrier is detected while
n:cciving. ~

i

LOSSOFCARRIER: NULL causes no action. Execution proceeds as if the error did not occur.

LOSSOFCARRIER: (label) sets TRUE the (bit Pariahle) LOSSOFCARRIER, and branches
control to (label). ·

LOSSOFCARRIER: ABORT sets TRUE lhr (bit 11ariable) LOSSOFCARRIER, and executes an
implicit TERMINATE ERROR.

There is one exception to the act inns described in the above. If a loss of carrier is detected while receiving,
and if tl1c terminal is modem-connect, and if the terminal's (station definition) references a (modem
definition) that contains the statement LOSSOFCARRIER=DISCONNECT, then an implicit disconnect is
done. rcganlless of the action associated with LOSSOFCARRIER in the (error action statement).

PARITY

Tile PARITY option variations cause the following actions if a parity bit error is detected by the adapter
duskr:

PARITY: NULL

PARITY: (label)

PARITY: ABORT

STOPBlT

causes no action. Executit>n proceeds as if the error <lid not occur.

sets TRUE the (bit variable) PARITY, and branches control to
(label) .

sets TRUE the (bit variable) PARITY, and executes a TERMiNATE
ERROR.

The STOPBIT option variations cause the following actions if a stop bit error is detected by the adapter
duster:

STOPBIT: NULL

STOPBIT: (label)

STOPBIT: ABORT

TIMEOUT

causes no action. Execution proceeds as if the error Jid not occur.

sets TRUE the (bit variable) STOPBIT, and branches control to
(label).

sets TRUE the (bit variable) STOPBIT, and executes a TERMI.NATE
ERROR.

The TIMEOUT option variations of the TIMEOUT syntax shown below cause the actions described if the
time required to receive a character exceeds the (timeout time) . The (timeout time) is defined in the
(terminal timeout statement), but can be overridden by including the ((timeout time)) or (NULL)
syntax options in the (receive statement). .

TIMEOUT: NULL

TIMEOUT: (label)

5-92

causes no action. Execution proceeds as if the error did not· occur.

sets TRUE the (bit variable) TIMEOUT, and branches control to
(label).

TIMEOUT: ABORT

Pragmatic..-s

· Definitions

·REQUEST

Error Switch Statement -- Continued

sets TRUE the (bit variable) TIM:l!OUT, and executes a TERMINATE
ERROR.

An (error switcli statement) must be associated with a (receive statement) by means of a (switch number)
reference before any of the default actions are invoked. The (error switch staiemeru) cart appear in a .
(request definition) as.many times as the programmer deems convenient, providing the followh.g restric­
tion is adhered to: Within a given (request.definiti01.), (error switch statement)s must have a uniqu.' .
(switch number), and all (error switch statement) s must precede all executable statements, in the
procedure. . · . . .

5-93

-·.-

Definitions

. REQUEST

Fetch Statement

. FETCH STATEMENT

Syntax

FETCH ~r~~~~--~~~~~~~~~~~~~~~~~--~~~3-. ..,...· ~••·
L [--l----· __.._. --_J-----=--=--=-· · : (.NlaUbeLIL)--.-........ · •].·

Examples

FETCH.
FETCH (10).

ENDOFBUFFER ...-.. : - - J

FETCH f ENDOFBUFFER:NULL).

Semantics

The execution of the (fetch statement) loads into CHARACTER, the character pointed to by the message
text poinkr and updates the pointer to point forward one character position. .

When using the (fetch statement), provision should be made for taking action if the end-of-the-text buffer
is encountered. The programmer can specify this action by including the optional syntax shown in the
syntax diagram.

NULL specifies that no action should be taken.

(label) specifies that control should branch to (label) if the end of buffer is encountered.

If the end of buffer is encountered and no action is specified, an implicit TERMINATE ERROR is
executed.

For program documentation, the ENDOFBUFFER syntax can be added to the error action
specification. ·

Supplementary Example

INITIATE TRANSMIT ..
3: FETCH [ENDOFBUFFER:S) •

. TRANSMIT CHAR.
GOT03.

S:. FINISH TRANSMIT.

S-94

·-··

'v '-·

·-V
~·

FINISH STATEMENT

Syntax

·oefmitions-·

REQUEST.

Finish Statement

FINISH ---11•-.TRANSMIT ---.r--------------..__ _____ =1....,_-.-~--·,....., ·

Le I .. NULL-------1 > •· .· .

Examples

FINISH TRANSMIT.
FINISH TRANSMIT (NULL).
FINISH TRANSMIT (3 SEC).

Seinantics

.... ----t.,.., (delay time)---.... -

The purpose of the (finish statement) is to take a line out of the transmit ~eady state and prepare the line
to receive information. The adapter cluster delays a period of time long enough for the last character ·
TRANSMITted to be transmitted, plus 2 milliseconds, before the line is put in a receive ready state. Ai­
though the (finish statement) puts the line in a receive ready state, the cluster hardware invokes a delay
that inhibits any data from being received for 25 milliseconds. An INfflA TE RECEIVE _construct should
precede any subsequent (receive statement) to override the 25-millisecond hardwa!e delay. · . .· ·

The (delay time) option allows the programmer to specify a software delay of (t.ime) befo~e execution
proceeds in the (control definition). . · ·

For example, the statement

· FINISH TRANSMIT (3 SEC).

is equivalent to

FINISH TRANSMIT.
DELAY (3 SEC).

The FINISH TRANSMIT (NULL) form is equivalent to FINISH TRANSMIT •.. ·

5-95 .

: ~·. ' ' ' . .

Definitions

REQUEST

Fork Statement

FORK STATEMENT

Syntax,

FORK ---"---"-------....... (label)-----------------.......

Example

FORK 10.

Semantics

~··

. The (fork statemem) is allowed in only those (control definition) s and (request definition) s .
that are written to communicate with full duplex terminal types. This statement can be executed in the
(co11tro/ clc.fl11itio11) or (request defi11itio11) of the auxiliary line or the primary line. The execution of
this stah'ment causl.'s the co-linl' control. if not busy. to hranch to amt begin cxl~cuting code in the (request
de.tl11itio11) that l'Xl'cutes the FORK at the (label) specified, while Cl)ntrol on the FORKing line executes ·
an implicit PAUSE (i.e .. a (pause statemt'llt)) and continues executing in parallel. The co-line is deter­
mined busy or not busy by testing the BUSY bit (i.e.; LINE(BUSY) orAUX(LINE(BUSY)), whichever is
appropriate). If the co-line is busy. the (fork statement) acts as a no-op ..

Pragmatics

Synchronization problems can occur between the primary and auxiliary lines as a result ofthe (fork
statemem) l'Xecuting the implicit PAUSE. The implicit PAUSE yields use of the DCP, to allow processing to
to procet,d on other lines. Thus. processing on the co-line is actually started before the FORKing line
rxits the (fork statemem). As a result. the programmer must. by some means (e.g .. by setting and testing
linr TOGs). effel·t the synchronization of the lines. This is especially critical if the code contains (wait
statcmenr)s and (continue statement)s. The following example illustrates how full duplex lines could
'"hang" as a result of poor synchronization.

FORK 10.
WAIT.

10: CONTINUE.
WAIT.

Assume that the primary line executes the FORK 10. At that point, the primary Hne temporarily yields
use of the DCP to other lines. The auxiliary line starts up and executes the CONTINUE.· Since primary
control is still at the (fork statement) and is not in a (wait statement), the auxiliary line CONTINUE acts
as a no-op. Next. the auxiliary line executes the WAIT: When the primary line gets use of the processor
again, it executes its WAIT. At this point, the primary and auxiliary lines are "hung", each WAITing for a ·
CONTINUE from its co-line. ,-

5-96

. v ."'-'.

GETSPACESTATEMENT

Syntax

Deflnitions

. REQUEST

Getspa.ce Stat~ment ·

GETSPACE ----.....,(-------.~(label)------....]-------~

Example

GETSPACE [10]

Semantics

The (t?etspace statement) provides the mea,ns for a Receive Request to explicitly acquire a message space
for input. The message space (if obtained) iS linked into the head of the Station Queue, thereby setting
STATION (QUEUED) to TRUE. If there is no message space available at the time the (getspace ·
statement) is executed, control branches to the (label). If a message spac~ has already been acquired, this
instruction acts as a no-op. This statement is also treated as a no-op if it appears in a Transinii Request .

5-97

Definitions

REQUEST

Go To Statement

GO TO STATEMENT

Syntax

GO ---.----r--[----<'abel)

LToj __ , ___ --- J
(byte variable).....,[,..---,-]-. r--1•~{-*""-----11..-... (label)--........ -,~)

Examples

GOlO.
GOTO IO.
GO TO TOGS, (0,J,2,3).
GO TO STATION (S,9,12).

Semantics

The (go to statement) alters the path of control, that is, the sequential flow of statement execution,
within a (request definition).

GO TO (label)

This fonn of the (go to statement) unconditionally transfers control to the (label) specified.

GO TO (byte variable) ...

...

This form of the (go to statement) provides a convenient means of dynamically selecting one or more
(label)s to which control could branch. The (label) to branch to is selected by using the (byte variable)
as an index value. If N represents the number of (label)s in the (go to statement), then the (label)s are
numbered 0 to N-l. The (label) corresponding to the index value is the (label) to which control branches.
If the index value is greater than N-1, then control continues at the statement following the (go to ·
statement).

Supplementary Example

GO TO STATION (S,9,12).
% EXECUTION CONTINUES HERE IF STATION > 2.

5: TOG ;OJ = TRUE.

9: TOG [1) = TRUE.

12: TOG [2] = TRUE.

5-98

·~

Definitions

REQUEST

Go To Statement - Continued

This example illustrates the GO TO (byte variable) construct of the (go to statement). The value of ·
STATION determines the next statement to be executed. If the value of STATION is 0, control branches
to the (label) S; if the value of STATION isl, control branches to (label) 9; andif t~e value of STATION ·
is 2, control branches to (label) 12. If the value of STATION is greater than 2; control continues at the
next sequential statement.

S-99

: Definitions
j, REQUEST

If Statement

IF ST A.TEMENT

tyntax ·
:~ '

lf'~-----TRUE---------~-----THEN ·c· . . - ~ · . . "°.
NOT FALSE (requc•st .1·t11fl'tnc•11t)J L ELSE-(request stat1'mc•11tJ .

(hit 1•arlahlt')

(!1.1·tc• Parie1/1k\-~• LSS

(i11t<•gcr)--~

(single character)

Examples

IF TRUE THEN.

LEQ

EQL

NEQ

GEQ

GTR

(py t<' rariahi<')

(i11tc•ger)---41M

(single character)

IF TOG [Ol THEN TOG [OJ = FALSE.. . .
IF TALLY [OJ LSS TALLY (1) THEN TALLY (OJ =TALLY (1).
IF CHARACTER= 4"FF" mEN .

INITIATE BREAK.
ELSE

BEGIN

Semantics

CHAR = 4 "00".
GO TOO.
END.

. l'V''.'

The (if statement) causes a condition (i.e., a Boolean expressidn) to be evaluated. The subsequent path
of program control depends on whether the condition is evaluated as TRUE or' FALSE. · . ·

If the condition is TRUE, the (request statement) following the THEN, if present, is executed. Program
control then resumes at the statement that follows the (if statement). . ·. ·

If the condition is FALSE, the (request statement) following the ELSE is executed or, ff the ELSE
(.request statement) is omitted, program control resumes at the (reque.st stateme. nt) following the
(if statement). ·.· . .

The (request statement) can be any legal (request statement). includmg the (if statement) and
(compound statement). ·.

. The meanings of the relational operators are contained in table 5-5.

The following diagrams illustrate the above semantics.

S~lOO

·~.

Definitions

REQUEST

If Statement - Continued

The following diagrams illustrate the above semantics.

r.TRUE-i I t .
IF {condition} THEN (request statement) (request statement)

LFALSE:--------'·

r.TRUE"l I . ·. + .
IF {condition l THEN (request statement) ELSE (request statement). (request statement)

LFALSE . • . LJ

Table 5-5. Relational Operators

RELATIONAL OPERATOR MEANING SYNONYMS

'
LSS Less than <and LS

LEQ Less than or LE
' •' equal to ,,

I •
EQL ~·'. Equal to =and EQ

•!

NEQ " Not equal to NE

GEQ Greater than GE
·or equal.to

i GTR Greater than >and GT

5-101

Definitions

REQUEST

lm.:rcmcnt Statement

INCREMENT STATEMENT

Syntax

INCREMENT - TRAN ----------------------------.

[SEQUENCE L {-.--------.....-~~
LsEQER_:J___._.(label)--'

Examples

INCREMENT TRAN.
INCREMENT SEQUENCE [SEQERR:lO].
INCREMENT SEQUENCE (NULL].

Semantics

INCREMENT TRAN

This conslrud of lhl' (increment :1tatn11e11t) is only allowed in those (request definition) sin the
(terminal request s1a1c·111<·11t) s of (terminal definition) s that contain a (terminal transmission number
lc11gtll statement) defining the transmission number length as nonzero and non-NULL.

INCREMENT TRAN causes I to be added to the receive transmission number stored in the Station
Table when it is executed in a Receive Request, and causes 1 to be added to the transmit transmission
number stored in the Station Table when it is executed in a Transmit Request.

The transmission numbers are stored and incremented in EBCDIC.

If INCREMENT TRAN causes the transmission number to exceed (overflow) the size of the tra,-ismission
number field, the carry is truncated and the result will be zeros (i.e., EBCDIC zeros) in that field.

INCREMENT SEQUENCE

This construct causes the sequence number stored in the DCP Station Table to be increased by the value
of the increment (also stored in the DCP Station Table), providing that the station is in "sequence
mode"; otherwise, this statement is a no-op.

When using the INCREMENT SEQUENCE construct, provision should be made for taking action if the
increment caused the sequence number to exceed (overflow) the size of the sequence number field. The
programmer can take such action by including the optional syntax. Failure to include overflow action
results in an implicit TERMINATE ERROR if an overflow occurs.

SEQERR:NULL and NULL are semantically equivalent. These options set the SEQERR (bit variable)
TRUE, and control continues at the next sequential instruction.

SEQERR: (label) and (label)are semantically equivalent. They cause the SEQERR (bit variable) to be
set TRUE, and control to branch to (label).

Regardless of whether error action is specified or not, an overflow of the sequence number field destroys
the contents of that field.

5-102

.. -

-

·V
"'-·

-

Definitions

REQUEST

Increment Statement -- Continued

Pragmatics

A station is considered to be in sequence mode whenever its SEQUENCE (bit variable) is TRUE.
SEQUENCE can be set TRUE only as a result of the Message Control System (MCS) executing the SET/
RESET SEQUENCE MODE (TYPE= 49) DCWRTTE. In addition, the TYPE 49 DCWRITE also stores
the starting sequence number and increment in the appropriate fields of the DCP Station Table.

Sequence mode can be used for any application that the NOL programmer may see fit. Its use. however,
requires common conventions between the NOL programmer and the MCS programmer. Burroughs
has utilized sequence mode constructs in two (request definition)s of SYMBOL/SOURCENDL:
READTELETYPE and WRITETELETYPE. Both require the cooperation of SYSTEM/CANOE to effect
the execution of those statements. The reader is referred to those (request definition)s as an example
of a particular application that Burroughs has implemented.

5-103

Definitions

REQUEST

Initialize Statement

INITIALIZE STATEMENT

Syntax

INITIALIZE ------1~ DCC-----------------------..:__..,
I

~---CRC-----------------------1~

1------RETRY-----------------------.

.__.,___ __ TALLY__.. [---1..-.... (tally number)·----11-. ...] ---~-

.___ __ TOG .. (toggle number) ---4] ---

Examples

INITIALIZE DCC.
INITIALIZE CRC.
INITIALIZE RETRY.

Semantics

INITIALIZE BCC

This construct causes the (byte variable) BCC to be initialized for purposes of accumulating a Block Check
Character. The value to which BCC is initialized is dependent upon the horizontal parity defined for the
station's associated (terminal definition) (in the (terminal definition parity statement)). If horizontal
parity is defined as HORIZONTAL:ODD, theri BCC is initialized to all ones (i.e., 4"FF"). If defined as
HORIZONTAL:EVEN, then INITIALIZE BCC initializes BCC to all zeros (i.e., 4"00").

INITIALIZE CRC

This instruction initializes CRC to the initial value required for calculating the Cyclic Redundancy Check.
Any (terminal definition) referencing a (request definition) (in the (terminal request statement))
that contains this instruction must define the horizontal parity (in the (terminal parity statement)) as
HORIZONTAL:CRC(16); otherwise a syntax error is generated.

INITIALIZE RETRY

This instruction causes the value stored in DCP INITIALRETRY to be stored DCP RETRY.

INITIALIZE TEXT

The function of this form is to initialize the message text pointer to zero. When initialized to zero, the
message text pointer points to the first text character of the message.

5-104

-

-

·-

Definitions

REQUEST

Initialize Statement - Continued

INITIALIZE TRAN

This form causes zeroes (i .. e., EBCDIC zeroes, 4"FOFOFO") to be stored in the appropriate Transmission
Number fields of the Station Table. In a Receive Request, zeroes are stored in the Receive Transmissirm
Number field; in a Transmit Request, zeroes are stored in the Transmit Transmission Number field ..

INITIALIZE TALLY [(tally number)]

Titis form causes the specified station TALLY to be initialized from the appropriate message header field
if a message is present; otherwise the specified TALLY is initialized to zero.

INITIALIZE TOG [(toggle number)]

This form causes the specified station TOGGLE to be initialized from the appropriate message field if
a message is present; otherwise the specified TOGGLE is initialized FALSE.

5-105

Definitions

REQUEST

Initiate Statement

INITIATE STATEMENT

Syntax

. Examples

INITIATE RECEIVE.
INITIATE TRANSMIT (3 SEC).
INITIATE BREAK.

Semantics

INITIATE RECEIVE

(~NULL·. _.,)

L..,_(delay time)_J

The INITIATE RECBVE construct causes the adapter cluster to initiate a receive delay calculated for the
station. After the delay, the hardware is ready to receive information. ·

The amount of time delayed, referred to as the Initiate Receive delay, is unique to each station and is \:w/
calculated at compile-time for each station. The algorithm that the compiler uses to calculate the Initiate _.,
Receive delay is described in the following three paragraphs.

a. If the (modem definition) referenced in the (station definition) (in the (station modem statement)
defines the modem NOISEDELA Y as bein~ greater than zero, then the Initiate Receive delay is
2 milliseconds less than the combinrd (time)s defined in the (modem noisedelay statement) and
the (modem transmitdelay statement). . ·

h. If the modem NOISED ELA Y is defined as zero and the modem TRANSMITDELA Y is defined as
being less than 7 milliseconds, then the Initiate Receive delay is zero.

c. If the modem NOISEDELAY is defined as zero and the modem TRANSMITDELAY is defined as
being equal to or greater than 7 milliseconds, then the Initiate Receive delay is the lesser of 15
milliseconds or
(1.5 milliseconds+ modem.TRANSMITDELAY).

2 .

The NULL option or the (delay time) option can be used to override the calculated Initiate Receive delay.
NULL immediately readies the hardware so that it can receive information. (delay time) specifies a (time)
to be used in place of the Initiate Receive delay.

Pragmatics
I

An INITIATE RECEIVE instruction .should preced'e the first (receive statement) following a transmission.
If it does not, there is a possibility that execution of the (receive statement) will be delayed for a period
of time of up to 25 milliseconds. The cause of the 25-miHisecond delay is described under the semantics
of the (finish statement). ·

5-106

r'~

' .. -.""! 1'

":'·,:.

INITIATE TRANSMIT

:·:

Definitions ·

REQUEST

Initiate Transmit

The INITIATE TRANSMITconstruct causes the adapter cluster to be 1;ut in atransmit state after a calcu>
lated delay. The amount of time delayed is referred to as. the Initiate Tra11smit Delay, and is unique to .··
each station. It is derived by taking the greater of the NOISEDELAY (time) specified for the modem
configured at the system end, or the TURNAROUND (time) specified by the station's (terminal
definition) . · ·

This construct must be executed prior to any attempt to TRANSMIT;

The NULL option or the (delay time) option can be used to override the calculated Initiate Transmit ·
delay. NULL causes the adapter cluster to be put,in a transmit state· immediately, (delay.time) specifies
a (time) to be used in place of the Initiate transmit delay .. · . . . · , .

INITIATE BREAK

The INITIATE BREAK construct causes biliary zeroes to be transmitted on the line, elUs changing the
state of the line to a ''spacing" condition. The line remains in the spacing condition until some subsequent
instruction causes the adapter, cluster.to change.the state;Of the line; Constructs that would change the
line's state are INITIATE TRANSMIT, INITIATE RECEIVE, FINISH TRANSMIT, BREAK find IDLE .

:\

·:t\..·· .
'f''

I '

'·.­

·"·""

....

. ~.

5-107

Definitions

REQUEST

Pause Statement

PAUSE STATEMENT.

Syntax

Semantics

The (pause statement) suspends the (request definition) in a "sleep" state for a minimum period of
time (200 microseconds for the B 6358 Model II DCP, and 6 microseconds for the B 6350 Model I DCP)
to allow the DCP to service other lines. It is recommended that a (pause statement) be used in any kind
of loop that would tie up processor time and thereby prevent the servicing of other lines. The failure to
do so results in a high number of timeout faults.

Pragmatics

Instances may occur in which the DCP requires an even greater period of "sleep" to service other lines.
Repeated timeout faults, despite utilization of the (pause statement), are indications of such conditions.
A greater period of "sleep" time can be effecte<l hy means of a (delay statement), with the (delay tirnl')
specified greater than "sleep" time effected by the (tJause statement).

5--108

-·

v ._,.
RECEIVE STATEMENT

Syntax .

Examples

RECEIVE.

BCC

CHARACTER

CRC

TEXT

TRAN

(string)

RECEIVE CHARACTER.

--
.....

-

CRCERR ----­

END----

FOKMATERR

LINEl>F:Ll-TI: ·

PARITY----__,.

STOPBIT·---

TRAN ERR--~

WRu·~------<..i

(single character)

RECEIVE (3 SEC) ADDRESS (RECEIVE) [O, ADDERR:lO] ·~·
RECEIVE (NULL) [

PARITY :999.
LOSSOFCARRIER:999,
BACKSPACE:NULL,
END,
WRU:NULL
].

RECEIVE CRC [ERROR (1], CRCERR:lO] ..
RECEIVE "LITERAL STRING" [FORMATERR:NULL].
RECEIVE EOT SOH.
RECEIVE TEXT [END:lOl.

Definitions

REQUEST

Receive Statement

'E("""> .NULL

ABoRT .

5-109

Definitions

REQUEST

Receive Statement - Continued

Semantics

The (rrccil'e statement) causes l11e adapter cluster to attempt to receive information from the appropriate
logical line.

The li.>llowing two syntax items define a maximum amount of time that the adapter cluskr should wait
for rccci1.)t of the n.rst d1arac,~1.·r._ai·1·1.·I then ~ach subse~1ucn! c.haractcr, if ap}1l.icahlc. before a.s~~mling that
the .termmal has ''tmwd out. It neither ot th1.·sc options 1s mcludcd, the (Jm1eout time') def 111cd
(in the (terminal tinzeoul staf£'n1£'11t)) for the station's associated terminal type is implicitly used as
the (timeout time) in this statement. . · · .

(NULL)

This option specifies that the adapter cluster should wait an infinite amount of time.

((timeout time))

The (timeout time) defines a (time) that the adapt~r cluster should wait for a character. If this (time)
is exceeded before receipt of a character, and the TIMEOUT syntax appears, then the action specified for
TIMEOUT is taken (refer to TIMEOUT). lf the (timeout time) is exceeded and TIMEOUT syntax
docs not appear, an implicit TERMINATE ERROR is executed.

The following syntax options define the nature of the information to be received, the amount of
information to be received, and how the information is to be handled. If none of the options are used, it
is semantically equivalent to specifying CHARACTER (e.g., "RECEIVE." is semantically equivalent to.
"RECE_IVE CHARACTER.").

ADDRESS

The proper number of address characters (as defined by the station's associated (terminal definition)
in thi.• (rcrmi11a/ address size statement)) arc received and checked for agreement against the actual
address characters defined in the (station address statement). If the address characters do not correspond,
an address error condition results;if the ADDERR syntax appears, then the specified action is taken. Other­
wise an implicit TERMINATE ERRORis executed. (Refer to the ADDERR semantics.)

ADDRESS (RECEIVE)

This option is equivalent to ADDRESS, except that ADDRESS (RECEIVE) must be used when an address
pair is defined in the (station address statement) and the programmer needs to ch~ck for the proper
receive address. ·

ADDRESS (TRANSMIT)

This option is equivalent to ADDRESS, except that ADDRESS (TRANSMIT) must be used when an
address pair is defined in the (station address statement) and the programmer needs to check for the proper
transmit address. ·

BCC

One character is received and checked against the (byte variable) BC~. If the character received and
BCC are not equal, a Block Check Character error condition results; if the BCCERRsyntax appears,
then the specified action is taken. Otherwise an implicit TERMINATE ERROR is executed.

Presumably, if the ·RECEIVE BCC construct appears, the programmer has defined horizontal parity in
the (Jerminal parity statement), and.the accumulated Block Check Character is contained in BCC.

5-110

v
....._...

Definitions

REQUEST

Receive Statement -- Continued

CHARACTER

One character is received and stored in CHARACTER.

CRC

Two characters arc received.~ The first character hH~hecked against. CRC 10) , and the second compared
against CRC (J J. If the characters received and ·cRC arc not equal, a. CyClicRedundai1ty Check error ;
condition results; if the CRCERR syntax appears, then speCified action is taken. Otherwise an implicit·
TERMINATE ERROR is executed.

Presumably, if.th~ RECEIVE CRC instruction appears, the prograrturier .has defined horizontal parity
as HORIZONT AL:CRC(l 6) in tlw (terminalparitystatement), and the Cyclic Redundancy Check is
contained in CRC (0] and CRC (1]. · ·

; ..
TEXT

Characters are received into CHARACTER and stored in .the text portion of the message space obt~ined
until either a syntax option results in a branch from the (receive statement) ' or a noiwecoverable error,
such as a disconnect, occur8. If the occurrence of a particular character results iri a branch o.utside of the
([eceii1e statement) (as specified by a syntax option), then that character is not stored but remains in
CHARACTER. .

.

The RECEIVE TEXT'construct is, in effect, the same as the following loop:

I : RECEIVE CHARACTER.
STORE CHM~ACTER.
GO TO 1.

ln nearly ;,tll c<1scs, the· (receive statement) should contain optional syntax to avoid the ''c~dless'' loop
and an eventual implicit TERMINATE ERROR as a result of a timeout, end-of.,buffer condition, etc.·

' . .

TRAN

The proper number of transmission number characters (as defined by the station's ~ssociated (terminal"
definition) in the 1.ferminal transmission number length statement)) are received and. checked for agree­
ment with the Receive Transrnissfon Number maintained in the DCP Station Table. If the .characters
received and the Receive Transmission Number are not equal, a transmission J;ltiJ1'ber etror results.· If the
TRANERR syntax appears, then specified action is taken; otherwise artimplicitTE~INATE ERROR
is executed.

(string) . ·

The number of characters as indicated by the length of the (s_tring) are received and checked against thost
characters in the (Ytring). If the (string) and the characters .received are not equal, tnen a format error

· condition results. If the FQRMATERRsyntax option appears, then that action is taken; otherwise an .
implicit TERMINATE ERROR is executed.

111e fol1owing syntax options specify actions to be 'taken upon either the re:ceipt of d~fined characters
or occurren.ces of specific error conditions. · ·

5:_111

... •'

Definitions

REQUEST

Receive Statement - Continued

ERROR [(switch number)]

l11is syntax option associates a previously defined Error Switch with the (receil'e statement). This allows
the programmer to associate a set of previously defined error actions with the (rff<'il'c s.tatc111c·111), thus
reducing the amount of coding required for each (rc•ceiPc stat<!111£'11t). BRFAK, BUFOVFL.
LOSSOFCARRIER, PARITY, STOPBIT, and TIMEOUT syntax options arc not allowed if the ERROR
r (switch number) l syntax appears in the (receive statement). Refer to the (error ,\"Witc!1 stotcmc11t)
for more information.

(<;witch number)

Semantically equivalent to ERROR [(switch number)].

ADD ERR

The ADDERR option variations cause the following actions if an address error is detected when an attempt
is made to receive a terminal's address characters:

ADD ERR

ADDERR:NULL

ADDERR:(/ahe!)

ADDERR:ABORT

BACKSPACE

sets TRUEthe ADDERR (bit variable) and
branches control to the next sequential
statement.

causes no action. Execution proceeds as ii' the
error condition did not occur.

. .

sets TRUE the ADDERR (hit 11ariahle) and
· branches control to (label).

not allowed.

The following BACKSPACE option variations cause the following actions if the terminal's backspace
character (as defined by the (terminalhackspace character statement)) is received:

BACKSPACE

BACKSPACE: NULL

BACKSPACE: (label)

BACKSPACE:ABORT

BCCERR

moves ~he message text pointer backwards one
character position, and branches control to the.
next sequential statement.

moves the message text pointer backwards one
. character. Control remains within the (receive
statement) if of the form RECEIVE TEXT.

moves the message text pointer backwards one
character, anci branches control to (label) . .

not allowed.

The following BCCERR option variations cause the following actions if the character received is not equal to
the data stored in BCC. ·

BCCERR

BCCERR:NULL

5-112

sets TRUE the (bit variabk) BCCERR, and
branches control to the next sequential
statement.

causes no action. Execution proceeds as if the
error condition did not occur. ·

-

BCCERR: (label) .

BCCERR:ABORT

BREAK

Dcfihitions

REQUEST

Receive Statement - Co~tinued

sets tRUE the (bit variable) BCCERR and .
branches controHo (label). . ..

not allowed;

The BREAK option variations cause the following actions as if a break, that .is,. at least two character-times
of a spacing line condition, is detected by t.he adapter cl4ster while receiving: ·

. .

BREAK sets TRUE the (bit variable) BREAK

BREAK:NULL

BREAK: (label)

BREAK:ABORT

BUFOVFL

· (RECEIVE), and branches control to the next
sequential statement. ·

· causes no action; Execution, proceeds as if the
break did not occur. .

sets TRUE the (/Jtt J?ariabl~)! BREAK ..
[RECEIVE], and branches control to (label)~

.· sets TRUE the (bit vamble) BREAK
[RE<;EJVEJ, and::exec\ites an implicit

'TERMINATE ERROR.

The foil owing variatio~ of the 'eUFOVFL option cause the following. actions if the DCP is unable tO service
. a Cluster Attention Needed (CAN) interrupt before the Adapter Cluster receives another charac~er (thus

destroying the previous character):

BUFOVFL

BUFOVFL!NULL

BUFOVFL: (label)

· BUFOVFL:ABORT

CONTINUE

sets TRUE the (bit variabie) BUFOVFL, and
branches control fothe next sequential.
statement

causes no action. .Execution proceeds as if the
· error condition did not occur.

sets TRUE th~ '(b,it va~i~ble) BUFOVFL, and
branches control to (label); . .

sets TRUE the (bit variable) BUFOVFL~ and .
executes an implicit TERMINATE ERROR. .

. . ·.

ThiS item is allowed only in (receive statement)s of (control d.efinitlon)s. and ([equest definition)s that are
written to communicate With full.duplex.tei'minal types. CONTINUE syntax causes action as described .
below if the co-line executeS a (continue statement) before alliilfortnaiion s:Pecitied by the (receive ·
statement) iS received. · · · . · · · .. · , · ·. . . . · · ·.. . · · . . ·• ·.. . ·

CONTINUE branches ·controHo the next sequential
statement

CONTINUE:NULL

CONI'INUE: (label)

CONTINUE:ABORT ·

causes iio action .. Execution proceeds as .if the
(continue statement) had.not been executed.

. branches controlto.(Jabe/).

not allowed ..
. S:-113

Definitions

REQUEST

Receive Statement - Continued

CONTROL

Tlw followinµ variations nf the CONTROL option cause the followinµ actions if the control charadc1: of'··
till' stution (as tkl'i1wd in the (station co11tm/ dtarac·tc·r stal<'lllc•111)) is rccl'iwd:

CONTROL

CONTROL:NULL

CONTROL: (label)

CONTROL:ABORT

CRCERR

sets TRUE the (bit 11ariahle) CONTROLFLAG,
and branches control to the next sequential
statement.

sets TRUE the (bit variable) CONTROL FLAG,
and execution continues if the character was
not the station's control character.

sets TRUE the (bit variable) CONTROLFLAG,
and branches control to (label).

not allo)Ved.

The following variations Of the CRCERR option cause the following actions if the first character received
does not equal CRC [OJ, or the second character received does not equal CRC (1]. ·
(This item is appropriate only for the RECEIVE CRC construct of the (receive statement); refer to the
CRC option.)

CRCERR

CRCERR:NULL

CRCERR: (label) ·

CRCERR:ABORT

END

sets TRU•~ the (bit variahh~ CRCERR, t111d

branches·controJ to·fhc·ncxt !icqucntial statement.

·cause no action. Execution proceeds as if the
error did not occurr;

. sets TRUE.the (bit variable) CRCERR, and
branches control to (Jabel).

not allowed.

The following variations of the END option cause the following.actions if the "end" character of the
st~tion (as d~fine~ by t~e (terminal end character statement). in the (terminal definition) associated
with the station) is received: · · . · .·

END

END:NULL

END: (label)

END:ABORT

5-114

causes control to branch to the next sequential
statement.

causes no.action. Execution procee<lsas if the
character was notthe "end" character.

branches control to (label).

not allowed~

Definitions

REQUEST

Receive Statement - Continued

ENDOFBUFFER

This syntax item is allowed in the RECEIVE TEXT coi;truct of the <n·n·iPc' statemrnt). Thl' varialio11s of
the ENOOFHUFFlm option shown below c:ms<' thl' following adions if l'ithl'r or lhc following conditions
arises:

a. Thl~re is no message space and a11 attempt is mmlc to store i11formation into a message
space (the store function is an implicit action of the RECEIVE TEXT construct), or

b. The number of characters stored in the message exceeds the maximum allowed (the
maximum is defined by either the (terminal maxinput statement) or the (terminal
buffer size statement)). . · . ·

ENDOFBUFFER sets TRUE the (bit variable) ENDOFBUFFER,
and branches control to the next sequential
statement.

ENDOFBUFFER:NULL

ENDOFBUFFER: (label)

ENDOFBUFFER:ABORT

FORMATERR

causes no action. Execution proceeds as if the
error did not occur. ·

st.~ts TRUE the. (bit variable) ENDOFBUFFER,
and branches control to (label). . .

· not allowed.

The following variations of the FORMATERR option cause the following actions if the diaractcrs received
arc not equal lo those in the (string) (this item is appropriate only for the RECEIVE (string) construct
of the <[eceil'e statement)): . · · · · · . .

FORMATERR sets TRUE the (bit variable) FORMATERR,
and branches control to the next sequential
statement.

FORMATERR:NULL

FORMATERR: (label)

FORMATERR:ABORT

LINEDELETE

causes no action. Execution proceeds as if the
error did not occur .

. sets TRUE the (bit 11ariable) FORMATERR,
and branches control to (label). .

not allowed.

The following variations of the LINE DELETE option cause the following actions if the station's
linedelete character is received (the LINEDELETE character is defined by· the (!erminal linedelete
character statement)>: .· · . · · 1 •. · · ·· .· .. ·· .

'i

LINEDELETE.

LINEDELETE:NULL

alters the value of the ~essage text pointer to
point to the first character position in the message
text, arid branches control to the next sequential
statement.

'alters the value of the message text pointer to
point to the first character position in the message
text, and executioi1 proceeds as if the character
was not the linedelete character.

5-115

Definitions

REQUEST

Receive Statement - Continued

LINEDELETE: (label)

LINEDELETE:ABORT

WSSOFCARRIER

alters the value of the message text pointer to
pointlo the first character position in the message

. text, and branches control to (label).

not allowed.

The following variations of the LOSSOFCARRIER syntax .cause the following actions if a loss of carrier
is detected while receiving. · ·

LOSSOFCARRIER

LOSSOFCARRIER:NULL

LOSSOFCARRIER: (label)

LOSSOFCARRIER:ABORT

sets TRUE the (bit variable) LOSSOFCARRIER,
and branches control to the next sequential
statement.

causes no action. Execution proceeds as if the
error did not occur.

sets TRUE the (bit variable) LOSSOFCARRIER,
and branches control to (label).

sets TRUE the (bit variable) LOSSOFCARRIER,
and executes an implicit TERMINATE ERROR.

There is one exception to the actions described above. If a loss of carrier is detected while receiving, and
if the terminal is modem-connect, and if the terminal's (station definition) references a (modem definition)
that contains the construct LOSSOFCARRIER=DISCONNECT, then an implicit disconnect is done,
regardless of the action specified.

PARITY

The following variations of the PARITY option cause the following actions if a parity hit error is detected
by the adapter duster:

PARITY

PARITY :NULL

PARITY: (label)

PARITY:ABORT

STOPBIT

sets TRUE the (bit variable) PARITY, and
branches control to the next sequential state­
ment.

causes no action. Execution proceeds as if the
error did not occur. ·

sets TRUE the (bit variable) PARITY, and
branches control to (label).

sets TRUE the (bit variable) PARITY, and
executes a TERMINATE ERROR.

The following variations of the PARITY option cause the described actions if a stop bit error is detected
by the adapter cluster: ·

STOPBIT

STOPBIT:NULL

5-116

sets TRUE the (bit variable) , and branches control
to the next sequential statement.

causes no action. Execution proceeds as if the
error did not occur.

-·

v -

.v
~··

u \""-"'

t .J.,

STOPBIT: (label)

STOPBIT:ABORT

TIMEOUT

Definitions

REQUEST

Receive Statement -- Continued

sets TRUE the (bit 11ariable) STOPBIT, and
branches control to (label). ·

sets TROE the (bi(variable) STOPBtT, and ;
executes a TERMINATE ERROR.

The variations of the TIMEOUr syntax shown be.low cause the actions describ~d if the time required to
receive a character exceeds the «imeout time). The (limeout time) is defined in the (terminal timeout.
statement), but can be overridden by including the ((timeout time)) or '(NULL) syntax· options in the
(receive statement).· . . .

TIMEOUT

TIMEOUT:NULL

TIMEOUT: (label)

·TIMEOUT:ABORT

TRANE RR

sets the (bit·variable) TIMEOuT~ arid branches
control to the next sequentialstatement. .

causes no action. Execution proceeds as if the
error did not occur.

sets TRUE t4e (bit var/able) .TIMEOUT, and
brapche$ contr.olto (l!J'1el). · ·
sets TRUE t}te (bit.variable) TR,fEOUT, and
executes a TERMINATE ERJtOR. ·

;; t. ,·' . ·. : ... ~ . : .

The following variations of the TRANERR ~ption. cause the described actions if the characters received
and the Receive Transmission Number stored in the Station Table are not equal (this item is allowed only
in the RECEIVE TRAN construc:tof the (receive statement)): · · ·

TRANERR. · . . . ' s'e.ts TRUE-th~ (pit vipiable) TRANERR, and .
'branches control to.the next ·sequential state­
ment.

TRANERR:NULL cau8es rto action .. Exe·c~tion proceeds as if the
· error did notoccur. .

TRANERR: (label) sets TRUE the (bit variable) TRANERR, and.
branches control to (label).. .. .·: ··

TRANERR:M)ORT not all~wed~.
mu , .. ·: .. " - . ·~ ; .

The following variations of the WRU. syntax cause the following actions if th~ WRU character of the
station is received (the <.ftatlori WRU character itatement) defines the WRU character): ..

WRU . · · ... " · . sets TJUJE.the ~U (bit ~ble), and branches
. .. · control to the next sequential. statement. .

. . .
· sets TRUE the WRU ,(bit variable) ; and execution

proceeds as if the character J"Cceived was not the .
·WRU:NULL

WRU character. , . ,

WRU: (label) sets T.RUE. the (.p~t variable) WRU, and branches
control to (label). . . · .

~

WRU:ABORT. ~ot allowed. ·

S-117

Definitions

REQUEST

Receive Statement - Continued

(single character)

The following variations of the (single character) syntax cause the followfug actions if a character received
is equal to the single character :

(single character). branches control to the next sequential state­
ment.

(single character):NULL

(single character): (label) ·

(single character) :ABORT · ·

causes no action .. Executim1 proceeds as if the
character received was not equal to the (single
character). · · · _

branches control· to (label).

not allowed;

The allowa~le combinations of the (receive statement) syntax options are defined in table s :-6 below.
The (N~LL). and ((!imeout time)) options are allowed in any construct of the (receive statement).
Allowed combinations of the other syntax options are denoted by a "X" in the appropriate columns
and rows.

Table S"6. Allowable Combinations for (receive statement)

··ADDRESS

ADDRESS(R~CEIVE)

ADDRESS(TRANSMIT)

DCC
CHARACTER

CRC

TEXT

TRAN
(string)

S-118

x
x
x·

xxx
x xx
xx x.

xx xx
x xxxx·:x

xxx x
x xxxx xx.

xxx
xxx

..
x x x x
x x x x
xx xx
x x x x

xx xx x
x x xx

·xx xx x
xx x x

x x x x x

.xx

xx.
x

..

v

Supplementary Examples

Statement

RECEIVE (3 SEC) [TIMEOUT:IOJ.

RECEIVE ADDRESS [ADDERR:99J.

RECEIVE CHARACTER [CONTINUE: 10,
CONTROL:20,
TIMEOUT:30,
''*":40).

RECEIVE [ERROR[O]].

RECEIVE [OJ.

RECEIVE (1 SEC) TEXT [LINEDELETE:NULL,
CONTROL:NULL].

Definitions

REQUEST

Receive Statement · Continued

Explanation

Causes the adapter cluster to attempt to receive a
character. If thi...~ character is not received within
3 Sl'COIH.ls, the (bit variable) TIMEOUT is set
TRUE and control branches to 10.

If the character(s) received do not equal those
defined in the (~tation address statement). tlw
(bit i1ariable) ADDERR is set TRUE. and control
branches to 99.

This statement would only be allowed in a
(control definition) or (request definition) that
is writkn to comniunicate with full duplex
terminal types, because it contains the CONTINUE
item.

CONTINUE:lO would cause a branch to 10 if the
co-line (control definition) executes a (continue
statement) before a character is received.

CONTROL:20 would set CONTROLFLAG TRUE
. and branch to 20 if the character received is the
station's con trot character.

TIMEOUT:30 would set TIMEOUT TRUE and
branch to 30 if a character is not received within
t~1e (timeout time) d. cfincd in the (fcrminal
tzmeout statement).

04*":40 would cause a branch to 40 if the
character received is the asterisk character.

An attempt is made to receive one character and
store it in CHARACTER, lf any errors described
in the associated (error switch statement) occur
while receiving, then the action defined in that
(error switc/1 statement) is taken.

An attempt is made to receive one character and
store it in CHARACTER. If any errors described
in the associated (error switch statement) occur
while receiving, then the action defined in that
(error switch statement) is taken.

LINEDELETE:NULL causes the message text
pointer to be set to the first character position if
the linedelete character (as defined in the
(terminal linede/ete character statement) is
received, and characters continue to be received
and stored in the message text beginning at the
first character position. ·

5-119

Definitions

REQUEST

Receive Statement - Continued

Statement

5-120

Explanation

CONTROL:NULL causes the (bit variable)
CONTROLFLAG to be set TRUE if the control
character of the station (defined in the (station
control character statement)) is received, and ..
characters continue to be received.

· Definitions

REQUEST

:Shift Statement

SHIFT STATEMENT

Syntax

SHIFf----------~::WN----'

Semantics

The (shift statement) is to be used in a (control definition) that communicates with stations using the
Baudot (5-bit) character code set. (The character code set is defined in the (terminal code statement)
of the associated (terminal definition).)

SHIFT UP indicates that received characters are to be translated to their respective uppercase graphics
(usually referred to as FIGS). ·

....

SHIFT DOWN indicates that received characters are to be translated to their respective lowercase graphics
(usually referred to as LTRS).

If the station does not use Baudot code, the (~hif't statement) acts as a no-op.

Pragmatics

In the Baudot character code set, most bit patterns have two graphic representations; one is referred to
as FIGS (the uppercase graphic); and the other as LTRS (the lowercase graphic).

When transmitting to a terminal that uses Baudot code, the terminal prints LTRS until it receives a
specially designated character indicating that it should shift to printing FIGS. The terminal continues
printing the FIGS until it receiv~s a specially designated character indicating that it should resume printing
the LTRS.

When information is received from a terminal that uses Baudot, the same conventions hold true; that is,
the terminal communicates whether FIGS or LTRS follow, by the transmission of a designated character.
The terminal initially transmits LTRS.

5-121

. .. \

Definitions

REQUEST

Store Statement

STORE STATEMENT

Syntax

CHARACTER [CNUl..L--rJ L ENDOFBUFFER_.: J (label)__J (string)---~

SEQUENCE-------------~~~--~---...

TALL Y-----[---t••(tally number)---.•-] __________..,

TOG [.. (toggle number) •]-------

Examples

STORE.
STORE CHARACTER [ENDOFBUFFER:20].
STORE "ABC" [NULL].
STORE SEQUENCE.
STORE TALLY [O].
STORE TOG [O], TOG [1),TALLY [0].

Semantics

STORE

This form is semantically equivalent to the STORE CHARAcTER construct.

STORE CHARACTER

This form causes the data contained in CHARACTER to be stored in the message space. If no message·
space is associated with the (request definition), then an implicit (getspace statement) is executed.
The data is stored in the character position pointed to by the message text pointer, and the text pointer
is updated after the STORE to point to the next forward character position.

It is possible to encounter the end-of-the-text buffer when using this instruction. It is recommended that
the optional syntax be included whenever using this statement. The optional syntax specifies action to be
taken if the end of buffer is encountered. The NULL option specifies that the only action that should be
taken is to set ENDOFBUFFER to TRUE. The (label) option specifies that the only action thafshould be
tered, control should branch to (label) and also set ENDOFBUFFER TRUE. The ENDOFBUFFER: part
can be included for documentation. An implicit TERMINATE ERROR is executed if no end-of-buffer
action is specified. ·

STORE ~tring)

This form causes 1..ftring) to be stored in the message space. If no message space is currently associated
with the (request definition) ,an implicit <petspace instruction) is executed. The (string) is stored "'-"
in the message space beginning at the character position pointed to by the message text point~r, and the ~
text pointer is updated after the STORE to point to the first character position following the (string) .

5-122

··~

--~

Definitions
. . .

REQUE'.ST·

Store Statement ...,. Continued

Tilis instruction uses CHARACTER as a temporary storage area to store each character of (string) . ·. Thus, .
any data in CHARACTER prior to a STORE (string) instruction will be destroyed. . -.. __ -· · :

lt is possible to encounter the end-of-the-text buffer when using this instruction. Therefore, ids
recommended that this instruction include the optional syntax. Refer to the STORE CHARACTER .
construct for the semantics of this syntax.

STORE SEQUENCE

Providing the station is in sequence mode (i.e., SEQUENCE is TRUE), the STORE SEQUENC~
construct causes the current value of the sequence number to be stored in message word (5 J .[26:27)
is a binary integer, and message word [5] .[27.1] is set TRUE to indicate its presence. If the station
is not in sequence mode (i.e., SEQUENCE is FALSE), then the instruction is a no-op. If no message space
is present at the time of the STORE, then an implicit (getspace instruction) is executed first. · ·

STORE TALLY [(!ally number)]

This form causes the TALLY specified to be stored in the message space header. If no message space is
present, an implicit (getspace statement) is executed ju_st prior to the store operation.

STORE TOG [(toggle number)]

This form causes the TOGGLE specified to be stored in the message space header. If no message space
is present, an implicit (getspace statement) is executed just prior to the store operation.

Pragmatics

The application of the STORE TALLY and STORE TOG .constructs rests solely with the programmer.
Since the message space is usually returned to a Message Control System (MCS), some mutual
convention could be established between the NOL progi-ammcr and the MCS 'programmer as to the meaning
of the con tents of the TALL Ys and TOGGLEs. ·

5-123

Definitions

REQUEST

Sum Statement

SUM STATEMENT

Syntax

SUM

...... Al ·

-- BCC ~

-- CHARACTER ·~

-- RETRY -
-- TALLY

~ (sin le character ' g

Examples

SUM Al.
SUM CHARACTER.
SUM "A".
SUM TALLY [1].

Semantics

~

~

--~
......;
~

--~
-- [.. (tally number) •] --~ ~

) _..

TI1e pmjJose of the (sum statement) is to affect the calculation of the horizontal parity check (whether
that be a 8101.:k Check Charader or a Cyclic Redundancy Check). The specific effect of the (sum state­
ment) is dependent upon two factors: The SUMmed item, and whether the station's (terminal
defini.tion) , for which (request definition) is running, defines horizontal parity as CRC(16). Following
is a description of the effect that each form of the (sum statement) has on the calculation of the
horizontal parity check.

SUM

Semantically equivalent to SUM CHARACTER.

SUM Al.

If the horizontal parity check is a Block Check Character or is undefined, the contents of AI are
exclusively OR~d with the contents of BCC, and the result is stored in BCC.

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
computed with the contents of AI and CRC, and the result is stored in CRC.

SUM BCC

If the horizontal parity check is a Block Check Character or is undefined, then the contents ofBCC
are exclusively OR~d with itself, and the result is stored in BCC. (The result in BCC would be zero
in this case.)

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
computed with the contents of CRC[O] and CRC, and the result is stored in CRC.

5---124

"-i.,_.

Definitions

~QUEST

Sum Statement ~Continued

SUM CHARACTER

If the horizontal parity check is a Block Check Character or is undefined, the contents of CHARACTER
arc exclusively OR-ed with the contents of DCC; and the result is stored in BCC.

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
computed with the contents of CHARACTER and CRC, and the result is stored in CRC.

SUM RETRY

If the horizontal parity check is a Block Check Character or is undefined, the contents of RETRY are
exclusively OR-ed with the contents of BCC, and the result stored in BCC.

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
computed with the contents of RETRY and CRC, and the result is stored in CRC.

SUM TALLY [(tally number)]

If the horizontal parity check is a Block Check Character or is undefined, the contents of TALLY
[(tally number)] are exclusively OR-ed with the contents of BCC, and the result is stored in BCC.

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
computed with the contents of TALLY [(tally number)] and CRC, and the result is stored in CRC.

SUM (single character)

If the horizontal parity check is a Block Check Character or is undefined, the (si~gle character) is
exclusively OR-cd with the contents of BCC, and the result is stored in BCC.

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
computed with the (single character) and CRC, and the result is stored in CRC.

5-125

Definitions

REQUEST

Terminate Statement

TERMINATE STATEMENT

Syntax

TERMINATE

lJLOCK

~ ENABLEINPUT

~ERROR

... LOGICALACK

-- NOINPUT -
NORMAL

Examples

TERMINATE NORMAL.
TERMINATE LOGICALACK.
TERMINATE LOGICALACK(RETURN).
TERMINATE. .

Semantics

l ~(RETURN)

Fach form of the (tcr111inate statement) is described in the following paragraphs.

TERMINATE

~

••
_,.,

~ -
_...

--~

~

This construct causes control to branch from a (request definition) and to begin executing the appropriate
(control definition). Any message that may be queued is left in the Station Queue (regardless of whether
the message is incoming or outgoing) and STATION(QUEUED) is untouched.

TERMINATE BLOCK

In a Receive Request, this construct causes the following actions:

a. an implicit (getspace instruction) is executed (in case the (request definition) may have been
terminated without ever having acquired a message space);

b. the Error Flag field, Last Flag Set field, and DCP RETRY are stored into the appropriate
message fields;

c. the "More-Blocks-to-Follow" bit (programmatically referenced by BLOCK) in the message
(message word [OJ. [29: 1]) is set TRUE;

d. the message is delinked from the Station Queue and linked into the DCP Result Queue; and

e. control continues at the next sequential statement.

In a Transmit Request, the TERMINATE BLOCK construct causes the following:

a. the Error Flag field, Last Flag Set field, and DCP RETRY are stored into the appropriate
message fields;

5-126

~ ___ ,

b. the messagl' is linked into lhl~ DCP Result QUl'llC; and

Definitions ·

REQUEST .. ·

Terminate Statement - Contmued

c. the (request Jeji11ition) is continued at the next sequential statement if STATION(QUEUED)
is TRUE; otherwise, the (request dejl11ilio11) is suspended and put in a "sleep" state Until
STATION(QUEUED) becomes TRUE.

TERMINATE ENABLEINPUT

This construct is allowed in Transmit Requests only.

This instruction causes the following actions:

a. the STATION(ENABLED) bit is tested; if STATION(ENABLED) is FALSE, then this instruc­
tion acts as a no-op; otherwise, steps b through d are executed;

b. the Error Flag field, Last Flag Set field, and DCP RETRY are stored into the appropriate
message fields;

c. the message is linked into the DCP Result Queue; and

d. control leaves t!1e Transmit Request and the station's Receive Request is entered.

TERMINATE ERROR

Tliis construct serves to inform the station's MCS of an unsuccessful·attemptto complete a Receive or
Transmit Request. This instruction inhibits the initiation of any new functions for the station.

The result of the TERMINATE ERROR construct is as follows:

a. STATION(READY) bit variable is set FALSE;

b. a minimum-size message space is obtained, filled with error information for the MCS, and linked
into the DCP Result Queue (its destination being the MCS); .and ..

c. the line is idle until the MCS takes some action.

Additionally, if the TERMINATEing (request definition) was a Receive Request, any message space that
may have been acquired to store a RECEIVEd message is discarded.

The error message sent to the MCS contains the following information:

MSG[O] .[47:8] = 99.

[39:8] = AC Register contents.

[31 :8) = AI Register contents.

[23:24] = Logical Station Number.

MSG{l] .[47:8] = Result Byte Index

[39:6) = Line status prior to TERMINATE ERROR.

(33: 1] = LINE(TOG[l]).

[32: 1] = LINE(TOG[O]).

[31 :8) = Last Flag Set in MSG[l] .[23:24)

[23:24) = Error Flag field.

5-127

Definitions

REQUEST

Terminate Statement - Continued

MSGl21.147:~1 "CllARACTlm.

139: 1<11 '·" L.ast DCP "Sleep" address.

MSGl4l .[23:24l = Original DCWRITE TYPE. (Contains the original contents ofMSG{0).(47:24]
prior to presentation of the message to the DCP.)

Refer to appendix E. 'The Error Result Message," in the B 6700/B 7700 DCALGOL Reference Manual,.
fonn number 5000052, for more information regarding this message.

TERMINATE LOGICALACK

TI1is constrnct is allowed in Receive Requests only. This instruction tests the LOGICALACK bit in the
Station Table. (The semantics of the (station logicalack statement) describe how the LOGICALACK bit
is set.) If LOGICALACK is FALSE, the instruction acts as a no-op and control continues at the next
scqurntial statement. If LOGIC ALACK is TRUE, the following occurs:

a. an implicit (!!.('IS/Ille(' statement) is executed (in case the (request definition) is terminating
without ever having acquired any message space); ·.

h. the ACKNOWLH)GFREADY bit in the Linc Table is set (the consequences of this action are
described suhseqllL'lltly);

c. the "Message to hl' M'KNOWLEDGEd" bit is set in the Error Flag Field;

d. till' Error Flag 1"il'ld, Last Flag Set Field, and DCP RETRY are stored into the appropriate
nll'ssagc !kids;

c. the message is ddinkl'd from the Station Queue and linked into the DCP Result Queue;

r. the line is put in a "sleep" state until the station's MCS responds to the message with an
ACKNOWLEDGE (TYPE= 44) DCWRITE; and

g:. upon receipt of the ACKNOWLEDGE, the Receive Request is allowed to continue at the
next sequential statement.

The ACKNOWLEDGEREADY bit is inaccessible to the NDL programmer, and it exists for each logical
line in its Linc Table. The only time that this bit will be TRUE is when a station's LOGICALACK bit is
TRUE and its Receive Request has executed the TERMINATE LOGICALACK construct or the
TERMINATE LOGICALACK(RETURN) construct. Once TRUE, the ACKNOWLEDGEREADY bit will
not be set FALSE, and the (request definition) will not be allowed to continue until the MCS executes
the ACKNOWLEDGE (TYPE= 44) DCWRITE.

TERMINATE LOGICA,LACK(RETURN)

TI1is construct is allowed in Receive Requests only. This instruction tests the LOGICALACK bit in the
Station Table. (The semantics of the (station /ogicalack statement) describe how this bit gets set.) If this
bit is found TRUE, this statement functions exactly as does TERMINATE LOGICALACK; refer to that
form for semantics. If LOGIC ALACK is FALSE, the following occurs:

a. an implicit (get.space statement) is executed (in case the (request definition) is terminating
without ever having: acquired a message space);

b. the Error Flag field. Last Flag Set field, and DCP RETRY are stored into the appropriate message
fields;

c. the message is delinkcd from the Station Queue and linked into the DCP Result Queue; and

d. control continues at the next sequential instruction in the (request definition).

5--128

Definitions

REQUEST

'i'crminatc Statement - Continued

TERMINATE NOINPUT

If executed in a Transmit Request, this fonn is semantically equivalent to the TERMINATE c01isth1ct (refer
to thut construct for semantics). When executed in a Receive Request, the following occurs:

a. any message space that may have been acquired is discarded;

b. LINE(BUSY) is set FALSE; and

c. control branches to the appropriate (control definition).

TERMINATE NORMAL
. .

The purpose or this construct is to signal the satisfactory completion of a (request definition). If executed
in a Receive Request, the following occurs: .

a. an implicit (getspace statement) is executed (in case the !.tequest definition) is terminating
without havi.ng ever acquire~ a message space); · ·

b. the Error Flag field, Last Flag Set field, and DCP ENTRY are stored into the appropriate
message fields; ·

c. the message space is delinked from the Station Queue and linked to the DCP Result Queue:

d. LINE(BUSY) is set FALSE; and

e. control branches from the (request defi11ilion) and (providing the DCP does not take advantage
or LINE(BUSY) set FALSE to initiate a (request de.flnitio11)) the appropriate (mn tml
defi11itio11) is entered.

If TERMINATE NORMAL is executed in a Transmit Request, the following occurs:

a. the Error Flag field, Last Flag Set field, and DCP RETRY are stored into the appropriate message
fields:

b. the mes.c;age is linked into the DCP Result Queue;

c. LINE(BUSV) is set FALSE: and

cl. control branches from the ~equest definition) and (providing the DCP does not take advantage
of LINE BUSY) set FALSE to initiate a (request definition) the appropriate (controldefinition)
is entered.

In the Transmit Request case, the message linked to the DCP Result Queue is a result message (specifically,
a GOOD RESULTS (CLASS= 5) Message). The intended destination is the MCS; however, the MCS has
the option of whether to accept GOOD RESULTS Messages or to have the DCC discard them.

S-129

Dclinitions

REQUEST

Transmit Statement

Tl~ANSMIT STATl!:MENT

Syntax

<cRECEIVE--r---)

- TRANSMITJ

TEXT~~~~~~~~~~~-994

TRAN-~~~~~~~~~~-...

~Hri11g)---~---------...

Examples

TRANSMIT.
TRANSMIT CHARACTER [BREAK:NULL].
TRANSMIT SOH STX 4 .. 00" [BREAK:lO].
TRANSMIT TRAN.
TRANSMIT ADDRESS(TRANSMIT)[BREAK].
TRANSMIT TEXT[BREAK].
TRANSMIT "LITERAL STRING".

Semantics

[_.BREAK--~~--~-.-•]

=t<1abe1>

NULL

,._

TI1e (transmit statement) causes the adapter cluster to transmit information to: a terminal. The following
group of syntax optio11s specifics the information to be transmitted. All options, except CHARACTER, use
the (b;·te i1ariab!e) CHARACTER as a temporary storage area; thus, any information contained in
CHARACTER before execution of the (transmit statement) shall be destroyed by the (transmit statement).
If none of the first group of options are chosen, it is semantically equivalent to specifying CHARACTER
(i.e., TRANSMIT is equivalent to TRANSMIT CHARACTER).

ADDRESS

The proper number of characters (as specified by the station's (terminal definition) inthe (terminal
address si:::e statement)) are taken from the Address field in the Station Table and transmitted.

ADDRESS(RECEIVE)

This option is equivalent to ADDRESS, except that ADDRESS(RECEIVE) must be used when an address
pair is defined in the (station address statement) and the programmer wants to transmit the receive address.

5- -130

Definitions.

REQUEST:.
Transmit Statement - Continued

ADDRESS(TRANSMIT)

This option is equivalent to ADDRESS, except that ADDRESS(TRANSMIT) must be used when an·
address pair is defined in the (station address statement) and the programmer wants the transmit address
transmitted.

BCC

The BCC option causes the content of the (byte variable) BCC to be transmitted.

CHARACTER

The CHARACTER option causes the content of the (byte variable) CHARACTER to be transmitted.

CRC

This option causes two bytes to be transmitted; CRC[O) is transmitted first, followed by CRC[11. If the
station's (terminal definil ion) does not define horizontal parity as CRC(16), the use of this option causes
a syntax error to be generated at compile time.

SEQUENCE

This option causes the character representation of the value stored in the Sequence field of the Station
Tahk to be transmitted if the station is in sequence mode (i.e., the (bit variable) SEQUENCE is '(RUE):
otherwise, the (transmit statement) is a no-op. . · .

TEXT

This option extracts characters, one at a time, from the associated message, using CHARACTER as a
temporary storage .irea, and transmits the characters until the end of the text buffer is encountered. Atthat
point. control branches to the next statement. The TRANSMIT TEXT construct is, in effect, the same as
the following loop:

I: FETCH [ENDOFBUFFER:2).

2:

TRANSMIT CHARACTER.
GOTO 1.

This option can only be used with the (transmit statement) in Transmit Requests.

TRAN

The proper number of transmission number characters (as defined by the station~s (terminal deiinition)
in the (terminal transmission number length statement))are extracted from the Transmit Transmission
Number field in the Station Table and then transmitted. . ·

(string)

Each character of (string), using CHARACTER as a temporary storage area, is transmitted. ·

Ddinitions

REQUEST

Transmit Statement - Continued

The BREAK option allows the programmer to specify action if a "break" is received from the tenninal : ,· · ··
while the adapter cluster is still transmitting. If this option is omitted and a break occurs, an implicit· ·.
TERMINATE ERROR instruction is executed. The following ·describes the actions of the three syntactical
rorms:

BREAK

BREAK: (label)

BREAK:NULL.

5-132

sets TRUE the (bit 11ariable) 8REAKlTRANSMITJ and causes a branch· of
1.:ontrol to the next statement.

sets TRUE the (bit 11ariable) BREAK[TRANSMIT] and causes a branch of .
control to (label) . . . · . . .

causes ilo action. Execution proceeds as if the break did not occur:

" ~ .

WAIT STATEMENT

Syntax

· Definitions

R,EQUEST

Wait Statement

WAIT --,---------~--~---~~-~~----------------~• ·

.__ (__.....(wait time)--.---------------..-----..)~

Examples

WAIT.
WAIT (3 SEC).
WAIT (5 MILLl:6).

Semantics

--•-: ---1• (label)----f

The (wait statemc111) is only allowed in (request dejinitioll)s that are written to communicate with full
duplex terminal types. Execution of this statement causes the (request definition) to be suspended until
the co-line executes a (continue statement). The optional syntax effects the statementas described below.

(wait time) defines the maximum amount of (time) that the (request definition) should
be suspending waiting for the (continue statement). If (wait time) is
exceeded and the co-line has not executed a (continue statement), execution

~ resumes at the next sequential statement.

(wait tim£'): (label)

Pragmatics

same as above except execution resumes at (lahel) if a (contiliue
statement) is not executed within (wail time).

Refer to the (fork statement) pragmatics.

5-133

Defmitions

STATION

STATION DEFINITION

Syntax

STATION • (station ide11tifier)11r< :

L DEFAULT _.(default station ide11tifier)J

Examples

STATION KMET:

ENABLEINPUT = FALSE.
MCS = SYSTEM/CANDE.
CONTROL = 4"6F". . .
RETRY = IS.
LOGICALACK = FAISE.
MYUSE = INPUT. OUTPUT.
TERMINAL = TELETYPE.

STATION DEFAULT STADFLT2:·

S-134

CONTROL
MCS
ADAPTER
DEFAULT

= ''?''.
== SYSTEM/CANOE.
= 4. .
= STADFLTI. ,

(t;tation adapter statement)-----rl-4~

(<;talion address statement)---.-...a

(station control character statement)

(station default statement) ___ ...,.

(station enableinput statement) ·---11..i

(station frequency statement)--~

(station initialize statement)--_....,.

(station logicalack statement)------~

(station MCS.statement) ___ __. ...

(station modem statement)---.--

(station myuse statement)----aM

(station pag£' .vtatement)----......

(Ytuti<Jn 11h<me stat£•m<'llt)---...... ~

(vtatimr retry stal<'luent) ·-----1.-.
(vtatipn terminal t)'{Je statement)

(station width statement) ___ ...,.

·~·

Semantics

Definitions

STATION

Continued

(station idl'ntUicr) and (clefault station identifier) have the syntactical form of a (systrm identifier).
Each syntactical form of the (~talion definition) is described subsequently. ·. ·

STATION (station identifier): ...

This form of the (station definition) defines the attributes of a station. The attributes must be. defined in
one or the following ways:

a. Fach attribute is explicitly defined by means of a (station statement).

h. Each attribute is defined implicitly by means of an explicit reference to a set of previously ·
delincd default attribute values.

c. Some of the attributes are defined implicitly as in b, and the remainder are defined explicitly as
in a.

Som1.: of the station attribu.tes must be defined for each station; others do not. Some of the statements
may or may not be required, depending upon the appearance of other statements. The semantics portion
of each (station statement) states, among other tilings, whether the attribute must be defined and its
efkc:t upon the requirements of other (station statement)s. _ . ..

To de tine tlw attributes of a station as described in item a above, only this syntax form is used.

To tktim· thl' attributes of a station as described in items band c above, this syntax form~ the following
syntax form. and the (station default statement) must be used in conjunction (this is described under the
followi11g syntax form).

STATION llEF AULT (default station identifier): ...

This form is referred to as a Default (station identifier). Its purpose is to decrease the number of source·
stakments rt·quired to define all of the stations. This is accomplished in the following manner. Attributes
common to sl'vcral stations arc defined by means of a Default (station definition). Associated with.each
Default (statio11 cle.finitio11) is a (default statio11 identifie1). Subsequent to the Default (station
clt'finitio11), any (statio11 deji11itio11) can reference the (dC'.fitUlt station ide11tifler), instead of repeating
the list. J\ (d<'.fiwlt station identUier) is referenced by means of a (station default statcme11t). The NOL
compiler uses the last definition of a station attribute, and therefore the programmer can reference a
Default ('ltation definition) and change any attributes by re.defining them in the (station definition).

In appearance, the Default (station definition) is similar to the (station definition). The differences are
that the reserved word DEFAULT follows the reserved word STATION, and that there are no statements
that are required to appear in a Default (-;talion definition).

. 5-135

'·

Definitions

STATION

Station Adapter Statement

STATION ADAPTER STATEMENT

Syntax

. .

ADAPTER - =~(communication type number) · ·.· ·· · j.;\
!_. (-+(communication iype number)-· (communication typt numbei}+) - ··

Examples

ADAPTER =4.
ADAPTER= (I 1 ,6).

Semantks

The ('·talion adapter stale111e111) defines a combination of character format, synchronous/asynchronous
rnmmunication, and line speed ·on the case of synchronous communications) that the DCP must use to· ·
communicate with the terminal associated with the station. This is done by supplying a (comrriunication ·
t_\'/Jl' m11nhe1). {or number pair). Table 5-4 lists the allowed «·mwnunication type nitmber)s and the ·
characteristics associated with each. · ·

For example,

ADAPTER= 4.

TI1is statement de lines an I I-bit character format, asynchronoµs communication, at a line speed of 110 bits.
per second. ·

If the station's associated tcnninal type utilizes full duplex (i.e., the (terminal duplex statement) ~pecifies
l>UPLEX=TRUE), and the primary and the auxiliary lines have different characteristics, then a .
(n m11111111irnti<m type 11t1111/>er) pair must be supplied. . . ·

For example,

ADAPTER= (I 1 ,6).

This statement defines for the primary line a I 0-bit character format, asynchronous communication, at a
speed of 1800 bits per second. The characteristics associated with the auxiliary line a.re the same except
that it runs at a line speed of 150 bits per second.

The statement:

ADAPTER= (6,6).

is semantically equivalent to:

ADAPTER=6.

TI1e (com1111111icatio11 type number) (or number pair) defined in this statement must be one of those
listed in the (termi11al adapter statement) of the station's associated germinal definition). The (station
adapter stateme111) is required unless the (terminal adapter statement/- lists only one (communication type
11w11he1) (or number pair), in which case, the (station adapter statement) may be omitted and the
(terminal adapter statement) specification is used. · · -~

·...,,_;

5-136

".

Definitions·

STATION

Station Adapter Statement:. Continued

Supplementary Examples

111e following program fragments illustrate valid adapter statement specifications.

Example l

MODEM AMODEM:

ADAPTER=l ,2,3,4,S,6,7 ,8,9,10.

TERMINAL ATERMINAL:

ADAPTER=6,7,8,9,1 l,12,13,14,1S.

STATION ASTATION:

ADAPTER=?.
MODEM=AMODEM.
TERMINAL=A TERMINAL ..

Example 2

MODEM DUPLEXMODEM:

ADAPTER=6, (11,6), (12,6), 12.

TERMINAL DUPLEXTERMINAL:

ADAPTER=6, (11,6).

STATION DUPLEXSTATION:

ADAPTER=(l 1,6).
MODEM=DUPLEXMODEM.
TERMINAL=DUPLEXTERMINAL.

5-137

Definitions

.STATION'

Station Address Statement

STATION ADDRESS STATEMENT

Syntax

ADDRESS ___.=~(string)

· . I___.(... ,,.. (string)

Examples

ADDRESS = 4"01 ".
ADlDRESS = (4"0001 ",4"01 ").
ADDRESS = "A".

Semantics

; ... ·.·,

____.f
.., '----t•~(string)-.---1• ...)-

.....

The (•·talion address statement) defines the actual address characters-of the station's terminal that are
required for operations such as polling and selecting. The number of characters in the (string)(s) must be
equal to the number defined in the (terminal 4ddress size statement) of the associated terminaL This
statement is not allowed in Default (station definitions).

ADDRESS = ('a ring).

This fonn of the statement is used when the receiv·e address and the transmit address are thesame;

ADDRESS = ((•aring), ('!tring)).

This fonn of the statement must be used if the..receive address and the transmit address differ. The first
(string) defines the receive address ~haractcrs, and the second (string) defines the transmit address
characters. · · · . . . · · ·

Pragmatics ·

The address characteB of a station can be changed as a result of the Message Control System (MCS)
executing a SET CHARACTERS (TYPi;: = 39) DCWRITE. .

• .. ·· ' .

. '

·,·.

5-138

.'{'

.•.·.··

STATION CONTROL CHARACTER STATEMENT

Syntax

Definitions

STATION··

Station Control Character Statement

CONTROL .. =-----... •(single character)-------------.;..__,_....;_

Example

CONTROL = "?".

Semantics

l11e (station control character statement) defines t)le control character of the station. Th~ control
character can be recognized by the DCP when RECEIVEd in a message text from the station; and any
action to be taken can be specified by the programmer using the CONTROL syntax in the (receive
statement). ·

5-139

Definitions

STATION

Station Def a ult Statement

STATION DEFAULT STATEMENT

Syntax

DEFAULT .. =----~,(default station identifier)----------------~

Examp~e

D~FAULT = STADFLTI.

Semantics

TI1e (station default statement) allows the programmer to specify the (default station identifier) of a set·
of prev~ously defined default station attributes to be used for a (station definition) whose description is
incomplete. It is advaritageous to group common attributes under a Default ~tation definition) arid list
the rcniaining attributes under each individual (~talion definition). The compiler will then refer to the
Default (\·talion definition) to complete the (\·tation definition). The ~tation default statement) is not
required to appear in each (Ha Ihm definition) ; however, a ('>tation definition) must define all required
attributes locally if a (ration default statement) does not appear.

TI1e (~tation default statement) can appcnr in a (station definition) or a Default (station definition).

Supplementary Example

The following is an example of how a Default (r;tation definition) can be used in conjunction with a
(station definition).

5-140

STATION DEFAULT STADFLT:

MCS = SYSTEM/CANOE.
CONTROL = "?".
RETRY = 15.
LOGICALACK = FALSE.
MYUSE = INPUT, OUTPUT.

{Default (station definition)}

TERMiNAL =TELETYPE.
ENABLEINPUT =TRUE.

STATION TESTSTATION:
{

(station default statement) references
= STADFLT. ~------ Default (station definition) above to DEFAULT

MODEM
MCS
ADAPTER

= MABELL103A. complete the (station definition).
= SYSTEM/DIAGNOTICMCS.
= 4.

•

',-._;

/

t,:. ..• •

"' ~~- ..• : ':i,::·: .
r;_• ...

. ~· . . ; ..
Definition's ·

sTATION.

. ' .;.~. . ,.

Station Enable~put Statemen·

STATION ENAIJLEINPUT STATEMENT

Synt:1x

ENABLEINPUT ----= -------<: · TRUE ·

1 ' ----FALSE------

Semantics

l11c ('ltation enableinput statement) defines the initial state of the station's "'enabled'' bit {program•
matically referred to as STATION(ENABLED)). This statement must be defined in each (staiion .
definition). · . . . · · · . · · · . . · : . · ·

ENABLEINPUT = TRUE.

l11is construct causes the ''enabled" bit to be initially TRUE after DCP initialization, and the station is
said to be "enabled for input," or simply "enabled.'' ·

. ENABLEINt>UT = FALSE.

....

lllis constn1ct causes the "enabled" bit to be initially FALSE after· DCP inithili:zation, and the station is ·
said to be "disabled for input," or "disabled." .

Pragmatics

Whether a station is enabled or disabled for i~put can· directly affect the execution sequence of instructions
in the <co111rol clc•/i11itJon) and ([c~quest cleji11iti<i11) (s) designated for that station. Specifitally, ifthe ·
station is disabled for input, control wilJ never branch to the.Receive Request for that station as a: result
of either an INlTIATE ENABLEINPUT or a TERMINATE ENABLEINPUT construct. Refer to the .
INITIATE ENABLEINPUTand TERMINATEENABLEINPUT constructs formoredetailedinformation.

. I ·... . . , . .

The MCS of the station may change the sU.te of the "enabled" bit, after DCP initialization, by means of the
ENABLE INPUT (TYPE= JS) DCWRITE or the DlSABLE INPUT (TYPE.!!!! 36) OCWRITE .

. ;

I• , .

... .

. ··•

' . '

.:: ..

. '
. ·.f.

• ..

.: .. .

.....
..... :

' .
. . .

.·

. S,--141

Definitions

STATION

Station Frequem;y Statement

STATION FREQUENCY STATEMENT

Syntax

FREQUENCY ----1..-.... -------1 ... <integer)-------------------

Example

FREQUENCY = I 0.

Selnantics

The ('talion frequellt'J' statem£'11t) defines the initial value of the (byte iiariable) programmatically
referred to as STATION (FREQUENCY). The ~·ontrol definition) specified for the station can reference
th1.: (h1' te 1wiahlc) and use tl1c value stored there in any way that the programmer sees fit; however, the
intemled use or the variable is to in llucnce in some way the rate at which a polled station is polled. In the
polling ~·rmtrol clcjinifion) provided by Burroughs Corporation in SYMBOL/SOURCENDL,
FREQUENCY specifics a relative polling rate: 0 means poll at the highest rate, 1 means to poll at a slower
fate, 2 means to poll at a still lower rate, etc.

The (i111ege1} must not exceed a value of 255.

l11c MCS of the defined station can change the value of STATION(FREQUENCY) by means of an ENABLE
INPUT (TYPE = 35) DCWRITE.

5-142

-

-

Definitions·

STATION

Station lnltinlizc· Statement

STATION INITIALIZE STATEMENT

Syntax

INITIALIZE TOG-... [--.(toggle number)_...] . . ~•=~TRUE·.

TOGSJ · J· l...FALSE

TALLY .., [-+(/ally number)_..],. [.... (bit number)•]

TOGS ... =~integer

TALLY__... [+(!ally number)--.) J . l..(single character)----'

Examples

INITIALIZE TOGS= 4"FF".
INITIALIZE TOGIOI =:TRUE.

TALLYI 1 I = 25;
TALLY(OI 171 =TRUE.

INITIALIZE TALLY(OI = "?".

Semantics

The ('itation initialize statement) provides the means to define initial values for th~ station TOGGLEs aitd
TALL Vs. Any initial values defined for station TOGGLEs andTALLYs are stored in the TOGGLEs and
TALLYs at DCP initialization time only. ·

5-143

Definitions

STATION

Station Logicalack Stakmcnt

STATION LOGICAi.ACK STA'IT!\11-:NT

Syntax

LO(:JICALACK -----1.-•
:

TRUE f
..._ ____ FALSE -~-__,.... _

Semantics

....

The (station logicalack stal<!l11<'n t). defines the initial state of a bit, referred to as the Logicalack bit, in the
Station Table. TRUE or FALSE can be specified, indicating the initial state.as on or off, respectively. If the
LOGICALACK bit is on, special action is taken if the Receive Request executes either the TERMINATE
LOGICALACK or TERMINATE LOGICALACK(RETURN) constructs of the (tem1inate state1nent).
This statement is required in ('itation dcfi11itio11)s. .

TI1c MC'S of the station can change the value or the Logicalack bit after DCP initialization by means of the
SET/RESET LOGICALACK (TYPE= 43) IX'WRITE. .

f ._·

5-144 .

STATION MCS STATEMENT

Syntax

Definitions

STATION

Station MCS Statement

MCS ---------=-----....... (MCS identifier)-------------4111-

Examples

MCS = SYSTEM/RJE.
MCS = SYSTEM/APL.
MCS = UTILITY /MCS.

Semantics

The (station MCS statement) defines the Message Control System (MCS) that is responsible for handling
messages to and from the station. If the MCS named is not an MCS defined in a (MCS definition) , it is
added to the list of valid MCS programs to be contained in the Network Infonnation File, and the MCSwill
not be allowed to execute diagnostic DCWRITEs. Refer to the semantics of the (MCS definition) for
infonnation regarding the diagnostic DCWRITEs. This statement is required in (station definition)s. ·

...
_:;

' . . t·

~ . . 5-145

• i·
! ; . ' • . ~ I.

,I l

Definitions

STATION

Station Modem Statement ·

STATION MODEM STATEMENT

Syntax

MODEM-----..-.= -------1~(modem identifier)-------------...... ·

Example

\IODEM = BELL201.

&mantks

The (~tatirm /ll(}(/<'111 .\·tate111<•111) applies to a slalion that has assodatcd with it a terminal type that must
rnmmunkatl~ with the Data ('omrmmications System through the use of a modem. This statement .
associates tlw mmkm type (i.l'., a (111ode111 dc.fi11itio11)) used for that purpose with the station. If this
stalcml·nl is omitted from lhl' (~tatiou t!C'flnitio11). and the (lim• d<'finilion) for the line to which the
station is assigned (if. in fod. tlw station is assir,ned to a line) docs not contain a (line modem .<itatem.c•111),
thl·n llw compiler assunws a dirl·ct co11nccti011 between the terminal and the line adapter.

The ~11wde111 idc•111i,fk1) must name a ~11ode1'1 dcjlniti<)n) that is compatible with the defined station
at1rilmks. To he more specific, the (commu11icatio11 typ<' number) specified in the (station adapter
s111t<·111c111) (or in the (1er111i1111l adapter statemelll) of the station's (terminal definition) if no (station
atla111cr slate11u•111) a1~pcars) must be one of the (communication type number) s listed in the (modem
aclaptcr statement) of the modem named. · .

After DCP initialization. the MCS of the station may change the (.fnodem deji11ition) associated with the
station, hy m~ans of the MOVE/ ADD/SUBTRACT STATION (TY PE = 130) DCWRITE.

5--146

v
~ ...

....
lkfi 11il i·OllS ·

STATION

Station My use Statement
,· .

STATION MYUSE STATEMENT

Syntax

MYUSE

Semantics

OUTPUT~~~~~~~~~~~~~...,

INPUT

OUTPUT

..,. , ___,.,. OUTPUT------

... , -----• ... INPUT-----11

The ~'>tation myuse statement) defines to what extent an object job can use the station as in input
or output device.

MYUSE=lNPUT specifies that an object job can use the station as an input file only.

MYUSE=OUTPUT specifies that an object can use the station as an output file only.

MYUSE=JNPUT,OUTPUT or MYUSE=OUTPUT,INPUT specifies that an object job can use the station as
an input and/or output file.

A (termi11al rcqu<'sl statemeni) must be defined by the stution's (terminal definition) for handling input
and/or output capahilities as sp!!cilicd in the (station myuse statement). Thus. if the station is to send
input to. and n.·ceivc output from, an object job, the station's (terminal d<'finition) must specify a Transmit
Request anti a RL·cciw Re<1ucst.

Nok that thl' (~talion myusc state me Ill) restricts the use of the station by object jobs only. The MCS
can communicate with the station to the extent specified in the (/erminal request statement) of the
station's <.f<'rmi11al cltfinition) . That is, regardless of what is specified in the (station myuse statement) ,
the MCS can receive information from, or send informatioll to, a station, provided that the station's
(terminal definition) specified a Receive an~ Transmit Rl'quest.

The station MYUSE attribute can be interrogated by an object job through reference to the MYUSE
file attribute. For further information, refer to the B 6700 Input/Output Subsystem Information Manual,
form number 5000185. · ·

...

5-c-147

Definitions

STATION

Station Page Statement

STATION PAGE STATEMENT

Syntax

PAGE-----~= --------(integer)----------------.....

Examples

PAGE= 12.
PAGE=O.

Semantics

The (<1tatio11 page statement) defines the number of logical lines per logical page. The (integer) specified
must be less than or equal to the number of lines specified in the <ferminal page statement) of the
station's (faminal definition) (unless that number is zero, indicating pagination is arbitrary). If a
(iota! ion page statem<'nt) is nol included in the (r;tation definition) , the station's (ferminal definition)
specifications for pagination arc used. ·

An object job may obtain the PAGE value' of a station, if the station is attached to a file, and that file
is open, by interrogating the PAGESIZE file attribute and supplying the File Relative Station Number
(FRSN). Refer to the PAGESIZE attribute in the B 6700 Input/Output Subsystem Information Manual,
form number 5000185, for more information.

,!'-•;i

5--148

STATION PHONE STATEMENT

Syntax

Definitions

· STAUON

Station Phone Statement

PHONE-----1.., ==---------........ (integer)---------------~

Example

PHONE= 12136572385.

Semantics

The (station phone statement) is implemented for documentation purposes only. This statement
documents the telephone number that the system would have to dial to reach the station's terminal,

5-149

Definitions
STA110N.

Station Retry Statement

STATION RETRY STATEMENT

Syntax

. , .

RETRY-----1~ =--------(integer)---------------......

Example

RETRY=J.

Semantics

Tht' (station retry statement) defines a default value for DCP INITIAL. RETRY. Refer to the RETRY
(hvte variable) for more information. ·

5--150

-

. I

' ·. :

:' • r ; ~ ~
• . ! :·

. i

.,

Definitions·.·
stinoN ::;<:

···

: .: : ~ .

._J: < .. · r ;]<
Station Terminal Type:Stateda~utt

. · · RATION. TERMINAL 'IYPE STATEMENT
SyntaX ~· :·'

TERMINAL .-, =------... (terminal identifier)-----------....... -.-.

Examples

TERMINAL= APLTERM.
TERMINAL= TrY.

Semantics

The .(station terminal type statement) associates a terminal type with the staUon .. Tliis statement is
required in a ~tation definition) • · . · ·. ·

After DCP initialization, the MCS of the station can change the tenninal'type asmciated with the station ·
by means of the MOVE/ADD/SUBTRACT STATION (TYPE= 130) DCWRITE~

~ .. . '

..... ·

. ··!:"

. : :

...
' .

· Odillitions

• • ~ ., ~-· .·~ ; . ;i. nATION ·
Station·Width Statement

""'; .. ~

STATION WIDTH STATEMENT

Syntax

WIDTH---........ = --------4• (integer)-----------------......

Examples

WIDTH= 72.
WIDTH= 132.

Semantics

The ('itation width statement) defines the .number of characters in a logical display line of output on the
station's terminal. If this statement is not included in a ~~tation definition), then the WID111 defined
for the station's (terminal definition) is the default station WIDTH. · ·

An object job can interrogate a station's WIDTH by testing the value of the WIDTH file attribute. Refer
to the B 6700 Input/Output Sub~ystem Information Manual, form number 5000185, for further
information.

5-152

TERMINAL OEFINITION

Syntax

TERMINAL[(ra111i11e1/ ide111iJkr)11>:

DEFAULT_.. (default terminal ide11tijier)J

Definitions ·

TERMINAL

(terminal adapter statcml'nt)--------~l"""I

(terminal addr<'ss size stateme11t)·-------"'i

(terminal buffer size statement)-------a1

(terminal backspace character statement)---~

(terminal carriage character statement)-----

(terminal clear character statement)-· -----...a
(ter1i1i11al code dwracter stat<'mc11t)------~

(terminal control statement)--------fll>'I

(terminal default statement)----------..i

(terminal duplex stateme11t)------'----...i

(terminal end cllaracta statem<.'nt)-------i

(terminal lunm· character state111e11t'>-----...,.

terminal illegal cl1aracter stat<'m<'llt)-----....,.

(terminal inhibi tsync· stateineti t)-------e""

(terminal inter-character delay statement)---.,..

(terminal linedelete character statement)---­

(terniinal linefeed character statement)----~
f 1 f
'(t<tfimina/ maxtnput statement) ---------~

(terminal page statement)----------1..i

(termi11a/ parity statehzerit) ------'---1~

(terminal request statement)--------­

(terminal sc•reen stutement)---------­

(terminal timeout state_ment)·--------...i

(terminal transmission number length statement)

(terminal rumaround statement)-------e..i

(terminal width statement)--------~

(terminal wn1 chararter .~tatem.enr)-----.....

5-153

: .

, ·Definitions
TERMINAL; , . ·:. .~ I

... 'd''. Contmue :, i.' .

Examples

TERMINAL TTY:

CODE
PARITY
SCREEN
BUFFER
DUPLEX
ADDRESS
WIDTH
MAXINPUT
TIMEOUT
REQUEST

CONTROL

= ASC67.
= NULL.
= FALSE.
= NULL.
= .FALSE.
= NULL.
= 72;
= 72.
= 300SEC.
= RECEIVE: READTIY,

TRANSMIT: WRITETfY.
= CONTENTION DEVICE.

TERMINAL DEFAULT DEFAULTLISTl:

CODE
PARITY
SCREEN
BUFFER

Semantics

= ASC67.
= NULL.
= FALSE.
= NULL.

, ., .rf·. ;~ :
· .. ~ _

(terminal identifier) and (default terminal identifier) each have the syntactic form of (identifier) . .

·• Each construct of the (terminal deji11ition) is described subsequently.

TERMINAL (terminal identifier) : ...

This form of the qermina/ definition) syntax \.tefines the attributes of a terminal type_in the data·
communications network. Mostterminal attributes are hardware-dependent. The attributes of the
terminal type are defined in one of the following ways:

a. Each attribute is defined explicitly by means of a (terminal attribute statement) in the
(terminal definition).. ·

b. Each attribute is defined implieitly by an explicit reference· to a set of previously defined
default attribute values.

c. Some of the attributes are defined implicitly as in b, and the remainder are defined explicitly
as in a.

Some of the (terminal statement)1 must be defined for each (f erminal definition); others do not.
Some of the statements may or may not be required, depending upon the appearance of other state-
ments. The semantics portion of each (terminal attribute statement) states, among other things,
whether the attribute must be defined and its effect upon·the requirement of other attribute definitions.

To define the attributes of a TERMINAL as described in item a above, this syntax form must be used.

To define the attributes of a terminal type as described in items b and c above:, this syntax form, the
foUowing syntax form, and the (terminal default statement) must be used in conjunction (this is described
under the following syntax form). · ·

5-154

~--·

TERMINAL DEFAULT (default terminal identifier): ...

This form is rl'fcrrcd to as a Default ~erminal definition).

I

Definitions

TERMINAL

Continued

Its purpose is to decrease the number of source statements required to define all of the terminal types in
the data communications system. This is accomplished in the following manner. Attributes common to
several terminal types are defined by means of a Default (terminal definition) . Associated with each
Default (terminal definiti011) ·is a. (default terminal identifi~r). Subsequent to the Default (tem1inal
definition), any (/erminal definition) that has those attributes in common may reference the ~efault
terminal identifier) , instead of repeating the list. (A (default terminal identifieY; is referenced by means
of a (terminal default statement).) The NDL compiler uses the last definition of a terminal attribute, and
therefore the programmer can reference a Default (terminal definition) and change any attributes by
redefining them in the (ferminal definition).

In appearance, the Default (terminal definition) is similar to the (terminal definition). The differences
are that the reserved word DEFAULT follows the reserved word TERMINAL, and that no statements are
required to appear in a Default (terminal definition).

Supplementary Example

Below is an example of how a Default (terminal definition) can be used in conjunction with a
(terminal definition). .

(DEF AULTLISTl is the (default

TERMINAL DEFAULT DEFAULTLISTl:

CODE = ASC67.)
PARITY = NULL. (
SCREEN = FALSE. ('
BUFFER = NULL. J

) terminal identifier) of this Default

l (t. erm. ina.I definition). The set of default
attributes that follows is referenced by
this name. ·

{ (terminal statement)s define.the default l
attributes associated with DEFAULTLISTI .1

Above, DEFAULTLISTI has associated with it four attributes. Any subsequent (terminal definition)
in a source program can reference these default attributes by the appearance of a (terminal default .
statement) in the (terminal definition). The (/erminal default statement) has the form:

DEFAULT • =----..-..(default terminal identifier)--------

where the (default terminal identifier) must name a previously defined Default (terminal definition).
More information regarding the use of Default (terminal definition) sin conjunction with (ferminal
default statement)s can be found in the (terminal default statement) semantics.

Below, ITY uses the (/erminal default statement). to reference DEF AUL TLIST 1. DEPAUL TLIST J
contains the attribute information required to complete the (terminal definition) ITY:

TERMINAL TTY:

{
This(. termina.l defaul.t statement)

DEF AULT = DEF AULTLISTl...,..,...,___ references the Default (terminal
DUPLEX = FALSE. definition) defined previously.
ADDRESS = NULL.
WIDTH = 72.
MAXINPUT = 72.
TIMEOUT = 300 SEC.
CONTROL = CONTENTIONDEVICE.
REQUEST = RECEIVE: READTIY, TRANSMIT: WRITETTY.

5-155

' . !

. Defintions

TERMINAL

Terminal Adapter Statement

TERMINAL ADAPTER STATEMENT

Syntax

.-----------------, ...
ADAPTER ~==----~~rn1111111mit'atio11 t.r11e 1111111/Jer)I .., .

(-.(rn111111u11icatio11 type 1111111/Jer)__.... , __...(com1111111icatio11 type number)..,..)J
Examples

ADAPTER=4.
ADAPTER= (6,10), (10,6).
ADAPTER= S, (5,6), 6.

semantics

The (terminal adapter statement) defines one or more combinations of character format, synchronous/
asynduonous communication, and line speed (in the case of asynchronous communications), with which
the terminal type is compatiole. This is done by supplying one or more (communication type number) s
(or number pairs). Table 5-4 lists the allowed (communication type number) sand the characteristics
associated with each.

If the terminal type is to be operated in a full duplex mode, and the primary and the auxiliary lines have
different characteristics, then a (fommunication type number) pair must be supplied.

If the terminal is to be modem-connected (i.e., co·nnected to the system through the use of modems),
then at least one of the (communication type number)s (or number pairs) must be compatible with those
numbers listed for the connecting· modem in the (modem adapter statement).

5-156

..

TERMINAL ADDRESS SIZE STATEMENT

Syntax

Definitions

TERMINAL

Terminai Address Size Statement

ADDRESS -..=-.-------------NULL------------~•·

L (receive address size) ------------~r---------...,t1t
L' -eii- (tra11smit address size) J L (DIFFERENT) J

Examples

ADDRESS=2.
ADDRESS= 2 (DIFFERENT).
ADDRESS = 3, 2 (DIFFERENT).
ADDRESS= 2,3.

Semantics

TI1e (terminal address size statement) defines the number of address characters that the terminal type
transmits and receives. The number of address characters must not be confused with the actual address
characters used in polling and selecting; the (station address statement) defines the actual address char­
acters. This attribute must be defined when actual address characters are defined in the (station
address statement) of a ~tation definition) that references the f.!erminal definition).

(receive address size) and (transmit address size) must be integers greater than zero and less than 4.
The (receive address size) defines the number of'address characters the terminal expects to receive, and
the (transmit address size) defines the number of address characters that the terminal transmits. If the
(transmit address size) is n.ot defined, it is assumed the (transmit address size) is equal in length to the
(receive address size). The (receive address size) and the </ransmit address size) for a given terminal
must concur with the length of the character (string) (s) defined as the actual address characters in the
(station address statement) of any (station definition) which references the (terminal definition) ;
otherwise, a syntax error results.

The (DIFFERENT) option must be used if the (receive address) and the (transmit address), as defined
in the (station address statement), are not identical.

5-157

Definitions

TERMINAL

Terminal Backspace Character Statement

TERMINAL BACKSPACE CHARACTER STATEMENT

Syntax

BACKSPACE~~~---1~ ___ ..,,... (si~e character) ---c--(-D_YN_A_M_l_C_)_=i_.....-___ _. •

Examples

BACKSPACE = 4 .. 16".
BACKSPACE="-" (DYNAMIC).

Semantics

-
• < .

The (terminal backspace character statement) defines the backspace character of the terminal type
(i.e., the character that the terminal type would transmit to indicate that the previous character should
be deleted). If defined, the backspace character can be recognized by the DCP when RECEIVEd (il?a
(receive statement)), and any action to be taken can be specified by the programmer (using the
BACKSPACE syntax).

(DYNAMIC) indicates that the controUing MCS of a station referencing the (terminal definition) is
allowed to change the backspace character for the station by means of a SET CHARACTERS (TYPE=39)
OCWRITE.

5-158

v
'\-.

''-'·

TERMINAL BUFFER SIZE STATEMENT

Syntax

BUFFER_...=~ NULL f
, ~(integer)----

Examples

BUFFEit =NULL.
BUFFER= 960.

Semantics

Defintions

TERMINAL

Terminal Buffer Size Statement

••

The (terminal buffer size statement) applies to buffered devices and defines the size, in characters,
of the terminal type buff er. If the terminal type is an unbuffered device, the form:

BUFFER= NULL.

can be used, or the statement may be omitted; additionally, if the device is unbuffered, the (terminal
1naxinput statement) must be defined for the (terminal definition). ·

5-159

Definitions

TERMINAL

Terminal Carriage Character Statement

TERMINAL CARRIAGE CHARACTER STATEMENT

Syntax

CARRIAGE. ... = ------(single diaracter) ---------------~

Example

CARRIAGE= 4 .. 0D".

Semantics

l11is statement is implemented for program documentation purposes only. This statement provides a
means of documenting the carriage return character of a terminal type. The documentation of this
character is optional in a (terminal definition).

5--160

v

Definitions'

TERMINAL

Terminal Clear Character Statement

TERMINAL CLEAR CHARACTER STATEMENT

Syntax

CLEAR----- =------(single character)----------------......

Example

CLEAR= 4 .. 11 ".

Semantks

This statement is implemented for program documentation purposes only. It provides a means to
dol:ument the clear character of a terminal type. The documentation of this character is optional in a
(terminal definition).

5-161

Definitions

TERMINAL

Terminal Code Statement

TERMINAL CODE STATEMENT

Syntax

CODE .. = --- ASCII BINARY) (--•
__...
~ 7 ..,, ASC6

- 8
p ASC6

..... - >OT -BAUi

_.. - BCD --
_... - ----BCL

-- RY
~ BINA

---- IC -- . EBCD

-@' PTTC 61

Semantics

The (terminal code stote111c111) spl'cifics lhl' charadcr code translation required for the DCP to
communicate with the tnmi11al typL'. ThL' i11knwl code or the DCP is EBCDIC. and the DCP translates
from EBCDIC to t hL'. code s1wcilkd for transmissions, and from the code specified to EBCDIC for
R'ccptions.

BINARY <llld EBCDIC specify I hat translation is not required.

ASC67 and ASC68 specify the standard software translation tabks for the ASCII character code.

ASCII (BINARY) allows a (control definition) or (request definition) to switch back and forth between
ASCII code translation amt' no translation. The 1·ode statement) in a (request definition) oi
<control definition) effects the switch back and forth. The application of this feature is to allow a
vequest definition) or ~·ontrol dc.f'initiOI~ to enter a "transparent" mode in Binary Synchronous
communica lions procedures.

BAUDOT, BCD, BCL, and PTTC61 specifications are all indicative of the translation they invoke. For
example. BAUDOT invokes the Baudot character code set, PTTC61 invokes PTTC/6, etc.

Pragmatics

For special applications a programmer can define anc,l invoke non-standard character codes by:

a. defining a translation table in a (franslatetab/e definition);

b. specifying BINARY or EBCDIC in the (terminal code statement); and

c invokin!,! the translation in a (control definition) or(request definition) by means of the .
appropriate option of the (assignment statement) . .

Refer to the (translatetable definition) in this chapter for more information.

5 -162

Definitions

TERMINAL

Terminal Control Statement

TERMINAL CONTROL STATEMENT

Syntax

CONTROL___..=___,,,. (control identifier)

L , _..· (control identifier) _J
Examples

CONTROL= CONTENTION.
CONTROL= PRIMARYCONTROL,

AUXILIARYCONTROL.

Semantics

.,.. .

The (terminal co11trol statement) specifics the (control definition)(s) responsible for allocation of the
logical line(s) to which a terminal type is associated. This attribute must be defined for all (terminal
definitions). ·

Terminal types that do not utilize full duplex, reverse channel, or voice response features require that only
one (control identifier) be named.

Terminal types that utilize full duplex, reverse channel, or voice response features (Le., DUPLEX = TRUE)
may optionally specify a second (control identifier). The first (control identifier) names the (control

U definition) for the primary line, and the second (control identifier) names the (control definition) for
.. _ the auxiliary line. If only one (control identifier) is specified, it is assumed to be the (control de.fl11ition)

for the primary line, and thl' dl~fault equivalent of an (idle statemrnt) is used for auxiliary line control.

~ . .

5~163

l).:finitions

TERMINAL

Terminal Default Statement

TERMINAL DEFAULT STATEMENT

Syntax

DEFAULT----_.= -----•~(de.fiwlt terminal iclc11tijler)-----------1.,

I ·:xample

DEFAULT = TTYDFLT.

Semantics

The (terminal default statement) allows the programmer to specify the (default terminal identifier)
of ;1 set of Jcfault terminal attributes previously defined to be used for a (terminal definition)
wllosc dcsc.:ription is incomplete. It is advantageous to group common attributes under a Default
(terminal dej/11itio11) and list the remaining attributes under each individual (terminal definition).
The compiler will then refer to the Default (terminal definition) to complete the (terminal
definition). The (terminal default statement) is not required to appear in (terminal definitions);
howcwr, a (terminal definition) must define all required attributes if a (terminal default statemen1)
docs not appear.

The (terminal default statl'l'nent) can appear in a (terminal definition) or a Default (terminal
dejluitiun). . ·

Supplcmc11tary Examl>le

The following L~xamplc illustrates how \terminal default statemelll)s may be "nested'' to combine the
attrihull's or one or more lkfault \terminal dejlnitio11)s. ·

The effect M referencing GENERALDEFAULT within the Default (terminal definition) TTYDEFAULT
is that the attributes associated with TIYDEFAULT are equivalent to all attributes as defined by
GENERALDEFAULT plus the attributes explicitly defined in TIYDEFAULT.

If a (!erminal definition) or Default (terminal definition) references a Default (terminal definition),
the compiler docs not compare the two definitions for contradictory statements. lf contradictory state­
ments exist within the two definitions, the last value defined for the attribute takes precedence. In the
example. TTY2 defines the value of the PAGE attribute as 66, and the Default (terminal definition)
that TTY2 references defines the value of the PAGE attribute as 0. The compiler uses 66 as the value
of the PAGE attribute for TTY2.

5 -164

..
Definitions · ·. ·

. TERMINAL··

Terminal ~efault Statement - Continued

TERMINAL DEFAULT GENERALDEFAULT:

TURNAROUND = 0.
ICTDELAY = 0.
TRANSMISSION = 0.
ADDRESS = 0.
PAGE = 0.
BUFFER = 0.

TERMINAL DEFAULT TTYDEFAULT:

-... ...---Default (terminql definition) ·

DEFAULT
BLOCK
SCREEN
PARITY
SYNCS
TIMEOUT
MAXIN PUT
WIDTH
ADAPTER
CODE

= GENERALDEFAULT. .. I (terminal default statement) references·
= FALSE. ·---\ above Default (terminal definition)s.

TERMINAL TTYl:

DEFAULT
DUPLEX
WRU
END
BACKSPACE
CONTROL
REQUEST

TERMINAL TTY2:

DEFAULT
DUPLEX
WRU
BACKSPACE
CONTROL
REQUEST (1)
REQUEST [2].
PAGE

= FALSE.
=NULL.
= FALSE. >·411,.....--nt.~foult (taminal definition)
= 3 SEC.
= 72.
= 72 ..
= 4.
= ASC67.

= TIYDEFAULT .. _,...,._ ___ --'i{ (terminal default statement) references
= FALSE. above Default (terminal definition)s. ··
= ENQ.
= ETX (DYNAMIC).
= BS (DYNAMIC).
=CONTEND. .
= WRITETTY: TRANSMIT, READTTY: RECEIVE.

= TTYDEFAULT. { (trrminal drfault statement) rcfcrcm:cs
= FALSE. .,... ____ above Default (terminal definition)s.
= 4''98 ...

. = 4"97".
= SPECIALCNTRL.
=. READER: RECEIVE, WRITER: TRANSMIT.
= READPPT: RECEIVE,. WRITEPPT: TRANSMIT.
= 66.

5-165

Definitions

TERMINAL

Tcnninal Duplex Statement

TERMINAL DUPLEX STATEMENT

Syntax

DUPLEX

. ~'

... =----:TRUE
...._--t~FALSE -. ___ ___ _.

Semantics

The (terminal duplex statc111c111) defines whether or not (TRUE or FALSE, respectively) the terminal
type utilizes full duplex, reverse channel, or voice response features. If DUPLEX = TRUE, then the (line
definition) for any line that has this terminal type assigned must c;ontain the (line type statement) con:­
structs that specify full duplex. This attribute must be defined for each (terminal definition).

5--166

Tl'IUtHNAI. ft:NI> < 'llARA<TFI~ STATFl\U:NT

Sy11l:1\

END---------1.-. = ---••(si11glt; character)

Examples

. END= 4"0D".
END="&" (DYNAMIC).

Semantics

Dermition~;

TERMINAL

Terminal End Charaeter Statement

L (DYNAMIC) :J
....

The (terminal emf character statement) defines the "end'' character of the terminal type (Le., the character
that the tenninal type would transmit to indicate an end-of-text). If defined, the "end" character can he
recognized hy the DCP when RECEIVEd (in a (recC'iJIL' statement)), and any action to be taken can h1..·
specified by the programnll'r (using the END syntax).

(DYNAMIC) indicates that the Mcssagl' Control System of a station referencing the (Jerminal de.f711itio11)
is allowed to change the character for the station hy means or a SET CHARACTERS (TYPE=39)
DCWRITE.

5-167

Definitions .

TERMINAL

Terminal Home Character Statement

TERMINAL HOME CHARACTER STATEMENT

Syntax

HOME-----=-----(single character)-----~---------....

Example

HOME=4"0C".

Semantics

TI1is statement is implemented for program documentation purposes only. It provides a means of docu­
menting the home character of the terminal type. TI1e documentation of this character in a (terminal
definition) is optional.

5-168

TERMINAL ILLEGAL CHARACTER STATEMENT

Syntax

Definitions

TERMINAL

Tenninal Illegal Character Statement

ILLEGALCHR -----t ... = ----llurai:s.-(single character) -------------~

Example

ILLEGALCHR = 4"FF".

Semantics

The (terminal illegal character statement) is implemented for documentation purpos~s only. The docu-
mentation of this character is not required in a (terminal definition). . ·

5-169

Definitions

TERMINAL

Tenninal lnhibitsync Statement

TERMINAL INHIBITSYNC STATEMENT

Syntax

INHIBITSYNC ----- = -..--.---1:-TRUE ~:: f
.___ _____ """FALSE ______ __,_ -

Semantics

...

'i11c (terminal inhibitsync statement) affects only terminal types that specify any of the (communication
type 1111111/Jer)s 17 through 27 in its (terminal adapter statement). This statement has no affect upon, and
need not be defined for, terminal types that do not specify any of those (communication type number)s.

If INHIBITSYNC = FALSE, then the following occurs during a synchronous transmission. The trans­
mission begins with the transmission of four sync characters by the adapter cluster. As the fourth sync
character is being transmitted, the first character of the message is requested from the DCP. The DCP
should respond to this request by supplying the first character of the transmission. As each supplied
character is transmitted, the adapter cluster requests another character. If the DCP is unable to respond in
time to the request, the adapter cluster transmits a sync character; this process is called "sync filling."
Sync filling is repeated as necessary until the DCP responds with another character or the DCP directs the
adapter cluster to "finish transmit" for the line.

When INHIBITSYNC = FALSE during a synchronous reception, the following occurs. At the beginning of
the reception, bit patterns from the line are examined by the adapter cluster and the bits discarded until a
sync character is recognized. The recognition of a sync character establishes that the next bit to be
received by the adapter cluster is the first bit of the next character. The sync character is discarded,
instead of being made available to the DCP. All charaders in the transmission that are not sync characters
are made available to the DCP. The DCP may then fetch these characters. Any sync characters received in
the transmission arc discarded.

IflNHIBITSYNC =TRUE, then the following occurs during a synchronous transmission. All actions occur
that would occur if INHIBITSYNC = FALSE. In addition, if a sync fill is required, a "sync fill interrupt"
occurs so that the DCP can determine when one or more undesired sync characters have been inserted into
the transmission. System software responds to the interrupt by executing a TERMINATE ERROR. The
controlling MCS is notified of all such situations so that corrective action (MAKE LINE READY (TYPE=
96) DCWRITE, for example) can be taken.

When INHIBITSYNC =TRUE duri,ng a synchronous reception, the following occurs. At the beginning of
the reception, bit patterns from the line are examined by the adapter cluster and the bits discarded until a
sync character is recognized. The recognized sync character is discarded, as is the next character if it is
also a sync character. Thereafter, all subsequent characters (sync characters or otherwise) are made avail­
able to the DCP as data.

The reserved word SYNCS is a synonym for INHIBITSYNC.

5-170

·--'

v ...__..

TERMINAL INTER-CHARACTER DELAY STATEMENT

Syntax

Definitions

TERMINAL

Terminallnter-Character Delay Statement

ICTDELAY------1~ = -----t~(delay time)--------------..

Examples

ICTDELA Y = 0.
ICTDELA Y = 200 MILLI.

Semantics

The (terminal inter-clwra('ferde/ay statement) provides the user a means to insert ·a timed deiay between
each character transmitted to the terminal type. The (delay time) speci~ed defines the.intervalof (time)
between the transmission of the start of one character to the start of the next character. If the time speci­
fied is less than th~ time required to transmit a character,. this statement ha8 no effect. This attribute must
be defined for alJ (tem1i11al definition)s.

Supplementary Example

A Model 33 TELETYPE can receive characters at a maximum rate of one character every I 00 milliseconds. If.
for some reason, the programmer needs to insert a I 00-millisecond delay between each character trans-
mitted to the terminal, this can be done by specifying:

ICTDELA Y = 200 MILLI.

5-171

'

'

. •, . ,·

.......

Definitions

TERMINAL •

~·· ...

. Temiinal Linedclcte Character Statertaent

...... l

TERMINAL LINEDELETE CHARACTER STATEMENT

Syntax

•• :/.I .

LINEDELETE-----11• =--...ii.•(single character) --r------,-,-........ ---.-.. ·
L(DYNAMIC)_J

Examples

UNEDELETE = 4"07'·.
LINEDELETE = 4"AO".

Semantics

111c (terminal linedelete character statement) defines the linedelete character of the tenninal type. If .
defined, the Jinedeletc character can be recogniZed by the DCP when RECEIVEd (in a (receive statement)),
and any action to be taken can be specified by ~e programmer (using the LINEDELE.TE syntax).

(DYNAMIC) indicates that the Message Control System of a station referencing the (terminal definition)
is allowed to change the character for the station by means of a SET CHARACTERS (TYPE=39) ·
DCWRITE.

5-172

·. :'. ": ~ ..
:~·· · ..

....

TERMINAL LINEFEED CHARACTER STATEMENT

Syntax

Definitions

TERMINAL

Terminal Linefeed Character Statement

LINEFEED .. = -----1 .. ~ (single character) -----------------...

Example

LINEFEED= 4"25".

Semantics

This statement is provided for program documentation only. It documents the linefeed character of the
terminal type. The documentation of this character in a (terminal definition) is optidnal.

5-173

Definitions

TERMINAL

Terminal Maxinput Statement

TERMINAL MAXINPUT STATEMENT

Syntax

MAXINPUT------t~= -----e. (integer) ______ .._. _____ ...__~

Exam1>le

MAXIN PUT= 72.

Scmantks

Thl' (terminal maxi11///ll stau·mc•11t) applies to unbuffered .terminals and d<.~fines the maximum size text, in
characters, that a terminal is allowed lo transmit in one message. This attribute must be defined in all
(1ermi11al definition).,· in which the (taminal buffer size statement) is not defined or is defined as
BUFFER= NULL. This statement applies only to unbuffered devices; it is meaningless to define tnaxin­
put if th<.' (terminal buffer size statement) is defined as non-NULL. · .

5-1'74

"-J ··-·

TERMINAL PAGE STATEMENT

Syntax

Uetmmons

TERMINAL·

Terminal. Page Statement

PAGE --------1 = ____ ...,.. (integer)---------------...-

Examples

PAGE=O.
PAGE= 12.

Semantics

1l1e (!cnninal !Jage statement) defines the maximum number of output lines per page as restricted by the
hardware of the terminal. There are, for example, devices that can only print/display a defined.number of
lines before some type of carriage/cursor controi information must be supplied. If the terminal type being
defined has no such restrictions, then ·

PAGE= 0.

should be specified, thus indicating that pagination is arbitrary. This attribute must be defined for all
(tenni11a/ defi11itio11)s.

5-l'7S

Definitions

TERMINAL

Tcnninal Parity Statement

TERMINAL PARITY STATEMENT

Syntax

PARITY -.= ------11• NULL-----------------------~

Examples

PARITY = NULL.

VERTICAL--...... : I EVEN

L...ooo-_...

HORIZONTAL-----~-~---.4~:~EVEN

c-C~Tl L..ooo

L-----------llP: _.CRC(16)

PARITY = VERTICAL:ODD.
PARITY= HORIZONTAL:CRC(16).
PARITY= VERTICAL:ODD, HORIZONTAL(O):EVEN.

Semantics

The \lcr111i11al parity statement) defines the type of parity checking and generation to be performed by the
DCP when communicating with the terminal type. If the form:

PARITY=NULL.

is used, parity is not checked or generated.

The VERTICAL option refers to the vertical parity bit of a character, and can be defined as ODD or EVEN.

The HORIZONTAL option specifies the type of horizontal parity. If horizontal parity is a Block Check
Character, then ODD or EVEN must be specified. If horizontal parity is a Cyclic Redundancy Check, then
CRC(16) must be specified.

The 0 or 1 option defines the function of the vertical parity bit of the Block Check Character. If this bit is
a parity bit for the Block Check Character, then this option must be omitted or defined as 0 (zero). If
undefined, the option is assumed to be 0 (zero). If the bit is to be considered as a horizontal parity bit of
all high-order bits in the message, then this option must be defined as I.

5-176

... . :
·. ····.:.
' ·,. ·· .. · ; .. ···. '· . . :·,

• i 'i,,:: ·. ~· .•• ' ,, • . ; . .. ~ .. ·.· , , ...
· . : l>ef'Jnitions > ·

.\. , .. ,

......... t .. ·.:·::t/ .
· ... ::< · ..

: .·
. ·:

.TERMINAL·
Terminal Request .-Statement·

.TERMINAL REQUEST STATEMENT .

Syn ta~ .,

(rec1m•st iclmtifit;r)..,..: ..,.RECEIVE

. (r<·qm•st iclelllificr)_._:_.TRANSMIT

Exa1nples

REQUEST e READTIY :RECEIVE.
REQUEST= WRITETTY:TRANSMIT. READTTY:RECEIVE.
REQUEST[ll = TTYTAPEIN:RECEIVE. TTYTAPEOUT:TRANSMIT.

Semantics

. '.

The (terminal request statem~nt) specifies a (request identifier), or a pair of qequest ide~tifier)s~ that.
designates the (request clefiniti01i) to handle input froni (the RECEIVE option) and/or output to (the ·
TRANSMIT option) the tenninal type. The (request definition) that handles input is commonly referred
to as the Receive Request, and the (request definition) that handles output is commonly referred to as the
Transmit Request; This statement must appear in each (/erminaldefinition), and cannot appear in a
Def a ult (terminal definUion).

·~ Tite { (in teg<•r) value of 1 through 6} allows the specification of up to six pairs of Transmit. a11d Receive
Requests for the same device. Nonnally,. these Request pairi differ for some application-depen,dent • ·
reasons. Only one pair of (request deJlnition)s can be the controlling (request clefinition)s at any instant
of time. TI1e (request definition)s in control of the tenriirial type immediately after DCP initialization
has an l(integer) value of 1 through 6} of 1; they retain control until the Me~age. Control System (MCS)
of a station associated with the terminal type executes a SET APPLICATION NUMBER (TYPE = 38)
DCWRITE.. . .

' .

. , .

S-177

. . : ' ~'

. ·~

; .. ·'

· · . ~finitions:· ./~ : . { .. · · .; ·
TERMINAL :.·:. · ...• : . ,·

Terminal ~n'Statement .:: · . · ·
. . ' - ' - . . , .- ., ~ .. . ·. :. ' .

TERMINAL SCREEN STATEMENT

Syntax

·,

SCREEN--------1-.= -----1: .. · TRUE ------...----------t-.-. · .
-----1-•f ALSE ____ f

Semantics

llte (terminal screen statement) defines whether or not (TRUE or FALSE, respectively) the terminal type
is a screen (i.e., CRT) device. This attribute must be defined in each (terminal definition). .

'·

....

:· ..

5-178

·~-

·ttRMINALTIMEOUTSTATEMENT.

Syntax

-•.•. :fr •. "·.
,.

·"',. ,. .,.,, ·:::.· ·.·•":. '

·t ·

· .. Definitions - . . ' . .

TERMINAL
· Te~inal Tihie~~fStatcment ·.

TIMEOUT _____,. - ----"""-4•. (timeoui time) _________,. _ __.,.

Example

TIMEOUT= 3 SEC.
. . - ~

Semantics

The (terminal timet>ui statement) defines th~ interval of{time) that the adapter cluster should wait from
the receipt of one character to the start of the next On. a (receil'e statement)> before assuming that the
terminal has "timed out." The action taken upon a timeout coridition can be specified Jn a·(recei11e
stateme11t). by means of the TIMEOUT s)-ntax. . ·· .. · ·

.. '/

... · ·,
I:

;.

. . .. -~.i :~

-... '

s~119
.: .··
...

Definitions

TERMINAL
Terminal Transmission Number Length Statement

TERMINAL TRANSMISSION NOMOER LENGTH STATEMENT

Syntax

TRANSMISSION .. = NULL - I

0 _..
~ ~

~

-- 2 ----
- 3 -~

Semantks

--~

TilC (terminal transmission number length statement) defines the number of characters that the terminal
transmits and receives as the message transmission number. The 0 and NULL options are semantically
equivalent and specify that no transmission number is used. A non-NULL transmission number length
must be specified if a (control definition) or (request definition) that reference,& the item TRAN is ·
defined for the terminal type. This statement may be omitted from. a (terminaldefinition) if the terminal
does not transmit or receive transmission numbers.

5-180

Definitions

TERMINAL

Terminal Turnaround Statement

TERMINAL TURNAROUND STATEMENT

Syntax

TURNAROUND----11•= ---4m.i..(time)---------------...

Examples

TURNAROUND= 0.
TURNAROUND = 200 MILLI.

Semantics

The (tenninal turnaround statement) defmes the time required for the terminal to sh.fft from transmitting
data to receiving data. The (time) defmed is a parameter of a compiler algorithm for ;calculating the .
initiate transmit delay. Refer to the semantics of the (control definition) or (request (lefinition)
(initiate statement) in this chapter for more information. This attribute must be defined for each ·
(tenninal definition). · . . ·· . · . ·

,',t'I

' ·~- i

•. !

5-181

Definitions

TERMINAL
Tenninel Width Statement

TERMINAL WIDTH STATEMENT

Syntax

WIDTH-------1.-. =--...-.(integer)---------------..,.

Example

WIDTH= 80.

Semantics

The (terminal width stal<'ment) defines the width, in characters, of a display line of output on the tenninal
type. The (integer) must be greater than 0 and less than 256; additionally, the value of the (integer) must
be less than or equal to the size defined in the (terminal buffer size statement), if present. ft is not .
required that the (terminal width .vtateinent) appear in a (tenninal definition). If the (terminal width
statement) is not defined in the (terminal definition), then the buffer size value is substituted for this
value, if present; otherwise, the value of MAXINPUT is substituted by default.

5-182

41>,C~f)ennitions
. ,. • ... ,'*'~··; :·~.:TERMINAL:

,,,. ·• '~;*' · · · · '. ~ . Tenninal WRU CharactefStatement

;;. ~··.· •i< ..

.. ..
TERMINAL WRU ClfARACTER STATEMENT

$Yftta'f. ,·

WRU-------------__,.~

. Examples

WRU = 4 .. 20" (DYNAMIC).
WRU = "?''.

Semantics

.. < single character). r . _J'

. l... (DYNAMIC)· .. · ... ·

...

The (terminal WR U character state;,ent) defines the WRU character for the terminal type (i.e., the . · ·
character the terminal type would transmit to request a response from the DCP). If defined, the WR U
character can be recognized by the DCP when J,tECEIVEd (in a (receive statement)), and any action to be
taken can be specified by the program,qi¢r (il$ing the WRU syntax).

(DYNAMIC) indicates that the Message Control System ofa station ref~rencing the (terminal definition)
is allowed to change ,the charaet"'r for the station by means of the SET CHARACTERS (TYPE=3 9)
DCWRITE.

; '.'.

; .

5-183

Definitions

TRANSl.ATETABLE

TRANSLATl·:TAUU·: Dfo:l•INl1'10N.

Sy11tax

.•.

--~~~~-~~~~~~~~~·~·~·~~~~~~~-----------

TRANSLATETABLF.1(1 u"hi<' "''"'""' 1-< ·""'"''' ,;,, >-< . (.<11b<11 >-ro-<"""' "-"'·l----1 .

Examples

TRANSLATETABLE
TRANSLATET ABLE·
TRANSLATETABLE
TRANSLATETABLE

TRANSLATETABLE

TRANSLATETABLE

Semantics

AT ABLE
BT ABLE
Cf ABLE
DTABLE
ET AHLE
fTABhE
GTABLE

TRANID

. (s1111rcc)~TO --(dcs1i11atio11)·--.,.
•,

EBCDIC. -To.--(standard cllaracter set)

'"~tcmdard character set)--To-- EBCDIC'

........ ---(translate table idefitiJier)-----'""

8("STRING" TO "X").
8(4"o00102" TO 4"AABBCC").
7(4"028208" TO 4"AACCDD").
7(4.'00" TO 4"AA").
8(DTABLE. 4 .. 0i" TO 4 .. 88").
8(4 .. 00" TO 4"AA"). ·
8(EBCDIC TO BCL,FT ABLE,

4uo1" TO 4"88").
7("1 ''TO 4••01 ·•,

"2" TO 4"02" ..
"34" TO 4 "0304",
4"FSF6" TO 4"0607").

111e (translate table definition) allows the definition of tables that may be used in (control definition) s
or (request deji11itim1)s to translate characters of one character set to those of another character set. .

Translation tables need to be defined in an NOL program only if non-standard character sets must be
dealt with in the Oat~ Communications System. Terminals that transmit and receive a standard character
set do not require a translation table definition~ instead, the character set is merely nained in the (terminal
mde sratemem) of the (ferminal definition). The character sets that do not require a (translatetable
definition} are ASCII, BAUDOT, BCD1 8CL~ EBCDIC, and PTTC/6. . . ·

The (translate table identifier) thai f~llows th~ keY ·~ord .TRANSLATET ABJ,.E names the translation table, .
and must be in the syntactic fonn of an (1def1tifier) ,· · ·. .. , , · ·

(source size) defines the character size, in bits, of characters tp be translated.' <source site) must ,be an
I integer) greater than 0 and less than 9. · . · · · . · ·· . . ·

TRANSLATION TABLE.STRUCTURE.

Each clement of the translation table consists of ,ei~ht bitS. If N rep~sents the (source size), then the size
of the table is 2 raised to the Nth power. The elements of the table are selected by an index that ranges
from 0 through 2 to the Nth power minus 1. · ·

At execution time, translation is dorie in the fc;>llowing manner. The binary weightof the low-order
N hits of the character to be translated is used as·an index into the specified translation table. The element ·
of the table thus indexed is the translated result. ·

S·--184

/'-r! . ._,

. ,.: .

· Oetiiiitions
. TRAN$LAtEtABJ-E. '

. : ~ . ~
,i ..

. Contlrltied

INSERTING DATA INTO THETRANSLATION t ABLE

. Every trimshltion tahlc has a default base in which each clement in the table is 0 (aU bits ofO. O~ta c~n he
placed into the translation ·table by various specifications within the parentheses. If more than one '·
specili~ation appears for a given translation table, each succeeding specification: overrides, within its scope,
tlrevious specifications. · · ·

~Iring) TO (single characte1)

This form inserts data into the translation table in the following manner. Each eight-bit character in the .
(string) is examined from left to right. If a character in the ~tring}. is numerically greater than the size
of the table, no entry is placed in the translation table; otherwise, the (single character) is stored in the .
clement of the table whose index is the binary weight of the N low.:.order bits of the ~tring).character
(where N is the ~ource size) specified). · . · . . . · '

(murc<? TO (destination)
. . . I . . .·

(source) and (destination) must be (string) s of equal length. This form of specification inserts data into
the translation table in the following manner. Translation is based upon corresponding ch.aracters in . .
~.mura) and (destination), starting from left.and proceeding to right. The first character of (source)
1.~orrcsponds to the first character of (destination), the second character of (source) corresponds to the
second character of (destination) , etc. If a character in (murce) is 'numerically greater than the size ofthe .
table, then no entry is placed in the translation table; otherwise, the ~ortesponding·character in
(dt•stinalion) is stored .in the element of the table whose index is the binary weight of the N low-order bits
of the corresponding character in (wmrc·t~.

~· (\·ta11d1ml draractc>r se.t) TO EBCDIC and EBCDIC TO ('>ta1idard c?iaracter set)

111is fonn specifies a standard systern software translation. table from the ~.I>L compiler that is to be
copied into the translation fa:ble. The (standar4 characte.r set)s that ll)ay.be specifi~d are EBCDIC,
ASC6 7, and BCL. These. forms provide a way of obtai~ng a l,egitimate base .upon :which additional
specifications can be made. · · · · ·

(translatetahle identifier)

This form of specification indicates that the contents of a previously defined translation table is to be
copied into the translation table .. The (!ranslatetable identifier) must be the .(identifier) of a previously
defined translatio11 table. Tiiis form provides a means of obtaining a legitimate base upon which additional
specifications can be made. ·

Pragmatics
. -

Those tables, and only thoSe tables, that ~used ·by a DCP r~side in the local merttory of that DCP (unless
a DCP does not have local memory~· in which ease they reside in main system memoey)~ Memory for
translation tables is allocated in. blocks of 256 W<>rds, regardle• of the· space required for those tables.
Tables are densely packed and all elements are used before anothe.r blockof.256 words is allocated. Unless
consideration is given to the trimslation requirements of devices in the data communications system while in
the planning and programmµtg stimes, translation tables can be very costly in te~s of local memory.
Although it is beyond the scope of this manual to describe the plannil)g. of a dat• Gom.rtmrucations system,
this fact should not escape the NDL progriliiimer. · · , . . ·· ·

·s-1ss

Defmitions

TRANSLATETABLE

Continued

Supplementary Examples

Exampte I•

TRANSLATETABLE ATABLE 8(.. STRING" TO "X").

Character to be Translated

''S' ..
''Tu
HR''
"(''

·"N"
''G"

"X"
''X•'
''X"
"X"
"X"
"X"

AT ABLE is a translation table containing 256 elements. The (source size), 8 in this example, ·deter­
mines the table size. All characters from (source) are translated to the (single character).

Example 2

TRANSLATETABLE BTABLE 8(4"000102" TO 4"AABBCC").

Character to be Translated

4"00"
4"01"
4"02"
4"03"

4"AA"
4"88"
4"CC"
4"00"

BTABLE contains 256 clements. Characters from (source), 4"000102", are translated to the
corresponding characters in the (destination), 4"AABBCC''. The character 4"03" is translated to
4"00" because there is no specification in (source) for 4"03".

Example 3

TRANSLATETABLE CT ABLE 7(4"028208" TO 4"AACCDD").

Character to be Translated

4"01''
4"02"
4"82"
4"08''

4"00"
4"AA"
4"AA"
4"DD"

In this example, the translation table CT ABLE oontains 128 elements. The character 4 "O l" is
translated to a 4"00" character, because 4"01" is unspecified ill the (source). The character 4"82'' is
translated to the character 4"AA" because only the low~rder seven bits of 4"82" are used to index
the translation table. ·

Example4

TRANSLATET ABLE DTABLE 8(4''00 .. TO 4"AA").
EJ'ABLE 8(DTABLE, 4"01"TO 4"BB").

The above (translate table definition) defines two translation tables: DTABLE and ET ABLE. All
clements in DTABLE contain 4".00", except the element indexed by the character 4"00"; that element
contains 4"AA". ETABLE specifies DTABLE as a base, and.then modifies that base with a subsequent \._/ _
specification. ·

S-186

v
...............

Example S

TRANSLATETABLE Ff ABLE 8(4"00" TO 4"AA"),

ncfinitions

TRANSLATETABLE

Continued

GTABLE 8(EBCDIC TO BCL, FTABLE • .:f"Ol" TO 4"BB").

GT ABLE is defined to contain 256 elements, and specifies the standard EBCDIC-to-BCL translatiOn
table upon which subsequent specifications modify. FTABtE also contains 256 elements ~nd
appears as a specification in GT ABLE. Since each succeeding specification overrides Within its scope
any previous specification, FT ABLE in effect overlays all elements. The result is the same as if only
the following had appeared: · ·

TRANSLATETABLE FTABLE 8(4"00" TO 4"AA").
GTABLE 8(FTABLE, 4"01" TO 4"BB").

lhe above example points out that any table appearing as a specification indicates all elements of that
table, not just those elements explicitly defined. The example is not intended to illustrate an accept­
able programming practice.

5-187/5-188

6. VARIABLES

GENERAL

· Variables

VARIABLES

The NDL compiler does not allow a programmer to declare and use program variables, as do other language·
compilers such as ALGOL, PL/I, and COBOL. Instead, the NOL programmer can use only predefined
program variables.

The (bit variable)s and (byte variable)s are the two types of variables the programmer can use. The (bit
variable)s arc one-bit variables that can only assume logical values (i.e., TRUE or FALSE). The (byte
variable)s arc all eight-bit variables, and can assume integer values from 0 through 255, except for the lR
variable, which is a IO-bit variable. The IR variable is included as a (byte variable) as a matter of
convenience.

Individual bits of a (byte variable) can be referenced and used like a (bit variable), if referenced in the
form illustrated below.

(byte variable) • [---~ -(bit number)----11••]-----,...,..----.......i

where (bit number) is an (integer) not greater than the number of bits contained in the variabfo minus l.

~ For example, bit 5 of IR is referenced as IR[S).

FUNCTION OF VARIABLES

Functionally, variables fall into one of three general categories:

a. Variables that are available to the programmer for general information storage.

b. Variables that can be used for system/station communication.

c. Variables that contain control information.

General information variables can be used within their scope by the programmer for data storage, calcula­
tions, etc. Additionally, some variables in this category could (by convention) be used as communication
paths between (request definition)s executing on a given line. (The use of a given variable for this appli­
cation is restricted by the scope of that variable.)

Variables whose intended function is communication to and from the main system and stations are gener­
ally contained in the message header of a message sent to the main system from a station, or sent to the
station from the main system. Messages from the main system to a station are originated either by the MCS
or by an application program (via the 1/0 Intrinsics).

The format of message variables within a message header is described in detail in the B 6700LB 7700
DCALGOL Reference Manual. Generally, message variables are contained in five fields or"tl1~ message header:

a. Message Toggles (word [l] .[39:8])

b. Message Tallys (word (3) .(23:24))

6-1

Variables

Continued

c. Message Error Flags (word 11 I . [23: 24 J)

d. Variant "Carriage Control" (word [OJ . 139: 16])

e. Message Retry Counl (word 12 l . 14 7 :81)

Message Toggles and Message TaHys provide storage area in the header for some of the station general infor­
mation variables. The meaning of values stored in these fields must be established by mutual convention be-
tween the MCS writer and the NOL programmer. ·

Message Error Flags arc used for the stalfon to communicate to an MCS that some exceptional event has
occurrl·d in a (request definition) or (control definition). These variables reference bits in the message
header of ••result" messages returned to the MCS as a result of execution of a (terminate statement).

Carriage Control is valid for Transmit Requests, and provides information regarding the kind of carriage
control to be performed by a Transmit Request. These variables reference bits or bytes in the message
header of WRITE (TYPE=33) DCWRITE messages.

The Message Retry Count is described under RETRY in this chapter.

Variables whose function is to contain control information are used by both the DCP operating system and
the programmer. Generally, these variables provide information to control the logic paths of (control
dt'finition)s, (request definition).\·, and the DCP operating system. .

SCOPE OF VARIABLES

Tht~ scopl' of the variables in Nl>L is dl•scribcd as hl·in~:

a. Station-oriented.

b. Line-oriented.

c. Global.

Station-oriented variables exist for each station in the network. TALLY (0) is an example of a station­
oriented (byte variable); thus, eacl1 station has its own TALLY (0). The variables of a given station arc
visible to a line only while STATION is set to that station's ••station index."

Line-oriented variables exist for each line on a DCP. The variables ofa given line are visible to every station
assigned to that line. MAXSTATIONS is an example of a line-oriented variable. Each line on a DCP has its
own MAXSTATIONS, and every station assigned to a given line can access the MAXSTATIONS variable of
that line. ·

A global variable is a variable that is visible to all stations on a DCP.

DESCRIPTION OF VARIABLES

The remainder of this chapter contains descriptions of each (bit variable) and (byte variable). The variables
(listed in table 6-1) are described in alphabetical order. The name of the variable precedes a summary of the '.._/
variable characteristics, followed by a detailed description of the variable.

6-2

Variables

Continued

The summary of the variable characteristics includes the places irt the source program that the variable can
be interrogated or altered, and the size, in bits, of the variable. In the summary, the word "Interrogate"
indicates that the programmer can interrogate the variable. The weird "Alter" indicates that the .programmer
can use the (bit variable) I (byte variable) as an (assignable bit variable) I (assignable byte 11arit:lble). The
corresponding letters "C", "'T", and "R" in the summary refer to (control definition), Transmit Request,
and Receive Request, respectively. The last item to appear in the summary is the size, in bits, of the variable.
If no size is defined, then the size of the variable is one bit.

For example. the summary:

EXA.MPLE1
lntcrrogatc, CTR, 8

can be expanded as follows:

EXAMPLEl is an 8-bit variable. It can be
interrogated in a (control definition),
Transmit Request, or Receive Request.

The summary:

EXAMPLE2
Interrogate/ Alter, CTR/TR

can be expanded as follows:

EXAMPLE2 is a (bit variable). It can be ·
interrogated in a (control definition),
Transmit Request, or Receive Request.
Additionally, EXAMPLE2 can be altered
(i.e., appear as an (assignable bit variable))
in a Transmit Request or Receive Request,
but not in a (control definition).

Table 6-1 contains the summaries of each variable for quick reference.

6-3

Variables

Continued

NAME

ADD ERR
Al
AUX (LINE (BUSY))
AUX (LINE (QUEUED))

AUX (LINE (TALLY [{ 0or1}1

AUX (LINE (TOG r{ 0 or I}]
ucc
BCCERR

BLOCK
BLOCKED

BREAK IRECEIVEI
BREAK [TRANSMIT!
BUFOVFL ·
CARRIAGE.

CHARACTER
CONTROLFLAG
Cl{C

Cl{C I to or 1} J
CRCERR
DISCONNECT
ENDOFBUFFER ·
FORMATERR
INHIBITSYNC
IR
LINE (BUSY)
LINE (QUEUED) ·
LINE (TALLY ltO or JJ) ··.
LINE (TOG ito or 1 JI
LINEFEED
LOSSOFCARRIER
MAXSTATIONS
NAKFLAG

6--4

Table 6-~ I. Table of Variables

SIZE
(in bits) INTERROGATE ALTER

;;

CTR CTR
8 CTR CTR

CTR CTR

CTR CTR
8 CTR CTR

CTR CTR '
8 ' CTR CTR !

TR TR

T -·
T -
CTR CTR
CTR CTR
CTR CTR
T -

·8 CTR CTR
...

TR TR
CTR CTR

8 CTR CTR

TR TR
TR TR

.. TR TR
TR TR

. CTR CTR
10 · .. CTR -

..
•CTR CTR

CTR CTR

8 .. ·.CTR CTR
: CTR CTR

..
T -
CTR CTR

g· CTR -
. TR TR

NAME

NAKONSELECT
NOSPACE
PAGE
PAPERMOTION
PARITY
RETRY
SEQ ERR
SEQUENCE
SKIP
SKIPCONTROL
SPACE
STATION
STATION (ENABLED)
STATION (FREQUENCY)
STATION (QUEUED)
STATION (READY)
STATION (TALLY)
STATION (VALID)
STOPBIT
SYNCS
TAB
TALLY [(!ally number)]

TIMEOUT
TOG [(toggle number)1
TOGS
TRANERR
WRUFLAG

Table 6-1. Table of Variables (Cont)

SIZE
(in bits) INTERROGATE

TR
CTR
T
T
CTR

8 CTR
TR
CTR
T·

8 T
T

8 c
CTR

8 CTR
CTR
CTR

8 CTR ..
CTR
CTR
CTR
T

8 CTR
CTR
CTR

8 CTR
TR
TR

Variables

·.Continued

'
ALTER

TR

-
-
-
CTR

CTR
TR
CTR

-
-
-
c
-
-
--
CTR

-
CTR
CTR
-
CTR

.CTR.
CTR

·CTR·
TR
TR

6-5

Variables

Continued

ADD ERR
Interrogate/Alter, CTR/CTR

ADDERR references bit 8 in the Error Flag Field of a message header, and normally indicates that an-address
character error has occurred while executing a (receive statement). Refer to the ADDRESS option of the
(receive statement). ·

AI
Interrogate/Alter, CTR/CTR, 8

This variable addresses a volatile register and should not be used for data storage. Its main purpose is to
allow access to the untr.inslatcd byte just received rather than to the translated byte in CHARACTER,
.particularly when executing tlw (sum statement). .

AUX(LINE(BUSY))
Interrogate/ Alter, CTR/CTR

AUX(LINE(BUSY)) is used to <illow or inhibit the interruption of the c~ecution of a (co_ntrol definition)
or (request definition) on the auxiliary line of a full duplex line pai~. _If this bit is 'f'RUf:, it indicates to the
DCP operating system that the lin~ is e1igaged in fimctions that must 1iot be interrupted. If FAlSE, it indi­
cates to the DCP operating system that the line caQ be interrupted to initiate another function.
AUX(LINE(BUSY)) is line,-oriented~ but may be altered only by the auxiliary line. Both the auxiliary and
primary line may interrogate this bit. ·

A (control definition) or (request definition) will be interrupted when AUX(LINE(BUSY)) is FALSE if .
the primary line executes a (fork statement). (Note that an interruption causes control to leave a (control
definition) or (request definition), and that control is not ret4med to the point where the interruption
occurred.) AUX(LINE(BUSY)) is set TRUE by system software when: ·

a. The primary line executes a (fork staiement) and AUX(LINE(BUSY)) is FALSE or

b. The auxiliary line (control definition) is entered, or

c. The auxiliary line enters a·Receive or Transmit Request.

If AUX(LINE(BUSY))is TRUE when the primary line executes a(fork statement), the (fork·stai.ement) .
will act as a no-op. ·

6·-6

AUX(LINE(QUEUED))
Interrogate/ Alter. CTR/CTR

· Variables ·

Continued

This is a line-oriented (bit variable) that refers to the queued status of the auxiliary line of a fulJduplcx line
pair. The bit is set by the OCP operating system if and when an input message space is explicitly.acquired
by executing a (getspace statemellf) on the auxiliary line. -

AUX(LINE(TALLY[fO or 1})))
Interrogate/ Alter, CTR/CTR, 8

These arc line-oriented (byte variable)s for the auxiliary line of a full duplex line pair, and can be used for
any purpose by the NOL programmer. They can be accessed by either the primary or auxiliary line at any
time. ·

AUX(LINE(TOG [10or1}]))
Interrogate/ Alter, CTR/CTR

These are line-oriented (bit variable)s for the auxiliary line of a full duplex pair, and may be used for any
purpose by the NOL programmer. They may be accessed by either the primary or auxiliary line at any time.

BCC
Interrogate/ Alter, CTR/CTR, 8

BCC is used by system software for the purpose of accumulating a Block Check Character whena station
(terminal definition) defines horizontal parity as ODD or EVEN in the (terminal parity statement). ·

Block Check Character accumulation is an automatic f~nction, if appropriate, of the (receive statement)
and (transmit statement). Block Check Character accumulation is based upon execusive-OR logic, thatis,
as characters are received or transmitted, they are exclusively OR-ed with the contents of BCC. It is the
responsibility of the programmer to initialize BCC when appropriate. (Refer to the (initialize statement)
under (request ~efinition) or (control definition).) .

If a station (terminal definition) does not define horizontal parity, BCC can be used as a temporary data
storage area. It should be pointed out, however, that the value in BCC is destroyed by most constructs of
the (terminate statement). Furthermore, since the intended purpose of BCC is to contain parity information,
BCC and CRC[O] address the same data space. BCC cannot be used if a terminal uses Cyclic Redundancy
Check.

When accumulating a Block Check Character, a.convenient means to eliminate a specific character from the
value accumulated in BCC is the (sum statement).

6-7

Variables

Continued

BCCERR
lnkrrogalc/ Alkr, CTR/(TR

BCCERR refers to bit 7 in the Error Flug Field of a result message, and conventioi1ally indicates that a ..
horizontal parity (BCC) error occurred while executing a (receive statement). Refer to the semantics of the'
BCC option of the (receive statement). .

BLOCK
Interrogate, T

This bit references bit 29 in word zero of a message header. If TRUE, this bit indicates that more blocks (or
messages) of a blocked transmission are to follow. Use ofthis bit implies a convention b~tween the MCS and
the NOL programmer for the purposes of providing blocked transmissions. ·

BLOCK is set TRUE implicitly as a result of execution ofa TERMINATE BLOCK construct in a Receive
Request.

BLOCKED
Interrogate, T

A synonym for BLOCK. Refer to BLOCK.

BREAK[RECEIVEJ
Interrogate/ Alter~ CTR/CTR

This (bit variable) refers to bit 3 in the Error Flag Field of.a message, and normally indicates that a break
condition was sensed in a (receive statement). Refer to the semantics of the BREAK option of the (receive
statement). · · . · .

Note that if this bit is TRUE in a message to be returned to the MCS, the message is returned as a STATION
EVENT (CLASS= I) message. Refer to the B • 6700/B · 7700 DCALGOL Language Reference Manual for· more
information regarding this message.

BREAK [TRANSMIT]
Interrogate/Alter, CTR/CTR

This (bit varif,lb/e) refers to bit 5 in the Error Flag Field of a message, and normally indicates that a break
condition was sensed while executing a (transmit statement). Refer to the semantics of the BREAK option
of the (transmit statemelll). ·

Note that if this bit is TRUE in a message to be returned to the MCS, the message 'is returned as a STATION
EVENT (CLASS=)) message. Refer to the B 6700/B 7700 DCALGOL Language Reference Manual for more
information regarding this message. "-"

6-8

·--·

BUFOVFL
Interrogate/Alter, CTR/CTR

Variables·.•

' Continued

This (bit variable) refers to bit 2 in the Error Flag Field of a message, and normally indicates that a cluster
buffer overflow condition occurred while executing a (receive statement). Refer to the semantics under the
BUFOVFL option of the (recefve statement). ··· . , ..

CARRIAGE
Interrogate, T

CARRIAGE is a carriage control variable, and is used .to indicate if a carriage return is desired ~it the comple-
tion of the text transmission. ·

CARRIAGE is TRUE if message word [0] . [2S: l] is zero.

This bit can be set by the 1/0 Intrinsics for a data communications file, or by the MCS.

CHARACTER .
Interrogate/Alter, CTR/CTR. 8

· · CHARACTER is a line-oriented (byte variable\.
~· /

CHARACTER contains the last character TRANSMITted or RECEIVEd on the line, unless otherwise altered ·
by a (fetch statement) or an (assignment statement).

CONTROLFLAG.
Interrogate/Alter, CTR/CTR

Tilis (bit variable) refers to bit 12 in the Error Flag Field of a message, and normally indicates that the
station defined control character was received. Refer to the. CONTROL.option of the (receive statement).

Note that if this bit is on in a message to be retl!rned to an MCS, and .the first character of the message is the
control character ()f. the station, the message is returned as a STATION EVENT (CLASS= I). Ref er to the
B 6700/B 7700.DCALGOL Language Reference Manual for more information.regarding this message.

CRC
Interrogate/Alter, CTR/CTR

In (request definition)s and (control definiiion)s that use the Cyclic Redundancy Check, system software
tests the status of the (bit variable) CRC before the execution of any .(receive .statement) or (transmit .
statement). If CRC is TRUE, the byte (or bytes) transmitted or received are calculated into the Cyclic
Redundancy Check stored in the (byte varlable)s CRC(O] and CRC[l]. If CRC is FALSE, bytes transmit­
ted or received do not affect the Cyclic Redundancy Check.

6-9

Variables

Continued

CRC[~ 0 or 1 J) .
Interrogate/Alter, CTR/CTR, 8

System software uses the (byte variable)s CRC[O) and CRC[1) as a concatenated 16-bit inforination field
to contain Cyclic Redundancy Check information for those stations whose (terminaldeflnition)s define:.
horizontal parity as CRC(l6). If the (bit variable) CRC is TRUE, Cyclic Redundancy Check calculation is
done using CRC(O) and CRC[1] as a 16-bit field, and the characters TRANSMlTted or RECEIVEd .. If CRC
is FALSE, Cyclic Redundancy Check calculation is inhibited. ·

If a station (terminal deflntttcin) does not define horizontal parity, then CRC(O] and CRC[l J. can be u8ec;l
as a temporary storage area. It should be pointed out, however, that the values in CRC[O] and CRC[l] are
destroyed by most constnacts of the (terminate statement). Additionally, since the intended purpose of
the~ variables is storage of parity information, CRC(O] and BCC addr~ss the sarrte byte. ·CRC[O) .
cannot be used for temporary data storage if the (control definition) or (request de/iliition) uses BCC for ..
·Block Check Character accumulation.

CRCERR 1 •

Interrogate/ Alter, CTR/CTR

CRCERR references bit 7 in the Error Flag Field of a result message, and conventionally indicates that an
error in the Cyclic Redundancy Check occurred while executing a (receive statement). Refer·to the seman~
tics of the CRC option of the (receive statement). · · ·

DISCONNECT
Interrogate/ Alter, TR/TR

DISCONNECT .references bit 1 i in the Error Flag.Field of a message, and indicates that a diseonnect occQl'0 •

red on the line while executing a (request definition>. c·· . . , . • ·• . .· • ·. .

ENOOFBUFFER
Interrogate/ Alter, TR/TR

. '

. ·.. . . ·. ·... . ·. _·_ ·.' '·. ..····.··1·.·· . . ·. . .· ., .. __ · - ..

ENOOFBUf'FER references bit 17 bi the Error Flag ~ield ofa resµltmes8ag", alJ.d is.CO,n\tentio~ly tJ$.ed.by
a (request de/tnlticin) to indicate when .aJi overflow of the' text"buffet'.haS oecutted.· ~efer to the "semantics .
of the ENDOFBUFFER option of the (receive sttit~ment): · · .· · · ... · ·. ·· · , ·

FORMATERR
Interrogate/ Alter, TR/TR

ThiS bit references bit 10 in. the mror Flag Field Qf a res~t message; aQdis conventionally .µ~d· to indt~te ·
that a format error occll11'ed .while executing a (reeeive ltqtement): R~fer to the RECEIVE ~stmW) con.strtiet
of the (receive statement).; · . , . · . , - , ·. · · ·

6-10

INHIBITSYNC
Interrogate/ Alter, CTR/CTR

Variables

·.Continued

INHIBITSYNC is a line-oriented variable that causes actions as described under the (terminal inhibitsync
statement) . . · . .· . .·

JR
· Interrogate, CTR, 10-bit

. .

IR addresses the I 0-bit Input Register of the adapter cluster. This register contains hardware related control
and data information for a line adapter.

IR can be interrogated using a (bit number) specification. (bit number)s for IR range from zero through 9.
For example, IR[O) addresses bit number zero of the Input Register.

Refer to the Burroughs Data Communications Processor Reference Manual or the DCP Reference Card for
the meaning of the bits in IR.

LINE(BUSY)
Interrogate/ Alter, CTR/CTR

UNE(BUSY) is a line-oriented control information bit, and is used to allow or inhibit the interruption of
the execution of a (control definition) or (request definition) on a single line. In the case of a full duplex
line· pair, LINE(BUSY) refers to the primary line. · If this bit is TRUE, it indicates to the DCP operating
system that the line is engaged in functions that must not be interrupted. If FALSE, it indicates to the DCP
operating system that the line ean be interrupted to initiate another function.· LJNE(BUSY) ·can be altered
only by the primary line of a fullduplex line pair. · ·

A (control definition) or (request definition) is interrupted when LINE(BUSY) is FALSE if the DCP re­
ceives in its Request Queue a station-oriented DCWRITE message, and STATION(QUEUED) is FALSE for
that station. If the message is a READ-ONCE ONLY (TYPE=34), STATION is set to that stationindex,
and control is transferred to the Receive Request for that station. If the message is a WRITE (TYPE=33)
DCWRITE message, STATION is set to that station index, and control is transferred to the Transmit Request
for that station. If the message TYPE is neither of -the above, the function associated with the message is
executed and control resumes at the beginning of the line (control definition), witn the value of STATION
equal to the index of the station for which the function was initiated. (Note that an interruption causes con­
trol to leave a (control definition) or (request definition)~ and that control is not rettirned to the point where
the interruption occurred.) ·

6-1 l

Variables

Continued

LINE(BUSY) is set TRUE hy system software when:

u. Tht~ (co11trol d<'fi11itio11) is t'lll~rcll,

b. A (request definition) is entered, or

c. The line is the primary of a full duplex line pair, LINE(BUSY) is FALSE, and the auxiliary line ex­
ecutes a (fork statement).

Note that if LINE(BUSY) is TRUE when the auxiliary line of a full duplex line pair executes a (fork state-
ment). the (fork statement) acts as. a: no-op. . · ·

UNE(QUEUED)
Interrogate/ Alter, CTR/CTR

UNE(QUEUED) is a line-oriented variable used to indicate whether or not(TRUE or FALSE, respectively)
a message has been queued for any station on the line. It is set TRUE by system software when a message
is inserted into an empty Station Queue of a station assigned to the line. It is the programmer's responsibil­
ity to set it FALSE when appropriate.

LINE(TALLYltOor !JD· ·
Interrogate/Alter. CTR/CTR, 8

.. ;··:;:

' '

UNE(TALLYlt O or 1 }1) are line-oriented varlables for data storage, etc·., available to the·programmer ..
' '

An MCS may dynamically alter the line tallies by performing a SET/RESET LINE TOG/TALLY (TYPE='=t 03)
DCWRITE request.· · ·

LINE(TOG[{O or 1})) .
lnterrogate/Alter,CTR/CTR .

. : .. . ' I . ~,.. . .

UNE(TOG[t 0 or 1} J) are li~-oriented variables for generai'informatioit storage, etc., av8ilable to the pro­
grammer.

. '·~ ' '

An MCS may dynamically alter the line toggles by performing a SET/RESET LINE TOG/TALLY (TYPE=l03)
DCWRITE request.

LINEFEED
Interrogate, T

...
LINEFEED is a carriage control variable and is TRUE when message word [OJ . (24: 1] is zero. If TRUE,
LINEFEED indicates that a new line is required at the completion of the text transmission. This bit can be
set by the 1/0 Intrinsics for a data communications file, or.by the MCS. ·

6--12

' ·-..._; '

.~

WSSOFCARRIER
lntcrro~atc/Altcr, CTR/CTR

. Varia.bles

· . Continued

WSSOFCARRIER rcforenccs bit 18 in the Error Flag Field of a result message, and is conventionally used
lo imlicale that a loss of carrier.occurred while executing a (receive statement). Refer to tl~e
WSSOFCARRIER option of the (receive statement). ·

MAXSTATIONS
Interrogate, CTR, 8

MAXSTATIONS is a line-oriented (byte variable) whose value is the maximum number of stations that can.
be assigned to the line.

MAXSTATIONS is initialized to the value defined in the (line maxstations statement) of the (line defini­
tion). If the (line maxstations statement) does not appear in a (line definition), then MAXSTATIONS is
initialized to the number of stations listed in the (line station statement). If neither statement appears,
MAXSTATIONS is zero.

Within a (control definition), the valid range of values which may be assigned to the (byte variable) STATION
is between zero. and MAXST ATIONS -1, inclusive. · .

NAKFLAG
Interrogate/ Alter, TR/TR

NAKFLAG references bit 11 in the Error Flag Field of a result message, and conventionally indicates that a·
transmission was NAKed by the terminal. This bit is not set by system software, and its use is at the option
of the programmer.

NAKONSELECT
Interrogate/Alter, TR/TR

NAKONSELECT references bit 16 of the Error Flag Field of a result message,. and is conventionally used to
indicate that a Transmit Request was NAKed when it attempted to selectthe terminal. ·This bit is not set by
system software, and its use is at the option of the programmer.

NOSPACE
Interrogate, CTR

NOSPACE is a global variable that, when TRUE, indicates that a "no space" condition exists in the available
space pool. NOSPACE is set by system software when the condition exists, and reset when the condition no.
longer exists. ·

6-13

Variables

Continued

PAGE
Interrogate, T

PAGE is a carriage control variable, and conventionally indicates whether a new page is required for the out­
put device. For example, on a screen device, PAGE= TRUE could indicate to the Transmit Request that a
home/dear sequence should be transmitted before or after the text is transmitted to the terminal. Refer to
PAPERMOTION.

PAGE is set TRUE is message word I 01.126: 11 = l.

PAPERMOTION
Interrogate, T

PAPERMOTION is a carriage control variable that is conventionally used to indicate whether carriage control
is desired before or after the message text is transmitted. If message. word [OJ .[30: 1] = l, PAPERMOTION
is set TRUE, and carriage control should be done before the text is transmitted; otherwise, carriage control
after the text is transmitted.

PARITY
Interrogate/ Alter, CTR/CTR

PARITY rcfrn.·nccs hit (l or lhl· Error Flag Field in a result message, and indicatl~s that a vertical parity error ~_,
was detected when cxccutin~ a (n·cdl'f statement). Refer to the PARITY option of the (receivestatement). ·

RETRY
Interrogate/ Alter, CTR/CTR, 8

RETRY is a station-oriented variable, and is referred to as DCP RETRY.

The purpose of DCP RETRY is to record the number of attempts a (request definition) has made to com­
municate with a terminaJ but failed as the result of some abnormal condition. Conventionally, the NDL
programmer decrements RETRY (i.e., DCP RETRY) by one for each unsuccessful attempt at an operation
until RETRY equals zero, then executes a TERMINATE ERROR.

When a (request definition) is initiated by the DCP, DCP RETRY is implicitly set to an initial valu~ called
IX:P INITIAL RETRY. The default value of DCP INITIAL RETRY is specified by the NOL program in the
(station retry statement).

By using the Message Retry Field in the message header (message word [2] .[47:8]), the MCS can control
the value assigned to DCP INITIAL RETRY, and therefore, is the initial value of DCP RETRY. If the
Message Retry Field is 255, the value specified in the (station retry statement) assigned to DCP INITIAL
RETRY, otherwise the value of the Message Retry Field is assigned to DCP INlTIAL RETRY. The NOL.
program can restore the value of DCP RETRY to the value of DCP INITIAL RETRY at any time by ex­
ecuting the INITIALIZE RETRY construct.

All forms of the (terminate statement) which result in a message being returned to an MCS cause the "'-"'
current value of DC'P RETRY to be stored in the Message Retry Field of the result message.

6- 14

SEQERR
Interrogate/ Alter, TR/TR

.. Va.riabJes

... Continued

SEQERR references bit 14 in the Error Flag Field of a result message, and conventionally indicates that a
sequence number overflow occurred as the result of the execution of an INCREMENT SEQUENCE con-
struct. Refer to the (increment statement). . ·

SEQUENCE
Interrogate/ Alter, CTR/CTR

SEQUENCE is a station-oriented bit that indicates whether or not (TRUE or FALSE, respectively) a
(request definition) is to perform automatic sequencing. SEQUENCE is controlled by a SET/RESET
SEQUENCE MODE (TYPE=49) DCWRITE from the MCS. SEQUENCE can be set FALSE by the NOL
program but can be 'iet TRUE only by the controlling MCS. ·SEQUENCE can be set TRUE only if the
(request definition) for a terminal employs sequence number constructs such as TRANSMIT SEQUENCE,
INCREMENT SEQUENCE, and STORE SEQUENCE. lJsc of automatic sequencing is the option and res­
ponsibility of the NDL programmer.

SKIP
lnterrogate/T

SKIP is a carriage control variable. SKIP is used in conjunction with SKIPCONTROL to indicate a "skip to
channel N" on an output device. If message word (0). (27: 1] = 1, SKIP is set TRUE and SKIPCONTROL
contains the channel number to skip to. Both SKIP and SKIPCONTROL can be set by the· 1/0 Intrinsics
for a data communications file, or by the MCS. ·

SKIPCONTROL .
Interrogate, T, 8

SKIPCONTROL is used in conjunction with the (bit variable)s SKIP and.SPACE. If SKIP is TRUE, then
SKIPCONTROL applies to SKIP. If SPACE is TRUE, SK.IPCONTROL applies to SPACE. If neither are
TRUE, SKIPCONTROL is undefined. Both SKIP and SPACE should not be TRUE concurrently. For a
description of the function of this byte, refer to SPACE and SKIP. SKIPCONTROL is transferred to the
Transmit Request in the message header of a WRITE (TYPE::33) DCWRITE in message word [OJ .[39:8),
and can be set by the. 1/0 Intrinsics for a data communications· file; or by the MCS. . · · ·

SPACE
Interrogate, T ... :

. . .

SPACE is a carriage control variable. SPACE is used in conjunction with SKIPCONTROL.to indica~e the
number of vertical lines to skip. If message word [0] .[28: 1) = 1, SPACE is set TRUE and SKIPCONTROL
indicates the number of lines to skip. SPACE and SKIPCONTROL can he set .by the 1/0 Intrinsics for a
data communications file, or by the MCS. ·

6-15
-~.

Variables

Continued : .

STATION
Interrogate/ Alter. C/C, 8

STATION is a line-oriented (byte variable) used in a (control definition) of a multi-station line to select a:
particular station with which the (control definition) wishes to interact. That is, to access the variables ·of
a particular station. or INITIATE the Receive Request or Transmit Request of a station, the station index
value associated with the station must be stored in STATION. ·

A station index value is associated with each station that is assigned to a logical line. At DCP initialization
time, station index values are assigned sequentially, beginning at zero, to each station on a given line in the
order that the stations were named in the (line station statement) of the (line definition).

After DCP initialization, an MCS can cause a station to be logically added to a line. When this occurs, a
station index value becomes associated with the station. An MCS can also cause the logical removal of a
station from a line. After such action, the station index value that was associated with the station no longer ·
references a valid station. Thus, after DCP initialization, "holes" can exist in the sequence· of valid station
index values for a given line. A station index value can be "tested" to determine ifit references a valid sta;.
tion by interrogating the STATION(VALID) (bit variable).

There is a maximum valid station index value associated with each line. That value is determined either by
the (line maxstations statement) or by the (line station statement). (Refer to the (line maxstations state­
ment) for more information.) This value can be obtained in a (control definition) by interrogating
MAXSTATIONS. . .

STATION(ENABLED)
Interrogate, CTR

This is a station-oriented (bit J1ariab!e) which refers to the "enabled" state of a station. When this variable
is TRUE, the station is enabled for input, and the station Receive Request can he invoked. If
ST A TION(ENABLED) is FALSE, the station is disabled for input. and attempts to invoke the Receive Re­
quest will be disallowed.

The setting of STATION(ENABLED) is initially defined by the (station enableinput statement) in the
station definition, and may be altered by an MCS via tf1e ENABLE INPUT (TYPE=35) and DISABLE INPUT
(TYPE=36) DCWRITE. .

STATION(FREQUENCY)
Interrogate, CTR. 8

STATION(FREQUENCY) is a station-oriented (byte variable), and is conventionally used to contain a
relative polling frequency for polled stations. The initial value for STATION(FREQUENCY) is supplied by
the (station frequency statement) for a station. It can be altered by an MCS via the ENABLE INPUT
(TYPE=35) DCWRITE. Refer to the (station frequency statement). ·

6-16

STATION(QUEUED)
Interrogate, CTR, 8

...

·. . Vatia.bles

Continued

STATION(QUEUED) is a station-oriented variable that indicates whether or not (TRUE or FALS~, respec­
tively) there are any messages (output or enableinput) in the station queue .. Note that if this variable· is
FALSE, the execution of an INITIATE REQUEST construct acts as a no-op. · ·

ST ATION(READY)
Interrogate, CTR

If STATION(READY) is TRUE, the station associated with the station index stored in STATION is IOgi­
cally ready. No function (e.g., a Transmit Request or Receive Request) can be INJTIATEd for the station
if it is not ready. Stations cail become not-ready as the result of the execution of a TERMINATE ERROR
in one of its (request de/inition)s or as the result of the MCS executing a MAKE STATlON NOT-READY
(TYPE=37) DCWRITE. . . -·

STATION(TALLY)
Interrogate/Alter, CTR/CTR~ 8

STATION(TALLY) is a station-oriented (byte variable) and is a·general purpose variable which may be
used by the NDL program for data storage. The initial value of STATION(TALLY) is zero. Note that
ST ATION(TALLY) differs from TALLY ((tally number) I in that it cannot be directly STOREd in a ·
message header. ·

STATION(VALID)
Interrogate, C

The STATION(VALID) bit indicate~ whether or not (TRUE.or FALSE, respectively) there is a valid st~tion
associated with the station index value stored in STATION •. Refer to the (byte variable) STATION. .

STOPBIT
Interrogate/ Alter, CTR/CTR

STOPBIT references bit 1 in the Error Flag Field of a result message, and conventionally indicates that a
stop bit error was detected while executing a (receive statement).· Refer to:the STOPBrr option of the
(receive statement). · · . . . · · . . ·. · · .· . .

SYNCS
Interrogate/Alter, CTR/CTR·

SYNCS is a synonym for INHmITSYNC. Refer to the INHIBITSYNC deseription.

6-17

Variables

Cont'inucd

TAB
lntl'rrogate. T

. ·~

TAB is a carriage c.ontrol variable, and is conventionally used to indicate tabulation for the terminal. Th.is
bit is not set by 1/0 Intrinsics, and its use implies some established converttion between the MCS and the NOL
programmer. TAB is set TRUE if message word [01.(30: I) ~ 1.

TALLY [(tally number) J
lnterro~te/Alter, CTR/CTR. 8

TALLY [OJ, TALLY [I), and TALLY [2) are general purpose station-oriented (byte variable)s. TheY.can
be used for storage of 8·bit quantities such as counters, characters, etc. When the OCP is initialized, the
TALLYs are initially zero unless a value is specified in a (station initialize statement). TALL Vs may be
initialized directly from a message· header (message word [31 ~[23:24)) by utilizing· the IND'IALIZE
TALLY ((tally number) I construct, thereby enabling an MCS to supply additional information to the DCP.
The DCP ~an likewise transfer the value of a TALLY back to an MCS in a result message by utilizing the
(.~tore statement). Once a TALLY has been assigned a value, that TALLY retains.that value until explicitly
altered by the NOL program.

TIMEOUT
Interrogate/Alter, CTR/CTR

TIMEOUT references bit 0 (zero) of the Error Flag Field in a result message, and conventionally indicates
that a timeout occurred while executing a (receive statement). Refer to the TIMEOUT ·option of the
(receive statement).

TOG I (toggle number))
Interrogate/Alter, CTR/CTR

: ".·

TOG [OJ through TOG [7) are general purpose station-oriented .(bit variable)s, often referred to as toggles.
They can be used for storage of logical values (TRUE and FALSE). When the DCP.is initialized,.the value of
the toggles is set to the value specified in the (station initialize statement>. or, if such initialization is not
specified, the initial value will be FALSE. Toggles can be assigned a value directly from. a message header ·
(message word (I J .(39:8)) by utilizing the INmALIZE TOG [(toggle number)) construct. Toggles can
be stored into a result message by utilizing the (store statement): Once a.toggle has been assigned.a value,··
that toggle retains that value until explicitly alteredby the NDL program. · · . · · · .

TOGS
Interrogate/Alter. CTR/CTR, 8

. ..- "•

TOGS addresses the eight (bit tlariable)s TOG[O) through TOG (7). For example, TOGS~ 4"FF" sets >----

TOG[OI through TOG. (7) TRUE. TOG (0) is considered the low-order bit, and TOG (7) the high-order ~
bit. . . . '

··~

Variables.··

·Continued

TRAN ERR
Interrogate/ Alter ,·CTR/CTR

TRANERR references bit 9 in the Error Flag Field of a result message, and is conventionally used to indi­
cate that a transmission number error occurred. Refer to the TRAN option of the (receive statement):

WRUFLAG
Interrogate/Alter, CTR/CTR

WRUFLAG references bit 13 in the Error Flag Field of a result message. If this bit is TRUE upon tern1ina­
tion of a (request definition), the result message is returned to the MCS as a STATION EVENT (CLASS= 1)~
message. Refer to the B 6700/B 7700 DCALGOL Language Ref ere nee Manual for more information regard­
ing this message.

6-19/6-20

APPENDIX A. RESERVED WORDS

The following is a complete list of reserved words used in the Network Definition Language. These words
have special meaning to the compiler and cannot be used as (Jdentifier)s or in any manner oth~r.than their
defined meaning. Any synonym of a reserved word is shown adjacent .to the word, in parentheses. .

ABORT BLOCKED (BLOCK)

ADAPTER (ADAPTOR) BREAK

ADAPTOR (ADAPTER) BUFFER

ADDERR BUFOVFL

ADDRESS BUSY

Al CARRIAGE
:_., ALTERNATE CHAR· (CHARACTER)

ANSWER CHARACTER (CHAR)

v ASCII CLEAR
'-"' ASC63 CLUSTERS

ASC67 CODE

ASC68 CONNECTION

AUX (AUXlLIARY) CONSTANT

AUXILIARY (AUX) CONTINUE

BACKSPACE (BKSP) CONTROL

BAU DOT CRC ·

BCC CRCERR (BCCERR)

BCCERR (CRCERR) DCP.

BCD DEFAULT

BCL DEFINE

BEGIN DELAY

BINARY DIALIN

BKSP (BACKSPACE) DIALOUT

v BLKN DIFFERENT

~ BLKNERR DIRECT

BLOCK (BLOCKED) . DISCONNECT

A-1

. RESERVED WORDS (Cont)

·~

HORIZONTAL
_..

DOWN

DUPLEX ICTDELAY

DYNAMIC IDLE

EBCDIC IF

ELSE ILLE(IALCHR

ENABLED ·INCREMENT

EN ABLE INPUT INHIBITSYNC (SYNCS)

END INITIALIZE

ENDOFBUFFER INITIATE

ENDOFNUMBER INPUT

EQ (EQL) IR

EQL (EQ) LD (LINEDELETE)

ERROR LE (LEQ)

EVEN LEQ (LE)

EXCHANGE LINE ~-

FALSE LINEDELETE (LO)
l_.I ..._..,,,.

FAMILY LINEFEED

FETCH WGICALACK

FILE LOGIN

FINISH LOSSOFCARRIER

FOR LS (LSS)

FORK LSS (LS)

FORMAT MAX INPUT

FORMATERR MAXSTA TIONS

FREQUENCY MCS

GE (GEQ) MEMORY

GEQ (GE) MICRO

GETSPACE MILLI

GO MIN

GT (GTR) MODE

GTR (GT) ·MODEM ~

HOME MSGSPACE

A-2

v RESERVED WORDS (Cont)

~-·
MYUSE SHIFT

NAKFLAG SKIP

NA.KONSELECT SKIPCONTROL
..

NE (NEQ) •·· SPACE

NEQ (NE) .. SPO

NOINPUT STANDARD

NOJSEOELAY STATION

NORMAL STOPBIT ·

NOSPACE STORE

NOT SUM

NULL SYNCS (INHIBITSYNC)

ODD TAB

OUTPUT TALLY

PAGE TASK
v

PAPERMOTION . TERMINAL

'- PARITY TERMINATE

PASSIVE TEXT

PAUSE THEN

PHONE TIM ELIM IT

PTTC61 TIMEOUT

QUEUED TO
.READY TOG

RECEIVE tOGS

REMOTE TRAN

REQUEST TRANERR

RETRY TRA1'1SLATETABLE·

RETURN TRANSLATOR·

SCREEN TRANSMISSION

SEC TRANS.MIT

v ·SECURITY TRANSMITDELA Y

.._.., SEQERR TRUE

SEQUENCE TURNAROUND

A-3

A-4

TYPE

UP

USER

VALID

WAIT

f:

• .. ~ ~1

. ·.,·

• I.

~· . :

WIDTH.

WRAPAROUND

. WRU

: WRUFLAG

· .. ·,·

.I • •

.;

~ : -. ~·: . -;· .

. ;:

. ...--- ...

.•··· .

APPENDIX B. TRANSMISSION CODES

BAUDOTCODE

~
0 0 1 1 -

0 1 0 1 -
s bli b3 b2 "b 1

~ ~ t t ~
0 1 2 3

o. 0 0 0 0 BLK T BLK 5

0 0 0 1 1 E z 3. II

·V
"-"

0 0 1 0 2 LF L LF '~)
0 0 1 1 3 A w .. ·- 2 .

0 1 0 0 4 SPACE H SPACE DIAMOND
..

0 1 0 l 5 s y BELL 6
() 1 1 0 6 I p 8 0

0 1 I I 7 u Q 7 I

1 o· .o 0 8 CR 0 CR 9
I 0 0 1 9 .0 B .· $· ~
1 . 0 l . 0 I 0 (A) R G. 4 &

1 0 I I 1. 1 (B) J FIGS I FIGS

1 1 0 0 12(C) -N M· 7JK ;,

1 1 0 I 13(0) F x ~ l

I 1 I 0 14 (E) c v ~ ~
I 1 I 1 . 15 (F) K LTRS ~ LTRS

.\..J
''-'" '· '·

B-1

o:1
I
N

EBCDIC BCL EBCDIC DECIMAL
GRAPHIC GRAPHIC HEX. INTERNAL VALUE

Blank 40 0100 0000 64
[4A 0100 1010 74

48 0100 1011 7S
< 4C 0100 1100 76
(4D 0100 1101 77
+ 4E 0100 .1110 78
I 4F 0100 1111 79
& so 0101 0000 80
] SA 0101 1010 90
$ SB 0101 1011 91

* SC 0101 1100 92
) SD 01011101 93

SE 0101 1110 94
< SF 0101 1111 9S -,

60 0110 0000 96
I 61 0110 0001 97 .

68 0110 1011 107
% 6C 0110 1100 108

6D 01101101 109
>· 6E 0110 1110 110
? 6F 01101111 111

. 7A 01111010 122
78 0111 1011 123
@ 7C 01111100 124

~ 7D 0111 1101 12S
= 7E 01111110 126 ,, 7F 01111111 127

(l

DATA REPRESENTATION

EBCDIC
CARD CODE

No Punches
12
12
12
12
12
12
12
11
11
11
11
11
11

1l
0
0
0
0

.o
0
8
8
8
8
8
8

8
8
8
8
8
8

8
8
8
8
8
8

I
8
8
8
8
8 ..,
....
3
4
5
6
7

(
(

, ...
3
4
s
6
7

2
3
4
5
6
7

3
4
5
6
7

OCTAL

60
33
32
36
3S

37
34
76
52
S3
SS
56
57

. 54
61
72
73
74
16
14
15
12
13
17
7S
77

BCL BCL BCL USASCll
INTERNAL EXTERNAL CARD CODE XJ.4-1967

11 0000 01 0000 No Punches 010 0000
01 1011 11 1100 12 8 4 101 IOI l
01 1010 111011 12 8 3 0101110
01 1110 111110 12 8 6 0111100
01 1101 11 1101 .12 8 5 010 1000

11 1010 0101011
01 1111 111111 12 8 7 1111100
01 1100 11 0000 12 0100110
11 1110 01 1110 0 8 6 101 1101
10 1010 10 1011 11 8 3 010 0100
10 1011 10 1100 11 8 4 010 1010
10 1101 10 1101 11 8 s 010 1001
10 1110 10 1110 11 8 6 0111011
10 1111 101111 11 8 7

10 1100 10 0000 11 1011111
11 0001 01 0001 0 l 0101111
11 1010 01 1011 0 8 3 010 1100
11 1011 01 llOO 0 8 4 010 0101
11 1100 01 1010 0 8 2 010 1101
00 1110 00 1110 8 6 0111110
00 1100 00 0000 * 0111111
00 1101 . 00 1101 8 5 011 1010
001010 00 1011 8 3 010 0011
00 1011. 00 1100 8 4 100 0000
001111 001111 8 7 0100111
111101 01 1101 0 8 s 0111101
111111 01 1111 0 8 7 010 00!0

((((((
.

DATA REPRESENTATION (Cont)

EBCDIC BCL EBCDIC DECIMAL EBCDIC BCL BCL BCL USASCll
GRAPHIC GRAPHIC HEX. INTERNAL VALUE CARD CODE OCTAL INTERNAL EXTERNAL CARD CODE XJ.4-1967

(+)PZ + co 1100 0000 192 12 0 20 01 0000 11 1010 I2 0
A Cl I 100 0001 193 12 - 1 2I 01 0001 11 0001 12 I IOO 0001
B C2 1100 0010 194 I2 2 . 22 01 0010 11 0010 1 2 2 100 0010
c C3 1100 0011 195 12 3 23 01 0011 I I 0011 I2 3 IOOOOll
D C4 1100 0100 196 12 4 24 OI 0100 11 0100 12 4 100 0100
E cs 1100 0101 197 12 5 25 01 0101 11 0101 12 s 100 0101
F C6 I1000110 198 12 6 26 01 0110 110110 12 6 100 0110
G C7 11000111 199 12 7 27 01 0111 110111 12 7 1000111
H cs 1100 1000 200 12 8 30 01 1000 11 1000 12 8 100 1000
I C9 1100 1001 201 12 9 31 01 1001 11 1001 12 9 IOO 1001

(!)MZ x DO 1101 0000 . 208 11 0 40 100000 10 1010 I l 0 010 0001
J DI 1101 0001 209 11 1 41 10 0001 IO 0001 11 l 100 1010
K 02 1101 0010 210 - 11 2 42 10 0010 10 0010 11 ., 100 1011 -
L 03 1101 001 l 211 II 3 43 10 0011 10 OOI I I I 3 100 1100
M 04 1101 0100 . 212 11 4 44 10 0100 10 0100 11 4 100 1101
N 05 . 1101 0101 213 11 5 45 10 0101 10 0101 l I 5 100ll10
0 .D6 1101 0110 214 11 6 46 10 0110 10 0110 11 6 lOP 1.-111
p 07 '.;<" 1101 0111 215

). '·

11 7 47 10 0111 10 0111 11 7 1010000
Q 08 . : 11011000 216 1l s so 101000 10 1000 1 I 8 101 0001
R 09 1101 1001 217 ll 9· 51 10 1001 10 1001 I I 9 IOI 0010
¢ EO 1110 0000 224 0 8 2 00 0000
s E2 lllO 0010 ··226 0 2 62 11 0010 . 01 0010 0 2 lOI 0011
T E3 1110 0011 227 0 3 63 11 0011 Ol OOll 0 3 101 0100
u E4 1110 0100 . 228 0 4 64 11 0100 01 0100 0 4 101 0101
v ES 11100101 229 0 5 65 l l 0101 01 0101 0 5 101 0110
w E6 1110 0110 230 0 6 66 11 0110 01 0110 0 6 101 0111
x E7 11100111 231 0 7 67 110111 01 0111 0 7 101 1000

·Y ES 1110 1000 232 0 8 70 11 1000 01 1000 0 8 101 1001
z E9 ll 10 1001 233 0 9 71 11 1001 01 1001 0 9 101 1010

~·

0 FO I Ill 0000 . 240 0 00 000000 001010 0 Olt 0000
l Fl llll 0001 241 l . 01 000001 000001 1 OU 0001
2 ·-r -

F2 l ll 1 0010 242 2 . 02 00 0010 00 0010 2 OJ 10010 . ..
3 F3 1111 0011 243 3 03 00 0011 000100 3 011 0100
4 F4 11110100 244· 4 04 000100 00 0100 4 011 0100

"' I w

cc
I
~

.....
DATA REPRESENTATION (Coatl

EBCDIC BCL EBCDIC DECL\fAL EBCDIC
GRAPHIC GRAPHIC HEX. INTERNAL VALUE CARD CODE

5 FS 1111 0101 145
6 Fo 11110110 246
7 F7 1111 OJI I 247
8 F8 . 11 ll 1000 248
9 F9 lllllOOI 249

I. EBCDIC 0100 1110 also translates to BCL JI 1010.

2. EBCDIC I 100 11 11 is translated to BCL 00 0000 with an
additional flag bit on the most-significant bit line (8th bit). This
function is used by the unbuffered printer to stop scanning.

5
6
7
8
9

3. EBCDIC I I IO 0000 is translated to BCL 00 0000 with an addi­
tional flag bit on the next to most significant bit line (8th bit).
As the print drums have 64 graphics and spaces, this signal can be
used to print the 64th graphic. The 64th graphic is a .. CRH for
BCL drums and a"¢" for EBCDICdrums ..

(

NOTES

BCL BCL BCL USASCll
OCTAL INTERNAL EXTERNAL CARD CODE XJA-1967

•·
05 00 0101 00 0101 s 011 0101
06 00 01 IO 00 01 IO 6 Oil OIIO
07 00 0111 00 0111 7 011 01 It
10 00 IOOO 00 1000 8 011 1000
11 00 1001 00 1001 9 01 I 1001

4. The remaining 189 EBCDIC codes are translated to BCL
00 0000 (?code).

5. The EBCDIC graphics and BCL graphics are the same except as
follows:

x (multiply)

EBCDIC

(single quote)

(not)

(underscore)

(or)

·:_· .. ~~:

(C (C (C

FITC/6CODE

0 0 0 0

0 0 0 0

0 0 0 0

0 2 3 5 6 7

0 0 0 0 0 SPACE @ - ~ SPACE DELTA BACK/ <

0 0 0 1 1 1 I j a > QUES J A

0 0 1 0 2 2 s k b) s K B

0 0 1 1 3 3 t 1. c , T L c
-

0 1 0 0 4 4 ~= m - d SBLANK ·u M D r~

0 I 0 1 v --5 ~ v n e (V NE

0 I 1 0 ~6 w of. W 0 F

o~ 7 7 x p 9 II . x p G

· .. •. ~~:1,_,._o~~~--+0-1-+-___ : __ ~f,----: __ ..+-,....,,_-: ___ -+-___ q_i __ -+----~---+---·-~-~--........ --"--: __ -+------~---+---~--~
~ . · I I O IO(A) O · # M7 PZ] GRPMRK GAMMA SQ. RT

to
I
VI. -tX1
I
°'

1 0 I 1

1 I 0 0

I I 0 1

1] 1 0

I 1 I 1

ll(B) ~
12 (C) PN BY
13 (D) Rs LF ·

14 (E) UC EOR

1s en EOT PRE

$. SEGMARK , V.BAR

· RFS PF PN BY RES PF

NL HT RS lF .NL HT

BS LC UC EOB BS LC

IL DEL · EOT 1 PRF IL DEL I

... ···.

APPENDIX C. SOURCE INPUT FORMAT AND CODiNG FORM·

SOURCE INPUT FORMAT

An NOL source prograri1 is· represented by a set of ordered external records. The external records could
come from cards, tape, disk, remote device, or a combination of.these. The.source information on any
given record m\Jst be divided into two areas. Character positions 1 - 72 are assµmect to contain elements
of the Network Definition Language (described in sections 2 through 6 of this manual) for compilatiOn by
the compiler. Character positions 73 through 80 are assumed to contain information regarding t"he sequence
of the input record; specifically, this area is for sequence numbers. Sequence numbers are optional. .

There is no fixed format for source information in character positions 1through72. This information can
appear in a free format form, with the following exceptions: elements contained on the card must comply ·
with any syntactical restrictions, and syntactical items cannot be continued from record to the next. For
example, the reserved word TERMINAL cannot begin on one source record and continue on the next. ·

CODING FORM

To facilitate keypunching, as well as to provide the. programmer with a sugge~ted forniat to follow in
writing his source program, printed programming fomis are often used. An ·ex.ample of such a form appears
on the following page. ·

. ·~

·'.

C-1

("')
I

N PROGRAM ID

5

5

SYMBOLS TO USE

(

10

10

15 20

15 20

25 30

SOURCE PROGRAM CODE
(columns t - 72}

25 30.

35

..

35

CODING FORM
COST CENT

PROGRAMMER

40 45 50 55 60

40 45 50 5!5 .60

FOR DIGIT ONE. I FOR LITTER i, 0 FOR DIGIT ZERO, '/J FOR LETTER O. X FOR LITTER X, © FOR MULTIPLY OPERATOR

(
(

SEQUENCE NO.

65 70 73

SOURCE PROGRAM
SEQUENCE NUMBERS
(The sequence numbers
in columns 73- 80 ore
not executed, but ore re­
produced on the source
printout.}

es 70 3

(
(

8

APPENDIX D. COMPILE-TIME OPTIONS

COMPILER CONTROL STATEMENTS

The user is provided with the compile-time ability to control the manner in which the compiler processes
the source input that it accepts. The user can specify the manner in which the compiler iS to receive the
source input, the consequences of certain syntax errors, and the form of the generated compilefoutput.
The compiler control statement is the medium by which the8e constraints are communicated to the
compiler. Such statements are entered into the compiler by cards.in the same manner as source language
statements. Compiler control statements, entered as input to the compiler via option control cards, can
occur at any point in the compi1er input files and must contain only compiler control information. ·

An option control card is identified by the appearance of a dollar sign ($) in the first or second column of
the card. If the $ is placed in card column 2, the option control card imar.c is placed iit the updated
symbolic file (NEWT APE) if such a file is gener.itcd. Comriilation control information is punched in the
succccdinr. columns through column 72, with an eight·digit sequence number in columns 73 through 80.
All blanks in columns 73 through 80 represent the lowest·value sequence number. An option control card
with no other compiler infom1ation causes the card image in the secondary input file that has the same
sequence number to be ignored.

'fl1e basic element of compiler control information is the compiler option, which can be invoked by the
appearance of its name on an option control card. Two mutually exclusive states are associated.with the
majority of these options: SET and RESET; various compiler functions are dependent upon the states of
such options. Default states are assigned to these compiler options, and the desfred state of such an option
can be specified ort an option control card. ·such option control cards cari also contain arguments associated
with the option. The balance of compiler options are parame~er options with wlJ.ich no states are associated.
The functions performed by these latter options are initiated by .the appearance 'on.an option control card
of the appropriate option name and any related arguments. ·

J:

D-1

OPTION CONTROL CARDS

Syntax

$

CODE
OCPLIST
DUMP
ERR LIST
LIMIT (integer)------~-----------

LIST
LISTP

MERGE
NDLMACRO
NEW
NEWSEQERR
NOW ARN
PAGE
SEQ

(base) +_..,(increment)

SEQ ERR
SINGLE
SUMMARY
SYNTAX~-----~-------------------1...i

VERSION f • f.fersion increment)..,;.. (cycle increment)..,.--------.....-i

+ · ... (patch number)
l.(rersion increment)~· ... +...-.(cycle increment)..---------....i

. ... (patch number)

VOID---'------------------------..,.
VOIOT---------------------------~ $ ___________________________,

D-2

.V,
Semantics

The purpose of a compiler control statement is the assignment of a desired value or state (SET or RESET)
to an indicated compiler option{s). Such a control statement tnust begi11 with either an explicit or an
implicit option action. An explicit option action is defined as one of the following mnemor1ies: SET;
RESET, or POP.

An implicit option action is indicated when a compiler.control statement contains only the names of
options and no explicit option action. In the latter case, all options named in the compiler control state­
ment are assigned the state SET, and all other options are assigned the state RESET.

If a compiler control statement begins with the option action SET, the options following the option action
are assigned the state SET;.the states of all other options are unchanged. If the compiler control statement
begins with the option action RESET, the options following the option action are assigned the state RESET;
the states of all other options are unchanged. If the specified option action is POP, then the options have ·
not been changed previously from their default states. The states of all other options are unchanged. The
following statements are examples of compiler control statements employing the SET, RESET, and POP
option actions. ·· · · ·

S SET LIST SINGLE
$ RESETVOID
$ POP NEW NEWSEQERR
$ SET SEQ o+IOO .

An option that has a default state of RESET is initially assigned a 48-bit stack word filled with zeros; an
,V option that has a default state of SET is initially assigned a 48-bit stack word with a l on top and zeros in
'-" the remaining positions. The top stack position denotes the state ofthc option at any time. Each SET

option action causes the stacks allocated to the designated standard options to be pushed down one bit
and a l to be placed at the top of each of these stacks. Each RESET causes the appropriate option stacks
to be pushed down one bit and a 0 to be placed at the tops of these stacks.· POP causes the stacks corre­
ponding to the designated options to be POPped up one bit; causing the associated options to revert to
their immediate previous states. Since the size of these option stacks is 48 bits, a maximum history of 48
states can be recorded. When an option control card appears that has a standard option name and an
implicit option action; the resultant action is identical to that which would have reseulted had all 48 bits of
each standard option stack been RESET and followed by an explicit SET perlormed <;>n each indicated ·
option.· For example, after the appearance of an option control card: containing:

$ SINGLE

the history stack for the SINGLE option contains a 1 in the top stack position and all zeros iri the following
positions. The history stack for each of the other compiler options would then contain all zeros. A com­
piler control statement that applies to compiler options begins with an explicit or implicit option action .
and contains a list of options to which the option action is to apply. This statement ends when the next 1

implicit option action is encountered on the compiler control card or when a percent sign is encountered
on the compiler control card or when a percent sign is encountered or column 72 of the card is reached.
The compiler options affected by the compiler control card retain the indicated states for all input cards .
with sequence numbers greater than the sequence number on the compiler control card.that has the
control statement, or the physically succeeding input cards for a deck in which all sequence numbers ·are
blank, until another compiler control card is encountered that alters the optiori 'states. The following
illustration {figure D-1) is an example of a card that has compiler control statements employing option
actions:

D-3

$ SET SINGLE LIST SEQ JO+ 5 RESET SEQERR 00001070

Figure 1)- J. Option Control Card
~

TI1c option control card assigns the stak SET to n.e options SINGLE, LIST, and SEQ, with the sequencing
argutncn ts of I 0 and +5. It also as..c;igns the state RESET to the option SEQERR. The card has the ·
sequence numhcr 00001070 itt columns 73 through 80. ' ·

OPTIONS

TI1e compiler recognizes the following identifiers as valid compiler option names:

CODE
DCPLIST
DUMP
ERR LIST
LIMIT
LIST
LISTP
MERGE
NDLMACRO
NEW
NEWSEQERR

NOW ARN
PAGE
SEQ
SEQ ERR
SINGLE
SUMMARY
·SYNTAX
VERSION
VOID
)'OIDT
$

The compiler options arc discussed alphabetically in the following paragraphs .. The default state of each
option is indicated in purenthcses following the option name; the function perfonned by.the option is
discussed in the paragraph accompanying the same. ·

If an option control card is empty, it has no effect on other options;·however, if there is a card image on
the symholic file witl) the same sequence number as the empty option control card, the image on the
sym boJic file is deleted. ·

Tile compiler options are as follows:

CODE <RESET)

TilC code option causes the printout to contain the compiler-generated object code.

DCPLIST (RESET)

If SET, lists code addresses of each source statement on the LINE file. (There will be two separate lists
addresses if used for two DCPs, three for three DCPs, etc.)

DUMP (RESET)·

If SET, causes a ''raw clump" listing of NIF on the LINE file.

0-4·

"-· ,./ .__..

ERRLIST (RESET)

'll1l~ ERR LIST option causes syntax error information for CAN DE to be writt~n on tlie ERRORFILE file.
When a compilation error is detected in the source input, an error message is written in the ERRORFILE
file. This option is provided primarily for use when the compiler is called from a remote tenniriaJ by the
CAN DE language, but it can be used regardless of the manner in which the compiler is called. Wilen the
compiler is called from CANOE, the default state of the ERRLIST option is SET and ERRORFILE is
automatically equated to the remote device involVed. ·

LIMIT (cannot be SET or RESET)

The integer parameter allows the user to control compiler error tenninations. The proper fonnat for the
LIMIT option is as follows:

LIMIT (in tegcr)

Compilation is tenninated if the number of errors detected by the compiler equals or exceeds the (i1;teger)
If no LIMIT statement appears, a default error limit of 150 is assigned unless the compilation is initiated
through CAN DE, in which case the default error is I 0.

LIST (SET: RESET for CANOE)

The LIST option causes a printout to be generated on the compiler output LINE file. The contents of
such printouts are specified ii1 the preceding paragraphs describing compiler features. If the LIST option
is RESET, only syntax error messages and compilation information are listed.··

LISTP (RESET)

When SET, the LISTP option causes patches and input records from the compiler CARD file to be
included on the printout while records from the compiler TAPE file are excluded. This option is effective
only if the LIST option is RESET. If the LIST option is SET, the state of LISTP is ignored. Therefore,
the LISTP or the LIST option causes a printout to be generated when SET.

MERGE (RESET)

When SET, the MERGE compiler option causes primary input, CARD file, to be merged with secondary
input, TAPE file, to fonn the total input to the compiler. If matching sequence numbers occur, the
primary input overrides. If the MERGE option is RESET, only primary input is used and secondary input
is totally ignored. Therefore, the total input to the compiler when the MERGE option is SET consists of
all card images from the CARD file, and all card images from the TAPE file that do not have sequence
numbers that can be found on cards in the CARD file.

NDLMACRO (RESET)

If SET, the NDL MACRO interface code will be printed following each statement within a (request
definition) or (control definition). . , ·

NEW (RESET)

When the state of the NEW option is SET, the merged inputfrom the CARD and TAPE files is placed on
the updated symbolic output file NEWTAPE. This file is coded. in EBCDIC and is structured in 15-word
records and 450-word blocks. Therefore, it can later be used as input to the compiler through the TAPE
file. All option control cards in the merged CARD and TAPE file input are placed on the NEWT APE file
when NEW is SET and only if the initial $ sign on these cards is in card column 2.

The NEW option can be SET and RESET as necessary by option control cards appearing at any point in
the input file. Such option control cards can also be placed on the NEWT APE file if the $ signs on these
cards are in column 2.

D-5

1l1c NEWT APE file is created despite the occurrence of syntax errors in the source input. This file.can be
used as a secondary input for a later compilation.

The NEWT APE file can be label-equatec1 so that, for example, the output goes to magnetic tape.

NEWSEQERR (RESET)

The NEWSEQERR option causes sequence errors on the NEWT APE file to be flagged. If sequence errors
occur and the NEWSEQERR option is SET, the NEWTAPE file is not locked, and the message NEWTAPE
NOT LOCKED lmmzberof errorsf NEWTAPE SEQUENCE ERRORS is printed on the printout.
NEWTAPE, NIF, and DCPCODE files are not locked.

NOWARN (RESET)

When SET, suppresses any compiler warnings from appearing on the LINE file.

PAGE (cannot be SET or RESET)

The PAGE compiler option must appear on a option card without an option action preceding it .. When a
PAGE option card appears, the printout is spaced to the top of the next page, but only if the LIST option
is SET.

SEQ (RESET)

TI1e proper format of the SEQ option is. as follows:

SEQ (f<i.'it') + (jncrement)

If the SEQ option is SET, the printout and the new secondary source language file, NEWTAPE, contain
new sc<1uencc numbers as defined by the (!1ase) an(j (increment). If the (bas'? and (increment) are
unspecified, a base of 0 and increment of l 0 are assqmed. ·

'ntis option has effect only when the LIST and/or NEW options are also SET. The sequence numbers that
appear on the card images in these files when the SEQ option is RESET are identical to the sequence
numbers on the corresponding.cards in the input file.

Example

(s sEQ 100 + 100 ~50001·

This compiler control card specifies that, when the state of the SEQ option is SET, sequencing begins with
the sequence number 00000100 and proceeds in increments of JOO~

SEQERR (RESET)

The SEQERR option causes sequence errors -00 the TAPE file to be flagged. If sequence errors occur and
the SEQERRoption is SET,DCPCODE and NIF files are not locked, and the message CODE FILE NOT
WCKED {number of errors J TAPE SEQUENCE ERRORS is printed on the prjntout. .

D-6

v .,

~-

SINGLE (RESET)

The SINGLE option causes the printout to be single-spaced. When the SINGLE option is RESET, the
printout is double-spaced. (Note that double-spacing is default.)

SUMMARY (RESET)

If SET, lists on the LINE file the memory space allocations for. user translation tables and terminal ·
message space allocations for each DCP.

SYNTAX (RESET)

When SET, the source program is checked for syntax errors only. DCPCODE and NIF files are not
generated.

VERSION (SET, RESET, and POP are ignored by the compiler)

The VERSION compiler option allows the user to specify an initial version number for a source program,
to replace an existing vel'Sion number, or to append an existing version number.

Examples

$ VERSION 25.010.010
$ VERSION +Ol.+oOl .010

When compiling with the NEW compiler option SET and a VERSION compiler card appears in the symbolic,
and if the patch deck contains a VERSION compiler option, the new symbolic is updated to the version,
cycle, and patch number on the last VERSION compiler card in the patch deck. The sequence number
must be less than the one in the symbolic.

VOID (RESET)

If the VOID option is SET, all input, other than $ cards, from the TAPE and the CARD files is ignored by
the compiler until the VOID option is RESET or POPped into a RESET state~ The ignored input is
neither listed nor included in the updated symbolic file regardless of the states- of the LIST and NEW
options. The VOID option can be RESET, once it is SET, only by a option control card in the· CARD file.

VOIDT (RESET)

If the VOIDT option is SET, all secondary input, other than $ cards, from the TAPE tile is ignored by the
compiler until the VOIDT option is RESET or POPped into a RESET state. Therefore, while the VOIDT
option is SET, only primary input is compiled. The ignored input is neither Usted nor included in the
updated symbolic file regardless of the states of the LIST and NEW options. The VOID option can !Je
RESET, once it is SET, only by an option control card in the CARD tile.

S (RESET)

When SET, the dollar sign($) option causes the printout of all subsequertt (option cuntrolcard) images
when the LIST option is SET. This option appears as $SETS ot $ S. .

D-7/D-8

APPENDIX E. COMPILER SOURCE AND OBJECT FILES

COMPILER FILES

Compiler communication is handled through various input and output files (figure E-1). Cards; disk, or
magnetic tape can be specified as source language input media. Input must be in the input format defined
in the preceding sections. The compiler has the capability of merging, on the basis of sequence numbers,
input from cards, tape, or disk. When inputs are being merged, indications of text insertions or replace­
ments can be made to appear on the printout. In addition to the printout, the compiler can also generate
updated symbolic files. These files can be created in addition to the compiler-generated output code file.

Input Files

111e primary compiler input file is a card file with the internal name CARD; the secondary input file is a
serial disk file with the internal name TAPE. The presence of the primary file (CARD) is required for each
compilation; the presence of the secondary file (TAPE) is optional for each compilation. When two card
images, one from the CARD file and the other the TAPE file have the same sequence number, the former
is primary and is compiled, and the latter is ignored. This is the standard mode of handling source language
input. File CARD can be either BCL-coded with I 0-wordrecords or EBCDIC-coded with 14-word records
and can be either blocked or unblocked. File TAPE can be BCL-coded with 10-word records and 150-word
blocks, or EBCDIC-coded with a 14- or 15-word record and 4 20- or 450-word blocks. Both the CARD file
and the TAPE file can be label-equated (via the FILE system control card) to change the TITLE and
KIND of the file. The TAPE file is used as input only when the MERGE compiler option is SET.

E-1

OPTIONAL UPDATED

-- SYMBOLIC FILE
(SYMBOL/SOURCENDL)

PRIMARY DCP CODE FILE
INPUT FILE ~

((identifier)/ DCPCODE)
(NDLSOURCE) I

.,_..._... NE1WORK· ... NDL INFORMATION ,
~

COMPILER FILE ~

1---i · ((identtfier)_fNIF)

OPTIONAL OPTIONAL LINE
SECONDARY PRINTER LISTING
INPUT FILE -

~SYMBOL/SOURCENDL}
(LINE) ..

... _,

COMPILER INPUT FILES OPTIONAL ERROR -- MESSAGE LISTING (SOURCE LANGUAGE
INPUT AND COMPILER
CONTROL STATEMENTS)

Output Files

Figure E-1. NOL Compilation System

(ERRORFILE) -
COMPILER-GENERATED

OUTPUT FILES

Output files produced by the compiler consist of the DCP code file, the NetwQrk Information File, an
updated symbolic file, a line printer printout, and an error message file. The DCP code file has the internal
name DCPCODE and is saved on disk after the compilation unless the COMPILE system control card
specifies compilation for syntax only, or unless syntax errors are detected in the source language input by
the compiler. If compilation for library is specified, then the DCPCODE and NIF files are saved on disk.
The title of the saved DCP code file is identical to the program name <identifier) appearirig on the
COMPILE system control card with the suffix of /DCPCODE. ·

The title of the saved Network Information File is identical to the program name. (jdentifier) appearing on .
the COMPILE system control card with the suffix of /NIF. · ·

The updated symbolic file is, by default, a disk file generated only if the compiler option NEW is SET.·
This file contains the compilation source input or a selected portion of this input as specified by the state
of the NEW compiler option. It can be used as the TAPE file for a succeeding compilation. This output
file has the internal file name NEWT APE and contains EBCDIC-coded 15-word records in 450-word
blocks.

E-2

The line printer printout is an optional print file that is created unless the compiler option LIST is
RESET. (The LIST option is SET by default unless the compilation is initiated through CANOE.)· The
file has the internal name LINE, consists of 22-word EBCDIC-coded records, and contains the.following
information:

~- Source anrl compiler control statements used·as input to the compiler.
b. Error messages and error count. ·
c. Number of input card images scanned.
d. Elapsed compilation time.
e. Processing time required for compilation.
f. Total number of words of DCP code generated.
g. Number of disk segments required for the DCP code file.
h. Title of the generated code file.

Depending upon the specified settin~ of the LIST and CODF: compiler options, the line printer printout
can contain more (or less) information than the hasic items listed above. Card images from the CARD file
are denoted on the printout by a C after the card contents. Card images from the TAPE file are denoted by
a Tin this location. AP denotes a patch of a TAPE card image.

The output error-message file with the internal file name and assigned title of ERRORFILE Is an optional
line printer file that is created when the ERRLIST compiler 'option is SET .. This file is normally employed
for compilations initiated through CANOE, in which case ERRLIST. is SET by default and the ERROR­
FILE file is assigned to the remote device involved. The ERRORFILE file can also be used for compila­
tions initiated through the card reader. This file is assigned EBCDIC-coded 12-word records that result in a
line width of 72 characters, allowing the file to be used as output to a remote tenninal or card punch
without truncation of text. When a syntax error is detected, an error message 1s written following the line
of text. The error message consists of an explanatory message and indicates the probable cause of the
error.

Compiler File Table

Table E-1, NDL Compiler Files, lists the. external name of the file (i.e., the name one would label-equate to),
the internal name of the file (i.e., the name used when the file is declared within the compiler), the
purpose setved by the file, the default KIND of the file, the code used to store file data, the default record
size (MAXRECSIZE) and block size (DLOCKSIZE) of the tile, and a brief commentary on the specific ·
file. The attributes of any of these files can be changed by the use of FILE system control cards directed to
the compiler.

. ; .

. ;

·-. -·.'· .' .'

•! '".

E-3

-··
INTERNAL

EXTERNAL NAME NAME PURPOSE

NOi.SOURCE CARD Input Card
File

SYMBOL/SOURCENDL ! TAPE Input Disk

I i File
..

I
(identifier)/DCPCODE ·DCPCODE DCPCode

File

SYMBOL/SOURCENDL I NEWTAPE Updated
Symbolic
Output
File

.
> ~

... -· - . ..

-·
·.··

• c,· .. . ··• ..

..

(

Table E-1. NOL Compiler Files

KIND

CARD
READER

.

DISK

. DISK

DISK·
·,.·

. .. ••:;n ~ . .: ,;,_ -· ..

. •'
11i .. :.!-.... _

'• .. ·-··
.

...

., RECORD.

CODE t l SIZE

EBCDIC T 14 Words

I JO Words BCL

I
!
!

' i

EBCDIC l 14 or IS
; Words
!

BCL '. IOWords

!
I
i

»I

t
T

. Hexadecimal j 30 Words

EBCDIC

. ' ...
'

..

(
(

I
I.

I
I

I
15 Words

·BLOCK
SIZE

Blocked
or
Unblocked

420or450
Words

ISO Words

420Words

4SOWords

COMME~TS

Required for each compilation. Primary
compiler input file; may be label-
equated to change file attributes.
CANDE file is equated to this file auto-
matically for compilations initiated
through CANDE. Default title is
NDLSOURCE.
BUFFERS= 2.
FILETYPE.= 8 .

Optional file; need not be present for
each compilation. Secondary compiler
input file; selected as input by SETting
MERGE compiler option. Can be label-
equated to change file attributes as
desired. The default title is
SYMBOL/SOURCENDL.
FILETYPE= 8.

Generated DCP code file. Saved or dis·
carded and assigned a title as indicated ·
by compilation method. For CANDE .
compilations, the title becomes:
OBJECT/(identifier)/DCPCODE.

Optional output file produced when
NEW compiler option is SET. This file
contains portions of the source input
and is label-equatable. It is suitable for
use as a TAPE file for a later
compilation.
BUFFERS = 2 ..
AREASIZE = l~ •
AREAS :: 20 •

F/

.,i ..

~ .. w

'.• :,.
. ::;

Table E-1. NDL Compiler Files (Cont)
.•.

-
INTERNAL RECORD BLOCK

EXTERNAL NAME NAME PURPOSE KIND CODE SIZE SIZE COMMENTS

(identifier)/NIF NIF Network DISK 30Words 420Words Generated Network Infonnation
lnfonnation File .(NIF). Saved or discarded and
File assigned a title as indicated by compila-

tion method. For CANDE compilations
the title becomes:
OBJECT/(i<Jentifier)/NIF.

LIN£ LINE Une Printer LINE. EBCDIC 22Words 22 Words Optional and label-equatable file.
Printout PRINTER Produced when the compiler option

or REMOTE LIST is SET.

ERRORFILE .. ERROR- Error LINE EBCDIC 12 Words 12Words Optional error listing file produced
FILE .. Us ting PRINTER·. when ERRLIST compiler is SET . . ,

·.Output. Contains card images and error mes-
File sages. Automatically provided for

CANOE input .

. ' .

'

· . . .
.. ;.·_·_ .. . : ... ";;

:
. ~''. _ ...

::.' .

·.

INDEX

Item Page

ADAPTER ... 5-60, 5-75, 5-136, 5-156
ADDERR . 5-32, 5-112, 6-6
ADDRESS 5-30, 5-42, 5-62, 5-110, 5-130, 5'""'"138, 5-157

(address size statement) . • . 5-157
AI . 5-40, 5-124, 6.-6
ANSWER .. ·. 5-63

(assignable bit variable) ... ; .. 5-6, 5-83, 6-3
(assignable byte variable) . 5-6, 5~·83, 6-3
(assignment statement) ...•...... ; 5-6, 5-83

AUX(LINE(BUSY)) .. 6--6
AUX(LINE(QUEUED)) ... 6-7
AUX(LINE(TALLY[{O or JlJ)) .. 6-7
AUX(LINE(TOG[{O or If])) ; .. 6-7
available line adapters .. " ...•..... ; . . 5-61

BACKSPACE ... 5-85, 5-112, 5-158
(backspace statement)•...................•......... 51-85

Baudot letters and figures ...•.. ~ 5-39
BCC .. 5-30, 5-40, 5-43, 6-7
BCCERR .. S-3·2,5-112,6..:_8

(bit nun:ber)•.............. · .. , ~ · ·. 6. -1
(bit variable) .. 6-1, 6-3
BLOCK . 5-126, 6-8
BLOCKED .. 5-126,6-8
BREAK . 5..;..8, 5-13,· 5-32

~reak s~atement) · ·•........................ · ... ; . . 5-8, 5-86.
reak tzme) . • . 5-8, 5-86
UFFER ... 5-159

BUFOVFL ... 5-13, 5-33, 5-91, 5-113, 6-9
(byte variable)•................................. · 6-1, 6-3

CARRIAGE ; · · ·. ; 5-160, 6-9
CHARACTER ~ S-31, S-41, 5-42, 5-43, 5-111, 5-122, 5-125, 5-130, 5-131, 6-9

(character) .. ~ 3-2

~
digit)- •.••...... 3-3
hexadecimal character) · ·. 3-4
letter) . 3-5
single character)" .. • 3-6

character translation•................. ; . , S-6, 5-9, 5-83, S-87, 5-162, 5-184
CLEAR ·. 5-161
CODE•....•......................... -.... 5_;_7, S-9, 5-87, 5-162

(code statenient) 5-9,·5-87
coding form•... ; C-2

«-·ommunication type number) ~ 5-75, 5-77, 5-156, 5-170
compilation system ; • . E-2
compile-time options .. · ·. . D-1
compiler control statements .. D-1
compiler file table ; . E-3

Index-I

INDEX (Cont)

Item Page

compiler files · · ·.E-1
(compound statement) . 5:-10,.5-88
conditional statements .

(ifstat~ment) • 5-21, S-100
"GO TO byte variable)" construct • 5-1-8, 5-98

CONSTANT S~2
(constant 1efln~tion) ,· ~ '. ... ·. 5-2
(constant identifier ... ·. • . . 5-2
construct terminator " . 2-2
CONTINUE ·" 5-11, 5-33, 5-89, 5-113

(continue statement) ·,.... 5-11, 5'-89
CONTROL .. 5,.._.33, 5-63, S-114, 5-139

~control ~efin~tion) .. ; 5-4
control identifier)•.................... ~..... . 5-163
control statement)s . .

(assignment) ·" ... ·. . . . 5-6
BREAK•........•......................... ~ • • . . • • 5-8
CODE ... · 5-9
compound•.............................. 5~10
CONTINUE .' 5-11
DELAY .. 5-12
ERROR switch•................................. ~. 5:-13
FINISH .. ~: S-16
FORK .. · :•. ·. . . 5-17
GOTO · ... 5-18
IDLE .. S-20
IF •.. · · · ·. 5-21
INCREMENT · .. ·. . . . S-23 .
INmALIZE•....•..... ·•........ ~ ·:'. S-24
INITIATE , ; ; ..•... ·: . 5-25
PAUSE ... S-28
RECEIVE•... · . ; , S-29
SHIFr ~ ; ... ; 5-39
SUM ·•... ; . 5-40
TRANSMIT . S-42
WAIT•.....................•.•...........•............ 5~

CONTROLFLAG ..•.....•............ · 6-9
CRC "• S-31, 5-43, S-104, s:...111, S-131, 6-9, 6-10
CRCERR ~•......................... ; • S-34, 5-114, 6-9

Data Comm Controller . • };.5
data communication files•..........•................................. ; . · ... ·. . S-56

FAMILY ~ ... 5-SS
data representation ; , B-2

~
DCP definition).•.. ; . . . S-45
DCP exchange statement) S-46
DCP memory size statement)• ~ .•............................ · S-51
DCPnumber) ... _ S-60

lndex-2

.._ ..

INDEX (Cont)

Item .Page

, DCP programs
(DCP statement)s

EXCHANGE
MEMORY ..
TEJUIINAL

···~·····················"··········••,••·•.• 9; •• 1~

. •.• S-46
... . •.•• ·· • ,. .. ·S-51

..... 5-52
• , .• io •.• •·. ·1--7

• • • • • . • • • • •.•.••••. 5,...;.52
DCPTables

'(DCP terminal statement)
DEFAULT

. . ··,
default station identifier) . ~default line identifier) .. .

'default terminal identifier) •.•. . •.

5-64, 5-t3S,.s-t4o. 5...:.1ss,. s..-164
. •.•... S-59, S-64

. 5...,135
S-155

. •. 5-1

. ". 5-2
Definitions

CONSTANT
CONTROL
DCP ..
·FILE •..
LINE
MCS
MODEM.
REQUEST.
STATION.
TERMINAL.

. . • ..

DELAY
{delay statement)
(delay time) ..•.•.

.

· DIALIN
l>IALOUT ...•

. (digit)
DISCONNECT

··DUPLEX

ENABLEINPUT .
END ~ ..•..
ENDOFBUFFER
~PNUMBER
ERROR .•..... _ .. ~··.

. (error switch statement}
, ·.EXCHANGE .••....•••

·FAMiLY
-FETCH ...•.•.
fetch statement)·
· le definition)

le family statement)
file identifier) • •

''file statement)
·. FAMILY

.•

. .

. .
..... '

...
• ! •

......
... •.

~ ..
...

... ~· ••- . . , ..
.. •.. . .

. -· ' -~· .. .- . . . ·~ ' ..

S-4
. ...•..•... . S-45

. • . . S-56 S..:.ss
. •· .• 5.,..73 . ., s~14
. ~ '5~1

........... 5-134
. .. s~ts3

5-12; 5~90
. S-l2, .S-90
S~, S--19, S..;..90, S--171

. ..
• • Ii S-70

.... . ,· .. '· ~ ;. ~-. ···:··· s~10 . · .. •.'! • . , . . . · .•. ··3· 3 ,, •• -: •. ~ '•=''• -....... • ... •· • • • • • •. • • it : , •.::·.~·. 6~9.
.....

. . .

. . .

. ..
' ••• '!

.
. . ·.•
' .. • . . . •·. , ..

. ' · ...
•

• ... •
. ...
'•.•

. ' •,. • .• ..

s-10, s.-11J s.:166 ·

.......•. s'-~127.·s;141
S-33.; s~u4~;s:;.:_161 ·.·

.....•• ; ~ .• s--11s, 6--10
. • ...•.. ···:~:~.· .·~-:.:~ -~- •• ~--·~· 5.~S

5-13, 5--31,.5~91 1 S-ll.~1 S~t 27

. .. •

...... ! ••• ••••••••• ; ~ ~! ::·· ~- ·S-:rl-31:· ~t-:-,l ·

. ..

,• .. • •• ·-~·;:··:·· • .a:"' ~-· i~-.~. s.~:
.): :; . · • •••••••• ' • :•· .• -4' •• .• • ,;, 5.-57
.5.:._94

. • • • ii • .• ...

. . •· .. · •••.• ·~· .• ~·.·.: .-·5.._94
. . • ·, . ;, . .·; S-:.S6.

• ..••••• _. ~ -~ ~. ·S:....s.1
·• _ .• ii .~J•.;,•. 6: .:5·~$6,.-~.f.5~7 .. .

.•.... .. •· .. ~ ..
' ! • ~ •. • .. '•

• .. • ' .. • . ~ • • .. • ..•.. : · s· _,: .. 57
r11es •·. ' ·• •• •· •· ••.•• • ·: •. '.·.···'·.:.. . .. :·.:.S·.··.·.;i,;o.· ·.'5.6 . ··>·:·· ,

. ,;: , .. • ..

INDEX (Cont)

Item Page

(finish statement) ... 5-16, 5--95.
FINISH TRANSMIT ... 5-16, 5-95
FORK•.... ~ .. 5-17, 5-96

(fork statement) ;• · ; ... S-17, 5-96
FORMATERR .. ·......•. S-1-15, 6-10
FREQUENCY ·· .. • . : S-·142
full duplex constructs, executable

~continue statement) .. · ...•. S-11, 5-89
for~ statement) ~ ,•.. • S-17, S-96
wait statement) ·. S-44, S-132

GETSPACE .. 5-97
(get space statement) · ~-" ~ 5-97
·oo TO•..•......•........•..•..•..•.•..•.•..... ~ ..••...•.....•...•. ~ S-18, 5-98

(go to statement) ·" -.·•............. · ...• 5-18, 5-98

(hexadecimal character) ... ·.· 3-4
HOME ... ~ 5-168
HORIZONTAL ,· · .•....................................... 5-24,"S-176

(horizontal parity variant> .•.................... ~ . . . • . • 5-176

ICTDELAY · f/ •• I ••••••••••••••••• ~ ••••• 5-171
(Identifier) ·' ·· .. · ~ . . 3-7
IDLE · ..•. · . , · .. ~ . ·5.-:20

(idle statement) ~ .. S-70
IF ~·.·······"······················•····················•········· S-2·1,5-100

(if statement) ·, ~ ~-21, 5-100
ILLEGALCHR , ~ · .. ~ • .. 5--169

(increment statement) •...•. ~ .••................... '. ; S-23, S-102
INHIBITSYNC•...•..............................•............•.... 5-170, 6-11
INITIALIZE•...•....•......... ~ .·. ~ • . • 5-24, S-104

(initialize statement)• , .. ~ .•.••.. S-:-24, 5-104
INITIATE••..•........................ •'· ,. S-25,.S-106
initiate receive delay•......• ·., ;•.• ~ · S-25, 5-106

(initiate statement) ...•••.... ~- .•.•....•......•................ '. ...•.. ; S..;;.25, S-l06
initiate transmit delay•..•..•...•.................... ; ·, .•.......... S.-26, S-107
input files, compiler ~ ..•... ·• : ; · •.... , ". ... · .. ·.... E.:..1
input format, source ...•. : . ., ...•.•.......................•.•.. ·- . ·: .. ; .'. ; C-:-1

(integer) · •... · · · . · · ~ . . . 3-8
IR • .. ; :· -.......... · · :.... 6-10

keywords .. · · ... ~ ... ·. Z-2

(!,a,bel) e • • • 11 • • • e • • • • e e e e 11 • e e e e o e e • e e e ~ e e • e e e e e ,· e e e 11 e • e • • • • • • • • • • • • .. • • ', • • • ··, • e • • • •

language components ..•.................... "' ~ 11 ~ •••.••• ~
(letter)•.•.. : •.•.. .- ... ~ ..
LINE ·, II ••••••••••••••• •·

line adapters and adapter classes .•• -. ·• ~

lndex-4

3-9
3-1
3-5

5-58
5-60

i·
I

INDEX (Cont)

Item Page

(line adapter class statement) .. : . '. ... ~ 5-60
(line address statement) ..••.. · 5~6, 5-60

line control . • 1-6 .

!
line default statement.) ; • 5. -64
line definition) .. ·. 5-58, 5···-64
line endofnumber statement) ... S-65
line identifier) ... ·. . • . . 5-58, 5-_59, 5-71
line nUIX$tations statement) •.......................................•............ 5-64

~line modem statement) . • 5-·67
(line phone statement).•....... , 5-68
line section requirements · 5-46

(line statement}s . ·
ADAPTER ; · ; ,. 5-60
ADDRESS . 5-62
ANSWER ..•....•......................••...••.•...•.•.•.• : • . • • 5-63
DEFAULT ... · 5-64
ENDOFNUMBER ... 5-65
MAX.ST A TIONS • . 5-66
MODEM .. , 5-67
PHONE 5-68
STATION .. 5-69
TYPE ~•............ ·" 5-70

(l~ne station statement) · .. , • . • . . . 5-69
(line type statement) ... 5-70

LINEDELETE•. , , 5-115, 5-172
LINE(BUSY) . • 6-11
LINE(QU·EUED)•.......................... 6-12
LINE(TALLY[{Oor l}]) ... : 6-12
LINE(TOG[jOor l}]) ... '. ... 6-12
LINEFEED ... · 6-12
logical assignment ..••......... S-6,5-83
LOGICALACK . • . S-128, 5-144
LOSSOFCARRIER , ~.. S-14, 5-35, S-78, 5-92, S-116, 6-13

MAXINPUT • •... · •................ 5-174
MAXSTATIONS : .. ~ 5-66, 6-13
MEMORY ... ; '. 5-51

(MCS definition)•.................... ·•.•.....•..•.......... 5-73
MCSreconfiguration ...•................•.......... : 5-47
Message Control System. • • . • • 1-S.
MODEM : S-67, S-74, 5-146
modem adapter statement) ~•...........•...•............. ; 5-7 5
1nodem definitio11) ; ... " 5-74
modem identifier) .. , 5-67, 5~74
modem lossofcarrier statement)•...... ; 5-78
modem noisedelay statement) :•..................... · 5-79
modem statement)•...............•.......................... 5-75

Index-5

:'• ."

.· .
. '• .·:

INDEX (Cont)
·~·

Item Page

(modem statement)s · · . _ .
ADAP'fER••.. ·, •. ; · .. ·· .S-15
LOSSOFCARRIER ... · ••............................ : · ... · ... · ... · · 5-78
NOISEDELAY ;,••......••• • .••• · ••.....•.....• I ...•. ;.· 5-79 ,
TRANSMITDELAY ·. ~•• ·••••• , ..•.. ~ ~·.~ •· .. ." .•... 5-80

(modem transmitdelay statement) · ' • ; •... • ·" 5-80
MYUSE ·.; ... · ~--........ 5-14'7

NAKFLAG ·, .·•......•.. · .•... ; •.. ·. . . 6-13
NAKONSELECT · .. :•... · .• ·· .• ·~ 6-13
NOL program unit•............................. ~ ... · : 4-1
NOL syntax convention ~•... • · · ~·. 2-l
NOINPUT ; · •• •·· .· ... ·. ·· .. 5-129
NOISEDELAY ; ...• ; ~ . . :· •.. .. ·.;.; .· .. ·. · .. : ~ . . · ••..... .- ·••. ; ~: 5--79
NORMAL : .· ..• ~ .. · · '. ... , ·••...• ;." •...... 5-129
NOSPACE ;. ; ~•.............. ;•. ~ ·· 6-13

object files · ·. ~··· · ; · ... ; · .. ~ •.. · ..•.... ·E-1
options, compiler •.......... · ... ·.· ..• ···,. ; : ...•............ ·i •. :'. ~· : ••• · , •••• D-:-4
output files ~ . ~· .. ·· · _. • ; .. ;··,_.~ .-·· E--2

PAGE · .. ~· ~............................. s·:....148, S-175, 6-14 .
PAPERMOTION , , ~.: ~ .. · ...•..•. , 1 •••••••.•••.••••••••••. • ••••••••• 6-14
PARITY•. ; ; .•.....•...... · ... ~. •.. 5-14, 5-35, 5-92, 5..;.116, S~l 76, 6-14
PAUSE · · ;. ,-.· :~ •· •..•. · ... ; •......• ·•· S-29, 5-108

(pause statement)••... ; ... · ·; · .. ~ ... · •... ; S-29, 5-108 .
. PHONE••••.• ,.,,,.••·•,,•.•.•,,•.•,,·,,,:,,,.·,,·.,,,,,,,.,,,,,· .. ~ .. ,, r•, S-68, 5-149

' .
RECEIVE · · ••...............• · ;•........ ·. , .•.•.. ·•. ·, 5-~9, 5-109·

(receive address size) ... ·:; ; ~ · : S-155
Receive Request · ... ~ :· · •....... ; ..•....... · .· .. · .. , 5-82

(receive statement) , •.. ~ ; : ·. S-29, 5-31, 5~38, S-109, S-118
(receive statement), allowa~le combinations ... • : ·•......... "· 5-118
relational operators ~ ~" ~ ... · ... ; ·. 5-22

synonyms••........ ; · ; : . ·. 5-22
(remark~ · .. · ; .••. / •• · ··•... ·.·· · .. ·•. .'· .. :·. ~ ;' ··.'·. ~-10
REQUEST • . • . . • • • • • . . . • • • • . • • 5 177

irequest definition) •.... , ~ .. .' '. ~ • '. , ~. ~ ... , ·; 1-6, 5-81
request identifier).• ~ • ·~ .• ~ ·•.. ·••. ~ .•..... · 5..;.g2, 5-177
r~quest statement) ·~ •.• ~ , ,; •• ~ ; . ~ •.. ~ · · .. · · : .. ·• ~,··.J:• ·.·· . ·S,....82, S. -177
request statement)s . .. · ' . · . . . , . · · · · . . • · .

assignment; ·~·.;··~·~~-·~· ·· .. ·.~·.:.~- ... ··.· ~.:~.·~· ... ~ .. ~ ~.··.; · .. ~·~.-· .. · ... ~._: .. ~·.-: .. · 5-83
BACKSPACE ·. ~. ~ •· .•• ·.· .. ·. · ; · ·••.. • •. ,: ;·, 5-85
BREAK•. :. ,.; .•. ·• .·•.. · · ~ ...••....... 5-86.
CODE•..•. · · ··.·· ·.:•..... ·: .. , ·5-87
compound ·. : ~ . · ~ • 5-88
CONTINUE ~ .·•....... · .•...... · .. '·; ... : ·.:•....... 5-89
DELAY • • ~ . . . • • • ~ . ,· • · .· : 5 -90

lndex-6

· .. :. •' ;~.. . . ,· ...

··;.·· : .. ~. ~- .·

INDEX (Cont)

Item Page

(request statement)s (Cont) . . .·
ERROR : . . ; ; : •. • . . ·. ~ . . •.. : . . • . . . 5 :--91
FETCH. • •• ·.: . ~ ·• ·. 5-94
FINISH· · ·•. ; · .. _. •..•.............. ·'.~·~:-•. ·.~- . .:'.~ 5-95
FORK ·;.,,· ... ;_ · .. ·; ... :; •.. ~:.~· ~-~~-~-.-~ · 5-96
GETSPACE · ..•...... * ••.•••••••••• ~ · ••. ,. .•.. ,;.:• ~ .,· .••• ~ .• ·~ •• ·• ::: •. -. .. • ·• • • • S-97
GO TO ; • . • ; • . . • ·• • . • ~ .. _.;·~ -~ .•. , . .. • • . • • • • • • . ••.• _. • ". ; ·• ; .. ~ . • • : . . • • ·.• S.-98
IF · ~· .. ·.· ::·. · 4 ••••• • : • .'~.,.,,·.~: .••. ~:·, •••.••.•• 5-lOO
INCREMENT ~•..•.......•..... ·.~.· •••............. " ...•..•• ·.·~··.· .. · .. · ... · ... S-102
INITIALIZE · .•........ ·•......•. , .; . · '.- ... : . ;'... -~ •. ; .. 5-104
INITIATE ~ ~ ... · •.. ~··~;.•·· S-106
PAUSE ~ .. · •............... ·•...... ~ 5-108
RECEIVE•.. : -. .. ·• ~ ... ; ~- ... ·: 5-109
SHI" ·. ~ ~ ~ ~ ti ••• I .• ; I • S--121
STORE•.....•..••. -~·~ .•• · -•.. ~ .·· •. · .•.••.•...•.•.. .-· • .-.:. ~ · .••.... · .• s~122
SUM•........ ·.~.·-.· :·•.. · 5-124
TERMINATE · ;- 5-126
TRANSMIT .. ; ;.,· •... ·.; ;· ... ~· •.•.•........... 5-130
WAIT ·.- .. ·~ _.· .. > ~ -. .. :~·.:_.·; 5-133

Requests . .
·Receive Request•..•... ; ...•...• ·. ~-•............... ; ..•. · ... ; ·: ..•.... · •.......• .- . S-"--82
Transmit Request• _;;•.. · .. " •..... ·:··;' : • · .. 5-82

reserved words -............ · ~- -~·· .. ~ -. · .. -·. ~ .. ~ · ~ ..•...•.••... · A-1
RETRY•.. · ; ·.; •.... ;.~-;~.~:··· 5--41, 5-104, s~12s, S-150, 6-14

scope
of NDL•.. ~ · ..• ~ ... : ... 1• "'! ••.• • •••••• _· •••• ·• ~ •••••••• · •• ·~~~: .• : : .:· ••• .- • • • • • • • • • 1-t·
of variables · ~-;•. , .. ; .. •t~ · •. · •••.• ·'··· ~- ••••••••• ·• ~:-¥. ~-.- .•.•.•.•.•.... 6-1

SCREE~ "'. ~·· .· •. ~ .•.· "!. •• ·-.· ••. ~ .•• ·"!.· .• :l:~; ·~ ... _· .. ~,. ~ .· ... · \ ... ·.· 5-178
SEQERR 1 •·•••• ••.• ~ ••.••••• ':··· •• :.~· .••• :~ ~ .·;-=.-.·~ ~ ._.· .••.•••••••••• ·' ~ · .•• · • .-•••.• e: •·• · 6-15
SEQUENCE ~ ..•. : ~. ;· , : S-23, 5 . , 5-103, 5-123, S-131
sequence mode ~•.. ~ ~ ...•. ~. '. . ~ ... · ~ .. ~~' ~.; 5-23, 5-103
sHIFf · ··.~ ~ . · .. :-.. · ~ 'i~ ••••••••• · .: •• t~r;· .· ~- .- ... ~ .. -... · . . s--3·9

(shift statement) ·. ·••....... ;•.• ~ .. · .. ~ .- ... ; . ;'·.A ; •••••••• ; •• ·+ '. ... 5-39, 5-121
SKIP•. -.·-.....•• : .. · .··.~ .. ,, .• · .•............ ~· .••.............. ~·.:~~-··;• •... · 6-:-15
SKIPCONTROL .. ; .• ; ; ..•... + ~ •••••• ':·i· . ~ · . <·:· ~ , 6..;..15
source ~le~. ~ ... ·· . ~ '.- ·~ .. ~ ... _ ...•. .-. .-· ... :~. ·.· ~-~· :~~\.~·~~- -~-~.\·; ~-· · .. ? .. ·~ ··:-: ...•.. ~ :~:: _. · •. · .. ~-· ·:·· • E-1
source input fonnat ...• ~ .. · ; .•.•..•.. _;·. ~ •.. .-~ •. ~ .. · .. ; · ...•. ·'· ... _, .. ,-;."A: .. ,-· C..;..I
source program structure ~•........ ' •....... ·~ ..•.. : . •· ; ~ •. ·. •' ~ :~: • -~r· . " 4-1

(source size)•. · ~ .-.... · ·; ~ ..•. ; ; ;. , . , .. ~ . · .. · . ._ ... , ..• ; /;.:;~: .• , .. ; .: •..... 5-184
SPACE ... I ••••••••• : : ..• ·~:,. •• ·~-··.=.· .• · .•.•. ~.~ ••. · •• I.~ ... ·.·.~ ••••. ~ •.• ~ ••• ~· •• ~ ·\:'.;:~ .. ~ .• :· •..••••.• · .••••• 6~1-5

(space) · · · •• ~ ... ~: ••• ---~-~ .!~--~.-. ~ -~ ~ ~-. ;: ~_:t"·~ .. ~ ·· .•.. 3-11
statements . . · ·, } ·.

!control statement) .•• · .. ; ~••...... ~'~ .. ·•. -~\· 5..:.4
DCP statement) ~ ~ ; ._. · ~ .· ·, ~ '.'.- 5-45
f!lestatement} ...• ~ : .. ~ ~ , · ~~ '. S-57
/me statement) . ~ .• _'._,.· • ~ •..•.. · .. ~ · ·· .. ; ·"·' · .~ · ". ·: ·'.:':" S=S8
modem statement) '..'' : • ·· • ~ ...•........ ~ ..•..... · · · · · ·: ·1 ···" · · · · · · · · · · · · S 15

. ·!
lndex-7

k
:fi
;~;r:

,. '• .. ,

,INDEX (Cont) .

Item Page·

statements (Cont)

~re'quest statement5 5~83 ·· • • e • • e e • • • • • • • • • • fl t> " e • e • e • I e • • "' • • • • • • • • • • • • e • • f • • • .· • • • • .. 'e• e

station statement•............. · •.......... -. • : . . . 5-134
terminal statement) -.•...... ·, · ... ·· ...••.•....... ·· ~ .. · •. , .- ; .: .. '; . 5-153

STATION•...•..•...........•..• ~ •... S-S, S-69, S-,134, S-135, 6-16
ss~:~~~:: :~dr!se; 8s::::mm::,t) : ·~ ~ • ; .·•....... · ... ~ . : , ~-. ;_ ~ ~ ·• s5=113366) ' • ~· ..
station control character statement) •...........................•.......... · •• ·• 5-139
station default statement) ; , . • . . . 5-140
station definition)•...............•..... ·- ;_ , 5-134
station enableinput statement) , • . . . • • 5-141
station frequency statement) ~ , :;•.............•.... 5-142
station identifier) ; , .·•.•.....••........ ,_•.... ·• ·;.; 5-135
station iniiialize statement)• , •..... ~ ..•.........•..................... ~ 5--143
station logicalack statement) ...• •.· .. ~-.; q ••••••••••••• : •••••••••••••••••••••••••• 5-144
station MCS statement) ; 5-145
station nzodem statement) ,, , ; ..•.......... : . . :.--....... 5-'146
station myuse statement) ... ; ...•......... ; , . 5-14 7
station page statement) ·, ,• . , •...................•.........•........ · 5-148
station phone statement)•.........................• , ; .•....... 5-149
station retry statement) .•..•........ , · ..•............ , 5-150 -~
station statement)s '· '-"'

ADAnER · ·. ~······. ~-~~ ... -.... ·--.. -~ · ~ .. ; 5-136
ADDRESS ·.: .. -~~-~.'..;·.·.·;,.: .. · .. ~ ~~-.·~·.::.··~.:·,~~-···· .. · · : · ..•. : :. 5~l38
CONTROL•. ~•................ ; ... · •. ;' ..•... ~ 5-139
DEFAULT ~ · •. ·• . ••• · • • • • ~ . ;:. . . . ' •· ~ . 5 -140
ENABLEINPUT ... ~. : ...••• · •.. · ;•. · ..•........... · .. ·· 5-141.
FREQUENCY. · ...•. • ...•.... · -~ ... ~•... · .. · .. -.••. ;;.; 5.-142
INITIALIZE .. .- ; ..• ~ . ·.-.•....... · .. ·· . '.•... · ...• :••. ;· ·. 5-143
LOGICALACK , .• · ..•.... _ -• ~ •• '•....................... ." .- . 5-144
MCS•.•.. ·•... .-..•. ~ ... · .: .•. ', · .. ~ .· .. ·•· ... · ... 5-145
MODEM•..••.•. .-._;.· •... ·•.•. : ... ;.· .•.•. , ; 5-146
MYUSE • ~. . • . • ; • ~ • ·.· . . • ,. . ; : •.. · . • 5 -14 7
PAGE ·• ;· · -. ...•.............. : .. ·". 5...:148
PHONE ·.-~. ·, ... ; .. .; .- ..•..•............... · ...•........ · ~. · · .•....• 5..:....149

. . . ' ;1

RETRY ~;· ..•. ·~ ... · ...• ~~ .. · · ,..~.·.· ~· .. · ··: ·.-!; ·. 5-150
TERMINAL ·~ i·· ••• • ,. •• · •• ~- •;· ·• ·; ~~· •. ::,. •.• 5~151
WIDTH · .. ·." •. ~·. ~ · .. ·, .. ··• ~. · .. ··, .. · .. ~· ... · ·~ ·• ·.:.·: ... ~· .. ·~~-· ... ~· .. S.:-.152

(stat~on te~·minal type state-,,.en:t.) •· ... ~ •. ·, · ..• ~ · •.•.•.... • -~ .. •~ .. ".·. ,.· ~ •. • .•....... ;•. ~ ..• ~-·· ''. · 5-151
(station wzdth statement) .· ~._,._, •.•..... •• ;·.·· •................ _ ..•... ._ ...•.•. -S-152

STATION(ENABLED) ... ··~·-· .. · ~. / ...••....•..•••.. ,; •••....... · •..... , ... '. 6-16.
STATION(FREQUENCY).; •·. / •.• ,'. ,: ...•.•... ; .•.•...•• , ·: · ' .. , 6-16
ST A TION(QUEUED)•. , .•.•. ; ~ ••........•..••....• -. • • . . . 6~ 17
STATION(READY)•.•.... ·; ; . -~ •.. , .-. .· ; : 6-17
STATION(TALLY)•.•. ~ ..•.......•...... ~ ·; ; .. : 6-17
STATION(VALID) ~ .. ~ ••.•.........••... , .•..... ~- .. ; : .. 6-17
STOPBIT ; ; ..••..•............... : 5-'-14, 5-3S, 5-92, 5-114, 6-17 '.._/
STORE ~ •;-•.~ .·.~ • ··.·'· ... · ... ~ •...... _.·- -.... ~ ... ···:·. 5-122

lndex-8
,···: ..

.... . :; .. i
.::··. . =· -·

.. · .. --

INDEX (Cont)

Item , Page

(sto~e statement) _ -................................ _ ._ _ ... 5-122 ·
(string) ..•.. 3-12

SUM -.......... , -. 5_-40,.5-124, 5-125
(sum statement) .. S-40, 5-124
(switch number) -... , .. -...................................... 5-31
SYNCS _ : 5..,.110, 6-17_
syntactic variables ...•.......... -.. : 2~2
syntax conventions•......... .- -..................................... 2-1

key words _ -................................ .- · ; .. ~ .. 2-2
syntactic variables : · --........... .- . _. . . . 2-2
construct terminator ·•.......... : . 2-2

(system identifier) .. 3-13

TAB ·-· ,. ~ .·. -..... , ·.- · 6-18
TALLY ... 5-41, S-105, 5-123, 5-125, 5-143, 6-18

(tally number) , : 3-:-14, 5-41
TERMINAL .. 5-151, 5-154, 5~155
terminal adapter statement) , 5-156, 5-170
terminal address site statement) -. ~• 5-157
terminal backspace character statement)•.• , . 5-15S
terminal buffer size statement) ;•.•............ -. 5-159, 5-174
terminal carriage character statement) ... 5-160
terminal clear character statement) , . 5-161
terminal code statement) · :- -........................ 5-162
terminal control statement) , -... 5--163
TERMINAL DEFAULT ... ; 5-154, 5_,_165

~
terminal default statement) ... ~•................. 5-154, 5-164
terminal definition) . -............. _ _ · ... -.......... _ , .. 5-153
term~nal duplex statem_ent) ·. 5-166
terminal end character statement) , , 5-167
terminal home character statement)- 5-168
terminalidentifier)- . 5-52, 5-154
terminal illegal character statement) ~ 5-169
terminalinhibitsync statemen't) •. , .. 5-170
terminal inter-character delay statement) · -............................• 5-171
terminal linedel~te character statement) , 5-172
terminallinefeed character statement) ; • 5-173
terminal maxinput statement) ~ . • 5-174
terminal page statement) · ... 5-175
rerminal parity statement)•..................•............................ 5-176
terminal request statement) ~ .. ~ ,• ; · 5-177
terminal screen statement) . • . 5-178
terminal statement) --............ ·-· 5-153
terminal statement)s -............................. 5-153

ADAP'fER .. : -..... 5-156
ADDRESS' · · _ • , ;. 5-157_
BACKSPACE. • • 5-15.8
BUFFER ,•....... _ .. •- -............... 5-159

.-Index-9

INDEX (Cont)

Item Page

(terminal statement)s (Cont) .. 5-153
CARRIAGE , .. 5-160
CLEAR · , ·•................ -.................. 5-161
CODE : · •........... ;•......................... 5-162
CONTROL · .. · · ... ; ; · .- 5-163
DEFAULT · ; •....... ;· ... ;' _.· : 5-164
DUPLEX · -.. ;.· · ;•..... 5-166
END · .. .-- _. : · 5-167
HOME · · ... :•... ; .. , . 5-168
ILLEGALCHR ; .. · ·.; ... ·· ·. • · .. ; ; .. 5-169
INHIBITSYNC · ~ .-•....... ·· ... · .. ; ...• · ~ .•....... · 5-170
ICTDELAY -..... ; : · .. · -.. , · , .· 5-171
LINEDELETE ; .. · ~•........... · 5-172
LINEFEED · ... ;•. · . .- ·_·.· .. , : 5-173
MAXINPUT : : .· _·::; .. _.: : .- ... · ... · · ..•.... · .. , 5-174
PAGE '. : : .. ." 5-175
PARITY -............ _ ;-: .. :_.· 5-176
REQUEST ; · .. · _ ,·.· · ;- ;;.· · 5-177
SCREEN ·;··: -._ ... · <· ... ·, ... :· •..•. · .•.•. ;.·.·, ..•.•.. ""'· 5-178
TIMEOUT ·,.~ · .. · · .. · ,.· •... ·.;.'..-·;· · .. ·· .. : 5·-179
TRANSMISSION · .. ,' .. ,.·•..................... "·: ; .. S-180 "W
TURNAROUND ·~· · ,-; · 5-181,,
WIDTH ·· .. :; .. ;· .. ·. -......... · ·. ~. ~•...... ·• •... 5-182
WRU ~ .. , .•. : · ' .. .-· .. · ·"' .. ·· .. · ..•.. ~ , .· ... < · 5-183

terminal timeout statement) ·•........... : .·; .. '.; ~-; ;. 5-179
terminal transmission number length statement) .. < · 5-180
terminal turnaround statement) ; 5-181
terminal width statement) · . , .•...... .- .. ; · : 5-182
terminal wru character statement)•...... •· ... ; .. · '. . .- . 5-183
TERMINATE -............. _· . .-.. · .. · ...•....... :.· ;· 5-126

(terminate statement) ~•......... · 5-126
TEXT•. · . .- · ... · _ ;.; 5-111,5-131

(time) · · ,: . ·._. ... _ ... · · :.· •. ~.'. ~ :., .· ... , ... 3-15
TIMEOUT 5-14, 5-30, 5-36, 5:...92, 5-110; 5..,..117, 5-179, 6-18

(timeout time) '.. · .. · ; ~ .•......... ~ '._ : ... :._· ~ ·...:_ .. 5-~ 10
TOG •.• 5 105, 5 1.23, 5 143, 6 18

(toggle number) ! ••• ; ••••••• , : ••.•.••• : •••• "; •••••• '. •• 3-16, 5-123
TRAN-............ ·- .•...... 5.:.....31, 5-43,'5-104, 5-'111, 5-131
TRANERR · ..•......... ~ ... , · ~;• ; ~ ~ .: ; .. ·. 5.:....36., 5..,..117, 6-19

(translatetable definition) : ... ~ ... · .. ~-.......... ·: .. , ! .• ••• ·, ••••••••• · 5-184
translation, character : , 5-6, 5-9, 5-'-83, 5-87, 5-162, 5-184
translation table structure . ; . ; ; •- . . ; . . , 5 -184

data insertion ·•. .- . ;•.. ; ... , . • . . . • • . . 5-185
TRANSLATETABLE . ;•............... · -.... ·,-: ·· .. : 5-184

(translatetable identifier) ~ ,•.................. · .•..... .- ... 5-6, 5-184
TRANSMISSION•............................... :, •. 5-1801

transmission codes : · ; · -· •. ,'•........... ·. B-1 '-"
' '--.,/_ ...

TRANSMIT · . .- ... · .. · •.· ... •.~--·~: · ... ·.; , 5-42; 5-130

Index-IO

., . - " .

INDEX (Cont)

Item Page

(transmit address size) .. 5-157
Transn1it Rc<iucst . • • . . 5-82

(transmit statement)•................................... 5-42, 5-:-130
TURNAROUND · .. 5-181
TYPE ·. 5-70

use of NOL ··••....•.............. ~ .•.............. :. 1-1
I

Value assignment .. 5-6, 5-83
variables ~ ·. .. 6-1

(b>;te v~riable)•.................. ,. .•.•.............................. 6-1, 6-3
(bit variable) ... 6--1, 6-3
description of : 6-2
function of•........•. " ... , . 6-1
scope of " ; · ; 6--·'l

VERTICAL•.. 5-176

WAIT ... · 5-44, 5-133
(wait statement)•... ;•. 5-44, 5-133
(wait time) .. 5-44, 5--133
WIDTH · 5-152,·5-182
WRU ... 5-36, S-117, 5-183
WRUFLAG · ...•. ·. 6-19

lndex-11 / Index- 12

From:

Burroughs Corporation Publications Remarks Form

B 6700/B 7700 NOL LANGUAGE REFERENCE MANUAL.

Form No. 5000953, January 197 S

Name

Title
Company

Address

Comments

Date

I
,, I
~,

:1
~ I
a1
[I
;: I
• I

I
Fold, Staple, And Mail I -------·----------·-------.---,

BUSINESS REPLY MAIL
First Class Permit No. 1009; El Monte, CA. 91731

Burroughs Corporation

P. 0. Box 142
El Monte, CA. 91734

attn: Publications Department

__ ~echnical lnfo~:._n~ganizati:_ ______ . __ -----------l
Fold, Staple, And Mail

