 Dorm

G ‘NGUAGE REFERENCE MANUAL

(REI.A'I'IVE TO MARK ll 6 RELEASE‘

. 5000953l

\(|

. Burroughs
~ BGI00/BTI00

LANGUAGE REFERENCE MANUAL

 (RELATIVE TO MARK Ii.6 RELEASE)

- Prinfed in U.S. America , © qzs . 500095316

- R g e—_)

THIS MANUAL CONTAINS A TOTAL OF 288 PAGES AS LiSTED BELOW.

ifi blank .
iii thru vit
viil blank .
1-1 thru 1-10 .
2-1 thru 2-3
- 2-4 blank . .
1 thru 3-16 ., .
1 thru 4-2 . .
1 thru 5-187
1

3
4-
5 .
5-188 blank . . .

lssue ' Page No.
Original - 6-1 thru 6-19 .
Original 4 6-20 blank .
Original - . . A-1 thru A-4 ., . .
Orngipal; o : B-1. thru - B=5 -, . .
origifal™ = . . 'B-6 blank
Original ~ C-1 thru C-2
Original ' D-1 thru D-7
Original _ - D=8 blank
Original ’ v E=1 thru E-§ .
Original .+ .. E=6 blank
Original ..~ Index-1 thru !ndex-ll
Original ’ " Index-12 b]ank e

Original

T

“lssue

Original
Original
Original
Original

- Original

Original

‘Original

Original
Original
Original
Original
Original .

COPYRIGHT © 1970, 1971, 1975 BURROUGHS CORPORATION

Burroughs believes - that the information described in this
manual is accurate and- reliable, and much care has been
taken in its preparation. However, no responsibility, financial
or otherwise, is accepted for any consequences arising out of

- the use of this material. The information contained herein is

subject to change. Revisions may be issued to advise of such
‘changes and/or. addmons

5000953

(«

(«

 PREFACE

This document provides refercnce data for the experienced progammer who is familiar with the B 6700/ * -
B 7700 Network Definition Language (NDL) and the B 6700/B 7700 Data Communications System

This reference manual is divided into the following six chapters and ﬂve appendlxes

~® Chapter 1, INTRODUCTION, descnbes where the NDL Manual fits into the existing Data
Commumcatrons System documentation, and deﬁnes the scope of NDL.

® Chapter 2, NDL SYNTAX CONVENTIONS, explams the syntactical notation used in deﬁmng, the
Network Definition Language.

e Chapter 3, LANGUAGE COMPONENTS, describes the elements that form the most prnmltrve
structures of the language.

@ Chaptcer 4, SOURCE PROGRAM STRUCTURE, describes the basic structure of an NDL program.
® Chapter 5, DEFINITIONS, describes the various definitions that make up an NDL program.
o (‘hapter 6, VAR!ABLES describes the program variables available to the NDL programmer.

® Appendix A, RESERVED WORDS, is a list of “words” that have been set asrde for specific
~_ purposes within the Network Definition Language. .

© Appendix B, TRANSMISSION CODES provrdes useful data transmlssron code tables

L] Appendrx C, SOURCE INPUT FORMAT AND CODING FORM descnbes the input format and
coding form to be used by the programmer

® Appendix D, COMPILE-TIME OPTIONS describes the comprler optrons avarlable to the user.

. ® Appendix E, COMPILER SOURCE AND OBJECT FILES describes how compller commumcatlon
is handled through various input and output files.

The information in the following documents pertams to and supplements the matenal presented in this
-reference manual _

Title . ‘ ‘ : - Form No

‘B 6700/B 7700 Data ‘Communications Functional Descrrptron : o 5000060
B 6700/B 7700 DCALGOL Reference Manual : , 5000052
B 6700 Input/Output Subsystem Informatlon Manual ' 'v . ' 5000185

ifii -

Chapter

Generalu... PR P
Scopeof NDL e
Useof NDL e Ll s

- NDL Compiler- oo R R
DCP Interaction With the Mam System e e e e e e
NDL SYNTAX CONVENTIONS B N SP T UUERITIE PR S SRS

Syntax Conventxons B T P S LI

‘_ LANGUAGE COMPONENTS

'Language Components . R O S RPN cnan RO O
Character o..oulu) i i e
ddentifier - ... o

CoLabel L e e S S T

- Compound Statement

* TABLE OF CONTENTS

PREFACE iy e Tan e T TR AU CUDURE L S SO §
INTRODUCTION s S SURUUPIT SR I

e e N
b
ot b

Message Control System (MCS) R S A S S A
Data(‘ommController(DC(‘) e e e e P

=

[

DCP TAbIES oo vt iies et e e e et e e b iie e e i e

T A
RN RN RV XV RV

N
L

|
(SR RN

Key Words A T A TS D S O S A
Syntactic Variables [it e pa e i Jl S e ‘
Construct Termmator e N S Ve ¥ s e e e

I

|

Integer - e e e e enies

i

WWWWW: W 0NNN
R

CUSPHCE sk ek e e e e i 31T

- String T U - A T S 3-12

- System Identifier < e LA

: ,»TA’LLYNumber e e e e e 3214
‘ -';Tlme i el 3—15

NDL Program Umt e e, b B T 4-1
;.DEFINITIONS S S DU SO NSRS T PR R N

CONSTANTDEFINITION ...\ \oooo oot 52
CONTROL DEFINITION . .. ;.12 L1 i, 54

Assignment Statement -

- BREAK Statement3'.- v S A S PO S

CODE Statement ~o iilonianoiloiion i, i
CONTINUE Statement : ” |

DELAY Statement e . e S S ,:ff“

TABLE OF CONTENTS (Cont)

Chapter ' C ‘ Page -
5 DEFINITIONS (Cont) '
FINISH Statement S e i e eese e “e.. 5-—16
FORK Statement AN PU APPSR, 8 by
GO TO Statement e i e P e 5-18
IDLE Statement e v i e e teeceia et e . 5-20 -
IFStatement, Cemiaediee s ieeens ceeenes e 521
INCREMENT Statement A P R . 5-23
~ INITIALIZE Statement S L P e - 5-24
- INITIATE Statement s oeeenaesansa evieseieeitienseases Geewe. o 525
PAUSE Statement D PR . D 4
RECEIVE Statement eeeseneeseivha iy eieieeens Ceee 5290
SHIFT Statement e e i s e e Fe e e, 5239
SUM Statement e eeieseeaiaes S e
TRANSMIT Statement e heesesaanes ieveeedes 542
WAITStatement.,......-..,....‘.'...' T A eener .. o 544
DCP DEFINITION e D e e eeiresesedeaess 545
- DCP EXCHANGE Statement .~ccciveiunn. S, Wie e ... 5-46
DCPMEMORYSlLeStatement T a1 T
DCPTERMTNALStatement Sepeaeaan T T Y
FILE DEFINITION IR el 556
"FILE FAMILY Statement e e e e e e i ieven e e Ceviewe - 5--57
LINE DEFINITION, P PP i 1
LINE ADAPTER Class Statement. L
LINE ADDRESS Statement Ceerashes e e -
LINE ANSWER Statement ~........................ eisaeaees e i .. 5-63
LINE DEFAULT Statement S P
'LINE ENDOFNUMBER Statement:.........couveeesnnn.. v eee.. 5-65
LINE MAXSTATIONS Statement0c.v0.e.s. e PP .. 5-66 -
LINEMODEM Statementivoeveeceeeeeeneennns eeeieeene. 5-67 .
LINE PHONE Statement -w..... e e e eereeeeessies. . 5—68
- LINESTATION Statementc.o0uuunneennnnenn. eeveesonveiunias 5-69
- LINE TYPE Statement e erieieeiieee.. 5270
MCSDEFINITION S e Deeeiiansa . 5-73
MODEM DEFINITION e e e e AP cieean .. 5-74
" - MODEM ADAPTER Statement S P T 5-75
MODEM LOSSOFCARRIER Statementuceueueaeennnn.. civeee.. 5278
MODEM NOISEDELAY Statement P e Veeede. 5279
‘MODEM TRANSMITDELAY Statement AR ieeeeeseee.. 5-80
REQUEST DEFINITIONcci0uunns P . 3 |
Assignment Statement - e e an e s evseeia seeies.. 5-83
- BACKSPACE Statement [P e eees veessseness 585
- BREAK Statement S NP PSP A P e - 5-86
- CODEStatement =ccconuuunnn. P Y
- Compound Statement T e
- CONTINUE Statement e R A PR S . 5-89
DELAY Statement e b e hea e e heie vie.e.. 590
ERROR Switch Statement e re e e ee e a e e e ieeese.. 5291

(o

(C

TABLE OF CONTENTS (Cont)
Chapter | Page
5 DEFINITIONS (Coit) '

FETCH Statement S S S S ... 5.04

FINISH Statement e T S A St 5-95
FORK Statement PP B A S O 5-96
GETSPACE Statement - P T N e e e aee 597
GO TO Statement P O I Ceeieiiesn... 598
IFStatementccvvuu.. Ve ereeea P PR 5-100
INCREMENTStatement e i e e e e eeieeenea. 5102
INITIALIZE Statement ISP P [T 5-104
INITIATE Statementccviiieinnnn. P . 5-106
PAUSE Statement [P AP P 5108
- RECEIVE Statement Ve PP SR aeeesie 52109
SHIFT Statement e I R T PP S 5-121
STORE Statement i it iiiime i nn. 5-122
SUM Statement i it Ceiie it 52124
TERMINATE Statement S A S e Yoo 52126
TRANSMIT Statement e I e e 1 §.-130
WAIT Statement P e e e 5.133
STATION DEFINITIONt RPN ceraaes .. 5-134
STATION ADAPTER Statement- T e 52136
- STATION ADDRESS Statement e eeaes e e e ' 5-138
STATION CONTROL Character Statement ceeeiieeteeeet 52139
STATION DEFAULT Statement e e n e e e e 5-140
STATION ENABLEINPUT Statementcouieunenernieneenannns e 5-141
- STATION FREQUENCY Statement S e 5_142
STATION INITIALIZE Statement ety e i e e 5-143
- STATION LOGICALACK Statement Seseesens e e 5-144
STATION MCS Statement Yesteeness 5-145
STATION MODEM Statement co0uvunnn U L SN 5-146
STATION MYUSE Statement e e 52147
STATION PAGE Statement emhee b ieasens Loede.. 52148
STATION PHONE Statement Sedteseneedrans i N 5-149
- STATION RETRY Statement P it .1 ¢
STATION TERMINAL Type Statement e e e Lo 52151
STATION WIDTH Statement e eeeda e e 52152
‘TERMINAL DEFINITION ittt i 5-153
TERMINAL ADAPTER Statement e AP 5-156
TERMINAL ADDRESS Size Statement e 5_157
TERMINAL BACKSPACE Character Statement 5.158
TERMINAL BUFFER Size Statement: Wehen e e e eees 5159
TERMINAL CARRIAGE Character Statement e i eeidees 52160
TERMINAL CLEAR Character Statementc..oun.. A B I3
TERMINAL CODE Statement Ve [e S P e 5162
- TERMINAL CONTROL Statement i e e 5-163
TERMINAL DEFAULT Statement e e e e olmene 5-164
TERMINAL DUPLEX Statement F S SR PR eee et 5_166
TERMINAL END Character Statement, Lo 5167
'TERMINAL HOME Character Statement =cv....civeuenioivineasin. 5168

TABLE OF CONTENTS (Cont)’

Chapter Page
5 DEFINITIONS (Cont)
TERMINAL Illlegal Character Statefnent e Ceir e e 5—-169
TERMINAL INHIBITSYNC Statement - PRRRR e eie e . 5-170
TERMINAL Inter-Character Delay Statement e PR 5-171
-TERMINAL LINEDELETE Character Statement =~00 5-172
TERMINAL LINEFEED Character Statement N - 5-173
TERMINAL MAXINPUT Statement N F .
TERMINAL PAGE Statement eeaiias S, vieelde. 5175
TERMINAL PARITY Statement - e eeewe s iee e - 5-176
TERMINAL REQUEST Statement ~ e eseoemoenevises e - 5-177
TERMINAL SCREEN Statement 5-178
TERMINAL TIMEOUT Statement - it iininemnruiinai 5-179
TERMINAL TRANSMISSION Number Length Statement i ede s 5—-180
TERMINAL TURNAROUND Statement ~o0eeivveainiens 5—181
TERMINAL WIDTH Statement0.0...0.n... e oo 5-182
TERMINAL WRU Character Statement R 5-183.
TRANSLATETABLE DEFINITION ' e e 5-184
6 VARIABLES ivieeiiniiiitiitiiiiaeianenn S
General - 61
Function of Variables A T R, C6-1 .
Scope of Variables 00 il S . 6-2
Description of Variables ~.......... W e e e Caeene ceesiede 6-2 -
Appendix Page
A Reserved WOrdS ...t e e e A
B Transmission Codes e, AP [P PP - 5%
C Source Input Format and Coding Form S P PR - C-1
D Compile-Time Optionsc....oiviiivininn... T - D=1
E Compiler Source and Object Files e iireriameaiee eeraeise s eena s E-1
Index""'..; e ‘ PN :Indéx—ll
LIST OF ILLUSTRATIONS
~ Figure - Tltle SR o : \ " . Page
1-1 B 6700/B 7700 Data Communications System Documentatlon Hlerarchy ceds e 12 '
1-2 Network Characteristics: 00 i RN e ' 1-3
1-3 NDL Sphere of Influence P e
1-4 ‘Transfer of Control Within the DCP. PP B 1-7
5-1 Adapter Clusters Exchange o Wi S e - 5-50
D-1 Option Control Card "......... e e e e e e - D4
E-1 NDL Compilation System P LT eeevee. - E=2

" LIST OF TABLES -

Table ' " Title ‘ o _ - Page
5—1 Relational Operators ittt ittt ittt ittt emeanassinennnnnnas . 5-22
5-2 Allowable Combinations for {reccive smtement) 5-38
5-3 Available Linc Adapters S PP 5--61
5-4 Table of {communication type numberds — eeeiies e PP ' 5=77
5-5 Relational Operators e e ehee e e 5-101
5-6 Allowable Combinations for (receive statement) T Y P 5-118
6—1 Table of Variables et S e - 6—4
E—I NDLCompnlerFlles P AP e iece e e E—4

vii/viii

N’

1. INTRODUCTION

GENERAL

This document is one of several documents concermng, the B 6700/B 7700 Data Commumcatlons System.
The hierarchy of these documents is illustrated in figure 1-1. Note that information contained in the

B 6700/B 7700 Data Communications Functional Description, form no. 5000060, and B 6700 lnput/
Output Subsystem Information Manual form no. 5000185, is prcrequnsne to this document.

SCOPE OF NDL

The Network Definition Language (NDL) source program descnbes a 3ata commumcatlons network physi-

_cally, logically, and functionally. Physical components of a data comm\mlcatlons network include the hard- |

ware specifications and capabilities of the various elements which compqse the network. The logical charac-
teristics of a network are the associations among the various components of a data communications subsystern
(user programs, Message Control Systems, etc.), applxcatlon-onented charagteristics (page size and width,
special-purpose characters, etc.), and the symbolic names used to reference physical elements within the
network. Figure 1-2 illustrates the physical and logical characteristics in the r relation to the network ele- -
ments. Figure 1-3 illustrates the sphere of influence of a NDL source program\on the logxcal and physical -
components of a Data Communications System. The area enclosed by the broken line is the “global sphere
of influence.” The shaded area indicates the “local sphere of mfluence ” Thex{ows indicate the flow of
information. L : o . N '

NDL also specifies the functlonal behavior of the network or the way in Wthh eack data communications
line is to be controlled. These specifications consist of individual routines, allowingithe NDL programmer to
implement the protocol required to meet the physical characteristics and applicationy of the types of term-
inals that have been defined. The routines are compiled-into a set of instructions whith the Data Communica-
tions Processor (DCP) executes to perform the functions described by the NDL progr: im.

The NDL source. program is transformed into two files contammg the mformatlon requited to operate the
defined network : . .

a. The Network lnformatlon File (NIF), contammg the loglcal and physlcal specnﬁcatlons of the network.

b. The DCP Code File (DCPCODE), contammg the Data Commumcatlon Processor (DCP) hardware
instructions for operatmg the network.

USE OF NDL

Once the data communications hardware has been installed on'a B 6700/B 7700 system, several software
systems are required to generate and operate the data communications network. These packages, illustrated
in figure 1-3, consist of one or more Message Control Systems (MCS), the Data Comm Controller (DCC), and
the NDL compller The purpose, function, and use of each. of these software items are descnbed in the follow-
ing paragraphs.

1-1

(Al

DATA COMMUNICATIONS

ALGOL LANGUAGE

REFERENCE
MANUAL
(5000649)

- DCALGOL

REFERENCE
MANUAL
(5000052)

FUNCTIONAL DESCRIPTION
(5000060)
1/0 SUBSYSTEM DCP DCP
INFORMATION MANUAL | RO R ERENCE
5000185) |
‘ (1054384 (5000581-006)
USERDATA-MAKEUSER | [CANDE LANGUAGE|| RIE SYSTEM ||MCSII USER’S GUIDE|
REFERENCE . || - INFORMATION |/INFORMATION|| INFORMATION
MANUAL " MANUAL MANUAL MANUAL
~ (5000953) | (5000797) (5000318) (5000300) (5000219)
CANDE
OPERATIONS
_MANUAL
(5000615)
CANDE
REFERENCE
CARD

~ (5000581-002)

Figure 1-1. B 6700/B 7700 Data COmmuniCationé System Documentation Hierarchy

Logical

Network Physical -
Elements C,haracteristics Characteristics
DCPs - Memory size - Sct of terminals controlled by each DCP
Reconfiguration capabilities o , '
_ Physical location (address) e
LINEs Transmission speed ; _Statlon hpe assignments
Type of line and connection Automatic answer capability
Physical delays : _
MODEMs Transmission speed-and type Symbolic name
Continuous vs. controlled carrier :
' : . ~Symbolic name
STATIONs . Tenninal characteristics L}c; gical attributes A
’ - Associated Message Control Systcm
TERMINALS . Transmlsswn code, speed and type . Transmission riUmbers

Parlty

Special characters

| Figure 1-2. Network (Tll,aructeristiés

NETWORK

rd
(
NDL SOURCE
PROGRAM
NDL
COMPILER

INFORMATION

FILE

DCP
CODE

= 7
v
OBJECT Yo
PROGRAM |~ ‘l’ INTRINSICS
|
L_“— mamamain ol

Figure 1-3. NDL Sphere of Influence

(.

Message Control System (MCS)

An MCS is a special purpose DCALGOL program which may be a Burroughs-supplied MCS (SYSTEM/CANDE.
SYSTEM/RIJE, or SYSTEM/DIAGNOSTICMCS), or a uscr-written program. The primary function of an
MCS is, as its name implies, to control the flow of data communications messages between the terminal and
the main system. Information from the DCP, such as terminal input and status information, is forwarded to
the MCS via the DCC. Messages from the MCS to the DCP, such as terminal output or network changes, are
performed by the MCS invoking an intrinsic function called DCWRITE. This intrinsic, as well as the format
of all MCS and DCP messages, is described in the B 6700/B 7700 DCALGOL. Reference Manual, form no.
5000052. Each station wluch is defined by the NDL source program must have one, and only one, control-
ling MCS.

Data Comm Controller (PCC)

The DCC is the basic interface between the DCP and the main system. It exists as a subset of the basic
B 6700/B 7700 Master Control Program (MCP) and operates as an independent task or stack, one such task -
for each active DCP.

“Before a defined data communications network may be utilized, the DCPs which cofnprise the network must
be initialized. As each DCP is initialized, the portion of the NDL-dcfmed network which utilizes that DCP
becomes active.

Once initialized, each DCC stack transfers messages between the associated DCP and the proper MCS.
NDL Compiler |

Whereas the DCC and an MCS are requuéd to operate a data communications network, the NDL com piler
is used to generate the tables and DCP code which, to a large extent, control the way in which the network
functions.

The NDL source program, then, must supply the NDL compiler with information which will allow the com-
piler to produce the proper NIF and DCPCODE files to operate all of the Data Comm Processors and their
sub-components within the network. (In figure 1-3, the shaded areas indicate the areas of the data communi-
cations subsystem which are influenced by the NDL source program.) Although an NDL program may con-
tain up to 11 discrete sections, it functionally consists of two interdependent pieces of information: thc
network description and the DCP programs.

NETWORK DESCRIPTION

The NDL programmer uses various sections of the NDL source program to describe the logical and physical
characteristics of the network. The information supplied in those sections is used, in part, to supply the DCC
with the proper tables and DCP code that are used to operate the network.

The NDL compiler performs consistency checks across the various definitions to ensure that the defined
network is logically structured. For example, a line must not be associated with a particular modem if the
defined speed range and transmission type of the modem do not permit a proper interface to the line. Simil-
arly, a terminal defined to operate in.an asynchronous mode must not be assocrated with a line which uses a
synchronous adapter

All of the information supplied by the NDL definitions is recorded within the NIF file. This enables an MCS

or user program to gain access to many of the logical characteristics of the network, as well as permitting
dynamic reconfiguration of the network by an MCS.

1-5

These definitions are also used to modify or include special areas of DCP code which are network dependent.
For example, the DCP code for transmitting or receiving characters on a synchronous line is differeiit from
such codc for trahsmitting or receiving on an asynchronous line. In addition, if any dial-out type lines are
defined within the network, extra code must be generated for performing dial-out functions. Thus, the NDL
compiler “tailors’ the resultant DCPCODE file to fit all the requirements of the defined network.

DCP PROGRAMS

Once a data communications network is logically and physically defined, the functional operation of cach
linc and station within the nctwork must be described. These descriptions, called CONTROL definitions

and REQUEST definitions, are individual programs which arc executed by the DCP when required to perform
the necessary line discipline. Each line must have one associated CONTROL definition, and each termmal
may have one or more associated REQUEST definitions.

The CONTROL and REQUEST definitions consist of NDL statements which the compiler transforms into

the DCP instructions to be executed when performing a particular network function. A RECEIVE REQUEST
definition is invoked when input from a terminal is to be processed, and a TRANSMIT REQUEST definition
is executed when output to a terminal has been requested by an MCS or user program. The line CONTROL
definition is utilized to determine when and for which of the stations on the line a REQUEST defmmon is

to be executed.

Since an NDL source program must handle many lines, the DCP must share its processing capabilities among’
the lines it services. Due to the fact that the data communications subsystem operates in a real-time environ-
ment, few network functions, if any, require the dedicated use of the DCP for an extended length of time.

A RECEIVE REQUEST, for example, usually spends most of the time waiting for a character to be sent from
a terminal. Likewise, 1 TRANSMIT REQUEST cun only operate as fast as the line speed permits. Thus, while
-a REQUEST definition is waiting for an external event, or interrupt, from a line, the DCP is free to continuc
execution of a REQUEST or CONTROL definition for another line.

The allocation of the DCP for the servicing of its many lines is one of the duties of the basic DCP operating
system and the CONTROL definitions. Figure 1-4 illustrates the means by which the control of the DCP
is transferred between the operating system and the CONTROL and REQUEST definitions.

Line Control

Each CONTROL definition, or “Line Control Procedure,” must perform two functions. First, it must select
which station on the line is to receive attention next, and second, it must decide what particular function is
to be performed for that station. If the function to be performed is an output request, control is transferred
to the TRANSMIT REQUEST for the station. If the function is an input operation, the station’s RECEIVE
REQUEST is executed. Network functions which do not involve the reception or transmission of messages,
such as status or network changes, are performed by invoking a common subprogram, or macro, within the
DCP operating system itself.

Request Deﬁmtlons

For each type of tcrmmdl which is capable of output, a TRANSMIT REQUEST must be named within the
terminal definition. Likewise, if a terminal has input capabilities, a RECEIVE REQUEST must be supplied
and named. Typically, many stations may share the same REQUEST definitions, just as many lines may
utilize the same CONTROL definition. In some cases, more than one set of REQUEST definitions may be
desired, and defined, for a station.

A . Initiate Request] :
(l)) cp . "DCP Initialization Line - Terminal
perating + - Control Terminate Request Request
System Procedure i . Routine
T
|
|
|
I
DCP N | o
Common : , i
Macros < ' '

Figure 1-4.. Transfer of Control Within the DCP

The functions of a REQUEST definition may be as simple or as complex as the application of the station
dictates. One of the basic design goals of the DCP is to free the main system from the burden of per{forming
basic terminal receptions and transmissions. However, by the proper application and coding of the CONTROL
and REQUEST statements in NDL, a significant amount of intelligent message processing may be performed -
by the DCP, thereby allowing more of the main system’s resources to be free to perform other work.

The NDL programmer must keep in mind, however, that the DCP runs at a finite rate, and that it is
operating in real-time. Thus, if too much time is spent processing a message, other lines may fail to be
serviced quickly enough to avoid transmission errors. Several NDL statements are provided to “break up”
long strings of NDL code to ensure that the DCP may properly service all of its lines.

When a REQUEST dcfinition has terminated the processing of an input or output function. it usually branches
back to the beginning of the CONTROL definition. The CONTROL definition then selects the next station
to be serviced and the process continues.

Thus, the functioning DCP can be visualized as a small multiprogramming system, where each line has its own
program and operating environment and runs asynchronously and independently of the other lines. The
CONTROL definition and its associated REQUEST definitions form the “main program” for each line, and
the common DCP macros are “‘sub-programs.’

DCP lNTERACTION WITH THE MAIN SYSTEM

Although the DCP is a self-contained and asynchronous device with respect to the main system, it is not an
autonomous unit, and requires the active participation of the main system and its resources to-properly func-
tion. In particular, main memory storage space is required to contain tables and messages. In addition, the
DCP requires the allocation of a pool of message areas in main memory for the gathenng of input from term-
inals and reporting of error conditions. :

DCP Tables

The NDL compiler constructs a series of tables which reflect the physical and logical characteristics of the
network as defined by the NDL source program. The DCP uses these tables for the storage of status informa-
tion, and for.determining what types of functions are to be performed for each of the many different lines
and stations which the DCP controls.

The compiler places a disk image of these tables within the DCPCODE file along with the DCP cbde itself.
When the DCP is initialized, the tables are loaded into' main memory by the DCC, which also provides the

1-7

DCP with a reference to the tables. If several DCPs exist which share hardware-cxchanged adapter clusters,
two DCPs may utilize the same set of tables if the network description indicates this mode of operation. In-
the case where a DCP is not “‘exchanged” in this manner, cach DCP uses its own unique set of tables.

Each set of tables can be divided into two sets of information. Each line has a table, and each station has a
table. The DCP uses a “‘linc descriptor” to reference each line table. The descriptors for all lines controlled
by the DCP are stored within a vector, which is then indexed by the physical line adapter address. Each line
descriptor contains information concerning the status of the line (not ready, connected, busy, etc.), physical
characteristics of the line (dial-out, switched, etc.), logical characteristics (automatic answer, etc.), and a -
reference to the CONTROL definition which is used for the line. In addition, the line descriptor contams
the memory address of the actual line table.

Each line table contains additional information describing the logical and physical characteristics of the line.
Much of the information in the line table can be referenced and/or modified directly by the NDL CONTROL
and REQUEST definitions. Other information is reserved for use by the DCP operating system.

Immediately following the line information in the line table is a vector of station descriptors, one such
descriptor for each station which can exist on the line. Similar to the line descriptor, each station descriptor
addresses a table of information for a particular station. The DCP references the proper station tabie by
indexing into the line table by the proper relative station address, or ‘“‘station index,” and using the addressed

station descriptor to reference the proper station table. When a line CONTROL Procedure “selects’ a station

for the purposes of initiating a REQUEST definition, it.is actually s_electing the proper station table for use.
Just as the line table contains a reference to the proper CONTROL definition to execute, the station table

contains references to the appropriate TRANSMIT and RECEIVE REQUEST definitions. It should now be

apparcnt that each station assigned to a particular line must utilize the same Line Control Procedure, since
the stations on the line all share a common line descriptor and line table. However, each statlon may have a
different set of REQUEST definitions, since these routines are station oriented.

Although each station table is of a fixed size, the line tables will vary in size directly proportional to the
number of stations which can potentially exist on the line. The NDL source program specifically defines

the maximum number of stations for each line,-as well as which stations are assigned to what line. Not all
station descriptors may be utilized for a given line, i.e., the number of real stations on a line at any given
moment may be less than the true capacity of the line. A line may be declared with such “holes’ when the
NDL program is compiled, or a line may be reconfigured into such a state by an MCS. In some cases, a line
may exist with no stations at all. At no time, however, may more stations be assigned to a line than the max-
imum number defined by the NDL program. Thus, it is the requirement of the DCP operating system and/or
the CONTROL definitions to ensure that a selected station actually exists, or is valid, as defined by the cur-
rent state of the network. ,

Just as a line may have no valid stations, it is possible and often desirable to define *“spare’ stations which
have no line assignment.. Such stations cannot be referenced or utilized by the DCP until they are logically
assigned to a line by a reconfiguration request. Again, any such reconfiguration request will be disallowed
by the DCC if the characteristics of the station conflict with those of the line to which it is being assigned,
or with the stations which already exist on that line. Also, since the size of the line table cannot be altered,
there must exist a ‘“hole” or unused position on the line for the station.

Altematively, an existing station may be subtracted from a line, thereby leaving a ““hole,” and either left
in limbo with no line assignment, or moved to fill an existing ‘“‘hole” on another line. Thus, stations which
have special characteristics for a particular application may be logically moved about within the network
while the data communications system is operating and without the further use of the NDL compiler.

(o

DCP MESSAGE MAINTENANCE

With one exception, all functions performed by the DCP are the direct result of a DCP request message being
sent to the DCP, usually by an MCS. In the case of terminal output, for example, a “‘write request™ is sent

to the DCP, which then invokes the action described within the request message itself by means of the. appro-.
priate station’s TRANSMIT REQUEST definition. If spontaneous input from a terminal is to be received,
there is normally no MCS request message associated with the input operation. When a station operates in
this mode, the terminal is described as being *‘cnabled for input,” or simply, “enabled.”

The process of gathering “enabled input messages,” i.e., spontaneous input messages, is controiled by the
CONTROL definition, and, of course, by the RECEIVE REQUEST defined for the terminal. In addition,
the “‘enabled” state of a station is initially defined for each station, and may be dynamically changed by the-
controlling MCS.

When a station is enabled, and the RECEIVE REQUEST is invoked, the DCP must then acquire a message
area in main memory in which to store the received message text. Such an area, which is called an “enable
input space,” is obtained by a DCP macro called GETSPACE. Since the DCP cannot directly participate in
the main system memory management functions, a pool of such “enable input™ spaces is maintained by the
DCC." This pool of messages, sometimes refcrred to as the “available space pool,” consists of a set of queues,
each of which contains a linked list of available message arcas of the same size. The NDL compiler computes
the size of the enable input space required for each terminai based on the defined WIDTH, MAXINPUT, and
BUFFERSIZE statements within the terminal definition. All terminals of a given size are assigned the use of
the same queue. In order to reduce the number of different queues requlred the NDL compller rounds each
terminal’s input size up to a multiple of 16 words.

The available space areas are used for several purposes other than terminal ecnabled input. Error messages
from the DCP and “‘switched line status’ result messages are also spontancous in nature and require an enable
input space. In addition, it is possible for an NDL Request definition to invoke the GETSPACE macro and
simply store the contents of variables in the obtained message space in order to communicate with the con-
trolling MCS. o ,

When the DCP 'GET.SPACE macro is invoked, an area which is greater than or equal to the required message
size is delinked from a message queue and assigned to the station. If no suitably sized areas exist within the
space pool, a “no space” condition results, and the RECEIVE REQUEST must abort reception of input.

The number of messages assigned to each queue is mmally defined by the NDL compller By default, two
areas are assigned to each size queue, although the NDL program may spec1fy an altemate allotment ona
terminal by terminal basis. L :

The DCC has the responsibility of maintaining the available space pool so that GETSPACE may always ob-
tain a message area. As each available space area is returned to the DCC by the DCP in the normal course of
completing an input operation, the queue from which the area was obtained is restored so that it contains

the same number of areas as defined by the NDL compiler. Circumstances may arise, however, where all of
the areas within a queue have been exhausted, but none of the areas has yet been returned to the DCC so that
the queue can be replenished. In such an event, the DCP sets a global ““space alarm” flag which is sensed by
the DCC and causes it to immediately examine and replenish all of the available space queues. In addition,
the DCC will then increase the target number of messages in each totally depleted queue, in order to reduce
the possibility of future space alarms. During extended periods of DCP inactivity, the DCC will attempt to
reduce the number of messages in each queue down toward the originally defined target value.

The DCC attempts to maintain the available space pool within the constraints specified by the NDL compiler.
However, some networks may require more than the default number of message areas for some tciminals

if too many “‘no space’’ conditions occur. In such an event, the NDL program should specify a larger number
of message areas for the affected terminals. Since the behavior of a network is difficult to predict under all
circumstances, the NDL programmer will have to directly observe the effects of different message space spec-
ifications, and adjust the specifications so that the network operates efficiently without requiring excessive
memory resources. ' : '

~ NDL Syntax Conventions
SYNT..2 CONVENTIONS

2. NDL SYNTAX CONVENTIONS

SYNTAX CONVENTIONS

The syntax diagram is the method used to depict the Network Definition Language syntax. This method
affords a very concise and lucid exposition of syntax, including defaults, alternatives, and iterations; it is
rigorous without being cumbersome. There are few formal rules to remember: the basic rule is that any
path traced along the forward directions of the arrows produces a syntactically valid command. The
following examples illustrate the technique:

-EROTV_JETHE—TBOAT &~ DOWN & - : > STREAM.
YOUR L»GENTLYj ' [h : '
THE OLD-Ea MILL A :

Valid constructs from this syntax diagram include:

ROW THE BOAT DOWN-STREAM. - N

ROW, ROW, ROW YOUR BOAT GENTLY DOWN THE STREAM.
ROW, ROW, ROW, ROW THE BOAT DOWN THE OLD STREAM.
ROW YOUR BOAT DOWN THE OLD, MILL STREAM.
ROW THE BOAT DOWN THE OLD, MILL STREAM.

The following conventionis used to control iterations of options or constructs:

. -) -
ACROSS THE . _ * + BIG - - #» MISSOURI -
- » WIDE - : : o
L = MUDDY ——j o ~

The ““bridge” over the “2” can be crossed a maximum of two times, so a maximum of two commas (and
three adjectives) can appear. Valid productions include:

ACROSS THE BIG MISSOURI
ACROSS THE BIG, WIDE MISSOURI
ACROSS THE BIG, WIDE, MUDDY MISSOURI

From the above example, it should be noted that the number of iterations is controlled by the “number”
in the feed-back loop. When the “number” is not shown, there is no limit to the iterations. For example,

NDL Syntax Conventions
SYNTAX CONVENTIONS
Continued

ACROSS THE ' - BIG ' '] & MISSOURI

= WIDE j
b & MUDDY
would include the following valid combinations:

ACROSS THE BIG BIG WIDE WIDE MISSOUREV
ACROSS THE BIG MISSOURI
ACROSS THE MUDDY MUDDY MUDDY MUDDY MISSOURI

If a comma were included in the above example, valid combinations would be as follows:

ACROSS THE BIG, BIG, MUDDY MISSOURI
ACROSS THE BIG, WIDE, WIDE, MUDDY MISSOURI

Key Words

Boldface symbols and uppercase letters in syntax diagrams indicate symbols and words whlch appear
literally in the instruction.

Syntactlc Variables

In the syntax diagrams, left and right broken brackets ({ }) are usud to contain syntactlc vanables that
represent information to be supplied by the programmer. A particular variable may represent a single
character, a simple construct (such as an integer or text string), or a relatively complicated construct.

The following is an example of a syntactic variable that appears in a syntax diagram.

DEFAULT — = —a{ default line identifier) : , - .

Braces ({. }) are used to enclose syntactic variable expressions defined by the meaning of the English -
language expression contained within the braces. For example, the following syntactic variable expression

ADAPTER > = ——o{integer) value of 1 thru 8 }— — .

would include the following valid constructs:

ADAPTER = 1.

ADAPTER = 6.

ADAPTER = 8.
Construct Terminator

Most constructs in the Network Definition Language must be ‘t‘erminated by a period (.). This is illustrated
in the syntax diagrams as follows:

The period is part of the syntax and must appear following the construct.

2-2

(C

(C

' v 'NDL Syntax Conventions

' | f | SYNTALY. CONVENTIONS
Contiuied

A, h /

Some constructs, however, do not require a terminator, and can be followed by another construct. This is
illustrated as follows: R

The vertical bar (|) is not part of the syntax, but merely indicates the termination of the construct.

2-3/2-4

Language Corhpon'ents' '
LANGUAGE COMPONENTS

3. LANGUAGE COMPONENTS

LANGUAGE COMPONENTS
Syntéx

& (bit number)

)
———— (bit variable) £
| {byte variable) —
————u-(character) 2o
- (identifier) — -
—— »(integer) -
= {label) - -
————————(NDL program unit y——————#=
> (remark) >
& (reserved word) —-
- —————(space) -
————————»(string) >
b a=(system identifier) - |
E—— (tally number) — -
> (time) >
L& (toggle number) o
Examples
A
450
6110
IF
“B6700”
SYSTEM/CAN DE
30MILLI
Semantics

(bit variableys, (bit number)s, and (byte vanable) s are all described in chapter 6.
A complete list of the (reserved word}s is contained in appendix A.

(NDL program unit) is described in chapter 4. _

All other {Janguage component)s - are described in this chap'te'r.'

3-1

Language Components

CHARACTER
N’
CHARACTER |
Syntax ' : .
- (digil) ' ‘ ' *‘
= {hexadecimal character) '
= (letter)
L »-(single character)
Examples
0
Q
A
“Z”
Semantics o ’
In all instances, a (character). is an entity whose exact form depends on the context of its usage. The
normal inference is that of an 8-bit EBCDIC character. ' E ' ‘
(Jetterys and (digit)s are usually used to create {identifier)s and (string)s.
Wherever (single character) occurs in the NDL syntax, an 8-bit character is needed. Itis unique'in thaf it K"
may be formed using two hexadecimal character)s. » VI
N/

3-2

DIGIT
Syntax ,
{one of the EBCDIC characters, 0 through 9, inclusive}

Language Cpmponetits o
THARACTER
\‘“';t‘,:;:, i f) '

Examples

]
5
9

Semantics

Whenever the item of <dlglt> appears in the NDL syntax, one of the 10 numeric EBCDIC characters from

0 through 9 is requlred

Language Compdnents
CHARACTER _
{hexadecimal character)

N’
HEXADECIMAL CHARACTER
- Syntax
- (digit) - I $|
— A —ge= -
- B o
» C —
& D \an
- E -
» F —
Examples
0
5
9
A
C
F —
Semantics o o . </
(hexadeamal character> s are defined as consisting of the characters in the decimal digit set plus the char- R
acters A,B,C,D, E,F. { hexadecimal character)s are generally used to define program values in terms of
the hexadecnmal (radlx 16) number system, where A is equivalent to 10 in the decxmal system, B is equival-
ent to 11 in the decimal system, etc. :

34

Language Compone‘nts‘
CHARACTER
(leticr)

LETTER
Syntax
{one of the EBCDIC characters, A through Z, inclusive}— _—— - >| :

Examples

A

Q
Y/

Semantics

Whenever the item of (letter) appears in the NDL syntax, one of the 26 alphabetxc EBCDIC characters .
-from A through Z is requlred ,

Language Components
CHARACTER

(single character)

SINGLE CHARACTLR
Syntax . . _ ,
—_— e —>{any EBCDIC character except the quote ,(“‘)}' o 9 — ’ _ ;‘

4~ hexadecimal character) —#= hexadecimal character)) 4"

Examples

“A”
- 4“FF”

Semantics

The primars{ purpose ot.' having a syntactical item of (Sing/c; character) in NDL is for use in those places of
syntax requiring an 8-bit character, which can be any co‘mbination of bits from “all off’ through “all on.”

For ease of programming and recognition of usage, the NDL programmer may use elther normal EBCDIC

graphic characters or <hexadeczma1 character)s to create the needed bit pattern

(C

(C)

Language Cvompovne,nts} o
IDENTIFIER

IDENTIFIER
Syntax

(letter) | — — T — ‘»'
. —LﬁG\—-;(Ietter} | ' o .

——» (digit)

Examples

A

Qv

X3

B6700
MINIMIZER

Semantics

{identi ﬁer) s have no mtnns1c meaning, They are used to glve symbohc names to vanous definitions in
NDL. ~

An (identifier) must start with a (Jetter) which can be followed by any combmatlon of (Ietter) s and
(digit)s. . _ .

The maximum length of an (identiﬁ_e))' is 17 characters.

3-7

Language Components
INTEGER |

INTEGER
Syntax

Examples

0

37

511
12345678901

Semantics
An (integer) is a positive whole number; i.e., fractions or fractional parts, exponents, etc. are not allowed. -
The maximum (integer) allowed is 99999999999. |

3-8

____E_fl‘l\.__..@igi:) . — _ | -

(

(

()..

' Languége Components
LABEL

LABEL
Syntax

(mteger> : _ v R - ‘ “ *'

Examples

0

22

123
99999999999

Semantics

A (label) >is used to indicate where “execution can branch” within a given (cdn'trol definition) or ¢ request
definition). ' . ,

{label)s are “local” in scope; that is, each (label) must be unique only within a given (control definition))
or (request deﬁm'tion}. For example, the (Iabei) 22 could appear more than once in an NDL program so
long as it does not appear more than once in the same {control definition) or (request definition). -

Languagg Components
REMARK

REMARK

Syntax

% - {EBCDIC characters }
Example '
% THIS IS A REMARK

Semantics

‘ (remark)s can appear anywhere in the source program. When the compilér encounters the petcehf sign

- (%), it skips immediately to the next source record before continuing the compilaiion process.

3-10

(O

Language Components

SPACE

SPACE
Syntax

___j_, {1 EBCDIC graphic s‘pace, hexadecimal 40}‘

Semantics .
. ’ L. . . . (A ‘ B
The NDL compiler looks at a contiguous sequence of (space) s in a source program as a single (space)

-

(except when contained in a (stn'ng)). Therefore, wherever a single space is allowed, the programmer can

use multiple (space)s to improve readability of the program.

Language Components
STRING

STRING
Syntax

—»

—a {any EBCDIC character except the quote o}

L
.

N p—- v '>(hexadecimal-charac'!er).(héxadecé‘mal character -

Examples

“THIS IS A STRING”
6‘AND’9 66809’ (‘ls” ’CTH[S”
“AND SO” 4“C9E2” “THIS”
4“C2F6FT7FOF0”

“%*+1/@ (BIG B)”

Semantics

Only (lwxadecimal ('/laravtcr> (4-bit) and EBCDIC character (8-bit) (vm'ng)s can be constructed.

EBCDIC character <s’!l'illg>s are restricted in that they cannot contain the quote (”) character. |

The maximum allowed length of a (s‘tring) is 1A28 8-bit characters (1024 bits).

3-12

— | '

(.

(C

Language Components |
SYSTEM IDENTIFIER

SYSTEM IDENTIFIER
Syntax

‘ /- —
: A4——(identifier) _ - 1 - . “”!

Examples

A

B6700

SITE/MCS -
SYSTEM/RJE/DOWNTOWN
X/Y/ZEBRA o

Semantics

{system identifier)s have no intrinsic meaning. They are used to give symbolic names to various definitions
in NDL. A (system identifiery is different from an (identifier) in that it is usually used to reference items
belonging to the system and not simply to the NDL program. : .

A maximum of 14 '(identiﬁer)s, each separatéd by a slash (/), is allowed.

- 3-13

Language Components

TALLY NUMBER

TALLY NUMBER
Syntax

Examples

0
1
2

Semantics

{tally number) is required to designate one of the three (byte' variable) TALLYs; for example,

TALLY[O].

(C

Language Components
TIME

TIME
Syntax

-0 . —

L (integer) —————==MIN

————=SEC

> MILLI
—— MICRO

Examples

0

5 MIN

30 SEC
200 MILLI
9 MICRO

Semantics

(mne} is used to express or define an increment of time. MIN denotes mmutes, SEC denotes seconds,
MILLI denotes milliseconds, and MICRO denotes microseconds.

The maximum amount of time that can be specified is 6 minutes 42 seconds. -

3-15

Language Components

TOGGLE NUMBER
TOGGLE NUMBER
Syntax
~5-() -
-5 |)ﬁ :
) —
>3 —
4 b
-5 » >
6 >
»7 .
ExamplesA '
(]
4
7
Semantics

{ toggle number) is required to designate one of the eight (bit variable) TOGs. For ex'a'm"plé', TOG[S])

3-l16

(W

Sourée Program Structure
NDL PROGRAM UNIT

N4 4. SOURCE PROGRAM STRUCTURE
NDL PROGRAM UNIT _
Syntax -
l ' w-(cénstant definition)
L » (MCS definition)
= translatetable definition
@-—{—-—» {control definitiony ' _ ‘ - : .
O | '. ! |
j—-— L= (request definition) | »{modem definition) - —
{terminal definition N _L { station definition) .-_[.< line definition) ——-o@
©_'L" {DCP definition) — _ - — "
i > (file deﬁﬁition)' —_
N

Source Program Structure
NDL PROGRAM UNIT
Continued

Examples

CONSTANT ...
MCS ...
TRANSLATETABLE. ..
CONTROL...
REQUEST . ..
MODEM . ..
TERMINAL ...
STATION . ..
LINE . ..
DCP...

FILE ...

Semantics

The NDL source program is divided into 11 program sections ordered as shown. An NDL program
must include the control and request sections (in any order), and the terminal, station, line, and DCP
sections. Each section is described in detail in chapter § of this manual.

(O

(C

e

DEFINITIONS

5. DEFINITIONS

Deﬁniﬁdns
DEFINITIONS

The NDL definitions, which comprise the 11 program sections of the sourée program étructure shown: in

Section 4, are listed in alphabetical order and described in the same order:

FEE R e A0 TR

CONSTANT
CONTROL
DCP

FILE

LINE

MCS
MODEM
REQUEST
STATION
TERMINAL
TRANSLATETABLE

Det‘initions
CONSTANT

CONSTANT DEFINITION
Syntax

-) <@
CONSTANT L(constant identifier)—->=~H:< constan

t identifier)= >
 string) _———-1 . |

Examples

CONSTANT NUL =400".
CONSTANT SOH =4*“01", STX =4“02".
CONSTANT C1 =SOH 4*00” STX, C2 = “123"4“F4”.

Semantics

The {constant definition) equates each of one or more (identifier)s with a (string). Once that equation is
madc, any subsequent appearance of the {constant iden tiﬁer) is syntactically and semantically equivalent
to the <string>. . :

If a {constant identiﬁer) appears after the equal sign, it must ﬁave been defined previously in the prdgram.
Supplementary Examples |
Examples of Valid (('nnslunl dc{ﬁﬂitioﬂ)S -
Example 1) _ .
CONSTANT GREETING = “WELCOME TO B 6700 TIME SHARING.”.

This cxample equates the (string) “WELCOME TO B 6700 TIME SHARING.” to the {constant identifier)
GREETING. | ~ : S

Example 2

CONSTANT | |)
CR ~ =4%“0D”, % A CARRIAGE RETURN
LF =425, % A LINE FEED

. CRANDLF " =CRLF, % A CARRIAGE RETURN AND A LINE FEED
DELETELINE = “DELETED” CR LF. % THE STRING “DELETED”,
% A CARRIAGE RETURN, AND
- % A LINE FEED.

This example references other constant identifiers)s to define a { constant identifiery. {String)s and
(crmstant identiﬁe;)s may be interspersed to define a (constant identiﬁer}. ‘ ‘

Examples of Invalid { constant definition)s
Example 1 o
CONSTANT BADCNST = 4“123”.

The above (constant definition) would cause a syntax error to be generated, because the (string) is not
properly formed. The length of the <string> must be a multiple of eight bits.

5--2

(C

Definitions
CONSTANT
Continued

Example 2

CRANDLF = CRLF, % LINE 1
CR = 40D", BLINE2
LF = 425”. %LINE3

This example would cause a syntax error to be generated, because the (constant idmliﬁe'r)s LF and CR are
referred to in line 1, but not declared until line 2 and line 3. A (constant identifier) must be declared
before any reference to that (constant identiﬁer) can be made. '

5-3

Definitions
CONTROL

CONTROL DEFINITION
Syntilx

CONTROL - control identi fier) —e ;é_

—e (crror switch statement)

5-4

L(Iabel)—c» : —j

 }—e(initialize statement ——u»

—s= (transmit statement) ——s

o= (assignment statement’ —
—-(break statement) —
o (code statement e
——-n»(compound statement y ——e
|- (continue statement) ———e
N (delay. statement y ————pm
- finish statement) ——————a-
| (fork statement ———
- {go 10 slatmmvii_) ——
—s- (idle statementy ~——s
> {if statement Yy ———— e

> (increment statement » ——
—s= (initiate statement) ————
- receive statement) ——m=

_,(shift statement) — |

e (sumb Statement) E—

, L (wait staterhent} —_——

s { pause statement) ————ul -

Definitions
CONTROL
Continued

Examples

CONTROL CONTENTION:
INITIATE REQUEST.
INITIATE ENABLEINPUT.
IDLE.

CONTROL POLL:
5: IF STATION GTR 0 THEN
BEGIN
10: - STATION = STATION -- 1.
INITIATE REQUEST.
INITIATE ENABLEINPUT.
END. '

ELSE
BEGIN
STATION = MAXSTATIONS.
GO TO 10.
END.
GOTOS.

Semantics

A (nm/ml definirion) is an algorithm that describes the allocation of the use of a logical line to the
stations assigned to that line. Tt is the {coitrol definitiony that decides it and when a station’s Receive
Request or Transmit Request should be initiated.

A single {control dcfim_‘tion) must control the logical line resource for all of the stations on a half-duplex
line. In the case of full duplex, one <<'ontml definition) must control the primary line, and onc additional
(cantrol definition} can be designated to control the auxiliary line. (One {(control definition) could be
designated as the control for both the primary and auxiliary lines. If a {control J‘iqr'inition) is not desig-
nated as the control for an auxiliary line, then a default equivalent to an { idle statement) is-used.) The
programmer, however, cannot directly define a particular {control definition) for a logical line in its
(line definition). Instead, for each (terminal definition), a single {control definition) must be defined.
(Two (control definition)s can be named if the (terminal'_duplex ._s'tatement} specifies DUPLEX=TRUE.)
Next, in each (station definition), a <terminal deﬁnition} must be defined for the station (by means of
the < station terminal statement}). Finally, each (station deﬁnition} is assigned to a logical line (in the
line station statement} of the (line definition)). This last association must be such that each station (i.e.,
station definition)) assigned to the logical line references (indirectly through its (terminal definition))

the same {control definition) s as every other station assigned to the line.

A (control deﬁnition) for a given line can deal only with one station at a time. All statements executed
apply to and affect only one station assigned to the line. The (control deﬁ'hitidiz) chooses the station

with which it wishes to deal by setting the value of the (byte variable) STATION to the chosen station’s
station index. _ . ‘ L :

{control identifier) has the same syntactic form as (identifier).

The statements in a <<'0ntrol de_ﬁnition} are executed sequential]y. In some cases, however, it is desirable
to alter the order of execution of statements within the procedure. A (control sta_tement} preceded

by a {label) is one means of accomplishing this. The {go fo statement) is used to transfer control to a
(labelyed (control statement). - ‘ :

5-5

Definitions
CONTROL

Assignment Statement

ASSIGNMENT STATEMENT

Syntax

FORM 1 - LOGICAL ASSIGNMENT

(assignable bit variabley > = . o (bit variable)
TRUE
FALSE

FORM 2 - VALUE ASSIGNMENT

(assignable byte variable}-l-— —-»-(byte varzable>

- <1nteger> —ﬁ l:+
r—-b-(smgle character) .

-(byte vaf_iable) S—

—o(translatetable identifier)~ (—=(byte variable) —») —o

[}

(integer) —_—

(singlé character) —u»

> { receive “address’” statement }

Examples
TOG [0] = TRUE.
TOG [1] = TOG [0].

LINE (BUSY) = FALSE.
RETRY = STATION (TALLY).
STATION = MAXSTATIONS.

TALLY [0] = STATION (FREQUENCY)-TALLY [1].
CHARACTER = TRANSTABLEID (CHARACTER). '
STATION = RECEIVE ADDRESS (TRANSMIT) [ADDERR: 999]

Semanths
FORM 1

i

This form causes the value on the right side of the equal sign to replace the current value of (asszgnable

bit variable).
FORM 2

Value assignment causes a calculated value on the right of the equal sign to be stored in the (asszgnable

byte variable). Arithmetic calculations are done in modulo 255 arithmetic.

{assignable byte variable) = (translatetable identifier) ({byte variable)).

This construct is the means to invoke user-defined character translatidn. User-defined translation is

effected by three areas of the NDL source program.

a. Ina (translatetable defuut:on} the programmer must define the contents of a trans]atlon

table and associate a (translatetahle identifi er) with it.

5-6

MNe

Definitions
CONTROL
Assignment Statement — Continued

b. Inthe (termznal defi nmon) of a terminal type that requires special character translation.
the programmer should suppress automatic character translation by using either of the
following forms of {terminal code statement):

CODE = BINARY.
or
CODE = EBCDIC.

¢. Ina {control def mtmn) or {request definition, the programmer invokes the translation
by using this option of the value assignment. Any (bvte vartablc) can be designated as
containing the character to be translated.

The (translatetable identifi er) identifies the translation table to be used. An: (asszgnable byte varzable)
is designated to the left of the equal sign, identifying where the resulting translated character is to be
stored.

If N is the (source szze) (defined in the (translatetable defmmon)), then the N low-order blts of the
(byte vanable) are used as an index into the translation table. The exght-blt character thus mdexed is
stored in the (assignable byte variable).

(asszgnable byte varzable) {receive ¢ address statement }.

This construct attempts to RECEIVE the address characters of a termmal, .~d store in <ass1gnable byte
vanable) the station index of a station whose address characters are equal to those received. The -

{ reccive “address” statement } is the same as described in the semantics of the RECEIVE ADDRESS

option of the {receive statement) The optional syntax in the {receive “address” statement} invokes

the same actions as described in the (recewc .statement} semantics except for ADDERR. Any action
specified for ADDERR is taken if no valid station assigned to the line is found thh .addrcsq ch.lr'u.tcrs

equal to those received. : : :

Definitions
CONTROL
Break Statement

BREAK STATEMENT
Syntax

BREAK ——= (————— . & NULL—— 1 >)
L—(break time)——j ~ —w-(delay time) ‘
Examples

BREAK (*, NULL).
BREAK (200 MILLI, 3 SEC).
BREAK (*, 3 SEC). ‘
BREAK (100 MILLI, NULL).

Semantics

The (brcak statement) causes binary zeros to be transmitted on the line, thus changing the state of the
line to a “spacing” condition for a specified time. .

{break time) specifies the (time) to break. An asterisk indicates that a standard break of 2 character
times should be used. ' } S
{delay ‘time) specifies the (timey to delay subsequent to the break and prior to.whéri control - : L
continues. » _ SR ‘ . R | e

N
o0

Definitions
CONTROL
Cude Statement

CODE STATEMENT

Syntax

CODE — = - ASCII : v : > .
L= BINARY 4 ? o

Semantics | ' o

CODE=ASCII invokes the ASCII-to-EBCDIC translation for received data and the EBCDIC-to-ASCII
translation for transmitted data.

CODE=BINARY inhibits any character translation on data transmitted or received. -

Pragmatics

The (code statemen t} allows a programmer to either invoke or inhibit on a logical line the DCP ASClI-to-
EBCDIC character code translation for input, and the EBCDIC-to-ASCII character code translation for
output. Any (lerminal definition) that names, in its <terminal control statement),'a (control dcﬁnition)
that utilizes the (code ,statement}, must define ASCHI(BINARY) as its character code in the (terminal
code statement). (Refer to the {terminal code statement) in this chapter.)

Once that translation has been invoked on a logical line, the translation continues until such time that it is
inhibited. If translation is inhibited, translation will be inhibited on that line until invoked again by execu-
tion of CODE = ASCII, or if control is transferred to a {request definition) which executes one of the
following: CODE=ASCII, TERMINATE NORMAL, TERMINATE LOGICALACK, TERMINATE

LOGICALACK(RETURN), TERMINATE ERROR, TERMINATE ENABLEINPUT, or (while executing a
Receive Request) TERM]NATE NOINPUT. A _ :)

Definitiois
CONTROL
Compound Statement ' T

COMPOUND STATEMENT
Syntax

BEGIN ‘ & (control statement) & END . .

Examples

BEGIN % EXAMPLE 1
INITIATE TRANSMIT.

TRANSMIT EOT.

FINISH TRANSMIT.

END.

IF STATION (VALID) THEN
IF STATION (READY) THEN :
BEGIN % EXAMPLE 2
INITIATE TRANSMIT
TRANSMIT “ON THE AIR”.
FINISH TRANSMIT.
END.

Semantics IR coe e -’
' N

The << ompound stateme nr) groups several statements together to form a logical sequence. To execute

more than onc statement when the condition of an <I] statement) is satisfied, a (compound s‘tatement}
must be used.

Definitions
CONTROL

Continuc Statement

CONTINUE STATEMENT
Syntax

CONTINUE : » —

Semantics

The (c()ntinue statement) can appear in only those (c'ontrol deﬁnition)s.and (request deﬁm'tion)s
written to communicate with full duplex terminal types. This statement causes the co-line to resume
processing, if, and only if, it had been suspended by a {wait statement) or a (receive statement) with a
CONTINUE option specified. If the co-line had not been suspended, this statement acts as a no-op. The .
{continue statement) has no effect upon the line on which it was executed.

Pragmatics

Refer to the {fork statement) pragmatics.

Deﬁnitions
CONTROL
Delay Statement

DELAY STATEMENT
Syntax

DELAY - (— ~-(delay time) : >) : >

Example
DELAY (10 MICRO).
Semantics

The {delay statemen t) provides a means to delay a specified period of time before control proceeds to the
next statement. The {control definition) is suspended in a “sleep” state for the {delay time) specified.

Pragmatics

The “sleep” state induced by the {(delay statement) allows the DCP to service Cluster Attention Needed
(CAN) interrupts for other logical lines. - : : :

Definitions
LONTROL
., Error Switch Statement
o’
ERROR SWITCH STATEMENT
Syntax

)y -t

ERROR— [—& (switch number Yy] = T\ BREAK . i ?(}Iubcl") -’.d
—1\->-BUFOVFL———— ABORT-
1\ LOSSOFCARRIER—’ NULL

T\~ PARITY ————

[/ T\ STOPBIT —————t>

LT\ TIMEQUT ——————=

Examples

ERROR [0] = BREAK:0,BUFOVFL:NULL,LOSSOFCARRIER:ABORT
PARITY:999, STOPBIT:999, TIMEOUT:NULL.
o ERROR [1] = BREAK:NULL.
O ERROR [99] = BUFOVFL:NULL .

Semantics

The {error switch statement)y is a non-executable statement that allows the programmer to define a
set of default actions that are to be taken in a {receive statement) if the: specrﬁed errors occur.

(swztch number} has the syntactic form of (rnteger).

BREAK

The BREAK option variations cause actions as described if a break, that is, at least 2 character-times of
a spacing line condition, is detected by the adapter cluster while receiving:

BREAK:NULL causes no action. Execution proceeds as if the break did not occur.
BREAK: {/abel’) o setz TRU>E the {bit variable) BREAK[RECEIVE] and branches control
: to label
BREAK:ABORT - sets TRUE the {pit variable) BREAK[RECEIVE] and executes an
- implicit TERMINATE ERROR. ,

BUFOVFL

The BUFOVFL option variations cause actions as described if the DCP is unable to sérvice a cluster
Attention Needed (CAN) interrupt before the Adapter Cluster receives another character (thus destroying
the previous character):

BUFOVFL:NULL causes no actron Executlon proceeds as if the error condition- dld not
A occur.
\i‘}’) BUFOVFL: {label) sets TRUE the blt variable) BUFOVFL, and branches control to {/abe.).
BUFOVFL:ABORT sets TRUE the hit variable) BUFOVFL and executes an implicit
.TERMINATE ERROR. :

5-13

Defintions
CONTROL

Error Switch Statement - Continued

LOSSOFCARRIER

The LOSSOFCARRIER option variations causc actions as described if a loss of carrier is detected while
receiving. :

LOSSOFCARRIER:NULL " causes 1o action. Execution proceeds as if the error

: did not occur. .
LOSSOFCARRIER: {lubel) sets TRUE the {bit variable) LOSSOFCARRIER, and
_ branches control to {label). '
LOSSOFCARRIER:ABORT sets TRUE the (it variablc) LOSSOFCARRIER, and

executes an implicit TERMINATE ERROR.

There is one cxception to the actions described above. If a loss of carrier is detected while receiving, and
if the terminal is modem-connect, and if the terminal’s (station definition’) references a (mndem
deﬁnition) that contains the statement LOSSOFCARRIER=DISCONNECT, then an implicit disconnect
is donc, regardless of the action associated with LOSSOFCARRIER in the {error switch statement).

PARITY

The PARITY option variations cause actions as described if a parity bit error is detected by the adapter
cluster:

PARITY:NULL ' causes no action. Execution proceeds as if the error did
_ not occur. '
PARITY: {lubel) sets< TRUE the {bit rariable) PARITY, and branches control
to <fabel). '
PARITY:ABORT sets TRUE the {hir variable) PARITY , and executes a
TERMINATE ERROR. :
STOPBIT |

The STOPBIT option variations cause the described actions if a stop bit error is detected by the adapter
cluster: ‘

STOPBIT:NULL causes no action. Execution proceeds as if the error did

not occur. _ :
STOPBIT: (/abel> : setz TRU>E the (bit yarz'able} STOPBIT, and branches control
) : to (label). :
STOPBIT:ABORT sets TRUE the {bit variable) STOPBIT, and executesa -
TERMINATE ERROR.
TIMEOUT |

The TIMEOUT option variations cause the actions described if the time required to receive a character
exceeds the {rimeout time). The {timeout time) is defined in the (terminal timeout statement),
but can be overridden by including the ({timeout time)) or (NULL) syntax options in the {receive
statementy. . :

TIMEOUT:NULL - causes no action. Execution proceeds as if the error did
: not occur. _ _ —_—
TIMEOUT: {(ubel’) sets TRUE the {bit variabley TIMEOUT, and branches
control to { label). o
TIMEOUT: ABORT - sets TRUE the {hit variable) TIMEOUT, and executes a

TERMINATE ERROR. ‘

5—-14

()

De‘fin_itions
CONTROL _ ,
Error Switch Statem: -t — Continued

| Pragmatics

An (error switch statement) must be associated with a (receive statement) by means of a {switch number)
reference before any of the default actions will be invoked. The (error switch statement) can appear in a
(control deﬁnition) as many times as the programmer deems convenient providing the following '
restriction is observed: Within a given {control definition), {error switch statement)s must have a

unique {switch number), and all {error switch statement)s must precede all executable statements in the
procedure. : ‘ ' :

5-15

Definitions
CONTROL

Finish Statement

FINISH STATEMENT

Syntax

FINISH ——o TRANSMIT —

I—v (——————sNULL r—) 1
———(delay time ~

Examples

FINISH TRANSMIT.
FINISH TRANSMIT (NULL).
FINISH TRANSMIT (3 SEC).

Semantics

The purpose of the { finish statement} is to take a line out of the transmit ready state and prepare the line
to receive information. The adapter cluster delays a period of time long enough for the last character
TRANSMITted to be transmitted, plus 2 milliseconds, before the line is put in a receive ready state. Al-
though the { finish statement) puts the line in a reccive ready state, the cluster hardware invokes a delay
that inhibits any data from being received for 25 milliseconds. An INITIATE RECEIVE construct should
precede any subscequent (receive statement). to override the 25 miliisecond hardware delay.

The {delay time) option allows the programmer to specily a software delay of <timc> before execution
continues in the <mntr01 definition).

For example, the statement
FINISH TRANSMIT (3 SEC).
is equivalent to

FINISH TRANSMIT.
DELAY (3 SEC).

The FINISH TRANSMIT (NULL) construct is equivalent to FINISH TRANSMIT.

5-16

Definitions
CONTROL

i"~rk Statement

FORK STATEMENT
Syntax

FORK — a(label) L

Example
FORK 10.
Semantics

The {fork statement) is.allowed in only those {control definition)s and {request definition)s that are
written to communicate with full duplex terminal types. This statement can be executed in the

(cuntrol definiti(m} or (re'quext clej'inition) of the auxiliary line or the primary line. The execution of this
statement causes the co-line control, if not busy, to branch to and begin cxecuting code in the { control
u’eﬁnitian) that executes the FORK at the { lubel specified, whilc control on the FORKing line executes
an implicit PAUSE (i.c., a {pause statement)) and continues exccuting in parallel. The co-line is determined
busy or not busy by testing the BUSY bit (i.c., LINE(BUSY) or AUX(LINE(BUSY)), whichever is appro-
priate). If the co-line is busy, the {fork statement) acts as a no-op.

Pragmatics

Synchronization problems can occur between the primary and auxiliary lines as a result of the (fork
statement) executing the implicit PAUSE. The implicit PAUSE yiclds use of the DCP, to allow processing to
proceed on other lines. Thus, processing on the co-line is actually started before the FORKing line exits

the < fork statement}. As a result, the programmer must, by somc¢ means (e.g., by setting and testing line
TOGs), cffect the synchronization of the lines. This is especially critical if the code contains (wait
staternent s and (continue statement)s. The following example illustrates how full duplex lines could
“hang” as a result of poor synchronization.

FORK 10.
WAIT.

10: CONTINUE.
WAIT.

Assume that the primary line executes the FORK 10. At that point, the primary line temporarily yields
use of the DCP to other lines. The auxiliary line starts up and executes the CONTINUE. Since primary
control is still at the (fork statement) and is not in a {wait statement) , the auxiliary line CONTINUE acts
as a no-op. Next, the auxiliary line executes the WAIT. When the primary line is given use of the pro-
cessor again, it executes its WAIT. At this point, the primary and auxiliary lines are “hung,” each WAITing
for a CONTINUE from its co-line. ‘

Definitions \
CONTROL
Go To Statement

GO TO STATEMENT
Syntax

o]
LTO > <@

——e=(by te variable) L j ~gs- é 2 (label) —)

Examples
GO 10.
GO TO 10.

GO TO TOGS, (0, 1, 2, 3).
GO TO STATION (5,9, 12).

Semantics

The (go to statementy alters the path of control, that is, the sequential flow of statement execution, within
a (control definitiony.

GO TO (label)
This form of the (go to statement) unconditionally transfers control to the {lubel) specified.
GO TO (byte variable) . . .

This form of the (go to statement provides a convenient means of dynamically selecting one or more
(abelys to which control could branch. The {label) to branch to is sclected by using the (byvte variable)
as an index value. If N represents the number of (lu/w/)s in the (go ro statement), then the <Iabel>s are
numbered 0 to N-1. The </al)cl> corresponding to the index valuc is the (Iabcl) to which control
branches. If the index value is greater than N-1, then control continues at the statement following the
(&U to statement). :

Supplementary Example

GO TO STATION (5,9, 12).
% EXECUTION CONTINUES HERE IF STATION > 2.

5. TOG |0] = TRUE.
9: TOG [1] = TRUE.

12: TOG [2] = TRUE.

»-(label) T

C

AR ST I

| beﬁﬁitlons

r

TN TROL __
30 To Statemen: Tontinued '
>
This example illustrates the “GO TO {byte variable) . ..” option of the {go to statement). The value of -

STATION determines the next statement to be exccuted If the value of STATION is &, control branches
to the (Iabel) 5;if the value of STATION is 1, control branches to {label >9; and if the vaiue of STATION

is 2, gontrot branches to (label) 12. If the value of STATION is greater than 2, control continues at the
next sequential statement.

Definitions o __
_ CONTROL , ~"~~ '

Idle Statement

IDLE STATEMENT
Syntax

IDLE _ -

Semantics

The exccution of the (idle statement)y causes a logical line to be suspended in an idle state. Specifically,
IDLE causes the LINE(BUSY) {bit variable) to be set FALSE, the line to be suspended in a “sleeping” and
“ready” status, and all subsequent inbound data to be discarded.

Pragmatics

The (idle statement) suspends the execution of a {control definition) for a logical line. Normally, this
statement should be executed only when there are no outbound messages queued for any stations on the
line and none of the stations on the line are ENABLED for input (or possibly, if the programmer wants any
available inbound data discarded). Consider the following example of the contention-type (control
dc'finiti(m) taken from the Burroughs SYMBOL/SOURCENDL program.

CONTROL CONTENTION:

INITIATE REQUEST.
INITIATE ENABLEINPUT.
IDLE.

In this example, IDLE is executed only after it has been determined (by means of INITIATE REQUEST
and INITIATE ENABLEINPUT) that the station is not QUEUED and not ENABLED for input.

(€

Once i line is in an idle state, the line remains in an idle state until one of the following circumstances
OCCurs:

a. If the line TYPE is DIALIN and the line becomes connected (as a result of ANSWER = TRUE
in the {line definition) , a DIALOUT (TYPE = 98) DCWRITE from the MCS, or an ANSWER THE
PHONE (TYPE = 100) DCWRITE from the MCS), the (control deﬁnition) is initiated for the
line.

b. If any of the following station-oriented DCWRITEs are executed for any station assigned to the
line, then the (cuntrol a’eﬁnition> is initiated for the line.

ENABLE INPUT (TYPE = 35)

DISABLE INPUT (TYPE = 36)

SET CHARACTERS (TYPE = 39)

SET TRANSMISSION NUMBER (TYPE = 40)
SET/RESET LOGICALACK (TYPE = 43)
NULL STATION REQUEST (TYPE = 48)
SET/RESET SEQUENCE MODE (TYPE = 49)

¢. If a WRITE request or a READ request is found in the DCP’s Request Queue (placed there as a
result of the MCS executing a WRITE (TYPE = 33) DCWRITE or a READ-ONCE ONLY
(TYPE = 34) DCWRITE, or the 1/O intrinsics) for a station on the line, then the appropriate —
(request definition) is initiated for the line. </

N UL ARDN -

5--20

IF STATEMENT
Syntax

Definitions
CONTROL
If Statement

IF r=TRUL & THEN ~1 —TL e - J
I: NOT] Lo~ FALSE ——> ' L—(contml statement) ELSE —b(mm trol statement'y

Lo (hit variabic)-e

- (h 110 variahlS— - LSS - (byte variable) 7

o-(integer) s (o LEQ | [o-(integery ———af

Le- (single charactery-s= o= EQL - {single charactery—a)
Lo~ NEQ -o
- GEQ -
> GTR >

Examples
IF TRUE THEN.

IF TOG[0] THEN TOG[0] = FALSE.

IF TALLY[O] LSS TALLY[1] THEN TALLY[0] = TALLY[1].

IF CHARACTER = 4“FF” THEN
INITIATE BREAK.

ELSE
BEGIN : -
CHARACTER = 4“00.
GO TO 0. .

IF STATION(READY) THEN
IF STATION(QUEUED) THEN
LINE (TOG[0]) = TRUE.
ELSE
GO TO 10.

ELSE IDLE.

Semantics

The (if statement) causes a condition (i.e., a Boolean expressibn) to be evaluated. The subsequent path of

program control depends on whether the condition is evaluated as TRUE or FALSE.

If the condition is TRUE, the {control statement} following the THEN, if present, is executed. Program

control then resumes at a statement that follows the (if statement).

If the condition is FALSE, the {control statement) following the ELSE is executed or, if the ELSE
(rontrol statement> is omitted, program control resumes at the (control statement) following the

<1f statemem).

5-21

i -

Definitions
CONTROL
If Statement — Continued

- The {control stateinent) can be any legal {control statement). including the (if statement) and

{compound statement) . The meanings of the relational operators are contained in table 5-1. The follow-

ing diagrams illustrate the {if statement) semantics.

TRUE
IF {condition } THEN (control statement) { control statement)
FALSE
TRUE
IF {condition } THEN (control statement) ELSE (control statement) (control statement)
FALSE |
Table 5-1. Relational Operators |
RELATIONAL OPERATOR : MEANING | SYNONYMS
LSS - + Less than <and LS
LEQ ' ' ~ Less than or equal to LE
EQL ' Equal to = and EQ
NEQ Not equal to NE
GEQ | Greater than or equal to GE
GTR : Greater than >at1d GT

5-22

(.

(&

Deﬁnitioris
CONTROL

Incresnent Statement

INCREMENT STATEMENT
Syntax '

INCREMENT —— SEQUENCE L

o]

[' — »NULL
: l—»SEQERR--—DI'-—T -_——-b-(label)——j

Examples

INCREMENT SEQUENCE.

INCREMENT SEQUENCE [SEQERR: NULL].
INCREMENT SEQUENCE [NULL].
INCREMENT SEQUENCE [999].

Semantics

The (mcrementStatement) causes the sequence number stored in the DCP Station Table to be increased by
the value of the increment (also stored in the DCP Station Table), rov1dmg that the station is in sequence
mode; otherwise, this statement is a nosop.

When using the INCREMENT SEQUENCE construct, provision should be made for taking action if the
increment caused the sequence number to exceed (oyerflow) the size of the sequence number field. The
programmer can take such action by including the optional syntax. Failure to include overflow action
results in an implicit TERMINATE ERROR if an over{low occurs.

The SEQERR:NULL and NULL options are semantically equivalent. These options set the SEQERR
(bit var:able) TRUE, and control continues at the next ysquential mstruction.

The SEQERR: {/abel) and (label) options are semantically equivalent. They cause the SEQERR (bit
variable) to be set TRUE, and control to branch to (label).

Regardless of whether error action is specified or not, an ovyrflow of the sequence number field destroyé
the contents of that field.

Pragmatics
SEQUENCE MODE

A station is considered to be in sequence mode whenever its SENUENCE (bit variable) toggle is TRUE.
SEQUENCE can be set TRUE only as a result of the controlling \ICS executing the SET/RESET
SEQUENCE MODE (TYPE = 49) DCWRITE. In addition, the T \PE 49 DCWRITE also stores the starting
sequence number and increment in the appropriate fields of the LCP Station Table.

Sequence mode can be used for any application that the NDL prog\mmer may see fit. Its use, however,
requires common conventions between the NDL programmer and t1\: MCS programmer. Burroughs has
utilized sequence mode constructs in two (request defi mtton)s of S\MBOL/SOURCENDL:
READTELETYPE and WRITETELETYPE. Both require the coopera\on of SYSTEM/CANDE to effect
the execution of those statements. The reader is referred to those (req est defi mtzon) s as an example of a
particular application that Burroughs has implemented. Other statemen) relative to sequence mode are the
(transmit statement) (TRANSMIT SEQUENCE construct) and the (stor statement) (STORE SEQUENCE
construct).

5-23

Definitions
CONTROL

Initialize Statement

INITIALIZE STATEMENT
Syntax
INITIALIZE & BCC

L = CRC

|

————— RETRY

Examples

INITIALIZE BCC.
INITIALIZE CRC.
INITIALIZE RETRY.

Semantics

INITIALIZE BCC

The INITIALIZE BCC construct causes the (byte variable) BCC to be initialized for purposes of
accumulating a Block Check Character. The value to which BCC is initialized is dependent upon the
horizontal parity defined for the station’s associated (terminal definition)y (in the (terminal parity
statement)). If horizontal parity is defined as HORIZONTAL:0ODD, then BCC is initialized to all ones
(i.c., 4“FF”). If defined as HORIZONTAL:EVEN, then INITIALIZE BCC initializes BCC to all zeroes
(i.c., 4007).

INITIALIZE CRC

The INITIALIZE CRC construct initializes CRC to the initial value required for calculating the

Cyclic Redundancy Check. Any (terminal definitiony referencing a (control definitiony (in the (terminal
control statement)) that contains this instruction must define the horizontal parity (in the (terminal parity
slatement>) as HORIZONTAL:CRC(16); otherwise a syntax error is generated.

INITIALIZE RETRY

The INEITIALEZE RETRY construct causes the value stored in DCP INITIAL RETRY to be stored in DCP
RETRY. ‘

5-24

((

Deﬁnitions
CONTROL

Initiaic Statement

INITIATE STATEMENT
Syntax
[NITIATE—— = RECEIVE - f —
= TRANSMIT L«—»(——+NULL =)
= REQUEST L& (delay time)——j
= ENABLEINPUT
= BREAK
i \
Examples | {
\
INITIATE RECEIVE, |)
INITIATE TRANSMIT (3 SEC). }
INITIATE REQUEST (NULL).
INITIATE ENABLEINPUT/
INITIATE BREAK. P
; 4
Semantics / / i
)|
INITIATE RECEIVE L /1 g

I
)
The INITIATE RECEIVE const, u':t causes t') ¢ adapter cluster to initiate a receive delay calculated f or the
station. After the delay, the ha Iware is rea/ y to receive information.

I

The amount of time delayed, i/ ferred /Sto as the Initiate Receive delay, is unique to each station and is cal-
culated at compile-time for ¢/ statipn. The algorithm that the compiler uses to calculate the Initiate
Receive delay is described i the folliwing three paragraphs.

a. If the (modem /?finition 1 ferenced i in the {statton definition) (in the (station modem statement}
defines the my.em NOISEDELAY as being greater than zero, then the Initiate Receive delay is
2 millisecong’ less than the combined (time)s defined in the (modem nozsedelay statement) and
the (modey transmitdelay statement).

b. If the m/iem NOISEDELAY is defined as zero and the modem TRANSMIT DELAY is defined as
being l¢’s than 7 milliseconds, then the In1t1ate Receive delay is zero.

: .nodem NOISEDELAY is defined as zero and the modem TRANSMITDELAY is defined as
equal to or greater than 7 milliseconds, then the Initiate Receive delay is the lesser of
1< 7.illiseconds or (1.5 milliseconds + modem TRANSMITDELAY)

/_ option or the (delay time) option can be used to ovemde the calculated Initiate Receive delay.
#1mediately readies the hardware so that it can receive information. (delay tzme) specifies a (tzme}
ed in place of the Initiate Receive delay. :

\ , : 5-25

Definitions
CONTROL

Initiate Statement — Continued

Pragmatics

An INITIATE RECEIVE instruction should precede the first {receive statement) following a transmission.
If it does not, there is a possibility that exccution of the (receive statement} will be delayed for a period
of time of up to 25 milliscconds. The cause of the 25-millisccond delay is described under the semantics
of the {finish statement) . :

INITIATE TRANSMIT

The INITIATE TRANSMIT construct causes the Adapter Cluster to be put in a transmit state after a cal-
culated delay. The amount of time delayed is referred to as the Initiate Transmit Delay, and is unique to
each station. It is derived by taking the greater of the NOISEDELAY <time} specified for the modem con-
figured at the system end, or the TURNARCUND <time> specified by the station’s associated (terminal
deﬁnition) . This construct must be executed prior tc any attempt to transmit information.

The NULL option or the (delay time } option can be used to override the calculated Initiate Transmit
delay. NULL causes the adapter cluster to be put in a transmit state immediately. { delay time} specifies
a (time) to be used in place of the Initiate Transmit delay.

INITIATE REQUEST

The INITIATE REQUEST construct conditionally initiates the next function as indicated by the message

at the head of the Station Queue. The initiation of the function is conditional, subject to the following:
the station must be valid, ready, and queued. Specifically, STATION(VALID), STATION(READY), and
STATION(QUEUED) must be TRUE; otherwise, the instruction acts as a no-op.

The specific function invoked by this construct is dependent upon the type of message at the head of the
Station Queuc. Most commonly the message is a WRITE (TYPE=33) DCWRITE, thus causing the Transmit
Request for the station to be entered. A READ-ONCE ONLY (TYPE=34) DCWRITE message at the head
of the Station Queue would cause control to enter the Receive Request for the station. Other messages
(unrelated to input or output) invoke their specific function and then transfer control to the beginning of
the <control deﬁnition}. For example, a SET SEQUENCE MODE (TYPE=49) DCWRITE message wouid
cause control to enter the subroutine of the DCP that handles setting sequence mode and, when finished,
control would be transferred to the beginning of the (control definition). '

The (delay time) option allows the programmer to specify that an implicit {delay statement) for the

(time) specified, be executed before initiation of the next function from the Station Queue. For example,

the statement
INITIATE REQUEST (3 SEC).
is equivalent to
IF STATION(VALID) THEN
IF STATION(READY) THEN
IF STATION(QUEUED) THEN
BEGIN
DELAY(3 SEC).
INITIATE REQUEST.
END.

The INITIATE REQUEST (NULL) construct is equivalent to INITIATE REQUEST.
5-26

(¢

(C

Definitions
CONTROL
Initiate Statement Continued

INITIATE ENABLEINPUT

The INITIATE ENABLEINPUT construct conditionally transfers control to the receive request app.r()priatc
for the station (that is, the station referenced by the by e variable) named STATION). The transfer of
control is conditional, subject to the following: the station must be valid, ready, and enabled for input.
More specifically, STATION(VALID), STATION(READY), AND STATION(ENABLED), must be TRUE:

otherwise, the instruction acts as a no-op.

The NDL programmer can initially enable a station for input by means of the (station enableinput
statement). Additionally, after DCP initialization, the station’s MCS can enable or disable the station for
input by means of the TYPES 35 and 36 DCWRITE:s.

(NULL) and ({delay time)) allow the programmer to specify that an implicit {delay statemer_tt), for time
specified, be executed before the transfer of control. (delay time) has the syntactic form of time}. For
example, the statement

INITIATE ENABLEINPUT (3 SEC).
is equivalent to: .
IF STATION(VALID) THEN
IF STATION(READY) - THEN
IF STATION(ENABLED) THEN |

BEGIN

DELAY (3 SEC). :
INITIATE ENABLEINPUT.
END. ‘

The (NULL) option speciﬁes zero delay.
INITIATE BREAK

The INITIATE BREAK construct causes binary zeroes to be transmitted on the line, thus changing the
state of the line to a ‘“‘spacing” condition. The line remains in the spacing condition until some subsequent
construct causes the adapter cluster to change the state of the line. Constructs that would change the
line’s state are INITIATE TRANSMIT, INITIATE RECEIVE, FINISH TRANSMIT, BREAK, and IDLE.

5-27

Definitions
CONTROL
Pause Statement

PAUSE STATEMENT
Syntax

Semantics

The {pause statement) suspends a (control defi mtwn) in a “sleep” state for a minimum period of time
(200 microseconds for the B 6358 Model II DCP, and 6 microseconds for the B 6350 Model I DCP) to allow
the DCP to service other lines. It is recommended that a (pause statement) be used in any kind of loop
that would tie up processor time and thereby prevent the servicing of other lines. The failure to do so
results in a high number of timeout faults. , :

Pragmatics

Instances may occur in which the DCP requires an even greater period of “sleep” to service other lines.
Repeated timeout faults, despite utilization of the (pause statement) are indications of such conditions.
A greater period of “sleep” time can be effected by means of a (delay statement) with the (tlme) speci-
fied greater than “sleep” time effected by the (pause statement)

5-28

s

Deﬁnitions_
CONTROL

Receive Statement

RECEIVE STATEMENT
Syntax

RECEIVE
L(NULL ———)'-j

1: H= ADDRISS
“tmieont fimeN-3 4 l~5(o= RECEIVE

[i
Lo TRANSMIT-

pag B

? [»[&JPEISRROR o |- /swrtch numbery ->|-— :

Aawitéh nmumber’ - —.-—

e BCC e

H=ADDERR

3

= CHARACTER — e~ BCCERR ~——» /ia/u />

- CRC - > BREAK ——————t>] NULL

- TRAN & = BUFOVFL ——— ABORT:

Le- {string)) & - |& CONTINUE ——
> CONTROL~————~
o~ CRCERR ————
Lo~ END ——————— &>
e~ FORMATERR ——+~
e I,OSSOFCARRIERF—
L& PARITY ——————
& STOPBIT ———~
L~ TIMEQUT —————>
> TRANERR — ——
o WRU o o

Lom (single charactery .. o

Examples
RECEIVE.
RECEIVE CHARACTER.
RECEIVE (3 SEC) ADDRESS (RECEIVE) [0, ADDERR:10].
RECEIVE (NULL) ['

PARITY:999,
LOSS OF CARRIER:999,
END,

 WRU:NULL

1. | |
RECEIVE CRC [ERROR [1], CRCERR:10]. -

Definitions
CONTROL

Receive Statement - Continued

Semantics

The (receivc statemcnt} causces the adapter cluster to attempt to reccive information from the apgropriate
logical line.

The following two syntax items define a maximum amount of time that the adapter cluster should wait for
receipt of the first character, and then cach subsequent character, if applicable, before assuming that the
terminal has “timed out.” If neither of these options is included, the (timeout timey defined (in the
(terminal timeout statement)) for the station’s <terminal deﬁnition) is implicitly used as the (timeout
timéy in this statement.

(NULL)
This option specifies that the adapter cluster should wait an infinite amount of time.
({timeout time))

The (timeout timey defines a (timé) that the adapter cluster should wait for a character. If this (fime) is .
exceeded before receipt of a character, and the TIMEQUT syntax appears, then the action specified for
TIMEOUT is taken (refer to TIMEOUT). If the (timeout time) is exceeded and TIMEOUT syntax does not
appear, an implicit TERMINATE ERROR is executed. '

The following syntax options define the nature of the information to be received, the amount of informa-
tion to be received, and how the information is to be handled. If these options are omitted, it is semanti-
cally equivalent to specifying CHARACTER (i.e., “RECEIVE.” is semantically equivalent to “RECEIVE

CHARACTER.”) N '

ADDRESS

The proper number of address characters (as defined by the station’s (terminal definition) in the (terminal
address size statement)) are received and checked for agreement against the actual address characters
defined in the (Station address statement). 1f the address characters do not correspond, an address error
condition results . If the ADDERR syntax appears then the specified action is taken; otherwise, an implicit
TERMINATE ERROR is executed. (Refer to the ADDERR semantics.)

ADDRESS (RECEIVE)

This option is equivalent to ADDRESS, except that ADDRESS (RECEIVE) must be used when an address
pair is defined in the {station address statement) and the programmer needs to check for the proper
receive address. : : S

ADDRESS (TRANSMIT)

This option is equivalent to ADDRESS, excebt that ADDRESS (TRANSMIT) must be used when an address
pair is defined in the (station address statement) and the programmer needs to check for the proper
transmit address. ' : ’

BCC

One character is received and checked against the {byte variabley BCC. If the character received and BCC
are not cqual, a Block Check Character error condition results. If the BCCERR syntax appears, then speci-
fied action is taken; otherwise an implicit TERMINATE ERROR is executed.

Presumably, if the RECEIVE BCC instruction appears, the programmer has defined horizontal parity in the
{terminal parity statement} , and the accumulated Block Check Character is contained in BCC.

5-30 _ | S

(O

(()

Definitions
CONTROL

Receive Statement — Continued

CHARACTER
One character is received and stored in CHARACTER.
CRC

Two characters are received. The first character is checked against CRC[0], and the second compared
against CRC[1]. If the characters received and CRC are not equal, a Cyclic Redundancy Check error
condition results. If the CRCERR syntax appears, then specified action is taken; otherwise an implicit
TERMINATE ERROR is executed. S o

Presumably, if the RECEIVE CRC construct appears, the programmer. has defined horizontal parity -
HORIZONTAL:CRC(16) in the (terminal parity statement) , and the Cyclic Redundancy Check is contained
in CRC[0] and CRC|[1]. : ' , .

TRAN

The proper number of transmission number characters (as defined by the station’s associated {terminal
deﬁnition) in the {terminal transmission number length statement)) are received and checked for agree-
ment with the Receive Transmission Number maintained in the DCP Station Table. If the characters
received and the Receive Transmission Number are not equal, a transmission number error results. If the
TRANERR syntax option appears, then specified action is taken; otherwise, an implicit TERMINATE
ERROR is executed. : ' ’ ‘

(string)

The number of characters as indicated by the length of the (string) are received and checked against those
characters in the (string). If the (string) and the characters received are not equal, then a format error
condition results. If the FORMATERR syntax option appears, then that action is taken; otherwise an im-
plicit TERMINATE ERROR is executed. : ‘

The following syntax options specify actions to be taken upon either the receipt of déﬁnéd characters or
occurrences of specific error conditions: S -
ERROR[{switch number)|

-Associates a previously defined Error Switch with the (réceive state’men’t}. This allows the programmer to
associate a set of previously defined error actions with the (reéeive s’tatem'ent.} , thus reducing the amount
of coding required for each (receive statemen t).' BREAK, BUFOVFL, LOSSOFCARRIER, PARITY,
STOPBIT, and TIMEOUT syntax options are not allowed if the ERROR[{switch number) | syntax appears -
in the (receive statement). Refer to the {error switch statement) for more information. -

{switch number)

Semantically equivalent to ERROR[(switch. numbér) 1.

5-31

Definitions
CONTROL
Receive Statement — Continued

" ADDERR

The ADDERR option variations cause the following actions it an address error is detected when attempting

to receive the address characters of a terminal:

ADDERR scts TRUE the ADDERR (bit variabley and branches control to the next
sequential statement.

ADDERR:NULL causes no action. Execution proceeds as if the error condition did not
occur.
ADDERR: {label) - sets TRUE the ADDERR (pit variablé) and branches control to (label}
ADDERR:ABORT Not allowed.
BCCERR ‘

The BCCERR option variations cause the following actions if the character received is not equal to the
data stored in BCC.

BCCERR sets TRUE the (bit varzable) BCCERR and branches control to the next
scquential statement.

BCCERR:NULL * causes no action. Execution proceeds as if the error condition did not
occur.
BCCERR: {label) sets TRUE the (bit yariab‘le} BCCERR and branches control to ({label).
BCCERR:ABORT Not allowed.
BREAK

The BREAK option variations cause the following actions if a break, that is, at least two character-times
of a spacing line condition, is detected by the adapter cluster while receiving:

BREAK scts TRUE the <b1t varwblc) BREAK[RECEIVE] and brancheq control
to the next sequential statum,nt .
BREAK:NULL causes no action. Execution proceeds as if the break did not occur.
BREAK: (label) sets TRUE the (bit varmble) BREAK [RECEIVE] and branches control
_ to <label>
BREAK:ABORT sets TRUE the (bit varzable) BREAK[RECEIVE], and executes an

implicit TERMINATE ERROR.

5-32

()

' l)cﬁnitioﬁs
CONTROL

Receive Statemen: - Continued

BUFOVFL

The BUFOVFL option variations cause the following actions if the DCP is unable to service a Cluster
Attention Needed (CAN) interrupt before the adapter cluster receives another character (thus destroy-
ing the previous character):

BUFOVFL , sets TRUE the {bit variabley BUFOVFL, and branches control to the next
“sequential statement.

BUFOVFL:NULL . . causes no action. Executlon proceeds as if the etror condition did not |

occur.
BUFOVFL:(IabeI) . sets TRUE the {bit variable) BUFOVFL, and branches control to
" (label)-
BUFOVFL:ABORT sets TRUE the (htt variable) BUFOVFL, and executes an 1mphcxt
TERMINATE ERROR." '
CONTINUE

This option is allowed only in receive statement)s of (control defi nition) s and <request defi mtzon) s
that are written to communicate with full duplex terminal types. CONTINUE syntax causes action as
described below if the co-line executes a (contmue statement) before all mformatlon specxfled by the
(receive statemen £ is recelved : ,

CONTINUE branches control to the next secjuentia] statement.

CONTINUE:NULL causes no action. Execution proceeds as if the (continue statemenr) had
' not been executed.
CONTINUE: (label) branches control to\,(label)t.
CONTINUE:ABORT - Not allowed. |
CONTROL e

The CONTROL option variations cause the following act’ons if the control character of the station (as

defined in the. (statmn control character. 9tatement>) is repeived:
CONTROL sets TRUE the (bit varial\ley CONTROLF LAG and branches control
: to the next sequential statyment.

CONTROL:NULL - sets TRUE the <blt variablé, CONTROLFLAG, and execution continues
©asif the character was not t\e station’s control character.
CONTROL: (label) Zets TRUE the <blt vartable) CONTROLFLAG and branches control to
label). .

CONTROL:ABORT " Not allowed.

©5-33

Definitions
CONTROL

Receive Statement — Continued

CRCERR

The following C“RCERR option variations cause the following actions if the first character received docs
not equal CRC[0], or the second character received does not equal CRC[1]. (This item is-appropriate
only for the RECEIVE CRC form of the (receive staloment)' refer to the CRC option.)

CRCERR sets TRUE the {bit variable) CRCERR and branches control to the next
scquential statement.

CRCERR:NULL causes no action. Execution proce"e‘ds as if the error did not occur.
CRCERR:(label) sets TRUE the <blt varzable) CRCERR, and branches control to (label).
CRCERR:ABORT Not allowed ST '

END - o -

The END option varratlons cause the following actions if the "nd” character of the station (as deﬁned”

by the (terminal end character statement) in the (termmal definition) associated with the statron)
is received: . :

END . ~ causes control to branch to the next sequermal statement

END:NULL causes no action. Executnon proceeds as xf the character was’ not the
' ‘ “cnd” character. - , ~ :
END:{label) branches control to (label).
. END:ABORT - Not allowed. '
FORMATERR

The following variations of the FORMATERR optron cause the followmg actions 1f the characters received
are not equal to those in the (strmg) (this item is appropriate only for the RECEIVE (string) construct of
the (receive statement)): _

FORMATERR - : sets TRUE the (bit varzable) FORMATERR and
- ’ S branches control to the next sequential statement

FORMATERR:NULL .') . causes no action. Execution proceeds as 1f_ the
v : " error did not oCcur.

'FORMATERR: (label) =~ = " sets TRUE the {bit variable) FORMATERR, and
' ' o - - branches control to (label). :

FORMATERR:ABORT ~ =~ notallowed.

5-34

Definitions
CONTROL

" Receive Statement — Continued

.
N
LOSSOFCARRIER »
The LOSSOFCARRIER option variations cause the following actions if a loss of carrier is detected while
receiving.
LOSSOFCARRIER sets TRUE the (bit variable) LOSSOFCARRIER and branches

control to the next sequential statement.

LOSSOFCARRIER:NULL - causes no action. Execution proceeds as if the error did not
occur. . v

LOSSOFCARRIER:label) = sets TRUE the {bit variable) LOSSOFCARRIER and branches
- control to {lubel).

LOSSOFCARRIER:ABORT sets TRUE the {bit variable LOSSOFCARRIER and executes
an implicit TERMINATE ERROR.

There is one exception to the actions described above. If a loss of carrier is detected while receiving,
and if the terminal is modem-connect, and if the terminal’s (station definition) references a {(modem
defi nmon} that contains the statement LOSSOFCARRIER=DISCONNECT, then an implicit dis-
connect is done, regardless of the action specified.

PARITY

The PARITY option variations cause the following actions if a parity bit error is detected by the adapter

o/ cluster:

|
PARITY : sets: TRUE the (bit varzable) PARITY and branches control to the
next sequential statement. o
PARITY:NULL causes no action. Execution proceeds as if the error did not occur.
PARITY: (label) sets TRUE the (bit variable) PARITY, and branches control to
o label). |
PARITY:ABORT -sets TRUE the (bif varzable) PARITY, and executes a
TERMINATE ERROR. ,
STOPBIT _
Tl'he STOPBIT option variations cause the descnbed actlons if a stop blt error is detected by the adapter
cluster: _ ,
STOPBIT sets TRUE the (bit variable) , and branches control to the next
sequential statement. _
STOPBIT:NULL causes no action. Execution proceeds as if the error did not occur.
STOPBIT: {{abel) - sets TRUE the bit varzable} STOPBIT, and branches control to
 (label).
‘STOPBIT:ABORT - sets TRUE the (bif variable) STOPBIT, and executes a -
TERMINATE ERROR.
-

5-35

Definitions

CONTROL

Receive Statement - Continued

TIMEOUT

The TIMEOUT option variations cause the actions described if the time required to receive a character
exceeds the (timeout time). The (timeout time) is defined in the {terminal timeout statement) , but
can be overridden by including the ({timeout time)) or (NULL) syntax options in the (receive
statement) . '

TIMEOUT sets the (bit vqriahle} TIMEOUT, and branches control to the
next sequential statement.

TIMECUT:NULL causes no action. Execcution prqcceds as if the error did not occur. -
TIMEOUT: (label) sets TRUE the (bit variable) TIMEOUT, and branches control to
(label). ‘
TIMEOUT: ABORT sets TRUE the (bit variable) TIMEOUT, and executes a
TERMINATE ERROR. '
TRANERR o

The TRANERR option variations cause the described actions if the characters received and the
Receive Transmission Number stored in the Station Table are not equal (this item is allowed only in
the RECEIVE TRAN construct of the (receive statement)): :

TRANERR sets TRUE the { bit variabley TRANERR, and branches control
to the next sequential statement.

TRANERR:NULL causes no action. Execution proceeds as if the error did not occur.

TRANERR: (label) sets TRUE the (bit variabley TRANERR, and branches control to
(lubel). .
TRANERR:ABORT not allowed.
WRU ’ '

The WRU option causcs the following actions if the WRU character of the station is received (the
{station WRU character statemenr) defines the WRU character):

WRU scts TRUE the WRU (bit variable), and branches control to the -
next sequential statement.
WRU:NULL sets TRUE the WRU (bit variable), and execution proceeds as if
: the character received was not the WRU character.
WRU: {label) 2ets Tl;UE‘the {bit variable) WRU, and branches control to -
label). ' :

WRU:ABORT not allowed.

5-36

()

\"singlc character)

Definitions
CONTROL
Receive Statement -- Continued

The <..\‘ing1v charactery syntax causes the following actions if a character reccived is equal to the (single

character) :
{single character)
{single character) :NULL

branches control to the next sequential statement.

causes no action. Execution proceeds as if the character received

was not equal to the (single character).

(single character) - (label)

{single character) :ABORT not allowed.

branches control to (labely.

The allowable combinations of the (receive statement) syntax options are defined in table 5-2. The (NULL)
and ((timeout. time)) options are allowed in any form of the (receive statement). Allowed combinaticns
of the other syntax options are denoted by a “X” in the appropriate columns and rows.

Supplementary Examples
Statement
RECEIVE (3 SEC) [TIMEOUT:10].

RECEIVE ADDRESS [ADDERR:99].

RECEIVE CHARACTER [CONTINUE: 10,
CONTROL:20,
TIMEOUT:30,
“¥7:40].

Explanation

Causes the adapter cluster to attempt to receive a -
character. If the character is not received within
3 seconds, the (bit variable) TIMEOUT is sct
TRUE and control branches to 10.

If the character(s) reccived do not equal those
defined in the (station address statemnent), the
{bit variable) ADDERR is sct TRUE, and control
branches to 99.

This statement would only be allowed in a
{control definition) or {request definitiony that is
written to communicate with full duplex terminal
types because it contains the CONTINUE option.

CONTINUE: 10 would cause a branch to 10 if the
co-line {control definition)) executes a {continue
statement) before a character is received. :

CONTROL:20 would set CONTROLFLAG TRUE
and branch to 20 if the character received is the
station’s control character.

. TIMEOUT: 30 would set TIMEOUT TRUE and

branch to 30 if a character is not received within
the (timeout time) defined in the {terminal
timeout statement).

“x».40 would cause a branch to 40 if the character

"~ received is the asterisk character.

5-37

Definitions
CONTROL

Receive Statement — Continued

Statement

RECEIVE[ERROR[0] | .

Explandtion

An attempt is made to receive one character and
store it in CHARACTER. If any errors described
in the associated (error switch statement) occur
while receiving, then the action defined in that
(error switch statement) is taken.

RECEIVE] 0] ~ Same as above.
Table 5--2. Allowable Combinations for (receive statement)
. 'é S
v K 3
- B2 & = S §
2 ¢ , E 2 S 2 % E - & 2 & 5
H % ¥ 38 E B M = 25 &8 2 5 %
S8EEzzggoff25:2z2:
< @4 @ A4 O O O W I ORI
ADDRESS X X X X X X X X
ADDRESS(RECEIVE) X X X X X X X X
ADDRESS(TRANSMIT) | X X X X X X X X
BCC X X X X X X X X
CHARACTER X X X X X X X X X X X
CRC X X X X X X X X
(string) X X X X X X X X
TRAN X X X X X X X X

5-38

(¢

-Definitions

CONTROL
Shift Statement
SHIFT STATEMENT
Syntax
- —=DOWN
Semantics

The (shift statement) is to be used in a (control definitiony that communicates with stations using the
Baudot (5-bit) character code set. (The character code set is defined in the {terminal code statement) of
the associated (terminal deﬁnition)). :

SHIFT UP indicates that received characters are to be translated to their respective uppercase graphics
(usually referred to as FIGS).

SHIFT DOWN indicates that rcceive characters are to be translated to their respective lowercase graphics
(usually referred to as LTRS).

If the station does not use Baudot code, the (shift statement) acts as a no-op.
Pragmatics '

In the Baudot character code set, most bit patterns have two graphic representations: one is referred to as
FIGS (the uppercase graphic), and the other as LTRS (the lowercase graphic).

When transmitting to a terminal that uses Baudot code, the terminal prints LTRS until it receives a specially
designated character indicating that it should shift to printing FIGS. The terminal continues printing the
FIGS until it receives a specially designated character indicating that it should resume printing the LTRS.

When the information is received frorh a terminal that uses Baudot, the same'conifen'tions hold true; that is,
the terminal communicates whether FIGS or LTRS follow by the transmission of a designated character.
The terminal initially transmits LTRS.

5-39

Deﬁnitions
CONTROL

Sum Statement

(C

SUM STATEMENT
Syntax ,
SUM I >
= Al : :]
-———> BCC : o
——a= CHARACTER : A
——& RETRY . >
——— TALLY [e(tally number) & -
L (single character) : >
Examples
SUM AL
SUM CHARACTER.
SUM “A”,
SUM TALLY [1].
Semantics | ' , ' ' o’
The purpose of the (sum statement) is to affect the calculation of the horizontal parity check (whether that s
be a Block Check Character or a Cyclic Redundancy Check). The specific effect cf the (sum statement) is .
dependent upon two factors: the SUMmed item, and whether the station’s {terminal definitiony for which
{ontrol definitiony is running, defines horizontal parity as CRC(16).
Following is a description of the effect that cach form of the {sum statement) has on the calculation of the
horizontal parity check. Any reference to CRC means CRC[0] and CRC[1] collectively.
SUM
Semantically cquivalent to SUM CHARACTER.
SUM Al
If the horizontal parity check is a Block Check Character or is undefined, the contents of Al are exclusively
OR-ed with the contents of BCC, and the result is stored in BCC.
If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
computed with the contents of Al and CRC, and the result is stored in CRC.
SUM BCC ‘
If the horizontal parity check is a Block Check Character or is undefined, then the contents of BCC are
exclusively OR-ed with itself, and the result is stored in BCC. (The result in BCC would be zero in this
case.)
If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is -
computed with the contents of CRC{0] and CRC, and the result is stored in CRC. N/

5-40

: Deﬁmtlons
CONTROL .
Sum Statement — Continued

SUM CHARACTER

If the horizontal parity check is a Block Check Character or is undefined, the contents of CHARACTER are
exclusively OR-ed with the contents of BCC, and the result is stored in BCC. .

If the horizontal parity check is a Cyclic Redundancy Check, the Cychc Redundancy Check algorlthm is
computed with the contents of CHARACTER and CRC, and the result is stored in CRC.

SUM RETRY

If the horizontal parity check is a Block Check Character or is undefined, the contents of RETRY are exclu-
sively OR-ed with the contents of BCC, and the result stored in BCC.

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
computed with the contents of RETRY and CRC, and the result is stored in CRC. ,

SUM TALLY [{tally number)]

If the horizontal parity check is a Block Check Character or is undefined, the contents of TALLY [(rally
number)] are exclusnvely OR-ed with the contents of BCC, and the result is stored in BCC.

If the horizontal parity check is a Cyclic Redundancy Check, the (‘ychc Redundancy Check a!gonthm is
computed with the contents of TALLY | (mlly number)| and the result is stored in CRC.

SUM (single character)

If the horizontal parity check is a Block Check Character or is undeﬁned the (smgle character) is exclu-
sively OR-cd with the contents of BCC and the result is stored in BCC. .

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check, the Cyclic
Redundancy Check algorithm is computed with the (single character) and CRC and the result is stored in
CRC.

541

Definitions -
- CONTROL
Transmit Statement

TRANSMIT STATEMENT
Syntax |
TRANSMIT S— I T » , .y
> ADDRESS N I—c—[_—-bBREAK . .,]j |
L(RECEIVE—)—? , L: {label)
| [:fRANSMII | |]:NULL'
L BCC ' : —
Lo~ CHARACTER]
e CRC o
- SEQUENCE -
-~ TRAN —
Lw-(String) —
Examples _
TRANSMIT, | |

TRANSMIT CHARACTER |BREAK:NULL}. -
TRANSMIT SOH STX 4“00”|BREAK:10].
TRANSMIT TRAN. , ,
TRANSMIT ADDRESS (TRANSMIT) |[BREAK].

Semantics

The (transmit statemenl) causes the adapter cluster to transmit information to a terminal. The following
group of syntax options specifies the information to be transmitted. All options except CHARACTER
use the (byte variable> CHARACTER as a temporary storage area; thus, any information contained in

CHARACTER before execution of the (transmit statement) shall be destroyed by the (tra‘nsmit statement);

If none of the first group of options is chosen, it is semantically equivalent to specifying CHARACTER
(i.e., “TRANSMIT.” is equivalent to “TRANSMIT CHARACTER.”).

ADDRESS

The proper number of characters (as §peciﬁed by the station’s associated (terminal definition) in the
(terminal address size stqtement)) are taken from the address field in the Station Table and transmitted.

. ADDRESS (RECEIVE)

This option is equivalent to ADDRESS, except that ADDRESS (RECEIVE) must be used when an
address pair is defined in the (station address statement) and the programmer wants to transmit the
receive address. : - :

5-42

(G

()

sDefinitions .
CONTROL
Transmit Statement — Continued

ADDRESS (TRANSMIT)

This OPtIOI'l is equnvalent to ADDRESS, except that ADDRESS (TRANSMIT). must be used when an
address pair is defined in the (station address statement) and the programmer wants the transmit address
transmitted. .

'BCC |
The BCC option causes the contents of the {byte variable) BCC to be transmitted.
CHARACTER |

The CHARACTER causes the contents of the ¢ b_?tc variable) CHARACT ER to be transmitted.
CRC '

This option causes two bytes to be transmitted; the contents of CRC [0] are transmltted flrst followed
by CRC [1]. If the station’s associated (terminal defi mtton) does not define horizontal parity as
CRC ([16]), the use of this {option) causes a syntax error to be generated at compile time.

SEQUENCE

The SEQUENCE option causes the character representation of the value stored in the Sequence field
of the Station Table to be transmitted if the station is in sequence mode (Gi.e., this (btt varzable} SEQUENCE
is TRUE); otherwise, the (transmzt statement} isa no-op

TRAN

The proper number of transmission number characters (as defined by the station’s associated {rerminal
definition) in the (terminal transmission number length statement)) are cxtrautccl from the Transmit
Transmission Number field in the Station Table and then transmitted.

(szrmr:)
Each character of the (.s'tring) is transmitted.

The BREAK syntax allows the programmer to specify action if a *“‘break™ is received from the terminal
while the adapter cluster is still transmitting. If this option is omitted and a break occurs, an implicit
TERMINATE ERROR is executed. The following describes the actions of the three syntactical forms:

BREAK sets TRUE the (btt variable) BREAK [TRANSMIT] and causes.
: a branch of control to the next statement.
BREAK: {{abel) sets TRUE the (bit variable) BREAK [TRANSM]T] and causes

a branch of control to {label).

BREAK:NULL‘ ~ causes no action. Execution proceeds as if the break did not occur.

543

Definitions
CONTROL
Wait Statement

WAIT STATEMENT
Syntax

WAIT j
- (——= (it time) ')

- - (lahel >-——~——j

Examples

WAIT.
WAIT (3 SEC).
WAIT (5 MILLL:6).

Semantics

The (wait statement) is only allowed in { control definition)s that are written to communicate with
full duplex terminal types. Execution of this statement causes the {control definition) to be suspended

until the co-line executes a {continue statement). The optional syntax effects the statement as described

below: , ,
(wait time) defines the maximum amount of {time) that the {control
: definitiony should be suspending waiting for the (corzti11ue :
statement). If {wait time) is excceded and the co-line has -
not exccuted a (c(mtinue statmnem}. execution resumes at
the next sequential statement. »
(wait time): {lubel) same as above except exeeution resumes at {abel) it a
_ {continue statcmenf) is not executed within {wait time‘).
Pragmatics

Refer to the (fork statement} pragmatics.

5-44

(

Definitions =~

DCP

DCP DEFINITION
Syntax
DCP—-————-»(DCP number)y ; — i —e { DCP exchange statement) =
| {DCP mémory siée-_ statement)
(DCP' terminal stdtemeﬁt) :
Example ¢
DCP 1: -
MEMORY = 8]96 :
EXCHANGE = 2,
TERMINAL = SOMETERMINALNAME
Semantics

The { DCP definition) is the means by which the programmer defines attributes of each Data Commum-
cations Processor (DCP) in the Data Commumcatlons System L

The (DCP number) identifies the DCP and must correspond to an address (rangmg from 0 through 7)
wired into each DCP by the field engineer. The attributes of the DCP are defined subsequently by means -
of (DCP statement)s. A maximum of eight DCP deflmtlons may appear in the NDL source program

Each {DCP statement) is descnbed subsequently

5-45

Definitions

DCP
DCP Exchange Statement .
. e d
DCP EXCHANGE STATEMENT '
Syntax '
EXCHANGE — = —-(DCPnumber): . ‘ — —-
Example
EXCHANGE = 4.
Semantics
The {(DCP exchange statement) spccifies that the DCP shares hardware-exchanged adapter clusters with
another DCP. {DCP number) defines the other DCP. I :
This statement is required in a‘ﬁy (DCP definition) referenced by a (bcpP exchange Statement) in another
{DCP definition), or in any { DCP definition) that does not have lines defined for it in the (line definition
section of the source program. : o i : :
Pragmatics o ‘ : :
The maximum number of DCPs that can share a set of adapter clusters is 2. The definitions of both DCPs
that share adapter clusters must contain a (DCP exchange statement) naming the { DCP number) of the
DCP with which it shares the adapter clusters. For éxample, if DCP 1 and DCP 2 share adapter clusters, - o
then the definition of DCP 1 must contain the statement ’ o ' _ w
EXCHANGE = 2. | | S
and the definition of DCP 2 mtlst‘ contain the statement
EXCHANGE = 1.) |
If a DCP shares adapter clusters with ano_thclf DCP, then any adapter cluster connected to either of the
'DCPs must be shared by both. A DCP is not allowed to share only a portion of its adapter clusters. = -
LINE SECTION REQUIREMENTS _ o | o , s
If two DCPs share adapter clusters, it is required that the {line definition) s for each DCP be given addresses
(by means of a {line address statement)) such that both DCPs do not have lines defined on the same
cluster. . o '
The following program segment would cause the compiler to generate a syntax error because both DCPs
have lines defined on adapter cluster 0. ' : . .
N/

5—-46

-

Definifions.
A ~opcp o _
'_ DCP Exchange Statement — Continued

LINE LIOO

 ADDRESS = 1:0:0 % ADDRESS = <DCP>'=<ADAPTER~"CLUSTER}:‘(LIN'E}L" -

LINE L201:
- ADDRESS = 2:0: 1.

DCP 1: o ‘
MEMORY = 8192. °
EXCHANGE = 2.

DCP2: .
MEMORY = 8192,
EXCHANGE = 1. -

MCS RECONFIGURATION

Thc EXCHANGE CLUSTERS (TYI’E 179) DC‘WR[TE f unctlon allows a Message Control Systcm to
transfer control of any or all adapter clusters, that are exchanged by two DCPs, from the DCP that cur-
rently controls. the designated adapter clusters to the DCP with which it is exchanged. This aspect of the
reconfiguration feature. may be invoked in order. to provide-an installation with the abxllty to effect
“load-leveling” between two DCPs that share hardware-exchanged adapter clusters or to transfer all of
the work load of a DCPto its partner if the DCP malfunctions.” For more information regardmg recon-

~ figuration, refer to thc B 6700/B 7700 DCALGOL Reference Manual form no. 5000052 ' .

Supplementary Examplc

The following is a program scgment descnbmg the data commumc.ltlons system lllustratcd in ﬁgun 5-1.
This example illustrates how the (line definition) and {DCP definition) sections can be written to
describe a data commumcatnons system in whxch two DCPs share hardwarc-exchanged adapter clusters D

547

Definitions
DCP
DCP Exchange Statement — Continued)

%STATION DEFINITION SECTION. -
STATION DEFAULT ALLSTATIONS:

STATION STAI:

DEFAULT = ALLSTATIONS..
TERMINAL= TTY. »‘

STATION STA2:

DEFAULT = ALLSTATIONS. .
TERMINAL = TTY.

STATION STA3:

DEFAULT = ALLSTATIONS.
TERMINAL = TTY.

STATION STA4: , |
- DEFAULT = ALLSTATIONS.
TERMINAL = TTY.

STATION STAS: A
DEFAULT = ALLSTATIONS.
TERMINAL= TTY. :

STATION STA6:

DEFAULT = ALLSTATIONS.

TERMINAL = TTY.

% ,
%LINE DEFINITION SECTION. \ .
% : , ‘ o

%% %% To %06 To %0 %% % %6 %o LINES FORDCPO %%%%%%%%%%%%%%%%%%%%%%% -

LINE L000: ,
ADDRESS = 0:0:0.
ADAPTER = 1(DIRECT).
STATION = STAL. |

"LINE LOO1: |
ADDRESS = 0:0:1.
ADAPTER = 1(DIRECT).
STATION = STA2.

5-48

()

(.

- Definitions
5 DCP . .
' DCP Exchange Statement — Continued '

LINE L020:
ADDRESS = 0:2:0.
ADAPTER = 1(DIRECT).
STATION = STAS.
LINE LO21:
ADDRESS = 0:2:1.
ADAPTER = 1(DIRECT).
| STATION = STA6.
I T I T TN I DU %%%% - LINES FOR DCP 1 %l ot ToT el ToTs T T Do T %%
LINE L110: |
ADDRESS = 1:1:0,
ADAPTER = 1(DIRECT).
STATION = STA3.
 LINELI11L: |
| ADDRESS = 1:1:1.
ADAPTER = 1(DIRECT).
STATION = STA4.
N/ %DCP DEFINITION SECTION.
~ % |
‘DCPO: .~ S
- MEMORY . = 8192.
© EXCHANGE = 1.
DCP 1: _
MEMORY =8192. .
EXCHANGE = 0.
N/
N’

5-49

Definitions
DCP
DCP Exchange Statement — Continued

| ADAPTER o TELETYPE
DCPs : . - CLUSTERS LINES TERMINAL STATIONs
CLUSTER :
v o " “ST AZ”
DCP O
—/0/ | “STA3”
CLUSTER | '
1.
) -1 “STA4”
DCP 1
| //0’/ “STAS”
CLUSTER L
2 o |
| . “STA6”

-Figure 5-1. Adapter Clusters Exchahge

5-50

«

| (()

Definitions S
DCP Memory Size Statement

DCP MEMORY SIZE STATEMENT
Syntax

MEMORY >= »(integer) : e & -

Examples

MEMORY
MEMORY

Semantics

4096.
0.

wu

The (DCP memory size statement) defines the number of words of local memory in the DCP being
defined. ' ' L

A zero value for {integer) indicates that the DCP has no local memory and that all code generated for
the DCP shall reside in main system memory. A non-zero value for (integer) that is less than the amount
of local memory required, as determined by the compiler, results in a compile-time error.

5-51

Definitions
, - DCP
DCP Terminal Statement

DCP TERMINAL STATEMENT
Syntax

) -}~

TERMINAL —»= ——L»Oermmal ulennjwr) _1
L (— MSGSPACE —& = —a> <mteger>--—»)

Examples

TERMINAL = TELETYPE

TERMINAL = M33, TD800 (MSGSPACE = 5), TELETYPE (MSGSPACE-—Z)
Semantics

The purpose of the (DCP terminal statement) is twofold Each aspect of this statement is discussed in
the subsequent two paragraphs. :

The primary purposc of the (DCP terminal st‘atemem) is to provide the means of specifying which
terminal types in the data communications network that the DCP must be able to control. Only those
terminal types specified in this statement will have the object code required to control them included

in the object code generated for the DCP. If this statement is omitted from a DCP definition, the com-
piler includes the object code required to control all terminal types in the data communications network.

The sccond purpose of the (DCP terminal statement) is to provide a means of specifying the initial
number of message spaces allotted for cach termmal type controlled by the DCP. :

The {terminal zdennjwr) must name a termmal type defined by a { terminal defzmtzon) and speuﬁes
a terminal type for which the DCP must have access to the controllmg code.

The (MSGSPACE = (mteger)) option specifies the number of message spaces mltlally allotted for the
terminal type. If this option is omitted, two message spaces are allotted by dcfault

Pragmatics

Note that if any terminal type is not named in the {DCP terminal statement) , the data communications

network may not be reconfigured (by means of a reconfiguration. DCWRITE in an MCS) such that it adds -

that terminal type to those terminal types controlled by the DCP Refer to the supplementary example
that follows. :

Supplementary Example

The program scgment below illustrates the prag,matlcs A stat:on whose termmal type is SCREENDEVICE‘

cannot be added on the sparc linc L0O03 of DCP 1, because DCP 1 does not have the code available to
control SCREENDEVICE.

5-52

O

(¢

%
%

Vi

REQUEST READTTY:

REQUEST WRITETTY:

Definitions
DCP
- DCP Terminal Statement - Continued

%CONTROL & REQUEST DEFINITION SECTION.

~ (The object code generated from these state- l
ments is required to control TTY termmal ’

types.

REQUEST READSCREENDEVICE:

REQUEST WRITESCREENDEVICE:

ments is required to control SCREENDEVICE

- The object code generated from these state- ;
terminal types

%TERMINAL DEFINITION SECTION.

%

TERMINAL DEFAULT DEFAULTLIST:

BLOCK
SCREEN -
TURNAROUND
ICTDELAY
TRANSMISSION
DUPLEX
TIMEOUT
ADDRESS
PAGE

CODE '
INHIBITSYNC
BUFFER
MAXINPUT
WIDTH
PARITY
ADAPTER

WRU

END :
BACKSPACE
CONTROL

FALSE.
FALSE.
0.
0.

0.
FALSE."
3 SEC.

- 0.

0.
ASC67. -
FALSE.‘ ‘
NULL.
80.

72.

NULL.

4.
ENQ. o
ETX(DYNAMIC).

BS(DYNAMIC).
'CONTENTION.

5-53

Definitions

DCpP

DCP Terminal Statement — Continued

TERMINAL TTY:

DEFAULT
REQUEST

DEFAULTLIST.

WRITETTY: TRANSMIT,READTTY :RECEIVE. <

TERMINAL SCREENDEVICE:

To

DEFAULT
SCREEN
REQUEST

nown

DEFAULTLIST.
TRUE.

WRITESCREENDEVICE: TRANSMIT,READSCREENDEVICE: <——

RECEIVE.

%STATION DEFINITION SECTION.

%

5--54

STATION DEFAULT ALLSTATIONS:

ENABLEINPUT
LOGICALACK

MCS

CONTROL

RETRY
MYUSE

STATION STAT1:

DEFAULT
TERMINAL

STATION STA2:

DEFAULT
TERMINAL

STATION STA3:

DEFAULT
TERMINAL

STATION STA4:

DEFAULT
TERMINAL

STATION STAS5:

DEFAULT
TERMINAL

STATION STAGé6:

DEFAULT
TERMINAL

i n

TRUE.
FALSE.

SYSTEM/CANDE.
QM.

IS.
OUTPUT,INPUT.

ALLSTATIONS.
TTY.

ALLSTATIONS.
TTY.

ALLSTATIONS.
TTY.

ALLSTATIONS.

SCREENDEVICE.

ALLSTATIONS.

SCREENDEVICE.

ALLSTATIONS.

SCREENDEVICE.

@

These statements specify the (request
definitions) required to control the -
defined terminal type. The object code
generated by the procedures named here
must be accessible by a DCP that has the
terminal type attached to any of its lines.

A (line definition’ naming any of these
stations must be a {line definition) for
DCP 0. DCP 1 does not have access to
code required to control terminals
associated with these stations.

' A{line definition) naming any of these
stations must be a (line definition for
DCP 1. DCP 0 does not have access to
code required to control terminals
associated with these stations.

Definitions
Dep
DCP Terminal Statement — Continued

) .
(()

%LINE DEFINITION SECTION.
W W% %0 0% V6% W7 % %% LINES FOR DCP O %%%7% %% % %% % %% %6 %% %0 %% %o % %e 7o Je

LINE L000:
\
ADDRESS = 0:0:0.
ADAPTER - = 1(DIRECT).
STATION = STALl.
LINE LOOT1:
ADDRESS = 0:0:1. The (line station statement) of any {line
ADAPTER = 1(DIRECT). cleﬁnition} for DCP 0 must name a station
STATION = STA2. that has a TTY terminal typc associatcd with
LINE L002: it. DCP 0 docs not have access to code
NE L0O , required to control SCREENDEVICE ter-
ADDRESS = 0:0:2. minal types.
ADAPTER = 1(DIRECT).
STATION = STA3.
LINE L003: % THIS IS A SPARE LINE
ADDRESS = 0:0:3.
MAXSTATIONS = 1.

%% %070 %% % T Yo% TP % %% LINES FOR DCP 1 %%%%%%%%%%00%"0%%%%%%%%
LINE L100:

ADDRESS = 1:0:0.
ADAPTER = 1(DIRECT).
STATION = STA4.

LINE L101: The {line station statement)y of any line
ADDRESS = 1:0:1. definitiony for DCP 1 must name a station
ADAPTER = 1(DIRECT). that l?as a S(?RE.ENDEVICE terminal type
STATION = STAS. associated with it. DCP 1 does not have

access to code required to control TTY

LINE L102: terminal types.

ADDRESS = 1:0:2. ’
ADAPTER = 1(DIRECT).
STATION = STAS6.

%

%DCP DEFINITION SECTION.

%

DCP 0: -

MEMORY = 8192. The effect of this statement is that this DCP
TERMINAL = TTY. : has access to control code for TTY terminal

DCP 1: types only.

MEMORY = 8192. The effect of this statement is that this DCP
TERMINAL = SCREENDEVICE. < has access to control code for SCREEN-
DEVICE terminal types only.

5-55

Definitions
FILE

FILE DEFINITION
Syntax

FILE o file identifiery————es = (file family Statement) —-—h-|

Example

FILE NETWORK: FA‘MILY = STATIONIDI1, STATION ID2, FILEIDI1.
Semantics

The (file definition} provides the means to define a data communications file and specify the stations
associated with that file. The {file identifier) is the cxternal name (TITLE) of the file, and has the syntacti-
cal form of a {system identifier) .

A single-station file is a file that has one station associated with it. A single-station {ile can; but need not,

be formally defined in a (j'ile definition} . The reason that a single-station file docs not need to be defined
is that cach station is itself a file. The external name (TITLE) of such a file would be the <.s'rati()n identi-

fiery of the station.

A multi-station file is, as the name implies, a file that has more than one station associated with it. Multi--
station files must be defined in (j'ile definition)s. - :

Pragmatics

A general discussion of data communication files and their peculiarities can be found in chapter 2 of the

B 6700 Input/Output Subsystem Information Manual, form no. 5000185, under the heading “DATA
COMM FILES.” The information contained in that discussion is a prerequisite to understanding the
significance of {)"ilc a’c/'inition) s. Chapter 3 of the same manual contains a table that lists all file attributes
and provides an explanation of cach attribute. Attributes relative to data communication files are found
by examining the “KIND” column of the table for the key word ““Datacom.” The information found

in the explanation of each data communications-relative attribute is also a prerequisite.

A detailed discussion of data communications object job 1/O can be found in appendix B of the B 6700/

B 7700 DCALCOL Reference Manual, form no. 5000052, under the semantics of STATION ASSIGNMENT
TO FILE (TYPE = 64). The information found there is not considered a prerequisite; however, it does
contribute toward a deeper understanding of data communications files and data communications object
job 1/0. : B '

5-56

(O

Definitions
FILE
File Famiiy Statement

FILE FAMILY STATEMENT

Syntax
£) ~F)
FAMILY - w-(file identifier) : -
L & (station identiﬁer) ———?
Example

FAMILY = STATIONID], STATIONID2Z, FILEID1.
Semantics '

The (file Jamily statement) defines the stations associated with a data communications file. If a (file
identifier) is named, all of the stations associated with the file named will also be associated with the
file being defined. Any duplication of an <identiﬁer> ina (file family statement) is ignored.

Supplementary Example

The following example is the (ﬁle dcfinitibn} section of a hypothetical NDL prbgrain. Assume that the
stations STATION1, STATION2, STATION3, STATION4, STATIONS, STATIONG, STATION7, and
STATIONS have been defined in the (station definition) section. : o

TTYS is the (identifier) of this
FILE TTYS: file. The FAMILYSIZE is 3.
FAMILY = STATION1, STATION2, STATION3. | STATION], STATION2, and
' STATIONS3 are the stations
associated with this file.

CRTS also has a FAMILYSIZE
FILE CRTS: of 3. The stations associated
FAMILY = STATION4, STATIONS, STATIONG. with the file are STATION4,

STATIONS, and STATIONG.

‘EXECUTIVES has a FAMILY-

} ‘ SIZE of 5. The stations
FILE EXECUTIVES: associated with the file are

FAMILY = STATIONI1, CRTS, STATIONG, STATION 7. STATION1, STATION4, »
; . .J STATIONS, STATIONSG, and
A STATION7‘.'

,’ (THE/ENTIRE/NETWORK has
(a FAMILYSIZE of 8. The
stations associated with THE/

NS T

FILE THE/ENTIRE/NETWORK:

{ ENTIRE/NETWORK are >
FAMILY = STATIONY, STATIONS, TTYS, CRTS. -)\ STATION1, STATION2,
: STATION3, STATION4,
STATIONS, STATIONG,

STATION7, and STATIONS.)

5-57

Definitions
LINE

LINE DEFINITION
Syntax

LINE q o (line identificr) : i——--—-»(Iim’ adapter class statement —-K-
L,. DEFAULT —s (default line identi ﬁer}j L - {line address statement y —————————i
}——= (line answer statement) ————————s>-
t———a=(line default statement) —_— e
—-—-—» (line endofnumber statement Y ——d
L& (line maxstations ktatement) —
p——== (line modem statementy — g

{——=(line phone statement y ——————e

L (line station statement) s>

o (line type statement) —————————u»

Examples .

LINE TTYDIALIN:

TYPE = DIALIN.
ADAPTER = 1 (MODEM).
MODEM = TTYMODEM.
ANSWER = TRUE.
PHONE = 2139686521.
ADDRESS = 0:0:0.
STATION = TTYSTATION.
MAXSTATIONS = 1.

LINE DEFAULT LINEDEFAULTLIST1:
ADAPTER = 1 (MODEM).
ANSWER = TRUE.
ENDOFNUMBER = FALSE.
MAXSTATIONS = 1.

TYPE = DIALIN.
MODEM = TTYMODEM.
Semantics

(line identifier) and {default line identifier) both have the same syntactical form as (identifier).

Each form of the (line deﬁm’tion) syntax is described subsequently.

5-58

(C)

Definitions
LINE
Continued

LINE {ine identifier) : . . .

This form of the <Iine definition) defines the attributes of a logical line in the data communication
network. Line attributes are defined in one of the following ways: '

a. Each attribute is defined explicitly by means of a (line statement) in the {line definition)y .

b. Each attribute is defined implicitly by an explicit reference to a set of default attribute values.

c. Somc of the line attributes are defined implicitly as in b, and the remainder are defined
explictly as in a.

Some (line statementys must be defined for each (line definition); others do not. Some of the statements
may or may not require definition, depending upon the appearance of other statements. The semantics
portion of each (line 'statement) states, among other things, whether the attribute must be defined and

its effect upon the requirements of other attribute definitions. - '

To define the attributes of a line as described in item a above, this syntax form must be used.

To define the attributes of a line as describcd in items b and c above, this syntax form, the following
syntax form, and the <Iine default statement) must be used in conjunction (this is described under the
following syntax form). . :

UINE DEFAULT (default line identifier) . . .

This syntax form is referred to as a Default {line definition) . Its purpose is to decrease the number of
source statements required to define all of the logical lincs in the data communications system. This is
accomplished in the following manner. Attributes common to several logical lines are defined by means

of a Default (line definition) . Associated with each Default (line deﬁnition) is a (default line identiﬁer}. :
Subsequent to the Default (/ine deﬁnition}, any <1ine deﬁn’ition} that has those attributes in common can
reference the (default line identifier, instead of repeating the list. (A {default line identifier) is

referenced by means of a {line default statement).) The NDL compiler uses the last definition of a line
attribute, and therefore the programmer can reference a Default (Iine deﬁhition} and change any

attributes by redefining them in the {line definition). : o

In appearance, the Default {line definition) is similiar to the (line deﬁnition). The differences are that
the reserved word DEFAULT follows the reserved word LINE, and that there are no statements that are :
required to be defined in a Default (line deﬁnition}. _ I : -

- 5-59

Definitions
LINE |
Line Adapter Class Statement ' ' .

LINE ADAPTER CLASS STATEMENT
Syntax

ADAPTER —» = ——o{(intcgcr) value of 1 thru 8} . : > .
= (MODEM)

——s= (DIRECT)
Examples |
ADAPTER
ADAPTER

Semantics

]

5.
4 (MODEM).

The {Jine adapter class statemenr} identifics the Adapter Class of the line adapter for the logical line and,
optionally, names the conncection type (i.e., modem connect or dircct connect).

The Adapter Class must be compatible with the (('ommunic'a{ion type number> specified in the (s'tati(m

adapter statvmenl} of any station assigned to the line. (Notc that all stations assigned to a linc must

have the same <¢~omnmnication type numlwr) defined.) Table 5-3 lists the compatible Adapter Classes

for cach {communication type munhcr}. For example, a line having stations assigned to it that define N
a {communication type number) of 4 can name as an Adapter Class either 1,2, 3,4, or 5 (refer to

table 5-3). On the other hand, a line having stations assigned to it that defines 15 as the ((.-ommurzication : N/
type number) can name only 5 as an Adapter Class. : S

If the connection type is named in the statement, it is considered by the compiler as documentation

only. The compiler determines whether the line adapter or a modem-connect line adapter, by the presence
or abscnce of a (Iiuc modem slmenwnl) for the (line deﬁnition}. A syntax crror is generated, however,

if DIRECT is named and a (Iim' modcm statcmcm} is present.

Pragmatics
LINE ADAPTERS AND ADAPTER CLASSES

There arc 13 available line adapters. Three of the 13 are special-purpose line adapters; they are used
for Touch-Tone® telcphone input, Audio-Response lines, and Automatic Calling Units (ACU). The
remaining 10 arc general-purpose line adapters.

The 13 available line adapters are divided into eight ‘““Adapter Classes.” The Touch-T one® , Audio-
Responsc, and ACU line adapters comprise Adapter Classes 6, 7, and 8, respectively. The 10 general- -
purposc line adapters comprise Adapter Classes 1 through 5. Adapter Classes 1 through 5 differ primarily
in the maximum transmission speed at which the line adapters may be operated. Adapter Classes |
through 5 each consist of two line adapters, one being a ““direct connect,” and the other being a “modem
connect.” Thie direct connect has a terminal attached to it by means of a two-wire or four-wire direct
connection. The modem connect has a terminal attached to it through modems using an RS232+

defined interface. Refer to table 5-3 for the Adapter Class and the use of each line adapter.

tA technical specification published by the Electronic Industries Association establishing the interface e’/
requirements between modems and terminals or computers. :

5-60

Definitions
LINE

Line Adapter Class Statemert — Continued

Table 5-3. Available Line Adapters

MARKETING
NUMBER*

CONNECTION

USE

CLASS

B 6650-1

B 6650-1

B 6650-2

B 6650-2

B 6650-3

B 6650-3

B 66504

B 66504

B 6650-5

B 6650-5

B 6650-6
B 6650-7
B 6650-8

Direct

Modem

Direct

Modem

Direct

Modem

Direct

Modem

Direct

Modem

Two-wire direct connect, asynchronous
bit-serial transmission up to a maxi-
mum line speed of 600 BPS, simplex or
half-duplex. '

Modem-connected with 100-Series type
modem using RS232-defined interface,
asynchronous bit-serial transmission

up to a maximum line speed of 600
BPS, simplex or half-duplex. (Two
required for full duplex.)

Same as B 6650-1D, cxcept maximum
line speed is 1800 BPS.

Same as B 6650-1M, except with 202-
Serics type modem and up to a maxi-
mum line speed of 1800 BPS.

Same as B 6650-1D, except maximum
line speed is 2400 BPS.

Modem-connected with 202-Series (asyn-
chronous) or 201-Series (synchronous)
modem using RS232-defined interface,
bit-serial transmission up to a maxi-
mum line speed of 2400 BPS, simplex

or half-duplex. (Two required for

full duplex.)

Same as B 6650-1D, except maximum
line speed is 4800 BPS.

Same as B 6650-3M, except maximum
line speed is 4800 BPS.

Same as B 6650-1D, except maximum
line speed is 9600 BPS.

Same as B 6650-3M, except maximum
line speed is 9600 BPS.

For Touch-Tone® telephone input.
For Audio-Response line.

For Automatic Calling Unit (ACU).

]

*The above marketing numbers refer to B 6700 line adapters. B 7700 line adapters have similar
numbers, the difference being a leading 7 instead of a 6;e.g., B 6650-1 for B 6700, and B 7650-1 for
B 7700. In this table only, a distinction is made between modem-connected line adapters and direct-
connected line adapters by affixing either a D (for direct-connected) or an M (for modem-connected)

to the field marketing numbers (under the “Use” column) which require that distinction.

5-61

Definitions
LINE
Line Address Statement

LINE ADDRESS STATEMENT
Syntax

ADDRESS —&~=—~(DCP number—s- : —»-{adapter cluster numbery—s= : —a-{line adapter numbery—— -

Example
ADDRESS = 2:0:15.

The above example would appear in the (lim' dv]iui{ion) of the line at the 15th line adapter position in
adapter cluster number 0 of DCP number 2.

Semantics

The (line address statement) identifies the DCP number, the adapter cluster number, and the line
adapter number of the defined logical line. If two DCPs share hardware-exchanged adapter clusters

(as defined by the (DCP excliange statement) in a (DcCP definition)), then the (DCP number) defined in
this statement is the DCP initially expected to service the adapter cluster of which the line is a part. This
statement, which is required, must be defined explicitly in each (lirze definition.

()

Deﬁnitions‘
LINE

Line Answer Statement

LINE ANSWER STATEMENT

Syntax

ANSWER — = —=TRUE ? - - >
L—-—@- FALSE

Semantics

The {line answer statement) defines whether or not (TRUE or FALSE, respectiVely) the DCP is to
automatically answer an incoming call. This statement is required if the (Iine type statemenl) in the
{line definition) defines the line configuration as DIALIN only, or DIALIN and DIALOUT.

If ANSWER = FALSE, an incoming call causes the following actions to be taken by the DCP. A SWITCHED
STATUS RESULT (CLASS = 7) message is sent to the MCS of the station that is the first entry in the

Line Table for that line. (Unless an MCS has reconfigured the line so that it changes the first entry, the first
entry in the Line Table will be the entry for the first station listed in the {line station statement) of

the (/ine de,/'inition}.) The message has a bit set in it that indicates the line is in a “ringing” status.
Presumably, upon notification of a line in a ringing status, the MCS programmer instructs the DCP to
“answer the phone, or it takes appropriate action to clear the line.

If ANSWER = TRUE, an incoming call causes the DCP to take the following actions.A SWITCHED STATUS
RESULT (CLASS = 7) message is sent to the controlling MCS of the station that is the first entry in the
Line Table for that line. In this case the message has a bit set indicating that there has been an incoming

call, and that the DCP is in the process of answering the call.

An MCS may change the value of ANSWER after DCP initialization, by means of a SET/RESET
AUTO-ANSWER (TYPE = 102) DCWRITE.)

5-63

Definitions
LINE
Line Default Statement

LINE DEFAULT STATEMENT

Syntax

DEFAULT - = ——=-(default line identifier) —
Example

DEFAULT = DFLTLISTI1.

Semantics

The {line default statement) allows the programmer to specify the (default line identiﬁer} of a set of]
default line attributes to be used fora (line deﬁnition} whose description is incomplete. It is advantageous
to group attributes that several lines have in common under a Default (line definition) and list the remain-
ing attributes under each individual (line definition) . The compiler will then refer to the Default

(line definitionyto complete the (line definition). The (line default statement) is not required to appear
ina (Iine definition) ; however, a (line deﬁnition) must define all required attributes if a (line default
statement) does not appear. '

The (line default statement} can appear in a (line deﬁnition) or a Default (h’ne definition) . Thus,
(line default statement)s can be “nested” to combine the attributes of one or more Default {line
definitions)s. ' : C

5-64

()

St

Definitions
LINE
Line Endofnumb2r Statement

LINE ENDOFNUMBER STATEMENT

Syntax

ENDOFNUMBER

Semantics

o =

—»TRUE » g .
»FALSE———-—j ' .

The (Iine endofnumber statement} applies only to (Iine deﬁnition)s that specify the Automatic Caliing
Unit (ACU) Adapter Classin its (line adapter class statement) (e.g., ADAPTER = 8). This statement is
required for those (line deﬁnition) s, and specifies whether or not (TRUE or FALSE, respectively) the

ACU has an “‘end of number” option.

5-65

Definitions
_ LINE
Line Maxstations Statement

LINE MAXSTATIONS STATEMENT
Syntax

MAXSTATIONS - = = integer) : -

Example
MAXSTATIONS = 25.
Semantics

The < line maxstations statemcnl> specifies the number of stations that may be assigned to the defined line.
If this statement does not appear for a line having assigned stations (the (Yine station statemenr} lists all
stations initially assigned to a line), it is assumed that MAXSTATIONS is the number of stations explicitly
specified as assigned to the line in the {line station statement}. The (integer} specified must not equal 0,
exceed 255, or be less than the number of stations listed in the (line station statemcnt) (if the (line station
statement) is defined). :

Pragmatics

This statement informs the compiler of the maximum number of station descriptors required in the Line
Table of the DCP’s table structure. By defining MAXSTATIONS to be greater than the number of stations
listed in the {line station statement)y, an MCS may reconfigure more stations onto the line at some point
in time after DCP initialization. For information regarding rcconfiguration, refer to the B 6700/B 7700
DCALGOL Reference Manual, form number 5000052..

5-66

.

Definitions
LINE

Line Modem Statement

LINE MODEM STATEMENT
Syntax

MODEM > = —» (modem identifier) — .

Example
MODEM = BELL103A.
Semantics

The (h'ne modem statemenl) specifies the modem type that exists on the system end of the physical linc.
(The (statirm modem statementy in a {station deﬁnition) specifies the modem type connected to the line
on the terminal end.) -

Pragmatics

The compiler refercnces other portions of the program with this statement, checking for consistency. If,
for example, the {modem definition) of the (moa’em idcntiﬁer) specified in this statement lists any
{communication type number> s in its (moa’em adapter statemenl} that are not compativble with the
Adapter Class specified in the (line adapter class statement} of the (Iine definition), then a syntax error .
is gencrated. Another situation that causes a syntax error to be generated is if the compiler discovers that
the modem type specified in this statement is not compatible, in respect to the {communication type
numher) . with the modem type specified in the (station deﬁnition) of a station assigned to the line.

5-67

Definitions
LINE

Line Phone Statement

LINE PHONE STATEMENT

Syntax

PHONE - - (integer)

Example
PHONE = 12136572385.
Semantics

The (Iine phone stalcmenl} , implemented for documentation purposes only, documents the telephone
number of a DIALIN type line. This statement is optional in-a (lin’e definitioa}.

(W

Definitions
LINE

Line Station Statement

LINE STATION STATEMENT

Syntax

é)
STATION o = &~ (station identifier) : > -
Examples

STATION = RJEL.
STATION = DAKOTA/KID, BIDS.

Semantics

The ([ine station statement} is the means by which the NDL programmer associates one or more stations
with a line. A station that is associated with a particular line is said to be “assigned” to that line.

This stdtexmnt is required in those (lzne definition) s that specify DUPLEX .in the {line type statemert)
In all other variations of (lzne type statement) this statement is optional.

If more than one station is named, cach station must have the same {communication type number)
defined in its respective <9tatt(m adapter statement) . :

5-69

Definitions
LINE
Line Type Statement

LINE TYPE STATEMENT

Syntax

TYPE —& = & /T DIALIN : .
/TN DIALOUT ——s : —a(line identifier)).
T\ DUPLEX ———& : —(/ine identifier}

Examples

TYPE = DIALIN.

TYPE = DIALOUT:ACULINE.

TYPE = DUPLEX:AUXLINE.

TYPE = DIALIN. DIALOUT:AUTOCALL, DUPLEX:SUPERVISORY.

Semantics

The (Ime type ?mlwm’nl\ provides the compiler with specific information concerning specml loglcal line
configurations. This stutumnl is required for {line definitiony s whose line utilize either dial-in, dial-out,
or full duplex hardwarc facilities.

DIALIN

This form identifies the line as a dial-in line. A line that may be dlaled from a remote site is a dial-in line.
The appropriate <lm(type state mulr\ for this configuration would be:

TYPE=DIALIN.

A logical line defined in this manner must include the {line answer statementy and the {line modem
statementy. The {line definitiony for such a line could appear as follows:

LINE DIALUPLINE:

TYPE = DIALIN.
ADDRESS = 0:0:0.
MODEM = TTYI03A.
STATION = DIALUPSTATION.
ANSWER = TRUE.
ADAPTER = 1(MODEM).

DIALOUT

This form identifies the line as a dial-out Iih_c. A dial-out line is defined as a line that can become connected
to a remote site as a result ot a Message Control System issuing a DIALOUT (TYPE = 98) DCWRITE to the
line (thereby causing an Aulomatu Calling Unit (ACU) to dial the phone number of the remote site). The

TYPE=DIALOUT: <Inu identifier> syntax of the statement specifies such a configuration. The (lme

ldennfwr> namcs the (lmc (lc'/mmnn\ that defines the associated ACU. The following example illustrates

how the {line definitiony s could appear for a dial-out configuration.

LINE DIALOUTLINE:
TYPE = DIALOUT:ACULINE.
ADDRESS = 0:0:1.
MODEM = TTY103A.
ADAPTER = 1(MODEM).

5-70

(¢

Definitions.
LINE

Line Typc Statement - Continued

LINE ACULINE:
FNDOFNUMBER
ADDRLESS
ADAPTER

s =
=2
9

—

[

*

The {line definition) for the dial-out line must include a {line modem statement) and cannot include a
(line station statementy . The {ine definitiony for the ACU must include a {line endofnumber statement) ,
and it must define an address (in the line address stalwnml}) that is on the same adapter cluster as the
associated dial-out line.

DUPLEX

This form identifies the line as the primary of a line pair, for purposes of simultaneous transmission and
receptions. The (Jine identifiery names the auxiliary line’s (Iine definition) . The line referenced as the
auxiliary cannot contain a {line type statenwnt) nora <[ine station statement> . -

The following is an example of how full duplex primary and auxiliary lines could be defined.

LINE DUPLEXPRIMARY:

TYPE = DUPLEX:DUPLEXAUXILIARY.
ADDRESS = 0:0:5.

MODEM = SUPERMODEM.

STATION = MODEL37.

ADAPTER = 1.

" LINE DUPLEXAUXILIARY:
ADDRESS = 0:0:6.
ADAPTER =1.

Pragmatics

COMBINED CONFIGURATIONS _

A dial-in/dial-out line is characterized by both the ability to be dialed from a remote site, and the ability
to become connected to a remote site as a result of a Message Control System issuing a DIALOUT

(TYPE = 98) DCWRITE. This type of configuration requires the DIALIN and DIALOUT: (line identiﬁer)

options to appear in the {line type statement). The following example illustrates how a dial-in and dial-out
{ine definitiony could appear:

LINE IOLINE:

TYPE = DIALIN,DIALOUT:AUTOCALLUNIT.
ADDRESS = 0:1:0. |
MODEM = TTY103A.
STATION = REMOTETTY.
ANSWER = TRUE.
ADAPTER = 1(MODEM).

LINE AUTOCALLUNIT:
ENDOFNUMBER = FALSE
ADDRESS = 0:1:1.
ADAPTER = 8.

5-71

Definitions
LINE

Line Type Statcment - Continued

The full duplex syntax could be combined with the dial-in and dial-out syntax as foilows:

LINE IODUPLEX:
TYPE
ADDRESS
MODEM
STATION
ANSWER
ADAPTER

LINE AUXLINE:
ADDRESS
ADAPTER

LINE AUTOCALLUNIT:
ENDOFNUMBER
ADDRESS
ADAPTER

LU | N | O 1 1}

wn

nonn

5-72

DIALIN DIALOUT:AUTOCALLUNIT DUPLEX:AUXLINE.,
0:2:0. '
SUPERMODEM. ’
REMOTEDUPLEXDEVICE.

TRUE.

1(MODEM).

0:2:1.
1(MODEM).

(¢

‘Definitions
MCS

MCS DEFINITION
Syntax

MCS —— { MCS identifier) ——»~ : ——s CONTROL > =] > TRUE — 1

Examples

MCS SYSTEM/CANDE CONTROL = FALSE.
MCS SYSTEM/DIAGNOSTICMCS:CONTROL = TRUE.

Semantics

The purpose of the (MCS defmmon) is twofold First, the <MCS defi nmon) adds the (MCS identifi er} to
the list (contained in the Network Information File) of valid Message Control System (MCS) programs; and
second, the {MCS definition) specifics whether or not (CONTROL = TRUE, or CONTROL = FALSE,
respectxvdy) the named MCS is allowed to'execute a limited sct of DCWRITE functions that perform DCP
diagnostic functions in addition to the standard DCWRITEs. (MCS tdennﬁer) has the syntactic form of a
(system identifier) . . .

Pragmatics

A list of valid MCSs is maintained in the Network Information File in order to restrict unauthorized
DCALGOL programs from becoming an MCS. (A DCALGOL program becomes an MCS when it success-
fully executes an INITIALIZE PRIMARY QUEUE (TYPE = 0) DCWRITE.) The MCS declaration is one
means of adding a name of an MCS to that list. (One other means is the (station MCS statement) in

a (station definition).)

The diagnostic DCWRITE functions allow an MCS to perform on-line tests of components in the Data
Communications System. Those DCWRITEs that may be utilized in an MCS when CONTROL = TRUE
have DCWRITE TYPE numbers g creater than 159."

5-73

Definitions

MODEM
et
MODEM DEFINITION
Syntax
MODEM ———>» (modem identifier > — };-—o{modcm adapter statement) —h{
- (modem lossofcarrier statement
B (modem noisedelay statement’)
—a-(modem transmitdeldy statement}
Example
MODEM MABELL103A:

ADAPTER = 4.

LOSSOFCARRIER = DISCONNECT.

NOISEDELAY = 0.

TRANSMITDELAY =0. '
Semantics ‘ o \:i
The {modem definition) defines the attributes of a modem type in the data communications system.

The (nodem identifier) names the (modem definition) , and has the syntactic form of (identifier). The

\modem statement s are described subsequently.
N/
'\o”:

- Definitions
MODEM

Modem Adapter Statement

MODEM ADAPTER STATEMENT

Syntax
> g
ADAPTLER —&: \'“('HI)II)IIHII'(‘ulinll 1y pe manber)
(== (Communication 1ype number) —w= o —ww communication Lype number) —a)‘

Examples |

ADAPTER = 1,234..

ADAPTER = 10. .

ADAPTER = (2,3), (4,5), 6.7.
Semantics

The ﬂmudc m adapter statement) defines one or more combinations of character format, synchronous/
asynchronous communication, and line speed (in the case of asynchronous commumcanons) with which the
modem is compatible. This is donc by supplying one or more <c0mmumcatton type number} s (or number
pairs).

Table 5-4 lists the allowed (commwucattun type number)s and the characteristics associated w1th cach.
For example, the stutement

ADAPTER = 4,
defines an 1 1-bit character format, asynchronous communication, at a‘line speed of 110 bits per second.

If the modem is to be used in a full duplex mode, and the primary and auxiliary lines have different
characteristics, then one or more {communication type number) pairs must be supplied. For example, the
statement

ADAPTER = (11.6).

defines for the primary line a 10-bit character forfnét, synchronous communication, at a speed of 1800 bits
per second. The characteristics associated with the auxiliary line are the same as for the primary line,
except that the auxiliary line runs at a line speed of 150 bits per second.

Pragmatics
COMMUNICATION TYPE NUMBERS

A (communication type number) is an integer that has associated with it a set of attnbutes that define
three line characteristics. Those characteristics are the format of the characters transmitted (start informa-
tion, data information, parity information, and stop information), whether the line is to be driven
synchronously or asynchronously, and the speed of the transmissions (in the case of asynchronous
communications). Table 5-4 lists the allowed {communication type number)s and the lme characteristics
associated with each.

Most of the electronics that directly control a line are located in the adapter cluster that contains the line
adapter for that line (rather than being located in the line adapter itself). The adapter cluster is somewhat
eeneral purpose in its design in that it can run at various line speeds and handle various character formats.
The DCP can cause the adapter cluster to function in a suitably special-purpose way (with respect to a
single line) by supplying it a number derived from the (commumcatton type number)

Definitions
_ MODEM ' . _ _ \ , -
Modem Adapter Statement — Continued ‘ DR

There are three areas in an NDL program that require the programmer to supply one or more (commumca- -
tion type number)s:

a. Inthe (mmlcm adapter statement) of each (mm/vm 'definiti(m) ,

b. In the {erminal aclapier statement) for each {ferminal definition) , and

c. Inthe (tation adapter statement) for each (stanon defi mtzon) ’ ,
As it encounters each area, the NDL comp;ler cross-checks to determine if the areas are compatxble in then'
description. If inconsistencics in component compatibility arise, syntax errors are generated. . Restrictions
are described in the (terminal adapter statement) and (station adapter statement) semantics.
EXPLANATION OF TABLE 5-4 |
Table 5-4 lists the allowed (commumcatzon type number}s in the column labeled “COMM TYPE NUM »
To the right of each {communication type number) are the three line characteristics associated with it,
under the columns labeled “SPEED (BPS),” “CHARACTER FORMAT,” and “SYNCHRONOUS OR
ASYNCHRONOUS.” The rightmost column, labeled “COMPATIBLE ADAPTER CLASSES, 'is
referenced and described in the (Ime def mtton) sectlon of this chapter

| -
-

5-76

Definitions
MODEM
- Modem Adapter Statement - Continued

Table 5-4. Table of {communication type mmzher)s

CHARACTER FORMAT

COMM. CHAR. SYNCHRONOUS COMPATIBLE |
TYPE | SPEED | SIZE | START | DATA | PARITY | STOP ~ OR ADAPTER CLASSES
NUM. (BPS) | (BITS) | INFO. | INFO., INFO. INFO. | ASYNCHRONOUS | 1 2 3 456 7 8

! 45.5 75 1 5.0 — 1.5 ASYNC. XXX XX

2 569 | 175 1 5.0 _— 1.5 ASYNC. XX XXX

3 750 75 1 5.0 — 1.5 ASYNC. XXXXX

4 1100 | 11.0 1 7.0 1 2 ASYNC. XX XXX

5 1345 | 9.0 1 6.0 1 1 ASYNC. . XXXXX

6 1500 | 10.0 1 7.0 1 1 ASYNC. XX XXX

7 300.0 [100 1 7.0 1 1 ASYNC. XX XXX

8 600.0 | 10.0 1 7.0 1 1 ASYNC. XX XXX

9 12000 | 100 1 7.0 1 1 ASYNC. XX XX

10 12000 | 6.0 1 40 _— 1 ASYNC. X X X X

11 1800.0 | 10.0 1 7.0 1 1 ASYNC. XX XX

12 2400.0 | 10.0 1 7.0 1 1 ASYNC. X X X

13 3600.0 | 10.0 1 7.0 1 1 ASYNC. X X

14 4800.0 | 10.0 1 7.0 1 1 ASYNC. X X

15 9600.0 | 10.0 1 7.0 1 1 ASYNC. X

16 20000 | 7.0 — 6.0 1 —_— SYNC. X X X

17 20000 | 8.0 — 7.0 1 _ SYNC. X X X

18 20000 | 9.0 —_— 8.0 1 _— SYNC. "X X X

19 24000 | 7.0 — 6.0 1 _— SYNC. X X X

20 24000 | 8.0 —_— 7.0 1 _— SYNC. X X X

21 24000 | 9.0 — 8.0 1 —_— 'SYNC. - X X X

22 4800.0 | 7.0 - 6.0 1 — SYNC. X X

23 48000 | 8.0 - 7.0 1 —_ SYNC. XX -

24 48000 | 9.0 — 8.0 1 _— SYNC. X X

25 9600.0 | 7.0 — 6.0 1 — SYNC. X

26 96000 | 8.0 e 7.0 1 — SYNC. X

27 9600.0 | 9.0 — 8.0 1 — SYNC. X

28 400 | 40 — 4.0 — _— - SYNC.

29 160 | 8.0 — 7.0 1 —— SYNC. X

30 400 | 4.0 - 4.0 — _ SYNC. X

Definitions
MODEM R ;

Modem Lossofcarrier Statement

MODEM LOSSOFCARRIER STATEMENT
Syntax

LOSSOFCARRIER - = & DISCONNECT > -

Pragmatics

Certain modems (Western Electric (Bell System) 103 series modems, and possibly others) maintain con-
tinuous carrier in both directions while the line is properly connected. As such, CF (Carrier Detected)
and CB (Clear to Send) arec maintained TRUE while connected. Additionally, if each modem is equipped
with both the Initiate Disconnect and the Respond to Disconnect options, each modem employs the
“long space disconnect’ convention. This convention allows one modem to determine if the other is
disconnecting, and itsclf go “‘on-hook™ and drop CC (Data Set Ready).

Two problems arisc, however, when only one such moden is configured at the system end, and the
terminal is interfaced with an acoustic coupler at the terminal end. At the time of making a connection,
establishment of carrier is difficult. In fact, the system modem may detect carrier from the coupler while
the telephone recceiver is near the coupler and before the receiver is properly seated. In this case, CF and
(B are raised prematurcly, and if the system takes this as a cue to begin transmission of a greeting, the
two signals (the data transmitted from the system, and carrier from the acoustic coupler) interact with
cach other, and the system modem detects loss of carrier. At the time of terminating a call, if the terminal
initiates the disconnect and has no “long space disconnect™ facility, or if the terminal operator does not
usc it, the system modem detects only loss of carrier. In this case, the system modem drops CF and CB,
the modem remains “off-hook™ and maintains CC (Data Sct Ready). Thereafter, any incoming calls
would rcceive a “busy’ signal. A .

o

The (moa'em lossofcarrier statement) is implemented for such a configuration. If this statement is
included in the definition of a modem, special logic is invoked, in addition to the normal logic, when
dealing with that modem type.

In the case of the system calling out, normal logic waits for CC to be raised by the modem. If CC is raised -
within 25 seconds, the line is immediately rcleased as connected. A timeout of 25 seconds causes CD
(Data Terminal Ready) to be dropped, the modem goes “on-hook,” and the line reverts to a disconnected
state. The special logic is invoked after CC is found TRUE. With the 25-second timeout in effect, the
special logic then waits until CF and CB are both raised by the modem. After CF and CB are detected,

the logic then delays approximately S seconds before notifying the system that the line is connected.

This gives the terminal operator sufficient time to place the receiver in the acoustic coupler.

In the case of a terminal-initiated disconnect, that condition is detected in the normal logic by either the
“long space disconnect™ adapter cluster interrupt or by a CC (Data Set Ready) FALSE condition. In
addition to the normal]0{.,!0, the speual logic also interprets CF FALSE or CB FALSE as a termmal—
initiated disconnect.

5-78

Definitions
MODEM

Modem Noisec:lay Statement

MODEM NOISEDELAY STATEMENT

Syntax
NOISEDELAY — = - (delay time) P
Examples
NOISEDELAY = 0.
NOISEDELAY = 200 MILLI.
Semantics

The <modem noisedelay statement) defines the amount of time that should be delayed when the modem
enters a Clear to Send (CB) status to avoid receiving “‘noise’’ on the line. (delay time) must be expressed -
as (time) , and affects the amount of time delayed after an INITIATE RECEIVE or INITIATE TRANSMIT
construct is executed and before the next statement is executed in a (control deﬁm’tion) or (request
definition) . The {(delay time) defined in this statement is used in a compiler algorithm that calculates the
delay. The compiler algorithm is discussed in the semantics of the INITIATE RECEIVE and INITIATE
TRANSMIT constructs under the (initiate statement) . This statement must appear in each {(modem
definition) .

L 5-79

Definitions
MODEM

Modem Transmitdelay Statement

MODEM TRANSMITDELAY STATEMENT

Syntax
TRANSMITDELAY > = = (delay time — .
Examples
TRANSMITDELAY = 0.
TRANSMITDELAY = 150 MICRO.
Semantics

The (modem transmitdelay statement) defines the amount of time required for the modem to switch to

a Clear to Send (CB) state after receiving a Request to Send (CA). (delay time) must be expressed as

(rime) and aftects the amount of time delayed after an INITIATE RECEIVE or INITIATE TRANSMIT
construct is exccuted and before the next statement is executed in a (‘control definition) ot (request
de_f‘iniliun). The {delay timc} defined in this statement is used in a compiler algorithm that calculates the
delay. 'The compiler algorithm is discussed in the semantics of the INITIATE RECEIVE and INITIATE
TRANSMIT constructs of the {initiatc statement). This statement must appear in cach (modem definition) .

5--80

REQUEST DEFINITION
Syntax

Definitions

REQU

REQUEST —»{request identifier) —u: &——-—-» {error switch staiement)

EST

¥
- L(label)—» : —-j

e {backspace statement) —

\—(fork statement) —————o)

- (assignment statemeht) —T

- (break statément} —_—
—~(code statement y —————~
e (compound ;statement S —a
e~ (coniinue statement s ——em
- {delay statement) -—-——-»
= fetch statemént} —

o (finish statement) — g

e (getspace statement S ——

—c-(go to statement) ————s-]
e if siatement} ——
-~ (increment statement)y —
e (initialize siatemént) —
s~ initiate 'stdtément} .
L (pausé statement y ————e»
- (receive state‘ment} —
= (shift statement) ————=
—s~ (store statement) ———»
—a~ (sum statement y —————u>
L—»- (terminate statément) —

e (transmit statement) ——=

L~ (wait statement} —_——

j>l

5-81

Definitions
REQUEST

Continued

Example
REQUEST READTTY:

INITIATE RECEIVE.
RECEIVE TEXT [END].
TERMINATE NORMAL.

Semantics

(request deﬁnition)s, sometimes referred to as Requests, are coded line disciplines {protocols) that are
used in communicating with the various terminal typesin the data communications network. A (request
definition) must be coded for each capability of a terminal type; if it is possible for a terminal type to
send input to the system and receive output from the system, then two (request definitiony s must be
specified for that terminal type in its {terminal definition). The input (request definition) is generally
referred to as the “Receive Request,” and the output (request definition) the “Transmit Request.” {The
specific (request definition) to be used for each of these capabilities is specified by the {terminal
request statement).

When there is a message to be sent to a particular station on a line, the <control deﬁniti0n> initiates

the Transmit Request specificd for the (terminal deﬂnition) associated with the station. The Transmit
Request procedure handles the transmission of the message. If the transmission of the message is successful,
the Transmit Request is terminated, and a branch of control is made back to the <c0ntrol definition) for
the initiation of the next Request.

If the terminal associated with a station is allowed to input data, the (control definition} designated for
that line normally initiates the Receive Request specified for the terminal type. 1f the terminal has
information to transmit, the Receive Request procedure obtains a message space in which to store the
received text, receives and stores the text, and then terminates in a manner that forwards the message to
the MCS. If the terminal has nothing to transmit, the Receive Request procedure usually notes that therc
was no input, and terminates. In either case, upon termination, control returns to the < control deﬁnition)
for the initiation of the next Request.

(request identifier) has the syntactic form of (identifier).

Statements in (request definition) s are executed sequentially. Insome cases, however, it is desirable

to alter the order of execution of statements within the procedure. A (request statement} preceded by a

élabel is one means of accomplishing this. The (go to statement} is used to transfer control to a
label)ed {request statement). ‘

A (request statement) must be appropriate for the type of Request in which it appears. That is, some
<request statement)s are allowed only in Receive Requests, some are allowed only in Transmit Requests,
and some are allowed in cither type. Subsequently, the semantics portion of each statement defines,
among other things, in which type of {request definition) the statement can appear. ‘

5-82

“Definitions
REQUEST

Assignment Statement

ASSIGNMENT STATEMENT
Syntax
FORM 1 -~ LOGICAL ASSIGNMENT

(ussignable bit variable) o = o (bit variable) . : o .
TRUE

FALSE
FORM 2 — VALUE ASSIGNMENT

{ussignable byte variable}—l-=-—>(byte varzable, ' ; I 2
, —~(_integer >‘—tj E+ ' (byte variable y——-
: ‘ -—.-(smgle character) - (integer)m—————=ond

(single character)—o=

—(translatetable identifier)—w= (—»= byte variable)y~) —e=

o= {receive “‘address” statement} — ' —
Examples ‘
TOG [0] = TRUE.
TOG |1] = TOG [0].

LINE (BUSY) = FALSE.

RETRY = STATION (TALLY).

TALLY [0] = STATION (FREQUENCY) — TALLY [l]

CHARACTER = TRANSTABLEID (CHARACTER).

STATION (TALLY) = RECEIVE ADDRESS (TRANSMIT) [ADDERR:999].

Semantics
FORM 1

This form causes the value on the right side of the equal sign to réplace the current value of (asszgnable
bit variable) .

FORM 2

Value assignment causes a calculated value on the right of the equal sign to be stored in the <asszgnable
byte variable). Arithmetic calculations are done in modulo 255 arithmetic.

(assignable byte variable) = translatetable identifier) ({byte vanable)).

This construct is the means to invoke user-defined character translation. User-defined translation is
effected by three areas of the NDL source program.

a. Ina (translatetable definition), the programmer must define the contents of a translation
table and associate a {translatetable identifier) w1th it.

5-83

Definitions
REQUEST

Assignment Statement - Continued

b. In the {rerminal definitiony of a terminal type that requires special character translation,
the programmer should suppress automatic character translation by using either of the
following forms of the {terminal code statement): ’

CODE = BINARY.

or
CODE = EBCDIC.

c. Ina {control definitiony or {request definitiony , the programmer invokes the translation
by using this option ol the value assignment. Any (byte variable) can be designated as con-
taining the character to be translated.

The {translatetable identifier) identifies the translation table to be used. An (assignablc byte
variable) is designated to the left of the cqual sign, identifying where the resulting translated
character is to be stored.

If N is the {source size) (defined in the {translatetable definition)), then the N low-order bits
of the {byre variabley are used as an index into the translation table. The eight-bit character
thus indexed is stored in the (assignable byte Variable>.

{assignable byte variable) = {receive “address”statement}.

This construct attempts to RECEIVE the address characters of a terminal, and store in (assignable byte
variable) the station index of a station whose address characters are equal to those received. The {receive
“address” statement} is the same as described in the semantics of the RECEIVE ADDRESS construct

of the {receive statement The optional syntax in the {rcccivc “address” statement } invokes the same
actions as described in the {receive statement)y semantics except for ADDERR. Any action specified for
ADDERR is taken if no valid station assigned to the line is found with address characters equal to those
received. : :

5-84

()

Definitions
REQUEST

Backspace Statement

BACKSPACE STATEMENT
Syntax

BACKSPACE , - ‘ - -

Semantics

The (backspace statement) causes the message text pointer to be moved backwards one character. This
statement can only appear in a Receive Request. The <backspace statemer:t) may be executed repeatedly;
however, the message text pointer will never be stepped back so far that it points into the message header.

5-85

Definitions
REQUEST

Break Statement
BREAK STATEMENT
Syntax

BREAK - (— %

l —- » ———a=NULL —5—) - .
(break time> ' ' . (delay time) ._J '

Examples

BREAK (¥, NULL).
BREAK (200 MILLI, 3 SEC).
BREAK (*, 3 SEC).
BREAK (100 MILLI, NULL).

Semantics

The (break statement} causes binary zeroes to be transmitted on the line, thus changing the state of the
line to a “spacing” condition for a specified time.

The {preak time) specifies the {time) to break. An asterisk indicates that a standard break of 2 character
times should be used. '

The {delay time) specifies the {time) to delay subsequent to the break and prior to when control
continues.

5-86

Definitions
REQUEST
Ccde Statement

CODE STATEMENT

Syntax

CODE = - ASCII j o= .
L—»-BINARY

Semantics

CODE=ASCII invokes the ASCII-to-EBCDIC translation for received data and the EBCDIC-to-ASCII
translation for transmitted data. o '

CODE=BINARY inhibits any character translation on data transmitted or received.
Pragmatics

The {code statementy allows a programmer to either invoke or inhibit on a logical line the DCP ASCII-
to-EBCDIC character code translation for input, and the EBCDIC-to-ASCII character code translation
for output. Any <terminal definition) that names, in its (terminal control statement}.'a (control
deﬁnition) that utilizes the {code statement) . must define ASCII (BINARY) as its character code in
the {terminal code statementy. (Refer to the {terminal code statement) in this chapter.)

Once that translation has been invoked on a line, the translation continues until such time that it is
inhibited. 1f translation is inhibited, translation will be inhibited on that line until invoked again by any
of the following constructs: CODE=ASCII, TERMINATE NORMAL, TERMINATE LOGICALACK,
TERMINATE LOGICALACK(RETURN), TERMINATE ERROR, TERMINATE ENABLEINPUT, or
(while executing a Receive Request) TERMINATE NOINPUT. :

5-87

Dcfinitions
REQUEST

Compound Statement ' ‘ .

COMPOUND STATEMENT

Svyatax

BEGIN {

Example

s request statement & END - .

BEGIN

INITIATE TRANSMIT.
TRANSMIT TEXT.
FINISH TRANSMIT.
END.

Semantics

The (compound statenient} groups several statements together to form a logical sequence. To execute
more than one statement when the condition of an {if statement) is satisfied, a {compound statement)
must be used. : :

()

588

Definitions
REQUEST
‘Continue Statement

CONTINUE STATEMENT
Syntax

CONTINUE ' - I -

Semantics

The {continue statement) can appear in only those (request defzmtzon) s and <controI defi mtzon) s
written to communicate with full duplex terminal types. This statement causes the co-line to resume
processing, if, and only if, it had been suspended by a (wazt statement), ora (recezve statemem) with a
CONTINUE option specified. If the co-line had not been suspended, this statement acts as a no-op. The
(contmue statement) has no effect upon the line on which it was executed. . ,

Pragmatics

Refer to the (fork statement) pragmatics.

5-89

Definitions
REQUEST
Delay Statement

DELAY STATEMENT
Syntax

DELAY - (: w=(delay time) —) ' - .

Examples

DELAY (3 SEC).
DELAY (0).

Semantics

The {delay st‘atemem} provides a means to delay a specified period of time before control proceeds to the
next statement. The {request definition) is suspended in a “sleep” state for the (delay time) specified.

Pragmatics

The *‘sleep” state induced by the (delay statement) allows the DCP to service other logical lines.

5-90

((3

" Definitions
- REQUEST }
Error Switch Statement

ERROR SWITCH STATEMENT
Syutax
y -
ERROR— [—& (switch number y —am] —em = { ’P—»-BREAK ™ 1T {label > Lo .
- T\>BUFOVFL———— ~-ABORT—
—1\->-10SSOFCARRIER— | NULL
—/ T\~ PARITY ——————~
1\~ STOPBIT ———————|
T\ TIMEOUT —————o>
Examples
ERROR [0] = BREAK: 0, BUFOVFL: NULL, LOSSOFCARRIER: ABORT, PARITY: 999,
STOPBIT: 999. TIMEOUT: NULL. , ' ‘
ERROR |1| = BREAK: NULL.

' ERROR 1991 = BUFOVFL: NULL.
Semantics '

Tie (error switch statement) is a non-executable statement that allows thic programmer to define a set of
default actions that are to be taken in a {receive statement) if the specificd errors occur. (switch number)
has the syntactic form of (intcger>, The semantics of each option is described subsequently.

BREAK

The BREAK option variations cause the following actions if a break, that is, at least two character-times of
a spacing line condition, is detected by the adapter cluster while receiving:

BREAK: NULL causes no action. Execution proceeds as if the break did not occur. -

BREAK: (label) sets TRUE the {bit variablcy BREAK [RECEIVE], and branches
control to {label). . _
BREAK: ABORT - sets TRUE the <bit variable) BREAK [RECEIVE], and executes an
_ ~ implicit TERMINATE ERROR. ' '
BUFOVFL
The BUFOVFL option variations cause the following actions if the DCP is unable to service a Cluster
Attention Needed (CAN) interrupt before the adapter cluster receives another character (thus destroying
the previous character): . ' _ A A
BUFOVFL: NULL causes no action. Execution proceeds as if the error conditions did not
' occur. » _ ' v
BUFOVFL: {label) s<ets TRUE the (bit variabley BUFOVFL, and branches control to
label). ,

5-91

Definitions
REQUEST
_Error Switch Statcment — Continued

BUFOVFL: ABORT scts TRUE the (bit variabley BUFOVFL, and executes an implicit
TERMINATE ERROR. o

LOSSOFCARRIER

The LOSSOFCARRIER option variations causc the following actions if a loss of catrier is detected while
receiving. :

| .
LOSSOFCARRIER: NULL causes no action. Execution proceeds as if the error did not occur.

LOSSOFCARRIER: (label) scts TRUE the {bit variable) LOSSOFCARRIER, and branches
control to {label) . . '

LOSSOFCARRIER: ABORT scts TRUE the {bit variable) LOSSOFCARRIER, und executes an
implicit TERMINATE ERROR.

There is one exception to the actions described in the above. If a loss of carrier is detected while receiving,
and if the terminal is modem-connect, and if the terminal’s (station de_ﬁm'tion) references a (modem
definition) that contains the statement LOSSOFCARRIER=DISCONNECT, then an implicit disconnect is
done, regardless of the action associated with LOSSOFCARRIER in the {error action statement) .

PARITY

The PARITY option variations causc the following actions if a parity bit error is detected by the adapter
cluster: ' '

PARITY: NULL causes no action. Exccution proceeds as if the error did not occur.

PARITY: (lubel) scts TRUE the <bit variabley PARITY, and branches control to
(Ia[wl) .
PARITY: ABORT sets TRUE the {bit variabley PARITY, and executes a TERMINATE
 ERROR.
STOPBIT

The STOPBIT option variations cause the following actions if a stop bit error is detected by the adapter
cluster:

STOPBIT: NULL causes no action. Execution proceeds as if the error did not occur.

STOPBIT: (label) sets TRUE the (bit variabley STOPBIT, and branches control to
{label) . | |
STOPBIT: ABORT sets TRUE the {bit variable) STOPBIT, and executes a TERMINATE
ERROR. '
TIMEOUT

The TIMEOUT option variations of the TIMEOUT syntax shown below cause the actions described if the
time required to receive a character exceeds the (timeout time . The (timeout time) is defined in the
(terminal timeout statement) , but can be overridden by including the (.,<timeout time))or (NULL)
syntax options in the {receive statement) . ‘

TIMEOUT: NULL causes no action. Execution proceeds as if the error did not occur.
TIMEOUT: (label) szts TR>UE the {bit variabley TIMEOUT, and branches control to
lubel) . '

{)

o) ‘Definitions
: | B ~° REQUEST
| - o | Error Switch Statement — Continued
e TIMEOUT: ABORT sets TRUE the (bit variable) TlMEOUT, and executes a TERMINATE
v - ERROR.
Pragmatics

An (error switch statement) must be associated with a (receive statement) by means of a {switch number)
refercnce before any of the default actions are invoked. The (error switch statemem) can appear in a ,
(request definition} as many times as the programmer deems convenient, providing the followii.g restric-
tion is adhered to: within a given {request definitior.), {error switch statement)s must have a uniqu-
(switch number} , and all (error switch statemem) s must precede all executable statements,in the
procedure. _ ' :

5-93

Definitions
- REQUEST
Fetch Statement

FETCH STATEMENT
Syntax

FETCH v ’ N
L[' ‘ = label) ‘]—1

LENDOFBUFFER-—: T ‘ -NULLj

Examples

FETCH.
FETCH [10].
~ FETCH [ENDOFBUFFER:NULL].
Semantics’ ' .
The execution ot the (fetch'statement) loads into CHARACTER, the character pointed to by the message
text pointer and updates the pointer to point forward one character position.

When using the (fetch statement)', provision should be made for taking action if the end-of-the-text buffer
is encountered. The programmer can specify this action by including the optional syntax shown in the
syntax diagram. : :

NULL specifies that no action should be taken. _
(label) specifies that control should branch to (label)) if the end of buffer is encountered.

If the end of buffer is encouniered and no action is specified, an implicit TERMINATE ERROR is
executed.

For program documentation, the ENDOFBUFFER syntax can be added to the error action
specification. ,

Supplementary Example

INITIATE TRANSMIT.

3: FETCH [ENDOFBUFFER:S5].
TRANSMIT CHAR.
GO TO 3.

5: FINISH TRANSMIT.

5-94

()

(()

Definitions.
REQUEST
Finish Statement

FINISH STATEMENT
Syntax

FINISH ——#TRANSMIT — ' .
| I_,(_—--—-—.-‘ NULL

= (delay time }——t

Examples

FINISH TRANSMIT. -
FINISH TRANSMIT (NULL).
FINISH TRANSMIT (3 SEC).

Semantics

The purpose of the {ﬁnish statement} is to take a line out of the transmit ready state and prepare the line
to receiveé information. The adapter cluster delays a period of time long enough for the last character '
TRANSMITted to be transmitted, plus 2 milliseconds, before the line is put in a receive ready state. Al-
though the ('finish statement) puts the line in a receive ready state, the cluster hardware invokes a delay
that inhibits any data from being received for 25 milliseconds. An INITIATE RECEIVE construct should
precede any subsequent {recetve statement} to override the 25-m11hsecond hardware delay

The {delay tzme} optxon allows the programmer to specify a software delay of (ttme) before execution
proceeds in the (control defil mt:on)))

For example, the statement
'FINISH TRANSMIT (3 SEC).
is equivalent to

FINISH TRANSMIT.
DELAY (3 SEC).

The FINISH TRANSMIT (NULL) form is equivalent to FINISH TRANSMIT.

5-95

Dcfinitions
REQUEST
Fork Statement

FORK STATEMENT
Syntax.
FORK ' —(label Y— — —
Example
FORK 10.
Semantics .
. The (,rbrk sfaf(’nwm) is allowed in only those (confrol deﬁnition)s and (request definition)s _ :
that are written to communicate with full duplex terminal types. This statement can be executed in the
(ontrol dqﬁnition) or (reqm’sr dvﬁni/ion} of the auxiliary line or the primary linc. The execution of
this statement causes the co-line control. if not busy, to branch to and begin executing code in the (requ’est
definition) that executes the FORK at the <Iabel} specified, while control on the FORKing line exccutes
an implicit PAUSE (i.c.. a {pause statemem))vand continucs executing in parallel. The co-line is deter-
mincd busy or not busy by testing the BUSY bit (i.c.. LINE(BUSY) or AUX(LINE(BUSY)), whichever is
appropriate). 1f the co-line is busy. the {fork statement) acts as a no-op. '
Pragmatics o
Synchronization problems can occur between the primary and auxiliary lines as a result of ‘the (fork M

statement) executing the implicit PAUSE. The implicit PAUSE yields use of the DCP, to allow processing to
to-proceed on other lines. Thus. processing on the co-line is actually started before the FORKing line '
cxits the (fork statement). As a result, the programmer must, by some means (e.g., by setting and testing

line TOGs). effect the synchronization of the lines. This is especially critical if the code contains {wait
statemem)s and (continue smtemen}t}s. The following example illustrates how full duplex lines could

“hang" as a result of poor synchronization. ' -

FORK 10.
WAIT.

10: CONTINUE.
WAIT.

Assume that the primary line executes the FORK 10. At that point, the primary line temporarily yields

use of the DCP to other lines. The auxiliary line starts up and executes the CONTINUE. Since primary

control is still at the (fork statemenr) and isnotina (wait statement) , the auxiliary line CONTINUE acts

as a no-op. Next. the auxiliary line executes the WAIT. When the primary line gets use of the processor

again, it executes its WAIT. At this point, the primary and auxiliary lines are “hung”; each WAITing for a -
CONTINUE from its co-line. ' -

5-96

Defi'niti(‘):nsl)
- REQUEST
Getspace Statement

GETSPACE STATEMENT
Syntax

GETSPACE -[> label — -

Example
GETSPACE [10]
Semantics

The (getspace statement) provides the means for a Receive Request to explicitly acquire a message space
for input. The message space (if obtained) is linked into the head of the Station Queue, thereby setting
STATION (QUEUED) to TRUE. If there is no message space available at the time the (getspace
statement) is executed, control branches to the (Iabel). If a message space has already been acquired, this
instruction acts as a no-op. This statement is also treated as a no-op if it appears in a Transmit Request.

597

Definitions
REQUEST
Go To Statement | .

GO TO STATEMENT

Syntax

GO »-(label) ‘ v A -
LTO —T — 3 <@

{byte variable) - { o {label) . >)

L.

Examples
GO 10.
GO TO 10.
GO TO TOGS, (0,1,2,3).
GO TO STATION (5,9,12),

Semantics

The {go to statement} alters the path of control, that is, the sequential flow of statement execution,
within a (request definition).

GO TO (label) ,
This forn of the (go to statement) unconditionally transfers control to the (label} specified.
GO TO (byte variablc) . . .

()

This form of the (go to statemenl> provides a convenient means of dynamically selecting one or more
{label) s to which control could branch. The {label) to branch to is selected by using the {byte variable)
as an index value. I N represents the number of (Iabel)s in the (go to statement), then the (Iabel)s are
numbered O to N-1. The {label) corresponding to the index value is the {label) to which control branches.
If the index value is greater than N-1, then control continues at the statement following the (go to '
Statement) .

Supplementary Example

GO TO STATION (5,9,12).
% EXECUTION CONTINUES HERE IF STATION >2.

5: TOG 0] = TRUE.
9: TOG [1] = TRUE.

12: TOG [2] = TRUE.

o

5-98

«

(

~ Definitions
_ REQUEST
Go To Statement — Continued

This example illustrates the GO TO < byte variable) construct of the {go to statement). The value of
STATION determines the next statement to be executed. If the value of STATION is 0, control branches
to the {label) S; if the value of STATION is 1, control branches to (label) 9; and if the value of STATION -
is 2, control branches to {label) 12. If the value of STATION is greater than 2, control continues at the
next sequential statement. : o

5-99

. Definitions
4 REQUEST
_ If Statement

“iF STATEMENT

Ty

o .

IF >TRUE- ‘ ' - THEN ' —
[NOT] le- F ALSE —— . , L.(rcquest stateme nI)J L ELSE -&={request slatemenr)J

s hit variabicye!

b= (B 1¢ variable) -+ LSS »=(hyte variable)

- (intteger) ————ai Lo LEQ #5| Lo=(integer)————of

o (single character)-wl o= EQL-»| La=(single charauer)-J

o= N EQ -H
- GEQ=
Lo~ GTR -+
Examples
IF TRUE THEN.

IF TOG [0] THEN TOG {0] = FALSE. -
IF TALLY [0] LSS TALLY [1] THEN TALLY [0] = TALLY 1.
IF CHARACTER = 4“FF*“ THEN - :
'INITIATE BREAK.
ELSE
BEGIN
CHAR = 4“00".
GO TO 0.
END.

Semantics

e

The (1f Statement) causes a’ condttton (i.e., a Boolean expressmn) to be evaluated. The subsequent path

of program control depends on whether the condition is evaluated as TRUE or FALSE.

If the condition is TRUE, the { request statement) followmg the THBN if present is executed Program
control then resumes at the statement that follows the {if statement)

If the condition is FALSE, the (request statement) followmg the ELSE is executed or, if the ELSE
request statement) is omntted program control resumes at the (request statement) followmg the
If statement). , ,

The (request statement) can be any legal (request statement) mcludmg the (tf statement) and
(compound statement).

The meanmgs of the relational operators are contamed in table 5-5

The following diagrams illustrate the a_bove semantlcs. :

5100

Definitions

REQUEST
o If Statement — Continued
-
Now
The following diagrams illustrate the above semantics.
TRUE
IF {condition} THEN (request statement (request statement)
| FALSE ~
——TRUE |
IF {condition } THEN (request statement) ELSE (request statement ~ (request statement
FALSE | ' o
S ' Table 5-5. ‘Relational Operators
| — '
RELATIONAL OPERATOR MEANING SYNONYMS
~ LSS LesS than < and LS
LEQ Less than or LE
equal to '
EQL . Equal to = and EQ
NEQ Not equal to " NE
GEQ Greater than . GE
‘or equal to .
‘ GTR Greater than > and GT |
L
N

5-101

A Definitions ' _ -
REQUEST

Increment Statement

INCREMENT STATEMENT

Syntax
INCREMENT E TRAN = .
SEQUENCE - '
l—b [+NU LL‘j—-’]
- LSEQERR——-D: —-1 ——»(label)
Examples
INCREMENT TRAN.

INCREMENT SEQUENCE [SEQERR:10].
INCREMENT SEQUENCE [NULL].

Semantics
INCREMENT TRAN

This construct of the {ncrement statementy is only allowed in those ({request definitiony s in the
terminal request statementy s of (terminal definition s that contain a_ {terminal transmission number
length statcnwnl) defining the transmission number-length as nonzero and non-NULL.

INCREMENT TRAN causes | to be added to the receive transmission number stored in the Station
Table when it is exccuted in a Receive Request, and causes 1 to be added to the transmit transmission
number stored in the Station Table when it is executed in a Transmit Request.

The transmission numbers are stored and incremented in EBCDIC.

If INCREMENT TRAN causes the transmission number to exceed (overflow) the size of the transmission
number field, the carry is truncated and the result will be zeros (i.e., EBCDIC zeros) in that field.

INCREMENT SEQUENCE

This construct causes the sequence number stored in the DCP Station Table to be increased by the value
of the increment (also stored in the DCP Station Table), providing that the station is in “sequence
mode”’; otherwise, this statement is a no-op.

When using the INCREMENT SEQUENCE construct, provision should be made for taking action if the
increment caused the sequence number to exceed (overflow) the size of the sequence number field. The
programmer can take such action by including the optional syntax. Failure to include overflow action
results in an implicit TERMINATE ERROR if an overflow occurs.

SEQERR:NULL and NULL are semantically equivalent. These options set the SEQERR (bit variable')
TRUE, and control continues at the next sequential instruction.

SEQERR: {label) and (label)are semantically equivalent. They cause the SEQERR (bit variable) to be
set TRUE, and control to branch to {label).

Regardless of whether error action is specified or not, an overflow of the sequence number field destroys
the contents of that tield. : '

5-102

Definitions
REQUEST

Increment Statement — Continued

Pragmatics

A station is considered to be in sequence mode whenever its SEQUENCE (blt varzable) is TRUE.
SEQUENCE can be sct TRUE only as a result of the Mcssage Control System (MCS) executing the SET/
RESET SEQUENCE MODE (TYPE =49) DCWRITE. In addition, the TYPE 49 DCWRITE also stores
the starting scquence number and increment in the appropriate ficlds of the DCP Station Table.

Sequence mode can be used for any application that the NDL programmer may see fit. Its use, however,
requircs common conventions between the NDL programmer and the MCS programmer. Burroughs

has utilized sequence mode constructs in two {request defi mtton}s of SYMBOL/SOURCENDL:

. READTELETYPE and WRITETELETYPE. Both require the cooperation of SYSTEM/CANDE to effect
the execution of those statements. - The reader is referred to those (request defi mtlon)s as an example
of a particular application that Burroughs has implemented.

5-103

Definitions
REQUEST

Initialize Statement , _ -

N’
o
INITIALIZE STATEMENT
Syntax
INITIALIZE - BCC -) ——
= CRC : -
= RETRY : — , o
P TEXT —
- »TRAN . - ' 7
‘ > <
& TALLY —& [———=(tally number) > | f
L——TOG [& (toggle number e |
Examples '
INITIALIZE BCC.
INITIALIZE CRC.
INITIALIZE RETRY.
. e/
Semantics N
INITIALIZE BCC
This construct causcs the (byte variable) BCC to be initialized for purposes of accumulating a Block Check
Character. The value to which BCC is initialized is dependent upon the horizontal parity defined for the
station’s associated (rerminal deﬁnition) (in the (rerminal definition parity statemenr)). If horizontal
parity is defined as HORIZONTAL:ODD, then BCC is initialized to all ones (i.e., 4“FF”’). If defined as
HORIZONTAL:EVEN, then INITIALIZE BCC initializes BCC to all zeros (i.e., 4°00).
INITIALIZE CRC
This instruction initializes CRC to the initial value required for calculating the Cyclic Redundancy Check.
Any (terminal definition) referencing a (request definition) (in the (terminal request statement))
that contains this instruction must define the horizontal parity (in the {terminal parity Statement)) as
HORIZONTAL:CRC(16); otherwise a syntax error is generated.
INITIALIZE RETRY ,
This instruction causes the value stored in DCP INITIALRETRY to be stored DCP RETRY.
INITIALIZE TEXT '
The function of this form is to initialize the message text pointer to zero. When initialized to zero, the
message text pointer points to the Afirst text character of the message. : '
N/

5-104

Deﬁnitiohs
REQUEST

" Initialize Statement - Continued

INITIALIZE TRAN

This form causes zeroes (i.e., EBCDIC zeroes, 4“FOFOF0”) to be stored in the appropriate Transmission’
Number fields of the Station Table. In a Receive Request, zeroes are stored in the Receive Transmission
Number field; in a Transmit Request, zeroes are stored in the Transmit Transmission Number field.

INITIALIZE TALLY ([{tally number)]

This form causes the specified station TALLY to be initialized from the appropriate message header field
if a message is present; otherwise the specified TALLY is initialized to zero.

INITIALIZE TOG [(toggle number)]

This form causes the specified station TOGGLE to be initialized from the appropriate message field it
a message is present; otherwise the specified TOGGLE is initialized FALSE.

5-105

Dcl"initioné
REQUEST

Initiate Statement

INITIATE STATEMENT
Syntax

INITIATE ———— RECEIVE ‘ A T -
| -——»—TRANSMIT-———j' L&(-————»NULL =) |

L—w-(delay time)--—-f

——> BREAK

. Examples

INITIATE RECEIVE.
INITIATE TRANSMIT (3 SEC).
INITIATE BREAK.

Semantics
INITIATE RECEIVE

The INITIATE RECEIVE construct causes the adapter cluster to initiate a receive delay calculated for the
station. After the delay, the l\ardware is ready to receive information.

The amount of time delayed rcferred to as the Initiate Receive delay, is unique to each station and is.
calculated at compile-time for each station. The algorithm that the compiler uses to calculate the Initiate
Receive delay is described in the following three paragraphs.

a. If the (modem definition referenced in the (station definition) (in the (station modem statemen)
defines the modem NOISEDELAY as being greater than zero, then the Initiate Receive delay is
2 milliseconds less than the combined (tim: c}s defined in the {modem noisedelay statemer:t) and
the (modem transmitdelay statement).

b. If the modem NOISEDELAY is defined as zero and the modem TRANSMITDELAY is defined as
bemg. less than 7 mlllmconds then the Initiate Receive delay i is zero.

c. If the modem NOISEDELAY is defined as zero and tlle modem TRANSMITDELAY is defined as
being equal to or greater than 7 milliseconds, then the [mtlate Receive delay is the lesser of 15
milliseconds or
(1.5 milliseconds + modem TRAI;ISMITDELAY).

The NULL option or the {delay tzme) option can be used to override the calculated Initiate Receive delay
NULL immcdiately readies the hardware so that it can receive information. (delay tim: e) specifies a (tzme\
to be used in place of the Initiate Receive delay.

Pragmatics l

An INITIATE RECEIVE instruction should precede the first <recezve statement} followmg a transmission.
If it does not, there is a possibility that execution of the (receive statement) will be delayed for a period -
of time of up to 25 milliseconds. The cause of the 25-millisecond delay is described under the semantics
of the (finish statement).

5-106

'.-w P I ' l)ci'iniiions'
i ‘ " REQUEST

Initiate Transmit

INITIATE TRANSMIT

The INITIATE TRANSMITconstruct causes thdadapté?clustcr to be ﬁut in a transmit state after a calcu-
lated delay. The amount of time delayed is referred to as the Initiate Transmit Delay, and is unique to
each station. It is derived by taking the greater of the NOISEDELAY (time) specified for the modem

configured at the system end, or the TURNAROUND (time) specified by the station’s {terminal
definition) . : ,

This construct must be executed'prior to any attempt to TRANSMIT.

The NULL option or the {(delay time) option can be used to override the calculated Initiate Transmit
delay. NULL causes the adapter cluster to be put in a transmit state immediately. (delayjime} specifies
a (time) to be used in place of the Injtiate Transmit delay. :

INITIATE BREAK

The INITIATE BREAK construct causes binary zeroes to be transmitted on the line, thus changing the
state of the line to a “spacing” condition. The line remains in the spacing condition until some subsequent
instruction causes the adapter: cluster to change the state of the line. Constructs that would change the
line’s state are INITIATE TRANSMIT, INITIATE RECEIVE, FINISH TRANSMIT, BREAK and IDLE.

5-107

Definitions
REQUEST

Pause Statement

PAUSE STATEMENT.
Syntax

PAUSE R : .

Semantics

The {pause statement) suspends the {request definition) in a “sleep” state for a minimum period of

time (200 microseconds for the B 6358 Model II DCP, and 6 microseconds for the B 6350 Model I DCP)’

to allow the DCP to service other lines. It is recommended that a (pause statement) be used in any kind
of loop that would tie up processor time and thereby prevent the servicing of other lines. The failure to
do so results in a high number of timeout faults.

'Pragmatics

Instances may occur in which the DCP requires an even greater period of “sleep’ to service other lines.

Repeated timeout faults, despite utilization of the (pause statement), are indications of such conditions

A greater period of “sleep’™ time can be cffected by means of a (delay statcr‘nent}, with the (dela,v fimc}
specified greater than “sleep” time cffected by the (pause statcmcnt).

5--108

(¢

RECEIVE STATEMENT
Syntax

RECEIVE T == = o oo egpes
L(NULL - - == j

I: L r)
dimeout time):

Examples
RECEIVE.

»Al)l)klrss-lz- e e b
(I: RECEIVE T)
TRANSMIT

1=BCC

¥

]

> CHARACTER

= CRC

= TEXT
> TRAN

Lo> (string)

RECEIVE CHARACTER.
RECEIVE (3 SEC) ADDRESS (RECEIVE) [0, ADDERR: 10]

RECEIVE (NULL) [

PARITY:999,
LOSSOFCARRIER:999,
BACKSPACE:NULL,
END,

WRU:NULL

1.
RECEIVE CRC [ERROR [1], CRCERR:10].
RECEIVE “LITERAL STRING” [FORMATERR:NULL].

RECEIVE EOT SOH.

RECEIVE TEXT [END:10].

Definitions
REQUEST

Receive Statement

L | e . J :
{ lfl\[ERROR-»[-—Qwildi hu»xhw)-o-] ———t]—o -

(switch ber)

/

L= ADDERR
L~ BACKSPACE ———»
-~ BCCERR —————=

= BREAK ———————~

- BUFOVFL———

& CRCERR —————
M= END ——————

L= ENDOFBUFFER —

> LINEDELETE ——
>~ LOSSOFCARRIER -+~
L PARITY —————

> TRANERR -

- CONTINUE ——
" = CONTROL ————{

-~ FORMATERR —{

o STOPBIT ————]

Lo (single 4-Imrach'r)—&j

(lahcl)
- NULL
ABOR

e TIMEOUT ————— .

5-109

Definitions
REQUEST
Receive Statement — Continued

Semantics

The {receive ctalemwn) causes the adapter cluster to attempt to receive information from thc approprlate N

logical line.

The following two syntax items define a maximum amount of time that the adapter cluster should wait
for receipt of the first character, and then cach subsumcnt character, ift applicable, before assuming that
the terminal has “timed out.” If neither of these options is included, the zlnn(om thirey defined

(in the {terminal timeout statcnu'nt)) for the station’s associated terminal type is unphutly uscd as

the {timeout time) in this statement,

(NULL)
This option specifies that the adapter cluster should wait an infinite amou’nt of time.
({timeout time)) | '

The {timeout time) defines a (ume} that the adapter cluster should wait for a character. If this (time)
is exceeded before receipt of a character, and the TIMEQUT syntax appears, then the action specified for
TIMEOUT is taken (refer to TIMEOUT). If the (ttmeout tzme> is exceeded and T[MEOUT syntax

does not appear, an implicit TERMINATE ERROR is executed. :

The following syntax options define the nature of the information to be received, the amount of
information to be reccived, and how the information is to be handled. If none of the options are used, it
is semantically equivalent to specifying CHARACTER (e.g., “RECEIVE.” is semantically equivalent to
“RECEIVE CHARACTER.™). ' S :

N ADDRESS

The proper number oI address characters (as ddlnu! by the qtatlon s assouatcd <rermmal def nition

in the (Iennmal address size statemcnt)) are received and checked for agreement against the actual -

address characters defined in the {station address statement} If the address characters do not correspond,
an address error condition results; if the ADDERR syntax appears, then the specified action is taken. Other-
wise an implicit TERMINATE ERROR is executed. (Refer to the ADDERR semantics.)

ADDRESS (RECEIVE)

This optldn is equivalent to ADDRESS, except that ADDRESS (RECEIVE) must be used when an address
pair is defined in the (station address statement) and the programmer needs to check for the proper
receive address.

ADDRESS (TRANSMIT)

This option is equivalent to ADDRESS except that ADDRESS (T RANSM]T) must be used when an
address pair is defined in the (station address statement} and the programmer needs to check for the proper
transmit address.

BCC

One character is received and checked against the (byte variabley BCC. If the character received and
BCC are not equal, a Block Check Character error condition results; if the BCCERR syntax appears,
then the specified action is taken. Otherwise an implicit TERMINATE ERROR is executed.

Presumably, if the ‘RECEIVE BCC construct appears, the programmer has defined horizontal parity in
the (terminal parity statement) , and the accumulated: Block Check Character is contained in BCC.

5-110

(C

(¢

. »Deﬁnitions :
REQUEST

Receive Statement - Centinued

CHARACTER
One chaructcr is received and stored in CHARACT ER.
CRC

\

Two characters are received. The first character is checked against. CRC [0], and the second compared
against CRC [1]. If the characters reccived and CRC arc not equal, a Cyclic Redundancy Check error |
condition results; if thc CRCERR syntax appears then specified action is taken. Otherwise an 1mphc1t

TERMINATE ERROR is executed.

Presumably, if .the RECEIVE CRC instruction appears, the programmier has defined hotizontal parity
as HORIZONTAL:CRC(16) in the (termznal parity: statement) and the Cyclic Redundancy Check is
contained in CRC [0] and CRC [1]. _ ‘ o

TEXT

Characters are received into CHARACTER and stored in the text portlon of the message space obtamed
until either a syntax option results in a branch from the (receive statement} or a non-recoverable error,
such as a disconnect, occurs. If the occurrence of a particular character results in a branch outside of the
(receive statement) (as specified by a syntax’ optnon), then that character is not stored but remains in
CHARACTER. -

The RECEIVE TEXT construct 1s in effect the same as the followmg loop:

1: RECEIVE CHARACTER.
STORL CHARACTER.
GO 'I'() 1.

In ncarly all cases, the <re ceive vtatemcnt> should contain optronal syntax to dVOld the “endless” loop
and an eventual nnphcrt TERMINATE ERROR as a result of a tlmeout end-of-buf fer condition, etc.

TRAN

The proper number of transmission number characters (as defined by the station’s associated (terminal
definition) in the {terminal transmission number length statement}) are received and checked for agree-
ment with the Receive Transmission Number maintained in the DCP Station ‘Table. If the characters
received and the Receive Transmission Number are not equal, a transmission number error results." If the
TRANERR syntax appears, then specrﬁed actron is taken; otherwme an 1mplrc1t TERMINATE ERROR
is executed.

(string)

The number of characters as indicated by the length of the (strmg} are received and checked against thosr
characters in tie (strmg} If the (strzng} and the characters received are not equal, then a format error

- condition results. If the FORMATERR 'syntax option appears, then that action 1s taken otherwise an

implicit TERMINATE ERROR is executed.

The following syntax optlons spemfy actions to be taken upon either the recerpt of defmed characters
or occurrences of specific error condrtlons ' : :

5111

Definitions -
REQUEST _
Receive Statement — Continued

ERROR [{switch number) |

This syntax option associates a previously defined Error Switch with the {receive statementy. This allows -
the programmcr to associate a sct of previously defined crror actions with the <I CCeie vtafcm(nty, thus
reducing the amount of coding requirced for each (r(’c eive statement). BREAK, BUFOVFL,
LOSSOFCARRIER, PARITY, STOPBIT, and TIMEQUT syntax options are not allowed if the ERROR
[(cwn‘c h number}] syntax appears in the (recewe statemcnt) Refer to the (ormr switch statement)

for more information. :

(switch number)
Semantically equivalent to ERROR [(switch numbery | .
ADDERR

The ADDERR optnon variations cause the followmg actions 1f an address error is detcct* d when an attempt
is made to receive a terminal’s address characters

ADDERR : : o ,sets TRUE the ADDERR (bit varzable>. and
‘ branches control to the next sequentral
statement. v
ADDERR:NULL ' causes no action. Execution proceeds as if the
' . o - error condition did not occur.
ADDERR: {label) " sots TRUE the ADDERR (hit rariablc) and
: A , : “branches control to (lu/u'>
ADDERR:ABORT . not allowed.
BACKSPACE |

The following BACKSPACE option variations causc the‘ following actions if the terminal’s backspace
character (as defined by the (termina_l backspace character statement)) is received:

BACKSPACE _ ' moves the message text pointer backwards one
‘ : character position, and branches control to the -
next sequentlal statement

- BACKSPACE:NULL _ | " moves the message text pointer backwards one
.character. Control remains within the (recez ve
statement) if of the form RECEIVE TEXT.

BACKSPACE: {label) ' moves the message text pointer backwards one
, : C character and branches control to (Iabel)
BACKSPACE:ABORT | B not allowed.
BCCERR |

The following BCCERR option variations cause the followmg actrons if the character received is. not equal to
the data stored in BCC. A

BCCERR | : sets TRUE the (bzt variable, BCCERR, and
, ' ‘ : branches control to the next sequential
. statement. '
BCCERR:NULL ' S ~ causes no action. Execution proc‘eedsb as if the

error condition did not occur.

5-112

BCCERR: (label)

BCCERR:ABORT
BREAK

l)cﬁnitiuns_
REQUEST ‘
Receive Statement — Continued

sets TRUE the (bzt variable) BCCERR and
branches control to {label).

not alloweds

The BREAK option variations cause the following actions as if a break, that i is, at least two character-times
ofa spacmg line condltlon, is detected by the adapter cluster whlle receiving:

BREAK

BREAK:NULL
- BREAK: (label)

BREAK:ABORT

. BUFOVFL

sets TRUE the {bit vartable} BREAK
[RECEIVE], and branches control to the next
scqucntlal statement. :

causes no action. Execution proceeds as if the
break did not occur.

sets TRUE the (blt varzable) BREAK
[RECEIVE], and brariches control to (label).

sets TRUE the (bit variabley BREAK

[RECEIVE], and.executes an.implicit

’ TERMINATE ERROR.

The following vanatlorrs of the BUFOVFL option cause the followmg-actrons if the DCP' is unable to service
a Cluster Attention Needed (CAN) mterrupt before the Adapter Cluster receives another character (thus

destroying the previous character)
BUFOVFL
BUFOVFL:NULL
BUFOVFL: (label)
. BUFOVFL:ABORT

CONTINUE

sets TRUE the {bit varz'able) BUFOVFL, and
branches control to the next sequential

- statement.

causes no action. Execution proceeds as if the

- error condi’tion did not occur.

sets TRUE the (bit variable) BUFOVFL, and
branches control to {label).

sets TRUE the (bit variable) BUFOVFL, and

: executes an lmphcrt TERMINATE ERROR

This item is allowed only in (recewe statement)s of {control def“ mtzon)s and (request defi mtzon)s that are
written to communicate with full duplex terminal types. CONTINUE syntax causes action as described -
below if the co-line executes a (connnue statement} before all mformatron specxﬁed by the (recelve

statement) is received.
CONTINUE

CONTINUE:NULL

CONTINUE: {label)
CONTINUE:ABORT"

" not allowed..

branches control to the next sequentxal
statement

causes no action. Executlon proceeds as if the
{continue statement) had not been executed.

branches control to (label).

o 5-113 -

Definitions
REQUEST

Receive Statement — Continued

CONTROL

The tollowing variations of the CONTROL option cause the following actions il the control character of
the station (as detined in the (.s'lali(m control character .s'lalcm('nI)) is received: -

CONTROL

CONTROL:NULL

CONTROL: (label)

CONTROL:ABORT
CRCERR

scts TRUE the (bit variabley CONTROLFLAG,
and branches control to the next sequentlal
statement

sets TRUE the (bit variable> CONTROL FLAG,
and execution continues if the character was
not the station’s control character

sets TRUE the (bit varzable} CONTROLFLAG,
and branches control to {label). :

not allowed.

The following variations of the CRCERR option cause the following actions if the first character received
~ does not equal CRC [0], or the second character received does not equal CRC [1].
(This item is appropriate only for the RECEIVE CRC construct of the (recezve statement) refer to the

CRC option.)
CRCERR

CRCERR:NULL
'CRCERR: (label)

CRCERR:ABORT
END - '

sets TRUE the (bit variabldy CRCERR, and
br’anche's-con'trol-‘to‘t’licncxt eequéntial statement.

-cause no action. Execution proceeds as if the

error dxd not occurr:

sets TRUE the {bit variable) CRCERR, and

branches control to (label)

not allowed.

The following variations of the END option cause the following actions if the “end” character of the

station (as defined by the
END
END:NULL

END: (label)
END:ABORT

5-114

étermi'nal end character statement). in the (terminal definition) associated
with the station) is received: o - g : :

causes control to branch to the next sequential
statement.

~ causes no.action.- Execution proceeds as if the

character was not the “end” charactér.

~ branches control to (label).

not allowed.

e’/

Deﬁnitions

_ REQUEST
Receive Statcmen — Continued

ENDOFBUFFER

This syntax item is allowed in the RECE]VE TEXT contruct of lhc (reccive statement)y . The variations of
the ENDOFBUFFER option shown below cause the following actions if cither of the following comhllons
arises:

a. There is no message space and an attcmpt is madc to storc information into a message
space (the store function is an implicit action of the RECEIVE TEXT construct), or

' b. The number of characters stored in the message exceeds the maximum allowed (the
maximum is defined by either the (termmal maxmput statement> or the (termznal
buffer size statement)). : :

ENDOFBUFFER : - sets TRUE the (bn‘ variable) ENDOFBUFFER
’ ' and branches control to the next sequentxal
| ‘ statement. o : :
ENDOFBUFFER:NULL causes no action. Execution procecds as if the
error did not occur. . .
ENDOFBUFFER: (label) scts TRUE the <blt variable) ENDOFBUFFER
. ‘ . and branches control to {label). _
ENDOFBUFFER:ABORT ~not allowed.
FORMATERR

The following variations of the FORMATERR optlon cause the following actions if thc characters rcu‘lvcd
are not cqual to thosc in the (strmg) (this item is appropnatc only for the RECEIVE (strmg) construct
of the (receire statement)): .

FORMATERR V ' | sets TRUE the <bll varzable) FORMATERR
and branches control to the next sequennal
. , statement. : , :
FORMATERR:NULL © causes no action. Execution proceeds as if the
: error did not occur.
FORMATERR: (label) sets TRUE the (it variabley FORMATERR,
- and branches control to {label).
FORMATERR:ABORT | not allowed. '
LINEDELETE e | ‘

The following variations of the LINE DELETE option cause the following actions if the station’s
linedelete character is received (the LINEDELE'I'E character is defined by the (termmal Imedelete
character statement)): _ , . P
LINEDELETE - - 1 ’ alters the value of thc message'text pointer to
_ - . point to the first character posrtlon in the message
text, and branches control to the next sequential
statement. ,

LINEDELETE:NULL o _ alters the value of the message text pointer to
o : = , point to the first character position in the message
text, and execution proceeds as if the character
Was not the lmedelete character :

5-115

Definitions
REQUEST
Receive Statement — Continued

LINEDELETE: (label)

LINEDELETE:ABORT
LOSSOFCARRIER

alters the valuc of the message text pointer to
point:to the first character position in the message

-text, and branches control to (Iabel}.

not allowced.

The tol!owmg variations of the LOSSOFCARRIER syntax cause the lollowmg, actlons if a loss of carrier

is detected while rccuvmg
LOSSOFCARRIER
LOSSOFCARRIER:NULL
LOSSOFCARRIER: {label)

LOSSOFCARRIER:ABORT

sets TRUE the {bit variable) LOSSOFCARR]ER,
and branches control to the next sequential
statement.

causes no action. Execution proceeds as if the
error did not occur.

sets TRUE the (bit variable) LOSSOFCARRIER
and branches control to (label).

sets TRUE the (bit variabley LOSSOFCARRIER,
and executes an implicit TERMINATE ERROR.

There is one exception to the actions described above. If a loss of carrier is detected while receiving, and
if the terminal is modem-connect, and if the terminal’s (statzon defmztzon} references a (modem defmmon)
that contains the construct LOSSOFCARRIER"DISCONNECT then an implicit disconnect is done,

regardless of the action specified.

PARITY

The following variations of the PARITY optxon cause the f ollowmg, actions if a parity bit error is detectc,d

by the adapter cluster:
PARITY
PARITY:NULL
PARITY: (label)
PARITY:ABORT

STOPBIT

sets TRUE the sbit variable) PARITY, and
branches control to the next sequential state-
ment. '

causes no action. Execution proceeds as if the
error did not occur.

sets TRUE the {pit variable) PARlTY and
branches control to {label).

sets TRUE the {bit variable) PARITY, and
executes a TERMINATE ERROR.

The following variations of the PARITY optlon cause the described actions if a stop bit error is detected

by the adapter cluster:
STOPBIT

STOPBIT:NULL

5-116

sets TRUE the (bit variable) , and branches control
to the next sequential statement.

causes no action. Execution proceeds as if the

- error did not occur.

\—
-

. e : . . B Definitions
' ~ REQUEST
Receive S_tatement -- Continued

STOPBIT: (label) . sets TRUE the {bit variabic) STOPBIT, and
| : . branches control to {label).
STOPBIT:ABORT | sets TRUE the {bit variabley STOPBIT, and

. executes a TERMINATE ERROR.

TIMEOUT = | |

The variations of thé'TlMI;IOUT syntax shown below cause the actions dcscriﬁed if the time required to
receive a character exceeds the (nmeout time) The (tzmeout ttme) is defined in the (terminal timeout

Statement) , but can be ovemdden by including the ({timeout time))or (NULL) syntax options in the
(receive statement) . ,

TIMEOUT : | ~ setsthe (bit variable) TIMEOUT and branches
: e control to the next sequential statement.

TIMEOUT:NULL , | "~ causes no action. Execution procecds as if the .
N - error did not occur.
TIMEOUT: (label) . sets TRUE the (pit vartable) TIMEOUT, and
o -+ branches control to (label).
TIMEOUT:ABORT - ~ - sets TRUE the (bit variable) TIMEOUT and
‘ ' , o executesaTERMINATE ERROR ‘
TRANERR

The followmg variations of the TRANERR optxon cause the descnbed actions if the characters received
and the Reccive Transmission Number stored in the Station Table are not equal (tlns item 1s allowed only
in the RECEIVE TRAN construct of the (recetve statement)) L

TRANERR R o sets TRUE the (bit vartable) TRANERR and .
' o ‘branches control to. the next sequentnal state-
_ SR - ment. . _
TRANERR:NULL o o : causes no action. Executlon proceeds as if the
. . - errordid notoccur. . , _
TRANERR: (Iabel) S ~ sets TRUE the (pit vartable) TRANERR and
o - branches control to \.abel) :
~ TRANERR: ABORT o ~ notallowed.

The follc)wmg vananoné of the WRU syntax cause the fcllowmg actlcns if the WRU character of the
station is received (the (station WRU character statement) defines the WRU character)

WRU &= o ' - sets TRUE the WRU (bit vanable) and branches '

S ...~5 . control to the next sequential statement.
WRU:NULL " sets TRUE the WRU (pir vanable) and execution

S - .- proceeds as if the character received was not the
. : _ , ~ WRU character. :

WRU: (abel) = o . sets TRUE the (pit vanable} WRU and branches

' R S ' control to (label
WRU:ABORT R " not allowed. |

5-117

Dcfinitions
REQUEST
Receive Statement — Continued

(single character)

The following variations of the (single chdracter) syntax cause the following actions if a character received
is equal to the single character : C

(single character) | : branches control to the next sequential state-
: - ment. |
(single character):NULL causes no action. Execution proceeds as if the
: character received was not equal to the (single
_ character). ' o
(single character): {label) branches control to (label).
(single character) :ABORT " not allowed.

The allowable combinations of the (receive &tatement) syntax options are defined in table S—6 below.
The (NULL) and ((timeout time)) options are allowed in any construct of the (receive statement).
Allowed combinations of the other syntax options are denoted by a “X”’ in the appropriate columns
and rows. . o

Table 5-6. Allowable Combinations for {receive statement)

—
- E <
o ; -
3 - E“‘Eﬁ , 5
e o & a 225 2 ®
asa%aaasaée?s:éggﬁé
ADDRESS X X X X X XXX
ADDRESS(RECEIVE) X X X X X X X X
ADDRESS(TRANSMIT) | X' X X X , XX XX
BCC | X X X X ‘ X X X X
CHARACTER | X XXXX' X XXXXX XX
CRC | XXX X . XX XX
TEXT _ | X XXXX XX XXXXX XX
TRAN X X X X XXXX
(string) X X X X XXXX

5-118

(C

Supplementary Examples
Statcment
RECEIVE (3 SEC) [TIMEOUT:10].

RECEIVE ADDRESS [ADDERR:99].

RECEIVE CHARACTER [CONTINUE:10,
CONTROL:20,
TIMEOUT:30,
“*7:40].

RECEIVE [ERROR[0]].
RECEIVE [0].

RECEIVE (1 SEC) TEXT [LINEDELETE:NULL,
CONTROL:NULL].

l)cf‘initiohs i
REQUEST -

Receive Statement - Continued

Explanation

Causes the adapter cluster to attempt to receive a
character. If the character is not received within
3 scconds, the (bir variable) TIMEOUT is set
TRUE and control branches to 10.

If the character(s) received do not cqual those
defined in the (.s‘tatiOrz address statenwnt} , the
(bit variable) ADDERR is sct TRUE. and control
branches to 99.. o -

This statement would only be allowed in a
{control definitirm) or (request definition> that
is written to communicate with full duplex
terminal types, because it contains the CONTINUE
item. -

CONTINUE:10 would cause a branch to 10 if the
co-line (control definition) executes a {continue
statement} before a character is recejv_cd.

CONTROL:20 would sct CONTROLFLAG'T-RUE

“and branch to 20 if the character received is the

station’s control character.

TIMEOUT:30 would sct TIMEOUT TRUE and
branch to 30 il a character is not received within
the {timeout timeg defined in the {terminal
timeout statement) .

“¥:40 would cause a branch to 40 if the
character received is the asterisk character.

An attempt is made to reccive one character and
store it in CHARACTER, If any errors described
in the associated {error switch statement) occur
while receiving, then the action defined in-that
<error switch statement) is taken.

- An attempt is made to receive onc character and

store it in CHARACTER. If any errors described
in the associated (error switch statement) occur

‘while receiving, then the action defined in that

{error switch statemeht) is taken.

LINEDELETE:NULL causes the message text
pointer to be set to the first character position if
the linedelete character (as defined in the
(terminal linedelete character statementy is
received, and characters continue to be received
and stored in the message text beginning at the-
first character position.

S5-119

Definitions
REQUEST
Receive Statement — Continued

Statement Explanation

CONTROL:NULL causes the (bit variable)
CONTROLFLAG to be set TRUE if the control -
character of the station (defined in the (station
control character statement)) is received, and -
characters continue to be received. o

5-120

‘Definitions -
- REQUEST
Slift Statement

SHIFT STATEMENT

Syntax

SHIFT =UP 1 CE—
DO WN |

Semantics

The (shift statement) is to be used in a {control defi mtzon) that communicates with statnons using the
Baudot (5-bit) character code set. (The character code set is defined in the (termmal code statemenr)
of the associated {terminal definition}.) .

SHIFT UP indicates that received characters are to be translated to their respective uppercase graphics
(usually referred to as FIGS).

SHIFT DOWN indicates that received characters are to be translated to their respective lowercase graphics
(usually referred to as LTRS).

If the station does not use Baudot code, the (vhift statemem} acts as a no-op.

Pragmatics

In the Baudot character code set, most bit patterns have two graphic représentations; one is referred to :
as FIGS (the uppercase graphic), and the other-as LTRS (the lowercase graphic).

PN

When transmitting to a terminal that uses Baudot code, the terminal prints LTRS until it feceives a
specially designated character mdlcatmg that it should shift to printing FIGS. The terminal continues
printing the FIGS until it recelves a specially designated character indicating that it should resume printing
the LTRS.

When information is received from a terminal that uses Baudet the same conventions hold true; that is,
the terminal communicates whether FIGS or LTRS follow, by the transm1ss10n ofa des1gnated character
The terminal initially transmits LTRS.

5—-121

Definitions
REQUEST
Store Statement

N’
STORE STATEMENT ~.
Syntax
—— CHARACTER- L[j #NULLj]-—* .
—=(string) I—> ENDOFBUFFER—»: (label) .
| SEQUENCE : —>
> -
TALLY [»tally number)] T >
TOG ' - »(toggle numbery— =]
Examples
STORE. A
STORE CHARACTER [ENDOFBUFFER:20]. :
STORE “ABC” [NULL]. -
STORE SEQUENCE. N,
STORE TALLY [0]. -
STORE TOG [0], TOG [1], TALLY [0].
Semantics
STORE |
This form is semantically equivalent to the STORE CHARACTER construct.
STORE CHARACTER
This form causcs the data contained in CHARACTER to be stored in the message space. If no message
space is associated with the (request deﬁnition) , then an implicit {getspace statement) is executed.
The data is stored in the character position pointed to by the message text pointer, and the text pointer
is updated after the STORE to point to the next forward character position.
It is possible to encounter the end-of-the-text buffer when using this instruction. It is recommended that
the optional syntax be included whenever using this statement. The optional syntax specifies action to be
taken if the end of buffer is encountered. The NULL option specifies that the only action that should be
taken is to set ENDOFBUFFER to TRUE. The <1abel) option specifies that the only action that should be
tered, control should branch to <label) and also set ENDOFBUFFER TRUE. The ENDOFBUFFER: part
can be included for documentation. An implicit TERMINATE ERROR is executed if no end-of-buffer
action is specified. :
STORE (string)
This form causes {string) to be stored in the message space. If no message space is currently éssociated —
with the (request definition) ,an implicit (getspace instruction) is executed. The {string) is stored o’
in the message space beginning at the character position pointed to by the message text pointer, and the ~—

text pointer is updated after the STORE to point to the first character position following the (string) .
5-122

Deﬁnitions ,
REQUEST -
Store Statement — Contmued

This instruction uses CHARACTER as a temporary storage area to store each character of (strmg) Thus,
any data in CHARACTER prior to a STORE (smng) instruction will be destroyed. ,

It is possiblc to encounter the end-of-the-text buffer when using this instruction. Therefore, it is
recommended that this instruction include the optional syntax. Refer to the STORE CHARACI‘ER
construct for the semantics of this syntax. : '

STORE SEQUENCE

Providing the station is in scquence mode (i.e., SEQUENCE is TRUE), the STORE SEQUENCE

construct causes the current value of the sequence number to be stored in message word [5].[26:27]

is a binary integer, and message word [5].[27.1] is set TRUE to indicate its presence. If the station

is not in sequence mode (i.e., SEQUENCE is FALSE), then the instruction is a no-op. If no message space
is present at the time of the STORE, then an implicit (getspace instruction} is executed first.

STORE TALLY [(tally number)]

This form causes the TALLY specified to be stored in the message space header. If no message space is
present, an implicit <getspace statement) is executed just prior to the store operation.

STORE TOG [(toggle number) |

This form causes the TOGGLE specified to be stored in the message space header. If no message space
is present, an implicit (getspace statement) is executed just prior to the store operation.

Pragmatics

The application of thc STORE TALLY and STORE TOG constructs rests solcly with the programmer.

Since the message space is usually returned to a Message Control System (MCS), some mutual

convention could be established between the NDL programmer and thc MCS programmer as to the meamng
of the contents of the TALLYs and TOGGLEs.

5-123

Definitions
REQUEST

Sum Statement

SUM STATEMENT
Syntax

SUM

& Al

— BCC

——= CHARACTER

B N B AN

L——= RETRY

L

L »TALLY —— > [———s=(tally numbery——o=|

s (single character)

Bl

Examples’

SUM Al

SUM CHARACTER.
SUM “A™. |
SUM TALLY [1].

Semantics

The purpose of the {sum statement) is to affect the calculation of the horizontal parity check (whether
that be a Block Check Character or a Cyclic Redundancy Check). The specific effect of the (sum state-
ment) is dependent upon two factors: The SUMmed item, and whether the station’s (terminal
definitiony , for which (request definition} is running, defines horizontal parity as CRC(16). Following
is a description of the effect that each form of the (sum statement) has on the calculation of the
horizontal parity check.

SUM
Semantically cquivalent to SUM CHARACTER.
SUM Al

If the horizontal parity check is a Block Check Character or is undefined, the contents of Al are
exclusively OR-ed with the contents of BCC, and the result is stored in BCC.

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
- computed with the contents of Al and CRC, and the result is stored in CRC.

SUM BCC

If the horizontal parity check is a Block Check Character or is undefined, then the contents of BCC
are cxclusively OR-ed with itself, and the result is stored in BCC. (The result in BCC would be zero
in this case.)

If the horizontal parity check is.a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
computed with the contents of CRC[0] and CRC, and the result is stored in CRC. :

f{)

Definitions
REQUEST
Sum Statement = Contmued

SUM CHARACTER

If the horizontal parity check is a Block Check Character or is undefined, the contcnte of CHARACT ER

are exclusively OR-ed with the contents of BCC, and the result is stored in BCC.

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Rgdundancy Check algonthm is
computed with the contents of CHARACTER and CRC, and the result is stored in CRC.

SUM RETRY

If the horizontal parity check is a Block Check Character or is undeﬁned the contents of RETRY are
exclusively OR-ed with the contents of BCC, and the result stored in BCC.

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algonthm 1s
computed with the contents of RETRY and CRC, and the result is stored in CRC. : '

SUM TALLY ([{tally number)]

If the horizontal parity check is a Block Check Character or is undefined, the contents of TALLY
<tally number)] are exclusively OR-ed with the contents of BCC, and the result is stored in BCC.

If the horizontal parity check is a Cyclic Redundancy Check, the Cyclic Redundancy Check algorithm is
computed with the contents of TALLY [(tally number)] and CRC, and the result is stored in CRC.

SUM (single (haracter>

If the horizontal parity check is a Block Check Character or is undefined, the (smgle cﬁaractér) ’ié
exclusively OR-ed with the contents of BCC, and the result is stored in BCC.

If the horizontal parity check is a Cyclic Redundancy Check the Cyclic Redundancy Check algorlthm is
computed with the (smgle character) and CRC, and the result is stored in CRC.

5-125

T PP S T

Definitions
REQUEST

Terminate Statement

TERMINATE STATEMENT

Syntax .

TERMINATE —
——— BLOCK -
—— ENABLEINPUT —
—— ERROR]
—— LOGICALACK —

L~ (RETURN) -

———= NOINPUT . v L
——=&> NORMAL -

Examples |

TERMINATE NORMAL.

TERMINATE LOGICALACK.
TERMINATE LOGICALACK(RETURN).
TERMINATE.

Semantics

Fach form of the {terminate statement) is described in the following paragraphs.

TERMINATE

This construct causes control to branch from a (request defi nmon} and to begin executing the appropriate
(control dejzmtmn} Any message that may be queued is left in the Station Queue (regardless of whether
the message is incoming or outgoing) and STATION(QUEUED) is untouched.

TERMINATE BLOCK

In a Receive Request, this construct causes the following actions:

a.

d.

€.

an implicit (getspace instruction) is executed (in case the <request deﬁnition} may have been
terminated without ever having acquired a message space)'

the Error Flag field, Last Flag Set field, and DCP RETRY are stored into the appropriate
message fields;

the “More-Blocks-to-Follow” bit (programmatically referenced by BLOCK) in the message
(message word [0].] 29 1]) is set TRUE;

the message is delinked from the Station Queue and hnked into the DCP Result Queue; and

control continues at the next sequential statement.

In a Transmit Request, the TERMINATE BLOCK construct causes the following:

a.

5-126

the Error Flag field, Last Flag Set field, and DCP RETRY are stored into the appropriate
message fields;

)

Définitions
REQUEST ;

Terminate Statement — Continued -

g b. the message is linked into the DCP Result Queue:; and
c. the (requur dejuutmn) is continued at the next sequential statement if STATION(QUEUED)
is TRUE; otherwisc, the (request definition) is suspended and put in a “sleep” statc until
STATION(QUEUED) becomes TRUE. o
TERMINATE ENABLEINPUT

This construct is allowed in Transmit Requests only.

This instruction causes the following actions:

a.

C.

d.

the STATION(ENABLED) bit is tested; if STATION(ENABLED) is FALSE, then this instruc-
tion acts as a no-op; otherwise, steps b through d are executed;

the Error Flag ficld, Last Flag Set field, and DCP RETRY are stored into the appropnate
message [liclds;

the message is linked into the DCP Result Quecue; and

control lcaves the Transmit Request and the station’s Receive Request is entered.

TERMINATE ERROR

This construct serves to inform the station’s MCS of an unsuccessful attempt to complete a Receive or
Transmit Request. This instruction inhibits the initiation of any new functions for the station.

The result of the TERMINATE ERROR construct is as follows: -

b.

C.

STATION(READY) bit variable is set FALSE;

a minimum-size message space is obtained, filled with error information for the MCS, and linked
into the DCP Result Queue (its destination being the MCS); and

the line is idle until the MCS takes some action.

Additionally, if the TERMINATEing (request deﬁnition} was a Receive Request, any message space that
may have been acquired to store a RECEIVEd message is discarded.

The error message sent to the MCS contains the following information:

MSGI[0].[47:8]

MSGI[1].[47:8]

It

99.
[39:8]
[31:8] Al Register contents.

[23:24] = Logical Station Number.

AC Register contents.

Result Byte Index

[39:6] = Line status prior to TERMINATE ERROR.
[33:11 = LINE(TOG[1]). |
[32:1] = LINE(TOG[0]).

[31:8] = Last Flag Set in MSG[1].[23:24]

[23:24] = Error Flag field.

- 5-127

T N LT T

Definitions
REQUEST

Terminate Statement — Continued

MSG2].147:81 = CHARACTER.
139:10] = Last DCP “*Sleep™ address.

MSGl41.123:241 = Original DCWRITE TYPE. (Contains the original contents of MSG[O] [47 24] -

prior to presentation of the message to the DCP.)

Refer to appendix E, “The Error Result Message,” in the B 6700/B 7700 DCALGOL Reference Manual '

form number 5000052, for more information regarding this message
TERMINATE LOG!CALACK

This construct is allowed in Rccewc Requests only This 1nstruct10n tests the LOGICALACK bit in the
Station Table. (The semantics of the {station logicalack statement) describe how the LOGICALACK bit
is sct.) If LOGICALACK is FALSE, the instruction acts as a no-op and control continues at the next
sequential statement. 1f LOGICALACK is TRUE, the following occurs:

a. animplicit {gerspace statement) is executed (in case the {request definition) is termmatmg
without cver having acquired any message space);

b. the ACKNOWLEDGEREADY bit in the Line Table is set (the consequences of this action are
deseribed subscequently);

¢. the “Message to be ACKNOWLEDGEJ” bit is set in the Error Flag Field;

d. the Lrror Flag Field, Last ¥ lag Set Field, and DCP RETRY are stored mto the appropnate
message lields;

¢. the message is delinked from the Station Queue and linked into the DCP Result Queue;

. theline is put in a “sleep™ state until the station’s MCS responds to the message w1th an
ACKNOWLEDGE (TYPE = 44) DCWRITE; and

g. upon receipt of thc ACKNOWLEDGE, the Receive Request is aliowed tov confinue at the
next sequential statcment. .

The ACKNOWLEDGEREADY bit is inaccessible to the NDL programmer, and it exists for each logical
line in its Linc Table. The only time that this bit will be TRUE is when a station’s LOGICALACK bit is
TRUE and its Receive Request has exccuted the TERMINATE LOGICALACK construct or the
TERMINATE LOGICALACK(RETURN) construct. Once TRUE, the ACKNOWLEDGEREADY bit will
not be set FALSE, and the {request definition) will not be allowed to continue until the MCS executes
the ACKNOWLI:DGI (TYPE = 44) DCWRITE.

TERMINATE LOGICALACK(RETURN)
This construct is allowed in Reccive Requests only. This instruction tests the LOGICALACK bit in the

Station Table. (The semantics of the {station logicalack statement) describe how this bit gets set.) If this-

bit is found TRUE, this statement functions exactly as does TERMINATE LOGICALACK; refer to that
form for semantics. If LOGICALACK is FALSE, the following occurs:

a. animplicit {gesspace statement) is executed (in case the (request defi mtzon> is terminating
without ever having acquired a message space);

b. the Error Flag ficld, Last Flag Set field, and DCP RETRY are stored into the appropriate message

ficlds;
¢. the message is delinked from the Station Queue and linked into the DCP Result Queue; and

d. control continues at the next sequential instruction in the (request deﬁnition}.

5128

N/

(C

Dctjnitions :
REQUEST

Terminate Statement - Continued

TERMINATE NOINPUT

If exceuted in a Transmit Request, this form is semantically equivalent to the TERMINATE construct (refer
to that construct for semantics). When executed in a Reccive Request, the following occurs:

a. any message space that may have been acquired is discarded;

b. LINE(BUSY) is set FALSE; and '

c. control branches to the appropriate (coﬁ trol definition}.
TERMINATE NORMAL

The purpose of this construct is to signal the satisfactory completion of a (request definition) . If executed
in a Reccive Request, the following occurs:

a. an implicit {getspace statement) is executed (in case the {request definition) is terminating
without having ever acquired a message space); ‘

b. the Error Flag field, Last Flag Set field, and DCP ENTRY are stored into the appropriaté
message ficlds;

c. the message space is delinked from the Station Queuc and linked to the DCP Result Qucue;
d. LINE(BUSY) is set FALSE; and ‘ '

¢. control branches from the (rcque.s'l deﬁnilion) and (providing the DCP does not take advantage
ol LINE(BUSY) set FALSE to initiate a (request definition’y) the appropriate (z'()ntrol
definition) is entered. v

If TERMINATE NORMAL is exccuted in a Transmit Requcst, the following occurs:

a. the Error Flag field, Last Flag Set ficld, and DCP RETRY are stored into the appropriate message
ficlds; .

b. the message is linked into the DCP Result Queue;

LINE(BUSY) is set FALSE; and

e

d. control branches from the (request de_ﬁnition) and (providing the DCP does not take advantage
of LINE BUSY) set FALSE to initiate a {request definitiony the appropriate {control definition)
is entered.

In the Transmit Request case, the message linked to the DCP Result Queue is a result message (specifically,
a GOOD RESULTS (CLASS = 5) Message). The intended destination is the MCS; however, the MCS has
the option of whether to accept GOOD RESULTS Messages or to have the DCC discard them.

5-129

Dcfinitions
REQUEST

Transmit Statement

TRANSMIT STATEMENT

Syntax
TRANSMIT g —-
> ADDRESS - L» [-=BREAK~ _ > -T
l—»(RECEIVE)j | L: (label)
ETRANSMI;T ENULL .
- BCC . Aan
~e- CHARACTER o
&= CRC ‘ s
= SEQUENCE oo
-~ TEXT =
- TRAN >
Lo (s2ring : .
Exampies
TRANSMIT.

TRANSMIT CHARACTER [BREAK:NULL].
TRANSMIT SOH STX 400 [BREAK:10].
TRANSMIT TRAN.

TRANSMIT ADDRESS(TRANSMIT)[BREAK].
TRANSMIT TEXT[BREAK].

TRANSMIT “LITERAL STRING”.

Semantics

The {transmit statement) causes the adapter cluster to transmit information to-a terminal. The following
group of syntax options specifics the information to be transmitted. All options, except CHARACTER, use
the (byte variabley CHARACTER as a temporary storage area; thus, any information contained in

CHARACTER before execution of the <rransmir statement} shall be destroyed by the (transmit statement}.

If none of the first group of options are chosen, it is semantically equivalent to specifying CHARACTER
(i.c., TRANSMIT is equivalent to TRANSMIT CHARACTER). : '

ADDRESS

The proper number of characters (as specified by the station’s {rerminal definitiony in the (terminal
address size statement)) are taken from the Address field in the Station Table and transmitted.

ADDRESS(RECEIVE)

This option is equivalent to ADDRESS, except that ADDRESS(RECEIVE) must be used when an address
pair is defined in the (station address statement) and the programmer wants to transmit the receive address.

5--130

f()

(¢

(C

Definitions.
REQUEST = -
Transmit Statement — Continued

ADDRESS(TRANSMIT)

This option is cquivalent to ADDRESS, ¢xcept that ADDRESS(TRANVSMIT) must be used when ah
address pair is defined in the {station address statement) and the programmer wants the transmit address
transmitted. - ,

BCC
The BCC option causcs the content of the (b yte variable} BCC to be transmitted.
CHARACTER |

The CHARACTER option causes the content of the {byte variabley CHARACTER to be transmitted. ‘
CRC

This option causcs two bytes to be transmitted; CRC[0] is transmitted first, foll_owed,‘ by CRC|1] If the
station’s {terminal definition) does not define horizontal parity as CRC(16), the use of this option causes
a syntax crror to be gencrated at compile time.

SEQUENCE

This option causes the character representation of the value stored in the Sequence field of the Station
Table to be transmitted if the station is in sequence mode (i.e., the (bit variabley SEQUENCE is TRUE):
otherwise, the (transmit statement> is a no-op. ' : o

TEXT

This option extracts characters, one at a time, from the associated message, using CHARACTER as a
temporary storage arca, and transmits the characters until the end of the text buffer is encountered. At that
point, control branchces to the next statement. The TRANSMIT TEXT construct is, in effect, the same as
the following loop: '

I: FETCH |ENDOFBUFFER:2].
TRANSMIT CHARACTER.
GO TO 1.

This option can only be used with the (transmit statemént) in Transmit Requests.
TRAN

The proper number of transmission number characters (as defined by the station’s (termindl de_finition)
in the {terminal transmission number length statement)) are extracted from the Transmit Transmission
Number field in the Station Table and then transmitted. ' ' '

(string) ‘ P
Fach character of (string) , using CHARACTER as a temporary storage area, is transmitted.

5-131

Definitions
REQUEST

Transmit Statement — Continued

(&

The BREAK option allows the programmer to specify action if a “break” is received from the terminal '
while the adapter cluster is still transmitting. If this option is omitted and a break occurs, an implicit
TERMINATE ERROR instruction is cxecuted. The following describes the actions of the three syntactlcal
lorms:
BREAK scts TRUE the {bit variablcy BREAK|TRANSMIT] and causes a b'ranclro?f
control to the next statcment.
BREAK: {label) sets TRUE the g/nt variable) BREAK[TRANSMIT] and causes a branch of
control to {label _ .
BREAK:NULL. causes no action. Execution proceeds as if the break did not occur.
N/
Seunr”’

5-132

(C

Definitions
REQUEST
Wait Statement

WAIT STATEMENT

Syntax
WAIT ' f —
———-"(—’; {wait time))

> »(label)————j v-

Examples

WAIT. ‘
WAIT (3 SEC).
WAIT (5 MILLI:6).

Semantics

The (wait statement) is only allowed in (request deﬁnitiou)s that are written to communicate with full
duplex terminal types. Execution of this statement causes the <requcst definition) to be suspended until
the co-line executes a {continue statement). The optional syntax effects the statement as described below.

{wait time) defines the maximum amount of {time) that the (request definition) should
be suspending waiting for the {continue statement). If {wait time) is
exceeded and the co-line has not executed a {continue statement) , execution
resumes at the next sequential statement.

wait time) :{label) same as above except exccution resumes at {label) if a {continue
statement) is not executed within {wait time).

Pragmatics

Refer to the (fork statement) pragmatics.

- 5-133

Definitions
STATION '

STATION DEFINITION
Syntax

STATIONq —- (station t'dentiﬁer>___}@.;
L DEFAULT —b(défault station identifier)

Examples

STATION KMET:
ENABLEINPUT = FALSE.
MCS = SYSTEM/CANDE.
CONTROL = 4“6F".
RETRY = 15.
LOGICALACK = FALSE.
MYUSE = INPUT, OUTPUT.
TERMINAL = TELETYPE.

STATION DEFAULT STADFLT2:
CONTROL = ‘
MCS = SYSTEM/CANDE.
ADAPTER =4 |

= STADFLT1.

DEFAULT
5-134 '

!

p=(station myuse statement) —————gn

-a-(station address statement)—-Q————-—-
-o-(slation control character stat‘emem‘)--’a

Lo (station default statement y —————
b= (station frequency statement) ———a

- (station logicalack statement’y ———al
o~ (station MCS statement)~

b (station modem statement) e

Lo (51a1i0N PaGe SIAICMCN L) e
o (100N PRONE SIAICINMCNT) e

N T N L R I T R ——

...<siation width statement) ——————e

- (station adapter statement}———-——-—-t

»(stati(m enableinput statement)---‘-b(-

b {station initialize statement) ————snl

o (station terminal type statement) —e=l

O

" Definitions

 STATION

Continued

Semantics

{station identifier) and {default station identifier) have the syntactical form of a (svstt’m tdentt]ter)
Each syntactical form of the <stulron de /mmon} is described subsequently.

STATION (station identifiery : .

This form ol the {station dc/uutmu) defines the attributes of a station. The attributes must be. deﬁned in
one of the tollowing ways: .

a. EFach attribute is explicitly defined by mcans of a (station statement).

b. Lach attribute is defined implicitly by means of an expllclt reference to a set of prcvnously
defined default attribute valuces.

¢. Some of the attributes are defined implicitly as in b, and the remainder are defih_ed explicitly as
ina.

Somc of the station attributes must be defined for each station; others do not. Some of the statements
may or may not be required, depending upon the appearance of other statements. The semantics portion
of cach {station statement) statcs, among other things, whether the attribute must be deﬁned and its
effect upon the requirements of other (station statement)s. v

To define the attributes of a station as describcd in item a above, only this syntax form is usgd.

To define the attributes of a station as described in items b and ¢ above, this syntax form, the following
syntax form, and the {station default statement) must be used in conjunctlon (this is descnbed under the
following syntax form).

STATION DEFAULT {default station identifiery: ..

This form is referred to as a Default (station identiﬁer) Its purpose is to decrease the number of source
statements required to define all of the stations. This is accomplished in the following manner. Attributes
common to several stations are defined by means of a Default (stanon defi mtwn) Associated with each
Detault {station definitiony is a {default station identifiery. Subsequent to the Default {station

de /mmun), any (slulum de juulum} can reference the (dc]uull station identifi er) instead of repeating
the list. A {default station identifier) is referenced by means of a {station default statement). The NDL
compiler uses the last definition of a station attribute, and therefore the programmer can reference a
Default {station definition) and change any attributes by redefining them in the {station definition).

In appearance, the Default (statzon defi mtzon) is similar to the (statton deftmtzon) The differences are
that the reserved word DEFAULT follows the reserved word STATION, and that there are no statements
that are required to appear in a Default (station definition).

5-135

Definitions
STATION
Station Adapter Statement

STATION ADAPTER STATEMENT

Syntax

ADAPTER —» = —E—><communication type number) } —— f |
(- (communication iypehumber)-», -s-(communication type number);p) -
Examples

ADAPTER =4,
ADAPTER = (11,6).

Semuantics

The <\'tumm adapter statement) defines a combination of character format, synchronous/asynchronous
communication, and line speed (in the case of synchronous communications) that the DCP must use to
communicate with the terminal associated with the station. This is done by supplying a (comm_unicati‘on
1pe nunzhcr} (or number pair). Table 54 lists the allowed (communication type m’mzber)s and the
characteristics associated with each. : -

For example,
ADAPTER =4,

This statement defines an 11-bit character format, asynchronous communication, at a line speed of 110 bits
per sceond. '

If the station’s associated terminal type utilizes full duplex (i.e., the (terminal duplex statement) speéifies
DUPLEX=TRUE), and the primary and the auxiliary lines have different characteristics, then a '
Zeonmumunication type numbery pair must be supplied. ' '

For example,
ADAPTER = (11,6).

This statement defines for the primary line a 10-bit character format, asynchronous communicétion, ata
speed of 1800 bits per second. The characteristics associated with the auxiliary line are the same except
that it runs at a linc speed of 150 bits per second.)) ‘

The statement: _
ADAPTER = (6.6).

is scmantically equivalent to:
ADAPTER =6.

The {communication type number) (or number pair) defined in this statement must be one of those

listed in the (terminal adapter statement) of the station’s associated {terminal definition). The (station
adapter statement) is required unless the (terminal adapter statement) lists only one {communication type
numbery (or number pair), in which case, the (station adapter statement) may be omitted and the
{terminal adapter statement) specification is used. :

Definitions
o - STATION =
Station Adapter State~ment ‘—.“'Cbl}‘tiﬁued '
Supplementary Examples _
The following program fragments illustrate valid adapter statement specifications. - |
Example 1) |
MODEM AMODEM:

ADAPTER=1,2,3,4,5,6,7,8,9,10.

TERMINAL ATERMINAL:
ADAPTER=6,7,8,9,11,12,13,14,15.

STATION ASTATION:

ADAPTER=7.
MODEM=AMODEM.
TERMINAL=ATERMINAL.

Example 2
MODEM DUPLEXMODEM:
ADAPTER=6, (11,6), (12,6), 12.

TERMINAL DUPLEXTERMINAL:
ADAPTER=6, (11,6). '

STATION DUPLEXSTATION:

ADAPTER=(11,6).
MODEM=DUPLEXMODEM.)
TERMINAL=-DUPLEXTERMINAL.

5137

Definitions
STATION'
Station A_ddress Stat_ement

STATION ADDRESS STATLMFNT

N Syntax
ADDRESS — = ——— & (string) - : ’ ‘ T SRS
| - (et (SHING)) et 3 b= (S1TINE) -) '
Examples
ADDRESS = 4“01”.
ADDRESS = (4“0001”,4“01”).
ADDRESS = “A”.
Semantics

The {station address statementy deﬁnes the actual address characters.of the station’s terminal that are-
required for operations such as polling and selecting. The number of characters in the {string)(s) must be
equal to the number defined in the (terminal address size statement) of the associated terminal. This
statement is not allowed in Default (station defi nmons)

ADDRESS = (string). _
 This form of the statement is used when thc recenve address and the transmxt address are the same
ADDRESS = ((string), (string)). :

This form of the statement must be used if thexecelve address and the transmit address differ. The first
{string) defines the receive addmss charactcrs, and the second (.strmg) defines the transmnt address :
characters. :

Pragmatics -

The address characters of a statlon can be changed asa result of the Message Control System (MCS)
executing a SET CHARACT ERS (TYPE 39) DCWRITE.

5-138

o

2

(-c_

(¢

Dcfinitioﬁs
STATION
~ Station Control Characwr Statement

STATION CONTROL CHARACTER STATEMENT
Syntax

CONTROL > = — - (single character)

Example
CONTROL = “77,

Semantics

The {station control character statement) defines the control character of the station. The control
character can be recognized by the DCP when RECEIVE(in a message text from the station, and any

action to be taken can be specified by the programmer using the CONTROL syntax m the (recezve
statement). ,

5-139

Definitions
STATION
Station Default Statement

STATION DEFAULT STATEMENT
Syntax '

DEFAULT > = »(default station identifier) — : -

Example
DEFAULT = STADFLTI.
Semantics

The {station default statement)y allows the programmer to specify the {(default station identifier) of aset’
of previously defined default station attributes to be used for a (station‘deﬁnition> whose description is
incomplete. It is advantagcous to group common attributes under a Default (station definitiony and list -
the remaining attributes under each individual {station definitiony . The compiler will then refer to the
Default {station definition) to complete the {station definitiony. The (station default statement) is not
required to appear in cach (station definitiony ; however, a (station definitiony must define all required
attributes locally if a { ration default statement) does not appear.

The <\'tati(m default statement)y can appear in a {station deﬁnitinn}' or a Default <station deﬁnition).
Supplementary Example

The following is an example of how a Default {station definition) can be used in conjunction with a
(station definition). , : ' ' '

STATION DEFAULT STADFLT:

MCS = SYSTEM/CANDE.

CONTROL = “7,

RETRY = 15. : » :
LOGICALACK = FALSE. { Default (station definition}}
MYUSE = INPUT, OUTPUT. '

TERMINAL = TELETYPE.

ENABLEINPUT = TRUE. »

STATION TESTSTATION: {station default statement) references
DEFAULT = STADFLT. == Default (station definition) above to
MODEM = MABELL103A. complete the (station definition).
MCS = SYSTEM/DIAGNOTICMCS. ' |
ADAPTER = 4.

5-140

-\

'ENABLEINPUT = FALSE.

DTG AR . et
 STATION
Station Fnableinput Statemen

STATION ENABLEINPUT STATEMENT

Syntax

ENABLEINPUT -- — = TRUE ~ ' ——
et~ FALSE ——-]

Semantics

The (station enableinput statement) defines the initial state of the station’s “enabled” bit (program-
matically referred to as STATION(ENABLED)) This statement must be deﬁned in each (statzon
definition).

ENABLEINPUT = TRUE.

This construct causes the “enabled” bit to be initially TRUE after DCP mntlahzatlon, and the statlon is
said to be “enabled for input,” or simply “enabled » ‘

This construct causes the “enabled” bit to be initially FALSE after- DCP mitndhzatlon, and the statlon is’
said to be “disabled for input,” or “dlsabled ”.

Pragmatics

Whether a station is cnabled or disabled for input can directly affect the exccution sequence of instructions
in the {control definitiony and {request definition) (s) designated for that station. Specifically, if the
station is disabled for input, control will never branch to the Receive Request for that station as a result

of cither an INITIATE ENABLEINPUT or a TERMINATE ENABLEINPUT construct. Refer to the
INITIATE ENABLEINPUT and TERMINATE ENABLEINPUT constructs for more detailed information.

The MCS of the station may change the state of the “enabled” bit, after DCP mltiahzatlon by means of the
ENABLE- INPUT (TYPE 35) DC\VRITE or the DISABLE INPUT (TYPE 36) DCWRITE

¥

'5-141

Definitions
STATION

Station Frequency Statement

STATION FREQUENCY STATEMENT
Syntax

FREQUENCY -—=— »-(integer) . 4 |

Example
FREQUENCY = 10.
Semantics

The Gration frequency statementy defines the initial value of the (byte variabley programmatically
referred to as STATION (FREQUENCY). The {control definition) specificd for the station can reference
the (h_rlv rariah/c} and usc the valuc stored there in any way that the programmer sees fit; however, the
intended usce of the variable is to influence in some way the rate at which a polled station is polled. In the
polling {control definitiony provided by Burroughs Corporation in SYMBOL/SOURCENDL,
FREQUENCY specifics a relative polling rate: 0 means poll at the highest rate, 1 means to poll at a slower
rate, 2 means to poll at a still lower rate, ctc.

The (inlvge;} must not exceed a value of 25S.

The MCS of the defined station can change the value of STATION(FREQUENCY) by means of an ENABLE
INPUT (TYPE = 35) DCWRITE. _ '

5—-142

INITIALIZE -{r»"ro(; T [—»=(toggle number}-——>]
S .

‘Deﬁm'»t'ibn'sf |
STATION

Station initib.liz'cf Statement

STATION INITIALIZE STATEMENT
Syntax

> -

- TOG

o TALLY = [»=(tally number)—s] —a= [= {bit number)-»]
-»TOGS integer) . v
. Le-TALLY - -»(tally number)—»] .’ Eismgle character}--—".’ 2

Examples ‘

INITIALIZE TOGS = 4“FF”.

INITIALIZE TOG|0| = TRUE,
TALLY|[1] = 25,
TALLY[O] |7] = TRUE.

INITIALIZE TALLY|O] = “?”.

Semantics

The lstation initialize statement} provides the means to define initial values for the station TOGGLEs and
TALLYs. Any initial values defined for station TOGGLEs and TALLYs are stored in the TOGGLES and
TALLYs at DCP mltmhzatlon time only.

5-143

Definitions ‘
'STATION
Station Logicalack Statement

Nl
STATION LOGICALACK STATEFMENT ‘
Syntax
LOGICALACK = . &TRUE :f .

e———=FALSE - -
Semantics , o
The {station logicalack statement) defincs the initial state of a bit, referred to as the Logicafack bit, in the
Station Table. TRUE or FALSE can be specified, indicating the initial state-as on or off, respectively. If the
LOGICALACK bit is on, special action is taken if the Receive Request executes either the TERMINATE
LOGICALACK or TERMINATE LOGICALACK(RETURN) constructs of the (termmate statement)
This statcment is rcqumd in {station dc]‘m:tum)s
The MCS of the station can change the valuc of the Logicalack bit after DCP initialization by means of the
SET/RESET LOGICALACK (TYPE = 43) DCWRITE.
N/
“cenm’
e/

5-144

o Definitions
- STATION
Station MCS Statement '

' STATION MCS STATEMENT
Syntax
MCS >-- & (MCS identifier) ——
Examples
MCS = SYSTEM/RIJE.
MCS = SYSTEM/APL.
MCS = UTILITY/MCS.
Semantics
The {station MCS statemen(y defines the Message Control System (MCS) that is responsible for handling
messages to and from the station. If the MCS named is not an MCS defined in a (MCS deﬁnition) ,itis
added to the list of valid MCS programs to be contained in the Network Information File, and the MCS will
not be allowed to execute diagnostic DCWRITEs. Refer to the semantics of the (MCS deﬁnin’on} for
information regarding the diagnostic DCWRITEs. This statement is required in (station definition)s.

5-145

Definitions
STATION
Station Modem Statement

STATION MODEM STATEMENT
Syntax

MODEM = & (modem identifier) —

Example
MODEM = BELL20I.
Semantics

The station modent statementy applics to a station that has associated with it a terminal type that must
communicate with the Data Communications System through the use of a modem. This statement .
associates the modem type (i.c., a {nodem definition)) used for that purpose with the station. If this
statement is omitted from the {station definition) , and the {line definition) for the line to which the
station is assigned (il, in fact, the station is assigned to a line) does not contain a {line modem statement)y
then the compiler assumes a direet connection between the terminal and the line adapter. .

The Zmodem i(/wlli_/icf} must name a (mmlcm d(t/'inifi()n) that is compatible with the defined station
attributes. To be more specific, the {communication type numbery specified in the {station adapter
statementy (or in the (terminal adapter statement) of the station’s {terminal definitiony if no {station
adapier statement’y appears) must be one of the {communication type number) s listed in the {modem
adapter statement) of the modem named. -

After DCP initialization, the MCS of the station may change the {modem deﬁnition) associated with the
station. by means of the MOVE/ADD/SUBTRACT STATION (TY PE = 130) DCWRITE.

5-146

Delinitions -
A ~ STATION
’ Station Myuse Statement

.

" STATION MYUSE STATEMENT
Syntax
MYUSE - = = INPUT : : —p
= OUTPUT
= INPUT & > = OUTPUT
L OUTPUT — — = INPUT
Semantics

The (station myuse statement) defincs to what extent an object job can use the station as in input
or output device. : '

MYUSE=INPUT specifies that an object job can use the stafion as an inpuf file only.
MYUSE=0OUTPUT spccifies that an object can use the station as an output file only.

MY USE=INPUT, OUTPUT or MYUSE=OUTPUT.INPUT specifies that an object job can usc th¢ station as
an input and/or output file. .

A {terminal request statementy must be defined by the station’s {terminal definition) for handling input
and/or output capabilitics as specified in the (station myuse .statt'ment). Thus. if the station is to send

o’ input to, and receive output from, an object job, the station’s (terminal definitiony must specify a Transmit
~— Request and a Receive Request. . S

Note that the (sration myuse statement) restricts the use of the station by object jobs only. The MCS
can communicate with the station to the cxtent specified in the {terminal request statement) of the
station’s (ferminal dcﬁnition) . That is, regardless of what is specified in the (station myuse statement)
the MCS can receive information from, or send information to, a station, provided that the station’s
(terminal definition) specified a Receive and Transmit Request. ‘ :

The station MYUSE attribute can be interrogated by an object job through reference to the MYUSE
file attribute. For further information, refer to the B 6700 Input/Output Subsystem Information Manual,
form number 5000185. - - R - ‘ :

5-147

Definitions
STATION

Station Page Statement

STATION PAGE STATEMENT

Syntax
PAGE >-= »integer) -
Examples
PAGE =12.
PAGE =0.
Semantics

The (station page statemont) defines the number of logical lines per logical page. The (integer} specified
must be less than or equal to the number of lines specified in the (ferminal page statement) of the
station’s (tcrminal d({ﬁniti(m> (unless that number is zero, indicating pagination is arbitrary). If a
(station page statement} is not included in the (s‘tation dqﬁnition) , the station’s (terminal definition) :
specifications for pagination are used. '

An object job may obtain the PAGE value of a station, if the station is attached to a file, and that file

is open, by interrogating the PAGESIZE file attribute and supplying the File Relative Station Number ‘
(FRSN). Refer to the PAGESIZE attribute in the B 6700 Input/Output Subsystem Information Manual,
form number 5000185, for more information. o :

5--148

M

Definitions
~ STATION
Station Phon¢ Statement

STATION PHONE STATEMENT

Syntax
PHONE > = + (integer) _ e
Exampie
PHONE = 12136572385.
Semantics

The (station phone statement) is implemented for documentation purposes only. This statement
documents the telephone number that the system would have to dial to reach the station’s terminal,

- 5-149

D_eﬁnitions S -
v STATION o
Station Retry Statement

STATION RETRY STATEMENT
Syntax

RETRY - = = (integer)

Example
RETRY =3,
Semantics

The (station retry statement) defines a default value for DCP INITIAL RETRY. Refer to the RETRY
{hvte variable) for more information. '

5--150

Lo STATION -~ - |
Station Terminal Type fStaterh,ent

-8 ;e .
. R H .
A .

: .
B .‘

- srmon TERMINAL ms STATEMENT

Syntax
TERMINAL - = »(terminal identiﬁ‘er} i i -
Examples ‘
TERMINAL = APLTERM.
TERMINAL = TTY.
Semantics

The (statwn terminal type statemem) associates a terminal type with the station. Thxs statement is
required in a (station definition) . '

After DCP initialization, the MCS of the station can change the terminal type associated with the station
by means of the MOVE/ADD/SUBTRACT STATION (TYPE = 130) DCWRITE. ‘

3

5151

| “Definitions . P
A s LeSTATION DL T T

Station Width Statement -

3

STATION WIDTH STATEMENT

Syntax
WIDTH — = & (integer)
Examples
WIDTH = 72.
WIDTH = 132.
Semantics

The (station width statement defines the number of characters in a logical display line of output on the
station’s terminal. If this statcment is not included in a (station definition}
for the station’s {terminal definition) is the default station WIDTH.

An object job can interrogatce a station’s WIDTH by testing the value of the WIDTH file attribute. Refer
to the B 6700 Input/Output Subsystem Information Manual, form number 5000185, for fur

information.

5-182

, then the WIDTH defined

Definitions

TERMINAL
TERMINAL DEFINITION
Syntax
TERMINALE< rerminal identifier : oo) w=(terminal adapter statement) : {
DEFAULT-» (dcﬁmll terminal idcnu‘ﬁor>j - (terminal address size statement) . Y.
e (terminal buffer size statement) .

e (terminal backspace character statement)— g
La-(terminal carriage character statement’y————m——it
o=(tcrminal clear character statementy———— g

-»(Ierrizinal code character statementymm——— e gl

Lae-(terminal control statement ' —

o= (terminal default statement e

¥

- (terminal duplex statement’)

Le-(terminal end character statementy— o

Lo (terminal home character statement

-—(tem:ina) illegal character statcment o

-»(lerininhl “inhibitsync statemenit) o

Le=(terminal-inter-character delay statement) ————u>

-»-(terminal linedelete character sta'ternent_} —

o= (terminal linefeed ,charq'cter Statement e

e (t¢pminal maxinput statement) ' -

e (terminal page statemicnt) S

o= (terminal parity statement

o= (terminal request statement)y —— et

e~ (terminal screen statement)

o= (terminal timeout statement) o=

Lo~ (terminal transmission number length statement’y—e

o (terminal turnaround statement’) -

- o= (terminal width statement

*'(termirzal wru character staten:eht)———Q——-—

5-153

. Definitions P o o - , X
TERMINAL . . ’ " '
Continued | -

Examples »
TERMINAL TTY:

CODE
PARITY
SCREEN
BUFFER
DUPLEX
ADDRESS
WIDTH
MAXINPUT
TIMEOUT
REQUEST

ASC67.

NULL.

FALSE.

NULL.
'FALSE.

NULL.

72.

72.

300 SEC.

RECEIVE: READTTY,
TRANSMIT: WRITETTY.
CONTROL CONTENTIONDEVICE.

TERMINAL DEFAULT DEFAULTLIST1:

CODE ASCé67.
PARITY NULL.
SCREEN FALSE.
BUFFER NULL.

Semantics

{terminal identifier) and {default terminal identifiery each have tl}e syntactic form of (identifier). N
Each construct of the {terminal definition) is described subsequently.
TERMINAL (terminal identifier) : ... '

This form of the (terminal deﬁ'nition) syntax Jefines the attributes of a terminal type in the data
communications network. Most terminal attributes are hardware-dependent. The attributes of the
terminal type are defined in onc of the following ways:

a. Fach attribute is defined cxplicitly by means of a (terminal attribute statement} in the
(terminal definition) . ‘ '

b. Each attribute is defined implicitly by an explicit reference to a set of previously defined '
default attribute values. . :

c. Some of the attributes are defined implicitly as in b, and the remainder are defined explicitly
as in a. _ : :

Some of the (ferminal statement)s must be defined for each (terminal definition)); others do not.

Some of the statements may or may not be required, depending upon the appearance of other state-
ments. The semantics portion of each {terminal attribute statement) states, among other things, -
whether the attribute must be defined and its effect upon the requirement of other attribute definitions.

To define the attributes of a TERMINAL as described in item a above, this syntax form must be used.

To deﬁne the attributes of a terminal type as described in items b and ¢ above, this syntax form, the
following syntax form, and the (terminal default st‘atement} must be used in conjunction (this is described
under the following syntax form). ' ' a

5-154

Det‘fnitions
TERMINAL
Continued

TERMINAL DEFAULT (default terminal identifier) : . . .

This form is referred to as a Default (lerminal dc(ﬁ'nitioﬂ). _ .
Its purpose is to decrease the number of source statements required to define all of the terminal types in
the data communications system. This is accomplished in the following manner. Attributes common to
several terminal types are defined by means of a Default {terminal definition) . Associated with each
Default {terminal definition) ‘is a {default terminal identifiery. Subsequent to the Default (terminal
deﬁnition} , any germinal definition) that has those attributes in common may reference the (\default
terminal identifier) , instcad of repeating the list. (A (default terminal ident{fieb is referenced by means
of a (terminal default statement)) The NDL compiler uses the last definition of a terminal attribute, and
therctore the programmer can reference a Default (:erminal deﬁnition) and change any attributes by
redefining them in the (terminal deﬁnitinn).

In appearance, the Default {terminal definition) is similar to the (ferminal definition). The differcnces
are that the reserved word DEFAULT follows the reserved word TERMINAL, and that no statements are
required to appear in a Default (terminal definition).

Supplementary Example

Below is an example of how a Default (terminal definition) can be used in conjunction with a
{terminal definition) . ,

DEFAULTLIST! is the { default }
: ' ‘ terminal identifier)-of this Default
TERMINAL DEFAULT DEFAULTLIST!: { terminal ‘deﬁnition). The set of default

. : l attributes that follows is referenced by g
CODE = ASC67. I | this name. -
PARITY = NULL. { { (terminal statement) s define the default }
SCREEN = FALSE. attributes associated with DEFAULTLIST!.
BUFFER = NULL. ‘

Above, DEFAULTLIST! has associated with 1t four attributcs. Any subsequent {terminal deﬁnition)
in a source program can reference these default attributes by the appearance of a (terminal default
statement) in the (terminal definition). The {terminal default statement) has the form:

DEFAULT ——& = - (default terminal identifier) - .

where the (default terminal identifiér) must name a previously defined Default (termiguzl definition).
More information regarding the use of Default (terminal definition) s in conjunction with (terminal
default statement)s can be found in the (terminal default statemenf) semantics.

Below, TTY uses the {terminal default statement) to reference DEFAULTLIST1. DEFAULTLISTI
contains the attribute information required to complete the (terminal definition) TTY. ‘

TERMINAL TTY:

: ‘This { terminal default statement}
DEFAULT = DEFAULTLIST].<¢——— { references the Default { terminal
DUPLEX = FALSE. definition) defined previously.
ADDRESS = NULL.
WIDTH = 72.
MAXINPUT = 72.
TIMEOUT = 300 SEC. o
CONTROL = CONTENTIONDEVICE. - : c
REQUEST = RECEIVE: READTTY, TRANSMIT: WRITETTY.

5-155

Defintions
TERMINAL
Terminal Adapter Statement

TERMINAL ADAPTER STATEMENT

Syntax
) -
ADAPTER —&= Ceonmmunication type numhcr} £ .
(=e=(communication type number y—= s —s={ conumunication type number =)—j
Examples
ADAPTER = 4.

ADAPTER = (6,10), (10,6).
ADAPTER =§, (5,6), 6.

Semantics

The gterminal adapter statement) defines one or more combinations of character format, synchronous/
asynchronous communication, and line speed (in the case of asynchronous communications), with which
the terminal type is compatiole. This is done by supplying one or more {communication type number) s
{or number pairs). Table 5-4 lists the allowed {communication type number) s and the characteristics
associated with each.

If the terminal type is to be operated in a full duplex mode, and the primary and the auxiliary lines have
different characteristics, then a (communication type number) pair must be supplied.

If the terminal is to be modem-connected (i.e., connected to the system through the use of modems),
then at least onc of the {communication type number)s (or number pairs) must be compatible with those
numbers listed for the connecting modem in the (modem adapter statement}.

5-156

L~

<

Definitions
TERMINAL

Terminai Address Size Statement

TERMINAL ADDRESS SIZE STATEMENT

Syntax
ADDRESS —&>= & NULL ? o -
L {receive address size) -
L » —(transmit address size) -j L (DIFFERENT) ‘j
Examples
ADDRESS =2,

ADDRESS = 2 (DIFFERENT).
ADDRESS = 3, 2 (DIFFERENT).
ADDRESS = 2,3.

Semantics

The (rerminal address size statement) defines the number of address characters that the terminal type
transmits and receives. The number of address characters must not be confused with the actual address
characters used in polling and selecting; the (vtation address statement) defines the actual address char-
acters, This attribute must be defined when actual address characters are defined in the <station :
address statement) of a (station definition) that references the (terminal definition). :

(receive address size) and transmit address size? must be integers greater than zero and less than 4.
The (receive address size) defines the number of address characters the terminal expects to receive, and
the (fransmit address size) defines the number of address characters that the terminal transmits. If the

transmit address size) is not defined, it is assumed the (transmit address size) is equal in length to the

receive address size). The (receive address size) and the (tra’nsmz't address stze) for a given terminal
must concur with the length of the character string> (5) defined as the actual address characters in the
(station address statement) of any (station deﬁnition} which references the (terminal definition) ;
otherwise, a syntax error results.

The (DIFFERENT) option must be used if the {receive addressy and thé {transmit address) , as defined
in the (station address statement) , are not identical.

- 5-157

Definitions
TERMINAL

Terminal Backspace Character Statement

TERMINAL BACKSPACE CHARACTER STATEMENT
Syntax _ ‘ ‘ i
BACKSPACE - = -a~(single character’) —— ‘ — -
— | L»(DYNAMIC) —-j
Examnles -
BACKSPACE = 4“16™. - -
BACKSPACE = “+” (DYNAMIC). ' -
Semantics I
The {terminal backspace character statement) defines the backspace character of the terminal type
{i.e., the character that the terminal type would transmit to indicate that the previous character should
be de!ctcd) If defined, the backspace character can be recognized by the DCP when RECEIVEG (ifr’a
(recezve statement)) and any action to be taken can be spemﬁed by the programmer (using the
BACKSPACE syntax).
(DYNAMIC) indicates that the controlling MCS of a station referencing the (termmal definition) is
allowed to change the backspace character for the station by means of a SET CHARACTERS (TYPE=39)
DCWRITE.
Ww‘
<

5-158

Defintions
TERMINAL
. Terminal Buffer Size Statement

TERMINAL BUFFER SIZE STATEMENT
Syntax

BUFFER — = —1————2 NULL
. b—m=s(linteger) ——j

Examples

BUFFER = NULL.
BUFFER = 960.

Semantics

The {terminal buffer size statement) applies to butfered devices and defines the size, in characters,
of the terminal type buffer. If the terminal type is an unbuffered device, the form: ‘

BUFFER = NULL.

can be used, or the statement may be omitted; additionélly, if the device is unbuffered, the (terminal
maxinput statement) must be defined for the {terminal definition) .

5-159

Deﬁniﬁons
TERMINAL
Terminal Carriage Character Statement

TERMINAL CARRIAGE CHARACTER STATEMENT
Syntax

CARRIAGE > = — & (single character) : - -

Example
CARRIAGE = 40D".
Semantics

This statement is implemented for program documentation purposes only. This statement provides a
means of documenting the carriage return character of a terminal type The documentation of this
character is optional in a (termmal defmztton)

5--160

Definitions
TERMINAL
Terminal Clear Character Statement

TERMINAL CLEAR CHARACTER STATEMENT
Syntax

"CLEAR B = e~ (single character) ——.

Example
CLEAR =4“11".
Semantics

This statement is implemented for program documentation purposes only. It provides a means to
document the clear character of a terminal type. The documentation of this character is optional in a

{terminal definition) .

5-161

Definitions
TERMINAL

Terminal Code Statcment

TERMINAL CODE STATEMENT

Svntax

CODE - = = ASCII (BINARY)

> ASC67

= ASC68

——= BAUDOT

— BCD

——- BCL

——o= BINARY

—> EBCDIC

vty % ¢t ¥ ovoyoy

L& PTTCOI

Semantics

The {terminal code statement) specifies the character code translation required for the DCP to
communicate with the terminal type. The internal code of the DCP is EBCDIC, and the DCP translates
from EBCDIC to the code specilied for transmissions, and from the code specificd to EBCDIC for
reeeptions.

BINARY und EBCDIC specity that translation is not required.
ASC67 and ASC68 specity the standard software translation tables for the ASCII character code.

ASCIH (BINARY) allows a {control definition)y or {request definitiony to switch back and forth between
ASCII code translation and no translation. The (ode statement) in a (request definition) or

<contr01 definition)y cffccts the switch back and forth. The application of this feature is to allow a
(request definitt‘ong or (c(mrml dc{/'inition) o enter a ““transparent’ mode in Binary Synchronous
communications procedures.

BAUDOT, BCD, BCL, and PTTC6I spccifications are all indicative of the translation they invoke. For
example, BAUDOT invokes the Baudot character code set, PTTC61 invokes PTTC/6, etc.

~ Pragmatics
For special applications a programmer can define and invoke non-standard character codes by: -
a. defining a translation table in a (translatetable definitioﬁ); R
b. specifying BINARY or EBCDIC in the (ferminal code statement) ; and

¢ invoking the translation ina {control definition) or(réquest definition) by means of the
appropriate option of the (assignmc’nt statement). .

Refer to the (transiatetable definitiony in this chapter for more information.

5-162

l)cﬁnit"io,nst
TERMINAL

Terminal Control Statement

TERMINAL CONTROL STATEMENT
Syntax

CONTROL —® = —=(control identifier)

— .
L» » —= (control identifier) ——1 '

Examples

CONTROL = CONTENTION.
CONTROL = PRIMARYCONTROL,
AUXILIARYCONTROL.

Semantics

The (tcrminal control statement) specifics the (control dcfinition}(s) responsible for allocation of the
logical line(s) to which a terminal type is associated. This attribute must be defined for all {trerminal
definitions). : '

Terminal types that do not utilize full duplex, reverse channel, or voice response features require that only
one (comrol idcntiﬁcr> be named.

Terminal types that utilize full duplex, reverse channel, or voice response features (i.e., DUPLEX = TRUE)
may optionally specify a second (control identifier). The first {control identifier names the {control
deﬁnition} for the primary line, and the second (control identiﬁer} names the (com‘rol dej'inition) for
the auxiliary line. If only one {control identifiery is specified, it is assumed to be the {control definition)
for the primary line, and the default cquivalent of an (idle slatcmcnt) is used for auxiliary line control.

5-163

Detinitions
TERMINAL
Terminal Default Statement

TERMINAL DEFAULT STATEMENT

Svntax

DEFAULT - = o (default terminal identifier) —

I'xample
DEFAULT = TTYDFLT.
Semantics

The (rerminal default statement) allows the programmer to specify the (default terminal identifier)
of a sct of default terminal attributes previously defined to be used for a (termz‘nal definition)
whosce description is incomplete. It is advantageous to group common attributes under a Default
{terminal definitiony and list the remaining attributes under each individual {terminal definition) .
The compiler will then refer to the Default {trerminal definition) to complete the (terminal
definitiony. The {terminal default statemenr) is not required to appear in {terminal definitions)
however, a {terminal definition) must defince all required attributes if a (terminal default statemeni)
docs not appcar.

The {trerminal default statement’y can appear in a {terminal definitiony or a Default {terminal
definition)y . . :

Suppicmentary Example N

The Tollowing example illustrates how {terminal default slatemenl}s may be “nested” to combine the
attributes ol one or more Detault {rerminal (/(’ﬂlli[i()ll>b‘. '

The effect of referencing GENERALDEFAULT within the Default (ierminal definitiqn) TTYDEFAULT
is that the attributes associated with TTYDEFAULT are cquivalent to all attributes as defined by
GENERALDEFAULT plus the attributes explicitly defined in TTYDEFAULT.

Ifa <terminal defim'tion) or Dcfault (terminal definition) references a Default (terminal definition),
the compiler docs not compare the two definitions for contradictory statements. 1f contradictory state-
ments exist within the two definitions, the last value defined for the attribute takes precedence. In the
example, TTY?2 defines the value of the PAGE attribute as 66, and the Default (terminal definition}
that TTY2 references defines the value of the PAGE attribute as 0. The compiler uses 66 as the value
of the PAGE attribute for TTY2. - '

5-164

ICTDELAY

TRANSMISSION

ADDRESS
PAGE
BUFFER

DEFAULT
BLOCK
SCREEN
PARITY
SYNCS
TIMEOUT
MAXINPUT
WIDTH
ADAPTER
CODE

TERMINAL TTY1:

DEFAULT
DUPLEX
WRU

END
BACKSPACE
CONTROL
REQUEST

TERMINAL TTY2:

DEFAULT
DUPLEX
WRU
BACKSPACE
CONTROL
REQUEST [1]
REQUEST [2]
PAGE

CeLeeee

o wnnnounn

Definitions
. TERMINAL
Terminal -,!__fefault Statement — Continued

TERMINAL DEFAULT GENERALDEFAULT:
TURNAROUND

~a———0Default (termingl definition)

TERMINAL DEFAULT TTYDEFAULT:

- {terminal default statérhent) refercnces-

GENERALDEFAULT.
above Default (rerminal definition)s.

FALSE.
FALSE.
NULL.
FALSE.
3 SEC.
72.

72. .

4. ’
ASCé67.

~——Pefault {terminal definition)

{ terminal default statement) references

TTYDEFAULT.
above Default (terminal definition)s.

FALSE.

ENQ.

ETX (DYNAMIC).
BS (DYNAMIC).
CONTEND. A o
WRITETTY: TRANSMIT, READTTY: RECEIVE.

TTYDEFAULT. { {terminal default statement references
FALSE. ‘ above Default {terminal definition)s.
46698”‘

4“979’.
SPECIALCNTRL. ,

- READER: RECEIVE, WRITER: TRANSMIT.
READPPT: RECEIVE,. WRITEPPT: TRANSMIT.
66.

5-165

Definitions o ' : #ieE

TERMINAL
Terminal Duplex Statement oo T .
TERMINAL DUPLEX STATEMENT
Syntax
DUPLEX > = « TRUE ? - .
L——» FALSE
Semantics
The {rerminal duplex statvmcnl} defines whether or not (TRUE or FALSE, respectively) the terminal
type utilizes full duplex, reverse channel, or voice response features. If DUPLEX = TRUE, then the (line
definition) for any line that has this terminal type assigned must contain the {line type statement} con-
structs that specify full duplex. This attribute must be defined for each (terminal deﬁnition).
N d
|
N

5-166

(C

Definitions: |
TERMINAL
Terminal End Character Statement

TERMINAL END CHARACTER STATEMENT
Sylil:u

END > = & { single character l
' l—"’ (DYNAMIC)

Examples

END =4%“0D",
END = “&” (DYNAMIC).

Semantics

The (tt'rmmal end character statement) defines the ¢ end character of the terminal type (i.c., the character
that the terminal type would transmit to indicate an end-of-text). If defined, the “end” chamctcr can be
recognized by the DCP when RECEIVEd (in a {receive starwnenl}) and any action to be taken can be
specified by the programmer (usmv the END syntax).

(DYNAMIC) indicates that the Mcssugc Control System of a station rcfcrcncing the (tcrminul clqﬁnitim))
is allowed to change the character for the station by means ol a SET CHARACTERS (TYPE=39)
DCWRITE.

5-167

Definitions
TERMINAL
Terminal Home Character Statement

TERMINAL HOME CHARACTER STATEMENT
Syntax

HOME > = o single character — .

Example
HOME = 40C”.

Semantics

This statement is implemented for program documentation purposes only. It provides a means of docu-

menting the home character of the terminal type. The documentation of this character in a (termmal
definition) is optional.

5-168

o

“«

Definitions .

| TERMINAL
- Terminal Illegal Character Statement
TERMINAL ILLEGAL CHARACTER STATEMENT
Syntax
ILLEGALCHR — = - (single character) ——e -
Example

ILLEGALCHR = 4“FF”.
Semantics

The <termmal illegal character statement) is implemented for documentation purposes only The docu-
mentation of this character is not required in a (terminal defi mtzon)

5-169

Definitions
TERMINAL
Terminal Inhibitsync Statement

TERMINAL INHIBITSYNC STATEMENT
Syntax

INHIBITSYNC > = & TRUE - - -
& FALSE ———-1 '

Semantics

The {tcrminal inhibitsync statement) affects only terminal types that specify any of the (communication
type numher)s 17 through 27 in its {terminal adapter statc*n-zent}. This statement has no affect upon, and
nced not be defined for, terminal types that do not specify any of those <communication type number)s.

If INHIBITSYNC = FALSE, then the following occurs during a synchronous transmission. The trans-
mission begins with the transmission of four sync characters by the adapter cluster. As the fourth sync
character is being transmitted, the first character of the message is requested from the DCP. The DCP
should respond to this request by supplying the first character of the transmission. As each supplied
character is transmitted, the adapter cluster requests another character. If the DCP is unable to respond in
time to the request, the adapter cluster transmits a sync character; this process is called “sync filling.”
Sync filling is repeated as necessary until the DCP responds with another character or the DCP directs the
adapter cluster to “finish transmit” for the line. :

When INHIBITSYNC = FALSE during a synchronous reception, the following occurs. At the beginning of

the reception, bit patterns from the line are cxamined by the adapter cluster and the bits discarded until a N’/
sync character is recognized. The recognition of a sync character establishes that the next bit to be ~—
received by the adapter cluster is the first bit of the next character. The sync character is discarded,

instead of being made availablc to the DCP. All characters in the transmission that are not sync characters

are made available to the DCP. The DCP may then fetch these characters.. Any sync characters received in

the transmission are discarded. :

If INHIBITSYNC = TRUE , then the following occurs during a synchronous transmission. All actions occur
that would occur if INHIBITSYNC = FALSE. In addition, if a sync fill is required, a “sync fill interrupt”
occurs so that the DCP can determine when one or more undesired sync characters have been inserted into
the transmission. System software responds to the interrupt by executing a TERMINATE ERROR. The
controlling MCS is notified of all such situations so that corrective action (MAKE LINE READY (TYPE =
96) DCWRITE, for example) can be taken. '

When INHIBITSYNC = TRUE during a synchronous reception, the following occurs. At the beginning of
the reception, bit patterns from the line are examined by the adapter cluster and the bits discarded until a
sync character is recognized. The recognized sync character is discarded, as is the next character if it is
also a sync character. Thereafter, all subsequent characters (sync characters or otherwise) are made avail-
able to the DCP as data.

The reserved word SYNCS is a synonym for INHIBITSYNC.

5-170

Deﬁn'itions‘
TERMINAL
Terminal Inter-Character Delay Statement

s

TERMINAL INTER-CHARACTER DELAY STATEMENT
Syntax

ICTDELAY > = —e-{ delay time) = -

Examples

ICTDELAY = 0.
ICTDELAY = 200 MILLI.

Semantics

The (turmmal inter-character delay ctatement} provides the uscr a means to msert a timed delay between
cach character transmitted to the terminal type. The (delay time) specified defines the interval of (t:me)
between the transmission of the start of one character to the start of the next character. If the time speci-
fied is less than the time required to transmit a character, this statement has no effect. This attribute must
be defined for all {rerminal definition)s.

°

Supplementary Example

A Model 33 TELETYPE can receive characters at a maximum rate of one character every 100 milliseconds. If.
for some reason, the programmer neceds to insert a 100-millisecond delay between each character trans-
mitted to the terminal, this can be done by specifying:

ICTDELAY = 200 MILLI,
4

(C

5-171

© Definitions
TERM'NAL ¢ N
" Terminal Linedelcte Character Statement

TERMINAL LINEDELETE CHARACTER STATEMENT
Syntax '
LINEDELETE - o (single character) —
| | - L-D(DYNAMIC) —-j o

Examples

LINEDELETE = 4“07".

LINEDELETE = 4“A0".
Scmantics
The (lermmal linedelete character s~tatemcnt) defines the linedelete character of the terminal type. If
defined, the linedelete character can be recognized by the DCP when RECEIVE (in a {receive statement)),
and any action to be taken can be specified by the programmer (using the LINEDELETE syntax).
(DYNAMIC) indicates that the Message Control System of a station referencing the (terminal defi mtzon)
is allowed to change the character for the station by means of a SET CHARACTERS (TYPE-39)
DCWRITE. .

: N/

(C

Definitions _‘
TERMINAL
Termmal Lmefe»d (‘haracter Statement

Tl‘iRMlNAL LINEFEED CHARACTER STATEMENT
Syntax

LINEFEED - = & { single character) ‘ i

Example

LINEFEED = 4°25”.
Semantics

This statement is provided for program documentation only. It documents the lmefeed character of the
terminal type. The documentation of this character in a {terminal def‘ inition is optlonal

5-173

Definitions
TERMINAL
Terminal Maxinput Statement

A —
TERMINAL MAXINPUT STATEMENT
Syntax
MAXINPUT — — = —e (integer) , ' -
Example | -
MAXINPUT = 72.
Semantics »
The {terminal maxinput slal('m(wl) applics to unbuffered terminals and defines the maximum size tekt, in
characters, that a terminal is allowed to transmit in once message. This attribute must be defined in ali
{t1erminal de/tmtzon}x in which the {tcrminal buffer size statement) is not defined or is defined as
BUFFER = NULL. This statement applies only to unbuffeyed devices; it is meaningless to define maxm-
put if the {terminal buffer size statement) is defined as non-NULL.
N o’
—

5174

Detimitions
TERMINAL
Terminal Page Statement.

TERMINAL PAGE STATEMENT
Syntax

PAGE - = = (integer ‘ — -
Examples V

PAGE=0.
PAGE = 12.

Semantlcs

The (tvnmnal page .statemem) defines the maximium number of output lines per page as restncted by the
hardware of the terminal. There are, for example, devices that can only print/display a defined number of
lines before some type of carriage/cursor control information must be supplied. If the terminal type bemg
defined has no such restnctlons, then

PAGE = 0.

should be specified, thus indicating that pagmatlon is arbntrary This attribute must be defined for all
(rerminal defi mnan}v :

5175

Definitions
TERMINAL
Terminal Parity Statcment

TERMINAL PARITY STATEMENT

Syntax
PARITY —= 4———— NULL ’ : , .
> g ‘ .
1 \“» VERTICAL ———= : ~—&EVEN : I
| Lono-—j -
1= HORIZONTAL & : —»EVEN _j--
| > (>0 4)—" I:omJ
L]
‘4:—»CRC(16);—
Examples

PARITY = NULL.

PARITY = VERTICAL:ODD.

PARITY = HORIZONTAL:CRC(16). A

PARITY = VERTICAL:0ODD, HORIZONTAL(0):EVEN.

Semantics

The (terminal parity stateme nt} defines the type of parity checking and generatlon to be performed by the
DCP when communicating with the terminal type. If the form: :

PARITY=NULL.
is used, parity is not checked or generated. , _
The VERTICAL option refers to the vertical parity bit of a character, and can be defined as ODD or EVEN.

The HORIZONTAL option specifies the type of horizontal parity. If horizontal parity is a Block Check
Character, then ODD or EVEN must be specified. If horizontal parity is a Cyclic Redundancy Check, then
CRC(16) must be specified.

The 0 or 1 option defines the function of the vertical parity bit of the Block Check Character If this bit is
a parity bit for the Block Check Character then this optron must be omitted or defined as 0 (zero). If
undefined, the option is assumed to be 0 (zero). If the bit is to be considered as a horizontal parity bit of
all high-order bits in the message, then this option must be defined as 1.

5-176

» o S :beﬁniti'o'hs
| TERMINAL -
Terminal Request Statement

‘TERMINAL REQUEST STATEMENT

Syntax v ‘ _ | Dl

- .
REQUEST I . (request identiﬁcr},-—:*RECEIVE—}L"
‘ L[-.{(inh'gvr) value of 1 thru ()}-b]-t E 'l(rcqm'sl idcnli/icr)—bf. -bTRANSMIT :
Examples

REQUEST = READTTY:RECEIVE. '
REQUEST = WRITETTY : TRANSMIT, READTTY:RECEIVE.
REQUEST(2] = TTYTAPEIN:RECEIVE, TTYTAPEOUT:TRANSMIT.

Semantics

The (terminal request statement) specifies a (request identifier), or a pait of (request identifier)s, that
designates the {request definition) to handle input from (the RECEIVE option) and/or output to (the -
TRANSMIT option) the terminal type. The {request deﬁnition) that handles input is commonly referred

to as the Receive Request, and the (request definition) that handles output is commonly referred to as the
Transmit Request. This statement must appear in each (termmal 'deﬁni-ti(m),vand cannot appear in a
Default {terminal definition). ' ' :

The {{integer) value of 1 through 6} allows the specification of up to six pairs of Transmit and Receive
Requests for the same device. Normally, these Request pairs differ for some application-dependent .
reasons. Only one pair of {request definition)s can be the controlling (request definition)s at any instant
of time. The (request definition’s in control of the terminal type immediately after DCP initialization
has an {(irueger) value of 1 through 6 } of 1; they retain control until the Message Control System (MCS)
of a station associated with the terminal type executes a SET APPLICATION NUMBER (TYPE = 38)
DCWRITE. L : o : S - :

5-177

o Deﬁmtlons
Terminal Screen Statement ~ =~ = . .
TERMINAL SCREEN STATEMENT
Syntax " : ‘

SCREEN — - = TRUE ' —

:QFALSE ————J

The {terminal screen .s'latemeht) deﬁnés whether or not (TRUE or FALSE, respectively) the terminal type
is a screen (i.e., CRT) device. This attribute must be defined in each (terminal definition).

Semantics

5-178

N

TIMEOUT o =

Sertm . Definitions
L. TERMINAL
' Termmai Tlmeout Statc.ment.

TERMINAL rmsomr STATEM ENT“‘
Syntax

———a-(timeout time)

Example
TIMEOUT 3 SEC

Semantics , :
The (terminal timeout sratement) defines the mterval of (ume) that the adapter cluster should wait from

the receipt of one character to the start of the next (in a (reccive statement) before assuming that the

terminal has “timed out.” The action taken upon a tlmeout condltlon can be specnfied ina (recewe
statement) by means of the TlMEOUT syntax

5-179

Definitions
TERMINAL
Terminal Transmission Number Length Statement

TERMINAL TRANSMISSION NUMBER LENGTH STATEMENT : '
Syntax
TRANSMISSION > = : w- NULL— 1 — A
- 0 A’j
- | —~
-) —]
e 3 —
Semantics
The {terminal transmission number length statement) defines the number of characters that the tcrminal
transmits and receives as the message transmission number. The 0 and NULL options are semantically
cquivalent and specify that no transmission number is used. ‘A non-NULL transmission number length
must be specified if a {control definition) or {request definition) that references the item TRAN is
defined for the terminal type. This statement may be omitted from a (terminal definition) if the terminal
does not transmit or receive transmission numbers. .
v\n"
-’/

5-180

o/

Definitions
TERMINAL
Terminal Turnaround Statement

TERMINAL TURNAROUND STATEMENT
Syntax

TURNAROUND > = -»(time) — —
Examples | IR

TURNAROUND = 0. .
‘TURNAROUND = 200 MILLI.

Semantics . .
The (terminal turnaround statement) defines the time required for the terminal to shift from transmitting

~ data to receiving data. The {time) defined is a parameter of a compiler algorithm for calculating the

initiate transmit delay. Refer to the semantics of the {control definition) or {request definition)
(initiate statement)in this chapter for more information. This attribute must be defined for each
(terminal definitiony. : ’ -

5-181

Definitions
TERMINAL
Termina} Width Statement

TERMINAL WIDTH STATEMENT
Syntax

WIDTH - = »(integer — ’ S ——

Example
WIDTH = 80.
Semantics

The {terminal width statement) defines the width, in characters, of a display line of output on the terminal
type. The {integer) must be greater than 0 and less than 256; additionally, the value of the (integer) must
be less than or equal to the size defined in the {terminal buffer size statement), if present. It is not
required that the {terminal width statement) appear in a {terminal definition). If the {terminal width
statement) is not defined in the (terminal definition), then the buffer size value is substituted for this
value, if present; otherwise, the value of MAXINPUT is substituted by default. :

5-182

-l

(c

o ->eDefinitions

| w,,m—-'* S TERMINAL
. ﬁw""w . .
ey e 7 Terminal WRU Lharacter Statement
e w W ‘“‘# »

TERMINAL WRU CHARACTER STATEMENT o
Syntax o
WRU —- - (single character) ~——1— ' - - .

ST - | l——» (DYNAMIC)'——J)
Examples

WRU = 4“2[)”(DYNAMIC)

wRU ‘.')”
Semantics

The (termmal WRU character statement} defmes the WRU character for the tennmal type (x e., the "
character the terminal type would transmit to request a response from the DCP). If defined, the WRU
character can be recognized by the DCP when RECEIVEd (in a (receive statemen 1)), and any action to be

~ taken can be specified by the programmer (usmg the WRU syntax).

(DYNAMIC) indicates that the Message Control System of a station referencing the (terminal defmt:on)
is allowed to change the character for the statlon by means of the SET CHARACT ERS (T YPE-39)
DCWRITE. :

5—-183

Definitions o 4 o ' o
TRANSLATETABLE | |

TRANSLATETABLE DEFINITION
Syntax
1 i I ‘ TR N | » ingle ¢ \ ‘l.
TRANSLATETABLE {translatetable identificr j—=(source size)y—-(—byw=(string)—=TQ —-(single character)) .
' b SOUPCC)=t TQ) e (CS LNGHON) et
Lo EBCDIC —TO :—b(slandard character set)=e»
- (standard character set y=a=TQ = EBCDIC —=
e (translate table ideri(ijivr)——-—'——o; v
Examples

TRANSLATETABLE ~ ATABLE 8(“STRING” TO “X").
TRANSLATETABLE ~ BTABLE ~ 8(4“000102" TO 4“AABBCC”).
TRANSLATETABLE ~ CTABLE 7(4028208" TO 4"AACCDD").
TRANSLATETABLE DTABLE 7(4“00” TO 4“AA™),
_ ETABLE 8(DTABLE, 4°01" TO 4“BB").
TRANSLATETABLE ~ FTABLE - §(400" TO 4“AA™), -
GTABLE 8(EBCDIC TO BCLFTABLE,

4‘_5019, To 4‘6BB”)‘

TRANSLATETABLE TRANID 7(“1” TO 401",
3 “29’ To 46‘027’. ‘ .
“34” TO 40304,
4“F5F6™ TO 40607”).

Semantics

The {iranslatetable definition) allows the definition of tables that may be used in {control defi initiony s
or {request definition)s to translate characters of one character set to those of another character set.

Translation tables nced to be defined in an NDL program only if non-standard character sets must be

dealt with in the Data Communications System. Terminals that transmit and receive a standard character
set do not require a translation table definition: instead, the character set is merely named in the {termmal
code statement of the {terminal definition). The character sets that do not require a (translatetable
definition . are ASCll BAUDOT, BCD, BCL, EBCDIC, and PTTC/6.

The {translatetable identifi er) that follows the key word TRANSLATETABLE names the translatlon table, .
and must be in the syntactic form of an {identifiery.

(source size)y defines the character size, in bits, of characters to be translated (source size) must be an
Zinteger) greater than 0 and less than 9.

TRANSLATION TABLE STRUCTURE

Each clement of the translation table consists of elght bits. IfN represents the {source size) , then the size
of the table is 2 raised to the Nth power. The elements of the table are selected by an index that ranges
from O through 2 to the Nth power minus 1.

At exccution time, translation is done in the followmg manner. The bmary weight of the low-order
N bits of the character to be translated is used as an index into the Speclﬁed translatlon table. The element
of the table thus indexed is the translated rcsult : Lo .

--184

(¢

Defimtnons ’ '_ .
TRANSLATETABLE

Contmued ,

INSERT lN(u DATA INTO TH[TRANSLATION TABLE

Every translation table has a default base in which each clcmcnt in thc tablc is O (all bits off) Dat'l can he
placed into the translation table by various specifications within the parenthescs. If more than one
speul‘icatlon appcars for a given translation table, each succeeding specification: 0vemdes, within its scope
previous specifications.

(strmg) TO (smgle charac ter)

This form inserts data into the translation table in the following manner. Each eight-bit character in the
(string) is examined from left to right. If a character in the {string Z is numerically greater than the size
of the table, no entry is placed in the translation table; otherw1se, t (smgle character} is stored-in the
element of the table whose index is the binary weight of the N low-order blts of the {string). character
(where N is the (source size) specified). _

(sourcd) TO {destination)

{source) and (devtmatzon) must be (vtrmg)s of equal fength. This form of speclﬁcatlon inserts data into
the translation table in the following manner. Translation is based upon corresponding characters in
source) and (destination) , starting from left and proceeding to right. The first character of <source7
corresponds to the first character of (destination) , the second character of {sourcc) corresponds to the
second character of (dcstmanon) etc. If a character in (murce} is numerically greater than the size of the
table, then no cntry is placed in the translation table; otherwise, the corresponding character in
(dmtmutmn) is stored in the element of the table whose index is the binary weight of the N low-order bm
of the corresponding character in {ourcd.

- {standard character sefy TO EBCDIC and EBCDIC TO (standard chara¢ ter set)

This form specifies a standard system software translation table from the NDL compiler that is to be
copied into the translation table. The {standard character set}s that may. be specified are EBCDIC,
ASC67, and BCL. These forms provide a way of obtalmng a legitimate base upon which addltlonal
specifications can be made.

{translatetable identifier)

This form of spccification indicates that the contents of a previously defined translation table is to be
copied into the translation table. The {translatetable identifiery must be the (identifier) of a previously
defined translation table. This form provides a means of obtalmng a legltlmate base upon which additional
specifications can be made.

Pragmatics

Those tables, and only those tables, that are used by a DCP resxde in the local memory of that DCP (unless
a DCP does not have local memory, in which case they reside in main system memory). Memory for
translation tables is allocated in blocks of 256 words, regardless of the space required for those tables.
Tables are densely packed and all elements are used before another block of 256 words is allocated. Unless
consideration is given to the translation requirements of devices in the data communications system while in
the plannmg and programming stages, translation tables can be very costly in terms of local memory.
Although it is beyond the scope of this manual to describe the planmng ofa data commumcatlons system,
this fact should not escape the NDL programmer . o - .

- 5-185.

Definitions

- TRANSLATETABLE
Continued
Supplementary Examples
‘ Exainplé 1- I
TRANSLATETABLE ATABLE 8(“STRING” TO “X™). v
Character to be Translated : Result
‘68‘9 G‘x”
661‘9' : 66x’9
. l 66R9’ .) : 66x9,
e “y
SSNQ’ : 6$x99
‘60’, 6‘x”
ATABLE is a translation tablc containing 256 elements. The (souice size), 8 in this example, deter-
mines the table sizc. All characters from {source) are translated to the (single character) .
Example 2 ‘ A o ' '
TRANSLATETABLE BTABLE 8(4000102" TO 4“AABBCC”).
' Character to be Translated Result
. 400" . ’) | . 4“AA” :
45601'1 . . : 4GCBB” R) .
4“02”) . A 4“C,C” . o o
403" : _ R 400" N

BTABLE contains 256 clements. Characters from { soufcc),'4“000102”, are translated to the
corresponding characters in the {destination), 4“AABBCC”. The character 403 is translated to
400" because there is no specification in {source) for 403" . o

Example 3 , :
TRANSLATETABLE CTABLE 7(402820B” TO 4“AACCDD”).
* Character to be Translated o - ~ Result
4.501” . . o)) 4“00”
‘ 46602” .) » 466AA’9
4¢<82” ‘ 4“AA”
46‘08‘!’ v = 4‘6DD”

In this example, the translation table CTABLE contains 128 elements. The character 401 is
translated to a 400" character, because 4“01” is unspecified in the { source). The character 482" is
translated to the character 4“AA™ because only the low-order seven bits of 482" are used to index
the translation table. " o . '

Example 4

TRANSLATETABLE DTABLE §(4“00” TO 4“AA”).
ETABLE 8(DTABLE, 401" TO 4“BB”).

The above { translatetable definition defines two translation tables: DTABLE and ETABLE. All

clements in DTABLE contain 400, except the element indexed by the character 400”; that element -
contains 4“AA”. ETABLE specifies DTABLE as a base, and then modifies that base with a subsequent \o’/ __
specification. o o o '

5-186

(C

(C

| Dgiinitions '
TRANSLATETABLE

Continued

Example §

TRANSLATETABLE FTABLE 8(4“00” TO 4“AA™).
GTABLE 8(EBCDIC TO BCL, FTABLE, 4“01” TO 4“BB”).

GTABLE is defined to contain 256 elements, and specifies the standard EBCDIC-to-BCL translation
table upon which subsequent specifications modify. FTABLE also contains 256 elements and
appears as a specification in GTABLE. Since each succeeding specification overrides within its scope
any previous specification, FTABLE in effect overlays all elements. The result is the same as if only
the following had appeared:

TRANSLATETABLE FTABLE 8(4*00” TO 4“AA”),
GTABLE 8(FTABLE, 401" TO 4“BB”).

The above example points out that any table appearing as a specification indicates all elemients of that
table, not just those elements explicitly defined. The example is not intended to 1llustrate an accept~
able programming practice.

5-187/5-188

 Variables
VARIABLES

maasgiliess S

6. VARIABLES
GENERAL

“The NDL compiler does not allow a programmer to declare and use program variables, as do other language

compilers such as ALGOL, PL/I, and COBOL. Instead, the NDL programmer can use only predefined
program variables. ’ : . L

The (bit variable)s and {byte variable)s are the two types of variables the programmer can use. The (bit
variahlu)s arc one-bit variables that can only assume logical values (i.e., TRUE or FALSE). The: (byw
variable)s are all eight-bit variables, and can assume integer values from 0 through 255, except for the IR
variable, which is a 10-bit variable. The IR variable is included as a (byte variable) as a matter of
convenience. ’ : ' -

Individual bits of a (byte variable) can be referenced and used like a {bit variable) , if referenced in the
form illustrated below. : .

- { byte variable) — [—& { bit number) —] ——

where (bit number) is an (integer) not greater than the number of bits contained in the variable minus 1.
For cxample, bit 5 of IR is referenced as IR[S5].
FUNCTION OF VARIABLES
Functionally, variables fall into one of three general categories:

a. Variables that are available to the programmer for .gén'cral information stofage.

b. Variables that can be used for system/station communication.

¢. Variables that contain control information.
General information variables can be uSed within their s¢opc by the progranimer for data storage, calcula-
tions, etc. Additionally, some variables in this category could (by convention) be used as communication
paths between (request deﬁnition)s executing on a given line. (The use of a given variable for this appli-
cation is restricted by the scope of that variable.) : - '
Variables whose intended function is communication to and from the main system and stations are gener-
ally contained in the message header of a message sent to the main system from a station, or sent to the
station from the main system. Messages from the main system to a station are originated.either by the MCS

or by an application program (via the 1/O Intrinsics). ‘

The format of message variables within a message headérjs described in detail in the B 6700/B 7700

DCALGOL Reference Manual. Generally, message variables are contained in five fields of the message header:
a. Message Toggles (word [1]1.[39:8]) »
b. Message Tallys (word [3].[23:24])

Variables

Continued

¢. Message Error Flags (word [1] . [23:24])

d. Variant “Carriage Control” (word [0] . 139:16])

e. Message Retry Count (word [2] . 147:8])
Message Toggles and Mcessage Tallys provide storage arca in the header for some of the station general infor-
mation variablcs. The meaning of values stored in these fields must be established by mutual convention be-
tween the MCS writer and the NDL programmcer.
Message Error FFlags are used for the station to communicate to an MCS that some cxceptional cvent has

occurred in a (| request definition) or {control definition). These variables reference bits in the message
header of “result™ messages returned to the MCS as a result of execution of a (terminate statement}

Carriage Control is valid for Transmit Requests, dnd provides mformatron regardmg the kind of carriage
control to be performed by a Transmit Request. These variables reference bits or bytes in the message
header of WRITE (TYPE=33) DCWRITE messages.

The Message Retry Count is described under RETRY in this chapter.
Variables whose function is to contain control information are used by both the DCP operating system and
the programmer. Generally, these variables provide information to control the logic paths of (control
definition)s, (request defmmon)s and the DCP operating eystem
SCOPE OF VARIABLES
The scope of the variables in NDL is described as being:

a. Station-oricnted.

b. Line-oriented.

¢. Global.
Station-oriented variables cxist for each station in the network. TALLY [0] is an cxample of a station-
oriented {byte variable) thus, each station has its own TALLY [0]. The varrables of a given station arc
visible to a line only while STATION is set to that station’s ‘‘station index.”
Line-oriented variables exist for each line on a DCP. The variables of a given line are visible to every station
assigned to that line. MAXSTATIONS is an example of a line-oriented variable. Each line on a DCP has its
own MAXSTATIONS, and every statlon assigned to a given line can access the MAXSTATIONS vanable of
that line.
A global variable is a variable that is visible to all stations on a DCP.
DESCRIPTION OF VARIABLES
The remainder of this chapter contains descriptions of each {bit variable) and {byte variable). The variables

(listed in table 6—1) are described in alphabetical order. The name of the variable precedes a summary of the
variable characteristics, followed by a detailed description of the variable.

N/

~—

(c

. Variables

Cbnfi_nued

The summary of the variable characteristics includes the places in the source program that the variable can

be interrogated or altercd, and the size, in bits, of the variable. In the summary, the word “Intérrogate”
indicates that the programmer can interrogate the variable. The word “Alter” indicates that the:programmer
can use the {bit variable) / (byte variable) as an (assigna_ble bit variable) / (assignable byte varfiable). The
corresponding letters “C”, “T”, and “R” in the summary refer to {cont’rol deﬁnition}, Transmit Request,
and Receive Request, respectively. The last item to appear in the summary is the size, in bits, of the variable.
If no size is defined, then the size of the variable is one bit.

For example. the summary:

EXAMPLE1
lntcrrogate‘, CTR, 8

can be expanded as follows:

EXAMPLEI is an 8-bit variable. It can be
interrogated in a (control definition},‘
Transmit Request, or Receive Request.

The summuary:

EXAMPLE2 :
Interrogate/Alter, CTR/TR

can be cxpanded as Tollows:

EXAMPLE2 is a (bit variable). 1t can be
interrogated in a {control definition),
Transmit Request, or Receive Request.
Additionally, EXAMPLE2 can be altered
(i.e., appcar as an (assignable bit var_iable})
in a Transmit Request or Receive Request,
but not in a {control definition).

Table 6—1 contains the summaries of cach variable fof quick reference.

6-3

Variables

Continucd
Table 6--1. Table of Variables

NAME (in bits) INTERROGATE . | = ALTER
ADDERR | { Cm 1 Cmr
AUX (LINE (BUSY)) - © CIR CTR
AUX (LINE (QUEUED)) | | - CTR "~ CIR
AUX (LINE (TALLY [{oor1}1 8 CTR ' CIR
AUX (LINE (TOG [{0or1}] e | cmr CTR
BCC . 8 CTR ' CTR
BCCERR - 1 1m® TR
BLOCK . R T —
BLOCKED ' | o T —
BREAK [RECEIVE} . .. | -~~~ CIR . CTR
BREAK [TRANSMIT] o .} ccR . CIR .
BUFOVFL - - S { - CmR - .CTR .
CARRIAGE | : | T —_
CHARACTER - 8 |l .. cmr CTR
CONTROLFLAG - .] . TR .~ TR
CRC | . cm CTR
CRC [{0 or 1}] | 1 '8 | . cm | CTR
CRCERR EETEE N R i S TR
DISCONNECT - - TR TR
ENDOFBUFFER | o .. T TR TR
FORMATERR Sl o TR TR
INHIBITSYNC _ - .} . " CIR | CTR
IR | w0 | - crR | —
LINE(BUSY) =~ R N o1 - .~ CIR
LINE (QUEUED) _ . s |7 CIR ' CIR
LINE (TALLY [{0or1}] = - 8. -} .. . CIR I CIR
LINE(TOG [{oort}] -~ . | =~ | - :CIR CTR
LINEFEED ' SRR B S S—
LOSSOFCARRIER - EE - CmR CTR
MAXSTATIONS | 8 CIR —_—
NAKFLAG , TR TR

6-4

(

((

E 'Vériai;les

‘Continued
Table 6—1. Table of Variables (Cont)
SIZE | R
NAME ~ (in bits) INTERROGATE 'ALTER
NAKONSELECT TR TR
NOSPACE CTR RS
PAGE T o
PAPERMOTION T G
PARITY CTR CTR
RETRY 8 CTR CTR
SEQERR TR TR
SEQUENCE CTR CTR
SKIP T —_
SKIPCONTROL 8 T L —
SPACE . T PRI
STATION o 8 c . C
STATION (ENABLED) | CTR —
STATION (FREQUENCY) 8 CTR —
STATION (QUEUED) CTR’ —
STATION (READY) - CTR —
STATION (TALLY) 8 CTR . CTR
STATION (VALID) CTR _
STOPBIT CTR CTR
SYNCS CTR ~ CTR
TAB T ——
TALLY [(tally number)) 8 CTR " CTR
TIMEOUT CTR CTR
TOG [(toggle number)] CTR ~ CIR
TOGS 8 CTR -CTR
TRANERR | TR TR
WRUFLAG TR

6-5

Variables

Continued
ADDERR ’
Interrogate/Alter, CTR/CTR
ADDERR references bit 8 in the Error Flag Field of a4 message header, and normally indicates that an- address
character error has occurred while executing a (receive statement) Refer to the ADDRESS optlon of the
(receive statement).
Al
Interrogate/Alter, CTR/CTR, 8
This variable addresses a volatile register and should not be used for data storage. Its main purpose is to _
allow access to the untranslated byte just received rather than to the translated byte in CHARACTER,
particularly when executing the (sum statement).
AUX(LINE(BUSY))
Interrogate/Alter, CTR/CTR
AUX(LINE(BUSY)) is used to allow or inhibit the mt(,rruptson of the execution of a (control defi mtton)
or (request dejmmon) on the auxiliary line of a full duplex line pair. If this bit is TRUE, it indicates to the
DCP operating system that the line is engaged in functions that must not be interrupted. If FALSE, it 1nd1~ ‘
cates to the DCP operating system that the linc can be mterrupted to initiate another function. W
AUX(LINE(BUSY)) is line-oriented, but may be altered only by the auxnhary line. Both the auxiliary and s
primary line may interrogate this bit.
A {control definition) or {request definitiony will be interrupted when AUX(L]NE(BUSY)) is FALSE if
the primary line executes a (fork statement). (Note that an interruption causes control to leave a (control
definition) or (request defi mtwn} and that control is not returned to the point where the mterruptmn
occurred.) AUX(LINE(BUSY)) is set TRUE by system software when:
a. The primary line executes a (fork stalement} and AUX(LINE(BUSY)) is FALSE or
b. The auxiliary line (control deﬁmnon) is entered, or
¢. The auxiliary line enters a Receive or Transmlt Request.
If AUX(LINE(BUSY)) is TRUE when the pnmary line executes a. (fork statement) the (fork statement)
will act as a no-op.

(

(C

 Variables

- Continued

AUX(LINE(QUEUED))
Interrogate/Alter, CTR/CTR

This is a linc-oriented (bit variable) that refers to the queucd status of the auxiliary line of a full duplex line
pair. The bit is set by the DCP operating system if and when an input message space is explicitly.acquired
by executing a (getspace statement) on the auxiliary line. L ' '

AUX(LINE(TALLY[{0or 1}]))
Interrogate/Alter, CTR/CTR, 8

These are line-oriented (byte variable)s for the auXiliary,ljne of a full duplex line pair, and can be used for
any purpose by the NDL programmer. They can be accessed by either the primary or auxiliary line at any
time. A . . , ‘ - -

AUX(LINE(TOG [{0 or 1}1))
Interrogate/Alter, CTR/CTR

-These are line-oriented {bit variab‘le)s for the auxiliary line of a full duplex-pair, and may be used for any
purpose by the NDL programmer. They may be accessed by either the primary or auxiliary line at any time.

BCC
Interrogate/Alter, CTR/CTR, 8

BCC is used by system software for the purpose of accumulating a Block Check Character when a station
(terminal definition) defines horizontal parity as ODD or EVEN in the (terminal parity statement).

Block Check Character accumulation is an automatic function, if appropriate, of the (receive statement)
and < transmit statement}. Block Check Character accumulation is based upon execusive-OR logic, that is,
as characters are received or transmitted, they are exclusively OR-ed with the contents of BCC. It is the .
responsibility of the programmer to initialize BCC when appropriate. (Refer to the < initialize statement}
under (request definition) or {control definition).) , : ' '

If a station (terminal definition) does not define horizontal parity, BCC can be used as a temporary data
storage area. It should be pointed out, however, that the value in BCC is destroyed by most constructs of

the {terminate statement). Furthermore, since the intended purpose of BCC is to contain parity information,
BCC and CRC[0] address the same data space. BCC cannot be used if a terminal uses Cyclic Redundancy
Check. : ' '

When accumulating a Block Check Character, a convenient means to eliminate a specific character from the
value accumulated in BCC is the (sum statement). ' ' :

Variables

Continued

BCCERR

Interrogate/Alter, CTR/CTR

BCCERR refers to-bit 7 in the Error Flag Ficld of a result message, and conventionally indicates thata
horizontal parity (BCC) cerror occurred while executing a (receive statement). Refer to the semantics of the -
BCC option of the {receive statement).

BLOCK
Interrogate, T

This bit references bit 29 in word zero of a message header. If TRUE, this bit indicates that more blocks (or
messages) of a blocked transmission are to follow. Use of this bit implies a convention between the MCS and
the NDL programmer for the purposes of providing blocked transmissions.

BLOCK is set TRUE implicitly as a result of execution of a TERMINATE BLOCK construct in a Receive
Request. '

BLOCKED
Interrogate, T

A synonym for BLOCK. Refer to BLOCK.

BREAK[RECEIVE]
Interrogate/Alter, CTR/CTR

This {bit variable) refers to bit 3 in the Error Flag Field of a message, and normally indicates that a break
condition was scnsed in a (receive statement). Refer to the semantics of the BREAK option of the (receive
statement) . ' o ' ‘ o

Note that if this bit is TRUE in a message to be returned to the MCS, the message is returned as a STATION
EVENT (CLASS=1) message. Refer to the B-6700/B 7700 DCALGOL Language Reference Manual for- more
information regarding this message.

BREAK[TRANSMIT]
Interrogate/Alter, CTR/CTR

This (bit variable } refers to bit S in the Error F lag Field of a message, ahd'normally indicates that a break
condition was sensed while executing a {transmit statement). Refer to the semantics of the BREAK option
of the {transmit statement). - :

Note that if this bit is TRUE in a message to be returned to the MCS, the message is returned as a STATION
EVENT (CLASS=I) message. Refer to the B 6700/B 7700 DCALGOL Language Reference Manual for more
information regarding this message. . : - :

6-8

«

" Variables

Continued

BUFOVFL
Interrogate/Alter, CTR/CTR

This {bit variable) rcfers to bit 2 in the Error Flag Field of a message, and normally indicates that a cluster
buffer overflow condition occurred while executing a (receive statement). Refer to the semantics under the
BUFOVFL option of the {receive statement). L : S

CARRIAGE
Interrogate, T

CARRIAGE is a carriage control variable, and is used to indicate if a carriage return is desired at the comple-
tion of the text transmission. ‘ _ : S

CARRIAGE is TRUE if message word [0] . [25:1] is zero.

This bit can be set by the 1/O Intrinsics for a data communications file, or by the MCS.

CHARACTER , :
Interrogate/Alter, CTR/CTR, 8

CHARACTER is a linc-oriented (byte variable).

CHARACTER contains the last character TRANSMITted or RECEIVEd on the line, unless otherwise altered
by a (fetch statement) or an (assignment statement). : :

CONTROLFLAG
Interrogate/Alter, CTR/CTR

This {bit variable) refers to bit 12 in the Error Flag Field of a message, and normally indicates that the
station defined contrql character was received. Refer to the CONTROL option of the {receive statement).

Note that if this bit is on in a message to be returned to an MCS, and the first character of the message is the
control character of the station, the message is returned as a STATION EVENT (CLASS=1). Refer to the
B 6700/B 7700 DCALGOL Language Reference Manual for more info;mation regarding this message.

CRC
Interrogate/Alter, CTR/CTR

In (request definition)s and (control deﬁnition‘)s that use the Cyclic Redundancy Check, system software
tests the status of the (bit variable) CRC before the execution of any {receive statement) or {transmit
statement). If CRC is TRUE, the byte (or bytes) transmitted or received are calculated into the Cyclic
Redundancy Check stored in the (byte variable)s CRC[0] and CRC[1]. If CRC is FALSE, bytes transmit-
ted or received do not affect the Cyclic Redundancy Check. : _

Variables

Continued
CRC[{00r 1}]
lnterrogate/Alter, CTR/CTR, 8
System software uses the (byte variable}s CRC[0] and CRC[l] as a concatenated 16-bit information field
to contain Cyclic Redundancy Check information for those stations whose (termtnal def”mtton)s define .
horizontal parity as CRC(16). If the {bit variable) CRC is TRUE, Cyclic Redundancy Check calculation is
done using CRC[0] and CRC[1] as a 16-bit field, and the characters TRANSMI’I‘ted or RECEIVEA. If CRC
is FALSE, Cyclic Redundancy Check calculation is inhibited. ‘ ‘ _
If a station (terminal definition) does not define horizontal panty, then CRC[O] and CRC[l] can be used
as a temporary storage area. It should be pointed out, however, that the values in CRC[0] and CRC{1] are
destroyed by most constructs of the {(terminate statement) Additionally, since the intended purpose of
these variables is storage of parity information, CRC[0] and BCC address the same byte. ‘CRC[0]
cannot be used for temporary data storage if the (control deﬁnition} or (request deﬁnitton) uses BCC for
Block Check Character accumulation. _ '
CRCERR =

Interrogate/Alter, CTR/CTR
CRCERR references bit 7 in the Error Flag Field ofa result message, and conventionally indicates that an
error in the Cyclic Redundancy Check occurred while executmg a (recezve statement} Refer to the seman-
tics of the CRC option of the (receive statement). . B

: e’y

DISCONNECT
Interrogate/Alter, TR/TR
DISCONNECT references bit 12 in the Error Flag Field of a message, and mdlcates that a dxsconnect occur- .
red on the line while executing a (request deﬁmtion} - R
ENDOFBUFFER - L
Interrogate/Alter TR/TR -
ENDOFBUFFER referenees b1t 17in the Error Flag Freld of a result message and is. eonventronally used by o
a (request definition) to indicate when an overflow of the text buffer: has occurred Refer to the semantres k
of the ENDOFBUFFER option of the {receive statement) L - <
FORMATERR B
Interrogate/Alter, TR/TR _ S
This bit references blt 10 in the Error Flag Field of a result message, and is conventxonally used to mdxcate .
that a format error occurred while executmg a {receive statement) Refer to the RECEIVE (strmg) construct S
of the (receive statement). - ‘ TR , _ SN

(C

(C

 Variables
. Continued

INHIBITSYNC
Interrogate/Alter, CTR/CTR

INHIBITSYNC is a line-oriented variable that causes actions as descnbed under the ¢ termmal mhzbztsync
statement} . :

IR

" Interrogate, CTR, 10-bit

" IR addresses the 10-bit Input Register of the adapter cluster. This register contams hardware related controi

and data information for a line adapter.

IR can be interrogated using a (bit number) specification. {bit number)s for IR range from zero through 9.
For example, IR[0] addresses bit number zero of the Input Register. 1

Refer to the Burroughs Data Communications Processor Reference Manual or the DCP Reference Card for '
the meaning of the bits in IR -

LINE(BUSY)
Interrogate/Alter, CTR/CTR

LINE(BUSY) is a line-oriented control information bit, and is used to allow or inhibit the interruption of
the execution of a {control defi mn‘on) or {request def:mn‘on) on a singie line. In the case of a full duplex
line pair, LINE(BUSY) refers to the primary line. If this bit is TRUE, it indicates to the DCP operating
system that the line is engaged in functions that must not be interrupted.. If FALSE, it indicates to the DCP
operating system that the line ¢an-be mterrupted to initiate another function. LINE(BUSY) can be altered
only by the primary line of a full duplex lme pair. ,

A (control definition) or (request definition) is mterrupted when LINE(BUSY) is FALSE if the DCP re-
ceives in its Request Queue a station-oriented DCWRITE message, and STATION(QUEUED) is FALSE for
that station. If the message is a READ - ONCE ONLY (TYPE=34), STATION is set to that station index,
and control is transferred to the Receive Request for that station. If the message is a WRITE("I‘YPE=33)
DCWRITE message, STATION is set to that station index, and control is transferred to the Transmit Request
for that station. If the message TYPE is neither of the above, the function associated with the message is
executed and control resumes at the beginning of the line (control definition) , with the value of STATION'
equal to the index of the station for which the function was initiated. (Note that an interruption causes con-
trol to leave a {control definition) or (request definition), and that control is not returned to the pomt where
the interruption occurred.)

Variables

Continued
| N

LINE(BUSY) is sct TRUE by system software when:

a. The (eontrol definition) is entered,

b. A (requu.sr definition) is entered, or

c. The line is the primary of a full duplex line pair, LINE(BUSY) is F ALSE and the auxiliary line ex-

ecutes a fork statement . ‘

Note that if LINE(BUSY) is TRUE when the auxiliary line of a full duplex hne pair executes a { fork state-
ment), the (fork statement) acts as a no-op. _
LINE(QUEUED)
Interrogate/Alter, CTR/CTR
LINE(QUEUED) is a line-oriented variable used to indicate whether or not (TRUE or FALSE, respectively)
a message has been queued for any station on the line. It is set TRUE by system software when a message
is inscrted into an empty Station Queue of a station assigned to the line. It is the programmer’s responsibil-
1ty to set it FALSE when appropriate.
LINE(TALLY ({0 or 1}1) S o O
Intorro;,dtc/Altur CTR/CTR, 8 : - . .
LINE(TALLY [{ Oorl }]) are lmeoriented vanables for data storagc, etc., available to the- programmer
An MCS may dynamically alter the lme talhes by performmg a SET/RBSET LINE TOG/TALLY (TYPE-103)
DCWRITE request.
LINE(TOG[{0 or 1}])
lnterrogate/Alter CTR/CTR A A _
LINE(TOG [{ Oorl }]) are hne-onented vanables for general mformatlon storage etc., avallable to the pro-
grammer.
An MCS may dynamically alter the hne toggles by performmg a SET/RESBT LINE TOG/TALLY (TYPE—103)
DCWRITE request.
LINEFEED
Interrogate, T _ .
LINEFEED is a carriage control variable and is TRUE when message word [0] . [24:1] is zero. If TRUE,
LINEFEED indicates that a new line is required at the completion of the text transmxsswn This b1t can be \«’

set by the l/O Intrinsics for a data commumcatxons ﬁle or by the MCS o . e

6--12

(«

" Variables

. Continued

LOSSOFCARRIER
Interrogate/Alter, CTR/CTR

LOSSOFFCARRIER references bit 18 in the Error Flag Ficld of a result message, and is convcntion‘ally used
to indicate thut a loss of carrier occurred while executing a (receive statement). Refer to the
LOSSOFCARRIER option of the (receive statement). ’

MAXSTATIONS
Interrogate, CTR, 8

MAXSTATIONS is a line-oriented {byte variable) whose value is the maximum number of stations that can
be assigned to the line. ‘

MAXSTATIONS is initialized to the value defined in the (line maxstations statement) of the (line defini-
tion). If the (line maxstations statement) does not appear in a (line definition, then MAXSTATIONS is
initialized to the number of stations listed in the (line station smtement). If neither statement appears,
MAXSTATIONS is zero.

Within a {control definition), the valid range of values which may be assigned to the (byte variable) STATION
is between zero.and MAXSTATIONS -1, inclusive. _

NAKFLAG
Interrogate/Alter, TR/TR

NAKFLAG references bit 11 in the Error Flag Field of a result meséage, and convéntionally indicates that a
transmission was NAKed by the terminal. This bit is not set by system software, and its use is at the option
of the programmer. ' '

NAKONSELECT
Interrogate/Alter, TR/TR

NAKONSELECT references bit 16 of the Error Flag Field of a result message, and is cohventionally used to
indicate that a Transmit Request was NAKed when it attempted to select the terminal. - This bit is not set by
system software, and its use is at the option of the programmer.

NOSPACE
Interrogate, CTR

NOSPACE is a global variable that, when TRUE, indicates that a ““no space” condition exists in the available

space pool. NOSPACE is set by system software when the condition exists, and reset when the condition no
longer exists. ' . : :

6—-13

Variables

Continued

PAGE
Interrogate, T

PAGE is a carriage control variable, and conventionally indicates whether a new page is required for the out-
put device. For example, on a screen device, PAGE = TRUE could indicate to the Transmit Request that a
home/clear sequence should be transmitted before or after the text is transmitted to the termmal Refer to-
PAPERMOTION. :

PAGE is s¢t TRUE is message word |0}.126:1] = 1.

PAPERMOTION
Interrogate, T

PAPERMOTION is a carriage control variable that is conventionally used to indicate whether carriage control
is desired before or after the message text is transmitted. If message word [0].[30:1] = 1, PAPERMOTION
is set TRUE, and carriage control should be done before the text is transmitted; otherwise, carriage control
after the text is transmitted. '

PARITY
Interrogate/Alter, CTR/CTR

PARITY references bit 6 of the Error Flag Ficld in a result message, and indicates that a vertical parity error
was detected when exceuting a (receive statement). Refer to the PARITY option of the (receive statement).

RETRY
Interrogate/Alter, CTR/CTR, 8

RETRY is a station-oriented variable, and is referred to as DCP RETRY.

The purpose of DCP RETRY is to record the number of attempts a (request deﬁnmon} has made to com-
municate with a terminal but failed as the result of some abnormal condition. Conventionally, the NDL
programmer decrements RETRY (i.e., DCP RETRY) by one for each unsuccessful attempt at an operation
until RETRY equals zcro, then exccutes a TERMINATE ERROR.

When a {request definition) is initiated by the DCP, DCP RETRY is implicitly set to an initial value called
DCP lNlTIAL RETRY. The default value of DCP INITIAL RETRY is specified by the NDL program in the

station retry statement).

By using the Message Retry Field in the message header (message word [2].[47:8]), the MCS can control
the value assigned to DCP INITIAL RETRY, and therefore, is the initial value of DCP RETRY. If the
Message Retry Field is 255, the value specified in the {station retry statement) assigned to DCP INITIAL
RETRY, otherwise the value of the Message Retry Field is assigned to DCP INITIAL RETRY. The NDL
program can restore the value of DCP RETRY to the value of DCP INITIAL RETRY at any time by ex-
ccuting the INITIALIZE RETRY construct.

All forms of the {terminate statement) which result in a message being returned to an MCS cause the
current value of DCP RETRY to be stored in the Message Retry Field of the result message.

6-14

_Variables

~ Continued

SEQERR
Interrogate/Alter, TR/TR

SEQERR refcrences bit 14 in the Error Flag Field of a result message, and conventionally indicates that a
scquence number overflow occurred as the result of the execution of an INCREMENT SEQUENCE con-
struct. Refer to the {mcrement Statement). . . ,

SEQUENCE
Interrogate/Alter, CTR/CTR

SEQUENCE is a station-oriented bit that indicates whether or not (TRUE or FALSE, respectively) a
(request definition) is to perform automatic sequencing. SEQUENCE is controlled by a SET/RESET
SEQUENCE MODE (TYPE=49) DCWRITE from the MCS. SEQUENCE can be set FALSE by the NDL
program but can be set TRUE only by the controlling MCS. SEQUENCE can be set TRUE only if the
{request definition) for a terminal employs sequence number constructs such as TRANSMIT SEQUENCE,
INCREMENT SEQUENCE, and STORE SEQUENCE. Use of automatu ecquencmz, is the option and res-
ponsibility of the NDL pro;,rammu

SKIP
Interrogate/T

SKIP is a carriage control variable. SKIP is used in conjunction with SKIPCONTROL to indicate a “skip to
channel N on an output device. If message word [0].[27:1] = 1, SKIP is set TRUE and SKIPCONTROL
contains the channel number to skip to. Both SKIP and SKIPCONTROL can be set by the 1/O Intrinsics
for a data communications file, or by the MCS.

SKIPCONTROL
Interrogate, T, 8

SKIPCONTROL is used in conjunction with the {bit variable)s SKIP and SPACE. If SKIP is TRUE, then
SKIPCONTROL applies to SKIP. If SPACE is TRUE, SKIPCONTROL applies to SPACE. If neither are
TRUE, SKIPCONTROL is undefined. Both SKIP and SPACE should not be TRUE concurrently. For a
description of the function of this byte, refer to SPACE and SKIP. SKIPCONTROL is transferred to the
Transmit Request in the message header of a WRITE (TYPE=33) DCWRITE in message word [0] [39: 8]
and can be set by the I/O Intrinsics for a data communications file, or by the MCS

SPACE
~ Interrogate, T

SPACE is a carriage control variable. SPACE is used in conjunction with SKIPCONTROL to indicate the
number of vertical lines to skip. If message word [0].[28:1] = 1, SPACE is set TRUE and SKIPCONTROL
indicates the number of lines to skip. SPACE and SKIPCONTROL can be set by the I/O Intrinsics for a
data communications file, or by the MCS. :

Variables

Continued

STATION
Interrogate/Alter, C/C, 8

STATION is a linc-orientcd (byte variable) used in a {control definition) of a multi-station line to select a:
particular station with which the {control definition) wishes to interact. That is, to access the variables of
a particular station, or INITIATE the Receive Request or Transmit Request of a statlon the station mdex
value associated with the station must be stored in STATION.

A station index value is associated with each station that is assigned to a logical line. At DCP initialization
time, station index values are assigned sequentially, beginning at zero, to each station on a given line in the
order that the stations were named in the (line station statement) of the {line definition).

After DCP initialization, an MCS can cause a station to be logically added to a line. When this occurs, a
station index value becomes associated with the station. An MCS can also cause the logical removal of a
station from a linc. After such action, the station index value that was associated with the station no longer -
references a valid station. Thus, after DCP initialization, ‘‘holes” can exist in the sequence of valid station
index values for a given line. A station index value can be ‘“‘tested” to determine if 1t references a valid sta-
tion by interrogating the STATION(VALID) <blt variable).

There is a maximum valid station index value associated with each line. That value is determmed either by-
the (line maxstations statement) or by the (line station statement). (Refer to the {line maxstations state-
mem) for more information.) This value can be obtained in a <control defzmtzon) by mterrogatmg '
MAXSTATIONS. : ‘ :

STATION(ENABLED)
Interrogate, CTR

This is a station-oricnted {bit variable) which refers to the “‘enabled” state of a station. When this variable
is TRUE, the station is enabled for input, and the station Reccive Request can be invoked. If
STATION(ENABLED) is FALSE the station is disabled for input, and attemptsto mvokc the Recewe Re-
quest will be disallowed.

The setting of STATION(ENABLED) is mmally defined by the {statzon enablemput statement} in the .
station definition, and may. be altered by an MCS via the ENABLE INPUT (T’ YPE"3S) and DISABLE INPUT
(TYPE=36) DCWRITE. - x _

STATION(FREQUENCY)
Interrogate, CTR, 8

STATION(FREQUENCY) is a station-oriented (byte varzable) and is conventionally used to contain a
relative polling frequency for polled stations. The initial value for STATION(FREQUENCY) is supplied by
the (station frequency statement} for a station. It can be altered by an MCS via the ENABLE INPUT -
(TYPE=35) DCWRITE. Refer to the {station frequency statement} :

6-16

¥ if}‘ Variables

Céntinued '

STATION(QUEUED)
Interrogate, CTR, 8

STATION(QUEUED) is a station-oriented variable that indicates whether or not (TRUE or FALSE respec—
tively) therc are any messages (output or enableinput) in the station queue. Note that if this vanable is
FALSE, the execution of an INITIATE REQUEST construct acts as a no-op. S :

STATION(READY)
Interrogate, CTR

If STATION(READY) is TRUE, the station associated with the station index stored in STATION is logi-

cally ready. No function (e.g., a Transmit Request or Receive Request) can be INITIATEG for the station
if it is not ready. Stations can become not-ready as the result of the execution of a TERMINATE ERROR
in one of its (request definition)s or as the result of the MCS executmg a MAKE STATION NOT-READY :
(TYPE=37) DCWRITE.

STATION(TALLY)
Interrogate/Alter, CTR/CTR, 8

STATION(TALLY) is a station-oriented (byte vanable) and is a’ gemra] purpose variable which may be
used by the NDL program for data storage. The initial value of STATION(TALLY) is zero. Note that
STATION(TALLY) dltfers from TALLY [(tally number)| in that it cannot be dlrectly STOREd ina
message header.

STATION(VALID)
Interrogate, C ‘

The STATION(VALID) bit mdncates whether or not (TRUE or FALSE respectlvely) there isa vahd station
associated with the station index value stored in STATION, Refer to the ¢ byte variable) STATION.

STOPBIT :
Interrogate/Alter, CT R/CTR

STOPBIT references bit 1 in the Error Flag Field of a result message, and convenuonally indicates that a

stop bit error was detected while executing a <rece1ve statemem} Refer to.the STOPBIT optxon of the
(receive statement) .

SYNCS ‘
Interrogate/Alter, CTR/CTR-

SYNCS is a synonym foi' INHmlTSYNC. Refer to the INHIBITSYNC description.

Variables

Continued
N ™
TAB
Interrogate, T
TAB is a carriage control variable, and is conventionally used to indicate tabulation for the terminal. Tlus
bit is not set by 1/O Intrinsics, and its usc implics some established convention between the MCS and the NDL
programmer. TAB is sct TRUE if message word [0].(30:1}) = 1. ~ ;
TALLY [{rally number)|
Interrogate/Alter, CTR/CTR, 8 ‘
TALLY [0]. TALLY [1],and TALLY [2] are general purpose statioh-oriented (byte variable)s. They can
be used for storage of 8-bit quantities such as counters, characters, etc. When the DCP is initialized, the
TALLY:s are initially zero unless a value is specified in a (station initialize statement> TALLYs may be
initialized dircctly from a message header (message word [3].[23:24]) by utilizing the INITIALIZE
TALLY {[{tally number)| construct, thereby cnabling an MCS to supply additional information to the DCP.
The DCP can likewisc transfer the value of a TALLY back to an MCS in a result message by utilizing the
(store statement). Once a TALLY has been assigned a value, that TALLY retains that value until explxcxtly
. altercd by the NDL program. . : '
TIMEOUT ‘ _ ' } . : o
Interrogate/Alter, CTR/CTR - o N

TIMEOUT refcrences bit 0 (zero) of the Error Flag Field in a result message, and conventionally ihdncates.
that a timeout occurred while executing a (recewe statement} Refer to the TIMEOUT option of the
(receive statement). :

TOG [(toggle number)|
Interrogate/Alter, CTR/CTR

TOG [0] through TOG [7] are general purpose statxon-onented (btt varzable)s often referred to as toggles.
They can be used for storage of logical values (TRUE and FALSE). When the DCP s initialized, the value of
the toggles is sct to the value specified in the (station initialize statement) , or, if such initialization is not
specified, the initial value will be FALSE. Toggles can be assigned a value directly from a message header
(message word [1].[39:8]) by utilizing the INITIALIZE TOG [{toggle number)] construct. Toggles can
be stored into a result message by utilizing the {9tore statement) Once a toggle has been assngned a value
that toggle retains that value until cxphcxtly altered by the NDL program.

TOGS
Interrogate/Alter, CTR/(‘TR 8

TOGS addresses the eight (bit variable)s TOG[O] through TOG [7]. For example, TOGS = : 4“FF” sets S

TOG[0] through TOG [7] TRUE. TOG [0] is considered the low-order bit, and TOG [7] the hngh-order o/
bit. o o : ~

6-18

(C

Vanables

.. . _ Contmued ‘

TRANERR .
Intcrrogate/Alter, CTR/CTR

TRANERR references bit 9 in the Error Flag Field of a result message, and is conventionally used to indi-
cate that a transmission number error occurred. Refer to the TRAN option of the (receive statement).

WRUFLAG :
Interrogate/Alter, CTR/CTR

WRUFLAG references bit 13 in the Error Flag Field of a result message. If this bit is TRUE upon termina-
tion of a (request definition) , the result message is returned to the MCS as a STATION EVENT (CLASS = 1),
message. Refer to the B 6700/B 7700 DCALGOL Language Reference Manual for more information regard-
ing this message. »

6-19/6-20

(C

(C

(C

APPENDIX A. RESERVED WORDS

The following is a complete list of reserved words used in the Network Definition Language. These words
have special meaning to the compiler and cannot be used as {identifierys or in any manner other than their
defined meaning. Any synonym of a reserved word is shown adjacent to the word, in parentheses.

ABORT
ADAPTER (ADAPTOR)
ADAPTOR (ADAPTER)
ADDERR ‘
ADDRESS
Al
=/ ALTERNATE
ANSWER
ASCII
ASCé63
ASC67
ASC68
AUX (AUXILIARY)
AUXILIARY (AUX)
BACKSPACE (BKSP)
BAUDOT
BCC |
BCCERR (CRCERR)
BCD
BCL
BEGIN
BINARY

BKSP (BACKSPACE)

BLKN
BLKNERR
BLOCK . (BLOCKED)

BLOCKED
BREAK
BUFFER
BUFOVFL
BUSY

CARRIAGE

CHAR -

CHARACTER

CLEAR

CLUSTERS
CODE

CONNECTION

CONSTANT

CONTINUE
CONTROL
CRC
CRCERR
DCP
DEFAULT
DEFINE
DELAY
DIALIN

DIALOUT -
DIFFERENT

DIRECT

' DISCONNECT

(BLOCK)

(CHARACTER)
(CHAR)

(BCCERR)

DOWN
DUPLEX

DYNAMIC

EBCDIC

ELSE

ENABLED

ENABLEINPUT

END

ENDOFBUFFER
ENDOFNUMBER

EQ (EQL)
EQL (EQ)
ERROR

EVEN

EXCHANGE

FALSE

FAMILY

FETCH

FILE

FINISH

FOR

FORK

FORMAT

FORMATERR

FREQUENCY

GE (GEQ)
GEQ (GE)
GETSPACE

Go .
GT (GTR)
GTR (GT)
HOME '

"RESERVED WORDS (Cont)

HORIZONTAL
ICTDELAY
IDLE

3
ILLEGALCHR

INCREMENT
INHIBITSYNC (SYNCS)

INITIALIZE
INITIATE
INPUT

IR

LD (LINEDELETE)

LE (LEQ)
LEQ (LE)

LINE

LINEDELETE (LD)

LINEFEED

LOGICALACK

LOGIN

~ LOSSOFCARRIER

LS : (LSS)
LSS ~ (LS)
MAXINPUT

MAXSTATIONS

MCS |

MEMORY

MICRO

MILLI

MIN

" MODE
- MODEM
MSGSPACE

MYUSE
NAKFLAG
NAKONSELECT
NE

NEQ
NOINPUT
NOISEDELAY
NORMAL
NOSPACE
NOT

NULL

ODD
OUTPUT
PAGE
PAPERMOTION
PARITY
PASSIVE
PAUSE
PHONE
PTTC6l
QUEUED

. READY

RECEIVE
REMOTE
REQUEST
RETRY
RETURN
SCREEN
SEC
SECURITY
SEQERR
SEQUENCE

(NEQ)
(NE)

RESERVED WORDS (Cont)

SHIFT
SKIP
SKIPCONTROL

~ SPACE
~ SPO

STANDARD
STATION
STOPBIT -
STORE

© SUM
~ SYNCS

TAB
TALLY
TASK

. TERMINAL
" TERMINATE

TEXT
THEN
TIMELIMIT
TIMEOUT

"TO

TOG
TOGS

TRAN

TRANERR

TRANSLATETABLE -

TRANSLATOR

~ TRANSMISSION
TRANSMIT
TRANSMITDELAY

TRUE

TURNAROUND

(INHIBITSYNC)

TYPE
up

USER -

VALID
WAIT

'RESERVED WORDS (Cont)

WIDTH
WRAPAROUND
WRU

. WRUFLAG

«

(C

(C

(C

APPENDIX B. TRANSMISSION CODES

BAUDOT CODE
BN\bg — e| O 0 1 i
¢ S e 0 0 ‘
s - - ‘ ~
bATB3[b2[BT Column |, 1) 3
‘ ‘ ‘ Row ¢ v
oo fo]o 0 Bk | T | BLK| 5
oo fof1 1 E z 3 |
oo f1]o 2 LF L LF |32
ofofr] 3 | A W - 2
o1 fofo 4 SPACE H SPACE | DIAMOND
1o |1 o 5 S Y BELL 6
o [1 |1]o 6 | P 8 0
o1 {1 |1 7 v Q- 7 1
1]o]o o 8 | CR 0 CcR | 9
1 [o fo | 9 D B s |5/8~
1jofrfo| rom| & c L 3
1jofr v | n@| 9 |Fies | FI6s
1 {1 |o Jo 12(c) | N Mo |7/8— :
1|1 fo |1 130) | F x (AT 7/
1|1 |1]o 14(E) | ¢ v |1/8~T13/8—
e s |k LTRs |V/2—T| LTRs

4

DATA REPRESENTATION

EBCDIC BCL EBCDIC DECIMAL EBCDIC BCL BCL BCL USASCH
GRAPHIC GRAPHIC HEX. INTERNAL VALUE CARDCODE OCTAL INTERNAL EXTERNAL CARD CODE X3.4-1967
Blank 40 0100 0000 64 No Punches 60 11 0000 01 0000 No Punches 010 0000
[' 4A 01001010 74 12 8 2 33 01 1011 11 1100 12 8 4 101 1011
. 4B 0100 1011 75 12 8 3 32 01 1010 111011 12 8 3 0101110
< 4C 0100 1100 76 12 8 4 36 011110 111110 12 8 6 0111100
(4D 01001101 77 12 8 5 35 01 1101 111101 12 8 5 010 1000
+ 4E 01001110 78 12 8 6 111010 010 1011
| « 4F 01001111 79 12 8 7 37 011111 111111 12 8 7 111 1100
& -50 0101 0000 80 12 34 011100 11 0000 12 0100110
| SA 01011010 90 11 8 2 76 111110 011110 0 8 6 101 1101
$ 5B 0101 1011 91 11 8 3 52 101010 10 1011 11 8 3 0100100
* 5C 01011100 92 11 8 4 53 10 1011 10 1100 11 8 4 0101010
) SD oiol1101 93 11 8 35 55 101101 101101 11 8 5 0101001
; SE 01011110 94 11 8 6 56 ‘101110 101110 11 8 6 0111011

— < 5SF 01011111 95 11 8 7 57 101111 101111 11 8 7 :
- 60 0110 0000 96 I : - 54 101100 10 6000 11 101 1111
/| - 61 01100001 .97 0 1 61 11 0001 01 0001 0 1 0101111
. 6B - 01101011 107 0 8 3 72 11 1010 ‘01 1011 0 8 3 0101100
% 6C 01101100 = 108 0 8 4 73 1ol 01 1100 0 8 4 0100101
_ # 6D 01101101 .. 109 0 8 5 74 111100 01 1010 0 8 2 ot01tot
> 6E 01101110 110 -0 8 6 16 0601110 001110 8 6 orr1t1o0
? 6F 01101111 11 o 8 7 14 00 1100 00 0000 * OI1 1111
: .7A 01111010 -~ 122 8 2 15 001101 - 060 1101 8 5 0111010
: 7B 01111011 123 8 3 12 001010 00 1011 8 3 0100011
@ 7C 01111100 124 8 4 13 001011 00 1100 8 4 '100 0000
! > 7D 01111101 - 125 8 5§ 17 001111 001111 8 7 0100111
= 7E 01111110 126 8 6 75 111101 01 1101 0 8 5 0111101
" 7F 01111111 127 8 7 71 1t 011111 0 8 7 0100010

(¢

EBCDIC BCL EBCDIC
GRAPHIC GRAPHIC HEX. INTERNAL VALUE
(+)PZ + CO 11000000
A Cl 11000001
B C2 11000010
C C3 11000011
D C4 11000100
E C5- 11000101
F C6 11000110
G C7 11000111
H C8 1100 1000
| C9 1100 1001
(M X DO 11010000 -
J DI 1101 0001
K D2 11010010
L D3 1101 001}
M D4 . 1101 0100
N D5 11010101
o D6 11010110
P D7 11010111
Q D8 - 11011000 . -
R D9 . 11011001 .
¢ EO 11100000
S E2 11100010
T E3 11100011
U E4 11100100
v ES 11100101
w E6 11100110
X E7 11100111
Y E8 11101000
A E9 11101001
0 FO 1111 0000
1 FI 11110001
2 2 'F2 11110010
3 F3 11110011
4

1111 0100

192
193
194
195
196
197
198
- 199
200
201

208

- 209
210
211

- 212
213

217
224

227

228

229
230
231
. 232
233

240
241
242
243

244

214
215
216

226

((

DATA REPRESENTATION (Cont)

DECIMAL EBCDIC

CARD CODE OCTAL

12

12 .-

12
12
12
12
12
12
12
12

PUN—~O OOOOOOCOOO

WO NPEWINNOOVOITAANEWN=O VOIANANNHELWN—O

[39]

BCL BCL
01 0000 111010
01 0001 11 0001
01 0010 110010
01 0011 11 0011
01 0100 110100
01 0101 11 0101
010110 110110
010111 110111
01 1000 11 1000
01 1001 11 1001
100000 10 1010
100001 100001
100010 10 0010
10 0011 10 0011
10 0100 10 0100
10 0101 10 0101
100110 100110
100i11 100111
10 1000 10 1000
10 1001 10 1001

' 00 0000
110010 - 010010
11 0011 01 0011
110100 01 0100
110101 01 0101
110110 01 0110
110111 010111
11 1000 01 1000

111001 01 1001
00 0000 001010
000001 000001
00 0010 00 0010
000011 000100 -
00 0100 00 0100

BCL
INTERNAL EXTERNAL CARD CODE X3.4-1967

12
12
12
12
12
12
12
12
12

|

11
11
11
11

I

11

1
11

11
11

V0O NN WNEWN OO0 dOAANHWII—O V0O dOAAWUNHWII=O

(C

100 0001
100 0010
100 0011
100 0100
100 0101
1000110
1000111
100 1000
100 1001

010 0001
100 1010
100 1011
- 100 1100
100 1101
1001110
1001111
101 0000
101 0001
101 0010

101 0011
101 0100
101 0101
101 0110
101 0111
101 1000
101 1001
101 1010

0110000
011 0001
0110010

0110100

0110100

DATA REPRESENTATION (Coat)

EBCDIC BCL EBCDIC DECIMAL EBCDIC BCL BCL BCL USASCII
GRAPHIC GRAPHIC HEX. INTERNAL VALUE CARDCODE OCTAL INTERNAL EXTERNAL CARD CODE X3.4-1967
5 F5 11110101 245 5 05 000101 00 0101 5 011 010}
6 Fo 11110110 246 6 06 000110 000110 6 0110110
7 F7 11110111 247 7 . 07 000111 000111 7 011011t
8 F8 11111000 . 248 8 10 00 1000 00 1000 8 011 1000
-9 F9 11111001 249 9 11 - 00 1001 00 1001 9 01l lOO}.".
NOTES | |
1. EBCDIC 0100 1110 also translates to BCL 11 1010. - . 4.The remaining 189 EBCDIC codes are translated to BCL -
_' » 00 0000 (?code). :
2. EBCDIC 1100 1111 is translated to BCL 00 0000 with an . v
~ additional flag bit on the most-significant bit line (8th bit). This 5. The EBCDIC graphics and BCL graphics are the same except as
function is used by the unbuffered printer to stop scanning. ’ follows: '
3. EBCDIC 1110 0000 is translated to BCL 00 0000 with an addi- BCL _ : EBCDIC
tional flag bit on the next to most significant bit line (8th bit). ,
- As the print drums have 64 graphics and spaces, this signal can be : > ' ' (single quote)
used to print the 64th graphic. The 64th graphic is a ““CR” for : - :
BCL drums and a “‘¢” for EBCDIC drums. - x (multiply) !
< — (not)
R ~~—— (underscore)
« | (oD

9-4/s—-4

(¢

PTTC/6 CODE
b, - o 0 | ! R 1

B\\bg - 0 0 ! | 0 0 | |

NP5 — 0 1 0 1 0 1
s | bh]b3|b2jbl] < Column

VLS RowX’ 0 l 2 3 4 5 6 7

0/o]o |o 0 SPACE e - SPACE | DELTA | BACK/ | <

0o |0 |1 i 1 / j a > QUES J A
ofo]1]o 2 2 s k b) s K B

oo |1 3 3 t L c ; T L c

0 y | o] m d | SBLANK | U M D

0 5 //v e (v N E

10 b 6 w K f W 0 F

- — — — - - — - -

'8 | 8 | y qb kK A Q H

P e — n : 2 — !
oo | M7 | ez] |GRPMRK | GAMMA | sQ. RT

= ., s B SEGMARK | V.BAR

PN BY " RFS PF | PN BY RES PF

Rs. LF - NL HT RS LF NL HT

- uc EOR | BS LC uc E0B BS Le
15(F) | EoOT PRE I DEL | EOT PRF | 1L CDEL

(C

APPENDIX C. SOURCE INPUT FORMAT AND CODING FORM

SOURCE INPUT FORMAT

An NDL source program is represented by a set of ordered external records. The external records could
come from cards, tape, disk, remote device, or a combination of these. The source information on any
given record must be divided into two areas. Character positions 1 — 72 are assumed to contain clements

of the Network Definition Language (described in sections 2 through 6 of this manual) for compilation by
the compiler. Character positions 73 through 80 are assumed to contain information regarding the sequence
of the input record; specifically, this area is for sequence numbers. Sequence numbers are optxonal

There is no fixed format for source information in character positions 1 through 72. This information can
appear in a free format form, with the following exceptions: elements contained on the card must comply -
with any syntactical restrictions, and syntactical items cannot be continued from record to the next. For

- example, the reserved word TERMINAL cannot begin on one source record and continue on the next.

CODING FORM

To facilitate keypunching, as well as to provide the programmer w1th a suggested format to follow in
writing his source program, printed programming forms are often used. Anexample of such a form appears
on the following page.

(4]

CODING FORM

PROGRAM ID

ROJE

COST CENTER

[procraMMER

SEQUENCE NO.

73 80

PP S

o
3

PR S

e
e
P
e
s

NI IV IV ERDG I

Al
't
e

P) I SR

/

Ll y—

llLlLAL‘JlJ;AA‘

P

7

Pt
il
oAl

e
PR
il
Ak
bk
PR

i Al 4

NEFUTS LN

i i
—d
s
P
i 2
A
i
A
-
't

M

SOURCE PROGRAM CODE

IR SRR

(columns 1-72)

PERUES PTGty e

NP BRSNS

SQURCE PROGRAM

SEQUENCE NUMBERS

i B

(The sequence numbers

in columns 73-8C ore

;-1_&_‘__

not executed, but ore re-

produced on the scurce
printout.)

i

i

N

I S

| S

l 1
N

N
LJL4
N
N
A
N
M-
o

POV VR SV WY

i B

I

L
L
-
-
s
_—
N

-
A
N

o

i 4
i 2
Al
14
P
Ak
Al
P
A i

1 5

10

15

25

30.

35

40 . 45

&0

SYMBOLS TO USE

1 FOR

DIGIT ONE, I FOR LETTER i, O FOR DIGIT ZERO, ¢ FOR

LETTER O, X FOR LETTER

X, @ FOR MULTIPLY OPERATOR

(C

(C

APPENDIX D. COMPILE-TIME OPTIONS

COMPILER CONTROL STATEMENTS

The user is provided with the compile-time ability to control the manner in which the compiler processes
the source input that it accepts. The user can specify the manner in which the compiler is to receive the
source input, the consequences of certain syntax errors, and the form of the generated compiler output.
The compiler control statement is the medium by which these constraints are communicated to the
compiler. Such statements are entered into the compiler by cards in the same manner as source language
statements. Compiler control statements, entered as input to the compiler via option control cards, can
occur at any point in the compiler input files and must contain only compiler control information. -

An option control card is identificd by the appearance of a dollar sign (8) in the first or second column of
the card. If the $ is placed in card column 2, the option control card image is placed in the updated
symbolic file (NEWTAPE) if such a file is generated. Compilation control information is punched in the
succeeding columns through column 72, with an eight-digit sequence number in columns 73 through 80.
All blanks in columns 73 through 80 represent the lowest-value sequence number. An option control card
with no other compiler information causes the card image in the secondary input file that has the same
sequence number to be ignored.

The basic element of compiler control information is the compiler option, which can be invoked by the
appearance of its name on an option control card. Two mutually exclusive states are associated with the
majority of these options: SET and RESET; various compiler functions are dependent upon the states of
such options. Default states are assigned to these compiler options, and the desired state of such an option
can be specified on an option control card. ‘Such option control cards can also contain arguments associated
with the option. The balance of compiler options are parameter options with which no states are associated.
The functions performed by these latter options are initiated by the appearance on an option control card
of the appropriate option name and any related arguments

R

OPTION CONTROL CARDS

Syntax

¢

FOP
RESET:
SET

D-2

1= NOWARN

e~ CODE
o~ DCPLIST
> DUMP
>~ ERRLIST
o= LIMIT ——————— (integer)
= LIST
o= LISTP
fo~- MERGE
L~ NDLMACRO
- NEW
s~ NEWSEQERR

to- PAGE

> SEQ ’ ,
L(base} J I->+—-> {increment)) —J

> SEQERR
> SINGLE
> SUMMARY
> SYNTAX

v Y Yy

l-Grersion increment) - - -g=+-#={cycle increment)
' I—» - -»={patch number)-r
Jh

> VOID
> VOIDT - : : A ——)

> $. >

K

vv_v#vévvb#vj'vbv"

>~ VERSION ;———»(version incremeniy-s= . -w(cycle increment) - : j. -
+ : l-» -»(patch number)

T\

N enas”

(C

(¢

Semantics

The purpose of a compiler control statement is the assignment of a desired value or state (SET or RESET)
to an indicatcd compiler option(s). Such a control statcment must begin with either an-explicit or an
implicit option action. An explicit option action is defined as one of the following mnemonics: SET,
RESET, or POP. :

An implicit option action is indicated when a compiler control statement contains only the names of
options and no explicit option action. In the latter case, all options named in the compiler control state-
ment are assigned the state SET, and all other options are assigned the state RESET.

If a compiler control statement begins with the option action SET, the options following the option action
are assigned the state SET; the states of all other options are unchanged. If the compiler control statement
begins with the option action RESET, the options following the option action are assigned the state RESET;
the states of all other options are unchanged. If the specified option action is POP, then the options have
not been changed previously from their default states. The states of all other options are unchanged. The -
following statements are examples of compiler control statements employing the SET, RESET, and POP
option actions. :

$ SET LIST SINGLE

$ RESET VOID

$ POP NEW NEWSEQERR
$ SET SEQ 0+100

An option that has a default state of RESET is initially assigned a 48-bit stack word filled with zeros; an
option that has a default state of SET is initially assigned a 48-bit stack word with a 1 on top and zeros in
the remaining positions. The top stack position denotes the state of the option at any time. Each SET
option action causes the stacks allocated to the designated standard options to be pushed down one bit
and a 1 to be placed at the top of each of these stacks. Each RESET causes the appropriate option stacks
to be pushed down one bit and a 0 to be placed at the tops of these stacks. POP causes the stacks corre-
ponding to the designated options to be POPped up one bit, causing the associated options to revert to
their immediate previous states. Since the size of these option stacks is 48 bits, a maximum history of 48
states can be recorded. When an option control card appears that has a standard option name and an
implicit option action, the resultant action is identical to that which would have reseulted had all 48 bits of
each standard option stack been RESET and followed by an explicit SET performed on each indicated
option. For example, after the appearance of an option control card containing:

$ SINGLE

the history stack for the SINGLE option contains a 1 in the top stack position and all zeros in the following
positions. The history stack for each of the other compiler options would then contain all zeros. A com-
piler control statement that applies to compiler options begins with an explicit or implicit option action
and contains a list of options to which the option action is to apply. This statement ends when the next !
implicit option action is encountered on the compiler control card or when a percent sign is encountered
on the compiler control card or when a percent sign is encountered or column 72 of the card is reached.
The compiler options affected by the compiler control card retain the indicated states for all input cards -
with sequence numbers greater than the sequence number on the compiler control card that has the
control statement, or the physically succeeding input cards for a deck in which all sequence numbers are
blank, until another compiler control card is encountered that alters the option states. The following
illustration (figure D-1) is an example of a card that has compiler control statements employing option
actions:

(S SET SINGLE LIST SEQ 10 + 5 RESET SEQERR 00001070

Figure D-1. Option Control Card

The option control card assigns the state SET to the options SINGLE, LIST, and SEQ, with the sequencing
arguments of 10 and +5. It also assigns the state RESET to the optlon SEQERR The card has the
sequence numhcn 00001070 in columns 73 through 80

OPTIONS '

The compiler recognizes the following identifiers as valid compiler option names:
CODE) ‘ NOWARN
DCPLIST _ PAGE
DUMP SEQ
ERRLIST SEQERR
LIMIT ' SINGLE
LIST ' ‘ SUMMARY
LISTP - SYNTAX -
MERGE : VERSION
NDLMACRO - 'VOID
NEW yoIDT
NEWSEQERR $

The «.ompnlcn optlons are dlscusqed alphabutloally in the followmg paragraphs The default statc of each
option is indicated in parenthceses following the option name; the functlon performed by the option is
discussed in the paragraph accompanying the same..

If an option control card is empty, it has no effect on other options; however, if there is a cardimage on

the symbolic file with the same sequence number as the empty option control card, the i 1mage on the
symbolic file is dcleted :

The compiler options are as follows:
CODE (RLSET) _
The code option causes the printout to contain the compiler-generated object' code.

DCPLIST (RESET)

If SET, lists code addresses of each source statement on the LINE file. (There will be two separate lrsts
addresses if used for two DCPs, three for three DCPs, etc.)

DUMP (RESET)

If SET, causes a “raw dump”’ listing of NIF on the LINE file.
D-4.

ERRLIST (RESET)

The ERRLIST option causces syntax error information for CANDE to be written on the ERRORFILE file. -
When a compilation crror is detected in the source input, an error message is written in the ERRORFILE
file. This option is provided primarily for use when the compiler is called from a remote terminal by the
CANDE language, but it can be used regardless of the manner in which the compxler is called. When the
compiler is called from CANDE, the default state of the ERRLIST option is SET and ERRORFILE is
automatically equated to the remote device involved.

LIMIT (cannot be SET or RESET)

The integer parameter allows the user to control compller error terminations. The proper format for the
LIMIT option is as follows:

LIMIT (integer)

Compilation is terminated if the number of errors detected by the compiler equals or exceeds the (ihteger}
If no LIMIT statement appears, a default error limit of 150 is assigned unless the compilation is initiated
through CANDE, in which case the default error is 10.

LIST (SET: RESET for CANDE)

The LIST option causes a printout to be generated on the compiler output LINE file. The contents of
such printouts are spccified in the preceding paragraphs describing compiler features If the LlST option
is RESET, only syntax error messages and compilation information are llsted

LISTP (RESET)

When SET, the LISTP option causes patches and input records from the compiler CARD file to be
included on the printout while records from the compiler TAPE file are excluded. This option is effective
only if the LIST option is RESET. If the LIST option is SET, the state of LISTP is ignored. Therefore,
the LISTP or the LIST option causes a prmtout to be generated when SET '

MERGE (RESET)

When SET, the MERGE compiler option causes primary input, CARD file, to be merged with secondary
input, TAPE file, to form the total input to the compiler. If matching sequence numbers occur, the
primary input overrides. If the MERGE option is RESET, only primary input is used and secondary input
is totally ignored. Therefore, the total input to the compiler when the MERGE option is SET consists of
all card images from the CARD file, and all card images from the TAPE file that do not have sequence
numbers that can be found on cards in the CARD file. o ,

NDLMACRO (RESET)

If SET, the NDL MACRO interface code will be prmted followmg each statement within a (request
definition’) or {control defi nmon)

NEW (RESET)

When the state of the NEW option is SET, the merged input from the CARD and TAPE files is placed on
the updated symbolic output file NEWTAPE. This file is coded in EBCDIC and is structured in 15-word
records and 450-word blocks. Therefore, it can later be used as input to the compiler through the TAPE
file. All option control cards in the merged CARD and TAPE file input are placed on the NEWTAPE file
when NEW is SET and only if the initial $ sign on these cards is in card column 2.

The NEW option can be SET and RESET as necessary by option control cards appearing at any point in
the input file. Such option control cards can also be placed on the NEWTAPE file if the $ signs on these
cards are in column 2.

‘D=5

The NEWTARPE file is created despite the occurrence of syntax errors in the source input. This file can be
used as a secondary input for a later compilation.

The NEWTAPE file can be labePequated so that, for example, the output goes to magnetic tape.
NEWSEQERR (RESET) ' '

The NEWSEQERR option causes sequence crrors on the NEWTAPE file to be flagged. If sequence errors
occur and thc NEWSEQERR option is SET, the NEWTAPE file is not locked, and the message NEWTAPE
NOT LOCKED {nwnher of crrors} NEWTAPE SEQUENCE ERRORS is printed on the printout.
NEWTAPE, NIF, and DCPCODE files are not locked.

NOWARN (RESET) |
When SET, suppresses any compiler warnings from appearing on the LINE file.
PAGE (cannot be SET or RESET)

The PAGE compiler option must appear on a option ¢ard without an option action preceding 1t. When a
PAGE option card appears, the printout is spaced to the top of the next page, but only if the LIST optnon
is SET.

SEQ (RESET)
The proper format of the SEQ option is as follows:A
SEQ (pasc) +{increment)

If the SEQ option is SET, the printout and the new secondary source language file, NEWTAPE, contain
new sequence numbers as defined by the (pas) and (increment). 1f the (bas¢) and (mcrement) are
unspecified, a base of 0 and increment of 10 are assumed

This option has effect only when the LIST and/or NEW optlons are also SET. The sequence numbers that
appear on the card images in these files when the SEQ option is RESET are 1dentlca1 to the sequence '
numbers on the correspondingcards in the input file. . ‘

Example

(s SEQ 100 + 100 T ' 00005000

This compiler control card specifies that, when the state of the SEQ optlon is SET sequencmg begins with
the sequence number 00000100 and proceeds in increments of 100

SEQERR (RESET)
The SEQERR option causes sequence errors on the TAPE file to be flagged. If sequence eﬁors occur and

the SEQERR option is SET, DCPCODE and NIF files are not locked, and the message CODE FILE NOT
LOCKED {number of errors} TAPE SEQUENCE ERRORS is pnnted on the prmtout

D-o

SINGLE (RESET)

The SINGLE option causes the printout to be single-spaced. When the SINGLE option is RESET, the
printout is double-spaced. (Note that double-spacing is defauit.)

SUMMARY (RESET)

If SET, lists on the LINE file the memory space allocations for user transla'uon tables and termmal
message space allocatlons for each DCP.

SYNTAX (RESET)

When SET, the source program is checked for syntax errors only. DCPCODE and NIF files are not
generated.

VERSION (SET, RESET, and POP are ignored by the compiler)

The VERSION compiler option allows the user to specify an initial version number for a source program,
to replace an existing version number, or to append an existing version number.

Examples

$ VERSION 25.010.010
$ VERSION +01.4+001.010

When compiling with the NEW compiler option SET and a VERSION compiler card appears in the symbolic,
and if the patch deck contains a VERSION compiler option, the new symbolic is updated to the version,
cycle, and patch number on the last VERSION compiler card in the patch deck. The sequence number
must be less than the one in the symbolic.

VOID (RESET)

If the VOID option is SET, all input, other than § cards, from the TAPE and the CARD files is ignored by
the compiler until the VOID option is RESET or POPped into a RESET state. The ignored input is
neither listed nor included in the updated symbolic file regardless of the states of the LIST and NEW
options. The VOID option can be RESET, once it is SET, only by a option control card in the CARD file.

VOIDT (RESET)

If the VOIDT option is SET, all secondary input, other than $ cards, from the TAPE file is ignored by the
compller until the VOIDT option is RESET or POPped into a RESET state. Therefore, while the VOIDT
option is SET, only primary input is compiled. The ignored input is neither listed nor included in the
updated symbolic file regardless of the states of the LIST and NEW options. The VOID optxon can be
RESET, once it is SET, only by an option control card in the CARD file.

$ (RESET)

When SET, the dollar 81gn ($) option causes the printout of all subsequent {option con trol card) images
when the LIST optnon is SET. This option appears as $SETS or $ $.

D-7/D-8

APPENDIX E. COMPILER SOURCE AND OBJECT FILES

COMPILER FILES

Compiler communication is handled through various input and output files (figure E-1). Cards, disk, or
magnetic tape can be specified as source language input media. Input must be in the input format defined
in the preceding scctions. The compiler has the capability of merging, on the basis of sequence numbers,
input from cards, tape, or disk. When inputs are being merged, indications of text insertions or replace-
ments can bc made to appear on the printout. In addition to the printout, the compiler can also generate
updated symbolic files. These files can be created in addition to the compiler-generated output code file.

Input Files

The primary compiler input file is a card file with the internal name CARD); the secondary input file is a
serial disk file with the internal name TAPE. The presence of the primary file (CARD) is required for each
compilation; the presence of the secondary file (TAPE) is optional for each compilation. When two card
images, one from the CARD file and the other the TAPE file have the same sequence number, the former
is primary and is compiled, and the latter is ignored. This is the standard mode of handling source language
input. File CARD can be either BCL-coded with 10-word records or EBCDIC-coded with 14-word records
and can be either blocked or unblocked. File TAPE can be BCL-coded with 10-word records and 150-word
blocks, or EBCDIC-coded with a 14- or 15-word record and 420- or 450-word blocks. Both the CARD file
and the TAPE file can be label-equated (via the FILE system control card) to change the TITLE and

KIND of the file. The TAPE file is used as input only when the MERGE compiler option is SET.

OPTIONAL UPDATED
— | SYMBOLICFILE |
(SYMBOL/SOURCENDL)
PRIMARY | DCP CODE FILE
INPUT FILE : | . —] -
d D
(NDLSOURCE) _ _ ((identifiery/ CPCODE)
| NETWORK
. 0 NDL »| INFORMATION
™1 COMPILER | FILE
(identifier) INIF)
OPTIONAL 4 < | OPTIONAL LINE
SECONDARY ‘ . | PRINTER LISTING
INPUT FILE | - (LINE)
SYMBOL/SOURCENDL)| - | ,_\/
< | [opTioNAL ERROR
COMPILER INPUT FILES | | . 4
(SOURCE LANGUAGE | | MESSAGE LISTING
INPUT AND COMPILER | : | (ERRORFILE)
CONTROL STATEMENTS) | L
COMPILER-GENERATED
OUTPUT FILES
Figure E-1. NDL Compilation System
Output Files

Output files produced by the compiler consist of the DCP code file, the Network Information File, an
updated symbolic file, a line printer printout, and an error message file. The DCP code file has the internal
name DCPCODE and is saved on disk after the compilation unless the COMPILE system control card
specifies compilation for syntax only, or unless syntax errors are detected in the source language input by
the compiler. If compilation for library is specified, then the DCPCODE and NIF files are saved on disk.
The title of the saved DCP code file is identical to the program name (identifi er) appeanng on the
COMPILE system control card with the suffix of /DCPCODE.

The title of the saved Network Information File is identical to the program name . (tdenttfer) appearmg on
the COMPILE system control card with the suffix of /NIF.

The updated symbolic file is, by default, a disk file generated only if the compiler option NEW is SET.
This file contains the compilation source input or a selected portion of this input as specified by the state
of the NEW compiler option. It can be used as the TAPE file for a succeeding compilation. This output
file has the internal file name NEWTAPE and contains EBCDIC-coded 15-word records in 450-word
blocks.

The line printer printout is an optional print file that is created unless the compiler option LIST is
RESET. (The LIST option is SET by default unless the compilation is initiated through CANDE.) The
file has the internal name LINE, consists of 22-word EBCDIC-coded records, and contains the. following
information: _

Source and compiler control statements used-as input to the compﬂer
Error messages and error count.

Number of input card images scanned.

Elapsed compilation time.

Processing time required for compilation. .

Total number of words of DCP code generated.

Number of disk segments required for the DCP code file.

Title of the generated code file.

PR o RO oR

Depending upon the specified setting of the LIST and CODE compiler options, the line printer printout
can contain more (or less) information than the basic items listed above. Card images from the CARD file
are denoted on the printout by a C after the card contents. Card images from the TAPE file are denoted by
a T in this location. A P denotes a patch of a TAPE card image. »

‘The output error-message file with the mternal file name and assngned title of ERRORFILE is an optional

line printer file that is created when the ERRLIST compiler option is SET. Ttiis file is normally employed
for compilations initiated through CANDE, in which case ERRLIST is SET by default and the ERROR-
FILE file is assigned to the remote device mvolved The ERRORFILE file can also be used for compila-
tions initiated through the card reader. This file is assigned EBCDIC-coded 12-word records that resuit in a
line width of 72 characters, allowing the file to be used as output to a remote terminal or card punch
without truncation of text. When a syntax error is detected, an error message 1s written fo!lowmg the line
of text. The crror message consnsts of an explanatory mexsage and mdncatcs thc probable cause of the
error.

Compiler File Table

Table E-1, NDL Compiler Files, lists the extcrnal name of the file (i.e., the name one would label-equate to),
the internal name of the file (i.c., the name used when the file is declared within the compiler), the

purpose served by the file, the default KIND of the file, the code used to store file data, the default record
size (MAXRECSIZE) and block size (BLOCKSIZE) of the file, and a brief commentary on the specific -

file. The attributes of any of these ﬁles can be changed by the use of FILE system control cards directed to
the compiler.

v—4

Table E-1. NDL Compiler Files

EXTERNAL NAME

INTERNAL
NAME

PURPOSE

KIND

CODE

RECORD

SIZE

BLOCK
SIZE

COMMENTS

NDLSOURCE

CARD

Input Card
File

CARD
READER

EBCDIC

BCL

b e e

14 Words

10 Words

Blocked
or
Unblocked

Required for each compilation. Primary
compiler input file; may be label-
equated to change file attributes.
CANBDE file is equated to this file auto-
matically for compilations initiated
through CANDE. Default title is
NDLSOURCE.

BUFFERS = 2.

FILETYPE= 8.

SYMBOL/SOURCENDL

TAPE

Input Disk
File

DISK

EBCDIC |

BCL

140115
Words

: 10 Words

420 or 450
Words

150 Words

Optional file; need not be present for
each compilation. Secondary compiler

" input file; selected as input by SETting

MERGE compiler option. Can be label-
equated to change file attributes as
desired. The default title is
SYMBOL/SOURCENDL.

- FILETYPE = 8.

(identifier)/ DCPCODE

'DCPCODE

DCP Code
File

| DISK -

. ngadccimal

30 Words

420 Words

Generated DCP code file. Saved or dis-

-carded and assigned a title as indicated -

by compilation method. For CANDE
compilations, the title becomes:
OBJECT {identifier)/DCPCODE.

SYMBOL/SOURCENDL

NEWTAPE

Updated' -

Symbolic
Output

‘ File

| DISK

EBCDIC -

15 Words

450 Words

AREAS

Optional output file produced when
NEW compiler option is SET. This file
contains portions of the source input

and is label-equatable. It is suitable for

" use as a TAPE file for a later

compilation.
BUFFERS -
AREASIZE

20‘_)

1000.
20.

; L e
KYS !’w)

e,

9-a/s-q

(

Table E-1. NDL Compiler Files (Cont)
INTERNAL RECORD | BLOCK
EXTERNAL NAME NAME PURPOSE KIND CODE SIZE SIZE COMMENTS
(identiﬁer)/NlF NIF Network DISK 30 Words | 420 Words | Generated Network Information
Information File (NIF). Saved or discarded and
File assigned a title as indicated by compila-
: tion method. For CANDE compilations
the title becomes:
OBJECT identifier)/NIF.
LINE LINE Line Printer | LINE . EBCDIC | 22Words |22 Words | Optional and label-equatable file.
L Printout PRINTER L Produced when the compiler option
or REMOTE LIST is SET.
ERRORFILE = . | ERROR- | Error LINE | EBCDIC 12 Words | 12 Words Optional error listing file produced
LR - FILE .~ | Listing PRINTER | B - when ERRLIST compiler is SET.
S . Output . - : Contains card images and error mes-
File sages. Automatically provided for
L | CANDE input. '

(C

INDEX
Item o - Page
ADAPTER i i e P 5-60, 5-75,5-136,5-156
ADDERR .. e e e et e e s 5-32,5-112,6-6
ADDRESS e 5-30,5-42,5-62,5-110,5-130, 5138, 5-157
(address size STAtEMENLYc.iiiiti e P 5-157
Al e . et eeeaneononaseneeatoneroesareaans 5-40,5-124,6-6
CANSWER L e e eteeenaaaans ettt 5-63
{assignable bit variable) e e eetereieneeraeesie. 5-6,5-83,6-3
asSignable byte variable)ou e e 5'—6 5-83,6-3
2assz‘gnment R T T T 5—6 5-83
AUX(LINE(BUSY) ..ttt ittt ittt ittt ittt eesaneeseasacanennennnsans 6-6
AUX(LINE(QUEUED)) ... ittt ittt ittt ietnteseeneennenseensenaennnns L.l 67
AUX(LINE(TALLY[{0 07 1}1)) .+ voeittt it 6-7
AUX(LINE(TOGI{0 0r 1}1)) ..ot 6-7
available lineadapters i, e et eereenees... 561
BACKSPACEttt e e 5-85,5-112,5-158
(backspace statement)iiiiiii i, Cebeai i 5—85
Baudot lettersand figures e ettt et e e e 5-39
L O 5-30, 540, 543, 6—7
BOCER R ... e e et et e e 5—-32 5-112, 6-8
bit number) i i e et e e S e eaa et 6—1
bitvariable) i et eeeesetersesesnos et nsiea 6-1,6-3
3 0 AP 5-126,6-8
BLOCKED i i i ittt ettt ie et eaetetneeteanesanaaraaanaas 5-126,6—-8
BREAK i it i i e e e 5-8,5-13,5-32
%b’reak SHATEMENTY L ittt et ettt et e e 5-8,5-86
break time) e et ieee it st e P 5-8,5-86
UFFER |............ S ... 5-159
BUFOVEL it ittt it ieatniennaannss 5-13,5-33,5-91,5-113,6-9
(bytevariable) iiiiiiann.. e e 6—1,6-3
CARRIAGE i i ittt ettt etearaenennenn e ieeeee 5-160, 6-9
CHARACTER veve... 5-31,5-41,5-42,5-43,5-111,5-122, 5~ 125 5— 130 5-131,6-9
{Character) e e 3-2
digGity ... PP S 3-3
hexadeczmalcharacter) A eeereare e 34
1 -7 S 3-5
single charactery S s eee e 3-6
charactertranslation0ttt inennn . 5-6,5-9,5-83,5-87,5-162,5-184
CLEAR " eeseseaeseneeees @ eeeeoeeeeereeenanenee e 5-161
CODEiii ittt iieninnen, Cetereenseennneennnseinns. 5=7,5-9,5-87,5-162
(COBe SIALEMENTY\ttt e we.. 5-9,5-87
codingform iiiinnn. et i e et e C-2
{communication type number)ci.iiiiiiiiiii.n. . 5-75, 5—77 5-156,5-170
COMPIAtION SYS eI ittt iiniiieeeerreanisennaneeeeseeaaaadoneeeaennns E-2
compile-time OptioNS ittt ittt e e .. D-1
compiler control statements ettt T N D-1
compiler file table i i i i e i e e e i e e E-3

Index--1

INDEX (Cont)

Item Page

(03 101 1 o 1 .. E~1
{compound Statement) 5-10,5-88

conditional statements ‘ :

R SR 5-21,5-100

5 “GOTO byte vanable) »construct T 5-18,5-98
CONS T ANT ... ittt ittt ttennnieaeneaeessesnssonsneesseneneeenennonens 5-2
constant defiRition)c.uiiiiiit e 5-2
CONSEant Identifier i eeneeniteeeeereseeaoentensesssonseassonaeenias 9=2
constructterminatorc.0iiiiiiiiii..n e ettt e 2-2
CONTINUE it ittt itiiieannnns e e 5-11,5-33,5-89,5-113

{continue StAtEMENE)cciiiiiiiiiiiii i, ereaeeeeees 5-11,5-89
CONTROL i ittt et 5-33,5-63,5-114,5-139
control definitionyc..iiiiiiiiinns e sssenseesssssecsenseesannssbans 54
control identifier) c.ii.iiii s P 5-163
control statement s _

(assignment). e e e ve.. 5-6
BREAK it et eeeeesnnesossaososncansasssannonnans 5-8
0010) e 5-9
COMPOUNAttt ittt ittt eeenneennnsnsannns it eeeeree e 5-10
CONTINUE ... it ittt it ieeeaneeassosesusinsenneenssannas 5-11
10)k 97 e 5-12
ERROR sWItCh i i i i i i ettt ittt ii it nanaais 5-13
FINISH .o i et it ittt eeaeens e innassnesnecnnsnnsonas 5-16
L0) 2 P 5-17
L0 X0 PR 5-18
1) 8 5-20
PP 5-21
INCREMENT ... ittt ittt ieeeenesneesessnssnsonesnssonennss 5-23
INITIALLZE . .. it ettt et eeeeeneneneasosasoososeeenesasananns 5-24
INI L ATE .. i i ittt et et eneeesenanenasneeionesennsennonsos 5-25
PAUSE .. i et e e et i s 5-28
RECEIVE .. ittt ittt ieteneeenneeetosesossssesnseesnsanas 5-29
3 3 11 o PP 5-39
R P 540
TRANSMIT .. i i it it teeeneensnaessncaasasensasannnas 5-42
WAL . . i i et it ittt it eenenteneasnsensecanesenananennnns 544

- CONTROLFLAGccc0ivvvnnn... e teeteeeaeeeceioetediocttacaacatennns - 6-9
CRC ettt e 5-31,5-43,5-104, 5-111, 5-131,6-9,6-10
CRCERR ... ittt ittt intennennsenneenseeaeioronssaneaans 5—-345 114,6-9
Data Comm Controller iiuitiiiurnrneeoenoraeroeenonsoeaeecaneeannnns 1-5
data communicationfiles i i, N 5-56

FAMILY e s e e s eesseesrseceettentnbetesotssesane et nnene ... 5-55
data representationttiiiiiiiii it e ettt et e, B-2
DCP definition).o e ettt ettt ettt ettt i, 545
DCP exchange statement) PP e 5-46
DCP memory Size SIQteMent).ouuuuuueunneanneneeanneeeennnnns P - 5§-51
DCPRUMDBEIY . . . v v v e et e et et et ettt ettt e et eet e eaaneeaaeaaneannn, 5-60

Index -2

'INDEX (Cont)

Item S ‘ - . Page
DCP Programsviieeineeneennennenneennnones Ceveiesaane Ceedeaees vieressee. 16
{DCP statement)s ‘ D
: EXCHANGE ...ttt iineninnnnes S eeeives 546
MEMORY .. it i i it ittt eteteteneenraeeireseneoronesensnesnoas =51
CTERMINAL ...t it eiiieee i ineannonans P W 5-52
DOP Tablesoivi it iitee i teeeenninnnnes ‘..y...'.........'..........‘....." 1-7
{DCP terminal statement) R A PN .. 552
DEFAULT e eeeseunscassnesseranenne '..5-645 1355 1405 155, 5164
default line identifier)cu.cceiiivenneennnnen et ereieareireeneee. . 559,564
{default Station dentifier)oueieineienrnraienearanenens eereenenei 5135
default terminal identifier) R A 5-155
Defmmons.........._ e et etreceseacoineceenaenannanas S i
: CONSTANT A Ceeebe eeserareerectnv ettt en s e 52
CONTROLccivvvvnnn. e iieenn ettt e ee e st .. 54
DCP f e e e s aenetetaceeranateee it teasrenanine A SO 545
1 8 PO 5-56
EINE .. ittt i ittt ieiennennes eeaaes ettt eereee et e 5-58
0. e Cereieneaes Ceneeees Cheeenas 5-73
MODEM. ... ittt iiiieereeenoenenossototecnsasosassinsasasnes veee. 574
REQUEST.........ciiivivneninns Cerreeas et I s e e ren e eie 5-81
STATION ... ittt i ittt edentnreneseansoansasanas Cereeitereana 5-134
TERMINAL0000 518
DELAY ceterideeseais e eteteresreeieras PR e ceevsrienans 5-12,5-90
delay statement) e, B A S TSR 5-12, 5-90
{delay time) 5.8, 5-19, 590, 5-171
DIAL]N l...o-,.'..o-_bo-..o'o,...v‘.’...'.»...a_..o--~o..-.-..’...aac-., 5""‘70 »I
DIALOUTcoviiiiveiiinnnns O I T '..’..-.........'..'..‘.~‘.'.‘..'.”.-5-'—-70
digit) .o..‘ .. s e e e s v s i s e ene e ‘o uis e 3""3
DISCONNECT Ceeeeaeans See s e cedeinan e D O P TP TS . 69
DUPLEX .. ittt iiienetenorensessessseisanssanesansonssas _ 5-—-70, 5»71 5-—166
'ENABLEINPUT........'. eeseeeisacencinanas ek an e erae 5 127,5 141'
END oottt ettt e e e 5-33,5-114,5-167
- ENDOFBUFFER e eanoecacainennoosoionsossoncnanaas ' ,.'...;.-.,t...S 115 6-10
"ENDOFNUMBER T, R 1Y
ERROR..........ooiiiiiinnninniiiiaiaasaiaeeeeieaenss 513,531, s-91 5112, 5-127
(errorswitchstatement) P R PR TN -13 5-91
CEXCHANGE ... S USSP R e tertiin. 546,

© . Index-3

INDEX (Cont)
Item : Page
(finish Statement)o.uiuiniiii i 5-16, 5-95
FINISH T RANSMIT it i ittt et iennneenns SN -5-16, 5-95
FORK it ettt et et it e e e 5-17,5-96
{fork statement) eeeeiia.. 5-17,5-96
FORMATER R ... i it ittt ittt ittt nionaeensenesneeannnns 5-115,6-10
FREQUENCY ... ittt inentennnneennneennnas S e L2/
full duplex constructs, executable
CONLINUE SIATEMENLY V.t oottt ittt ettt et e r i 5-11, 5-89
fOrk Statement)t et eereneane, et eeeee 5-17,5-96
Wait SIGLEMENL) oo oo e e e e eenvennns e eeeesanetacecreetecentaetenens 5—44,5-132
GET S PACE ... i i it it e ittt tee ettt PP 5-97
(getspace statement) e e e ee e e bt et aasneacnssecteessssnadaesansonaasannnns 5-97
00 O P 5-18, 5-98
(go to statement)coiiiiaa.l SR e e cecseasesecnennenns 5-18,5-98
Chexadecimal Character)c...c.eoeeiniieeennee i nieeeannenn SR 34
5 (0. P ceesecisisacsannas 5-168 -
HORIZONT AL ...ttt it ittt ttne s iteesenenennseounsssnneeanoas 5-24,5-176
Chorizontal parity varianty A I e 5-176
ICTDELAY e vesteseeannees e S P SR 5-171
(dentifier)t it i e Ceeereeeaae e reeseeneoa 3-7
IDLE..........cc.i.t PR st e ittt aed s vee. 520
{idle StAteMent)ic..iueuie e e 5-20
| ereeseesseebsaveseeins R S 5-21,5-100
(if statement) R A S e 5-21, 5-100
ILLEGALCHRcc00evivnn.. eeeetananaes R eheeeeas v 5-169
(increment Statement)iiiiii e 5-23,5-102
INHIBITSYNC et et reetee et eetaaeteaen, 5-170, 611
INITIALLZE ittt ittt teinenennennnanss [P 5-24,5-104
(initialize statement) e R 5-24,5-104
INITIATEcc..... N ettt -§5-25,5-106
initiate receive delay C e e n i e ettt it ees et 5-25,5-106
(initiate statement) e 5-25,5-106
initiate transmit delayc.. 0 i il i i i e i eseercnenan. 5-26,5-107 -
input files, compiler P i e ees . E-1
input format,sourceco00un.n... e et e, cedeeeae.s C-
(integery S SR C i iiieiii ... 3-8
IRoooia.t, ceeene et ittt re et iebsesens R <t L
A {1 S 2-2
Q2 e 3-9
language components A
{letter) e e PR e 3-5
LINE ittt PP, et 5-58
line adapters and adapterclassescco0veuin.. e eeesssesnoaension e deerenannin 5—60

Index—4

(C -

N’

INDEX (Cont)
Item : Page
glineadapterclassstatement} . L
line address SIQIEMENEYouviiuueee it eiiiee i veo. 5246, 5-60
Hnecontrol i i i i i e e ieieneaneeaen 1-6.
line default SEQLEMENE)ottt it i i 564
fine definition) ottt e e e §-58, 5-64
line endofnumber SIGIEMENLYuuuuuente e ettt 5-65
line identifier)covuiiiiiiiiiieainn. e e veiiiuv.. 5-58,5-59 5-71
line maxstations SIQtEMENt)u.oueeineueniuianueeonnnenineeeisennn, e 5-64
line modem SEAteMENt) uuuuueent it i - 5-67
line PRONE SIAIEMENLY.\ttt it ettt ne et iasane s easeareenns 5—-68
line section requirements i R P 546
(line statement) s o
ADAPTER i i i i e i i e i e e 5-60
ADDRESS e seemsrsecascieenes beceessesateniaanans 5-62
ANSWER ... i it e e e veseeeeeaas 5-63
)30 N0 i SO een 564
ENDOFNUMBER e e eerseves s aaataestaessbeeastasroeenns 565
MAXSTATIONS L 5—66
MODEM........ S . 5-67
PHONEocvvinninnennnnn. B REORRR .. 5-68
T 00 I 569
0 ¢ YN e 5-70
line Station SIALEMENEY oo itet ettt etee et eane e aaneans .. 5-69
line type statement) e e et beessraniannentasseeaceias 5-70
LINEDELETEccvvvntn. P .. 5-115,5-172
LINEBUSY).................. P N 6-11
LINE(QQUEUED) e RPN e B A 6-12
LINE(TALLY[{00r I}]) . ..o oo D 6-12
LINE(TOG[{0or 1}1) T S 6—12
LINEFEED i i i ittt ittt e, e, 612
logical assignment e s e s sacescaciacecantoononosonannonns 5-6,5-83
LOGICALACKcoiiiiiii, S T .5-128,5-144
LOSSOFCARRIERiiiiiiiiinnnnns v.. 5-14,5-35,5-178, 5——92 5-116, 6— 13
MAXINPUT ... it it i ittt ittt i iteii et s enencosarnnasannenenss 5—-174
MAXSTATIONS . .. o oooien oo . 5-66,6-13
MEMORY i i i ittt S ceee.. 551
(MCS definition)cccu.... S AP Cheenianes. 5-73
MCS reconfigurationc..iitiitinreneenerenevansoesansanss S vaeaae .. 547
Message Control System.ciitiiiienenneannns i e s eineer et 1-5.
MODEM et seee et e e 5—-67 5-74, 5-146
modem adapter statement) et aee e el PR .. 5-75
modem definition) P P 5-74
modem identifiery e s e e ... 567,574
modem lossofcarrier Statementyieeeiinieanannn PR e el 5-78
modem noisedelay statement) e e e 5-79
MOAEm SIAtEMENRLYivnenu ettt ineaeaeanenn e ieeeeea . 5-175

Index-5 .

INDEX (Cont)
Item ‘ ' ’ - Page
{modem statement) s ' o : '
ADAPTER. e e S e 575
LOSSOFCARRIERcooiiiiiiiiitiiiieeneeenininneennnn. s N - 5-78
NOISEDELAY Maveihens e e e e iveenennn, 5-79
TRANSMITDELAY et eeaisseneiresenaraasn e TSN weesieee.. 580
{modem transmitdelay SIQtement)euuenueenneenienneia e 5-80
MYUSEot e e IR SRR 5-147
NAKFLAG. i e i i i it iaean R beee e eaa e ine ... 613
NAKONSELECTiniiaennass T S 6-13
NDL program unitttt ittt ineietensiernceaenennnnnnns PR |
NDL syntax convention..............ccvevvivnn .. eitiaseerceatsetennann e e 2-1
NOINPUToovvinnnnnnnnnns i O I JU § 1
NOISEDELAY i i SRR T 5--79
NORMAL i, P e s ea e s i e 5-129
NOSPACE O A A e D 6-13
objectfiles.................. S T [E-1
options, compiler [P e ehe e ebiseaeeeaee Pee el i D4
outputfiles e e eesas ver e e e E--2
PAGE. . i e e e e e e e 5-148,5-175,6-14 ‘wwwr
PAPERMOTION e e 6-14
PARITY.ot ciiiiiee e, vevee ceaeen 514, 5—35 5-92, 5-116,5-176,6-14
PAUSE A A N Ve . 5-29,5-108
{pause statement) S SRR e iesi... 5-29,5-108
PHONE e eiii...5-68,5-149
RECEIVE e Ceeereetasssaeanas [P e eae e 5-29,5-109
receive address Size) il i eeeanibes e . 5-155
Receive Request. e T g 5-82
receive statementy S R e 529, 5—-37 5—38 5-109,5-118
receive statement), allowable combmatlons e i e deeer e e 5-118
relational operators e AN e e e ein e et eeaen eeae 5-22
SYNONyms PR P e e 5-22
remark) A P i .. 3-10
REQUEST...... IR e reiiiaiana O e ... 5177
request definition), feenseeeiene i i s 16,581
request identifier) i ieiii i e PP 5-82,5-177
request SIALEMENLY ve.viseneennronenineens e a eeeea e 5-82,5-177
request statementys . e L
ASSIBNMENL . . .o e it e s iir e ienenenseinionenennenns e ideeeeva ... 583
BACKSPACE................... PRI P S e D 5-85
BREAKcccoiiiiiimanns, Veteeeranensiae e il 5-86
000)) 5-87
compound T S Y a8 s e e asioias e siane ey 5-88
CONTINUE P R S SR R 5-89 | _,
DELAY ceeiesecnniriens PR e Ndeasiesenase 5-90 ~

Index—6

(C

(C

(C

'INDEX (Cont)

Item © Page
(request statement)s (Cont) ' _ o
ERROR ittt iiiieinanns S e Ciseenses weeeas 591
FETCH. i ittt it ittt inenencnsensonas Ceeeee e, 5-94
FINISH .. oottt i irbe e e, e e e e e 5-95
FORK e i R L S ROIP ... 5-96
GETSPACEttt iiiiinnaan s e e e veaeee Wb eeseaeasesans 5-97
0 0 PO A T P 5-98
BF et e, e ieieerad e 5-100
INCREMENT...... Ceeeeen PR A Ceereeaeed e, 5102
INITIALIZE et eseteareeadrensa et eree et e eeeeseeie. 5104
INITIATE eeeeieeenns eeerea e e, 5-106
PAUSEoovvvenennnn. PPN DU e ee e, 5-108
RECEIVE A e et iasieeeenreis e e e e, 5-109
I 7 4 P 5—121
STOREoccuvnn. e O S R s iveeaeeias 5-122
SUMoooiinnn.... R SO T N P 5-124
TERMINATE. .. .ottt i ittt ieeenaeeerneeaneneaeneanannns .. 5-126
TRANSMIT . . ittt i i ittt e et irateinanacanaieas hessecensnoans 5-130
L4 7 Y A PP 5-133
Requests : I
‘Receive Request. e e 5-82
Transmit Request........... e T e e veeesanss e 5-82
reserved WOTdS i v iive i e ettt ee i e e A-1
RETRY iesveaeee .j.Q. . 5-41 5 104 5-125, 5-150, 614
scope L K B e
Of NDLc..... S P R S -1
of variables. N AT . A 6—1
SCREEN......,.'..'.’,...,..._ ‘..‘.‘i‘j'..‘...'....‘....‘. l R ERREE "‘.'5 -178
SEQERR N a e e e ne e i ey S e S N A e e e 6-15
SEQUENCE e R e I 5-23, 5-4, 5— 103 5-123,5-131
sequence Modehieeienenann. e deeeaeaeas e £ SRR 5-23,5-103
SHIFT T O S e pr 115-39
(shift statement) “.'...........o i i e T e i ieee e . 539, 5121
SKIP e e eeaae P s e dicenieneaet it ensenes R 6-15
SKIPCONTROL. ey foi e et AU SN 6-15
source files........ PRSPPI B T e E-1
source input format S R A SR B A - C=1
source programstmcture..-..v
(source size) O Nt & R R g eve e
SPACE............. T P P L R T TR R e
(space) L O1 Y.
statements o '
control statement) P AT cedd _
DCP statement) ~ e eeiirenies R L P e
file statement) eeeiian. T P P
line statement) N e ewh e e e si b g e e s e e U 5
modem statement) A S N e

INDEX (Cont)
ltem _ Page
statements (Cont) _ o _ Co e :
FOQUESTE SIALEMIENE) . o oottt ittt ittt tn e teeniase et enansaanas v eeedieecee. 583
SILiON SEALEMENLE)t ie ittt it ie i ie s enannenannans e ved... 5-134
terminal statement) N e DL
STATION TR i n e s s i e e s s s e, 5-134 5-135, 616
station adapter statementg e e e Cieeeae. S Y leaes 5-136
station address statement B S et eeeer e 5-136
station control character statementy S wdieae.. 5-139
station default SEAEMENt)c.ouuuueeenuninensn R e .. 5-140
SEQLioN definition)c.oii et e e esieeed. 5-134
station enableinput statement) i ea e redea e e ane s e 5-141
station frequency statemenr) T e e ieee. 5142
: stattonzdentzf“er) P A AR AR e ieie... 5135
station inifialize statement) r e B S PP eeee.. 5143
station logicalack statementycvi o e S ... 5-144
station MCS statement) e T A A 5-145
station modem statement) e e S T T Cieiveeee... 5146
Station myuse Statementy) viele.eieiilin... e e Cheed.... 5-147
station page statementy e b a e e S S SR ST 5-148
station phone statement) —................. S i e Ceveedee.. 5149
station retry statement) PN S ciedeieev.. 5150
station statement)s ' ' R :
ADAPTER............. Ceieeaia e r e e e et it 5-136
ADDRESS O A AP A 5-138
CONTROL. - - - - oo i e e e e e e 52139
DEFAULT.......... e e 0 5140
ENABLEINPUT. Geees celeeneens e bee e R S S 5-141
FREQUENCY. . . -+ v vnns oo, i 5142
INITIALIZE0 0t oot i iinelaens, e, wes... 5-143
LOGICALACK P P il 5144
MCS S ieee e i i tieteries i e, 5145
MODEM........... Vet aeieneseaensene et eeeaeas JO R AP 5-146
MYUSE..................0 B et e e v et 5-147
PAGE. . e e e e e e i e et e e 5-148
PHONE ek b e st e et e O PR AT P 5-149
RETRY ... iiieeiindiiiiiieseiniacivessveisannnnnns Vevdw. 0 5-150
TERMINAL s e e i e 5151
WIDTH: e L 512
station terminal type statement) O DD DA PSSO RMSONBIE. 5 K. 3
Station width SEteMent) ... i iy e i v ee st s i it e S i e i e. 5152
STATION(ENABLED)\ i vete s vassee sttt e e e et e e e e 6-16.
STATION(FREQUENCY) . . i ..t ve vt it innneniboiinnnseesnnnns ediea .. 6=16
STATION(QUEUED). v 0t i i ittt i iiiidsien e et ienan 6-17
STATION(READY) A S T L 6-17
STATION(TALLY).......... e e et e, R N T S ¥
STATION(VALID) e e e aeean Ceseeneeaeoneas e 6—17
STOPBIT - - - ..+ v e e ieeaienaa cannee e eee st ianiees e, 5l 14,5-35,5-92, 5114, 6-17
STORE Ceerae dediseniaa R A M 5 122
Index -8

(¢

INDEX (Cont)

Item : " Page
store statement) e eeeeeereeeeateaten s e 5-122
1117 S P co. 3-12
QUM L i e e e e it e 5-40,5-124,5-125
SUM SEALEMENL) ot it ittt ettt eneeeeeenesasseeeeeeanmeessennnneeeeeens 5-40,5-124
SWIECh RUMBEr) ..o ittt e e e e 5--31
SYNCS i i, e deseeesssuescansssentacnrssannis 5-170,6-17
syntactic variables i i i i i e e it e et e e 2-2
syntax conventions £t e ettt et e e et e 2-1
key words eeneeeni e eresserieses e e, 22
syntacticvariables iiiiiennn. A SR 2-2
construct terminator N 2-2
{system AENBIfIEr) . .ottt e 3-13
TAB P e e e 6—-18
TALLY .. e 5-41,5-105,5-123,5-125,5-143,6—18
(tally number) et R S 3-14, 5-41
TERMINAL .. i it i i ettt c i 5—151,5-154,5-155
terminal adapter statement) e ettt 5-156,5-170
terminal address size statement) S 5-157
terminal backspace character statement} ettt e esiceiee e at e, e 5—-158
terminal buffer size statement) e Ceereiraneess . 5-159,5-174
terminal carriage character statement) eeemenerecenesenesiesrannsenn . 5-160
terminal clear character SIAQtEMENEYc.eeeuiueeenneennnennneenneeeanneens 5-161
terminalcodestatement) ettt ettt i Y e et e e e ey 5-—-162
terminal CONtrol SEALEMENE) ettt e e e ae e et ennnennn. ... 5--163
TERMINAL DEFAULT ittt ettt it ttoneneeaannenens 5~-154,5-165
terminal default Statement)eeiiiiiiiaaa., e ... 5-154,5-164
terminal definition) e R D EE;
terminal duplex SIQIEMENE)cuuueueueeeeeeunenunneennnaiiinineenns 5-166
terminal end character StAtement)c...uueuiueeeiiinnr e e 5—-167
terminal home character statement) PP S 5-168
terminal identifier)iiiiiiinnn.. P P e 5-52,5-154
terminal illegal character statement) — e P 5-169
terminal inhibitsync statement) N 5-170
terminal inter-character delay statement) — e e 5T
terminal linedelete character statement) eeeseeeaaens 5-172
terminal linefeed character statement) ™ e S 5-173
terminal maxinput SAtement)eeeiiienieanean.. e 5-174
terminal page statementy e ee e eseaeeeneae e ee s aneees 5-175
terminal parity statement) B T e 5-176
terminal request SIALEMENEYcuiueeenseeaeiiaaae.s cenerhi e 5-177
terminal Screen SIAtEMENt)iiiiiinienns Ceeee e e 5-178
terminal statemenrg P e 5-153
1ErMInal SIALEMENLIDS . .o oot ittt ittt ee e is et e enenneaseneensnenearannensanas 5-153
ADAPTER i e e e e e i el 5-156
ADD RESS . . . i et et i i e 5-157
BACKSPACE. ittt ittt teaeeeteneeneennernnenneeneennenns 5—-158
BUFFER..... fedtetesetaeenasieerceanenaoriseniaassesasanaes et oerbenons 5-159

Index—9

" INDEX (Cont)

Item " - Page
{terminal statement)s (CONL)uueuuevuun et et eneeae ittt eananens 5-153
CARRIAGE ettt ettt iae e et et i e e 5-160
CLEARo, e rserenen e e e 5-161
CODEoooviieaininnnin.. SR IS S 5-162
CONTROL, e et PR e 5-163
DEFAULT...........cooiiinnnnns P A e P 5-164
DUPLEXttt ei e T T e [5-166
ENDooovivnniinn S e 5-167
HOME................ P P e 5-168
ILLEGALCHR L A P 5—-169
INHIBITSYNC SR R it 5-170
ICTDELAY ...l O P PR O 5-171
LINEDELETE ittt it in et et ei e st ineann, 5-172
LINEFEED ittt i ittt et din et ese ettt e 5-173
MAXINPUT . .. it ettt ettt e s s a e s i e e s 5-174
PAGE. . .. i e e e i e e e 5-175
N 24 1 G P 5-176
REQUEST . .. ittt it ittt e it e 5-177
SCREEN ittt et e e s e e i e e 5-178
TIMEOUT e edenas P PP T U A 5-179
TRANSMISSION. T P TP e .. 5-180
TURNAROUND...... eder e e e iee e e e e 5-181
WIDTH [P R AR PRSP T T A 5-182
WRUal. Mo e PP e e e e e e e 5-183
terminal timeoutstatement) - D 4
terminal transmission number length statement)c..ceeueeenenn. e e, 5-180
terminal turnaround statementy e e neaseantenrarssasesas e neenerinesiasaens 5-181
terminal width statement) e e S SO 5-182
terminal wru character statement) e beeale e AR D S S 5-183
TERMINATE0.coiiuunn [T [P T A ... 5-126
(terminate statement) apee eedeeerna e O P ienseneed eeeravrens 5-126
TEXTciviviiinnn SRR e e e JO R P . 5-111,5-131
{time) P N 3-15
TIMEOUTcoiiiiiiiennenn. 5— 14 5-30, 5—36 5-92, 5-110, 5 117 5-179, 6-18
{timeout time) e e e e B PP ... 5-110
TOG................... PUPI S N Veeveaiides 5= 105 5— 123 5-143,6-18
(toggle numbery BT P P T e e e ..3-16,5-123
TRAN S A e 5—31 5-43,5-104,5-111,5-131
TRANERR............ S T SN T A S v...,,.._._.........-..'.5-—365 117,6-19
{translatetable definition) A BRI U L PN S AT A AT 5184
translation, character...... e e e [T 5-6, 5—9 5—-83 5—87 5-162,5-184
translation table structure Veideeene vvesossains T P A S 5-184
datainsertion............... R e S O A 5-185
TRANSLATETABLE T A e e 5-184
(translatetable identifier) et R P i 5-6,5-184
TRANSMISSION ittt e s e Vs ... 5-180
transmission codes.. e e e i PRI e B-1
TRANSMIT R S P 5-42,5-130
Index—10

INDEX (Cont)
Item - Page
(transmit address SIze) R ... 5-157
Transmit Request o e e e 5-82
{transmit statement) e e i it e e 5-42,5-130
TURNAROUNDiiiiiinnnnnn. e et e it 5-181
TYPE................ et e e et e e e 5-70
Use OF ND L. . . i i e i e e i 1-1
Value assignment e et e IR e 5-6,5-83
1 13 T o) e 6-1
bytevariable)ciiiui e e eeesdeinaear et iec it 6—-1,6-3
bit variable) e et reeeed e bae e et e e beeea e 6-1,6-3
Lo vty o1 Lo 4 o) O PO 6-2
functionof....................... PRSP e R PN 6-1
scopeof et S ot tees ettt e 6-1
VERTICAL et eeteeeaeee ettt as s s 5-176
WAIT. P e ta e [5-44,5-133
gwait statement), e eeeeneraereiaaeaes ar e e eanns .. 5-44,5-133
WaIt HIMeEY .. S N 5-44,5-133
WIDTH ... i i i i i it ie e e .5-152,5-182
WRU . e e e i s 5-36,5-117,5-183

WRUFLAG ittt eewi e P 6-19

Index-l 1/ Index—12

Burroughs Corporation Publications Remarks Form
B 6700/B 7700 NDL LANGUAGE .REEERENCE_ MANUAL

Form No. 5000953, January 1975

Commenﬁ

From: Date

Name
Title
Coﬁpany
Address

euy] peysoq Buojy pjoj

Fold, Staple, And Mail

b Postege
W will Be Paid B

fY Postage Stomp

Necessary

First Class Permit No. 1009; El Monte, CA. 91731

Burroughs Corporation

|

|

|

l

|

BUSINESS REPLY MAIL l
|

l

|

El Monte, CA. 91734 }
I

R TR SRS CT TR
R RTR AR
RS R T S A
P NN AR AP
[oo2ar oanna e & s e g
P. O. Box '42 R N R
SRIIRTERC PSSRy
frasnc selinsn i S say)
PRI RIS
Bleaasirs sz s g el
T SRR R
ISR RN T ST
SRR PSR SRR

attn: Publications Department
Technical information Organization

Fold, Staple, And Mail

