Bufroughs @ \

B 6800 System

REFERENCE MANUAL

PRICED ITEM , , /

July 1977 5001290

Burroughs @

B 6800 System

Copyright © 1977, Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

N

Printed in U.S. America July 1977 5001290

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However. no responsibility. financial
or otherwise. is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of such
changes and/or additions.

Correspondence regarding this document should be addressed directly
to Burroughs Corporation, P.O. Box 4040, El Monte, California 91734,

Atin: Publications Department, TIO—West.

Issue

Title .
iv. . . .
v thru xxii .

1-1 thru 1-31 ..

1-32 .

2-1 thru 2-39 .

240 .

3-1 thru 3-18 .
4-1 thru 4-55 .

4-56 .
5-1 thru 5-3
54

5-68 .

5-69 thru 5-76
6-1 thru 6-8

5001290

5-5 thru 5-67 .

B 6800 System Reference Manual

LIST OF EFFECTIVE PAGES
Page Issue

Original 7-1 thru 7-33 .
Original 7-34 .
Original 8-1 thru 8-15 .

Blank 8-16 .
Original 9-1 thru 94
Original 10-1 thru 10-8
. Blank 11-1 thru 11-23
Original 11-24 .
. Blank 11-25 thru 11-34 .
Original 12-1 thru 12-8
Original 13-1 thru 13-7

Blank 13-8 .
Original A-1 thru A-S

Blank A6 . . .
Original B-1 thru B-6

Blank C-1 thru C-2
Original D-1thruD-2
Original Index-1 thru Index-14 .

Page

Original
Blank
Original
Blank
Original
Original
Original
Blank
Original
Original
Original
Blank

Original

Blank
Original
Original
Original
Original

B 6800 System Reference Manual

TABLE OF CONTENTS
Section Page
INTRODUCTION v v e v v e e e e e e e e e e xxi

1 SYSTEMDESCRIPTION o o v v v v v v v v v v v 1-1
Generai . . . e i-i
Scope of This Manual e e e e e e e e e e e 11
B 6800 Hardware System Orgamzatlon .. e e e e e e e e 1-1

B 6800 System Hardware Module Orgamzatlon e e e e e e e s e e e 1-5
B 6800 Module Interfaces . . . e e e e e e el e e e 1-5
B 6800 Central Processing Unit Cabmet e e e e e e e e e e e s s 1-7
Data Processor Module e e e e e e e e e e e e 1-8
Multiplexor Module (I0 Processor) e e e e e e e e e e e e 19
Memory Control Module . . . e e e e e e e e e e e 1-10
B 6800 Maintenance Display Processor e e e e e e e e e e e e e e e e 1-12
Display Control Logic . . . e e e e e e s e e e e 1-17
B 6800 Central Power Supply Cabmet e e e e e e e e 1-17
B 6800 Peripheral Control Cabinet .. 1-18

B 6800 System Peripheral Controls 1-18

B 6800 Memory Cabinets L. ... 1-21
B 6800 Operators Display Console .. 1-25
B 6800 Optional Upits o . . . oo 1-30

2 DATA REPRESENTATION« o o« « « o« « . 2-1
General . 2-1

34574

Internal Character Codes e e e e e e e e e e e e e s ey e e e e 2-3
NumberBases ., e e e e e e e e e 2-3
Number Conversion o e e e e e e e e e e 2-6
Decimal to Nondecimalo 2-6
Nondecimal to Decimal o oLl .o 2-6
Nondecimal to Nondecimal o . . oo .. 27
Word Types and Physical Word Layouts o . .. 2-10
Character TypeWords L ..o 0w 2-10
Operands e e e e e e e e e e e e e e e 2-10
Single Precision Operand e e e e e e e e e e s e e e e e e e e e 2-12
Double Precision Operand o L. o o ... 2-13
Logical Operands00 e e e 2-15

Data Descriptors L . . o o o ..o e e e e 2-15
StepIndexWords L L L 00 e e e 2-18
Software Words L L L L o o o0 o e e e e e 2-19
Indirect Reference Words .o .. 2-20
Program ControlWords.o 2-23
Mark Stack ControlWords L L 2-25
Interrupt ParameterWords L. o o Lo .. 2-26
PlParameter L . L L .o e e e e e e e e e 2-27
P3Parameter e e e 2-28
P2Parameter L . ..o oo oo e e e e e 2-28
Return ControlWords o 2-32
Program Words (Code Words) . . . e e e e e e e e e e e e 2-34
Program Segments and the Segment Descrrptor e e e e e e e e e e e 2-36
Top of Stack ControlWords o . o .. . 2-37

5001290 Y

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)
Section Page

3 STACK AND REVERSE POLISHNOTATION 31
TheStack L oL Lo 3-1
General . . . e e e e e e e e e e e e s e e 3-1
Base and Limit of Stack - e e e e e e e e e e e e e 32
Bi-Directional Data Flow in the Stack e e e e e e s e e 32
Stack PushDown. 32
Stack PushUp. . . . e e e e e e e s, 32
Double Precision Stack Operatlon e e e e e e e s s e e e s s 33
Top-of-Stack Register Conditions .. 33
Stack Adjustments L L L L. L, 33
Data Addressing, 3-5
DataDescriptor 35
Presence Bit oL 3-5
IndexBito L Lo 35
InvalidIndex 0L 35
ValidIndex L oL 0L 35
Read-OnlyBit 36
CopyBito, 3-6
Reverse Polish Notation ... 36
General . . T, 3-6
Simplified Rules for Generatlon of Pohsh Strmg e e e e e e e e 3-6
Polish String . . . e e e e e s s, 3-8
Rules for Evaluating a Pohsh Stnng e e e e e e e e s 3-8
Simple Stack Operation . . e e e e e e e e e s e e e 3-8
Program Structure in Local Memory e e e e e e e e 3-11
Local Memory Area Allocation . . . e e e e e s 3-12
Stack-History and Addressing- Enwronment Llsts e e e e e s, 3-12
Mark Stack Control Word Lmkage e e e e e e e e e e e e e e e 3-12
Stack Deletion e e e e e e e e e e e e e e e 3-12
Relative-Addressing . . . e e e e e e e e e e e e e e e e e 3-12
Base of Address Level Segment e e e e e e e e s e e e s s 3-13
Absolute Address Conversion e e e e e e e e 3-13
Multiple Variables with Common Address C%ples e e e e e e e 3-13
Address Environment Defined .. 3-15
Mark Stack Control Word Linkage . 3-15
Stack History Summary . . e e e e e e e e e s e, 3-17
Multlple Stacks and Reentrant Code e e e e e e e e e e e e e s e 3-17
LevelDefinition 3-17
Reentrance L Lo 3-17
Job-Splitting oL L Lo, 3-17
Stack Descriptor L . L L L 3-17
Stack Vector Descriptor L. .. . L. 3-18
Presence Bit Interrupt 3-18

4 MAJOR REGISTERS AND CONTROLPANELS 4-1
Display Panels S e e e e e e e e e e e e e e e e s 4-1
Programmers Display Panel e e e e e e e e e e e e e e e e e 4-1

System Control Panel .. 4-1

Status Display Panel ... 44

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)

Section Page
4 MAJOR REGISTERS AND CONTROL PANELS (Cont)

Register Display Panel ... 4-10
Maintenance Display Panel 4-11
Maintenance Display Registers 4-11
Display Panel One, Page Zero Logic Signals 4-27
Display Panel One, Page One Logic Signals 4-27
Display Panel One, Page Two Logic Signals 4-28
Display Panel One, Page Three Logic Signals 4-29
Panel 1,Page 4 Logic Signals ... 4-29
Panel 1,Page SLogic Signals .. 4-31
Panel 2, Page O Logic Signals C e e e e e e e s 4-33
Display Panel Two, Page One Logic Slgnals e e e e e e e e e 4-33
Display Panel Two, Page Two Logic Signals 4-34
Display Panel Two, Page Three Logic Signals 4-36
Panel2,Page 4 Logic Signals ... 4-37
Panel 2, Page S Logic Signals . . . C e e e e e e e 4-38
Display Panel Three, Page Zero Logic Slgnals e e e e s e 4-39
Display Panel Three, Page One Logic Signals 440
Display Panel Three, Page Two Logic Signals 441
Panel 3,Page 3LogicSignals 4-42
Panel 3,Page 4 TogicSignals L. ... 443
Panel 3,Page 5 Logic Signals L 444
Panel 4, Page 0 Logic Signals . e e e e e 4-46
Display Panel Four, Page One Loglc Slgnals e e e e 4-47
Panel 4,Page 2 Logic Signals ... 4-48
Panel 4,Page 3 Logic Signals ... 4-48
Panel 4,Page 4 Logic Signals ... 4-49
Panel 4, Page 5 Logic Signals e e e 4-49
Maintenance Processor Control Panel and Dlsplay e e e e s 449
Maintenance Processor Programmers Display Keyboard 4-52
Logic Indicator Lamps 4-55
5 SYSTEMCONCEPT 5-1
Gemeral o L0 L L L L s 5-1
DataProcessor L L L L L L, 5-1
Operator Families ... 5-1
Program Controller ... 52
Look Ahead Logic . . . e e e e e e 5-5
Integrated Circuit (IC) Memory e e e e e e e e e s 5-5
Address Adder and Residue Test Logic 51
Transfer Controller ... 57
Stack Registers . . . e e e e e s 5-7
Internal Data Transfer Sectlon e e e e e e e 5-8
Mask and Steering . . e e e e e e e e e s 5-8
Mask and Steering Example e e e e e e e e e e e e e e e 5-8
Stack Controller 5-10

5001290 vii

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)

Section Page
5 SYSTEM CONCEPT (Cont)
Arithmetic Controller . . . C e e e e e e e e e e s 5-10
Exponent and Mantissa Adders e e e e e e s e e s e 5-10
Interrupt Controller 5-10
Interrupt Parameters L L. L L L. L L L. L. 5-10
Syllable Dependent Interrupts .. 5-14
Memory Protect Interrupt L L oL L. L L. 5-15
Invalid Operand Interrupt .. 5-15
Divide by Zero Interrupt e e e e e 5-15
Exponent Overflow and Underflow Interrupt e e e e e 5-16
Invalid Index Interrupt ... 5-16
Integer Overflow Interrupt .. 5-17
Bottom of Stack Interrupt L. L. 5-17
Presence Bit Interrupt C e e e e e e e e e e e 5-17
Special Consideration-Presence Bit Interrupts e e e e e e e 5-18
Data-Dependent Presence Bit Interrupt 5-18
Procedure-Dependent Presence Bit Interrupt. 5-18
Program Restart ... 5-18
Sequence Error Interrupt L . . . oL 0. o ..o L. 5-18
Segmented Array Interrupt L. 5-19
Programmed Operator Interrupt .. 5-20
Interval Timer Interrupt .. 5-20
Stack Overflow Interrupt .. 521
Confidence Error Interrupt ... 5-21
Operator Independent Interrupts ... 521
External Interrupts e e e e e e 5-21
I/O Finish, Data Commumcatlons and Status Change Interrupts e e e e 5-22
Alarm Interrupts L L L oo 5-22
Loop Interrupts . . . C e e e e e e e 5-23
Memory Address Interrupts e e e e e e e e e e e e e 5-23
Scan Bus Parity Interrupts L . o o oL L. 5-23
Invalid Address-Local Interrupts 524
Stack Underflow Interrupts L. 5-24
Invalid Program Word Interrupts. 524
Memory Address Residue Interrupts 5-24
Read Data Multiple Error Interrupts 5-25
Invalid Address-Global Interrupts L. 5-2
Global Memory Not Ready Interrupts 5-25
Scan-In Information Error Interrupts 5-25
Scan-Out Error Interrupts 5-26
General Control Interruptso 5-26
Read Data Single Error Interrupts L . L. 5-26
Read Data Retry Interrupts L L. .. -27
Read Data Check Bit Interrupts .. 5-27
Address Retry Interrupts o L L L L. o L0 0oL 5-27
Hardware Interrupts L oo oo 5-28

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)

Section Page
5 SYSTEM CONCEPT (Cont)

PROM Card Parity Interrupts o . . o 5-28
RAM Card Parity Interrupts o ..o L. 5-28
Bus Residue Interruptsot 5-29
Adder Residue Interrupts oL L L L Lo L . 5-29
Compare Residue Interrupts .. 5-29
String Operators L . .. Lo e e e e e e 5-30
Memory Controller L L L o oo oo e e e e e e 5-30
Control State/Normal State 5-31
Multiplexor Function . . . e e e e e e e e e e e e 5-31
Data Processor Scan-In Functlons to the Multlplexor e e e e e e e e e 5-31
Data Processor Scan-Out Functions to the Multiplexor 5-33
Data Processor Scan-Out Functions to External Subsystems. 5-35
Multiplexor Scan-In Functions . . . e e e e e e e e e 5-35
Interrogate Peripheral Status Multlplexor Functlon e e e e e e e 5-35
Interrogate 10 Path Multiplexor Function 5-35
Read Time of Day Multiplexor Function 5-37
Read Interrupt Register Multiplexor Function 5-38
Interrogate Unijt Type Multiplexor Function. -5-39
Interrogate IO Path Address Multiplexor Function. 5-39
Read Processor Time Counter Multiplexor Function .~ 542
Read Scratch Pad Word Muitipiexor Function . . C e e e e e e e e e 5-43
Interrogate IO Path Address Override Multiplexor F unctlon C e e e e e e e 5-45
Read Interrupt Literal Multiplexor Function 545
Read Interrupt Mask Multiplexor Function 545
Multiplexor Scan-Out Functions . . e e e e e e e e 545
Set Time of Day Multiplexor Functlon C e e e e e e e e e e e e e 546
Set Interrupt Mask Multiplexor Function 5-46
Set Pseudo Busy Multiplexor Function . . e e e 5-46
Software Aspects of 10 Operations in the B 6800 System e e e e e e e 5-46
Ready Status L. . L L Lo 5-50
Status Change 5-52
Input Output Operatlons e e e e e e e e e s s e e e e 5-53
10 Device Numbering System .. 5-53
Initiate Input Output Operation .. 5-54
IIOWD Format L. . .. oo e 5-56
IOAD Format oo 5-56
IOCW Format L o Lo e e e 5-56
ScratchPad Memory L oL Lo oL 5-58
Data Buffer Logic . . . e e e e s e e e 5-60
OP Code and Variant Character Generator C e e e e e e 5-61
Status Vector Control Circuits .. 5-62
Memory Organization L L L . 0 ..o e e e e e e 5-63
System Memory Interface L 5-64
Channel A Memory Requestor . . . e e e e e e e e e e e 5-64
Memory Error Detection and Correctlon e e e e e e e e e e e e 5-69

5001290 ix

Section

5

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)

SYSTEM CONCEPT (Cont)

Memory Retry
Global Memory
Scan Bus Operations
Channel B Memory Requestor
Memory Storage Unit Port Interface ..
Local Memory Port Interface Control Logic .
Scan Bus Port Interface Control Logic .
Memory Tester Logic

PROGRAM OPERATORS
General . .
Syllable Addressmg and Sy]lable Ident1ﬁcat10n .
Syllable Format and Addressing .
P and T Registers . .
Operation Types .
Name Call .
Value Call .
Operators

PRIMARY MODE OPERATORS
General .
Arithmetic Operators
Add (ADD) 80
Subtract (SUBT) 81 .
Multiply (MULT) 82 ..
Extended Multiply (MULX) 8F .
Divide (DIVD) 83
Integer Divide (IDIV) 84
Remainder Divide (RDIV) 85
Integerize, Truncated (NTIA) 86
Integerize, Rounded (NTGR) 87
Type-Transfer Operators .
Set to Single-Precision, Truncated (SNGT) CC .
Set to Single-Precision, Rounded (SNGL) CD
Set to Double-Precision (XTND) CE
Logical Operators . .
Logical AND (LAND) 90 .
Logical OR (LOR) 91
Logical Negate (LNOT) 92
Logical Equivalence (LEQV) 93 .
Relational Operators
Greater Than (GRTR) 8A . .o
Greater Than or Equal (GREQ) 89 .
Equal (EQUL) 8C ..
Less Than or Equal (LSEQ) 8B
Less Than (LESS) 88
Not Equal (NEQL) 8D .

Page

5-71
571
5-71
5-72
5-72
5-74
5-75
5-76

6-1
6-1
6-1
6-1
6-1
6-2
6-2
64
6-7

7-1

7-1

7-2

75
76
77
77
77
77
77

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)
Section Page
7 PRIMARY MODE OPERATORS (Cont)

Branch Operators . . e e e e e e e e e e e e e e e e e 7-7
Branch False (BRFL) AO e e e e e e e e e e e e 7-7
Branch True BRTR) ALl 7-8
Branch Unconditional BRUN) A2 .. 7-8
Dynamic Branch False (DBFL)A8 .. 7-8
Dynamic Branch True (DBTR)A9 ... 7-8
Dynamic Branch Unconditional (DBUN) AA 7-8
StepandBranch(STBR)A4 7-8

Universal Operators . . . e e e e e e e e e e e e e e e e e e e 79
No Operation (NOOP) FE e e e e e e e e e e e e s e s e e e e 79
Conditional Halt (HALT)DF ... 79
Invalid Operator (NVLD)FF 79

Store Operators . . . e e e e e e e T s s s e e e e e e 7-9
Store Destructive (STOD) BS e e e e e e e e e e e e e e 79
Store Non-Destructive (STON)B9 ... 79
Overwrite Destructive (OVRD)BA ... 7-9
Overwrite Non-Destructive (OVRN)BB 7-10

Stack Operators L L L oo e e s, 7-10
Exchange (EXCIHDB600 7-10
Delete Topof Stack(DLET)BS 7-10
Duplicate Top of Stack (DUPL)B7 ... 7-10
Push Down Stack Registers (PUSH) B4 000000 7-10

Literal Call Operators . . . e e e e e e e e e e e e e e e e 7-10
LitCall Zero (ZERO)BOo 7-10
LitCallOne (ONE)BL oo 7-10
Lit Call8Bits (LT8) B2 v v v v e 7-10
LitCall 16 Bits (LT16) B3. ... 7-10
LitCall48Bits(LT48) BE. ... 7-10

Make Program Control Word (MPCW) BF. 000000 7-11

Index and Load Operators . . e e e e e e e e e e e e e e e e e 7-11
Index (INDX) A6 . . . e e e e e e e e e e e 7-11
Index and Load Name (NXLN) A5 e e e e e e e e e e s e e e 7-11
Index and Load Value (NXLV)AD ... 7-11
Load (LOAD)BDo s 7-11

Scale Operators L L L. oo e e e 7-12
Scale Left (SCLF)COo 7-12
Dynamic Scale Left (DSLF)C1 7-12
Scale Right Save (SCRS)C4 0. 7-12
Dynamic Scale Right Save (DSRS)C5 .. 7-12
Scale Right Truncate (SCRT)C2 « 7-12
Dynamic Scale Right Truncate(DSRT)C3 7-13
Scale Right Final (SCRF)C6 7-13
Dynamic Scale Right Final (DSRF)C7 7-13
Scale Right Rounded (SCRR)C8« .« 7-13
Dynamic Scale Right Round (DSRR)C9« « .« . .. 7-13

5001290 xi

Section

7

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)

PRIMARY MODE OPERATORS (Cont)

Bit Operators .
Bit Set (BSET) 96 .
Dynamic Bit Set (DBST) 97
Bit Reset (BRST) 9E
Dynamic Bit Reset (DBRS) 9F
Change Sign Bit (CHSN) 8E

Transfer Operators
Field Transfer (FLTR) 98
Dynamic Field Transfer (DFTR) 99
Field Isolate (ISOL) 9A
Dynamic Field Isolate (DISO) 9B
Field Insert (INSR) 9C . .
Dynamic Field Insert (DINS) 9D

String Transfer Operators . .
Transfer Words, Destructive (TWSD) D3 .
Transfer Words, Update (TWSU) DB .
Transfer Words, Overwrite Destructive (TWOD) D4
Transfer Words, Overwrite Update (TWOU) DC .
Transfer While Greater, Destructive (TGTD) E2 .
Transfer While Greater Update (TGTU) EA . .o
Transfer While Greater or Equal, Destructive (TGED) El
Transfer While Greater or Equal, Update (TGEU) E9 .
Transfer While Equal, Destructive (TEQD) E4
Transfer While Equal, Update (TEQU) EC .
Transfer While Less or Equal, Destructive (TLED) E3 .
Transfer While Less or Equal, Update (TLEU) EB .
Transfer While Less, Destructive (TLSD) EO .
Transfer While Less, Update (TLSU) E8 .
Transfer While Not Equal, Destructive (TNED) ES .
Transfer While Not Equal, Update (TNEU) ED .
Transfer Unconditional, Destructive (TUND) E6
Transfer Unconditional, Update (TUNU) EE
String Isolate (SISO) D5 ..

Compare Operators .
Compare Characters Greater Destructlve (CGTD) F2
Compare Characters Greater, Update (CGTU) FA . . .
Compare Characters Greater or Equal, Destructive (CGED) Fl .
Compare Characters Greater or Equal, Update (CGEU) F9 .
Compare Characters Equal, Destructive (CEQD) F4
Compare Characters Equal, Update (CEQU) FC
Compare Characters Less or Equal, Destructive (CLED) F3
Compare Characters Less or Equal, Update (CLEU) FB .
Compare Characters Less, Destructive (CLSD) FO .
Compare Characters Less, Update (CLSU) F8 .
Compare Characters Not Equal, Destructive (CNED) FS
Compare Characters Not Equal, Update (CNEU) F

Page

7-13
7-13
7-13
7-14
7-14
7-14
7-14
7-14
7-14
7-15
7-15
7-15
7-15
7-16
7-16
7-16
7-16
7-16
7-16
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-18
7-18
7-18
7-18
7-18
7-18
7-19
7-19
7-19
7-20
7-20
7-20
7-20
7-20
7-20
7-20
7-20

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)
Section Page
7 PRIMARY MODE OPERATORS (Cont)

Edit Operators . . C e e e e e e e e e 7-20
Table Enter Edit, Destructlve (TEED) DO e e e e e e e s e, 7-20
Table Enter Edit, Update (TEEU)D8 .. 7-21
Execute Single Micro, Destructive (EXSD)D2 721
Execute Single Micro, Update (EXSU)DA 7-21
Execute Single Micro, Single Pointer Update (EXPU) Db 7-21

Pack Operators e e e e e e e e e e 721
Pack, Destructive (PACD) Dl e e e e e e s e s 7-21
Pack, Update (PACUYD9, 7-22

Input Convert Operators . . C e e e e e e e e 7-22
Input Convert, Destructive (ICVD) CA e e e e e e e e e 7-22
Input Convert, Update ICVU)CB .. 7-23
Read True False Flip-Flop(RTFF)DE 7-23
Set External Sign (SXSN)D6 . . . e e e e e e e e e s, 7-23
Read and Clear Overflow Flip-Flop (ROF F) D7 e e e e e e e e e 7-23

Subroutine Operators e 7-23
Value Cal (VALC) 00 =3F ooonnn 7-23
Name Call (NAMC)40=7F 7-26
Exit Operator (EXIT) A3 7-26
Return Operator (RETN) A7 726
Enter Operator (ENTR)AB 7-26
Evaluate (EVAL)AC 7-26
Mark Stack Operator (MKST)AE ... 7-26
Stuff Environment (STFF)AF ... 7-31
Insert Mark Stack Operator IMKS)CF 7-31

Enter Vector Mode Operators . . e e e e e e e e e e e s e s 7-31
Vector Mode Enter Multiple (VMEM) E7 e e e e e e e 7-31
Vector Mode Enter Single (VMES)EF .. 7-31

8 VARIANT MODE OPERATION AND OPERATORS 8-1

General . . . e e e e e e e e s e 8-1
Escape to 16- th Instructlon (VARI) 95 e e e e e e s s e e 8-1

Variant Mode Operators . . e e e e e e s e e e e 8-1
Set Two Singles to Double (JOIN) 9542 e e e e e e s, 8-1
Set Double to Two Singles (SPLT) 9543 81
Idle Until Interrupt (IDLE) 9544 . . . o 8-1
Set Interval Timer (SINT) 9545 (Control State Operator) e e e e e e e e 8-1
Enable External Interrupts (EEXI)9546 8-2
Disable External Interrupts (DEXI)9547 82
Scan Operators . . e e e e e e e e e s s e e s e 82

Scan In (SCNI) 954A e 8-2
Read Time-Of-Day Clock ... 8-2
Read Interrupt Mask. 82
Read Interrupt Register ... 8-2
Read Interrupt Literal ... 8-3
Interrogate Peripheral Status .. 8-3

5001290 ' xiii

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)

Section Page
8 VARIJANT MODE OPERATION AND OPERATORS (Cont)

Interrogate Peripheral Unit Type 83
Interrogate IOPath 83
Interrogate IO Path Address ... 83
Interrogate 10 Path AddressOverride 83
Read ScratchPadWord L oL ... 8-3
Read Processor Time Counter .. 83
ScanOut (SCNO)954B 83
Set Time of Day e e e e e e e e e e e s s e e e e e 84
SetInterruptMask o 0 L0 L 0oL L0, 84
Set Pseudo Busy . . . e e e e e e e e e e e e, 84
Initiate 10 Device (Control State ()nly) e e e e e e e e e e 84
Initiate IO Device Path Address 84
Initiate 10 Device Path AddressOverride 85
Read Processor Identification (WHOI)954E 85
Occurs Index (OCRX) 9585 e e e e e e e e e e 85
Integerize, Rounded, Double-Precision (NTGD) 9587 e e e e e e e e e 85
Leading One Test (LOG2)958B o v v v o e 85
Normalize (NORM)958E ... 8-6
Move to Stack (MVST)95AF o oL L0, 8-6
Read Compare Flip-Flop (RCMP)95B3 87
Set Tag Field (STAG)95B4o o e 8-7
Read Tag Field (RTAG)95BS « 8-8
Rotate Stack Up(RSUP)95B6 8-8
Rotate Stack Down (RSDN)95B7 8-8
Read Processor Register (RPRR)95B8 8-8
Set Processor Register (SPRR)95B9 89
Read With Lock (RDLK)95BA « v v o .. 8-10
Count Binary Ones(CBON)95BB ... 810
Load Transparent (LODT)95BC .. 8-10
Linked List Lookup (LLLU)95BD « « « « o .. 8-10
Masked Search for Equal (SRCH)9SBE 8-11
Unpack Absolute, Destructive (UABD)9SD1 811
Unpack Absolute, Update (UABU)95D9 8-11
Unpack Signed, Destructive (USND)95DO 811
Unpack Signed, Update (USNU)95D8« . .. 811
Transfer While True, Destructive (TWID)95D3 812
Transfer While True, Update (TWTU)95DB 8-12
Transfer While False, Destructive (TWFD)95D2 8-12
Transfer While False, Update (TWFU)9SDA. 8-12
Translate (TRNS)95D7 e e e e e e e e e e e 8-12
Scan While Greater, Destructive (SGTD) 95F2 e e e e e e e e e 8-13
Scan While Greater, Update (SGTU)95FA 8-13
Scan While Greater or Equal, Destructive (SGED)95F1 8-13
Scan While Greater or Equal, Update (SGEU)95F9 8-13
Scan While Equal, Destructive (SEQD)Y9SF4 8-14
Scan While Equal, Update (SEQU)9SFC 8-14

xiv

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)
Section Page
8 VARIANT MODE OPERATION AND OPERATORS (Cont)
Scan While Less or Equal, Destructive (SLED)95F3 e 8-14
Scan While Less or Equal, Update (SLEU)SSFB 8-14
Scan While Less, Destructive (SLSD)95FO 8-14
Scan While Less, Update (SLSU)9SF8 8-14
Scan While Not Equal, Destructive SNED)9SFS 8-14
Scan While Not Equal, Update (SNEU)9SFD 8-15
Scan While True, Destructive (SWID)95DS 8-15
Scan While True, Update SWTU)9SDD 8-15
Scan While False, Destructive (SWFD)95D4 8-15
Scan While False, Update (SWFU)95DC 8-15
9 EDIT MODE OPERATION AND OPERATORS 9-1
General . . . e e e e e e e e e s, 9-1
Edit Mode Operators .. e e e e e e e e s s 9-1
Move Characters (MCHR) D7 - e e e e e e e, 9-1
Move Numeric Unconditional (MVNU) D6 S e e e e e e e e e e 9-1
Move With Insert MINS)DO 9-1
Move With Float (MFLT)D1 . . . e e e e e e e e e e s, 9-2
Skip Forward Source Characters (SFSC) D2 C e e e e e e e 9-2
Skip Reverse Source Characters(SRSC)D3 9-2
Skip Forward Destination Characters (SFDC)DA 92
Skip Reverse Destination Characters(SRDG)DB 9-3
Reset Float (RSTF)D4 9-3
End Float (ENDF)DS 9-3
Insert Unconditional INSUYDC . 9-3
Insert Conditional INSC)DD .. 9-3
Insert Display Sign (INSG)D9 9-3
Insert Overpunch INOP)D8 .. 9-3
End Edit(ENDE)DE 9-4
10 VECTORMODE OPERATORS . 10-1
General 10-1
Limitations of Vector Mode Ce e e e e e e e e e e e s, 10-1
Hardware Functions . 10-1
Primary Mode Enter Vector Mode Operators e 10-2
Enter Vector Mode Operation . 10-2
Vector Stack Operators 104
Vector Mode Operator Codes .. 10-5
Vector Operators . . e e e e e e e e e e e 10-6
Vector Branch and Vector Ex1t Operators Ce e e e e e e e e e e 10-8
11 PERIPHERAL DEVICES AND CONTROLS 11-1
General . . . e e e e e e e e 11-1
Typical Input Output Dewce System Operatlon e e e e e e e e e e e e e e 11-1
Interrupt Stack Parameters 11-3
PlParameter 11-3

5001290 XV

Section

11

12

B 6800 System Reference Manual

TABLE OF CONTENTS (Cont)

PERIPHERAL DEVICES AND CONTROLS (Cont)

P3 Parameter .

P2 Parameter .

Peripheral Controls .

Peripheral Control Bus . .
Input Output Device Commands and Result Descrlptors .

DATA COMMUNICATIONS SUBSYSTEM .

General

Data Communications Processor

Terminal Devices .

Basic Control .

Broadband Control . .

Data Comm to Disk Control .

Store-to-Store Control .

Adapter Cluster IIl .
Data Communications Subsystem Scan Bus Interface .
Data Communications Subsystem Memory Interface .

B 6800 BUS INTERFACE CONTROL (READER/SORTER SUBSYSTEM)

The BIC Module . .

BUS Interface Control Scan BUS Interface
Scan Out Functions .
Scan In Functions

BUS Interface Control Memory Interface .

APPENDIX A. OPERATORS, ALPHABETICAL LIST
APPENDIX B. OPERATORS, NUMERICAL LIST
APPENDIX C. DATA REPRESENTATION . . .
APPENDIX D. B 6700 EBCDIC/HEX CARD CODE

INDEX .

Figure
1-1

1-3
14
1-5
i-6
1-7
1-8
i-S

1-10

xvi

LIST OF ILLUSTRATIONS

B 6800 Cabinets Sizes .

B 6800 System (Minimum Cabmets) Layout

B 6800 System (Maximum Cabinets) Layout

B 6800 System Module Block Diagram

B 6800 System Busing . .
Maintenance Dispiay Processor Cabinet

Central Power Cabinet . . .
B 6800 Power Subsystem Drstnbutlon Dragram
Peripheral Control Cabinet .o
Peripheral Control Interface

Page

114
11-5
11-7
11-7
11-10

12-1
121
12-3
124
124
124
12-4
12-5
12-5
12-5
12-7

13-1
13-1
13-1
13-1
13-4
13-6

A-l
B-1
C-1
D-1

Index-1

Page

1-2
1-3
14
1-6
1-7
113
1-19
1-20
121
1-22

B 6800 System Reference Manual

LIST OF ILLUSTRATIONS (Cont)

Figure Page
1-11 B 6800 Memory Cabinet e e e 1-23
1-12 Memory Control InterfaceBus e e e 1-24
1-13 Operators Display Console e e e e 1.27
1-14 Operators System Control Panel e e e 1-28
1-15 OperatorsKeyboard 1-29
2-1 B 6800 Word Structure e e 2-1
2-2 Character and Digit Formats _ . . | e e e 24
2-3 B 6800 Word Formats . . . L T S 2-5
2-4 EBCDIC Character Word Format S e e e e e e, 2-11
2-5 BCL Character Word Format, 2-11
2-6 Hexadecimal Character Word Format e e e e 2-11
2.7 Single Precision Operand Format e e e 2-12
2-8 Double Precision Operand Format - . . . e e e e 2-14
29 Data Descriptor Format e e e 2-16
2-10 Step Index Word Format . . e e e e e e, 2-18
2-11 Software Control (LINKA) Word e e e e e e, 2-19
2-12 Software Control (MASK)Word e e e 2-20
2-13 Indirect ReferenceWord e e 221
2-14 Program ControiWord _ . . . e e e 2-24
2-15 Mark Stack ControlWord e e e 2-25
2-16 B 6800 Interrupt Stack Organization e e e 2-27
2-17 P3 Parameter Configurations . . . S e e e e, 2-33
2-18 P3 Parameter Contents for I0 Finished Interruot S e e e e e s, 2-34
2-19 P2 Parameter Status Change Format e e 2-34
2-20 P2 Parameter Result Descriptor Foramt e e 2-35
2-21 P2 Parameter Scratch Pad Parity Format | e e e 2-35
2-22 Return ControlWord e e e 2-36
2-23 Segment DescriptorWord e e 2-38
2-24 TOSCW Word Layout e e e, 2-38
2-25 Program Word Format . . . e e e e e e 2-39
3-1 Top-of-Stack and Stack Bounds Reglsters e e e e e e, 3-1
32 Reverse Polish Notation Flow Chart _ e e 3-7
33 Stack Operation e e e e, 3-10
34 Object Program in Memory . . e e e e s 3-13
35 Stack History and Addressing Envuonment L1st e e e e e e e e, 3-14
3-6 Stack Cut-Back Operation on Procedure Exit . . . e e e e e e, 3-14
2.7 ALGOL Program With Lexicographical Structure indicated e e e 3-15
3-8 D Registers Indicating Current Addressing Environment e e e 3-16
39 Addressing Environment Tree of ALGOL Program e e e 3-16
3-10 Multiple Linked Stacks . . C e e e e e e 3-18
4-1 System Control and Display Reglsters S e e e e, 4-2
42 Programmers Display Panel C e e e 4-3
4-3 System Status Indicator Panel e e e 4-5
4-4 Maintenance Display (Facing) Panel e e 4-12
4.5 Maintenance Display Panel (Cover) 4-13
4-6 Maintenance Display Processor Control Panel e e e 4-50
4.7 Keyboard Pushbuttons and Indicators | e e 4-53

5001290 xvii

B 6800 System Reference Manual

LIST OF ILLUSTRATIONS (Cont)

Figure Page
5-1 B 6800 CPU Organization« .« « « « & o . . e e e e e e e e 52
52 B 6800 CPUBlock Diagram o . e e e e e e e e 5-3
5-3 Internal Data Transfer Section « « « « 4 . 0 e e e e e e e e e 59
5-4 Mask and Steering . . e e e e e e e e e e e e e e e 5-11
5-5 Hardware Stack Ad]ustment e 5-12
5-6 Arithmetic Control« v . e e e e e e e e e e e e e e e e e e 5-13
57 Presence Bit Interrupt . . e e e e e e e e e e 5-19
5-8 B 6800 IO Function Block Dlagram S 5-32
59 B 6800 Scan-In FunctionWord o . o ..o e e e 5-33
5-10 B 6800 Scan-Out FunctionWord « « . . o . . e . e e e e 5-34
5-11 Interrogate Peripheral Status oo o e e e e e e 5-36
5-12 Interrogate IOPath L oo . e e e e e 5-37
5-13 Read Time of Day « « « « « e e e e e e e e e e e 5-38
5-14 Read Interrupt Register« . . . o . o . . e e e 540
5-15 Interrogate Unit Type o « o o o . e e e e e e e e e 541
5-16 Interrogate IO Path Address o o o e e e e 542
5-17 Read Processor Timer« « « « « e h e e e e e e e e e e e e 543
5-18 Read ScratchPad Word+« . . o e o e e e e e e e e e 544
5-19 Read Interrupt Literal« o . e 547
5-20 Read Interrupt Mask.« . .. o o a0 . e e e e e 548
521 SetTHME of DAY . . - o o e e e 5-49
5-22 SetInterrupt Mask o . ..o e e e e e e 5-50
5-23 Set Pseudo Busy . . . e e e e e e e e e e e e e 5-51
5-24 Multiplexer Initiate IO Words Format e e e e e e e e e e e e e e e e e 5-55
5-25 Multiplexor Scratch Pad Memory o ..o e 5-59
5-26 Memory Address Decodingo e e e 5-63
5-27 Memory Control Block Diagram . . e e e e e e e e e e e 5-65
5-28 Data Processor to Memory Control Exchange Transfer Paths e e e e e e e e e e e e 5-66
5-29 Memory Exchange Channel A Functional Block Diagram 5-67
5-30 Channel B Functional Block Diagram e e e e e e e e e e e e e e e e e 5-70
6-1 Program Word . . . e e e e e e e e e e e e e e e 6-2
6-2 Program Word, Syllable Addressmg e e e e e e e e e e e e e 6-3
6-3 Primary Mode Operator Syllable Decode Table - - 64
64 Name Call Operator Function « . o o« « « o oo 6-5
6-5 Value Call Operator Function o o o .« o o e e e e 6-6
7-1 Flow of Value Call Operator « « « « « « « « &« =« o . .- . 7-24
7-2 Value Call (Descriptor) Operator« . « .« . . . e . e e e e 7-25
7-3 Flow of Exit Operator« « « « e e e e e e 7-27
7-4 Flow of Return Operator« « « « « « & o+ . . e e e e e e e 7-28
7-5 Flow of Enter Operator « « « « « e e e e e e s 7-29
7-6 Flow of Evaluate Operator - . « « « « « o+« e . e ... 7-30
77 Flow of Stuff Environment Operator « .« « « « & .« « . o . . . 7-32
8-1 WHOI Operator Returned Word « o - o o o o e e e e e 8-6
8-2 index Controi Word (iCW) and index Word« « « . .« . . . - 87
8.3 Top-of-Stack Control Word (TSCW) « « .« o . o o v o 8-8
8-4 Rotate Stack Operations e e e e e e 89

xviii

Figure

11-1
i1-2
11-3
ii4
11-5
11-6
11-7
11-8
119
11-10
11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20
11-21
11-22
11.23
11-24
11-25
11-26
12-1
13-1
13-2
13-3
13-4
13-5
13-6

Table

2-1
2-2
23
24
3-1
32
4-1
42
43

5001290

B 6800 System Reference Manual

LIST OF ILLUSTRATIONS (Cont)

Input-Output Operation Cycles .

Finished Interrupt Stack Parameters

B 6800 Peripheral Controls Organization .
Supervisory Dispiay Control il IOCW Format .
Supervisory Display Control I Result Descriptor Format
Single Line Control IOCW Format .

Single Line Control Result Descriptor Format

Card Punch IOCW Format .

Card Punch Result Descriptor F ormat

Card Reader IOCW Format ..

Card Reader Result Descriptor Format

Line Printer IOCW Format .

Line Printer Result Descriptor Format

Train Printer IOCW Format .

Train Printer Result Descriptor Format

Magnetic Tape IOCW Format .

Magnetic Tape Result Descriptor Format

Head Per Track Disk File IOCW Format .

Head Per Track Disk File Result Descriptor Format

Flexible Disk IOCW Format

Flexible Disk Result Descriptor Format
Disk Pack IOCW Format .
Disk D,,,‘]{ IOCW Unit CGﬁtIG} Format .

Disk Pack Result Descriptor Format

5N Disk File IOCW Format .

SN Disk File Result Descriptor Format

B 6800 Data Communications Subsystem Block Dlagram
BUS Interface Subsystem Modules .

BIC Scan-Out Function Word

Set Bounds Registers Data Word

Clear-Load Data Word .

BIC Scan-In Function Word

Read BIC Status Response

LIST OF TABLES

Decimal Place Values of Digits in Various Number Bases
Address Couple Value Fields

P1 Parameter Words . .

Interrupt Procedure Stack Parameter Contents .

Evaluation of Polish String A7 B C + x :

Description of Stack Operation

B 6800 Maintenance Display Panel Reglster Selectlon Posmons

Maintenance Display Register Logic Signals for Register 1, Pages 0 (Top) and 1 (Bottom)

Maintenance Display Register Logic Signals for Register 1, Pages 2 (Top), and 3 (Bottom)

Page

11.2
114
11-8
11-11
11-12
11-13
11-14
11-15
11-16
11-17
11-18
11-19
11-20
11-21
11-22
11-23
11.25
11-26
11-27
11-28
11-29
11-30
1i-31
11-32
11-33
11-34
12-2
13-2
13-3
134
13-5
13-5
13-6

Page

2-8
2-23
2-29
2-31

39
3-11
4-14
4-15
4-16

Table

4-5
4-6
4.7
4-8
4-9
4-10
4-11
4-12
4-13
7-1
72

B 6800 System Reference Manual

LIST OF TABLES (Cont)

Maintenance Display Register Logic Signals for Register 1, Pages 4 (Top), and 5 (Bottom)
Maintenance Display Register Logic Signals for Register 2, Pages 0 (Top), and 1 (Bottom)
Maintenance Display Register Logic Signals for Register 2, Pages 2 (Top), and 3 (Bottom)
Maintenance Display Register Logic Signals for Register 2, Pages 4 (Top), and 5 (Bottom)
Maintenance Display Register Logic Signals for Register 3, Pages 0 (Top), and 1 (Bottom)
Maintenance Display Register Logic Signals for Register 3, Pages 2 (Top), and 3 (Bottom)
Maintenance Display Register Logic Signals for Register 3, Pages 4 (Top), and 5 (Bottom)
Maintenance Display Register Logic Signals for Register 4, Pages 0 (Top), and 1 (Bottom)
Maintenance Display Register Logic Signals for Register 4, Pages 2 (Top), and 3 (Bottom)

Maintenance Display Register Logic Slgnals for Reglster 4, Pages 4 (Top),and 5 (Bottom)

Relational Operator Indications .
Compare Type Operator Results .

Page

4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26

7-6
7-19

B 6800 System Reference Manual

INTRODUCTION

The B 6800 15 a large scale, modular, high-speed data processing system. The B 6800 system consists of from 7, to 9
cabinets, which are joined together to form a single mainframe organization. The leading features of the B 6800 system
are:

a. Monolithic circuits

b. System memory expandable in increments of 65,536 words

c. Memory cycle times of 1.2 microseconds -

d. Automatic memory error detection and correction

e. Peripheral units expandable to 256 units

f. 20 peripheral channels for IO operation

g Data communications processing through the use of optional standard equipment cabinets
h. Reader/sorter subsystem capability through the use of optional standard equipment cabinets
i. Centralized power supplies, with solid metalic bus-bar organization

A unique design concept, developed from years of experience with the B 5500 and B 6700 Information Processing
Systems has resulted in the B 6800 hardware and software design. The hardware and the software were simuitaneously
designed in a parallel and coordinated process, such that these two parts of the System act to augment, and complement
each other. This method assures that the hardware will contains the logic circuits necessary to implement the concepts
of the software, and also that the software constructs will utilize the hardware circuits in an efficient manner.

The B 6800 system is designed to use the hardware stack concept which was successful in both the B 5500 and the

B 6700 systems. However, the hardware used in the B 6800 system also represents recent state-of-the-arts improvements
in data processing circuit components. This blending of proven design with modern material results in a more efficient,
and powerful data processing system.

The B 6800 system utilizes the same dynamic storage allocation concept that was utilized in the B 6700 Information
Processing System. This concept utilizes a descriptor method of segmentation which allows variable length segments of
data to be used. This method is more efficient than “fixed-size” paging concepts.

A new “look ahead” logical circuit is used in the B 6800 system data processor to fetch program code words from
memory. This circuit virtually eliminates the need to halt the flow of a user program to obtain the next word of pro-
gram code. This new circuit represents an improvement in the way that user programs are executed, and results in more
efficient operation of the hardware system resources.

The use of new, and more compact logical circuit components has allowed the B 6800 system to have a greater degree of
packaging density than was available in the B 6700 system design. This greater packaging density of electronic compo-
nents has resulted in the use of a central processor unit in the B 6800 system. The central processing unit, which is a
single system cabinet, takes the place of 4 cabinets which were required in the B 6700 system. This improvement in
packaging saves space, and reduces operating costs in the B 6800 system, without requiring a loss in data processing
capability.

5001290 xxi

B 6800 System Reference Manual
Introduction

The B 6800 system utilizes a new centralized power supply cabinet. This new centralized power supply eliminates the
need to mount an inverter module in each mainframe cabinet. It collects most power supplies for the B 6800 system
within a single cabinet, and thus makes the power supply subsystem easier to maintain.

The B 6800 system cabinets have a fixed relative location within the mainframe cabinet layout. This fixed location
scheme reduces the complexity of the system installation process, reduces interface cabling requirements, and allows

more efficiency in site planning.

The B 6800 system contains the capability to be interfaced with, and to operate from Global @ memory applications.

Xxii

B 6800 System Reference Manual

SECTION 1
SYSTEM DESCRIPTION

GENERAL

This manual explains how the B 6800 Information Processing System achieves flexibility and efficiency through a
comprehensive system approach to problem solving without considering the areas of computer logic or circuit design.
The program-independent modular system design efficiently uses available units to process programs and also permits
system configuration changes without the need to reprogram or recompile. This approach also offers the user the advan-
tages of simplified programming, ease of operation, and a complete freedom of system expansion. The B 6800 is a com-
piler oriented system, designed to accept the high level problem-solving language compilers such as ALGOL, COBOL,
FORTRAN, and PL/L

The B 6800 system software operates under the control of a Master Control Program (MCP), which automatically handles
memory assignments, program segmentation, and subroutine linkages. The use of the MCP eliminates many arduous pro-
gramming tasks which are likely to produce errors. The compilers are operated under the control of the MCP, as are the
object-programs that result from the use of the compilers. The programs are debugged and corrected in the source
language.

SCOPE OF THIS MANUAL

This manual will describe the major hardware characteristics of the B 6800 system. Because of the strong interdepend-
ence of the system software and system hardware this manual will discuss both parts of the system design at times.
Wherever a choice is available, to discuss a part of the system in terms of either the hardware or the software, the hard-
ware discussion will be used. Both discussions will be used where insight can be developed by the use of this method.

ARITZ A TN
B 6800 HARDWARE SYSTEM ORGANIZATION

The B 6800 system consists of a series of cabinet types, which are arranged in a specific order. The ordering of the
cabinets within the system is classed as a minimum configuration B 6800 system, or as an expanded configuration B 6800
system. The arrangement of the cabinets within a B 6800 system is such that a minimum configuration B 6800 may be
upgraded to an expanded configuration by adding additional cabinets. No reorganization of the cabinets within a B 6800
system is required to upgrade an existing system to the expanded configuration class.

There are three standard size cabinets used in the organization of a B 6800 system. Figure 1-1 shows these three cabinet
sizes, and indicates the various dimensions of the cabinets. The cabinets in a B 6800 system are joined together to form
a continuous mainframe appearance. This appearance is enhanced by the use of outer panels that give the illusion of a
single mainframe structure.

Figure 1-2 shows the cabinets in a minimum configuration B 6800 system. The layout of the various cabinets within the
B 6800 system mainframe structure is invariable, and thus the minimum area for the mainframe of a B 6800 system is
also invariable. The minimum area required for a B 6800 system mainframe is 21 feet three inches wide, by 25 feet in
length. This area will allow for the expansion of a minimum configuration B 6800 system into a fully expanded configu-
ration B 6800 system. The area given in this paragraph does not include the area required to contain the peripheral
devices that are connected to the B 6800 system.

Figure 1-3 shows the maximum configuration B 6800 system. This B 6800 system configuration contains two more

cabinets than the minimum system layout. The additional cabinets are so located that they may be added to the system
without causing reorganization of the cabinets in the original system layout.

5001290 1-1

B 6800 System Reference Manual
System Description

18"

o8
A SIZE CABINETS
CABINET CENTRAL PROCESSING UNIT \
CABINET CENTRAL POWER 38" —
CABINET-11 PERIPHERAL CONTROL
c P
‘ .
/ //
B SIZE CABINETS
CABINET MAINTENANCE DISPLAY PROCESSOR - 19 =

CABINET TYPE B MEMORY STORAGE
CABINET INDEPENDENT DATA COMMUNICATIONS
CABINET TYPE B FT (NOTE 1)

JUNCTION CABINETS
CABINET 19 x 19 JUNCTION
NOTE:

1. THIS CABINET CAN HOUSE
10 EXCHANGES AND BIC.

MV 1584

Figure 1-1. B 6800 Cabinets Sizes

B 6800 System Reference Manual
System Description

CABINET PERIPHERAL

CABINET CONTHOL

CENTRAL
|
CABINET)'
CENTRAL

PROCESSING UNIT é
CABINET
MAINTENANCE
DISPLAY
PROCESSOR o P

CABINET

MEMORY

~ \I/ ! ! /' STORAGE

ﬁ OPERATORS

. ’ DISPLAY
CONSOLE

di

MV 1565

Figure 1-2. B 6800 System (Minimum Cabinets) Layout

5001290

1

CABINET PERIPHERAL CONTROL

CABINET CENTRAL POWER
\

T

CABINET TYPE B MEMORY STORAGE \

CABINET TYPE B

MEMORY STORAGE

CABINET B6800 CENTRAL
PROCESSOR UNIT

CONSOLE
CABINET MAINTENANCE
DISPLAY PROCESSOR

MV1556

Figure 1-3. B 6800 System (Maximum Cabinets) Layout

7

uondLIosa(] WaISAS
[eNUEBH 90ULIAJY WAISAS 0089 g

B 6800 System Reference Manual
System Description

B 6800 SYSTEM HARDWARE MODULE ORGANIZATION

The following paragraphs discuss the B 6800 sysiem modules that are located within the system cabinets. A module in
the B 6800 system is defined as a unit of hardware equipment that performs a specific function, or a set of specific
functions. A module of hardware equipment in the B 6800 system is limited to a single system cabinet. Modules in
separate cabinets that perform similar functions are separate modules.

A B 6800 system cabinet is not limited to a single module. The use of new types of logic circuit devices in the B 6800
have made it possible to mount more modules in a cabinet than was possible in the B 6700 system. Figure 14 is a
block-diagram of the B 6800 system that shows the relationship of the modules in the B 6800 system.

B 6800 MODULE INTERFACES

Cabinets within the B 6800 system are connected together through a series of interface buses (see figure 1-5). These
buses provide a method for the transfer of information and control data, and power between system modules. The
major buses in the B 6800 system are as follows:

Memory bus A B 6800 system has up to four modules of local memory and also can interface with one
global memory. A separate interface is required for each memory module. The interface be-
tween a memory module and the central processor is called a memory port. The CPU contains
provisions for a total of five ports.

Scan bus The scan bus interfaces the CPU with subsystems that are expansions of the 6800 system.
The scan bus is used to transfer control information and data between the CPU, and the sub-
systems. The B 6800 system CPU contains provision for a single scan bus interface.

Peripheral bus The peripheral bus interfaces the CPU to the peripheral control cabinets. The peripheral
bus is used to transfer control data, and information between the CPU and either one, or
two peripheral control cabinets. At least one peripheral bus is required, and a second bus
may be used to expand the B 6800 system by adding another peripheral cabinet to the
system.

Power buses The power buses are used to connect the cabinets of the B 6800 system to the centralized
power supply cabinet. These buses are used to transfer control signals to the power supply
cabinet, and to distribute the power from the central power supply cabinet to the other
cabinets in the system.

PCIO The peripheral control IO is used to interface the maintenance display cabinet to the CPU

cabinet. The PCIO is used to provide a path from the maintenance display processor to
up to four peripheral devices.

MFIO The mainframe IO interfaces the maintenance display cabinet to the CPU cabinet. This
interface is used to control and sample the state of flip-flops in the B 6800 system. The
sampled state of a flip-flop is displayed by illuminating an indicator on the display panel.
Control consists of setting, or resetting the state of flip-flops.

5001290 1-5

B 6800 System Reference Manual
System Description

Figure 1-4. B 6800 System Module Block Diagram

s
w
—— eme h—.Sl
ﬂJ 25—
e L%
r"L 1 of
2 2 & %
a a] s
N AN
M w w
J 32 _ll
Sr==—= g5 ——
S L 92 T
| _Il — - _
_ | _
v _
i] _
| | L
] |
- -
o T
= B A R |
w 'P. h'Fl i
g
£ T l.."
TR e ——
o] =
=l |31 ¢ X3
[} — 2u mw
i
1 =
) e SR
05 = —43s H o_v.cm_u._ —
w0 S _
1=l
[FLEX DISK| —

1-6

- FLEX DISK

PCC2

TIT T T717

L

MV1557

B 6800 System Reference Manual
-System Description

INDEPENDENTLY
POWERED

/ SUBSYSTEMS \

DATA BUS
COMMUNICATIONS INTERFACE
PROCESSOR CONTROL .
SUBSYSTEM (READER/SORTER)

SUBSYSTEM

3
SCAN BUS LOCAL LOCAL POWER
MEMORY BUS BUS
MEMORY
— > CABINET -
MEMORY BUS NUMBER 1
LOCAL LOCAL v l;%gER
MEMORY BUS MEMOR
-— - CABINET —
NUMBER 2
CENTRAL
CENTRAL POWER BUS POWER
PROCESSOR < SUPPLY
CABINET CABINET
PERIPHERAL PERIPHERAL |
BUS
< > CONTROL
CABINET “P WER
NUMBER 0 808
———————
PERIPHERAL PERIPHERAL
MFI0 PCIO BUS CONTROL
A CABINET !
NUMBER 1 POWER
BUS
MAINTENANCE
DISPLAY < POWER BUS
PROCESSOR
CABINET

MV 1558

Figure 1-5. B 6800 System Busing

B 6800 CENTRAL PROCESSING UNIT CABINET

The Central Processing Unit (CPU) is the heart of the B 6800 system. The CPU contains four modules, which are the

data processor module, the IO processor module (also referred to as a multiplexor, or MPX module), the memory
exchange, and the memory tester. The CPU also generates system clock pulses that are distributed to other modules in the
system. The CPU contains logic circuits that operate in conjunction with the maintenance display processor to perform
memory testing. The following pargraphs will discuss the modules that are located within the CPU cabinet.

5001290 1-7

B 6800 System Reference Manual
System Description

The CPU contains the master clock generation circuits for the clock pulses of the system. The master clock frequency of
the B 6800 system is 6.67 megahertz. This clock frequency produces clock pulses that occur each 150 nanoseconds.
These clock pulses are distributed throughout the logic circuits of the system. The clock pulses in the B 6800 system are
used to synchronize the various circuits contained in the modules of the system. In this manner, each circuit operates in
concert with other circuits in the system, in an harmonious, and efficient manner.

DATA PROCESSOR MODULE

The Data Processor (DP) is the key module through which the B 6800 software operating system directs and controls the
resources of the B 6800 system. The DP initiates all operations performed by the other system modules, including the
operation of all peripheral devices. The DP also performs data arithmetic operations, and manipulates data within the
system. The DP contains logic circuits to sense interrupts from other modules, and also within itself. When the DP

senses an interrupt the software operating system becomes aware of the interrupt, and handles the cause of the interrupt.
The DP performs comparisons, and logical operations that allow the software operating system to evaluate conditions,
represented as data, and to make decisions based on the results of the evaluation. Because the software makes decisions,
it provides the capability for altering the future course of programmed operations both within the operating user programs,
and within the MCP itself.

A new feature of the B 6800 system is the use of look-ahead logic in the DP. This new feature fetches words of program
code before the DP is ready to execute the code, and thus virtually eliminates the need for halting a program to fetch
words of program code. The memory accesses that are performed by the look-ahead logic are independent of other mem-
ory cycles performed for the DP, and do not cause delays in obtaining data for normal DP functions. When a new word
of program code is required, the first resource is the buffer circuit of the look-ahead logic. A memory cycle will only be
performed if the look-ahead logic has not already fetched the word of code that is needed, or a branch operator causes a
change in the sequential program code addressing. If the next word of program code is the proper program word, and is
present in the look-ahead logic buffer circuit, then that is the source from which the next word will be taken.

The DP of the B 6800 system also contains an improved adder circuit for performing arithmetic functions. The improved
mantissa adder circuit is a double-precision, high-speed adder which is more efficient than the single-precision adder that
was used in the B 6700 system. In addition to using the new adder circuits, the algorithms for double precision arithmetic
operations have been improved to provide more accurate double precision answers to arithmetic problem-solving processes.

The B 6800 DP contains new logic circuits that provide for a retry of a DP operator that fails during its execution. This
retry of failed operators is only applicable up to a predetermined point in the flow of an operator. If an operator fails,
and a retry is possible, then a flag is set to indicate that the retry can occur. If an operator fails, and a retry is not pos-
sible, then the failure will result in the execution of the interrupt procedure for failed DP operators.

A failed operator retry operation is controlled by the system software. The system hardware indicates whether or not a
retry may be attempted, but the decision to retry a particular operation is made by the software.

The B 6800 DP makes extensive use of RAM, and PROM memory integrated circuit components. Parity testing is per-
formed on these component parts in the DP. When a failure of one of thesc component paits is detected, an entry i
made in the Error register. The error register is decoded, and written in the system log. The log entry will provide such
pertinent data as:

a. The location of the card package that failed

1 P Oy S I L Y) I P o L (PN B Y) I O ot wrna halos avanntad o n diean A o
uU. Thc J-COUIlL SCQUCIICT 11UINUTL, alil vi LouUv vl ine Ur UymatU1 that wad bvuls cxecuted at the tiine uf the
failure

1-8

B 6800 System Reference Manual
System Description

The B 6800 system DP performs recursive confidence testing when the DP is in an IDLE condition. The confidence tests
check such circuits as:

a. The top of stack registers

b. Shift paths for data that is placed in the top of stack registers
c. The barrel shifter logic

d. The mantissa adder logic

e. The exponent adder logic

f. The address adder logic

g. The arithmetic operation algorithms

h. The DP control buses

If an interrupt occurs while the DP is performing a confidence test, the DP will immediately exit from the IDLE state.
If an error caused the exit, the error will be reported in the SYSTEM SUM LOG disk file.

The DP performs residue testing of the contents of the integrated circuit memory address registers. Residue testing is
also performed on literal values that are used as indices to the addresses that are contained in the integrated circuit

address registers. The purpose of residue testing is to increase the integrity of the address adder circuits. Residue testing
is an automatic function that detects addressing errors, and cause the software operating system to make log entries that

identify the nature of the error.
MULTIPLEXOR MODULE (I0 PROCESSOR)

The multiplexor module controls the operation of all of the peripheral subsystems except the data communications
processor, and the bus interface control. These two subsystems are operated as separate subsystems, and are controlled
directly from the data processor module.

The data processor module initiates IO operations in the B 6800 system by transmitting command instructions to the
multiplexor via the interface bus. The command instruction information that is transmitted to the multiplexor contains
such data as the unit number of the IO device that is to be initiated, the address of a buffer area in memory that is to be
used for the operation, and the length of the buffer area. The multiplexor stores the command information which it
receives from the DP in scratch pad memory.

From the time that the multiplexor receives data from the DP for an IO operation that is to be performed, until the IO
operation is completed, or is interrupted, the multiplexor operates as an independent module from the DP. When an IO
operation needs access to memory it has priority for the use of the single path to memory that is shared by the DP, and
the multiplexor.

The multiplexor will proceed in an independent manner to control the IO operations until they are completed. When

the operation is completed, the-multiplexor uses an interrupt path to the DP to report that the operation has been
terminated. If the peripheral operation was terminated because of an IO error, then the DP will interrogate the multiplexor
to determine the cause of the error. In this way the operating software system is aware of what IO operations are in process,
or have been completed.

5001290 1-9

B 6800 System Reference Manual
System Description

The multiplexor contains provisions for 2 peripheral bus interfaces. Each peripheral bus interface conducts data and
control information communications for up to 10 peripheral channels. Thus, the multiplexor contains provisions for
either 10 channels, or 20 channels to the 10 devices. A maximum of 256 peripheral devices may be controlled by the
multiplexor. The minimum number of IO devices that are used in a B 6800 system is five devices, which are:

a. A TD830 Operators Display

b. A 225 Dual Disk Pack Drive

¢. A model V Magnetic Tape Transport Unit

d. An 1100 LPM Train Printer

e. A Card Reader or a Flexible Disk Unit

Any substitutions and/or additions to the peripheral unit list above must be made from the following B 6800 compatible
peripheral unit list.

a. 150/300 CPM 80 Column Card Punch

b. 800/1400 CPM 80 Column Card Reader

c.. 300/600/800 CPM 80 Column Card Reader

d. 1C Disk File

e. SN Disk File

f. Nine Track PE Magnetic Tape Transport Unit

g- Seven Track NRZ Upright Magnetic Tape Transport Unit

h. 400/700 Lines Per Minute Train Printer

i 206 Disk Pack Subsystem

j- 235 Disk Pack Subsystem
The 15 IO device types listed above, in addition to the B 9137/B 9134 reader/sorter (BIC module) are the standard 10
devices that are utilized in the B 6800 system. When the BIC module is utilized, the reader/sorter units are not con-
sidered as part of the 256 peripheral unit limitation. This limitation is only applicable to the peripheral devices that are
under the control of the IO processor. The reader/sorter subsystem is not contrelled by the multiplexor.
MEMORY CONTROL MODULE

The memory control module operates a memory interface exchange that allows three different system requestors to access
one of five memory storage modules. The three requestors are as follows:

a. The look-ahead logic of the data processor module.

b. Either the data processor medule, or the multiplexor module. These two modules share a common
requestor path to the memory control exchange, as was defined in the sub-section on the multiplexor.

B 6800 System Reference Manual
System Description

c. The external requestor is utilized for a data comm processor and/or a bus interface control module. This
external requestor path to the memory control module may alternatively be connected to a memory control
expansion module. If a memory control expansion module is utilized then up to four external requestors can
share the single path to a memory storage device, through the memory control module.

The five memory storage modules that may operate as respondents to the three memory control requestors are defined as
follows:

a. The first four modules are each either 64K, or 128K local memory modules (1K = 1024 words).
b. The fifth module is an interface to the global memory of the B 6800 system.

In addition to controlling the interface paths through the memory exchange, the memory control module also performs
memory retries, and memory read data error corrections. A read memory retry consists of detecting an error in the data
fetched from memory, and causing a second memory read strobe pulse to be generated. A read memory retry is not a second
complete memory cycle. A read memory retry will only be performed for a requestor that is internal to the CPU module.

A memory retry is also performed when a memory module detects a parity error on the address data lines. The memory
address error retry will repeat the complete memory cycle operation.

An error correction memory cycle will be performed for a read memory cycle that detects a single bit error in the data that
was stored. If a memory cycle still produces and error in the data after a read memory cycle retry has been performed then

the memory control module will perform an error correction cycle. An error correction cycle can only correct single bit
errors.

External memory requestors operate asynchronously, and internal memory requestors operate synchronously when

requesting access to the memory modules. This condition causes the memory access time for an external requestor to

be greater than the access time for an internal requestor. The memory cycle times for internal requestors, and external
requestors are as follows:

Device Read/Restore Clear/Write Read/Modify [Write

Type Operation Operation Operation
Internal Requestor 900 ns 900 ns 1200 ns
External Requestor 1200 ns 1200 ns 1500 ns

The memory cycle times listed above are based on the assumption that no retry (for an internal requestor), or error
correction cycle is performed. At least two clock periods have been added to the cycle times for external requestors
because of the asynchronous memory interface. If a retry for an internal requestor and/or an error correction cycle is
performed, then one clock period (450 nanoseconds) must be added to the memory read times listed.

The look-ahead logic always yields to any other channel A requestor for priority to access memory. Contention for access
to memory is allowed between the data processor and multiplexor interface (channel A), and the external requestor inter-
face (channel B). Such contention is resolved on a first come first served basis. If both channel A and B memory
requestors request accesses at the same time then channel A interface takes precedence over the channel B interface.

5001290 1-11

B 6800 System Reference Manual
System Description

B 6800 MAINTENANCE DISPLAY PROCESSOR (figure 1-6)

The Maintenance Display Processor (MDP) Cabinet layout is shown in figures 1-3, and 1-4. The MDP performs display and
control functions in the B 6800 system. The leading features and functions of the B 6800 maintenance display Processor

are:

The MDP can display the states of up to 4096 logic devices
The MDP can write into and verify the code of a PROM device

The MDP contains logic card package testing capability, with static go/no go test cases for all non-discrete
logic cards

The MDP can operate up to four selectable system IO devices

The MDP can be programmed to beam test (at single clock level) and to compare all flip-flops in the
system, as well as any flip-flop that is under test

The MDP can be programmed to allow a system operator to test the logic circuits of the system at the single
clock level

The MDP can be programmed to dynamically isolate most failures that occur in the hardware elements of
the system

Figure 1-6 shows the major parts .of the MDP cabinet.

The MDP cabinet can be divided. into three main parts:

a.

. b.

C.

The upper half of the cabinet contains the displays

The lower half of the cabinet contains the micro-processor, the display control logic, five 10 controllers,
and a power supply for the micro-processor

The upper half of the cabinet is separated from the lower half of the cabinet by a keyboard

The keyboard consists of the necessary indicators and switches to perform the following functions:

a.

Provides a means of selecting one of the four register displays for the purpose of manually changing the
state of the data displayed

Provides a means of selecting a hexadecimal digit through cursor movement for the purpose of manually
changing the bit pattern of that digit for the selected register display

Provides a means of entering a hexadecimal character to alter a selected digit within the selected register
display

Provides a means of manually initiating a memory read/write cycle on either the mainframe memory or the

IC memory within the data processor

B 6800 System Reference Manual
System Description

SYSTEM i.D. LOGC

SWING OPEN
MAINTENANCE
DISPLAY

PROGRAMMERS — |
DISPLAY

I~

KEYBOARD

DISPLAY
CONTROL
LOGIC

MAINTENANCE PROCESSOR
POWER SUPPLY

MAINTENANCE
PROCESSOR

MV 15659

Figure 1-6. Maintenance Display Processor Cabinet (sheet 1 of 2)

5001290

B 6800 System Reference Manual
System Description

MAINTENANCE DISPLAY

”

A

PROGRAMMERS DISPLAY —____|

|

NN

SWING-OUT DISPLAY COVER

=

KEYBOARD

Va)

DISPLAY CONTROL LOGIC

MICRO-PROCESSOR — |

MP POWER SUPPLY

—

\ - —— MP POWER SUPPLY
i i i ——— ! MICRO-PROCESSOR
\ DISPLAY CONTROL LOGIC

Figure 1-6. Maintenance Display Processor Cabinet (sheet 2 of 2)

/.

-

SWING OUT —————
DISPLAY
COVER

MV 1560

B 6800 System Reference Manual
System Description

e. Provides a means of manually adjusting the top of stack registers in the data processor

f. Provides a means of manually inhibiting the start of the next CPU instruction
g. Provides a means of manually initiating a conditional halt to the CPU

h. Provides a means of selecting either hexadecimal display or octal display for display registers one, two,
or three

The displays are divided into the programmers display panel, and the maintenance display panels. The programmers
display is on the upper left-hand side of the MDP cabinet, and is always visible. The maintenance display panels are on
the upper right-hand side of the MDP, and are not always visible. To view the maintenance panels, a swing-out display cover
must be extended. Four maintenance panels are exposed to view when the swing-out cover is extended. A switch panel
is located at the bottom of the maintenance display panel. This switch panel is used to control the operation of the
maintenance processor. ‘

The maintenance processor is the principal operating unit in the MDP cabinet. The maintenance processor operates in
either of two modes, which are; Maintenance Test Routine mode (MTR), and normal mode. These two modes will be
discussed in the following paragraphs.

The PROC ENABLE switch (on the MDP switch panel) is used to place the maintenance processor in the MTR mode.
The MTR mede provides a way of testing the maintenance processor through the use of test-routines that are stored in
PROM memory. The PROM memory is an integral part of the maintenance processor. This PROM memory contains
firmware to:

a. Test the maintenance processor circuits

b. Test the memory interface logic between the maintenance processor and RAM memory which is an integral
part of the Micro-Processor. ’

c. Test the RAM memory up to a checkerboard test
d. Test the PCIO, CTIO, MFIO controller of the MDP
e. Perform an extensive (Galpat) test on the RAM memory

f. Load the MTR test-routine program from the selected system peripheral unit to the RAM memory of the
MDP

g. Perform a program branch to the start of the MTR test-routine that was loaded into the RAM memory
h. Handles Interrupt procedures that occur during the operation of the maintenance processor in MTR mode
The same switch that was used to place the maintenance processor in MTR mode (the PROC ENABLE switch) is also

used to select normal mode. The normal mode of operation provides a way to test the B 6800 system through the use
of the MTR test routines that are loaded to the RAM memory. The maintenance processor uses

5001290 1-15

B 6800 System Reference Manual
System Description

the PROM memory to initiate the loading of MTR test-routines into the RAM memory as follows:

a. Sets up peripheral tables for the peripheral units that are to be used

b. Provides a quick confidence check for the peripheral units that are to be used
c. Initializes the RAM memory to receive the data from the IO devices

d. Purges the RAM memory of all parity errors

e. Communicates with the system operator to determine which system IO devices are to be used to load the
system MTR program

f. Loads the system MTR program from the selected IO devices, into the RAM memory

g Performs a program branch to the start of the system MTR test-routine which is residing in the RAM
memory

h. Handles interrupt procedures during system operation

The micro-processor logic contains two controllers which are the PROM writer controller (PWIO), and the Keyboard/
Switch/Indicator (KSI) eontroller.

The purpose of the KSI controller is to interface the micro-processor to the keyboard of the MDP. The keyboard is used
as a source input device by a human operator, to direct that various functions of the MDP be performed. The KSI con-
troller coordinates and synchronizes these human control demands with the normal logical operations of the micro-
processor. The orderly responses of the micro-processor, to a keyboard demand, are returned to the keyboard for display,
by the KSI controller.

The PROM Writer 10 controller provides a method of creating a selected bit pattern in a PROM device. In addition, a
PROM device can be verified to have the correct pattern inserted.

The MDP contains three controliers which are as follows:
a. The Mainframe Input Output (MFIO) controller
b. The Peripheral Control Input Output (PCIO) controller
¢. The Card Test Input Output (CTIO) controller
The purpose and use of each of these three controllers is defined in the following paragraphs.
The purpose of the Mainframe 10 (MFIO) controller is to allow either the micro-processor or the display logic to set and
sample the state of the mainframe flip-flops. In addition, the micro-processor can monitor various conditions within the

controiier through the use of status and data transfers. The MFIO controiler interfaces the logic of the MDP with one
of two connectors that are identified as normal, and alternate interfaces. The PROC ENABLE switch selects either the

Farins tha MND i il DT
micro-processor, or the d‘spla" 105.6 to control the data lines from the MDP to the CPU cabinet.

The micro-processor uses a set of command words, and fixed format status reports to control the operation of the MFIO
controller. These controller directing commands, and status reports are passed between the micro-processor and the

1-16

B 6800 System Reference Manual
System Description

MFIO logic over the DIN and DOUT lines of the MFIO interface bus. The format and use of the MFIO command words,
and the status reports are covered in detail in the B 6800 Maintenance Display Processor Field Engineering Technical
Manual, number 5001340.

When the PROC ENABLE switch is in the ENABLED position (UP) the micro-processor is permitted to control data that
is sent to the CPU cabinet; and therefore, control the setting of mainframe flip-flops. When the PROC ENABLE switch is
in the down position, the display logic controls the data sent to the CPU cabinet; and therefore, the setting of mainframe
flip-flops.

The purpose of the Peripheral Control 10 Controller (PCIO) is to provide the maintenance processor with a way to com-
municate with the peripheral units that are attached to the system. The peripheral control IO controller controls the
PCIO bus between the CPU and the MDP. The PCIO controller contains a2 1024 byte IC memory buffer that is used to
hold the data that is received from an IO device. The PCIO controller can initiate four different IO devices, but only
one IO operation is allowed to be in process at any one time. Configuration jumpers are used to select which four sys-
tem IO devices the PCIO controller will be allowed to initiate. The maintenance processor uses a set of command words,
and status reports to control the PCIO controller, and the PCIO interface bus to the CPU.

The Card Test 10 Controller (CTIO) is used to test logical card-packages from the hardware of the B 6800 system . The
CTIO logic can control the state of each pin of a card-package, both the foreplane, and the backplane pins. The logic of
the CTIO controller can issue clock pulses to any of the six pins that normally receive clock pulse inputs. The logic can
also issue bursts of up to 15 clock pulses. The CTIO controller contains a 120 bit pin state register that is used to con-
tain the state of each pin of a card under test. The maintenance processor controls the operation of the CTIO controller
through a set of command words. The maintenance processor samples the state of the card-package pins, performs com-
parisons against known good results, and isolates failures of the logic on the card-package. The maintenance processor
controls the logic circuits on the cards that are tested because it controls the state of each pin on the card. The testing
of a card-package by the maintenance processor is conducted as a series of test-cases. This method allows a logical failure
on the card-package to be repeated in a recursive manner such that the card-test logic can be used for dynamic trouble-
shooting by engineering personnel.

DISPLAY CONTROL LOGIC

The display control logic (see figure 1-6) is located in the bottom half of the MDP cabinet. The operation of the display
control logic is controlled by the maintenance processor.

B 6800 CENTRAL POWER SUPPLY CABINET

The central power supply cabinet in the B 6800 system is an A size cabinet, which is located near the center of the sys-
tem cabinet complex (refer back to figure 1-2). The Central Power Supply Cabinet (PSC) provides centralized power to
all cabinets within the B 6800 system except for the independently powered cabinets.

Power buses route the power generated in the PSC to other cabinets in the B 6800 system. The source power to the
B 6800 system PSC is discussed in the B 6800 System Installation Planning Manual, number 5001308.

The power supplies in the B 6800 system PSC are capable of supplying electrical power to the mainframe cabinets of
the system. The power supplies in the PSC use constant voltage transformers, that provide sufficient pre-regulation
conditions to ensure constant voltage outputs with a loss of input power of up to 30 percent of normal line supply.
These design characteristics in the PSC provide for continuous system operation during “brown-out” operations. A

“brown-out” is defined as a reduction of up to 15 percent of normal operating line voltage, for an unspecified period
of time.

5001290 1-17

B 6800 System Reference Manual
System Description

Figure 1-7 shows the major parts of the PSC, and the relative location of these parts within the cabinet. Figure 1-8
shows the power bus distribution between the PSC, and other cabinets within the B 6800 system mainframe.

B 6800 PERIPHERAL CONTROL CABINET

The B 6800 Peripheral Control Cabinet (PCC) is an A size cabinet that contains three separate logic backplane panels
(refer to figure 1-9). Two of the three panels contain control modules, and the third panel contains control logic for the
peripheral interface between the multiplexor, and the PCC. As shown in figure 1-9, one of the control mounting panels
accommodates control modules for 10 controls of up to 86 card locations. The other control mounting panel can accom-
modate IO controls of up to 36 card locations. A PCC can accommodate a maximum of ten IO controls. The card sizes
of the two IO control mounting panels refers to the number of plug-in card-modules that can be physically plugged into
the backplane of an 10 control.

A PCC can accommodate up to ten IO controls. These 10 controls can be any combination of large and small controls;
however, a maximum of five large controls may be included in a cabinet.

The peripheral control interface bus that connects a PCC to the multiplexor (see figure 1-10) is connected to the central con-
trol logic panel of the PCC. The B 6800 system utilizes this interface bus to transfer data between the main system modules,
and one of 256 system IO devices. The interface bus is also used to transfer control information from the mainframe system,
to the peripheral controls. Within the PCC, data, and control information is passed to a control module via interframe
jumpers.

Figure 1-10 is a representation of the interface bus that passes between the IO processor, and the PCC. In figure 1-10
there are two cables that go to each of the PCCs. In addition, there are two cables that go to both of the PCCs. The
cables that go to both PCCs are used to pass data, and control information between the IO processor, and a peripheral
control. The two cables that go to a particular PCC are used to select a particular IO control position within the PCC
with which the IO processor will communicate. The IO control positions within a PCC are designated as channels, and
are further identified by a channel numbering system, to distinguish one IO control position from another.

The large control channel numbers within a PCC are zero through four. Channel zero is the lowest large 10 control posi-
tion in a PCC, and channel four is the highest large IO control position. The lowest small IO control position in a PCC is
channel number five, and the highest small 10 control position in a PCC is channel number nine.

The peripheral control bus cables contain interface signals that identify which channel within a PCC is to communicate
with the IO processor on the peripheral bus, and also in which direction on the bus the information will be passed.

When a single PCC is used in a B 6800 system the channel numbers that may be used are zero through nine. When a
second PCC is used, the channel numbers in the first PCC remain unchanged, but the channel numbers in the second PCC
are channels ten through nineteen. Thus; the value of a channel designation defines the channel position within the PCC,
and also in which of two PCCs the channel is located.

B 6800 Sysiem Peripherai Conirois

The peripheral controls that may be mounted in a B 6800 PCC are limited to those controls that are compatible with the
B 6800 mainframe system. The lists of those peripheral devices that are compatible with the B 6800 system were pre-
viously identified in the subsection that is titled MULTIPLEXOR MODULE, in this manual.

B 6800 System Reference Manual
System Description

+12 VOLT
SUPPLY
L1
/\ /

_— INPUT POWER

POWER CKT BRKR
CONTROL AND AND FILTER
SEQUENCING

300VDC CONVERTER

300VDC BUS ﬁﬂ'

1600 A
/\//’ — INVERTER
\ .
—— 300VDC
+4,76V/-2V
BUS BARS BUS

300vDC
CONVERTER

INPUT POWER
CKT BRKR
AND FILTER

MV 1561

Figure 1-7. Central Power Cabinet

5001290

B 6800 System Reference Manual
System Description

— —— — — — e ey
CENTRAL POWER CABINET l
I 208 VAC N
AC 3 PHASE T AC/DC 1600A l
$——— INPUT) 1 1t cvT CONV INV > +.75v/
/ | MOD 1 MOD MoD ’ -2v ouTPUT
208 VAC A OUTPUT T
INPUT cvT Yo opu
3 PHASE ' L caB. PC
| CAB'NO. 1
AND PC
' l CAB NO. 2
AC 112V
CONTROL cvT SUPPLY f——® 112V
I MOD MOD | outur
' -a5v/ '
+20V
ovT — asv/
I MANUAL POWER ridd +20V
ONJOFF SEQ OUTPUT TO
CONTROL wo I \ PC CAB NO. 1
I 3-PHASE AC DISTRIBUTION ' &PCCABNO.2
DISTRIBUTION
L ——— L] S L] —— R E—— a—— AERE—— —— IR LB J
$————— 7O BLOWER MOTORS
I (| |
CcvT I l CcVT l l CcvT '
| I I |
+5V/E15V l I | I |
| MEMORY MEMORY | MAINT
SUPPLY |1 SUPPLY | SUPPLY |
! B NO. 1 ' I PT MEM CAB NO. Zl ' MDP CAB '
MV 1572

Figure 1-8. B 6800 Power Subsystem Distribution Diagram

There are 15 different types of peripheral devices that are completely compatible with the B 6800 system mainframe. Nine
of these peripheral types require a small control, and the other five types require a large size control.

A peripheral control is associated with one or more system IO devices. The UNIT NUMBER that is used to identify a
peripheral device, is also associated with the IO control through which the device is operated. UNIT NUMBERs of the
peripheral devices that operate through a single IO control must follow the minterm numbering conventions for periph-

eral devices.

1-20

B 6800 System Reference Manual
System Description

14
c
/13
— c
- 2
ANNE oR 1 |
ext- g s CapNNEL? |t 1x861/0 CONTROL

| soR T~ POSITIONS (PANEL B)
CONTROL POSITIONS GHANNEL eLioR Y

CONTROL P o~

(PANEL C) 70R 1 CHANN CENTRAL CONTROL

/ 5 LOGIC (PANEL A)
c

A B6800 SYSTEM CONTAINS 1 OR 2
PCC CABINETS" PCC CABINET
NUMBER ZERQ CONTAINS
CHANNELS ZERQ, THROUGH NINE,
PCC CABINET NUMBER ONE
CONTAINS CHANNELS TEN,
THROUGH NINETEEN.

BLOWERS
MV 1563

Figure 1-9. Peripheral Control Cabinet

The minterm numbering conventions for the B 6800 system are the same as the conventions that were used for the

B 6700 system. A minterm group consists of a group of one, two, four, eight, ten, sixteen, or twenty peripheral devices.
Within the minterm group, all of the unit numbners are in consecutive numeric sequence. Thus, all of the UNIT NUMBERs
associated with a particular IO control are in consecutive numeric order. The Multiplexor module of the CPU cabinet con-
tains logic circuits that define a particular IO control channel number according to the UNIT NUMBER.

The MCP software operating system constructs UNIT TABLES through which it associates a UNIT NUMBER with a
particular IO device type. The MCP keeps the UNIT TABLES updated so that they contain the current status of each

peripheral device, by unit type, and by UNIT NUMBER. In this manner, the software operating system is aware of the
condition and extent of the IO device subsystems at all times.

B 6800 Memory Cabinets

The B 6800 local memory cabinet (refer to figure 1-11) is a B size cabinet that can contain a maximum of 256K words
of local memory. With a maximum of two local memory cabinets in a B 6800 system, a maximum of 512K words of
local memory is available to the system. Local memory is expandable from 64K words to 512K words, in increments of
64K words. In the common context, one K of memory is actually 1024 words in length.

5001290 1-21

B 6800 System Reference Manual
System Description

CHANNEL19 I I CHANNEL14

CHANNEL 18 l pcc2 ' CHANNEL13

CHANNEL17 CHANNEL12

?—-
CHANNEL16 l-—-l T r—-I CHANNEL11
CHANNEL 15 CHANNEL 10

CHANNELQ CHANNEL4
e | Siameci

CHANNEL8 l PCC1 l CHANNEL3

——
CHANNEL 7 CHANNEL2

L q
NCTCT SR R

—— Gme— a— o— S—

|
|
|
|
|
| il i Bl o

CHANNEL 5 CHANNEL 0
FOUR |
20-CONDUCTOR
™o |
pC CABLES 20-CONDUCTOR |
INTERFACE CABLES l
AGO0 - AGO9 CD00-CDO09 | |
AROO » AROS & BUOO -+ BUOS
™W0 |
DATA (16 BITS) 20-CONDUCTOR {
CPU CABLES
CONTROL (13 BITS) I |
AG10AG19 & CD10 . CD19 |
AR10 - AR19 & BU10 »BU19 _I

MV 1564

Figure 1-10. Peripheral Control Interface
Each word of memory consists of 60 bits. These 60 bits are divided to provide 51 bits of data, one parity bit, and eight
bits which are utilized for error detection and correction.

A B 6800 memory interface consists of six cables. Figure 1-12 shows these six cables, and how they operate to provide
the interface between the memory control module of the CPU cabinet, and a B 6800 memory module.

The B 680C memory modules are capable of performing in any of three types of operations as follows:
a. Read/Restore operation

b. Clear/Write operation

o
-
%
-4
[=9
o
a
@]
[N
=

P

P
3
-t
-

1-22

B 6800 System Reference Manual
System Description

B SiZE MEMORY CABINET

“\ s]

&\

SINGLE PORT 128K x 60 MEMORY MODULES

|_»"
OR DUAL PORT 64K x 60 MEMORY MODULES \] — P
\\\ L

< AC POWER
BLOWER
\\ / MEMORY SUPPLY

CARD SIDE VIEW

> MEMORY REGULATORS

\

Z

SEQUENCE CONTROL PANEL

SINGLE PORT

—'/
‘7— 128K x 60 MEMORY MODULES

E \
MEMORY REGULATORS < i \ .
N DUAL PORT
\‘E[/,/ 64K x 60 MEMORY MODUIES
~-

N

AC POWER \
—

[T BLOWER

O

MEMORY SUPPLY /

Figure 1-11. B 6800 Memory Cabinet

PIN SIDE VIEW

MV 2565

5001290 1-23

MODULE OF CPU CABINET

MEMORY CONTROL

PORTO CABLE1

B 6800 System Reference Manual
System Description

PORTO CABLE?2

PORT O CABLE3

PORTO CABLEA4

PORTO CABLES

MEMORY CABINET ONE
ADDRESS MODULE
ONE
CONTROL

INFORMATION
INFORMATION
INFORMATION
INFORMATION

PORT 0 CABLE 6

PORT 1 CABLE1

PORT 1 CABLE2

PORT1 CABLE3

PORT 1 CABLE4

PORT 1 CABLES

PORT1 CABLE®6

PORT 2 CABLE 1

ADDRESS
CONTROL
INFORMATION
INFORMATION
INFORMATION
INFORMATION

MODULE
TWO

PORT 2 CABLE?2

PORT 2 CABLE3

PORT 2 CABLE4

'PORT 2 CABLE 5

PORT 2 CABLE6

MEMORY CABINET TWO

PORT 3 CABLE1

PORT 3 CABLE2

PORT3 CABLE3

PORT 3 CABLE4

PORT 3 CABLES

PORT 3 CABLE6

GLOBAL PORT CABLE 1

GLOBAL PORT CABLE 2

GLOBAL PORT CABLE 3

GLOBAL PORT CABLE 4

GLOBAL PORT CABLE 5

GLOBAL PORT CABLE 6

MV 2566

1-24

ADDRESS MODULE
THREE

CONTROL

INFORMATION

INFORMATION

INFORMATION

INFORMATION

ADDRESS MODULE
FOUR

CONTROL

INFORMATION
INFORMATION
INFORMATION
INFORMATION

Figure 1-12. Memory Controi Interface Bus

B 6800 System Reference Manual
System Description

A memory read cycle is completed in 780 nanoseconds, as measured at the cable connection from the memory control inter-
face. This cycie time is the minimum time that must occur between two consecutive Initiate Memory Cycle (IMC) pulses. A
Read/Restore memory operation, or a Clear/Write memory operation may be performed in the time given for a memory read
cycle. A Read/Modify/Write memory cycle requires 1180 nanoseconds memory cycle time because this operation requires
that both a memory read, and a memory write function must be performed (two IMC pulses are required) to complete a
memory cycle.

The planar core memory utilized in the B 6800 system is destructive read-out memory. That is, when information is read
out of a memory core, the core is magnetized to contain a given specific polarity. Therefore; to preserve data in core
memory, the read data must be written back into the address.

A Read/Modify /Write memory cycle accepts input data, and a memory address from the memory requestor. A memory
cycle is performed on the address specified, and the data that is present at the address is made available to the memory
requestor.

A read/modify/write operation in the memory control may be changed into a read/restore operation under either of the
following conditions:

a. A protected memory operation is in progress, and the data in the word addressed by the read part of the
read/modify /write operation determines that the memory protect bit (bit 48) is true. If this condition
exists, the data read out of the memory address is re-written back into the same address, and the memory
protect interrupt is detected by the memory control.

b. A parity error occurs during the read part of the read/modify/write operation. If this condition exists after
a memory retry has been attempted, then the data with the parity error is re-written into the same address,
and the memory parity error interrupt is detected by the requesting function.

If the memory control does not detect a memory protect interrupt, or a parity error interrupt during the read part of a
read/modify/write operation, then the operation continues as follows.

The data that was accepted by the memory module is written into the same address from which the memory read oper-
ation was performed and thus, the original data is destroyed. The B 6800 system uses the Read/Modify/Write mode of
operation to perform normal memory write functions.

A Read/Restore memory cycle accepts an address from the memory requestor, a read memory cycle is performed on the
address specified, and the data that is present at the address is made available to the memory requestor. The same data
that was present in the specified address is written back into the specified address. The B 6800 system uses the Read/
Restore mode of operation to perform normal memory read functions.

A Clear/Write memory cycle accepts an address from the memory requestor, and writes a requestor supplied data word
into the address. The changing of the clear/write operation into a read/restore operation, (for a parity error) is analogous

to that change defined for the read/modify/write operation previously.

B 6800 OPERATORS DISPLAY CONSOLE (ref. figure 1-2)

The purpose of this console is to provide a position where all of the necessary system operating controls are collected in

one physical place. The collection of the normal operating controls into a single central location is efficient, and provides
a logical place for the system operational staff to function.

5001290 1-25

B 6800 System Reference Manual
System Description

There are three parts to the operators display console (see figure 1-13), in addition to the table-top work area. The three
parts of the console are the TD830 video display, the system control panel, and the keyboard for the video display. The
video display terminal is recessed into the table-top in such a way that the display is visible without distortion (due to
paralax) when the user of the display is either sitting, or standing. The system control panel is mounted flush with the
table-top, and is located immediately in front of the recessed video display. The keyboard for the video display terminal
is mounted at an angle immediately in front of the system control panel. The angle at which the keyboard is mounted
complements the recess angle of the display terminal screen, such that the lettering on the keys of the keyboard are vis-
ible regardless of whether the user is sitting, or standing.

The operators display console contains two separate operator stations. Full control of the system is possible from either
station of the console. A locking device is installed for each operators station. The locking device is a security feature
used for system integrity. When the device is locked, the keyboard is disconnected, and the operators station cannot
communicate with the software operating system. The locking device is activated by the use of a hand key that must be
inserted into the lock, and turned to either open, or lock the operators console station keyboard. The locking device has
no effect on the system control panel, and the controls on the panel may be operated without regard to whether the key-
board is locked, or not.

Figure 1-14 shows the operators system control panel details. This panel contains the operators controls for the video
display portion of the TD830, in addition to the controls for operating the B 6800 system. As shown in figure 1-14, the
controls for the video display are at the top of the control panel, and the controls for the B 6800 system are at the bot-
tom of the drawing.

The controls for the video display consist of a thumbwheel type adjustment, and an ON-OFF switch for the video
display. The purpose, and use of the video display controls are as follows:

a. The ON-OFF switch. This switch controls the power utilized by the video display.

b. The BRIGHTNESS thumbwheel controls the lighting intensity of the video display.

The controls for the B 6800 system consist of seven indicator/switch pushbutton controls shown at the bottom of the
control panel, in figure 1-14. The purpose and use of the B 6800 system controls is as follows:

a. The ENABLE pushbutton switch allows the use of the HALT, POWER ON, and POWER OFF pushbutton
switches. If the ENABLE pushbutton is not depressed then the three other pushbuttons listed are inoperative,
and have no effect on System operation. If the ENABLE pushbutton is depressed then the other three push-
buttons listed are enabled, and depressing any one of the pushbuttons will cause the circuit corresponding to
the switch to be activated. The purpose of the ENABLE pushbutton is to prevent accidental system operation
caused by inadvertently depressing one of the pushbutton controls listed.

b. The POWER OFF pushbutton is used to remove source power from the circuits of the system that are sup-

plied power from the central power supply cabinet. The POWER OFF pushbutton does not remove power
from circuits that receive their source power from some other source.

1-26

B 6800 System Reference Manual
System Description

KEYBOARD
LOCKING DEVICE

/vmso DISPLAY
SYSTEM
/ CONTROL
So

KEYBOARD

-— 1
el
\
\
\

MV 2567

Figure 1-13. Operators Display Console

5001290

1-27

B 6800 System Reference Manual
System Description

i Fraly

HALT LOAD LOAD RUNNING POWER POWER ENABLE

CARD
SELECT ON OFF

MV 2568

1-28

aa

Figure 1-14. Operators System Control Panel

The POWER ON pushbutton is used to apply source power to the B 6800 system cabinets that derive their
power input from the central power supply cabinet. The POWER ON pushbutton does not provide a method
for applying source power to cabinets and peripheral units that do not derive their source power from the
central power supply cabinet.

The HALT pushbutton is used to stop the B 6800 system at the end of the current machine language operator
that is in process.

The LOAD pushbutton is used to cause the B 6800 system to initiate a Halt/Load sequence of operations.

When the LOAD pushbutton is depressed the B 6800 system logic is general cleared (Set to the binary zero
condition). When the pushbutton is released the Load operation is initiated. The Halt/Load sequence is a

predetermined set of operations that results in the software operating system being placed in control of the
system hardware.

The CARD LOAD SELECT pushbutton is used in conjunction with the LOAD pushbutton, to control the
Halt/Load sequence of operations. If the CARD LOAD SELECT pushbutton is illuminated, and a system
Halt/Load sequence is initiated (by depressing the LOAD pushbutton), then a Load operation proceeds from
the card reader (or flex disk) peripheral device. If the CARD LOAD SELECT pushbutton is not illuminated when
the LOAD pushbutton is depressed then the Load sequence proceeds to perform a load operation from the sys-
tem disk (or pack) peripheral device. The selection of either a card reader device, or a system disk device from
which to perform a system Load operation depends on whether the pushbutton is illuminated, or extinguished.

The RUNNING indicator lamp is illuminated when the system is operating. The purpose of the RUNNING
indicator is to provide an indication of whether or not the system is capable of responding to certain stimuli
during system operations. The reason why a RUNNING indication is necessary is that under certain condi-
tions there is no other visible way to determine if the system is trapped in a perpetual operating loop.

B 6800 System Reference Manual
System Description

Figure 1-15 shows the keyboard for the operators video display console. This keyboard is used by a system operator to
input commands and data to the operating system. The operators display console and keyboard are commonly referred
to as an Operators Display Terminal (ODT), and also as a Supervisory Printer Output (SPO).

When the security lock mechanism for system integrity is engaged, the keyboard is disabled, and has no effect on system
operations. However, if the keyboard is disabled, but the video display switch (discussed previously in this subsection) is
in the ON position, then the operating system will display status messages, and other pertinent data about current system
operations.

The operators display video screen is used to pass communications between a human operator, and the operating software
system of the B 6800 system. The display screen is similar to a home television receiver, except that the display screen
can only display characters and numbers, and not pictures. The only sound that the display is capable of making is the
bleep tone that is used to gain the operators attention when the software operating system needs a response from the
operator.

When the operator needs to communicate with the operating system, the keyboard is used to write data which is dis-
played on the screen. The screen is capable of displaying 3200 characters, which are arranged in a matrix that consists
of 40 rows of characters. Each row of characters contains 80 character positions. A cursor blinks at the position that
the next character will occupy. If the next character position contains a valid character then the valid character blinks,
but if the next character position is not occupied then the cursor illuminates the character position, and causes the illu-
minated position to blink. The cursor moves from left to right, and from top to bottom on the screen. The display
screen has automatic line-feed, and carriage-return features so that the operator is not required to control these functions.
When the operator writes data on the screen, the last character written is the End-Of-Text special character. This special
character is used to indicate where the communication is to stop.

N

OO OO0 OO O O

LTAI ERROR ENG [ETX X | |FORMS|{LOCAL|| RCV XMT

cLEAR| | > " # $ % & < () =
Hm;I 1 2 3 4 5 6 7 8 9)] - X A
T || @ w E R T Y U I) P e US[D fv
TAB A s D F G H J K L ! N ns]<1
SHIFT z X c v B :N; M < > 3 SHIFT
w1 || — wr || 1| e e

MV 2568

Figure 1-15. Operators Keyboard

5001290 1-29

B 6800 System Reference Manual
System Description

B 6800 OPTIONAL UNITS

The B 6800 system may be expanded by adding optional subsystems to an existing B 6800 system. The optional sub-
systems that may be added to a B 6800 system are a data communications subsystem, and/or a bus interface control
(Reader/Sorter control) subsystem. The following paragraphs will discuss these two optional subsystems, and will
describe the manner in which these units are interfaced and controlled by the B 6800 system.

Figure 1-4 shows that the two optional subsystems are interfaced to the system through the use of the scan bus. In addi-
tion, figure 1-4 shows that the two subsystems, when used, are required to be independently powered cabinets.

As shown in figure 1-4, the CPU of the B 6800 system contains a scan bus interface capability, through which the
optional units of the system communicate with the mainframe modules. This scan bus is essentially the same as the scan
bus that is used in the B 6700 system, however; it is reduced in scope because the B 6800 system has a single interface
port through which all of the units that use the scan bus must communicate.

The scan bus used in the B 6800 system consists of 80 lines which are used in the following ways:

a. 52 lines are used to transfer information between the mainframe of the B 6800 system, and the optional unit.
One of these lines is used to transmit a longitudinal parity bit (odd parity) between the transmitting and
receiving modules.

b. 20 lines are used to transfer a memory address field between the optional module, and the mainframe of the
system.

c. Eight lines of the scan bus are used to control the operation, and direction of transfer of the data that passes
through the scan bus. One of the control lines used for the scan bus is the scan transmission error line (STEX).
The STEX signal is normally at a low (false) logic level.

The STEX signal line is also used to transmit the Scan Address Parity Level (SAPL) signal on the scan bus. SAPL
is used to cause the scan bus address to contain an odd parity. The STEX signal line is only used to transmit the
SAPL signal during the first part of a scan bus operation (when the scan address is transmitted) and thereafter it
is only used to transmit the STEX signal.

During the transmission of the scan address the receiving module tests the parity of the address data received. If
a parity error is detected the receiving module will cause the STEX signal to go from a false level to a true level.
The memory controller logic of the CPU contains logic to detect a scan bus parity error condition (and therefore
interrupt the scan bus operation) if this condition occurs. ’

During the transmission of data through the scan bus the module that is receiving the data tests the parity of the
data received. If a parity error is detected the receiving module will cause the STEX signal to go from a low
(faise) ievel to a high (true) level.

The data processor samples the state of the STEX line for all communications on the scan bus. If the STEX

line is a high (true) level the data processor will terminate the scan operation, and will initiate the interrupt
controller to declare the scan error condition.

1-30

B 6800 System Reference Manual
System Description

If the STEX line is true during data transmission on the scan bus, and the data processor is the transmitter
moduie, the scan out alarm interrupt is sensed. The scan-in error is sensed if another module is the transmitter
and the data processor is the receiver.

The system software is aware of scan bus failures through the initiation of the alarm type interrupt that is
generated by the data processor.

Ali scan bus operations are initiated by the data processor module of the CPU. The data processor uses the scan bus to
transmit command instructions to the units that are interfaced with the system through the scan bus interface.

The optional units that use the scan bus for system communications also have an interrupt line to the multiplexor
module of the CPU. When the data processor has initiated some unit by the use of the scan bus the unit that was

initiated proceeds to perform its function until the function is completed, or until it generates an interrupt. Upon finishing
a commanded function, or upon encountering an interrupt, the unit that was initiated through the use of the scan bus will
cause its interrupt line to the multiplexor to become a true level. The multiplexor will identify the optional unit that caused
its interrupt line to be a true level, and will interrupt the data processor. In this way, the software operating system (through
the scan bus, and the interrupt lines to the multiplexor) is aware of the operating conditions of the optional units in the
system. The data processor, upon receiving an interrupt from the multiplexor, will interrogate the unit that caused the in-
terrupt, through use of the scan bus. The unit that caused the interrupt will respond to the interrogation of the data pro-
cessor by providing its status to the CPU through the scan bus. In this manner, the software operating system controls the
operations of the optional units of the system.

All of the optional subsystems that are connected to the B 6800 system share a single memory bus requester path. If
more than a single optional subsystem is connected to the B 6800 system, then the units that are connected must con-
tend for access to the memory resources of the system. In addition, the optional units requestor path of the memory
control exchange module has the lowest priority of the three requester paths. Both the data processor/multiplexor re-
quester path, and the look ahead requester path have a higher priority to the memory resources of the system than does
the optional subsystem path.)

As was stated previously, the memory control exchange of the CPU will not perform memory retries for the optional
subsystem requester port. However, in the event that a request from the optional subsystem requester port results in an
error being detected in the read data that is fetched from memory, then the memory control exchange will perform an
error correction cycle upon the data.

The memory bus, through which optional subsystems access memory resources of the system, is an 80 line bus. This bus

is the same as the memory bus used in the B 6700 system, and the 80 lines are used in the same way that the scan bus
lines are used. The scan bus lines were discussed previously in this subsection of this manual.

5001290 1-31

B 6800 System Reference Manual

SECTION 2

DATA REPRESENTATION

GENERAL

All data in the B 6800 System is in binary form. The basic unit of data is the word, (see figure 2-1). which consists of
52 consecutive binary bits. All words of data in the B 6800 system have three distinct parts which are; a parity bit, a
tag field, and the information field. The 52 bits in a word are numbered for identification.

Bit number 51 (the most significant bit in a word) is the parity bit. The parity bit is used to represent the odd parity
of the word. If the number of binary ones present in the tag field, and the information field is an even number then

the parity bit is a binary one value. If the number of binary ones present in the tag field, and the information field is
an odd number, then the parity bit is a binary zero value. The B 6800 system uses the parity bit to monitor the quality
of data in a word. Logic circuits in the B 6800 system count the number of bits in a word, and compare the count
against the parity bit state. If the result of the comparison is not equal, then the B 6800 system recognizes that a

parity error has occurred. The process of parity checking is an automatic feature of the B 6800 system. The parity bit
for a word is not directly available to the user of the system because it is only used when words are transferred from one
module to another. Data that is internal to a module has already been tested for parity.

Bits 50, 49, and 48 are the tag field. The tag field is used to identify the type of interpretation that is to be applied to
the data that is present in the information field of the word. There are eight different values that may be present in the
tag field, and each value specifies a different interpretation to be used. The meaning of the tag field values are as

follows:

51 BITS IN A B 6800 WORD
i

-

- N
s{s(a|ala
110[9|8]7 0
——A /
I BIT ZERO (LEAST SIGNIFICANT BT} THROUGH
BIT 47 (MOST SIGNIFICANT BIT) IS THE INFORMATION
FIELD

BITS 50, 49, AND 48 ARE THE TAG FIELD
(BIT 50 IS MOST SIGNIFICANT)

— BIT NUMBER 51 (MOST SIGNIFICANT BIT) IS THE PARITY BIT

MV 2570
Figure 2-1. B 6800 Word Structure
TAG FIELD BITS MEANING

(50 (49) (48)

0 0 0 — A tag field of zero indicates that single-precision data is present in the information
field of the word.

5001290 2-1

[\8]

B 6800 System Reference Manual
Data Representation

TAG FIELD BITS MEANING
(50) (49) (48)

0 0 1 — A tag field of one indicates that the data in the information field is an indirect
address, not data.

0 1 0 — A tag field of two indicates that double-precision data is present in the information
field of the word.

0 1 1 — A tag field of three indicates that a control word is present in the information field
of the word. There are several different types of control words used in the
B 6800 system. These types of control words are discussed individually, later in
this section of this manual.

1 0 0 — A tag field of four normally indicates that a step index word is present. The
meaning and use of a step index word is discussed later in this section of this
manual.

NOTE

A special use for a word that has a tag of four may be invoked
by the MCP when a fault condition is to be handled by a user
program.

The compiler will place a word with a tag of four in the

stack as a flag word. This flag is used to indicate that the
program using the stack is responsible for handling one or more
of the interrupts that may occur when the program is
executed.

This special use for a word with a tag field of four is only
invoked when the programmer of the user program specifies
that the user program is responsible for interrupt handling.
The compilers that utilize this special case are the ALGOL,
FORTRAN, ESPOL, and the PL/I compilers.

1 0 1 — A tag field of five indicates that a descriptor word is present. The meaning and
use of a descriptor word is discussed later in this section of this manual.

1 1 0 — A tag of six indicates that a software control word is present. The meaning and
use of a software control word is discussed later in this section of this manual.

1 1 1 — A tag of seven indicates that a program control word is present. The meaning and
use of a program control word is discussed later in this section of this manual.

This manual uses a convention to refer to data bits in a word. The rules of this convention follow:

a. A data field within a word is represented by two numbers, separated by a colon character, and enclosed in
brackets.

B 6800 System Reference Manual
Data Representation

b. The meaning of the two numbers enclosed in the brackets is as follows:
1. The first (left-most) number identifies the most significant bit in the field of data bits.

2. The second (right-most) number identifies the number of bits that are contained in the field of data
bits (including the most significant bit, which was identified in rule b1 above).

c. Bitsin the tag field are not included in the field unless the most significant bit (rule bl above) is one of the
tag field bits.

d. All bits in the information field are considered to “wrap-around” the word in such a way that the next
least significant bit after bit zero is bit 47.

Examples of this convention are as follows:

Bits [50:3] (the tag field) — Beginning with bit 50 for three bits, or bits 50, 49,
and 48.

Bits [06:9] (a data field) — Beginning with bit 06 for 9 bits, or bits 06, 05, 04, 03,
02, 01, 00, 47, 46.

Bits [47:48] (a data field) — Beginning with bit 47 for 48 bits, or all of the informa-
tion field.

The convention that was stated in the previous paragraph is used to further define the bits that make up the information
field of the B 6800 system words. There are 48 bits in this field, of which bit 47 is the most significant bit, and bit

3 Toagt gignifiaamt Lis
zero is the least SigniiriCant oit.

INTERNAL CHARACTER CODES

The B 6800 uses several different character codes (see figure 2-2). The primary internal code that is used is Extended
Binary Coded Decimal Interchange Code (EBCDIC). EBCDIC is an 8-bit alphanumeric code containing four zone bits,
followed by four numeric bits. Another important internal code that is used in the B 6800 system is the Burroughs
Common Language code (BCL). BCL is a 6-bit alphanumeric code containing two zone bits, followed by four numeric
bits. The primary character code used for Data Communications Subsystems is the American Standard Code for Infor-
mation Interchange (ASCII). ASCII may be either a 6-bit, 7-bit, or 8-bit alphanumeric code. Within the B 6800 system,
EBCDIC, or BCL codes may be compacted.by deleting the zone bits, and retaining the numeric portion of the character.
When data in the B 6800 system is compacted it is said to be packed.

Appendix C of this manual lists the character codes of the character sets that are used in the B 6800 system. Appendix D.
gives the card codes that are required to produce an EBCDIC, or hexadecimal coded character representation.

NUMBER BASES

Number bases used in the B 6800 system are base 10 (decimal), base 16 (hexadecimal), base 2 (binary), and base 8

(octal) (see figure 2-2). Because the system utilizes various of these number bases in performing its functions, it is neces-
sary that the user of the system be familiar with the number bases, and know how to convert a value from one number
base to any of the other number bases. A brief discussion of the number systems used follows.

The decimal numbering system is based on the numeric digits zero through nine, and on the powers of ten. Similarly,
the binary numbering system is based on the numeric Yigits zero and one, and on the powers of two. In the case of

5001290 2-3

B 6800 System Reference Manual
Data Representation

CHARACTER FORMATS

NS MSD | 28 | N8
N4 za | N4
msD| zB | N2 z2 | N2
ZA | N1 | op z N | sp
BCL EBCDIC
CHARACTER CHARACTER

NUMBER BASE FORMATS

MsD | o
4 MSD | 4
2 2
1 | LSD 1 | sD 1
HEXADECIMAL OCTAL BINARY
DIGIT DIGIT DIGIT
MV 2571

Figure 2-2. Character and Digit Formats

the numbering systems described above, it is apparent that a decimal digit may have any value from zero through nine,
and that a binary digit may have either a value of zero, or one.

The octal numbering system is based on the numeric digits zero through seven, and on the powers of eight. An octal
digit may have any value from zero through seven. Further, two raised to the third power is eight, the base of the octal
numbering system. Therefore, because the octal numbering base is a multiple of the binary number base, an octal
number can be converted to a binary number conveniently, and vice versa.

The hexadecimal numbering system is based on the numeric digits zero through nine, and A through F; where A equals
decimal 10, B equals decimal 11, C equals decimal 12, D equals decimal 13, E equals decimal 14, and F equals decimal
15. Hexadecimal numbering is also based on the powers of sixteen. Two raised to the fourth power is sixteen, the base

of the hexadecimal numbering system. Therefore, because the hexadecimal numbering base is a multiple of the binary
numbering base, a hexadecimal number can be converted to a binary number conveniently, and vice versa.

A B 6800 word contains 48 bits in the value field of the word (refer to figure 2-3). These 48 bits can be converted into
hexadecimal, octal, BCL, or EBCDIC values by arrangement of the 48 bits in the proper order. A hexadecimal digit is
equivalent to four binary digits because 1111 binary is equal to hexadecimal F. Since a hexadecimal digit contains four
binary digits, the value field of a B 6800 word contains 12 complete hexadecimal digits (48/4 = 12). The same value field
can also be considered to contain 16 octal digits (48/3 = 16), or 6 EBCDIC characters (48/8 = 6). BCL character code

(6-bit data) also converts into an equal number of binary digits, and a2 B 6800 word can contain 8 BCL characters (48/6 = 8).

2-4

OCTAL FORMAT

B 6800 System Reference Manual
Data Representation

MSD
50 47 {44 | 41 | 38| 3B [32291 26| 23| 2017 |14} 11] 8 5 2
49 46 | 43 | 40 | 37| 34 |31 | 28| 26| 22 |19 16 |13 | 10| 7 4 1
51 48 45 | 42 | 39 | 36| 33 |30 |27 24| 21 18 | 16 | 12 91 6 3 0 5D
[&7
~— J
PARITY TAG v
INFORMATION
HEXADECIMAL FORMAT
MSD
47 | 431 39| 35| 31| 27| 23| 19|15 11| 7 3
50 46 | 42) 38| 34| 30| 26| 22(18| 14| 10| 6 2
49 45 | 44| 37| 33) 29| 25| 21| 19| 13 Q9 5 1
51 48 44 1 40} 36| 32| 28 24| 20| 18 | 12 8 4 0 |Lsp
PARITY TAG “
N—
INFORMATION
EBCDIC FORMAT
MSD ;
47 | 43 39 | 35 31| 27 23 | 19 15 11 7 3
50 48 1 42]| 34 30 26 221 18 4 | 10 8 2
49 45 | 41 37 | 33 29 | 256 21 | 17 13 9 5 1
<51 48 144 | 40 36 | 32 28 | 24 20 | 16 12 8 4 0 |LsD
PARITY TAG . ~- J
INFORMATION
BCL FORMAT
MSD
47 41 35 29 23 17 11 5
46 40 34 28 22 16 10 4
45 29 32 27 1 1e 2] 2
50 a4 38 32 26 20 14 8 2
49 43 37 31 25 19 13 7 1
51 48 42 36 30 24 18 12 6 0
LSD
PARITY TAG 1\
-
INFORMATION
MV 2572
Figure 2-3. B 6800 Word Formats
5001290 2-5

B 6800 System Reference Manual
Data Representation

From the foregoing discussion it is clear that the choice of 48 bits for the vatue field of a B 6800 word was not a random
choice, but rather was chosen because that number is a multiple of the common character codes, and number bases used
in the B 6800 System.

NUMBER CONVERSION

The B 6800 system normally converts decimal data that is input to the system from decimal notation to EBCDIC or
BCL codes. An exception to this normal mode of operation may occur in the case of the data communications subsys-
tem where input data may be in ASCII coded form. It is also possible to find that the input data has been packed, and
is thus in hexadecimal notation in the System. The user of the system must be familiar with the forms in which the data
can be stored. The user must be able to perform manual conversion of numeric data from one form to another so that
the internal data conversion processes can be assessed for proper operation. The following paragraphs will present
methods for performing manual conversion of numeric data from one form to other forms.

DECIMAL TO NONDECIMAL
Decimal numeric data is converted from base 10 to some other number base by repeatedly dividing the decimal value by
the base number for the numbering system to which it is to be converted. Each time a division is performed, the

remainder becomes the next most significant digit, or bit in the new number base. When no more whole numbers occur
during the division the conversion is complete.

EXAMPLES:

a. Convert the decimal number 1776 to octal (base 10 converted to base 8).

1776/8 = 222 with a remainder of 0;
222/8 = 27 with a remainder of 6;

27/8 = 3 with a remainder of 3;

3/8 = 0 with a remainder of 3.

1776 decimal = 3360 octal.

b. Convert the decimal number 1776 to hexadecimal (base 10 converted to base 16).

1776/16 = 111 with a remainder of 0;
111/16 = 6 with a remainder of 15 F (15 decimal = F hex);
6/16 = 0 with a remainder of 6.

1776 decimal value = 6F0 hexadecimal.
NONDECIMAL TO DECIMAL
Nondecimal numeric data is converied o decimal data by muliiplying each digit of the numeric value by the value of
the digit position, in decimal values. For example, in the preceding subsection of this manual the decimal number 1776

was converted to octal, and hexadecimal notation. The successively more significant digits of the octal notation are as
follows.

2-6

B 6800 System Reference Manual
Data Representation

times times times
512 — 64 8 decimal
decimal decimal decimal value
3 3 0
' | 6 X 8§ =——— 48
' 3 X 64 = 192
3 X 512 = 1536

The decimal equivalent value is 1776

By the same logic, a hexadecimal number is converted to decimal as follows:

times times equivalent
256 16 decimal
decimal decimal value
6 F 0
| ,
F X 16 = 240 (F hex equals 15 decimal)
6 X 256= 1536
The decimal equivalent value is 1776

Table 2-1 gives the value of each succeeding digit in a number. These values are provided for binary, octal, and hexa-
decimal digit positions. The values in this table are expressed in decimal equivalents for the corresponding digit positions.
There are 16 octal digits in a B 6800 word (refer to figure 2-3) and therefore, table 2-1 gives the place values for

16 octal digits. A B 6800 word contains 12 hexadecimal digits, and therefore table 2-1 gives the place values for

12 hexadecimal places.

Observing table 2-1 while again reading the examples of converting a nondecimal value to a decimal value will show the
origin of the place values that were used to perform the multiplication portions of the examples. The sum of the
multiplications provides the decimal values of the nondecimal numbers used in the examples.

NONDECIMAL TO NONDECIMAL

It is occasionally necessary to convert a hexidecimal number to an octal number, or vice veisa. The easiest wav to
perform this conversion is to first convert this binary value to the final form.

EXAMPLE:
Convert the hexadecimal value ABCDE to octal notation.
a. Convert hexadecimal ABCDE to binary form as follows:

An A in the fifth position is 1010 in binary form
A B in the fourth position is 1011 in binary form

5001290 2-7

Digit
Place

WO 00~ AW A WK e

B 6800 System Reference Manual

Data Representation

Table 2-1. Decimal Place Values of Digits in Various Number Bases

Binary Number
Place Value

131072

262144

524288
1048576
2097152
4194304
8388608
16777216
33554432
67108864
134217728
268435456
536870912
1073741824
2147483648
4294967296
8589934592
17179869184
34359738368
68719476736
137438953472
274877906944
549755813888
1099511827776
2199023655552
4398047311104
8796094622208
17592189244416
35184378488832
70368756977664
140737513955328

Octal Number
Place Value

1

8

64

512

4096

32768

262144
2097152
16777216
134217728
1073741824
8589934592
68719476736
549755813888
4398047311104
35184378488832

Hexadecimal Number
Place Value

1

16

256

4096

65536

1048576
16777216
268435456
4294967296
68719476736
1099511827776
17592189244416

B 6800 System Reference Manual
Data Representation

A C in the third position is 1100 in binary form
A D in the second position is 1101 in binary form
An E in the first position is 1110 in binary form

The binary representation for the hexadecimal value is

1010 1011 1100 1101 1110.

b. Convert the binary value from step a above, to octal notation as follows:

10 101 011 110 O11 011 110

2 5 3 6 3 3 6

Thus, the octal equivalent for the hexadecimal value ABCDE, is 2536336. Reversing the procedure of the preceding
example converts the octal value to hexadecimal notation.

The example shown works well when the present form of the value to be converted to another form is relatively small.
However, it can be seen that a five digit hexadecimal number converts into a twenty digit binary number (as in the preceding
example), and from this it is evident that larger hexadecimal numbers will become long strings of binary digits. Extremely
long strings of binary digits are cumbersome, and become awkward in performing the conversion. Another method that may
be used to perform conversions in this case is as follows:

EXAMPLE:

Convert the hexadecimal value ABCDE to octal notation.

a. Using the values in table 2-1, convert the hexadecimal number to its equivalent decimal value, as follows:

¢))

)

3

4
®)

5001290

The value of the fifth position in a hexadecimal number (from table 2-1) is 65,536. The fifth
position of the value to be converted is hexadecimal A (A hexadecimal is equal to 10 decimal). There-
fore, the hexadecimal A in the fifth position is equal to 10 times 65, 536, or 655,360 decimal.

The fourth position of a hexadecimal number has a value of 4,096 (from table 2-1). The fourth
position of the hexadecimal number to be converted is B (hexadecimal B is equal to 11 decimal).
Decimal 11 times 4,096 is equal to 45,056.

Hexadecimal C times 256 decimal is equal to 3,072.
Hexadecimal D times 16 decimal is equal to 208.

Hexadecimal E is equal to 14 decimal.

655,360 hexadecimal Annnn
45,056 hexadecimal nBnnn
3,072 hexadecimal nnCnn
208 hexadecimal nnnDn

14 hexadecimal nnnnE

703,710 hexadecimal ABCDE equals 703,710 decimal

B 6800 System Reference Manual
Data Representation

b. Convert the decimal number 703,710 (from step a above) to the equivalent octal value, as follows:

703,710/8 = 87,963 with a remainder of 6;

87,963/8 = 10,995 with a remainder of 3;
\
10,995/8 = 1,374 with a remainder of 3;

\

1,374/8 = 171 with a remainder of 6;

\

21 with a remainder of 3; \

[y

7

[

M-

o0
1}

21/8 = 2 with a remainder of §;

2/8 = 0 with a remainder of 2;
|
Hexadecimal ABCDE equals 2 5 3 6 3 3 6 octal

The procedure for converting nondecimal numbers to nondecimal numbers shown in the preceding example can also be
used to convert an octal number to a hexadecimal equivalent. The only difference is that the place values from

table 2-1 (used in step a of the procedure) must be taken from the octal column instead of from the hexadecimal column.

WORD TYPES AND PHYSICAL WORD LAYOUTS

It was stated previously in this section of this manual that a B 6800 system word consisted of a parity bit, a tag field,
and an information field. The tag field defines an interpretation that is to be applied to the contents of the information
field. This subsection of this manual will define the interpretations that are to be used for the data in the B 6800 sys-
tem, and will present the format of data in the information field of each type of word used in the B 6800 system.

There are two types of data used in the B 6800 system, which are character strings, and operands. The following
paragraphs will define character strings, and operands.

CHARACTER TYPE WORDS

Character type words are used to contain character strings. A character type word has a tag field of zero (a single
precision word) and contains EBCDIC, BCL, or hexadecimal coded data. A string may occupy more than a single word of
character data. However, a string must have at least one character type word.

The most significant character in a character string occupies the left-most character position, in the first character word
of the string. Each word in a character string will contain 6 EBCDIC character, or 8 BCL character, or 12 hexadecimal
character positions. The final word in a character string may contain less than a full word of characters if the number of
characters in the string is not a multiple of the number of characters in a full word. Figure 24 through 2-6 show the
various formats that are used for character type words.

OPERANDS

Operands are words of data that are used to contain numeric values, or logical information. An operand may be either
a single precision word (iag field of zero), or a double precision word {tag field of two). Single, and double precision
words are used for mathematical operations. Logical information is used for decision making processes, and operations.
The following paragraphs will discuss the uses of operands in the B 6800 system.

B 6800 System Reference Manual
Data Representation

(=]

>
I»
o
o]
(9]
9]
[w]
Q
m
m
-
m

P WORD PARITY VALUE

0 = BINARY ZERO VALUES (TAG FIELD)
A >F 6 EBCDIC CHARACTER FIELDS

A IS THE MOST SIGNIFICANT CHARACTER

Figure 2-4. EBCDIC Character Word Format

P = WORD PARITY VALUE

0 = BINARY ZERO VALUES (TAG FIELD)
A>H 8BCLCHARACTER FIELDS

A IS THE MOST SIGNIFICANT CHARACTER

Figure 2-5. BCL Character Word Format

p-4
W
(9]
2
m
n
n
I
-
Fay
-
=S

Y
P 0
MV 2573
0
0
P 0
MV 2574
0
0
P| O
MV 2575

5001290

P WORD PARITY VALUE

0 = BINARY ZERO VALUES (TAG FIELD)
A=>M 12 HEXADECIMAL CHARACTERS

A IS THE MOST SIGNIFICANT CHARACTER

Figure 2-6. Hexadecimal Character Word Format

2-11

Single Precision Operand

B 6800 System Reference Manual
Data Representation

A single precision operand is a numeric value that has an exponent part, and a mantissa part. Figure 2-7 shows the
format for a single precision operand. The fields in a single precision operand are as follows:

bits [50:3] are the tag field, and are always equal to zero for a single precision operand.

bit 47 bit 47 is not used in a single precision operand.

bit 46 bit 46 is used as the sign of the mantissa field. If the sign bit is a binary one then the mantissa field
contains a negative value, and if bit 46 is a binary zero then the mantissa contains a positive value.

bit 45 bit 45 is used as the sign of the exponent field. If the sign bit is a binary one then the exponent
field contains a negative value, and if bit 45 is a binary zero then the exponent contains a positive

value.

bits [44:6] are the exponent field. Bit 44 is the most significant bit in the exponent value. The value of the
bits in this field are as follows:

bit 39 value is decimal one
bit 40 value is decimal two
bit 41 value is decimal four
bit 42 value is decimal eight
bit 43 value is decimal sixteen
bit 44 value is decimal thirty-two
E E M M M M M M M M M
0 SM| E M M M M M M M M M M
0 SE| E M M M M M M M M M M
P 0 E E M M M M M M M M M M
44 [s0 (36 |32 |28 |24 |20 16 |12 8 4 0)
OCTAL
POINT
P = WORD PARITY VALUE
0 = BINARY ZERO VALUES
SM = SIGN OF THE MANTISSA BIT
SE = SIGN OF THE EXPONENT BIT
E = EXPONENT BITS
M = MANTISSA BITS

SHADED BIT IS NOT USED IN A SINGLE PRECISION OPERAND

MV 2576

Figure 2-7. Single Precision Operand Format

B 6800 System Reference Manual
Data Representation

The maximum value that the exponent field can contain is decimal 63. When the exponent is used
in conjunction with the exponent sign bit (45), the range of the exponent value is from +63, to
-63 decimal.

bits [38:39] are the mantissa field. Bit 38 is the most significant bit in the mantissa value. The mantissa is
divided into thirteen octal fields of which bits [38:3] are the most significant octal digit, and bits
[2:3] are the least significant digit.

An octal point (similar to a decimal point) is always located to the right of bit zero, in the mantissa
field. This point is not djsplaye_d in any way and must be assumed to exist.

The software of the B 6800 system classes numeric data into two classes, namely, INTEGER, and REAL. An INTEGER
number is a single precision or double precision numeric value with an exponent value of zero. The maximum value that
an INTEGER may have in the B 6800 system is +7777777777777 octal, or 549,755,813,887 decimal. The minimum
integer value is -7777777777777 octal. A REAL numeric value is any value that has an exponent that is not equal to zero, or
any value that contains a part value (contains a decimal, or octal point prior to the least significant digit of the value). From
the format given for a single precision operand it is evident that REAL numbers may not qualify to be expressed as single
precision values. For this reason, REAL numbers are always expressed as double precision values (with floating point)

in the B 6800 system.

Double Precision Operand

A double precision value is two consecutive words, with a tag field of two (010 binary). The two words are concatenated
in such a way that they form a single numeric value, with an octal point located between the two words. The most
significant part of the mantissa in a double precision operand is commonly referred to as the most significant part

(MSP) and the least significant part of the mantissa is commonly referred to as the least significant part (LSP). The

octal point that separates the MSP from the LSP is used to separate whole values from partial values, with whole values
present in the MSP, and partial values present in the LSP. The format for the MSP of a double precision operand is
identical with the format for a single precision operand, except for the tag field. The LSP of a double precision operand
is an extension of the exponent field, and the mantissa field contained in the MSP of the word. Figure 2-8 shows the
word format for a double precision operand.

The largest double precision value (type REAL) that can be contained in a B 6800 is 1.94882938205028079124469,
with an exponent vaiue of +29603. The smallest double precision value {type REAL) that can be contained in 2 B 6800
is 1.9385458571375858335564, with an exponent value of ~29581. The value zero, and positve or negative values
between the largest and smallest values given above may be represented in double precision numbers in the B 6800
system.

When a double precision value is used the exponent extension field is an extension of the high order end of the exponent
field in the upper-half word. Bit 39 in the LSP word is the next bit in sequence after bit 44 of the upper-half, and has
a binary value of 64. Bit 40 in the LSP word is the next bit in sequence after bit 39 of the word, and has a binary value
of 128. This same order is used for all of the bits in the LSP exponent extension field, so that bit 47 of the LSP
becomes the most significant bit in the exponent value. The whole exponent field in a double precision operand is as
follows:

MSP bit 39 is the least significant bit of the exponent, and has a value of 1, decimal.

LSP bit 39 is the next most significant bit in the exponent, and has a value of 64, decimal.

bit 47 is the most significant bit in the exponent, and has a value of 16384, decimal.

5001290 2-13

B 6800 System Reference Manual
Data Representation

A E E M M M M M M M M M
0 SM | E M M M M M M M M M M
MSP
1 SE | E M M M M M M M M M M
P 0 E E M M M M M M M M M M
4 fso (36 {32 |28 |2t 20 fie |12 |8 4 0 P
OCTAL
POINT
EE| EE | EE | ME| ME | ME | ME | ME | ME | ME | ME | ME
0 EE| EE | ME| ME| ME | ME | ME | ME | ME | ME | ME | ME
LSP
1 EE| EE| ME| ME| ME | ME | ME | ME | ME | ME | ME | ME
P 0 EE| EE | ME| ME| ME | ME | ME | ME | ME | ME | ME | ME
44 [ho I36 (32 |28 |24 |20 |16 |12 |8 4 0
010 = TAG FIELD = DOUBLE PRECISION M = MANTISSA FIELD
SM = SIGN OF THE MANTISSA BIT EE = EXPONENT EXTENSION FIELD
SE = SIGN OF THE EXPONENT BIT ME = MANTISSA EXTENSION FIELD
E = EXPONENT FIELD P = WORD PARITY VALUE
MV 2577 SHADED BIT = NOT USED

Figure 2-8. Double Precision Operand Format

The maximum size of an exponent in the B 6800 system is 32,767 decimal, and the range of the exponent field is from
+32,767, to -32,767 decimal.

The mantissa extension field in the LSP of the double precision operand contains that portion of the mantissa that is
less than unity. The mantissa extension field is divided into 13 octades, in the same manner as is the mantissa field in
the MSP of the double precision operand. These octal digits are arranged in the same way as the octal digits in the MSP
of the word. The least significant octade of the mantissa extension field is bits [2:3], and the most significant octade is
bits [38:3].

The B 6800 system utilizes two processes known as integerization, and normalization, in performing mathematical
operations. Normalization is a process that removes leading zeroes from a single or double precision word. This

process is used to make the operation of the adder logic circuits more efficient. Integerization is a process that alters
the value of a number such that it meets the requirements of an integer, as was defined previously in this section of this
manual.

Normalization is accomplished by adjusting the value of the exponent field of a number in a positive direction until it is
at the maximum value for an exponent, or until there are no leading zeroes in the mantissa of the number. Each time
the exponent is incremented, the mantissa is shifted one octade to the left. There are no ‘more leading zeroes in a
mantissa when the most significant octade of the mantissa is located in bits [38:3] (of the upper-half word).

B 6800 System Reference Manual
Data Representation

The process of integerization is a two step process. The first step is to adjust the exponent in either a positive, or a
negative direction until the exponent field is equal to zero. Each time the exponent is incremented or decremented,

the mantissa is shifted one octade in the corresponding direction. Octades that fall out of the low order digit of the
mantissa during the adjiistmeiit of the exponent are saved until the exponent is equal to zero. After the exponent has
been adjusted to zero, then that part of the mantissa that is less than unity (located to the right of the octal point) is
either rounded upward to the next whole number, or it is truncated (deleted from the number). The process of rounding,
or truncation is selective in the B 6800 system, and is the second step of the integerization process.

The mathematical operations that are performed in the B 6800 system can be completed regardless of the format of the
operands used. If an arithmetic operation is performed using two single precision operands then the result of the opera-
tion will be in the single precision format. If, however, either operand is in the double precision format then the result
of the operation will be in the double precision format.

Logical Operands

Logical operands are words that result from the performance of either a relational operation, or a logical (boolean) opera-
tion. A relational operation is one that determines the relative merits of two values by means of a comparison process.

A logical operation is one that constructs a result based on the relative merit of each bit in the word when compared to
the corresponding bits in another word.

A relational operation results in either a true, or a false answer. The answer is true if the result of an algebraic compari-
son of two arithmetic values is valid. The answer is false if the result of the algebraic comparison of the two arithmetic
values is not valid. The B 6800 constructs a single precision logical operand (tag field equal to binary zero) each time
that a relational operation is performed. If the answer is valid bit zero is a one in the logical operand, and if the answer
is not valid then bit zero is a zero. All other bits in the answer word logical operand are not used, and are zeroes.

A logical (boolean) operation results in the construction of a different type of logical operand. The constructed logical
operand may contain 2 number of bits. The reason for this is that a logical operation looks at each bit in two different words,
and places a corresponding bit in the result operand if the conditions of the logical operation are satisfied.

Logical operands are discussed later in this manual.
DATA DESCRIPTORS

Data descriptor words refer to data areas, including input/output buffer areas. The data descriptor defines an area of
memory starting at the base address contained in the descriptor. The size of the memory area in words is contained in
the length field of the descriptor. Data descriptors may directly reference any memory word address from word number
zero through word number 1, 048, 576. The structure of the data descriptor word is illustrated in figure 29. The fields
in the data descriptor are as follows:

bits 50:3 Bits 50, 49, and 48 are the tag field, and are always equal to a binary value of 101.

bit 47 Bit 47 is the presence bit. The presence bit is used to indicate whether or not the information
described by the data descriptor is present in main memory. If the presence bit is equal to a
binary one then the data is present in main memory. If the presence bit is equal to a binary zero
then the data is not in main memory. Attempting to access data with a data descriptor that has
its presence bit equal to a binary zero causes a presence bit interrupt. The B 6800 system uses
the occurrence of a presence bit interrupt as. the preliminary step to start an MCP process which
will move the data described by the data descriptor from system disk, or system pack storage
into the main memory.

5001290 2-15

B 6800 System Reference Manual
Data Representation

L
44 Jko [36 [32 |25 |24 J20 |16 |12 |8 (4 |0

[50:3] = THE TAG FIELD.
THE TAG FIELD FOR A DATA DESCRIPTOR IS
ALWAYS 101 BINARY

47 = PRESENCE BIT
46 = COPY BIT
45 = INDEXED BIT
44 = SEGMENTED BIT
43 = READ ONLY BIT
[42:3] = THE SIZE FIELD
[39:20] = THE LENGTH FIELD
[19:20] = THE ADDRESS FIELD
MV 2578
Figure 2-9. Data Descriptor Format
bit 46 Bit 46 is the copy bit. The copy bit indicates whether the data descriptor is the original descriptor

for the data, or is a copy of the original descriptor. If the copy bit is equal to a binary zero then
the data descriptor is the original. If the copy bit is a binary one then the data descriptor is a
copy of the original descriptor. An original data descriptor is commonly referred to as a mother
(or MOM) descriptor and a copy of a mother descriptor is commonly referred to as a copy
descriptor.

bit 45 Bit 45 is the indexed bit. The indexed bit is used to indicate whether or not an indexing operation
has been performed on the data descriptor. If the index bit is equal to a binary one then the
descriptor has been indexed previously, and the value of the previous index is located in the length
field 39:20. If the index bit is equal to binary zero then the data descriptor has never been
indexed before, and such an indexing operation must be performed before the data that is
described by the descriptor can be accessed. The process that causes the indexing operation to be
performed will set the indexed bit, and will store the value of the index in the field 39:20.

bit 44 Bit 44 is the segmented bit. The segmented bit is used to identify whether or not the data
described by the data descriptor is segmented. If the segmented bit is equal to a binary zero then
the data is not in segments, and this descriptor describes the entire field.

bit 43 Bit 43 is the read only bit. The read only bit is used to show whether the memory area
described by the data descriptor can be written into or not. If the read oniy bit is equai o a
binary one then the data descriptor describes a memory area that may be read, but may not be
written into. If the read only bit is a binary zero then the data descriptor describes a memory
area that may be written into, or read from. it is possible for a single area in memory to be

2-16

bits 42:3

bits 39:20

bits 19:20

5001290

B 6800 System Reference Manual
Data Representation

described by two different data descriptors, one where the read only bit is a binary one, and
another descriptor which has the read only bit equal to a binary zero. The memory area may be
written into by use of the data descriptor that has the read only bit equal to a binary zero, but
may not be written into by use of the data descriptor that has the read only bit equal to a
binary one.

Bits 42, 41, and 40 are used to define the type of data that is contained in the memory area
described by the data descriptor. If bits 42 and 41 are both equal to binary zeroes, then the
data descriptor defines an area in memory in words. A data descriptor that describes a string of
character data is commonly called a string descriptor. If either bit 42, or bit 41 is equal to a
binary one then the descriptor is a string descriptor. Bits 42:3 may contains several different
binary values and the meaning of the different values that are used have the following meanings:

bit 42 bit 41 bit 40
0 0 0 Bits 42, and 41 being equal to zero indicate that the data
descriptor is a word descriptor. Bit 40 being equal to
binary zero indicates that the data described by the
descriptor is in single precision operands.

0 0 1 Bits 42, and 41 being equal to zero indicate that the
data descriptor is a word descriptor. Bit 40 being equal
to binary one indicates that the data described by the
descriptor is in double precision operands.

0 1 0 Bits 42, and 41 not being equal to zero indicates that the
data descriptor is a string descriptor, and bit 41 being a
binary one indicates that the data described contains
hexadecimal (4-bit) data.

0 1 1 Bits 42, and 41 not being equal to zero indicates that the
data descriptor is a string descriptor. Bits 41, and 40
both being equal to binary ones indicate that the data
described contains BCL data.

1 0 0 Bits 42, and 41 not being equal to zero indicates that the
data descriptor is a string descriptor. Bit 42 equal to
binary one indicates that the data described contains
EBCDIC (8-bit) data.

Bits 39:20 contain either the length of the memory area (if bit 45 is a binary zero) or an index
value (if bit 45 is a binary one). If bit 45 is equal to binary zero the descriptor has not been
indexed. This field is used for size checking during the indexing operation. If bit 45 is equal to
a binary one the descriptor has been indexed. If the data descriptor is a word descriptor, and
also if bit 40 is a binary one (the word area contains double precision operands) then the index

is doubled after the indexing operation and the size checking operation have been completed. The
doubled index is stored in the index field.

Bits 19:20 contain either a main memory or a disk file address. If the presence bit is equal to a
binary one and the copy bit is also equal to a binary one then the address field contains a main
memory address of the MOM descriptor, of which the current descriptor is a copy. If the

presence bit is equal to a binary one and the copy bit is equal to a binary zero then the address

B 6800 System Reference Manual
Data Representation

field contains the main memory address of the first word that contains the data described by the
descriptor. If the presence bit is equal to a binary zero, and the copy bit is also equal to a
binary zero then the address field contains a six-bit binary coded decimal disk file address where
the data described by the data descriptor is located.

TEP INDEX WORDS
Step index words are words that are used in conjunction with the step and branch operator in the B 6800 system. The
purpose of the step and branch operator in the B 6800 system is to perform a series of other machine language operators

in a recursive manner, but with control over the number of times the series of operators are executed. The step index
word is used to provide the control part of the function of the step and branch operator.

The-step index word (see figure 2-10) contains a tag of four (100 binary), and four other fields, as follows:

47:12 the increment value

35:16 the final value

19:04 an unused, but value specified field which must be equal to zero

15:16 the current value
Each time the series of machine language operators are performed the value of the increment is added to the value of the
current value field. The step and branch operator then compares the current value field to the final value field. If the
current vaiue field is greater than the finai value field a branch is taken out of the recursive series of operators. If the
current value field is not greater than the final value field then the recursive series of operators are executed.
The increment value, the final value, and the current value are binary values. To determine the number of times a

recursive series of operations will occur binary mathematics must be used, and not decimal mathematics. The unused
but value specified field (19:04) must be equal to zero in the step index word.

1 | | | F F F F 0 C C C C
0 | | | F F F F 0 C C C C
O 1t Juo' P36l [327 26" [aaF [2oF [0 [C [s€ [.C [oC

TAG = 100 — STEP INDEX WORD

| = INCREMENT FIELD [47:12]

F = FINAL VALUE FIELD [35:16]

C = CURRENT VALUE FIELD [15:16]

FIELD [19:4] MUST CONTAIN BINARY ZEROES

MV 2579
Figure 2-10. Step Index Word Format

B 6800 System Reference Manual
Data Representation

SOFTWARE WORDS

A software word is a word with a tag field of six (110 binary) that is used by the MCP of the B 6800 system for soft-
ware purposes. The MCP uses the software word for several different purposes, and the format of the word is different
for each purpose. The software word is utilized as a linking word for memory allocation, as a software control word, as
an un-initialized pointer word, and to contain system intrinsics data. Each of these uses for software words causes a
different format to be used for the fields of data that are contained in the word.

The format of the software word when it is used for un-initialized pointers or for intrinsics information are not defined
in this manual. These formats are specialized applications that are properly documented in manuals which deal with the
specific application subjects.

The format of the software word when it is used for a memory link word and for a software control word is given in the
following paragraphs. The specific use of the software word in either of these formats is not covered in this manual.
Like the un-initialized pointer word and the intrinsics information word, these specific uses are specialized applications,
and are more properly documented in manuals that deal with the software system as a specific subject.

The MCP maintains linking words in main memory to show which portions of the memory are in use, and which portions
are not currently in use. A software word is used as the first link word for a portion of memory that is in use. This
word is defined in the memory link system as the LINKA word, and each part of the main memory that is in use

begins with a LINKA word. Memory link words are a mechanism for dynamic storage allocation which will be covered
in more detail later in this manual. Figure 2-11 shows the format of a LINKA word.

Software control words are used by the software operating system to indicate the existance of memory areas that are
related to the operating stack, but are physically located outside of the operating stack. When the memory area of an
operating stack is deallocated (the stack is cut back), related memory areas must also be deallocated. The software control

CF| S S S S S

1 S S S S S AS'|A A A A A

o /s |sl|sls|s|1lalalalA]|A
d}&}403632232‘420|6]2840

TAG = 6 (110 BINARY) = SOFTWARE CONTROL WORD.

CF [47:2] = CONTROL FIELD FOR AREA DURING THE
OVERLAY AREA MCP PROCESS.

S [43:20] = SIZE OF THE IN-USE AREA IN WORDS.

CS (BIT22) = CONTROL SAVE FIELD — IF AREA IS TEMPORARILY
SAVED CS=1.

AS (BIT 21) = AREASAVED FIELD — IF AREA IS NON-
OVERLAYABLE (SAVED) AS=1.

BIT 20 = ISBINARY 1 FOR A LINKA WORD.

A [19:20] = THE CORE MEMORY ADDRESS FOR THE MOM DATA
DESCRIPTOR OF THE AREA CONTENTS

MV 2580

Figure 2-11. Software Control (LINKA) Word

5001290 2-19

B 6800 System Reference Manual
Data Representation

word is a mask word that indicates the presence or absence of such related memory areas by the state of the bits in the
mask word. At the time that the stack area is to be deallocated a related memory area is present for each bit that is a
binary one value in the mask field of the software control word. Figure 2-12 shows the format of the software control

word.
INDIRECT REFERENCE WORDS

Indirect reference words (IRW) are used in the B 6800 system to reference data that is located within the addressing
environment of the current procedure. The addressing environment of the current procedure includes the current oper-
ating stack, and all stacks (that are a part of the current procedure) at a lower lexicographical level than the current
operating stack level.

Stuffed indirect reference words (SIRW) are used in the B 6800 system to reference data that is located outside of the
addressing environment of the current operating procedure.

1 e R S o [
3k WA ol
sy o a2t e (e |rc
0 44 lbo (36 |32 |28 {2?€F2§k¥|§ky|§ky ;C t.PC ;"C

(50:3] = TAG FIELD =110 =SOFTWARE CONTROL WORD
[47:2] = 2 = SOFTWARE CONTROL WORD (MASK WORD)
45 =1 GO TO ABORTE

24 =1 NOCPBIT

[23:4] = PL/I COMPILER BLOCKEXIT AND FAULT FIELD
[19:9] = MASK FIELD

it

19 = NOT USED

18 = FMT PSUEDO BUFFER FIB-LOCKED

17 = NON-LOCAL GOTO

16 = DIRECT ARRAY DECLARATION IN BLOCK

15 = FAULT IN BLOCK DECLARATION

14 = INTERRUPT IN BLOCK DECLARATION

13 = FILE IN BLOCK DECLARATION

12 = MULTI-DIMENSION ARRAY IN BLOCK DECLARATION
"M = SINGLE-DIMENSION ARRAY IN BLOCK DECLARATION

[9:10) = PROCESS COUNT

MV 2581

Figure 2-12. Software Control (MASK) Word

B 6800 System Reference Manual
Data Representation

The fields of an indirect reference word or a stuffed indirect reference word do not contain data. Instead, the fields

of an indirect reference word or a stuffed indirect reference word contain addressing information that is used to point at
the location of data. The fields of an IRW, or a SIRW are both displayed in figure 2-13. The fields within the IRW and
the SIRW are as follows:

bits 50:3

bit 46

bits 45:10

bits 35:16

5001290

Bits 50:3 are the tag field. The tag field for an IRW is always 001 binary, regardless of whether
the IRW is stuffed, or normal.

Bit 46 is the environment bit. If bit 46 is a binary one the IRW is stuffed. If bit 46 is a binary
zero the IRW is a normal IRW.

Bits 45:10 are the stack number field. The stack number is not used in a normal IRW and is
equal to binary zero. If bit 46 is a binary one then the value of the stack number field is the
identification number of the stack that is to be referenced.

Bits 35:16 are the displacement field. The displacement field is not used for a normal IRW and is
equal to binary zero. If bit 46 is a binary one then the displacement field is added to the address
of the base of the stack being referenced to locate a mark stack control word within the referenced
stack area.

SNR{SNR|D |D |D |D A |A
0 E {SNR/SNRfD |D |D |D A |A
0 SNR| SNR| SNR| D D |D D A |A
' esepale 2 2 A

MV 2582

Figure 2-13. Indirect Reference Word

2-21

B 6800 System Reference Manual
Data Representation

bits 12:13 Bits 12:13 are the index field. The index field is not used in a normal IRW, however the same
bits are used for a different purpose. If bit 46 is a binary one then the index field is added to
the address of the mark stack control word in the referenced stack. The sum of these values is
the address of the data that is being addressed.

bits 13:14 Bits 13:14 are the address couple field. The address couple field is not used in the SIRW, how-
ever the same bits are used for a different purpose. The address couple field is used in an IRW to
locate data in the addressing environment of the current procedure. The address couple consists
of two separate values each of which are of variable bit length. The most significant part of the
address couple contains the lexicographical level value. The least significant part of the address
couple contains an index value that is added to the address of the mark stack control word that
corresponds to the lexicographical control level. The sum of the address of the mark stack
control word, and the index value is the address of the data referenced by the IRW.

The lexicographical level (program level) of a current procedure may have any value from zero, through thirty-one. The
lexicographical level (LL) part of an address couple is represented by the most significant bits of the address couple.

The LL requires five bits of the address couple to represent the binary value of thirty-one which is the highest LL value
possible. When the LL contains a value of zero or one only one bit is required to represent the binary LL value. The
actual number of binary bits that are used to contain the LL value in an address couple is defined by the level of the cur-
rent operating procedure. Thus, if the current procedure is at lexicographical level seven then the number of bits in the
address couple that are used to indicate LL is three, because three binary bits are required to represent the value of seven
decimal.

The index part of an address couple consists of the bits that are not required to represent the LL value. Thus, if the
lexicographical level of the current procedure is seven, then three binary bits (bits 13, 12, and 11) are required to repre-
sent the LL value, and the remaining bits (bits zerc through ten) are used to represent the index part of the address
couple.

The B 6800 system derives the absolute memory address referred to by an IRW in the following manner:

a. The LL part of the address couple defines the IC memory display register that contains the address of a mark
stack control word in main memory.

b. The index part of the address couple is added to the address of the mark stack control address. This sum is
the absolute address of the data referred to by the IRW.

Since the number of bits in the address couple that are required to contain the LL value is a variable number, the size of
the index value is limited by the number of bits that comprise the index value. Thus, if three bits are required to contain
the LL value, then the size of the index part is limited to an eleven bit binary value (or a maximum index value of

2047 decimal memory words). Table 2-2 shows the maximum number of memory words that may be contained in the
index part of an address couple for any given LL value part of the address couple.

The B 6800 system determines the absolute address referred to by the SIRW in a different way than is used for deter-
mining the absolute address referred to by an IRW. The method used to determine the absolute address referred to by a
SIRW is as follows:

a. The stack number field in the SIRW is an index into the segment descriptor index, which is maintained by
the MCP. The segment descriptor index contains a list of data descriptors that give the absclute memory
addresses of all stacks in main memory. The stack number field of the SIRW identifies the descriptor that
contains the base address of the stack that is to be referenced.

2-22

B 6800 System Reference Manual
Data Representation

Table 2-2. Address Couple Value Fields

Lexicographical Number of Bits Bits Available for Maximum Index
Level Value Required Index Value Value
0 1 13 8191
1 1 13 8191
2 2 iz 4095
3 2 12 4095
4 3 11 2047
5 3 11 2047
6 3 11 2047
7 3 11 2047
8 4 10 1023
9 4 10 1023
10 4 10 1023
11 4 10 1023
12 4 10 1023
13 4 10 1023
14 4 10 1023
15 4 10 1023
16 through 31 5 9 511

b. The displacement field value of the SIRW is an index on the base address of the stack that is being referenced.
The value of the base address of the stack, plus the value of the displacement field is the absolute memory
address of a mark stack control word in the stack that is being referenced.

c. The index field value of the SIRW is an index on the address of the mark stack control word in the stack
that is being referenced. The sum of the address of the mark stack control word plus the value of the index
field is the address of the value that is being addressed by the SIRW.

PROGRAM CONTROL WORDS

The program control word (PCW) is used by the B 6800 system to point to the program code for a procedure or segment
of a program. The PCW also contains program information about the system environment that is to be used during the
execution of the segment or program.

The use of PCW’s provides the flexibility that the software requires to utilize reentrant code techniques, and also dynamic
storage allocation principals. The reentrant code techniques are used in the B 6800 system to provide the software
capability to execute more than one job at a time while using the same machine language code.

Figure 2-14 shows the fields of data that are contained in a PCW. The fields of data in.a PCW are used as follows:
bits 50:3 The tag field. The tag field for a PCW is seven (111 binary).

bits 45:10 The stack number. The stack number field is used to identify the stack that contains the PCW
(not always the stack that is to be associated with the program code that is to be executed).

The MCP uses stack numbers to identify jobs that are currently being executed, or are scheduled
to be executed. The MCP %ssigns stack numbers for program stacks on a first come first served
basis. Therefore the stack number for a program stack is a dynamic variable that is assigned to
a program at execution time.

5001290 2-23

bits 35:3

bits 32:13

bit 19

bits 18:5

bit i3:1

bits 12:13

2-24

B 6800 System Reference Manual
Data Representation

SNR| SNR| PSR | PIR [PIR | PIR | N LL |SDI |SDI |sDI

SNR| SNR| PSR | PIR {PIR | PIR | LL [LL |SDI |SDI [SDI

SNR| SNR| PSR | PIR | PIR | PIR | LL |SDI [SDI |SDI |SDI

1 SNR| SNR| SNR| PIR | PIR [PIR | PIR | LL |SDI |sDi |soi |sDi
L4 4o 36 32 28 24 20 - |16 12 8 4 0

50:3 = THE TAG FIELD.
71S APCW TAG

45:10 = THE STACK NUMBER FIELD
35:3 = THE PROGRAM SYLLABLE REGISTER VALUE
32:13 = THE PROGRAM INDEX REGISTER VALUE

19 = THE NORMAL/CONTROL STATE BIT
18:5 = THE LEXICOGRAPHICAL LEVEL VALUE
13:14 = THE SEGMENT DESCRIPTOR INDEX VALUE

MV 1583

Figure 2-14. Program Control Word

The program syllable register (PSR) field. The PSR field is used to indicate the first machine
language operator in the first memory word of a machine language code string. A program code
string is not required to begin at the first machine language operator in a memory word. There
are 6 syllables in a machine language code word, and the PSR value indicates which of the

6 syllables the current string of code starts in.

The program index register (PIR) value. The PIR field is used to indicate the first word of the
program machine language code string. The combination of the PIR field and the PSR field com-
bine to identify the specific first machine language operator in the program code string. The

PIR value defines the first word address of the string, and the PSR value defines the first syllable
within the first word of the string.

The normal state/control state bit. The B 6800 system may operate in either of two states, and
the proper state for the current code segment is defined by the normal state/control state bit.
If the normal state/control state bit is a binary one then control state is specified, and normal
state is specified otherwise.

The lexicographical level (LL) field. The LL field is used to specify the lex level at which the
program string is to be executed. The LL value defines one of the 32 IC memory display
registers. The value in the selected IC memory display register is the base address in core memory
of the program stack with which the program code string is associated.

This bit is used to indicate that the DO stack contains the segment descriptor (if 0), or the D1
stack (if 1).

The segment descriptor index (SDI) field. The SDI is used to indicate the location of the segment
descriptor for the program code string in core memory.

B 6800 System Reference Manual
Data Representation

The 13 bits of the SDI field are a binary index value which are added to the base address from
the display register (either DO or D1) to define the absolute core memory address of the segment
descriptor for the machine language code string.

MARK STACK CONTROL WORDS

The mark stack control word (MSCW) is used to define an area within the stack in main memory. The MSCW and the
return control word (RCW) together provide a history of the stack linkage, and a record of the stack operating environ-

ment. The historical links of a stack, and the operating environment record of the stack are key data in the reconstruc-
tion and analysis of program operations.

Figure 2-15 shows the fields of data that are contained in the MSCW. The meaning of the fields of data in the MSCW
are as follows:

bits 50:3 The tag field. The tag for a MSCW is three (011 binary).

bit 47 The different stack bit. The different stack bit indicates whether the stack number field refers
to the same stack, or to a different stack. If the different stack bit is a binary zero then the
stack number field refers to the same stack. If the different stack bit is a binary one then the
stack number refers to a different stack.

DS| SNR| SNR| DS | DS | DS | DS |V | LL | DF | DF | DF

(0] E | SNR| SNR| DS | DS | DS [DS | LL | LL | DF | DF | DF

1 |SNR| SNR| SNR DS | DS | DS | DS | LL | DF | DF | DF | DF

F
1 &NR QOSNR3§NR3ZDS ZPS pS | DS | LL ‘DF 8DF DF | D

50:3 = TAG FIELD. MARK STACK TAG IS ALWAYS 3
47 = DIFFERENT STACK BIT
46 = ENVIRONMENT BIT

45:10 = STACK NUMBER FIELD
35:16 = DISPLACEMENT FIELD
19 = VALUE BIT
18:5 = LEXICOGRAPHICAL LEVEL FIELD
13:14 = DIFFERENCE FIELD

MV 1584

Figure 2-15. Mark Stack Control Word

5001290 2-25

B 6800 System Reference Manuél
Data Representation

bit 46 The entered bit. The entered bit is used to indicate whether the stack is active or not. If the
stack is currently in use (is active) then the bit will be set to a binary one. If the stack is not
currently in use then the bit will be reset to a binary zero. If the entered bit is a binary one
then it indicates that the MSCW is active and was entered into the stack by a procedure entry.
If the entered bit is a binary zero it shows that the MSCW was entered into the stack by the
mark stack machine language operator, and no procedure entry has been made in the stack.
When a procedure entry is made into the stack the environment fields of the MSCW are
completed from the PCW that caused entry, and the entered bit is set to a binary one.

bits 45:10 The stack number. The stack number field is completed at procedure entry time, and contains
the stack number value from the PCW that was entered, The stack number is the designation of
the stack that contains the PCW, not the number of the current stack.

bits 35:16 The displacement field. The displacement field is used tq link a program together by its lexi-
cographical levels. The value of the displacement field defines the MSCW that represents the
last previous lexicographical level of the procedure. The location of the MSCW that corresponds
to the preceding lexicographical level is determined by adding the value of the displacement field
to the value of BOSR for the stack.

bit 19 The value bit. The value bit is used to indicate whether or not the operator that caused entry
to the current operator is to be restarted at the beginning of the operator in the procedure that
caused entry. If the value bit is a binary zero then the previous operator must be restarted from
the beginning. If the value bit is a binary one then the previous operator must be continued at
the next operator in sequence.

bits 18:5 The lexicographical level field. The value of the lexicographical level field defines the lexico-
graphical level at which the program will run when the procedure is entered.

bits 13:14 The difference field. The difference field is used to store the stack history. The value of the
difference field is the number of words between the current MSCW and the previous MSCW
in the stack. Subtracting the value of the difference field from the address of the current MSCW
gives the address of the previous MSCW.

INTERRUPT PARAMETER WORDS

The interrupt controller of the B 6800 data processor recognizes certain types of system interrupts. The DP interrupt
controller interrupts the program that is running, and causes an entry into the MCP interrupt handling procedures when a

2-26

B 6800 System Reference Manual
Data Representation

system interrupt is sensed. The interrupt handling procedures of the MCP initiate system actions that are required because of
the interrupt condition that exists. At the conclusion of the interrnpt handling function, the MCP returns control of the DP
to the program or process that was interrupted when the system interrupt was recognized.

The interrupt controller collects and formats data about the type of interrupt that occurred. This data is placed in a
special stack (see figure 2-16) which the interrupt controller creates for the interrupt handling procedures of the MCP.
After the interrupt controller has created and filled the interrupt handling stack, a program entry is made into the
interrupt handling procedures of the MCP.

P1 Parameter

The format and content of the data that is placed in the interrupt handling stack depends on the type of interrupt that
occurred. There are five types of interrupts that are recognized by the interrupt controller of the DP, which are: Alarm
type, Hardware type, General Control type, External type, and Syllable Dependent type. The first word of data in the
interrupt stack is the P1 parameter. The P1 parameter defines the type of interrupt that was sensed, and indicates the

TAG
FIELD P2 PARAMETER
TAG
FIELD P3 PARAMETER THIS INTERRUPT STACK IS CON-
- STRUCTED BY THE INTERRUPT
TAG CONTROLLER OF THE B6800 DATA
FIELD
= P1 PARAMETER PROCESSOR. THE INTERRUPT PRO-
TAG (RCW POINTING TO CEDURE USES THIS STACK TO ANA-
E'ELD IRW DO +3 INTERRUPTED STACK) LYZE INTERRUPTS IN THE SYSTEM.
TAG
FIELD MSCW
1 PROGRAM STACK AREA
FOR THE PROGRAM THAT L
INITIATED THE INTERRUPT
T CONTROLLER FUNCTION T
DO +3 TAG THIS PCW POINTS TO THE MACHINE
——=| FIELD PCW LANGUAGE CODE STREAM FOR THE
- ' B6800 INTERRUPT PROCEDURES.
THE
MCP
TAG
STACK FIELD RCW
DO TAG
—®| FIELD MSCW
MV 1585

Figure 2-16. B 6800 Interrupt Stack Organization

5001290 2-27

B 6800 System Reference Manual
Data Representation

cause of the interrupt. Table 2-3 shows the types of interrupts that are defined in the P1 parameter, and also shows the
various causes of each type of interrupt. The P1 parameter is the first half (upper half) of a double precision word. The
last half (lower half) of the double precision word is the P3 parameter. Table 2-4 shows what information about an
interrupt is to be present in the P2, and P3 parameters of the interrupt handling procedure stack.

P3 Parameter
The P3 parameter is the second half of a double precision word in the interrupt handling procedure stack.

The purpose of the P3 parameter is to provide a place to record the hardware operating environment conditions at the
time that an interrupt occurs. The B 6800 system uses the information contained in the P3 parameter to help in the
analysis of the cause of the interrupt.

The information contained in the P3 parameter is also valuable in determining the cause of a hardware failure which
results in an operating system interrupt. The information that is present in the P3 parameter is recorded in the SYSTEM
SUMLOG file, and thus is available to help maintenance personnel in determining the cause of hardware failures.

The P3 parameter has a variable format that depends on the type of interrupt that has occurred. There are five different
formats, but only one format is used for each type of interrupt. Figure 2-17 shows the formats that are used for Alarm
type, Hardware type, Syllable Dependent type, and General Control type interrupts. Figure 2-18 shows the format that is
used for the P3 parameter when an IO finished interrupt occurs. Table 2-4 shows what data is present in the P3 param-
eter for the specific cause of each of the five types of interrupts.

P2 Parameter

The P2 parameter for the B 6800 typically contains the contents of the top-of-stack register at the time the interrupt
occurred. This context is true for alarm type interrupts with the single exception of the stack underflow interrupt. In
the case of the stack underflow interrupt the value of the S-register will be placed in the P2 parameter word.

The B 6800 system P2 parameter for syllable dependent interrupts contains additional information. The additional
information that is contained in the P2 parameter as follows:

a. For a sequence error that occurs during a family C operation the P2 parameter will contain the value of the
word that caused the sequence error

o

For an invalid operation interrupt that occurs during a SPLT (9543) operator the word that caused the interrupt
will be reported in the P2 parameter.

c. For an invalid operation interrupt that occurs during a JOIN (9542) operator function the word that caused the
interrupt will be reported in the P2 parameter. If the information in both the A and B registers is bad then the
the word in the A register becomes the P2 parameter data.

0621005

6C—C

Type

Alarm
Alarm
Alarm
Alarm
Alarm
Alarm

Alarm
Alarm
Alarm
Alarm
Alarm
Alarm
Hardware
Hardware
Hardware
Hardware
Hardware
Gen. Control
Gen. Control
Gen. Control
Gen. Control

NOTES: 1.

Table 2-3. P1 Parameter Words (Sheet 1 of 2)

Cause 46 45 44 39

Loop Timer

Memory Addr Parity
Scan Bus Parity

Inv Address-Local
Stack Underflow

Inv Program Word
Memory Address Residue
Read Data Mult. Error
Inv. Address Global
Global Memory Not Ready
Scan in Info. Error
Scan Out Error

PROM Card Parity
RAM Card Parity

Bus Residue

Adder Residue
Compare Residue

Read Data Single Error
Read Data Retry

Read Data Check Bit
Address Retry

Ses S
ceesS S

1 = BIT is a binary one.

0 = BIT is a binary zero.

@ = Bit may be either a binary one or a binary zero.
X = State of bit is immaterial.

Bit 18 indicates whether the operation was a scan or a memory operation.
to the Global Memory:

If bit 18 = 0 it was a memory operation.
=1 it was a scan operation.

27 26 25 24 23 22 21

b ot bt et et b b et e b b bt i et e b e

- —

e T T T T e e S S =

Bttt as

A=)

See S

19

|

AR OSSOSO SO S

Parameter Bits

18 17 15 14 13 12 11 10 9 8 7 6 5 4 3 2

)
¢ 9

9

('}

9

) 1
o 9 1
o ¢ 1
¢ 0 i
¢ 0 1

1
1

0

¢

0

0

¢
)
¢
0
) 1

If bit 17 is a binary one it indicates that the data in the P3
parameter is inconsistent.

Bit 27 is the B 6800 bit. This bit is true for B 6800 systems.

Bit 21 is the memory error during external device operation
(Channel B of memory) bit.

0

1

uoneyussarday eleq
[enuep 99U819J0Y WAISAS 0089 g

0€—C

Type Cause
External Status Change
External 1/0 Finished
External DCP
External Scratch Pad Parity
SDI Programmed Operator
SDI Memory Protected
SDI Invalid OP
SDI Divide by Zero
SDI Exp. Overflow
SDI Exp. Underflow
SDI Invalid Index
SDI Integer Overflow
SDI Bottom of Stack
SDI Presence Bit
SDI Seq. Error
SDI Segm. Array
SDI Interval Timer
SDI Stack Overflow
SDI Confidence Error
NOTES: 1. 1 = Bitisa binary one.

0 = Bit is a binary zero.

46 45 44 39 27 26 25 24

RT RT

AR =R =R =R R R R~ R R

\'&

@ = Bit may be either a binary one or a binary zero.

X = State of the bit is immaterial.

2. External interrupt from DCP

Bits
6 5

- 00 =0 =&

0
1
t
1o
11
11

Unit

DCP 1
DCP 2
DCP 3
DCP4
BIC 1
BIC 2

bt et bt e b e b b b b e e e et et b b

3. Bit 27 is the B 6800 bit. This bit is 1 for B 6800 systems.

Table 2-3. Pl Parameter Words (Sheet 2 of 2)

—_—) —

23 22 21

20

—_—

Parameter Bits

19

HEOOCOCSOCCCCSSSSVE X X X X

18

17

15

14

13

12

11

10 9 87 6 5 4 3 2

1
1

1

11 1
1
(See Note 2)

1

uonejuasaiday ere(g
[eNUBJ 90USIdJeY WISAS 0089 4

B 6800 System Reference Manual
Data Representation

Table 2-4. Interrupt Procedure Stack Parameter Contents

5001290

Interrupt Type Contents of the Contents of the
Kind of Error P1 Parameter P2 Parameter P3 Parameter
1. Loop Timer Alarm Strb, JC, Op
2. Memory Address Parity Alarm Addr, JC, Strb, Op
3. Scan Bus Parity Address Alarm Addr, JC, Strb, Op
4, Inv. Address, Local Alarm Addr, JC, Strb, Op
5. Stack Underflow Alarm S Register Addr, JC, Strb, Op
6. Inv. Progr. Word Alarm Word JC, Strb, Op
7. Memory Address Residue Alarm Addr, JC, Strb, Op
8. Read Data Muitiple Error Alarm Word Addr, JC, Strb, Op
9. Inv. Addr, Global Alarm Addr, Strb, JC, Op
0. Global Memory Not Ready Alarm Addr, Strb, JC, Op
t1. Scan In Info Error Alarm Word Addr, Strb, JC, Op
2. Scan Out Error Alarm Word Addr, Strb, JC, Op
1. Prom Card Parity Hardware JC, Strb, Op, Card #
2. RAM Card Parity Hardware JC, Strb, Op, Card #
3. Bus Residue Hardware JC, Strb, Op
4. Adder Residue Hardware JC, Strb, Op
5. Compare Residue Hardware JC, Strb, Op
1. Read Data Single Error Gen. Cntr. Addr, Bit #
2. Read Data Retry Gen. Cntr. Addr
3. Read Data Check Bit Gen. Cntr. Addr, Bit #
4. Address Retry Gen. Cntr. Addr
1. Unit Status Change External Status Vector
2. I/O Finished External Result Descriptor Error Conditions
3. DCP External
4. Scratch Pad Parity External Card #, Channel #
1. Programmed Operator SD1 See the text under the JC, Str, Op
2. Memory Protected SDI subheading titled P2 JC, Str, Op
3. Invalid Op SDI Parameter IC, Str, Op
4. Divide by zero SDI JC, Str, Op
5. Exponent Overflow SDI JC, Str, Op
6. Exponent Underflow SDI JC, Str, Op
7. Invalid Index SDI IC, Str, Op
8. Integer Overflow SD1 JC, Str, Op
9. Bottom of Stack SDI JC, Str, Op
10. Presence Bit SDI JC, Str, Op
11. Seq. Error SDI JC, Str, Op
12. Segm. Array SDI IC, Str, Op
13. Interval Timer SDI JC, Str, Op
14. Stack Overflow SDI JC, Str, Op
15. Confidence Error SDI JC, Str, Op
Footnotes: Addr is the Memory or Scan address op is the Op code
Strb is the family strobe Card # is the number of the failing card
IC is the family seq. counter count Bit # is the number of the failing bit

2-31

B 6800 System Reference Manual
Data Representation

The B 6800 system external type interrupts provide the following information:

a. Unit status change external interrupts provide the status vector word information in the P2 parameter word.

b. IO finished external interrupts provide the result descriptor data from the IO processor (multiplexer) in the
P2 parameter word.

c. Scratch pad parity external interrupts report the card number, and the channel number of the multiplexer
scratch pad memory word that caused the interrupt in the P2 parameter

Figures 2-19 through 2-21 show the P2 parameter word layouts for the three cases stated in a through ¢ above.
Table 24 indicates the data that is present in the P2 word for different types of interrupts in the B 6800 system.

RETURN CONTROL WORDS

A return control word is used in the B 6800 system to provide a method for returning to a previous procedure. The
second entry in an active job stack is always a return control word. The hardware of the B 6800 system automatically
creates the return control word (RCW) for a previous procedure or program when an entry to the new procedure is made.
Prior to the hardware inserting the return control word into the stack, the second word in the stack is either a PCW, or
an IRW. The return control word is substituted for which ever type of word is the second word in the new procedure
stack.

2-32

06C100S

€e—C

|47|46[45|44|4ai42|41]40|39]38|37|36|35|34|33|32|31|30|29|28|27|26125|24|23|22|21|20]19|18|17|16|15|14|13|12|11|10|9|3|7|6|5|4|3|2|1lo

MEMORY ADDRESS RESSUM|V([Te| | v | OP coDE STROBE |M| J-COUNT/ ADDRESS
|
CARD NUMBER VelTel E| v | opcoDE STROBE |m| J-COUNT/uADDRESS
MEMORY ADDRESS Vet € | v | opcope STROBE |M| JCOUNT/u ADDRESS
MEMORY ADDRESS RES SUM CHECK BITS

RES SUM = RESIDUE OF ADDRESS
Vg = VECTOR
Tg = TABLE
E=EDIT
V = VARIANT
M = MODE
M = MODE 0 MEANS J-COUNT IS ACTIVE.
1 MEANS [ADDRESS IS ACTIVE

MV 1686 A

Figure 2-17. P3 Parameter Configurations

ALARM

HARDWARE

sSD1

GEN CNTRL

uonejuesaIdey ele(
[BNUB 90UISJoY WISAS 0089 9

B 6800 System Reference Manual
Data Representation

ACE]ME | SE | CE |CE J UE | UE |UE | UE

ME JARE| CE | CE J UE | UE | UE | UE

-

pElGM e baael cr b ue |l ue lue [ue lue

NR

Jub 4o

OVl me | me |aae] ce | ue | ueE | UE | UE |UE
36CEL, |28 i ko he 12 8 lu o

BITS 17:18
23:6
26:3
32:6
33 =
35 =
36 =
37 =

MV 1587

UNIT ERROR FIELD

= CONTROL ERROR FIELD
= ADDRESS ADDER ERROR FIELD
= MEMORY ERROR FIELD

GLOBAL MEMORY NOT READY BIT

ADDR COMP ERROR

OP CODE OR VARIANT CHARACTER GENERATOR ERROR
DESCRIPTOR ERROR

Figure 2-18. P3 Parameter Contents for IO Finished Interrupt

50:3
32:32

]

MV 1588 BITO

TAG FIELD, (ALWAYS =0 FOR P2 PARAMETER)
VECTOR WORD. EACH BIT IN THE VECTOR WORD
REPRESENTS A UNIT THAT IS REPORTING A
STATUS CHANGE

IS ALWAYS A BINARY ONE

Figure 2-19. P2 Parameter Status Change Format

Figure 2-22 shows the fields of data that are present in the RCW, and defines the meaning of the data in each field. The
combination of data fields that are stored in the RCW indicates what the hardware environment wili be after the return
to the previous procedure has been made.

PROGRAM WORDS (CODE WORDS)

Program words are B 6800 words that

contain the machine language instructions which the data processor executes.

Program code words are grouped into units of words called segments. A segment consists of all the machine language
code for a program or a segment of a program. A program segment may consist of from one program code word, to a

2-34

B 6800 System Reference Manual
Data Representation

cclwciwciwciwcl Ju |u JcH]P

0 cc'wcwcwcwcL U (U JcH]r

0 CC| wC, wC| wCj wC U U | CH ' A

0 WC| WC| WC| WC|WCJU |U JCH|CH ‘ E
4y jho 136 (32 (28 Jor j20 hie 12 ks lu {o

50:3 = TAG FIELD.
(ALWAYS = TO ZERO FOR P2 PARAMETER)

47:3 = CHARACTER COUNT
44:17 = WORD COUNT

24:8 = UNIT NUMBER FIELD

16:5 = CHANNEL NUMBER FIELD
11:2 = PATH NUMBER FIELD
BIT1T = ATTENTION BIT

BITO = ERRORBIT

MV 1589

Figure 2-20. P2 Parameter Result Descriptor Format

n T; s e

50:3 = TAG FIELD.

(ALWAYS = 0 FOR P2 PARAMETER)
27:5 = CHANNEL NUMBER FIELD
22:3 = CARD NUMBER FIELD

MV 1580

Figure 2-21. P2 Parameter Scratch Pad Parity Format

maximum of 16,384 words. It is unusual for a program segment to exceed several hundred words. Each segment of
program code in a program is referenced (and located) through the segment descriptor index field in the PCW that calls
the segment to be executed by the data processor. A segment of code may call upon the system to execute another

5001290 2-35

B 6800 System Reference Manual
Data Representation

PIR{ PIR| PIR§ N LL | SDI | SDI | SDI

PIR| PIR| PIR] LL | LL § SDI | SDI | SDI

PIR! PIR] PIRT LL ¥ gSDI} SDI! sDI'| SDI

PIR{ PIR| PIR LL#SDI SDi | SDI | SDI
28 24 20 16 2

50:3 = TAG FIELD.

(ALWAYS A VALUE OF 3 FOR AN RCW)
BIT 47 = EXTERNAL SIGN BIT FLIP-FLOP STATE
BIT46 = OVERFLOW FLIP-FLOP STATE
BIT45 = TRUE/FALSE FLIP-FLOP STATE
BIT 44 = FLOAT FLIP-FLOP STATE
BIT 42 = TRUE/FALSE FLIP-FLOP OCCUPIED FLIP-FLOP STATE
BIT41 = COMPARE FLIP-FLOP
35:3 = VALUE OF PROGRAM SYLLABLE REGISTER FIELD
32:13 = VALUE OF PROGRAM INDEX REGISTER FIELD
BIT19 = NORMAL/CONTROL STATE FLIP-FLOP STATE;
BINARY ZERO = NORMAL STATE
BINARY ONE = CONTROL STATE
VALUE OF LEXACOGRAPHICAL LEVEL REGISTER
SEGMENT DESCRIPTOR INDEX VALUE

18:5
13:14

MV 1591

Figure 2-22. Return Control Word

segment of code. At the conclusion of such a called segment, the system will return to the calling segment. The location
of the code for the calling segment is not lost during the execution of the called segment code because the RCW of the
called segment contains the SDI value for the code of the calling procedure. Thus when returning to the calling procedure
the code segment location is known.

PROGRAM SEGMENTS AND THE SEGMENT DESCRIPTOR

The program code that is executed when a program job or task is performed is contained in words of machine language
operator codes. All of the operator codes that comprise the task are grouped together in groups called segments. A segment
may contain ali of the machine language operators, or a major group of the operator codes in a program task.

When a program task is to be executed, an ENTER operator causes the PCW for the task to be brought into the stack, and
distributed to the various parts of the operating system. The SDI field of the PCW word (refer to figure 2-14) locates a
segment descriptor (SD) for the program task. A description of the SD (figure 2-23) is as follows:

bits 50:3 The tag fieid. The tag for a SD is always three (011 binary).
bit 47:1 The presence bit. If this bit is binary one then the program code segment is present in local memory.
bit 46:1 The copy bit. If this bit is a binary zero then the segment descriptor is the original segment descriptor.

If this bit is a binary one then this descriptor is a cepy of an original segment descriptor.
2-36

B 6800 System Reference Manual
Data Representation

bits 45:6 An unused field. These bits may be either binary ones or zeros because they have no effect upon
the use of the word as a segment descriptor.

bits 39:20 The length field. This field specifies the length of the code segment, in words, in binary notation.

bits 19:20 The address field. If the presence bit is a binary one then this field contains the absolute address
of the first word in the segment. If the presence bit is a binary zero and the copy bit is also a
binary zero then this field contains a five digit binary coded decimai disk address for the code
segment. If the presence bit is a binary zero and the copy bit is a binary one then this field con-
tains the absolute memory address of the original segment descriptor.

A program code segment may call another program segment to be executed. Each of these program code segments (the
calling segment, and the called segment) has a separate segment descriptor. The address (SDI) for the current code segment
is saved in the data processor IC memory registers. The value of the called SDI is saved when the called segment is executed.
However, the SDI for the calling segment is not lost, because this address is saved in the RCW (refer to figure 2-22). Thus,
when a called segment is executed, and a return (or EXIT) to the calling segment is performed, the SDI is always available
for the currently executing program segment.

The use of copy segment descriptors, and the mechanism for saving the SDI values for segments of program code are basic
components used to provide for the concepts of reentrant code. Reentrant code techniques are defined in section 3 of
this manual.

TOP OF STACK CONTROL WORDS

A top of stack control word (refer to figure 2-24) is originated when the data processor executes the move to stack operator.
This word occupies the address in memory of the lower word boundary for a job or task area. A TOSCW contains the
relative addressing and environment record for the program or task. The address of 2 TOSCW for an operating program or
task is the same as the value of the BOSR address register. A TOSCW therefore also corresponds to the address of the first
MSCW for a job or task.

The addressing environment for a program or task consists of the values of the BOSR, F, S, and lexicographical level

“registers. The values of these registers are stored in the TOSCW when another program or task is to be executed. Upon
re-entry into the program or task procedures, the proper values from the TOSCW are used to restore the proper addressing
environment for the program or task, in the memory address registers.

The operating environment of a job or task consists of the state of seven flip-flops. These flip-flops are the external sign,
overflow, true/false, float, true/false occupied, compare, and normal/control state flip-flops. The state of these flip-flops
is stored in the TOSCW when another job or task is to be executed. Upon re-entry into the original job or task, the proper
values for operating environment flip-flops are restored from the TOSCW.

The TOSCW for the currently operating program or task does not contain the operating and addressing environment. Instead,
the CPU data processor identity (001 for a B 6800 system) is stored in bits 2:3, and the rest of the bits (except the tag

field) are zeros. The presence of a TOSCW which only contains the data processor identity field indicates the address of

the lowest word in the current job or task stack. This word is addressed by the value of the BOSR register.

A program code word is composed of six syllables, and a tag field (see figure 2-25). The tag field for a program code
word is always a value of three. The remaining 48 bits of the program word is divided into six 8-bit syllable fields. A
machine language instruction consists of from one to seven syllables. An instruction is not limited to a single code word
but may extend across the boundary of a code word, and into the next word of program code in sequence. For this
reason the contents of a word of machine language code may be portions of two operators, plus from one to four com-
plete operator codes.

5001290 2-37

2-38

B 6800 System Reference Manual
Data Representation

50:3
47:1
46:1

39:20
19:20

32 {28 fa4 [0 he |12 |s 4 0

TAG FIELD.
(ALWAYS A VALUE OF 3 FOR A SEGMENT DESCRIPTOR)
PRESENCE BIT, 1 = PRESENT IN MEMORY

0 =PRESENT IN LIBRARY
COPY BIT, 1 = COPY OF ORIGINAL SEGMENT DESCRIPTOR

0 = ORIGINAL SEGMENT DESCRIPTOR

LENGTH FIELD - THE NUMBER OF WORDS IN THE SEGMENT
ADDRESS FIELD - }'4!-;E1I]BEG1INNING MEMORY ADDRESS IF

- THE DISK OR PACK ADDRESS IF [47:1] =0,
AND [46:1] =0. .

- THE MEMORY ADDRESS OF THE ORIGINAL
SEGMENT DESCRIPTOR IF [46:1] =1, AND
[47:1] =0.

Figure 2-23. Segment Descriptor Word

DSF |DSF ‘DSF} N] LL |DFF DFF DFF

DSF |DSF {DSF] LL | LL |DFF|DFF|DFF

DSF |DSF |DSF} LL | DFF|DFF |DFF |DFF

DSF | DSF |DSF| LL | DFF|DFF|DFF |DFF
28 {26 |20 [12 8

50:3 = TAG FIELD.
(ALWAYS A VALUE OF 3 FOR A TOSCW)

47:1 = EXTERNAL'SIGN FLIP-FLOP

46:1 = OVERFLOW FLIP-FLOP

45:1 = TRUE FALSE FLIP-FLOP

44:1 = FLOAT FLIP-FLOP

42:1 = TRUE FALSE OCCUPIED FLIP-FLOP

41:1 = COMPARE FLIP-FLOP

556:16 = DELTA S-REGISTER FIELD (VALUE OF THE
'S-REGISTER DISPLACEMENT ABOVE BOSR)

19:1 = NORMAL/CONTROL STATE FLIP-FLOP;

0=NORMAL STATE
1 =CONTROL STATE

186 = LEXICOGRAPHICAL LEVEL

13:14 = DELTA F REGISTER FIELD (VALUE OF THE
F-REGISTER DISPLACEMENT, BELOW THE
VALUE OF THE S-REGISTER)

2:3 = THE CPU PROCESSOR ID VALUE (001)
WHEN THE TOSCW IS FCR AN ACTIVE
PROCESS PROGRAM OR TASK

Figure 2-24. TOSCW Word Layout

B 6800 System Reference Manual
Data Representation

a7 |43 33 |35 31 |27 23 |19 15 |11 7 13
Psoo s a2 38 |34 30 |26 22 |18 14 |10 6 |2
=3 45 |41 37 133 29 |25 21 17 13 |9 RE
481 a4 |40 36 |32 28 |2 20 |16 12 8 a 0
TAG SYLLABLE SYLLABLE SYLLABLE SYLLABLE SYLLABLE SYLLABLE
FIELD 0 1 2 3 4 5
MV 1592

5001290

Figure 2-25. Program Word Format

2-39

B 6800 System Reference Manual

SECTION 3
STACK AND REVERSE POLISH NOTATION

THE STACK
GENERAL

The stack is the memory storage area assigned to a job. The stack provides storage for the basic program and data
references for the job. It also provides for temporary storage of data and job history. When a job is activated, four
high-speed hardware registers (A, X, B, Y) are linked to the memory portion of the job’s stack (see figure 3-1). This
linkage is established by the stack pointer register (the S register), which contains the memory address of the last word
placed in the stack. The four hardware top-of-stack registers (A, X, B, Y) extend the stack to provide quick access for
data manipulation. Another stack pointer value (the F register) always points to the last valid MSCW in the stack.

.
INPUT/ TOP-OF-STACK REGISTER
OUTPUT
PATH OF DATA <—"I A J | X]
TO STACK
HARDWARE
REGISTERS $
e 11 v 11 s]
0% T
~
T WORDNIX jeag
STACK AREA
ASSIGNED
STACK TO PROGRAM] ToOsworD [
MEMORY
BUFFER -
AREA ‘ LAST VALID MS
STACK AREA |—MSW
CURRENTLY = — I sTAck LIMIT REGISTER
IN USE I
I 1 Los J |
L l WORDn - BOS |
STACK l }
A AREA 4
MV 1593

Figure 3-1. Top-of-Stack and Stack Bounds Registers

5001290 3-1

B 6800 System Reference Manual
Stack and Reverse Polish Notation

The number of words in the memory portion of the stack is equal to the difference between the values of the

BOS register, and the S register (S minus BOS). Data are brought into the stack through the top-of-stack registers in such a
manner that the last word placed in the stack (as indicated by the value of the S register) is the first word to be
extracted from the stack (last in first out method). The total capacity of the top-of-stack registers is two words or two
operands. Loading a third word or operand into the top-of-stack registers causes the first word or operand to be pushed
from the top-of-stack registers into the memory portion of the stack. The stack pointer value in the S register is
incremented by one as a word or operand is pushed into the memory portion of the stack, and is decremented by one
when a word or operand is withdrawn from the stack area and placed in the hardware top-of-stack registers. As a
result, the S register continually points to the last word or operand placed into the memory portion of the job stack.

BASE AND LIMIT OF STACK

A job’s stack is bounded, for memory protection, by two registers: the base-of-stack register (BOSR) and the limit-of-
stack register (LOSR). The contents of BOSR define the base of the memory portion of the stack, and the contents of
LOSR define the upper limit of the memory portion of the stack. The job is interrupted if the S register is set to a
value that is present in either the BOSR, or the LOSR register. If the S register equals or exceeds the value of the
LOSR register value a stack overflow interrupt occurs.

BI-DIRECTIONAL DATA FLOW IN THE STACK

The contents of the top-of-stack registers are maintained automatically by the data processor to meet the requirements of
the current machine language operator. If the current operator requires data transfer into the memory portion of the
stack, the top-of-stack registers receive the incoming data, and surplus contents in the top-of-stack registers are pushed
down into the memory portion of the stack. Pushing data into the memory portion of the stack means that the bottom
word or operand in the top-of-stack register is transferred to the next word or operand in sequence, in the memory
portion of the stack. Pushing data down into the memory portion of the stack makes room in the top-of-stack registers
to contain the incoming data that is required by the current machine language operator.

Data are also automatically brought from the memory portion of the stack and placed in the top-of-stack registers when
the machine language operator requires that the top-of-stack registers be filled. This automatic function is the opposite

*of the push function described in the previous paragraph, and is commonly called a push up function. A push up
transfers the last operand or word in the memory portion of the stack into the second word position in the top-of-stack
registers. The word or operand in the memory portion of the stack is then deleted by decrementing the S register. The
automatic maintenance of the top-of-stack registers takes the form of “push down”, and “push up” functions which are
described in the following paragraphs.

Stack Push Down

A stack push down occurs when a third word or operand is loaded into the top-of-stack registers, and both the

A register and B register already contain stack words or operands. A push down consists of moving data from the top-
of-stack registers to the local memory portion of the stack. Moving data to the local memory portion of the stack makes
room in the top-of-stack registers so that a third operand may be loaded into the top-of-stack registers.

Stack Push Up

A stack push up occurs when an operand or word is moved from the local memory portion of the stack, to the
top-of-stack register portion of the stack. A push up can only occur when a machine language operator is executed by
the data processor. The data processor operator that is to be performed must require that words or operands be present
in the top-of-stack registers, and such words or operands must not be present in the proper top-of-stack registers.

3-2

B 6800 System Reference Manual
Stack and Reverse Polish Notation

DOUBLE PRECISION STACK CPERATION

The top-of-stack registers are operand oriented rather than word oriented. Calling a double precision operand into the
top-of-stack registers causes two memory words to be loaded into the top-of-stack registers. The first word is loaded
into the A register, where it’s tag bits are checked. If the value indicates double precision the second word is loaded into
the X register. The A and X registers are concatenated, or linked together, to form the double precision operand. The

B and Y registers concatenate when a double precision operand reverts to single words as it is pushed from the Band Y
registers into the memory portion of the stack. The concatenation is repeated when a double precision operand is
returned from the memory portion of the stack to the top-of-stack registers.

TOP-OF-STACK REGISTER CONDITIONS

Two logical indicators are used to indicate the condition of the top-of-stack register portion of the stack. These two
indicators are AROF (A register is occupied flip-flop), and BROF (B register is occupied flip-flop). The meaning of
these two logical indicators is as follows:

AROF BROF MEANING
0 0 Neither the A, or the B register contains valid data. The top word in the stack is
presently located in the local memory address specified by the contents of the
S register.
0 1 The B register contains the top word in the stack, and the contents of the A register

are not valid data. The second word in the stack is presently located in the local
memory address specified by the contents of the S register.

1 0 The A register contains the top word in the stack, and the contents of the B register
are not valid data. The second word in the stack is presently located in the local
memory address specified by the contents of the S register.

1 1 The A register contains the top word in the stack, and the second word in the stack
is presently in the B register. The third word in the stack is in the local memory
address specified by the contents of the S register.

STACK ADJUSTMENTS
Each machine language operator that is executed by the data processor contains the requirement to adjust the top-of-

stack registers so that their contents provide accomodation for the operation that is to be performed. A convention is
used to show what stack adjustment is required, as follows:

5001290 3-3

CONVENTION NOTATION

(ADJ 0,0)

(ADJ 0,1)

(ADJ 1,0)

(ADJ 1,1)

(ADJ 0,2)

(ADJ 1,2}

(ADJ 1,3)

B 6800 System Reference Manual
Stack and Reverse Polish Notation

MEANING

Both the A and B registers are to be adjusted so that their contents are
not valid. The top word in the stack is to be located in the local memory
address pointed at by the contents of the S register.

The data processor will use the state of the AROF and BROF flip-flops to
determine if the stack must be pushed down to achieve the required adjust-
ment. The 0,0 portion of the convention notation shows what the logical
states of AROF and BROF must be to satisfy the requirements of the
adjustment. The first O in the expression of the notation defines what the
logical state of the AROF flip-flop must be at the conclusion of the stack
adjustment. The second O in the expression defines what the logical state of
the BROF flip-flop must be at the conclusion of the adjustment. The ADJ
portion of the convention notation reads “adjust the stack until AROF and
BROF meet the logical states™.

The A register is to be adjusted so that its contents are not valid. The top
word or operand in the stack is to be present in the B register, and the
second word or operand in the stack is to be located in the local memory
address pointed at by the contents of the S register.

The A register is to be adjusted so that its contents are the top word or
operand. in the stack. The B register must not contain valid data. The
second word or operand in the stack is to be located in the local memory
address pointed at by the contents of the S register.

The A register is to be adjusted so that it contains the top word or operand
in the stack. The B register is to be adjusted so that it contains the second
word or operand in the stack. The third word or operand in the stack is to
be in the local memory address pointed at by the contents of the S register.

The A register is to be adjusted so that its contents are not valid. The B register
condition is immaterial to the operation. The top word in the stack is present
in the B register if BROF is set.

The A register is to be adjusted so that it contains the top word in the stack.
The B register condition is immaterial to the operation. The second word in
the stack is located in the B register if BROF is set.

The A register is adjusted so that it contains the top word in the stack if and
only if the original stack condition is AROF/ and BROF/ (0,0). If any other
condition than (0,0) is the original condition, then no stack adjustment occurs.

Some machine language operations require that several stack adjustments must be performed during the course of the
operation. Such operations merely pause at the appropriate place until the adjustment is completed, and then continue

the sequence.

Stack push down and/or stack push up (which were defined previously in this section) are intrinsic functions of the stack
adjustments. That is, a push-up or a push-down may be implied because of the current state of the top of stack registers,
and the required stack adjustment. Where a stack push-up or push-down is implied, such operation will be performed as an
integral and automatic function of the stack adjustment procedure.

34

B 6800 System Reference Manual
Stack and Reverse Polish Notation

DATA ADDRESSING

The B 6800 data processor provides three methods for addressing data or program code:
a. Data descriptor (DD)/segmeﬁt descriptor (SD)
b. Indirect reference word (IRW)
c. Stuffed indirect reference word (SIRW)

The data descriptor (DD) and segment descriptor (SD) provide for the addressing of data or program segments located
outside of the job’s stack area. The indirect reference word (IRW) and the stuffed indirect reference word (SIRW)
address data located within (IRW), or outside (SIRW) the job’s stack. The IRW and SIRW address components are both
relative. The IRW addresses within the immediate environment of the job relative to a display register (described later in
Non-local Addressing). The SIRW addresses beyond the immediate environment of the current procedure, the addressing
being relative to the base of the job’s stack. Addressing across stacks is accomplished with an SIRW.

Data Descriptor

In general, the descriptor describes and locates data associated with a given job. The data descriptor (DD) is used to
fetch data to the stack or to store data from the stack into an array located outside the job’s stack area. The formats of
the data and segment descriptors were illustrated in section 2. The address field in each of these descriptors is 20 bits in
length; this field contains the absolute address of an array in either local memory or in the disk file, as indicated by
setting of the presence bit (P). The referenced data is in main memory when the presence bit is set.

Presence Bit

A presence bit interrupt occurs when the job references data by means of a descriptor in which the P-bit is equal to 0;
ie., the data is located in a disk file, rather than in local memory. The Master Control Program (MCP) recognizes the
presence bit interrupt and transfers data from disk file storage to local memory. After the data transfer to local memory
is completed, the MCP marks the descriptor present by setting the P-bit to 1, and places the new local memory address
into. the address field of the descriptor. The interrupted job is then reactivated.

Index Bit

A data descriptor describes either an entire array of data words, or a particular element within an array of data words.
If the descriptor describes the entire array, the index bit (1-bit) in the descriptor is 0, indicating that the descriptor has
not yet been indexed. The length field of the descriptor defines the length of the data array.

Invalid Index

A particular element of an array is described by indexing an array descriptor. Memory protection is ensured during
indexing operations by performing a comparison between the length field of the descriptor and the index value. An
invalid index interrupt results if the index value exceeds the length of the local memory area defined by the descriptor,
or if the index is less than 0.

Valid Index
If the index value is valid, the length field of the descriptor is replaced by the index value, and the I-bit in the descriptor

is set to 1 to indicate that indexing has taken place. The address and index fields are added together to generate the
absolute machine address whenever an indexed data descriptor in which the P-bit is set is used to fetch or store data.

5001290 3-35

B 6800 System Reference Manual
Stack and Reverse Polish Notation

The double-precision bit (D) is used to identify the referenced data as single- or double-precision and directly affects the
indexing operation. The D-bit equal to 1 signifies double-precision and causes the index value to be doubled before
indexing.

Read-Only Bit

The read-only bit (R) specifies that the local memory area described by the data descriptor is read-only area. If the R-bit
of a descriptor is set to 1, and the area referenced by that descriptor is used for storage purposes, an interrupt results.

Copy Bit

The copy bit (C) identifies a descriptor as a copy of a master descriptor and is related to the presence-bit action. The
copy bit links multiple copies of an absent descriptor (i.e., the presence bit is off) to the one master descriptor. The
copy bit mechanism is invoked when a copy is made in the stack. If it is a copy of the original, absent descriptor, the
processor sets the copy bit to 1 and inserts the address of the master descriptor into the address field. Thus, multiple
copies of absent data descriptors are all linked back to the master descriptor.

REVERSE POLISH NOTATION

GENERAL

Reverse polish notation is an arithmetical or logical notational system using only operands and operators arranged in
sequence or strings, thus eliminating the necessity for defining the boundaries of any terms. Figure 3-2 presents a flow
chart for conversion to reverse polish notation.

SIMPLIFIED RULES FOR GENERATION OF POLISH STRING

The source of expression is as follows:

Name Action

Variable or constant Place variable or constant in string being built and
exarmine next symbol.

Operator-separator “(* or “[* Place in delimiter list and examine next symbol.
Arithmetic or Boolean operator and last-entered Place operator in the delimiter list and examine next
delimiter list symbol were as follows: source symbol.

1. An operator of lower priority.
2. A left bracket “[* or parenthesis “(‘.
3. A separator.

4. Nothing (delimiter list empty).

Arithmetic or Boolean operator and last-entered Remove the operator from the delimiter list and
delimiter list symbol were as follows: an operator place it in the string being built. Then compare
of priority equal to or greater than the symbol in the next symbol in the delimiter list against the
the source. source expression symbol.

B 6800 System Reference Manual
Stack and Reverse Polish Notation

PRIORITIES OPERATORS
3 X,/
2 + -
1 >, <, = (BOOLEAN}
0 : = (REPLACEMENT)
D.L = DELIMITER LIST
P. N. S. = POLISH NOTATION STRING
EXAMINE FIRST
ITEM OF
SOURCE STATE-
MENT STRING
‘ * > TGPERATOR
LEFT PARENTHESISOR | RIGHT PARENTHESISOR | (', > <)
BRACKET BRACKET P X LR
“OR [me oR 1"
PLACE
SYMBOL
IN P.N.S.
y
|
PLACE
n(u OR u[n p LAST
INTOD.L. YES ENTERED
SYMBOL (" :
OR “[" MOVE LAST
ENTERED D.L.
SYMBOL FROM
D.L. TOP.N.S.
DELETE MOVE LAST
“(" OR "[" ENTERED D.L.
FROM THE SYMBOL FROM
D.L. D.L TO P.N.S. |
ERT LAST ENTERED
v e ves/ D.LSymeoLis
>t SYMBOL a) LOWER PRIORITY
! IN D'L b) Il(l? OR "[ll
e c) D.L. IS EMPTY
*NO
SCAN NEXT
SOURCE ITEM
MOVE LAST
ENTERED D.L.
SYMBOL FROM
D.L. TOP.N.S.
MV 1594A

5001290

Figure 3-2. Reverse Polish Notation Flow Chart

B 6800 System Reference Manual
Stack and Reverse Polish Notation

Name Action
A right bracket “]” or parenthesis “)”. Pull from delimiter list until corresponding left

bracket or parenthesis.

End of expression. Move last-entered delimiter list symbols to Polish
notation string until empty.

POLISH STRING
The essential difference between reverse polish and conventionai notation is that operators are written to the right of the
operands instead of between them. For example, the conventional B + C is written B C + in reverse polish notation:

A=7x(B+C)becomes A7BC +x:=

Any expression written in reverse polish notation is called a polish string. In order to fully understand this concept, the
user should know the rules for evaluating a polish string.

RULES FOR EVALUATING A POLISH STRING
The following is the procedure for evaluating a polish string:
a. Scan the string from left to right.
b. Remember the operands and the order in which they occur.
c. When an operator is encountered perform the following:
1. Record the last two operands encountered.
2. Execute the required operation.
3. Disregard the two operands.
4. Consider the result of (b) above as a single operand, the first of the next pair to be operated upon.
Following this rule, the reverse polish string A 7 B C + x := results in A assuming the value 7 x (B+C) (table 3-1).
NOTE

Because replacement operators vary depending upon the language
used, <, =, and := are equivalent for this discussion.

SIMPLE STACK OPERATION

All program information must be in the system before it can be used. Input areas are allocated for information entering
the system and output areas are set aside for information exiting the system; array and table areas are also allocated to
store certain types of data. Thus data is stored in several different areas: the input/output areas, data tables (arrays),
and the stack. Since all work is done in the arithmetic registers, all information or data is transferred to the arithmetic
registers and the stack.

3-8

B 6800 System Reference Manual
Stack and Reverse Polish Notation

Table 3-1. Evaluation of Polish String A7BC +x :=

Operands Being

Symbol Remembered Order of
Step Being Symbol Occurrence (1 or 2) Occurring Operation
No. Examined Type Before Operation Operation Results
1 B Operand
2 C Operand 1B
3 + Add 2C B+C (B+0Q)
Operator 1B
4 7 Operand 1(B +C)
5 X Multiply 27 7x(B+C) 7x(B+C)
Operator 1xB+0)
6 A Name 17x(B+0C)
7 = Replace 2A
Operator 17x(B+C) A =7x(B + C) A=7x(B + C)

At this point, an ALGOL assignment statement and the reverse polish notation equivalent will be related to the stack
concept of operation. The exampie is Z:=Y + 2x{W+V), where := means “is repiaced by.” In terms of a computer pro-
gram, this assignment statement indicates that the value resulting from the evaluation of the arithmetic expression is to
be stored in the location represented by the variable Z.

When Z:=Y + 2x(W+V) is translated to reverse polish notation, the result is ZY2WV+ x +:=. Each element of the exam-
ple expression causes a certain type of syllable to be included in the machine language program when the source problem
is compiled. The following is a detailed description of each element of the example, the type of syllable compiled, and
the resulting operation (see figure 3-3 and table 3-2).

In the example statement, Z is to be the recipient of a value, the address of Z must be placed into the stack just prior to
the store command. This is accomplished by a name call syllable which places an indirect reference word (IRW) in the
stack. The IRW contains the address of Z in the form of an “address couple” that references the memory location
reserved in the stack for the variable Z.

Since Y is to be added to a quantity, Y is brought inta the top of the stack as an operand. This is accomplished with a
value call (VALC) syllable that references Y. The value 2 is then brought to the stack, with an eight-bit literal syllable
(LT8). Since W and V are to be added, the respective variables are brought to the stack with value call syllables. The
ADD operator adds the two top operands and places the sum in the top of stack. This example assumes, for simplicity,
single-precision operands not requiring use of the X and Y registers which are used in double-precision operations.

The multiply operator is the next symbol encountered in the reverse polish string; when executed, it places the product

“2x(W+V)” in the top of the stack. The next symbol, ADD, when executed, leaves the final result “7+2x(W+V)” in the
top of the stack.

5001290 3-9

0i—¢

"“A" REGISTER

“B* REGISTER

CORE STACK
AREA

CBIL N+5

CBIL N+4

CBIL N+3

CBIL N+2

CBIL N+1

CBIL N

MV1595

ALGOL STATEMENT
POLISH STRING NOTATION

24N

Z

NAMC VALC VALC
z Y 2 w
INV IRW Z Y 2 W
INV INV IRW Z Y 2
-1 v
IRW 2 IRW Z
z §S=1 z -1 z z z
Y Y Y Y Y
w w w w w
\% v v v v

Y

+

2

W+v)

'

VALC ADD MULT ADD oD
\Y
vV ™ INV INV INV INV
w (W+V) 2x (W+V) Y+2(W+V) INV
2 2 2 2 2
Y Y — Y Y Y
IRW Z IRW Z IRW Z = IRwz [IRW 2
4 Z Z z ! 1y + 2(W + V]
Y Y Y Y Y
w w W w w
V | \Y% \Y% \% v
SYLLABLE TYPES
VALC VALUE CALL
NAMC NAME CALL
LTB LETERAL (8 BIT)
STOD STORE DESTRUCTIVE

Figure 3-3. Stack Operation

UOTIBION YSHOJ 9SIAY puE oIS
[ENUE 90udI0jay WasAS 0089 g

B 6800 System Reference Manual
Stack and Reverse Polish Notation

Table 3-2. Description of Stack Operation

Reverse
Polish Syllable
Execution Notation Type Function of Syllable During
Sequence Element Complied Running of the Program
0 Stack location of program variables illustrated
1 z Name call for Z Build an indirect reference word that contains the address
of Z and place it in the top of the stack
2 Y Value call for Y Place the value of Y in the top of the stack
3 2 Literal 2 Place a 2 in the top of the stack
4 w Value call for W Place the value of W in the top of the stack
5 \% Value call for V Place the value of V in the top of the stack
6 + Operator add Add the two top words in the stack and place the result
in B register as the top of the stack
7 X Operator Multiply the two top-of-thestack operands. The product
multiply is left in the B register as the top of the stack
8 + Operator add Add the two top words in the stack and leave the result
in the B register as the top of the stack
9 = Operator store Store an item into memory. The address in which to
destructive store is indicated by an indirect reference word or a data
descriptor; the address can be above or below the item
stored

The store syllable completes the execution of the statement Z:=Y + 2x(W+V). The store operation examines the two
top-of-stack operands looking for an IRW or data descriptor. In this example, the IRW addresses the location where the
computed value of Z is to be stored. The stack is empty at the completion of this statement.

PROGRAM STRUCTURE IN LOCAL MEMORY

When a problem is expressed in a source language, portions of the source language fall into one of two categories. One
describes the constants and variables that will be used in the program, and the other the computations that will be exe-
cuted (refer to figure 3-4). When the source program is compiled, variables are assigned locations within the stack whereas

the constants are embedded within the code stfeam that forms the computational part. A program residing in memory occupies
separately allocated areas. “Separately allocated” means that each part of the program may reside anywhere in memory, and
the actual address is determined by the MCP. In particular, the various areas are not assigned to contiguous memory areas.
Registers within the processor indicate the bases of the various areas during the execution of a program.

5001290 3-11

B 6800 System Reference Manual
Stack and Reverse Polish Notation

LOCAL MEMORY AREA ALLOCATION
The separately allocated areas of a program are as follows:

a. Program Segments: These are sequences of instructions (syllables) that are performed by the processor
in executing the program. Note that there is a distinction between program segments and data areas.
The program segments contain no data, and are not modified by the processor as it executes the program.

b. Segment Dictionary: This is a table containing one word for each program segment. This word tells whether
the program segment is in local memory or on the disk, and gives the corresponding local memory or disk
address of the program segment.

c. Stack Area: This is the pushdown stack storage, which contains all the variables associated with the program,
including control words which indicate the dynamic status of the job as it is being executed.

STACK-HISTORY AND ADDRESSING-ENVIRONMENT LISTS

One very important aspect of the B 6800 is the retention of the dynamic history for the program being processed. Two
lists of program history are maintained in the B 6800 stack, the stack-history list and the addressing-environment list. The
stack-history list is dynamic, varying as the job proceeds along different program paths with changing sets of data. Both
lists are generated and maintained by B 6800 hardware.

MARK STACK CONTROL WORD LINKAGE

The stack history is a list of Mark Stack Control Words (MSCW), linked together by their displacement fields (DF)
(figure 3-5). An MSCW is inserted into the stack as a procedure is entered and is removed as that procedure is exited.
Therefore, the stack history list grows and contracts with the procedural depth of the program. Mark stack control
words identify the portion of the stack related to each procedure. When the procedure is entered, its parameters and
local variables are entered in the stack following the MSCW. When the procedure is executed its parameters and local
variables are referenced by addressing relative to the MSCW.

STACK DELETION

Each MSCW is linked to the prior MSCW through the contents of its DF field in order to identify the point in the stack
where the prior procedure began. When a procedure is exited, its portion of the stack is discarded. This action is
achieved by setting the stack-pointer register (S) to address the memory cell preceding the most recent MSCW (figure 3-6).
This topmost MSCW, addressed by another register (F), is deleted from the stack-history list by changing F to address the
prior MSCW, placing this MSCW at the head of the stack history.

This is an efficient and convenient means of subroutine entry and exit.

RELATIVE-ADDRESSING

Analyzing the structure of an ALGOL program results in a better understanding of the relative-addressing procedures used
in the B 6800 stack. The addressing environment of an ALGOL procedure is established when the program is structured
by the programmer and is referred to as the lexicographical ordering of the procedural blocks (figure 3-7). At compile
time, the lexicographical ordering is used to form address couples. An address couple consists of two items:

1. The addressing level (&%) of the variable

2. An index value (S) used to locate the specific variable within its addressing level

B 6800 System Reference Manual
Stack and Reverse Polish Notation

OBJECT
D[4) = PROGRAM OBJECT
STACK PROGRAM
D[3] =] CONTAINING ———| CODE
XGSIABLES SEGMENT
DYNAMIC +1
DI21 =1 <TaTus ci. _ {n+1)
OBJECT
PROGRAM
SEGMENT OBJECT
DICTIONARY PROGRAM
———1 CODE
SEGMENT
S. D. PROG. (n)
S. D. PROG
SEG. DES, O. B.
OBJECT
D[] PROGRAM
CODE
OUTER
MCP STACK chISgEK
AND SEGMENT
SEGMENT
DICTIONARY
mv1so6a DIO1S

Figure 3-4. Object Program in Memory

The lexicographical ordering of the program remains static as the program is executed, thereby allowing variables to be
referenced via address couples as the program is executed.

Base of Address Level Segment

The B 6800 processor contains an array of D registers (DO through D31). These registers address the base of each
addressing-level segment (figure 3-8). The local variables of all procedures are addressed relative to the D registers.

Absolute Address Conversion

The address couple is converted into an absolute memory address when the variable is referenced. The addressing level
portion of the address couple selects the D register which contains the absolute memory address of the MSCW for the
environment (addressing level) in which the variable is located. The index value of the address couple is added to the
contents of the D register to generate the absolute memory address.

Multiple Variables With Common Address Couples

The address couples assigned to the variables in a program are not unique. This is true because of the ALGOL scope-of-
definition rules, which imply that if there is no procedure which can address both of any two quantities, then these two
quantities may unambiguously have the same address couple. This addressing system works because, whereas two vari-
ables may have the same address couples, there is never any doubt as to which variable is being referenced within any
particular procedure.

5001290 3-13

B 6800 System Reference Manual
Stack and Reverse Polish Notation

T T ADDRESS STACK
ENVIRONMENT HISTORY

[=—}——{tos worp| usT LIST

PROCEDURE B
S N T
.

PROCEDURE A 73

MSCwW

PROCEDURED 7

MSCW

PROCEDURE C ¥’

MSCW

~

OUTER PROG BLOCK

(MSCW)

MV 1897

Figure 3-5. Stack History and Addressing Environment List

TOS WORD T DISCARDED STACK
PORTION HISTORY
S Yssss OF STACK LIST

~
—————
MSCW
~ ~ I

MV 15698

Figure 3-6. Stack Cut-Back Operation on Procedure Exit

MV 1599

Figure 3-7. ALGOL Program With Lexicographical Structure Indicated

Address Environment Defined

There is a unique MSCW which each D registe: must address during the execution of any particular procedure. The

PROCEDURE A;

PROCEDURE C;
—— BEGIN —————————— LEXICOGRAPHICAL LEVEL 3

B 6800 System Reference Manual
Stack and Reverse Polish Notation

~— BEGIN LEXICOGRAPHICAL LEVEL 2
REAL V1; u=2,8=2
REAL V2; Mu=2,8=3

H=206=4

— BEGIN ———————— LEXICOGRAPHICAL LEVEL 3

REAL V3; “f3"gf2
PROCEDURE B; H=3,0=3
— BEGIN LEXICOGRAPHICAL LEVEL 4
V3 =3;
V1 =V3;
END
B;
L— END;

Mu=26=5

REAL V4; H=3§=2
PROCEDURE D; u=30=3
— BEGIN LEXICOGRAPHICAL LEVEL 4
REAL V5; u=4,6=2
V4 =4,
V5 =5;
A;
V2 = V4;
L END
D;
— END;
C;
L— END;

D registers must be changed, upon procedure entry or exit, to address the correct MSCWs. The list of MSCWs which the
D registers address is the addressing environment of the procedure.

Mark Stack Control Word Linkage

The addressing environment of the program is maintained automatically by linking the MSCWs together in accordance
with the lexicographical structure of the program. This linkage is the stack number (Stack No.) and displacement (DISP)
fields of the MSCW, and is inserted into the MSCW whenever the procedure is entered. The addressing environment list
is formed by linking each MSCW to the MSCW immediately below the declaration for the procedure being entered. This
forms a tree-structured list which indicates the addressing environment of each procedure (figures 3-8 and 3-9). This list
is used to update the D registers whenever a procedure entry or exit occurs.

5001290

B 6800 System Reference Manual
Stack and Reverse Polish Notation

STACK ADDRESS
MEMORY ENVIRONMENT
AREA LIST
TOS WORD
4 v Nu ~ '
C—1 = '
~ ~ PROCEDURE B
F - <+
| MSCW L _DisP p— <
PCW-B_] Y PROCEDURE A
V3
1 MSCW | obisp y
D REGISTERS
D31 T T
! Y PROCEDURE D
~ ~ V5
D6 MSCW Coss 15 P
DS N
D3 . PCW-D ! Y PROCEDUREC
D2 | V4
D1 L
DO MSCW [oisp ;
PCW-C .
< OUTER PROG
PCW-A | Y slock
V2
V1
] MSCW | oise —_ P
A A J
MV 1600

Figure 3-8. D Registers Indicating Current Addressing Environment

PROCEDURE “D" LEXICOGRAPHICAL

PROCEDURE B LEVEL 4
PROCEDURE “C”. LEXICOGRAPHICAL

PROCEDURE A LEVEL3

— e y LEXICOGRAPHICAL
MV 1601 OUTER PROGRAM BLOCK LEVEL 2

Figure 3-9. Addressing Environment Tree of ALGOL Program

B 6800 System Reference Manual
Stack and Reverse Polish Notation

STACK HISTORY SUMMARY

The entry and exit mechanism of the processor hardware automatically maintains both the stack history and address-
environment lists to reflect the current status of the program. Interrupt response is a procedure entry. Therefore, the
system is able to conveniently respond to, and return from, interrupts. Upon recognition of an interrupt condition, the
processor creates a MSCW, inserts an indirect reference word into the stack to address the interrupt-handling procedure,
inserts a literal constant to identify the interrupt condition and two other parameters, and initiates an MCP interrupt-
handling procedure. The D registers are updated upon entry into the interrupt-handling procedure, to display all legiti-
mate variables. Upon return from this procedure, the D registers are updated to display variables of the former
procedure.

MULTIPLE STACKS AND REENTRANT CODE

The B 6800 stack mechanism provides a facility for handling several active stacks, which are organized in a tree structure.
The trunk of this tree structure is a stack containing MCP global quantities.

LEVEL DEFINITION

A program is a set of executable instructions, and a job is a single execution of a program for a particular set of data. As
the MCP is requested to run a job, a level-1 branch of the basic stack is created. This level-1 branch contains the descrip-
tors pointing to the executable code and read-only data segments for the program. Emerging from this level-1 branch is

a level-2 branch, containing the variables and data for this job. Starting from the job’s stack and tracing downward
through the tree structure, one finds first the stack containing the variables and data for the job (at level 2), the segment
descriptor to be executed (at level 1), and the MCP’s stack at the trunk (level 0).

REENTRANCE

A subsequent request to run another execution of an already-running program requires that only a level-2 branch be
established. This level-2 stack branch emerges from the level-1 stack of the already-running program. Thus two jobs
which are different executions of the same program have a common node, at level-1, describing the executable code. It
is in this way that program code is re-entrant and shared. This results simply from the proper tree-structured organiza-
tion of the various stacks within the machine. All programs within the system are re-entrant, including all user programs
as well as the compilers and the MCP.

JOB-SPLITTING

The B 6800 stack mechanism also provides the facility for a single job to split itself into two independent jobs. A com-
mon use of this facility occurs when there is a point in a job where two relatively large independent processes must be
performed. This splitting can be used to make full use of a multiprocessor configuration, or to reduce elapsed time by
multiprogramming the independent processes.

A split of this type establishes a new limb of the tree-structured stack, with the two independent jobs sharing that part of
the stack which was created before the split was requested. The process is recursively defined and can happen repeatedly
at any level.

STACK DESCRIPTOR

Stack branches are located by an array of descriptors, the stack vector array (figure 3-10). There is a data descriptor in
this array for every stack branch. This data descriptor, the stack descriptor, describes the length of the memory area
assigned to a stack branch and its location in either local memory or disk.

5001290 3-17

B 6800 System Reference Manual
Stack and Reverse Polish Notation

STACK STACK STACK STACK STACK
_VECTOR ., NO.n _NO.4 _ NO.3 ¥ NO. 2
MSCW MSCW <_1
COn1 =i TOSCW' Mscw MSCW Lea—
~ ~ ~ ~ MSCW 5 ~
DD5 »| TOSCW T rd MSCW
DD4 : -] TOSCW v "
DD3 »] PROC.ID
DD2 SEGMENT
o1 STACK DESCRIPTORS
P] TRUNK v ~~
DDO T T DISPLAY
sD REGISTERS
[} DD |j=-sTACK :
VECTOR ~ L D31
~ 1. DESCRIPTOR
SD
—»1 mMscw
MSCW | o A
~ ~y Ds
L] TOSCW = D4
D3
D2
D1
DO
MV 1602

Figure 3-10. Multiple Linked Stacks

A stack number is assigned to each stack branch. The stack number is the index value of the stack descriptor in the
stack vector array.

STACK VECTOR DESCRIPTOR

The array size of the stack vector and its location in memory is described by the stack vector descriptor, located in a
reserved position of the trunk of the stack (figure 3-10). All references to stack branches are made through the stack
vector descriptor, indexed by the stack number.

PRESENCE BIT INTERRUPT

A presence bit interrupt results when an addressed stack is not present in memory. This presence bit interrupt facility

smnmamnite atanls Aviaclocrs s —nan H it i 3 1
permits stack overlays and recalls under dynamic conditions. Idle or inactive stacks may be moved from main memory

to disk as the need arises and, when a stack is subsequently referenced, a presence bit interrupt is generated to cause the
MCP to recall the non-present stack from disk.

B 6800 System Reference Manual

SECTION 4
MAIJOR REGISTERS AND CONTROL PANELS

DISPLAY PANELS

The B 6800 system registers and flip flops are displayed on the display section of the MDP cabinet (see figure 4-1). The
display section of the B 6800 MDP cabinet is divided into the programmers display panel and the maintenance display
panel. These two panels occupy that portion of the MDP cabinet that is above the keyboard panel. The programmers
display panel (the left front half of the MDP display section) contains those system controls that are relevant to the
programmers display. The maintenance display panel (the right front half of the MDP display section) contains those
system controls that are relevant to the maintenance display.

PROGRAMMERS DISPLAY PANEL

The programmers display panel (see figure 4-2) is divided into three sections which are the system control panel, the
status display panel, and the register display panel.

System Control Panel

The top row of indicators on the programmers display panel are the system controls (refer to figure 4-2). The system
controls consist of eight combination indicator lamps and/or push button switches. The use and meaning of each of these
system controls is as follows:

HALT switch and indicator

When depressed, causes the system to halt at the end of the current instruction. When the
system is halted, the HALT indicator is illuminated.

LOAD switch

When depressed, causes a general clear. When released, causes a LOAD signal to be sent to the
mainframe.

CARD LOAD SELECT switch and indicator

When depressed, causes the card load select flip flop in the display control logic to change state. The
output of the flip flop goes to the mainframe and the CARD LOAD SELECT indicator. When true,
card load has been selected and the indicator is on. When false, disk has been selected and the indicator
is off.

RUNNING indicator
‘This indicates that the system is running.
GENERAL CLEAR switch

When depressed, causes the systems flip flops to be reset.

POWER FAIL indicator

The power failure lamp illuminates if any over voltage condition is sensed by any of the B 6800 system power
supplies except the MDP power supply. The power failure lamp will also illuminate if 2 regulators in each planar
memory cabinet (one regulator for each of two memory modules) senses an under voltage condition. The B 6800

5001290 4-1

SYSTEM
CONTROLS

MV1603

MAINTENANCE DISPLAY
(FACING) PANEL

PROGRAMMERS
DISPLAY PANEL

MAINTENANCE DISPLAY
(COVER) PANEL

MAINTENANCE PROCESSOR
CONTROL PANEL

KEYBOARD

Figure 4-1. System Control and Display Registers

MAINTENANCE
DISPLAY PANELS

S[ouB [013UO) PuE SsI19SISoy IOfEl
[enuepy 3dUI8JeY WLISAS 0089 4

B 6800 System Reference Manual
Major Registers and Control Panels

SYSTEM
CARD
RUN- ||cen | |power POWER POWER
HALT [LOAD I;gfgc, NING | |cLEAR| |FAIL ON OFF ggalgEOL
VOLT
AROF || psr2 || stra || stre || sTre || stro || sTRE || shiT || cHEck || MAR-
GIN
CLK
BROF || Psr1 || sTRF || sTRa || sTru || sTre || stak || 1cee || TesT || MAR-
GIN
STATUS
: IND DISPLAY
PrOF || psro || varr || eoiT || Teer || vecr || unr || Lror ||evenT
PWR PANEL
00 01 02 03 04 05 06 07 08 09
10 11 12 13 14 15 16 17 18 19
DISPLAY BABCDEF ale|c|olelF
REGISTER
ONE A B X Y C Z P L
DISPLAY ABCDEF alelc|ole|F
REGISTER
TWO f
A B X Y C V4 P L
REGISTER
DISPLAY
PANEL
DISPLAY AB'CDEF AlB|C|D|E|F
REGISTER
THREE
A B X Y C Z P E
DISPLAY A|B|C|D|E|F AlB|c|D]E|F
REGISTER
FOUR TAR |[MARA([MAR |[ExP
ADRA |ADRB"MSMR| FLD STVR

MV1604A Figure,4-2. Programmers Display Panel

5001290 4-3

B 6800 System Reference Manual
Major Registers and Control Panels

system will detect a system over voltage power fault with this condition, even though the actual cause of the
fault is an under voltage condition.

POWER ON switch and indicator

When depressed, this switch initiates a power up sequence. The power on indicator is illuminated
while power is applied to the system.

POWER OFF switch

When depressed, initiates a power down sequence. This indicator is illuminated when power is off, the
main system circuit-breaker is on, and +10 Vdc is available in the system.

Status Display Panel

The status display panel (see figure 4-3) consists of a series of 50 individual indicator lamp. These individual indicators
are arranged in a matrix of five rows of ten indicators. Each indicator displays the state of a major control flip-flop within
the B 6800 system. The logical state of the flip-flop is true when the lamp indicator is illuminated, and is false when the
indicator is not illuminated.

The meaning of each indicator on the status display panel is as follows:

Mnemonic Meanin

AROF This indicator is illuminated when the A register contains a valid stack word.

BROF This indicator is illuminated when the B register contains a valid stack word.

PROF This indicator is illuminated when the P register contains a word of program code.

PSR 2, The three-bit program syllable register. This register is used as an index value into the contents
PSR 1, of the P register. The P register contains machine language code operators. PSR points to the
PSR O first syllable of the next machine language operator to be executed. When the next machine

language operator is executed it will cause PSR to point at a new syllable in the P register. The
initial value of the PSR register comes from a PCW for program entry, or from a RCW for pro-
gram exit, or from the second syllable of a branching operator.

The P register contains six syllables, numbered zero through five. The binary value of PSR selects
a beginning syllable. The PSR =5 condition, together with a SECL (Syllable Execute Complete
Level), will cause a new word of program code to be placed in the P register, and PSR will be re-
set so that it points at the first syllable of the new program code in the P register.

STRA, STRB, The ten data processor family strobe indicators. Every machine language operator that is executed

STRC, STRD, by the data processor belongs to one of the ten DP operator families. When a machine language

STRE, STRF, operator is executed by the data processor, the proper strobe lamp is illuminated to indicate which

STRG, STRH, family of the data processor the current operator belongs to. The proper family (strobe) is deter-

STRJ, STRK mined by decoding the four most significant bits of the operator code (pointed at by PSR) in the
P register.

VARF The variant mode flip flop indicator lamp. Each family of primary operator codes in the

DP can contain a maximum of sixteen specific operators. The VARF flip flop is used to
extend the number of operator codes in a family. The use of variant mode causes an

062100S

AROF PSR2 STRA STRB STRc | | STRD STRE SHLT | |CHECK M\ggm
BROF PSR1 STRF STRG | |STRH STRJ STRK ICFF TEST MX;E,N
PROF PSRO VARF EDIT TEEF VECF IHF LROF | |EVENT ,','\v'v%
00 01 02 03 04 05 06 07 08 09
10 11 12 13 14 15 16 17 18 19
MV 16056

Figure 4-3. System Status Indicator Panel

s[aueq [01)U0)) pue s1915130Yy Iofepy
[eNUB 90UI9JoYy WRISAS 0089 g

B 6800 System Reference Manual
Major Registers and Control Panels

Mnemonic Meaning
VARF operator code to use a minimum of two syllables in the P register of the DP. The first
(continued) syllable of a variant mode operator must be the VARI (95 hexidecimal) code. The execution

of the VARI (95) primary mode operator causes the VARF flip flop to set, and the indica-
tor lamp to illuminate. The state of the VARF flip flop identifies either a primary mode
operator (VARF not), or a variant mode operator (VARF).

A variant mode operator occupies two or more syllables. The first syllable of a variant
mode operator code is the primary mode VARI operator. This operator causes the VARF
flip flop to be set, and thereby specifies that the next syllable contains a variant mode
operator code. The second syllable in a variant mode operator code specifies the family
strobe for the operation to be performed.and also specifies the specific variant mode opera-
tion that is to be performed.

The VAREF flip-flop is reset each time the data processor completes a variant mode operator. If
the next operation to be performed is another variant mode operation, then another VARI operator
must be performed to set the VARF flip-flop.

The data processor detects two consecutive VARI (95) operator codes to be an invalid
program code error condition. This error condition will cause the system to abort the
program that contains the error condition.

<]
t
=3

The EDIT indicator represents the state of the EDIT flip flop in the data processor. The
EDIT flip flop is used to extend the number of operator codes that a family may contain,
in a manner that is similar to the way that the VARF flip flop extends the number of
operators in a family. The B 6800 system cannot be in edit mode, and in variant mode at
the same time, except when a variant mode operation is performed by means of a pseudo-
call from an edit mode operation. Edit mode is never pseudo-called by a variant mode
operation.

There are three data processor machine language operators that directly cause the EDIT
flip flop to be set. These operator codes aer as follows:

EXSD Execute Single Micro destructive (code D2).
EXSU Execute Single Micro Update (code DA).
ESPU Execute Single Micro, Single Pointer Update (code DD).

Each of these three operator codes cause a single edit mode micro operator to be executed
by the data processor, after which the data processor reverts to primary mode. The edit
mode micro that will be execuied is defined in the next syllable of program code following
the Execute Single Micro operator code syllable. The EDIT flip flop is set at the beginning
of the operator code, and is reset at the end of the operator code. Resetting the EDIT flip
flop causes the data processor to revert to primary mode operations.

The EDIT flip flop is also set during the execution of a table of edit mode operators. The
use of a table of edit mode micro operaiors is indicated when the TEEF indicator is
illuminated. When a table of edit mode micro operators are executed the last micro operator
in the table must be the End Edit Micro Operator (EEND). This operator, when executed,
will cause the EDIT flip flop to be reset, returning the data processor to primary mode
operations.

Mnemonic

TEEF

VECF

5001290

B 6800 System Reference Manual
Major Registers and Control Panels

Mesaning

The TEEF indicator is illuminated when a table of edit mode micro operators is being
executed. The table of micro operators is fetched from a location in memory in a manner
that is similar to that used to fetch primary mode machine language code. The edit mode
micro code is placed in the P register, and the syllables of micro code are executed the same
as if they were primary mode machine language code.

There are two primary mode machine language code operators that cause the B 6800 data
processor to begin table edit mode operations, and they are:

TEED Table Enter Edit Destructive operator (code DO)
TEEU Table Enter Edit Update operator (code D8).

Executing the TEED, or TEEU operator causes the TEEF, and the EDIT flip flops to be

set, placing the data processor in the table edit mode of operations. The last micro operator
in the table must be the ENDE micro operator. The execution of the ENDE micro code
operator causes both the EDIT, and the TEEF flip flops to be reset, and these flip flops
being reset returns the data processor to primary mode operations.

The use of table edit mode operations causes a special set of base and index registers to be
used to fetch the micro operators from memory. These IC memory registers are defined and
discussed in section 5.

The VECF flip flop is set, and the indicator is lit when the DP is operating in vector mode.

Two primary mode operators are used to place the B 6800 data processor in vector mode,
and these operators are:

VMES Vector Mode Enter Single (code EF).
VMEM Vector Mode Enter Multiple (code E7).

The type of vector mode entry operator used depends on the number of words of vector
operators that are to be executed. If only one word of vector mode operators is to be
executed the VMES operator is used to enter vector mode. If more than one word of vector
mode code is to be executed then the VMEM operator is used to enter vector mode.

The vector mode word may contain primary mode operators from families A, B, C, D, and
E. If a primary operator is executed during vector mode operations, and the primary mode
operator incurs an interrupt condition, the data processor will exit from vector mode, and
resume processing in primary mode. The cause of the interrupt in the primary mode
operator will not be remembered, and no indication that a failure occurred will be
maintained.

A word of vector mode machine language coded operators may be executed recursively,
without regard to the type of vector mode entry that is used. The VECF indicator is
illuminated when vector mode operations is entered, and stays illuminated during the time
that the data processor is performing vector mode operations.

4-8

Mnemonic

VECF
(continued)

ITHF

SHLT

ICFF

LROF

B 6800 System Reference Manual
Major Registers and Control Panels

Meaning

There are two vector mode operators that are used to exit vector mode and return to
primary mode. These vector operators are:

VEBR Vector Branch (code EE).
VMEX Vector Exit (code E6).

When either of these vector mode operators are executed the VECF flip flop is reset, the
indicator is extinguished, and the data processor is returned to primary mode.

The data processor will also exit from vector mode and return to primary mode if an
internal interrupt occurs during vector mode operations. External interrupts are disabled

" during vector mode interrupts.

The Inhibit External Interrupt flip flop (IIHF), when set, prevents an external interrupt from
initiating the interrupt controller logic in the data processor. When reset, IIHF allows
external interrupts to initiate the interrupt controller logic. The IIHF flip flop is set, and
the indicator is illuminated when the Disable External Interrupt (DEXI, code 9547) variant
mode operator is executed. The IIHF flip flop is reset, and the indicator is extinguished
when the Enable External Interrupt (EEXI, code 9546) variant mode operator is executed.

ITHF may also be set or reset upon entry into a new procedure. The state of bit number nineteen
in a PCW that causes entry into a new procedure, conditions the state of ITHFE. If bit nineteen (in
the PCW) is true, [THF will be set.

IIHF is conditioned by the state of bit nineteen in an RCW (during the execution of an EXIT or
RETURN operation) in a similar manner to that of the PCW (during an ENTER operation).

The SHLT indicator shows the state of the Super Halt flip-flop. If the flip-flop is set, the indicator
is illuminated. .

The super halt logic is used to prevent stack runaway due to repetitive errors in the interrupt
handling procedure. Stack runaway causes the interrupt controller to destroy the contents
of memory by inserting multiple interrupt handling stacks.

The super halt flip flop is set if the interrupt controler is initiated four times without per-
forming the normal EXIT operator at the end of the interrupt handling procedure. When the
SHLT flip flop is set the system is halted such that stack runaway is stopped. The SHLT
indicator is illuminated to indicate the reason for stopping the system.

The ICFF indicator shows the state of the Interrupt Controller Run (ICFF) flip fiop.
The ICFF flip flop is used by the interrupt controller to enable the sequence counts of the
controller flow. The ICFF flip flop is set while the interrupt controller is performing its

normal functions, and is reset otherwise.

The LROF flip-flop (Look Ahead Register Occupied) indicates valid code is contained in the 100k
ahead register.

The LROF flip flop performs a function for the look ahead register that is analogous to the
function the PROF flip flop performs for the P register. If the next word of program code

Mnemonic

LROF
(continued)

CHECK

TEST

EVENT

VOLT MARGIN

CLK MARGIN

IND PWR

00 through 19

5001290

B 6800 System Reference Manual
Major Registers and Control Panels

Meanin

to be executed is present in the look ahead register then LROF is set. If LROF is reset then
the next word of program code is present -in-memory at the address specified by the-sum-of -
the addresses in the PBR, and the PIR IC memory registers, or the LAR (look ahead memory
address) register.

If the P register becomes empty (PROF is reset) and LROF is set, then the contents of
the look ahead register are transferred to the P register to be executed as program code.
Transferring the contents of the look ahead register to the P register will cause the LROF
flip flop to be reset. When LROF is reset the look ahead logic will attempt to perform a

memory cycle and fill the look ahead register with the next word of program code in
sequence.

The CHECK indicator is used to determine when the Maintenance Processor (MP) module has
detected a fault condition during the MP module internal testing.

The TEST indicator is used to indicate whether or not the MDP PROC ENABLE switch is in

the ENABLED position. If the TEST indicator is illuminated the switch is in the ENABLED
position. This indicator also illuminates if the SECL or CHLT pushbuttons on the keyboard

are depressed, or if the CPU LOCAL/REMOTE switch on the maintenance control panel is in
the LOCAL position.

The EVENT indicator is used to indicate whether or not the MDP EVENT switch is in the
ENABLED position. If the EVENT indicator is illuminated the switch is in the ENABLED
position.

The VOLT MARGIN indicator circuit is used to indicate when a voltage margin has been
selected in a power supply.

The CLK MARGIN indicator circuit is used to indicate when a clock margin has been
selected.

The IND PWR indicator circuit is used to indicate when a fault condition has occurred in the
power supply of a planar memory cabinet.

The IND PWR lamp is illuminated for either of the following conditions:

a. Either the +5V or the +15V regulator, or both regulators for one of the memory
modules in a planar memory cabinet detects an UV condition.

b. Either or both MODE switches on the auxiliary sequence control board in a planar
memory cabinet is in the OFF position (that is, disabling the regulators for one or
both of the memory modules).

The twenty indicators numbered 00 through 19 are used to indicate the busy status (or avail-
ability) of peripheral channels in the B 6800 system. Channel 00 through 09 are the ten
channels located in peripheral control cabinet number zero. Channel 10 through 19 are located
in PCC number one. A peripheral channel is available when its indicator is illuminated.

4-9

Register Display Panel

B 6800 System Reference Manual
Major Registers and Control Panels

Figure 4-2 shows that there are four register displays on the register display panel. Each register can display up to eight
different registers. There are eight pushbutton indicators that are used to select which register in the CPU is displayed
in each of the four displays. When a pushbutton is pressed, the pushbutton illuminates, and remains illuminated, to indicate

which display is selected.

The meaning of the eight register selection indicators for each of the four registers is as follows:

Register
Number Pushbutton

1,2,3 A

< x =

@]

1,2 L

w
e

4 LAR/ADRA

MARB/

ADRB

MAR/MSMR

EXP FLD

STVR

Data Displayed When Pushbutton Illuminated

The contents of the A register of the CPU
The contents of the B register of the CPU
The contents of the X register of the CPU
The contents of the Y register of the CPU
The contents of the C register of the CPU
The contents of the Z register of the CPU
The contents‘of the P register of the CPU

The contents of the look ahead register of the CPU cabinet

The contents of the external input bus to channel B
of the memory control

The contents of the five hexadecimal digits (twenty bits) of the look ahead logic
memory control address field on the left, and the contents of the five hexadecimal
digits (twenty bits) of the Channel A save memory control address field on the

right.

The contents of the five hexadecimal digits (twenty bits) of the channel B memory
control address field on the left, and the contents of the five hexadecimal digits
(twenty bits) of the channel B save memory address on the right.

The contents of the five hexadecimal digits (twenty bits) of the memory control
address register on the left, and the contents of the five hexadecimal digits (twenty
bits) of the address adder sum register on the right.

Sée note one below.

The contents of one of four vector status words in the CPU module

Note one: When a top-of-stack register is displayed in octal format, the register that is selected to display the
register data contains the 13 octal digits of the mantissa field. The contents of the exponent field
for the selected word are displayed in register number four if the EXP FLD position is selected.

4-10

B 6800 System Reference Manual
Major Registers and Control Panels

MAINTENANCE DISPLAY PANEL

The maintenance display panel (refer to figure 4-1) is divided into two sections which are the Maintenance Processor (MP)
control panel and display, and the maintenance display registers. The maintenance display panelis covered by a hinged panel,
and during normal system operations is not visible. When the hinged panel is opened, two maintenance registers, and the MP
control panel and display are visible on the facing panel (see figure 4-4). Two other maintenance display registers are mounted
on the back of the hinged panel (see figure 4-5). The MP control panel and display are located at the bottom of the
facing panel, and the two maintenance display panels are located above the MP control panel.

Maintenance Display Registers

A maintenance display register consists of 64 indicator lamps, 64 label windows, a thumbwheel selector switch, and a
selector switch display window. The 64 indicator lamps are organized into four bars of 16 indicators. A label window
is located immediately beneath each indicator lamp. A thumbwheel selector switch is located on the right hand side of
the register, and the selector switch display window is located to the left of the thumbwheel selector switch, between the
thumbwheel and the four bars of indicator lamps.

5001290 4-11

B 6800 System Reference Manual
Major Registers and Control Panels

MAINTENANCE
DISPLAY
REGISTER
NUMBER 1

MAINTENANCE
DISPLAY
REGISTER
NUMBER 2

AN
M
SYSTEM AINTENANCE
ENANCE PROCESSOR
MAINTEN CONTROL
CONTHROL PANEL
PANEL

MV1606

Figure 4-4. Maintenance Display (Facing) Panel
4-12

B 6800 System Reference Manual
Major Registers and Control Panels

MAINTENANCE
DISPLAY
REGISTER
NUMBER 3

MAINTENANCE
DISPLAY
REGISTER
NUMBER 4

MAINTENANCE

CARES BOOK
CABINET HOLDER
LABEL DECAL BRACKET

Figure 4-5. Maintenance Display Panel (Cover)
5001290

4-13

B 6800 System Reference Manual
Major Registers and Control Panels

The thumbwheel selector switch selects one of six pages of 64 signals on a panel of the CPU cabinet to be displayed

in a register. The selector switch display window indicates which page and panel are presently selected for display in the
register. The page, panel, and display register correlation is shown in table 4-1. This table also indicates the major circuit
or logical module that is displayed in each of the maintenance display registers, for all settings of the thumbwheel
selector switches.

Table 4-1. B 6800 Maintenance Display Panel Register Selection Positions

Maintenance Thumbwheel
Display Selector Panel Page Major Circuit or Module
Register No. Position Selected Selected Displayed

1 P1-0 1 0 Multiplexer
P1-1 1 1 Multiplexer
P1-2 1 2 Data Processor
P1-3 1 3 Data Processor
P14 1 4 Data Processor
P1-5 1 5 Data Processor

2 P20 2 0 Multiplexer
P2-1 2 1 Multiplexer
P2-2 2 2 Data Processor
P23 2 3 Data Processor
P24 2 4 Data Processor
P2-5 2 5 Data Processor

3 P3-0 3 0 Multiplexer
P3-1 3 1 Multiplexer
P32 3 2 Data Processor
P3-3 3 3 Data Processor
P34 3 4 Data Processor
P3-5 3 5 Data Processor

4 P40 4 0 Maintenance and Event logic
P4-1 4 1 Maintenance and Event logic
P4-2 4 2 Clock Control logic, and Time

of Day logic

P4-3 4 3 Memory Control
P44 4 4 Micro Program Logic
P4-5 4 5 Not used

Tables 4-2 through 4-13 show ihe flip flops or iogic terms ihai are displayed in each bit position of the maintenance
display registers. If the flip flop is set (the logic term is a true logic level) the indicator is illuminated.

4-14

062100¢

SiI—¥

Bar

Bar

RDAF

MINF

LSAF

ADPF

DREN

CDLF

DAGL

RDPR

BDPR

Table 4-2. Maintenance Display Register Logic Signals For Register 1, Pages 0 (Top), and 1 (Bottom)

RDAS8

PDA4

PDA2

PDA1

BDAS8

BDA4

BDA2

BDAL

PDB8

PDB4

RDB2

PDB1

BDBS

BDB4

BDB2

BDBI1

Maintenance Register Number 1 Switch Position (Page) Number P1-0

5

PDC8

PDC4

PDC2

RDC1

6

PDD8

PDD4

PDD2

PDD1

SCF2

SCF1

SCFO0

Bits

8

STCF

10CF

J512

SCH4

10

SCH3

SCH2

SCH1

SCHO

11

ITP3

ITP2

ITP1

ITPO

Maintenance Register Number 1 Switch Position (Page) Number P1-1

BDC8

BDC4

BDC2

BDC1

BDD8

BDD4

BDD2

BDD1

OUTP
ZWPR
CRPR

BRQF

Bits

8

BCC3

BCC2

BCC1

BCCO

BCFS5

BCF4

10

BCF3

BCF2

BCF1

BCFO

BCH4

IC5F

IC4F

12

BCH3

BCH2

BCH1

BCHO

13 14
IC3F
IC2F
ICIF
ICOF ICH4
13 14
LSTC
MAHF
PAVL
IORG

15
ICH3
ICH2
ICHI

ICHO

15
IOR3
IOR2
IOR1

IOR0

16

16

s[oueJ [0NIUO)) pue sI1915130Y Iofepy
[BNUEBJ 30ULIaJoy WaISAS 0089 €

91—¥

Bar

Bar

TA3F

TA2F

TAILF

TAOF

TC3F

TC2F

TCIF

TCOF

SA3F

SA2F

SAIF

SAOF

JCTF

JC6F

JC5F

JC4F

Table 4-3. Maintenance Display Register Logic Signals For Register 1, Pages 2 (Top), and 3 (Bottom)

JATF

JA6F

JASF

JA4F

JC3F

JC2F

JC1F

JCOF

JA3F
JA2F
JAIF

JAOF

QC8F
QC7F
QC6F
QCSF

Maintenance Register Number 1 Switch Position (Page) Number P1-2

5

EXAI

KA2F

KAIF

KAOF

6
QAT7F
QAG6F
QASF

QA4F

7
QA3F
QA2F
QAIF

QAQOF

Bits

8

SM03

SM02

SMO1

SM00

Bits

9

SM04

PSCF

CMPF

10

11

NLZF

Maintenance Register Number 1 Switch Position (Page) Number P1-3

QC4F
QC3F
QC2F

QCI1F

CRNCF
SASG
QCZ2

QCZ1

ACM5

ACM4

Bits

8

ACL7

ACL6

ACLS

ACLA

ACL3

ACL2

ACL1

ACLO

10

11
TD3F
TD2F
TDIF

TDOF

12

NLZ3

NLZ2

NLZ1

NLZ0

12

JD7F

JD6F

JDSF

JD4F

HRI1S

HR14

HR13

HR12

13

JD3F

JD2F

IDIF

JDOF

14
HR11
HR10
HRO8

HRO8

14

QDsF
QDAF

QDI9F

15
HRO7
HRO6
GROS

HRO4

15
QDSF
QD7F
QD6F

QDSF

16
HRO3
HRO2
HRO1

HROO

16
QD4F
QD3F
QD2F

QDIF

S[oUBd [0IIUO)) puB SISISIZSY I0fe]
[eNUB] 20UISJY WRISAS 0089 4

0621005

L1+

Bar

MREZ9

MDROC

MDROB

MDROA

RDCBA

ADREA

STOF

SDIS

MREZ38

MDRIC

MDRI1B

MDRIA

2

RDREA

RDSEA

CKB6A

CKBsSA

Table 4-4. Maintenance Display Register Logic Signals For Register 1, Pages 4 (Top), and 5 (Bottom)

MDRSS

MDRF4

MDRF3

MDRF2

CKB4A

CKB3A

CKB2A

CKB1A

Mz812

Mz812

MZ810

MZ809

4

CBIN

CBAI

CKB6B

CKBSB

Maintenance Register Number 1 Switch Position (Page) Number P1-4

5

6

MDRSX MACT8

MSOR2

MSOR1

MSORO

CRIC

7

MPBR

MSBR

MDBR

MTBR

Bits

8

MPIR

MSIR

MDIR

MTIR

MPDR

MSNR

MF

MS

10

MBOS

MLOSR

MBUF

MTEMP

11

MCOUT

MCZIN

MSUBT

MZe6L9

Maintenance Register Number 1 Switch Position (Page) Number P1-5

CKB4B

CKB3B

CKB2B

CKBI1B

ADREB

RDCBB

RDSEB

INAGB

RDMEB

INALB

MPARB

Bits

)
CBM3
GBNTB
CAM3

SCOR

9

SC1D

GNTR

INAGA

RDMEA

10

STAR

INPW

STUF

INALA

11

SCNR

STAP

LOPE

LPEN

12

MZ6T8

MZ618

MZ6T9

LLO04

SCAN

RUNI

LOPT

LOOP

13

LLO3

LLO2

LLO1

LLOO

13

STB2

STB1

STBO

CMPR

14

14

ADDR

BURE

RCPE

PCPE

15

15

EREN7

EREN6

ERENS

EREN4

16

EREN3

EREN2

EREN1

ERENO

S[oUBq [01}UO)) pue sidsiSoy o)
[ENUBJY 90UISJAY WBISAS 0089 g

8I—v

Bar

Bar

CC19

CC18

CC17

CCl16

AC19

AC18

ACI17

ACl6

CC15

CC14

CC13

CC12

AC15

ACl4

AC13

AC12

Table 4-5. Maintenance Display Register Logic Signals For Register 2, Pages 0 (Top), and 1 (Bottom)

CCl11

CC10

CCo9

CCo8

ACl11

AC10

AC09

AC08

CCo7

CCo6

CCOos

CCo4

ACO07

ACO06

ACOS5

ACO4

CCo3

CCo2

CCol

CCoo

ACO3

ACO2

ACO1

AC00

Maintenance Register Number 2 Switch Position (Page) Number P2.0

Maintenance Register Number 3 Switch Position (Page) Number P2-1

PINH

ASCI

ATIN

BINP

7

PF19

PF18

PF17

PF16

MINH

XLAT

FRAM

MPRT

Bits

8

PF15

PF14

PF13

PF12

Bits

8

BKWD

TEST

TGCl

TGCO

9

PF11

PF10

PIEN

PBAS

NEAR

BB=T

BIEN

BTA8

10

PBA7

PBA6

PBAS

PBA4

10

BTA7

BTA6

BTAS

BTA4

11
PBA3
PBAi
PBA1

PBAO

11
BTA3
BTA2
BTA1l

BTAO

12

PC19

PC18

PC17

PCi6

12

BS19

BS18

BS17

BS16

13

PC15

PC14

PCi12

BSIS.

BS14

BS13

BS12

14

PC11

PC10

PC09

PTAS8

14

BS11

BS10

BOEN

BBAS

PTA7

PTA6

PTAS

PTA4

15

BBA7

BBAG6

BBAS

BBA4

16

PTA3

PTA2

PTAl

PTAO

16

BBA3

BBA2

BBAIl

BBAO

s[eued [0I1U0)) pue §13)SI3oY Jofel
[BNUBJY 90ULIaJaY WISAS 0089 g

062100S

61—+

Bar

Bar

BETB
YETB
AETA

XETA

RQTB
RQTA
RQT9

RQT8

NZTB
ZDTB
NZTA

ZDTA

RQT7
RQT6
RQT5

RQT4

Table 4-6. Maintenance Display Register Logic Signals For Register 2, Pages 2 (Top), and 3 (Bottom)

HRTBI1
HRTB2
HRTALl

HRTA2

RQT3
RQT2
RQT1

RQTO

EXSB
ECRI
AITA

XITA

RQRB
RQRA
RQR9

RQR8

BITB
YITB
A2TA

X2TA

RQR7
RQR6
RQRS5

RQR4

Maintenance Register Number 2 Switch Position (Page) Number P2-2

6

B8TB

Y8TB

AATA

X4TA

ADSB

CCNS

CCR3

CCL3

Bits

8

SPCI

DPCI

CI75

DPOV

9

BX02

BX01

BX00

YX00

10

AX02

AXO01

AX00

XX00

11

YR-3

YR-2

YR-1

XR-1

Maintenance Register Number 2 Switch Position (Page) Number P2-3

RQR3
RQR2
RQRI

RQRO

CSC4

CSC3

CSC2

CSC1

Bits

8

CAPFE

SRM2

SRM1

SRMO

CAPFD

SRL2

SRL1

SRLO

10

CAPFC

ATEF

TRYF

CNGO

11

CAPFB

MAOF

RDEF

CINF

12

SC3F

SC2F

SCIF

SCOF

CAPFA

WAIT

LOG2

LOG1

SCEF
ICRE
BXSE

DISX

13
ABRF
CARQ
MISIR

MI48

14

ICR7

ICR6

ICRS

ICR4

14

PTGO

15
ICR3
ICR2
ICR1

ICRO

15
HAR3
HAR2
HAR1

HARO

BDPD

ADPD

16

S[oueg [013U0)) pue S19ISISeY Iofepy
[ENUBJ 90USISJOY WISAS 0089 €

0C

Bar

TUSF

TU4F

TU2F

TUIF

1

BYRI19

BYRI18

BYRI17

BYRI16

EEND

FINI

EXSF

EXPF

BYRIS

BYRI4

BYR13

BYRI2

1able 4-7. Maintenance Display Register Logic Signals For Register 2, Pages 4 (Top), and 5 (Bottom)

RETF

RNTF

NVLF

MPOP

BYRI11

BYR10

BYR09

BYRO8

JUGF

JUSF

JU4F

BYRO7

BYRO06

BYROS5

BYRO04

Maintenance Register Number 2 Switch Position (Page) Number P2-4

Bits

s 6 7 8 9 10 11
JU3F SSZ2 SI08 DIO8 QU4F DGSF SOPF
JU2F SSZ1 S104 DI04 QU3F LHFF UPDF
JUIF DSZ2 S102 DI02 QU2F RPZF SPRF
JUOF DSZ1 SI01 DIO1 QUIF XROF DPRF

Maintenance Register Number 2 Switch Position (Page) Number P2-5

Bits

5 6 7 8 9 10 11
BYR0O3 MTST A CMPE CBPW CB4wW CBPR
BYR02 TV2 Vo TABT WEFW CB3W WEFR
BYRO1 V1 ONCK ALTWC CB6W CB2W CB6R
BYROO TVO MISIW CB5W CB1W CB5SR

12

12

CB4R

CB3R

CB2R

CBIR

13

13

IT10

1T09

1T08

1T07

14

TFFF

TFOF

OFFF

FLTF

14

ITO6

ITOS

IT04

ITO3

15

EQVF

EXTF

15
1702
ITO1
IT00

IMTV

16
QUDF
QUCF
QUBF

QUAF

16
ECSF
EXTI
INTV

INTE

S[ouBJ [011U0)) pue s1a)sidey Jofep
[eNUBJ 99U2IdJoY WAISAS 0089 €

0621005

I

Bar

Bar

SL23
SE23
SL22

SE22

BAFP4
BAFP3
BAFP2

BAFP1

SL21
SE21
SL20

SE20

VALV
BURV
RDEV

PRZV

Table 4-8. Maintenance Display Register Logic Signals For Register 3, Pages 0 (Top), and 1 (Bottom)

SL19

SE19

SL18

SE18

PC3F

PC2F

PCIF

PCOF

SL17

SE17

SL16

SE16

SPWF

BFWF

XPBA

XRDR

SL15

SEIS

SL14

SE14

XPCC

XACC

XBBA

MPXT

Maintenance Register Number 2 Switch Position (Page) Number P3-0

6

SL13

SE13

SL12

SE12

Maintenance Register Number 3 Switch Position (Page) Number P3-1

INM9

INR9

INM8

INRS

7

SL11

SE11

SL10

SE10

INM7

INR7

INM6

INR6

Bits

8

SCL9

SCE9

SCL8

SCES

Bits

8

INMS

INRS

INM4

INR4

9
SCL7
SCE7
SCL6

SCE6

INM3
INR3
INM2

INR2

10

SCLS

SCES

SCL4

SCE4

10

INM1

INR1

INMO

INRO

11

SCL3

SCE3

SCL2

SCE2

11

MER2

MERI1

MERO

12

SCL1

SCE1

SCLO

SCEQ

12

Csv4

CSV3

Csv2

13

13

Csv1

CSVO0

MREC

SPw4

TOD3

TOD2

TOD1

TODO

14

SPW3
SPW2
SPW1

SPWO0

15

15

SPPE2

SPPE1

SPRE2

SPRF1

16

16

S[ouRg [O13UO)) PUE SIAISISoY Iofepy
[eNURH 90ULISJIY WNISAS 0089 g

Bar

TE3F

TE2F

TEIF

TEOF

BZ62

AZ63

AZ62

AZ61

JBCF

JE6F

JESF

JEAF

BZ61

CZ63

CZ62

CZ61

Table 4-9. Maintenance Display Register Logic Signals For Register 3, Pages 2 (Top), and 3 (Bottom)

JE3F

JE2F

JEIF

YZ62

XZ63

XZ62

XZ61

QE3F
QE2F
QEIF

QEOF

YZ61
7263
7762

2761

SMVF

MPYF

SUBF

LC3F

TOAS

TOA4

Maintenance Register Number 3 Switch Position (Page) Number P3-2

LC2F
LCIF
LCOF

DPFF

Maintenance Register Number 3 Switch Position (Page) Number P3-3

TCA3

TOA2

TOAl

TOAO

7

SF3F

SF2F

SFIF

SFOF

TOMS

TOM4

Bits

8

MP35

DBZF

FNWF

ZROF

Bits

8

TOM3

TOM2

TOM1

TOMO

QE4F

DISS

DIS4

10

TB3F

TB2F

TBIF

TBOF

10

DIS3

DIS2

DIS1

DISO

11

JB3F

JB2F

JBIF

JBOF

11

QB4F
QB3F
QB2F

QBIF

12
JS4F
JS3F
JS2F

JSIF

13

13
SOIF
QS3F
QS2F

QS1F

14

14

15

15

16

s[aued [011U0) pue S191sI30y lofepy
[eNUBJ 90USINISY WISAS 0089 g

06C100S

X 4

Bar

Bar

1 2
CPAS8 ICRF
CPA4 ICCF

CPA2 FWFF

CPA1 PRVA

LRAP LRIG

LRIL LRGN

LRAR LAER

LRDM OPTF

Table 4-10. Maintenance Display Register Logic Signals For Register 3, Pages 4 (Top), and 5 (Bottom)

3

CPIR1

CPIRO

WPTF

WBCF

IML2

IML1

IMLO

GCDS

CTIR

CSR2

CSR1

CSRO

ABR1

ABEL

ILDM

SEIN

SSR2

SSR1

SSRO

INCT

MEWT

BDST

ABIT

Maintenance Register Number 3 Switch Position (Page) Number P3-4

Bits

6 7 8 9 10 11
WPIR QP8F QP4F STMC MPRCB
SECF QP7F QP3F JPO2 MWRCB

QP6F QP2F JPO1 MNRFB
V8JK QPSF QPIF JPOO MREQB

Maintenance Register Number 3 Switch Position (Page) Number P3-5

Bits
6. 7 8 9 10 1t
INF+1 INFF MPX1 DR31 DR27 DR23
SEC+2 ALSB MPXB DR30 DR26 DR22
SEC+1 MPXG DR29 DR25 DR21
AYER RTRY DR28 DR24 DR20

12

MTEXB

MAPLB

MAOFB

MABXB

12

DR19

DR18

DR17

DR16

MDY4F

MDY3F

MDY2F

MDYI1F

13

DRI15

DR14

DR13

DR12

14

MATEB

MTRYB

MHOLD

MDRYB

14

DR11

DR10

DRO0Y

DRO8

15
MIF51
MHARB
MCBQF

MRDBF

15
DRO7
DRO6
DRO5

DRO4

16

MBSC3

MBSC2

MBSC1

MBSCO

16

DRO3

DRO2

DRO1

DROO

s[oueq j013U0)) pue s1sidoy Iofey
[enUey 20UaI9JY WASAS 0089 g

Yo+

Bar

Bar

PLK1

PLKO

PSOR

EV21

EV20

EV19

EVi8

'WMMF

RMMF

WIMF

RIMF

EV17

EV16

EV15

EV14

Table 4-11. Maintenance Display Register Logic Signals For Register 4, Pages 0 (Top), and 1 (Bottom)

AMMF

AIMF

MEXI

EV13

EV12

EV1l

EV10

EV09

EV08

EVO07

EV06

HALT

ARPT

EV05

EV04

EV03

EV02

Maintenance Register Number 4 Switch Position (Page) Number P4-0

Bits

8

9

JCMP

Jcsi10

JSC09

JCS08

10

JCS07

JCS06

JCSO05

JCS04

11 12

JCS03

JCS02

JCSO01 -

JCS00

Maintenance Register Number 4 Switch Position (Page) Number P4-1

EVOl

CCSF

MEVF

HOEF

ECT7

ECT6

ECTS

ECT4

Bits

8

ECT3

ECT2

ECT1

ECTO

I[COR

MBP1

MIAI

ESTP

10
EJCMP
EICIO
EJC09

EJCO8

11 12
EJCO07 EJC03
EJCO06 EJCO02
EJCO5 EJCO1

EJCO4 EJCO0

13

HLTD

ILHD

LODS

LAVF

SRS3

SRS2

SRS1

SRSO

14

EST7

EST6

ESTS

EST4

15

OSR3

OSR2

OSRI1

OSRO

15

EOP3

EOP2

EOP1

EOPO

16

VARS

VCTS

EDTS

TEDS

16

EVCT

ETED

EEDT

EVAR

s[oueJ [011UO)) PUE S1A)sIFY Iofey

[enuepy 90ULINJOY WRISAS 0089 g

062100s

(Y 4

Bar

CPC28

CPC27

CPC26

CPC25

IMCF3

PS2F3

PSIF3

PSOF3

CPC24
CPC23
CPC22

CPC21

CBOF3
CAOF3
WCCF3

PEDF3

Table 4-12. Maintenance Display Register Logic Signals For Register 4, Pages 2 (Top), and 3 (Bottom)

CPC20

CPC19

CPC18

CPC17

IMCF2

PS2F2

PS1F2

PSOF2

4

CPC16

CPC15

CPC14

CPC13

4

CBOF2

CAOF2

WCCF2

PEDF2

CPC12

CPCl11

CPC10

CPC09

IMCF1

PS2F1

PS1F1

PSOF1

Maintenance Register Number 4 Switch Position (Page) Number P4-2

6

CPCO08

CPCO7

CPC0O6

CPCOS

Bits

8

TD35

TD34

TD33

TD32

TD31

TD30

TD29

TD28

10

D27

TD26

TD25

D24

11

TD23

D22

TD21

TD20

Maintenance Register Number 4 Switch Position (Page) Number P4-3

CBOF1

CAOF1

WCCF1

PEDF1

IMCFO

PS2F0

PS1FO

PSOFO

Bits

8

CBOFO

CAOFO0

WCCFO

PEDFO

MTRIP

MTMR?2

MTMRI

MTMRO

10

WSTFO

WSTF2

MSPY

MSPX

11

WSTF1

WSTF3

TD19

TD18

TD17

TD16

12

13

TD15

TD14

TD13

TD12

13

GSOF

GSIF

GS2F

14

TD11

TDI10

TD09

TDO8

14

ICNF

GRDF

GABF

CRFF

15

TDO7

TDO06

TDOS

TD04

15

GT2F

GTIF

GTOF

16

TDO3

TDO02

TDO1

TDB0O0

16

GOAF

GOBF

GAOF

EGTM

S[ouBq [0J1UO0)) pUR sI101SIS0Y IO
[ENUB] 90URIJY WRISAS 0089 g

9T+

Bar

Bar

MMI1E

M19F

MI8F

M17F

M16F

MISF

M14F

Table 4-13.

M13F
M12F
MI1IF

M10OF

Maintenance Display Register Logic Signals For Register 4, Pages 4 (Top), and 5 (Bottom)

Maintenance Register Number 4 Switch Position (Page) Number P4-4

Bits
4 5 6 7 8 9 10 11 12 13 14 15
MM2E M27F M23F MM3E M37F M33F MMPD
M26F M22F M36F M32F
M29F M25F M21F M39F M3SF M31F
M28F M24F M20F M38F M34F M30F

Maintenance Register Number 4 Switch Position (Page) Number P4-5
Bits

4 5 6 7 8 9 10 11 12 13 14 15

16

16

sjoueq [013U0)) PUE 1215130y Iofely
[enUBy 20UdISJSY WIRISAS 0089 €

B 6800 System Reference Manual
Major Registers and Control Panels

DISPLAY PANEL ONE, PAGE ZERO LOGIC SIGNALS

Page zero of register number one is used to display the multiplexor functions of the CPU cabinet. The logic signals and flip-flops
that are displayed (refer to table 4-2) are as follows:

RDAF

MINF

LSAF

ADPF

DREN

CDLF

DAGL

PDPR

PDA1,PDA2, PDA4, PDAS
PDB1, PDB2, PDB4, PDB8

PDC1, PDC2, PDC4, PDC8
PDD1, PDD2, PDD4, PDD3

SCF0, SCF1, SCF2
STCF
I0CF
J512

SCHO, SCH1, SCH2, SCH3
SCH4

ITPO, ITP1, ITP2, ITP3

ICHO, ICH1, ICH2, ICH3
ICH4

The result descriptor available flip-flop.

The minus flip-flop.

The least significant address flip-flop.

The even character required flip-flop (used for card punch IO devices).
The driver enable flip-flop.

The channel designate level flip-flop.

The access granted level, delayed signal.

The peripheral data register parity bit.

The peripheral data register bits.

The service cycle sequence count flip-flops.
The start channel flip-flop.

The 10 complete flip-flop.

The large buffer (512 bytes) indicator.

The scratchpad channel address flip-flops.

The internal unit type flip-flops.

The initiate channel number register.

DISPLAY PANEL ONE, PAGE ONE LOGIC SIGNALS

Page one of register number one is used to display the multiplexor functions of the CPU cabinet. The logic signals and flip-
flops that are displayed (refer to table 4-2) are as follows:

BDPR

BDA1, BDA2, BDA4, BDAS8
BDBI1, BDB2, BDB4, BDBS
BDC1, BDC2, BDC4, BDC8
BDD1, BDD2, BDD4, BDDS8

5001290

The burst data register parity bit.

The burst data register bits.

4-27

B 6800 System Reference Manual
Major Registers and Control Panels

OuUTP The output parity bit.

ZWPR The Z register word parity bit.

CRPR The C register parity bit (even parity).
BRQF The burst request flip-flop.

BCC0, BCC1, BCC2, BCC3
BCF0, BCF1, BCR2, BCF3

The burst cycle character count flip-flops.

BCF4, BCFS The burst cycle sequence count flip-flops.
BCHO, BCH1, BCH2, BCH3 The burst channel number register.

BCH4

LSTC The last character logic signal.

MAHF The save memory access obtained logic signal.
PAVL The path available logic signal.

IORG The 10 regulator logic signal.

IORO, IOR1,I0R2, IOR3 The 10 regulator count register.

DISPLAY PANEL ONE, PAGE TWO LOGIC SIGNALS

Page two of register number one is used to di;play the status of family A and the arithmetic controller functions of the data
processor, in the CPU cabinet. The logic signals and flip-flops that are displayed (refer to table 4-3) are as follows:

TAOF, TA1F, TA2F, TA3F The T register flip-flops for family A.
SAQF, SA1F, SA2F, SA3F The T value save register for family A.

JAOF, JAIF, JA2F, JA3F
JA4F, JASF, JAGF, JATF

The family A sequence count register.

EXAI The exponent add initiate flip-flop.
KAOF, KA1F,KA2F The K counter for family A.

QAOF, QA1F, QA2F, QA3F
QA4F, QASF, QAGF, QA7F

Logical flip-flops used within family A.

SM00, 01, 02, 03, 04 Steering and mask value register used for generating TOA, TOM, and DIS

values from family A operations.
PSCF Psuedo call on family A flip-flop.

CMPF Compare flip-flop used for relational operators.

4-28

B 6800 System Reference Manual
Major Registers and Control Panels

NLZF,NLZ0,1,2,3 Number of leading zeros register for arithmetic controller.
HRO00, 01, 02, 03, 04, 05, 06,
07,08,09,10,11,12,13, 14,
15

The arithmetic controller holding register.

DISPLAY PANEL ONE, PAGE THREE LOGIC SIGNALS

Page three of register number one is used to display the status of families C and D of the data processor, in the CPU cabinet.
The logic signals and flip-flops that are displayed (refer to table 4-3) are as follows:

TCOF, TC1F, TC2F, TC3F The T register flip-flops for family C.

JCOF, JC1F, JC2F, IC3F, The family C sequence count register.

JC4F, ICSF, JC6F, JCTF

QC1F, QC2F, QC3F, QC4F, Logical flip-flops used within family C.

QCSF, QC6F, QC7F, QC8F

CRNCF The PIR and PBR register values are not consistant flip-flop signal (used by the
interrupt controller).

SASG Save segmented bit flip-flop.

QCZ2 Save size two flip-flop.

QCZ1 Save size one flip-flop.

ACM4, ACM5 Most significant two bits of address couple for NAMC operators.

ACLO,1,2,3,4,5,6,7
TDOF, TD1F, TD2F, TD3F

JDOF, ID1F, JD2F, ID3F,
JD4F, JDSF, JD6F, ID7F

QDIF, QD2F, QD3F, QD4F,
QDSF, QD6F, QD7F, QDSF

Least significant eight bits of address couple for NAMC operators.
The T register for family D.

The family D sequence count register.

Logical flip-flops used within family D.

PANEL 1, PAGE 4 LOGIC SIGNALS

Page four in maintenance display register one is used to show the status of the IC memory control, address adder, and sum
register functions of the data processor in the CPU cabinet. The logic signals and flip-flops (refer to table 4-4) that are dis-
played are as follows:

MREZ9 Residue error on Z9 bus logic signal.

MDROC Display address bit O (group C cards).
MDROB Display address bit 0 (group B cards).
MDROA Display address bit 0 (group A cards).

5001290 4-29

4-30

MREZS8
MDRI1C
MDRI1B
MDRI1A
MDRSS
MDRF2,3,4
MZ812
MZ811
MZ810
MZ809
MDRSX
MSOR?2
MSOR!
MSORO
MACTS
CRIC
MPBR
MSBR
MDBR
MTBR
MPIR
MSIR
MDIR
MTIR
MPDR
MSNR

MF

B 6800 System Reference Manual
Major Registers and Control Panels

Residue error on Z8 bus logic signal.

Display address bit 1 (group C cards).
Display address bit 1 (group B cards).
Display address bit 1 (group A cards).
Display memory read enable logic signal.
Display address bits 2, 3, and 4.

Bit 12 index portion of address couple value.
Bit 11 index portion of address couple value.
Bit 10 index portion of address couple value.
Bit 09 index portion of address couple value.
Bit 08 index portion of address couple value.
The sum of residue bit 2 (address adder).
The sum of residue bit 1 (address adder).
The sum of residue bit 0 (address adder).
Address couple to Z8 register.

Clear IC memory flip-flop.

Program base register read select flip-flop.
Source base register read select flip-flop.
Destination base register read select flip-flop.
Table base register read select flip-flop.
Program index register read select flip-flop.
Source index register read select flip-flop.
Destination index register read select flip-flop.
Table index register read select flip-flop.
Program dictionary register read select flip-flop.
Stack number register read select flip-flop.

F register read select flip-flop.

MS
MBOS
MLOSR
MBUF
MTEMP
MCoUT
MCZIN
MSUBT
MZ6L9
MZ6T8
MZ6L8
MZ6T9

LL00, 01, 02, 03, 04

PANEL 1, PAGE 5 LOGIC SIGNALS

RDCBA
ADREA
STOF
SDIS
RDREA
RDSEA

CKBI1A, CKB2A, CKB3A,
CKB4A, CKB5A, CKB6A

CBIN
CBAI

CKBI1B, CKB2B, CKB3B,
CKB4B, CKBS5B, CKB6B

5001290

B 6800 System Reference Manual
Major Registers and Control Panels

S register read select flip-flop.

Bottom of stack register read select flip-flop.
Limit of stack register read seleét flip-flop.

Buf (temp) register read select flip-flop.
Temporary register read select flip-flop.

Address adder carry out flip-flop.

Address adder carry in flip-flop.

Address adder subtract function flip-flop.

Z6 bus (35:16) to Z9 bus (15 :16) enable flip-flop.
Z6 bus (19:20) to Z8 bus (19:20) enable flip-flop.
Z6 bus (13:14) to Z8 bus (13: 14) enable flip-flop.
Z6 bus (39:20) to Z9 bus (19:20) enable flip-flop.

Lexagographical level register.

Page five dispiay in maintenance display register one is used to show the status of the interrupt controller, memory con-
troller, stack controller, and scan bus control functions of the data processor in the CPU cabinet. The logic signals and
flip-flops (refer to table 4-4) that are displayed are as follows:

The read data check bit for channel A.
The address retry bit for channel A.

The stack overflow flip-flop.

The syllable dependent interrupt flip-flop.
The read data retry bit for channel A.

The read data single bit for channel A.

The check bits for channel A.

Channel B interrupt being reported logic signal.
Channel B alarm interrupt flip-flop.

The check bits for channel B,

4-31

4-32

ADREB

RDCBB

RDREB

RDSEB

INAGB

RDMEB

INALB

MPARB

CBM3

GBNTB

CAM3

SCOR

SC1D

GNTR

INAGA

RDMEA

STAR

INPW

wn
=1
o
Tl

INALA

SCNR

STAP

LOPE

LPEN

SCAN

RUNI

LOPT

B 6800 System Reference Manual
Major Registers and Control Panels

The address retry bit for channel B.

The read data check bit for channel B.

The read data retry bit for channel B.

The read data singie bit for channel B.
Invalid address bit-global for channel B.
The read data multiple error bit for channel B.
Invalid address bit-local for channel B.
Memory parity error bit for channel B.
Memory Control error bit for channel B.
Global memory not ready to channel B logic signal.
Memory control error bit for channel A.
Scan out error flip-flop.

Scan in data error flip-flop.

Global memory not ready flip-flop.

Invalid address bit-global for channel A.
Read data multiple error bit for channel A.
Store address residue for channel A.
Invalid program word flip-flop.

Stack underflow flip-flop.

Invalid address-local for channel A.

Scan bus not ready.

Memory address parity for channel A.
Loop timer error flip-flop.

Loop timer enable signal.

Scan command active flip-flop.

Running timer signal.

Loop timer trigger signal.

B 6800 System Reference Manual
Major Registers and Control Panels

LOOP Loop timer multi-timer signal.

STBO, 1,2 Stack register (tells where a read data word was put in the stack).
CMPR Compare residue flip-flop.

ADDR Address adder residue error flip-flop.

BURE Bus residue error flip-flop.

RCPE RAM card parity error flip-flop.

PCPE PROM card parity error flip-flop.

ERENO, 1,2,3,4,5,6,7 Parity error PROM card number register.

PANEL 2, PAGE 0 LOGIC SIGNALS

Page zero display in maintenance register two is used to show the status of the multiplexor function in the CPU cabinet.
The logic signals and flip-flops (refer to table 4-5) that are displayed are as follows:

CC00, 01, 02,03, 04, The peripheral character counter.
05, 06, 07,08, 09,
10,11,12,13, 14,
15,16,17,18,19

STVC The status vector logic signal.
PF10,11,12,13, 14, The peripheral flag register.
15,16,17,18,19

PIEN Peripheral input end flip-flop.
PBAO, 1,2,3,4, 5, Peripheral buffer address register.
6,7,8

PC09,10,11,12,13, Peripheral control register.
14,15,16,17,18,19

PTAQ, 1,2,3,4,5,6, Peripheral target address register.
7,8

DISPLAY PANEL TWO, PAGE ONE LOGIC SIGNALS

Page one of register number two is used to display the status of the multiplexor burst control function, in the CPU cabinet.
The logic signals and flip-flops (refer to table 4-5) displayed are as follows:

ACO00, ACO1, ACO2, ACO3, The multiplexor accumulator register.
ACO04, AC05, AC06, ACO7,

ACO08, AC09, AC10, AC11,

AC12, AC13, AC14, ACIS,

ACl16, AC17, AC18, AC19

5001290 4-33

PINH

ASCI

ATTN

BINP

MINH

XLAT

FRAM

MPRT

BKWD

TEST

TGCO, TGC1

NEAR

BB=T

BIEN

BTAQ, BTA1, BTA2, BTA3,
BTA4, BTAS, BTA6, BTA7
BTAS8

BS10, BS11, BS12, BS13,
BS14, BS15, BS16, BS17,
BS18, BS19

BOEN

BBAO, BBA1, BBA2, BBA3,

BBA4, BBAS5, BBA6, BBA7,
BBAS8

B 6800 System Reference Manual
Major Registers and Control Panels

The peripheral inhibit logic signal.

The ASCII translate logic signal.

The software attention logic signal.

The burst input logic signal.

The memory inhibit logic signal.

The translate logic signal.

The 8-bit character (frame) size logic signal.

The memory protect logic signal.

The backward operation logic signal.

The test operation logic signal.

The tag field control logic signals.

The buffer address near to burst target address logic signal.
The burst buffer address equal to burst target address logic signal.
The burst input end signal.

The burst target address register.

The burst save register.

The burst output end logic signal.

The burst buffer address register.

DISPLAY PANEL TWO, PAGE TWO LOGIC SIGNALS

Page two of display register number two is used to display the status of the arithmetic controller and family A of the data
processor, in the CPU cabinet. The logic signals and flip-fiops that are displayed (refer to table 4-6) are as follows:

TTD
Bulu

YETB

AETA

4-34

The add Y exponent to B input of exponent adder signal.

The add A exponent to A input of exponent adder signal.

XETA

NZTB

NDTB

NZTA

NDTA
MRTB1, MRTB2
MRTA1, MRTA2
EXSB
ECRI
AITA
X1TA
BITB
Y1TB
A2TA
X2TA
B8TB
Y8TB
A4TA
X4TA
ADSB
CCNS
CCR3
CCL3
SPCI
DPCI

CI75
5001290

B 6800 System Reference Manual
Major Registers and Control Panels

The add X exponent to A input of exponent adder signal.

The add NLZ (number of leading zeros) register output to the B input of the
exponent adder signal,

The add 13 (decimal) to B input of exponent adder signal.

The add NLZ {number of ieading zeros) register output to the A input of the
exponent adder signal.

The add 13 (decimal) to A input of exponent adder signal.

The holding register for the B input to the exponent adder.

The holding register for the A input to the exponent adder.

The exponent adder add/subtract control logic signal.

The exponent adder-carry-in/borrow signal.

The A mantissa to A input of mantissa adder signal.

The X mantissa to A input of mantissa adder signal.

The B mantissa to B input of mantissa adder signal.

The Y mantissa to B input of mantissa adder signal.

The 2 times the value of the A mantissa to A input of mantissa adder signal.
The 2 times the value of the X mantissa to A input of mantissa adder signal.
The 8 times the value of the B mantissa to B input of mantissa adder signal.
The 8 times the value of the Y mantissa to B input of mantissa adder signal.
The 4 times the value of the A mantissa to A input of mantissa adder signal.
The 4 times the value of the X mantissa to A input of mantissa adder signal.
The mantissa adder add/subtract flip-fiop.

The mantissa output unshifted logic signal.

The mantissa output shifted right 3 bits logic signal.

The mantissa output shifted left 3 bits logic signal.

The single precision carry-in/borrow to mantissa adder logic signal.

The double precision carry-in/borrow to mantissa adder logic signal.

The carry-in to bit 75 of the mantissa adder signal.

4-35

B 6800 System Reference Manual
Major Registers and Control Panels

DPOV The double precision mantissa adder gating override logic signal.
BX00, BX01, BX02 The B mantissa one octade extension register.

YX00 The Y exponent one-bit extension signal.

AX00, AX01, AX02 The A mantissa one octade extension register.

XX00 The X exponent one-bit extension signal.

YR-1, YR-2, YR-3 The Y mantissa low-order octade extension register.

XR-1 The X mantissa low-order bit (input conversion).

SCOF, SC1F, SC2F, SC3F The scale count register.

SCEF The scale count enable flip-flop.

ICRE The input convert register enable flip-flop.

BXSE The B side of mantissa adder output logic signal.

DISX The disable extension register flip-flop.

ICRO, ICR1, ICR2, ICR3, The input convert operation register.

ICR4, ICRS, ICR6, ICR7

BDPD The double precision operand in B register (tag = 010) logic signal.
ADPD The double precision operand in A register (tag = 010) logic signal.

DISPLAY PANEL TWO, PAGE THREE LOGIC SIGNALS

Page three of display register number two is used to display the status of the memory control of the CPU cabinet. The logic
signals and flip-flops (refer to table 4-6) that are displayed are as follows:

RQTQS, RQT!, RQT2, RQT3, The request trap register.
RQT4, RQT5, RQT6, RQT7,
RQTS8, RQT9, RQTA, RQTB

RQRO, RQR1, RQR2, RQR3, The request register.
RQR4, RQRS, RQR6, RQR7,
RQRS, RQRY, RQRA, RQRB

CSC1, CSC2, CSC3, CSC4 The channel A sequence count register.

CAPFA, CAPFB, CAPFC, The memory address regisfer priority over look ahead address register logic signals.
CAPFD, CAPFE

SRLO, SRL1, SRL2 The sum of residue for the address in LAR signals.

SRMO0, SRM1, SRM2 The sum of residue for the address in MAR signals.

4-36

B 6800 System Reference Manual
Major Registers and Control Panels

ATEF The address transmission error flip-flop.

TRYF The address retry flip-flop.

CMGO The channel go (to complete a memory cycle) flip-flop.
MAOF The memory access obtained flip-flop.

RDFF The read phase control flip-flop.

CINF The clock inhibit control flip-flop.

WAIT The general purpose delay flip-flop.

LOG1, LOG2 The error control flip-flops.

ABRF The abort memory cycle flip-flop.

CARQ The channel A request to ports flip-flop.

MISIR Memory bit 51 (the multiplexor parity bit).
MIi48 Memory bit 48 (the memory protect bit).

PTGO The port go (to complete a memory cycle) signal.

HARO, HAR1, HAR2, HAR3 The hold address for return (for each port) signals.

PANEL 2, PAGE 4 LOGIC SIGNALS

Page four in maintenance display register two is used to show the status of string operations (families F, G, H of the data
processor) in the CPU cabinet. The logic signals and flip-flops (refer to table 4-7) that are displayed are as follows:

TULF, TU2F, TU4F, TUSF The T register for string operation decoding (1, 2, 4, 8 bits).

EEND The end of edit cycle control flip-flop.

FINI The end of the end edit cycle control flip-flop.

EXSF Execute single micro operator (S and D pointers for enter edit). Control flip-flop.
EXPF Execute single micro operator (single pointer for enter edit). Control flip-flop.
RETF Return to using operation control flip-flop.

RNTF Reentrant from interrupt control flip-flop.

NVLF Not valid control flip-flop.

MPQOP Micro program control flip-flop.

JUOF, JULF, JU2F, JU3F, String operations sequence counter flip-flops.

JU4F, JUSF, JUGF
5001290 4-37

B 6800 System Reference Manual
Major Registers and Control Panels

SSZ1, SS72 Source size flip-flops.

DSZ1, DSZ2 Destination size flip-flops.

SI01, SI02, SI03, SI04 Source input buffer register flip-flops.

DIO1, DIO2, DIO3, DI04 Destination input buffer register flip-flops.
QUI1F, QU2F, QU3F, QU4F Logical flip-flops used for string operations.
DGSF Destination greater than source control flip-flop.
LHFF Lower half control flip-flop.

RPZF String operations control flip-flop.

XROF X register occupied control flip-flop.

SOPF Source pointer equals an operand control flip-flop.
UPDF Update control flip-flop.

SPRF Source pointer read only control flip-flop.
DPRF Destination read only control flip-flop.

TFFF True false (string operation comparison) control flip-flop.
TFOF True false flip-flop occupied control flip-flop.
OFFF Overflow control flip-flop.

FLTF Float control flip-flop.

EQVF Equivalent control flip-flop (sum equal to zero).
EXTF External sign bit flag control flip-flop.

QUDF Segmented array (QF04) control flip-flop.
QUCF Memory protect (QF03) control flip-flop.
QUBF Presence bit (QF02) control flip-flop.

QUAF Invalid operation (QFO01) control flip-flop.

PANEL 2, PAGE 5 LOGIC SIGNALS

Page five in maintenance display register two is used to show the status of the memory controller, memory tester logic, and
interrupt controller of the data processor in the CPU cabinet. The logic signals and flip-flops (refer to table 4-7) that are
displayed are as follows:

4-38

B 6800 System Reference Manual
Major Registers and Control Panels

BYRO00, 01, 02,03, 04 The memory tester bypass register.
05,06,07,08,09, 10,
11,12,13, 14,15, 16,

17,18,19

MTST The memory test mode control flip-flop.

TV(, 1,2 The memory test type register.

V0,1Vl The memory tester sequence counter.

ONCK

CMPE The memory tester compare error control flip-flop.
TABT The memory tester test all bits control flip-flop.
ALTWC The memory tester alternate worst case control flip-flop.
M151W The write bit 51 memory tester parity bit flip-flop.
CBPW The memory tester check bit write parity flip-flop.
WEFW The memory tester word parity write bit flip-flop.
CB1W, CB2W, CB3W, CB4W The memory tester check bit memory write register.
CB5W, BCoW

IT00, 01, 02, 03, 04, The interval timer register.

05, 06,07, 08, 09,

10

IMTV

ECSF The freeze parameters control flip-flop.

EXTI The external interrupt flip-flop.

INTV The interval timer error flip-flop.

INTE The intervai timer enabie iogic signai.

DISPLAY PANEL THREE, PAGE ZERO LOGIC SIGNALS

Page zero of register number three is used to display the status of the family C (scan operations) of the data processor, in
the CPU cabinet. The logic signals and flip-flops (refer to table 4-8) that are displayed are as follows:

SL10,SL11,SL12, SL13, The status change levels for units 10, through 23.
SL14,SL15,SL16,SL17,

SL18, SL19, SL20, SL21,

SL22,SL23

5001290 4-39

B 6800 System Reference Manual
Major Registers and Control Panels

SE10, SE11,SE12, SE13, The status change read levels for units 10 through 23.
SE14, SE15,SE16, SE17,

SE18, SE19, SE20, SE21,

SE22, SE23

SCLO, SCL1, SCL2, SCL3, The status change levels for units zero through nine.
SCLA4, SCLS5, SCL6, SCL7,
SCLS, SCL9

SCEO, SCE1, SCE2, SCE3, The status change read levels for units zero through nine.

SCE4, SCES, SCE6, SCE7,

SCE8, SCE9

TODO, TOD1, TOD2, TOD3 The four low-order bits of the time of day register.
DISPLAY PANEL THREE, PAGE ONE LOGIC SIGNALS

Page one of register number three is used to display the status of the multiplexor function, and the interrupt controller

function, of the data processor, in the CPU cabinet. The logic signals and flip-flops (refer to table 4-8) that are displayed
are as follows:

BAFP4 The peripheral buffer available for burst logic signals.
VALV The valid vector logic signal.

BURV The burst request vector logic signal.

RDEV The result descriptor present vector logic signal.
PBZV The pseudo busy vector logic signal.

PCOF, PC1F, PC2F, PC3F The priority sequence count register.

SPWF The scratch pad write logic signal.

BFWF The buffer write logic signal.

XPBA The transfer peripheral buffer address logic signal.
XPDR The transfer peripheral data register logic signal.
XPCC The transfer peripheral character count logic signal.
XACC The transfer accumulator logic signal.

XBBA The transfer burst buffer address logic signal.
MPXT The multiplexor test logic signal.

INMO, INM1, INM2, INM3, The interrupt mask register.

INM4, INMS, INM6, INM7,

INMS8, INM9

4-40

B 6800 Sysiem Reference Manual
Major Registers and Control Panels

INRQG, INR1, INR2, INR3, The interrupt register.

INR4, INRS, INR6, INR7,

INR8, INR9

MERO, MER1, MER2 The multiplexor error register.

CSV0, CSV1,CSV2, C8V3, The channel save register.

Csv4

MREC The maintenance recycle logic signal (allows repetative 10 operations).
SPW0, SPW1, SPW2, SPW3, The scratchpad word address register.

SPW4

SPPE1, SPPE2 The scratchpad parity error flip-flops.

SPRF1, SPRF2 The scratchpad read flip-flops.

DISPLAY PANEL THREE, PAGE TWO LOGIC SIGNALS

Page two of register number three is used to display the status of families B and E of the data processor, in the CPU cabinet.
The logic signals and flip-flops that are displayed (refer to table 4-9) are as follows:

TEOF, TELF, TE2F, TE3F
JBCF

JEOF, JEIF, JE2F, JE3F,

The T register for family E.
The J count bus control flip-fiop.

The sequence count register for family E.

JE4F, JESF, JE6F

QEOF, QE1F, QE2F, QE3F The logical flip-flops for family E operations.

SMVF The enable scale right PROM (generates TOA, TOM, and DIS values).

MPYF The scale right multiply (times ten), raised to the value of the scale factor enable
logic signal.

SUBF The last octade (of shift register multiplication) was a subtract logic signal.

The loop count register

DPFF The double precision scale right multiplier flip-flop.
SFOF, SF1F, SF2F, SF3F The scale factor register.
MP35 The scale right multiplied by 3 or 5 octade logic signal.
DBZF The destination bit zero flip-flop.
FNWF The fina] word flip-flop.
ZROF The Z register occupied flip-flop.
5001290 , 441

B 6800 System Reference Manual
Major Registers and Control Panels

TBOF, TB1F, TB2F, TB3F The T register for family B.
JBOF, JB1F, IB2F, JB3F The sequence counter for family B operations.
QBI1F, QB2F, QB3F, QB4F The logical ftip-flops for family B operations.

PANEL 3, PAGE 3 LOGIC SIGNALS

Page three in maintenance display register three is used to show the status of the stack controller and the transfer controller
of the data processor in the CPU cabinet. The logic signals and flip-flops (refer to table 4-9) that are displayed are as follows:

BZ62 The gate logic signal to transfer bits 19:20 from the B register to the Z6 bus, in
the transfer controller.

AZ63 The gate logic signal to transfer bits 19:20 from the A register to the Z6 bus, in
the transfer controller.

AZ62 The gate logic signal to transfer bits 39:20 from the A register to the Z6 bus, in
the transfer controller.

AZ61 The gate logic signal to transfer bits 50:11 from the A register to the Z6 bus, in
the transfer controller.

BZ61 The gate logic signal to transfer bits 50:3 from the B register to the Z6 bus, in
the transfer controller.

CZ63 The gate logic signal to transfer bits 19:20 from the C register to the Z6 bus, in
the transfer controller.

CZ62 The gate logic signal to transfer bits 39:20 from the C register to the Z6 bus, in
the transfer controller.

CZ61 The gate logic signal to transfer bits 50:11 from the C register to the Z6 bus, in
the transfer controller.

YZ62 The gate logic signal to transfer bits 19:20 from the Y register to the Z6 bus, in
the transfer controller.

XZ63 The gate logic signal to transfer bits 19:20 from the X register to the Z6 bus, in
the transfer controller.

X762 The gate logic signal to transfer bits 39:20 from the X register to the Z6 bus, in
the transfer controller.

X761 The gate logic signal to transfer bits 50:11 from the X register to the Z6 bus, in
the transfer controller.

YZ61 The gate logic signal to transfer bits 50:11 from the Y register to the Z6 bus, in
the transfer controller.

2263 The gate logic signal to transfer bits 19:20 from the Z register to the Z6 bus, in
the transfer controller.

442

B 6800 System Reference Manual
Major Registers and Control Panels

2762 The gate logic signal to transfer bits 39:20 from the Z register to the Z6 bus, in
the transfer controller.

2761 The gate logic signal to transfer bits 50:11 from the Z register to the Z6 bus, in
the transfer controller.

TQAQ,1,2,3,4,5 The top of apperature register.

TOMO, 1,2,3,4,5 The top of mask register.

DISO,1,2,3,4,5 The displacement register.

JS1F, 2F, 3F, 4F The stack controller sequence counter.

SOIF The stack overflow interrupt flip-flop.

QSI1F, 2F, 3F Stack controller logical flip-flops.

PANEL 3, PAGE 4 LOGIC SIGNALS

Page four in maintenance display register three is used to show the status of the program controller, CPU clock control
logic, and the port control logic for the memory exchange in the CPU cabinet. The logic signals and flip-flops (refer to
table 4-10) that are displayed are as follows:

CPAL, 2,4,8 The CPU clock counter low order flip-flop bits.

ICRF The increment CPIR and CTIR remember control flip-flop.

ICCF The increment CPIR and CTIR normal control flip-flop.

FWFF The first word fetch flip-flop.

PRVA The PROF and VAREF valid logic term.

CPIRO, 1 The PIR word boundary crossed counter.

WPTF Write PIR or TIR flip-flop.

WBCF Word boundary crossed flip-flop.

CTIR TIR word boundary crossed flip-flop.

CSRO, 1,2 Syllable counter for the syllable from which the present operator was strobed.
SSRO, 1,2 Syllable counter for the syllable that initiated a table enter edit operator.
WPIR Write PIR - return from table mode flip-flop.

SECF Syllable execute complete level save flip-flop.

VSJK Vector strobe fetch or store flip-flop.

5001290 443

QP1F, 2F, 3F, 4F, 5F,
6F, 7F, 8F

STMC
P00, 01, 02
MPRCB
MWRCB
MNRFB
MREQB
MTEXB
MAPLB
MAOFB
MABXB
MDY]IF, 2F, 3F, 4F
MATEB
MTRYB

MHOLD, MDRYB

MIF51
MHARB
MCBQF
MRDBF
MBSCO, 1,2,3

PANEL 3, PAGE 5 LOGIC SIGNALS

B 6800 System Reference Manual
Major Registers and Control Panels

Program controller logic flip-flops.

Start memory cycle save flip-flop.

Program controller sequence control register.

Protected write logic signal from external subsystem device.
Memory write request signal from external subsystem device.
Memory not ready signal to an external subsystem device.
Memory request signal from external subsystem device.
Memory transmission etror signal to external subsystem device.
Memory address parity level from an external subsystem device.
Memory access obtained level to an external subsystem device.
Memory access begun signal to an external subsystem device.
Memory clock delay register for an external subsystem device.
Memory address transmission error signal for an external subsystem device.
Address retry signal to an external subsystem device.

Logical flip-flops used to send an initiate memory cycle (IMC) to a memory port
from an external subsystem device.

Information parity bit for an external subsystem device memory cycle.
Hold address for return for external subsystem.

Channel B request signal to memory exchange port.

Read phase flip-flop for channel B.

Sequence control counter for channel B.

Page five in maintenance display register three is used to show the status of the look ahead logic and other interrupt con-
troller functions, and the display register validity logic of the data processor in the CPU cabinet. The logic signals and flip-
flops (refer to table 4-10) that are displayed are as follows:

LRAP

LRIL

The address parity signal for the lock ahead logic.

The invalid address-local signal for the look ahead logic.

LRAR
LRDM
LRIG
LRGN
LAER
OPTF
IMILO, 1,2

GCDS

INF+1
SEC+2
SEC+1
AYER
INFF
ALSB
RTRY
MPXI
MPXB »

MPXG

5001290

B 6800 System Reference Manual
Major Registers and Control Panels

The address residue signal for the look ahead logic.

The read data multitimer signal for the look ahead logic.

The invalid address-global signal for the look ahead logic.

The global memory not ready signal for the look ahead logic.

The look ahead logic memory error signal.

The optional adapter test flip-flop (used in MTCE mode).

The consecutive interrupt coﬁnter for detection of a superhalt condition.
The general control disable logic signal.

The abort clock save logic signal.

The abort interrupt controller logic signal.

The interrupt load micro-program logic signal.

The syllable execute complete level interrupts enable signal.

The inconsistant P3 parameter logic signal.

The families memory cycle wait logic signal.

The Maintenance Display Processor (MDP) test logic signal.

The abort interrupt logic signal.

The INFF flip-flop delayed by 1 clock pulse logic signal.

The syllable execute complete level delayed by 2 clock pulses logic signal.
The syllable execute complete level delayed by 1 clock pulse logic signal.
The any memory error for event logic signal.

The inhibit operator from P register logic signal.

The allow strobe logic signal.

The retry logic signal.

The multiplexor initiate burst request remembered logic signal.

The multiplexor burst logic signal.

The multiplexor granted for burst logic signal.

DRO0O, 01, G2, 03, 04,
05, 06, 07,08, 09, 10,
11,12,13,14,15,16,
17,18,19, 20,21, 22,
23,24,25,26,27,28,
29, 30, 31

PANEL 4, PAGE 0 LOGIC SIGNALS

Page zero in maintenance display register four is used to show the status of the maintenance and event logic in the CPU

B 6800 System Reference Manual
Major Registers and Control Panels

The display register valid flip-flops for each of the 32 display registers.

cabinet. The logic signals and flip-flops (refer to table 4-11) that are displayed are as follows:

PLK1
PLKO
PSOR
WMMF
RMMF
WIMF
RIMF
AMMF
AIMF
MEXI
HALT
ARPT
JCMP

JCS00, 01, 02, 03, 04,
05, 06,07,08,09, 10

SRS0,1,2,3
OSRO, 1,2,3
VARS
VCTS
EDTS

TEDS

448

The phase lock two logic signal.

The phase lock one logic signal.

The pseudo OP flip-flop.

The write main memory flip-flop.
The read main memory flip-flop.

The write IC memory flip-flop.

The read IC ﬁlemory flip-flop.

The access main memory flip-flop.
The access IC memory flip-flop.

The mask external interrupt flip-flop.
The halt flip-flop.

The Anti-repeat flip-flop.

The sequence (J) count micro program select flip-flop.

The sequence (J) count save register.

The strobe save register.

The OP code save register.
The variant bit save flip-flop
The vector save flip-fiop.
The edit save flip-flop.

The table save flip-flop.

B 6800 System Reference Manual
Major Registers and Control Panels

DISPLAY PANEL FOUR, PAGE ONE LOGIC SIGNALS

Page one of register number four is used to display the status of the maintenance and event logic, of the CPU cabinet. The

logic signals and flip-flops (refer to table 4-11) that are displayed are as follows:

EV01, EV02, EV03, EV04, The event register.
EV05, EV06, EV07, EV0S,

EV09, EV10,EV11,EV12,
EV13,EV14,EV15,6EV16,
EV17,EV18,EV19,EV20,

EV21

CCSF The count clock select flip-flop.

MEVF The multiple event flip-flop.

HOEF The halt on event flip-flop.

ECTO, ECT1, ECT2, ECT3, The event counter.

ECT4, ECTS, ECTé6, ECT7

ICOR The inhibit memory correction logic signal.
MPBI The mask presence bit interrupt logic signal.
MIAI The mask invalid address interrupt logic signal.
ESTP The event stop logic signal.

EJCMP The micro program J count select logic signal.
EJC00, EJCO01, EJCO02, The micro program J counter.

EJC03, EJC04, EICOS,
EJC06, EIC07, EJCOS,
EJC09, EIC10

HLTD The halted flip-flop.

ILHD The inhibit look ahead logic flip-flop.
LODS The load select flip-flop.

LAVF The look ahead valid flip-flop.

EST4, ESTS, EST6, EST7 The strobe event logic signals.

EOQOPO, EOP1, EOP2, EOP3 The operator code event logic signals.
EVCT The vector event logic signal.

ETED The table edit event logic signal.

5001290

4-47

B 6800 System Reference Manual
Major Registers and Control Panels

EEDT The edit event logic signal.
EVAR The variant mode event logic signal.
PANEL 4, PAGE 2 LOGIC SIGNALS

Page two in maintenance display register four is used to show the status of the clock control logic, and the time of day
register of the multiplexor function in the CPU cabinet. The logic signals and flip-flops (refer to table 4-12) that are dis-
played are as follows:

CPC05, 06, 07, 08, 09, The high order twenty-four bits of the CPU timer register.
10,11,12,13, 14,15,

16,17,18,19,20,21,

22,23,24,25,26,217,

28

TDOO, 01, 02, 03, 04, The high order flip-flops of the time of day register.
05, 06,07, 08,09, 10,

11,12,13,14,15, 16,

17,18,19, 20,21, 22,

23,24, 25,26,27, 28,

29,30, 31, 32, 33, 34,

35

PANEL 4, PAGE 3 LOGIC SIGNALS

Page three in maintenance display register four is used to show the status of the store control memory exchange logic, and
the global memory control logic. The logic signals and flip-flops (refer to table 4-12) that are displayed are as follows:

PSOFO0, 1,2,3 The port sequence flip-flops for the four ports of local memory.

PS1F0, 1,2,3

PS2F0,1,2,3

WCCFo,1,2,3 Clear write operation flip-flops for the four local memory ports.

PEDFO, 1,2,3 Parity error disable flip-flops for the four local memory ports.

IMCFO, 1,2,3 Initiate memory cycle flip-flops for the four local memory ports.
CAOF0,1,2,3 Channel A occupying port priority flip-flops for four local memory ports.
CBOFO0,1,2,3 Channel B occupying port priority flip-flops for four local memory ports.
MTRIP The enable scan timer flip-flop.

MTMRO, 1,2 The scan not ready timer register.

WSTFO0,1,2,3 The memory write strobe for memory port 0, 1, 2, or 3.

MSPY, MSPX Scan control flip-flops.

GSOF, 1F, 2F, INCF, Global memory (or memory control 11I) control flip-flops.

GRDF, GABF, CRFF,

GTOF, 1F, 2F,

GOAF, GOBF, GAOF, EGTM

4-48

B 6800 System Reference Manual
Major Registers and Control Panels

PANEL 4, PAGE 4 LOGIC SIGNALS

Page four in maintenance display register four is used to show the status of the micro program module flip-flops in the
CPU cabinet. The logic signals and flip-flops (refer to table 4-13) that are displayed are as follows:

MMIE Micro module one enable flip-flop.

MIOF, 11F, 12F, 13F, 14F, Micro module one address flip-flops.

15F, 16F, 17F, 18F, 19F

MM2E Micro module two enable flip-flop.

M20F, 21F, 22F, 23F, 24F, Micro module two address flip-flops.

25F, 26F, 27F, 28F, 29F

MM3E Micro module three enable flip-flop.

M30F, 31F, 32F, 33F, 34F, Micro module three address flip-flops.

35F, 36F, 37F, 38F, 39F

MMPD The micro module parity disable for first clock pulse logic signal.

PANEL 4, PAGE 5 LOGIC SIGNALS

Page five in maintenance display register four is not used, and therefore has no flip-flops specified. This display register
page is reserved for future expansion of the display registers.

Maintenance Processor Control Panel and Display

The maintenance display processor control panel (see figure 4-6) is located below maintenance display register number
two, on the maintenance display register panel. When the hinged maintenance display panel cover is closed the MDP
processor control panel is not visible, and the controls for the processor cannot be exercised. Figure 4-6 shows the
maintenance and display processor controls and indicators, and also shows the system maintenance control panel.

The maintenance display processor control panel consists of the following controls and indicators:

a.

5001290

The A, B, C, D, and E display indicators. These indicators are driven by the KBIO Controller in the micro-
processor, and are used for operator interface.

The INIT (initiate) pushbutton switch. This switch is used to clear and reinitialize the microprocessor.

The MTR indicator lamp. This lamp is used to indicate when the microprocessor is running a self diagnostic
test on itself, and/or the MDP. If such a test is being performed the lamp is illuminated. The MTR level is used
to select one of two areas of micro-processor PROM storage.

The PWR ON (power on) indicator lamp. This lamp is used to indicate that power is applied to the micro-
processor.

The SHIFT (shift) pushbutton switch. This pushbutton is used to cause an expansion of the sixteen key
positions of the keyboard. If the SHIFT pushbutton is not depressed, the value of the keyboard selects one
character position in the first set of sixteen characters. If the SHIFT pushbutton is depressed the value of
the keyboard selects one character position in the second set of sixteen characters.

449

oS+

MAINT PROC CONTROL

INIT
A B C D E "
O 0Olo olo olo olo o | 01“
7 3 7 3 7 3 7 3 7 3
O Olo olo o|lo Oo|]O0 ©
6 2 6 2 6 2 6 2 6 2 i
0O 4
O 0|0 olo o|lo olo © MR 1
5 9 5 1 5 1 5 1 5 1
PWR ON
o olo olo olo 0lo © O 8 " IL
4 0 4 0 4 0 4 0 4 0
- SENSE SWITCHES I —
@ @ @ @' 2999 c D||
83 S2 S1 SO
0 . LOOP DIA STEP ERR | .
LODP DIAG STEP CYCLE SHIFT
MAINT CONTROL
I DISPLAY I r MAINTENANCE CLOCK
CPU O ALT PROC l TRAIN INITIATE
LOCAL SWITCH LAMP TEST CONTROL ALTDISP | ENABLE sTOP EVENT PULSE PULSE PULSE I
TEST
16) O «® ~® @ ® ® ©
O - @ - : c
REMOTE PAGE NORMAL NORMAL RUN SINGLE
ALARM CONTROL DISPLAY PULSE
MV 1608

Figure 4-6. Maintenance Display Processor Control Panel

s[eueq [011UO)) pue s19)sI3ey Jofey
[enuey 20Uy WaISAS 0089 4

B 6800 System Reference Manual
Major Registers and Control Panels

The sixteen key keyboard. The sixteen keys on the keyboard are labeled 0, 1,2, 3,4,5,6,7,8,A,B,C,D,E,
and F. These sixteen keys are used to enter data into the microprocessor.

The four SENSE SWITCHES, numbered 0, 1, 2, and 3. These switches are read by the microprocessor, and
provide major function control of the microprocessor.

The four indicator lamps, numbered S0, S1, S2, and S3. These four lamps are used to indicate error conditions,
and other operating conditions while executing MDP programs.

The MAINT CONTROL panel consists of the following controls:

a.

5001290

The CPU LOCAL/REMOTE selector switch. This switch has two positions which are LOCAL (up), and REMOTE
(down). In the LOCAL position the CPU may only access local memory (global memory and scan bus operations
are disabled). In the REMOTE position the CPU may access either local or global memory.

The SWITCH TEST, and PAGE ALARM indicator lamps. The SWITCH TEST lamp is illuminated if any push-
button in the entire MDP is depressed. The PAGE ALARM lamp is illuminated if any of the maintenance display
register thumbwheels are not in the detent (page selected) position.

The LAMP TEST pushbutton. This switch when depressed, causes all indicators on the display panel to
illuminate.

The ALT/CMPR/NORMAL CONTROL switch. This switch has three positions which are:

ALT CONTROL (alternate control) in the up position
CMPR (comparator) in the middle position
NORMAL CONTROL in the down position

This switch is used to route control levels from the system control panel and the keyboard to the selected CPU(s).

The ALT/OFF/NORMAL display control switch. This switch has three positions which are alternate display (up),
normal display (down), or comparator (middle). This switch is used to select which CPU(s) will be displayed by
the indicators on the MDP panels.

The MAINTENANCE switch group. This group has two switches and one pushbutton in it:
1) PROC ENABLE (processor enable) has two positions which are enable (up), and disable (down). This
switch is used to select either the micro-processor or the display logic to control MF10. The micro pro-

cessor is selected when the switch is up, and the display logic is selected when the switch is down.

2) STOP pushbutton. This switch, when depressed, unconditionally stops the running of the mainframe in
event mode.

3) EVENT switch has two positions which are enabled (up), and disabled (down). This switch enables the
event logic when the PROC ENABLE switch is in the disabled position.

4-51

B 6800 System Reference Manual
Major Registers and Control Panels

g. The CLOCK switch group. This group has two switches and one pushbutton in it; the clock mode switch has
two positions which are PULSE (up), and RUN (down). In the PULSE position system clock is controlled by
the TRAIN PULSE/SINGLE PULSE switch. In the RUN position the system clock is free running.

The clock select switch has two positions which are TRAIN PULSE (up), and SINGLE PULSE (down).

In the TRAIN PULSE position a train of three clock pulses are emitted when the INITIATE PULSE pushbutton
is depressed. In the SINGLE PULSE position a single clock pulse is emitted.

The clock INITIATE PULSE pushbutton.
This switch causes a pulse train or a single clock pulse to be emitted when the pushbutton is depressed.

Maintenance Processor Programmers Display Keyboard

The MDP programmers keyboard is located immediately beneath the programmers display panel (refer to figure 4-1). The
pushbutton switches and indicators are shown in figure 4-7. The functions of the switches and indicators are as follows.

4-52

B 6800 System Reference Manual
Major Registers and Control Panels

A0 et |O| WRITE o0] 1 2 3 || weser
ADJ secL | O 4 5 6 7 ChESR
READ
mvic | O 8 9 A B

oct | O STEP c D E F

MV 1609

Figure 4-7. Keyboard Pushbuttons and Indicators

Register select switches 1, 2, 3, 4.
One of the four register displays are selected. Depressing one of the four switches will cause the selection to
change to that associated register. When a register is selected, the cursor will blink at the leftmost digit of
that register and the associated register seiect indicator will be on.

HEX DIGITS O through F switches

When a hex digit switch is depressed, the four flip-flops indicated by the cursor will take the state of that hex
character. On releasing the switch, the cursor will move one position to the right.

CURSOR LEFT switch (<)

Depressing this switch causes the cursor to move one position to the left in the selected display register,
(R1, R2, R3, or R4).

CURSOR RIGHT switch (>)

Denresging this switch causes the cursor to move one position to the right in the selected display register,
(R1, R2, R3, or RY).

REG CLR switch

Depressing this switch causes the selected register to be cleared (reset), and the cursor to point to hexadecimal
address number nine of the display register.

BIT RESET switch

Depressing the switch causes any flip-flop to be reset when its associated switch is depressed. The bit reset
switch must be kept depressed for the edtire time the flip-flop switch is depressed to ensure the flip-flop is
left in a reset state.

5001290 4-53

4-54

B 6800 System Reference Manual
Major Registers and Control Panels

SECL switch and indicator

Depressing the SECL pushbutton causes the state of the SECL flip-flop to change state in the display control
logic. The output of the flip-flop is sent to the indicator and to the mainframe. When false, the indicator
is off and it has no effect on the mainframe. When true, the indicator is on and the CPU finishes its current
instruction and is inhibited from starting the next instruction.

CHLT switch and indicator

Depressing CHLT causes the state of the CHLT flip-flop in the display control logic to change state. The
output of the flip flop is sent to the indicator and to the mainframe. When the output is false, the indicator
is off and when a conditional halt operator is executed by the mainframe, it acts as a NOOP. When the out-
put of the CHLT flip-flop is true, the indicator is on and when the conditional halt operator is strobed into
family F, the operator continues to run without ever developing a SECL, thus stopping the system. A loop
timeout interrupt is inhibited when the CHLT flip-flop is set.

STEP switch

The Step switch works in conjunction with the event switch. With the event switch off, the step switch
being depressed causes the CPU to begin execution of the next instruction where the CPU has been stopped
by the HALT or SECL switch. With the EVENT switch on, depressing STEP causes the mainframe flip flops
to go into a normal run condition.

OCT switch and indicator

Depressing the OCT switch causes the OCT flip flop in the display control logic to change state. When the
output of the OCT flip flop is false, the indicator is off and the stack registers are displayed in hexadecimal
format. When the OCT flip flop output is true, the indicator is onand the stack register mantissa is displayed
in octal format.

MMIC switch and indicator

When this switch is depressed, the MMIC flip flop in the Display Control logic changes state. When the flip
flop is reset, the indicator is off and the MMIC interface line to the mainframe is false. In this state, any
memory cycle initiated from the keyboard will be to IC memory. When the MMIC flip flop is set, the MMIC
indicator is on and the MMIC interface line to the mainframe is true. In this state, any memory cycle

)

initiated from the keyboard will be to iocal memory.
WRITE switch

When depressed, a memory write cycle is initiated. If IC is selected, the write will be from the top of the
stack to the IC addressed by the second word in the stack. If local memory is selected, the contents of
the A register is written to the address pointed to by the B registers, (bits O through 19).

READ switch

When depressed, a memory read cycle is initiated. If IC is selected, the IC addressed by the top of the
stack will be read into the top of the stack. If memory is selected, the word addressed by the B registers
(0 through 19), will be read into the A register.

B 6800 System Reference Manual
Major Registers and Control Panels

ADIJ1 switch

When depressed, initiates those local memory read cycles necessary to adjust the top of stack into the A and B
registers, (A reg. does not need to be displayed).

ADIJO switch

When depressed, initiates those memory write cycles necessary to push top of stack into memory.

Logic Indicator Lamps

Four lamps are mounted flush on the keyboard, adjacent to the CHLT, SECL, MMIC, and OCT pushbuttons. These lamps
indicate the state of the corresponding logical flip flop. For example, when the CHLT lamp is illuminated, the CHLT
flip flop is set, and when the lamp is extinguished, the CHLT flip flop is reset.

5001290 4-55

B 6800 System Reference Manual

SECTION 5

SYSTEM CONCEPT

GENERAL
The B 6800 system consists of a central processing unit, local memory unit(s), a central power cabinet, a maintenance
display processor cabinet, peripheral control cabinet(s), and the associated peripheral equipment for input/output. This
section generally defines the overall system hardware operation.
The central processing unit (CPU) is the heart of system operations in the B 6800 system; and therefore, while other
units of the system will be discussed in this section, the main thrust will be descriptive of the units that are parts of the
CPU cabinet. The three main parts of the CPU cabinet are as follows:

a. The data processor

b. The multiplexor

¢. The memory control

DATA PROCESSOR

The data processor part of the CPU produces the objective results of a program by performing the necessary arithmetic
and logical functions of the program flow.

The data processor contains two major divisions: the functional resources and operator algorithms (figure 5-1). The
functional resources are referred to as the “hardcore” of the processor.

The functional resources are the event logic, the micro-program modules, the top of stack registers, the address adder, the
multiplexor, and six controllers. The operator algorithms are a group of six families of operators. The operator algo-
rithms provide the logic required to control the functional flow of the program.

OPERATOR FAMILIES

The operator families and functional controllers are linked by 11 busses (bus Z1 through Z6, and Z8 through Z12).
These busses provide for data movement and signal routing within the processor (see figure 5-2).

A bus is a group of wires used to transmit signals from one place to another. The busses within the transfer controller
are etched on a single card connecting the same bit of all “hard registers” together, i.e., Bit 1 of registers A, B, C, X,
Y and Z are all on the same physical card.

The operators are grouped into six groups called the operator families (figure 5-1). The grouping of related operators
into families minimizes the logic required in the processor. The six families of operators with a brief purpose for each
are:

a. Family A OPS — Arithmetic Operators

b. Family B OPS — Logical Operators

c. Family C OPS — Subroutine Operators

d. Family D OPS — B 6800 Word Oriented Operators

5001290 5-1

B 6800 System Reference Manual
System Concept

FUNCT!ONAL RESOURCES OPERATOR ALGORITHMS
PROCESSOR ADDRESS FAMILY A OPERATORS

ARITHMETIC MODULE

CONTROLLER : [STROBE A]

(960 BIT IC MEMORY]
[EXPONENT ADDER 16 BITS |

20 BIT ADDRESS

NTISSA ADDER 81 BITS ADDER, AND 3 BIT
[MA 8] RESIDUE ADDER FAMILY B OPERATORS
[STROBEB]
EVENT LOGIC
PROGRAM SEQUENCE _
CONTROLLER FAMILY C OPERATORS
[LOOK AHEAD LOGIC] [STROBESC, J,K]

[P, AND L REGISTERS]

MICRO-PROGRAM MODULES

FAMILY D OPERATORS

STACK ADJUST [STROBED]
CONTROLLER
MEMORY CONTROLLER
INTERRUPT
[MEMORY EXCHANGE | CONTROLLER FAMILY E OPERATORS
[MEMORY TESTER | [STROBE E]
[EXTERNAL SCAN BUS]
[GLOBAL MEMORY INTERFACE]
TRANSFER
CONTROLLER FAMILY U OPERATORS

TOP OF STACK REGISTERS

[STROBESF, G, H]
[A, B, C X, Y, ZREGISTERS]

[STRING OPERATORS]

[EDIT MODE OPERATORS]

MULTIPLEXOR LOGIC MODULE [VECTOR MODE OPERATORS |
MV 1610
Figure 5-1. B 6800 CPU Organization
e. Family E OPS — Scaling Operators
f. Families F, G, H, OPS — String Operators

PROGRAM CONTROLLER (SEE FIGURE 5-2)

The program controller controls the program flow in the data processor. The program controller determines when the
P register contains machine language operators to be executed, which syllable of code is to be executed next, when to

B 6800 System Reference Manual

System Concept

TOA
ToM
zr | 76
a— Mask | 25—
I 75
OF Z2
AR ‘-—2-5- DIRECT ‘—-G) C\ Z6T9 29
TRANSFERS | — CONTROL <22
Z4 ' N SCAN
7678 z8 BUS
LOGICAL N
BROF i TRANSFERS © |CONTR°'- ’
ERROR Y
e ./
D FanYanWa i
PHPe - Y LL— RESIDUE D > vevory
A A A 210 TERCE | | CHECK N D #{ INTERFACE
(} ()\J\)’[B N 7aNy L - MOD 1
ADDER -) >
N D FanY 1 YD . . ERROR
oS e | X ooy N DISPLAY * DISPLAY d) DETECTION & ;,
SELECT ™ icMEM CORRECTION |) LOCAL
N /] 1 _ 4 > > 6) MEMORY
Ay, Y — PO p—™ l D INTERFACE
> D 1 MOD 2
L/
N Y C 1 o)] J INDEX s |] INDEX) \J D>
&P —P54 ARITH MICRO SELECT IC MEM
- IWS [ERROR ERROR
CONTROL I o wl PROGRAM D
O—D Z o—a MODULES * * LOCAL
LROF A PN 4 BRS A MEMORY
‘ BASE ™ gase). B INTERFAC
>] = TO MEMORY - / SecEer —_— > 2 Q T AC
. INTERFACE — BWS 1 - RESIDUE PARITY & 4 MOD 3
(o | L CHECK CHECK D
LOOKAHEAD s
leroF y P
UNIT SM { } LOCAL
Gl P e ADOR D MEMORY
| [] y ADDER 4 INTERFACE
FROM SYLLABLE PROGRAM N > mob4
MEMORY DECODE PSR cONTROLLER) D N
INTERFACE § MAR
-y ¥210(0P) .
HPADD stRe &0 z1a0) Z100P) N FAM. C & N |
© P Y {p N7 7 v"'v * ——C N> GLOBAL
N __pIMEMORY
STACK INTERRUPT MEMORY OUNTER - g & #-1INTERFACE
, COUNTER —»] LAR
FAMILIES | A B C.oK F.GH 1 I conTROL CONTROL MPX TESTER FROM 24 — D
A VY f *
211 —P D & &P D D— Y Z1 T SCAN CONTROL (SCANBUS)
. A A A A N MEMORY ["MEMORY CONTROL
212 —-p—P—Pp—S—d—P & &— controL Fppp—
(CHANNEL A) CHECK
Z10 Faal FanY Fa Y Fany D Fa Y C O
Y N d Nd Nd N Y PSEUDO OPS J
J COUNT BUS A A Pa o Py XAR
S N4 \J \J '
MEMORY — ‘
MAINTENANCE DISPLAY SYSTEM PC BUS DETECTOR &
PROCESSOR INTERFACE CLK INTERFACE] EXTERNAL ~€——p={ CHANNEL B | CorRecron
MEMORY INTERFACE DATA
BUS Sl
-
MV 1611

5001290

Figure 5-2. B 6800 CPU Block Diagram

B 6800 System Reference Manual
System Concept

replace the contents of the P register and L register, and the source location of the data that is used to replace the
contenis of the P register and L regisier. The P register is considered to contain vaiid program code only if the Program
Register Occupied Flip-Flop (PROF) is set.

The Prograin Syllable Register (PSR) serves as a pointer to the next syllablé to be executed from the P register.

Look Ahead Logic

A look ahead function is implemented by provision of the L register, and its associated L Register Occupied Flip-flop
(LROF). The function of the look ahead logic is to overlap as far as possible, when fetching code from main memory.
In look ahead mode, L acts as a buffer against the P register, such that code is executed from P while L gets the next
code word. Code addresses are initially formed by adding the value of the Program Base Register (PBR), to the value of
the Program Index Register (PIR). Code addresses are maintained in the look ahead logic, in the Look ahead Address
Register (LAR).

In certain modes, the normal sequential code execution, as affected by the look ahead logic, is undesirable, and there-
fore inhibited. Such cases are branch instructions, subroutine entries and exits (or returns), and table edit mode opera-
tions. In the first two cases, new values of PBR and PIR are presented to the program controller, and used as described.
In table edit mode, look ahead logic is totally inhibited, and the program controller uses the Table Base Register (TBR)
and the Table Index Register (TIR), to form the table mode edit operator code address.. Only the P register is used to
contain edit mode table operator code (and not the L register). In table edit mode operations, the TIR address register
is updated by the program controller, as required.

Integrated Circuit (IC) Memory

The B 6800 system data processor maintains the procedure addresses of the program that is being executed currently in
the data processor. These procedure addresses are maintained in a group of address registers commonly identified as IC
memory address registers (see figure 5-2). The IC memory address registers are classified as display address, base address,
and index registers.

There are 32 display address registers (labeled DO through D 31) in the data processor. A display register number corre-
sponds to a lexicographical programming level, and locates the absolute local memory base address of the process stack
(the MSCW of the stack) for all current programming levels. The maximum number of programming levels (lexacographi-
cal levels) in a procedure is fixed by the number of display address registers available in the data processor. The number
of programming levels in a procedure is limited to 30, because programming level zero is required for the MCP, and
programming level one is required for the segment descriptor index. The bottom of a stack is identified by the address
located in the BOSR register, which was identified earlier in this manual. The top of a stack is identified by the address
located in the S register which was also identified earlier in this manual (refer to section three in this manual).

There are eight base address registers in the data processor. The eight base address registers are identified as follows:

Base Register Base Register Register
Number Name Usage
0 PBR The base address of the program code.segment.
1 SBR The base address of string source data.
2 DBR The base address of string destination data.

5001290 5-5

B 6800 System Reference Manual
System Concept

Base Register Base Register
Number Name Register Usage

3 TBR/BUF2 The base address of table program code, or alternatively a temporary
buffer for storing an address value.

4 S The address of the top word in the current stack.

5 SNR The stack number register. The stack number is used to contain a vec-
tor value for locating the current stack descriptor. The vector value is
an index on the address of the stack vector descriptor, for locating the
stack descriptor.

6 PDR The program dictionary register. This register is used to contain the
address of the base of the current program code segment descriptor in
memory.

7 TEMP The temporary register. This register is a general purpose register used

to store addresses temporarily
There are eight index address registers in the data processor. The eight index address registers are as follows:

Index Register Index Register
Number Name Register Usage -

0 PIR The program index register. The program index value is an index on
the base address that is contained in the PBR register. The sum of
PBR and PIR is the absolute address of the word of program code that
is presently in the P register.

1 SIR The source index register. The source index value is an index on the
base address that is contained in the SBR register. The sum of SBR
plus SIR defines the address of a word of source data for string
operations.

2 DIR The destination index register. The destination index value is an index
on the base destination register. The sum of DBR plus DIR defines
the address of a word of destination data for string operations.

3 TIR/BUF3 The table index register. The table index value is an index on the address
that is contained in the TBR register. The sum of TBR and TIR defines
the address of the word containing the micro operators, in the table code.
When this address register is not being used for table type operations it is
alternatively used (as BUF3) for temporary storage of other address values.

4 LOSR The limit of stack register. This register contains the upper stack
boundary address for the current procedure. This register limits the
size of ihe stack.

B 6800 System Reference Manual
System Concept

Index Register Index Register
Number Name Register Usage

5 BOSR The bottom of stack register. This register contains the lower boundary
address for the current stack.

6 F The F register. This register contains the address of the last MSCW for
the current process stack in memory. The F register, and the display
register that corresponds to the present lexagographical level, contain
the identical address value.

7 BUF The buffer address register. The buffer is used to temporarily store

addresses.

Address Adder and Residue Test Logic (Refer to Figure 5-2)

The address adder is a shared mechanism through which all addresses used within the B 6800 system are manipulated.
Figure 5-2 shows this mechanism, together with associated data paths, and data integrity residue generation and check
blocks.)

All traffic to and from the IC memory is conducted through the address adder, or the Z8 and Z9 busses to the address
adder. Data integrity within all of these blocks is maintained by modulo three residue checking. This guarantees to
detect any single bit error, and some multiple bit errors that occur in IC memory, or the address adder. An error in the
modulo three residue generation circuit, or in the residue check circuit is also detected.

Any addressing error in the address adder, or in the residue check circuit is a fatal condition, and results in an “abort”
type interrupt condition.

TRANSFER CONTROLLER (REFER TO FIGURE 5-2)

The transfer controller has two major sections (see figure 5-3): a hard register section, referred to as stack registers, for
data and program information, and an internal data transfer section. Six busses, Z1 through Z6, are used for the normal
data movement to and from the hard registers. Z1, Z2, and Z3 are input busses to these registers, and Z4, Z5, and Z6
are output busses. The capacity of each bus is 51 bits.

Three special busses are used for arithmetic operations (see figures 5-3 and 5-6).

Stack Registers (Refer to Figure 5-3).

Each information register has 51 bit positions. Registers A, B, C, X Y and Z are for information handling during program
fiow. Registers P and L contain B 6800 program words. The P and L registers contents are never written into Memory.

The Z3 and Z4 busses provide for bi-directional data flow between the hard registers and memory or the multiplexor.
The A and B registers are the top of stack registers, and X and Y are normally second-word information registers for

double-precision operands. Registers C, and Z are general purpose registers which provide temporary storage during
operator execution.

5001290 5-7

B 6800 System Reference Manual
System Concept

Internal Data Transfer Section (Refer to Figure 5-3)

The internal transfer section permits the following data transfers between stack registers:
a. A direct, full-word transfer path using the Z5 and Z2 busses.

b. A logical transfer path to create the results of the Family B (logical) operators, using the Z4 and Z3 busses.
The logical transfer path also provides one additional full word transfer path between registers.

c. A steering Network and Mask network providing a field displacement between stack registers using the Z6
and Z1 busses.

d. A transfer path to the address adder via the 76 to Z8 or Z9 busses. This path extracts one of four fields,
(39:20), (35:16), (19:20) or (13:14), from a stack register during execution of operator syllables.

e. A data movement path to and from the high speed adder via the AA, BB, and SL busses.
Mask and Steering
The mask and steering network moves bit fields from register to register, via the Z6 and Z1 busses. All bits are trans-
ferred to and from the busses in parallel. Two pointers (TOA/TOM) set up a “window” defining the uppet and lower
limit of the bits being transferred to the accepting data register. A displacement register (DIS) shifts the bits to the right,
0 to 47 bits from the position previously held in the sending data register. The three controls used to steer and mask
are as follows:

1. TOA — the highest bit position of the accepting field (highest bit of the window).

2. TOM — the highest bit position to be inhibited on the transfer (lowest bit of the window).

3. DIS — a right shift of the bits through the steering matrix.
Registers TOA, TOM, and DIS are set by the operator families or other controllers.

Mask and Steering Example

Assume the C register contains a stuffed indirect reference word (SIRW) and it is necessary to extract the STKNR (stack
number) field (bits 45:10) and place these bits into the index field of the C register. The logic sets the window

TOA := 29, TOM := 19, as shown in figure 5-4. The displacement register is set to 16: DIS := 16. The actual starting
bit of the field is calculated as: TOA + DIS = 29 + 16 = 45.

All Bits in the C register are gated to the Z6 bus. The bits (except tag) are then shifted 16 places to the right with only
the bits that align with the window appearing on the Z1 bus. The Z1 bus is then gated to the C register, with the
masked fields destroyed or retained; if the masked field is to be retained, the C register must be gated onto the Z5 bus
as “prior content”.

If no register is gated on the Z5 bus during a Z1 bus to Z6 bus transfer, the masked field is cleared.

In the example shown in figure 5-4, a field of ten bits is transferred from one field location in the C register, to another
field location in this same register. Becausc the STKNR field of the C register Mes cutside of the receiving field range,

bits 45:10 is cleared, and bits 29:10 will contain the STKNR value at the conclusion of the example operation. Bit
fields 47:18, and 19:20 of the C register are cleared and only 50:03 remain unchanged.

B 6800 System Reference Manual
System Concept

TOA
DIS
Y %
MASK STEERING 10
z
2 NETWORK - NETWORK - > 0,83 ks
z5 29
CONTROL
DIRECT TRANSFER <
NETWORK
22
LOGICAL TRANSFER ‘
73 NETWORK 24
NN — d I
L I
I\ NN A1/
j AA BB
SOOI 1111
L i
1 |
g A o
\ \ \ // // il WAl Wy
;_' I—— \
MEMORY
- —® ! INTERFACE
- [—'V
g
ADDRESS
ADDER
— AND
RESIDUE
CIRCUITS
EXPONENT
e AND MANTISSA Lp] CMEMORY
ADDERS REGISTERS
—
MV 1612A
Figure 5-3. Internal Data Transfer Section
5001290 5-

-9

B 6800 System Reference Manual
System Concept

Stack Controller

The B 6800 provides automatic stack adjustment as required by the operators. These requirements are supplied to the
stack controller on the Z11 bus from the operator families and other functional controllers.

The stack controller manipulates data between main memory and the A and B registers during both the pop-up and
push-down cycles. The X and Y registers are included in the adjustment cycles when double-precision operands are
involved.

A typical program stack is shown in figure 5-5. The stack controller determines whether a push-up or push-down cycle
will be initiated. All other Controllers remain idle until an adjust complete signal is sent to the controller that
initiated the adjustment.

ARITHMETIC CONTROLLER (REFER TO FIGURE 5-6)

The arithmetic controller is a functional controller between the stack registers (A, B, C, X, Y and Z) and the exponent
and Mantissa Adders. This controller is enabled by the family A operators and other operator families that require the

use of these facilities.

Exponent and Mantissa Adders

Figure 5-6 shows the logital path of data flow to and from the exponent and mantissa adders. The exponent adder is
composed of a sixteen bit full adder/subtractor circuit, and the mantissa adder is composed of an 81 bit full adder/
subtractor circuit. The inputs to the two adder circuits, and the outputs from the adder circuits are directed from and
to the stack hardware registers by the arithmetic controller.

The arithmetic controller and the two adder circuits are capable of performing complete double precision mathematics in
one continuous synchronized operation. The arithmetic controller gates both the exponent and mantissa portions of both
halfs of a double precision operand to the two adder circuits in a single operational step. Exponent adder operations are
only performed during multiply or divide functions, and for mantissa alignments.

Each of the two adder circuits consist of an A input (AA), a B input (BB), and a C (SL) resultant output. During a
double precision ADD (80) operation the A input to the mantissa adder consists of the 78 bits of the mantissa field
from the double precision operand in the A and X registers. The B inputs to the two adders for a double precision ADD
operation is the same as the A inputs but is derived from the B and Y registers. After the inputs to the two adders
have been routed to the adder inputs, by the arithmetic controller, the ADD operation is performed in one step. After
the ADD algorithm is completed, the resultant sum of the two numbers is routed by the arithmetic controller back to
the proper stack register(s).

INTERRUPT CONTROLLER (FIGURE 5-2)

The interrupt controller provides a method of temporarily interrupting the program flow when a predetermined interrupt
condition arises.

Interrupt Parameters

The controiier sets up the necessary controi words in the stack for entry into the interrupt handling procedurc of the
MCP. Three words are placed in the stack by the interrupt controller or the operator that caused entry to the interrupt
controller. These three words were described in section 2 under the subheadings INTERRUPT PARAMETER WORDS,

P1 PARAMETER, P3 PARAMETER, and P2 PARAMETER.

5-10

There are five different types of interrupts detected by the hardware of the interrupt controller. These five types

are:

a.

b.

5001290

MV1614

B 6800 System Reference Manual
System Concept

O» -

CREG

0

el

KN

SRR

Z6 BUS

EERERRN

45

AN

STEERING (DIS = 16)

NN X}

36
Tc@ TOM= 19

19
MASK 29 MASK
20
WINDOW
Y
Z1 BUS
T CcREG
A CRE
G 29
20
STKNR

Figure 5-4. Mask and Steering

Syllable dependent interrupts

External interrupts

5-11

B 6800 System Reference Manual
System Concept

rAROFJ I J X REG
K '
" |
[sror | | | YREG
PUSH —>| PUSH —>
uP | DOWN
]
| Losk ={ |
|
| #
| Pl |
s | SOFTWARE
L) ALLOCATED
MEMORY
AREA
LF MSCW STACK CONTROLLER FUNCTIONS
ADJ(FLOW) RESULT
| NOTATION |COMMAND| OPERATION
iy ¥ AROF | BROF
(0,0) Z110 |EMPTYAANDB| O | O
{0,1) Z111 |EMPTY A,FILLB| 0
(1,0) Z112 |EMPTYB,FILLA| 1 | O
{1,1) 2113 |FILL BOTH 1 1
(0,2) Z114 |EMPTY A o | -
1,2) 2115 |FILLA 11 -
*(1,0) Z116 |FILLA 1]o
NOTE:
0= UNOCCUPIED
1= OCCUPIED
- = STATUS WILL NOT BE USED BY
~ ~ THE OPERATOR CAUSING THE
ADJUSTMENT
* THIS ADJUSTMENT WILL BE
BOosR|—» TSCW J MADE IF AROF AND BROF ARE
BOTH FALSE, OTHERWISE NO
MV 1613 ADJUSTMENT WILL BE MADE.

Figure 5-5. Hardware Stack Adjustment

c. Alarm interrupts
d. General control interrupts

e. Hardware interrupts

-

STACK REGISTERS

y

_.l

1711

M4 v v 3

B 6800 System Reference Manual
System Concept

MV 1615

ARITHMETIC
CONTROLLER

16
AA BUS BIT SL BUS
¢ EXPONENT [—
ADDER
81
BB BUS BIT
%] yaNTISSA
ADDER

Figure 5-6. Arithmetic Control

The P1 parameter is the portion of an interrupt stack that identifies the type of interrupt that is being processed. There
are five different types of interrupts, and a bit in the P1 parameter identifies which of the five types of interrupt is
present. The following definitions identify the bits in the P1 parameter that show interrupt type, and system type:

Interrupt Parameter Bits

27 26 25 24 23 22 21 20
A Identifies a B 6800 system
X Identifies a hardware interrupt
X Identifies an alarm interrupt
X Identifies a syllable dependent interrupt
X Identifies a general control interrupt
X Identifies an external interrupt
5001290 5-13

B 6800 System Reference Manual
System Concept

The following paragraphs define the five types of interrupts and identify the major causes of the interrupts.

Syllable Dependent Interrupts

Syllable dependent interrupts are sensed by an operator and normally result in a premature termination of the operator
under control of the logic for the operator. The operator inserts data for the P1, P2, and P3 parameter into the top of
stack registers, and activates the interrupt controller. The values of the PIR and PSR registers are reset to the beginning
of the current operator address, and the interrupted operator is restarted, upon a return from the interrupt handling
procedure of the MCP.
The syllable dependent interrupts are:

a. Memory protect interrupt

b. Invalid operand interrupt

¢. Divide by zero interrupt

d. Exponent overflow interrupt

e. Exponent underflow interrupt

f. Invalid index interrupt

g. Integer overflow interrupt

h. Bottom of stack interrupt

i. Presence bit interrupt

j- Sequence error interrupt

k. Segmented array interrupt

L Programmed operator interrupt

8
5
£

Interval timer interrupt

n. Stack overflow interrupt

o. Confidence error interrupt

NOTE

Although the interval timer interrupt and the stack overflow
interrupts are classed here as syllabie dependent interrupts, it
should be pointed out that these two types of interrupts are not
iruly syllable dependent. These two interrupts would be more
clearly defined as asynchronous interrupts because they do not
depend on the operator that is in process at the time that the

B 6800 System Reference Manual
System Concept

interrupt is raised. However, the handling of these two
interrupts, with respect to the formation of the P2 parameter,
and the handling of the syllable address, are the same as other
syllable dependent interrupts, and are therefore classed as
syllable dependent.

Memory Protect Interrupt

This interrupt occurs under the following conditions:

a. A store, overwrite, or read/lock or string transfer operation is attempted using a data descriptor that has the
read only bit set (bit 43). The operation is terminated prior to the memory access, leaving the descriptor
word in the A register.

b. A store is attempted into a word in memory that has a tag field representing program code, RCW, MSCW, or

segment descriptor. The memory write is aborted when bit 48 is detected in the “flasback” word. The opera-
tion is terminated leaving the original addressing word in the A register.

27 24 0 BIT-

MEMORY PROTECT INTERRUPT ID

Invalid Operand Interrupt
This interrupt occurs when operators attempt to use the wrong types of control words or data. When control words and

data are accessed, they are checked to ensure that they meet the necessary requirements of the operator being executed.
When the interrupt occurs, the operator is terminated prematurely.

27 24 1 BIT

INVALID OPERAND INTERRUPT ID

Divide by Zero Interrupt
This interrupt results when a division operator is attempted with the divisor equal to zero. This interrupt terminates the

operation prematurely, leaves the A register cleared, the interrupt ID in the B register, and PSR and PIR backed up to
point to the initiating operator.

27 24 ' 2 BIT

DIVIDE BY ZERO INTERRUPT ID

5001290 5-15

B 6800 System Reference Manual
System Concept

Exponent Overflow and Underflow Interrupt

These interrupts occur when the capacity of the exponent field is exceeded for either single- or double-precision
arithmetic results. The interrupt ID is dependent on the exponent sign, and both interrupts clear the A register.

27 24 3 BIT

EXPONENT OVERFLOW INTERRUPT ID

27 24 4 BIT

EXPONENT UNDERFLOW INTERRUPT ID

Invalid Index Interrupt

This interrupt is caused by an attempt to index by less than zero or not less than the upper bound (length) in the
operations:

Family

a. Occurs Index (A)

b. Link List Lookup (B)

c. Index ©

d. Move Stack ©

e. Display Update ©

f. Dynamic Branch ©)

g. Stuffed IRW (pseudo) ©

h. Index and Load Name (C)

i Index and Load Value ©
27 24 5 BIT
x X X

INVALID INDEX INTERRUPT ID

B 6800 System Reference Manual
System Concept

Integer Overflow Interrupt
This interrupt occurs when an attempt is made to integerize operands which have a value greater than maximum integer.
In general, the checking is performed before the operand is converted into an integer by reducing the exponent field.
The following are some of the operators that may invoke this interrupt.

a. Integer Divide (both single and double precision)

b. Integerize Truncated

c. Integerize Rounded

d. Occurs Index

e. Integerize rounded, double precision

If the interrupt is invoked, the operator is terminated.

27 24 6 BIT

INTEGER OVERFLOW INTERRUPT ID

Bottom of Stack Interrupt
This interrupt is used to inform the operating system that a return or exit operator has caused the program stack to be

returned to its base. If this condition arises, the operator will terminate with the last accessed RCW (Return Control
Word) left in the A register.

27 23 7 BIT

BOTTOM OF STACK INTERRUPT ID

Presence Bit Interrupt

This interrupt is used to inform the system that an attempt has been made to access a quantity not present in main
memory. All operators that access memory with descriptors have the ability to set this interrupt. Special consideration
is given to this type of an interrupt for data or procedure-dependent descriptors.

RT RT

46 45 39 24 8 BIT
0=ON

o]0 0 0 : X OR OFF

PRESENCE BIT INTERRUPT ID

5001290 5-17

B 6800 System Reference Manual
System Concept

Special Consideration-Presence Bit Interrupts
There are two classes of presence bit interrupt conditions:
a. Data-Dependent
b. Procedure-Dependent
Each class requires that the PIR and PSR value for the RCW be manipulated differently.
Data-Dependent Presence Bit Interrupt

Data-Dependent Presence Bit. The data-dependent presence bit interrupts are incurred while the processor is seeking data
from within its current procedural environment. Recovery is achieved by re-executing the operator upon return from the
presence bit interrupt-handling procedure.

The presence bit procedure makes the non-present reference present prior to returning to the interrupted program. The
PIR and PSR setting for the current operator are saved in the RCW for data-dependent presence-bit interrupts.

Procedure-Dependent Presence Bit Interrupt

Procedure-Dependent Present Bit. The procedure-dependent presence bit interrupts are incurred when the processor
attempts to enter a new procedural environment or to return to an old procedure. These interrupts occur during display
update and when the processor is trying to access a non-present segment descriptor. Recovery is achieved by the exit
operator mechanism after the presence bit procedure has made the referenced area present. The processor has not yet
fetched the first operator of the néw procedure when this presence bit interrupt occurs; therefore, the PIR and PSR set-
tings from the PCW or RCW, depending on whether an entry or exit was being performed, are saved when fabricating the
RCW upon entry into the presence bit interrupt procedure.

Program Restart

Pfogram Restart. In order to restart some operators after a presence bit interrupt, it is necessary for the presence bit
procedure to return either an IRW or Data Descriptor. The “RT-bit” in the presence bit ID (P1) indicates to the presence
bit procedure whether to perform an exit or return operator when returning to the interrupt program. The “RT-bit” is
manipulated by the hardware prior to honoring the presence bit interrupt. Figure 5-7 (Presence Bit Interrupt Table)
illustrates the (PSR and PIR), exit/return and “RT-bit” relationship to the various presence bit interrupt conditions.

Sequence Error Interrupt

This interrupt is used to inform the system that while attempting to access a Mark Stack Control Word (MSCW), a word
with a tag field value of three was not found. This error implies that the stack linkage or stack history (of the stack that
was being accessed) is in error. A sequence error may occur at different places in an operator sequence, and may occur
before, or after the time in the sequence where PIR, PSR, PBR and PDR are adjusted. If the sequence error occurs after
the required adjustment has been made, then bit 23 of the interrupt parameter will be set to indicate a class two syllable
dependent interrupt. If the sequence error occurs prior to the adjustment then bit 24 of the interrupt parameter will be
set to indicate a class one syllable dependent interrupt. The interrupt parameter for a sequence error is as follows:

24 2 9 BIT

%= EITHER BIT 23, OR BIT 24
WILL BE SET, BUT NOT BOTH

SEQUENCE ERROR INTERRUPT PARAMETER

B 6800 System Reference Manual

System Concept

RTBIT
PRESENCE BIT (3) RETURNING | PIR, PSR SOFTWARE
INTERRUPT CONDITION (BIT46) | OPERATOR | NEW RCW FUNCTION
STACK VECTOR INT.
STACK VECTOR D.D. 1.D. MAKE STACK
DURING DATA OR STACK
REFERENCE 1 IRW VECTOR
(STUFFED) 0 EXIT s (4) PRESENT.
DATA @) IRW INT. 1 RETURN | S (4)
DEPENDENT :
DATA DESCRIPTOR | (1] D.D. INT. 0 EXIT) SEARCH STACK
DURING DATA (COPY) 1.D. FOR COPIES OF
REFERENCE NOT PRESENT
(20 DD. INT. 1 RETURN | S_(4) D.D., MAKE
~_(CoPY) 1.D. MOM AND
STACK VECTOR — DD, INT. 0 EXIT FROM It
STACK VECTOR D.D. (COPY) 1.D. RCW/PCW D.D. WHERE
DURING DISPLAY D
. ey NOTED.
PROCEDURE
DEPENDENT | SEGMENT
DESCRIPTOR -~ sD. INT. 0 EXIT FROM LOCATE S.D.
{COPY) 1.D. RCW/PCW | (MOM) VIA
COPY IN Py,
AD FIELD OF
COPY POINTS
TO MOM

(1) VALUE CALL OR ENTER
{2) ALL OPERATORS EXCEPT VALUE CALL, ENTER, OR MOVE STACK

(3} RTBIT ISPACKED IN THE INT. |.D. (Pq)

{4) S, INDICATES THE PIR AND PSR POINT TO CURRENT OPERATOR SYLLABLE
(5) MOVE STACK OPERATORS

MV 1616

Segmented Array Interrupt

Figure 5-7. Presence Bit Interrupt

This interrupt is used by the string operators as an upper limit boundary detection. Arrays in main memory may be
segmented into groups of 256 words each, bounded on both ends by memory link words. Each word read from memory
during string operator executions is checked for the presence of bit 48 (memory protect). If the bit is on, the segmented-
array interrupt is set. String operator interrupts leave a special parameter in the A register. This parameter indicates how

5001290

B 6800 Reference System Manual
System Concept

many words in the stack, below the parameter, will be needed to restart the operation after the new segment of data has
been brought to main memory.

2 1 0 BIT
0=ON
0 0| O oRoOFF

A—-REGISTER PARAMETER

27 24 10 BIT

X X X

SEGMENTED ARRAY INTERRUPT ID

Programed Operator Interrupt

This interrupt is used for the detection of an invalid operator code. Primary code FF is detected and causes this interrupt.
An invalid code not detectable will result in a loop timer interrupt. The programed operator interrupt is used as a com-
municate operator to the system.

27 24 10 0o BIT

x X olololololo}jolo]jo]o}]o

PROGRAMMED OPERATOR INTERRUPT 1D

Interval Timer Interrupt

The interval timer interrupt occurs when the interval timer times out. This timer is used by the MCP for time slicing.
The SINT operator is used to establish an initial value in the interval timer register. The data processor then proceeds to
count 512 micro-second intervals until the number of intervals that have occurred since the SINT operator was executed
is equal to the value that was set in the interval timer register. At this point an interrupt is generated that forces the
data processor to enter the interrupt handling procedure. The presence of the interval timer P1 parameter indicates to
the MCP that it is time to perform some other time sliced procedure.

BIT

27

¥

INTERVAL TIMER INTERRUPT 1D

5-20

B 6800 Reference System Manual
System Concept

Stack Overflow Interrupt
The stack overflow interrupt occurs when the S register in the IC memory is equal to the LOSR register. This interrupt

occurs because the procedure that is being executed has attempted to utilize more word space in the stack than was
originally allocated for the memory portion of the stack.

27 24 12 BIT

X X X1

STACK OVERFLOW INTERRUPT ID

Confidence Error Interrupt

The confidence error interrupt occurs when the confidence test routine is being executed by the data processor, and an
error is detected as a result of a test failure. The confidence test is automatically initiated when the data processor is not
performing other software procedures. A failure in the confidence test is placed in the system/SUMLOG for maintenance
analysis. The test places data about the nature of the error in the interrupt parameters and the MCP upon recognizing a
confidence error causes the data to be written in the SUMLOG.

27 24 13 BIT

X X X

CONFIDENCE ERROR INTERRUPT iD

OPERATOR INDEPENDENT INTERRUPTS

These interrupts are induced by conditions outside the operator or processor logic. They are divided into two groups,
external interrupts and alarm interrupts.

EXTERNAL INTERRUPTS
These interrupt conditions are anticipated and inform the system of some change in the external environment. They
normally result in a momentary interruption of a program process which will be continued after handling or recording of
the interrupt condition. The program sequence controller senses the interrupt condition, inhibits activation of the next
operator. The interrupt controller then processes the interrupt. PIR and PSR fields of the RCW address the next opera-
tor syllable so that the program will be restarted with the execution of the next syllable upon continuation. The external
interrupts are as follows:

a. I/O finish interrupt

b. Data Communications interrupt

c. General Control Adapter

d. Change of Peripheral Status interrupt

e. Scratch Pad Parity interrupt

5001290 5-21

B 6800 System Reference Manual
System Concept

I/O Finish, Data Communications, and Status Change Interrupts

1/O finish, data communications and status change interrupts are handled by the interrupt controller as follows:
1. A hardware branch is made to the multiplexer interrupt routine, in the micro-logic module. The micro-
module contains the necessary logic to place the correct type of interrupt parameters in the interrupt stack

(see Interrupt Parameter Words, in section two).

After the micro-module has assembled the proper interrupt stack parameters in the data processor top of
stack registers, the interrupt controller resumes the automatic interrupt handling process.

2. The normal operation of entry to the MCP interrupt handling procedure is then executed.

27 2 7 6 5 4 3 2 1 0 BIT

EXTERNAL INTERRUPT PARAMETER

NOTE

Bits 3:4=0001

Bits 7:4 identify type of interrupt.
1001=I/O finished

0001=DCP #1

0010=DCP #2

0011=DCP #3

0100=DCP #4

0110=BIC #1

0111=BIC #2

1111=change of status
1000=scratch pad parity error

Alarm Interrupts

These interrupt conditions are not anticipated and inform the system of some detrimental change in environment. They
normally result from either a programing error or hardware failure. The alarm interrupt conditions are recognized upon
occurrence by the interrupt controller. The interrupt controller assumes control of the machine, clears the activated
operator family, and marks the TOS registers full. In either case (programming error or hardware failure) the current
operaior is terminated prematurely. The alarm interrupts are:

a. Loop timer interrupt

b. Memory address parity interrupt

c. Scan bus parity interrupt

d. Invalid address-local interrupt

e. Stack underflow interrupt

5-22

B 6800 System Reference Manual
System Concept

f. Invalid program word interrupt
g. Memory address residue interrupt
h. Read data multiple error interrupt
i. Invalid address-global interrupt
j- Global memory not ready interrupt
k. Scan-in information error interrupt
L Scan-out error interrupt
Loop Interrupts
This interrupt is invoked if the Processor hardware fails to provide a SECL (Syllable execute complete level) at least

every 2 seconds. This could occur if an attempt is made to execute an invalid operator. If the interrupt occurs, the ID
remains in the B register, the A register is cleared and PIR is backed up.

27 25 0o BIT

LOOP INTERRUPT ID

Memory Address Interrupts
This interrupt is invoked if the Memory Controller detects an even number of address and control bits being transmitted

between the Processor and Memory. Should the interrupt occur, the ID is left in the B register, the A register is cleared
and PIR is backed up.

27 25 1 BIT

MEMORY ADDRESS PARITY INTERRUPT ID

Scan Bus Parity Interrupts

This interrupt is the same as Memory Address Parity above, except that it is used for transfer of information on the
scan bus interface.

27 25 2 BIT

SCAN BUS PARITY INTERRUPT ID

5001290 5-23

B 6800 System Reference Manual
System Concept

Invalid Address-Local Interrupts

This interrupt is set by the Memory Controller when it fails to obtain an acknowledgement to a local memory request
within eight clock periods. This indicates that an attempt has been made to access a non-existent memory module. The
memory controller initiates the interrupt and the interrupt controller leaves the ID in the B register with the A register
clear and PIR backed up.

27 25 3 BIT

INVALID ADDRESS LOCAL INTERRUPT ID

Stack Underflow Interrupts

This interrupt is invoked if the stack controller detects an attempt to move the S register to an address less than F during
stack adjustment. If this interrupt occurs, the ID remains in the B register, the A register is cleared and PIR backed up.

27 25 4 BIT

STACK UNDERFLOW INTERRUPT 1D

Invalid Program Word Interrupts

This interrupt is invoked if one of the following conditions is encountered:
a. A word with a tag not equal to 3 is placed in the P register for execution (except in Table edit mode).
b. The variant operator syllable (95) is followed by another variant operator syllable (95).

c. The processor is in edit mode and a family strobe is emitted for another operator family. Should the interrupt
occur, the ID is left in the B register, the A register is cleared and PIR is backed up.

27 25 5 BIT

INVALID PROGRAM WORD INTERRUPT ID

Memory Address Residue Interrupis
This interrupt is set when the memory controllerydetects an error in the MAR, or LAR address registers. Residue

checking is a method for detecting abnormalities in the address adder and/or the IC memory registers. Any activity of
the address adder that results in the setting of a residue interrupt prevents a memory cycle from occuring.

5-24

B 6800 System Reference Manual
System Concept

27 25 6 BIT

MEMORY ADDRESS RESIDUE INTERRUPT ID

Read Data Multiple Error Interrupts

This interrupt is set when the memory controller detects more than a single bit in error during a memory read operation.

Multiple bits in error are not correctable, and thus when such errors are detected the memory controller causes an alarm
interrupt to occur.

27 25 7 BIT

X X X

READ DATA MULTIPLE ERROR INTERRUPT ID

Invalid Address-Global Interrupts

This interrupt is set in the same manner as is the invalid address-local alarm interrupt, except that the invalid address is
for a global memory address instead of for a local address.

27 25 8 BIT

X X X

INVALID ADDRESS-GLOBAL INTERRUPT iD

Global Memory Not Ready Interrupts

This interrupt is set when a memory access is initiated on a memory address in global memory, and the global memory
does not respond properly to the memory controller.

27 25 9 BIT

X X X

GLOBAL MEMORY NOT READY INTERRUPT ID

Scan-In Information Error Interrupts

This interrupt is set when an external sub-system attempts to communicate with the CPU cabinet through the scan bus
interface, and the memory control detects an even number of data bits on the scan bus information lines.

5001290 5-25

B 6800 System Reference Manual
System Concept

27 25 10 BIT

X X X

SCAN-IN INFORMATION ERROR INTERRUPT 1D

Scan-Out Error Interrupts

This interrupt is the same as the scan-in information error interrupt except that the detection of an error on the scan bus
information lines was made by one of the sub-systems that are connected to the scan bus. The direction of data flow
was from the B 6800 system to the sub-system interface. The sub-system that detected the error responded by making
the scan bus control level STEX a true (high) signal. The CPU initiates the alarm interrupt when this level is a true
signal.

27 25 1 BIT

X X X

SCAN-OUT ERROR INTERRUPT ID

General Control Interrupts

General control interrupts are used to cause information to be inserted into the System/SUMLOG, about correctable

error conditions during normal system operations. This type of error does not result in an operator or a procedure failure,
but the implication of the errer is that further deterioration of the hardware may lead to an operator or procedure failure.
A subsequent analysis of the information in the System/SUMLOG may be used to identify the nature of the error condi-
tion. By definition such errors are intermittant and/or random, and usually cannot be duplicated for troubleshooting and
maintenance purposes. However, in some cases, knowledge about the frequency of occurance, and simularity of operating
conditions may lead to the solution of otherwise non-solvable problems. The purpose of the general control interrupt is
to produce the data upon which such analysis can be made.

There are four different kinds of general control interrupts as follow:
a. Read data single error interrupt.
b. Read data retry interrupt.
c. Read data check bit interrupt.
d. ddress retry interrupt.
Read Data Single Error Interrupts

This interrupt is set when the memory interface error correction circuit detects a single bit in error during a read from
memory operation. The single bit in error is corrected, and the procedure being executed is not aware that a bit failed

i inola hit failad A Aosiaas dlis cond dodn oo aooan foao
on the memory bus. The memory controller is awarc that a single bit failed and causes the read data single error interrupt

to occur.

5-26

B 6800 System Reference Manual
System Concept

27 22 i 0

@

READ DATA SINGLE BIT ERROR INTERRUPT ID

Read Data Retry Interrupts

The memory controller contains logic that can cause a read strobe to be regenerated if a parity error is detected on the
read data memory interface bus. This retry of a memory read strobe can prevent the occurrence of a memory interface
parity error if the cause of the parity error is a problem in the data signal on the interface bus. A general control inter-
rupt is initiated by the memory controller when a memory retry is performed. The purpose of this interrupt is to cause
the System/SUMLOG to record information about the retry.

27 22 3 BIT

READ DATA RETRY INTERRUPT ID

Read Data Check Bit Interrupts

The memory controller error detection/correction circuit receives 60 bits of read data for a memory read operation.
These 60 bits inciude 52 bits of data, and eight check bits. The check bits are used to detect errors in the 52 data bits.
The correction circuit corrects any single bit in error in the read data (see the subsection titled READ DATA SINGLE
ERROR). Multiple data bit errors are detectable, but are not correctable (see the subsection titled READ DATA
MULTIPLE ERROR). A check bit in error is detectable, and, providing that a data bit error does not occur at the same
time as the check bit error, does not result in an alarm interrupt condition. The memory controller reports check bit
errors, and the resulting interrupt causes an entry in the System/SUMLOG to be written which identifies the nature of
the error.

27 22 - ' 4 BIT

X X . ‘ X

READ DATA CHECK BIT INTERRUPT ID

Address Retry Interrupts

The memory controller holds a memory address for an access on the memory until the memory reports back to the
controller that the address received was correct, or that the address was incorrect. . If the memory reports back that the
address was incorrect the controller will strobe the address to the memory a second time, for a retry. If the retry of the
address is correct the memory access is completed for the requesting unit. If the retry of the address was incorrect an
invalid address error is reported to the memory control by the exchange (see alarm type interrupts).

5001290 5-27

B 6800 System Reference Manual
System Concept

The memory exchange reports retries to the memory controller, and the interrupt that is generated as a result of this
report causes the information about the retry to be written in the System/SUMLOG.

27 22 5 BIT

X X X

ADDRESS RETRY INTERRUPT ID

Hardware Interrupts

Hardware interrupts are abort type interrupts that cause operator and procedure errors. These errors are related to a
hardware device or circuit that can be identified for maintenance analysis. The purpose of the hardware interrupts is to
identify the device and/or cause SYSTEM/SUMLOG entries of other significant data to be written into the System/
SUMLOG, for a subsequent analysis. There are five hardware interrupts as follows:

a. Prom card parity interrupt

b. Ram card parity interrupt

c. Bus residue interrupt

d. Adder residue interrupt

e. Compare residue interrupt

PROM Card Parity Interrupts

The data processor contains many PROM chip devices that are used to hold pre-selected micro codes and addresses.
Each time that one of the PROM devices are addressed, the output code is tested for parity. If a PROM parity error is
detected, a hardware interrupt is initiated, and the interrupt parameters contain the address of the PROM device that
caused the error. Other information in the interrupt parameters is defined in table 2-4 (section 2).

27 26 o BIT

PROM CARD PARITY INTERRUPT ID

RAM Card Parity Interrupts

The multiplexor contains RAM chip devices in the multiplexor buffer. Each time that an address in the buffer is
accessed a parity check of the contents of the buffer address is made. If a parity error in the buffer is detected, a RAM
parity error is reporied io the data processor, and this eiror initiates the interrupt controller. The address of the RAM
device that caused the error is transferred to the data processor interrupt controller and is stored in the interrupt
parameters (see-table 2-4 in section 2).

-5-28

B 6800 System Reference Manual
System Concept

27 2% 1 BIT

RAM CARD PARITY INTERRUPT ID

Bus Residue Interrupts

The residue generator cards in the data processor tests the residue bits from the Z8 and Z9 busses. If an error is detected
in the residue bits from these two busses a bus residue interrupt is initiated, and the residue bits are passed to the
interrupt controller for inclusion in the interrupt parameters (see table 2-4 in section 2).

27 26 2 BIT

BUS RESIDUE INTERRUPT ID

Adder Residue Interrupts

Each time that the residue adder sums two addresses (from the Z8 and Z9 busses) the bits in the two residue values are
tested. An error causes the interrupt controller to be initiated, and the residue bits are passed to the interrupt controller
for inclusion in the interrupt parameters (see table 2-4 in section 2).

27 26 3 8IT

ADDER RESIDUE INTERRUPT ID

Compare Residue Interrupts

Each time that the address adder sums two address values a new residue value is generated as a result of the sum of the
two addresses. At the same time that the address adder is summing the two addresses, the residue adder sums the
residue bits from the two addresses. A comparator circuit compares the two sums (one sum from the residue adder and
the other sum from the address adder). If the two sums are not identical, there is a high probability that an IC memory
circuit is at fault. The interrupt controller senses a compare residue error, and passes the value of the residue to the
interrupt handling procedure in the interrupt parameters (see table 2-4 in section 2).

27 26 4 BIT

COMPARE RESIDUE INTERRUPT ID

5001290 5-29

B 6800 System Reference Manual
System Concept

STRING OPERATORS

String operators control the character formatting capability of the B 6800 system while the system is operating in primary
mode. The same string operators may also be performed as edit operators while the system is operating in edit mode.
The string operators are comprised of the normal mode operators in the F, G, and H families, which are grouped in a
“super-family”, and designated as family U. Family U operators share a common “T” register (operator code register),

a common logical sequence counter, and a common group of logical flip flops.

The most significant advantage from collecting all string operators into a single super-family is that the common logical
functions that all string operators share are not duplicated in each family controller. For instance, all string operators
require a method for accessing local memory, and for addressing the characters of data within a memory word. A
typical string operator must be capable of addressing a number of different words in memory, in order to perform an
editing operation on a string of data characters. Moreover, once the editing has been performed, the word must be
stored in memory, so that the same editing can be performed on other words of data. The logic circuits and operator
functions that are required to perform this type of operation are common, and are thus collected into the single super-
family U in the B 6800 system.

MEMORY CONTROLLER

The memory controller in the CPU (refer to figure 5-2) services requests for access to memory resources of the system
from the data processor, the look ahead logic, and the multiplexor. These three modules are all located within the CPU
cabinet, and share a common path to/from memory. Internal logic circuits of the memory controller establish when
each of these three modules has priority for accessing system memory resources.

When the multiplexor is processing an IO operation, and a need for a burst cycle exists, the multiplexor has first priority
for a memory access request. ‘This condition causes the data processor to suspend its operation while the multiplexor
obtains access to memory. The data processor will suspend its operation until the multiplexor completes its memory
access. At the conclusion of the multiplexor memory access operation the data processor will continue its operations at
the place where the suspension occured.

The order of priority in accessing memory is multiplexor, processor, and look ahead logic, in that order.

The memory controller logic has the capability to store two requests for access to memory. The storing of access
requests consists of remembering what requests were received over the Z12 memory control bus. The memory controller
examines the contents of the two requests to determine which request has the higher priority for the next access to
memory.

The logic mechanism used by the memory controller to remember what memory requestor units require an access to
memory consists of two request registers that are located in the channel A input logic to the memory control. When a
request for a memory access is transmitted to the memory control, the request (bits D:14 on the Z12 bus) is stored in

the RQT register (13:14). Each time that a memory request is to be processed for the CPU cabinet, the memory controller
will examine both the RQT, and the RQR registers, to determine which of two possible requests for access to memory has
the higher priority. As one of the two possible memory requests are performed, the stored request information in the
RQT register (or alternatively the RQR register) is reset to binary zeroes. This removes a request that is presently being
executed from further contention for an access to memory, and frees the register that was reset to accept a new access
request.

The memory controller also monitors all memory and scan bus requests for errors. If an error condition is detected
during a memory bus or scan bus operation, the memory controller will cause an interrupt to be present in the data

B 6800 System Reference Manual
System Concept

processor interrupt controller. The memory controller passes parameters that describe the type of interrupt that occured
to the interrupt controller. The interrupt handling procedure of the MCP will cause the interrupt parameters from the
memory controller to be written in the SYSTEM/SUMLOG, thus preserving a record of memory and/or scan bus errors.
The interrupt handling proeedure for logging memory errors is also used for memory-accesses that originate outside of
the CPU (in a subsystem memory interface, from an external subsystem). The memory controller detects memory
errors that originate in the external subsystem interface to memory, and initiates the interrupt controller to log all such
errors.

CONTROL STATE/NORMAL STATE
A B 6800 data processor has the ability to perform in either normal or control state. In control state, all external
interrupts are inhibited and a few privileged operators are enabled. The Inhibit Interrupt Flip Flop (IIHF) must be

set for processing to occur in control state.

The data processor switches to control state upon entering a procedure via a control state program control word (PCW).

MULTIPLEXOR FUNCTION

The multiplexor function in the B 6800 system represents the collection of system IO functions into a semi-independent
functional group. This multiplexor grouping of functions operates at times lik€ a part of family C of the data processor.
At other times it operates in an autonomous manner, independently of the data processor. The multiplexor cannot
initiate an IO function except upon command of the data processor.

The “semi-independent™ characteristic of the multiplexor is achieved by the manner in which the data processor and the
multiplexor communicate with each other (see figure 5-8). These two component modules of the CPU cabinet are
linked to each other in such a way that they share the Z1 and Z5 busses. Through sharing these two busses the data
processor and ihe muitipiexor pass coniroi information and data to each other. In addition to the linkage on the com-
mon busses, the multiplexor controls an interrupt signal line which allows the multiplexor to directly and independently
invoke the interrupt controller function of the data processor.

Two variant mode operator codes (954A, SCAN-IN operator, and 954B, SCAN-OUT operator) are used by the data
processor to cause the multiplexor to perform one of its functions.

DATA PROCESSOR SCAN-IN FUNCTIONS TO THE MULTIPLEXOR

The functions that the multiplexor performs in response to a data processor SCAN-IN operation are defined by the
contents of the function code field in the multiplexor function word (see figure 5-9). Each of these functions will be
covered in detail later in this section. None of the SCAN-IN operations performed by the multiplexor require an inter-
face to the memory control, because the data generated in the multiplexor is returned to the data processor as a part of
the SCAN-IN operation sequence. If the information that is returned to the data processor is to be subsequently stored
in memory, the data processor will cause the memory storage to occur.

5001290 5-31

[4 2

Figure 5-8. B 6800 IO Function Block Diagram

MEMORY CONTROL | DATA PROCESSOR | MULTIPLEXOR
21 z3 24 25 l
lBus BUS BUS BUS I
LOOK l
PROGRAM
| AHEAD fa—
| LoGIC CONTROLLER |
l L REGISTER . _' 0
—— — — PERIPHERAL
| r DATA AND
P REGISTER CONTROL
EXTERNAL | l PERIPHERAL INTERFACE
SUBSYSTEM TRANSLATE DATA CONTROL BUS
SCAN BUS | LOGIC > BUFFER [®] DATA -
INTERFACE | | > INTERFACE
S ' by
l | A REGISTER '
- ADDRESSING
l B REGISTER ! LOGIC
| > |
T0
ey X —1 |
- ' i___?>
OP-CODE
I b—; C REGISTER d : AND VARIANT
MEMORY CHARACTER
CONTROL ' —p GENERATOR
CHANNEL A ZREGISTER[? | SCRATCH
10 I > ¢ l PAD
LOCAL MEMORY
MEMORY | | —
Y 10
| | STATSS, PERIPHERAL
ROL
| INTERRUPT || TERRUPT — controL | SONT
| | PERIPHERAL
' STATUS /
| VECTOR <
|z12 BUS STATUS
| | LOGIC
MV 1617 : '

1doouo)) wasAg
[enUE 20UsIaJeY WaISAS 0089 4

B 6800 System Reference Manual
System Concept

Fjo
0 F 0
0 F |l
0 i e 1
wo w36 |32 WO !
BIT FIELD MEANING
50:3 = TAG FIELD.
THE TAG FIELD IS ALWAYS EQUAL TO ZERO
47:29 = UNUSED FIELD. THE UNUSED FIELD IS ALWAYS
EQUAL TO ZERO
18:9 = THE ADDITIONAL DATA FIELD. THIS FIELD IS USED TO
COMMUNICATE ADDITIONAL DATA ABOUT THE
OPERATION THAT IS TO BE PERFORMED
9:5 = THE FUNCTION CODE FIELD. THIS FIELD SPECIFIES WHICH OF THE
VARIOUS MULTIPLEXOR SCAN-IN FUNCTIONS IS TO BE PERFORMED
CODE FUNCTION
00000 = INTERROGATE IO PATH
00001 = INTERROGATE PERIPHERAL STATUS
00011 = READ TIME OF DAY REGISTER
00100 = READ INTERRUPT REGISTER
00110 = INTERROGATE UNIT TYPE
01000 = INTERROGATE IO PATH ADDRESS
01010 = READ PROCESSOR TIME COUNTER
01011 = READ SCRATCH PAD WORD
01100 = INTERROGATE |0 PATH ADDRESS OVERRIDE
01111 = READ INTERRUPT LITERAL
10100 = READ INTERRUPT MASK
4:5 CODE REQUIRED FOR B 6800 SYSTEM IS 00011 BINARY

MV 1618

Figure 5-9. B 6800 Scan-in Function Word

DATA PROCESSOR SCAN-OUT FUNCTIONS TO THE MULTIPLEXOR

The functions that are performed by the multiplexor in response to a SCAN-OUT command from the data processor

are different from responses to a SCAN-IN command. The data processor uses two words to provide a function word
and the data that is required to perform the function. The function word (or alternatively the initiate IO word) is
passed to the multiplexor in the same way that the SCAN-IN function word was passed. The data word (or alternatively
the 10 address word) that is required to perform the function is initially in the second word of the stack (the B register).

5001290 5-33

B 6800 System Reference Manual
System Concept

U U F 0
0 U U F 0
0 U F F 1
0 U F 0 1
Ll 40 36 12 8 u 0
50:3 = TAG FIELD.
THIS FIELD CONTAINS A TAG VALUE OF ZERO FOR SCAN-OUT
OPERATIONS
19:1 = AN UNUSED B!T. REQUIRED TO BE A BINARY ZERO IN THE
MULTIPLEXOR FUNCTION WORD
18:2 = THE PATH FIELD. THIS FIELD IS USED TO INDICATE ONE OF
FOUR PATHS TO BE USED FOR AN 10 OPERATION
16:7 = THE UNIT DESIGNATE FIELD. THIS FIELD IS USED TO DES!GNATE
ONE OF 256 PERIPHERAL UNITS TO BE USED FOR AN 10 OPERATION
9:5 = THE FUNCTION CODE FIELD. THIS FIELD SPECIFIES WHICH OF THE
VARIOUS MULTIPLEXOR SCAN-OUT FUNCTIONS IS TO BE PERFORMED
00000 = INTIATE 10 DEVICE
00011 = SET TIME OF DAY
00100 = SET INTERRUPT MASK
01110 = SET PSUEDO BUSY
01000 = INITIATE 10 DEVICE WITH PATH ADDRESS
01100 = INITIATE 10 DEVICE WITH PATH ADDRESS OVERRIDE
4:5 = CODE REQUIRED FOR B 6800 SYSTEM 1S 00011 BINARY
MV 1619

Figure 5-10. B 6800 Scan-Out Function Word

The format of the data word that is present in the B register at the beginning of the SCAN-OUT operation is variable,
depending on the type of function that the multiplexor is to perform. Each of the various functions will be discussed
in detail later in this section, and the format of the data word that is used will be given with the discussion.

The function codes that are used for all SCAN-OUT function words except the initiate IO type operations are shown in
figure 5-10. The function word for the initiate IO type of operations is called the initiate IO word (IIOWD), and this
format will be discussed later in this section, as a part of the IO operations topic.

B 6800 System Reference Manual
System Concept

DATA PROCESSOR SCAN-OUT FUNCTIONS TO EXTERNAL SUBSYSTEMS

The data processor also uses the SCAN-IN/OUT operators to communicate with the subsystems that may be attached to
the B 6800 system (the data communications processor andfor the bus interface control, which includes the reader sorter
subsystem). The scan function word and scan data word (IOAD) for external subsystems scan bus operations are explained
in sections 12, and 13 of this manual.

An external scan bus operation in the B 6800 system uses the Z4 bus, and is thus similar to a memory operation. The
IOAD word that is present in the top of stack registers is routed via the Z4 bus to the memory control. The scan-in
(SCNI), and scan-out (SCNO) operators cause bit C of the Z12 bus to be a true level when an external scan bus opera-
tion is performed. Bit C of the Z12 bus is used to identify an external scan bus operation in the memory control. When
bit C of the Z12 bus is true, the control links the Z4 bus to the external scan bus, instead of to the local or global memory
interface buses.

Figure 5-8 shows that the path from the data processor to the external subsystem interface scan bus is through channel A
of the memory control (through the Z3 and Z4 busses).

MULTIPLEXOR SCAN-IN FUNCTIONS

The B 6800 system multiplexor responds to eleven different SCAN-IN function words. The functions are defined by the
value of the function code, as shown in figure 5-9. The following paragraphs will define the specific information that is
passed to the multiplexor during the execution of a SCAN-IN operation. They also will define the information that is

returned to the data processor as a result of the SCAN-IN operation.

Interrogate Peripheral Status Multiplexor Function

When a SCAN-IN operator passes a function word that contains the interrogate peripheral status function code, the muiti-
plexor responds by returning a peripheral status word to the data processor. The function word and the “returned”
word are shown in figure 5-11.

The status word that is returned to the data processor represents the status vector bits from 32 peripheral devices, out of
the 256 peripheral devices that may be operated by the multiplexor. The 256 peripheral units are arranged into groups of
32 units, or eight groups. Each group is numbered, with peripheral device number zero, through device number 31
reported in status vector word number zero. The ninth status vector word (word number eight) is used for those periph-
eral units that require system action as a result of the status change in the peripheral device, such as system console
displays. In the ninth status word the 32 bits do not represent 32 consecutive unit numbers, but rather those units that
require system response, in ascending order, according to all such units in the system.

The status vector field in the function word defines which group of 32 units for which the status word is to be returned.
Bit zero in the returned word is used to indicate that the word is present.

Interrogate 10 Path Multiplexor Function

When a SCAN-IN operator passes a function word that contains the interrogate IO path function code, the multiplexor
responds by returning a word to the data processor. The “returned” word identifies whether or not a path is available
to the IO device. The function word, which is transmitted to the multiplexor as a result of the data processor scan-in
operation, is shown in figure 5-12. The Unit number field, of the function word contains the binary unit number of one
of the 256 10 devices that may be connected to the system.

-5001290 5-35

B 6800 System Reference Manual
System Concept

FUNCTION WORD
ofjo
0 0j]o
0 1 1
0 \ 0 . 1
N = NUMBER OF STATUS VECTOR WORD TO BE RETURNED
RETURNED WORD

STATUS
BITS

24 |20 Jie f12 |8 lo

=

[32:32] STATUS VECTOR BITS
X=0 STATUS WORD NOT PRESENT
X=1 STATUS WORD PRESENT

MV 1620

Figure 5-11. Interrogate Peripheral Status

Figure 5-12 also shows the format of the returned word, which is the answer from the multiplexor to the data processor
as to whether or not a path is available to the particular 10 device. The returned word is placed in the B register of the
data processor, the B register is marked to contain valid data (BROF is set), and the A Register is marked not valid
{ARQF is reset).

A path is available to an IO device if:
a. The 10 control is in remote

™.

11

L PR 74 YAPRNP V) +
U. i€ 1V CONtIol i§ ai sequeiice Couint Z310

c. The multiplexor channel Psuedo-busy flip-flop is reset

5-36

B 6800 System Reference Manual
System Concept

FUNCTION WORD
oj o
0 o unit | o] o
, sibe NO.
0 o] 1
0 5 & ojJ o] 1
b |ho 136 132 |28 Ik 120 8 s 0
RETURNED WORD
ol o
0 UNIT 0]l o0
NO.
0 o] 1
0 ofol A
11 ko 36 32 28 24 20 16 12 8 4 0

A=1 PATH AVAILABLE
A=0 NO PATH AVAILABLE

MV 1621

Figure 5-12. Interrogate IO Path

d. The multiplexor IC memory channel does not contain a result descriptor from a previous operation of the
10 device

e. The multiplexor will not exceed the pre-determined traffic counter value due to initiating the particular 10
device for which path information is requested (high-speed IO devices only)

An available path is not dependent upon the state of an external exchange device, through which the IO control com-
municates with the peripheral device. If two IO controls have the capability to communicate with the particular device
for which path information is required, and one of the two paths is available, the multiplexor will report that a path is
available.

Read Time of Day Multiplexor Function

When a SCAN-IN operator passes a function word that contains the read time of day function code, the multiplexor
responds by returning a word that contains the binary value of the time of day register. The “returned” word contains
36 bits of time of day information. The value of bit zero in the returned word is 2.4 microseconds.

-

5001290 537

B 6800 System Reference Manual
System Concept

Figure 5-13 shows the format of the SCAN-IN read time of day function word, and also the format of the returned
word.

Read Interrupt Register Multiplexor Function

When a SCAN-IN operator passes a function word that contains the read interrupt function code, the multiplexor
responds by returning a word that contains the value of the interrupt register. The “returned” word contains ten bits,
and each bit represents a different interrupt. The returned value is not treated as a binary value, but rather as a group
of individual values. The meaning of each bit in the returned word is as follows:

Bit Meaning
0 A bit has been sét in the status c_hangé vector word.
1 The number one data communications processor has caused its interrupt HEYU line to be a true level.
2 This bit is the same as bit number 1, but originates from data communications processor number two.
FUNCTION WORD
0 0
0 1 0
o 1 1
Ol fuo 16 32 l8 law o Jis |z io Lo

RETURNED WORD
0 TiME OF DAY
(BINARY)
0
o ‘
s |so {36 f32 j28 fen |20 16 2 |8 3 0

MV 1622 .
Figure 5-13. - Read Time of Day

5-38

B 6800 System Reference Manual
System Concept

Bit Meaning

3 This bit is the same as bit number one, but originates from data communications processor number
three.

4 This bit is the same as bit number one, but originates from data communications processor number
four.

5 Not used.

6 This bit is the same as bit number one, but originates from bus interface control number one.

7 This bit is the same as bit number one, but originates from bus interface control number two.

8 Multiplexor error.

9 This bit indicates that one of the IO devices which are connected to the multiplexor through the

peripheral control bus has completed an operation. This bit implies that at least one result descriptor
describing a particular IO operation is presently located in the corresponding channel of scratch pad
memory (there may be more than one result descriptor present).

Figure 5-14 shows the formats of the function word, and the returned word.

Interrogate Unit Type Multiplexor Function

When a SCAN-IN operator passes a function word that contains the interrogate unit type function code, the multiplexor
responds by returning a word that contains a unit type code field. The “returned” word type field contains six bits
that identify the type of peripheral device that is assigned to the unit number specified in the function word.

Figure 5-15 shows the format of the function word that is passed to the multiplexor, and also the format of the returned
word. The multiplexor field that is part of the returned word, is 010 (bit 46 on) for the B 6800 multiplexor. The vari-
ous unit type codes, for the corresponding unit types are shown represented in hexadecimal value, as they appear in

the data processor top of stack register.

Interrogate IO Path Address Multiplexor Function

When a SCAN-IN operator passes a function word that contains the interrogate 10 path address function code, the
multiplexor responds by returning a word to the data processor. The “returned” word indicates whether or not a
particular path to a peripheral device is available. This multiplexor function is the same as the interrogate 10 path func-
tion except that where the interrogate 10 path function is not specific about which path is to be interrogated, the inter-
rogate 10 path address function is specific. The path field of the function word defines which specific path is to be
interrogated, and the path field of the “returned” word indicates whether or not the specific path is available.

Figure 5-16 shows the format of the function word, and also the format of the returned word. The path (P) field in
both words is the same as the two low-order bits of the unit modifier code. The binary value of the P field selects one

of four specific channels in a minterm group to be interrogated as follows:

Bit 18 Bit 17

0 0 Channel number four is selected for interrogation.
0 1 Channel number three is selected for interrogation.

5001290 5-39

B 6800 System Reference Manual
System Concept

FUNCTION WORD
1 0
0 0 0
4
0 0 0 1
0 0 0 1
W b0 |36 {32 28 |2 20 ji6e 12§18 s o

RETURNED VIORD
0
INT _
0 REG
0 . . ‘
by 4o 36 32 28 24 20 16 12 8 4 0

INT REG BIT UNIT

0 MPX STATUS CHANGE
1 DCP 1
2 DCP 2
3 DCP 3
4 DCP 4
6 BIC 1

7 BIC 2

8 MPX ERROR
MV 1623 9 MPX 1/0 FINISH

Figure 5-14. Read Interrupt Register

Bit 18 Bit 17

1 0 Channel number two is selected for interrogation.
1 1 Channel number one is selected for interrogation.
The criteria for determining if the path seiecied is availabie is the same as that specified for the mu
g P P

10 path function. This criteria was listed previously in this section.

5-40

FUNCTION WORD

B 6800 System Reference Manual

System Concept

0
0 UNIT 0
NO.

0 1
0 0 1
44 40 36 32 28 24 290 16 12 8 0

RETURNED WORD
0
of 1 T
Y
P
of d E
0
44 40 36 32 28 24 20 16 12 8 0

MULTIPLEXOR MODEL FIELD

UNIT TYPE FIELD

TYPE

NO UNIT
DISK FILE CONTROL IVA
SINGLE LINE CONTROL
BUFFERED LINE PRINTER

BCL

EBCDIC
CONSOLE 11
DISK FILE 5N

MV 1624

5001290

BITS

TYPE CODE

HEX

00
01
02

06
26
02
19

0 = B6800 MULTIPLEXOR

TYPE

TRAIN PRINTER
CARD READER
CARD PUNCH 11
MT 7-TRACK NRZ
MT 9-TRACK NRZ
MT 9-TRACK PE
DISK PACK

B 6383

Figuie 5-15. Interrogate Unit Type

HEX

07
09
08
oD
OE
OF

31

TYPE CODE

5-41

B 6800 System Reference Manual
System Concept

FUNCTION WORD
0 0
0 0
0 P UNIT
0 1 0 1
Wy fuo 136 32 {28 Ja4 20 e iz 8 fu 1o

BITS [18:2] = PATH = 2 1LOW-ORDER
UNIT MODIFIER BITS

RETURNED WORD
0 0
0 P UNIT 0 0
0 P NO. 0 1
0 1 0 A
wy (b0 36 |32 |28 24 j20 fe 2 8 |4 0

PATH AVAILABLE
NO PATH AVAILABLE

Il
o -

MV 1625
Figure 5-16. Interrogate IO Path Address

Read Processor Time Counter Multiplexor Function

When a SCAN-IN operator passes a function word that contains the read processor timer function code, the multiplexor
responds by returning a word to the data processor. The “returned” word contains the value of the processor timer
register.

Figure 5-17 shows the format of the function word and the returned word for the read processor timer function. The
purpose of this function is to provide the B 6800 system with a method for counting billing time other than real time in
the data processor. The processor timer is a twenty-four bit register that counts at the rate of 2.4 microseconds per
increment, up to a maximum time count of about 40 seconds. The value that is returned to the data processor is the
state of the processor timer register. Each time that the read processor timer function is executed the processor timer

is reset to a value of zero.

5-42

B 6800 System Reference Manual
System Concept

FUNCTION WORD

0
ol | 0
i

0 1
o fopi e 1

Fakh o [ho 36 0

RETURNED WORD

0 [. PROCESSOR

: TIME
VI | VALUE
0 44 [40 36 (32 |28 2z o hie 12 8 4 0

MV 1626

Figure 5-17. Read Processor Timer

The processor timer is inhibited from counting any time that either the data processor or the multiplexor is performing
a memory cycle.

Read Scratch Pad Word Multiplexor Function

When a SCAN-IN operator passes a function word that contains the read scratch pad word function code, the multi-
plexor responds by returning a word to the data processor that contains the values from the scratch pad word specified.

Figure 5-18 shows the format of the function word and the returned word. The channel of scratch pad memory is
specified by the value of the channel field and the particular word is specified by the value of the word field.

The values that are present in each word of scratch pad memory are defined later in this section under the subject head-
ing of SCRATCH PAD MEMORY. The first word in a channel of scratch pad memory is word zero, and the last word
in a channel is word fifteen.

5001290 5-43

B 6800 System Reference Manual
System Concept

FUNCTION WORD

wjlo 0

0 Wi 1 0

0 wil1 1

0 1 0 1

8 4 0
BIT FIELD FIELD NAME MEANING
50:2 TAG THIS FIELD CONTAINS A TAG VALUE OF ZERO
FOR SCAN-IN OPERATIONS.
19 THIS BIT MUST BE ZERO TO ADDRESS THE MULTIPLEXOR

18:5 CHANNEL THE MULTIPLEXOR SCRATCH PAD CHANNEL ID

FIELD. THIS FIELD IS ONLY USED FOR READ SCRATCH
PAD WORD TYPE FUNCTIONS. THIS FIELD SPECIFIES
ONE OF TWENTY SCRATCH PAD CHANNELS IN THE
MULTIPLEXOR WHICH 1S TO BE READ.

13:6 WORD THE SCRATCH PAD CHANNEL WORD FIELD. THIS
FIELD IS ONLY USED FOR READ SCRATCH PAD WORD
TYPE FUNCTIONS. THIS FIELD SPECIFIES ONE OF
SIXTEEN WORDS IN A MULTIPLEXOR SCRATCH
PAD CHANNEL WHICH IS TO BE READ.

8:4 FUNCTION THE FUNCTION CODE.
4:5 REQUIRED CODE FOR B 6800 SYSTEM.
RETURNED WORD
o SCRATCH
| PAD
0 MEMORY
WORD
0
12 8 4 0

MV 1627

Figure 5-18. Read Scratch Pad Word
5—44

B 6800 System Reference Manual
System Concept

Interrogate 10 Path Address Override Multiplexor Function

When a SCAN-IN operator passes a function word that contains the interrogate IO path address override function code
the multiplexor responds by returning a word that identifies whether or not an override path to a peripheral unit is avail-
able. The format of the returned word is identical with that shown in figure 5-16.

The difference between the interrogate IO path address and the interrogate IO path address override functions is that a
path will be available for the override scan operation even if the pseudo-busy flip flop is set. This is not the case for the
interrogate IO path address scan operation.

The use of the override path address method of IO operations allows the multiplexor to exercise IO devices when the
pseudo-busy flip flop is set. The purpose of this form of IO operations is to allow an 10 device to be initiated after an
error has caused the pseudo-busy flip flop to be set. Some types of IO devices retain information about why the pseudo-
busy flip flop was set (the cause of the error) but this information is lost if the IO device is initiated in the normal
manner. Therefore, the use of override path operations allows this error data to be recovered.

Read Interrupt Literal Multiplexor Function

When a SCAN-IN operator passes a function word which contains the read interrupt literal function code, the multiplexor
returns a word indicating the highest priority external interrupt that is not masked by the interrupt mask register. Figure
5-19 shows the coded value for each interrupt.

Read Interrupt Mask Multiplexor Function

When a SCAN-IN operator passes a function word that contains the read interrupt mask function code, the multiplexor
responds by returning an interrupt mask word to the data processor. Figure 5-20 shows the format of the function word

and the interrunt mask value word.

The multiplexor has the capability to mask interrupts and prevent them from interrupting the data processor. The
operating system controls the value of the bits in the interrupt mask register, and the capability of reading the value
of the interrupt mask register is part of the method used to provide control over this function. The other part of the
control function is through use -of 2 SCAN-OUT function, to set a value in the interrupt register.

MULTIPLEXOR SCAN-OUT FUNCTIONS

The B 6800 system multiplexor performs four functions as a result of the SCAN-OUT operation. The different SCAN-
OUT functions are defined by the value of the function code in the function word. The following paragraphs will define
the specific information that is passed to the multiplexor when three of the SCAN-OUT operations are executed. These
three definitions will also define the specific information that is returned to the data processor as a result of the SCAN-
OUT operation. The fourth SCAN-OUT function is the initiate 10 operation, and will be discussed as a separate subject
later in this section.

5001290 545

B 6800 System Reference Manual
System Concept

The top word in the stack is a function word that defines one of the multiplexor functions which is to be performed.
The second word in the stack contains information or data that is required by the multiplexor in performing the required
function.

Set Time of Day Multiplexor Function

The top word in the stack registers is a function word that defines the set time of day function. The second word in
the data processor top of stack registers is the value that is to be set into the time of day register. Figure 5-21 shows
the format of the two top words in the data processor stack registers when the SCAN-OUT operation is performed.
After the scan-out operation, the top of stack registers in the data processor (the A and B registers) are marked not
valid (AROF and BROF are reset).

Set Interrupt Mask Multiplexor Function

The top word in the data processor stack registers is a function word that defines the set interrupt mask functions. The
second word in the stack is the value that is to be set into the interrupt mask register. The format of the function word
and the mask register information word are shown in Figure 5-22. After the scan-out operation, the top of stack
registers are marked not valid.

Set Pseudo Busy Multiplexor Function

The top word in the data processor stack registers is a function word that defines the set pseudo busy function. The
second word in the stack is the value that is to be set into the pseudo busy flip-flop, specified by the function word.
The format of the function word and the pseudo busy data word are shown in Figure 5-23. After the scan-out oper-
ation, the top of stack registers are marked not valid.

There is 2 pseudo busy flip-flop for each multiplexor channel. The unit number field from the function word is used
by the multiplexor in conjunction with the P field to determine which of the twenty pseudo busy flip-flop is to be
set (or reset). For more information about the P field of the function word refer to the discussion of the SCAN-IN
interrogate IO path address operation, which was covered earlier in this section.

SOFTWARE ASPECTS OF 10 OPERATIONS IN THE B 6800 SYSTEM
One of the major functions of the MCP in the B 6800 system is to provide control over input/output operations. The
use of the software operating system to perform this function is efficient because the management of peripheral device

operations is a major time consuming consideration of computer system operations. The use of software procedures to
control input/output operations relieves the programming and system operations staffs of this burden.

5-46

5001290

B 6800 System Reference Manual
System Concept

FUNCTION WORD

50:056 = TAG FIELD, EQUAL TO ZERO

47:28 = UNUSED

19:11 = UNUSED FIELD THAT MUST CONTAIN ZEROS
08:04 = FUNCTION CODE, EQUAL TO F (HEX)

04:06 = UNUSED CODE, MUST EQUAL 03 (BINARY) FOR B 6800 SYSTEM

WORD IN “B” REGISTER

0 0 0 0 0 0 0 0 0 0

0 0 o 0 0 0 0 0 0 0 0

olojojo|o oo o]0 0 o0

0 0 0 0 ;0 0 0 0 0 0 0
WL 40 36 32 28 24 20 16 12 8

50:03 TAG, DOUBLE PRECISION 07:04
47:40 = UNUSED FIELD, EQUAL TO ZERO
03:04 REQUIRED BINARY VALUE

MV 1628A

Figure 5-19. Read Interrupt Literal

IT
IT
IT
IT
i 0
INTERRUPT TYPE
0001 = DCP 1
0010 = DCP 2
0011 = DCP 3
0100 = DCP 4
0110 = BIC1
0111 = BIC 2
1000 = MPX ERROR
1001 = 10 FINISH
1M1 = STATUS CHANGE

5-47

548

B 6800 System Reference Manual
System Concept

FUNCTION WORD

RETURNED WORD CODING:
MASK BIT UNIT

0 MPX STATUS CHANGE

1 DCP 1

2 DCP 2

3 DCP 3

4 DCP 4

6 BIC 1

7 BIC 2

8 MPX ERROR

9 MPX 1/0 FINISH
MV 1629

Figure 5-20. Read Interrupt Mask

B 6800 System Reference Manual
System Concept

FUNCTION WORD (DATA PROCESSOR A REGISTER)

0
0 0
0 1
0 Ly 4o 36 32 28 4. 120 0 !

INFORMATION WORD (DATA PROCESSOR B REGISTER)

0) VALUE FOR
TIME OF DAY
0 (BINARY)
132 40 36 32 28 24 20 16 12 8 i 0

Figure 5-21. Set Time of Day

To make the operation and control of peripheral devices functional in the B 6800 system, the MCP creates and main-
tains peripheral unit tables and file label tables in local memory. The unit tables in memory contain such information as
unit numbers, unit types, unit status, and unit assignments. The file label tables contain the file labels of files associated
with a peripheral device. All of the information about a particular peripheral device or file label is cross referenced such
that given a unit number, the MCP can determine all of the unit table or file label data. Based on the information that
is maintained in the unit tables, and file label tables, the MCP monitors the operation of system peripheral devices in
such a way that human intervention is kept to a minimum, and efficient input/output operations are maintained at the
maximum.

The control of the input/output subsystems of the B 6800, by the MCP, is through use of the SCAN-IN/OUT operators
of the data processor. However, these operators can only direct that an IO operation be initiated, or that some informa-
tion that is maintained in the multiplexor about a peripheral device is to be “returned” to the MCP (through the data
processor). The MCP also requires information about any change in the status of a peripheral device, when a directed

10 operation is completed, or when the operation is terminated because of an error.

5001290 5—49

B 6800 System Reference Manual
System Concept

FUNCTION WORD (DATA PROCESSOR A REGISTER)

0 1 0
0 0] 0O
0 0 1
0 b ko |36 {32 |28 24 [2¢e @6 2 {8 0 b 0 0 !

INFORMATION WORD (DATA PROCESSOR B REGISTER)

0
0. MASK
0
il 40 36 32 28 24 20 16 i2 8 i 0
B REGISTER CODING:
BITS [9:10] = 1 = MASKED:
BIT INFORMATION
0 STATUS CHANGE
1 DCP1
2 DCP2
3 DCP3
4 DCP4
6 BIC1
7 BIC2
9 I/O FINISH
MV 1631

Figure 5-22. Set Interrupt Mask

READY STATUS

A change in the status of certain peripheral devices, or the compietion/termination of a directed operation on a

peripheral device causes the multiplexor to interrupt the data processor. The interrupt in the data processor causes

4ho MOD +n imtncenaata thna antian A +4ha moltinlavar intorenint and thio tha MOD j0 mmoda amara af alhanoag in narinhaxal
LIV Iviva vV uu.cu.vsatv LiIv Laudsv vl uiv lllulblyl\al\ul ul.l-\rl.].uyl-, AIlU L1iUD L1IV lvivd D 1uduyv avwaliv vl vuausvo 1y Pvllyll\tla.l

units.

5-50

B 6800 System Reference Manual
System Concept

FUNCTION WORD {DATA PROCESSOR A REGISTER])

0 ! 110
P 1]o
0 UNIT
0 p | NO o] 1
0 | 1 0 1
44 Lo 36 32 28 24 20 16 12 8 4 o

BITS [18:2] = PATH = 2 LOW-ORDER UNIT MODIFIER BITS

INFORMATION WORD (DATA PROCESSOR B REGISTER)

L 40 36 32 28 24 20 i5 i2 8 i 0

BIT 0=1 — SET BIT 0=0 — RESET

MV 1632
Figure 5-23. Set Pseudo Busy

If the peripheral control or unit goes from NOT READY to READY, the MCP will perform different functions depend-
ing on the other data in the unit tables, as follows:

a. If the unit is assigned to a TASK, the unit tables will be updated to show that the unit is READY, and the
data file operation will be resumed from the point where the unit went NOT READY.

5001290 5-51

B 6800 System Reference Manual
System Concept

b. If the unit is not assigned tc a2 TASK, the MCP will read the label record for the data file (rewinding a tape
file if necessary, to get to the label record of the file). The MCP will then initiate a search by all tasks that
are currently waiting for a file, to see if the file is needed currently, or not. If the file is needed by a TASK
that is in progress, the MCP will cause the peripheral unit to be dedicated to the particular JOB (in the unit
tables), and will write the file label data into the unit tables.

If no TASK is in process that requires a file with the data file label, then it will enter the label of the file in
the label tables, for later reference, when a TASK may require the file of data. This label table contains a
reference to the IO device that contains the file, so that the device can be properly dedicated to a TASK,
when the TASK is executed. :

The multiplexor maintains information about the status of the system peripheral controls for the I0 devices. The MCP
causes the status of the peripheral controls, as it is reported by the multiplexor, to be compared against the data in its
unit tables from time to time. If the status of a peripheral unit, as reported by the multiplexor, is not the same as the
data in the MCP unit tables, then the MCP will perform additional operations, as required, to update the data in the unit
tables.

The status of a peripheral control or device that is maintained in the multiplexor only indicates whether or not the
peripheral control or device is available for operation, and whether or not the device is not ready. The comparison of
the current status with the last status that was recorded in the unit tables indicates whether or not there has been a
change in the ready status of the control or device.

A change in the ready status of an IO control or device can occur if:
a. The control or device goes from READY to NOT READY,
b. The control or device goes from NOT READY to READY.
c. The IO device reports a STATUS CHANGE.

If the comparison of the unit tables to the status vector data from the multiplexor shows that a peripheral control or
device has gone from READY to NOT READY, and the unit tables show that the unit is assigned to a software TASK,
the MCP will update the unit tables to show that the unit went NOT READY. The MCP may also inform the operator
of the system that the program (TASK) is waiting for the IO device to be made READY.

STATUS CHANGE

The preceding discussion defined the actions that the MCP takes when there has been a change in the ready status of a
peripheral control or peripheral device in the system. There are two types of peripheral units that report a STATUS
CHANGE, in addition to reporting a change in ready status. These two unit types are disk packs, and operator display
terminals (ODT’s). These two units need this additional reporting mechanism because they perform operations that are
asynchronous to the normai direcied IO operations.

The disk pack device requires that a write/read head must be positioned properly before the write or read operation can
be performed. At times, the positioning of the write/read head takes so much time that another IO device can be ser-
viced while the write/read head is being positioned. The positioning of a disk pack write/read head is called a SEEK
function. The disk pack device uses the status change reporting mechanism to let the multiplexor (and the MCP) know
that a seek operation is compieied, and the wriie or read operation to the pack can be performed without further
SEEKing being required.

an

5-52

B 6800 System Reference Manual
System Concept

The ODT device is used for two-way communications between the system (MCP), and the human operator of the system.
The MCP writes messages upon the CRT screen of the ODT for the operator to observe. This part of the ODT unit
operation is the same as any other IO device that serves as an output for the MCP. However, the human operator must
have some way to cause the MCP to read a message that has been typed upon the screen of the CRT.. This capability is
provided by the use of the TRANSMIT key of the ODT device. The TRANSMIT key of an ODT device causes a
STATUS CHANGE condition to be sensed in the multiplexor, and consequently, be known to the MCP. The MCP knows
that the particular device type is an ODT, and will read the message on the face of the ODT screen, when the STATUS
CHANGE condition occurs.

INPUT OUTPUT OPERATIONS

The multiplexor controls the flow of information for the peripheral devices that are connected to the B 6800 system.
The software procedures of the MCP direct that an IO operation is to be performed, through use of the SCAN-OUT
operator in the data processor. Once the multiplexor has been initiated to perform an IO operation, it becomes an
autonomous control unit in the system. When the IO operation is complete the multiplexor causes an interrupt in the

data processor.

The multiplexor is capable of performing up to twenty simultaneous IO operations. Each channel in the multiplexor
has 16 words of scratch pad memory (twenty bits per word), which is used for storing control and status information
about the IO operations for the IO control channel. The multiplexor also has a data buffer for each of the twenty
IO control channels. Twelve of the IO control data buffers are 256 or 512 bytes in length, and the other eight are
128 or 256 bytes in length.

Figure 5-8 shows the path of information flow between the memory control interface bus and the peripheral control
interface bus. This path includes the use of two of the hardware stack registers (the C and Z registers) in the data
processor, the translate logic, and data buffer in the multiplexor.

10 Device Numbering System

The B 6800 system can interface with up to 256 different peripheral devices. Each peripheral device is assigned a unit
number, and the data processor uses this unit number to identify which peripheral device the multiplexor is to initiate
(in the SCAN-OUT function word). The multiplexor groups common peripheral device types into groups in which the
unit numbers of the group are numerically consecutive. A common group of peripheral numbers are assigned to a
channel or channels of the multiplexor scratch pad memory, and to common data buffer(s). Therefore all of the periph-
eral devices that are operated through a channel of scratch pad memory in the multiplexor have common operating
characteristics, they have consecutive unit numbers, and they all use common data buffers in the multiplexor.

5001290 5-53"

B 6800 System Reference Manual
System Concept

Initiate Input Output Operation

The control of an IO device by the multiplexor is divided into two types of multiplexor operations. These two types
of 10 operations are identified as the initiate cycle, and the service cycle. An initiate cycle is performed to prepare the
scratch pad memory channel, the data buffer, and the IO control for the operation of the peripheral device. A service
cycle is performed to handle data flow through the data buffer. A modified type of service cycle is performed at the
conclusion of an IO operation to accumulate and format the result descriptor information about how the peripheral
device functioned during the operation.

The multiplexor performs Burst cycles to transfer data between memory and the data buffer.

At the conclusion of the result descriptor service cycle, the multiplexor causes the interrupt line to the data processor
interrupt controller to go to a true level (refer to figure 5-10). This interrupt is the end of the IO operation in the
multiplexor. The result descriptor data that was collected and stored in scratch pad memory is retained until the data
processor answers the interrupt. Removing the result descriptor data from scratch pad memory clears the channel, and
providing that there are no faults in the IO subsystem, prepares the 10 device for the next system operation.

The data processor utilizes the SCAN-OUT operator to start an initiate IO cycle in the multiplexor. The format of the
initiate 10 word (IIOWD), the IO area descriptor (IOAD), as well as the IO control word (IOCW) are described in the
following paragraphs. These three words are required by the multiplexor to initiate an 10 device.

Figure 5-24 shows the formats of the IIOWD, IOAD, and the IOCW. The fields in these words are described in the
following paragraphs.

5-54

B 6800 System Reference Manual

System Concept

HHIOWD
F
F
0 UNIT
; No. T,
Flo
0 12
I0AD
AREA
0 WORD B <
COUNT ADDRES
0 (ADDRESS
OF IOCW)
! |
0 52 28 | oo he D2 s |a
1OCW
e [e
10
WTx|T 1
0 JAsC UNIT
L
Tl sl CONTRO
o |rwl wmp] Fr
s Bo Bs B2 128 l2a |20 he 2 |8 4
MV 1633

5001290

Figure 5-24. Multiplexer Initiate IO Words Format

LOCATED IN
TOP OF STACK
“A" REGISTER

LOCATED IN
TOP OF STACK
“B" REGISTER

LOCATED IN
SYSTEM MEMORY
IN THE WORD
ADDRESSED BY
THE BASE
ADDRESS FROM
THE IOAD WORD

5-55°

B 6800 System Reference Manual
System Concept

IIOWD Format

The IIOWD contains five significant fields as follows:

Bit Field Significance
4:5=00011 A fixed value required for B 6800 operations.
8:4 The function code field. This field contains a code that identifies which of three initiate

I0 functions the multiplexor is to perform.
16:8 The unit ID field. The unit ID field is used to specify which I0 device is to be initiated.

18:2 The path address field. The path address field is used to specify which of several different
paths to an IO device is to be used.

IOAD Format
The IOAD contains three significant fields as follows:
Bit Field Significance

19:20 The base address field. The base address field is used to specify the beginning address of a
buffer in system memory which is used to pass data from/to an 10 device. The first word
in the buffer contains the IOCW that describes the type of operation the IO device is to
perform. The rest of the buffer is used to store data that is input or output from/to the
multiplexor data buffer.

36:17 The word count field. The werd count field is used to specify the number of words in the
buffer. The address of the first word of the buffer in system memory is specified by the
contents of the base address field.

39:3 The count extension field. The count extension field is used to specify the number of
characters of data that are present in the last word of the buffer. If the count extension
field is equal to zero the number of characters in the buffer is a multiple of the number of
words in the buffer, (the word count). If the count extension field is not equal to zero the
word count of the buffer is extended by one word and the number of character positions
used in the additional word is equal to the value of the count extension field.

IOCW Format

The IOCW word contains data that is used by the muitipiexor to deiermine what kind of operation the I0 device is to
perform, and what optional features of the device are to be used during the operation. The IOCW also specifies what
form the data is in, and any translation characteristics that are to be applied to the data as it passes through the multi-
plexor. The data fields in the IOCW are as follows:

Bit Field Significance

BIT 47 Bit 47 is the incomplete 10 operation bit. This bit is used as part of the maintenance func-
tions of the MDP. If this bit is true (a binary one), information will be moved between
memory and the multiplexor data buffer, but no 10 device will be initiated. The IO buffer,
that will have information loaded into it, is the same one that would be used for a completed
initiate IO operation. It is selected by the same process of the multiplexor that is used to

5-56 .

Bit Fieid

BIT 45

BIT 44

BIT 43

BIT 42

BIT 41

BIT 40

BIT 39

BIT 38

5001290

B 6800 System Reference Manual
System Concept

Significance

select a channel or scratch pad memory for a normal completed IO operation. If this bit is
false a completed IO operation will be performed, and the information that is loaded into
the buffer will be handled as specified by bit 44 of the IOCW.

The ASCII translate bit. If this bit is true, data loaded into the data buffer of the multi-
plexor wilt be translated to the ASCII code form as it is passed between the data buffer in
the multiplexor, and memory. (See the steering and mask translate logic block in figure 5-8.)
If this bit is false no ASCII translation will occur, and the other translation forms that may
be used will be as specified by the states of bits 41 and 42 of the IOCW.

Bit 45 is the software attention bit. The MCP uses this bit in the IOCW for software retry
capability. This bit is returned in the result descriptor, and when true, forces the result
descriptor exception bit to be true.

The read or write bit. If bit 44 is true, a peripheral read operation is to be performed. If
bit 44 is false, a peripheral write operation is to be performed.

The memory inhibit bit. If this bit is true the multiplexor will initiate the IO device, and
will accept data input from the 10 device, but no information is transferred from the multi-
plexor to system memory. If this bit is false the multiplexor will transfer input data from
or to the IO device, to or from system memory.

The translate bit. If this bit is true the multiplexor performs a translation of the data as
it is transferred between system memory and the data buffer. If this bit is faise no trans-
lation is performed. If translation is specified (bit 42=1) then bit 41 will define what type
of translation is to be performed.

The eight-bit frame size bit. If this bit is true the translation performed is to eight-bit
characters. If this bit is zero the translation is to six-bit characters.

The memory protect bit. If this bit is true and bit 44 is also true the multiplexor will
perform a protected memory write operation. If the memory protect bit (bit 48 of the
word in memory that is being written into) is true a memory protect interrupt is detected,
and no data is written into memory.

The backward bit. If this bit is true the IO device will be operated in the backward
direction. The data flowing between the data buffer in the multiplexor and the 10 control
will be in the reverse order, proceeding from the last address in the buffer to the first
address in the buffer. If this bit is false the data flow between the data buffer in the
multiplexor and the IO control will be in the forward direction.

The test operation bit. If this bit is true the multiplexor will cause the 10 control to per-
form a test operation upon the device specified. If this bit is false no test operation will
be performed. When this bit is true it overrides the other bits in the unit control field of
the IOCW such that only a test operation will be performed, regardless of the state of the
other bits in the unit control field.

5-57

B 6800 System Reference Manual
System Concept

Bit Field Significance
37:2 Bit 37 is the transfer tags bit, and bit 36 is the force tags bit. These two bits operate as a

control field to define the type of tag fields that the multiplexor is to use when words of
data from the data buffer are transferred to system memory. The tags that will be used are
as follows:

Bit 37 Bit 36 Tag Field
0 0 Data words will be transferred with single precision word tags
(000).
0 1 Data words will be transferred with program code word tags
(011).
1 0 Data words will be transferred with tag fields as specified in the

input data. If eight-bit data is being received every seventh
character position of the input data, beginning with the first
character, will be used to make the tag field that is written
into memory. The tag field will be equal to the value of the
low-order three bits of the character.

If six-bit data is being received every ninth character of the
input data, beginning with the first character, will be used to
make the tag field.

1 1 Data words will be transferred with double precision word tags
(010).
35:36 The unit control field. The unit control field is used to specify the optional characteristics

that may be used for a peripheral device type. Examples of unit control options are spacing,
skipping, cyclic redundancy characteristics (CRC), code table loading, etc. These characteris-
tics are variable between different types of IO devices, and thus the format of the unit con-
trol field is also variable. The formats of unit control fields are defined in section 11 of this
manual.

Scratch Pad Memory

Scratch pad memory in the multiplexor (refer to figure 5-8) is used to store control information about 10 operations
that are in process, and result descriptor information for IO operations that are completed. This memory is composed
of twenty channels, each with 16 words. The data that is stored in each word of a channel of scratch pad memory is
shown in figure 5-25. Each channel of scratch pad memory corresponds to one of the twenty IO controls that may be
mounted in one of the two possible peripheral control cabinets.

A unit number for an initiate IO cycle is present in the [IIOWD. This unit number is decoded to select a channel of the

scratch pad memory. The data fields that were present in the [IOWD and the IOAD are placed in word three and word
seven of the proper 10 channel. The multiplexor performs a memory cycle on the base address of the system memory

5-58

B 6800 System Reference Manual
System Concept

ONE OF 20 IDEl\é'II'_'I_gAL CHANNELS
1

19 118 117 1 16 [15 14 13 1 12111 1101 9 1 8 1 7 1 6 1 56 1 41 3121110
&
5] Sl 212.loa INTERNAL
= o] = |2 a
0 5102 =2| 2 éug 55 UNIT TYPE 2 BURST BUFFER ADDRESS
z |2z |sz| € |E3)|&= o
E wl|<
& z2e|Q |og [z,
1|2 s |SO|EL[25|w8 o | 4 PER. BUFFER ADDRESS
< 3 |28[8%|uE |58 2z
oF o |2«|33]aG |35 o | Y
2 | PER.CHAR PERIPHERAL WORD T
COUNT ORD COUN
INITIAL
3 CHAR. INITIAL WORD COUNT
EXTENSION
INITIAL
4 CHAR. BURST WORD COUNT
EXTENSION
IOCW [47:20]
_ | s v colo
N EE R
2| 2 | |2 [S2[x | E|5E| @) F [xF[PF
6 IOCW [27:20]
&
WorRDsS 7 |k UNIT I0OCW [7:8]
<
8 INITIAL BURST ADDRESS
9 WORKING BURST ADDRESS
A RESIDUE
< . o w O
o : | ow [- olE
o b3 . w |0 w . 2
c|%Q Sc B4 [E5@c 5.4 | 8] 2 € |cE|S [Ex|Be
B |uC|>x o9 2019 EcElasg < skl SIE 12 [Ex[<hG| 2% w2
R A P AP e R E
05|6a <G 0Z|2q|udeon28] =55 |3 |<c| 8|83 |92 | x| Bh| @k
s g Yl B
a |
Eo|ac CONTROL RESELT DESCRIPTOR
c 1¥3| 20
T [« <
25|26 C1 C2 C4 C8 Bl B2 B4 B8 Al A2 A4 A8
D MEMORY WORD [19:20 |
E MEMORY WORD [39:20 |
F MEMORY WORD [50:11]

MV 1634
Figure 5-25. Multiplexor Scratch Pad Memory

5001290 5-59

B 6800 System Reference Manual
System Concept

buffer to fetch the IOCW from memory. The data fields in the IOCW are distributed into words five, six, and seven
of the proper scratch pad channel. The information contained in the IIOWD, IOAD, and IOCW are sufficient to allow
the multiplexor to start the IO operation that is required. If the type of IO operation that is to be performed is an
output operation, then the multiplexor burst logic causes the data buffer in the multiplexor to be filled with output
data from the system memory buffer. The multiplexor then causes the IO control in the peripheral control cabinet
to start the peripheral device. The IO controi will pass the data input from the peripherai device into the data buffer,
through the peripheral control interface bus.

Data Buffer Logic

The data buffer in the multiplexor (refer to figure 5-8) consists of 20 channels of static random access memory (RAM).
These 20 buffers are used to accumulate data in the multiplexor that is being passed between the system memory, and a
peripheral unit. The data buffers accumulate and distribute data regardless of the direction of data flow through the
multiplexor.

A data buffer is assigned to be used for each channel of scratch pad memory in the multiplexor. This assignment is
accomplished by hardware configuration of the multiplexor. When a scratch pad memory channel is selected, the use of
a specific data buffer is implied.

Data buffers are either 256 bytes in length, or they are 512 bytes in length. The multiplexor contains 12 data buffers
that are 512 bytes in length, and eight buffers that are 256 bytes in length. Through the configuration of the muitiplexor,
a peripheral device may be assigned to operate with either a 256 bytes data buffer, or a 512 byte data buffer.

The number of bits that may be written into {or read from) an address of a data buffer is 16 bits, or two bytes. When
six-bit data (BCL characters) are written into an address of the data buffer, the high-order two bits of each byte are not
used, thus, each buffer address will contain two characters regardless of the size of the characters used.

Peripheral devices that are interfaced with a data buffer are classed as single or double character transfer devices.
High speed IO devices are of the double character transfer type, while most low speed 10 devices are of the single
character transfer type.

B 6800 System Reference Manual
System Concept

OP Code and Variant Character Generator

The multiplexor receives control information about the type of peripheral operation that is to be performed from the
IOCW. The control field information bits for an TOCW word were previously defined in this section of this manual. -

During a multiplexor initiate cycle the multiplexor fetches the IOCW from system memory, and places the 10 control

information in a channel of scratch pad memory. Subsequently, the multiplexor uses the control information in scratch
pad memory to format command instructions for the type of IO device that is to be initiated. The OP code and variant
character generator logic (see figure 5-8) is used to format IO control commands which are transferred to the IO control

via the peripheral bus. An IO command format is as follows:

COMMAND CODE, VARIANT CHARACTER ONE, VARIANT CHARACTER TWO, FILE ADDRESS:

Where:

COMMAND CODE consists of two 4-bit characters that define the particular type of IO
operation that is to be performed (such as a read or write operation) by the
10 device.

VARIANT DIGIT consist of two 4-bit code fields that define optional characteristics of the par-

ONE AND TWO ticular 1O device that are to be used/not used for the duration of the current
command execution. These two digits contain the unit number of the peri-
pheral device.

VARIANT DIGIT consist of two 4-bit code fields that are used as an extension of the first two

THREE AND FOUR variant digjt fieids, to define optional characteristics of the IO device for the
current command execution.

FILE ADDRESS consists of a 24-bit field which contains six binary coded decimal numeric

digits. The value of this 6-bit number represents the location of the first
(starting) address to be used by the peripheral device. This number is only
used for disk file or disk pack IO operations on the B 6800 system.

All IO devices do not require all parts of the 10 command format. Some devices do not require variant characters to
define optional characteristics because the only variations in the type of operation that may be performed are defined
by the OP (COMMAND) CODE. Some IO devices only require a single variant character because the number of optional
operating characteristics that may be defined is small. Other IO devices do not require a FILE ADDRESS field because
they are not disk type devices.

5001290 5-61

B 6800 System Reference Manual
System Concept

Status Vector Control Circuits

Status vectors are information about the current status of multiplexor channels. Vectors are stored in four 20-bit words
of IC memory in the multiplexor. The four words of IC memory are addressable, and the status information in a word

of the status vector memory may be displayed in register four of the programmers display by operation of pushbuttons

on the keyboard. Each bit in a vector status word represents one bit of status for one of twenty 10 paths in the multi-
plexor.

There are four vector status bits maintained in the status vectors for each PCC channel. The four bits are as follows:

Vector
Control Flip-Flop Word Bits Meaning of Terms

VALV Valid The valid bit is true when the data buffer contains valid data for a
peripheral unit (during output operations from the system) and when
the buffer contains space in which data may be stored (during input
operations to the system). The valid bit is false at all other times.

BURV Burst request The burst request bit is true when the multiplexor requires access
to main memory. This bit is reset when memory burst is completed,
and remains reset until another memory burst is needed.

RDEV Resuit. Descriptor The result descriptor bit is set during data input operations when the
last data is written from the buffer (to the peripheral device, and the
result descriptor has been returned), and during output operations
when the IO unit result descriptor is written into scratchpad memory.
The result descriptor bit is reset when the interrupt handling proce-
dures clear the peripheral channel by reading the result descriptor
data from scratch pad memory.

PBZF Pseudo-busy The pseudo-busy bit is set when the result descriptor from the control
contains any error bit.

5-62

B 6800 System Reference Manual
System Concept

MEMORY ORGANIZATION

The memory resources of the B 6800 system (refer back to figure 5-2) are organized so that two storage modules of
memory may be accessed at any one time. The memory resources of the system consist of up to 512 K words of local
memory, and up to 512 K words of global memory. One K is equal to 1024 (decimal) words of memory storage capacity.

A memory word consists of 60 parallel bits of data that are present at the memory exchange port interface. These 60
bits are divided into a parity bit, 51 bits of information, and eight bits of error detection/correction code.

A memory storage module contains 64K (or 128 K) words of continuous memory storage addresses. A 20 bit binary
address field is used to select a memory module and a specific word address within the module (refer to figure 5-26).

The low order 16 bits (17 bits for 128 K word modules) of the 20 bit address field select one word of the 64 K (or
128K) words within a memory module. The high order four bits (3 bits for 128 K word modules) of the 20 bit memory
address field are used to select one of eight local memory modules, or global memory. Any memory address value that
does not select a local memory module, selects global memory by default. A local memory storage module is synonomous
with one of the local memory ports of the memory exchange.

MODULE WORD
SELECT SELECT

19 15 11 7 3

18 14 | 10 6 2

17 13 9 5 1

16 12 8 4 0

MV 1635

Figure 5-26. Memory Address Decoding

In addition to address and information data, the memory interface bus also transmits control information between the
memory control and the memory module. This coniroi information directs the memory operation that will be performed
by the memory module, such as write or read functions. For local memory modules, the control signals include the
Initiate Memory Cycle (IMC) timing signal, and a three bit memory function code that is comprised of the Read Modify
Write (RMW), and Write Cycle Conditional (WCC), and the Parity Error Disable (PED) control signals. The significance of
these control signals is discussed in the subsection of this manual titled LOCAL MEMORY PORT INTERFACE CONTROL
LOGIC. The control signals that are present at the global memory interface port are discussed in the subsection of this
manual titled GLOBAL MEMORY PORT INTERFACE CONTROL LOGIC.

5001290 5-63

B 6800 System Reference Manual
System Concept

SYSTEM MEMORY INTERFACE

The system memory interface consists of a two-by-five exchange that is used to interface the B 6800 CPU, and the
external subsystem(s) associated with the B 6800 system, to the memory resources of the B 6800 system. The two
requestor inputs are designated as channel A, and channel B. The five memory storage module interfaces are designated
as ports number zero through three (local memory), and the global memory port. Figure 5-27 shows the organization of
the requestor interfaces and the port interfaces to the system memory control.

Control of channel A of the system memory control is via the Z12 (14 bit) bus. Control of channel B to the system
memory is the responsibility of the external subsystem(s) that are interfaced to memory through that channel. Channel
A has priority over channel B for access to the memory resources of the system. However, a channel B access to memory
will not be interrupted to service a request from channel A. The priority is limited to determining which of two simul-
taneous requests for the same memory port will be serviced first. Simultaneous requests to different memory module
ports are allowed.

CHANNEL A MEMORY REQUESTOR

Figure 5-28 shows the paths used in the data processor to access channel A of the system memory control. These paths
are controlled by the memory controller, through use of the Z12 bus. All data that is written into memory from the
data processor or multiplexor is routed to the system memory interface exchange via the Z4 bus. All data that is read
into the data processor, multiplexor, or look ahead logic is routed from the system memory port interface to the

Z3 bus. Address information is routed from the memory address register or look ahead address register via an internal
memory address bus.

Figure 5-29 shows how information, address, and control data are routed internally within channel A of the memory
exchange. This figure also shows how port selection is made within the exchange module, by means of the port select
logic.

Figure 5-29 shows the PACK (port A acknowledge) control bus. This bus has a true level if a local memory port inter-
face is selected by the port select logic. If a local memory port is not selected and a valid request is present in the
channel A requestor logic, then the global memory port is selected by default.

The 14 bits of the memory control Z12 bus are identified as follows:

Bit Field Meaning and Usage

5:6 The register select field. This field identifies the data processor register that is to receive the data
for a memory read operation, or the data processor register from which data is to be written into
memory for a memory write operation.

Bit zero is used to select register Z

Bit one is used to select register Y
Bit two is used to select register X
_Bit three is used to select register C
Bit four is used to select register B

Bit five is used to select register A

5-64

(9,
s FROM/TO
= PERIPHERAL
3 DEVICES
S MULTIPLEXOR
t SCAN-BUS INTERFACE
+ . GLOBAL
SYSTEM MEMORY GLOBAL MEMORY
DATA CONTROL INTERFACE CHANNEL A PORT CONTROL
3 i Lo —
PROCES3OR MEMORY
CONTROL -—e
1 REQUESTOR
L LOCAL
MEMORY
LOOK PORT 3 STORAGE
AHEAD —> UNIT
LOGIC
- LOCAL
EXTERNAL PORT 2 MEMORY
SUBSYSTEM EXTERNAL MEMORY LSJL?_?AGE
E -
g“ge R CONTROL INTERFACE N
MEMORY <
MEMORY BUS ; CONTROL
CONTROL T] REQUESTOR
INTERFACE (SEE NOTE 1) > LOCAL
SUBSYSTEM | PORT 1 STORAGE
NUMBER *—» UNIT
TWO ® |
= 'l-‘ = | LOCAL
MEMORY
| PORT 0 STORAGE
| I UNIT
EXTERNAL SUBSYSTEM _ ¢ MEMORY i
- CONTROL
EXTERNAL SUBSYSTEM |
Q
<—EXTERNAL SUBSYSTEM EXPANSION |y N
<@ EXTERNAL SUBSYSTEM MODULE
N NOTE1. EITHER THE INTERFACE TO THE EXTERNAL
a—XTERNAL SUBSYSTEM ,I SUBSYSTEMS, OR THE INTERFACE TO AN
i EXPANSION MODULE MAY. BE USED, BUT NOT

MV 1636

§9—¢

Figure 5-27. Memory Control Block Diagram

BOTH. THE CHANNEL B REQUESTOR ONLY
CONTAINS A SINGLE INTERFACE PATH TO

THESE UNITS.

1daouo0)) waIsAg
[enuel 90UIIdJoY WRISAS 0089 g

99—¢

1daouo)) welsAg
[enuepy 90UaIayay wAISAS 0089 9

LOOK
e
el L REGISTER GLOBAL
1 ™1 PORT
e P REGISTER
SCAN
BUS
PROGRAM
- Z REGISTER CONTROLLER LOCAL
[o o
PORT
o+ C REGISTER
> A REGISTER
MEMORY CONTROL BUS >
CONTROLLER
> B REGISTER *—> #83¢L
> X REGISTER
' Z4 BUS WRITE DATA [50:51]
L Y REGISTER > MEMORY
CONTROL
73 BUS READ DATA [50:51] EXCHANGE p—»| LOCAL
CHANNEL A PORT
REQUESTOR
LOOK
AHEAD
ADDRESS SCAN OR
REGISTER MEMORY LOCAL
rgocessoa ADDRESS [—&—1 PORT
ADDRE [19:20]
MEMORY ABBERSS -
ADDRESS
REGISTERS MEMORY
ADDRESS
SCAN REGISTFR
ADDRESS
MV 1637

Figure 5-28. Data Processor to Memory Control Exchange Transfer Paths

B 6800 System Reference Manual
System Concept

CPU

INTERFACES <
T0
CHANNEL A

MV 1638

_~712 BUS [13:14] BITC
~ MEMORY CONTROLLER MEMORY
CONTROL
LOGIC CONTROL DATA
WRITE DATA [50:51]
Z4 BUS WRITE
DATA [50:51] CHECK BIT WRITE DATA [59:9
GENERATOR [59:91
LOGIC .
ADDRESS [18:20] PORT
—- SELECT
LOGIC
MEMORY READ DATA [50:511]
73 BUS READ o MEMORI READ DATA [59:60]
DATA [50:51]
e L CORRECTION
LOGIC
=
PACK BUS
SCAN BUS OR LOCAL
MEMORY BUS MEMORY
ERRORS TO ————
INTERRUPT
CONTROLLER EIZFT?SSNON ft———————
- SCAN-BUS ERROR
LOGIC ORS
\ GLOBAL MEMORY ERRORS
v
RETRY MEMORY RETRY CONTROL
LOGIC

5001290

EXTERNAL SCAN
— INTERFACE >
)
._—a.b
—{
— GLOBAL MEMORY
GLOBAL INTERFACE
|
MEMORY
- PORT
LOCAL MEMORY
»>- - LOCAL STORAGE MODULE 3
MEMORY INTERFACE
> PORT >
NUMBER
B 3
—
N ’
LOCAL MEMORY
¢ — STORAGE MODULE 2
LOCAL INTERFACE
MEMORY
PORT il >
NUMBER
2
-
——
- LOCAL MEMORY
> LOCAL STORAGE MODULE 1
MEMORY INTERFACE
- PORT = -
NUMBER ,
1
T
>
——> LOCAL MEMORY
. STORAGE MODULE 0
LOCAL INTERFACE
MEMORY
! PORT -— >
NUMBER
0
5 -
—

Figure 5-29. Memory Exchange Channel A
Functional Block Diagram

5-67

Bit Field

8:3

w)

B 6800 System Reference Manual
System Concept

Meaning and Usage

The request field. This field identifies the type of memory operation that is to be performed.

BIT: 9 .7 6 . Operation to be Performed
0 0 1 Protected write with flashback to C register
0 1 0 Clear write
1 1 1 Overwrite with flashback to C register
0 0 0 Read
0 0 1 Protected write with no flashback

The look ahead request field. When bit A is true the request originates in the look ahead logic.
If bit A is false the request originates in the data processor/multiplexor.

Bit B is used to specify which register in the data processor is to receive the data input from
memory when a look ahead memory cycle is completed. If bit B is true, the data is to be
placed in the L register of the data processor. If bit B is false, the data is to be placed in the
P register of the data processor.

The scan bit. If bit C is true, the data on the channel A information lines is scan data, and

will be routed by channel A to the external subsystem(s) via the 80 wire scan bus interface,
instead of to the memory storage modules. If bit C is false the operation specified is not

a scan operation.

The global scan bit. If bit D is true the operation to be performed through the global memory
port is a global scan operation instead of a global memory operation. If bit D is false the opera-
tion to be performed is a memory operation instead of a global scan operation.

Memory Error Detection and Correction

Channel A contains error detection/correction logic circuits (refer to figure 5-30). Each time that a local memory write
operation is performed, eight bits of error detection check code are generated by the error detection circuits and appended
to the memory write data. The total number of bits that are written in memory during a local memory write operation
is 60 bits, of which 52 data bits are write data from the CPU, and the other eight bits are the error detection check code.

5001290

5-69

0L—S

ADDRESS
[19:20]

MEMORY READ
DATA [51:52]

rpzZuim=-xm

I2mH4qwn-—-=0OmMm>Xn

MEMORY WRITE
DATA [51:52]

MEMORY CONTROL

MV1639

DATA

L
> GLOBAL
PORT 3 SELECTED > MEMORY
PORT 2 SELECTED
\ PORT PORT 1 SELECTED '
SELECT >
LOGIC PORT 0 SELECTED
ADDRESS 19:20 |
—
READ DATA [51:52] LOCAL
> MEMORY
PORT 3
LOGIC I
f >
SINGLE BIT ERROR ERROR
DETECTION '
LOGIC ’ LOCAL
- MEMORY
‘ > PORT 2
RETRY
LOGIC
I P
LOCAL
> MEMORY
PORT 1
MEMORY .
| CHECK BIT MEMORY WRITE DATA [59:60]
GENERATOR
CIRCUIT
T
| @ SINGLE BIT ERROR
MEMORY CONTROL DATA (UNIT ERRORS) > l'\-n%%/lAOLRY
1 CONTROL |- TROL - PORT O
LOGIC -
| @ MULTIPLE BIT ERROR

Figure 5-30. Channel B Functional Block Diagram

1doou0)) WIdlSAg
[BNUE 20USI0JoY WIAISAS 0089 €

B 6800 System Reference Manual
System Concept

During memory read operations, the error detection check bits (which were written into memory during the memory
write operation) are tested for bit errors in the data word received from the memory storage unit. If a single bit of a
memory read data word is in error, the error correction circuit will correct the bit in error. If more than a single bit in
the memory read data word is in error, the error is not correctable, but the error detection circuit will detect a multiple
bit data error. All single bit and multiple bit data errors are reported to the data processor interrupt handling procedure,
and are logged in the SYSTEM/SUMLOG.

Memory Retry
The memory control performs memory retry operations under certain conditions.

The memory control will perform a memory retry operation if the memory module detects a parity error in the address
and control data that is transmitted from the CPU cabinet to the memory module cabinet over the port interface. This
retry consists of performing the entire memory cycle over again. If the retry of the memory cycle is successful then the
memory controller will cause the interrupt controller to make an entry in the SYSTEM/SUMLOG that indicates a retry
operation occured, and the memory operation proceeds in a normal manner. If the retry operation is not successful (a
second parity error is detected in the memory address and control data) then the memory cycle is aborted, and the
memory controller causes an alarm interrupt to be recorded in the SYSTEM/SUMLOG. The procedure that caused the
memory cycle which was aborted is terminated because of the memory parity error.

The memory control will also perform a retry operation if the memory control senses a parity error in the read data that
is transmitted from the memory module cabinet to the CPU cabinet. This retry operation consists of causing the read
data in the storage module read latches to be transmitted to the CPU cabinet a second time. A second memory cycle is
not performed by the storage module. The results of successful retry operation is reported in the same way that a suc-
cessful address and control retry is reported.

If the retry operation for a parity error in the read data is not successful, then an error correction memory cycle is
initiated. The entries that are made in the SYSTEM/SUMLOG as a result of an error correction memory cycle were

described previously in this section of this manual.

The memory control does not perform retry operations for parity errors in the write data transmitted from the CPU
cabinet to the memory module cabinet.

Only one retry operation will be attempted for each memory operation.

Global Memory
The global memory application is undefined at the present time. This subject will be documented when available.

Scan Bus Operations

Figure 5-27 shows that exteinal subsystems, such as the B 6800 data communications subsystem, are interfaced with the
CPU through a separate scan bus interface. These same external subsystems are interfaced to memory through channel B
of the memory control.

All external subsystems that are controlled by the B 6800 system, such as data communications subsystems and reader/
sorter (BIC) subsystems, share the separate scan bus interface to the CPU. Thus, only one of the subsystems may
receive or transmit information over the scan bus at a time. The identification of a subsystem for scan bus communica-
tions is indicated by the contents of the address lines on the scan bus interface (refer to figure 5-29). Only the sub-
system addressed will respond to data on the scan bus, even though all subsystems connected to the scan bus receive the
same information and address inputs. The subsystems connected to the scan bus do not initiate communications, they
only respond to scan bus inputs from the data processor. Thus, there is never a conflict between the subsystems for use
of the scan bus interface.

5001290 5-71

B 6800 System Reference Manual
System Concept

A scan bus operation is performed by the data processor when the Z12 bus bit C is true. When this bit is true the
channel A logic routes the address and data to the external scan bus interface instead of to the memory port inter-
face. The error detection/correction logic, and the retry logic of channel A are bypassed for scan bus operations.
However, scan bus address parity errors, and scan bus data parity errors are reported to channel A of the memory
control. These two types of scan bus errors are subsequently reported to the interrupt handling procedure, and
logged in the SYSTEM/SUMLOG, in the same way that memory bus errors are reported and logged.

CHANNEL B MEMORY REQUESTOR

The channel B requestor of the memory control is used to interface external subsystems of the B 6800 system to the
memory resources of the B 6800 system. A memory request from channel B is entirely separate from a request from

channel A.

Several different subsystems may share the channel B requestor input to the memory exchange. Channel B does not
contain logic circuits to queue requests from external subsystems, therefore, only one of the several possible external
subsystems may use channel B requestor at any one time. Priority for the use of the channel B memory requestor,
among the various external subsystems that share the requestor, is a requirement of the external subsystems, and not of
the channel B requestor logic.

If more than two subsystems are connected to the channel B requestor, then an expansion module (shown in dotted
lines in figure 5-27) must be used. An expansion module is essentially a 1 x 5 exchange, that allows five separate sub-
systems to be interfaced with the single channel B requestor interface port.

If an expansion module is used to interface external subsystems to the B 6800 system, then the expansion module must
be mounted in an independently powered cabinet. This independently powered cabinet is not part of the B 6800

system.
MEMORY STORAGE UNIT PORT INTERFACE
There are two different types of port interfaces used to connect the memory control to the units that are remote from

the CPU cabinet. The units that are remote from the CPU cabinet, the type of interface connection used for each type
of unit, and the information that is transmitted on each cable of the interface are as follows:

Unit(s) Type of Interface Cables and Signals
DCP and/or BIC Scan Bus 80 wire, Each cable of the interface contains 20 wires, and each wire
four cable. may be used to transmit one logic signal between the memory

exchange and the external unit. Some of the wires are used to
transmit signals in a single direction on the bus, and other
wires are used to transmit signals bidirectionally on the bus.

Cable Name Signals on the Cable

Address 19:20 A twenty bit address field which is transmitted in a single
direction. The field provides for one million (binary)
addresses to be available for use.

Bug control signalg, Twelve bits of the word information (51:12), and eight bug
and information control bits. The twelve wires for word information are
signals 51:12 bidirectional.

5-72

B 6800 System Reference Manual

Unit(s) Type of Interface
Cable Name

Information signals

39:20
Information signals
19:20
Unit(s) Type of Interface
Local memory Local Memory
unit 264 wire, six cable.

Cable Name

1

5001290

System Concept

Cables and Signals

Signals on the Cable

Twenty bits of the word information (39:20). The twenty
information lines are used bidirectionally.

Twenty bits of the word information (19:20). The twenty
information lines are used bidirectionally.

Cables and Signals

Six cables are used to interface each of four possible memory
storage units to the memory exchange. Each cable contains
44 wires which may be used to pass information, control, and
address data between the storage unit, and the memory control
port. All signal lines of the local memory interface bus are
single direction lines, and no cable lines are used to pass data
in both directions.

Signals on the Cable

This cable is used to pass a 16 bit address to the memory
storage unit, and is also used to pass a three bit address check
value from the storage unit back to the memory control. The
other lines on this cable are not used.

This cable is used to pass 12 control signals from the storage
unit to the exchange port, or vice versa. The other wires of
this cable are not used.

This cable is used to pass 15 write data signals (14:15), and
15 read data signals (14:15) between the storage module and
the exchange port. The other wires of this cable are not
used.

This cable is the same as cable number three, except that it
passes write data bits (29:15) and read data bits (29:15).

This cable is the same as cable number three, except that it
passes write data bits (44:15), and read data bits (44:15).

This cable is the same as cable number three, except that it
passes write data bits (59:15), and read data bits (59:15).

5-73

B 6800 System Reference Manual
System Concept

Local Memory Port Interface Control Logic

An access request to one of the four local memory storage units may originate in channel A, or channel B of the memory
control. Regardless of which channel originates an access request, the logic and control signals of the memory control
port interface are the same. The logical control signals of the port interface (on cable number 2) are as follows:

Signal Name

RMW, WCC, PED

IMC

PAR

WST

=
[74]

5-74

Signal Usage

These three signals; RMW (read modify write), WCC (write cycle control), PED
(parity error disable), form a three bit code that is used to define the type of
operation that is to be performed by the memory storage unit. The types of
operations that are performed by the storage unit are as follows:

RMW WCC PED Function
0 1 0 Clear write operation.
0 0 1 Memory read restore operation.
1 1 0 Read/Modify/Write.

The initiate memory cycle signal. Two IMC signals are required to perform read
modify write memory operations. The memory control generates both of the

IMC signals, (one for the read portion of the operation, followed by another one

for the write portion of the operation) and transmits them both on the interface
IMC wire. The timing of these two IMC signals is a function of the memory control.

The memory address parity bit. This signal is sent from the memory control to
the memory storage unit, to cause the 17 bit address field, plus the RMW, WCC,
and PED signals to have odd parity. If the number of binary one bits in the ad-
dress field is even, the PAR signal will be true, thus making an odd number. If
the number of binary one bits in the address field is odd, the PAR signal will be
false, thus maintaining the odd parity. This signal is only transmitted during the
clear write operation. For all other types of memory operations this signal is
forced false.

The memory parity even signal. This signal is returned from the memory storage
unit to the memory control, to indicate whether or not memory address even
parity error was detected at the storage unit interface.

The write strobe signal. This signal is the write strobe signal for a memory

write operation. The memory control generates this signal and transmits it to the
memory storage unit which is to perform the write portion of a memory cycle.

The system memory control must generate this signal instead of the memory storage
unit because the write portion of a memory cycle is performed after a possible
retry of the read portion is completed.

The memory select write signal. This signal is used to define whether the read
register or the write register is to be used as the source of data for the write
portion of a Read/Modify/Write operation. If the MSW signal is a true level
the write register is the source, otherwise the read register is the source.

PCS (general clear)

HAR

MAV. .

B 6800 System Reference Manual
System Concept

The memory storage unit clear signal. This signal is generated in the memory
control and is used tc clear the logic circuits of the memory storage unit.

The hold address for retumn control signal. This signal is generated in the memory
control, and transmitted to the memory storage unit to cause the storage unit to
hold the memory address by using its address latch circuits. This signal is required
in order to make it possible to single pulse a memory storage unit operation.

The memory available control level. This signal is generated in the memory storage
unit, and a true level is transmitted to the memory control when the storage unit
is powered up.

Scan Bus Port Interface Control Logic

Of the two requestor inputs, only channel A can cause a scan bus operation to be performed. A scan bus operation will
be performed for the input from channel A when bit C of the Z12 bus is a binary one. The control signals that are
generated for a scan bus operation, by the memory control and/or the external subsystem(s) are as follows:

SREQ

RQCW

SAPL/STEX

5001290

The scan bus request logic signal. The memory control causes the SREQ logic level to be true
when bit C is true on the Z12 bus. This signal indicates to the subsystems connected to the
scan bus that the CPU is processing a scan bus request. The subsystems that are connected to
the scan bus are asynchronous with respect to the CPU, and the SREQ signal is used to cause
a subsystem to synchronize with the CPU for the duration of the scan bus interface operation.

The scan-out signal. The memory control causes the RQCW logic level to be true if the scan
bus request from the CPU is the result of executing a SCAN-OUT operator in the data
processor.

The scan address parity level. During the initiation of a scan bus operation the SREQ and SWRC
signals, plus a twenty bit address field is transmitted to the subsystem(s) connected to the scan
bus interface. The number of binary one bits in these 22 signals must be an odd number. The
SAPL signal is used to make the number of binary ones odd when the number of binary one bits
is an even number. The subsystem that is addressed on the scan bus tests the number of binary

ones, and if an even number of binary ones is detected, an address parity error is declared to
exist.

5-75

B 6800 System Reference Manual
System Concept

The data word on the scan bus must also have an odd number of binary one bits. Control
level SI51 is used to make the scan data word have an odd number of bits, in the same way
that the SAPL level is used for the address field. If an even number of bits are detected in the
scan data word, a transmission error is declared to exist.

The STEX control level is true if a scan address parity error, or a scan data transmission error
exists. The SAPL/STEX control signals share a common interface wire on the scan bus
interface.

SAOX The scan access obtained logic signal. When the subsystem has accessed the area within the
subsystem that is to be used for the scan bus request, and the area is interfaced to the scan bus
in the subsystem, the SAOX control signal is made a true level. This signal indicates that the
data to be transferred on the scan bus is available on the scan bus interface.

SRDY The scan ready signal. When the CPU initiates a scan bus request the subsystem that is
addressed makes its SRDY level true, if the subsystem is powered up, is not inhibited from
performing a scan bus function, and is not performing an internal operation. The CPU of the
B 6800 system does not allow the scan bus operation to delay other channel A functions in
the memory exchange unnecessarily. When a scan bus operation is initiated, a counter in
the CPU counts system clock periods until the SRDY level goes true. If seven clock
periods pass, and the SRDY level does not go true, a “time out” occurs, and the scan bus
operation is aborted. If SRDY goes true, the clock period counter in the CPU is inhibited from
counting. Thus, a subsystem must respond within seven clock periods, or the scan bus operation
will be terminated.

SIs1 The scan bus word parity bit. This control signal is used to cause the scan bus data word to
have odd parity, in the same way that the SAPL signal is used to cause the address field to
have odd parity.

MEMORY TESTER LOGIC

The B 6800 has memory test logic designed into the hardware circuits of the CPU cabinet. A separate memory tester,
with access to local memory, is not provided. Therefore, when memory tests are to be performed, their execution will
preempt any other system operation. The memory test logic does not use, and cannot test, the channel B logic of the
memory control input requesters.

The memory tester logic is designed to be used with memory test routines that are resident on magnetic tape. The MDP
controls the magnetic tape peripheral device. Memory tests are executed on the B 6800 system through messages on the
system operators console (SPO), under control of the MDP Executive routine. Thus, memory testing is only performed
by system operators, who must mount the memory test tape upon the peripheral device, and then direct the system to
perform memory tests.

5-76

B 6800 System Reference Manual

SECTION 6
PROGRAM OPERATORS

GENERAL

The machine language operators are composed of syllables in a program string. The operators are divided into four
major classes, which are primary mode, variant mode, edit mode, and vector mode operators.

SYLLABLE ADDRESSING AND SYLLABLE IDENTIFICATION

SYLLABLE FORMAT AND ADDRESSING

A machine language program is a string of syllables which are normally executed sequentially. Each program word in
memory contains six eight-bit syllables. The first syllable of a program word is labeled syllable zero, and is formed by
bits 47 through 40 (see figure 6-1).

P AND T REGISTERS

The P register contains the currently active program word. The T registers are the control (instruction) registers. There
is one four-bit T register for each operator family. The T register contains the code for the specific type of operator
that is to be executed by the family, and is usually derived from the four low-order bits of the operator syllable code.
The four high-order bits of the operator syllable code are used to select a family strobe. This family strobe is used to
define which family is to receive the strobe pulse (execute pulse). Figure 6-2 shows how a program operator code in the
P register is decoded to select a family strobe, and a T register value. In the example shown in figure 6-2, a divide
operator (OP code 83 hexadecimal) is in the process of being executed, and this operator caused the family A strobe
(STRA) to be selected. The family A T register contains a value of three (hexadecimal) which is derived from the four

1!\‘!]-!\1‘!‘]91’ klfc Of thﬂ f\“AfatGr CGAA

Figure 6-2 also shows an example of how a word of program code is selected to be executed. The addressing mechanism
for program code words, and the way that the controllers of the B 6800 data processor function to provide automatic
program code handling operation is also shown in this example.

In the program code handling example shown in figure 6-2, the program base register (PBR) points at the first word of
program code in the current program code segment. The value of the PBR register is initially established from the seg-
ment descriptor for the current program segment, when the procedure is initiated.

The current word of program code in a program segment that is presently being executed is indicated by the value of the
program index register (PIR). The initial value of the PIR register for a program segment is established from the PCW
word that caused the segment to be executed. The initial value of PIR may also be established from an RCW, if the
program segment is executed as the result of an exit or return from another code segment in the same program.

The first syllable that is to be executed in a program code segment is derived from the PCW (or alternatively the RCW)
that caused entry into the current program segment. In the example shown in figure 6-2, the PSR register is pointing at
syllable four of the P register because the divide operator (in syllable three) is being executed, and the PSR plus one
logic has advanced the value of the PSR register to point at the next syllable that will be executed.

Program code words, in the B 6800 system, are normally fetched from system memory by the look ahead logic. The

look ahead logic fetches the next word of program code while the current word of program code is being executed, and
places it in the L register. When the PSR register indicates by its content value that all of the syllables of program code

5001290 6—1

B 6800 System Reference Manual
Program Operators

SYLLABLE SYLLABLE SYLLABLE SYLLABLE SYLLABLE SYLLABLE

0 1 2 3 4 5
T: TE—
a7 |43} | 39|35 31 | 27 23 | 19 15 | 11} 7 3
46 | a2 | 38 | 34 30 | 26 | 22 | 18 | 14 | 10 | 6| 2
45 | 41 | 37 | 33 29 | 25 1 21 | 17 | 131 9 {5 1
a4 | 40 36 | 32 28 | 24 20 | 16 | 12 8 | | 4 0
MV 1640

Figure 6-1. Program Word

in the P register have been executed, the program controller causes the next word of program code to be transferred
from the L register, to the P register. The PSR register will point at the first syllable in the new program word.

When the next word of program code is transferred from the look ahead logic L register to the P register, the look
ahead module causes the next word of program code to be fetched from memory, and placed in the emptied L register.
The program controller will cause the value of the PIR register to be incremented by one, as the operators are strobed
from the P register, Thus, the PIR register will always point at the code word that the present operator started in.

The look ahead logic uses the look ahead address register (LAR) to address the next word of program code. The LAR
register has an automatic plus one incrementation feature, that causes the LAR register to always point at the memory
address of the next program word (following the program word that is present in the L register).

The dotted lines in figure 6-2 are used to show the origin of a word of program code in the P and L registers, and also
to show what word of the program segment is pointed at by an address register. A dotted line is also used to show that
the value of the PSR register temporarily points at syllable four, when syllable three is being executed by the data
processor.

OPERATION TYPES

Operations are grouped into three classes: name call, value call, and operators. The two high-order bits (bits 7 and 6)
determine whether a syllable begins a value call, name call or operator (figure 6-3).

Name Call

Name call builds an indirect reference word in the stack (see figure 64). Stack adjustment takes place so that the

A register is empty. The six low-order bits of the first syllable of this operator are concatenated with the eight bits

of the following syllable to form a 14-bit address couple. The address couple is placed, right-justified, into the A register,
with the remainder of the A register filled with 0’s. The TAG field of the A register is set to 001 and the register is
marked fuil.

6-2

B 6800 System Reference Manual

Program Operators

PROGRAM SEGMENT
IN MEMORY
PROGRAM WORD ...78 <—E_—<— PROGRAM
INDEX REGISTER
F - ADDRESS a | '
PROGRAMWORD 3 |————1~ ADDER |
PROGRAM BASE
B PROGRAM WORD 2 | e REGISTER
E PROGRAM WORD 1 | l
| PROGRAMWORD 0 |tt—— | :]
| | | I LAR +1 | |
| | | | LOGIC :I | |
I L | | }
| ' MEMORY -t 4 LAR | o¢ |
| — conTROLLER | | |
| Losie - l MAR l I PIR +1
| | - | LOGIC
| | | I
L]
| | | !
| | PSR CLEAR
LOOK
| > L REGISTER AHEAD | LOGIC
| I__ — (PROGRAM WORD 2) > LOGIC |
| * MODULE ! ’__¢
l PROGRAM i |
I CONTROLLER | R
. LOGIC < !
| } ! !
| L Y |
'PRE'GISTER ' — PROGRAM
I (PROGRAM WORD 1) - — SYLLABLE [
———»] , PROGRAMWORD 1) REGISTER
syifsyi]sye IsyL]syr]syr
' 0 1 ' 2 ' 3 4 5 __’ I
/ -
/ \
e 0
TO OTHER FAMILY
Ol0 L 4 — T REGISTER SELECTION
ole V AND GATING LOGIC
ole
FAMILY A -9
—_— —_ —_— T REGISTER
* VA V) PR Y ore) SELECTION
—— e o b E«OGGA:EING Q.
FAMILY LD g L YECSE L STRS ®
STROBE * TAIE
DECODING
LOGIC STRA ®
TAOF
STRB STRD
AL I LI WALy
MV 1641 LSRG g LSIBE) LSTRL g LSTRK
Figure 6-2. Program Word, Syllable Addressing
5001290 6—3

B 6800 System Reference Manual
Program Operators

(BITS 7
AND 6) SYLLABLE NO. OF
IDENT TYPE SYLLABLES FUNCTION
00 VALUE CALL 2 BRINGS AN
OPERAND INTO
THE STACK
01 NAME CALL 2 BUILDS AN IRW
IN THE STACK
OTHER | OTHER 1—»7 PERFORMS THE
THAN OPERATORS SPECIFIED
ABOVE OPERATION
MV 1642

Figure 6-3. Primary Mode Operator Syllable Decode Table

Value Call

Value call loads into the top of the stack the operand referenced by the address couple. The operator is formed in the
same manner as in the'name call operator. If the referenced memory location is an indirect reference word or a data
descriptor, additional memory accesses are made until the operand is located. The operand is then placed in the top of
stack registers. The operand may be either single- or double-precision, causing either one or two words to be loaded
into the top of the stack.

Figure 6-5 is an example of how a value call operator (VALC) is used to cause a word of data located at memory
address D2 plus 4 to be fetched and placed in the top of the D3 stack. The current stack is known to begin at the
MSCW pointed at by the D3 display IC memory register, because the lexicographical level register contains a value of 3
(LLOO, LLO1, LLO02/, LLO3/, LLO4/).

The fence decoding logic defines the number of bits in the address couple that select a display register to provide the base
address portion of the value call operation. The fence decoding logic uses the current programming level of the program
segment to determine which IC memory display register is selected. The highest order bit of the lexicographical level
register that is true in the example is bit LLO1, which has a value or two. The fence decoding logic will therefore use
the two high order bits of the address couple to select an IC memory display register as the source of the base address.
The bits that are not used by the fence decoding logic, to select a display register, form the index portion of the value
call operation.

Bits 29:5 are used by the fence decoding logic to select a display register. The value of the bits in this field are
opposite to the word bit number order. That is, bit 29 of the address couple in the example has a binary value of one,
and bit 25 has a binary value of sixteen. The following table equates bits 29:5 to a decimal value, and to the display
registers which they will select.

5001290

B 6800 System Reference Manual
Program Operators

0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0| 0 0 0 0
4y {ho 36 32 28 24 {20 16 12
MV 1643

Figure 6-4. Name Call Operator Function

TYPICAL
NAME
CALL
OPERATOR
CODE
INTHEP
REGISTER

THE
ADDRESS
COUPLE
PART OF
THE

NAME
CALL
OPERATOR

THE -
RESULTING

" IRW THAT

IS FORMED
IN THE

A REGISTER
AS THE
RESULT

OF THE
NAME CALL
OPERATOR

B 6800 System Reference Manual
Program Operators

TYPICAL
VALUE
CALL
OPERATOR
IN THE
P REGISTER
LEXICOGRAPHICAL
REGISTER, 0
VALUE =3
! 3
0 1
- INDEX
VALUE =4
— —— — — —/ 1
|
—) !
r |
' |
I
DO
| o |
| MEMORY |
| REGISTER |
| I
| - —————— == — =
l D1 I INDEX VALUE VIA Z10 & Z9 BUSSES
| IC
(MEMORY S !
! REGISTER i
l |
' L
| Z8 BUS
L D2 $————>| ~roomess
—_ D ADDER
S MEMORY —¢ SUMOFDZ+4 T] MAR
. & ADDRESS TO
REGISTER MEMORY
ADDRESS
REGISTER
D3
ic
MEMORY
REGISTER . .
G Figure 6-5. Value Call Operator Function
MV 1644

B 6800 System Reference Manual
Program Operators

Display
Bit Number Decimal Value Register Selected
29 1 1
28 2 2
27 4 4
26 8 8
25 16 16

There are 32 IC memory display registers that may be selected by the fence decoding logic.

In the following example, it is possible to see how bit 28 is used to select display register two and thus to provide the
base portion of the value call address.

The index portion of the address couple is treated in the conventional manner, as a binary value. In the example shown
in figure 6-5, bits 16, 17, and 18 have a binary value of 100, which is four decimal.

The absolute memory address that is placed in the memory address register, in the example in figure 6-5, is the sum of
the address from display register two, and the index, which has a value of four (that is, D2 + 4). The word of data in
memory at the absolute memory address will be fetched, and placed in the top of stack register. If the word at D2+4
is an IRW, or a data descriptor, then additional fetches from memory will be made. This process will continue until an
operand, or a data word is placed in the top of stack register. Placing an operand or a data word in the top of stack
register completes the value call operation.

The value call operator detects an invalid operand error condition if a word with a tag code of three, four, or six is
referenced. If a word with a tag of seven is referenced by a value call operator, an accidental program entry into the
procedure described by the PCW is performed. The finai vaiue that is piaced in the stack by a value cail operator must
have a tag field of zero, or two. Y

An accidental program entry that is caused by a value call operator being executed is treated like a sub-routine of the
procedure that executed the value call operator. The stack of the procedure is marked by an MSCW and an RCW. Then
the sub-routine referenced by the PCW is executed, and terminates by means of a return operator. The return operator
passes a parameter from the sub-routine to the procedure that executed the original value call operator. The program
flow of the procedure is resumed at the next operator in sequence following the original value call operator.

Operators
Operators vary from one to seven syllables in length. The first syllable of each operator determines the number of
additional syllables forming the operator. Upon completion of each operator, the PSR register addresses the first syllable

beyond all of the syllables comprising the operator.

Operators work on data as either full words (48 data bits plus tag bits), or as strings of data characters. Word operators
work with operands (single- or double-precision) in the top of the stack.

String operators are used for transferring, comparing, scanning, and translating strings of digits, characters, or bytes.
In addition, a set of micro-operators provide a means of formatting data for input/output.

5001290 617

B 6800 System Reference Manual
Program Operators

The string operators use source and destination pointers which are located in the stack. These pointers are set into the
following hardware registers:

1. Source Base Register — (SBR).
2. Source Index Register — (SIR).
3. Source Index Byte Register — (SIB).
4. Source Size Register - (SSZ).‘
5. Destination Base Register — (DBR).
6. Destination Index Register — (DIR).
7. Destination Index Byte Register — (DIB).
8. Destination Size Register — (DSZ).

In some of the string operators the source pointer may not be used. In this case, an operand may be in the stack; its
characters are circulated as it is being used.

String operators have an optional update function, that is, producing updated source and destination pointers, and count.
At completion of an operation the source and destination pointers are updated as follows:

1. If the source is an operand it remains in the stack.

2. If the pointer is a descriptor, the word index fields and byte index fields are updated from SIR/DIR and
SIB/DIB. The string size fields are updated from SSZ/DSZ.

3. If the pointer is a data descriptor or a non-indexed string descriptor, it is converted to an indexed string
descriptor and updated.

If both the source and destination descriptors have size fields equal to 0, the size registers indicate 8-bit character size.
When both a source and destination are required and the size field of one is equal to 0 and the other is not, then the

size field of the non-zero descriptor is used.

If neither size field is equal to O and the size fields are not equal and the operator is not translate, the invalid operand
interrupt is set and the operator is terminated. The size field is considered equal to O when the source is an operand.

6-8

B 6800 System Reference Manual

SECTION 7

PRIMARY MODE OPERATORS

GENERAL

This section defines the functions of the primary operators. In each case, the name of the operator, corresponding
mnemonic, and hexadecimal code are shown. Appendix A of this manual lists the operators in alphabetic order, and
appendix B lists the operators in numeric order, by mode.

The universal operators are also included in this section.

ARITHMETIC OPERATORS

The arithmetic operators usually require two operands in the top of stack registers. These operands are combined by the
arithmetic process specified with the result placed in the top of the stack. The operands may be either single-precision,
double-precision, or intermixed. The specified arithmetic process adapts automatically to the data environment, with the
single-precision process invoked if both operands are of the single-precision type and the double-precision process invoked
if either operand is of the double-precision type.

Each double-precision operand occupies two words. The second word of the operand is an extension of the first word

of the operand. The mantissa of the first word of the operand contains unit values, and the mantissa of the second

word contains a fractional unit value. An implied octal point separates the mantissa of the first word from the mantissa
of the second word. When the top of stack registers are full, the first word of the first operand is in the A register;

the second word of the first operand occupies the X register. The first word of the second operand resides in the B regis-
ter; the second word of the second operand occupies the Y register. Therefore, double-precision arithmetic processes
operate on four words in the stack, instead of two as in single-precision operations. Double-precision arithmetic leaves a
two-word result in the top of the stack.

Add, subtract, and multiply operations which use two integer operands yield an integer result if no overflow occurs. If
one or both operands are non-integer, or if the result generates an overflow, the result is non-integer.

When an operator has been entered, the hardware stack-adjust function fills or empties the top of stack register as
required by the operator. If either register contains an incorrect word, the operator is terminated by an invalid operand
interrupt.

ADD (ADD) 80

The operands in the A register and the B register are added algebraically, with the sum left in the B register. At the end
of the operation, the A register is marked empty, and the B register is marked full.

If only one of the operands is double-precision, the register (X or Y) associated with the register that contains the single-
precision operand is set to all 0’s. The B register is marked as a double-precision operand at completion of the operation.

If the mantissa signs and the exponents are equal, the mantissas are added and the sum placed in the B register. If the
sum exceeds 13 single precision (26 double precision) octal digits, the mantissa of the sum is shifted right one octade,
rounded, and the exponent is algebraically increased by one. The meaning of exponents and mantissas were given in)
section 2 of this manual.

If the exponents are equal but the mantissa signs are unequal, the difference of the mantissas plus the appropriate sign
are placed in the B register.

5001290 7-1

B 6800 System Reference Manual
Prithary Mode Operators

If the exponents are unequal, the operands are first aligned. If the alignment causes the smaller operand to be shifted
right 14 single precision (27 double precision) octal places, the larger operand is the result.

If the alignment causes the smaller operand to be shifted right, but less than 14 single precision (27 double precision)
octal places, the digits of the smaller operand shifted out of the register are saved and used to obtain the rounded result.

If the signs of the operands are equal, the mantissas are added and the sum placed in the B register. If the sum does not
exceed 13 single precision (26 double precision) octal digits, the last digit shifted out of the register is used to round the
result. If the sum is 14 single precision (27 double precision) octades, the mantissa in B (Y) is rounded to 13 single
precision (26 double precision) digits.

If the signs of the operands are unequal, an internal subtraction takes place, with the rounded result placed in the
B register.

If the result has an exponent greater than +63 (+32,767), the exponent overflow interrupt is set. If the result has an
exponent less than -63 (-32,767), the exponent underflow interrupt is set.

SUBTRACT (SUBT) 81

The operand in the A register is algebraically subtracted from the operand in the B register with the difference left in the
B register. The operation is the same as for the Add operator except for initial sign comparisons.

MULTIPLY (MULT) 82

The operand in the A register is algebraicaily muitipiied by the operand in the B register. The rounded product is ieft in
the B register.

If the mantissa of either operand is 0, the B register is set to all O’s.
If both mantissas are non-zero, the product of the mantissa is computed. If the product contains more than 13 single
precision (or 26 double precision) digits, it is normalized and rounded to 13 single precision (or 26 double precision)

digits. A mantissa of all sevens is not rounded. Normalization was explained in section 2 of this manual.

If the result has an exponent greater than +63 (+32,767), an exponent overflow interrupt is set. If the result has an
exponent less than -63 (-32,767), an exponent underflow interrupt is set.

EXTENDED MULTIPLY (MULX) 8F

The operands in the A and B registers are algebraically multiplied and a double-precision product is placed in the B and
Y registers. The A register is marked empty and the B register marked full.

The actions outlined for Multiply operations also apply to this operator.
If either or both operands are double-precision, then a normal double-precision operation occurs.
DIVIDE (DIVD) 83

The operand in the B register is algebraically divided by the operand in the A register, with the quotient left in the
B register. After the operation the A register is marked empty, and the B register is marked full.

7-2

B 6800 System Reference Manual
Primary Mode Operators

If the mantissa of the B register is 0, the B register is set to all 0’s. If the A register mantissa is equal to 0, the divide
by zero interrupt is set. In either case the operation is terminated.

If the mantissa of both operands are non-zero, they are normalized and the operand in the B register is divided by the
operand in the A register. The quotient is developed to 14 single precision (or 27 double precision) digits, rounded to
13 single precision (or 26 double precision) digits, and remains in the B register.

If the result has an exponent greater than +63 (32,767) the exponent overflow interrupt is set. If the result has an expo-
nent less than -63 (-32,767) the exponent underflow interrupt is set.

INTEGER DIVIDE (IDIV) 84

The operand in the B register is algebraically divided by the operand in the A register and the integer part of the quo-
tient is left in the B register. After the operation the A register is marked empty and the B register is marked full.

If the mantissa of the B register is O, the B register is set to all 0’s. If the mantissa of the A register is 0, the divide-by-
zero interrupt is set. The operation is terminated in either case.

If the mantissas of both operands are non-zero, they are normalized. If the exponent of the B register is algebraically
less than the exponent of the A register after both operands have been normalized, the B register is set to all 0°s. If
the exponent of the B register is algebraically equal to or greater than the exponent of the A register, the divide opera-
tion proceeds until an integer quotient or a quotient of 13 single precision (or 26 double precision) significant digits is
calculated.

If an integer quotient is developed, the -quotient is left in the B register with a O exponent for single precision and the

exponent set to 13 for double precision. If a non-integer quotient is developed, the integer overflow interrupt is set.
REMAINDER DIVIDE {(RDIV} 85

The operand in the B register is algebraically divided by the operand in the A register to develop an integer quotient.
The remainder of this Division stays in the B register.

If the mantissa of the B register is 0, the B register is set to all 0’s. If the mantissa of the A register is 0, the divide by
zero interrupt is set. In either case the operation is terminated.

If both mantissas are non-zero, both operands are normalized. If the exponent of the B register is algebraically less
than the exponent of the A register after both operands have been normalized, the operand in the B register is the
result. If the exponent of the B register is algebraically equal to or greater than the exponent in the A register, the
divide operation proceeds until an integer quotient is developed; the remainder is then placed in the B register.

If a non-integer quotient is developed, the integer overflow interrupt is set and the operation is terminated.
INTEGERIZE, TRUNCATED (NTIA) 86

The operand in the B register is converted to integer form without rounding and remains in the B register.

If the operand in the B register cannot be integerized, i.e., the exponent is greater than the number of leading zeros in
the operand, the integer overflow interrupt is set and the operation is terminated.

5001290 7-3

B 6800 System Reference Manual
Primary Mode Operators

INTEGERIZE, ROUNDED (NTGR) 87

The operand in the B register is converted to integer form. Rounding takes place if the absolute value of the fraction is
greater than four. The rounded result is left in the B register.

If the operand in the B register cannot be integerized, i.e., the exponent is greater than the number of the leading zeros
in the operand, the integer overflow interrupt is set and the operation is terminated.

The operand is rounded, if necessary, by adding one to the mantissa. If a non-integer results from this operation, the
integer overflow interrupt is set.

TYPE-TRANSFER OPERATORS

SET TO SINGLE-PRECISION, TRUNCATED (SNGT) CC

The operand in the top-of-stack register is normalized and set to a single-precision operand; or in the case of a data
descriptor, the double-precision bit is set to 0.

If the word in the top-of-stack register is a non-indexed, double-precision data descriptor, the double-precision bit is
cleared to 0 and the length field multiplied by two.

If the double-precision operand in the top-of-stack register has an exponent greater than +63 after normalization, the
exponent overflow interrupt is set. If the exponent is less than -63 after normalization, the exponent underflow inter-

rupt is set, and the operation is terminated.

If the operand in the top-of-stack régister is a double-precision operand with an exponent less than +63 or greater than
~63; the operand is normalized, and the tag field in the top-of-stack register is set to single-precision.

If the word in the top-of-stack register is neither an operand nor a Data Descriptor, the invalid operand interrupt is set
and the operation terminated.

Ifthe operand is single-precision, it is normalized and the operation is terminated.

SET TO SINGLE-PRECISION, ROUNDED (SNGL) CD

The operand in the top-of-stack register is changed to a rounded, single-precision operand.

If the double precision operand in the top-of-stack register has an exponent greater than +63 the exponent overflow inter-
rupt is set. If the exponent is less than ~63, the exponent underflow interrupt is set. In either case, the operation is
terminated.

If the operand in the top-of-stack register is a double-precision operand with an exponent less than +63 or greater than
-63, the operand is normalized; the tag field in the top-of-stack register is set to single-precision, the operand in the top-

of-stack register is rounded from the Y register, and the Y register is set to all 0’s.

If a carry is developed during the rounding operation, the operand is adjusted and the new exponent is checked in the
manner discussed in the preceding paragraph.

If the operand is a single-precision operand, it is normalized and no rounding occurs.

‘\l
S

B 6800 System Reference Manual
Primary Mode Operators

SET TO DOUBLE-PRECISION (XIND) CE

The word in the top-of-stack register is set to a double-precision operand and the Y register is set to all 0’s. If a single
precision data descriptor is present in the top-of-stack register, the double precision bit is set to one.

If the word in the top-of-stack register is a data descriptor with both the index bit and double-precision bit 0, the
double-precision bit is set to one and the length field is divided by two.

If the operand in the top-of-stack register is a double-precision operand, the operation is complete. If it is a single-
precision operand, the tag field in the top-of-stack register is set to double-precision and the Y is set to all 0’s.

If the word in the top-of-stack register is neither an operand nor a Data Descriptor, the invalid operand interrupt is set
and the operation terminated.

LOGICAL OPERATORS

For LAND, LOR, or LEQV, if only one of the operands is in double-precision form, the other operand is treated as
double-precision with the least significant 13 octades equal to all 0.

LOGICAL AND (LAND) 90

Each bit of the B operand result, except for the tag bits, is set to one where a one appears in the corresponding bit posi-
tions in both the A operand and the B operand. The other information bits of the B operand result are set to 0. If the

tags of the two operands are identical the tag in the result is that of the B register. If the tags are different, the resultant
tag is double precision.

LOGICAL OR {LOKR) 91

Each bit position of the B operand except for the tag bits, is set to one if the corresponding bit position in either the

A operand or the B operand is one, otherwise, the bit is set to 0. The tag bits are set to the value of the second item in
the stack except when the A operand is double-precision; in which case, the B register tag is set to double-precision.

LOGICAL NEGATE (LNOT) 92

Each bit in the top word in the stack is complemented except for the tag bits, which remain unchanged. The result is
always stored in the A register.

LOGICAL EQUIVALENCE (LEQYV) 93

Each bit of the B operand is set to one, except for the tag bits, when the corresponding bits of the A operand and the
B operand are equal. Each bit of the B operand is set to 0 except for the tag bits, when the corresponding bits of the
A and B operands are not equal. The tag field is normally set to the value of the second item in the stack except when
the A operand is double-precision; in that case, the B-register tag is set to double-precision.

RELATIONAL OPERATORS

The relational operators perform an algebraic comparison on the operands in the A register and the B register. The single
precision result is left in the B register and the B register is marked full. The result is an operand in integer form with
the value one if the relationship has been met or an operand with all information bits set to O if the relationship was not
met. All relational operations compare the B operand to the A operand.

For all relational operators except equal (EQUL) and not equal (NEQL) the compare flip-flop is set when the relation
is equal. For the equal or not equal operators, the compare flip-flop is set when the relationship is greater than equal.

5001290 7-5

B 6800 System Reference Manual
Primary Mode Operators

The CMPF flip-flop is used in conjunction with the low order bit of the B register (BR[0:1]) to analyze the result of a
relational operation. The following table shows the states of the CMPF flip-flop and BR[0:1] for various relational oper-
ations and possible results of relational operations.

Table 7-1. Relational Operator Indications

Relational BR[0:1] CMPF Comparison Result
EQUAL 0 0 Less than

(8C) (EQUL) 0 1 Greater than

1 0 Equal

1 1 Not applicable
GREATER THAN 0 0 Less than
(8A) (GRTR) 0 1 Equal

1 0 Greater than

1 1 Not applicable
GREATER THAN 0 0 Less than
OR EQUAL 0 1 Not applicable
(89) (GREQ) 1 0 Greater than

1 1 Equal
LESS THAN 0 0 Greater than
(88) (LESS) 0 1 Equal

1 0 Less than

1 1 Not applicable
LESS THAN 0 0 Greater than
OR EQUAL 0 1 Not applicable
(8B) (LESQ) 1 0 Less than

1 1 Equal
NOT EQUAL 0 0 Equal
(8D) (NEQL) 0 1 Not applicable

1 0 Less than

H i Greater than

GREATER THAN (GRTR) 8A

If the B operand is algebraically greater than the A operand, the B register is set to one, otherwise, the B register is set

—~ N A 0 s anoa A DDAL . ..
to 0. AROF is reset, and BROF is set.

7-6

B 6800 System Reference Manual
Primary Mode Operators

If the result of the algebraic comparison iz “equal”, the CMPF flip flop is set.
GREATER THAN OR EQUAL (GREQ) 89

If the B operand is algebraically greater than or equal to the A operand, the B register is set to one, otherwise, the B
register is set to 0.

If the result of the algebraic comparison is “equal” the CMPF flip-flop is set. AROF is reset, and BROF is set.
EQUAL (EQUL) 8C

If the operands in the B and A registers are algebraically equal, the B register is set to one, otherwise, the B register is
set to 0.

If the result of the algebraic comparison is “greater” the CMPF flip-flop is set. AROF is reset, and BROF is set.
LESS THAN OR EQUAL (LSEQ) 8B

If the B operand is algebraically less than or equal to the operand in the A register, the B register is set to one, other-
wise, the B register is set to 0.

If the result of the algebraic comparison is “equal” the CMPF flip-flop is set. AROF is reset, and BROF is set.

LESS THAN (LESS) 88

If the operand in the B register is algebraically less than the operand in the A register, the B register is set to one,
otherwise, the B register is set to 0.

If the result of the algebraic comparison is “equal” the CMPF flip-flop is set. AROF is reset, and BROF is set.
NOT EQUAL (NEQL) 8D

If the operand in the B register is not algebraically equal to the operand in the A register, the B register is set to one,
otherwise, the B register is cleared.

If the result of the algebraic comparison is “greater than” the CMPF flip-flop is set. AROF is reset, and BROF is set.

BRANCH OPERATORS

Branch instructions break the normal sequence of seriel instruction fetches. Branching may be either relative to the base
address of the current program segment or to a location in another program segment. Branch operators may be condi-
tional or unconditional.

BRANCH FALSE (BRFL) AO

If the low order bit of the A register is 0, the Program Index Register (PIR) and Program Syllable Register (PSR) are set from
the next two syllables in the program string. Otherwise, PSR is advanced two syllable positions, and PIR is incremented if
necessary.

The two syllables following the actual operator syllable form the new PIR and PSR settings as follows. The three high

order bits are placed into PSR and the next 13 low order bits are placed in the PIR. The Program Register (P) is marked
empty to cause an access to the new program word.

5001290 7-7

B 6800 System Reference Manual
Primary Mode Operators

BRANCH TRUE (BRTR) Al

If the low order bit of the A register is one, the PIR and PSR are set from the next two syllables in the program string.
Otherwise, PSR is advanced two syllable positions and PIR is incremented if necessary. The Branch True Operator uses
the two syllables as described for the Branch False operator (BRFL), above.

BRANCH UNCONDITIONAL (BRUN) A2

The PIR and PSR are set from the next two syllables of the program string. The Branch Unconditional operator uses the
two syllables as described for the Branch False operator (BRFL).

DYNAMIC BRANCH FALSE (DBFL) A8

If the low order bit of the B register is 0 and the word in the A register is a Program Control Word (PCW) or an indirect
reference to one, a branch is made to the specified syllable of that program segment.

If the low order bit of the B register is O and the word in the A register is an operand, PIR and PSR are set from this
operand.

If the word in the A register is an operand, it is used in the following manner. The operand is made into an integer. If
it is negative or is greater than 16,384, the invalid index interrupt is set and the operation is terminated. If bit zero of
the operand is 0, PSR is set to 0, otherwise PSR is set to 011. The next higher order 20 bits are placed in the PIR. The
Program Register is then marked empty to cause access to the new program word.

DYNAMIC BRANCH TRUE (DBTR) A9

If the low order bit of the B register is one and the word in the A register is a PCW, or an indirect reference to one, a
branch is made to the specified syllable of the program segment.

If the low order bit of the B register is one and the word in the A register is an operand, PIR and PSR are set from this
operand.

The operand in the A register is used in this operator in the manner described for the Dynamic Branch False operator
(DBFL).

DYNAMIC BRANCH UNCONDITIONAL (DBUN) AA

If the word in the A register is a PCW or an indirect reference to one, a branch is made to the specified syllable of the
program segment.

If the word in the A register is an operand, PIR and PSR are set from this operand.

The operand in the A register is used in this operator in the same manner described for the Dynamic Branch False
operator (DBFL).

STEP AND BRANCH (STBR) A4
The increment field of the step-index word (SIW) addressed by the contents of the A register is added to its current-value
field. If the current-value field is then greater than the final-value field, the PIR and PSR are set from the next two

syllables in the program string. Otherwise, the PIR and the PSR are advanced three syllables. The SIW is replaced in
memory.

7-8

B 6800 System Reference Manual
Primary Mode Operators

If nc SIW is in memory, and if an operand is found, it is left in the stack. The A register is set to all (s, the PIR and
PSR are advanced and the next operator is executed. If no operand is encountered, the invalid operand interrupt is set.

UNIVERSAL OPERATORS

NO OPERATION (NOOP) FE

No operation takes place when this syllable is encountered. PIR and PSR are advanced to the next operator. This oper-
ator is also valid in the Variant and Edit modes.

CONDITIONAL HALT (HALT) DF

This operator halts the processor if the CHLT pushbutton on the MDP keyboard is illuminated. If the CHLT pushbutton
is extinguished the operator is treated as a NOOP. This operator is also valid in the Variant and Edit modes.

INVALID OPERATOR (NVLD) FF
This operator sets the invalid operand interrupt. This operator is also valid in Variant and Edit modes.

STORE OPERATORS

The store operators use the words in the A register and B regisier. The operand in the B register is stored in memory at
the location addressed by an Indirect Reference Word (IRW) or a Data Descriptor. If the A register contains an operand,
a hardware interchange takes place so that the operand is transferred to the B register.

STORE DESTRUCTIVE (STOD) BS

If the word in the A register is an operand, the A and B operands are interchanged. The Data Descriptor or IRW in the
A register is the address in memory where the operand in the B register (B, Y registers for double-precision) is stored.
After the operand is stored, the A register and B register are marked empty and the operation is complete.

If the word addressed by the IRW is a Program Control Word, accidental procedure entry occurs. The spontaneously
created Return Control Word (RCW) causes the Store Destructive (STOD) operator to be re-executed upon return from

the procedure.

If the word addressed by the Data Descriptor has the memory protect bit on (bit 48), the memory protect interrupt is
set and the operation is terminated.

If the presence bit in the Data Descriptor is 0, the presence bit interrupt is set. After the information has been made
present, the operation is restarted.

STORE NON-DESTRUCTIVE (STON) B9

This operator functions in virtually the same way as the STOD operator, however, at the completion of this operator, the
BROF remains set, and the operand is retained in the B register.

OVERWRITE DESTRUCTIVE (OVRD) BA

This operator functions in the same way as the STOD operator, except that the OVRD operator overrides memory
protection checks.

5001290 7-9

B 6800 System Reference Manual
Primary Mode Operators

OVERWRITE NON-DESTRUCTIVE (OVRN) BB

This operator functions in the same way as the STON operator, except that the OVRN operator overrides memory
protection checks.

STACK OPERATORS

EXCHANGE (EXCH) B6

The operands in the A register and the B register are exchanged. The A and B registers may contain either operands or
control words. The control words are treated as operands by this operator.

DELETE TOP OF STACK (DLET) B5
This operator marks the Top-of-Stack register empty.
DUPLICATE TOP OF STACK (DUPL) B7

The operand in the B register is copied into the A register, or the operand in the A register is copied into the B register.
At the conclusion of the operation the register that received the copy is marked full.

PUSH DOWN STACK REGISTERS (PUSH) B4

This operator stores the valid word(s) from the A register and/or B register into the memory portion of the stack. The A
and B registers are marked empty.

LITERAL CALL OPERATORS

LIT CALL ZERO (ZERO) B0
This operator sets the A register to all 0’s and marks the register full. The result is a single-precision operand.
LIT CALL ONE (ONE) B1

This operator sets the A register low order bit (bit 0) to one, leaving all other bits set to 0. The A register is marked full.
The result is a single-precision operand.

LIT CALL 8 BITS (LT8) B2

The syllable following the operator is the literal value to be placed in bits 7:8 of the A register. The rest of the A
register is set to all 0’s. The A register is marked as full and the PSR is set to the syllable following the literal,

LIT CALL 16 BITS (LT16) B3

The next two syllables following the operator are a 16-bit literal value that is placed in bits 15:16 of the A register. The
rest of the register is set to all 0’s. The A register is marked full and PSR is advanced past the 16-bit literal.

LIT CALL 48 BITS (LT48) BE

The next program word is placed in the A register, and the A register tag is set to all 0’s. The A register is marked full,
and the PIR and PSR are advanced to the program syllable following the 48-bit literal value. This operator requires that
the 48 bit literal in the program string be word synchronized. If the operator syllable is in any syllable position other
than syllable five, the intervening syllables are not executed.

7-10

B 6800 System Reference Manual
Primary Mode Operators

The 48 bit literal word must contain a tag field value of 3 (program word), otherwise an invalid program word interrupt
will be sensed when the literal word is present in the P (program) register.

MAKE PROGRAM CONTROL WORD (MPCW) BF

This operator performs a “Lit Call 48 Bits” (LT48) as described above; however, the tag is set to a PCW (111) and the
Stack Number Register is placed in bits 45:10. The A register is marked full.

INDEX AND LOAD OPERATORS

INDEX (INDX) A6

The Index operator places the integerized value of the B register into the 20-bit length/index field of the Descriptor in the
A register. The Descriptor is marked indexed (bit 45 is set to one), and the copy bit is set (bit 46 is set to one).

If the word in the A register is an operand, the A operand is exchanged with the B operand. If the word in the A reg-
ister is neither a Descriptor nor an IRW pointing to a Descriptor, the invalid operand interrupt is set and the operation
is terminated.

If the indexing value is negative or greater than or equal to the length field of the descriptor, the invalid index interrupt
is set and the operation is terminated.

If the descriptor represents an array which is segmented, the index is partitioned into two portions by an approximation
algorithm which is determined by the type of data referenced by the descriptor, double-precision word-128, single-
precision word 256, four-bit digit-3072, six-bit character-2048, or eight-bit byte-1536). The product of the-approximatior
algorithm is used as an index to the given descriptor to fetch the array-row descriptor. The remainder is used to index
the row descriptor.

If the double-precision bit (bit 45) in the descriptor is 1, the index value in the B register is doubled. The balance of the
operation is as described in the first paragraph of the description of this operator (INDX).

INDEX AND LOAD NAME (NXLN) A5

This operator performs an index operation; after the word in the A register has been indexed, the Data Descriptor pointed
to by this word is brought into the A register. The copy bit (bit 46) of the Data Descriptor is set to one and the A reg-
ister is marked full. If the presence bit (bit 47) is off, the address of the original descriptor is placed in the address field
of the stack copy. If the word accessed by the indexed word in the A register is not a Data Descriptor, the invalid

operand interrupt is set and the operation is terminated.

If the Data Descriptor accessed by the indexed word in the A register has the Index bit (bit 45) set to one, the invalid
operand interrupt is set and the operation is terminated.

INDEX AND LOAD VALUE (NXLV) AD

This operator performs an index operation; after the word in the A register has been indexed the operand pointed to by
this descriptor is brought to the A register. The A register is marked full.

'If the word accessed is other than an operand, the invalid operand interrupt is set and the operator is terminated.
LOAD (LOAD) BD

The Load operator places the word addressed by an IRW or Indexed Data Descriptor in the A register.

5001290 7-11

B 6800 System Reference Manual
Primary Mode Operators

If at the start of this operator the A register contains other than a Data Descriptor or an IRW pointing at a Data
Descriptor, the invalid operand interrupt is set and the operation is terminated.

If the word pointed at by the Data Descriptor is another Data Descriptor, the latter is marked as a copy (copy bit
[bit 46] is set to one), and if the presence bit (bit 47) is off, the address of the original is placed in bits 19:20 of the

copy in the stack.

431 Caal

SCALE OPERATORS

Higher-level languages such as COBOL require decimal arithmetic. The Scale Operators provide the means of aligning
decimal points prior to the time that the arithmetic operations are performed. In addition, the Scale Right operators
provide for binary-to-decimal conversions.

SCALE LEFT (SCLF) CO

This operator uses the second syllable as the scale factor. The operand to be scaled is placed in the B register and integer-
ized. The resulting integer is then multiplied by 10 raised to the power specified by the scale factor.

If scaling of a single-precision operand results in overflow, the single-precision operand is converted to a double-precision
integer. A double-precision integer is defined as a double-precision operand with an exponent equal to 13.

If scaling of the operand results in an exponent greater than 13, (double-precision operand), the overflow flip flop is
set to one.

DYNAMIC SCALE LEFT (DSLF) C1

This operator performs virtually the same operation as the Scale Left (SCLF) operator; however, the scale factor is taken
from the A register rather than from the program syllable following the operation syllable. The operand in the A register
is integerized before scaling takes place.

SCALE RIGHT SAVE (SCRS) C4

This operator uses its second syllable as the scale factor. The operand to be scaled is placed in the B register and is then
integerized. The resultant integer is divided by 10 raised to the power specified by the scale factor.

The quotient resulting from the division is left in the A register. The operand in the B register is the remainder which is
converted to decimai (four-bit digits) and is left-justified. The A and B registers are both marked full.

If the scale factor is greater than 12, the invalid operand interrupt is set and the operation is terminated.

DYNAMIC SCALE RIGHT SAVE (DSRS) C5

This operator performs virtually the same operation as the Scale Right Save (SCRS) operator; however, the scale factor is
obtained from the A register rather than from the program syllable following the operation syllable. The operand in the
A register is integerized before being used.

SCALE RIGHT TRUNCATE (SCRT) C2

This operator performs a Scale Right function using its second syllable as the scale factor. The B register is marked as
empty at the conclusion of this operator.

7-12

B 6800 System Reference Manual
Primary Mode Operators

DYNAMIC SCALE RIGHT TRUNCATE (DSRT) C3

This operator performs the same operation as the Scale Right Truncate except that the scale factor is found in the A
register and is first integerized by the operator.

SCALE RIGHT FINAL (SCRF) Cé6

This operator performs a Scale Right operation except that the quotient in the A register is deleted by marking the A
register empty. The sign of the quotient is placed in the extemal sign flip flop.

If the quotient was non-zero at the conclusion of the operation, the overflow flip flop is set.

DYNAMIC SCALE RIGHT FINAL (DSRF) C7

This operator performs a Scale Right Final operation with the scale factor found in the A register which is integerized by
the operator before use.

SCALE RIGHT ROUNDED (SCRR) C8

This operator performs a Scale Right operation and the quotient is rounded by adding one to it if the most-significant
digit of the remainder is equal to or greater than five. The remainder is deleted from the stack by marking the B
register empty.

DYNAMIC SCALE RIGHT ROUND (DSRR) C9

This operator performs a Scale Right Rounded operation using the scale factor found in the A register.

BIT OPERATORS

The Bit operators are concerned with a specified bit in the A register and/or B register.
BIT SET (BSET) 96

This operator sets a bit in the top of stack register. The bit that is set is specified by the program syllable following the
operation syllable.

If the program syllable defining the bit to be set has a value greater than 47, the invalid-operand interrupt is set and the
operation is terminated.

DYNAMIC BIT SET (DBST) 97

This operator performs a Bit Set Operation upon the bit specified by the operand in the top of stack register. This word
is integerized before it is used as a bit number.

If the word in the top of stack register is not an operand, an invalid operand interrupt is set and the operation is
terminated.

If after being integerized the operand is less than zero or greater than 47, an invalid operand interrupt is set and the
operation is terminated.

5001290 7-13

B 6800 System Reference Manual
Primary Mode Operators

BIT RESET (BRST) 9E

This operator resets a bit in the top of stack register. The bit that is reset is specified by the syllable following the
operation syllable.

If the program syllable defining the bit to be reset has a value greater than 47, an invalid-operand interrupt is set and the
operation is terminated.

DYNAMIC BIT RESET (DBRS) 9F
This operator performs a Bit Reset operation upon the bit specified by the operand in the top-of-stack register.

If the word in the top-of-the-stack register is not an operand, an invalid operand interrupt is set and the operation is
terminated.

If after being integerized the operand is less than zero or greater than 47, an invalid operand interrupt is set and the oper-
and is terminated.

CHANGE SIGN BIT (CHSN) 8E

The sign bit (bit 46) of the top-of-stack operand is complemented, i.e., if it is a one, it is set to 0; if it is a O, the bit is
set to one.

TRANSFER OPERATORS

The Transfer Operators transfer any field of bits from one word in the stack to any field of another word in the stack.
FIELD TRANSFER (FLTR) 98

This operator uses its following three syllables to establish the pointers used in the field transfer. This is done in the
following manner. The second syllable of the operator is K. The third syllable of the operator is G. The fourth syllable
of the operator is L.

The field in the A register, starting at the bit position addressed by G, is transferred into the B register, starting at the
bit position addressed by K. The length of the field in the A and B registers is defined by L. When the specified number
of bits have been transferred, the A register is set to empty, the B register is marked full and the operation is complete.

If the second or third syllables of the operator are found to be greater than 47, or the fourth syllable is greater than 43,
the invalid operand interrupt is set and the operation is terminated.

DYNAMIC FIELD TRANSFER (DFTR) 99

This operator performs a Field Transfer operation with the exception that the B register operand is L. The B register is
then reloaded from the stack and this operand is G. The B register is again loaded from the stack and this operand is K.

If any of the three operands is a non-integer, it is first integerized. Each is checked for a value less than equal to zero
or greater than equal to 48, or less than 48, as specified in Field Transfer above. If either of these conditions exists in
any one of the three operands, an invalid operand interrupt is set and the operation is terminated.

B 6800 System Reference Manual
Primary Mode Operators

FIELD ISOLATE (ISOL) 9A

This operator isolates a field of the word in the A register, placing it right-justified in the top of stack register. The
balance of the top of stack register is cleared to 0’s. The top of stack register is marked full.

This operator uses its second and third syllables as the BIT pointers. The second syllable of the operator addresses the
starting bit of the field in the A register. The third syllable of the operator specifies the length of the field to be isolated.

If the value of the second syllable is greater than 47 or the value of the third syllable is greater than 48, an invalid oper-
and interrupt is set and the operation is terminated.

DYNAMIC FIELD ISOLATE (DISO) 9B

This operator performs a Field Isolate operation except that the first item in the stack specifies the length of the field to
be isolated. The second operand in the stack addresses the bit in the word of the third item in the stack that is to be
isolated.

If after being integerized the value of the first item in the stack is less than O or greater than 47, an invalid operand
interrupt is set and the operation is terminated.

If after being integerized the value of the second item in the stack is less than O or greater than 48, an invalid interrupt
is set and the operation is terminated.

FIELD INSERT (INSR) 9C

This operator inserts a field from the A register into the B register word. The field in the A register is right justified with
the lengih of the field specified by the third syllable of the operator. The second syliable of the operand addresses the
starting bit of the field in the B register. At completion the A register is marked empty and the B register is marked full.

If the value of the second syllable of the operator is greater than 47, an invalid operand interrupt is set and the operation
is terminated.

If the value of the third syllable of the operator is greater than 48 an invalid operand interrupt is set and the operation
is terminated.

DYNAMIC FIELD INSERT (DINS) 9D

This operator performs a Field Insert operation except the first item in the stack is used as the insert field data. The
second item in the stack is used to specify the length of the field. The third item in the stack is used to address the
starting bit in the receiving field in the B register. When the operation is complete, the A register is marked empty and

the B register is marked full.

If after being integerized the value of the second item in the stack is less than O or greater than 48, an invalid operand
interrupt is set and the operation is terminated.

If after being integerized the value of the third item in the stack is less than O or greater than 47, an invalid operand
interrupt is set and the operation is terminated.

5001290 7-15

B 6800 System Reference Manual
Primary Mode Operators

STRING TRANSFER OPERATORS

String Transfer operators give the system the ability to transfer characters or words from one location in memory to
another location in memory. The source and destination pointers are set from String Descriptors in the stack.

TRANSFER WORDS, DESTRUCTIVE (TWSD) D3

This operator requires three items in the top-of-the-stack: an operand, a String Descriptor or operand, and a String
Descriptor. The first operand is integerized and used as the count or repeat field. The second item is either the source
data or a descriptor which points at the source string and the third item is used to address the destination string. The
number of words specified by the repeat field are transferred from the source to the destination. At completion of the
operation, the A and the B registers are marked empty.

If the memory protect bit is found on during the execution of the Transfer Words operator, the segmented array interrupt
is set and the operation is terminated.

TRANSFER WORDS, UPDATE (TWSU) DB

This operator performs the Transfer Words operator except that at the completion of the transfer of data, the source and
destination pointers are updated to point to the location in memory where the transfer ended. The A and B registers
are both marked full.

TRANSFER WORDS, OVERWRITE DESTRUCTIVE (TWOD) D4

This operator performs a Transfer Words, Destructive operation, except that it overrides the memory protection checks.
TRANSFER WORDS, OVERWRITE UPDATE (TWOU) DC

This operator performs a Transfer Words, Update operation, except that it overrides the memory protection checks.
TRANSFER WHILE GREATER, DESTRUCTIVE (TGTD) E2

This operator transfers characters from a location in memory pointed to by the source pointer, to a location in memory

pointed to by the destination pointer, until the number of characters specified has been transferred or the comparison fails.
The TFFF flip-flop is used to indicate the results of the comparison. TFFF is set at the beginning of the operator.

characters to be transferred. The third item in the stack is the source data or a source pointer, and the fourth item in
the stack is the destination pointer.

The source and destination strings are checked for memory protection. The source character is compared to the de-
limiter. After each comparison, a decision is made whether the condition has been met. If the condition is met, TFFF
remains set to one, if it is not met it is set to 0. If the result of the comparison is equal then the CMPF flip-flop is set,
and otherwise CMPF is reset.

If the number of characters transferred was equal to the repeat field the TFOF flip-flop is set to one. The A and B
registers are marked empty and the operation is complete.

If the first operand in the stack is not a single-precision operand, an invalid operand interrupt is set and the operation
is terminated.

If either the source or destination word has a memory protect bit on (bit 48=1), the segmented array interrupt is set and
the operation is terminated.

7-16

B 6800 System Reference Manual
Primary Mode Operators

If the second item in the stack is a descriptor, it is used as the source pointer and the length field or repeat field is set to
1,048,575. All comparisons are binary (EBCDIC collating sequence).

TRANSFER WHILE GREATER UPDATE (TGTU) EA

This operator performs a Transfer While Greater operation and updates the source pointer and destination pointer to point
at the next characters in the source and destination strings. The repeat count is updated to give the number of characters
not transferred. If the operation is terminated because the relationship is not met, the source pointer points at the character:
that failed the comparison. If the result of the comparison is equal, then the CMPF flip-flop is set, otherwise CMPF is reset.
TRANSFER WHILE GREATER OR EQUAL, DESTRUCTIVE (TGED) E1

This operator performs a Transfer While operation using the relation greater than or equal to for comparison.

TRANSFER WHILE GREATER OR EQUAL, UPDATE (TGEU) E9

This operator performs a Transfer While Greater or Equal operation. The source pointer, destination pointers, and count
are updated at the conclusion of the operation.

TRANSFER WHILE EQUAL, DESTRUCTIVE (TEQD) E4

This operator performs a Transfer While operation with the relation used in the comparison being equal. If the result of
the comparison is greater, then the CMPF flip-flop is set, otherwise CMPF is reset.

TRANSFER WHILE EQUAL, UPDATE (TEQU) EC

qAatiean am~laada

This operator performs a Transfer While Equal operation. The source pointer, the destination pointer and count are updated
at the conclusion of the operation. CMPF is set if the result of the comparison is greater, and CMPF is reset otherwise.

TRANSFER WHILE LESS OR EQUAL, DESTRUCTIVE (TLED) E3
This operator performs a Transfer While operation, using the Less than or Equal comparison.
TRANSFER WHILE LESS OR EQUAL, UPDATE (TLEU) EB

This operator.performs a Transfer While Less or Equal operation. The source pointer, destination pointer and count are
updated at the conclusion of the operation.

TRANSFER WHILE LESS, DESTRUCTIVE (TLSD) EO

This operator performs a Transfer While operation using the Less than comparison. If the result of the comparison is equal
then the CMPF flip-flop is set, otherwise CMPF is reset.

TRANSFER WHILE LESS, UPDATE (TLSU) E8

This operator performs a Transfer While Less operation. The source pointer, destination pointer and count are updated
at the conclusion of the operation.

TRANSFER WHILE NOT EQUAL, DESTRUCTIVE (TNED) E5

This operator performs a Transfer While operation, using the not equal comparison. CMPF is not used.

5001290 7-17

B 6800 System Reference Manual
Primary Mode Operators

TRANSFER WHILE NOT EQUAL, UPDATE (TNEU) ED

This operator performs a Transfer While Not Equal operation. The source pointer, the destination pointer and count are
updated at the conclusion of the operation.

TRANSFER UNCONDITIONAL, DESTRUCTIVE (TUND) E6

This operator performs a Transfer Characters until the length is equal to zero. No comparisons are made.

TRANSFER UNCONDITIONAL, UPDATE (TUNU) EE

This operator performs a Transfer Unconditional operation. The source pointer and the destination pointer are updated
at the conclusion of the operation.

STRING ISOLATE (SISO) D5

This operator places in the top-of-the-stack, right justified, the number of source characters specified by the repeat field. The
first item in the stack is the number of characters in the repeat field. The second item in the stack is either an operand
or a descriptor used as the source pointer.

If the number of bits to be transferred is greater than 48, the item is double-precision.
If the number of bits is greater than 96, an invalid operand interrupt is set and the operation is terminated.

If the source data has the memory protect bit (bit 48) set to one, the segmented array interrupt is set and the operation
is terminated.

COMPARE OPERATORS

The compare operators perform the specified comparison of two strings of data. The True False flip flop (TFFF) and
the Compare flip flop (CMPF) are used to indicate the result of the comparison, at the conclusion of the operation.
Table 7-2 shows the significance of the state of TFFF and CMPF at the conclusion of a compare type operator.

COMPARE CHARACTERS GREATER, DESTRUCTIVE (CGTD) F2

This operator compares the value of two character strings, one character at a time. The operator compares characters
until it encounters a pair which are unequal. If the B string character is greater than the A string character, the TFFF
is set, otherwise it is reset. If the length is depleted and the character strings are equal, the CMPF flip-flop is set. If
the characters in the B string are greater than the characters in the A string, the TFFF is set to one. If not, the TFFF
is set to zero.

The first item in the stack is an operand which contains the length of the fields being compared. The second item in
the stack is an operand or a descriptor pointing at the character string to be compared against. The third item in the
stack is a descriptor pointing at the character string to be compared.

If the repeat count is depleted the TFFF is reset.

If either of the data strings has the memory protect bit on (bit 48=1), the segmented array interrupt is set and the oper-
ation is terminated.

All comparisons are by the binary character position in the collating sequence.

7-18

B 6800 System Reference Manual
Primary Mode Operators

Table 7-2. Compare Type Operator Results

Compare TFFF CMPF Comparison Result
= 0 0 Less than equal
0 i Greater than equal
1 0 Equal
1 1 Not applicable
0 0 Equal
0 1 Not applicable
1 0 Less than equal
1 1 Greater than equal
> 0 0 Less than equal
0 1 Equal
1 0 Greater than equal
1 1 Not applicable
< 0 0 Greater than equal
0 1 Equal
1 0 Iess than equal
1 1 Not applicable
= 0 0 Less than equal
0 1 Not applicable
i 0 Greater than equal
1 1 Equal
< 0 0 Greater than equal
0 1 Not applicable
1 0 Less than equal
1 1 Equal

COMPARE CHARACTERS GREATER, UPDATE (CGTU) FA

This operator performs a Compare Characters Greater operation. The source pointer and destination pointer are updated
at the conclusion of the operation.

COMPARE CHARACTERS GREATER OR EQUAL, DESTRUCTIVE (CGED) Fi

This operator performs the Compare Characters operation with the comparison being greater than or equal. If the repeat
count < 0, the TFFF is set to 1.

COMPARE CHARACTERS GREATER OR EQUAL, UPDATE (CGEU) F9

This operator performs a Compare Character Greater or Equal operation. The source pointer and destination pointer are
updated at the conclusion of the operation.

5001290 7-19

B 6800 System Reference Manual
Primary Mode Operators

COMPARE CHARACTERS EQUAL, DESTRUCTIVE (CEQD) F4

This operator performs the Compare Characters operation using the Equal comparison. If the repeat count < 0, then
TFFF is set to 1.

COMPARE CHARACTERS EQUAL, UPDATE (CEQU) FC

fhis operator performs a Compare Characters Equal operation. The source pointer and destination pointer are updated
at the conclusion of the operation.

COMPARE CHARACTERS LESS OR EQUAL, DESTRUCTIVE (CLED) F3

This operator performs the Compare Characters operation with the Less than or Equal comparison. If the repeat
count < 0, then TFFF is set to 1.

COMPARE CHARACTERS LESS OR EQUAL, UPDATE (CLEU) FB

This operator performs a Compare Characters Less or Equal operation. The source pointer and destination pointers are
updated at the conclusion of the operation.

COMPARE CHARACTERS LESS, DESTRUCTIVE (CLSD) FO

This operator performs the Compare Characters operation using the Less than comparison. If the repeat count < 0, the
TFFF is set to 0.

COMPARE CHARACTERS LESS, UPDATE (CLSU) F8

This operator performs a Compare Characters Less operation. The source pointer and the destination pointer are updated
at the conclusion of the operation.

COMPARE CHARACTERS NOT EQUAL, DESTRUCTIVE (CNED) F5

This operator performs the Compare Characters operation using the Not equal relation. If the repeat count < 0, then
TFFF is set to 0.

COMPARE CHARACTERS NOT EQUAL, UPDATE (CNEU) FD

This operator performs a Compare Characters Not Equal operation. The source pointer and the destination pointer are
updated at the conclusion of the operation.

EDIT OPERATORS

TABLE ENTER EDIT, DESTRUCTIVE (TEED) DO

This operator is used to prepare for edit micro-instructions. These edit micro-instructions are contained in memory as a table
and not as part of the normal program string. When this operator is entered, program execution is transferred to a table
of micro-instructions. The last micro-instruction in this table must be the End Edit operator (see section 9). The table

+oid FAit+t MAA
contains £dit Mode operators.

7-20

B 6800 System Reference Manual
Primary Mode Operators

The first item in the stack is a descriptor pointing to the table of Edit Micro-Instructions. The second item in the stack
is a single-precision operand or a descriptor pointing at the source string. The third item in the stack is descriptor
pointing at the destination.

If the first item in the stack is not a descriptor, the invalid operand interrupt is set and the operation is terminated.

If the second item in the stack is a single-precision operand, it is the source string.

If the third item in the stack is not a descriptor, the invalid operand interrupt is set and the operation is terminated.

TABLE ENTER EDIT, UPDATE (TEEU) D8

This operator performs a Table Enter Edit operation and updates the source pointer and destination pointer at the com-
pletion of the operation.

EXECUTE SINGLE MICRO, DESTRUCTIVE (EXSD) D2

This operator performs the same function as the Table Enter Edit operator with the following exceptions: There is only
one micro-operator and it follows this syllable. The first item in the stack is a single-precision operand that defines the
length field.

An end edit operation is performed as an implicit part of the EXSD operator, thus an explicit END EDIT operator (in
program line code) is not required.

EXECUTE SINGLE MICRO, UPDATE (EXSU) DA

This operator performs the same functions as an Execute Singie Micro operator, except that it updates the source pointer
and destination pointer at the completion of the edit operator operation.

EXECUTE SINGLE MICRO, SINGLE POINTER UPDATE (EXPU) DD

This operator performs the same functions as an Execute Single Micro Update operator, except that one pointer is used
as both source and destination pointer. The destination pointer is updated at the completion of the operation.

-PACK OPERATORS

PACK, DESTRUCTIVE (PACD) D1

This operator packs data, addressed by the source pointer, into the top of the stack in four-bit (digit) format. The TFFF
is set to one if the source data is negative. A negative number for an eight-bit (byte) format has a zone bit configuration
of 1101 in the Jeast significant byte. The six-bit (BCL) format for a negative number has a configuration of i0 in the
least significant character position. The four-bit (digit) format has a 1101 configuration in the most-significant digit posi-
tion. Data is right-justified as it is placed in the top-of-stack.

The operand in the top-of-the-stack is used as the length field. The second item is the source pointer. The operation
then continues until the number of digits specified by the length/repeat field have been packed.

If the length is less than 13, the operand in the top-of-the-stack is a single-precision operand. If the operand is 13 or
greater, the result is a double-precision operand.

If the length is not less than 25, an invalid operand interrupt is set and the operation terminated.

If initial length is zero, TOS is filled with zeros.
5001290 7-21

B 6800 System Reference Manual
Primary Mode Operators

If the second item in the stack is an operand, it is the source string and is comprised of eight-bit bytes.

If the source data has the memory protect bit (bit 48) set to one, the segmented array interrupt is set and the operation
is terminated.

PACK, UPDATE (PACU) D9
This operator performs a Pack operation, updating the source pointer at the completion of the operation.

INPUT CONVERT OPERATORS

INPUT CONVERT, DESTRUCTIVE (ICVD) CA

This operator converts either six-bit BCL code, eight-bit EBCDIC or four-bit digit code to an operand for internal arith-
metic operations.

The first item in the stack is an operand that is integerized to form the repeat field. The second item in the stack is a
descriptor used as a source pointer.

The input convert operator converts a string of input EBCDIC or BCL character data into a numeric operand. The
resultant operand may be either single precision or double precision.

The manner in which the conversion of character data into numeric data is performed is as follows:

The four high-order zone bits of the input EBCDIC character (two high-order bits of a BCL input character) are dis-
carded. The remaining four low-order digit bits from the input character form a hexadecimal character, which is placed
in the top of stack register receiving field.

Each time that a source input character is converted, the repeat field is decremented by one. When the repeat field is
equal to zero, all input characters have been converted.

If the repeat field value is 13 (decimal) or less the resultant operand in the top of stack register is a single precision
operand. If the repeat field value is between 13, and 24 (decimal) the resultant operand in the top of stack register is
a double precision operand. If the repeat field is greater than 24, an invalid operator interrupt is set, and the operation
is terminated.

The sign of the converted resultant operand is determined from the zone bits of the least significant character in the
input character string. For EBCDIC input characters the sign is negative if the least significant character zone bits are
equal to 1101 binary, and is positive otherwise. For BCL input characters the sign is negative if the two zone bits equal
10 binary, and is positive otherwise. The detected sign bit for the resultant operand is saved in the TFFF flip flop.

The sign of the converied operand is then sei from the TFFF. If the converied operand is a single-precision operand, the
TFFF is then set to 1. If the converted operand is a double-precision operand, the TFFF is set to O.

At the completion of the operation the B register is marked full. The tag field is set to indicate either a single- or a
double-precision operand.

If after being integerized, the item in the top-of-stack is greater than 23, the invaiid operand interrupt is set and the
operation is terminated.

B 6800 System Reference Manual
Primary Mode Operators

INPUT CONVERT, UPDATE (ICVU) CB
This operator performs an Input Convert operation. The source pointer is updated at the completion of the operation.
READ TRUE FALSE FLIP-FLOP (RTFF) DE

This operator places the status of the TFFF into the low-order bit position of the A register. The rest of the A register
is set to all 0’s. The A register is marked full at completion of this operation.

SET EXTERNAL SIGN (SXSN) D6

This operator places the mantissa sign of the top word of the stack in the External Sign flip flop. This operand is not
deleted from the stack at the end of the operation.

READ AND CLEAR OVERFLOW FLIP-FLOP (ROFF) D7

This operation places the status of the Overflow flip flop in the least-significant bit of the A register, sets the rest of the
A register to all 0’s, marks the register full, and sets the Overflow flip flop to 0.

SUBROUTINE OPERATORS

VALUE CALL (VALC) 00 = 3F

This operator loads into the A register the operand addressed by the address couple formed by the concatenation of the
six low order bits of the first syllable and the eight bits of the following syllable. The A register is marked full.
Figures 7-1 and 7-2 are simplified flow charts of the Value Call operator.

This operator makes multiple memory accesses if the word accessed is either an indexed descriptor, PCW, or an IRW.
If the word accessed is an indexed data descriptor, the word addressed by the data descriptor is brought to the
top-of-the-stack. If the double-precision bit (bit 50) in the Data Descriptor is equal to one, the other half of the

double-precision operand is brought to the X register.

If the word accessed is a non-indexed word data descriptor, the word is indexed using the second word in the stack for
the index value. The word addressed by the non-indexed Data Descriptor is brought to the top-of-the-stack. If the
double-precision bit (40) in the Data Descriptor is equal to one, the other half of the double-processor operand is
brought to the X register.

If the word accessed by the Data Desciptor is another indexed Data Descriptor, the word addressed by the Data
Descriptor is brought to the top-of-the-stack, and one of the two above paragraphs is repeated.

If a Data Descriptor does not address an operand, SIRW, or a word descriptor or indexed string descriptor, an invalid
operand interrupt is set and the operation is terminated.

If the word accessed by the value call is an Indirect Reference Word (IRW) the word addressed by the IRW is accessed
and evaluated. If the word is an operand, it is placed in the top-of-the-stack.

If the word accessed by the IRW is another IRW, the operation continues as described above.
If the word accessed by the IRW is an indexed or non-indexed Data Descriptor, the operator proceeds as described above

for Data Descriptors.

5001290 7-23

ADJ
(0,2)

YES

B 6800 System Reference Manual
Primary Mode Operators

STUFFED

REMEMBER
ALL VALUE
CALL DATA

ISIT
NORMAL
OR
STUFFED

IRW
?

1 NORMAL

IS
STACK
ADJUSTMENT
NEEDED
?

OBTAIN
WORD
ADDRESSED
BY IRW

DESC
FIG.
7-2

OPERAND

MV 1645

7-24

DESC

1S
WORD

YES

AN IRW,
OPERAND OR

DESC
?

“ACCIDENTAL
ENTRY"

PLACE (CALLON A
OPERAND PROCEDURE)
IN “A"

REGISTER

1S
OPERAND
SINGLE
PRECISION
?

OPERAND
?

OBTAIN OTHER
HALF OF
OPERAND IN
“X" REGISTER

I

| 1

op
COMPLETE

Figure 7-1. Flow of Value Call Operator

B 6800 System Reference Manual
Primary Mode Operators

| DESC I

NVALID
OPERAND
INTERRUPT}

1S

THIS
DESCRIPTOR 1S
INDEXED A i ITIN
? A
DIFFERENT
OBTAIN WORD STACK
ADDRESSED !
BY DESC
ADJ. 0,1
OBTAIN
STACK VECTOR
DESC

AN
OPERAND
IS 5
INVALID - !
OPERAND AN
iNTERRUPT| OPERAND ' YES
< ? .
OPERAND
FIG.
7-1

1S
THIS
A WORD
DESCRIPTOR
?

INVALID
OPERAND
iNTERRUPT}

OBTAIN WORD
ADDRESSED

INDEX
DESCRIPTOR

L

MV 1646

Figure 7-2. Value Call (Descriptor) Operator
5001290 7-25

B 6800 System Reference Manual
Primary Mode Operators

If the word accessed by the IRW is 2 Program Control Word (PCW), an accidental entry into the subroutine addressed by
the PCW is initiated. A Mark Stack Contro! Word (MSCW) and a Return Control Word (RCW) are placed in the stack and
an entry is made into the program. Upon completion of the program, a return operator will re-enter the flow value call
at the label IRW, (figure 7-1).

NAME CALL (NAMC) 40 = 7F

This operator builds an IRW in the A register. The address couple is formed by concatenating the six low-order bits of
the first syllable and the eight bits of the following syllable. The A register is marked full and the operation is complete.

EXIT OPERATOR (EXIT) A3

This operator returns to a calling procedure from a called procedure resetting all control registers from the RCW and the
MSCW. The Exit operator does not return a value to the calling routine. Figure 7-3 shows a simplified flow chart of the
Exit operator.

RETURN OPERATOR (RETN) A7

This operator performs the same functions as an Exit operator with the exception that an operand or name in the B
register is returned to the calling procedure. If a name is returned, and the V bit (bit 19) in the MSCW is on, the name
is evaluated to yield an operand as described in the VALC operator. Figure 7-4 shows a simplified flow chart of the
Return operator.

ENTER OPERATOR (ENTR) AB

This operator is used to cause an entry into a procedure from a calling procedure. Entry is to the program segment and
syllable addressed by the PCW. Figure 7-5 shows a simplified flow chart of the Enter operator.

The Enter operator accesses the IRW at F + 1, which points to the PCW (or to the PCW directly, without the use of an
IRW). The operator then builds a RCW into the stack at F + 1.

EVALUATE (EVAL) AC

This operator loads the A register with an indexed Data Descriptor or an IRW that addresses A “target,” which may be
an SIW, and Un-Indexed Data Descriptor, a String Descriptor, or an operand. The “target” may be referenced through a
chain of accidental entries, or IRW. In any case memory accesses will continue to be made until the target is located.
The A register is left containing the Data Descriptor or the IRW which addresses the target. Figure 7-6 is a simplified

flow chart of the Evaluate operator.

An indexed Data Descriptor is left in the A register when the target is referenced by an indexed Data Descriptor; a
stuffed IRW is left in the A register when the target is referenced by IRW’s.

If the A register does not contain a Data Descriptor or an IRW at the start of this operator, an invalid operand interrupt
is set and the operation is terminated.

MARK STACK OPERATOR (MKST) AE

Mark Stack Control Word in the B register which contains a pointer to the previous MSCW in the
t

o point at the address of the MSCW.

This operator is used to mark the stack when entry into a procedure is anticipated.

7-26

EXIT

ADJ (0, 0)

Y

OBTAIN
RCW
AT (F +1)

y

SET UP REGISTERS
TORETURNTO
PRIOR PROCEDURE,
SAVE BOSR AND
CUT BACK THE
STACK

OBTAIN WORD
ADDRESSED
BY (F)

EQ.
ERROR
INTERRLUIPT]

COMPUTE
ADDRESS OF
PREVIOUS
MSCw

MV 1647

5001290

B 6800 System Reference Manual
Primary Mode Operators

1S
‘NEW

ADDRESS YES

LESS THAN
BOSR
?

OBTAIN PREVIQUS
MSCW AND
SAVE ADDRESS

1S
THIS

A MSCW AND NO

HAS IT BEEN
ENTERED
?

IS
D'gﬁ.i’gﬁm ADDRESS
?.
|
Sl UPDATE [£4]
REQUIRE OBTAIN NEW
UPDATING VA

OBTAIN SEG DESC
ADDRESSED BY
PDR SET PBR TO
ADDRESS IN S.D. &
CAUSE A FETCH

Y

OPER.
COMPLETE

| I

Figure 7-3. Flow of Exit Operator

YES

ADJ (0, 1)
(SAVE
RETURNED
VALUE)

¥

OBTAIN RCW
AT (F +1)

Y

SET-UP REGISTERS
TO RETURN TO
PRIOR PROCEDURE,
SAVE BOSR AND
CUT BACK THE
STACK

IS
THIS THE
BOTTOM

OF STACK

?

NO

OBTAIN WORD
ADDRESS
BY (F}

EQ
ERROR
NTERRUPT]

]

NO

MV 1648

7-28

YES

COMPUTE ADDRESS
OF PREVIOUS
jmscw AND

SAVE VALUE BIT

1S
NEW
ADDRESS
LESS THAN
BOSR
?

B 6800 System Reference Manual
Primary Mode Operators

YES

——p] UNDERF LOW

OBTAIN PREVIOUS
MSCW AND
SAVE ADDRESS

1S
THIS A
MSCW AND HAS
IT BEEN

ENTERED
?

NO

STACK
INTERRUPT,

1S

THIS FOR

A DIFFERENT

STACK
?

NO

OBTAIN NEW
STACK
ADDRESS

il

DOES

L

DL UPDATE D [£4]
REQLRE AND OBTAIN
UPDATING NEW MSCW
?
NO
OBTAIN SEQ DESC
ADDRESSED BY YES
PDR SET PBR TO
ADDRESS IN S.D.
& CAUSE FETCH
WAS
VALUE YES NO__|sEq ERROR
BIT EQUAL —®NTERRUPT
TO ONE
GO TO EVAL
OPER OPERATOR &
COMPLETE SET T REG
TO VALC OP

Figure 7-4. Flow of Return Operator

ENTER

ADJ {0, 0} AND
OBTAIN WORD
ADDRESSED BY
(F+1)

B 6800 System Reference Manual
Primary Mode Operators

OBTAIN WORD
ADDRESSED
BY IRW

MV 1649

5001290

SAVE PRESENT
REGISTER
SETTINGS (RCW)

y

DISTRIBUTE
PCW REGISTER
SETTINGS

Y

STORE RCW
AT (F+1)

Y

OBTAIN MSCW
AT (F)

—

JINVALID

OPERAND
INTERRUPT.

Y

COMPLETE THE
MSCW AND
STORE IT
BACK AT (F)

v

¥

OBTAIN WORD
ADDRESSED
BY NEW PDR

IS
THIS A
SEGMENT

DESCRIPTOR

PLACE PROGRAM
ADDRESS IN

PBR AND FORCE
A FETCH

y

OPER
COMPLETE

Figure 7-5. Flow of Enter Operator

SEQ
ERROR
INTERRUPT

7-29

ADJ (1,2)

B 6800 System Reference Manual
Primary Mode Operators

OBTAIN WORD
ADDRESSED
BY IRW

u___l

INVALID
OPERAND
INTERRUPT

OBTAIN WORD
ADDRESSED
BY SIRW

OBTAIN WORD
ADDRESSED
BY SIRW

ISIT

A VALID NO

SAVE THE
IRW IN A"
REGISTER %
ITA
YES STRING
* DESCRIPTOR
?
NO
OPER
COMPLETE
LEAVE THE
DESCRIPTOR IN
THE A"
REGISTER
OPERATION
COMPLETE
OBTAIN
STACK VECTOR
DESCRIPTOR
AT DO +2

STACK
NUMBy
?

Y

-—
MV 1650

7-36

Figure 7-6. Flow of Evaluate Operator

B 6800 System Reference Manual
Primary Mode Operators

STUFF ENVIRONMENT (STFF) AF

This operator changes a normal IRW to a stuffed IRW so that a quantity may be referenced from a different addressing
environment. The displacement field locates the MSCW below the quantity and the index field locates the quantity rela-
tive to the MSCW. Figure 7-7 shows a simplified flow chart of the Stuff Environment operator.

If the word in the A register at the start of the operation is not an IRW, an invalid operand interrupt is set and the
operation is terminated.

If, when creating this stuffed IRW, other than an MSCW is accessed, a sequence error interrupt is set and the operation
is terminated.

INSERT MARK STACK OPERATOR (IMKS) CF
This operator builds an MSCW and places it below the two top-of-stack quantities.

ENTER VECTOR MODE OPERATORS

There are two different operators used to cause the B 6800 system to enter into the vector mode of operation. The
Vector Mode Enter Single (VMES) operator is used to enter the vector mode of operation when a single word of program
code contains all of the vector mode operators that are to be executed. The Vector Mode Enter Multiple (VMEM) oper-
ator is used to enter into the vector mode of operation when the number of vector mode operators that are to be exe-
cuted uses more than a single word of program code.

A descriotion of the two methods for entering the vector mode of operation is as follows:
VECTOR MODE ENTER MULTIPLE (VMEM) E7

This operator is used to cause entry into the vector mode of operation in the same way that the VMES operator per-
forms. The only difference between the operation of the VMES and the VMEM operators is the number of words of
vector mode machine language code that may be used.

If an interrupt occuis while entry into vector mode is in process, the entry process is terminated, and processing resumes:
with the next normal mode machine language operator in sequence. Since multiple words of vector mode machine lan-
guage operators are used when the VMEM operator causes entry to vector mode, the first word of normal mode opera-
tors may be greatly removed from the VMEM operator code word.

The use of the VMEM operator causes the data processor to retain the address of the next normal mode operator word.
This address is required in the event that the entry into vector mode is terminated. The retention of the next normal
mode operator word address (in IC memory) is the only difference between the VMES and VMEM operators.

VECTOR MODE ENTER SINGLE (VMES) EF

This operator is used to cause entry into the vector mode of operation. Vector mode operations are performed in con-
trol state (ITHF flip flop is set). The VMES operator uses a subset of the table enter edit logic to distribute vector mode
parameters in the IC memory address registers of the data processor. The vector mode operator parameters must be on
the top of the data processor stack at the beginning of the VMES operator.

The VMES operator expects to find three data descriptors, and three incrementation parameters present on the top of

the data processor stack. The VMES operator optionally expects that a LENGTH parameter may be present on the top
of the data processor stack.

5001290 7-31

NVALID
OPERAND
NTERRUPT

B 6800 System Reference Manual
Primary Mode Operators

f YES

COMPUTE DISP

ADJ FIELD SET LL
DJ(1,2) FIELD TO ZERO

AND MARK

AS STUFFED

NO
OPERATION
COMPLETE
YES

MV 1651

7-32

OBTAIN WORD
ADDRESSED BY
D’ REGISTER

E BIT OF THE MSCW

OBTAIN WORD
ADDRESSED BY
ADDRESS OF THIS
MSCW-MSCW.DF

1S
THE STACK
NUMBER OF THE
MSCW EQUAL
TO SNR AND THE

EQUALTOO
?

SAVE STACK OBTAIN STACK
NUMBER VECTOR AT
OF MSCW (DG +2]

! I

L —p

Figure 7-7. Flow of Stuff Environment Operator

INVALID
INDEX

B 6800 System Reference Manual
Primary Mode Operators

1,

If the VMES operator does not find the three data descriptors on the top of the data processor stack an invalid operand
interrupt is detected, and the VMES operator releases control to the interrupt controller.

The VMES operator expects to find that bit 47 (the presence bit) is true in each of the three data descriptors. If any of
the three data descriptors do not have the presence bit true, a presence bit interrupt is detected, and the VMES operator
releases control to the interrupt controller.

The order of occurrence of the three data descriptors and the three increment parameters (and optionally, the LENGTH
parameter) is as follows:

Parameter Word Type Word Usage
Pointer C Data descriptor The top word in the data processor stack.
LENGTH SP operand When a LENGTH parameter is present, it is the second word in

the data processor stack, and its presence is indicated by bit 44 of
pointer C being set. If a LENGTH parameter is not present in the
stack a default length value of FFFFF — 1 (HEX) is used

Pointer A Data descriptor If a LENGTH parameter is not present in the data processor
stack, pointer A is the second word in the data processor stack.
if a LENGTH parameter is present in the stack, then pointer A
is the third word in the stack.

Pointer B Data descriptor If a LENGTH parameter is not present in the stack, pointer B is
the third word in the stack. If a LENGTH parameter is present
in the stack, then pointer B is the fourth word in the stack.

Increment C SP operand The incrementation value that will be used as the incrementation
unit to access data elements of the array pointed at by pointer C.

Increment A SP operand The incrementation value used for accessing data elements in the
array pointed at by pointer A.

Increment B SP operand The incrementation value used for accessing data elements in the
array pointed at by pointer B.

If bit 44 (the segmented bit) is true in pointer A or B, an invalid operator interrupt is detected, and the VMES operator
releases control to the interrupt controller.

If pointer A has the read only bit (bit 43) true, a memory protect interrupt is detected, and the VMES operator releases
control to the interrupt controller.

If any of the three types of interrupts described in the preceding paragraphs are detected, the entry into vector mode is
terminated, and the program will be resumed (in normal state) at the next code word following the. vector operator code
word. The use of the VMES operator implies that only one word of vector mode operators is to be used, and the first
vector mode operator to be executed is present in syllable zero of the next program code word in sequence. Therefore,
the next word of program code (the vector mode code word) is fetched by the program controller and placed in the

P register. If an interrupt occurs during the VMES operator, the interrupt controller will fetch another new word of
program code (the word following the vector mode code word). Thus, the VMES operator releases control to the inter-
rupt controller, and the interrupt controller fetches the next word of normal state program code that is to be executed.

5001290 7-33

B 6800 System Reference Manual

SECTION 8

VARIANT MODE OPERATION AND OPERATORS

GENERAL

ESCAPE TO 16-BIT INSTRUCTION (VARI) 95

The variant mode of operation extends the number of operation codes. These operators are not used as often and require
two syllables; the first is the “Escape to 16-Bit Instruction” (VARI) operator. When the VARI operator is encountered,
the following syllable is the actual operation and the syllable pointer is positioned beyond the two syllables. The VARI

operator is valid only for the syllables covered in this section.

Variant codes EO through EF are detected and cause a programed operator interrupt. All other unassigned variant codes
cause no action and result in a loop timer interrupt.

Variant mode operations are both word- and string-oriented operators.

Appendix A of this manual lists the operators in alphabetic order, and appendix B lists the operators in numeric order,
by mode.

VARIANT MODE OPERATORS

SET TWO SINGLES TO DOUBLE (JOIN) 9542

The operands in the A and B registers are combined to form a double-precision operand that is left in the Band Y
registers.

The operand in the A register is placed in the Y register. The A register is marked empty and the B register tag field is
set to double-precision.

SET DOUBLE TO TWO SINGLES (SPLT) 9543

The SP(DP) operand in the B-register is changed to two single-precision operands which are placed in the A and the B
registers; both registers are marked full.

If the operand in the B register is a single-precision operand, the A register is set to all 0’s and the A and B registers are
marked full. Both the A and the B register tag fields are set to single-precision.

If the operand in the B register is a double-precision operand, the Y register operand is placed in the A register and the
tag fields of both the A and B registers are set to single-precision.

IDLE UNTIL INTERRUPT (IDLE) 9544

This operator suspends processor program execution until the program is restarted by an external interrupt. Inhibit
Interrupt flip flop (IIFF) is unconditionally reset to allow external interrupts.

SET INTERVAL TIMER (SINT) 9545 (CONTROL STATE OPERATOR)
This operator places the 11 low-order bits of the B register into the Interval Timer register, and arms the timer. The

Interval Timer decrements each 512 microseconds. The processor is interrupted when the timer reaches O and is still
armed. The Interval Timer is disarmed when the processor is interrupted by an external interrupt.

5001290 8-1

B 6800 System Reference Manual
Variant Mode Operation and Operators

The operand used to set the Interval Timer is integerized before the 11 low-order bits are used. If the operand can not
be integerized, an integer overflow interrupt is set and the operation is terminated.

ENABLE EXTERNAL INTERRUPTS (EEXI) 9546

This operator causes the processor to enter normal state, allowing it to respond to external interrupts. This is accom-
plished by setting the IIHF flip flop to 0.

DISABLE EXTERNAL INTERRUPTS (DEXI) 9547

This operator causes the processor to ignore external interrupts. This is accomplished by setting the ITHF to | and
entering control state.

SCAN OPERATORS

The scan operators communicate between the B 6800 data processor and the multiplexor, and between the data
processor and external subsystems of the B 6800 system.

The scan in functions read information from the multiplexor or external subsystem to the top of stack registers in the
data processor. The scan out functions write information from the top of stack registers in the data processor to the

multiplexor or to the external subsystems.

Parity is checked during transmission of both address and information and .a scan-bus parity error interrupt is generated
if the check fails.

Scan In (SCNI) 954A

Scan In uses the A register to specify the type of input required. The input data is placed in the B register. The A
register is empty and the B register full at the completion of the operation. Refer to section 5 of this manual for the
format of the function and data words for scan-in operations.

Read Time-Of-Day Clock

The read time of day scan-in operation is used to transfer the current value of the time of day register in the multiplexor,
to the data processor. The current value of the multiplexor time of day register is not altered in any way and proceeds
to count upward in the normal manner.

Read Interrupt Mask

This operation is used to transfer the current value of the interrupt mask register to the data processor top-of-stack
register. The current value of the interrupt mask register in the multiplexor register is not changed by this operation.

Read Interrupt Register

This operation is used to transfer the current value of the interrupt register to the data processor top-of-stack register.
The process of transferring the value of the interrupt register from the multiplexor to the data processor resets the
highest priority interrupt.

8-2

B 6800 System Reference Manual
Variant Mode Operation and Operators

Read Interrupt Literal

This operation is used to transfer a word indicating the highest priority interrupt, from the multiplexor to the data
" processor.

Interrogate Peripheral Status

This operation is used to transfer the current value of one of nine status vector words from the multiplexor to the
top-of-stack register in the data processor.

Interrogate Peripheral Unit Type

This operation transfers a peripheral unit type word from the multiplexor to the top-of-stack register in the data
processor.

Interrogate 10 Path

This operation transfers a word of path availability data from the multiplexor to the top-of-stack register in the data
processor.

Interrogate 10 Path Address

This operation transfers a word of path address data from the multiplexor to the top-of-stack register in the data
processor.

Interrogate 10 Path Address Override

This operation transfers a word of path address override data from the multiplexor to the top-of-stack register in the
data processor.

Read Scratch Pad Word

This operation transfers the contents of one word of scratch pad memory to the top word in the data processor top of stack

register.
Read Processor Time Counter

This operation transfers a word containing the current value of the processor time counter to the data processor top-of-
stack register. The value of the processor time counter in the multiplexor is reset to zero.

Scan Out (SCNO) 954B

The scan out operation causes the multiplexor to sense a function code in the top-of-stack register of the data processor.
The micro code of the multiplexor causes other data from the top 2 words in the stack to be transferred to the multi-
plexor logic circuits, through use of the Z5 bus. At the conclusion of the scan-out operator the top 2 words of the
stack are deleted from the stack.

5001290 8-3

B 6800 System Reference Manual
Variant Mode Operation and Operators

Set Time of Day

This operation is used to set a value into the time of day register in the multiplexor.

Set Interrupt Mask

This operation is used to set a value into the interrupt mask register of the multiplexor.

Set Pseudo Busy

This operation is used to set/reset the state of one of twenty peripheral control path pseudo busy flip flops.
Initiate IO Device (Control State Only)

This operation causes the multiplexor to initiate an IO device.

Refer to section five of this manual for the format of the IIOWD and IOAD words.

Initiate IO Device Path Address

This scan out operation is similar to the INITIATE 10 DEVICE operation which was previously defined in this
section of this manual.

The difference between the INITIATE IO DEVICE, and the INITIATE 10 DEVICE PATH ADDRESS is that the multi-
piexor will only initiaie the IO device through the specified path.

B 6800 System Reference Manual
Variant Mode Operation and Operators

Initiate I0 Device Path Address Override

This operation is similar to the INITIATE I0 DEVICE, and INITIATE 10 DEVICE PATH ADDRESS scan out
operations that were defined previously in this section of this manual.

The difference between the INITIATE I0 PATH ADDRESS, and the INITIATE 10 PATH ADDRESS OVERRIDE opera-
tions is that the initiate IO device with override will disregard the state of the pseudo busy flip flop.

READ PROCESSOR IDENTIFICATION (WHOI) 954E
This operator places a word containing the value of the processor ID register in the A register of the data processor.

The format of the word that is placed in the A register of the data processor is shown in figure 8-1. At the conclusion
of the WHOI operator the A register is marked full.

OCCURS INDEX (OCRX) 9585

This operator places the following in the B register: a new index value calculated from the Index Control Word (ICW)
in the A register and the operand in the B register (figure 8-2).

The index word in the B register is integerized. If the index is greater than the maximum integer value
(549,755,813,887), the integer overflow interrupt is set and the operation terminated.

DY 1

The LENGTH field of the ICW [47:16] is multiplied by the index value [15:16] minus 1, and that value is added to the
field he ICW. This resuit is the new index. The A regisier is marked empiy and the B regisier is marked

If either the ICW or the operand has a value of 0, the invalid index interrupt is set and the operation is terminated.

If the index value is less than O or greater than the SIZE field [31:16] of the ICW, the invalid index interrupt is set and
the operation is terminated.

INTEGERIZE, ROUNDED, DOUBLE-PRECISION (NTGD) 9587
This operator creates from the operand in the B register a double-precision, rounded integer in the B register. The
B register is marked full. If the word in the B register at the start of this operator is not an operand, the invalid operand

interrupt is set and the operation is terminated.

If the operand in the B register is larger than 8 t 26-1 in absolute value, the integer overflow interrupt is set and the
operation is terminated.

The B register is marked as a double-precision operand (tag bits set to 010) and the exponent is set to 13.
LEADING ONE TEST (LOG2) 958B

This operator locates the most significant one-bit of the word in the B register and places the location of that bit into
the B register (bit number + 1).

If a one-bit is not sensed, the B register is set to all 0’s.

The B register is marked full.
5001290 8-5

B 6800 System Reference Manual
Variant Mode Operation and Operators

UL| ULJ SN | SN | SN

0 UL| UL| UL} SN | SN] ID

0 UL| UL{ ULf SN | SN] ID

0 UL| UL SN| SN| SN} ID
54 {s0 |36 {32 {28 f24 Q2o 16 Q2 8 4 0

50:3 = TAG FIELD

47:25 = NOT USED

22:10 = THE UNIT DESIGN (ERL) LEVEL OF THE CPU.
THIS FIELD 1S A BINARY NUMBER WHICH IS DERIVED FROM
A FOREPLANE CONFIGURATION PLUG-ON JUMPER.
ADAPTER OF THE CPU

12:10 = THE SERIAL NUMBER OF THE CPU.
THIS FIELD IS A BINARY NUMBER WHICH IS DERIVED FROM A
FOREPLANE CONFIGURATION PLUG-ON JUMPER ADAPTER
OF THE CPU

2:3 = THE PROCESSOR ID NUMBER OF THE CPU.

THIS FIELD IS A BINARY NUMBER WHICH IS DERIVED FROM A
FOREPLANE CONFIGURATION PLUG-ON JUMPER ADAPTER

OF THE CPU.
MV 1652

Figure 8-1. WHOI Operator Returned Word

NORMALIZE (NORM) 958E

This operator performs normalization of the operand in the top of stack. The normalized operand is left in the
B register at the conclusion of the NORM operator, and the B register is marked full. Normalization is defined in
section 2 of this manual.

MOVE TO STACK (MVST) 95AF

This operator causes the environment of the processor (or addressing space) to be moved from the current stack to the
program stack specified by the operand in the B register.

The operator builds a Top-of-Stack Control Word (TSCW) (Figure 8-3) and places it at the base of the current stack
as addressed by the Base-of-Stack Register.

The operand in the B register is integerized and checked against the stack vector for invalid index. The value in the
B register is added to the address field of the stack vector Descriptor (at D[0]+2), to address the descriptor for the new
stack.

The Data Descriptor for the requested stack is accessed. If the presence bit is “on,” the address field is placed into the

Base-of-Stack Register. The TSCW is brought up and the stack is marked “active” by storing the processor ID at the
base of the stack. The TSCW is distributed and the D registers are updated.

8-6

B 6800 System Reference Manual
Variant Mode Operation and Operators

INDEX CONTROL WORD (ICX)

LENGTH SIZE OFFSET
aa| 40| 36 28] 24 20 12 8 4 0
INDEX WORD
INDEX
44| a0l 3s] 32| 28] 24| 20| 18] 12 8 4 0
MV 1653

Figure 8-2. Index Control Word (ICW) and Index Word

If during the integerization the operand in the B register is too large, the integer overflow interrupt is set and the opera-
tion is terminated.

If the index value is less than O or greater than the length field of the Data Descriptor for the stack vector array, an
invalid index interrupt is set and the operation is terminated.

READ COMPARE FLIP-FLOP (RCMP) 95B3
This operator reads the state of the CMPF flip flop, and creates a single-precision word in the data processor A register.
If the CMPF flip flop is in the binary one state, the low order bit (bit zero) of the single precision word in the A register

is set. If the CMPF flip flop is in the binary zero state, the low-order bit of the A register is reset. The A register is
marked full at the conclusion of the operation.

SET TAG FIELD (STAG) 95B4

This operator sets the tag field (bits 50:3) in the B register to the value of bits 2:3 of the operand in the A register.
At the completion. of the operation, the A register is marked empty and the B register is left full.

5001290 87

B 6800 System Reference Manual
Variant Mode Operation and Operators

DSF oFF
ES — EXTERNAL SIGN FLIP FLOP DSF — DELTA S-REGISTER FIELD; VALUE OF rS RELATIVE TO BOSR
O —OVERFLOW FLIP FLOP N — NORMAL-CONTROL STATE FLIP FLOP

T —TOGGLE, TRUE-FALSE FLIPFLOP L — ADDRESSING LEVEL

F —FLOATFLIP FLOP DFF — DELTA F-REGISTER FIELD; VALUE OF rF RELATIVE TO 1S

MV 1654

Figure 8-3. Top-of-Stack Control Word (TSCW)

READ TAG FIELD (RTAG) 95BS

This operator repiaces the word in the A register with a single-precision operand equal to the tag field of that word. The
tag bits are placed in bits 2:3. The A register is marked full.

ROTATE STACK UP (RSUP) 95B6

This operator permutes the top three operands of the stack so that the first operand has become the second, the second
has become the third, and the third has become the first (see figure 84).

ROTATE STACK DOWN (RSDN) 95B7

This operator permutes the top three operands of the stack so that the first has become the third, the second has
become the first, and the third has become the second (see figure 84).

READ PROCESSOR REGISTER (RPRR) 95B8

This operator reads the contents of one of the eight Base registers, eight Index registers or one of the 32 D registers
into the A register.

The six low order bits of the A register selects the processor register to be read.

The decoding of these six bits is as follows:

Bits 5:2 =10 = Index register
Bits 2:3 =0, = PIR

=1, = SIR

=2, = DIR

B 6800 System Reference Manual
Variant Mode Operation and Operators

BEFORE ROTATION BEFORE ROTATION
rA WORD ONE rA WORD ONE
rB WORD TWO rB WORD TWO
S - WORD THREE S = WORD THREE
AFTER ROTATION AFTER ROTATION
rA WORD THREE rA WORD TWO
rB WORD ONE B WORD THREE
S = WORD TWO S = WORD ONE
STACK ROTATION UP STACK ROTATION DOWN
MV 1655

Figure 8-4. Rotate Stack Operations

=3, = TIR, BUF 3

=4, = LOSR

=5, = BOSR

=6, =F

=17, = BUF
Bits 5:2 =11. = Base register
Bits 2:3 =0, = PBR

=1, = IBR

=2, = DBR

=3, = TBR, BUF 2

=4, =8

=5, = SNR

=6, =PDR

=7, = TEMFP

If bit 5 is 0, bits 4:5 select the D register equal to the binary value of the bits; i.e., bits 4:5 = 00101 select D register 5.
At the completion of this operation the A register contains the contents of the selected register, and is marked full.
SET PROCESSOR REGISTER (SPRR) 95B9 .

This operator places the contents of the address field of the A register into one of the eight Base registers, eight Index
registers or 32 D registers selected by the six low-order bits of the word in the B register.

5001290 8-9

B 6800 System Reference Manual
Variant Mode Operation and Operators

The decoding of the six low-order bits is the same as in the Read Processor Register operator (RPRR) discussed under
the previous heading.

The A and B registers are marked empty.
READ WITH LOCK (RDLK) 95BA

This operator performs the same operation as the Overwrite operator (see section 7), with the exception that the word
which was in memory before the overwriting is left in the A register.

COUNT BINARY ONES (CBON) 95BB

This operator counts the number of one-bits in the single-precision (double-precision) operand in the A register. At the
completion of the operation, the total count is left in the A register with the register marked full.

LOAD TRANSPARENT (LODT) 95BC

This operator performs a Load operator (see section 7) if the word in the A register is a Data Descriptor or an Indirect
Reference Word. If it is neither of these, bits 19:20 of the A register are used as the address to bring an operand to the
A register. Copy bit action does not occur.

LINKED LIST LOOKUP (LLLU) 95BD
This operator searches a linked list of words.

The operator starts with an operand in the top of the stack as the index pointer. The second word in the stack is a
non-indexed Data Descriptor to the array containing the linked list. The third word in the stack is an operand that is
the argument.

The base address of the linked list, the length of the list and the argument value are saved throughout the entire operator
process.

The word addressed by the base address plus the index value are read and checked for a value of 0 in the address (Link)
portion of the word (0 denotes the end of the linked list). If the link is non-zero, bits 47:28 are compared to the
argument value. If the argument of the linked-list word is less than the argument value, the actions described in this
paragraph are repeated using the link as the new index.

When the value of the argument field of the linked-list word is equal to or greater than the argument value, the operation
is complete. The index pointing to the word whose link points to the argument which satisfies the test is left in the

A register and is marked full.

If the value of the link portion of the linked-list word is equal to O, the A register is set to minus one (-1), and marked
full as the operation is completed.

If the index value in the linked list word is greater than the length value from the descriptor, an invalid index interrupt
is set and the operation is terminated.

When the first word in the stack at the start of this operator is not an operand an invalid-operand interrupt is set and the
operation is terminated.

If the Data Descriptor has been indexed, the invalid-operand interrupt is set and the operation is terminated.

8-10

B 6800 System Reference Manual
Variant Mode Operation and Operators

MASKED SEARCH FOR EQUAL (SRCH) 95BE
At the start of this operator, the word in the A register must be a Data Descriptor. The operand in the B register is a
51-bit mask. The Data Descriptor in the A register and the mask in the B register are saved, and the 51-bit argument

word is placed into the B register. If the descriptor is indexable (bit 45 equal to 0), 1 is subtracted from the length
field. If bit 45 is equal to 1, the data descriptor is already indexed; therefore, that index is the starting value.

The word addressed by the descriptor is placed in the A register and ANDed with the mask word. The result of this
AND function is tested to determine if it is identical to the argument word.

If the comparison is not equal, the index field of the descriptor is decreased by 1 and the operation is repeated. If the
index field is equal to O, the A register is set to a minus one value and marked full. The B register is marked empty.

If an equal comparison is made, the A register contains the index pointing at the last word compared and is marked full.
The B register is marked empty.

UNPACK ABSOLUTE, DESTRUCTIVE (UABD) 95D1

This operator unpacks a string of four-bit digits into six-bit characters or eight-bit bytes. At the start of the operator,
the word in the A register defines the length of the operand in the B register; i.e., the string of digits to be unpacked.

The third word in the stack is a string descriptor addressing the destination of the string.
As the specified number of digits are transferred to the destination (most significant bit first) zone fill is as follows:

1. If the destination size is six-bit (BCL) format, the characiers are transferred to the desiination with the
two Zone bits set to 0.

2. If the destination size is eight-bit (EBCDIC) format, the bytes are transferred to the destination string with
the four zone bits set to 1111.

3. If the destination size is 0, it is set to eight-bit format and handled as in 2 above.
UNPACK ABSOLUTE, UPDATE (UABU) 95D9

This operator performs an Unpack Absolute operation; at the completion of the operation, the destination pointer is
updated and left in the stack.

UNPACK SIGNED, DESTRUCTIVE (USND) 95D0

This operator performs an Unpack Absolute operation, plus an added function if the External Sign flip-flop is set, then
a zone of 10 is set in the last character for six-bit or a zone of 1101 is set in the last byte for eight-bit.

If the destination size is four-bit, the first digit position of the destination string is set to 1101 provided the External
Sign flip flop is set. If the External Sign flip flop is O, the first digit is set to 1100.

UNPACK SIGNED, UPDATE (USNU) 95D8

This operator performs an Unpack Signed operation; at the completion of the operation, the destination pointer is
updated.

5001290 8-11

B 6800 System Reference Manual
Variant Mode Operation and Operators

TRANSFER WHILE TRUE, DESTRUCTIVE (TWTD) 95D3

This operator transfers characters from the source string to the destination string for the number of characters specified
by the length operand while the stated relationship is met. If the relationship is not met, the transfer is terminated at
that point. The relationship is determined by using the source character to index a table. If the bit indexed is a 1, the
reiationship is true.

The operator uses the top four words in the stack as follows. The top word addresses the table; the second word is the
length of the string to be transferred. The third word in the stack is an operand or a descriptor addressing the source
string or a single-precision operand which is the source string; and the fourth word in the stack is a descriptor pointing at
the destination string.

The table is indexed as follows to obtain the decision bit. The source character is expanded to eight bits, if necessary, by
appending two or four leading O bits. The three high-order bits of these eight select a word from the table, indexing the
table pointer. The remaining five bits of the expanded source character select a bit from this word by their value.

TRANSFER WHILE TRUE, UPDATE (TWTU) 95DB

This operator performs a Transfer While True operation, but updates the source pointer, the destination pointer and
repeat count.

If all the characters specified by the length field are transferred, the True False flip flop (TFFF) is set to 1 (true); other-
wise it is set to O (false).

TRANSFER WHILE FALSE, DESTRUCTIVE (TWFD) 95D2
This operator performs a Transfer While operation and tests for a zero bit in the table.
TRANSFER WHILE FALSE, UPDATE (TWFU) 95DA

This operator performs a Transfer While False operation, but updates the source pointer, the destination pointer, and
the repeat count.

If all the characters specified by the length field are transferred, the True/False flip flop (TFFF) is set to 1 (true);
otherwise, it is set to O (false).

TRANSLATE (TRNS) 95D7

This operator translates the number of characters specified as they are transferred from the source string to the
destination string.

The translation uses a table containing the translated characters. The word in the top of the stack is a descriptor that
addresses the translation table. The second operand in the stack specifies the length of the string. The third word in

B 6800 System Reference Manual
Variant Mode Operation and Operators

the stack is a descriptor addressing the source string (or an operand which is the source string), and the fourth word in
the stack is a descriptor addressing the destination string. The source and destination are updated at the end of the
operation.

The translation occurs as follows. The specified string character is used as an index into the table to locate a character.
The located character is transferred to the destination string.

The least significant 32 bits of each table word provide four eight-bit characters. The table sizes are as follows:
1. Four-bit digits provide a 4-word table length.
2. Six-bit characters provide a 16-word table length.
3. Eight-bit bytes provide a 64-word table length.

SCAN WHILE GREATER, DESTRUCTIVE (SGTD) 95F2

This operator scans a string while the characters in the source string are greater than a delimiter character or until the
number of characters specified have been scanned.

If all the characters have been scanned at the completion of this operation, TFFF is set to 1. If the scan was stopped
by the delimiter test before the end of the string, the TFFF is set to 0.

If the delimiter against which the string is compared is equal to the character from the string then the compare flip-flop
(CMPF) is set. If the character in the string is less than the delimiter then CMPF flip-flop is reset.

At the start of this operator the delimiter character is right justified in the top word of the stack. The length of the
string to be scanned is the second word of the stack. The source pointer is the third word in the stack.

If the second word in the stack is a descriptor, it is the source pointer and the length of the character string is set
to 1,048,575 (length field is all ones).

SCAN WHILE GREATER, UPDATE (SGTU) 95FA

This operator performs a Scan While Greater operation and also updates the count and the source pointer. The updated
source pointer locates the character that stopped the scan. The number of characters not scanned is placed in the
A register, and the register is marked full.

SCAN WHILE GREATER OR EQUAL, DESTRUCTIVE (SGED) 95F1

The operator performs a Scan While operation while the characters in the source string are equal to or greater than the

delimiter character. If all the characters have been scanned at the completion of the operation then the TFFF flip-flop
is set.

SCAN WHILE GREATER OR EQUAL, UPDATE (SGEU) 95F9

This operator performs a Scan While Greater or Equal operation, but also updates the count and the source pointer.

5001290 813

B 6800 System Reference Manual
Variant Mode Operation and Operators

SCAN WHILE EQUAL, DESTRUCTIVE (SEQD) 95F4

This operator performs a Scan While operation while the characters in the source string are equal to the delimiter
character. 1f all characters are compared then the TFFF flip-flop is set.

If the delimiter against which the string is compared is less than the character from the string then the compare
flip-flop (CMPF) is set.

SCAN WHILE EQUAL, UPDATE (SEQU) 95FC
This operator performs a Scan While Equal operation, but also updates the count and the source pointer.
SCAN WHILE LESS OR EQUAL, DESTRUCTIVE (SLED) 95F3

This operator performs a Scan While operation while the characters in the source string are equal to or less than the
delimiter character. If all characters are compared then the TFFF flip-flop is set.

SCAN WHILE LESS OR EQUAL, UPDATE (SLEU) 95FB
This operator performs a Scan While Less or Equal operation, but also updates the count and source pointer.
SCAN WHILE LESS, DESTRUCTIVE (SLSD) 95FO

This operator performs a Scan While operation while the characters in the source string are less than the delimiter
character.

SCAN WHILE LESS, UPDATE (SLSU) 95F8
This operator performs a Scan While Less operation, but also updates the count and the source pointer.

If the character from the table, against which the string is compared, is equal to the character from the string then the
compare flip flop (CMPF) is set.

SCAN WHILE NOT EQUAL, DESTRUCTIVE (SNED) 95F5

This operator performs a Scan While operation while the characters in the source string are not equal to the delimiter
character. If all characters are compared then the TFFF flip-flop is set.

8-14

B 6800 System Reference Manual
Variant Mode Operation and Operators

SCAN WHILE NOT EQUAL, UPDATE (SNEU) 95FD
This operator performs a Scan While not Equal operation, but also updates the count and the source pointer.

SCAN WHILE TRUE, DESTRUCTIVE (SWTID) 95D5

This operator uses each source character as an index into a table to locate a bit in the same fashion as the transfer while
True operators. If the bit located contains the vaiue of one, the relationship is true and the scan continues.

The first word in the stack is a descriptor addressing the table. The second and third words in the stack are the same
as for all Scan While operators. '

SCAN WHILE TRUE, UPDATE (SWTU) 95DD

This operator performs a Scan While True operation, but also updates the count and the source pointer. The number of
characters not scanned is placed in the A register.

SCAN WHILE FALSE, DESTRUCTIVE (SWFD) 95D4

This operator performs a Scan While False operation, except the relation is true if the bit found by indexing into the -
table contains the value of zero.

SCAN WHILE FALSE, UPDATE (SWFU) 95DC

This operator performs a Scan While False operation, but also updates the count and the source pointer.

5001290 8-15

B 6800 System Reference Manual

SECTION 9
EDIT MODE OPERATION AND OPERATORS

GENERAL

The purpose of the edit mode operators is to perform editing functions on strings of data. The editing functions are those
which are normally involved in preparing information for output. They include such operators as move, insert, and skip,
in the form of micro-operators in either the program string or in a separate table. In the program string, they are single
micro-operators and are entered by use of the execute single micro or single pointer operators (see section 7). If the
micro-operators are in a table, the table becomes the program string that is to be executed. This table is entered by
means of the table enter edit operators (see section 7), and is exited through the end edit micro-operator as defined later
in this section.

If the source or destination data has the memory protect bit (bit 48) equal to one, the segmented-array interrupt is set
and the current micro-operator is terminated.

Appendix A of this manual lists the operators in alphabetic order, and appendix B lists the operators in numeric order,
by mode.

EDIT MODE OPERATORS

The edit mode operators are described in the following paragraphs of this section.
MOVE CHARACTERS (MCHR) D7
This micro-operator transfers characters from the source string to the destination string.

If this micro-operator is entered by the table enter edit operator (see section 7), the number of characters to be trans-
ferred is specified by the syllable following the operator syllable.

If this micro-operator is entered by the execute single micro operator (see section 7), the number of characters to be
transferred is specified by the operand in the top of the stack.

MOVE NUMERIC UNCONDITIONAL (MVNU) D6
This micro-operator transfers the four low-order bits of the characters of the source string to the destination string. If
the destination string character size is 6 bits (BCL) the zone bits are set to 00. If the destination string character size is

8 bits (EBCDIC), the zone bits are set to 1111.

If this micro-operator was entered by use of the table enter edit operator (see section 7), the number of characters to be
transferred is specified by the syllable following the micro-operator syllable.

If this micro-operator is entered by executing the execute single micro operator (see section 7), the number of characters
to be transferred is specified by the operand in the top of the stack.

MOVE WITH INSERT (MINS) DO
This micro-operator performs a move numeric unconditional or an insert operation under the control of the Float flip flop.

In table edit mode the second syllable is the repeat value and the third syllable is the character to be inserted under
control of the Float flip flop.

5001290 9-1

B 6800 System Reference Manual
Edit Mode Operation and Operators

In execute single micro mode the repeat field value is the top word of the stack and the insert character is in the syllable
following the micro-operator syllable.

If the Float flip flop equals O and the numeric portion of the source characters equals zero, the insert character is moved
to the destination string.

If the Float flip flop is reset, and the numeric portion of the source character is not equal to zero, then set the Float
flip flop, and perform a move numeric unconditional operation.

The number of characters transferred from the source string to the destination string is defined by the repeat value.
MOVE WITH FLOAT (MFLT) D1

In table edit mode the second syllable is the repeat value (the number of characters to transfer). The third, fourth, and
fifth syllables are the three insert characters. In single-micro mode, the three insert characters are in the second, third,

-and fourth syllables.

If the Float flip flop equals O and the numeric portion of the character in the source string equals O, the first-insert char-
acter is transferred to the destination string.

If the Float flip flop equals O and the numeric portion of the character in the source string is not O the Float flip flop

is set. If the External Sign flip flop equals 1, the second-insert character is transferred to the destination string. If the
External Sign flip flop equals 0, the third-insert character is transferred to the destination string. The numeric version of
the source character is then transferred.

If the Float flip flop equals 1, the numeric equivalent of the source character is transferred to the destination.

This operation continues for the number of characters defined by the repeat field value.

This operator can be entered by the Execute Single Micro operator, with the repeat field value in the top word of the
stack.

SKIP FORWARD SOURCE CHARACTERS (SFSC) D2

This micro-operator increments the source pointer registers.

If this micro-operator or any of the following Skip micro-operators is entered by the execution of the Execute Singie
Micro operator, the number of characters to be skipped is specified by the operand in the top of the stack. If entry is
by the execution of the Table Enter Edit operators, the number of characters to be skipped is specified by the syllable
following the micro-operator syllable.

SKIP REVERSE SOURCE CHARACTERS (SRSC) D3

This micro-operator decrements the source pointer registers.

Also see Skip Forward Source Characters micro-operator, second paragraph.

SKIP FORWARD DESTINATION CHARACTERS (SFDC) DA

This micro-operator increments the destination pointer registers.

B 6800 System Reference Manual
Edit Mode Operation and Operators

SKiP REVERSE DESTINATION CHARACTERS (SRDC) DB
This micro-operator decrements the destination pointer registers,
RESET FLOAT (RSTF) D4

-This micro-operator sets the Float flip flop to 0.

END FLOAT (ENDF) D5

This micro-operator transfers the character in the second syllable of this operator to the destination string if the Float
flip flop contains a 0 and the External Sign flip flop is 1. :

If the Float flip flop contains a 0 and the External Sign flip flop also equals O, then the character in the third syllable of
this operator is transferred.

If the Float flip flop contains a 1, then it is reset and no characters are transferred.

INSERT UNCONDITIONAL (INSU) DC

This micro-operator places an insert character into the destination string for the number of times specified by the repeat
value. When entered by a Table Enter Edit operator, the repeat value is in the syllable following the micro-operator

syllable, and the insert character is in the next syllable.

If this micro-operator is entered by an Execute Single Micro operator, the character to be inserted is in the second syllable
and the repeat value is specified by the operand in the top of the stack.

INSERT CONDITIONAL (INSC) DD

This micro-operator inserts a string consisting of one of two characters into the destination string. The length of the
string is given by the repeat value from the table or the stack.

If the Float flip flop contains a 0, the first insert character is inserted into the destination string.
If the Float flip flop contains a 1, the second insert character is inserted into the destination string.

The insert characters follow the repeat value syllable in Table Enter Edit operation or the micro-operator syllable in
Execute Single Micro operations.

INSERT DISPLAY SIGN (INSG) D9

This micro-operator places in the destination string the character defined by the syllable following the micro-operator
syllable, if the External Sign flip flop is equal to 1.

.If the External Sign flip flop is equal to 0, this operator places in the destination string the character defined by the
third syllable of this operator.

INSERT OVERPUNCH (INOP) D8
If the External Sign flip flop is equal to 1, this micro-operator places a sign overpunch in the destination string character

of either O for BCL or 1101 for EBCDIC.

5001290 9-3-

B 6800 System Reference Manual
Edit Mode Operation and Operators

If the External Sign flip flop is equal to O, the operator leaves the destination string character unaltered.
END EDIT (ENDE) DE
This operator terminates a string of Edit micro-operators in Table Enter Edit operation mode.

The micro program string in the table must end with the End Edit operator.

GENERAL

B 6800 System Reference Manual

SECTION 10

VECTOR MODE OPERATORS

The use of Vector Mode provides for an increase in efficiency in the manipulation of arrays. The increase in efficiency
is not an automatic feature that applies to all data processor operations. Vector mode makes it possible for certain soft-
ware compilers, such as ALGOL or FORTRAN, to specify that vector mode rules will apply under controlled conditions.

LIMITATIONS OF VECTOR MODE

Vector mode operations require that the system be operated in control state. This requirement means that a processor
performing vector mode operations cannot be interrupted to service external interrupts.

Vector mode operations do not permit segmentation of the arrays. This occurs because presence bit interrupts are dis-
allowed. This limitation requires that the entire extent of the array/arrays must be present in memory while performing
vector operations.

Vector mode operation allows the use of other modes and operators in the B 6800 operator set, subject to the following

limitations:

(o)

String operators and edit mode operators are not allowed.

No family C operators, except the branching operators (BRTR, BRFL, and so forth) are allowed while
operating in vector mode.
Ne ¢

perater that pseude calls a family C operator is allowed while operating in vector mode.

The LIT 48, and branch operators are not used while performing in single program word vector mode
(VMES) because of the size of the operator codes, in syllables.

Appendix A of this manual lists the operators in alphabetic order, and appendix B lists the operators in numeric order,

by mode.

HARDWARE FUNCTIONS

The Vector Mode hardware does the following:

a.

b.

5001290

Utilizes registers to hold the actual addresses of array elements that are referenced.

Uses additional registers to contain the increment values used for altering the addresses (indexing) to refer-
ence successive array elements.

Uses one register to contain a “count” or length that controls the number of iterations.

Provides for cycling through one (single-word mode) or more (multiple-word mode) words of code for each
iteration.

Introduces new operators for use while in Vector Mode to load and store the top-of-stack, and to control
iterating and exiting from Vector Mode.

Provides two primary mode operators used to enter Vector Mode.

10-1

B 6800 System Reference Manual
Vector Mode Operators

Seven IC memory locations are used as the registers mentioned above to hold the three absolute addresses, the three
corresponding increment values, and the length.

The three addresses are referred to as A, B, and C, respectively.
These registers are loaded automatically from the stack upon execution of either of two Enter Vector Mode operators.

PRIMARY MODE ENTER VECTOR MODE OPERATORS

There are two primary mode operators used for vector operations in the B 6800 Data Processor. These operators are
as follows:

Famil Mnemonic Hexadecimal Code Operator Description
G VMES EF Vector Mode Enter Single
G VMEM E7 Vector Mode Enter Multiple

Both of these operators perform a similar function. They use the string-operator enter edit mode logic procedure to
initialize the data processor for Vector Mode operations. The difference between these two operators is the number of
words of Vector Mode program code that are required. If the Vector Mode operators in the program code-stream con-
sist of one word of program code, then the “VMES” operator is used. If more than one word of program code is
required while in Vector Mode, then the “VMEM” operator is used. The compilers that allow Vector Mode operations
contain code to determine which of these two “Enter Vector Mode” operators is to be used.

ENTER VECTOR MODE OPERATION
An entry into Vector Mode operations occurs when the VMES (EF), or VMEM (E7) operator is executed from the pro-
cessor P register. Prior to entering Vector Mode, the processor stack must be properly configured to perform Vector

operators.

The processor registers and the operating stack must have the following format:

A REGISTER [oATA DESCRIPTOR (POINTERC) |
‘ DATA PROCESSOR
B REGISTER [LencTH OPERAND (OPTIONAL) | TOP-OF-STACK REGISTERS
MEMORY (S REG) [DATA DESCRIPTOR (POINTER A) |
MEMORY (S-1) [oaTa DescripTOR (POINTERB) |
MEMORY (5-2) [POINTER C INCREMENT OPERAND | & MEMORY PART OF
PROCESSOR STACK
MEMORY (S-3) [POINTER A INCREMENT OPERAND _ |
MEMORY (S4) [POINTER B INCREMENT OPERAND |

10-2

B 6800 System Reference Manual
Vector Mode Operators

Before entering Vector Mode, the values to be stored in IC memory must be placed in the stack. LENGTH specifies the
number of iterations through the code to be executed while in Vector Mode, usually the number of elements in the
arrays being manipulated. The presence of a LENGTH value in the stack is indicated by bit 44=1 in Pointer C. Should
bit 44=0, a default LENGTH of 2201 is stored in the LENGTH register. Bit 44 (segmented bit) must be OFF in
Pointer A and Pointer B. The software ascertains that bit 44 is ON in Pointer C before using it to indicate the presence
of a LENGTH value.

The seven parameters are inserted in IC memory as foliows:

Register Vector Mode Contents of Register

BRS3 Pointer C [19:20] (or Pointer C [39:20] plus [19:20] if I* = 1)
BRS7 LENGTH [19:20] (or 220-1)

BRS1 Pointer A [19:20] (or Pointer A [39:20] plus [19:20] if I* = 1)
BRS2 Pointer B [19:20] (or Pointer B [39:20] ** plus [19:20] if I* = 1)
IRS3 Pointer C increment [19:20]

IRS! Pointer A increment {19:20]

IRS2 Pointer B increment [19:20]

*1 is the indexed bit, bit 45 in the descriptor.

**Use [35:16] if the size fieid is not equal to zero.

The Enter Vector Mode operator may be terminated by one of the following interrupts:

Type of Interrupt Cause of the Interrupt
a. Invalid Op: Pointer A, B or C not tagged as a data descriptor or Pointer A or B has
bit 44=1.
b. Memory Protect: Pointer A is read only (bit 43=1).
¢. Presence Bit: Pointer A, B or C has bit 47=0.

5001290 10-3

B 6800 System Reference Manual
Vector Mode Operators

At the conclusion of the enter Vector Mode flow, the IC memory is configurated as follows:

Register Name Contents of the Register
SIR The value of the “A” increment
DIR The value of the “B” increment
TIR The value of the “C” increment
SBR The base address of pointer “A”
DBR The base address of pointer “B”
TBR The base address of pointer “C”
TEMP The value of the length operand

The word in the P register at the end of the Enter Vector Mode flow contains the Vector Operators that are to be exe-
cuted. The PSR register is equal to zero, and thus specifies that the first Vector Mode operator commences in syllable
Zero.

If the entry to Vector Mode is the single-word mode entry VMES operator, the single word of code following that entry
is held in the P Register (program word fetching is inhibited) and executed a number of times equal to the LENGTH
parameter. Each time the word is executed, LENGTH is decremented by one until it becomes zero. Then Vector Mode
is exited and normal operation continues with the next word of code in sequence.

VECTOR STACK OPERATORS

Vector Stack operators are a group of twenty-eight operators with a common syllable format. Variations of this syllable
provide the capabilities of storing or loading the top-of-stack with a single- or double-precision operand and choosing
whether or not to increment the pointer.

L D
0 LS A1 !
' 14-BIT | VECTOR | VECTOR | VECTOR
P REGISTER 1 RA| A0 ADDRESS COUPLE |OPERATOR|OPERATOR|OPERATOR
1 hlaRB ’-40| 36 32 28 24 20 16 12 8 4 0

| Tac | syLLasLE | syLLABLE SYL|2.ABLE| sy L;ABELI SYL‘I‘.ABLEI syLLABLE|
) 1

5
t° A VECTOR OPERATOR OCCUPIES ONE THROUGH
THREE SYLLABLES OF THE P REGISTER. THE VECTOR
LA BRANCH OPERATOR (VEBR, HEX CODE EE), AND THE
RAl A0 FTCH/STOR OPERATORS USE THREE SYLLABLES.
ALL OTHER VECTOR OPERATORS USE A SINGLE
rel 1 SYLLABLE

10-4

B 6800 System Reference Manual
Vector Mode Operators

The format of the Vector Operator syllable is as follows:

Bit

L

2

Al, AO

Description

The most significant bit in the Vector Operator, equals one if a length factor is passed to the Vector
Stack upon entering Vector Mode; otherwise, L equals zero.

Bit is OFF (0) for a Top-of-Stack Load operator and ON (1) for a Top-of-Stack Store operator.

If a Memory Protect Interrupt is sensed and no LENGTH is passed to the Vector Mode and RA=0,
the top-of-stack word is deleted. If RA=1, the top-of-stack word is not deleted.

Same as the RA bit except that it governs the action taken on the second word of the stack.

Double-precision bit. If D=0, load or store single-precision operand (Fam G). If D=1, load or store
double-precision operand (Fam H).

Selects the IC Memory Address Register.

Al A0

0 o Load from Pointer A (BRS1)
0 1 Load from Pointer B (BRS2)
1 0 Load from Pointer C (BRS3)

When [equals 1, the pointer used for the memory address is increased by its corresponding pointer
increment following the load or store operator. When I equals 0, the pointer increment is inhibited.

VECTOR MODE OPERATOR CODES

The twenty-seven Vector Mode operators are identified as follows:

FAMILY 1 2 3 4 5 6 7 8 9 A B C D E F
G E] LDA|LDAI| LDB | LDBI| LDC | LDCI |lvMEX DLA | DLAI] DLB | DLBI | DLC | DLCI | VEBR
H F] STA|[STAI| STB |sTBI] STC | STCI DSA | DSAI DSBI | DSC | DSCI |NOOP NVI.D|

Two other operators are used to load/store the top-of-stack from/to an address couple. They are enabled only when a
LENGTH is passed by the Vector Mode entry. Their format is as follows:

5001290

0 |Ls NEXT SYLLABLE
I ¢ VECTOR OPERATOR ! ’l
" ADDRESS COUPLE

10-5

B 6800 System Reference Manual

Vector Mode Operators

The address couple is formed from the low-order six-bits of the vector-operator, and the next operator-syllable, which
are concatenated to form a fourteen-bit address-couple.

Where; LS=0 then load (FTCH operator), or when

LS=1 then store (STOR operator).

The A Register is loaded from (or stored into) the memory location determined by the normal address-couple decoding
convention (same as Value Call).

VECTOR OPERATORS

The following is a list.of Vector Stack operators.

10-6

Operator

Load A

Load B

load C

Load A — Increment

Load B — Increment

Load C — Increment

Store A

Store B

Store C

Store A — Increment

Hex OP-Code

EO

E2

E4

E3

E5

F2

F4

Description

The stack is adjusted (0,2) and the single-precision word selected by
Pointer A (BRS1) is loaded into the top-of-stack.

The stack is adjusted (0,2) and the single-precision word selected by
Pointer B (BRS2) is loaded into the top-of-stack.

The stack is adjusted (0,2) and the single-precision word selected by
Pointer C (BRS3) is loaded into the top-of-stack.

The stack is adjusted (0,2) and the single-precision word selected by
Pointer A (BRS1) is loaded into the top-of-stack. Pointer A is
increased by its increment (IRS1) following the transfer.

The stack is adjusted (0,2) and the single-precision word selected by
Pointer B (BRS2) is loaded into the top-of-stack. Pointer B is
increased by its increment (IRS2) following the transfer.

The stack is adjusted (0,2) and the single-precision word selected by
Pointer C (BRS3) is loaded into the top-of-stack. Pointer C is
increased by its increment (IRS3) following the transfer.

The stack is adjusted (1,2) and the single-precision word in the top-

1
of-stack is stored in the location given by Pointer A (BRS1).

The stack is adjusted (1,2) and the single-precision word in the top-
of-stack is stored in the location given by Pointer B (BRS2).

The stack is adjusted (1,2) and the single-precision word in the top-
of-stack is stored in the location given by Pointer C (BRS3).

The stack is adjusted {1,2) and the single-precision word in the top-
of-stack is stored in the location given by Pointer A (BRSI1).
Pointer A is increased by its increment (IRS1) following the
transfer.

B 6800 System Reference Manual
Vector Mode Operators

Operator Hex OP-Code Description

Store B — Increment F3 The stack is adjusted (1,2) and the single-precision word in the top-
of-stack is stored in the location given by Pointer B (BRS2).
Pointer B is increased by its increment (IRS2) following the transfer.

Store C — Increment F5 The stack is adjusted (1,2) and the single-precision word in the top-
of-stack is stored in the location given by Pointer C (BRS3).
Pointer C is increased by its increment (IRS3) following the transfer.

Double Load A E8 The stack is adjusted (0,2) and the double-precision word selected
by Pointer A (BRS1) is loaded into the top-of-stack.

Double Load B EA The stack is adjusted (0,2) and the double-precision word selected
by Pointer B (BRS2) is loaded into the top-of-stack.

Double Load C EC The stack is adjusted (0,2) and the double-precision word selected
by Pointer C (BRS3) is loaded into the top-of-stack.

Double Load A — E9 The stack is adjusted (0,2) and the double-precision word selected

Increment by Pointer A (BRS1) is loaded into the top-of-stack. Pointer A is
increased by its increment (IRS1) following the transfer.

Double Load B — EB The stack is adjusted (0,2) and the double-precision word selected

Increment by Pointer B (BRS2) is loaded into the top-of-stack. Pointer B is

increased by its increment (IRS2) following the transfer.

Double Load C — ED The stack is adjusted (0,2) and the double-precision word selected
Increment by Pointer C (BRS3) is loaded into the top-of-stack. Pointer C is
increased by its increment (IRS3) following the transfer.

Double Store A F8 The stack is adjusted (1,2) and the double-precision word in the
top-of-stack is stored in the location given by Pointer A (BRS1).
Double Store B FA The stack is adjusted (1,2) and the double-precision word in the
top-of-stack is stored in the location given by Pointer B (BRS2).
Double Store C FC The stack is adjusted (1,2) and the double-precision word in the
top-of-stack is stored in the location given by Pointer C (BRS3).
Double Store A — F9 The stack is adjusted (1,2) and the double-precision word in the
Increment top-of-stack is stored in the location given by Pointer A (BRS1).

Pointer A is increased by its increment (IRS1) following the transfer.

Double Store B — FB The stack is adjusted (1,2) and the double-precision word in the
Increment top-of-stack is stored in the location given by Pointer B (BRS2).
Pointer B is increased by its increment (IRS2) following the transfer.

Double Store C — FD The stack is adjusted (1,2) and the double-precision word in the

Increment top-of-stack is stored in the location given by Pointer C (BRS3).
Pointer C is increased by its increment (IRS3) following the transfer.

5001290 10-7

B 6800 System Reference Manual
Vector Mode Operators

Operator Hex OP-Code Description

Vector Branch EE A three-syllable operator where the two syllables following the
operator contain a branch address. If the length count is > 0 the
length count is decremented by one, and the program continues at
the next syllable following the address. If the length is equal to
zero, Vector Mode is exited by fetching the program word specified
by the branch address.

Vector Mode Exit E6 Allows the program to exit from Vector Mode, to Primary Mode.

VECTOR BRANCH AND VECTOR EXIT OPERATORS

When the entry to Vector Mode is the multiple-word type (VMEM operator), whatever code that follows it is executed
under Vector Mode rules. The two Vector Mode operators explained below are used only in conjunction with the
VMEM operator.

a. Vector Mode Exit operator (VMEX) causes the program to exit from vector mode, and return to normal
mode operations.

b. Vector Branch (VEBR) is a three syllable operator. The two syllables following the operator code contain
the branch address. The Vector Branch operator examines LENGTH. If it is greater than zero, LENGTH is
decremented by one, the next two program syllables containing the branch address are skipped, and the
program is resumed at the following syllable. If the examined LENGTH is zero, Vector Mode is exited, and
normal mode operation commences with the program word located by the branch address.

B 6800 System Reference Manual

SECTION 11

PERIPHERAL DEVICES AND CONTROLS

GENERAL

Section one of this manual defines the types of peripheral devices that are operated as input or output devices of the
B 6800 system. Section five defines the functions of the multiplexor in controlling the operations of the B 6800 system
peripheral devices.

This section will define the unit control field of the IOCW, and the IO descriptor formats that are used by the multi-
plexor to initiate and control IO devices in the B 6800 system. This section will define the IO result descriptor that is
returned to the multiplexor at the conclusion of an IO operation. This section will also indicate how the multiplexor
uses the information from the IO descriptor and the IO result descriptor to format interrupt parameters (P1, P2, and P3)
which are present in the interrupt stack at the end of an IO operation.

TYPICAL INPUT OUTPUT DEVICE SYSTEM OPERATION

A typical IO operation (refer to figure 11-1) in the B 6800 system is initiated by a SCAN-OUT (initiate IO device)
operation. The scan-out operation passes data to the multiplexor that defines what IO device is to be initiated,
(IIOWD), and the address of a buffer area in system memory that is to be used for the IO operation (I0AD). The
multiplexor performs a read memory operation, using the address of the first word in the IO buffer area. This word
contains the IOCW. The data contained in the IIOWD, IOAD, and the IOCW, is stored in the multiplexor scratch pad
memory, for use during the remainder of the IO operation.

During an initiate IO cycle an OP code, variant characters and a beginning address, if applicable, are generated by the
multiplexor and passed to a peripheral control unit. The OP code, variant characters, and beginning address define

the operation that is to be performed, the optionai characieristics of the IO device that are to be used for the operation,
and, in the case of a disk or pack storage device, a beginning file address. After the IO descriptor has been passed to
the IO control, the multiplexor issues a STCB (Start Channel Bus) signal to the 10 control, and the initiate IO cycle is
completed.

After the IO control has received the STCB signal, it will request service cycles from the multiplexor when a transfer
of data is required. During a service cycle, the multiplexor will transfer the data to/from its internal data buffer.

Multiplexor burst cycles are performed as needed to transfer data between main memory and the multiplexor data
buffer.

The transfer of data to/from the IO control can be terminated by either the multiplexor, or the IO control.

5001290 11-1

B 6800 System Reference Manual
Peripheral Devices and Controls

954B SCAN-OUT OPERATOR r 1
’l LAST WORD IN THE
P REGISTER BUFFER |
UNIT DESIGNATE LAST FULL WORD IN
AND PATH DATA THE BUFFER
A REGISTER (I10OWD)
L B6800 SYSTEM o
T 10 BUFFER ~
[AREA
% FIRST WORD IN THE
: |36:17 :
3 19:20 > BUFFER IS THE 10CW

B REGISTER (IOAD)

DATA PROCESSOR ?ﬁYESMTgaﬂY
HARDWARE REGISTERS 10 BUFFER

MULTIPLEXER
SCRATCH PAD MEMORY AND

SCRATCH PAD DATA BUFFER
WORD ~ MEMORY CHANNEL
]] uUNITTYPE BURST BUFFER ADDRESS
1 PERIPHERAL BUFFER ADDRESS
2 PERIPHERAL WORD & CHAR. COUNT
3 INITIAL WORD & CHAR. COUNT
4—> BURST WORD & CHAR, COUNT
5 1OCW [47:20] -
6 10CW [27:20] -
7—> UNIT DESIGNATE | 10CW [7:8] -
8—o INITIAL BURST ADDRESS
9 CURRENT BURST ADDRESS
A
B MULTIPLEXOR ERROR BITS
c UNIT RESULT DESCRIPTOR e
D Yy Y
E MULTIPLEXOR
£ DATA
BUFFER

!

TO/FROM 1/O0 CONTROL I
IN PCC CABINET |
-

MV 1656 Figure 11-1. Input-Output Operation Cycles

[

b
|

(88

B 6800 System Reference Manual
Peripheral Devices and Controls

Regardless of how an IO operation is terminated, the IO control always passes an IO result descriptor to the multiplexor
at the end of the IO data transfer. This result descriptor is saved in scratch pad memory. At the conclusion of the
10 operation, the multiplexor raises the external interrupt signal to the interrupt controller.

The interrupt controller initiates an interrupt procedure and the multiplexor places the three interrupt parameters (P1,
P2, and P3) in the interrupt procedure stack. After the three parameters are placed in the interrupt stack, the interrupt
controller causes the interrupt procedure of the MCP to be executed. The interrupt procedure analyzes the three param-
eters in the stack, and determines what, if any, action is to be taken. After the interrupt has been handled propetly, the
processor returns to performing the procedure that was in progress when the interrupt occurred.

INTERRUPT STACK PARAMETERS

Figure 11-2 shows the order of the three parameters that are left on the top of the data processor stack when an 10
finished interrupt is present. The data in these three parameters is inserted into the data processor hardware registers by
the micro-program logic of the multiplexor. The IO finished interrupt from the multiplexor causes the data processor to
interrupt any procedure that is in process, providing that the data processor is operating in normal state. If the data
processor is not operating in normal state, the interrupt controller will hold the interrupt until the data processor returns
to normal state, at which time the interrupt will be handled.

P1 PARAMETER

Bit 27 of the P1 parameter is true if the operating system is a B 6800. Bit 20, and bit zero of the P1 parameter are
true for an external interrupt,

Bits 7:4 are the interrupt literal value. These bits have the following significance:

Value eaning

1111 status change interrupt.

0001 interrupt from data communications.

0010 interrupt from data communications
processor number two.

0011 interrupt from data communications
processor number three.

0100 interrupt from data communications
processor number four.

0110 interrupt from bus interface control
number one.

0111 interrupt from bus interface control
number two.

1000 multiplexor error.

1001 IO finished interrupt.

5001290 11-3

B 6800 Sys,tem»Reference Manual
Peripheral Devices and Controls

CHARACTER WORD 'WORD WORD 'WORD UNIT uNIT
COUNT COUNT COUNT COUNT counT nuMBER | Numper f| CHANREL
0 CHARACTER ‘WORD WORD WORD WORD uNIT uNIT
COUNT COUNT COUNT COUNT COUNT NUMBER Numgen [CHANNEL
P2
CHARACTER WORD WORD 'WORD 'WORD NI uNIT E
o COoUNT COUNT COUNT COUNT COUNT NumBER | Numsen [CHANNEL
'WORD WORD 'WORD WORD 'WORD UNIT
o COUNT COUNT COUNT COUNT COUNT NUMBER m‘ﬁl CHANNEL CHANNEL
| T ‘ 2 26 12 28 20 L 12
MEMOAY CONTROL BUFFER NOT
wrotect J susy PARITY < 81 Al READY
;::Fﬂ'l e PER!'HSRAI.
BUS \RACTT CONTROL
o REsioue [l cOUNT BUS c2 B2
PARITY PARITY
P3
ADDER TRANSLATE
1 aesiove J erroR c4 B4
0 STEERING c8 88
JRESIDUE PARITY
24 20 8
0 o 0 0 0 1 0 0 0 [} INTeRRT o
o] [} 0 o o o o 0 [o m:“:‘" o
[4]
1 0 [0 o 0 0 0 (] 0 0 il o
[0 0 o 0 [1 1 0 o [} it 1
n “ 0 20 2 28 “7 20 1’ 12 8 4 h

MV1867

Figure 11-2. Finished Interrupt Stack Parameters

The P1 parameter is the first word of the two words of a double-precision operand in the data processor stack. The
second word of the two words of the same double-precision word is the P3 parameter. At the end of the interrupt
controller flow, the P1 parameter is present in the data processor B register, and the P3 parameter is present in the
data processor Y register.

The data processor interrupt controller always releases control by performing a pseudo-call on the enter (ENTR, AB)
operator. The ENTR operator causes the interrupt parameters that are present in the top of stack hardware registers to
be pushed down into the memory portion of the stack. After the ENTR operator has been executed, the P1 parameter
is located in the stack, at the address indicated by the value of the S register, minus two.

P3 PARAMETER

The P3 parameter is used to indicate any errors that may have occurred in the muitipiexor, peripheral control, or on the
peripheral control bus durmg the perlpheral device operation. The P3 parameter also will indicate any error that was

11-4

B 6800 System Reference Manual
Peripheral Devices and Controls

The significance of the bits in the P3 parameter are as follows:

Bits

[17:11] and [3:1]

23:6

26:3

32:6

33

35

38:2

P2 PARAMETER

Significance

The unit error field ([17:11]) and the not ready bit [3:1].
Various bit configurations in this field are used by differ-
rent IO control types to indicate an error condition in

the IO device, or in the 10 control. This field does not
mean the same thing for all types of peripheral devices,
and therefore must be interpreted according to the type
of device that is connected to the multiplexor channel.

The control error field. Various bits in this field are used
to indicate errors in the control logic of the multiplexor.

Each of the bits in this field is used to represent an error
condition in a major functional group of the multiplexor.

The address adder error field. These three bits are used
to indicate an address adder, residue adder, or IC memory
register error. Any one of these three bits being true
may also indicate that an error exists in the Z8 or Z9
bus, or in the special address bus that passes between

the multiplexor and the data processor.

The memory error field. These six bits are used
to indicate errors that are detected by the memory
control logic of the CPU.

The global store not ready bit. This bit is used to show
that a global memory operation was attempted, and the
global memory that was addressed was not ready.

The address compare error. This bit is an extension of
the address adder error field in bits 26:3.

The OP CODE or VARIANT CHARACTER PROM parity
error bit, and the descriptor error bit. These bits are
an extension of the control error field in bits 23:6.

The P2 parameter is used to indicate the unit number of the peripheral device that was utilized. This parameter also
indicates the multiplexor path that was used to access the peripheral device, the length of the IO operation, whether
a software attention bit was set, and whether an exception occurred during the IO operation. The fields of the P2

parameter are as follows:
Bits

0

5001290

Significance_

The exception bit. This bit is set if an exception was detected
during the IO operation. The placement of this bit in

11-5

Bits

16:5

24:8

47:20

B 6800 System Reference Manual
Peripheral Devices and Controls

Significance

the interrupt stack configuration allows the system
software interrupt handling procedure to determine
if an error occurred during the IO operation.

The software attention bit. If bit number 45 of the
IOCW that was used to initiate the IO device opera—
tion was set, then the software attention bit is set
in the P2 parameter. The software attention bit is
used to flag certain 10 operations for the system
software. Examples of the types of 10 operations
that the system software may flag are spacing over
tape records, or changing from one train code to
another train code on train printer devices.

IO path field.

The channel number field. The value of the five bit
channel number (one of twenty multiplexor channels)
is identified in the P2 parameter.

The unit number field. The unit number (one of
256 possible 10 device identification numbers) is
identified in the P2 parameter.

The character count and word count field. This field
indicates the amount transferred to/from the peripheral
control.

B 6800 System Reference Manual
Peripheral Devices and Controls

PERIPHERAL CONTROLS

All peripheral devices require a unique peripheral control. These controls are located in the peripheral control cabinet,
and perform an interface function for the multiplexor.

PERIPHERAL CONTROL BUS

Controi and information signais are transferred between the muitipiexer and the peripheral controi cabinet through a
peripheral control bus.

The peripheral control bus contains sixteen data lines. These sixteen lines transmit two eight-bit characters

of data bidirectionally, between the multiplexor, and the peripheral control cabinet. All peripheral controls in both

of the peripheral control cabinets share the sixteen data lines, and thus, only one peripheral control can communicate with
the multiplexor at any one time. Certain peripheral bus control signals that are common to all peripheral controls (such
as the peripheral bus parity signal, and the Start Channel Signal) are also routed on the information bus lines.

Control signals that are unique to each peripheral control (the access request and access granted signals, the control busy
signal, and the channel designate level signal) do not share common lines on the peripheral bus. These signals have
specific lines on the peripheral bus assigned to them.

The multiplexor initiates an 10 by passing an OP code, variant characters, a unit number, and in the case of a disk or
pack device a file address value, to the particular peripheral control that is associated with the IO device. This control
information is generated in the multiplexor by the OP code and variant character generator circuits, and is passed to the
peripheral control cabinet threugh the peripheral bus information lines. The multiplexor can direct the control informa-
tion to a particular 10 control because of the four unique signals for each channel (ARL, AGL, BUSY, and CDL).

The transfer of control information from the multiplexor to an IO control is synchronized during the initiate 10 cycle
by the multiplexor controlling signals to each 10 control. Each IO control contains a sequence counter that steps
through its initial sequence counts in response to control signals from the multiplexor. After the initiation cycle

is completed, the multiplexor will send a Start Channel Bus (STCB) signal to the IO control, and thereafter the

IO control will proceed through its sequence counts in a self-initiated manner.

When an IO control requires information exchange with the multiplexor, it initiates a service cycle in the multiplexor
by raising its ARL (Access Request Level) level. The multiplexor will respond to the ARL level by raising the

AGL (Access Granted Level) signal when the 10 control is to use the peripheral bus. With the communication link-
age established, the IO control and multiplexor can begin data transfers. The muitiplexor knows which IO control
raised its ARL line, and therefore which data buffer to interface with the peripheral control bus.

5001290 : 11-7

811

CENTRAL
PROCESSOR
CABINET

INFORMATION AND CONTROL TO PCC1

44

INFORMATION AND CONTROL

-
INFORMATION TO P
0 TION TO PCC1 >
BUSY/ARL FROM PCC1 -
™~
CDL/AGL TOPCC1 >
CHANNEL 9 CHANNEL 4

(SMALL CONTROL)

(LARGE CONTROL)

CHANNEL 8
(SMALL CONTROL}

CHANNEL 3
(LARGE CONTROL)

CHANNEL 7
(SMALL CONTROL)

CHANNEL 2
(LARGE CONTROL)

CHANNEL 6
(SMALL CONTROL)

CHANNEL 1
(LARGE CONTROL)

CHANNEL 5
(SMALL CONTROL)

CHANNEL 0
(LARGE CONTROL)

BBHB3

INFORMATION

BBHB6

'y

BUSY/ARL

BBHB9

CDL/ARL

BBHC2

MV 1658

Figure 11-3.

PCCO PERIPHERAL CONTROL CABINET
CARD SIDE VIEW

B 6800 Peripheral Controls Organization

S[OIIUO)) PUE $391A9(] [BIoydiiog
[EnuUBp 20ULI3JY WAISAS 0089 g

B 6800 System Reference Manual
Peripheral Devices and Controls

At the conclusion of an 10 operation, the 10 control assembles an IO result descriptor that describes the IO operation,
and any errors that were encountered. This result descriptor is returned to the multiplexor, along with the proper con-
trol signals to let the multiplexor know that the IO operation is complete.

The multiplexor uses the result descriptor to form a part of the P3 parameter. Bit zero of the P2 parameter will be set
when any error condition occurs during the IO operation.

Signal Name
CDLan

BUnn/

5001290

Meaning and Usage

The CDL logic signal is sent from the multiplexor to the IO control and is used by a penpheral
control device to step to the next sequence count in the flow of sequences within the unit control,
during the initialization sequence. For example; the multiplexor sends an OP code to a peri-
pheral control at the beginning of each IO operation that is initiated. The OP code is strobed
onto the peripheral control bus, and the multiplexor raises the CDL control signal level for the
peripheral control channel. The peripheral control will accept the OP code that is present on
the peripheral control bus, and will step to the next sequence count in the operational control
flow.

The busy not logic is used by the multiplexor to determine whether or not a path is available
to the IO control. If busy not is true, a path exists to the IO control, and if busy not is false the
IO control is in use. The busy not signal is used in conjunction with the pseudo busy

flip-flop, which is entirely local to the multiplexor logic, and has no direct connection to the
peripheral bus signals. The pseudo busy flip-flop may be set by either of two different methods.
The flip-flop can be set by means of a SCAN-OUT operator, as described previously in this
section, to deny the use of the path except by overriding the pseudo busy flip-flop. Pseudo
busy is also set by the multiplexor, when an IO error is detected in the peripheral control
device. This latter method of setiing the pseudo busy flip-flop is used to preserve extended
result descriptor status about the error that occured. If a subsequent IO operation is attempted
before the extended status is read from the IO control, the data in the extended status is lost,
and cannot be recovered by the system. If an IO control is in the process of an 10 command,

the BUnn/ logic signal will be false, regardless of the state of the pseudo busy flip-flop.

The pseudo busy flip-flop may be reset by means of a SCAN-OUT set pseudo busy operator.
This operator was described previously, in this section of this manual.

11-9

Signal Name

ARLnn

AGLnn

B 6800 System Reference Manual
Peripheral Devices and Controls

Meaning and Usage

The access request control logic level is used by the peripheral control device to notify the
multiplexor that an access to the data buffer is required. During output operations, this level
means that the IO control has processed the last character(s) received from the data buffer, and
consequently requires the next character(s) to be passed through the peripheral bus. During
input operations, this level means that the IO control has placed the next input character(s) in
position to be transmitted to the data buffer, and consequently requires access to the data

bus so that they can be passed to the multiplexor.

At the conclusion of an IO operation, both input and output types, the 10 control forms a
unit result descriptor which is returned to the multiplexor. The IO control uses the ARL logic
level to notify the multiplexor when the result descriptor is completed and ready to be trans-
mitted to the data buffer.

The AGLnn control signal is used by the multiplexor to respond to an ARLnn control signal
from a peripheral control unit. The multiplexor makes a path from the peripheral data bus to
the data buffer available, and then raises the AGL level to notify the IO control that data may
be passed to or from the buffer through the peripheral data bus.

The multiplexor may be processing several simultaneous IO operations. If an IO control raises
its ARL control level to obtain an access to the data buffer, the multiplexor must determine
which of several possible requests will be granted first access to a data buffer. The multiplexor
will determine this priority between several IO channels on the basis of priority configuration
within the muitiplexor. When a new 10 conirol is installed in a B 6800 system, or an old
control is removed from a B 6800 system, maintenance personnel may alter the priority con-
figuration wires to account for the change in system IO resources.

INPUT OUTPUT DEVICE COMMANDS AND RESULT DESCRIPTORS

The following data will present the types of operations that an IO device can perform, and the “OP” codes that cause
one of these operations to be performed. This data will also show the information that is contained in the P3 interrupt
parameter. Although the P2 parameter is not presented, it is implied that the error bit in the P2 parameter will be set
if any error bit is present in the P3 parameter.

11-10

B 6800 System Reference Manual
Peripheral Devices and Controls

(N

30 29 28 27
0 0 0
0 0 0

UNIT CONTROL
32 31
[} 0
0 0

33
0
0

34

1O CONTROL WORD

UNIT
CONTROL
FIELD

/7 \

36

Mi
X
ES

4o

FIELD

CONTROL

4k
A

RW | MP| FT
l
STANDARD

Pl
ASC

SA

SUPERVISORY DISPLAY CONTROL i1

PERIPHERAL CONTROL BITS
READ EBCDIC
WRITE EBCDIC

10CW

TEST

Figure 11-4. Supervisory Display Control IT IOCW Format

5001290

NOTES:

BIT CONFIGURATION:

BITS

36
(4]
1
[]

1

37

SET SINGLE TAG
SET CODE TAG

SET TRANSFER TAG
SET DOUBLE TAG

Ofr=

Figure 114, Supervisory Display Control II IOCW Format

MV 1659

11-11

1-12

B 6800 System Reference Manual
Peripheral Devices and Controls

UE | UE | UE | UE
0 UE | UE | UE | UE
1 UE | UE | UE | UE | UE
0 UE | UE | UE | UE | UE
W fwo |36 |32 |28 v |20 he b2 s 0
| |
| HEXIDECIMAL |
UNIT ERROR
ERROR CODE MEANING | CODES |
|
UNIT NOT READY 0 0 0 4] 8
10 PARITY ERROR 0 0 A 8 0
MEMORY ACCESS ERROR 0 0 2 8 0
DATA PARITY ERROR 0 0 2 0 0
CONTROL CHARACTER 0 0 4 0 0
READ OVERFLOW 0 0 8 0 0
TIMEQUT (INVALID CHARACTER) 0 8- 0 0 0
INTERNAL PARITY ERROR 0 0 3 0 0
UNITID (TD804/TD830) 0 2 0 0 0
UNITID (B9352) 0 4 0 0 0
UNITID (B9348-34) 0 6 0 0 0
MV 1660

Figure 11-5. Supervisory Display Control II Result Descriptor Format

B 6800 System Reference Manual
Peripheral Devices and Controls

\‘

\ % o o (=]
- !
~ o =3 o
{ o o o
m o (=} o
3
& a o o <3
z
o]
M & o =3 o
z
> ” o o o
m a o o o
z
3 3 o IS} =) -
- [}
: £
M =) o) 5
[3)
o =
- =] ~ < =} w
3 S
O < ™ @ (=] i
(@]
| B
2 _M w o o o &
oW g
© o o o [&]
| g
o o Lo -L
3]
o (=] o m
72]
a
s (<] =) /ﬂ.
—t
- - o —
(33
- -
W m m S}) 1) .m
<
— » [75) a <0 =) o o
Sk -
S o = —SEo
T e
m m (VS - [} [=]
—-— Q
a i« < 2 2]
< = [77] (- = \ =3 o o
o o o <) o =)
o (=] o
Q
<
o F2
<&
Fqul
ET“L
2 > ouzid
5 5 29532
_ 54 wOFQ
o < ol o
£ 5 B4
uw s 3
< 9 f
et ww 2 m n& | o|~lo|-
-l P =) 3 a3 B
o) gfo ¢ ° s
rl_-_-R % W w 5 @ 5 | olo|—|-
. T 2z ajo m = w
o2 Sl 1gls & g| 5
No o ajx 2 [= z
”no

MV 1661

Figure 11-6. Single Line Control IOCW Format

5001290 11-13

11-14

B 6800 System Reference Manual
Peripheral Devices and Controls

UE | UE | UE | UE
0 UE | UE | UE | UE
1 UE | UE I UE | UE | UE
0 UE | UE | UE | UE | UE
sy (w0 |36 |32 {28 fas |20 fe 2 |8 0
| |
| HEXIDECIMAL i
UNIT ERROR

ERROR CODE MEANING { CODES l';
MEMORY ACCESS ERROR 0 0 0 8 0
PARITY ERROR 0 0 2 8 0
CONTROL MESSAGE 0 0 4 0 0
OVERFLOW 0 0 8 0 0
TIMEOUT 0 8 0 0 0
UNITID (BIDS) 0 4 0 0 0
UNITID (TC500) 0 2 0 0 0

MV 1662

Figure 11-7. Single Line Control Result Descriptor Format

UNIT
CONTROL

©o o o »n \
¥ ! -
- F L, N o
= <
- | x -8
s 2 S Lo
= 2
<
z |2 < | 2 "
<= W T \

CARD PUNCH

5001290

CONTROL

FIELD

FIELD

B 6800 System Reference Manual
Peripheral Devices and Controls

\6
N © 0o oo
~
~ ©o oo oo
Q0
N oo o oo
(=2
N ©o oo oo
-~
(]
< =3
- & ccococo
Z —4
(]
3] -
- © ocoooo
4
=] o~
© v ®no
[a) @
o o ©o o o oo
Qo
=
] <
3 © oo ooo
g —
ot
m o o0o oo
o
<
TWOL OO
N N NN
©ooooco
oo oo o
oo oo~
©ooooo
oo ooo
©O -0« o0
o Q- - 0o
©o oo oo
oo oo o
oo o0oo
©o o ooo
oo ooo
E
o _
o O
[a —~
FlZ2 25~
=10 9 7 O
BRBBm
w
| T - G
OTMNB
HNOlE
T.RMM
zle o
sl oo
o> o X
4z
AMCLL
s o O Q
wio w oo
Flzzzx
=z 20 0O 0 O
SREEEEEE
n|u aaaa bk

NOTES:

S: STACKER

BIT CONFIGURATION:

0= PRIMARY
1= AUXILIARY

BITS
36

37

SET SINGLE TAG
SET CODE TAG

STACKER = [32:1]

SET TRANSFER TAG
SET DOUBLE TAG

(1]

1
[4]

1

(=15

Figure 11-8. Card Punch IOCW Format

MV 1663

11-15

11-16

B 6800 System Reference Manual

Peripheral Devices and Controls

UE | UE | UE | UE
0 UE | UE | UE | UE
1 UE | UE | UE | UE | UE
0 UE | UE | UE | UE | UE
W o |36 |32 (28 v |20 he 2 s 0
| |
| HEXIDECIMAL |
UNIT ERROR

ERROR CODE MEANING | CODES |
NOT READY 0 0 0 0 8
PUNCH CHECK 0 0 0 8 0
MEMORY PARITY ERROR 0 0 2 8 0
MEMORY ACCESS ERROR 0 0 4 8 0

MV 1664

Figure 11-9. Card Punch Result Descriptor Format

0621005

L1-11

Pl
0 ASC
]
0 |SA
0 |RW
I
STANDARD UNIT
CONTROL CONTROL
FIELD FIELD
0O CONTROL WORD
UNIT CONTROL
1OCW 34 33 32 31 30 29 28 27
PERIPHERAL CONTROL BITS
[READ BINARY {6-BIT INTO 6-BIT} 0 1] 1] 1 0 0 0 " MP 1] 1] 0 1] 2 1 N
READ EBCDIC (INTO EBCDIC) (1] (4] (4] 1 [+] V] 1 MP 0 0 (1] 0 2 2
READ BCL {INTO INT BCL) 0 (1] 0 1 V] 1 1] MP Q 0 0] 2 0
READ BCL {INTO EBCDIC) 1] (1] 1) 1 [+] 1 1 MP (4] 0 0] 2 1]
TEST (4] 0 0 [(] [+] o 0 1] [1] 1 0 1] 9 9
NOTES:

BIT CONFIGURATION:

BITS
37 36
0 SET SINGLE TAG
SET CODE TAG
SET TRANSFER TAG
SET DOUBLE TAG

Figure 11-10. Card Reader IOCW Format

S[O1}U0) PUB SOMAS(T Teroydiiog
[enUB 20uISJeY WASAS 0089 g

11-18

B 6800 System Reference Manual
Peripheral Devices and Controls

UE | UE | UE | UE
0 UE | UE | UE | UE
1 UE | UE | UE | UE | UE
0 UE | UE | UE | UE | UE
Ly 40 36 32 28 24 20 16 12 8 0
| |
1 HEXIDECIMAL |
UNIT ERROR
ERROR CODE MEANING | CODES |
NOT READY 0 0 0 0 8
MEMORY ACCESS ERROR 0 0 0 8 0
VALIDITY CHECK 0 0 2 8 0
READ CHECK 0 0 1 0 0
READ & VALIDITY CHECK 0 0 3 8 0
CONTROL CARD 0 0 4 0 0
MV 1666

Figure 11-11. Card Reader Result Descriptor Format

0621005

6111

Pl
0 ASC
"
0 (SA
0 |RW
KL
STANDARD UNIT
CONTROL CONTROL
FIELD FIELD
10 CONTROL WORD
UNIT CONTROL
1OCW 34 33 32 31 30 29 28 27 26
- B
: PERIPHERAL CONTROL BITS
PRINT BCL (FROM INT BCL) 0 0 0 0 o 1 0 o 0 0 0 0 1 0 SK 8K SK SK spP SP ¢} 0 0 0
PRINT BCL (FROM EBCDIC) [} 0 o] 4] 1 1 0 0 0 4] 0 1 0 SK 8K SK SK §P SP .0 V] 0 0
SKIP 0 0 0 0 1 0 0 0 0 0 0 0 1° 1 SK 8K SK 8K 0 [} 0 0 o} 0
SPACE 0 0 0 0 1 [o 0 0 0 0 0 1 1 0 0 0 0 sP SP 0 0 0 1]
TEST 0 0 4] 0 (4} 0 0 [¢] 0 1 0 0 9 9 0o 0 0 0 0 o [} 0 0 0
NOTES:
BIT CONFIGURATION: CHANNEL = [35:4) SK = SKIP
BITS SPACING [35:6] SP = SPACE
37 36 SINGLESPACE = [35:6) = 1
0 0 SET SINGLE TAG DOUBLE SPACE = [35{6] = 2
[1] 1 SET CODE TAG
1 0 SET TRANSFER TAG
1 1 SET DOUBLE TAG -

Figure 11-12. Line Printer IOCW Format

s[o1uo)) pue saotas(fereydiag
[enuely 95UIAJOY WIAISAS 0089 g

11-20

B 6800 System Reference Manual
Peripheral Devices and Controls

UE | UE | UE | UE
0 UE | UE | UE | UE
1 UE | UE | UE | UE | UE
0 UE | UE | UE | UE | UE
W (b0 |36 32 [28 Jau J2o he D12 s 0
| |
| HEXIDECIMAL |
UNIT ERROR
ERROR CODE MEANING | CODES i'
BIT TRANSFER ERROR 0 0 1 8 0
BUFFER PARITY ERROR 0 0 2 8 0
PRINT CHECK 0 0 4 8 0
LOW PAPER 0 0 8 0 0
END OF PAGE 0 1 0 0 0

Figure 11-13. Line Printer Result Descriptor Format

06C1005

111

TRAIN PRINTER

Pl | Ml | BK
o ¢ x| T
0 (SA FS | TT
0 |RW | mMP!| FT
L 40 36 3
N l N | /
STANDARD UNIT
CONTROL CONTROL
FIELD FIELD 10 CONTROL WORD

UNIT CONTROL

10CW 34 33 32 31 30 29 28 27 2
B

PERIPHERAL CONTROL BITS
PRINT BINARY o o0 6 o oo o o o 0o o0 ¢ o0 }1 o sk sk sk sk s s, 0 o0 o0 0
PRINT BCL~— 6-BIT BINARY o o o o o 1 o o 0o o0 0o o1 o]sk sk sk sk s s 0o o0 o o
PRINT BCL=— EBCDIC 6 0o o 0o o 1 t 0 o 0 o0 0o}t o0 sk Sk SK SK S SP 0 0O 0 o
PRINT EBCDIC o o o o o o0 1 o o o o o |1 0 sk SK SK Sk SP S 0 0 0 O
SKIP 6 o o0 o0 1 o0 o6 0 o o 0o o0 }1 1 sk 8K Sk Sk © 0 0 0 0 0
SPACE 6 o o o o o 0 © o 1 o o |1 1]Jo o o o s s 0o o o o
LOAD TRANSLATE TABLE2 0 0 0o ©0 0 0 0 o0 1 6 o o2 9o o o o 0o 0o o o0 o o
TEST 0 0 0 0 0 0 0 0 0 1 o o9 9 Jo © o o o o0 0 0 o0 o
NOTES:

BIT CONFIGURATION: LTT BIT CONFIGURATION SK = SKIP

SP = SPACE

BITS BITS

37 36 2 a4

0] 0 | SETSINGLE TAG 0 | 0] LOADLTTWITH6BIT BINARY CHARACTERS

0] 1 | SET CODE TAG 0 | 1 LOAD LTT WITH 8-BIT EBCDIC CHARACTERS

1 0] SET TRANSFER TAG i 0 | LOADLTT WITH 6-BIT BCL CHARACTERS

1 1

SET DOUBLE TAG

MV 1669

‘Figure 11-14, Train Printer IOCW Format

S[011U0)) pUR $90IAR([eIoydiIog
[eNURH 99USISJY WIAISAS 0089 g

11-22

B 6800 System Reference Manual
Peripheral Devices and Controls

Aavs o
wiv

[o}]

~J

UE | UE | UE | UE
0 UE | UE | UE | UE
1 UE | UE | UE | UE | UE
0 UE | UE | UE | UE | UE
Ly 40 36 32 28 24 20 16 12 8
| |
| HEXIDECIMAL |
UNIT ERROR ,
ERROR CODE MEANING i CODES |
PRINT CHECK (SYNC) 0 0 1 8 0
PRINT CHECK (INTERNAL) 0 0 4 8 0
10 BUS PARITY 0 0 8 8 0
10 BUS PARITY (INITIATE) 0 0 8 8 0
END OF PAPER 0 1 0 0 0
TRAIN IMAGE BUFFER NOT
LOADED 0 4 0 0 0
INCORRECT TRAIN LOADED 0 8 0 0 0

[e]

B 6800 System Reference Manual
Peripheral Devices and Controls

MAGNETIC TAPE
P
! Mi BK| ™™ B B 10 CONTR‘OL WORD
ASC
0 ™| T | REP B | B l
i AN
0 ISA | FS| TT| D B
o |[RW! MP FT| D B |
oy o 36 I3 16
AN / ,
STANDARD UNIT
CONTROL CONTROL
FIELD FIELD UNIT CONTROL
IOCW 34 33 32 31 " 30 29 28 27 26
PERIPHERAL CONTROL BITS
4 READ BINARY (6-BIT INTO 6-B!IT) 0 0 0 1 0 0 0 MP 0 4] o] 0 0 2 0 4] D D D P 0 0 0 0
READ BCL (INTO INT BCL) 0 0 0 1 0 1 0 MP 0 8] 0 0 0 2 0 0 D D D P 0 0 0 0
READ BCL ({INTO EBCDIC) 0] 0 4] 1 0 1 1 MP 0 4] 4] 0 0 2 0 0 D D D 0 o] ¢} 0 0
é) READ EBCDIC (INTO EBCDIC} 4] 4] 4] 1 0 1 1 MP 0 4] 0 0 0 2 0 0 D D D P 0 0 4] ¢}
'D_: 4 WRITE BINARY (6-BIT FROM 6-BIT} [¢] 0 1] 0] 4] 0 0 4] 0 0 0 4] 6 0 0 D D D P 0 0] 4] 4]
~ WRITE BCL {FROM INT BCL) 4] (0] 0 0 [¢] 1 0 0 4] 4] 0 0 0 6 0 4] D D D P 4] 0 0 0
WRITE BCL (FROM EBCDIC) ¢} [¢]] 0 0 1 1 4] ¢] 0 0 0 4] 6 0 0 D D D 0 0 0 o] 0
WRITE EBCDIC (FROM EBCDIC) 0 0 0 0 0 1 1 0 0 4] 0 0 0 6 0 0 D D D P (¢} 0 0 0
Y ERASE 0 4] 0 O 1 0 4] o] 4] 0 Q 0 Q 4 0 0 4] 0 4] 0 0 4] s] 1]
5 READ (8-BIT INTO 8-BIT) 0 0 4] 1 0 0 1 MP 0 0 0 0 0 2 0 4] D D D 1 C T T T
é WRITE (8-BIT FROM 8-BiT) 0 0 0 0 0 0 1 0 0 0 0 0 4] [4]] 5] D D 1 [¢] 0 4] Q
'OT) ERASE 0 0 0 0 1 4] 1 0 0 0 0 0 0 4 0 0 (4} 4] 0 0 0 0 4] 1]
REWIND 0 0 0 0 1 0 0 0 1 0 4] 0 0 1 0 0 0 4] 0 0 0 0 0 0
- SPACE 0 4] 0 1 1 0 0 0 0 0 [¢] 0 4] 8 4] 4] D D D P 0 0 0 4]
"'IJ WRITE TAPEMARK 4] 0 0 0 4] 0 0 0 0 4] 4] 0 4] [1 Q 4] 4] 4] 0 0 0 [¢] 4]
E TEST [¢] 4] 0 0 0 (4] 0 0 0 1 0 4] 9 9 0 0 0 0 0 0 0 0 0 0
REPOSITION 0 (4} 0 Q 1 0 0 0 0 0 0 0 0 4 0 i D D D 4] 0 4] 0 g
NOTES:
33 32 31 30 = DENSITY, PARITY (PERIPHERAL CONTROLS) IFc=1THEN 28 é 26 = CRC: TRACK IN ERROR TO BE CORRECTED,
_ OR TRACK IN ERROR FROM RESULT
0 0 0 0 = UNIT SELECTED, EVEN DESCRIPTOR
0O 0 O i = UNIT SELECTED, CCO
1 0 0 0 = 800 BPI, EVEN (7-TRACK ONLY:; I) 23 > 16= BLOCK TO SPACE (IN BCD)
1 0 0 1 = 800 BPI, ODD (7- OR 9-TRACK; Il OR 1V)
1 0 1 0 = 556 BPi, EVEN
1 0 1 1 = 556 BPi, ODD (Z-TRACK ONLY; 11}
1 1 4] 0 = 200 BP1, EVEN
1 1 0 1 = 200 BPI, ODD {7- OR 9-TRACK; I1 OR V)
1 1 1 4] = NONE
MV 1671 1 1 1 1 = 1600 BP!, ODD (9-TRACK P.E. ONLY; V OR \2))]

5001290

Figure 11-16. Magnetic Tape IOCW Format
11-23

5001290

B 6800 System Reference Manual
Peripheral Devices and Controls

UE | UE | UE | UE
UE | UE | UE | UE
UE | UE | UE | UE | UE
UE | UE | UE | UE | UE
Ly 40 36 32 28 24 20 16 12 8 L] 0
HEXIDECIMAL
UNIT ERROR
ERROR CODE MEANING I CODES
MEMORY PARITY ERROR 0 0 2 8 0
MEMORY ACCESS ERROR (0] 0 0 8 0
TAPE PARITY ERROR 0 0 0 8 0
WRITE LOCKOUT (OR TAPE MARK)| 0 0 2 0 o
END OF TAPE/BEGINNING 0 0 1 0 0
OF TAPE
SHORT RECORD (1600 BP! TOP) 0 0 4 0 0
LONG RECORD (1600 BPI TOP) 0 0 8 0 0
BLANK TAPE 0 8 0 0 0
MEC NOT READY AFTER TAPE 0 0 1 0 8
MOTION
SYSTEM INTERFACE PARITY 0 0 8 8 0
ERROR
SYSTEM INTERFACE PARITY 0 V] 8 8 0
ERROR BEFORE TAPE MOTION
PERIPHERAL INTERFACE 0 e 4 8 0
PARITY ERROR
PERIPHERAL INTERFACE 0 0 4 8 0
PARITY ERROR BEFORE
TAPE MOTION
NONPRESENT OPTION 0 2 0 0 0

Figure 11-17. Magnetic Tape Result Descriptor Format

11-25

9C—11

HEAD-PER-TRACK . A
DISK FILE DA| DA| DA| DA| DA
o |N¢ DA| DA| DA | DA | DA
0 |SA DA| DA| DA| DA| DA
0 |RW DA| DA| DA | DA | DA
Iyl 16 12 4 0
AN I /' \ | /
STANDARD UNIT
CONTROL CONTROL
FlELD F|ELD 10 CONTROL WORD
UNIT CONTROL
AN
10CW 34 33 32 31 30 29 28 27 26
PERIPHERAL CONTROL BITS
READ 0 o [1) 1 1] (4] 1 MP M (] [i] 0 5 0 o V] 0 o 0 0 0 0 0]
REAL CHECK 0 0 o 1 1 0 1 0 M V] 0 0 5 1 0 (4] 0 0 (1] 0 (4] 1] 0 (4]
WRITE 1] 0 0 0 V] 0 1 0 M 0 0 (1] 5 2 0 [\] 1] (4] (1] 0 o 0 (V] 4]
TEST 0 1] (1] 0 V] 1] 4]] 4] 1 0 1] 9 9 0 1] 0 [1] [+] [¢] o o 0 0
NOTES:
BIT CONFIGURATION: M = MAINTENANCE SEGMENT
37 BIT3SG BITS 25:26 1S DISK ADDRESS, AND REPRESENTS

1] SET SINGLE TAG
1 SET CODE TAG
0
1

SET TRANSFER TAG
SET DOUBLE TAG

=|=lo)

MV1673

A SIX DIGIT BINARY CODED DECIMAL DiSK
FILE SEGMENT ADDRESS

Figure 11-18. Head Per Track Disk File IOCW Format

/

S[OIU0) pUE $301AS(Y [e1aydirog
[enuepy o0udIajay WaISAS 0089 4

5001290

B 6800 System Reference Manual
Peripheral Devices and Controls

UE | UE | UE | UE
0 UE | UE | UE | UE
1 UE | UE | UE | UE | UE
4] UE | UE | UE | UE | UE
Ly 40 36 32 28 24 20 16 12 8
| i
| HEXIDECIMAL |
UNIT ERROR
ERROR CODE MEANING | CODES 'I
NOT READY 0 0 0 0 8
MEMORY ACCESS ERROR 0 0 0 8 0
MEM PARITY ERROR
(READ ERROR) 0 0 2 8 0
BUSY 0 0 1 0 0
WRITE LOCKOUT 0 0 2 0 0
NOT READY DURING OPERATION 0 0 8 0 8
TIMEOUT 0 8 0 0 0o
MV 1674

Figure 11-19. Head Per Track Disk File Result Descriptor Format

11-27

11-28

B 6800 System Reference Manual
Peripheral Devices and Controls

FLEXIBLE DISK

Pl | MI| BK

o ¢} x| T

0 [SA | FS| TT

0 |RW | MP| FT
Ly 4o 36 32 28 24 20 16 12 8]
_ I _/\ I
STANDARD UNIT

CONTROL CONTROL
FIELD FIELD*
NOTE

*DATA TO BE SUPPLIED WHEN AVAILABLE

MV 1675

Figure 11-20. Flexible Disk IOCW Format

5001290

B 6800 System Reference Manual
Peripheral Devices and Controls

UE | UE | UE | UE

0 UE | UE | UE | UE

1 UE | UE | UE | UE | UE

0 UE | UE | UE | UE | UE

LY 40 36 32 28 24 20 16 iz 8 g 0
HEXIDECIMAL |
UNIT ERROR
ERROR CODE MEANING * | CODES * |
]
*DATA TO BE SUPPLIED WHEN AVAILABLE
MV 1676

Figure 11-21. Flexible Disk Result Descriptor Format

11-29

DISK PACK

11-30

< |« |2 |« /J
e |la |a [ag
< < < <
e |a |a |,
< < < <
a |o | a |ay
< < < <
a o |a | &
< < < <
e |a la |ae
< < g <
a la la las
[o0] < o -
N -
> > o Ox
- [+ 2] <
¥
21-E B, J
- | % o
s | k|25
=18 |« |2
o o o

UNIT
CONTROL

STANDARD

CONTROL

FIELD

FIELD

B 6800 System Reference Manual
Peripheral Devices and Controls

10 CONTROL WORD

UNIT CONTROL

24

s1

S1

s1

S1

s1

o~

o A o
] & » @ © «

< <
g @ & < @ °©

o]

[! [} =) o o
@©

2) <) o <) =)
i =} =} o =} =}

- - - -
=4 o > > > ©° >
- o o o
™ °© > > > °

< < v
S o > > > °

] 0 @©
3 > > e > o
-4 I @ &L & &
- - o o
o - © ~ © @
)) w It w =)
o
) o
o o © <) <) -
o 5] © o)
))
) o o))
o o o o -
) -) - o
) o ©) o o
0
E
o
J
o
o
=
z
[*]
O
]
< w w
[id N £
T N
3 > <
Iluw o < w Q
z| 1Z1E = 2 9 F
zl= < E 4 3 o
Q bl S w > w w w
ol ¥l « 2 > T *~

MV1677

Figure 11-22, Disk Pack IOCW Format

B 6800 System Reference Manual
Peripheral Devices and Controls

OPERATION | F1 v8 V4 V2 vi s8 sS4 s2 81
34 33 32 31 30 29 28 27 2% 25 24 DESCRIPTION
WRITE 0 0 0 0 0 0 1 READ AFTER WRITE OPERATION
41=1
37=0 0 0 0 0 4] 0 0 NORMAL WRITE OPERATION
READ 0 0 0 0 0 0 0 1 0 0 READ 1 BINARY ADDRESS AS
44=1 INDICATED BY THE FILE ADDRESS
41=1
0 0 0 0 0 0 0 0 0 0 0 NORMAL READ OPERATION
INITIALIZE 0 0 0 0 1 0 0 0 0 0 0 INITIALIZE DESIGNATED CYLINDER
41=1
35=1 0 0 0 0 0 0 0 0 0 0 0 INITIALIZE ENTIRE PACK
0 0 0 1 0 0 0 0 0 0 0 INITIALIZE DESIGNATED TRACK
0 0 1 0 0 0 0 0 0 0 0 WRITE TEST DATA PATTERN INTO
EACH SECTOR
VERIFY 0 0 0 0 1 0 0 0 0 0 0 VERIFY DESIGNATED CYLINDER
44=1 AND REPORT ALL ERRORS
41=1
35=1 -0 0 0 0 0 0 0 0 0 0 0 VERIFY ENTIRE PACK AND

TERMINATE ON FIRST ERROR

0 4] 0 1 (] 0 0 0 0 0 0 VERIFY DESIGNATED TRACK AND
REPORT ALL ERRORS

0 0 0 0 0 0 0 0 0 0 0 CHECK PARITY ON DATA, ERROR
DETECTION, AND COUNT CHECK
FIELDS

Fry

O 0 0 0] 4] VERIFY DATA PATTERN WITH
PATTERN NORMALLY WRITTEN
DURING INITIALIZATION

(]
(]
Q
[
(o)
<
[

RELOCATE 0 0 0 0 0 0 0 0 0 0 0 BINARY COUNT INDICATING SPARE

43=1 SECTOR ADDRESS 28 THROUGH 32
41=1

TEST 38=1 0 0 0 0 0 0 0 0 c 0 1 PROGRAMMATIC POWER-DOWN

BIT CONFIGURATION:

BITS .
37 36 NOTES:
[¢] 0 SET SINGLE TAG 23:24 iS PACK ADDRESS, AND REPRESENTS A
0 1 SET CODE TAG SIX-DIGIT BINARY CODED DECIMAL DISK
T, 0 SET TRANSFER TAG PACK SEGMENT ADDRESS
1 | 1 SET DOUBLE TAG

MV1678

Figure 11-23. Disk Pack IOCW Unit Control Format

5001290 11-31

11-32

B 6800 System Reference Manual
Peripheral Devices and Controls

Figure 11-24. Disk Pack Result Descriptor Format

UE | UE | UE | UE
0 UE | UE | UE | UE
i UE | UE | UE | UE | UE
0 . UE | UE | UE | UE | UE
Wy fwo 136 32 |28 fau oo he " D2 " lsT (4 o
i
HEXIDECIMAL i
UNIT ERROR

ERROR CODE MEANING CODES II
MEMORY ACCESS ERROR 0 0 0 8 0
ADDRESS PARITY ERROR 0 0] 1 0 0
CONTROLLER IN LOCAL 0 0 1 0 0
DRIVE SEEKING 0 0 2 0 0
FIRST ACTION WITH DRIVE 0 1] 3 0 0
DRIVE BUSY 0 0 4 0 0
SPEED ERROR 0 0 5 8 0
WRITE LOCKOUT 0] 0 5 0 0
DATA ERROR 0 0 5 8 0
SEEK ERROR 0 0 8 0 0
CONTROLLER MALFUNCTION 0 0 8 0 0
DATA PARITY 10 0 0 8 8 0
COMMAND PARITY 0 0 9 8 0
SECTOR TIMEOUT 0 0 9 0 0
LINK PARITY (DPDC-TO-HOST) 0] 9 8 Y
SEEK INITIATED 0 0 A 0] 0
DATA ERROR CORRECTION 0 0 Cc 0] 0
ADDRESS POSITION ERROR 0 4 1 0 0
SEEK TIMEOUT 0 8 8 0 0
DATA PARITY (HTC-TO-DPDC) 0 8 8 8 0
COMMAND PARITY 0 8 8 8 0

(HTC-TO-DPDC)
DATA ERROR RETRY 0 c 8 0 0
MV 1679

062100S

ge—11

5N DISK FILE . ’
Pl | Ml | BK 1v3-2 1SA |SA |SA |SA {SA |SA
ASC
i TX| T V3 SA [SA |[SA |SA |SA [SA
SA FS | TT|V38 V22 |SA |SA |SA [SA |SA |[SA
RW | MP| FT|V34 " JV21|SA [SA [SA |SA |SA [SA
m 4o 36 32 va 24 20 16 12 8 4 0
STANDARD UNIT
CONTROL CONTROL
FIELD FIELD
10 CONTROL WORD
UNIT CONTROL
\
JoCwW 38 33 32 31 30 29 28 27 26 25 24
Vi va_ Vv3 V3 Vi V32
PERIPHERAL CONTROL BITS
WRITE % o 1 ©o o0 o0 o0 &5 o]0 o © oo ©0 0 0 0 ©0 0 0 o0
READ 1 o o 1+ o o o o o}Js 1]o o o o o o o o o o o o
CHECK o o o 1 o o o o ofs 2fo o o o o o o o 0o o0 o0 o
TEST o o © o6 o © 1 o oflea 9]lo o o o o o o 0o o0 0 0 O
NOTES:
BIT CONFIGURATION: BITS 2524 35 2= 24 VARIANT CONTROL FIELD 23 2 0 - SEGMENT ADDRESS
. i 6 BINARY CODED
BITS 0 0 = STORAGE UNITO 33 = V3-8 READ EXTENDED STATUS T ooy WITH
37 36 0 1 = STORAGE UNIT1 32 = V3.4 DISABLE EXTRA REVOLUTION THEMSOIN
. . BITS 23:>20)
s SET SINGLE TAG 1 0 = STORAGE UNIT2 31 = V32 INHIBIT PERIPHERAL DEVICE
0 SET CODE TAG 1 1 = STORAGE UNIT3 30 = V3-1 (NHIBIT ERROR CORRECTION
1 SET TRANSFER TAG % = v2a
1 SET DOUBLE TAG ’ } FILE ADDRESS EXTENSION
24 = v21
MV 1680A

Figure 11-25. 5N Disk File IOCW Format

S[OI}UO)) PUB SAOTAS(Y Teroyduay .
[enuel 20Uy WRISAS OOR9 €

i1-34

B 6800 System Reference Manual
Peripheral Devices and Controls

UE | UE | UE | UE
0 UE | UE | UE | UE
1 UE | UE | UE | UE | UE
0 w o P |2 fes | foo heF [[80F LVE [VE
| |
i HEXIDECIMAL l
UNIT ERROR
ERROR CODE MEANING CODES |'
NOT READY 0 0 0 0 8
WARNING 0 0 1 0 8
WRITE OPERATION—-LOCKOUT
READ OPERATION— DATA 0 0 2 0 0
CORRECTED
DISK EXCHANGE BUSY 0 0 1 0 0
EXTRA REVOLUTION
TEST OPERATION — DISK 0 0 8 0 0
EXCHANGE ID
ADDRESS ERROR FROM DISK 0 0 1 8 0
EXCHANGE
PERIPHERAL BUS PARITY 0 0 2 8 0
ERROR (COMMAND)
TRANSMISSION ERROR 0 0 4 8 0
CONTROLLER PARITY 0 4 0 8 0
WRITE OPERATION —
PERIPHERAL BUS DATA l
PARITY ERROR 0 8 0 8 0
READ OPERATION — $
READ ERROR
MV 1681

Figure 11-26. SN Disk File Result Descriptor Format

GENERAL

B 6800 System Reference Manual

SECTION 12

DATA COMMUNICATIONS SUBSYSTEM

The Data Communications Subsystem (DCS) consists of one or more independently powered B or C size cabinets. The DCS
is not an integral part of the B 6800 operating system, but rather is an optional extension of the B 6800 system
operating capabilities. Through the use of a data communications subsystem, a B 6800 system can service a network
with a maximum of 2048 remote terminals, or data communications lines.

Figure 12-1 shows the various types and the main relationship between the logic modules of the DCS. The logical
modules of the DCS are as follows:

a.

5001290

Data Communications Processor (DCP)

Adapter Cluster II (ACM II)

Line Adapter Module (LA) (AC II type)

Local Memory Module(s) (LM)

Planar Core Local Memory

A DCS must contain at least one DCP, and may
contain up to two DCP modules in a basic B 6800
system, or four DCP’s in an expanded B 6800
system (including a memory port (channel B)
expansion module).

The ACM II module is used to interface up to
16 line adpaters to a DCP module. A DCP may
interface with up to sixteen ACM II modules.

A DCS requires at least one LA module for each
line that is interfaced to the DCP module. If the
remote terminals or lines that are interfaced to
the DCP are fuii dupiex, then two LA’s (two
lines) are required. If the remote lines that are
interfaced to the DCP are half-duplex, or
simplex, then a single line adapter is used for
each line.

A DCS may share the use of B 6800 system memory,
or it may contain memory that is internal to the
DCS (not used by the B6800 system). The DCS
may contain up to four modules of local memory
(96KB), with each local memory module contain-

ing 24KB of memory.

A DCS may contain a cabinet of planar core
local memory instead of local memory modules
(LM’s). A planar core local memory cabinet
contains 393 KB of storage capacity (minimum).

12-1

ranrd!

|-——- 3 ADDITIONAL AC 1l STRINGS
B ER B 6369-56 B 6350-5 B 63595
SCANBUS g CLUSTER It ACHI ACll ACll
INTERFACE 12 ADDITIONAL AC lis
o Beaoo BATA COMM on
N]
MAIN . alfatratsicl 3 BASIC CONTROLS P
OR ONE
HIGH-SPEED
®% B 6353-1/-2 LINE
BROADBAND
CONTROL
OR B 6353
FROM 3 BASIC
ADDITIONAL CONTROL
BASIC CONTROLS
—— OR 1
|] C) B 6353-8
» ADAPTER UP TO
. CLUSTER 8 LINES
?2??39 1 B 6359-3 0
B 63569-2 B 6359-2 B 6359-2 393KB
24KB 24KB 24KB LOCAL
B 6359-1 MEMORY
12KB TO
R YSTEM
~— B 63536 S
INCREMENTS INCREMENTS DATA Comm | DISK EXCHANGE
1.2 345 TO DISK
: iy CONTROL
(INTERNAL (EXTERNAL
TO THE TO THE
DCP) DCP)
* REQUIRED IF B 6352-6 OR TO DCP MAIN D s O
B 6353-7 IS PRESENT MEMORY INTERFACE STORE
CONTROL

* % ANY COMBINATION OF 4 CONTROLS

MV 1682A

Figure 12-1.

-t
MEMORY BUS INTERFACE

TO B 6800 MAIN MEMORY

B 6800 Data Communications Subsystem Block Diagram

we1sAsqng SUOHEOIUNUIWIOY) BIE(
[enuUepy 20UIAJOY WIASAS 0089 €

B 6800 System Reference Manual
Data Communications Subsystem

f. Basic Control ' The basic control provides an interface between
DCP and the Front End Controis (FEC). The five
available FEC’s are:
a. Broadband Binary Syncronous Control (BBSC).
b. Broadband Data Link Control (BDLC).
c. Adapter Cluster III (ACIII).
d. Data Comm to Disk Control (DCDC).
e. Store-to-Store Control (SSC).
The Basic Control can interface up to 4 FECs to the
DCP. There is however a limitation in the combination
of FECs that may be used. The Basic Control can only
handle one DCDC and one SSC.

The Basic Control also provides the path to Planar
Core for the DCP local memory interface.

DATA COMMUNICATIONS PROCESSOR

When the Data Communication Processor (DCP) is connected to Adapter Cluster II Modules (B6359-5) the DCP must
handle all facets of both the transmission and receiving of data.

The DCP formats the communications that are transmitted to, or received from the lines, and it also formats the communi-
cations that are passed between the main system and the DCP. The DCP makes determinations of priority for the com-
munications lines, conducts line polling operations, detects errors in line data or line discipline, and maintains status
information about the communications lines connected to the ACMII(s).

When the DCP is connected to the basic control (B 6353) the DCP, under the direction of system software, sends
control information to the front end controls. Once a front end control has received the control information it
performs all controlling operations (disk write or memory write operations, line polling, line selecting, and line
procedures), independently of the DCP. All priority resolution between requesting units is resolved by the basic
control.

The DCP executes special machine language operator codes to perform its functions. The functions described above are
encoded into groups of these machine language operators, and are stored in the local memory of the DCP. The encoded
machine language functions are performed by the DCP on an “as required basis”, and are essentially driven into execution
by the detection of a pre-defined set of conditions.

The DCP is semi-autonomous in performing its functions. That is, the main system must initiate the operation of the
DCP, or stop the DCP operation. Once the main system has initiated the DCP, the DCP will perform its normal func-
tions until it receives a stop operation input from the main system, or until the DCP detects a non-recoverable operating
condition. The detection of a non-recoverable condition will cause the DCP to branch to an error handling procedure
located in main system memory. The DCP will cause a HEYU interrupt in the multiplexor and the interrupt level in the
multiplexor will cause the main system to interrogate the DCP condition. In this manner, the main system will handle
non-recoverable operating conditions in the data communications subsystem.

5001290 12-3

B 6800 System Reference Manual
Data Communications Subsystem

TERMINAL DEVICES

A terminal device is a hardware input/output device that is used to conduct two-way communications between itself, and a
central system, or another terminal device. Terminals adhere to a preselected line discipline while performing their
two-way communication. A line discipline is a set of hardware and software rules that establish the conditions under
which communications are conducted between a terminal and the central system, or another terminal.

The line discipline for a communications line includes the format of the information and control signals that are trans-
mitted through the line, and also the method for transmitting data over the line. The physical characteristics of the
line, which determines the method that is used to transmit data over the line, are embodied in the hardware construction
of the line adapter modules, and the adapter clusters. Each line adapter module in the DCS must be selected on the

basis of the type of discipline that is to be practiced in exercising communications. There are five different types of line
adapters used in an ACM Il module, as follows:

a. Adapter-Data Set Connect.
b. Adapter-Direct Connect.
c. Adapter-Auto Call (dial in/out).
d. Adapter Connector Full-Duplex/Reverse Channel.
There are three different line adapters that can be used in the AC III module, as follows:
a. Adapter-Data Set Connect.
b. Adapter-Direct Connect.
c. Adapter-Auto Call (dial in/out).

The selection of a line discipline to be practiced for a data line is a user option. The user of a DCS must specify the
characteristics of the data line adapters to be used, for each line in the DCS network.

BASIC CONTROL

The basic control provides an interface between the front end controls and the data communications processor. It
connects directly to the DCP for the transfer of control information and has a path to the DCP local memory for
message handling. Each basic control utilizes a cluster interface position within the DCP and will service any combi-
nation of four of the following new controls:

BROADBAND CONTROL

Each Broadband Control (BBC) operates asynchronously with the DCP and services one data communications line ranging
from 19,200/BPS to 1,344,000/BPS. The BBC will support either binary synchronous or Burroughs Data Link Control
line procedures and communicates with the DCP at the message level.

DATA COMM TO DISK CONTROL

This control provides the data comm subsystem with the capability to support network continuation, audit and recovery
through disk tarking. This allows network message auditing and the reception and accumulation of messages in the
event of a system failure and is intended to provide this function for a limited time until the central system becomes
operational again. The Data Comm to Disk Control interfaces to a 23 millisecond head-per-track disk file subsystem shared
by the main system, thereby providing a common storage area for subsequent system access.

12-4

B 6800 System Reference Manual
Data Communications Subsystem

STORE-TO-STORE CONTROL

This control provides high-speed block transfer of messages between the DCP Planar Core local memory dedicated to the
DCS, and the main system memory independent of DCP operation. This further distribution of message handling increases
the throughput of the data communications subsystem.

ADAPTER CLUSTER IIl

The Model III adapter cluster provides a facility for the asynchronous control of up to eight half-/full-duplex lines at
speeds of up to 9600 BPS. AC III optimizes line procedures for Burroughs terminal equipment by supporting data trans-
mission according to standard Burroughs line protocols. The AC III communicates with the DCP at the message level.

- DATA COMMUNICATIONS SUBSYSTEM SCAN BUS INTERFACE

The DCS is a semi-autonomous subsystem. After the B 6800 CPU has initialized the DCS, the subsystem conducts data
communications operations in an autonomous and independent manner, until the CPU directs that such operations are
to be terminated. Thus, except for controlling the start and stop operations, the B 6800 CPU does not exercise control
over the DCS.

The interface that is used by the B 6800 CPU to communicate control data to the DCS is the external subsystem scan
bus. This external scan bus is defined and discussed in section five of this manual. The scan bus instructions that are
passed to a DCS from the B 6800 CPU are as follows:

DCP (EXTERNAL) SCAN BUS ADDRESS.

19:2 =

7:3 = DCP SCAN FUNCTION CODE.

43 = DCP UNIT ID NUMBER.
0 INSTRUCTION

- BASE ADD
0 FOR DCP
0 12 8 4 0
MV1691

SCAN OUT INITIALIZE DCP

The CPU executes the scan out initialize DCP operation to cause the DCS to begin data communications operations.

The scan function word is present in the top of stack register of the data processor when the SCNO (954B) is executed.
The data word, which is the second word in the data processor stack registers, specifies the beginning address of the

DCS instructions, in the B 6800 system main memory. If the DCS contains local DCS memory, the data communications

5001290 12-5

B 6800 System Reference Manual
Data Communications Subsystem

operator code will be transferred from the main memory of the B 6800 system to the DCS local mamory, where the
DCS will proceed to execute the programmed code. If the DCS does not contain local memory, the DCS will proceed to
fetch its program code from the main B 6800 system memory, a word at a time, and to execute the program code.

Once the B 6800 system has caused the DCS to be initialized, the DCS will continue to operate in an autonomous
manner until an interrupt occurs, or until the CPU directs that the DCS is to stop operations. The CPU executes a scan
out halt command to the DCS, as follows:

s

19:2 = DCP (EXTERNAL) SCAN BUS ADDRESS.
7.3 = DCP SCAN FUNCTION CODE.
43 = DCP UNIT ID NUMBER.

MV1692
SCAN-OUT HALT DCP

The DCP halt function word is present in the data processor when the SCNO (954B) instruction is executed by the CPU.
No data word is used for this DCS control operation. This command causes the DCP to stop operations at the end of
the present DCS command, and to respond by causing an interrupt to be present in the external subsystem interrupt col-
lector logic of the multiplexor. The DCS will not resume operations until the CPU scans out an initialize instruction.

The B 6800 system has a way to pass information to the DCS without causing the DCS to stop operating, through the
use of the scan out attention needed instruction. This instruction is executed in the same way as the halt scan out
command is executed, with the following function word present in the data processor top of stack register.

1 1 D
0 1 0]D
0 01D
0 Jus fbo 36 432 [28 Jou J20 J16 hz |8 4 0 1

19:2 = DCP (EXTERNAL) SCAN BUS ADDRESS.
7.3 = DCP SCAN FUNCTION CODE.
4:3 = DCP UNIT ID NUMBER.

SCAN-QUT SYSTEM ATTENTION NEEDED

12-6

B 6800 System Reference Manual
Data Communications Subsystem

When the DCS receives the attention needed scan out instruction, it looks in a memory queue (a predetermined location
in local memory) for the text of the system information. The DCS will handle the information that it finds in the

memory queue, in the manner specified.

The Set IBA command is only used within the Enhanced Data Comm environment and is a variation of the initialize
command. The CPU executes the “Set IBA” only after the B 6800 has been reinitialized after an operational interruption
(HALT/LOAD). When the DCP detects the B 6800 is not operational, the DCS goes into a special running operation so
that incoming information is not lost.

The “Set IBA” command passes a 20-bit Instruction Base Address to the DCP, to indicate where the DCP instruction code
is located. Unlike the initialize command, the “Set IBA” command does not cause the DCP to fetch instruction words
from the system memory. If the DCP is running when the “Set IBA” occurs then the CPU must also issue a system at-
tention needed, so that the DCP will utilize the new IBA.

DCP (EXTERNAL) SCAN BUS ADDRESS.

-—

©

N
[

DCP UNIT ID NUMBER.

W
W G
"

INSTRUCTION
BASE —
ADDRESS

MV1694
SCAN-OUT SET iBA (ENHANCED DATA COMM ONLY)

DATA COMMUNICATIONS SUBSYSTEM MEMORY INTERFACE

In addition to the external scan bus interface, the DCS shares a memory interface to channel B of the memory control,
in the CPU cabinet. If the number of external subsystem units that are connected to channel B of the memory control
is one or two subsystems, then the subsystems are interfaced directly to the memory control, in parallel. These subsys-
tems contend with each other for access to the main system memory resources. If the number of subsystems that are
interfaced to the memory control is three or more, then a memory port expansion module must be used to control
memory access contention between the external subsystems.

5001290 12-7

B 6800 System Reference Manual
Data Communications Subsystem

If two external subsystems share the channel B inferface to main system memory, the two subsystems must control the
use of the memory bus such that only one subsystem may access memory at any one time. A special memory bus
control interface is connected between the subsystems that share the memory bus for access to main system memory.
Whenever one of the two subsystems is accessing memory, a signal on the special memory control bus causes the other
subsystem to be denied access to memory until the access to memory is completed. If both subsystems attempt to
access memory at the same time, then one subsystem will have priority, and will be granted use of the bus, while the

other subsystem will be forced to wait until the first subsystem has completed its access of memory.

12-8

B 6800 System Reference Manual

SECTION 13

B 6800 BUS INTERFACE CONTROL (READER/SORTER SUBSYSTEM)

THE BIC MODULE .

The Bus Interface Control (BIC) is a component of the B 6800 that is used to interface a Reader/Sorter network to the

main B 6800 system. The BIC is housed in a single independently powered cabinet. A BIC cabinet is not an integral

part of the B 6800 system, but interfaces an operating subsystem of the B 6800. Through the use of a BIC, the B 6800
system controls the operations of up to three Reader Sorter Processors (RSP), and indirectly controls the operations of
up to 12 Reader/Sorter input/output devices that are attached to the RSPs. The RSP has access to the memory resources
of the B 6800 system through the memory interface of the BIC module.

The B 6800 system communicates control instructions to a BIC module through use of the external scan bus interface of
the CPU. A maximum of four external subsystems may share the use of the external scan bus interface to the B 6800.
These four external subsystems may be a combination of data communications subsystems, and BIC subsystems. How-
ever, multiple BIC’s may not be used in the same configuration with multiple data communication subsystems.

Figure 13-1 shows a single BIC module, and the maximum units (RSP’s and Reader/Sorter IO devices) that may be inter-
faced with the B 6800 system through the use of a single BIC module subsystem. Although this figure shows that up to
three RSP’s may be interfaced to a single BIC, typical current installations only interface one or two RSP’s to a BIC
module.

BUS INTERFACE CONTROL SCAN BUS INTERFACE

The B 6800 system uses the external scan bus interface of the CPU to pass control information and instructions to the
BIC subsystem. The control information and instructions that are passed to the BIC on the external scan bus interface

QAT

originate in the data processor top of stack registers. The data processor executes a SCNI (954A), or a SCNO {(954B)
operator to cause the external scan bus address lines to assume the value of the top word in the data processor stack registers
(which is the scan function word). If the operator code that was performed in the data processor was a SCNO operator, the
second word in the top of stack registers (the scan data word) is also passed to the external scan bus. If the operator
code that was performed in the data processor was a SCNI operator, the BIC responds by placing a word of data in the
second word of the top of stack registers in the data processor.

SCAN OUT FUNCTIONS

Figure 13-2 shows the format of the scan out function word located in the top of stack register of the data processor at

the start of a data processor scan out operation. There are six different function codes that may be contained in: the
scan out function word.

a. Scan Address Required (set scan address) function.
b. Set RSP Interrupt function.

c. Set Bounds Registers function.

d. Halt RSP function.

e. Clear-load RSP function.

f. RSP (Port) Lockout function.

5001290 13-1

B 6800 System Reference Manual
B 6800 Bus Interface Control (Reader/Sorter Subsystem)

RE TO READER
— soé\'?gg SORTER 10
PROCESSOR DEVICES
MEMORY BUS INTERFACE
-
SCAN BUS INTERFACE
Y
READER READER
SORTER SORTER
T 10 10
‘1’0‘“ — DEVICE DEVICE
INTERRUPT LINE BUS PORT READER
- INTERFACE @] SORTER
CONTROL 2 PROCESSOR
PORT
3 READER READER
SORTER SORTER
10 10
DEVICE DEVICE
TO READER
—— READER SORTER 10
SORTER DEVICES
PROCESSOR
MV 1683

Figure 13-1. BUS Interface Subsystem Modules

The Set Scan Address function is used by the B 6800 system as part of the subsystem-to-main-system synchronization
process (hand shaking). The B 6800 system performs extensive synchronization (hand shaking) operations during the
initialization process because the RSP is a small system processor which operates asynchronously, with respect to the

B 6800 system. The RSP executes micro-operator code command instructions which are contained in an M memory that
is internal to the RSP, and cannot be accessed directly by the B 6800 system. The data word that is passed to the BIC

by this scan out command is controlled by the system software and is not defined by a fixed hardware word format.

The set RSP interrupt function is used by the B 6800 system software control procedures to pass software control
information to the RSP during normal subsystem operations. The software control information is contained in the scan
out function word, and no data word is passed to the BIC.

The set bounds registers function is used to establish the boundries of the area in B 6800 main system memory that may
be accessed by the BIC. The bounds data word (see figure 13-3) includes both a lower, and an upper address boundry.
The BIC compares a memory address with the two bounds values, and detects an error condition if the memory address
is not within the range of addresses specified by the bounds. The bounds function is used to protect the B 6800 system

_against inadvertent accessing of reserved memory addresses by the BIC.

13-2

50:3

19:4

15:5

10:2

8:4

3:3

0:1

MV 1684

5001290

B 6800 System Reference Manual
B 6800 Bus Interface Control (Reader/Sorter Subsystem)

SC| F U

RSP] F U

RSP

w

TAG FIELD.

THIS FIELD IS ALWAYS EQUAL TO ZERO.

BIC SCAN BUS IDENTIFICATION CODE. THIS FIELD IS ALWAYS
EQUAL TO A(HEX) FOR BIC SCAN BUS OPERATIONS
SOFTWARE CONTROL FIELD.

00000 = WAIT. B 6800 MEMORY DUMP IN PROGRESS
00001 = MEMORY DUMP FINISHED
00010 = NORMAL INTERRUPT
00011 = PAUSE. (INSTRUCTS RSP TO WAIT)
00100 = CLEAR
00101 = RSP MEMORY DUMP IN PROGRESS
RSP IDENTIFICATION CODE
00 = INVALID CODE
01 = RSPNO.1(PORT 1)

10 RSP NO. 2 (PORT 2}
11 =

= RSP NO. 3 (PORT 3}

BIC FUNCTION CODE FIELD.
0000 = SCAN ADDRESS REQUIRED FUNCTION

0010 = SET RSP INTERRUPT
g100 = SET BOUNDS REGISTERS
1000 = HALT RSP

1010 = CLEAR-LOAD RSP

1110 = RSP {(PORT) LOCKOUT

BIC UNIT IDENTIFICATION FIELD. A B 6800 SYSTEM MAY HAVE
FROM 1 THROUGH 7 BIC UNITS ATTACHED

000 = INVALID CODE
001 = BICUNIT NO. 1
010 = BIC UNIT NO. 2
Gi1 = BICUNITNG. 3
100 = BIC UNIT NO. 4
101 = BICUNITNO.5
110 = BICUNIT NO. 6
111 = BICUNITNO.7

THIS BIT IS REQUIRED TO BE A BINARY 1 VALUE

Figure 13-2. BIC Scan-Out Function Word

13-3

B 6800 System Reference Manual
B 6800 Bus Interface Control (Reader/Sorter Subsystem)

us| UBjuUB|UB]LB|LB|LB|LB|LB

usl uBjuBl UBJLB LB |LB|LB|LB

UB| UB|UB| UB]JLB|LB |LB|LB|LB

usl uUBjuUBjUB]LB|LB|LB|LB|LB
32 |28 24 20 fe iz |8 4 0

UB = UPPER BOUNDS LB = LOWER BOUNDS
MV 1685

Figure 13-3. Set Bounds Registers Data Word

The halt RSP function is used to cause the RSP to stop processing information from the reader/sorter devices. This
function is not normally performed because the RSP lockout function accomplishes the same thing, and is utilized instead
of the halt function.

The clear-load RSP function is used by the B 6800 system to cause an RSP to begin operations. This function passes a
data word (see figure 13-4) to the BIC, which contains an address, and a length (word count) field. The address field
defines the base address of an area in main system memory that contains the RSP program data. The word count field
specifies how many words of main system memory are used to contain the RSP program data. The BIC accesses the
program data in main system memory, and loads a copy of the program into the local (S) memory of the RSP, beginning
in address zero. When the BIC has loaded the control program data into the (S) memory of the RSP, the RSP branches
to address zero of its S memory and proceeds to execute the instructions which it contains. Thus, the clear-load func-
tion is used to start the RSP into execution of a B 6800 main system directed sequence of operations.

The RSP lockout function is used to cause the RSP to stop operating. Figure 13-1 shows that the BIC has three ports
through which an RSP is interfaced to the B 6800 system. When a port lockout function is performed, the port of the
BIC that is specified (in the RSP field of the function word) is locked out, and the interface path between the main

B 6800 system and the RSP that is attached to the port is broken. The RSP has no provision for causing the interface
through a locked out port of the BIC to be resumed, therefore the RSP that is associated with the port is effectively
eliminated from the subsystem, and has no effect upon the operation of other RSP’s (ports) in the subsystem. The data
word that is passed to the BIC by this scan out command is not specified.

SCAN IN FUNCTIONS

Figure 13-5 shows the format of the scan in function word that is located in the top of stack register of the data

£

processor at the start of a data processor scan oui operation. There are two different function codes that may be con-
tained in the scan in function word, as follow:

a. Scan Address Required (set scan address) function.
b. Read BIC Status functien.

The Scan Address function is used by the B 6800 system as a part of the hand shaking procedures, for synchronization
of the subsystem to the main system, during the initialization process of the start up procedures. When the scan address

13-4

B 6800 System Reference Manual

B 6800 Bus Interface Control (Reader/Sorter Subsystem)

WC| WC]MA| MA| MA| MA| MA

WwC | WC T MA | MA' | MA | MA | MA

WC | WCIMA | MA| MA| MA| MA

WC | WC [MA|I MA | MA| MA| MA
24 20 16 12 8 Lt 0

WC = WORD COUNT MA = MEMORY ADDRESS

MV 1686

Figure 13-4. Clear-Load Data Word

1 F u
0 0 F u
0 1 F U
1] 0 F 1
L 40 36 32 28 24 20- p& p2 8 4 0
50:3 = TAGFIELD.
ALWAYS EQUAL TO ZERO
19:4 = BIC SCAN BUS IDENTIFICATION CODE. THIS FIELD IS
ALWAYS EQUAL TO A (HEX) FOR BIC SCAN BUS
OPERATIONS
8:4 = BIC FUNCTION CODE FIELD
0000 = SCAN ADDRESS
1100 = READ BIC STATUS
3:3 = BICUNIT IDENTIFICATION FIELD
000 = INVALID UNIT IDENTIFICATION
001 = BICUNIT NO.1
010 = BIC UNIT NO. 2
011 = BICUNIT NO. 3
100 = BICUNIT NO. 4
101 = BICUNITNO.5
110 = BICUNITNO.6
111 = BICUNIT NO.7
MV 1687

5001290

Figure 13-5. BIC Scan-In Function Word

13-5

B 6800 System Reference Manual
B 6800 Bus Interface Control (Reader/Sorter Subsystem)

function is performed, the RSP responds by transmitting a data word to the B 6800 system. The form of the data word
is not specified, because the information contained in the word is only significant to the B 6800 software operating
system.

The scan in Read BIC Status function causes the BIC to respond to the B 6800 system by placing a BIC status word in

the second word of the data processor top of stack registers. The format of the BIC status word is shown in figure 13-6.

There are three fields of information that give status information about one or more of the BIC ports. Each port status
field consists of five bits of data that have the following meaning:

P1, P2, P3 The Pn (RSP powered off) bit is set if the corresponding RSP is powered off.

PL1, PL2, PL3 The PLn (Port n Locked Out) bit is set if the corresponding port is locked out, or the RSP has
been halted. (If an RSP is powered off then the corresponding PLn bit will be set.)

T1,T2, T3 The Tn (RSP Memory Access Timeout) bit is set if a timeout has occurred for the corresponding
RSP during a memory access.

11,12, I3 The In (Interrupt from RSP number n) bit is set if the corresponding RSP has sent an
interrupt to the B 6800 system.

El, E2, E3 The En (Exception) bit is set if a corresponding PLn, Tn, or In bit is set in this status word
for a corresponding port status report.

If any one of the three port adapter cards of the BIC are not installed in the BIC then the corresponding port status
field in the BIC status response word is not used, and all bits for that port status are reset.

BUS INTERFACE CONTROL MEMORY INTERFACE

In addition to the external scan bus interface, the BIC shares a memory interface to channel B of the memory control, in

the CPU cabinet. If the number of external subsystems that are interfaced to channel B of the memory control is one or

two subsystems, then the subsystems are interfaced directly to the memory control, in parallel. These subsystems contend
with each other for access to the main system memory resources. If the number of subsystems that are interfaced to the

memory control is three or four, then a memory port expansion module is required to control memory access contention

between the external subsystems.

The BIC module contains bounds checking logic circuits to protect the B 6800 system against inadvertent overwriting of
a memory address. This inadverient overwriting could otherwise occur because the memory addresses that are accessed

RSP3 RSP2 RSP1

Figure 13-6. Read BIC Status Response

—
v
[«

B 6800 System Reference Manual
B 6800 Bus Interface Control (Reader/Sorter Subsystem)

by the BIC are automatically incremented when the memory transfer is initiated. The bounds checking logic of the
BIC prevent this condition from occurring. The bounds limits are assigned to a BIC by the B 6800 system MCP,
and are dynamic in nature. The MCP will determine how much memory a BIC will be able to access, and will

set the bounds registers of the BIC accordingly. The process of setting the memory bounds within a BIC subsystem
were defined previously in this section of this manual, in the subsection titled Scan Out Functions.

If two external subsystems share the channel B interface to main memory, in parallel, then the two subsystems must con-
trol the use of the memory bus such that only one of the two subsystems may access memory at any one time. A special
memory control interface bus is connected between the two subsystems that are connected in parallel. Whenever one of
the two subsystems is accessing memory, a signal on this special memory control bus causes the other subsystem to be
denied access to memory. If both of the subsystems try to access memory at the same time, one of the subsystems will
have priority for the use of the memory bus, and the other subsystem will have to wait until the one that has priority

has completed its access, before being allowed to access memory.

5001290 13-7

B 6800 System Reference Manual

APPENDIX A
OPERATORS, ALPHABETICAL LIST

Name

ADD

BIT RESET

BIT SET

BRANCH FALSE

BRANCH TRUE

BRANCH UNCONDITIONAL

CHANGE SIGN BIT

COMPARE CHARACTERS EQUAL DESTRUCTIVE
COMPARE CHARACTERS EQUAL, UPDATE
COMPARE CHARACTERS GREATER OR EQUAL,
DESTRUCTIVE

COMPARE CHARACTERS GREATER OR EQUAL,
UPDATE

COMPARE CHARACTERS GREATER, DESTRUCTIVE
COMPARE CHARACTERS GREATER, UPDATE
COMPARE CHARACTERS LESS OR EQUAL,
DESTRUCTIVE

COMPARE CHARACTERS LESS OR EQUAL, UPDATE
COMPARE CHARACTERS LESS, DESTRUCTIVE
COMPARE CHARACTERS LESS, UPDATE
COMPARE CHARACTERS NOT EQUAL,
DESTRUCTIVE

COMPARE CHARACTERS NOT EQUAL, UPDATE
CONDITIONAL HALT (all modes)

COUNT BINARY ONES

DELETE TOP OF STACK

DISABLE EXTERNAL INTERRUPT

DIVIDE

DOUBLE LOAD A

DOUBLE LOAD A INCREMENT

DOUBLE LOAD B

DOUBLE LOAD B INCREMENT

DOUBLE LOAD C

DOUBLE LOAD C INCREMENT

DOUBLE STORE A

DOUBLE STORE A INCREMENT

DOUBLE STORE B

DOUBLE STORE B INCREMENT

DOUBLE STORE C

DOUBLE STORE C INCREMENT

DUPLICATE TOP OF STACK

DYNAMIC BIT RESET

DYNAMIC BIT SET

DYNAMIC BRANCH FALSE

DYNAMIC BRANCH TRUE

5001290

Mnemonic

ADD

BRST
BSET

BRFL
BRTR
BURN
CHSN
CEQD
CEQU

CGED

CGEU
CGTD
CGTU

CLED
CLEU
CLSD

NT QTT
A 92

CNED
CNEU
HALT
CBON
DLET
DEXI
DIVD
DLA
DLAI
DLB
DLBI
DLC
DLCI
DSA
DSAI
DSB
DSBI
DSC
DSCI
DUPL
DBRS
DBST
DBFL
DBTR

Hexa-
Decimal

_Code

80
9E
96
A0
Al
A2
8E
F4
FC

F1

FA

F3
FB
FO

™,

r

F5
FD
DF
95BB
B5
9547
83
EO
E9
E2
EB

ED
F8

FA
FB
FC
FD
B7

9F
97

A8
A9

B 6800 System Reference Manual
Operators, Alphabetical List

Name Mnemonic
DYNAMIC BRANCH UNCONDITIONAL DBUN
DYNAMIC FIELD INSERT DINS
DYNAMIC FIELD ISOLATE DISO
DYNAMIC FIELD TRANSFER DFTR
DYNAMIC SCALE LEFT DSLF
DYNAMIC SCALE RIGHT FINAL DSRF
DYNAMIC SCALE RIGHT ROUND DSRR
DYNAMIC SCALE RIGHT SAVE DSRS
DYNAMIC SCALE RIGHT TRUNCATE DSRT
ENABLE EXTERNAL INTERRUPTS EEXI
END EDIT (edit mode) ENDE
END FLOAT (edit mode) ENDF
ENTER ENTR
EQUAL EQUL
ESCAPE TO 16-BIT INSTRUCTION VARI
EVALUATE EVAL
EXCHANGE EXCH
EXECUTE SINGLE MICRO, SINGLE POINTER
UPDATE EXPU
EXECUTE SINGLE MICRO, DESTRUCTIVE EXSD
EXECUTE SINGLE MICRO, UPDATE EXSU
EXIT EXIT
EXTENDED MULTIPLY MULX
FIELD INSERT INSR
FIELD ISOLATE ISOL
FIELD TRANSFER FLTR
GREATER THAN GRTR
GREATER THAN OR EQUAL GREQ
IDLE UNTIL INTERRUPT IDLE
INDEX INDX
INDEX AND LOAD NAME NXLN
INDEX AND LOAD VALUE NXLV
INPUT CONVERT, DESTRUCTIVE ICVD
INPUT CONVERT UPDATE ICVU
INSERT CONDITIONAL (edit mode) INSC
INSERT DISPLAY SIGN (edit mode) INSG
INSERT MARK STACK IMKS
INSERT OVERPUNCH (edit mode) INOP
INSERT UNCONDITIONAL (edit mode) INSU
INTEGER DIVIDE IDIV
INTEGERIZE, ROUNDED NTGR
INTEGERIZE, TRUNCATED NTIA
INTEGERIZE, ROUNDED DOUBLE-PRECISION NTGD
INVALID OPERATOR (all modes) NVLD
LEADING ONE TEST L0G2
LINKED LIST LOOKUP LLLU
LESS THAN LESS
LESS THAN OR EQUAL LSEQ
LIT CALL ONE ONE

A2

Hexa-
Decimal
Code

AA
9D
9B
99
Cl
C7
c9
Cs
C3
9546
DE
D5
AB
8C
95
AC
B6

DD
D2
DA
A3
8F
9C
9A
98
8A
89
9544
A6
AS

CA
CB
DD
D9
CF
D8
DC
84
87
86
9587

FF
958B
95BD
88
8B

Bl

B 6800 System Reference Manual
Operators, Alphabetical List

Name

LIT CALL ZERO

LIT CALL 8 BITS

LIT CALL 16 BITS

LIT CALL 48 BITS

LOAD

LOAD A

LOAD A INCREMENT

LOADB

LOAD B INCREMENT

LOADC

LOAD C INCREMENT

LOAD TRANSPARENT

LOGICAL AND

LOGICAL EQUAL

LOGICAL EQUIVALENCE
LOGICAL NEGATE

LOGICAL OR

MAKE PROGRAM CONTROL WORD
MARK STACK

MASKED SEARCH FOR EQUAL
MOVE CHARACTERS (edit mode)
MOVE NUMERIC UNCONDITIONAL (edit mode)
MOVE TO STACK

MOVE WITH FLOAT (edit mode)
MOVE WITH INSERT (edit mode)
MULTIPLY

NAME CALL

NO OPERATION (all modes)
NORMALIZE

NOT EQUAL

OCCURS INDEX

OVERWRITE DESTRUCTIVE
OVERWRITE NON-DESTRUCTIVE
PACK DESTRUCTIVE

PACK UPDATE

PUSH DOWN STACK REGISTERS
READ AND CLEAR OVERFLOW FLIP FLOP
READ COMPARE FLIP FLOP
READ PROCESSOR IDENTIFICATION
READ PROCESSOR REGISTER
READ TAG FIELD

READ TRUE/FALSE FLIP FLOP
READ WITH LOCK

REMAINDER DIVIDE

RESET FLOAT (edit mode)
RETURN

ROTATE STACK DOWN

ROTATE STACK UP

5001290

Mnemonic

ZERO
LT8
LTi6
LT48
LOAD
LDA
LDAI
LDB
LDBI
LDC
LDCI
LODT
LAND
SAME
LEQV
LNOT
LOR
MPCW
MKST
SRCH
MCHR
MVNU

MVST
MFLT

avax xsx

MINS
MULT
NAMC
NOOP
NORM
NEQL
OCRX
OVRD
OVRN
PACD
PACU
PUSH
ROFF
RCMP
WHOI
RPRR
RTAG
RTFF
RDLK
RDIV
RSTF
RETN
RSDN
RSUP

Hexa-
Decimal
Code

BO
B2
B3
BE
BD

El
E2
E3

E5
95BC
90
94

93

92

91
BF
AE
95BE
D7
Dé6
9SAF

i

s

82
40=7F
FE
9358E
8D
9585
BA

BB

D1

D9

D7
95B3
954E
95B8
95B5
DE
95BA
85

A7
95B7
95B6

A3

B 6800 System Reference Manual
Operators, Alphabetical List

Name

SCALE LEFT

SCALE RIGHT FINAL

SCALE RIGHT ROUNDED

SCALE RIGHT SAVE

SCALE RIGHT TRUNCATE

SCAN IN

SCAN OUT

SCAN WHILE EQUAL, DESTRUCTIVE

SCAN WHILE EQUAL, UPDATE

SCAN WHILE FALSE, DESTRUCTIVE

SCAN WHILE FALSE, UPDATE

SCAN WHILE GREATER OR EQUAL, DESTRUCTIVE
SCAN WHILE GREATER OR EQUAL, UPDATE
SCAN WHILE GREATER, DESTRUCTIVE
SCAN WHILE GREATER, UPDATE

SCAN WHILE LESS OR EQUAL, DESTRUCTIVE
SCAN WHILE LESS OR EQUAL, UPDATE
SCAN WHILE LESS, DESTRUCTIVE

SCAN WHILE LESS, UPDATE

SCAN WHILE NOT EQUAL; DESTRUCTIVE
SCAN WHILE NOT EQUAL, UPDATE

SCAN WHILE TRUE, DESTRUCTIVE

SCAN WHILE TRUE, UPDATE

SET DOUBLE TO TWO SINGLES

SET EXTERNAL SIGN

SET INTERVAL TIMER

SET PROCESSOR REGISTER

SET TAG FIELD

SET TO DOUBLE-PRECISION

SET TO SINGLE-PRECISION, ROUNDED

SET TO SINGLE-PRECISION, TRUNCATED
SET TWO SINGLES TO DOUBLE

SKIP FORWARD DESTINATION
CHARACTERS (edit mode)

SKIP FORWARD SOURCE CHARACTERS (edit mode)
SKIP REVERSE DESTINATION
CHARACTERS (edit mode)

SKIP REVERSE SOURCE CHARACTERS (edit mode)
STEP AND BRANCH

STORE A

STORE A INCREMENT '
STORE B

STORE B INCREMENT

STOREC

T, DD N INIMNADTDAATANTT
STORE C INCREMENT

STORE DESTRUCTIVE
STORE NON-DESTRUCTIVE
STRING ISCLATE

A4

Mnemonic

SCLF
SCRF
SCRR
SCRS
SCRT
SCNI
SCNO
SEQD
SEQU
SWED
SWFU
SGED
SGEU
SGTD
SGTU
SLED
SLEU
SLSD
SLSU
SNED
SNEU
SWTD
SWTU
SPLT
SXSN
SINT
SPRR
STAG
XTND
SNGL
SNGT
JOIN

SFDC
SFSC

SRDC
SRSC
STBR
STA
STAI
STB
STBI
STC

T
i1uvl

STOD
STON
SISC

Hexa-
Decimal

Code

Co
Cé6
C8
C4
Cc2
954A
954B
95F4
95FC
95D4
95DC
95F1
95F9
95F2
95FA
95F3
95FB
95F0
95F8
95F5
95FD
95D5
95DD
9543
D6
9545
95B9
95B4
CE
CD
CC
9542

DA
D2

B 6800 System Reference Manual
Operators, Alphabetical List

Name

STUFF ENVIRONMENT

SUBTRACT

TABLE ENTER EDIT, DESTRUCTIVE

TABLE ENTER EDIT, UPDATE

TRANSFER UNCONDITIONAL, DESTRUCTIVE
TRANSFER UNCONDITIONAL, UPDATE
TRANSFER WHILE EQUAL, DESTRUCTIVE
TRANSFER WHILE EQUAL, UPDATE
TRANSFER WHILE GREATER OR EQUAL,
DESTRUCTIVE

TRANSFER WHILE GREATER OR EQUAL, UPDATE

TRANSFER WHILE GREATER, DESTRUCTIVE
TRANSFER WHILE GREATER, UPDATE

TRANSFER WHILE LESS OR EQUAL, DESTRUCTIVE

TRANSFER WHILE FALSE, DESTRUCTIVE
TRANSFER WHILE FALSE, UPDATE
TRANSFER WHILE TRUE, DESTRUCTIVE
TRANSFER WHILE TRUE, UPDATE
TRANSFER WHILE LESS OR EQUAL, UPDATE
TRANSFER WHILE LESS, DESTRUCTIVE
TRANSFER WHILE LESS, UPDATE
TRANSFER WHILE NOT EQUAL, DESTRUCTIVE
TRANSFER WHILE NOT EQUAL, UPDATE
TRANSFER WORDS OVERWRITE DESTRUCTIVE
TRANSFER WORDS OVERWRITE UPDATE
TRANSFER WORDS, DESTRUCTIVE
TRANSFER WORDS, UPDATE

TRANSLATE

UNPACK ABSOLUTE, DESTRUCTIVE
UNPACK ABSOLUTE, UPDATE

UNPACK SIGNED, DESTRUCTIVE

UNPACK SIGNED, UPDATE

VALUE CALL

VECTOR BRANCH

VECTOR MODE ENTER MULTIPLE

VECTOR MODE ENTER SINGLE

VECTOR MODE EXIT

5001290

Mnemonic

STFF

SUBT

TEED
TEEU
TUND
TUNU
TEQD
TEQU

TGED
TGEU
TGTD
TGTU
TLED
TWFD
TWFU
TWID
TWTU
TLEU
TLSD

TLSU

TNED
TNEU

TUW/NTY
LYY

TWOU
TWSD
TWSU
TRNS
UABD
UABU
USND
USNU
VALC
VEBR
VMEM
VMES
VMEX

Hexa-
Decimal
Code

AF
81

DO
D8
E6
EE

EC

El

E9
E2
EA
E3
95D2
95DA
95D3
95DB
EB

E8
ES
ED
b4
DC
D3
DB
95D7
95D1
95D9
95D0
95D8
00 =3F
EE
EF
E7
E6

Hexa-
Decimal
Code

PRIMARY MODE

00=3F
40=7F
80
81
82
83
84
85
86
87
88
89
8A
8B
8C
8D
8E
8F
90
91
92
93
%4
95
96
97
98
99
9A
9B
9oC
9D
S9E
9F
A0
Al
A2
A3
A4
A5
A6
A7
A8

5001290

VALUE CALL
NAME CALL
ADD
SUBTRACT
MULTIPLY
DIVIDE

INTEGER DIVIDE

B 6800 System Reference Manual

APPENDIX B

OPERATORS, NUMERICAL LIST

Name

REMAINDER DIVIDE
INTEGERIZE, TRUNCATED
INTEGERIZE, ROUNDED

LESS THAN

GREATER THAN OR EQUAL

GREATER THAN

LESS THAN OR EQUAL

EQUAL
NOT EQUAL

CHANGE SIGN BIT

EXTENDED MULTIPLY

LOGICAL AND

LOGICAL OR

LOGICAL NEGATE

LOGICAL EQUIVALENCE

LOGICAL EQUAL

ESCAPE TO 16-BIT INSTRUCTION

BIT SET

DYNAMIC BIT SET
FIELD TRANSFER

DYNAMIC FIELD TRANSFER

FIELD ISOLATE

DYNAMIC FIELD ISOLATE

FIELD INSERT

DYNAMIC FIELD INSERT

BIT RESET

DYNAMIC BIT RESET

BRANCH FALSE
BRANCH TRUE

BRANCH UNCONDITIONAL

EXIT

STEP AND BRANCH

INDEX AND LOAD NAME

INDEX
RETURN

DYNAMIC BRANCH FALSE

Mnemonic

VALC
NAMC

SUBT
MULT
DIVD
IDIV
RDIV
NTIA
NTGR
LESS
GREQ
GRTR
LSEQ
EQUL
NEQL
CHSN
MULX
LAND
LOR
LNOT
LEQV
SAME
VARI
BSET
DBST
FLTR
DFTR
ISOL
DISO
INSK
DINS
BRST
DBRS
BRFL
BRTR
BRUN
EXIT
STBR
NXLN
INDX
RETN
DBFL

Hexa-
Decimal

Code

B-2

B 6800 System Reference Manual

Operators, Numerical List

Name

DYNAMIC BRANCH TRUE

DYNAMIC BRANCH UNCONDITIONAL
ENTER

EVALUATE DESCRIPTOR

INDEX AND LOAD VALUE

MARK STACK

STUFF ENVIRONMENT

LIT CALL ZERO

LIT CALL ONE

LIT CALL 8 BITS

LIT CALL 16 BITS

PUSH DOWN STACK REGISTERS
DELETE TOP OF STACK

EXCHANGE

DUPLICATE TOP OF STACK

STORE DESTRUCTIVE

STORE NON-DESTRUCTIVE
OVERWRITE DESTRUCTIVE
OVERWRITE NON-DESTRUCTIVE
LOAD

LIT CALL 48 BITS

MAKE PROGRAM CONTROL WORD
SCALE LEFT

DYNAMIC SCALE LEFT

SCALE RIGHT TRUNCATE

DYNAMIC SCALE RIGHT RUNCATE
SCALE RIGHT SAVE

DYNAMIC SCALE RIGHT SAVE

SCALE RIGHT FINAL

DYNAMIC SCALE RIGHT FINAL
SCALE RIGHT ROUNDED

DYNAMIC SCALE RIGHT ROUND
INPUT CONVERT, DESTRUCTIVE
INPUT CONVERT, UPDATE

SET TO SINGLE-PRECISION, TRUNCATED
SET TO SINGLE-PRECISION, ROUNDED
SET TO DOUBLE-PRECISION

INSERT MARK STACK

TABLE ENTER EDIT, DESTRUCTIVE
PACK DESTRUCTIVE

EXECUTE SINGLE MICRO, DESTRUCTIVE
TRANSFER WORDS, DESTRUCTIVE
TRANSFER WORDS OVERWRITE DESTRUCTIVE
STRING ISOLATE

SET EXTERNAL SIGN

READ AND CLEAR OVERFLOW FLIP FLOP
TABLE ENTER EDIT, UPDATE

PACK UPDATE

Mnemonic

DBTR
DBUN
ENTR
EVAL
NXLV
MKST
STFF
ZERO
ONE
LT8
LT16
PUSH
DLET
EXCH
DUPL
STOD
STON
OVRD
OVRN
LOAD
LT48
MPCW
SCLF
DSLF
SCRT
DSRT
SCRS
DSRS
SCRF
DSRF
SCRR
DSRR
ICVD
ICVU
SNGT
SNGL
XTND
IMKS
TEED
PACD
EXSD
TWSD
TWOD
SISO
SXSN
ROFF
TEEU
PACU

Hexa-
Decimal
Code

DA
DB
DC
DD
DE
DF
EO

El

E2
E3
E4
ES
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF

nn
ry

F1

F2
F3

F4
F5

F8
F9
FA
FB
FC
FD
FE
FF

VARIANT MODE

9542
9543
9544
9545
9546

5001290

B 6800 System Reference Manual
Operators, Numerical List

Name

EXECUTE SINGLE MICRO, UPDATE

TRANSFER WORDS, UPDATE

TRANSFER WORDS OVERWRITE UPDATE
EXECUTE SINGLE MICRO, SINGLE POINTER UPDATE
READ TRUE/FALSE FLIP FLOP

CONDITIONAL HALT

TRANSFER WHILE LESS, DESTRUCTIVE
TRANSFER WHILE GREATER OR EQUAL,
DESTRUCTIVE

TRANSFER WHILE GREATER, DESTRUCTIVE
TRANSFER WHILE LESS OR EQUAL, DESTRUCTIVE
TRANSFER WHILE EQUAL, DESTRUCTIVE
TRANSFER WHILE NOT EQUAL, DESTRUCTIVE
TRANSFER UNCONDITIONAL, DESTRUCTIVE
VECTOR MODE ENTER SINGLE

TRANSFER WHILE LESS, UPDATE

TRANSFER WHILE GREATER OR EQUAL, UPDATE
TRANSFER WHILE GREATER, UPDATE

TRANSFER WHILE LESS OR EQUAL, UPDATE
TRANSFER WHILE EQUAL, UPDATE

TRANSFER WHILE NOT EQUAL, UPDATE
TRANSFER UNCONDITIONAL, UPDATE

VECTOR MODE ENTER MULTIPLE

COMPARE CHARACTERS LESS, DESTRUCTIVE
COMPARE CHARACTERS GREATER OR EQUAL,
DESTRUCTIVE

COMPARE CHARACTERS GREATER, DESTRUCTIVE
COMPARE CHARACTERS LESS OR EQUAL,
DESTRUCTIVE

COMPARE CHARACTERS EQUAL, DESTRUCTIVE
COMPARE CHARACTERS NOT EQUAL,
DESTRUCTIVE

COMPARE CHARACTERS LESS, UPDATE

COMPARE CHARACTERS GREATER OR EQUAL, UPDATE
COMPARE CHARACTERS GREATER, UPDATE
COMPARE CHARACTERS LESS OR EQUAL, UPDATE
COMPARE CHARACTERS EQUAL, UPDATE
COMPARE CHARACTERS NOT EQUAL, UPDATE

NO OPERATION

INVALID OPERATOR

SET TWO SINGLES TO DOUBLE
SET DOUBLE TO TWO SINGLES
IDLE UNTIL INTERRUPT

SET INTERVAL TIMER

ENABLE EXTERNAL INTERRUPTS

Mnemonic

EXSU
TWSU
TWOU
EXPU
TRFF
HALT
TLSD

TGED
TGTD
TLED
TEQD
TNED
TUND
VMES
TLSU
TGEU
TGTU
TLEU
TEQU
TNEU
TUNU
VMEM

[)]
N ANIAS

CGED
CGTD

CLED
CEQD

CNED
CLSU
CGEU
CGTU
CLEU
CEQU
CNEU
NOOP
NVLD

JOIN
SPLT
IDLE
SINT
EEXI

B-3

Hexa-
Decimal
Code

9547
954A
954B
954E
9585
9587
958B
958E
95AF
95B3
95B4
95B5
95B6
95B7
95B8
95B9
95BA
95BB
95BC
95BD
95BE
95D0
95D1
95D2
95D3
95D4
95D5
95D7
95D8
95D9
95DA
95DB
95DC
95DD
95DF
95F0
95F1

S5F2
95F3
95F4
95F5
95F8
95F9
SSFA
95FB
95FC
95FD

B 6800 System Reference Manual
Operators, Numerical List

Name

DISABLE EXTERNAL INTERRUPTS
SCAN IN

SCAN OUT

READ PROCESSOR IDENTIFICATION
OCCURS INDEX

INTEGERIZE, ROUNDED, DOUBLE-PRECISION

LEADING ONE TEST

NORMALIZE

MOVE TO STACK

READ COMPARE FLIP FLOP

SET TAG FIELD

READ TAG FIELD

ROTATE STACK UP

ROTATE STACK DOWN

READ PROCESSOR REGISTER

SET PROCESSOR REGISTER

READ WITH LOCK

COUNT BINARY ONES

LOAD TRANSPARENT

LINKED LIST LOOKUP

MASKED SEARCH FOR EQUAL
UNPACK SIGNED, DESTRUCTIVE
UNPACK ABSOLUTE, DESTRUCTIVE
TRANSFER WHILE FALSE, DESTRUCTIVE
TRANSFER WHILE TRUE, DESTRUCTIVE
SCAN WHILE FALSE, DESTRUCTIVE
SCAN WHILE TRUE, DESTRUCTIVE
TRANSLATE

UNPACK SIGNED, UPDATE

UNPACK ABSOLUTE, UPDATE
TRANSFER WHILE FALSE, UPDATE
TRANSFER WHILE TRUE, UPDATE
SCAN WHILE FALSE, UPDATE

SCAN WHILE TRUE, UPDATE
CONDITIONAL HALT

SCAN WHILE LESS, DESTRUCTIVE
SCAN WHILE GREATER OR EQUAL,
DESTRUCTIVE

SCAN WHILE GREATER, DESTRUCTIVE

SCAN WHILE LESS OR EQUAL, DESTRUCTIVE

SCAN WHILE EQUAL, DESTRUCTIVE
SCAN WHILE NOT EQUAL, DESTRUCTIVE
SCAN WHILE LESS, UPDATE

SCAN WHILE GREATER OR EQUAL, UPDATE

SCAN WHILE GREATER, UPDATE
SCAN WHILE LESS OR EQUAL, UPDATE
SCAN WHILE EQUAL, UPDATE

SCAN WHILE NOT EQUAL, UPDATE

Mnemonic

DEXI
SCNI
SCNO
WHOI
OCRX
NTGD
LOG2
NORM
MVST
RCMP
STAG
RTAG
RSUP
RSDN
RPRR
SPRR
RDLK
CBON
LODT
LLLU
SRCH
USND
UABD
TWFD
TWTD
SWFD
SWTD
TRNS
USNU
UABU
TWFU
TWTU
SWFU
SWTU
HALT
SLSD

SGED
SGTD
SLED
SEQD
SNED
SLSU
SGEU
SGTU
SLEU
SEQU
SNEU

Hexa-
Decimal
Code

95FE
95FF

EDIT MODE

DO
D1
D2
D3
D4
Ds
D6
D7
D8
D9
DA
DB
DC
DD
DE
DF
FE
FF

VECTOR MODE

EO
El
E2
E3
E4
ES
E6
E8
E9
EA
EB
EC
ED
EE
FO
F1
F2
F3
F4
Fs
F8
F9

5001290

B 6800 System Reference Manual
Operators, Numerical List

Name

NO OPERATION
INVALID

MOVE WITH INSERT

MOVE WITH FLOAT

SKIP FORWARD SOURCE CHARACTERS
SKIP REVERSE SOURCE CHARACTERS
RESET FLOAT

END FLOAT

MOVE NUMERIC UNCONDITIONAL

MOVE CHARACTERS

INSERT OVERPUNCH

INSERT DISPLAY SIGN

SKIP FORWARD DESTINATION CHARACTERS
SKIP REVERSE DESTINATION CHARACTERS
INSERT UNCONDITIONAL

INSERT CONDITIONAL

END EDIT

CONDITIONAL HALT

NO OPERATION

INVALID

LOAD A

LOAD A INCREMENT

LOADB

LOAD B INCREMENT

LOADC

LOAD C INCREMENT
VECTOR MODE EXIT

DOUBLE LOAD A

DOUBLE LOAD A INCREMENT
DOUBLE LOAD B

DOUBLE LOAD B INCREMENT
DOUBLE LOAD C

DOUBLE LOAD C INCREMENT
VECTOR BRANCH

STORE A

STORE A INCREMENT

STORE B

STORE B INCREMENT

STORE C

STORE C INCREMENT
DOUBLE STORE A

DOUBLE STORE A INCREMENT

Mnemonic

NOOP
NVID

MINS
MFLT
SFSC
SRSC
RSTF
ENDF
MVNU
MCHR
INOP
INSG
SFDC
SRDC
INSU
INSC
ENDE
HALT
NOOP
NVLD

LDA
LDAI
LDB
LDBI
LDC
LDCI
VMEX
DLA
DLAI
DLB
DLBI
DLC
DLCI
VEBR
STA
STAI
STB
STBI
STC
STCI
DSA
DSAI

B-5

Hexa-
Pecimal

Code

FA
FB
FC
FD

B-6

B 6800 System Reference Manual
Operators, Numerical List

Name

DOUBLE STORE B
DOUBLE STORE B INCREMENT
DOUBLE STORE C

DOUBLE STORE C INCREMENT

Mnemonic

DSB
DSBI
DSC
DSCI

B 6800 System Reference Manual

APPENDIX C

DATA REPRESENTATION

EBCDIC Decimal EBCDIC Hex. EBCDIC BCL BCL BCL

Graphic BCL Value Internal Graphic Card Code Card Code Octal Internal External

BLANK 64 0100 0000 40 No Punches No Punches 60 110000 01 0000

[74 0100 1010 4A 12 8 2 12 8 4 33 011011 111100

. 75 0100 1011 4B 128 3 12 8 3 32 011010 111011

< 76 0100 1100 4C 128 4 1286 36 011110 111110

(77 0100 1101 4D 1285 1285 35 011101 111101

+ 78 01001110 4E 1286 11 1010

I < 79 01001111 4F 12 8 7 12 8 7 37 011111 111111

& 80 0101 0000 50 12 12 34 011100 110000

] 90 0101 1010 SA 1182 086 76 111110 011110

3 91 0101 1011 5B 1183 11 8 3 52 101010 101011

* 92 0101 1100 5C 11 8 4 11 84 53 101011 101100

) 93 0101 1101 5D 1185 1185 55 101101 101101

; 94 01011110 SE 1186 11 86 56 101110 101110

< 95 0101 1111 5F 11 8 7 11 8 7 57 101111 101111

- 96 0110 0000 60 11 11 54 101100 100000

/ 97 01100001 61 01 01 61 110001 010001

, 107 01101011 6B 083 083 72 111010 011011

% 108 01101100 6C 084 084 73 11101t 011100

- 1J= 109 01101101 6D 085 082 74 111100 011010

> 110 061101110 6E 086 8 6 16 001116 061110

? 111 01101111 6F 087 * 14 001100 000000

: 122 01111010 7A 82 85 15 001101 001101

123 0111 1011 7B 83 83 12 00 1010 001011

@ 124 01111100 7C 8 4 8 4 13 001011 001100

’ = 125 01111101 7D 85 8 7 17 001111 001111

= 126 01111110 7E 86 085 75 111101 011101

” 127 01111111 7F 87 687 77 111111 011111

(+)PZ + 192 1100 0000 Co 120 12 0 20 010000 111010

A 193 1100 0001 C1 121 12 1 21 010001 110001

B 194 1100 0010 Cc2 12 2 12 2 22 010010 110010

C 195 1100 0011 C3 123 12 3 23 010011 110011

D 196 1100 0100 C4 12 4 12 4 24 010100 110100

E 197 1100 0101 C5 125 125 25 010101 110101

F 198 11000110 C6 12 6 12 6 26 010110 110110

G 199 11000111 Cc7 12 7 12 7 27 010111 110111

H 200 1100 1000 C8 12 8 12 8 30 011000 111000

I 201 1100 1001 Cc9 12 9 12 9 31 011001 111001

MULT

(OMZ X 208 1101 0000 Do 110 110 40 100000 101010

J 209 1101 0001 D1 111 111 41 100001 100001
*All other codes

5001290 C-1

B 6800 System Reference Manual
Data Representation

EBCDIC Decimal EBCDIC Hex. EBCDIC BCL BCL BCL
Graphic BCL Value Internal Graphic Card Code Card Code Octal Internal External
K 210 1101 0010 D2 112 112 42 100010 100010
L 2ii 1101 0011 D3 ii 3 it 3 43 160011 100011
M 212 1101 0100 D4 11 4 11 4 44 100100 100100
N 213 1101 0101 D5 115 115 45 100101 100101
o 214 . 11010110 D6 11 6 11 6 46 100110 100110
P 215 1101 0111 D7 117 11 7 47 100111 100111
Q 216 1101 1000 D8 11 8 11 8 50 10 1000 10 1000
R 217 1101 1001 D9 119 119 51 101001 101001
¢ 224 1110 0000 EO 082 00 0000
S 226 11100010 E2 02 02 62 110010 010010
T 227 11100011 E3 03 03 63 110011 010011
U 228 1110 0100 E4 04 04 64 110100 010100
Vv 229 11100101 ES 05 05 65 110101 010101
w 230 11100110 E6 06 06 66 110110 010110
X 231 11100111 E7 07 07 67 110111 010111
Y 232 1110 1000 ES8 038 08 70 111000 01 1000
V4 233 1110 1001 E9 09 09 71 111001 01 1001
0 240 1111 0000 FO 0 0 00 000000 001010
1 241 1111 0001 F1 1 1 01 000001 000001
2 242 1111 0010 F2 2 2 02 000010 000010
3 243 1111 0011 F3 3 3 03 000011 000011
4 244 11110100 F4 4 4 04 000100 000100
5 245 1111 0101 F5 5 5 05 000101 000101
6 246 11110110 Fé6 6 6 06 000110 000110
7 247 11110111 F7 7 7 07 000111 000111
8 248 1111 1000 F8 8 8 10 001000 00 1000
9 249 1111 1001 F9 9 9 11- 001001 001001
NOTES

adie

EBCDIC 0100 1110 also translates to BCL 11 1010.
EBCDIC 1100 1111 is translated to BCL 00 0000 with an additional flag bit on the most significant bit line
(8th bit). This function is used by the unbuffered printer to stop scanning.
EBCDIC 1110 0000 is translated to BCL 00 0000 with an additional flag bit on the next to most significant bit

line (7th bit). As the prin

+ A
tul

ums have 6

oron

graphics and space this signal can be us

The 64th graphic is a “CR” for BCL drums and a “¢” for EBCDIC drums.
The remaining 189 EBCDIC codes are translated to BCL 00 0000 (? code).
The EBCDIC graphics and BCL graphics are the same except as follows:

BCL

(multiply)

P HRIAXIV

>
!
-

EBCDIC
(single quote)

(not)
(underscore)

ad to nrint the 4th

VU eV Pl v Ut

grﬂhh1ﬁ

Qpuiit.

APPENDIX D

B 6800 System Reference Manual

B 6800 EBCDIC/HEX CARD CODE

Slelelian]m vwjo|N|lo|lojalolslv]olisn =
D] ||| | D
b4 2
1',
x . X
Wi je= |N|™ wjojr~jojieo <O 0wk W
I I
wjo]l—|n|m wlol~N|jo|o® il m oo |
°© wl /s w |+ >|2|x|[>]|N wlle o [
! D\{(_OJKL Z2|lo|a|0|x ol & ~
+ ron | ww T
C+0ABC o — Ol o ©
+ | o o o o |
I o < wSt > 3| x| >~ L4 o |
+ | () —lx |- clolal|lo| o |
+ o oo} c | Q] o V| || L .- o o
+ oo~ ol I ia i oix o~
loolloe]l | |- -] R _>?.6 o
+ 1 o|lwls —lele i~] Nwo
+ oo o B e |[V]ei+|— e
$
zZ = <« | X m
<20}] > @) Ol < Slmilo
w L alz [77)
om Ol |
ool w |3 Z|QjwlliN|o o
Al w W wi{<|m
| o _..w__ml.umm ANHM o
-) win|vll—
alalala @ Sl 2lole|S
e b o -
+ 90UO_.vm_vM = w vic|o|_]{o|o
Zln|n|w I [a] L|O|lwn|w
X1 X
NOCZuw _.H_._0123 56789ABCDEF%ZONE
= =
le=|~|~|m wjlo|~N|lo|l—lan|lo|s|w]ol~s 2
Z|l ™ w|ow|d|ow|®|O|[0 Z

5001290

B 6800 System Reference Manual
B 6800 EBCDIC/HEX Card Code

Use of the B 6800 EBCDIC/HEX Card Code Chart.

a.

Locate the desired EBCDIC graphic code within the table.

The two-part Hexadecimal Code is read as follows:

1.

2.

The first part is found in the vertical column above or below the desired EBCDlC code.

The second part is found in the horizontal row either to the right or left of the desired EBCDIC code.

(a) Examples:
SYN
F

32
C6

The two-part Card Code is found in the same manner as HEX (2) except the zone and numeric bits are
read from the very outer portion of the table.

1.

2.

Examples:
SYN

9
F +

2
6

The card code exceptions to the above procedures are enclosed in heavy lines on the chart and are

defined below:

(1) 00 =+ 0981 (NUL)
(2) 10 = + -981 (DLE)
(3) 20=-0981

(4) 30=+-0981

(5) 40 = BLANK

(6) 50=+(&)
(7) 60=-()
@) 70=+-0

© co=+0({)@)
(10) DO=-0(})(®)
(11) EO=082()
(12) FO=0(0)
(13) 61=01(N
(14) El1=-091
(15) 6A =+ - (:)

B 6800 System Reference Manual

Absoiute Address Conversion
Address Couple

Adapter Cluster

Add .

Adder, Address

Adder, Exponent

Adder, Mantissa . .
Adder, Residue Interrupt .
Address Adder .
Address Environment Deﬁned
Address Retry Interrupt
Alarm Interrupts .
American Standard Code for Informatlon Interchange
Area Descriptor .

A Register

ASCII .
Arithmetic Controller .
Arithmetic Operators

AROF

Base and Limit of Stack

Base of Address Level Segment .
BCL . e e
BIC
BIC Memory Bus Interface
BIC Module .
BIC Scan Bus Interface

BIC Scan-In Function .

BIC Scan-Out Function

Bit Operators

Bit Reset .

Bit Reset Dynamic .

Bit Set

Bit Set Dynamic

Bit Sign Change .

Bottom of Stack Interrupt
Branch False .
Branch False Dynamic

Branch Operators

Branch True . .
Branch True Dynarmc .
Branch Unconditional .
Branch Unconditional Dynamic
BROF '
Brownout . .

Buffer, Data (MPX) . .
Burroughs Common Language
Bus Interface Control (BIC) .
Bus Interface Control Memory Bus
Bus Interface Control Module

5001290

INDEX

2-22,3-13

2-22

12-1

7-1

5-7

5-10

5-10

5-29

5-7

3-15

5-27

5-22

. 2-3

5 54 5-56,11-1
4-10

.. 2-3
4. . . 510
. 7-1
.3-3,44

32

3-13

.. 2-3
1-30 13-1

13-6

13-1

13-1

134

13-1

7-13

7-14

7-14

7-13

7-13

7-14

5-17

7-7

7-8

7-7

7-8

7-8

7-8

7-8

3 3,44

1-17

1141

.o 2-3
. 131,131

. 136
1:31,13-1

Index-1

B 6800 Svstem Reference Manual

Bus Interface Control Scan Bus .
Bus Interface Control Scan-In Function .
Bus Interface Control Scan-Out Function
Bus Residue Interrupts

Central Power Cabinet .
Central Processor Unit Cabinet .
Change Sign

Channel A .

Channel B . .

Character Codes, Internal

Character Translator

Character Type Data

Clock Controls

Clocks .

Compare Characters Equal Destructlve
Compare Characters Equal Update
Compare Characters Greater, Destructive

Compare Characters Greater or Equal, Destructive

Compare Characters Greater or Equal Update .
Compare Characters Greater, Update .
Compare Characters Less Destructive .
Compare Characters Less or Equal Destructwe
Compare Characters Less or Equal Update .
Compare Characters Less Update .
Compare Characters Not Equal Destructive .
Compare Characters Not Equal Update
Compare Operators e
Compare Residue Interrupt

Conditional Halt .

Confidence Error Interrupt

Controller, Arithmetic

Controller, Interrupt

Controller, Memory

Controller, Program

Controller, Stack

Controller, String Operator

Controller, Transfer .

Control State/Normal State

Copy Bit .

Count Binary Ones .

C Register

CTIO

Data Addressing .

Data Buffer (MPX) .

Data Comm Adapter Cluster II
Data Comm Adapter Cluster III .
Data Comm Basic Controi .

Data Comm Broadband Control .
Data-Comm-To-Disk Control .

Index-2

INDEX (Cont)

23,

13-1
134
13-1
5-29

1-17

1.7
7-14
5-64
5-72

5-53
2-10
4-52

1-8
7-20
7-20
7-18
7-19
7-19
7-19
720
720
720
720
720
7-20
7-18
5-29

79
5-21
5-10
5-10
5-30

52
5-10
5-30

57
5-31

36
8-10
4-10
1-17

3-5
5-60
12-1
12-5
12-4
12-4
124

B 6800 System Reference Manual

INDEX (Cont)

Data Comm Store-To-Store Control 125
Data Comm Memory BusInterface . e e e e . e .. 127
Data Comm Scan BusInterface . v ... 125
Data Communications Adapters 000 e e e e ey 12
Data Communications Interface 12a
Data Communications Interrupt 5m
Data Communications Processor 12-3
Data Communications Subsystem, -30 12-1
Data-Dependent Presence Bit 518
Data Descriptor L L. 215
Data Field Convention L L s, 22
Data Processor . . R S |
Data Processor, Scan-In Functlons to Multlplexor R 3]
Data Processor Scan-Out Functions to Multiplexor 533
Data Processor Scan-Out Functions to External Subsystems 535
Data Representation . . e 5 |
Data Types and Physical Layout B |
Decimal to Coded Number Conversion 2-6
Decimal and Hexadecimal Table Conversion .. 28
Delete Topof Stack, 110
Descriptor Formats, IO 561
Disable External Interrupts L. L L 8-2
Display Panels L L L s s, 1 12,41
Display Registers L L L s s
Divide . . . e 27
Divide by Zero Interrupt - B
Double load A L oL 0L s 0
Double Load A Increment ..., ..107
Double Load B 107
Double Load B Increment 107
Double Load C . . . e ()
Double Load C, Increment {0
Double Store A .. . e 10
Double Store A Increment . (¢ 57
Double Store B . . T (1 2y
Double Store B Increment e (1%
Double StoreC L L L oL oo s e e e e s 10T
Double Store C Increment 10T
Double Precision 0pe;ands fs e 2-i3
Double Precision Stack OP 33
Duplicate Top of Stack 110
Dynamic Branch False 18
Dynamic Branch True, 18
Dynamic Branch Unconditional 18

EBCDICo 28
Edit Mode Operation9
Edit Mode Operators 8
Enable External Interrupts L L. oL 82
EndEdit L s 94
EndFloato

5001290 Index-3

Enter Operators

Enter Vector Mode .

Equal .
Escape to 16-bit Instructron .
Evaluate

Exchange .
Execute Single chro Desctructrve .

Execute Single Micro Single Pointer Update

Execute Single Micro Update
Executing I/O Descriptors
Exit Operator

Exponent Adder

B 6800 System Reference Manual

INDEX (Cont)

Exponent Overflow and Underflow Interrupt
Extended Binary Coded Decimal Interchange Code

External Interrupts

Family A

Family B

Family C

Family D

Family E

Family U(F G H)
Field Insert

Field Insert Dynamic
Field Isolate .
Field Isolate Dynamic .
Field Transfer

Field Transfer Dynamic
Function Word

General Control Interrupt

Global Memory

Global Memory Not Ready Interrupt
Greater Than
Greater Than or Equal .

Hardware Interrupts
Hexadecimal and Octal Notatron

Hexadecimal to Decimal Table Conversion .

Idle Confidence Testing
Idle Until Interrupt .
Index. . .
Index and Load Name .
Index and Load Operators
Index and Load Value .
Index Bit

Index, Invalid

Index, Valid

Indirect Reference Word
Initiate I/O

Index4

7-20,7-26,7-31

7-31
7-7
8-1

7-26

7-10

7-21

7-21

7-21

111

7-26

5-10

5-16
2-3

521

5-1
5-1
5-1
5-1
5-2
52
7-15
7-15
7-15
7-15
7-14
7-14
5-33

5-26
1-5,5-71
5-25

7-6

7-7

5-28
23
28

i-9
8-1
7-11
7-11
7-11
7-11
35
3-5
3-5
2-20

5-54,84,11-1

B 6800 System Reference Manual

INDEX (Cont)

Initiate I/O Word Format 556
Input Convert Destructive, 122
Input Convert Operators12
Input Convert Update . . . Y A7K
Input/Output Area Description (IOAD) Word Format - P
Input/Output Control Word (IOCW) Format ... 556
Input/Output Device Numbering 553
Input/Output Operations . . - S 2 O Y |
Input/Output Processor (Multlplexor) B <))
Input/Output Processor Interrupts 5
Insert Conditional 93
Insert Display Sign 93
Insert Mark Stack Operator ..., 13
Insert Overpunch 93
Insert Unconditional93
Integer Divide . . e S
Integerized Rounded, D P - =
Integerize Rounded L L, 74
Intergerize Truncated, 13
Interger Overflow Interrupt 517
Integrated Circuit (IC) Memory 55
Internal Character Codes 23
Internal Data Transfer Section 58
Interrogate I/O Path, Function .. "3§ 5. 29 545,83
Interrogate Peripherai Status L 0 L L L L L 83
Interrogate Peripheral Unit Type .. . 53,83
Interrupt Controller 510
Interrupt Handling 22
Intgrrupt Parameters L L L L L L. 226,510
Interrupt System L . L L L L L Lo s, 226
Interrupts, Alarm L L L L L. .. 52
Interrupts, External . . . -)|
Interrupts, Operator Dependent e N
Interrupts, Operator Independent 51
Interval Timer Interrupt 52
Invalid Address Interrupt 52
Invalid Address Residue Interrupt 524
Invalid Address Local Interrupt 524
Invalid Address Global Interrupt ... 52
Invalid Index Interrupt 35516
Invalid Operand Interrupt 515
Invalid Operator . . e e e e e e e e e e e e e e e s e 7-9
Invalid Program Word Interrupt e ... 524
I/O Control Word 5-56, ll l ll 11 ll 13 ll 15 ll 17 11 19 11-21 11-23 11-26 11-28 11-20,11-33
1/O Finish Interrupts O
1/O Operations, Processor Imtlated e P D 5
I/O Processor Parity (MPX Parity) 522

5001290 Index-5

Job-Splitting

Keyboard Control Keys

Keyboard, Maintenance Processors .

KSI

Leading One Test
Less Than . . .
Less Than or Equal .
Level Definition .
Lexacographical Level
Linked List Lookup
Lit Call Zero .

Lit Call One

Lit Call 8 Bits

Lit Call 16 Bits

Lit Call 48 Bits
Literal Call Operators
load.
Load A . .
Load A Increment
Load B'.

Load B Increment
Load C . .
Load C Increment
Load Transparent
Local Memory Allocation
Local Memory Interface
Logical And

Logical Equal .
Logical Equivalence .
Logical Negate
Logical Operands
Logical Operators
Logical Or .
Logic Card Testing .
Look Ahead Logic .
Look Ahead Register
LROF .
Loop Interrupt

Maintenance Display Panel
Maintenance Display Processor .
Maintenance Display Registers
Maintenance Processor

Make PCW

Mantissa Field .
Mark Stack Control Word .

Index-6

B 6800 System Reference Manual

iNDEX (Cont)

3-17

1-29,4-53
449
1-16

8-5
77
T X
. 222,317
2:22
8-10
7-10
7-10
7-10
7-10
7-10
7-10
7-11
10-6
106
106
106
10-6
106
8-10
2312
5-74
75
77
7-5
7-5
2-15
7-5
7-5
1-17
5.5
4-10
4.8
523

4-10
1-12
.. 411
. 1-15,4-49
7-i1
2-12
2-25

B 6800 System Reference Manual

INDEX (Cont)

Mark Stack Control Word Linkage . 315
Mark Stack Operator L L oL L L oL, 126
Mask and Steering . . e e e e e e e e e e e e e e e e s s e 5-8
Mask and Steering Example e e e e e e e e e e e e e e 5-8
Masked Search for Equal L. . . L. o811
Master Control Program L L L. oo 1-1
Memory Address . . . o ¢
Memory Address Interrupt . X
Memory and Multiplexor Controfler. ... 114
Memory Area Allocation L. L L L L ... 312
Memory Bus . . . e e e e e e e e e e e e e e e e e e ey 564,574
Memory Cabinet Conﬁguratlon O A
Memory Control ... ooy 10
Memory Controller 530
Memory Cycle Times . . . O I |
Memory Error Detect1on/C0rrect10n S B
Memory Interface 564
Memory Module 110
Memory Organization 563
Memory Parity Interrupt 523
Memory Port Interface 571
Memory Priority . . - N
Memory Protect Interrupt - S)

Mnmr\nl pr(\fﬂnflnn z

LECINOTY AVLULLIVIL « . s 4 . s s s e s s e s s s s e s s s s e e e e e e e e e 2= 1 J

Memory Retry L L L . L. 1 11 5-71
Memory Stack Controller 510
Memory Tester 57
Memory Testing 57
Memory Words 563
MFIOBus L5118
Micro Processor L L L L L 116
Module Definition L L L L Lo, 1-5
Move Characters . . . C e e e e e e e s e e e 9-1
Move Numeric Uncondltlonal e e e e e e e e s e e e e e e 9-1
Move to Stack L . . L L 86
Move With Float L L L L 9-2
Move With Insert . . . e 9-1
Muitipie Stacks and Re-Entrant Code A v
Multiple Variables (Common Address Couples) .. 313
Multiplexor Function 531
Multiplexor Scan-In Function 535
Multiplexor Scan-Out Function ... 545
Multiply . . . e e s e e e e e 72
Multiply (Extended) e e e e e e e s s e e e e s, 72

Name Call L. Lo oo 62,726

No Operation
Normahze 8-6

5001290 Index-7

B 6800 System Reference Manual

Normal State .

Not Equal .
Number Bases
Number Conversion .

Occurs Index .

Octal Notation .
OP Code and Variant Characters
Operands

Operation Types

Operators Control Console
Operator Dependent Interrupts
Operator Families

Operator Independent Interrupts
Operator Panel

Operators

Overflow FF, Read and Clear
Overwrite Destructive

Overwrite Non-Destructive

Pack Destructive

Pack Operators

Pack Update

PCIO Bus .o
Peripheral Control Bus
Peripheral Control Cabinet
Peripheral Control Interface
Peripheral Controls .
Peripheral Result Descriptor

Peripheral Result Descriptor, Supérvisory Display II .

Peripheral Result Descriptor, Single Line Control .
Peripheral Result Descriptor, Card Punch
Peripheral Result Descriptor, Card Reader
Peripheral Result Descriptor, Line Printer
Peripheral Result Descriptor, Train Printer .
Peripheral Result Descriptor, Magnetic Tape
Peripheral Result Descriptor, Head-Per-Track Disk
Peripheral Result Descriptor, Flexable Disk
Peripheral Result Descriptor, Disk Pack .
Peripheral Result Descriptor, SN Disk

Peripheral Units . .o

Polish Notation

Polish String .

Polish String, Rules for Evaluatmg

Polish String, Rules for Generating

Power Busses .

Power Cabinet

Power Cortrols

Index-8

INDEX (Cont)

5-31
77
2-3
2-6

8-5
2-3
5-61
2-10
6-2
1-25
5-14
5-1
5-21
1-26
6-7
7-23
79
7-10

7-21
721

... 122
1-5,1-15,1-17
11-7

. 117
1-18,11-7

110,118,117
119, 11-12, 11-14, 11-16, 11-18, 11-20, 11-22, 11-25, 11-27, 11-29, 11-32, 11-34

11-12
1i-14
11-16
11-18
11-20
11-22
11-25
11-27
11-29
11-32

1i°2

11-34
1-10
3-6
3-8
3-8
3¢
1-7
1-17
4-1

Power Off Switch

Power On Switch

Power, System

P Register .

P1 Parameter .

P2 Parameter .

P3 Parameter .

Presence Bit

Presence Bit Interrupt .
Primary Mode Operators .

Procedure-Dependent Presence Bit .

Processor

Processor Initiated I/O Operatlons
Processor States .

Processor System Concept
PROF

Program Control

Program Controller .
Program Control Word .
Program Index Register
Programmed Operator .
Programmers Display Panel
Program Operators .
Program (P) Register

Program Structure in Memory
Program Segment .
Program Syllable Register. .
Program Words

PROM Card Parity Interrupts
PROM Writer . .
PWIO

Push Down Stack Reglsters

Ram Card Parity Interrupts .
Read and Clear Overflow FF
Read Compare Flip-Flop .
Read Data Check Bit Interrupt .
Read Data Multiple Interrupt
Read Data Retry Interrupt

Read Data Single Error, Interrupt .

Read IC Operation .

Read Interrupt Literal .
Read Interrupt Mask

Read Interrupt Register

Read Main Memory

Read Only Bit .
Read Processor Identlﬁcatlon
Read Processor Register

Read Processor Time Counter

5001290

B 6800 System Reference Manual

INDEX (Cont)

44
44

1-17

.. 6l
. 227,113
. 228,115
. 228,114
.. 35
3.5,3.18,5-17
7-1

. 518
.17,5-1
11-1

5-31

51

44

6-1

52

2-23

2-24

52

41

6-1

4-10

3-11

3-12
224,44
2-34

528

1-16

1-16
3-2,7-10

5-28
7-23

5-27
5-25
527
5-26

. 454
. 545,83
545,82
5-38, 8-2
4-54

36

85

8-8
5-42 83

Index-9

B 6800 System Reference Manual

Read Scratch Pad Word

Read Tag Field .

Read Time of Day Clock .

Read True False FF .

Read With Lock .

Ready Status .

Re-Entrace .

Register, A

Register, B

Register, C

Register, P

Register, X

Register, Y

Register, Z

Registers, Dlsplay

Registers, Maintenance .

Relational Operators
Relative-Addressing .

Remainder Divide

Reset Float

Residue Adder Testmg

Residue Testing .

Result Descriptor

Result Descriptor, Card Punch Dewce
Result Descriptor, Card Reader Device
Result Descriptor, Disk-Flexable Device .
Result Descriptor, Disk-Head Per Track Device
Result Descriptor, Disk-Pack Device
Result Descriptor, Disk-5N Device .
Result Descriptor, Magnetic Tape Device
Result Descriptor, Printer-Line Device
Result Descriptor, Printer-Train Device
Result Descriptor, Single Line Control Devices

Result Descriptor, Supemsory D1splay II Device .

Return Control Word

Return Operator

Reverse Polish Notation

Rotate Stack Down

Rotate Stack Up e e
Rules for Generating Polish String, Simplified .
Running Indicator

Scale Left . -

Scale Left Dynamic

Scale Operators

Scale Right Dynamic Finai

Scale Right Dynamic Save

Scale Right Dynamic Truncate .
Scale Right Final .

Index-10

INDEX (Cont)

5-43,8-3
. 8-8
5-37,8-2
7-23
8-10
5-50
3-17
4-10
4-10
4-10
4 10, 6-1
4-10
4-10
4-10
4-10
4-11

3-12
7-3
9-3
5-7

i1-9
11-16
11-18
11-29
11-27
11-32
11-34
11-25
11-20
11-22
11-14
11-12
2-32
7-26
3-6

88
3.6
41

7-12
7-12
7-12
7-13
7-12
7-13
7-13

Scale Right Round Dynamic
Scale Right Rounded

Scale Right Save

Scale Right Truncate

Scan Bus

Scan Bus Operatlons

Scan Bus Interface ..
Scan Bus Parity Error Interrupt
Scan In

Scan In Information Error Interrupt .

Scan Operators

Scan Out .
Scan Out Error Interrupt

Scan While Equal, Destructive
Scan While Equal, Update

Scan While False, Destructive
Scan While False, Update

Scan While Greater, Destructive
Scan While Greater, Update .

Scan While Greater or Equal, Destructive
Scan While Greater or Equal, Update .

Scan While Less, Destructive

Scan While Less or Equal, Desctructwe

Scan While Less or Equal, Update .
Scan While Less, Update . .
Scan While Not Equal, Destructwe
Scan While Not Equal, Update .
Scan While True, Destructive
Scan While True, Update .
Scratchpad Memory .
Scratchpad Memory Channel
Scratchpad Word Layout .
Segmented Array, Interrupt .
Segment Descriptor

Segment Dictionary

Sequence Error Interrupt

Set Double to Two Singles

Set External Sign .

Set Interrupt Mask .

Set Interval Timer

Set Processor Register .

Set PSUDO BUSY

Set Tag Field .

Set Time of Day Clock

Set to Double-Precision

Set to Single Precision Rounded
Set to Single-Precision Truncated
Set Two Singles to Double
Single Precision Operands

5001290

B 6800 System Reference Manual

INDEX (Cont)

7-13
7-13
7-12
oo 112
1-5,12-5,13-1
571
5-75
523

82

5-25

82

83

5-26
8-14
8-14
8-15
8-15
8-13
8-13
8-13
8-13
8-14
8-14
8-14
8-14
8-14
8-15
8-15
8-15
5-58
5-58
5-59
5-19
2-36
3-12
5-18

8-1

7-23
5-46 84
8-1

) 89
5-46, 84
] 8-7
546, 84
7-5

74

74

81

2-12

Index-11

B 6800 System Reference Manual

INDEX (Cont)

Skip Forward Destination Characters 9-2
Skip Forward Source Characters00 e e e e 9-2
Skip Reverse Destination Characters 9-3
Skip Reverse Source Characters L Lo 0.0 9-2
Software Aspects of 10 Operations ... 546
Software Words L L L L0 L Lo oo s e e e e e e e e 209
Stack . . e 3-1
Stack Adjustment e 33
Stack Area . . . O N)
Stack, Base and Lumt e 0
Stack, Bi-Directional Data Flow 32
Stack Controller 510
Stack Deletion L ... e e s 312
Stack Descriptor . . . - &
Stack, Double-Precision 0perat10n e e e e e e e e e e e e e e e s e e 3-3
Stack-History and Addressing-Environment Llsts - 3
Stack History, Summaryo
Stack Operationo a3
Stack Operators . . . O A2 10
Stack Overflow Interrupt O 13 |
Stack Pushdown L. . Lo s, 32
Stack Pushup L . .o oo e s 32
Stack Registers L L L L oo o e e e s e 57
Stack, Simple Operation L L L0 o e e 3-8
Stack Underflow Interrupt 524
Stack Vector Descriptor . o 318
States, Processor o .o o e oo 53
Status Change L L L L o L0 oo e s e e e e e s 552
Status Change Interrupt L L. s .. 522
Status Display Panel oL 000 0L oL s s 4-4
Status Vectors L. L . L L. o e e e e e e e e s e s . 562
Stepand Branch L L o L L L Lo oL s s e e e e e e 7-8
StepIndexWord oL L L L oL L L o e e s 218
Store A . . . L L L L L L oL o s e e e s e e e s e s s s s s s s s a0
Store Alncrement0 e e e s e s s ... 106
Store B Lo e e e e e s 1o
Store BIncrement 0T
Store C L . Lo e e e e e s s s 1oe
Store C,Incremento
Store Destructive L . L L 0L L oo s e e e e e e e 79
Store, Non-Destructive o e e 7-9
Store Operators e e e e e e e e e e e e e oo
String Descriptor e e e e o217
String Isolate 118
String Operators . . e e e e e oL 530,608
String Operator Controller P 1V
String Transfer Operators ... oo, 116
Stuff Environment . . . Y £
Stuffed Indirect Reference Word 2240

Index-12

B-6800 System Reference Manual

INDEX (Cont)

Subroutine Operators
Subtract .

Syllabie Addressing .

Syllable Dependent Interrupts
Syllable Format . .
Syllable Identification .
System Clock .

System Concept .

System Controls .

System Description .

System Expansion

System Memory Interface
System Options and Requirements
System Organization

System Power

Table Enter Edit Destructive

Table Enter Edit Update .

TD 830 .

Terminal Device .

Thumbwheel . .

Time of Day Register .

Top-Of-Stack Register .

Transfer Controller .

Transfer Operators . .
Transfer Unconditional Destruc’uve .
Transfer Unconditional, Update .
Transfer While Equal, Destructive .
Transfer While Equal, Update

Transfer While False, Destructive
Transfer While False, Update

Transfer While Greater Destructive
Transfer While Greater or Equal, Update
Transfer While Greater Update
Transfer While Less, Destructive
Transfer While Less, Update . .
Transfer While Less or Equal, Destructlve
Transfer While Less or Equal, Update
Transfer While Not Equal, Destructive
Transfer While Not Equal, Update .
Transfer While True, Destructive
Transfer While True, Update

Transfer Words Destructive .
Transfer Words, Overwrite Destructive
Transfer Words, Overwrite Update .
Transfer Words, Update

Translate ..

T Register .

True False FF, Read

Type Transfer Operators .

5001290

723
7-2

..237,6-1

5-14

. 2-37,6-1
. 2:37,6-1

1-8
S |
1-26, 41
1-1

1-1

5.72

1-1

1-1

1-17

7-20
7-21
1-26
124
4-11
. 448
31,33
57
7-14
7-18
7-18
7-17
7-17
8-12
8-12
7-16
7-17
7-17
7-17
7-17
7-17
7-17
7-17
7-18
8-12
8-12
7-16
7-16
7-16
7-16
8-12
6-1
7-23
74

Index-13

Unit Number .

Unit of Memory .

Unit Tables ..
Universal Operators . . .
Unpack Absolute Destructive
Unpack Absolute Update .
Unpack Signed Destructive

Valid Index
Value Bit
Value Call .

Variant Mode Operation and Operators .

Vector Mode Branch

Vector Mode Exit o
Vector Mode Hardware Functions .
Vector Mode Limitations .

Vector Mode Enter Multiple .
Vector Mode Enter Single .

Vector Mode Operator Codes

Word Data Descriptor .
Word Definition

Word Parity

Word Tag Field

Word Wraparound
Word Data Formats
Wrap Around .
Write IC Operation .
Write Main Memory

X Register .
Y Register .

Z Register .

Index-14

B 6800 System Reference Manual

INDEX (Cont)

1-21
1-21

121

79
8-11
8-11
8-11

35

. 226
6-4,7-23
.4-4,8-1

10-8

10-8

10-1

10-1

7-31

Y <)
. 10-1, 105, 10-6

2-15
2-1
21
2-1
2-3
2-1
2-3

4-54

4-54

. 3-1,4-10,5-7
. 3-1,410, 57

4-10, 5-7

Printed in U.S. America July 1977 5001290

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	01-27
	01-28
	01-29
	01-30
	01-31
	01-32
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	04-29
	04-30
	04-31
	04-32
	04-33
	04-34
	04-35
	04-36
	04-37
	04-38
	04-39
	04-40
	04-41
	04-42
	04-43
	04-44
	04-45
	04-46
	04-47
	04-48
	04-49
	04-50
	04-51
	04-52
	04-53
	04-54
	04-55
	04-56
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	05-37
	05-38
	05-39
	05-40
	05-41
	05-42
	05-43
	05-44
	05-45
	05-46
	05-47
	05-48
	05-49
	05-50
	05-51
	05-52
	05-53
	05-54
	05-55
	05-56
	05-57
	05-58
	05-59
	05-60
	05-61
	05-62
	05-63
	05-64
	05-65
	05-66
	05-67
	05-68
	05-69
	05-70
	05-71
	05-72
	05-73
	05-74
	05-75
	05-76
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	07-29
	07-30
	07-31
	07-32
	07-33
	07-34
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	11-22
	11-23
	11-24
	11-25
	11-26
	11-27
	11-28
	11-29
	11-30
	11-31
	11-32
	11-33
	11-34
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	D-01
	D-02
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	Index-10
	Index-11
	Index-12
	Index-13
	Index-14
	xBack

