
88500 SYSTEM

BJ-8

APRIL, 1966

REFERENCE MANUAL

----!i~~---Burroughs Corporation---­

Defense, Space and Special Systems Group

88500 SYSTEM

BJ-8

APRIL, 1966

REFERENCE MANUAL

Copyright @ 1966
Burroughs Corporation

Defense, Space and Special Systems Group

The information in this publication is
subject to change. Revisions will be
issued to advise of such changes and
additions.

April 1966

TABLE OF CONTENTS
Page

INTRODUCTION. • . xi

CHAPTER 1. SYSTEM DESCRIPTION. 1-1
System Configuration • • . • . . • . • • 1-1
System Capabilities and Features . • • . . . • • • • . • • • 1-1

Hardware Modularity • . • • • . . . • . . • . • • • • • . • • 1-1
Central Processor Module . • • . . • • • • . . • • • . • • • • 1-4
VO Module .•.•..•••••.••..••...•• ~ • • • • • . . . • • • • . . • • 1-4
Memory Module • • • . • . . • . . . • • • . • . • • • • . . • • . • • • • • . • . • • . . • • • • . 1-4
Storage Facilities •.•..•.•••.•.•...•.• ~ ••.••..... • . • . . • • • • . • . • 1-4

System Availability and "Fail Soft" Reliability. • • • • • • . • • • • . • • • • • • • • • • • • . • . . • . . . 1-5
Software Modularity . • . • • • • • . • • . . • • . . • • . • • . • • • . . • .. . • . • • . . . • . . 1-5

Uniform Program Structure. . • • • . • • . • . • • • • • . . • . . . • • 1-5
Multiprogramming and Multiprocessing . . • . . • • • • . • . • • • . . 1-6

Concurrent Central Processor Operations . . . • . . . • . . . • • • 1-6
Concurrent Peripheral Operations. 1-6
Concurrent Input/Output Operations. • . 1-6

Computerized lnput/Outi:,.Jt Module • • • • 1-9
Allocation of Vo Channels•.•...... ·. 1-9

System Expansion. • 1-9
Executive Scheduling Program . • 1-9

Dynamic Allocation of Equipment • . 1-9
Memory Protection .. 1-10
Call-by-Name Filing System ... 1-10

Interrupt and External Request Capabilities•............. 1-10
Compilers•........................•..... 1-10

CHAPTER 2. PROGRAMMING FEATURES • • . 2-1
Executive Scheduling Program•..............•..•.• '. . . • . . . • • 2-1

Introduction. . • . • . • • • • . . • . . • . . • • 2-1
What is the Purpose of ESP? . • • . • • 2-1
Of What Does ESP Consist and Where is it Located? • • • 2-2

Functions of the Executive Routines. • • • • . • • 2- 2
Functions of the V 0 Routines. • • . • . • • . • . . • 2-2

What Can ESP Accommodate? . . • • . 2-2
What Does ESP Do? • . . • • . • • . • . . . • . • . • . . . • 2-2

Scheduling .•......•..•.•................ - . . • . 2-2
Error Recovery. • • • • • • • • 2-3
Usage Accounting • • • • • 2-3

Uniform Program Structure • . • • . . • . • . • • . • • • 2-3
Program Segments • • • . • • . • • • 2-3
Data Segments. • • . • • 2-3
Operand Stack Extension . • • • . • • . . • . • 2-4
Working Storage Segment. 2-4
Program Reference Table • • . 2-4

Descriptor . 2-4
Description. • • . . • 2-4
Link. • • • . • • • . . . • 2-4

File List. • • • • • 2-4
CHORE Working Area. 2-5

iii

iv

TABLE OF CONTENTS (Continued)

Page

Cold Job Table. • • • . 2-5
Hot Job Table • • . • • . • . • . • 2-5

Interrupt System • • • • • • • . . . • 2-6
Hardware Functions at Interrupt. • . • • • • • • • . . • • . • . . . • • . . • . . . 2-7
Multiprocessor Interrupts . . • . • • • . . . • • . . • • . • . . . • • • . • 2-7

Functions of ESP . . . • . . • • • • • . • . • • • • • • . . . • • • . • • . . • • • • • . • • • • • • • . • • . . • . 2-7
Introduction. . . • • . • • • • • • • . • • • . • • . . . • • • • . • • • . • . • . . . • • . • • . • . . • 2- 7
External ESP Programs • . • • . • • . • • • • • • • • • . . • • . • • • • . . . • . • . • . • • • 2-7
CHORE. . • • • • . • • . • • • . • • • • . • . • . • . • . . . • . . • . . • . • . . • 2-9

Collector/Scheduler . . . • • • . . • • • • . • . • . • • • . . . • • • • • . . • • . . • • • • . • 2-10
Interpreter/Controller .••.••.••...•...••.•••••..•.....••.•.•.••.... 2-10

Internal ESP Programs. • • . . • . • • . • • • . . . • . . . • • • • • . . . • . . . 2-11
Filing. . . • • • • • . . . • • . • • • • • . . • • . • . . . • • • 2-11
Memory Allocation. . • • . • • . . . • • • • . . . • 2-16
Disk Allocation • • . . • • • . • . . . • . . . • 2-17
Input/ Output Processing • • • . • • 2-18

Source Language Compilers. • . • • • • 2-22
System Compatibility . • . • • 2-22
TOOL Compiler. • . 2-22

Introduction. • . 2-22
Features of TOOL • • • 2-22

ALGOL Compiler•....................................... 2-22
Introduction. • • . • 2- 2 2
Compilation Speed and Specifications. • • . 2-22

FORTRAN IV Compiler. • . . . • . • • • • . 2-23
Introduction. • . . . • . • • . . • . • . 2-23
Storage Requirements. • . • . • • • . . . • . . • • . • • • . • 2-23
Compiler Speed and Specifications. • • • . . . • • 2-23

COBOL Compiler .•......•..••..•.•••.•.•••.•••.•.....•••••......... 2-23
Philosophy of Approach. . • . . • • . . . • . • • • . • • • . . . • • . • . • . . . • 2-23
Features of COBOL . . • • • • • . • • • • . . • . • . . • . . . • • . • . • • • • . • • 2-24

Utility Programs . . . • • • • . . • • . • • • . • • • . • . • . • 2-27
IDIOT (!Deal Interface OuT) Print Program • . . . • . • • . • . • . . . • • . . • • . . . • . . 2-27
Program Functions of IDIOT • • • • • . . . • . • • . • • • • • • • • • • • • • • • . • . . . 2-27
Source Program Maintenance . • . • • • • • . • • . . • . • . • • . . . • • . • . . . • . • • • . • • . . 2- 28

Description . • . • • • • • • • • . • . • • • • • . • . • • • . • • • . . . • . • • 2- 28
Options. • • • • • . • • . • . • • • . • • • . . • • . . • • • • • • . • . • • • 2- 28

Generalized Sort/Merge . • • . . . • . • • • . . . • • • . • . • . . . • • . . . • . • • 2-29
Description •.•...•..••.•.•••••..•.....•..............•••.•....... 2-29
Options. • • • • • • • . . . • • . • 2-29

Data File Copy. • • • . • • . • • . • . . . • • . . • • • . • . • • . . • • • • . . . • . . . 2-30
Description • . • • . • . . • . . • . . . • . • . . • • • . . . 2-30
Options. • . • . . • • • • . • . • • • . . . • . . • . • • . . . • • 2-30

Data File Compare. • • . • . . . • • • . 2-31
Description. 2-31
Options. 2-31

Data File Print . 2-32
Description. • • • 2-32
Options. • . . . • . . . • • • . . • • • 2-32

TABLE OF CONTENTS (Continued)

Page

CHAPTER 3. EQUIPMENT SPECIFICATIONS . 3-1
General Description . • • . • 3-1

Central Data Processing System. • • . . • . • . 3-1
Peripheral Equipment Systems and Devices • • . 3-3

B8501 Central Processor Module • . 3-3
General Description . 3-3
Functional Description . 3-3

Communications Unit • . • • . 3-9
Interface Characteristics. 3-9
Description of Logical Operation. • 3-9

Advanced Station (ADVAST) . 3-10
Final Station (FINST) • • . . • • 3-11

Stack Operation • . 3-11
Operational Characteristics . • • . 3-13

Interrupt Bit Processing • . 3-13
B8505 Memory Module . • . • . • • • . • . . • . . • • . . • • • 3-16

General Description . . . • . • • . • • . • . • . . • • • • . . • . • 3-16
Functional Description • • • • • • • . . • . • . • . • • • . . • • • . • 3-16

Control Word. 3-16
Fetch Operations . . • . . . • . • • . • • • • • • . . . • . • • • • . • • • . . . • . . . • 3-16
Store 0!)3rations . 3-18
Checking Functions. .. 3-18

Interface Characteristics. • • • . • • • • . . . • • • • • • • • . • • . . • . • . • . • . . . 3-19
B8510 Input-C>utput Module. • • • . • • . • • . • • 3-19

Introduction. 3-19
Summary . 3-19

BS 520 Console • . • • • . • . . • • • • • • • . • . . • • • . • 3-21
General Description . • . 3-21
Functional Description • • • • 3-21

Communications Link . 3-21
Memory Module Check Facilities . 3-21
Power Control and Sensing Center. 3-21

Disk File System • . • . . . • • 3- 22
General Description . • 3-22

Physical Description of Electronics Unit . • 3-24
Physical Description of Storage Module . 3-24

Functional Description • • . . . • • . 3-26
Disk File Controller • • • . . . • • • 3-27

Controller Section . • • • • • • . • • 3-27
Queuer Section. • • • • . . . • . • • 3-32

Interface Characteristics. • • • . • • • • • . • . . . • • . • • . . . • . • . . • . . . • • • • • . 3-34
Operational Characteristics • • • • . • • . • . . . • • • . . • • . . • 3-34

Storage Fac_ilities. • • . • • • 3-34
Disk Allocation " • . • . • . . • • • . . • . . . • . • . 3-36
Parallel Reading or Writing. • . • • • . • . . • • . . • • • • 3-36

Magnetic Tape System" . • . • . . . • . • • • • • • • . . . • • • • • • . • . • • . . • • • . . . • • . • . . 3-37
General Description • • • . • • • . • • . 3-37
Functional Description • • . • . • • . • . • • . • . • . • • • . . • • . . . 3-37

Magnetic Tape Controller • • • 3-37
Line Drivers and Receivers. • . • • • . 3-38
MTU Select Register and Parity Logic. 3-38
Operation Register and Decoder • • • . 3-38

v

TABLE OF CONTENTS (Continued)

Page

Level Converters and Select Gates • • • . • • . • • . • . • . • • • . • • • . • • . • • . . . • . 3-38
Data Handling Registers . . • . • • • • . . • . . . • . • . • • . . . • • • . • . . . • • • • 3-38
Character Parity .•.•..•••••..• ,• • . • • • • • • • • • . • • • • • . • . • . • • . . • . • • • . . . 3-41
Word Parity • . • . • . • • . • . • . • • . • . • • • • • • • • • . • • • • . • • • • • . 3-41
Controls and Counters. . • • • • • . • • • • • . • . • • • • • . • • • . • • • • • • • • • • • • • • • • • . • • 3-41

Write O];:>eration. 3-41
Read O~ration . 3-41
Methods of Terminations • • • • . . • • • • • • • • • • • • • • . • • • • • • . • • • • • • • • • • • • . • • • . 3-42

Interface Characteristics •.•..••••••••••••.••••• -• • • • • • • . • • • • • • • • • • • • • • • 3-42
Operational Characteristics. . • • . • • . . • • • . . • . • . • • • • 3-44

Card Readers . • • • . • • • • • • • • • • • . • • • . • . . • • . • • • • • . • • • . • . • • • . • • • • • • • • • • . • 3-45
General I>escription . • • • . • • • • . • • • • . • . • • • • • . • • • • • • • . . . • • . • • • • • . • • • . • • • 3-45
F'unctional Description • • • . • • . . • . . • . . • • • . . . • • • . • • • • . • • • • . • • • • . . • . 3-46
Interface Description . . • . . • . • • • • . . • • . • . . . • • . • • • • . • • • • . 3-46

Card Punches . . . • • • • • . • • . . • • • • • . • . . • . • . • . • • . . • • . . • • . . 3-46
General Description . . . • . • • . . • • • . • . • • • . • . • . • • . . • . • . • • • • • • . • . . 3-46

Physical Description of B303 Card Punch. . • . . • • • . • • • • . • • • . • • . . 3-47
Physical Description of B304 Card Punch. . . . • . . . • • • • . • . . . • • • • • . • . • • . • . • . • . 3-47

F'unctional Description • . . • • . • • • • • 3-48
Interface Description • • • . . . • • • • . • . • • . • . . • 3-48

Line Printer • • • • • . • . . • • . • . 3-48
General I>escription • • . . . • . • • . • • • • • • . . • . . • • • . 3-48
F'unctional I>e scription • . . • • . • . • . • . • • • . • • . • • . . • . . . • . . • • • . • . . . 3-49
Interface Description . . . • . . • . • • • . • • • • . • • . • • . • • • • • • • . • • . • • • • . . • • • 3-49

Equipment Interfacing. . . . • • • • • • • . . • • • • • . . • • • • • • • • • • • • • • . . • • • • • • • • . . • • . . 3-50
General Description . • • • • • • • • • • • • • • • • • . • • • . • • • . • • • • • • • • • . • • • • • • . • • • • • 3-50
Information Flow . . • • . • • • • • • • • • . . . • . • • . • • • • • • . • • • • • • • • • • • • . . • . • • • . • . 3- 50

Communications Between Peripheral Equipment and 1/0 Modules. . . • • . • • • • • • • . • • . • 3-50
Communications Between 1/0 Modules and Central Processors • • . . • • • • . • . • • • . • . • • 3-51
Communications Between Processors or I/ 0 Modules and Memory Modules. . . • . • • • • • . 3-51

APPENDIX A B8500 CHARACTER SET. . . • . • • . . . • • . . . • A-1

APPENDIX B CENTRAL PROCESSOR INSTRUCTIONS. • • . . • B-1

APPENDIX C CENTRAL PROCESSOR INSTRUCTION SYLLABLES VARIANT DEFINITIONS AND
CONFIGURATIONS . • • • • • • • • • • . . • • . C-1

APPENDIX D CENTRAL PROCESSOR WORD FORMATS • . • . • • • • . • . . . • • • • • . . . • D-1

APPENDIX E ABBREVIATIONS AND ACRONYMS. . . • • . . . • • • • • . . . • • . E-1

APPENDIX F POLISH NOTATION AND THE STACK CONCEPT. • • • • . • • • • • . F-1

APPENDIX G GLOSSARY • • • • • • • • • . • • • • • • . . • • • • • • . • . . • • • • • . • • . • . • . . • • G-1

vi

Figure

1-1
1-2
1-3

2-1
2-2
2-3
2-4
2-5
2-6
2-7
2-8
2-9

3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10
3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
3-21
3-22
3-23

LIST OF ILLUSTRATIONS

B8500 Data Processing System
General Organization of the B8500 System
Concurrent Operations in B8500 System

Hot Job Table and Sleep Table Linking
Interrupt Flow of Control
Example of I/ 0 Processing
COBOL Compiler Structure
Source Program Maintenance .
Generalized Sort/Merge
Data File Copy.
Data File Compare .
Data File Input .. .

Module Cabinet • . • . •
Functions of Central Processor Stations•.....•..............
Central Processor Module, Block Diagram•.........•...........
Central Processor Module, Instruction Word Format•...
Central Processor Module, Interrupt Routine Entry
Memory Module, Block Diagram•..........................
BB 520 Console .
Disk File Subsystem .. .
Disk File System Configuration .
Disk File Subsystem Modular Design
Disk File Storage Module.
Head Mounting and Actuation .
Controller Section, Block Diagram
Queuer Section, Block Diagram
Disk File System, Interface Diagram
B425 Magnetic Tape Unit
Magnetic Tape Controller, Block Diagram
Magnetic Tape System, Interface Diagram
Bl29 Card Reader
B303 Card Punch .. .
B304 Card Punch .. .
B329 Line Printer .•..
System Interface and Information Flow Diagram .

Page

x
1-0
1-7

2-6
2-8

2-21
2-24
2-28
2-29
2-30
2-31
2-32

3-2
3-5
3-7

3-12
3-14
3-17
3-20
3-22
3-23
3-24
3-25
3-25
3-29
3-33
3-35
3-37
3-39
3-43
3-45
3-46
3-47
3-49
3-52

vii

LIST OF TABLES
Table Page

1-1 B8500 Data Processing System-Equipment Configuration and Operational
Characteristics. • 1-2

3-1 Central Processor Module Characteristics. • 3-4

3-2 Memory Module Characteristics 3-15

3-3 Format of Control Word for Magnetic Tape Operations. • 3-42

viii

Figure 1-1. B8500 Data Processing System

INTRODUCTION

The Burroughs B8500 Data Processing System
is a very large-scale, modular, high-speed,
"third generation", information processor.

The unique, modular hardware and software
organization of the B8500 provides a computing
system which is flexible, self-regulating, and
essentially free from "down-time". This
modular organization, the various multi­
processing and multi-programming features,
and the powerful input-output capabilities of
the system guarantee excellent performance
over the broad spectrum of data processing
tasks ranging from batch and "brute force"
computation to conversational and on-line
time-shared operations.

The B8500 employs the latest proven hardware
techniques, including monolithic integrated
circuits for the implementation of its logic and
magnetic thin-films for the fully-shared
random-access memory.

The information presented is intended for use
as an introduction for persons unfamiliar with
the B8500 System and as a general reference
source for individuals engaged in marketing,
programming, operating, and maintaining the
B8500 System.

Listings and definitions of abbreviations,
acronyms, and terms used in this manual are
given in Appendices E (abbreviations and
acronyms) and G (glossary).

xi

~
I

0

B8501
CENTRAL

PROCES50R
MODULE

I

•
• • •
•

86501
CENTRAL
PROCESSOR

MODULE
N°"

--

B8505
MEMORY •• • MODULE

I

f ~ ~

I
I
I
I ~
I
I
I
I
I
I
l

THREE
INDIVIDUAL

BlJSSES

88505 88505
MEMORY ••• MEMORY

MODULES MODULE
2 -15 16

I • ·~ ~ I ~· I
I
I
I
I
I

_l
-i

I
I
I
I
I

I I
I I

I MEMORY I
I

CHECK I
MODULE I I

B8520
I
I

I CONSOL~ I

I I

I I - - -!.. - - - - ~ - - - __._ - - - - - - - - - - - - .. - - ~
UP 10 13 ADDITIONAL BLISSES

*TOTAL COMBINATION OF r~NTRAL PROCE.SSOR

'T3 IDI
AND I/O MODULES CAN BE E 'X TEND E. D TO 15.

88510
I/O -MODULE -

I

•
•
•
•
•

88510

I/O
MODULE -

N*

Figure 1-2. General Organization of the B8500 System

88515 UP TO
CONTROLLER 512 -- --- YlODULE OR - PERIPHERAL
COMM MODULE DEVICES

88515 VP TO

CONTROLLER 512.
- MODULE OR - PERIPHERAL

COMM MODULE DEVfCES

CHAPTER 1

SYSTEM DESCRIPTION

SYSTEM CONFIGURATION

The configuration ofa B8500 Data Processing
System depends upon specific applications and
expected work loads. The B8500 is essentially a
system of systems. Because the B8500 is a
modular system, it can be tailor-made to fit a
user's current or changing requirements. A typ­
ical installation of the B8500 System is shown in
Figure 1-t.

Figure t-2 shows the general organization of
the B8500 System. The heart of the system is
the Central Data Processing System which is
comprised of the B8520 Console and configu­
ration of B8501 Central Processor Modules,
B8505 Memory Modules, and B8510 Input/Out­
put (I/O) Modules. The three basic modules
(processor, memory and I/O) are arranged
into a central system cabinet configuration.
A central data processing system may contain
one or more processor modules, one or more
I/O modules, and a maximum of 16 memory
modules. The total combination of processor
and I/O modules may be extended to 15 (e.g.,
if only one processor module is used, 14
I/O modules can be used).

A BS 500 System also includes one or more
B8515 Controller Modules, Communication
Modules, and the necessary number of per­
ipheral devices \Such as disk file systems,
magnetic tape systems, card readers, etc.)

Each I/O module used in a system utilizes 512
simplex channels to handle peripheral devices.
Table 1-1 lists, the model numbers, names of
equipment, and the maximum quantities which
may be implemented.

SYSTEM CAPABILITIES AND

FEATURES

Table 1-1 lists the basic capabilities of the
equipment modules and peripheral devices
used in the B8500 Data Processing System.
The following paragraphs describe the general
physical and functional features of the system.

Hardware Modularity

Three basic functions are implemented on the
B8500 System: data processing functions,
memory functions, and input/ output functions.
Each function is handled by a type of module
specifically designed for its task (i. e. , the
B8501 Central Processor Module handles the
data processing functions, the B8505 Memory
Module handles the memory functions, and the
B8510 1/0 Module handles the input/output
functions). All modules of one type are iden­
tical. Thus, a standardized interconnection
network provides for freedom in the selection
of a system configuration.

1-1

Model
No.

B8520

B8501

B8505

B8510

B8515

B470

B471

B475

TABLE 1-1

B8500 DATA PROCESSING SYSTEM-EQUIPI\iENT CONFIGURATION
AND OPERATIONAL CHARACTERISTICS

Name

Console

Central Processor
Module

Memory Module

Input/Output (1/0)
Module

Controller Module

Disk File System

Disk File
Electronics Unit

Disk File Storage
Module

1

14*

16

Maximum
Quantity

As required

20 per disk file
controller

20 per Disk File
System

100 per Disk File
System

Capability Features

Operator's and tesf console with capability
of automatically testing memory modules

High-speed computation center of B8500
System. Performs arithmetic, control, data
transfer, and interrupt service functions

Contains four high-s_peed local memories
20-megacycle clock rate

Random access thin-film main memory

Capacity of 16, 384 52-bit words (four 52-bit
words per location)

500 nanosecond cycle time (200 fetch, 300
store)

20 megacycle clock rate

Maximum data rate: 69 million characters
per second

Extremely high-throughput Input/Output
device

Thin film local memory with 1024 100-bit
word capacity and 500 nanosecond cycle time,
1. 7 usec service cycle

Houses peripheral device controller submod­
ules which provide the compatibility and
buffering between 1/0 modules and peripheral
devices if required

Fast access mass memory subsystem with
200-milliori 48-bit words and 30 millisecond
access time (average). (Access time is
substantially reduced by the use of the
"queuer" described in this manual.)

* Maximum conbination of I/O and Processor modules is 15.

1-2

Model
No.

B425

B124

B129

B303

B304

B329

TABLE 1-1 (continued)

B8500 DATA PROCESSING SYSTEM-EQUIPMENT CONFIGURATION
AND OPERATIONAL CHARACTERISTICS

Name Maximum Capability Features Quantity

Magnetic Tape Unit Eight per Magnetic Reads and records data at a density of 800
Tape Controller bits per inch and a speed of 120 inches per

second

2. 88-million 48-bit word capacity on each
reel of magnetic tape

Average transfer time of 9, 000 words per
second

Card Reader As required 800 cards-per-minute rate

Card Reader As required 1400 cards-per-minute rate

Card Punch As required 100 cards-per-minute rate

Card Punch As required 300 cards-per-minute rate

Line Printer As required 1040 lines-per-minute rate

64 characters (3 7 alphanumeric and 2 7
special)

132 print positions

Communications As required Interfaces low-speed, voice-grade, and wide
Module band communications lines with I/ 0 modules

1-3

CENTRAL PROCESSOR MODULE

The choice of the number of central processor
modules and I/ 0 modules depends entirely
upon the application of the B8500 System.
There may be as many as 16 communications
busses connected to the memory modules,
and these busses can serve the console and
any combination of central processor and I/ 0
modules. When more than one processor
module is used, the Executive Scheduling
Program dynamically manages the job assign­
ment of each processor module through the
processor's control registers. Thus, any pro­
gram can be executed by any processor module.
There is no fixed master slave relationship be­
tween the processor moduleso If more than one
processor module is available and asynchron­
ous segments of a program are indicated, the
segments can be simultaneously processed on
the multiple processor modules.

1/0 MODULE

The most important feature of the I/O Module
is its independence from the Central Proc­
essor Module. In effect, the 1/0 Module is a
separate processor with its own local memory
unit, logic and arithmetic functions, and com­
munication capabilities. Because it provides
channels for all data transfers between p·eriph­
eral devices and the System Memory, the 1/0
Module executes transfers from one peripheral
device to another peripheral device independent
of direct Central Processor control.

The system operations of the 1/0 Module are
programmed separately from the Central Proc­
essor Modules. This programming is coded in
an assembly language designed solely for the
1/0 Module. Then, the symbolic program is
assembled into an object program by means of
an assembler program written in ALGOL.
Input to the assembler is on punched cards.
The output consists of a program listing, with
relative memory assignments, and a tape that
contains the assembled object program for
printing and ultimate loading into the B8500.

The simple transfer function between periph­
eral devices and system memory is similar to
the more conventional descriptor-controlled

1-4

and buffered I/O Module in the sense that there
is a descriptor generated by the Central Proc­
essor for each data transfer executedo How­
ever, in data transfers to and from peripheral
devices, the I/0 Module completely controls
the I/ 0 operation using parameters stored in the
1/0 Module's program data area. The execu­
tion of buffered 1/0 can now be treated by
Central Processor programs in terms of tape,
card, and print files, rather than by individual
tape records, card images, and print lines.
This means that I/O processing overlaps the
Central Processor for long periods of time,
rather than the more conventional technique of
overlapping a single record. Using this over­
lap method reduces the number of interrupts to
the Central Processor, thereby reducing the
amount of software overhead associated with a
Control Program.

MEMORY MODULE

As required by the workload at an installation,
there may be as few as one and as many as six­
teen B8505 Memory Modules in a B8500 System.
Because each memory module can operate as
an independent memory, system programs can
be completely relocated to any memory mod­
ule. All programs, therefore, are written with
relative addressing methods to capitalize on the
relocatability feature.

STORAGE FACILITIES

Storage facilities in the B8500 Data Processing
System include a hierarchy of memories rang­
ing from 50-nanosecond cycle scratch pad
memories to reels of magnetic tape. The storage
facilities consist of the following:

• Each B8505 Memory Module has 16,384
52-bit words and a full cycle time of 500
nanoseconds. Words are stored or
fetched in four-word groups (208 bits) to
enable a maximum data transfer rate of
416 million bits per second for each
module.

• The local memory in each I/ 0 Module has
2048 52-bit words and a full cycle time of
500 nanoseconds.

• The local integrated-circuit memories
in each processor module have 32 52-bit
word and 24 70-bit word capacities and
50 nanosecond cycle times. A 28-word
(18 bits per word) associative memory
is also contained in each processor.

• The disk file subsystems, each have a
capacity of 200 million 48-bit words
and an average access time of 30 milli­
seconds. Transfer rates average 8 mil­
lion bits per second (166,666 48-bit words
per second).

• The Magnetic Tape Units have storage
facilities for serial files on 2400-foot
reels of magnetic tape. Each reel of
tape has a capacity of 2. 88 million
48-bit words. The transfer rate pos­
sible is 9,000 words per second.

Programs and data are stored in the high-speed
(500 nanosecond), thin-film main memory stor­
age and are vailable when required by opera­
tional programs. Data required for actual
execution of program steps is automatically
fetched, ahead of time, from the 500-nanosec­
ond thin-film memory in a memory module and
is stored in the 50-nanosecond thin-film mem­
ory in a processor module. The disk file system
backs up the 500-nanosecond memory. In gen­
eral, the Executive Scheduling Program con­
trols the tr an sf er of data from the slower speed
peripheral storage devices to the disk file sys­
tem before allowing a program to run. As
much information as is needed at any one time
is then transferred into the 500-nanosecond
memory by the Executive Scheduling Program.

System Availability and "Fail Soft"
Reliability

The reliability of the system is enhanced by
designing the interconnections between
equipment modules as a group of parallel
networks. This means each module of a spe­
cific type is independent of every other module
of the same type, both in power supply and data
flow.

If a component in a basic equipment unit (i. e. ,
unit at the end of the network) should fail, ob­
viously that particular unit is not operable,
and the medium being operated upon will have
to be relocated to another basic unit. An ex­
ample of this might be a magnetic tape trans­
port, where upon component failure, the reel
of tape would have to be removed and mounted
on another tape unit. If a component in the
Magnetic Tape Controller should fail, however,
the tape units normally serviced by the defec­
tive Controller would remain in operation.
They would be serviced by another Controller
via a second data path. The Controller as­
suming this new load would still handle the tape
units originally assigned to it. The result is
that the system would remain operative, but
data flow would be at a reduced rate. Similarly,
at the next level in the hierarchy of equipment,
if a component in an I/ 0 Module should fail,
then an alternate path is available from the
Magnetic Tape Controllers to a second I/O
Module. In this fail-soft environment, there­
fore, jobs with high priority will not be ma­
terially affected by the failure of an individual
component.

Because of the modular concept and intercon­
nection network, on-site modifications for
continuing quality improvement, can be made
to equipment modules without interrupting the
operation of the system. For the same rc:a­
sons unscheduled maintenance of the equip­
ment modules can be performed while the sys­
tem remains on-line.

Software Modularity

UNIFORM PROGRAM STRUCTURE

The B8500 operating system consists of an Ex­
ecutive Scheduling Program (ESP), service pro­
grams (such as an 1/0 procedure), and com­
pilers for ALGOL, COBOL, .and FORTRAN IV
(ASA). Software modularity is achieved by re­
quiring all program segments to conform to a
uniform structure. Compilers, as well as the
programs they compile, use the uniform
program structure.

The Executive Scheduling Program itself uses
the uniform program structure. The service
routines surrounding ESP have the uniform
program structure, but they also enjoy direct
access to some of ESP functions.

1-5

Multiprogramming And
Multiprocessing

Two of the most important features of the
B8500 System are its multiprogramming and
multiprocessing capabilities.

Multiprogramming is the concurrent process­
ing of several programs on a "time-sharing"
basis. For example, a program is normally
made active and run when (1) all of its neces­
sary input information has been assembled on
the disk file system, and (2) the required out­
put units are available. While a specific pro­
gram is waiting for inputs, etc., other pro­
grams will have already been running.
Therefore, the waiting time on one job is not
wasted, and an effective match is made of the
fast internal speed and the slower peripheral
devices.

Multiprocessing, which is the simultaneous
execution of two or more object programs,
is possible on a B8500 System having two or
more processor and I/O modules. Thus,
when enough memory and peripheral devices
are supplied, two processor modules can
practically double the throughput of a system.
Input/output operations occur nearly indepen­
dent of the Processor, and are in parallel
with processor module operations. Memory/
processor operations can also occur indepen­
dently of other system operations, because
each memory module has its own list of de­
scriptors which it can execute. An example
of how concurrent operations may occur in a
B8500 System, using only one central processor,
one memory module, and one input/output mod­
ule in conjunction with some peripheral equip­
ment, is shown in Figure 1-3. The three mod­
ules are on the left half of the drawing, and
the peripheral equipment is on the right half.
As indicated in the upper right corner of the
drawing, concurrent or parallel data proc­
essing occurs in three locations:

Central Processor Operations

Peripheral Operations

Input/Output Operations

1-6

CONCURRENT CENTRAL PROCESSOR
OPERATIONS

The B8500 System goes beyond the conventional
technique of buffering I/O peripheral devices
with processing operations, commonly known
as "reading while writing while computing". It
even goes beyond the usual overlapping of a
fetch of an instruction from memory with the
store of data to memory. The B8500, in addi­
tion to using the above time-sharing method,
also overlaps the execution of several machine
instructions. This advanced degree of time
sharing is made possible on the B8500 through
the use of multiple "stations" in the Central
Processor. Each station has an ultra-fast
memory and queues that enable it to partially
or completely perform a program instruction
while another station is doi:q.g likewise. This
"compute-while-compute" time-sharing tech­
nique, in concept, is analagous to the Store
and Forward method used in communications
systems.

CONCURRENT PERIPHERAL OPERATIONS

Concurrent peripheral operations are possible
in a B8500 System because the peripheral de­
vice controllers contain the necessary logic,
storage registers, etc. to allow each control­
ler to process data going to or coming from
one of the devices it controls. The Disc File
Controller, shown in Figure 1-3, can be as­
sembling an 8-word byte for transmission to
the I/O Module, while the Magnetic Tape Con­
troller can be unpacking a 4-word byte for
storing on tape. At the same time, the Com­
munications Module can be buffering the inter­
change of data between the I/O Module and a
peripheral device.

CONCURRENT INPUT /OUTPUT OPERATIONS

As indicated in Figure 1-3, an I/O Module can
interface with peripheral devices over any one
of 512 simplex channels at a maximum data
exchange rate of 286,000,000 bits per second.
Such high-speed data transfers are possible
when, for example, the I/O Module is commu­
nicating with another data processing system.
In general, the number of concurrent opera­
tions possible in the peripheral equipment con­
trollers connected to one I/O Module is deter­
mined by the maximum rate at which the Data
Service Unit can handle data, and by the num­
ber and types of peripheral devices required
by a particular system configuration.

SERVICING STORAGE. QUE.UE

SERVICE MONITOR! NG

PARITY GENERATION

PROGRAM JUMP EXECUTION

MEMORY BOUNDS LIMITS

INTERRUPT RESPONSE

(1~:=::--:::::--~~:::===~~~~~~~~~~~
ARITHMETIC OPERATIONS

LOGICAL OPERATIONS

BARREL SHIFT

OPERAND FETCHING ARITHMETIC, Fl ELD, AND

~ DATA STORING ~ ~ LOGICAL COMPARISONS ~ / j'"'''"~"QNE

CENTRAL PROCESSOR

MEMORY MODULE

INPUT /OUTPUT MODULE

CENTRAL
PROCESSOR

OPERATIONS

PARALLEL
DATA

PROCESSING

l:,;i:IT ~o.~M~~AT IONS ·,~,~·r'":_· -........... ·.:.-A-"-"'·~---i---:-TN--,g-"'~ -~ D-'""'<: - -;·....,.::·::""'"f ·.• i~"·'· ,,,:~r~~~N ,, !ii~~~{ I f ""ONE PERIPHERAL
OPERATIONS

INPUT/OUTPUT
OPERATIONS

~';: '; · .. , '-~~\> .•.• : -~·:,:·'.· -· .. .--"--:-~··-·....__~--"'-'=: - .•.• =;.''""-_~-:;.::_·,_,.~, --~~·:..:..,·--· .. ··-:··--.-- .. _,,_,, __ /'::_ · .. <·

•r::::;.:_f~a
~ PARITY CHECKING

TESTS AND COMPARISONS BCD- Bl NARY CONVERSION
*CHANNELS

182 DISC FILE
CONTROLLER

~ 2,000,000 48-BIT WORD~ PER STORAGE UNIT

100 STORAGE UNITS lpER CONTROLLER
ADDRESS BUFFERING

INSTRUCTION FETCHING

WRITE DATA BUFFERING

ADDRESS ARITHMETIC

PROGRAM PROCESSING

BINARY-BCD CONVERSION

NORMALIZATION
*CHANNEL 49 ~-----------------~

INCOMING DATA BUFFERING

PRIORITY/CONFLICT RESOLUTION •

INSTRUCTION LOOK-AHEAD

INTERRUPT CONDITION SENSING

FIELD MANIPULATIONS

~~~~~~~~~~~~~~~~~~~' ~ ~1:'.' ,;vx· · c .,,. '7 ~;:;:;·· 2Z\x£:c;1V . cc · · :·:;: 1~7 · c n··~··"7'5'' T> 1 
F: • "°" >'•< .. Y> '' ·: r;·)//i <~a; .. re,.· + :.c.p:, , 'ii 

...--.. ,~/->/:0:, .- __ .,'.: :,,. ;r,·--: ...•• < __ c'.r ... ·"_: ~i:,:_?''.'.!,~,, ._,_>·:::\<':~~ .... _,,,_'.;·<:: .. , .... _. "'-. ::·,, ... ;n:~-·>;;:;~.~-1',/.;'./ A:-\-::··i·:·:~~, I 
""" ~ 

INSTRUCTION PROCESSING 

JOB STACK ADDRESSES 
PROGRAM FLAG RESPONDING 

DESCRIPTOR CONSTRUCTION 

DESCRIPTOR PROCESSING: 

START LINES 
SERVICE REQUESTS 

PROGRAM FLAG SETTING 

~ 
~ 

I 
~ 

*CHANNELS 
17818 --

*CHANNELS 
197 
THROUGH 

QUEUER 

MAGNETIC 
TAPE 

CONTROLLER 

~512 _ _... COMMUNICATIONS 
~ MODULE 

RESULT DESCRIPTOR CHECKING .t w '>•if, \u· .. ·· 1•··.1.ti~·~fiK .. ~ 
~-:'.:: sc <:·::.:S:'. •.•.:· _7_\, 77 , •.. _. ,_,;,-/-;_;;:~· .......... =,=);_s_;_h~~~~-~-'- · ~~~~...,.,..,,..,,.....,.,.,.~~~-._ .. ·: · ·

1
· •• ·•··• ' . - ..... · ......... ,._..-.· 

2,500,000 48-BIT WORDS PER TRANSPORT 

8 TAPE UNITS PER CONTROLLER 

FULL DUPLEX CIRCUITS (LOW SPEED LINES) 

FULL DUPLEX CIRCUITS (VOICE GRADE LINES ) 
FULL DUPLEX CIRCUITS ( WIDE BAND LINES ) 

~~~~~;g~:::~~l-~-~-~~:-R~~~~~~:~~~~-;~~~----~---.. >~~: ~~···•_:.::.~•~ ... -.'._:._ •. __ ·;.·:··,-•_•_i_•--··~~--.··~·.·······.---~:~_-,---~'._: __ ~~·-~·-· __ .-:~ __ .···-~~-.• : ... -;:~:_:_.-~,_.-.:~.--; .. _.: __ -.• _ .• :.•~--.:~ .. ·,·_: •. _._.::i ___ l·'.'······--··: .. _-.Ba··--~- ~~:~~~~~~:as ~ :~;~~;Sc~~~~~~~NG (i ~ .·. •: /; .;,Jf~ifhl- ADDITIONAL CONTROLLERS AND ASSOCIATED PERIPHERAL EQUIPMENT 

COMPUTATIONS * TYPICAL CHANNEL ASSIGNMENTS

~,...,, ...,

./

INSTRUCTION FETCHING

WRITE DATA BUFFERING

INCOMING DATA BUFFERING

PRIORITY/CONFLICT RESOLUTION
STORE8 FETCH STATE WORDS

Fl ELD CONTROL

RELATIVE ADDRESSING

INTERRUPT STACK ADDRESSES

INPUT DATA HANDLING

BYTE PACKING

OUTPUT DATA HANDLING

BYTE UNPACKING ~===-~-=-~~~~~~~~~_J
_

Figure 1-3. Concurrent Operations in B8500 System

1-7/1-8

Computerized Input/ Output Module

The B8510 I/O Module is capable of simulta­
neously servicing up to 512 simplex channels
and contains an independent processing capa­
bility which permits it to perform routine
duties without the need to interrupt the proc­
essing modules. One of the primary functions
of the I/ 0 Module is to automatically (without
Central Processor intervention) buff er, into
high-speed disk files, the low speed data ar­
riving over communications lines from remote
stations. The Central Processor can then
service all remote stations from the high-speed
disk files and is not inefficiently tied to a low­
speed device, such as a card reader.

The most important feature of the I/ 0 Module
is its independence from the Central Processor.
In effect, the I/O Module is a separate com­
puter with its own local memory, logic, arith­
metic, and communications capabilities. Be­
cause the I/O Module provides channels for
all transfers of data, such as transfers be­
tween the peripheral storage devices and
Main Memory, or transfers between two per­
ipheral devices, data transfers are effected
independently of direct control from the Cen­
tral Processor.

ALLOCATION OF 1/0 CHANNELS

The numbers and types of devices that can be
connected to an I/ 0 Module depend to some
extent on how the 512 simplex (one way) chan­
nels are utilized. Data is transmitted over a
channel one "byte" at a time. A "byte" can
consist of 8 words, 4 words, one word, or
less than one word (i. e. groups of bits that
are submultiples of 48). The 512 simplex
channels consist of 2 56 input channels and
256 output channels, and are allocated as
follows:

Channel Number

1through16
17 through 48
4 9 through 512

Byte Size

8 words
4 words
1 word or less

The disk file controllers use 8-word bytes and
therefore exchange data over channels 1
through 16. Each disk controller requires
one input and one output data channel, plus an
additional output channel for the disk queuer.
The queuer channels may be from number 49

to 512, as the byte size is not more than one
word. Thus one I/ 0 Module can accommodate
eight disk file controllers and 800 disk storage
units for a total disk file storage capacity of
1. 6 billion (48 bit) words. Additional disk file
storage requirements are met by using addi­
tional I/ 0 Modules.

The magnetic tape controllers use 4-word bytes,
and exchange data over channels 17 through 48.
Because the magnetic tape system requires
simultaneous transmission of data in two direc­
tions (duplex), each tape controller requires one
input and one output data channel. One I/ O Mod­
ule can accommodate up to 16 tape controllers
and 128 tape transports.

System Expansion

The expansion of the B8500 is enhanced by the
modular design concepts implemented in both
equipment and programming areas. Additional
Processor, Memory, and I/O Modules can be
added without modifying existing programs or
equipment. Programming systems are de­
signed to utilize whatever equipment is avail­
able, and, if more equipment is made available,
it is used with a consequent increase in i11forma­
tion throughput.

Executive Scheduling Program

DYNAMIC ALLOCATION OF EQUIPMENT

One of the principal objectives of the Executive
Scheduling Program is to dynamically allocate
the equipment modules-processors, memory,
I/O channels, etc., to a constantly changing
set of jobs and thereby achieve a high degree
of utilization for all modules. As defined on
page 1-6, sharing equipment modules among
many programs is called multiprogramming.
The ESP goes a step further by multiprogram­
ming a set of jobs that consist of both us er re­
quests and operating system functions. As an
example, the service functions for jobs that
are running or being readied to run are entered
in the set of jobs to be done (Hot Job Table)
along with the main job entries, and the whole
set is multiprogrammed (and multiprocessed
if more than one processor is in the system).
The segmentation of programs permits a job
to be executed with limited memory and the
job's requirements for equipment modules
are handled dynamically through the course of
its execution.

1-9

MEMORY PROTECTION

Memory protection is also included in ESP.
Although a job may consist of several software
subroutines stored in independent memory
locations, both read and write memory pro­
tection are provided by data descriptors.
Actually much of this protection is provided
by hardware design, but it is set up and con­
trolled by ESP.

CALL-BY-NAME FILING SYSTEM

The filing system of ESP provides reference to
files and file items by name rather than by
storage medium or absolute address location.

Interrupt and External Request
Capabilities

A comprehensive interrupt system is imple­
mented in the B8500 System to service error
conditions and/ or requests. The interrupt
system provides the Executive Scheduling
Program (ESP) with the facility to maintain
control of all system functions. ESP includes
an interrupt processor program which deter­
mines what action is to be taken for each
interrupt condition. The interrupt system
utilizes a 70-bit condition register and a 70-
bit mask register. All interrupts are maskable,
i. e. , a bit in the condition register is set
whenever a particular condition exists, but the
processor will not respond to the setting of the
condition bit unless the corresponding mask
bit is set. The mask, then, serves as a multi­
level control device. When the processor is
operating in the normal mode of operation, it
may be interrupted by any unmasked interrupt
condition. Once the processor is operating in
the control mode of operation, it can only be
interrupt conditions (e.g., parity error, no
access to memory, etc.) regardless of the
mask register settings.

1-10

External requests are recognized by the I/O
Module. Once the requests are recognized,
the I/O service programs may begin the nec­
essary response to the request and accept all
further data from the requesting peripheral
equipment. A large number of external requests
are treated solely by the I/ 0 Module and do
not require any further processing. If the
request requires central processor handling,
entries are made into the job tables for ESP,
and the request is scheduled and serviced
as a standard I/O procedure. Thus, the
normal service to other peripheral equipment
is not disrupted. Only a small number of ex­
ternal requests result in immediate interrupts
of the central processor.

Compilers

The ALGOL compiler uses the compiling tech­
nique known as recursive descent syntactic
analysis. This technique compiles quickly,
makes modifications easier, and produces ef­
ficient object code. The ALGOL compiler
implements virtually all of ALGOL-60 and pro­
vides extensions for I/O operations, partial
word operations, string manipulation, and
diagnostics.

The FORTRAN IV compiler implements the
A. S. A. FORTRAN IV language. The compiling
is done in one pass using conventional prece­
dence scan techniques. The hardware stack
(p. 3-11) used in the B8500 makes this type of
analysis very fast.

The COBOL compiler implements D. O. D.
COBOL-61, extended. Data segmentation and
the ability to independently compile program
segments are also included.

Source language programs written in ALGOL,
COBOL, or FORTRAN, can be placed in the
system's library, and called upon for inser­
tion in other source language programs. The
borrowing program need not be written in the
same language as the borrowed program.

CHAPTER 2

PROGRAMMING FEATURES

EXECUTIVE SCHEDULING PROGRAM

Introduction

The Data Processing Operations Manager, in
today's working environment, is faced with the
following situation:

1. He has a large number of programs that need
to be processed with different priorities and that
are scheduled at various times of the day or week
or month.

2. He wants to make the most efficient use of a
limited number of peripheral devices, but he is
willing to sacrifice efficiency if required to meet
schedules. For example, he has a large process­
ing work load and uses several complete computer
systems to meet his schedules, even though he
knows he could save money using one large system
with the capability of parallel processing, multi­
processing, and multiprogramming.

3. If a peripheral device or a unit of the com­
puter malfunctions, he loses the use of the com­
puter until he can substitute an alternate unit, or
an alternate job, if possible.

4. He needs to know in advance when the system
will require data inputs so that valuable computer
time will not be wasted while "setting up".

To meet the challenge of situations like the one
above, the B8500 System has an internal, non­
human controller, supervisor or operating man­
ager. We call this internal overseer the Execu­
tive Scheduling Program; ESP for short. The
name is aptly chosen, because it is the adminis­
trative program to which all other "worker" pro­
grams report for guidance as to their execution.
In earlier Burroughs data processing systems,
the forerunners of ESP were called MCP and
AOSP. No matter what it is called, it is most
important to know what it is and what it does.
Let us delve further and examine how this non­
human operations manager, in accomplishing its
many functions, does meet the needs of today's
operating environment.

What Is The Purpose Of ESP?

The purpose of the Executive Scheduling Pro-
gram can be summed up in one sentence. ESP
schedules all services (such as memory alloca­
tion, loading of memory, assignment of system
components both equipment (hardware) and pro­
grams (software)), to achieve the maximum
utilization of all components of the System. To il­
lustrate, a large number of active programs re­
quiring various services are present in the System,
and their current status and required service are
recorded. As some component of the System be­
comes available, e.g., processor, memory space,

2-1

or a peripheral device, the component is assigned
to the active job of highest priority requiring it.
An important concept to remember is that each
component of the system provides a 'unit' of
service, and then goes on to service another pro­
gram. The main function of the Executive
Scheduling Program, then, is to keep track of the
services required by programs and to schedule
these services as components (hardware or
software) become available.

Of What Does ESP Consist And

Where Is It Located?

ESP is a master program (software), compris­
ing many special routines that provide automa­
tic control over those functions listed below.
These special routines can be logically divided
into two groupings: Executive Routines and 1/0
Routines.

FUNCTIONS OF THE EXECUTIVE ROUTINES

The Executive routines perform the following
functions:

1. Handle analysis and service of internal (oper­
ational, error, and power) interrupts.

2. Schedule the computer and peripheral equip­
ment, including remote terminals.

3. Handle program loading, file retrieval, and
file maintenance.

4. Handle system protection and recovery, in­
cluding memory and file protection, reruns, in­
dividual program recovery, and report on the cur­
rent stat11,., of programs being executed and being
scheduled.

FUNCTIONS OF THE 1/0 ROUTINES

The I/O routines perform the following functions:

1. Perform accessing commands, including
scheduling, error checking, return facilities, and
direct the transfer of data to file handler buffers.

2. Process the file handler functions.

2-2

3. Perform communications operations, includ­
ing receiving input communications data, activat­
ing a user's program to process the data, accept­
ing output communication data from the user pro­
gram, and transmitting this data.

ESP resides in three separate locations in the
B8500 System. It is stored on magnetic tape as
the primary source for changes made to it. The
complete program is also in disk storage, and
serves as the primary source while operating.
Segments of ESP are always in Main Memory for
program execution. Main Memory contains
enough of ESP to call forth from disk storage
whatever other segments are required to perform
a task.

What Can ESP Accommodate?

ESP is written to operate on the minimum B8500
System configuration, or to accommodate the
maximum B8500 System configuration. This
approach permits easy inclusion of ne~ modu_les
to the system, and permits the dynamic readJUSt­
ment of the system in the event of a module
failure.

What Does ESP Do?

As stated before, ESP is composed of special
routines that provide automatic control over
such functions as scheduling, program loading,
allocation of memory, input/output operations,
and time sharing of processors in the multi­
processing of user programs. In doing these
ESP automates many of the functions that were
previously performed by an operator. ESP con­
trols the environment and operation to the extent
that the major action of the system operator is
one of response to system needs rather than
offering direction to the system, as shown in the
followmg examples:

SCHEDULING

One of the operator's tasks which has been
automated is the scheduling of the processing
system. ESP schedules jobs automatically
according to priorities, time-of-day, deadlines,
etc. ESP even informs the operator of the re­
quirement for data (files) or special forms
(checks, etc.) in advance of actual processing
start time. The operator can then ensure that
the data and forms are available to the system

when required. ESP can make such advance re­
quests because, as it schedules devices and pro­
grams, it is aware of the requirements of all
programs that are to be run. Due to the ad­
vanced software approach of the Executive
Scheduling Program the operator need not be
aware of precisely which jobs are being executed
during a given instanto

ERROR RECOVERY

Another task taken from the operator is error
recovery. Files that have been altered by a pro­
gram and are subsequently found to be in error,
are restored by ESP with a minimum of operator
intervention. Copies of all altered records are
placed on an audit trail tape for reference and
available for reconstruction using standardized
recovery routines.

USAGE ACCOUNTING

Still another function assumed by ESP is account­
ing and reporting. Processor usage statistics are
accumulated by ESP. ESP maintains records of
user program processing times for billing and
accounting.

Uniform Program Structure
Program segmentation is_ a basic requirement of
a time sharing system having many users, be­
cause it permits a larg-e number of active pro­
grams to be present in the system, concurrently.
A B8500 program may be considered as the out­
put of one compilation, consisting of: program
segments, data segments, an operand stack ex­
tension, a working storage segment, a program
reference table, file list, CHORE (CHain Of Runs
Executive) working area, cold job table, and a
hot job table (Figure 2-1).

An active program (one that is in the hot job
table) must retain in main memory one program
segment, an operand stack, a working storage
segment, and a program reference table. A large
program may also require additional program and
data segments during its execution. Whatever
segments are required the allocation of these
memory segments is provided at the time the pro­
gram or data segments are referenced, through
descriptors in the program reference table. The
descriptors define the segments as they appear on
disk storage. When the segments are allocated in
main memory, the descriptors are altered to pro­
vide a means of communication between the
separately allocated segments within main
memory.

PROGRAM SEGMENTS

A program segment is a logical, independent
grouping of instructions and constants which is re­
entrant. The maximum segment size is 4096
words. Therefore, the output of a compilation may
consist of many program segments. The compiler
must provide a description of the linkage between
program segments and external procedures called
by the object code. All computer-generated pro­
gram segments are independent of position in
main memory. They can be placed anywhere in
main memory and be executed relatively from the
starting position of each segment. The Base Pro­
gram Register (BPR) contains the absolute address
of the starting point of the program segment cur­
rently being executed. At any time, the program
step within the segment being executed is defined
by the Program Count Register (PCR). The PCR
designates not only the word but also the syllable
(all relative to the BPR) that contains the operator
presently being executed in the Advance Station within
the Central Processor

When a program jump to another segment occurs,
the BPR will be altered to reference the starting
position of the newly called segment. The PCR
will contain the relative address of the first in­
struction to be executed within the new segment.

Program segments can only be read and are pro­
tected against accidental modification by placing
them outside the area bounded by the Memory
Bounds Registers, which define the read/write
areas for a program. Program segments are
referenced by program descriptors (in the pro­
gram reference table) which must have an ap­
propriate tag configuration. This prevents read­
ing the program segments as data objects.

DAT A SEGMENTS

A data segment is a block of storage which is
accessed through a PRT descriptor having alter­
nate bounds tag configuration. Data segments can
be shared on a system or run basis. -They can
be read only or read/write objects. Data seg­
ments are used to represent arrays, 1/0 buffers,
and similar constructs which require contiguous
memory locations. Data segments are addressed
relative to the lower boundary of an alternate
bounds descriptor. The alternate lower bounds
(ABL) value points to the starting point of the
Data Segment, the alternate bounds upper (ABU)
value points to the last entry in the segment.
These registers provide both read and write mem­
ory protection.

2-3

OPERAND STACK EXTENSION

The stack extension, located in main memory, is
a logical supplement to the central processor's
hardware operand stack, and uses the push down
concept for evaluation of Polish strings. The
memory allocated to the stack extension is de­
pendent upon the amount requested by CHORE.
One stack is allocated and will be used by all runs
within a single CHORE compilation. Memory pro­
tection is provided by the stack bounds upper and
stack bounds lower limits. Any attempt to read
or write data outside of the allotted area will
cause a bounds violation interrupt.

WORKING STORAGE SEGMENT

The working memory segment contains a user's
temporary and Global data. The working memory
segment is addressable relative to either the
Base Data Register (BDR) or the Base Index
Register (BXR). The BDR is the reference point
for the Global (Common) data area. Global or
Common refers to that data which can be used by
all program segments of all active programs.
The BXR is the base address for data that is local
to the segment of the object program that is cur­
rently being processed. When a jump to another
segment is executed, the BXR is incremented to
provide the new segment with its own local work­
ing area. Parameters to be passed to the called
segment, prior to the execution of the jump, are
stored relative to the new BXR. During the
implementation of the jump operation, a return
control word is placed in location zero relative
to the new BXR. The return control word con­
tains the information required to ret\].rn to the
caller and resume processing. This structure
provides the method for subroutine nesting and
recursion.

PROGRAM REFERENCE TABLE

The program reference table (PRT) is a read­
only segment and contains program descriptors
that will provide links to all segments generated
by the compilation. All descriptors within the
program reference table are relative to the PRT
base register and bounded by the Program Refer­
ence Table Limit (PRTL) to prevent a reference
beyond the area allocated to the PRT. The com­
pilers generate a PRT entry for each reference
to a program segment or a data segment. Each
PRT entry consists of a program descriptor,
description, and a link.

2-4

Descriptor

The descriptor contains the information required
to access a segment and is either a jump control
word (used to access program segments) or an
alternate bounds word (used to access data seg­
ments). The alternate bounds word also applies
bounds around the data object, allowing the data
object to be allocated outside the normal working
area. The alternate bounds descriptor also desig­
nates the segment as a read-only or a read/write
object.

Description

The description contains the information re­
quired to obtain, establish and control the asso­
ciated object. Some of the information contained
in the description is object name, file name,
position in file, size, and type of descriptor re­
quired to access the segment.

Link

The PRT contains one link word per descriptor
and is required to link the descriptor to the·
description of the object. Since all that is re­
quired to run a program is one program segment,
a PRT, stack and a working storage area, it is very
likely that the next segment that is required will
not be located in main memory. All references
to segments other than the segment currently
in process must be made via the PRT. If a seg­
ment is not in main memory its descriptor will
be tagged "not present" and upon any reference
to the descriptor the processor will be inter­
rupted, transferring control to ESP. ESP first
deactivates the calling program, keeping track
of the program step on which this occurred. Then,
utilizing the link word, ESP will find the de­
scription of the called object, and through inter­
pretation of the description, ESP will allocate
space, and the referenced segment will be loaded
into main memory. The proper descriptor for
this new segment will be formed and placed in
the PRT. The calling program will be reacti­
vated to make a second call on the segment, via
the PRT. This time the segment will be present,
and processing will continue.

FILE LIST

The compilers will produce as part of their out­
put a file list. The file list will contain the
names and characteristics of all files referenced
by the compilation. When the compilation is

readied an entry is placed in the generated PRT
that points to the file list. The file list, although
generated by the compiler, is inaccessible to the
user. When the compiler-generated code refer­
ences a file (for reading, opening, etc.) it will
reference through the file list descriptor in its
PRT. Parameters such as relative position in
file list, record name, block name, etc. , are
placed in the parameter area prior to execution.

There are three levels of file lists; Compilation,
Run, and CHORE. The output of a compilation
is a series of program units which can not be
further subdivided, for example, a subroutine in
ALGOL, or a paragraph in COBOL. A Run may
consist of one or many compilations. A CHORE
is a collection of Runs which performs a job from
start to finish, i.e. , "Salary Payroll".

The CHORE file list contains entries for all files
used by a CHORE. When a Run is established as
being active in the system, the subset of the
CHORE file list belonging to the Run is entered
into Main Memory and pointers to it are entered
in the Hot Job Table (HJT). The Run file list is
further subdivided on a compilation basis.

CHORE WORKING AREA

The CHORE working area is a segment of
memory which is common to all runs within a
CHORE. The size of the working area is speci­
fied at the CHORE level. This working area is
for passing parameters and data from CHORE to
Run, Run to CHORE, and Compilation to Com­
pilation. It is a data segment accessible only to
user compilations which are part of the series of
runs called CHORE. The first word of the work­
ing area is reserved for use as the "Sequence
Switch". The remainder of the area is free to
be used as the need dictates.

At the object program level, this working area
is a data segment, with a fixed name and is of
the type "CHORE job's" (global). For a CHORE
job's segment, in addition to each run being a
user of the segment, CHORE is also a user,
so the segment remains intact between runs.
This segment will always be supplied by CHORE
and will be available during the execution of the
object (worker) program. It is the responsibility
of the compiler, or user, if he desires, to ask
for use of the area via a PRT entry.

At object program time, the CHORE working area
can be completely modified, if desired. The area
is treated the same as any other data segment be­
longing to the run.

At the source language level, the working area
can be operated on using whatever mechanisms
available in the particular source language.
"STATUS-SWITCH-1, ON STATUS IS ... " is
an example of its use in COBOL.

COLD JOB TABLE

Cold jobs are descriptions of potential candidates
for execution. A collection of these cold jobs is
maintained in mass storage and called the cold
job table. A cold job entry remains in the Sys­
tem from the time it is introduced for running
(by CHORE) until its outputs are delivered (com­
pleted by the System). Information contained in
the cold job entry includes the method of deter­
mining its priority, the class of job (conversa­
tional, batch, deadline, real time), estimated
running time, amount of storage required, pre­
decessor cold job links, age, data files, maxi­
mum core segment size, etc. To summarize,
the information contained in the cold job table is
what is required to introduce jobs into the system,
based on current and anticipated computer load
matched against the priority of the job to be per­
formed.

HOT JOB TABLE

It is convenient for descriptive purposes to con­
sider the Hot Job Table as logically divided into
three parts: Start, State, and Control/ Account­
ing.

Start: Within the program structure and other
objects which constitute the requirements for a
run, the start portion of the HJT is the link be­
tween the external structures of interrupt re­
sponders, allocators, filing, etc. The start por­
tion of the HJT is nothing more than a PRT con­
sisting of a few entries corresponding to the run' s
stack, file list and first program structure.

State: The information which must be stored in
order to obtain a "picture" of an active object
program so that, if it is interrupted, it can be
resumed at a later point in time. The inter­
rupted process is resumed by restoring the saved
information so that it appears that the process
has never been interrupted. This information
consists mainly of processor registers and con­
ditions of flip-flops.

Control/ Accounting: This information includes
such items as status, 1/0 counts, time counts,
abnormal condition exits (overflow, EOF),
priority, links to its associated Sleep Table,
Cold Job Table, and File List, etc.

2-5

lnterru pt System

The :08500 central processor has a very com­
prehensive interrupt system, detecting 70 error
and system control conditions. (See Table of
Interrupts.) Upon interrupt or an ESP call the
central processor is transferred from User pro­
gram control to ESP program control, i.e.,
from Normal mode (User mode) to control mode
1 (ESP Mode). The central processor has three
modes of operation, Normal mode, Control
mode 1, and Control mode 2 (the latter two are
ESP modes). Normal mode has a restricted
instruction set and a maximum number of allow­
able interrupts. The control modes have a com­
plete instruction set and minimum number of
allowable interrupts. A control mode program
can attempt to determine the cause of a normal
mode interrupt by minimizing the possibility of
further interrupt. During the processing of a
User or worker type program in Normal mode
the interrupt conditions that are allowed to in­
terrupt the User's execution are restricted by
the ESP. This is accomplished by controlling
the content of the User's interrupt mask register.

Each time an allowable interrupt occurs and the
processor is placed in a control mode, entries

_.. --..
HJT

~ ~

.____, '--I

SLEEP
TABLE

~ ..
'---I

SLEEP
TABLE

must be made in the Hot Job Table or Sleep
Table describing the temporarily suspended pro­
gram structure. A Hot Job Table entry is made
upon transfer of processing from a User pro­
gram to ESP. The Hot Job Table contains three
sections; start, control and accounting, and
state. For each interrupt the state section con­
tains a record of the central processor's reg­
isters at the time of interrupt and a status indi­
cation of the reason this User structure has
been suspended.

The sleep table entry space is allotted at the
same time space is allocated for the rest of the
program structure. A sleep table entry is one
created upon the temporary suspension of an
ESP process, and contains all of the values re­
quired to resume the suspended ESP process.
There is at least one sleep table space assigned
to each HJT. One sleep table entry is made for
each ESP process that is waiting to be resumed.
Each sleep table entry contains a status field in­
dicating whether it is ready to run, whether it is
waiting for an 1/0 operation, etc. Each sleep
table entry is linked to its corresponding HJT,
and to subsequent sleep entries, if any; otherwise,
it is marked as the last sleep table entry in the
chain connected to the HJT. Sleep table entries
are also linked to all other sleep table entries
in order to facilitate scanning (see figure 2-1.)

_..
HJT HJT

~

._____,

SLEEP SLEEP
TABLE TABLE
L~ST 1-- ~

.._

SLEEP
TABLE .. LAST

Figure 2-1. Hot Job Table and Sleep Table Linking

2-6

After entering control mode 1 (see Figure 2-2),
a processor may be interrupted regardless of
the mask register setting: by computer no­
access-to-memory condition, computer parity
error, stop instruction, etc. An interrupt oc­
curring during control mode 1 will cause a pro­
cessor to enter control mode 2. The occurrence
of any of the above interrupt conditions while in
control mode 2 will cause the processor to halt.

HARDWARE FUNCTIONS AT INTERRUPT

The transfer from User program execution (Nor­
mal Mode) to ESP interrupt service program
execution (control mode 1) is accomplished by the
central processor logic, after all Instructions in
the final instruction queue (FINQ) have been
executed. The current base program register
(BPR), program count register (PCR), ADV AST
address register (AAR), and specific control flip­
flops are placed in the operand stack. The cur­
rent value of the base interrupt register number 1
{BIARl} is placed in BPR. . The value of BIARl
is determined by ESP (at the time the User struc­
ture is actuated) and designates the base address
of the interrupt service routine. The program
count register {PCR) is set to zeros. The next
instruction to be executed is taken from the
memory location indicated by BPR and PCR. The
interrupt service routine will make a HJT entry
for the User structure, link the HJT entry into
the HJT priority chain, test· for the interrupt
condition, and transfer control to the ESP sub­
routine indicated by the interrupt. Upon com­
pletion of interrupt service the HJT status field
is set to "ready to run". The processor then
looks for something to do. It scans the sleep
tables and the hot job tables and selects the pro­
gram with the highest priority that is ready to
run. At this time the loading of the processors
is also evaluated to determine if more programs
can be scheduled on the System.

MULTIPROCESSOR INTERRUPTS

The B8500 System is a multiprocessor system
with all processors physically identical. There
is no master- slave type of relationship, there­
fore special care is taken to insure that not
more than one processor will be interrupted by
the same system control interrupt, i.e., 1/0-
complete. This is accomplished by ESP con­
trolling, for each processor the individual
mask registers that determine which conditions
are allowed to interrupt that processor. Also,

critical areas of the interrupt service routines
of the ESP are "locked out" with software con­
trols. For example, if two processors attempt
to use· the same "critical" interrupt service
routine at the same time, the first processor
will set a software "lock" upon entrance to the
routine, and the second processor, upon finding
the routine locked, will be diverted to another
function.

Functions Of ESP

INTRODUCTION

Although CHORE, Collector/Scheduler, and
Interpreter /Controller routines are considered
part of ESP, they are implemented as user pro­
grams. Hence, these three routines are called
"External ESP" programs. Communications
between these programs and the rest of ESP,
called ''Internal ESP'' {Filing, 1/0, Allocation,
etc.), is accomplished as follows:

External to External-Procedure jump, segment
jump as appropriate, tables accessible to routines
communicating with each other, i.e., identical to
methods used by normal user programs as pro­
duced by ALGOL, FORTRAN, etc.

Internal to Internal-Procedure jump, segment
jump, or special transfers where required (e.g.,
switch BDR/BXR}, via PRT global area, and
tables or queues.

External to Internal-By macro call. It is highly
desirable that this interface be the same as that
for any user program and the ESP. Any special
interfaces required are kept to a minimum.
System tables are used both internally and
externally.

Internal to External-Internal answers to external
macro calls, common tables.

EXTERNAL ESP PROGRAMS

External ESP consists of the following functions:

1. CHORE (CHain Of Runs to be Executed)

2o Collector/Scheduler (C/S}

3. Interpreter /Controller (I/C).

2-7

2-8

ESP
COtJTROL MODE 1

PROGRAMS

USER PROGR/l\MS
NORM"L MOOE

INTERRUPT LOG\C

INTERRUPT E."XECUT\VE

lNTERRUt=''T LOGIC

CONTROL MODE 2.
E~ECUT\VE

ESP
'------.i CONTROL MODE 2.

PROGR,b..M5

EXTERNAL
ESP

(NORM~ L MODE.)

Figure 2-2. Interrupt Flow of Control

CHORE

The scheduling concepts implemented on the
B8500 Computing System require that the system
has information concerning the acquisition and
processing of computer tasks. The conventional
method of using control cards becomes inefficient,
because most information about tasks can be pre­
stored, and can be called automatically with or
without parameters. Using this method, control
cards are only needed to supply parameters to
prestored tasks and to supply data regarding
deviations from normal processing.

A run is defined as the execution of the combined
outputs of one or more compilations. It is de­
sirable to connect runs (which could have origi­
nated from different source languages) into a
single process. It is also desirable to have
decision making and parameter passing as allow­
able functions in the mechanism which combines
runs.

A language has been developed in which a chain of
runs is specified to the Operating System (ESP) so
that the chain of runs can be scheduled and exe­
cuted efficiently. Specifications in this language
are called CHORE (CHain OF Runs Executive).
The CHORE compiler accepts a source routine
written in the CHORE language and produces a
directive list that is used by the Operating Sys­
tem to schedule and control the described chain
of runs.

A CHORE routine is compiled from source lan­
guage and filed on a master CHORE file, along
with many other CHORE routines. A CHORE
routine is activated in one of three methods:

1. Automatically by the system based on a cycle
specification in the CHORE file.

2. On command from an external device such as
a card reader or teletype.

3. On call from a worker program or ESP.

In any of the above methods, the CHORE routine
and associated parameters are merged to form
an executable CHORE task which is introduced
to ESP for scheduling, collection, and execution.

A CHORE routine is divided into three basic
sections. The sections are: IDENTIFICA­
TION, DATA, and PROCEDURE.

The Identification Section identifies the CHORE
routine to the system. Information such as
deadline, priority, and repetition cycle are
defined to the system. Parameters required by
the CHORE routine on a command call (worker
or external device) or a cyclic call are also
defined.

The Data Section provides a list of files required
to initiate the CHORE routine. Included are all
input files and program files used by the CHORE
routine.

The Procedure Section contains the logic to be
followed in executing the CHORE routine. The
Procedure Section can be divided into segments
to implement overlay. The Procedure Section
is logically divided into run segments to provide
the sequencing of control through the runs in the
CHORE routine. Statements that control file in­
put, output, and printing are provided, along
with statements for the creation of files. Logi­
cal statements for transferring control, testing,
communication with runs, and overlaying seg­
ments are also provided in this section.

An example of processing a CHORE task (a series
of runs hereafter called CHORE), using all three
functional programs of External ESP follows.

A CHORE is written and punched on cards in the
CHORE source language. The source language
cards are placed in a card reader and a button at
the card reader is depressed, signaling the pres­
ence of work to be processed. The I/O PAC
Routine of ESP, on detecting the signal, causes a
card responder program to be activated by the
Collector/Scheduler. After scanning the initial
cards, the Responder calls on C/S requesting- the
activation of the CHORE which calls for execution
of the CHORE compiler. The request from the
card reader is taken as a command and the
CHORE for the CHORE Compiler is entered in a
table, from which it will be ultimately scheduled.

The example used above to illustrate the process
of activating a CHORE from the Card Reader is
the CHORE for the CHORE Compiler. The action
taken is the same for any CHORE, and so as not
to confuse the names, the CHORE Compiler is
hereafter called Compiler C.

2-9

The CHORE for Compiler C is executed when
convenient by the C /S program. The files re­
quired by Compiler C are acquired, disk space
allocated, etc. The input card file (the source
deck to be compiled) is associated with the file list
for Compiler C. When all file requirements have
been satisfied, the CHORE for Compiler C is
entered in a list where collected CHORES await
introduction by the C /S. When sufficient memory
space and intermediate storage are available, the
C /S calls on ESP to introduce the Interpreter I
Controller, with the CHORE for Compiler C as a
parameter.

When the I/C program is activated, it interprets
the CHORE for Compiler C. The runs specified
in the CHORE for Compiler C will be introduced
by the I/C for processing by the ESP. Compiler
C will be readied, and control passed to it. It
will proceed to compile the input file passed to it
and will produce (assuming correct syntax) as
output:

1. A directive list representing the CHORE.
This CHORE will be appended to the file contain­
ing all CHORES.

2. An ·entry to the cyclic schedule list, if the
CHORE compiled is cyclic.

When the runs for Compiler C are completed,
ESP initiates "end-of-run cleanup" (release the
space occupied by Compiler C, etc.). ESP then
returns control to the I/C which initiates any
further action required for Compiler C (e.g.,
print output file) 0 When I/C has completed proc­
essing the CHORE for Compiler C, it initiates
''end-of-CHORE cleanup".

The CHORE compiled by Compiler C is now on
the CHORE file and in the future can be called
either automatically, by means of the cyclic
schedule list, or on command from a card reader
(just as Compiler C itself, was called,)

Collector /Scheduler

The functions of the Collector /Scheduler Program
of the External ESP are as follows:

l, Automatically introduce and process repeti­
tive work.

2. Accept and process dynamic requests for
computer service.

3. Control the deposition of system resources
to individual tasks.

4. Provide facilities for the acquisition of re­
motely stored files and for the connection of the
obtained file with the appropriate requestor.

2-10

5. Act as a look-ahead for the System, providing
a backlog of processable work, but still exer-
cise control over what is being processed so as
not to overload the System.

6. Exercise control under the general guide­
lines of priority, time of data arrival, deadlines,
and current load.

7. Provide interaction with external
environment.

The Collector /Scheduler functions are inter­
related and it is difficult to separate one from the
other. Collection is usually concerned with
acquisition and connecting functions, whereas
scheduling is generally concerned with control
functions. What is to be collected must have been
scheduled for collection, and what is to be sched­
uled must have been collected for scheduling.

The technique used for Collector /Scheduler is
predicated on the characteristics put forth above.
Collector and Scheduler are as the teeth on two
meshed gears driving a shaft; each doing its job,
setting up for the next one, and moving on out of
the way. In the discussions of the Collector/
Scheduler Program, the functions are treated as
a single entity and referred to as C /S.

Interpreter /Controller

The Interpreter /Controller (l/C) is the program
which dynamically interprets the directive list
(CHORE) produced by the CHORE compiler. The
routine is called by Collector /Scheduler to process
a CHORE which has been partially collected (left
to be obtained are memory space and inter­
mediaries). The method of call is as follows:

1) The stack and HJT are allocated by
Collector /Scheduler.

2) The PRT portion of the HJT is initialized to
call I/C.

3) A call is made on the Internal ESP.

On return from the call, Collector /Scheduler has
been disconnected from the new job just established
and continues in an "across the board" fashion for
other jobs. The ESP (Internal) completes the
setup of the HJT, performs its own functions such
as linking, allocation of sleep table, etc., and
transfers control to the Start Program. The Start
Program then accesses the PRT line in the HJT
for the I/C, at which time the I/C is readied.
When readied, control is transferred to the 1/0.

INTERNAL ESP PROGRAMS

Internal ESP consists of the following
functions:

Filing
Memory Allocation
Disk Allocation
Input/Output Processing

These functions can be referred to, collectively,
as the Data Management System of the B8500.

Filing

STRUCTURE OF THE FILES

The types of files are individually described
below.

SERIAL ACCESS FILES

A. Fixed length records.

This type of file contains fixed length records
(all records contain the same number of B8500
words). The file description contained in the
system directory entry is sufficient to allow
serial access of the data, and includes:

1. Starting address of the file

2. Size of the records

3. Total size of the file

First Record (Data)

Next Record (Data) 1

Etc. BLOCK
Last Record (Data)

First Record (Data)

Etc.

As can be seen above, the data portion of this
file dues not contain any System-inserted infor­
mation, such as pointers or counters. Accessing
records on this type of file requires one disk
access per block. The blocking factor will be
determined by the record size and economical
read-write unit sizes .. in multiples of eight
B8500 words.

B. Variable length records.

This type of file contains records that are vari­
able in size, but all records must contain an
integer number of B8500 words. If the records
are blocked, the blocks must contain an integer
multiple of eight words. The system directory
entry for this type of file contains sufficient in­
formation to describe the file, such as:

1. File starting address

2. Maximum record size.

3. File size.

4. Size of fir st block of data.

5. Size of last block of data.

6. Maximum block size.

The user data for this type of file is contained in
blocks with a variable number of records per
block. The blocks also contain entries to en­
able the filing system to step through the file
one record at a time. The first block is ac­
cessed via the system directory by utilizing the
file starting address and the size of the first
block of data. Following blocks are accessed
by maintaining a pointer to the current block ad­
dress and increasing or decreasing the pointer
(from information contained in the block) for
the neKt block to be accessed. The blocks will
be constructed as follows:

SIZE OF PREVIOUS BLOCK

SIZE OF DATA FOR FIRST RECORD

FIRST RECORD (DAT A)

SIZE OF DATA FOR PREVIOUS AND NEXT RECORD

NEXT RECORD (DAT A)

ETC.

SIZE OF NEXT BLOCK

SIZE OF PREVIOUS BLOCK

ETC.

From this construction it is possible to access
the file in either a forward or backward direc­
tion. As described above, accessing records on
this type of file requires one disk access per
block. Blocking factor will be determined by the
record size and economical read-write unit
sizes.

2-11

RANDOM ACCESS FILES

A. Fixed length record called by record
number.

This type of file contains fixed length records.
All records must contain an integer (modulo 8)
of B8500 words. The file description contained
in the system directory entry is sufficient to
allow random access of the data such as:

1. File starting address

2. File size

3. Record size

The data portion of this file does not contain any
system inserted pointers or counters. Access
to any record on the file is accomplished by
taking the desired record number and multi­
plying it by the record size. Add the product to
the starting file address and then access the
record at that address. Accessing any record
on this type of file requires one disk access.

B. Fixed or variable length record called by
block name and record name.

This type file contains records that may be
variable in size but all records must contain an
integer number of .B8500 words.

This file has a unique structure that permits, the
majority of times, the retrieval of any record on
the file with one disk access, and never more
than two disk accesses will be required.

'.fhe disk area required for this type of file is
prestructured by an I/O utility routine. This
routine requires the following parameters:

1. Size of the file

2. Maximum size block

3. Average si.Ze block

2-12

From these parameters, the total disk space is
calculated and allocation is requested. After
allocation, the disk area is divided into equal­
sized areas (hereafter called buckets). The
size and number of these buckets is determined
by the size of the records, the number of rec­
ords, and economical read-write sizes. The
buckets are then segregated into two groups.
The first group is called the directory-and-data
buckets, while the second group is called the
overflow buckets.

The directory-and-data buckets will be for­
matted to contain the user's data in the
following manner:

Open Area Address

Size of this Block Block Name

Size of this Record Record Name

Record (Data)

Size of this Record Record Name

Record (Data)

Etc.

Size of this Block Block Name 1 BLOCK

Size of this Record Record Name

Etc.

Open Area

Block Name Overflow Bucket No.

Block Name Overflow Bucket No.
--

Etc. --

This type of bucket is used primarily for data,
and until such time as the bucket is filled with
data, no directory is necessary. When the
bucket is filled with data and it is required to
put more data in that bucket, an overflow bucket
is used and the data is stored there. The block
key and the identity of the overflow bucket is put
in the directory-and-data bucket so that the en­
tire block may be retrieved with two disk ac­
cesses. As more demand is placed on the di­
rectory-and-data bucket to store blocks of data,
and there is no more open area in which to put
the directory entry, blocks of data which were
originally contained in the directory-and-data
bucket will be moved to overflow buckets, per­
mitting additional directory entries.

The system directory entry for this type of file
will have the following type of entries to facili­
tate file access:

(1) Starting address of the data for the file

(2) Total size of the file

(3) Number of directory-and-data buckets

(4) Size of each bucket

(5) Address of overflow buckets

(6) Number of overflow buckets

(7) Map of available overflow data buckets

In servicing a request on this type of file, the
system directory entry for the file is accessed.
The block name along with the number of di­
rectory and data buckets from the system di­
rectory is used as an input parameter to an al­
gorithm whose output is the bucket number where
the block should be. This number is multiplied
by the size of the buckets and the product is
added to the starting address of the data to de­
velop the address where the desired bucket is
located on disk. An input-output routine is then
activated to read the desired bucket. When the
bucket is in Main Memory, it is scanned until
the desired block name is located. If the de­
sired block name is in the bucket, the block is
scanned to locate the desired record. If the
block name is not located in the data portion of
the bucket, the directory section of the bucket
is scanned to locate the block name. When the
name is located, the overflow bucket number in
the directory is used to access the bucket where
the block is located (as described above).

VALIDATION OF FILE REQUESTS

Every request for file service references the
System Directory to validate the acceptability of
the request as follows:

(1) Requests to open a file cause a check of
the following:

(a) Security indication; if present, further
tests will be performed to see if this
job should be granted access to this
file.

(b) Lockout indication; if present, this
request is deferred in a request­
waiting table until the file is available.

Note: If the Open requests lockout,
a scan is made of the file-in-use
table to determine if the file is cur­
rently in use. If it is, the request is
deferred, as above, until the file is
available.

(c) The structure of the file is checked to
see if the intended use will be allowed.
If yes, the type of access is filled in
from the request.

(2) Other types of requests are checked to as­
certain that they are consistent with the
type of access designated.

At this point the information in the system di­
rectory entry is held until further needed in
processing the request.

INACTIVE FILE SERVICE

The inactive file service maintains the inactive
file list and services requests from other parts
of the filing system and ESP. The inactive file
list contains the following type of information
for every file known to the system:

(1) File name

(2) File size

(3) Frequency of use

(4) Security indicator

(5) Type of access

(6) Date of file creation

(7) Date of latest change

(8) File format description

(9) File retention period

(10) Reference to previous cycles

(11) Storage medium (with reel numbers and
other pertinent data as required)

(12) Library locations

Maintaining the inactive file list is the function
of a utility routine. When called, this routine
purges all files according to their individual
retention schedules, puts the scratched file
reels on the list of available scratch tapes and
directs the tape librarian to the library loca­
tion of these tapes.

2-13

Servicing the rest of the system is accomplished
by different parts of the inactive file control as
enumerated below:

1. The original request (from either the CHORS
or C/S routines of ESP) is to locate the re­
quested file(s). The inactive file control
locates those files carried on the inactive
file list and passes information about them
to the requestor. A request for file(s) not
located on the inactive file list causes a
message to be sent to the operator at the
control station. File parameters may then
be specified from the control station.

2. A subsequent request to the inactive file
control causes a routine to find where the
file(s) are located and, if the file(s) are
contained on tape, prints a message to the
tape librarian with the desired reel numbers
and library locations. The librarian de­
livers the desired reels to the input tape op­
erators. If the desired file(s) are not on the
inactive file list, this routine makes skele­
ton entries for the file(s) from information
previously input from the control station
and requests that these files be made ready
at the input station. The control station
must then locate the file(s) and deliver them
to the system.

3. The next request to the inactive file control

2-14

is to make the originally requested file(s)
active. The inactive file control will print
mounting instructions to the input tape op­
erators. It will also instruct the input op­
erators to make all other designated files
available to the system, i.e., cards, etc. As
the input operators make the files available
to the system, the inactive file control will
verify that the input files are those re­
quested, allocate sufficient disk space for
each file, and activate I/O routines to trans­
fer the file(s) from the external media to
disk. Upon completing the transfer of all
the requested input files to disk, the appro­
priate system directory entry is made for
the file(s). The requestor (usually the C/S
routine of ESP) is notified that the requested
input files are now available to the system.
The output file(s) requested will have suffi­
cient disk space allocated and a system di­
rectory entry is made for each file. When
this is completed, the requestor is notified
that the requested output files are available
for use.

4. Upon termination, the inactive file control
is again called on to transfer the output files
to their external storage media. This en­
tails assigning output reel numbers and li­
brary locations, activating output routines
to effect the physical transfer, and pro­
viding the output operators with the nec­
essary labeling information. If the files
are to be printed, the output scheduling is
also handled by the inactive file control.
When the output has been completed, both
printed and an image of the file made on
magnetic tape, an entry is made in the in­
active file list and the system directory entry
is removed from the system. The disk space
that the file occupied is released for other
use. The input files and the space they oc­
cupied on the disk are also released.

ACTIVE FILE SERVICE

The active file service part of the filing system
services user requests for serial files, random
access files called by file name, block name,
record name, or random access files called by
file name, record number. In order to service
the various types of requests, the active file
service utilizes a series of directories and
tables. These directories and tables are used
for locating specific blocks or records, and for
control or validation of specific requests. The
following paragraphs describe the internal
functions of the active file service. By under­
standing the internal mechanisms, the source
language programmer should be able to
utilize the inherent flexibility of the data man­
agement system to solve his data handling
problems.

SYSTEM DIRECTORY

The System Directory contains an entry for
every file that is currently active in the system
(i.e., a file is active when it is directly avail­
able to the System, such as being contained on
disk or mounted on a tape unit). The individ­
ual entries for each file will contain the
following information:

(1) File name.

(2) Type of access (How the file is currently
being used, i.e., Random or Sequential).

(3) Structure of File.

a. Sequential file--fixed length record.

b. Sequential file--variable length
record.

c.

d.

e.

Random access--one record (fixed
size) per block, called by record
number.

Random access--one record (fixed or
variable size) per block, called by
block name and record name.

Random access--multiple records
(fixed or variable size) in a block,
called by block name and record
name.

f. Randomly accessed block; with se­
quentially accessed record within a
block--called by block name and
NEXT record.

(4) Number of reads and writes (random ac­
cess file only).

(5) Last date and time used.

(6) Security (yes/no indication).

(7) Lock out indication (file level).

(8) Address of the data for the file.

(9) Total size of the file.

(10) Record size.

a. Average record size

b. Maximum record size

(11) Size of area being used (size of the
buckets and total used).

(12) Number of data buckets (random access
only).

(13) Size of individual data buckets (random
access only) .

(14) Address of overflow data buckets (ran­
dom access only) .

(15) Number of overflow data buckets (ran­
dom access only).

(16) Map of available overflow data buckets
(random access only).

(17) User label indicator (serial access only).

(18) Retention schedule.

FILE-IN -USE TABLE

The file-in-use table contains an entry by CHORE
for every file that is referenced by that CHORE
which is currently active in the system. The
individual entries will contain the following
information:

(1) User Identification.

(2) File Name.

Successful attempts to open a file for a user
will cause an entry to be made in this table.
Attempts to lock out a file for a user will refer­
ence this table to ascertain that no other user
is currently using the file. All other types of
requests will reference this table to ascertain
that the file has been opened for the requesting
user.

REQUEST-WAITING TABLE

The request-waiting table contains an entry for
every request that must be deferr~d becaus~
either the requested file or block is not avail­
able to fill the request. The individual entries
will contain the following information:

(1) Either file identification or block identi­
fication.

(2) Requesting user identification.

(3) Current user identification.

All Open requests must provide lockout facili­
ties for serial files requesting lockout and for
serial access of random access files. This
lockout can be made only if the file is not al­
ready locked out or, in the case of the random
access file mentioned, only when there is no
other current user of the file. If the request
can not be filled, an entry is made in the re -
quest-waiting table. Whenever a user releases
a file, this table is interrogated to see if anyone
is waiting for this file. .If there is someone
waiting for it, the request is processed and the
er:.:: y removed from the table.

2-15

All other requests that can not be processed
because someone else is currently using the
requested block are likewise defined in the re­
quest waiting table. When the block is made
available, the request is processed and re­
moved from the table.

Every time an entry is made in the request­
waiting table, the table is scanned to see if the
user that is currently being held up is, in turn,
holding up the user that is causing the current
holdup. This is known as a stalemate and ap­
propriate action must be taken to back one off
so that the other user can proceed.

BLOCK-IN-USE TABLE

The block-in-use table contains an entry for
every block that is in high speed memory and
is referenced by a user. The individual entries
will contain the following types of information:

(1) User identification

(2) File identification

(3) Block identification

(4) Block location

(5) Block size

(6) Block lockout indication

When an access request is made, this table is
scanned to see if the information is already in
high speed memory. If an entry is found, the
request is filled from the copy that is already
present. Otherwise, further access for the
desired data is required.

FILE RECONSTRUCT PHILOSOPHY

Files are handled in such a fashion as to make
them readily reconstructable in case of a pro­
gram or equipment failure. Dumps are taken
at strategic points during the operation of the
System, and audit trail tapes will monitor all
changes to certain shared random access files.

2-16

Memory Allocation

As hardware and software techniques have ad­
vanced it has become possible for groups of pro-
gram steps (segments) to be loaded into memory
during or between the execution of other program
steps. It is this dynamic capability that has
allowed separate segments, or programs com­
posed of several segments, to operate under the
direction of a master program or executive. Dur­
ing the execution of a particular program, only
the segments of the program that are actually
being performed need be present in memory at
any given time. The rest of the program need
not be called-----into memory until it is to be per­
formed, thus saving storage space. When a seg­
ment or a program has been completed a call is
made on ESP to initiate an overlay, putting a new­
ly required segment into memory. At the same
time the segment areas no longer required are
released for further assigment by ESP. These
segment areas may contain groups of instructions
or data. Since these segments are shared across
programs (which may have been written in dif­
ferent source languages) a uniform program
structure is required. How memory is allocated
is explained in the following paragraphs.

The two basic functions of the Memory Allocation
program are to obtain a block of available space
in Main Memory in answer to a request and to
monitor blocks of memory after they are relin­
quished. As areas in memory are assigned, the
Main Memory becomes divided into blocks
of memory in use and blocks of memory that are
available for use. All blocks are linked in the
order in which they lie in memory. In addition
to this linkage, available blocks are linked by
size, with the largest block linked around to the
smallest block.

Allocation of space for a requestor is governed by
the priority and class of the requestor, and the
amount of space that has been committed pre­
viously to requestors of that class. The Alloc­
ation Routine first tries to allocate by scanning
the available space map to find the smallest
block that is large enough to fulfill the request.
If a block of sufficient size cannot be found, con­
trol is transferred to the Overlay routine.

The Overlay routine searches for a used block
of memory that can be reassigned to fulfill the
new request. This is done by using the priority and
class of the requestor. If a program segment is
chosen, the related Program Reference Tables
are updated to cause an interrupt on access by
the callers of the segment. If a data segment is
chosen, the data segment is saved in disk storage

bdore the block is reassigned. The PRT' s of all
users' programs referencing that segment are up­
dated as appropriate.

If a request for space cannot be granted by these
means, the request is deferred and put into an
unallocated chain on a first-in-first-out-by-class
basis. Periodically, this chain is scanned to
allocate the deferred request. (There are four
general classes of priority with sub-priorities
within them. It is these sub-priorities that are on
a first-in, first-out basis.)

As explained above, at any given time in the exec­
ution of a program, only the active segments re­
quire memory allocation. Large contiguous areas
of memory are not required. Therefore, pro­
grams can be run with varying amounts of memory
allocated. This is important in time-sharing
applications where there are many concurrent
users.

Disk Allocation
INTRODUCTION

The purpose of the disk allocation program is to
allocate and release storage on disk modules in
either logically or physically contiguous locations.
The disk modules are used as the B8500 System's
primary mass storage for input and output data
files and for program files currently being refer-
enced. Each disk module is logically divided into
20units of 100, OOOwords each, for a total physical
size of 2, 000, 000 words (a word being composed
of eight 6-bit characters). Requests for disk stor­
age are assigned space in a contiguous string.

GENERAL DESCRIPTION

The disk allocation program is composed of eight
independent procedures, as follows:

1. Physical Allocation

Function: Allocates contiguous physical
disk storage, and maintains tables of Available
Disk Storage and Available Contiguous Areas.

2. Logical Allocation

Function: Allocates a range of logically
contiguous locations and maintains a table which
relates the logical to the physical disk address.

3. Logical Reallocation

Function: Assigns additional logical loc­
ations to a previous request, maintaining con­
tiguity.

4. Release Physical Locations

Function: Places the released space in the
Available Disk Storage Table, tests the table for
newly created contiguous locations, and updates
the Available Contiguous Areas Table.

5. Release Logical Locations

Function: Releases logical locations and
their corresponding physical disk locations.

6. Allocate Empty Disk for Swapping

Function: Allocates a whole disk module for
the purpose of moving data from one disk to an­
other, and sets inhibit bits on both the sending
and receiving disk modules to prevent allocation.

7. Allocate Back-up Disk

Function: Allows a user to specify the
number of words of disk storage (maximum of one
disk module) and the number of different disk
modules required (maximum of three).

8. Remove Disk Module from System

Function: Tests the Assigned Storage
Table to insure that the disk module is empty, and
the inhibit bit is not set. If both conditions are
true, the disk module is deleted from the Avail -
able Disk Storage Table.

A detailed description of each of the above pro­
cedures can be found in the reference manual on
the ESP (Form BJ-4).

SUMMARY

Since the disk modules are assigned by means of
a table in which logical units are related to
physical addresses, a request for an area greater
than one module requires physical allocation. If
the request cannot be completely placed within
one module then the Logical Procedure will fill
the request by overflowing into another disk
module. Any fraction remaining (less than
2, 000, 000 words) is assigned to another disk
module, in the form of a contiguous chain of data.

This program also contains the facility to change
allocation of one disk module to another disk
module. When this option is selected, both disks
are inhibited from being further allocated.

A special request to allocate an area on multiple
disk modules is incorporated. This allows back­
up of datao

2-17

When the disk modules are returned from file
maintenance, an entry is placed in the Available
Disk Storage Table. When a disk module is re­
moved from the system, the Available Disk Stor­
age Table is modified. If the disk module is not
empty, an indicator is set.

A table of the assigned segments of disk is main­
tained in the Assigned Storage Table. A table of
the physically contiguous areas (Available Con­
tiguous Areas Table) is available and contains
the total number of words available in the System,
and the total number of empty disk modules.

A special request may place temporary restraints
on selected disk addresses. Consequently, these
disks will not be allocated unless all disk space
is in use.

Input /Output Processing

INTRODUCTION

Input/Output(I/O) operations on the B8500 are in­
itiated by the Central Processor but performed
by the I/O Module. Thus, the Central Processor
is free to continue at high speed, executing some
programs while several other different programs
may be awaiting the slower completion of 1/0 re­
quests. This freeing of the Central Processor to
permit greater time sharing across programs is
the most important feature of the I/O Module.

Each I/O Module contains a separate processor,
local memory unit, and communication capabil­
ities. Because it provides channels for all data
transfers between peripheral devices and the Main
Memory, the I/O Module executes programs and
controls the transfer of data from one peripheral
device to another peripheral device independent of
direct Central Processor control.

ESP'S 1/0 DRIVER ROUTINE (I/0 PAC)

ESP makes four basic requests on the 1/0 PAC
Routine:

1. Transfer one or more physical records (such
as the contents of a punch card or a magnetic
tape) between a peripheral device and System
Memory.

2. Transfer one or more physical records be­
tween two peripheral devices.

3. Transfer data from or to one or two buffers
located in System Memory to or from the
disk files.

4. Process the Interrupt Stack.

2-18

In addition to these four basic requests, pro­
visions for specialized requests are implemented
as required. This includes such functions as
scan column number one of input cards and in­
terrupt Central Processor if a special character
exists; otherwise, write the cards on disk. For
each of these requests certain parameters must
be established. Examples of some of the para­
meters inserted into the parameter area by ESP
and the I/O PAC are:

Function

Device number

Addresses (Memory Module, Disk, Sleep Table
Word, Buffers)

Number of Words read or transferred

Input and output devices

Operation

JOB STACK WORD ENTRIES

After the parameters have been established, a
Job Stack Word entry must be inserted in the Job
Stack Word Table (JSWT). There are five types
of entries that can be made. Their functions and
contents are listed below:

1. A NEW JOB entry causes the I/O processor
to: (a) be assigned to the channel designated
in the word; and (b) execute the program de­
fined by the base registers contained in the
word. The NEW JOB word contains complete
state information for a channel.

2. A NEW PARAMETER BASE ADDRESS
entry causes the I/O Processor to: (a) be
assigned to the channel designated in the
word; and (b) execute the program at the
channel's current IBA, but with a new PBA.

3. A STOP entry causes the I/O Processor to
stop operations on the designated channel.
It accomplishes this by causing the active
bit in the designated channel state word to be
reset and the I/O Processor to be released.
For a channel to use the I/O Processor the
active bit must be set. The start line to the
device for that channel is also reset, ter­
minating the operation of the peripheral de­
vice.

4. A NEW JOB STACK ADDRESS entry causes
the JSA to be loaded from the JSWT entry,
and the I/O Processor to become available

to the channel with highest priority. The con­
tents of this entry contains the new setting
for the JSA register. By placing this type
word in the last position of the current Job
Stack, the I/O Pac defines the extent of the
JSWT, and provides an address link to the
next Job Stack area.

5. A NEW INTERRUPT STACK ADDRESS entry
causes the Interrupt Stack control registers
within the I/O Module (ISAR and ISLR) to be
loaded, and the I/O Processor to be released.
ISAR indicates the location, in Main Memory,
of the I/O Module's Interrupt Stack, while
ISLR indicates its limit (length).

2-19

CONTROL AND DATA FLOW DURING I/O
PROCESSING

I/O processing can best be illustrated by an ex­
ample. The various numbers in parentheses
referenced in this example are shown on Figure
2-3.

During the processing of User Program-B
an 1/0 operation is requested. A call
(passing of program control) (1) is made
on the ESP to perform the operation. ESP
interprets this call and determines which
peripheral devices and data areas are to be
used. ESP loads into the Central Processor
and Main M 2mory the programs that are
required to perform this transfer, and then trans­
fers parameters and control to the I/O Pac
Routine (2). The I/O Pac uses the parameters
to construct a new Job State Word containing a
channel number, instruction base address, and
parameter base address. The channel number
specifies the device to be used in the I/O oper­
ation, the Instruction Base Address (IBA) spec­
ifies the I/O program that is to be executed, and
the Parameter Base Address (PBA) defines the
location of the parameter area (data area) which
contains the parameters to be used with the I/O
program. The new Job State Word (JSW) is
placed at the bottom of the Job State Word Table
(JSWT) (3). After a specific data transfer pro­
gram has been initiated, the I/O processor scans
the JSWT to select the next job to be initiated.
The I/O processor, using the Job Stack Address
Register (JSAR), scans the JSWT to select the
JSW now appearing at the top of the table. The
JSW corresponding to the JSAR is entered into the

2-20

I/O processor and the I/O program 1 designated
by the JSW, is activated to operate with the para­
meters specified (4). The program develops a
descriptor that will control the transfer of data
into, or out of, the buffer area specified by the
parameters. The descriptor contains a byte count
field, status field, and memory buffer address
field. The descriptor is placed in a Local
Memory location associated with the JSW channel
number (5). As each byte is accepted from a
peripheral device (6), the descriptor is removed
from Local Memory, the byte count is decre­
mented, and the descriptor is replaced (7). When
the byte count reaches zero (no more data to
transfer) the J/O program that initiated the data
transfer on this channel is reactivated. The pro­
gram will also be reactivated if the J/O Module
detects an error, at which time all further data
transfer is stopped (8).

The I/O program checks the status field of the
descriptor to determine the reason for termin­
ating data transfers on this channel. The status
of the I/O operation on this channel is inserted
into the parameter area, the Job State Word that
initiated operation on this channel is inserted into
the Interrupt Stack, and control is transferred to
the I/O Pac (9). The I/O Pac interprets the infor­
mation contained in the Interrttpt Stack and the
parameter area to determine the status of the ter­
minated operation (10). If the status is "good",
parameters and control are passed to the ESP
(11). ESP determines which user program had
requested the object data that is now available.
That user program is reactivated on one of the
Central Processors with pointers to the requested
object (12).

--------· I

I (4l

I

DATA BUFFER ARE.A
lN

MAIN MEMORY

I NSTRUCTlON A.REA
lN

MA\ N ME.MORY

(5) (7) (7)

(<O)
DATA TO ~ND FROM PER\PHERA\..
DEVICES SUCH AS 0\SK,

•14---~.a MAGNETIC TAPE, CARO

--,
I

I

I

:(9)

REAOER, t.TC.

JSP..R
R:llt-HER ,__c_H_*l__,__\ B_A__,__P_B_~-1 PA.R~METER AR.EA

(DAT~ A.REA.)

1ISAR
:pO\NlER 1----........__\ B_A_.......___P_B_P...___.

JOB STACK OR
Si~ TE WORD TABLE
IN M~\N MEMOR't'

(FOR JOB lN\T\,6..1\0N)

IN MA\N MEMO~'<

I (10)

1_ -- I/0 P/i-..C
__ SUBROUT\NE OF ESP

I
I

INTERRUPT 5TACK
lN MA\N MEMOR"'f

(FOR JO~ CON\PL.E. 1' \ON)

('3) \N MA.\N MEMORY

(2}

ESP
lN

MAIN MEN\OR"'f

I I
I I

(")

,----------· ---.- --------
:-------- ----- -(tl--.r1- - - -- -- -t '--,,i-,- -----:

USE.R PROGRA.M-C

----+DATA FLOW
-----•CONTROL FLOW
- - _. Pt..R~METER FLOW

I .---------------

USER PROGRA.M -B
IN MAIN MEMOR'f

R.EQUIR\Nu AN 'I/O
OPER~\\ON

USE.R PROGR~M-A.

Figure 2-3. Example of 1/0 Processing

2-21

SOURCE LANGUAGE COMPILERS

System Compatibility

Uniform program structures allow subroutine
intermixing among ALGOL, COBOL, and
FORTRAN. Subroutines, each in a different
language, can be nested in the calling program.

B8500 extensions to ALGOL permit full system
versatility when interfaced with ESP.

TOOL Compiler

INTRODUCTION

TOOL (The Only lOgical Language) was created
for the development of the system programs for
the B8500 Data Processing System. The language
is based on Extended ALGOL 60. TOOL imple­
ments much of Extended ALGOL with additional
extensions for the Executive Scheduling Program
(ESP) functions. Although TOOL is a problem
oriented compiler language, it also provides for
the necessary hardware manipulation that would
otherwise be accomplished through assembler or
machine language programming. The ESP and the
compilers for ALGOL, FORTRAN, and
COBOL are written in TOOL.

FEATURES OF TOOL

Through the use of the External Declaration,
library or file procedures are available.
Concatenate and Partial Word expressions
facilitate word, character, and bit manipulation.
For a field within a word that is to be used in
an arithmetic or logical operation, the partial
word designator gives the starting bit and the
number of bits. The concatenate expression
designates field starting bits in multiple words
and the corresponding field bit lengths, thereby
permitting word building.

ESP-Mode instructions provide a firm control over
hardware functions. For the ESP applications,
addressable processor registers can be specified
and treated as simple variables. Declarations
for special memory allocations and specification
of absolute addresses are also provided for ESP
application.

2-22

ALGOL Compiler

INTRODUCTION

The B8500 ALGOL compiler implements virtually
all of ALGOL 60. In addition, extensions to the
language have been provided to permit communi­
cation between the object program and the Execu­
tive ScP.eduling Program (ESP) to handle input
and output operations, editing of data, and
source language program debugging.

The B8500 ALGOL compiler consists of a number
of associated program and data segments, not all
of which need be in memory for compilation. The
ALGOL compiler runs under control of the ESP,
as a user program.

Inputs to the compiler are source language state­
ments, the B8500 System library, and job para­
meters. Optional outputs which may be specified
include: descriptive syntactic and consistency
error messages; storage map of segmentation and
variable locations; and a cross reference table of
variable symbols and statements.

During compilation, major errors, such as any
syntactic error, an undefined label, reference to
an undeclared array, etc. , inhibits code genera­
tion while continuing with syntactic analysis. A
minor error, sucp. .as an assignment of a Boolean
variable~to a non-Boolean variable, etc., is
annotated but does not cause the compilation to
be aborted.

The complete B8500 ALGOL compiler occu­
pies approximately 12, 000 words of mass
storage exclusive of tables, stack areas, input­
output buffers, etc. During compilation the
additional mass storage required for source
language, intermediate outputs, object code,
and listings, is requested from the ESP.

COMPILATION SPEED AND SPECIFICATIONS

Card load time to mass storage is indeterminate
as most of the transfer time is overlapped with
other work in the multiprocessing environment.
Compilation rate is a function of system load;
at maximum, it exceeds 9, 000 card images
per minute.

Extensive MONITOR and DUMP features are pro­
vided for run time diagnostics.

Three types of compilation may be specified:
compile and go, compile for library, and com­
pile for syntax check.

Fortran IV Compiler

INTRODUCTION

The B8500 FORTRAN IV compil~r is based on
A. ~. A. FORTRAN IV. Extensions and exceptions
reduce the restrictions of the basic language and
provide communications between the object pro­
gram and the Executive Scheduling Program
(ESP).

The compiler will operate under control of the
ESP and appear to the ESP as a user program.
During compilation, linkage between programs
and subroutines in all approved languages is pro­
vided; however, the called subroutine shall con­
tain only one language. This does not prevent the
compilation of nested subroutines, each in a dif­
ferent language.

Source language statements, the B8500 System
Library, and job parameters are inputs to the
FORTRAN compiler. At compile time the fol­
lowing optional outputs can be specified: lists of
source statements, object code, used but unde­
fined data and procedure names; error statements
indicating that part of the source statement which
is in error; a storage map showing the beginning
location of each subroutine, the total storage
used by the program, and the location of each
symbol (variable) name.

STORAGE REQUIRMENTS

The compiler requires approximately 10, 000
words of mass storage excluding the tables,
input-output buffers, etc. At compile time addi­
tional mass storage for source statements,
intermediate outputs, object code, and listings is
requested from the ESP.

COMPILER SPEED AND SPECIFICATIONS

The actual compiler load time is overlapped with
other computer functions. Compile speed is a
function of storage allocation and the maximum
rate exceeds 10, 000 card images per minute.

For optional diagnostic programming aids,
symbol tables will be available at run time for
symbolic dumps, traces, etc.

FORTRAN developed object code will make eff ec­
tive use of the B8500 System's hardware features.

Communication between the various source
languages used in the system is provided by the
Uniform Program Structure and ESP.

COBOL Compiler

PHILOSOPHY OF APPROACH

Many of the concepts of COBOL are outdated be­
cause the B8500 employs advanced techniques in
both hardware and software design. An example
of this in the B8500 software is CHORE, which
handles the assignment of 1/0 units (File-Control)
and scheduling of runs. COBOL, of course,
handles the function of File-Control through the
ENVIRONMENT DIVISION, and makes no attempt
to handle the scheduling function.

COBOL, itself, is undergoing change, based on
the experience of users. A. S. A. 's COBOL In­
formation Bulletin #7 clearly shows that many
elements of the language considered REQUIRED
today, will probably be OPTIONAL tomorrow.

It is in this changing world that the B8500 COBOL
compiler must bridge the old with the new. It
must be able to compile existing source language
programs with minimum changes, and yet fit them
into the new and advanced scheme of doing things.
The guiding philosophy for the B8500 COBOL Com­
piler has been to accept existing syntax to the
fullest extent possible, only rejecting it where it
is in direct opposition or totally unrelated to the
B8500 software and hardware functions. Upon
acceptance of these language elements, the com­
piler will generate the necessary machine code to:

a. completely handle the element, or

b. partially handle the element, passing on
the necessary parameters to other soft­
ware packages to complete the function,
or

c. take no action to handle the element.

The above approach will permit conversion of
existing programs with the least disturbance.
Long range, however, those elements found to be
redundant or vacuous can be stripped from the
source language programs, thereby increasing
the compiler's efficiency.

2-23

FEATURES OF COBOL

The B8500 COBOL compiler implements COBOL
as defined by the COBOL Edition 1965. All re­
quired and most elective portions of DOD "COBOL-
61 Extended" are included. B8500 COBOL exten­
sions and electives provide:

I. SORT verb- Use of the tournament re­
placement technique coupled with a for­
ward/backward read on a balanced merge,
using random access devices, produces
extremely fast sort times. Implementation
permits sorting on single or multiple keys

STAflT

OBOL
COORDINATOR

i----- - PMASE I

SYNTAcnc ANALY.SIS
ANO ENCODING

in descending or ascending order.
Input and output procedures allow us er
program intervention before record buffer
content destruction.

2. CORRESPONDING option of MOVE, ADD
and SUBTRACT verbs- for dynamic
operation on group items.

3. ADVANCING option of WRITE verb - to
vertically position printer.

4. Report Writer - fully implemented with
grouping techniques and complete struc­
tural controls on report format.

SOURCE
PROGRA.M

DATA HIER.ARCHY
ANALYSIS, ALLOC.ATION,t
t».TA REFERENCE SU8ST

2-24

CODE GEJllERATION

PHASe'4

CODE GENER..ATION
f.2.,..f PA$.$), OPT"IMIU.TIOM _

AND U.$flNGo

OBJECT
PROO.RAM

LISTINGS
(0PT10NA.L.)

Figure 2-4. COBOL Compiler Structure

G. Table handling - including SEARCH and
SET verbs for reference point establish­
ment and location.

6. COPY and INCLUDE verbs for library
facility - to economize programming
effort through use of programs already
written.

7. Full formula and relational operator sets:
+, -, *, **, /,=I, =, x, >,< ,2::, :5, and
their English language equivalents.

8. COMPUTE verb, with all arithmetic oper­
ations.

9. Mass Storage feature with asynchronous
processing capability as provided in the
DOD specification of 11/26/63. Extensions
are implemented to interface with the filing
system of the B8500.

10. Unlimited conditional, IF, nesting with
automatic subject, relation, object and
logical connector recursion.

11. Automatic sequence numbering of source
code when omitted.

Continuing the B8500 . nodular concept, the COBOL
compiler has been constructed in a highly segmen­
ted fashion for ease of maintenance (Figure 2-4).
Four major segments provide the functions of:
thorough syntactic analysis and encoding; data
hierarchy analysis, allocation and data reference
substitution; object code generation; and code
optimization and listing.

Inputs to the compiler may be the source pro­
gram, a COBOL library, and job parameters
determining the system configuration and oper- -
ating system interface. Specifiable outputs are:
updated source an.ct object programs; COBOL
library, and listings including: data division
memory map; cross reference listing; source
program listing with syntactical, format and

consistency error messages; and object program
listing.

In the object program corresponding data and
procedure segmentation contribute to minimal
dynamic memory demands while allowing efficient
object code execution. SECTION-names may be
assigned priority numbers to mediate segment
overlay procedures for optimal retention of high
usage code. COBOL object programs may be
made up of independently compiled segments and
may call on subroutines written and compiled in
ALGOL, COBOL, or FORTRAN.

Debugging is facilitated by extensive variations of
the MONITOR verb which, when linked with the
Executive Scheduling Program (ESP), will per­
form run time program diagnostics and provide
the programmer with self-specified symbolic
records of executed control points with dynamic
value tracing.

Mass storage compile speed of B8500 COBOL
exceeds 3000 card images per minute.
Approximately 24k words of B8500 memory are
required for compilation, the exact _amount
depending on the variable and program references.
Several compilations may be executed from the
same compiler copy in memory, under the di­
rection of ESP.

Versatility of peripheral equipment is maximized
through extended field sizes; alphanumeric
literals, up to 132 characters, printable;
numeric literals, 30 characters; numeric arith­
metic fields, 18 characters; and display data,
2048 characters, minimum. Input-output oper­
ations are handled by passing control parameters
to the ESP allowing device independent COBOL
and multi-usage 1/0 routines.

Although the B8500 is a word machine, the data
stream entering and leaving the system is,
conceptually, character oriented for the COBOL
programmer. Automatic handling by the compil­
er of the SYNCHRONIZE function, previously
associated with word machines, makes it un­
necessary for the programmer to account for
word boundaries.

2-25

Character Location

1-132

133-134

135-137

138-140

141-147

148-152

2-26

IDIOT RECORD FORMAT

Field

EDITED- PJUNT- LINE

Complete character string already edited for printing.
TYPE-OF-LINE Code

Blank

00

01

02

03

04

Normal print line

L-B-P and L-A-P contain control
information for the program, such
as top and bottom margin spacing.

First body line of a page

Forms change record

Internal alignment line

Heading line(s). Will be retained
and printed on top of every page.

LINES- BE FORE- PRINT

Number of blank lines needed. However, with
00 in T-0-L, a "9" in location 135, followed by
NN in 136 and 137 will indicate form length in
sixth's; e.g., 00966 means a form 11 inches
long.

LINES-AFTER- PRINT

Number of blank lines needed. Normally, single
spacing will always be given after a line is print­
ed, indicated by blanks in TYPE-OF-LINE and
LINES-AFTER-PRINT. Zeros in LINES-AFTER­
PRINT, however, will suppress spacing, allowing
"over-printing" by the following EDITED- PRINT­
LINE.

REPORT-NUMBER

The report number may be divided into as many
categories as necessary to provide restarts from
any given sub-report; e.g., Gross dollarization
by Division (intermediate) within Plant (major).

PAGE-NUMBER

A method to number pages can be furnished by
the source language programmer, and if fur­
nished, should restart on each change in
REPORT-NUMBER. It j.s believed, however,
that the task of keeping track of the number
of lines on a page as well as page numbering
should be a function of the IDIOT printing
routine. Therefore, in the absence of any
value in this field, page numbering will be
furnished.

UTILITY PROGRAMS

Some of the utility routines that are provided are
represented on the following }.llges. The list is
not inclusive, but merely representative. The
number of service programs available to the User
will grow with the B8500 System.

IDIOT {IDeal Interface OuT) Print
Program

This program offers the following advantages:

1. Automatic page numbering.

2. Source programs preparing printed re­
ports will be oriented to forms movement
rather than to specific hardware features.
Programmers will not be required to keep
track of where they are on a page.
Therefore, programmers need not be
concerned with the hardware, but furnish
only the standard format outlined on
page 2-26.

Program Functions of IDIOT

1. Gather, retain, and correlate for the indivi­
dual report such information as top and
bottom of page margin spacing, form size
(lines per page), page numbering, and line
count per report. Absence of the necessary
parameters in a print file will cause IDIOT
to apply established standards; e.g., a form
size of 66 lines (11 "), 5 blank lines as top
margin, no header lines, 5 blank lines as
bottom margin; and page numbering, starting
with 00001 upon each change in Report­
Number, and being printed in the center of
the bottom page margin.

2. It is anticipated that a standard carriage con­
control tape will be provided for each length
of form and will need to be changed only when
a form of different length is required.
Channel one on the tape will always be punch­
ed for the first horizontal line immediately
below the perforation at the top of the page
(not necessarily the first printing line). The
remaining channels will be punched starting
with channel two on line 6 (6 lines to the inch),
and repeating every 6 lines through Channel
11 at line 60. Channel 12 (overflow) will
never be punched nor used. Line spacing,
therefore, will be accomplished by Channel
Skipping plus spacing the remainder through
single or double spaces.

3. Restarts, through console interrupts, will be
facilitated as follows:

IDIOT will print out, upon any termination,
the report and page or line number. Using
these as basic references, the operator can:

a. Print from and through any given report
and page or line number. A special case
of this general restart capability is the
recovery from forms movement failure,
when the operator can perform a "two
page backup" and restart, thus assuring
at least one full page of overlap.

b. A second special case of the general re­
start capability is the file passing option
(to selectively sample print lines).

c. Will provide for prematurely terminating
a given print run, via console interrupt,
and displaying a report number and page
or line number from which to restart.

4. Will print the internal alignment line(s), and
repeat their printing until operator, through
console interrupt, terminates this function.

2-27

Source Program Maintenance

DESCRIPTION

Starting with a source program library of either
COBOL, FORTRAN, or ALGOL apply changes,
delete or add new programs, as directed by the
control information. Output of this run consists
of a file for subsequent input to a compiler for
completion of any program(s) changed or added,
and a listing of each. Since these facilities will
be used for both maintenance of production pro­
grams and during new program testing, an up­
dated library reflecting the changes will be pro­
duced on an optional basis. Associated with the
new library will be a control listing reflecting all
existing elements and the date of last change.

NOTE: Card columns 7 3-80 should contain
identification for programmer's use, i.e.,
sequence number, date of change, or
coding of changes.

CONiROL
I NFORMA.l\ON

CHANGES OR
NEW PROGRAMS

43130

OPTIONS

1. Request that the name only of a library pro­
gram be changed.

2. Produce a new copy with changes under a new
title from an existing library program.

3. Merge with selection, two or more source
libraries.

4. Specify FROM and TO program names of
those to be acted upon.

UPD1'TE
50\JRCE.

U8A.ARY

PROGRAM i.------1

CHA.NC7E
L\S\

UBR~R'V
CONT RO\.

L\5\

Figure 2-5. Source Program Maintenance

2-28

Generalized Sort/ Merge

DESCRIPTION

In addition to the facilities provided by the
COBOL compiler for sequencing or merging
files, this routine will accomplish the same re­
sults based upon control parameters supplied in
the job stream at object program run time. In
this manner a single version of this program
may be called upon to process any data files of
the system with variable input/output information
such as file identification, record type, record
size, and control fields specified for a given
execution only.

If it is desired to accomplish user own-coding
during the input or output of the sort/merge, the
COBOL facilities for generating a specific run
should be used.

CONTROL
PARAMETERS

4313\

OPTIONS

1. According to control specification handle
both multi-reel files and multi-file input.

2. Select specific files for input from multi­
file reels.

SORT I MERGE

Figure 2-6. Generalized Sort/Merge

2-29

Data File Copy

DESCRIPTION

Copy either a permanent or temporary catalogued
file with ability to interchange resident devices
in the process. Basically, this function provides
an exact duplicate of the original file. The follow­
ing options are to be included.

CONTROL
INFORM/'.\TION

43132

OPTIONS

1. Handle multi-reel files and multi-file reels
both in and out according to programmer
specification.

2. Change density.

3. Change blocking factor.

4. Duplicate only a portion of the file.

5. Duplicate only selected records of the file
on a key.

6. Duplicate with specified field change.

7. Duplicate original file but change catalogued
file identification.

8. Provide a print listing of new file.

9. Record unreadable records with special
character (?) insertion on an independent
file for subsequent display and re-entry thru
the merge function (see Generalized Sort/
Merge).

COPY
TA.PE TO DISK
i""PE TO TP..PE.
DISK \O Tt>..PE.
DISK "TO D15K

OPTIONf\L
L15T

NEW
FILE A.

OUTPUT
LIST

QUEUE OIJ\ ?\JI

Figure 2-7. Data File Copy

2-30

Data File Compare

DESCRIPTION

Compare two independent data files and produee
an output discrepancy file in standard print format
for any unmatched items. Each item to be listed
will be noted with record and block number. For
any items in disagreement boih records will be
outputed for listing, indicating specifically the
fields that do not compare.

CONTROL
INFORMAllON

43133

OPTIONS

1. Specify starting point of either input file to
begin comparison. This can be either block
and record number, or a specific symbolic
key.

2. Handle multi-reel files or multi-file reels
according to control information.

3.

4.

5.

6.

Specify only portions of a record to be com­
pared.

Specify a sequence key to compare only
matched records for handling out of phase
files with sequence check on both files.

Provide the ability to communicate with
CHORE in case the results of the comparison
may affect subsequent processing.

Specify fields of the records that are in com­
putational format and need be converted to
display format for discrepancy printing.

COMP~Rt. DAT~

AND PREPARE
STD. PRINT

COMP~RE UST

FILE B

COMP/:a..RE
----- DISCREPANC.Y

UST

Figure 2-8. Data File Compare

2-31

Data File Print

DESCRIPTION

Produce a formatted record from a specified
data file(s) to be queued on a disk buffer for
subsequent concurrent printing. The output
record will conform to the standard specifications
for printing a uniform (120 or 132 characters per
line) listing. Print-out will reflect appropriate
record and block number. Each new record will
start on a new line. Each file listing will be
identified by file ID and CHORE title.

CONTROL
INFORMATION

OPTIONS

1. Specify the desired starting point of the file
to be printed according to block name and/or
record number.

2. Specify the number of records or blocks to
be printed.

3. Specify records to be printed in increments
only, or on selected keys for sampling of
files.

4. Specify spacing on output list.

5. Request that backup tape copy of the output
listing be provided.

6. Specify whether computational fields are to
be converted to display for printing or dump
of total actual values must be provided.

DATA INPUT
FILE

ASSEMBLE STD.

43134

2-32

PRINT
OUTPUT
QUEUE

PR I NT OUTPUT

PRINT
LISTING

Figure 2-9. Data File Input

OPTIONAL

OUTPUT

CHAPTER 3

EQUIPMENT SPECIFICATIONS

GENERAL DESCRIPTION

The equipment used in the B8500 Data Process­
ing System is divided into two groups; the cen­
tral data processing system and the peripheral
equipment systems and devices. This chapter
describes the general physical, functional, and
operational characteristics of the modules and
devices comprising an overall B8500 System.

Central Data Processing System

The Central Data Processing system comprises
one or more B8501 Central Processors, B8505
Memory Modules, and B8510 I/O Modules, the
necessary number of BB 515 Controller and
Communications Modules, and a B8520 Console.
Except for the B8520 Console, the modules
comprising the Central Data Processing System
are housed in standard cabinets which are
identical in size and appearance. (See Figure
3-1.) Each cabinet is approximately 83 inches
high, 39 inches deep, and 34 inches wide.
The weight and internal component configuration
of each cabinet are determined by the type of
module.

The standard cabinets, which are constructed
of steel frames and panels, contain one or
more hinged card rack assemblies, a bulkhead
mounted power supply, a maintenance panel, a
forced-air cooling system, and provisions for
cable interconnections. Internal logic, control
circuitry, and memory facilities are determined
by the functions of the module housed in the cab-

inet. Interconnecting cables are routed through
the bottom decks of the cabinets. All switch
interlock cables are routed through the sides of
the cabinets in order to minimize the lengths of
cables in the interlock system.

Solid-state components are used exclusively in
all module circuits; monolithic integrated circuit
chips are used to the greatest extent possible.
Semiconductor integrated circuits are complete
electronic circuits fabricated within monolithic
bars of material, using diffusion techniques,
and are used to form transistor, diode, resis­
tor, and capacitor elements. The advantages
of using integrated circuit modules include
lower cost, improved system reliability, and
reduced size, weight, and power consumption.
Discrete solid-state parts are used primarily
in power supplies and in memory, logic, and
control circuits. All circuits are packaged on
plug-in, printed-circuit boards which are in­
stalled in card rack assemblies.

The card rack assemblies are integrated as­
semblies complete with card connectors, card
guides, backplane wiring, power busses, and
fans. Card rack assemblies are independently
hinged on each cabinet and swing outward to
provide easy access to the components inside
the cabinets.

The interior of a cabinet is cooled by fans
which draw air through filters in the bottom of
the cabinet. The air filters can be removed,
cleaned and re-treated, and then replaced in the
cabinets. The air is exhausted through lou­
vered openings in the top of the cabinet.

3-1

Figure 3-1. Module Cabinet

3-2

Peripheral Equipment Systems

and Devices
The following common types of peripheral
equipment systems and devices are used in con­
junction with the central data processing
system:

Disk File System

Magnetic Tape System

Card Readers

Card Punches

Line Printers

Other devices, depending upon the customer's
requirements, can be used with the B8500.
The diverse number of input-output devices
available plus the engineering know-how of the
Burroughs Corporation make such a tailor­
made system not only feasible, but also eco­
nomically available. The character set used
in the B8500 System and associated with the
devices is given in Appendix A of this
manual.

The above named systems and devices are
described under their respective headings
in this chapter. Other devices, such as
Teletype units, displays, plotters, communi­
cation links, etc. , which may also be used
with the B8500 System, are not described
in this manual.

88501 CENTRAL PROCESSOR
MODULE

General Description

The Central Processor Module performs the
computations in the B8500 Data Processing
System. The characteristics of the module are
summarized in Table 3-1. The primary func­
tions of the processor module are to execute
arithmetic calculations, control functions, data
transfer operations, and interrupt services.
The processor module is packaged in a single
cabinet which also contains local ultra-fast
memories, an associative memory, memory
control and logic circuits, processor logic
circuits, a power supply, a maintenance panel,
and a forced-air cooling system.

Functional Description

The Central Processor Module consists of
three stations: the communications unit
(COMM), the advance station (ADV AST), and
the final station (FINST). In general the inter­
facing, fetching, and storing functions are ac­
complished by COMM, the address arithmetic
is performed at ADV AST, and the operations
usually associated with data manipulation are
performed at FINST. A simplified drawing
showing the principal paths for the flow of data
and control information between the three sta­
tions, together with a listing of the functions,
is given in Figure 3-2.

The separation of the Central Processor Mod­
ule into the three functional stations provides
the distinct advantage of simultaneous opera­
tions within the Central Processor. Resulting
multiprocessing and look-ahead techniques are
thus achieved which improve data processing
speeds to a dramatic degree. Independent op­
erations within each of the three functional
areas is a criterion of the basic design and re­
sults in extensive concurrent operations. An
example of the simultaneity possible is the ex­
ecution of an instruction by the final station,
the initialization of a subsequent instruction in
the advance station, and the acquisition of data
by the communications unit from a memory
module. The functions of each of the three
stations are described below in greater detail,
with the aid of the Central Processor Block
Diagram, given in Figure 3-3.

3-3

TABLE 3-1

CENTRAL PROCESSOR MODULE CHARACTERISTICS

Arithmetic Stack

52 -bit word:

48 bits for data
3 bits for control
1 bit for parity check

2 0-Megacycle Internal Clocks

Unlimited Indirect Addressing

Relative Addressing

Hardware-aided Jump procedures to allow Nested and Recursive Subroutines

Local high-speed and Associative Memories:

Name

Instruction Look Ahead
Associative Address List
Index and Descriptor Queue
Storage Queue
Final Operator Queue
Temporary Operand Queue
Stack

Binary Arithmetic:

200 nanosecond Integer Add (single precision)

No. of Words

12
28
24

4
4
4

12

1. 0 microsecond multiplication (single precision)

Variable Syllable Instructions

Classes of Instructions:

Floating point arithmetic
Full set of Boolean operations
Full masking availability
Variable length data manipulation
Character handling operations

_Polish String Notation

Full Interrupt Capabilities

Extensive Indexing Capabilities

3-4

Word size in bits

52
18
70
52

6
52
52

ME.MORY
AND I/O
MODULES

MEMORY

'f 3 !<:;4-

CENTRAL PROCESSOR ----------•-41
OPERANDS ---__ ADDRESSES COMMUNICATIQNt;
PROGRAM UNIT --DATA STORES (COMM)

-
I
I
I
I
I
I
I
I
I

• INSTRUCT\ON FETCHING

•OPERAND FETCHING

• INCOMING DATA BUFfER\NG

• PARITY CHECK\NG

• ADDRESS BUFFER\NG

•ADDRESS TRANSMl1TlNG

•WR1TE DAIA BUFFERING

•DATA 5TOR\NG

• PARITY GENERATION

• SERV\CE MONITORING

_ADDRESSES
IN STRUCT\ON5 ADVANCED

-- STATION ---
COMPUTED DATA (AD VAST)

• lNSTRUCitON LOOK-AHEAD

" PROGRAM PROCESS\NG

• ADDRESS ARITHMETIC

• MEMORY BOUNDS LIMITS

•PROGRAM JUMP EXECUT\ON

•INTERRUPT CONDITION

SENSING

•INTERRUP\ RESPONSE

I • PR\ORITY AND CONFLICT RESOLUTION

Figure 3-2. Functions of Central Processor Stations

OPERANDS_ -
FINAL

\NSTRUCT\ONS STATION --- (FINST) COMPUTED DATA -

• AR\Tl-IMETIC OPERATIONS

• LOGICAL OPERATIONS

• TEST AND COMPARISONS

• FIELD MANIPULAllONS

• NORMALIZATION

• CONVERSION

• BARRE.l SHIFT

Data
from
Other
Modules

Control
to
Other
Modules

Address
and Data
to
Other
Modules

To Stack
Extension

COMM
Receivers Fetch

Drivers

Register

Parity
Check

COMM
Address
Register

Parity
Generator

COMM
Store

Register

From
Stack
Extension

From Stack
Extension

(IDXQ)

Index
Queue

(ILA)

Instruction
Look
Ahead

(STORQ)

ASSOCIATIVE MEMORY

(AIR)

ADVAST
Instruction

Register

From FINST

ADVAST
Adder

(ACU)

ADVAST
Comparator

Unit

(AAR)

ADVAST
Address
Register

Base
Registers

(MBR)

Memory
Bounds

Registers

FINST

FINST

(TEMPQ)

Temporary
Operand

Queue

Final
Operator
Queue

(FINQ)

To CSR
and CAR

(FIR)

FINST
Instruction

Register

1lt~
Adder f~

Multiplier

ONEs
Detector

Comparator

To ADVAST

From CFR

Barrel
Switch

p

Register

T
Register

s
Register

Operand
Stack

Extension

r-coMMUNICATIONS UNIT (COMM)------..----AOVANCED STATION {ADVAST)-------------FINAL STATION (FINST)

Figure 3-3. Central Processor Module, Block Diagram

3-7/3-8

COMMUNICATIONS UNIT (COMM)

The communications unit coordinates the trans­
fer of information between the Central Proc­
essor Module and the main memory. Signal
driving power and buffering are provided for,
respectively, by the Drivers and Receivers.

Interface Characteristics

The Central Processor module interfaces with
the main memory and I/ 0 modules by means of
the communications unit. Specifically the ele­
ments of COMM interfacing with the other mod­
ules are the Receivers, Drivers and the Com­
munications Timing and Control Unit (Ref er to
figure 3-4). The function of each of these
interface elements follows:

RECEIVERS-Accept and standardize incom­
ing data from the Memory and I/ 0 modules.

DRIVERS-Supply power to drive data going
from the Central Processor to the Memory
and I/O modules.

TIMING AND CONTROL-Directs sequential
operations required by the communications
process, including service monitoring,
and priority and conflict resolution.

COMM constantly monitors the internal oper­
ations within the Central Processor Unit by
serving as the sensor for units within the
Advanced Station (ADV AST), and Final Station
(FINST) areas. As memory accesses are re­
quired by these units, COMM provides the
necessary interconnection between the Central
Processor and the desired memory module.

Description of Logical Operation

A typical operation has its origin as a read op­
eration from a selected memoryo The instruc­
tion arrives at the Central Processor via the
Receivers and is .transmitted to the Communi­
cations Fetch Register (CFR). A parity check
is performed on the incoming data and if the
correct parity {odd) is sensed, the COMM Unit
Control will enable data flow to one of four pos­
sible units depending upon the type of informa­
tion which was received from memory. The
four units within the Central Processor are:

1. The Stack Extension - a twelve word (52
bit word) local memory.

2. The Temporary Queue (TEMQ) - four
data storage locations within the
FINSTo

3. The Instruction Look Ahead (ILA) - a
twelve word local memory within
ADVAST.

4. The Associative Memory-a 28 word
local memory within ADV AST.

The Associative Memory is further sub-divided
into three sections, the Storage Queue (STORQ),
the Index Queue (IDXQ) and the Program Refer­
ence Table Queue (PRTQ).
The selection of the particular unit within the
Central Processor which will receive the data
from COMM is determined by COMM Unit
Control.

Memory module linkages to the four units
within the Central Processor Unit are grouped
into two functional classes: "need" (automatic)
and "demand" (Programmer control). The
"need" linkage is a hardware implemented
function which is not directly under program
control. The "demand" linkage is directly
controlled by Instructions, i.e., Fetch Mem­
ory to Stack (FMS), or Store Stack to Mem­
ory (SSM).
If the requested address involves address com­
putation which results in a memory reference,
the address is checked against memory bounds
in Advast Comparator Unit. Any violation will
cause an interrupt. The address is also pre­
sented to the associative memory to determine
if the word requested is stored locally in
STORQ, IDXQ, or PRTQ. If the request word
is not in local memory, the address is passed
on to the COMM address register (CAR),
together with control information telling COMM
where to place the contents of this address when
it arrives from memory. The index queue
(IDXQ) and the program reference table queue
(PRTQ) are serviced by COMM on both a
"demand" and a "need" basis. Any fetch refer­
ence made to Main Memory by the Central
Processor that is relative to the base index
register or the program reference table is
placed in the associative memory by COMM.

The storage queue (STORQ) in ADV AST is con­
tinuously monitored by COMM and serviced on
a "need" basis. The STORQ requires "store
only" service, and COMM stores data from
STORQ to Main Memory to keep STORQ avail­
able for use by FINST o

3-9

The PRTQ is the local storage for the most re­
cent PRT-relative references to Main Memory.
PRT provides a local storage for control words
used in program jumps and words containing al­
ternate memory address bounds. The execution
of all program jumps is controlled by ADV AST.
The initializing of the jump control register is
accomplished by ADVAST, as is the distribution
of the jump control word and the formation of
the return control wordo
COMM monitors the Stack Extension and con­
trols the execution of store and fetch operations
in order to maintain a certain predetermined
number of operands for use by FINST. COMM
monitors ILA similarly to the way in which it
monitors the Stack Extension, but differs in that
there is only one-way service required, i.e., in­
formation flowing only to the ILA. COMM pro­
vides store only service to the STORQ by trans­
ferring data to the memory module periodically,
thus keeping the STORQ available for use by
FINST. COMM provides input data to the
TEMQ unit, upon the direction of the ADVAST
unit, which in turn, initiates all requests for
service. IDXQ and PRTQ units receive input
data under control of the COMM unit. IDXQ
contains all words that are referenced by any
of the index instructionso PRTQ contains the
most recent references to program segments
and procedures that have been utilized during
the execution of the program. If the IDXQ/
PRTQ is full at the time, COMM will remove
the oldest piece of data in the Queue and re-
turn it to Main Memory, or destroy it. Output
flow from the COMM unit is via the Communi­
cations Address Register (CAR) and the Com­
munications Store Register (CSR). The CAR
contains address and control information while
the CSR contains data. Prior to transmission
of data and address information, parity is pro­
vided to each from the Parity Generator.

ADVANCED STATION (ADVAST)

All instructions executed in the Central Proc­
essor are handled by ADVAST. Those instruc­
tions which are strictly FINST operations are
simply decoded by ADV AST and then transferred
to FINST. ADV AST also senses all interrupt
conditions, responds to specific interrupt situa­
tions, and controls the preliminary interrupt
processing sequences.

ADV AST is the program processing portion of
the Central Processor. All ADV AST operations
begin at the Instruction Look Ahead (ILA). ILA
is a local memory unit used for bufferinG in­
struction words of the current program much
in advance of their use. The capacity of ILA is

3-10

12 words with 52 bits per word. Since the long­
est instruction contains four 6-bit syllables, the
minimum buffering available is for 24 instruc­
tions. With this amount of "look ahead", COMM
keeps the ILA sufficiently ahead of actual
ADVAST computations to effectively "mask" the
time taken in fetching program words.
COMM monitors ILA and services it on a
"need" basis, automatically executing fetch
operations to maintain a predetermined number
of instructions in ILA. Instructions are taken
from ILA in sequence and placed in the ADVAST
instruction register (AIR). AIR holds the cur­
rent OPCODE syllable and associated variant
and/or address syllables. The operation and
variant syllables are decoded by ADV AST con­
trol to determine what operations are to be
performed, if any, by ADVAST. If no further
ADV AST operations are required, the instruc­
tion is transferred to FINQ and TEMPQ in the
Final Station, where operator and operand
processing is completed.

The combination of OPCODE and variant de­
determines if address arithmetic is to be per­
formed by ADVAST and, if so, which base
register is to be applied, and what limits are
to be employed in the memory bounds check
in the ADVAST comparator unit (ACU). If
the requested address is stored locally (in
ADV AST) and does not require any action by
COMM, the associative memory automatically
cycles the local queue (PRTQ, IDXQ, or
STORQ) containing the desired word, causing
this word to appear at the output. If the re­
quested word is to be used by ADV AST, it is
available for computation at the queue output.
If it is intended for FINST, ADV AST transfers
the word to TEMPQ, which is the Final Sta­
tion's local operand queue. An arithmetically
derived address which is not found in local

. ADV AST memory must be fetched from a
Memory Module via the COMM unit. Once
COMM is signalled to fetch a word intended for
the final station, ADV AST does not have to wait
for the fetch to be completed. Instead, ADV AST
is free to move onto the next instruction.

Address arithmetic involves the ADV AST adder
which has three inputs - the address syllable, a
base register, and an index amount - thus en­
abling one pass addition of the address syllables
in the instruction string. Indexing is applied to
address computation by means of the ADV AST
address register (AAR). The AAR is the ac­
cumulator for indexing arithmetic. The local
queue may contain up to 24 index words, thus
enabling most indexing to be accomplished with­
out reference to Main Memory.

FINAL STATION (FINST)

The Final Station is the portion of the Central
Processor which performs arithmetic and logi­
cal operations, and all stack and stack test op­
erations. All FINST operations are initiated by
instructions taken in sequence from the final
queue (FINQ), which receives its i~structions
from the ADV AST instruction register.

As ADV AST completes its preprocessing of in­
structions requiring FINST operations, it places
the OPCODE in FINQ, and the associated variant
syllables or locally stored operand in TEMPQ.
If an operand is involved which must come from
Main Memory, ADVAST presents COMM with a
TEMPQ address where COMM will place the
operand when it arrives. {TEMPQ is serviced
by COMM on a "demand" basis.)

Instructions are transferred one at a time in
FINST from the final queue (FINQ) to the FINST
instruction register, which holds the instruction
until it is executed by the FINST hardware.
This hardware includes a Comparator, which is
used for all stack and field testing, and also for
logical functions such as "IMP" and "OR", and
some field manipulations such as "Clear Field"
and "Complement Field". The ONE'S Detector
is used for normalization, and conversion from
integer to floating point. It is also used in
stack and field testing against zero. The adder
is used for arithmetic operations only, such as
addition, subtraction and division. Shifts and
field manipulations are accomplished through
the high speed BARREL SWITCH mechanism.
Multiplications are performed in the MULTI­
PLIER. The data which is to be operated on by
the FINST hardware is transferred from
TEMPQ to the top of the stack (T register)
which is the accumulator for FINST. The S
register and the stack extension also contain
operands.

The results obtained from the hardware oper­
ating on the data can be "pushed down" into
the stack for temporary storage until needed
again as an operand, or else the data can be
transferred from the T register to the STORQ
in ADV AST, for eventual transfer to Main
Memory.

The Stack Extension in FINST is serviced on a
"need" basis. COMM monitors its contents
and automatically executes store or fetch op­
erations to maintain a certain predetermined
number of operands for use by the FINST
hardware.

FINST is dependent upon ADVAST and COMM
only to the extent that to be operating there
must be something in FINQ and TEMPQ. As
long as there is a queue of FINST instructions,
FINST does not have to halt and wait for
ADV AST or COMM, There is a special instruc­
tion which halts ADV AST when this instruction
appears in the ADV AST Instruction Register.
ADV AST does not begin processing again until
this instruction reaches the FINST Instruction
Register.

Stack Operation

The stack within the FINST consists of a T
register (top of stack), an S register (second
position of the stack) and a 12-word stack ex­
tension. Operands are locally stored within
the stack area to the limit of 14 words (52
bits/word). Further operand inserts into the
stack are extended beyond this limit to a mem­
ory module.

Central Processor instructions pertaining to
the stack are normally referenced to the T
and S registers. As data inputs are applied
to the stack they are stored in successive lo­
cations beginning at the T register, progress­
ing to the S register and henceforth into suc­
ceeding locations of the stack extension. As
the usual computational operations involve two
operands, the availability of these operands in
the T and S registers provides the means of
implementing instruction execution. Should
double precision operations be desired, adja­
cent areas within the stack are used for storing
the most and least significant members of the
operand. An additional register (P Register) is
brought into operation for some of these double
precision instructions (e.g. Multiply Double).
The P register may be considered as an ex­
tension of the T register.

For a basic explanation of the stack concept,
and its relation to Polish Notation, refer to
Appendix F.

3-11

Ox

1 x

2x

3x

4x

5x

6x

7x

3-12

52 sirs -J
------40 BJT'S------0-3--1--1..j

OP CODE

INSTRUCTIONS

FMS

I

Al

~

l1 lzl:~1+1 6 1
fo--BITS --+i

ADDRESS
SYLLABLE I

t PARITY

TYPICAL 4 SYLL..ABLE INSTRUCTION
FMS (FETCl-I MEMORY TO STACK)

A2. B

l1 lzlaH+I
I-- e1 rs----!

ADORE.SS
SYLLABLE. 2.

BAS.E.
(VARIANT)

Figure 3-4. Central Processor Module, Instruction Word Format

B8500 Central Processor Instructions

LEAST SIGNIFICANT OCT AL DIGIT

xo x 1 x2 x3 x4 x 5 x6

STOP DUP SSMA FRS ICN FMS SSM

FMSA SRR XS RTS ESP JXMT

ETB RND ITB SLIT JSTL INSD JFT

NORM INT IRR CBB JSTA EXTD FMT

ADD SUB AND SSR x XM

ADDM SUBM IMP ARIT FAS CLRF

MUL DIV ORX SHF INS COMF

COMP DIVI OR IOP BSR EXT FILF

x7

SJ

FMA

FMC

NOP

FINQ

STOP

Operational Characteristics

The instruction list currently consists of 83 OP
CODE, ADDRESS and/ or VARIANT combinations.
A complete set of Central Processor instruc­
tions, variant definitions and configurations,
and word formats are given in Appendices B,
C, and D, respectively. The basic structure
of the instructions is shown in Figure 3-4,
Central Processor Instruction Word Format.

A complete set of instructions is included in
Appendix B, Central Processor Instructions. The
basic structure of the instructions is shown in
Figure 3-4, Central Processor Instruction Word
Format.

Variation of instruction length ranges from a
single 6-bit syllable format to the depicted 4
syllable construction. The FMS (Fetch Memory
to Stack) instruction constitutes the longest in­
struction employed in the B8500.

INTERRUPT BIT PROCESSING

A possibility of seventy interrupt conditions ex­
ists within the Central Processor. When an
interrupt condition occurs, program control of
the Central Processor transfers from the normal
mode to control-mode-1. The latter is the first
of a two level control mode system which serv­
ices all interrupts. Normal mode consists of
that mode of operation having available only
those instructions necessary for efficient pro­
gram execution along with the maximum inter­
rupt routine entrance capability.

The interrupt bit takes precedence over any other
tag configuration. With this bit "set" an interrupt
routine is initiated upon word entry into the
Central Processor.

A flow diagram of the interrupt procedure is
shown in Figure 3-5, Central Processor Inter­
rupt Routine Entry. The interrupt sequence
begins with the setting of an Interrupt Condition

Register (ICRn) which corresponds to a particu­
lar interrupt, e. g. (Detected Interrupt Tag,
Memory Bounds Violation, etc.). If a corre­
sponding Interrupt Mask Register (lMRn) is set,
the Interrupt Jump Register (IRJ) is set and the
Central Processor will perform the hardware
controlled interrupt logic sequence. This se­
quence provides for the storing of basic infor­
mation which is required for program resump­
tion once the interrupt has been serviced. The
registers which are stored in the FINST stack
are the ADVAST Address Register (AAR), the
Program Count Register (PCR), the Base Data
Register (BDR) and various control Flip- Flops
(CFF). The Base Interrupt Register 1 (BIAR1)
which identifies the starting point of the inter­
rupt processing procedure, is transferred to the
cleared PCRo Control-mode-I interrupt proc­
essing is performed in this procedure, stor-
ing critical registers in an area referred to
as the Hot Job Table (HJT). When the pro­
cedure progresses to the point which speci-
fies the ICR, the specific procedure corre­
sponding to the initiating interrupt condition
is entered and interrupt processing is con­
tinued unto completion.

An interrupt procedure at the control-mode-I
level may encounter a transfer to a control­
mode-2 interrupt level. The entry into this
more restricted interrupt procedure is enabled
by conditions such as a parity error, no access
to Memory and a Stop. Interrupts pertaining to
control-mode-2 result in the execution of an­
other IRJ to the second level interrupt proce­
dure which is defined by the Base Interrupt
Address Register 2 (BIAR2). The procedure
directs the Central Processor through the se­
quences pertaining to the particular second
level interrupt being serviced and carries the
interrupt to completion.

3-13

3-14

INTERRUPT CONDITION
REGISTER

INTERRUPT
COND\TION

IC Rn

0

INTERRUPT MASK
REGISTER

(ESP)
NORMAL

MODE

IM Rn

0

NO

INTERRUPT ROUTINE
JUMP CONTROL
(PS E LJ D 0 I N5 TR UC TI D .N)

INTERRUPT

0

YES

BIAR2--.BPR
ZERO~PCR

I ~CM2

INTERRUPT
PROCESS\ NG
PROCEDURE
CONTROL
MODE 2

NO

INTERRUPT
LOGIC
SEQUENCE

AAR-..STACK
PCR~STACK

BPR~5TACK
CFF--..STACK

YES

BIAR1-.BPR
ZERO ~PCR

I ~CMI

INTERRUPT
PROCESSING
PROCEDURE

CONTROL
MODE 1

RETURN TO DESIRED
MODE OF PROGRAM

Figure 3-5. Central Processor Module, Interrupt Routine Entry

TABLE 3-2

MEMORY MODULE CHARACTERISTICS

Complete thin film memory

Fifty-two bit words -- 48-bit operands

4-word transfer (208 bits)

Memory fail register

Fetch Operations

Fetch a single word

Fetch a single word and modify the tag code

Fetch four consecutive words

Fetch the Memory Module Fail Register

·,\Store Operations

Store a single word

Store four consecutive words

Cycle time - 500 nanoseconds

Access time - 250 nanoseconds

16,384 words per module

Up to 16 modules in a system

Basic clock - 20 megacycles (supplied from external source to
achieve synchronism with other modules)

3-15

88505 MEMORY MODULE

General Description

The Memory Module provides high-speed, ran­
dom access thin-film storage for the B8500 Data
Processing System. A single module has a
16,384 word capacity with a word length of 52
bits. It retains information as directed by the
Central Processor or 1/0 modules in the system.
The memory module is physically contained in
two cabinets. This unit provides 16 busses for
data transfer to as many as 16 other modules.
Each buss has 52 parallel lines for input and 52
parallel lines for output. The B8500 System
may be expanded to a level of 16 memory mod­
ules, thereby providing a rapid access capability
of 262, 144 words for a full complement of mod­
ules. The Memory Module characteristics are
summarized in Table 3-2, Memory Module
Characteristics.

Functional Description
A functional description of the Memory Module
is shown in figure 3-6, B8505 Memory Module
Block Diagram. The operation of the Memory
Module is started by a request from a module
with which it is interfaced. The requesting
module transmits a request, a request strobe
and data (Control Word). The request (REQ)
signal is used for priority control within the
Priority and Strobe Logic where request evalua­
tion is performed. The request is accepted by
the memory if its channel has the highest pri­
ority of any active channels. The request strobe
is used to transfer the control and address por­
tions of the Control Word into their respective
memory module areas. The request strobe also
sets a "busy" signal, which is used to indicate
memory status to subsequent requests from other
other modules during the completion of the cur­
rent memory operating cycle. An acknowledge
(ACK) signal, indicating the memory module
acceptance of the Control Word, is sent to the
initial requesting module.

CONTROL WORD

The OPCODE portion of the Control Word (shown
below) describes the type of operation (read or
write) which is to be performed between the mem­
ory and the reqi_Jesting device.

0 3 4 29 30
I I I

OP CODE UNUSED

3-16

The OPCODE syllable bits have the following
meanings:

+Bit~Value 0 1

p 0 Fetch Store
0

s 1 1-Word 4-Words
i
t 2 Normal Modify Tag
i
0 3 Zeros or Ones or Fail Word
n Normal

The ADDRESS consists of 18 bits and thus has
the range to select the 262,144 words of data,
which a full complement of memory modules
can provide.

When a 4-word memory operation is specified,
Address bits 46 and 47 must be zeros for nor­
mal word order to be maintained, i. e. , word
0 through 3 of the selected 4-word address. A
different word code in the two least significant
bits of the Address will result in processing
the selected word first followed by the remain­
ing three words in a cyclic fashion.

FETCH OPERATIONS

A fetch OPCODE describes one of four possible
operations which will transfer data from the
memory module to the requesting device. The
operation is sensed in the Timing and Controls
section and the address is recorded in the Mem­
ory Address Register (MAR). The specified ad­
dress enables corresponding Memory Switches
and Drivers, which select the word location
within the thin-film memory stacks. Read Cycle
control signals from the Timing and Control
Section initiate the read cycle and the Sense
Amplifiers receive data read-out information
from the thin-film Memory.

47 48 50 51

ADDRESS

PARITY

PARITY
CHECKER

ERROR

TOT & C

DATA
(IN)

52/CH

RECEIVERS
52/CHANNEL

MIXER

I

: WRITE

'B

REQ MAR ERROR STROBE DATA TOT & C
REQ STR STROBE

FAILURE
REGISTER

~----.....,(TO COMPUTERS) OUT OUT

PRIORITY
&

STROBE LOGIC

I

REGISTER (WB)

'c :D
208 BITS

TIMING
&

CONTROLS
(T&C)

TO STACKS

MEMORY SWITCHES
& DRIVERS

A

Figure 3-6. Memory Module, Block Diagram

1 /CH 52/CH

DRIVERS

MEMORY
I
IB

INFORMATION
DRIVERS

THIN FlLM
MEMORY
STACKS

DRIVERS
52/CHANNEL

ERROR

MIXER &
DRIVER SEL

PARITY
CHECKER

I I

INFORMATION REGISTER (MIR)
I I
IC ID

SENSE
AMPLIFIERS

(& ELECTRONICS)

The Information Register stores the four word
data which is further selected by the word select
logic :MIRA through :MIRD. The word is trans­
ferred to the requesting module via the Mixer
and Driver Select logic~ the Drivers, and the
final output stage within the memory module.
A strobe output is also provided at the driver
stage for transmittal to the requesting module
along with the data. The conclusion of the
fetch operation includes the return of the word
to the thin-film location which was accessed.
This is accomplished by way of the Informa-
tion Register to Information Drivers path
shown in figure 3-6.

0 3 4 6 7 11 12 15 16
I I

19 20

1 OP CODE 0 Error
Bits

0 Channel
No.

STORE OPERATIONS

A store OPCODE describes one of two possible
write operations which will transfer data from
the requesting module into the memory module.
The operation is either a single-word or a four­
word store. The request is sensed by the Pri­
ority and Strobe Logic~ a request strobe trans­
fers the Control Word operation into the Tim­
ing and Controls section and the address into
the Address Register. As in the fetch opera­
tion. the Memory Switches and Drivers corre­
sponding to the Mem0ry Address specified by
the Control Word are selected and the store
cycle is initiated by the Timing and Controls
section. The data input is sensed by the Re­
ceivers and Mixer, transferred under Control
Word direction through the Write Controls
(WBA through WBD) and stored in the 208-bit
Write Register. The data is transferred
through the Information Drivers into the thin­
film Memory, where the write operation
terminates.

CHECKING FUNCTIONS

The Memory Module checks each word received
or transmitted for odd parity. Upon detecting
incorrect parity the Memory Module interrupts
the Processor Modules and retains pertinent in­
formation concerning the failure in the Memory
Module Fail Register. Additional check capa­
bilities are provided by single pulse operation
and automatic checking. A control panel is pro­
vided on the Memory Module which contains
controls and flip-flop indicators permitting

3-18

0

single pulse operation under manual control
for maintenance purposes. The Memory Mod­
ule is permanently connected to the Memory
Check Module which has the capability of auto­
matically exercising all of the locations and
functions of the Memory Module.

The Memory Module Fail Register records
Fail Word data, including a copy of the Control
Word for the operation which was being per­
formed when an error was detected. The
channel number and memory module number
are also provided to show the module inter­
connection involved. The Fail Word format
is shown below.

22 23 26 27

Memory
No.

29 30 47 48

0 Address

The error bits are defined as follows:

Bit Error

50 51

0

PARITY

7 Parity Error - Control Word

8 Parity Error - Incoming Data

9 Wrong Memory Address -
Control Word

10 Parity Error - Outgoing Data

11 Illegal Operation Code -
Control Word

Bit No. 51 is used for parity purposes to provide
a check on the instruction word. Its purpose is to
indicate the overall bit composition of a word and
thus provide a means of error detection.

Interface Characteristics

A Memory Module interfaces with the I/ 0,
Central Processor and Memory Check Modules
of the B8500. Inter-module communications
are accomplished over 16 busses each of which
contains 52 parallel lines for input and 52 par­
allel lines for output.

88510 ,INPUT-OUTPUT MODULE

Introduction

The most important feature of the I/O Control
Module is its independence from the Central Pro­
cessor. In effect, the 1/0 Control Module is a
separate processor with its own Local Memory
Unit, logic and arithmetic functions, and com­
munication capabilities. Because it provides
channels for all data transfers between peripheral
devices and the System Memory, the 1/0 Control
Module executes transfers from one peripheral
device to another peripheral device independent of
direct Central Processor control.

The system operations of the 1/0 Control Module
are programmed separately from the Central
Processor Modules. This programming is coded
in an assembly language designed solely for the
1/0 Control Module. Then, the symbolic program
is assembled into an object program by means of
an assembler program written in ALGOL. Input
to the assembler is punched cards. The output
consists of a program listing, with relative
memory assignments, and a tape that contains
the assembled object program for printing and
ultimate loading into the B8500.

The simple transfer function between peripheral
devices and System Memory is similar to the
more conventional descriptor-controlled and
buffered 1/0 in the sense that there is a descriptor
generated by the Central Processor for each data
transfer executed. However, in data transfers to
and from peripheral devices, the I/O Module com­
pletely controls the 1/0 operation from para­
meters stored in the 1/0 Module's program data
area. The execution of buffered 1/0 can now be
treated by Central Processor programs in terms
of tape, card, and print files, rather than by in-

dividual tape records, card images, and print
lines. This means that l/O processing overlaps
the Central Processor for long periods of time,
rather than the more conventional technique of
overlapping a single record. Using this overlap
method reduces the number of interrupts to the
Central Processor, thereby reducing the amount
of software overhead associated with a Control
Program.

The parameters describing the transfer are
treated by the Central Processor program as
parameters to a procedure that performs the trans­
fer. The procedure call is not to a Central Pro­
cessor program, but to a program that is, in
effect, an extension of the hardware and that is
executed completely on an 1/0 Processing Unit.
The return is to the caller in the Central Pro­
cessor only when the 1/0 program's function is
complete.

Summary

The 1/0 Control Module has the following char­
acteristics and capabilities:

• Storing and fetching from Memory
Modules.

• Up to 512 simplex channels (buffered) per
module.

• Independent channel operations controlled
by individual descriptors.

• Service time for a channel of 0. 6 to 1. 8
microseconds.

• Total data hanclling rate of up to a maxi­
mum of 286, 000, 000 bits per second.

• Local thin film memory of 1024 100-bit
words.

A B8500 System may have from 1 to 14 1/0
Control Modules.

3-19

~
I

l\:)

0

Figure 3-7. B8520 Console

88520 CONSOLE

General Description

The B8520 Console (Figure 3-7) is the operations
center of the B8500 Data Processing System. The
console contains control and input/ output facili­
ties which provides an operator with a convenient
supervisory control center and also provides field
engineering the capability of controlling power
and testing memory modules. In effect, the con­
sole is the communications link between an opera­
tor and the B8500 System.
The console is physically divided into three inde­
pendent cabinet units: the power control unit,
the memory checkout unit, and the input/output
unit. The units are joined together to form a
common desk-type console which permits sit­
down operation. The three units can be arranged
in configurations varying from a semi-circular
arrangement to a straight-line arrangement.

The power control unit contains the necessary
controls, indicators, and circuits to provide the
power control and sensing functions of the con­
sole. The controls and indicators are contained
on an upright panel mounted at the rear of the
unit. The power control unit is supported in an
upright position by the input/ output section, which
is always placed adjacent to the control unit.
The memory checkout unit contains controls, in­
dicators, and test c· "'cuits which facilitate the
manual or automatic testing of memory modules
in the B8500 System. The unit also contains the
system master clock circuitry o All controls and
indicators are contained on an upright panel
mounted at the rear of the unit's desk top.

The input/ output unit consists of a table-type cab­
inet with a typewriter mounted on its surface.
The cabinet is usually placed between the power
control unit and the memory checkout unit to link
the units into a common desk-top configuration,
providing easy access to all panels.

Functiona I Description

The B8520 Console serves the following three
functions:

• Serves as a communications link between
an operator and the system

• Provides master timing controls and mem­
ory module check facilities

• Serves as a power control and sensing
center

Because these three functions are physically im­
plemented by the use of three independent cabi­
nets, the console may be configured to provide
one, two, or all three functions. While the power
control and input/ output functions are optional
features which may or may not be required by a
user, the memory check function is an imperative
requirement.

COMMUNICATIONS LINK

An electric typewriter with both input and output
capabilities serves as the direct communications
link between the operator and the B8500 System.

MEMORY MODULE CHECK FACILITIES

The memory checkout unit of the console pro­
vides the only direct capability of performing
comprehensive checks on malfunctioning memory
modules. Memory checks can be performed only
on memory modules which have been taken "off
line". The checks, which can be performed at
full memory speed, are divided into the following
categories:

a. Stack checks

b. Logic tests

c. Common checks

The memory checkout unit of the console is inter­
faced with all memory modules in the system by
use of one of the sixteen data busses.

POWER CONTROL AND SENSING CENTER

The power control and sensing function is inde­
pendently implemented by the power control unit.
The power control function involves the control
of the power supplies in each individual cabinet
of the central processing system (processor,
memory, I/ 0, controller, and communications
modules).

Power in any cabinet may be turned on or off by
either local controls on the cabinet or by a con­
trol on the power control section of the console.
A separate power control switch is provided for
each cabinet. The turning off of power in any
cabinet will not affect other cabinets in the sys­
tem as long as the respective cabinet has been
placed "off line".

3-21

DISK FILE SYSTEM

General Description

The disk file system used with the B8500
Data Processing System is a fast access
mass memory system with a total storage
capacity of 200 million 48-bit words. Average
access time to any word is 30 milliseconds,
and the transfer rates average 8 million bits
per second (166,666 48-bit words). This high
performance disk file system is a natural
evolution from the highly successful commer­
cial disk file system used with the Burroughs
B5500 and B200/300 data processing systems.
An increase in performance over these sys­
tems is achieved by eliminating word and seg­
ment interlacing and by reading and writing
six data streams simultaneously.

A single disk file system includes, but may not
exceed, two disk file controllers, 20 disk file
electronics units, and 100 disk file storage
modules. The disk file electronics units and
storage modules are grouped into a maximum
of 20 disk file subsystems within each disk
file system. Each of the subsystems includes

one electronics unit and a maximum of five
storage modules. The six units are arranged
side-by-side and interconnected to form a sub­
system. Figure 3-8 shows a typical disk file
subsystem consisting of one electronics unit
(at the left) and two storage modules. The
number of storage modules used with each
electronics unit is determined by the total
storage capacity required for a system. Addi­
tional mass storage facilities may be obtained
by adding more controllers, electronics units
and storage modules. ,

As shown in Figure 3-9, a group of five storage
modules is controlled by each electronics unit,
and each electronics unit is cross-connected to
two disk file controllers. Each disk file con­
troller serves up to 20 electronics units, and
each controller is connected to two I/ 0 modules.
Therefore, by using two disk file controllers
and two I/O modules, up to 20 electronics units
and 100 storage modules are provided with dual
paths to the memory modules within the central
data processing system. It should be noted that,
although only one controller is necessary to
control up to 20 electronics units, two control­
lers are cross-connected to the electronics units
to increase the reliability of the system.

\

f

mw rt" ...
Figure 3-8. Disk File Subsystem

3-22

I
I l I 1

..a

1 -- QUEU£1<. ~
I _f

I
~

I
.....

lS~£] [~!OP..";.£] [-...-:,'VI}'£] [I I
EL£CrRQNICS {Hf(}-()- [~00*£1 =oM-&- 0t%~~1

I CONTl::C..:lLEk.. - I
~

UNI/ UN/I UNJ/ LJN!T f},1/1/ lllt/1 T

- - I l i l l J-J I I
I [)/.SJ... FIL£ I

~

I CONT/':CL !£/:2 i
I l RO TAT/I/~- D15K5 (4-) ,-
I

I I

I I i ___ .J_ - - -;-- ----- -.---- - -- -- --:--.-- - -- - - - - --- -t------- - -- --- __] _______ ------, I
I ' !
l i

..,__9; EL£CTROl'./ICS 1 1----'----1 i----'----, r--- 1 ---1 ,--- ----, r ___ t_ ___ ,

I I
I u NIT$: I I : : : I I I I I

i---.
I

I
.,..._ --~ (/1.0 MA'd I L __ T __ J L __ T __ J ~--T __ J L __ T __ J L_"T __ J

I

1/0 I 1 L ________)_j.-------'------------ ---------------- -----· ------ -------------- ..
I r;;i

MODUL-£ 14--t-- I
DISK FILE. I ~----·----- -

I

... ,,

I CON T120LL E./i! I .r
I

I I
~ -

I . 1 1 1 1 1 QUEUER- --
' l ELECTRONICS [~~£] r~EJ 1 5~~1 r~~E] [ST0~~1 i I

I UNIT Wtr I CON/ROLLER... . Ufill UNIT /.../I'/!;' (.IN//

.... --
I

I ~ 1 J :I 1
I I

I I
I I --; I

~ QUF-UER.
I l i l 1

I -
i

I El EC Tl<Of/!CS [!.70RA6-E] [~~~] [s~~1 [<~£] [STORA(r£]

~ I ! LIN//
c~

, I CONTROL LF-12.. -- -- UNI! UN/{ t.JNIT /lN!l-

~ I l l 1 1 i l
l I ~

1/0 I /)/SK FILC. - l
MOl)ULE. - i <!ONTROU.-5R. I

i ,, ,
i I I .---------..,

I I ~-.:EL f:CT'P.ONIC S !---~~_:-_r==~---- -~=---_r~--~-- --~--~ ~==-~----~-~~}~~~~ ----~==1- -- -,
I ! 1 I I I I I I I
I I I UNITS I I I I I I I I I I :

I
I I I I I I I I

I - --~ (2,0 MA)<.) ! L ___ r_...J 1 ___

1
__ J · __________ ! L--- ___ j L ______ _J

I I L_ ___ - -- - _ __r-- --- ------- - - --- ------ -- - __ j ___ -- ----l------- ____ J
I I
I

/)ISk FJ L. -E- I
I

CONT~OLL ~!l. I
I I

I
I

1 --.- :I ------. .___
~~ ... ,__.. QUE.. Uc R I . ' --~

I
1 E LE. CTRONICS [~=el [~J [5rOR1i rs~"-1 [S~cl I L.INIT G-(}()-0-

I COA/TROl..L~ R. . lJNil UN;I l/Ntl LI/I/Ii UNi/.
r-- --

·~···
~ I J 1 1 1 J I

Figure 3-9. Disk File System Configuration

PHYSICAL DESCRIPTION OF ELECTRONICS
UNIT
The electronics unit (Figure 3-10) is basically
identical to the B471 Disk File Electronics Unit
used with the Burroughs B5500 and B200/300
computing systems. The electronics unit con­
tains the necessary components to provide the
power, air pressure, motor control, head
switching, and gating logic functions for the
control of one-to-five storage modules. The
electronics unit also contains the logic compo­
nents for the read and write functions performed
by the subsystem. All components are mounted
in a cabinet frame which is approximately 53
inches high, 23 inches wide, and 45 inches deep.
The total weight of each electronics unit is ap­
proximately 450 pounds. The cabinet has re­
movable front and side panels which provide
access to a hinged plug-in unit logic rack, a
maintenance panel, power supply components,
and pneumatic components. Operator's con­
trols and indicators are mounted on the upper
face of the cabinet and under a hinged top panel.

PHYSICAL DESCRIPTION OF STORAGE
MODULE
The disk file storage module (Figures 3-10 and
3-11) is basically identical to the B475 Disk
File Storage Module used with the Burroughs

B5500 and B200/300 computing systems. The
storage units are modular storage devices which
are mounted on casters and housed in garage­
type cabinets adjacent to an electronics unit.
This modularity feature enhances the expansion
capabilities and maintenance of the subsystems.

Each storage module is approximately 53 inches
high, 23 inches wide, and 45 inches deep and
weighs approximately 575 pounds. When a
storage module is wheeled from its cabinet, ac­
cess can be gained to all basic components.
These components include four vertically­
mounted disks, disk drive and control mechan­
isms, pneumatic devices, plug-in units on a
hinged rack, and a maintenance panel. Each
pair of disks is enclosed in an air-tight cover
for purposes of cleanliness.

A total of eight disk faces in each storage mod­
ule provide for a total storage capacity of 2
million 48-bit alphanumeric words. Each disk
face has 50 data tracks comprised of 1250
207-bit data segments. Each track is equipped
with a read-write head which is controlled by
means of electronic switching.

Figure 3-10. Disk File Subsystem Modular Design

3-24

Figure 3-11. Disk File Storage Module

COMPLIANT HEAD MOUNTING SPRING

HEAD ACTUATION PISTON

AIR PRESSURE

MAIN HEAD MOUNTING
CASTING

HEAD SHOWN IN
OPERATING POSITION

13-CHANNEL FLOATING HEAD

DISK

l DISK
ROTATION

PRESSURE
RELEASED

HEAD SHOWN RE TRAC TED

Figure 3-12. Head Mounting and Actuation

3-25

The magnetic discs are brass annular rings,
hub mounted, 26-1/2 inches in diameter, and
1/8 inch thick. They are plated with an ex­
tremely thin magnetic film. One criterion for
high density recording is the need for a very
thin and uniform magnetic coating. To achieve
this, Burroughs has developed s·everal types of
magnetic film plating processes which involve
both electroplating and electroless plating
techniques. Both processes are used in cur­
rent Burroughs products. The electroplating
process was chosen for the disk file. This
process plates a magnetic film less than 30
micro-inches thick with a coercivity of about
500 oersteds and a remanence of approximately
6,000 gauss. This plating thickness is less
than 1/16 the thickness of typical oxide coated
magnetic tape. After a disk is plated, it is
dynamically balanced and tested for flaws
(before assembly) on automatic flaw testing
equipment; all disks are free from flaws in
active track areas.

Figure 3-12 shows an outline of the head and
gives an indication of its actual shape. The
wedge, which gives the head its air-bearing
capability, is exaggerated in the drawing and
is at an angle of less than a degree with re­
spect to the base of the head.

Figure 3-12 also shows the head mounting
arrangement and actuation principle. The
head is mounted to a flexible-type flat spring
which is rigidly mounted to the main head
mount casting. The spring provides the fac­
ility for the head to align its elf during flying
and also provides a force to return the head
when the actuator is released. Actuation of
the head is accomplished by pushing the head
towards the disk with an air-actuated plunger.
The actuation force on each head assembly
must increase as a function of the distance of
the head assembly from the disk shaft center.
The boundary layer of air, which provides the
lifting force to the head assembly, increases as
a function of surface speed, which in turn is a
function of radius. The requirements for the
different actuation forces are met by using
several different air pressure regulators.

3-26

Every effort has been made to make the disk file
as free from failure as possible, particularly
with respect to preventing any contact between
the floating heads and the rotating disks o To
achieve such a "touch-free" disk file, all compo­
nents within the floating head system are de­
signed to be fail safe. The disk speed is moni­
tored with a tachometer which prevents the heads
from becoming actuated unless the disk is rotat­
ing at a safe speed. This same circuit automati­
cally retracts the heads if, for any reason, the
disk speed falls below a certain value. Because
the heads are air actuated and spring returned,
the heads automatically retract in case of failure
in air pressure. Power failures of any type auto­
matically release the air pressure, causing the
heads to retracto

The final protective device is an "anti-touch"
circuit. This circuit applies a signal between
the head body and recording medium (disk) and
can be adjusted to detect any desired minimum
floating gap. If the head comes closer to the
disk than this set gap, or if the gap is bridged by
a foreign particle, this condition is sensed and
the heads are automatically retracted. Provi­
sions have been made for determining which
head assembly generated the alarm.

Functional Description

The disk file system provides the B8500 System
with a very large storage facility capable of
rapidly accessing any record. As described
previously, a disk file system is comprised of
disk file controllers and the required number of
disk file subsystems. The disk file controllers,
which are housed in the B8515 Controller Cabinet,
facilitate the interfacing and data communications
between the electronics units in the disk file sub­
systems and the I/O modules. Each electronics
unit provides for the local control of up to five
disk file storage modules, which form the actual
storage media of the system. Functional and
operational characteristics of the controller,
electronics unit, and storage module are pro­
vided in the following paragraphs.

DISK FILE CONTROLLER

A disk file controller is used to provide compati­
bility between the disk file system and the I/O
modules. The disk mass memory is composed
of a multiplicity of quasi-independent disk sets
with a total storage capacity far beyond the ad­
dress capability of the 18-bit address field of the
B8500 instruction words. Therefore, when com­
municating with the disk file system, the B8500
System must transmit a control word which con­
tains not only the expanded address field neces­
sary to access a specific word or block, but
which also contains the coding for the specific
function to be carried out. The controller is the
instrument for interpreting this control word and
consequently controlling the detailed operation of
the disk file system.

The more important basic fli.nctions of the con­
troller include:

• Managing traffic

•Receiving and storing control words

• Scanning addresses to be serviced

•Selecting optimum address in accordance
with disk position

• Decoding starting addresses and updating
current addresses as words are read or
written

•Assembling and transmitting status fields to
indicate the current status of the controller
and its devices to the I/0 Module

•Buffering for concurrent reading or writing
on all 6 data streams of a disk storage
module

•Checking and generating parity for words
coming to and going from the disk sub­
systems

The logical capability of the controller allows any
one of 200 million 48-bit words to be stored in or
read from any one of up to 100 different disk
storage modules.

The disk file controller consists of two functional
sections: the controller section and the queuer
section. In general, the controller section trans­
fers data between a disk and an I/0 module, and
the queuer section controls the selecting of most
accessible disk addresses.

Controller Section

The controller section of the disk file controller
consists of four functional units; the interface
unit, the address unit, the disk select unit, and
the data unit. A block diagram of the controller
section and its subunits is shown in Figure 3-13.

INTERFACE UNIT. The interface unit contains
communication gates, interface controls, and
parity checking and generating circuits. All data,
status conditions, and descriptor addresses ex­
changed between the disks and the 1/0 module are
handled by the communications gates under super­
vision of the interface controls. Each data path
accommodates the standard word format of 48 bits
and one parity bit. Two input control lines are
used; the start line and the select strobe line.
Output control lines consist of the output service
request, input service request, status, last byte,
and strobe signal lines. When the queuer finds a
request within the required comparison limits, it
sends the main memory address portion of the
request to the communication gates and initiates a
request. The interface controls send the input
service request signal to the I/O module. When
the 1/0 module responds to the select strobe, the
controller places the 18-bit memory module ad­
dress on the data lines. The I/O accepts the
information and with the strobe determines that
the 18 bits represent the memory module address
which holds the control descriptor. This control
descriptor defines the operation carried out on
the disk being selected at this time. The I/0
module fetches the control descriotor from the
memory module, raises the start line to the con­
troller, and waits for the controller to respond
by either sending data during a read operation or
by requesting data for a write operation. As the
interface unit returns the address of the de­
scriptor to the I/O module, the controller address
register located in the address input begins a
comparison of segment address bits coming from
the selected disk.

3-27128

:- - - - - -ADD-RESS-UN~ - - - - --: ,- --~---------1

1 I
:- - - -DESCRl:RI-- - - - - --l- __, I T II :

I ADDRE'3S STA1LIS UAL DI 5K z.5.;---,-------- I
I ADDRE'3S I r--------+-------~ 6 i-----.J.---'~, 15 SELEcr ELECTRONIC9 UNIT_J_ STORAC.E uNtT...l. ou_: D

I 1
---- - - -- - -- - - --·-I D

1

1
I DISK GROUft,AND HEAD CP.OUP ~ ~ 0

I I 18 I I I I ~ I I I K ~

QUEUER I
I
I
I
I
I I I I I r L-- I I , EP

I
l'CNTROLLER ADDR RE.(.,IS1E.R. I I DISK ELECTRONIC UNIT L l)T

I JNT£RFACE. I CE I I I DISK ADDRE.SS S£Gt1EN1 ~DDRE.l)S I 1--------
1 ~·Ur----+---~ CONTROLS I I I T I

I
' I I READ'i B TO I SEl£CT I I I R u

I I
51ROBE c I jAr--oo <C'('1 l OUT o s .__I _,,,9...,ELECTED

II f:'\ 2. -, --CONTROL s ~ 0 i-- I CDMPARATOI' 1--__. _1 "' "!;.. ~~ I 2 SE~MENT COINCIDENCE -- N ~ DT5k.
~ ~ I I 1 CONTR0L~r I I RE"AO / wR1rE ~ t ~ I ~Ile

I I u I • I I OUT u L I UNlT
I I i'J I DI'~\<. .ADDR(SS I I r----+---------__...i N E I

I I 1- RU,\C:.TCR _t I ~EGMHff I C
I I DATA STATUS PARIT'(I CE.C 1.ACNT' ----'-~4g __ c - ._, ,.-.~ I I ADDRESS T T I I I ~PARITY A CHECK I _ADDRt.S~ f'I OUT

I I i ' 1 ~-------- ____________ J I ~ I

f 49

1

1 • ~:;~TY ~ 40 : r - - - - - - - - - - - -- ,=_. - - - - : I • I
I

I j _1___ I ~ Dl5K FILE IN
I ~ I I DATA Rt:C1<;TER AL DATA _l BUS !--~--+--+--------·----~~ I

--~ --""' 4 I CONTROLS ~ ~ ~- I I DA1A 'REG I STE f"(BL c ONTROl .,___ ___ ..._...,-~ CONTROLS .. I
- i ' 5TRO~E s ~ . I DATA R.E<WHE.R ~ L I I I

I
or C(I DATA REC.I sre:" DL I I IN t>

I w" R. REQ. I T I I
I STATUS ~ ~ I ' R!::AD - s N I
I ' RD. SER REQ. I__ PARfTY I I BUfFER REC\ST€R FL r-+- WRIT£ -~....__....... I IN K p

' c dL I bJFFER REC.\~TER CL REC.1'3TE!< I E UT I
i !_ - 1NTERFACE ~N~~ - - -- - - J l ~~~~~~ ~~~\~~~~ ~~ .. ~1 .___-:- I R£AD CLDCK~A I IN f B 1'

I_-P-,-----~ J f..------' ...__---,--1 ---.-'-----j Q DATA Rt:c A 1 N ic u5 I
- I c H Et I< s l.IM I I I ~

I I -HIFT R(G\5TE~ L 4~ GlNfRA10R l I I R I 1 L >--+-----4 ~ DATA TR A 0 ~ I
l

1 r 1 1 N E F'RoM

I f sTA~us I ~ ~ -
1

1 S:,~~ree>
I

I D~TA RCC.iSTER AR ERROR I c FlLE
I 1-P-A-fA_R_E~-. ,-Sf_E_R_' _G_R_ t I ~ i I u NIT

I I DATA RtGl~Tti<. CR I I
I I PATA RCC~i'3T6R DR READ _____ I T I
I ._._... WR\ TE r---
1 I BUfftR R(Il~TtR "R - RfC~STER I- I I READ CLOCKS B IN I
I I BU.FFER REGISTER ~R I I

BUFF13R. R£.GIS1E.R rtR + .__ __ I~ 9 DATA REC. 8 IN

I I BUFFER RE(;1grfR JR _l I I
I J. CH~CK SUH ..__ __ __;1---i ~ DATA TR B I
II ·, __ --a____.f __ __, ...___GENE~TOR 1' l

SHlff REcrsrrn R , I
I l ~r~TVS I I

ERROR I
I

--

DI~ k ~ELECT UN IT

DATA UNIT

--- - --
__ _J

1 __ ----- -- -- - - - --..J

Figure 3-13. Contro~ler Section, Block Diagram

3-29/3-30

ADDRESS AND DISK SELECT UNITS - The
address unit contains the controller address
register, disk address register, comparison net­
work, decoding matrix, and address controls.
The disk address ~decoded to send signals to the
selected electronic unit to select a disk storage
module, a disk set, a track, a head, and address
clocks. The address controls send a signal to the
disk select unit which initiates selection of an
electronics unit. The disk select unit contains
the electronics unit output bus select, the elec­
tronics unit input bus select, and the disk file bus
controls. When the disk file bus controls select
an electronics unit, it allows the remaining selec­
tion signals for disk storage module, disk set, and
head and address clocks to be sent to the electron­
ics unit. It also allows the data lines and clock
lines from the selected electronics unit to enter
the controller.

The address clock bits are shifted into the disk
address register and compared to the segment
address stored in the controller address register.
If a write operation is required, the interface
controls request a block of 8 words from the 1/0
module. The interface controls send an output
service request pulse. The 1/0 module responds
by fetching the first 4-word block from the mem­
ory module, transmitting the block to the control­
ler over the 49 data lines, parallel by bit and
serial by word. Once the transfer has started, a
word is sent every 100 nanoseconds for a 4-word
block, and the select strobe signal accompanies
the data. The control '.er accepts the four 49-bit
words at the communication gates and then loads
these words into data registers AL, BL, CL, and
D L in the data unit.

DAT A UNIT 0 The data unit of the controller
consists of eight data storage registers, eight
buffer registers, two shift registers, two check­
sum registers, and data controlso

During a write operation, the first group of four
49-bit words enters through the communications
gates and is loaded into data registers AL-DL,
and the second group of four words is loaded into
data registers AR-DR. When the buff er registers
are empty, the contents of data registers AL, BL,
CL, and DL are transferred into buffer registers
FL, GL, HL, and JL, respectively. The con­
tents of data registers AR-DR are similarly
transferred into buffer registers FR-JR. The
words stored in each group of buffer registers
are successively loaded into an associated shift
register from which they are transferred (nine
bits at a time) to a read-write register. The

data control is required to wait until the address
control (in the controller address unit) has re­
ceived a comparison signal which indicates that
the address compares with the selected starting
segment address on the disk. The clock signals
received from the selected disk are utilized by
the data control to send 18 bits of data every
character time to the disk. The data (nine bits
from each read-write register) are simultane­
ously written on three zones on one disk face and
three zones on another disk face. As each word
passes through the shift register, a check sum
generator begins to accumulate check bits to be
stored on the disk at the end of a block of four
words. The transfer rate to the disk is approxi­
mately eight words every 48 microseconds (one
word approximately every 6 microseconds). As
soon as the contents of the data registers have
been emptied into the buffer register, the inter­
face control unit sends the output service request
pulse to request another eight-word block of data.
The buffer registers buffer enough data words to
satisfy the worst-case demands for the servicing
of I/ 0 modules.

When the final block of eight words is transmitted
from the 1/0 module, the "last byte" signal is
sent to the controller to indicate that the opera­
tion has terminated. The controller responds
once more to notify the I/O module of a good
transfer, or sends a status signal which signifies
the existence of an error condition. After the
controller has written the final eight words of
data on the selected disk, the controller becomes
available to the queuer and waits for the next job
request.

The read operation is handled in a manner similar
to the manner described for the write operation.
The queuer, upon finding the controller available,
sends another request. The controller then re­
turns the 18-bit memory module address to the
1/0 module and begins selecting the proper disk.
When the disk address agrees with the starting
segment address on the disk, the read-write
registers (assuming a read operation) begin to ac­
cept data simultaneously from two disk faces at
an average word rate of approximately 6 micro­
seconds. Each read-write register accepts nine
bits of data, in parallel, from each disk face
approximately 2 microseconds after address
coincidence has occurred. Four 9-bit data words
are accumulated in the shift register and are then
loaded as a 48-bit word into the data registers.
After each four-word group has passed through
the shift register, the check sum generator ac­
cumulates three check bits which are then com­
pared with the check bits read from the disk.

3-31

When the buffer registers are empty, the infor­
mation stored in the data registers is transferred
to the associated buffer registers. As soon as
the data are available in the buff er registers, the
interface control unit transmits the input service
request pulse to inform the 1/0 module of the
availability of eight words to be transferred.
The 1/0 module responds by accepting the first
four-word block and then the second four-word
block. The transfer rate is 100 nanoseconds per
word for each four-word block.

If a check sum error is discovered, it is reported
with the appropriate status code by the interface
controls. The status reports may include parity
errors from the 1/0 modules, check sum errors
from the disk, "disk file lockout", or "disk
storage unit not available". Some of the status
conditions may cause termination of the present
operation.

Queuer Section

One function of the disk file controller is the
accumulation of disk transactions so that they
may be ordered in a manner that keeps the data
channels operating as efficiently as possible. This
function is accomplished by the queuer section
(Figure 3-14), which stores the disk transactions
in a memory job stack and compares them with
current disk addresses as they come from the
selected disk storage modules. When a disk
address comes within the accepted time bracket
of any current disk address, that particular con­
trol word is chosen as the next transaction to be
conducted. A block of data may be transferred
within approximately 1. 5 milliseconds after the
preceding data transaction has been terminated.

A request for access is received through the
queuer input gates and is stored in the memory
job stack under supervision of the input controls.
The request is then read into the queuer stack
register (QSR), and parity is checked. If parity is
wrong, the request is ignored, and a status line
to the 1/0 modules is energized. If the parity is
correct, a portion of the 48 bits assigned to the
control word is decoded to determine which type
of operation is to be performed. If the operation
code defines a queue/write or queue/read opera­
tion, the 48 bits are placed at the top of the stack
under control of the queuer address register
(QAR) and the top-of-stack register (TSR). If

3-32

the operation code defines a bypass queue opera­
tion, the QSR holds the 48-bit word until the con­
troller becomes available; then the job is trans­
ferred to the controller.

When the controller becomes available, the queuer
stack controls begin to sequence through each job
word. The operations include the reading of the
stack into the QSR, shifting the 25 disk address
bits to the controller address register, and then
converting the disk address into the proper ad­
dress format. After the converting operation is
accomplished, a request is made for a disk
electronics unit and a storage module. When the
request is granted, the address data and address
clocks from the selected storage module are read
and compared with the contents of the address
register 0 If the address of the selected disk is
within acceptable bounds, the job is transferred
to the controller section. The 18 bits of the job
word that contains the main memory address
of the job descriptor are returned to the 1/0
module through the controller-to-1/0 interface
system.

If a word command is required, the controller re­
quests the first "byte" consisting of eight 48-bit
words 0 If a read operation is required, the con­
troller waits until it has accumulated the first
eight words from the disk and then requests an
input operation to transfer the "byte" to the 1/0
module.

While the controller is sequencing the flow of
data to and from the selected disk file module,
the queuer stack controls place the job at the top
of the stack in the location left vacant by the job
in process (to effectively compress the stack).
If the queuer is not full, it samples the 1/0 start
line and, when the line is high, the queuer accepts
more job words through the interface system.

The queuer also has the capability of transferring
the contents of the queuer memory stack to the
1/0 module upon command. When the operation
code defines a "dump queuer" command, this
command becomes the next operation after the
controller is free. The queuer memory stack data
is transferred to the controller data registers and
is returned to the 1/0 module as if it were data
transferred through the interface between the 1/0
and controller. The "dump queuer" command
provides the program with the flexibility of check­
ing the job stack periodically.

OUTPUT START(OST)

OUTPUT STROBE (ose) f

DATA(49) LAST BYTE.(&..ey)(fl
~~~~-------~---150 

OUTPUT SEf<. REQ.(ORQ) ...,..._ __ --------{ 
OUTPUT STAtUS (osu) 

GATES 

I t.JTERFACE PAR\TY 

CONTROLS CHECK 

QUEUER 

MEMORY 

JOB 

STACK 

TS~(TOP STACK) 

9AR QUE'UER 
ADDRE'5'5 
REGiSTER 

QUEUER 5TAC.K 
REG\5TE.R 

QUEUER. 
STACK 

COt-.lTROLS (C¥ SR) 

r---------·-------------------' 
18 ______ ---~--------

~---------· 
OPERAT\ON MAIN 

C..OOE MEMORY 

I CONTROLLER ADORES$ REGISTER 

OtSt<. ADDRES5 SE.uMENT ADORE.SS 

----~ 
I (CONTROLLER~ COMPAl=t.E 

f.J/,, O.St< ACDRES'S R.EG. 

DISK STACK ADDRESS -

WITH1N BOUNDS 

SE.G .. ADDR 

COM PAR.& 

BOUNDS 

CLOCK 
1 SEGME"1T ADDRESS.,.._. _____ ....... 

-------- A~soc..wrn.l cisl( 

Figure 3-14. Queuer Section, Block Diagram 



Interface Characteristics 

Figure 3-15 shows the basic interfacing and in­
formation flow between the 1/0 module, a disk file 
controller, and an electronics unit. The illustra­
tion indicates the data flow handled by a channel 
serving the controller section of the disk file con­
troller and the requests for access to the disks 
treated by a channel serving the queuer section. 
The controller interface handles all data, descrip­
tor addresses, and status conditions exchanged 
between the disks and the 1/0 module. There are 
separate data paths into and out of the controller; 
each data path handles 49 data bits in parallel. 
This follows the standard format of 48 data bits 
and one odd parity check bit. Additional inputs to 
the controller consist of three non-data lines: the 
start line which informs the controller of an im­
pending input, the select strobe line which pro­
vides the timing for the input, and the ''last byte'' 
line which signals the controller on the last output 
data transfer. The output from the controller con­
sists of four control lines: 

(a) A strobe line which informs the I/ 0 module 
of the arrival of data. 

(b) An output service request line. 

(c) An input service request line. 

(d) A status line which separates data from 
status messages on the 49 lines from the con­
troller to the I/O module. The status line is 
made true whenever status is transmitted on the 
data line. 

Both input and output word rates at the controller 
are determined by the transfer rate of the disk. 
This rate is approximately eight words every 48 
microseconds, or an average of one word every 
6 microseconds. This rate is maintained for a 
maximum of 10,000 words per revolution of one 
disk. 

The queuer section of the disk file controller 
receives requests for disk access from the 1/0 
module. These requests consist of a disk ad­
dress of no more than 25 bits, control bit(s) for 
read or write operation, and a memory module 
address of 18 bits to reference the location of the 
descriptor to be used to control the transfer of 

3-34 

data. These bits are sent to the queuer section 
over a 4!:J-line data bus (48 data bits and one par­
ity bit )o The control signals from the I/ 0 module 
consist of the start line, which informs the 
queuer that requests are waiting to be sent to the 
queuer, the strobe signal which synchronizes the 
49 data lines, and the "last byte" signal notifying 
the controller of the last data transfer. When the 
1/0 module has a request waiting to be sent to the 
queuer, it raises the start line to the queuer. 
When the queuer is neither full nor busy, it 
acknowledges the request by sending the 1/0 
module a pulse over the service request line~ 
which sets a flag in the 1/0 module associated 
with this channel. The 1/0 module then responds 
by fetching the next request from a memory 
module and by transmitting it to the queuer over 
the 49 data lines along with the strobe signal. 
The request to the queuer from the 1/0 module 
contains: 

(a) The disk address. 

{b) The control bit{s) for read/write. 

(c) The memory module address. 

The disk address is a binary number, the most 
significant bits selecting the electronics unit and 
storage module, and the least significant bits 
selecting the starting address of the segment on 
a disk within a storage module. 

Operational Characteristics 

STORAGE FACILITIES 

The disk file storage modules are the basic 
storage media for the data in the mass storage 
system. Each storage module {there may be up 
to 100 associated with one controller) can store 
2 million words. The primary functions of the 
storage modules are to: 

• Provide the basic rotating storage media 
for the memory (four double-faced disks). 

• Contain read/write amplifiers for storage 
tracks. 

• Contain read amplifiers for clock and 
address informationo 



~ 
--

S1'AR 
1 

LAST BYTE 
1 

I CLOCK 

I QUEUER AVt-'\\ L· 

SERVICE REQUEST I ADDR 

ST.l\TUS I 
1 

I ELECTRONICS 
I/o MODULE I UNIT 

START CLOCK 1 

SE.LECT STROBE 
1 CONTROLS 

DATA (49) 
50 LAST B Yr£(1) 

CONTROLLER. DAT.A 
DATA (443) STATUS (1) 

STR06E(1) 
OUTPUT St~VICE: 17 CONT~OL. 

RE~ue.~,. 

iNPUT SE~VfC.E" 
1 18 

DAT'A 
REQUEST L 1-3117 - -

Figtire 3-15. Disk File System, Interface Diagram 



DISK ALLOCATION 

The face of each disk contains 50 tracks; each 
such track contains 1250 207-bit segments. Each 
segment of 207 bits provides for four 48-bit words, 
3 check bits, 3 clock bits, and 6 space bits dis­
tributed as follows: 

ZONE 

1 
2 
3 

BITS 

46 
69 
92 

CLOCK FREQUENCY 

1. 0 megacycle 
1. 5 megacycles 
2. 0 megacycles 

One primary bit clock per disk surface (and the 
associated circuitry) is required to read simul­
taneously from the two disk surfaces involved in 
a transfer. Each of the two primary clocks is 
taken serially from the disk file electronics unit. 

The data bit clocks and dead zones are organized 
such that during a data transfer operation, the 
respective spacer and data bits of the three zones 
of one disk face are within one "character time" 
of the respective spaces and data bits of the three 
zones of the other disk faces. Because data is 
transferred to or from two disk faces at a time, 
eight words (four on each disk face) are located 
by an address consisting of four binary-coded 
decimal (BCD) digits. The storage modules are 
organized such that disk faces 1 and 8, 2 and 7, 
3 and 6, or 4 and 5 can be selected as four sepa­
rate disk sets, the addressing is accomplished as 
follows: 

DISK SET 

3-36 

1 
2 
3 
4 

DISK FACES 

1 and 8 
2 and 7 
3 and 6 
4 and 5 

ADDRESSES 

0000 to 1249 
2000 to 3249 
4000 to 5249 
6000 to 7249 

The combination of 5,000 addressable segments 
per track per storage module and 50 tracks per 
disk face allows 250,000 addressable segments 
per storage module. Since each segment address 
defines the location of 8 words, each storage 
module can store 2,000,000 words. 

PARALLEL READING OR WRITING 

The reorganization of the standard Burroughs 
B475 disk storage modules to achieve improved 
performance for the B8500 System has been 
accomplished with a minimum of modifications. 
The basic rotational mechanism, head assemblies, 
and wiring of the storage module within the disk 
enclosure remain essentially unchanged. The 
changes necessary are primarily in the external 
electronics, and in the number of leads brought 
through the disk enclosure bulkhead board. 

In the standard serial disk file, a word is 
written or read serially by bit from the disk. 
This characteristic is still retained in the paral­
lel disk system. However, instead of limiting the 
reading or writing capability to only a single 
"stream" of data from a single disk face at any 
given time, the parallel disk system permits 
simultaneous reading or writing three streams 
on each of two disk faces. Therefore, a total of 
six streams of data are transferred in parallel 
to or from a given storage module. 



MAGNETIC TAPE SYSTEM 

General Description 

The magnetic tape system is another element in 
the hierarchy of storage facilities available to the 
B8500 System. A magnetic tape system consists 
of the maximum of two magnetic tape controllers 
and eight magnetic tape units. Each reel of mag-\ 
netic tape used with the magnetic tape units has a 
2. 88 million 48-bit word capacity. The average 
data transfer rate possible is 9, 000 words per 
second. Seven or nine-track tape formats may be 
implemented in the magnetic tape systems. One 
of the magnetic tape units used with the B8500 
System is the B425 (Figure 3-16), which uses a 
seven-track format. 

The magnetic tape unit is an electromechanical 
device which, under program control, is capable 
of reading, writing, backspacing, and erasing 
magnetic tape. Tape loading and unloading oper­
ations are performed manually at each magnetic 
tape unit. The magnetic tape unit can accommo­
date 10-1/2 inch reels containing up to 2400 feet 
of 1/2-inch wide Mylar tape. The tape is driven 
under a dual-gap read-write head at a speed of 
90 inches per second. The data packing density 
is 800 bits per inch. 

The magnetic tape controller, which is housed in 
the cabinet of the B8515 Controller, is a half­
duplex device which permits alternate trans­
mission of data in both directions between a mag­
netic tape unit and an 1/0 module. Each magnetic 
tape controller is capable of controlling a maxi­
mum of eight magnetic tape units. However, two 
controllers are cross-connected to the eight 
magnetic tape units to allow the simultaneous 
operation of two magnetic tape units within the 
same system, and to increase the reliability 
of the system. 

Functional Description 

MAGNETIC TAPE CONTROLLER 

All functions of the magnetic tape system such as 
reading, writing, -backspacing, erasing, ad­
vancing, and rewinding are carried out under 
control of the magnetic tape controller. Each 
magnetic tape controller can command the 
selected magnetic tape unit to respond to the fol­
lowing eleven different instructions for tape 
transport operations: 

(a) Write one record containing up to 16, 380 
words as specified by the descriptor. 

Figure 3 -16. B42 5 Magnetic Tape Unit 

3-37 



(b) Write an end-of-file record. (This is a min­
imum length record containing an end-of-file 
character. ) 

(c) Erase the number of words specified by the 
descriptor. 

(d) Rewind to the load-point marker. 

(e) Rewind to the load-point marker, and force 
the specified tape transport into a lock-out mode. 

(f) Read one record in the forward direction, or 
read the number of words specified by the 
descriptor. (The magnetic tape controller termi­
nates on end-of-record, or the 1/0 module termi­
nates on word count equals zero, whichever 
occurs first. However, the tape unit only stops 
between records. ) 

(g) Read, in the reverse direction, one record 
or the number of words specified by the descrip­
tor. (The stipulations of the preceding instruc­
tion apply except that the tape is moving 
backwards. ) 

(h) Advance one record, but do not transfer 
data to the 1/0 nor check parity. 

(i) Advance to the end of the end-of-file record. 

(j) Backspace one record, but do not transfer 
data to the 1/0 nor check parity. 

(k) Backspace to the end-of-file record. 

Figure 3 -17 is a block diagram of the magnetic 
tape controller. Descriptions of the subunits 
shown in Figure 3-17 are given in the following 
paragraphs. 

Line Drivers and Receivers 

The line drivers used in the magnetic tape con­
troller are of the standard signal buffer type used 
in the components of the central processing 
system. The line receivers are of the standard 
AND gate type. 

MTU Select Register and Parity Logic 

The first word that the magnetic tape controller 
(MTC) receives from the 1/0 module contains the 
3-bit magnetic tape unit (MTU) selection code. 

3-38 

These three bits are channeled into the priority 
logic circuits which check a selected MTU to 
determine if it is already in use or in the process 
of being selected by an alternate controller. The 
logic circuitry then decodes the three bits into 
eight discrete outputs, one of which selects the 
magnetic tape unit to be used in impending 
operations. 

Operation Register and Decoder 

The first word received by the MTC contains a 
4-bit operation code which is channeled into the 
operation register. The operation decoder then 
selects one of the eleven possible operations to be 
performed by the magnetic tape unit. 

Level Converters and Select Gates 

All information transferred between the MTC and 
the MTU passes through level converters and 
select gates. The output level converters convert 
MTC logic levels into levels compatible with MTU 
signals. The input level converters convert 
signals coming from the MTU to levels compatible 
with the MTC levels. 

Data Handling Registers 

BUFFEE REGISTER 1. Buffer register 1 receives 
four words of data from either the 1/0 module or 
the shift register. When buffer register 1 is 
fully loaded, the data are then automatically 
transferred to buff er register 2, and buffer 
register 1 is then ready to accept four more words 
of data. 

BUFFER REGISTER 2. Buffer register 2 receives 
four words of data from buffer register 1 and then 
transfers the data, one word at a time, to either 
the shift register or the 1/0 module. 

SHIFT REGISTER. During a write operation, the 
shift register receives a 48-bit word from buffer 
register 2. The word is moved through the 
register six bits at a time and then transferred to 
the write register. During a read operation, data 
is transferred from the MTU through the read 
register six bits at a time until the shift register 
is full. The word in the shift register is then 
transferred to buff er register 1. 



LINE 
RECEIVERS 

FROM 
ALTERNATE 

- CONTROLLER 

3 
CONTROL BITS 

OPERATION RE.GISTER 

DECODE 

MOTION 
CONTROL 

PARITY 
LOGIC 

GAP 
CONTROL 

CONTROLS 
AND COUNTERS 

WR\TE 
CONTROLS 

LINE. 
DRIVERS 

4 

READ 
CONTROLS 

OUTAJT LEVEL CONVERTERS 
AND 

SELECT GATES 

PARITY 
ACCUMULATOR 

PARITY 
GENERATOR 

I/O MODULE 

LINE 
RECEIVERS 

I 

BUFFER REGISTE~ 1 ( 4 WORDS) 

BUFFER REGISTER 2 ( 4 WORDS) 

PARITY 

PARITY 

WRITE REGISTER 
(co BITS) 

READ REGISTER...,.._ __ .... 
( 7 BITS) 

IN PUT LEVEL CONVERTER 
AND 

SELECT GATES 

MAGNETIC TAPE UNIT 

Figure 3-17. Magnetic tape Controller, Block Diagram 

LINE 
DRIVERS 

PARITY 
CHECK 

LONGITUDINAL 
PARITY 
CHECK 

3-39/3-40 



WRITE REGISTER. The write register receives a 
6-bit character from the shift register. Parity 
is generated on these bits and a 7-bit character is 
sent to the MTU. 

READ REGISTER. The read register receives a 7-
l;>it character from the MTU. Parity is checked 
oh these bits and then the parity bit is stripped 
from the character. The six remaining bits of 
data are then transferred to the shift register. 

Character Parity 

During a write operation, the shift register sends 
6-bit characters, one character at a time, to the 
write register. Odd or even parity (dependent on 
whether the alpha or binary mode is selected) is 
then generated. During a read operation, the 
MTU transfers 7-bit characters, one character at 
a time, to the read register. Odd or even parity 
is then checked. 

Word Parity 

Word parity is generated during both read and 
write operations. The parity is checked during a 
write operation by accumulating character parity 
and then comparing accumulated parity with 
parity sent from the I/O module. Parity is 
generated during a read operation by accumulating 
character parity and g 0 nerating word parity after 
the receipt of eight cha.racters. Parity is checked 
on the Control Word in a manner similar to the 
manner of checking parity during a write 
operation. 

Controls and Counters 

The combinations of controls and counters initiate 
and regulate all transfers of data and control 
signals between the I/O module and the MTC, and 
between the MTC and the MTU. 

The I/O module then energizes the select strobe 
signal to strobe the Control Word into the MTC and 
updates its descriptor by resetting the control­
word bit. 

With the Control Word in its registers, the MTC 
determines if the selected tape unit is unoccu­
pied by sensing if its appropriate ready bit is 
true. If a write operation is to be performed, 
the write ready level is only true if the file pro­
tection ring is on the tape reel. If the MTU is 
ready for data transfers, the operation specified 
by the I/O descriptor is started by energizing the 

appropriate motion controls: forward, reverse, 
or rewind. 

WRITE OPERATION 

. 
If a write operation is specified by the descriptor, 
the MTC enables the write service request line to 
the I/0 module, signifying that the MTC is ready 
to receive four data words for storing on tape. 
When a data word is on its output data lines, the 
I/0 module energizes its select strobe signal to 
enable the data transfer to the MTC. This oper­
ation continues until four 48-bit words (plus 
parity bits) have been transferred. During error­
free operation, the MTC has no further communi­
cation with the I/0 module until more data is 
required. 

When all data words are in the buff er registers 
and moved down to the shift register, the MTC 
transfers the d,ata, six bits at a time, to the 
selected MTU, and a parity bit is· generated. 
When the write control lines from the MTC are 
energized, the character is written on tape, and 
the write control signals are de-energized. The 
write process continues until the "last byte" 
signal is sensed. At this time, a three- character 
gap is erased, and the longitudinal parity 
character is written. After a read-after-write 
check is complete the MTC then energizes the 
stop motion control signals and then sends a ser­
vice request to the I/0 module before sending a 
status indicator to the I/O module. The, MTC 
monitors its write operations by utilizing the 
read-after-write capabilities of the magnetic tape 
units. 

READ OPERATION 

If a read operation is specified by the I/0 
descriptor, the MTC samples the seven lines 
(data and parity) from the MTU by using the read 
clock, checks the lateral parity of the characters, 
and accumulates the longitudinal parity (so that a 
longitudinal redundancy check can be made at the 
end-of-record). A new character is strobed into 
the MTC with each read clock signal. As soon as 
it assembles a 48-bit data word, the MTC trans­
fers the word to the buffer register. After four 
words have been transferred to the buffer register, 
the MTC initiates a read service request to the 
I/0 module. If the I/O module is ready to accept 
a four-word data byte, it responds to the MTC by 
sending a select signal to the MTC. 

3-41 



When the final character is sampled by the MTC, 
it terminates the tape reading process and 
energizes the stop motion control. If the. 1/0 
module reads data which is less than a full record, 
the start level will be iowered when the final four­
word ''byte" is received. The MTC will continue 
operation to the end-of-record but the only status 
sent to the 1/0 module will be the status detected 
and reported while the start line was high. If a 
lateral parity error occurs, the MTC will (1) stop 
sending data until the end-of-record and then send 
the error status, or (2) a question mark (?)will 
be inserted in place of the character containing the 
bad parity and the error status will be reported at 
the end-of-record. (No character which contains 
bad parity will be passed on to the 1/0 module.) 

METHODS OF TERMINATIONS 

An 1/0 module to MTC data transfer operation 
may be terminated by one of two methods; by 
lowering the start line level from the 1/0 module, 
or by raising the status line level from the MTC 
and energizing the read service request line. 
The 1/0 module always terminates an operation 
when its word count becomes 0. If, however, the 
MTC senses an end-of-record (with or without 
parity error) or an "end of file", it prepares to 
send the coded reason for termination over the 
data lines to the 1/0 module. 

Interface Characteristics 

Figure 3-18 shows the interface configuration of 
the magnetic tape subsystem. 

Each magnetic tape controller (MTC) has its own 
descriptor address in the descriptor area of the 
I/ O module. When a new descriptor is initiated, 
the control-word bit of the descriptor is set, and 
the 1/0 raises its start line to the selected MTC. 

3-42 

The MTC, if available, responds with a write 
service request to the I/ 0 module. The I/ O 
module services this request by placing a Control 
Word on what is normally its output data lines. 
The format of the Control Word is shown in 
Table 3-3. 

TABLE 3-3 

FORMAT OF CONTROL WORD FOR 
MAGNETIC TAPE OPERATIONS 

Bits Function --
2-5 

·~ 
Specifies which operation is to be 
performed 

6-8 Selects one of the eight magnetic 
tape units 

10 and 11 ~ Selects one of the three recording 
densities or specifies operator 
selection of density 

14 Specifies ALPHA or BINARY char-
acter mode 

17 Specifies whether or not to terminate 
operation upon detection of char-
acter parity error. (When opera-
tion is not terminated because of a 
parity error, a question mark ( ?) 
is substituted for the character 
indicating the error.) 

21 ( 
Specifies the internal or external 
type of format 



Write Service Re uest 
1 

Read Service Request 
l 

Status 
1 

Power Controls 

Motion Controls 
I/0 Data Strobe MTC 

l Read Cont. 
MTU 

Data Clock 

Last Byte 
1 

Start 
1 

Select Strobe 
1 

Data 

Figure 3-18. Magnetic Tape System, Interface Diagram 



Operational Characteristics 

Operational characteristics of the magnetic tape 
unit are summarized below: 

• Processes 10-1/2-inch reels containing 
2400 feet of one-half inch wide tape 

• Reads and writes tape at 90 ips 

• Recording density is 200, 556, or 800 frames 
per inch (as required) 

• Data capacity is approximately 22. 1 million 
alphanumeric characters per reel 

• Alphanumeric transfer rate is 72, 000 
characters per second 

• Start time is 5 milliseconds 

• Start/ stop time is 10 milliseconds 

• Utilizes a dual-gap head with nonreturn-to­
zero recording 

3-44 

• High-speed rewind at over 320 inches per 
second 

• Quick-action reel locks facilitate reel 
mounting and removal 

• File rings provide automatic file protection 

• Automatic tape positioning and use of a 
permanent leader simplify and speed loading 

• Compatible with other magnetic tape 
systems recording 200, 256, or 800 frames 
per inch on half-inch tape 

In general, the magnetic tape unit reads or writes 
data in either binary or single-frame alphanumer­
ic format. The tape format may be made 
compatible with IBM Model 729-IV magnetic 
tapes. The recorded format consists of seven 
longitudinally recorded parallel tracks with each 
character recorded as a lateral set of bits, one 
bit on each track. One track contains bits which 
provide a parity check for each character. Auto­
matic checking in the write mode of operation is 
made possible by utilizing a dual-gap read/write 
head. 



CARD READERS 

General Description 

Two models of card readers are available for use 
with the B8500 Data Processing System, the B124 
and the Bl29. The Bl24 Card Reader reads cards 
at an 800 card-per-minute rate and the Bl29 Card 
Reader reads cards at a 1400 card-per-minute 
rate. Because both card readers are identical in 
physical appearance and operation, only the Bl29 
Card Reader {see Figure 3-19) is discussed in 
detail. 

The Bl29 Card Reader is contained in a single, 
free-standing cabinet which is approximately 50 
inches high, 48 inches long, and 29 inches deep. 
The total weight of the card reader is approxi­
mately 920 pounds; rubber casters on the cabinet 
facilitate positioning the card reader at any loca­
tion. The card reader is a self-contained unit 
which contains its own power supplies and logic 
and control circuitry. 

The hopper and stacker of the card reader each 
have the capacity of approximately 4000 cards of 
standard thickness. Vibrators are provided in 
the floors of the hopper and stacker to help reduce 
friction and to eliminate the need for joggling the 
cards. Both the hopper and stacker have ad­
justable rails to permit the feeding of either 51, 
60, 66, or 80 column cards. Card stock of post 
card thickness can be read. However, cards of 
different lengths or thicknesses cannot be inter­
mixed during any one run. Cards punched column 
binary can be read by depressing the LOAD button 
on the control panel. The reader is designed for 
heavy-duty operation, with high production, and a 
small amount of maintenance. Card jams are ex­
tremely rare. 

A removable front cover permits access to a logic 
gate, a blower motor, and a cooling fan. A 
hinged top cover permits access to the card 
transport mechanisms to facilitate the cleaning of 
the card path. Operating controls and indicators 
are located on a panel at the top of the cabinet, 
and a maintenance panel is located on the logic 
gate. 

Figure 3-19. B129 Card Reader 

3-45 



Functional Description 

The Bl29 Card Reader is a high-speed, electro­
mechanical device capable of reading punched 
cards at a rate of 1400 cards-per-minute. Under 
system operation, the card reader feeds one card 
at a time on command from the card reader con­
troller in the B8515 Controller Module. 

A card is fed in a vertical position, and read 
serially, one column at a time. The reading of 
a card is accomplished photoelectrically by 
photodiodes (solar cells). Each character from 
the card is checked to determine if it is valid; 
then the standard card code is translated into the 
six-bit binary-coded-decimal character and is 
supplied to the input-output channel a character at 
a time. Invalid characters are sensed and re­
placed by the "? ", and an error indication is 
supplied to the processing system. Binary punched 
cards (six bits) are read column by column. Be­
cause there are 12 bit positions in a card column, 
two binary characters occupy each card column. 

The card reader constantly monitors for card 
jams in the feed and read areas. If a jam occurs, 
the condition is immediately sensed, and card 
feeding is stopped. 

Interface Description 

The interfacing of the card readers with the Cen­
tral Data Processing System is accomplished by 
the use of a Card Reader Controller. The Card 
Reader Controller, which is housed in the B8515 
Controller Module, contains the necessary cir­
cuitry to provide compatibility and buffering be­
tween the card readers and the 1/0 modules. A 
description of the interfacing and information 
flow between peripheral devices and the Central 
Processor is provided later in this manual. 

CARD PUNCHES 

General Description 

Two types of card punches are available for use 
with the B8500 Data Processing System; the B303 
card Punch and the B304 Card Punch. Both card 
punches feed, punch, check, and stack 80-column 
cards. The B304 can punch both standard and 
post card thicknesses. The B303 punches cards 
at a maximum rate of 100 cards per minute, and 
the B304 punches cards at a maximum rate of 300 
cards per minute. 

r~ -• ••• • ,.:] 

Figure 3-20. B303 Card Punch 

3-46 



PHYSICAL DESCRIPTION OF 8303 CARD 

PUNCH 

The B303 Card Punch (Figur e 3-20) is contained 
in a free-standing cabinet which is approximately 
53 inches high, 44-1/ 2 inches wide, and 28 inches 
deep. The tota l weight of the card punch is ap­
proximately 910 pounds; rubber casters facilitate 
positioning the card punch at any location. The 
card punch is a self-contained unit which con­
tains its own power supplies, logic and control 
circuitry. 

The cabinet is divided into two sections; the upper 
section, which contains electromechanical com­
ponents, and the lower section, which contains the 
power supply, logic, and control components. 
Removable covers permit access to internal com­
ponents and subassemblies through both the front 
and rear of the cabinet. Operating controls and 
indicators are located on a panel at the top front 
of the cabinet in front of the stacker mechanism. 
The hopper and the stacker in the card punch will 
each hold up to 800 cards. Cards may be added 

.,) . . , ~ ·· •.. 

to the hopper or removed from the stacker while 
the unit is ope rating. 

PHYSICAL DESCRIPTION OF 8304 CARD 

PUNCH 

The B304 Card Punch (Figure 3-21) is contained 
in a free-standing cabinet which is approximately 
47 inches high, 73 inches long, and 27-1/2 inches 
deep. The total weight of the card punch is ap­
proximately 1283 pounds; the cabinet is supported 
by four adjustable feet. The card punch is a 
self-contained unit which contains its own power 
supplies, logic and control circuitry. 

Cards are loaded into a hopper located to the left 
of the control panel. The hopper is comprised of 
a main hopper and an auxiliary hopper. The main 
hopper (the lower of the two) has a maximum ca­
pacity of 450 cards. The auxiliary hopper has a 
maximum capacity of 3000 cards and is used to 
maintain a constant level of cards in the main 
hopper. Cards are placed into the hoppers face 
down, "12" edge feeding first. 

Figure 3-21. B304 Card Punch 

3-47 



Output cards are sorted into one of three stack-
e rs; a main stacker, an auxiliary stacker, and an 
error stacker. The main stacker is located 
along the top cover of the cabinet and is used dur­
ing normal operations. The auxiliary stacker is 
located at the left side of the cabinet and contains 
cards "out- sorted" the re under program control. 
The error stacker, located to the right of the 
auxiliary stacker and near the front of the card 
punch, contains cards detected to be in error by 
the card punch read check station. Access to the 
auxiliary and error stackers is gained through 
the opening in the left side cover of the cabinet. 

Removable covers permit access through the 
sides of the cabinet to the electromechanical 
mechanisms, power supplies, and logic circuitry. 
Operating controls and indicators are located on 
a panel on the front of the cabinet, just to the 
right of the hoppers. 

Functional Description 

The card punches are electromechanical devices 
which provide alphanumeric, 80-column card out­
puts for the B8500 Data Processing System. The 
cards are automatically punched, under control 
of the processing system, one card at a time. 
Cards may be gang-punched, however, under 
local control. 

Because the card punches do not have the capa­
bility of storing all of the information neces$ary 
to punch a card, all the information for one card 
is first stored in the controller and then trans­
ferred to the punch one row at a time. Cards are 
punched one row at a time beginning with row 12 
on a card, by utilization of an electronic row buffer. 
The information is punched in standard Hollerith 
card code. Timing pulses, used to control the 
transfer of the information, are generated by the 
c.ard punches and sent to the processing system. 
After a card has been completely punched, a hole 
count is made by the card read station of the punch 
in order to verify that the correct information has 
been punched. 

The B303 Card Punch utilizes an immediate ac­
cess clutch, whereas the B304 Card Punch 
utilizes a six-point clutch. 

3-48 

Interface Description 

The interfacing of the card punches with the Cen­
tral Data Processing System is accomplished by 
the use of a Card Punch Controller. The Card 
Punch Controller, which is housed in the B8515 
Controller Module, contains the circuitry to pro­
vide compatibility and buffering between the card 
punches and the I/O Modules. A description of 
the interfacing and information flow between 
peripheral devices and the processing system is 
provided later in this manual. 

LINE PRINTER 

General Description 
The E329 Line Printer (Figure 3-22) is a drum 
type printer capable of printing 37 alphanu-
meric characters at a maximum rate of 1040 
lines per minute, or 64 characters (37 alpha­
numeric and 27 special characters) at a maximum 
rate of 700 lines per minute. Any one of the 64 
characters can be printed in each of 132 printing 
positions. 

The B329 Line Printer is contained in a two-sec­
tion cabinet which is approximately 55 inches 
high, 76 inches wide, and 30-1/2 inches deep. 
The total weight of the unit is approximately 1750 
pounds; rubber casters are provided on the cabi­
net to aid in the positioning of the line printer. 
The line printer is a self-contained unit which 
contains its own power supplies, operating con­
trols and indicators, a buffer memory, and the 
necessary logic and control circuitry. 

Removable panels permit access to the interior 
components of the line printer through the front, 
rear, and side of the cabinet. Hinged top and 
front covers on the printer facilitate the handling 
of paper and carriage tape loading operations and 
permit access to the mechanical sections of the 
printer. 

Printing is done on continuous forms which may 
be from 5 inches to 20 inches in width, including 
the marginal punched strips. Maximum length of 
each form section can be 22 inches (at six lines 
per inch) or 16-1/2 inches (eight lines per inch). 
Forms are placed in the bottom of the cabinet and 
transported by pin-feed tractors through the unit 
to a stacker at the rear of the unit. As many as 
five carbon copies plus an original may be printed 
on each form. 



Functional Description 

The B329 is a high-speed electromechanical de­
vice which can print 700 (64 characters) or 1040 
(37 characters) single-spaced lines per minute. 
The line printer is fully buffered through a self­
contained 132-character buffer memory. The 
graphics have a horizontal spacing of 10 charac­
ters per inch. Vertical spacing is either six 
or eight lines to the inch and is controlled by the 
operator. All formating, editing, form skipping, 
and spacing are done under program control, via 
the line printer controller. 

Information is transferred from the processing 
system through the line printer controller into the 
printer buffer memory. The information is trans­
ferred in parallel by bits and serially by character. 
A line is printed only after the last character is 
loaded into the buffer memory. A command level 
from the controller then transfers the format in­
structions (space or skip) and initiates the action 
to print the contents of the memory buffer. 

The paper carriage is controlled by the coordi­
nated action of a clutch and two brakes, which 
are actuated by the format instructions received 
from the controller. The vertical spacing format 
may be a single-space, double-space, or a skip 
to any one of eleven pre-determined positions 

punched on a carriage control format tape used 
with the line printer. A twelfth position punched 
on the tape is used exclusively as an end-of-page 
indicator. 

As each print command is being executed, the 
buffer memory can be filled by the controller 
during the paper motion involved with the pre­
ceding command. The controller and the line 
printer are interlocked during and after the buffer 
loading operation until the print command and for­
mating levels are received from the controller. 
These levels are received only after the paper 
motion has stopped for the preceding operation; 
then the controller is released from the printer. 

Interface Description 

The interfacing of the line printer with the Central 
Data Processing System is accomplished by the 
use of a Line Printer Controller. The Line 
Printer Controller, which is housed in the B8515 
Controller Module, contains the circuitry to pro­
vide compatibility and buffering between the line 
printer and the 1/0 modules. A description of the 
interfacing and information flow between peripher­
al devices and the Central Data Processing System 
is provided later in this manual. 

Figure 3-22. B329 Line Printer 

3-49 



EQUIPMENT INTERFACING 

General Description 
Various quantities of central processor modules, 
memory modules, I/O modules, controllers, and 
peripheral devices can be integrated into configu­
rations to meet the requirements of specific ap­
plications of the B8500 System. As shown in 
Figure 1-2, the processor, I/0 modules, and the 
console are interfaced with the memory modules 
by data transfer busses. Each bus handles 52 
parallel input data lines, 52 parallel output data 
lines, and the necessary number of control lines. 
A maximum of 16 busses may be used to interface 
a system; 15 to interface the memory modules 
with the processor and I/O modules, and one to 
interface the memory modules with the memory 
check module in the B8500 Console. 
All interfacing is accomplished through the use of 
units within the various modules. Figure 3-23 
shows the interfacing between the units, the con­
figuration of the units, and the signal flow in the 
system. The units contain the necessary fetch, 
store, and address registers, logic circuits, 
timing and control circuits, drivers, and receiv­
ers to coordinate the transfer of data between the 
modules. 

Each I/0 module has the capability of interfacing 
with 512 simplex (one-way) peripheral devices 
over 512 individual control channels (256 input 
and 256 output) as well as 64 data transfer busses 
(32 input and 32 output). Peripheral equipment 
controllers (contained in common B8515 Control­
ler Modules) are used to provide the proper inter­
facing of data and control signals between the I/O 
modules and the various peripheral devices. These 
controllers supply the proper amount of data buf­
fering to ensure that no data is lost while an I/0 
module is servicing other channels. Communica­
tions modules are used specifically to interface 
I/O modules with communications lines (such as 
teletype lines) to minimize the possibility of a 
single component failure disabling more than a 
single communication line. The interface circui­
try in the communications modules provides for 
compatibility between the communication devices 
arid the 1/0 modules. 

Information Flow 

Information flow between units in the B8500 Sys­
tem involves three phases; input, processing, and 
output. The main thin-film memory (in the mem­
ory modules) is a high-speed random access, 
temporary storage device for information to be 
handled during each of the three phases. During 
the input phase, information is transferred from 
the input peripheral devices to the main memory 

3-50 

by way of the peripheral controllers, 1/0 Modules, 
and Disc Sub-system. During the processing phase, 
the information in main memory is transferred to 
and manipulated by a processor, upon completion 
of which the data is returned to main memory. 
During the output phase, the information is taken 
out of main memory and handled as output informa­
tion, traveling the reverse route of the input data 
flow. 

COMMUNICATIONS BETWEEN PERIPHERAL 

EQUIPMENT AND 1/0 MODULES 

Communications between peripheral equipment and 
the I/O modules is handled by peripheral equip­
ment controllers, communications modules, and 
the data service units in the 1/0 modules. The 
data service units contain the necessary registers, 
buffers, and control circuits to manipulate input/ 
output information of various byte sizes and speeds. 
Each of the 64 data busses has the capability of 
handling, in parallel, a byte size of 51 data bits 
plus one parity bit. The byte size of data handled 
is determined by the type of peripheral device 
used. For example, if an 1/0 module is communi­
cating with 8-to-100 word-per-minute Teletype 
lines, a 6-bit byte size would be sufficient to en­
sure that each of the individual Teletype lines is 
serviced without the loss of data. 

The peripheral equipment controllers contain the 
necessary drivers, receivers, registers, parity 
check and generating logic, buffers, converters, 
and timing control circuits to buffer and transfer 
data between devices and 1/0 modules. Communi­
cations between 1/0 modules and peripheral equip­
ment controllers is accomplished by the use of 512 
control channels and 64 data transfer busses. The 
512 control channels are divided into 256 input 
channels and 256 output channels. The output 
channel control signals transmitted from an 1/0 
module to a peripheral equipment controller in­
clude the last byte signal, the start signal, and 
the device select strobe. Output control signals 
sent from peripheral equipment controllers to 
the devices include status and service request 
signals. 

Input control signals sent from 1/0 modules to 
peripheral equipment controllers include the start 
and input select signals, and a service signal is 
sent back from peripheral equipment controllers to 
the 1/0 modules. 

Data word transfers on each of the 32 output busses 
include 48 data bits and one parity bit. Data trans­
fers on each input bus include 48 bits, one parity 
bit, and a status strobe. 



COMMUNICATIONS BETWEEN 1/0 MODULES 
AND CENTRAL PROCESSORS 

As shown in Figure 1-4, communications be­
tween processors and 1/0 modules are handled by 
the communications units in each processor, and 
by the processing unit in each 1/0 module. The 
communications unit in a processor contains the 
necessary drivers and receivers to drive signal 
lines to the 1/0 modules and to receive and stand­
ardize signals from the 1/0 modules. The 1/0 
processing units contain registers and control cir­
cuits which control the input/ output communica­
tions with a processor. Each set of data trans­
ferred from a processor to an 1/0 module includes 
18 bits for the job stack address, one bit for the 
job stack flag, and one strobe bit. Each set of 
data transferred from an 1/0 module to a proc­
essor module includes the I/ 0-complete inter­
rupt, parity error interrupt, and the memory 
access interrupt bits. 

COMMUNICATIONS BETWEEN PROCESSORS 
OR 1/0 MODULES AND MEMORY MODULES 

Communications between the Processors or 1/0 
modules and the memory modules is handled by 
the communications unit in each processor, 1/0, 
and memory module. The communications unit 
in the processor and 1/0 modules contains: 

a. Fetch and store registers which buffer infor­
mation transferred to and from memory modules. 

b. Address registers which buffer the memory 
module addresses. 

c. Parity check and generating logic circuits 
which check parity of data received from memory 
modules and generate parity bits for data sent to 
memory modules. 

d. Timing and control circuits which control 
sequential operations required by the communica­
tions processes. 

e. Drivers which drive signal lines to the mem­
ory modules. 

f. Receivers which receive and standardize sig­
nals received from memory modules. 

The communications unit in the memory modules 
contain the necessary drivers and receivers to 
handle data received from and transmitted to the 
processor and 1/0 modules. Fifteen data transfer 
busses are provided in the system to interconnect 
the processor and 1/0 modules with the memory 
modules. Each bus has 52 parallel input data lines, 
52 parallel output data lines, and the necessary 
number of control lines. 

Data transferred (through each bus) from a proc­
essor or 1/0 module to each memory module in­
clude 51 data bits, one parity bit, one request 
strobe, and one data strobe. Data transferred 
from the memory modules to a processor or 1/0 
module include 51 data bits, one parity bit, one 
data strobe, one response signal, and one inter­
rupt signal. In addition, a request signal is sent 
(over an individual line) from each 1/0 or pro­
cessor module to each of the memory modules, 
and a processor interrupt signal is sent from 
each memory module to each processor module. 

3-51/3-52 



1-
\(l 
w 
:::t 
0 
w 
er 

CENTRAL PROCESSOR MODULE. 
JOB STACK ADDRE.SS i--+-------118 1---------'-~~;;....:;;__..;_;;;;;;_..;::;..=..--I"" 

JOB STACK FLA6 DR i--+-------1 ' 1---=--..;:;.~----------~ RX 

51ROBE. ~-1+----1 ' l--___.=;_-'---'--=-=:~------tt--t91... I/ 0 
COMMUNtCATlON5 ~ <--- PROCE:.S~IN6 

UNl1" ,.-- ~ UN\T 
1/0 COMPLETE.. 'NTE.RRUPT -@+-+-
PAR\TY ERROR \NTE.RRUPT 0+-1- DR 

NO ME.MORY ACCt.55 1NTERRUP10-+-+-
RXr4 

, ... 
j 

DR ] f RX . 
.J ~ + + l 

51 l I I 

. ... . .. 
~+-411 R~ l r DR 

COMMU~ICAT\ONS '--
UN\ T ,___ 

~~-t-i+---=.:..~_:._-----t--+-1 

RX 

l/O 

MODULE. 

OUTPUI CONTROL 
C'4ANNE.L (2.~6 MAX) 

r--. LA~T BYTE. 
~-------.i I ~ 

START 1 ~ 

~----~ I Sl"ROE>E. ] : 
I SE:.'RYIG E. Rt:.QUE5T 

...... ~ -a--i.--L--.1 I : 

OUTPUT SIAIU5 : 
SE.CT ION ,. \._,, ' 

1------

DATA 

5E.RVICE. 

UNlT 

t------

{\ AO DATA 
~ .... 

OUIPUI BUS 
(32 MAX.) 

\N PUT CONTROL I 

CHANNEL(2SG MAbt..) 
r--.. , INPUT SE.LE.CT STRO~ 

i..........11-~' START I ~ 
-..i.-..-...... \ St..RV\CE REQUE.$1.,. 

DATA "@­
~~P~A~R~''~y~~~-+-~-0-

DATA STROBE. -(D--
5"TATU5 5TROBE. v-1-

\NPUT $us 
(32. MA~.) 

OUTPUT 
DEVICE. 

CONTROLLERS OR OUT PUT 
COMMUNICAT\ONS OUTPUTS_. DE VIC.E.~ 

MODULE5 

l 
I 
I 
I 
I 
I 
J 

'NPUT 
DE. VICE. 

CONTROLLER~O~ 
COMMUN\CAT\ONS 

MODULE~ 

i.... tNPUiS 
~ 

I 

I 

\NPUT 
OE. VICE'.S 

Figure 3-23. System Intel ace and Information Flow Diagram 
3-53/3-54 



INTERNAL 
BA 8421 

00 0000 
00 0001 
00 0010 
00 0011 
00 0100 
00 0101 
00 0110 
00 0111 
00 1000 
00 1001 
00 1010 
00 1011 
00 1100 
00 1101 
00 1110 
00 1111 
01 0000 
01 0001 
01 0010 
01 0011 
01 0100 
01 0101 
01 0110 
01 0111 
01 1000 
011001 
01 1010 
01 1011 
01 1100 
011101 
01 1110 
01 1111 
10 0000 
10 0001 
10 0010 
10 0011 
10 0100 
10 0101 
10 0110 
10 0111 
10 1000 
10 1001 
10 1010 
10 1011 
10 1100 
10 1101 
10 1110 
10 1111 
11 0000 
11 0001 
11 0010 
11 0011 
11 0100 
11 0101 
11 0110 
11 0111 
11 1000 
11 1001 
11 1010 
11 1011 
11 1100 
11 1101 
11 1110 
11 1111 

APPENDIX A 

88500 CHARACTER SET 

OCTAL 

00 
01 
02 
03 
04 
05 
06 
07 
10 
11 
12 
13 
14 
15 
16 
17 
20 
21 
22 
23 
24 
25 
26 
27 
30 
31 
32 
33 
34 
35 
36 
37 
40 
41 
42 
43 
44 
45 
46 
47 
50 
51 
52 
53 
54 
55 
56 
57 
60 
61 
62 
63 
64 
65 
66 
67 
70 
71 
72 
73 
74 
75 
76 
77 

B8500 

PRINTER 
GRAPHICS 

blank 
A 
B 
c 
D 
E 
F 
G 
H 
I 
l 

(period) 
< 
( 
+ 
+- (tape mark) 
& 
J 
K 
L 
M 
N 
0 
p 

Q 
R 
x (multiply) 
$ 
* 
) 
; (semi-colon) 

< 
- (minus) 
I 
s 
T 
u 
v 
w 
x 
y 
z 
-I 
, (comma) 
% 
] 
> 
? (See Note 1.) 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
: (colon) 
# 

@ 

[ 

" (quotes) 

PUNCHED 
CARD 

COMBINATION 

None 
12, 1 
12, 2 
12, 3 
12, 4 
12, 5 
12, 6 
12, 7 
12, 8 
12, 9 
12, 8, 2 
12, 8, 3 
12, 8, 4 
12, 8, 5 
12, 8, 6 
12, 8, 7 
12 
11, 1 
11, 2 
11, 3 
11, 4 
11, 5 
11, 6 
11, 7 
11, 8 
11, 9 
11, 8, 2 
11, 8, 3 
11, 8, 4 
11, 8, 5 
11, 8, 6 
11, 8, 7 
11 
o, 1 
o, 2 
0, 3 
o, 4 
o, 5 
0, 6 
0, 7 
o, 8 
o, 9 
12, 11 
o, 8, 3 
0, 8, 4 
0, 8, 5 
0, 8, 6 
0, 8, 7 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
8, 2 
8, 3 
8, 4 
8, 5 
8, 6 
8, 7 

Tape Mark - Used on B8500 as EOF record, 

NOTE 1. All other punched card combinations are "mapped" into this character. 

A-1/ A-2 



APPENDIX B 

CENTRAL PROCESSOR INSTRUCTIONS 

OPERA TOR SYLLABLE 1 ADDITIONAL SYLLABLES MEANING 

MNEUMONIC OCTAL 2nd 3rd 4th 

ADD 40 Add (Floating) 
ADDM 50 Add Integer Magnitude 
ARIT 53 Vd Double Precision Arithmetic Operations 
AND 42 Logical AND 
BSR 74 A Load Barrel Shift Register 
CBB 33 Ve Convert Binary Coded Decimal to Binary 
CLRF 56 L, S Clear Field 
COMF 66 L, S Complement Field 
COMP 70 Complement 
DIV 61 Divide 
DIVI 71 Divide for Integer Quotient 
DUP 01 Duplicate Top of Stack 
ESP 14 I Enter Executive and Scheduling Program 
ETB 20 Extract tag bits 
EXT 75 L, s Extract Field 
EXTD 35 L2, S, Ll Extract Field Double 
FAS 55 Ll, L2 Fetch Address Register to Stack 
FINQ 67 Final Queue Empty 
FILF 76 L, S Fill Field 
FMA 17 Al, A2, B Fetch Memory to Address Register 
FMC 27 Al, A2, B Fetch Memory Conditionally 
FMS 05 Al, A2, B Fetch Memory to Stack 
FMSA 10 Fetch Memory to Stack Absolute 
FMT 36 Al, A2, B Fetch Modify Tag 
FRS 03 R Fetch Register to Stack 
ICN 04 N Interrupt Computer N 
IMP 52 Implication 
INS 65 L, s Insert Field 
INSD 25 L2, s, Ll Insert Field Double 
INT 31 Integerize 
IOP 73 T Initiate Input Output Program 
IRR 32 Interrupt Routine Return 
ITB 22 Insert tag bits 
JFT 26 L, s, Vt Jump on Field Test 
JSTA 34 Vt Jump on Stack Test Arithmetic 
JSTL 24 Vt Jump on Stack Test Logical 
JXMT 16 Al, A2, Vi Jump on Index Modify and Test 
MUL 60 Multiply 
NORM 30 Normalize 
NOP 57 No operation 
OR 72 Logical OR 
ORX 62 Exclusive OR 
RND 21 Round 
RTS 13 Vs Rearrange Top of Stack 
SHF 63 V4 Shift 

B-1 



OPERATOR SYLLABLE 1 ADDITIONAL SYLLABLES MEANING 

MNEUMONIC OCTAL 2nd 3rd 4th 

SJ 07 Al, A2, Vj Set up Jump 
SLIT 23 LIT Short Literal 
SRR 11 Sub Routine Return 
SSM 06 Al, A2, B Store Stack to Memory 
SSMA 02 Store Stack to Memory Absolute 
SSR 43 R Store Stack to Register 
STOP 77, 00 Stop Processor 
SUB 41 Subtract 
SUBM 51 Subtract Integer Magnitude 
x 45 Al, A2 Index 
XM 46 Al, A2 Index and Modify Index 
XS 12 Index by Top of Stack 

*Address and Variant Syllables 

A - Shift Amount 

Ai, A2 - Relative Address 

B - Base Register Specifier 

I - Relative Address 
(for ESP Instruction) 

L - Length of Field 

Li, L2 - Literal 

LIT - Short Literal 

N - Computer Module Number 

R - Register Specifier 

*For further definition, see Appendix C. 

B-2 

S - Start of Field 

T - I/O Module Number 

V4 - Shift Variant 

Ve - Conversion Variant 

Vd - Double Length Arithmetic Variant 

Vi - Index Modifier Variant 

Vj - Jump Variant 

Vs - Stack Manipulation Variant 

Vt - Jump Test Variant 



05 - FMS 

10 - FMSA 

06 - SSM 

02 - SSMA 

03 - FRS 

43 - SSR 

55 - FAS 

23 - SLIT 

FETCH AND STORE INSTRUCTIONS 

-Fetch Memory to Stack 

The stack is pushed down once. The contents of the memory location specified by the sum 
of AAR + AlA2 + a base register, designated by B, is placed in the top of the stack. At 
the completion of the operation the AAR is cleared if specified by the B syllable. 

- Fetch Memory to Stack Absolute 

The stack is pushed down once. The contents of the memory location specified by the AAR 
is placed in the top of the stack. At the completion of the operation the AAR is cleared. 

-Store Stack to Memory 

The top of the stack is stored into the memory location specified by the sum of AAR + 
AlA2 + a base register, designated by B. The stack is stepped up once and the AAR is 
cleared if specified by the B syllable. 

-Store Stack to Memory Absolute 

The top of the stack is stored into the memory location specified by the AAR. The stack 
is stepped up once and the AAR is cleared. 

R - Fetch Register to Stack 

The stack is pushed down once. The contents of the register specified by the sum of the 
AAR + R is placed in the top of the stack. At the completion of the operation the AAR is 
cleared. 

R -Store Stack to Register 

The top of the stack is placed in a register specified by the sum of AAR + R. The stack 
is stepped up once and the AAR is cleared. 

LITERALS 

-Fetch Address Register to Stack 

The stack is pushed down once. The sum of the AAR + L 1L2 is placed in the 18 least 
significant data bit positions of the top of the stack. The 30 most significant data bits 
of the top of the stack are filled with zeroes. At the completion of the operation the AAR 
is cleared. 

LIT -Short Literal to Stack 

The stack is pushed down once. The six bits contained in the LIT syllable are placed in 
the 6 least significant bit positions of the top of the stack. The 42 most significant bit 
positions of the top of the stack are filled with zeroes. 

B-3 



45 - x 

46 - XM 

12 - XS 

17 - FMA 

27 - FMC 

B-4 

INDEX INSTRUCTIONS 

- Index 

The index field of the word specified by A1A2, relative to the BXR, is added to the AAR. 
The sum is placed in the AAR. 

-Index and Modify Index 

The index field of the word contained in the memory location specified by A1A2 relative 
to the BXR is added to the AAR, with the sum being placed in the AAR. The index field 
is incremented or decremented by the increment amount field and stored. 

-Index by Stack 

The 18 least significant data bits of the top of the stack are added to the AAR. The result 
is placed in the AAR, and the stack is stepped up once. 

INDIRECT ADDRESSING 

- Fetch Memory to Address Register 

Test the tag bits of the word specified by AAR + A1A2 + the base register designated by 
B. 

NOTE: The following tag responses are made only if the B syllable designates the PRT 
as the base, or th~ AB flag is set. Otherwise, any tag configuration will be 
treated as a Na-Operation. 

If the tag bits indicate an indirect address, fetch the contents of the location specified by 
the address field in the tagged word and test the tag bits. 

If alternate bounds word is indicated (by the tag bits), place the contents of the address 
field into the Alternate Bounds Lower register (ABL) and the contents of the limit field 
into the Alternate Bounds Upper register (ABU). The displace field + ABL is placed in 
the AAR. 

If a jump is indicated, jump to the program segment and instruction specified by the con­
tents of the tagged word. 

If a No-Operation is indicated, the 18 least significant bits of the tagged word is placed in 
the AAR. 

-Fetch Memory Conditionally 

The FMC instruction differs from the FMA instruction in that if a No-Operation or AB 
tag is found, the stack is pushed down and the contents of the memory location specified 
by the tagged word, or ABL + displace, is placed in the top of the stack. At the completion 
of the operation the AAR is cleared if specified by B. 



JUMP INSTRUCTIONS 

There are two types of jumps, direct jumps and indirect Jumps. 

The direct jump transfers control to an instruction within the same program segment, relative to the 
base program register. The direct jump can be executed without performing a test (unconditional jump), 
e.g., GO to Label; or after a test (conditional jump), e.g., IF A= B then GO to Label. 

There are four types of indirect jumps, all can be conditional or unconditional. An indirect jump trans­
fers control to the segment, word, and syllable specified by the contents of a Jump Control Word (JCW). 
The Jump Control Word specifies the type of indirect jump and is located relative to the PRT base 
register. 

07 - SJ 

Type 1 - Segment Jump - Jumps to any word and syllable of another program segment. 

Type 2 - Intra-Segment Return Jump - Jumps to any word and syllable in the current program 
segment and stores a Return Control Word (RCW) in the location specified by the 
BXR. 

Type 3 - Segment Return Jump - Jumps to any word and syllable of another program segment, 
storing a Return Control Word in the location specified by the BXR. 

Type 4 - Procedure Jump - Jumps to any word and any syllable of a new procedure, using 
jump control words from both the callers PRT and the called PRT. Return informa­
tion is stored in the called PRT and the location specified by the BXR. 

Al, A2, Vj -Set Up Jump 

The Set Up Jump instruction loads the Jump Control Register (JCR) with the sum of AAR + 
AlA2 and the contents of the Vj syllable. The Vj syllable specifies the type of jump, con­
ditional or unconditional, direct or indirect, and the syllable that is being jumped to. If 
an unconditional direct or indirect jump is specified, enter the jump sequence. If condi­
tional, a test is performed to determine if a jump sequence is to be executed. If direct. 
the address contained in the JCR is relative to the BPR. If indirect, the address contained 
in the JCR is relative to the PRT and the jump sequence is controlled by a Jump Control 
Word. 

34 - JSTA Vt -Jump on Stack Test Arithmetic 

The top of the stack is algebraically compared with either zero or the second in the stack, 
in the manner specified by the test variant (Vt) syllable. The stack is adjusted as speci­
fied by the Vt syllable. 

If test is true enter jump sequence as specified by the contents of JCR. 

24 - JSTL Vt -Jump on Stack Test Logical 

The top of the stack is logically compared with zero or the second in stack, in the manner 
specified by the contents of the test variant (Vt) syllable. The stack is adjusted as speci­
fied by the Vt syllable. If the test is true, enter the jump sequence specified by tne con­
tents of JCR (direct or indirect sequence). 

B-5 



26 - JFT -Jump on Field Test 

A field of the top of the stack, starting at bit position S, and for a length of L, is compared, 
in the manner specified by Vt' with a like field of the second in the stack, or zero. The 
stack is adjusted as specified by Vt· 

If the comparison is true enter the jump sequence. 

17 - JXMT Al, A2, V. 
1 

-Jump on Index Modify and Test 

11 - SRR 

1 - DUP 

13 - RTS 

B-6 

The index field contained in the location specified by BXR + AlA2 + AAR is incremented 
or decremented by the contents of the increment field or top of the stack and compared 
with the contents of the limit field, in the manner specified by the index variant (V. ). 

1 

If the comparison is true enter the jump sequence. The stack is adjusted as specified by 
v .. 

1 

-Subroutine Return 

The subroutine return instruction transfers control to the instruction following the jump 
that caused the entrance to the subroutine. 

STACK MANIPULATING INSTRUCTIONS 

-Duplicate Top of Stack 

The stack is pushed down once, and the contents of the top of the stack are copied into the 
second position in the stack. 

v s 
- Rearrange Top of Stack 

The stack variant (V ) allow's eight manipulations within the stack, as follows: s 
0-Vs =REV -Reverse 

The contents of the top of the stack is exchanged with the contents of the second in the stack. 

6-Vs = REVD - Reverse Double 

The contents of the first two locations (T and S) in the stack are exchanged with the third 
and fourth locations in the stack. 

4-Vs = DUPD -Duplicate Double 

The contents of the first two locations (T and S) are duplicated in the third and fourth 
positions in the stack. 

3-Vs = SWP -Swap T and P 

The contents of the T and P registers are exchanged. 

2-Vs = RTP -Replace T with P 

The contents of the T register are replaced with the contents of the P register. 



40 - ADD 

41 - SUB 

60 - MUL 

61 - DIV 

1-Vs = RPT -Replace P with T 

The contents of the P register are replaced with the contents of the T register. 

7-Vs = SSU -Step Stack Up 

The stack is stepped up once. 

5-Vs = SSD -Step Stack Down 

The stack is pushed down once and the top of the stack is set to zeroes. 

ARITHMETIC INSTRUCTIONS 

-Add 

The top of the stack is algebraically added to the second stack position and the sum is 
placed in the top of the stack. The stack is stepped up once (with the exception of the top 
of the stack). 

-Subtract 

The top of the stack is algebraically subtracted from the second stack position and the 
difference is placed in the top of the stack. The stack is stepped up once (with the 
exception of the top of the stack). 

-Multiply 

The s~cond stack position is multiplied by the top of the stack. The product is placed in 
the top of the stack and P register. The stack is stepped up once (with the exception of 
the top of the stack). 

-Divide 

The second stack position is divided by the top of the stack. The quotient is placed in the 
top of the stack with the remainder in the P register. The stack is stepped up once (with 
the exception of the top of the stack). 

53 - ARIT V d -Double Precision Arithmetic Operations 

The variant (V d) specifies four double precision arithmetic operations, as follows: 

0-V d = ADDD -Add Double 

The double precision operand contained in the first and second positions of the stack is 
ai'gebraically added to the double precision operand contained in the third and fourth posi­
tions of the stack. The sum is placed in first and second positions (T and S) of the stack. 
The stack is stepped up twice (with the exception of the top two stack positions). 

1-V d = SUBD -Subtract Double 

The double precision operand contained in the first and second stack positions is algebra­
ically subtracted from the double precision operand contained in the third and fourth 
positions of the stack. The difference is placed in the first and second stack positions. 
The stack is stepped up twice (with the exception of the top of the stack and the second stack 
position). 

B-7 



50 - ADDM 

51 - SUBM 

71 - DIVI 

21 - RND 

30 - NORM 

31 - INT 

B-8 

2-V d = MULD -Multiply Double 

The douole precision operand in the first and the second stack positions is algebraically 
multiplied by the double precision operand in the third and fourth stack positions. The 
product is placed in the first and second stack positions. The stack is stepped up twice 
(with the exception of the top of the stack and the second stack position). 

3-V d = DIVD -Divide Double 

The double precision operand contained in the third and fourth positions is divided by the 
double precision operand contained in the first and second stack positions. The quotient 
is placed in the first and second positions of the stack. The stack is stepped up twice 
(with the exception of the top of the stack and the second stack position). 

-Add Integer 

The entire contents of the top of the stack (T) is added to the entire contents of the second 
stack position (S). The sum is placed in the top of the stack. The stack is stepped up 
once (with the exception of the top of the stack). 

-Suotract Integer 

The entire contents of the top of the stack (T) is subtracted from the entire contents of the 
second stack position (S). The difference is placed in the top of the stack. The stack is 
stepped up once (with the exception of the top of the stack). 

-Divide for Integer Quotient 

The dividend contained in the second stack position is algebraically divided by the divisor 
contained in the top of the stack. The integer quotient is placed in the top of the stack. 
The remainder is placed in the P register. The stack is stepped up once (with the 
exception of the top of the stack). 

-Round 

The most significant bit of the magnitude field in the P register is added to the least 
significant magnitude position of the top of the stack. The sum is placed in the top of 
the stack. 

-Normalize 

The mantissa of the top of the stack is shifted left until the most significant bit of the 
mantissa is a one. The exponent field is adJusted by the amount of shift. 

-Integerize 

The integer part of the magnitude field of the floating point number is right justified and 
the exponent field is set equal to zero. 

The result remains in T. It the integer part is greater than 2
3 5 

-1, an error condition bit 
is set. If the floating point number is less than one, T is set equal to zero, and an error 
condition bit is set. 



32 - CBB 

74 - BSR 

63 - SHF 

42 - AND 

72 - OR 

62 - ORX 

52 - IMP 

70 - COMP 

-BCD Conversion 

The conversion variant (V c) specifies a signed or unsigned conversion from BCD to binary, 
or from binary to BCD, on the value contained in the top of the stack. The V c specifies 
if the BCD code is 4 bits per decimal digit or 6 bits per decimal digit. 

A -Load Barrel Shift Register 

The amount of shift specified by A is added to the contents of the AAR and the sum is 
placed in the Barrel Shift Register (BSR). At the completion of the operation the AAR is 
cleared. 

-Shift 

The shift instruction shifts a value in the manner specified by the shift variant (Vb). The 
amount of shift is taken from either the top of the stack or the BSR. The BSR con ta ins the 
amount the top of the stack is to be shifted, or the top of the stack contains the amount the 
second in the stack is to be shifted. 

LOGICAL INSTRUCTIONS 

-Logical AND 

The operand contained in the top of the stack is ANDed with the operand contained in the 
second position of the stack. The result is placed in the top of the stack. The stack is 
stepped up once (with the exception of the top of the stack). 

-Logical OR 

Logically OR the contents of the top of the stack with the contents of the second stack 
position. The results are placed in the top of the stack. The stack is stepped up once 
(with the exception of the top of the stack). 

-Exclusive OR 

Perform an exclusive OR on the entire contents of the top of the stack with the second 
stack position. Place the result in the top of the stack. The stack is stepped up once 
(with the exception of the top of the stack). 

-Implication 

The implication instruction sets a bit in the top of stack ( T) true if the corresponding bit 
of second in stack (S) is false, or if the bits of T and S are both true. The result of the 
implication appears in T. The stack is stepped up once (with the exception of the top of the 
stack). 

-Complement 

A one's complement is performed on the contents of the top of the stack. 

B-9 



75 - EXT 

65 - INS 

FIELD INSTRUCTIONS 

L, S -Extract Field 

The contents of the AAR is added to the contents of the L and S variants. Place the 
modified L and S syllables in Temporary Queue (TEMQ). Extract a field of length L, 
starting at bit position S, and right justify the field in the top of the stack. The AAR is 
reset to zero at the completion of the operation. 

L, S -Insert Field 

The AAR is added to the contents of the L and S variants. The modified L and S syllables 
are placed in TEMQ. The right justified field, of length L, in the top of the stack is 
inserted into a field of the second stack position, starting at the bit position specified by 
(S) for a length of L. The stack is stepped up once and the AAR is reset to zero. 

66 - COMF L, S -Complement Field 

76 - FILF 

The AAR is added to the contents of the L and S variants. The result is placed in TEMQ. 
A one's complement is performed on a field of length L, starting at bit position S of the 
top of the stack. The results are placed in the top of the stack and the AAR is reset to 
zero. 

-Fill Field 

The AAR is added to the contents of the L and S variants. The modified L and S syllables 
specify a field of length L starting at bit position S of the top of the stack that is to be 
filled with one's. The result is left in the top of the stack and the AAR is reset to zero. 

56 - CLRF L, S -Clear Field 

The AAR is added to the contents of the L and S variants. The modified contents of the L 
and S syllables specify the field of length L, starting at bit position S of the top of the 
stack, that is reset to zero (cleared). The result is left in the top of the stack and the 
AAR is reset to zero. 

35 - EXTD L2 , S, Lt -Extract Field Double 

25 - INSD 

B-10 

The AAR is added to the contents of the L2 and S variants. The modified contents of L2 
and S, along with L 1, specify a field of length L1 L2, starting at bit position S of the 
double precision operand contained in the top two positions of the stack, that is to be 
right justified to bit position 96. The AAR is reset to zero. 

L2. S, L1 -Insert Field Double 

The AAR is added to the contents of the L2 and S variants. The modified contents of the 
L2 and S syllables, along with Ll, specify a field of length L 1 L2, starting at bit position 
S of the second double precision operand contained in the stack, into which the least 
significant Ll L2 bits of the first double position operand are to be inserted. The 
AAR is reset to zero. 



57 - NOP 

14 - ESP 

CONTROL INSTRUCTIONS 

-No Operation 

The NOP instruction indicates that the next instruction in sequence is to be executed. 

I -Enter Executive and Scheduling Program 

The ESP instruction is a programmatic entry into control mode. The ESP instruction 
causes the execution of the instruction specified by the address syllable I, which is 
applied relative to BIARl. 

The BPR, PCR, AAR, and Control Flip-Flops are placed in the stack. The contents of 
BIAR1 are placed in the BPR. The address syllable I is placed in the PCR. The instruc -
tion contained in locations BPR + PCR is placed in Instruction Look Ahead (ILA). 

00, 77 - STOP -Stop Processor 

04 - ICN 

73 - IOP 

20 - ETB 

22 - ITB 

The STOP interrupts the normal mode of processing the computer if its associated 
mask bit is set, causing entry to control mode 1. The stop is ignored if the mask bit is 
not set. While operating in Control Mode 1, the execution of a STOP instruction, 
regardless of mask setting, will transfer the processor to Control Mode 2. A STOP in 
Control Mode 2 halts the processor regardless of mask setting. 

N -Interrupt Computer N 

This instruction is used to set a condition bit in the computer specified by the variant 
syllable N. The condition bit will be set in the specified computer, regardless of the 
computer's mask configuration, but will not actually be interrupted unless that condition 
bit is unmasked and the computer is in normal mode. If the computer is in control mode 
1 ( CM1) it will ignore the interrupt regardless of the mask setting. If in control mode 2 
(CM2) and running, the interrupt will still be ignored. If the computer is in CM2 and 
stopped, the interrupt will cause a restart. The variant syllable in indexable. 

T -Initiate Input/Output 

The IOP instruction has two variations specified by the special syllable T. The first of 
the two variants transmits the 18 least significant bits of the top of the stack to the Job 
Stack Address Register (JSAR) in the I/O module specified in the syllable T. The in­
struction also sets the Job Stack Flat (JSF) in the I/O, which initiates the I/O module on 
the jobs in the newly specified job stack. The second variation does not involve trans­
mitting a new job stack address. It simply sets the JSF of the specified I/O module. This 
variation re-initiates the I/O on the existing Job Stack at the current address in the 
JSAR. The variant syllable is indexable. 

-Extract Tag Bits 

This instruction extracts the three tag bits from the word at the top of the stack and 
places them in the three least significant data bit positions at the top of the stack. 

-Insert Tag Bits 

The three least significant data bits in the top of the stack are inserted into the tag area 
of the second stack position. The stack is stepped up once. 

B-11 



32 - IRR 

36 - FMT 

67 - FINQ 

B-12 

-Interrupt Routine Return 

The IRR instruction is used to restore the information necessary to resume execution of 
a normal mode program after processing an interrupt. Attempted execution of IRR while 
in normal mode is an interrupt condition. The IRR instruction returns the processor to 
normal mode from either level of control mode. 

Al, A2, B - Fetch Modify Tag 

This is an instruction used to accomplish a memory "lock out". The sequence executes 
a fetch of the contents of the address specified by the syllables AAR + A A2 + a base 
specified by B. At the time of the fetch from memory the two most sign\ficant tag bits 
are set to "ones". When the word reaches the central processor the tag bits are investi­
gated (by additional instructions) and if the tags are "zeros" then "lock out" is ac­
complished. If the tags are already "ones" this indicates that another program has ac­
complished the lock out. This instruction provides program means of controlling memory 
access. A variation specified by B allows FMT to be used for "unlock" (set tags to zero). 

-Final Queue Halt 

This instruction is used to halt FINST and cause FINST to notify ADV AST when the in­
struction appears at the top of Final Queue. ADV AST halts immediately after inserting 
the FINQ op code in the Final Queue and waits for FINST response, at which time ADV AST 
will proceed. 



APPENDIX C 

CENTRAL PROCESSOR INSTRUCTION 

SYLLABLES VARIANT DEFINITIONS AND CONFIGURATIONS 

SHIFT AMOUNT VARIANT (A) - Specifies the shift amount relative to the AAR which is to be placed 
in the shift amount register by the Load Barrel Shift register instruction, BSR. 

:XXXXXX Shift amount. All amounts are legal but logical shift amounts greater than 48 are treated as 
48. Arithmetic shifts greater than 35 are treated as 35. 

RELATIVE ADDRESSING VARIANT (A1, A2) -The A1 ~ syllables are six bit syllables which are 
combined to produce a twelve bit relative aadress. 

BASE VARIANT (B) - Specifies the base register to be used in address arithmetic involved in the 
following instructions: FMS, SSM, FMA, FMC, and FMT. 

CONFIGURATIONS 
012345 

:xxxooo 
:XXXOOl 
:XXXOlO 
:XXXOll 
XXXlOO 

No base register 
Base Program Register 
Base Index Register 
Base Data Register 
Program Reference Table 

:XXX1011 
:XXXl 10 Illegal Configuration 
:XXXlll 
:XXO:XXX Reset AAR at conclusion of instruction 
:XXl:XXX Do not reset AAR 
XO:XX:XX} - Reset tag bits 
Xl:XX:XX FMT only - set tag bits 
O:XXXXX} - Regular Fetch 
l:XXXXX FMS only - Fetch Memory Fail Register 

ESP VARIANT (I) - The I syllable is a six bit syllable used· in the ESP instruction as a relative address 
which is added to the BIARl. 

FIELD LENGTH VARIANT (L) - Specifies the length of the field for all field instructions. 
XXXX:XX All field lengths are legal but single length fields of greater than 48 will be treated as 48. 

Double length fields of greater than 96 will be treated as 96. 

LITERAL VARIANT (Ll' L2) - The L 1, and L2 syllables are six bit syllables used as a twelve bit 
literal with the FAS inslrucfion. 

SHORT LITERAL VARIANT (LIT) - specifies a six bit literal character. 

C-1 



COMPUTER NUMBER VARIANT (N} - Specifies the particular Central Processor to be interrupted by 
the instruction, Interrupt Computer N, ICN. 

:XXOOOO Illegal Configuration 
XXXXXX Specifies Computer to be interrupted, most significant two bits are ignored. 

REGISTER VARIANT (R) - Specifies the particular register to be addressed by either the Fetch Register 
to Stack Instruction, FRS, or the Store Stack to Register Instruction, SSR. 

ooxxxx 

010000 
010001 
010010 
010011 
010100 
010101 
010110 
010111 

*011000 
011001 
011010 
011011 
011100 
011111 
100000 
100001 
100010 

110001 
110010 
110011 
110100 
110101 
111110 
111111 

Illegal Configurations 

Stack Extension Pointer, SEP 
Base Index Register, BXR 
Base Program Register, BPR 
Base Data Register, BDR 
Normal Lower Bounds Register, NLBR 
Normal Upper Bounds Register, NUBR 
Alternate Lower Bounds Register, ALBR 
Alternate Upper Bounds Register, AUBR 
Purge Computer Stack 
Stack Lower Bounds Register, SLBR 
Stack Upper Bounds Register, SUBR 
Program Reference Table Base, PRT 
Program Reference Table Limit, PRTL 
Computer Number Register, CNR 
Barrel Shift Register, BSR 
Program Count Register, PCR 
Jump Control Register, JCR 

Base Interrupt Address Register 1, BIARl 
Base Interrupt Address Register 2, BIAR2 
Processor Fail Register, PFR 
Advast Memory Address Register, AMAR 
Incremental Time Clock, ITC 
Interrupt Mask Register, IMR 
Interrupt Condition Register, ICR 

All other configurations are illegal. 

X indicates either binary digit, 0 or 1. 

* Illegal for SSR 

FIELD START VARIANT (S} - Specifies the starting position of fields for all field instructions. 

xxxxxx All starting positions are legal but the normal range of starting positions is 0 through 47. 

I/O UNIT NUMBER VARIANT (T) - Specifies the particular I/O to be addressed by the Initiate I/O 
Program instruction, IOP. 

xxoooo 
xxxxxx 
XXllll 
xoxxxx 
Xl:XXXX 

C-2 

Illegal Configuration 
Specifies I/O number, most significant two bits are ignored 
Illegal Configuration 
Set I/ 0 Program Flags only. 
Transmit New Job Stack Address and Set I/O Program Flag 



BARREL VARIANT (V ) - Specifies the particular type of shift to be performed by the Shift instruction, 
SHF. B 

xo:xxxx 
Xl:XXXX 
xxoxxx 
XXlXXX 
xxxooo 
XXXOOl 
XXXOlO 
XXXOll 
XXXlOO 
XXX101 
XXXllO 
XXXlll 

Shift amount is in BSR, shift T 
Shift amount is in T, shift S 
Single length, shift T 
Double length, shift T & P 
Right - End Off - Arithmetic 
Right - End Off - Logical 
Right - End Around - Arithmetic 
Right - End Around - Logical 
Left - End Off - Arithmetic 
Left - End Off - Logical 
Left - End Around - Arithmetic 
Left - End Around - Logical 

CONVERT VARIANT (Ve) - Specifies the particular type of conversion to be performed in the BCD con­
version instruction, CBB. 

xxxooo 
XXXOOl 
XXXOlO 
XXXOll 
XXXlOO 
XXXlOl 
XXXllO 
XXXlll 

4 Bit B. C. D. to Binary 
Illegal Configuration 
6 Bit B. C. D. to Binary, unsigned 
6 Bit B. C. D. to Binary, signed 
Binary to 4 Bit B. C. D. 
Illegal Configuration 
Binary to 6 Bit B. C. D., unsigned 
Binary to 6 Bit B. C. D. , signed 

DOUBLE LENGTH ARITHMETIC VARIANT {VD) - Specifies which of four Double Length Arithmetic 
operations is to be performed by the Arithmetic Instruction, ARIT. 

:xxxxoo 
:XXXXOl 
XXXXlO 
XXXXll 

Add Double 
Subtract Double 
Multiply Double 
Divide Double 

INDEX VARIANT (V 1) - Specifies the particular modification and test to be performed in the Jump on 
Index Modify Test instruction, JXMT. 

oo:xxxx 
Ol:XXXX 
lO:XXXX 
ll:XXXX 
xxoxxx 
XXlXXX 
xxxooo 
XXXOOl 
XXXOlO 
XXXOll 

XXXlOO 
XXXlOl 
XXXllO 
XXXlll 

No Modification 
Add Index increment to Index value 
Add T (31, 18) to Index value 
Subtract T (31, 18) from Index value 
Compare Index value with T (31, 18) 
Compare Index value with Index limit 
Test is unconditionally false 
Jump on Index value greater 
Jump on Index value equal 
Jump on Index value greater or equal 

Jump on Index value less 
Jump on Index value unequal 
Jump on Index value less or equal 
Test is unconditionally true 

C-3 



JUMP V ARIA.NT (VJ) - Specifies what type of jump is being prepared by the Set Up Jump Instruction, SJ. 

xoxxxx 
XlXXXX 
xxoxxx 
XXlXXX 
xxxooo 

XXXOOl 
XXXOlO 
XXXOll 
XXXlOO 
XXXlOl 
XXXllO 
XXXlll 

Unconditional Set Up Jump 
Conditional Set Up Jump 
Type of Jump is indirect 
Type of Jump is dire ct 

Specifies first syllable to be executed after a direct jump 

STACK VARIANT (Vs> - Specifies particular variations of the Rearrange Top of Stack instruction, RTS. 

xxxooo 
XXXOOl 
XXXOlO 
XXXOll 
XXXlOO 
XXX101 
XXXllO 
XXXlll 

Reverse T and S 
Replace P with T 
Replace T with P 
Swap T with P 
Duplicate double length operand 
Step Stack down (Reset T) 
Reverse double length operand 
Step Stack up 

TEST VARIANT (VT) - Specifies type of test to be performed by Jump on Stack Test Arithmetic, JSTA: 
Jump on Stack Test Logical, JSTL; or Jump on Field Test, JFT. Also specifies stack manipulations at 
conclusion of the instruction. 

C-4 

oooxxx 
OlOXXX 
lOOXXX 
llOXXX 
OOl:XXX 
Oll:XXX 
lOlXXX 
lll:XXX 
xxxooo 
XXXOOl 
XXXOlO 
XXXOll 
XXXlOO 
XXXlOl 
XXXllO 
XXXlll 

Compare T with zero, step stack up once 
Compare T with zero and do not step stack 
Compare T with zero, put test result in T (48, 1) 
Compare T with zero, step stack down, put test result in T (48, 1) 
Compare T with S, step stack up twice 
Compare T with S, do not step stack 
Compare T with S, step stack up, put test result in T (48, 1) 
Compare T with S, step stack down, put test result in T (48, 1) 
Test is unconditionally false 
Test for S >Tor T >zero 
Test for S = T or T = zero 
Test for S ~ T or T ~ zero 
Test for S < T or T < zero 
Test for S '! T or T '! zero 
Test for S ~ T or T ~ zero 
Test is unconditionally true 



APPENDIX D 

CENTRAL PROCESSOR WORD FORMATS 

MEMORY ADDRESS 

0 3 4 29 30 47 48 50 51 

I OP CODE I ' Unused 
1 

ADDRESS Unused I P I 

INSTRUCTION FORMAT 

0 5 6 11 12 

0 1 

8 syllables per word 
6 bits per syllable 

17 18 23 24 

2 3 

29 30 35 36 

4 5 6 

41 42 47 48 49 50 51 

7 A B C 

~ 
TAG bits 

Parity bit 

TAG bits have the following meanings: 

FLOATING POINT BINARY 

0 1 2 12 13 

Exponent (11 bits) 

Sign of Exponent 
Sign of Magnitude 

0 =positive 
1 ~negative 

Parity 

Interrupt bit 
0 0 No Tag Operation 
0 1 Alternate Bounds 
1 0 Unconditional Jump 
1 1 Indirect Memory Reference 

47 48 49 50 51 

Magnitude (3 5 bits) 

Binary Point 

D-1 



FLOATING POINT (Double precision) 

0 1 2 12 13 

Exponent Magnitude 
35 bits 

Sign of Exponent 
Sign of Magnitude 

INTEGER BINARY 

0 1 12 13 

47 48-50 51 

TAGS p 

lBinary 
Point 

0 

Not 
Used 

12 13 

Magnitude 
35 bits 

47 48-50 51 

47 48 49 50 51 1c zeroes Magnitude (3 5 bits) IA I B c p 

• 
Sign t 

Binary Point 

LOGICAL WORD 

0 47 48 49 50 51 

48 bits 

JUMP CONTROL WORD 

0 11 12 23 24 26 27 29 30 47 48 49 50 51 

~BXR PCR Syl. Type BPR/PRT 

RETURN CONTROL WORD 

0 11 12 23 24 26 27 29 30 47 48 49 50 51 

PRT PCR Syl. Type 2 's complement 1 1 c p 
~BXR 

ALTERNATE BOUNDS WORD 

0 1 2 11 12 29 30 47 48 49 50 51 

Displace 

D-2 

Alternate Bounds 
(Upper) 

Alternate Bounds 
(Lower) 

0 1 c p 



INDIRECT ADDRESS WORD 

0 29 30 47 48 49 50 51 

ADDRESS 

INDEX WORD 

0 1 11 12 29 30 47 48 49 50 51 

Increment Limit Index Contents 

D-3/D-4 



APPENDIX E 

ABBREVIATIONS AND ACRONYMS 

A ADDD 
1 Address Syllable 1 Add Double 

A2 
Address Syllable 2 

ADDM 
Add Integer Magnitude 

AlA2 ADDR 
Specifies 2 Syllable, 12 Bit Relative Address Address Field 

AAR ADVAST 
ADV AST Address Register Advance Station 

AAU AID 
ADV AST Adder Unit ADV AST Instruction Decoder 

AB AIR 
Alternate Bounds Tag Bit ADV AST Instruction Register 

ABL ALGOL 
Alternate Bounds Lower ALGOrithmic Language 

ABLR AMAR 

Alternate Bounds Lower Register 
Associative Memory Address Register 

ABS 
ADV AST Barrel Switch 

AND 
Logical And 

ABU 
Alternate Bounds Upper 

AOR 
A Operand Register 

ABUR 
Alternate Bounds Upper Register 

ARIT 
Double Precision Arithmetic Operation 

ACR 
ADV AST Communications Register 

ASLP 
ADVAST Storage Queue Load Pointer 

AC UGO 
Address Comparator Unit GO 

ASM 
Associative Memory 

ACU 
ADV AST Comparator Unit 

ASMA 
Associative Memory Address Register 

ADD 
Algebraic Add 

AT 
ADVAST Time 

E-1 



AUX 

B 

Transfer P Register to Top of Stack 

Base Register Specifier 

000 - No base 
001 - BPR 
010 - BXR 
011 - BDR 
100 - PRT 

BCD 
Binary Coded Decimal 

BDR 
Base Data Register 

BEP 
Bottom of Computer Stack Extension 

BIARl 
Base Interrupt Address Register 1 

BIAR2 
Base Interrupt Address Register 2 

BOR 
B Operand Register 

BPR 
Base Program Register 

BSR 
Barrel Shift Register or as an instruction Load 
Barrel Shift Register 

BXR 
Base Index Register 

CAR 
Communications Address Register 

CAT 
Channel Assignment Table 

CBB 
Conversion of Binary and BCD 

CFR 
Communications Fetch Register 

CHBR 
Channel Base Register 

CHORE 
Chain Of Runs Executive 

E-2 

CLRF 
Clear Field 

COBOL 
COmmon Business Oriented Language 

COMF 
Complement Field 

COML 
Logical Complement 

COMM 
Communications Unit of the Central Processor 
Module 

COMP 
Complement 

COMT 
Two's Complement 

CPM 
Central Processor Module 

CRC 
Card Reader Controller 

C/S 
Collector /Scheduler 

C/S Q Collector/Scheduler Queue 

CSR 
Communications Store Register 

DEL 
Delay 

DFC 
Disc File Controller 

DJE-Z 
Decrement and Jump Equal to Zero 

DJNZ 
Decrement and Jump Not Equal to Zero 

DIV 
Divide 

DIVD 
Divide Double 

DIVI 
Integer Divide 



DIVM 
Divide Mantissa 

DUP 
Duplicate Top of Stack 

DUPD 
Duplicate Double Length Words 

EAR 
Effective Address Register 

EOB 
End of Block 

EOF 
End of File 

EOM 
End of Message 

EOR 
End of Record 

EOT 
End of Transmission 

ESP 
Executive and Scheduling Program or as an 
instruction Enter Executive and Scheduling 
Program 

ETB 
Ext~act Tag Bits 

EXT 
Extract 

EXTD 

f 

r 

F 

Extract Double 

Included Field 

Excluded Field 

Two Instruction Syllables Designating the 
Included Field 

FAS 
Fetch Address Register to Stack 

FILF 
Fill Field 

FINQ 
Final Station Instruction Q.ieue or as an 
instruction Final Queue Empty 

FIN ST 
Final Station 

FLIP 
Final Station Load Pointer 

FMA 
Fetch Memory to Address Register 

FMC 
Fetch Memory Conditionally 

FMS 
Fetch Memory to Stack 

FMSA 
Fetch Memory to Stack Absolute 

FMT 
Fetch Modify Tags 

FORTRAN 
FORmula TRANslator Language 

FR 
Function Register 

FRE 
Function Register Extension 

FRS 
Fetch Register to Stack 

GO 

H 

Start Channel Data Transfer Designated in 
AOR 

H Register 

HAT 
H Register to A Register Tran sf er 

I 
Indirect Tag Bit 

IBA 
Instruction Base Address 

IC 
Instruction Counter 

I/C 
Interpreter I Controller 

E-3 



ICN 
Interrupt Computer N 

ICR 
Interrupt Condition Register 

IDIOT 
!Deal Interface Ou T 

IDXL 
Index Limit 

IDXQ 
Index Queue 

IDXV 
Index Value or Contents 

ILA 
Instruction Look Ahead 

IMN 
Interrupt Mask Bit N 

IMP 
Implication 

IMR 
Interrupt Mask Register 

INS 
Insert 

INSD 
Insert Double 

INT 
Intergerize 

I/O 
Input/Output Module 

IOP 
Initiate Input/Output Program (IOP) 

IRR 
Interrupt Routine Return 

!SAR 
Interrupt Stack Address Register 

ISLR 
Interrupt Stack Limit Register 

ITB 
Insert Tag Bits 

J 
Jump Tag Bit 

E-4 

JATn 
Jump to ADVAST Time n 

JCT 
Jump Control Register 

JCW 
Jump Control Word 

JEZ 
Jump if Equal Zero 

JFT 
Jump Field Test 

JNZ 
Jump if Not Equal Zero 

JPHS 
Jump to Phase Special 

JSAR 
Job Stack Address Register 

JSF 
Job Stack Flag 

JSTA 
Jump Stack Test Arithmetic 

JSTL 
Jump Stack Test Logical 

JSW 
Job State Word 

JSWT 
Job State Word Table 

JUMP 
Jump Unconditional 

JXMT 
Jump on Index Modify and Test 

JXnN 
Jump when Index n Not Equal to Zero 

JXnZ 
Jump when Index n Equals Zero 

L 
Number of Bits in a Field 

Ll 
Literal Syllable 1 

L2 
Literal Syllable 2 



LIL2 
Specifies 2 Syllable 12 Bit Literal 

LAP 
Look-Ahead Pointer Register 

LCS 
Left Circular Shift 

LDX 
Load Index Register 

LIT 
6 Bit Literal 

LM 
Local Memory 

LRC 
Longitudinal Redundancy Character 

LS 
Left Shift 

LTB 
Load Tag Bits 

MEM 
Memory Module 

MFR 
Memory Failure Register 

MM 
Memory Module (Main Memory) 

MTC 
Magnetic Tape Controller 

MUL 
Multiply 

MULD 
Multiply Double 

NBL 
Normal Bounds Lower 

NBLR 
Normal Bounds Lower Register 

NBU 
Normal Bounds Upper 

NBUR 
Normal Bounds Upper Register 

NOP 
No Operation 

NORM 
Normalize 

OP 
Instruction Operation Code 

OR 
Logical Or 

ORX 

p 

Exclusive Or 

Extension of Top of Stack Register or 
Instruction Base Designation Syllable 

PBA 
Parameter Base Address 

PCR 
Program Count Register 

PFR 
Processor Failure Register 

PRT 
Program Reference Table or Program 
Reference Table Base Register 

PRTL 
Program Reference Table Limit Register 

PRTQ 
Program Reference Table Queue 

R 
Register Specifier 

RAAR 
Reset ADVAST Address Register 

RCS 
Right Circular Shift 

RCW 
Return Control Word 

REL 
Release Processor 

REQN 
Request Access 

REV 
Reverse T and S 

REVD 
Reverse double length words 

E-5 



RND 
Round 

RPF 
Reset Program Flag 

RPT 
Replace P with T 

RS 
Right Shift 

RTB 
Register Transfer Bus 

RTP 
Replace T with P 

RTS 
Rearrange Top of Stack 

RW 

s 

Read Only Bit 

Second in Stack Register or as part of an 
instruction Starting Bit Number of a Field 

SBLR 
Stack Bounds Lower Register 

SBUR 
Stack Bounds Upper Register 

sec 
Shift Control Counters 

SCD 
Syllable Count Decode 

SEP 
Stack Extension Pointer Register 

SFE 
Skip on Field Equal 

SFG 
. Skip on Field Greater 

SFL 
Skip on Field Less 

SFU 
Skip on Field Unequal 

SHF 
Shift 

E-6 

SICN 
Set Interrupt Condition "N" 

SIRJ 
Set Interrupt Jump 

SIS 
Store in Interrupt Stack 

SJ 
Set Up Jump 

SLIT Lit 
Short Literal to Stack 

SPF 
Set Program Flag 

SRJ 
Subroutine Jump 

SRR 
Subroutine return 

SSC 
Syllable Shift Counter 

SSD 
Step Stack Down 

SSM 
Store Stack to Memory 

SSMA 
Store Stack to Memory Absolute 

SSR 
Store Stack to Register 

t STACK 
Step Stack Up 

+ STACK 
Push Stack Down 

t STACK-1 
Step Stack Up without effecting T 

H STACK 
Step Stack Up Twice 

STB 
Store Tag Bits 

STEP 
Step Stack Up 

STOP 
Stop Processor 



STOR 
Store 

STORQ 
Storage Queue 

STX 
Store Index Register 

SUBD 
Subtract 

SUED 
Subtract Double 

SUBM 
Subtract Integer Magnitude 

SURE QT 
Set Unit Request for Temp Q 

SWP 
Switch T and auxiliary (P) register 

SWR 
State Word Register 

T 
Top of Stack Register 

TEMPQ 
Temporary Queue 

TEP 
Top of Computer Stack Extension Pointer 

TFT 
True - False Toggle 

TLP 
Temporary Queue Load Pointer 

TOOL 
The Only LOgical Language 

TSC 
Transfer State Word to Channel 

TSR 
Temporary Storage Register 

TTY 
Teletype Controller 

VARl 
Variant Syllable Bit One 

x 
Index 

(X) 
Contents of Location Contained in X 

X [S, L] 
If X = x 1x 2 --xn, then x [s, rJ 
XgXs+1Xs+2 ---Xs+L-1 

X[Y] 
Contents of Field Y in X 

Index and Modify Index 

XS 
Index by Top of Stack 

E-7/E-8 



APPENDIX F 

POLISH NOTATION AND THE STACK CONCEPT 

B8500 arithmetic operations are implemented in the final station (FINST) of the central processor. 
Operators are presented to the hardware from the final instruction register (FIR) and operands are 
presented from the stack. The stack is a conceptually contiguous series of locations used to store words 
for processing. The T register (top of the stack or A register) and the S register (second in the stack or 
B register) are 'hard registers' used in hardware manipulation. There is, in addition, a hardware stack 
extension of twelve words. Further stack capacity is provided by linking the stack to main memory for 
large capacity operand storage. As each third (4 words) of the extension is filled it is transferred to 
sequential locations of main memory. The process is reversed for accessing the operands. A separate 
P register (or C register) is provided for those operations which require a third register. The stack 
appears as follows: 

STACK 

T p 

s 

E 
x 
T 
E 
N 
s 
I 
0 
N 

The stack has upper and lower bounds registers to limit the number of words contained within the stack. 
The stack may be manipulated by hardware instructions to alter its contents either by pushing the stack 
down (effectually moving each word previously contained down to a location one position deeper than its 
previous location) or by stepping the stack up (moving each word previously contained up to a location 
one position higher than its previous location)o Double push down and step up is also utilized where 
applicable. Thus as operands are presented to the stack at either T or S, they are stored sequentially 
one on top of the other. Likewise, as they are called to use by the hardware, the stack presents them 
sequentially, the most recent operand first. Attempting to use more operands than were previously put 
into the stack will result in a stack bounds violation and an interrupt condition will be set. 

The use of the stack in such a manner as to have the two operands for an arithmetic operation (or one 
new operand and the result of the previous operation) present in the T and S registers at the time the 
operator is in the FIR gives rise to the use of Polish Notation. Basically, Polish Notation is a method 
for writing expressions without a need for bracket characters to delimit the scope of an operator. For 
instance, in common algebraic notation we might say: 

x = D (M + N) I T + p 

F-1 



In extended ALGOL this would be represented as: 

X +- (D * (M + N))/(T + P) 

In Polish Notation the statement would be written: 

DMN+*TP+/X+-

which in words means: 

Fig. 1) Obtain the value of D. 

Fig. 2) Obtain the value of M. 

Fig. 3) Obtain the value of N. 

Fig. 4) Add the two most recently obtained operands (i.e., Mand N). 

Fig. 5) Multiply the two most recently obtained operands (i.e., (M + N) and D). 

Fig. 6) Obtain the value of T. 

Fig. 7) Obtain the value of P. 

Fig. 8) Add the two most recently obtained operands (i.e. , T and P). 

Fig. 9) Divide the next to last obtained operand by the most recently obtained operand (i.e., 
(D * (M + N)) by (T + P) )o 

Fig. 10) Assign X the value of the most recently obtained operand (i.e., (D * (M + N))/(T + P)). 

IP IP IP 
_.--~~~~~-

main 
1

1 

mem. +=!============ 

D 

__.. -+ 
IT ii M IT ii N IT 

Is I D Is I M I s 

I EXT. I 'EXT. I 
D I EXT. 

Fig. 1 Fig. 2 Fig. 3 

I IP IP I IP 
--+ 

IT 

*' (M+N}*O IT ii T IT 

i1 J s I s I (M+N)*D I s 

+ I M+N 

i1 D 

I I EXT. I I EXT. I I EXT. 

Fig. 4 Fig. 5 Fig. 6 

F-2 



IP p p __. 
+ 

I l(D*(M+N))/(T+P)] I p IT I T+P T T 

i1 T Is t1 (M+N)*D s ti I s 

(M+N)*D 

'EXT. I EXT. I I EXT. 

Fig. 7 Fig. 8 Fig. 9 

IP 

IT-. 
main 
mem. 

Is 

I EXT. 

Fig. 10 

The following rules are used to interpret Polish Notation: 

1) The Polish "string" is read from left to right. 

2) Operands are obtained (i. eo, read) until the last operand has occurred or until an arithmetic 
operation occurs. 

3) When an arithmetic operation occurs, the two :most recently obtained operands are operated upon 
as though the operation had occurred following the second from the last operand and preceding the 
most recent operand. 

4) When an arithmetic operation is performed on two operands, the result is one operand (Le., it 
becomes the most recent operand)o 

5) The above sequence occurs until an address variable appearso An address variable is a notation 
followed by a left arrow. This will cause the value of the recently obtained operand to be assigned 
to the address variable. 

F-3/F-4 



APPENDIX G 

GLOSSARY 

(Some terms defined are characteristic to the 
industry, but others are significant only with 
respect to the B8500 System. For a more com­
plete glossary of industry terminology it is rec­
ommended that reference be made to glossaries 
published in such trade journals as ACM Com­
munications and Computers and Automation.) 

ACCESS, RANDOM 
Access to storage under conditions in which 
the next position from which information is to 
be obtained is relatively independent of the 
previous position or access. 

ACKNOWLEDGE 
Send a meaningful signal in answer to a request 
or query. 

ADDER 
A device capable of forming the sum of two or 
more quantities. 

ADDRESS 
A label, such as an integer or other set of 
characters, which identifies a memory location 
or storage device. 

ADDRESS, ABSOLUTE 
The label assigned to a specific storage loca­
tion by the designers of a machine. 

ADDRESS, BASE 
The label identifying the first word in a data 
area or routine. The base address is added to 
the relative address to obtain the absolute 
address. 

ADDRESS, RELATIVE 
A positional indicator to identify a location in 
a storage area with respect to the origin or 
base of that area. 

ALGOL 
(for ALGOrithmic Language) an international 
problem oriented language designed for the 
concise, efficient expression of arithmetic and 
logical processes, and the control of these 
processes. 

ALGORITHM 
A statement of the steps to be followed in the 
solution of a problem. 

ALLOCATE 
To assign storage locations to the main rou­
tines and subroutines, thereby fixing the abso­
lute values of any symbolic addresses. 

ALPHANUMERIC 
Contraction of alphabetic-numerical; a system 
including letters, digits, and special symbols. 

ARGUMENT 
The quantity or quantities submitted to a func­
tion, e.g. X as in the intrinsic function: 
SIN(X), or the known reference factor neces­
sary to find the desired item in a table or 
array. Sometimes referred to as a "key" as 
in "search key." 

ARRAY 
An ordered arrangement of items of 
information. 

ASYNCHRONOUS PROCESSING 
A method of computer system processing in 
which operations are taken up in response to 
signals indicating completion of predecessor 
operations instead of master clock signals. 

AUDIT TRAIL 
A file maintained by the system upon which are 
recorded the changes made to specified file(s) 
during the period of time since the last com­
plete copy of the specified file(s) was removed 
from the system. The audit trail may be used 
for reconstruction of file destroyed by program 
error or system malfunction. 

AUTOMATIC PROGRAMMING 
Technique which employs the computer itself 
to translate programming from a form that is 
easy for a human being to produce and under­
stand into a form suitable for use by a 
computer. 

BASE 
A number, the powers of which are assigned as 
the unit value of columns in a number system; 
also called radix or place value. For example, 
2 is the base in binary representation, 8 is the 
base in octal notation, and 10 is the base in 
decimal notation. 

BATCH PROCESSING 
The method of presenting to a system sequen­
tially several unrelated informations upon which 
the same logical procedures are to be followed. 

G-1 



BINARY 
Involving a choice or a condition in which 
there are but two alternatives. For example, 
the binary number system uses the base two 
and contains only two symbols, zero and one. 

BIT 
Contraction of binary digit. Usually repre­
sents the status of one flip-flop, either off or 
on (0 or 1). 

BLOCK 
{l) A group of computer words or records 

considered or transported as a unit, an 
item, or a message. 

(2) In flow charts, an assembly of symbols 
with each symbol representing a logical 
unit of a program. 

BOOLEAN 
Refers to a system dealing with truth values, 
operating upon logical conditions rather than 
numbers. 

BOOLEAN ALGEBRA 
A system of algebra dealing with logical values 
as variables and having basic operators such 
as "and," "or," "not," etc. 

BOOLEAN VARIABLES 
An operand in a Boolean algebra expression. 
A Boolean variable may have the value of 
"true" or "false," commonly represented in 
computers by one and zero respectively. 

BUFFER 
Any reserved area within a device which stores 
information temporarily during data transfers. 
A facility linked to: (1) an input device in which 
information is assembled from external storage 
and stored ready for transfer to internal stor­
age; or (2) an output device into which informa­
tion is transmitted from internal storage and 
held for transfer to external storage. Since 
computation continues while transfers between 
buffer storage and external devices take place, 
buffers are used to compensate for differ enc es 
in the speed of the various components of the 
system so that the system can operate as an 
integrated unit. 

BUSS 
The interconnecting line{s) between devices 
which carry signals or communications 
between them. 

G-2 

CALL 
(1) A set of characters or bits which demand 

an action to take place or some item of 
information; for example subroutine call, 
ESP call, descriptor call. 

(2) Transfer control from a main routine to a 
subroutine or macro. 

CELL 
(1) In thin film memory one bit of storage. 

0 

(2) A 1000 A thick 30 X 80 mil nickel-iron 
alloy deposit within a glass substrate. 

CHANNEL 
A path along which information may flow. 

CHARACTER 
One of a set of elementary symbols which may 
be arranged in ordered groups to express in­
formation; these symbols may include the 
decimal digits 0 through 9, the letters A 
through Z, punctuation symbols, special input 
and output symbols, and any other symbols 
which a computer may accept. 

CHARACTERISTIC 
The exponent portion of a floating-point num­
ber. {See Floating- Point Representation.) 

CLEAR 
Reset to zero. 

COBOL 
A COmmon Business Oriented Language 
designed for expressing problems of data 
manipulation and processing in English narra­
tive form. 

COLD JOB TABLE 
An array containing information necessary for 
initialization of a user program which has been 
introduced to the system for scheduling to run. 

COLLECTOR 
A routine within the Executive Scheduling Pro­
gram which has the function of calling all files 
necessary for a particular programs operation. 
It submits requests to the operator(s) and 
physically verifies that all requested files are 
present. 

COMPILE 
Reduce a source program written in a non­
machine language to produce a machine language 
routine to solve the problem defined by the 
source program. 



COMPILER 
A translator program which reduces a 
problem-oriented language into the machine 
language of a particular computer. 

COMPLEMENT 
(1) TRUE COMPLEMENT 

The quantity which when added to a given 
number yields the base of that number, 
e.g. the true or 10's complement of 6IQ 
is 4. 

(2) BASE-1 COMPLEMENT 
The quantity which when added to a given 
number yields one less than the base of 
that number, e.g. the base-1 or 9's 
complement of 310 is 6. 

COMPUTER 
A machine which can calculate or perform 
reasonable arithmetic and logical operations 
and transform the results of these operations 
into a usable form. 

COMPUTER STACK 
The storage always available in the central 
processor, consisting of the T and S registers 
and a twelve operand micro-logic memory, for 
a total capacity of 14 operands. 

COMPUTING SYSTEM 
A group of interconnected equipments which as 
a unit perform reasonable arithmetic and 
logical operations and transform the results 
of these operations into usable form. The 
individual devices and equipments of the system 
are highly specialized to optimize the efficiency 
with which their particular functions within the 
system are performed. 

CONCA TENA TING 
Linking together by forming a chain or series, 
a series or order of things depending on each 
other. 

C ONFIG URA TION 
Relative arrangement of various components of 
the system. 

CONSOLE 
The unit of a computing system which provides 
communication between the computer and the 
operator. The B8500 console contains indi­
cators for displaying the status of the system, 
a means for manual intervention or operation 
of the system, and a means of testing the 
memory modules. 

CONTROL MODE 
Condition of operation wherein instructions 
that can be performed in normal state are aug­
mented by additional control operations. Some 
of the ESP routines are written to operate in 
control mode. 

DATA ARRAY 
Any ordered set of data, such as the informa­
tion on a card, a tape record, a print line, 
the contents of a working area, etc. 

DEADLINE 
A type of job or CHORE in which a time for 
completion has been set and scheduling and 
priority assignment are dynamic in regard to 
meeting this goal. 

DEBUG 
To isolate and correct the mistakes in a 
program or the components of a computing 
system. 

DESCRIPTOR 
A computer word used specifically to define 
characteristics of a program element. For 
example, descriptors are used for describing 
a data record, a segment of a program, or an 
input-output operation. 

DIAGNOSTIC ROUTINE 
Routine designed to detect and locate either 
a malfunction of the system or a mistake in 
programming. 

DISK 
A type of relatively high speed storage device 
upon which words of information are magneti­
cally recorded on concentric tracks of a 
circular plane. 

DOUBLE PRECISION 
A quantity having twice as many digits as are 
normally carried in a specific computer word. 
Often called double length. 

DUMMY FILE 
A dummy file is a file that a run will call for 
in its normal processing, but will receive an 
End of File indication on the first read from 
that file. In the B8500 this mechanism allows 
chores to be written to drive programs which 
have optional files. 

DUPLEX, FULL 
A line or buss capable of handling communica­
tion in both directions simultaneously. 

G-3 



DUPLEX, HALF 
A line or buss capable of handling communica­
tion for a simplex device or in one direction at 
a time for a duplex device. 

EDIT 
The act of arranging information from input­
output devices. This may involve the selection 
of pertinent data, the insertion of symbols 
such as page numbers and check-protection 
characters, and standard processes such as 
zero suppression. 

EXECUTIVE SCHEDULING PROORAM (ESP) 
A computer program to control the operation 
of the system. It is designed to minimize the 
amount of intervention required of the human 
operator. ESP performs the following func­
tions: schedules programs to be processed; 
initiates segments of programs; controls all 
input-output operations to ensure efficient 
utilization of each system component; allocates 
memory dynamically; issues instructions to 
the human operators and verifies that their 
actions were correct, etc. 

EXPONENT 
A number may be divided into an exponent 
and a mantissa. The exponent positions radix 
point location relative to the mantissa. In the 
B8500 the exponent is expressed as an 11 bit 
field and a sign. 

EXTENSION MODE 
The mode of stack operation which extends the 
computer stack to a memory stack area. 

EXTERNAL STORAGE 
Storage facilities removable from the com­
puter itself but holding information in a form 
acceptable to the computer (magnetic tape, 
punched card, etc.). 

FIELD 
A set of one or more bits, digits or characters 
which is treated as a unit of information. 

FILE 
A collection of records; an organized collec­
tion of information directed toward some 
purpose. (The records in a file may or may 
not be sequentially filed according to a key 
contained in each record.) B8500 files may be 
of the following types: program, random, 
serial, and dummy. 

G-4 

FIXED-POINT REPRESENTATION 
An arithmetic notation in which all numeric 
quantities are expressed by the same number 
of digits with the decimal point (for base 10) 
or octal point (for base 8) assumed in a fixed 
location in each number. Alignment of num­
bers with different assumed locations of the 
points must be performed by the program 
before an arithmetic operation such as addi­
tion can be performed. 

FLIP-FLOP 
A bi-stable device which may assume a given 
stable state depending upon the pulses of one 
or more input points and which has one or 
more output points. The device is capable of 
storing a bit of information, controlling gates, 
etc. 

FLOATING-POINT REPRESENTATION 
An arithmetic notation in which all numeric 
quantities have an associated indication of 
the decimal point location (base 10} or octal 
point location (base 8}. Automatic alignment 
of numbers and calculation of the location of 
the point can be provided in arithmetic on 
floating-point numbers. A floating-point num­
ber consists of two parts: a 35 bit real value 
with sign called the mantissa; and a signed 
number called the characteristic (or exponent) 
which indicates the number of places to the 
right or left that the actual binary point is 
from the assumed binary point in the mantissa. 

FORMAT 
The predetermined arrangement of characters, 
fields, lines, page numbers, punctuation 
marks, etc. in input, output, or working 
storage records. 

FORTRAN 
A FORmula TRANslator language for writing 
problem oriented statements to be compiled 
and executed on a computing system. 

FRACTIONAL 
The portion of a number which is to the right 
of the decimal, octal, or binary point. 

FRAME 
In thin-film memory forty substrates in an 
8 by 5 array, providing 256 words of 104 bits 
each. Eight frames comprise a side. 



GATE 
An electronic circuit with two or more inputs 
and one output, with the property that a pulse 
goes out on the output line if and only if some 
specified combination of pulses occurs on the 
input lines. 

HARDWARE 
The mechanical, magnetic, electrical, and 
electronic devices from which a computer 
system is constructed. 

HARDWARE INDEPENDENT PROGRAMMING 
Property of the B8500 to accept changes in 
system configuration and adjust programs 
accordingly to yield maximum utilization of all 
modules without reprogramming or recompila­
tion of programs. 

HOT JOB TABLE 
An array containing the information necessary 
for initialization or reinitialization of a pro­
gram which has been introduced to the system 
and is scheduled to run or has been suspended 
by the Executive Scheduling Program and will 
be resumed. 

HOUSEKEEPING 
Operations not directly concerned with the 
objective of a program; e.g., packing or re­
arranging data, subroutine linkages, etc. 

INACTIVE FILE LIST 
Directory of all files known to the system. 
(See SYSTEM DIRECTORY.) 

INDEX 
Increment or decrement to a base address. 

INDICATOR 
A light, usually on the operator's console, 
that is turned on to indicate a particular con­
dition occurring in the computing system. 

INDIRECT ADDRESS 
An address which identifies a memory location 
containing an address. The contents of the 
memory location is the address of the desired 
information or may also be an indirect address. 

INPUT-OUTPUT (I/O} 
(1) Information introduced to or produced by 

the system. 

(2) The Input-Output Processor Module which 
handles formatting reception and delivery 
of the above information to and from the 
peripheral device controllers and main 
memory. 

INTEGRAL 
The whole number portion of either a decimal 
or octal number. Refers to all the digits to 
the left of the decimal. 

INTERFACE 
The between device lines of communication. 
That which two or more devices have in 
common for the purpose of communication. 

INTERRUPT 
A signal generated as a result of a detected 
error condition, or service request. Provides 
the Executive Scheduling Program with the 
facility to maintain control of all system 
functions. 

ITERATION 
A single execution of repetitive program steps 
or a loop. 

JUMP 
An operation which may alter the execution 
sequence of a program. Normally instructions 
are executed in sequence; a jump operation 
causes a termination of the sequence and 
directs the Processor to a specified location for 
the next instruction. A conditional jump oper­
ation is a jump operation which takes place 
only if a specific condition exists in the Proc­
essor. Usually the condition is a result of a 
test or comparison operation. If the specific 
condition does not exist, a jump is not executed 
and sequential execution of instructions 
continues. 

KEY 
One or more digits or characters used to 
identify an item of information. 

KEYBOARD 
The portion of the supervisory printer via 
which the operator can communicate to the 
system. 

LANGUAGE, MACHINE 
Information recorded in a form which a com­
puter can handle. The coded operations that 
control information and addresses employed 
within the processor to express a program. 

LIBRARY 
Collection of fully tested standard programs 
and subroutines for repeated use by, or 
incorporation into, other programs. 

LINK 
To provide a means by which physically non­
contiguous data or program areas may be 
sequentially accessed. 

G-5 



LITERAL 
An element in a program which is itself a 
quantity or alphanumeric constant to be used by 
the program rather than being an address of the 
quantity or constant. 

LOCAL MODE 
The mode of stack operation which limits the 
stack to the computer stack. 

LOCATION 
A storage position in a storage device dis­
tinguished by a unique address. 

LOCK 
Set a bit which when tested will indicate the 
condition and preclude any operation on the 
locked data. 

LOG 
Summary of scheduling, timing, program runs, 
etc. maintained by the Executive Scheduling 
Program. 

LOOP 
A coding technique whereby a group of instruc­
tions is repeated with instruction modification 
and/ or with modification of the data being oper­
ated upon. It is a series of instructions, the 
last of which directs the computer to start again 
at the first instruction of the series. 

MACRO 
A subroutine of general utility; a group of in­
structions written to fulfill a certain purpose 
which may be called any number of times with­
in one or more programs. 

MAGNETIC DISK 
A rotating disk with a magnetizable surface on 
which information may be stored as a pattern of 
polarized spots along any one of a number of 
concentric circular recording tracks. 

MANTISSA 
Significant bits of a floating-point number (35 
binary bits in a single-precision number of the 
B8500). (See Floating-Point Representation. ) 

MAPPING 
The technique of placing conceptually contiguous 
information in physically non-contiguous loca­
tions while providing a table and a method of 
linking the so formed portions of information. 

MASK 
A word in memory or a register which indicates 
which parts of another word are to be operated 
upon. 

G-6 

MASTER CLOCK 
The device which controls the basic timing 
cycle of the computer. B8500 master clock 
frequency is 20 megacycles. 

MEGACYCLE/SEC. 
A million cycles per second. The basic pulse 
rate of the B8500 is 20 megacycles/second. 

MEMORY EXCHANGE 
Electronic switching logic which controls infor­
mation flow among Memory Modules and the 
Processors or Input/Output Modules. 

MEMORY MODULE 
Two thin-film stacks each of which provide 
4, 09 6 words of 104 bits. As the two stacks of 
a memory module are simultaneously accessed 
the effective read or write may be to one of 
4, 096 words of 208 bits. To the processor, 
considering 52 bit words, the effective 
capacity is 16, 384 words. 

MEMORY STACK 
(1) The storage locations made available by 
ESP to extend the computer stack in main 
memory, the capacity of which is limited by 
the stack bounds assigned by ESP. 

(2) In a memory module the thin-film stack. 
(See THIN- FILM STACK) 

MICROSECOND 
One millionth of a second (0. 000001 sec. or 
1.l.{s). 

MILLISECOND 
One thousandth of a second. 

MODE, WORD 
The method of operation of the B8500 in which 
the basic unit of information is a word com­
posed of 48 bits plus three tag bits and one 
for parity. 

MODULARITY 
The property of a system resulting from the 
construction or assembly of the system from 
logical subunits (modules). In the B8500 this 
property provides the capability of constructing 
a system with the proper number of each type 
of module to match varying processing require­
ments efficiently and to maximize the 
utilization of each module. 



MODULE 
A logical subunit that may be easily detached 
from, or included with, the whole system. 
Processor, Memory, Input-Output, Magnetic 
Tape Units, and Storage Disks are typical 
modules of the B8500 System. 

MODULUS (MODULO) 
The number of distinct integers in a finite 
system of numbers. For example, in a modulo 
5 system, the numbers are 0, 1, 2, 3, and 4. 
In this system larger numbers are expressed 
by dividing them by the modulus until a re­
mainder less than the modulus is obtained. 
For example, 19 is 4 in the modulo 5 system. 
If a counter is HModulo 5"; when it is set at 4, 
an increment of 1 will result in a setting of 0. 

MULTIPLEX 
The technique of sending several signals 
simultaneously over the same line. 

MULTIPROCESSING 
Processing several programs or program seg­
ments concurrently on a "time-share" basis. 
The Processor is only active on one program 
at any one tim·e while operations such as input­
output may be performed in parallel on several 
programs. The Processor is directed to switch 
back and forth among programs under the con­
trol of the EXECUTIVE SCHEDULING 
PROGRAM. 

NESTING 
Enclosing one program element of a particular 
type, such as a subroutine, within another of 
the same type. 

NORMALIZE 
To adjust the exponent and mantissa of a 
floating-point result so that the mantissa lies 
in the prescribed standard (normal) range; 
standardized. 

NORMAL MODE 
The condition of operation wherein the instruc­
tions are restricted to the conventional aspects 
of computation (adding, subtracting, information 
transfer, etc.). The detection of an exceptional 
condition (interrupt) that occurs while in this 
mode suspends operation in this mode and ESP 
processing begins in control mode. 

OBJECT PROGRAM 
A set of machine-language instructions for the 
solution of a specified problem, obtained as the 
end result of the compilation process (see 
Compiler, Source Language). 

OCT ADE 
A group of 3 bits used to represent one octal 
digit. There are 16 octades in one B8500 
word. 

OCTAL 
A number system based on powers of 8 rather 
than 10 as in the decimal system. Includes 
only the digits 0, 1, 2, 3, 4, 5, 6, and 7. 

OPERAND 
Any of the quantities entering into an operation. 
An operand is typically a number for arith­
metic operations. For comparison operations, 
an operand may be an alphanumeric field. 

OPERATORS 
Symbols that denote a fixed, predefined set of 
operations to be performed in a specified 
sequence. There are a number of classes of 
operators in the B8500: for example, the arith­
metic operators are: +, - , * or x , /, ** 
or xx; the relational operators are: =, f., 
> > < < '_, ' 

OVERFLOW 
In arithmetic operations, the generation of a 
quantity beyond the capacity of the register or 
location which is to receive the result; over 
capacity; the information contained in an item 
of information which is in excess of a given 
amount. 

OVERLAY 
A technique for bringing routines into high 
speed memory from some other form of stor­
age during processing, so that several 
routines will occupy the same storage location 
at different times; used when the total memory 
requirements for a program exceed the avail­
able high speed memory. 

PACK 
To combine several brief or minor items of 
information into one machine item or word by 
utilizing different sets of digits for the speci­
fications of each brief or minor item. 

PARALLEL OPERATION 
Flow of data through the system or any part 
of it, using two or more communication lines 
or channels simultaneously. 

PARALLEL PROCESSING 
Processing more than one program at a time 
on a parallel basis, where more than one Proc­
essor is active at a time (distinguished from 
Multiprocessing where only one Processor is 
active on one program at a time). 

G-7 



PARAMETER 
In a subroutine, a quantity which may be given 
different values when the subroutine is used in 
different parts of one main routine but which 
usually remains unchanged throughout any one 
such use. To use a subroutine successfully in 
many different programs requires that the sub­
routine be adaptable by changing its 
parameters. 

PARITY CHECK 
A summation check in which the binary digits, 
in a character or word, are added (modulo 2) 
and the sum checked against a single, pre­
viously computed parity digit. A B8500 word 
(52 bits) must contain odd parity (an odd number 
of Binary one's). 

PERIPHERAL EQUIPMENT 
Any of the several devices, primarily used to 
communicate with a system, not considered a 
part of the main processing and control system. 
On the B8500, the peripheral equipment in­
cludes Magnetic Tape Units, Disks, Line 
Printers, Card Readers, Card Punches, 
Communications Devices, Keyboard, Message 
Printer, Paper Tape Readers and Punches, 
Graphic and Video Displays. 

POINTER 
A register or storage location assigned to con­
tain the address of a changing location. 

POLISH NOTATION 
A method of writing logical and arithmetic 
expressions without the need for parentheses, 
originated by the Polish logician J. Lukasiewicz. 
For example: Normal algebraic notation 
(Z + Y) x (A - B) in Polish notation: 
ZY +AB- x 

POLLING 
A technique of querying Input terminal devices. 
In the case where more than one device is at­
tached to a line or buss, only one may be active 
at a time. The processor queries each device 
on a line in sequence. H the device is idle, it 
sends an answering signal and the polling 
sequence is continued. H the device is ready, 
e.g. tape mounted and under read head, the 
polling signal will act as a start signal and the 
device will be active on the line until comple­
tion of operation at which time polling will be 
continued with the next device. 

PRECISION 

G-8 

The degree of exactness with which a quantity 
is stated. For example, the number 2. 783 is 
precise to four digits, but does not necessarily 
have four digits of accuracy. 

PRESENCE BIT 
A single flag bit appearing in descriptors to 
indicate whether or not the information to which 
reference is made by the descriptor is in thin­
film main memory at this time. 

PRIORITY 
A class assigned to a program or program seg­
ment to specify the relative processing demand. 
The priorities of all programs to be run are 
taken into consideration by the Executive 
Scheduling Program in arriving at a schedule. 

PROGRAM (Noun) 
A plan for the solution of a problem. A B8500 
program may be a statement of the problem in 
ALGOL, COBOL, FORTRAN or the translated, 
segment object (compilation result) program. 

PROGRAM (Verb) 
To plan a computation or process from the 
original statement of the problem to the de­
livery of the results, including the integration 
of the operation of the resulting program into 
an existing system (for conventional com­
puters). For the B8500: A system analysis 
and statement of the problem in source 
language. 

PROGRAM REFERENCE TABLE (PRT) 
An area in memory for the storage of descrip­
tors for each external object referenced by a 
compilation. Permits programs to be inde­
pendent of the actual memory locations oc­
cupied by data and parts of the program. Thus 
programs and data can be placed into any 
available memory areas without modification 
to the program. 

PRT LINE 
An entry within the program reference table. 

QUEUE 
Locations in a high speed local memory pro­
vided specifically for the storage of instruc­
tions and operands to which rapid access is 
desired. 

RANDOM ACCESS 
See Access, Random. 

REAL TIME 
Solving problems as they occur so that results 
can be used to guide the continuing operation. 

REAL VARIABLE 
A variable over the rational and irrational 
classes of numbers. In ALGOL a real variable 
is a floating-point number as distinct from an 
integer variable which is an integer. · 



RECORD 
A group of fields maintained together as an 
item. 

RECURSIVE 
Having the characteristic of occurring within 
itself. The recursive occurrence could itself 
be recursive. For example: In ALGOL a 
Procedure which contains a Procedure State­
ment in its body calling for the activation of 
itself. 

REENTRANT 
A conceptual term referring to the independence 
and self-initializing capability of a program or 
program segment. The coding and data areas 
are organized in such a fashion that the exe­
cution by two or more .processors at the same 
time will be independent of one another. 

REGISTER 
The hardware for storing one or more com­
puter words or for maintaining internal system 
control. 

RELOCA T ABILITY 
A facility whereby programs or data may be 
located any place in memory at different times 
without requiring modification to the program. 
In the B8500, segments of the program and all 
data are independently relocatable with no loss 
in efficiency. 

RESET 
To return a device, bit or word to zero or its 
initial condition. 

RESTORE 
To return a cycle index, a variable address, or 
other computer word to its initial or a pre­
selected value. 

RETURN 
An operator in a subroutine which transfers 
control to the next instruction in the original 
routine of the program which caused entry to 
the subroutine. 

RETURN POINT 
The instruction in the program segment to which 
control is transferred after the completion of 
a subroutine or an intercession by the Executive 
Scheduling Program. 

ROUTINE 
A set of coded instructions arranged in proper 
sequence to direct the computer to perform a 
desired operation or series of operations. 

RUN 
One performance of a program on a computer. 

SCHEDULING 
Designation of time and sequence of projected 
operations. One of the functions of the Exe­
cutive Scheduling Program. 

SEGMENT (Verb) 
To divide a program into an integral number 
of parts, each of which performs some part of 
the total program and is capable of being com­
pletely stored in internal memory. 

SERIAL 
Processed one after the other in a single facil­
ity or single piece of equipment; sequential. 

SERIAL TRANSFER 
A system of data transfer in which elements of 
information are transferred in succession over 
a single line. 

SET 
To return a device, bit or word to one or to the 
"on" state. 

SIDE 
In thin-film memory eight frames. A side con­
tains 2048 words of 104 bits. Two sides com­
prise a thin-film stack. 

S11\'1ULTANEITY 
Concurrent communication between various 
units of a system at the same instant. 

SLEEP TABLE 
An array of information describing the exact 
processor status at the time of suspension of 
an Executive Scheduling process. 

SOFTWARE 
Programs, routines, and procedures which 
combined with hardware are a computer 
system (the Executive Scheduling Program, 
compilers, etc. ). 

SOURCE LANGUAGE 
The language used by the programmer to state 
the definition of a problem. ALGOL, COBOL 
and FORTRAN are examples of source lan­
guages. Source languages are closely related 
to the type of problem being stated. Source 
language should not be confused with machine 
language. A program is written in source 
language by the programmer. This source 
program is then translated to the object pro­
gram (in machine language) by a compiler 
program. (See Object Program, Compiler. ) 

G-9 



STACK 
(1) The total storage of operands which are 
automatically shifted toward or away from the 
T register, in response to the operand demands 
of the instruction string. (See Computer Stack, 
Memory Stack (1), Extension Mode, Local 
Mode. ) A Stack as used in the B8500 operates 
on the "last-in first-out" principle, that is, the 
last item of information placed in the stack will 
be the first item of information used when in­
formation is required from the Stack. Oper­
ators perform their operations on information 
at the top of the stack. (See Operators. ) 

(2) In a memory module the thin-film stack. 
(See THIN-FILM STACK.) 

STORAGE 
Any device into which information can be copied, 
which holds this information, and from which the 
information can be obtained at a later time. 

STORAGE ALLOCATION 
Assignment of specific memory addresses to 
individual program elements (done automati.­
cally in the B8500) at object running time by 
Executive Scheduling Program. 

SUBROUTINE 
The set of instructions necessary to carry out 
a defined operation; a subunit of a program. 

SUBROUTINE CALL 
A set of characters or lists which initiate a 
subroutine and contain the parameters or 
identification of the parameters required by the 
subroutine. 

SUBSTRATE 
In thin-film memory a 70x43x0. 2 mm glass 
plate containing 768 cells in a 24 by 32 array. 
Forty substrates make a frame. 

SYLLABLE 
A portion of a word. In the B8500, 6 bits. 

SYNTAX 
Connected system or order of symbol arrange­
ment, the rules or grammar of a language. 

SYSTEM 
An assembly of components united by some 
form of regulated interaction to form an organ­
ized whole. 

SYSTEM DIRECTORY 
List of all files currently active or physically 
present on the system. (See INACTIVE FILE 
LIST.) 

G-10 

TAG BITS 
Three bits which are used to indicate the type 
of word, i.e. a descriptor or control word. 

TERMINAL 
A device most remote from the central proc­
essor in a computing system configuration. 
That which is in direct communication with 
persons or equipment external to the system. 

THIN-FILM STACK 
In memory two sides (16 frames) providing 
4, 096 words of 104 bits. Two stacks comprise 
a memory module. 

THROUGH-PUT 
The total productive work capability of a 
system. 

TIME-SHARING 
Interruption of the operation of the main pro­
gram in a computer by subsidiary or unrelated 
calculations, with the object of making econom­
ic use of computer speed when this is dispro­
portionate to input-output speeds. Also, time­
sharing refers to the ability of a module to 
ref er to memory when the Memory Module is 
not being referenced by some other module. 
Since some modules make infrequent ref er­
ences to memory during their operation, by 
interleaving the references several modules 
can appear to be having access to a Memory 
Module simultaneously. 

TRANSFER 
To copy, exchange, read, record, store, trans­
mit, transport, or write data; to change 
control. 

TRANSLATE 
To produce a statement in one language equi­
valent in meaning to a statement in a different 
language. 

VERIFY 
To check a data transfer or transcription, 
especially those involving manual processes 
such as keypunching. 

WORD 
A set of characters or binary digits which oc­
cupies one storage location and is treated by 
the computer as a unit and transferred as 
such. A word in the B8500 may contain 8 alpha­
numeric characters, a binary value in fixed or 
floating-point notation, two to eight instruc­
tions, literal syllables, or a program or data 
descriptor. 



B8500 
SYSTEM REFERENCE MANUAL 

FORM BJ-8 OF APRIL, 1966 

CHECK TYPE OF SUGGESTION: 

D ADDITION D DELETION D REVISION 

AFFECTING: 

PARAGRAPH ON PAGE NO. 

0ERROR 

------ --------

SUBMITTED BY 
NAME LOCATION 

YOUR COMMENTS ON IMPROVING THIS PUBLICATION ARE GRATEFULLY 
ACKNOWLEDGED. 

BURROUGHS CORPORATION 



FOLD DOWN 

STAPLE 
THIRD 

SECOND 

BUSINESS REPLY MAIL 
First Class Permit No. 73, Paoli, Pa. 

Burroughs Corporation 

Defense, Space and Special Systems Group 

Paoli, Pa., 19301 

Attn: B8500 Program 
Department 4419 

FOLD UP FIRST 

FOLD DOWN 

n 
c::: - t-;l - ::i:> - t--< - 0 z - c;J - @ -- H 
(f.l - t--< - H - z 
t'rj -------

FOLD UP 


	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	011
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	3-01
	3-02
	3-03
	3-04
	3-05
	3-07
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-29
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-53
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	F-01
	F-02
	F-03
	G-01
	G-02
	G-03
	G-04
	G-05
	G-06
	G-07
	G-08
	G-09
	G-10
	replyA
	replyB

