UNISYS e-@ction
CLEARPATH ENTERPRISE
SERVERS

/O Subsystem
Programming Guide

ClearPath MICP Release 7.0 SSP1

Printed in USA
March 2002 8600 0056-408

UNISYS e-@ction
CLEARPATH ENTERPRISE
SERVERS

/O Subsystem

Programming Guide

UNISYS

© 2002 Unisys Corporation.
All rights reserved.

ClearPath MICP Release 7.0 SSP1

Printed in USA
March 2002 8600 0056-408

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related information
described herein is only furnished pursuant and subject to the terms and conditions of a duly executed agreement to
purchase or lease equipment or to license software. The only warranties made by Unisys, if any, with respect to the
products described in this document are set forth in such agreement. Unisys cannot accept any financial or other
responsibility that may be the result of your use of the information in this document or software material, including
direct, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the laws,
rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Notice to Government End Users: This is commercial computer software or hardware documentation developed at
private expense. Use, reproduction, or disclosure by the Government is subject to the terms of Unisys standard
commercial license for the products, and where applicable, the restricted/limited rights provisions of the contract data
rights clauses.

Correspondence regarding this publication can be e-mailed to doc@unisys.com.

Unisys, ClearPath, and e-@ction are registered trademarks of Unisys Corporation in the United States and other
countries. All other brands and products referenced in this document are acknowledged to be the trademarks or
registered trademarks of their respective holders.

Unisys e-@ction
ClearPath Enterprise
Servers

I/O Subsystem

Programming Guide

ClearPath MCP
Release 7.0 SSP1

8600 0056-408

Unisys e-@ction
ClearPath
Enterprise
Servers

I/O Subsystem

Programming
Guide

ClearPath MICP
Release 7.0
SSP1

8600 0056-408

Bend here, peel upwards and apply to spine.

Contents

Section 1.

Section 2.

8600 0056-408

Introduction and Understanding File Handling

ABOUL THIS GUIAE ... 1-1
Files, Records and DIir€CtOresoooeiiiiiiiiiiiiiieaee e 1-1
Physical and Logical Files ... 1-2
Naming a File in the MCP Environmentcccoceiiiiiiiiiiiiicccee, 1-4
Identifying Files on Other SyStemsS.......oocciiiiiiiiiiiic e 1-6
Understanding the Functions of the I/O Subsystem.........c..cccocevveiinnn. 1-6
Understanding File Atributescccoooiii 1-7

Understanding Programming for Files

Naming the File ... 2-2
Specifying the Peripheral Device forthe Filecccccooccooiiiiiiii 2-3
Specifying the Purpose of the Filecccooii 2-3
Identifying How Data Is Transferredcoooooiiiiiiiiiiiiiiiiiececccce, 2-4
Establishing a Record Format..........ooiiiiii 2-5
Indicating the Record Sizecccooeiiiiiiiii 2-5
Indicating the Size of the Blocks and Buffers..................... 2-6
Indicating the Type of Variable-Length Record.................... 2-6
Understanding Record Length When
BLOCKSTRUCTURE Equals EXTERNALcocvveeiiiiiens 2-7
Controlling the Size Field When
BLOCKSTRUCTURE Equals VARIABLEccccccovvviiens 2-8
Controlling the Size Field When
BLOCKSTRUCTURE Equals VARIABLEOFFSET 2-10
Writing on a File with Variable Length Records................. 2-10
Using Byte Files ina Programccccciiiiiiiiii e 2-11
Types of Byte Fil€Suuiuiiiiiiiiiiiiiiiiiiiiiii 2-12
Using @ Dummy File ..o 2-21
OPENING A FIlE ..o 2-21
Determining the Existence or Availability of a File..................occe. 2-23
Moving Data to and froma File.........cccoiiiii 2-24
Starting at a Particular Record.............ccooiiiiieeec e 2-26
CloSING @ FIlE oo 2-27
Modifying an AttHDULEuuieiiii e 2-35
Interrogating an AttribUte ... 2-36
Determining Attribute Conflictsoooviviiiiiiiiiiieceeeee e 2-37
Limiting Code File EXECULION.........coiiiiiiiiiiicccecc e 2-37

Contents

Section 3.

Section 4.

Section 5.

Section 6.

Dealing with Translation..........oooiii 2-38

Double-Byte and Mixed Multi-Byte Character Sets........... 2-41
Understanding Logical File Visibility in the Multiple Stack

SITUATION L. 2-42

Using Disk and CD-ROM Files in a Program

Files with a KIND Value of PACK or DISKcccooiiiiiiieeeee 31
Creating a New Disk Fileoooviiiiiiiiiiicc, 3-3
Accessing an Existing Disk File ... 3-10
Obtaining Information about a Disk File 3-12
Locking a Disk File on a Record-by-Record Basis.............. 3-16
Securing Disk Files ..o 3-17

Files with a KIND Value of CDooooiiiiiii e 3-24
Accessing a CD-ROM Filecoccviiviiiiiiiiiicccicee e, 3-24
Obtaining Information about a CD-ROM File.................... 3-25

[/O Timer Handling ..vvvveiiiiiicciii e 3-26
Understanding Time Limit Values..................ccl. 3-27
Returning an 1/0O Request As Soon As Possible................ 3-31

Using Tape Files in a Program

Creating a Tape File ...vviiiiiiiiic e 4-3
Required Tasksoooiiiiiiiei 4-3
SECUNY TaSKS...oii i 4-5
Complex Record TaskScoooiiiiiieeeiie e 4-6
Special Requirement Taskscccccevvviieiiiiiieeiieeeeiee 4-6
Reading a Tape Fileuvoiiiii e 4-10
Readinga File in Reverse..........ccccooo 4-12
Creating an Unlabeled Tapeccceeiiiiiiiiiiiiiecee e 4-13
Creating a Tape with More Than One Filecccccoovviiiiiiiiiiii 4-13
Naming CONVENTIONScoviieiiiiiieciiieee e 4-13
Searching ConveNntionScooiviiiiiiiiiicciee e 4-13
Accessing an Unlabeled Tape ... 4-14
Treating Labeled Tapes as Unlabeled Tapescccoeoeeiiiiiiiiivininnnnns 4-16

Using Printer Files in a Program

Defining the Characteristics of a Printer Filecccccococcoiiiiii 5-2
Controlling the Printing of Lines and Pages.............ccoecveevviiiieeiiiccenn, 5-8
Direct Printing through a Transparent Printer (XLP) DLP.................... 5-10

Using Remote Files in a Program

Identifying the Characteristics of a Remote File................ccoccoocc. 6-2
Opening ReEMOtE FIlES w...cooiiiiiiiiiiiii e, 6-4
Reading Information from a Stationccccooiiiiiiiiii e 6-5
Writing Information to @ Station.........cccoeiiiiiiiiii 6-6
Closing @ Remote Fileocooiiiiiiiiiii e, 6-6

8600 0056-408

Contents

Section 7.

Section 8.

Section 9.

Section 10.

Section 11.

8600 0056-408

Using Card Files in a Program

Data SPeCIfiCatiONSvvviiiiiiiiic e 7-1

Using Operator Display Terminal (ODT) Files

Accessing and Creating Files Using Distributed File
Services

Using Host Services Logical I/Occcooiiiiiiiiiiiie 9-2
Opening a File Using Host Services Logical I/O 9-3
Performing 1/O Using Host Services Logical I/O.................. 9-5

Using FTAM e 9-7
Creating a New File on a Remote OSI Host...........coveennnn. 9-8
Accessing a File on a Remote OSI Host...........ccocel. 9-15
Creating a File on the Local System to Be

Accessed through FTAM ..., 9-21
Accessing a File Created through FTAM on the
LOCaAl SYSTEM .eviiiiiiiii e 9-26
FTAM Features in the MCP Environment..............cccvoe..e. 9-31
Identifying Supported File Attributescooeviiiiiiiiieeee, 9-40

Using Direct 1/O Files

Defining the Characteristics of a Direct I/O File.........cccccccccoooieeinn 10-2
Reading to and Writing from a Direct Array Buffer.................coooo 10-3
Purging the 1/O QUEBUEcoooiiieeee e 10-6
Understanding Direct /O Disk Files ..o 10-6
Physical Frame Size and Odd Framescccceeeviiiennne, 10-6
Areas, Blocks, Records, and Sectors.........cccccovvvvveeiennnnnn. 10-7
End-of-File PoINtersccooii 10-9
Zero-Length 1/O ..o 10-9
Direct I/0O Contrasted with Using Buffered Tape
DIV S e 10-10
Optimizing Direct 1/O Operationscccooeeuiieieeeieecieeee e 10-10
Using HYPERchannel (HY) Files
Understanding a HYPERchannel Networkcoooiio 11-1
Communicating between Systemsccceeeviviieeiiiieenn, 11-2
Constructing a Message Propercccccccovviiiiiiiciiiiiee 11-3
Programming for a HYPERchannel Network..............ooooooiiiiiiiiiiiiinnn, 11-4
Defining the Characteristics of an HY File 11-5
Writing a HYPERchannel Message...........ooooviiiiins 11-5
Reading a HYPERchannel Messageccccccoevviiiiiincenn. 11-8

Contents

Vi

Section

Section

Section

Section

Section

Section

Section

12.

13.

14.

15.

16.

17.

18.

Adapter Command COAES......couuviiiiiiiiiiiiiiee e, 11-9
Using 1/O Buffer Attributes for HYPERchannel Files 11-9
Example Program 11-14

Using Host Control (HC) Files

Defining the Characteristics of an HC Fileccccccoovviiiiiiiiiiiiice, 12-2
WHtING an HC MESSAGE .. uvviiiiiiiii i 12-2
Reading an HC MESSAQEoooiiiiiiiiiiiiie e, 12-3

Understanding Port Files

Examples of a Requesting Program.........cccoiiiiiiiiiiii 13-4
Examples of a Server Program ... 13-6

Using Subfile Indexes

Using Attributes

Setting and Interrogating AttribUtES........ccvvviiiiiiiiiiiiiecceeeee 15-1
Understanding the Difference between File and Subfile

ATETIDUTES Lottt nenee 15-3
Setting Proper Attribute Valuescoovveiiiiiiiic e 15-5

Understanding Port Statements

Preparing Your Subfile for Dialogue Establishment

Establishing a Subfile Dialogue

Using the OPEN Statement ... 18-1
Understanding the AVAILABLEONLY File Attribute
FOr OPEN L. 18-3
Understanding the OPEN Control Option Parameter........ 18-4
Understanding the OPEN CONNECTTIMELIMIT
Parameter.. ..o 18-6
Using the AWAITOPEN Statement........cccccoeeviiiieiiiiiieiciieeeeeeee, 18-7
Understanding the AVAILABLEONLY File Attribute
for AWAITOPENooiiiiiiii i 18-8
Understanding the AWAITOPEN Control Option
Parameter.. ..o 18-10
Understanding the AWAITOPEN
CONNECTTIMELIMIT Parameter.......c.cccceevcvveveeeeenn. 18-12

8600 0056-408

Contents

Section 19. Exchanging Data

Reading Data ... 19-2
Understanding Nonselective READ Operations 19-3
Understanding the READ WAIT/DONTWAIT Option

Parameter . ..o 19-4
Determining Message Size for Message-Oriented

Services READ OperationS.......ccc.ccovvvveiiiiiieiiiiieeeennn 19-5
Understanding Data-Stream-Oriented Services

READ Operationsccoiviieiiiiiieeeiieeee e 19-9
Understanding Event-Driven Input Techniques 19-10

WIIING DAt ooiiiiiiiieie e 19-11
Understanding Broadcast WRITE Operations.................. 19-12
Understanding the WRITE WAIT/DONTWAIT

Option Parameter ..., 19-12
Determining Message Size for Message-Oriented

Services WRITE Operationscccoeevveeeviiiiiciiiiee, 19-14
Understanding Message Size for Data-Stream-

Oriented Services WRITE Operationsccceeenee. 19-17

Section 20. Closing a Dialogue

Understanding the CLOSE Disposition Parametercccccveeen. 20-2
Understanding the CLOSE Control Option Parameter........................ 20-3
Understanding Correspondent-Initiated Dialogue Termination........... 20-4
Understanding Service Provider-Initiated Dialogue Aborts.................. 20-5
Using ABORT Termination for Orderly Release........cccccoccoviiiiiennnnn. 20-6

Section 21. Understanding Port Services

Section 22. Using BASICSERVICE

File Attributes Supported by BASICSERVICEcccoiiiii 22-1
Statements Supported by BASICSERVICEccoooiie 22-2
File States Supported by BASICSERVICEcooiiii 22-3
Preparing for Dialogue Establishment Using BASICSERVICE 22-5
Establishing a Dialogue Using BASICSERVICE ... 22-6
Using the OPEN Statement with BASICSERVICE............. 22-6

Using the AWAITOPEN Statement with
BASICSERVICE ... 22-7
Exchanging Data Using BASICSERVICE ... 22-7
Closing a Dialogue Using BASICSERVICEcccooiiiiii 22-8

8600 0056-408 vii

Contents

viii

Section 23.

Section 24.

Using OSINATIVESERVICE

File Attributes Supported by OSINATIVESERVICEccovii. 23-1
Statements Supported by OSINATIVESERVICE...............cccooiiinn 23-3
Understanding the ASSOCIATEDDATA Parameter of
OSINATIVESERVICE ..., 23-4
File States Supported by OSINATIVESERVICE................coooovi 23-5
Preparing for Dialogue Establishment Using
OSINATIVESERVICE ..., 23-9
Establishing a Dialogue Using OSINATIVESERVICE......................... 23-10
Using the OPEN Statement with
OSINATIVESERVICE ..., 23-10
Using the AWAITOPEN Statement with
OSINATIVESERVICE ..., 23-12
Using the RESPOND Statement with
OSINATIVESERVICE ..., 23-15
Understanding the Response Type Parameter 23-16
Understanding Negotiation during Dialogue
Establishment..........cooooiiiiiiiiiii 23-17
Exchanging Data Using OSINATIVESERVICE ... 23-19
Exchanging Large Messages Using OSINATIVESERVICE 23-21
Closing a Dialogue Using OSINATIVESERVICE ..., 23-22
Using Orderly Dialogue Termination with
OSINATIVESERVICE ..., 23-22
Sending Associated Data with a CLOSE Request........... 23-25

Using OSISESSIONSERVICE

File Attributes Supported by OSISESSIONSERVICE ...l 24-2
Statements Supported by OSISESSIONSERVICEcooeenn 24-3
Understanding the ASSOCIATEDDATA Parameter of
OSISESSIONSERVICE ..., 24-4
File States Supported by OSISESSIONSERVICE.............coeooo. 24-5
Preparing for Dialogue Establishment Using
OSISESSIONSERVICE ..., 24-9
Establishing a Dialogue Using OSISESSIONSERVICE...................... 24-10
Using the OPEN Statement with
OSISESSIONSERVICE.......ooiiieiieeeeee, 24-10
Using the AWAITOPEN Statement with
OSISESSIONSERVICE.......ooiiieiieeeeee, 24-12
Using the RESPOND Statement with
OSISESSIONSERVICE ..o, 24-14
Understanding the Response Type Parameter 24-16
Exchanging Data Using OSISESSIONSERVICEccccoeiiiiinn. 24-17
Exchanging Large Messages Using OSISESSIONSERVICE............. 24-19
Closing a Dialogue Using OSISESSIONSERVICEcccoooeenn 24-20
Using Orderly Dialogue Termination with
OSISESSIONSERVICE ..o, 24-20
Sending Associated Data with a CLOSE Request........... 24-23

8600 0056-408

Contents

Section 25.

Section 26.

Section 27.

8600 0056-408

Using BNANATIVESERVICE

File Attributes Supported by BNANATIVESERVICEccooovviiennne, 25-1
Statements Supported by BNANATIVESERVICE.............ccoooiiiiin 25-2
File States Supported by BNANATIVESERVICE............ooooiiiiiiiie, 25-3
Using Host Independent Matching (HIM)......................... 25-8
Establishing a Dialogue Using BNANATIVESERVICE 25-10
Using the OPEN Statement with
BNANATIVESERVICE ... 25-10
Using the AWAITOPEN Statement with
BNANATIVESERVICE ..o 25-11
Understanding Negotiation during Dialogue
Establishment with BNANATIVESERVICE 25-11
Exchanging Data Using BNANATIVESERVICE............ccocoeeiiiiiiinn, 25-13
Closing a Dialogue Using BNANATIVESERVICEoooviiiiinnn. 25-14

Using TCPIPNATIVESERVICE

Port Support for TCPIPNATIVESERVICE ..., 26-2

Statements Supported by TCPIPNATIVESERVICEccoeeinnnn 26-3

File States Supported by TCPIPNATIVESERVICEoooiii. 26-4
Preparing for Dialogue Establishment Using

TCPIPNATIVESERVICE ..o 26-7

Establishing a Dialogue Using TCPIPNATIVESERVICE 26-10
Using the OPEN Statement with

TCPIPNATIVESERVICE ... 26-10

Using the AWAITOPEN Statementccoeeoenneee.l. 26-10

Exchanging Data Using TCPIPNATIVESERVICEcccooi. 26-10

Understanding Data-Stream-Oriented Data Transfer

Using TCPIPNATIVESERVICE.......cccoooiiieeii 26-13

Using Urgent Data with TCPIPNATIVESERVICE 26-13

Closing a Dialogue Using TCPIPNATIVESERVICEccooennn. 26-15

Using TCPNATIVESERVICE

File Attributes Supported by TCPNATIVESERVICE..............ooovvine 27-1
Port Support for TCPNATIVESERVICE ..o, 27-2
Statements Supported by TCPNATIVESERVICE ... 27-3
File States Supported by TCPNATIVESERVICEoooiiiiiii 27-4
Preparing for Dialogue Establishment Using
TCPNATIVESERVICE ..o 27-6
Establishing a Dialogue Using TCPNATIVESERVICE ...l 27-9
Using the OPEN Statement with
TCPNATIVESERVICE ... 27-9
Using the AWAITOPEN Statement with
TCPNATIVESERVICE ... 27-9
Exchanging Data Using TCPNATIVESERVICE..............cccoooiiinnn. 27-10
Understanding Data-Stream-Oriented Data Transfer
Using TCPNATIVESERVICE ..o 27-13
Using Urgent Data with TCPNATIVESERVICE................. 27-13
Closing a Dialogue Using TCPNATIVESERVICE ... 27-15

Contents

Section 28.

Section 29.

Section 30.

Using NETBIOSSESSIONSERVICE

Statements Supported by NETBIOSSESSIONSERVICE..................... 28-3
File States Supported by NETBIOSSESSIONSERVICE....................... 28-4

Preparing for Dialogue Establishment Using
NETBIOSSESSIONSERVICE ..o 28-6
Understanding the MYNAME and YOURNAME File Attributes......... 28-7
Establishing a Dialogue Using NETBIOSSESSIONSERVICE 28-9

Using the OPEN Statement with
NETBIOSSESSIONSERVICE ..o 28-9

Using the AWAITOPEN Statement with

NETBIOSSESSIONSERVICE ..o 28-9
Understanding NETBIOSNAMEINUSERSLT Errors........ccccoeeeenee.n. 28-10
Exchanging Data Using NETBIOSSESSIONSERVICE....................... 28-11
Closing a Dialogue Using NETBIOSSESSIONSERVICE.................... 28-12
Example Applications Using NETBIOSSESSIONSERVICE 28-12

Understanding Virtual Files

Using Virtual Files. ... 29-2
Programming for Virtual Files 29-2
Virtual File IOHANDLERooiiiiiii e, 29-14
Understanding the IOHANDLERcoooiiiiiiiiii 29-14
Common IOHANDLER Entry Point Parameters.............. 29-15
Example IOHANDLER Librarycccccooviiiiiiiiiiiiiiiee 29-26

Using the REDIRSUPPORT IOHANDLER Library

Accessing REDIRSUPPORT IOHANDLERcooviiiiiiiiieccee, 30-1
Redirector File StrUCTUIecoiviiiiiiice e, 30-2
Locating @ Network File ... 30-2
[OHSTRING Parametersccccvveeviviiiiiiiieceeiiee e, 30-3
Uniform Naming Convention.........ccccceovvviiieiiiiiicciiicee, 30-6
Relative File Names ... 30-7
NXSERVICES CONFIG FileSccooiiiiiiiiiiiiieiiieeece e, 30-8
CredentialS c.ovveie e 30-8
MAKECREDENTIALS Utility ..oovvvieiiiiiieiiicececee e, 30-8
NXSERVICES CREDENTIALS FileS......ccocvvveviiiiiiiiiiiiceen, 30-9
REDIRSUPPORT Considerations for USecccccccovvviiiiiiiiiiiiiinnn, 30-11
Networking Considerationsccovvveeeiiiieeeiiiiee e 30-11
Declaring a Network File ..o 30-13
File Attribute Considerationsccccccovvveeeiiiiiieeiiiiee 30-15
Example Program.. ... 30-18
Directory OPerationScovviiiiiiiiee et 30-19
REDIRSUPPORT IOHANDLER Directory Semantics 30-19
Reading @ DireCtorycccooiiiiiiiiiieii e 30-20
Directory Programming Example..........ccccceiiiiii. 30-21

8600 0056-408

Contents

Section 31.

Appendix A.

Appendix B.

Appendix C.

Appendix D.

8600 0056-408

Using the STREAMIOH IOHANDLER Library

Declaring the Record File to Use STREAMIOH IOHANDLER............. 31-1
Terminology Definitions ..., 31-2
FILEKIND and File Extension Handling ..., 31-3
STREAMIOH Parametersccooouuiiieeeieeeeeeeee e 31-5
Parameter SemantiCS........coovuvviiiei e 31-7
Physical File Parameters........ccccoiieiiiiiiiee 31-7
Conversion Parameters..........ccooovveviiiiiciccieeeeee 31-9
File Attribute ConsiderationS............oooeeiiuiiieieie e 31-16
FRAMESIZE, UNITS, and Related Attributes................... 31-16
DEPENDENTSPECS and Related Attributes.................... 31-16
NEXTRECORD and RECORD Attributes.........cccccuvveeee..n. 31-16
LASTRECORD and FILELENGTH Attributes.................... 31-16
CURRENTRECORDLENGTH Attributecooeeeennnn.. 31-17
I/O Operation SemMantiCSccviiiiiiiiei e 31-17

Device Types and Associated File Attributes

Format of Pack Labels

Disk File Headers

User Interface Procedures ..., C-2
CONVERTHEADER ... C-2
Disk File Header VEersionsuoeiieiiecieee e C-12
Disk FAMIlIES ...evveeieeeeeeeee e C-13
Library Maintenance TapesS......c.uvevieiiiiiiiiiiiieieeeeiiiieeeeen C-13
Version 6 Disk File Header Layout ... C-14
Area Address Words for Version 6 Headers...................... C-21
Optional Attribute Words for Version 6 Headers................ C-22
Header Data Area for Version 6 Headers................ccccun.. C-25
CHECKSUM for Version 6 Headerscccccoeeeeeeeiiiennn... C-26
Version 7 Disk File Header Layout ... C-27
Area Address Words for Version 7 Headers...................... C-41
Optional Attribute Words for Version 7 Headers................ C-42
Header Data Area for Version 7 Headers..............cccoeennn. C-49
CHECKSUM for Version 7 Headerscccccvvveeeeeiiecnnn... C-49

Format of Library Maintenance Tapes

Format of Library Maintenance Tapes with Standard Labels............... D-2
Format of Library Maintenance Tapes in Compact Form..................... D-4
Format of the Tape DireCtoryueiiiiiiiiiiiie e D-6

Xi

Contents

Xii

Appendix E.

Appendix F.

Appendix G.

Appendix H.

Appendix L.

Index

Standard Tape Formats

Unlabeled Tapes......ooooiii E-1
ANSI X3.27-1969 (ANSIB) TAPESeiiiiiiiiiiiiiiiieciee e E-2
B 3500 USASI TAPES .. euviiieeeeee oo E-9
ANSIBT7 TAPES evveiieiiit e E-10
B 5500 TAPES .cooieieeeeeeeeee E-20

ALGOL FIlES..iiiiiiiiiiiii e, E-21

COBOL FIlES oot E-21

FORTRAN77 Programs

Controlling the Distribution of Application
Programs

Structure of Backup Files

NamMiNG CONVENTIONSuuiiiieie e H-1
Examples of Standard Namesccccccovveiiiiiiiiiiiiiieee, H-2
Overriding Standard Namescooovvvieiiiiiieeeiiieeeeeee e, H-2
Naming Tape Files ... H-2

File Format ... H-3

Control Record Word DescCriptionSccoivviieiiiiiieiiiieeeeciiee e H-5

Related Product Information

.. 1

8600 0056-408

Figures

26-3.

26-4.

26-5.

27-1.

27-3.

28-1.

8600 0056-408

ISO 646 Coded CharaCter SET
SO 8859-1 Coded CharaCter Stcooooo i

AdaPtEr CONNECTIONS ..ottt

BASICSERVICE Dialogue Establishment File State Transitions.......................
BASICSERVICE Probable File State Transitions during Data Transfer.............
BASICSERVICE Dialogue Termination File State Transitions..................c........

OSINATIVESERVICE Dialogue Establishment File State Transitions...............
OSINATIVESERVICE Probable File State Transitions during Data

AN S Ol
OSINATIVESERVICE Dialogue Termination File State Transitions...................
OSINATIVESERVICE Orderly Termination File State Transitions....................

OSISESSIONSERVICE Dialogue Establishment File State Transitions............
OSISESSIONSERVICE Probable File State Transitions during Data

TP AN S Ol
OSISESSIONSERVICE Dialogue Termination File State Transitions................
OSISESSIONSERVICE Orderly Termination File State Transitions...................

BNANATIVESERVICE Dialogue Establishment File State Transitions
BNANATIVESERVICE Probable File State Transitions during Data

AN S O
BNANATIVESERVICE Dialogue Termination File State Transitions

TCPIPNATIVESERVICE Dialogue Establishment File State Transitions...........
TCPIPNATIVESERVICE Probable File State Transitions during Data
TrAN S O e
TCPIPNATIVESERVICE Dialogue Termination File State Transitions for
CLOSEREQUESTED ..oiiiiiiiiie e
TCPIPNATIVESERVICE Dialogue Abnormal Termination File State
Transitions for OPEN ...
TCPIPNATIVESERVICE Dialogue Termination File State Transitions for
CLOSEREQUESTRECEIVEDuiiiiiiiiiie e

TCPNATIVESERVICE Dialogue Establishment File State Transitions
TCPNATIVESERVICE Probable File State Transitions during Data

TP AN S Ol
TCPNATIVESERVICE Dialogue Termination File State Transitions...................

NETBIOSSESSIONSERVICE Dialogue Establishment File State
I 01T €T =TRSOOSR

Xiii

Figures

28-2. NETBIOSSESSIONSERVICE Possible File State Transitions During

Data Transfer ... 28-5
28-3. NETBIOSSESSIONSERVICE Dialogue Termination File State Transition........ 28-5
C—1. Unsegmented HEAdETooiiiiiiiiiii e C-27
C-2. Segmented HEadBrooii e C-28
E-1. Unlabeled Single-File Volume and Unlabeled Multifile Volume Formats........... E-1
E-2. ANSIB9 Single-File, Single-Volume Format..........cooooiiiiiiiiiiiiicecceee e, E-2
E-3. ANSIB9 Multivolume-File and Multifile-Volume Formats..............ccccocoiin. E-3
E-4. ANSIB9 Multifile, Multivolume FOrmats.........oooooireee e E-4
E-5. ANSIB9 Volume Header—Non-ScratCh...........ooovviiiiii e E-5
E-6. ANSIB9 Volume Header—ScratCh ... E-6
E-7. ANSIBI File Header T FOrmatooooiuiiiii e, E-6
E-8. ANSIBI File Header 2 FOrmatoooooumiieiieee e, E-7
E-9. ANSIB9 User Header and Trailer Label FOrmatsccccooiiiiiiiiii E-8
E-10. ANSIB9 Scratch Tape FOrMat........ccoviiiiiiiiiiiiiii e, E-8
E-11. B 3500 Volume Header FOrmatccoovviiiiiiii E-9
E-12. B 3500 File Header 1 FOrmat.........ouvvviiiiiiiiiiiii E-9
E-13. ANSI87 Multivolume-File Format..............ccoiiiiieeee e E-11
E-14. ANSI87 Multifile, Multivolume Format ..o E-12
E-15. ANSI87 Volume Header 1 FOrmat...........cccoooiiiie e E-13
E-16. ANSI87 Volume Header 2—Non-ScratCh..........ccvvvviiiiiiiiiiieeeec E-14
E-17. ANSI87 Volume Header 2-ScratChcccoooiii e E-15
E-18. ANSI87 Volume Header 3—NoN-ScratCh.........cccvvvviiiiiiiiiieeecc E-15
E-19. ANSI87 Volume Header 4—Non-ScratCh..........ccvvviiiiiiiiiiiieeeeec E-16
E-20. ANSI87 Volume Header B.........coooiiee e E-16
E-21. ANSI87 File Header 1T FOrmatooouviiiieiei e E-17
E-22. ANSI87 File Header 2 FOrmatcooouviiiiiieieeeeee e E-18
E-23. ANSI87 File Header 3 FOrmatcooouuiiiieiiieii e E-19
E-24. ANSI87 Scratch Tape FOrmat........ccoooiiiiiiiiiiiiicci e, E-19
H—1. Structure of @ BaCkUp Fileccuiiiiiiiiiiiiiee e H-3
H-2. Format of a Backup BIOCKooviiiiii H-4
H-3. Diagram of Numbering Bits withina Wordc.ccccooiiiiiii H-5
H-4. Diagram of the Control Word (Word 0)ccccviiiiiiiiiiiiiieccieeeeee e, H-6
H-5. Diagram of the Block Character Control Word (Word 1).......c..ooooiiiiiiiiii, H-7
H-6. Diagram of the Logical File Kind Word (Word 2).........cccoiiiiiiiiiii H-8
H-7. Diagram of the Path Control Word (Word 3).........cccccoiiiiiiiiiiiiieiiicceee, H-9
H-8. Diagram of Word 10 of the Control Recordccccoooiiiiiiiiiiiiiiiceecce, H-11
H-9. Diagram of Word 11 of the Control Recordccccoooviiiiiiiiiiiiiiicee, H-12
H-10. Diagram of Word 12 of the Control Recordccccooiiiiiiiiiiiiiiiiieeeece, H-12

Xiv 8600 0056-408

Tables

NNNNNIl\)NNNMN
=2 OCoO~NOOOP,WN =

- o

NNNNNNDN
Lo
OO O, WN

OOOOCTOOOOO
OO wON -

8600 0056-408

Mnemonic Values for the KIND Attribute ... 2-3
MAXRECSIZE Default and Maximum Values............ccccci 2-b
Possible BLOCKSTRUCTURE Values for Variable-Length Records................... 2-7
Size Field Information Based on INTMODE Valueccccccv 2-8
COBOL85 CLOSE Statement ACLIONSvcveieieieiieeeeeeeeeeeeeeea 2-29
COBOL85 CLOSE Statement ACLIONScviieieieieieeeeeeeeeeeeeea e 2-29
COBOL74 CLOSE Statement ACLIONScvviiiiiiieieeeeeeeeeeeeeee 2-30
COBOL74 CLOSE Statement ACLIONScveveiiiiieieeeeeeeeea 2-30
Contents of Column 70 of the RPG File Description Specification.................. 2-31
Contents of Column 70 of the RPG File Description Specification.................. 2-31

Contents of the Result Field (Columns 43 through 48) of the RPG
Calculation Specification When CLOSE Is Present in Columns 28

TrOUGN B e 2-32
FORTRAN77 CLOSE Statement ACHIONSoooiiiiiiiiii 2-32
FORTRAN77 CLOSE Actions without a CLOSE Statement 2-33
Pascal CLOSE Statement ACTIONSuweeeeceeeeeeee e 2-33
ALGOL CLOSE Statement ACTIONScooiiiiieeeeeee e 2-33
ALGOL CLOSE Actions without a CLOSE Statementccccoovviinn.. 2-34
Possible EXTMODE and INTMODE Combinations..........ccooovvvvviiiiiiiiiii 2-38
Possible EXTMODE and INTMODE Combinations..........ccooovvviviiiiiiiiii 2-39
Constant Information AttribUEScoooiiiiii 3-13
Changing Information AttribDULESooiiiiiiiiiiiic e 3-14
Attributes That Contain I/O Informationovviiiiiiii 3-15
Information Attributes for CD-ROMccccooiiiiiiiiiiiei e 3-25
CD-ROM Attributes That Contain I/O Information ... 3-25
Tape Drive Density ValUESsuiiiiiiiiii e 5-7
FTAM Document TYPES ..ooooiiiiiii 9-7
Document Type SeleCtionccuuiiiieie e 9-11
FTAM Parameters Used to Communicate Information in FTAM-1 File

BT 0N s 9-13
FTAM Parameters Used to Communicate Information in FTAM-2 File

BT 0N s 9-14
FTAM Parameters Used to Communicate Information in FTAM-3 File

BT 0N s 9-14
FTAM Parameters Used to Communicate Information in INTAP-1 File

BT 0N s 9-15
FTAM Parameters Used to Communicate Information in FTAM-1 File

A S S e 9-18
FTAM Parameters Used to Communicate Information in FTAM-2 File

A S . e 9-19

XV

Tables

XVi

©
I
(@]

@@@@@@?@@@@@@

NNNNLAAA—____\

9-24.

26-1.

26-2.

27-1.

WN—,OOONARON =

FTAM Parameters Used to Communicate Information in FTAM-3 File

A C GBS e 9-20
FTAM Parameters Used to Communicate Information in INTAP-1 File

A C GBS e 9-21
File Attribute Values Passed When an FTAM-1 File Is Accessed.................... 9-24
File Attribute Values Passed When an FTAM-2 File Is Accessed.................... 9-25
File Attribute Values Passed When an FTAM-3 File Is Accessed.................... 9-25
File Attribute Values Passed \When an INTAP-1 File Is Accessed 9-26
File Attribute Values for an FTAM-1 File Created by a Remote Host 9-27
File Attribute Values for an FTAM-2 File Created by a Remote Host 9-29
File Attribute Values for an FTAM-3 File Created by a Remote Host 9-29
File Attribute Values for an INTAP-1 File Created by a Remote Host.............. 9-30
FTAM File Attribute EQUIValENTS ..o, 9-31
Possible CharaCter SEtS ... 9-32
Possible ESCApe SEQUENCESvviiiiiiiiii e 9-33
Possible PERMITTEDACTIONS ValUes........coooiiiiiiiii 9-36
Concurrency-Control Parameter Information Sent When the

EXCLUSIVE File Attribute Is FALSE ... 9-37
Concurrency-Control Parameter Information Sent When the

EXCLUSIVE File Attribute Is TRUE ... 9-38
Host Services Logical I/O and FTAM File Attributes.......ccccccooviiiiviiiicc 9-40
HY File IOERRORTYPE ValUBSccvveeeiieiee e 11-9
Providers and Port SErviCescoooooiiiiiii 13-3
Port File Attributes and Associated ServiCesccuvvvvriiiiiiiiiiicieeee e, 15-7
Port File Attribute CharacteriSticsuuvvvvieiee i, 15-10
Port Statements Used with Port ServiCesccccoovvviiiiiicieeiicieeee 16-2
Effects of File State on the READ Operation for BASICSERVICE 22-7
Effects of File State on the WRITE Operation for BASICSERVICE 22-8
Effects of File State on the READ Operation for OSINATIVESERVICE 23-19

Effects of File State on the WRITE Operation for OSINATIVESERVICE 23-20
Effects of File State on the READ Operation for OSISESSIONSERVICE 24-17
Effects of File State on the WRITE Operation for

OSISESSIONSERVICE ... 24-18

Effects of File State on the READ Operation for BNANATIVESERVICE........ 25-13
Effects of File State on the WRITE Operation for BNANATIVESERVICE 25-14

Effects of File State on the READ Operation for

TCPIPNATIVESERVICE ..., 26-11
Effects of File State on the WRITE Operation for
TCPIPNATIVESERVICE ..., 26-12

Effects of File State on the READ Operation for TCPNATIVESERVICE 27-11
Effects of File State on the WRITE Operation for TCPNATIVESERVICE 27-12

8600 0056-408

Tables

31-1.
31-2.
31-3.

A-1.

B-1.

K

noT
L NN

IIIIlIIIII
OO, WN =

8600 0056-408

Effects of File State on the READ Operation for

NETBIOSSESSIONSERVICE ..., 28-11
Effects of File State on the WRITE Operation for

NETBIOSSESSIONSERVICE ..., 28-12
[OHANDLER Library AttribUteSooiiiiiiiiiiiiiice e 29-3
Virtual File Format AttribUteS.......oiii e 29-5
[OHANDLER ENtry POINTS ..oiiiiiiiiiiiiccs e 29-15
REDIRSUPPORT IOHANDLER KeywWords..........coooiiiiiiieiieeicieeeeeeee 30-3
Returned Format of Directory Entries ... 30-20
File Extensions Recognized by STREAMIOH IOHANDLER Library 31-3
FOLDCHARACTER Values and Character Representationsccc....o...... 31-10
TRIM Mnemonic Values and SemantiCsoooooiiiiiieiiiiiiieeeeeee 31-14
Device Types and Associated File Attributes......cccoooeeeeeiiii A-1
Format of Pack Labels.......... B-1
Disk File Header AttribULESccoooeieiiiiieie e C-6
BCL Characters for B 5500 Tape Labelscoocviiiiiiiiiiiiiciiiccceeec E-20
B 5500 Tape Label for ALGOL FileScooiiiiieeeeeee e E-21
B 5500 Tape Label for COBOL FileSccoiviiiiiiiiiiiiiieceeeeceeeeee E-21
Format of the Backup File Control Recordccccooovvviiiiiiiiiiiieciecee H-5
Fields of the Control Word (Word 0)ccceeiiiiiiiiiiiiic e H-6
Fields of the Block Character Control Word (Word 1)cccccooviiiiiiiiiiiiiinen H-7
Fields of the Logical File Kind Word (Word 2) ... H-8
Fields of the Path Control Word (Word 3)ccccoeiiiiiiiiiiiiieccieecceeee e H-9
Fields of Words 4 through 9 of the Control Recordcccccoovviiiiiiiiiiinn. H-10
Fields of Word 10 of the Control Recordcccccoeiviiiiiiiiiiiiiiicce e H-10
Fields of Word 11 of the Control Recordcccccoeiviiiiiiiiiiiiiiiiieice H-11
Fields of Word 12 of the Control Recordcccccooiviiiiiiiiiiiiiiiiicice H-12

XVii

Tables

xviii 8600 0056-408

Section 1
Introduction and Understanding File
Handling

About This Guide

This guide explains what the 1/O subsystem does and how file attributes interact with the
I/O subsystem to define a specific file type. Additionally, the guide describes how
language-specific I/O statements are used to manipulate file attributes in a program.

This guide also provides a general discussion of how file attributes and I/O statements
work together to define the characteristics of files, but it does not explain how to
manipulate a file in a specific language. Refer to the language programming reference
manual for specifics about 1/O statements.

This guide is intended to be used by any programmer who needs to understand how to
describe the characteristics of a file in a program.

Use this guide in conjunction with the File Attributes Reference Manual and the
programming reference manual of the language that is to be used. This section through
Section 12 presents basic information about how the I/O subsystem and file attributes
work together, as well as information about basic programming techniques. Additionally,
information about how to describe a specific file in a program is presented. Sections 13
to 28 present information about programming for inter-process communication by using
port files.

About POSIX Files

POSIX files are declared and manipulated differently from standard files declared under
the master control program (MCP). Attribute descriptions in this manual refer to
non-POSIX files unless otherwise specified.

Files, Records and Directories

What Is a File?

Before considering basic programming for files, you need to understand the
characteristics of a file. A file is an ordered group of related records that exist apart from
the program. A file is defined in a program that uses that file, or at least the file
description is known to that program. A file description in the data division of a COBOL
program is an example of defining a file in a program.

8600 0056-408 1-1

Introduction and Understanding File Handling

What Is a Record?

Most files have a particular structure that the program can determine called a record. A
record is a group of logically related items of data in a file that are treated as a unit. A
record within a file contains data made up of characters, binary data, or both. The

I/O subsystem gives to the program or takes from the program one record at a time. The
program then handles the subdivisions of the record.

Records of a file can all be the same length, known as fixed-length records, or of varying
lengths, known as variable-length records. Length information must be declared or
implied by the program and made available to the 1/O subsystem. If the length is variable,
the 1/O subsystem must be able to obtain the actual length of each record so that it can
process one record at a time, regardless of length, either from the record itself, or from
the program processing the record. From the viewpoint of the program, records are
ordered in some way. In the simplest case, they follow each other sequentially until the
end of the file. In that case, the program is interested only in accessing the next record in
sequence.

Files that contain only streams of bytes are not structured with records.

What Is a Directory?

A directory is sometimes referred to as a folder that contains files. There are three types
of directories on the ClearPath NX servers and A Series systems. Refer to the System
Operations Guide for more information about directories.

Physical and Logical Files

1-2

A file is viewed in two ways: as a physical file and as a logical file.

Physical Files
A file that exists on a recording medium is known as a physical file.
Except for a disk file with a FILESTRUCTURE value of STREAM, a physical file contains a

group of physically adjacent records that are referred to as a block. Such a block can be
transferred to or from the physical file as a group.

Note: The term physical file is sometimes used in this manual to refer to the physical

device rather than the data stored on its recording medium. The context usually makes
clear which meaning is intended.

8600 0056-408

Introduction and Understanding File Handling

In the case of disk files, a physical file can be either permanent or temporary. A
permanent file is visible to all running programs and to the system operator. Access to a
permanent file can be limited by security facilities. A permanent file remains visible until
it is deliberately purged or, if it resides on removable media, until the operator dismounts
the media from the system. A temporary file is one that exists only at the time of its
original creation—it is of no further interest to any program. An example of a temporary
file is a disk file that is used only as an intermediate step in a process. A temporary file is
private to the program that creates it, has no visibility to the general system, and exists
for the 1/O subsystem only while the logical file that created it remains assigned. A newly
created file becomes a permanent file when a program requests that the file be saved by
closing the file with a disposition of lock, downsizearealock, or crunch, or by using the
PROTECTION file attribute. At such a time, the /O subsystem enters the name of the
file in the disk directory. Refer to Section 2, “Understanding Programming for Files,” for
information about closing files and their associated dispositions.

Logical Files

A file that exists within a program is known as a logical file.

From the viewpoint of block-structured languages such as ALGOL and Pascal, a logical
file exists only within the program block where it is declared or within blocks to which it
has been passed as a formal parameter. A logical file has no inherent properties until it is
described by file attributes or until it is associated with a physical file. A physical file
inherits properties from the file attributes of the logical file that creates it. Multiple logical
files can be associated with one physical file, and the attributes of those logical files need
not be identical in all cases.

A logical file can be in one of four states:

e Open-assigned

e Closed-unassigned

e Closed-assigned (also known as closed-retained)
e Open-unassigned

Before data can be transferred between logical and physical files, the logical file must be
open and the physical file must be assigned to the logical file. This assignment can be
accomplished explicitly by opening the logical file with an OPEN statement, by means of
the AVAILABLE attribute, or, in some languages, by invoking an I/O statement.

Additional File Characteristics

A file can be identified as an optional file by using the syntax of some languages or by
assigning the OPTIONAL attribute a value of TRUE. When a file is identified as an
optional file, an OPEN operation can leave the logical file unassigned to a physical file and
proceed with processing.

A file can also be identified as a file that never executes physical |/O operations by

assigning the DUMMYFILE attribute a value of TRUE. This feature is helpful for debug
files or when the output of the program is not needed.

8600 0056-408 1-3

Introduction and Understanding File Handling

Finally, a file can be identified as an exclusive file by using the syntax of some languages
or by assigning the EXCLUSIVE attribute a value of TRUE. When a file is identified as an
exclusive file, an attempt to open a file that is currently in use results in the physical file
being attached to the logical file, the logical file waits and remains closed until the file can
be used only by your program. Similarly, if your program is using a file exclusively, other
programs that try to open it wait until your program closes the exclusive file.

Opening a file explicitly does not cause data to be transferred between the logical and
physical files, and the logical file can be closed without any 1/O being performed upon it.
The logical file can be closed with retention, which leaves the physical file assigned, or it
can be closed with release, which severs the connection between the logical and
physical files.

Naming a File in the MCP Environment

The MCP environment supports two file-naming conventions: the traditional file naming
convention and the long file naming convention. This section describes the traditional
naming convention. Even on systems which have enabled long file names, you should
use traditional file names whenever possible.

You name a file in the MCP environment with a series of up to 12 nodes separated by
slashes (/). The file name can be preceded by a usercode enclosed in parentheses or can
be preceded by an asterisk (*). Each node can contain a 1- to 17-character identifier with
the following characteristics:

e Any combination of EBCDIC uppercase letters A through Z or EBCDIC digits
0 through 9. Additionally, a hyphen (-) or an underscore (_) can be included in the
identifier, but neither of those characters can be the first character.

e Anidentifier enclosed in quotation marks (' ''). The EBCDIC characters can be any
character that has a hexadecimal code greater than or equal to a hexadecimal 4'40"
(space) and cannot be an EBCDIC character quotation mark.

o [f the file is a disk file, a keyword that identifies a system-supplied character string
preceded by a displayable character that is specified with the UNIQUETOKEN file
attribute value. Refer to the FILENAME attribute in the File Attributes Reference
Manual for more information about valid keywords.

The following are examples of valid file names in the MCP environment:

e ACCOUNTING/RECEIPTS/021689

e PERSONNEL/"EMPLOY.LIST"

e (KELLY)DOCUMENTS/CLIENT/6

e *SYSTEM/LOGANALYZER

o ACCOUNTING/"@MIXNO"/"@JOBNO"/RECEIVABLES (Disk files only)

8600 0056-408

Introduction and Understanding File Handling

The MCP environment provides an optional long file name feature that allows greater
flexibility when naming disk files. When this feature is enabled, disk files can be named
using names of up to 20 nodes, each of which contains up to 215 characters. This
feature is primarily intended for use on ClearPath NX servers to allow interoperation with
workstation programs that create files with names longer than those supported by the
traditional MCP environment file system. Refer to the System Operations Guide for
information on the benefits and limitations of the long file names features.

For POSIX, a pathname attribute PATHNAME can be set to provide an alternate,
standards-based way of naming the system disk file. Refer to the System Operations
Guide for more information on disk file naming conventions using POSIX pathnames.

A tape file name in the MCP environment has the same characteristics as a file name in
the MCP environment, except that the 1/0 subsystem uses only the first and the last
nodes of the name. If more than one file resides on a tape, all the files must have the
same first node, known as the multiple file ID (MFID). The second node is known as the
file ID (FID). The following are examples of valid tape file names in the MCP environment:
e RECEIVABLES

e ACCOUNTS/MASTER

e STUDENTS/GRADES

e STUDENTS/CLASSES

A port file name has a single 1- to 17-character node. That node can contain an identifier
with the following characteristics:

e Any combination of EBCDIC uppercase letters A through Z or EBCDIC digits 0
through 9.

e Anidentifier enclosed in quotation marks ("' ''). The EBCDIC characters can be any
character that has a hexadecimal code greater than or equal to a hexadecimal 440"
(space) and cannot be an EBCDIC character quotation mark.

The following are examples of valid port file names:

e RESERVATIONS
e RESERVATION_REQ
e "RESERVATION_REQ"

Refer to the FILENAME attribute in the File Attributes Reference Manual for more
information about file names.

8600 0056-408 1-b

Introduction and Understanding File Handling

Identifying Files on Other Systems

When you are accessing a non MCP environment system through a network, enclose
the name in apostrophes (‘). Before the MCP environment system sends the file name
information to the remote host, the apostrophes are removed and only the characters are
sent to the remote host. The name can be up to 250 EBCDIC characters long, but cannot
contain an EBCDIC apostrophe character or any EBCDIC character that has a
hexadecimal code less than 4'40". A pair of apostrophes can be used to specify a single
apostrophe in the file name.

The following are examples of valid foreign host file names:

e 'MY\FILE\0O31789'

e 'A:ACCOUNTS.PAY"

o '[Sys]<Sys>InstallSpl.Run’

e 'ACCOUNTING*PAYABLES.

Understanding the Functions of the 1/0 Subsystem

1-6

In the MCP environment, you, as a programmer, do not need to handle the details of
controlling the peripheral devices, nor do you need to be concerned with the connections
to the peripheral units. The 1/O subsystem handles those details for you and allows
dynamic file definition; that is, the precise nature of a file need not be fully defined in the
program using the file.

Some of the tasks the I/O subsystem is responsible for are
e Making a file assignment, namely, establishing a connection between the logical file

of a requesting program and the corresponding physical file

e \When a new file is to be created, finding and providing storage space or providing the
address of a peripheral device of the requested or acceptable kind—for example,
connecting an available tape drive

e Acting as an intermediary between the logical file and the physical file associated
with it
e Using the disk subsystem to maintain the disk directory

e Reading and keeping track of all label information on physical files that have been
loaded by the operator

o Automatically writing the necessary labels when a new file is created, including the
external file name and other label information

e Checking for consistency between the specified attributes

e Checking the results of physical I/O operations, converting any errors to a standard
format, and communicating the results by means of file attributes

e Dealing with the program, one logical record at a time, and executing physical I/O
operations only when necessary

8600 0056-408

Introduction and Understanding File Handling

e Using buffers to smoothly expedite the flow of I/O operations. A bufferis an
intermediate storage area, under control of the 1/O subsystem, which is used to
store data in transit between the physical file and the user work area. Typically, two
buffers are used so that one can be dedicated to a peripheral transfer while the other
is available for logical record operations

Understanding File Attributes

The I/0O subsystem can define files dynamically because of file attributes. File attributes
act as a communication channel between the program and the 1/O subsystem.
Sometimes a program communicates to the I/O subsystem by modifying an attribute
value. At other times the program interrogates an attribute to determine the conditions
under which the I/O subsystem is operating.

File attributes allow the program to accomplish the following tasks:

o |dentify a file

e Describe the structure of a file

e |dentify the status of a file

e Specify the security level of a file

e Control a printer file

e Control the translation of character sets
e Determine the current status of a file

e Allow interprocess communication

e Access a file on a remote host

If you are using ALGOL, you are responsible for modifying and interrogating file
attributes. However, compilers for some languages, including COBOL74 or COBOLSS5,
set the attribute values for you. You are responsible for interrogating any attribute that
you might be interested in.

File attributes enable you to write a program that is not limited to a particular
configuration nor bound to any hardware device, because the file attribute values
declared in a program can be changed in any one of the following manners:

e The value is changed at compilation time

o Before the program is run, an operator changes the value by using the file equation
capability of WFL

e The value is changed by your program while it is executing
e The value is changed by using the FA (File Attributes) system command

Modifying an attribute value is referred to as attribute assignment. Interrogating an
attribute is referred to as attribute interrogation.

8600 0056-408 1-7

Introduction and Understanding File Handling

File equation is a mechanism for performing attribute assignment when a program is
initiated or compiled. For example, as a program is initiated, the KIND attribute can be
given a different value than the value already specified in the file declaration. A program
can be written to handle any file of a specific type, and then a user of the program can
indicate a particular file by file-equating the FILENAME attribute appropriately. For
information about file equation and task initiation, refer to the WFL Reference Manual,
and for information about the particular file attributes and their values, refer to the File
Attributes Reference Manual.

Example

The following example demonstrates the use of file attributes. In this example, the WFL
deck compiles and runs the ALGOL program and uses file equation in the process.

The ALGOL program symbolic whose file name on disk is FILE/PROGRAM is as follows:

BEGIN
FILE
F(KIND=TAPE ,MAXRECSIZE=90,BLOCKSIZE=360,NEWFILE=TRUE, (1)
FILENAME="TEST.",FRAMESIZE=8);
ARRAY
A[0:14];

F.KIND := VALUE(DISK); (4)
(4)
OPEN(F);
(The entry of an FA (File Attribute) system command by the
operator.) (5)
REPLACE POINTER(A) BY "™ " FOR 90;
REPLACE POINTER(A) BY "THIS FILE'S FILENAME IS: ", F.FILENAME;
F.SYNCHRONIZE:=VALUE(OUT); (6)
WRITE(F,90,A);
CLOSE(F,CRUNCH) ;
END.

The WFL job is as follows:
?BEGIN JOB FILE/EXAMPLE;

COMPILE OBJECT/FILE/PROGRAM ALGOL LIBRARY;
COMPILER FILE CARD(KIND=DISK,FILENAME=FILE/PROGRAM);

FILE F(BLOCKSIZE=180,FILENAME=TEST2); (2)
RUN OBJECT/FILE/PROGRAM;
FILE F(BLOCKSIZE=2520,NEWFILE=FALSE,FILENAME=TEST1); (3)
?END JOB

1-8 8600 0056-408

Introduction and Understanding File Handling

The following file attribute actions are taken in the preceding example code:

Notation
Number Explanation

(1) The values assigned in this statement are stored in the file declaration of
the code file.

(2) The values assigned at compilation time are stored with the code file as a
compile-time file equation.

(3) The values assigned when the program is run are stored with the job
information.

(4) The file attribute values stored at (1), (2), and (3) are applied to the file,
with the values assigned in (2) superseding the values of BLOCKSIZE and
FILENAME assigned in (1) and the values assigned in (3) superseding the
values of BLOCKSIZE, FILENAME, and NEWFILE assigned in (1) and (2).
Finally, the value of DISK is assigned to the KIND file attribute.

(5) If an operator entered an FA system command because no file was
available with the correct name, the value or values of any attributes
included in the FA command override any values already assigned to
those attributes at that point.

(6) The SYNCHRONIZE file attribute value is changed to OUT as the program
is running.

After the program attribute assignment statement F.KIND := VALUE(DISK) is executed,
the following attributes take on the indicated values:

e The KIND attribute has a value of DISK.

e The MAXRECSIZE attribute has a value of 90 characters.

o The BLOCKSIZE attribute has a value of 2520 when the file is opened.
e The NEWFILE attribute has a value of FALSE.

e The FILENAME attribute has a value of TEST1.

e The FRAMESIZE attribute has a value of 8.

During execution of the OPEN statement, if the permanent physical file with the file
name of TEST1 does not exist on disk when the assignment to the physical file is
attempted, the program waits for an answer to the NO FILE message. In other words,
the program displays the message “NO FILE TEST1" and waits for a response from
either an operator or a programmer, or for the file with the file name TEST1 to be created
on or copied to the appropriate disk device.

If an FA FILENAME = TEST/FILE system command is entered for the program, all the file
attributes listed previously now have the values indicated in the previous list, except that
the FILENAME attribute value is now TEST/FILE. When a physical file with a file name of
TEST/FILE exists on disk, the OPEN process proceeds normally, assigning the logical file
F to the physical file TEST/FILE on disk, setting up the logical file, and marking the logical
file as open.

8600 0056-408 1-9

Introduction and Understanding File Handling

1-10 8600 0056-408

Section 2
Understanding Programming for Files

To read, write, and update information in a file, you specify file attribute values and
invoke I/O statements in your program. The various programming languages provide
ways of specifying file attribute information. If you do not explicitly specify file attribute
values, the system provides reasonable defaults for required file attribute values.
Additionally, each language has specific I/O statements that invoke the I/O actions.

You can modify most file attributes when the program is initiated from WFL. Since this is
true, your program only has to declare each file. All of the file attributes values that need
to have values other than default values can be modified when the program is initiated
from WFL. As flexible as this method is, it does make it harder for a new programmer to
understand the basic tasks of the program, so Unisys suggests that you declare the file
attributes in the program and modify the values when the program is initiated, if
necessary.

Throughout this section, examples for the ALGOL, COBOL74, and COBOLS85 languages
are given. Refer to your language manual for in-depth information about appropriate
syntax. The following discussions identify the universal tasks that you should be
concerned with when programming. Information about tasks that must be accomplished
for a specific device type or for port files is provided in the appropriate device-type
section or in Sections 13 through 29.

The following tasks are described in this section:

e Naming the file

e Specifying the peripheral device for the file
e Specifying the purpose of the file

e |dentifying how data is transferred

e Establishing a record format

e Controlling the size field of a variable-length record
e Using byte files in a program

e Using a dummy file

e Opening a file

e Determining if a file exists or is available

e Moving data to and from a file

e Starting at a particular record

8600 0056-408 2-1

Understanding Programming for Files

e Closing a file

e Modifying an attribute

e Interrogating an attribute

e Determining attribute conflicts
e Dealing with translation

Use the file declaration mechanism of your language to identify the characteristics of
your file. Such a declaration associates the name of the file declaration with the
INTNAME attribute and defines the logical file to be used by the program. Additionally, a
file declaration can be used to assign values to the attributes associated with the file.
Example file declarations in ALGOL, COBOL74, and COBOLS85 follow:

ALGOL FILE(KIND=DISK,NEWFILE=FALSE,DEPENDENTSPECS=TRUE);

FILE OUTPUT_FILE;

COBOL74 and FD IN-FILE.
COBOL8b
FD UPDATE-FILE;
VALUE OF DEPENDENTSPECS IS TRUE,
FILENAME IS "MASTER/UPDATE.".

Naming the File

2-2

The file declaration is used to identify the name of the physical file to be used. In ALGOL,
the FILENAME or TITLE attribute is used to specify the name. Other languages might
use the same mnemonic or something quite similar, but each language provides a
mechanism to assign the FILENAME and TITLE attributes a value. If you do not assign
values to the FILENAME or TITLE attributes, the system uses the value of the INTNAME
attribute. By default the INTNAME value is the first 17 characters of the file identifier in
the program. As a consequence, all file identifiers in a program should be unique through
the first

17 characters.

The FILENAME and TITLE attributes are used to identify files on peripheral devices.
When the file is on disk, you can identify the name of the family, as distinguished from
the name of the file, by specifying a name to the FAMILYNAME attribute.

The FILENAME and TITLE attributes accept file names specified in the file name syntax
of the traditional MCP environment. You can also specify file names using POSIX
pathname syntax. Refer to the File Attributes Reference Manual for more information on
the PATHNAME attribute.

The LFILENAME and LTITLE attributes accept file names that don’t conform to the
traditional MCP environment naming convention. File name nodes greater than

17 characters are truncated when assigned to the FILENAME and TITLE attributes, but
not when assigned to LFILENAME and LTITLE. Refer to the File Attributes Reference
Manual for more information about these attributes.

8600 0056-408

Understanding Programming for Files

Specifying the Peripheral Device for the File

One of the most important characteristics that a file has is the class of peripheral device
or devices associated with the logical file. The KIND attribute is used to identify the type
of device and has the mnemonic values listed in Table 2-1.

Table 2-1. Mnemonic Values for the KIND Attribute

Mnemonic Value Description

CD A CD-ROM optical disk is requested.

DISK A magnetic disk file is requested.

HC A Host Control file that can link several systems together for data
transfers is requested.

HY A HYPERchannel file that can link several systems together for
data transfers on a HYPERchannel network is requested.

oDT An operator display terminal (ODT) file that allows information to
be sent to an ODT or received from an ODT is requested.

PORT A port file that is capable of interprocess communication is
requested.

PRINTER A printer file is requested.

Note: The contents of this file are normally spooled by the
operating system rather than opening the device directly.

READER A card reader file is requested.

Note: The contents of this file are normally spooled by the
operating system rather than opening the device directly.

REMOTE A remote file that allows the program to communicate with a
remote device.

TAPE A tape file is requested.

VIRTUAL An abstract file supported by an IOHANDLER library.

Note: The contents and attributes of this file are defined and
manipulated by a library known as an IOHANDLER, which is
outside the operating system. With respect to language
constructs, program access is the same as for other devices.

Specifying the Purpose of the File

If you want to create a file, set the NEWFILE attribute to TRUE. It is not necessary to set
NEWFILE to TRUE for printer files, since either one of these files always causes a new
file to be created. If you want to ensure that the file is only written to, assign the
FILEUSE attribute a value of OUT.

8600 0056-408 2-3

Understanding Programming for Files

If you want to access an existing file, set the NEWFILE attribute to FALSE. If you want to
access that file by using the record format information that is stored with the permanent
file, such as record size, set the DEPENDENTSPECS attribute to TRUE. If the logical file
you are defining is capable of having information either written to or read from the file,
and you want to restrict the use of the logical file to one or the other, assign the FILEUSE
attribute a value of OUT or IN.

Identifying How Data Is Transferred

You control how data is transferred to and from the user data area by assigning the
FRAMESIZE attribute one of the following values:

Value Number of Bits Transferred

4 Data is transferred in units of 4 bits or as hexadecimal characters. The
INTMODE value must be HEX. This value is not supported by Host Services
logical 1/O or FTAM.

8 Data is transferred in units of 8 bits. The INTMODE value must not be HEX,
BCL, or SINGLE because these INTMODE values do not have 8-bit characters.

48 Data is transferred in units of 48 bits or as full words. This value is compatible
with all values of INTMODE.

The following are the default values assigned to the INTMODE attribute by the language

compilers:
Language INTMODE Default Value
ALGOL EBCDIC
COBOL74 and EBCDIC if the first 01-level entry of the file is USAGE DISPLAY. HEX if
COBOLS8b the first 01-level entry of the file is USAGE COMP
Pascal Depends on the component type:
Component Type INTMODE Default Value
Packed array with 4-bit elements HEX
Packed array of characters EBCDIC or ASCII

depending on the setting
of the STRINGS compiler
control option

All other component types SINGLE

If you are programming for FTAM, refer to Section 9, “Accessing and Creating Files
Using Distributed File Services,” for information about assigning INTMODE values for an
FTAM file.

2-4 8600 0056-408

Understanding Programming for Files

Establishing a Record Format

The following information does not apply to port files or virtual files. Refer to Sections 13
through 29 for information about port file data transfer and to Section 30, “Understanding
Virtual Files,” for information about virtual file data handling.

In the MCP environment, you can create a file with the following record formats:

e Fixed-length unblocked records

e Fixed-length blocked records (for tape and disk)

e Fixed-length records, no blocks (for disk)

e Variable-length unblocked records

e Variable-length blocked records (for tape and disk)
e Variable-length records, no blocks (for disk)

e Byte streams (for tape and disk)

The BLOCKSTRUCTURE, MINRECSIZE, MAXRECSIZE, and BLOCKSIZE attributes are
used to define the record format for a file.

Byte streams are a fixed length, blocked with MAXRECSIZE = 1, and ANYSIZEIO =
TRUE.
Indicating the Record Size

Use the MINRECSIZE and MAXRECSIZE attributes to indicate the possible range of the
record sizes. If you are defining a fixed length record, do not give a value to the
MINRECSIZE attribute.

Table 2-2 shows the default value and maximum value for each type of device for the
MAXRECSIZE attribute.

Table 2-2. MAXRECSIZE Default and Maximum Values

Device Type Default Value Maximum Value
DISK 30 words 65535 FRAMESIZE units
oDbT 10 words 65535 FRAMESIZE units
REMOTE 12 words 1528 words
PRINTER 22 words
READER 14 words Same as default
TAPE 10 words

8600 0056-408 2-5

Understanding Programming for Files

Indicating the Size of the Blocks and Buffers

Grouping several physically adjacent records into one block reduces the I/O operation
time when reading and writing records, because a block of records is brought into
memory and then each record is made available to the program one at a time without
requiring a physical I/O operation. Because blocked disk files are handled differently from
other files, refer to Section 3, “Using Disk and CD-ROM Files in a Program,” for
information about handling blocks and buffering. To specify that you want to group your
records into a block, assign the BLOCKSIZE attribute a value that reflects a length that
can accommodate more than one record. Be aware that if the records are of variable
length, you can waste space if you do not give BLOCKSIZE a value larger than the
MAXRECSIZE value. When determining the block size, keep in mind that if you use large
blocks, the 1/0O operations are efficient, but your program is tying up a large amount of
main memory. On the other hand, if you use very small blocks, the I/O subsystem must
perform more |/O operations.

The BLOCKSIZE attribute value should be specified in terms of the FRAMESIZE attribute
value. If you are going to use Host Services logical I/O with this file, the BLOCKSIZE
attribute must be less than 65486 characters.

Indicating the Type of Variable-Length Record

2-6

In the MCP environment, there are five types of variable-length records. Each type
indicates the length of the record in a different way, and your program must have code
that supports the indicated type of variable-length record. You indicate the type of
variable-length record by using the BLOCKSTRUCTURE attribute.

Table 2-3 identifies the BLOCKSTRUCTURE mnemonics for the various types of

variable-length records, where or how the size information is stored or indicated, and
which distributed systems services (DSSs) support the type.

8600 0056-408

Understanding Programming for Files

Table 2-3. Possible BLOCKSTRUCTURE Values for Variable-Length

Records

NMnemonic Value

Length Information

Distributed Systems
Services (DSSs)

EXTERNAL

Neither the record itself nor the
structure of the file contains
information about the length of the
record. You must specify length
information externally in the I/O
statement, unless you are using
unblocked files. Refer to
“Understanding Record Length When
BLOCKSTRUCTURE Equals
EXTERNAL" later in this section for
information about using unblocked
files.

Host Services logical
I/O for unblocked files
and FTAM

LINKED

FORTRAN linked records. The link
words are maintained by the 1/O
subsystem and are not part of the
data. The INTMODE value of the file is
assumed to be SINGLE, and software
translation is never attempted.

None

VARIABLE

The record size is contained in the first
four characters or first word of the
record. The 1/O subsystem can
maintain the size field.

FTAM

VARIABLE2

The record size is contained in the first
two characters or first word of the
record.

None

VARIABLEOFFSET

The record size is contained in a fixed
location in the record. You specify the
location.

None

Understanding Record Length When BLOCKSTRUCTURE Equals

EXTERNAL

If you select the EXTERNAL value for BLOCKSTRUCTURE, consider the following
information as you program:

e |f your program reads unblocked tape files, port files, remote files, or ODT files, the
I/O subsystem determines the actual length of the record and returns the length
information through the CURRENTRECORDLENGTH and STATE attributes.

e |f your program reads a blocked file and specifies a record length that is longer than
the remainder of the block, the record is truncated at the end of the block.

8600 0056-408

Understanding Programming for Files

e If your program writes to a blocked file and specifies a record length that is longer
than the remainder of the block, a new block is started. If the file is a tape file, the
previous block is written as a short block.

Controlling the Size Field When BLOCKSTRUCTURE Equals
VARIABLE

If you select the VARIABLE value for BLOCKSTRUCTURE, either your program or the
system can be responsible for maintaining the size field of the record. If you want the
system to be responsible for determining the size of the records, set the SIZEVISIBLE
attribute to FALSE. When SIZEVISIBLE is FALSE, the record size field is not visible to the
program. Files can be created with the SIZEVISIBLE attribute set to TRUE, and then they
can be read or updated with the SIZEVISIBLE attribute set to FALSE, and vice versa.

2-8

When your program is responsible for maintaining the size field of the record, the first
four characters or the first word of each record contains a decimal or binary number that
indicates the number of FRAMESIZE characters in the record, including the size field
itself. The INTMODE attribute value controls the size field characteristics and the
maximum and minimum record size that can be used. Table 2-4 shows the size field

characteristics and maximum and minimum values.

Table 2-4. Size Field Information Based on INTMODE Value

INTMODE Place in Numeric Maximum Minimum
Value Record Representation Value Value
SINGLE First word Binary MAXRECSIZE MINRECSIZE
value value
OCTETSTRING First four A decimal 9999 4
octets number
represented in
EBCDIC
characters
All others First four A decimal 9999 4
characters number
represented in
INTMODE
characters

You must increase the values of MAXRECSIZE, MINRECSIZE, and BLOCKSIZE to
accommodate the size fields when you declare the values for these attributes.

If you set the SIZEVISIBLE attribute to FALSE, the 1/O subsystem maintains the size

field. The following information is important to know:

e When a WRITE operation is invoked, the size of the record is set to the length of the

data written.

8600 0056-408

Understanding Programming for Files

When a READ operation is invoked, the size of the record is returned in the logical
result descriptor and the CURRENTRECORDLENGTH attribute. Refer to the STATE
attribute in the File Attributes Reference Manual for the location of the information in
the logical result descriptor.

The MAXRECSIZE attribute cannot be larger than 9995.

The MAXRECSIZE, MINRECSIZE, and BLOCKSIZE you specified are adjusted upward
by the operating system to accommodate the record size field.

If you interrogate the MINRECSIZE and MAXRECSIZE attributes, the original values
that your program specified are returned rather than the adjusted values.

If you interrogate the BLOCKSIZE attribute, the adjusted block size is returned.

If you select the VARIABLEZ2 value for BLOCKSTRUCTURE, your program is responsible
for maintaining the size field of the record. Represent the size as a binary number. If the
INTMODE value is not SINGLE, the size information is in the first two characters of the
record. If the INTMODE value is SINGLE, the size information is in the first word of the
record.

Your program must define a record size that accommodates the size field.

8600 0056-408 2-9

Understanding Programming for Files

Controlling the Size Field When BLOCKSTRUCTURE Equals
VARIABLEOFFSET

If you select the VARIABLEOFFSET value for BLOCKSTRUCTURE, your program must
perform the following tasks:

e Specify how the size field information is recorded by assigning a value to the
SIZEMODE attribute. If the file you are defining is a disk or tape file, the value can be
different from the INTMODE value. For all other devices, the value cannot be
different from the INTMODE value.

The following mnemonic values are available for the SIZEMODE attribute:

NMnemonic Value Representation of Record Size
ASCII 8-bit decimal digits
EBCDIC 8-bit decimal digits
HEX 4-bit, packed decimal digits
SINGLE Binary

e Specify where the size field is stored in the record in SIZEMODE units by using the
SIZEOFFSET attribute. If you want the size field to start in the first position of the
record, you do not need to assign a value to the SIZEOFFSET attribute, because the
default is O (zero). For any other position, indicate how far into the record you want
the size field to be.

e Specify how long, in SIZEMODE units, the size field is by assigning a value to the
SIZE2 attribute. If you assign the SIZEMODE attribute a value of SINGLE, the SIZE2
value defaults to a value of 1. The size of the field has to be within the range defined
by the MINRECSIZE and MAXRECSIZE values.

Writing on a File with Variable Length Records

A program performing an update write on a file with variable length records that is either
blocked or has FILESTRUCTURE=STREAM wiill get a DATAERROR
(DIFFERENTLENGTHRECORDS error for COBOL85 programs) if the record being written
is not the same size as the record being replaced. The data in the file is not modified and
the current record pointer is moved to the next record. Therefore, the next serial read or
write operation is performed on the next record in the file. This behavior applies also to
COBOLS85 rewrite operations to unblocked files.

8600 0056-408

Understanding Programming for Files

Using Byte Files in a Program

The 1/O subsystem supports byte-oriented files, which are often referred to as stream
files. These files can be generated by a number of softwares, including FTP, NetWare,
and NX/Services on behalf of workstation users, and are commonly produced by a C
program using POSIX interfaces.

Some attributes vary based on the exact requirements of the file but in general the
following attribute values are required for a permanent disk byte file:
e BLOCKSTRUCTURE is FIXED.

e EXTMODE is a value, which reflects 8-bit characters (SINGLE, HEX and BCL are not
allowed).

e FILESTRUCTURE is STREAM.

e FILEORGANIZATION is NOTRESTRICTED.
o MAXRECSIZE is 1.

e FRAMESIZE is 8.

It is possible for an ALGOL program to produce a byte file by setting file attributes to the
appropriate values. The following attribute settings are required to open a file. Note that
the value required for some of the attributes is the default value and need not be
specified in the file declaration.

e ANYSIZEIO is TRUE.

e BLOCKSTRUCTURE is FIXED.

o FILEORGANIZATION is NOTRESTRICTED (default).
e FILESTRUCTURE is STREAM.

e FRAMESIZE is 8, or UNITS is not WORDS.

e [INTMODE and EXTMODE are values, which reflect 8 bit characters (SINGLE, HEX
and BCL are not allowed).

o MAXRECSIZE is 1.
e UPDATEFILE is FALSE (default).

Byte files differ in several ways from traditional files in the MCP environment (which are
record files). Record-files are traditional disk files. Record-files have MAXRECSIZE and
FRAMESIZE attributes that define their record layout. Examples of record files include
ALGOL source files, SEQDATA and DATA data files, and code files.

Byte files are randomly accessed sequences of bytes with no further structure imposed
upon them by the operating system. Byte-files are like the traditional file kinds on DOS
and UNIX machines. Byte-files do not have any record layout specified by file attributes.
They are sequences of bytes. The setting of MAXRECSIZE=1 and ANYSIZEIO=TRUE
enables /O operations to be of any length.

8600 0056-408 2-1

Understanding Programming for Files

If you are not familiar with basic programming methods, review those methods in this
section. You can identify all the file attributes that can be used with a byte file by
reviewing the attributes shown for disk files in Table A-1. You can also find more
information about any of the mentioned attributes in the File Attributes Reference
Manual.

Types of Byte Files

There are three distinct types of byte files. They can exist as “normal” files, stored on
disk along with a header and associated data areas. In addition, byte files are used for
permanent directories and to provide special kinds of files based on the POSIX
specification, namely FIFO files and files with the semantics of the /dev/null file. These
files have no associated data storage areas on disk. They function only as a disk header
that describes the attributes of the file. These files are distinguished from other byte files
by their FILEKIND values. The FILEKIND values of 232 through 240 are reserved for
POSIX special files, with 238 = DEVNULL and 240 = FIFO. The FILEKIND value of 190 is
reserved for permanent directories. The other values are not currently used.

To treat a permanent disk file as one of the special files, it must include the following
attributes in addition to the required attributes listed earlier:

e FILEKIND is FIFO or DEVNULL or PERMDIR.
e LASTRECORD is -1.

The following attribute settings must be used for the logical file:

o ALLOWSPECIALFILE is TRUE. (for FIFO and DEVNULL)
e The declaration does not specify a DIRECT file.

Permanent Directory Files

Permanent directories are files having security attributes that govern that can access
sub-directories and files at the next directory level. Permanent directories have no data
records, only a disk file header. Permanent directories can exist only in the permanent
directory namespace consisting of files whose name starts with the node *DIR.

Permanent directories are created using the WFL MKDIR statement, logical I/O when
FILEKIND is set to PERMDIR, and by Client Access Services on behalf of a workstation
user doing a make directory operation in an MCP share. Read and write operations to
permanent directories are not allowed.

2-12 8600 0056-408

Understanding Programming for Files

FIFO Files

FIFOs are files that have no data storage on disk. While a FIFO is open it will have a data
storage area in memory, which is used to implement a “first in first out” queue. Any
number of logical files may simultaneously have a given FIFO open. Each logical file may
have the FIFO open as read-only, write-only, or read/write.

Creating a FIFO

Most practical uses of a FIFO require that the FIFO be made permanent in the directory
before it can be used. This allows multiple independent processes to access the FIFO. If
you choose to do this, open a file with the required special byte file attribute values. In
addition, you must

e Set FILEKIND to FIFO.
e Set NEWFILE to TRUE.

e Set FILEUSE to IO.

e Create the FIFO as a permanent file, either by setting PROTECTION to SAVE, or by
closing the FIFO with LOCK.

The FIFO can also be created through use of the POSIX interface MKFIFO. See the
MCP/AS ALGOL and MCP Interfaces to POSIX Features Programming Reference
Manual for more information on creating FIFOs.

Opening a FIFO

Perform the following tasks before you open the file:

e Specify the required special byte file attributes listed earlier in this section.
e Set the value of FILEKIND to FIFO.

e Specify whether you are going to use the FIFO for input only, output only, or both
input and output by setting the FILEUSE attribute to IN, OUT, or 10.

e Set the value of NONBLOCK to provide the desired I/O action. (See the following
information.)

The action taken when a program opens a FIFO depends upon the setting of the
NONBLOCK attribute.

e |[f NONBLOCK is FALSE, an open for read-only will mark the physical file as open for
reading, but the open will not finish (i.e. return control to the invoker) until the
physical file is also open for writing. Likewise, if NONBLOCK is FALSE, an open for
write-only will mark the physical file as open for writing, but the open will not finish
(i.e. return control to the invoker) until the physical file is also open for reading.

e |[f NONBLOCK is TRUE, an open for read-only will mark the physical file as open for
reading, and the open will finish (for example, a return control to the invoker) even if
the physical file is not open for writing. If NONBLOCK is TRUE, an open for write-
only will mark the physical file as open for writing if and only if the physical file is also
open for reading. Otherwise, a NOFIFOREADERRSLT open error will result.

8600 0056-408 2-13

Understanding Programming for Files

Perform the following tasks before you open the file:

Set the value of FILEKIND to FIFO.

Specify whether you are going to use the FIFO for input only, output only or both
input and output by setting the FILEUSE attribute to IN, OUT, or 0.

FIFOs provide a mechanism to queue arbitrary sequences of bytes of data. Only serial
reads and serial writes are permitted for FIFOs. Bytes of data are presented to read
statements in the same order in which they arrived via write statements. Data written to
a FIFO by any given write statement is never interleaved with data written by another
write statement.

The semantics of read and write operations depend on the setting of the NONBLOCK file
attribute and the size of the operation. POSIX defines a value called PIPE_BUF, which in
the MCP environment is currently a value of 6144 (this value is available
programmatically as _PC_PIPE_BUF, using the POSIX_PATHCONF function).

If NONBLOCK is FALSE:

A write operation will not finish until all data has been written. If the number of bytes
to be written is less than or equal to PIPE_BUF, then the data will be placed into the
FIFO in a single operation. If the number of bytes to be written is greater than
PIPE_BUF, then the data will be placed into the FIFO in multiple pieces, which are
PIPE_BUF in length.

A read operation will complete as soon as data is available. No more than the
requested amount of data is read. If less than the requested amount of data is read,
a short block logical result will be returned. Note that no more data than PIPE_BUF
bytes is ever available for a single read.

If several programs are waiting to write to a FIFO, they will be serviced in the order
in which they were waiting. Likewise, if several programs are waiting to read from a
FIFO, they will be serviced in the order in which they were waiting. The exception is
that a program that is stopped by an operator “ST” or by a POSIX stop signal loses

its place in line.

If all writers and readers of a given FIFO specify the same data length, and that
length is less than or equal to PIPE_BUF, then the reads will return data in the same
chunks in which it was written.

Read and write operations are interruptible by POSIX signals while they are waiting
to transfer data (see the POSIX User’s Guide for a description of POSIX signals). In
that case the appropriate signal handler is invoked and the read or write operation
might return an exception. If no data has yet been transferred a CANCELED will be
returned; if data has been transferred then a short block logical result will be
returned. This action is dependent on the specifics of the defined action for the
signal; there are cases where signals will be ignored or where the task will resume
waiting to transfer data after handling the signal.

8600 0056-408

Understanding Programming for Files

If NONBLOCK is TRUE:

e A write operation with a requested length less than or equal to PIPE_BUF finishes
immediately if there is room in the FIFO for all of the data. Otherwise, the write
operation will return a NOBUFFERFORWRITE error.

o A write operation whose requested data length is greater than PIPE_BUF finishes
immediately if there is room in the FIFO for any data at all. As much data as fits will
be written; if all data does not fit then a short block logical result will be returned.

e Aread operation finishes immediately if any data is available. No more than the
requested amount of data is read. If less than the requested amount of data is read
then a short block logical result is returned. If no data is available, then the read wiill
return a NODATAFORREAD error.

A write operation will return an error (NOREADERS) if there are no readers. In addition, if
the invoking process is signal capable, a SIGPIPE signal will be sent to it. A read
operation will return an error (ENDOFFILE) if there are no writers.

The /dev/null File

The /dev/null file is a special kind of file intended primarily for use by POSIX programs.
This file has no storage on disk. It is created automatically when the DL ROOT ODT
command is entered.

The /dev/null file is used for file redirection. The POSIX semantics apply to the /dev/null
file. The data from any write to /dev/null is discarded, and any read from /dev/null will
return an ENDOFFILE error (no data is returned). The /dev/null file provides semantics
very similar to the logical file attribute DUMMYFILE.

Creating a File with /dev/null Semantics

A user can create a file with the same semantics as /dev/null. In addition to the required
special byte file attributes listed earlier, the FILEKIND must be set to DEVNULL.

8600 0056-408 2-15

Understanding Programming for Files

COBOLS85 Sample

The following COBOL85 example reads a DISK file of fixed length records and then
writes it as a byte stream file. When writing the file, each record is terminated with a
carriage-return and linefeed (CR-LF). Next the program reads the resulting file, displaying

its records at the REMOTE.

$$ RESET NOLIMITS
IDENTIFICATION DIVISION.
PROGRAM-ID. STREAM-EXAMPLE.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT IN-FILE ASSIGN TO DISK.
SELECT OUT-FILE ASSIGN TO DISK.
SELECT VF ASSIGN TO DISK.
SELECT REM ASSIGN TO REMOTE.
*
DATA DIVISION.
FILE SECTION.

FD IN-FILE
VALUE OF FILENAME IS "SOME/DISK/FILE"
DEPENDENTSPECS IS TRUE.
01 IN-REC.

03 IN-DATA PIC X OCCURS 1 TO 3000 DEPENDING ON REC-SIZE.

FD OUT-FILE
RECORD CONTAINS 1 TO 3000 CHARACTERS
VALUE OF FILENAME IS "SOME/STREAM/FILE"
FILESTRUCTURE IS STREAM
FILEORGANIZATION IS NOTRESTRICTED
BLOCKSTRUCTURE IS FIXED
FRAMESIZE IS 8
MAXRECSIZE IS1
MINRECSIZE IS1
ANYSIZEIO IS TRUE
NEWFILE IS TRUE
EXTMODE IS ASCII.
01 OUT-REC.

03 OUT-REC-DATA PIC X OCCURS 1 TO 3000
DEPENDING ON REC-SIZE-OUT.
01 OUT-REC-X.
03 OUT-REC-DATA-X PIC X OCCURS 1 TO 3000
DEPENDING ON CHAR-CNT.

FD VF
VALUE OF FILENAME IS "SOME/STREAM/FILE"
DEPENDENTSPECS IS TRUE
ANYSIZEIO IS TRUE.

8600 0056-408

Understanding Programming for Files

8600 0056-408

01

FD
01

WORKING-STORAGE SECTION.

77
77
77
77
77
77
77
77
77
77
77
77
77
77
77
01

01
01

*

VF-REC PIC X(3000).

REM.

REM-REC PIC X(80).

OUT-LEN
FRM-SIZE
REC-SIZE
REC-SIZE-OUT
REC-CNT
CHAR-CNT
EOF-INFILE
DISPLAY-FLAG
UNSTRING-CNT-OVERLAP
NEXT-UNSTRING
UNSTRING-START
UNSTRING-CNT
MOVED-CNT
MSG-LEN
DISPLAY-SIZE
DUMMY-REC.

REAL.

REAL.

REAL.

REAL.

REAL.

PIC 999 COMP.

PIC X VALUE "F".
PIC X VALUE "T".
REAL.

REAL.

REAL.

REAL.

REAL.

REAL.

REAL VALUE 80.

03 DUMMY-REC-R PIC X OCCURS 3000.
REC-ARRAY PIC X(3000).

REM-ARRAY.

03 REM-ARRAY-R PIC X OCCURS 80.

PROCEDURE DIVISION.
MAIN-PARA.

OPEN INPUT IN-FILE.

MOVE ATTRIBUTE MAXRECSIZE OF IN-FILE TO REC-SIZE.
MOVE ATTRIBUTE FRAMESIZE OF IN-FILE TO FRM-SIZE.
IF FRM-SIZE = 48 THEN

MULTIPLY REC-SIZE BY 6 GIVING REC-SIZE.

PERFORM CREATE-STREAM-FILE THRU CREATE-STREAM-FILE-EXIT.
We now have a STREAM file version of the DISK file to read

and display.

MOVE O TO REC-CNT.
OPEN INPUT VF.
OPEN OUTPUT REM.

Now read and display the STREAM file.

PERFORM READ-AND-DISPLAY-VF THRU READ-AND-DISPLAY-VF-EXIT.

Understanding Programming for Files

CLOSE VF.
CLOSE REM.

MAIN-PARA-EXIT.
STOP RUN.

CREATE-STREAM-FILE.
OPEN OUTPUT OUT-FILE.
COMPUTE REC-SIZE-OUT = REC-SIZE + 2.

CREATE-STREAM-LOOP.
PERFORM GET-NEXT-RECORD THRU GET-NEXT-RECORD-EXIT.
IF EOF-INFILE = "F" THEN
PERFORM FORMAT-FOR-STREAM THRU FORMAT-FOR-STREAM-EXIT
PERFORM WRITE-STREAM-RECORD THRU WRITE-STREAM-RECORD-EXIT
GO TO CREATE-STREAM-LOOP.

CREATE-STREAM-FILE-EXIT.
CLOSE OUT-FILE SAVE.

GET-NEXT-RECORD.
READ IN-FILE AT END MOVE "T" TO EOF-INFILE
NOT AT END
MOVE IN-REC TO DUMMY-REC.

GET-NEXT-RECORD-EXIT.
EXIT.

FORMAT-FOR-STREAM.
MOVE REC-SIZE-OUT TO CHAR-CNT
* Trim any trailing blanks and mark the end with CR-LF.
PERFORM UNTIL (CHAR-CNT = 0) OR
(DUMMY-REC-R(CHAR-CNT) NOT = " ")
SUBTRACT 1 FROM CHAR-CNT
END-PERFORM
MOVE @OD@ TO DUMMY-REC-R(CHAR-CNT + 1)
MOVE ©025@ TO DUMMY-REC-R(CHAR-CNT + 2)
ADD 2 TO CHAR-CNT.

FORMAT-FOR-STREAM-EXIT.
EXIT.

2-18 8600 0056-408

Understanding Programming for Files

8600 0056-408

WRITE-STREAM-RECORD.
* Now write the DISK file as a STREAM file.
MOVE DUMMY-REC TO OUT-REC
WRITE OUT-REC-X
ADD 1 TO REC-CNT.

WRITE-STREAM-RECORD-EXIT.
EXIT.

READ-AND-DISPLAY-VF.
PERFORM GET-NEXT-STREAM-REC THRU GET-NEXT-STREAM-REC-EXIT.
PERFORM REMOTE-DISPLAY THRU REMOTE-DISPLAY-EXIT.
IF DISPLAY-FLAG = "T"
GO TO READ-AND-DISPLAY-VF.

READ-AND-DISPLAY-VF-EXIT.
EXIT.

GET-NEXT-STREAM-REC.
READ VF
AT END
MOVE "F" TO DISPLAY-FLAG
IF UNSTRING-CNT-OVERLAP > O THEN
* Write any residue from previous overlap at end.
WRITE REM-REC FROM REM-ARRAY
MOVE O TO UNSTRING-CNT-OVERLAP
END-IF
NOT AT END
MOVE ATTRIBUTE CURRENTRECORDLENGTH OF VF TO MSG-LEN.

GET-NEXT-STREAM-REC-EXIT.
EXIT.

REMOTE-DISPLAY.
IF DISPLAY-FLAG = "T" THEN
MOVE VF-REC TO REC-ARRAY
MOVE 1 TO NEXT-UNSTRING
PERFORM WRITE-RECS-TO-REMOTE THRU
WRITE-RECS-TO-REMOTE-EXIT UNTIL MSG-LEN <= 0.
$$ SET OMIT = NOLIMITS
* Limit the volume of displayed output.
IF REC-CNT > 9 MOVE "F" TO DISPLAY-FLAG.
$$ POP OMIT

Understanding Programming for Files

REMOTE-DISPLAY-EXIT.
EXIT.

WRITE-RECS-TO-REMOTE.
MOVE O TO UNSTRING-CNT.
MOVE 0 TO MOVED-CNT.
MOVE NEXT-UNSTRING TO UNSTRING-START.
IF UNSTRING-CNT-OVERLAP > 0 THEN
The Tast time thru here we didn't write all the data,
because it was an incomplete record. Add new data to what
was left over for the next record we write.
UNSTRING REC-ARRAY
DELIMITED BY @O0D25@
INTO REM-ARRAY-R(UNSTRING-CNT-OVERLAP + 1)
COUNT IN MOVED-CNT
WITH POINTER NEXT-UNSTRING
COMPUTE MOVED-CNT = MOVED-CNT + UNSTRING-CNT-OVERLAP
MOVE O TO UNSTRING-CNT-OVERLAP
ELSE
MOVE SPACES TO REM-ARRAY
UNSTRING REC-ARRAY
DELIMITED BY @O0D25@
INTO REM-ARRAY
COUNT IN MOVED-CNT
WITH POINTER NEXT-UNSTRING.
* MOVED-CNT characters have been moved to REM-ARRAY.
* NEXT-UNSTRING is next position in source after UNSTRING,
following the delimiter(s).

SUBTRACT UNSTRING-START FROM NEXT-UNSTRING
GIVING UNSTRING-CNT.
* Decrement input message length by what we just consumed.
SUBTRACT UNSTRING-CNT FROM MSG-LEN.

IF MSG-LEN = 0 AND
MOVED-CNT < DISPLAY-SIZE THEN
This display record needs more data from the next READ to
make it complete.
MOVE MOVED-CNT TO UNSTRING-CNT-OVERLAP
ELSE
WRITE REM-REC FROM REM-ARRAY
ADD 1 TO REC-CNT.

WRITE-RECS-TO-REMOTE-EXIT.
EXIT.

END PROGRAM STREAM-EXAMPLE.

2-20 8600 0056-408

Understanding Programming for Files

Using a Dummy File

In certain situations you might want to test the logic of a program, but you do not want
to actually write to or read from a file. To identify such a file in your program, set the
DUMMYFILE attribute to TRUE. As a result, the logical file is not assigned to a
permanent file, no buffers are allocated, no I/O operations are performed, and all program
READ operations return an end-of-file indicator. You should not set DUMMYFILE to
TRUE if your program rereads records that have been written to the file in the current
program, because the records will not be there.

An alternative to using the DUMMYFILE attribute is available if you are using the POSIX
implementation. Disk files such as /dev/null, created by the DL ROOT system ODT
command with the FILEKIND attribute set to DEVNULL, have very similar properties to
logical files that specify a file with the DUMMYFILE value of TRUE.

Opening a File

Before a program can create data or access data contained in a physical file, an
association between the physical file and the program must be made. You make this
association by assigning a physical file to a logical file. An explicit OPEN statement does
not cause data to be transferred between logical and physical files, and the logical file
can be closed without any I/O operations being performed on the file.

Use the OPEN statement to accomplish the assignment task and to mark the logical file
as open. I/O statements such as READ and WRITE require the logical file to be open
before they can perform their functions. In some languages other than COBOL, a file can
be opened implicitly by the first I/O operation to the file. After the OPEN operation is
completed, the I/O statement is performed. In most cases, a physical file is assigned to
the logical file when the OPEN statement is performed.

You can use certain forms of the OPEN statement to conditionally open a file, so that a
logical file is opened only if a physical file satisfying specified matching criteria is found.
In addition, you can specify the initial positioning of the logical file.

In some languages, you can also request an OPEN statement to return a result indicating
that the OPEN operation was successful, or if the operation was unsuccessful, the
reason for the failure. For a listing of the possible OPEN results returned by the system,
refer to the File Attributes Reference Manual. If you do not request the result, the
system takes default actions for each result that would have been returned.

The following are examples of an OPEN statement in ALGOL, COBOL74, and COBOLS5:
ALGOL OPEN(F);

I := OPEN(SOURCE_FILE,AVAILABLE);

COBOL74 OPEN INPUT IN-FILE.
and
COBOLS85 OPEN EXTEND UPDATE-FILE.

8600 0056-408 2-21

Understanding Programming for Files

2-22

The rules of ALGOL require that you specify explicitly any necessary attribute values
before opening a file. In some other languages, compilers can generate object code that
assigns file attribute values without the programmer explicitly specifying them, in order
to accommodate the semantics of implicit or explicit OPEN statements for the file. This
is called an “implicit assignment.” The attributes commonly assigned implicitly are as
follows:

e MYUSE

e FILEUSE

o UPDATEFILE
e DIRECTION
e EXCLUSIVE
e NEWFILE

In addition, when using FORTRAN77, the following attributes may be assigned implicitly:

e PROTECTION
e DEPENDENTSPECS

In languages that use implicit assignments for these attributes, the compiler generates
code based on the expectation that you will not change the attributes it has set. Explicitly
assigning values to these attributes in these languages can interfere in unpredictable
ways with the proper execution of the program.

If a file is opened implicitly, or the value returned by the OPEN function is discarded and
an open error occurs, the program is terminated with the following error message:

FILE <title> OPEN ERROR: <error message>
All open errors are fatal unless the program has an error-handling routine to handle the
result of the OPEN operation. The open error message numbers that appear in the error

message or in the system log are different from the OPEN result numbers that you
would have received if your program interrogated the OPEN result.

8600 0056-408

Understanding Programming for Files

Determining the Existence or Availability of a File

In certain instances you might want to determine whether a file exists or is available
without causing your program to wait if the file is not present on the system. You can
use the following attributes for this task:

Interrogate the AVAILABLE attribute to determine if a file is present or can be
opened. If the file cannot be opened, a reason is returned, the program is not
suspended, and an operator does not have to answer a “NO FILE"” waiting message.

The AVAILABLE attribute can be used as an option of the OPEN statement in some
languages.

Interrogate the PRESENT attribute to determine if a file is open, and if the file is not
open, to try to open the file. If a disk file is open and is being used exclusively by
another program, the logical I/O subsystem waits until the disk file is closed and then
opens the file.

Interrogate the RESIDENT attribute to determine if a permanent file exists or if a
physical unit is available. TRUE is returned if a permanent file exists or a physical unit
is available. Interrogating this attribute does not open the file.

8600 0056-408 2-23

Understanding Programming for Files

Moving Data to and from a File

You are now ready to read data from your file, write data to your file, or both. Use the
READ and WRITE statements of your language to accomplish this task.

There are two major types of READ operations: serial and random. Use a serial READ
operation to obtain the data from the next record in the file. Use a random READ
operation to obtain the data from a specific record.

In some languages, you can also request in a READ statement that a result be returned
that indicates if the READ operation was successful, or if the operation was
unsuccessful, the reason for the failure. Refer to the File Attributes Reference Manual for
a listing of the possible I/O result enumerated values. If you do not request a result, the
system takes default actions for each result that would have been returned.

All READ errors are fatal unless the program has an error-handling routine to handle the
result of the READ operation. Your program is terminated if a fatal READ error is not
handled, and the following message is displayed:

FILE <title> I/0 ERROR: <error message>
The error message number in this message and the system log message number are
different from the result enumerated values that your program would have received if the

program had requested the result.

The following are examples of a serial READ statement and a random READ statement
in ALGOL, COBOL74, and COBOLS5:

ALGOL READ(F,90,A);

B := READ(IN_FILE[REC_NUM],IN RECORD SIZE,
INPUT_POINTER);

COBOL74 READ IN-FILE.
and
COBOLS85 MOVE NEXT-FILE-INDEX TO RANDOM-KEY.

READ RANDOM-FILE;
INVALID KEY GO TO DISPLAY-KEY-ERROR.

When a READ operation is initiated, data is transferred to your program from the buffer
in memory. If no more records are found in the buffer, or, in the case of a random read, if
the desired record is not in the buffer, the operating system does a physical READ
operation to the I/O device.

There are two major types of WRITE operations: serial and random. Use a serial WRITE

operation to place the data in the next record in the file. Use a random WRITE operation
to place the data in a specific record in the file.

2-24 8600 0056-408

Understanding Programming for Files

In some languages, the WRITE statement can request that a result be returned that
indicates if the WRITE operation was successful, or if the operation was unsuccessful,
the reason for the failure. Refer to the File Attributes Reference Manual for a listing of
the possible I/O results. If you do not request a result, the system takes default actions
for each result that would have been returned.

All WRITE errors are fatal unless the program has an error-handling routine to handle the
result of the WRITE operation. Your program is terminated if a fatal WRITE error is not
handled and the following message is displayed:

FILE <title> I/0 ERROR: <error message>
The error message number in this message and the system log message number are
different from the result enumerated values that your program would have received if the

program had requested the result.

The following are examples of a serial WRITE statement and a random WRITE statement
in ALGOL, COBOL74, and COBOLS8S:

ALGOL WRITE(F,90,A);

B :=WRITE(OUT FILE[REC_NUM],OUT RECORD SIZE,
OUTPUT _POINTER);

COBOL74 WRITE OUT-RECORD.
and
COBOLS85 MOVE EMPLOYEE-NUMBER TO UPDATE-KEY.

WRITE UPDATE-DATA;
INVALID KEY PERFORM HANDLE-INVALID-KEY.

When a WRITE operation is initiated, data is transferred from your program to the buffer
in memory. If the buffer is full, or in the case of a random WRITE, if the record does not
belong in the current buffer, the operating system does a physical WRITE operation to
the 1/O device.

The 1/O subsystem does extensive checking on physical I/O operations and translates
error and exception information into a result descriptor that you can interrogate. If the file
has more than one buffer, which is the usual case, and a logical I/O statement initiates a
physical I/O operation, the physical I/O operation is completed asynchronously with the
program. When a physical I/O operation is initiated, the buffers are rotated so that the
program can continue to use the next buffer. The error analysis for a physical WRITE
operation is performed when the buffer is rotated back to the top position, and therefore
is always behind the position of the logical file by the number of buffers the file has.
Because physical READ operations are initiated ahead of the logical file position in
anticipation of sequential reading, error analysis for physical READ operations matches
the logical file position.

The result descriptor is returned for each logical 1/O operation and is directly accessible in
some of the languages. You can also interrogate the STATE attribute to obtain
information about the last I/O operation. If you do not request a result, the system takes
default actions for each result that would have been returned.

8600 0056-408 2-25

Understanding Programming for Files

If the SYNCHRONIZE attribute value is OUT or you use the SYNCHRONIZE option in a
WRITE statement, you can determine which /O operations are causing the error.
Synchronous output causes the system to complete the 1/O operation before going on;
thus, you can determine where the error is occurring. However, using synchronous 1/O
processing is less efficient than using normal asynchronous buffer processing.

Certain styles of tape drives that have a long repositioning time (for example, the
HS8500) might experience a significant impact on performance when using synchronous
l/O.

Starting at a Particular Record

If you want to start processing records sequentially starting at a certain record without
transferring the information into your program at that time, use the SEEK statement. The
next serial /O operation reads or writes that record. You can request that a result be
returned indicating that the SEEK operation was successful, or if the operation was
unsuccessful, the reason for the failure. The value is returned in the same format as that
returned by the STATE attribute. For a description of the information returned, refer to
the STATE attribute in the File Attributes Reference Manual. If you do not request that a
result be returned, the system takes default actions for each result that would have been
returned.

The following examples, in ALGOL, COBOL74, and COBOLS85, show how to start at a
particular record:

ALGOL SEEK(F[0]);
R :=SEEK(F[SAVED_RECORD_NUMBER]);

SPACE(F,-1);

COBOL74 MOVE NEXT-KEY TO UPDATE-KEY.
and SEEK UPDATE-FILE.
COBOLS85

2-26 8600 0056-408

Understanding Programming for Files

Closing a File

Use the CLOSE statement to mark a logical file as closed. Generally, the physical file is
disassociated from the logical file when the CLOSE statement is performed, although an
option is provided to allow the association to be retained. You can also change the
disposition of the physical file. Some languages require the file to be closed before the
program is exited.

You can request that a result be returned that indicates whether the CLOSE operation
was successful, or if the operation was unsuccessful, the reason for failure. Refer to the
File Attributes Reference Manual for a list of CLOSE results.

All close errors are fatal unless the program accepts responsibility for handling the error
by referencing the value returned by the CLOSE operation.

If you do not request a result, the system takes default actions for each result that would
have been returned. If a file is closed implicitly, or if the value returned by the CLOSE
operation is discarded, and a close error occurs, the system terminates the program and
displays the following error message:

FILE <title> CLOSE ERROR: <error message>
The error message number in this message and the system log message number are
different from the CLOSE error message numbers that your program would have

received if the program had requested the result.

The following examples show how to use the CLOSE statement in ALGOL, COBOL74,
and COBOLSb:

ALGOL CLOSE(F) 3

CLOSE(F,CRUNCH) ;

CLOSE(F,REWIND) 3

COBOL74 CLOSE UPDATE-FILE.
and
COBOLS85 CLOSE OUT-FILE WITH SAVE.

8600 0056-408 2-27

Understanding Programming for Files

When a CLOSE statement is invoked, the MCP initiates the actions to be taken. Those
actions are based on the CLOSE operation requested by the program. The MCP gives an
incoming CLOSE operation three different identifiers.

MCP
Identifier Value Description

Type Regular The file is closed.

Reel The current reel is closed.

Dontwait Control is returned to the program as soon as
possible after the port file or subport file has

been updated to CLOSED, CLOSEPENDING,

or CLOSEREQUESTED.

Association Retain Physical file remains assigned to logical file.
The MCP changes the association from retain
to release if the disposition is rewind for a
tape file that has a FILESECTION file attribute
value greater than 1 or that is making a reel
switch.

Release Physical file is no longer assigned to logical
file.

Reserve The unit can be only assigned to this stack.
This association gets special handling for
FORTRANT77 file declarations.

Disable The logical file cannot be reassigned.

Disposition Rewind The file is rewound.

Lock The file is locked.

Save The MCP changes the disposition to lock for
disk files, and rewind for other files. For
foreign files, the disposition remains save, so
the foreign host can interpret the tape as it
wants.

No Rewind The file is not rewound.

Purge The file is purged.

Crunch The file is crunched.

Downsizearea If the file consists of one area, the area size is
reduced and the unused portion is returned to
the system. In other ways this value behaves
like Rewind. See additional conditions in the
following text.

Downsizearealock The file's behavior is the same as
downsizearea. The file is also locked.

2-28 8600 0056-408

Understanding Programming for Files

The following conditions must be met to reduce the area size of a file. If one condition is
not true, the downsize action is not performed and the close operation continues.

e The file is a disk file.

e The file consists of the first area only.

e The file has at least one record.

e The file's area size exceeds 60 sectors.

e The file is not crunched.

e The file's unused space exceeds 10 percent of the area size.

e The file is not opened by another logical file. If the file is opened by another logical
file, the downsize action is delayed until the last logical file is closed. If the close of
any of the logical files specifies crunch, then a crunch is done instead of a down size
area.

The area is downsized to the file's current size (last record) plus 10 percent or 60 sectors,
whichever is larger. If the file has a FILESTRUCTURE value of ALIGNED180 or
BLOCKED, then the area size is increased to be a multiple of the file's block size.

Tables 2-5 through 2-16 identify the type of CLOSE requested by the specified language

and the type, association, and disposition the MCP associates with the requested CLOSE
operation. The CLOSE operations that are unique to port files are not identified.

Table 2-5. COBOL85 CLOSE Statement Actions

Statement Option Type Association Disposition
REEL FOR REMOVAL Reel Release Rewind
UNIT FOR REMOVAL Reel Release Rewind
REEL Reel Retain Rewind
UNIT Reel Retain Rewind

Note: These options can be used only with tapes.

Table 2-6. COBOL85 CLOSE Statement Actions

Statement Option Type Association Disposition
Default Regular Retain Rewind
Default (Multifilet) Regular Reserve No Rewind
LOCK Regular Disable Lock
SAVE Regular Release Save

8600 0056-408 2-29

Understanding Programming for Files

2-30

Table 2-6. COBOL85 CLOSE Statement Actions

Statement Option Type Association Disposition
NO REWIND (Multifile) Regular Reserve No Rewind
Note: The MULTIPLE FILE
clause is used in I-O Control.
NO REWIND Regular Retain No Rewind
PURGE Regular Release Purge
RELEASE Regular Release Rewind
CRUNCH Regular Release Crunch
REMOVE Regular Release Save
REMOVE CRUNCH Regular Release Crunch
NO WAIT Dontwait Retain Rewind

Table 2-7. COBOL74 CLOSE Statement Actions

Statement Option Type Association Disposition
REEL FOR REMOVAL Reel Release Rewind
REEL Reel Retain Rewind
REEL (Multifile) Reel Reserve Rewind
Note: The MULTIPLE FILE
clause is used in I-O Control.
SAVE FOR REMOVAL Regular Release Lock
REEL SAVE FOR REMOVAL Reel Release Lock

Note: These options can be used only with tapes.

Table 2-8. COBOL74 CLOSE Statement Actions

Statement Option Type Association Disposition
Default Regular Retain Rewind
Default (Multifile) Regular Reserve No Rewind

Note: The MULTIPLE FILE

clause is used in I-O Control.

8600 0056-408

Understanding Programming for Files

Table 2-8. COBOL74 CLOSE Statement Actions

Statement Option Type Association Disposition
REEL (Multifile) Reel Reserve Rewind
Note: The MULTIPLE FILE
clause is used in I-O Control.
REEL LOCK Reel Disable Lock
LOCK Regular Disable Lock
SAVE Regular Release Save
NO REWIND (Multifile) Regular Reserve No Rewind
Note: The MULTIPLE FILE
clause is used in I-O Control.
NO REWIND Regular Retain No Rewind
PURGE Regular Release Purge
RELEASE Regular Release Rewind
CRUNCH Regular Release Crunch
REMOVE Regular Release Save
REMOVE CRUNCH Regular Release Crunch
NO WAIT Dontwait Retain Rewind

Table 2-9. Contents of Column 70 of the RPG File Description

Specification
Identifier Type Association Disposition
R: Remove Regular Release Save
C: Crunch Regular Release Crunch
K: Crunch and remove Regular Release Crunch

Note: Can be used only with disks.

Table 2-10. Contents of Column 70 of the RPG File Description

Specification
Identifier Type Association Disposition
P: Purge Regular Release Purge
U: Unload Regular Release Lock
2-31

8600 0056-408

Understanding Programming for Files

2-32

Table 2-10. Contents of Column 70 of the RPG File Description

Specification
Identifier Type Association Disposition

N: No Rewind Regular Retain No Rewind
Note: Can be
used only with
tapes.

Blank: If input disk that does Regular Release Rewind

not allow addition or deletion:

Regular

Blank: All other types of files: Regular Release Save

Unspecified

Table 2-11. Contents of the Result Field (Columns 43 through 48) of
the RPG Calculation Specification When CLOSE Is Present in Columns

28 Through 32

Contents of Column 43
Through 48 Type Association Disposition
Blank Regular Release Rewind
CRUNCH Regular Release Crunch
LOCK Regular Release Lock
NORWND Regular Retain No Rewind
PURGE Regular Release Purge
REEL Reel Retain Rewind
REWIND Regular Retain Rewind
Table 2-12. FORTRAN77 CLOSE Statement Actions

Statement Option Type Association Disposition
"CRUNCH" Regular Release Crunch
"DELETE" Regular Release Purge
"KEEP" Regular Release Lock
None, but the PROTECTION file Regular Release Purge
attribute value is TEMPORARY

8600 0056-408

Understanding Programming for Files

Table 2-12. FORTRAN77 CLOSE Statement Actions

Statement Option

Type

Association

Disposition

None, but the PROTECTION
value is SAVE or PROTECTED

Regular

Release

Lock

Table 2-13. FORTRAN77 CLOSE Actions without a CLOSE Statement

Statement Type Association Disposition
REWIND calls support library, which Regular Reserve Rewind
does SEEK]O0] if the file is a disk and
the BLOCKSTRUCTURE file attribute
value is not LINKED, otherwise the
file is closed with the identified type,
association, and disposition.
ENDFILE calls support library, which Regular Reserve No Rewind
opens the file if not already open and
the closes the file with the identified
type, association, and disposition.
Table 2-14. Pascal CLOSE Statement Actions

Statement Option Type Association Disposition
Default Regular Release Rewind
CRUNCH Regular Release Crunch
NOREWIND Regular Retain No Rewind
PURGE Regular Release Purge
RESERVE Regular Reserve No Rewind
SAVE Regular Release Save

Table 2-15. ALGOL CLOSE Statement Actions

Statement Option Type Association Disposition
Default Regular Release Rewind
* Regular Retain No Rewind
CRUNCH Regular Release Crunch
LOCK Regular Release Lock

8600 0056-408

2-33

Understanding Programming for Files

2-34

Table 2-15. ALGOL CLOSE Statement Actions

Statement Option Type Association Disposition
PURGE Regular Release Purge
REEL Reel Rewind
REWIND Regular Rewind
DONTWAIT Dontwait Rewind
DOWNSIZEAREA Regular Release Downsizearea
DOWNSIZEAREALOCK Regular Resease Downsizearealock

Table 2-16. ALGOL CLOSE Actions without a CLOSE Statement

Statement Type Association Disposition
LOCK (file name) Regular Release Lock
LOCK (file name, CRUNCH) Regular Release Crunch
REWIND (file name) Regular Retain Rewind

8600 0056-408

Understanding Programming for Files

Modifying an Attribute

You can modify the value of a file attribute, if allowed, for a particular purpose. You can
change the value under the conditions allowed for by any given file attribute. Some
attributes are not modifiable; they are read-only. Some attributes are modifiable only
while the file is closed, and some are modifiable only while the file is unassigned. The
attributes that are modifiable only while the file is closed are associated with the
structure of the logical file. The attributes that are modifiable only while the file is
unassigned are associated with the structure of the physical file or are used to specify
the matching criteria for assigning the physical file to the logical file.

You can use the following methods to modify an attribute in ALGOL, COBOL74, and

COBOLS8E:

ALGOL

COBOL74
and
COBOLS85

8600 0056-408

F.NEWFILE := TRUE;
REPLACE TEST FILE.FILENAME BY "TEST/PROGRAM.";
TERM.BLOCKSTRUCTURE := VALUE(EXTERNAL)

REPLACE PORTFILE(5).YOURNAME BY "YOU.";

CHANGE ATTRIBUTE DEPENDENTSPECS OF
IN-FILE TO VALUE TRUE.

CHANGE ATTRIBUTE FILENAME OF
OUT-FILE TO "OUTPUT/MASTER.".

CHANGE ATTRIBUTE BLOCKSTRUCTURE OF
TERMINAL-FILE TO VALUE EXTERNAL.

2-35

Understanding Programming for Files

Interrogating an Attribute

2-36

Many file attribute values are changed because of conditions that occur during an 1/O
operation. You can find out the current value of any given attribute by interrogating that
attribute. Based on the current value, your program can then use a specific procedure to
handle the current condition. You can interrogate most attributes at any time. However,
you can interrogate other attributes only under the following conditions:

o While the file is open. These attributes report part of the current state of the logical
file.

o While the file is assigned. These attributes report part of the current state of the
physical file.

Keep in mind that certain state-related file attribute values, such as LASTSUBFILE,
STATE, and CURRENTRECORDLENGTH, change with every /O operation performed on
the logical file. If the logical file is being accessed by more than one task, there is no
guarantee that the value of that file attribute when a given task interrogates the attribute
is the value resulting from the 1/O operation that the task invoked.

If you want to perform an I/O operation and then obtain information about that operation,
you must establish a method of ensuring that no other task can perform an I/O operation
on the logical file in the time interval between the I/O operation and the interrogation of
one or more state-related file attributes.

One method you can use to request information about an I/O operation invoked by a task
is to request the information in the I/O statement. For example, the following statement
returns the subfile index (the value obtained by interrogating the LASTSUBFILE attribute)
in INX and the result descriptor (the value obtained by interrogating the STATE attribute)
in B. The current record length is found in field [47:20] of the result descriptor.

B := READ (PORTF[SUBFILE INX:0], 72, IOBUF)

The following table lists a few of the general purpose file attributes that you can
interrogate:

Attribute Information Obtained

BUFFERS The number of buffers currently being used

CURRENTBLOCKLENGTH The size, in FRAMESIZE units, of the block currently
being used

CURRENTRECORDLENGTH The number of FRAMESIZE units in the last record
read or written

FILEEQUATED Indication of whether one or more file attributes have
been modified by file equation

IOCLOCKS The accumulated 1/O time for the file

NEXTRECORD The current position in the file

RESULTLIST A list of results caused by the most recent logical I/0

operation performed

8600 0056-408

Understanding Programming for Files

The following examples show syntax that can be used to interrogate a file attribute value
in ALGOL, COBOL74, and COBOLS8S:

ALGOL I:

F(2) .CENSUS;

B :

F.ATTERR;

REPLACE POINTER(TEST FILENAME) BY
TEST_FILE.FILENAME;

IF IN_FILE.BLOCKSTRUCTURE NEQ VALUE(FIXED) THEN
HANDLE VARIABLE FILE;

COBOL74 MOVE ATTRIBUTE CRUNCHED OF IN-FILE TO
and SAVE-CRUNCH.
COBOL8b

MOVE ATTRIBUTE FILENAME OF OUT-FILE TO
FILENAME-TEMP.

IF ATTRIBUTE BLOCKSTRUCTURE OF IN-FILE IS

NOT EQUAL TO VALUE FIXED
PERFORM HANDLE-VARIABLE-FILE.

Determining Attribute Conflicts

Sometimes you change attribute values to values that cannot be combined. As a result,
you receive an attribute error. You can detect attribute errors within your program by
using the ATTERR, ATTVALUE, and ATTYPE attributes.

Limiting Code File Execution

If you want only one copy of a code file to be executed, you can have the code within the
code file open a companion data file with the EXCLUSIVE attribute set to TRUE, or have
the code call a shared library that provides some form of exclusivity mechanism.

8600 0056-408 2-37

Understanding Programming for Files

Dealing with Translation

This guide uses the term translation to mean the process of replacing one data character
with a corresponding data character from another character representation, rather than
the process of expressing the meaning of a group of words written in one language in
another language.

When input data is, or output data must be, in a character set that cannot be processed
effectively by your program or cannot be manipulated efficiently by the system,
translation is necessary. The EXTMODE and INTMODE attribute values control whether
or not such translation occurs. If the two values identify different character sets, and if
the combination can be dealt with, translation is automatically initiated. Additionally,
translation can be requested if the EXTMODE and INTMODE values are the same.

The EXTMODE value represents the character set of the physical file, while the
INTMODE value represents the character set the program uses to manipulate the data.
Table 2-14 shows the acceptable translation combinations. If the EXTMODE value is
BINARY, translation can never occur.

Normally, when an existing physical file is opened, the EXTMODE value of the logical file
unconditionally assumes the EXTMODE value of the physical file. Using the
OVERRIDEEXTMODE attribute causes the logical file EXTMODE value to override the
EXTMODE of the physical file, thus causing the MCP to treat the physical file as though
it had the EXTMODE you specified. For more information on the effects of the
OVERRIDEEXTMODE attribute on file translation, see the File Attributes Reference
Manual.

Table 2-17. Possible EXTMODE and INTMODE Combinations

EXTMODE INTMODE
0| 2 3 4 5 7 8 9 10 11 n m [mm
ISOGENERALSTRING 7 N[- - - - N - - - - - . -
ISOGRAPHICSTRING 8 N[- - - - - N - - - - . -
ISOVISIBLESTRING 9 N[T - T T - - N T - T - -
IASTRING 10 N[T - T T - - T N - T - -
OCTETSTRING 11 N[- - - - - - - - N — - -

Note: FTAM-specific values.

2-38 8600 0056-408

Understanding Programming for Files

Table 2-18. Possible EXTMODE and INTMODE Combinations

EXTMODE INTMODE
o 2 3 4 5 7 8 9 10 1 n m [mm
SINGLE 1) N | N N N N N N N N N - -
HEX 2 N | N - Y Y - - T T - T - -
BCL 3 N | - N - - - - - - - - - -
EBCDIC 4 N|Y - N Y - - T T - T T -
ASCII 5 N|Y - Y N - - T T - T - -
Other 8-bit sets n N[T - T T - - T T - * T T
16-bit sets m - | - - T T - - - - - T ¥ T
Mixed multibyte sets mm| - [- - T T - - - - - T T *
Legend

- Invalid combination; an OPEN error is issued.

N Valid combination; no translation is performed.

Y Valid combination; translation occurs using the translate tables of the operating
system.

T Valid combination; translation is performed if the appropriate translation tables
are available in the CentralSupport library. If appropriate translation tables are
not available, an OPEN error is issued.

* If the INTMODE and EXTMODE values are the same, handled like an N;

otherwise, handled like a T.

For information about acceptable translation combinations for natural language character
sets identified as “Other 8-bit sets” in Table 2-14, refer to the MultiLingual System
Administration, Operations, and Programming Guide, and for information about
acceptable translation combinations for FTAM files, refer to “Using FTAM" in Section 9
of this guide.

8600 0056-408 2-39

Understanding Programming for Files

2-40

Translation cannot occur in the following situations:

e When the EXTMODE or INTMODE value is SINGLE.

e When the BLOCKSTRUCTURE value is LINKED or VARIABLEOFFSET, or the
FILETYPE value is 4 or 6.

e When the file is a direct I/O file.
e When a port file has a service other than BNANATIVESERVICE (Version 2 only).

e \When either character set is mixed multi-byte (mixed 8-bit and 16-bit with
FRAMESIZE = 8).

If you are creating the file, you can assign values to both attributes, but if you are
accessing a permanent file, the logical file EXTMODE value is overwritten by the
EXTMODE value of the permanent file.

When translation is occurring, the values of the AREALENGTH, BLOCKSIZE,
CURRENTBLOCKLENGTH, CURRENTRECORDLENGTH, MAXRECSIZE, and
MINRECSIZE attributes are returned in terms of the logical units of the file as defined by
the FRAMESIZE attribute. Data are processed by the /O subsystem in terms of logical
records, and both character- and word-oriented data transfers are allowed. In fact, the
whole process is transparent to the program.

When the character frame sizes differ between the internal mode and the external mode,
word-oriented data transfers require either contraction or expansion of the records;
hence, the logical and physical record and block sizes are not the same. For example, if a
file with an EXTMODE value of HEX were created with a physical record size of 5 words,
the translation of the 60 characters to 60 EBCDIC characters for a file with an INTMODE
value of EBCDIC would require 10 words in the logical record.

If you are a COBOL programmer, you should be aware that the value of the INTMODE
attribute is dependent on the order of the 01-level items under a File Description (FD)
entry. If two programs have the same record descriptions but the 01-level entries occur
in a different order, the compiler sets the INTMODE values differently and causes
translation to occur unexpectedly. For example, a first 01-level entry with USAGE
DISPLAY sets the INTMODE value to EBCDIC, and a first 01-level entry with USAGE
COMP sets the INTMODE value to HEX. Thus, make sure that the order of the 01-level
items is the same for all programs using a given file. The record descriptions can be
stored in a copy library file to ensure that all FD descriptions have the same order of
record declaration.

You can determine whether or not translation is occurring by interrogating the
TRANSLATING attribute. If the value is TRUE, translation is occurring. To specify that the
code in your program will perform any necessary translation, change the TRANSLATE
attribute value to USERTRANS. This action prevents the system from performing any
translation.

8600 0056-408

Understanding Programming for Files

In some languages, you can cause translation to occur by using translation tables that
you provide and by performing the following tasks:

e Declare the appropriate translation table in your program. The table must be the first
table in a list of translation tables or the only table in the declaration.

e |f the INTMODE and EXTMODE values are not forcing software translation to occur,
assign the TRANSLATE attribute a value of FORCESOFT.

e |f the translation is to be done as the records are being read, assign the INPUTTABLE
attribute the name of the translate table.

e |f the translation is to be done as the records are being written, assign the
OUTPUTTABLE attribute the name of the translate table.

Note: Each time the logical file is closed, the INPUTTABLE and OUTPUTTABLE values
are discarded.

Double-Byte and Mixed Multi-Byte Character Sets

Double-byte (16-bit) character sets and mixed multi-byte (mixed 8-bit and 16-bit with
FRAMESIZE = 8) character sets are implemented subject to the following rules and
restrictions:

e KIND must be DISK or PRINTER.

o |f KIND = PRINTER, BACKUPKIND must be DISK or PACK, BLOCKSTRUCTURE
must be FIXED, and INTMODE must equal EXTMODE.

e FILEORGANIZATION must be NOTRESTRICTED.

e When either INTMODE or EXTMODE specifies a mixed multi-byte character set,
translation can occur only when the file is a character-stream disk file. A
character-stream disk file is a character-oriented file with FILESTRUCTURE =
STREAM, ANYSIZEIO = TRUE, and MAXRECSIZE = 1. This type of file is also
referred to as a FILECLASS = CHARACTERSTREAM file.

e For the purposes of mixed multi-byte translation, the entire character-stream disk file
is treated as a single character string. Any escape into or out of a sub-character set
takes place across individual 1/0O statements and applies to the file as a whole.

¢ When mixed multi-byte translation is in effect, only serial I/O operations are
permitted, and the file must be used only for input or only for output, but not for both
input and output.

¢ No individual WRITE statements can transfer more than 32,767 bytes from the
record area of a program; an attempt to do so causes a data error result to be
returned to the program.

e BLOCKSTRUCTURE must be FIXED, VARIABLE, or EXTERNAL

If BLOCKSTRUCTURE = VARIABLE, the file must be character oriented

(UNITS = CHARACTERS), and the file must have 8-bit EBCDIC-based, ASCll-based,
UCS2, or UCS2NT characters. Refer to the MultiLingual System Administration,
Operations, and Programming Guide for more information about these character
sets.

8600 0056-408 2-41

Understanding Programming for Files

Host Services Logical (I/0) or FTAM File Services are not supported.
Binary 1/O is not supported.

Synchronous I/O is not supported.

Buffer sharing is not supported.

User-defined translate tables are not supported.

Understanding Logical File Visibility in the Multiple
Stack Situation

In most cases, only one stack can perform an operation on a logical file at a time, and
other stacks that attempt simultaneous operations wait until the current operation is
finished.

2-42

Understanding this concept is especially important when the operation being performed
can take an indefinite period of time to complete. Examples of such operations are

An OPEN or AWAITOPEN operation that can wait indefinitely for a file that is not
present or that is inaccessible for some other reason

A WRITE operation that might result in a reel switch (for tape files) or flow control
action (for port files)

To avoid waiting indefinitely on an operation

When opening files, use the AVAILABLE control option in your OPEN or
AWAITOPEN statement.

For port files, use the DONTWAIT control option in your I/O statements in ALGOL, or
the NO WAIT control option in your I/O statements in COBOL74.

8600 0056-408

Section 3
Using Disk and CD-ROM Files in a
Program

In the MCP environment disk files and compact disk files have different KIND file
attribute values. Files that reside on magnetic disk files are identified with the PACK
value and files that reside on CD-ROM media are identified with the CD value.

Files with a KIND Value of PACK or DISK

Disk files are stored on devices that have a storage medium that is identified by a family
name of up to 17 characters. These family names are associated with the medium by
using the RC (Reconfigure Disk) or LB (Relabel Pack) system commands. Some family
names point to a group of disks that are logically grouped together as a multidisk family.
Multidisk families allow your site to group large amounts of information together.

As your program writes records to a file, the disk subsystem places the records on the
tracks of the disk that are physically divided into portions known as sectors. Each sector
contains 30 words (180 bytes) and has a unique address that the system uses to identify
the location of the sector. A sector is the smallest portion that can be read from or
written to a disk.

Because storing all the records of a file in one contiguous sequence of sectors is not
necessarily an efficient use of disk space, the disk space is allocated in pieces known as
areas, which are allocated by the system as needed. Areas are allocated anywhere on a
disk unit family or on any one of the disk units of a multidisk family. Allocation of areas is
done on a rotational basis for a multidisk family, but a program can indicate that the areas
of a file be allocated on a specific disk unit within the multidisk family when the file is
created. Refer to “AREAS,” "AREALENGTH,"” “AREASIZE,"” "FILESTRUCTURE,”
"FLEXIBLE,” "LASTACCESSIBLEAREA,” "MAXRECSIZE,” and "MINRECSIZE" in the
File Attributes Reference Manual for more information about understanding disk file size
limits.

When the file becomes a permanent file, a disk file header describing the file is placed in
the disk directory. A disk directory resides on the base unit of a multidisk family, unless
the duplicate directories have been requested by using the DD (Directory Duplicate)
system command. When duplicated directories exist, the base unit is the first member of
the family containing a directory that the system is aware of when the family becomes
available.

8600 0056-408 3-1

Using Disk and CD-ROMI Files in a Program

3-2

A disk file can be differentiated from another disk file with the same file name by the
ANSI standard technique of recording a cycle and version for any file name. Different
iterations of a file that have the same cycle value are of the same genealogy.
Additionally, you can have multiple version numbers within a cycle. A file is said to have
the best genealogy when it has the highest cycle value and the highest version value
within the highest cycle. Only one file with the same name can be resident on a disk at
any one time, but other iterations can be saved on library maintenance tapes.

In the MCP environment, there are two methods of locating records on the physical disk.
One method groups records in blocks, whose size is defined by the program, and locates
these blocks on the disk at sector boundaries. Such a file is identified by a
FILESTRUCTURE attribute value of ALIGNED180 or BLOCKED. The other method allows
a continuous stream of records that are located on the disk without regard for sector or
area boundaries. Such a file is identified by a FILESTRUCTURE attribute value of
STREAM. The default value of the FILESTRUCTURE attribute is ALIGNED180.

Files with a FILESTRUCTURE value of STREAM make the best use of disk space and are
the easiest to use. However, they, as well as files with a FILESTRUCTURE value of
BLOCKED, do not support some of the features that are available for files with a
FILESTRUCTURE value of ALIGNED180. Refer to the discussion about the
FILESTRUCTURE attribute in “Creating a New Disk File"” later in this section for
information about these restrictions.

A program should not assume that data written by a non-DIRECT WRITE operation has
successfully reached the disk unless one of the following is true:

e The WRITE operation was a synchronous operation and a good result descriptor was
returned.

e The WRITE operation was followed later by a synchronous WRITE operation and
good result descriptors were returned for all the READ, WRITE, and SEEK operations
to the logical file starting with the subject WRITE operation and ending with the
synchronous WRITE operation.

e The WRITE operation was followed later by a CLOSE operation and good result
descriptors were returned for the CLOSE operation and for all the READ, WRITE, and
SEEK operations to the logical file starting with the subject WRITE operation and
ending with the CLOSE operation.

If you are not familiar with basic programming methods, review those methods in
Section 2, “Understanding Programming for Files,” before reading the following
procedures. You can identify all the file attributes that can be used with a disk file by
reviewing Table A-1. For more information about any of the file attributes, refer to the
File Attributes Reference Manual.

8600 0056-408

Using Disk and CD-ROMI Files in a Program

Creating a New Disk File

The task of creating a new disk file has been broken down into the following groupings:

Tasks that are required

Tasks that ensure file security

Tasks that define complex record structures
Tasks that allow for special handling of the file
Tasks that store information with the file

Tasks that create the file

Note: You can create additional copies of a disk with the Mirrored Disk feature. Refer
to the System Administration Guide for information.

Required Tasks

You should perform all of the following tasks:

Specify the KIND value as DISK. The default value is DONTCARE.

Indicate that the file is being created by setting the NEWFILE attribute value to
TRUE.

Determine on which family the new file should be placed.

If you want the physical file to have a name that is different from the internal name
of the file, specify the physical file name by using the FILENAME or TITLE attribute.

If you did not identify the family name of the disk that you want the file to reside on
in the TITLE attribute, identify the family by using the FAMILYNAME attribute. If you
did specify the family name by using the ON option, the KIND file attribute value is
now PACK. If you do not specify the family name, the I/O subsystem uses the
default value of DISK. If you use family substitution, the system can change the
family name to the family designated by the family specification.

If you want to create a file that contains a continuous stream of records that is not
divided into blocks, assign the FILESTRUCTURE attribute a value of STREAM. Such
files are easier to use than files with a FILESTRUCTURE value of ALIGNED180 or
BLOCKED and make the most use of disk space, but they do not support the
following features:

— Update I/O with synchronization

— Binary I/O

— A BLOCKSTRUCTURE value of LINKED

— A FILEORGANIZATION value other than the NOTRESTRICTED value
— Checkpoint or restart capabilities

— Duplicated files

— CANDE work files

8600 0056-408 3-3

Using Disk and CD-ROMI Files in a Program

3-4

The buffer size of a file with a FILESTRUCTURE value of STREAM is automatically
provided by the 1/O subsystem. You can modify the buffer size by using the
BUFFERSIZE attribute, but doing so is not normally recommended.

If you want to create a file that contains records that are grouped into a block of
records, assign the FILESTRUCTURE attribute a value of BLOCKED. The
FILESTRUCTURE default value is ALIGNED180. If you choose the BLOCKED value,
the following features are not supported:

— Update I/O with synchronization

— Binary I/O

— ABLOCKSTRUCTURE value of LINKED

— A FILEORGANIZATION value other than the NOTRESTRICTED value
— Checkpoint or restart capabilities

— Duplicated files

— CANDE work files

— Host Services logical I/O

Identify how the data is going to be transferred by using the FRAMESIZE attribute.
Refer to “Identifying How Data Is Transferred” in Section 2.

If you want an INTMODE attribute value other than the default value assumed by
your language, assign that value to INTMODE. Refer to “Identifying How Data Is
Transferred” in Section 2 for language default information. The INTMODE value is
assumed by the EXTMODE value. If the physical file must have a character encoding
set that is different from the INTMODE value, assign EXTMODE the appropriate
value. Refer to Table 2—-14 for possible EXTMODE and INTMODE combinations.

Identify the maximum size of any record by using the MAXRECSIZE attribute. You
should express the MAXRECSIZE value in terms of FRAMESIZE units. A disk file
defaults to 30 words.

If you chose to have a FILESTRUCTURE value of BLOCKED or ALIGNED180, and if
you want more than one record to be placed in a block, use the BLOCKSIZE
attribute. The value you assign is dependent on the type of records and should be
expressed in terms of FRAMESIZE units. If the records are variable-length records,
the value should be greater than the MAXRECSIZE value. If the records are fixed-
length records, the value should be a multiple of the MAXRECSIZE value. If you do
not assign a value to BLOCKSIZE, BLOCKSIZE assumes the MAXRECSIZE value and
only one record is put in each block.

If you chose a FILESTRUCTURE value of BLOCKED, the buffer size in memory that
is used by the physical I/O operation is dependent on the BUFFERSIZE attribute
value. The default value for the BUFFERSIZE attribute is usually appropriate for most
users. You can choose a BLOCKSIZE value that groups a certain number of records
together, but be aware that more than one block of records can be read into the
buffer that is controlled by the BUFFERSIZE attribute.

If you chose a FILESTRUCTURE value of ALIGNED180 or accepted ALIGNED180 as
the default value and the file resides on VSS-2 disks, write operations to the file can
be optimized by setting the MAXRECSIZE or BLOCKSIZE attributes to span an even
number of 30-word disk sectors.

8600 0056-408

Using Disk and CD-ROMI Files in a Program

If you chose to use the default FILESTRUCTURE value of ALIGNED180, the buffer
size in memory is dependent on the BLOCKSIZE value. Keep the following
information in mind as you determine what the BLOCKSIZE value should be:

— If you use large blocks, the I/O operations are efficient, but your program is tying
up a large amount of main memory.

— If you use very small blocks, the I/O subsystem must perform more 1/O
operations.

— If you are going to use Host Services logical I/O with this file, the BLOCKSIZE
attribute must be less than 65486 characters.

e When a new disk file is created if the specified value of the AREAS file attribute
exceeds the number of areas occupied by a file with the largest possible end-of-file
and the same area length, the value of AREAS is reduced.

Use the LASTACCESSIBLEAREA attribute to determine the highest area number
accessible in an open disk file. Refer to “AREAS” and “LASTACCESSIBLEAREA" in
the File Attributes Reference Manual for more information.

If you want to control the size of an area rather than use the default size, specify a
value for the AREALENGTH attribute. This attribute should not be modified for files
with a FILESTRUCTURE value of STREAM or BLOCKED, unless the program has
special requirements. The value you specify should be in FRAMESIZE units and
cannot be larger than 16777215 sectors. When deciding the value for the
AREALENGTH attribute take into account the following:

— Areas that are too small limit the number of records in the file because of the
limit on the number of areas.

— Areas that are too large make it more difficult for the system to find the
contiguous disk sectors needed to store each area.

The following default values for the AREALENGTH attribute are based on the
FILESTRUCTURE value of the file:

FILESTRUCTURE Value AREALENGTH Default Value

ALIGNED180 The MAXRECSIZE value multiplied by 1000 and
rounded up so the value is also a multiple of the
BLOCKSIZE value.

BLOCKED A multiple of BLOCKSIZE closest to but not exceeding
184320 bytes, or BLOCKSIZE if BLOCKSIZE exceeds
184320.

STREAM A multiple of MAXRECSIZE closest to but not

exceeding 184320 bytes, or MAXRECSIZE if
MAXRECSIZE exceeds 184320 bytes.

8600 0056-408 3-5

Using Disk and CD-ROMI Files in a Program

Complex Record Tasks

You should perform the following tasks if you want your file to have complex record
structures, such as variable-length records.

e To establish a complex record format, refer to “Establishing a Record Format” in
Section 2.

e |f you want the file to be accessed in a certain manner, use the FILEORGANIZATION
attribute. The following are the mnemonic values that you can select from:

NMnemonic Value Meaning

KEYEDIOII The physical file is created as a KEYEDIOII data file, and it is
implemented through the KEYEDIOII library. For information
about KEYEDIOII, refer to the KEYEDIOII Reference Manual.

KEYEDIOIISET The physical file is created as a KEYEDIOII index file, and it is
implemented through the KEYEDIOII library. For information
about KEYEDIOII, refer to the KEYEDIOII Reference Manual.

NOTRESTRICTED No restrictions are applied. This is the default value.

RELATIVE The file has a relative file organization. This organization is
derived from COBOL74.

e You can indicate the internal structure of the records of a file by assigning a value to
FILEKIND. For example, files with a FILEKIND value of ALGOLSYMBOL are
expected to contain properly formatted ALGOL source program records. If you do
not specify a FILEKIND value, a value of DATA is used. Refer to the FILEKIND
attribute in the File Attributes Reference Manual for an entire list of values.

Special Requirement Tasks

Consider performing the following tasks if you have special requirements:
e |f you want the system to assign a unique file name every time the file is opened, do
the following:

— Specify the displayable character that identifies the variable information in the file
name with the UNIQUETOKEN file attribute.

— Specify a FILENAME value that includes the displayable character followed by a
keyword that identifies the system-supplied character string that should be
inserted.

Refer to the FILENAME attribute in the File Attributes Reference Manual for more
information.

e |f you want your logical file to share buffers with another logical file, refer to “Sharing
Buffers with Other Files” later in this section for instructions.

3-6 8600 0056-408

Using Disk and CD-ROMI Files in a Program

If you know that the file will require more than 20 areas, the default, indicate the
number of areas that the 1/O subsystem can allocate by using the AREAS attribute.
You can specify up to 15000 areas. Normally, the system adds more areas to the file,
as they are needed. However, if you do not want the file to contain more areas than
you specified with the AREAS attribute, set the FLEXIBLE attribute to FALSE. The
FLEXIBLE attribute value is not stored with the file, so any updating programs that
use the file must have the FLEXIBLE attribute set to FALSE, also.

When the file is created, the number of areas you designated in the AREAS attribute
is not automatically allocated. Instead, the system leaves an empty entry in the disk

file header for each possible area. Then, as the system allocates an area to the file, it
places the address of the area in the header.

If you want to specify whether POSIX or native MCP environment rules are to be
used in searching for an existing file or creating a new file, use the SEARCHRULE file
attribute. Refer to the File Attributes Reference Manual for details on the
SEARCHRULE file attribute.

You can protect your disk file in two ways by using the PROTECTION attribute. The
following values are available:

Mnemonic Value Meaning
SAVE The file is entered into the disk directory immediately after
the file is opened, instead of when the file is closed with the
SAVE option.
PROTECTED The file is entered into the disk directory immediately after

the file is opened, and special action is taken to ensure that
the correct

end-of-file pointer is maintained across a system failure. If the
FILESTRUCTURE value of the file is STREAM, the end-of-file
marker is placed at the end of the disk sector that was last
written, even though the end of that sector might not be the
end of a record. Do not use this value if you have set the
SYNCHRONIZE attribute to OUT.

If you want to ensure that your disk file cannot be removed or replaced after it is
entered into the disk directory, and that the name of the file cannot be changed, set
the LOCKEDFILE file attribute to TRUE. A permanent file with a LOCKEDFILE value
of TRUE cannot be closed with the PURGE option unless you or a privileged user
change the LOCKEDFILE value to FALSE.

For multidisk families, the areas of the file are allocated on a rotating basis among
the members. You can modify this behavior in one of two ways:

— To place the file areas on a specific family member, identify the specific family
member number by using the FAMILYINDEX attribute. Be aware that restricting
allocation to a specific family member might make space more difficult to find.

— Toplace all the areas on a single family member selected by the system, set the
SINGLEUNIT attribute to TRUE.

8600 0056-408 3-7

Using Disk and CD-ROMI Files in a Program

3-8

If you want your program to force a physical WRITE operation to happen every time
a WRITE statement is invoked, and then to wait until the completion of the WRITE
operation to the physical file, assign the SYNCHRONIZE attribute a value of OUT.
Usually the data is written to disk in an asynchronous manner. Writing to a disk in a
synchronous manner ensures that data is written, but adds overhead. The
FILEORGANIZATION value of the file must be NOTRESTRICTED to use the
SYNCHRONIZE attribute. The value of the SYNCHRONIZE attribute is not stored
permanently with the file.

If you want your program to occasionally ensure that a WRITE operation has
completed before going on to the next instruction in the program, use a WRITE
statement with the SYNCHRONIZE option each time you want this behavior.

If you chose to set the FILESTRUCTURE value to STREAM and the
BLOCKSTRUCTURE value to FIXED, you might also want to indicate that the transfer
of any number of frames in a single 1/O operation is not constrained by the
MAXRECSIZE attribute. To do so, set the ANYSIZEIO attribute to TRUE. The
ANYSIZEIO value is not stored permanently with the file.

If your system is using cataloging and you want the file to be entered into the
system catalog, set the USECATALOG attribute to TRUE. If the USECATDEFAULT
system option is enabled, the default value of the USECATALOG attribute is TRUE.

If you want the file to have cycle and version information other than the default
values of 1 and 0 (zero), respectively, specify the desired values by using the CYCLE
and VERSION attributes. If you specify a value of 0 for the CYCLE attribute, the
values of the CYCLE and VERSION attributes are changed to their default values.

If you do not want your program to wait for disk space to become available when a
new area is allocated, set the NORESOURCEWAIT attribute to TRUE. The
NORESOURCEWAIT value is not stored permanently with the file. You should be
aware that the system waits, even if the value is TRUE, in the following situations:

— If the file is protected

— If atemporary file has been closed with a disposition of lock that causes sectors
to be required for the directory

— If the file is flexible, and directory sectors are required when increasing the
header

8600 0056-408

Using Disk and CD-ROMI Files in a Program

Information Storage Tasks

Consider performing the following tasks to store information that can be used by other

programs:

e |f the data of the file should be processed according to a specific coded character
set, or language or cultural rules, assign the CCSVERSION attribute a value. For more
information about the CCSVERSION attribute, refer to the File Attributes Reference
Manual. For information about the rules refer to the MultiLingual System
Administration, Operations, and Programming Guide. The following values are

available:
Mnemonic Value Meaning
ARABIC20 Arabic ccsversion (previously known as
“Version 20")
ASERIESNATIVE Default ccsversion
BRAZILIAN Brazilian ccsversion
CANADAEBCDIC CANALPHAT ccsversion
CANADAGP CANASUPPL ccsversion
CZECHOSLOVAKIA Czechoslovakia ccsversion
FRANCE French ccsversion
HUNGARIAN Hungarian ccsversion
LATINGREEK Latin-Greek ccsversion
NORWAY Norwegian ccsversion
POLISH Polish ccsversion
ROMANIAN Romanian ccsversion
RUSSIAN Russian ccsversion
SPANISH Spanish ccsversion
SWEDISH1 Swedish ccsversion
SWISS Swiss ccsversion
TURKISH Turkish ccsversion

e |f you want to store site- or application-specific information about the file in the file

header, use the USERINFO attribute.

e |f you want a certain amount of information to be printed out when the file you are
creating is printed out, use the NOTE attribute. You can store up to 250 characters.

e |f you want to store any software-release-specific information with the file, use the
RELEASEID attribute. You can store up to 250 characters.

8600 0056-408

Using Disk and CD-ROMI Files in a Program

Creating the File

After you have finished the preceding tasks that assign the various file attributes, you can
open the file. When you open the file, the system creates a disk file header for the file
and stores the values of the various permanent file attributes in the header. The system
also enters values automatically for other file attributes such as CREATIONDATE and
CREATIONTIME. Then you can write records to the new file. When you have finished
processing the file, you can close it so that it becomes a permanent file. The system
then updates the values of certain file attributes such as the FILELENGTH attribute, and
places the header in the flat directory of the disk if the file is closed with a disposition of
lock or crunch. Refer to Section 2, "Understanding Programsming for Files” for
information about closing files and their associated dispositions.

Accessing an Existing Disk File

Perform all or some of the following tasks, depending on the needs of your program:

e Assign the KIND attribute a value of DISK.
e Determine on which family the existing file resides.

e |f the physical file name is different from the internal file name of the file, specify the
physical file name by using the FILENAME or TITLE attribute.

e |f you did not identify the family name of the disk where the file resides in the TITLE
attribute, identify the name of the family where the file resides by using the
FAMILYNAME attribute. If you did specify the family name by using the ON option,
the KIND file attribute value is now PACK.

e Assign the NEWFILE attribute a value of FALSE.

e |If you want your logical file to share buffers with another logical file, refer to “Sharing
Buffers with Other Files” later in this section for instructions.

e |f you want to process the data in the character set of the physical file rather than
requesting translation to the character set of the logical file, assign the
DEPENDENTINTMODE attribute a value of TRUE. The default value is FALSE.

e [tis recommended that you set the DEPENDENTSPECS attribute value to TRUE,
unless you have a special reason to manipulate the records differently than the
creation program intended.

If you do not set DEPENDENTSPECS to TRUE and you specify a BLOCKSIZE,
MAXRECSIZE, or MINRECSIZE value for a file with any FILESTRUCTURE value that
is inconsistent with the values the file was created with, an OPEN error results.

e |f you want to access a specific cycle and version of the file, specify the appropriate
value in the CYCLE and VERSION attribute. If a file with the proper file name is not
online or does not exist, the system displays a “NO FILE"” message on the ODT.

If a file with the proper file name but the wrong CYCLE and VERSION values is
onling, the system displays an “UNMATCHED GENEALOGY" message on the ODT.

8600 0056-408

Using Disk and CD-ROMI Files in a Program

If you specify CYCLE but not VERSION, the system locates the generation with that
exact CYCLE value and the VERSION value equal to 0. If the generation that is online
does not have that CYCLE and VERSION, the system displays an “UNMATCHED
GENEALOGY" message on the ODT.

If no generation of the file is online, the system displays a “NO FILE” message on
the ODT.

If you do not specify CYCLE and VERSION when you want to access the file, the
system locates the generation that is online. If no generation of the file is onling, the
system displays a “NO FILE” message on the ODT.

e [f you want the file to be used by your program exclusively, set the EXCLUSIVE
attribute to TRUE. If another program is currently using the desired file, the 1/O
subsystem does not assign the file to your program until the other program closes
that file.

e |f you want your program to force a physical WRITE operation to happen every time
a WRITE statement is invoked, and then wait until the completion of the WRITE
operation to the physical file, assign the SYNCHRONIZE attribute a value of OUT.
Usually the data is written to disk in an asynchronous manner. Writing to a disk in a
synchronous manner ensures that data is written, but adds overhead. The
FILEORGANIZATION value of the file must be NOTRESTRICTED to use the
SYNCHRONIZE attribute.

If you want your program to occasionally ensure that a WRITE operation has
completed before going on to the next instruction in the program, use a WRITE
statement with the SYNCHRONIZE option each time you want this behavior.

e |f the FILESTRUCTURE value of the file is STREAM and the BLOCKSTRUCTURE
value is FIXED, you might also want to indicate that the transfer of any number of
frames in a single I/O operation is not constrained by the MAXRECSIZE attribute. To
indicate this, set the ANYSIZEIO attribute to TRUE.

o |f you want a serial WRITE operation to rewrite the changes made to the record that
was just serially read, set the UPDATEFILE attribute to TRUE. If you set
UPDATEFILE to TRUE when the FILESTRUCTURE value is STREAM or BLOCKED,
you prevent synchronization. If UPDATEFILE is not set to TRUE, the next serial
WRITE operation writes the changes to the next sequential record.

o |f your system uses cataloging, you can perform one or both of the following tasks.
Refer to the System Administration Guide for more information about cataloging.

— If you want the system catalog searched when the system is seeking a
permanent disk file, set the USECATALOG attribute to TRUE. If the
USECATDEFAULT system option is enabled, the value of USECATALOG defaults
to TRUE.

— If you want to select a copy of the file that does not have the latest time and
date, identify the copy by using the GENERATION attribute.

8600 0056-408 3-11

Using Disk and CD-ROMI Files in a Program

e [f you want to specify whether POSIX or native MCP environment rules are to be
used in searching for an existing file or creating a new file, use the SEARCHRULE file
attribute. Refer to the File Attributes Reference Manual for details on the
SEARCHRULE file attribute.

e |f you do not want your program to wait for disk space to become available when a
new area is allocated or an old area is activated, set the NORESOURCEWAIT
attribute to TRUE. Your program must be prepared to handle the no space error. You
should be aware that the system waits, even if the value is TRUE, in the following
situations:

— The file is protected.

— The file is flexible, and directory sectors are required when the header is
increased.

Obtaining Information about a Disk File

When your file is open, you can interrogate several attributes to obtain information about
the file. Tables 3-1 through 3-3 identify these attributes.

Table 3-1 identifies some attributes that might be of interest to you that have
information that remains constant while the file is open. Most attributes can be
interrogated.

Certain file attributes have values that are expressed in terms of blocks or provide some
information about blocks. These attributes include BLOCK, BLOCKSIZE, and
CURRENTBLOCK. For files with variable-length records, the attributes include AREASIZE
and LASTRECORD.

Interrogating these attributes for a file with a FILESTRUCTURE value of STREAM
produces an attribute error, because such files are not composed of blocks. Because it is
possible for a file of any FILESTRUCTURE value to be opened when DEPENDENTSPECS
equals TRUE or when FILETYPE equals 7 or 8, it is possible that an attribute inquiry
might function successfully for some files that the program might open. However, the
attribute inquiry might also produce an attribute error for other files.

A program that interrogates block-related attributes should interrogate the

FILESTRUCTURE attribute after the file is assigned, and then the program should avoid
interrogating block-related attributes if the FILESTRUCTURE value is STREAM.

3-12 8600 0056-408

Using Disk and CD-ROMI Files in a Program

Table 3-1. Constant Information Attributes

Attribute Information Received

ALTERDATE The date when the CLOSE operation was performed on the file
following some alteration to the data in the file.

ALTERTIME The time of day, in microseconds since midnight, when the
CLOSE operation was performed on the file following some
alteration to the data in the file.

AREALENGTH The number of FRAMESIZE units in each area.

AREAS The number of areas the physical file can have if the FLEXIBLE
value is FALSE. This value can change while the file is open if the
FLEXIBLE attribute value is TRUE.

AREASECTORS The number of physical disk sectors necessary to accommodate
one area of the file.

BUFFERSIZE The number of words in memory that each buffer area occupies.

CREATIONDATE

The date when the file was created.

CREATIONTIME

The time, in microseconds since midnight, when the file was
created.

CRUNCHED TRUE indicates that the disk file was closed with the CRUNCH
option. If the file was crunched to conserve space, the last
allocated area for the file was truncated.

FAMILYNAME The name of the family on which the file resides.

FILEKIND The internal structure and purpose of the records of the file.

FILELENGTH The length of the file in FRAMESIZE units at the time the file was
opened.

LOCKEDFILE TRUE indicates that the file cannot be removed or replaced, and
that its name cannot be changed.

RESTRICTED TRUE indicates that one of the following restrictions has been

placed on the file:

The unit on which the file resides was restricted by the RESTRICT
(Set Restrictions) system command.

The file itself was restricted by the RESTRICT system command.

The file is an existing file on a remote host, and the
HOSTSRESTRICTED option of the SECOPT system command is
set on the local host.

The file was created using Host Services logical I/O at a host with
the HOSTSRESTRICTED option of the SECOPT system command
set.

The file was copied from a restricted unit or volume.

The file was copied to a host that had SECOPT
HOSTSRESTRICTED set.

8600 0056-408

Using Disk and CD-ROMI Files in a Program

Table 3-1. Constant Information Attributes

Attribute Information Received

SECTORSIZE The size in bytes of the physical disk sector on the disk family
where the file resides.

SERIALNO The serial number of the base member of the disk family where
the file resides.

USEDATE The date when the file was last read from or written to by a user
program or, in the case of a code file, when the file was last
executed.

USETIME The time of day, in microseconds since midnight, when the file

was last read from or written to by a user program or, in the case
of a code file, when the file was last executed.

Table 3-2 identifies some of the attributes you can interrogate that contain values that
can change while the file is open.

Table 3-2. Changing Information Attributes

Attribute Information Received
AREAALLOCATED TRUE indicates that the specified area has been allocated.
LASTRECORD In most cases, the record number of the last record in the file,

calculated in terms of the blocking of the logical file. In the
following cases, the number of the last block is returned:

FILESTRUCTURE has a value of either ALIGNED180 or
BLOCKED, and the BLOCKSTRUCTURE attribute value is not
FIXED.

FILESTRUCTURE has a value of either ALIGNED180 or
BLOCKED, and the FILETYPE attribute value is not O (zero).

POPULATION The number of functions currently using the disk file header of
the file.

AREAADDRESS The physical disk address of an area of the file.

AREASINUSE The number of areas allocated for the file.

TIMESTAMP The header timestamp.

TOTALSECTORS The number of physical disk sectors currently assigned to the
file.

3-14 8600 0056-408

Using Disk and CD-ROMI Files in a Program

Table 3-3 identifies some of the attributes that you can interrogate after you invoke a
READ or WRITE statement to help you make decisions in your program.

Table 3-3. Attributes That Contain I/O Information

Attribute Information Received

BLOCK If the FILESTRUCTURE value is not STREAM, the number of the
block referenced in the last I/O statement.

RESULTLIST A list of results caused by the most recent logical I/O function
performed on the file.

IOINERROR TRUE indicates that a physical I/O error has occurred on the file.

In some instances, you might want a logical file in your program to share buffers with a
logical file or files in another program or programs that are accessing the same physical
file. This allows a change made by one member of the set of programs sharing buffers
for a given physical file to be immediately visible to other members of that set of
programs.

Notes:
e Direct files cannot share buffers.

e A checkpoint cannot be taken by a program that has an open file that is sharing
buffers.

The following steps enable you to accomplish this task:

o Specify a BUFFERSHARING file attribute value of SHARED or
EXCLUSIVELYSHARED. By specifying either of these values, you are indicating that
when this file is opened, you want the file to share a single set of buffers with other
logical files that are accessing the same physical file and have BUFFERSHARING
values of SHARED or EXCLUSIVELYSHARED.

If you specify SHARED, files with a BUFFERSHARING value of NONE can open the
same physical file, but those files each have unigue buffers for their I/O operations.

If you specify EXCLUSIVELYSHARED, only files with a BUFFERSHARING value of
SHARED or EXCLUSIVELYSHARED can open the physical file when your program
has the file opened. If a file with a BUFFERSHARING value of NONE has the file
open before your program opens the file, the OPEN operation waits until that file is
closed before completing the OPEN operation in your program for the file. If you do
not want your program to wait to open the file, use the AVAILABLE option of the
OPEN statement or interrogate the AVAILABLE file attribute. If the file can be
opened, the OPEN operation proceeds. If the file cannot be opened, an OPEN result
OPENWITHOUTBUFFERSHARINGRSLT (252) is returned.

e Specify a BLOCKSTRUCTURE file attribute value of FIXED. Other values are not valid
when sharing buffers.

e Specify a FILEORGANIZATION file attribute value of NOTRESTRICTED. Other values
are not valid when sharing buffers.

8600 0056-408 3-15

Using Disk and CD-ROMI Files in a Program

e Ensure that the BLOCKSIZE file attribute value is equal to the value stored in the disk
file header of the physical file.

Note: This condition is automatically true if a new file is being created or if the
DEPENDENTSPECS file attribute value is set to TRUE when an existing file is
opened.

e Ensure that the MAXRECSIZE file attribute value is equal to the value stored in the
disk file header of the physical file if the FILESTRUCTURE file attribute is BLOCKED.

Note: This condition is automatically true if a new file is being created or if the
DEPENDENTSPECS file attribute value is set to TRUE when an existing file is
opened.

e Set the APPEND file attribute to TRUE, if you want all WRITE operations to be
unconditionally appended to the end of the file. When APPEND is TRUE, the MCP
implicitly provides record locking on WRITE operations. This record locking ensures
that the WRITE operations are atomic with respect to WRITE operations done to the
same file by another task that has a file with the APPEND value set to TRUE, and the
BUFFERSHARING value set to SHARED or EXCLUSIVELYSHARED.

When a file is buffer sharing, unwritten file space added by writing beyond the end of the
file from the subject logical file is unconditionally scrubbed with zeros, as long as the
PROTECTION file attribute value is other than PROTECTED. As a result, setting the
CLEARAREAS file attribute to TRUE is not needed when buffer sharing, unless it is
required that unwritten file space added by, or in unwritten areas touched by, logical files
with a BUFFERSHARING value of NONE needs to be scrubbed with zeros.

Refer to the description of the BUFFERSHARING file attribute in the File Attributes
Reference Manual for more information.

Locking a Disk File on a Record-by-Record Basis

If more than one logical file is accessing and updating a single physical file, there is a
need to lock the file on a record basis. COBOLS85 provides statement constructs to
invoke disk file locking, but ALGOL and other languages do not.

To lock a file on a record-by-record basis using ALGOL or other languages, perform the
following steps:

e Specify SHARED or EXCLUSIVELYSHARED as the BUFFERSHARING file attribute
value.

e \Write code that uses the RECORDLOCKER procedure, which is a library entry point
exported from the MCP.

For information about the RECORDLOCKER procedure, refer to the MCP System
Interfaces Programming Reference Manual.

8600 0056-408

Using Disk and CD-ROMI Files in a Program

Securing Disk Files

This section addresses how to manage disk file security using either the POSIX or
traditional security models of the MCP environment.

In both security models, only a privileged user (or process) or the owner can change the
security of an existing file.
File Ownership

In most of the MCP environment file system, ownership of files is determined by the
name of the file. If the name of a file contains a usercode node, the file is owned by that
usercode; otherwise, it is (in effect) owned by non-usercoded (“*") processes.

The permanent directory namespace can be enabled on NX systems. This namespace
consists of the files named *DIR/=. Within this namespace, files can have an owner,
which is not part of the filename. You can determine the owner of a file by interrogating
the OWNER file attribute.

A non-usercoded process has substantially the same rights over non-usercoded (“*")
files as a process running under a usercode has over files owned by that usercode.

Securing Files Using the Traditional Security Model of the MICP
Environment

In the traditional security model, file security is based on the owner of the file and on
specific security attributes of the file.

Traditional Security Attributes

In the traditional security model, files are secured from nonprivileged, non-owner users
by assigning values to the following file attributes:

e SECURITYTYPE

e SECURITYGUARD

e SECURITYUSE

8600 0056-408 3-17

Using Disk and CD-ROMI Files in a Program

SECURITYTYPE

To specify the way nonprivileged users can access a file, assign one of the following
values to the SECURITYTYPE attribute:

NMnemonic Meaning
PRIVATE Only the owner can access the file.
PUBLIC All nonowner users can read, write, or execute the file, or do all three,

based on the value of the SECURITYUSE file attribute.

GUARDED Access by specific nonowner users is controlled by a guard file.

CONTROLLED Access by all users, including the owner, is controlled by a guard file.
(This value is invalid for Host Services logical 1/0.)

SECURITYUSE

To specify how a file protected with a SECURITYTYPE value of PUBLIC can be accessed
by nonprivileged users, assign the SECURITYUSE attribute one of the following values:

Mnemonic Meaning

IN Users and programs have read-only access to the source file, data
file, or code file. Code files can also be executed.

0] Users and programs have read and write access to the source file,
data file, and code file. Code files can also be executed.

ouT Users and programs have write-only access to the source file, data
file, and code file. Codes file can also be executed.

SECURED The code file can be executed only.

SECURITYGUARD

An alternative to granting read, write, or execute rights to all nonowner users is to grant
or deny access to individual users or programs. The SECURITYGUARD attribute specifies
the guard file to be used to limit access. If you set SECURITYTYPE to CONTROLLED or
GUARDED, you must specify a guard file.

For more information about the use of guard files, see the Security Features Guide.

Additional Information about Traditional File Security

The traditional security model is a subset of the POSIX security model. See the
description of the SECURITYMODE attribute in the File Attributes Reference Manual for
more information.

For more information about the interaction of secured files and processes, see the

Security Administration Guide. For more information about a specific security attribute,
see the description of the attribute in the File Attributes Reference Manual.

3-18 8600 0056-408

Using Disk and CD-ROMI Files in a Program

Securing Files Using the POSIX Security Model

The POSIX security model differs significantly from the traditional security model of the
MCP environment. The MCP environment provides security capabilities which are based
on the POSIX standards, but which extend it in various ways.

The traditional security model based file security on the file name and the
SECURITYTYPE, SECURITYUSE, and SECURITYGUARD attributes. POSIX file security is
based on the owner of the file and a series of file permission bits that are permanently
associated with the file.

The features of the POSIX security model apply to all files on the system; traditional file
security is implemented as a subset of the POSIX security model.

Note: Prior to the 44.2 release, any attempt to set the GROUP or SECURITYMODE
attributes while the ENABLEPOSIX system option is RESET resulted in a READONLY
attribute value. It is no longer necessary to set or reset the ENABLEPOSIX option to
control any functionality. The ENABLEPOSIX option will be deimplemented in a future
release.

A file can be associated with a group of users identified by a groupcode, as groups in
POSIX can also be granted or denied privileges to files. Thus, the ability of the user to
access a file depends not only on his or her own privileges, but the privileges granted to
any security groups to which the user belongs.

Determining Access to a File

When a file is opened, access to the file is determined by the owner, group, or other
security attribute:

e When the file is opened, the I/O subsystem first compares the value of the
USERCODE attribute of the process opening the file with the usercode of the owner
of the file. If they match (or if the file is a “*" file and the process is non-usercoded)
the OWNERRWX security subattribute is used.

e |f the usercodes do not match, the GROUP and ALTERNATEGROUPS file attributes
of the file (if any) are compared to the GROUPCODE task attribute of the process
and to the list of groupcodes in the SUPPLEMENTARYGROUPS task attribute of the
process. If any of the groupcodes of the file matches any of the groupcodes of the
task, the GROUPRWX and ALTERNATEGROUPS permissions for matching
groupcodes are merged to determine the access permissions.

e [f neither the usercodes nor the groupcodes match, the value of the OTHERRX
subattribute is used.

8600 0056-408 3-19

Using Disk and CD-ROMI Files in a Program

3-20

File Permission Bits

The file permission bits in a file are stored in the SECURITYMODE attribute of the file.
The attribute is broken into subattributes so values can be assigned to the subattribute,

or so individual bits can be set directly.

The following table lists the name and description of the owner, group, and other

subattributes:

Name Description

the owner of the file.

OWNERRWX The read, write and execute permissions that are granted to

the group associated with the file.

GROUPRWX The read, write, and execute permissions that are granted to

all other users of the system.

OTHERRWX The read, write and execute permissions that are granted to

Four additional bits are defined for implementing features analogous to the traditional

security attributes SECURITYUSE and SECURITYGUARD:

USERCODE of the owner of the file.

Name Description
GUARDOWNER If TRUE when USEGUARDFILE is TRUE, the guard file also
applies to the owner of the file.
USEGUARDFILE If TRUE, the guard file also defines access privileges to the
file.
SETUSERCODE If TRUE for a code file, the code file executes with a

GROUPCODE of the group of the file.

SETGROUPCODE If TRUE for a code file, the code file executes with a

Note: The SETUSERCODE and SETGROUPCODE flags can cause programs to behave
unexpectedly since they execute under a USERCODE and/or GROUPCODE that might

be different from that of the initiator.

The subattributes listed in the preceding two tables, along with additional bit masking
subattributes, are explained fully in the description of the SECURITYMODE file attribute

in the File Attributes Reference Manual.

8600 0056-408

Using Disk and CD-ROMI Files in a Program

The ALTERNATEGROUPS file attribute can be used to extend the capabilities of the
SECURITYMODE attribute by associating multiple groups with the file.

Caution

Mixing the use of the SECURITYTYPE and SECURITYUSE attributes with the
SECURITYMODE or ALTERNATEGROUPS attributes can produce unexpected
results and should be avoided.

Setting the SECURITYTYPE or SECURITYUSE attributes might cause the value of
SECURITYMODE to change.

Certain values of SECURITYMODE also do not map exactly back to SECURITYTYPE. For
example, the SECURITYMODE value of a file might have GROUPR and GROUPW set
(granting read and write permissions to the group), but no permissions set in
OTHERRWX. Interrogating SECURITYTYPE for this file would return a value of PUBLIC
even though the file is not accessible to all users of the system. In addition, the value of
SECURITYUSE that is returned would be 10 even though execute permission is not
granted.

For detailed information about the interaction of the POSIX and traditional security
models, see the description of SECURITYMODE in the File Attributes Reference Manual.
For more information about the interaction of secured files and processes, see the
Security Administration Guide.

When to Use the POSIX Security Model

Use the capabilities of the POSIX security model for specific files that need to be
accessible by a specific group of users or otherwise controlled using the specific
capabilities of the model.

If you have programs that propagate the security of other files, consider using the POSIX
security model so that security is propagated accurately.

File Security Propagation

In order to facilitate conversion of programs that propagate security from one file to
another, an MCPSUPPORT interface is provided that returns security information about a
specified file, including an indication as to whether the SECURITYMODE attribute or the
SECURITYTYPE and SECURITYUSE attributes should be used to propagate security.

8600 0056-408 3-21

Using Disk and CD-ROMI Files in a Program

Disk Files
The FILE_SECURITY procedure is declared as follows:

LIBRARY MCP (LIBACCESS=BYFUNCTION, FUNCTIONNAME="MCPSUPPORT");

INTEGER PROCEDURE FILE SECURITY INFO (F, MODE, TYPE, USE, GUARDED);

FILE Fs

INTEGER MODE,
TYPE,
USE,
GUARDED;

LIBRARY MCP;
The parameter F is a file that must be assigned to a disk file.

The procedure returns the following information:

Information Meaning

Procedure Result Indicates SECURITYMODE and related attributes are fully
supported by the MCP and can be set. Releases HMP 3.0
and SSR 44.2 and later always return this result.

Indicates SECURITYMODE and related attributes are
READONLY

A negative value indicates an error condition.

MODE The F.SECURITYMODE value (returned even if the MCP
does not support the SECURITYMODE file attribute)

TYPE The F.SECURITYTYPE value

USE The F.SECURITYUSE value

GUARDED Indicates that the SECURITYGUARD attribute is set

Indicates that the SECURITYGUARD attribute is not set

When the procedure returns a value of 1, security should be propagated by setting the
SECURITYMODE attribute of the file to which security is being propagated to the value
returned in MODE; otherwise SECURITYTYPE and SECURITYUSE should be set.

In some cases where SECURITYMODE is to be propagated, it might also be necessary
to propagate the value of the GROUP attribute.

3-22 8600 0056-408

Using Disk and CD-ROMI Files in a Program

Direct 1/O Files

The FILE_SECURITY_INFO_DIRECT procedure is provided for Direct I/O files. The
procedure is identical to FILE_SECURITY_INFO except that it takes a DIRECT FILE rather
than a disk file as a parameter.

Refer to the MCP System Interfaces Programming Reference Manual for more
information on these procedures.

Securing Allocated and Deallocated Disk Space

The following paragraphs describe the security of allocated and deallocated disk space:

Initializing Allocated Disk Space

If the disk area of a file is to be set to all zeros when the area is allocated to the file, set
the CLEARAREAS file attribute to TRUE.

If you are using the Security Accountability Facility, instead of setting the CLEARAREAS
attribute to TRUE, you can set the DISKSCRUB option of the SECOPT system command
to ensure that any data remaining in a disk area is “scrubbed” (removed) before the area
is reused.

Returning Deallocated Disk Space

If the current data in a disk space is to be removed when disk space is returned to the
system, set the SENSITIVEDATA file attribute to TRUE. Doing so causes the file to be
entered into the directory when the file is opened as if the PROTECTION attribute were
set to SAVE or PROTECTED, and the disk space to be overwritten with an arbitrary
pattern before the space is returned to the system for reallocation.

8600 0056-408 3-23

Using Disk and CD-ROMI Files in a Program

Files with a KIND Value of CD

Files that reside on a CD-ROM device have a KIND value of CD. The operating system
identifies the disk on a CD-ROM device by using the Volume Identifier of the disk that
was assigned by the creator of the disk.

All files that reside on a CD-ROM disk must be identified with a FILESTRUCTURE file
attribute value of STREAM.

If you are not familiar with basic programming methods, review those methods in
Section 2, “Understanding Programming for Files,” before reading the following
procedures. You can identify all the file attributes that can be used with a disk file by
reviewing Table A-1. For more information about any of the file attributes, refer to the
File Attributes Reference Manual.

Accessing a CD-ROM File

Perform all or some of the following tasks, depending on the needs of your program:
o |f the physical file name is different from the internal file name of the file, specify the
physical file name by using the FILENAME attribute.

e Specify where the file resides by using the FAMILYNAME attribute. If the file is on a
CD-ROM, use the Volume Identifier.

e Assign the KIND attribute a value of CD.
e Assign the NEWFILE attribute a value of FALSE.

e Because CD-ROM files always have an EXTMODE value of OCTETSTRING, which
requires the same value of INTMODE, assign the INTMODE attribute a value of
OCTETSTRING or assign the DEPENDENTINTMODE attribute a value of TRUE. The
default value is FALSE.

e Set the DEPENDENTSPECS attribute value to TRUE or assign the FILESTRUCTURE
attribute a value of STREAM.

Attempting to open a file with a FILESTRUCTURE value of STREAM with
inconsistent MAXRECSIZE values results in an OPEN error.

e Since most CD-ROM files have a MAXRECSIZE value of 1, set the ANYSIZEIO
attribute value to TRUE.

3-24 8600 0056-408

Using Disk and CD-ROMI Files in a Program

Obtaining Information about a CD-ROM File

When your file is open, you can interrogate several attributes to obtain information about
the file. Tables 3-4 and 3-5 identify these attributes.

Table 3—-4 identifies some attributes that might be of interest to you that have
information while the file is open. Most attributes can be interrogated.

Table 3-4. Information Attributes for CD-ROM

Attribute Information Received

BUFFERSIZE The number of words in memory that each buffer area occupies.

CREATIONDATE The date when the file was created.

CREATIONTIME The time, in microseconds since midnight, when the file was
created.

FAMILYNAME The name of the family on which the file resides.

FILELENGTH The length of the file in number of bytes.

LASTRECORD The record number of the last record in the file, calculated in
terms of the blocking of the logical file.

Table 3-5 identifies some of the attributes that you can interrogate after you invoke a
READ statement to help you make decisions in your program.

Table 3-5. CD-ROM Attributes That Contain 1/O Information

Attribute Information Received

RESULTLIST A list of results caused by the most recent logical I/O function
performed on the file.

IOINERROR TRUE indicates that a physical I/O error has occurred on the file.

8600 0056-408 3-25

Using Disk and CD-ROMI Files in a Program

I/O Timer Handling

3-26

The 1/O timer handling feature enables you to improve control over the timing of disk I/O
operations. By making use of the interfaces for this feature, you can improve the 1/O
response time of your applications when, for example, a disk malfunctions or excessive
I/O traffic induces unusually long queuing delays within a subsystem.

You might need to use I/O timer handling because of the characteristics of the high-
speed storage devices used on the system and the need for quick response time in a
time-critical, transaction-based environment. This feature is available only on channel-
based IOM systems, such as the ClearPath NX4600 and NX4800 systems and the A 11,
A 14, A16, A 18, and A 19 systems.

The 1/O timer handling feature provides your application with two interfaces to improve
control over the timing of disk READ and WRITE operations. The first interface specifies
the 1/O time limit that is used for disk READ and WRITE operations. The second
interface directs the MCP to return direct disk I/Os to their requesters as soon as
possible. The combination of these interfaces enables your application to have more
control over the maximum amount of time an I/O request takes. By using these
interfaces, you can improve the application response time for I/O operations that take an
unusually long time to complete.

This section contains information on

e How I/O requests are processed

o Why the elapsed time in processing an |/O request varies and can exceed the value
set with the IOTIMER system command

e How to determine the length of time an application should wait for an 1/O request

A variety of system software is involved in I/O timer handling, including

e |OCANCEL, IOMASK, and IORESULT attributes

e |OTIMER system command, which sets or queries time limit values

e SETSTATUS interface to set time limit values

o GETSTATUS and SYSTEMSTATUS interfaces, which query time limit values

e “OL" and “"PER PK" system commands displays, which provide time limit
information

e “MOVE PK" and “MIRROR CREATE" system commands, which copy the time limit
from the source pack to the destination pack

e Logging, which provide the time limit in effect for a unit
e Status Change Message, which informs applications of a time limit change

e PTD I/O time limit, which does not exceed a user-specified value

8600 0056-408

Using Disk and CD-ROMI Files in a Program

Other aspects of I/0 timer handling are explained in the manuals listed in the following

table:
For information on Refer to the

File attributes File Attributes Reference Manual

I/O TIMER and other system System Commands Reference Manual

commands

GETSTATUS and SETSTATUS 1/O timer GETSTATUS/SETSTATUS Reference Manual

interfaces

SYSTEMSTATUS requests SYSTEMSTATUS Programming Reference
Manual

System log and LOGANALYZER reports System Log Programming Reference Manual
and the System Software Utilities Manual

Status change message in the MCP System Interfaces Programming

STATUS_CHANGE_REPORT entry point Reference Manual

Understanding Time Limit Values

The following background information explains how the system uses the time limit value.
The explanation includes references to various components of the system. If you are
interested in more information on these system components, refer to the appropriate
Capabilities Overview manual.

The 1/O time limit value controls the amount of time that passes before the host decides
that an 1/O operation will not complete. The I/O time limit value is specified in the
input/output control block (IOCB) that is associated with the operation. The I/O time limit
value determines how long the input/output unit (IOU) will time an I/O operation from
when it is removed from the IOU unit queue until the result is received from the channel.

The following steps provide a conceptual overview of the logic used when the IOM
system processes an |/O request:

1. An application issues a disk Read or Write operation. Then it waits for the completion
of an event associated with the direct 1/O buffer.

2. The MCP builds an IOCB for the operation and passes the IOCB to the 10U for
normal execution. The IOU places the IOCB at the tail of the FIFO unit queue that is
maintained for the device. From this queue, |IOCBs are executed one at a time for
the target device.

3. Once the IOCB reaches the head of its queue, the IOU promotes it to active status
and gives it to the appropriate channel manager unit (CMU) for outboard execution.

4. The CMU passes the active 1/O request to the channel.
The channel passes the 1/O request to the disk subsystem.

6. The disk subsystem processes the I/O request and informs the channel when
processing finishes.

8600 0056-408 3-27

Using Disk and CD-ROMI Files in a Program

10.

11.

12.

13.

The channel informs the IOU when I/O processing finishes.

If the I/O request completes successfully without exception (including various
attention exceptions for MCP special action), the IOU

a. Promotes the next IOCB in the unit queue to active status
b. Applies a hardware finish action to the successful IOCB

Then processing continues.

If the 1/0 request completes as an exception, the IOU suspends processing of the
unit queue pending software resolution and returns the |IOCB to the MCP for
appropriate exception handling. Exception handling can include retries of /O
requests or special operations to condition the subsystem.

If an 1/O is to be retried, the IOU inserts the IOCB at the head of the queue before
the device is restarted or before a special forced execution of the IOCB is requested.
In either case, steps 3 through 8 are repeated until a resolution is reached. Examples
of resolution are

e Successful I/O completion
e The occurrence of an irrecoverable exception
e Exceeding the retry limit for the I/O request

When a resolution is reached, the device is restarted and the IOCB is returned to the
IOU for hardware finish. Note that an irrecoverable error can result.

So that the application can detect that the operation completed, the task control unit
(TCU) causes the I/O completion event associated with the IOCB as part of hardware
finish action.

The application resumes when the completion event associated with the direct I/0
buffer occurs. The application program then looks at the logical result associated
with the 1/O to determine if the 1/O operation was successful.

The MCP sets a time limit value in the IOCB before passing the IOCB to the IOU.
The 10U uses this value to control the length of time the IOCB can be outstanding to
the 1/0O subsystem. The IOU begins timing the IOCB when the IOCB is passed to
the CMU. If a result is not returned to the IOU within the specified time limit, the
IOU forces the IOCB to complete, then returns the IOCB to the MCP with a
Timelimit Exceeded exception result.

In the 1/O flow described in the previous list, the time limit specified in the IOCB controls
the time permitted to complete steps 3 through 7. The time limit does not include the
MCP initiation time or the IOU unit queue time. Each time the IOU passes an IOCB to
the CMU, it applies the time limit specified in the IOCB. This is the case whether the
IOCB time limit is applied to the original I/O request, an MCP retry of the 1/O request, or
an MCP special operation to condition the subsystem.

3-28

8600 0056-408

Using Disk and CD-ROMI Files in a Program

The time limit specified in the IOCB does not correspond to I/O elapsed time measured
by your application. In the I/O flow described previously, elapsed time refers to the time
needed to complete all 11 steps. Elapsed time for an I/O request begins when the
application issues the I/O request and ends when the application is notified that the I/O
has completed.

Elapsed time includes

e The time needed for the original 1/O
e The sum of all retries

e The sum of all processing overhead. Overhead might include initiation delays or
delays because of MCP handling of specific errors that required operator
intervention. Examples of errors that might include operator intervention include not
ready, write lockout, or no path errors.

The time limit value that the MCP stores in an IOCB for disk READ and WRITE
operations applies to all read and write operations of the affected units, such as user I/O
requests and MCP 1/O requests. The value specified is a global timer for the unit. No
interface exists that enables you to specify a time limit on an I/O request by I/O request
basis. This limit is used for each retry performed by the MCP when errors occur.

Default Time Limit Value

By default, the MCP specifies an 80-second time limit for all disk read and write
operations. If you do not use I/O timer handling, you cannot change this value. If you
use /O timer handling, you can specify one of the following values:

5 seconds

10 seconds
20 seconds
40 seconds
80 seconds

If you select a time limit less than 80 seconds, you override the system default. You
should choose a lower limit only if the default value is unacceptably long.

The system assigns an 80-second time limit because 80 seconds was determined to be
the best available value that ensures that the I/O subsystem has done all it can to issue
the 1/O request. If the 80-second time limit is exceeded, a part of the 1/O path between
the 10U and the subsystem is experiencing a hardware problem. If you reduce the time
limit too much, the /O request might have completed successfully if you had allowed
more time or you might prevent the system from detecting and handling the problem.

Effective use of the interface can shorten the elapsed time that an /O, which will
eventually time out, takes to complete because the amount of time the 10U allows the
subsystem to process the operation is shorter. Depending on the configuration of the 1/0O
subsystem, your site might be able to determine with certainty that a hardware problem
exists if an 1/O exceeds the shortened time limit. Therefore, shortening the time limit can
recognize a hardware problem early, thus reducing the maximum length of time the
system takes to handle the condition.

8600 0056-408 3-29

Using Disk and CD-ROMI Files in a Program

Range of Time Limit Value

3-30

The IOU uses the time limit value in the IOCB to determine the length of time an active
I/O can be outstanding to the CMU. The IOU uses an internal clock, which checks for
IOCB timeouts every 1.2 seconds. If the time limit specified in one of the active IOCBs
will expire during the current 1.2 second interval, the IOU takes the necessary action to
time out the I0CB.

Because the IOU checks for timeouts every 1.2 seconds, the time limit value in the IOCB
represents a 1.2-second range, not an absolute value. The amount of time the IOU gives
an individual IOCB depends on when during the 1.2 second interval the IOCB becomes
active. If the IOCB becomes active at the start of a new time-out checking interval, the
IOCB is given almost 1.2 seconds longer than an IOCB that becomes active just before
the end of the same interval.

The following table shows the range of time-out times of an IOCB based on the time
limit specified in the IOCB:

IOCB Time Minimum IOU Maximum IOU
Limit Timeout Range Timeout Range

5 4.8 6.0

10 9.6 10.8

20 19.2 20.4

40 39.6 40.8

80 79.2 80.4

For example, if your site changes the disk read and write timeout to 10 seconds, the IOU
allows the active IOCB to be outstanding to the CMU from 9.6 to 10.8 seconds before
initiating a Timelimit Exceeded action.

8600 0056-408

Using Disk and CD-ROMI Files in a Program

Limited Effect of Time Limit Value

Changing the time limit in the IOCB does not ensure that an I/O completes within a
predetermined length of time. The following list includes some of the factors that affect
the amount of time an I/O request takes, independent of the I/O time limit specified in an
IOCB:

e MCP initiation time
e |OU unit queue time

e Cumulative effect of time elapsed for MCP retries

e Delays due to MCP handling of errors that indicate that operator intervention is
required (for example, not ready, write lockout, no path errors)

o Delays caused by mirrored writes because of faulty set members

e System overhead, which occurs during the processing of a Timelimit Exceeded
exception

Returning an 1/0O Request As Soon As Possible

The I/O timer handling feature provides a direct /O interface to instruct the MCP to
return disk 1/0 requests to their requesters as soon as possible. The return occurs even
when an 1/O request would be successful if it was allowed to complete normally.
Because architectural factors can delay the return of the I/O request, the direct I/O
interface does not always return requests immediately.

The direct I/O programmatic interfaces include changes to the IOCANCEL, IOMASK, and
IORESULT attributes, which are described next.

Direct 1/0 Buffer Program Interface

The following direct I/O buffer attributes instruct the MCP to complete disk I/O requests
as soon as possible:

IOCANCEL Attribute

This attribute is enabled for disk files. If the IOCANCEL attribute is set to TRUE following
an 1/O request to a disk unit and the I/O request is in progress, the MCP is instructed to
return the I/O request with a User Cancel Result (see IORESULT). Other /O requests can
also be returned to their initiators as a result of setting IOCANCEL attribute to TRUE. See
the following description of the IOMASK attribute for details on the return of other I/0
requests.

8600 0056-408 3-31

Using Disk and CD-ROMI Files in a Program

IOMASK Attribute

Mask bit 13 is defined for use by disk files. If a direct I/O application sets this bit and
another direct I/O buffer uses the IOCANCEL attribute, the MCP might return the I/O
request as user canceled. An /O request that meets all the conditions required for
returning the I/O request is called a qualifying user-cancel-masked 1/O request. The
following conditions must apply for the MCP to return the masked I/O request as user
canceled.

e The direct I/O buffer for the IOCANCEL target I/O request and the direct I/O buffer
for the masked 1/O request must be declared by the same stack.

e Both I/O requests must be directed to the same disk unit.

e The masked I/O request must not be completed previously.

When an 1/O request is user canceled, its requester receives a User Cancel Result. See
the following description of the IORESULT attribute for an explanation of User Cancel
Result.

IORESULT Attribute

A User Cancel logical result bit (13) is defined for disk files. If an 1/O request is returned
because a direct I/O buffer set its IOCANCEL attribute, the IORESULT attribute has the
User Cancel (bit 13), Cancel (bit 2), and Exception (bit 0) bits set. This result, referred to
as the User Cancel Result, applies to the IOCANCEL target-I/O request and any qualifying
user-cancel-masked 1/O request.

Effects of the Direct I/O Attribute Program Interface

The following text describes the effects of the IOCANCEL, IOMASK, and IORESULT
direct I/O buffer attributes when the IOCANCEL attribute is set to TRUE for a disk file
buffer.

Nonmirrored Units

When the IOCANCEL attribute is set to TRUE for a direct I/O request issued to a
nonmirrored unit, the following process occurs:

e The unit queue affected by the I/O request is suspended and recalled.

e The recalled queue is searched for qualifying user-cancel-masked I/O requests. By
definition, the IOCANCEL target-I/O request always qualifies.

e Each qualifying I/O request is returned and its IORESULT attribute is set to the User
Cancel Result.

e The unit queue is restarted.

3-32 8600 0056-408

Using Disk and CD-ROMI Files in a Program

Mirrored Units

When the IOCANCEL attribute is set to TRUE for a direct I/O request issued to a
mirrored unit, the following process occurs:

e For each member of the mirrored set, the unit queue is suspended and recalled.

e Each recalled queue is searched for qualifying user-cancel-masked I/O requests. By
definition, the IOCANCEL target-I/O request always qualifies.

If an online set member has no qualifying IOCB queued, online members with a
qualifying IOCB queued are decommitted to audit.

If each of the online members has a qualifying IOCB queued, only the copy
determined to be best remains online; the remaining copies are decommitted to
audit. A copy is determined to be best if its topmost, qualifying IOCB has been
queued for the shortest amount of time.

Among the qualifying user operations, a mirrored WRITE operation is successfully
returned if completion occurs without exception to any set member remaining
online. Incomplete qualifying mirror READ operations, and qualifying mirror WRITE
operations that do not complete successfully to any member left online, are returned
with a User Cancel Result.

To restore set integrity as soon as possible, the MCP immediately begins to apply
audited write operations to the decommitted members. The MCP uses a visible
MIRROR_CREATE process for each member being restored.

e For each member of the mirrored set, the unit queue is restarted.

Once processing of the attribute completes, 1/O activity resumes on the affected
logical unit, with the exception of any mirror that was placed in the offline mirror
state. 1/O activity to these mirrors is automatically restarted after the audit is applied
by the MCP.

8600 0056-408 3-33

Using Disk and CD-ROMI Files in a Program

Factors Affecting “As Soon As Possible”

3-34

The following text discusses the factors that determine the length of time the system
needs to process the IOCANCEL request. As previously noted, the IOCANCEL interface
does not always return the requested I/O requests immediately; it returns it "as soon as
possible.”

The MCP must have control over an I/O request before it can return the /O request with
a User Cancel Result. When the IOCANCEL attribute for an active I/O request is set,
either the MCP or the IOU has control over the I/O request. The MCP does not have
control over the I/O request from the time that the MCP passes the IOCB to the IOU
until the 10U returns the IOCB. If the IOU has control over the I/O request, the MCP
issues these instructions to regain control of the 1/O request from the IOU:

1. The MCP instructs the 10U to stop processing I/O requests to the target device
when the active 1/O request completes.

2. The MCP instructs the IOU to return all the 1/O requests for the device that are
currently on the unit queue.

The active 1/O request from Step 1 is always given time to complete. Upon completion,
the 1/O request has either completed successfully or by exception. The amount of time
given to the I/O request is determined by the time limit contained in the IOCB. Since the
IOU starts timing when the 1/O request is passed to the CMU, the timer either could
expire immediately (if the I/O request is almost ready to time-out when Step 1 is
processed) or take the entire time limit specified in the IOCB (if the 1/O request is passed
to the CMU just before Step 1 is processed).

If the IOU times out the active I/O request, a maximum of 2.4 additional seconds might
be needed for the hardware to cleanly return the IOCB to the MCP with a Timelimit
Exceeded exception (IORESULT value of Timelimit Exceeded (bit 15) and Exception (bit
1)). Additionally, the MCP requires 4 to 12 seconds to recover from the time-out
condition. Therefore, if the default 80-second time limit is specified and the IOCANCEL
attribute is set to TRUE, the system might need a maximum of 94.8 seconds to return
the I/O request.

You can shorten the length of time it takes the system to return a qualifying IOCANCEL
I/O request by reducing the time limit applied to the operation. You cannot affect the
time required by the 10U (up to 2.4 seconds) or the MCP (up to 12 seconds). Therefore,
under normal operating conditions, the maximum amount of time the system needs to
return the IOCANCEL target I/O request is equal to the sum of the time limit specified in
the IOCB for the active 1/O request plus 14.4 seconds.

8600 0056-408

Using Disk and CD-ROMI Files in a Program

The following table shows the relationship between the IOCB time limit value and the
maximum wait time for a qualifying IOCANCEL 1/O request.

I0CB Time Maximum Possible 10U Possible MICP Maximum
Limit IOU Timer Overhead Overhead Wait Time

5 6 2.4 12 20.4

10 10.8 2.4 12 25.2

20 20.4 2.4 12 34.8

40 40.8 2.4 12 55.2

80 80.4 2.4 12 94.8

The Maximum Wait Time column represents the longest elapsed time an IOCANCEL
assignment statement can take to synchronously complete and return control to an
application. The value assumes a worst case for each of the timing windows applied to
the active I/O request. The actual time that an application waits could be much shorter.

Programming Considerations

The 1/O timer handling interface enables a direct I/O application to user-cancel a disk
READ or WRITE operation. The decision to user-cancel the operation often occurs after
a specified period of time elapses. After the I/O request is initiated, a WAIT statement
can specify this time period and an event associated with the I/O request.

Your application must specify the length of time to wait before user-canceling the 1/0
request. Several factors discussed earlier affect the amount of time an operation needs.
You must consider these four factors in deciding how long the application is to wait.

1. The maximum elapsed time that your application can tolerate.

2. The time limit contained in the IOCB of the active I/O request.

3. The IOU requirement of 0 to 2.4 seconds, and the MCP requirement of 4 to 12
seconds to recover from a time-out condition.

4. Application wait time before deciding to user-cancel the /O request.

The relationship of these four timer values is outlined by the following equation:

<maximum I/0 elapsed time> - <IOCB time Timit> - 14.4 = <wait time>;

(1) (2) (3) (4)

8600 0056-408 3-35

Using Disk and CD-ROMI Files in a Program

ltems 1, 2, and 4 are site specific. Item 3 is a constant value. You must set the
site-specific timer values to suit your needs. Consider the following examples:

Example 1

If your site requires that an I/O request is outstanding for 3 minutes or less (180
seconds), you can use the default IOCB time limit value and wait 85 seconds before
user-canceling the 1/O request:

<wait time>
85.2

<maximum I/0 elapsed time> - <IOCB time Timit> - 14.4
180 - 80.4 - 14.4

Example 2

If your site requires that an I/O request is outstanding for 30 seconds or less, you must
reduce the IOCB time limit to either 5 or 10 seconds, which results in a program wait
time of no more than 9.6 and 4.8 seconds, respectively:

<wait time>
9.6
4.8

<maximum I/0 elapsed time> - <IOCB time Timit> - 14.4
30 - 6 - 14.4
30 - 10.8 - 14.4

Notice that the greater the value permitted for maximum I/O elapsed time the more
flexible wait time and IOCB time limit can be (as in example 1). Whereas, the smaller the
value, the less flexible the other timers become (as in example 2).

If the WAIT statement completes because the time expires, the application can make
use of the IOCANCEL attribute to user cancel the I/O request. The actions taken as a
result of setting the IOCANCEL attribute are outlined in “Effects of the Direct I/O
Attribute Program Interface” earlier in this section.

The following sample pseudocode ensures that an I/O operation is returned within
30 seconds when the IOCB time limit is 10 seconds:

WRITE (<file>,<length>,<buffer>) [<event>];
RSLT := WAIT ((4.8),<event>);
IF RSLT EQL 1 THEN
BEGIN
<buffer>.I0CANCEL := TRUE;
WAIT (<event>);
IF BOOLEAN(<buffer>.IORESULT) THEN
IF <buffer>.IORESULT.[13:1] THEN
% 1/0 has been user-canceled.
ELSE
% Some other exception occurred.

he I/0 completed successfully before
eing user-canceled by the system.

o
o -

3-36 8600 0056-408

Using Disk and CD-ROMI Files in a Program

The pseudocode in the previous example works well if your application serially processes
one /O request at a time. It cannot be used, however, to ensure that more than one 1/O
request is returned within the same time period. Consider the following:

WRITE (<file>,<length>,<buffer_1>) [<event 1>];
WRITE (<file>,<length>,<buffer_2>) [<event 2>];
RSLT := WAIT ((4.8),<event_l>,<event 2>);
IF RSLT EQL 1 THEN
BEGIN
<buffer 1>.I0CANCEL := TRUE;
WAIT (<buffer 1>);
IF BOOLEAN(<buffer_1>.IORESULT) THEN
IF <buffer_1>.IORESULT.[13:1] THEN
% 1/0 has been user-canceled.
ELSE
% Some other exception occurred.
ELSE
% The I/0 completed successfully before
% being user-canceled by the system.
<buffer_2>.I0CANCEL := TRUE;
WAIT (<buffer 2>);
IF BOOLEAN(<buffer_2>.IORESULT) THEN
IF <buffer_2>.IORESULT.[13:1] THEN
% 1/0 has been user-canceled.
ELSE
% Some other exception occurred.

ELSE
% The I/0 completed successfully before
being user-canceled by the system.

[
%

END;

In the previous program example, neither buffer has the User Cancel IOMASK bit set, so
each IOCANCEL assignment statement affects only its own buffer. Since an IOCANCEL
assignment statement is handled synchronously by the system, the maximum elapsed
time of the I/O for buffer_2 can exceed 30 seconds. The maximum possible elapsed
time for buffer_2 is calculated as follows:

<maximum elapsed time> = <wait time> + <buffer 1 IOCB time Timit> + 14.4
+ <buffer 2 IOCB time Timit> + 14.4;

If you use the values from the example in the preceding text, the maximum elapsed time
is calculated as follows:

50.4 = 9.6 +6 + 14.4 + 6 + 14.4; % <IOCB time 1imit> of 5 seconds
55.2 = 4.8 + 10.8 + 14.4 + 10.8 + 14.4; % <IOCB time 1imit> of 10 seconds

8600 0056-408 3-37

Using Disk and CD-ROMI Files in a Program

The maximum elapsed time for buffer_2 exceeds 30 seconds because of the actions
taken for each IOCANCEL assignment statement. Each IOCANCEL assignment
statement results in the MCP recalling all I/O requests for this device from the 10U, user-
canceling the IOCANCEL target I/O request from the list of recalled I/O requests, and
reissuing the remaining I/O requests to the IOU. For each IOCANCEL statement
processed, the IOU does not return the outstanding 1/O requests until after the active 1/0O
request completes.

If your application issues more than one I/O request and requires the 1/O requests to be
completed in a specified length of time, the /O requests must be issued with the User
Cancel IOMASK bit set (13). Setting the User Cancel IOMASK bit causes any qualifying
user cancel masked I/O request to be returned with the IOCANCEL target I/O request.

<buffer 1>.IOMASK := * & 1 [13:1];
<buffer 2>.I0OMASK := * & 1 [13:1];
WRITE (<file>,<length>,<buffer_1>) [<event 1>];
WRITE (<file>,<length>,<buffer_2>) [<event 2>];
RSLT := WAIT ((4.8),<event l>,<event 2>);
IF RSLT EQL 1 THEN
BEGIN
<buffer_2>.I0CANCEL := TRUE;
WAIT (<buffer 1>);
IF BOOLEAN(<buffer_1>.IORESULT) THEN
IF <buffer_1>.IORESULT.[13:1] THEN
% 1/0 request has been user-canceled.
ELSE
% Some other exception occurred.

ELSE
% The I/0 completed successfully before being
% user-canceled by the system.

WAIT (<event 2>)
IF BOOLEAN(<buffer 2>.IORESULT) THEN
IF <buffer 2>.IORESULT.[13:1] THEN
% 1/0 request has been user-canceled.
ELSE
% Some other exception occurred.
ELSE
% The I/0 completed successfully before being
% user-canceled by the system.
END;

3-38 8600 0056-408

Using Disk and CD-ROMI Files in a Program

Because the User Cancel mask bit is set for both I/O requests before they are issued,
the IOCANCEL assignment statement can be made to either buffer. After the
IOCANCEL statement completes, the completion events associated with both 1/0
requests occur, enabling both I/O requests to be processed within the 30 seconds
required by the application.

Your application must wait on each completion event following the IOCANCEL
assignment statement. In general, this WAIT statement completes immediately, but you
must take precautions in case the event has not yet occurred. Completion is delayed only
if some external portion of the system is not functioning properly. For example, an
asynchronous finish action to log a User Cancel, or other exception result, is sometimes
necessary when an IOCANCEL assignment is made. If the finish action is delayed
because the MCP is unable to write to the LOG because of LOG unit errors, then causing
the 1/0 completion event is also delayed.

Mirrored Disk Considerations

In general, all members of a mirrored set use the same time limit. If you change the time
limit of a unit that is also a member of a mirrored set, the change applies to all the other
members of the set.

MIRROR CREATE System Command

The disk added into the mirrored set is given the same time limit value as the current set
members. The time limit of the set applies to the new member as it is being created. If
an error prevents the disk from becoming an online member of the set, the original time
limit value of the disk is restored.

MIRROR RELEASE System Command

A MIRROR RELEASE system command has no effect on the time limit assigned to the
remaining or released members of a mirrored set.

8600 0056-408 3-39

Using Disk and CD-ROMI Files in a Program

Logging Considerations

The system logs every request for a disk time-limit change. These requests appear in the
SUMLOG. The following examples show the format of log entries:

08:44:29 ->5993 OPERATOR ENTERED: IOTIMER PK 241-243 VALUE 10
08:44:30 ->5994 OPERATOR ENTERED: IOTIMER PK ALL VALUE DEFAULT
08:44:31 ->5995 OPERATOR ENTERED: IOTIMER PK SUBTYPE 50 VALUE 10

The Hardware Configuration report displays the read and write time-out value for each
disk contained in the report. The time-out values appear in the DISK R/W TIME-OUT
column. If the time-out value in effect is the default value, a lowercase d appears after
the time-out value. The following example show the format of the Hardware
Configuration report.

"d" AFTER DISK READ/WRITE TIME-OUT VALUE INDICATES MCP DEFAULT

UNIT TYPE (SUBTYPE & DENSITY) TIME-OUT
100 419-1 SCSI PACK 10
200 805-1 SCSI PACK 80 d

The analysis provided for a Timelimit Exceeded exception includes the time limit used by
the 10U to time the I/O request. The analysis appears in maintenance log reports and in
I/O summary reports. The format of the report is as follows:

I0 TIMED OUT (<value>)

where the value either can be the specified number of seconds (for example,
20 SECONDS,) or the word UNTIMED, which indicates the 1/O operation was issued as
an untimed 1/O request.

In the following IOSUMMARY report example, pack 800 had two I/O requests that timed
out while the time limit was 10 seconds. Then it had one I/O request that timed out while
the time limit was 80 seconds.

ERROR UNIT RESULT
COUNT TYPE UNIT # R/W ANALYSIS
PACK 800 W I0 TIMED OUT (10 SECONDS)
1 PACK 800 W I0 TIMED OUT (80 SECONDS)

3-40 8600 0056-408

Using Disk and CD-ROMI Files in a Program

System Interface Considerations

A program can monitor when a change in a time limit for a disk occurs by making use of
the STATUS_CHANGE_REQUEST procedure in the MCPSUPPORT library. Message
number 34 applies to time-out information. The change occurs for any of the following
conditions:

e The IOTIMER system command or the corresponding SETSTATUS call changes the
time-limit value

e Adisk is added to a mirrored set and the time limit in effect for the mirrored set
differs from that of the disk being added

e The disk is the destination pack of a MOVE PK command

Peripheral Test Driver (PTD) Considerations

The PACKSCAN PTD can be executed against an online pack. The 1/O operations issued
by the PACKSCAN PTD are interleaved with the read and write operations issued by
other applications. In general, the time limit assigned to PACKSCAN 1/O operations are
greater than the MCP default value for disk read and write operations.

The MCP checks whether a user-specified time limit is in effect for a disk before
assigning a time limit for a PTD 1/O operation. The MCP checks only the PTD I/O
operations that do not require exclusive use of the disk (for example, the disk does not
have to be reserved.) If a user-specified time limit is in effect, the lower value between
the user-specified and the PTD-specified time limit is used.

8600 0056-408 3-41

Using Disk and CD-ROMI Files in a Program

3-42 8600 0056-408

Section 4
Using Tape Files in a Program

The MCP systems support a wide range of tape devices such as reel-to-reel tapes and
half-inch cartridge tapes, 8mm and 4mm cartridge tapes. The I/O subsystem enables you
to read tapes of many different types, and to create both unlabeled and labeled tapes.

A single reel or cartridge is referred to as a volume. A volume can contain more than one
file, and a file can occupy more than one volume. A single-file single volume tape
contains one file on one volume, but the contents of a multivolume file are spread
across two or more volumes. As a programmer, you do not have to be concerned with
controlling when the file goes to another volume. The physical I/O subsystem and logical
I/O subsystem take care of the necessary tasks. Continuation volumes are assigned to a
medium that is compatible with the previous volume.

When two or more files reside on one volume, the tape is known as a multifile tape. A
multifile multivolume tape contains more than one file and part of a file that began on
another volume or begins on the current volume.

Although you can give a tape a file name of up to 12 nodes, ANSI standards allow only
two nodes to be placed in the tape label. If your file name has more than two nodes, the
I/O subsystem uses only the first and the last nodes. Thus, a tape file name of A/B/C/D is
stored in the tape label as A/D. When more than one file is on one volume, the first node
must be the same for all files on the volume, even if a file spans a number of physical
volumes. Additionally, no two files on a volume can have the same second node.

Any tape created has at least one tape mark to delimit the logical entities on the tape,
and the last valid data on a tape is followed by two tape marks.

A tape can be either labeled or unlabeled. A labeled tape has label records that contain
information needed to locate a specific file on the tape and a serial number that is initially
assigned by an operator using the SN (Serial Number) system command. Refer to the
System Operations Guide for information about using the SN command.

Each file on a labeled tape is preceded and followed by a set of label records. A tape
mark is used to separate the label records from the records of a file on the tape. Refer to
Appendix E, "Standard Tape Label Formats,” for information about the exact contents of
tape labels.

8600 0056-408 4-1

Using Tape Files in a Program

4-2

As a multifile multivolume tape is created, the creation date in HDR1 and EOF1 is
updated for each file on the volume. For example, FILE/1 is created on July 10, and it
goes to a second volume on July 11 where the file ends. FILE/2 is created and follows
FILE/1 on the second volume. FILE/1 (on reels one and two) has a creation date of July
10, and FILE/2 has a creation date of July 11.

An unlabeled volume has no label records and no serial number on the tape.

A file on the following tape drives cannot be accessed in the reverse direction, nor can a
block be rewritten in place:

e (CLU9710-36T, CTS5136, CTS5236, and OST5136
e CLU9710-DLT4, CLU9710-DLT7, and CLU9710-DLT8

e (CTS9840

e HS4400

e HS8500, HS8500C, HS8505
e ALP430

e ALP920

e FIPS 5073, USR5073 (only when compression is on)
Note: Extending a file whose last block is not full would require rewriting the last block,
and so cannot be done.

The steps needed to accomplish the following tasks are presented in this section:

e Creating a tape file

e Reading a tape file

e Reading a tape file in reverse

e Creating an unlabeled tape file

e Creating a tape with more than one file

e Accessing an unlabeled tape

o Treating labeled tapes as unlabeled tapes

If you are not familiar with basic programming methods, review those methods in
Section 2, “Understanding Programming for Files,” before reading the following
information. You can identify all the file attributes that can be used with a tape file by
reviewing Table A-1. For more information about any of the file attributes, refer to the
File Attributes Reference Manual.

8600 0056-408

Using Tape Files in a Program

Creating a Tape File

The task of creating a tape file has been broken down into the following groupings:

Tasks that are required
Tasks the ensure file security
Tasks that define complex record structures

Tasks that allow for special handling of the file

Required Tasks

You should perform all the following tasks:

Specify the KIND value as TAPE. The default value is DONTCARE.
To specify that this file is new, set the NEWFILE attribute to TRUE.

If you want to read the file after you create it, be sure to set the NEWFILE attribute
to FALSE before you reopen the file. Header labels overwrite the existing file on the
tape if the file is reopened without first changing the NEWFILE attribute to FALSE.

If you want the physical file name to be different from the internal file name, specify
the physical file name by using the FILENAME attribute.

Identify how the data is going to be transferred by using the FRAMESIZE attribute.
Refer to “Identifying How Data Is Transferred” in Section 2.

If you want an INTMODE attribute value other than the default value assumed by
your language, assign that value to INTMODE. Refer to “Identifying How Data Is
Transferred” in Section 2 for language default information. The INTMODE value is
assumed by the EXTMODE value. If the physical file must have a character encoding
set that is different from the INTMODE value, assign EXTMODE the appropriate
value. Refer to Table 2—-14 for possible EXTMODE and INTMODE combinations.

Identify the maximum size of any record by using the MAXRECSIZE attribute. You
should express the MAXRECSIZE value in terms of FRAMESIZE units. A tape file
defaults to 10 words.

To indicate that the file has more than one record in a block, specify the length of the
block by using the BLOCKSIZE attribute. You should express the BLOCKSIZE value
in terms of FRAMESIZE units. Because BLOCKSIZE defaults to the MAXRECSIZE
value, you must specify a value larger than MAXRECSIZE. In the case of a file with
fixed-length records, the value must be a multiple of MAXRECSIZE.

The minimum block size—that is, the physical record size—for tape files is six words
or 36 EBCDIC bytes. Blocks that are shorter than the block size are padded with
zeros, if necessary. You should be careful to ensure that each block written to the
tape—including the last block—is at least the minimum block size in length.

8600 0056-408 4-3

Using Tape Files in a Program

For instance, you might have a problem in the following situation:

— You write a file made up of fixed-length records that have a MAXRECSIZE of less
than 36 bytes long and have more than one record for each block, and the
BLOCKSIZE of the file is less than 36 bytes.

— You read the file, which can cause the 1/0O subsystem to pass the program one or
more records that are all zeros.

When you close such an input file, the I/O subsystem sometimes displays a record
count error message. Such an error does not occur if all the records are at least six
words or 36 EBCDIC bytes long—for example, if MAXRECSIZE is at least this long
and the file has fixed-length records.

The 1/O subsystem pads blocks when the block size of the data is an odd number of
bytes. The I/O subsystem writes the tape in an even-numbered block size. If padding
occurs, the tape header contains the odd number for the block size of the data, and
the 1/0O subsystem writes the physical tape with a block size that is one greater than
the odd number. You can avoid these problems by specifying records that contain an
even number of bytes when you write the file.

Be aware that systems other than MCP systems might not be able to read a tape
that has been padded in this way.

Some tape drive models have maximum block-size restrictions. These restrictions
are described in the following table:

Tape Drive Model Maximum Block Size

2145 GCR/PE/NRZ, ALP430 65535 bytes

CLU9710-36T, CTSb5136, CTS5236, CTS9840, OST5136 262144 bytes
FIPS 5073 half-inch cartridge 131068 bytes
HS8500, HS8505, HS8500C 245760 bytes
USR5073 half-inch cartridge 262139 bytes
HS4400 262139 bytes
All others 393210 Bytes

When connected to certain system types, such as the NX4200 and LX systems, and CS
servers that are delivered with Virtual Machine for ClearPath MCP software, the
maximum block size can be restricted to 65,535 bytes. You can check the block size
supported by a tape drive/system combination by checking the OL MT display for the
drive.

4-4 8600 0056-408

Using Tape Files in a Program

Security Tasks

Consider performing the following tasks to secure your file if you use the Security
Accountability Facility on your system and if the SECOPT TAPECHECK form of the
SECOPT (Security Options) system command is set to AUTOMATIC.

If the SECURITYLABELS tape volume security option is TRUE, the values for the
FAMILYOWNER, SECURITYGUARD, SECURITYTYPE, and SECURITYUSE attributes are
stored in the tape label and the tape volume directory. Refer to WFL Reference Manual
for information about using SECURITYLABELS.

e Specify the owner of the tape volume by using the FAMILYOWNER attribute. Refer
to the Security Administration Guide for more information about security.

e |f you want to restrict who can use the file, assign a mnemonic value to the
SECURITYTYPE attribute. All privileged users have access to all files regardless of
the SECURITYTYPE value. The following are the possible values you can specify:

Mnemonic Values

Meaning for a Nonprivileged User

PRIVATE The owner can access the file.

PUBLIC Access by a nonowner is allowed.

GUARDED Access by nonowner users is controlled by a guard file.
CONTROLLED A guard file controls access by all users including the owner.

This value is not supported by Host Services logical 1/0.

e |f you chose the CONTROLLED or GUARDED values, specify the name of the guard
file by using the SECURITYGUARD attribute.

o To specify how a physical file protected with a SECURITYTYPE value of PUBLIC can
be accessed by nonprivileged users using nonprivileged programs, assign the
SECURITYUSE attribute one of the following values:

Mnemonic Meaning
Values

IN Specifies read-only access to source files, data files, and code
files. Also, a code file can be executed.

0] Specifies read and write access to source files, data files, and
code files. Also, code files can be executed. The default value of
SECURITYUSE is 10 for all disk files.

ouT Specifies write-only access to source files, data files, and code
files. Also, code files can be executed.

SECURED Specifies that nonprivileged users do not have access to source
files, code files, or data files, but they can execute a code file. For
example, a nonprivileged user cannot copy a secured code file,
but he or she can still execute it.

DLT3 Digital linear tape (DLTIII)

8600 0056-408

4-5

Using Tape Files in a Program

NMnemonic Meaning
Values
DLT6 Digital linear tape (DLTIII)
DLT10 Digital linear tape (DLTIII or DLTIIIxt)
DLT20 Digital linear tape (DLTIV)
DLT35 Digital linear tape (DLTIV)
DLT40 Digital linear tape (DLTIV)

Complex Record Tasks

If you want to define variable-length records, refer to "Establishing a Record Format” in
Section 2.

Special Requirement Tasks

4-6

Consider performing the following tasks if you have special requirements:

If you want to be able to read any data that was written to the tape, even if the file
creation process is interrupted by a halt/load, assign a value of PROTECTED to the
PROTECTION attribute.

If you want to ensure that the tape file cannot be accidentally purged, set the
LOCKEDFILE file attribute to TRUE. Once you have set the value to TRUE, any
programmatic attempt to close and purge the file results in the file being closed, but
not purged. To purge the tape with a system command requires operator
confirmation.

If you want tape reels unloaded after they are used, so that they can be put away or
made inaccessible to other files, your program can invoke a CLOSE operation that
results in a disposition of lock. Refer to Section 2, “Understanding Programming for
Files,” for information about closing a file.

Another method of controlling the unloading of tapes is to assign the AUTOUNLOAD
file attribute a value of ON. When the value is ON, any CLOSE operation that has a
disposition of purge or an association of release and a disposition of rewind or a
disposition of block exit causes the tape to unload, regardless of the automatic-
unload mode of the unit. Refer to Section 2, “Understanding Programming for Files,”
for information about CLOSE operations.

If you do not want the tape to be identified as a scratch tape as soon as the tape is
released by your program, set the SAVEFACTOR attribute to the number of days that
you want the tape saved.

The operating system handles an expired tape based on the setting of the system
option TAPEEXPIRATION, which is controlled by using the

SYSOPS TAPEEXPIRATION system command. If the system option is set to TRUE,
an expired tape is handled as a scratch tape. If the system option is set to FALSE,
the expiration date is ignored.

8600 0056-408

Using Tape Files in a Program

Note: A tape that is past its expiration date is identified as a scratch tape by the
operating system only if it is write-enabled. The data on the tape is not actually
purged. Thus, a tape that is past its expiration date can still be read if it is not write-
enabled. On reel-to-reel tape drives, a tape is

write-enabled if it has a write ring.

If you have any of the following types of tape drives on your system, and the file you
are creating must be written to one of these tapes drives, use the appropriate
DENSITY attribute value to designate the particular tape drive. For the following tape
types, if the I/O subsystem cannot find a tape unit that supports that density, it
places the user task in the waiting state and issues a request for a tape unit that
does support that density.

NMnemonic Integer
Value Value Media Type Tape Subsystems
BPIB00O 0 9-track NRZ reel-to- 2145, 4125
reel tape
BPI11600 3 9-track PE reel-to-reel 2145, 4125
tape
BP16250 4 9-track GCR reel-to- 2145, 4125
reel tape
BPI38000 5 18-track half-inch RM5073, HS4400
cartridge tape and]
4mm cartridge tape Notes:
The HS4400 4mm emulates
a half-inch cartridge tape,
thereby inheriting the
density of the RM5073
tape.
18-track tapes are read-only
on subsystems supporting
36-track HIC media.
BP11250 6 Quarter-inch cartridge QIC, QlCc1000
tape
BPI11000 7 8mm cartridge tape HS8500 (Exabyte)
FMT36TRK 8 36-track half-inch CTS5136, OST5136,
cartridge tape CTS5236, and
CLU9710-36T
FMTDDS2 9 DDS-2 cartridge tape HS4400 and ALP430
FMTQIC1000 10 Quarter-inch cartridge QIC1000
tape
FMTDDS3 11 DDS-3 cartridge tape ALP430
FMTDLT3 13 Digital linear tape— CLU9710-DLT4 and DLT7
DLTHI
Note: Tapes are read-only
on these subsystems.

8600 0056-408 4-7

Using Tape Files in a Program

NMnemonic Integer
Value Value Media Type Tape Subsystems
FMTDLT6 14 Digital linear tape— CLU9710-DLT4 and DLT7
DLTHI
Note: Tapes are read-only
on these subsystems.
FMTDLT10 15 Digital linear tapes— CLU9710-DLT4, DLT7 and
DLTHI or DLTHIxt DLT8
FMTDLT20 16 Digital linear tape— CLU9710-DLT4, DLT7, and
DLTIV DLT8
FMTDLT35 17 Digital linear tape— CLU9710-DLT7 and DLT8
DLTIV
FMTST9840 18 High-capacity cartridge CTS9840
tape
FMTDDS 19 DDS-1 cartridge tape HS4400 and ALP430
FMTAIT 21 Advanced intelligent ALP920
tape
FMTAIT2 22 Advanced intelligent ALP920
tape
FMTDLT40 23 Digital linear tape— CLU9710-DLT8
DLTIV

If you have a tape drive that allows compression and you want the data to be
compressed as it is written to tape, perform one of the following tasks:

— If you want compression to occur based on the compression flag maintained in
the tape label, specify SYSTEM as the COMPRESSIONCONTROL file attribute
value. The compression flag in the tape label can be controlled by an operator by
using the SN (Serial Number) or PG (Purge) system commands.

— If you want the program to control whether compression occurs or not, specify
USER as the COMPRESSIONCONTROL attribute value and set the
COMPRESSIONREQUESTED file attribute to TRUE if you want compression to
occur.

Note: Compression cannot be used for tasks that need to predict ahead of time
how much data can be written to the tape, nor can it be used for tape files that need
to be read in reverse.

e |f you are not using direct I/O and you want to ensure that every WRITE operation
has completed before going on to the next instruction in the program, set the
SYNCHRONIZE attribute to the value OUT. This causes a separate block to be
written for each record even when the BLOCKSIZE value allows for more than one
record. That is, the I/O subsystem ignores the BLOCKSIZE and uses the record size
for WRITE operations.

4-8 8600 0056-408

Using Tape Files in a Program

You should be aware that, for certain styles of tape drives having a long repositioning
time (such as the HS8500), setting the SYNCHRONIZE attribute to NO can avoid
significant performance degradation.

If you want your program to occasionally ensure that a WRITE operation has
completed before going on to the next instruction in the program (and you are not
using direct I/O), use a WRITE statement with the SYNCHRONIZE operation each
time you want this behavior.

Refer to Section 10, “Using Direct I/O Files,” for information about enabling buffering
mode when using direct I/O.

e If your site uses cataloging and the USECATDEFAULT system command is not set,
and you want the file to be entered into the system catalog, set the USECATALOG
attribute to TRUE. The physical tape that is to be used must have been added to the
tape volume directory by using the Work Flow Language (WFL) VOLUME ADD
statement.

e If you want to differentiate the file from a file that has the same file name, use the
CYCLE attribute. The value of the CYCLE attribute can be changed by the operator
each time the program is run by specifying a value for the CYCLE attribute in a FILE
statement that is included with the RUN statement of the program. Additionally, you
can use the VERSION attribute to differentiate the file from other versions of the file
within the cycle.

To request that the tape file be placed on a tape with a specific serial number, use
the SERIALNO attribute. If your file requires more than one physical volume, you can
specify the serial number of each volume by using the optional FILESECTION
number parameter of the SERIALNO attribute. The following ALGOL statements
would specify the serial numbers of the volumes of a three-volume file:

F(1).SERIALNO :="FIRST ";
F(2).SERIALNO :="SECOND";
F(3) .SERIALNO :="THIRD ";

The system option SERIALNUMBER (option 27) controls the assignment of scratch
tapes when the SERIALNO and SCRATCHPOOL file attribute values are not
specified. The assignment of scratch tapes is controlled in the following ways:

— If the option is set, no file assignment automatically takes place and the “<file
name> REQUIRES” message is displayed. The operator can respond with a DS
(Discontinue) or OU (Output Unit) system command, or can specify a serial
number or scratch pool name with the FA (File Attribute) system command.

— If the option is reset, the system uses any available scratch tape that does not
have a scratch pool name.

For further information about using the OP (Options), DS, OU, and FA system
commands, refer to the System Operations Guide.

If you choose to specify a serial number and that serial number matches the serial
number of the tape, the system assigns the file whether or not the file has expired or
the tape is a scratch tape, as long as the tape is write-enabled. Non-scratch volumes
are not assigned to output tapes if the TAPEOVERWRITE option of the SYSOPS
system command is set to FALSE.

8600 0056-408 4-9

Using Tape Files in a Program

To indicate that the serial number is not to be considered during file assignment, set
the SERIALNO attribute to all null characters; that is, a value in which all bits are
equal to 0 (zero).

If you want the created file to be stored on a physical tape that is from a specific pool
of tapes, use the SCRATCHPOOL attribute. The name you use must be an identifier
of 1 to 17 EBCDIC characters, left-justified in a field of blanks (a hyphen or an
underscore is not permitted as the first character).

You can place a scratch tape in a specific pool by naming that pool when you use the
PG (Purge) or SN (System Number) system command.

If you request a printer backup tape with a specification of SCRATCHPOOL, the file
will be added on to any existing, mounted backup tape from that pool.

If the SERIALNO file attribute has been specified for a particular member of a single
volume or a multivolume set, the SCRATCHPOOL attribute is not taken into
consideration when that volume is assigned.

If a tape volume is closed with the PURGE option, and the SCRATCHPOOL value is
not a null string, the SCRATCHPOOL value is used as the pool name for the volume
in the resulting purge operation.

Reading a Tape File

Perform all or some of the following tasks, depending on the purpose of your program:

If the tape has a physical file name that does not match the internal file name,
specify the physical tape name of the file by using the FILENAME attribute.

Specify the KIND value as TAPE.
Specify the NEWFILE attribute value as FALSE.

You should set the DEPENDENTSPECS attribute value to TRUE, unless you have a
special reason to manipulate the records differently than the creation program
intended.

If you do not set the DEPENDENTSPECS attribute to TRUE and if you specify
BLOCKSIZE, MAXRECSIZE, and MINRECSIZE values that are inconsistent with the
physical file values, your program might not behave the way you expected it to. For
example, the program might not read all the data originally written to the file. If such
an inconsistency exists, a run-time warning is issued during the process of opening
the file.

If your program receives an inconsistent blocking warning, you should examine the
program to determine if the blocking of the logical file should be different from the
blocking of the physical file and if your program can function correctly with the values
you specified. If your program functions correctly, you can suppress the warning by
using the SUPPRESSWARNING task attribute. If the difference is not necessary, set
the DEPENDENTSPECS value to TRUE or change the three values of the logical file
to match the physical file values. For more information about the conditions that
cause warnings, refer to the BLOCKSIZE, MAXRECSIZE, and MINRECSIZE
descriptions in the File Attributes Reference Manual.

Certain tape drive models have block size restrictions as shown in the following list.
In addition, the type of connection to a tape unit might also impose a limit on the

8600 0056-408

Using Tape Files in a Program

maximum BLOCKSIZE that can be used. An emulated SCSI DLP or an emulated
Native SCSI Channel limits the maximum BLOCKSIZE of any tape connected to it to
65,535 bytes.

— The 2145 GCR/PE/NRZ and ALP430 tape drives have a 65,535-byte maximum.

— The CTS5136, CTS5236, CLU9710-36T, CTS9840 half-inch cartridge tape drives
have a 262,144-byte maximum.

— The OTS5136 half-inch cartridge tape drive has a 262,144-byte maximum.
— The FIPS 5073 half-inch cartridge tape drive has a 131,068-byte maximum.
— The HS8500, HS8505, and HS8500C tape drives have a 245,760-byte maximum.

— The USR5073 half-inch cartridge tape drive and the HS4400 4mm cartridge tape
drive have a 262,139-byte maximum.

— All other tape drives have a 393,210-byte maximum.

Caution

The NX4200 and LX systems, and CS servers that are delivered with Virtual
Machine for ClearPath MCP software, use Windows NT as the underlying
operating system and cannot read or write a block of data from tape greater
than 65,535 bytes. This is a Microsoft limitation on |/O drivers. As a result,
any tape written on another system with a BLOCKSIZE greater than 65,535
bytes cannot be read by the NX4200, LX, and CS servers that are delivered
with Virtual Machine for ClearPath MCP software.

o |f you want tape reels unloaded after they are used, so that they can be put away or
made inaccessible to other files, your program can invoke a CLOSE operation that
results in a disposition of lock. Refer to Section 2, “Understanding Programming for
Files” for information about closing a file.

Another method of controlling the unloading of tapes is to assign the AUTOUNLOAD
file attribute a value of ON. When the value is ON, any CLOSE operation that has a
disposition of purge or an association of release and a disposition of rewind or a
disposition of block exit causes the tape to unload, regardless of the automatic-
unload mode of the unit. Refer to Section 2, “Understanding Programming for Files,”
for information about CLOSE operations.

e |f you want a particular cycle and version of the file, specify the particular cycle
number in the CYCLE attribute and the particular version number in the VERSION
attribute.

e |f you are using cataloging at your site, you can do the following:

— If the USECATDEFAULT system option is not set and you want the system
catalog searched when the system assigns the permanent file, set the
USECATALOG attribute to TRUE.

— If you want a copy of the file that does not have the latest time and date, specify
the desired copy in the GENERATION attribute.

8600 0056-408 4-11

Using Tape Files in a Program

e |f you want to read a tape file that resides on a tape that has a specific serial number,
use the SERIALNO attribute to identify the correct serial number. If you do so, the
I/O subsystem assigns the physical file only if the serial number of the tape on which
it resides matches the value you specified for the SERIALNO attribute and the file
meets the other selection criteria.

o |f the file is split across volumes and you want information from a specific volume,
you can specify that volume by using the FILESECTION attribute.

o After you invoke READ statements, you can interrogate the following attributes to
obtain certain information. This is not a complete list. Remember that almost all
attributes for a tape file can be interrogated.

The following table lists some attributes that can be interrogated and identifies what
information can be obtained:

Attribute Information Received

CREATIONDATE The creation date of the tape file.

EOF TRUE indicates that the end-of-file condition has been
reached.

IOINERROR TRUE indicates that a physical I/O error has occurred
on the file.

RECORDINERROR The record number or block number of the
information in the currently used buffer.

TAPEREELRECORD The logical record number relative to the beginning of
the current volume.

Reading a File in Reverse

You can read the file backwards if the tape is positioned at the end of the file and has
been closed if reverse READ operations are supported on the drive. Among those drives
that do not support reverse reading are the HS8500, HS4400, FIPS 5073, CTS5136, and
0OST5136 tape drives. In addition, half-inch cartridge tapes that have been written in
EDRC format cannot read in reverse. You can verify whether a tape drive supports
reverse reading by checking the OL MT display for the drive.

To indicate that you want to read the file from back to front, assign the DIRECTION
attribute a value of REVERSE.

To indicate that you want to change the direction of the READ operation back to the
forward direction, assign the FORWARD value to DIRECTION. FORWARD is the default
value.

To specify that you need a read-reverse capable unit, use the READREVERSECAPABLE
attribute.

8600 0056-408

Using Tape Files in a Program

When a tape is read in the reverse direction, the buffer is filled from the end to the
beginning so that the data are in the order in which they were written to the tape—the
forward direction. With this method, the buffer image is the same no matter in which
direction the tape is read, unless the length of the block on the tape is shorter or longer
than the length or size of the buffer. If the block is short, the last characters or words of
the buffer are filled with blanks, and they are the image of the tape in the forward
direction. The rest of the buffer is undisturbed. If the block is long, the buffer contains
the first characters or words of the tape block that are encountered as the block is read
backwards. Thus, the first data are missing from the buffer.

Direct /O files allow you to change the direction of a READ operation at anytime.

Creating an Unlabeled Tape

To create an unlabeled tape, perform those tasks that are appropriate from the identified
tasks in “Creating a Tape File” in this section. In addition, assign the OMITTED value to
the LABEL attribute.

Creating a Tape with More Than One File

It is sometimes useful to put more than one file on a physical tape. To accomplish this
task, close the logical file, do not rewind the tape, and leave the unit assigned to the
program. The ALGOL statement CLOSE(F,*) and the COBOL statement CLOSE <file-ID>
WITH NO REWIND leave the logical file assigned to the physical file.

Naming Conventions

When you write more than one file to a physical tape, each file must have a two-node
tape file name. The first node should be the same for all files on the physical tape, even if
the physical tape includes a number of physical reels or volumes. Additionally, no two
files on the tape should have the same second node.

Searching Conventions

If two files have the same first and second nodes, the second file can be located only if it
is on a different physical volume of the logical tape file and if the different volume does
not begin with the continuation of the first file of the same name. You cannot locate two
files with the same name on the same tape volume by assigning different values to the
CYCLE and VERSION attributes.

The file search routines make extensive use of these name restrictions in order to reduce
the time taken to find a tape file. Files on tapes that do not meet these criteria might not

be found without operator intervention.

The following method is used to search for files on multifile tapes.

8600 0056-408 4-13

Using Tape Files in a Program

First, all units associated with the process attempting to open the file are searched. If the
file is on one of those units, the unit is assigned and the search terminates. If the file is
not on one of those units, all other tapes whose first-node names match that of the
required file, except those that are continuations of the required file, are searched. When
a unit is searched unsuccessfully, it is not locked; the serial number of the searched tape
is kept by the search routines to indicate that the tape has already been searched. If an
operator wants the system to search a tape with a serial number identical to a tape that
has already been searched, the IL (Ignore Label) system command should be used.

Logical I/O does not rewind tapes to search for files if it can determine that the file is not
on the tape. This determination is based on the first node of the file name or the file
section number it is seeking. Specifically, tapes that are online are rewound only if the
first node name of the first file on the tape and the file being sought match, and if the file
section number of the first file on the tape matches the one being sought, or if the one
being sought is 1. This means that searching for a continuation reel rarely causes the
tape to rewind.

Note: In some instances, when more than one task is trying to open tape files with the
same multifile ID, the right tape might not be found on the first pass if another task is
already searching the tape.

In ALGOL, you can space past the last file on a labeled tape by invoking the
OPEN(F);CLOSE(F,*) statement pair a sufficient number of times. When this has been
done, attributes that return actual values from the current physical file, such as
CREATIONDATE or LABELKIND, return information appropriate to an unlabeled tape.
Normally, the returned value is the value declared by the user. If the tape is positioned
past the last file on the tape, some file attributes such as CREATIONDATE return
attribute errors. The LABELKIND attribute returns a value of 1, which indicates that the
tape is unlabeled.

Accessing an Unlabeled Tape

You can access the data on an unlabeled tape by performing the following tasks:

1. Identify the file as a tape file by assigning the KIND attribute a value of TAPE.
2. Assign the NEWFILE attribute a value of FALSE.

3. Specify values for the MAXRECSIZE, BLOCKSIZE, INTMODE, EXTMODE attributes
and any other attributes you would normally assign a value to, such as
BLOCKSTRUCTURE. Do not assign DEPENDENTSPECS a value of TRUE.

4. Indicate that the I/O subsystem should treat the file as an unlabeled file by assigning
to the LABEL attribute one of the following values:

4-14 8600 0056-408

Using Tape Files in a Program

Mnemonic Value Behavior When a Tape Mark Is Encountered
OMITTEDEOF An end-of-file action occurs.
OMITTED A volume switch is attempted. An operator can use the FR

(Final Reel) system command to indicate that the end of the
file has been reached. Refer to the System Operations Guide
for information about using the FR command.

5. When the file is opened by the program, the operating system suspends the
program and displays the following message:

<mix number> NO FILE <file name> UL (UNLABELED MT)

The operator should identify the location of the unlabeled tape by entering the
following response:
<mix number> UL MT <unit number>
6. To position the tape at the desired file on a multifile volume, you will need to know
the position of the file on the volume. Is it, for example, the first file or the third file

on the tape? For each file that must be bypassed, you must open and close the file
one time, and then you must open the file again to allow the data to be read.

The following are appropriate open and close statements to bypass a file:

ALGOL OPEN(F) ;
CLOSE(F,*);
OPEN(F);
COBOL74 OPEN INPUT IN-FILE.
and CLOSE IN-FILE WITH NO REWIND.
COBOLS85 OPEN INPUT IN-FILE WITH NO REWIND.

8600 0056-408 4-15

Using Tape Files in a Program

Treating Labeled Tapes as Unlabeled Tapes

The operating system permits most tapes to be treated as if they were unlabeled. With
the exception of tape marks, no interpretation is placed on any data found on the tape.
The data contained on the tape is assumed to comprise one or more files. File
boundaries are delimited by tape marks. All such groupings of data can be read.

For example, to access a labeled tape as an unlabeled tape, perform the steps 1 through
5 in the procedure for “Accessing an Unlabeled Tape” earlier in this section.

To position the tape at the desired file, you must know the position of the file on the
tape. Is it the first file or the third file on the tape? For each file that must be bypassed,
you must open and close the file three times; once for the header label, once for the file
data itself, and once for the trailer label. Thus, if your file is the third file on the tape, you
must open and close the file seven times to position the tape at the data portion of the
third file—3 times for each of the first two files being bypassed and 1 more time to
bypass the header label of the third file—and then you must open the file one more time
to allow the data to be read. If your file is the first file on the tape, you must open and
close the file one time to position the tape at the data portion of the file, and then you
must open the file one more time to allow the data to be read.

The following are appropriate open and close statements to bypass a file:

ALGOL OPEN(F);
CLOSE(F,*);
OPEN(F);

COBOL74 and COBOLSb OPEN INPUT IN-FILE.

CLOSE IN-FILE WITH NO REWIND.
OPEN INPUT IN-FILE WITH NO REWIND.

8600 0056-408

Section b
Using Printer Files in a Program

In the MCP environment, you can choose to print directly to a printer, or you can choose
to have a printer backup file created. Choosing to create a printer backup file saves your
program execution time, because the printer backup file is not dependent on the speed
or immediate availability of the printer. You can print the backup file at a convenient time.
Using printer backup files also allows you to take advantage of the flexibility of the print
subsystem. Following are some of the tasks that can be accomplished by the print
subsystem:

e Controlling when the print request is issued

e Aligning the appropriate forms

e Attaching a customized banner to the beginning of the print job

e Controlling where the print request is printed and how many copies are printed

e |dentifying who is charged for the printing

e Controlling the name of the backup file

e Requesting that a checkpoint be taken while the file is printed

e Controlling the format of printed output

Note: You can create printer backup files with the EXTMODE file attribute set to HEX,
8-bit, 16-bit, or mixed multi-byte character. However, the Print System can only print
files with 8-bit characters.

If you are not familiar with basic programming methods, review those methods in
Section 2, “Understanding Programming for Files,” before reading the following
information.

You can identify all the file attributes that can be used with a printer file by reviewing
Table A-1. For more information about any of the mentioned attributes, refer to the File
Attributes Reference Manual.

For information about the capabilities of the print subsystem, refer to the Print System
Guide.

8600 0056-408 5-1

Using Printer Files in a Program

Defining the Characteristics of a Printer File

5-2

Perform all or some of the following tasks, depending on the purpose of your program.

Specify the KIND attribute value as PRINTER.
Identify the structure of the file.

Printer files can be declared as blocked files. The most extreme case of blocking,
where the MAXRECSIZE value is 1, the BLOCKSIZE value is 132, and the
FRAMESIZE value is 8, can be useful in printing graphs. When a printer file is
blocked, a WRITE statement of zero length can be used to terminate the block.

Decide if you want to print directly to the printer or create a printer backup file and
whether you want to control all aspects of printing or allow the Print System to
control printing.

To print directly to the printer and control all aspects of printing, set the
PRINTDISPOSITION file attribute to one of the following values:
— DIRECTDLP

— DIRECT, when the value of the DIRECTPRINTER option of the SYSOPS system
command is DIRECTDLP.

Notes:

o Setting the DIRECTDLP value works only on systems with printers directly
attached.

o [fyou set PRINTDISPOSITION to the value DIRECT, the system option SYSOPS
DIRECTPRINTER changes the PRINTDISPOSITION to DIRECTPS or DIRECTDLP,
depending on the value of DIRECTPRINTER.

To print directly to the printer but allow the Print System to control printing, set
PRINTDISPOSITION to one of the following values:
— DIRECTPS

— DIRECT, when the value of the DIRECTPRINTER option of the SYSOPS system
command is DIRECTPS.

- NOW

Notes:

o The DIRECTPS value is valid for both direct and non-direct I/O files. The NOW
value provides additional functionality from the Print System, but is valid only for
non-direct I/O files.

o [fyou set PRINTDISPOSITION to the value DIRECT, the system option SYSOPS
DIRECTPRINTER changes the PRINTDISPOSITION to DIRECTPS or DIRECTDLP,
depending on the value of DIRECTPRINTER.

8600 0056-408

Using Printer Files in a Program

To create a printer backup file without printing the file, set PRINTDISPOSITION to
DONTPRINT.

To create a printer backup file and allow the Print System to print the file, set
PRINTDISPOSITION to one of the following values:

- EOJ

- EOT

— FILECLOSE
— FILEOPEN

e |f you need to specify a specific print train, identify that print train by using the
TRAINID attribute. Refer to the TRAINID attribute in the File Attributes Reference
Manual for a list of possible values.

e |f your job requires a specific type of paper or form, use the FORMID attribute to
notify the operator of this requirement. If no printer matches the value of the
FORMID attribute, the operator can assign a printer form request to the printer.
Refer to the System Commands Reference Manual for information about performing
this task.

e |f your program is not creating a printer backup file, the system prints a standard
banner at the beginning and end of the file. If you do not want this standard banner
to print, set the LABEL attribute value to OMITTED or OMITTEDEQOF. Be aware that
a top-of-page operation is performed when printing completes, regardless of the
value of the LABEL attribute.

Note: |f you use the FORMID attribute and set the LABEL attribute to OMITTED or
OMITTEDEOF, no header and trailer pages print unless the HEADER and TRAILER
print modifiers of the PRINTDEFAULTS of your task are set to UNCONDITIONAL.
PRINTDEFAULTS is associated with your task, not the device configuration HEADER
and TRAILER characteristics.

e |f you are creating a printer backup file and the INTMODE and EXTMODE attribute
values have a value of EBCDIC, you can save space on the backup medium by letting
the TRIMBLANKS value default to TRUE. This action causes the trailing blank
characters to be removed from the file as the file is written to the backup medium.
However, the processor time required to perform each WRITE operation is
increased.

Note: |If you are creating a printer backup file with an EXTMODE value greater than
ASCII, the EXTMODE is no longer changed to EBCDIC. Therefore, EXTMODE values
other than EBCDIC, such as LATINTEBCDIC, can be specified for printer back up
files.

When a logical file is assigned to an existing printer backup file, the value of
INTMODE takes on the EXTMODE value. Translation occurs if the TRANSLATE
attribute has a value of FORCESOFT. When the logical file is no longer assigned to
the physical file, INTMODE is restored to its original, pre-assignment value.

8600 0056-408 5-3

Using Printer Files in a Program

5-4

If you are creating a printer backup file, you can specify the specific backup device by
using the BACKUPKIND attribute. You can choose among DISK, PACK, or TAPE.

This value can also be changed by using the SB (Substitute Backup) system
command or the LPBDONLY option of the OP (Options) system command. Refer to
the Print System Guide for information about using these commands.

Note: [f you use the TAPE option and an OPEN or CLOSE operation causes a
volume switch to occur, the open or close errors could have values that are not
normally associated with an OPEN or CLOSE operation.

You can also create a printer backup file as a delimited character-stream disk file.
Backup files in delimited form can be transferred to other operating systems with a
mechanism such as FTP.

To create a delimited backup file, set the FILESTRUCTURE attribute to STREAM. The
resulting disk file is created with the following attributes and values:

— FILECLASS = CHARACTERSTREAM
— EXTDELIMITER = CRCC
— FILEKIND = PRINTFILE

Although the printer backup disk file is a character-stream file, there is no change to
the structure of the logical printer file. The file continues to be record-oriented and
each block represents one print record. The MCP inserts the appropriate delimiters at
the end of each block based upon the carriage control specified when writing the file:

— Double spacing is represented in the printer backup file by an additional carriage
return-line feed pair after the delimiters at the end of the first print line.

— A channel skip is represented by a carriage return-form feed pair, regardless of
the destination channel.

Unlike a file with a FILEKIND attribute value of BACKUPPRINTER, there is no
embedded binary control information. Software translation is allowed and the
delimiters are inserted in the EXTMODE attribute character set. The EXTMODE value
must correspond to a character set that is EBCDIC-based, ASCll-based, UCS2, or
UCSNT. Refer to Appendix H, “Structure of Backup Files,” for more information
about printer backup files.

If you want to ensure that your backup file cannot be removed or replaced and that
the name of the file cannot be changed, set the LOCKEDFILE file attribute to TRUE.
For a disk backup file, if the value is set to TRUE, the permanent file cannot be
purged unless you or a privileged user changes the LOCKEDFILE value to FALSE. For
a tape backup file, if the value is set to TRUE, the file cannot be purged
programmatically, but can be purged if an operator confirms that the purge request is
appropriate.

If you are creating a printer backup file, you can use the file attributes AREAS,
AREASIZE, AREALENGTH, and FLEXIBLE. The values specified affect the printer
backup file created on disk and are interpreted in the context of the attributes of that
disk file. When calculating the size of an area, the MAXRECSIZE and BLOCKSIZE of
the resulting printer backup disk file are used. The default value of AREAS for a
printer backup file is 15 and the default value of AREASIZE is 150. Additional areas
can be added unless the value of the FLEXIBLE attribute is FALSE. Refer to

8600 0056-408

Using Printer Files in a Program

Appendix H, “Structure of Backup Files,” for more information about printer backup
files.

You can reduce the necessary /O time to write rules by specifying that
FILESTRUCTURE = BLOCKED. Then the structure file is not different, but buffers
are greater than the 300-word block size. You can modify the default value of the
BUFFERSIZE file attribute if you set the BUFFERGOAL factor. Otherwise, the
system default value is used.

If you assigned a value of CLOSE, EQJ, EOT, or FILEOPEN to the
PRINTDISPOSITION attribute and assigned a value of DISK or PACK to the
BACKUPKIND attribute, you can indicate to the print subsystem that you want to
print only a portion of the file by assigning a value to the PRINTPARTIAL attribute. If
the value of PRINTDISPOSITION is FILEOPEN, then PRINTPARTIAL is restricted to
only COLUMN selection phrases. The following example shows how to request that
only the text located in columns 1 through 72 on lines 100 through 900 be printed
instead of the entire file:

PRINT F1 (PRINTPARTIAL="COLUMN 1-72 SEQUENCE 100-900")

If you are using certain data-comm-connected printers configured to use standard
device transforms supplied by Unisys, you can exercise considerable control over the
appearance of printed output by using the PAGECOMP attribute. Refer to the Print
System Guide for information about the many options of the PAGECOMP attribute.

If you want the file to be printed on a printer with certain characteristics, assign the
appropriate mnemonic to the PRINTERKIND file attribute. Refer to the File Attributes
Reference Manual for the possible mnemonics that you can assign.

If you want to secure the backup file, perform the following tasks for any disk backup
file. These tasks can also be performed for any tape backup file if you use the
Security Accountability Facility on your system and the SECOPT TAPECHECK form
of the SECOPT (Security Options) system command is set to AUTOMATIC.

— Specify the owner of the tape volume by using the FAMILYOWNER attribute.
Refer to the Security Administration Guide for more information about security.

— If you want to restrict access to the file, assign one of the following values to the
SECURITYTYPE attribute. All privileged users have access to all files regardless
of the SECURITYTYPE value.

NMnemonic Values Meaning for a Nonprivileged User

PRIVATE The owner can access the file.

PUBLIC Access by a nonowner is controlled by the SECURITYUSE
attribute.

GUARDED Access by nonowner users is controlled by a guard file.

CONTROLLED Access by all users including the owner is controlled by a
guard file. This value is not supported by Host Services
logical I/0.

8600 0056-408 5-b

Using Printer Files in a Program

5-6

— If you chose the CONTROLLED or GUARDED values, specify the name of the
guard file by using the SECURITYGUARD attribute.

— To specify how a physical file that is protected with a SECURITYTYPE value of
PUBLIC can be accessed by nonprivileged users using nonprivileged programs,
assign one of the following values to the SECURITYUSE attribute.

NMnemonic Values Meaning

IN Specifies read-only access to source files, data files, and code
files. Also, a code file can be executed.

10 Specifies read and write access to source files, data files, and
code files. Also, code files can be executed. The default value
of SECURITYUSE is IO for all disk files.

ouT Specifies write-only access to source files, data files, and
code files. Also, code files can be executed.

SECURED Specifies that nonprivileged users do not have access to
source or data files, but a code file can be executed. For
example, a nonprivileged user cannot copy a secured code
file, but can still execute it.

If the backup file is to go to tape, and if you want to be able to read any data that is
written to the tape, even if the file creation process is interrupted by a halt/load,
assign the PROTECTION attribute a value of PROTECTED.

If the backup file is to go to a disk, it is entered into the disk directory immediately
after the file is opened. You can also protect that file with the PROTECTION attribute
set to PROTECTED.

When the PROTECTION attribute is set to PROTECTED, the file is entered into the
disk directory immediately after the file is opened, and special action is taken to
ensure that the correct end-of-file pointer is maintained across a system failure. If the
FILESTRUCTURE attribute value of the file is STREAM, the end-of-file marker is
placed at the end of the disk sector that was last written, even though the end of
that sector might not be the end of a record.

If the PRINTDISPOSITION attribute value of the file is FILEOPEN, the file is always
PROTECTED.
If you chose TAPE as the backup medium, consider the following tasks:

— If you want the backup file to go to a tape with a specific serial number, use the
SERIALNO attribute.

— If you want the backup file to go to a tape with a specific scratchpool
assignment, use the SCRATCHPOOL file attribute. Refer to the File Attributes
Reference Manual for more information on the SCRATCHPOOL file attribute.

If you have any of the following types of tape drives on your system (Table 5-1), and the
file you are creating must be written to one of these tapes drives, use the appropriate
DENSITY attribute value to designate the particular tape drive. If the /O subsystem
cannot find a tape unit that supports that density, it places the user task in the waiting
state and issues a request for a tape unit that does support that density.

8600 0056-408

Using Printer Files in a Program

Table 5-1. Tape Drive Density Values
Mnemonic Integer
Value Value Media Type Tape Subsystems
BPIB00O 0 9-track NRZ reel-to-reel 2145, 4125
tape
BPI11600 3 9-track PE reel-to-reel 2145, 4125
tape
BP16250 4 9-track GCR reel-to-reel 2145, 4125
tape
BPI38000 5 18-track half-inch RMb5073, HS4400
cartridge tape and 4mm i
cartridge tape Note: The HS4400
4mm tape emulates a
half-inch cartridge tape,
thereby inheriting the
density of the RM5073
tape.
18-track tapes are
read-only on
subsystems supporting
36-track HIC media.
BP11250 6 Quarter-inch cartridge QIC, QIC1000
tape
BPI11000 7 8mm cartridge tape HS8500 (Exabyte)
FMT36TRK 8 36-track half-inch CTS5136, OST5136,
cartridge tape CTSbh236, and
CLU9710-36T
FMTDDS2 9 DDS-2 cartridge tape ALP430 tape
FMTQIC1000 10 Quarter-inch cartridge QIC1000
tape
FMTDDS3 11 DDS-3 cartridge tape ALP430 tape
FMTDLT3 13 Digital linear tape-DLTIII CLU9710-DLT4 and
DLT7
Note: Tapes are read-
only on these
subsystems.
FMTDLT6 14 Digital linear tape-DLTIII CLU9710-DLT4 and
DLT7
Note: Tapes are read-
only on these
subsystems.
FMTDLT10 15 Digital linear tapes—DLTIII CLU9710-DLT4, DLT7,
or DLTHIxt and DLT8

8600 0056-408

Using Printer Files in a Program

Controlling the Printing

5-8

Table 5-1. Tape Drive Density Values

Mnemonic Integer
Value Value Media Type Tape Subsystems
FMTDLT20 16 Digital linear tape-DLTIV CLU9710-DLT4, DLT7,
and DLT8
FMTDLT35 17 Digital linear tape-DLTIV CLU9710-DLT7 and
DLT8
FMTST9840 18 High-capacity cartridge CTS9840
tape
FMTDDS 19 DDS-1 cartridge tape ALP430 tape
FMTAIT 21 Advanced intelligent tape ALP920 tape
FMTAIT2 22 Advanced intelligent tape ALP920 tape
FMTDLT40 23 Digital linear tape-DLTIV CLU9710-DLT8

of Lines and Pages

You can handle carriage control in two ways. The most common method is to use the
syntax of the programming language. Another method is to use the information in the
first character of the record. The CARRIAGECONTROL attribute allows you to specify

what information is contained in the first character of the record.

e The CTLASA option indicates that the first character contains a value that specifies a
given action. That action takes place before the line is printed.

e The CTL360 option indicates that the first character controls the paper motion by
using the various fields in the character itself.

Refer to the CARRIAGECONTROL attribute in the File Attributes Reference Manual for

the possible values.

8600 0056-408

Using Printer Files in a Program

If you are using COBOL, Report Writer gives you a great amount of printing flexibility
without requiring a great amount of programming. However, if you need more control or
are programming in ALGOL, the 1/O subsystem allows you to set the page size and then
keeps track of the lines that have been printed and the number of the current page. After
the last line on the page is printed, the end-of-page indicator is returned, and if you check
for that condition, you can code end-of-page routines to handle new page headings. To
use this capability, do the following:

e Set the PAGESIZE attribute to the number of lines that you want on a page.

e When you use a WRITE statement to print a line, check the WRITE result for the
end-of-page condition. Each time the end-of-page result is returned, the value of the
LINENUM attribute is returned to 1, and the PAGE attribute value is incremented by
1. If the end-of-page result has not been reached, LINENUM is incremented by 1.

The following table gives you information about how the LINE, SKIP, and SPACE options
of the WRITE statement affect the values of the LINENUM and PAGESIZE attributes.

Option

Effect

LINE

The action taken depends on the values of the arithmetic expression,
the PAGESIZE and LINENUM values, and the language being used.
When ALGOL is used and the WRITEAFTER compiler control option is
FALSE, and the LINE option is used, the usual action of spacing after
printing is temporarily suspended, and the printer is spaced forward
before printing to the logical line specified by the arithmetic expression.

An end-of-page exception is returned when the PAGESIZE attribute has
a value of 0 (zero)—in other words, when logical page accounting is not
being done. Otherwise, when the value of the arithmetic expression is
less than or equal to the PAGESIZE value and greater than or equal to
the LINENUM value, the page is spaced forward to the logical line
number of the arithmetic expression, and LINENUM is set to the value
of the arithmetic expression. If the value of the arithmetic expression is
less than the LINENUM value, printing begins on the next logical page;
the PAGE attribute is incremented by 1, but no skip to channel 1 is
performed. The page is spaced forward to the logical line number of the
arithmetic expression, and the LINENUM value is set to the value of the
arithmetic expression. Printing is done either before or after spacing,
depending on the value or values of the appropriate parameter or
parameters in the language.

When the arithmetic expression is less than 1, the LINENUM value is
set to 1, the PAGE value is incremented by 1, the line is printed without
spacing, and an end-of-page exception is returned to the program. A
similar action occurs if the arithmetic expression is greater than the
PAGESIZE value.

SKIP

The action is equivalent to a skip-to-channel operation on the carriage
control tape. A skip-to-channel operation can affect the LINENUM value.
A skip to channel 1 changes the LINENUM value to 1 after the skip. A
skip to any other channel does not update the LINENUM value;
therefore, after such a skip, the LINENUM value might not indicate the
actual position on the page. The PAGE value is not incremented by skip-
to-channel actions.

8600 0056-408

Using Printer Files in a Program

Option

Effect

SPACE

When the number of lines specified is greater than or equal to 0, the
page is spaced forward the specified number of lines. If the number of
lines specified is less than 0, the page is spaced forward 1 line and an
end-of-page result is returned to the program. The LINENUM value is
incremented by the number of lines spaced, and if the sum is greater
than or equal to PAGESIZE value, the LINENUM value is set to 1, the
PAGE value is incremented by 1, and an end-of-page result is returned
to the program.

When you want to skip to another page before the page is full, change the LINENUM
value to a value equal to or greater than the PAGESIZE attribute. This causes the next
WRITE operation to return an end-of-page result, sets the LINENUM value to 1, and
increments the PAGE value by 1.

If you want to add more lines to a page, subtract the number of extra lines wanted from
the LINENUM value. Do not change the value of PAGESIZE.

Direct Printing through a Transparent Printer (XLP)

DLP

Direct printing is used when you want data from your program delivered to the printing
device rather than being spooled (usually to disk) by the MCP. The Print System normally
is responsible for details of device handling. However, when the print system is
bypassed, the programmer must take into account any idiosyncrasies of the device and

its connection.

Printers generally expect ASCII data, and MCP based programs generally emit EBCDIC
data. Because transparent printer (XLP) DLPs do not provide character translation, you
must ensure that the program translates all data to ASCII characters before sending the

data to the printer.

If your system has an OS/2 or UNIX environment and if the SPOOLER option is enabled
on the printer, the program must send a data block of ESC FF at the completion of
printing. The ESC FF command releases the print file and makes it possible for the OS/2
or UNIX environment to print the file on an actual printer.

8600 0056-408

Section 6
Using Remote Files in a Program

The 1/O subsystem supports communication between a remote device and a program as
long as the remote device is attached to the system through an data communications
processor in the MCP environment.

Such communication is possible because your program regards the data being passed
between the remote device and your program as a file. Remote file communication is
comparable to the communication between a local peripheral device and your program.
Remote files have essentially the same degree of device independence as other
peripheral files.

Remote files work in conjunction with the message control system (MCS) that controls
the remote device station. Possible MCSs in the MCP environment are

e Command and Edit (CANDE)
e Unisys e-@ction Transaction Server
e Other MCS programs that have been installed at your site

The MCS is responsible for logging the user on, handling error situations, assigning the
station to logical files, and performing other functions required or desired by the MCS
designers.

When a program opens a remote file, the MCS might participate in I/O. By participating,
the MCS processes each I/O message and can selectively route each message to or
from particular programs, files in programs, or particular stations. The MCS and the
programs must use the same protocol so that the MCS can perform message switching
and the program can identify source and destination stations. Without MCS participation,
the 1/O subsystem uses remote files to route the messages directly between the data
communications subsystem and a program.

To communicate with the remote devices, a list of valid stations must be maintained.
This is done through a DATACOMINFO file or through an MCS. This list of stations can
be dynamically changed by using the STATIONLIST attribute in your program, or by using
the Interactive Datacomm Configurator (IDC) or the commands of your MCS. Refer to
the IDC Operations Guide for information about using the Interactive Datacomm
Configurator.

8600 0056-408 6-1

Using Remote Files in a Program

When a family of stations is identified and the remote file is opened, a station list is
created. This station list has all the necessary information to distinguish the different
stations from each other.

When the station list is created, each station in the list is assigned a relative station

number (RSN), which serves as an index to the station list. If a station is removed from
this list, its RSN becomes invalid and points to an empty area in the station list, and the
STATIONCOUNT attribute value is decreased by 1. As a consequence, a valid RSN can
be larger than the value of the STATIONCOUNT attribute. When a station is added, it is
added to the end of the list and given an RSN one higher than the last station in the list.

Your program does not need to deal with an RSN if you always want to direct the output
to the terminal that sent the preceding input. However, if you want to change where the
output is sent, you can modify the value of the LASTSUBFILE attribute. Doing so
automatically modifies the WRITE statement to point to the station identified in the
LASTSUBFILE attribute. For file attributes that require an RSN parameter, you can use a
specific RSN number to point to the desired station.

If you are not familiar with basic programming methods, review those methods in
Section 2, “Understanding Programming for Files.” You can identify all the file attributes
that can be used with a remote file by reviewing Table A-1. You can also find more
information about any of the mentioned attributes in File Attributes Reference Manual.

Identifying the Characteristics of a Remote File

6-2

The following tasks should be performed before opening the file:

o Specify the KIND value as REMOTE.
e |dentify the structure of the file.

e Specify whether you are going to use the file for input only, output only, or both input
and output by setting the FILEUSE attribute to IN, OUT, or 10. If your remote file is
used for I/O and is opened with a WRITE statement, language permitting, set the
FILEUSE value to IO prior to the first I/O operation. You can set the value in the
program or by compile-time or run-time file equation.

e |f you do not want an |/O operation to wait indefinitely, use the TIMELIMIT attribute
to specify how long, in seconds, the /O subsystem should wait for an 1/O operation
to occur. This value is used differently, depending on the I/O operation.

— When a READ operation is invoked and no input is received within the specified
number of seconds, the READ operation is terminated with a TIMELIMIT error.

— When a WRITE operation is invoked and no data can be buffered for output
within the number of seconds specified, the WRITE operation is terminated with
a TIMELIMIT error.

You can also modify the TIMELIMIT value at the time a READ or WRITE statement is
invoked if you are using ALGOL. The [TIMELIMIT <arithmetic expression>] form of
the [<record number or carriage control>] part of the 1/O statement allows this
modification.

8600 0056-408

Using Remote Files in a Program

e |f you want to reduce the data commmunications line time, and the INTMODE and
EXTMODE attribute values have a value of EBCDIC, set the TRIMBLANKS attribute
to TRUE. The trailing blank characters or words are stripped from the outgoing
messages, but the processor time required to perform each WRITE operation
increases.

e |f your program is writing to a station, and you either want the output to be held or
do not want the MCS to allow the output to be held at all, set the TANKING attribute
to one of the following values:

Mnemonic Value Meaning

ASYNC The output is tanked. When the file closes, the task can
proceed and even go to the end of the task. The output
continues to be transmitted until there is no more output.

NONE The output is not tanked.

SYNC The output is tanked. When the file closes, the task cannot
proceed until all tanked output has been transmitted.

UNSPECIFIED The MCS controls whether or not the output is tanked.

e Your program can open any number of remote files, and can specify the stations
with which these files can communicate by specifying a FILENAME file attribute
value for each remote file declared in your program. If a DATACOMINFO file name
with the same name exists in the DATACOMINFO file, the station or list of stations
is used to communicate with the specific remote file. If no DATACOMINFO file name
with the same name exists in the DATACOMINFO file, the system uses the
specified FILENAME value as the initial station name in the station list for the remote
file. Stations can be added or deleted from a station list by using the STATIONLIST
file attribute.

Note: [f your program is run from CANDE or MARC, all the remote files
automatically communicate with the station that initiated the program, because
these MICSs set the STATION task attribute to the logical station number of the
station that initiated the program. If you prefer to let the FILENAME value select the
stations to be used, set the STATION task attribute to O (zero) before the remote
files are opened.

8600 0056-408 6-3

Using Remote Files in a Program

Opening Remote Files

6-4

When a program opens a remote file, a “FILE OPEN" message for each station in the file
is sent to the controlling MCS for the station. This message notifies the MCS that the
logical file is ready to communicate with the station. The MCS can allow, postpone, or
deny assignment of the station to the file.

If the MCS allows assignment, the program can proceed to use the station and file,
unless the data communications subsystem overrules this assignment. A denial is
forced if the MCS did not participate, and either the station has no line assignment or
the assignment would result in more than one concurrent input-capable file for the
station.

If the MCS postpones assignment, the file remains open and the station is not
assigned. A subsequent READ or WRITE operation causes an end-of-file action. The
field [26:10] in the result returned by the 1/O operation contains the value

2 (ASSIGNMENTPOSTPONED).

If the MCS denies assignment, which it might also do subsequent to having allowed
or postponed assignment, further READ operations — if the file is input-capable—or
WRITE operations to the station cause an end-of-file action. The field [26:10] in the
result returned by the 1/O operation contains the value 1 (ASSIGNMENTDENIED).

When a program executes a READ or WRITE operation and one of the following
situations is true, an end-of-file action occurs, and the field [26:10] in the result returned
by the I/O operation contains the value 3 (ILLEGALFILEUSE).

The program already has assigned a remote file that is input capable to the station,
and an MCS for the station is not participating in the I/O operations.

The participating MCS indicated that an unacceptable FILEUSE value for the remote
file was used.

The program assigned an input-capable remote file to a station that is not input
capable.

The program assigned an output-capable remote file to a station that is not output
capable.

After the file is opened you might want to determine the following information about the
station or stations that are available for communication:

If you are expecting more than one station to be assigned as the remote file opens,
you might want to know which stations are available and which stations are not.
Interrogate the STATIONSALLOWED attribute to determine the number of logical
stations assigned to the remote file. By comparing that value with the value you can
obtain from the STATIONCOUNT attribute, you can determine whether all the
stations are available. You can also interrogate the STATIONSDENIED attribute to
determine the number of the stations in a family that have been denied assignment
to the file by their controlling MCS.

If, under certain conditions, your program requires a station or a set of stations to be
added to or subtracted from the remote file, use the STATIONLIST attribute. Then
interrogate the LASTSUBFILE attribute to determine the RSN of the added station.

8600 0056-408

Using Remote Files in a Program

e |f you need to know the specific name of a station or stations, you can index through
the station list by using the STATIONNAME attribute.

e |f you want to know if a specific station is available for use, interrogate the
DISPOSITION attribute for the specific station.

o |f the time the station was assigned is important to you, interrogate the
ASSIGNTIME value for the specific station.

e |f your program needs to determine whether the station is a screen device,
interrogate the SCREEN attribute value for the specific station. A value of TRUE
indicates that the device is a screen device. Having determined that the device is a
screen device, you might want to know the number of lines for each page on the
screen and the number of characters in a logical line. Interrogate the SCREENSIZE
attribute value to determine the number of lines for each page on the screen and the
WIDTH attribute value to determine the number of characters in a logical line for the
specific station.

Reading Information from a Station

If your program reads information from a station or stations, it receives input from the
remote file in a first-in, first-out order. After a READ statement, the LASTSUBFILE
attribute contains the RSN of the station from which the input came. If you do not
change this value by modifying the LASTSUBFILE value or by using the STATION option
of the WRITE statement, the next output message is written to the same station the last
input was received from. Thus, there is no need to determine where the input came
from. A SEEK statement only changes the value of LASTSUBFILE; no information is
moved into the buffer.

Interrogate the STATE attribute to determine whether an end-of-file condition has been
encountered. A multistation remote file receives an end-of-file notification for each
station in the file. To determine which station is no longer assigned to the file after an
end-of-file notification, interrogate the LASTSUBFILE attribute. To determine the reason
for the end-of-file notification, such as the file was closed or access was denied,
interrogate the FILESTATE attribute for the specific station.

In a multistation situation, you might want to determine whether a specific station or any
station is enabled for input. If you interrogate the ENABLEINPUT attribute for the entire
remote file or for a specific subfile, you receive a value of TRUE when any file of the
remote file is capable of sending input or when a specific file is ready to send input.

To determine if a message has been queued, interrogate the INPUTEVENT attribute.
When the happened state of the INPUTEVENT value is TRUE, messages are queued.
The INPUTEVENT attribute can be useful as a parameter to a WAIT statement that waits
for more than one condition to occur.

To determine how many messages are queued, interrogate the CENSUS attribute.

In some instances, the transmission number of the last input received from a specific
station is important to your program. To determine the current number for the specific
station, use the TRANSMISSIONNO attribute. The DATACOMINFO file information for a
specific station can indicate that no transmission numbers are to be assigned by the data
communications subsystem. In such a case, a value of -1 is returned.

8600 0056-408 6-5

Using Remote Files in a Program

Writing Information to a Station
Your program can control the destination of the message in one of two ways:

e To broadcast the output to every station in the file, assign a 0 (zero) to the
LASTSUBFILE attribute. If there is only one station in the file, the result is the same
as for a WRITE operation directed to that station.

e To direct the output to a specific station in the file, identify an RSN by using the
LASTSUBFILE attribute.

In ALGOL, the LASTSUBFILE attribute can be set using the STATION <arithmetic
expression> form of the [<record number or carriage control>] part of the WRITE
statement.

Closing a Remote File

Before your program closes the remote file, it can gather some statistics about the
stations that were communicated with during the session. The following file attributes
can be interrogated to obtain statistic information:

e Interrogate the RECEPTIONS attribute to determine the number of messages
received from a specific station or from all the stations.

e Interrogate the TRANSMISSIONS attribute to determine the total number of output
messages sent to a specific station or to all the stations.

If you want to retain the current station list and its associated RSNs for use the next time
you open the remote file, close the file with an ALGOL CLOSE(<file name>, REWIND)
statement or the regular COBOL CLOSE statement.

If you want to use the station list of the system at the time you open the remote file,

close the file with a normal ALGOL CLOSE statement or a COBOL CLOSE WITH
RELEASE statement.

6-6 8600 0056-408

Section 7
Using Card Files in a Program

Data Specifications

Purpose

You can use a file whose KIND value is READER (KIND = READER) to read card images
from a data specification in a WFL job.

Explanation

A data specification in a WFL job supplies input data in the form of card images to a
particular task. The task reads from the data specification as if it were a file whose KIND
value is READER (KIND = READER). A task that attempts to read from a card reader file
will automatically read from a data specification. If there is no data specification then the
program receives a NO FILE condition. Tasks that read from other kinds of files can be
file-equated to cause them to read from a data specification instead.

Note: The default MAXRECSIZE value of a READER file is 14 words (84 characters),
but a record contains only 80 characters of valid data. Take this into consideration when
using a data specification, since a record in a file generated by CANDE with a FILEKIND
value of JOBSYMBOL (FILEKIND = JOBSYMBOL) contains data in columns 1 through
80, spaces in columns 81 and 82, and the sequence number in columns 83 through 90.
To avoid getting unwanted information, equate UNITS to CHARACTERS and set the
MAXRECSIZE value to 80 when reading the data specification.

The data images are records of EBCDIC data.
Direct I/O is not allowed for files whose KIND value is READER (KIND = READER).

Refer to “Global Data Specifications” in Section 4 or “Local Data Specifications” in
Section 5 of the WFL Reference Manual for more information.

When a task tries to open a card reader file, it searches among the data specifications

associated with that task for the first unread data specification with the correct file name
or no file name.

8600 0056-408 7-1

Using Card Files in a Program

If the local data specification cannot be located, the task searches for a global data
specification with the correct name. If no global data specification with the correct name
is located, the task receives a NO FILE condition. When a NO FILE condition occurs

e |f the program called OPEN, logical I/O issues the RSVP, NO FILE <filename>(CR).

e |f the program called AVAILABLE or RESIDENT, logical I/O returns an error to the
program.

Examples

The following WFL example shows the simplest use of a data specification. The program
(WALLY)OBJECT/COUNTUP reads data from a single card reader file. In this situation,
the data specification does not need to be named, and no file equations are required.

RUN (WALLY)OBJECT/COUNTUP;
DATA

6
? % End of data

It is a good idea to give each data specification a title if more than one data specification
is being used by the task. This makes it obvious which data specification is being
substituted for which input file. The data specification should have the same title as the
input file it is replacing in the program, unless the input file has been file-equated to a
different title.

In the following WFL example, the program reads the data specification titled TERMIN1
and reads the data specification titled READDAT instead of the input file titled TERMINZ2:

RUN (WALLY)OBJECT/COUNTTWO;
FILE TERMIN1(KIND=READER);
FILE TERMIN2(TITLE=READDAT,KIND=READER);
DATA TERMIN1
3
128
? % End of TERMINI data
DATA READDAT
5
? % End of READDAT data

7-2 8600 0056-408

Using Card Files in a Program

The following example shows a task that has more than one data specification. The data
specification that OPEN assigns to a file whose KIND value is READER

(KIND = READER) depends on several factors. Each time a task attempts to open a file
whose KIND value is READER (KIND = READER) the OPEN procedure

1. Searches through the data specifications for the task in the WFL job in the order they
are declared

2. Ignores any data specifications that already have been opened or read by the task

3. Ignores any data specification with a file name that does not match the file name of
the file to be opened

4. Selects the first unused data specification it encounters that does not have a file
name specified, or has a file name that matches the file name of the file to be
opened.

RUN PROG;
DATA ONE

<card images>
?
DATA

<card images>
?
DATA THREE

<card images>
?

If PROG attempts to open a file that has KIND = READER and FILENAME = THREE
specified, the system assigns the second data specification (the one with no file name)
to the file.

If PROG then attempts to open a file that has KIND = READER and FILENAME = ONE
specified, the system would assign the first data specification to the file.

If PROG then attempts to open a file that has KIND = READER and FILENAME = ONE
specified, it receives a NO FILE ONE (CR) condition because the first two data
specifications have already been used and the third data specification has a file name
(THREE) which does not match the file name requested (ONE).

8600 0056-408 7-3

Using Card Files in a Program

7-4 8600 0056-408

Section 8
Using Operator Display Terminal (ODT)
Files

When you want a program to communicate directly with the ODT without using data
communications, define an ODT file. When the ODT file is opened, all input from the
ODT to the file must be preceded by the group separator (<GS> or <delta>) character
represented by the hexadecimal value 1D. To indicate that input is complete, enter
<GS>7END. Be aware that the automatic display mode (ADM) feature is suppressed on
an ODT when your program is communicating with it.

If you are not familiar with basic programming methods, review those methods in
Section 2, “Understanding Programming for Files.” You can identify all the file attributes
that can be used with an ODT file by reviewing Table A-1. You will also find more
information about any of the mentioned attributes in the File Attributes Reference
Manual.

To use an ODT file, perform the following tasks:

1. Assign the KIND attribute a value of ODT.

2. Indicate the external recording mode by setting the EXTMODE attribute value to
EBCDIC.

3. Indicate the purpose of the file by using the FILEUSE attribute. If you choose the
OUT option, the file is assigned to any scratch ODT unit, unless the program was
initiated at an ODT. If the program was initiated at an ODT, the output is directed to
the initiating ODT if that unit is a scratch ODT unit. An ODT is considered a scratch
unit if it is not labeled. To control where the output is directed, you can set the
UNITNO attribute to the desired ODT unit number.

An ODT becomes a scratch unit when a labeled file assigned to the unit is closed, or
an operator uses the CL (Clear) system command. Refer to the System Operations
Guide for information about using the CL command.

If you choose the IN or IO option, the file is assigned to a labeled ODT. Set the
FILENAME attribute to the file name attached to the ODT. The file name is attached
to the ODT by using the LABEL (Label ODT) system command. Refer to the System
Commands Reference Manual for detailed information on the LABEL command.

4. For most uses, set the FRAMESIZE attribute value to 8 and the BLOCKSTRUCTURE
attribute value to EXTERNAL. These values define a character-oriented,
variable-length ODT file.

When a READ operation is requested, the READ operation uses the MAXRECSIZE
attribute value to determine the maximum number of characters that should be read.

8600 0056-408 8-1

Using Operator Display Terminal (ODT) Files

When the number of input characters transmitted is less than the MAXRECSIZE
value, the remaining character spaces are filled with blanks. The I/O result descriptor
size field ([47:20]) and the CURRENTRECORDLENGTH attribute value contain the
exact number of characters that were read into the buffer.

When a WRITE operation is requested, only the number of characters identified in
the WRITE statement are transferred to the ODT.

8-2 8600 0056-408

Section 9
Accessing and Creating Files Using
Distributed File Services

You can access and create files on a remote host by using

e Host Services logical |/O

o File Transfer, Access, and Management (FTAM)

If your system is running BNA, Host Services logical I/O enables programs to access and
create files on another ClearPath NX server, A Series system, or V Series system that is
running BNA. Host Services logical I/O can also be used with ClearPath NX servers and
A Series systems across an OSI network.

If your system is running OSI, FTAM allows a disk file to be accessed or created on
another OSI host.

When you access or create a file on a remote host, DSS Management determines which
service to use. WWhen more than one service can be used, Host Services logical 1/O is
always given priority over the other possible services, BNA is given priority over OS| and
FTAM, and OSl is given priority over FTAM.

WARNING

Both sending and destination hosts must have their SYSOPS
LONGFILENAMES option set (see System Commands Reference Manual,
SYSOPS command) when file transfer can involve file(s) with node names
exceeding 17 characters.

8600 0056-408 9-1

Accessing and Creating Files Using Distributed File Services

Using Host Services Logical I/O

9-2

Host Services logical I/O enables you to access and create the following files on a
remote host:

A disk file

A printer file

A card reader file
A remote file

A tape file

To speed transmission of data between hosts, the data is compressed for all of the

preceding peripheral files, except disk files. Files that are disk files are compressed only if

one of the following FILEKIND values is specified:

ALGOLSYMBOL ESPOLSYMBOL PLISYMBOL
BASICSYMBOL FORTRANSYMBOL RPGSYMBOL
BINDERSYMBOL FORTRAN77SYMBOL SANSSYMBOL
COBOL74SYMBOL JOBSYMBOL SEQDATA
COBOL85SYMBOL JOVIALSYMBOL SFORTRANSYMBOL
CSEQDATA LCOBOLSYMBOL SORTSYMBOL
DASDLSYMBOL NDLIISYMBOL TEXTDATA

DATA NDLSYMBOL VFORTRANSYMBOL
DCALGOLSYMBOL NEWPSYMBOL XALGOLSYMBOL
DCPSYMBOL OHNESYMBOL XFORTRANSYMBOL
DMALGOLSYMBOL PASCALSYMBOL

8600 0056-408

Accessing and Creating Files Using Distributed File Services

Opening a File Using Host Services Logical 1/O

Perform the following tasks, depending on the needs of your program:

1.

ldentify the name of the remote host where the file resides or is to be created by
using the HOSTNAME attribute. The identifier can be 1 to 17 characters long and can
contain uppercase alphanumeric characters.

Identify the device type of the file by using the KIND attribute.

If you want to determine if an open error occurred, check the results of the OPEN
statement. If the value BADHSFILERSLT (28) is returned, interrogate the ATTERR
and ATTYPE attributes to determine which attribute, if any, caused the open error.
An attribute error message is displayed whenever a value of 28 is returned. The
following message is displayed if an invalid INTMODE value was specified for a file
named F:

ATTRIBUTE ERROR: F.INTMODE DSS DOES NOT SUPPORT THE VALUE OF
THIS ATTRIBUTE
DSS ABORT: FILE F AT BLUE OPEN ERROR: DSS CANT HANDLE THIS FILE

If a check of the results was not done, the following line of text would be attached to
the preceding message:

FILE F AT BLUE OPEN ERROR: DSS CANT HANDLE THIS FILE

Examples

The following ALGOL code identifies E as the remote host where a file named THE/FILE
is stored on a disk:

BEGIN
FILE F(KIND=DISK,DEPENDENTSPECS=TRUE,FILENAME="THE/FILE.",
HOSTNAME="E.");

ARRAY A[0:12];

LABEL EOF;

WHILE TRUE DO

BEGIN

READ(F,12,A) [EOF];

END;
EOF:
CLOSE(F);
END.

8600 0056-408 9-3

Accessing and Creating Files Using Distributed File Services

The following ALGOL code identifies E as the remote host where a file named
OVER/THERE wiill be created on a disk:

BEGIN

FILE F(KIND=PACK,MAXRECSIZE=14,FILENAME="OVER/THERE.",
NEWFILE=TRUE,
HOSTNAME="E.");

ARRAY A[0:12];

BOOLEAN DONE;

DO

BEGIN

WRITE(F,12,A);

END
UNTIL DONE;
LOCK(F) ;

END.

For COBOL74 programs, you can identify the HOSTNAME attribute value by using the
VALUE OF clause of the file-description entry. To dynamically change the name of the
host, use the CHANGE statement.

The following WFL job identifies remote host D as the location of the file name S/PROG
that resides on a disk:

?BEGIN JOB FOREIGN/COMPILE;

COMPILE PROG COBOL;

COBOL FILE CARD(KIND=DISK,FILENAME=S/PROG,HOSTNAME=D);
?END JOB

9-4 8600 0056-408

Accessing and Creating Files Using Distributed File Services

Performing I/O Using Host Services Logical 1/0

Programming for any given device type is the same as programming for that device on a
local MCP environment system. However, there are some limitations because some
logical I/O features are not supported by Host Services logical I/O. Before programming
for a given device, review Table 9-25 for information about which file attributes are
supported when you are using Host Services logical I/O.

As a programmer using Host Services logical I/0, be aware that a handler task named
FILE/HANDLER/<process-hostname> is initiated by Host Services logical I/O on the file
host, the host where the file resides. This task performs all I/O subsystem functions on
the file. Messages and responses pertaining to the file include the file host name and the
mix number of the handler task when displayed at the process host, the host where the
program is running. This handler mix number is used in the AT (AT Remote Host) system
command. Refer to the System Commands Reference Manual for a description of this
command.

When both the process host and the file host are ClearPath NX servers or A Series
systems, the following restrictions exist:

e The file must use appropriate values for the KIND, INTMODE, EXTMODE, and
BLOCKSIZE attributes. Refer to the File Attributes Reference Manual for Host
Services restrictions for these file attributes.

e A program accessing or creating a file at a remote host must be running under a
usercode.

e Direct I/O is not supported.

e Double-byte (16-bit) and mixed multi-byte (mixed 8-bit and 16-bit with
FRAMESIZE = 8) character sets are not supported.

e For disk files, the FILESTRUCTURE value must be ALIGNED180 or STREAM.
e The ANYSIZEIO file attribute is not supported.

e KEYEDIO is not supported. KEYEDIOII, however, is supported if the
KIIOIIHSSUPPORT library is properly installed. Refer to the KEYEDIOII Reference
Manual for details.

e Relative I/O is not supported.

e Compilers cannot create code files on remote hosts.
e USE routines for tape labels are not supported.

e The ALGOL ERASE statement is not supported.

e Update I/O action is not supported. COBOL programs cannot specify the |-O phrase
in an OPEN statement. The value of the UPDATEFILE attribute must be FALSE.

e Buffer sharing is not supported.

e When the AREASIZE file attribute of a disk file being accessed using Host Services
Logical I/O is interrogated, the value of AREALENGTH is returned.

e Error results for WRITE statements are reported one buffer later than normal.

8600 0056-408 9-5

Accessing and Creating Files Using Distributed File Services

e A privileged status, whether from a privileged usercode or from a privileged program,
is not carried across the network. As a result, actions that are allowed on the process
host—such as creating and removing disk files stored under another usercode,
reading and copying files of another user, and invoking certain operating system
control interfaces—are not allowed on the file host.

e A BLOCKSTRUCTURE value of VARIABLE is not supported for files on a remote Host
Services-capable host. Because of this, any file you declare using the COBOL74
phrase integer-1 TO cannot be opened if the file resides on a remote Host Services-

capable host. An attempt to open such a file results in an open error. A
BLOCKSTRUCTURE value of VARIABLE2 or VARIABLEOFFSET is not supported.

o |f the FILESTRUCTURE value is ALIGNED180, a BLOCKSTRUCTURE value of
EXTERNAL is supported only for unblocked files.

e Binary I/O is not supported. For example, the ALGOL statement WRITE (FILET,*,X) is
not supported.

e Files with partial last records and files created by PLISUPPORT ISAM intrinsics are
not supported.

e Host Services logical I/O rejects requests to create nondata files such as system
files, compilers, or code files if the host where the file is to be created has the
SECOPT HOSTSRESTRICTED attribute set and the user requesting the file creation

— Is not a privileged user or security administrator

— Is not assigned an alias to a privileged user or security administrator on the
receiving host

If the user is privileged, the file created is marked as a restricted file. This designation
means that the file cannot be executed and can be copied only by a privileged user.

For information about restrictions on files, units, volumes, and hosts, refer to the
Security Administration Guide.

To create a file on a host that is not a ClearPath NX server or A Series system, you must
make sure the value of the NEWFILE attribute is TRUE. If the value of the NEWFILE
attribute is modified to FALSE, Host Services logical I/O searches for an existing file.
Note that you cannot use the FA (File Attribute) system command to change the
NEWFILE value to TRUE if the program is suspended when no file can be found.

For COBOL74 or COBOLS85 programs, the compiler modifies the value of the NEWFILE

attribute appropriately on an OPEN statement, so the programmer does not have to
consider this situation.

9-6 8600 0056-408

Accessing and Creating Files Using Distributed File Services

Using FTAM

If your system is running OSI, FTAM enables a disk file to be accessed or created on

another system running OSI. The information that is presented here is concerned only

with the topic of creating or accessing a file through a user-created program. For

information about copying a file, refer to the Distributed Systems Services Operations
Guide. For information about renaming, inquiring about, or removing a file, refer to the
System Commands Reference Manual.

FTAM uses document types to specify the following:

e The coded character set that is used

e The maximum string length or maximum record length

o Whether strings or records are of fixed or variable length

o Whether boundaries of strings are to be maintained after data transfer

e The actions that are allowed

The document type you select must be supported on both host systems.

Table 9-1 identifies the four FTAM document types supported by ClearPath NX and
A Series hosts for file access and creation. Additionally, the table identifies the types of
accesses that are possible.

Table 9-1. FTAM Document Types

Document Type Description Possible Access

FTAM-1 A file that contains alphanumeric data and Sequential
control characters

FTAM-2 A file that contains alphanumeric data and Random or
control characters sequential

FTAM-3 A file that contains binary data Sequential

INTAP-1 A file that contains binary data Sequential

8600 0056-408

9-7

Accessing and Creating Files Using Distributed File Services

Before programming your FTAM application, you might want to review FTAM
implementation information for the MCP environment found in “FTAM Features in the
MCP Environment” later in this section.

The following restrictions should be noted before using FTAM:

Random 1I/O for FTAM-1, FTAM-3, or INTAP-1 document types is not supported.
Direct I/O is not supported.
Binary 1/O is not supported.

The CRUNCH option of the CLOSE statement is supported, but it is treated as if a
LOCK option is invoked.

KEYEDIO is not supported.

Relative I/O is not supported.

C programs cannot access or create files on remote hosts.
Compilers cannot create code files on remote hosts.

Double-byte (16-bit) and mixed multi-byte (mixed 8-bit and 16-bit with
FRAMESIZE = 8) character sets are not supported.

Additionally, you should scan Table 9-25 to determine what disk attributes are supported
by FTAM.

Creating a New File on a Remote OSI Host

9-8

Before you begin writing a program, you should answer the following questions:

What is the host name of the system where the file resides or is to be created?
What is your valid usercode on the remote system?

What document type do you want the file to be?

What character set do you want the file to have?

What value should INTMODE have?

What 1/O actions do you want performed on the file?

The following procedure gives step-by-step instructions about how to create a file on
another remote OSI host from an MCP environment system using ALGOL.

1.
2.

Specify DISK as the KIND attribute value.

If you do not want the system to select the file service for you, specify FTAM as the
SERVICE attribute value.

Specify the name of the host where the file is to be created by using the
HOSTNAME attribute.

Use the FILEUSE attribute to specify how the file will be used by the program.

8600 0056-408

Accessing and Creating Files Using Distributed File Services

5. Specify a file name that is appropriate for the remote host by using the FILENAME
attribute. Enclose the file name in apostrophes (' ') if the file name does not conform
to rules of the MCP environment.

6. Specify the maximum size of a record by using the MAXRECSIZE attribute. You can
optimize FTAM performance by structuring a file to have a small number of large
records, rather than a large number of small records.

7. Specify the structure of the file and the format of the records by using the
BLOCKSTRUCTURE attribute.

Note: Some systems that are not native MICP systems cannot store an FTAM-1 or
FTAM-3 file that has a BLOCKSTRUCTURE value of FIXED or VARIABLE because
they do not support the String Significance value of Fixed or Variable for FTAM-1 and
FTAM-3 files. If you must create a file on such a system, do not assign a value of
FIXED or VARIABLE to BLOCKSTRUCTURE.

The following table shows the possible values that you can use:

Document Type Possible BLOCKSTRUCTURE Value
FTAM-1 FIXED, EXTERNAL, and VARIABLE
FTAM-2 FIXED, EXTERNAL, and VARIABLE
FTAM-3 FIXED, EXTERNAL, and VARIABLE
INTAP-1 FIXED and VARIABLE

8. Specify STREAM as the FILESTRUCTURE attribute value.
9. Set the NEWFILE attribute to TRUE.

10. Indicate a valid usercode, password, and account at the remote host by using the
USERCODE attribute.

11. Assign appropriate values to the EXTMODE and INTMODE attributes. Refer to
Table 9-20 for the possible EXTMODE character set names that can be used. Note
that the usage of a character set is limited by the document type of the file.

Notes:

e [fyou are creating an FTAM-1 or FTAM-2 file and you want to use the ISO 8859-1
coded character set, EXTMODE must have the value ISOGENERALSTRING or
ISOGRAPHICSTRING and each record must contain the appropriate escape
sequences. This is necessary to satisfy the ISO Presentation Layer standards
that allow GeneralStrings and GraphicStrings to contain multiple character sets
and to dynamically switch character sets. Refer to Table 9-21 for possible
escape sequences.

e [fyou are creating an FTAM-1 or FTAM-2 file, the Universal Class parameter
values supported by the remote system must be considered when you assign
INTMODE and EXTMODE values. Some systems that are not native MICP
systems support a subset of the allowable Universal Class parameter values.

8600 0056-408 9-9

Accessing and Creating Files Using Distributed File Services

e FTAM-1 and FTAM-2 files with a universal class of IA5 String or GeneralString
can contain control characters from the ISO 646 CO set. This category includes
all characters that have hexadecimal values 00 through 1F. Most MCP
environment systems software treats these control characters as data. Many
systems that are not native MICP systems give special significance to some of
these characters when they display or print files. For example, some systems
use a carriage return (CR)/line feed (LF) pair to indicate the end of a line of text.
When a file is sent from an MICP system to a system that is not an MCP system,
the file must contain the control characters necessary for the file to be
processed correctly on that system. When an MCP system receives control
characters in a file, the characters are stored in the file as data. MCP
environment OSI FTAM does not insert or delete control characters when it
sends or receives file data.

12. If you want automatic character set translation to occur, the INTMODE and
EXTMODE values must have one of the following combinations. Any other situations
where INTMODE and EXTMODE do not match result in an open error.

INTMODE Value EXTMODE Value
EBCDIC or ASCII IAGSTRING or ISOVISIBLESTRING
ISOVISIBLESTRING IAGSTRING
IAGSTRING ISOVISIBLESTRING

13. Specify a value for the PERMITTEDACTIONS attribute if you do not want this value
negotiated for you. Refer to Table 9-22 for possible values for this attribute.

Be aware that this attribute value can never be changed once the file is created.
Thus, if you must control this value, specify the appropriate value before the file is
opened.

14. Specify a value for the DOCUMENTTYPE attribute if you do not want this value
negotiated for you. Refer to Table 9-1 for possible values for this attribute.

Be aware that this attribute value can never be changed once the file is created.
Thus, if you must control this value, specify the appropriate value before the file is
opened.

If you do not specify a DOCUMENTTYPE attribute value, a value is selected based on
the FILEKIND and EXTMODE values of the file according to the algorithm shown in
Table 9-2, as long as the document type is supported by both hosts.

9-10 8600 0056-408

Accessing and Creating Files Using Distributed File Services

Table 9-2. Document Type Selection

Resulting
Document
EXTMODE FILEKIND BLOCKSTRUCTURE Type
EBCDIC, ASCII, Symbolic FIXED, EXTERNAL FTAM-1
IAGSTRING, values
ISOGENERALSTRING,
ISOVISIBLESTRING,
ISOGRAPHICSTRING
EBCDIC, ASCII, Symbolic VARIABLE FTAM-2
IAGSTRING, values
ISOGENERALSTRING,
ISOVISIBLESTRING,
ISOGRAPHICSTRING
EBCDIC, ASCII, Nonsymbolic FIXED, EXTERNAL, FTAM-3
IAGSTRING, values VARIABLE
ISOGENERALSTRING,
ISOVISIBLESTRING,
ISOGRAPHICSTRING
SINGLE, Any value FIXED, EXTERNAL, FTAM-3
OCTETSTRING VARIABLE

If you want to create an INTAP-1 file, specify INTAP1 as the DOCUMENTTYPE value.

If a remote host does not support FTAM-2 documents, an FTAM-2 file is handled as
though it were an FTAM-1 document. Some file characteristics are not retained during
this process of simplification.

Note: Allfiles with a FILEKIND of SEQDATA, CSEQDATA, TEXTDATA, or xSYMBOL
(where xSYMBOL represents a kind of compiler symbol file, such as ALGOLSYMBOL or
NDLSYMBOL) are considered symbolic files. Symbolic files normally contain only
displayable characters

8600 0056-408 9-11

Accessing and Creating Files Using Distributed File Services

Example

The following is an example of ALGOL code that creates a new file on a FTAM remote
host:

BEGIN

FILE DK(KIND=DISK,
HOSTNAME="NODE3.",
SERVICE=FTAM,
DOCUMENTTYPE=FTAM3,
EXTMODE=0OCTETSTRING,
INTMODE=0CTETSTRING,
FILEUSE=0UT,
BLOCKSTRUCTURE=FIXED,
FILENAME=""'A:ACCOUNTS.PAY'.",
FILESTRUCTURE=STREAM,
NEWFILE=TRUE,
USERCODE=""'VALID'/'USER'.",
MAXRECSIZE=30,
FRAMESIZE=8,

OPEN_RESULT:=0PEN (DK,AVAILABLE);
BEGIN
I0 RESULT :=WRITE (DK,30, DBUFF);

END;
LOCK (DK);
END.

9-12 8600 0056-408

Accessing and Creating Files Using Distributed File Services

FTAM Parameters Used for Communication When You Create an FTAM-1

File

If you created an FTAM-1 file, each record was mapped to an FTAM data element.
Table 9-3 identifies the FTAM parameters that were used to transport some of the file

attribute information to the remote host.

Table 9-3. FTAM Parameters Used to Communicate Information in
FTAM-1 File Creation

FTAM Parameter and Values

File Attribute and Values in the MICP
Environment

Maximum String Length

MAXRECSIZE, FRAMESIZE

MAXRECSIZE

If FRAMESIZE = 8

MAXRECSIZE * 6

If FRAMESIZE = 48

String Significance BLOCKSTRUCTURE
Fixed FIXED
Variable VARIABLE
Not Significant EXTERNAL
Universal Class EXTMODE

GeneralString

ISOGENERALSTRING

GraphicString

ISOGRAPHICSTRING

VisibleString

ISOVISIBLESTRING

IABString

IAGSTRING

8600 0056-408

Accessing and Creating Files Using Distributed File Services

FTAM Parameters Used for Communication When You Create an FTAM-2
File

If you created an FTAM-2 file, each record was mapped to an FTAM File Access Data
Unit (FADU) containing one data element. Table 9-4 identifies the FTAM parameters that
were used to transport some of the file attribute information to the remote host.

Table 9-4. FTAM Parameters Used to Communicate Information in
FTAM-2 File Creation

File Attribute and Values in the MICP

FTAM Parameter and Values

Environment

Maximum String Length

MAXRECSIZE, FRAMESIZE

MAXRECSIZE

If FRAMESIZE = 8

MAXRECSIZE * 6 If FRAMESIZE = 48

BLOCKSTRUCTURE is always Variable

String Significance is always set to
Not Significant

EXTMODE
ISOGENERALSTRING
ISOGRAPHICSTRING
ISOVISIBLESTRING
IAGSTRING

Universal Class

GeneralString

GraphicString

VisibleString
IABString

FTAM Parameters Used for Communication When You Create an FTAM-3
File

If you created an FTAM-3 file, each record was mapped to an FTAM data element.
Table 9-5 identifies the FTAM parameters that were used to transport some of the file
attribute information to the remote host.

Table 9-5. FTAM Parameters Used to Communicate Information in
FTAM-3 File Creation

File Attribute and Values in the MICP

FTAM Parameter and Values Environment

Maximum String Length MAXRECSIZE, FRAMESIZE

MAXRECSIZE If FRAMESIZE = 8

MAXRECSIZE * 6 If FRAMESIZE = 48

String Significance BLOCKSTRUCTURE
Fixed FIXED
Variable VARIABLE

8600 0056-408

Accessing and Creating Files Using Distributed File Services

Table 9-5. FTAM Parameters Used to Communicate Information in
FTAM-3 File Creation

File Attribute and Values in the MICP
FTAM Parameter and Values Environment

Not Significant EXTERNAL

FTAM Parameters Used for Communication When You Create an INTAP-1
File

If you created an INTAP-1 file, each record was mapped to an FTAM record. Table 9-6
identifies the FTAM parameters that were used to transport some of the file attribute
information to the remote host.

Table 9-6. FTAM Parameters Used to Communicate Information in
INTAP-1 File Creation

File Attribute and Values in the MCP
FTAM Parameter and Values Environment
Maximum Record Length MAXRECSIZE, FRAMESIZE
MAXRECSIZE If FRAMESIZE = 8
MAXRECSIZE * 6 If FRAMESIZE = 48
Record Significance BLOCKSTRUCTURE
Fixed FIXED
Variable VARIABLE

Accessing a File on a Remote OSI Host

Before you begin writing a program, you must answer the following questions:

e What is the host name of the system where the file resides?
e What is your valid usercode on the remote system?

The following procedure gives step-by-step instructions about how to access a file on
another remote OSI host from an MCP system using ALGOL. The remote OSI host could
be another MCP system or a system that is not an MCP system.

1. Set the DEPENDENTSPECS attribute value to TRUE.

2. To ensure that the EXTMODE and INTMODE attribute values are the same. This
action eliminates the possibility of translation and sets the DEPENDENTINTMODE
attribute value to TRUE. The INTMODE value assumes the EXTMODE value.

8600 0056-408 9-15

Accessing and Creating Files Using Distributed File Services

Notes:

e [fyou are accessing an FTAM-1 or FTAM-2 file and the Universal Class value is
GeneralString or GraphicString, escape sequences are contained in the data and
identify the coded character set that follows. This is done to satisfy the ISO
Presentation Layer standards that allow GeneralStrings and GraphicStrings to
contain multiple coded character sets and to dynamically switch coded character
sets. Refer to Table 9-21 for possible escape sequences.

e FTAM-1 and FTAM-2 files with a universal class of IA5 String or GeneralString
can contain control characters from the ISO 646 CO set. This category includes
all characters that have hexadecimal values 00 through 1F. Most MICP systems
software treats these control characters as data. Many systems that are not
MCP systems give special significance to some of these characters when they
display or print files. For example, some systems use a carriage return (CR)/line
feed (LF) pair to indicate the end of a line of text. When a file is sent from an
MCP system to a system that is not an MCP system, the file must contain the
control characters necessary for the file to be processed correctly on that
system. When an MICP system receives control characters in a file, the
characters are stored in the file as data. MCP environment OSI FTAM does not
insert or delete control characters when it sends or receives file data.

If you want automatic character set translation to occur, the INTMODE and
EXTMODE values must have one of the following combinations. Any other situations
where INTMODE and EXTMODE do not match result in an open error.

INTMODE Value EXTMODE Value
EBCDIC or ASCII IAGSTRING or ISOVISIBLESTRING
ISOVISIBLESTRING IAGSTRING
IAGSTRING ISOVISIBLESTRING

3. Specify DISK as the KIND attribute value.

4. If you do not want the system to select the file service for you, specify FTAM as the
SERVICE attribute value.

5. Specify the name of the host where the file is to be accessed by using the
HOSTNAME attribute.

6. Use the FILEUSE attribute to specify if the file will be used for input, output, or both.

7. Specify the file name in the format appropriate for the remote host by using the
FILENAME attribute. Enclose the name in apostrophes (' ') if the file name does not
conform to MCP environment rules.

8. Specify a valid remote host usercode, password, and account by using the
USERCODE attribute. If the usercode, password, and account are not valid, the
remote host does not allow you to access the file.

9-16 8600 0056-408

Accessing and Creating Files Using Distributed File Services

9. When an existing file with any of the document types is opened with an OPEN
ATEND, OPEN AVAILATEND, or OPEN EXTEND operation, a serial WRITE operation
adds data to the file at the end of the file.

When an existing file with a DOCUMENTTYPE value of FTAM1, FTAMS3, or INTAP1
is opened with any other form of the OPEN statement, a serial WRITE operation at
the beginning of the file destroys all previous file contents.

When an existing file with a DOCUMENTTYPE value of FTAM2 is opened with any
other form of the OPEN statement, a serial WRITE operation that overwrites an
existing record results in an 1/O error.

10. If a file has a DOCUMENTTYPE of FTAM1, FTAM3, or INTAP1, switching from a
READ operation to a WRITE operation is allowed only at the beginning or the end of
the file. If FTAM is unable to determine that the current record position of the file is
the first record or is beyond the last record, the program is discontinued if an attempt
is made to write to the file.

Example

The following is an example of ALGOL code that accesses a file named TEST/DATA/OUT
on an FTAM remote host named NODES3:

BEGIN

FILE DK(KIND=DISK,
HOSTNAME="NODE3.",
SERVICE=FTAM,
DEPENDENTSPECS=TRUE,
DEPENDENTINTMODE=TRUE,
FILEUSE=IN,
FILENAME ="'A:ACCOUNTS.PAY'.",
USERCODE=""'VALID'/'USER'."),

OPEN_RESULT :=OPEN (DK,AVAILABLE);

I0 RESULT :=READ (DK,REC_SIZE,DBUFF);

END.

8600 0056-408 9-17

Accessing and Creating Files Using Distributed File Services

FTAM Parameters Used for Communication When You Access an FTAM-1
File

When you access an FTAM-1 file, an FTAM data element is used to transport each
record to and from the remote OSI host. Table 9-7 identifies FTAM attributes and
parameters that are used to transport information about the file to and from the remote
OSI host.

Table 9-7. FTAM Parameters Used to Communicate Information in
FTAM-1 File Access

File Attribute and Values in the MICP
FTAM Attribute or Parameter and Values Environment
Filename attribute TITLE
Document Type Name parameter DOCUMENTTYPE
Permitted Actions attribute PERMITTEDACTIONS
String Significance parameter BLOCKSTRUCTURE
Not Significant EXTERNAL
Variable VARIABLE
Fixed FIXED
Universal Class parameter EXTMODE
GeneralString ISOGENERALSTRING
GraphicString ISOGRAPHICSTRING
VisibleString ISOVISIBLESTRING
|IA5String IABSTRING
Maximum String Length Parameter MAXRECSIZE
Parameter Available Maximum string length parameter
value
Parameter Not Available 9995, if the String Significance
parameter is Variable or the Universal
Class parameter is GeneralString or
GraphicString
64000, if the String Significance
parameter is Not Significant and the
Universal Class parameter is IAbString
or VisibleString

9-18 8600 0056-408

Accessing and Creating Files Using Distributed File Services

FTAM Parameters Used for Communication When You Access an FTAM-2

File

If the file is an FTAM-2 file, an FTAM FADU containing one data element is used to
transport each record to and from the remote OSI host. Table 9-8 identifies FTAM
attributes and parameters that are used to transport information about the file to and
from the remote OSI host. The String Significance parameter always has a value of Not

Significant.

Table 9-8. FTAM Parameters Used to Communicate Information in
FTAM-2 File Access

File Attribute and Values in the MICP

FTAM Attribute or Parameter and Values Environment
Filename attribute TITLE
Document Type Name parameter DOCUMENTTYPE
Permitted Actions attribute PERMITTEDACTIONS
String Significance parameter BLOCKSTRUCTURE
Not Significant EXTERNAL
Universal Class parameter EXTMODE

GeneralString

ISOGENERALSTRING

GraphicString

ISOGRAPHICSTRING

VisibleString ISOVISIBLESTRING
|IAB5String IAGSTRING
Maximum String Length Parameter MAXRECSIZE

Parameter Available

Maximum string length parameter
value that does not exceed 9995

Parameter Not Available

9995

8600 0056-408

Accessing and Creating Files Using Distributed File Services

9-20

FTAM Parameters Used for Communication When You Access an FTAM-3

File

If the file is an FTAM-3 file, an FTAM data element is used to transport each record to
and from the remote OSI host. Table 9-9 identifies FTAM attributes and parameters that

are used to transport information about the file to and from the remote OSI host.

Table 9-9. FTAM Parameters Used to Communicate Information in

FTAM-3 File Access

FTAM Attribute or Parameter and Values

File Attribute and Values in the MICP

Environment

Filename attribute TITLE
Document Type Name parameter DOCUMENTTYPE
Permitted Actions attribute PERMITTEDACTIONS
String Significance parameter BLOCKSTRUCTURE
Fixed FIXED
Variable VARIABLE
Not Significant EXTERNAL
Maximum String length parameter MAXRECSIZE

Parameter available

Maximum string length parameter
value

Parameter not available

9995, if the String Significance
parameter is Variable

64000, if the String Significance
parameter is Not Significant

8600 0056-408

Accessing and Creating Files Using Distributed File Services

FTAM Parameters Used for Communication When You Access an INTAP-1
File

If the file is an INTAP-1 file, an FTAM record is used to transport each record to and from
the remote OSI host. Table 9-10 identifies FTAM attributes and parameters that are used
to transport information about the file to and from the remote OSI host.

Table 9-10. FTAM Parameters Used to Communicate Information in
INTAP-1 File Access

File Attribute and Values in the MICP

FTAM Attribute or Parameter and Values Environment

Filename attribute TITLE
Document Type Name parameter DOCUMENTTYPE
Permitted Actions attribute PERMITTEDACTIONS
Record Significance parameter BLOCKSTRUCTURE

Fixed FIXED

Variable VARIABLE
Maximum Record length parameter MAXRECSIZE

Parameter available

Maximum record length parameter
value

Parameter not available

9995, if the Record Significance

parameter is Variable Record

Creating a File on the Local System to Be Accessed through
FTAM

To create a file on the local system that will be accessed through FTAM from a remote
host, you need to first answer the following questions:

e What document type is needed?

e What character string is expected?

The following procedure identifies the steps that must be taken to create a file that can
be accessed by an FTAM remote host.

1. Assign the KIND attribute a value of DISK.

2. Before opening the file, you must assign the EXTMODE attribute one of the
following mnemonic values:

EBCDIC
ASCII
IABSTRING

8600 0056-408 9-21

Accessing and Creating Files Using Distributed File Services

ISOGENERALSTRING

ISOGRAPHICSTRING

ISOVISIBLESTRING

OCTETSTRING (for FTAM-3 and INTAP-1 files)
SINGLE (for FTAM-3 and INTAP-1 files)

Notes:

If you are creating an FTAM-1 or FTAM-2 file and you want to use the 1ISO 8859-1
coded character set, EXTMODE must have the value ISOGENERALSTRING or
ISOGRAPHICSTRING and each record must contain the appropriate escape
sequences. This is necessary to satisfy the ISO Presentation Layer standards
that allow GeneralStrings and GraphicStrings to contain multiple character sets
and to dynamically switch character sets. Refer to Table 9-21 for possible
escape sequences.

Some systems that are not MICP systems cannot access an FTAM-1 or

FTAM-2 file that has an EXTMODE value of ASCIl, EBCDIC, IASSTRING,
ISOGENERALSTRING, ISOGRAPHICSTRING, or ISOVISIBLESTRING because
not all the values of the Universal Class parameter are supported. If the
EXTMODE value is ASCIl, EBCDIC, or IASSTRING, and the remote system does
not support the Universal Class parameter value of IABSTRING and does support
VisibleString, you can use the DUMPALL utility to change the EXTMODE
attribute value to ISOVISIBLESTRING before the file is accessed.

FTAM-1 and FTAM-2 files with a universal class of IA5 String or GeneralString
can contain control characters from the ISO 646 CO set. This category includes
all characters that have hexadecimal values 00 through 1F. Most MCP
environment systems software treats these control characters as data. Many
systems that are not MICP systems give special significance to some of these
characters when they display or print files. For example, some systems use a
carriage return (CR)/line feed (LF) pair to indicate the end of a line of text. When a
file is sent from an MICP system to a system that is not an MICP system, the file
must contain the control characters necessary for the file to be processed
correctly on that system. When an MCP system receives control characters in a
file, the characters are stored in the file as data. MICP environment OSI FTAM
does not insert or delete control characters when it sends or receives file data.

3. Set the DOCUMENTTYPE and PERMITTEDACTIONS attribute values for your
specific needs. If you do not set these values, the values are set to the defaults
shown in Table 9-2 when the file is opened by an FTAM user. The default values are
not stored with the file. Refer to Tables 9-1 and 9-22 for possible values for these
attributes.

If you want the file to be accessed as an INTAP-1 file, specify INTAP1 as the
DOCUMENTTYPE attribute value.

9-22

8600 0056-408

Accessing and Creating Files Using Distributed File Services

4. Assign the BLOCKSTRUCTURE attribute an appropriate value from the following
table. You can optimize FTAM performance by structuring a file to have a small
number of large records, rather than a large number of small records.

Note: Some systems that are not MCP systems cannot access an FTAM-1 or
FTAM-3 file that has a BLOCKSTRUCTURE value of FIXED or VARIABLE, because
they do not support the String Significance value of Fixed or Variable for FTAM-1 and
FTAM-3 files. If such a system must access such a file, you can use the DUMPALL
utility to change the value of BLOCKSTRUCTURE from FIXED or VARIABLE to
EXTERNAL prior to accessing the file.

Document Type Possible BLOCKSTRUCTURE Value
FTAM-1 FIXED, EXTERNAL, and VARIABLE
FTAM-2 FIXED, EXTERNAL, and VARIABLE
FTAM-3 FIXED, EXTERNAL, and VARIABLE
INTAP-1 FIXED and VARIABLE

5. Assign the FILEORGANIZATION attribute a value of NOTRESTRICTED.

6. Assign any of the FILESTRUCTURE attribute values; ALIGNED180, BLOCKED, or
STREAM.

Note: If an FTAM user accesses the created file later and does not specify a
usercode with the file name, such as (usercode)<file name>, the MCP environment
FTAM software searches for the file in the usercode directory of the accessing user,
which might be a LOCALALIAS usercode. If this search is unsuccessful, the FTAM
software searches for the file among the files without a usercode.

8600 0056-408 9-23

Accessing and Creating Files Using Distributed File Services

9-24

How File Attribute Values Are Passed for an FTAM-1 File

If an FTAM-1 file is accessed by a remote OSI host, each record is mapped to an FTAM
data element. Table 9-11 identifies how the file attribute values in the MCP environment

are mapped to the FTAM parameters.

Table 9-11. File Attribute Values Passed When an FTAM-1 File Is
Accessed

File Attribute and Values in the MICP
Environment

FTAM Parameter and Values

MAXRECSIZE, FRAMESIZE

Maximum String Length

If FRAMESIZE = 8

MAXRECSIZE

If FRAMESIZE = 48

MAXRECSIZE * 6

BLOCKSTRUCTURE String Significance
FIXED Fixed
VARIABLE Variable
EXTERNAL Not Significant
EXTMODE Universal Class

ISOGENERALSTRING

GeneralString

ISOGRAPHICSTRING GraphicString
ISOVISIBLESTRING VisibleString
IABSTRING, ASCII, EBCDIC |ABString

8600 0056-408

Accessing and Creating Files Using Distributed File Services

How File Attribute Values are Passed for an FTAM-2 File

If an FTAM-2 file is accessed by a remote OSI host, each record is mapped to an FTAM
FADU containing one data element. Table 9-12 identifies how the file attribute values in
the MCP environment are mapped to the FTAM parameters.

Table 9-12. File Attribute Values Passed When an FTAM-2 File Is
Accessed

File Attribute and Values in the MICP
Environment

FTAM Parameter and Values

MAXRECSIZE, FRAMESIZE

Maximum String Length

If FRAMESIZE = 8

MAXRECSIZE

If FRAMESIZE = 48

MAXRECSIZE * 6

BLOCKSTRUCTURE is always variable

String Significance is always Not
Significant

EXTMODE

Universal Class

ISOGENERALSTRING

GeneralString

ISOGRAPHICSTRING GraphicString
ISOVISIBLESTRING VisibleString
IABSTRING, ASCII, EBCDIC |ABString

How File Attribute Values are Passed for an FTAM-3 File

If an FTAM-3 file is accessed by a remote OSI host, each record is mapped to an FTAM
data element. Table 9-13 identifies how the file attribute values in the MCP environment

are mapped to the FTAM parameters.

Table 9-13. File Attribute Values Passed When an FTAM-3 File Is
Accessed

File Attribute and Values in the MICP
Environment

FTAM Parameter and Values

MAXRECSIZE, FRAMESIZE

Maximum String Length

If FRAMESIZE = 8

MAXRECSIZE

If FRAMESIZE = 48

MAXRECSIZE * 6

BLOCKSTRUCTURE String Significance
FIXED Fixed
VARIABLE Variable
EXTERNAL Not Significant

8600 0056-408

9-25

Accessing and Creating Files Using Distributed File Services

How File Attribute Values are Passed for an INTAP-1 File

If an INTAP-1 file is accessed by a remote OSI host, each record is mapped to an FTAM
record. Table 9-14 identifies how the file attribute values in the MCP environment are
mapped to the FTAM parameters.

Table 9-14. File Attribute Values Passed When an INTAP-1 File Is

Accessed
File Attribute and Values in the MICP
Environment FTAM Parameter and Values

MAXRECSIZE, FRAMESIZE Maximum Record Length

If FRAMESIZE = 8 MAXRECSIZE

If FRAMESIZE = 48 MAXRECSIZE * 6
BLOCKSTRUCTURE Record Significance

FIXED Fixed

VARIABLE Variable

Accessing a File Created through FTAM on the Local System

You can use any programming techniques that are possible for a disk file that has a
FILESTRUCTURE attribute value of STREAM if the file was created on the local host by a
program on a remote OSI| host, or copied from a remote OSI host to the local host.

Note: \When FTAM is transferring a file to an MICP system or is creating a new file on
an MCP system, the file is entered in the directory at the time the file is opened, instead
of when the file is closed. As a result, if an FTAM session is aborted, that is if an operator
terminated the job or the network failed, a partial file might remain on the disk. This
behavior is necessary in order to conform to the requirements of the FTAM International
Standard.

File Attribute Values Received for an FTAM-1 File

If the file is an FTAM-1 file, a record was created from each FTAM data element.

Table 9-15 shows how the file attributes in the MCP environment obtained their current
values from the FTAM attributes and parameters sent by the remote OSI host. FTAM
document type parameters are maintained in the disk file header for future use by FTAM,
in the event the file is transferred or accessed. Additionally, the FILEORGANIZATION
attribute was set to NOTRESTRICTED, the FILESTRUCTURE attribute was set to
STREAM, and the FRAMESIZE attribute was set to 8.

9-26 8600 0056-408

Accessing and Creating Files Using Distributed File Services

Notes:

e FTAM-1 files with a universal class of IA5 String or GeneralString can contain control
characters from the ISO 646 CO set. This category includes all characters that have
hexadecimal values 00 through 1F. Most MCP environment system software treats
these special characters as data. Many non-A Series systems give special
significance to some of these characters when they display or print files. For
example, some systems use a carriage return (CR)/line feed (LF) pair to indicate the
end of a line of text. When an MCP system receives control characters in a file, they
are stored in the file as data. MCP environment OSI FTAM does not insert or delete
control characters when it receives file data.

e [fthe Universal Class value is GeneralString or GraphicString, escape sequences are
stored as data and identify the character set that follow. This is done to satisfy the
ISO Presentation Layer standards that allow GeneralStrings and GraphicStrings to
contain multiple character sets and to dynamically switch character sets. Refer to
Table 9-21 for possible escape sequences.

Table 9-15. File Attribute Values for an FTAM-1 File Created by a
Remote Host

File Attribute and Values in the

MCP Environment FTAM Attribute or Parameter
TITLE Filename attribute specified by remote host
initiator
DOCUMENTTYPE Document Type Name parameter specified by
remote host initiator
PERMITTEDACTIONS Permitted Actions attribute
BLOCKSTRUCTURE Depends on the values of the String Significance
and Universal Class parameters
EXTERNAL If String Significance is Not Significant and
Universal Class is IA5String or VisibleString
VARIABLE If Universal Class is IA5String or VisibleString and

String Significance is Variable, or if Universal
Class is GeneralString or GraphicString

FIXED If String Significance is Fixed and Universal class
is IA5String or VisibleString

EXTMODE Universal Class parameter
ISOGENERALSTRING GeneralString
ISOGRAPHICSTRING GraphicString
ISOVISIIBLESTRING VisibleString
IABSTRING IABString

MAXRECSIZE

8600 0056-408 9-27

Accessing and Creating Files Using Distributed File Services

9-28

Table 9-15. File Attribute Values for an FTAM-1 File Created by a
Remote Host

File Attribute and Values in the
MCP Environment FTAM Attribute or Parameter

9995 If Universal Class is GeneralString or
GraphicString or if the String Significance is
Variable and the maximum string length
parameter is not available

Maximum String Length If Universal Class is IAbString or VisibleString and

parameter value the maximum string length parameter is available

64000 If Universal Class is IA5String or VisibleString, the
String Significance is Not Significant, and the
maximum string length parameter is not available

File Attribute Values Received for an FTAM-2 File

If the file is an FTAM-2 file, a record was created from each FTAM FADU and the
boundaries between the data elements within the FADU were not maintained.

Table 9-16 shows how the file attributes in the MCP environment obtained their current
values from the FTAM attributes and parameters sent by the remote OSI host. FTAM
document type parameters are maintained in the disk file header for future use by FTAM,
in the event the file is transferred or accessed. Additionally, the FILEORGANIZATION
attribute was set to NOTRESTRICTED, the FILESTRUCTURE attribute was set to
STREAM, the BLOCKSTRUCTURE attribute was set to VARIABLE, and the FRAMESIZE
attribute was set to 8.

Notes:

o FTAM-2 files with a universal class of IA5 String or GeneralString can contain control
characters from the ISO 646 CO set. This category includes all characters that have
hexadecimal values 00 through 1F. Most MCP environment system software treats
these special characters as data. Many non- Series systems give special significance
to some of these characters when they display or print files. For example, some
systems use a carriage return (CR)/line feed (LF) pair to indicate the end of a line of
text. When an MCP system receives control characters in a file, they are stored in
the file as data. MCP environment OSI FTAM does not insert or delete control
characters when it receives file data.

e [fthe Universal Class value is GeneralString or GraphicString, escape sequences are
stored as data and identify the character set that follow. This is done to satisfy the
ISO Presentation Layer standards that allow GeneralStrings and GraphicStrings to
contain multiple character sets and to dynamically switch character sets. Refer to
Table 9-21 for possible escape sequences.

8600 0056-408

Accessing and Creating Files Using Distributed File Services

Table 9-16. File Attribute Values for an FTAM-2 File Created by a
Remote Host

File Attribute and Values in the MICP
Environment FTAM Attribute or Parameter
TITLE Filename attribute specified by the remote
host initiator
DOCUMENTTYPE Document Type Name parameter specified
by the remote host initiator
PERMITTEDACTIONS Permitted Actions attribute
EXTMODE Universal Class parameter
ISOGENERALSTRING GeneralString
ISOGRAPHICSTRING GraphicString
ISOVISIBLESTRING VisibleString
IABSTRING |ABString
MAXRECSIZE
9995

File Attribute Values Received for an FTAM-3 File

If the file is an FTAM-3 file, a record was created from each FTAM data element.

Table 9-17 shows how the MCP environment file attributes obtained their current values
from the FTAM attributes and parameters sent by the remote OSI host. FTAM document
type parameters are maintained in the disk file header for future use by FTAM, in the
event the file is transferred or accessed. Additionally, the FILEORGANIZATION attribute
was set to NOTRESTRICTED, the FILESTRUCTURE attribute was set to STREAM, the
EXTMODE attribute was set to OCTETSTRING, and the FRAMESIZE attribute was set to
8.

Table 9-17. File Attribute Values for an FTAM-3 File Created by a
Remote Host

File Attribute and Values in the
MCP Environment FTAM Attribute or Parameter

TITLE Filename attribute specified by remote host
initiator

DOCUMENTTYPE Document Type Name parameter specified by
the remote host initiator

PERMITTEDACTIONS Permitted Actions attribute

BLOCKSTRUCTURE String Significance parameter

FIXED Fixed

8600 0056-408 9-29

Accessing and Creating Files Using Distributed File Services

9-30

Table 9-17. File Attribute Values for an FTAM-3 File Created by a
Remote Host

VARIABLE Variable
EXTERNAL Not Significant
MAXRECSIZE
9995 If the String Significance parameter is Variable
and the Maximum String Length parameter is
not available
64000 If the String Significance parameter is Not
Significant and the Maximum String Length
parameter is not available
Maximum String Length If the Maximum String Length parameter is
parameter value available

File Attribute Values Received for an INTAP-1 File

If the file is an INTAP-1 file, a record was created from each FTAM record. Table 9-18
shows how the file attributes in the MCP environment obtained their current values from
the FTAM attributes and parameters sent by the remote OSI host. FTAM document type
parameters are maintained in the disk file header for future use by FTAM, in the event
the file is transferred or accessed. Additionally, the FILEORGANIZATION attribute was
set to NOTRESTRICTED, the FILESTRUCTURE attribute was set to STREAM, the
EXTMODE attribute was set to OCTETSTRING, and the FRAMESIZE attribute was set to

8.

Table 9-18. File Attribute Values for an INTAP-1 File Created by a

Remote Host

File Attribute and Values in the
MCP Environment

FTAM Attribute or Parameter

TITLE Filename attribute specified by remote host
initiator
DOCUMENTTYPE Document Type Name parameter specified by

the remote host initiator

PERMITTEDACTIONS

Permitted Actions attribute

BLOCKSTRUCTURE Record Significance parameter
FIXED Fixed
VARIABLE Variable
MAXRECSIZE
9995 If the Record Significance parameter is Variable

and the Maximum Record Length parameter is
not available

8600 0056-408

Accessing and Creating Files Using Distributed File Services

Table 9-18. File Attribute Values for an INTAP-1 File Created by a
Remote Host

File Attribute and Values in the
MCP Environment FTAM Attribute or Parameter

64000 If the Record Significance parameter is Fixed and
the Maximum Record Length parameter is not
available

Maximum Record Length If the Maximum Record Length parameter is
available

parameter value

FTAM Features in the MICP Environment
The following information summarizes some important facts about the implementation of

FTAM in the MCP environment.

Mapping File Attributes in the MCP Environment to FTAM File
Attributes

Table 9-19 lists the FTAM file attributes and their file attribute equivalents in the MCP
environment.

Table 9-19. FTAM File Attribute Equivalents

FTAM File Attribute File Attribute in the MCP Environment
Filename FILENAME/TITLE
Permitted Actions PERMITTEDACTIONS
Document Type Name parameter of DOCUMENTTYPE
Contents Type
Storage Account Not supported
Date and Time of Creation CREATIONDATE and CREATIONTIME
Date and Time of Last Modification ALTERDATE and ALTERTIME
Date and Time of Last Read Access Not supported
Date and Time of Last Attribute Not supported
Modification
Identity of Creator Not supported
Identity of Last Modifier Not supported
Identity of Last Reader Not supported
Identity of Last Attribute Modifier Not supported

8600 0056-408 9-31

Accessing and Creating Files Using Distributed File Services

Table 9-19. FTAM File Attribute Equivalents

FTAM File Attribute

File Attribute in the MCP Environment

File Availability

Supported internally

Filesize

FILELENGTH

Future Filesize

Not supported

Access Control

Not supported

Legal Qualifications

Not supported

Private Use

Not supported

Identifying Coded Character Sets

Table 9-20 identifies the five coded character sets that are available, the ISO coded
character sets that can be used, the document type that can use the character set, and
whether or not escape sequences are permitted. Double-byte (16-bit) and mixed multi-
byte (mixed 8-bit and 16-bit with FRAMESIZE = 8) character sets are not supported.

In Tables 9-20 and 9-21, CO includes the hexadecimal values 4'00" through 4"1F", GO
includes the hexadecimal values 4'21" through 4"7E", and G1 includes the hexadecimal

values 4"A0" through 4"FF".

Table 9-20. Possible Character Sets

Refer to Figure 9-2
for a description of
this character set

and CO sets, (Refer to
Figure 9-2 for a
description of this
character set) by default,
or the 1ISO8859-1 GO and
G1 sets (Refer to Figure 9-
-2 for a description of this
character set).

Document Escape
Character Set Name ISO Coded Character Set Type Sequence
IAGSTRING A string of 8-bit frames FTAM-1 and Not
. containing the ISO646 GO FTAM-2 permitted
Refer to Figure 9-2
" and CO sets (Refer to
for a description of .
. Figure 9-2 for a
this character set L .
description of this
character set).
ISOGENERALSTRING A string of 8-bit frames FTAM-1 and Permitted
containing the ISO646 GO FTAM-2

9-32

8600 0056-408

Accessing and Creating Files Using Distributed File Services

Table 9-20. Possible Character Sets

Document Escape
Character Set Name ISO Coded Character Set Type Sequence

ISOGRAPHICSTRING A string of 8-bit frames FTAM-1 and Permitted
containing the ISO646 GO FTAM-2
set, (Refer to Figure 9-2
for a description of this
character set) by default,
or the 1ISO8859-1 GO and
G1 sets (Refer to Figure 9-
-2 for a description of this
character set).

ISOVISIBLESTRING A string of 8-bit frames FTAM-1 and Not
containing the ISO646 GO FTAM-2 permitted
set (Refer to Figure 9-2
for a description of this
character set).

OCTETSTRING A string of 8-bit frames FTAM-3 and Not

each containing any binary INTAP-1 permitted
value from Hex 00 to Hex
FF.

Escape sequences allow a program to switch from one ISO coded character set to
another in the same record. Table 9-21 identifies the escape sequences that are used to
introduce each coded character set.

Table 9-21. Possible Escape Sequences

Coded Character Set Hex Representation of Escape Sequence
ISO 646 CO "1B" "21" 40"
ISO 646 GO "1B" "28" "40"
SO 8859-1 GO "1B" "28" "'42"
SO 8859-1 G1 "1B" "2D" "41"

Figure 9-1 presents the ISO 646 coded character set.

8600 0056-408 9-33

Accessing and Creating Files Using Distributed File Services

9-34

b7

=

-
iy

b6

-

=
=

b5

[

=3
[

01

=8
w

00

NUL

DLE

01

SOH

DC1

02

STX

DC2

03

ETX

04

EOT

05

ENQ

NAK

c

06

ACK

SYN

07

BEL

ETB

08

BS

CAN

S|Q|—-~ |0 Q0 T |l

09

EM

©O© |0 | NO| | WIN|PF |

10

LF

SuB

—

11| VT

12

FF

— | X

13

CR

>l—|—~|—=IN|< |X|ZE|<|c|Hd|v 0|0 |T|S

~— |— |~ |N | |X | |<

14

SO

I1S2

§

15

Si

IS1

olz|lz|lr|x|lal=|T|o|mmloo|lo| > |

o |o |3

DEL|

Figure 9-1.

I1ISO 646 Coded Character Set

— A

CO Set

h\'d
GO Set

8600 0056-408

Accessing and Creating Files Using Distributed File Services

Figure 9-2 presents the ISO 8859-1 coded character set.

8600 0056-408

Figure 9-2. 1SO 8859-1 Coded Character Set

b. |0 0 0 [} 0 0 0 1 1 1 1 1 1 1 1 1
b.| ¢ [4 0 0 1 1 1 1 0 |0 0 |0 1 1 1 1
bf 0| o 1 1] @ ¢ 1 1 6| @ 1 1 6| @ 1 1
b. 0 1 [1] 1 0 1 0 1 1] 1 0 1 0 0 1
T 00| 01| 02|03 |04 | @5 12|13 |14 | 15
oo o0 se| B d P Aldlald
6|e a1 11/ A|Q AINTa ™
00 @2 "l 2/B|R AlOlalo
60 @3 #/3 cl|s 1036
0|1 g4 $| 4/ DT AlOlalo
6|1 25 % 5| E|U R10[alo
o|111]g6 &6 F|vV £10|eel|o
1|0 a7 716w ClIx|C|=
e g8 (|8 H| X Flgle | g
16| 1]0| g9 y ol 1]y ElUle |u
1|0 16 * 1|z FlUle |ud
1|0 11 + 5 K| FlU|e|u
11 12 L] T|Ul;5|u
1)1 13 -1 =Ml TIY |5]y
1)1 14 N | A ir P ; b
11 15 I |2 of_ TRy
N J
Y Y
G Set Gl Set

9-35

Accessing and Creating Files Using Distributed File Services

Specifying 1/0 Actions with the PERMITTEDACTIONS Attribute

The PERMITTEDACTIONS attribute is used to specify the I/O actions that can be
performed in a file through FTAM. The possible I/O actions that can be specified are
listed in Table 9-22.

Table 9-22. Possible PERMITTEDACTIONS Values

Valid Document PERMITTEDACTIONS
Action Type Attribute Field

Read a record. FTAM-2 [00:01]

Read an entire file. FTAM-1, FTAM-3, [00:01]
and INTAP-1

Add records at the end of the file. FTAM-2 [01:01]

Replace the contents of the file. FTAM-1, FTAM-3, [02:01]
and INTAP-1

Add new data at the end of the FTAM-1, FTAM-3, [03:01]

file. and INTAP-1

Delete the contents of the file. All [04:01]

Interrogate the attributes. All [05:01]

Modify the attributes. All [06:01]

Delete the file. All [07:01]

Traverse the file from beginning to FTAM-2 [08:01]

end by using one of the following

record identities:

e Begin

e First

e Next

e Last

e End

Traverse the file from end to FTAM-2 [09:01]

beginning by using one of the

following record identities:

e Begin

e First

e Previous

e last

e End

Traverse the file randomly by FTAM-2 [10:01]

using one of the following record

identities:

e Current

o Node number

9-36 8600 0056-408

Accessing and Creating Files Using Distributed File Services

Controlling the Concurrency-Control Parameter Information

When your program is accessing a file on a remote system, it can control whether the
Concurrency-Control parameter of the F-Create and F-Select Application Protocol Data
Units (APDUs) are sent by specifying an EXCLUSIVE file attribute value. The
Concurrency-Control parameter of the F-Open APDU is never sent. If the program does
not specify an EXCLUSIVE value, no information is sent.

If the program specifies an EXCLUSIVE attribute, the values of the DOCUMENTTYPE,
EXCLUSIVE, and FILEUSE attributes determine the information sent in the
Concurrency-Control parameter. Table 9-23 shows what Concurrency-Control
information is sent if the EXCLUSIVE value is FALSE.

Table 9-23. Concurrency-Control Parameter Information Sent When

the EXCLUSIVE File Attribute Is FALSE

DOCUMENTTY
FILEUSE Value PE Value Concurrency-Control Information Sent
Not specified Not specified Read Attributes, Change Attributes, and
Delete File are set to SHARED.
IN Not specified Read is set to SHARED. Insert, Replace,
Extend, and Erase are set to NOT
REQUIRED.
ouT Not specified Erase is set to SHARED. Read is set to NOT
REQUIRED.
ouT FTAM1 or Replace and Extend are set to SHARED.
FTAMS3 Insert is set to NOT REQUIRED.
ouT FTAM2 Replace and Extend are set to NOT
REQUIRED. Insert is set to SHARED.
10 Not specified Read and Erase are set to SHARED.
10 FTAM1 or Replace and Extend are set to SHARED.
FTAMS3 Insert is set to NOT REQUIRED.
10 FTAM2 Replace and Extend are set to NOT
REQUIRED. Insert is set to SHARED.

8600 0056-408

9-37

Accessing and Creating Files Using Distributed File Services

Table 9-24 shows what Concurrency-Control information is sent if the EXCLUSIVE value
is TRUE.

Table 9-24. Concurrency-Control Parameter Information Sent When
the EXCLUSIVE File Attribute Is TRUE

DOCUMENTTY
FILEUSE Value PE Value Concurrency-Control Information Sent
Not specified Not specified Read Attributes, Change Attributes, and Delete
File are set to EXCLUSIVE.
IN Not specified Read is set to EXCLUSIVE. Insert, Replace,
Extend, and Erase are set to NO ACCESS.
ouT Not specified Erase is set to EXCLUSIVE. Read is set to NO
ACCESS.
ouT FTAM1 or Replace and Extend are set to EXCLUSIVE.
FTAM3 Insert is set to NO ACCESS.
ouT FTAM2 Replace and Extend are set to NO ACCESS.
Insert is set to EXCLUSIVE.
0] Not specified Read and Erase are set to EXCLUSIVE.
10 FTAM1 or Replace and Extend are set to EXCLUSIVE.
FTAM3 Insert is set to NO ACCESS.
10 FTAM2 Replace and Extend are set to NO ACCESS.
Insert is set to EXCLUSIVE.

When MCP environment FTAM is the responding host, all valid values of the
Concurrency-Control parameter are supported for the F-Create, F-Select, and F-Open
PDUs.

Handling Waiting When No File Is Found

When a file is not present, the initiating host waits rather than the responding host.

9-38 8600 0056-408

Accessing and Creating Files Using Distributed File Services

Handling String Parameters

The FTAM protocol contains four string parameters that require special handling when
they are received by an MCP system. This special handling ensures that the contents of
the string parameters are properly mapped to the corresponding MCP environment
attributes. The following table names the string parameters and indicates to which
attributes they are mapped.

String Parameter Attribute Used
Initiator-Identify USERCODE
Account Not used
Filestore-Password PASSWORD
Filename TITLE

Initiator-Identify, Account, and Filename are all encoded in the ISOGRAPHICSTRING
character set. Filestore-Password can be encoded by systems other than MCP systems
either as ISOGRAPHICSTRING or OCTETSTRING. The actual character set used for
ISOGRAPHICSTRING encoding is the ISO 646 coded character set.

MCP environment FTAM translates incoming ISOGRAPHICSTRING-encoded parameters
to EBCDIC. All lowercase characters that are not enclosed in quotation marks (") are
converted to uppercase characters.

If MCP environment FTAM receives a Filestore-Password string parameter encoded in
OCTETSTRING, FTAM passes the data to the MCP without translating the data or
converting the characters to uppercase characters. If the characters in the character
string are not EBCDIC, a security violation results.

MCP environment FTAM sends all four parameters as ISOGRAPHICSTRING characters.
You can prevent FTAM from changing all the characters to uppercase characters by
enclosing the characters in apostrophes (' ') or quotation marks ("' ') when you specify
the FILENAME and USERCODE attributes. If you use apostrophes, no changes are
made, and the apostrophes are stripped from the character string before the data is sent.
If you use quotation marks, no changes are made, but the quotation marks are not
stripped from the character string before the data is sent.

8600 0056-408 9-39

Accessing and Creating Files Using Distributed File Services

Identifying Supported File Attributes

Table 9-25 identifies the attributes that can be used by Host Services logical I/O and
FTAM.

Table 9-25. Host Services Logical 1/0 and FTAM File Attributes

Attribute Host Services FTAM
ACCESSDATE Supported Not supported
ACCESSDATEUT Supported Not supported
ACCESSTZ Supported Not supported
ADAPTABLE Supported Not supported
AFTER Supported Not supported
ALIGNFILE Supported Not supported
ALIGNMENT Supported Not supported
ALTERDATE Supported Supported
ALTERDATEUT Supported Supported
ALTERNATEGROUPS Supported Not supported
ALTERTIME Supported Supported
ALTERTIMEUT Supported Supported
ALTERTZ Supported Not supported
APPEND Supported Not supported
AREAADDRESS Not supported Not supported
AREAALLOCATED Supported Not supported
AREALENGTH Supported Not supported
AREAS Supported Not supported
AREASECTORS Supported Not supported
AREASINUSE Not supported Not supported
AREASIZE Restricted usage Not supported
ATTERR Supported Supported
ATTMODIFYDATE Supported Not supported
ATTMODIFYDATEUT Supported Not supported
ATTMODIFYTIME Supported Not supported
ATTMODIFYTIMEUT Supported Not supported
ATTMODIFYTZ Supported Not supported
ATTVALUE Supported Supported

9-40 8600 0056-408

Accessing and Creating Files Using Distributed File Services

Table 9-25. Host Services Logical 1/0 and FTAM File Attributes

Attribute Host Services FTAM
ATTYPE Not supported Supported
AUTOUNLOAD Supported Not supported
AVAILABLE Supported Supported
BACKUPDATE Supported Not supported
BACKUPDATEUT Supported Not supported
BACKUPKIND Supported Not supported
BACKUPTIME Supported Not supported
BACKUPTIMEUT Supported Not supported
BACKUPTZ Supported Not supported
BLOCK Supported Not supported
BLOCKSIZE Restricted values Not supported
BLOCKSTRUCTURE Restricted values Restricted values
BUFFERS Supported Not supported
BUFFERSIZE Supported Not supported
CARRIAGECONTROL Supported Not supported
CCSVERSION Supported Not supported
CENSUS Supported Not supported
CHECKPOINT Supported Not supported
CLEARAREAS Supported Not supported
COMPRESSING Supported Not supported
COMPRESSIONCONTROL Supported Not supported
CONMPRESSIONREQUESTED Supported Not supported
COPYDESTDATE Supported Not supported
COPYDESTDATEUT Supported Not supported
COPYDESTTIME Supported Not supported
COPYDESTTIMEUT Supported Not supported
COPYDESTTZ Supported Not supported
COPYSOURCEDATE Supported Not supported
COPYSOURCEDATEUT Supported Not supported
COPYSOURCETIME Supported Not supported
COPYSOURCETIMEUT Supported Not supported
COPYSOURCETZz Supported Not supported

8600 0056-408 9-41

Accessing and Creating Files Using Distributed File Services

9-42

Table 9-25. Host Services Logical 1/0 and FTAM File Attributes

Attribute Host Services FTAM
CREATEPASSWORD Not supported Supported
CREATIONDATE Supported Supported
CREATIONDATEUT Supported Supported
CREATIONTIME Supported Supported
CREATIONTIMEUT Supported Supported
CREATIONTZ Supported Not supported
CRUNCHED Supported Not supported
CURRENTBLOCKLENGTH Supported Not supported
CURRENTRECORDLENGTH Supported Supported
CYCLE Supported Not supported
DENSITY Supported Not supported
DEPENDENTINTVIODE Supported Supported
DEPENDENTSPECS Supported Supported
DIRECTION Supported Not supported
DISPOSITION Supported Not supported
DOCUMENTTYPE Supported Supported
DUNMYFILE Supported Not supported
ESTIMATEDRECORDS Supported Not supported
EXCLUSIVE Not supported Supported
EXECUTEDATE Supported Not supported
EXECUTEDATEUT Supported Not supported
EXECUTETIME Supported Not supported
EXECUTETIMEUT Supported Not supported
EXECUTETZ Supported Not supported
EXTDELIMITER Supported Not supported
EXTMODE Restricted values Restricted values
FAMILYINDEX Supported Not supported
FAMILYNAME Supported Not supported
FAMILYOWNER Supported Not supported
FILECLASS Supported Not supported
FILEEQUATED Supported Supported
FILEKIND Restricted values Restricted values

8600 0056-408

Accessing and Creating Files Using Distributed File Services

Table 9-25. Host Services Logical 1/0 and FTAM File Attributes

Attribute Host Services FTAM
FILELENGTH Not supported Supported
FILENAME Supported Supported
FILEORGANIZATION Restricted values Restricted values
FILESECTION Supported Not supported
FILESTATE Supported Supported
FILESTRUCTURE Restricted values Restricted values
FILETYPE Restricted values Restricted values
FILEUSE Supported Supported
FLEXIBLE Supported Not supported
FORMID Supported Not supported
FRAMESIZE Restricted values Restricted values
GENERATION Supported Not supported
GROUP Supported Not supported
HOSTNAME Supported Supported
INPUTTABLE Supported Not supported
INTERACTIVEFILE Supported Not supported
INTMODE Restricted values Restricted values
INTNAME Supported Supported
IOHFUNCTIONNNAME Not supported Not supported
IOHINTERFACENAME Not supported Not supported
IOHLIBACCESS Not supported Not supported
IOHLIBPARAMETER Not supported Not supported
IOHPREFIX Not supported Not supported
IOHSTRING Not supported Not supported
IOHTITLE Not supported Not supported
KERBEROSACCESS Not supported Not supported
KIND Restricted values Restricted values
LABEL Supported Not supported
LABELKIND Supported Not supported
LASTACCESSIBLEAREA Supported Not supported
LASTRECORD Supported Not supported
LASTSUBFILE Supported Not supported

8600 0056-408

9-43

Accessing and Creating Files Using Distributed File Services

9-44

Table 9-25. Host Services Logical 1/0 and FTAM File Attributes

Attribute Host Services FTAM
LFILENAME Supported Supported
LICENSEKEY Restricted usage/value Not supported
LINENUM Supported Not supported
LOCATECAPABLE Supported Not supported
LOCKEDFILE Supported Not supported
LTITLE Supported Restricted values
MAXRECSIZE Restricted values Restricted values
MINRECSIZE Supported Supported
MYUSE Restricted usage Supported
NEWFILE Supported Supported
NEXTRECORD Supported Not supported
ODDBLOCKSIZE Not supported Not supported
OFFSITE Not supported Not supported
OFNOTIFICATION Supported Supported
OPEN Supported Supported
OPTIONAL Supported Supported
OUTPUTTABLE Supported Not supported
OVERRIDEEXTNMODE Supported Not supported
PAGE Supported Not supported
PAGECOMP Supported Not supported
PAGESIZE Restricted usage Not supported
PARITY Supported Not supported
PATHNAME Supported Not supported
PERMITTEDACTIONS Supported Supported
PRINTDISPOSITION Supported Not supported
PRINTERBACKUPDATA Not supported Not supported
PRINTERKIND Supported Not supported
PRINTPARTIAL Supported Not supported
PRINTREQUEST Supported Not supported
PRODUCT Supported Not supported
PROTECTION Restricted usage Not supported
READDATE Supported Not supported

8600 0056-408

Accessing and Creating Files Using Distributed File Services

Table 9-25. Host Services Logical 1/0 and FTAM File Attributes

Attribute Host Services FTAM
READDATEUT Supported Not supported
READREVERSECAPABLE Supported Not supported
READTIME Supported Not supported
READTIMEUT Supported Not supported
READTZ Supported Not supported

REDIRECTION

Not supported

Not supported

REINITIALIZE Supported Supported

RELEASEID Supported Not supported
RESTRICTED Supported Not supported
RESULTLIST Supported Supported

SAVEFACTOR Supported Not supported
SAVEPRINTFILE Not supported Not supported
SCRATCHPOOL Supported Not supported
SCREEN Supported Not supported
SCREENSIZE Supported Not supported
SEARCHRULE Supported Not supported
SECTORSIZE Supported Not supported

SECURITYADMIN

Not supported

Not supported

SECURITYGUARD

Supported

Not supported

SECURITYTYPE

Restricted values

Not supported

SECURITYUSE Supported Not supported
SENSITIVEDATA Supported Not supported
SERIALNO Restricted usage Not supported
SERVICE Supported Supported

SINGLEUNIT Supported Not supported
SIZEVISIBLE Not supported Supported

STATE Restricted values Supported

STATIONCOUNT Supported Not supported
STATIONLIST Supported Not supported
STATIONNAME Supported Not supported
STATIONSALLOWED Supported Not supported
STATIONSDENIED Supported Not supported

8600 0056-408

9-45

Accessing and Creating Files Using Distributed File Services

Table 9-25. Host Services Logical 1/0 and FTAM File Attributes

Attribute Host Services FTAM
TAPEREELRECORD Supported Not supported
TIMELIMIT Restricted values Not supported
TITLE Supported Restricted use
TOTALSECTORS Supported Not supported
TRAINID Supported Not supported
TRANSFORM Supported Not supported
TRANSLATE Restricted values Not supported
TRANSLATING Supported Not supported
TRANSMISSIONNO Supported Not supported
UNIQUETOKEN Supported Not supported
UNITS Restricted usage Supported
UPDATEFILE Restricted values Not supported
USECATALOG Supported Not supported
USEDATE Supported Not supported
USERCODE Not supported Supported
VERSION Supported Not supported
WARNINGS Supported Not supported
WIDTH Supported Not supported
YOURHOST Supported Supported

9-46 8600 0056-408

Section 10
Using Direct 1/O Files

Direct I/O allows your program to do the following while preserving the integrity of the
operating system:

e Control the physical I/O activities, such as when a READ or WRITE operation actually
starts and stops.

e Handle I/O operations in an asynchronous manner.

e Handle your own error handling.

e Access all of the disk sectors that are assigned to the file if the DIOFILESTRUCTURE
value is SECTORSTREAM.

To accomplish this control, your program provides the 1/O buffer in the form of a direct
array. Any desired mapping of the data in a buffer into records must be performed by the
program. Since the logical I/O function of the operating system provides minimal
intervention, you, the programmer, must consider the behavior and limitations of the
individual device with which your program is interacting.

For direct I/O operations, as for I/O operations in general, the file variable is protected by
the system. However, because you manage the direct arrays used as buffers in direct
I/O operations, you should avoid attempting multiple, simultaneous use of the direct
array in your program.

The following restrictions apply to direct /O files:

e You cannot use direct I/O with port files.
e You cannot request translation.
e You cannot perform any WRITE operations if any of the following conditions exist:

— The file has been crunched and the logical BLOCKSIZE does not equal the
permanent BLOCKSIZE.

— The file is a copy of a duplicated file.

— The file is a code file and your program does not have a FILEKIND value of
COMPILERCODEFILE.

8600 0056-408 10-1

Using Direct 1/O Files

Defining the Characteristics of a Direct I/O File

10-2

The following tasks need to be performed before a READ or WRITE statement is invoked
and in a language that supports direct I/O:

Identify the name of the direct file with the FILENAME attribute.

Ensure that the INTMODE and EXTMODE values are equal because translating is not
supported for direct I/O files.

If you are defining a disk file and you set the BLOCKSTRUCTURE value to FIXED or
let it default to that value, you must specify the MAXRECSIZE value. The
MAXRECSIZE value is used to determine the logical length of the records.

If you choose any other BLOCKSTRUCTURE value for a disk file, you do not need to
specify a MAXRECSIZE value.

Specify the FRAMESIZE value of the direct file, unless the file you are defining is a
disk file. In that case, the FRAMESIZE value is automatically set to 8 by the 1/O
subsystem.

If the file is a disk file, set the DIOFILESTRUCTURE value to indicate the
FILESTRUCTURE attribute values the program can deal with and the way the
program intends to access the file. Additionally, the value determines the semantics
of the READ and WRITE operations on the file. This attribute value cannot be
changed by file equation or a FA (File Attribute) system command.

Mnemonic Value Meaning
ALIGNED180, BLOCKED, The program is capable of handling only files with a
and STREAM matching FILESTRUCTURE value. An open error occurs

if an attempt is made to open an existing file with a
FILESTRUCTURE value that does not match the
DIOFILESTRUCTURE value. The value of the
DEPENDENTSPECS attribute has no effect on this
check.

DEPENDENT The program is capable of handling files with any
FILESTRUCTURE value and allowed to open an existing
file with any FILESTRUCTURE value, subject to the
normal rules for opening files. Such a program often
specifies the DEPENDENTSPECS value as TRUE, but
that specification is not required. In any case, the
FILESTRUCTURE value is changed to the
FILESTRUCTURE value of the permanent file. The
FILESTRUCTURE value governs the semantics of READ
and WRITE operations.

8600 0056-408

Using Direct 1/O Files

Mnemonic Value Meaning

SECTORSTREAM The program requests sector-oriented access to the file,
regardless of the FILESTRUCTURE value of the physical
file. The program can open an existing file with any
FILESTRUCTURE value. The DEPENDENTSPECS
attribute must have a value of TRUE. Regardless of the
FILESTRUCTURE value of the physical file, the
semantics of the READ and WRITE operations are the
same as those of a direct /O file with a
FILESTRUCTURE value of STREAM, except that the
entire last sector of an area is visible to the program
when the data is being read.

o Specify the BLOCKSIZE value of the direct file. The following are value restrictions
for peripheral types:

Peripheral Value
Card reader Value cannot be larger than the card.
Printer Value cannot exceed the size of a print line.
Tape Value cannot be less than 6 words.

e Create a direct array that matches the FRAMESIZE value and has enough space to
contain a block.

e |f you want to allow the direct array to be overlaid, set the OVERLAYABLE direct I/O
buffer attribute to TRUE.

Reading to and Writing from a Direct Array Buffer

The following tasks need to be accomplished when you are reading to or writing from a
direct array buffer:

e Invoke the I/O operation with an I/O statement that has one of the following
syntaxes:

READ (<file name>,<arithmetic expression>,<direct array name>)
WRITE (<file name>,<arithmetic expression>,<direct array name>)

You can also associate an event with the I/O operation.

For files that have a FILESTRUCTURE value of ALIGNED180 and all nondisk files, the
arithmetic expression must be constructed so that bits [15:16]contain the number of
full words to be transferred and bits [19:3] contain the number of additional
characters to be transferred. The character count is actually a physical frame count;
the frame size is usually eight bits but can be six bits for some devices on some
systems. The physical frame size is set by default by the operating system. In some

8600 0056-408 10-3

Using Direct 1/O Files

10-4

cases, you can modify the physical frame size through the IOFRAMESIZE bit, [41:1],
in the direct buffer attribute I/O control word (IOCW).

The frame count can range from 0 (zero) through 5 for 8-bit frames, and from 0
through 7 for 6-bit frames; 0 is normally used in word-mode files. The I/O length is
always specified in the number of 48-bit words and the number of additional physical
frames, regardless of the values of the EXTMODE, FRAMESIZE or UNITS, and
INTMODE attributes.

If the file has a FILESTRUCTURE value of STREAM or BLOCKED, the arithmetic
expression is the number of FRAMESIZE units of data that are to be transferred.

Some peripheral controls require frames to be transmitted in pairs; attempts to
transmit an odd number of frames can cause a descriptor error.

When performing direct I/O along with the SPACE operation, the spacing limitation of
the device overrides any user-specified arithmetic expression part of the SPACE
operation. In the case of a line printer, the maximum spacing is 2; in the case of a
magnetic tape, the maximum is 99.

Determine whether the I/O operation is complete by using one of the following
methods:

— Use a WAIT statement to wait on the buffer or the event associated with the
operation. You can place a WAIT statement directly after the WRITE statement,
or you can place the WAIT statement after other instructions that do not access
information from the direct array buffer.

— Interrogate the IOCOMPLETE and IOPENDING buffer attributes. The
IOCOMPLETE attribute returns TRUE when the 1/O operation is complete, and
the IOPENDING attribute returns TRUE if the I/O operation is queued or in
process.

If you want to be responsible for initiating recovery of some or all I/O exceptions, use
the IOMASK buffer attribute. When an 1/O exception is masked out by using the
IOMASK attribute, the MCP bypasses any recovery or logging procedures if that
exception occurs for direct 1/O files.

Interrogate direct I/O buffer attributes to determine information about the WRITE
operation. The following is an ALGOL example for interrogating the IOERRORTYPE
buffer attribute for a direct array buffer named DIRECTARRAYID:

ERR:= DIRECTARRAYID.IOERRORTYPE;

Buffer Attribute Information Obtained

IOCANCEL If TRUE, the 1/O operation attempted on this buffer was
canceled and the IORESULT attribute value is 1.

IOCHARACTERS The number of characters read into the current buffer. If you
interrogate this attribute after a forward READ operation on a
tape file, the value returned indicates the actual size of the
tape block.

IOEOF If TRUE, the /O operation on this buffer encountered an end-
of-file condition.

8600 0056-408

Using Direct 1/O Files

Buffer Attribute Information Obtained

IOERRORTYPE The value identifies the error, if any, that occurred as a result
of the 1/O operation on this buffer. A value of NOERROR (0)
indicates that the 1/O operation completed successfully

IORECORDNUM For disk files, the random address (record or sector number,
depending on the FILESTRUCTURE value) in the disk file that
the last I/O operation on this buffer took place. For remote
files, indicates the RSN associated with the last I/O operation
on this buffer.

IORESULT The logical result for the last I/O operation on this buffer.

IOTIME The time, in 2.4-microsecond units, elapsed for the 1/O
operation.

IOWORDS The number of words read into a buffer. If you interrogate this

attribute after a forward READ operation on a tape file, the
value returned indicates the actual size of the tape block.

8600 0056-408 10-5

Using Direct 1/O Files

Purging the 1/0 Queue

You can purge the I/O queue for a device that is not a disk or remote file by setting the
IOCANCEL buffer attribute for the direct array to TRUE. This action also cancels all the
outstanding I/O operations to the same unit that were initiated using direct arrays
declared in the same stack as the canceled direct array.

Understanding Direct I/O Disk Files

The use of direct I/0 on disk files permits considerable flexibility but also involves some
fine distinctions. Direct I/0 on most devices links the programmer very closely to the
input/output device. However, this connection is less direct for disk files, which exist on
devices that can be shared by many users. The normal disk file management system is
active in allocating regions of disk to temporary or permanent files. Direct I/O is a means
of accessing file data and can be used on any file, regardless of the method used to
create the file.

Physical Frame Size and Odd Frames

10-6

For disk files, the physical frame size is always 8 bits; any attempt to change the frame
size is ignored. Even in HEX or BCL files, where the unit size is 4 bits and 6 bits,
respectively, the direct I/O length for a file with a FILESTRUCTURE value of ALIGNED180
is specified by the number of 48-bit words plus the number of 8-bit frames. Refer to the
information about using the WRITE and READ statements with a direct I/O file in this
section for information about specifying the length of the data to be transferred. For disk
files, an odd number of frames can be requested, and the end-of-file reckoning is done
with the number specified. The I/O subsystem allows I/O length values other than in
30-word multiples, but the hardware always writes that many (using zero-filling), and
READ operations always begin at a sector boundary.

Only an even number of 4-bit units can be specified. One extra unit must be written in
any block containing an odd number of HEX records.

8600 0056-408

Using Direct 1/O Files

Areas, Blocks, Records, and Sectors

The BLOCKSIZE, FRAMESIZE (or INTMODE and UNITS), and MAXRECSIZE attributes
define the logical block and record size for the file. Because these attributes define the
way a file is handled with logical (nondirect) I/O, their application to direct I/O files
requires some explanation. Direct I/O files deal primarily with disk sectors, and
secondarily with blocks if the file has a FILESTRUCTURE value of ALIGNED180 or
BLOCKED.

The smallest unit of disk storage you can address is the sector, which holds 30 words
(180 8-bit bytes). Each 1/O operation begins at a sector boundary and transmits one or
more contiguous sectors. On a WRITE operation, if the data runs out before the end of a
sector, the disk subsystem pads the last sector with nulls. For files with a
FILESTRUCTURE value of ALIGNED180 or BLOCKED, every block begins on a sector
boundary and occupies one or more contiguous sectors; if the block size is not a multiple
of 180 bytes, some wasted space remains at the end of each block. If the
BLOCKSTRUCTURE value is FIXED, the ratio of the BLOCKSIZE value to the
MAXRECSIZE value must be a fixed integer equal to the number of records in a block.

In ALGOL READ and WRITE statements, a [<l/O option or carriage control>] parameter,
containing some text in brackets, can appear immediately after the file name. If this
parameter is present, random 1/O occurs; otherwise, the I/O is serial. In COBOL, the KEY
IS clause invokes random I/O. For ALIGNED180 and STREAM files, serial I/O begins at
the sector of the file just past the last sector read or written, regardless of any record
boundaries. For BLOCKED files, serial I/0 begins at the next block boundary that follows
the block where the previous /O operation ended.

For a file with a FILESTRUCTURE value of ALIGNED180, random 1I/O always begins at
the beginning of a block, and the random address is given as record number that is then
adjusted to (R DIV B) * B, where R is the random address and B is the number of records
for each block. If the BLOCKSTRUCTURE value is not FIXED, then for direct I/O for disk
files, the record is a synonym for block, so that records for each block always equals 1.

For a file with a FILESTRUCTURE value of BLOCKED, random 1I/O begins at the
beginning of a block, and the random address is given as a file-relative block number.

For a file with a FILESTRUCTURE value of STREAM, random 1/O is sector oriented, and
the random address is given as a file-relative sector number.

8600 0056-408 10-7

Using Direct 1/O Files

10-8

The [<l/O option or carriage control>] parameter specifying random I/O in ALGOL takes
several forms, the following of which apply to direct I/O disk files:

Parameters Meaning
[<arithmetic expression>] The usual syntax, where the value of <arithmetic
expression> denotes the random address
[SPACE <arithmetic Specifies the current random address plus the value
expression>] of <arithmetic expression> as the new random
address
[NO] Specifies the current random address as the new

random address, but does not update the file
position, so that a subsequent serial 1/O occurs at
the same place

Any other form of the [<I/O option or carriage control>] parameter is ignored, and the
current record position is used.

Direct I/O permits transmission to begin at any sector in the file and to continue for any
length, bounded only by the buffer size and the end of the current area or the end of the
file. An area of a file with a FILESTRUCTURE value of ALIGNED180 or BLOCKED
consists of an integral number of blocks. The gaps, if any, between the end of the logical
block and the end of the sector are accessible with direct I/O. An area of a file with a
FILESTRUCTURE value of STREAM consists of exactly AREALENGTH FRAMESIZE units.
Unless the DIOFILESTRUCTURE value is SECTORSTREAM, an attempt to access the
unused space between the end of the area and the next sector boundary is truncated at
the area boundary, and a short block result is returned.

After a direct READ or WRITE operation, the IORECORDNUM buffer attribute reports the
random address (record, block, or sector number, depending on the FILESTRUCTURE
value) where the transmission began. The file attributes NEXTRECORD and RECORD
indicate the random address from which a subsequent serial transmission would
proceed. The RECORD attribute can be used only for a file with a FILESTRUCTURE value
of ALIGNED180. Neither of these points is necessarily at the beginning of a record if the
FILESTRUCTURE value is STREAM, or if a serial READ or WRITE operation is done with
lengths different from whole blocks.

Usually, writing to or beyond the end of the file simply extends the file and updates the
end-of-file pointer; no error is reported. The exceptions to this rule include crunched files,
files with the maximum number of areas, and files with FLEXIBLE equal to FALSE and
the number of allowed areas, as specified by the AREAS attribute, already allocated.

A crunched file cannot be extended past the end-of-file sector, and the other two types
of files cannot be extended beyond the last area. Attempts to write outside a
nonextendable file are treated just like other attempts to perform READ or WRITE
operations outside the file.

8600 0056-408

Using Direct 1/O Files

If 1/0 is attempted completely outside the file, end-of-file action is taken: no /O takes
place, bits 9 and 0 are set in the logical result descriptor returned by the WAIT function or
by the buffer attribute IORESULT, and the buffer attribute IOERRORTYPE reports a
WLOOREOF (6). If I/O begins within the file but extends across the area boundary or
across the end of file, special action is taken: data transfer occurs with the length
truncated, the logical result descriptor has bits 10 and 0 set, and IOERRORTYPE reports
READPASTROW (7). Direct I/O can read from or write to the entire sector in which the
end of file is located, but only to the area boundary if the DIOFILESTRUCTURE value is
STREAM. When data is written, the end-of-file pointer is adjusted to the end of the
WRITE operation.

End-of-File Pointers

The end-of-file pointer in a disk file specifies the last bit that has been written in the file.
For direct disk files, the end pointer is set according to the starting position and length of
any WRITE operation beyond the previous end position. Because direct I/O length is
specified in 8-bit physical frames, the end-of-file pointer cannot always be placed at a
record boundary.

A similar situation can arise with 6-bit units, where the logical and physical frame
boundaries align only at whole-word and half-word boundaries.

When the end-of-file pointer is used by the logical /O subsystem to determine the
number of records in the file, the following are discarded: any partial logical frames, any
partial second or subsequent record in a block, and any data in the last sector of a block
past the end of the logical block.

Zero-Length 1/O

Because zero-length direct READ or WRITE statements transfers no data, zero-length
serial operations have no effect on the record pointer in the file. However, random
operations reassign the record pointer, thus affecting subsequent nonzero-length serial
operations.

Random READ or WRITE operations generate end-of-file action if the specified record
number is less than 0 (zero). No other end-of-file checking is done for zero-length READ
operations, but zero-length WRITE operations generate end-of-file action if the record
number is past the end of a crunched or otherwise nonextendable file.

If the addressed record is in a new area, a zero-length WRITE operation causes the disk
space to be allocated.

In summary, a zero-length random READ operation functions as a SEEK operation,

whereas a zero-length random WRITE operation functions as a SEEK operation but also
can allocate disk space.

8600 0056-408 10-9

Using Direct 1/O Files

Direct 1/0 Contrasted with Using Buffered Tape Drives

With direct I/O, there is an assumption that when performing a WRITE, the data has
been physically transferred to the medium once the event of the I/O has occurred. Since
some tape drives have hardware buffering capability, the default for direct I/O is to have
buffering turned off.

However, it should be noted that there is a performance penalty when writing to a
buffered tape drive with buffering disabled. In fact, for some tape drives such as the
HS8500, which require a significant amount of time to reposition whenever tape motion
stops, the overall performance penalty can be severe.

It is possible with a buffered tape drive to toggle buffering off and on programmatically
when writing to a direct 1/O tape file. You do this by setting the SYNCHRONIZE attribute
to NO (to enable buffering mode) and OUT (to disable buffering mode). Thus, if it is not
essential for all writes to be synchronized (that is, the 1/O completion occurs only when
the record has been physically written to tape), you can set SYNCHRONIZE to NO for
less critical records, and then set SYNCHRONIZE to OUT just before writing any critical
records. This causes the MCP to change between buffering modes based on the
SYNCHRONIZE attribute.

Optimizing Direct I/O Operations

10-10

In certain cases, performance is improved for direct I/O READ and WRITE operations and
WAIT operations when an event or event array element is provided with the READ and
WRITE statements and then used in the WAIT statement.

There are several forms of |/O initiation statements that can be used with direct files. For
the following example, assume that DF is a direct file, DA is a direct array, and E is an
event or event array element.

The 1/O initiation statements are as follows:

1. READ(DF, length, DA);
WRITE(DF, length, DA);

2. READ(DF, length, DA) [E];
WRITE(DF, length, DA) [E];

8600 0056-408

Using Direct 1/O Files

The following example places the same code in two positions in code:

BEGIN
DIRECT ARRAY DA[0:29];
DIRECT FILE F;
EVENT E;
PROCEDURE X (E); EVENT E;
BEGIN
READ (F, 30, DA) [E]; (B)
END;
READ (F, 30, DA) [E]; (A)
X (E);
END.

The code line identified with (A) allows the compiler to ensure that E will never occur at a
lexical level higher than that of DA. The code line identified with (B) does not allow the
compiler to ensure this relationship.

In case B, the lexical level check is performed at run time by the MCP logical I/O READ or
WRITE procedure. Less processor time is used when the event or event array element
provided for use at initiation time is the same as the one used for the previous /O on the
direct array. When more than a few /O operations are done, the processor time used is
same as that in subcase 2A.

WAIT operations for completion of an I/O operation can also be divided into two cases:

1. WAIT(DA); % Used with a case 1 I/0 initiation statement
2. WAIT(E); % Where E was supplied as a completion event in

% an I/0 initiation statement (Example A or B)

In general, a case 2 WAIT operation uses less processor time than a case 1 WAIT
operation.

8600 0056-408 10-11

Using Direct 1/O Files

10-12 8600 0056-408

Section 11
Using HYPERchannel (HY) Files

A HYPERchannel network is a networking system that is used by MCP systems. MCP
systems support only the A223 adapter. A HYPERchannel link is a direct hardware
connection that can transfer data between independent systems, including mixed vendor
systems. The hardware connection between a host system and the HYPERchannel
network is through an adapter interface.

Also integrated into the system software is the NETEX software that is used with the
HYPERchannel network. This software enables two or more application programs, on
different host computers or the same host, to communicate with each other.

Understanding a HYPERchannel Network

A HYPERchannel network is made up of two components: the Network Systems
Corporation hardware and Unisys hardware.

A HYPERchannel network is composed of HYPERchannel adapters that are connected by
a coaxial trunk or trunks. The maximum speed of communication between adapters is
50 megabits per second.

Each adapter has a trunk side and a host side. The host side of the adapter distinguishes
one adapter from another, as the adapter is designed to interface to the specific host
system to which it is connected.

A HYPERchannel network can have from one to four trunks. Each adapter can be
connected to all trunks. For each transmission, two adapters and one trunk are used. For
example, using four trunks and eight adapters, four simultaneous transmissions are
possible, and using three trunks and six adapters, three simultaneous transmissions are
possible. Trunks are selected on a transmission-by-transmission basis. Two adapters can
use different trunks on successive transmissions. Trunk selection can be controlled by
the host system that initiates the transmission.

8600 0056-408 11-1

Using HYPERchannel (HY) Files

Figure 11-1 illustrates a possible configuration.

Host A Host B Host C
Adapter Adapter Adapter Adapter Adapter Adapter
1 2 3 4 5 6
Address Address Address Address Address Address
'30' '31' '40' '41' '50' ‘51"
n
RO _@ L ®
Uil ® ® ®
N2 ®) ®
K3) ® ®
S

Figure 11-1. Adapter Connections

The preceding figure shows six adapters interconnecting three host systems using four
trunks. Adapters 1, 3, and 5 communicate through trunks 0 and 1. Adapters 2, 4, and 6
communicate through trunks 2 and 3. Transmissions through the 1-3-5 set of adapters
are logically and physically disjointed from those on the 2-4-6 set.

In the MCP environment, an adapter is connected to the host system by a
HYPERchannel data link processor (HYDLP).

Communicating between Systems

To communicate between systems, the initiating host system writes a transmission to
the adapter in the form of a control message, referred to as a message proper, followed
by optional data of an arbitrary length, referred to as associated data. The message
proper is built by the application on the initiating host system and contains the
destination address of the receiving adapter, the address of the initiating adapter, the
trunk or trunks that can be used for the transmission, and a presence-of-data indicator.
The message proper and associated data are separate entities. Logically, however, a
single transmission consists of either a message proper alone or a message proper with
associated data.

Once the message proper has arrived at the destination, the application program is
responsible for interpreting the message proper and the possible data.

System-to-system communication occurs only when both host systems execute a
transmission through their respective adapters. The host system controls the adapter,
and through its adapter, can send data to a remote adapter. However, the remote host
system must read the data from the remote adapter; otherwise, the data is queued in
the adapter.

8600 0056-408

Using HYPERchannel (HY) Files

The responsibility of an adapter that is connected to a host system is to determine if the
message proper is being sent to a remote host or being received by the host system.
The adapter then uses the information in the message proper to determine where to
send the message or what remote host sent the message. Finally, the adapter sends the
message proper and any associated data to the appropriate host, or places the message
proper and any associated data in the data buffer of the host system when a READ
operation is invoked.

The following requests are issued by the host system to the adapter to facilitate the
movement of messages:

Request Action

TRANSMIT MESSAGE Indicates that the message proper should be sent to
another adapter in the network.

TRANSMIT DATA Indicates that the associated data should be sent to
another adapter in the network.

INPUT MESSAGE Indicates that the message proper should be placed in the
data buffer.

INPUT DATA Indicates that the associated data should be placed in the
data buffer.

The command codes described in this documentation are not presented in their entirety.
Users intending to use the HYPERchannel network should refer to the Network Systems
Corporation documents identified in the bibliography of this guide.

Constructing a Message Proper

It is the responsibility of the software on the initiating system to build the message
proper, and the responsibility of the software on the receiving system to use this
information to perform a task and transmit a message proper back to the initiating
system, if needed.

One piece of information the message proper contains is the destination address,
referred to as the TOADDRESS. The TOADDRESS is unique within the network and is
made up of the following parts:

Physical TO address The trunk address of the receiving adapter. This trunk
address indicates a physical address on the coaxial
cable and is unique to the adapter. The address can
be a value of 1 through 255.

Logical TO address A logical device address within the receiving adapter.
This feature allows the support of multiple dialogs
with a single adapter. The adapter does not verify that
this value is valid. It is the responsibility of the host
software to use a valid logical TO address.

8600 0056-408 11-3

Using HYPERchannel (HY) Files

Another piece of information the message proper contains is the source address,
referred to as the FROMADDRESS. The FROMADDRESS is unique within the network
and is made up of the following parts:

Physical FROM address The trunk address of the sending adapter. This trunk
address indicates a physical address on the coaxial
cable and is unique to the adapter. The address can
be a value of 1 through 255.

Logical FROM address A logical device address within the sending adapter.

Additionally, the message proper must include the following information:

Field Name Purpose

SENDTRUNKS Specifies the trunk or trunks that can be used for
transmitting the message and any associated data.

RESPONSETRUNKS Specifies the trunk or trunks that can be used for
transmitting a response to the message.

ASSOCIATEDDATABIT Indicates the existence of a separate data transmission
associated with the message proper.

Programming for a HYPERchannel Network

Two methods of sending messages through the HYPERchannel network are available. If

you have purchased NETEX, you can use its capabilities or you can program with a direct
I/O HY file.

Both methods enable you to send messages through a HYPERchannel network that has
been defined in a HYPERchannel map. The HYPERchannel map associates an adapter
address with an adapter label. Refer to the System Configuration Guide for information
about using SYSTEM/CONFIGURATOR to define the HYPERchannel map.

If you choose to use NETEX, refer to the NETEX Software Reference Manual H330 for
information about programming with NETEX.

11-4 8600 0056-408

Using HYPERchannel (HY) Files

Defining the Characteristics of an HY File

The following programming tasks must be performed before a READ or WRITE operation
is invoked and in a language that supports direct 1/O:

Identify the unit name of the adapter by using the TITLE attribute. The unit name is
specified in the configuration file of the system.

Specify the KIND value as HY. Only one HY file can be assigned to a HYDLP.
Specify the FILEUSE attribute value as IN, OUT, or 10.

Define a direct array buffer that can contain the message proper as well as any
associated data. You can have a 10- to 64-byte long message proper, but the length
must be an even number of bytes. Usually the message proper is 12 bytes long in
order to align the associated data on a word boundary, although this is not required.

Any number of simultaneous READ and WRITE operations can be executed using a
single adapter. The number of requests in progress is determined by the number of
direct buffers defined by the program.

Once the HY file is opened and the adapter is assigned to your HY file, a set of
logical addresses is assigned to the file. Your program is now an endpoint of one or
more logical dialogues, up to the maximum that your adapter can support.

Writing a HYPERchannel Message

Perform the following tasks to write a message to another remote host:

Set the HYCOMMAND direct I/O buffer attribute for the direct array buffer to

22 (WRITE DATA). Once the HYCOMMAND attribute is set for any given direct array
buffer, it does not require subsequent changes if the selected operation does not
change.

If you invoke a READ statement for this direct array buffer, an IOERRORTYPE value
of 4 is issued when the READ statement is invoked, and the READ operation is not
initiated.

If you do not set the value of HYCOMMAND, a default HYCOMMAND is used by the
operating system. That default value is 23 (READ DATA) if the READ operation is
used and 22 (WRITE DATA) if the WRITE operation is used.

Prepare the message proper and the associated data, if any. You cannot send a
message to a logical address of the initiating adapter.

The first 10 bytes of the message proper a standard format, but you can use the
remaining bytes for your own use. The following table describes the format of the
first 10 bytes and identifies possible values.

8600 0056-408 11-5

Using HYPERchannel (HY) Files

Word Field Name Possible Value

[0].[147:4] SENDTRUNKS Specifies which trunk or trunks can be
used to send the message. You can set
the field to the following values:

0 (zero), which indicates that the
MCP is to set the field equal to the
value corresponding to the trunk or
trunks connected to the adapter.

A value of 1 through 16 that
indicates which of the available four
trunks can be used.

SENDTRUNKS is a 4-bit field, where
47:1, 46:1, 45:1, and 44:1
correspond to trunks 0, 1, 2, and 3,
respectively. The message is sent
on the first available trunk of those
selected.

If you use an invalid trunk value, the
I/O operation is not initiated, and an
IOERRORTYPE value of 4 is issued.

[0].[43:4] RESPONSETRUNKS Indicates to the remote host, which
trunk or trunks are to be used to
respond to the message. You can set
this field to the following values:

0 (zero), which indicates that the
MCP is to set the field equal to the
value corresponding to the adapter.

A value of 1 through 16 that
indicates which of the available four
trunks can be used.

RESPONSETRUNKS is a 4-bit field,
where 43:1, 42:1, 41:1, and 40:1
correspond to trunks 0, 1, 2, and 3,
respectively.

If you use an invalid trunk value, the
I/O operation is not initiated, and an
IOERRORTYPE value of 4 is issued.

[0].[39:6] Not used.

[0].[33:1] BURST MODE This field is not used by the direct 1/0
HY file implementation. This feature can
be used at the discretion of the user.
Refer to the Network Systems
Corporation (NSC) documentation listed
in the bibliography of this guide.

11-6 8600 0056-408

Using HYPERchannel (HY) Files

Word Field Name Possible Value

[0].[32:1] ASSOCIATEDDATABIT If the message proper has associated
data, set this bit. If you do not set
ASSOCIATEDDATABIT and a WRITE
operation with associated data is
executed, an IOERRORTYPE value of 4
is issued. The direct array buffer logical
result descriptor (LRD) issues a
COMMAND REJECT condition.

[0].[31:16] ACCESS CODE This field is not used by the direct 1/0
HY file implementation. This feature can
be used at the discretion of the user.
Refer to the Network Systems
Corporation (NSC) documentation listed
in the bibliography of this guide.

[0].[15:8] PHYSICAL TO ADDRESS Indicates the adapter address of the
receiving adapter.

You can set the field to any adapter
address.

If the specified adapter address
corresponds to the sending address,
the I/O operation is not initiated, and an
IOERRORTYPE of 4 is issued.

[0].[7:8] LOGICAL TO ADDRESS Indicates the logical address within the
receiving adapter.

You can set the field to any logical

address.
[11.147:8] PHYSICAL FROM Indicates the address of the sending
ADDRESS adapter.

If a value of O (zero) is specified, the
MCP assigns the adapter address of the
sending adapter.

You can set the field to any adapter

address.
[11.139:8] LOGICAL FROM Indicates the logical address with the
ADDRESS sending adapter.

You can set the field to any logical
address in the range from 0 (zero)
through 63.

If you use an invalid logical from
address—a value greater than 63—the
I/O operation is not initiated, and an
IOERRORTYPE of 4 is issued.

8600 0056-408 11-7

Using HYPERchannel (HY) Files

Word Field Name Possible Value

[1].131:8] FUNCTION INDICATOR This field is not used by the direct I/O
HY file implementation. This feature can
be used at the discretion of the user.
Refer to the Network Systems
Corporation (NSC) documentation listed
in the bibliography of this guide.

[11.[23:8] FUNCTION This field is not used by the direct 1/O
HY file implementation. This feature can
be used at the discretion of the user.
Refer to the NSC documentation listed
in the bibliography of this guide.

Set the HYMPLENGTH attribute of the direct buffer being used to the length of the
message proper. If you set the length to 0 (zero), 12 is selected. Remember that the
value must be an even value between 10 and 64, inclusive.

You must invoke a WRITE statement that has an arithmetic expression parameter
that reflects the length of the message proper and the associated data, if any. The
maximum number of words that can be written is 65536, including the message
proper.

The WRITE DATA operation is a composite function to the HYPERchannel DLP. For
this operation, the DLP automatically separates the buffer into the TRANSMIT
MESSAGE and TRANSMIT DATA operations for transfer to the adapter.

Reading a HYPERchannel Message

Perform the following tasks to read a message from another remote host:

Set the value of the HYCOMMAND attribute for the direct array buffer to 23 (READ
DATA). If you issue a WRITE statement for this direct array buffer, the WRITE
operation is not initiated and an IOERRORTYPE value of 4 is issued. If you do not set
the value of HYCOMMAND, a default HYCOMMAND value is used by the operating
system. That default value is 23 (READ DATA) if the READ operation is used and

22 (WRITE DATA) if the WRITE operation is used.

Invoke a READ statement for the direct buffer array. The HYMPLENGTH attribute for
the direct buffer array contains the length in bytes of the message proper received.
The direct array buffer logical result descriptor (LRD) contains the total number of
words and bytes received, message proper and associated data, in the format of the
IORESULT word. The IOCHARACTERS attribute returns the number of bytes
transmitted including both the message proper and any associated data.

The maximum number of words that can be received by a READ DATA request is
65536, including the message proper.

Interrogate the IOERRORTYPE attribute to determine if the data you received is valid
information for your direct array buffer.

8600 0056-408

Using HYPERchannel (HY) Files

Adapter Command Codes

Besides data transfer, HYPERchannel adapters also support statistics gathering, error
recovery, and error analysis. Each adapter command fits into one of the following four
categories: data transfer, adapter statistical inquiry, adapter or logical device address
clearing, and adapter maintenance.

Not all categories of commands are appropriate for use by all users. Thus, varying
interfaces exist to control the use of some commands.

Data transfer operations are the most accessible and have the least control.

Interfaces to GETSTATUS and SETSTATUS are defined to control access to commands
that can affect the entire adapter or produce information that is relative to the entire
adapter. Refer to the GETSTATUS/SETSTATUS Reference Manual for information on this
interface.

Adapter maintenance and error analysis commands are restricted to maintenance mode
access. These commands are documented with the information on peripheral test driver
(PTD) in the System Software Utilities Manual. Simultaneous READ and WRITE
operations can be invoked, and any READ or WRITE operation can be canceled.

Using I/O Buffer Attributes for HYPERchannel Files

The direct I/O buffer attributes IOCANCEL, IOCHARACTERS, IOCOMPLETE,
IOPENDING, IORESULT, IOTIME, and IOWORDS are valid for the direct I/O HY file and
have the same semantics as for any other device. Refer to the File Attributes Reference
Manual for descriptions of those attributes. The direct I/O buffer attributes IOCW and
IOMASK are not used for HY files.

Table 11-1 identifies the possible values that an HY file returns to your program.

Table 11-1. HY File IOERRORTYPE Values

Mnemonic Value Value Description

PARITYERRORTYPE 2 This value corresponds with the
LRDPARITYERROREF bit of the logical
result descriptor described in the
IORESULT attribute.

8600 0056-408 11-9

Using HYPERchannel (HY) Files

11-10

Table 11-1. HY File IOERRORTYPE Values

Mnemonic Value

Value

Description

DESCRIPTORERROR

When the device associated with the
buffer is a HYPERchannel unit, this error
can reflect either a software or hardware
error condition.

For a hardware-detected error, the logical
result descriptor reports a COMMAND
REJECT condition. This corresponds to the
LRDCOMMANDREJECTF bit in the logical
result descriptor described later in this
subsection with the IORESULT buffer
attribute.

A software-detected error can be the result
of one of the following:

An invalid command code was executed.

A WRITE-type command code was
executed with a READ statement.

A READ-type command code was
executed with a WRITE statement.

The trunk information provided in a WRITE
statement is not valid, when applicable.

An out-of-bounds value for the
HYMPLENGTH of a WRITE statement was
specified.

The message proper specified
ASSOCIATEDDATABIT, and no associated
data is in the buffer.

The message proper did not specify
ASSOCIATEDDATABIT, and the WRITE
statement attempts to transfer more than
HYMPLENGTH bytes.

WRITELOCKOUT

Because of the presence of messages in
the destination adapter, the adapter is
currently unable to receive new messages.
This message was not delivered.

OPERATIONABORT

22

This value corresponds with the
LRDABORTF bit in the logical result
descriptor described in the IORESULT
attribute.

REMOTEOPERATIONABORT

23

This value corresponds with the
LRDREMABORTF bit in the logical result
descriptor described in the IORESULT
attribute.

8600 0056-408

Using HYPERchannel (HY) Files

Table 11-1. HY File IOERRORTYPE Values
Mnemonic Value Value Description

DEADMANTIMEQUT 24 This value corresponds with the
LRDDEADMANTIMEQOUTF bit in the logical
result descriptor. This error specifies that
the associated data for the message has
been lost due to the failure of the host to
read the message within the amount of
time set in the deadman timer of the
adapter.

DATACONEFLICT 25 This value corresponds with the
LRDTIMEOQOUTF and
LRDMSGINQORASSODATAF bits in the
logical result descriptor. This error
specifies that the WRITE operation cannot
be initiated due to data present within the
adapter that must first be read.

HYDATALOST 120 Reserved.

HYMESSAGEOVERFLOW 121 Reserved.

The IOERRORTYPE values for devices other than HYPERchannel devices are
documented in the File Attributes Reference Manual.

The IORESULT buffer attribute returns the logical result descriptor (LRD) as a Boolean
value, in its entirety, after a HYPERchannel operation. An error-free HYPERchannel
operation returns an LRD value of FALSE, while a HYPERchannel operation that has

caused an error returns an LRD value of TRUE.

8600 0056-408

11-11

Using HYPERchannel (HY) Files

The following table describes bit definitions in the LRD that are specific to HYPERchannel
operations:

Value Description

LRDWRITELOCKOUTF [6:1] A WRITE operation was aborted by the local
adapter because the destination adapter did
not respond. The most likely reason for this
error is that data was not being read by the
remote host from its adapter; consequently,
this adapter did not execute transfer requests
for additional messages.

LRDPARITYERROREF [7:1] An adapter memory parity error occurred on a
data transfer from the adapter to the host, or

a parity error was detected in data received at
the adapter from the host.

LRDABORTF [8:1] A trunk operation was aborted by the local
adapter. The message was undeliverable.
More specific information is available in the
maintenance log. The IOERRORTYPE
associated with this condition is an
OPERATIONABORT (22) error.

LRDCOMMANDRETRYF [10:1] A WRITE operation was not completed to the
local adapter due to a command retry
condition presented by the local adapter. This
condition occurred after the TRANSMIT
MESSAGE was delivered and the adapter
began a trunk reception, prior to executing
TRANSMIT DATA.

LRDDEADMANTIMEOUTF [11:1] Associated data has been lost due to the
failure of the host to perform a READ
operation within the time required by the
deadman timer of the adapter.

LRDCOMMANDREJECTF [12:1] An invalid command or command sequence
has been issued by the HYPERchannel DLP
(HYDLP) to the adapter that is inconsistent
with the state of the adapter. The
IOERRORTYPE associated with this condition
is a DESCRIPTORERROR (4) error.

LRDMSGINQORASSODATAF [13:1] A message proper has been received and is
being held, or a message proper queued at
the adapter has associated data. This
condition is not an error condition, except in
conjunction with LRDTIMEOUTF on a WRITE
operation. This bit can be set with any other
HYPERchannel specific bits in the logical
result descriptor.

11-12 8600 0056-408

Using HYPERchannel (HY) Files

Value Description

LRDREMABORTF [14:1] A trunk operation was aborted by the remote
adapter. See the maintenance log for detailed
status information. The IOERRORTYPE
associated with this condition is a
REMOTEOPERATIONABORT (23) error.

LRDTIMEOUTF [15:1] The requested operation could not be
completed within the time limit set in the
HYDLP.

The IORESULT values for files other than HYPERchannel files are documented in the File
Attributes Reference Manual.

The LOGANALYZER system, documented in the System Software Utilities Manual,

includes analysis of HYPERchannel exceptions. For WRITE operations, this analysis
includes the first 10 bytes of the message proper.

8600 0056-408 11-13

Using HYPERchannel (HY) Files

Example Program

11-14

The following ALGOL program is an example program that uses direct I/O HY files. The
example does not include error-handling procedures for the direct I/O HY files.

Each endpoint process validates the received data. The HYPERchannel unit on the writer
system is labeled HY5C, and the HYPERchannel units on the reader systems are labeled

HY52 and HY53. The trunk addresses are 5C, 52, and 53, respectively.

WRITER PROGRAM

BEGIN

DIRECT FILE SHORTWRITE (KIND=HY,TITLE="HY5C.",FILEUSE=0UT);
DIRECT ARRAY MSGPROPER1, MSGPROPER2 [0:10];

REAL SZ;

SZ := (64 DIV 6) & (64 MOD 6) [19:3];

REPLACE POINTER (MSGPROPER1 [1],8)+4 BY "HI THERE"; % DATA
REPLACE POINTER (MSGPROPER2 [1],8)+4 BY "HI THERE"; % DATA
MSGPROPER1.HYCOMMAND := 22; % WRITE DATA
MSGPROPER1 [0].[15:8] := 4"52"; % PHYSICALTO ADDRESS
MSGPROPERL [0].[7:8] := 14; % LOGICALTO ADDRESS
MSGPROPER1 [0].[47:4] := 2; % USE TRUNK 2
MSGPROPER1 [1].[47:8] := 4"5(C"; % PHYSICAL-FROM ADDRESS
MSGPROPER1 [1].[39:8] := 13; % LOGICAL-FROM ADDRESS
MSGPROPER1.HYMPLENGTH := 64;

WRITE (SHORTWRITE, SZ, MSGPROPER1); WAIT (MSGPROPER1);
MSGPROPERZ .HYCOMMAND := 22; % WRITE DATA
MSGPROPER2 [0].[15:8] := 4"53"; % PHYSICALTO ADDRESS
MSGPROPER2 [0].[7:8] := 13; % LOGICALTO ADDRESS
MSGPROPER2 [1].[47:16]:= 4"5COE"; % FROM ADDRESS
MSGPROPER2 [0].[47:4] := 1; % USE TRUNK 3
MSGPROPERZ .HYMPLENGTH := 64;

WRITE (SHORTWRITE, SZ, MSGPROPER2); WAIT (MSGPROPER2);

END.

8600 0056-408

Using HYPERchannel (HY) Files

READER PROGRAM ONE
BEGIN
DIRECT FILE SHORTREAD (KIND=HY, TITLE="HY52.", FILEUSE=IN);
DIRECT ARRAY MSGPROPER1 [0:10];

MSGPROPER1.HYCOMMAND := 23; % READ DATA
READ (SHORTREAD, 11, MSGPROPER1);

IF MSGPROPERL [1].[47:8] EQL 4"5C" AND
MSGPROPER1 [1].[39:8] EQL 13
THEN
% PROCESS MESSAGE
ELSE

[
%

END.
READER PROGRAM TWO
BEGIN
DIRECT FILE SHORTREAD (KIND=HY, TITLE="HY53.", FILEUSE=IN);
DIRECT ARRAY MSGPROPER1 [0:10];

MSGPROPER1.HYCOMMAND := 23; % READ DATA
READ (SHORTREAD, 11, MSGPROPER1);

IF MSGPROPERL [1].[47:8] EQL 4"5C" AND
MSGPROPER1 [1].[39:8] EQL 14
THEN
% PROCESS MESSAGE
ELSE

[
%

END.

8600 0056-408 11-15

Using HYPERchannel (HY) Files

11-16 8600 0056-408

Section 12
Using Host Control (HC) Files

For installations where the convenience and extra features of a BNA link are outweighed
by efficiency considerations, direct |/O HC files provide an alternative means of using an

intersystem control (ISC) link between two or more large systems for simple, high-speed
data transfers.

An ISC consists of a central hub, identified by its 16-bit HUBNUMBER, and its attached
HC units. Each HC unit occupies a uniqgue HUBINDEX position, 0 through 15, on its hub,
and is one connection to a host system. For systems that use data link processors
(DLPs), a single HC connection permits bidirectional communication through a direct I/O
HC file with a MYUSE attribute value of 10. On other systems, two HCs and a pair of
direct I/0 HC files, one with a MYUSE value of IN, the other with a MYUSE value of OUT,
are necessary. ISC hardware enforces the desired mode of use for an HC by using an
access mask register (AMR). The possible AMR modes are CLOSED (no communication
possible), IN, OUT, and 10. To effect a data transfer, a WRITE operation directed to a
specific HUBINDEX target from an HC with an AMR mode of OUT or |0 is paired with a
READ request at the HC target with an AMR mode of IO or IN. A READ operation does
not require direction information. The information received includes the initiating WRITE
operation HUBINDEX information along with the data received.

A direct I/0O HC file program dedicates an HC or HC pair for its exclusive use. Two or
more programs, controlling HCs attached to the same hub, communicate directly through
the ISC link. The controlling programs are responsible for the flow of data across an ISC
link, and for recovery from 1/O errors occurring when READ and WRITE operations are
invoked.

For a direct I/O HC file to be used, an ISC hub must be given a name in the configuration
HUBMAP of each host. This is normally accomplished by running as configured groups,
with each group description containing the desired HUBMAP information. If a pair of HC
file programs is making permanent use of an ISC connection between two systems, the
READPARTNER and WRITEPARTNER options should be included in the HUBMAP
specifications. Refer to the System Configuration Guide for information about creating a

group.

Changes to the named HCs and ISCs of a system can be made without a reconfiguration
halt/load, using the LB (Host Control Unit), PG (Purge), and MODE (Unit Mode) system
commands. Refer to the System Commands Reference Manual for information about
these commands. If the running group of a system was not initially configured with
HUBMAP information, direct I/O HC file control of two ISC hubs is possible by using the
default HUBMAP that is created when HCs are named with the LB command and the
use of the HCs are specified with the MODE command.

8600 0056-408 12-1

Using Host Control (HC) Files

Defining the Characteristics of an HC File

The following programming tasks need to be performed before a READ or WRITE
operation is invoked and in a language that supports direct I/O:

Specify the KIND value as HC.

Set the FILENAME value to the proper hub name label. When an ISC hub has a name
specified in the configuration HUBMAP of its host, all online HC units connected to it
are either scratch units that have no label or are labeled with the hub name.

Specify the MYUSE value as |O. If desired or necessary, a pair of direct /O HC files
with MYUSE values of IN and OUT can be used instead.

Define separate direct array buffers for the READ and WRITE operations. A less
convenient method is to switch use of a single direct array between READ and
WRITE operations. Each buffer can be any even length between 2 and the hardware
maximum of 65534 characters.

When a direct I/O HC file is opened, the operating system attempts to find an
available HC whose label matches the FILENAME of the file, and whose logical mode
of use matches the MYUSE value of the file. If exactly one match is found, the HC is
assigned to the file; otherwise, a “DUP FILE” or “NO FILE"” waiting message
results. The file OPEN request initializes the AMR for the selected HC to the proper
mode; IN, OUT, or |O. Regardless of the specified logical mode, the physical AMR
mode of any unassigned HC unit is CLOSED.

Writing an HC NMessage

12-2

The following tasks must be performed to write a message to another remote host:

Prepare the message in the write buffer array.

If a target WRITEPARTNER hubindex was not specified in the HUBMAP, set the
WRITEPARTNER buffer attribute to the appropriate integer value. If the
WRITEPARTNER buffer attribute is unspecified, a value of -1, and a WRITE operation
is attempted, a NOWRITEPARTNER (20) IOERRORTYPE error results. A WRITE
operation receives a PARTNERVIOLATION (19) IOERRORTYPE error result when the
WRITEPARTNER buffer attribute value is not —=1 and a WRITEPARTNER was
specified in the hub map.

Invoke a WRITE operation.

Wait on the buffer completion event, or interrogate the IOCOMPLETE attribute of
the buffer until TRUE is returned. Once the message is initiated to the ISC hardware,
it can take up to 30 seconds for a WRITE operation to complete.

Interrogate the IOERRORTYPE buffer attribute to determine whether the WRITE
operation has completed correctly. The WLOOREOF (6) IOERRORTYPE error result
indicates that WRITE access was denied because the target WRITEPARTNER
hubindex HC did not have an AMR mode of IN or |O. The HCWRITETIMEOUT (18)
IOERRORTYPE error result indicates that the WRITE operation timed out because no
corresponding READ operation was present at the target HC. Refer to I/O results in
the File Attributes Reference Manual for error values.

8600 0056-408

Using Host Control (HC) Files

Reading an HC Message

Perform the following tasks to read a message from another remote host:

If the READPARTNER option was not set in the hub map, and input is expected from
only a single hubindex source, set the appropriate integer value in the
READPARTNER buffer attribute. A READ operation receives a PARTNERVIOLATION
(19) IOERRORTYPE error result when the READPARTNER buffer attribute value is
not —1 and a READPARTNER was specified in the HUBMAP.

Invoke a READ operation.

Wait on the buffer completion event, or interrogate the IOCOMPLETE attribute of
the buffer until TRUE is returned. You must exercise care when waiting for a READ
operation to complete, since the operation remains active in the hardware indefinitely
while waiting for a corresponding WRITE operation to occur.

Interrogate the IOERRORTYPE buffer attribute to determine if the input is from an
inappropriate hubindex. The WRONGREADPARTNER (21) IOERRORTYPE error result
is reported whenever input from the wrong sending hubindex is received. The
WRONGREADPARTNER (21) IOERRORTYPE error result takes precedence over the
SHORTRECORD (9) and PARITYERRORTYPE (2) IOERRORTYPE error results. The
SHORTRECORD result indicates a long block error occurred because the hubindex
HC that wrote the data sent more data than the READ buffer could hold. Refer to /O
results in the File Attributes Reference Manual for error values.

Interrogate the IORESULT buffer attribute to determine the sending hubindex, if
input from more than one source is allowed, or if a WRONGREADPARTNER error
was returned. IORESULT also indicates if SHORTRECORD or PARITYERRORTYPE
errors occurred on an input from the wrong sending hubindex
(WRONGREADPARTNER error).

Interrogate the IOCHARACTERS buffer attribute to determine the number of data
characters written by the sending hubindex. Note that this can be longer than the
READ buffer length if a SHORTRECORD result occurred.

8600 0056-408 12-3

Using Host Control (HC) Files

12-4 8600 0056-408

Section 13
Understanding Port Files

Port files provide you with a mechanism through which a program in the MCP
environment can communicate within itself or with one or more other programs.

From the point of view of the programmer, port files appear to be just another type of
file. They can be opened, closed, read from, and written to. However, instead of
communicating with an |/O device as do other kinds of files, a program communicates
with another program when it uses a port file.

A port file is composed of one or more port subfiles. It is through these subfiles that
actual communication takes place.

Each subfile is an endpoint of communication. A port subfile must connect to a
corresponding port subfile in order for communication to take place. The other endpoint
of communication is called the correspondent endpoint, and the communication
established between the endpoints is called a dialogue. A dialogue is a single instance of
a two-way communication between two endpoints. A subfile supports one dialogue.

Dialogues can be either local or remote. For a local dialogue, both endpoints reside on
the same MCP system. For a remote dialogue, one endpoint resides on an MCP system
and the other endpoint is either on another MCP system or on a non-MCP system.

In order to establish a dialogue between two active endpoints, the system compares the
descriptions of the two endpoints. This process is called matching. If the descriptions
match, the system establishes the dialogue and marks the subfiles as opened. You can
use the subfiles in a port file to establish separate dialogues with the same
correspondent process, or with different correspondent processes. Thus, one program
using one port file with 10 subfiles can establish dialogues with 10 different programs.
Note that these correspondent programs need not be programs in the MCP
environment, and that the correspondent endpoints need not be port subfiles.

8600 0056-408 13-1

Understanding Port Files

13-2

As mentioned previously, you can perform the same operations on port files that you can
on files used with /O devices: you can set attributes for port files, and you can open,
close, read from, and write to port files. However, because your port file is
communicating with another endpoint, you must understand the following:

e How to use a subfile index to reference a port file dialogue
e How to describe and monitor a subfile dialogue through file attributes
e How different environments can affect the service offered by a port file

e How the system matches port file descriptions and establishes dialogues

¢ How to manage communications between two endpoints once the dialogue is
established

e How to terminate a dialogue

There are several different environments, also known as providers, available on your
MCP system that provide the port file interprocess communication (IPC) capability. Some
of these providers support communication between port files that are located on

e The same MCP system
e Different MCP systems
e An MCP system and a non-MCP system

You can specify a provider for your port file or you can let the system select a provider
for you when the port file is opened. If you want to use a specific provider for a dialogue,
use the PROVIDERGROUP file attribute. Refer to the File Attributes Reference Manual
for information about the PROVIDERGROUP attribute.

A port service is a specific set of features and functions that a program can use for
subport dialogues. You can select the port service for your port file. If you want to
communicate with another endpoint using a minimum set of features or functions, set
the SERVICE file attribute of your port file to the BASICSERVICE value. The default value
for SERVICE is BNANATIVESERVICE. Refer to Section 21, “Understanding Port
Services,"” for more information.

8600 0056-408

Understanding Port Files

Table 13—-1 shows the providers and port services that are available.

Table 13-1. Providers and Port Services

PROVIDERGROUP Network
Value Environment Port Services Supported

*BNAV2 BNA Version 2 BASICSERVICE
BNANATIVESERVICE

*BNAOSI OSl BASICSERVICE
OSINATIVESERVICE
OSISESSIONSERVICE

*HLCN NetWare NETBIOSSESSIONSERVICE

*LPP None BASICSERVICE
BNANATIVESERVICE

*TCPIP TCP/IP TCPIPNATIVESERVICE
TCPNATIVESERVICE

The minimum port functions are supported by ALGOL, COBOL68, COBOL74, COBOLS5,
FORTRAN7Y7, Pascal, and Pascal83. Additional port functions required by OSI| and TCPIP

are supported by ALGOL, COBOL74, and Pascal. Other languages in the MCP
environment that support files in the MCP environment also access port files; however,
for these languages, full support of port file statements might not be available.

Since BASICSERVICE is compatible with more than one service, it is used to illustrate

the common port file concepts presented in the following sections. Service-specific

information is presented in separate sections under the appropriate title.

Read the following sections for basic information on port file use. Read Section 21,
“Understanding Port Services,” for information on how the services work. Read the

service-specific sections for detailed information for each service.

8600 0056-408

13-3

Understanding Port Files

Examples of a Requesting Program

The following program calls up the WEATHERMAN port file to obtain and display the

weather forecast.

ALGOL Requesting Example

BEGIN
FILE
MARINE_WEATHER(KIND=PORT,
MYNAME="WEATHERST2.",
SERVICE=BASICSERVICE,
SECURITYTYPE=PUBLIC,
REQUESTEDMAXRECSIZE=72,
FRAMESIZE=8),
OUTPUT (KIND=REMOTE,
FRAMESIZE=8) ;
EBCDIC ARRAY
I0BUF[0:71];

IF OPEN(MARINE_WEATHER[SUBFILE 1]) = VALUE(OKRSLT) THEN
BEGIN
REPLACE IOBUF[0] BY 48"00", "XYZ HARBOR AREA "3
WRITE(MARINE _WEATHER[SUBFILE 1],72,I0BUF);
WHILE NOT (READ(MARINE WEATHER[SUBFILE 1],72,I0BUF) OR
IOBUF = "##") DO
WRITE(OUTPUT,72,I0BUF);
CLOSE(MARINE WEATHER[SUBFILE 1]);
END;
END.

13-4

8600 0056-408

Understanding Port Files

Example COBOL74 Requesting Program

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT MARINE-WEATHER ASSIGN TO PORT,
ACTUAL KEY IS MARINE-WEATHER-SUB,
FILE STATUS IS MARINE-WEATHER-FS.
DATA DIVISION.
FILE SECTION.
FD MARINE-WEATHER
VALUE OF
MYNAME IS "WEATHERST2",
SECURITYTYPE IS PUBLIC,
REQUESTEDMAXRECSIZE IS 72,
FRAMESIZE IS 8.

01 MARINE-WEATHER-REC PIC X(72).
01 MARINE-WEATHER-AUX-REC.
05 MARINE-72 PIC X(72).
WORKING-STORAGE SECTION.
01 MARINE-WEATHER-SUB PIC 9(5).
01 MARINE-WEATHER-FS PIC XX.
01 IOBUF.
03 CODEF PIC XX.
03 TEXTF PIC X(70).
01 FLAG PIC A(5).
77 FS-SUCCESSFUL-READ PIC XX VALUE "00".

PROCEDURE DIVISION.

DISPLAY-INFO SECTION.

MAIN SECTION.

BEGIN.

CHANGE ATTRIBUTE YOURNAME OF MARINE-WEATHER(1) TO "WEATHERMAN.".
CHANGE ATTRIBUTE YOURHOST OF MARINE-WEATHER(1) TO "<host>.".
CHANGE ATTRIBUTE AVAILABLEONLY OF MARINE-WEATHER(1) TO TRUE.
MOVE 1 TO MARINE-WEATHER-SUB.

OPEN I-0 MARINE-WEATHER.

STRING @00@,"XYZ HARBOR AREA" FOR 17 INTO IOBUF

MOVE 1 TO MARINE-WEATHER-SUB

WRITE MARINE-WEATHER-AUX-REC FROM IOBUF

READ MARINE-WEATHER RECORD INTO IOBUF.

IF MARINE-WEATHER-FS IS EQUAL TO FS-SUCCESSFUL-READ AND
CODEF IS NOT EQUAL TO "##" THEN
MOVE "TRUE" TO FLAG

ELSE
MOVE "FALSE" TO FLAG.

PERFORM DISPLAY-IOBUF UNTIL FLAG IS EQUAL TO "FALSE".

MOVE 1 TO MARINE-WEATHER-SUB.

8600 0056-408 13-5

Understanding Port Files

CLOSE MARINE-WEATHER.
STOP RUN.
DISPLAY-IOBUF.

DISPLAY IOBUF.

MOVE 1 TO MARINE-WEATHER-SUB.

READ MARINE-WEATHER RECORD INTO IOBUF.

IF MARINE-WEATHER-FS IS EQUAL TO FS-SUCCESSFUL-READ AND

CODEF IS NOT EQUAL TO "##" THEN

MOVE "TRUE" TO FLAG

ELSE
MOVE "FALSE" TO FLAG.

Examples of a Server Program

The following program is a simple server program that issues dummy weather
information through an endpoint called WEATHERMAN.

ALGOL Server Example

BEGIN
FILE
MARINE WEATHER (KIND=PORT,
MYNAME="WEATHERMAN.",
SERVICE=BASICSERVICE,
SECURITYTYPE=PUBLIC,
MAXSUBFILES=10,
REQUESTEDMAXRECSIZE=72,
FRAMESIZE=8) ;
EBCDIC ARRAY
RCVBUF[0:71],
SENDBUF[0:23,0:71];
LABEL
EXIT;

PROCEDURE HANDLE_INPUT (INX,INPUT);

% e

VALUE INX;
INTEGER INX;
EBCDIC ARRAY INPUT[O];
BEGIN
INTEGER I;
% INPUT has code in first byte, location is in bytes 1-20
CASE REAL(INPUT,1) OF

BEGIN
0: % DUMMY MARINE FORECAST
REPLACE SENDBUF[0,0] BY "Marine Forecast for ", INPUT[1] FOR 20,
" Sat. November 18 "
REPLACE SENDBUF[1,0] BY " Light and variable winds,",

13-6 8600 0056-408

Understanding Port Files

ELSE:

" prevailing westerlies",
" from noon to Tate ";
REPLACE SENDBUF[2,0] BY " afternoon. Tomorrow gusty winds",
" with a small chance of rain. "
REPLACE SENDBUF[3,0] BY "##";
FOR I := 0 STEP 1 UNTIL 3 DO

WRITE(MARINE WEATHER[SUBFILE INX],72,SENDBUF[I,*]);

: % LAST 5 DUMMY BAROMETRIC READINGS

REPLACE SENDBUF[0,0] BY "27 27 28 28 29";
WRITE(MARINE WEATHER[SUBFILE INX],72,SENDBUF[0,*]);

REPLACE SENDBUF[0,0] BY "##";
WRITE(MARINE WEATHER[SUBFILE INX],72,SENDBUF[0,*]);

END;

END OF HANDLE INPUTEVENT;
PROCEDURE HANDLE CHANGEEVENT (INX);

[
%

VALUE INX;
INTEGER INX;

BEGIN

CASE MARINE WEATHER(INX).FILESTATE OF
BEGIN
VALUE (AWAITINGOFFER) :
VALUE (AWAITINGHOST) :
VALUE (OPENED) :
VALUE (BLOCKED) ¢
VALUE (CLOSEPENDING) :
VALUE (DEACTIVATIONPENDING):

VALUE (SHUTTINGDOWN) :

CLOSE(MARINE_WEATHER[SUBFILE INX]);

VALUE (CLOSED) :

REPLACE MARINE_WEATHER(INX).YOURNAME BY ".";
REPLACE MARINE_WEATHER(INX).YOURHOST BY ".";
AWAITOPEN(MARINE WEATHER[SUBFILE INX],DONTWAIT);

VALUE (DEACTIVATED) :

CLOSE(MARINE_WEATHER[SUBFILE INX]);

REPLACE MARINE_WEATHER(INX).YOURNAME BY ".";
REPLACE MARINE_WEATHER(INX).YOURHOST BY ".";
AWAITOPEN(MARINE WEATHER[SUBFILE INX],DONTWAIT);

END;
END OF HANDLE CHANGEEVENT;

8600 0056-408

13-7

Understanding Port Files

% Start program body. Await open requests from anyone.
REPLACE MARINE_WEATHER(O).YOURNAME BY ".";
REPLACE MARINE_WEATHER(O).YOURHOST BY ".";
AWAITOPEN(MARINE_WEATHER[SUBFILE 0] ,DONTWAIT);
DO
BEGIN
% Monitor port file events
CASE WAIT((300), % 5 minute idle
MARINE WEATHER.CHANGEEVENT,
MARINE_WEATHER.INPUTEVENT) OF

BEGIN
1: DISPLAY ("WEATHERMAN idle. Bye");
GO TO EXIT;
2: HANDLE_CHANGEEVENT(MARINE_WEATHER.CHANGEDSUBFILE);
3: READ(MARINE_WEATHER[SUBFILE 0],72,RCVBUF);
HANDLE_INPUT(MARINE_WEATHER.LASTSUBFILE,RCVBUF);
END;
END
UNTIL FALSE;
EXIT:
END.

13-8 8600 0056-408

Understanding Port Files

COBOL74 Server Example

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.

RESERVE WORDS IS NETWORK.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MARINE-WEATHER ASSIGN TO PORT,
ACTUAL KEY IS MARINE-WEATHER-SUB,
FILE STATUS IS MARINE-WEATHER-FS.

DATA DIVISION.
FILE SECTION.
FD MARINE-WEATHER
VALUE OF
MYNAME IS "WEATHERMAN",
SECURITYTYPE IS PUBLIC,
MAXSUBFILES IS 10,

REQUESTEDMAXRECSIZE IS 72,

FRAMESIZE IS 8.
01 MARINE-WEATHER-REC

WORKING-STORAGE SECTION.
01 MARINE-WEATHER-SUB
01 MARINE-WEATHER-FS
01 RCVBUF
01 SENDBUF
01 HOLD-TIME
01 WAIT-STATE
01 SUBFILE-STATE
01 INX
01 INPUT-RECORD.

03 CODE-AREA

03 LOCATION

03 FILLER
01 INFINITE-LOOP
PROCEDURE DIVISION.
MAIN SECTION.
BEGIN.

PIC

PIC
PIC
PIC
PIC
PIC
PIC

PIC

PIC
PIC
PIC
PIC

CHANGE ATTRIBUTE YOURNAME OF MARINE-WEATHER(0)
CHANGE ATTRIBUTE YOURHOST OF MARINE-WEATHER(0)

MOVE O TO MARINE-WEATHER-SUB.
AWAIT-OPEN NO WAIT MARINE-WEATHER.

MOVE 1 TO INFINITE-LOOP.

X(72).

9(5).

XX.

X(72).

X(72).

999 VALUE 300.
9(5).

USAGE REAL.

9(5).

9

9(20).
9(51).

9.

TO
TO

PERFORM BODY-ROUTINE UNTIL INFINITE LOOP IS EQUAL TO O.

STOP RUN.
HANDLE-INFO SECTION.
BODY-ROUTINE.

WAIT HOLD-TIME

ATTRIBUTE CHANGEEVENT OF MARINE-WEATHER

8600 0056-408

13-9

Understanding Port Files

13-10

ATTRIBUTE INPUTEVENT OF MARINE-WEATHER
GIVING WAIT-STATE.
IF WAIT-STATE IS EQUAL TO 1 THEN
PERFORM STOP-PROGRAM
ELSE
IF WAIT-STATE IS EQUAL TO 2 THEN
PERFORM HANDLE-CHANGEEVENT
ELSE
IF WAIT-STATE IS EQUAL TO 3 THEN
PERFORM HANDLE-INPUT.

STOP-PROGRAM.

DISPLAY "WEATHERMAN idle. Bye".
CLOSE MARINE-WEATHER WITH RELEASE.
STOP RUN.

HANDLE-CHANGEEVENT.

MOVE O TO MARINE-WEATHER-SUB.

MOVE ATTRIBUTE CHANGEDSUBFILE OF MARINE-WEATHER TO INX.

MOVE INX TO MARINE-WEATHER-SUB.
MOVE ATTRIBUTE FILESTATE OF MARINE-WEATHER(INX) TO
SUBFILE-STATE.
IF SUBFILE-STATE IS EQUAL TO
VALUE (SHUTTINGDOWN) THEN
MOVE INX TO MARINE-WEATHER-SUB
CLOSE MARINE-WEATHER
ELSE IF SUBFILE-STATE IS EQUAL TO
VALUE (CLOSED) THEN

CHANGE ATTRIBUTE YOURNAME OF MARINE-WEATHER(INX) TO "."
CHANGE ATTRIBUTE YOURHOST OF MARINE-WEATHER(INX) TO "."

MOVE INX TO MARINE-WEATHER-SUB
AWAIT-OPEN NO WAIT MARINE-WEATHER

ELSE IF SUBFILE-STATE IS EQUAL TO

VALUE (DEACTIVATIONPENDING) THEN
PERFORM HANDLE-INPUT
ELSE IF SUBFILE-STATE IS EQUAL TO
VALUE (DEACTIVATED) THEN
MOVE INX TO MARINE-WEATHER-SUB
CLOSE MARINE-WEATHER

CHANGE ATTRIBUTE YOURNAME OF MARINE-WEATHER(INX) TO "."
CHANGE ATTRIBUTE YOURHOST OF MARINE-WEATHER(INX) TO "."

MOVE INX TO MARINE-WEATHER-SUB
AWAIT-OPEN NO WAIT MARINE-WEATHER.

HANDLE-INPUT.

MOVE 0 TO MARINE-WEATHER-SUB.
READ MARINE-WEATHER RECORD INTO INPUT-RECORD.
MOVE ATTRIBUTE LASTSUBFILE OF MARINE-WEATHER TO INX.
IF CODE-AREA IS EQUAL TO O THEN
STRING "Marine Forecast for ",
LOCATION,
" Sat. November 18 !
FOR 72 INTO SENDBUF
PERFORM WRITE-INX-SENDBUF

8600 0056-408

Understanding Port Files

STRING " Light and variable winds,",
" prevailing westerlies",
" from noon to Tate "
FOR 72 INTO SENDBUF
PERFORM WRITE-INX-SENDBUF
STRING " afternoon. Tomorrow gusty winds",
" with a small chance of rain. !
FOR 72 INTO SENDBUF
PERFORM WRITE-INX-SENDBUF
STRING "##" FOR 72 INTO SENDBUF
PERFORM WRITE-INX-SENDBUF
ELSE IF CODE-AREA IS EQUAL TO 1 THEN
MOVE "27 27 28 28 29" TO SENDBUF
PERFORM WRITE-INX-SENDBUF
ELSE
MOVE "##" TO SENDBUF
PERFORM WRITE-INX-SENDBUF.

WRITE-INX-SENDBUF.

MOVE INX TO MARINE-WEATHER-SUB.
WRITE MARINE-WEATHER-REC FROM SENDBUF.

8600 0056-408 13-11

Understanding Port Files

13-12 8600 0056-408

Section 14
Using Subfile Indexes

You access subfiles of a port file by applying an index to the file. If your port file has only
one subfile, you need not specify a subfile index. Otherwise, the subfile index is
mandatory. To perform an operation on the entire port file (on all the subfiles of a port
file), use a subfile index of 0 (zero).

Note that an exception to this rule is that if you invoke a READ or WRITE statement on a
port file that has more than one subfile, and do not specify a subfile index, the READ or
WRITE operation does not fail. Instead, an index of 0 (zero) is assumed. It is preferred
syntax to explicitly specify an index of O (zero), however.

You can specify the number of subfiles in your port file with the MAXSUBFILES port file
attribute. By default, the value of MAXSUBFILES is 1.

The valid range of values to use as a subfile index is from O (zero) to the value of the
MAXSUBFILES attribute. Using a value outside this range causes a run-time error on the

file operation.

The following examples illustrate the use of subfile indexes:

Example 1
ALGOL PORTF(3) .MAXCENSUS := 10;
COBOL74 CHANGE ATTRIBUTE MAXCENSUS OF PORTF(3) TO 10.

Some port attributes, like MAXCENSUS, are subfile attributes. (File attributes are
discussed in Section 15, “Using Attributes.”) Example 1 shows how you access
MAXCENSUS for subfile 3 of the port file PORTF (3 is the subfile index). In Example 1,
the attribute MAXCENSUS of subfile 3 is set to the value 10.

8600 0056-408 14-1

Using Subfile Indexes

If the subfile index 3 is outside the valid range 0 (zero) to the value of MAXSUBFILES, a
run-time error occurs and the following message is displayed:

ATTRIBUTE ERROR: PORTF.MAXCENSUS ILLEGAL SUBFILE INDEX @ (1ine number)

Example 2
ALGOL PORTF (0) .MAXCENSUS := 10;
COBOL74 CHANGE ATTRIBUTE MAXCENSUS OF PORTF(0) TO 10.

Example 2 shows how you set the subfile attribute MAXCENSUS for all the subfiles of
the port file PORTF to the value 10.

Example 3
ALGOL I := PORTF(INX).ACTUALMAXRECSIZE;
COBOL74 MOVE ATTRIBUTE ACTUALMAXRECSIZE OF PORTF(INX) TO I.

Example 3 shows how you interrogate the value of the subfile attribute
ACTUALMAXRECSIZE for subfile INX of the port file PORTF. The value of INX must be in
the valid range of subfile index values for PORTF; otherwise, a run-time error occurs and
the message mentioned in Example 1 is displayed.

Note that you cannot use the subfile index O (zero) when interrogating the value of a
subfile attribute; 0 (zero) is an invalid value for subfile attribute interrogation.

Example 4
ALGOL OPEN (PORTF[SUBFILE 3]);
COBOL74 FILE-CONTROL.

SELECT PORTF
ASSIGN TO PORT,
ACTUAL KEY IS PORTF-SUB.

PROCEDURE DIVISION.

MOVE 3 TO PORTF-SUB.
OPEN I-0 PORTF.

14-2 8600 0056-408

Using Subfile Indexes

This example shows how you open subfile 3 of the port file PORTF. If 3 is not in the valid
subfile range of 0 (zero) to the value of MAXSUBFILES, a run-time error occurs and your
program is terminated with the following error message:

FILE PORTF OPEN ERROR: INVALID SUBFILE @ (1ine number)

Example 5
ALGOL OPEN (PORTF[SUBFILE 0]);
COBOL74 FILE_CONTROL.

SELECT PORTF
ASSIGN TO PORT,
ACTUAL KEY IS PORTF-SUB.

PROCEDURE DIVISION.

MOVE O TO PORTF-SUB.
OPEN I-0 PORTF.

Example 5 shows you how to open all subfiles of the port file PORTF that are presently in
a closed state. This procedure is called an OPEN ALL SUBFILES operation.

Example 6
ALGOL RSLT := OPEN (PORTF[SUBFILE INX]);
COBOL74 FILE-CONTROL.

SELECT PORTF ASSIGN TO PORT,
ACTUAL KEY IS PORTF-SUB,
FILE STATUS IS PORTF-FS.

77 FS-SUBPORT-NOT-OPENED PIC XX VALUE "81".

PROCEDURE DIVISION.

DECLARATIVES.

ERR-HANDLING SECTION.
USE AFTER STANDARD EXCEPTION PROCEDURE ON PORTF.

BEGIN-ERR.
MOVE ATTRIBUTE SUBFILEERROR OF PORTF(INX) TO TEMP.
IF PORTF-FS IS EQUAL FS-SUBPORT-NOT-OPENED

PERFORM ERROR-PROC.
END DECLARATIVES.

MOVE INX TO PORTF-SUB.
OPEN I-0 PORTF.

8600 0056-408 14-3

Using Subfile Indexes

If you interrogate the result of the OPEN operation as shown in Example 6, your program
is not terminated if the OPEN operation returns an error. If INX is not in the valid subfile
range of 0 (zero) to the value of MAXSUBFILES, RSLT is set to equal
VALUE(BADSUBFILEINDEXRSLT) and your program continues. Note that not all
languages can return file operation results.

Example 7
ALGOL CLOSE (PORTF[SUBFILE INX]);
COBOL74 MOVE INX TO PORTF-SUB.

CLOSE PORTF.

Subfile indexes for other file operations are handled in the same way as the OPEN case
described in Example 6. In Example 7, subfile INX of the port file PORTF is being closed.

As with OPEN, you can also interrogate the result of a CLOSE operation with some
languages like ALGOL, and your program is not terminated if an error is returned.

Example 8
ALGOL WRITE (PORTF[SUBFILE 0],72,DATA);
READ (PORTF[SUBFILE 0],72,DATA);
COBOL74 MOVE O TO PORTF-SUB.

WRITE PORTF-RECORD-NAME FROM DATA.
MOVE O TO PORTF-SUB.
READ PORTF RECORD INTO DATA.

When you index PORTF by 0 (zero) on a WRITE operation, DATA is sent on all opened
subfiles of PORTF. This particular kind of WRITE operation is called a broadcast WRITE.

When you index PORTF by 0 (zero) on a READ operation, the next available input from a
subfile of PORTF is read in. This particular kind of READ operation is called a nonselective
READ. Refer to Section 19, “Exchanging Data” for more information about a
nonselective READ.

14-4 8600 0056-408

Section 15
Using Attributes

Just as with other kinds of files, you describe and monitor your port file through file
attributes. Before you open a dialogue on a subfile, you need to describe both dialogue
endpoints through attributes. Attributes also allow you to perform some dialogue
configuration before and during the dialogue connection. Information about dialogue
activity such as incoming messages and changes in dialogue state are also passed to you
through attributes.

This section discusses how to use port file attributes, rather than discussing the
attributes themselves in detail. For detailed descriptions of the attributes, refer to the File
Attributes Reference Manual.

Setting and Interrogating Attributes

You set and interrogate attributes for port files in much the same way as for other types
of files. Subfile attributes are accessed by applying a subfile index on the port file. You
can change the default setting or the current value of a file attribute in the following
ways:

e |n a file declaration statement

e |nan attribute assignment statement

e Atrun time, through file equation

The following examples illustrate the various ways to set and interrogate port file

attributes.
Example 1
ALGOL INX :=PORTF.LASTSUBFILE;
COBOL74