
o New Release • Revision o Update o New Mail Code

Title

MCP/AS ALGOL and MCP Interfaces to POSIX÷ Features Programming Reference Manual
(7011 8351–002)

This announces a retitling and reissue of the A Series ALGOL and MCP Interfaces to POSIX÷ Features Programming
Reference Manual. No new technical changes have been introduced since the HMP 1.0 and SSR 43.2 release in June
1996.

This manual describes functions used to obtain certain POSIX-related features in programs not written in the C
language. Essentially, each function mimics a C language POSIX function. Most functions call library procedures
exported by the MCPSUPPORT library.

The POSIX interface was developed by the Institute of Electrical and Electronics Engineers, Inc. (IEEE).

• United States customers, call Unisys Direct at 1-800-448-1424.

• Customers outside the United States, contact your Unisys sales office.

• Unisys personnel, order through the electronic Book Store at http://iwww.bookstore.unisys.com.

Comments about documentation can be sent through e-mail to doc@unisys.com.

Product Information
Announcement

Announcement only: Announcement and attachments: System: MCP/AS
Release: HMP 4.0 and SSR 45.1
Date: June 1998
Part number: 7011 8351–002

Programming Reference
Manual

MCP/AS
ALGOL AND MCP INTERFACES

TO POSIX÷ FEATURES

Copyright û 1998 Unisys Corporation.
All rights reserved.
Unisys and ClearPath are registered trademarks of Unisys Corporation.

HMP 4.0 and SSR 45.1 June1998

Printed in USA
Priced Item 7011 8351–002

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the names,
places, and/or events with the names of any individual, living or otherwise, or that of any group or
association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related
information described herein is only furnished pursuant and subject to the terms and conditions of a
duly executed agreement to purchase or lease equipment or to license software. The only warranties
made by Unisys, if any, with respect to the products described in this document are set forth in such
agreement. Unisys cannot accept any financial or other responsibility that may be the result of your
use of the information in this document or software material, including direct, special, or consequential
damages.

You should be very careful to ensure that the use of this information and/or software material complies
with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

RESTRICTED – Use, reproduction, or disclosure is restricted by DFARS 252.227–7013 and 252.211–
7015/FAR 52.227–14 & 52.227-19 for commercial computer software.

Correspondence regarding this publication should be forwarded to Unisys Corporation by addressing
remarks to Unisys Corporation, Tredyffrin/Malvern Product Information, N155, 2476 Swedesford
Road, Malvern, PA 19355-9700, U.S.A.

Comments about documentation can also be sent through e-mail to doc@unisys.com.

Unisys and ClearPath are registered trademarks of Unisys Corporation.
All other terms mentioned in this document that are known to be trademarks or service marks have
been appropriately capitalized. Unisys Corporation cannot attest to the accuracy of this information.
Use of a term in this document should not be regarded as affecting the validity of any trademark or
service mark.

7011 8351–002 iii

Contents

About This Manual .. xiii

Section 1. Introduction

Overview of POSIX Functions ... 1–1
Accessing POSIX Functions in ALGOL Programs 1–1
Accessing POSIX Features with Library Procedures 1–2
Documentation Conventions .. 1–2

Section 2. Reference Information

The ALGOL Include File ... 2–2
Rules for Using Parameters and Results 2–3

Call-by-reference Integer ... 2–3
Call-by-reference Real ... 2–3
Call-by-value Integer ... 2–3
Call-by-value Real ... 2–4
EBCDIC Array Input .. 2–4
EBCDIC Array Output .. 2–4
File ... 2–5
Integer Array Input ... 2–5
Integer Array Output ... 2–5
Path Definition ... 2–5
Real Array Input ... 2–7
Real Array Output ... 2–7
Structure Array Input .. 2–7
Structure Array Output ... 2–8
Signal Handler Procedure ... 2–9
ERRNO .. 2–11
Result (Integer or Real) ... 2–18

Parameter Values and Structures ... 2–19
AMODE Parameter ... 2–19
CMD Parameter (FCNTL) ... 2–20
CMD parameter (SEMCTL) .. 2–21
DISP Parameter ... 2–22
FLOCK Structure .. 2–23
GROUP Structure ... 2–24
HOW Parameter ... 2–25
INFO Parameter ... 2–26
INTARG Parameter (FCNTL) 2–27
MODE Parameter ... 2–28

Contents

iv 7011 8351–002

MCPSTAT Structure .. 2–29
NAME Parameter (PATHCONF) 2–30
NAME Parameter (SYSCONF) 2–31
OPTION Parameter (CLOSE) 2–32
OPTION Parameter (OPEN) .. 2–33
OPTION Parameter (WAITPID) 2–35
PASSWD Structure ... 2–36
PID parameter (KILL) ... 2–37
PID Parameter (WAITPID) ... 2–38
SEMBUF Structure .. 2–39
SEMFLG Parameter .. 2–40
SEMID_DS Structure ... 2–41
SIG Parameter ... 2–42
SIGACTION Structure .. 2–44
SIGINFO_T Structure ... 2–45
STAT Structure .. 2–46
STATUS Parameter ... 2–48
TMS Structure .. 2–49
UTSNAME Structure ... 2–50

Section 3. POSIX Functions in ALGOL

ACCESS .. 3–2
ALARM .. 3–3
CHDIR ... 3–4
CHMOD ... 3–5
CHOWN ... 3–6
EXECVE .. 3–7
FORK .. 3–9
GETCWD ... 3–10
GETEGID ... 3–11
GETEUID ... 3–12
GETGID ... 3–13
GETGRGID .. 3–14
GETGRNAM .. 3–15
GETGROUPS ... 3–16
GETLOGIN .. 3–17
GETPGID ... 3–18
GETPGRP .. 3–19
GETPID ... 3–20
GETPPID ... 3–21
GETPWNAM .. 3–22
GETPWUID .. 3–23
GETSID ... 3–24
GETUID ... 3–25
GETUSERID ... 3–26
GETUSERNAME .. 3–27
KILL .. 3–28
MKFIFO ... 3–29
NICE ... 3–30
PATHCONF ... 3–31

Contents

7011 8351–002 v

PAUSE .. 3–32
RAISE ... 3–33
SEM_CLOSE ... 3–34
SEMCTL ... 3–35
SEM_DESTROY .. 3–36
SEMGET ... 3–37
SEM_GETVALUE ... 3–38
SEM_INIT .. 3–39
SEMOP ... 3–40
SEM_OPEN ... 3–41
SEM_POST ... 3–42
SEM_TRYWAIT ... 3–43
SEM_UNLINK .. 3–44
SEM_WAIT .. 3–45
SETGID ... 3–46
SETPGID ... 3–47
SETPGRP .. 3–48
SETSID ... 3–49
SETUID ... 3–50
SIGACTION ... 3–51
SIGADDSET .. 3–52
SIGDELSET ... 3–53
SIGEMPTYSET .. 3–54
SIGFILLSET .. 3–55
SIGHOLD .. 3–56
SIGIGNORE ... 3–57
SIGISMEMBER .. 3–58
SIGNAL ... 3–59
SIGPAUSE ... 3–60
SIGPENDING .. 3–61
SIGPROCMASK .. 3–62
SIGPUSH ... 3–63
SIGRELSE ... 3–64
SIGSET ... 3–65
SIGSUSPEND .. 3–66
SLEEP .. 3–67
STAT ... 3–68
STRERROR ... 3–69
SYSCONF ... 3–70
TIMEP ... 3–71
TIMES ... 3–72
UNAME ... 3–73
WAITP ... 3–74
WAITPID ... 3–75

Section 4. Unsupported POSIX Functions

Contents

vi 7011 8351–002

Section 5. POSIX-Related Library Procedures

MCPX_MKNOD ... 5–8
MCPX_SEMCTL .. 5–10
MCPX_SEMGET .. 5–12
MCPX_SEMOP .. 5–13
POSIX_ACCESS .. 5–14
POSIX_ALLOCATE_FD .. 5–15
POSIX_CHANGEDIR .. 5–16
POSIX_CHANGEMODE .. 5–17
POSIX_CHANGEOWNER ... 5–19
POSIX_CLOSE .. 5–21
POSIX_EXECVE ... 5–22
POSIX_EXIT .. 5–24
POSIX_FCNTL ... 5–25
POSIX_FILESTATUS .. 5–27
POSIX_FILE_TO_FD .. 5–29
POSIX_FORK .. 5–30
POSIX_GETGRINFO .. 5–31
POSIX_GETPWINFO .. 5–32
POSIX_GROUPLIST ... 5–33
POSIX_INTEGERIDS .. 5–34
POSIX_NANOALARM .. 5–36
POSIX_NANOSLEEP ... 5–37
POSIX_OPEN .. 5–38
POSIX_PATHCONF ... 5–39
POSIX_PIPE .. 5–41
POSIX_SEEK ... 5–42
POSIX_SEM_CLOSE .. 5–43
POSIX_SEM_DESTROY ... 5–44
POSIX_SEM_GETVALUE .. 5–45
POSIX_SEM_INIT .. 5–46
POSIX_SEM_OPEN ... 5–47
POSIX_SEM_POST .. 5–49
POSIX_SEM_TRYWAIT .. 5–50
POSIX_SEM_UNLINK .. 5–51
POSIX_SEM_WAIT .. 5–52
POSIX_SETIDS .. 5–53
POSIX_SIGHANDLER .. 5–55
POSIX_SREAD_x ... 5–59
POSIX_STRINGIDS .. 5–61
POSIX_SWRITE_x ... 5–62
POSIX_SYSCONF .. 5–64
POSIX_TIME .. 5–65
POSIX_TIMES ... 5–66
POSIX_UNAME ... 5–67
POSIX_WAITPID .. 5–68

Section 6. Programming Examples 6–1

Contents

7011 8351–002 vii

Glossary ... 1

Index ... 1

Contents

viii 7011 8351–002

7011 8351–002 ix

Tables

2–1. ACT_PROC Procedure Parameters .. 2–10
2–2. ERRNO Descriptions .. 2–11
2–3. File Mode Layout (STAT Structure Word 0) .. 2–46

4–1. Unsupported POSIX Interface Based C Language Functions 4–1

5–1. POSIX Functions and Related Library Procedures 5–2

Tables

x 7011 8351–002

7011 8351–002 xi

Examples

6–1. Using POSIX Functions in an ALGOL Program .. 6–10
6–2. An Equivalent C Program ... 6–16

Examples

xii 7011 8351–002

7011 8351–002 xiii

About This Manual

Purpose
This manual describes functions used to obtain certain POSIX interface features in
programs not written in the C language. Essentially, each function mimics a C language
POSIX interface function. Most functions call library procedures exported by the
MCPSUPPORT library.

The manual describes:

• POSIX interface functions for ALGOL programs. A system-supplied include file
(SYMBOL/POSIX/ALGOL/PROPERTIES) contains declarations required for these
functions.

• POSIX interface related library procedures exported by the MCPSUPPORT library.

The Master Control Program (MCP) System Interfaces Programming Reference Manual

previously described many of the POSIX interface related library procedures. These
library procedures are:

• POSIX_INTEGERIDS

• POSIX_NANOALARM

• POSIX_NANOSLEEP

• POSIX_SEM_CLOSE

• POSIX_SEM_DESTROY

• POSIX_SEM_GETVALUE

• POSIX_SEM_INIT

• POSIX_SEM_OPEN

• POSIX_SEM_POST

• POSIX_SEM_TRYWAIT

• POSIX_SEM_UNLINK

• POSIX_SEM_WAIT

• POSIX_SETIDS

• POSIX_SIGHANDLER

• POSIX_STRINGIDS

About This Manual

xiv 7011 8351–002

Scope
The functions and library procedures described in this manual are for A Series systems.
You can access them in programs to perform a variety of functions. Some of these
functions include:

• Setting and retrieving POSIX user and group IDs

• Managing POSIX semaphores to synchronize programs or control shared resources

• Managing POSIX signals

• Translating system error messages

Audience
This document is a reference manual intended primarily for use by programmers. It is
particularly relevant for ALGOL and NEWP programs written to be part of, or to interact
with, C language programs.

Prerequisites
You should be familiar with:

• Using libraries as described in the Task Management Programming Guide

• POSIX interface concepts as defined in the POSIX User's Guide

• POSIX interface based functions as described in the C Programming Reference
Manual, Volume 2: Headers and Functions

How to Use This Manual
This is a reference manual that can be read in any desired order. However, all users
should first read Section 1. This section provides an overview of the manual's contents.

If you are an ALGOL programmer you should:

• Read the ALGOL include file description in Section 2.

• Use Section 3 to obtain reference information about supported POSIX interface
functions. This section lists functions in alphabetical order.

• Read the "About this Section" portion of Section 5. This subsection describes
available functions that you can only access with library procedures.

• Refer to Section 6 for representative programming examples.

About This Manual

7011 8351–002 xv

If you are a NEWP programmer you should:

• Read the "About this Section" portion of Section 5. Table 5-1 lists the library
procedure applicable to each function.

• Use Section 5 to obtain reference information about library procedures. (Note that all
library declarations use ALGOL syntax.)

• Refer to Section 6 for representative programming examples.

All users should refer to Section 4 if they cannot find information about a particular
function. Section 4 lists unsupported POSIX interface C functions.

Notes:

1. The library procedures described in Section 5 are internal interfaces used by the

system software. These interfaces might also be of use to sophisticated application

programs. From one release to another, an internal interface might change in such

a way that programs that use the internal interface will be required to make

changes to operate correctly. Because internal interfaces are special system

interfaces, they do not adhere to the compatibility policies described in the SSR 42.3
Software Release Capabilities Overview. You should examine all programs that use

internal interfaces before installing a new release to ensure that the internal

interface has not changed.

2. Wherever possible, ALGOL programmers should use the capabilities described in

Sections 2 and 3. Normal policies support these capabilities.

Organization

This document contains six sections and an index.

Section 1. Introduction

This section provides an overview of POSIX interface functions. It describes how to
access these features in non C language programs.

Section 2. Reference Information

This section provides reference information required to support function descriptions in
Section 3 and library procedure descriptions in Section 5.

Section 3. POSIX Functions in ALGOL

This section describes POSIX functions that are available in the ALGOL language. To
access these functions, include the system-supplied
SYMBOL/POSIX/ALGOL/PROPERTIES file in the ALGOL program. Section 3 does not
contain detailed functional descriptions. If necessary, refer to the equivalent functional
descriptions in the C Programming Reference Manual, Volume 2: Headers and

Functions.

About This Manual

xvi 7011 8351–002

Section 4. Unsupported POSIX Functions

This section lists the POSIX interface based functions that are currently available only in C
language programs.

Section 5. POSIX-Related Library Procedures

This section describes each library procedure that provides one or more POSIX interface
related functions.

Section 6. Programming Examples

This section contains several sample programs that illustrate the use of POSIX interface
functions in ALGOL programs.

Related Product Information
Unless otherwise stated, all documents referred to in this publication are MCP/AS
documents. The titles have been shortened for increased usability and ease of reading.

The following documents are included with the software release documentation and
provide general reference information:

• The Glossary includes definitions of terms used in this document.

• The Documentation Road Map is a pictorial representation of the Product
Information (PI) library. You follow paths through the road map based on tasks you
want to perform. The paths lead to the documents you need for those tasks. The Road

Map is available on paper and on the PI Library CD-ROM. If you know what you want
to do, but don't know where to find the information, start with the Documentation

Road Map.

• The Information Availability List (IAL) lists all user documents, online help, and
HTML files in the library. The list is sorted by title and by part number.

The following documents provide information that is directly related to the primary
subject of this publication.

ALGOL Programming Reference Manual, Volume 1: Basic Implementation

(8600 0098)

This manual describes the basic features of the Extended ALGOL programming language.
This manual is written for programmers who are familiar with programming concepts.

C Programming Reference Manual, Volume 1: Basic Implementation

(8600 2268)

This manual describes the C programming language. It includes descriptions of syntax,
status messages, the preprocessor, compiling system, binding system, and run-time
library. Extensions such as compiler control options and the A Series library facility are
also documented. This manual is written for systems and applications programmers.

About This Manual

7011 8351–002 xvii

C Programming Reference Manual, Volume 2: Headers and Functions

(8600 2278)

This manual describes the C headers in detail, and the functions, macros, and types
defined in those headers. This manual is written for systems and applications
programmers.

File Attributes Programming Reference Manual (8600 0064)

This manual contains information about each file attribute and each direct I/O buffer
attribute. The manual is written for programmers and operations personnel who need to
understand the functionality of a given attribute. The I/O Subsystem Programming Guide

is a companion manual.

I/O Subsystem Programming Guide (8600 0056)

This guide contains information about how to program for various types of peripheral files
and how to program for interprocess communication, using port files. This guide is written
for programmers who need to understand how to describe the characteristics of a file in a
program. The File Attributes Programming Reference Manual is a companion manual.

POSIX User's Guide (7011 8328)

This guide describes the basic concepts of the POSIX interface, including process control
and file management. It also describes specifically how the POSIX.1 interface is
implemented and used on the enterprise server. This guide is written for programmers and
any user who wants to understand the POSIX interface.

Task Attributes Programming Reference Manual (8600 0502)

This manual describes all the available task attributes. It also gives examples of
statements for reading and assigning task attributes in various programming languages.
The Task Management Programming Guide is a companion manual.

Task Management Programming Guide (8600 0494)

This guide explains how to initiate, monitor, and control processes on an enterprise
server. It describes process structures and process family relationships, introduces the
uses of many task attributes, and gives an overview of interprocess communication
techniques. The Task Attributes Programming Reference Manual is a companion manual.

About This Manual

xviii 7011 8351–002

7011 8351–002 1–1

Section 1
Introduction

Overview of POSIX Functions
This document provides reference information necessary to access POSIX functions in
programs not written in the C language. Most of these functions call MCPSUPPORT
library procedures. Two function categories are described:

If a function is . . . Then . . .

Also implemented in C language • The non C language function mimics the
equivalent C language function.

• This manual does NOT describe the non
C language function in detail.

• See the C Programming Reference
Manual, Volume 2: Headers and
Functions for detailed information about
the function.

Not implemented in C language This manual provides a complete description
of the function.

Accessing POSIX Functions in ALGOL Programs
You can use many POSIX functions in ALGOL programs without any explicit declaration
of library procedures. To do so, include the file SYMBOL/POSIX/ALGOL/PROPERTIES in
the program.

The ALGOL program product contains the SYMBOL/POSIX/ALGOL/PROPERTIES file.
This file provides the following functions:

• It declares the MCPSUPPORT library.

• It declares supported POSIX interface related library procedures.

• It defines a suite of POSIX functions.

Section 2 provides a more complete description of the ALGOL include file.

Introduction

1–2 7011 8351–002

Section 3 describes all POSIX interface related functions currently supported by the
ALGOL include file.

ALGOL programmers can access several additional POSIX functions by explicitly
declaring appropriate library procedures. The introduction to Section 5 describes this
concept.

Accessing POSIX Features with Library Procedures
Note: In most cases, ALGOL programmers do not need to declare library procedures.

The ALGOL include file provides these declarations. Programmers using other

languages (primarily NEWP) must declare an appropriate library procedure to

access a desired POSIX function.

MCPSUPPORT library procedures provide the majority of POSIX interface related
functions. Each library procedure provides a unique entry point into the library.

Section 5 of this manual provides:

• A table that lists all supported POSIX functions and associated MCPSUPPORT library
procedures

• A description of every applicable library procedure

Section 5 defines some POSIX functions that the ALGOL include file does not support.
ALGOL programmers can use the appropriate library procedure to access those functions.

Documentation Conventions
This document uses the following conventions:

• The term POSIX refers to the A Series POSIX implementation as described in the
POSIX User’s Guide. Therefore, the C Programming Reference Manual, Volume 2,

might categorize a referenced function as any of the following:

− “Implementation Extension”

− “POSIX”

− “X/Open”

• Terms in uppercase characters refer to POSIX functions defined in the ALGOL include
file. ACCESS and MKFIFO are two examples.

• C language semantics reference equivalent C language functions. The terms access()

and mkfifo() are two examples.

 Note that the C Programming Reference Manual, Volume 2, lists these functions
without trailing parenthesis. The terms access and mkfifo are two examples.

• C language #include precompiler directives are not listed in this manual.

• In Section 5, equivalent C language function names describe most of the functions
provided by MCPSUPPORT library procedures.

7011 8351–002 2–1

Section 2
Reference Information

About this Section

This section provides the reference information required to use the information presented
in Sections 3 and 5. In general, there are multiple references to this information.

Section 2 describes:

• The ALGOL include file. Use this file to access POSIX functions in an ALGOL
program.

• The “rules” required to specify POSIX function or library procedure parameters and to
interpret the results.

 Every description within Section 3 and Section 5 includes a reference to one of these
rules.

• Defined names and values associated with integer parameters. The ALGOL include
file defines the indicated names.

• The layout of structures passed to or from POSIX functions and library procedures.

Reference Information

2–2 7011 8351–002

The ALGOL Include File
An include file (SYMBOL/POSIX/ALGOL/PROPERTIES) is now available to facilitate the
use of POSIX functions in ALGOL programs. This file supports all functions described in
Section 3 of this document.

The ALGOL program product contains the SYMBOL/POSIX/ALGOL/PROPERTIES file.

If an ALGOL program includes the SYMBOL/POSIX/ALGOL/PROPERTIES file:

• The MCPSUPPORT library is declared.

• Supported POSIX interface related library procedures are declared.

• POSIX functions defined in Section 3 can be used.

Notes:

1. ALGOL programs can use several POSIX functions not listed in Section 3. See the

introduction to Section 5 for further information.

2. In future releases, the include file will support additional POSIX functions.

Specifying POSIX Functions in an ALGOL Program

An ALGOL program must include the SYMBOL/POSIX/ALGOL/PROPERTIES file to use the
POSIX functions described in Section 3. To include this file, insert the following code at
the start of the program:

$$ INCLUDE "SYMBOL/POSIX/ALGOL/PROPERTIES"

Contents of the File

The SYMBOL/POSIX/ALGOL/PROPERTIES file contains three parts:

• Part 1

 This part contains all POSIX interface related library procedure declarations and
defined SELECTOR parameter values.

• Part 2

 This part provides global defines for data referenced by more than one library
procedure. Information defined here includes:

− Common constants

− Structure definitions

• Part 3

 This part specifies each POSIX function and any required library procedure calls. See
Section 3 for information about these POSIX functions.

Reference Information

7011 8351–002 2–3

Rules for Using Parameters and Results
Most of the functions described in Section 3 emulate POSIX interface related C language
functions as described in the C Programming Reference Manual, Volume 2: Headers and

Functions. In Section 3, each description includes:

• Reference to the corresponding C language function.

• Cross references between ALGOL parameters and equivalent C language arguments.

• References to the “rule” needed to match ALGOL parameters with equivalent C
language arguments.

The following paragraphs describe all required parameter matching rules.

Note: Library procedure descriptions (provided in Section 5) also refer to these rules.

Call-by-reference Integer
Define this parameter as a call-by-reference integer. When the procedure is invoked, the
system evaluates the location of the actual parameter and replaces the formal parameter
with a reference to that location. Thereafter, any change in the formal parameter affects
the actual parameter within the program.

The formal parameter is declared REFERENCE and INTEGER.

Call-by-reference Real
Define this parameter as a call-by-reference real number. When the procedure is invoked,
the system evaluates the location of the actual parameter and replaces the formal
parameter with a reference to that location. Thereafter, any change in the formal
parameter affects the actual parameter within the program.

The formal parameter is declared REFERENCE and REAL.

Call-by-value Integer
Define this parameter as a call-by-value integer. A copy of the actual parameter value is
passed to the procedure. Thereafter, any change to the formal parameter has no effect
outside the procedure body.

The formal parameter is declared VALUE and INTEGER.

Reference Information

2–4 7011 8351–002

Call-by-value Real
Define this parameter as a call-by-value real number. A copy of the actual parameter is
passed to the procedure. Thereafter, any change to the formal parameter has no effect
outside the procedure body.

The formal parameter is declared VALUE and REAL.

EBCDIC Array Input
The library procedure expects a string of EBCDIC characters. You must define three
parameters:

1. A call-by-reference EBCDIC array.

 Declare EBCDIC ARRAY (with [0] bounds) and REFERENCE.

2. A call-by-value integer (<name>_OFF) that specifies a byte-offset to the start of data
within the array.

3. A call-by-value integer (<name>_LEN) that specifies the length (in bytes) of the data
string.

You may specify a length of –1 if the data is “string-type.” With this specification, the
system implicitly determines the string length by scanning the array for a null character
(48“00”). An error occurs if no null character is detected.

EBCDIC Array Output
The program expects a string of EBCDIC characters from the library procedure. You must
define three parameters:

1. A call-by-reference EBCDIC array.

 Declare EBCDIC ARRAY (with [0] bounds) and REFERENCE.

2. A call-by-value integer (<name>_OFF) that specifies a byte-offset to the start of data
within the array.

3. A call-by-value integer (<name>_MAX) that specifies the maximum number of bytes
(starting from the offset) available to store the character string.

A null character defines the end of the data.

An ERRNO value is set if there is not enough space to store all data, exclusive of the null
character. If all data characters are stored but there is insufficient room for the null
character, no error is set.

Reference Information

7011 8351–002 2–5

File
Define the applicable parameter as a file.

The formal parameter is declared REFERENCE and FILE.

Integer Array Input
The library procedure expects an integer or series of integers. You must define three
parameters:

1. A call-by-reference integer array.

 Declare INTEGER ARRAY (with [0] bounds) and REFERENCE.

2. A call-by-value integer (<name>_OFF) that specifies a word-offset to the start of data
within the array.

3. A call-by-value integer (<name>_LEN) that specifies the length (in words) of the data.

Integer Array Output
The program expects one or more integers from the library procedure. You must define
three formal parameters:

1. A call-by-reference integer array.

 Declare INTEGER ARRAY (with [0] bounds) and REFERENCE.

2. A call-by-value integer (<name>_OFF) that specifies a word-offset to the start of data
within the array.

3. A call-by-value integer (<name>_MAX) that specifies the length (in words) of the data
area.

The MCP sets an ERRNO condition if there is not enough space to store all data.

Path Definition
The library procedure expects a pathname containing a string of EBCDIC characters. You
must define five parameters:

1. A call-by-reference EBCDIC array.

 Declare EBCDIC ARRAY (with [0] bounds) and REFERENCE.

2. A call-by-value integer (PATH_OFF) that specifies a byte-offset from the beginning of
the PATH array to the start of the pathname string.

Reference Information

2–6 7011 8351–002

3. A call-by-value integer (PATH_LEN) that specifies the length (in characters) of the
pathname string. There are two ways to express the PATH_LEN value:

Value Description

–1 Allow the MCP to calculate string length. The MCP will assume the string is null
terminated and will calculate its length. If the MCP does not detect a null character,
it sets an ERRNO value.

To use this option, the PATH_TYPE parameter must be 0 (PATH_TYPE_PATHNAME).

> 0 Specified value is the length (in characters) of the input file name string.

4. A call-by-value integer (PATH_TYPE) that defines how the associated parameter
string must be interpreted:

Value Defined Name Description

0 PATH_TYPE_PATHNAME String contains a display form name conforming to
the syntax of the PATHNAME file attribute. See the
File Attributes Programming Reference Manual for
details.

1 PATH_TYPE_TITLE String contains a display form name conforming to
the syntax of the TITLE file attribute. See the File
Attributes Programming Reference Manual for details.

2 PATH_TYPE_STANDARD String contains a standard form file name.

5. A call-by-value integer (PATH_SEARCHRULE) that defines rules to be followed when
evaluating the defined string:

Value
Defined
Name Description

0 NATIVE Use native platform rules to evaluate the pathname string when
searching for an existing file or creating a new file. See the File
Attributes Programming Reference Manual for details.

1 POSIX Use POSIX interface defined rules to evaluate the pathname string
when searching for an existing file or creating a new file. See the
POSIX User’s Guide for specific information on these rules.

Reference Information

7011 8351–002 2–7

Real Array Input
The library procedure expects one or more real numbers. You must define three
parameters:

1. A call-by-reference real array.

 Declare REAL ARRAY (with [0] bounds) and REFERENCE.

2. A call-by-value integer (<name>_OFF) that specifies a word-offset to the start of data
within the array.

3. A call-by-value integer (<name>_LEN) that specifies the length (in words) of the data.

Real Array Output
The program expects one or more real numbers from the library procedure. You must
define three parameters:

1. A call-by-reference real array.

 Declare REAL ARRAY (with [0] bounds) and REFERENCE.

2. A call-by-value integer (<name>_OFF) that specifies a word-offset to the start of data
within the array.

3. A call-by-value integer (<name>_MAX) that specifies the length (in words) of the data.

The MCP sets an ERRNO condition if there is not enough space to store all data.

Structure Array Input
The library procedure expects a data structure. You must define three parameters:

1. A call-by-reference real array.

 Declare REAL ARRAY (with [0] bounds) and REFERENCE.

2. A call-by-value integer (<name>_OFF) that specifies a word-offset to the start of the
structure.

3. A call-by-value integer (<name>_LEN) that specifies the length of the structure in
words.

If the structure contains a character array, it contains a structure member to specify the
character length of that array. This member appears just before the character array.
Unlike EBCDIC array input, the defined length must be greater than or equal to zero.

Structures are defined later in this section.

Reference Information

2–8 7011 8351–002

Structure Array Output
The program expects a data structure from the library procedure. You must define three
parameters:

1. A call-by-reference real array.

 Declare REAL ARRAY (with [0] bounds) and REFERENCE.

2. A call-by-value integer (<name>_OFF) that specifies a word-offset to the start of the
structure.

3. A call-by-value integer (<name>_MAX) that specifies the space (in words) available to
store the structure.

A structure may “grow” from release to release. For example, an 8-word structure defined
in release 42.3 may be redefined as a 10-word structure in release 43.1. The structure
passing mechanism supports such structure growth as follows:

• The MCP can normally store the beginning of a “large” structure in a smaller array
space. It ignores the unstored portion of the large structure and does not provide an
error.

• An error occurs only if a member is partially stored.

If the structure contains a character array, its length is fixed in the definition of the
structure. This length is passed in a member declared just before the character array. The
MCP sets an ERRNO condition if the defined length does not accommodate the character
string (including a terminating null character).

Structures are defined later in this section.

Reference Information

7011 8351–002 2–9

Signal Handler Procedure
This input parameter (ACT_PROC) defines a procedure to be performed when the
specified signal occurs. A formal declaration is made as follows:

1. The ACT_PROC parameter is declared REFERENCE and INTEGER PROCEDURE.

2. The ACT_PROC integer procedure is declared as follows:

 INTEGER PROCEDURE ACT_PROC (INFO1, INFO2, INFO3, INFO4, INFO5,
 INFO6, INFO7, INFO8, INFO9, INFO10);
 VALUE INFO1, INFO2, INFO3, INFO4, INFO5,
 INFO6, INFO7, INFO8, INFO9, INFO10;
 INTEGER INFO1, INFO2, INFO3, INFO4, INFO5,
 INFO6, INFO7, INFO8, INFO9, INFO10;

Table 2–1 defines the information required in each of the required INFOn parameters.

The sa_handler address (defined by the INFO2 parameter) is always passed to the library
procedure. The INFO3_SIGINFOF bit (defined in the INFO3 parameter) specifies what
additional arguments should be passed.

• If INFO3_SIGINFOF is set (1), then three additional arguments are used:

Argument Rule Description

Call-by-value integer Signal number (INFO1_SIGNALF)

Call-by-value integer An offset within the heap to where the SIGINFO_T
structure is stored.

See “SIGINFO_T structure” within this section for a
description of this structure.

Call-by-value integer 0

• If INFO3_SIGINFOF is reset (0), then one additional argument is used:

Argument Rule Description

Call-by-value integer Signal number (INFO1_SIGNALF)

Reference Information

2–10 7011 8351–002

Table 2–1. ACT_PROC Procedure Parameters

Parameter Description

INFO1 An integer input parameter specifying the version and signal type
(the current version value is 0). This word breaks down as
follows:

 [23:08] INFO1_VERSIONF
 [07:08] INFO1_SIGNALF

INFO1_SIGNALF corresponds to the si_signo member of the
SIGINFO_T structure.

INFO2 An integer input parameter containing the value of the sa_handler
word of the parent procedure’s ACT array. See “DISP parameter”
later in this section for a description of possible values.

INFO3 An integer input parameter containing additional information about
the signal state. This word breaks down as follows:

 [37:01] INFO3_SIGINFOF
 [36:01] INFO3_HARDWAREGENF
 [35:12] INFO3_CODEF
 [23:24] INFO3_ERRF

INFO3_CODEF corresponds to the si_code member of the
SIGINFO_T structure.

INFO3_ERRF corresponds to the si_errno member of the
SIGINFO_T structure.

INFO4 An integer input parameter containing the process ID of the
process causing the signal. This parameter corresponds to the
si_pid member of the SIGINFO_T structure.

INFO5 An integer input parameter containing the user ID. This parameter
corresponds to the si_uid member of the SIGINFO_T structure.

INFO6 Not used.

INFO7 Not used.

INFO8 Not used.

INFO9 Not used.

INFO10 Not used.

Reference Information

7011 8351–002 2–11

ERRNO
ERRNO must be declared as the last item in the formal parameter list of all POSIX
interface related functions and library procedures. It is declared as a call-by-reference
integer.

If an error occurs during the execution of a procedure, the calling process is normally
notified in two ways:

• The procedure returns an error result, usually –1 (see “Result (integer or real)” later in
this section)

• ERRNO is set to some non-zero code to identify the error

There are two ways to determine the meaning of a non-zero ERRNO code:

• See Table 2–2 for descriptions of ERRNO codes.

• Use the STRERROR function to obtain a string of descriptive text about a specified
ERRNO value. The STRERROR function is described in Section 3.

Note: Only general descriptions are provided in Table 2–2 and in the returned

STRERROR function text. However, in many cases there is a function-specific

meaning for the error code. These function-specific meanings are described in

the C Programming Reference Manual, Volume 2: Headers and Functions.

Table 2–2. ERRNO Descriptions

ERRNO
Code Error Description

0 EOK No error.

1 EDOM Domain error.

An input parameter was outside the domain of the
mathematical function.

2 ERANGE Result too large.

The result was too large to fit in the available
space.

3 EASSERT An assert failure occurred in the file.

4 EHEAPERR Dynamic memory allocation area (heap) was
corrupted.

5 ESIGNALERR Invalid signal value.

6 EHEAPFULL Heap was full.

Reference Information

2–12 7011 8351–002

Table 2–2. ERRNO Descriptions

ERRNO
Code Error Description

20 EMFILE Too many open files.

An attempt was made to open more than the
maximum number of file descriptors allowed for
this process. The maximum number of open file
descriptors is defined by OPEN_MAX.

21 EINVLDMODE Invalid mode specified.

22 EINVLDNAME Invalid file name.

23 ENOENT No such file or directory.

A component of a specified pathname did not
exist or the pathname was an empty string.

24 EACCES Access permission denied.

An attempt was made to access a file in a manner
forbidden by its file access permissions.

25 EFILENOTAVAIL A file was not available.

26 EFILEOPENERR An error occurred while opening a file.

27 EFILERO An attempt was made to write to a read-only file.

28 EFILEWO An attempt was made to read from a write-only
file.

29 EFILEPOSREQ A file positioning operation is required.

30 EBADF Bad file descriptor.

A file descriptor parameter was out of range, did
not refer to an open file, or a read (write) request
was made to a file that was only open for writing
(reading).

31 EIO I/O error.

Some physical input or output error occurred.
This error may have occurred on a previous
operation involving the current file descriptor.

32 EDATAERR I/O data error.

33 EPARITYERR I/O parity error.

34 EATTRLISTERR A syntax error occurred in a file attribute list.

35 EINVLDATTR Invalid file attribute.

36 EATTRRO An attempt was made to set a read-only file
attribute.

Reference Information

7011 8351–002 2–13

Table 2–2. ERRNO Descriptions

ERRNO
Code Error Description

37 EINVLDATTRVAL Invalid file attribute value.

38 EATTRERR An error occurred when setting a file attribute.

39 ENOFILEPOS File did not support positioning requests.

40 EFILECLOSEERR An error occurred while closing a file.

41 EFTELLTOOLARGE The ftell result was too large.

42 ENOSORTRESTART The restart request was not for a disk only
SORT/MERGE.

43 EINVALSORTVER Inconsistent SORT/MERGE version.

44 EBADSORTRECLEN SORT/MERGE was unable to determine record
length.

45 EBADMERGEINPUTS MERGE requires at least 2 but no more than 8
inputs.

46 EENDOFFILEERR An attempt was made to write beyond the end of
a file.

47 ENOHOST Unreachable or unknown host was specified.

78 ENAMETOOLONG Filename too long.

The size of a pathname string or a pathname
component exceeded the specified maximum.
The pathname string maximum is defined by
PATH_MAX and the pathname component
maximum is defined by NAME_MAX.

82 ENOTSUP Not supported.

83 EMSGSIZE Inappropriate message buffer length.

84 EIOLOGIC Internal I/O logic error.

85 EBADMSG An unreadable message was sent.

86 ETIME Timer expired.

87 ESPIPE Invalid seek.

A seek operation was attempted on a pipe or
FIFO.

88 EROFS Read-only file system.

An attempt was made to modify a directory or file
within a file system marked as read-only.

Reference Information

2–14 7011 8351–002

Table 2–2. ERRNO Descriptions

ERRNO
Code Error Description

89 ENOSYS Function not implemented.

An attempt was made to use a function that is not
available.

90 ELOOP Too many symbolic links.

91 EPIPE Broken pipe or FIFO.

A write was attempted to a pipe or FIFO; however,
no process was ready to read this data.

92 ENOSPC No space left on device.

The device did not have enough free space to
allow a write operation or the extension of a
directory.

93 ENOTEMPTY Directory not empty.

A directory with entries other than dot and dot-dot
was supplied when an empty directory was
expected.

94 ENOLCK No locks available.

The system has reached its predefined limit for
simultaneous file and record locks. The request
to lock another object cannot be honored at this
time.

95 EBADSIG_ASERIES The code improperly attempted to modify the
signal environment. A SIGPUSH function must
precede this attempt.

96 EMLINK Too many file links.

An attempt was made to establish a file link and
the link count for the file would exceed a specified
maximum. This maximum is defined by
LINK_MAX.

97 ENOMSG No message is available in the message queue.

98 EIDRM ID was removed.

99 EDEADLK Resource deadlock avoided.

An attempt was made to get a lock that would
have resulted in a deadlock situation.

100 EINPROGRESS Operation in progress.

Reference Information

7011 8351–002 2–15

Table 2–2. ERRNO Descriptions

ERRNO
Code Error Description

101 EPERM Operation not permitted.

The calling process did not have appropriate
privileges or was not the owner of a defined file or
other resource.

102 ECANCELED Operation canceled.

103 ESRCH No such process.

Could not find a process that corresponds with
the specified process ID.

104 EINTR Interrupted function call (system service).

An asynchronous signal (such as SIGINT or
SIGQUIT) was caught during the execution of an
interruptable function.

106 ENXIO No such device or address.

An I/O operation referred to a device that does
not exist or is not ready (for instance, in an off-line
state). The error is also set if a request is made
beyond the limits of the device.

107 E2BIG Argument list too long.

The sum of the number of bytes used by a new
process image argument list and environment list
is greater than the system-imposed limit.

108 ENOEXEC Exec format error.

An attempt was made to execute a code file that
was not valid for this implementation or took too
many or the wrong type of parameters.

110 ECHILD No child processes.

A WAITP or WAITPID function was executed by a
process without either of the following:

• An existing child process
• A terminated child process with unreported

status

111 EAGAIN Resource temporarily unavailable (later calls to
this procedure may perform normally).

Reference Information

2–16 7011 8351–002

Table 2–2. ERRNO Descriptions

ERRNO
Code Error Description

112 ENOMEM Not enough space.

A new process image required more memory than
is available. This error is returned only if the
situation is permanent. If the memory shortage is
temporary, an ERRNO value of 111 (EAGAIN) is
returned.

114 EFAULT Bad address.

The system detected an invalid index to a data
structure.

115 ENOTBLK Not block device.

The requested function required a block device.

116 EBUSY Resource busy.

An attempt was made to use a system resource
that was not available because it was being used
by another process.

117 EEXIST File exists.

An existing file was specified in an inappropriate
context.

118 EXDEV Improper link.

An attempt was made to link to a file on another
file system.

119 ENODEV No such device.

An attempt was made to perform an inappropriate
function to a device (e.g., an attempt to read data
from a printer).

120 ENOTDIR Not a directory.

A specified pathname contained a component that
was not a directory; a directory was expected.

121 EISDIR Is a directory.

An attempt was made to open a directory with
write mode specified.

122 EINVAL Invalid argument.

An invalid parameter (argument) was specified.

Reference Information

7011 8351–002 2–17

Table 2–2. ERRNO Descriptions

ERRNO
Code Error Description

123 ENFILE Too many open files on system.

The system has reached its predefined limit for
simultaneously open files. The request to open
another file cannot be honored at this time.

125 ENOTTY Inappropriate I/O control operation.

An inappropriate I/O control function was
attempted on a file or special file.

126 ETXTBSY Illegal code file access (text file busy).

An attempt was made to open a code file with
write access.

127 EFBIG File too large.

An attempt was made to expand a file to a length
that would exceed its maximum size.

Reference Information

2–18 7011 8351–002

Result (Integer or Real)
Upon completion, almost all functions return an integer or real number result. The value
returned indicates whether the function was successful. Depending on the function
performed, it may also represent requested data. Actual returned values depend on the
function being performed.

The result is not passed as a formal parameter. It is not mentioned in procedure
declarations.

Refer to the C Programming Reference Manual, Volume 2: Headers and Functions, for
appropriate information. For each function description, the Returns subsection describes
the meaning of all possible result codes.

In most cases, the following rules apply:

Returned Value Meaning

0 Function was successful.

–1 An error occurred. The ERRNO parameter contains the applicable
error code.

Other values Function-specific information.

Reference Information

7011 8351–002 2–19

Parameter Values and Structures
The remainder of this section provides reference information associated with specific
POSIX function or library procedure parameters. This information includes:

• Integer parameter definitions

 These definitions include integer values and names defined in the ALGOL include file.

• Structure definitions

 These definitions include a description of every structure member.

Information appears alphabetically by parameter or structure name.

AMODE Parameter
ALGOL Function or Library Procedure Reference

AMODE is associated with the

• ACCESS function

• POSIX_ACCESS library procedure

Description

The following table lists valid AMODE parameter integers and associated defined names.
The defined names are valid only with the ACCESS function.

Integer
Defined Name
(Include File) Description

0 F_0K File existence

1 X_OK Execute or search permission

2 W_OK Write permission

4 R_OK Read permission

Reference Information

2–20 7011 8351–002

CMD Parameter (FCNTL)
ALGOL Function or Library Procedure Reference

The POSIX_FCNTL library procedure uses this form of the CMD parameter.

Description

The following table lists valid CMD parameter integers and associated defined names.

Integer
Defined Name
(Include File) Description

0 F_DUPD Duplicate file descriptor. Return duplicated
file descriptor value in result.

1 F_GETFD Return current value of file descriptor flag in
result.

2 F_SETFD Set file descriptor flag as defined by the
INTARG parameter.

3 F_GETFL Return current value of file status flags in
result.

4 F_SETFL Set file status flags as defined by the INTARG
parameter.

5 F_GETLK Get first lock that blocks the lock described
by the FLOCK structure.

6 F_SETLK Set or clear the lock specified by the FLOCK
structure – do not wait.

7 F_SETLKW Set or clear the lock specified by the FLOCK
structure – if necessary, wait to set.

Reference Information

7011 8351–002 2–21

CMD parameter (SEMCTL)
ALGOL Function or Library Procedure Reference

CMD is associated with the

• SEMCTL function

• MCPX_SEMCTL library procedure

Description

The following table lists valid CMD parameter integers and associated defined names. The
defined names are valid only with the ALGOL SEMCTL function.

Integer
Defined Name
(Include File) Description

0 IPC_STAT Copy semaphore values into words 20 through 23 of
the structure defined by the ARG* parameters.

1 IPC_SET Set the SEMID’s SEMID_DS data structure to the values
defined in the structure defined by the ARG*
parameters.

2 IPC_RMID Remove the semaphore identifier specified by SEMID
from the system and destroy the semaphores and
SEMID_DS data structure associated with it.

3 SEM_GETNCNT Return the value of SEMNCNT.

4 SEM_GETPID Return the value of SEMPID.

5 SEM_GETVAL Return SEMVAL value.

6 SEM_GETALL Return all SEMVAL values in the semaphore set. Put
these values in the array specified by the ARG*
parameters.

7 SEM_GETZCNT Return the value of SEMZCNT.

8 SEM_SETVAL Set the value of SEMVAL to the value contained in the
VAL parameter.

9 SEM_SETALL Set the SEMVAL values according to the values
contained in the array specified by the ARG*
parameters.

Reference Information

2–22 7011 8351–002

DISP Parameter
ALGOL Function or Library Procedure Reference

DISP is associated with the

• SIGNAL function

• SIGSET function

• POSIX_SIGHANDLER library procedure

Description

The following table lists valid DISP parameter integers and associated defined names. The
defined names are valid only with the SIGNAL and SIGSET functions.

Integer
Defined Name
(Include File) Description

Any positive value – Address of a signal-catching function.

–1 SIG_ERR Indicates an error condition.

–2 SIG_DFL Use default signal handling function.

–3 SIG_IGN Ignore signal.

–4 SIG_HOLD Add signal type to process signal mask.

Reference Information

7011 8351–002 2–23

FLOCK Structure
ALGOL Function or Library Procedure Reference

The POSIX_FCNTL library procedure passes the FLOCK structure.

Description

The following table defines the contents of the FLOCK structure.

Word
Offset Member Description

0 L_TYPE Type of lock. Possible values are:

F_RDLCK = 1 Reader lock
F_WRLCK = 2 Writer lock
F_UNLCK = 3 Unlock (or not locked)

1 L_WHENCE Specifies where to apply offset L-START. Valid codes
are:

SEEK_START = 0 Apply offset from beginning of file.
SEEK_START = 1 Apply offset from current file pointer
position.
SEEK_START = 2 Apply offset from EOF (byte past last
written).

2 L_START Specifies relative offset (in bytes).

3 L_LEN Specifies length of area (in bytes). A value of 0 indicates
that the area runs to EOF.

4 L_PID Specifies the process ID of the lock holder.

This field is only valid as the F_GETLK command output
parameter.

5 L_PAD1 –

Reference Information

2–24 7011 8351–002

GROUP Structure
ALGOL Function or Library Procedure Reference

The GROUP structure is passed by the

• GETGRGID function

• GETGRNAM function

• POSIX_GETGRINFO library procedure

Description

The following table defines the contents of the GROUP structure.

Word
Offset Member Description

0 GR_NAME_LEN Groupname length

1–3 GR_NAME Groupname string (includes terminating null character)

4 GR_GID Group ID

5 GR_MEM_TOTAL Number of users in member list.

6 to end GR_MEM Group member list string (includes terminating null
character)

Reference Information

7011 8351–002 2–25

HOW Parameter
ALGOL Function or Library Procedure Reference

HOW is associated with the

• SIGPROCMASK function

• POSIX_SIGHANDLER library procedure

Description

The following table lists valid HOW parameter integers and associated defined names.
The defined names are valid only with the SIGPROCMASK function.

Integer
Defined Name
(Include File) Description

1 SIG_BLOCK Add signals in the set specified by the SET parameter
to the signal mask.

2 SIG_UNBLOCK Remove signals in the set specified by the SET
parameter from the signal mask.

3 SIG_SETMASK Replace the current signal mask with the signals in
the set specified by the SET parameter.

–1 SIG_ENQUIRE Retrieve the current signal mask.

Reference Information

2–26 7011 8351–002

INFO Parameter
ALGOL Function or Library Procedure Reference

The POSIX_SETIDS library procedure uses the INFO parameter.

Description

The following table defines INFO parameter bit assignments for the umask() function
(SELECTOR parameter value of 5). For other functions, the INFO parameter contains a
user ID, group ID, or process group ID.

Bit(s) Name Description

[08:09] File Mode Creation Mask:

 [08:03] S_IRWXOF

 [08:01] S_IRUSRF Mask out S_IRUSRF bit (file owner class read permission).

 [07:01] S_IWUSRF Mask out S_IWUSRF bit (file owner class write permission).

 [06:01] S_IXUSRF Mask out S_IXUSRF bit (file owner class search or execute
permission).

 [05:03] S_IRWXGF

 [05:01] S_IRGRPF Mask out S_IRGRPF bit (file group class read permission).

 [04:01] S_IWGRPF Mask out S_IWGRPF bit (file group class write permission).

 [03:01] S_IXGRPF Mask out S_IXGRPF bit (file group class search or execute
permission).

 [02:03] S_IRWXOF

 [02:01] S_IROTHF Mask out S_IROTHF bit (file other class read permission).

 [01:01] S_IWOTHF Mask out S_IWOTHF bit (file other class write permission).

 [00:01] S_IXOTHF Mask out S_IXOTHF bit (file other class search or execute
permission).

Note: When a permission bit is masked out, it CANNOT be set when the file is created.

Reference Information

7011 8351–002 2–27

INTARG Parameter (FCNTL)
ALGOL Function or Library Procedure Reference

The POSIX_FCNTL library procedure uses this form of the INTARG parameter.

Description

INTARG provides supporting data for three POSIX_FCNTL library procedure functions
(the CMD parameter specifies the function to be performed). The following table
describes INTARG parameter usage for these functions.

Command Function Provided by INTARG INTARG Format

F_DUPD Specify lowest file descriptor
from which to search for
available value.

File descriptor integer value.

F_SETFD Specify the file descriptor flags
to set.

File descriptor flags. Currently,
only one flag is valid:

[00:01] FD_CLOSEXEC

F_SETFL Specify the file status flags to
set. (Ignore Access Mode bits
for this operation.)

[04:01] O_SYNCF
[03:01] O_APPENDF
[02:01] O_NONBLOCKF
[01:02] O_ACCMODEF
 0 = O_RDONLY
 1 = 0_WRONLY
 2 = O_RDWR

Reference Information

2–28 7011 8351–002

MODE Parameter
ALGOL Function or Library Procedure Reference

SEMFLG is associated with the

• SEM_OPEN function

• POSIX_SEM_OPEN library procedure

Description

The following table defines MODE parameter bit assignments.

Bit(s) Name Description

[08:09] Semaphore access
permissions:

 [08:01] S_IRUSRF Read by owner.

 [07:01] S_IWUSRF Alter by owner.

 [05:01] S_IRGRPF Read by group.

 [04:01] S_IWGRPF Alter by group.

 [02:01] S_IROTHF Read by others.

 [01:01] S_IWOTHF Alter by others.

Reference Information

7011 8351–002 2–29

MCPSTAT Structure
ALGOL Function or Library Procedure Reference

The MCPSTAT structure is passed by the

• MCPSTAT function

• POSIX_FILESTATUS library procedure

Description

The following table defines the contents of the MCPSTAT structure.

Word
Offset Member Description

0–13 STAT structure See STAT structure description in this section.

Platform-Based Extensions

14 MST_FAMINDEX_INX Specifies family index.

15 MST_USERCODELEN_INX Specifies length (in bytes) of MST_USERCODE.

16–18 MST_USERCODE_INX Specifies usercode value.

19 MST_GROUPCODELEN_INX Specifies length (in bytes) of
MST_GROUPCODE.

20–22 MST_GROUPCODE_INX Specifies groupcode value.

23 MST_FAMNAMELEN_INX Specifies length (in bytes) of MST_FAMNAME

24–26 MST_FAMNAME_INX Specifies family name value.

27 MST_HOSTNAMELEN_INX Specifies length (in bytes) of MST_HOSTNAME.

28–30 MST_HOSTNAME_INX Specifies host name value.

For Future Growth

31 MST_PAD1_INX

32 MST_PAD2_INX

33 MST_PAD3_INX

34 MST_PAD4_INX

Reference Information

2–30 7011 8351–002

NAME Parameter (PATHCONF)
ALGOL Function or Library Procedure Reference

NAME is associated with the

• PATHCONF function

• POSIX_PATHCONF library procedure

Description

The following table lists valid NAME parameter integers and associated defined names.
The defined names are valid only with the PATHCONF function.

Integer
Defined Name
(Include File) Description

1 PC_LINK_MAX Return the maximum value of a file link count. If
path refers to a directory, then this value is for the
entire directory.

2 PC_MAX_CANON Return the maximum number of bytes in a terminal
canonical input line. The path must refer to a
terminal.

3 PC_MAX_INPUT Return the maximum number of bytes for which
space will be available in an input queue. The path
must refer to a terminal.

4 PC_NAME_MAX Return the maximum length of a filename for this
directory (exclusive of terminating null character).

5 PC_PATH_MAX Return the maximum length of a relative pathname
when this directory is the working directory
(exclusive of terminating null character).

6 PC_PIPE_BUF Return the maximum number of bytes that a
process can write to a pipe without interruption.

7 PC_CHOWN_RESTRICTED Return a value other than –1 if use of the CHOWN
(or chown()) function on this file is restricted. If
the specified path refers to a directory, this
restriction applies to all files in the directory.

See the POSIX User’s Guide for details about the
CHOWN_RESTRICTED symbolic constant.

8 PC_NO_TRUNC Return a value other than –1 if a pathname
component longer than 17 characters (the
NAME_MAX value) will cause an error. (Return –1
if pathname truncation is allowed.)

9 PC_VDISABLE Return the value used to disable special character
processing for the specified terminal file. (The
value is 0 for this implementation.)

Reference Information

7011 8351–002 2–31

NAME Parameter (SYSCONF)
ALGOL Function or Library Procedure Reference

NAME is associated with the

• SYSCONF function

• POSIX_SYSCONF library procedure

Description

The following table lists valid NAME parameter integers and associated defined names.
The defined names are valid only with the SYSCONF function.

Integer
Defined Name
(Include File) Description

1 SC_ARG_MAX Return the maximum length of combined argument and
environment list associated with the EXECVE function.

2 SC_CHILD_MAX Return the maximum number of child processes
allowed for a process.

3 SC_CLK_TCK Return the number of clock ticks per second (3255 for
the POSIX interface on this platform).

4 SC_NGROUPS_MAX Return the maximum number of simultaneous
supplementary group IDs per process.

5 SC_OPEN_MAX Return the maximum number of files that a process
can have open.

6 SC_JOB_CONTROL Return a non-zero value if the system supports job
control.

7 SC_SAVED_IDS Return a non-zero value if the system saves user IDs
and group IDs when a EXECVE function occurs.

8 SC_VERSION Return version of the POSIX interface supported.
Currently, this value is 199008 (for August 1990).

9 SC_PAGESIZE Return the page size (in bytes) of host system.

10 SC_ADDRESS_MAX Return the maximum array size (in bytes) of host
system.

14 SC_TZNAME_MAX Return the maximum size (in bytes) supported for the
name of a time zone.

Reference Information

2–32 7011 8351–002

OPTION Parameter (CLOSE)
ALGOL Function or Library Procedure Reference

The POSIX_CLOSE library procedure uses this form of the OPTION parameter.

Description

File closing OPTION values are listed in the following table. The specified value is passed
to the FIBCLOSE routine; it is effective only if the last file descriptor referencing the open
file description is being closed. For option descriptions, see the CLOSE statement
description within the ALGOL Programming Reference Manual, Volume 1: Basic

Implementation.

Integer Option Description

0 PCO_NORMALV No close option

1 PCO_LOCKV This option is equivalent to the existing (non-POSIX)
LOCK option.

2 PCO_PURGEV This option is equivalent to the existing (non-POSIX)
PURGE option.

3 PCO_CRUNCHV This option is equivalent to the existing (non-POSIX)
CRUNCH option.

4 PCO_DOWNSIZEV This option causes the file’s area length to be reduced
if:

• It is not opened by another program.
• Neither AREASIZE nor AREALENGTH was set

explicitly.
• Unused space is greater than a percentage of the

currently allocated area.
The PCO_DOWNSIZEV option is not yet supported.

5 PCO_RETAINV This option implements the existing (non-POSIX)
concept of “Close with Retention.” (The program
retains the file descriptor and FIB after it closes the
file.)

Reference Information

7011 8351–002 2–33

OPTION Parameter (OPEN)
ALGOL Function or Library Procedure Reference

The POSIX_OPEN library procedure uses this form of the OPTION parameter.

Description

File opening OPTION values are listed in the following table. The indicated OPTION
values are passed to the FIBOPEN routine when opening or creating a file. For more
detailed descriptions of these options, see the OPEN statement description in the ALGOL

Programming Reference Manual, Volume 1: Basic Implementation.

Bit(s) Option Description

[38:01] PO_TRUNCATEF When set, this flag causes an opened existing file to be
truncated to a length of zero under certain conditions.

Basically, truncation occurs if FILEUSE is either OUT or IO;
there is no duplicate file; no other process has the file open;
and the file is not a code file.

[07:08] PO_OPENTYPEF This field contains a value that specifies one of the following
encoded open types:

0 POO_WAITV
This option is equivalent to the existing (non-POSIX)
WAIT option.

1 POO_ATENDV
This option is equivalent to the existing (non-POSIX)
ATEND option.

2 POO_AVAILABLEV
This option is equivalent to the existing (non-POSIX)
AVAILABLE option.

Reference Information

2–34 7011 8351–002

Bit(s) Option Description

[07:08]
(cont.)

PO_OPENTYPEF
(cont.)

Note: For the POO_CONDITIONALV and
POO_MUSTBENEWV options, existing filenames
are searched under the process’s usercode (if
any) in the specified family. If family substitution
applies, only the primary family is searched. The
search is restricted to resident files and does not
consider archive or catalog backups.

3 POO_CONDITIONALV
This option modifies the open process as follows:

If NEWFILE is true and the file already exists, open the
existing file instead of creating a new file.

If NEWFILE is false (or unspecified) and the file does
not exist, return an open error message without issuing
a “NO FILE” RSVP operator message.

4 POO_MUSTBENEWV
This option modifies the open process. If NEWFILE is
true and the file already exists, an error is returned and
a new file is not created.

5 POO_OFFERV
This option is equivalent to the existing (non-POSIX)
OFFER option.

Reference Information

7011 8351–002 2–35

OPTION Parameter (WAITPID)
ALGOL Function or Library Procedure Reference

OPTION is associated with the

• WAITPID function

• POSIX_WAITPID library procedure

Description

The following table lists valid OPTION parameter integers and associated defined names.
The defined names are valid only with the WAITPID function.

Bit
Defined Name
(Include File) Description

[05:01] WNOHANGF When set, do NOT suspend the calling process to
wait for terminated or stopped child processes.
Instead, report an ECHILD error condition if there are
no such processes.

When not set, suspend calling process until
terminated or stopped child process status is
available.

[02:01] WUNTRACEDF When set, report status of both stopped and
terminated child processes.

When not set, report only terminated child process
status.

Reference Information

2–36 7011 8351–002

PASSWD Structure
ALGOL Function or Library Procedure Reference

The PASSWD structure is passed by the

• GETPWGID function

• GETPWNAM function

• POSIX_GETPWINFO library procedure

Description

The following table defines the contents of the PASSWD structure.

Word
Offset Member Description

0 PW_NAME_LEN Specifies usercode length.

1–3 PW_NAME Specifies usercode string (includes terminating null
character).

4 PW_UID Specifies user ID.

5 PW_GR_NAME_LEN Specifies groupname length.

6–8 PW_GR_NAME Specifies groupname length (includes terminating
null character).

9 PW_GID Specifies group ID.

10 PW_DIR_LEN Specifies initial working directory length.

11–53 PW_DIR Specifies initial working directory string (includes
terminating null character).

54 PW_COMMENT_LEN Specifies user identity length.

55–309 PW_COMMENT Specifies user identity string (includes terminating
null character).

310 PW_SHELL_LEN Specifies initial user program length.

311–353 PW_SHELL Specifies initial user program string (includes
terminating null character).

Reference Information

7011 8351–002 2–37

PID parameter (KILL)
ALGOL Function or Library Procedure Reference

PID is associated with the

• KILL function

• POSIX_SIGNALHANDLER library procedure

Description

The following table lists valid PID parameter values and the function associated with each.

Integer Function

>0 Send signal to the process that has a process ID equal to PID.

0 Send signal to all processes that:

• Have a process group ID equal to the calling process’s process group ID.
• Are NOT system processes.

–1 Not specified.

<–1 Send signal to all processes that:

• Have a process group ID equal to the absolute value of PID.
• Are NOT system processes.

Reference Information

2–38 7011 8351–002

PID Parameter (WAITPID)
ALGOL Function or Library Procedure Reference

PID is associated with the:

• WAITPID function

• POSIX_WAITPID library procedure

Description

The following table lists valid PID parameter integers and associated functions. The
defined name (PIDANYV) is valid only with the WAITPID function.

Integer
Defined Name
(Include File) Function

>0 – Accept status only from the specified child process.

0 – Accept status from any child process that has the same
process group ID as the calling process.

–1 PIDANYV Accept status for any terminated or stopped child
process.

<–1 – Accept status from any child process that has the
process group ID specified by the absolute value.

Reference Information

7011 8351–002 2–39

SEMBUF Structure
ALGOL Function or Library Procedure Reference

The SEMBUF structure is passed by the

• SEMOP function

• MCPX_SEMOP library procedure

Description

The following table defines the contents of the SEMBUF structure.

Word
Offset Member Description

0 SEM_NUM Specifies the semaphore number.

1 SEM_OP Specifies the semaphore operation.

2 SEM_FLG Specifies semaphore operation flags. Valid flag values:

[12:01] SEM_UNDO
(set up adjust on exit entry)

[16:01] IPC_CREAT
(create entry if key does not exist)

[17:01] IPC_EXCL
(fail if key exists)

[18:01] IPC_NOWAIT
(return error if request must wait)

Reference Information

2–40 7011 8351–002

SEMFLG Parameter
ALGOL Function or Library Procedure Reference

SEMFLG is associated with the:

• SEMGET function

• MCPX_SEMGET library procedure

Description

The following table defines valid SEMFLG parameter bit assignments and their meaning.
Defined names are valid only with the SEMGET function.

Bit(s) Defined Name Description

[17:01] IPC_EXCL Exclusive usage flag.

[16:01] IPC_CREAT Create a semaphore if the key does not exist.

[08:09] – Semaphore access permissions:

 [08:01] Read by owner.

 [07:01] Alter by owner.

 [05:01] Read by group.

 [04:01] Alter by group.

 [02:01] Read by others.

 [01:01] Alter by others.

Reference Information

7011 8351–002 2–41

SEMID_DS Structure
ALGOL Function or Library Procedure Reference

The SEMID_DS structure is passed by the

• SEMCTL function

• MCPX_SEMCTL library procedure

Description

The following table defines the contents of the SEMID_DS structure.

Word
Offset Member Description

0 SEMID_DS_UID Specifies semaphore owner user ID.

1 SEMID_DS_GID Specifies semaphore owner group ID.

2 SEMID_DS_CUID Specifies semaphore creator user ID.

3 SEMID_DS_CGID Specifies semaphore creator group ID.

4 SEMID_DS_MODE Specifies semaphore MODE flags (defined by SEMFLG
parameter).

5 SEMID_DS_UID_L Specifies semaphore owner usercode length.

6–8 SEMID_DS_UID_S Specifies semaphore owner usercode string (includes
terminating null character).

9 SEMID_DS_GID_L Specifies semaphore owner groupcode length.

10–12 SEMID_DS_GID_S Specifies semaphore owner groupcode string (includes
terminating null character).

13 SEMID_DS_CUID_L Specifies semaphore creator usercode length.

14–16 SEMID_DS_CUID_S Specifies semaphore creator usercode string (includes
terminating null character).

17 SEMID_DS_CGID_L Specifies semaphore creator groupcode length.

18–20 SEMID_DS_CGID_S Specifies semaphore creator groupcode string
(includes terminating null character).

21–23 SEMID_DS_PAD1_3 Padding

24 SEMID_DS_NSEMS Specifies number of semaphores in set.

25 SEMID_DS_OTIME Specifies time of last SEMOP.

26 SEMID_DS_CTIME Specifies time of last creation.

27–29 SEMID_DS_PAD2_3 Padding

Reference Information

2–42 7011 8351–002

SIG Parameter
ALGOL Function or Library Procedure Reference

SIG is associated with the

• KILL function

• RAISE function

• SIGACTION function

• SIGADDSET function

• SIGDELSET function

• SIGHOLD function

• SIGIGNORE function

• SIGISMEMBER function

• SIGNAL function

• SIGPAUSE function

• SIGRELSE function

• SIGSET function

• POSIX_SIGHANDLER library procedure

Description

The following table indicates the signal type associated with each SIG parameter value.

Reference Information

7011 8351–002 2–43

Integer Defined Name Signal Function

01 SIGHUP Hang up on controlling terminal.

02 SIGINT Interactive Attention signal.

03 SIGQUIT Interactive Termination signal.

04 SIGILL Illegal hardware operation or bad stack arguments.

05 SIGTRAP Trace trap.

06 SIGABRT Abnormal Termination signal.

07 SIGEMT Emulator Trap instruction.

08 SIGFPE Erroneous arithmetic operation.

09 SIGKILL Termination signal.

10 SIGBUS Bus error.

11 SIGSEGV Invalid memory reference.

12 SIGSYS Bad system service argument without ERRNO.

13 SIGPIPE Write on pipe with no reader.

14 SIGALRM Time-out signal.

15 SIGTERM Termination signal.

16 SIGUSR1 Reserved for user-defined signal number 1.

17 SIGUSR2 Reserved for user-defined signal number 2.

18 SIGCHLD Child process terminated or stopped.

19 SIGPWR Immediate scheduled shutdown.

20 SIGWINCH Window change.

22 SIGPOLL Pending selectable event on a stream.

23 SIGSTOP Stop signal.

24 SIGTSTP Interactive Stop signal.

25 SIGCONT Continue if stopped.

26 SIGTTIN Background process tried read from terminal.

27 SIGTTOU Background process tried write to terminal.

Reference Information

2–44 7011 8351–002

SIGACTION Structure
ALGOL Function or Library Procedure Reference

The SIGACTION structure is passed by the:

• SIGACTION function

• POSIX_SIGHANDLER library procedure

Description

The following table defines the contents of the SIGACTION structure.

Word
Offset Member Description

0 sa_handler Specifies a signal action. This action is passed to the
ACT_PROC procedure as the INFO2 parameter.

See “DISP parameter” in this section for a description
of allowable values.

1 sa_mask Specifies the mask of signals to be blocked when the
signal-catching function is executed.

2 sa_flag Specifies flags that affect the behavior of the signal.

Reference Information

7011 8351–002 2–45

SIGINFO_T Structure
ALGOL Function or Library Procedure Reference

The SIGINFO_T structure is passed by the ACT_PROC procedure. ACT_PROC is used by
the

• SIGACTION function

• SIGNAL function

• SIGSET function

• POSIX_SIGHANDLER library procedure

Description

The following table defines the contents of the SIGINFO_T structure.

Word
Offset Member Description

0 si_signo Signal number.

1 si_errno If non-zero, an ERRNO value. For additional
information about this error, see “ERRNO” within this
section.

2 si_code Signal code. Corresponds with INFO3_CODEF in
INFO3 parameter of the ACT_PROC procedure.

3 si_pid Process ID of the process causing the signal.
Corresponds with INFO3 parameter of the ACT_PROC
procedure.

4 si_uid User ID of the process causing the signal.
Corresponds with INFO4 parameter of the ACT_PROC
procedure.

5 si_status Exit value or signal.

6 si_band Band event for POLL-IN, POLL-OUT, or POLL-MSG.

Not yet supported.

Reference Information

2–46 7011 8351–002

STAT Structure
ALGOL Function or Library Procedure Reference

The STAT structure is passed by the

• STAT function

• POSIX_FILESTATUS library procedure

Description

The following table defines the contents of the STAT structure.

Word
Offset Member Description

0 ST_MODE_IX Contains the File Mode. See Table 2–3 for a
detailed description.

1 ST_INO_INX Specifies the file serial number (not yet
supported).

2 ST_DEV_INX Specifies the device ID.

3 ST_NLINK_INX Specifies the number of links.

4 ST_UID_INX Specifies the owner’s user ID.

5 ST_GID_INX Specifies the owner’s group ID.

6 ST_SIZE_INX Specifies the file size (in bytes).

7 ST_ATIME_INX Specifies the last file access time.

8 ST_MTIME_INX Specifies the last file modification time.

9 ST_CTIME_INX Specifies the last file status change time.

UNIX-Based Extensions

10 ST_BLKSIZE_INX Specifies the block size (in bytes).

11 ST_BLOCKS_INX Specifies the number of blocks.

For Future Growth

12 ST_PAD1_INX

13 ST_PAD2_INX

Table 2–3. File Mode Layout (STAT Structure Word 0)

Bit(s) Defined Name Description

[28:01] S_TEMPFILEF When set, file is temporary.

Reference Information

7011 8351–002 2–47

Word
Offset Member Description

[27:04] S_IFMTF Encoded file type:

 1 = S_IFIFO FIFO special
 2 = S_IFCHR Character special
 4 = S_IFDIR Directory
 6 = S_IFBLK Block special
 8 = S_IFREG Regular file
10 = S_IFLNK Symbolic link

[23:04] S_DIRECTORYKINDF Encoded directory type:

 0 = Traditional
 1 = POSIX

[13:14] S_IFAMODEF File access mode bits:

[13:01] S_IGUARDUSRF Guard file permissions also apply to file owner.

[12:01] S_IUSEGUARDF Check guard file permissions.

[11:01] S_ISUIDF Upon execution of this file, set usercode of
process to the file owner’s usercode.

[10:01] S_ISGIDF Upon execution of this file, set groupcode of
process to the file’s groupcode.

[09:01] – Not used.

[08:03]

 [08:01]
 [07:01]
 [06:01]

S_IRWXUF

 S_IRUSRF
 S_IWUSRF
 S_IXUSRF

File owner permissions:

Read permission.
Write permission.
Execute or search permission.

[05:03]

 [05:01]
 [04:01]
 [03:01]

S_IRWXGF

 S_IRGRPF
 S_IWGRPF
 S_IXGRPF

File group permissions:

Read permission.
Write permission.
Execute or search permission.

[02:03]

 [02:01]
 [01:01]
 [00:01]

S_IRWXOF

 S_IROTHF
 S_IWOTHF
 S_IXOTHF

File other permissions:

Read permission.
Write permission.
Execute or search permission.

Reference Information

2–48 7011 8351–002

STATUS Parameter
ALGOL Function or Library Procedure Reference

STATUS is associated with

• WAITP function

• WAITPID function

• POSIX_WAITPID library procedure

Description

The STATUS parameter (or STAT_LOC parameter of the POSIX_WAITPID library
procedure) references the memory location where a child process’s status word is stored.
This word indicates appropriate stopped or termination status for a child process.

You can analyze the termination word as follows:

If bits [07:08]
are . . .

and bits [15:08]
are . . . Then . . .

0 – The child process terminated normally.

Bits [15:08] specify the status value
provided by the exit() function.

Greater than 0 0 The child process terminated
abnormally.

Bits [06:07] indicate the signal that
caused termination (refer to “SIG
parameter” in this section).

0x7F Greater than 0 The child process is stopped.

Bits [15:08] indicate the signal that
caused termination (refer to “SIG
parameter” in this section).

Reference Information

7011 8351–002 2–49

TMS Structure
ALGOL Function or Library Procedure Reference

The TMS structure is passed by the

• TIMES function

• POSIX_TIMES library procedure

Description

The following table defines the contents of the TMS structure.

Word
Offset Member Description

0 TMS_UTIME Specifies the CPU time (in ticks) required for execution of
user instructions by this process.

1 TMS_STIME Specifies the CPU time (in ticks) used by the system on
behalf of this process.

2 TMS_CUTIME Specifies the accumulated TMS_UTIME and TMS_CUTIME for
all child processes.

3 TMS_CSTIME Specifies the accumulated TMS_STIME and TMS_CSTIME for
all child processes.

4 TMS_ITIME Specifies the I/O time (in ticks) for this process.

5 TMS_CITIME Specifies the accumulated I/O time (in ticks) for all child
processes.

Reference Information

2–50 7011 8351–002

UTSNAME Structure
ALGOL Function or Library Procedure Reference

The UTSNAME structure is passed by the

• UNAME function

• POSIX_UNAME library procedure

Description

The following table defines the contents of the UTSNAME structure. Each member is a
string of up to 72 characters terminated with a null character.

Word
Offset Member Description

0 UTSNAME_SYSNAME_LEN Specifies the SYSNAME string length (in
characters)

1–12 UTSNAME_SYSNAME Specifies the SYSNAME string (includes
terminating null character)

This string should contain the name of the
operating system (typically, “MCP/AS”).

13 UTSNAME_NODENAME_LEN Specifies the NODENAME length (in
characters)

14–25 UTSNAME_NODENAME Specifies the NODENAME (includes
terminating null character)

This string should contain the name of the
node within a BNA network. Typically, this
is a value equivalent to the HOSTNAME
identifier.

26 UTSNAME_RELEASE_LEN Specifies the RELEASE string length (in
characters)

27–38 UTSNAME_RELEASE Specifies the RELEASE string (includes
terminating null character)

This string should contain the current
release level of the operating system. For
example, “42.450.5099.”

39 UTSNAME_VERSION_LEN Specifies the VERSION string length (in
characters)

40–51 UTSNAME_VERSION Specifies the VERSION string (includes
terminating null character)

52 UTSNAME_MACHINE_LEN Specifies the MACHINE string length (in
characters)

Reference Information

7011 8351–002 2–51

Word
Offset Member Description

53–64 UTSNAME_MACHINE Specifies the MACHINE string (includes
terminating null character)

This string should contain the hardware
system type. For example, “A11.”

Reference Information

2–52 7011 8351–002

7011 8351–002 3–1

Section 3
POSIX Functions in ALGOL

About this Section

This section describes POSIX functions that are available when the ALGOL program
includes the SYMBOL/POSIX/ALGOL/PROPERTIES file.

This document does not provide detailed descriptions of each function. Instead, it usually
references an equivalent C language function. See the C Programming Reference

Manual, Volume 2: Headers and Functions, for details about these functions.

Your program does not require library procedure declarations. The include file
automatically provides all POSIX interface related library procedure declarations.

Within this section, each function description includes:

• A definition of the required ALGOL syntax

• A brief description of the function

 (In most cases, this description includes a reference to the equivalent C language
function.)

• A “Comparison to C Function” table

 This table:

− Matches ALGOL function parameters with corresponding C language arguments.

− Indicates the “rule” required to code or use the ALGOL parameters. See Section 2
for detailed information on these rules.

 Provides additional information required to code the ALGOL parameters.

• A description of differences between the ALGOL function and its C language
equivalent

Note: The SYMBOL/POSIX/ALGOL/PROPERTIES file implements many of these

functions as defines. Although the define will evaluate each argument one time,

the order of evaluation may differ from the order indicated by the function’s

syntax.

POSIX Functions in ALGOL

3–2 7011 8351–002

ACCESS
ALGOL Syntax

ACCESS (PATH, PATH_OFF, PATH_LEN, PATH_TYPE, PATH_SEARCHRULE,
 AMODE, ERRNO);

Description

The ACCESS function determines whether the calling process has a specified access
permission for a particular file. The AMODE parameter must contain a value that defines
a particular file access permission. If a file and a directory share the specified filename,
this function determines access permission for the directory.

ACCESS is similar to the following C function:

int access (const char *path, int amode);

Comparison to C Function

ALGOL C Rule for ALGOL

PATH,
PATH_OFF,
PATH_LEN,
PATH_TYPE,
PATH_SEARCHRULE

path Path definition.

AMODE amode Call-by-value integer.

See “AMODE parameter” in Section 2 for a
list of defined values.

Note that file existence is always checked.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

An AMODE parameter value of F_OK is not recognized; file existence is always checked.

POSIX Functions in ALGOL

7011 8351–002 3–3

ALARM
ALGOL Syntax

ALARM (SECS, ERRNO);

Description

The ALARM function causes the system to send a signal (type SIGALRM) to the calling
process after the specified number of seconds have elapsed. If SECS is zero, this function
cancels any previously specified ALARM function.

ALARM is equivalent to the following C function:

unsigned int alarm(unsigned int seconds);

Comparison to C Function

ALGOL C Rule for ALGOL

SECS seconds Call-by-value real number.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–4 7011 8351–002

CHDIR
ALGOL Syntax

CHDIR (PATH, PATH_OFF, PATH_LEN, PATH_TYPE, PATH_SEARCHRULE, ERRNO);

Description

The CHDIR function causes a specified pathname to become the current working
directory.

CHDIR is equivalent to the following C function:

int chdir(const char *path);

Comparison to C Function

ALGOL C Rule for ALGOL

PATH,
PATH_OFF,
PATH_LEN,
PATH_TYPE,
PATH_SEARCHRULE

path Path definition.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–5

CHMOD
ALGOL Syntax

CHMOD (PATH, PATH_OFF, PATH_LEN, PATH_TYPE, PATH_SEARCHRULE, MODE,
 ERRNO);

Description

Note: The CHMOD function does not currently work with directories. Directory

support is planned for a future release.

The CHMOD function alters the SECURITYMODE file attribute for a specified disk file.
The SECURITYMODE attribute is an encoded value that contains the following file-
specific information:

• Owner class, Group class, and Other class file access permission flags

• Guard file flags

• Set Usercode flag

• Set Groupcode flag

CHMOD is equivalent to the following C function:

int chmod(const char *path, mode_t mode);

Comparison to C Function

ALGOL C Rule for ALGOL

PATH,
PATH_OFF,
PATH_LEN,
PATH_TYPE,
PATH_SEARCHRULE

path Path definition.

MODE mode Call-by-value integer.

This parameter defines the encoded
SECURITYMODE file attribute value.

SECURITYMODE is equivalent to the File
Access Mode field ([13:14]) within the
File Mode. See Table 2–3.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–6 7011 8351–002

CHOWN
ALGOL Syntax

CHOWN (PATH, PATH_OFF, PATH_LEN, PATH_TYPE, PATH_SEARCHRULE, OWNER,
 GROUP, ERRNO);

Description

Note: The CHOWN function does not currently work with directories. Directory

support is planned for a future release.

The CHOWN function changes the OWNER and/or GROUP file attribute of a specified file
to the ID values defined by the function parameters. The specified user and group IDs
map to attributes in the USERDATAFILE.

CHOWN is equivalent to the following C function:

int chown (const char *path, uid_t owner, git_t group);

Comparison to C Function

ALGOL C Rule for ALGOL

PATH,
PATH_OFF,
PATH_LEN,
PATH_TYPE,
PATH_SEARCHRULE

path Path definition.

OWNER owner Call-by-value integer.

GROUP group Call-by-value integer.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–7

EXECVE
ALGOL Syntax

EXECVE (PATH, PATH_OFF, PATH_LEN, PATH_TYPE, PATH_SEARCHRULE, ARGV,
 ARGVINDX, ARGVINDX_OFF, ARGVINDX_LEN, ARGVSZ, ARGVSZ_OFF,
 ARGVSZ_LEN, ENVP, ENVPINDX, ENVPINDX_OFF, ENVPINDX_LEN,
 ENVPSZ, ENVPSZ_OFF, ENVPSZ_LEN, ERRNO);

Description

The EXECVE function replaces the current process image with a new process image and
executes a new code file. The PATH array specifies the pathname of the new executable
file, the ARGV array specifies one or more strings of program arguments, and the ENVP
array specifies zero or more strings of environment variables.

EXECVE is equivalent to the following C function:

int execve (const char *path, char *const argv[], char *const
 envp[]);

Comparison to C Function

ALGOL C Rule for ALGOL

PATH,
PATH_OFF,
PATH_LEN,
PATH_TYPE,
PATH_SEARCHRULE

path Path definition.

ARGV argv EBCDIC array input.

The ARGV_OFF and ARGV_LEN
parameters are omitted (they must contain
0).

ARGVINDX,
ARGVINDX_OFF,
ARGVINDX_LEN

– Integer array input.

This array contains ARGV array indexes.
Each index points to the start of an
argument.

ARGVSZ,
ARGVSZ_OFF,
ARGVSZ_LEN

– Integer array input.

This array contains the length of each
argument (located in ARGV) pointed to by
the indexes in ARGVINDX.

ENVP envp EBCDIC array input.

The ENVP_OFF and ENVP_LEN
parameters are omitted (they must contain
0).

POSIX Functions in ALGOL

3–8 7011 8351–002

ALGOL C Rule for ALGOL

ENVPINDX,
ENVPINDX_OFF,
ENVPINDX_LEN

– Integer array input.

This array contains ENVP array indexes.
Each index points to the start of an
environment variable.

ENVPSZ,
ENVPSZ_OFF,
ENVPINDX_LEN

– Integer array input.

This array contains the length of each
environment variable (located in ENVP)
pointed to by the indexes in ENVPINDX.

ERRNO – ERRNO rule.

<result> <result> Integer result.

If this function is successful, it returns no
result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–9

FORK
ALGOL Syntax

FORK (ERRNO);

Description

The FORK function creates a new process. The new process (known as a child process)
inherits many attributes from the creating process.

FORK is equivalent to the following C function:

pid_t fork (void);

Comparison to C Function

ALGOL C Rule for ALGOL

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

The ALGOL and C-based FORK functions are essentially identical.

In an ALGOL program, the child process inherits:

• A copy of all stack data and arrays

• Declared files (in a closed state)

• TASK declarations (untouched)

• DIRECT ARRAYs (with reinitialized direct state)

• LIBRARIES (delinked)

• EVENT declarations (HAPPENED and AVAILABLE states are indeterminate)

• All software interrupt attachments to EVENTs

The operating system changes the child process’s stack data structures:

• It modifies program control words (PCWs), stuffed indirect reference words (SIRWs),
and data descriptors in active LIBRARY stack frames. The modified words do not
have pointers into the library D1 or D2 stacks.

• It modifies indirect reference words (IRWs) that previously pointed into the forking
(original) stack. The modified IRWs point into the new stack.

• It copies messages with mom descriptors in the forking stack. The new messages
have mom descriptors in the new stack.

POSIX Functions in ALGOL

3–10 7011 8351–002

GETCWD
ALGOL Syntax

GETCWD (STR, OFFSET, MAX, ERRNO);

Description

The GETCWD function obtains a string that represents the absolute pathname of the
current working directory.

GETCWD is equivalent to the following C function:

char *getcwd (char *buf, size_t size);

Comparison to C Function

ALGOL C Rule for ALGOL

STR,
OFFSET,
MAX

buf

size

EBCDIC array output.

Note that MAX is functionally equivalent to
size.

ERRNO – ERRNO rule.

<result> – Integer result.

Possible result values are:

>0
Length of string (excluding NULL).

–1
An error occurred.

Functional Differences

The ALGOL function receives a different result.

POSIX Functions in ALGOL

7011 8351–002 3–11

GETEGID
ALGOL Syntax

GETEGID (ERRNO);

Description

The GETEGID function returns the effective group ID of the calling process.

GETEGID is equivalent to the following C function:

gid_t getegid (void);

Comparison to C Function

ALGOL C Rule for ALGOL

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–12 7011 8351–002

GETEUID
ALGOL Syntax

GETEUID (ERRNO);

Description

The GETEUID function returns the effective user ID of the calling process.

GETEUID is equivalent to the following C function:

uid_t geteuid (void);

Comparison to C Function

ALGOL C Rule for ALGOL

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–13

GETGID
ALGOL Syntax

GETGID (ERRNO);

Description

The GETGID function returns the real group ID of the calling process.

GETGID is equivalent to the following C function:

gid_t getgid (void);

Comparison to C Function

ALGOL C Rule for ALGOL

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–14 7011 8351–002

GETGRGID
ALGOL Syntax

GETGRGID (GID, MEM, MEM_OFF, MEM_MAX, ERRNO);

Description

The GETGRGID function obtains the GROUP structure for a specified group ID. A
GROUP structure consists of:

• Group name

• Group ID

• Group member list

GETGRGID is equivalent to the following C function:

struct group *getgrgid (gid_t gid);

Comparison to C Function

ALGOL C Rule for ALGOL

GID gid Call-by-value integer.

MEM,
MEM_OFF,
MEM_MAX

<result> Structure array output.

See “GROUP structure” in Section 2 for a
definition of the returned structure.

ERRNO – ERRNO rule.

<result> – Integer result.

Possible result values are:

>0
Operation was successful. The positive
result is the number of words returned in
the GROUP structure.

<–1
Defined MEM array space was insufficient.
The absolute value of the negative result is
the number of words required to hold the
GROUP structure.

–1
An error occurred.

Functional Differences

The ALGOL function receives a different result.

POSIX Functions in ALGOL

7011 8351–002 3–15

GETGRNAM
ALGOL Syntax

GETGRNAM (NAME, NAME_OFF, NAME_LEN, MEM, MEM_OFF, MEM_MAX, ERRNO);

Description

The GETGRNAM function obtains the GROUP structure for a specified group name. A
GROUP structure consists of:

• Group name

• Group ID

• Group member list

GETGRGNAM is equivalent to the following C function:

struct group *getgrnam (const char *name);

Comparison to C Function

ALGOL C Rule for ALGOL

NAME,
NAME_OFF,
NAME_LEN

name EBCDIC array input

MEM,
MEM_OFF,
MEM_MAX

<result> Structure array output.

See “GROUP structure” in Section 2 for a
definition of the returned structure.

ERRNO – ERRNO rule.

<result> – Integer result.

Possible result values are:

>0
Operation was successful. The positive
result is the number of words returned in
the GROUP structure.

<–1
Defined MEM array space was insufficient.
The absolute value of the negative result is
the number of words required to hold the
GROUP structure.

–1
An error occurred.

Functional Differences

The ALGOL function receives a different result.

POSIX Functions in ALGOL

3–16 7011 8351–002

GETGROUPS
ALGOL Syntax

GETGROUPS (GROUPLIST, GROUPLIST_OFF, GROUPLIST_MAX, ERRNO);

Description

The GETGROUPS function obtains all supplementary group IDs for the calling process.

GETGROUPS is equivalent to the following C function:

int getgroups (int gidsetsize, get_t grouplist []);

Comparison to C Function

ALGOL C Rule for ALGOL

GROUPLIST,
GROUPLIST_OFF,
GROUPLIST_MAX

grouplist

gidsetsize

Integer array output.

Note that GROUPLIST_MAX is functionally
equivalent to gidsetsize.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None.

POSIX Functions in ALGOL

7011 8351–002 3–17

GETLOGIN
ALGOL Syntax

GETLOGIN (STR, OFFSET, MAX, ERRNO);

Description

The GETLOGIN function obtains the login name associated with the calling process. For
this implementation, login name and usercode are synonymous.

GETLOGIN is similar to the following C function:

char *getlogin (void);

Comparison to C Function

ALGOL C Rule for ALGOL

STR,
OFFSET,
MAX

<result> EBCDIC array output.

ERRNO – ERRNO rule.

<result> – Integer result.

Possible result values are:

>0
The length (excluding NULL) of the name
stored in STR.

–1
An error occurred.

Functional Differences

The ALGOL function receives a different result.

POSIX Functions in ALGOL

3–18 7011 8351–002

GETPGID
ALGOL Syntax

GETPGID (PID, ERRNO);

Description

The GETPGID function returns the process group ID of the process specified by PID. If
the PID parameter is 0, GETPGID returns the process group ID of the calling process.

If the function completes successfully, a process group ID is returned. Otherwise, –1 is
returned and the ERRNO value is set.

There is no equivalent C language function.

Parameters

Parameter Description

PID A call-by-value input integer.

ERRNO ERRNO rule.

<result> Integer result.

POSIX Functions in ALGOL

7011 8351–002 3–19

GETPGRP
ALGOL Syntax

GETPGRP (ERRNO);

Description

The GETPGRP function returns the process group ID of the calling process.

GETPGRP is equivalent to the following C function:

pid_t getpgrp (void);

Comparison to C Function

ALGOL C Rule for ALGOL

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None.

POSIX Functions in ALGOL

3–20 7011 8351–002

GETPID
ALGOL Syntax

GETPID (ERRNO);

Description

The GETPID function returns the process ID of the calling process.

GETPID is equivalent to the following C function:

pid_t getpid (void);

Comparison to C Function

ALGOL C Rule for ALGOL

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None.

POSIX Functions in ALGOL

7011 8351–002 3–21

GETPPID
ALGOL Syntax

GETPPID (ERRNO);

Description

The GETPPID function returns the parent process ID of the calling process.

GETPPID is equivalent to the following C function:

pid_t getppid (void);

Comparison to C Function

ALGOL C Rule for ALGOL

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None.

POSIX Functions in ALGOL

3–22 7011 8351–002

GETPWNAM
ALGOL Syntax

GETPWNAM (NAME, NAME_OFF, NAME_LEN, PASSWD, PASSWD_OFF, PASSWD_MAX,
 ERRNO);

Description

The GETPWNAM function obtains the PASSWD structure associated with a specified user
name.

GETPWNAM is equivalent to the following C function:

struct passwd *getpwnam (const char *name);

Comparison to C Function

ALGOL C Rule for ALGOL

NAME,
NAME_OFF,
NAME_LEN

name EBCDIC array input.

PASSWD,
PASSWD_OFF,
PASSWD_MAX

<result> Structure array output.

See “PASSWD structure” in Section 2 for a
definition of the returned structure.

ERRNO – ERRNO rule.

<result> – Integer result.

Possible result values are:

0
Operation was successful.

–1
An error occurred.

Functional Differences

The ALGOL function receives a different result.

POSIX Functions in ALGOL

7011 8351–002 3–23

GETPWUID
ALGOL Syntax

GETPWUID (UID, PASSWD, PASSWD_OFF, PASSWD_MAX, ERRNO);

Description

The GETPWUID function obtains the PASSWD structure associated with a specified user
ID.

GETPWUID is equivalent to the following C function:

struct passwd *getpwuid (uid_t uid);

Comparison to C Function

ALGOL C Rule for ALGOL

UID uid Call-by-value integer.

PASSWD,
PASSWD_OFF,
PASSWD_MAX

<result> Structure array output.

See “PASSWD structure” in Section 2 for a
definition of the returned structure.

ERRNO – ERRNO rule.

<result> – Integer result.

Possible result values are:

0
Operation was successful.

–1
An error occurred.

Functional Differences

The ALGOL function receives a different result.

POSIX Functions in ALGOL

3–24 7011 8351–002

GETSID
ALGOL Syntax

GETSID (PID, ERRNO);

Description

The GETSID function returns the session ID of the process specified by PID. If the PID
parameter is 0, GETSID returns the session ID of the calling process.

If the function completes successfully, a session ID is returned. Otherwise, –1 is returned
and the ERRNO value is set.

There is no equivalent C language function.

Parameters

Parameter Description

PID A call-by-value input integer.

ERRNO ERRNO rule.

<result> Integer result.

POSIX Functions in ALGOL

7011 8351–002 3–25

GETUID
ALGOL Syntax

GETUID (ERRNO);

Description

The GETUID function returns the real user ID of the calling process.

GETUID is equivalent to the following C function:

uid_t getuid (void);

Comparison to C Function

ALGOL C Rule for ALGOL

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None.

POSIX Functions in ALGOL

3–26 7011 8351–002

GETUSERID
ALGOL Syntax

GETUSERID (STR, STR_OFF, STR_LEN, ERRNO);

Description

The GETUSERID function returns the user ID associated with the user name specified in
array STR.

There is no equivalent C language function.

Parameters

Parameter Description

STR,
STR_OFF,
STR_LEN

STR is an EBCDIC input array. It must contain a string
representing the applicable user name.

ERRNO ERRNO rule.

<result> Integer result.

Possible result values are:

>0
Successful completion of function. Returned integer is the
requested user ID.

–1
An error occurred.

POSIX Functions in ALGOL

7011 8351–002 3–27

GETUSERNAME
ALGOL Syntax

GETUSERNAME (UID, STR, STR_OFF, STR_MAX, ERRNO);

Description

The GETUSERNAME function returns the user name associated with a specified user ID.
The user name string is placed in array STR.

There is no equivalent C language function.

Parameters

Parameter Description

UID A call-by-value input integer that specifies a user ID.

STR,
STR_OFF,
STR_MAX

STR is an EBCDIC output array used to hold the requested user
name.

ERRNO ERRNO rule.

<result> Integer result.

Possible result values are:

>0
Successful completion of function. Returned integer is the
length of the output string (excluding NULL) in STR.

–1
An error occurred.

POSIX Functions in ALGOL

3–28 7011 8351–002

KILL
ALGOL Syntax

KILL (SIG, PID, ERRNO);

Description

The KILL function sends a signal to the process or group of processes defined by the PID
parameter. The SIG parameter specifies the signal to be sent.

Note: The calling process must have sending permission to send a signal to any

process.

KILL is equivalent to the following C function:

int kill (pid_t pid, int sig);

Comparison to C Function

ALGOL C Rule for ALGOL

SIG sig Call-by-value integer.

See “SIG parameter” in Section 2 for a
listing of signal names and SIG parameter
values.

PID pid Call-by-value integer.

See “PID parameter (KILL)” in Section 2 for
additional information.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None.

POSIX Functions in ALGOL

7011 8351–002 3–29

MKFIFO
ALGOL Syntax

MKFIFO (PATH, PATH_OFF, PATH_LEN, PATH_TYPE, PATH_SEARCHRULE, MODE,
 DEV_INFO, ERRNO);

Description

The MKFIFO function creates a new FIFO special file with a filename defined by the
pathname specified in the PATH array. The MODE parameter defines the permission bits
for this file.

MKFIFO is equivalent to the following C function:

int mkfifo (const char *path, mode_t mode);

Comparison to C Function

ALGOL C Rule for ALGOL

PATH,
PATH_OFF,
PATH_LEN,
PATH_TYPE,
PATH_SEARCHRULE

path Path definition.

MODE mode Call-by-value integer.

See Table 2–3 for information on the file
permission bits defined by this parameter.

DEV_INFO – Call-by-value integer.

This field specifies the type of character
format to be transferred. The following
defines are valid:

EBCDICV
ASCIIV

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None.

POSIX Functions in ALGOL

3–30 7011 8351–002

NICE
ALGOL Syntax

NICE (VAL, ERRNO);

Description

The NICE function changes the running (current) priority of the calling process. The
following formula defines the running priority and nice value relationship:

(Running Priority) = (Original Priority) - (Nice Value)

To change the running priority, the NICE function generates a new nice value. The
function’s VAL parameter (a positive or negative integer) is added to the existing nice
value to form the new value.

Nice values can range between 0 (the original nice value of a process) and 255. An
attempt to modify the nice value outside of these limits has the following effect:

• If the nice value is made negative, a –1 result is returned and the EPERM value is set
in ERRNO.

• If the nice value is made higher than 255, results are unspecified.

A process’s running priority can range between 0 and its original priority value.

There is no equivalent C language function.

Parameters

Parameter Description

VAL Call-by-value integer.

This input parameter contains a positive or negative value that is added
to the process’s current nice value.

ERRNO ERRNO rule.

<result> Integer result.

If the operation is successful, the value returned is the newly calculated
nice value.

POSIX Functions in ALGOL

7011 8351–002 3–31

PATHCONF
ALGOL Syntax

PATHCONF (PATH, PATH_OFF, PATH_LEN, PATH_TYPE, PATH_SEARCHRULE, NAME,
 ERRNO);

Description

The PATHCONF function returns information about a configurable variable for an open
file. This file is specified by the path definition. The NAME parameter specifies a
configurable variable.

PATHCONF is equivalent to the following C function:

long pathconf (const char path, int name);

Comparison to C Function

ALGOL C Rule for ALGOL

PATH,
PATH_OFF,
PATH_LEN,
PATH_TYPE,
PATH_SEARCHRULE

path Path definition.

NAME name By-value integer.

See “NAME parameter (for PATHCONF function)”
in Section 2 for a summary of configurable
variables and associated NAME parameter
integers.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–32 7011 8351–002

PAUSE
ALGOL Syntax

PAUSE (ERRNO);

Description

The PAUSE function suspends the calling process. The process remains suspended until
receipt of a signal that does one of the following:

• Executes a signal-catching function

• Terminates the process

PAUSE is equivalent to the following C function:

int pause (void);

Comparison to C Function

ALGOL C Rule for ALGOL

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–33

RAISE
ALGOL Syntax

RAISE (SIG, ERRNO);

Description

The RAISE function sends a signal to the calling process. The SIG parameter specifies the
signal type.

RAISE is equivalent to the following C function:

int raise (int sig);

Comparison to C Function

ALGOL C Rule for ALGOL

SIG sig Call-by-value integer.

See “SIG parameter” in Section 2 for a listing of
signal types and SIG parameter values.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–34 7011 8351–002

SEM_CLOSE
ALGOL Syntax

SEM_CLOSE (SEM, ERRNO);

Description

The SEM_CLOSE function closes a named semaphore that is currently open to the calling
process. A closed semaphore is no longer available to the this process. However, it is not
removed from the system.

SEM_CLOSE is equivalent to the following C function:

int sem_close (sem_t *sem);

Comparison to C Function

ALGOL C Rule for ALGOL

SEM sem Call-by-value integer.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–35

SEMCTL
ALGOL Syntax

SEMCTL (SEMID, SEMNUM, CMD, VAL, ARG, ARG_OFF, ARG_LEN, ERRNO);

Description

The SEMCTL function provides a set of control operations for an X/Open defined
semaphore or semaphore set. The CMD parameter specifies the operation (command) to
be performed.

SEMCTL is equivalent to the following C function:

int semctl (int semid, int semnum, int cmd, . . .);

Comparison to C Function

ALGOL C Rule for ALGOL

SEMID semid Call-by-value integer.

SEMNUM semnum Call-by-value integer.

CMD cmd Call-by-value integer.

See “CMD parameter” in Section 2 for a
description of commands.

VAL Fourth
argument

Call-by-value integer (for SEM_SETVAL command
only).

ARG,
ARG_OFF,
ARG_LEN

Fourth
argument

Real array output for SEM_GETALL command.

Real array input for SEM_SETALL command.

Structure array input for IPC_SET command.

Structure array output for IPC_STAT command.

See “SEMID_DS structure” Section 2 for a
description of the structure contained here for the
IPC_SET and IPC_STAT commands.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–36 7011 8351–002

SEM_DESTROY
ALGOL Syntax

SEM_DESTROY (SEM, ERRNO);

Description

The SEM_DESTROY function removes an unnamed semaphore from the system. The SEM
parameter specifies this semaphore.

SEM_DESTROY is equivalent to the following C function:

int sem_destroy (sem_t *sem);

Comparison to C Function

ALGOL C Rule for ALGOL

SEM sem Call-by-value integer.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–37

SEMGET
ALGOL Syntax

SEMGET (KEY, NSEMS, SEMFLG, ERRNO);

Description

The SEMGET function performs either of the following operations relative to X/Open
defined semaphores:

• It returns the semaphore ID associated with the KEY parameter.

• It creates a new set of semaphores and initializes its SEMID_DS structure.

The KEY and SEMFLG input parameters define the operation that is performed.

SEMGET is equivalent to the following C function:

int semget (key_t key, int nsems, int semflg);

Comparison to C Function

ALGOL C Rule for ALGOL

KEY key Call-by-value integer.

The following defined value is valid:

IPC_PRIVATE

NSEMS nsems Call-by-value integer.

SEMFLG semflg Call-by-value integer.

See “SEMFLG parameter” in Section 2 for
a description of allowable values.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–38 7011 8351–002

SEM_GETVALUE
ALGOL Syntax

SEM_GETVALUE (SEM, SVAL, ERRNO);

Description

The SEM_GETVALUE function retrieves the value of the named or unnamed semaphore
indicated by the SEM parameter. The state or value of the semaphore is not affected.

SEM_GETVALUE is equivalent to the following C function:

int sem_getvalue (sem_t *sem, int *sval);

Comparison to C Function

ALGOL C Rule for ALGOL

SEM sem Call-by-value integer.

SVAL sval Call-by-reference integer (output).

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–39

SEM_INIT
ALGOL Syntax

SEM_INIT (SEM, PSHARED, VAL, ERRNO);

Description

The SEM_INIT function initializes an unnamed semaphore. An initialized semaphore is
available for use.

SEM_INIT is equivalent to the following C function:

int sem_init (sem_t *sem, int pshared, unsigned int value);

Comparison to C Function

ALGOL C Rule for ALGOL

SEM sem Call-by-reference integer (output).

PSHARED pshared Call-by-value integer.

If non-zero, multiple processes will share
the semaphore.

VAL value Call-by-value integer.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–40 7011 8351–002

SEMOP
ALGOL Syntax

SEMOP (SEMID, SOPS, SOPS_OFF, SOPS_MAX, NSOPS, ERRNO);

Description

The SEMOP function performs user-specified operations on a specified group of X/Open
defined semaphores. Information in the SOPS array defines this operation.

SEMOP is equivalent to the following C function:

int semop (int semid, struct sembuf *sops, unsigned nsops);

Comparison to C Function

ALGOL C Rule for ALGOL

SEMID semid Call-by-value integer.

SOPS,
SOPS_OFF,
SOPS_MAX

sops Structure array input.

See “SEMBUF structure” in Section 2 for a definition
of the structure contained in this array.

NSOPS nsops Call-by-value integer.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–41

SEM_OPEN
ALGOL Syntax

SEM_OPEN (NAME, NAME_OFF, NAME_LEN, OFLAG, MODE, VAL, ERRNO);

Description

The SEM_OPEN function opens the named semaphore referred to in the NAME array. The
function can do either of the following:

• Access an existing semaphore.

• Create a new semaphore.

The process can use an opened semaphore until it closes the semaphore with the
SEM_CLOSE function.

SEM_OPEN is equivalent to the following C function:

sem_t *sem_open (const char *name, int oflag, . . .);

Comparison to C Function

ALGOL C Rule for ALGOL

NAME,
NAME_OFF,
NAME_LEN

name EBCDIC array input.

OFLAG oflag Call-by-value integer.

The following defines are valid:
O_CREAT
O_EXCL

MODE Third
argument if
O_CREAT is
set

Call-by-value integer.

This input parameter contains permission bits for
the new semaphore. See “MODE parameter” in
Section 2 for a description of bit assignments.

VAL Fourth
argument if
O_CREAT is
set

Call-by-value integer.

This input parameter contains the value of the new
semaphore. A negative value cannot be specified.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–42 7011 8351–002

SEM_POST
ALGOL Syntax

SEM_POST (SEM, ERRNO);

Description

The SEM_POST function unlocks the named or unnamed semaphore indicated by the SEM
parameter. An unlock operation increments the value of a semaphore by 1. A semaphore
is unlocked when it has a value greater than 0.

If a process is waiting to lock the semaphore, it can proceed once the semaphore’s value is
greater than 0.

SEM_POST is equivalent to the following C function:

int sem_post (sem_t *sem);

Comparison to C Function

ALGOL C Rule for ALGOL

SEM sem Call-by-value integer.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–43

SEM_TRYWAIT
ALGOL Syntax

SEM_TRYWAIT (SEM, ERRNO);

Description

The SEM_TRYWAIT function attempts to decrement the value of the named or unnamed
semaphore referred to by the SEM parameter. This operation occurs only if the
semaphore's value is greater than 0. A semaphore is locked when its value is 0.

SEM_TRYWAIT is similar to the SEM_WAIT function; it attempts to decrement the value
of a semaphore by 1. However, the SEM_TRYWAIT function does not wait if it cannot
decrement the value immediately. Instead, it returns an EAGAIN error.

SEM_TRYWAIT is equivalent to the following C function:

int sem_trywait (sem_t *sem);

Comparison to C Function

ALGOL C Rule for ALGOL

SEM sem Call-by-value integer.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–44 7011 8351–002

SEM_UNLINK
ALGOL Syntax

SEM_UNLINK (NAME, NAME_OFF, NAME_LEN, ERRNO);

Description

The SEM_UNLINK function deletes the name of a semaphore from the system table. Once
unlinked, the named semaphore cannot be accessed by subsequent open operations.

SEM_UNLINK is equivalent to the following C function:

int sem_unlink (const char *name);

Comparison to C Function

ALGOL C Rule for ALGOL

NAME,
NAME_OFF,
NAME_LEN

name EBCDIC array input.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–45

SEM_WAIT
ALGOL Syntax

SEM_WAIT (SEM, ERRNO);

Description

The SEM_WAIT function operates on a semaphore referenced by the SEM parameter as
indicated in the following chart. A semaphore is locked when its value is 0.

If the named or
unnamed
semaphore value
is . . . Then SEM_WAIT . . .

greater than 0 decrements the semaphore value by 1 and the function
returns immediately.

0 (zero) waits until the semaphore value becomes greater than 0
(that is, until another process unlocks it). SEM_WAIT then
decrements the semaphore value by 1 and returns.

SEM_WAIT waits until it can decrement the semaphore value
or until one of the following events occurs:

• A signal interrupts this operation. In this case, the state
of the semaphore is unchanged by the calling process.

• The semaphore is destroyed.

SEM_WAIT is similar to the SEM_TRYWAIT function; however, SEM_TRYWAIT does not
wait if the semaphore is currently locked.

SEM_WAIT is equivalent to the following C function:

int sem_wait (sem_t *sem);

Comparison to C Function

ALGOL C Rule for ALGOL

SEM sem Call-by-value integer.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–46 7011 8351–002

SETGID
ALGOL Syntax

SETGID (GID, ERRNO);

Description

The SETGID function changes the effective group ID of the calling process.

SETGID is equivalent to the following C function:

int setgid (gid_t gid);

Comparison to C Function

ALGOL C Rule for ALGOL

GID gid Call-by-value integer.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–47

SETPGID
ALGOL Syntax

SETPGID (PID, PGID, ERRNO);

Description

The SETPGID function changes the process group ID of a specified process (defined by
PID) to a specified value (defined by PGID). This function can be used to do either of the
following:

• Create a new process group within the session of the calling process.

• Move a specified process to another process group.

SETPGID is equivalent to the following C function:

int setpgid (pid_t pid, pid_t pgid);

Comparison to C Function

ALGOL C Rule for ALGOL

PID pid Call-by-value integer.

PGID pgid Call-by-value integer.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–48 7011 8351–002

SETPGRP
ALGOL Syntax

SETPGRP (ERRNO);

Description

If the calling process is not already a session leader, the SETPGRP function establishes it
as a session leader and process group leader. SETPGRP establishes the following
environment:

• A new session exists. The calling process is session leader. There are no other
processes in the session.

• A new process group exists. The calling process is its process group leader. There
are no other processes in the process group.

• The new process group ID is the process ID of the calling process.

• There is no controlling terminal.

There is no equivalent C language function.

Parameters

Parameter Description

ERRNO ERRNO rule.

<result> Integer result.

Possible result values are:

>0
Successful completion of function. The returned integer is the
new process group ID.

–1
An error occurred.

POSIX Functions in ALGOL

7011 8351–002 3–49

SETSID
ALGOL Syntax

SETSID (ERRNO);

Description

The SETSID function establishes the calling process as a session leader and process group
leader. SETSID is identical to the SETPGRP function.

SETSID is equivalent to the following C function:

pid_t setsid (void);

Comparison to C Function

ALGOL C Rule for ALGOL

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–50 7011 8351–002

SETUID
ALGOL Syntax

SETUID (UID, ERRNO);

Description

The SETUID function changes the effective user ID of the calling process.

SETUID is equivalent to the following C function:

int setuid (uid_t uid);

Comparison to C Function

ALGOL C Rule for ALGOL

UID uid Call-by-value integer.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–51

SIGACTION
ALGOL Syntax

SIGACTION (SIG, ACT_PROC, ACT, ACT_OFF, ACT_LEN, OACT, OACT_OFF,
 OACT_MAX, ERRNO);

Description

The SIGACTION function allows the calling process to specify and/or examine the action
associated with an indicated signal type.

SIGACTION is equivalent to the following C function:

int sigaction (int sig, const struct sigaction *act,
 struct sigaction *oact);

Comparison to C Function

ALGOL C Rule for ALGOL

SIG sig Call-by-value integer.

See “SIG parameter” in Section 2 for an enumeration of
signal types.

ACT_PROC – Signal handler procedure.

ACT_PROC is the procedure invoked when the
specified signal occurs.

ACT,
ACT_OFF,
ACT_LEN

act Structure array input.

See “SIGACTION structure” in Section 2 for additional
information on this structure.

OACT,
OACT_OFF,
OACT_MAX

oact Structure array output.

See “SIGACTION structure” in Section 2 for additional
information on this structure.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–52 7011 8351–002

SIGADDSET
ALGOL Syntax

SIGADDSET (SET, SIG, ERRNO);

Description

The SIGADDSET function adds a signal (specified by the SIG parameter) to a signal set
(specified by the SET parameter).

SIGADDSET is equivalent to the following C function:

int sigaddset (sigset_t *set, int signo);

Comparison to C Function

ALGOL C Rule for ALGOL

SET set Call-by-reference integer.

SIG signo Call-by-value integer.

See “SIG parameter” in Section 2 for an enumeration of
signal types.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–53

SIGDELSET
ALGOL Syntax

SIGDELSET (SET, SIG, ERRNO);

Description

The SIGDELSET function removes a signal type (specified by the SIG parameter) from a
signal set (specified by the SET parameter).

SIGDELSET is equivalent to the following C function:

int sigdelset (sigset_t *set, int signo);

Comparison to C Function

ALGOL C Rule for ALGOL

SET set Call-by-reference integer.

SIG signo Call-by-value integer.

See “SIG parameter” in Section 2 for an enumeration of
signal types.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–54 7011 8351–002

SIGEMPTYSET
ALGOL Syntax

SIGEMPTYSET (SET, ERRNO);

Description

The SIGEMPTYSET function initializes the signal set specified by the SET parameter. The
initialized set excludes all signal types.

SIGEMPTYSET is equivalent to the following C function:

int sigemptyset (sigset_t *set);

Comparison to C Function

ALGOL C Rule for ALGOL

SET set Call-by-reference integer.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–55

SIGFILLSET
ALGOL Syntax

SIGFILLSET (SET, ERRNO);

Description

The SIGFILLSET function initializes a signal set (specified by the SET parameter) so that
all signal types are included.

SIGFILLSET is equivalent to the following C function:

int sigfillset (sigset_t *set);

Comparison to C Function

ALGOL C Rule for ALGOL

SET set Call-by-reference integer.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–56 7011 8351–002

SIGHOLD
ALGOL Syntax

SIGHOLD (SIG, ERRNO);

Description

The SIGHOLD function adds a signal type (specified by the SIG parameter) to the
process's signal mask. The signal mask contains signal types that are blocked for delivery.

SIGHOLD is equivalent to the following C function:

int sighold (int signo);

Comparison to C Function

ALGOL C Rule for ALGOL

SIG signo Call-by-value integer.

See “SIG parameter” in Section 2 for an enumeration of
signal types.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–57

SIGIGNORE
ALGOL Syntax

SIGIGNORE (SIG, ERRNO);

Description

The SIGIGNORE function establishes the ignore action for the signal type specified by the
SIG parameter.

SIGIGNORE is equivalent to the following C function:

int sigignore (int signo);

Comparison to C Function

ALGOL C Rule for ALGOL

SIG signo Call-by-value integer.

See “SIG parameter” in Section 2 for an enumeration of
signal types.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–58 7011 8351–002

SIGISMEMBER
ALGOL Syntax

SIGISMEMBER (SET, SIG, ERRNO);

Description

The SIGISMEMBER function tests whether a signal type (specified by the SIG parameter)
is a member of the signal set specified by the SET parameter.

SIGISMEMBER is equivalent to the following C function:

int sigismember (const sigset_t *set, int signo);

Comparison to C Function

ALGOL C Rule for ALGOL

SET set Call-by-value integer.

SIG signo Call-by-value integer.

See “SIG parameter” in Section 2 for an enumeration of
signal types.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–59

SIGNAL
ALGOL Syntax

SIGNAL (SIG, ACT_PROC, DISP, ERRNO);

Description

The SIGNAL function defines the action to be taken upon receipt of the signal type
specified by the SIG parameter. The DISP parameter references a signal handling
procedure address or specifies a particular function.

SIGNAL is equivalent to the following C function:

void (*signal (int sig, void (*func)(int sig))) (int sig);

Comparison to C Function

ALGOL C Rule for ALGOL

SIG sig Call-by-value integer.

See “SIG parameter” in Section 2 for an enumeration of
signal types.

ACT_PROC – Signal handler procedure.

ACT_PROC is the procedure invoked when the
specified signal occurs.

DISP func Call-by-value integer.

See “DISP parameter” in Section 2 for information on
allowed values.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–60 7011 8351–002

SIGPAUSE
ALGOL Syntax

SIGPAUSE (SIG, ERRNO);

Description

The SIGPAUSE function removes a signal type (specified by the SIG parameter) from the
process’s signal mask and then suspends the process until that signal occurs.

SIGPAUSE is equivalent to the following C function:

int sigpause (int sig);

Comparison to C Function

ALGOL C Rule for ALGOL

SIG signo Call-by-value integer.

See “SIG parameter” in Section 2 for an enumeration of
signal types.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–61

SIGPENDING
ALGOL Syntax

SIGPENDING (SET, ERRNO);

Description

The SIGPENDING function retrieves a set of signal types that are pending for the calling
process. Upon completion, output parameter SET references this signal set.

SIGPENDING is equivalent to the following C function:

int sigpending (sigset_t *set);

Comparison to C Function

ALGOL C Rule for ALGOL

SET set Call-by-reference integer (output).

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–62 7011 8351–002

SIGPROCMASK
ALGOL Syntax

SIGPROCMASK (HOW, SET, OSET, ERRNO);

Description

The SIGPROCMASK function allows the calling process to examine or change its set of
blocked signals (signal mask). This function can do either of the following:

• Modify the process’s signal mask.

• Retrieve the current signal mask.

SIGPROCMASK is equivalent to the following C function:

int sigprocmask (int how, const sigset_t *set, sigset_t *oset);

Comparison to C Function

ALGOL C Rule for ALGOL

HOW how Call-by-value integer.

See “HOW parameter” in Section 2 for a description of
allowable values.

SET set Call-by-value integer.

OSET oset Call-by-reference integer (output).

This parameter returns the original (unaltered) signal
mask.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

The ALGOL and C functions require different syntax to retrieve the current signal mask:

• With SIGPROCMASK, you specify SIG_ENQUIRE (–1) in the HOW parameter.

• With sigprocmask(), you specify a NULL pointer in the set argument.

POSIX Functions in ALGOL

7011 8351–002 3–63

SIGPUSH
ALGOL Syntax

SIGPUSH (ERRNO);

Description

The SIGPUSH function creates a new signal environment for the calling process.

SIGPUSH is equivalent to the following platform-specific C macro:

int sigpush (void);

Comparison to C Function

ALGOL C Rule for ALGOL

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–64 7011 8351–002

SIGRELSE
ALGOL Syntax

SIGRELSE (SIG, ERRNO);

Description

The SIGRELSE function removes a signal type (specified by the SIG parameter) from the
calling process's signal mask. The process can then receive that signal type.

SIGRELSE is equivalent to the following C function:

int sigrelse (int sig);

Comparison to C Function

ALGOL C Rule for ALGOL

SIG sig Call-by-value integer.

See “SIG parameter” in Section 2 for an enumeration of
signal types.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–65

SIGSET
ALGOL Syntax

SIGSET (SIG, ACT_PROC, DISP, ERRNO);

Description

The SIGSET function blocks a signal type or specifies an action for a signal type.

SIGSET is equivalent to the following C function:

void (*sigset (int sig, void (*func) (int sig))) (int sig);

Comparison to C Function

ALGOL C Rule for ALGOL

SIG sig Call-by-value integer.

See “SIG parameter” in Section 2 for an enumeration of
signal types.

ACT_PROC – Signal handler procedure.

ACT_PROC is the procedure invoked when the
specified signal occurs.

DISP func Call-by-value integer.

See “DISP parameter” in Section 2 for information on
allowed values.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–66 7011 8351–002

SIGSUSPEND
ALGOL Syntax

SIGSUSPEND (SIGMASK, ERRNO);

Description

The SIGSUSPEND function replaces the signal mask of the calling process and then
suspends the process. The process will then wait for a signal to awaken it.

SIGSUSPEND is identical to the following C function:

int sigsuspend (const sigset_t *sigmask);

Comparison to C Function

ALGOL C Rule for ALGOL

SIGMASK sigmask Call-by-value integer.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–67

SLEEP
ALGOL Syntax

SLEEP (SECS, ERRNO);

Description

The SLEEP function suspends the calling process for the number of real-time seconds
specified by the SECS parameter. A signal may also reactivate the suspended process.

SLEEP is equivalent to the following C function:

unsigned int sleep (unsigned int seconds);

Comparison to C Function

ALGOL C Rule for ALGOL

SECS seconds Call-by-value real.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–68 7011 8351–002

STAT
ALGOL Syntax

STAT (PATH, PATH_OFF, PATH_LEN, PATH_TYPE, PATH_SEARCHRULE, BUF,
 BUF_OFF, BUF_MAX, ERRNO);

Description

The STAT function obtains file status for the file specified in the PATH array. This status
is returned to the BUF array.

STAT is equivalent to the following C function:

int stat (const char *path, struct stat *buf);

Comparison to C Function

ALGOL C Rule for ALGOL

PATH,
PATH_OFF,
PATH_LEN,
PATH_TYPE,
PATH_SEARCHRULE

path Path definition.

BUF,
BUF_OFF,
BUF_MAX

buf Structure array output.

See “STAT structure” in Section 2 for a definition of
the returned structure.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–69

STRERROR
ALGOL Syntax

STRERROR (BUFF, BUFF_OFF, BUFF_MAX, ERRNO);

Description

The STRERROR function obtains a string of descriptive text associated with the error
value specified in the ERRNO parameter. This string is placed in the BUFF array.

STRERROR is equivalent to the following C function:

char *strerror (int errnum);

Comparison to C Function

ALGOL C Rule for ALGOL

BUFF,
BUFF_OFF,
BUFF_MAX

<result> EBCDIC array output.

ERRNO errnum Call-by-value integer.

ERRNO is a required input parameter.

<result> – Integer result.

Possible values are:

>=0
Operation was successful. The returned value is the
length of the text string.

–1
An error occurred.

Functional Differences

The ALGOL function receives a different result.

POSIX Functions in ALGOL

3–70 7011 8351–002

SYSCONF
ALGOL Syntax

SYSCONF (NAME, ERRNO);

Description

The SYSCONF function obtains the current value of the configurable system variable
defined by NAME.

SYSCONF is equivalent to the following C function:

long sysconf (int name);

Comparison to C Function

ALGOL C Rule for ALGOL

NAME name Call-by-value integer.

See “NAME parameter (for SYSCONF function)” in
Section 2 for an enumeration of configurable system
variables.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–71

TIMEP
ALGOL Syntax

TIMEP (ERRNO);

Description

The TIMEP function returns a value that represents the current time.

The returned value is the number of seconds that have elapsed since 00:00:00 Greenwich
Mean Time on January 1, 1970.

TIMEP is equivalent to the following C function:

time_t time (time_t *tloc);

Comparison to C Function

ALGOL C Rule for ALGOL

ERRNO – ERRNO rule.

<result> <result> Real result.

Functional Differences

The ALGOL function does not support tloc. Only the returned value provides time
information.

POSIX Functions in ALGOL

3–72 7011 8351–002

TIMES
ALGOL Syntax

TIMES (BUF, BUF_OFF, BUF_MAX, BUF_LEN, ERRNO);

Description

The TIMES function obtains time accounting information (expressed in clock ticks) for
the current process and its child processes.

TIMES is equivalent to the following C function:

clock_t times (struct tms *buffer);

Comparison to C Function

ALGOL C Rule for ALGOL

BUF,
BUF_OFF,
BUFF_MAX,

buffer Real array output.

See “TMS structure” in Section 2 for a definition of the
data returned to this array.

BUF_LEN – Call-by-value integer (output).

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

BUF_LEN indicates the number of words transferred into the BUF array. The C language
times() function does not return this value.

POSIX Functions in ALGOL

7011 8351–002 3–73

UNAME
ALGOL Syntax

UNAME (NAME, NAME_OFF, NAME_MAX, ERRNO);

Description

The UNAME function obtains information about the system’s current hardware and
software environment.

UNAME is equivalent to the following C function:

int uname (struct utsname *name);

Comparison to C Function

ALGOL C Rule for ALGOL

NAME,
NAME_OFF,
NAME_MAX

name Real array output.

See “UTSNAME structure” in Section 2 for a definition
of information returned to the NAME array.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–74 7011 8351–002

WAITP
ALGOL Syntax

WAITP (STATUS, ERRNO);

Description

The WAITP function suspends execution of the calling process until one of the following
occurs:

• Status information becomes available for any terminated child process.

• A received signal causes execution of a signal-catching function or terminates the
process.

The value returned is the process ID of the terminated child process.

WAITP is equivalent to the following C function:

pid_t wait (int *stat_loc);

Comparison to C Function

ALGOL C Rule for ALGOL

STATUS stat_loc Call-by-reference integer.

See “STATUS parameter” in Section 2 for an analysis
of the returned termination status.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

7011 8351–002 3–75

WAITPID
ALGOL Syntax

WAITPID (PID, STATUS, OPTIONS, ERRNO);

Description

The WAITPID function suspends execution of the calling process until a child process
(defined by the PID parameter) returns status. The OPTIONS parameter allows you to
define certain aspects of this function’s operation.

WAITPID is equivalent to the following C function:

pid_t waitpid (pid_t pid, int *stat_loc, int options);

The OPTIONS parameter allows you to modify the operation of this function:

• If you specify the WNOHANG option, the function does not wait if termination status
is not immediately available. Instead, a value of –1 is returned.

• If you specify the WUNTRACED option, the function reports status of stopped or
terminated child processes. By default, only terminated task status is reported.

Comparison to C Function

ALGOL C Rule for ALGOL

PID pid Call-by-value integer.

See “PID parameter” in Section 2 for information on
allowed values.

STATUS stat_loc Call-by-reference integer.

See “STATUS parameter” in Section 2 for an analysis
of the returned termination status.

OPTIONS options Call-by-value integer.

See “OPTIONS parameter (for WAITPID)” in Section 2
for information on allowed values.

ERRNO – ERRNO rule.

<result> <result> Integer result.

Functional Differences

None

POSIX Functions in ALGOL

3–76 7011 8351–002

7011 8351–002 4–1

Section 4
Unsupported POSIX Functions

Table 4-1 lists those POSIX interface based C language functions not currently supported
by the ALGOL include file or through a library procedure. Some of these functions will be
supported in a future release.

There are two primary reasons for an unsupported C language function:

1. The function is implemented mainly in the C compiler (not in the MCP).

2. The function has side effects that could cause unexpected or incorrect results. In
particular, many of the I/O-related functions could cause program data structure
corruption if invoked in an ALGOL library called by a C program.

Note: The ALGOL include file code implements the sigaddset(), sigdelset(),

sigemptyset(), and sigfillset() functions. MCPSUPPORT library procedures

are not invoked.

Table 4–1. Unsupported POSIX Interface
Based C Language Functions

Supported . . .

C Language
Function

By the
ALGOL
Include
File?

Through a
Library
Procedure?

creat() No Yes

cuserid() No Yes

dup() No Yes

dup2() No Yes

execl() No No

execle() No No

execlp() No No

execv() No No

execvp() No No

exit() No Yes

Unsupported POSIX Functions

4–2 7011 8351–002

Table 4–1. Unsupported POSIX Interface
Based C Language Functions

Supported . . .

C Language
Function

By the
ALGOL
Include
File?

Through a
Library
Procedure?

_exit() No Yes

fcntl() No Yes

fileno() No No

fpathconf() No Yes

fstat() No Yes

getenv() No No

lseek() No Yes

_MCPfstat() No Yes

_MCPstat() No Yes

open() No Yes

pipe() No Yes

putenv() No No

read() No Yes

rename() No Yes

setegid() No No

sigaddset() Yes No

sigfillset() Yes No

siglongjmp() No No

tzset() No No

umask() No Yes

write() No Yes

7011 8351–002 5–1

Section 5
POSIX-Related Library Procedures

About this Section

This section describes library procedures that provide POSIX interface related functions
in non-C language programs (typically, ALGOL or NEWP). In all cases, the library
procedures are exported by the MCPSUPPORT library.

Note: The library procedures described in this section are internal interfaces used by

the system software. These interfaces might also be of use to sophisticated

application programs. From one release to another, an internal interface might

change in such a way that programs that use the internal interface will be

required to make changes to operate correctly. Because internal interfaces are

special system interfaces, they do not adhere to the compatibility policies

described in the SSR 42.3 Software Release Capabilities Overview. You should

examine all programs that use internal interfaces before installing a new

release to ensure that the internal interface has not changed.

References to POSIX Functions

The MCPSUPPORT library supports most functions that provide POSIX features for non C
language programs. Within this section, these functions are referenced in two ways:

• Most functions are referred to by equivalent C language function names (for example,
pipe() and stat()). See the C Programming Reference Manual, Volume 2: Headers

and Functions for details about C language functions.

• A few functions (not available in the C language) are listed in uppercase letters (for
example, GETPGID and GETUSERID). See Section 3 for details about these
functions.

Table 5–1 lists currently supported POSIX functions and the library procedure associated
with each function.

Caution
This section contains references to functions that are “not yet supported.” Do not
attempt to use these functions. Unsupported functions return an unpredictable
result; possible results include an ENOSYS error or a logical program fault.

POSIX-Related Library Procedures

5–2 7011 8351–002

Use of Library Procedure Information

Systems programmers should use this information as follows:

Language Function Required Coding Required

ALGOL Any function defined
in Section 3.

Do NOT explicitly specify a library procedure.

Include the SYMBOL/POSIX/ALGOL/PROPERTIES
file in the program to declare all POSIX-related
library procedures.

Use POSIX functions as described in Section 3.

ALGOL Any of the following:

• close()
• creat()
• dup()
• dup2()
• exit()
• _exit()
• fcntl()
• fpathconf()
• fstat()
• lseek()
• open()
• pipe()
• read()
• write()

Include the SYMBOL/POSIX/ALGOL/PROPERTIES
file in the program to declare all POSIX-related
library procedures.

Within the program, use the library procedure calls
that provide the required functions.

Any
language
except C or
ALGOL
(primarily
NEWP)

Any function. Use library procedures defined in this section.

Formally declare required library procedures.

Do NOT use the defined names listed in Section 2
for INTEGER parameters.

Table 5–1. POSIX Functions and Related Library Procedures

Function
Related Library

Procedure Comment

access() POSIX_ACCESS

alarm() POSIX_NANOALARM

chdir() POSIX_CHANGEDIR

chmod() POSIX_CHANGEMODE

chown() POSIX_CHANGEOWNER

POSIX-Related Library Procedures

7011 8351–002 5–3

Table 5–1. POSIX Functions and Related Library Procedures

Function
Related Library

Procedure Comment

close() POSIX_CLOSE

creat() POSIX_FILE_TO_FD,
POSIX_FILEATTRIBAGENT,
and POSIX_OPEN

POSIX_FILEATTRIBAGENT support is
planned for a future release.

cuserid() POSIX_STRINGIDS

dup() POSIX_FCNTL

dup2() POSIX_FCNTL

execve() POSIX_EXECVE

exit() POSIX_EXIT

_exit() POSIX_EXIT

fchmod() POSIX_CHANGEMODE

fchown() POSIX_CHANGEOWNER

fcntl() POSIX_FCNTL

fork() POSIX_FORK

fpathconf() POSIX_PATHCONF

fstat() POSIX_FILESTATUS

getcwd() POSIX_STRINGIDS

getegid() POSIX_INTEGERIDS

geteuid() POSIX_INTEGERIDS

getgid() POSIX_INTEGERIDS

getgrgid() POSIX_GETGRINFO

getgrnam() POSIX_GETGRINFO

getgroups() POSIX_GROUPLIST

getlogin() POSIX_STRINGIDS

GETPGID POSIX_INTEGERIDS

getpgrp() POSIX_INTEGERIDS

getpid() POSIX_INTEGERIDS

getppid() POSIX_INTEGERIDS

getpwnam() POSIX_GETPWINFO

getpwuid() POSIX_GETPWINFO

getsgid() POSIX_INTEGERIDS

POSIX-Related Library Procedures

5–4 7011 8351–002

Table 5–1. POSIX Functions and Related Library Procedures

Function
Related Library

Procedure Comment

GETSID POSIX_INTEGERIDS

getsuid() POSIX_INTEGERIDS

GETUSERID POSIX_STRINGIDS

GETUSERNAME POSIX_STRINGIDS

kill() POSIX_SIGHANDLER

lchmod() POSIX_CHANGEMODE

lchown() POSIX_CHANGEOWNER

lseek() POSIX_SEEK

lstat() POSIX_FILESTATUS

_MCPfstat() POSIX_FILESTATUS

_MCPlstat() POSIX_FILESTATUS

_MCPstat() POSIX_FILESTATUS

mkfifo() MCPX_MKNOD

NICE POSIX_SETIDS

open() POSIX_FILE_TO_FD,
POSIX_FILEATTRIBAGENT,
and POSIX_OPEN

POSIX_FILEATTRIBAGENT support is
planned for a future release.

pathconf() POSIX_PATHCONF

pause() POSIX_SIGHANDLER

pipe() POSIX_PIPE

raise() POSIX_SIGHANDLER

read() POSIX_SREAD_E or
POSIX_SREAD_R

readlink() POSIX_FILESTATUS

semctl() MCPX_SEMCTL

semget() MCPX_SEMGET

semop() MCPX_SEMOP

sem_close() POSIX_SEM_CLOSE

sem_destroy() POSIX_DESTROY

sem_getvalue() POSIX_GETVALUE

sem_init() POSIX_SEM_INIT

sem_open() POSIX_SEM_OPEN

POSIX-Related Library Procedures

7011 8351–002 5–5

Table 5–1. POSIX Functions and Related Library Procedures

Function
Related Library

Procedure Comment

sem_post() POSIX_SEM_POST

sem_trywait() POSIX_SEM_TRYWAIT

sem_unlink() POSIX_SEM_UNLINK

sem_wait() POSIX_SEM_WAIT

setegid() POSIX_SETIDS

seteuid() POSIX_SETIDS

setgid() POSIX_SETIDS

setpgid() POSIX_SETIDS

SETPGRP POSIX_SETIDS

setsid() POSIX_SETIDS

setuid() POSIX_SETIDS

sigaction() POSIX_SIGHANDLER

sigaddset() – The ALGOL include file contains
required code. No library procedure is
available.

sigdelset() – The ALGOL include file contains
required code. No library procedure is
available.

sigemptyset() – The ALGOL include file contains
required code. No library procedure is
available.

sigfillset() – The ALGOL include file contains
required code. No library procedure is
available.

sighold() POSIX_SIGHANDLER

sigignore() POSIX_SIGHANDLER

sigismember() – The ALGOL include file contains
required code. No library procedure is
available.

signal() POSIX_SIGHANDLER

sigpause() POSIX_SIGHANDLER

sigpending() POSIX_SIGHANDLER

sigprocmask() POSIX_SIGHANDLER

sigpush() POSIX_SIGHANDLER

POSIX-Related Library Procedures

5–6 7011 8351–002

Table 5–1. POSIX Functions and Related Library Procedures

Function
Related Library

Procedure Comment

sigrelse() POSIX_SIGHANDLER

sigset() POSIX_SIGHANDLER

sigsuspend() POSIX_SIGHANDLER

sleep() POSIX_NANOSLEEP

stat() POSIX_FILESTATUS

sysconf() POSIX_SYSCONF

umask() POSIX_SETIDS

uname() POSIX_UNAME

wait() POSIX_WAITPID

waitpid() POSIX_WAITPID

write() POSIX_SWRITE_E or
POSIX_SWRITE_R

POSIX-Related Library Procedures

7011 8351–002 5–7

Format of Library Procedure Descriptions

Library procedures are described in alphabetical order. Each procedure description
includes:

• A brief description of the procedure’s purpose.

• A listing of POSIX functions supported by the procedure. In most cases, the
equivalent C language function is referenced.

• Formal procedure declaration syntax.

• A summary of coding requirements for individual parameters. This summary includes:

− A reference to the “rule” to be followed when using the parameter or parameter
group. Section 2 defines these rules.

− A brief description of the parameter's purpose.

 There is no detailed ERRNO parameter or result value description. See Section 2
for additional information about these items.

POSIX-Related Library Procedures

5–8 7011 8351–002

MCPX_MKNOD
The MCPX_MKNOD procedure creates various types of POSIX special files.

Supported Functions

The File Type value (provided in the MODE parameter) defines the C language function
invoked by the procedure:

C Function File Type Specified in MODE

mkfifo() S_IFIFO

mkdir() S_IFDIR – (not yet supported)

symlink() S_IFLNK – (not yet supported)

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE MCPX_MKNOD (PATH, PATH_OFF, PATH_LEN, PATH_TYPE,
 PATH_SEARCHRULE, MODE, DEV, DEV_OFF,
 DEV_LEN, DEV_INFO, DEV_SEARCHRULE, ERRNO);
 VALUE PATH_OFF, PATH_LEN, PATH_TYPE, PATH_SEARCHRULE, MODE,
 DEV_OFF, DEV_LEN, DEV_INFO, DEV_SEARCHRULE;
 REFERENCE PATH, DEV, ERRNO;
 EBCDIC ARRAY PATH, DEV [0]
 INTEGER PATH_OFF, PATH_LEN, PATH_TYPE, PATH_SEARCHRULE, MODE,
 DEV_OFF, DEV_LEN, DEV_INFO, DEV_SEARCHRULE, ERRNO;
LIBRARY MCPSUPPORT;

POSIX-Related Library Procedures

7011 8351–002 5–9

Parameter Summary

Parameter Rule Description

PATH,
PATH_OFF,
PATH_LEN,
PATH_TYPE,
PATH_SEARCHRULE

Path definition The array contains a string that identifies
the special file.

MODE Call-by-value integer This input parameter contains the full-word
POSIX File Mode object for the file (see
Table 2-3).

For directory creation requests (not yet
supported), additional bits are defined:

• A 1 in the sign bit causes the
directory to use default security
mode values (read, write, search
permission for owner; search
permission for group and others).

• A 1 in [47:01] specifies a POSIX
directory.

DEV,
DEV_OFF,
DEV_LEN

EBCDIC array input Required only for FIFO creation requests
(S_IFIFO specified for file type in the MODE
parameter). For these requests, this array
contains a string that defines device-
dependent attributes in the disk file
header.

DEV_INFO Call-by-value integer Required only for FIFO creation requests
(S_IFIFO specified for file type in the MODE
parameter). For these requests, this
integer word contains a single field:

[11:08] = CHAR_MODEF

CHAR_MODEF can contain the following
values:

4 = VALUE(EBCDIC)
5 = VALUE(ASCII)

DEV_SEARCHRULE Call-by-value integer Not used with currently supported
functions.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–10 7011 8351–002

MCPX_SEMCTL
The MCPX_SEMCTL procedure provides a set of functions for an X/Open-defined
semaphore or semaphore set. Another procedure (MCPX_SEMOP) provides functions for
a flexible subset of semaphores.

Supported Functions

MCPX_SEMCTL provides a function equivalent to the C language semctl() function.

Procedure Declaration

You declare this procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE MCPX_SEMCTL (SEMID, SEMNUM, CMD, VAL, ARG, ARG_OFF,
 ARG_LEN, ERRNO);
 VALUE SEMID, SEMNUM, CMD, VAL, ARG_OFF, ARG_LEN;
 REFERENCE ARG, ERRNO;
 REAL ARRAY ARG [0]
 INTEGER SEMID, SEMNUM, CMD, VAL, ARG_OFF, ARG_LEN, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

SEMID Call-by-value integer This input parameter indicates the
semaphore set.

SEMNUM Call-by-value integer This input parameter indicates a
semaphore member number within the
set.

CMD Call-by-value integer This input parameter defines the function.
See “CMD parameter (SEMCTL)” in
Section 2 for additional information.

VAL Call-by-value integer Only valid for the SETVAL command

For SETVAL, this input parameter contains
the new SEMVAL value.

ARG,
ARG_OFF,
ARG_LEN

Structure array input
(for IPC_SET)

Structure array
output
(for IPC_STAT)

Real array input (for
SEM_SETALL)

Real array output
(for SEM_GETALL)

See “SEMID_DS structure” Section 2 for a
description of the structure contained here
for the IPC_SET and IPC_STAT
commands.

POSIX-Related Library Procedures

7011 8351–002 5–11

Parameter Rule Description

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–12 7011 8351–002

MCPX_SEMGET
The MCPX_SEMGET procedure creates a new set of X/Open-defined semaphores or
connects to an existing set of semaphores.

Supported Functions

MCPX_SEMGET provides a function equivalent to the C language semget() function.

Procedure Declaration

You declare this procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE MCPX_SEMGET (KEY, NSEMS, SEMFLG, ERRNO);
 VALUE KEY, NSEMS, SEMFLG;
 REFERENCE ERRNO;
 INTEGER KEY, NSEMS, SEMFLG, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

KEY Call-by-value integer This input parameter specifies a key value.
The following special value is used:

0 IPC_PRIVATE

NSEMS Call-by-value integer This input parameter defines the number
of semaphores in a set.

SEMFLG Call-by-value integer This input parameter specifies semaphore
flags and access permission bits.

See “SEMFLG Parameter” in Section 2 for
a description of allowable values.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–13

MCPX_SEMOP
The MCPX_SEMOP procedure performs user-defined operations on a specified group of
X/Open-defined semaphores.

Supported Functions

MCPX_SEMOP provides a function equivalent to the C language semop() function.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE MCPX_SEMOP (SEMID, SOPS, SOPS_OFF, SOPS_MAX, NSOPS,
 ERRNO);
 VALUE SEMID, SOPS_OFF, SOP_MAX, NSOPS;
 REFERENCE SOPS, ERRNO;
 REAL ARRAY SOPS [0];
 INTEGER SEMID, SOPS_OFF, SOP_MAX, NSOPS, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

SEMID Call-by-value integer This input parameter contains a
semaphore identifier.

SOPS,
SOPS_OFF,
SOPS_MAX

Structure array input This array contains a semaphore
operation structure.

See “SEMBUF structure” in Section 2 for a
definition of the structure contained in this
array.

NSOPS Call-by-value integer This input parameter indicates the number
of semaphore operation structures.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–14 7011 8351–002

POSIX_ACCESS
The POSIX_ACCESS procedure determines if specified access permissions are available
for a particular file or directory.

Supported Functions

POSIX_ACCESS provides a function equivalent to the C language access() function.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_ACCESS (SELECTOR, PATH, PATH_OFF, PATH_LEN,
 PATH_TYPE, PATH_SEARCHRULE, AMODE, ERRNO);
 VALUE SELECTOR, PATH_OFF, PATH_LEN, PATH_TYPE,
 PATH_SEARCHRULE, AMODE;
 REFERENCE PATH, ERRNO:
 EBCDIC ARRAY PATH[0];
 INTEGER SELECTOR, PATH_OFF, PATH_LEN, PATH_TYPE,
 PATH_SEARCHRULE, AMODE, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

SELECTOR Call-by-value integer This parameter is always 1.

PATH,
PATH_OFF,
PATH_LEN,
PATH_TYPE,
PATH_SEARCHRULE

Path definition The array contains a string that identifies
the file or directory to be checked.

Directories are not yet supported.

AMODE Call-by-value integer See “AMODE parameter” in Section 2 for a
definition of this parameter.

Note that this function always checks for
file existence.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–15

POSIX_ALLOCATE_FD
The POSIX_ALLOCATE_FD procedure performs the initial phase of a POSIX.1 open() or
creat() function. The POSIX_ALLOCATE_FD procedure:

• Initializes the FD_VECTOR array of the calling process (only required for the first file
descriptor request).

• Searches the FD_VECTOR array for lowest available file descriptor. It resizes the
array if necessary.

• Searches SYSTEM_FILE_VECTOR stack for an available entry. It resizes the stack if
necessary.

• Creates a new file information block (FIB) and places the mom descriptor into the
SYSTEM_FILE_VECTOR stack.

• Associates the newly allocated file descriptor with the newly allocated file located in
the SYSTEM_FILE_VECTOR STACK.

• Returns the lowest available file descriptor value to the calling process.

Supported Functions

POSIX_ALLOCATE_FD is one of three library procedures necessary to perform an
operation equivalent to the C language open() or creat() function. These procedures are:

• POSIX_ALLOCATE_FD

• POSIX_FILEATTRIBAGENT

• POSIX_OPEN

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
 INTEGER PROCEDURE POSIX_ALLOCATE_FD (ERRNO);
 REFERENCE ERRNO;
 INTEGER ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–16 7011 8351–002

POSIX_CHANGEDIR
The POSIX_CHANGEDIR procedure changes the current working directory of the calling
process. The CURRENTDIRECTORY task attribute stores this value.

Supported Functions

POSIX_CHANGEDIR provides a function equivalent to the C language chdir() function.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_CHANGEDIR (PATH, PATH_OFF, PATH_LEN, PATH_TYPE,
 PATH_SEARCHRULE, ERRNO),
 VALUE PATH_OFF, PATH_LEN, PATH_TYPE, PATH_SEARCHRULE;
 REFERENCE PATH, ERRNO;
 EBCDIC ARRAY PATH [0];
 INTEGER PATH_OFF, PATH_LEN, PATH_TYPE, PATH_SEARCHRULE, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

PATH,
PATH_OFF,
PATH_LEN,
PATH_TYPE,
PATH_SEARCHRULE

Path definition The array contains a string that identifies
the new working directory.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–17

POSIX_CHANGEMODE
The POSIX_CHANGEMODE procedure alters the SECURITYMODE file attribute for a
specified disk file. This attribute is an encoded value that provides:

• Owner, group, and other file access permissions flags.

• Set User ID on Execution flag.

• Set Group ID on Execution flag.

• Guard file flags.

The calling process must have appropriate permissions or the effective user ID must
match the owner of the file.

Supported Functions

The SELECTOR parameter defines the C function invoked by this procedure.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_CHANGEMODE (SELECTOR, FILDES, PATH, PATH_OFF,
 PATH_LEN, PATH_TYPE, PATH_SEARCHRULE,
 MODE, ERRNO);
 VALUE SELECTOR, FILDES, PATH_OFF, PATH_LEN, PATH_TYPE,
 PATH_SEARCHRULE, MODE;
 REFERENCE PATH, ERRNO;
 EBCDIC ARRAY PATH [0]
 INTEGER SELECTOR, FILDES, PATH_OFF, PATH_LEN, PATH_TYPE,
 PATH_SEARCHRULE, MODE, ERRNO;
LIBRARY MCPSUPPORT;

POSIX-Related Library Procedures

5–18 7011 8351–002

Parameter Summary

Parameter Rule Description

SELECTOR Call-by-value integer Defines the equivalent function:
1 fchmod() – (not yet supported)
2 chmod() – (directory operations not

yet supported)
3 lchmod() – (not yet supported)

FILDES Call-by-value integer Used only when SELECTOR value is 1.

This value is a file descriptor that refers to
the open file description for which access
permissions will be modified.

PATH,
PATH_OFF,
PATH_LEN,
PATH_TYPE,
PATH_SEARCHRULE

Path definition Used only when SELECTOR value is 2
or 3.

The array contains a string that identifies
the file for which access permissions will
be modified.

MODE Call-by-value integer This parameter defines the new
SECURITYMODE file attribute value.

SECURITYMODE is equivalent to the File
Access Mode field ([13:14]) within the
File Mode. See Table 2-3.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–19

POSIX_CHANGEOWNER
The POSIX_CHANGEOWNER procedure changes the OWNER and/or GROUP attribute of
a disk file. The calling process must have appropriate permissions or the effective user ID
must match the existing owner of the file.

Supported Functions

The SELECTOR parameter defines the C function invoked by this procedure.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_CHANGEOWNER (SELECTOR, FILDES, PATH, PATH_OFF,
 PATH_LEN, PATH_TYPE,
 PATH_SEARCHRULE, OWNER, GROUP,
 ERRNO);
 VALUE SELECTOR, FILDES, PATH_OFF, PATH_LEN, PATH_TYPE,
 PATH_SEARCHRULE, OWNER, GROUP;
 REFERENCE PATH, ERRNO;
 EBCDIC ARRAY PATH [0];
 INTEGER SELECTOR, FILDES, PATH_OFF, PATH_LEN, PATH_TYPE,
 PATH_SEARCHRULE, OWNER, GROUP, ERRNO;
LIBRARY MCPSUPPORT;

POSIX-Related Library Procedures

5–20 7011 8351–002

Parameter Summary

Parameter Rule Description

SELECTOR Call-by-value integer This input parameter defines the
equivalent function:

1 fchown() - (not yet supported)
2 chown() - (directory operations not

yet supported)
3 lchown() - (not yet supported)

FILDES Call-by-value integer Used only when SELECTOR value is 1.

This value is a file descriptor that
references the open file description for
which ownership will be changed.

PATH,
PATH_OFF,
PATH_LEN,
PATH_TYPE,
PATH_SEARCHRULE

Path definition Used only when SELECTOR value is 2 or
3.

The array contains a string that identifies
the file for which ownership will be
changed.

OWNER Call-by-value integer This input parameter contains the user ID
associated with the new OWNER attribute
of the file.

GROUP Call-by-value integer This input parameter contains the group ID
associated with the new GROUP attribute
of the file.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–21

POSIX_CLOSE
The POSIX_CLOSE procedure closes a specified file descriptor. The
POSIX_ALLOCATE_FD or POSIX_FILE_TO_FD procedures allocate these file descriptors.

Supported Functions

POSIX_CLOSE provides a function equivalent to the C language close() function.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_CLOSE (FILDES, OPTION, CLOSERESULT, ERRNO);
 VALUE FILDES, OPTION;
 REFERENCE CLOSERESULT, ERRNO;
 INTEGER FILDES, OPTION, CLOSERESULT, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

FILDES Call-by-value integer This input parameter contains the file
descriptor.

OPTION Call-by-value integer See “Option parameter (CLOSE)” in
Section 2 for a list of defined values.

CLOSERESULT Call-by-reference
integer

This output parameter contains the result
returned by the FIBCLOSE procedure (if
applicable).

This result format is equivalent to the
format provided in the AVAILABLE
attribute.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–22 7011 8351–002

POSIX_EXECVE
The POSIX_EXECVE procedure executes a specified code file. There is no return from a
successful operation—the new process image overlays the previous process image.

Supported Functions

POSIX_EXECVE provides a function equivalent to the C language execve() function;
there is no support for other exec() family functions.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_EXECVE (PATH, PATH_OFF, PATH_LEN, PATH_TYPE,
 PATH_SEARCHRULE, ARGV, ARGV_OFF,
 ARGV_LEN, ARGVINDX, ARGVINDX_OFF,
 ARGVINDX_LEN, ARGVSZ, ARGVSZ_OFF,
 ARGVSZ_LEN, ENVP, ENVP_OFF, ENVP_LEN,
 ENVPINDX, ENVPINDX_OFF, ENVPINDX_LEN,
 ENVPSZ, ENVPSZ_OFF, ENVPSZ_LEN, ERRNO);
 VALUE PATH_OFF, PATH_LEN, PATH_TYPE, PATH_SEARCHRULE,
 ARGV_OFF, ARGV_LEN, ARGVINDX_OFF, ARGVINDX_LEN,
 ARGVSZ_OFF, ARGVSZ_LEN, ENVP_OFF, ENVP_LEN,
 ENVPINDX_OFF, ENVPINDX_LEN, ENVPSZ_OFF, ENVPSZ_LEN;
 REFERENCE PATH, ARGV, ARGVINDX, ARGVSZ, ENVP, ENVPINDX, ENVPSZ,
 ERRNO;
 EBCDIC ARRAY PATH, ARGV, ENVP [0];
 INTEGER ARRAY ARGVINDX, ARGVSZ, ENVPINDX, ENPSZ [0];
 INTEGER PATH_OFF, PATH_LEN, PATH_TYPE, PATH_SEARCHRULE,
 ARGV_OFF, ARGV_LEN, ARGVINDX_OFF, ARGVINDX_LEN,
 ARGVSZ_OFF, ARGVSZ_LEN, ENVP_OFF, ENVP_LEN, ENVPINDX_OFF,
 ENVPINDX_LEN, ENVPSZ_OFF, ENVPSZ_LEN, ERRNO;
LIBRARY MCPSUPPORT;

POSIX-Related Library Procedures

7011 8351–002 5–23

Parameter Summary

Parameter Rule Description

PATH,
PATH_OFF,
PATH_TYPE,
PATH_TYPE,
PATH_SEARCHRULE

Path definition The array contains a string that defines
the pathname of the code file (program).

ARGV,
ARGV_OFF,
ARGV_LEN

EBCDIC array input This array contains a string defining
program arguments (parameters).

The ARGV_OFF and ARGV_LEN
parameters must contain 0.

ARGVINDX,
ARGVINDX_OFF,
ARGVINDX_LEN

Integer array input The array contains ARGV array indexes.
Each index points to the start of an
argument.

ARGVSZ,
ARGVSZ_OFF,
ARGVSZ_LEN

Integer array input The array contains the length of each
argument (located in ARGV) pointed to the
indexes in ARGVINDX.

ENVP,
ENVP_OFF,
ENVP_LEN

EBCDIC array input The array contains a string that defines
environment variables for the program.

The ENVP_OFF and ENVP_LEN
parameters must contain 0.

ENVPINDX,
ENVPINDX_OFF,
ENVPINDX_LEN

Integer array input This array contains ENVP array indexes.
Each index points to the start of an
environment variable.

ENVPSZ,
ENVPSZ_OFF,
ENVPSZ_LEN

Integer array input This array contains the length of each
environment variable (located in ENVP)
pointed to the indexes in ENVPINDX.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–24 7011 8351–002

POSIX_EXIT
The POSIX_EXIT procedure terminates the calling process. It then stores exit status in
the EXIT_STATUS TAB word and passes control back to the system. POSIX_EXIT never
returns a result or sets an ERRNO value.

Supported Functions

The SELECTOR parameter defines the C function invoked by this procedure.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_EXIT (SELECTOR, STATUS, ERRNO);
 VALUE STATUS;
 REFERENCE ERRNO;
 INTEGER STATUS, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

SELECTOR Call-by-value integer This input parameter defines the
equivalent function:

1 _exit()
2 exit()

STATUS Call-by-value integer This input parameter contains termination
status.

Termination status values can range from
–127 to 127. A value of 0 indicates
success; all other values indicate failure.

ERRNO ERRNO Exit functions never return an error value.

<result> Integer result No result is returned.

POSIX-Related Library Procedures

7011 8351–002 5–25

POSIX_FCNTL
The POSIX_FCNTL procedure can perform a variety of control functions on a specified
open file.

Supported Functions

POSIX_FCNTL provides functions equivalent to the C language fcntl() function as well as
two derivative functions, dup() and dup2().

The CMD parameter specifies the function to be performed.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_FCNTL (FILDES, CMD, INTARG, STRUCTARG,
 STRUCTARG_OFF, STRUCTARG_LEN, ERRNO);
 VALUE FILDES, CMD, INTARG, STRUCTARG_OFF, STRUCTARG_LEN;
 REFERENCE STRUCTARG, ERRNO;
 REAL ARRAY STRUCTARG [0];
 INTEGER FILDES, CMD, INTARG, STRUCTARG_OFF, STRUCTARG_LEN, ERRNO;
LIBRARY MCPSUPPORT;

POSIX-Related Library Procedures

5–26 7011 8351–002

Parameter Summary

Parameter Rule Description

FILDES Call-by-value integer This input parameter contains a file
descriptor that references the applicable
open file description.

CMD Call-by-value integer See “CMD parameter (FCNTL)” in
Section 2 for a summary of defined
values.

INTARG Call-by-value integer See “INTARG parameter (FCNTL)” in
Section 2 for information on this
parameter.

STRUCTARG,
STRUCTARG_OFF,
STRUCTARG_LEN

Structure array input

Structure array
output

This structure argument is only used with
the following commands:

F_GETLK command:

Input parameter: Contains description of
a lock. See “FLOCK structure” in
Section 2.

Output parameter: The parameter is
overwritten with information about the lock
that blocks the lock description provided
in the input parameter. If a blocking lock
was not found, only the L_TYPE field
contains valid data.

F_SETLK and F_SETLKW commands:

Input parameter: Specifies a file segment
region to be locked or unlocked. See
“FLOCK structure” in Section 2.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–27

POSIX_FILESTATUS
The POSIX_FILESTATUS procedure obtains file status information for a specified file.
The file can be specified by filename or by file descriptor.

Supported Functions

The SELECTOR parameter defines the C function invoked by this procedure.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_FILESTATUS (SELECTOR, FILDES, PATH, PATH_OFF,
 PATH_LEN, PATH_TYPE, PATH_SEARCHRULE,
 BUF, BUF_OFF, BUF_MAX, ERRNO);
 VALUE SELECTOR, FILDES, PATH_OFF, PATH_LEN,
 PATH_TYPE, PATH_SEARCHRULE, BUF_OFF, BUF_MAX;
 REFERENCE BUF, ERRNO;
 EBCDIC ARRAY PATH [0];
 REAL ARRAY BUF [0]
 INTEGER SELECTOR, FILDES, PATH_OFF, PATH_LEN, PATH_TYPE,
 PATH_SEARCHRULE, BUF_OFF, BUFF_MAX, ERRNO;
LIBRARY MCPSUPPORT;

POSIX-Related Library Procedures

5–28 7011 8351–002

Parameter Summary

Parameter Rule Description

SELECTOR Call-by-value
integer

This input parameter defines the
equivalent function:

1 fstat()
2 stat()
3 lstat() - (not yet supported)
5 _MCPfstat()
6 _MCPstat()
7 _MCPlstat() - (not yet supported)
9 readlink() - (not yet supported)

FILDES Call-by-value
integer

Used only with the following equivalent
functions:

fstat()
_MCPfstat()
This input parameter contains a file
descriptor that refers to an open file
description.

PATH,
PATH_OFF,
PATH_LEN,
PATH_TYPE,
PATH_SEARCHRULE

Path definition Used only with the following equivalent
functions:

stat()
lstat()
_MCPstat()
_MCPlstat()
readlink()

The array contains a string that identifies
the filename.

BUF,
BUF_OFF,
BUF_MAX

Structure array
output

An array output parameter that contains
the STAT or MCPSTAT data structure.

See “STAT structure” or “MCPSTAT
structure” in Section 2 for a definition of
this information.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–29

POSIX_FILE_TO_FD
The POSIX_FILE_TO_FD procedure allocates a new file descriptor and attaches it to a
specified existing file. This procedure cannot process direct files.

The POSIX_FILE_TO_FD procedure:

• Initializes the FD_VECTOR array of the calling process (only required on the first file
descriptor request).

• Searches the FD_VECTOR array for lowest available file descriptor. It resizes the
array if necessary.

• Associates newly allocated file descriptor with the file specified in the FYLE
parameter.

• Initializes the specified file and applies all file attributes provided in the FILE
declaration.

• Sets the FD_CLOEXEC flag for the file descriptor.

Supported Functions

There is no equivalent C language function.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_FILE_TO_FD (FYLE, ERRNO);
 REFERENCE FYLE, ERRNO;
 FILE FYLE;
 INTEGER ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

FYLE File declaration This input parameter defines a file. This
file must be programmatically declared
and located in the current process stack.

ERRNO Call-by-value integer This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–30 7011 8351–002

POSIX_FORK
The POSIX_FORK procedure creates a new process. This new process is known as a child

process.

Supported Functions

The SELECTOR parameter defines the C function invoked by this procedure:

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_FORK (SELECTOR, ERRNO);
 VALUE SELECTOR;
 REFERENCE ERRNO;
 INTEGER SELECTOR, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

SELECTOR Call-by-value integer This input parameter defines the
equivalent function:

1 fork()

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–31

POSIX_GETGRINFO
The POSIX_GETGRINFO procedure obtains the GROUP structure associated with a
specified group ID or group name.

Supported Functions

The SELECTOR parameter defines the C function invoked by this procedure:

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_GETGRINFO (SELECTOR, GID, NAME, NAME_OFF,
 NAME_LEN, MEM, MEM_OFF, MEM_MAX,
 ERRNO);
 VALUE SELECTOR, GID, NAME_OFF, NAME_LEN, MEM_OFF, MEM_MAX;
 REFERENCE NAME, MEM, ERRNO;
 EBCDIC ARRAY NAME [0];
 REAL ARRAY MEM [0];
 INTEGER SELECTOR, GID, NAME_OFF, NAME_LEN, MEM_OFF, MEM_MAX,
 ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

SELECTOR Call-by-value integer This input parameter defines the
equivalent function:

1 getgrgid()
2 getgrnam()

GID Call-by-value integer Used only the when the SELECTOR value
is 1.

This input parameter contains a group ID.

NAME,
NAME_OFF,
NAME_LEN

EBCDIC array input Used only when the SELECTOR value is 2.

The array contains a string that identifies a
group name.

MEM,
MEM_OFF,
MEM_MAX

Structure array
output

This real array contains the requested
structure.

See “GROUP structure” in Section 2 for a
definition of this structure.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–32 7011 8351–002

POSIX_GETPWINFO
The POSIX_GETPWINFO procedure returns the PASSWD structure for a specified user ID
or user name. This structure does not include the actual password.

Supported Functions

The SELECTOR parameter defines the C function invoked by this procedure:

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_GETPWINFO (SELECTOR, NAME, NAME_OFF, NAME_LEN,
 UID, PASSWD, PASSWD_OFF, PASSWD_MAX,
 ERRNO);
 VALUE SELECTOR, NAME_OFF, NAME_LEN, UID, PASSWD_OFF, PASSWD_MAX;
 REFERENCE NAME, PASSWD, ERRNO;
 EBCDIC ARRAY NAME [0];
 REAL ARRAY PASSWD [0];
 INTEGER SELECTOR, NAME_OFF, NAME_LEN, UID, PASSWD_OFF,
 PASSWD_MAX, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

SELECTOR Call-by-value
integer

This input parameter defines the equivalent
function:

1 getpwuid()
2 getpwnam()

NAME,
NAME_OFF,
NAME_LEN

EBCDIC array
input

Used only when the SELECTOR value is 2.

The array contains the user name string for
which a PASSWD structure is required.

UID Call-by-value
integer

Used only when the SELECTOR value is 1.

This input parameter contains the user ID for
which a PASSWORD structure is required.

PASSWD,
PASSWD_OFF,
PASSWD_MAX

Structure array
output

This real array contains the requested
structure.

See “PASSWD structure” in Section 2 for a
definition of this structure.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–33

POSIX_GROUPLIST
The POSIX_GROUPLIST procedure obtains all supplementary group IDs associated with
the calling process.

Supported Functions

The SELECTOR parameter defines the C function invoked by this procedure.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_GROUPLIST (SELECTOR, GROUPLIST, GROUPLIST_OFF,
 GROUPLIST_MAX, ERRNO);
 VALUE SELECTOR, GROUPLIST_OFF, GROUPLIST_MAX;
 REFERENCE GROUPLIST, ERRNO;
 INTEGER ARRAY GROUPLIST [0];
 INTEGER SELECTOR, GROUPLIST_OFF, GROUPLIST_MAX, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

SELECTOR Call-by-value integer This input parameter defines the
equivalent function:

1 getgroups()
2 setgroups() - (not yet supported)

GROUPLIST,
GROUPLIST_OFF,
GROUPLIST_MAX

Integer array output This integer array receives the requested
supplementary group IDs.

Note that GROUPLIST_MAX provides a
function equivalent to the C function
gidsetsize argument.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–34 7011 8351–002

POSIX_INTEGERIDS
The POSIX_INTEGERIDS procedure obtains various ID values associated with the calling
process.

Supported Functions

The SELECTOR parameter defines the functions supported by this procedure. Note that
SELECTOR values 8 and 13 provide a pair of special functions:

• SELECTOR value = 8 (Get Exit Type)

 This function determines the last exit type performed by a child process. This
returned value indicates the exit type:

− 0 indicates child process performed an exit() function (cleanup is required)

− 1 indicates child process performed an _exit() function

• SELECTOR value = 13 (FD Vector Allocated)

 This function determines if the POSIX_ALLOCATE_FD or POSIX_FILE_TO_FD library
procedure has allocated an FD vector array to the calling process. This returned value
indicates allocation status:

− 0 indicates FD vector is not allocated.

− 1 indicates FD vector is allocated.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_INTEGERIDS (SELECTOR, INFO, ERRNO);
 VALUE SELECTOR, INFO;
 REFERENCE ERRNO;
 INTEGER SELECTOR, INFO, ERRNO;
LIBRARY MCPSUPPORT;

POSIX-Related Library Procedures

7011 8351–002 5–35

Parameter Summary

Parameter Rule Description

SELECTOR Call-by-value integer This input parameter defines the
equivalent function:

1 getpid()
2 GETPGID - (not a C function -

 described in Section 3)
2 getpgrp()
3 getppid()
4 getuid()
5 geteuid()
6 getgid()
7 getegid()
8 Get Exit Type
9 GETSID - (not a C function -

 described in Section 3)
10 getsgid() - (not yet supported)
11 getsuid() - (not yet supported)
13 FD Vector Allocated

INFO Call-by-value integer Not used.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–36 7011 8351–002

POSIX_NANOALARM
The POSIX_NANOALARM procedure causes the system to send a signal (type SIGALRM)
to the calling process following a specified period of time. This procedure can also cancel
a pending request of this type.

Supported Functions

POSIX_NANOALARM provides a function equivalent to the C language alarm() function.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
REAL PROCEDURE POSIX_NANOALARM (SECS, ERRNO);
 VALUE SECS;
 REFERENCE ERRNO;
 REAL SECS;
 INTEGER ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

SECS Call-by-value real This input parameter specifies a delay
period (in seconds). If this value is 0, any
pending signal is canceled.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–37

POSIX_NANOSLEEP
The POSIX_NANOSLEEP procedure suspends the calling process for a specified amount
of time. A signal may reactivate the suspended process.

Supported Functions

POSIX_NANOSLEEP provides a function equivalent to the C language sleep() function.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
REAL PROCEDURE POSIX_NANOSLEEP (SECS, ERRNO);
 VALUE SECS;
 REFERENCE ERRNO;
 REAL SECS;
 INTEGER ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

SECS Call-by-value real This input parameter specifies the process
suspension time (in seconds).

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–38 7011 8351–002

POSIX_OPEN
The POSIX_OPEN procedure opens a file (referenced by file descriptor) with specified
truncate and open type options.

This procedure supports the final phase of a POSIX.1 open() or creat() function. The
following procedures must precede POSIX_OPEN:

• The POSIX_ALLOCATE_FD procedure (to establish a file descriptor value)

• Multiple POSIX_FILEATTRIBAGENT procedures (to get or set required file attributes)

Note that the POSIX_FILEATTRIBAGENT procedure is not yet supported.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_OPEN (FILDES, OPTION, OPENRESULT, ERRNO);
 VALUE FILDES, OPTION;
 REFERENCE OPENRESULT, ERRNO;
 INTEGER FILDES, OPTION, OPENRESULT, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

FILDES Call-by-value integer This input parameter specifies a file
descriptor for the file to be opened.

OPTION Call-by-value integer This input parameter contains the option
values passed to the FIBOPEN routine.

See “Option parameter (OPEN)” in
Section 2 for additional information.

OPENRESULT Call-by-reference
integer

This output parameter contains the result
returned by the logical I/O open
performed by FIBOPEN. The format is
identical to that defined for the AVAILABLE
attribute.

Refer to the File Attributes Programming
Reference Manual for information on
results returned for the open operation.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–39

POSIX_PATHCONF
The POSIX_PATHCONF procedure obtains configuration variable information about a
specified open file or path. The path can be specified directly or by file descriptor.

Supported Functions

The SELECTOR parameter defines the C function invoked by this procedure.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_PATHCONF (SELECTOR, FILDES, PATH, PATH_OFF,
 PATH_LEN, PATH_TYPE, PATH_SEARCHRULE,
 NAME, ERRNO);
 VALUE SELECTOR, FILDES, PATH_OFF, PATH_LEN, PATH_TYPE,
 PATH_SEARCHRULE, NAME;
 REFERENCE PATH, ERRNO;
 EBCDIC ARRAY PATH [0];
 INTEGER SELECTOR, FILDES, PATH_OFF, PATH_LEN, PATH_TYPE,
 PATH_SEARCHRULE, NAME, ERRNO;
LIBRARY MCPSUPPORT;

POSIX-Related Library Procedures

5–40 7011 8351–002

Parameter Summary

Parameter Rule Description

SELECTOR Call-by-value integer This input parameter defines the
equivalent function to be performed:

1 fpathconf()
2 pathconf()

FILDES Call-by-value integer Used only when the SELECTOR parameter
value is 1.

This input parameter contains a file
descriptor that refers to an open file
description.

PATH,
PATH_OFF,
PATH_LEN,
PATH_TYPE,
PATH_SEARCHRULE

Path definition Used only when the SELECTOR parameter
value is 2.

The array contains a string that identifies a
pathname.

NAME Call-by-value integer This input parameter specifies the
configurable variable to be interrogated.

See “NAME parameter (for PATHCONF
function)” in Section 2 for a summary of
configurable variables and associated
NAME parameter integers.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–41

POSIX_PIPE
The POSIX_PIPE procedure creates a half-duplex interprocess channel known as a pipe.
Two file descriptors (one read-only and the other write-only) are passed back to the
program.

Supported Functions

POSIX_PIPE provides a function equivalent to the C language pipe() function.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_PIPE (FILDES_IN, FILDES_OUT, ERRNO);
 REFERENCE FILDES_IN, FILDES_OUT, ERRNO;
 INTEGER FILDES_IN, FILDES_OUT, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

FILDES_IN Call-by-reference
integer

This output parameter contains the file
descriptor associated with the read side
of the pipe.

FILDES_OUT Call-by-reference
integer

This output parameter contains the file
descriptor associated with the write side
of the pipe.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–42 7011 8351–002

POSIX_SEEK
The POSIX_SEEK procedure repositions the current record pointer in an open file
description.

Supported Functions

POSIX_SEEK provides a function equivalent to the lseek() or seekdir() C language
functions. The seekdir() function is not yet supported.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_SEEK (FILDES, RELATIVERECORD, WHENCE, IORESULT,
 ERRNO);
 VALUE FILDES, RELATIVERECORD, WHENCE;
 REFERENCE IORESULT, ERRNO;
 INTEGER FILDES, RELATIVERECORD, WHENCE, ERRNO;
 REAL IORESULT;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

FILDES Call-by-value
integer

This input parameter specifies a file descriptor
that references the applicable open file
description.

RELATIVERECORD Call-by-value
integer

This input parameter specifies a record count.
See the WHENCE parameter.

WHENCE Call-by-value
integer

This input parameter specifies a seek method.
There are three possible values:

0 = SEEK_SET
Seek to record specified by RELATIVERECORD.

1 = SEEK_CUR
Space RELATIVERECORD records (negative
values cause backward space).

2 = SEEK_END
Space RELATIVERECORD records from the
current end-of-file (negative values indicate
backward space).

IORESULT Call-by-
reference real

This output parameter receives the result
returned by FIBSTACK.

ERRNO ERRNO This returned value indicates error status. See
“ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–43

POSIX_SEM_CLOSE
The POSIX_SEM_CLOSE procedure closes a named semaphore that is currently open.

When a process closes a semaphore, that process no longer has access to it. However,
closing a named semaphore does not remove it from the system.

Supported Functions

POSIX_SEM_CLOSE provides a function equivalent to the C language sem_close()
function.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_SEM_CLOSE (SEM, ERRNO);
 VALUE SEM;
 REFERENCE ERRNO;
 INTEGER SEM, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

SEM Call-by-value integer This input parameter contains a
semaphore identifier.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–44 7011 8351–002

POSIX_SEM_DESTROY
The POSIX_SEM_DESTROY procedure destroys an unnamed semaphore. Destroying a
semaphore removes it from the system.

Supported Functions

POSIX_SEM_DESTROY provides a function equivalent to the C language sem_destroy()
function.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_SEM_DESTROY (SEM, ERRNO);
 VALUE SEM;
 REFERENCE ERRNO;
 INTEGER SEM, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

SEM Call-by-value integer This input parameter contains a
semaphore identifier.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–45

POSIX_SEM_GETVALUE
The POSIX_SEM_GETVALUE procedure retrieves the value of a specified named or
unnamed semaphore.

The retrieved value reflects an actual value of the semaphore at some time during the call.
This may not be the actual value of the semaphore at the time the procedure returns.

Supported Functions

POSIX_SEM_GETVALUE provides a function equivalent to the C language
sem_getvalue() function.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_SEM_GETVALUE (SEM, SVAL, ERRNO);
 VALUE SEM;
 REFERENCE SVAL, ERRNO;
 INTEGER SEM, SVAL, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

SEM Call-by-value integer This input parameter contains a
semaphore identifier.

SVAL Call-by-reference
integer

This output parameter contains the value
of the specified semaphore. When the
procedure completes successfully, this
parameter contains either:

• A positive integer, indicating that the
semaphore is unlocked.

• A zero, indicating that the semaphore
is locked.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–46 7011 8351–002

POSIX_SEM_INIT
The POSIX_SEM_INIT procedure creates an unnamed semaphore.

Supported Functions

POSIX_SEM_INIT provides a function equivalent to the C language sem_init() function.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_SEM_INIT (SEM, PSHARED, VAL, ERRNO);
 VALUE PSHARED, VAL;
 REFERENCE SEM, ERRNO;
 INTEGER SEM, PSHARED, VAL, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

SEM Call-by-reference
integer

This output parameter contains a returned
value that identifies the unnamed
semaphore.

PSHARED Call-by-value integer This input parameter indicates if the
semaphore can be shared. Possible
values are:

Zero
No sharing allowed

Non zero
Sharing allowed

VAL Call-by-value integer This input parameter indicates the initial
value of the semaphore (it must be
positive).

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–47

POSIX_SEM_OPEN
The POSIX_SEM_OPEN procedure opens a named semaphore. The procedure can either:

• Access an existing named semaphore

• Create a new named semaphore

Once opened, a process can use the semaphore until it closes the semaphore with a
POSIX_SEM_CLOSE call.

Supported Functions

POSIX_SEM_OPEN provides a function equivalent to the C language sem_open()
function.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_SEM_OPEN (NAME, NAME_OFF, NAME_LEN, OFLAG,
 MODE, VAL, ERRNO);
 VALUE NAME_OFF, NAME_LEN, OFLAG, MODE, VAL;
 REFERENCE NAME, ERRNO;
 EBCDIC ARRAY NAME [0]
 INTEGER NAME_OFF, NAME_LEN, OFLAG, MODE, VAL, ERRNO;
LIBRARY MCPSUPPORT;

POSIX-Related Library Procedures

5–48 7011 8351–002

Parameter Summary

Parameter Rule Description

NAME,
NAME_OFF,
NAME_LEN

EBCDIC array input The array contains the name of the
semaphore. This name must conform to
POSIX pathname naming rules.

OFLAG Call-by-value integer This input parameter specifies whether the
procedure is to open an existing
semaphore or create a new semaphore.
There are two flag bits:

[15:01] O_CREAT
[17:01] O_EXCL

MODE Call-by-value integer This input parameter contains permission
bits for the new semaphore. It is valid only
when OFLAG specifies the O_CREAT flag
bit.

See “MODE parameter” in Section 2 for a
description of bit assignments.

VAL Call-by-value integer This input parameter contains the initial
value of a new semaphore. It is valid only
when OFLAG specifies the O_CREAT flag
bit.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–49

POSIX_SEM_POST
The POSIX_SEM_POST procedure adds one to the value of a named or unnamed
semaphore. A semaphore is unlocked when it has a value greater than 0.

Supported Functions

POSIX_SEM_POST provides a function equivalent to the C language sem_post() function.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_SEM_POST (SEM, ERRNO);
 VALUE SEM;
 REFERENCE ERRNO;
 INTEGER SEM, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

SEM Call-by-value integer This input parameter contains a
semaphore identifier.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–50 7011 8351–002

POSIX_SEM_TRYWAIT
The POSIX_SEM_TRYWAIT operates on named or unnamed semaphores as follows:

If the semaphore
value is . . . Then POSIX_SEM_TRYWAIT . . .

greater than 0 decrements the semaphore value by 1 and returns immediately.

0 returns an EAGAIN error. The value of the semaphore is not
changed.

Supported Functions

POSIX_SEM_TRYWAIT provides a function equivalent to the C language sem_trywait()
function.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_SEM_TRYWAIT (SEM, ERRNO);
 VALUE SEM;
 REFERENCE ERRNO;
 INTEGER SEM, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

SEM Call-by-value integer This input parameter contains a
semaphore identifier.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–51

POSIX_SEM_UNLINK
The POSIX_SEM_UNLINK procedure deletes the name of a semaphore from the system
table.

Supported Functions

POSIX_SEM_UNLINK provides a function equivalent to the C language sem_unlink()
function.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_SEM_UNLINK (NAME, NAME_OFF, NAME_LEN, ERRNO);
 VALUE NAME_OFF, NAME_LEN;
 REFERENCE NAME, ERRNO;
 EBCDIC ARRAY NAME [0]
 INTEGER NAME_OFF, NAME_LEN, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

NAME,
NAME_OFF,
NAME_LEN

EBCDIC array input The array contains the name of the
applicable semaphore. This name must
conform to POSIX pathname naming rules.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–52 7011 8351–002

POSIX_SEM_WAIT
The POSIX_SEM_WAIT procedure decrements the value of an unlocked named or
unnamed semaphore. If the semaphore is already locked (that is, has a value of 0), the
procedure waits until it is unlocked by another process.

Supported Functions

POSIX_SEM_WAIT provides a function equivalent to the C language sem_wait() function.

Procedure Declaration

You declare the procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_SEM_WAIT (SEM, ERRNO);
 VALUE SEM;
 REFERENCE ERRNO;
 INTEGER SEM, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

SEM Call-by-value integer This input parameter contains a
semaphore identifier.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–53

POSIX_SETIDS
The POSIX_SETIDS procedure changes either:

• Various values associated with the calling process

• The process group ID of a specified process.

Supported Functions

The SELECTOR parameter defines the functions supported by this procedure.

Procedure Declaration

You declare this procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_SETIDS (SELECTOR, PID, INFO, ERRNO);
 VALUE SELECTOR, PID, INFO;
 REFERENCE ERRNO;
 INTEGER SELECTOR, PID, INFO, ERRNO;
LIBRARY MCPSUPPORT;

POSIX-Related Library Procedures

5–54 7011 8351–002

Parameter Summary

Parameter Rule Description

SELECTOR Call-by-value integer This input parameter defines the
equivalent function:

1 setuid()
2 setgid()
3 setsid()
3 SETPGRP - (not a C function -

described in Section 3)
4 setpgid()
5 umask()
6 NICE - (not a C function - described in

Section 3)
7 seteuid() - (not yet supported)
8 setegid() - (not yet supported)

PID Call-by-value integer This input parameter is only valid if the
SELECTOR value is 4.

For the setpgid() function, it contains a
process ID.

INFO Call-by-value integer This input parameter identifies a value
appropriate for the specified SELECTOR
function.

For SELECTOR values 1 or 7, this value
represents a user ID.

For SELECTOR values 2 or 8, this value
represents a group ID.

For SELECTOR value 4, this value
represents a process group ID.

For SELECTOR value 5, this value
represents the file mode creation mask.
See “INFO parameter” in Section 2 for a
description of this mask.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–55

POSIX_SIGHANDLER
The POSIX_SIGHANDLER procedure provides a number of functions associated with
signals.

Supported Functions

The SELECTOR parameter defines the C function invoked by this procedure.

Procedure Declaration

You declare this procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_SIGHANDLER (SELECTOR, SIG, ACT_PROC, VAR1, VAR2,
 OVAR1, ACT, ACT_OFF, ACT_LEN, OACT,
 OACT_OFF, OACT_MAX, ERRNO);
 VALUE SELECTOR, SIG, VAR1, VAR2, ACT_OFF, ACT_LEN,
 OACT_OFF, OACT_MAX;
 REFERENCE ACT_PROC, OVAR1, ACT, OACT, ERRNO;
 INTEGER SELECTOR, SIG, VAR1, VAR2, OVAR1, ACT_OFF, ACT_LEN,
 OACT_OFF, OACT_MAX, ERRNO;
 REAL ARRAY ACT, OACT [0];

INTEGER PROCEDURE ACT_PROC (INFO1, INFO2, INFO3, INFO4, INFO5,
 INFO6, INFO7, INFO8, INFO9, INFO10);
 VALUE INFO1, INFO2, INFO3, INFO4, INFO5,
 INFO6, INFO7, INFO8, INFO9, INFO10;
 INTEGER INFO1, INFO2, INFO3, INFO4, INFO5,
 INFO6, INFO7, INFO8, INFO9, INFO10;
FORMAL;
LIBRARY MCPSUPPORT;

POSIX-Related Library Procedures

5–56 7011 8351–002

Parameter Summary

Parameter Rule Description

SELECTOR Call-by-value integer This input parameter defines the
equivalent C function or macro:

1 sigaction()
2 sigset()
3 signal()
4 sighold()
5 sigrelse()
6 sigignore()
7 sigprocmask()
8 sigpending()
9 pause()
10 sigsuspend()
11 raise()
12 kill()
13 sigpause()
14 sigpush() macro

No function uses all parameters. See
“Parameter Usage for Specific Functions”
following this table for a summary of the
parameters used by each function.

SIG Call-by-value integer This input parameter defines the signal
type.

See “SIG Parameter” in Section 2 for an
enumeration of signal types.

ACT_PROC Signal handler
procedure

ACT_PROC defines the procedure invoked
when the specified signal occurs. It is an
integer procedure with ten integer
variables.

See “Signal handler procedure” in
Section 2 for additional information.

VAR1 Call-by-value integer The meaning of this input parameter
depends on the function. See “Parameter
Usage for Specific Functions” following
this table for further information.

VAR2 Call-by-value integer The meaning of this input parameter
depends on the function. See “Parameter
Usage for Specific Functions” following
this table for further information

OVAR1 Call-by-value integer The meaning of this output parameter
depends on the function. See “Parameter
Usage for Specific Functions” following
this table for further information

POSIX-Related Library Procedures

7011 8351–002 5–57

Parameter Rule Description

ACT,
ACT_OFF,
ACT_LEN

Structure array input The array contains a SIGACTION structure
defining action to be assigned to the
signal type.

See “SIGACTION structure” in Section 2
for additional information.

OACT,
OACT_OFF,
OACT_MAX

Structure array
output

The array contains the SIGACTION
structure currently assigned to the signal
type. It consists of the same three words
detailed in the ACT array description.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

Parameter Usage for Specific Functions

Equivalent C Function Parameters Used

sigaction() SELECTOR

SIG

ACT_PROC

ACT, ACT_OFF, ACT_LEN

OACT, OACT_OFF, OACT_LEN

ERRNO

sigset(),
signal()

SELECTOR

SIG

ACT_PROC

VAR1 - Serves as the equivalent of the disp argument. See
“DISP parameter” in Section 2 for additional
information.

ERRNO

sighold(),
sigrelse(),
sigignore(),
raise(),
sigpause()

SELECTOR

SIG

ERRNO

POSIX-Related Library Procedures

5–58 7011 8351–002

Equivalent C Function Parameters Used

sigprocmask() SELECTOR

VAR1- Serves as the equivalent of the how argument: See
“HOW parameter” in Section 2 for additional
information.

VAR2 - Serves as the equivalent of the set argument.
Identifies the set of signal types to be added to,
removed from, or used as, the process’s signal mask
(blocked signals).

OVAR1 - Serves as the equivalent of the oset argument.
Identifies the current process’s signal mask (blocked
signals).

ERRNO

sigpending() SELECTOR

OVAR1 - Serves as the equivalent of the set argument.
Identifies the set of pending signals.

ERRNO

pause(),
sigpush() macro

SELECTOR

ERRNO

sigsuspend() SELECTOR

VAR1 - Serves as the equivalent of the sigmask argument.
Identifies the local set of signal types.

ERRNO

kill() SELECTOR

SIG

VAR1 - Serves as the equivalent of the pid argument
(indicates receiving process or processes. See “PID
parameter (KILL)” in Section 2 for additional
information.

ERRNO

POSIX-Related Library Procedures

7011 8351–002 5–59

POSIX_SREAD_x
Two procedures are available to read data from a file associated with a specified file
descriptor.

• POSIX_SREAD_E transfers data into a specified EBCDIC buffer array.

• POSIX_SREAD_R transfers data into a specified real buffer array.

These procedures are cover functions to the FIBSTACK routines; each procedure obtains
a FIB reference from the specified file descriptor, generates appropriate parameters, and
enters the appropriate FIBSTACK routine.

Functions Supported:

The POSIX_SREAD_x procedures provide a function equivalent to the C language read()
function.

POSIX_SREAD_E Procedure Declaration

You declare a POSIX_SREAD_E procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_SREAD_E (FILDES, EBUF, EBUF_OFF, SYZE, IORESULT,
 ERRNO);
 VALUE FILDES, EBUF_OFF, SYZE;
 REFERENCE EBUF, IORESULT, ERRNO;
 INTEGER FILDES, EBUF_OFF, ERRNO;
 REAL SYZE, IORESULT;
 EBCDIC ARRAY EBUF [0];
LIBRARY MCPSUPPORT;

POSIX_SREAD_R Procedure Declaration

You declare a POSIX_SREAD_R procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_SREAD_R (FILDES, RBUF, RBUF_OFF, SYZE, IORESULT,
 ERRNO);
 VALUE FILDES, RBUF_OFF, SYZE;
 REFERENCE RBUF, IORESULT, ERRNO;
 INTEGER FILDES, RBUF_OFF, ERRNO;
 REAL SYZE, IORESULT;
 REAL ARRAY RBUF [0];
LIBRARY MCPSUPPORT;

POSIX-Related Library Procedures

5–60 7011 8351–002

Parameter Summary

Parameter Rule Description

FILDES Call-by-value integer This input parameter contains a file
descriptor that references the applicable
open file description.

xBUF,
xBUF_OFF

EBCDIC array input

or

Real array input

The array that receives serial read data
(EBCDIC or real).

SYZE Call-by-value real This input parameter specifies the number
of FRAMESIZE units to transfer into the
array.

IORESULT Call-by-reference
real

This output parameter receives the
FIBSTACK result from the I/O operation.
The format is identical to that defined for
the STATE attribute.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–61

POSIX_STRINGIDS
The POSIX_STRINGIDS procedure retrieves information associated with the calling
process or a specified file descriptor.

Supported Functions

The SELECTOR parameter defines the seven functions supported by this procedure.

Procedure Declaration

You declare this procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_STRINGIDS (SELECTOR, INFO, S, S_OFF, S_MAX, ERRNO);
 VALUE SELECTOR, INFO, S_OFF, S_MAX;
 REFERENCE S, ERRNO;
 EBCDIC ARRAY S [0];
 INTEGER SELECTOR, INFO, S_OFF, S_MAX, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

SELECTOR Call-by-value
integer

This input parameter defines the equivalent function:

1 ctermid() - (not yet supported)
2 cuserid()
3 getlogin()
4 ttyname() - (not yet supported)
5 getcwd()
6 GETUSERNAME - (not a C function - see Section 3)
7 GETUSERID - (not a C function - see Section 3)

INFO Call-by-value
integer

This input parameter is only valid if the SELECTOR value
is 4 or 6.

For the ttyname() function, INFO specifies the file
descriptor associated with the terminal device.

For the GETUSERNAME function, INFO specifies a user
ID value.

S,
S_OFF,
S_MAX

EBCDIC array
output

EBCDIC array
input

For all functions except GETUSERID, the output array
receives the requested sting.

If the SELECTOR value is 7, the input array contains a
user name.

ERRNO ERRNO This returned value indicates error status. See “ERRNO”
in Section 2.

<result> Integer result A function-specific result is returned. See “Result
(Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–62 7011 8351–002

POSIX_SWRITE_x
Two procedures are available to write data to the file associated with a specified file
descriptor.

• POSIX_SWRITE_E transfers data from a specified EBCDIC buffer array.

• POSIX_SWRITE_R transfers data from a specified real buffer array.

These procedures are cover functions to the FIBSTACK routines; each procedure obtains
a FIB reference from the specified file descriptor, generates appropriate parameters, and
enters the appropriate FIBSTACK routine.

Functions Supported:

The POSIX_SWRITE_x procedures provide a function equivalent to the C language
write() function.

POSIX_SWRITE_E Procedure Declaration

You declare a POSIX_SWRITE_E procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_SWRITE_E (FILDES, EBUF, EBUF_OFF, SYZE, IORESULT,
 ERRNO);
 VALUE FILDES, EBUF_OFF, SYZE;
 REFERENCE EBUF, IORESULT, ERRNO;
 INTEGER FILDES, EBUF_OFF, ERRNO;
 REAL SYZE, IORESULT;
 EBCDIC ARRAY EBUF [0];
LIBRARY MCPSUPPORT;

POSIX_SWRITE_R Procedure Declaration

You declare a POSIX_SWRITE_R procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_SWRITE_R (FILDES, RBUF, RBUF_OFF, SYZE, IORESULT,
 ERRNO);
 VALUE FILDES, RBUF_OFF, SYZE;
 REFERENCE RBUF, IORESULT, ERRNO;
 INTEGER FILDES, RBUF_OFF, ERRNO;
 REAL SYZE, IORESULT;
 REAL ARRAY RBUF [0];
LIBRARY MCPSUPPORT;

POSIX-Related Library Procedures

7011 8351–002 5–63

Parameter Summary

Parameter Rule Description

FILDES Call-by-value integer This input parameter contains a file
descriptor that references the applicable
open file description.

xBUF,
xBUF_OFF

EBCDIC array input

or

Real array input

The array is the source of serial write data
(EBCDIC or real).

SYZE Call-by-value real This input parameter specifies the number
of FRAMESIZE units to transfer from the
array.

IORESULT Call-by-reference
real

This output parameter receives the
FIBSTACK result from the I/O operation.
The format is identical to that defined for
the STATE attribute.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–64 7011 8351–002

POSIX_SYSCONF
The POSIX_SYSCONF procedure determines the current value of a specified configurable
system variable.

Supported Functions

POSIX_SYSCONF provides a function equivalent to the C language sysconf() function.

Procedure Declaration

You declare this procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
REAL PROCEDURE POSIX_SYSCONF (NAME, ERRNO);
 VALUE NAME;
 REFERENCE ERRNO;
 INTEGER NAME, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

NAME Call-by-value integer This input parameter specifies a value
representing the applicable configurable
system variable.

See “Name parameter (SYSCONF)” in
Section 2 for a description of the variable
associated with each integer value.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–65

POSIX_TIME
The POSIX_TIME procedure obtains a value (number of seconds since 00:00:00 Greenwich
Mean Time on January 1, 1970) that represents the current time. This value is returned as
an integer result.

Supported Functions

POSIX_TIME provides a function equivalent to the C language time() function.

Procedure Declaration

You declare this procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_TIME (ERRNO);
 REFERENCE ERRNO;
 INTEGER ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> <real result> A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–66 7011 8351–002

POSIX_TIMES
The POSIX_TIMES procedure returns time accounting information for the current process
and its child processes.

Supported Functions

POSIX_TIMES provides a function equivalent to the C language times() function.

Procedure Declaration

You declare this procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_TIMES (BUF, BUF_OFF, BUF_MAX, BUF_LEN, ERRNO);
 VALUE BUF_OFF, BUF_MAX;
 REFERENCE BUF, BUF_LEN, ERRNO;
 REAL ARRAY BUF [0];
 INTEGER BUF_OFF, BUF_MAX, BUF_LEN, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

BUF,
BUF_OFF,
BUF_MAX

Real array output The array holds requested time
accounting information.

See “TMS structure” in Section 2 for a
definition of this data.

BUF_LEN Call-by-reference
integer

This output parameter indicates the
number of words written into the BUF
array.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

7011 8351–002 5–67

POSIX_UNAME
The POSIX_UNAME procedure returns hardware and software information about the host
system processing environment.

Supported Functions

POSIX_UNAME provides a function equivalent to the C language uname() function.

Procedure Declaration

You declare this procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_UNAME (NAME, NAME_OFF, NAME_MAX, ERRNO);
 VALUE NAME_OFF, NAME_MAX;
 REFERENCE NAME, ERRNO;
 REAL ARRAY NAME [0];
 INTEGER NAME_OFF, NAME_MAX, ERRNO;
LIBRARY MCPSUPPORT;

Parameter Summary

Parameter Rule Description

NAME,
NAME_OFF,
NAME_MAX

Real array output The array holds requested system
information.

See “UTSNAME structure” in Section 2 for
a definition of this data.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–68 7011 8351–002

POSIX_WAITPID
The POSIX_WAITPID procedure suspends the execution of the calling process until a
specified child process returns status information.

Supported Functions

POSIX_WAITPID provides functions equivalent to the C language wait() and waitpid()
functions. The following conditions force a function equivalent to wait():

• PID parameter = -1

• OPTION parameter = 0

Procedure Declaration

You declare this procedure as follows:

LIBRARY MCPSUPPORT (LIBACCESS = BYFUNCTION);
INTEGER PROCEDURE POSIX_WAITPID (SELECTOR, PID, STAT_LOC, OPTION,
 STRUCT, STRUCT_OFF, STRUCT_MAX, ERRNO;
 VALUE SELECTOR, PID, OPTION, STRUCT_OFF, STRUCT_MAX;
 REFERENCE STRUCT, STAT_LOC, ERRNO;
 REAL ARRAY STRUCT [0];
 INTEGER SELECTOR, PID, STAT_LOC, OPTION, STRUCT_OFF, STRUCT_MAX,
 ERRNO;
LIBRARY MCPSUPPORT;

POSIX-Related Library Procedures

7011 8351–002 5–69

Parameter Summary

Parameter Rule Description

SELECTOR Call-by-value integer This input parameter must contain a value
of 1.

PID Call-by-value integer This input parameter indicates the child
process for which status is to be received.

See “PID parameter (WAITPID)” in
Section 2 for further information.

STAT_LOC Call-by-reference
integer

This output parameter receives the
termination status for the specified
process.

See “STATUS parameter” in Section 2 for
an analysis of the returned termination
status.

OPTION Call-by-value integer This input parameter defines function
options.

See “Option parameter (WAITPID)” in
Section 2 for further information.

STRUCT,
STRUCT_OFF,
STRUCT_MAX

Structure array
output

Not used.

ERRNO ERRNO This returned value indicates error status.
See “ERRNO” in Section 2.

<result> Integer result A function-specific result is returned. See
“Result (Integer or Real)” in Section 2.

POSIX-Related Library Procedures

5–70 7011 8351–002

7011 8351–002 6–1

Section 6
Programming Examples

About this Section

This section contains sample programs that illustrate the use of POSIX interface based
functions in ALGOL programs. Additional examples will be provided in future releases.

Example 1 illustrates a simple ALGOL program that uses many of the functions described
in Section 3. Note that this program includes the SYMBOL/POSIX/ALGOL/PROPERTIES
file. Briefly, this program:

• Executes a DIRSETUP procedure. This procedure:

− Displays the starting (old) current working directory, changes this directory to
“tempdir”, and then displays the new working directory. The GETCWD and
CHDIR functions are used.

− Determines if the process has read permission for an existing file (“tempfile”). If
not, the program sets read/write/execute permissions for all users of that file. The
ACCESS and CHMOD functions are used.

• Executes the SIGSETUP procedure. This procedure:

− Creates a signal environment for this process. The SIGPUSH function is used.

− Defines a signal-catching function for the SIGALRM signal. The SIGACTION
function is used.

− Pauses for a period of 10 seconds. The ALARM and PAUSE functions are used.

− Suspends execution for 100 seconds. The PAUSE function is used.

• Uses the SEMGET function to create a semaphore set containing 2 semaphores; read
and alter access permissions are set for all users.

• Uses the SEMCTL function to set the semaphore's SEMVAL value to 1.

• Uses the SETSID function to establish the calling process as a process group and
session leader.

• Creates a child process with the FORK function.

Programming Examples

6–2 7011 8351–002

• The child process performs the following operations:

− It executes the CHILD_INFO and PERSONAL_INFO procedures to print a variety
of information (user, group, and process group IDs) common to both the parent
and child process. Various GET... functions provide this information.

− It prints its process ID (obtained with the GETPID function).

• The parent process performs the following operations:

− It executes the PARENT_INFO and PERSONAL_INFO procedures to print a
variety of information (user, group, and process group IDs) common to both the
parent and child process. Various GET... functions provide this information.

− It prints its process ID (obtained with the GETPID function).

− It suspends execution with the WAITP function.

Example 2 is a C language program that provides functions equivalent to those in
Example 1.

Programming Examples

7011 8351–002 6–3

BEGIN
$INCLUDE "SYMBOL/POSIX/ALGOL/PROPERTIES."

 FILE RMT (KIND=REMOTE, UNITS=CHARACTERS, MAXRECSIZE=80);
 ARRAY MSG [0:20]; POINTER MSGP; REAL MSGLN;
 EBCDIC ARRAY EMSG [0:99];

 DEFINE
 SEND_MSG (L, P) = BEGIN
 REPLACE POINTER (P) + L BY 0 FOR 1;
 IF MYSELF.SW1
 THEN
 DISPLAY (P)
 ELSE
 WRITE (RMT, L, P);
 END #,
 MSG_INIT = MSGP := POINTER (MSG) #,
 PTXT (X) = REPLACE MSGP:MSGP BY X #,
 PNUM (X) = BEGIN
 IF (X) < 0 THEN PTXT ("-");
 PTXT ((X) FOR * DIGITS);
 END #,
 PSTR (X) = PTXT ((X) UNTIL = 0) #,
 PERR (N) = BEGIN
 REPLACE EMSG BY 0 FOR 100;
 STRERROR(EMSG,0,100,N);
 PTXT("@LINE "); PTXT(LINENUMBER FOR 8 DIGITS);
 PTXT(" ERROR= "); PNUM(N);
 PTXT(" "); PSTR(EMSG);
 FLUSH;
 N := 0;
 END #,
 FLUSH = BEGIN
 SEND_MSG (OFFSET (MSGP), MSG);
 MSGP := POINTER (MSG);
 END #;

 DEFINE GET_CONTROL = SEM_OPERATION(-1) #,
 REL_CONTROL = SEM_OPERATION(1) #;

 DEFINE PATH_MAX = 256 #,
 NAME_MAX = 3 #,
 NGROUPS_MAX = 16 #;

 INTEGER GLOB, FLAG, SEMID;
 INTEGER I, ERR, STATUS, VAR, PID;

Example 6–1. Using POSIX Functions in an ALGOL Program (cont.)

Programming Examples

6–4 7011 8351–002

 LABEL XIT;
 EBCDIC ARRAY STR[0:99];
 REAL ARRAY SOPS[0:2], ARG[0:SEMID_DS_SIZE-1];

 PROCEDURE PRINTGROUP(GROUPID); % PRINTGROUP procedure
 INTEGER GROUPID;
 BEGIN
 ARRAY GR [0:99];
 INTEGER ERR;

 PNUM(GROUPID);PTXT("(");
 IF GETGRGID(GROUPID, GR, 0, 100, ERR) < 0 THEN
 BEGIN
 PTXT("?????)");FLUSH;
 STRERROR(STR, 0, 100, ERR);
 PTXT("GETGRGID ERROR: ");PSTR(STR);FLUSH;
 END
 ELSE
 BEGIN
 PSTR(POINTER(GR[GR_NAME]));PTXT(")");FLUSH;
 END;

 END OF PRINTGROUP;

 PROCEDURE PRINTUSER(USERID); % PRINTUSER procedure
 INTEGER USERID;
 BEGIN ARRAY PW [0:PW_SIZE-1];
 INTEGER ERR;

 PNUM(USERID);PTXT("(");
 IF GETPWUID(USERID, PW, 0, PW_SIZE, ERR) < 0 THEN
 BEGIN
 PTXT("?????)");FLUSH;
 STRERROR(STR, 0, 100, ERR);
 PTXT("GETPWUID ERROR: ");PSTR(STR);FLUSH;
 END
 ELSE
 BEGIN
 PSTR(POINTER(PW[PW_NAME]));PTXT(")");FLUSH;
 END;

 END OF PRINTUSER;

 PROCEDURE PRINTALLGROUPS; % PRINTALLGROUPS procedure
 BEGIN
 INTEGER NGROUPS, I, GID, ERR;
 INTEGER ARRAY LISTX[0:NGROUPS_MAX*NAME_MAX-1];
 LABEL XIT;

Example 6–1. Using POSIX Functions in an ALGOL Program (cont.)

Programming Examples

7011 8351–002 6–5

 NGROUPS := GETGROUPS(LISTX, 0, 0, ERR);
 IF NGROUPS < 0 THEN
 BEGIN
 STRERROR(STR, 0, 100, ERR);
 PTXT("GETGROUPS ERROR: ");PSTR(STR);FLUSH;
 GO XIT;
 END
 ELSE IF NGROUPS = 0 THEN
 BEGIN
 PTXT("NO SUPPLEMENTARY GROUPS ARE AVAILABLE");FLUSH;
 GO XIT;
 END;

 IF GETGROUPS(LISTX, 0, NGROUPS_MAX*NAME_MAX, ERR) < 0 THEN
 BEGIN
 STRERROR(STR, 0, 100, ERR);
 PTXT("GETGROUPS ERROR: ");PSTR(STR);FLUSH;
 GO XIT;
 END;

 PTXT("THE FOLLOWING SUPPLEMENTARY GROUPS ARE AVAILABLE");FLUSH;
 FOR I := 0 STEP 1 UNTIL NGROUPS-1 DO
 BEGIN
 PTXT(" ");PNUM(I);PTXT(" ");PNUM(LISTX[I]);FLUSH;
 END;

 XIT:

 END OF PRINTALLGROUPS;

 PROCEDURE PERSONAL_INFO; % PERSONAL_INFO procedure
 BEGIN
 INTEGER UID, GID, ERR;
 EBCDIC ARRAY BUF[0:99];

 IF GETLOGIN(BUF, 0, 100, ERR) < 0 THEN
 BEGIN
 PTXT("LOGIN NAME IS NOT KNOWN");FLUSH;
 END
 ELSE
 BEGIN
 PTXT("LOGIN NAME IS ");PSTR(BUF);FLUSH;
 END;

 PRINTUSER(GETUID(ERR));
 PRINTUSER(GETEUID(ERR));
 PRINTGROUP(GETGID(ERR));

Example 6–1. Using POSIX Functions in an ALGOL Program (cont.)

Programming Examples

6–6 7011 8351–002

 PRINTGROUP(GETEGID(ERR));
 PRINTALLGROUPS;
 END OF PERSONAL_INFO;

 PROCEDURE PARENT_INFO; % PARENT_INFO procedure
 BEGIN
 INTEGER ERR;

 PTXT("<<<< PARENT PROCESS >>>>");FLUSH;
 PTXT("REAL USER ID FOR PARENT ");PNUM(GETUID(ERR));FLUSH;
 PTXT("REAL GROUP ID FOR PARENT ");PNUM(GETGID(ERR));FLUSH;
 PTXT("EFFECTIVE USER ID FOR PARENT ");PNUM(GETEUID(ERR));FLUSH;
 PTXT("EFFECTIVE GROUP ID FOR PARENT ");PNUM(GETEGID(ERR));FLUSH;
 PTXT("PROCESS GROUP ID FOR PARENT ");PNUM(GETPGRP(ERR));FLUSH;
 PERSONAL_INFO;

 END OF PARENT_INFO;

 PROCEDURE CHILD_INFO; % CHILD_INFO procedure
 BEGIN
 INTEGER ERR;

 PTXT("<<<< CHILD PROCESS >>>>");FLUSH;
 PTXT("REAL USER ID FOR CHILD ");PNUM(GETUID(ERR));FLUSH;
 PTXT("REAL GROUP ID FOR CHILD ");PNUM(GETGID(ERR));FLUSH;
 PTXT("EFFECTIVE USER ID FOR CHILD ");PNUM(GETEUID(ERR));FLUSH;
 PTXT("EFFECTIVE GROUP ID FOR CHILD ");PNUM(GETEGID(ERR));FLUSH;
 PTXT("PROCESS GROUP ID FOR CHILD ");PNUM(GETPGRP(ERR));FLUSH;
 PERSONAL_INFO;

 END OF CHILD_INFO;

 INTEGER PROCEDURE DIRSETUP; % DIRSETUP procedure
 BEGIN
 EBCDIC ARRAY BUF[0:PATH_MAX-1];
 EBCDIC ARRAY NEWDIR[0:255], NEWFILE[0:255];
 INTEGER ERR;
 LABEL XIT;

 IF GETCWD(BUF, 0, PATH_MAX, ERR) < 0 THEN
 BEGIN
 STRERROR(STR, 0, 100, ERR);
 PTXT("GETCWD ERROR: ");PSTR(STR);FLUSH;
 DIRSETUP := -1;
 GO XIT;
 END;

Example 6–1. Using POSIX Functions in an ALGOL Program (cont.)

Programming Examples

7011 8351–002 6–7

 PTXT("OLD WORKING DIRECTORY IS ");PSTR(BUF);FLUSH;
 REPLACE NEWDIR BY "tempdir", 0;
 IF CHDIR(NEWDIR, 0, PATH_MAX, PATH_TYPE_PATHNAME,
 SEARCHRULE_POSIX, ERR) < 0 THEN
 BEGIN
 STRERROR(STR, 0, 100, ERR);
 PTXT("CHDIR ERROR: ");PSTR(STR);FLUSH;
 DIRSETUP := -1;
 GO XIT;
 END;

 IF GETCWD(BUF, 0, PATH_MAX, ERR) < 0 THEN
 BEGIN
 STRERROR(STR, 0, 100, ERR);
 PTXT("GETCWD ERROR: ");PSTR(STR);FLUSH;
 DIRSETUP := -1;
 GO XIT;
 END;

 PTXT("NEW WORKING DIRECTORY IS ");PSTR(BUF);FLUSH;
 REPLACE NEWFILE BY "tempfile", 0;

 IF ACCESS(NEWFILE, 0, PATH_MAX, PATH_TYPE_PATHNAME,
 SEARCHRULE_POSIX, R_OK, ERR) < 0 THEN
 BEGIN
 IF CHMOD(NEWFILE, 0, PATH_MAX, PATH_TYPE_PATHNAME,
 SEARCHRULE_POSIX, 1"111111111", ERR) < 0 THEN
 BEGIN
 STRERROR(STR, 0, 100, ERR);
 PTXT("CHMOD ERROR: ");PSTR(STR);FLUSH;
 DIRSETUP := -1;
 END;
 END;

 XIT:

 END OF DIRSETUP;

% SIGNAL HANDLING PROCEDURE. % SIGHANDLER procedure
INTEGER PROCEDURE SIG_HANDLER (SIG,INFO1,INFO2,INFO3,INFO4,INFO5,
 INFO6,INFO7,INFO8,INFO9);
 VALUE SIG,INFO1,INFO2,INFO3,INFO4,INFO5,INFO6,INFO7,INFO8,
 INFO9;
 INTEGER SIG,INFO1,INFO2,INFO3,INFO4,INFO5,INFO6,INFO7,INFO8,
 INFO9;
 BEGIN

Example 6–1. Using POSIX Functions in an ALGOL Program (cont.)

Programming Examples

6–8 7011 8351–002

 PTXT("INTERCEPTED A SIGALRM SIGNAL");FLUSH;
 FLAG := 0;
 END OF SIG_HANDLER;

 PROCEDURE SIGSETUP; % SIGSETUP procedure
 BEGIN
 INTEGER R, ERR;
 ARRAY ACT[0:2], OACT[0:2], NULL[0:0];
 LABEL XIT;

 % FIRST DO A SIGPUSH TO MAKE THE STACK SIGNAL CAPABLE
 R := SIGPUSH(ERR);
 IF R < 0 THEN
 BEGIN
 STRERROR(STR, 0, 100, ERR);
 PTXT("SIGPUSH ERROR: ");PSTR(STR);FLUSH;
 GO XIT;
 END;
 % ESTABLISH THE SIGNAL CATCHING FUNCTION
 % ASSOCIATE SIGALRM TO THE SIG_HANDLER PROCEDURE
 R := SIGACTION(SIGALRM, SIG_HANDLER, ACT, 0, 3, NULL, 0, 0, ERR);
 IF R < 0 THEN
 BEGIN
 STRERROR(STR, 0, 100, ERR);
 PTXT("SIGACTION ERROR: ");PSTR(STR);FLUSH;
 GO XIT;
 END;

 % TEST SIGNAL CATCHING FUNCTION
 FLAG := 1;
 IF ALARM(10, ERR) < 0 THEN
 BEGIN
 STRERROR(STR, 0, 100, ERR);
 PTXT("ALARM ERROR: ");PSTR(STR);FLUSH;
 GO XIT;
 END;

Example 6–1. Using POSIX Functions in an ALGOL Program (cont.)

Programming Examples

7011 8351–002 6–9

 PAUSE(ERR);
 PTXT("DONE WITH PAUSE");FLUSH;
 FLAG := 1;
 IF ALARM(10, ERR) < 0 THEN
 BEGIN
 STRERROR(STR, 0, 100, ERR);
 PTXT("ALARM ERROR: ");PSTR(STR);FLUSH;
 GO XIT;
 END;

 SLEEP(100, ERR);
 PTXT("DONE WITH SLEEP");FLUSH;

 XIT:

 END OF SIGSETUP;

 INTEGER PROCEDURE SEM_OPERATION(OP); % SEM_OPERATION procedure
 INTEGER OP;
 BEGIN
 INTEGER R;

 SOPS[0] := 0; % SEMAPHORE NUMBER IN A SET
 SOPS[1] := OP; % OPERATION TO BE PERFORMED
 SOPS[2] := 0; % MODIFIER FLAG FOR THE OPERATION
 R := SEMOP(SEMID, SOPS, 0, 3, 1, ERR);
 IF R < 0 THEN
 BEGIN
 STRERROR(STR, 0, 100, ERR);
 PTXT("SEMOP ERROR: ");PSTR(STR);FLUSH;
 SEM_OPERATION := -1;
 END;

 END OF SEM_OPERATION;

 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 % START OF THE TEST PROGRAM % % Main program
 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 MSG_INIT;
 FLUSH;

 I := LINKLIBRARY(MCPSUPPORT);
 PTXT("RESULT OF LINKLIBRARY IS ");PNUM(I);
 FLUSH;

 DIRSETUP; % SET UP CURRENT DIRECTORY
 SIGSETUP; % SET UP SIGNAL CATCHING FUNCTION

Example 6–1. Using POSIX Functions in an ALGOL Program (cont.)

Programming Examples

6–10 7011 8351–002

 % CREATE A SEMAPHORE
 SEMID := SEMGET(1000, 2, 1"111111111" & 1 IPC_CREAT, ERR);
 IF SEMID < 0 THEN
 BEGIN
 STRERROR(STR, 0, 100, ERR);
 PTXT("SEMGET ERROR: ");PSTR(STR);FLUSH;
 GO XIT;
 END;

 ARG[0] := ARG[1] := 1;
 SEMCTL(SEMID, 2, SEM_SETALL, 0, ARG, 0, SEMID_DS_SIZE, ERR);

 VAR := 88;
 SETSID(ERR); % ESTABLISH THE CALLING PROCESS AS SESSION AND
 % PROCESS GROUP LEADER

 PID := FORK(ERR);
 IF PID < 0 THEN
 BEGIN
 STRERROR(STR, 0, 100, ERR);
 PTXT("FORK ERROR: ");PSTR(STR);FLUSH;
 GO XIT;
 END
 ELSE IF PID = 0 THEN % CHILD PROCESS
 BEGIN
 GET_CONTROL; % GET CONTROL
 CHILD_INFO; % PRINT CHILD INFORMATION
 REL_CONTROL; % RELEASE CONTROL
 GLOB := GLOB + 1;
 VAR := VAR + 1;
 PTXT("CHILD PID=");PNUM(GETPID(ERR));PTXT(" GLOB=");PNUM(GLOB);
 PTXT(" VAR=");PNUM(VAR);FLUSH;
 GO XIT;
 END;

 % PARENT PROCESS
 GET_CONTROL; % OBTAIN CONTROL
 PARENT_INFO; % PRINT USER RELATED INFORMATION
 REL_CONTROL; % RELEASE CONTROL

 PTXT("PARENT PID=");PNUM(GETPID(ERR));PTXT(" GLOB=");PNUM(GLOB);
 PTXT(" VAR=");PNUM(VAR);FLUSH;

 WAITP(STATUS, ERR);

XIT:

END.

Example 6–1. Using POSIX Functions in an ALGOL Program

Programming Examples

7011 8351–002 6–11

#include <sys/types.h>
#include <unistd.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <stdio.h>
#include <signal.h>
#include <limits.h>
#include <grp.h>
#include <pwd.h>

#define get_control sem_operation(-1)
#define rel_control sem_operation(1)

#define TRUE 1
#define FALSE 0

void sigsetup();
void parent_info();
void child_info();
void ding(int);
void sem_operation();
void personal_info();
void printallgroups();
void printuser(uid_t);
void printgroup(gid_t);
void dirsetup();

int glob = 6;
short semary[2];
int flag, semid;
struct sembuf psembuf;

int main(int argc, char *argv[])
{
 int status, var;
 pid_t pid;

 dirsetup(); /* set up current directory */
 sigsetup(); /* set up signal catching */

 /* test signal catching function */
 flag = TRUE;
 (void)alarm(10);
 pause();
 (void)printf("Done with pause\n");
 flag = TRUE;

Example 6–2. An Equivalent C Program (cont.)

Programming Examples

6–12 7011 8351–002

 (void)alarm(10);
 sleep(100);
 (void)printf("Done with sleep\n");

 /* create a semaphore */
 semid = semget(1000, 2, 0777|IPC_CREAT);
 if(semid < 0) {
 perror("semget failed");
 exit(-1);
 }
 semary[0]=semary[1]=1;
 semctl(semid, 2, SETALL, semary);

 var=88;
 setsid(); /* establish the calling process as session and
 process group leader */

 if((pid=fork()) < 0) {
 perror("fork error");
 exit(-1);
 }
 else if(pid == 0) { /* child */
 get_control; /* wait for control */
 child_info();
 rel_control; /* release control */
 glob++;
 var++;
 printf("Child pid = %d, glob = %d, var = %d\n",
 getpid(), glob, var);
 printf("end of child\n");
 exit(0);
 }
 /* parent */
 get_control; /* got control? */
 parent_info(); /* print user related information */
 /* wake up child process */
 rel_control; /* release control */
 printf("Parent pid = %d, glob = %d, var = %d\n",
 getpid(), glob, var);
 printf("end of parent\n");
 wait(&status);

 exit(0);
}
void dirsetup()
{

Example 6–2. An Equivalent C Program (cont.)

Programming Examples

7011 8351–002 6–13

char buf[PATH_MAX];
char newdir[] = "tempdir";

char newfile[] = "tempfile";

 if(getcwd(buf,PATH_MAX) == NULL) {
 perror("getcwd failed");
 exit(-1);
 }
 printf("Old Working Directory is %s\n",buf);
 if(chdir(newdir) < 0) {
 perror("chdir failed");
 exit(-1);
 }
 if(getcwd(buf,PATH_MAX) == NULL) {
 perror("getcwd failed");
 exit(-1);
 }
 printf("Current Working Directory is %s\n",buf);
 if(access(newfile, R_OK|W_OK|X_OK) < 0) {
 if(chmod(newfile,0777) < 0) {
 perror("chmod failed");
 exit(-1);
 }
 }
}

void parent_info()
{
 printf("<<<< PARENT PROCESS >>>>\n");
 printf("real user id for parent = %d\n", getuid());
 printf("real group id for parent = %d\n", getgid());
 printf("effective id for parent = %d\n", geteuid());
 printf("effective group id for parent = %d\n", getegid());
 printf("process group id for parent = %d\n", getpgrp());
 personal_info();
}

void child_info()
{
 printf("<<<< CHILD PROCESS >>>>\n");
 printf("real user id for child = %d\n", getuid());
 printf("real group id for child = %d\n", getgid());
 printf("effective id for child = %d\n", geteuid());
 printf("effective group id for child = %d\n", getegid());
 printf("process group id for child = %d\n", getpgrp());
 personal_info();
}

Example 6–2. An Equivalent C Program (cont.)

Programming Examples

6–14 7011 8351–002

void sem_operation(int op)
{
 psembuf.sem_op = op;
#if 0
 psembuf.sem_flg = SEM_UNDO;
#endif
 psembuf.sem_num = 0;
 semop(semid, &psembuf, 1);
}

void ding(int sig)
{
 printf("In signal handling routine!\n");
 flag = FALSE;
 return;
}

void sigsetup()
{
int i;
struct sigaction act,oact;

 /* ignore interrupt from the controlling terminal */
 act.sa_handler = SIG_IGN;
 sigemptyset(&act.sa_mask);
 act.sa_flags = 0;
 if(sigaction(SIGINT,&act,&oact) != 0) {
 perror("sigaction failed");
 exit(-1);
 }
 /* establish the signal catching function */
 act.sa_handler = ding;
 if(sigaction(SIGALRM,&act,&oact) != 0) {
 perror("sigaction failed");
 exit(-1);
 }
}

/* print out the group number in decimal followed by
 groupname. */

void printgroup(gid_t groupid)
{
unsigned long lt;

struct group *grpptr;
 lt = (unsigned long)groupid;
 (void)printf(" %lu(",lt);

Example 6–2. An Equivalent C Program (cont.)

Programming Examples

7011 8351–002 6–15

 grpptr = getgrgid(groupid);
 if(grpptr == NULL)
 {
 (void)printf("?????)");
 return;
 }
 (void)printf("%s)",grpptr->gr_name);
 return;
}

/* print out the user id in decimal followed by (username) */
void printuser(uid_t userid)
{
unsigned long lt;
struct passwd *pwptr;
 lt = (unsigned long)userid;
 (void)printf(" %lt(",lt);
 pwptr = getpwuid(userid);
 if(pwptr == NULL)
 {
 (void)printf("?????)");
 return;
 }
 (void)printf("%s)",pwptr->pw_name);
 return;
}

void printallgroups()
{
int ngroups;
gid_t *grpptr;

int i;
gid_t gid;

#ifndef NGROUPS_MAX
#define NGROUPS_MAX 0
#endif

#if NGROUPS_MAX < 1
 (void)printf("Supplementary group IDs are "
 "not supported\n");
#else
 ngroups = getgroups(0,(gid_t *)NULL);
 if(ngroups == -1)
 {

Example 6–2. An Equivalent C Program (cont.)

Programming Examples

6–16 7011 8351–002

 (void)perror("getgroups() failed");
 return;
 }
 if(ngroups == 0)
 {
 (void)printf("No supplementary groups are "
 "available\n");
 return;
 }
 grpptr = calloc(ngroups,sizeof(gid_t));
 if(getgroups(ngroups,grpptr) == -1)
 {
 (void)perror("getgroups() failed");
 return;
 }
 (void)printf("The following supplementary groups are "
 "available\n");
 for(i=1; i <= ngroups; i++)
 {
 gid = *grpptr++;
 (void)printf("\t");
 printgroup(gid);
 (void)printf("\n");
 }
#endif
 return;
}

void personal_info()
{
uid_t uid;
gid_t gid;
char *login;

 login = getlogin();
 if(login == NULL)
 (void)printf("Login name is not known\n");
 else
 (void)printf("Login name is '%s'\n",login);
 printuser(getuid());
 printuser(geteuid());
 printgroup(getgid());
 printgroup(getegid());
 (void)printf("\n");
 printallgroups();
}

Example 6–2. An Equivalent C Program

7011 8351–002 Glossary–1

Glossary

A
absolute pathname

In the POSIX interface, a pathname that begins with a slash character (/). The absolute
pathname locates a file or a directory starting at the file system root.

array

An ordered collection of a fixed number of common elements under one name, each
element having the same data type. Access for each element is through an index to the
common name.

B
blocked signal

A type of signal that the operating system is not delivering to a receiving process as a
result of a request by that receiving process. The operating system indefinitely postpones
delivery of blocked signals; they remain pending until the process conditions change.

by reference

Pertaining to one method of passing a parameter to a procedure. The system evaluates the
location of the actual parameter and replaces the formal parameter with a reference to
that location. Any change made to the formal parameter affects the actual parameter, and
vice versa. Synonym for call-by-reference.

by value

Pertaining to one method of passing a parameter to a procedure. A copy of the value of the
actual parameter is assigned to the formal parameter, which is thereafter handled as a
variable that is local to the procedure body. Any change made to the value of a by-value
formal parameter has no effect outside the procedure body. Synonym for call-by-value.

byte-file

The type of disk file normally created and accessed by a strictly conforming POSIX.1
application. Many traditional system applications do not process byte-files. The following
file attributes define a byte-file: FILESTRUCTURE=STREAM, FRAMESIZE=8, and
MAXRECSIZE=1. See also record-file.

Glossary

Glossary–2 7011 8351–002

C
call-by-reference

Pertaining to one method of passing a parameter to a procedure. The system evaluates the
location of the actual parameter and replaces the formal parameter with a reference to
that location. Any change made to the formal parameter affects the actual parameter, and
vice versa. Synonym for by reference.

call-by-value

Pertaining to one method of passing a parameter to a procedure. A copy of the value of the
actual parameter is assigned to the formal parameter, which is thereafter handled as a
variable that is local to the procedure body. Any change made to the value of a call-by-
value formal parameter has no effect outside the procedure body. Synonym for by value.

catch a signal

To call a signal-catching function by a process after it is interrupted by delivery of a
specific signal type. See also signal catcher.

child process

In the POSIX interface, a process created with the fork function. It starts as a copy of the
calling (parent) process, but it has its own unique process ID.

code segment dictionary

A memory structure that is associated with a process and that indexes the memory
addresses of the various segments of program code used by that process. The same code
segment dictionary can be shared by more than one process, provided that each process is
an instance of the same procedure. A code segment dictionary is also referred to as a D1
stack.

compiler control option

An individual compiler directive that appears in a compiler control record (CCR).
Compiler control options were previously referred to as compiler dollar options or dollar
options.

current working directory

See working directory.

D
dot

In the POSIX interface, a filename node that consists solely of a single dot character (.).
When part of a pathname, such a node refers to the preceding pathname component.

dot-dot

In the POSIX interface, a filename node that consists of two dot characters (..). When
part of a pathname, such a node refers to the parent of the preceding pathname
component.

D1 stack

See code segment dictionary.

Glossary

7011 8351–002 Glossary–3

D2 stack (D{2} stack)

(1) A stack initiated for each executing program that is used for the storage of items
allocated at lexical level 2. The D2 stack is also referred to as the working stack. (2) In the
transaction processing system (TPS), data and procedures that are global to a particular
transaction base reside in the D2 stack of the transaction library, which is also referred to
as the <transaction base name>/CODE/HOSTLIB stack.

E
EBCDIC

Extended Binary Coded Decimal Interchange Code. An 8-bit code representing 256 graphic
and control characters that are the native character set of most mainframe systems.

EBCDIC array

In ALGOL, an array whose elements are EBCDIC characters.

effective group ID

In the POSIX interface, the group ID currently in effect for a process. The effective group
ID is used to validate file access, establish ownership, and check permissions. This value
is subject to change over the lifetime of the process. It is a numeric value that
corresponds to the GROUPCODE task attribute. See also group ID, real group ID,
GROUPCODE.

effective user ID

In the POSIX interface, the user ID currently in effect for a process. The effective user ID
is used to validate file access, establish ownership, and check permissions. This value is
subject to change over the lifetime of the process. It is a numeric value that corresponds
to the USERCODE task attribute. See also user ID, real user ID, USERCODE.

entry point

A procedure or function that is a library object.

environment

(1) In the Editor, the set of conditions in the area of the object code in which a particular
line of a program is found. This information is stored in the cross-reference files. (2) In the
POSIX interface, an array of string variables of the form "name=value" that specify various
operating characteristics of a process. Individual environment values can be set and
accessed by a program. In addition, a new environment can be established when a
program is executed.

environment variables

(1) In a workstation environment, such as OS/2 , names that specify global values. LIB and
INCLUDE are examples of environment variables. (2) In the POSIX interface, any string
variable contained in the environment.

ERRNO

In the POSIX interface, an external variable for returning error identification information
to the program.

Glossary

Glossary–4 7011 8351–002

F
family name

(1) The name, consisting of up to 17 alphanumeric characters, assigned by an installation
to identify a family of disks. (2) The name (label) of the disk or disk pack on which a
physical file is located. The family name of a file is determined by the value of the
FAMILYNAME file attribute. (3) The name of the logical group of disk packs on which a
physical file is located. A family name consists of from 1 to 17 alphanumeric characters
and is assigned by the installation.

FIB

See file information block.

FIFO special file

In the POSIX interface, a file with the property that data written into it is read on a first-in-
first-out basis. In practice, a FIFO special file is similar to a pipe. However, unrelated
processes can exchange data through a FIFO special file. In addition, a FIFO filename
exists in the system file hierarchy. See also pipe.

file description

See open file description.

file descriptor

In the POSIX interface, a per-process unique, non-negative integer used to identify an open
file for the purpose of file access.

file group class

In the POSIX interface, the property of a file indicating access permissions for a process
related to the process’s group identification. A process is in the file group class if it is not
in the file owner class and if its effective group ID or one of its supplementary group IDs
matches the group ID associated with the file.

file mode

In the POSIX interface, a word containing file permission bits and other characteristics of
a file. File mode is specified in the SECURITYMODE file attribute.

file name

(1) A name or word that designates a set of data items. (2) A unique identifier for a file,
consisting of name constants separated by slashes. Each name constant consists of letters,
digits, and selected special characters. A file name can be optionally preceded by an
asterisk (*) or usercode, and optionally followed by ON and a family name. (3) In RPG, a
name that designates a set of data items. (4) In COBOL, a user-defined word that names a
file described in a file description entry or a sort-merge file description entry within the
FILE SECTION of the DATA DIVISION. (5) In the POSIX interface, a name node within a
pathname.

file offset

In the POSIX interface, the byte position in the file where the next I/O operation begins.

Glossary

7011 8351–002 Glossary–5

file other class

In the POSIX interface, the property of a file indicating access permissions for a process
related to the process’s user and group identification. A process is in the file other class if
it is not in the file owner class or the file group class.

file owner class

In the POSIX interface, the property of a file indicating access permissions for a process
related to the process’s user identification. A process is in the file owner class if its
effective user ID matches the user ID of the file.

file permission bits

In the POSIX interface, information about a file that is used (along with other information)
to determine if a process has read, write, or execute/search permission for that file. File
permission bits are provided in the file mode. These bits are divided into three parts:
owner, group, and other. Each part is used with the corresponding file class of processes.
See also file group class, file mode, file other class, and file owner class.

file title

The complete identifier for a file that consists of the file name, and, for disk files, the word
ON, and the family name.

G
generate a signal

To recognize a signal event and create an appropriate signal.

GID

See group ID.

group

(1) A collection of devices, such as processors, memory modules, and I/O devices, under
the control of a single master control program (MCP). A group is referred to as a partition.
(2) A collection of related data items that can be viewed as a single data item. A group can
also refer to a collection of groups. (3) In the POSIX interface, an association of users who
share a specific group ID as the identifier associated with their GROUPCODE or one of
their SUPPLEMENTARYGRPs.

group class

See file group class.

group ID (GID)

In the POSIX interface, a unique number corresponding to the GROUPCODE task
attribute. The operating system associates the group ID value with an instance of a user
group. A value of 1 indicates that no group is assigned. See also, group, effective group
ID, real group ID.

guard file

A disk file created by the GUARDFILE utility program that describes the access rights of
various users and programs to a program, data file, or database.

Glossary

Glossary–6 7011 8351–002

I
I/O

Input/output. An operation in which the system reads data from or writes data to a file on
a peripheral device such as a disk drive.

include file

An external file that is included as part of a compilation by writing the INCLUDE
preprocessor directive as part of the source text.

integer

(1) A whole number. (2) In COBOL, a numeric literal or a numeric data item that does not
include any character positions to the right of the assumed decimal point.

intrinsic

A system-supplied program routine for common mathematical and other operations that is
loaded onto the system separately. An intrinsic can be invoked by the operating system or
user programs.

L
library

(1) A collection of objects grouped together to be exported to another process, imported
from another process, or both. There are three types of libraries: client libraries, server
libraries, and connection libraries. (2) Synonym for server library.(3) (VDP) A collection
of related files.

library directory

A library template associated with a server library.

library object

An object that is exported by a server library or connection library and imported by a
client library or connection library.

library process

An instance of the execution of a server library program or connection library program.

M
master control program (MCP)

The central program of the enterprise server operating system.

MCP

See master control program.

mix

The set of processes that currently exist on a particular computer. The mix can include
active, scheduled, and suspended processes.

Glossary

7011 8351–002 Glossary–7

mix number

A 4-digit number that identifies a process while it is executing. This number is stored in
the MIXNUMBER task attribute.

N
named semaphore

In the POSIX interface, a semaphore that a process references by name (character string).
Note that only POSIX.4-defined semaphores can be referenced in this way; X/Open-defined
semaphores must be referenced by identifier. See semaphore, unnamed semaphore.

null character

A character whose binary value is zero.

null string

An empty or zero-length string.

O
open file

In the POSIX interface, a file that is currently associated with a file descriptor.

open file description

In the POSIX interface, a record of how a process or group of processes is accessing a file.
Open file description information includes file offset, file status, and file access modes.

other class

See file other class.

owner class

Synonym for file owner class.

owner of a file

A file owner is normally the creator of that file. Typically, the owner has certain privileges
(such as deletion rights) that are not available to other users. The usercode portion of the
file title indicates the owner of most A Series files.

P
parent process

In the POSIX interface, the process that created a child process with the fork function.
See also parent process ID.

parent process ID (PPID)

In the POSIX interface, the process ID of a process’s parent process. When the parent
process’s lifetime is ended, the parent process ID is the process ID of a specified system
process. See also parent process.

Glossary

Glossary–8 7011 8351–002

path

(1) The route that must be traced from a directory to a subdirectory, or through a series of
subdirectories, to find a file. (2) In the I/O subsystem, a set of addresses that uniquely
describes the data flow between the host and any peripheral device. (3) In Network
Definition Language II (NDLII) and X.25, a route between two nodes. (4) In Data
Management System II (DMSII), a specific location within the logical ordering of a data
set, set, subset, or access. (5) In Extended Retrieval with Graphic Output (ERGO), an
ordered list of data sets used in generating a report. (6) In the MS-DOS operating system, a
specification of all the directories that must be searched to find a file.

pathname

In the POSIX interface, the ordered list of directory filenames that locates a directory or a
file. A slash (/) is used to separate each filename from its predecessor. POSIX
pathnames are case-sensitive; therefore, /home/adam is not the same as /home/ADAM.

PCW

See program control word.

pending signal

In the POSIX interface, a signal that has been generated but not yet delivered. See blocked
signal.

PGID

See process group ID.

PIB

See program information block, process information block.

PID

See process ID.

pipe

(1) A connection between two processes through which the output of the first process
becomes the input to the second process. (2) In the POSIX interface, a logical connection
between processes that have a common ancestor. Pipes are half-duplex—data flows in
one direction only. They are accessed by a pair of file descriptors created by the pipe()
function. Pipes do not have a name in the POSIX file hierarchy. See also FIFO special file.

Portable Operating System Interface (POSIX)

One of a number of interfaces defined by an Institute of Electrical and Electronic
Engineers (IEEE) standard. An individual interface is referred to as POSIX.n, where n is a
numeric suffix derived from the standard (for example, POSIX.1 and POSIX.2).

POSIX

See Portable Operating System Interface.

POSIX.1

An abbreviation for the Portable Operating System Interface (POSIX) – Part 1: System

Application Program Interface (API) [C Language] standard (ISBN 1-55937-061-0). This
standard is published by the Institute of Electrical and Electronics Engineers, Inc. (IEEE).
It defines a portable interface between C language application programs and the operating
system.

Glossary

7011 8351–002 Glossary–9

POSIX.2

An abbreviation for the Portable Operating System Interface (POSIX) – Part 2: Shell and

Utilities standard (ISBN 1-55937-255-9). This standard is published by the Institute of
Electrical and Electronics Engineers, Inc. (IEEE). It defines a shell command language
and a set of system utilities that are largely based on the system services defined In the
POSIX interface.1.

POSIX.4

An abbreviation for the Part 1: System Application Program Interface (API) –

Amendment 1: Real-time Extension [C Language] of the POSIX family of standards.
This amendment defines optional facilities such as semaphores, messages, and shared
memory.

PPID

See parent process ID.

process

(1) The execution of a program or of a procedure that was initiated. The process has its
own process stack and process information block (PIB). It also has a code segment
dictionary, which can be shared with other processes that are executions of the same
program or procedure. (2) A software application; that is, any activity or systematic
sequence of operations that produces a specified result. (3) In the Advanced Data
Dictionary System (ADDS), a structure that models a logical view of relationships between
different parts of a system.

process group

In the POSIX interface, a collection of processes that permits the signaling of related
processes.

process group ID (PGID)

In the POSIX interface, a unique positive integer that represents a process group during its
lifetime.

process group leader

In the POSIX interface, a process whose process ID is the same as its process group ID.

process ID (PID)

In the POSIX interface, a unique positive integer the operating system associates with
each process. This is equivalent to the process's MIXNUMBER task attribute.

process information block (PIB)

A memory structure that is associated with each process stack and code segment
dictionary. The PIB contains control information that is visible only to the operating
system. The PIB for a process stack also contains a reference to a task attribute block
(TAB).

program control word (PCW)

(1) A word that is used to transmit processing information from a control program to the
operational programs, or between operational programs. (2) A word containing the initial
code-stream pointer and execution state values associated with an activation record in a
program. A PCW is the means by which the execution state is established for an activation
record when the activation record is created by procedure entry.

Glossary

Glossary–10 7011 8351–002

Q
queue

(1) A data structure used for storing objects; the objects are removed in the same order
they are stored. (2) In Data Communications ALGOL (DCALGOL), a linked list of
messages. (3) See also job queue, ready queue.

R
real group ID

In the POSIX interface, a process characteristic established when the process is created.
The real group ID identifies the group associated with the user who created the process.
The real group ID does not change for the lifetime of a process. See also group ID,
effective group ID.

real number

Any number, including fractions and whole numbers.

real user ID

In the POSIX interface, a process characteristic established when the process is created.
The real user ID identifies the user who created the process. The real user ID does not
change for the lifetime of a process. See user ID, effective user ID.

record-file

A term used to describe the type of disk file normally created and accessed by CANDE,
WFL, MARC, and traditional system applications. Conforming POSIX.1 applications only
create a record-file if an explicit request is made. The following file attributes define a
record-file: FILESTRUCTURE=ALIGNED180, FRAMESIZE=48. See also byte-file.

relative pathname

In the POSIX interface, a partial pathname used to locate a file or directory relative to the
current working directory. The system concatenates the current working directory and
the relative pathname to form an absolute pathname. See also absolute pathname, current
working directory.

root

(1) The origin of all directories and files in a file system structure. (2) In the UNIX system,
the user name for a superuser. (3) In the POSIX interface, the base directory of the file
system. All other directories and files are located under the root directory and can be
found by providing a full pathname from the root directory. The root directory is
represented with the slash character (/).

S
saved set-group-ID

In the POSIX interface, a process characteristic that allows flexibility in assigning the
effective group ID while executing certain code files. If the code file to be executed has
its SETGROUPCODE flag set, saved set-group-ID is set to the effective group ID of the
calling process when the code file is executed.

Glossary

7011 8351–002 Glossary–11

saved set-user-ID

In the POSIX interface, a process characteristic that allows flexibility in assigning the
effective user ID while executing certain code files. If the code file to be executed has its
SETUSERCODE flag set, saved set-user-ID is set to the effective user ID of the calling
process when the code file is executed.

semaphores

(1) A method used by NetWare for A Series to synchronize the association of resources
among both programs and processes. One use of semaphores is to provide a system of file
sharing and file locking. (2) In the POSIX interface, a structure used to synchronize
concurrent processes. Two types of semaphores can be used—those defined by X/Open
and those defined by POSIX.4. See named semaphore, unnamed semaphore.

signal

In the POSIX interface, a mechanism by which a process can be notified of or affected by
an event occurring in the system. Possible events include the expiration of a timer, a
hardware fault, or a task termination request. The term signal also refers to the event
itself.

signal catcher

A callable function that a process associates with a signal type. When the operating
system delivers a signal of this signal type, it interrupts the receiving process and causes
the process to execute the associated signal-catching function. See also catch a signal.

signal delivery

The operating system’s action of creating a signal in response to a specific event.

signal generation

Pertaining to the operating system’s action of creating a signal in response to a specific
event.

signal mask

A set of signals the process wants to block if they occur.

signal type

In the POSIX interface, a signal characteristic that determines its meaning and how it is
handled by the system.

stack

(1) A region of memory used to store data items in a particular order on a last-in, first-out
basis. (2) A nonpreferred synonym for process stack.

stuffed indirect reference word (SIRW)

A special control word used by the CPU to reference a location in an addressing
environment. The form of the reference is such that the SIRW always points to the same
location, no matter what the state of the current addressing environment.

supplementary group ID

In the POSIX interface, a process characteristic that is used to determine file access
permissions. A process may have up to 16 supplementary group IDs in addition to the
effective group ID. These supplementary group IDs are set to the supplementary group
IDs of the parent process when the process is created. See group ID.

Glossary

Glossary–12 7011 8351–002

system command

Any of a set of commands used to communicate with the operating system. System
commands can be entered at an operator display terminal (ODT), in a Menu-Assisted
Resource Control (MARC) session, or by way of the DCKEYIN function in a privileged
Data Communications ALGOL (DCALGOL) program.

system library

A library that is part of the system software and is accorded special privileges by the
operating system. Two examples of system libraries are GENERALSUPPORT and
PRINTSUPPORT.

T
TAB

See task attribute block.

task

(1) A dependent process. (2) Any process, whether dependent or independent. See also

process.

task attribute

Any of a number of items that describe and control various aspects of process execution
such as the usercode, priority, and the default family specification. Task attributes can be
assigned interactively through task equations, or programmatically through statements
that use task variables.

task attribute block (TAB)

A memory structure that stores the values of task attributes associated with a given task
variable. Before the Mark 3.9 release, this information was part of the process information
block (PIB).

timestamp

An encoded, 48-bit numerical value for the time and date. Various timestamps are
maintained by the system for each disk file. Timestamps note the time and date a file was
created, last altered, and last accessed.

U
unnamed semaphore

In the POSIX interface, a semaphore that a process refers to only by an integer identifier.
See semaphore, named semaphore.

user ID (UID)

In the POSIX interface, the unique number the operating system associates with a user
who logs on to the system. See also effective user ID, real user ID, usercode.

Glossary

7011 8351–002 Glossary–13

usercode

An identification code used to establish user identity and control security, and to provide
for segregation of files. Usercodes can be applied to every task, job, session, and file on
the system. A valid usercode is identified by an entry in the USERDATAFILE. In the
POSIX interface, the usercode is mapped to an equivalent effective user ID.

USERDATAFILE

A system database that defines valid usercodes and contains various data about each user
(such as accesscodes, passwords, and chargecodes) and the population of users for a
particular installation.

V
volume

The medium of a mass storage device such as a disk, disk pack, or tape reel. The term
volume is not restricted to the volume library on a cataloging system or the volume
directory on a system with tape volume security. For example, on the BTOS family of
workstations, the hard disk is a volume, and each floppy disk is a volume. When a volume
is initialized, it is assigned a volume name and an optional password.

W
working directory

In the POSIX interface, a directory associated with a process that is used in pathname
resolution for pathnames that do not begin with a slash (/). Synonymous with current
working directory.

X
X/Open

A UNIX-based common applications environment defined by the X/Open Company.
X/Open includes functional descriptions that are not defined by POSIX.1. Some of these
functions are considered extensions to POSIX.1.

Glossary

Glossary–14 7011 8351–002

7011 8351–002 Index–1

Index

_

_exit() function, 5-24
_fostat() function, 5-28
_MCPfostat() function, 5-28
_MCPfstat() function, 5-28
_MCPlstat() function, 5-28
_MCPstat() function, 5-28

A

ACCESS function, 3-2, 6-7
access() function, 3-2, 5-14
ACT_PROC procedure, 2-9

table, 2-10
adding signal to a set, 3-52
ALARM function, 3-3, 6-8
alarm signal, sending, 3-3
alarm() function, 3-3, 5-36
ALGOL include file

description of, 2-2
overview, 1-1

ALGOL programs, accessing POSIX functions
in, 1-1

AMODE parameter, 2-19

B

blocking a signal type, 3-56, 3-65
by-reference, (See call-by-reference)
by-value, (See call-by-value)

C

C language functions, emulated
_exit(), 5-24
_MCPfostat(), 5-28
_MCPfstat(), 5-28
_MCPlstat(), 5-28

_MCPstat(), 5-28
access(), 3-2, 5-14
alarm(), 3-3, 5-36
chdir(), 3-4, 5-16
chmod(), 3-5, 5-18
chown(), 3-6, 5-20
close(), 5-21
creat(), 5-38
ctermid(), 5-61
cuserid(), 5-61
dup(), 5-25
dup2(), 5-25
execve(), 3-7, 5-22
exit(), 5-24
fchmod(), 5-18
fchown(), 5-20
fcntl(), 5-25
fork(), 3-9, 5-30
fpathconf(), 5-40
fstat(), 5-28
getcwd(), 3-10, 5-61
getegid(), 3-11, 5-35
geteuid(), 3-12, 5-35
getgid(), 3-13, 5-35
getgrgid(), 3-14, 5-31
getgrnam(), 3-15, 5-31
getgroups(), 3-16, 5-33
getlogin(), 3-17, 5-61
getpgid(), 3-18
getpgrp(), 5-35
getpid(), 3-20, 5-35
getppid(), 3-21, 5-35
getpwnam(), 3-22, 5-32
getpwuid(), 3-23, 5-32
getsgid(), 5-35
getsid(), 3-24
getsuid(), 5-35
getuid(), 3-25, 5-35
kill(), 3-28, 5-56
lchmod(), 5-18
lchown(), 5-20
lseek(), 5-42
lstat(), 5-28
mkdir(), 5-8

Index

Index–2 7011 8351–002

mkfifo(), 3-29, 5-8
nice(), 3-30
open(), 5-38
pathconf(), 3-31, 5-40
pause(), 3-32, 5-56
pipe(), 5-41
raise(), 3-33, 5-56
read(), 5-59
readlink(), 5-28
seekdir(), 5-42
sem_close(), 3-34, 5-43
sem_destroy(), 3-36, 5-44
sem_getvalue(), 3-38, 5-45
sem_init(), 3-39, 5-46
sem_open(), 3-41, 5-47
sem_post(), 3-42, 5-49
sem_trywait(), 3-43, 5-50
sem_unlink(), 3-44, 5-51
sem_wait(), 3-45, 5-52
semctl(), 3-35, 5-10
semget(), 3-37, 5-12
semop(), 3-40, 5-13
setegid(), 5-54
seteuid(), 5-54
setgid(), 3-46, 5-54
setgroups(), 5-33
setpgid(), 3-47, 5-54
setsid(), 3-49, 5-54
setuid(), 3-50, 5-54
sigaction(), 3-51, 5-56
sigaddset(), 3-52
sigdelset(), 3-53
sigemptyset(), 3-54
sigfillset(), 3-55
sighold(), 3-56
sigignore(), 3-57, 5-56
sigismember(), 3-58
signal(), 3-59, 5-56
sigpause(), 3-60, 5-56
sigpending(), 3-61, 5-56
sigprocmask(), 3-62, 5-56
sigpush(), 3-63, 5-56
sigrelse(), 3-64, 5-56
sigset(), 3-65, 5-56
sigsuspend(), 3-66, 5-56
sleep(), 3-67, 5-37
stat(), 3-68, 5-28
strerror(), 3-69
symlink(), 5-8
sysconf(), 3-70, 5-64
time(), 3-71, 5-65
times(), 3-72, 5-66
ttyname(), 5-61

umask(), 5-54
uname(), 3-73, 5-67
wait(), 3-74, 5-68
waitpid(), 3-75, 5-68
write(), 5-62

C language functions, unsupported (table), 4-1
call-by-reference integer rule, 2-3
call-by-reference real rule, 2-3
call-by-value integer rule, 2-3
call-by-value real rule, 2-4
changing

blocked signal types, 3-62
current working directory, 3-4
effective group ID, 3-46
effective user ID, 3-50
file ownership (user or group), 3-6
file permission values, 3-5
GROUP file attribute, 3-6
guard file flags, 3-5
nice value of a process, 3-30
OWNER file attribute, 3-6
process group ID, 3-47
process priority, 3-30
SECURITYMODE file attribute, 3-5
working directory, 3-4

changing blocked signal types, 3-62
CHDIR function, 3-4, 6-7
chdir() function, 3-4, 5-16
child process, creation of, 3-9
CHMOD function, 3-5, 6-7
chmod() function, 3-5, 5-18
CHOWN function, 3-6
chown() function, 3-6, 5-20
close() function, 5-21
CMD parameter (for SEMCTL), 2-21
configurable system variables, obtaining, 3-70
configurable variable information for a file,

obtaining, 3-31
creat() function, 5-38
creating a MKFIFO special file, 3-29
creating a new signal environment, 3-63
creating a process, 3-9
cross reference, POSIX functions to library

procedures (table), 5-2
ctermid() function, 5-61
current time, obtaining, 3-71
current working directory

changing, 3-4
obtaining, 3-10

cuserid() function, 5-61

Index

7011 8351–002 Index–3

D

DISP parameter, 2-22
dup() function, 5-25
dup2() function, 5-25

E

EBCDIC array input rule, 2-4
EBCDIC array output rule, 2-4
effective group ID

changing, 3-46
obtaining, 3-11

effective user ID
changing, 3-50
obtaining, 3-12

ERRNO rule, 2-11
error descriptions, obtaining, 3-69
errors

description of, 2-11
description of (table), 2-11
obtaining descriptions of, 3-69

examining blocked signal types, 3-62
examples, POSIX interface based functions in

ALGOL, 6-1
executing a file, 3-7
EXECVE function, 3-7
execve() function, 3-7, 5-22
exit() function, 5-24

F

fchmod() function, 5-18
fchown() function, 5-20
fcntl() function, 5-25
FD Vector Allocated function, 5-35
file

changing permission values of, 3-5
changing user or group ownership of, 3-6
checking access permissions, 3-2
MCPSTAT structure, 2-29
STAT structure, 2-46, 3-68

file’s access permissions
changing, 3-5
checking, 3-2

file’s ownership, changing, 3-6
file declaration rule, 2-5
file mode, 2-46

definition of (table), 2-46

FORK function, 3-9, 6-10
fork() function, 3-9, 5-30
fpathconf() function, 5-40
fstat() function, 5-28

G

Get Exit Type function, 5-35
GETCWD function, 3-10, 6-6
getcwd() function, 3-10, 5-61
GETEGID function, 3-11, 6-6
getegid() function, 3-11, 5-35
GETEUID function, 3-12, 6-5
geteuid() function, 3-12, 5-35
GETGID function, 3-13, 6-5
getgid() function, 3-13, 5-35
GETGRGID function, 3-14, 6-4
getgrgid() function, 3-14, 5-31
GETGRNAM function, 3-15
getgrnam() function, 3-15, 5-31
GETGROUPS function, 3-16, 6-5
getgroups() function, 3-16, 5-33
GETLOGIN function, 3-17, 6-5
getlogin() function, 3-17, 5-61
GETPGID function, 3-18, 5-35
getpgid() function, 3-18
GETPGRP function, 3-19, 6-6
getpgrp() function, 5-35
GETPID function, 3-20, 6-10
getpid() function, 3-20, 5-35
GETPPID function, 3-21
getppid() function, 3-21, 5-35
GETPWNAM function, 3-22
getpwnam() function, 3-22, 5-32
GETPWUID function, 3-23, 6-4
getpwuid() function, 3-23, 5-32
getsgid() function, 5-35
GETSID function, 3-24, 5-35
getsid() function, 3-24
getsuid() function, 5-35
getting, (See obtaining)
GETUID function, 3-25, 6-5
getuid() function, 3-25, 5-35
GETUSERID function, 3-26, 5-61
GETUSERNAME function, 3-27, 5-61
GROUP file attribute, changing, 3-6
GROUP structure

description of, 2-24
obtaining, 3-14, 3-15

guard file flags, changing, 3-5

Index

Index–4 7011 8351–002

H

hardware information, obtaining, 3-73
HOW parameter, 2-25

I

include file, (See ALGOL include file)
INFO parameter, 2-26
initializing

empty signal set, 3-54
full signal set, 3-55

INTARG parameter, 2-27
integer array input rule, 2-5
integer array output rule, 2-5
integer result rule, 2-18

K

KILL function, 3-28
kill() function, 3-28, 5-56

L

lchmod() function, 5-18
lchown() function, 5-20
library procedures

MCPX_MKNOD, 5-8
MCPX_SEMCTL, 5-10
MCPX_SEMGET, 5-12
MCPX_SEMOP, 5-13
POSIX_ACCESS, 5-14
POSIX_ALLOCATE, 5-15
POSIX_CHANGEDIR, 5-16
POSIX_CHANGEMODE, 5-17
POSIX_CHANGEOWNER, 5-19
POSIX_CLOSE, 5-21
POSIX_EXECVE, 5-22
POSIX_EXIT, 5-24
POSIX_FCNTL, 5-25
POSIX_FILE_TO_FD, 5-29
POSIX_FILESTATUS, 5-27
POSIX_FORK, 5-30
POSIX_GETGRINFO, 5-31
POSIX_GETPWINFO, 5-32
POSIX_GROUPLIST, 5-33
POSIX_INTEGERIDS, 5-34
POSIX_NANOALARM, 5-36

POSIX_NANOSLEEP, 5-37
POSIX_OPEN, 5-38
POSIX_PATHCONF, 5-39
POSIX_PIPE, 5-41
POSIX_SEEK, 5-42
POSIX_SEM_CLOSE, 5-43
POSIX_SEM_DESTROY, 5-44
POSIX_SEM_GETVALUE, 5-45
POSIX_SEM_INIT, 5-46
POSIX_SEM_OPEN, 5-47
POSIX_SEM_POST, 5-49
POSIX_SEM_TRYWAIT, 5-50
POSIX_SEM_UNLINK, 5-51
POSIX_SEM_WAIT, 5-52
POSIX_SETIDS, 5-53
POSIX_SIGHANDLER, 5-55
POSIX_SREAD_E, 5-59
POSIX_SREAD_R, 5-59
POSIX_STRINGIDS, 5-61
POSIX_SWRITE_E, 5-62
POSIX_SWRITE_R, 5-62
POSIX_SYSCONF, 5-64
POSIX_TIME, 5-65
POSIX_TIMES, 5-66
POSIX_UNAME, 5-67
POSIX_WAITPID, 5-68
procedure description format, 5-7

login name, obtaining, 3-17
lseek() function, 5-42
lstat() function, 5-28

M

MCPSTAT structure, 2-29
description of, 2-29

MCPX_MKNOD library procedure, 5-8
MCPX_SEMCTL library procedure, 5-10
MCPX_SEMGET library procedure, 5-12
MCPX_SEMOP library procedure, 5-13
mkdir() function, 5-8
MKFIFO function, 3-29
MKFIFO special file, creating, 3-29
mkfifo() function, 3-29, 5-8
MODE parameter, 2-28

N

NAME parameter (for PATHCONF), 2-30
NAME parameter (for SYSCONF), 2-31
NICE function, 3-30, 5-54

Index

7011 8351–002 Index–5

nice() function, 3-30

O

obtaining
configurable system variables, 3-70
configurable variable information for a

file, 3-31
current time, 3-71
current working directory, 3-10
effective group ID, 3-11
effective user ID, 3-12
error descriptions, 3-69
GROUP structure, 3-14, 3-15
hardware information, 3-73
login name, 3-17
parent process ID, 3-21
PASSWD structure, 3-22, 3-23
process group ID, 3-18, 3-19
process ID, 3-20
process time information, 3-72
real group ID, 3-13
real user ID, 3-25
semaphore ID, 3-37
semaphore value, 3-38
session ID, 3-24
software information, 3-73
STAT structure, 3-68
supplementary group IDs, 3-16
unblocked signal types set, 3-61
user ID, 3-26
user name, 3-27

open() function, 5-38
OPTION parameter (for WAITPID), 2-35
OWNER file attribute, changing, 3-6

P

Parameter descriptions
AMODE, 2-19
CMD (for SEMCTL), 2-21
DISP, 2-22
HOW, 2-25
INFO, 2-26
INTARG, 2-27
MODE, 2-28
NAME (for PATHCONF), 2-30
NAME (for SYSCONF), 2-31
OPTION (for WAITPID), 2-35
PID (for KILL), 2-37

PID (for WAITPID), 2-38
SEMFLG, 2-40
SIG, 2-42
STATUS, 2-48

parameter matching rules, 2-3
call-by-reference integer, 2-3
call-by-reference real, 2-3
call-by-value integer, 2-3
call-by-value real, 2-4
EBCDIC array input, 2-4
EBCDIC array output, 2-4
ERRNO, 2-11
file declaration, 2-5
integer array input, 2-5
integer array output, 2-5
integer result, 2-18
path definition, 2-5
real array input, 2-7
real array output, 2-7
real result, 2-18
signal handler procedure, 2-9
structure array input, 2-7
structure array output, 2-8

parent process ID, obtaining, 3-21
PASSWD structure

description of, 2-36
obtaining, 3-22, 3-23

path definition rule, 2-5
PATH_SEARCHRULE parameter, description

of, 2-6
PATH_TYPE parameter, description of, 2-6
PATHCONF function, 3-31
pathconf() function, 3-31, 5-40
PAUSE function, 3-32, 6-9
pause() function, 3-32, 5-56
PID parameter (for KILL), 2-37
PID parameter (for WAITPID), 2-38
pipe() function, 5-41
POSIX functions

in ALGOL programs, 1-1
POSIX functions (ALGOL)

ACCESS, 3-2
ALARM, 3-3
CHDIR, 3-4
CHMOD, 3-5
CHOWN, 3-6
EXECVE, 3-7
FORK, 3-9
GETCWD, 3-10
GETEGID, 3-11
GETEUID, 3-12
GETGID, 3-13
GETGRGID, 3-14

Index

Index–6 7011 8351–002

GETGRNAM, 3-15
GETGROUPS, 3-16
GETLOGIN, 3-17
GETPGID, 3-18
GETPGRP, 3-19
GETPID, 3-20
GETPPID, 3-21
GETPWNAM, 3-22
GETPWUID, 3-23
GETSID, 3-24
GETUID, 3-25
GETUSERID, 3-26
GETUSERNAME, 3-27
KILL, 3-28
MKFIFO, 3-29
NICE, 3-30
PATHCONF, 3-31
PAUSE, 3-32
RAISE, 3-33
related library procedures (table), 5-2
SEM_CLOSE, 3-34
SEM_DESTROY, 3-36
SEM_GETVALUE, 3-38
SEM_INIT, 3-39
SEM_OPEN, 3-41
SEM_POST, 3-42
SEM_TRYWAIT, 3-43
SEM_UNLINK, 3-44
SEM_WAIT, 3-45
SEMCTL, 3-35
SEMGET, 3-37
SEMOP, 3-40
SETGID, 3-46
SETPGID, 3-47
SETSID, 3-49
SETUID, 3-50
SIGACTION, 3-51
SIGADDSET, 3-52
SIGDELSET, 3-53
SIGEMPTYSET, 3-54
SIGFILLSET, 3-55
SIGHOLD, 3-56
SIGIGNORE, 3-57
SIGISMEMBER, 3-58
SIGNAL, 3-59
SIGPAUSE, 3-60
SIGPENDING, 3-61
SIGPROCMASK, 3-62
SIGPUSH, 3-63
SIGRELSE, 3-64
SIGSET, 3-65
SIGSUSPEND, 3-66
SLEEP, 3-67

STAT, 3-68
STRERROR, 3-69
SYSCONF, 3-70
TIMEP, 3-71
TIMES, 3-72
UNAME, 3-73
WAITP, 3-74
WAITPID, 3-75

POSIX, meaning within this document, 1-2
POSIX_ACCESS library procedure, 5-14
POSIX_ALLOCATE library procedure, 5-15
POSIX_CHANGEDIR library procedure, 5-16
POSIX_CHANGEMODE library

procedure, 5-17
POSIX_CHANGEOWNER library

procedure, 5-19
POSIX_CLOSE library procedure, 5-21
POSIX_EXECVE library procedure, 5-22
POSIX_EXIT library procedure, 5-24
POSIX_FCNTL library procedure, 5-25
POSIX_FILE_TO_FD library procedure, 5-29
POSIX_FILESTATUS library procedure, 5-27
POSIX_FORK library procedure, 5-30
POSIX_GETGRINFO library procedure, 5-31
POSIX_GETPWINFO library procedure, 5-32
POSIX_GROUPLIST library procedure, 5-33
POSIX_INTEGERIDS library procedure, 5-34
POSIX_NANOALARM library procedure, 5-36
POSIX_NANOSLEEP library procedure, 5-37
POSIX_OPEN library procedure, 5-38
POSIX_PATHCONF library procedure, 5-39
POSIX_PIPE library procedure, 5-41
POSIX_SEEK library procedure, 5-42
POSIX_SEM_CLOSE library procedure, 5-43
POSIX_SEM_DESTROY library

procedure, 5-44
POSIX_SEM_GETVALUE library

procedure, 5-45
POSIX_SEM_INIT library procedure, 5-46
POSIX_SEM_OPEN library procedure, 5-47
POSIX_SEM_POST library procedure, 5-49
POSIX_SEM_TRYWAIT library

procedure, 5-50
POSIX_SEM_UNLINK library procedure, 5-51
POSIX_SEM_WAIT library procedure, 5-52
POSIX_SETIDS library procedure, 5-53
POSIX_SIGHANDLER library procedure, 5-55
POSIX_SREAD_E library procedure, 5-59
POSIX_SREAD_R library procedure, 5-59
POSIX_STRINGIDS library procedure, 5-61
POSIX_SWRITE_E library procedure, 5-62
POSIX_SWRITE_R library procedure, 5-62
POSIX_SYSCONF library procedure, 5-64

Index

7011 8351–002 Index–7

POSIX_TIME library procedure, 5-65
POSIX_TIMES library procedure, 5-66
POSIX_UNAME library procedure, 5-67
POSIX_WAITPID library procedure, 5-68
process group ID

changing, 3-47
obtaining, 3-18, 3-19

process group leader, establishing, 3-49
process ID, obtaining, 3-20
process time information, obtaining, 3-72
processes

changing nice value of, 3-30
creating, 3-9
obtaining ID of, 3-20
obtaining time information for, 3-72
sending signal to, 3-28, 3-33
suspending, 3-32, 3-66
suspending (for a specified amount of

time), 3-67
suspending parent, 3-74, 3-75
suspending until a signal is received, 3-60

R

RAISE function, 3-33
raise() function, 3-33, 5-56
read() function, 5-59
readlink() function, 5-28
real array input rule, 2-7
real array output rule, 2-7
real group ID, obtaining, 3-13
real result rule, 2-18
real user ID, obtaining, 3-25
removing a signal from a set, 3-53
removing signal from a process’s signal

mask, 3-60, 3-64
replacing a process’s signal mask, 3-66
result rule (integer or real), 2-18

S

SECURITYMODE attribute of a file,
changing, 3-5

seekdir() function, 5-42
SEM_CLOSE function, 3-34
sem_close() function, 3-34, 5-43
SEM_DESTROY function, 3-36
sem_destroy() function, 3-36, 5-44
SEM_GETVALUE function, 3-38
sem_getvalue() function, 3-38, 5-45

SEM_INIT function, 3-39
sem_init() function, 3-39, 5-46
SEM_OPEN function, 3-41
sem_open() function, 3-41, 5-47
SEM_POST function, 3-42
sem_post() function, 3-42, 5-49
SEM_TRYWAIT function, 3-43
sem_trywait() function, 3-43, 5-50
SEM_UNLINK function, 3-44
sem_unlink() function, 3-44, 5-51
SEM_WAIT function, 3-45
sem_wait() function, 3-45, 5-52
semaphores (POSIX.4)

closing a named semaphore, 3-34
deleting the name of a semaphore, 3-44
initializing an unnamed semaphore, 3-39
locking a semaphore, 3-43, 3-45
obtaining value of a semaphore, 3-38
opening a named semaphore, 3-41
removing an unnamed semaphore, 3-36
unlocking a semaphore, 3-42

semaphores (X/Open)
controlling a semaphore or a semaphore

set, 3-35
creating a semaphore set, 3-37
obtaining a semaphore ID, 3-37
performing operations on a group of

semaphores, 3-40
SEMBUF structure, 2-39
SEMCTL function, 3-35, 6-10
semctl() function, 3-35, 5-10
SEMFLAG parameter, 2-40
SEMGET function, 3-37, 6-10
semget() function, 3-37, 5-12
SEMID_DS structure, 2-41
SEMOP function, 3-40, 6-9
semop() function, 3-40, 5-13
sending a signal to a process, 3-28, 3-33
session ID, obtaining, 3-24
session leader, establishing, 3-49
setegid() function, 5-54
seteuid() function, 5-54
SETGID function, 3-46
setgid() function, 3-46, 5-54
setgroups() function, 5-33
SETPGID function, 3-47
setpgid() function, 3-47, 5-54
SETPGRP function, 5-54
SETSID function, 3-49, 6-10
setsid() function, 3-49, 5-54
SETUID function, 3-50
setuid() function, 3-50, 5-54
SIG parameter, 2-42

Index

Index–8 7011 8351–002

SIGACTION function, 3-51, 6-8
SIGACTION structure, 2-44
sigaction() function, 3-51, 5-56
SIGADDSET function, 3-52
sigaddset() function, 3-52
SIGDELSET function, 3-53
sigdelset() function, 3-53
SIGEMPTYSET function, 3-54
sigemptyset() function, 3-54
SIGFILLSET function, 3-55
sigfillset() function, 3-55
SIGHOLD function, 3-56
sighold() function, 3-56
SIGIGNORE function, 3-57
sigignore() function, 3-57, 5-56
SIGISMEMBER function, 3-58
sigismember() function, 3-58
SIGNAL function, 3-59
signal handler procedure rule, 2-9
signal type actions

examining, 3-51
specifying, 3-51

signal() function, 3-59, 5-56
signals

adding signal to a set, 3-52
blocking a signal type, 3-56, 3-65
changing or examining blocked signal

types, 3-62
creating a new signal environment, 3-63
determining action to be taken when a

signal is received, 3-59
enumerated listing of, 2-42
examine actions for, 3-51
initializing a full set, 3-55
initializing an empty set, 3-54
obtaining unblocked signal types, 3-61
removing signal from a process’s signal

mask, 3-60, 3-64
removing signal from a set, 3-53
replacing a process’s signal mask, 3-66
sending signal to a process, 3-28, 3-33
specify actions for, 3-51
specifying a signal type action, 3-65

SIGPAUSE function, 3-60
sigpause() function, 3-60, 5-56
SIGPENDING function, 3-61
sigpending() function, 3-61, 5-56
SIGPROCMASK function, 3-62
sigprocmask() function, 3-62, 5-56
SIGPUSH function, 3-63, 6-8
sigpush() function, 3-63, 5-56
SIGRELSE function, 3-64
sigrelse() function, 3-64, 5-56

SIGSET function, 3-65
sigset() function, 3-65, 5-56
SIGSUSPEND function, 3-66
sigsuspend() function, 3-66, 5-56
SLEEP function, 3-67, 6-9
sleep() function, 3-67, 5-37
software information, obtaining, 3-73
specifying signal type action, 3-65
STAT function, 3-68
STAT structure

description of, 2-46
obtaining, 3-68

stat() function, 3-68, 5-28
STATUS parameter, 2-48
STRERROR function, 3-69, 6-4
strerror() function, 3-69
structure array input rule, 2-7
structure array output rule, 2-8
structure descriptions

GROUP, 2-24
MCPSTAT, 2-29
PASSWD, 2-36
SEMBUF, 2-39
SEMID_DS, 2-41
SIGACTION, 2-44
STAT, 2-46
TMS, 2-49
UTSNAME, 2-50

supplementary group IDs, obtaining, 3-16
suspending a process, 3-32, 3-67
suspending parent process, 3-74, 3-75
SYMBOL/POSIX/ALGOL/PROPERTIES file,

(See ALGOL include file)
symlink() function, 5-8
SYSCONF function, 3-70
sysconf() function, 3-70, 5-64

T

time() function, 3-71, 5-65
TIMEP function, 3-71
TIMES function, 3-72
times() function, 3-72, 5-66
TMS structure, 2-49
ttyname() function, 5-61

U

umask() function, 5-54
UNAME function, 3-73

Index

7011 8351–002 Index–9

uname() function, 3-73, 5-67
unblocked signal types set, obtaining, 3-61
unsupported C language functions (table), 4-1
user ID, obtaining, 3-26
user name, obtaining, 3-27
UTSNAME structure, 2-50

W

wait() function, 3-74, 5-68
WAITP function, 3-74, 6-10
WAITPID function, 3-75
waitpid() function, 3-75, 5-68
working directory, changing, 3-4
write() function, 5-62

Index

Index–10 7011 8351–002

	Table of Contents
	About This Manual
	Section 1. Introduction
	Overview of POSIX Functions
	Accessing POSIX Functions in ALGOL Programs
	Accessing POSIX Features with Library Procedures
	Documentation Conventions

	Section 2. Reference Information
	The ALGOL Include File
	Rules for Using Parameters and Results
	Call-by-reference Integer
	Call-by-reference Real
	Call-by-value Integer
	Call-by-value Real
	EBCDIC Array Input
	EBCDIC Array Output
	File
	Integer Array Input
	Integer Array Output
	Path Definition
	Real Array Input
	Real Array Output
	Structure Array Input
	Structure Array Output
	Signal Handler Procedure
	ERRNO
	Result (Integer or Real)

	Parameter Values and Structures
	AMODE Parameter
	CMD Parameter (FCNTL)
	CMD parameter (SEMCTL)
	DISP Parameter
	FLOCK Structure
	GROUP Structure
	HOW Parameter
	INFO Parameter
	INTARG Parameter (FCNTL)
	MODE Parameter
	MCPSTAT Structure
	NAME Parameter (PATHCONF)
	NAME Parameter (SYSCONF)
	OPTION Parameter (CLOSE)
	OPTION Parameter (OPEN)
	OPTION Parameter (WAITPID)
	PASSWD Structure
	PID parameter (KILL)
	PID Parameter (WAITPID)
	SEMBUF Structure
	SEMFLG Parameter
	SEMID_DS Structure
	SIG Parameter
	SIGACTION Structure
	SIGINFO_T Structure
	STAT Structure
	STATUS Parameter
	TMS Structure
	UTSNAME Structure

	Section 3. POSIX Functions in ALGOL
	ACCESS
	ALARM
	CHDIR
	CHMOD
	CHOWN
	EXECVE
	FORK
	GETCWD
	GETEGID
	GETEUID
	GETGID
	GETGRGID
	 GETGRNAM
	GETGROUPS
	GETLOGIN
	GETPGID
	GETPGRP
	GETPID
	GETPPID
	GETPWNAM
	GETPWUID
	GETSID
	GETUID
	GETUSERID
	GETUSERNAME
	KILL
	MKFIFO	
	NICE
	PATHCONF
	PAUSE
	RAISE
	SEM_CLOSE
	SEMCTL
	SEM_DESTROY
	SEMGET
	SEM_GETVALUE
	SEM_INIT
	SEMOP
	SEM_OPEN
	SEM_POST
	SEM_TRYWAIT
	SEM_UNLINK
	SEM_WAIT
	SETGID
	SETPGID
	SETPGRP
	SETSID
	SETUID
	SIGACTION
	SIGADDSET
	SIGDELSET
	SIGEMPTYSET
	SIGFILLSET
	SIGHOLD
	SIGIGNORE
	SIGISMEMBER
	SIGNAL
	SIGPAUSE
	SIGPENDING
	SIGPROCMASK
	SIGPUSH
	SIGRELSE
	SIGSET
	SIGSUSPEND
	SLEEP
	STAT
	STRERROR
	SYSCONF
	TIMEP
	TIMES
	UNAME
	WAITP
	WAITPID

	Section 4. Unsupported POSIX Functions
	Section 5. POSIX-Related Library Procedures
	MCPX_MKNOD
	MCPX_SEMCTL
	MCPX_SEMGET
	MCPX_SEMOP
	POSIX_ACCESS
	POSIX_ALLOCATE_FD
	POSIX_CHANGEDIR
	POSIX_CHANGEMODE
	POSIX_CHANGEOWNER
	POSIX_CLOSE
	POSIX_EXECVE
	POSIX_EXIT
	POSIX_FCNTL
	POSIX_FILESTATUS
	POSIX_FILE_TO_FD
	POSIX_FORK
	POSIX_GETGRINFO
	POSIX_GETPWINFO
	POSIX_GROUPLIST
	POSIX_INTEGERIDS
	POSIX_NANOALARM
	POSIX_NANOSLEEP
	POSIX_OPEN
	POSIX_PATHCONF
	POSIX_PIPE
	POSIX_SEEK
	POSIX_SEM_CLOSE
	POSIX_SEM_DESTROY
	POSIX_SEM_GETVALUE
	POSIX_SEM_INIT
	POSIX_SEM_OPEN
	POSIX_SEM_POST
	POSIX_SEM_TRYWAIT
	POSIX_SEM_UNLINK
	POSIX_SEM_WAIT
	POSIX_SETIDS
	POSIX_SIGHANDLER
	POSIX_SREAD_x
	POSIX_STRINGIDS
	POSIX_SWRITE_x
	POSIX_SYSCONF
	POSIX_TIME
	POSIX_TIMES
	POSIX_UNAME
	POSIX_WAITPID

	Section 6. Programming Examples
	Glossary
	Index

