UNISYS e-@ction
CLEARPATH ENTERPRISE
SERVERS

Task Management
Programming Guide

ClearPath MICP Release 7.0 SSP1

Printed in USA
March 2002 8600 0494-506

UNISYS e-@ction
CLEARPATH ENTERPRISE
SERVERS

Task Management
Programming Guide

UNISYS

© 2002 Unisys Corporation.
All rights reserved.

ClearPath MICP Release 7.0 SSP1

Printed in USA
March 2002 8600 0494-506

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related information
described herein is only furnished pursuant and subject to the terms and conditions of a duly executed agreement to
purchase or lease equipment or to license software. The only warranties made by Unisys, if any, with respect to the
products described in this document are set forth in such agreement. Unisys cannot accept any financial or other
responsibility that may be the result of your use of the information in this document or software material, including
direct, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the laws,
rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Notice to Government End Users: This is commercial computer software or hardware documentation developed at
private expense. Use, reproduction, or disclosure by the Government is subject to the terms of Unisys standard
commercial license for the products, and where applicable, the restricted/limited rights provisions of the contract data
rights clauses.

Correspondence regarding this publication can be e-mailed to doc@unisys.com.

Unisys, ClearPath, and e-@ction are registered trademarks of Unisys Corporation in the United States and other
countries.

All other brands and products referenced in this document are acknowledged to be the trademarks or registered
trademarks of their respective holders.

Unisys e-@ction
ClearPath Enterprise
Servers

Task Management

Programming Guide

ClearPath MCP
Release 7.0 SSP1

8600 0494-506

Unisys e-@ction
ClearPath
Enterprise
Servers

Task Management
Programming
Guide

ClearPath MICP
Release 7.0
SSP1

8600 0494-506

Bend here, peel upwards and apply to spine.

Contents

Section 1. Understanding Basic Tasking Concepts

ADBOUL THiS GUIAE ..., 1-1
TaSKING CONCEPTS ...vvviiiiiiiiiii e 1-2
Programs and Processes ..o 1-2
Task AttriDULES ..o 1-3
INteractive TasKinguuuueueieiiiiiiiieiiiiiiieeee, 1-4
Programmatic Taskingccoooviiiiiiiaiiiieee e 1-5
Process Termination ...t 1-5
Internal and External Processescccccoiiiiiiiiiiiiiii, 1-6
Program StruCTUIe.........cooiiiiiieeee e 1-8
Advantages of Taskingcoooiiiiiiiiiii 1-10
Simplifying System Operations...........cccceeevvivieeeiiieein 1-10
Increasing Programmer Productivity...........ccccccvvvvvviviinnnnn, 1-10
Improving Application Performance...........ccccccvvvvvvvvvennnnn., 1-13
Limitations of Tasking ... 1-14

Section 2. Understanding Interprocess Relationships

T aTo1 (U] To] o T PPRRPPPPRPPPIRt 2-1
FIOW OF CONTIOl ..o 2-2
SYNChronoUs ProCESSES......ccoiiiviiiiiiiiiieceeeeeee e, 2-2
Asynchronous Processes.........cccieiiiiiiiiiiiiiiiiiiee 2-2
(Ofe] o]0} 4] aT=T TSRS 2-3
DEPENAENCY ... 2-7
Communications Effects........ccocciiiiiiiiiiiice 2-8

Flow of Control Effects — Synchronization..............cc........... 2-8

Flow of Control Effects — Critical Blocks..............cocvviiinnn. 2-9

Process Families..........ccccco 2-17

Familial Relationships ..., 2-17

Jobs and TasksS........oiiiiiiiiiiiie e 2-18

Special Types of JObSocciiiiiiiiiiiiie, 2-19

Accessing Task Variablesooovooi 2-21

Setting Resource LiMitsS........ccoovvveiiiiiiiiiiiiccciieee 2-24

Section 3. Tasking from Interactive Sources

CANDE .. e 3-1
CANDE Tasking Capabilitiesc.ccovvviiiiiiiiieiiiieceeieee, 3-1

Initiating Dependent Processes from CANDE 3-1

Initiating Compilations from CANDEooee. 3-3

8600 0494-506 iii

Contents

Initiating Utilities from CANDE.............cccceiiiiiiiinn. 3-3
Submitting WFL Jobs from CANDEccveen, 3-4
Monitoring and Controlling Processes in
CANDE ..o, 3-4
Access to Task Attributes in CANDEcccccoovevnee. 3-5
Saving CANDE Commands for Later Use.................. 3-7
CANDE Programming Considerations..........c.ccccveeeeivieeennn, 3-7
Receiving Parameters from CANDEccccoeen 3-7
Access to Ancestral Processes in CANDE 3-7
Communicating with CANDE Terminals..................... 3-8
MARC ... 3-9
MARC Tasking CapabilitieS.......cc.cooviiiiiiiiiiieeiiiececiieee 3-9
Initiating Dependent Processes from MARC.............. 3-9
Initiating Compilations from MARCccccveenn 3-10
Initiating Utilities from MARCcccccooviiiiiiiiiieeen, 3-10
Submitting WFL Jobs from MARCcccccc. 3-10
Monitoring Processes Initiated from MARC............. 3-10
Monitoring Other Processes in MARC 3-12
Communicating with Interactive Processes in
MARC ..o, 3-12
Access to Task Attributes in MARCccccveeeenne, 3-13
MARC Programming Considerations.............cccccccoevvieeennnn. 3-14
Receiving Parameters from MARC..............ccoeveen, 3-14
Access to Ancestral Processes in MARC 3-15
Communicating with MARC Terminals 3-16
OPEratioNS CONTEI . ..ii ittt 3-17
Operations Center Tasking Capabilities............ccccccevvveenn 3-17
Submitting WFL Jobs from Operations Center 3-17
Initiating Processes from Operations Center............ 3-17
Initiating Compilations from Operations
CBNEBT i 3-18
Monitoring and Controlling Processes from
Operations Centerccccovvviiiiiiiiie e, 3-18
Access to Task Attributes from Operations
CBNEOT i 3-19
Operations Center Programming Considerations.............. 3-19
Receiving Parameters from Operations Center........ 3-19
Access to Ancestral Processes in the
Operations Centercccovvviiiiiiiiiieeeiee e, 3-20
Communicating with Operations Center 3-20
O DT e, 3-21
ODT Tasking CapabilitieS.........ccovvvieiiiiiieiiiiieeeiiiee e 3-21
Submitting WFL Jobs froman ODT ...l 3-21
Initiating Processes froman ODT........cccceeeviiieennnn, 3-21
Initiating Compilations from an ODT............cccvveeenne. 3-22
Initiating Utilities from an ODTcccccoovviiiieiiiee, 3-22
Monitoring and Controlling Processes at an
O e 3-22
Access to Task Attributes from an ODT................... 3-23
ODT Programming Considerations...........cccccccovvvveeevinneenn, 3-23
Receiving Parameters from an ODT 3-23

v 8600 0494-506

Contents

Section 4.

8600 0494-506

Access to Ancestral Processes in the ODT

Environment. ... 3-24

Communicating with an ODT..........coceiiiiiiiiiie 3-24

Tasking Command EqUIValeNtscooviiiiiiiiccee e 3-26
Communicating with an Operator...........ccocvveeiiiiiiiiieec e 3-32
Displaying Information to Operators..........cccccooevveaiieannnns. 3-32

Accepting Information from Operators.........ccccccoevvvveeenns. 3-33
Accepting Input from HI Commandsccc.ccc.. 3-33

Accepting Input from AX Commandscccccccoue.... 3-34

Accepting Input from SW Commands 3-35

Tasking from Programming Languages

Work Flow Language (WFL) ... 4-1
Submitting WFL INPUL ..., 4-2
Selecting the Queue fora Job ... 4-4
Specifying a Start TiMeo.ooiiiiiiiieeeeeeeeeeee 4-8
Structuring the WFL JOb ..o 4-8
Initiating Dependent Processes from WFL.......................... 4-9
Initiating Compilations from WFLcccccoovviiiiiiiiiiii, 4-9
Initiating Utilities from WFL ..., 4-9
Initiating Interactive Processes from WFL......................... 4-10
Submitting Other WFL JObSc..oooiiiiiiiiiiiicee, 4-10
Access to Task Attributes in WFL ..., 4-10
Using File Equations in WFL........cocooiiiiii, 4-11
Responding to Error Conditions in WFLccccoeovviiinn. 4-11
Communicating with Other Processes in WFL 4-12
Controlling a Task from a Jobcoooviiiiiiiiiiiic, 4-13
Restarting WFL JObS ..o, 4-13
WEFL EXample ..o 4-14

ALGOL ..o 4-15
Structuring an ALGOL Programccccceevvviieiiiiiieciiieeee 4-15
Initiating Processes from ALGOLccooviiviiiiiiiiieee, 4-16
Initiating Compilations from ALGOLcooevviiiiiiiiennnn. 4-16
Initiating Utilities from ALGOLccccovvviiiiiiiiiiiec 4-16
Initiating Interactive Processes from ALGOL 4-17
Submitting WFL Jobs from ALGOLcccceevvviiiiiiiieen, 4-17
Access to Task Attributes in ALGOLccccveviviiiiiiiiinnnn, 4-17
Communicating with Other Processes from ALGOL 4-18
Restarting ALGOL ProCessescccveeeviiiieiiiiiieiiiee e, 4-18
DCALGOL FEAtUIeS ...oooovviieiiiiieeeeeee e 4-18
ALGOL EXaMPIES . .vviiiiiiiiiiciiii e 4-19

COBOL e 4-21
Structuring a COBOL Programccccceevviiiieiiiiiieeiiiee, 4-21
Initiating Processes from COBOL........ccccccoovviiiiiiiiiciinnne, 4-22
Using Coroutines in COBOLccoivviiiiiiiiieiieee 4-23
Entering Individual COBOL Procedures..........cccccevvveeee..n. 4-23
Resolving Ambiguous CALL Statements in

COBOLSD ..., 4-24
Initiating Compilations from COBOLccccveiiiviieiinnnn, 4-24
Initiating Utilities from COBOLcccccoovviiiiiiiiiiiee e, 4-24

Contents

Section 5.

Section 6.

Vi

Initiating Interactive Processes from COBOL 4-25

Submitting WFL Jobs from COBOLccccceeeviiiiiiiiee, 4-25

Access to Task Attributes in COBOLcccocvveiiviiiiinen, 4-25

Invoking COBOL Programscoocveeiviiiiieiiiieeeeiie e, 4-26
Communicating with Other Processes from

COBOL oo 4-26

Terminating Processes from COBOL Programs 4-26

COBOL EXamPles....c.vvviiiiiiiiiiiiiii e 4-27

Other LaNQUAgES.ooo i, 4-31

Establishing Process Identity and Privileges

Process [dentity ... 51
Mix Number, Session Number, Stack Number, and
MPID AtFDUTE ..o, 5-1
Usercode, Access Code, Charge Code, and Group
COB oo 5-4
NAME .. 5-6
Object Code File ..o, 5-6
Originating SOUICEvviiiiiiiie e, 5-8
Process SecUrity ClaSSES .. .uuiiiiiiiiiiiiiiieciie e, 5-9
Nonprivileged Statuscccoeviiviieiiiiiieeeeeeee e, 5-10
Privileged Statusoooiiiiiiiiiiiecceeee e, 5-13
Granulated Privilegesccceeiiiiiiiiiiicee e 5-15
Nonusercoded StatusSccoviiieeiiiiiiieeiieeeee e, 5-17
ODT StatUsS .evveiiie e, 5-19
SYSTEMUSER StatusS.......cooveiviiiiiiiiceiieeeeee e, 5-19
Security Administrator Status.......cccccooeeiiiiiiiiieeee 5-19
ComMPIIEr STATUS .vveiiiiiiiiieiiie e 5-20
Message Control System Status..........coocvvveiieieiiiiiin 5-20
TasSKING STATUS ..ooiiiiiiiiiciiie e, 5-24
Process |dentity and Process Initiation...................... b5-26
Temporarily Assuming an ldentity ..o 5-26
Real, Saved, and Effective Process [dentitiescccccoeevvvieeiiiieeennn, 5-28
Using SETUSERCODE and SETGROUPCODE................... 5-28
Understanding Real and Saved ldentities..............cc.......... 5-29
Toggling between Identitiesccccoiiiiiiiii, 5-29

Monitoring and Controlling Process Status

Understanding Process StatusS.........cccuviiiiiiiiiiiiiieieiiie e, 6-1
STATUS Task AttribULEceeeeiiiieeicieeeeeeee e, 6-3
WHFL Task State EXPression.........oovveiviieeiiiiiieieiiieec e 6-4
Mix Display Commands..........ccccvvieviiiiiiiiiiiieiiiieeeeeieee e, 6-5
Y (Status Interrogate) Stack States........cccccevvviieiiiiiieneenn, 6-6
Monitoring Changes in Process StatusS..........ccoovvvviiiviiiiiiiiiieeeeiiee, 6-7
Controlling Process StatusS........coooiiiiiiiiiieeeee e, 6-9
Terminating @ Processoooviiiiiiiiiiii e 6-9
Thawing a Library.........cccoiii 6-10
Suspending and Resuming Processesccccccccccoeeen. 6-11
Preparing a Task Variable for Reuse............................. 6-11

8600 0494-506

Contents

Section 7.

Section 8.

Section 9.

8600 0494-506

Preventing Process Schedulingccooociiiviiiiiiiiic, 6-11
Preventing Process SUSPENSIONcoovvvieiiiiieeeiiiieee, 6-12
Checking File Residencecccccccovvieiiiiiiiiiiiieee 6-12
Using AUTORESTORE for Disk Filescc........ 6-13
ldentifying Tape Files ... 6-13
Using UNITNO and OMITTEDEOF for
Unlabeled Tape Files.......ccooiiiiiiii, 6-14
Using the AUTORM Optioncooevveiiiiiiieiiiieeee, 6-15
Using the ORGUNIT Value for ODT Files.................. 6-15
Using Conditional ACCEPT Statements................... 6-15

Controlling Processor Usage

Controlling Process Prioritycoooiuiiieiie e 7-1
Limiting Processor USAgeoovvviiiiiiiiiaiiiiiee e 7-3
Understanding Processor Usage AcCOUNtiNg.......coooiivviiiiiiaaiiiiiiiiieeen 7-4

Controlling Process Memory Usage

Understanding Process Memory USagecoooviiiiiiiiiiiiaiiiiiiiieeen 8-1
Main Memory and Virtual Memorycccccccciiiiiiiin, 8-1
Process COMPONENTS.....cuuviiiiiiiiiecii e 8-2
Presence-Bit Operationscccccovvviiiiiiiiiiiiiiicecee e 8-3
Controlling Code Segment Dictionary Sharing..........cccccceevvieeevinieeenn. 8-3
Controlling Process Scheduling..........ccccoiiiiiiiiiiiicciee e, 8-4
Preventing Stack StretChesouvviiiiiiiiiiiicee e, 8-6
Protecting against Stack OVerflowccccccoiviiiiiiiiiiic e, 8-7
Restricting Save Memory USAgec..cooviiviiiiiiiiiiiiiiceeiee e 8-7

Controlling Process 1/0 Usage

Establishing the Default Usercode for Disk Files..................... 9-1
Modifying File Attributes ... 9-2
Controlling Disk File USAQEccovviiiiiiiiieiiiiiieecee e 9-4
Specifying Family Substitution.........ccccccoovvviiiiiiiiiicce, 9-4
Preventing File Duplications..........ccccccoiiiiiiii 9-6
Automatically Restoring Missing Disk Files......................... 9-6

Limiting Disk USAQE ...vuviiiiiiiiiiiiiiiiiiiee e 9-7
Specifying a Current DIreCtoryooovvvvieiiiiiieiiiieeeeiiee, 9-8
Controlling Printingovvvieiieiice e 9-9
Default Handling of Printer Qutputcccocoeviiiiiiiiiieee, 9-9

Storing Printer Backup Files Temporarily 9-9

Titling of Printer Backup Files..........ccoooviiiininn. 9-11

Submitting Print Requestscccooevveiiiiiiieiiiiie 9-13

Selecting Print Requests........coocvveeiiiiiiiiiiicecice, 9-13

Programmatic Control Over Printing..........cccooeveeiiiiieeennn, 9-13

Other Print-Related Task Attributes........cccccoeiiiiiiiicenn. 9-15
Controlling Message TanKingccooiviiiiiiiiieiiiieeceeeee e, 9-16
Suppressing Unwanted System MesSagesooovvvvvveeeeeeeeeecenn. 9-18
LOCAlIZAtION ... 9-20

vii

Contents

Section 10.

viii

LImiting [/O USAQEeveeieeeeeeeeeeeee e 9-20

Determining Process History

Understanding Termination Messagesc..uovvieiiiiiiiiiiieieieeie 10-1
Using Log INformation ..o 10-4
Specifying the Information to Be Logged..........ccccccovvvenn. 10-4
Controlling Job Summary Printing.........ccooeeeiiiiieiieen 10-5
Saving the Job Summary Filecccoeoiiiiiiiii 10-6
Analyzing the System LOgooooviiiiiiiiiieeeeeciie 10-6
Programmatically Interrogating Process History......................... 10-7
Determining the Type of Termination...........c.ccccooeiviieen. 10-7
Determining Whether a Compilation Was
SUCCESSTUl . 10-8
Responding to Task Failures...........ccccoooiiiiiiiii 10-8
Determining Where a Fault Occurred...........ccoceeeivieen, 10-8
Protecting a Process from Abnormal Terminations......................... 10-11
Preventing All Abnormal Terminationsc.ccococeee. 10-12
Protection against Most Conditions....................... 10-12
Protection against All Conditionsccccccccoooeii. 10-13
Including Multiple Statements.........cccccccooeeeeennn. 10-14
Determining the Cause of the Error....................... 10-14
Using TRY as an EXpressionccccccovevviiiiiineeenn, 10-15
Providing Alternate Sets of Error Handling
COB oo 10-15
Optimizing Performanceccccccoovvviveiiiiiiecen 10-15
Triggering Program Dumpscccoooiiiiiiiieniii, 10-16
Protecting a Process from Faultsl 10-16
Retrying a Failed Task.......cccooiiiiiiii 10-17
Protecting a Process from Operator DS
(Discontinue) Commandsccceeeviviieiiiiieee e, 10-18
Protecting Procedures from DS and ST Commands....... 10-18
Performing Cleanup during an Abnormal
Terminationooociiiiii 10-19
Interactions between Error Recovery Statements.......... 10-21
Multiple TRY Statements.......ccccccoovvieeiiiiieeiiiieeen, 10-22
TRY Statements and Library Delinkage 10-22
TRY Statements and ON Statements..................... 10-24
TRY Statements, EPILOG Procedures, and
EXCEPTION Procedures......cccccvvvveeieeeeiiiiiinen 10-24
Controlling Program DUMPS......covviiiiiiiiiieiiieee e 10-26
Using Program Statements to Control Program
UMD et 10-26
Using Operator Commands to Control Program
UMD et 10-27
Controlling the Program Dump Destination 10-28
Using the Task File ... 10-30
Analyzing a Program Dump from a Running
PrOCESS .. s 10-32
Determining Whether a Dump is In Progress 10-33
Causing Symbolic Dumps for RPG Processes 10-33

8600 0494-506

Contents

Section 11.

Section 12.

8600 0494-506

Effect of Resource Limits on Program Dumps................ 10-34
Understanding Internal and External Causes................... 10-34

Restarting Jobs and Tasks

Designing WFL Jobs for Automatic Restarts..............cooooeiiiiiiiiiienn, 11-2
Preventing Job Side Effects..........ccccooviiiii 11-3
Preventing Task Side EffectS.........ccccooviiiiiii 11-3
Understanding Job Restart Failure 11-4
Understanding Disk Resource Control Effects................. 11-5

Manually Restarting WFL JObS ... 11-5

Checkpoint FaCIlityovvvieiiiiiceccce e 11-6
Programmatically Invoked Checkpoints............cccccvvvneee.n. 117

Storing Information with a Checkpoint...................... 11-7
Planning for File Recovery.........cccccoiiiiiiiiiiiii 11-7
Planning for Library Recoveryccccooiiiiie, 11-8
Invoking the Checkpoint........cccccoovvvviiiiiiiiiiiiicc, 11-8
Creating Output Disk Files with a Checkpoint 11-12
Restrictions on the Use of Checkpoints 11-13
Determining Eligibility for Checkpoints 11-14
Determining Whether the Checkpoint
SuCCeEEd ..o 11-14
Operator-Invoked Checkpointsccccccovvveiiiiiieeiiiien, 11-19
Programmatically Preventing Operator
CheCKPOINTS ..o, 11-19
Displaying the Checkpoint Status 11-19
Invoking a Checkpoint Interactively.............ccc.c....e. 11-20
Canceling a Checkpoint Interactively 11-21
Operator Actions after the Checkpoint 11-21
Restarting a Checkpointed Taskccoccveieiiiiiiiii. 11-21
Restarting Checkpointed Tasks Automatically........ 11-22
Initiating a Restart Explicitly ..o 11-22
Using the CHECKPOINTARRAY Procedurecooovvvviiieiieieen. 11-25

Tasking across Multihost Networks

Submitting Remote WFL JODSovvviiiiiiiii e 12-2
Running a Local WFL Job on a Remote Host.................... 12-2
Submitting a WFL Job Stored on a Remote Host 12-2
Meeting Remote Job Queue Requirements 12-3

Initiating Non-WFL Remote Processes........cooooiiiiiiiiiiiiiiiiiiccccccccee, 12-3
Specifying the Remote HoSt.....c...oovoiiiiiiii 12-3
Limitations on a Non-WFL Remote Process..................... 12-4
Host Availability.......c.eveiiiiii 12-5
Initiating Processes from a Remote Session..................... 12-5
Interrogating the Remote Ancestry of a Process 12-6

Preventing User Identity Problemscc 12-6
Usercode 1dentity.........ooooiiiiiiiiiie e 12-6
Accesscode and Charge Validation............ccoeevveeeiinieeennn. 12-8
Family and Group Code ldentityccccvviiiiiiii, 12-8

Logging of Remote Processesoiiiiiiiiiiiiiiiee e 12-9

Contents

Section 13.

Section 14.

Section 15.

Section 16.

System Log ENtresoooiiviiiiiiiiii s 12-9
Job Summaries for Remote Processes..........cccccvvveeeen. 12-9
Resource Limits for Remote Processesccccoo. 12-9
Interacting with Remote Processes.......ccooovieiiiiiiiiiiicicciccii 12-10
Viewing Remote Process Messages.........cccccoevvviieninnen. 12-10
Local Operator Control of Remote Processes................. 12-11
MARC Control of Remote Processes............ccccceeuuvne.... 12-12
CANDE Control of Remote Processes.............ccccceeeun... 12-12
Visibility of Remote Processes to Remote
OPEIATOIS ©ovviiiiiiiiie e 12-13
TASKING/MESSAGE/HANDLER and
TASKING/STATE/CONTROLLER.......oooiii 12-13
Using Host Services-Supported Task Attributes 12-14

Understanding Interprocess Communication

Methods of Sharing OBJECESvviiiiiiiieiicecc e 13-2
Methods of Synchronizing ACCESS........ccoiviiiiiiiiieiiiiee e, 13-5

Using Task Attributes

Using Global Objects

Communication through Global Objects in WFLcccccoooviiiiiiiinnnn 15-2
Communication through Global Objects in ALGOLcocveeeviinenn, 15-4

Using Events and Interlocks

USING EVENTS ..o 16-2
Declaring EVents. ... 16-2
Accessing the Available Statecccoceeiiviiiiiii e, 16-3

Procuring an Event Unconditionally 16-4
Procuring an Event Conditionallycccccoovvvviennnn, 16-4
Liberating an Eventccooiiiiiii 164
Partially Liberating an Event..........cccccoiiiiiiiinnn, 16-5
Testing the Availability of an Event..................... 166
Determining the Ownership of an Event................. 166
Accessing the Happened Stateccooeviiiiiiiicicicce, 16-8
Causing an EVeNntococcoiiiiiiiic 16-8
Implicitly Causing an Event........cccocccievviiiiiiiiieee, 16-9
Causing and Resetting an Event............ccoceeeiviinnn 16-9
Partially Causing an Event..........ccccooeieiiiiiieiiicce, 16-9
Resettingan Event.........ccoooiiiiiiiii, 16-9
Waiting onan Event.........ooooo 16-10
Waiting on Time ... 16-10
Waiting on and Resetting an Event 16-11
Waiting on Multiple Events..........ccccoiiiiin 16-11
Waiting for POSIX Signals..........ccoccveeviiiiiiiiiiee, 16-12
Testing the Happened Statecccoieiieenn, 16-12

8600 0494-506

Contents

Section 17.

8600 0494-506

Duration of the Happened Statecc.ccocoeveen. 16-13
Using Implicitly Declared Eventsoooooeeiiiiiiiiiienn, 16-13
USING INTEITUPTS .. 16-14

Declaring INterrupts.......oooviiiiiiiiiiieieiieeee e, 16-15

Attaching or Detaching an Interrupt..........c...ccoee. 16-16

Enabling or Disabling an Interruptcccccccooen 16-16

Using General Disable and Enable Statements 16-17

Waiting for Interruptsccooooiiiiiii 16-18
Efficiency Considerations........cccc..oeoieeeeiiiiiiieeieeeeee 16-18

BUZZ LOOPS «.oeieieieiiiie e 16-18

Preventing Excessive Interrupt Overhead 16-19

Preventing Starvation Problems............c................. 16-19
Discontinued Processes and Eventsccccoooiii. 16-21

Using EPILOG and EXCEPTION Procedures 16-21

Using Timed Wait Statements...........ccccceveeeiiin, 16-21

Using Conditional Procure Statements 16-22

Determining Whether to Liberate an Event............ 16-22
Example of Event Usage.......cccccoiiiiiiiii, 16-22

UsiNg INTErlOCKS ... 16-24
Declaring Interlocks and Interlock Arrayscccoccveeeen. 16-25
Locking an Interlock ... 16-25
Unlocking INterloCksS. ..o 16-26
Interrogating the Interlock Statuscccooeviil. 16-27
Discontinued Processes and Interlocks...........cococen. 16-28
Replacing Readlocks with Interlocks 16-28

Using Parameters

Determining the Scope of Parameters............ccccooovviiiiiiiiiiii 17-1
Parameter Passing Modesuuoiiiiiiiiii 17-3
Call-by-Value Parametersccoovvveieiiiiiiiieeeeee 17-3
Call-by-Name Parameterscccccvveeeeiiiiiiiieeeeee 17-3
Call-by-Reference Parameterscccccoovviiiiieciiccicn . 17-4
Read-Only Parameters ..o 17-6
Specifying the Passing Modecccoooeviiiiiiiii 17-6
Using Tasking Parameters. ... 17-7
Matching Each Parameter Type........ccooooiiiiiiiiii, 17-8
Resolving Passing Mode Conflictsccccoeeviiiiiiiiiiennn, 17-27
PassiNng AITaysooouuiiiiiieiiee e 17-29
Matching Dimensions and Elements...................... 17-29
Matching Unbounded Arrayscccccoviiieeiannnne 17-29
Matching Pascal Arrays.......ccoocciiiiiiiiiie, 17-31

Passing COBOL74 Arrays to Bound
ProCedUIrES .. .uuviiiiiiiiiiii 17-35
Xi

Contents

Section 18. Using Libraries

Introducing LIDraries ..o 18-1
Creating Server Library Programs.......cccccoovieeiiiiiieiiiiiieceee e 18-3
EXporting ObJECtSvvviiiiiiiiccciiee e, 18-4
Freezing the Librarycccooiiiiii 18—-4
Controlling Server Library Sharingccocceeiviiieiiinen 18-6
Initiating Internal Server Library Processes............c.......... 18-8
Using Server Library ObjectS......ccoovviiiiiiiiieiiiiceceieee, 18-8
Local Objects in Server Librariescccccoovvvveeennn, 18-8
Global Objects in Server Libraries...........ccocceeevvniennn 18-9
Exported Data in Server Librariesccccccovveenn, 18-11
Restrictions on OWN Objects in Server
LIBrariesueeveeeeeie 18-15
Restrictions on COBOL74 Libraries.........cccccccovvveeeiinnenn 18-16
Monitoring Server Library Linkage..........ccccoovvivieeiiiinenn 18-17
Thawing and Resuming Server Libraries.............ccc......... 18-17
Creating Client Programsooiviiiiiiiiiieiieeee e 18-18
Importing Procedures to Client Programs 18-18
Importing Data to Client Programs...........cccoccveeeeiiieeennn, 18-19
Specifying Client Librariesccccoovvviiiiiiiiiiiiiicce 18-20
Linking to Server Librariesccccccoovveiiiiiiiiiiiie i 18-21
Implicitly Linking to Server Libraries....................... 18-22
Explicitly Linking to Server Librariescc...... 18-23
Directly Linking to Server Librariescc...ccoevee... 18-24
Matching Client and Server Library Objects 18-24
Initiating Server Library Processesc.ccccoevveeviiieeenn, 18-26
Implicitly Initiating a Server Librarycccc.c.o... 18-26
Explicitly Initiating a Server Libraryccccc.cooveenn 18-28
Monitoring Client Process Linkage.........cccccccovveeivinnenn, 18-29
Delinking from Server Librariesccccoeveeiiiiiiiiiinen 18-30
Creating Connection Library Programsccccoeeviiiiiiieiiiiiecene 18-32
Declaring a Connection Library........ccccccoovvvieiiiiiiiiiiinen 18-33
Establishing CoONNECHIONSccovviiiiiiiiiiiiiiieceiee e 18-34
Explicitly Linking Connection Libraries.................... 18-35
Assigning Connection Library Attributes........ 18-35
Using LINKLIBRARY for the Requesting
Library ..o 18-38
Using READYCL for the Responding
Library ..o 18-39
Implicitly Linking Connection Libraries 18-41
Directly Linking Connection Libraries 18-41
Controlling Connection Library Sharing................... 18-43
Approving a ConNectioncc.ccevviieeeeiiieeeeiieee, 18-44
Monitoring Connection State..........cccccevvvveeeiinnenn, 18-45
Matching Connection Library Objects 18-48
Initiating Connection Librariesccccccoovvieeennn, 18-49
Implicitly Initiating a Connection Library 18-49
Explicitly Initiating a Connection Library......... 18-50
Unreadying a Connection Library...........cc............... 18-51
Delinking Connection Librariescccooceeeiviieennn 18-51
Using PROLOG and EPILOG Procedures............... 18-52

Xii 8600 0494-506

Contents

8600 0494-506

Using Connection Library Objectscccceevviiiiiiiiine, 18-54
Global Objects in Connection Libraries 18-b5
Connection Objects in Connection Libraries........... 18-57
Local Objects in Connection Libraries..................... 18-59
Exported and Imported Data in Connection

LIDraries ... 18-60
Predeclared Objects: THIS and THISCL 18-63
Referencing the Connection with THIS 18-63

Referencing the Connection Library with
THISCL o 18-64
Passing Connections as Parameters....................... 18-65

Restrictions on OWN Objects in Connection
LIDraries ... 18-67
Linking Connection Libraries, Server Libraries, and Client

P OgraMIS 18-67

Linking a Client Library to a Connection Library............... 18-67

Linking a Connection Library to a Server Library 18-69

Linking to a Connection Library in a Server Library

Program ... 18-69

Directly Linking Client, Server, and Connection

LIDrarieseeeeeeee e 18-72
Using Library Attributes.......cceeviii 18-73

APPROVAL ..o 18-75

AUTOLINK Lo 18-78

CHANGE ..., 18-79

CLUSAGE ..., 18-84

CONNECTIONS ..o, 18-85

DELINKEVENT ..o 18-86

FUNCTIONNAME ..o 18-87

INTERFACENAME ..o 18-89

INTNAME ... 18-90

LIBACCESS ..., 18-91

LIBERROR ..o 18-93

LIBPARAMETERooiiiiiiceee e 18-94

SINGLE ... 18-95

STATE oo 18-96

TITLE oo 18-97

Methods of Providing ObJECtScoiviiiiiiiiieiiiceeeeeeee e, 18-99

Direct ProviSioncueeiiiiiiiiii e 18-99

Indirect Provisioncccooiiiiie 18-99

Dynamic Provisionccccoiiiiiiiiiiieieei e 18-101

Circular ProviSioncccviiiiiiiiceiiceceee e 18-102
Understanding Circular Linkage and Circular

ProvisSion ... 18-103

Example 1: Circular Provision of a Single

Procedure ... 18-103
Example 2: Circular Linkage without

Circular Provision.........ccccccvveeiiiiieiiiiiee 18-104
Example 3: Circular Linkage Including a

Connection Libraryccccceeviiiiiiiiinens 18-105
Example 4: Circular Linkage with an

Extra Connection Library Linkage............. 18-106

Contents

Example 5: Noncircular Linkage Involving

Connection Librariesc.ccccoooevveiiinneenn 18-107
Example 6: Circular Linkage with a

Connection Library as Client.................... 18-108

Restrictions on Circular Linkage and Circular
Provisionoooooieiiii s 18-109
Matching the Object Nameccoovvveiviiiiiiiecc 18-110
Type MatChing ...ooooii e 18-112
Matching Procedure Types.......ccccoieeiiiiiiiiiiee 18-112
Matching Parameter Typescccccoieeiiiiiiiee 18-113
ALGOL Parameter TYPESoovvveiviiiiieiiiiiieeeiiieeen, 18-114
C Parameter TYPES ..vvvviiiiiiiiiiciiee e, 18-115
COBOL74 Parameter TYPES ...cocvveveviiieeeeiiieeen, 18-117
COBOL8S5 Parameter TYPES ...covvvveveviiieeeeiiieee, 18-118
FORTRAN77 Parameter TYPeSccocvevvvvvveiennn.. 18-119
NEWP Parameter Typesccccvveiieiiiiiiiiieeeee, 18-120
Pascal Parameter Types.......ccoccciiiiiiiiiii, 18-122
Using the ANYTYPE Parameter.....cccoooveveeieiiieieieeienenennn. 18-126
Matching Array Lower Bounds..................... 18-127
Matching Parameter-Passing Modeccccooinn. 18-128
Matching Data TYPeS......oveeiiiiiiiiiiiieee e 18-130
Determining Which Clients Are Linked to a Library..........cc....cc...... 18-131
Understanding Library Process Structurecccoeoeiieieeen, 18-132
Process Stacksoocvviiiiiiiiiiiiii 18-132
Using Isolated Procedures in Libraries 18-132
Library Task Attributes........ccveviiiiiiiiiiie, 18-136
Error Handlingooooii 18-138
Design Strategies for Linking Librariescccoooviviiiiieen 18-139
Technical Architectures ..o 18-139
Client STrategiesciivveiiiiiiiicce e, 18-140
SEerver Strategiesoovvvviiiiii i, 18-142
Middleware Strategiescoovvvviiiiiiieiiiiieeeieee e 18-144
Factors Affecting System Performance..............ccccooeeiiiciiinnn 18-146
Delinkage OVEIUSEcoovviiiiiiiiiiiiiiieeecee e 18-146
Hazards of Circular Connections...........cccccvvveiiiiieeennnnns. 18-146
Security Considerations for Librariescccoooveiiiiiiiii 18-149
Privileges of the Importing Process.........ccccccceiiiiinnn. 18-149
Support Library Attributes ... 18-149
Nonresumable Libraries..........cccooooiiiiiiii 18-151
Restricting Access to a Library Code File...................... 18-151
Using Linkage ClasSes........coovvvviiiiiiiiiiiiiiiiieciiecee 18-151
Library Debuggingcoovieeiieiiee e 18-156
Server Library EXamplescc..ooiiiiiiiiiiiiieee e 18-157
ALGOL Library: OBJECT/FILEMANAGER/LIB............... 18-157
ALGOL Client Program #71c.oooiiiiiiiiiiieeeiiiieeeeieee 18-159
ALGOL Library: OBJECT/SAMPLE/LIBRARY 18-160
ALGOL Library: OBJECT/SAMPLE/DYNAMICLIB......... 18-161
ALGOL Client Program #2ccoovviiiiiiiiiiiiiieeeeiieen 18-163
ALGOL Circular Client Programscocceeevivieeeiiiinen, 18-163
ALGOL Incorrect Circular Librariesccccccovvveiiinneenn, 18-165
C Library and ALGOL Client Programccccevveeennnn. 18-167
C Client Program Passing Array to ALGOL Library........ 18-169

Xiv 8600 0494-506

Contents

Section 19.

Section 20.

8600 0494-506

C Client Program Passing File to ALGOL Library........... 18-171
COBOL74 Library: OBJECT/SAMPLEA.........cocviiii, 18-173
COBOL74 Library: OBJECT/SAMPLEDS.......coooiiiiie, 18-173
COBOL74 Client Program........cccceeiviiieieiiiieieiiiee e 18-174
COBOLS8S Libraries and Client Programcccccccoue... 18-176
FORTRAN77 Library and Client Program 18-180
Pascal Libraryooooi 18-181
Connection Library EXample........cccccoovviiiiiiiiiiic e 18-184

Using Shared Files

Sharing Communications FIleS..........cccceiiiiiiiiiiiieeeeeee e, 19-1
Using Port Files ... 19-1
Using Host Control (HC) FileScocvvviiiiiiiiiiiiiiceciice, 19-6
Using HYPERchannel (HY) Files ..., 19-6
Sharing Other Kinds of FIleS.......cccooviiiiiiiiieceeeee e, 19-7
Using Shared Logical FileS......cc.cccooviiiiiiiiiiiiicec e 19-8
Specifying the File Locationccccoevviiiieiinicene, 19-8
Synchronizing Access with Shared Logical
FI S 19-9
Establishing Access Rights ... 19-9
Understanding I/O Accountingcccccoevvieeeinneene, 19-13
Understanding File Attribute Access..........ccccvvunnn. 19-14
File Sharing Examplescccooviiiiiiiiieiiieee e, 19-15
Accessing Disk Files Through Separate Logical
FI S s 19-17
Entering a File in the Directory.........cccocoeeiiieinnne 19-17
Matching Physical Files..........cccooocoiiiiiiii, 19-18
Synchronizing Access with Separate Logical
FI S 19-18
Using the BUFFERSHARING File
Attribute ..o 19-19
Using the EXCLUSIVE File Attribute 19-23
Avoiding Nonpreferred Methods................... 19-24
Synchronizing Access on Shared Disk
FAMIIES wuvvviiiiiiiiii, 19-24
Using Core-to-Core (CRCR) and Storage Queue
(STOQ)
USING CRCR ..., 20-1
How CRCR Processes Interlockcoooviiiiiiiiiiiiii, 20-2
Using CRCR Through Library Callsccoccooviiiiiiiiiieene, 20-2
Using CRCR Through COBOLS85 Statements.................... 20-5
USING STOQ e 20-7
Creating and Using STOQScccveeeviiiiieiiiiieeecieeee e, 20-7
Using STOQ Through Library Callsccccceeviiiiiiiiiieene, 20-8
Using STOQ Through COBOLS85 Statements.................. 20-12
Waiting On CRCR or STOQ EVENtS.....ccoiviiiiiiiiiiciieecceee e, 20-14
CRCR and STOQ Events in ALGOLcoovvviiiiiiiiieiiiin, 20-14
CRCR and STOQ Events in COBOL85coovvveeviiinnnn, 20-15

XV

Contents

XVi

Section 21.

Handling the CRCR or STOQ ResuUlt........oocviiiiiiiiiiiiiiecciieecc 20-17
Result Handling in ALGOLoccvviiiiiiiiiiiiiieceiee i 20-20
Result Handling in COBOL74cooiiiiiiiiiiiiie 20-20
Operations Interfaces to CRCR and STOQ..........cccooviviiieieeen 20-21
Clearing @ STOQcoiiiiiiiiiiiiecece e 20-21
Polling a STOQ......coi e 20-23
Displaying Status of CRCR or STOQ Operations 20-25

Using ONC+ Remote Procedure Call (RPC)

Appendix A. Related Product Information

Index

8600 0494-506

Figures

18-1.
18-2.
18-3.
18-4.
18-5.
18-6.
18-7.
18-8.

8600 0494-506

Multiple TRY StatemMeENtsciiiiiiiiiiiiiece e 10-22
TRY Statements and Library Delinkagesccccccoiviiiiiiiiiiiiieiece e 10-23
ON Statements and TRY Statementsccccoeiiiiiiiiiiiiieccee e, 10-24
TRY Statement, EPILOG Procedure, and EXCEPTION Procedure................. 10-25
TRY Statements and Bad GO TO Statementsccceovvvvviiiiiiiiiiiiieeeee 10-26
Circular Provision of a Single Procedurecoccoeoiiiiiiiiiice 18-103
Circular Linkage without Circular ProvisSioncccccooiviieiiiiieeiiiiieeeiee 18-104
Circular Linkage Including a Connection Library.........ccccccoovviieiiiiiiieiiicee, 18-105
Circular Linkage with an Extra Connection Library Linkageccce.... 18-106
Noncircular Linkage Involving Connection Libraries..........ccccccoeeeviieviiieennn, 18-107
Circular Linkage with a Connection Library as Clientcccccoovviiiiiiinnns 18-108
TWO-TIEr Model ..o 18-139
Three-Tier MOl ... 18-140

XVil

Figures

Xvii 8600 0494-506

Tables

3-1.

18-1.
18-2.
18-3.
18-4.
18-5.
18-6.
18-7.
18-8.
18-9.

8600 0494-506

Interactive Tasking FUNCLIONSuiiiiiiiiii e 3-27
WEFL EXECUTION MOAES ..o 4-3
WHFL Statements Executed with Privilegecccoovviiiiiiiiii e 5-18
PrOCESS STATES ©.viiiiiiiiiiii it 6-2
Effects of GOINGAWAY and ACTIVE ASSIGNMENTSccovvvviiiiiiieiiiiiieeeeie 6-10
Abnormal Termination MESSAgESccooiiiiiiiiiiieei e 10-3
Checkpoint Completion COOES.........ccoiuiiiiiiiiiiieciee e, 11-15
Comparison of CHECKPOINTARRAY and Checkpoint Facility....................... 11-25
Methods of Sharing OBJECESovvviiiiiiiiic e 13-2
Programming Language Parameter Types........cccccoiii 17-12
Matching Parameter TYPeS ... 17-18
C PAIAMEBTEIS ..o 18-115
COBOLT74 ParameterS.....ccouiiieiiiiee e, 18-117
COBOLBE ParameterS.....ccouviiieiiiiiii e, 18-118
FORTRANT7 Parameterscoooiuviiiiiiiiiee e, 18-119
NEWP Parametersooooiiiiiii e 18-120
Pascal Parameterso 18-122
Unbounded and Simple Array Declarations............ccooveeeviiiieeiiiiiecciecee 18-127
Parameter-Passing Modes ... 18-129
LINKAGE ClaSSES . .uuiiiiiiiiiiiiiie e 18-154

XiX

Tables

XX 8600 0494-506

Section 1
Understanding Basic Tasking
Concepts

Tasking features are inherent in the overall system architecture. Various programming
languages and operations interfaces provide you with access to different subsets of the
tasking capabilities of the system. This section presents an overview of tasking features
and discusses the advantages and limitations of these features.

About This Guide

Purpose

This guide describes the following types of operating system features that are accessed
using programming languages:
e Tasking features

Features that enable processes to initiate, monitor, and control other processes
include the CALL, PROCESS, and RUN statements, task variables, and task
attributes. Features related to job restarting and process history also are this
category.

e Interprocess communication features

Features that enable user-defined information to be passed between processes, or
that help regulate the timing of parallel processes include events, libraries, and
parameter passing.

Audience
The audience for this guide consists of applications programmers familiar with at least
one high-level programming language, such as ALGOL, C, COBOL74, COBOLSS5,
FORTRAN77, Pascal, or WFL.

Terminology Conventions

Statements about ALGOL in this guide apply also to DCALGOL, DMALGOL, and
BDMSALGOL unless otherwise specified.

Two different ANSI levels of COBOL are supported: ANSI-74 and ANSI-85. These
implementations are referred to in this guide as COBOL74 and COBOLS5, respectively.

8600 0494-506 1-1

Understanding Basic Tasking Concepts

Statements in this guide about COBOL are true of both COBOL implementations unless
otherwise specified.

The term library, which was used in previous editions of this guide, has been replaced by
the term server library. The term user process (when used in the context of libraries) has
been replaced by the term client process. The library as it is declared in the client
process is now referred to as the client library.

These changes resulted from the implementation of a new type of libraries, called
connection libraries. The term library is now used as a general term referring to a server
library, a client library, or a connection library.

Tasking Concepts

The following subsections discuss the relationships between programs and processes,
and the methods you can use to monitor and control process behavior.

Programs and Processes

A program is a sequence of statements written in any of a number of languages,
including ALGOL, C, COBOL74, COBOL85, FORTRAN77, Pascal, and Work Flow
Language (WFL). The file in which you write and store these statements is referred to as
a source file. By compiling the source file, you cause the creation of an object code file.

By using any of a number of commands or statements, you can cause a particular object
code file to be initiated. That is to say, you cause the system to start performing the
instructions in the object code file. At this point, the object code file is being executed.
However, in a sense, nothing is happening to the object code file itself. The system
merely reads instructions from the object code file; the contents of the file remain
unchanged.

There is, nonetheless, a dynamic entity called a process, which is separate from the
object code file, but which reflects the current state of the execution of the object code
file. A process stores the current values of variables used by the program, as well as
information about which procedures have been entered and which statement is currently
being executed. (Procedures are discussed under “Internal and External Processes”
later in this section.)

Each process exists in the system memory, and consists of several distinct structures
that are discussed in Section 8, “Controlling Process Memory Usage.”

The distinction between object code files and processes is a very important one. This is
because, at any given time, there can be multiple processes that are executing the same
object code file; these are referred to as instances of that object code file. A new
instance is created each time a user or an existing process submits a statement that
initiates the object code file.

Because many instances of the same object code file can be running at the same time,

the object code file title is not sufficient to uniquely identify a process. Therefore, in
system command displays, the various processes are identified both by an object code

8600 0494-506

Understanding Basic Tasking Concepts

file title and by a unique number called the mix number. For further information on mix
numbers, refer to Section 5, “Establishing Process Identity and Privileges.”

Even if processes are executions of the same object code file, the processes are
completely separate entities and do not interact with each other. For example, suppose
the object code file called OBJECT/PROG includes a declaration of an integer variable
named N, as well as various statements that assign values to N. In this case, each
instance of OBJECT/PROG has its own copy of variable N in memory. When one
process changes the value of N, there is no change to the value N has for the other
processes.

The fact that processes are separate and maintain their own copies of variables generally
prevents confusion and simplifies program design. However, there can also be cases
where you want processes to have shared access to a particular variable. For these
cases, the system provides a variety of interprocess communication techniques, which
are described in Part Il of this guide.

Tasking consists of using various features to initiate, monitor, and control processes.
You can perform tasking functions by entering commands through various system
operation interfaces, or by writing programs that initiate, monitor, and control the
execution of other programs.

Task Attributes

Task attributes are entities that record various properties of a process, such as its
usercode, mix number, priority, printing defaults, and so on.

There are a limited number of task attributes, which are defined by the operating system
and have fixed meanings. Each process possesses all of these task attributes, but the
values of the task attributes can vary. For example, each process has a USERCODE task
attribute, but where one process might have a USERCODE value of JASMITH, another
process might have a USERCODE value of JANEDOE.

Task attributes record or modify many aspects of process execution, including security,
processor usage, memory usage, and I/O activity. You can assign task attributes to a
process either through commands entered at an interactive source, or through
statements in a program.

This guide introduces many of the important uses of task attributes. The remaining
sections in Part | of this guide introduce task attributes within discussions of general
functional areas, such as processor usage, memory usage, and so on. For detailed
information about any of these task attributes, you can refer to the Task Attributes
Programming Reference Manual, which presents the task attributes in alphabetical order.

8600 0494-506 1-3

Understanding Basic Tasking Concepts

Interactive Tasking

You can perform tasking functions through any of the following interactive interfaces:

e Command and Edit (CANDE)

A command-driven environment that provides file handling and tasking capabilities
¢ Menu-Assisted Resource Control (MARC)

A menu-driven interface to system operations functions
e QOperations Center

A Windows-based application that provides a graphical user interface (GUI) to system
operations

e Operator display terminals (ODTs)

Terminals that support an interface called system command mode
Each of these products provides the following general types of tasking capabilities:

e A command or menu selection that allows you to initiate any object code file by
name. Examples are the RUN command in CANDE and MARC.

e Syntax for specifying task equations, which are task attribute assignments applied to
a process when it is first initiated.

o Task attribute inheritance, which causes a process to receive task attributes
associated with the initiating source.

e Various commands or selections for monitoring process status and resource use, or
for intervening in process execution.

The tasking capabilities of CANDE, MARC, Operations Center, and the ODT are
described in Section 3, “Tasking from Interactive Sources.”

Note that many commands entered by users can indirectly cause a process to be
initiated. For example, the Transaction Server initiates instances of direct window
programs in response to variations in the message traffic from users. Similarly, the
system initiates processes to execute some specialized system commands, such as
LOG.

This guide does not attempt to describe all such cases of indirect tasking. CANDE,
MARC, and the ODT are all introduced in this guide because they provide direct,
generalized tasking interfaces. With these products, you can initiate any object code file,
as well as monitor and control any process (to the extent allowed by system security).

1-4 8600 0494-506

Understanding Basic Tasking Concepts

Programmatic Tasking

You can perform tasking functions using any of the following programming languages:
ALGOL, C, COBOL74, COBOLS85, and WFL. This guide provides details about the
tasking capabilities of ALGOL, WFL, and both versions of COBOL.

Each of these languages provides you with the following types of tasking capabilities:

e Statements that allow you to initiate any object code file by name. Examples are the
CALL, PROCESS, and RUN statements in ALGOL and COBOL.

e Constructs for reading and assigning the task attributes of a process before the
process is initiated, while it is running, and after it completes execution.

The tasking capabilities of each of these languages are described in Section 4, "Tasking
from Programming Languages.”

At this point you might be aware of the potential for some ambiguity in the use of task
attributes within programs. For example, every process has a USERCODE task attribute.
If you write a program that makes an assignment to the USERCODE task attribute, how
does the system know which process the USERCODE should be applied to?

The answer is that ALGOL, COBOL, and WFL all provide a special type of variable called
a task variable. A task variable is also known as a control point in COBOL. You can
declare one or more task variables in a program, each with a distinct name. When you
use a process initiation statement, you include a reference to a task variable in that
statement. The task variable thereafter becomes associated with the new process.

Statements that use task attributes always specify a task variable name as well as a task
attribute name. In this way, it is always clear which process is being referred to.

When one process initiates another process, many of the task attributes of the initiating
process are transferred to the new process. This transference is called inheritance.
Details about the task attributes that are inherited, and under what circumstances they
are inherited, are given in the Task Attributes Programming Reference Manual.

Process Termination

A process typically ends when the last instruction in the object code file is executed.
This is referred to as a normal termination.

However, a process can also terminate prematurely for any of a number of reasons. For
example, you can use the DS (Discontinue) system command to terminate a process. A
process can also terminate because a flaw in program design causes it to attempt to do
something impossible, such as dividing by zero. Additionally, all processes are
terminated in the event of a system halt/load. All of these types of terminations are
referred to as abnormal terminations because the inference is that something went
wrong.

When you initiate a process, you usually want to be able to find out later whether it ran
successfully or not. The system provides a number of facilities to help you determine

8600 0494-506 1-b

Understanding Basic Tasking Concepts

whether the process ran successfully, and why it failed if it was not successful. These
facilities include the HISTORYTYPE, HISTORYCAUSE, and HISTORYREASON task
attributes, and the program dump facility. These facilities are described in Section 10,
"Determining Process History.”

Sometimes you might want to rerun a process that terminated abnormally. For example,
if the process was terminated by a system halt/load, then the underlying program might
be perfectly sound. Restarting the process could enable it to complete its work
successfully. However, a number of design issues must be considered for processes
that are intended to be restartable. These design issues, and the means of restarting
processes, are explained in Section 11, “Restarting Jobs and Tasks.”

Internal and External Processes

Up to this point, this section has discussed only cases where an object code file is
executed from beginning to end as a single process. However, the system gives you the
option of causing individual procedures to be initiated as separate processes. These
processes fall into two general categories: internal and external processes.

The following subsections describe the various types of internal and external processes.
For a discussion of the varying capabilities of these types of processes, refer to the
discussion of inclusion in Section 2, “Understanding Interprocess Relationships.”

Internal Processes

Many programming languages give you the ability to create groups of declarations and
statements within a program, and to assign a name to each group. In ALGOL, these
groupings are referred to as procedures. In WFL, these groupings are referred to as
subroutines. However, the basic concept is similar in both cases, and the term
"procedure” in this guide refers equally to ALGOL procedures and WFL subroutines.

Other programming languages offer similar types of structures, but ALGOL and WFL are
the only languages that give you a choice between the following two methods of
invoking a procedure:

e Procedure entrance

The syntax for entering a procedure consists of using the procedure name as if it
were a statement. Entering a procedure causes the procedure to be executed as
part of the same process that invoked the procedure. When the process finishes
executing the procedure, the process exits that procedure.

e Procedure initiation

The syntax for initiating a procedure consists of using a CALL, PROCESS, or RUN
statement in ALGOL, or a PROCESS <subroutine> statement in WFL. Initiating a
procedure causes it to be executed as a new process, separate from the process
that invoked the procedure. This new process is referred to as an internal process
because it is executing part of the same object code file as the initiating process.

Of these methods, procedure entrance has the advantages of simplicity and low impact
on system resources, as discussed under “Limitations of Tasking” later in this section.

8600 0494-506

Understanding Basic Tasking Concepts

On the other hand, procedure initiation allows you to use parallel processing or to assign
the new process different task attribute values than those of the initiating process.
These features are introduced under “Advantages of Tasking” later in this section.

Note that, if you use the Binder utility to bind a procedure from a subprogram into a host
program, that procedure is thereafter considered an internal procedure of the host
program. If the host program is an ALGOL program, the host program can either enter or
initiate the bound procedure. If the procedure is initiated, the resulting process is
considered to be an internal process. For information about the Binder utility, refer to the
Binder Programming Reference Manual.

External Processes

An external process is one that results when a statement in a program initiates an
external procedure. An external procedure is one that resides in a program other than
the program containing the statement that invokes the procedure. External procedures
are of three types:

e Separate programs

Any program, taken as a whole, can be thought of as an external procedure when it
is invoked by a statement in a different program. A separate program is always
executed as a separate process; that is, a process can initiate, but cannot enter, a
separate program. WFL, ALGOL, and COBOL all allow you to initiate separate
programs. In ALGOL and COBOL, you must specify dummy procedures, called
declared external procedures, in statements that initiate separate programs.

e Passed external procedures

These are procedures passed into the program as parameters. You can write
programs in ALGOL that accept procedures as parameters from the initiating
program. Statements in the receiving ALGOL program can either enter or initiate a
passed procedure.

e Library procedures

These are procedures that are provided by a special type of program called a library.
Libraries make procedures available for use by other programs. Statements in an
ALGOL program can either enter or initiate a library procedure. Programs written in
other languages can enter, but cannot initiate, a library procedure. The methods for
writing libraries and programs that use libraries are discussed in Section 18, “Using
Libraries.”

8600 0494-506 1-7

Understanding Basic Tasking Concepts

Program Structure

1-8

Each program is viewed by the operating system as having a certain block structure. The
block structure of the program can have implications for the critical block definition and
for the ability of processes to communicate through global objects. For further
information on these topics, refer to “Critical Blocks” in Section 2, “Understanding
Interprocess Relationships” and to Section 15, “Using Global Objects.”

The term flow of control refers to the order in which the statements of a program are
executed. Most statements perform an action and then pass control to the immediately
following statement. However, some statements can pass control to structures residing
elsewhere in the program.

A block is a program, or program subunit, that can contain a group of declarations and a
group of statements. The declarations create objects that are for local use by the
statements in the block. There are two kinds of blocks: procedures and simple blocks.

A procedure is a block that can be executed using a procedure invocation statement,
which passes control to the start of the procedure. When the procedure finishes
executing, control automatically returns to the procedure invocation statement, and
passes to the next statement in the program.

This abstract definition of a procedure corresponds to the way procedures are viewed by
the operating system. Procedures are called by different names in the syntax of the
various programming languages. This definition of a procedure corresponds, for
example, to a PROCEDURE in ALGOL, a PROCEDURE or FUNCTION in Pascal, or a
SUBROUTINE or FUNCTION in FORTRAN77. It also corresponds to a complete program
written in any of these languages.

Note that a complete program written in COBOL is also considered a procedure.
However, a paragraph or a section in COBOL is not considered a procedure. It is true
that a PERFORM statement resembles a procedure invocation statement in that it
causes control to pass through the paragraph or section and then return to the
PERFORM statement. However, paragraphs and sections cannot include declarations
and thus are not treated as procedures by the operating system. Therefore, the various
properties of procedures discussed in this guide do not apply to paragraphs or sections.

Similarly, COBOLB8b nested programs are not currently treated as procedures by the
operating system. However, this implementation is subject to change. In future
versions of COBOLS8b, nested programs might be treated like blocks.

A simple block is a block that cannot be specified in a procedure invocation statement.
Simple blocks exist only in ALGOL, where they appear among the statements in the
program, rather than among the declarations. The beginning and end of a simple block
are marked by the keywords BEGIN and END. A simple block is executed in sequence
between the statements that immediately precede and follow the simple block.

Note that a BEGIN...END group is considered to be a simple block only if it contains at
least one declaration. Otherwise, it is considered a compound statement. Compound
statements do not affect tasking or interprocess communication issues, and will not be
further discussed in this guide.

8600 0494-506

Understanding Basic Tasking Concepts

Some languages, including WFL and ALGOL, allow blocks to be declared within other
blocks. This practice is referred to as nesting. A block that contains a nested block is
said to be global to that nested block. The most global block is referred to as the outer
block of the program.

The lexical level of a block is a measure of how deeply the block is nested. By default,
the outer block of a program has a lexical level of 2; however, compiler control options
can be used to cause the outer block to be compiled with a higher lexical level. Each
procedure has a lexical level one higher than the outer block or procedure in which it is
declared.

ALGOL and NEWP support special TYPE declarations called structure blocks and
connection blocks. Either of these declarations creates a data type consisting of a group
of objects of possibly varying types. Note that structure blocks and connection blocks
are not considered blocks in the sense that the term block is used in this book.

8600 0494-506 1-9

Understanding Basic Tasking Concepts

Advantages of Tasking

The benefits of tasking fall into the general areas of simplifying system operations,
increasing programmer productivity, and improving performance of an application.

Simplifying System Operations

Many applications involve running a sequence of programs, one after another in a certain
set order. Often it is necessary to specify parameters and task attribute assignments for
each of the programs. An operator can initiate the programs individually, providing the
needed parameters and task attribute assignments in each case. However, this proves
to be too time consuming in an environment where many applications are run during a
given work shift.

An alternative, which reduces the labor required of the operator, is to write a small
program whose only purpose is to initiate a series of other programs. Such a program
can provide a standard set of parameters and task attribute assignments. You can write
such a program in ALGOL, COBOL, or WFL. This enables the operator to initiate a single
program and leave it to initiate all the others.

WHEFL is particularly suitable for implementing such programs because WFL programs
typically pass through job queues. An operator can use the MQ (Make or Modify Queue)
system command to create job queues and assign various job queue attributes to them.
The use of job queues enables the operator to submit jobs when it is convenient, while
relying on the system to initiate jobs at specified times or according to specified criteria.
Job queues are further discussed under “Selecting the Queue for a Job” in Section 4,
“Tasking from Programming Languages.”

Increasing Programmer Productivity

Tasking techniques can improve programmer productivity by modifying the behavior of
existing programs, by allowing you to use programs as modules in a larger application,
and by allowing multiple programming languages to be used in an application.

Modifying Program Behavior

Sometimes a program is designed to run in a particular environment, and later that
environment changes. For example, a program might be designed to read a file on a
family named DATAPK. Later, you might want to run a copy of that program on a
different system that does not have a family with that name. Rewriting the source
program and recompiling it can be a time-consuming process. Fortunately, many such
behaviors can be modified through task attribute assignments.

For example, there is a task attribute called FAMILY that causes a process to use files on
a different family than it otherwise would. Suppose a process expects to find all its input
files on the family named DATAPK. You can assign the FAMILY task attribute a value of
"DATAPK = CONTROL OTHERWISE DISK". This causes the process to look for all its
input files on the family named CONTROL instead of the family named DATAPK.

8600 0494-506

Understanding Basic Tasking Concepts

You can assign a task attribute to a process in any of the following ways, none of which
requires recompiling or rewriting the program that is being initiated:

e If you are running a program from CANDE or MARC, you can append task attribute
assignments to the RUN command that initiates the program.

e You can use a WFL MODIFY statement to assign default task attribute values to an
object code file. The system assigns these task attribute values each time the object
code file is run.

e ALGOL, COBOL, and WFL all allow you to assign task attributes to a task variable. If
you then specify this task variable in a statement that initiates a separate program,
the task attribute assignments are applied to the new process.

The Task Attributes Programming Reference Manual gives examples of these methods
of assigning task attributes.

Using Programs as Modules

A module is a body of code that can be reused in a variety of different contexts. The use
of modules simplifies the programmer's job by making it unnecessary to repeat large
amounts of code. One advantage of tasking is that it allows you to use an entire
program as a module in one or more larger applications.

For example, you could have a report-formatting and printing program. You might also
have a program that retrieves customer data from a database, and another program that
does an inventory analysis. The customer data program and the inventory analysis
program could both use process initiation statements to invoke the report-formatting and
printing program and cause it to create reports using the data collected.

Tasking is only one of the methods that the system provides for allowing code to be
reused by different programs. Some of the other methods are

e Compile-time options

You can use a $INCLUDE option in a program source file. At compilation, the
compiler inserts text from a separate source file specified by the SINCLUDE option.
This option is discussed in the manuals for each programming language.

e Binding

This technigue enables you to insert a compiled procedure from one object code file
into a separate object code file. This technique is documented in the Binder
Programming Reference Manual.

e Libraries
This technigue enables a process to dynamically invoke a procedure in another
running process. This technique is described in Section 18, “Using Libraries.”

All of these methods have their virtues. Compared to the $INCLUDE option or binding,
tasking has the advantage of enabling you to maintain the shared module separately from
the programs that call on it. You can make changes to the module without having to
recompile another program or rerun the Binder.

8600 0494-506 1-11

Understanding Basic Tasking Concepts

On the other hand, both the $INCLUDE option and binding have the advantage of
enabling you to insert an external procedure directly into the source or object program.
Because the inserted procedure is treated by the system as an internal procedure, the
main program can enter the procedure rather than initiating it. This results in savings of
processor time and memory.

Compared to libraries, tasking has a slight performance advantage in some situations.
Initiating a program carries a certain cost in terms of processor time, memory, and so on.
The cost of entering a library procedure varies, and can be higher or lower than the cost
of initiating a process. For the first call on a particular library, the system must initiate the
library process and establish a linkage between the calling program and the library. Once
the library is running, it is more economical to enter a library procedure than to initiate a
process.

Another advantage of the tasking method arises in situations where there already exists
a program that performs a function needed by your application. You can initiate that
program as a process without having to rewrite or recompile the program that performs
the function. Changing the program into a library would require rewriting, and binding the
program into another program requires using the Binder utility.

Using Multiple Languages in an Application

Different programming languages have different unique capabilities. These might make
it easier to implement some types of routines in one language, and other types of
routines in another language. If the same application requires routines in two or more
different languages, then those routines have to be stored in separate source files and
compiled separately.

One way to enable an application to use modules written in different languages is
through tasking. You can accomplish this by using statements that initiate separate
object code files. For example, you can write a COBOL program that initiates another
program written in ALGOL.

A nice thing about this technique is that the system also enables you to pass parameters
between programs written in different languages. The operating system allows
parameters to match as long as they are of compatible types. Section 17, “Using
Parameters,” explains which parameter types are considered compatible by the
operating system.

Alternatively, you could use binding or libraries to create an application that uses modules

written in different languages. The advantages of using tasking instead of binding or
libraries are introduced under “Using Programs as Modules” earlier in this section.

1-12 8600 0494-506

Understanding Basic Tasking Concepts

Improving Application Performance

The definition of performance for an application has two general aspects: measurements
of the resource usage of an application and measurements of the elapsed time of the
application. Resource usage includes total processor time, average memory usage, and
so on. Elapsed time means the total clock time a batch program takes to run, or the
average time an online program takes to respond to a transaction.

If you find that the elapsed time of an application is of crucial importance to your
business, you can use tasking features to help decrease the elapsed time by allowing the
application to use system resources more intensively. The two features that allow you
to do this are process priorities and parallel processing.

The system is designed to be able to execute large numbers of processes
simultaneously. However, each central processor can execute only one process at a
time. The operating system frequently reevaluates the processes waiting for processor
service, and assigns the processor to the process with the highest priority. You can use
task attributes and system commands to control some aspects of process priority, as
discussed in Section 7, “Controlling Processor Usage.”

Parallel processing consists of dividing your application into two or more processes that
run concurrently. Parallel processing enables the application to use system resources
more intensively than a single process can. This increased intensity of system resource
usage results because each process typically alternates among using the central
processor, /O processor, and other resources. With parallel processes, one process can
use the central processor while the other is waiting for an I/O to complete, and so on.

You can create parallel processes by designing one process to initiate another process of

type PROCESS or type RUN. These process types are discussed in Section 2,
"Understanding Interprocess Relationships.”

8600 0494-506 1-13

Understanding Basic Tasking Concepts

Limitations of Tasking

If you do not need any of the benefits of tasking described in the preceding subsection,
you can simply implement your entire application as a single program, and use only
procedure entrance statements rather than procedure initiation statements. Procedure
entrance uses fewer system resources than procedure initiation, and allows your
application to complete faster and interfere less with other running applications.

Some of the expenses involved in initiating a procedure are

e |t takes slightly more processor time than entering a procedure.

e |t causes several hundred words of save memory to be allocated for the new
process stack.

e |t causes the system to create additional system log entries, and thus adds to
general system overhead.

e |t adds to the number of entries visible to the operator in a mix display. It thus tends
to complicate the system operator's efforts to monitor the system.

The performance differences between entering and initiating a procedure are not great if
the procedure is to be executed only once. However, for a procedure that is invoked
many times, the performance loss can slow an application noticeably.

1-14 8600 0494-506

Section 2
Understanding Interprocess
Relationships

The relationship between a process and its initiator is defined in terms of three major
properties, which are defined in the following subsections. These properties are
inclusion, flow of control, and dependency. These properties affect the speed and
efficiency with which a process is executed, and the ability of the initiator to interact with
the process. You can control these properties in two ways:

e By choosing among the various process-initiation statements that are available

e By choosing a program structure appropriate to the type of process desired
This section examines these choices and their implications for a family of processes.

Several of the discussions that follow refer to the term parent. This term is defined fully
under “Dependency” in this section. For now, it is enough to know that the initiator of a
process is usually also the parent of that process.

Inclusion

Section 1, “Understanding Basic Tasking Concepts,” introduced the distinction between
internal and external procedures, and the concept that initiating procedures results in
internal or external processes. The differing properties of internal and external processes
are referred to in this guide as inclusion properties and are as follows:

e Aninternal process must be dependent. Similarly, external processes resulting from
initiating library procedures or passed external procedures must be dependent. Only
external processes resulting from initiating separate programs can be either
dependent or independent. Any attempt to initiate a procedure that is not a separate
program as an independent process causes the error “NON - EXTERNAL RUN."” For
an explanation of the difference between dependent and independent processes,
refer to “"Dependency” in this section.

e In ALGOL and WFL, internal procedures have access to variables declared globally in
the program. These global variables can serve as a medium for interprocess
communication if the internal procedure is initiated. For information about this
interprocess communication technique, refer to Section 15, “Using Global Objects.”

e Several task attributes inherited by internal processes are not inherited by external
processes. These task attributes include LIBRARY, NAME, OPTION, STACKSIZE,
and TADS. For a discussion of task attribute inheritance, refer to the Task Attributes
Programming Reference Manual.

8600 0494-506 2-1

Understanding Interprocess Relationships

Flow of Control

In Section 1, “Understanding Basic Tasking Concepts,” control was defined as the path
execution takes among the various statements of a program. In a broader sense, control
is the path execution takes among the statements of a procedure and any procedures
initiated by that procedure. The programmer specifies the type of control path used by
choosing the corresponding process initiation statement.

The control path determines whether the initiating process and new process execute in
parallel or by taking turns. If they are executing by turns, the control path specifies when
and how often they take turns before the new process terminates. The following
subsections discuss the types of control paths that are available.

Synchronous Processes

When a synchronous process is initiated, control is transferred from the initiating process
to the new process. In other words, the initiating process stops executing and the new
process begins executing. The initiating process is still considered active during this
period and its process stack still exists. When the new process terminates, the initiating
process begins executing again, starting with the first statement after the process
initiation statement.

Examples of statements that initiate synchronous processes are the CALL statement in
ALGOL or COBOL and the RUN statement in Work Flow Language (WFL). Synchronous
processes are sometimes referred to as coroutines, but more properly the term
coroutine has a different use. (Refer to “Coroutines” in this section for details.)

The initiating process can set the attributes of a synchronous process only at initiation
time and can interrogate the attributes only after the synchronous process has
terminated.

Synchronous processes can be simpler to design than coroutines or asynchronous
processes because you do not have to deal with certain complexities of timing that arise
for these other types of processes.

Asynchronous Processes

When an asynchronous process is initiated, the necessary memory structures are
created for the new process. Thereafter, the new process and the initiator execute in
parallel. Although they execute at the same time, they do not necessarily execute at the
same speed. It is for this reason that the new process is called asynchronous.

Examples of statements that initiate asynchronous processes are the PROCESS
statement in ALGOL or COBOL, and the PROCESS RUN or PROCESS <subroutine>
statement in WFL.

Asynchronous processes are useful because, in many situations, two or more processes
running in parallel can do needed work in less elapsed time than a single process. What
is saved in elapsed time does not necessarily translate into savings in processor or /O
time, however.

8600 0494-506

Understanding Interprocess Relationships

The task attributes of an asynchronous process can be read or assigned by its initiator
while the asynchronous process is executing. This makes it possible for the initiator to
intervene in the execution of the asynchronous process.

A disadvantage to initiating processes asynchronously is that, except in WFL, the
programmer must take special measures to prevent a critical block exit error from
occurring. (See the discussion of “Critical Blocks” in this section.)

In addition, initiating processes asynchronously can create ambiguous timing situations
because it is impossible to predict exactly how long a process will take to execute. If an
asynchronous process and its initiator share a data item, such as a global variable, and
both change the value of that data item, it will be difficult to predict the order in which
the changes will occur.

Various methods are used to regulate the timing of asynchronous processes. These
methods are discussed in Section 16, “Using Events and Interlocks.”

Coroutines

The term coroutines refers to a group of processes that exist simultaneously but take
turns executing, so that only one of the processes is executing at any given time.
Coroutines offer some of the advantages of asynchronous processes, but generally are
easier to design because coroutines execute in a sequential order that prevents any
ambiguities of timing. The use of coroutines offers the following benefits:

e The ability to execute a procedure repeatedly without incurring the processor time
required to enter or initiate the procedure each time

e The ability to execute a procedure repeatedly without losing the values of objects
declared in the procedure between each execution

Note, however, that coroutines use the processor less efficiently than do asynchronous
processes. Only one coroutine runs at a time, and there might be periods when the
processor is unused because the coroutine is waiting for an /O operation to complete.
Furthermore, the statements coroutines use to transfer control to other coroutines use
more processor time than the event-related functions that asynchronous processes can
use to suspend or resume each other.

Creating Coroutines

An ALGOL or COBOL process can create a coroutine by executing a CALL statement.
The new process and its initiator are referred to as coroutines. When the initiator
executes a CALL statement, the initiator temporarily ceases execution and its stack state
becomes "TO BE CONTINUED". The stack state can be displayed by using the Y
(Status Interrogate) system command. A coroutine with this stack state is referred to as
a continuable coroutine.

The new process has one of the stack states that indicate the process is being

processed, or soon will be, such as ALIVE or READY. The new process is referred to as
an active coroutine.

8600 0494-506 2-3

Understanding Interprocess Relationships

The total number of coroutines increases each time an active coroutine executes a CALL
statement. The new process created is an active coroutine and all others are continuable
coroutines.

The concept of a coroutine is closely related to that of a synchronous process, as defined
in “Synchronous Processes” in this section. Every synchronous process is also a
coroutine; however, not every coroutine is a synchronous process. An asynchronous
process can execute a CALL statement and thus become a continuable coroutine.

Using Continue Statements

An active coroutine can transfer control to a continuable coroutine by executing an
ALGOL CONTINUE statement or a COBOL CONTINUE or EXIT PROGRAM statement.
For convenience, these are all referred to as continue statements in the following
discussion.

The other programming languages (FORTRAN77, Pascal, RPG, and WFL) do not provide
continue statements. Therefore, processes other than ALGOL or COBOL processes can
be considered coroutines only in a restricted sense. For example, a WFL job can create a
synchronous offspring by executing a RUN statement. The stack state of the WFL job
then becomes “TO BE CONTINUED." However, the system does not allow the offspring
to use a continue statement to transfer control to the WFL job. Instead, the system
automatically continues the WFL job when the offspring terminates. This act is referred
to as an implicit continue and is discussed further in “Continuing the Partner Process” in
this section.

To understand the effects of a continue statement, suppose an active coroutine called A
executes a continue statement that specifies a continuable coroutine called B. When the
continue statement is executed, the coroutine A ceases execution and coroutine B
resumes execution. In other words, coroutine A becomes a continuable coroutine and
coroutine B becomes an active one. Control passes from coroutine A to coroutine B.

Coroutine B can later reverse this situation by executing a continue statement that
passes control back to coroutine A. However, control does not always have to pass back
and forth between the same pair of processes. For example, coroutine B might continue
another coroutine called C and that coroutine might then continue coroutine A.

Control can pass between coroutines any number of times. In the course of its lifetime,
a coroutine can execute many continue statements applying to any number of other
processes. However, for a continue statement to be successful, it must be executed by
an active coroutine and it must specify a continuable coroutine. The continue statement
results in an “ILLEGAL VISIT" error if it transfers control to a process that is not a
continuable coroutine.

Coroutines usually belong to the same process family because continue statements
must explicitly or implicitly specify the task variable of the process to be continued. A
process usually has access only to the task variables of processes in its own process
family. Process families are defined under “Process Families” in this section. The
means of accessing the task variables of related processes are discussed under
“Accessing Task Variables” in this section.

8600 0494-506

Understanding Interprocess Relationships

Determining Where Execution Resumes

When any coroutine continues an ALGOL coroutine, the ALGOL coroutine resumes at
the point where it left off. Thus, if an ALGOL coroutine executes a CALL statement, it
later resumes with the first statement after the CALL statement. If an ALGOL coroutine
executes a CONTINUE statement, it later resumes with the first statement after the
CONTINUE statement.

By contrast, a COBOL coroutine can resume execution at either of two points. If a
COBOL coroutine executes a CONTINUE statement or an EXIT PROGRAM RETURN
HERE statement, then the coroutine later resumes at the point where it left off.
However, if a COBOL coroutine executes a simple EXIT PROGRAM statement, then the
coroutine later resumes with the first statement in the program. (Certain limitations on
the EXIT PROGRAM statement are discussed under “Continuing the Partner Process”
later in this section.)

Block Structure and Coroutines

Continue statements can occur in any of the procedures executed by a process. For
example, a process can execute a continue statement and, after being continued later
on, can enter another procedure and execute another continue statement. Both of those
continue statements can transfer control to the same coroutine, or they can transfer
control to different coroutines.

If a coroutine uses a continue statement to resume its parent, and the parent exits the
critical block for that coroutine, then the parent is terminated with a “CRITICAL BLOCK
EXIT” error. The methods of preventing a critical block exit are discussed under “Critical
Blocks"” in this section.

Continuing the Partner Process

There are two types of continue statements: specific continue statements and general
continue statements.

A specific continue statement is one that specifies a task variable. An ALGOL example
of a specific continue statement is CONTINUE (T1). A COBOL example of a specific
continue statement is CONTINUE T1. Either of these statements continues the
coroutine specified by the task variable T1.

A general continue statement does not specify a task variable. In ALGOL, the general
continue statement is CONTINUE. In COBOL, the general continue statement is EXIT
PROGRAM or EXIT PROGRAM RETURN HERE.

The effect of the general continue statement is to continue the partner process. The
partner process is the process specified by the PARTNER task attribute. This task
attribute is said to be task-valued because it accesses the task variable of a particular
process. For a synchronous process, the system assigns the initiating process as the
partner process by default. You can design a program to assign a different task variable
to the PARTNER task attribute. Thereafter, any general continue statements affect the
process with that task variable.

8600 0494-506 2-5

Understanding Interprocess Relationships

When a synchronous process terminates, the system implicitly continues the partner
process. This is the reason the initiating process usually resumes after a synchronous
process terminates. However, if a synchronous process has another task variable
assigned to the PARTNER task attribute, then the system continues that partner process
rather than the initiating process.

Setting the PARTNER task attribute to a process other than the initiator is not
recommended. Such a practice causes general continue statements or implicit
continues to consume more processor time than they otherwise would. This practice
also leads to source code that is difficult to understand and maintain.

A process can interrogate the PARTNEREXISTS task attribute to determine whether the
current partner process is in a continuable state. This can be a useful method for
avoiding “ILLEGAL VISIT" errors.

For further information regarding the PARTNER and PARTNEREXISTS task attributes,
see the discussions of these attributes in the Task Attributes Programming Reference
Manual.

Communication between Coroutines

When an active coroutine becomes a continuable coroutine, or vice versa, objects
declared by the coroutine retain their values and are not reinitialized.

Nevertheless, the values of objects declared by a continuable coroutine can be changed
by any active coroutine having access to those objects. For example, if a process
executes a CALL statement, passing call-by-reference parameters, the process becomes
a continuable coroutine. The offspring process is an active coroutine and can change the
values of the call-by-reference parameters. The offspring process can use this method to
communicate information to the parent process. When the parent process is continued,
it can check to see if the parameter values were changed.

Similar considerations apply to the task attributes of a coroutine. An active coroutine can
read or assign the task attributes of other coroutines, including continuable coroutines.
When a continuable coroutine is continued, it can check its task attribute values to see if
any were changed.

Complex Coroutine Structures

The continue statements enable you to develop complex coroutine structures that do not
exactly correspond to the classical model of coroutines. A complex coroutine structure is
one in which two or more active coroutines exist at the same time. In a simple coroutine
structure, only one of the coroutines is active at a time.

A complex coroutine structure can result, for example, if a process called INITP initiates
an asynchronous offspring called PROCP, and then initiates a synchronous offspring
called CALLP. While INITP is waiting for CALLP to complete, INITP isina “"TO BE
CONTINUED" state. PROCP can, therefore, execute a continue statement that causes
INITP to resume. In this case, PROCP becomes a continuable coroutine and INITP and
CALLP are active coroutines at the same time.

8600 0494-506

Understanding Interprocess Relationships

In general, the use of complex coroutine structures is not recommended because they
lack the simplicity that is the primary benefit of using coroutines.

Dependency

The last of the three main properties the programmer can specify for a process is
dependency. To understand the concept of dependency, the programmer must first be
familiar with the following related concepts.

e Critical objects

Every process makes use of certain objects originally declared by another process.
These include the task variable, the procedure the process is executing, and any
objects passed as actual parameters to the process. In this guide, these objects are
referred to as the critical objects of the process.

e Parents

When a process is initiated, it receives these critical objects from a process called
the parent. In most cases, the initiator of a process is also the parent of that
process. The exact method for determining which process is the parent of a
particular process is given under “Critical Blocks” later in this section.

Dependency is the relationship between a process and its parent that determines how
these critical objects are stored. For an independent process, the system creates copies
of these critical objects when the process is initiated. For a dependent process, the
system creates references to the objects stored by the parent.

The programmer can specify the dependency of a process by choosing an appropriate
process initiation statement. The dependency of a process remains the same
throughout execution; if it is initiated as dependent, it cannot later become independent,
or vice versa.

To initiate an independent process, you can use an ALGOL or COBOL RUN statement or
a ??RUN (Run Code File) system command. Also, a WFL job submitted through a START
statement is executed as an independent process.

To initiate a dependent process, you can use a CALL or PROCESS statement in ALGOL
or COBOL, or a RUN statement in Command and Edit (CANDE), Menu-Assisted
Resource Control (MARC), or WFL.

Many implications result from the choice to initiate a process as dependent or
independent. However, the most crucial difference is that an independent process can
continue to exist after its parent has terminated. A dependent process must terminate
before its parent does.

The second most crucial difference between dependent and independent processes is

that a dependent process and its parent can communicate through shared objects,
whereas an independent process and its parent cannot.

8600 0494-506 2-7

Understanding Interprocess Relationships

Communications Effects

Some objects declared by the parent process can be shared with a dependent process,
but not with an independent process.

For example, a parent can declare a task variable and include it in a process initiation
statement executed by the parent. For a dependent process, the task variable remains
associated with the process for as long as the process exists. After the dependent
process terminates, the task variable continues to store the final task attribute values of
the dependent process (though later assignments can change these values). The parent
can use the task variable to access the task attributes of the process before initiation,
while the process is in use, or after the process terminates. However, for an
independent process, the task variable ceases to be associated with the process once
initiation is complete. Only task attributes assigned to the task variable before initiation
have any effect on the independent process.

Similarly, a procedure declared in the parent can be initiated only as a dependent
process. A separate program, on the other hand, can be initiated as a dependent or
independent process. Thus, an independent process is always an external process.

Like any external process, an independent process is unable to access objects declared
globally in the parent. On the other hand, a dependent process, if it is also internal, can
access objects declared globally in the parent.

Finally, any parameters passed to an independent process must be passed by value. A
dependent process can be passed parameters by name, by reference, or by value.

Flow of Control Effects - Synchronization

The dependency of a process affects the ability of the process to be synchronous or
asynchronous, and the ability of the parent to exit certain blocks without incurring an
error.

An independent process is always asynchronous. The initiator of an independent
process continues execution without waiting for the independent process to terminate.
By contrast, a dependent process can be synchronous or asynchronous, depending on
the type of initiation statement that is used. Another difference is that an independent
process can continue executing after its parent has terminated, whereas a dependent
process must terminate before its parent does.

8600 0494-506

Understanding Interprocess Relationships

Flow of Control Effects - Critical Blocks

Another flow of control issue related to dependency is the prevention of critical block
exits. To understand exactly what a critical block exit is and why it is important, you
must first understand the following basic concepts:

e Critical objects

This concept is introduced under “"Dependency” in this section. You should be aware
that the critical objects of a process can be stored in more than one process stack,
and they can be stored in more than one activation record in a process stack. If any
block that declares one of these critical objects is exited, the corresponding
activation record is removed and that critical object ceases to exist. This block exit
causes the process using that critical object to terminate abnormally.

e Critical block

This is a block that includes a definition of at least one critical object and is so
positioned that it is normally exited before any other blocks that declare critical
objects are exited. If you ensure the parent does not exit the critical block
prematurely, then the other blocks declaring critical objects also are not exited
prematurely.

At this point, the definition of a parent can be further refined as follows: the parent is the
process that owns the critical block of a specified process. In other words, the parent
has entered the critical block and not yet exited that block. A dependent process is said
to be an offspring of its parent.

You need to be concerned with the critical block for a process only if that process is an
asynchronous dependent process or a coroutine. If the process is either of these, you
must take steps to ensure the critical block is not exited before the process terminates.

By contrast, if a process is independent, it is not affected by critical block exits. If the
process is synchronous, then the parent ceases execution until the process terminates
and therefore has no opportunity to exit the critical block prematurely.

Effects of a Critical Block Exit

When a parent exits an offspring's critical block, the parent is discontinued and the error
message “CRITICAL BLOCK EXIT" is displayed. When the parent terminates, all its
offspring processes currently in use are discontinued and a “PARENT PROCESS
TERMINATED" error message is displayed.

8600 0494-506 2-9

Understanding Interprocess Relationships

Defining the Critical Block

The critical block of a process usually occurs somewhere in the program containing the
statement that initiated the process. Within that program, the critical block is the
procedure of the highest lexical level that contains any of the following items:

o The declaration of the task variable specified in the process initiation statement.

e The declaration of the procedure that was initiated, if it is an internal procedure, a
passed external procedure, or an imported library procedure. The position of a
declared external procedure has no effect on the critical block definition.

e The declarations of any actual parameters passed to the process by name or by
reference. (For call-by-value parameters, the declaration of the actual parameter
does not affect the critical block definition.)

e Any thunk generated for the process by the compiler. A thunk, also referred to as an
accidental entry, is generated if the procedure initiation statement passes a constant
or an expression to a call-by-name parameter. The thunk is located in the procedure
containing the procedure-initiation statement. For an illustration of the effect of a
thunk on the critical block definition, refer to Example 3 in “Critical Block Examples”
later in this section.

Note that the definition of the critical block can be affected if any of the critical objects
are passed as parameters from one procedure to another. If a critical object is passed as
a parameter to a procedure, then for purposes of defining the critical block, the formal
parameter receiving the critical object must be considered the declaration of that critical
object. For an illustration, refer to Example 4 in "Critical Block Examples” later in this
section.

There is one exception to the rule about the effects of passing critical objects as
parameters. If a task variable is passed as a parameter to an external procedure, the
critical block is affected by the declaration of the actual parameter rather than the formal
parameter. This exception holds true for all types of external procedures: separate
programs, passed external procedures, and imported library procedures. This exception
also makes it possible for the procedure-initiation statement to reside in a different
program than the critical block does. For an illustration, refer to Example 5 in “Critical
Block Examples” later in this section.

The initiator of a process might or might not also be the parent of that process. This
issue is illustrated by Examples 1 and 2 in “Critical Block Examples” later in this section.

TYPE Declarations and Critical Blocks

ALGOL and NEWP support special declarations called TYPE declarations. TYPE
declarations define a customized class of variables. Later declarations can declare
particular variables that are instances of that TYPE. If a variable based ona TYPE is
passed to a dependent process as a by-name or by-reference parameter, then the critical
block is affected by the location where the particular variable is declared and not the
location where the TYPE is declared.

8600 0494-506

Understanding Interprocess Relationships

Among the TYPE declarations supported by ALGOL and NEWP is a TYPE called a
structure block. Each structure block can include multiple objects of varying kinds,
among which could be one or more of the critical objects for a task. The effect of such
objects on the critical block definition is determined by the location of the structure block
instance, not the structure block type declaration.

For example, suppose there is a structure block type declaration called TASKSTUFF that
includes a task variable TVAR. Further, there is a structure block instance called
THIS_SB, and an asynchronous task is initiated by a statement such as PROCESS
PROC1 [THIS_SB.TVARI. For purposes of critical block definition, the task variable
declaration is considered to reside in the block where THIS_SB is declared.

ALGOL and NEWP also support a TYPE declaration called a connection block. Like a
structure block, a connection block can include multiple objects of varying types.
However, a connection block is intended for use by connection library declarations. For
purposes of critical block definition, any critical objects declared in a connection block are
considered to reside where the connection library is declared, not where the connection
block is declared.

Preventing ALGOL Critical Block Exits

In ALGOL, the programmer can prevent a critical block exit by including a statement such
as the following at the end of the critical block:

WHILE T.STATUS GTR VALUE(TERMINATED) DO
WAITANDRESET (MYSELF.EXCEPTIONEVENT) ;

In this example, T is the task variable of the dependent process. This statement causes
the parent to wait on its own EXCEPTIONEVENT task attribute, which is automatically
caused by the system whenever the offspring changes status. The program then checks
the status of the offspring and returns to a waiting state if the offspring has not yet
terminated.

Preventing COBOL Critical Block Exits

The paragraph and section structures supported by COBOL74 and COBOLS85 are not
blocks and therefore do not affect the critical block definition. Similarly, nested programs
in COBOLS85 are also not blocks and do not affect the critical block definition. A COBOL
process cannot receive a critical block error for exiting any of these types of structures.
However, a COBOL process can incur a critical block exit error if the process

e Terminates while one of its offspring is in-use

e Exits a bound-in procedure that is the critical block for an offspring

e Exits an imported library procedure that is the critical block for an offspring

8600 0494-506 2-1

Understanding Interprocess Relationships

Statements such as the following can be included at the end of a COBOL program to
prevent it from terminating before an offspring terminates:

PROCWAIT SECTION.
P2.
WAIT AND RESET UNTIL ATTRIBUTE EXCEPTIONEVENT OF MYSELF.
IF ATTRIBUTE STATUS OF TASK-VAR-1 IS GREATER THAN
VALUE TERMINATED THEN GO PROCWAIT.
STOP RUN.

The preceding example assumes that an asynchronous offspring was initiated using task
variable TASK-VAR-1. The COBOL program waits on its own EXCEPTIONEVENT task
attribute, which is automatically caused whenever the offspring changes status. The
program then checks the status of the offspring and returns to a waiting state if the
offspring has not yet terminated.

Note: The implementation of nested program structures by the COBOL85 compiler is
subject to change. Nested programs may affect the critical block definition in future
releases.

Automatic Protection from WFL Critical Block Exits

The programmer does not need to include any special statements in WFL jobs to prevent
critical block exits. WFL implicitly waits for the termination of asynchronous processes
initiated by the job. The implicit wait occurs at the end of the subroutine that executed
the process initiation statement.

Critical Block Examples

The following examples illustrate various factors that affect the definition of the critical
block for a process. The more typical cases are presented first.
Example 1

In most cases, the initiator of a process is also the parent of that process. However, this
is not always the case. The following ALGOL program is an illustration of the difference
between the parent and the initiator:

100 PROCEDURE TRUEPARENT;

110 BEGIN

120 TASK T1, T2;

130 REAL I;

140

150 PROCEDURE WAITFOR(T);

160 TASK T;

170 BEGIN

180 WHILE T.STATUS GTR VALUE(TERMINATED) DO
190 WAITANDRESET (MYSELF.EXCEPTIONEVENT);
200 END;

210

220 PROCEDURE OFFSPRING(X);

8600 0494-506

Understanding Interprocess Relationships

230 REAL X;

240 BEGIN

250 X:=1;

260 END;

270

280 PROCEDURE INITIATOR;

290 BEGIN

300 PROCESS OFFSPRING(I) [T2];
310 END;

320

330 PROCESS INITIATOR [T1];
340 WAITFOR(T1);

350 WAITFOR(T2);

360 END.

In this example, the procedure TRUEPARENT initiates the procedure INITIATOR as an
asynchronous process. INITIATOR then initiates the procedure named OFFSPRING. In
this situation, the initiator of OFFSPRING is INITIATOR, but the parent is TRUEPARENT.

TRUEPARENT is considered the parent because the declarations of the procedure
OFFSPRING, the task variable T2, and the actual parameter | all occur in the outer block
of TRUEPARENT.

Example 2

In the following ALGOL example, the process called INITIATOR is both the initiator and
the parent of the process named OFFSPRING. INITIATOR is considered the initiator
because INITIATOR includes the task initiation statement that initiates the OFFSPRING
procedure. INITIATOR is considered the critical block for OFFSPRING because the task
initiation statement passes OFFSPRING a parameter declared within INITIATOR. An
invocation of the WAITFOR procedure is added to INITIATOR to prevent a critical block
exit.

100 PROCEDURE OUTERBLOCK;

110 BEGIN

120 TASK T1, T2;

130

140 PROCEDURE WAITFOR(T);

150 TASK T;

160 BEGIN

170 WHILE T.STATUS GTR VALUE(TERMINATED) DO
180 WAITANDRESET (MYSELF.EXCEPTIONEVENT) ;
190 END;

200

210 PROCEDURE OFFSPRING(X);

220 REAL X;

230 BEGIN

240 X:=1;

250 END;

260

270 PROCEDURE INITIATOR;

280 BEGIN

8600 0494-506 2-13

Understanding Interprocess Relationships

290 REAL R;

300 PROCESS OFFSPRING(R) [T2];
310 WAITFOR(T2);

320 END;

330

340 PROCESS INITIATOR [T1];
350 WAITFOR(T1);
360 END.

Example 3

The following is an ALGOL example of a case where the presence of a thunk affects the
critical block definition for a process:

100 PROCEDURE OUTERBLOCK;
110 BEGIN

120 TASK T1, T2;

130 REAL A, B, C, D;

140

150 PROCEDURE WAITFOR(T);

160 TASK T;

170 BEGIN

180 WHILE T.STATUS GTR VALUE(TERMINATED) DO
190 WAITANDRESET (MYSELF.EXCEPTIONEVENT) ;
200 END;

210

220 PROCEDURE OFFSPRING(X);

230 REAL X;

240 BEGIN

250 C:= X;

260 END;

270

280 PROCEDURE INITIATOR;

290 BEGIN

300 PROCESS OFFSPRING(A + B) [T2];
310 WAITFOR(T2);

320 END;

330

340 A:= 2;

350 B:= 5;

360 PROCESS INITIATOR [T1];
370 WAITFOR(T1);
380 END.

In the preceding example, X is a call-by-name formal parameter of the procedure
OFFSPRING. The statement invoking OFFSPRING passes the expression (A + B) to the
parameter. This creates a thunk at the point of the procedure initiation, which causes the
INITIATOR procedure, rather than the OUTERBLOCK procedure, to be considered the
critical block of OFFSPRING. Because the statement at line 360 initiates INITIATOR
rather than entering it, INITIATOR becomes a separate process that is the parent of
OFFSPRING.

8600 0494-506

Understanding Interprocess Relationships

You can avoid some thunks by making the formal parameter call-by-value rather than call-
by-name. For example, you can avoid the thunk in the preceding example by adding a

line to the procedure heading of the procedure OFFSPRING at line 220. The revised

procedure heading appears as follows:

PROCEDURE OFFSPRING(X);
VALUE X;

REAL X;

This change has the side effect of making OUTERBLOCK the critical block, instead of
INITIATOR.

Example 4

In the following ALGOL example, the location of the critical block is affected by a formal
parameter specification:

100 PROCEDURE OUTERBLOCK;

110 BEGIN

120 TASK T1, TVAR;

130 REAL TI;

140

150 PROCEDURE WAITFOR(T);

160 TASK T;

170 BEGIN

180 WHILE T.STATUS GTR VALUE(TERMINATED) DO
190 WAITANDRESET (MYSELF.EXCEPTIONEVENT);
200 END;

210

220 PROCEDURE OFFSPRING(X);

230 REAL X;

240 BEGIN

250 X:= X + 1;

260 WAIT ((10));

270 END;

280

290 PROCEDURE INITIATOR(T2);

300 TASK T2;

310 BEGIN

320 PROCESS OFFSPRING(I) [T2];
330 WAITFOR(T2);

340 END;

350

360 PROCESS INITIATOR(T1) [TVAR];
370 WAITFOR(TVAR) ;

380 END.

In this example, INITIATOR is the critical block for the procedure OFFSPRING, because

the task variable T2 is declared in the procedure heading of INITIATOR. It makes no

difference that the actual parameter T1 is declared in the outer block. It is the formal
parameter T2 that is mentioned in the procedure invocation statement, and therefore the
declaration of T2 takes precedence.

8600 0494-506

Understanding Interprocess Relationships

Example 5

In the following ALGOL examples, the critical block is located in a different program than
the one that contains the process-initiation statement. The following is program
OBJECT/CALL:

100 BEGIN

110 TASK T, T1;

120 PROCEDURE 0B (T);

130 TASK T;

140 EXTERNAL;

150 REPLACE T.NAME BY "OBJECT/CALL/2.";

160 PROCESS 0B (T1) [T];

170 WHILE T1.STATUS GTR VALUE(TERMINATED)

180 DO WAITANDRESET (MYSELF.EXCEPTIONEVENT);
190 END.

The previous program initiates a separate program called OBJECT/CALL/2, passing a task
variable as a parameter. The following is the program OBJECT/CALL/2:

100 PROCEDURE 0B (T);

110 TASK T;

120 BEGIN

130 PROCEDURE X;

140 EXTERNAL;

150 REPLACE T.NAME BY "OBJECT/TASK.";
160 PROCESS X [T];

170 END.

The preceding program uses its task variable parameter to initiate a third program. The
procedure declaration at lines 130 and 140 does not affect the critical block definition,
because it is an external procedure declaration. Note that since the process initiation
statement is PROCESS, and no WAIT statement follows it, the preceding program
finishes executing while the third program, OBJECT/TASK, is still running. However, no
CRITICAL BLOCK EXIT error occurs.

The following is the third program, OBJECT/TASK:

100 BEGIN

110 EBCDIC ARRAY FORMALARRAY[0:119];

120 REPLACE FORMALARRAY BY MYSELF.EXCEPTIONTASK.NAME;
130 DISPLAY (FORMALARRAY);

140 WAIT(MYSELF.ACCEPTEVENT);

150 END.

This program displays the name of its EXCEPTIONTASK, which, by default, is the same
as the parent. The name it displays is OBJECT/CALL, which is therefore the parent.
Because OBJECT/CALL is the parent, no CRITICAL BLOCK EXIT occurs when
OBJECT/CALL/2 terminates.

2-16 8600 0494-506

Understanding Interprocess Relationships

Recall the rule about passing task variables to external procedures that is discussed
under “Defining the Critical Block” earlier in this section. It is the declaration of the
actual task variable parameter, at line 110 in OBJECT/CALL, that affects the critical block
definition. The critical block is therefore the outer block of OBJECT/CALL. However, the
process initiation statement occurs in OBJECT/CALL/2. This is the only type of situation
where it is possible for the process-initiation statement and the critical block to reside in
separate programs.

Process Families

A process family is a group of processes that have relationships based on dependency.
These relationships have many effects, including effects on interprocess communication,
handling of printer output, and enforcement of resource usage limits.

Familial Relationships

Each process belonging to a process family is called a member of that process family.
Every process family includes a single independent process as its founding member.
The process family also includes any dependent offspring of that independent process,
any dependent offspring of those offspring, and so on

Familial terms are used to describe the relationships between the members of a process
family. Of these, parent and offspring are defined under “Critical Blocks"” earlier in this
section. Arelated term is sibling. Offspring processes that have the same parent are
referred to as siblings.

Each offspring of a process is considered a descendant of the process. Any offspring of
the descendants of a process are also considered descendants of the original process.

Conversely, the parent of a process is considered to be an ancestor of the process, and
any ancestors of the parent are also considered to be ancestors of the same process.
Processes having a common ancestor, but not a common parent, are referred to as
cousins. The independent process in a process family is the common ancestor of all the
processes in that family.

Finally, processes are considered related if they belong to the same process family, and
unrelated if they do not.

A dependent process is dependent on the continued existence of all its ancestors, not
only its parent. This is true because a type of domino effect occurs if any of the
ancestors terminates. The immediate offspring of the terminated process are
discontinued with a “PARENT PROCESS TERMINATED" error. The offspring of the
discontinued processes are, in turn, discontinued with the same error, and so on.

In contrast, a member of a process family does not depend on the continued existence

of any of its descendants. For example, the descendants of a process can terminate
abnormally without affecting the process.

8600 0494-506 2-17

Understanding Interprocess Relationships

Jobs and Tasks

The independent process in a process family is called the job for that family. The
dependent processes in a process family are referred to as tasks.

Note that, in some older publications, you might find the term task used with a different
meaning than the one defined here. In addition to the meaning given here, task has
sometimes been used to refer to any process, to the offspring of some particular
process, or to any discrete unit of work. These usages are generally avoided in this
guide, except in the terms task attribute and task variable, which have been retained
because they are well known. (More properly, these terms would be process attribute
and process variable because they can apply to either jobs or tasks.)

Certain services that the system provides for a process family are linked to the job for
the family. The job provides the following services:

e Joblogging

The job has a job file associated with it that stores the job log. The job log includes
information about the activities of all the processes in the process family. When the
job terminates, the system can issue a printout of the job log, called the job
summary. (The job file for a WFL job includes additional information, which is
described under “Special Types of Jobs" later in this section.)

e Printer output

By default, any printer backup files created by process family members are saved
until the job terminates. The system groups these files into a single entry in the print
queue, unless the files have incompatible print attributes, such as different
DESTINATION values. For further information about print requests, refer to the Print
System and Remote Print System Administration, Operations, and Programming
Guide.

Operators or programmers can use the following means to determine whether a process
is a job or a task:
e Process messages

The system displays a “BOJ"” message when a job is initiated and an "EOQJ"
message when the job is terminated. For a task, the corresponding messages are
"BOT"” and “EQT.”

e Jobdisplays

The J (Job and Task Display) system command displays all the process families that
currently exist. The members of each process family appear in hierarchical order,
beginning with the job.

2-18 8600 0494-506

Understanding Interprocess Relationships

e Job number

A task has a job number that differs from the mix number and indicates the job or
session associated with the task. For a job, the job number and mix number are
equal. The operator can see the job number and mix number in the output of many
system commands. A process can also read these values from the JOBNUMBER
and MIXNUMBER task attributes.

e Process type

A process can determine whether a particular process is a job by reading the TYPE
task attribute. For WFL jobs, the value is JOBSTACK; for other jobs, the value is
RUN. For tasks, the value is CALL or PROCESS.

Special Types of Jobs

The following subsections describe WFL jobs, BDBASE tasks, and MCS sessions, all of
which are special types of jobs and entities that resemble jobs.

WFL Jobs

A program written in WFL is usually executed as an independent process. Because of
this, the execution of a WFL program is referred to as a WFL job. The TYPE task
attribute of a WFL job usually has a value of JOBSTACK.

When a WFL job is submitted from one of the available sources, the system initiates the
WEFL compiler. (The sources for submitting WFL jobs include START commands in
CANDE and MARC sessions, and various statements in programming languages.) The
WEFL compiler creates the job file for the WFL job.

The job file for a WFL job contains several kinds of information not included in the job file
for any other kind of job. In addition to the logging information, a WFL job file includes
the following:

e A copy of the WFL source program.

e Object code for the job. The job file also serves as the code file for a WFL job.

o Data specifications used by the job. A data specification is a portion of the WFL
source program that can be used as an input file by one or more of the offspring of
the job.

e Job restart information.

WEFL jobs have several other properties not shared by any other type of process. For
details, refer to Section 4, “Tasking from Programming Languages.”

8600 0494-506 2-19

Understanding Interprocess Relationships

2-20

BDBASE Tasks

Setting the BDBASE option of the OPTION task attribute causes a task to assume some
characteristics of a job. The exact effects of the BDBASE option depend on whether it is
assigned before or after initiation of the task. If BDBASE is assigned before task
initiation, then the task receives the following joblike characteristics:

e Its own job file.

e Ability to produce a job summary.

e A mix number equal to its job number.
e "BOJ" and "EOQJ” messages.

e Automatic printing, when the BDBASE task terminates, of any backup files created
by the BDBASE task or its descendants. Note that this behavior applies only to
backup files whose PRINTDISPOSITION file attribute has the default value of EOQJ.

If BDBASE is assigned after task initiation, then its only effect is to cause default printing
of backup files when the task terminates. Even if BDBASE is assigned before initiation, it
does not make the task into a true job. A BDBASE task differs from a job in the following
ways:

e The BDBASE task usually is not an independent process. (There is no point in setting
BDBASE for an independent process, because such a process already has all job
capabilities.)

e The JOBNUMBER value for a descendant of a BDBASE task does not equal the
MIXNUMBER of the BDBASE task. Rather, the JOBNUMBER equals the
MIXNUMBER of the job at the head of the process family.

e The MYJOB task variable never refers to a BDBASE task. For details, refer to
“"MYJOB Task Variable"” in this section.

In the past, the main use of the BDBASE option was to cause printer backup files
produced by a task to print when the task terminated, rather than being saved until the
job terminated. However, other Print System features now enable you to provide the
same control over printing, without assigning any other joblike characteristics to the task.
For further information, refer to the discussion of printing in Section 9, “Controlling
Process I/O Usage.”

IVICS Sessions
CANDE and MARC sessions have the following job characteristics:
e Job summaries that are produced at the end of the session and that summarize the

activities of all tasks initiated from the session

o Default printing, when the session ends, of backup files produced by tasks initiated
from that session

e A mix number, also called the session number, that is inherited by the JOBNUMBER
task attribute of tasks initiated from the session

8600 0494-506

Understanding Interprocess Relationships

However, CANDE and MARC sessions are not really jobs because they are not
processes. Each session is merely a dialogue between the user and the CANDE or
MARC software. The MYJOB task attribute has a special meaning for tasks initiated
from CANDE and MARC sessions. For further information, refer to “Access to Ancestral
Processes in CANDE"” and “Access to Ancestral Processes in MARC” in Section 3,
"Tasking from Interactive Sources.”

Accessing Task Variables

The system automatically provides several task variables, called predeclared task
variables, for use by a process. The process can use these task variables to access task
attributes of certain related members of the process family.

MYSELF Task Variable
A process can access its own task attributes by way of the predeclared task variable

MYSELF.

MYSELF has a special meaning for processes that are descendants of CANDE or MARC
sessions. For more information, refer to Section 3, “Tasking from Interactive Sources.”

MYJOB Task Variable

A process can use the predeclared task variable MYJOB to access the task attributes of
its job. When a job uses MYJOB, it has the same meaning as the MYSELF task variable.

If a BDBASE task, or a descendant of a BDBASE task, uses the MYJOB task variable,
MYJOB does not refer to the BDBASE task. Instead, MYJOB refers to the independent
process that is the eldest ancestor of the BDBASE task and, therefore, the real head of
the process family. In other words, MYJOB refers to the job.

MYJOB has a special meaning for processes that originate from CANDE or MARC
sessions or from an ODT. For more information, refer to Section 3, “Tasking from
Interactive Sources.”

Exception Task
Every process has an associated exception task with which it has a special relationship.

There are two aspects to this relationship:

e Whenever the value of the STATUS task attribute of the process changes, the
system notifies the exception task by causing the EXCEPTIONEVENT task attribute
of the exception task.

e A process can access the task attributes of its exception task by way of its own
EXCEPTIONTASK task attribute. For example, the following ALGOL statement
assigns a value to the TASKVALUE task attribute of the exception task:

MYSELF.EXCEPTIONTASK.TASKVALUE:= 5;

8600 0494-506 2-21

Understanding Interprocess Relationships

2-22

The parent of a dependent process is the default exception task of the process. An
independent process, by default, is its own exception task; however, in this case, the
exception task relationship embodies only the second of the aspects in the previous list.
The EXCEPTIONEVENT of the independent process is not caused when the status of the
independent process changes.

A dependent process can use the EXCEPTIONTASK task attribute to access the task
variable of any of its ancestors. The process can specify EXCEPTIONTASK repeatedly to
access ancestors two or more generations back (for example, the grandparent, great-
grandparent, and so on). The following statement assigns an attribute to the grandparent
of the process:

MYSELF.EXCEPTIONTASK.EXCEPTIONTASK.SW1:= TRUE;

A process can override the default exception task and assign a different process as the
exception task. The following ALGOL statement specifies that the process identified by
the task variable TVAR be treated as the exception task:

MYSELF.EXCEPTIONTASK:= TVAR;

The process assigned as the exception task must be the process itself or an ancestor,
sibling, or cousin of the process. The exception task cannot be a descendant of the
process. An attempt to assign a descendant as the exception task results in the error
"UP LEVEL TASK ASSIGNMENT."

It is recommended that only the process itself or one of its ancestors be assigned as the
exception task. If a sibling or cousin is assigned as the exception task, then any attempt
to access the exception event of the exception task causes a “NON ANCESTRAL TASK
REFERENCE" error. For example, in such a situation, the following statement would
cause an error:

CAUSE (MYSELF.EXCEPTIONTASK.EXCEPTIONEVENT);

Assigning a process that is not the parent as the exception task can also have more
subtle side effects. Suppose the task is called T and the parent contains a statement
such as the following:

WHILE T.STATUS GTR VALUE(TERMINATED) DO
WAITANDRESET (MYSELF.EXCEPTIONEVENT);

This statement causes the parent to wait until its exception event is caused, at which
point it checks the status of T. If T has terminated, the next statement in the parent is
executed. If T has not terminated, the parent goes back into a waiting state.

The problem is that, if a parent is not also the exception task for its offspring, then any
changes in the offspring's status do not cause the parent's exception event. Instead,

changes in the task's status cause the exception event of the process assigned as the
exception task. Therefore, the parent continues waiting indefinitely, regardless of any
changes in the task's status.

8600 0494-506

Understanding Interprocess Relationships

Sometimes, however, it is not desirable for the exception event of a process to be
caused whenever the status of any of its offspring changes. For example, the process
might be waiting for a HI (Cause EXCEPTIONEVENT) system command. In this case,
each of the offspring could be assigned itself as its exception task. This assignment
prevents any of the offspring from accidentally causing its parent's exception event.

The MCS that controls a session is the parent of any tasks initiated from that session.
By default, therefore, the MCS is also the exception task for any tasks initiated from that
session.

Partner Processes

The partner process is the process specified by the task-valued task attribute PARTNER.
For a synchronous process, the default value of this attribute is the initiator. However, a
process can assign any task variable to this attribute. A process can use the PARTNER
task attribute as a convenient means of accessing the task attributes of the partner
process. For example, the following ALGOL statement assigns a value to the
TASKVALUE task attribute of the partner process:

MYSELF.PARTNER.TASKVALUE:= 3;

The partner process has a special significance for coroutines. For details, refer to
“Continuing the Partner Process” in this section.

Other Task Variables

A programmer can make it possible for two sibling or cousin processes to access each
other's task variables by declaring the task variables in a common ancestor of the two
processes. Internal processes can access task variables that are declared globally in the
same object code file as the internal procedure declaration. Task variables can also be
passed as parameters to offspring processes.

Private Processes

A private process is a process whose task attributes cannot be altered by any of its
descendant processes. Assigning the private process option to the OPTION task
attribute causes the process to become a private process. Any descendant process that
attempts to access the task attributes of a private process is terminated with the error
“NON OWNER WRITE ACCESS OF A PRIVATE TASK.”

Both CANDE and MARC are private processes.

8600 0494-506 2-23

Understanding Interprocess Relationships

Setting Resource Limits

2-24

Any resource limits attached to a job are propagated downward through all the job's
descendants. Resource limits are stored in the values of the task attributes
ELAPSEDLIMIT, MAXIOTIME, MAXLINES, MAXPROCTIME, PRIORITY, RESOURCE,
SAVEMEMORYLIMIT, TEMPFILELIMIT, and WAITLIMIT. Information about the amount
of resources a particular process has used is stored in the task attributes
ACCUMIOTIME, ACCUMPROCTIME, ELAPSEDTIME, and TEMPFILEMBYTES. If the
accumulated usage of a resource rises above the maximum allowed, the process
terminates abnormally. Most of these resource limits are propagated in two ways:

e When a task is initiated, by default each resource limit for the task is assigned the
difference between the parent's own limit for the resource and the parent's
accumulated usage of the resource. For example, if the parent's MAXPROCTIME is
100 and its ACCUMPROCTIME is 75, then the task is assigned a MAXPROCTIME of
25. The parent's own MAXPROCTIME and ACCUMPROCTIME values are not
affected. The parent can assign resource limits to the task through task equation,
but the values are ignored unless they specify lower limits than the task would
receive by default.

o \When a task terminates, the values of its accumulated usage attributes are added to
the accumulated usage attributes of the task's job. If this addition causes any
accumulated usage attribute of the job to be assigned a value greater than the
corresponding maximum usage attribute, the job is abnormally terminated. The
termination of the job in turn causes the termination of all the other members of the
process family.

The resource-limiting attributes of a task cannot be set above the values of the
corresponding attributes of the job. The MAXPROCTIME and MAXIOTIME task
attributes can be set above the job values for an inactive task, but when the task is
initiated, the values of these task attributes are automatically reduced to a value within
the allowed limits.

If a job is a WFL job, then its resource-limiting attributes can inherit values specified by

the queue attributes of the job queue from which the WFL job was initiated. For further
information on queue limits, refer to Section 4, “Tasking from Programming Languages.”

8600 0494-506

Section 3
Tasking from Interactive Sources

An interactive tasking source is one that enables you to enter at a terminal commands
that initiate, monitor, and control processes. This section reviews the tasking capabilities
of the most important sources for interactive tasking: Command and Edit (CANDE),
Menu-Assisted Resource Control (MARC), Operations Center, and the operator display
terminal (ODT).

The information in this section can help you decide which of these interfaces best serves
your needs. This section also explains considerations to keep in mind when writing
programs that are to be initiated from these sources.

Note that many users access applications primarily through the Transaction Server direct
windows. This interface is not reviewed here because the direct window interface does
not provide any direct means to control processes. Rather, the Transaction Server
initiates and controls direct window programs automatically, within various parameters
set by the system administrator. For information about direct window programs, refer to
the Transaction Server Programming Guide.

CANDE

CANDE is a message control system (MCS) that enables you to interactively perform
functions such as file editing, program compilation, and program execution. You initiate
communications with CANDE by logging on at a terminal controlled by CANDE, or by
opening a CANDE window dialogue on a terminal controlled by the Transaction Server.
Your interactions with CANDE between the times you log on and log off are referred to
as a session.

CANDE Tasking Capabilities

CANDE offers a number of process-initiation commands, as well as other commands for
monitoring or controlling processes. For details about any of the commands discussed in
the following subsections, refer to the CANDE Operations Reference Manual.

Initiating Dependent Processes from CANDE

You can initiate a task from a CANDE session by using the RUN command. (EXECUTE is
a synonym for the RUN command.) The RUN command can pass only a single string
parameter to a program.

8600 0494-506 3-1

Tasking from Interactive Sources

3-2

The CANDE RUN command is unique in that it usually specifies a program by its source
file title rather than by its object code file title. CANDE takes the file title specified in the
RUN command and looks for an object code file with the same title, except that the
object code file title is prefixed by OBJECT/. For example, the object code file
OBJECT/TEST can be initiated by the command RUN TEST.

However, if you prefix the file title with a dollar sign ($), then CANDE interprets the file
title as an object code file title. You can use this form of the RUN statement to initiate
programs whose object code file title does not begin with OBJECT/. An example of such
a command is RUN $ACCOUNTS/INPUT, which initiates the object code file named
ACCOUNTS/INPUT.

CANDE also assumes that the file title is an object code file title if the file title is
nonusercoded. You can indicate that a file title is nonusercoded by including an

asterisk (*) at the start of the title. For example, you can initiate an object code file titled
*SYSTEM/FILEDATA with the command RUN *SYSTEM/FILEDATA.

If you omit the file title from the RUN statement, CANDE assumes the current work file
is the source program. If no object code file with the related file title exists, or if the
object code file does not reflect recent changes to the work file, then CANDE
automatically compiles the work file and executes the resulting object code file.

The task is asynchronous (that is, it runs in parallel with the CANDE software that
initiated it). However, the process appears to the user to be a synchronous task because
most CANDE commands are not available while the task is running. Only control
commands (commands, such as ?Y, that start with a question mark) can be used. Itis
not possible to issue file maintenance or editing commands or to initiate another task
until the first task terminates.

An alternative to the RUN command is the UTILITY command. The UTILITY command
behaves like the RUN command in most respects. However, the UTILITY command
enables you to append to it unquoted text that is passed as a string parameter to the
program. |f you do not append any text, the UTILITY command passes an empty string
parameter. The following are examples of UTILITY commands and the equivalent RUN
commands:

U DAILY UPDATE OUTPUT = PRINTER
RUN DAILY/UPDATE("QUTPUT=PRINTER")

U DAILY UPDATE
RUN DAILY/UPDATE("")

The UTILITY command also automatically passes certain task equations and file
equations to the program initiated. These equations make it possible for the program to
use the unsaved work file, work source, or work object associated with the session.
Certain utilities, such as the Editor, are designed to accept these task and file equations.
Such programs must be initiated with the UTILITY command instead of the RUN
command. For details about the task and file equations that are passed, refer to the
UTILITY command discussion in the CANDE Operations Reference Manual.

8600 0494-506

Tasking from Interactive Sources

Initiating Compilations from CANDE

You can use the COMPILE command to compile a program. This command allows you
to specify the compiler to use, the input file titles, the object code file title, and task
equations for the compiler and the resulting object code file. For example:

COMPILE DAILY/UPDATE/PATCH AS DAILY/UPDATE/NEW WITH COBOL74;
COMPILER FILE SOURCE = DAILY/UPDATE/SOURCE;
PRIORITY = 40;

This example initiates the COBOL74 compiler, specifying a primary input file called
DAILY/UPDATE/PATCH and a secondary input file called DAILY/UPDATE/SOURCE. The
object code file that results is called OBJECT/DAILY/UPDATE/NEW. The compiler stores
the PRIORITY assignment in the resulting object code file, so that
OBJECT/DAILY/UPDATE/NEW receives a default PRIORITY value of 40 whenever it is
run.

The COMPILE command can be used more simply than it is in the preceding example.
Suppose that DAILY/UPDATE is your work file. Simply entering COMPILE in your
CANDE session is sufficient to compile your work file. CANDE chooses the compiler
that matches the file type of the source file. The resulting object code file consists of the
source file title with “OBJECT/” prefixed (for example, OBJECT/DAILY/UPDATE.)

The COMPILE command cannot cause the execution of the resulting object code file.
However, a simple RUN command compiles and runs the work file if no object code file
exists.

Initiating Utilities from CANDE

The RUN and UTILITY commands can be used to initiate a variety of system utility
programs such as FILECOPY, LOGGER, and so on. However, CANDE also includes a
number of specialized commands that you can use to initiate particular utilities. The
following are the commands and the names of the corresponding utilities:

Command Utility
BACKUPPROCESS Backup Processor
DCSTATUS DCSTATUS
LFILES FILEDATA

LOG LOGANALYZER

8600 0494-506 3-3

Tasking from Interactive Sources

Submitting WFL Jobs from CANDE

You can submit WFL programs from CANDE sessions using the START or WFL
command. The START command submits a WFL program that is stored in a disk file.
The WFL command enables you to enter WFL statements directly at the terminal.

The START command can pass any number or type of parameters that are expected by
the WFL program. In addition, you can use the FOR SYNTAX clause for syntax checking.
This clause causes the program to be compiled, but not executed, and displays
information about any syntax errors in the WFL program. You can also assign the
STARTTIME task attribute to delay initiation of the program. However, you cannot assign
any other task attributes to the program.

While the WFL program is compiling, only CANDE control commands are available. |f
you enter any other CANDE commands during this period, CANDE queues the
commands and executes them when the compilation is finished. However, after the
WHFL program is compiled and entered in a job queue, all CANDE commands are available
again. The WFL program executes as a job and can have a job summary or printer
backup files associated with it. By default, these files are queued for printing when the
WEFL program terminates.

You can use the WFL command to submit one or more WFL statements. Simply enter
WEFL, followed by the WFL statements. You can omit the ?BEGIN JOB and ?END JOB
statements. The WFL statements can include all the constructs defined in WFL with the
exception of data specifications and STARTTIME specifications.

When you submit WFL input by way of the WFL command, only CANDE control
commands are available while the WFL input compiles and executes. Any other CANDE
commands that you enter during this period are queued for later execution. By default,
any backup files created by the WFL process are saved with the CANDE session. The
files are queued for printing when you end the CANDE session.

The CANDE ADD, COPY, and PRINT commands correspond to the WFL commands of
the same names. When you enter any of these commands, CANDE passes it to WFL for
execution.

Monitoring and Controlling Processes in CANDE

3-4

Any messages generated by a task initiated from a CANDE session are automatically
displayed at that session, including any "BOT", “EQT"”, DISPLAY, and RSVP messages
and error or warning messages. However, for processes indirectly associated with a
session, the display of messages is optional. Processes indirectly associated with a
session include WFL processes initiated by a START or WFL command, the descendants
of such processes, and the descendants of any task initiated from a session.

The CANDE session option MSG controls the display of messages by processes
indirectly associated with a session. While MSG is set, all messages generated by such
indirect processes are displayed at the session. While MSG is reset, all such messages
are suppressed. CANDE sets the MSG option to TRUE if the usercode attribute
CANDEGETMSG is set for the usercode of the session. You can also set the MSG

8600 0494-506

Tasking from Interactive Sources

option to TRUE for a session by entering a CANDE SO MSG command. You can use the
equivalent CANDE control command, 2SO MSG, even when the station is busy.

A number of CANDE control commands are available for monitoring and controlling
particular processes. You can use these commands to monitor or control any process
that has the same usercode as the session usercode. This includes processes initiated
from the current session as well as processes initiated from other sources, such as
MARC or the ODT.

Most CANDE commands related to process control correspond to system commands
with similar names. Some restrictions and differences in spelling apply to the CANDE
versions of these commands. For further information, refer to “Tasking Command
Equivalents” later in this section.

The system assigns a unique number, also known as the session number, to each
CANDE session. The session number is assigned from a range of numbers defined by
the MAX (Maximums) system command. Depending on the range defined, the session
number can be as low as 100 or as high as 65535.

The CANDE session number does not appear as a process in mix display commands.
However, the session number does appear in the output from two system commands:
Y (Status Interrogate) and C (Completed Mix Entries). The output from these commands
shows both the job number and the mix number of a process. If the process is a task,
and it was initiated from a CANDE session, then the job number shown is actually the
CANDE session number.

Access to Task Attributes in CANDE

For each session, CANDE maintains a task variable and sets selected attributes. CANDE
requests some of this information from the user at log-on time and obtains most of the
rest from usercode attributes defined in the USERDATAFILE. Tasks initiated within the
session inherit the attributes following typical inheritance rules. Attributes that can be set
by CANDE include the following:

ACCESSCODE JOBNUMBER PRINTDEFAULTS
CHARGE JOBSUMMARY PRIORITY
CONVENTION JOBSUMMARYTITLE SOURCESTATION
DESTNAME LANGUAGE STATION
DISPLAYONLYTOMCS NOJOBSUMMARYIO USERCODE
FAMILY

Accessing the CLASS attribute of the session or of a task within the session returns the
queue number from which CANDE was started.

A task initiated from a CANDE session receives a JOBNUMBER value equal to the
session number. The JOBNUMBER value for such a task can range from 100 to 65535,
depending on the session number range established by the system command

MAX SESSION = <number>.

8600 0494-506 3-5

Tasking from Interactive Sources

3-6

For a WFL job started from a CANDE session, the MCP assigns a MIXNUMBER value
from the mix number pool and assigns a JOBNUMBER value equal to the MIXNUMBER
value. The JOBNUMBER value for such a task can range anywhere from 100 to 65535,
depending on the mix number range established by the system command MAX MIX =
<number>.

You can use CANDE commands to change the values of some of the session attributes.
By using these commands, you create new defaults that are applied to all tasks initiated
later in that session. The ACCESS, CHARGE, DESTNAME, FAMILY, and LANGUAGE
commands each display or assign the session attribute of the same name. Additionally,
the PDEF command displays or assigns the PRINTDEFAULTS session attribute.

CANDE supports the following methods of providing default values for the
DISPLAYONLYTOMCS task attribute:

e The session option DISPLAYONLYTOMCS establishes a default
DISPLAYONLYTOMOCS value for all processes initiated from the current CANDE
session. To establish a default of TRUE, use the command 2SO
DISPLAYONLYTOMCS. To establish a default of FALSE, use the command 7RO
DISPLAYONLYTOMCS.

e The ?DISPLAYONLYTOMCS control command establishes the initial value of the
DISPLAYONLYTOMCS session option for all CANDE sessions. To cause
DISPLAYONLYTOMOCS to default to TRUE, use the command ?OP +
DISPLAYONLYTOMCS. To cause DISPLAYONLYTOMCS to default to FALSE, use
the command ?0P- DISPLAYONLYTOMCS.

You can also assign task attributes to specific processes by using task equations. Task
equations can be appended to most CANDE process initiation statements, including
RUN, UTILITY, COMPILE, and the various special-purpose commands for initiating
utilities. Task equations can assign values to all but task-valued or event-valued task
attributes, such as EXCEPTIONTASK or EXCEPTIONEVENT. If a task equation conflicts
with task attribute inheritance, the task equation takes precedence. For example, the
following CANDE command assigns to a process a LANGUAGE value different from the
LANGUAGE value of the session:

RUN DRIVER;LANGUAGE = FRANCAIS

For information about the task attributes available in CANDE, refer to the CANDE
Operations Reference Manual.

8600 0494-506

Tasking from Interactive Sources

Saving CANDE Commands for Later Use

You can achieve some of the convenience of programmatic task initiation and control by
saving CANDE commands in a file for later use. You can use the DO or SCHEDULE
command to execute the commands in the file. You can reuse the file as many times as
desired.

The DO command takes effect immediately and prevents you from using most other
commands in the session until the DO file is completed. However, you can use the
SCHEDULE command to cause the file to be executed separately from your current
session or at a later time.

Files that store CANDE commands are different from programs in that they are not
compiled and are not executed as separate processes. Their process control abilities are
more limited than those of WFL, ALGOL, or COBOL programs, because no conditional
statements or variables are available.

CANDE Programming Considerations

When you design a program to be run from CANDE, you need to be aware of CANDE
features affecting parameter passing, task attribute access, and terminal
communications.

Receiving Parameters from CANDE

If you are designing a program to be initiated from CANDE, be aware that the program
can receive only one parameter from the RUN or UTILITY command that initiates it. This
parameter appears as a string to the user, but in the program it must be declared as type
Real Array (or compatible parameter type) with an unspecified lower bound. For
information about Real Array parameters and compatible parameter types, refer to
Section 17, "Using Parameters.”

Access to Ancestral Processes in CANDE

If you initiate a task from a CANDE session, and that task accesses its own
EXCEPTIONTASK task attribute, the system interprets EXCEPTIONTASK as a reference
to the CANDE MCS. The task can use the EXCEPTIONTASK task attribute to query the
values of the task attributes of the CANDE MCS. However, if the task attempts to
modify the task attributes of the CANDE MCS, the task is terminated with a task
attribute error. This error occurs because CANDE runs with the private process option of
the OPTION task attribute set to TRUE.

Session attributes can be interrogated and set using the MYJOB task variable.

8600 0494-506 3-7

Tasking from Interactive Sources

The following ALGOL example assigns a value of SUPPRESSED to the JOBSUMMARY
task attribute of the session. If this program is initiated by a CANDE RUN command, the
program prevents a job summary from being printed when the session ends.

BEGIN
MYJOB.JOBSUMMARY := VALUE (SUPPRESSED) ;
END.

The MCSNAME task attribute of tasks initiated from CANDE sessions typically returns a
value of SYSTEM/CANDE, which might or might not be preceded by an asterisk (*).
Note that the MCSNAME value can be different if CANDE was installed at your site
under a different name.

Communicating with CANDE Terminals

3-8

The STATIONNAME task attribute is the preferred method of specifying the station
where remote files should be opened. However, CANDE does not assign the
STATIONNAME attribute of programs or WFL jobs initiated from a CANDE session. It is
therefore advisable for you to explicitly assign a STATIONNAME value to any interactive
processes originating from a CANDE session.

For example, you can include the following statement in WFL jobs initiated from a
CANDE session:

MYSELF(STATIONNAME = #MYSELF (SOURCENAME));

This STATIONNAME value is inherited by any tasks of the WFL job, and enables them to
open remote files successfully.

The STATION task attribute can be used for a similar purpose. However, the

STATIONNAME task attribute is more reliable than STATION, because STATION stores a
logical station number (LSN), and the LSN of any given station is subject to change.

8600 0494-506

Tasking from Interactive Sources

MARC

MARC is a Transaction Server transaction processor that enables you to perform system
operations and tasking functions. You initiate communications with MARC by opening
the MARC window. Depending on the way your terminal is defined to the Transaction
Server, the MARC window might appear automatically after you log on to the Transaction
Server. If it does not, you might still be able to open the MARC window by entering the
command 7ON MARC. Your interactions with MARC between the time you open the
MARC window and the time you log off or close the window are referred to as a session.
MARC assigns each session an identifying number called the session number.

MARC Tasking Capabilities

MARC provides the only menu-assisted interface to tasking. You can use MARC menu
selections or commands to submit WFL jobs or to initiate programs written in any
language.

MARC offers commands and menu selections for initiating dependent processes,
submitting WFL jobs, and initiating utilities. Once the process is initiated, MARC displays
the TASK command in the Action field of the current screen. By transmitting this
command, you can display a special screen called TASKSTATUS. You can use the
TASKSTATUS screen to monitor and control the process.

Because the system administrator can modify MARC to add or delete functions, some
features mentioned here might not be available at your site. The descriptions apply to
the original version of MARC.

The following paragraphs provide an overview of MARC tasking capabilities. For further
details about these features, refer to the Menu-Assisted Resource Control (MARC)
Operations Guide.

Initiating Dependent Processes from MARC

You can enter RUN in the choice field of the MARC home menu to initiate a program as a
dependent process. This selection can initiate a program written in any language except
WEFL. Entering this selection displays the RUN screen. You can use the RUN screen to
specify the object code file title, any parameter that is to be passed, and any assignment
to the TASKVALUE task attribute. You enter TASKVALUE assignments in the Value field
of the screen.

An alternate method of initiating dependent processes is by using the RUN command.
You can enter this command in the Action field of a screen or on the COMND screen.
The syntax of this command is similar to the WFL RUN statement, except that the
command can pass only a single parameter. Depending on the requirements of the
program being initiated, the parameter can be a string of characters enclosed in quotation
marks (") or a number with no quotation marks. The following are both valid examples:

RUN OBJECT/RECOMM("REPORT=DAILY")

RUN OBJECT/TELEMAX(346)

8600 0494-506 3-9

Tasking from Interactive Sources

Initiating Compilations from MARC

You can initiate compilations from MARC in either of the following ways:
e By using the MARC WFL command to submit a WFL COMPILE statement. For
details, refer to “Submitting WFL Jobs from MARC" later in this section.

e By using the EDIT screen to initiate an Editor session. While in the Editor, you can
use the Editor COMPILE command to initiate a compilation.

Initiating Utilities from MARC

You can initiate utilities by using either the RUN screen or the RUN command. However,
you can also use either of two special screens, UTIL or TOOLS, which list many utilities
as selections. By choosing one of the selections on the UTIL or TOOLS screen, you
cause the corresponding utility to be initiated. If parameters are needed, MARC prompts
you to supply them.

Submitting WFL Jobs from MARC

You can use the START selection on the MARC screen to submit a WFL program that is
stored in a disk file. Entering this selection displays the START screen. Use this screen
to enter the file title of the WFL program and any parameter values to be passed to the
program. You can also use this screen to enter a value for the STARTTIME task attribute
of the WFL program.

WHFL programs stored in disk files can also be initiated by way of the START command.
The START command can pass parameters to the WFL program, but cannot include a
STARTTIME specification.

You can use the MARC WFL command to submit WFL statements directly at the
terminal. Simply type the word WFL, followed by the statements that constitute the
WHFL program. You can omit the ?BEGIN JOB and ?END JOB statements. The program
cannot include any WFL constructs except data specifications or a STARTTIME
specification. For example, the following WFL input initiates another program and
assigns it a task attribute:

WFL RUN OBJECT/INVENTORY;FAMILY DISK = DPMAST OTHERWISE DISK

Monitoring Processes Initiated from MARC

When you initiate any dependent process, WFL job, or utility from a MARC session, the
TASK command appears as a prompt on the current screen. Entering TASK in the Action
field displays the TASKSTATUS screen. This screen displays information about the
process and includes a field in which you can enter process control commands. You can
leave the TASKSTATUS screen at any time by entering one of the screen traversal
commands, such as HOME or GO, that are displayed. As long as the process is running,
you can return to the TASKSTATUS screen by using the TASK command.

8600 0494-506

Tasking from Interactive Sources

The TASKSTATUS screen includes fields that display various types of information for the
process. The following are the fields and their meanings:

e The Task field displays the mix number and the name of the process.

o The Parameter field, if it appears, displays the value of the parameter passed to the
process.

e The Task Status field displays the current stack state of the process. For a
discussion of what the stack states mean, refer to Section 6, “Monitoring and
Controlling Process Status.”

e The Elapsed field displays the time elapsed since the process was initiated.
e The Processor field displays the processor time used by the process.
e The I/O field displays the accumulated I/O initiation time for the process.

e The area below the Elapsed, Processor, and I/O fields displays messages generated
by the process, including "BOT”, "EOT", DISPLAY, and RSVP messages.

You can enter process control commands in the Action field. The list of available actions
below the Action field includes the most common system commands used for process
monitoring and control. You can enter any of the listed commands without having to
prefix them with the mix number of the process; MARC automatically prefixes the
command with the mix number listed in the Task field. You can also enter system
process control commands that are not listed as actions, but you must prefix them with
the mix number of the process. For a list of system commands related to process
monitoring and control, refer to “Tasking Command Equivalents” in this section.

If you submit a WFL job by way of the START screen or the START command, then the
process control commands are displayed only during the compilation of the job.
However, you can enter these commands even after they no longer appear as prompts,
provided that you prefix them with a mix number. You can prefix them with the mix
number of the job or of any task initiated by the job. The TASKSTATUS screen continues
to display any messages generated by the job as it executes. You can initiate another
process as soon as the job has finished compiling and has been inserted in a job queue.

However, if you submit a WFL job by way of the MARC WFL command, the process
control commands continue to be displayed as the job executes. Also, it is not possible
to initiate new processes until the job terminates.

If you initiate a process that initiates offspring, then any messages created for the
offspring are included with the other process messages on the TASKSTATUS screen.
You can enter process control commands for the offspring in the Action field, but you
must always prefix the command with the mix number of the offspring process.

You can usually learn the mix number of the offspring by looking at its “BOT" message
in the process messages display. However, if MARC has scrolled this message off the
screen, you can learn the mix number by entering the VIEW command in the Action field.
This command causes MARC to display the TASKVIEW screen, which lists the mix
numbers and the names of the original process and all its descendants in a hierarchical
order.

8600 0494-506 3-11

Tasking from Interactive Sources

You cannot enter process control commands on the TASKVIEW screen. You can display
the TASKSTATUS screen for a particular offspring by entering the mix number of the
offspring in the Action field of the TASKVIEW screen. You can then enter process
control commands on that TASKSTATUS screen. Alternatively, you can return from the
TASKVIEW screen to the original TASKSTATUS screen by entering the RETURN
command in the Action field.

Monitoring Other Processes in MARC

All system commands related to process monitoring and control can be entered through
MARC, except for the primitive commands (commands preceded by two question
marks). You can use these commands to monitor or control processes initiated from the
current MARC session or processes initiated from other sources, such as CANDE or an
ODT.

You can enter system commands on the COMND screen or in the Action field of any
screen that displays “COmnd” as a prompt. However, system commands that you
enter through MARC are screened for security. Many system commands are available
only if the usercode of the session has privileged, SYSTEMUSER, or security
administrator status. For details, refer to “Tasking Command Equivalents” in this
section.

Each MARC session receives a unique number, also called the session number, which
appears in the output from some system commands, including mix display commands.
The session number is assigned from a range of numbers defined by the MAX
(Maximums) system command. Depending on the range defined, the session number
can be as low as 100 or as high as 65535.

The MARC session number does not appear as a process in mix display commands.
However, the session number does appear in the output from two system commands:
Y (Status Interrogate) and C (Completed Mix Entries). The output from these commands
shows both the job number and the mix number of a process. If the process is a task,
and it was initiated from a MARC session, then the job number shown is the MARC
session number.

Communicating with Interactive Processes in MIARC

A special window called a task window is created if a remote file is opened by a process
run from a MARC session. In most cases, when the process opens the remote file,
MARC automatically displays the task window. The current screen disappears and
MARC displays the following message:

Enter ?MARC for task status
If the process writes to the remote file, the messages appear in the task window. If you
type and transmit any text in the task window, MARC interprets this as input to the

remote file. The only exceptions are the ?MARC command and other Transaction Server
commands that are prefixed with question marks.

8600 0494-506

Tasking from Interactive Sources

You can return to the TASKSTATUS screen by entering the ?MARC command. You can
return to the task window by entering the TASK command in the Action field of any
screen.

If you are on the task window when the process terminates, then MARC returns you to
the originating screen. In some cases, MARC prompts you to press the SPCFY key
before making this transfer. For information about why this happens, refer to
"Communicating with MARC Terminals” later in this section.

Note that if you submit a WFL job through the START command and the job initiates a
task that opens a remote file, you are not automatically transferred to the task window
when the remote file is opened. When the task opens the remote file, a message of the
following form appears on the TASKSTATUS screen:

<time> <mix number> Remote window <remote window name> OPEN.
INTNAME = <internal name>. PROGRAM = <object code file title>.

Note the <remote window name> value in this message. You can transfer to the
remote window by entering a command of the form:

?0N <remote window name>
You can return to the TASKSTATUS screen by entering the following command:
70N MARC

The shorter form, ?MARC, is not accepted in this situation.

Access to Task Attributes in MARC

For each session, MARC stores information about a few selected task attributes. MARC
requests some of this information from the user at log-on time and obtains the rest from
usercode attributes defined in the USERDATAFILE. MARC assigns these task attribute
values to any process initiated by that session (for example, by a MARC RUN command).
The task attributes stored by MARC include the following:

BACKUPFAMILY JOBNUMBER PRINTDEFAULTS
CHARGE JOBSUMMARY SOURCESTATION
CONVENTION JOBSUMMARYTITLE STATION
DESTNAME LANGUAGE USERCODE
EXCEPTIONTASK NOJOBSUMMARYIO

FAMILY PRIORITY

A task initiated from a MARC session receives a JOBNUMBER value equal to the
session number. The JOBNUMBER value for such a task can range anywhere from 100
to 65535, depending on the session number range established by the system command
MAX SESSION = <number>.

8600 0494-506 3-13

Tasking from Interactive Sources

For a WFL job started from a MARC session, MARC assigns a MIXNUMBER value from
the mix number pool and assigns a JOBNUMBER value equal to the MIXNUMBER value.

The JOBNUMBER value for such a task can range anywhere from 100 to 65535,
depending on the mix number range established by the system command MAX MIX =
<number>.

Certain of the session attributes established for MARC dialogue 1 are inherited by any
sessions started in other MARC dialogues; these session attributes are USERCODE,
ACCESSCODE, CHARGE, FAMILY, and LANGUAGE.

MARC provides commands and menu selections that you can use to set the values of
the following attributes: DESTNAME, FAMILY, JOBSUMMARY, JOBSUMMARYTITLE,
LANGUAGE, NOJOBSUMMARYIQ, and PRINTDEFAULTS. The other attributes in the
previous list cannot be accessed by the user.

You can also assign task attributes to specific processes by using task equations. You

can enter task equations in MARC in either of the following ways:

RUN, FILEEQUATE, and TASKATTR screens

The RUN screen includes boxes you can fill to indicate that file equations or task
attribute assignments are needed. If file equations are needed, the FILEEQUATE
screen is displayed. You can enter any number of file equations. Implicitly, these are
assignments to the FILECARDS task attribute. If task attribute assignments are
needed, the TASKATTR screen is displayed. This screen includes fields for assigning
selected task attributes, as well as an empty field you can use to assign one or more
additional task attributes of your choice.

RUN command

When you initiate a task by using a RUN command, you can include task equations
that assign task attribute values for the task. The following RUN command includes
several task equations:

RUN OBJECT/PROGA; TASKVALUE=1;DISPLAYONLYTOMCS=TRUE;FILE OUT=0UT/FILE;

MARC Programming Considerations

When you design a program to be run from MARC, you need to be aware of MARC
features affecting parameter passing, task attribute access, and terminal
communications.

Receiving Parameters from MIARC

If you are designing a program to be initiated from MARC, be aware that the program can
receive only one parameter from the RUN screen or RUN command that initiates it. If
the user encloses the parameter in quotation marks ("), MARC passes the parameter as
type Real Array with an unspecified lower bound. If the user does not enclose the
parameter in quotation marks, MARC passes the parameter as type Real. For
information about the parameter types in each language that are compatible with the
Real and Real Array types, refer to Section 17, “Using Parameters.”

8600 0494-506

Tasking from Interactive Sources

Access to Ancestral Processes in MARC

If you initiate a task through the MARC RUN command and that task accesses its own
EXCEPTIONTASK task attribute, the system interprets EXCEPTIONTASK as a reference
to the MARC library, *SYSTEM/MARC/COMMANDER. The task can use the
EXCEPTIONTASK task attribute to query the values of the task attributes of the MARC
MCS. However, if the task attempts to modify the task attributes of the MARC MCS,
the task is terminated with a task attribute error. This error occurs because MARC runs
with the private process option of the OPTION task attribute set to TRUE.

For tasks initiated through a MARC RUN command, the MYJOB task variable and the
PARTNER task attribute act as synonyms for the MYSELF task variable. When such a
task uses MYJOB or PARTNER to access any task attributes, the task attributes
accessed are those of the task itself. However, if the task changes the values of the job
summary-related task attributes, the changes affect the job summary of the MARC
session. The job summary-related task attributes are JOBSUMMARY,
JOBSUMMARYTITLE, and NOJOBSUMMARYIO.

For WFL statements submitted through a MARC WFL command, the MYJOB task
variable refers to the WFL compiler process. The NAME of the WFL compiler process in
this case is MARC WFL, prefixed by the usercode of the session. The MYSELF task
variable refers to the task that is executing the compiled WFL statements. The NAME of
this task is WFLCODE, prefixed by the usercode of the session. MYSELF(JOBNUMBER)
returns the MARC session number, but MYJOB(MIXNUMBER) returns the mix number
of the WFL compiler process.

When statements submitted through the WFL command use the MYJOB construct to
alter job summary-related task attributes, these changes affect the job summary of the
MARC session. However, if the MYSELF variable is used to access these task
attributes, there is no effect on the job summary of the MARC session.

Note: \When you use the JOBSUMMARY command to display the current
JOBSUMMARY value for the session, the output does not reflect any JOBSUMMARY
assignments made by tasks of the session. Nevertheless, such assignments made by
tasks do affect the job summary of the session unless overridden by a later
JOBSUMMARY command.

The MCSNAME task attribute of tasks initiated from MARC sessions typically returns a
value of SYSTEM/COMS, which might or might not be preceded by an asterisk (*).

8600 0494-506 3-15

Tasking from Interactive Sources

Communicating with MARC Terminals

The STATIONNAME task attribute is the preferred method of specifying the station
where remote files should be opened. However, MARC does not assign the
STATIONNAME attribute of programs or WFL jobs initiated from a MARC session. It is
therefore advisable for you to explicitly assign a STATIONNAME value to any interactive
processes originating from a MARC session.

For example, you can include the following statement in WFL jobs initiated from a MARC
session:

MYSELF(STATIONNAME = #MYSELF(SOURCENAME));

This STATIONNAME value is inherited by any tasks of the WFL job, and enables them to
open remote files successfully.

The STATION task attribute can be used for a similar purpose. However, the
STATIONNAME task attribute is more reliable than STATION, because STATION stores a
logical station number (LSN) that is subject to change.

The "Communicating with Interactive Processes” subsection pointed out that MARC
opens a task window to enable a process to communicate with a user through a remote
file. You can use the AUTOSWITCHTOMARC attribute to affect the handling of the task
window for users. If you set the AUTOSWITCHTOMARC task attribute to TRUE, then
users of the program are automatically transferred from the task window to the
originating screen when the process terminates. If AUTOSWITCHTOMARC is FALSE,
then the user must press the SPCFY key to return to the originating screen.

8600 0494-506

Tasking from Interactive Sources

Operations Center

Operations Center is an application that runs under the Microsoft Windows operating
system and is available on ClearPath MCP servers. This utility provides a graphical user
interface (GUI) to system operations. If Operations Center is available on your
workstation, initiate Operations Center by double-clicking the icon that appears in the
Unisys Administration program group or folder.

Operations Center Tasking Capabilities

Operations Center enables you to submit jobs and to execute the supported task-related
commands in a real-time environment. Through Operations Center, you can monitor and
respond to all processes in the system mix. If you want to initiate and monitor a single
program, you can do so more conveniently from CANDE or MARC.

Submitting WFL Jobs from Operations Center

From the Commands menu, you can submit jobs from Operations Center by using any of
the following methods:

e Typing in an entire WFL program, including a BEGIN JOB; statement at the start, and
then transmitting it. (There is no need to include an END JOB statement.)

e Entering one or more WFL statements preceded by the letters CC. (The BEGIN JOB
is not necessary in this case.)

e Entering one of a certain group of WFL statements that do not require a BEGIN JOB
or any other prefix when used in Operations Center. These statements include
COMPILE, COPY, PROCESS, RERUN, RUN, and START.

When you submit WFL statements through the methods listed, the system usually
executes the input as a WFL job. However, the system can execute some statements
directly, without creating a WFL job. Such statements do not pass through the job queue
mechanism and, therefore, are not affected by job queue attributes. For a list of these
statements, refer to Section 4, “Tasking from Programming Languages.”

For further details about submitting WFL programs from Operations Center, refer to the
Work Flow Language (WFL) Programming Reference Manual.

Initiating Processes from Operations Center

You can use the PRIMITIVE RUN system command to initiate a program as an
independent process. The program can be written in any language except WFL. The
resulting process receives its own job file and job summary.

Note that if you enter RUN without specifying PRIMITIVE, the system treats this as the
WEFL RUN statement. The system creates a WFL job to execute the RUN statement and
enters the job in a job queue. The job can be delayed by the queue mix limit or affected
by other job queue attributes. Further, the job affects the job queue active count.

8600 0494-506 3-17

Tasking from Interactive Sources

Therefore, you might prefer to use PRIMITIVE RUN to initiate processes, such as MCSs,
that you do not wish to go through the job queue mechanism.

Initiating Compilations from Operations Center

You can initiate compilations from Operations Center by using the WFL COMPILE
statement. The system responds to this command by creating a VWWFL job that includes
the COMPILE statement and sending it through the job queue mechanism for initiation.

Monitoring and Controlling Processes from Operations Center

Operations Center provides the same commands as the ODT for monitoring and
controlling processes. These system commands are used to monitor or control all the
processes on the system, including processes initiated from any of the sources
discussed in this section. These system commands are listed under "“Tasking Command
Equivalents” in this section. You can enter system commands by choosing the
Commands Menu.

When you initiate Operations Center, there are nine standard views that can be opened
from either the File Menu or the standard toolbar. These views correspond to the types
of information you can view at an ODT in automatic display mode (ADM). You can modify
the standard views or create new views. Standard views include:

View Description

Active Entries Currently running jobs and tasks in the mix

Waiting Entries Tasks that need operator or user action because they are
suspended on an RSVP condition

Scheduled Entries Tasks that have not begun processing

Completed Entries Jobs and tasks that have finished executing

Message Entries System messages and programmatic display messages

Database Entries Active database stacks

Library Entries Frozen libraries

NT Task Management All active processes and their threads

Entries

From these views, you can perform tasks and access information. Select a view or an
entry within a view. The commands on the Command toolbar and the Commands Menu
that are valid for that view or entry are bold. Those commands that are not valid are
dimmed. You can also display a Commands Menu by using the right mouse button to
select an entry within a view.

To obtain more information than what is normally visible in a view, double-click an entry
within a view. A Detailed Information dialog box appears that contains additional
information about the entry and allows you to see fields such as Display and Reply Text
that may be too short for a single line.

8600 0494-506

Tasking from Interactive Sources

Access to Task Attributes from Operations Center

You can include task equations after a WFL task initiation statement submitted from
Operations Center. In addition, if you type in a complete WFL job from Operations
Center, you can include task attribute assignments in the job attribute list. However, you
cannot use task equations after the PRIMITIVE RUN command.

When you initiate a process from Operations Center, the process typically does not
inherit any of the task attributes that it would if you initiated the process from a MARC or
CANDE session. For example, the USERCODE, ACCESSCODE, CHARGE, and FAMILY
values of the process are usually null, unless explicitly assigned.

However, task attributes are inherited in the following cases:

e |f you submit a WFL job that includes a USERCODE assignment in the job attribute
list, then the following task attributes of the WFL job inherit values from the
corresponding usercode attributes: CHARGE, CLASS, CONVENTION, FAMILY,
LANGUAGE, PRINTDEFAULTS, and PRIORITY. This inheritance can be overridden
by assignments to these attributes in the job attribute list.

e |f you submit a job, the job can inherit attributes from a job queue. Refer to
"Deciding on the Queue for a Job"” in Section 4.

Note that programs initiated by a PRIMITIVE RUN command do not inherit the terminal
usercode or any other usercode attributes.

Operations Center Programming Considerations

When you design a program to be run from Operations Center, you need to be aware of
Operations Center features affecting parameter passing, task attribute access, and
terminal communications.

Receiving Parameters from Operations Center

If you are designing a program to be initiated by the PRIMITIVE RUN command, be
aware that the program cannot receive any parameters.

If the program is to be initiated by a WFL RUN statement entered from Operations
Center, the program can receive the four parameter types passed by WFL: Boolean,
integer, real, and string. The string parameter should be declared in the program as a
real array (or compatible parameter type) with an unspecified lower bound. For
information about real array parameters and compatible parameter types, refer to
Section 17, "Using Parameters.”

8600 0494-506 3-19

Tasking from Interactive Sources

Access to Ancestral Processes in the Operations Center

For a process initiated by the PRIMITIVE RUN command, the MYJOB task variable and
the EXCEPTIONTASK and PARTNER task attributes are all references to the process
itself.

For a process initiated by a WFL RUN statement from Operations Center, MYJOB,
EXCEPTIONTASK, and PARTNER are all references to the job that was created by the
system to execute the RUN statement. The name of this job consists of the first 17
characters of the job input you submitted or the name after BEGIN JOB.

Communicating with Operations Center
Operations Center is not a terminal like an ODT. A program cannot use an ODT file as a

remote file to display or read text in an Operations Center session. A WFL display
statement is the only way to send text to Operations Center for display.

3-20 8600 0494-506

Tasking from Interactive Sources

oDT

An operator display terminal (ODT) is any data comm terminal or workstation that is
connected to the system through the System Control Processor (SCP) or the ODT-DLP.
The system provides ODTs with access to two operational modes: system command
mode and data comm mode. When an ODT is in data coomm mode, you can log on to
the Transaction Server and use various programs that run under the Transaction Server,
such as MARC. When an ODT is in system command mode, you can enter system
commands or view automatic displays of system information.

The following subsections discuss tasking capabilities and programming considerations
for an ODT running in system command mode. For details about any of the system
commands, refer to the System Commands Operations Reference Manual.

ODT Tasking Capabilities

The ODT provides you with the capability to submit WFL jobs and initiate dependent or
independent processes. The ODT also enables you to conveniently monitor all the
processes in the system mix.

Submitting WFL Jobs from an ODT

You can submit WFL programs at an ODT by using any of the following methods:

e Typing in an entire WFL program, including a BEGIN JOB statement at the start, and
then transmitting it. (There is no need to include an END JOB statement.)

e Entering one or more WFL statements preceded either by a question mark (?) or by
the letters CC. (The BEGIN JOB is not necessary in this case.)

e Entering one of a certain group of WFL statements that do not require a BEGIN JOB
or any other prefix when used at the ODT. These include COMPILE, COPY,
PROCESS, RERUN, RUN, and START.

When you submit WFL statements through the methods listed, the system usually
executes the input as a WFL job. However, the system can execute some statements
directly, without creating a WFL job. Such statements do not pass through the job queue
mechanism, and therefore are not affected by job queue attributes. For a list of these
statements, refer to Section 4, “Tasking from Programming Languages.”

For further details about submitting WFL programs from an ODT, refer to the Work Flow
Language (WFL) Programming Reference Manual.

Initiating Processes from an ODT
You can use the ??RUN (Run Code File) primitive system command or the PRIMITIVE
RUN system command to initiate a program as an independent process. The program

can be written in any language except WFL. The resulting process receives its own job
file and job summary.

8600 0494-506 3-21

Tasking from Interactive Sources

Note that if you enter RUN without the two question marks, the system treats this as the
WEFL RUN statement. The system creates a WFL job to execute the RUN statement and
enters the job in a job queue. The job can be delayed by the queue mix limit or affected
by other job queue attributes. Further, the job affects the job queue active count.
Therefore, you might prefer to use ??RUN or PRIMITIVE RUN to initiate processes, such
as MCSs, that you do not wish to go through the job queue mechanism.

Initiating Compilations from an ODT

You can initiate compilations at an ODT by using the WFL COMPILE statement. The
system responds to this command by creating a WFL job that includes the COMPILE
statement and sending it through the job queue mechanism for initiation.

Initiating Utilities from an ODT

Utilities can be initiated at the ODT by way of the ??RUN or the PRIMITIVE RUN
command or the WFL RUN statement. There are other system commands that initiate
specific utilities, such as the TDIR (Tape Directory) command, which initiates the
FILEDATA utility to list the directory of a tape, and the DA (Dump Analyzer) system
command, which initiates the DUMPANALYZER utility.

Two WEFL statements that initiate specific utilities can be entered at the ODT. The LOG
statement initiates the LOGANALYZER utility, and the PB statement initiates the
BACKUP utility. To use the WFL PB statement at the ODT, you must prefix it with a
question mark (?); otherwise, the system interprets it as the PB (Print Backup) system
command, which does not initiate the BACKUP utility.

Monitoring and Controlling Processes at an ODT

3-22

Of all the interactive sources for process initiation, the ODT provides the most complete
selection of commands for monitoring and controlling processes. The operator can use
these system commands to monitor or control all the processes on the system, including
processes initiated from any of the sources discussed in this section. These system
commands are listed under “Tasking Command Equivalents” in this section.

A unique feature of the ODT is Automatic Display mode. You initiate and control this
mode by using the ADM (Automatic Display Mode) system command. You can use this
feature to cause various types of information to be displayed at intervals, such as active
entries, waiting entries, completed entries, and process messages. This feature allows
you to monitor processes from beginning to end without having to enter commands
repeatedly.

By default, Automatic Display mode displays seven lines of A (Active Mix Entries) system
command output, three lines of W (Waiting Mix Entries) system command output, two
lines of S (Scheduled Mix Entries) system command output, five lines of C (Completed
Mix Entries) system command output, and devotes the remainder of the display to MSG
(Display Messages) system command output. By default, the system updates the
contents of the display every four seconds. You can use the ADM command to cause
different system commands to be displayed or to change the time interval for updates to
the display.

8600 0494-506

Tasking from Interactive Sources

Access to Task Attributes from an ODT

You can include task equations after a WFL task initiation statement submitted from the
ODT. Also, if you type in a complete WFL job at the ODT, you can include task attribute
assignments in the job attribute list. However, you cannot include task equations after
the ??RUN or the PRIMITIVE RUN command.

When you initiate a process from the ODT, the process typically does not inherit any of
the task attributes that it would if you initiated the process from a MARC or CANDE
session. For example, the USERCODE, ACCESSCODE, CHARGE, and FAMILY values of
the process are usually null, unless explicitly assigned.

However, task attributes are inherited in the following cases:

e |f you submit a WFL job that includes a USERCODE assignment in the job attribute
list, then the following task attributes of the WFL job inherit values from the
corresponding usercode attributes: CHARGE, CLASS, CONVENTION, FAMILY,
LANGUAGE, PRINTDEFAULTS, and PRIORITY. This inheritance can be overridden
by assignments to these attributes in the job attribute list.

e If you use the TERM (Terminal) system command to assign a terminal usercode to
an ODT. This usercode is inherited by WFL jobs submitted from the ODT, unless
overridden by a USERCODE assignment in the job attribute list. The job also inherits
values for the same set of task attributes listed in the previous item in this list.

e |f you submit a WFL job, the job can inherit attributes from a job queue. Refer to
"Deciding on the Queue for a Job” in Section 4.

Note that programs initiated by a ??RUN command or a PRIMITIVE RUN command do
not inherit the terminal usercode or any other usercode attributes.

Special types of security status apply to nonusercoded processes and certain WFL
statements when they are entered at the ODT. These privileges are discussed in
Section 5, “Establishing Process Identity and Privileges.”

ODT Programming Considerations
When you design a program to be run from the ODT, you need to be aware of ODT
features affecting parameter passing, task attribute access, and terminal
communications.

Receiving Parameters from an ODT
If you are designing a program to be initiated by the ??RUN primitive system command

or the PRIMITIVE RUN system command, be aware that the program cannot receive any
parameters.

8600 0494-506 3-23

Tasking from Interactive Sources

If the program is to be initiated by a WFL RUN statement entered at an ODT, the
program can receive the four parameter types passed by WFL: Boolean, integer, real,
and string. The string parameter should be declared in the program as a real array (or
compatible parameter type) with an unspecified lower bound. For information about real
array parameters and compatible parameter types, refer to Section 17, “Using
Parameters.”

Access to Ancestral Processes in the ODT Environment

For a process initiated by the ??RUN primitive system command or the PRIMITIVE RUN
system command, the MYJOB task variable and the EXCEPTIONTASK and PARTNER
task attributes are all references to the process itself.

For a process initiated by a WFL RUN statement at an ODT, MYJOB, EXCEPTIONTASK,
and PARTNER are all references to the WFL job that was created by the system to
execute the RUN statement. The name of this WFL job consists of the first 17
characters of the WFL input you submitted.

Communicating with an ODT

Interactive programs that are designed for use at remote terminals might not run
successfully if initiated from the ODT. You must design the program somewhat
differently if it is to be initiated at an ODT. If the process opens a file with KIND =
REMOTE, it is discontinued with an “UNKNOWN FILE/STATION" error. The process
should open a file with KIND = ODT instead. A process can determine whether it was
initiated from an ODT or a remote terminal by interrogating the SOURCEKIND task
attribute.

A process can open a file either at a labeled ODT or at a scratch ODT. A labeled ODT is
one that has been assigned a label by the LABEL (Label ODT) system command. A
scratch ODT is one that has not been assigned such a label.

To open a file at a labeled ODT, a process should first set the TITLE file attribute to
match the label assigned to the ODT. In addition, the NEWFILE file attribute value
should be FALSE or else unspecified. If NEWFILE is unspecified, the MYUSE file
attribute value should be IN or I0. When the process runs, the system opens the
remote file at any ODT with a matching label. If none of the ODTs has a matching label,
the process is suspended with a “NO FILE <file title> (SC)” RSVP message. The
process resumes execution when an operator uses the LABEL command to label an
ODT with the requested file title.

To open a file at a scratch ODT, a process should set the NEWFILE file attribute to TRUE,
or leave NEWFILE unspecified and set MYUSE to OUT. The value of the TITLE file
attribute makes no difference in this case. If the process was initiated from an ODT, and
that ODT is a scratch ODT, the system opens the file at that ODT. Otherwise, the
system selects another scratch ODT and opens the file there.

To open a file at a particular ODT, regardless of whether that ODT is labeled or scratch,

the process can assign the UNITNO file attribute a value equal to the physical unit
number of the ODT. The system opens the file at the requested ODT even if the ODT is

3-24 8600 0494-506

Tasking from Interactive Sources

labeled and the label does not match the TITLE file attribute. However, note that use of
the UNITNO file attribute is restricted on systems running the Security Services for
ClearPath MICP at the S2 level; refer to the Security Administration Guide for details.

To open a file at the ODT where the process was initiated, regardless of whether that
ODT is labeled or scratch, the process should first read the physical unit number from its
own SOURCESTATION or ORGUNIT task attribute value. The process can then assign
the physical unit number to the UNITNO file attribute, as described previously.

When a process opens an ODT file, automatic display mode at the ODT is temporarily
suspended. However, system commands continue to be available. You can enter text
into the ODT file by preceding the text with a GS character. The GS character is also
known as the delta character and looks like an upward-pointing triangle. (Do not confuse
the GS character with the circumflex character, which resembles an inverted letter V.)
Refer to the documentation for your terminal to find out whether your terminal supports
the GS character, and which key it is mapped to.

You can indicate that there is no more input, and cause an end-of-file condition, by
entering the GS character, followed by ?END.

When the process closes the ODT file, the system removes the label from the ODT and
resumes Automatic Display mode. You can also resume Automatic Display mode while
the ODT file is still open by entering an ADM OK command at the ODT.

An example of a program that uses an ODT file is given in the ORGUNIT description in
the Task Attributes Programming Reference Manual.

8600 0494-506 3-25

Tasking from Interactive Sources

Tasking Command Equivalents

3-26

MARC and the ODT allow you to enter almost all of the same system commands for
process initiation, monitoring, and control. In addition, CANDE allows you to enter
process control commands that correspond closely to system commands.

The system commands available in MARC for process control are spelled the same as
those available at an ODT, and have the same functionality, with the following
exceptions:

Security

If the Transaction Server security category COMMANDCAPABLE is defined, then
system commands can be submitted in MARC only by users defined as
COMMANDCAPABLE. Further, some commands are available only to users with
SYSTEMUSER or privileged status. Some other commands are filtered: in other
words, they are limited to monitoring and controlling processes with the same
usercode as the MARC session. For further information about
COMMANDCAPABLE, SYSTEMUSER, and privileged status, refer to the Security
Administration Guide.

Spelling
The MSG (Display Messages) system command is spelled SMSG in MARC.

CANDE process control commands differ from the corresponding system commands in
the following ways:

Spelling

The CANDE process control commands each begin with a single question mark (?).
In addition, the following spelling differences exist:

— ?JA corresponds to the J (Job and Task Structure) system command.

— ?CS corresponds to the mix number system command, which is formally known
as the COMPILE STATUS (Information for Compiler Task) command. Note that
the ?CS command in CANDE is not related to the CS (Change Supervisor)
system command.

— ?MXA corresponds to the MX (Mix Entries) system command. ?MXA can be
abbreviated as ?MX or 7M.

Implicit mix numbers

For commands that apply to a dependent process initiated directly from the CANDE
session, you can omit the mix number from the command. For example, instead of
entering 77234 Y, you can enter simply 7Y.

Security

In general, the CANDE process control commands can monitor or control only
processes running with the same usercode as the CANDE session. If you attempt to
apply a CANDE process control command to a process running with a different
usercode, CANDE displays the message “INVALID NUMBER."” However, CANDE
makes one exception to this restriction. If you initiate a process in a CANDE session,

8600 0494-506

Tasking from Interactive Sources

and that process later changes its own usercode, CANDE still enables you to apply
process control commands to that process.

e Mix display options

The CANDE mix display commands (?C, ?JA, ?LIBS, and ?MXA) do not provide the
following options of the equivalent system commands: ALL, MCSNAME, NAME,
QUEUE, and USER. However, the ALL option is implicitly set for all CANDE mix
display commands. Furthermore, CANDE mix display commands do offer one
feature that the corresponding system commands do not: the ability to specify a
logical station number (LSN), which limits the display to processes originating from
the specified station.

Table 3—1 shows the equivalent commands in these three interfaces and briefly states
the function of each command. In Table 3-1, the abbreviations (f), (pu), and (su) are used
in the MARC column to indicate commands that are filtered or that require
SYSTEMUSER status or privileged status. For complete descriptions of these
commands, refer to the System Commands Operations Reference Manual, the Menu-
Assisted Resource Control (MARC) Operations Guide, and the CANDE Operations
Reference Manual. For a general introduction to process monitoring and control from an
ODT, refer to the System Operations Guide.

Table 3-1. Interactive Tasking Functions

ODT or
Functional Operations
Area Center MARC CANDE Specific Function
Initiating PRIMITIVE None None Initiate an object code
Processes RUN file as an independent
process.
??RUN (ODT None None Initiate an object code
only) file as an independent
process.
RUN RUN RUN, Initiate an object code
UTILITY file as a dependent
process.
<WFL WFL WFL Submit WFL
statements> statements.
START START START Submit a WFL
program stored in a
file.
Managing <mixno>DS ?<mixno> ?<mixno> Discontinue a queued
Queued WFL DS (f) DS WEFL job.
Jobs
FS FS (su) None Force initiation of a
queued WFL job.
MOVE MOVE (su) None Change order of
queued WFL jobs.

8600 0494-506 3-27

Tasking from Interactive Sources

Table 3-1. Interactive Tasking Functions
ODT or
Functional Operations
Area Center MARC CANDE Specific Function
Managing PF PF (su) None Display FETCH
Queued WFL message associated
Jobs (cont.) with a WFL job.

PQ PQ (su) None Discontinue all the
WEFL jobs in a queue.

PR PR (su) None Change the priority of
a queued WFL job.

SQ SQ (f) ?SQ Display the WFL jobs
in a queue.

STARTTIME STARTTIME ?<mixno> Assign a start time to

(f) STARTTIME a queued WFL job.

Y Y (f) ?<mixno> Y Display information
about a queued WFL
job.

Monitoring ADM (ODT None None Periodically display
the Mix only) system mix and other
items.

C COMND C (f) ?C Display completed
entries.

DBS DBS (su) None Display database
stacks.

J J (f) 2JA Display active mix
entries, grouped into
process families.

LIBS LIBS (f) ?LIBS Display library
processes.

MSG SMSG (f) ?MSG Display process
messages.

MX MX (f) ?MXA Display active,
scheduled, and
waiting mix entries.

S S (su) ?’S Display scheduled
mix entries.

W W (f) "W Display waiting mix
entries.

3-28 8600 0494-506

Tasking from Interactive Sources

Table 3-1. Interactive Tasking Functions

ODT or
Functional Operations
Area Center MARC CANDE Specific Function
Displaying Y Y (f) Y Display current status
Process of a process.
Status

<mixno> <mixno> ?<mixno> or Display the status of a

?CS compilation.

oT OT (f) 20T Display contents of a
selected word in the
process stack.

Displaying CU CU (f) ’?CU Display current
Process memory usage of a
Resource process.

Usage

Tl TI (f) Tl Display accumulated
processor, /0,
presence bit, ready
queue, and elapsed
times for a process.

Communi- HI HI (f) ?HI Cause process

cating with a EXCEPTIONEVENT

Process and optionally assign
a TASKVALUE.

AX AX (f) ?AX Pass a string of text
to a process.

B IB (su) None Display instruction
block associated with
a WFL job.

PF PF (su) None Printa FETCH
message associated
with a WFL job.

SW SW (f) ?SW Modify the SW1
through SW8 task
attributes of a
process.

Modifying an DS DS (f) DS Abnormally terminate
Active execution of a
Process process.

DUMP (DP on DUMP ?’DUMP Initiate a program

Operations dump.

Center toolbar)

FS FS (su) None Force initiation of a

scheduled process.

8600 0494-506 3-29

Tasking from Interactive Sources

Table 3-1. Interactive Tasking Functions

ODT or
Functional Operations
Area Center MARC CANDE Specific Function
Modifying an LP LP (f) None Protect a process
Active from DS or QT
Process commands.
(cont.)

PR PR (su) None Change the priority of
a process.

ST ST (f) ST Suspend execution of
a process.

Responding AX AX (f) ?AX Pass a string of text
to Suspended to a process.
Processes

BADFILE (BF BADFILE (f) None Continue to copy a

on Operations file from tape to disk

Center toolbar) when tape errors
occur.

DS DS (f) ?DS Discontinue a
process.

FA FA (f) ?FA Modify file attributes
used by a process.

FM FM (su) None Change the printer
form used by a
process.

FR FR (f) ?FR Specify that a tape
reel is the last of a
multireel set.

IL IL (su) None Change the physical
unit used for an input
file.

NF NF (f) ?’NF Return an open error
to a process opening
a file that is not an
optional file.

NOTOK NOTOK (f) ?NOTOK Prevent the process
from attempting a
given action, but do
not discontinue the
process.

OF OF (f) ?0OF Indicate an optional
file is not present.

oK OK (f) ?0K Cause a suspended

process to attempt to
resume processing.

3-30 8600 0494-506

Tasking from Interactive Sources

Table 3-1. Interactive Tasking Functions

ODT or
Functional Operations
Area Center MARC CANDE Specific Function
Responding ou OU (su) None Change the physical
to Suspended unit used for an
Processes output file.
(cont.)
RM RM (f) ?RM Remove a file
specified in a DUP
LIBRARY message.
UL UL (su) None Assign an unlabeled
tape file to a particular
process.
Saving and BR BR (su) None Display checkpoint
Restarting eligibility or initiate a
Processes checkpoint.
OK OK (f) ?0K Allow automatic
restart of a process.
DS DS (f) ?DS Deny automatic
restart of a process.
RERUN WFL RERUN WFL RERUN Initiate manual restart
of a process.
RESTART RESTART None Terminate and restart
a WFL job.

Note: The <mixno> syntax is formally known as the COMPILE STATUS (Information
for Compiler Task) system command.

The following abbreviations are used in Table 3-1:

o f (Filtered if not SYSTEMUSER or privileged.)
e su (SYSTEMUSER or privileged status required.)

e mixno (Mix number)

8600 0494-506 3-31

Tasking from Interactive Sources

Communicating with an Operator

You can design a process to display information to an operator or accept information
from an operator. You can accomplish this communication through any of the following
methods:

e By accepting parameters from the operator in the statement that initiates the
process. This topic is discussed earlier in this section under “Receiving Parameters
from CANDE,"” “Receiving Parameters from MARC,” and “Receiving Parameters
from an ODT."

e By performing read and write operations on a remote file or ODT file. This topic is
discussed in the following subsections of this section: “Communicating with CANDE
Terminals,” “Communicating with MARC Terminals,” and “Communicating with an
oDT."

e By using certain statements and task attributes that the system provides for operator
communications. These methods are discussed in the following subsections.

Displaying Information to Operators

3-32

A process can display information to operators using any of the following features:
DISPLAY statements, instruction blocks, and fetch specifications.

DISPLAY statements are the most commonly used of these methods. The DISPLAY
statement is implemented in ALGOL, COBOL, and WFL. This feature is also available as
the Display procedure in Pascal. The following is a WFL example of this statement:

DISPLAY "INCORPORATING NEW DATA - MAY TAKE AWHILE";

The output from a DISPLAY statement is referred to as a DISPLAY message. The
DISPLAY message appears as one of the entries in the response to the MSG (Display
Messages) system command. If the process is initiated from a CANDE or MARC
session, the DISPLAY message is automatically displayed at the session. The
programmer can use the DISPLAYONLYTOMCS task attribute to limit the display of the
message to the originating session. If this task attribute is TRUE, then the DISPLAY
message does not appear at the ODT.

You can use instruction blocks to store information that an operator can display at any
time. By contrast, DISPLAY messages are only temporarily visible to the operator,
because the MSG command displays only the most recent system messages.
Instruction blocks are created using the INSTRUCTION statement, which is available only
in WFL. The following is an example of this statement.

INSTRUCTION 3 TESTTAPE IS IN TAPE RACK 3.;
An operator can use the IB (Instruction Block) system command to display instruction
blocks for a WFL job. For example, a command of the form 7645 /B displays the most

recent instruction block for the WFL job with mix number 7645. A command of the form
7645 |B 3 displays instruction block 3 for that WFL job.

8600 0494-506

Tasking from Interactive Sources

The disadvantage of instruction blocks is that nothing prompts the operator to use the I1B
command. The operator has to know in advance that instruction blocks exist for a
particular WFL job. If you want to be sure that an operator sees a message, you can use
the FETCH task attribute. This task attribute can be used only in WFL jobs, and only in
the job attribute list at the start of the job. You can assign any arbitrary string of text to
this attribute. The following is an example of a FETCH assignment:

FETCH = "THIS JOB NEEDS THREE TAPE DRIVES";

If the operating system option NOFETCH is not set, then when a WFL job containing a
FETCH assignment reaches the head of a job queue, the system suspends the job rather
than initiating it. The job appears in the W (Waiting Mix Entries) system command
display with an RSVP message of REQUIRES FETCH. The operator can use the PF (Print
Fetch) system commmand to display the FETCH specification, and the OK (Reactivate)
system command to cause the job to be initiated.

If NOFETCH is set, then the system does not suspend jobs with FETCH specifications.
However, the PF system command can still be used to display FETCH specifications.

If you enter a PF command for a process that has no FETCH specification, the system
displays the message “NO FETCH STATEMENT.”

Accepting Information from Operators

A process can be passed information by an operator using the HI (Cause
EXCEPTIONEVENT), AX (Accept), or SW (Switches) system command.

Accepting Input from HI Commands

EXCEPTIONEVENT is an event-valued task attribute, meaning that it has either of two
states: HAPPENED or NOT HAPPENED. The HI command causes the
EXCEPTIONEVENT, meaning that the value is changed to HAPPENED. This action has
no effect on process execution unless the program is specifically designed to monitor
the status of the EXCEPTIONEVENT. Only programs written in WFL, ALGOL, or COBOL
have access to this attribute.

A program can monitor the EXCEPTIONEVENT in any of the following ways:

e To suspend execution until the EXCEPTIONEVENT is caused, the process can use a
simple wait statement such as WAITIMYSELF.EXCEPTIONEVENT) in ALGOL or
WAIT; in WFL.

e To suspend execution until either the EXCEPTIONEVENT or some other event
occurs, the process can use a complex wait statement that lists the
EXCEPTIONEVENT as one of several events.

e To continue doing other work until the EXCEPTIONEVENT is caused, the process can
attach an interrupt to the EXCEPTIONEVENT.

8600 0494-506 3-33

Tasking from Interactive Sources

In addition to causing the EXCEPTIONEVENT, the HI command can also pass an
assignment to the TASKVALUE task attribute of the process. For example, the
command 3874 HI 14 causes the EXCEPTIONEVENT of the process with mix number
3874 and assigns a TASKVALUE of 14. To design a process to use this type of input, you
must first use a wait statement or interrupt to monitor the EXCEPTIONEVENT.
Whenever the EXCEPTIONEVENT occurs, the process can read its own TASKVALUE and
take appropriate action.

Accepting Input from AX Commands

3-34

Because the programmer controls the way an application responds to a Hl command, the
operator has no direct way of discovering whether a Hl command is needed or what
effect it has. Another feature is available that allows the process itself to prompt the
operator for certain types of input. This feature is the ACCEPT statement.

The ACCEPT statement displays a string of text to the operator and suspends execution
of the process. The process appears in the W (Waiting Mix Entries) system command
display, where it can attract the attention of an operator. Execution resumes when the
operator uses an AX (Accept) system command to pass another string of text to the
process.

In some situations, you might find it more convenient for a process to continue executing
until an AX string is available from the operator. This goal can be achieved in any of the
following ways:

e |f the operator is familiar with the program, and knows that the program requires an
AX string, he or she can enter the AX string without waiting for the process to
become suspended. The operator can enter the AX string either by appending an AX
task equation to the RUN statement or by entering an AX system command while
the process is running. The system saves the AX string that was input by the
operator. When the process executes an ACCEPT statement, the process retrieves
the AX string and immediately continues executing.

If an operator submits more than one AX string for a process before the process
performs its next ACCEPT statement, then the system must either queue the extra
AX strings or discard them. You can use the QUEUEDAX option of the SYSOPS
(System Option) system command to enable or disable queuing of AX strings. If
QUEUEDAX is set, then the system queues up to 250 AX strings for a process. If
QUEUEDAX is reset, then each AX string overwrites any pending AX string for a
process.

QUEUEDAX is set TRUE by default on ClearPath systems.

e By using a conditional ACCEPT statement. This form of ACCEPT checks for AX text
previously submitted by the operator. The conditional ACCEPT returns a Boolean
value indicating whether such text was found. The process continues executing
normally, regardless of whether an AX text was available.

8600 0494-506

Tasking from Interactive Sources

e By using the ACCEPTEVENT task attribute. The system causes the ACCEPTEVENT
of a process whenever the operator enters an AX command for that process. A
process can monitor the ACCEPTEVENT using wait statements or interrupts, similar
to those used for monitoring the EXCEPTIONEVENT. Whenever the ACCEPTEVENT
is caused, the process can execute an ACCEPT statement to capture the AX input.

Note: Programs should not use interrupts to detect AX strings passed to the program
through the AX task attribute. AX task attribute assignments do not cause the
ACCEPTEVENT task attribute. For further details, refer to the description of the AX task
attribute in the Task Attributes Programming Reference Manual.

Accepting Input from SW Commands

Each process has associated with it eight Boolean task attributes named SW1 through
SW8. These task attributes have no intrinsic meaning, but serve to convey application-
defined information to a process. Operators can modify the values of these attributes for
a running process by using the SW (Switches) system command. For example, the
following commands set and reset the SW1 attribute of the process with mix number
4875:

4875 SW1 TRUE
4875 SW1 FALSE

There is no event, equivalent to EXCEPTIONEVENT or ACCEPTEVENT, to inform the
process that one of the switch values has changed. Instead, to detect that one of the
switch task attributes has changed value, the process must periodically interrogate the
value of that switch.

Alternately, you can establish a convention whereby the operator is expected to follow
each SW command with a Hl or AX command to notify the process to interrogate the
switch values. For example, the following ALGOL statements cause a program to
interrogate SW1 and SW2 whenever an AX command is received:

INTERRUPT SWITCHER;
BEGIN
IF MYSELF.SW1 THEN
<statements>
ELSE IF MYSELF.SW2 THEN
<statements>
END;
ATTACH SWITCHER TO MYSELF.ACCEPTEVENT;

8600 0494-506 3-35

Tasking from Interactive Sources

3-36

The operator can also use the SW command to display the current values of the SW1
through SW8 task attributes of a process. The following is an example of a command
that interrogates these attributes for mix number 4873, and the resulting display:

4873 SW

SWITCH VALUES FOR 4873:

SW
SW
SW
SW
SW
SW
SW
SW

1

O NOoOYO1L P W

FALSE
FALSE
FALSE
TRUE

FALSE
FALSE
FALSE
TRUE

8600 0494-506

Section 4
Tasking from Programming
Languages

The implementations of several programming languages include extensions for process
initiation and control. You can use these features to

e Initiate related suites of programs, so there is no need for an operator to initiate them
individually

e Divide an application into two or more cooperating, parallel processes for faster
execution

Among the languages with advanced process initiation and control capabilities are WFL,
ALGOL, and COBOL. Of these, WFL is the simplest to use, and has the advantage of
passing through the job queue mechanism and offering automatic job restart after a
halt/load. On the other hand, ALGOL and COBOL offer sophisticated features such as
user-declared events, interrupts, port files, and a large variety of parameter types. Each
of these languages provides access to task attributes.

This section describes the tasking capabilities of WFL, ALGOL, and COBOL in some
detail and provides brief examples of tasking programs written in each of these
languages. Additionally, this section includes a brief overview of the tasking capabilities
of other languages.

Work Flow Language (WFL)

Work Flow Language (WFL) is a programming language that is designed specifically for
use in task initiation and control. WFL is a block-structured language with syntax similar
to ALGOL, although WFL is simpler and easier to learn.

The following subsections explain how WFL jobs are submitted and how they can be
used to initiate other processes.

For further information about WFL, refer to the Work Flow Language (WFL) Programming
Reference Manual.

8600 0494-506 41

Tasking from Programming Languages

Submitting WFL Input

WEFL statements can be stored in disk files or in arrays in programs written in other
languages. You can also enter and transmit WFL statements at a terminal. Regardless
of how WFL statements are stored or submitted, a group of one or more WFL
statements is referred to as WFL input.

WEFL input must be submitted with special-purpose statements such as START and ZIP.
You cannot use general-purpose initiation statements such as CALL, PROCESS, and
RUN to initiate a WFL job.

The system can compile WFL input and execute it as a job or a task, or it can skip the
compilation and simply interpret the WFL input. The statement you use to submit the
WEFL input and the statements contained in the WFL input together determine how the
system executes that input.

Table 4-1 summarizes the factors that determine how the system executes WFL input.
The various sources that can submit WFL input are listed at the left. The headings of the
two right hand columns give information about the contents of the WFL input. The
following are the meanings of these headings:

e The Single Interpretive Statement column indicates WFL input consisting of a single
statement that is one of the following statements: ALTER, CHANGE, PRINT,
REMOVE, RERUN, SECURITY, or START. The WFL input can also include a FAMILY
job attribute assignment, but cannot include any other job attributes. For example,
the following input is treated as a single interpretive statement:

FAMILY DISK = SYSPK ONLY;CHANGE (JASMITH)ORDS TO (JASMITH)OLDORDS;

e The Other Statements column indicates WFL input that consists of either more than
one statement or a single statement that is not one of the interpretive statements.
A WEFL input also falls into this category if it includes assignments to job attributes
other than the FAMILY attribute. For example, the following input would fall into this
category:

JOBSUMMARY = SUPPRESSED;CHANGE (JASMITH)ORDS TO (JASMITH)OLDORDS;

4-2 8600 0494-506

Tasking from Programming Languages

Table 4-1. WFL Execution Modes

Single Interpretive

Sources for Submitting WFL Input Statement Other Statements
CALL SYSTEM WEFL (COBOL74, COBOLS8b) Interpreted Job
CONTROLCARD function (DCALGOL)

With [38:01] =1 and Interpreted Task

[07:08] = 4 (Array Input):

Otherwise: Interpreted Job
START Statement (CANDE, MARC, or WFL) Job Job
WEFL Command (CANDE or MARC) Interpreted Task
WEFL Statements Entered at the ODT Interpreted (except Job

PRINT, which is

executed as a job)

ZIP statement (ALGOL or RPG)
With Array: Interpreted Job
With File: Job Job

If the system executes the WFL input as a job, it first calls an independent runner called
CONTROLCARD to compile the job and create a job file. CONTROLCARD invokes the
WEFL compiler, which is a procedure exported by the system library WFLSUPPORT.
CONTROLCARD runs in a special high-priority category that prevents it from being
scheduled or suspended by the system if there is a shortage of available memory. The
job file that CONTROLCARD creates contains more information than a typical job file, as
discussed in Section 2, “Understanding Interprocess Relationships.”

The system then inserts the job file in a job queue. (For a description of the job queue
mechanism, refer to “Selecting the Queue for a Job" later in this section.) Later, the
system selects the job file from the job queue and initiates it as a job (an independent
process). When the job terminates, the system usually prints the job summary and any
backup files associated with the job and its tasks. The system then deletes the job file.

If the system executes the WFL input as a task, the system initiates CONTROLCARD to
compile the input and create an object code file. The system then initiates the WFL input
as a task (a dependent process); the task does not pass through the job queue
mechanism. When the task terminates, the system removes the object code file.

By default, no job summary or backup files are associated with the WFL task. For
example, if the WFL task was initiated from a CANDE session, then backup files
produced by the WFL task or its descendants are associated with the CANDE session
and queued for printing only when the session is ended.

8600 0494-506 4-3

Tasking from Programming Languages

If the system handles the WFL input interpretively, then CONTROLCARD executes the
WEFL statement without creating a WFL job or a WFL task. In this case, CONTROLCARD
creates neither a job file nor an object code file, nor does it use the job queue
mechanism.

Selecting the Queue for a Job

A job queue is a list of WFL jobs that are awaiting initiation. Job queues are defined by
the system administrator and managed by the operating system.

The purpose of job queue definitions is to allow the system administrator to set up some
general parameters affecting the flow of WFL jobs on the system. Because a WFL job is
typically an agent for initiating batch programs, the job queue system by implication can
be used to regulate the initiation of batch programs in general.

Before defining the job queues, the system administrator usually analyzes the batch
programs run on the system in terms of their patterns of resource usage and their
relative urgency. The administrator then defines a separate job queue for each set of
batch programs that show similar characteristics. For example, if there is a payroll
application that has to finish processing before a precise deadline, the administrator
might assign the application to a high-priority job queue. The administrator uses an MQ
(Make or Modify Queue) system command to define the job queue.

For a complete explanation of job queues and using job queues in system administration,
refer to the System Administration Guide. For information about using system
commands to monitor and interact with jobs in queues, refer to the System Operations
Guide. The following subsections describe the features of job queues that are of most
direct interest to a programmer.

Deciding on the Queue for a Job

Depending on the policies that are in effect at your site, you might be required to ask
your system administrator to which job queue to submit a particular WFL job. However,
if the system administrator allows you to decide on the job queue, then you need to
examine the job queue definitions to determine which queue is most suitable to your job.

The system command for displaying job queue definitions is QF (Queue Factors). The
following is an example of a QF command and the response:

QF 4

QUEUE 4:
MIXLIMIT = 2
DEFAULTS:
PRIORITY = 50
PROCESSTIME = 100
LIMITS:
PRIORITY = 60
PROCESSTIME = 200

4-4 8600 0494-506

Tasking from Programming Languages

In this example, 4 is the job queue number. This number uniquely identifies a job queue.
If the QF command does not specify a number, the output displays the definitions of all
job queues on the system. The MIXLIMIT value specifies, roughly, the maximum number
of jobs and descendant tasks initiated through this job queue that can be running
concurrently. If the actual number of jobs and tasks originating from this job queue
equals or exceeds the MIXLIMIT value, the system temporarily ceases initiating jobs
from this job queue. After one or more of the jobs and tasks in this job queue
terminates, the system resumes initiating jobs from this job queue.

The DEFAULTS and LIMITS portions of the job queue definition specify default values
and maximum values for various task attributes that restrict the resource usage of a
process.

The job queue defaults are inherited by the corresponding task attributes of a WFL job.
However, the job can override this inheritance with assignments in the job header; that
is, assignments that follow the BEGIN JOB construct but precede any of the declarations
and statements in the job. Consider the following example:

?BEGIN JOB;
CLASS = 4;
PRIORITY = 55;
TASK T;
MYSELF (MAXPROCTIME = 150);
RUN OBJECT/PROG;
?END JOB

Assume that this job is submitted through the job queue that was previously shown in
the QF command example. Queue 4 has default values for both PRIORITY and
PROCESSTIME (which corresponds to the MAXPROCTIME task attribute). The
PRIORITY assignment in the job is part of the job header, and therefore overrides the
PRIORITY queue default. However, the MAXPROCTIME assignment in the job is not
part of the job header. Therefore, the job does inherit the default MAXPROCTIME of 100
at initiation. The statement that assigns MAXPROCTIME a value of 150 has no effect,
because the system does not allow a process to increase its MAXPROCTIME value after
initiation.

Now consider the following job:

?BEGIN JOB;
CLASS = 4;
PRIORITY = 753
MAXPROCTIME = 300;
TASK T;
RUN OBJECT/PROG;
?END JOB

The system would never accept this job into queue 4, because the job header assigns
values to PRIORITY and MAXPROCTIME that are both higher than the queue limits for
these attributes. Since the CLASS attribute explicitly requests queue 4, the system
rejects the job and displays a “Q-DS" message. (The CLASS attribute is explained under
“Requesting the Queue for a Job,” later in this section.)

8600 0494-506 4-5

Tasking from Programming Languages

The following are the job queue attributes that establish resource usage limits, and the
task attributes that correspond to the job queue attributes....

Job Queue Attribute Task Attribute Effect

ELAPSEDLIMIT ELAPSEDLIMIT Limits the amount of time a job
can be in use

IOTIME MAXIOTIME Limits the amount of processor

time that can be devoted to
initiating I/O operations for the job
and its tasks

LINES MAXLINES Limits the number of lines the job
and its tasks can print
PROCESSTIME MAXPROCTIME Limits the amount of processor

time that a process can use for
computations

PRIORITY PRIORITY Specifies the relative urgency of
jobs and tasks as compared to
other processes in the mix

SAVEMEMORYLIMIT SAVEMEMORYLIMIT Limits the amount of save
memory the job and its tasks can
use

TEMPFILELIMIT TEMPFILELIMIT Limits the space the job and its
tasks can allocate for temporary
disk files

WAITLIMIT WAITLIMIT Limits the amount of time the job
and its tasks can remain waiting
after executing a WAIT statement

If the actual resource usage of the job or its tasks exceeds one or more of the resource
usage limits, the system discontinues the process that exceeded the limit. The point of
this behavior is to encourage you to reexamine the job queue definitions and submit the
job through the appropriate job queue.

In summary, you can determine an appropriate job queue for a job by estimating the
resource usage requirements of the job and choosing a job queue whose resource usage
limits are adequately high. There are, however, some additional restrictions:

e The system administrator can assign two attributes to your usercode that specify
which job queues you are allowed to use. These attributes are CLASSLIST and
ANYOTHERCLASSOK. If ANYOTHERCLASSOK is set, then CLASSLIST is
interpreted as a list of the job queues you are forbidden to use. If
ANYOTHERCLASSOK is not set, then CLASSLIST is interpreted as a list of all the job
gueues you are allowed to use. You should ask the system administrator whether
these attributes are defined for your usercode.

e The system administrator can use the UQ (Unit Queue) system command to specify
that all WFL jobs submitted from a particular ODT be routed into a particular job
queue. The inquiry form of the UQ command can be used to display the unit queue
assignments in effect on the system.

8600 0494-506

Tasking from Programming Languages

e The job queue definition can include a FAMILY attribute that corresponds to the
FAMILY task attribute. However, the FAMILY queue attribute is not exactly a default
or a limit. Rather, it excludes any job from the job queue if the job header includes a
FAMILY assignment different from the FAMILY queue attribute. You can use the QF
command to determine whether a job queue has a FAMILY queue attribute.

Requesting the Queue for a Job

If you have decided that a specific job queue is most appropriate for your job, then you
can request the job queue through a CLASS assignment in the job header. For example,
the following job requests queue 10:

?BEGIN JOB;

CLASS = 10;
RUN OBJECT/PROG;
?END JOB

If the job does not include a CLASS assignment, it can inherit a value from the CLASS
usercode attribute. An inherited CLASS value has the same effect as an assigned
CLASS value.

The system evaluates the eligibility of a job for a requested job queue based on the
factors discussed previously: queue resource usage limits, usercode class limits, unit
queue assignments, and the FAMILY value. If the job qualifies for the requested queue,
the system places the job in the queue. If the job does not qualify for the requested
queue, the system rejects the job and displays the message “"Q-DS.”

If the job has no assigned or inherited CLASS value, the system attempts to find an
appropriate job queue in which to place the job. The method the system uses for making
this selection depends on whether the operating system compile-time option
QFACTMATCHING is set.

If the job has no CLASS assignment and QFACTMATCHING is set, then the system
examines the various job queues to determine their eligibility for receiving the job. The
system selects the first job queue that meets the following criteria:

e Any resource limits specified for the queue are greater than or equal to the
corresponding resource limits in the WFL job header. For example, if the queue has
a PRIORITY limit of 50, the job must have either no PRIORITY assignment in the job
header or a PRIORITY assignment less than 51.

e The job queue must be one that is legal for a job with this usercode.
If the job has no CLASS assignment and QFACTMATCHING is reset, then the system
selects the default job queue. The system administrator defines the default job queue

using the DQ (Default Queue) system command. If no default queue has been defined,
the system checks all the job queues, just as it would if QFACTMATCHING were set.

8600 0494-506 4-7

Tasking from Programming Languages

Whether QFACTMATCHING is set or not, the system performs an additional check. If
the job queue selected by the system has a FAMILY attribute and the job has a FAMILY
assignment in the job header, the system checks to see whether they match. If they do
not specify identical family values, the system rejects the job and displays a “Q-DS”
message.

Specifying a Start Time

You can use the STARTTIME task attribute to specify the earliest time and date that a
particular job can be selected from a job queue. This task attribute can be assigned only
to WFL jobs. It can be assigned in the task attribute list of the WFL job or in the
statement that initiates the WFL job. You can also use the STARTTIME (Start Time)
system command or the CANDE ?STARTTIME command to assign this attribute to a job
in a job queue. Changes made using these commands are maintained permanently,
even if a halt/load occurs.

When you initiate a job with a STARTTIME specification, the job is compiled immediately
and placed in an appropriate job queue. The job remains in the job queue at least until
the date and time specified by the STARTTIME. You can use the SQ (Show Queue)
system command to display the STARTTIME of jobs in a queue. The following is an
example of the output for the command SQ 2:

QUEUE 2
6643 01 TEST/WFL (#0001)
QUEUED: 07/13/2001 AT 15:41:31 STARTTIME = 07/21/2001 AT 18:00:00

The STARTTIME specification provides a convenient means of scheduling a job for a time
when the system load is lighter, such as in the evening or during a weekend.
STARTTIME is also a convenient means of scheduling jobs that must run at regular
intervals, such as every morning. The following example job, which is stored in the file
(JASMITH)WFL/RUN, restarts itself on a daily basis:

?BEGIN JOB WFL/RUN;

RUN OBJECT/PROG;

START (JASMITH)WFL/RUN;STARTTIME = 10:00 ON +1
?END JOB

Structuring the WFL Job

4-8

A complete WFL job is considered a block, and each subroutine declared in the job is a
block as well. The WFL job can enter or initiate subroutines. WFL automatically protects
against critical block exits by performing an implicit wait at the end of the block that
contains a task initiation statement. Control does not exit this block until all tasks
initiated in that block have terminated.

WEFL includes CASE, DO UNTIL, GO, IF, and WHILE DO statements that you can use to

direct the flow of control in a job. By using these statements together with task attribute
interrogations, a WFL job can provide conditional control over tasks. For example, the job
can initiate the SYSTEM/PATCH utility as a task. When SYSTEM/PATCH terminates, the
job can interrogate the task attributes of the SYSTEM/PATCH task. If the attribute values

8600 0494-506

Tasking from Programming Languages

indicate that SYSTEM/PATCH ran without errors, the job can compile the merged source
program. If the compilation is free of errors, the job can run SYSTEM/XREFANALYZER to
produce an analysis of cross-references in the program.

Initiating Dependent Processes from WFL

In WFL, the RUN statement can be used to initiate an object code file as a synchronous
dependent process. The TYPE task attribute of the resulting process shows a value of
CALL. The initiated program can be written in any language except WFL.

The PROCESS keyword is used as a modifier in front of other initiation statements to
cause the process to run asynchronously. Thus, a PROCESS RUN statement initiates an
asynchronous task. The TYPE task attribute of the task has a value of PROCESS.

WEFL cannot initiate a program as an independent process. In addition, a WFL job is
never considered to be a coroutine; that is, a WFL job and its offspring cannot use
CONTINUE statements to pass control back and forth.

There are some noteworthy differences between task initiation in WFL and task initiation
in ALGOL or COBOL. In the latter two languages, RUN initiates an independent process
and PROCESS initiates an asynchronous dependent process. Another difference is that
WEFL does not use external procedure declarations. In addition, there is no need to
include a NAME task attribute assignment in WFL; the name of the object code file to be
executed is specified in the RUN statement.

WEFL jobs can also initiate internal procedures. An internal procedure in WFL is referred
to as a subroutine. If the PROCESS keyword precedes a subroutine invocation
statement, the system initiates the subroutine as an internal, asynchronous, fully
dependent process. (If you do not use the PROCESS keyword, the subroutine invocation
statement enters, rather than initiates, the subroutine.)

Initiating Compilations from WFL

A WFL job can initiate compilations by using the COMPILE statement. The COMPILE
statement initiates a compiler and specifies the object code file to be compiled. The
COMPILE statement can also include an object code file disposition, which specifies
whether the object code file is to be executed once it is compiled, and whether the
object code file is to be saved. The COMPILE statement can also be used to invoke the
Binder. BIND is a synonym for the COMPILE statement.

Initiating Utilities from WFL

In addition to the RUN statement, WFL provides various special-purpose initiation
statements. These statements include ADD, COPY, LOG, and PB. The COPY and ADD
statements each initiate the visible independent runner LIBRARY/MAINTENANCE to
copy a file. The LOG statement initiates the LOGANALYZER utility, and the PB
statement initiates the BACKUP utility.

8600 0494-506 4-9

Tasking from Programming Languages

Initiating Interactive Processes from WFL

A WEFL job can initiate an interactive process, but you might need to include a task
attribute assignment for the interactive process to run properly. The STATIONNAME and
STATION task attributes specify the station where any remote files used by the process
are to be opened. WFL jobs initiated through a CANDE or MARC START command do
not inherit the STATIONNAME or STATION of the remote terminal where they are
initiated. You can remedy this problem by including the following statement at the start
of the job:

MYJOB (STATIONNAME = #MYSELF(SOURCENAME));

This statement assigns the name of the station that initiated the job to the
STATIONNAME attribute. This STATIONNAME value is inherited by all tasks initiated by
the job. (Note that this assignment is lost across a halt/load. For details, refer to
Section 11, “Restarting Jobs and Tasks.")

It is preferable to assign the STATIONNAME attribute rather than the STATION attribute,
because the STATIONNAME attribute stores the station name, which is less volatile than
the logical station number (LSN) stored by the STATION attribute.

Submitting Other WFL Jobs

A WFL job can include a START statement to initiate another WFL job. The START
statement can initiate only WFL programs that are stored on disk files. This statement
can include any of the parameter types that WFL recognizes. The START statement can
also include an assignment to the STARTTIME task attribute, which specifies when the
WEFL job should be initiated.

Access to Task Attributes in WFL

A WEFL job can include a job attribute list, which specifies task attributes to be applied to
the job before initiation. Certain task attributes, if included in this list, can help determine
the job queue in which the job is placed. The CLASS task attribute has the most direct
effect on job queue selection; for more information about the CLASS attribute, refer to
“Selecting the Queue for a Job” later in this section.

A WFL job can specify initial values for the attributes of a task if you include a task
equation list in a task initiation statement. All task initiation statements in WFL (including
RUN, COPY, and COMPILE) allow the use of task equations.

A WEFL job can also use task variables to interrogate or modify the task attributes of a
process. The task variable becomes associated with a task by being included in the task
initiation statement. Assignments to the task variable before task initiation have the
same effect as task equations. A job can monitor and control an asynchronous task
while it is executing by accessing its task variable. After a task terminates, the job can
interrogate the task variable to return task history information.

8600 0494-506

Tasking from Programming Languages

A WFL job can use the predeclared task variable MYSELF to access the job's own task
attributes. A job can also use the predeclared task variable MYJOB, which has the same
meaning as MYSELF unless it is referred to in an asynchronous subroutine. For an
asynchronous subroutine, MYJOB refers to the parent WFL job and MYSELF refers to
the subroutine's task attributes.

The COMPILE statement can specify task attributes that are stored in the object code
file created by the compilation. These task attribute values are used each time the object
code file is executed, unless the values are overridden by task equations at run time. In
addition, a WFL job can use the MODIFY statement to assign task attributes to an object
code file that already exists.

WEFL jobs can directly access all task attributes except for task-valued or event-valued
task attributes and the HISTORYREASON task attribute.

In general, the syntax for accessing task attributes in WFL is simpler than that used in
ALGOL. Mnemonic-valued task attributes return string values rather than integers.
Pointer-valued task attributes also return string values. Attributes that record resource
usage, such as ACCUMPROCTIME, return values in units of seconds instead of 2.4
microseconds.

Using File Equations in WFL

Assignments to the FILECARDS task attribute are referred to as file equations. In WFL
jobs, FILECARDS can be abbreviated to FILE. Using this task attribute, the job can
modify the attributes of the logical files used by the task. The TITLE attribute can be
used to cause the task to use a different physical file than it otherwise would.

You can include a construct called a global file assignment in a WFL job to cause an
offspring to use a file declared in the WFL job. A global file assignment assigns a
particular file declared by the WFL job to a particular internal name used by the offspring.
Whenever the offspring attempts to use the file with that internal name, the system
causes it to use the global file instead. This mechanism amounts to a hidden call-by-
reference parameter because the job and its offspring use the same logical file.

A unique feature of WFL is the ability to include data specifications in the WFL source
program. Whenever an offspring attempts to read from a card reader file, it reads
instead from a data specification, if one is available. You can also use data specifications
to replace other kinds of input files used by an offspring. To do this, you must include a
file equation in the statement that initiates the offspring. The file equation must assign
the input file a KIND file attribute value of READER. The offspring then reads lines from
the data specification as if they were lines of the input file; for this reason, data
specifications are also known as pseudo-reader files.

Responding to Error Conditions in WFL
Use the ON TASKFAULT statement to specify actions to be taken if a task terminates
abnormally or if a compilation is terminated for syntax errors. WFL can also interrogate

the values of the STATUS and HISTORYTYPE task attributes after a task terminates to
determine the type of termination and take appropriate action.

8600 0494-506 4-11

Tasking from Programming Languages

Communicating with Other Processes in WFL

WEFL jobs can communicate with their tasks by using any of several methods. The
following list reviews each method of interprocess communication:

Globally declared objects

A subroutine initiated with a PROCESS <subroutine> statement can access objects
declared globally to the subroutine in the WFL job.

Parameters

The RUN statement can include Boolean, integer, real, or string parameters. By
default, these parameters are call-by-value parameters. However, you can specify
that a parameter is call-by-reference by including the word REFERENCE after the
parameter. A WFL job and an asynchronous task can communicate by interrogating
and modifying the value of a call-by-reference parameter.

Events

A WFL job cannot declare events or interrupts and cannot access event-valued task
attributes directly. However, a WFL job can use the WAIT statement, which can
wait on many different types of implicitly declared events. For example, the simple
form of the WAIT statement waits on the job's exception event. A job can also use
WAIT statements to wait for a task to terminate or for one of the task attributes to
attain a specified value. A WFL job can also access the LOCKED task attribute.
LOCKED is a Boolean task attribute that acts like an event.

Libraries

Libraries cannot be written in WFL, nor can WFL jobs use libraries written in other
languages.

Port files and disk files

WEFL jobs cannot read from or write to files. A WFL job can create a single disk file
and specify the contents of that file by using the DECK statement. However, the
DECK statement, if used, must be the only statement in the job. Another useful
feature is the ability of WFL to create a dummy file by simply declaring a file, opening
it, and closing it. Such files can be used as flags to other processes. For example, a
WEFL job can perform a file-residence inquiry to determine whether a file with a
certain title exists.

For details about any of these interprocess communication methods, refer to Part Il of
this guide, "Interprocess Communication.”

8600 0494-506

Tasking from Programming Languages

Controlling a Task from a Job

You can use the LOCKED attribute to control a task from its parent job, perhaps by
causing it to wait while the job performs some action. If you set the LOCKED attribute to
TRUE, it acts as an interlock, which blocks any subsequent attempt to set the attribute to
TRUE until the attribute has been set to FALSE.

The following code excerpts show a possible use:

JOB
BEGIN JOB J;
TASK T;
T (LOCKED=TRUE);
PROCESS RUN program[T];

T (LOCKED=FALSE);
END JOB

TASK
BEGIN;
% Perform initialization before synchronizing with JOB

T (LOCKED=TRUE); % Wait until job is ready

END
Restarting WFL Jobs

A WEFL job automatically restarts if interrupted by a halt/load. WFL is the only language
with this automatic restart capability. WFL also plays an important role in the restarting
of checkpointed processes. These processes must be offspring of a WFL job in order to
be checkpointed. In addition, the WFL RERUN statement is the means used to restart a
checkpointed process. For further information, refer to Section 11, “Restarting Jobs and
Tasks."

8600 0494-506 4-13

Tasking from Programming Languages

WFL Example

The following example illustrates some WFL capabilities for task initiation and control:

?BEGIN JOB AUTOPB/HELP(STRING SOURCE, STRING PATCH);
JOBSUMMARY = SUPPRESSED;
DISPLAYONLYTOMCS = TRUE;
CLASS = 15;
TASK T;
STRING RUN1, HELPTITLE;
HELPTITLE:= (PATCH & "/LEVEL1/HELPBOOK");
RUN1:= ("SOURCE=" & SOURCE
& ",PATCH=" & PATCH
",0UT=" & PATCH & "/LEVEL1/ED"
",HELP=" & HELPTITLE
" ,MESSAGEFILE=" & PATCH & "/LEVEL1/MESSAGES");
DISPLAY "RUNNING AUTOPB WITH " & RUNI;
RUN OBJECT/AUTOPB ON DOCMAST(RUN1) [T];
FILE TEACHUTILNAME=*SYSTEM/HELP/UTILITY ON DOCMAST;
IF T(TASKVALUE) NEQ 1
THEN BEGIN
DISPLAY "HELPBOOK NOT CREATED; PRINTING ERRORS FILE";
RUN *OBJECT/AUTOLP ON DOCMAST;
TASKVALUE = 1;
FILE SOURCE = #PATCH/LEVEL1/MESSAGES;

Q9 o o

END;
?END JOB

The main point of this job is to run a program called AUTOPB. The AUTOPB program
accepts two input files, SOURCE and PATCH, and produces three output files, OUT,
HELP, and MESSAGEFILE.

The job accepts two string parameters that provide the titles of the SOURCE and PATCH
files. Using these, the job constructs an elaborate string parameter to pass to AUTOPB.
This string parameter defines the titles for all the input and output files.

AUTOPB sets its own TASKVALUE to 1 unless it finds errors in the input files. The job

inspects the TASKVALUE after AUTOPB terminates and prints out the MESSAGEFILE if
there are errors.

8600 0494-506

Tasking from Programming Languages

ALGOL

ALGOL is a structured, high-level programming language with advanced computational
and I/O capabilities. ALGOL also provides the most complete process initiation and
control capabilities of any language available.

Closely related to ALGOL are several extended versions of the ALGOL language.
DCALGOL is an extended ALGOL that includes some system control and data
communications interfaces. DMALGOL includes special constructs for data
management software. BDMSALGOL contains extensions for accessing Enterprise
Database Server databases. In the following discussion, the features described are
available in each of these languages, except where otherwise noted.

For further information about the ALGOL tasking features discussed in the following
subsections, refer to the ALGOL Programming Reference Manual, Volume 1: Basic
Implementation.

Structuring an ALGOL Program

The following ALGOL structures are considered blocks:

e Any complete ALGOL program. A complete ALGOL program can be initiated but
cannot be entered.

e Any typed procedure; that is, any procedure designed to be invoked as a function
that returns a value. (For example, Boolean procedures or real procedures.) Typed
procedures can be entered and initiated. However, if a typed procedure is initiated,
the returned value is discarded.

e A simple block, which is any group of declarations and statements that appears
between the words BEGIN and END and is not preceded by a procedure heading.
(An exception is the outer block of the program, which is not considered a simple
block.) Such a block cannot be entered or initiated. The block is executed when
control passes either from the previous statement in the program or from a GO TO
statement elsewhere in the program. (Note that a BEGIN...END statement is not
treated as a block if it does not include any declarations. In this case, it is simply a
compound statement.)

When you initiate one of these ALGOL structures, the system creates a process stack.
When you enter one of these ALGOL structures, the system creates an activation
record. When a BEGIN...END block that includes declarations is executed, the system
also creates an activation record.

An ALGOL program that initiates an asynchronous process should usually include a wait
statement to prevent the critical block from being exited while the offspring is in use. An
example of this wait statement is given in Section 2, “Understanding Interprocess
Relationships.”

ALGOL includes an abundance of flow-of-control statements, such as CASE, DO, FOR, IF

and WHILE. By using these statements together with task attribute interrogations, an
ALGOL program can provide conditional control over tasks.

8600 0494-506 4-15

Tasking from Programming Languages

Initiating Processes from ALGOL

An ALGOL program can initiate any procedure, including imported library procedures,
passed external procedures, and separate programs. However, if a typed procedure is
initiated, the returned value is discarded.

To initiate another object code file, an ALGOL program must declare an external
procedure and a task variable. The program must also assign the title of the object code
file to the NAME attribute of a task variable. The program can then initiate the object
code file with a process initiation statement that specifies the declared external
procedure and task variable that were previously prepared.

Three process initiation statements are available. The CALL statement initiates a
dependent, synchronous process. The PROCESS statement initiates a dependent,
asynchronous process. The RUN statement initiates an independent process.

You can implement coroutines in ALGOL using CALL and CONTINUE statements. The
CALL statement creates an active coroutine and changes the initiating process into a
continuable coroutine. Coroutines can pass control back and forth by using CONTINUE
statements.

Initiating Compilations from ALGOL

ALGOL does not provide any statement specifically for initiating compilations. However,
an ALGOL program can submit a WFL job that includes a COMPILE statement.
Alternatively, an ALGOL program can initiate a compiler like any other program, with a
CALL, PROCESS, or RUN statement. An example of this method is given under “ALGOL
Examples” later in this section.

Initiating Utilities from ALGOL

ALGOL does not provide any statements specifically for initiating utilities. However, the
CALL, PROCESS, and RUN statements can initiate any utility and pass any parameters
that are required by that utility. An example of an ALGOL program that initiates the
LOGANALYZER utility is given under “ALGOL Examples” later in this section.

4-16 8600 0494-506

Tasking from Programming Languages

Initiating Interactive Processes from ALGOL

An ALGOL program initiated from a MARC or CANDE session inherits the STATION task
attribute of the session. The STATION attribute is in turn inherited by any processes
initiated by the ALGOL program. As a result, the processes initiated by the ALGOL
program can usually open a remote file at the originating terminal without having to make
any special remote file assignments.

However, remote file opens can fail because the STATION attributes stores the logical
station number (LSN), which is subject to change. To prevent this problem, you can
include statements such as the following in the ALGOL program:

EBCDIC ARRAY SOURCEARRAY[0:255];
REPLACE SOURCEARRAY BY MYSELF.SOURCENAME;
REPLACE MYSELF.STATIONNAME BY SOURCEARRAY;

The preceding statements assign the originating station name to the STATIONNAME
task attribute, which in turn is inherited by all tasks.

An ALGOL program initiated from a WFL job or from an ODT might not inherit a
STATION or STATIONNAME value. For further information, refer to “Work Flow
Language (WFL)" in this section and to the ODT discussion in Section 3, “Tasking from
Interactive Sources.”

Submitting WFL Jobs from ALGOL

You can use the ZIP statement to submit a WFL job for execution. You can store the
WEFL job source in a disk file or in an array in the ALGOL program itself. Note that
messages produced by the WFL job or its descendants will not be forwarded to the
CANDE or MARC session that originated the ALGOL program. However, you can use
the CANDE ?MSG command or the MARC SMSG command to display these messages.

Access to Task Attributes in ALGOL

An ALGOL program can declare task variables for use in accessing the task attributes of
offspring processes. Every process-initiation statement must specify a task variable,
which thereafter is associated with the new process. An ALGOL program can
interrogate or assign task attribute values of the task variable before or after the task
variable is used in a process initiation statement. Assignments made to a task variable
before initiation are saved and applied to the process at initiation time.

An ALGOL program can use the predeclared task variables MYSELF and MYJOB to
access its own task attributes and those of its job.

An ALGOL program can interrogate and modify task attributes that store any of the

possible data types, such as Boolean, integer, and so on. The task attribute types
available in ALGOL include two types that are not available in WFL: event and task.

8600 0494-506 4-17

Tasking from Programming Languages

Communicating with Other Processes from ALGOL

ALGOL programs have full access to all of the interprocess communication methods
discussed in this guide, including globally declared objects, call-by-reference or call-by-
name parameters, events and interrupts, port files, and libraries. For details about any of
these interprocess communication methods, refer to Sections 13 through 21 of this
guide.

Restarting ALGOL Processes

An ALGOL program can include a CHECKPOINT statement that creates a checkpoint file.
The checkpoint file stores information about the current state of a process. You can use
the checkpoint file after a halt/load to restart the process. For further information, refer
to Section 11, "Restarting Jobs and Tasks.”

DCALGOL Features

In addition to the ALGOL features previously discussed, DCALGOL includes the
CONTROLCARD function, which you can use instead of the ZIP statement to submit
WEFL jobs for execution. The CONTROLCARD function has several capabilities that are
unavailable through ZIP. For example, the CONTROLCARD function can

e Specify whether the WFL job should be a dependent or independent process
e Compile the job for syntax checking only, without executing it

e Specify that any messages generated by the job be routed to an MCS for display in
the originating session

e Define the invalid character to be something other than a question mark (?)

e Submit a job that is stored as a message in a DCALGOL queue

Additionally, the process that submits the CONTROLCARD function can determine
whether the WFL job compiled without syntax errors. If a WFL job submitted through
CONTROLCARD has syntax errors, the system assigns the value 1 to the TASKVALUE of
the process that submitted the job.

A privileged DCALGOL process can also duplicate the process initiation and control
capabilities that are available at an ODT. You can use the DCKEYIN statement to submit
system commands to the operating system. The GETSTATUS and SETSTATUS
functions directly invoke the operating system interfaces that are accessed by system
commands. For information about ODT process initiation and control capabilities, refer to
Section 3, “Tasking from Interactive Sources.”

4-18 8600 0494-506

Tasking from Programming Languages

ALGOL Examples

The following sample program initiates a separate program called REPORTER. The
REPORTER program is initiated twice, both times as an asynchronous task, and is
passed a different parameter each time. The sample program then uses a
WAITANDRESET statement to prevent a critical block exit.

BEGIN
EBCDIC ARRAY DAILYTYPE[0:5],
WEEKLYTYPE[0:6] ;
TASK T, T2;
PROCEDURE REPORTS (ACTUALARRAY);
EBCDIC ARRAY ACTUALARRAY[*];
EXTERNAL;

REPLACE T.NAME BY "(JASMITH)OBJECT/REPORTER ON DATAPK.";
REPLACE DAILYTYPE[0] BY "DAILY";
PROCESS REPORTS (DAILYTYPE) [T];

REPLACE T2.NAME BY "(JASMITH)OBJECT/REPORTER ON DATAPK.";
REPLACE WEEKLYTYPE[0] BY "WEEKLY";
PROCESS REPORTS (WEEKLYTYPE) [T2];

WHILE (T.STATUS GTR O OR T2.STATUS GTR 0) DO
WAITANDRESET (MYSELF.EXCEPTIONEVENT);
END.

The following is an example of initiating a compilation from an ALGOL program. The
sample program passes an array parameter and makes FILECARDS assignments to tell
the compiler what files to use:

BEGIN

TASK CTASK;
ARRAY SHEET[0:32];

PROCEDURE ALGOLCOMPILER(SHEET);
ARRAY SHEET[*];
EXTERNAL;

REPLACE CTASK.NAME BY "*SYSTEM/ALGOL ON DISK.";
REPLACE CTASK.FILECARDS BY
"FILE CARD (KIND=DISK, TITLE=ALGOL/TASK);"
"FILE CODE (KIND=DISK, TITLE=OBJECT/ALGOL/TASK);"
48"00";

REPLACE SHEET BY 0 FOR 33 WORDS;
SHEET[8] : =VALUE(LIBRARY); % This statement specifies the

% object code file disposition.
SHEET[0]:= 0 & 1[47:1];

8600 0494-506 4-19

Tasking from Programming Languages

CALL ALGOLCOMPILER(SHEET) [CTASK];

END.

The following is an example of initiating a utility from ALGOL. This sample program
includes a statement that initiates LOGANALYZER:

BEGIN

TASK T;
ARRAY ACTUAL OPTIONS[0:19];

PROCEDURE LOGRUN (FORMAL OPTIONS);
ARRAY FORMAL OPTIONS[*];
EXTERNAL;

REPLACE T.NAME BY "*SYSTEM/LOGANALYZER ON DISK.";
REPLACE ACTUAL_OPTIONS BY "PRINTER JOB 1260",48"00";

CALL LOGRUN (ACTUAL_OPTIONS) [T];
END.

The following ALGOL example submits WFL jobs for execution in two different ways.
The first ZIP statement submits the WFL job stored in array WFLARRAY. The second
ZIP statement submits the WFL job stored in the file WFL/TEST. Note the use of triple
quotes (") in the REPLACE statement wherever a single quote (") is to occur in the WFL
program.

BEGIN
EBCDIC ARRAY WFLARRAY[1:120];
FILE WFLFILE(KIND=DISK,NEWFILE=FALSE,DEPENDENTSPECS=TRUE,
TITLE="WFL/TEST.");

REPLACE WFLARRAY BY
"CLASS=2;JOBSUMMARY=SUPPRESSED; ELAPSEDLIMIT=120;"
"MYSELF (STATIONNAME=#MYSELF (SOURCENAME)) ;"
"DISPLAY (IIIIIIHIIIIIII);II;

ZIP WITH WFLARRAY;

ZIP WITH WFLFILE;
END.

4-20 8600 0494-506

Tasking from Programming Languages

COBOL

COBOL is available in two different implementations: COBOL74 and COBOL85. These
correspond to the ANSI-74 and ANSI-85 levels of COBOL, respectively.

Both the COBOL implementations incorporate a full range of tasking capabilities. With
few exceptions, the same statements for performing tasking functions are provided in
each language. In the following descriptions, statements about COBOL refer to all three
COBOL implementations unless otherwise specified.

For further information about COBOLS85, refer to the COBOL ANSI-85 Programming
Reference Manual, Volume 1: Basic Implementation. For further information about
COBOL74, refer to the COBOL ANSI-74 Programming Reference Manual, Volume 1:
Basic Implementation.

Structuring a COBOL Program

COBOL provides access to procedure-like subdivisions within the program, as well as to
procedures outside the program.

Internal Procedure Structure

Paragraphs and sections within a COBOL program are not considered blocks, because
executing a paragraph or a section does not result in the creation of an activation record.
Paragraphs and sections therefore do not affect the definition of critical blocks.

If the Binder is used to bind a procedure from a separate object code file into the
program, then the bound-in procedure is considered a separate block. The bound-in
procedure could be another COBOL program or a procedure from a program written in
some other language. A COBOL program can enter, but cannot initiate, a bound-in
procedure.

COBOLS85 provides a structure called nested programs that is not available in COBOL74.
Nested programs are programs that reside inside another program or inside another
nested program. Nested programs resemble ALGOL procedures in the respect that
nested programs can include declarations of local variables. However, the rules
determining the scope of variable declarations in COBOLS85 differ from the scope rules in
ALGOL. The COBOLBS5 scope rules are explained in the interprogram communication
discussion in the COBOL ANSI-85 Programming Reference Manual, Volume 1: Basic
Implementation.

COBOLS85 can enter, but cannot initiate, nested programs.
Note: COBOLS85 is currently implemented in such a way that exiting a nested program

cannot cause a CRITICAL BLOCK EXIT error. However, this implementation is subject to
change. Nested programs may affect the critical block definition in future releases.

8600 0494-506 4-21

Tasking from Programming Languages

Another structure unique to COBOLSS5 is that of consecutive programs. Consecutive
programs are completely separate programs that are stored, one after the other, in the
same source file. When you compile a source file that contains consecutive programs,
the compiler creates a separate object code file for each consecutive program. The
resulting object code files are not linked in any way and have no special abilities related
to tasking or interprocess communication.

External Procedure Structure

The following rules govern COBOL access to external procedures:

e Separate programs

A COBOL program can declare external procedures and use them to initiate separate

programs.
e Passed external procedures

COBOL does not provide any method for passing procedures as parameters.
Therefore, a COBOL program generally has no access to passed external
procedures.

One exception to this rule occurs when a program passes a constant or an

expression by name to a COBOL program. The system creates a procedure called a

thunk, whose purpose is to evaluate the constant or expression. \Whenever the

COBOL program interrogates the parameter, the system executes the thunk on the

COBOL program's process stack.

e Imported library procedures

A COBOL program can enter, but cannot initiate, a procedure imported from a library.

A critical block exit error can occur if the COBOL program terminates before an
asynchronous offspring or a coroutine. For information about how to prevent such
critical block exits, refer to Section 2, “Understanding Interprocess Relationships.”

Initiating Processes from COBOL

4-22

A COBOL program can initiate separate programs as processes, but cannot initiate
internal sections, paragraphs, or nested programs.

Separate object code files are initiated by statements that have the following general
form:

<verb> <task variable> WITH <section name> [USING <parameter list>]
The verb in this statement can be CALL, which initiates a synchronous, dependent
process; PROCESS, which initiates an asynchronous, dependent processor; or RUN,

which initiates an independent process. EXECUTE is a synonym for RUN.

The task variable in this statement is a data item declared with a usage of TASK,
CONTROL-POINT, or CP.

8600 0494-506

Tasking from Programming Languages

The section name in this statement must have been previously defined in the
DECLARATIVES portion of the PROCEDURE DIVISION. The section name definition in
the DECLARATIVES must be followed by a USE EXTERNAL statement.

The COBOL program must also associate an object code file title with a <section name>
by one of the following methods:

e Using a mnemonic name in the SPECIAL-NAMES paragraph. This is the preferred
method.

e Using a MOVE statement to assign the object code file title to the identifier specified
in the USE EXTERNAL statement in the DECLARATIVES.

e Assigning the NAME task attribute to the task variable before task initiation. The title
assigned must be a string enclosed in quotes and terminated with a period.

The USING <parameter list> clause passes parameters to the initiated program. If no
parameters are to be passed, you can omit this clause.

Using Coroutines in COBOL

You can implement coroutines in COBOL using CALL, CONTINUE, and EXIT PROGRAM
statements. The CALL statement creates a synchronous task that is an active coroutine
and changes the parent process into a continuable coroutine. The task can return control
to its parent by executing an EXIT PROGRAM statement. The parent can return control
to its task by executing a CONTINUE <task variable> statement.

The EXIT PROGRAM statement, in addition to transferring control to the parent, also
specifies where execution resumes when the parent later continues the task. The
simple form EXIT PROGRAM specifies that the task resume from the beginning. The
EXIT PROGRAM RETURN HERE form specifies that the task resume with the statement
that follows the EXIT PROGRAM statement.

In COBOLS8b, the EXIT PROGRAM statement in a nested program merely causes the
nested program to be exited. To return control from a synchronous task to a parent

program, the EXIT PROGRAM statement must occur in the main program rather than in a
nested program.

Entering Individual COBOL Procedures

COBOL allows the use of certain special formats for the CALL statement that enter,
rather than initiate, a procedure.

A COBOL program can use a CALL statement with one of the following forms to enter a
bound-in procedure:

CALL <section name>.
CALL <section name> USING <parameter Tlist>.

8600 0494-506 4-23

Tasking from Programming Languages

A COBOL program can use any of several forms of the CALL statement to enter an
imported library procedure. The following is an example:

CALL "PROCEDUREDIVISION OF OBJECT/COBOL/PROG" USING PARAMI.

COBOLS8?5 allows you to optionally specify an access value of BYTITLE or BYFUNCTION
in the CALL statement, as in the following example:

CALL "PROCEDUREDIVISION OF DELTASUPPORT BYFUNCTION" USING PARAMI.

COBOLS8?5 also supports the use of explicit library declarations. For examples of libraries
and user programs written in COBOL74 and COBOLS5, refer to Section 18, “Using
Libraries.”

By contrast, the GO and PERFORM statements do not enter procedures. They simply
transfer control to a selected paragraph or section without creating an activation record.

Resolving Ambiguous CALL Statements in COBOL85

In COBOLS8b, the form of the CALL statement that invokes a nested program is identical
to the form that implicitly invokes a library. The following is an example of such a
statement:

CALL "QROUTINE".

By default, the system treats this as an invocation of a nested program. If the COBOL85
program does not contain a nested program with the requested name, or the nested
program with that name is not declared with the appropriate scope, the system treats
the CALL statement as an implicit library invocation. The system links the calling
program to a library whose title matches the name specified in the CALL statement.

Initiating Compilations from COBOL
COBOL does not include any statement specifically for initiating compilations. However,
a COBOL program can submit a WFL job that includes a COMPILE statement.
Alternatively, a COBOL program can initiate a compiler like any other program, with a
CALL, PROCESS, or RUN statement.

Initiating Utilities from COBOL
COBOL does not include any statements specifically for initiating utilities. However, the

CALL, PROCESS, and RUN statements can initiate any utility and pass any parameters
that are required by the utility.

4-24 8600 0494-506

Tasking from Programming Languages

Initiating Interactive Processes from COBOL

A COBOL program initiated from a MARC or CANDE session inherits the STATION task
attribute of the session. The STATION attribute, in turn, is inherited by any processes
initiated by the COBOL program. As a result, these processes can usually open a remote
file at the originating terminal without having to make any special remote file
assignments.

However, remote file opens can fail because the STATION attributes stores the logical
station number (LSN), which is subject to change. To prevent this problem, you can
include statements such as the following in the COBOL program:

MOVE ATTRIBUTE SOURCENAME OF MYSELF TO NAMEBUF.
CHANGE ATTRIBUTE STATIONNAME OF MYSELF TO NAMEBUF.

The preceding statement assigns the originating station name to the STATIONNAME
task attribute, which in turn is inherited by all tasks. These statements assume that
NAMEBUF was declared as 01 NAMEBUF PIC X(80).

A COBOL program initiated from a WFL job or from an ODT might not inherit a STATION
or STATIONNAME value. For further information, refer to “Work Flow Language (WFL)"
earlier in this section and to “Communicating with an ODT" in Section 3, “Tasking from
Interactive Sources.”

Submitting WFL Jobs from COBOL

A COBOL85 or COBOL74 program can submit WFL jobs with a statement of the
following form:

CALL SYSTEM WFL USING <identifier or literal>

If a literal is used in this statement, it must be a string literal consisting of the complete
text of a WFL source program. If an identifier is used in this statement, the identifier
must be that of a data item that contains the complete WFL source program.

Note that when a COBOL program submits a WFL job, any messages produced by the
WEFL job or its descendants are not forwarded to the CANDE or MARC session that
originated the COBOL program. However, you can use the CANDE ?MSG command or
the MARC SMSG command to display these messages.

Access to Task Attributes in COBOL
A COBOL program can access task attributes by using a task variable. A COBOL
program can create a task variable by declaring a data item with a USAGE of TASK, CP,
or CONTROLPOINT in the DATA DESCRIPTION entry.

The MYSELF and MYJOB task variables are available in COBOL and enable a COBOL
program to access its own task attributes or those of its job.

8600 0494-506 4-25

Tasking from Programming Languages

A COBOL program can read task attribute values by using the MOVE statement, and can
set task attributes using the CHANGE statement.

COBOL programs can use all types of task attributes, including event-valued and task-
valued task attributes.

Invoking COBOL Programs

Most COBOL74 programs can be invoked in either of two ways: through process
initiation statements or through the library linkage mechanism. If the program is invoked
through the library linkage mechanism, the program automatically freezes and exports
the PROCEDURE DIVISION. This automatic freeze occurs even though the program
does not include a FREEZE statement or export declaration. For further information
about COBOL library capabilities, refer to Section 18, “Using Libraries.”

By contrast, a COBOLS85 program can be initiated as a library only if it includes the $SET
LIBRARYPROG compiler control statement or the CALL SYSTEM FREEZE statement.

Communicating with Other Processes from COBOL

COBOL programs have access to almost all the interprocess communication methods
discussed in this guide, including call-by-reference parameters, events and interrupts,
port files, and libraries. The only interprocess communication method that does not
apply to COBOL is the use of globally declared objects, because COBOL cannot initiate
an internal procedure. For details about any of these interprocess communication
methods, refer to Sections 13 through 21.

COBOLS8?5 also supports ANSI-defined methods of interprogram communication. For the
most part, ANSI interprogram communication simply defines the relationships between
nested programs that are all executed as part of a single process. By contrast, the
interprocess communication features of COBOLS85 are enhancements that allow data to
be exchanged between separate processes.

Terminating Processes from COBOL Programs

4-26

You can use the DETACH statement to terminate the process associated with a given
task variable. The task variable must have been previously used in a CALL, PROCESS, or
RUN statement.

The DETACH <task variable> statement has the same effect as using the CHANGE
statement to assign the STATUS task attribute a value of TERMINATED. However, from
the standpoint of COBOL programming style, the DETACH is the preferable statement to
use for terminating processes.

The program that contained the DETACH statement continues execution asynchronously
while the system terminates the specified process. If a program is to reuse the task
variable in another process initiation statement, the program should first read the
STATUS attribute to determine whether the system has finished terminating the
process. If the process is terminated, then the STATUS attribute returns a value of
TERMINATED.

8600 0494-506

Tasking from Programming Languages

The DETACH statement is also used to detach events from interrupt procedures. This
use of DETACH is described under "Attaching or Detaching an Interrupt” in Section 16,
"Using Events and Interlocks.”

COBOL Examples

The following program can be compiled in COBOL74 or COBOLS85. This program
initiates a separate program called OBJECT/COBOL/TEST using the task variable TASK-

VAR-1:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 TASK-VAR-1 USAGE IS TASK.
01 EXT-NAME PIC X(80).
PROCEDURE DIVISION.
DECLARATIVES.
PROC-EXTERNAL SECTION.

USE EXTERNAL EXT-NAME AS PROCEDURE.
END DECLARATIVES.

START-HERE SECTION.

P1.
MOVE "OBJECT/COBOL/TEST." TO EXT-NAME.
PROCESS TASK-VAR-1 WITH PROC-EXTERNAL.

PROCWAIT SECTION.
P2.
WAIT AND RESET UNTIL ATTRIBUTE EXCEPTIONEVENT OF MYSELF.
IF ATTRIBUTE STATUS OF TASK-VAR-1 IS GREATER THAN
VALUE TERMINATED THEN GO PROCWAIT.
STOP RUN.

The following program can be compiled in COBOL74 or COBOLS85. This program
invokes OBJECT/COBOL/TEST as an imported library procedure rather than as a task.
OBJECT/COBOL/TEST is executed as part of the calling process.

8600 0494-506

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.
START-HERE SECTION.
P1.
CALL "PROCEDUREDIVISION IN OBJECT/COBOL/TEST".
STOP RUN.

4-27

Tasking from Programming Languages

The following is the program OBJECT/COBOL/TEST. If this program is compiled in
COBOL74, then it can be invoked by either of the two preceding programs, and execute
either as a task or as a library. If this program is compiled in COBOLS8b, then it can be
invoked only as a task. If you add the $SET LIBRARYPROG compiler control statement
and compile this program in COBOLS85, then the program can be invoked as a library.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 MIXNO BINARY PIC 9(11).
PROCEDURE DIVISION.
START-HERE SECTION.
P1.
MOVE ATTRIBUTE MIXNUMBER OF MYSELF TO MIXNO.
DISPLAY MIXNO.
STOP RUN.

The following program can be compiled in COBOL74 or COBOLS85. This program
submits WFL input in array form for execution. The WFL statements are stored in an
array of picture items. Note that if any of the WFL statements includes a quotation

mark ("), the quotation mark must be represented by two quotation marks (") in the
MOVE statement that stores the statement in the array. The use of double quotation
marks is necessary because the compiler interprets a single quotation mark as the end of
the WFL input rather than as part of the WFL input.

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.

01 PARAM.
05 PARAM-1 PIC X(80).
05 PARAM-2 PIC X(80).
05 PARAM-3 PIC X(80).

PROCEDURE DIVISION.

START-HERE SECTION.

P1.

MOVE "CLASS=2;JOBSUMMARY=SUPPRESSED; ELAPSEDLIMIT=120;" TO PARAM-1.
MOVE "MYSELF(STATIONNAME=#MYSELF(SOURCENAME));" TO PARAM-2.

MOVE "DISPLAY (""HI AGAIN"");" TO PARAM-3.

CALL SYSTEM WFL USING PARAM.

STOP RUN.

4-28 8600 0494-506

Tasking from Programming Languages

The following program can be compiled in COBOL74 or COBOLS85. This program
initiates a utility. This example also shows how to pass parameters to a task from a

COBOL program.

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 TASK-VAR-1 USAGE IS TASK.

01 EXT-NAME PIC X(80).

01 ACTUALPARAM PIC X(19).

LOCAL-STORAGE SECTION.

LD PARAMS.

01 FORMALPARAM PIC X(19).

PROCEDURE DIVISION.

DECLARATIVES.

PROC-EXTERNAL SECTION.
USE EXTERNAL EXT-NAME AS PROCEDURE
WITH PARAMS USING FORMALPARAM.

END DECLARATIVES.

START-HERE SECTION.

P1.
MOVE "*SYSTEM/LOGANALYZER ON DISK." TO EXT-NAME.
MOVE "PRINTER JOB 1260" TO ACTUALPARAM.

CALL TASK-VAR-1 WITH PROC-EXTERNAL USING ACTUALPARAM.

STOP RUN.

8600 0494-506

4-29

Tasking from Programming Languages

The following program can be compiled in COBOL74 or COBOLS85. This program
initiates a compilation:

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 TASK-VAR-1 USAGE IS TASK.

01 EXT-NAME PIC X(80).

01 VALUE-ONE PIC 9(11) BINARY VALUE 1.

01 ACTUALPARAM.
03 PARAMWORD BINARY PIC 9(11) OCCURS 33.

LOCAL-STORAGE SECTION.

LD PARAMS.

01 FORMALPARAM.
03 FORMALWORD BINARY PIC 9(11) OCCURS 33.

PROCEDURE DIVISION.

DECLARATIVES.

PROC-EXTERNAL SECTION.
USE EXTERNAL EXT-NAME AS PROCEDURE
WITH PARAMS USING FORMALPARAM.

END DECLARATIVES.

START-HERE SECTION.

P1.
MOVE "*SYSTEM/ALGOL ON DISK." TO EXT-NAME.
MOVE 2 TO PARAMWORD (9).
MOVE VALUE-ONE TO PARAMWORD (1) [00:47:01].
CHANGE ATTRIBUTE FILECARDS OF TASK-VAR-1 TO

"FILE CARD (KIND=DISK,TITLE=ALGOL/TASK);".
CHANGE ATTRIBUTE FILECARDS OF TASK-VAR-1 TO
"FILE CODE (KIND=DISK,TITLE=0BJECT/ALGOL/TASK);".

CALL TASK-VAR-1 WITH PROC-EXTERNAL USING ACTUALPARAM.
STOP RUN.

In this example, the COBOL program initiates the compiler directly as a task. An

alternative would be for the program to submit in array form a WFL program that
contains a COMPILE statement.

4-30 8600 0494-506

Tasking from Programming Languages

Other Languages

The other user languages available are C, FORTRAN77, Pascal, and RPG. These
languages are not primarily intended for process initiation and control. However, most of
these languages have one or more of the following tasking capabilities:

Submitting WFL jobs

If a program can submit a WFL job, the job, in turn, can initiate and control programs
written in any language.

Invoking library procedures

You can implement ALGOL or COBOL libraries that export procedures that initiate or
control processes. Any language using libraries can invoke these procedures.

Using bound-in procedures

You can bind ALGOL procedures or complete COBOL programs into programs
written in other languages. These bound-in procedures can be designed to initiate
and control processes.

The following are the tasking capabilities of each language.

C

Includes tasking features defined by the POSIX standards. These features include
the fork() procedure and the exec() procedures. For an overview of process handling
in C, refer to the POSIX User's Guide.

C programs can also invoke library procedures in libraries written in other languages.
For further information, refer to the C Programming Reference Manual, Volume 1:
Basic Implementation.

FORTRAN77

Can invoke library procedures in libraries written in other languages. Additionally, you
can add tasking features to a FORTRAN77 program by binding in ALGOL procedures

or COBOL programs. For further information, refer to the FORTRAN77 Programming
Reference Manual.

Pascal

Can invoke library procedures in libraries written in other languages. Additionally, you
can add tasking features to a Pascal program by binding in ALGOL procedures or
COBOL programs. For further information, refer to the Pascal Programming
Reference Manual, Volume 1: Basic Implementation.

RPG

Can include ZIP statements that submit WFL jobs for execution. An RPG program
can use the external indicators U1 through U8 to interrogate the SW1 through SW8
task attributes. For further information, refer to the Report Program Generator (RPG)
Programming Reference Manual, Volume 1: Basic Implementation.

8600 0494-506 4-31

Tasking from Programming Languages

4-32 8600 0494-506

Section 5
Establishing Process ldentity and
Privileges

Process identity is the term used in this guide for a number of task attributes and other
features that uniquely identify a process and its capabilities. This section explains:

o The various aspects of process identity and their implications for security, billing, and
operations

e The security classes a process can belong to, and the privileges associated with each
of these classes

e |ssues related to initiating processes with different USERCODE or FAMILY values
than those of the initiator

e The way an interactive program can temporarily assume the identity of a user

Process ldentity

Some of the aspects of process identity, such as mix numbers, are assigned by the
operating system. You can control other aspects of process identity, such as the
usercode, although the system provides default values for these aspects if you do not.

Mix Number, Session Number, Stack Number, and MPID
Attribute

In Section 1, “Understanding Basic Tasking Concepts,” it was pointed out that there may
be multiple processes running that are instances of the same object code file. Thus, the
object code file title cannot serve as a unique identification for a process. Instead, the
system assigns two identifying numbers to a process: the mix number and the stack
number. A related type of identifying number, which applies to CANDE and MARC
sessions, is the session number. In addition, the MPID task attribute can be used to
identify a process. This MPID task attribute is especially useful when more than one
process using the same object code file is running.

The mix number is a 5-digit number that the system assigns to each process when the
process is initiated. The name arises because all the processes running on the system
are collectively referred to as the system mix, and the mix number distinguishes a
process from the other processes in the mix. Mix numbers identify processes in the
system log as well as in many system commands and CANDE commands that affect
running processes or provide information about them.

8600 0494-506 5-1

Establishing Process Identity and Privileges

5-2

The system assigns mix numbers to WFL jobs when they are first entered into a job
queue. This mix number remains the same when the WFL job leaves the queue and
begins executing.

Each process or queued WFL job is generally assigned a mix number one higher than the
last assigned number in the mix number pool. However, a jump in the numbering can
occur after a halt/load. This jump occurs because the system periodically reserves a
range of numbers for use by new processes. After a halt/load, the system avoids
reusing any number in the range reserved at the time of the halt/load.

The mix number pool is determined by the maximum mix number that is configured on
the system. When the system is running in an active MoreTasks state (OP+
MORETASKS or OP+ 32 followed by a halt/load), the maximum mix number can be
configured between 9999 and 65535 using the MAX MIX = <number> form of the MAX
(Maximums) system command. When the system is running in a nonactive MoreTasks
state (OP- MORETASKS or OP- 32 followed by a halt/load), the maximum mix number is
fixed at 9999.

When the mix numbers reach the maximum configured mix number, which ranges from
9999 to 65535, the number starts over at 100. Certain low numbers are reserved for
some operating system processes. Also, a number cannot be reused if the last process
to which it was assigned is still in the mix.

Processes can determine their own mix numbers, or the mix number of a related
process, by interrogating the MIXNUMBER task attribute. However, the mix number has
little use in programmatic tasking. A process accesses the task attributes of another
process by specifying a particular task variable, rather than by specifying a particular mix
number.

A concept related to mix numbers is that of session numbers. The system assigns
session numbers to identify individual CANDE and MARC sessions. This session number
is inherited by the JOBNUMBER task attribute of tasks initiated from a session.

The system selects these session numbers from either the mix number pool
(determined by the value of the system command, MAX MIX = <number>), or a
separate session number pool (determined by the value of the MAX SESSION =
<number>). The following are the effects of this command:

e The MAX SESSION value cannot be less than the MAX MIX value. An increase in
the MAX MIX value results in a corresponding increase in the MAX SESSION value.
An attempt to reduce the MAX SESSION value to be less than the MAX MIX value
results in no change in the MAX SESSION value.

e |f the MAX SESSION value is the same as the MAX MIX value, then the system
allocates session numbers from the mix number pool, which ranges from 100 to the
MAX MIX value. The system never assigns the same number to both a process and
a session.

8600 0494-506

Establishing Process Identity and Privileges

o |f the MAX SESSION value is greater than the MAX MIX value, then the system
allocates session numbers from a separate session number pool. The numbers in
this pool range from the MAX MIX value +1 through the MAX SESSION value. If a
session number is not available in the session number pool, a value is selected from
the mix number pool.

The use of a session number pool enables many more sessions to be active than
would otherwise be possible, because you can create a session number pool that is
larger than the mix number pool, and none of the numbers are used as mix numbers.

Like the mix number, the stack number of a process is a number assigned by the
operating system. The stack number is unique to the process and remains constant for
the lifetime of the process. However, while the mix number is intended primarily for use
by system operators, the stack number of a process is intended primarily for internal use
by the operating system. Yet the stack number is visible to operators and programmers
in the following contexts:

e The stack number appears in the system log records for Major Type 0, Minor Type 1
(Establish Identity) and Major Type 1, Minor Types 1 (BOJ), 2 (EQJ), 3 (BOT), 4 (EOT),
5 (File Open), and 6 (File Close). The stack number is expressed in hexadecimal
format.

e The output from the OT (Inspect Stack Cell) system command includes the stack
number for the process. The stack number is expressed in hexadecimal format.
Thus, in the following output, the stack number is 011B:

011B STACK CELL 20= 7 09624650E003 (HEX)

e The PROCESSID function in ALGOL returns the stack number of the process. The
stack number is expressed in integer format.

e The stack number can appear in memory dump analyses created by
DUMPANALYZER. The stack number is reported in hexadecimal format.

e The STACKNUMBER task attribute returns the stack number of a process. The stack
number is returned in integer format.

The MPID attribute is not assigned by the operating system, but can be assigned to a
process before initiation. The attribute remains constant for the lifetime of the process.
The MPID attribute enables system operators to distinguish between multiple instances
of a process using a single object code file. The value of the attribute is visible to
operators in the following contexts:

e The value is shown in response to mix-related system commands (A, C, J, LIBS, M,
S, and W). It appears as a quoted string after the process name.

e The value appears in system log records for Major Type 0, Minor Type 1 (Establish
Identity), and Major Type 1, Minor Types 1 (BOJ) and 3 (BOT).

8600 0494-506 5-3

Establishing Process Identity and Privileges

Usercode, Access Code, Charge Code, and Group Code

5-4

Usercode Attribute

ACCESSCODELIST,
ACCESSCODENEEDED

CHARGECODE, CHARGEREQ,
USEDEFAULTCHARGE

CANDEDESTNAME
CLASS, CLASSLIST, ANYOTHERCLASSOK
CONVENTION
DEPTASKACCOUNTING
FAMILY
FILEACCOUNTING
GROUPCODE
LANGUAGE
PRINTDEFAULTS
PRIORITY
SAVEMEMORYLIMIT
SUPPLEMENTARYGRPS
TEMPFILELIMIT

Task Attribute
ACCESSCODE

CHARGE

DESTNAME

CLASS

CONVENTION
DEPTASKACCOUNTING
FAMILY
FILEACCOUNTING
GROUPCODE
LANGUAGE
PRINTDEFAULTS
PRIORITY
SAVEMEMORYLIMIT
SUPPLEMENTARYGRPS
TEMPFILELIMIT

USERCODE, ACCESSCODE, CHARGE, and GROUPCODE are closely related task
attributes that help to specify the identity and privileges of a process.

The USERCODE task attribute stores a value that is intended to identify the user who
initiated the process. In actual practice, more than one user of the system can use the
same usercode, but only if all the users agree to do so. This is because you must know
the password associated with a usercode to use the usercode, and only the owner of the
usercode can tell you the password.

Usercodes are created by the security administrator for the system, usually by using the
MAKEUSER utility. The security administrator can associate a variety of usercode
attributes with each usercode. Some of these usercode attributes confer various types
of special security privileges, as described under “Process Security Classes” later in this
section.

Other usercode attributes interact with the values of various task attributes. Some of
these usercode attributes provide default values for the corresponding task attributes.
Other usercode attributes define a range of permitted values for a task attribute, or
specify whether the task attribute must have a value. The following are these usercode
attributes and the task attributes that are related to them:

8600 0494-506

Establishing Process Identity and Privileges

The values supplied by usercode attributes are propagated to their corresponding task
attributes in the following ways:

e MARC and CANDE read some usercode attributes when you log on, and store the
corresponding task attribute values for your session. Thereafter, if you initiate a
process from that session, the process inherits the task attributes of the session.

e |fa WFL job includes a USERCODE assignment in the job header, the WFL job
inherits the attribute values associated with the usercode.

For details about the effects of usercode attributes on task attributes, refer to the task
attribute descriptions in the Task Attributes Programming Reference Manual.

The ACCESSCODE task attribute serves as a form of secondary identification, in addition
to the usercode. This identification is relevant only when a process attempts to use a file
that is guarded by a guard file; refer to “Nonprivileged Status” later in this section for
further details.

The CHARGE task attribute serves as a form of group identification for billing purposes.
Thus, all the people working in a particular department might have usercodes with the
same CHARGECODE usercode attribute. The system records the CHARGE attribute of
each process in the system log. This makes it possible for site personnel to write billing
programs that analyze the system usage on a charge code by charge code basis. For
further information about billing programs, refer to the System Administration Guide.

The GROUPCODE and SUPPLEMENTARYGRPS task attributes provide another form of
group identification. The GROUPCODE attribute identifies the primary group to which a
process belongs, and the SUPPLEMENTARYGRPS attribute identifies one or more
secondary groups. The group identification can affect the ability of a process to access
files that have the GROUP file attribute set. For further information about group usage,
refer to the POSIX User's Guide.

You can override the propagation of most usercode attributes to task attributes by
explicitly assigning task attributes to the process in question. However, the system
enforces some consistency checks to ensure that the USERCODE, ACCESSCODE, and
CHARGE attribute values are consistent with each other. For details about these
consistency checks, refer to the descriptions of these attributes in the Task Attributes
Programming Reference Manual.

A process can change its own usercode while it is running by making an assignment to
the USERCODE attribute. Such an assignment must specify the password as well as the
usercode. The system verifies the correctness of the usercode and password before
making the usercode assignment.

8600 0494-506 5-b

Establishing Process Identity and Privileges

Name

The name of a process is stored in the NAME task attribute of the process. The value of
this attribute is, by default, the same as the title of the object code file that the process is
executing. The process name appears in system log entries generated for the process.
The process name also appears in the output from system mix display commands such
as A (Active Mix Entries), W (Waiting Mix Entries), and C (Completed Mix Entries).

In addition to aiding the operator, the process name can affect the ability of the process
to use some files. If a file has a guard file associated with it, the guard file can include a
PROGRAM clause that specifies access rights for processes with a given name.

In some cases, the NAME value for a process can be different from its object code file
title. This can occur if a WFL process or an ALGOL process initiates an internal
procedure. The initiating process can make an arbitrary assignment to the NAME
attribute of the new process before initiating it.

The initiating process can even assign the internal process the NAME of an entirely
different program. This method enables the process to circumvent the PROGRAM
clause in a guard file. To prevent such abuses, a CODEFILE clause is also available for
guard files. This clause ignores the process name and instead specifies access rights for
processes having a particular object code file title. For details, refer to the Security
Features Operations and Programming Guide.

Object Code File

5-6

An operator can use the MP (Mark Program) system command to assign any of several
options to an object code file. Some of these options confer special types of security
status on a process, and these options are the following:

e COMPILER. This option marks an object code file with compiler status. The effects
of compiler status are described under “Compiler Status” later in this section.

e PU. This option marks an object code file with privileged status. The effects of
privileged status are discussed under “Privileged Status” later in this section.

e SECADMIN. This option marks an object code file with security administrator status.
The effects of security administrator status are described under “Security
Administrator Status” later in this section.

e TASKING. This option marks an object code file with tasking status. The effects of
tasking status are described under “Tasking Status” later in this section.

The MP system command also can be used to mark an object code file with granulated
privileges when the PU option is undesirable. Each granulated privilege is a subset of
privileged status. Available granulated privileges are CHANGE, CHANGESEC,
CREATEFILE, EXECUTE, GETSTATUS, GSDIRECTORY, IDC, LOCALCOPY,
LOGINSTALL, LOGOTHERS, READ, REMOVE, SETSTATUS, SYSTEMUSER,
USERDATA, and WRITE. Their effects are described under “Privileged Status” later in
this section.

8600 0494-506

Establishing Process Identity and Privileges

When an object code file is initiated, the resulting process receives the privileges that
were assigned to the object code file. The process can make some of the procedures in
the object code file available to other processes by initiating an internal procedure, by
initiating a process and passing a procedure parameter, or by becoming a library and
exporting procedures. Any of these processes temporarily assumes the privileges
assigned to the object code file while it is executing procedures from the object code file.

The following subsections explain how these privileges are propagated to processes
from object code files.

Transparent Object Code File Privileges

Most of the options available through the MP (Mark Program) system command have
only two states: set or reset. However, the MP command enables you to specify a third
state for the PU, SECADMIN, TASKING, and granulated privilege options. This third state
is called transparent. The following are MP commands and the security categories they

assign:
MP Command Security Category
MP <file title> + <granulated privilege> Granulated privileged
MP <file title> + <granulated privilege> Granulated privileged transparent
TRANSPARENT
MP <file title> + PU Privileged
MP <file title> + PU TRANSPARENT Privileged transparent
MP <file title> -PU Nonprivileged
MP <file title> + SECADMIN Security administrator
MP <file title> + SECADMIN TRANSPARENT Security administrator transparent
MP <file title> -SECADMIN Non-security administrator
MP <file title> + TASKING Tasking
MP <file title> + TASKING TRANSPARENT Tasking transparent
MP <file title>-TASKING Nontasking

Each option can be in only one state at a time: enabled, disabled, or transparent.
However, the three options (PU, SECADMIN, and TASKING) do not have to be in the
same state. The following command assigns privileged status and security administrator
transparent status, and removes tasking status:

MP <file title> + PU, + SECADMIN TRANSPARENT, - TASKING
Setting any granulated privilege option disables the PU option. Setting the PU option
disables all granulated privilege options. The USERDATA option is mutually exclusive of

the SECADMIN TRANSPARENT option and the SECADMIN option is mutually exclusive
of the USERDATA TRANSPARENT option.

8600 0494-506 5-7

Establishing Process Identity and Privileges

The concept of transparent status is intended primarily for libraries, to enable the actions
of a library to be applied with the status of the user program that invokes the library. If a
procedure resides in an object code file that has one of these options in the transparent
state, then

e |f the procedure is initiated, the resulting process is treated as if the option were
disabled.

e If the procedure is entered, it inherits the enabled or disabled state of the option of
the invoking procedure. Privileged, granulated privilege, security administrator, or
tasking status can be inherited through a series of privileged transparent procedures.

For example, if a privileged program initiates a procedure in a privileged transparent
library, the procedure is executed as nonprivileged. However, if the privileged program
enters the same procedure instead of initiating it, the procedure is executed as
privileged.

For information about how privileged transparent status applies to file access rights, refer
to Section 19, “Using Shared Files.”

Delayed Effects of Object Code File Privileges

When you mark an object code file with special privileges, these privileges do not affect
any processes that are already running. The privileges take effect the next time you
initiate the object code file.

Copying Privileged Object Code Files

If you copy an object code file marked with privileged, security administrator, or compiler
status, the copy retains the same privileges as the original. However, the system
administrator can limit the ability to copy or execute such object code files by using the
RESTRICT (Set Restrictions) system command. For details, refer to the discussion of the
RESTRICT command in the Security Administration Guide.

Originating Source

5-8

When you initiate a process through a peripheral device, the system records the type of
peripheral device in the SOURCEKIND attribute. There is one situation in which the
SOURCEKIND value can make an important difference in the capabilities of the process.
If the SOURCEKIND value is ODT, the system accords the process ODT status, which is
described under “Process Security Classes” in this section.

Additionally, the system records the physical unit number or logical station number (LSN)
of the originating peripheral device in the SOURCESTATION task attribute. The value of
this attribute allows messages generated by a process to be routed back to the station
that originated the process, so that you can easily monitor the progress of your
processes.

8600 0494-506

Establishing Process Identity and Privileges

MARC and CANDE similarly assign the LSN of a session to the STATION task attribute of
any tasks (but not jobs) initiated from that session. Refer to Section 9, “Controlling
Process I/O Usage” for a discussion of the effects of this attribute.

The system also records the name of the originating station in the SOURCENAME task
attribute. The station name can be more stable than the LSN, which often changes after
a halt/load or Transaction Server quit.

Process Security Classes

The system software provides a number of security features that you can use to regulate
the ability of processes to access other users' files or perform other restricted actions.
Processes are classified according to security classes, and each security class allows the
process to perform a somewhat different set of restricted actions.

The following subsections describe the capabilities of each of the process security
classes and explain how a process can be assigned to a particular class. For further
information about any of the security features discussed, refer to the Security Features
Operations and Programming Guide and the Security Administration Guide.

The following are the security classes a user process can belong to:

e Nonprivileged

e Privileged

¢ Nonusercoded

e QOperator display terminal (ODT)

e SYSTEMUSER

e Security administrator

o Compiler

e MCS

e Tasking

A process can belong to more than one of these classes, although certain classes are

mutually exclusive. In addition, a process can belong to different security classes at
different points in its execution.

Additional security classes exist for operating system processes. For information about
system library security and library linkage classes, refer to Section 18, “Using Libraries.”

For a discussion of certain special security issues that arise from the sharing of logical
files between processes, refer to Section 19, “Using Shared Files.”

8600 0494-506 5-9

Establishing Process Identity and Privileges

Nonprivileged Status

The default security class for a process is nonprivileged. On a typical system, the vast
majority of processes fall into this class. A nonprivileged process can perform any of the
following actions:

Inspect or modify any object within the extended addressing environment of the
process. For information about the addressing environment, refer to Section 15,
"Using Global Objects,” and Section 17, “Using Parameters.”

Create, remove, open, close, read, write, copy, or access the file attributes of data
files.

Initiate, copy, remove, open, close, read, or access the file attributes of object code
files.

Use the nonprivileged form of the GETSTATUS directory call. The nonprivileged form
of this call provides information only about directories having the same usercode as
the process.

Use the VOLUME CHANGE form of the WFL VOLUME statement to affect tape
volumes whose FAMILYOWNER value is the same as the usercode of the process.

Use the WFL ARCHIVE command to back up, roll out, or restore files that have the
same usercode as the process.

Use the MAKEUSER utility to change owner-modifiable attributes of the usercode of
the process. A nonprivileged process can change only attributes of its own
usercode. Of these attributes, the process can change only those marked with a
status of OWNER by a PRIVILEGES segment in the USERDATAFILE.

The ability of a nonprivileged process to access a particular disk file is determined by the
values of certain task attributes and file attributes. The following task attributes affect
file access rights:

USERCODE

The USERCODE value generally grants the process access to files that are stored
under the usercode. Certain USERCODE values can also grant special privileges, as
discussed under “Privileged Status” and “Nonusercoded Status” later in this
section.

ACCESSCODE

The ACCESSCODE value can grant the process access to some files that are
protected by guard files, as discussed later in this subsection. The process can
assign only accesscode/password combinations corresponding to values in the
ACCESSCODELIST usercode attribute. Additionally, the process can delete the
accesscode value by assigning a null string.

NAME

The value of this task attribute can grant the process access to some files that are
protected by guard files, as discussed later in this subsection.

8600 0494-506

Establishing Process Identity and Privileges

e FILEACCESSRULE
The effects of this task attribute are discussed in Section 19, “Using Shared Files.”
e GROUPCODE and SUPPLEMENTARYGRPS

If a process is not the owner of a file, and one of the values of GROUPCODE or
SUPPLEMENTARYGRPS matches the GROUP file attribute of the file, then the file
access rights are determined by the group-related subattributes of the
SECURITYMODE file attribute.

The process that creates a disk file can assign security-related file attributes to determine
which nonprivileged processes can access the file. Thereafter, only privileged processes
or processes running with the same usercode as the file can change the values of these

security-related file attributes. Following are brief descriptions of the security-related file

attributes:

e TITLE

This file attribute includes the usercode under which the file is stored. For
nonusercoded files, an asterisk (*) is included instead of a usercode. Only privileged
or nonusercoded processes can create a nonusercoded file.

e SECURITYTYPE

This file attribute specifies whether a process must have the same usercode as the
file in order to access the file. A value of PUBLIC allows any process to access the
file. A value of PRIVATE enables nonprivileged processes to access the file only if
the processes are running under the same usercode as the file. For nonusercoded
files, a value of PRIVATE enables only privileged processes and nonusercoded
processes to access the file. A value of GUARDED or CONTROLLED specifies that a
guard file is used to determine which nonprivileged processes can access the file.

e SECURITYUSE

This file attribute specifies whether nonprivileged processes having a usercode
different from the file can read from or write to the file. SECURITYUSE does not
restrict the ability to initiate an object code file. SECURITYUSE has effect only if the
SECURITYTYPE file attribute value is PUBLIC.

e SECURITYGUARD

For files with a SECURITYTYPE value of GUARDED or CONTROLLED, the
SECURITYGUARD file attribute specifies the title of the guard file to be used.

e SECURITYMODE

This file attribute provides an alternative method of specifying the security
restrictions for a file. SECURITYMODE provides functions similar to the
SECURITYTYPE and SECURITYUSE attributes. However, SECURITYMODE provides
more detailed control. SECURITYMODE specifies

— Separate file access rights for three classes of users: the owner, group
members, and other users. For each class of users, SECURITYMODE can
specify any combination of read access, write access, and execution access.

— Whether a guard file is used, and whether the guard file also applies to the
owner of the file.

8600 0494-506 5-11

Establishing Process Identity and Privileges

— Whether code files should run under the usercode and group code of the initiator
of the program, or under the usercode and group code of the code file itself. For
more information about this topic, refer to “Real, Saved, and Effective Process
Identities” later in this section.

e GROUP

This file attribute specifies the group to which a file belongs. When determining the
rights of a process to access a particular file, if the usercode of the process differs
from the owner of the file, the system compares the GROUPCODE and
SUPPLEMENTARYGRPS attributes of the process with the SECURITYMODE and
GROUP attributes of the file.

e OWNER

This attribute is read-only and reports the usercode portion of the TITLE file attribute.
If TITLE begins with an asterisk (*) instead of a usercode, OWNER returns a null
string.

These file attributes are described in detail in the File Attributes Programming Reference
Manual.

Guard files can be created using the GUARDFILE utility, which is described in the
Security Features Operations and Programming Guide. A guard file can include detailed
information about the types of access allowed to various nonprivileged processes. The
guard file can include USERCODE or ACCESSCODE clauses that discriminate between
processes on the basis of the corresponding task attributes. The guard file can also
include a PROGRAM clause that discriminates between processes on the basis of the
NAME task attribute value, and a CODEFILE clause that discriminates between
processes on the basis of the code file title.

If a guard file is used, it overrides the value of the SECURITYUSE attribute.

If the tape volume security feature of the Secure Accountability Facility is enabled on the
system, then the rights of a nonprivileged process to access a particular tape file are
regulated by the task attributes and file attributes listed in the previous discussion as well
as by the tape volume attributes FAMILYOWNER, PERMANENTLYOWNED, and
MATCHONLYSERIALNO. The tape volume attributes can be assigned only by a
privileged user or a privileged process with the WFL VOLUME statement. The security
administrator can enable tape volume security by using the SECOPT (Security Options)
system command to set the security option TAPECHECK to AUTOMATIC. If tape
volume security is not enabled, then a nonprivileged process can open a tape file on any
tape unit that is not currently in use by another process.

An additional security restriction for disk files is system file status. The operating system
marks disk files that are part of the acting system software as system files. Examples of
system files are the object code file of the current MCP, the job description file, and the
current system log. An application process cannot remove or change the title of any
system file. Some files have a modified form of system file status. Thus, the
USERDATAFILE has system file status and additionally is protected from being read by
any application process (only system software can read this file).

8600 0494-506

Establishing Process Identity and Privileges

Privileged Status

A privileged process has the capabilities of a nonprivileged process, as well as the ability
to:

e Access physical files stored under other usercodes, regardless of the
SECURITYTYPE, SECURITYUSE, SECURITYGUARD, and SECURITYMODE file
attribute values. Note that logical access to a database guarded by a guardfile is not
affected by privileged status.

e Use the following WFL statements on files regardless of their usercode:

ADD COPY RUN

ALTER MODIFY RESTORE
ARCHIVE MOVE RESTOREADD
CATALOG PRINT SECURITY
CHANGE REMOVE START

e Use the following WFL statements:

VOLUME ADD
VOLUME DELETE
VOLUME DESTROYED
VOLUME OFFSITE
VOLUME ONSITE

e Create files stored under other usercodes and to create nonusercoded files.
e Set the value of the USERCODE task attribute to a null string.

e Set the GROUP file attribute to any group code, not just the group codes specified by
the GROUPCODE task attribute or the SUPPLEMENTARYGRPS task attribute.

e Set the FILEACCESSRULE task attribute to a value of ACTOR.
e Survive most task attribute access errors.

e Use the MAKEUSER utility to change selected usercode attributes. A privileged
process can change attributes of any usercode. However, the process can change
only those attributes marked with a status of PU by a PRIVILEGES segment in the
USERDATAFILE.

Privileged status also grants several other capabilities on systems where the Security
Services for ClearPath MCP security administrator feature is not enabled. On systems
where the security administrator feature is enabled, these capabilities are wholly or
partially reserved for processes with security administrator status. (Refer to “Security
Administrator Status” later in this section.) The following are the capabilities:

e The ability to access certain system interfaces, including the DCKEYIN, GETSTATUS,
and SETSTATUS functions in DCALGOL.

e The ability to create, modify, and delete usercode definitions in the USERDATAFILE.

8600 0494-506 5-13

Establishing Process Identity and Privileges

Note that the following types of file access are not granted by privileged status: the
ability to remove or change the titles of most system files, and the ability to write to
object code files. Further security restrictions can apply if the privileged process
accesses the file through a shared logical file, as discussed in Section 19, “Using Shared
Files.”

A process is automatically considered privileged if it is running under a privileged
usercode. The usercode of a process is stored in the USERCODE task attribute. An
operator can assign privileged status to a usercode by running the MAKEUSER utility or
using the MU (Make User) system command. A usercode can also be assigned
privileged status by a program that uses the USERDATA function in ALGOL, DCALGOL,
or NEWP. For further information about these features, refer to the Security
Administration Guide.

A process usually inherits the usercode of the session or process that initiated it. A
different usercode can be assigned by task attribute assignment, use of the USERDATA
function, or use of the WFL USER statement. However, in each of these cases, the
statement that assigns the usercode must also specify a password, which is checked for
validity. Only processes with special privileges can assign a usercode without specifying
a password. Message control systems (MCSs) and processes with tasking status use
this feature when assigning a usercode to a process initiated by a session.

If a process is not running under a privileged usercode, then the ability of a process to
perform a privileged action is determined by the privilege status of the object code file
that contains the request.

A process can execute code from several different object code files. This is the case if
the process has entered either a library procedure or a passed external procedure. (For
an introduction to external procedures, refer to Section 1, “Understanding Basic Tasking
Concepts.”) The various object code files might not have the same privilege status. The
current privilege status for the process is determined by the privilege status of the object
code file containing the procedure that was most recently entered. This procedure
contains the code that is currently being executed. For further details about this concept,
refer to “Object Code File” earlier in this section.

Note that a privileged program has no special privileges when accessing files on a
remote host. For example, suppose a process sets the HOSTNAME attribute of a file to
specify a remote host, and then attempts to open that file. This action is executed with
privilege on the remote host only if the process usercode is privileged on that host.

5-14 8600 0494-506

Establishing Process Identity and Privileges

Granulated Privileges

Capabilities associated with privileged status can be individually recognized as granulated
privileges. When it is undesirable or even dangerous for a process to acquire the full
privileged status, granulated privileges can be alternatively used. Given a particular
granulated privilege, a process is bounded by the limitation of such privilege. A security
administrator can identify the security needs of a user or a program and delegate just the
capabilities necessary for the performance of the job (the concept of least privilege). The

description for each granulated privilege follows.

Privilege Description

CHANGE A process with this privilege can change titles of other users’ disk
files. This includes the file ownership. When a new file name is
identical to another user’s existing disk file, the file overwrite is not
permitted if it is not accompanied by the REMOVE privilege.

CHANGESEC A process with this privilege can modify security file attributes for
files belonging to other users.

CREATEFILE A process with this privilege can create disk files under another
usercode without replacing existing disk files. The privilege does not
include file creations through the WFL CHANGE command or through
a library maintenance copy operation.

EXECUTE A process with this privilege can execute other users’ code files.

GETSTATUS A process with this privilege can use the GETSTATUS intrinsic to

GSDIRECTORY

retrieve information about jobs, tasks, status of peripherals, status of
the operating system, and mainframe configuration. The privilege
does not include those GETSTATUS directory and volume requests
that currently require privileged-user status.

A process with this privilege can browse other users’ private
directories and files. In addition, this privilege enables a program to
make GETSTATUS directory and volume requests that are typically
restricted to a privileged-user status and enables a user to use the
FILEDATA TAPEDIR request.

IDC A process with this privilege can update the current DATACOMINFO
file through DATACOMSUPPORT entry points, which are used by the
SYSTEM/IDC utility.

LOCALCOPY A process with this privilege can copy files and directories belonging
to other users.This is done on the local host using library
maintenance.

LOGINSTALL A process with this privilege can access the MCSLOGGER intrinsic to
create log installation records.

LOGOTHERS A process with this privilege can access the MCSLOGGER intrinsic to
create other log records for which privilege is currently required.

READ A process with this privilege can have read access to other users’

8600 0494-506

files, regardless of their security attributes.

Establishing Process Identity and Privileges

Privilege Description

REMOVE A process with this privilege can remove files belonging to other
users. When REMOVE is used with the CREATEFILE, LOCALCOPY,
or CHANGE privileges, an existing disk file can be either replaced or
removed. A close with purge operation on a non-owned file also
requires the process to have the REMOVE privilege.

SETSTATUS A process with this privilege can use the SETSTATUS intrinsic to
control MCP mix, unit, and operational functions. The privilege does
not include those SETSTATUS directory and volume requests that
currently require privileged-user status.

SYSTEMUSER A process with this privilege can make GETSTATUS, SETSTATUS,
and DCKEYIN requests that are currently restricted to a system user.
USERDATA A process with this privilege can access the USERDATA intrinsic.

This includes all USERDATA functionality available to a privileged user
on a system with security administrator status disabled and all
USERDATA functionality available to a security administrator on a
system with security administrator status enabled.

WRITE A process with this privilege can have write access to other users’
files, regardless of the file's security attributes. Processes with this
privilege can also change all modifiable, non-security-related file
attributes.

An operator assigns granulated privileges to a usercode by running the MAKEUSER utility
or assigns granulated privileges to an object codefile by using the MP (Mark Program)
system command. For more information about the MAKEUSER utility, refer to the
Security Administration Guide. For more information about the MP command, refer to
the System Commands Operations Reference Manual.

5-16 8600 0494-506

Establishing Process Identity and Privileges

Nonusercoded Status

A nonusercoded process is one whose USERCODE task attribute value is a null string.
By default, a process runs without a usercode if you initiate it from a nonusercoded
MARC session.

In addition, a process initiated from an ODT is nonusercoded by default unless one of the
following conditions is true:

e The ODT has been assigned a terminal usercode by the TERM (Terminal) system
command. The terminal usercode is the default usercode for most processes
initiated at that ODT.

However, processes initiated at an ODT by a primitive system command default to a
null usercode, even if there is a terminal usercode associated with the ODT.
??COPY (Copy Files) and ??RUN (Run Code File) are two primitive system
commands that initiate processes.

e The process is a remote WFL job and the system has a host usercode. Host
usercodes are assigned by the HU (Host Usercode) system command.

Note, however, that a remote WFL job runs nonusercoded if the job is initiated by an
AT <hostname> START command and the host usercode of the initiating system is
defined with SYSTEMUSER status at the host where the job runs.

Processes initiated by a nonusercoded process are, by default, also nonusercoded.

Processes initiated by usercoded processes are, by definition, always usercoded. It is
possible for a process to assign a null usercode to a task variable that is not in use, and
then initiate a process with that task variable. However, the null usercode value in the
task variable is overridden by task attribute inheritance, and the new process runs with
the usercode of its initiator.

It is possible for a usercoded process to be assigned a null usercode after initiation.
However, only a privileged process can assign a null usercode to an in-use process.
Thus, for example, a privileged process can change its own usercode to a null usercode.
When the usercode of a privileged process is changed to a null usercode, the process
retains its privileged status.

A privileged process can also initiate a task with a nonprivileged usercode, and then
change the usercode of the task to a null while the task is running. The task then
assumes nonusercoded security status. Processes that are nonusercoded from the time
they are first initiated also have nonusercoded security status.

8600 0494-506 5-17

Establishing Process Identity and Privileges

A process with nonusercoded status has the same capabilities as a nonprivileged
process, with the following additions:

e The ability to create nonusercoded files; that is, files whose TITLE file attributes
begin with an asterisk (*) instead of a usercode, and whose OWNER file attribute is

null.

e The ability to initiate a nonusercoded process; that is, a process whose USERCODE
task attribute value is a null string.

e The ability to use the UNITNO file attribute, even on a system running with the
security option NONPRIVUNITNO set.

Further, certain WFL statements are treated as privileged when submitted by a
nonusercoded process. These statements, and other conditions affecting their privilege
status, are shown in Table 5-1. This table refers to two concepts not discussed

previously:

e Single-statement WFL inputs. These are single WFL statements entered directly at
an ODT, entered in CANDE or MARC with the WFL prefix, or submitted in array form
by a ZIP statement in a program.

e ODT status. This concept is defined under “ODT Status” later in this section.

Table 5-1. WFL Statements Executed with Privilege

WFL Statements

Conditions Granting Privilege

ADD, ARCHIVE,
CATALOG, COPY, MOVE,
RESTORE

Privileged if the process is nonusercoded

CHANGE, REMOVE,
RERUN, SECURITY,

Privileged if a nonusercoded, single-statement WFL input.

START

PRINT Privileged if a nonusercoded, single-statement WFL input
that does not have ODT status. .

VOLUME Privileged if either of the following is true:

e The process is nonusercoded and has ODT status.

e The process has ODT status, only the VOLUME ADD
or VOLUME DELETE form of the command is used,
and the statement affects only volumes with the same
usercode as the process.

8600 0494-506

Establishing Process Identity and Privileges

ODT Status

A process is said to have ODT status if it was initiated from an ODT, or if it is descended
from a process initiated from an ODT. The exception to this rule is that processes
initiated with the ??RUN (Run Code File) primitive system command do not receive ODT
status, nor do the descendants of such processes.

Processes initiated from an ODT frequently run without a usercode and receive
nonusercoded status, as discussed under “Nonusercoded Status” earlier in this section.

Regardless of whether it has a usercode, a process with ODT status is granted access to
all GETSTATUS calls in DCALGOL. This access includes the privileged form of the
GETSTATUS directory call. (The privileged form of this call can return information about
directories stored under any usercode.)

Certain WFL statements are treated as privileged when submitted by a process with
ODT status. For a list of these statements, and other conditions affecting their privilege
status, refer to Table 5-1, “WFL Statements Executed with Privilege.

SYSTEMUSER Status

A process receives SYSTEMUSER status if it is running under a usercode whose
SYSTEMUSER usercode attribute is set. SYSTEMUSER status enables a process to use
the DCKEYIN, GETSTATUS, and SETSTATUS functions in DCALGOL, even if the process
does not have privileged status. A process can use these functions to submit system
commands and perform other system operations functions.

By default, SYSTEMUSER status gives access to all the possible DCKEYIN, GETSTATUS,
and SETSTATUS calls. However, certain restrictions can apply on a system running the
Secure Ildentification Facility

Security Administrator Status

On a system where the Secure Identification Facility is installed, the system
administrator can enable a special security administrator status. If security administrator
status is enabled for the system, then certain system commands that would otherwise
be available to any privileged or SYSTEMUSER process are instead reserved for use only
by processes with security administrator status. The DCKEYIN and SETSTATUS
functions corresponding to these system commands are similarly restricted. In addition,
the ability to create or alter usercode definitions, which would otherwise be available to
any privileged user, is restricted to processes with security administrator status.

The security administrator can also use the RESTRICT command to prevent or limit the

use of certain system commands. For information about the RESTRICT command, refer
to the System Commands Operations Reference Manual.

8600 0494-506 5-19

Establishing Process Identity and Privileges

The system administrator can enable security administrator status on the system by
setting the system SECADMIN option. This option is set using the ??SECAD system
command. Once the SECADMIN option is set, a process assumes security administrator
status if either of the following conditions are true:

e The process is running with a usercode for which the SECADMIN attribute is set in
the USERDATAFILE.

e The process is executing code from an object code file that has been marked with
security administrator status. This concept is discussed further under “Object Code
File" earlier in this section.

For further information about security administrator capabilities, refer to the Security
Administration Guide.

Compiler Status

A process with compiler status is allowed to create an object code file or write to an
existing object code file. You can mark an object code file with compiler status by using
the MP <file title> + COMPILER form of the MP (Mark Program) system command. An
operator can use this command to mark any program with compiler status, whether or
not the program is really a compiler.

If a process without compiler status attempts to write to an object code file that is a
permanent file, the write operation is not performed and the process is abnormally
terminated. A process without compiler status can write to an object code file that is a
temporary file. However, if the process attempts to lock the file, the system changes
the file from an object code file into a data file. (For information about the concepts of
permanent and temporary files, refer to the I/O Subsystem Programming Guide.)

Note that a compiler program has no special privileges when accessing object code files
on a remote host. For example, suppose you initiate a compiler and file equate the
HOSTNAME attribute of the CODE output file to a remote host. The compiler receives a
file attribute error when it attempts to create the object code file. A compiler must
create object code files on the host where the compiler is running.

Message Control System Status

5-20

Message control systems (MCSs) Error! Bookmark not defined.differ from other
interactive programs in that they interface directly to the data comm subsystem (rather
than opening a remote file) in order to send or receive messages from terminals. This
interface is possible because MCSs are written in DCALGOL, an extended version of
ALGOL with special data comm capabilities. The system extends a number of special
privileges to MCSs.

8600 0494-506

Establishing Process Identity and Privileges

How an MICS Acquires Its Privileges

The MCS security privileges and MCS priority are not granted to a program simply
because it is written in DCALGOL; the system must also recognize the program as an
MCS. Two things are necessary for the system to recognize a program as an MCS:

e FEach MCS on a system must be named in the data comm network definition for that
system. Note that the system disregards the family name portion of the MCS code
file title when comparing the title with the data comm network definition. Only one
MCS of a given name can be active.

e The MCS must invoke the DCALGOL DCWRITE function to initialize its primary
queue. Every MCS must have such a queue and must initialize it in order to be
recognized as an MCS.

The system removes MCS status from a process if either of the following events occurs:

e The process deactivates its primary queue, either by setting the QACTIVE queue
attribute to FALSE or by exiting the block in which the primary queue is declared.

e A data comm quit takes place. A data comm quit can be caused by the /ID: QUIT
form of the ID (Initialize Data Comm) system command.

Priority of an MCS

An MCS automatically runs in the same priority category that control programs run in.
This priority category gives the MCS higher priority than WFL jobs and application
programs. However, the priority of an MCS is lower than that of any invisible
independent runner. The priority of MCSs relative to each other is determined by the
PRIORITY task attribute. For an explanation of process priority, refer to Section 7,
"Controlling Processor Usage.” For a discussion of how and when this special priority
can be inherited by offspring of an MCS, refer to "Inheritance of MCS Status” later in
this section.

Privileges of an MICS

When an MCS first initializes its primary queue, the system grants that MCS all the
privileges associated with privileged status, as discussed under “Privileged Status”
earlier in this section. This is true even if the MCS is running under a nonprivileged
usercode and has not been marked as a privileged program.

However, if the MCS changes its usercode, the system reevaluates the privileged status
of the MCS. Thereafter, the MCS receives privileged status only if one of the following
conditions is true:

e The MCS is running without a usercode.

e The MCS is running under a privileged usercode, and the MCS did not request lesser
privileges when changing to that usercode. (Refer to the discussion of USERDATA
function 3 later under this heading.)

e The MCS object code file has been marked with privileged status.

8600 0494-506 5-21

Establishing Process Identity and Privileges

5-22

Additionally, an MCS receives a number of privileges that are unique to MCSs. These
privileges are retained by the MCS regardless of the usercode under which the MCS
runs. The following paragraphs describe these unique privileges and features of MCS
status.

An MCS is allowed the following privileges with regard to the USERDATA function:

Ability to use USERDATA function 3 to assume a usercode without supplying the
corresponding password.

When an MCS uses USERDATA function 3 to temporarily assume a usercode, the
MCS does not appear in GETSTATUS mix request calls that request mix entries with
that usercode. The MCS also does not appear in the output from system commands
that display the mix and that request mix entries with that usercode.

By default, the MCS inherits any of the following types of privileges that are
associated with the new usercode: privileged status, security administrator status,
and SYSTEMUSER status. However, the MCS can use the USERDATA locator
parameter to limit the privileges the MCS can receive from the new usercode. The
locator parameter can specify separate limits for each of these types of privileges.

For an example of a program that uses USERDATA function 3, refer to “Temporarily
Ass