UNISYS e-@ction
CLEARPATH ENTERPRISE
SERVERS

Work Flow Language (WFL)

Programming Reference Manual

ClearPath MCP Release 7.0

Printed in USA
November 2001 8600 1047-506

UNISYS e-@ction
CLEARPATH ENTERPRISE
SERVERS

Work Flow Language (WFL)

Programming Reference Manual

UNISYS

© 2001 Unisys Corporation.
All rights reserved.

ClearPath MCP Release 7.0

Printed in USA
November 2001 8600 1047-506

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related information
described herein is only furnished pursuant and subject to the terms and conditions of a duly executed agreement to
purchase or lease equipment or to license software. The only warranties made by Unisys, if any, with respect to the
products described in this document are set forth in such agreement. Unisys cannot accept any financial or other
responsibility that may be the result of your use of the information in this document or software material, including
direct, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the laws,
rules, and regulations of the jurisdictions with respect to which it is used.

This document is not a contract and does not create any representations or warranties by Unisys. All applicable
representations, warranties and covenants are contained only in the applicable agreement signed by the parties.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Notice to Government End Users: This is commercial computer software or hardware documentation developed at
private expense. Use, reproduction, or disclosure by the Government is subject to the terms of Unisys standard
commercial license for the products, and where applicable, the restricted/limited rights provisions of the contract data
rights clauses.

Correspondence regarding this publication can be e-mailed to doc@unisys.com.

Unisys, ClearPath, and e-@ction are registered trademarks of Unisys Corporation in the United States and other
countries. All other brands and products referenced in this document are acknowledged to be the trademarks or
registered trademarks of their respective holders.

Unisys e-@ction
ClearPath Enterprise
Servers

Work Flow Language (WFL)

Programming Reference
Manual

ClearPath MICP Release
7.0

8600 1047-506

Unisys e-@ction
ClearPath
Enterprise
Servers

Work Flow
Language (WFL)
Programming
Reference
Manual

ClearPath MICP
Release 7.0

8600 1047-506

Bend here, peel upwards and apply to spine.

Contents

Section 1.

Section 2.

Section 3.

8600 1047-506

WFL Capabilitiescccccooiiiiiiien s s e 1-1

About This Manual ... 1-1

Overview Of WL ..o 1-2

TasSk INIHIAtION Loeveeii e 1-3

Other Task Initiation Statementscccoovvviieiiiieeii 1-3

Task SPeCIfiCAtIONSoiiviiiiiiiiie e 1-5

Data Specificationscoovviiiiiiiiiiiieccc e 1-6

Flow of Control Statements.............ccoooeviiieieeec 1-7

Processing Data........ueeviiiiaiiiiiiiice e 1-7

Subrouting Control ... 1-10

1= 1] SO0 0 (o R 1-13

File Handling ... 1-16

File Management ... 1-18

CoOMMUNICATION ..o 1-20

JOD FOrmat . oo 1-22

Job Initiation ... e e e e e 2-1

OVEIVIBW ..o 2-1

Sources for Job INtiation.........cooooii e 2-2
START and WFL Commands from CANDE

SESSIONS .. 2-2

START Statements from Running WFL Jobs 2-5

Operator Display Terminals (ODTS)coovvviiiiiiiiiieeiiiee, 2-6

Menu-Assisted Resource Control (MARC)cccccei. 2-7

Distributed Systems SErviCeS........ccocvvvvviiiiiiiiiiieeceiieeee 2-7

User Programs in Other Languagesccccccceevvvveeeiiiieeenn, 2-9

MagnetiC TaPES ...oooeeiiiiiiie e 2-10

Job Continuation after a Task Fails ... 2-11

Job Restart after a Halt/Load...............oooooeiiiiii e, 2-12

ON RESTART Statement ..o, 2-15

DUMMY FIleS . oo 2-15

Job Structure........cnoo e 3-1

OVEIVIBW ..o 3-1

JOD SYNTAX ... 3-1

JOD STIUCTUIE .o, 3-1

Contents

Section 4.

Section 5.

JOD CONTENTS ©.viiiiiiiiiccc e 3-2
JOD FOrmat. ..o 3-2
AT HOSINAME ..o 3-3
JOD Title . 3-4
Job Parameter LiSt. ... 3-5
JOD DISPOSITION. ..ot 3-8
JOb ATtribUte LiSt. ..o 3-9
Resource-Limiting Attributes.........ccoooiiiii 3-10
CLASS Specificationcooiiiiiiiiiic e 3-12
FETCH SpecifiCationcooviiiiiiiiie e 3-13
STARTTIME SpecCificationcooviiiiiiiiiiciiiie e 3-14
Declaration List ... 3-16
StAtEMENT LISt oiiiiiiiiiiieceee e 3-17
WEFL Job Example ..o 3-19
Declarations..... ... e 4-1
OVEBIVIBW ..o, 4-1
Declaration SYNTAXeviiiiiiiiiiiiiie e 4-1
Scope of DeclarationS.......ccveeeviiiiieiiiieecee e, 4-2
Variable Initialization............occoooo 4-2
Constant [deNtifIerS........ooiiiiiiciie e, 4-3
Boolean Variables..........cco 4-4
Integer Variables ... 4-5
Real Variables..... .o 4-6
SHNG Variablesooiiiiii i, 4-7
File Variables ... 4-8
Task Variables 4-9
SUBIOULINES .o 4-10
Subroutine Parameters..........cooovveiiiiiiiiiiiiie e 4-11
Global Data Specificationscocviiiiiiiiiiiiii e 4-13
Task Initiation. ... e 5-1
OVBIVIBW ..., 5-1
Task Initiation StatemMENtSccooiiiiiiiiiiic e 5-1
Task EQUAtION . ..oooii 5-3
Task AtNDUTES ... 5-4
Task Attribute ASSIGNMENT ...t 5-8
Complex Task Attribute ASSIGNMENTSvvviiiiiiiiiiieiieeceiee e 5-11
ACCESSCODE ASSIgNMENt.....cccoiviiiiiiiiiieeiiiiieeeeiie e 5-12
CORE ASSIGNMENT.....uiiiiiiiiiiicie e 5-13
CURRENTDIRECTORY AssSignmMent........ccccceeeviviieiiiinenn, 5-14
FAMILY ASSIGNMENT ...oviiiiiiiiiiiiiii e 5-15
OPTION ASSIGNMENT ..oeiiiiiiiiiiiiiee e 5-17
PRINTDEFAULTS ASSIGNMENtcooviiieiiiiiieciiieeecee, 5-19
RESOURCE ASSIGNMENtocoiviiiiiiiiiiecciceeeee e, 5-21
SUPPRESSWARNING AsSSIgNMeNntoocvvveiiiiiiieiiiiienn, 5-22
USERCODE ASSIgNMEeNt ..o 5-23
Using Task Variables ... b-24
Assigning Task Attributesoooii 5-25

8600 1047-506

Contents

Section 6.

8600 1047-506

Reusing Task Variablescccoooiiiiiiii 5-27
Interrogating Task Attributesccccciiiiiiiiii, 5-29
Interrogating Task Statusccccovviviiiiiiiii e 5-30
File Attribute INQUINY ... 5-31
Interrogating Complex Task Attributescccceevviiiiieiiiiiiieeeicee, 5-31
MYJOB and MYSELF Predeclared Task Variables.............c.ccccceeenn, 5-32
File EQUATIONS ..o 5-33

Causing the Task to Use a Different Input or Output
Bl e 5-34
Changing the Attributes of Files Used by the Task 5-35
Causing the Task to Read from a Data Specification......... 5-35
How the Task Can Override WFL File Equations............... 5-35
Resolving Repeated File Equations to the Same File 5-36
Global File ASSIGNMENT......ciuiiiiiiiiieeece e, 5-37
Using Remote Filesuuiiiiiiii 5-38
File Attribute ASSIGNMENT.....uuiiiii e 5-39
Device Kind ASSIGNMENToooiiiiiiiiii e 5-40
Serial Number ASSIgNMENToooiiii e 5-41
Using File AttribUteSoooiiiii 5-42
Assigning File Attributescccoooiiiiiii 5-44
Interrogating File Attributescccocoiii, 5-45
Nonresident FIlesooiiiiiiii b-46
Library EQUation ... 5-48
Overriding WFL Library Equationsccccccooeeiiieiiiieenne, 5-48

Resolving Repeated Library Equations to the Same

LIBrary .o 5-49
Database EqQUation ..o 5-50
Local Data Specificationsccccuviiiiiiiiiiiiiie e, 5-51
Statements ... e s 6-1
OVEIVIBW ..o 6-1
WEFL Statement GroURINGS.......vviiiiiiiiiieiiiee et 6-2
ABORT StatemMent.......ooi i 6-5
ACCESS StatemMeNt......vviiiiiiiiii e 6-6
ADD StatemeNTo, 6-7
ALTER StatemeNnt.......oooiiiiiiiiiiiiec e 6-8
Archive SUDSYSTEM ... 6-17
ARCHIVE Backup Statementccccoevvviiiiviiiiiecciieeee, 6-19
ARCHIVE Statement OptionSccccceovviiiiiiiiiiiieeiieeee 6-22
ARCHIVE Disk Volume.......cuveeieieeceee 6-23
ARCHIVE Disk Volume Attribute List.........cccccoeeviiiiieeennnn, 6-24
ARCHIVE Tape VOIUMEcooviiiiiiiiiicceeee e, 6-25
ARCHIVE Tape Volume Attribute List...........cccccceeiin, 6-26
ARCHIVE CD VOIUME.....oviiiiiiiiiicciieceeeeee e 6-34
ARCHIVE CD Volume Attribute List.........cccooeiiiiiiiiieeee, 6-35
ARCHIVE Task Equation List.........cccoovviiiiiiiiiiiiee, 6-37
ARCHIVE MERGE Statementcccccoeeviiiiviiiiiciiiccee, 6-38
ARCHIVE PURGE Statement........cccccooeviiiiiiiiiieccccee, 6-39
ARCHIVE RELEASE Statementcooocviiiviiiiieiiiecee, 6-40
ARCHIVE RESTORE Statement..........ccccceeevviiiieiiieeee, 6-41
v

Contents

Vi

ARCHIVE ROLLOUT Statementccccovvveeiinns 6-43
AsSIgNMENT StAtEMENTS ..oiiiiiiiiiicce e, 6-46
BIND Statement......coooiiiiiiee 6-48
CASE StatemMentooiiiiieie 6-49
CATALOG Statement......ooeiiiieeieeeeeeeeeeeeeeeeee 6-50
CHANGE Statementooooiiiii 6-52
COMPILE or BIND Statement ... 6-54

Naming the Object Code Fileccccoovviiiiiiiiiiiiii, 6-55

Choosing @ ComMPIlEr ...ccoiiiiiiiiiiii e 6-55

BiNdiNg ..o 6-56

Object Code File Dispositioncoocveveiiiiiiiiiiiieceiee 6-56

Task Variablesccooooiie e 6-57

Compiler Task Equation LiSt.........ccccovvveiiiiiiiiiiiiiiecci 6-58

File, Library, and Database Equations and Task

AtrOULES ... 6-59

Local Data Specifications.........cccccoovvviiiiiiiiiiiiiceeie, 6-60
CompouNnd StatEMENT......ciiiiiiiiiiii e 6-62
COPY or ADD Statement......ccoooviiiiiiiie 6-63

CopYiNG FIlES ..o 6-65

Library MaintenancCecccooiiiiiiiiiiiieie e 6-66

COPY OPtiONS. .o, 6-68

COPY REQUEST .. .eeiiiiiiiiieccee e 6-74

Copying Files from Tape or CD-ROMccccccooviiiiiiinn, 6-95

COPY and ADD Statement Examplescccccveieennn.. 6-105

COPY File Transfer Services.........ccccccci 6-109
CREATE LIBMAINTDIR Statement.........ccoooouiiiiiiieiiiiieeeeeee, 6-121
CRUNCH Statementoooviiiiiii 6-124
DISPLAY Statement......coooiiiiiiiiie e 6-125
DO StatemMeNnt ..o 6-126
GO StatemMeNt ... 6-127
[F Statement ..o 6-128
INITIALIZE Statement ... 6-130
INSTRUCTION Statement.........oooooiiiiiii 6-131
LOCK Statementcoooeieieieeeeee 6-132
LOG Statement ..o 6-133
MKDIR Statement.......oooooiii 6-134
MODIFY Statementooooiiiiii 6-135
MOVE Statement.......ooooiiiiii i 6-137
NUIL StatemMeNnt ..o 6-140
ON StatemeNnt . ..o 6-142
OPEN Statement.......ooooiiiii 6-145
PASSWORD Statement......ccoooiiiiiiieiieieeeee e 6-146
PB Statement. ..o 6-147
PRINT Statementcoooiiiiiii 6-148

Printing Portions of a File........cccoooooiiii 6-151
PROCESS StatemMent 6-1563
PTD Statement.....coooiiiiii i 6-1565
PURGE Statementcooooiiiiiii e 6-156
RELEASE Statement.......coooiiiiiiii e 6-157
REMOVE Statementcoooiiiiiiii 6-158
REPLACE Statement ..o 6-160
RERUN Statementooooiiiiiiii 6-161

8600 1047-506

Contents

Section 7.

Section 8.

8600 1047-506

RESTORE Statementoovviiiiiiiiiiccece e 6-162
Library MaintenancCeccccoooiiiiiiiiiiiiiieee e 6-164
RESTORE Statement OptionScccooevvvviieiiiiiieceiiiee 6-165
RESTORE Tape and CD-ROM Attributes.........cccccoooeeo... 6-166
RETURN Statementcoovviiiiiiiiiiciiiece e 6-169
REWIND Statementcooviiiiiiiiiii e 6-170
RUN Statement . ..o 6-171
SECURITY Statement......cocuviiiiiiiiii e 6-177
START StatemMent. . ..o, 6-181
STOP StatemMeNt ..oooiie e 6-185
Subroutine Invocation Statement..........coovvviiiiiiiiii e 6-186
UNWRAP Statement.......c.oooiiiiiiiiiiiice e 6-189
USER Statementveiiiiiiiiccce e 6-192
VOLUME Statementoooiiiiiiiiiiie e, 6-193
Tape VoIUME SECUTItYoiiiiiiiieciiieeeceee e 6-199

VOLUME ADD Statement with Tape Security
SUDSYSTEM ..., 6-200
WAIT STateMEBNT.....iiiiiiiiiiie e 6-204
WHILE Statement ..o, 6-207
WRAP Statementoooiiiiii e 6-208
EXPresSiONS. . ..o s e e e 7-1
OVEBIVIBW ... 7-1
Boolean EXPreSSIONSiiiiiiiiiiiiii e 7-2
Boolean Primary ... 7-3
INtEger EXPrESSIONS. . .ci it 7-9
Integer Primarny ... 7-10
Real EXPreSSIONS .. 7-13
Real Primary ... 7-14
SHING EXPIreSSIONS ... 7-17
SING Primary ..o 7-18
Mnemonic Primaries ... 7-28
Constant EXPreSSIONSweii e 7-29
Boolean Constant EXpressionccceeevviiieeiiiieeciiiecee 7-30
Integer Constant EXPression........ooccvvvoveiiiiiiiiieeceieeee 7-31
Real Constant EXPressionccc.veoviiiieeiiiieecciicceeie e, 7-32
String Constant EXPression..........ooovvvveeiiiiieeciiiecceee 7-33
Basic CoNStruCtS.......ccocimieccicicicicr i re e s e s e 8-1
OVEBIVIBW ... 8-1
Invalid and Valid CharaCters...........coocviiiiiiiiiiiiice e 8-2
Valid Character Elements............coovviiiviiiiiiccc 8-2
1o =T o {1 TSRS 8-3
CONSTANTS e 8-4
NAMES .. 8-6
File Names, Titles, and DIir€CtOriescooeoeuiieieeee e 8-8
UsIiNG String Primariesc...eeeiiiiii e 8-13
Restrictions on the Use of String Primaries....................... 8-13
Passing Parameters to a Task........cccoooiiiiiiiiiiiii 8-14

vii

Contents

viii

Section 9.

Appendix A.

Appendix B.

Appendix C.

Appendix D.

Index

Copying Multiple Fil€Sccceiiiiiiiiiiiiiccee e 8-15
WFL Control Options.......cccocrrmmmmnmnananamnm s mmanans 9-1
OVBIVIBW .., 9-1
ERRORLIMIT ORtiON . ..iiiiiiiiiiceiiie e 9-2
INCLUDE OPtION ..ot 9-3
[S O] o] 1o o I USSR 9-5
NEWSEGMENT OPtion.....ccviiiiiiiiiiiiiieieee e 9-6
Sample WFL Jobs...... .o A-1
OVEBIVIBW ..o, A-1
Compiling @ Programi.........cocuiiiiiiie e, A-2
INitiating Other JODSoiiiiiiii e A-6
Updating Files ... A-7
Reserved Words, Predefined Words, and Keywords.......... B-1
OVEBIVIBW ..o, B-1
Reserved WOords ... B-2
Predefined Words ... B-2
KEYWOIAS ... B-4
Understanding Railroad Diagramsccoommimiiimiminnnnnnn. C-1
Railroad Diagram CONCEPTS.....coiviiiiiiiiii et C-1

Paths ... C-1

Constants and Variablescocoviiiiiiii e C-2

CONSTIAINTS ... C-3
Following the Paths of a Railroad Diagramc.ccooovviiiiiiiii C-6
Railroad Diagram Examples with Sample Input..........cccccooceiiiiin C-7
Related Product Information.........cccomemmiiiiiiiieeea D-1
.. 1

8600 1047-506

Tables

o oo
o=

C-1.

8600 1047-506

Task Attribute Groupings

.. 5-4
Expressions for Task Attribute INQUINY ... 5-29
File Attribute TYPES ..o 5-42
Expressions for File Attribute INQUINY ... 5-45
Elements of a Railroad Diagramcoooiiiiiiiiiiiii e C-2

Tables

X 8600 1047-506

Section 1
WFL Capabilities

Work Flow Language (WFL) is used for constructing jobs that compile or run programs.
WHEFL includes variables, expressions, and flow-of-control statements that offer the
programmer a wide range of capabilities with regard to task control.

About This Manual

This manual is a complete language reference for WFL users, whether they are
beginning users just learning WFL, or experienced users who need to check on the
details of a particular construct.

Purpose and Scope

Although this manual sometimes mentions specific task attributes or file attributes, it
does not describe these attributes in great detail. For detailed information regarding task
attributes, refer to the Task Attributes Programming Reference Manual. For detailed
information about file attributes, refer to the File Attributes Programming Reference
Manual.

This manual also mentions some specific system commands that are entered at an
operator display terminal (ODT). For detailed information about these commands, refer to
the System Commands Operations Reference Manual.

Audience and Prerequisites

The audience for this manual consists of programmers and operators who need to write
jobs that initiate and control tasks.

The user is assumed to have had prior experience with programming in a block-
structured language (for example, ALGOL, COBOL, RPG, or some other block-structured
language). However, there is no single programming language the user needs to know to
understand this manual. Additionally, the user is assumed to be familiar with ClearPath
MCP systems, at least to the extent of knowing how to create and edit files by using
CANDE or the Editor.

If you are not familiar with ClearPath MCP systems, you should first read the MCP/AS
System Administration Guide and the MCP/AS System Operations Guide. If you are not
familiar with the concepts of process initiation and process control, you should first read
the Task Attributes Programming Reference Manual. If you prefer to learn by example,
consider reading WFL Made Simple.

8600 1047-506 1-1

Overview of WFL

How to Use This Manual

This manual is intended primarily for reference, although a new user can learn a great
deal about WFL by reading the first five sections. Section 6, “Statements,” begins with a
functional grouping of the various WFL statements, and then presents descriptions of
the statements in alphabetical order for quick reference.

Railroad diagrams are used to illustrate WFL syntax. If you are not familiar with this type
of syntax notation, you should read Appendix C, “Understanding Railroad Diagrams.”

Some WFL constructs share a common syntax. In certain instances, these constructs
share the same railroad diagram. For example:

<day interval>
<mm>
<dd>

—L/Z\—<digit |

The syntax for many WFL constructs is rather complex. To show an appropriate level of
detail, most railroad diagrams use basic constructs that are explained elsewhere in the
manual. You can quickly locate the more detailed syntax for these subordinate constructs
using the index.

Overview of WFL

1-2

WHEFL is used for constructing jobs that compile or run programs. WFL is a true
programming language with its own compiler that either produces an object code file
used in running a job or executes a job interpretively. A WFL job is always recompiled
each time it is run.

WEFL can initiate programs that are written in any of the languages accepted on A Series
systems. It is a high-level language with flow-of-control structures and subroutines
analogous to those found in ALGOL. However, WFL includes features related to task
control that would be difficult or impossible to duplicate in any of the other available
languages.

One advantage to initiating tasks through WFL instead of through CANDE or some other
means is that a WFL job is automatically restarted if it is interrupted by a halt/load. This
capability is discussed under “Job Restart after a Halt/Load” in Section 2.

WEFL accepts jobs from a large variety of sources. With a few exceptions, identical jobs
can be presented to WFL from all of the available sources. Section 2, “Job Initiation,”
describes the different sources from which WFL will accept jobs.

WEFL supports the MultiLingual System (MLS). All error or warning messages given by
the WFL compiler can be translated into another language with the Message Translation
Utility. For more information, refer to the MLS Guide and the MISGTRANS Operations
Guide.

8600 1047-506

Task Initiation

WEFL and the MCP must be the same release level to function properly. If the release
levels are not the same, WFL waits on an AX condition before freezing. It is possible to
proceed with a mismatched WFL by entering AX OK, but unexpected results might
occur. To declare a WFLSupport library that is the same release level as the MCP, use
the System Library (SL) command. To terminate the waiting WFLSupport library, enter
AX DS or use the Unlock (LP-) command and the Discontinue (DS) command.

The following pages outline the various capabilities of WFL and present example WFL
jobs. While most of the WFL statements will be mentioned here, you should refer to
Section 6, “Statements,” for a more complete description of a particular statement.

Task Initiation

The two basic capabilities of WFL are compiling and running programs. The two WFL
statements that correspond to these capabilities are called:

e COMPILE

¢ RUN

Other Task Initiation Statements

The other WFL statements that initiate tasks include:

e COPY and ADD for copying files

e BIND for invoking the Binder

e PB for running the SYSTEM/BACKUP utility

e PTD for initiating peripheral testing routines

e LOG for running the LOGANALYZER utility

e START for initiating other WFL jobs from the current job

Tasks initiated by any of these statements are executed serially; that is, the job waits for
the task to complete before continuing on to the next statement. However, any task can
be made to run asynchronously by preceding the task initiation statement with the word
PROCESS. Asynchronous tasks run in parallel with the job.

The START statement normally causes the job to be compiled synchronously and
executed asynchronously. A PROCESS START causes both the compile and execution to
occur asynchronously with the job.

An asynchronous task can also be initiated by a subroutine invocation statement that

occurs within a PROCESS statement. A subroutine invocation statement normally does
not initiate a task.

8600 1047-506 1-3

Task Initiation

Example

The following example shows a simple form of the COMPILE and RUN statements:

?BEGIN JOB RUNPROG;
COMPILE (JONES)OBJECT/ALGOL/TEST WITH ALGOL LIBRARY;
COMPILER FILE CARD(TITLE=ALGOL/TEST ON MYPACK);
RUN (JONES)OBJECT/ALGOL/TEST;
?END JOB.

The COMPILE statement in this example specifies that the object code file titled
(JONES)OBJECT/ALGOL/TEST is to be saved. (Other variations in the COMPILE
statement can be used to specify whether the object code file is to be run immediately,
saved and run immediately, or whether the source file is to be compiled for syntax only.)

The line beginning COMPILER FILE CARD is a file equation that tells the ALGOL compiler
the name of the source file to use as input. The RUN statement causes the program to
execute. The file title specified in the RUN statement must be the title of the object code
file (not the source file) of the program.

8600 1047-506

Task Initiation

Task Specifications
The following types of specifications can be included in a task initiation statement:

e Task attribute assignments
e Library equations

e File equations

o Database equations

e |ocal data specifications

Many task attributes with very diverse functions are available through WFL. Some of
them can be used to access information about the task execution, such as accumulated
processor and I/O time. Other functions alter the way the program is run, such as
specifying the priority to be assigned to a task or the usercode a task is to run under.

The task attributes available through WFL are listed under “Task Attributes” in Section 5.
For a more detailed description, refer to the task attribute descriptions in the Task
Attributes Reference Manual.

File equations can be used to modify attributes of the files used by a program, or can
cause the program to use different files than it normally would have. For example, file
equations can cause the program to read input from a different source than is specified
in the program, and write output to a different destination than is specified in the
program. This feature of WFL eliminates the need for many time-consuming alterations
and recompilations of existing programs.

For more information, see "File Equations” and “Task Equation” in Section 5 for further
information. Individual file attributes are described in the File Attributes Reference
Manual.

Examples

In the following example, the task attribute PRIORITY specifies the priority to be
assigned to the task:

?BEGIN JOB COMP/DATA;
RUN (RAJA)OBJECT/COMP/DATA; % Run the desired program with
PRIORITY=50; % a priority of 50
?END JOB.

The following example uses a file equation:

?BEGIN JOB WFLTEST;
RUN (WALLY)OBJECT/ALGOL/TEST;

FILE TERMIN(TITLE=WFLIN,KIND=DISK); % Causes the program to
read from the disk file
WFLIN, instead of the
file TERMIN

N o

N

?END JOB.

8600 1047-506 1-b

Task Initiation

Data Specifications

Data specifications supply input to a program that expects input from a card reader file
during execution; that is, a file declared in the program as being of kind READER.

A data specification can also be used in place of any input file the program reads by
file-equating the title of the input file to the title of the data specification in the WFL job,
and by declaring the type of input file to READER.

Two kinds of data specifications are available:

e |ocal data specifications

e Global data specifications

A global data specification can be declared at the start of a job, and can be used by more
than one task.

Example

The following example illustrates a job that uses a global data specification:

?BEGIN JOB INTREF;

DATA INPUT % Begin global data specification
7
11

? % End global data specification

RUN (WENDY)OBJECT/INT/REF;

FILE TERMIN(TITLE=INPUT,KIND=READER); % Causes the program to
read from the global
data specification INPUT
instead of the file
TERMIN.

N P o

o

?END JOB.

1-6 8600 1047-506

Task Initiation

Flow of Control Statements

The WFL jobs in the examples presented thus far have been set up to execute
statements in sequential order. However, WFL also enables you to execute statements
conditionally or repeatedly by using flow-of-control statements. The flow-of-control
statements include:

e |F

e« DO

e WHILE
e CASE
e GO

The IF statement executes a certain statement only if the value of a particular Boolean
expression is TRUE.

The DO statement and the WHILE statement are both used to cause repeated execution
of a statement or set of statements. Both statements evaluate a Boolean expression
before each repetition is initiated, to decide whether to do it again. The DO statement
differs from the WHILE statement in that it checks the Boolean expression at the end of
the loop instead of at the start; the statements included in the loop are therefore
guaranteed to execute at least once.

The CASE statement chooses one of several possible alternative actions, depending on
the value of the variable or case expression that follows the word CASE.

Whenever the syntax of a flow-of-control statement calls for a statement to be included,
that statement can be another flow-of-control statement. Therefore, flow-of-control
statements can be nested to form complex flow-of-control structures.

Processing Data

The use of conditional statements implies that the job is going to be processing some
data that can vary at run time. The following kinds of data can vary at run time:

o WHFL jobs that are stored on disk and initiated by a START statement can have
parameter values passed to them.

e During the course of a WFL job, the job can inspect the values of task attributes
associated with tasks that were initiated in the job. Certain task attributes record task
history. The WFL job can then make decisions about what to do next based on the
history of the task that was initiated.

e The job can also inspect the values of file attributes or test whether a file with a
given title is resident, and then make decisions accordingly.

e The job can include ACCEPT functions that will prompt you to supply input at run
time and will cause the job to wait for your reply.

8600 1047-506 1-7

Task Initiation

Examples

1-8

The following WFL job illustrates a use of the IF statement:

?BEGIN JOB WFLTEST;
TASK COMPOK;
DISPLAY "COMPILING NOW";
COMPILE (SFL)OBJECT/SORT/PROC WITH ALGOL [COMPOK] LIBRARY;
COMPILER FILE CARD(TITLE=SORT/PROC ON MYPACK);
IF COMPOK IS COMPILEDOK THEN
BEGIN
DISPLAY "COMPILED SUCCESSFULLY";
DISPLAY "RUNNING SORT/PROC";
RUN (SFL)OBJECT/SORT/PROC;
END
ELSE
DISPLAY "COMPILE NOT SUCCESSFUL --- WILL NOT RUN";

?END JOB.

This example first compiles a program, then inspects a task variable named COMPOK to
see whether the compile was successful. If the compile was successful, the Boolean
expression COMPOK IS COMPILEDOK evaluates to TRUE. In this case, the program that
was compiled will be run. If the compile was not successful, then no attempt is made to
run the program.

The DISPLAY statements in this example display messages at the ODT (and also at the
CANDE terminal where the job was initiated).

The following example illustrates one use of the CASE statement:

?BEGIN JOB WFLTEST(STRING COMPTYPE);
CASE COMPTYPE OF

BEGIN

("SYNTAX"): COMPILE (MAINT)OBJECT/ORD WITH COBOL74 SYNTAX;
COMPILER FILE CARD(TITLE=0RD,KIND=DISK);

("Go"): COMPILE (MAINT)OBJECT/ORD WITH COBOL74 GO;

COMPILER FILE CARD(TITLE=0RD,KIND=DISK);

("LIBRARY"): COMPILE (MAINT)OBJECT/ORD WITH COBOL74 LIBRARY;
COMPILER FILE CARD(TITLE=ORD,KIND=DISK);

("LIBRARY-GO"): COMPILE (MAINT)OBJECT/ORD WITH COBOL74 LIBRARY GO ;
COMPILER FILE CARD(TITLE=ORD,KIND=DISK);

ELSE: DISPLAY "INCORRECT COMPILE TYPE ENTERED";

END;

?END JOB.

In this example, a WFL job has been constructed that enables a user to compile a
particular file in any of four possible ways according to the string parameter specified in
the START statement.

The following table lists four START statements, each with a different string parameter

specified and the results of each statement.

8600 1047-506

Task Initiation

Statement Result

START WFLTEST(”SYNTAX") Compiles the file ORD to check for syntax errors,
but does not save the object code file.

START WFLTEST("GO") Compiles and runs the file ORD, but does not
save the object code file.

START WFLTEST(”LIBRARY") Compiles the file ORD, and saves the object code
file as (MAINT)OBJECT/ORD.

START WFLTEST(”LIBRARY-GO") Compiles the file ORD and runs the object code

file. The object code file is saved as
(MAINT)OBJECT/ORD.

The following is an example of the DO statement:

?BEGIN JOB WFLTEST(INTEGER REPS);
INTEGER INTREPS := 0;
DO BEGIN
RUN (WALLY)OBJECT/STOCK/PLAN;
INTREPS := INTREPS + 1;
END
UNTIL INTREPS = REPS;
?END JOB.

This job runs the program (WALLY)OBJECT/STOCK/PLAN the number of times specified

in the parameter of the START statement that initiated this job. For instance, START
WFLTEST(7) runs the program (WALLY)OBJECT/STOCK/PLAN seven times.

8600 1047-506 1-9

Subroutine Control

Subroutine Control

A WEFL job can include any number of subroutines, and each subroutine can contain
further subroutine declarations within itself. In addition, a subroutine can contain
statements invoking itself, or other subroutines in the WFL job. (The rules concerning
which subroutines can be invoked from a given subroutine are discussed under “Scope
of Declarations” in Section 4.)

WEFL enables an identifier to be associated with a statement or group of statements. This
can be accomplished by using the subroutine declaration. Once a subroutine has been
declared, it can be invoked in the WFL job by using the identifier associated with it. The
subroutine is a convenient shorthand for referring to a piece of code that the WFL job is
going to invoke repeatedly.

Examples

The WFL subroutines can be invoked with parameters that pass values to the
subroutines. Consider the following example:

?BEGIN JOB WFLCHART(REAL VALUE1, REAL VALUE2, REAL VALUE3);
SUBROUTINE RUNCHART(REAL RVAL VALUE); % Beginning of subroutine
BEGIN % declaration

RUN (PORT)CHART/COL/NAV (RVAL);
END RUNCHART; % End of subroutine
% declaration
% WFL job statements follow
DISPLAY "RUNNING WITH FIRST VALUE SUPPLIED";
RUNCHART (VALUE1) ;
DISPLAY "RUNNING WITH SECOND VALUE SUPPLIED";
RUNCHART (VALUE2) ;
DISPLAY "RUNNING WITH THIRD VALUE SUPPLIED";
RUNCHART (VALUE3) ;
?END JOB.

This job is initiated with a START statement that has three real numbers specified as
parameters. The job then calls on the subroutine RUNCHART three times, each time
supplying a different parameter value to the subroutine. This method saves code
repetition when a lengthy subroutine is called.

1-10 8600 1047-506

Subroutine Control

The following example is a subroutine that invokes itself:

?BEGIN JOB WFLINV(INTEGER VALUE1, INTEGER VALUE2);
SUBROUTINE DISPLAYONE;

DISPLAY "IT WORKED ALL RIGHT";
SUBROUTINE RUNINV(INTEGER IVAL1);
BEGIN

RUN (PARTS)OBJECT/OLD/INV(IVAL1);

STATION=MYSELF(SOURCESTATION);

DISPLAYONE;

IVALL := IVAL1 + 1;

IF IVAL1 LEQ VALUEZ2 THEN

RUNINV(IVAL1);

END;

RUNINV(VALUEL);
DISPLAYONE;

?END JOB.

This job accepts two integer values as parameters. The job uses the first job parameter
as a parameter in the RUN statement for the program OBJECT/OLD/INV. This program is
run several times, with an increase in the value of the parameter each time, until the
parameter equals the value of the second parameter that was supplied to the job.

This example shows several kinds of subroutine invocations that are available. The outer
block of the WFL job calls on the subroutines RUNINV and DISPLAYONE. The subroutine
RUNINV also calls on the subroutine DISPLAYONE, which was previously defined.
Further, the subroutine RUNINV calls on itself, so that it will continue repeating as long
as the expression in the IF statement evaluates to TRUE.

8600 1047-506 1-11

Subroutine Control

The following example illustrates the use of the RETURN statement as a means of
exiting a subroutine early:

?BEGIN JOB WFLTEST(INTEGER VALUEL);
TASK T;
SUBROUTINE RUNTEST(INTEGER IVAL1);
BEGIN
RUN (WALLY)OBJECT/TEST(IVAL1) [T];
IF T ISNT COMPLETEDOK THEN
RETURN;
IVALL := IVAL1 + 1;
IF IVAL1 LEQ 7 THEN
RUNTEST(IVAL1);
END;

RUNTEST (VALUE1) ;
?END JOB.
This example runs the program (WALLY)OBJECT/TEST repeatedly. However, if the task
variable T indicates the program did not run successfully, the RETURN statement is
invoked to cause the subroutine to be exited. The remaining statements in the

subroutine will then be bypassed, and control will pass back to the parent of the
subroutine (in this case, the outer block of the WFL job).

1-12 8600 1047-506

Task Control

Task Control

Several WFL statements are available to control the execution of a task. These
statements determine

When a task is run
When a task is terminated
How a task responds to error conditions

What usercode a task runs under

These statements are referred to broadly as task control statements.

Task Control Statements

Task control statements include the following:

ABORT
STOP
WAIT
ON
USER

The ABORT and STOP statements are available for terminating a job or task prematurely.
The difference between the two statements is that the ABORT statement displays
messages indicating that the job or task was terminated abnormally, while the STOP
statement indicates a normal termination. Generally these statements are used as part of
an |IF statement or CASE statement, so that the job or task is terminated only if the
specified conditions are met.

The WAIT statement suspends job execution until some specified condition is met. The
uses of the WAIT statement include the following:

To cause the job to wait for an asynchronous task to complete, or to wait until the
asynchronous task achieves a specified state

To cause the job to wait until a file becomes resident

To cause the job to wait for an OK message from the user

8600 1047-506 1-13

Task Control

Examples

This example illustrates a use of the ABORT statement:

?BEGIN JOB WFLTEST;

TASK COMPOK;

COMPILE (WALLY)OBJECT/MENU/PLAN WITH PASCAL [COMPOK] LIBRARY;
COMPILER FILE CARD(TITLE=MENU/PLAN ON MUNCHPACK);

IF COMPOK IS COMPILEDOK THEN
RUN (WALLY)OBJECT/MENU/PLAN

ELSE
ABORT "UNSUCCESSFUL COMPILE";

?END JOB.

This job first attempts to compile the source file MENU/PLAN. If the compile was
successful, the job will run the object code file that was the result of the compilation. If
the compile was not successful, the job is terminated abnormally by the ABORT
statement and the message “UNSUCCESSFUL COMPILE"” is displayed.

The following example illustrates a use of the WAIT statement:

?BEGIN JOB WFLTEST;
TASK TEST1, TESTZ;
PROCESS RUN (WALLY)OBJECT/SORTIT [TEST1];
PROCESS RUN (WALLY)OBJECT/SORT2 [TEST2];
DO
WAIT
UNTIL TEST1 IS COMPLETED AND TEST2 IS COMPLETED;
RUN (WALLY)OBJECT/COLLATE;
?END JOB.

In this example, two asynchronous tasks are started by PROCESS statements. A
DO-UNTIL loop follows, instructing the job to wait until both asynchronous tasks are
completed before continuing.

The USER statement provides another form of task control. This statement changes the

usercode the WFL job is running under to the specified usercode. The tasks initiated by
the WFL job will then inherit the new usercode, and its associated privileges.

1-14 8600 1047-506

Task Control

The following is an example of the USER statement in a job:

?BEGIN JOB RECEIVABLE;
RUN OBJECT/INTEREST;

USER=SCROOGE/CALC;
RUN OBJECT/PENALTIES;
RUN (CRATCHIT)OBJECT/CREDIT;

?END JOB.

In this example, the first RUN statement runs the program OBJECT/INTEREST under the
job’s original usercode, which was determined at the time of job initiation. The USER
statement then changes the job’s usercode to usercode SCROOGE, which has CALC as
its password. The remaining two programs that the job initiates are then run under
usercode SCROOGE, even though the object code file for the last one resides under
usercode CRATCHIT.

The usercode of the job can also be set by specifying the USERCODE task attribute as a

job attribute, and the usercode for an individual task can be set by specifying the
USERCODE for that task.

8600 1047-506 1-15

File Handling

File Handling

Although a WFL job cannot read from or write to files itself, it provides considerable
control over the files that programs initiated through WFL can read from or write to. The
main tool that provides this control is file equation, which is discussed under “Task
Initiation” earlier in this section. In addition, there are several statements available in
WEFL that provide even more flexibility in file handling.

File Handling Statements

Files can be opened in WFL by using the OPEN statement. The file specified in this
statement is opened with the I/O capabilities specified in the NEWFILE attribute,
FILEUSE attribute, or other attributes of the file. If the NEWFILE attribute or the
FILEUSE attribute is not assigned, an attempt is made to open the specified file for both
input and output. Refer to the File Attributes Reference Manual for more information
about file attributes.

The following table lists five statements that close files in different ways.

Statement Result

CRUNCH Closes a file and returns the unused portion of the last row of the
file to the system. Once a file is crunched, it takes up less space,
but can no longer be expanded. This statement is used for disk files
only.

LOCK Closes the file and, except for disk or pack files, saves the unit the
file resides on so that it is inaccessible to the system.

PURGE Removes a file and frees the area it was occupying for reuse.
RELEASE Closes and releases a file.
REWIND Closes a file and rewinds it. For a magnetic tape file, this means that

the tape is rewound. For a disk file, the record pointer is reset to the
first record of the file.

A WFL job can interrogate the attributes of a file. To do this, the file must first be
declared in the job with certain minimal attributes specified. In addition, the file must be
opened.

8600 1047-506

File Handling

Examples

The following job examines a file to determine whether it is a COBOL74 or COBOL85
file, and chooses the corresponding compiler:

?BEGIN JOB COBOLCOMP(STRING SYMBOL);

FILE SYMBOLF;

STRING COMPNAME;

SYMBOLF (TITLE=#SYMBOL,KIND=DISK,NEWFILE=FALSE,

DEPENDENTSPECS=TRUE) ;

OPEN (SYMBOLF);

IF SYMBOLF (FILEKIND) = "COBOL74SYMBOL" THEN
COMPNAME := "COBOL74"

ELSE
COMPNAME := "COBOL85";

COMPILE OBJECT/#SYMBOL WITH #COMPNAME LIBRARY GO;
COMPILER FILE CARD (TITLE=#SYMBOL,KIND=DISK);

?END JOB.

The following subroutine uses the file opening and closing capabilities of WFL to create
dummy files (empty files that can be used to indicate that some particular event has
occurred in the job). Because subroutines cannot contain file declarations, file F is
declared globally.

SUBROUTINE MAKE(STRING FILENAME);

BEGIN
F (TITLE = #FILENAME, KIND = DISK, NEWFILE = TRUE);
OPEN (F);
LOCK (F);

END MAKE;

Refer to “Job Restart after a Halt/Load"” in Section 2 for an example of why you might
want to use a job to create dummy files.

8600 1047-506 1-17

File Management

File Management

WHEFL provides several statements for managing files. These include the following:

e COPY statement

e ADD statement

e CHANGE statement
¢ REMOVE statement
e SECURITY statement

File Management Statements

The COPY statement copies files on disk or tape. The new copy of a file can be created
with a different usercode or file name, and the file can be copied to other disk or tape
units using library maintenance or to other hosts using distributed systems services
(DSS).

The ADD statement also copies files. However, the ADD statement will not copy a file if
a file with the same title already resides at the destination. Also, the destination specified
must be a disk. The ADD statement is useful for adding a directory of files to a disk
where some of the files are already resident and are to be preserved.

The CHANGE statement changes the names of files on a disk.

The REMOVE statement removes files from disk.

The SECURITY statement changes the security specifications of files on a disk. The

various security settings affect whether the file can be read or changed by tasks running
under other usercodes.

8600 1047-506

File Management

Examples

The following example copies a file from a disk to a tape, specifying a different usercode
and file name for the new copy:

COPY (ID)FILEA AS (JONES)NEWF FROM ORDS (DISK) TO SAVEA (TAPE);
The following example copies a directory of files to a disk on another host:
ADD (ID)F/= FROM ORDS (DISK) TO SAVEA (DISK, HOSTNAME=MLM);

The following example changes the name of a directory of files residing on a pack named
STORPACK:

CHANGE COMPJOBS/= ON STORPACK TO QCOMPS/=;
The following example removes files from two different packs:
REMOVE MAXERRS FROM PARTS, BADERRS FROM STORPACK;

The following example changes the security of a file to PUBLIC (thus enabling any user
free access to the file):

SECURITY NOVA/DATA/NINER PUBLIC;

8600 1047-506 1-19

Communication

Communication

WEFL includes several statements that help inform you about what a job is doing. These
statements include the following:

e DISPLAY statement

e ACCEPT function

e INSTRUCTION statement
e FETCH specification

In addition, these statements enable input to modify the activity of a job.

Communication Statements

1-20

The DISPLAY statement can be used to display a message at a specific point during job
execution. The DISPLAY message appears at the ODT, in the job log, and at the CANDE
or MARC station that initiated the job (if it was initiated through CANDE or MARC).

The ACCEPT function will ask you to supply input to the job while it is running. The
ACCEPT function will display the specified message and will wait for you to return a
value by way of the AX (Accept) system command.

The INSTRUCTION statement stores information about the job in a form that you can
display at any time during job execution by using the IB (Instruction Block) system
command.

The FETCH specification stores a message that you can display by using a PF (Print
Fetch) system command, and suspends initiation of the job until the message has been
displayed. The FETCH specification is intended to be used for informing you about what
resources are required by the job.

8600 1047-506

Communication

Examples

The following example includes DISPLAY statements:

?BEGIN JOB WFLTEST(STRING DAY);
DISPLAY "CALL WILLIS AT EX. 3574 IF RUN-TIME ERRORS OCCUR";
RUN (ODDCOM)OBJECT/COPY/FACTORS (DAY) ;
DISPLAY "GET INPUT FROM ARCH. TAPE 143 IF FILE REQUIRED";
RUN (ODDCOM)OBJECT/FT/VERIFY(DAY);

?END JOB.

This example runs two programs that are each preceded by a display message informing
the user what to do if certain conditions occur.

The following example shows a use of the ACCEPT function:

?BEGIN JOB;
STRING FN, PK;
FN := ACCEPT("ENTER NAME OF FILE DESIRED");
PK := ACCEPT("ENTER NAME OF PACK DESIRED");
RUN (OPR)DAILY/UPDATE;
FILE IN (TITLE = #FN ON #PK);
?END JOB.

In this example, the values submitted by you are used in a file equation for a RUN
statement. The job could have been written to receive the same values from you by way
of a start parameter list. However, in that case you would have to know in advance what
parameters to supply. The ACCEPT function, on the other hand, displays a message
informing you what type of information to enter next.

8600 1047-506 1-21

Job Format

Job Format

The following features are available to increase the readability of a WFL code:

o Free formatting
e Comments

e Subroutine ending identifiers

Free formatting enables WFL constructs to be entered in any column of a line and
continue over any number of lines. You can use varying amounts of indentation to
indicate the nesting of constructs. However, the invalid character must appear in the first
column.

A percent sign (%) can appear in any column of a line, and will cause the WFL compiler
to ignore the remainder of the line, which can be used for comments.

The identifier that identifies a subroutine can be repeated after the END statement for
that subroutine. In cases where subroutines are nested, this feature helps eliminate
confusion about which subroutine is being ended.

Example

1-22

The following example illustrates the use of a nested subroutine ending identifier:

SUBROUTINE SUBOUTER; % Beginning of outer subroutine

BEGIN
SUBROUTINE SUBNESTED; % Beginning of nested subroutine
BEGIN
END SUBNESTED; % End of nested subroutine

END SUBOUTER; % End of outer subroutine

8600 1047-506

Section 2
Job Initiation

Overview

A program written in WFL is referred to as a job. During execution, a job normally
executes as a task with its own object code file. However, certain statements can be
executed interpretively. This means that no object code file is produced by the WFL
compiler; the statement is executed directly by the WFL compiler.

The statements ALTER, CHANGE, PRINT, REMOVE, RERUN, SECURITY, and START are
executed interpretively in the following situations:

e When one of the above statements is the only statement appearing after the CANDE
WFL command

¢ \When one of the above statements (except the PRINT statement) is entered
individually at an ODT, rather than as part of a job

e \When a job originating from a user program by way of an array consists only of one
of the above statements

These situations are described in detail in “START and WFL Commands from CANDE
Sessions,” “Operator Display Terminals (ODTs),” and “User Programs in Other
Languages” later in this section.

A WFL job can initiate other tasks. Examples of tasks are compilations and executions of
user programs. The job task controls the execution of the tasks it initiates.

8600 1047-506 2-1

Sources for Job Initiation

Sources for Job Initiation

The following pages describe how to initiate WFL jobs from each of the possible
sources, and discuss limitations specific to each source.

START and WFL Commands from CANDE Sessions

To run WFL jobs from a CANDE session, use the WFL command or the START
command.

WFL Command

2-2

The WFL command causes CANDE to pass any following text to the WFL compiler. This
enables a user to type WFL, followed by a WFL statement or even a job, and transmit
the entire job at once. The WFL job can extend over any number of lines.

The phrases BEGIN JOB and END JOB can be omitted from a job entered after the WFL
command in CANDE. Refer to Section 3, “Job Structure,” for the formal syntax of a job.

Note: Jobs submitted through the CANDE WFL statement cannot include a CLASS,
FETCH, or STARTTIME specification. In addition, the job cannot contain data
specifications, or the INCLUDE control option. Any WFL control options must be
followed by a semicolon (;) to separate them from the rest of the job.

When WFL jobs are initiated from a CANDE session in this way, any messages
generated by the job are displayed at the terminal where the job originated, as well as at
the ODT. The terminal also queues CANDE commands entered while the WFL job was
running and executes them after the job is completed. CANDE control commands the
exception to this rule; they are executed immediately.

The statements CHANGE, PRINT, REMOVE, RERUN, SECURITY, and START are
executed interpretively if one of them is the only statement following the CANDE WFL
command. This means that no object code file is produced by the WFL compiler in these
cases; the statement is executed directly by the WFL compiler.

8600 1047-506

Sources for Job Initiation

Storing Jobs in Disk Files

WEFL jobs can also be saved in files on disk. To do this, you should first use the CANDE
MAKE command to create a file of type JOB. You can then enter the complete job into
the file, either in CANDE, the Editor, or some other text entry utility. For further details,
refer to the CANDE Operations Reference Manual and the Editor Operations Guide.

The question mark (?) preceding the BEGIN JOB and END JOB constructs in column 1
can cause strange results in some text entry utilities. In these cases, it might be
necessary to enter the question mark in column 2, and shift the line to the left later.

More than one job can be stored in a single disk file. The jobs will be compiled and
executed in the order that they appear in the file.

Note: If afile contains more than one job, none of the jobs can include a job parameter
list.

START Command

A WFL job saved in a file can be initiated using the CANDE START command, followed
by the name of the file, and any parameters being passed to the WFL job. Refer to the
CANDE Operations Reference Manual for the detailed syntax of this command.

The START command passes the contents of the file directly to the WFL compiler for
processing. The contents of the file must be a complete WFL job, including the BEGIN
JOB and END JOB constructs. The job can include data specifications, unlike WFL jobs
submitted through the CANDE WFL command.

Any messages from the job are displayed at the originating terminal as well as at the

ODT. However, the terminal remains free to accept any CANDE commands that are
entered and responds immediately, even if they are not control commands.

8600 1047-506 2-3

Sources for Job Initiation

Other CANDE Commands

2-4

The following CANDE commands directly invoke WFL statements that have the same
names:

e ADD

COPY

PRINT

START

Therefore, it is not necessary to precede these commands with WFL. Several other
CANDE commands have the same names as WFL statements, but do not invoke WFL,
and in some cases have different syntax or functions than their WFL counterparts. These
statements include:

e ACCESS e PASSWORD
e BIND e REMOVE

e CHANGE e RUN

e COMPILE e SECURITY

e« DO e STOP

e LOG

To invoke these WFL statements in CANDE, you must precede the statements with the
CANDE WFL command, or include them in a job file and initiate the job with a START
command.

Note: \WFL jobs originated from CANDE sessions inherit the usercode of the CANDE
session unless a USERCODE job attribute specification is included in the job. The job
inherits the family specification associated with the usercode it is running under unless a
FAMILY job attribute specification is included in the job.

8600 1047-506

Sources for Job Initiation

START Statements from Running WFL Jobs

Running WFL jobs can initiate other WFL jobs through the WFL START statement, which
is described in detail in Section 6, “Statements.” The WFL START statement has the
same effect as the CANDE START statement.

Only jobs stored on disk can be initiated by the START statement. Such a job can include
any of the WFL constructs defined in this manual.

Once the job has been started, it has no further connection with its parent job.
Discontinuing the parent job does not affect the job that was started from it, and
termination of the started job also does not affect the parent job.

Any messages generated by the started job are directed to the same source as
messages from the parent job. For example, if the parent job is initiated from CANDE,
then messages from both the parent job and the job started by the parent job would
appear at the originating terminal.

Note: The started job inherits the usercode and family assigned to the parent job
unless the started job includes USERCODE or FAMILY job attribute specifications.

8600 1047-506 2-5

Sources for Job Initiation

Operator Display Terminals (ODTs)

2-6

Initiate WFL jobs from an ODT using one of the following methods:

e Use the START statement to initiate a job stored in a disk file.
e Type the complete job at the ODT and transmit the job.

When a complete job is entered at the ODT, it should begin with the BEGIN JOB
construct. It is not necessary to append the END JOB construct to the job, since
WEFL will add this automatically.

Note: A complete job entered at an ODT cannot include data specifications. Any
WHFL control option must be followed by a semicolon (;) to separate it from the rest
of the job.

A number of WFL statements are recognized by the CONTROLLER and are passed to
WEFL automatically, even if they are not preceded by a BEGIN JOB heading. These
statements include the following:

e ABORT e BIND e PASSWORD e SECURITY
e ACCESS e CATALOG e PROCESS e START

e ADD e CHANGE e PTD e USER

e ALTER e COMPILE e REMOVE e VOLUME
e ARCHIVE e COPY ¢ RERUN

e BEGIN e DISPLAY ¢ RUN

A WFL job initiated at an ODT runs without a usercode unless the job that includes a
USERCODE job attribute specification is run from an ODT with TERM USER specified, or
the HU system command has an associated usercode. The HU system command
designates a usercode for certain distributed systems services Host Services requests if
they come from an ODT that has no terminal usercode assigned to it. The TERM USER
system command controls the format of all displays on the ODT, and associates the
usercode with certain requests initiated at the ODT where the command is entered. See
the System Commands Reference Manual for more details on these commands.

Note: The job, and any tasks initiated by the job, will therefore be unable to access files
residing under usercodes unless their security is PUBLIC. In addition, if the job is running
without a usercode, and no FAMILY specification is included in the job, the FAMILY will
default to DISK = DISK ONLY.

The statements ALTER, CHANGE, REMOVE, RERUN, SECURITY, and START are
executed interpretively if entered individually at an ODT (rather than as part of a job).
When this occurs, no object code file is produced by the WFL compiler; the statements
are executed directly by the WFL compiler and do not enter a job queue. Thus, no queue
attributes, such as FAMILY, are inherited by the job or the statement. These particular
statements are treated as privileged if entered in this way, and can be used to affect files
residing under usercodes.

8600 1047-506

Sources for Job Initiation

Menu-Assisted Resource Control (MARC)

WEFL jobs can be initiated through MARC from the action line of a screen that includes
"COmnd"” as one of the screen action hints displayed on line 3, or from the command
input screen, which provides an entry field 15 lines long.

Any WFL statements or a complete WFL job can be initiated from MARC by entering the
word WFL before the statements. The BEGIN JOB and END JOB constructs can be
omitted. However, jobs submitted in this way cannot include data specifications or a
STARTTIME specification.

Note: If WFL control options are included, they must be followed by a semicolon (;). If
any job parameters are included, the job can be compiled for syntax only.

Three WFL statements are recognized by MARC and passed to WFL even if they are not
preceded by WFL. Each statement has the same syntax when it is used in a WFL job.
These statements include:

e START
o COPY
e ADD

Jobs initiated through the START statement can include all of the WFL constructs
defined in this manual. Initiating a WFL job with any of the above statements causes
MARC to enter tasking mode and display the task status screen. Refer to the MARC
Operations Guide for information about how to display and control task progress from
tasking mode.

Distributed Systems Services

WHEFL jobs can be constructed to take advantage of distributed systems services between
systems in several ways. For more information about how to use distributed systems
services, refer to the Distributed Systems Services Operations Guide and the TCFP/IP
Distributed Systems Services Operations Guide.

If a terminal is attached to CANDE, then the names of available BNA hosts can be
displayed using the CANDE ?HN command. The terminal can be transferred to another of
the listed BNA hosts by entering the command:

CONNECT TO <host specification>

When the connection is complete, you can log on under a usercode recognized by the
remote host. While the terminal is connected to the remote host, any commands you
enter are directed to the remote host and executed there. The CANDE WFL and START
commands can thus be used to run jobs on the remote host. The connection is
terminated when you end the session with a BYE command.

8600 1047-506 2-7

Sources for Job Initiation

Even if a terminal is not connected to a remote host, a job initiated at that terminal can
be directed to run at a remote host by beginning the job with the AT <hostname
constant>.

Note: A job including AT <hostname constant> cannot contain a job parameter list or
any BINARY data specifications. Also, the <i> construct before the END JOB construct is
required.

Any messages generated by the job are still routed back to the original terminal, but are
preceded by the name of the system the job is running on.

Examples

The following is an example of a job with an AT <hostname constant> specification. This
job is stored in a file on the user’'s own system. However, when the job is initiated, it will
run on the system named LA15D. The job will also look on LA15D for the object code
files of the tasks that it runs.

?AT LA15D BEGIN JOB RUNNIT;
RUN (WALLY)OBJECT/MAKEIT ON SHIPPK;
RUN (ODCON)SNOBOL/REPL ON ORDSPK;
?END JOB.

Tasks can be made to run on different systems than the parent job by specifying the
HOSTNAME attribute after the task initiation statement. The object code files for the
tasks are also searched for on the system specified by the HOSTNAME attribute.
Messages generated by the tasks are still routed back to the original terminal, but are
preceded by the name of the system the job is running on.

?BEGIN JOB RUNNIT;
RUN (WALLY)OBJECT/MAKEIT ON SHIPPK;
HOSTNAME=SF15B;
RUN (ODCON)SNOBOL/REPL ON ORDSPK;
HOSTNAME=SD9A;
?END JOB.

This job runs on the user’'s own system. However, it initiates tasks that run on systems
SF15B and SD9A, respectively. The job looks for the object code files for those tasks on
the systems that the tasks are run on.

Files can be copied between HMP NX or A Series hosts, BNA hosts, and hosts
connected to a TCP/IP network by using the WFL COPY statement, which can reference
sources or destinations on remote hosts. For example:

?BEGIN JOB COPYDATA;
COPY *SYSTEM/CRUNCHER AS (WALLY)CRUNCHER/TUESDAY FROM ODDPACK
(KIND=DISK,HOSTNAME=SF15B) TO MODPACK (KIND=DISK,HOSTNAME=LA15D);
?END JOB.

2-8 8600 1047-506

Sources for Job Initiation

This example copies a file from the system named SF15B to the system named LA15D.
The two hosts are BNA hosts and the file is transferred using Host Services file transfer
which is part of the distributed systems services.

User Programs in Other Languages

WEFL jobs can be initiated from user programs written in any of several different
programming languages through the use of certain statements. The following table lists
the different programming languages and the statements of each that initiate WFL jobs
from user programs.

Language Language Statement Reference Document
ALGOL ZIP statement ALGOL Programming Reference
Manual, Volume 1: Basic
Implementation
COBOL74 CALL SYSTEM WFL COBOL ANSI-74 Programming
statement Reference Manual, Volume 1: Basic
Implementation
COBOLS85 CALL SYSTEM WFL COBOL ANSI-85 Programming
statement Reference Manual, Volume 1: Basic
Implementation
DCALGOL CONTROLCARD function DCALGOL Programming Reference
Manual
RPG ZIP operation code Report Program Generator (RPG)
Programming Reference Manual,
Volume 1: Basic Implementation

Input submitted from such programs can be in array form or in file form.

Note: |If the job submitted is from a data array contained in the program, the job cannot
contain any data specifications, and any WFL control options included in the job must be
followed by a semicolon ;).

If the job is stored in a file external to the program, it can include any WFL construct
defined in this manual. However, if the job contains a job parameter list, it can only be
initiated by a START statement, which can be submitted in array form.

Jobs initiated from user programs inherit the usercode and associated privileges of the
initiating program.

Jobs originating from a user program by way of an array, and that consist of a single
CHANGE, PRINT, REMOVE, RERUN, SECURITY, or START statement, are executed
interpretively. That is, an object code file is not generated, and the statement is executed
directly by the WFL compiler. These statements are not considered privileged unless the
user program is privileged.

8600 1047-506 2-9

Sources for Job Initiation

Magnetic Tapes

The preferred method for initiating jobs stored in files on tape is to first copy the files
onto disk and then start them. The files can be copied using the WFL COPY statement,
either from CANDE or as part of another WFL job. Once the files are on disk, they are
started using the CANDE START command, a START statement in another WFL job, or
the MARC START command.

If a site is attempting to conserve disk space, the job file can be removed from disk after

each use and recopied from the tape whenever it is needed. The job can even include a
REMOVE statement that would remove its own job file from disk after each use.

8600 1047-506

Job Continuation after a Task Fails

Job Continuation after a Task Fails

A WEFL job can be written to take special action in the event that a task terminates
abnormally. The following features are available:

o The ON TASKFAULT statement can be used to direct the job to execute a particular
statement or set of statements whenever a task of the job fails. Refer to the
explanation of the ON statement in Section 6, “Statements,” for details.

e The STATUS, HISTORYCAUSE, and HISTORYTYPE attributes of a task can be
interrogated after a task terminates. An IF statement or CASE statement can be
used to cause different actions to be taken according to the values of these
attributes. Refer to “Interrogating Task Status” in Section 5 for details on STATUS.
HISTORYCAUSE and HISTORYTYPE are both mnemonic task attributes. Refer to
“Interrogating Complex Task Attributes” in Section 5. Task attributes are also
discussed in the Task Attributes Reference Manual.

e The task state expression can be used to determine whether a task terminated
normally. An IF statement or CASE statement can be used to cause different actions
to be taken according to the value of this expression. Refer to “Boolean
Expressions” in Section 7 for details.

The abnormal termination of a task does not affect the job; the job continues to execute
and proceeds to the statement following the one that initiated the task.

8600 1047-506 2-1

Job Restart after a Halt/Load

Job Restart after a Halt/Load

WEFL jobs interrupted by a halt/load are automatically restarted after the halt/load.
Execution of the job begins where it left off before the halt/load; if a task was in
progress, the task is restarted. Keep the following considerations in mind when writing a
WHEFL job to ensure that it will restart properly after a halt/load.

As a WFL job is executing, information about the job is saved off so the job can be
restarted in the event of a halt/load. The process of saving off the job information is
called job rollout. When a job rollout is done, the values of integer, real, Boolean, and
string variables are saved so that these values can be restored to the correct values
when the job is restarted. If a system halt/load occurs while a job is running, the job will
be restarted by the MCP at the most recent successful job rollout.

In general, a job rollout is attempted before each task is run. This way, only the task that
was executing when the halt/load occurred will have to be restarted. However, there are
some restrictions on when a successful job rollout can be accomplished. If any
asynchronous tasks are active when a job rollout is attempted, the job rollout cannot be
completed and will be skipped. If a job rollout has to be skipped, the job can still be
restarted after a halt/load; however, the previous successful job rollout will be retained as
the current restart point.

In the following example, if a halt/load occurs when OBJECT/PROG2 is running, the job
will be restarted at “job rollout point #2". Thus, the job will be restarted just prior to the
initiation of OBJECT/PROG2.

?BEGIN JOB RESTART/EXAMPLE/1;

% job rollout point #1

RUN OBJECT/PROG1;

% job rollout point #2

RUN OBJECT/PR0OG2; % Executing OBJECT/PROG2 when halt/load occurs
?END JOB.

For the asynchronous task case, consider the following example:

?BEGIN JOB RESTART/EXAMPLE/2;

% job rollout point #1

PROCESS RUN OBJECT/PROGI; % Note: OBJECT/PROG1 is PROCESSED

% job rollout point #2

RUN OBJECT/PROG2; % Both OBJECT/PROG1 and OBJECT/PROG2
% are active when halt/load occurs

?END JOB.

In this example, the job rollout that is attempted at “job rollout point #2" will not be
successful (because the task OBJECT/PROGT1 is active). “Job rollout point #1" will still
be the current restart point. If a halt/load occurs during the execution of
OBJECT/PROGZ2, the job will be restarted at “job rollout point #1".

8600 1047-506

Job Restart after a Halt/Load

A job rollout is attempted before each of the following statements:

o ALTER

e ARCHIVE
e Asynchronous subroutine invocation
e CHANGE
e COMPILE
e COPY

e LOG

e MODIFY
e OPEN

e PRINT

e PTD

e REMOVE
e RUN

e START

o WAIT

If one of the following statements contains an ACCEPT function, a job rollout is
attempted before the statement:

e CASE

e Assignment statement

e DO

o File attribute statement

e |F

e Task attribute statement

e WHILE

A job rollout is also attempted after the WAIT statement. The WAIT statement is the
only statement where a job rollout is executed both before and after the statement. This
occurs because the WAIT statement is often used to synchronize processed tasks, and
attempting the job rollout both before and after the WAIT statement helps to ensure that
a successful job rollout is completed.

8600 1047-506 2-13

Job Restart after a Halt/Load

When waiting for a long task to be completed before initiating a halt/load, it is important
to consider that the job rollout is executed by the WFL job after the task is completed.
Waiting for the task to go to “End of Task” is not sufficient to ensure that the job rollout
is completed. For example:

?BEGIN JOB RESTART/EXAMPLE/3;

% job rollout point #1

PROCESS RUN OBJECT/PROGI;

% job rollout point #2 (not successful because of active task)
WAIT(OK) ;

% job rollout point #3

?END JOB.

If the intention is to wait until OBJECT/PROG1 is completed before halt loading (so
PROG1 will not have to be restarted), it is important to allow “job rollout point #3" to be
executed. The job would restart at “job rollout point #1", which obviously would not be
the desired result.

The following example illustrates how to avoid the potential problem by enabling the job
rollout to be successfully completed before the possible halt/load:

?BEGIN JOB RESTART/EXAMPLE/4;

TASK T1,T2;

PROCESS RUN OBJECT/PROGL [T1]

PROCESS RUN OBJECT/PROG2 [T2]

WAIT (T1 IS COMPLETED);

WAIT (T2 IS COMPLETED)

%%% A successful job rollout will be executed here %%%
WAIT ("Okay to halt/load now", 60);

?END JOB.

However, the contents of most file or task variables are not saved across a halt/load.
They will have the following values:

e Most of the attributes of file variables are returned to what they were immediately
after the original file declaration.

e Most of the attributes of task variables are set to their system default values. This
has the same effect as reinitializing the task variable with the INITIALIZE statement.
Any task attribute assignments that occurred prior to the halt/load are not restored,
including any that were included in the task variable declaration.

The values of constant identifiers that appear in the job parameter list are saved across a
halt/load.

2-14 8600 1047-506

Job Restart after a Halt/Load

ON RESTART Statement

The ON RESTART <statement> form of the ON statement can be used to specify
actions to be taken if job execution is interrupted by a halt/load. Any statement or group
of statements can be specified in the ON RESTART statement. The following kinds of
actions might be desirable:

e File and task variables can be reassigned the correct values.

e Job execution can be restarted at a particular point in the job, by using a GO
statement.

If a halt/load occurs in the middle of a job, job execution restarts at the most recent
successful job rollout. If during the halt/load process the JOBDESC file is removed, jobs
with STARTTIME specifications are also removed. Therefore, no jobs are restarted. For
details, refer to the ??RJ (Remove JOBDESC File) primitive command in the System
Commands Reference Manual.

The ON RESTART statement is processed after a halt/load only if a successful job rollout
occurred after the ON RESTART statement.

Some jobs include statements that interrogate a task variable to find out whether a task
completed successfully or abnormally. However, the value of the task variable is not
retained across a halt/load. An alternative method for storing information about whether a
task completed successfully is to declare a Boolean variable in the job expressly for this
purpose, and assign a value of TRUE or FALSE to the variable after the task completes.
The value of the Boolean variable is saved across a halt/load, so it can always be
interrogated later.

A useful technique for keeping track of exactly how far job execution had progressed
before a halt/load occurred is to declare an integer variable and increment the value of
that variable at several stages during the job. The ON RESTART statement can include
statements that inspect the value of this integer variable and cause different actions to
occur according to the value stored.

Dummy Files

Another method for storing information about job execution is to have the job create
dummy files at specified points during the job execution, or whenever certain conditions
are met. The job can then use the file residence inquiry to establish whether such files
have been created, and make decisions based on their presence or absence.

Refer to “File Handling” in Section 1 for an example of a subroutine that can be used to
create dummy files. The file residence inquiry is described under “Interrogating File
Attributes” in Section 5.

For more detailed information about restarting WFL jobs after a halt/load, see the Task
Management Programming Guide.

8600 1047-506 2-15

Job Restart after a Halt/Load

2-16 8600 1047-506

Section 3
Job Structure

Overview

This section describes the overall structure of a WFL job, and discusses the job attributes
and specifications that can be included at the beginning of a job.

Job Syntax

The following syntax represents a complete WFL job:

<job>
BEGIN — JOB

|—<1'>J L AT —<hostname cons’can’c>J

|—<job title B T
<job parameter Tist> <job disposition>—
statement list>———

|—<j0b attribute 11'st>J |—<dec1arat1’on 11'st>J

1T END — JOB
<i> !

Job Structure
A job is composed of three parts:
e Job heading

e Job body
e Endofjob

Job Heading

The job header initializes the job by means of the following elements:

e <i> construct (optional) e Job parameter list (optional)
e Hostname constant (optional) e Job disposition (optional)
e BEGIN JOB expression (required) e Job attribute list (optional)

e Job title (optional)

8600 1047-506 3-1

Job Syntax

Job Body

The job body contains the operational part of the job and consists of

o Declaration list (optional)

e Statement list

End of Job

The end of job terminates the operation of the job and contains the following elements:

e <i> construct (optional)

e END JOB expression

Job Contents

The contents of WFL jobs are extremely flexible. The only two elements that appear in all
WEFL jobs are the BEGIN JOB and END JOB constructs. The WFL compiler adds these
statements around single WFL statements that are entered through CANDE or at the
ODT. The other elements are optional.

Job Format

The formatting of WFL jobs is also flexible. WFL constructs can begin in any column of a
line, can continue over one line onto the next, and can include varying amounts of space
between words. Also, multiple statements can appear on a lineg, as long as they are
separated by semicolons (;). The only restriction is that the <i> construct must appear in
the first column.

The <i> construct before the BEGIN JOB construct is optional and has no effect on the
job. The <i> construct before the END JOB construct is optional normally, but is required
if an AT hostname constant specification is included in the job. Refer to “Invalid and Valid
Characters” in Section 8 for information about the <i> construct.

Comments can be entered into the job by preceding them with a percent sign (%). Any
input following the percent character on a line is ignored by the WFL compiler. However,
input that precedes the percent sign on a line is treated as part of the job.

WEFL control options can be included anywhere in the job, as long as they appear on a
line with a dollar sign ($) in the first or second column. These options are discussed in
Section 9, "WFL Control Options.”

Note: A WFL job must be entered in all uppercase letters. Only comments or strings
can contain lowercase letters.

3-2 8600 1047-506

Job Syntax

AT Hostname

The AT hostname constant specification causes a job initiated on one system to be
compiled and run on another system.

The WFL compiler at the receiving host system compiles the job; the sending host does
not analyze the contents of the job, except for the END JOB construct. If the END JOB
construct is missing, an “UNEXPECTED END OF FILE" error message is issued.

The hostname specified must be an available host in a BNA or Open Systems
Interconnection (OSI) network.

If the host specified is not available, the job compilation is aborted and the error message
"UNKNOWN HOST SPECIFIED" is displayed. The CANDE ?HN command or the
HOSTNAME (Host Name) system command can be used before the job is started to
determine what BNA hosts are available. The CANDE 7AT local host NW OSIGATEWAY
command or the NW OSIGATEWAY system command can be used to determine what
OSI hosts are available.

A null character within a quoted string causes the transferred job to be incorrectly
terminated, which causes erroneous syntax errors at the receiving host. This incorrect
termination occurs because the sending host does not analyze the contents of the job;
the sending host transfers data to the receiving host only until a null character is reached.

Using the START FOR SYNTAX statement is not allowed for jobs that include an AT
hostname constant specification. Doing so generates the following syntax error:

START FOR SYNTAX IS ONLY VALID FOR LOCAL HOST

Example

The following job will run at the system named SF6B:

?AT SF6B BEGIN JOB ADDIT;

?END JOB.

8600 1047-506 3-3

Job Title

Job Title

<job title>

—<file title constant }

Explanation

The job title specifies the name of the job. The job name appears in the

e BOJ and EOJ messages displayed by the job
e Active entry display at the ODT
e Job summary generated by a job

e System log

The job title must be included if there is a job parameter list or job disposition in the job;
otherwise, the job title is optional.

Though the syntax for a job title is the same as that for a file title constant, the job title
does not have to be the name of any file. There is no connection between the job title of
a job and the title of the file it is stored in. For the syntax of a file title constant, see “File
Names, Titles, and Directories” in Section 8.

The job name can also be assigned by including the NAME attribute in the job attribute
list for the job. Note that the NAME attribute overrides the job name in the <job title>.

If neither a job title nor a NAME job attribute is included in the job, the WFL compiler
assigns a name to the job.

Examples

3-4

The following are examples of job headings that include valid job titles:

?BEGIN JOB RUNPROG;

?BEGIN JOB DATA/SURVEYOR;

?BEGIN JOB (WALLY)MENU/PLAN;
?BEGIN JOB (LAO)OLD/DOC ON FORMSPK;

8600 1047-506

Job Parameter List

Job Parameter List

<job parameter list>

L
—(<Boolean parameter declaration
<integer parameter declaration>—
<real parameter declaration>

<string parameter declaration>—

<Boolean parameter declaration>

— BOOLEAN —<Boolean formal parameter

L oprrONAL

L DEFAULT — = —=<Boolean constant expression>—

<integer parameter declaration>

— INTEGER —<integer formal parameter

L oprrONAL

L DEFAULT — = —<integer constant expression>—

<real parameter declaration>

— REAL —<real formal parameter:

L oprrONAL

L DEFAULT — = —<real constant expression>—

<string parameter declaration>

— STRING —<string formal parameter

L opTrONAL

L DEFAULT — = —=<string constant expression>—

<Boolean formal parameter>

—<Boolean constant identifier

<integer formal parameter>

—<integer constant identifier

<real formal parameter>

—<real constant identifier

<string formal parameter>

—<string constant identifier

8600 1047-506

3-5

Job Parameter List

Explanation

A job parameter list declares constant identifiers and assigns them the values supplied in
the START statement that initiated the job. The constant identifiers retain their original
values throughout the job. They can be one of the following types:

e BOOLEAN
e INTEGER
e REAL

e STRING

These constant identifiers can be used in a WFL job in most of the places a constant or
an expression of the appropriate type is permitted. (For example, a Boolean constant
identifier can be used wherever a Boolean constant, Boolean constant expression, or
Boolean expression is permitted.)

The keyword OPTIONAL indicates that an actual parameter does not need to be passed
for that job parameter. If an actual parameter is not passed, the default values are
assigned as follows:

Type Default Value

Boolean FALSE

Integer 0

Real 0

String " (two double quotation marks)

Default values can also be specified with the DEFAULT clause following the keyword
OPTIONAL. The specified default value is ignored if an actual parameter is provided.

A job parameter list can only be used in WFL jobs that are stored on disk and initiated
through a CANDE, MARC, or WFL START statement. If a job initiated from another
source includes a job parameter list, then it must be compiled for syntax only (see the
description of the SYNTAX job disposition later in this section).

A job that includes an AT hostname constant specification cannot have a job parameter

list, unless all the job parameters are optional. WWhen more than one job is stored in a disk
file, none of the jobs can contain job parameter lists.

3-6 8600 1047-506

Job Parameter List

Example

Consider the statement START (WALLY)RUNPROG(23.8, 7), which initiates the following
job:

?BEGIN JOB RUNPROG (REAL VAL1, REAL VAL2);
REAL INVAL;
INVAL := VALZ2 * VALZ;
RUN OBJECT/WALLY/COUNTER(VAL1);
RUN OBJECT/WALLY/COUNTER(INVAL);
?END JOB.

This job runs the program OBJECT/WALLY/COUNTER twice, first with a parameter value

of 23.8, and then with a parameter value of 49 (because INVAL was assigned the square
of the VAL2 parameter).

8600 1047-506 3-7

Job Disposition

Job Disposition
<job disposition>

FOR

Explanation
The SYNTAX job disposition compiles a job for syntax checking only. When the job is

initiated, the WFL compiler simply compiles it and displays a list of any syntax errors in
the job. This job disposition is beneficial when you only need to debug a job.

Example
The following is an example of a job heading that includes a SYNTAX job disposition:

?BEGIN JOB GEO/ANLYS FOR SYNTAX;

3-8 8600 1047-506

Job Attribute List

Job Attribute List

<job attribute list>

<task attribute assignment>— ;

<class specification>
<fetch specification>
<starttime specification>—

Explanation

The job attribute list assigns task attributes and job specifications to the job. The CLASS
specification, FETCH specification, and STARTTIME specification can only be applied to a
job and are described under their own headings later in this section.

The syntax for task attribute assignment is described in Section 5, “Task Initiation,” later
in this manual. The types and the meanings of the task attributes recognized by the WFL
compiler are described in the Task Attributes Reference Manual.

Attributes not assigned to values in the job attribute list are assigned values by the
system on the following basis:

e Certain attributes inherit values associated with the usercode the job is originated
from, such as the CLASS, CHARGECODE, FAMILY, CONVENTION, PRIORITY, and
USERCODE attributes. These values are stored in USERDATA locator nodes in the
USERDATAFILE. For information about the USERDATAFILE, refer to the Security
Administration Guide.

e Other attributes can inherit values associated with the class (or queue) of the job. A
class can have default values and/or maximum values specified for the PRIORITY,
MAXPROCTIME, MAXIOTIME, or ELAPSEDLIMIT attributes. A job is discontinued if
the job attribute list specifies greater resource limits than those associated with the
class of the job.

o Attributes assume their default values if they are not included in the job attribute list
and do not receive values from the usercode or class of the job. The attributes that
limit resource usage default to their maximum possible values.

Task attributes can also be assigned to specific tasks initiated by a job. Refer to the
Section 5, “Task Initiation,” for a description of how to assign task attributes to specific
tasks.

Task attributes associated with a job can be changed or interrogated later in the job by
using the MYJOB predeclared task variable.

Note: A string primary cannot be used in job-related task attribute assignments unless

you use the MYJOB or MYSELF predeclared task variable syntax. Refer to “MYJOB and
MYSELF Predeclared Task Variables” in Section 5 for details.

8600 1047-506 3-9

Job Attribute List

Resource-Limiting Attributes

Resource-limiting attributes affect the total resources available to a job and all its tasks
when such attributes are included in the job attribute list. Resource-limiting attributes
include the following:

e ELAPSEDLIMIT

e MAXIOTIME

e MAXLINES

e MAXPROCTIME
o MAXWAIT

e PRINTLIMIT

e PUNCHLIMIT

While these attributes can also be set for specific tasks, the accumulated resource usage
of the job and all its tasks cannot exceed the values set for these attributes for the job.

Some of the job attribute values are inherited by the tasks initiated by a job. The
inheritance status of each attribute is listed in the Task Attributes Reference Manual.

The HOSTNAME task attribute has no effect when it is used in a job attribute list, but an
AT hostname constant specification can be used instead. Refer to “AT Hostname”
earlier in this section for details.

If a particular task attribute is assigned values more than once in a job attribute list, the
last assignment overrides the previous ones.

The job attribute list is terminated by the appearance of any construct that is not a job
attribute assignment.

USER is accepted as a synonym for the USERCODE task attribute when it is entered as
part of a job attribute list. If the USER statement is the first statement of a job, it is
interpreted as part of the job attribute list rather than as an executable statement. The
specified USERCODE is validated during the compilation as a new usercode logging on
for the duration of the job execution.

Note: Changing the usercode of the job causes the job to run under the new usercode
with job attributes specified in the USERDATAFILE. If the usercode of the job is changed,
job messages will stop appearing at the originating terminal even though the job
continues to execute normally.

File equations cannot be included in the job attribute list. A statement beginning with
FILE is interpreted as a file declaration and terminates the job attribute list.

3-10 8600 1047-506

Job Attribute List

Example
The following example job includes a number of common job attribute assignments:

?BEGIN JOB COMPJOB;

CLASS = 3;

USERCODE = JOHN/JUAN;

CHARGECODE = SHIPPING;

MAXPROCTIME = 60;

PRIORITY = 80;

RUN (WALLY)POSTAGE/SUMMARY ON SHIPPK;
?END JOB.

8600 1047-506 3-11

CLASS Specification

CLASS Specification

<class specification>

T CLASS = —<integer constant expression '
QUEUE I

Explanation

The CLASS specification assigns the number of the queue desired for the job. (QUEUE is
a synonym of CLASS))

For more information on managing WFL jobs in queues, refer to the System
Administration Guide.

Examples
The following job extracts include CLASS specifications:

?BEGIN JOB COMP;
CLASS = 5;

?BEGIN JOB CLASSVAL(INTEGER CL);
CLASS = CL;

3-12 8600 1047-506

FETCH Specification

FETCH Specification

<fetch specification>

— FETCH — = J—<str‘1’ ng constar,1t expression '

Explanation

The FETCH specification provides operators with information about the job.

One or more strings can be included in the FETCH specification. Initiation of a job is
suspended if it includes a FETCH specification; the job appears in the waiting entries list
at the ODT with a “REQUIRES FETCH" message. The FETCH messages can be
displayed using the PF (Print Fetch) system command. The job can be reactivated using
the CANDE OK command or the OK system command.

If the system option 19 (NOFETCH) is set, the FETCH attribute does not suspend job
initiation. However, it is still possible to use the PF system command to display the fetch
message associated with a job. System options are set or displayed using the OP
(Options) system command.

Example

?BEGIN JOB UPDATE;
FETCH = "THIS JOB NEEDS THREE TAPE DRIVES";
RUN NIGHTLY/UPDATE;

?END JOB.

8600 1047-506 3-13

STARTTIME Specification

STARTTIME Specification

<starttime specification>

— STARTTIME — = —<starttime spec

<starttime spec>

time
L + —<time 1'n’ce\r‘va1>J L ON

<time>

L andigit— : I on—<digit?

L

<date

+ —<day interval>—

<date>

<mm>— / —<dd>— <yy
/ / —E<yyyy >

/5%\—<digit>—

/7\~<digit>—

<day interval>
<mm>
<dd>

L o\ — <digits

<Yyy>

L o\ — <digits

<Yyvy>

L g — <digits

Explanation

The STARTTIME specification delays job initiation until the specified start time.

The time construct specifies the time of day on a 24-hour clock. The time and time
interval constructs are of the form HH: MM, where HH specifies the hour (or number of
hours) and MM specifies the minute (or number of minutes). HH must be less than 24,
and MM must be less than 60. The minute values must be 2-digit numbers. If a time

interval is specified, that time interval is added to the current time.

The day, hour, and month values can either be a 1-digit or a 2-digit number.

8600 1047-506

STARTTIME Specification

The date construct can be input either in the Gregorian format: mm/dd/yy or mm/dd/yyyy,
or the Julian format: yyddd or yyyyddd. If a 5-digit <Julian date> is used as the
STARTTIME value, the first two digits signify the year and the last three digits signify the
day of the year. If a 7-digit <Julian date> is used, the first four digits signify the year
(including the century) and the last three digits signify the day of the year. For example, if
you input either 94293 or 1994293, they will both equal day 293 of 1994.

If a day interval is specified, that number of days is added to the current date.
If the time is specified without a date or day interval, the current date is used.
The FS (Force Schedule) system command can be used to cause job initiation to proceed

immediately, without waiting for the specified start time. For a description of the FS
command, refer to the System Commands Reference Manual.

Examples

The following job begins execution after 10:00 p.m. on March 20, 1990:

?BEGIN JOB EXAMPLEL;
STARTTIME = 22:00 ON 03/20/90;

?END JOB.

The following job begins execution a minimum of 1 hour and 30 minutes after entering
the system:

?BEGIN JOB EXAMPLEZ;
STARTTIME = +1:30;

?END JOB.

The following job is executed on host BLUE and begins execution after 11:00 a.m.
according to the system clock on host BLUE:

?AT BLUE BEGIN JOB;
STARTTIME = 11:00;

?END JOB.

8600 1047-506 3-15

Declaration List

Declaration List

<declaration list>

—|—<dec1 aration>— ; | |

Explanation

Declarations define constants, variables, subroutines, and global data specifications.

Declarations of variables can also include initial value assignments. The following types of
variables are available in WFL: BOOLEAN, INTEGER, REAL, STRING, FILE, and TASK. For
details about the declarations available in WFL, refer to Section 4, “Declarations.”

All declarations for the job must precede all statements in the job, and the declarations in
a subroutine must precede all the statements in that subroutine.

More than one declaration can appear on a line, as long as each declaration is followed by
a semicolon (;).

Example

The following job segment illustrates the use of declarations:

CONSTANT DEBUG = FALSE;
BOOLEAN TFVAL,
SUBTVALU;
FILE FILE1(TITLE=(ODCOM)FIXIT ON PACK);
INTEGER INTVAL := 43;
REAL RLVAL := 19.67,
RLVALZ2 := 16.8;
STRING STRNGVL := "Test Run";
TASK DOUBAT (PRIORITY=75,INFILE(TITLE=(WALLY)DATA/SAVER));
DATA INPUT/PREP
43
69
128
? % End of data
SUBROUTINE PROVIT;
BEGIN
RUN (RAJA)DATA/PREP(TFVAL,INTVAL,STRNGVL,RLVAL);
FILE INPUT (TITLE=INPUT/PREP,KIND=READER);
END PROVIT;

3-16 8600 1047-506

Statement List

Statement List

<statement list>

| . statement {
J—<1abe1 identifier>— : JJ

Explanation

The statements in a WFL job are grouped together in a statement list. More than one
statement can appear on a line, while a lengthy statement can continue across several
lines. Individual statements are distinguished by a statement separator.

The usual statement separator is a semicolon (;) appearing at the end of a statement.
However, an invalid character at the start of a line also acts as a statement separator.

Each statement can be preceded by one or more label identifiers. These label identifiers
can then be referred to by GO statements in the job. GO statements transfer control to
the point in the job where the specified label identifier appears.

Refer to Section 6, “Statements,” for descriptions of all the statements available in WFL.

Examples
In this first example, the semicolon signals the end of a statement.

BEGIN JOB SEPARATOR/EXAMPLEL;
IF DECIMAL(TIMEDATE(HHMMSS)) < 120000 THEN
DISPLAY "Good Morning, it is now: "
& TIMEDATE(DISPLAY)
ELSE
DISPLAY "Good Afternoon, it is now: "
& TIMEDATE(DISPLAY);
WAIT(5); DISPLAY "Bye";
?END JOB.

In this next example, the invalid character—the question mark (?)—in the first column of
a statement implies the end of the previous statement. A semicolon must be used to
separate multiple statements appearing on a single line.

?BEGIN JOB SEPARATOR/EXAMPLE2
?IF DECIMAL(TIMEDATE(HHMMSS)) < 120000 THEN
DISPLAY "Good Morning, it is now: "
& TIMEDATE(DISPLAY)
ELSE
DISPLAY "Good Afternoon, it is now: "
& TIMEDATE(DISPLAY)
?WAIT (5); DISPLAY "Bye"
?END JOB.

8600 1047-506 3-17

Statement List

The following example shows the use of statement label identifiers:

?BEGIN JOB LABEL/EXAMPLE3;
STRING S;
RETRY:
COPY X AS Y;
IF FILE Y ISNT RESIDENT THEN
BEGIN
AX:

S:= ACCEPT("FILE Y NOT COPIED. AX: RETRY, OR AX: SKIP");

IF S = "RETRY" THEN

GO TO RETRY
ELSE IF S = "SKIP" THEN
ABORT
ELSE
GO TO AX; % Ask again.
END;

?END JOB.

8600 1047-506

WFL Job Example

WFL Job Example

The following example illustrates a complete WFL job

?BEGIN JOB EXAMPLE (STRING TESTNAME,INTEGER TESTNUMBER);
NAME=EXAMPLE/#STRING(TESTNUMBER,*) ; Job attribute
USERCODE = WFL/MANUAL; Job attribute
CLASS = 2; Job attribute
TASK TCOMP, TRUN; Variable declaration

N P o

o

COMPILE #(TESTNAME & STRING(TESTNUMBER,*))[TCOMP] WITH ALGOL[TRUN] GO;
COMPILER DATA CARD The COMPILE statement is
BEGIN followed by a Tocal data
INTEGER I; specification containing the
DISPLAY ("P IS RUNNING"); % program being compiled.
DISPLAY ("NOW ABORT"); For information about local
I=1/0; data specifications, see the
END. "Task Initiation" section.
End of data.

AN P O N A o o°

~
o

IF TCOMP IS COMPILEDOK THEN
DISPLAY "COMPILED OK"
ELSE ABORT "*DID NOT COMPILE";

o

Displays message if compile
is successful.

Aborts job if compile
fails.

Displays messages if run

is successful; otherwise,
aborts job.

N o

o

IF TRUN IS COMPLETEDOK THEN
DISPLAY "RAN OK"

ELSE ABORT "** RUN ABORTED";

?END JOB.

N o°

o

8600 1047-506 3-19

WFL Job Example

3-20 8600 1047-506

Section 4
Declarations

Overview
Declarations define constants, variables, subroutines, and global data specifications.

Statement label identifiers are not declared. Refer to “Statement List” in Section 3 for a
discussion of label identifiers.

Declaration Syntax
The following syntax represents the declarations available in a WFL job:

<declaration>

—r=<constant declaration {
—<Boolean declaration>
—<integer declaration>
—<real declaration>
—<string declaration>
—<file declaration>
—<task declaration>
—<subroutine declaration>
L<global data specification>—

Explanation

All declarations in a job must follow the job attribute list and must precede any
statements. All declarations in a subroutine must follow the BEGIN statement for the
subroutine and must precede any executable statements in the subroutine.

Declarations can occur in any order.

8600 1047-506 4-1

Declaration Syntax

Scope of Declarations

Declarations can occur either at the job level or within subroutines. Declarations
occurring at the job level can define:

e Global variables

e Subroutines

e Global data specifications

ltems declared at the job level can be referenced anywhere in the job, including in any of
the subroutines.

Variables and subroutines declared within a subroutine are local to that subroutine. They
can only be used in the subroutine they are declared in, and in subroutines nested within
that subroutine. Local variables are reinitialized each time the subroutine is invoked.

Note: A variable or subroutine cannot be referenced before its declaration. For
example, a subroutine cannot make use of a globally declared variable unless the
declaration of that variable occurs before the declaration of the subroutine.

Special care should be taken when assigning values to a global variable in an
asynchronous subroutine. Refer to the “PROCESS Statement” in Section 6,
“Statements,” for further information.

Variable Initialization

The initial value of a variable can be specified in the declaration; if it is not, the default
value for that variable type is applied to the variable. The initial value of a variable is
stored before the execution of the first statement in the job or subroutine.

Boolean, integer, real, and string variables retain their values across a halt/load. However,
the contents of file and task variables are not saved. Refer to “Job Restart after a
Halt/Load"” in Section 2 for details.

The INITIALIZE statement assigns a value of NEVERUSED to the STATUS task attribute

of the specified task variable, and restores the default values to all other task attributes
and file equations associated with that task variable.

8600 1047-506

Constant ldentifiers

Constant Identifiers

<constant declaration>

— CONSTANT J—<constant dec]a;‘ation element |

<constant declaration element>

<integer constant identifier> = <integer constant expression> —
<real constant identifier> = <real constant expression>

—E <Boolean constant identifier> = <Boolean constant expression> ——|
<string constant identifier> = <string constant expression> —

Explanation

A constant declaration declares one or more constant identifiers and assigns their value.

A constant identifier can be one of the following type:

e Boolean
e Integer
o Real

e String

The constant declaration enables constant values to be referenced by name rather than

by specifying the actual values throughout the job.

The type of each constant identifier being declared is determined by the type of the
constant expression to the right of the equal sign (=). The constant expression can be
specified using literal values, previously declared constant identifiers, and job

parameters.

The values of constant identifiers are retained across a halt/load.

Example

The following example represents the use of constant identifiers:

CONSTANT
NAME = "ABCDEFGHIJKLMNOPQRSTUVWXYZ- ",
NUMBERS = "0123456789",
PI = 3.14159,
DEBUG = FALSE,
MAXRETRY = 10,
MAXSTRINGCHARS = 256,

UC = "GEORGE",
INPUTNAME = "INPUT/1",
PK = "USERS",

INPUTTITLE = "(" & UC & ")" & INPUTNAME PK;

8600 1047-506

4-3

Boolean Variables

Boolean Variables

<Boolean declaration>

— BOOLEAN
L _<Boolean identifier C ’] | }
:= —<Boolean constant expression>
Explanation

4-4

A Boolean declaration declares a variable of type BOOLEAN. The default initial value of a
Boolean variable is FALSE.

If the := Boolean constant expression clause is specified for a Boolean identifier, this
Boolean constant expression is used as the initial value for that Boolean identifier.

The values of Boolean variables are saved across a halt/load and are restored when the
job restarts.

8600 1047-506

Integer Variables

Integer Variables

<integer declaration>

— INTEGER
»J_<1'nteger identifier C -] | {
:= —<integer constant expression>
Explanation

An integer declaration declares a variable of type INTEGER. The default initial value of an
integer variable is 0.

If the := integer constant expression clause is specified for an integer identifier, this
integer constant expression is used as the initial value for that integer identifier.

The values of integer variables are saved across a halt/load and are restored when the job
restarts.

8600 1047-506 4-5

Real Variables

Real Variables

<real declaration>

— REAL J—<\r‘ea1 identifier B - a | '
:= —<real constant expression>

Explanation

4-6

A real declaration declares a variable of type REAL. The default initial value of a real
variable is O.

If the clause .= real constant expression is specified for a real identifier, this real constant
expression is used as the initial value for that real identifier.

The values of real variables are saved across a halt/load and are restored when the job
restarts.

8600 1047-506

String Variables

String Variables

<string declaration>

— STRING
—>J—<str1'ng identifier C -] | }
:= —<string constant expression>
Explanation

A string declaration declares a variable of type STRING. The default initial value of a string
variable is a null string ().

The values of a string variable are saved across a halt/load.

If the := string constant expression clause is specified for a string identifier, this string
constant expression is used as the initial value for that string identifier.

Example

The following example illustrates the declaration of string variables:

STRING STR1, STRZ;
STRING STR3 := "STRVAL";

8600 1047-506 4-7

File Variables

File Variables

<file declaration>
— FILE

> <file identifier L ! J | }
(J—<f1'1e attributé assignment>J—)

Explanation

4-8

A file declaration defines a logical file with the specified file attributes. A file declared in a
WEFL job can be used in either of two ways:

e To enable file attribute inquiries.

If the declared file is associated with a physical file, the file identifier can be used in
expressions that return the values of attributes of the physical file. This subject is
discussed under “Interrogating File Attributes” in Section b.

e To enable a task to use a declared file.

If a file is declared in a global file assignment, the global file assignment causes a
task to use the declared file in place of a file that the task would normally use. This
subject is discussed under “File Equations” in Section 5.

WEFL cannot directly read from or write to the declared file. However, the file equation
capabilities of WFL do provide considerable control over the choice of files that will be
used by a task. Refer to “File Equations” in Section 5 for further details.

Note: File declarations cannot occur in a subroutine.

The WFL job can also include input data for a task, in the form of data specifications.
Refer to “Global Data Specifications” later in this section and “Local Data Specifications”
in Section 5 for further details.

File attributes included in a file declaration must be assigned constants or constant
expressions. Attributes of type name, file name, or title must be assigned constants only.

File attribute values associated with a file variable are not saved across a halt/load. Refer
to “Job Restart after a Halt/Load" in Section 2 for further details.

Note: The use of the file identifier SUMMARY should be avoided for printer files. If a
printer file is declared in WFL with a file identifier of SUMMARY, and a job summary is
generated with the default title of SUMMARY, the printer file declared in WFL will be
lost. This occurs because the job summary file will overwrite the file declared in WFL.

To create a printer file in WFL with the file identifier SUMMARY, either use the

JOBSUMMARY task attribute to suppress the job summary, or use the
JOBSUMMARYTITLE task attribute to assign a different name to the job summary file.

8600 1047-506

Task Variables

Task Variables

<task declaration>
— TASK

s <task identifier C] | }
(—<task identifier assignment>—)

<task identifier assignment>

4‘—|:<task attribute assignment | {
<file equation>¥

Explanation

The task declaration declares task variables, which can be associated with particular
tasks in a task initiation statement.

If a task initiation statement includes a task variable, then any task attribute assignments
or file equations that have been specified for that task variable are applied to the task.

The values assigned to file and task attributes in a task declaration must be constants or
constant expressions. Attributes of type name, file name, or title must be assigned
constants only.

Any task attribute values or file equations associated with a task variable are not saved
across a halt/load. Refer to “Job Restart after a Halt/Load"” in Section 2 for further details.

Task variables can be assigned task attribute values or file equations later in the job by
the task assignment statement. Refer to the assignment statement in Section 6,
"Statements,” for a description of the task assignment statement.

The task variable can also be used for inquiries about the values of any task attributes
associated with the task, including those task attributes that record task status and task
history. This is possible by using various WFL expressions, which are described in
Section 7, "Expressions.”

WEFL provides two predefined task variables. The following task variables can be used to
interrogate the values of attributes in the job:

e MYSELF
e MYJOB

Refer to “Using Task Variables” in Section 5 for a discussion of the uses of the task
variables, including the MYSELF and MYJOB task variables.

8600 1047-506 4-9

Subroutines

Subroutines

<subroutine declaration>
— SUBROUTINE —<subroutine identifier

|—<sub\r‘ou’c1'ne pa\r‘ame’ce\r‘s>J

N <statement |
’ |
—E<subr‘out1'ne b]ock>J

subroutine parameters>

I

BOOLEAN —<Boolean 1'dént1'f1'er‘ |) |
L VALUE il !

INTEGER —<integer identifi er‘>—l_—_|—
VALUE

— REAL —<real identifier
L VALUE il

STRING —<string identifier B
VALUE J

FILE —<file identifier
- TASK —<task identifier

<subroutine block>

— BEGIN END

|—<dec1arat1’on 11's’c>J |—<s’ca’cemen’c 11's’c>J

|—<sub\r‘ou’c1'ne 1'den’c1'f1'e1r‘>J

Explanation

A subroutine declaration identifies a series of statements that are executed when the
subroutine is invoked by a subroutine invocation statement. The subroutine invocation
statement is described in Section 6, “Statements.”

The simplest form of a subroutine consists of the subroutine heading, followed by a
single statement. Declarations and multiple statements can be included in the
subroutine, but they must be bracketed by the words BEGIN and END.

Any kind of WFL declaration can be included in a subroutine except for file declarations
and global data specifications. However, subroutines can include local data
specifications, and references to global data specifications and files that are declared
globally. Variables declared in a subroutine are local to that subroutine (refer to “Scope of
Declarations” earlier in this section).

The WFL statements are described in Section 6, “Statements.”
WEFL enables a subroutine identifier to be repeated after the end of the subroutine. This
feature helps create WFL jobs that are easier to read, especially in cases where nested

subroutines occur. If a subroutine identifier is specified after END, it must be the same
subroutine identifier specified at the start of the declaration.

8600 1047-506

Subroutines

A subroutine declaration can include another subroutine declaration within itself. This is
referred to as nesting. Subroutines can be nested to a maximum of 10 levels.

Note: \WFL jobs that have nested subroutines can result in larger code files due to the
new Long Name Call/LNMC, Long Value Call/LVLC code, which replaces Name
Call/NAMC, Value Call/VALC and uses more bytes. If the WFL compiler issues a warning
message that a code segment exceeds its capacity, then you must split the statements
in that subroutine into multiple subroutines. Ignoring the warning message can result in
the initiation or compilation of a WFL job being aborted.

Subroutine Parameters

The subroutine parameters specification can be included in the subroutine heading to
declare parameters for the procedure. These parameters are assigned values taken from
the statement that invoked the subroutine. The parameters are treated as local variables
within the subroutine; they can be interrogated or assigned new values anywhere within
the subroutine or within any subroutines nested within it.

Declarations in a subroutine cannot declare an identifier that has the same name as any
of the parameters of that routine. Each parameter in the parameter list must be preceded
by a keyword specifying the parameter type.

A parameter is considered to be call-by-reference unless it is followed by the word
VALUE, which indicates that the parameter is call-by-value. Task and file variables can
only be call-by-reference.

Note: Any changes made to the value of a call-by-reference parameter in the course of
the subroutine also change the value of the variable that was passed to that parameter.

By contrast, any changes made to the value of a call-by-value parameter in the course of
the subroutine do not affect the value of the variable that was passed to that parameter.

If a constant or an expression is passed as a parameter in the subroutine invocation
statement, that parameter is passed by value whether or not VALUE is specified for that
parameter. When a real parameter is passed to an integer in a subroutine call, it requires
integer truncation and treats the real parameter as an expression. Because an expression
is passed as a parameter, that parameter is passed by value.

When a parameter is a string expression, the string expression can contain up to

1026 characters. Within the subroutine, however, the string parameter cannot be
assigned directly to a string variable, because a string variable has a maximum length of
256 characters.

Example

The following example illustrates the use of subroutines:

?BEGIN JOB SUBSHOW;
INTEGER VAL1 := 7, % Global variable declarations
VAL2 := 11;
% Begin subroutine declaration

8600 1047-506 4-11

Subroutines

SUBROUTINE FIRSTSUB(INTEGER PARAM1, INTEGER PARAM2 VALUE);

BEGIN
PARAM1 := PARAM1 * 2; % Changes made to the values of the
PARAM2 := PARAMZ * 2; % parameters

END FIRSTSUB;

% End subroutine declaration

FIRSTSUB(VAL1,VAL2); % Subroutine invocation

RUN (RAJA)AREA/MEASURE(VAL1,VAL2); % Task initiation
?END JOB.

In this example, the global variables VAL1 and VALZ2 are assigned values of 7 and 11,
respectively. The subroutine invocation statement passes the variables VAL1 and VAL2
as values for the parameters PARAM1 and PARAM2. PARAMT1 is therefore assigned a
value of 7, and PARAM2 is assigned a value of 11. The subroutine contains statements
that double the values of these parameters to 14 and 22, respectively.

The RUN statement that follows the subroutine invocation statement passes VAL1 and
VAL2 to the program (RAJAJAREA/MEASURE. The values the program receives are 14
and 11. This occurs because the change made to the value of the call-by-reference
parameter PARAM1 also affects the global variable VAL1 that was passed to it. The
change made to the call-by-value variable PARAM2 does not affect VAL2.

4-12 8600 1047-506

Global Data Specifications

Global Data Specifications

<global data specification>

DATA <file name constant %
L EBCDIC]
—<data images %
_<-i

<data images>

One or more card images or records of EBCDIC data.

Explanation

A global data specification contains data that can be used as input by programs initiated
in the job. The global data specification is read as if it were a card reader input file, and
can be closed and reopened or read by more than one task.

The file name constant identifies the global data specification. The file name constant
cannot contain a usercode or an asterisk (*).

The data images must be of the type specified at the start of the global data
specification. The types of global data specifications are defined as follows:

Data Type Meaning
DATA Allows any characters in the EBCDIC character set.
EBCDIC A synonym for DATA.

The data images should begin on the line or card image following the global data
specification heading.

Note: Any data following the heading on the same line is ignored.

Tasks are read from the global data specification as if they were an input file, and each
line of data images is treated as a new record of the input file. A record in a disk file
created by CANDE with a FILEKIND=JOBSYMBOL contains data in columns 1 through
80, spaces in columns 81 and 82, and the sequence number in columns 83 through 90.
Since the default MAXRECSIZE that a program uses when reading these data images is
14 words (84 characters), care must be taken to ensure that unwanted characters are not
included in the data.

Note: To ensure that no unwanted information is read from columns 81 through 84 of
the data images, equate UNITS to CHARACTERS and MAXRECSIZE to 80.

The <i> construct that terminates the global data specification also separates the data
specification from the next declaration or statement; it is not necessary to follow the data
specification with a semicolon ;).

8600 1047-506 4-13

Global Data Specifications

For a global data specification to be used by a task, the task initiation statement should
contain a file equation equating the TITLE file attribute to the file name constant specified
in the global data specification. The file equation should also equate the KIND attribute of
the file to READER.

When more than one task uses the same global data specification as input, each task
begins reading at the start of the deck. WFL also enables you to use local data
specifications, which provide input for a single task only. Refer to “Local Data
Specifications” in Section 5 for a further description of this capability.

A global data specification can appear only in jobs stored in disk files and initiated by a
START statement, or in jobs submitted through card readers.

Note: Global data specifications can occur only in the outer block of a job; that is, they
cannot be declared in subroutines.

Example
The following job uses a global data specification:

?BEGIN JOB SURF/METER;

DATA WAVE/HEIGHTS % Begin global data specification
3.5
1.2
23.4

? % End global data specification

RUN (WALLY)SURF/ANALYZE;
FILE WAVEIN(TITLE=WAVE/HEIGHTS,KIND=READER);
RUN (WALLY)SURF/REPORT;
FILE WAVES(TITLE=WAVE/HEIGHTS,KIND=READER);
?END JOB.

4-14 8600 1047-506

Section b
Task Initiation

Overview
A task is a process that runs in its own stack. This section discusses the various task

initiation statements, task attribute assignments, file equations, task variables, and the
use of local data specifications to provide input to a task.

Task Initiation Statements

Explanation

The following table lists all the WFL statements that initiate tasks. For more information
about a particular statement, refer to Section 6, “Statements.”

Statement Effect

ADD Copies files that are not already resident on the destination.

ARCHIVE Archives files according to the archive task selected.

Include one of the following words to complete the archive
statement, as in ARCHIVE FULL:

e DIFFERENTIAL

e FULL

e INCREMENTAL

e MERGE

e RESTORE

e RESTOREADD

e ROLLOUT

BIND Combines object code files.

COMPILE Compiles a program.

COPY Copies files.

LOG Runs the LOGANALYZER utility, which reports on selected records
in the system log.

PB Runs the SYSTEM/BACKUP utility.

PTD Submits a peripheral testing routine.

8600 1047-506 5-1

Task Initiation Statements

Statement Effect
RUN Executes a program.
START Initiates a job stored in a disk file.

Each task initiation statement normally executes synchronously; that is, the job waits for
completion of the task before continuing to the next statement in the job. Certain tasks
can be made to run asynchronously by preceding the task initiation statement with the
word PROCESS. An asynchronous task executes concurrently with the job. Refer to the
PROCESS statement syntax in Section 6 for a complete list of statements that can be
processed asynchronously.

A subroutine invocation statement normally does not initiate a task. However, an
asynchronous task can be initiated by a subroutine invocation statement that occurs
within a PROCESS statement.

The START statement differs from the other task initiation statements in an important
way. The START statement both compiles and executes a job. The compile is executed
synchronously with the job that contains the START statement, but the execution occurs
asynchronously and is not associated with the original job. A PROCESS START also
causes the compilation to occur asynchronously from the originating job.

Example

5-2

The following example illustrates the difference between synchronous and asynchronous
task initiation:

COMPILE PROG/F1 WITH COBOL85 LIBRARY;

COBOL85 FILE CARD = PROG/SOURCE ON DISK;
PROCESS COPY & COMPARE PROG/F1 TO PROGTAPE;
RUN PROG/F1;

The statements in this example compile a program, and then copy it onto tape while the
program is executing.

The COMPILE statement initiates a synchronous task of compiling the program. When
the compilation is finished, the COPY statement starts an asynchronous process of
copying the new code file to tape. As soon as the copy process starts, the RUN
statement initiates the synchronous process of executing the new program. The second
line of the COMPILE statement contains a file equation, however each of these task
initiation statements can be followed by a task variable and by task equations.

The remainder of this section is devoted to explaining the common features that enable
you to control the manner in which tasks are executed.

8600 1047-506

Task Equation

Task Equation

<task equation list>

<file equation>
<library equation>
<database equation>

|—L ; —Edcask attribute assignment |

|— : J—<1oca1 data specification>J—

Explanation

The preceding syntax represents a task equation that can be used with the RUN, LOG,
PB, or PTD statements.

Task attribute assignment, file equation, library equation, database equation, and local
data specification are all defined later in this section.

The syntax for task equations with a COMPILE or BIND statement is set up to enable
task equations to be applied either to the compilation itself or to the resulting object code
file. Refer to the COMPILE or BIND statement in Section 6, “Statements,” for more
information.

The COPY or ADD statement enables the use of task attribute assignments, but does
not enable the use of file equations, database equations, or local data specifications.
Refer to the COPY or ADD statement in Section 6, “Statements.”

The only task equation permitted by the START statement is the STARTTIME
specification. Refer to the START statement in Section 6, “Statements.”

A task equation list can be specified for a subroutine invocation statement only when it

occurs within a PROCESS statement. Refer to the subroutine invocation statement in
Section 6, “Statements.”

8600 1047-506 5-3

Task Attributes

Task Attributes

Task attributes describe and control many aspects of process execution. They apply not
only to tasks but also to jobs. The same set of task attributes can be used to describe all
processes.

The values of the task attributes can be set or interrogated, thus enabling a process to
monitor and control the execution of another process or itself. Task attributes are
accessed with task variables. Task variables are explicitly declared in a job, and are
associated with a particular task by a task initiation statement.

Two predeclared task variables are provided: MYSELF, which accesses the attributes of
the task itself, and MYJOB, which accesses the attributes of the job. These are
described in “MYJOB and MYSELF Predeclared Task Variables” later in this section.

Table 5-1 lists the task attributes that are available through WFL, with the task attributes
grouped together into several functional categories. Task attributes with a type of task or

event are not available through WFL, and thus do not appear in the table.

More detailed information on task attributes and their use, including descriptions of all

the task attributes, can be found in the Task Attributes Reference Manual.

Table 5-1. Task Attribute Groupings

DESTSTATION
DISPLAYONLYTOMCS
LANGUAGE

ORGUNIT
SOURCEKIND
SOURCESTATION
STATION
STATIONNAME
TANKING

Task Task Attribute WFL Type
Billing CHARGE <name task attribute>
USERCODE <usercode assignment>
Host Services HOSTNAME <name task attribute>
Tasking ITINERARY <string task attribute>
Note: The form of the
<name> construct that allows
17 EBCDIC characters other
than quotation marks (") is not
supported.
Data Comm AUTOSWITCHTOMARC <Boolean task attribute>

<integer task attribute>
<Boolean task attribute>
<name task attribute>
<integer task attribute>
<real task attribute>
<real task attribute>
<integer task attribute>
<string task attribute>

<mnemonic task attribute>

8600 1047-506

Task Attributes

Table 5-1. Task Attribute Groupings

e FILECARDS is an
acceptable synonym for
FILE.

e The AUTORM option is
the only option of this
attribute that affects disk

Task Task Attribute WFL Type

Debugging OPTION <option assignment>
TADS <Boolean task attribute>
TASKFILE <file name task attribute>

Files CURRENTDIRECTORY <string task attribute>
DATABASE <database equation>
FAMILY <family assignment>
FILE <file equation>
FILEACCESSRULE <mnemonic task attribute>
OPTION <option assignment>
Notes:

files.
Identification JOBNUMBER <integer task attribute>
MIXNUMBER <integer task attribute>
NAME <title task attribute>
Interprocess AX <string task attribute>
Communication |) 5ekep <Boolean task attribute>
PARTNEREXISTS <Boolean task attribute>
STATUS <mnemonic task attribute>
SW1 through SW8 <Boolean task attribute>
TARGET integer task attribute>
TASKLIMIT <integer task attribute>
TASKSTRING <string task attribute>
TASKVALUE <real task attribute>
TYPE <mnemonic task attribute>

8600 1047-506

5-b

Task Attributes

Table 5-1. Task Attribute Groupings

Task

Task Attribute

WFL Type

Job Summaries

JOBSUMMARY
JOBSUMMARYTITLE
NOJOBSUMMARYIO
OPTION

Note: The NOSUMMARY
option is the only option of
this attribute that affects job
summaries.

<mnemonic task attribute>
<title task attribute>
<Boolean task attribute>

<option assignment

Note: STACK s an
acceptable synonym for
STACKSIZE.

Libraries LIBRARY <library equation>
LIBRARYSTATE <real task attribute>
LIBRARYUSERS <integer task attribute>

Memory CORE <core assignment>

Management STACKLIMIT <integer task attribute>
STACKSIZE <integer task attribute>

Print Output

BACKUPFAMILY
BDNAME
DESTSTATION
OPTION
PRINTDEFAULTS
TASKFILE

Note: The BACKUP,
BDBASE, TODISK, and
TOPRINTER options are the
only options that affect printer
output.

<name task attribute>

<file name task attribute>
<integer task attribute>
<option assignment>
<printdefaults assignment>

<file name task attribute>

Resource
Usage Data

ACCUMIOTIME
ACCUMPROCTIME
ELAPSEDTIME
INITPBITCOUNT
INITPBITTIME
OTHERPBITCOUNT
OTHERPBITTIME
TEMPFILEMBYTES

<real task attribute>
<real task attribute>
<real task attribute>
<real task attribute>
<real task attribute>
<real task attribute>
<real task attribute>

<real task attribute>

8600 1047-506

Task Attributes

Table 5-1. Task Attribute Groupings

Task

Task Attribute

WFL Type

Resource
Usage Limits

ELAPSEDLIMIT

<real task attribute>

MAXIOTIME <real task attribute>
MAXLINES <integer task attribute>
MAXPROCTIME <real task attribute>
MAXWAIT <integer task attribute>
PRIORITY <integer task attribute>
RESOURCE <resource assignment>
SAVEMEMORYLIMIT <real task attribute>
STACKLIMIT <integer task attribute>
TASKLIMIT <integer task attribute>
TEMPFILELIMIT <real task attribute>
WAITLIMIT <real task attribute>
Restarting BRCLASS <mnemonic task attribute>
Tasks CHECKPOINTABLE <Boolean task attribute>
RESTART <integer task attribute>
RESTARTED <Boolean task attribute>
Security ACCESSCODE <accesscode assignment>
FILEACCESSRULE <mnemonic task attribute>
USERCODE <usercode assignment>
DECKGROUPNO <integer task attribute>
Task History ERROR <mnemonic task attribute>
HISTORY <real task attribute>

HISTORYCAUSE
HISTORYTYPE
HSPARAMSIZE
OPTION
STACKHISTORY
STATUS

STOPPOINT
SUPPRESSWARNING
TASKWARNINGS

<mnemonic task attribute>
<mnemonic task attribute>
<integer task attribute>
<option assignment>
<string task attribute>
<mnemonic task attribute>
<real task attribute>

<suppresswarning assignment>

<taskwarnings assignment>

8600 1047-506

Task Attribute Assignment

Task Attribute Assignment

<task attribute assignment>

——<Boolean task attribute }

L. —<Boolean expression>
—<file name task attribute>— = —<file name>
—<integer task attribute>— = —<integer expression>
—<mnemonic task attribute>— = —<task mnemonic primary>—
—<name task attribute>— = —<name
—<real task attribute>— = —<real expression>
—<string task attribute>— = —<string expression>
—<title task attribute>— = —<file title

L<complex task attribute assignment

Explanation

Task attributes are used to monitor and control the execution of tasks. For details on the
meanings and uses of task attributes, refer to the Task Attributes Reference Manual.

Task attribute assignments, in general, follow this format:
<attribute name> = <attribute value>

Each attribute accepts only a particular type of value: Boolean, or integer, for example. In
most cases, WFL enables variables and expressions to be used for the attribute value.

Task attribute assignments can be used in job attribute lists, task declarations, task
assignment statements, and task equation lists. Certain restrictions apply to task
attribute assignments that occur in task declarations. Refer to “Task Variables” in
Section 4 for more information.

Any task attributes that are not explicitly assigned values in the WFL job receive default
values when the task is initiated. These default values come from the following sources:

e |f task attribute values are assigned to an object code file when it is originally
compiled, these become the default values whenever that object code file is
executed. The task attributes compiled into an object code file can later be
permanently changed with the MODIFY statement, without recompiling the source
file.

o Certain task attributes inherit values from the attributes of the job. For example, the
USERCODE attribute receives the value of the USERCODE attribute of the job. To
determine whether a particular attribute is inherited in this way, refer to the
appropriate attribute description in the Task Attributes Reference Manual.

e Each attribute has a particular default value that is used if it is not overridden by any
of the previously mentioned causes. Defaults vary from one attribute to another.

If a particular task attribute is assigned values more than once in a given job attribute list,
task declaration, task assignment statement, or task equation list, then the last value
specified for the task attribute overrides the previous ones.

8600 1047-506

Task Attribute Assignment

The complex task attribute assignments are assignments to task attributes that require a
fairly complex value. The syntax for each of these attribute assignments appears in
"Complex Task Attribute Assignments” later in this section.

The syntax for the various kinds of expressions referred to in the <task attribute
assignment> syntax diagram is given in Section 7, "Expressions.” The following pages
describe the syntax used in WFL for assigning values to the various kinds of task
attributes.

Examples

Boolean Assignment

If a Boolean-valued attribute occurs in a task attribute assignment without any value
specified for it, it is assigned TRUE. Thus, the following two examples are equivalent:

RUN OBJECT/NATTY; RUN OBJECT/NATTY;
LOCKED; LOCKED = TRUE;
TADS; TADS = TRUE;

A Boolean attribute can also be assigned the result of various comparisons, as in the
following example:

RUN OBJECT/KAYA;
SW1 = X GEQ Y;

o

Arithmetic comparison

SW2 = STRING1 EQL STRING2; % String comparison
SW3 = INFILE (SECURITY) IS PUBLIC; % File mnemonic comparison
SW4 = TVAR(HISTORYCAUSE)

IS OPERATORCAUSEV; % Task mnemonic comparison
SW5 = B1 OR B2; % Boolean expression

Integer Assignment
The following are examples of integer attribute assignments:
PRIORITY = 50;

CLASS = X;
MAXPROCTIME = Y + Z;

o

Assigns an integer constant.
Assigns an integer variable.
Assigns the value of an integer
expression.

A o

o

The value can also be taken from a task variable defined earlier in the program, if a task
variable was associated with that task:

PRIORITY = TVAR1 (PRIORITY);

8600 1047-506 5-9

Task Attribute Assignment

Mnemonic Assignment

Mnemonic attribute values can be assigned in one of the following ways.

e From a direct assignment:

RUN (WENDY)OBJECT/LPFINDER;
FILEACCESSRULE = DEFAULT;

e From a previously defined task variable:

TASKA (FILEACCESSRULE = DECLARER);
RUN (WENDY)OBJECT/LPFINDER;
FILEACCESSRULE = TASKA (VISIBILITY);

e From a string value:

RUN (WENDY)OBJECT/LPFINDER;
FILEACCESSRULE = #STVARI; % STVAR1 is a string variable.

Real Assignment

The following are examples of real attribute assignments:
MAXIOTIME = DECIMAL(STR1); % STR1 is a string variable.
MAXPROCTIME = X; % X is a real variable.

Title Assignment

A title-valued attribute accepts a value that follows the syntax of a file title. This is shown
in the following example:

JOBSUMMARYTITLE = (WALLY)NUMB/CALC ON SHIPPK;
String expressions can also be used in a title assignment:

MYJOB(JOBSUMMARYTITLE

(#STR1)#STR2/#STR3); % Where STR1, STR2, and STR3
are string variables.
Where STR4 contains a
valid file title.

o

MYJOB(JOBSUMMARYTITLE

#STR4) ;

o

o

5-10 8600 1047-506

Complex Task Attribute Assignments

Complex Task Attribute Assignments

<complex task attribute assignment>

—— <accesscode assignment> {
— <core assignment> ——

— <currentdirectory assignment> —
— <family assignment> ——
— <option assignment>
— <printdefaults assignment>
— <resource assignment>
— <suppresswarning assignment> —
L <usercode assignment>

Explanation

The complex task attribute assignments are assignments to attributes that require
complex or unusual values. The syntax for these assignments is discussed in the
following pages. The uses of these attributes are described in the Task Attributes
Reference Manual.

8600 1047-506 5-11

Complex Task Attribute Assignments

ACCESSCODE Assignment

<accesscode assignment>
— ACCESSCODE — =

> <accesscode> T |
—E # — <string primary> / T <password> ——

— <string primary> —

— <string primary>

<accesscode>
<password>

— <name> |

Explanation

The ACCESSCODE attribute assigns an accesscode to a task.
The following is an ACCESSCODE assignment:
ACCESSCODE = CHARLY/V5;

For an explanation of string primaries, refer to “Using String Primaries” in Section 8 of
this manual.

To change the password of a job, you must use the ACCESS statement. Refer to
Section 6, “Statements,” for details.

A password-aging feature is available through the InfoGuard Password Management
facility. When the accesscode password-aging feature is enabled, the WFL compiler
gives a warning if the accesscode password specified for a job is in the warning state. An
error is given if the password has expired. Refer to the Security Features Guide for
details.

Examples

The following example assigns a string variable that has the accesscode and password
as its value:

ACCESSCODE = #ACCSTR;

The following example assigns separate string variables as values for the accesscode
and password:

ACCESSCODE = #ACCSTR / #ACCPASTR ;

8600 1047-506

Complex Task Attribute Assignments

CORE Assignment

<core assignment>

— CORE — = <total core>
L (— <data core> — , — <code core> —) J

<total core>
<data core>
<code core>

— <integer expression> |

Explanation

The CORE attribute provides an estimate of memory required to schedule a task.

Examples

The following example assigns an integer constant as the total core value:
CORE = 50;

The following example assigns the total core value of the product of X and Y, which are
integer variables assigned earlier in the job:

CORE = (X * Y);

The following example assigns data core the sum of W and X, and assigns code core the
difference of Y and Z. The letters W, X, Y, and Z are previously defined integer variables.

CORE = (W + X, Y - Z)

8600 1047-506 5-13

Complex Task Attribute Assignments

CURRENTDIRECTORY Assignment

<currentdirectory assignment>

— CURRENTDIRECTORY — = T <absolute pathname T {
<relative pathname

Refer to the Task Attributes Reference Manual for the definition of absolute and relative
path names.

Explanation

The CURRENTDIRECTORY attribute specifies the directory that is the starting point for
resolution of relative path names. It contains a character string, in path name format,
which is prefixed to a file name during such operations as opening or searching for a file
when the file name is relative and the SEARCHRULE attribute of the file is POSIX.

If the string that assigns the CURRENTDIRECTORY attribute represents a relative path
name, the string is prefixed by the current value of the attribute, and the attribute is set
from the combined string. Setting the CURRENTDIRECTORY attribute to a relative path
name is permitted only on an active task and only by the associated process.

If the CURRENTDIRECTORY attribute is not explicitly specified on the task variable or
code file, the attribute is inherited from the parent task if the parent task’s
CURRENTDIRECTORY attribute is set. Otherwise, the attribute defaults to a null string.

If a WFL job contains a USERCODE assignment in the job header, but does not contain a
CURRENTDIRECTORY assignment, the job’s CURRENTDIRECTORY attribute is set to
the POSIXINITDIR (POSIX Initial Directory) value from the USERDATAFILE.

Examples

The CURRENTDIRECTORY of the job is set from the USERDATAFILE. PROG1 runs with
the value. PROG2 runs with a value of "//NEWFAM/USERCODE/MYUC/DIR1", which
references the directory (MYUC)DIRT ON NEWFAM.

BEGIN JOB;

USER=MYUC/MYPW;

RUN PROG1;

RUN PROG2; CURRENTDIRECTORY="/-/NEWFAM/USERCODE/MYUC/DIR1";
END JOB.

In the following example, PROG3 runs with a CURRENTDIRECTORY value of "/A/B/C",
which references the directory *A/B/C on the family specified as the root family by the
DL ROOT command:

BEGIN JOB;
CURRENTDIRECTORY="/A/B";
MYSELF(CURRENTDIRECTORY="C");
RUN PROG3;

END JOB.

8600 1047-506

Complex Task Attribute Assignments

FAMILY Assignment

<family assignment>family
— FAMILY <family specification |
= —<task identifier>— (— FAMILY —) —
<string expression
#

<family specification>

— <target family name> — = — <primary family name>

> ONLY
L OTHERWISE — <alternate family name> l !

<target family name>
<primary family name>
<alternate family name>

— <family name> }

Explanation

The FAMILY attribute determines the families that the task will use when creating files or
searching for files.

String expressions and string primaries that evaluate to constants can be used for

FAMILY in the WFL job heading. WFL job parameters can be used in constant
expressions.

Examples
The following is an example of a FAMILY assignment:
FAMILY DISK = DISK OTHERWISE MYPACK;
Note: Most WFL statements can locate a file residing on either the primary family or
the alternate family. However, the ADD, ALTER, ARCHIVE, CATALOG, CHANGE, COPY,
MODIFY, MOVE, REMOVE, and SECURITY statements do not search the alternate

family.

The following FAMILY assignment uses a previously defined string variable named
FAMSTRING:

FAMSTRING := "DISK = DISK ONLY";

RUN OBJECT/FUGUE;
FAMILY = #FAMSTRINGI;

8600 1047-506 5-15

Complex Task Attribute Assignments

The following FAMILY assignment uses a string expression. STR1 and STR2 are string
variables that were assigned values earlier in the job:

FAMILY = #("DISK = " & STR1 & " OTHERWISE " & STR2);

The following example assigns a task the family specification associated with the task
variable named TASKVAR1. The task variable can receive a FAMILY assignment when it
is declared, or it can inherit a FAMILY assignment from the task to which it was most
recently assigned.

FAMILY = TASKVAR1 (FAMILY);
The FAMILY assignment is unique in that it does not require a number sign (#) before the

expression <task identifier> (<attribute name>). Similar expressions, when used for
other attributes, do require the number sign.

8600 1047-506

Complex Task Attribute Assignments

OPTION Assignment

<option assignment>

— OPTIONS — = —|: # — <string primary> {

(1 ARRAYS I) —
— AUTORM ————
— BACKUP
— BASE
— BDBASE
— CODE ———
— CRITICALBLOCK ——
— DBS
— DEBUG
— DSED
— FAULT
— FILES
— LIBRARIES
— LONG
— NOSUMMARY ————
— PRIVATELIBRARIES —
— SORTLIMITS ———
— TODISK
— TOPRINTER

*

Explanation

The OPTION attribute sets options for the task. The options for the task affect program
dumps, job summary printing, backup-file handling, and other areas. The options of the
OPTION attribute are explained in the Task Attributes Reference Manual under the
discussion of the OPTION attribute.

If an asterisk (*) is included in the OPTION assignment, then any options provided by a
previous assignment are to be merged with the options specified by this assignment. If
an asterisk is not included, then any options specified by a previous assignment are not
retained when this assignment occurs.

The asterisk option is particularly useful when assigning options to an object code file as

defaults, because it enables additional options to be specified at run time without causing
the default options being overwritten.

8600 1047-506 5-17

Complex Task Attribute Assignments

Examples
The following example illustrates the use of the asterisk option:

COMPILE OBJECT/X WITH COBOL85 LIBRARY; % Compiles source file X and
COMPILER FILE CARD (TITLE=X,KIND=DISK); % saves object code file
OPTION=(FAULT); OBJECT/X with FAULT option

o

% as default
RUN OBJECT/X; % OBJECT/X runs with OPTION = (FAULT)
RUN OBJECT/X; % OBJECT/X runs with OPTION = (FAULT,

OPTION = (*,ARRAYS,FILES); % ARRAYS,FILES)

The # <string primary> syntax enables string variables and expressions to be used to
assign the option values. The parentheses around the option values can be omitted when
this form of the syntax is used. The following job excerpt illustrates a use of this syntax.

STRING S;

S:="LONG, FAULT";

RUN OBJECT/WELLCOMP;
OPTION=#S;

o

Declares string variable S.
Assigns option values to S.

Runs the program with the options
LONG and FAULT set.

A P

o

The parentheses before and after the option list are optional when the option assignment
occurs in a task equation list, job attribute list, or compiler task equation list. However,
the parentheses are required if the OPTION assignment occurs in a task declaration or
task assignment statement. The following example illustrates OPTION assignments in
each of these contexts

?BEGIN JOB;
OPTION = NOSUMMARY, BASE;
TASK TVAR (OPTION=(ARRAY,AUTORM),
MAXPROCTIME=73);

COMPILE OBJECT/X WITH ALGOL LIBRARY;
COMPILER FILE CARD (TITLE = X);
ALGOL OPTION = ARRAY, DSED;

RUN OBJECT/Z;

OPTION = LONG, FAULT; task equation Tist
TVAR (OPTION=(BACKUP),PRIORITY=50); % task assignment statement
?END JOB.

o

job attribute 1ist

e

s task declaration

e

s compiler task equation list

o

5-18 8600 1047-506

Complex Task Attribute Assignments

PRINTDEFAULTS Assignment

<printdefaults assignment>
— PRINTDEFAULTS — = — (— <printdefaults assignment list> —) —|

Explanation

The PRINTDEFAULTS attribute enables you to provide a different set of default values (in
place of the system default values) for the print modifiers or print-related file attributes
that control the creation, routing, and formatting of backup files. If the PRINTDEFAULTS
attribute is set for a task, the default values specified are applied to all PRINT statements
and any printer backup files created by the task.

The print attribute phrases and print modifier phrases that appear in the printdefaults
assignment list are merged into the current print defaults. The print modifier and print
attribute forms reestablish the system default value for that print modifier or print-related
file attribute. Refer to the PRINT statement in Section 6, “Statements,” for the syntax of
the <printdefaults assignment list>, and for more information about print modifiers and
print-related file attributes.

The PRINTDEFAULTS attribute can be included in the USERDATAFILE associated with
each usercode. For further information, see MAKEUSER in the Security Administration
Guide.

Examples

To establish print default values for a job, use a task assignment statement such as the
following:

MYJOB (PRINTDEFAULTS=(DOUBLESPACE=TRUE,AFTER="20:00"));
The default values established for the job are inherited by any tasks initiated by the job.
The defaults for the job can be varied for different parts of the job by using several task
assignment statements. To establish default values for a task, you can assign values

directly to the PRINTDEFAULTS attribute of a task, as in the following example:

RUN (SANTA)GIFT/LIST;
PRINTDEFAULTS=(DESTINATION="LP14",SAVEBACKUPFILE=TRUE);

The assigned values override the default values that the task would otherwise inherit
from the job.

8600 1047-506 5-19

Complex Task Attribute Assignments

Each file declaration in a task can override the default file attributes and print modifier
values assigned to that task. The attribute values specified in a file declaration in the task
can, in turn, be overridden through the file equation. File equations can be used to assign
file attributes to files used by a task.

For example, if a program named OBJECT/BOG prints a file called OUTFILE, the
following example would modify the way the file is printed:

RUN OBJECT/BOG;
FILE OUTFILE (SAVEBACKUPFILE=TRUE,PRINTCOPIES=3,AFTER="23:00");

Print modifiers cannot be specified in file equations; they can only be included in PRINT
statements or PRINTDEFAULTS assignments.

5-20 8600 1047-506

Complex Task Attribute Assignments

RESOURCE Assignment

<resource assignment>

— RESOURCE — =
>— (— TAPE — = — <integer constant expression> —) {
Explanation

The RESOURCE attribute specifies how many tape units are needed by a task.

Example

The following example assigns values to the RESOURCE attribute:

?BEGIN JOB ATTRBTEST(INTEGER PARAM);
RUN (RAJA)OBJECT/WEATHER/FORECAST;
RESOURCE = (TAPE = PARAM);
?END JOB.

This resource assignment indicates that the program requires the number of TAPE drives
passed to the job in the parameter PARAM. Job parameters, such as PARAM in the

previous example, can be used in the RESOURCE assignment because they are constant
identifiers rather than variables.

Note: The integer constant expression must be an integer in the range of 0 to 255
when it is completely evaluated.

8600 1047-506 5-21

Complex Task Attribute Assignments

SUPPRESSWARNING Assignment

<suppresswarning assignment>
— SUPPRESSWARNING — = — <suppresswarning list> {

<suppresswarning list>

ALL |
— NONE
| < 1 ’ |
warning number>
— <hyphen> il L <hyphen> — <warning number> J

<warning number>

An unsigned integer in the range of 1 through 29999.

Explanation

The SUPPRESSWARNING attribute suppresses run-time warning messages for a
process. Most of these messages are warnings that indicate the process has just used a
feature that is scheduled for deimplementation on a future release.

You can suppress specific run-time warning messages by assigning a set of warning
numbers or warning number ranges to the SUPPRESSWARNING attribute. Each warning
number corresponds to a particular run-time warning message. If the
SUPPRESSWARNING list begins with a hyphen (-), the hyphen is interpreted as a minus
sign and the warning numbers following the hyphen are deleted from the previously
created SUPPRESSWARNING list.

Refer to the Task Attributes Reference Manual for additional information regarding the
SUPPRESSWARNING task attribute.

Examples

5-22

The following is a simple SUPPRESSWARNING assignment that causes all run-time
warning messages to be suppressed:

SUPPRESSWARNING = "ALL";

The following assignment suppresses the run-time warning messages that are in the
ranges 1 through 25, 32 through 45, and 100 through 199:

SUPPRESSWARNING = "1-25,32-45,100-199";

The following assignment deletes messages 10 through 20 from the
SUPPRESSWARNING list that was created in the previous example:

SUPPRESSWARNING = "-10-20";

8600 1047-506

Complex Task Attribute Assignments

USERCODE Assignment

<usercode assignment>
— USERCODE — =

> <usercode> T |
—E # — <string primary> / T <password> ——

— <string primary> —

— <string primary>

Explanation

The USERCODE attribute assigns a usercode and its associated privileges to a task. The
password must be included if the usercode has a password associated with it.

For an explanation of string primaries, refer to “Using String Primaries” in Section 8 of
this manual.

A password-aging feature is available through the InfoGuard Password Management
facility. If the password-aging feature is enabled, the WFL compiler gives a warning if the
usercode password specified for the job is in the warning state. An error is given if the
password has expired. The password-aging feature is discussed further in the Security
Features Guide.

The USER statement changes the usercode of the job or processed subroutine. The

password associated with the usercode of the job can be changed with the PASSWORD
statement. These statements are described later in Section 6, “Statements.”

Examples

The following is a simple USERCODE assignment:
USERCODE = WALLY/BEAR;

The following example uses a string expression:
USERCODE = #(USER1/PASS1);

The following example takes the usercode value from a task variable:

TASK TASKVAR (USERCODE = RAJA/RANI); % Task variable declaration
RUN (WALLY)OBJECT/ALPHA; % Run statement with

USERCODE = #TASKVAR(USERCODE) / RANI; % usercode specification
Note: A string task attribute primary (such as #TASKVAR(USERCODE), in the preceding

example) gives the value of a usercode, but not its associated password. In this example,
the password is given separately in the second USERCODE assignment.

8600 1047-506 5-23

Using Task Variables

Using Task Variables

Explanation

Task variables are variables that can be associated with particular tasks. The means of
defining them are given under “Task Variables” in Section 4. Task variables are used for
two basic purposes: as a means of assigning task attributes or file equations to a task,
and as a means of inquiring about the attributes of a task.

Any number of task variables can be declared and used in a job. Also, a particular task
variable can be associated with more than one task in the course of a job. However, a
task variable can only be attached to one task at any given time and cannot be reused
until that task has terminated. Care should be taken when reassigning a task variable that
was associated with an asynchronous task.

Examples

For example, the following statement is permissible:

RUN X [T];
INITIALIZE (T);
COPY A AS B [T];

However, a run-time error results from the following:

PROCESS COMPILE X WITH ALGOL LIBRARY [T];
RUN Y [T];

If a task variable is not associated with an asynchronous task, the WFL compiler will
allocate a task variable internally and associate it with the task.

Note that a run-time error will result if the PROCESS statement, which initiates tasks
asynchronously, is executed in either of the following ways:

o Repeatedly with the same task variable, while the previously processed task is still
active.

e Inaloop (one that uses the DO or WHILE statement, for example) with no task
variable, while the previously processed task is still active. The error occurs because
the internal task variable is associated with more than one task at the same time.

5-24 8600 1047-506

Using Task Variables

Assigning Task Attributes

When a task variable is associated with a task, any task attribute assignments or file
equations currently assigned to that task variable are assigned to the task.

If a task variable is to be used to assign task or file attribute values to a task, these
values can be specified in the task declaration that declares that task variable. (Refer to
Section 4, “Declarations,” for the syntax of a task declaration.)

The attribute values associated with the task variable can be added to or changed in any
of the following ways:

e Task assignment statements can be used to associate additional task attribute
assignments and file equations with the task variable, or to override values that had
been specified for that task variable previously. (Refer to the assignment statement
in Section 6, “Statements,” for a description of the task assignment statement.)

e Task attribute assignments in a task assignment statement can be applied in any
order, not necessarily in the order listed. If the order is important, the task
assignments should be put into separate task assignment statements. Thus, a
statement such as the following is undesirable:

TVAR(STATUS=NEVERUSED,FAMILY DISK = PARTS ONLY);

The FAMILY assignment in this example can be executed before the STATUS
assignment. If it is, the FAMILY value will be discarded.

¢ \When the task variable is used in a task initiation statement, and attribute
assignments follow the task initiation statement, they are added to the values that
are currently assigned to the task variable. Where there is a conflict, the values
following the task initiation statement override those currently associated with the
task variable.

o \When the task variable is used in a task initiation statement, and the task is a
program, any attribute assignments associated with the object code file of the
program are added to those currently associated with the task variable. Where there
is a conflict, the values currently associated with the task variable override those
associated with the object code file.

e |f, at any point in the job, the INITIALIZE statement is used to reinitialize the task
variable, then all task and file attributes previously associated with the task variable
are discarded. For example, the following statement will reinitialize the task variable
TVAR:

INITIALIZE (TVAR);

8600 1047-506 5-25

Using Task Variables

Examples

In the following example, the program (RAJA)JOBJECT/ALT runs with the task and file
attributes given for the task variable TVAR in the task declaration:

?BEGIN JOB;

TASK TVAR (PRIORITY=50, % Task variable declaration
FILE INFILE (TITLE = F/T));
RUN (RAJA)OBJECT/ALT [TVAR]; % Task initiation statement
?END JOB.

The following example shows several ways in which a task variable can be assigned task
attribute values:

?BEGIN JOB ATTRIBUTES;
TASK T (PRIORITY=50,USERCODE=JAMES/PW, % Task declaration
FAMILY DISK = DISK ONLY);

RUN (PARTS)PROG [T]; % Task initiation
MAXPROCTIME = 90;
INITIALIZE (T); % Initialize statement
T (MAXPROCTIME=30); % Task assignment statement
RUN (PARTS)SUMMARY [T];
?END JOB.

5-26 8600 1047-506

Using Task Variables

Reusing Task Variables

When a task variable is to be reused for another task, the task variable should normally
be reinitialized first. Otherwise, the task variable retains the task attribute values that
were associated with the previous task, and these can sometimes cause undesirable
side effects.

Examples

The following examples show some of the possible side effects of reusing task variables
without reinitializing them.

The following example runs SYSTEM/CARDLINE twice:

?BEGIN JOB TASK/TEST;
TASK T;
RUN SYSTEM/CARDLINE[T];
FILE CARD (KIND=DISK,TITLE=INPUT1);
FILE LINE (KIND=DISK, PROTECTION=SAVE);
RUN SYSTEM/CARDLINE[T];
FILE CARD (KIND=DISK,TITLE=INPUT2);
?END JOB.

This program takes an input file named CARD and produces an output file named LINE,
which by default is a printer file.

The first time SYSTEM/CARDLINE is run, the file LINE is file-equated to have a KIND of
DISK, and the output is thus sent to a disk file. This file equation is also associated with
the task variable T. When SYSTEM/CARDLINE is run the second time, no file equation
for the file LINE is explicitly included, but the file equation is passed on by task variable T,
and the output is still sent to a disk file.

In the following example, T is the declared task used for two RUN statements. In the
second RUN statement, the PRIORITY information, file equation information, and setting
of the OPTION attribute are still in effect when Y is executed. When T is re-used, less
obvious side effects might also occur. For example, if X changes its TASKVALUE, that
TASKVALUE would still be in effect when Y is executed, which might cause undesirable
side effectson V.

?BEGIN JOB EXAMPLEL;
TASK T;
T(PRIORITY=50);

RUN X[T];

FILE F(KIND=DISK);
T(OPTION=(FAULT));
RUN Y[T];

?END JOB.

8600 1047-506 5-27

Using Task Variables

The following example includes two COMPILE and GO statements that both have the
same task variable [T] associated with them. The task variable T has PRIORITY=50
assigned to it; this priority is applied to the GO part of both compiles.

File equations made to the first COMPILE statement also affect the second COMPILE
statement, because the task variable retains the file equations. Because of this fact, the
COMPILER FILE CARD equation after the first COMPILE statement has the (probably
unintentional) effect of causing the second COMPILE to also read from the disk file
named INPUT.

Both COMPILE statements are followed by file equations that affect the same file F; in
this case, the first COMPILE statement treats F as a disk file, and the second COMPILE
statement treats F as a remote file:

?BEGIN JOB EXAMPLEZ;
TASK T;
T(PRIORITY=50);
COMPILE OBJECT/XDISK [T] WITH ALGOL GO;
COMPILER FILE CARD(KIND=DISK, TITLE=INPUT);
FILE F(KIND=DISK);
COMPILE OBJECT/XREM [T] WITH ALGOL GO;
FILE F(KIND=REMOTE);
?END JOB.

The following example illustrates how the INITIALIZE statement can be used to prevent
the attribute values of one task from being accidentally assigned to the next task:

?BEGIN JOB EXAMPLE3;
TASK T;
T(PRIORITY=50);

RUN X[T];

FILE F(KIND=DISK);
INITIALIZE(T);
T(OPTION=(FAULT));
RUN Y[T];

?END JOB.

The task variable T is reinitialized, after which the PRIORITY information and the previous

file equation information are no longer in effect. Thus, program Y runs with the FAULT
option set, but with no other task or file equations.

5-28 8600 1047-506

Using Task Variables

Interrogating Task Attributes

A very useful feature of task variables is that they enable you to inquire about the

attributes of a task after it is initiated. The syntax of expressions that use task variables
to return task attribute values is given in Section 7, “Expressions.” Table 5-2 lists the
expressions that are used to inquire about each type of task attribute.

Table 5-2. Expressions for Task Attribute Inquiry

Task Attribute Type

Expression Used

<Boolean task attribute>

<Boolean task attribute primary>

<file name task attribute>

<string task attribute primary>

<integer task attribute>

<integer task attribute primary>

<mnemonic task
attribute>

<string task attribute primary>

<task mnemonic comparison>

<name task attribute>

<string task attribute primary>

<real task attribute>

<real task attribute primary>

<string task attribute>

<string task attribute primary>

<title task attribute>

<string task attribute primary>

<complex task attribute>

<string task attribute primary>
This expression is used for these attributes:

e ACCESSCODE

e OPTION
e FAMILY
e USERCODE

The following attributes cannot be interrogated:

e CORE
e PRINTDEFAULTS
e RESOURCE

8600 1047-506

5-29

Interrogating Task Status

Interrogating Task Status
The status or history of a task can be inquired about in either of two ways:
e By using a string task attribute primary to interrogate the value of the STATUS

attribute of the task.

Refer to the description of task mnemonic comparisons under “Boolean
Expressions” in Section 7 of this manual for an example. Refer to the description of
the STATUS attribute in the Task Attributes Reference Manual for a list of the
mnemonic values the attribute can have.

e By using the Boolean task state expression.

This is not actually a task attribute inquiry, but it does return information about a task.
Refer to “Task State” in Section 7.

Both of these inquiries return similar types of information about the task, but use
different mnemonic values to express the information.

5-30 8600 1047-506

File Attribute Inquiry

File Attribute Inquiry

The task variable cannot be used to interrogate the attributes of files used by a task.
Refer to “Interrogating File Attributes” later in this section for a discussion of how to
interrogate file attributes.

Interrogating Complex Task Attributes

The following points should be remembered when interrogating the values of complex
task attributes.

e Inquiries about the USERCODE attribute return the usercode only, without the
password.

e Inquiries about the ACCESSCODE attribute return the accesscode only, without the
accesscode password.

e Inquiries about the FAMILY attribute return a value with one of the following forms:

<target family name> = <primary family name> ONLY
<target family name> = <primary family name> OTHERWISE
<alternate family name>

" % EMPTY STRING

e Inquiries about the OPTION attribute return a string value that is a list of all the
options that are set, separated by commas (,). The options can be listed in any order.
Thus, the expression STR := TVAR(OPTION), could return any of the following
values, among others:

"ARRAYS, FILES, LONG"
"CODE"
"CODE, BDBASE, AUTORM, LONG"

Example

The following is an example of an expression that can be used to extract the primary
family name from the FAMILY attribute:

IF LENGTH(MYSELF(FAMILY)) GTR O THEN
MYFAMILY := HEAD(DROP(TAIL(MYSELF(FAMILY),NOT "="),
2),NOT " ")
ELSE MYFAMILY := "DISK";

In this example, MYFAMILY is a string variable and MYSELF is the predefined task

variable. Any string variable or task variable could be used in their places. Refer to “String
Expressions” in Section 7 for explanations of the HEAD, DROP, and TAIL functions.

8600 1047-506 5-31

MYJOB and MYSELF Predeclared Task Variables

MYJOB and MYSELF Predeclared Task Variables

MYJOB and MYSELF are predeclared task variables that can be used to assign or
interrogate task attribute values. The MYJOB task variable is always assigned to the job
itself. If the MYJOB task variable is used in a task assignment statement, the values
specified for it are assigned to the job.

The syntax specified in Sections 5 and 7 that applies to declared task variables can be
used with the predeclared task variables MYJOB and MYSELF, except for the specific
cases documented under the section titled “Task State” in Section 7.

Examples

5-32

For example, the following statement assigns a value to the FAMILY attribute of the job:
MYJOB(FAMILY DISK = MYPACK ONLY);

Any task attributes you wish to specify for the job will normally be included at the start of

the job in the job attribute list. Thus, a task assignment statement using MYJOB is most

useful when you want to change the job attributes later in the job.

The following example uses MYJOB in a task attribute inquiry:

RUN SKYVAL; STATION = MYJOB(SOURCESTATION);

This example takes the value of the SOURCESTATION attribute of the job and assigns it
to the STATION attribute of a task.

The following statement assigns a value to the BDNAME attribute, so that backup files
are created under the directory MYBACKUPFILES:

MYJOB(BDNAME = MYBACKUPFILES);

BDNAME can also be reset by equating it to an empty string (or a string expression that
has the value of an empty string).

In an asynchronous subroutine, the MYSELF task variable is associated with that
subroutine; otherwise, it is assigned to the job and is synonymous with MYJOB. For
example, the following statement stores the value of the MIXNUMBER attribute of the
asynchronous subroutine or job in the variable I:

I := MYSELF(MIXNUMBER);

The following statement assigns the value 9 to the TASKVALUE attribute of the
asynchronous subroutine or job:

MYSELF (TASKVALUE = 9);

These predeclared task variables lose their special meaning if they are explicitly declared
in a job.

8600 1047-506

File Equations

File Equations

<file equation>

— FILE
<intname>— = —<file title |

(~L—4|—L<fﬂe attr‘ibuté assignment>J—) —
*

<global %11e assignment

<intname>

<name constant>
. . |
— <string primary> il

Explanation
File equations can be used for any of the following reasons:
e To cause a task to read from or write to different files from those it normally would

e To change the attributes of files that a task reads from or writes to

e To cause a task to read from global data specifications or local data specifications
instead of from the input files the task would normally have used

File equations can appear in task equation lists, compiler task equation lists, task
declarations, and task assignment statements.

The intname used in a file equation should be the internal name used for a particular file
in the task to which the file equation is applied.

FILECARDS is an acceptable synonym for FILE.

8600 1047-506 5-33

File Equations

Causing the Task to Use a Different Input or Output File

The task can be made to use a different file than it would normally by file-equating the
TITLE attribute of the file. The simplest way to do this is by using the following syntax:

<intname> = <filetite>

Examples
The following example illustrates the use of the <intname> = <file title>

RUN OBJECT/PROG;
FILE INFILE = (JACOB)INPUT/DATA ON ORDSPK;

This form of the file equation syntax changes the TITLE attribute of the file. When the
task tries to open the file that has the internal name INFILE, the file equation will cause it
to open the file (JACOB)INPUT/DATA ON ORDSPK.

The following is an example of alternate syntax for changing the TITLE attribute of a file:

RUN OBJECT/PROG;
FILE INFILE (TITLE = (JACOB)INPUT/DATA ON ORDSPK);

This syntax enables other attributes to be specified at the same time. For more
information, refer to “Assigning File Attributes” later in this section.

5-34 8600 1047-506

File Equations

Changing the Attributes of Files Used by the Task

Any or all of the attributes of a file used by a task can be assigned values in a file
equation.

When the program opens a file that has been file-equated, the attribute values specified
for that file in the WFL job are merged with those specified in the file declaration in the
program. If a file attribute is assigned a different value in the file equation than it is in the
file declaration in the program, then the value assigned in the file equation takes
precedence. If a file that is file-equated is not opened by the program, then the file
equation has no effect.

Certain combinations of file attribute assignments might not be legal; for example, the
value of the BLOCKSIZE attribute must be evenly divisible by the value of the
MAXRECSIZE attribute. Thus, a file equation that sets MAXRECSIZE to a value
incompatible with the BLOCKSIZE attribute would generate a run-time error.

In cases where a program uses a file that already exists (rather than creating one), any
file equations included for that file in the WFL jobs do not affect the physical file that the

program uses. Instead, such file equations alter the way the program reads from or
writes to the file.

For more information about file attributes, refer to the File Attributes Reference Manual.

Example
The following is an example of a file equation that assigns several attributes:
FILE INFILE (TITLE=(WALLY)OD/CON ON PARTS,KIND=DISK,MAXRECSIZE=12,
SECURITYTYPE=PUBLIC);
Causing the Task to Read from a Data Specification
For examples of file equations that cause a task to read from data specifications instead

of from its normal input files, refer to “Global Data Specifications” in Section 4 and to
"Local Data Specifications” later in this section.

How the Task Can Override WFL File Equations

It is possible for a task to override the WFL file equations that are assigned to it. WFL file
equations are merged only with those attributes specified in the file declaration in the
task. File attribute assignments made later in the task will override WFL file equations.

8600 1047-506 5-35

File Equations

Resolving Repeated File Equations to the Same File

When a given task equation list, compiler task equation list, task declaration, or task
assignment statement includes two or more file equations that apply to the same
internal file, the WFL compiler uses the following rules to decide which of the specified
file attribute assignments to use. These rules differ according to whether the inthame
used is a name constant or a string primary.

If the intname used is a name constant, then the following rules apply:

e |f afile equation includes an asterisk (*) before the file attribute assignments, then its
file attribute assignments are merged with any that have been specified for the file in
a previous file equation.

e |f afile equation does not include the asterisk, all task attribute assignments
specified in previous file equations are discarded, and only the ones given in the
latest file equation are used.

If the intname used is a string primary, then the following rules apply:

e The file equation cannot contain an asterisk; if it does, a syntax error is given.

e |f the string primary evaluates to the same internal file name as was specified in a
previous task equation, a run-time error is given.

Examples

5-36

In the following example, X1 is a name constant that specifies an intname. Because the
second file equation contains no asterisk, the first file equation is discarded, and the
values specified for the KIND and TITLE attributes are not used.

RUN (FOLKS)OBJECT/FREELOAD;
FILE X1(KIND=DISK,TITLE=TEST/X1);
FILE X1(MAXRECSIZE=20,UNITS=CHARACTERS);

In the following example, X1 is still a name constant that specifies an intname. However,
because the second file equation includes the asterisk, the attributes from both file
equations are merged:

RUN (FOLKS)OBJECT/FREELOAD;

FILE X1(KIND=DISK);
FILE X1(*,TITLE=TEST/X1);

8600 1047-506

Global File Assignment

Global File Assignment

<global file assignment>

— <name constant> — := — <file identifier> }

Explanation

A global file assignment is used to replace a file used by a program with a file declared in
the WFL job.

The name constant specified must be the internal name of the file used by the program.
The file identifier specified is the identifier that was used in the WFL file declaration.

Example

The following is an example of a global file assignment:
FILE INFILEl := GLOB2;

The colon (:) before the equal sign (=) is important because if it were left out the
statement would be interpreted as a title assignment for the file rather than a global file
assignment.

The attribute values of the file that is assigned can be supplied in the file declaration or in
later file assignment statements; the system supplies default values for attributes that
are not explicitly assigned values in the job.

When a global file assignment replaces a file used by a program, all the attributes
associated with the original file are ignored. Therefore, if you want to alter only selected
attributes of a file used by a program, a global file assignment should not be used.
Instead, use the method described earlier in this section in “Changing the Attributes of
Files Used by the Task.”

Note: If a global file is used by a COBOL74 program and is used again in the same WFL
job, the COBOL74 program cannot close the global file with the LOCK phrase. However,
the global file can be closed with the SAVE phrase. The COBOL74 “CLOSE WITH LOCK”
statement is specifically implemented for the purposes of preventing access from within
the same programy/run unit/job once the file has been closed.

Global file assignments make it possible to find out whether a task has changed any of
the attributes of a file. Refer to “Interrogating File Attributes” later in this section for
details.

You should be cautious about using global file assignments to cause more than one

program to use the same file. Refer to “Assigning File Attributes” later in this section for
details.

8600 1047-506 5-37

Using Remote Files

Using Remote Files

5-38

When a program needs to read from or write to a remote device attached to the system,
it opens a remote file and associates it with that device. A common example of this is a
program that sends data to or accepts input from the terminal where the program was
initiated. Special measures are required when using WFL to initiate a program that reads
from or writes to a remote file.

When a program tries to open a remote file, by default it tries to associate that file with
the station the program was initiated from. However, if the program was initiated by a
WEFL job, then the program is not associated with a station, and an error is generated
when it attempts to open the remote file.

To prevent this problem, you can include the following statement near the start of the
WEFL job, before any tasks are initiated:

MYJOB(STATIONNAME = #MYSELF (SOURCENAME)) ;

This statement causes the STATIONNAME attribute of the WFL job to store the name of
the station that initiated the job. Any tasks of that job inherit the STATIONNAME value.
When any of these tasks opens a remote file, the remote file is linked by default to the
station that initiated the WFL job.

Before the STATIONNAME task attribute was implemented, the STATION task attribute
was the only method of specifying the default station for remote files. The STATION
attribute identifies a station by its logical station number (LSN). Use STATIONNAME
rather than STATION because the station name is stable, whereas the LSN is subject to
change.

The setting of the CANDE LAISSEZFILE option affects the ability of the program to open
remote files that are not directly associated with its own session. According to the value
of LAISSEZFILE, the task attribute assignment in the previous example might be
sufficient to enable the program to open the remote file, or the system might ask for an
OK from the station before the remote file is opened, or the program might be prohibited
from opening the remote file. Refer to remote files in the CANDE Configuration
Reference Manual for further information.

Another approach to dealing with programs that use remote files would be to file-equate
the remote files to a different KIND, such as DISK or READER.

8600 1047-506

File Attribute Assignment

File Attribute Assignment

<file attribute assignment>

——— <Boolean file attribute>

L. <Boolean expression> !
— <file name file attribute> — = — <file name>
— <integer file attribute> — = — <integer expression>
— <long file name file attribute> — = — <long file name> —
— <long title file attribute> — = — <long file title>
— <mnemonic file attribute> — = — <file mnemonic primary> —
— <name file attribute> — = — <name>
— <real file attribute> — = — <real expression>
— <string file attribute> — = — <string expression>
— <title file attribute> — = — <file title>
— <device kind assignment>

L <serial number assignment>

Explanation

The file attribute assignment assigns values to the attributes of files referenced in a WFL
job. File attribute assignments can be used in file declarations, file assignment
statements, and file equations. Attribute values in file declarations must be constants or

constant expressions.

The correspondence between the types of file attributes referred to in this manual and
the types described in the File Attributes Reference Manual are described in “Using File

Attributes” later in this section.

8600 1047-506

5-39

Device Kind Assignment

Device Kind Assignment

<device kind assignment>

n device mnemonic J }

=~
—
=
o
|
non

— # —<string primary>

Explanation

The KIND attribute specifies the type of device the file resides on.

The KIND = portion of the syntax is optional; it is enough to simply list the device
mnemonic.

Examples

The following two examples are equivalent:

FILE FILEA (TITLE = A/B, KIND = DISK);

FILE FILEA (TITLE

A/B, DISK);
The device mnemonic assigns a mnemonic value to the KIND attribute. For a list of the

valid mnemonic values, refer to the description of the KIND attribute in the File Attributes
Reference Manual.

5-40 8600 1047-506

Serial Number Assignment

Serial Number Assignment

<serial number assignment>
— SERIALNO — = — <serial number Tist> }

<serial number list>

—|:<ser‘1'a1 number: |
(——/9990\ - : L) J

<serial numbe\r‘>J

<serial number>

T <integer exp\r‘ess1'on>J |
<string expression>

Explanation

Serial number assignments assign values to the SERIALNO file attribute. When the WFL
job or its tasks create or search for the file, they do so on the volumes with the specified
serial numbers. For further details, refer to the File Attributes Reference Manual.

The value assigned to the SERIALNO attribute is a string six characters long. If the serial
number given is an integer constant, it must be a positive integer less than or equal to
999999. The integer constant is automatically converted to a string with the correct
length. If the serial number given is a string constant less than six characters long, then it
is automatically padded with blanks at the end to ensure that the resulting string is the
correct length.

If a real constant or expression is specified for a serial number, it will be integerized with
truncation. This is equivalent to the WFL statement INTEGER (<real expression>).

When specifying a list of serial numbers for the reels of a multiple reel tape file, an empty
serial number can be specified for any of the reels.

Example

The following file equation assigns no serial number to the third reel of file T1:

FILE T1(KIND=TAPE, SERIALNO=(1,2,,4));

8600 1047-506 5-41

Using File Attributes

Using File Attributes

Table 5-3 shows how the attribute types listed in the File Attributes Reference Manual
correspond to the types used in this manual. Attribute types that cannot be accessed
through WFL are listed as not available.

Table 5-3. File Attribute Types

File Attribute

Type Corresponding WFL Type Valid File Attributes
Boolean <Boolean file attribute> All Boolean attributes
Event Not available None of the attributes
Integer <integer file attribute> All integer attributes
Mnemonic <mnemonic file attribute> All mnemonic attributes
Pointer <file name file attribute> The following attributes are

valid:
e FAMILYOWNER
e FILENAME

e PRINTCHARGE
e STATIONLIST

Pointer <long file name file attribute> LFILENAME attribute

Pointer <long title file attribute> LTITLE attribute

Pointer <name file attribute> The following attributes are
valid:

e APPLICATIONGROUP
e FAMILYNAME

e HOSTNAME

e INTNAME

e MYHOST

e MYHOSTGROUP

e SCRATCHPOOL

e YOURHOST

e YOURHOSTGROUP

e YOURUSERCODE

5-42 8600 1047-506

Using File Attributes

Table 5-3. File Attribute Types

File Attribute

Type Corresponding WFL Type Valid File Attributes
Pointer <string file attribute> The following attributes are
valid:
e AFTER
e DESTINATION
e FORMID
o LICENSEKEY
e NOTE
e PATHNAME
e RELEASEID
o TRANSFORM
o \WARNINGS
Pointer <title file attribute> The following attributes are

valid:

e ALIGNFILE
e COPYNAME
e MYNAME

e SECURITYGUARD
e STATIONNAME

e TITLE

e YOURNAME

Real

<real file attribute>

All real attributes

Translatable

Not available

None of the attributes

Word <real file attribute> The following attributes are
valid:
e STATE
e TIMESTAMP

Word <serial number list> SERIALNO attribute

8600 1047-506

5-43

Using File Attributes

Assigning File Attributes

The attributes of files that are referenced in a WFL job can be assigned values in file
declarations and file assignment statements. One point to be aware of when using a file
assignment statement is that the attribute assignments can be executed in any order,
not necessarily in the order listed. Thus, file assignment statements such as the
following should be avoided:

F (TITLE=(SUPPLIES)COUNTEM,KIND=DISK,DEPENDENTSPECS=TRUE,OPEN=TRUE)

This example is intended to set certain attributes for a file, and then open it. However,
the OPEN assignment might be executed before the others, which would not give the
desired effect. The preferred method would be to use a separate OPEN statement
following the file assignment statement.

The OPEN attribute of a file is implicitly set by the OPEN statement, and reset by the
CRUNCH, LOCK, PURGE, RELEASE, and REWIND statements. These statements have
additional effects aside from setting or resetting this attribute; see the descriptions of
these statements in Section 6, "Statements.”

The OPEN statement can have the additional effect of assigning the logical file all
attributes of the physical file. This will occur if the physical file was pre-existing (not
created by the job) and the file is declared in the job with the DEPENDENTSPECS
attribute set to TRUE.

Example

5-44

The following file declaration associates the attributes of the physical file,
(JACOB)OBJECT/LINE, with the logical file, FILEA, when the file is opened:

FILE FILEA (TITLE=(JACOB)OBJECT/LINE,KIND=DISK,NEWFILE=FALSE,
DEPENDENTSPECS=TRUE) ;

This declaration provides the title and location of the file. The NEWFILE=FALSE
assignment indicates that a file with the specified title and location already exists and is
to be used rather than creating a new file of the same name.

When a file is declared in this way, the attributes that are not mentioned in the
declaration assume their default values until the file is opened. Thereafter, the attributes
will have the values of the physical file.

If a global file assignment is used to cause the task to use a file declared in the WFL job,
then any changes that the task makes to the file attributes are retained by the file
declared in the job. This is useful for making file attribute inquiries possible, but also can
cause side effects if the file is reused by another task.

These side effects can arise because tasks might have conflicting expectations about

whether a file is open or closed, and where the current record of the file is positioned.
WEFL does not automatically close a file at the end of a task; however, the task can close

8600 1047-506

Using File Attributes

or rewind the file, and explicit file closing statements can be included in the WFL job to
accomplish the same result.

Interrogating File Attributes
WEFL includes a number of expressions that can be used to interrogate the attributes of
files. Depending on the type of attribute involved, these expressions might return
integer, real, Boolean, or string values and can be used wherever that type of value is

permitted in the job.

Table 54 lists all these expressions. Refer to Section 7, "Expressions,” for the syntax of
each expression.

Table 5-4. Expressions for File Attribute Inquiry

File Attribute Type Expression Used

<Boolean file attribute> <Boolean file attribute primary>

<file name file attribute> <string file attribute primary>

<integer file attribute> <integer file attribute primary>

<long file name file attribute> <string file attribute primary>

<long title file attribute> <string file attribute primary>

<mnemonic file attribute> <string file attribute primary>

<file mnemonic comparison>

<name file attribute>

<string file attribute primary>

<real file attribute>

<real file attribute primary>

<string file attribute>

<string file attribute primary>

<title file attribute>

<string file attribute primary>

KIND

<string file attribute primary>

SERIALNO

The value of this attribute cannot be interrogated.

In general, a file must have been declared in the job before its attributes can be
interrogated. (The only exception is the file residence inquiry.) The syntax for file
declarations is given in Section 4, “Declarations.” The file should be declared with

DEPENDENTSPECS set to TRUE, as described under “Assigning File Attributes” earlier
in this section. Once the file is opened, the job can inquire about any of the attributes of

that file.

File attribute inquiries have a wide variety of applications in WFL jobs. For example, the
attributes of a file can be interrogated both before and after they are used by a task to
see if the task altered the attributes. However, the task must be made to use a file that
was declared in the job, because only the attributes of declared files can be interrogated.

8600 1047-506

5-45

Using File Attributes

A global file assignment can be used to make the task use a file. (Global file assignment
is described under “File Equations” earlier in this section.)

Another expression that is similar to a file attribute inquiry is the file residence inquiry,
which checks on the residence of a file. This same information can be obtained by using
a Boolean file attribute primary to interrogate the RESIDENT attribute of a file. However,
the file residence inquiry has the advantage that it can be applied to files regardless of
whether they were declared in the job. Refer to “File Residence Inquiry” in Section 7 for
more information on file residence inquiry.

Examples

The following example checks the length of a file by interrogating the value of the
LASTRECORD attribute. The file is copied to tape and removed from disk if it is larger
than 10000 records.

OPEN (FILEA);
I := FILEA (LASTRECORD) + 1; % LASTRECORD is 0O-relative
IF T GTR 10000 THEN
BEGIN

WAIT ("MOUNT TAPE NAMED FILETP FOR BACKUP",0K);

COPY FILEA FROM ORDS (DISK) TO FILETP (TAPE) [T];

IF T(TASKVALUE) NEQ 1 THEN

REMOVE FILEA;

END;

The value of LASTRECORD is the zero-relative sequence number of the last line of the
file. Therefore, FILEA (LASTRECORD) + 1 returns the number of records in the file.
Before the disk file FILEA is removed, the TASKVALUE of the copy task is checked to
ensure that the copy was successful.

The security characteristics of a file can be inquired about through the SECURITYUSE,
SECURITYTYPE, and SECURITYGUARD attributes, each of which returns a string value.

For example:

IF FILEA (SECURITYUSE) NEQ "IQ" THEN
SECURITY #FILEA(TITLE) IO;

This statement can be used to ensure that a file enables both input and output.

Nonresident Files

5-46

Statements can be initiated from different interactive sources such as MARC, CANDE, or
the ODT as well as from programming languages such as WFL. If one or more of the
necessary files are not present, the statement behavior can differ depending on how the
statement is initiated. For this reason, not all aspects of statement behavior are
documented.

8600 1047-506

Using File Attributes

To determine the commands that are acceptable when a NO FILE message is
encountered, use the Y (Status Interrogate) system command. For more information
about this command, refer to the System Commands Reference Manual.

8600 1047-506 5-47

Library Equation

Library Equation

<library equation>
— LIBRARY — <intname>

> (ﬁL <library attribute assignment> 1) }
*

<intname>

<name constant>
|
— <string primary> il

<library attribute assignment>

— <library attribute> — = — <library attribute value> —|

Explanation
Library equations can be used to change the attributes of libraries used by programs.
The intname in a library equation specifies the internal name used to identify a library.
The library attribute assignment assigns values to the attributes of libraries. For a list of

valid library attributes and library attribute values, refer to the Task Management Guide.

Examples

The following is an example of a library equation used after a COMPILE statement:

COMPILE OBJECT/PROG1 WITH ALGOL LIBRARY;
COMPILER FILE CARD = PROG1 ON DISK;
LIBRARY LIB1 (TITLE = OBJECT/LIB1, LIBACCESS = BYTITLE);

The following is an example of a library equation following a RUN statement:
RUN OBJECT/PROG2;
LIBRARY LIB2 (TITLE = OBJECT/LIB2, LIBACCESS = BYTITLE);

Overriding WFL Library Equations

It is possible for a task to override the WFL library equations that are assigned to it. WFL
library equations are merged only with those attributes specified in the library declaration
in the task. Library attribute assignments made later in the task override WFL library
equations.

5-48 8600 1047-506

Library Equation

Resolving Repeated Library Equations to the Same Library

When a given task equation list, compiler task equation list, task declaration, or task
assignment statement includes two or more library equations that apply to the same
internal library, the WFL compiler uses the following rules to decide which of the
specified library attribute assignments to use. These rules differ according to whether
the intname used is a name constant or a string primary.

If the intname used is a name constant, then the following rules apply:

e If alibrary equation includes an asterisk (*) before the library attribute assignments,
then its library attribute assignments are merged with any that have been specified
for the library in a previous library equation.

e |f alibrary equation does not include the asterisk, all task attribute assignments
specified in previous library equations are discarded, and only the ones given in the
latest library equation are used.

If the intname used is a string primary, then the following rules apply:

e The library equation cannot contain an asterisk; if it does, a syntax error is given.

e |f the string primary evaluates to the same internal library name as was specified in a
previous task equation, a run-time error is given.

Examples

In the following example, L1 is a name constant that specifies an intname. Because the
second library equation contains no asterisk, the first library equation is discarded, and
the value specified for the TITLE attribute is not used.

RUN (TEST)OBJECT/CALC;
LIBRARY LI(TITLE = TEST/L1);
LIBRARY L1(LIBPARAMETER = "TEST1");

In the following example, L1 is still a name constant that specifies an intname. However,
because the second library equation includes the asterisk, the attributes from both library
eqguations are merged.

RUN (TEST)OBJECT/CALC;

LIBRARY LI(TITLE = TEST/L1);
LIBRARY L1(*, LIBPARAMETER = "TEST1");

8600 1047-506 5-49

Database Equation

Database Equation

<database equation>

— DATABASE —<database name
T (— TITLE — = —<database title>—) I |
= —<database title

<database name>

<name constant>
. . |
— <primary string> J

<database title>
— <file title> |

Explanation

A database equation causes a program to use a different database than it would
normally.

The database name is the name by which the database is referred to in the program.

Only the TITLE attribute of the database can be equated.

Example

The following is an example of a database equation following a RUN statement:

RUN OBJECT/UPDATE;
DATABASE TESTDB(TITLE=MYDB);

5-50 8600 1047-506

Local Data Specifications

Local Data Specifications
<local data specification>

DATA
L EBCDIC L <file name constant> J

»— <data images>
>— <j> |

Explanation

A local data specification supplies input data in the form of card images to a particular
task. The task reads from the local data specification as if it were an input file. A task that
attempts to read from a card reader file will automatically read from a local data
specification instead, if one is available. Tasks that read from other kinds of files can be
file-equated to cause them to read from a local data specification instead.

Note: The default MAXRECSIZE of a READER file is 14 words (84 characters), but a
record contains only 80 characters of valid data. Take this into consideration when using
a local data specification, since a record in a file generated by CANDE with a FILEKIND =
JOBSYMBOL contains data in columns 1 through 80, spaces in columns 81 and 82, and
the sequence number in columns 83 through 90. To avoid getting unwanted information,
equate UNITS to CHARACTERS and set the MAXRECSIZE to 80 when reading the local
data specification.

The data images are records of EBCDIC data. DATA is a synonym for EBCDIC. The <i>
construct that terminates the local data specification also separates the data specification
from the next statement; it is not necessary to follow the data specification with a
semicolon (;). For more information, see “Global Data Specifications” in Section 4.

A local data specification differs from a global data specification in that it can only be
used by a single task. The syntax for a local data specification is the same as that for a
global data specification, with the following exceptions:

e |Local data specifications appear immediately after the task initiation statement for
the task that it is going to read from. Only task attributes and file equations can be
used between a task and its local data specifications.

e Local data specifications can be included in subroutines, while global data
specifications cannot.

e Local data specifications do not have to include a file name; the file name is optional.

When a task tries to open a card reader file, it searches among the local data
specifications associated with that task for the first unread local data specification with
the correct file name or no file name.

8600 1047-506 5-51

Local Data Specifications

Examples

The following example shows the simplest use of a local data specification. The program
(WALLY)OBJECT/COUNTUP expects to read data from a single card reader file. In this
situation, the local data specification does not need to be named, and no file equations
are required.

RUN (WALLY)OBJECT/COUNTUP;
DATA

6
? % End of data

It is a good idea to give each local data specification a title if more than one local data
specification is being used by the task. This makes it obvious which local data
specification is being substituted for which input file. The local data specification should
have the same title as the input file it is replacing in the program, unless the input file has
been file-equated to a different title.

In the following example, the program reads the local data specification titled TERMIN1
instead of the input file of the same name, and reads the local data specification titled
READDAT instead of the input file titled TERMINZ2:

RUN (WALLY)OBJECT/COUNTTWO;
FILE TERMIN1(KIND=READER);
FILE TERMIN2(TITLE=READDAT,KIND=READER);
DATA TERMIN1
3
128
? % End of TERMINI data
DATA READDAT
5
? % End of READDAT data

When used after a COMPILE or BIND statement, local data specifications can be

interpreted as input to the compiler or to the program that is compiled depending on the
syntax used. Refer to “Compiler Task Equation List” in Section 6 for more information.

5-52 8600 1047-506

Local Data Specifications

By default, a compiler expects to find the program source in a card reader file named
CARD. For this reason, it is not necessary to include a file equation telling the compiler to
read from the appropriate local data specification. It is sufficient to assign CARD as the
title of the local data specification, and precede the local data specification with the word
COMPILER or a compiler name, as in the following example.

A data specification can appear only in jobs stored in disk files that are initiated by
START.

COMPILE OBJECT/X WITH ALGOL GO;
COMPILER PRINTLIMIT=1000;
PRINTLIMIT=2000;

COMPILER DATA CARD % Beginning of data for compiler

X\

e

s These lines contain an ALGOL program.

?
DATA

o

End of compiler data
Beginning of program data

o

? % End of program data

The form of the <name> construct that allows 17 EBCDIC characters other than
quotation marks (") is not supported.

8600 1047-506 5-53

Local Data Specifications

5-54 8600 1047-506

Section 6
Statements

Overview
The following section describes

e Functional groups of statements
e Statements in each group

e Each statement in alphabetical order

Many statements enable you to specify values for file attributes or task attributes.
However, the descriptions of file and task attributes covered in this section are discussed
only in terms of their use through WFL. If you require further information, refer to the File
Attributes Reference Manual for file attribute descriptions, and the Task Attributes
Reference Manual for task attribute descriptions.

Syntax Diagrams

The syntax diagrams for each statement often contain some elements that are explained
in Section 7, “Expressions,” and Section 8, “Basic Constructs.” Any statement can be
used wherever <statement> appears within a railroad syntax diagram.

Nested Statements

Statements in a job can be nested to a maximum depth of 19 levels. Examples of nested
statements include

e A statement specified in an ON statement
e An IF statement within an IF statement

e Statements within a compound statement

8600 1047-506 6-1

WFL Statement Groupings

WFL Statement Groupings

6-2

The following text describes each group of WFL statements and outlines the general
functions of each group and the statements within each group.

Null

Takes no action. This statement is sometimes useful in task control or nested
flow-of-control statements. The null statement is the only statement in this group.
Assignment

Assigns values to declared variables. The assignment statement is the only statement in
this group.

Compound

Groups other statements together so they can be included in the flow-of-control
statements. The compound statement is the only statement in this group.
Flow-of-Control

Controls the order in which statements are executed, or causes other statements to be
executed only if the specified conditions are met. Flow-of-control statements include:

e CASE
e« DO

e GO

e |F

o WHILE

Subroutine Control

Invokes a subroutine, or causes it to be exited early. Subroutine control statements
include:

e <subroutine invocation statement>

e RETURN

Task Control

Affects task execution; for example, by discontinuing, delaying, or rerunning a task. Task
control statements include:

e ABORT

e INITIALIZE
e« ON

e RUN

e STOP

o WAIT

8600 1047-506

WFL Statement Groupings

Task Initiation

Initiates a task, which is a process that runs in its own stack. Most task initiation
statements enable the use of file equations and task attribute assignments to control the
execution of the task. Refer to Section 5, “Task Initiation,” for details. Task initiation
statements include:

e ADD e COMPILE
e ARCHIVE DIFFERENTIAL e COPY

e ARCHIVE FULL e LOG

e ARCHIVE INCREMENTAL e PB

e ARCHIVE MERGE e PROCESS
e ARCHIVE RESTORE e PTD

e ARCHIVE RESTOREADD e RESTORE
e ARCHIVE ROLLOUT e RUN

e BIND e START

Task Security

Affects the security privileges of the job. A related statement is the SECURITY
statement, which sets the security properties of files. Task security statements include:

e ACCESS

e PASSWORD

e USER

e VOLUME
Communication

Provides the user or the operator with information about the job. Communication
statements include:

e INSTRUCTION

e DISPLAY

File Handling

Opens or closes files. There are several ways of closing files, each of which leaves the
file in a different state. Refer to “File Handling” in Section 1 for more information. File
handling statements include:

¢ CHANGEPURGE e OPEN

e CRUNCH e RELEASED

e LOCK e REWIND

8600 1047-506 6-3

WFL Statement Groupings

6-4

File Management

Changes, removes, or prints disk files. Creates permanent directories. Changes file titles
or security. The MODIFY statement permanently adds to or changes the attributes in an
object code file. File management statements include:

ALTER

ARCHIVE PURGE
ARCHIVE RELEASE
CHANGE

MKDIR

MODIFY
PRINT
REMOVE
SECURITY
VOLUME

Note: The ADD, COPY, MOVE, RESTORE, and RESTOREADD statements are related
to the file management statements, but are considered task initiation statements

because they initiate a task when copying files.

Cataloging

Affects the cataloging of information about files, disk families, or tapes. Cataloging
statements include:

CATALOG
VOLUME

8600 1047-506

ABORT Statement

ABORT Statement

<abort statement>

— ABORT |
L [— <task identifier> —] L <string expression> g1
Explanation
The ABORT statement

e Discontinues a task, or a job, and any tasks initiated by the job.

e Discontinues a task associated with the task identifier specified in the ABORT
statement.

e Discontinues a job and all the tasks initiated by a job if a task identifier is not
specified in the ABORT statement.

e Displays up to 430 characters of the value of the string expression prior to the abort,
if the string expression is specified in the ABORT statement.

Examples

The following are examples of the ABORT statement:

ABORT;

ABORT "THIS JOB HAS BEEN ABORTED";

IF T(TASKVALUE)=5 THEN ABORT;
In the following example, if the TASKVALUE attribute of task T2 has the value 3, the task
associated with the task identifier T1 is discontinued after the message “TASK
ABORTED" is displayed:

IF T2(TASKVALUE) = 3 THEN ABORT[T1] "TASK ABORTED";
In the following example, if the task state of the task T is not COMPILEDOK, the job is
discontinued, or in the case of an asynchronous subroutine, the subroutine is

discontinued:

IF T ISNT COMPILEDOK THEN ABORT[MYSELF];

8600 1047-506 6-5

ACCESS Statement

ACCESS Statement

<access statement>

— access PASSWORD — = — <new accesscode password> {

<new accesscode password>

<new accesscode password>
— <name constant> |

Explanation
The ACCESS statement

e Changes the ACCESSCODE password of the current job.

e Changes the password for the current ACCESSCODE to the new accesscode
password. However, at execution, the job must have a usercode and a valid
ACCESSCODE.

e Updates the password associated with the current ACCESSCODE of the job in the
USERDATAFILE when the job is successfully executed.

e Assigns an ACCESSCODE to a task, by using the accesscode assignment as
explained earlier in Section 5, “Task Initiation.”

Example

The following is an example of the ACCESS statement:

ACCESS PASSWORD = ENTER

6-6 8600 1047-506

ADD Statement

ADD Statement

<add statement>

— ADD
Y /1\ — BECOMEOWNER
Lo J 910 — CATALOG
BACKUP
| /1\ —— COMPARE
L Vertry
| /1\ —— DSONERROR ——
L WAITONERROR —
| /1\ — REPORT ——
L 1\ — SKIPEXCLUSIVE —

L : J_[§R :<E$223125Tservice>] : J

—>J— <copy request> |

L [—<task identifier>—] il

|—L ; —<task attribute assignment>J—

Explanation

The ADD statement is similar to the COPY statement. It copies files between disks and
tapes. It is particularly useful for adding a directory of files to a disk where some of the
files are already resident and are to be preserved.

The ADD statement has the following effects which depend on whether a disk or tape
destination is specified:

e For a disk destination, the ADD statement copies only those files that are not already
resident on the specified disk destination.

e For a tape destination, it is equivalent to a COPY statement with a tape destination. If
there were any files on the destination tape, they will be overwritten. The ADD
statement will copy all the available requested files to the destination tape.

For a detailed explanation of the ADD statement syntax, refer to the “COPY or ADD
Statement” later in this section.
Example

The following example of the ADD statement copies files under the directory Z/= from
tape T to disk R and to DISK. Any files already resident on the destination volumes are
not copied. Different files might be copied to R and DISK, depending on what is already
resident on each destination volume before the ADD is executed.

ADD Z/= FROM T(KIND=TAPE) TO R(KIND=DISK), TO DISK;

8600 1047-506 6-7

ALTER Statement

ALTER Statement

<alter statement>
— ALTER

»—J—[ﬂong file t1't1e>—4|—L (—<alter attribute statement>—)
<long directory title>

<alter attribute statement>

. ALTERNATEGROUPS — = — <alternategroups value> | }
— PROPAGATESECURITYTODIRS = DONTPROPATE
— PROPAGATESECURITYTOFILES_—|_ L PROPAGATE — 1]
— ALIGNFILE — = —<file title
— ALIGNMENT
— BANNER —TL. —<Boolean expression>
— APL T

= —<Boolean expression
— CCSVERSION — = —<mnemonic value
— EXTMODE — = —<mnemonic value
— FORMID = —<string primary
— PAGECOMP
— TRANSFORM
—<group expression
— LABEL ———— = —<mnemonic
— PRINTERKIND —
— TRAINID ———
— LOCKEDFILE B

= —<Boolean expression>
— NOTE — = —<string primary
— PRODUCT — = —<string primary
— RELEASEID — = —<string primary
— SAVEFACTOR — = —<integer expression>
— SECURITYGUARD — = <file title
—|: nn
— SECURITYMODE — = —<integer expression>
— SECURITYTYPE — = —<file mnemonic primary>
— SECURITYUSE — = —<file mnemonic primary>
— SENSITIVEDATA T
= —<Boolean expression>

— USERINFO — = —<integer expression

<alternategroups value>

—<string primary

" J—/9\—<name constant>— : RWX "

6-8 8600 1047-506

ALTER Statement

<group expression>

—— GROUP <name constant {
—<string primary

— GROUPRWX = — RWX

— OTHERRWX — RW

— OWNERRWX — RX
— WX
— R
— W
— X
— NO
L # — <string primary> —

— GROUPR

— GROUPW ——— L. —<Boolean expression>—

— GROUPX ——

— OTHERR ———

— OTHERW ——

— OTHERX ———

— OWNER

— OWNERR ———

— OWNERW ——

— OWNERX ——

— SETUSERCODE —

— SETGROUPCODE —|

— USEGUARDFILE —

— GUARDOWNER —

Explanation

The ALTER statement changes the file attributes of a disk file.

When ALTER encounters a file that is currently open with EXCLUSIVE = TRUE, ALTER
enters a waiting state. To skip the file, enter <mixnumber> OF. To exit without
processing any more files, enter <mixnumber> DS.

The following file attributes are available for the <alter attribute statement>. Refer to the
File Attributes Programming Reference Manual for more information about each
attribute.

Notes:

o Many security attributes are interrelated, therefore changes to one attribute might
affect another attribute.

e The ENABLEPOSIX system option no longer controls functionality. However, you
still have the ability to control this option, which enables you to switch between the
current MICP and earlier MICP versions.

ALIGNFILE

Specifies the name of a printer backup file which contains an alignment pattern for a
particular form. This attribute is used by the Print System when the ALIGNMENT
attribute is TRUE.

8600 1047-506 6-9

ALTER Statement

ALIGNMENT
When set to TRUE, the Print System performs alignment before printing the file.

ALTERNATEGROUPS

Specifies a list of up to nine groups whose members can access the file in the manner
defined by the corresponding set of permissions. Any process executing a task with a
GROUPCODE or SUPPLEMENTARYGROUPS that matches the GROUP attribute of the
file or matches one of the groups specified in the ALTERNATEGROUPS attribute—but is
not the owner of the file—is granted the corresponding access permissions.

A process matching to multiple groups receives the union of the permissions granted for
the individual matches. If the ALTERNATEGROUPS attribute is not set, then it has no
effect on file access.

APL

When set to TRUE, specifies that only a program whose code file also has its APL
attribute set to TRUE can access the file. If the APL attribute is set to FALSE, the file can
be accessed by a program regardless of the APL attribute value in the program code file.

Note: This file attribute can be modified only if the ALTER statement is executed from
the ODT.

BANNER

When set to TRUE, a banner page is printed ahead of the desired file to help identify the
printed output.

CCSVERSION

Specifies the rules to be used for processing the character data in the file.

When you specify CCSVERSION, it is modified in the file and the EXTMODE attribute is
modified to a value compatible with the CCSVERSION specified.

If you specify both CCSVERSION and EXTMODE, and they are compatible with one
another, then both attributes are modified in the file. Incompatible values cause ALTER to
fail and an error message results.

For character-oriented files, if modifying the value of CCSVERSION or EXTMODE causes
the character size to change, ALTER fails and an error message results.

EXTNMIODE
Specifies the external or physical character encoding of the records in the file.
When you specify EXTMODE, it is modified in the file. The CCSVERSION attribute is

unaffected if it is compatible with the EXTMODE specified. Otherwise, CCSVERSION
reflects a value of NOTSET (-1) in the file.

If you specify both EXTMODE and CCSVERSION, and they are compatible with one

another, then both attributes are modified in the file. Incompatible values cause ALTER to
fail and an error message results.

8600 1047-506

ALTER Statement

For character-oriented files, if modifying the value of EXTMODE or CCSVERSION causes
the character size to change, ALTER fails and an error message results.

FORMID

When specified, the file can be printed only on a device with a matching identification.
This attribute is normally applied to indicate the kind of paper to be used.

GROUP

Specifies a group whose members can access the file in the manner defined by the
GROUPRWKX attribute. Any process executing a task with a GROUPCODE or
SUPPLEMENTARYGROUPS that matches the GROUP attribute of the file—but is not the
owner of the file—is granted the access permissions defined by the GROUPRWX
attribute. If the GROUP attribute is not set, then group access is not granted to any
process attempting to access the file.

GROUPR

When set to TRUE, grants group members read-access to the file.

GROUPW

When set to TRUE, grants group members write-access to the file.

GROUPX

When set to TRUE, grants group members execute-access to the file.

GROUPRWX

Specifies the manner in which members of the group matching the group attribute of the
file are permitted to access the physical file. The following table lists the valid mnemonic
values for GROUPRWX:

NMnemonic Meaning
RWX Read, Write, Execute
RW Read, Write

RX Read, Execute

R Read

WX Write, Execute

W Write

X Execute

NO None

Family substitution is used if the job or task has an active family specification. Only the primary
family name is used. Refer to “FAMILY Assignment” and “Interrogating Complex Task
Attributes” in Section 5.

8600 1047-506 6-11

ALTER Statement

GUARDOWNER
Used with the USEGUARDFILE attribute to cause the guard file to define access
permissions for the owner of the file.

Note: The GUARDOWNER attribute has no effect if the USEGUARDFILE attribute is
reset.

LABEL

For tape files, controls whether labels are written and affects end-of-file action.

For disk and printer files, controls whether banner pages are printed and affects top-of-
page action.

LOCKEDFILE

When set to TRUE, prevents disk files from being removed or replaced, and the file
name from being changed. However, the locked file can be opened and updated, and the
file attributes can be changed. When set to FALSE, this attribute enables files to be
removed and changed.

NOTE

Stores a message of up to 250 characters to be printed on the banner page preceding
the printer file, punch file, or disk file. The default value is a null string.

OTHERR

When set to TRUE, grants other users (excluding the owner and members of the groups
specified by GROUP and ALTERNATEGROUPS) read-access to the file.

OTHERW

When this file attribute is set to TRUE, then other users (excluding the owner and
members of the groups specified by GROUP and ALTERNATEGROUPS) are granted
write-access to the file.

OTHERX

When set to TRUE, grants other users (excluding the owner and members of the groups
specified by GROUP and ALTERNATEGROUPS) execute-access to the file.
OTHERRWX

Specifies the manner in which all other users (excluding the owner and members of the
groups specified by GROUP and ALTERNATEGROUPS) are permitted to access the
physical file. The following table lists the valid mnemonic values for OTHERRWX:

NMnemonic Meaning
RWX Read, Write, Execute
RW Read, Write

RX Read, Execute

8600 1047-506

ALTER Statement

NMnemonic Meaning
R Read

WX Write, Execute

W Write

X Execute

NO None

Family substitution is used if the job or task has an active family specification. Only the primary
family name is used. Refer to “FAMILY Assignment” and “Interrogating Complex Task
Attributes” in Section 5.

OWNER

Modifies the owner of the file.
Note: This attribute can be set only within a permanent directory namespace.

OWNERR

When set to TRUE, grants the owner read-access to the file.

OWNERW

When set to TRUE, grants the owner write-access to the file.

OWNERX

When set to TRUE, grants the owner execute-access to the file.

OWNERRWX

Specifies the manner in which the owner of the file is permitted to access the physical
file. The following table lists the valid mnemonic values for OWNERRWX:

Mnemonic Meaning
RWX Read, Write, Execute
RW Read, Write

RX Read, Execute

R Read

WX Write, Execute

W Write

X Execute

NO None

8600 1047-506 6-13

ALTER Statement

Family substitution is used if the job or task has an active family specification. Only the primary
family name is used. Refer to “FAMILY Assignment” and “Interrogating Complex Task
Attributes” in Section 5.

PAGECOMP

Specifies formatting options to be used when printing a file.

PRINTERKIND

Specifies the kind of device the file is to be printed on.

PRODUCT

Stores a message of up to 250 characters to specify or determine that a piece of your
software belongs to a product group. This attribute associates a piece of software with a
specific application, product, and component as defined within the Unisys tracking and
reporting system.

PROPAGATESECURITYTODIRS

When set to PROPAGATE on a permanent directory, causes subdirectories within the
permanent directory—for which no security attributes have been explicitly set—to be
assigned the same security attributes as the parent directory.

Note: Permanent directories are supported only on ClearPath HMP NX Series systems.

PROPAGATESECURITYTOFILES

When set to PROPAGATE on a permanent directory, causes files within the permanent
directory—for which no security attributes have been explicitly set—to be assigned the
same security attributes as the parent directory.

Note: Permanent directories are supported only on ClearPath HMP NX Series systems.

RELEASEID

Specifies or determines the release level of the file.

SAVEFACTOR

Indicates the expiration date of a file in terms of the number of days past the creation
date.

SECURITYGUARD

Identifies the guard file to be invoked for the file if the SECURITYTYPE attribute is
assigned GUARDED or CONTROLLED. For more information about guard files, refer to
the Security Features Guide.

SECURITYMODE

Specifies the manner in which users are permitted to access the physical file, including
the owner of the file.

8600 1047-506

ALTER Statement

SECURITYTYPE

Provides access control over users, other than the owner of a file, to a physical file. The
SECURITYTYPE attribute can have a value of PRIVATE (default), PUBLIC, GUARDED, or
CONTROLLED:

o PRIVATE files can be accessed or overwritten only by their owners and privileged
users.

e PUBLIC files can be accessed by tasks with any usercode, as limited by the setting
of the SECURITYUSE attribute.

e GUARDED files can be accessed by the owner, however, nonprivileged users and
programs are granted access as defined by the guard file. The guard file, which
defines the access rights to files, must be examined before access to a disk file is
granted.

e CONTROLLED files can be accessed after the guard file is examined and access to
your disk file is granted. If you are not defined in the guard file, you do not have
access to the file.

SECURITYUSE

Specifies how a physical file that is protected by security can be accessed by
nonprivileged users using nonprivileged programs. This attribute can have a value of 10
(default), IN, or OUT. When a PUBLIC file is accessed by a task with a usercode that
differs from the OWNER, the SECURITYUSE attribute permits the following actions
based on its value:

e A value of 10 permits reading, writing, overwriting, and purging.

e Avalue of IN permits reading, but not writing, overwriting, or purging.

e A value of OUT permits writing, overwriting, or purging, but not reading.

SENSITIVEDATA

When set to TRUE, causes the disk or pack areas assigned for a file to be overwritten
with an arbitrary pattern before the disk space is returned to the system for reallocation.

SETGROUPCODE

When set to TRUE on a code file, this file attribute causes the program to execute with
an effective GROUPCODE of the group of the file.

SETUSERCODE

When set to TRUE on a code file, causes the program to execute with an effective
USERCODE of the owner of the file.

TRAINID

Specifies the print train to be used on a train printer.

TRANSFORM

Specifies a transform function, which is used to manipulate the data before printing.

8600 1047-506 6-15

ALTER Statement

USEGUARDFILE

When set to TRUE, a guard file in addition to the SECURITYMODE attribute controls
access to the physical file. For the guard file to control access to the file completely, the
file access permission flags OWNERRWX, GROUPRWX, and OTHERRWX should be set
to TRUE.

USERINFO

Saves site- or application-specific information.

Examples

This ALTER statement prevents a file named FILEX from being removed or replaced, and
the file name from being changed.

ALTER FILEX (LOCKEDFILE)

This statement locks the files called MYFILE and AFILE so that the files cannot be
replaced or removed, and sets their SECURITYUSE attribute to permit reading only.

ALTER MYFILE, *SOURCE/AFILE (LOCKEDFILE=TRUE, SECURITYUSE=IN)
The first line of this statement locks the file called FILEY and all files in the directory
called MYFILE, and changes the SENSITIVEDATA attribute for those files. The second
line of this statement sets the expiration date of FILEX to 30 days past its creation, sets

the NOTE attribute of FILEX to “Banner Page”, and locks the file.

ALTER FILEY, MYFILE/= (SENSITIVEDATA, LOCKEDFILE),
FILEX (SAVEFACTOR=30, NOTE="Banner Page", LOCKEDFILE)

8600 1047-506

Archive Subsystem

Archive Subsystem

Note: Archiving is not supported for files within the permanent directory namespace.

The archive subsystem consists of six different ARCHIVE statements. These statements
enable you to

Copy files to archive backup tape and CD-ROM volumes.

Maintain a record of the names, locations, and attributes of the archived files and
directories.

Remove archive backup information for specified files.
Transfer archived files between backup tapes.
Restore archived files to disk.

Merge files onto a single tape or tape set.

The following paragraphs briefly describe the functions of the ARCHIVE statements:

Copying, transferring, and restoring files

You can perform library maintenance operations that include copying and transferring
disk files to backup tape and CD-ROM volumes, restoring disk files from backup tape
and CD-ROM volumes, and merging backup tape and CD-ROM volumes to a single
tape or tape set.

Automatically maintaining an archive directory

The archive directory is a disk directory that records the names, locations, and
attributes of disk files that have been transferred through archive operations to tape
or CD-ROM volumes, or merged from many tape and CD-ROM volumes to one tape
or tape set. The archive subsystem maintains an archive directory for each online
disk family from which archive operations have been performed. These directories
reside on the DL CATALOG family.

Controlling access using the support library

The support library is used by the ARCHIVE statement to control which files are
copied during an archive operation. The archive support library rejects files that are
requested by ARCHIVE statements based on various selection criteria. The support
library is sometimes called the selector library.

8600 1047-506 6-17

Archive Subsystem

Specifying Different ARCHIVE Statements

The following table lists all of the ARCHIVE statements and their functions.

At many sites, the use of the ARCHIVE statements to manipulate files under usercodes
other than your own is limited to those usercodes whose security access is privileged.
However, a WFL job that is started at an ODT without a usercode can use any one of the
following ARCHIVE RESTORE statements.

ARCHIVE DIFFERENTIAL
ARCHIVE FULL
ARCHIVE INCREMENTAL

Copy resident disk files to library maintenance tape or CD-ROM volumes and are referred
to as ARCHIVE backup statements.

ARCHIVE MERGE

Merges files from two or more library maintenance tape or CD-ROM volumes to a single
tape or tape set.

ARCHIVE PURGE

Removes the backup records for specific files or directories from the archive directory of
the specified disk family. This statement does not affect resident disk files in any way.

ARCHIVE RELEASE

Removes files from disk that are not in use and have up-to-date archive backup records.
This statement is intended to free disk space for other uses. The removed files can be
restored by the archive AUTORESTORE feature and the WFL statements ARCHIVE
RESTORE and ARCHIVE RESTOREADD. In addition to the ARCHIVE RELEASE
statement, see the WFL statements REMOVE and REMOVE DESTROY.

ARCHIVE RESTORE
ARCHIVE RESTOREADD

Restore archived files from library maintenance tape and CD-ROM volumes to disk.

ARCHIVE ROLLOUT

Selects and copies disk files to a library maintenance tape and CD-ROM volumes. It then
removes the original disk files from the disk. This statement is intended to free disk
space for other uses.

FAMILY Specifications

Family substitution is used if the job or task has an active family specification. Only the
primary family name is used. Refer to "FAMILY Assignment” and "Interrogating
Complex Task Attributes” in Section b.

6-18 8600 1047-506

Archive Subsystem

ARCHIVE Backup Statement

<archive backup statement>

— ARCHIVE FULL B B
INCREMENTAL — <archive options>
DIFFERENTIAL —

— FROM — <archive disk volume>

L

| B <long file r’1ame> —J—L FROM — <archive disk volume> J—
<long directory name>

— TO —<archive CD-R volume>

L T0 — <arch1’ve,tape volume> 1

L [— <task identifier> —] |

L ; — <archive task equation Tist> il

Explanation

These ARCHIVE statement copies resident disk files to backup tape or CD-ROM
volumes. You can use these statements to backup some or all of the disk files on various
families; which files the archive subsystem selects for backup depends on which of the
three statements you select.

The three variants of the ARCHIVE backup statement are as follows:

e ARCHIVE FULL

Copies all specified resident disk files on the named families to a CD-ROM volume or
to one or more backup tapes.

e ARCHIVE INCREMENTAL

Copies to backup CD-ROM or tape volumes only those specified resident disk files
that have been changed or added since the last archive backup procedure was
performed. This statement does not copy files solely on the basis of the last full
archive operation.

e ARCHIVE DIFFERENTIAL

Copies to backup CD-ROM or tape volumes the specified resident disk files that have
been changed or added to the family or families since the last ARCHIVE FULL
statement was executed.

For each of the ARCHIVE backup statements, files are selected by the disk subsystem
and then accepted or rejected for the actual archive procedure. The archive support
library determines which of the candidate files can and cannot be archived to a tape or
CD-ROM volume.

If your installation has compiled its own selector support library, you can use library
equation to direct the file selection process through that library.

8600 1047-506 6-19

Archive Subsystem

6-20

You can use the backup CD-ROM and tape files created by these statements as input for
the ARCHIVE MERGE, ARCHIVE RESTORE, and ARCHIVE RESTOREADD statements,
and for the COPY and ADD statements.

Special Considerations for Backup Tape and CD-ROM Volumes

It is necessary to plan what volume names and, optionally, what serial numbers to use
for the backup volume. Otherwise, archive restore requests result in the following RSVP
messages for the CD-ROM volumes it decides to use:

NO FILE <volume name>/FILEQ00 (MT) [<serial number>]
NO FAMILY <volume name> (CD) [<serial number>]

The operator must have a method to find those tape CD-ROM volumes and load them
onto a CD-ROM unit. Keep in mind the following considerations:

e Tape volumes always have serial numbers that you assign in advance with the SN
(Serial Number) system command. The serial numbers for tape volumes are usually
unique, so it is relatively easy to build a tape library with each volume stored
according to its serial number.

e For CD-ROM volumes, you cannot assign the serial numbers in advance, and when
you do specify a serial number in an archive backup request, the archive system puts
the same serial numbers on all the CD-ROM volumes created by that backup
request.

Therefore, you should systematically assign volume names and, optionally, serial
numbers to CD-ROM volumes for each archive backup request you issue and store those
CD-ROM volumes in an organized library so that operators can locate them when archive
restore asks for them.

Checking the Progress of the Backup

You can use the HI (Cause Exception Event) system command to check the progress of
an ARCHIVE backup statement. A command of the form <mix number> HI displays the
number of files already copied and other information.

Special Code for Streamer Tapes

When you copy files from disk to certain tapes, the archive backup process uses special
code to accelerate the copy process to streamer tapes—if all of the following conditions
are met:
e There is only one destination tape.
e The destination tape unit is one of the following:

IOM Systems

— 2145-01 and 2145-03 tape units

EMS Systems

— 2145-02 and 2145-03 tape units

— B9498 Cipher Streamer tape units

8600 1047-506

Archive Subsystem

e You do not specify any of the following options:
— & DSONERROR
- & WAITONERROR
— & VERIFY
- &REPORT
Note: You can specify the & COMPARE option.

Examples

The following example illustrates how to perform a complete backup of the TESTPACK
family:

ARCHIVE FULL FROM TESTPACK
The following example shows how to perform a complete backup of all online families:
ARCHIVE FULL

The following example creates backup copies of the files under the SYSTEM directory on
the families DISK and HLUNIT that do not already have archive backup copies:

ARCHIVE INCREMENTAL & VERIFY SYSTEM/= FROM DISK,
SYSTEM/= FROM HLUNIT TO SYSTAPE;

The following example illustrates how to perform a backup of files under the usercode
DOE on the family TESTFAMILY that have been updated since the last ARCHIVE FULL
statement:

ARCHIVE DIFFERENTIAL (DOE) = FROM TESTFAMILY

The following example shows how to back up files under the usercode MYCODE to a
tape volume called NEWTAPE from the scratch pool POOL1:

ARCHIVE DIFFERENTIAL (MYCODE) = FROM TESTFAMILY
TO NEWTAPE (KIND = TAPE, SCRATCHPOOL = POOL1);

The following example shows how to perform a complete backup of the XDATA disk
family to CD-ROM volumes. In this case, because CDCOPIES is 2, the system produces
duplicate copies of the files onto two sets of CD-ROM volumes.

ARCHIVE FULL *= FROM XDATA
TO XDARC (KIND=CD, CDCOPIES=2, SERIALN0=555555);

In this example, both sets of CD-ROM volumes get the name XDARC and the serial
number 555555. If more files are on the disk family XDATA than fit on one CD-ROM
volume, then the system requests additional CD-ROM volumes during the copy process.
The system gives those additional CD-ROM volumes the volume name XDARC and the
serial number 555555 also.

8600 1047-506 6-21

Archive Subsystem

ARCHIVE Statement Options

<archive options>

/1\—— & — COMPARE ——
L& — veRrFy
/NN & — DSONERROR —
& — WAITONERROR —
/1\- & — RELEASE
/1\- & — REPORT
/1\— SKIPEXCLUSIVE

Explanation

6-22

The following table options are available for all of the ARCHIVE statements.

COMPARE

Compares the input file and the output file bit by bit immediately after the file is copied. If
a compare error occurs, the process will stop and ask the operator if the file should be
recopied.

DSONERROR

Causes the system to discontinue the archiving process if any error is detected.

RELEASE

Causes library maintenance to execute an “archive release” operation for each file that
library maintenance successfully copies and archives. The archive release operation
removes the resident version of the file from the disk. You can use the RELEASE option
only in ARCHIVE FULL, ARCHIVE INCREMENTAL, and ARCHIVE DIFFERENTIAL
statements.

Note: [ibrary maintenance does not release a file that is in use by another program.

REPORT

Causes library maintenance to print a report of the files it copied and any errors
encountered. When & REPORT is specified, library maintenance does not write “file
copied” messages in the job log or the system sumlog.

SKIPEXCLUSIVE

Causes the system to not copy those files from disk that are opened with
EXCLUSIVE=TRUE or that are KEYEDIOII files marked as being updated.

WAITONERROR

Causes the archive process to issue an RSVP message whenever an error occurs during
the archive process.

8600 1047-506

Archive Subsystem

Examples of possible errors include: requesting a file or directory that is missing, or
failing to open a tape successfully. The RSVP message halts the archive process until the
operator or programmer responds with OK or DS. A response of OK causes the archive
process to continue archiving with other files or tapes. A response of DS will terminate
the archive process. After investigating the error which created the RSVP message, you
can re-issue the archive statement.

VERIFY

This option is similar to the COMPARE option. However, instead of comparing the copied
file bit by bit, the file is read again and its overall checksum is compared. \When copying
to a CD-ROM volume, the system ignores the VERIFY option.

ARCHIVE Disk Volume

<archive disk volume>

— <family name> B B
<archive disk volume attribute Tist>
Explanation

The archive disk volume syntax designates the disk that contains the files where an
archive function is going to be performed.

The archive functions that you can perform on the source disk include:

e Archiving files
e Restoring files
o Releasing files

e Purging archive information for files from a specific archive directory

8600 1047-506 6-23

Archive Subsystem

ARCHIVE Disk Volume Attribute List

<archive disk volume attribute list>

— (L /m DISK Ly
Lo — = I L pack |
/1\ — SERIALNO — = — <serial number Tist>
/1\ — FAMILYINDEX — = — <integer expression> —
Explanation

The following options are available for the archive disk volume attribute list.

KIND

Describes the peripheral unit associated with the volume.

SERIALNO

Identifies the specific disk family to be used when copying files. This attribute does not
have a default value. For more information, refer to “Serial Number Assignment” in
Section b.

FAMILYINDEX

Designates a specific physical volume within a disk family. If you do not specify the
FAMILYINDEX attribute, the FAMILYINDEX attribute (if any) of each file to be restored is
used.

Note: This option applies only to the ARCHIVE RESTORE and RESTOREADD
Statements.

6-24 8600 1047-506

Archive Subsystem

ARCHIVE Tape Volume

<archive tape volume>

— <tape name> 0] '
<archive tape volume attribute list>

Explanation

The tape name specifies the name of the destination tape for the archived files. If you do
not specify a tape name, the system will create a name. For instance, if there is more
than one <file list> FROM <family name> clause in an ARCHIVE FULL, ARCHIVE
INCREMENTAL, or ARCHIVE DIFFERENTIAL statement, the system uses the tape name
FULL, INCREMENTAL, or DIFFERENTIAL followed by the date in the form YYDDD,
where YY is the year and DDD is the day of the year. Otherwise, the system uses a tape
name that consists of the disk family name followed by the date in the form YYDDD.

Examples

The following example causes the system to generate a tape name of the form
INCREMENTAL95302:

ARCHIVE INCREMENTAL = FROM DISK, = FROM HLUNIT;

The following example causes the system to generate a tape name of the form
DISK95302:

ARCHIVE FULL & COMPARE = FROM DISK;

8600 1047-506 6-25

Archive Subsystem

ARCHIVE Tape Volume Attribute List

6-26

<archive tape volume attribute list>

0

—/1\— COMPRESSIONREQUESTED

L. —<Boolean Exp>—
—/1\— DENSITY — = — BPI800

— BPI1250

— BPI1600

— BPI6250

— BPI11000
— BPI38000

— FMT36TRK

— FMTAIT

— FMTAIT2

— FMTDLT10

— FMTDLT20

— FMTDLT35

— FMTQIC1000
— FMTST9840

—/1\— FAMILYOWNER — = wn

*

<usercode

TAPE

M T e — 2

—/1\ LIBMAINTAPPEND NO
—|: L TOEND
LIBMAINTDIR

L - —<Boolean Exp>
—/1\— LOCATECAPABLE ON

OFF

DONTCARE

- /1\— OFFSITE

L. —=<Boolean Exp

—/1\— SAVEFACTOR — = —<integer expression>
—/1\— SECURITYGUARD — = —<guard file title>
—/1\— SECURITYTYPE — = —<file mnemonic primary>—
—/1\— SECURITYUSE — = —<file mnemonic primary>—
—/1\—|: SERIALNO — = —=<serial number 1ist>
SCRATCHPOOL — = —<scratch pool name>

L/1\— USECATALOG B
= —<Boolean Exp>

<scratch pool name>

— <name>

—/1\~ AUTOUNLOAD — = —— ON
OFF
DONTCARE
—/1\— BLOCKSIZE — = —<integer
—/1\~ COMPRESSIONCONTROL — = —— USER
SYSTEM

8600 1047-506

Archive Subsystem

Attributes

You can specify the following attributes for the archive tape volume attribute list:

e AUTOUNLOAD e LOCATECAPABLE

e BLOCKSIZE e OFFSITE

e COMPRESSIONCONTROL e SAVEFACTOR

e COMPRESSIONREQUESTED e SCRATCHPOOL

e DENSITY e SECURITYGUARD

e FAMILYOWNER e SECURITYTYPE

e KIND e SECURITYUSE

e LIBMAINTAPPEND e SERIALNO

e LIBMAINTDIR e USECATALOG
AUTOUNLOAD

Determines whether or not a tape is unloaded when it is released by the system during a
reel switch or a file close operation. If the value is ON, the tape is rewound and unloaded.
If the value is OFF, the tape is not unloaded. If the value is DONTCARE, or if this attribute
is not specified, the tape behavior is controlled by the setting of the AUTOUNLOAD
option of the MODE (Unit Mode) system command. For more information, refer to the
System Commands Reference Manual.

BLOCKSIZE

Specifies the tape blocksize in words that library maintenance uses when copying files to
and from tape. Library maintenance automatically rounds the value you specify up to an
integer multiple of 900 words. If you specify a value larger than 64800 words, library
maintenance uses 64800 instead. If you specify a value greater than 4500 words for a
tape destination, then library maintenance automatically uses that blocksize for all disks
involved in the operation.

Using the same block size for the source and all the destinations greatly improves the
performance of the copy task. Using a larger blocksize increases the amount of data that
can be stored on any given tape volume.

Notes:

e (Certain magnetic tape devices have limits on the maximum length /O they can
process. If you specify a block size larger than the limit for a tape device, library
maintenance automatically reduces the blocksize to a valid value for that tape
destination.

8600 1047-506 6-27

Archive Subsystem

o ARCHIVE WFL statements that contain BLOCKSIZE specifications cannot be
compiled or run on SSR 42.2 or earlier versions of the MCP. The SSR 42.2 and earlier
versions of the MICP will give syntax errors for ARCHIVE statements containing
BLOCKSIZE specifications. The SSR 42.2 and earlier versions of the MCP will give
“file OPEN errors” for any ARCHIVE statement with a BLOCKSIZE specification for a
tape that is started or restarted on an SSR 42.2 or earlier versions of the MICP.

e [fyou do not specify BLOCKSIZE for a tape, library maintenance uses the default
value established by the SYSOPS LMBLOCKSIZE system command, or if the default
is zero (0), library maintenance uses a small default blocksize that it selects for each
tape and disk.

COMPRESSIONCONTROL

Enables you to control whether compression will be applied to the volume being created.
There are two values associated with this attribute:

e USER
e SYSTEM

When the value of USER is selected, compression will occur based on the value of the
COMPRESSIONREQUESTED file attribute. When the value SYSTEM is selected,
compression will occur based on the compression value in the tape label. SYSTEM is the
default value. For further information, refer to the File Attributes Reference Manual.

COMPRESSIONREQUESTED

This attribute only has significance for tape files when the COMPRESSIONCONTROL
attribute is set to a value of USER.

e |[f COMPRESSIONCONTROL = USER and COMPRESSIONREQUESTED = TRUE,
compression will occur.

e |[f COMPRESSIONCONTROL = USER and COMPRESSIONREQUESTED = FALSE,
compression will not occur.

Note: Stating COMPRESSIONREQUESTED in a WFL statement implies
COMPRESSIONREQUESTED = TRUE. For further information, refer to the File Attributes
Reference Manual.

DENSITY

Indicates the recording density of a magnetic tape volume. The default value is the
density setting of the tape unit selected.

6-28 8600 1047-506

Archive Subsystem

FAMILYOWNER

KIND

Indicates the usercode of the owner of a tape volume family. If you do not use the
FAMILYOWNER attribute or if you specify a null string (" "), the usercode of the archive
process is used. If you specify an asterisk (*) with the FAMILYOWNER attribute, the
tape volume becomes a nonusercoded volume.

Note: This attribute applies only to installations running the Security Accountability
Facility package or the InfoGuard security enhancement software.

Specifies the kind of peripheral unit to use. KIND can be TAPE or CD (or CDROM).

LIBMAINTAPPEND

This attribute is used by library maintenance in the copy procedure.

Notes:

e [ijbrary maintenance does not update the tape directories on any reels already copied
with the file names of the files being added. Library maintenance only updates the
LIBMAINTDIR tape directory disk files with the names of the new files.

e The message BACKUP START ON: data and time appears in the PD display for files
that have archive backups. This message refers to the time of the original task that
started the tape. It does not refer to the start time of the task with
LIBMAINTAPPEND = TOEND specified.

LIBMAINTAPPEND = NO

If you specify LIBMAINTAPPEND = NO, or do not specify LIBMAINTAPPEND, the copy
procedure copies to a new tape.

LIBMAINTAPPEND = TOEND

If you specify LIBMAINTAPPEND = TOEND, library maintenance searches for an existing
library maintenance tape with the name and serial number you specify. The tape you
specify must be a tape created with the LIBMAINTDIR = TRUE specification. Library
maintenance checks the LIBMAINTDIR tape directory disk file for that tape to determine
the serial number of the last tape in that set of tapes. (Even if the tape contains no tape
directory, it does contain a pointer to the LIBMAINTDIR file on disk, which is used to find
the location of the end of the last file on the final tape.)

If necessary, library maintenance searches for that tape. Then library maintenance skips
to the end of the last file copied to that tape and copies the files that you specified. The
copy procedure expands the LIBMAINTDIR tape directory disk file for the tape with the
names and status of all files copied to the LIBMAINTDIR file.

8600 1047-506 6-29

Archive Subsystem

The following conditions must be met to use LIBMAINTAPPEND = TOEND:

e The destination tape must have been created by a COPY or ARCHIVE statement that
specifies LIBMAINTDIR = TRUE for that tape.

e You must specify & VERIFY for the append operation if the & VERIFY option was
specified when the tape was originally created.

e You must not specify & VERIFY for the append operation if the & VERIFY option was
not specified when the tape was originally created.

When library maintenance copies files to a tape with LIBMAINTAPPEND = TOEND, it
does not add the names of those files to the tape directory for the tape. You cannot use
the TDIR system command or the FILEDATA utility TAPEDIR request to view the names
of files copied to tape with LIBMAINTAPPEND = TOEND. Instead, use the FILEDATA
utility LIBMAINTDIR modifier to view the names of all the files copied to a tape.

If you specify a list of tape serial numbers for the SERIALNO attribute, library
maintenance takes special action. Library maintenance uses the first serial number in
the list to locate any existing tapes in the set of tapes to which the files are to be added
or appended. Library maintenance then reads the LIBMAINTDIR file for that tape to
determine the serial number of the last tape volume in the set. Library maintenance
immediately opens that tape, if necessary, then uses the other serial numbers you
supplied when it reaches the end of that tape.

Example

The original tapes have the serial number 111111, 222222, and 333333, and the following
COPY statement is specified:

COPY . . . TO <tape name> (LIBMAINTAPPEND = TOEND,
SERIALNO = (222222, "AAAAAA"));

The preceding COPY statement is processed as follows:

1. The tape with serial number 222222 opens and the LIBMAINTDIR file is read. It is
determined that the tape 333333 is the last tape in the set.

2. Tape 222222 closes.
3. Tape 333333 opens.
4. Library maintenance moves to the end of the last file on tape 333333.
5. Library maintenance appends three new files to the end of tape 333333.
6. If tape 333333 fills before the copy operation completes, tape AAAAAA opens and
the additional data is appended to tape AAAAAA.
LIBMAINTDIR

6-30

Determines whether library maintenance should create a tape directory disk file on the
DL LIBMAINTDIR disk family. The LIBMAINTDIR tape directory disk file describes the
destination tape and the files copied to it. Library maintenance gives these files names of
the form LIBMAINTDIR/<tape name>/<date>/<tape serialno>. It also puts them under
the usercode that library maintenance is running under, or * if there is no usercode.

8600 1047-506

Archive Subsystem

Library maintenance stores the following information in these files:

e Serial numbers of the tapes used
o Names of the files copied to those tapes
e Certain other attributes of those files

You receive a report of the information in tape directory disk files by running the
SYSTEM/FILEDATA utility program and using the following syntax:

<filedata modifier> LIBMAINTDIR = <disk file name>

Note: When you specify LIBMAINTDIR=TRUE, library maintenance writes the tape
with ANSI87 labels.

Any attempt to purge a library maintenance tape for which there is a tape directory disk
file resident on the DL LIBMAINTDIR disk family requires approval by the operator. When
library maintenance or any other program overwrites a library maintenance tape for which
there is a tape directory disk file resident on the DL LIBMAINTDIR disk family the system
automatically removes that LIBMAINTDIR file.

LOCATECAPABLE

Set the LOCATECAPABLE attribute to ON to indicate that the file requires a tape drive
capable of processing the READ POSITION and LOCATE BLOCK ID tape commands for
fast tape access.

If the assigned tape drive is locate capable, then library maintenance automatically takes
advantage of this feature to do high-speed spacing in the following situations:

e COMPARE Option

Library maintenance uses the LOCATE BLOCK ID tape command to backspace to
compare the file. If you receive a RECOPY REQUIRED message and respond “OK,”
library maintenance uses LOCATE BLOCK ID to backspace to the beginning of that
file to recopy the file. If you respond with “OF,” the file is erased.

e ARCHIVE Directory for Destination Tapes

For a tape that is locate capable, library maintenance stores the BLOCK ID of the
start of each file it copies in the SYSTEM/ARCHIVE directory. If you specify
LIBMAINTDIR = TRUE, library maintenance also stores BLOCK ID information in the
LIBMAINTDIR directory.

e ARCHIVE Directory for Source Tapes

If the original tape was created on a locate capable tape drive, then library
maintenance uses the LOCATE BLOCK ID information found in the ARCHIVE
directory to rapidly space up to each of the files to be copied.

Note: |If you intend to add files to the tape later by specifying LIBMAINTAPPEND =
TOEND, then specify LOCATECAPABLE = ON to get the correct type of tape unit.

8600 1047-506 6-31

Archive Subsystem

OFFSITE

When you specify OFFSITE for a tape destination, library maintenance updates the
onsite/offsite status of that tape in the volume library or in the volume directory.

If library maintenance does not successfully copy a file to a destination tape, it purges
the tape and does not update the onsite/offsite status for the tape.

If library maintenance successfully copies the files and OFFSITE is TRUE, then, it marks
the archive entries for files copied to that tape as “offsite.” When library maintenance
closes the tape, it updates the entry for the tape in the volume library or in the volume
directory to indicate that the volume or volumes are “offsite.” If library maintenance
successfully copies the files and OFFSITE is false, then, when library maintenance closes
the tape, it updates the entry for the tape in the volume library or the volume directory to
indicate that the volume or volumes are “onsite.”

Note: Library maintenance performs these actions only when the tape volume is listed
in either the Volume Library, at sites that use the OP + CATALOGING option, or the
Volume Directory, at sites that use the SECOPT TAPECHECK = AUTOMATIC option.

SAVEFACTOR

Indicates the expiration date of a tape volume in terms of the number of days past the
creation date. The default value for archive and library maintenance tapes is 30 days.

When an ARCHIVE backup, ARCHIVE ROLLOUT, or ARCHIVE MERGE request makes a
backup copy of a file that already has four backup copies, the system replaces the
backup copy that has the earliest expiration date. If the expiration dates are the same,
the system replaces the backup copy that has the earliest creation date.

SECURITYGUARD

Identifies the guard file to be invoked for the tape volume if the SECURITYTYPE attribute
is assigned a value of GUARDED or CONTROLLED. The default value is a null string (" ").
For more information about guard files, refer to the Security Features Guide.

Note: This attribute applies only to installations running the Security Accountability
Facility package or the InfoGuard security enhancement software.

SECURITYTYPE

6-32

Identifies the tape volume security type. This attribute can have a value of PRIVATE
(default), PUBLIC, GUARDED, or CONTROLLED. PRIVATE tape volumes can be
accessed or overwritten only by their owners and privileged users. PUBLIC tape volumes
can be accessed by tasks with any usercode, as limited by the setting of the
SECURITYUSE attribute. The security of GUARDED and CONTROLLED tape volumes is
determined by the guard file referenced by the SECURITYGUARD attribute.

Note: This attribute applies only to installations running the Security Accountability
Facility package or the InfoGuard security enhancement software.

8600 1047-506

Archive Subsystem

SECURITYUSE

Specifies how a tape volume that is to be protected by the SECURITYTYPE attribute can
be accessed by nonprivileged users using nonprivileged programs.

Note: This attribute applies only to installations running the Security Accountability
Facility package or the InfoGuard security enhancement software.

SERIALNO

Identifies the specific tape volumes to be used when copying files. This attribute does
not have a default value. For more information, refer to “Serial Number Assignment” in
Section b.

SCRATCHPOOL

Identifies the scratch pool from which the tape is retrieved for archiving. The scratch pool
name can be a 17-character identifier. This attribute does not contain a default value.

USECATALOG

If true, indicates that a listed tape in the volume library should be used. The archive
procedure uses this attribute at cataloging installations only.

8600 1047-506 6-33

Archive Subsystem

ARCHIVE CD Volume

<archive cd volume>

—<CD name>—<archive CD volume attribute 1ist {

Explanation

The volume name specifies the name of the destination CD-ROM volumes.

You can optionally specify one SERIALNO for a CD-ROM destination. If you do include a
serial number, the system uses that serial number for all COCOPIES it creates and for
any extra CD-ROM volumes it needs to contain all the files being copied. If you do not
include a serial number, then the system uses a serial number of the form YYMMDD (a
6-digit number in which the first two digits correspond to the year, the next two digits
correspond to the month, and the last two digits correspond to the day of the month).
For example, an archive backup to CD-ROM done on February 10, 2001 would use the
serial number 010210 if you did not specify a serial number in the ARCHIVE backup
statement.

Normally tape volumes have unique serial numbers. Therefore, when an ARCHIVE
RESTORE process issues a "NO FILE" RSVP message for a tape, including the serial
number, it is relatively easy for the operator to locate and load the requested volume.
When making an archive backup to a CD-ROM volume, try to pick a volume name and
optionally a serial number to help you locate the correct CD-ROM volume during an
ARCHIVE RESTORE. When restoring from a CD-ROM volume, the "NO FAMILY" RSVP
message includes the volume name, the serial number, and the volume sequence
number (which is displayed as the family index number).

NO FAMILY <volume name> (CD) [<serial number>]
<family index number>

The volume sequence number identifies which volume is needed in cases where the
ARCHIVE backup process filled up one CD-ROM volume and continued copying files to
one or more additional CD-ROM volumes.

Note: Unlike tape volumes, you cannot put a serial number on a CD-ROM volume in
advance. When you include a serial number in an ARCHIVE backup statement for a
CD-ROM volume, the system gives all the CD-ROM volumes it copies files to the same
serial number.

Example

The following example causes the system to back up all the files on PACK to one or
more CD-ROM volumes

ARCHIVE FULL & REPORT *= FROM PACK TO PACK20010510 (CD);

6-34 8600 1047-506

Archive Subsystem

ARCHIVE CD Volume Attribute List
<archive cd volume attribute list>
CD
L— KIND — = —J L— CDROM —J

L , CDCOPIES — = —<integer expression |) {
OFFSITE

|—<Boo1 ean expression>

PACKETWRITE

|—<Boo1ean expression>
SAVEFACTOR — = —<integer expression>—
SERIALNO — = —=<serial number>

Explanation

You can specify the following attributes for the archive tape volume attribute list:

e CDCOPIES
e MULTIVOLUME
e OFFSITE

e PACKETWRITE
e SAVEFACTOR
e SERIALNO

CDCOPIES

The CDCOPIES value specifies how many duplicate CD-ROM volumes should be
created. A value of 2 indicates one original and one duplicate. A value of 3 indicates one
original and two duplicates. Do not get CDCOPIES mixed up with the extra CD-ROM
volumes the archive process creates when the files it is copying overflows the first
volume. The archive process creates duplicates of each overflow volume according to
the value of CDCOPIES.

MULTIVOLUME

If you specify the MULTIVOLUME attribute, the WFL compiler issues a syntax error. The
archive system automatically sets the MULTIVOLUME attribute.

OFFSITE

If you set the OFFSITE attribute to TRUE, the system marks the backup records it
creates as referring to an offsite volume. During an archive restore, the system does not
use volumes marked as offsite unless there are no better alternatives.

8600 1047-506 6-35

Archive Subsystem

PACKETWRITE

The PACKETWRITE attribute determines whether the archive process writes the
CD-ROM volumes in track-at-once mode or packet mode. Track-at-once mode (the
default) is more efficient, and the resulting CD-ROM volumes can be read by CD-ROM
and CD-R units. Packet mode avoids possible buffer underrun 1/O errors during the write
process and so is safer, but packet mode CD-ROM volumes can only be read by CD-R
units.

SAVEFACTOR

The SAVEFACTOR attribute indicates the expiration date of the CD-ROM volume in
terms of the number of days past the creation date. The default value for archive
CD-ROM volumes is 30 days.

When an ARCHIVE backup, ARCHIVE ROLLOUT, or ARCHIVE MERGE request makes a
backup copy of a file that already has 4 backup copies, the system replaces the backup
copy that has the earliest expiration date. If the expiration dates are the same, the
system replaces the backup copy that has the earliest creation date.

SERIALNO

6-36

You can optionally specify one serial number. The system uses that serial number for
each of the CD-ROM volumes it creates during the backup process. If you do not specify
a serial number the system gives the output CD-ROM volumes a serial number of the
form YYMMDD, where the first two digits indicate the year, the next to digits indicate
the month, and the last two digits indicate the day of the month.

8600 1047-506

Archive Subsystem

ARCHIVE Task Equation List

<archive task equation list>

—LI: <task attribute assignment> ! }
<library equation> =]

Explanation

The following table describes the archive task equation list.

Name Description
<task attribute Assigns task attributes to the ARCHIVE statement. For a
assignment> complete explanation of task attribute assignments, refer to

Section b of this manual.

<library equation> Changes the attributes of libraries. The archive subsystem uses
library equation to change the selector library. For more
information, refer to Section 5, “Library Equation.”

TASKSTRING assignment

You can set TASKSTRING to specify the disk family or families that archive backup
requests should use as temporary storage when copying to a CD-ROM volume. If you
specify the following, then the archive backup system stores the temporary CDIMAGE
disk file on that disk family:

TASKSTRING = "FAMILYNAME= <family name>"

If you specify the following, the archive backup system starts with the first family in the
list:

TASKSTRING = "FAMILYNAME= (<family name>, <family name>, ... <family name>)

If you have installed a custom ARCHIVESUPPORT library that uses the SFORKV
multitasking feature then tasks rotate through the list of family names you specify.

For information about the multitasking feature, refer to the MCP System Interfaces
Programming Reference Manual.

8600 1047-506 6-37

Archive Subsystem

ARCHIVE MERGE Statement

<archive merge statement>

— ARCHIVE MERGE FROM

L <archive options> il

»— <archive disk volume>
|J— T0 — <ar‘ch1've,tape voTlume> JJ

L [— <task identifier> —] |

L ; — <archive task equation list> J

Explanation

The ARCHIVE MERGE statement transfers backup copies of files that reside on one or
more backup tapes to a single tape. If there is insufficient space to merge all requested
backup tape files to one tape, a reel switch condition results and the remaining files are
merged on another tape. This produces a single tape set of merged files.

The primary purpose of this operation is to enable more efficient use of tape resources.
When you merge files to a single backup tape or to a tape set, space is freed on other
tape volumes for other uses.

The ARCHIVE MERGE statement requests as input any file that has been archived to a
backup tape by any ARCHIVE backup statement, ARCHIVE MERGE statement, or
ARCHIVE ROLLOUT statement.

Note: Use of the ARCHIVE MERGE statement usually requires privileged access.
However, a job can run this statement if it was started from an ODT without a usercode.
In any case, this statement affects all tape files that were backed up or rolled out to a
backup tape through the archive subsystem.

As a merge operation executes, it requests as input the backup tape files that were
created by preceding ARCHIVE statements. During the operation, the archive subsystem
prompts you to load the input tapes on the tape drives twice: once while the system
creates the output tape directory, and again when it copies the selected files.

You can use the OF (Optional File) system command to cause the merge operation to
skip an input tape value. You can enter <mix number> OF when the archive subsystem
prompts you to load the input tape. You can use the HI (Cause Exception Event) system
command to check the progress of an ARCHIVE MERGE statement. A command of the
form <mix number> HI displays the number of files already copied and other information.

Example

The following example illustrates how to consolidate archive backup tapes for the family
DISK onto a new backup tape named MERGEDISK:

ARCHIVE MERGE FROM DISK TO MERGEDISK

6-38 8600 1047-506

Archive Subsystem

ARCHIVE PURGE Statement

<archive purge statement>

— ARCHIVE PURGE J—[<1ong file name’constant | ! FROM
<long directory name constant>
s—<archive disk volume }

Explanation

This statement purges archive backup records from the archive directory without
affecting resident or nonresident files in any way. The ARCHIVE PURGE statement does
not affect catalog backup information.

Purging archive backup records serves to remove only references to backup files. To
remove an actual resident disk file and all archive records associated with it, issue a
REMOVE statement followed by an ARCHIVE PURGE statement. Both statements must
identify the name of the target file. You can also refer to the REMOVE statement with
the DESTROQY option that is described later in this section.

If you remove a file, but you do not purge its corresponding archive backup records,
other ARCHIVE statement operations will continue to search for that file. Searches for
disk files that have been removed from disk, but for which archive backup records still
exist, result in NO FILE conditions.

If your installation uses the archive AUTORESTORE feature, the archive subsystem
responds to each NO FILE condition by reloading the missing archived files from tape.

Example

The following example purges the entries for FILE/1 and FILE/2 from the archive
directory for the family MCPMAST:

ARCHIVE PURGE FILE/1, FILE/2 FROM MCPMAST

8600 1047-506 6-39

Archive Subsystem

ARCHIVE RELEASE Statement

<archive release statement>
— ARCHIVE RELEASE

—>—|;jremove list> |
E]
<remove from group> | B

, — <remove list> il

<remove list>
. > | |
4‘—[<file name> B |
<directory name>
<remove from group>

4‘—[<file name> —J_L FROM — <family name> {
<directory name>

Explanation

The ARCHIVE RELEASE statement removes files from disk that are not in use and have
up-to-date archive backup records.

The removed files can be restored by the archive AUTORESTORE feature or the
ARCHIVE RESTORE and ARCHIVE ADDRESTORE statements.

In addition to the ARCHIVE RELEASE statement, see also the REMOVE and REMOVE
DESTROY statements described later in this section.

The first name in a remove list can be a file title or a directory title; that is, it can contain
an ON family name part. Subsequent names in the remove list can only contain an ON
family name part if they contain a string primary as well.

In the remove from group, the FROM clause applies to all the file names and directory
names in that remove from group.

6-40 8600 1047-506

Archive Subsystem

ARCHIVE RESTORE Statement

<archive restore statement>

— ARCHIVE RESTORE
L RESTOREADD JL <archive options> J

E]
—>J—|: <directory name>
<file name> — 1

»>— T0 — <archive disk volume>

L [— <task identifier> —] il

L ; — <archive task equation list> il

Explanation

The ARCHIVE RESTORE statement reloads backup copies of disk files to disk. You can
use this statement to recover disk files that have been damaged, lost, or inadvertently
removed from disk. Only backup files that were copied through one of the ARCHIVE
backup statements, the ARCHIVE MERGE statement, or the ARCHIVE ROLLOUT
statement, can be restored to disk through the ARCHIVE RESTORE statement.

Note: WFL includes another statement called simply RESTORE, rather than ARCHIVE
RESTORE. The two statements serve different purposes. The ARCHIVE RESTORE
statement reloads files that have archive backup directory entries. The RESTORE
statement reloads files from any library maintenance tape, regardless of whether or not
the files have archive backup directory entries.

The ARCHIVE RESTORE statement has the following variants, which function differently:

e ARCHIVE RESTORE

This statement reloads selected backup copies of files to disk even if versions of
those files already exist on the destination disk.

e ARCHIVE RESTOREADD

This statement reloads only those selected files for which versions do not already
reside on the destination disk.

With both the ARCHIVE RESTORE and the ARCHIVE RESTOREADD statements, the
archive subsystem selects files by comparing the files you request with records in the
archive directory. The restore and restoreadd processes do not affect the archive
directory in any way. You can remove a restored file and restore it to disk again, even if
an intervening archive backup process has not been performed on that file.

Note: In most installations, you must have privileged access to reload files other than

your own. However, you can reload another user’s files if the job running the RESTORE
or RESTOREADD process runs without a usercode and starts from an ODT.

8600 1047-506 6-41

Archive Subsystem

The archive subsystem usually restores only the most recently written archived files
from the most recently written archive tapes. Under the following circumstances,
however, the archive subsystem restores older versions of files:

e At installations that use the catalog volume library or the volume directory.

e The archive subsystem finds that the contents of a specified backup tape have been
purged or overwritten, or the backup tape has been marked as destroyed or offsite
with a VOLUME DESTRQOY or VOLUME OFFSITE statement.

e Your installation uses a custom version of the archive support library and that library
selects an older version of a backup tape file for the restore or restoreadd operation.

You can use the HI (Cause Exception Event) system command to check the progress of
an ARCHIVE RESTORE statement. A command of the form <mix number> HI displays
the number of files already copied and other information.

Examples
The following example illustrates how to manually restore an entire family:
ARCHIVE RESTORE = TO USERPACK

The following example shows how to restore only those files that do not already reside
on the disk where the family TESTPACK is located:

ARCHIVE RESTOREADD = TO TESTPACK

6-42 8600 1047-506

Archive Subsystem

ARCHIVE ROLLOUT Statement

<archive rollout statement>
— ARCHIVE ROLLOUT

|—<a\r‘ch1've op’t1’ons>J
> DRC —<int exp

—J_EL (-<user‘<,:ode>-) |
— OF ALL |_
USERS
<int exp>— SECTORS
ALL FILES g | (. :
-<usercode>-
L seLect L L s ——]
ALL
L users

»>— FROM —<archive disk volume
|: TO —<archive CD-R volume>
T0 —<arch1’ve,tape vo]ume>J—

L [—<task identifiers—] il

L ; —<archive task equation 11's’c>J

Explanation
This statement moves selected disk files to archive backup tape media. The primary
function of this option is to free disk space for other uses, particularly when resources
are limited.

You can use this option to either

e Specify the amount of disk space (in sectors) you want to make available.

e Specify a percentage of the authorized DRC disk space by which each user’s space
is to be reduced.

8600 1047-506 6-43

Archive Subsystem

DRC Option

You can specify disk space by using the DRC option of the ARCHIVE ROLLOUT
statement. The DRC option is available to you even if your installation does not actively
run the DRC subsystem. This option affects only those users for whom DRC limits are
assigned in the USERDATAFILE.

As each selected file is rolled out to tape, the archive subsystem records the transfer in
the archive directory and the file is removed from the disk. You can use rolled out files as
input to any library maintenance command or statement.

Note: [f the archive directory includes references to archived copies of the files that
your rollout operation is requesting, the rollout process removes the resident versions of
the files without recopying those files to tape. Therefore, it is possible to complete a
rollout operation without receiving a system request for a backup tape.

Before the archive statement actually performs a rollout operation, it evaluates files for
possible selection. This process is based on your usercode, or the usercode of the job
that is running the ARCHIVE ROLLOUT statement.

e |f you do not list specific usercodes with your ARCHIVE ROLLOUT statement, only
files under the usercode of the job that is running the rollout process are evaluated
for possible selection.

e If the job that is running the ARCHIVE ROLLOUT statement started at an ODT
without a usercode, then only files without a usercode are evaluated for selection.

e If your usercode enables you privileged access and you specify ALL USERS in the
ARCHIVE ROLLOUT statement, all files are evaluated for possible selection.

Specifying SECTORS or Using the DRC Option

6-44

You can use the ARCHIVE ROLLOUT statement to make available a particular number of
in-use sectors on a disk family in either of two ways:

e Use the SECTORS option of this statement.
¢ Invoke the DRC option.

The following discussion describes the differences between these two approaches to
freeing disk space.

In general, using the ARCHIVE ROLLOUT statement on files other than your own
requires privileged access to files.

ARCHIVE ROLLOUT statements that include the SECTORS options do not require that
DRC limits be set in the USERDATAFILE.

If you use the DRC option, the rollout operation affects only the files under usercodes for
which DRC limits are assigned in the USERDATAFILE.

When you use the ARCHIVE ROLLOUT statement to free a specified number of in-use
sectors on a disk family (by using the SECTORS option), the ARCHIVE statement can be

8600 1047-506

Archive Subsystem

used to copy files to tape and remove files from disk to satisfy your request. If you have
specified more sectors than are already in use under your usercode on the disk family,
the archive subsystem selects all of your files for the rollout operation.

In this case, the operation is executed as if you had specified the ALL FILES option in the

statement.

Checking the Progress of the Rollout
You can use the HI (Cause Exception Event) system command to check the progress of
an ARCHIVE ROLLOUT statement. A command of the form <mix number> H| displays
the number of files already copied and other information.

Examples

The ARCHIVE ROLLOUT statement is used in the following example to free 1000
sectors from files that are under usercode TEMP or DONTCARE:

ARCHIVE ROLLOUT 1000 SECTORS SELECT (TEMP), (DONTCARE) FROM MYPK
The following example moves all files belonging to user MIKEB to MIKESAVE:

ARCHIVE ROLLOUT ALL FILES (MIKEB) FROM DISK TO MIKESAVE
The following example uses the DRC option of the ARCHIVE ROLLOUT statement. If the
DRC authorization for usercode XYZ on PACK is 20000 sectors, then this example rolls

out files belonging to XYZ until that user’s files occupy 18000 sectors or less.

ARCHIVE ROLLOUT DRC 10 (XYZ) FROM PACK

8600 1047-506 6-45

Assignment Statements

Assignment Statements

6-46

<assignment statement>

<Boolean assignment statement>
<integer assignment statement> —
<real assignment statement>
<string assignment statement> —
<file assignment statement>
<task assignment statement>

<Boolean assignment statement>

— <Boolean identifier> — := — <Boolean expression>

<integer assignment statement>

— <integer identifier> — := — <integer expression>

<real assignment statement>

— <real identifier> — := — <real expression>

<string assignment statement>

— <string identifier> — := — <string expression>

<file assignment statement>

— <file identifier> — (L <file attr‘ibuté assignment> 1) 4|

<task assignment statement>

— <task identifier> — (J—[<task attribute assignment> j—L) —|
<file equation>

Explanation

The assignment statement assigns values to declared variables.

For more information about the file assignment statement, refer to “Using File
Attributes” in Section 5. For more information about the task assignment statement,

refer to “Using Task Variables” in Section 5.

8600 1047-506

Assignment Statements

Example

The first section of the following example declares variables of type Boolean, integer,
real, string, file, and task. The statements in the next section of the example assign
values to the declared variables.

BOOLEAN B;
INTEGER I;
REAL R;
STRING S;
FILE F;
TASK T;

B:=FILE A/B ON PACK IS RESIDENT;

I:=INTEGER(R);

R:=17.5; S:="ABC"; F(AREASIZE=1008,FLEXIBLE); % File Attribute Assignment
T(PRIORITY=70); % Task Attribute Assignment

8600 1047-506 6-47

BIND Statement

BIND Statement

<bind statement>
— BIND — <object code file title>

L [— <task identifier> —] il

> BINDER T
—|: ON — <family name> —
WITH — <binder title> ——

L [— <task identifier> —] il

SYNTAX —— L <compiler task equation Tist> J
LIBRARY ————
G0 ————
LIBRARY — GO —

<binder title>

<binder title>
— <file title> '

Explanation
The BIND statement invokes the Binder to combine object code files.
Binder uses the following sources of input:

e A primary input file titled CARD, which contains directions to the Binder

e Ahost file titled HOST, which is the object code file to which the subprograms are to
be bound

e Subprogram files, which contain the subprograms to be bound to the host program

For a more detailed explanation and the complete syntax, see “COMPILE or BIND
Statement” later in this section. Refer to the Binder Reference Manual for instructions
regarding using Binder.

Example
The following is an example job that uses the BIND statement:

?BEGIN JOB BIND/RESULT;
BIND COBOL85/EXAMPLE WITH BINDER LIBRARY;
BINDER DATA CARD % This Tocal data specification
HOST IS COBOL85/HOST; % replaces the input file CARD.
USE S1 FOR PROG;
BIND S1 FROM COBOL85/PROG;
? % End Binder data
?END JOB.

6-48 8600 1047-506

CASE Statement

CASE Statement

<case statement>

— CASE —=<case expression>— of — BEGIN

E]

>— (J—<case constan% expr‘ession>J—) — : —<statement>— N
END
|
L ; — ELSE — : —<statement>J L ;]

<case expression>

T <integer exp\r‘ess1'on>J |
<string expression>

<case constant expression>

T <integer constant exp\r‘ess1'on>J |
<string constant expression>

Explanation

The CASE statement provides a way to dynamically select one of several alternative
statements, depending on the value of the case expression.

The case constant expressions, in the parentheses that precede the statements, must
be of the same type as the case expression. In addition, no two case constant
expressions within the same CASE statement can have the same value.

The ELSE specification specifies an action to take if the value of the case expression is
not equal to any of the case constant expressions. If there is no ELSE specification, and
the case expression does not equal any of the case constant expressions, then a fatal
run-time error occurs.

Example

The following is an example job that uses the CASE statement:

?BEGIN JOB CASE/EXAMPLE(STRING DAY);
CLASS=2;
CASE DAY OF
BEGIN
("MONDAY",

"TUESDAY",

"WEDNESDAY",

"THURSDAY"): RUN OBJECT/DAILY/UPDATE;
("FRIDAY"): RUN OBJECT/WEEKLY/UPDATE;
("SATURDAY",

"SUNDAY"): ; % NO RUN NEEDED

ELSE: ABORT "INVALID INPUT STRING:" & DAY;
END;
?END JOB.

8600 1047-506 6-49

CATALOG Statement

CATALOG Statement

<cata |09 statement>

— CATALOG ADD <file name coﬁstant a |
—E DELETE <directory name constant>
PURGE

L(| DISK |)J |

KIND — = J i: PACK

TAPE
GENERATION — = —<integer constant>
CYCLE — = —<integer constant>
VERSION — = —<integer constant>
SERIALNO — = —=<serial number Tist>
FAMILYNAME — = —<family name constant>—

Explanation

6-50

Note: Cataloging is not supported for files within the permanent directory namespace.

The CATALOG statement applies only to a cataloging system. Cataloging provides an
automated method for locating copies of files that are on disk or tape. Cataloged files can
be stored only on disk or tape that has been entered into the cataloging volume library
with the VOLUME ADD statement. Different copies of a file are referred to as
generations.

For tape, the CATALOG add statement enters the name of a permanent file or directory
into the catalog. For disk, CATALOG ADD marks the requested generation of each of the
requested files as cataloged.

The CATALOG DELETE statement removes all references to the specified generation of
the specified files from the system catalog. If the specified generation is resident on
disk, the statement also marks that file as not cataloged.

The CATALOG PURGE statement removes all the backup file information for all
generations of the specified files. If there is a resident generation on disk, the statement
also marks that file as not cataloged.

The CATALOG DELETE and CATALOG PURGE statements delete only catalog entries;
the resident and backup files are still available but cannot be accessed through the
catalog.

The generation is determined by the integer file attributes GENERATION, CYCLE, and
VERSION, as well as by the time stamp automatically maintained by the system. The
most recent generation is given by a value of O for GENERATION or, if GENERATION is
not specified, by the highest value of CYCLE and the highest value of VERSION within
that cycle. For the CATALOG DELETE and CATALOG ADD statements, you can use
these file attributes to identify a specific file generation.

8600 1047-506

CATALOG Statement

The SERIALNO option is required in either of the following cases:

o |f KIND = TAPE
o |f KIND = PACK and the family is offline

Family substitution is used if the job or task has an active family specification. Only the
primary family name is used. Refer to “FAMILY Assignment” and “Interrogating
Complex Task Attributes” in Section 5.

Examples

The following are examples of the CATALOG statement:
CATALOG ADD FILEA (KIND=PACK, SERIALNO0=123456)
CATALOG DELETE = (KIND=TAPE,VERSION=12,CYCLE=5)

CATALOG PURGE FILEA,FILEB(KIND=PACK)

8600 1047-506 6-51

CHANGE Statement

CHANGE Statement

<change statement>

— CHANGE —Ejhange list |
<change frc,>m group> | B

, — <change Tist> —

<change list>

4‘—[<10ng file t1t1e>—TO—;1ong file name> a | {
<long directory title> — T0 — <long directory name>

<change from group>

—LI: <long file name> — T0 — ;1ong file name> B |
<long directory name> — TO — <long directory name>
»>— FROM — <family name> I

Explanation

6-52

The CHANGE statement changes the names of files on disk.

Conflicting File Name

If you specify a file name and a file already exists with that file name, the existing file
with the same name is removed before the file name specified is changed to the new file
name.

Conflicting Directory Change Requests

Because directory change requests are processed in groups of files, two simultaneous
change requests that affect the same set of files produce unpredictable results. For
example, simultaneous CHANGE A/= TO B/= and CHANGE B/= TO A/= statements,
where both directories A/= and B/= exist with nonconflicting file names, can result in all
files in directory A/=, all files in directory B/=, or with the files shared between the two
directories.

Directory Changes

If you specify a directory, the names of the files in that directory are changed. If the new
directory name already exists, the files are added to that directory, and any files that
already belonged to the new directory are not changed. The directories *=and = cannot
be used in the CHANGE statement.

LOCKEFILE Attribute

If you use the CHANGE statement to change the name of a file whose LOCKEDFILE file
attribute is set to TRUE, the file name is not changed. The system displays the following
message to indicate that the file name was not changed:

<file name> NOT CHANGED (LOCKEDFILE).

8600 1047-506

CHANGE Statement

See "ALTER Statement” in this section for more information about changing the
LOCKEDFILE file attribute. For additional information about the LOCKEDFILE file
attribute, refer to the File Attributes Reference Manual.

Change From Group

When you use a “change from"” group, the FROM clause applies to all of the file names
and directory names in that “change from"” group.

Active Family Specification

Family substitution is used if the job or task has an active family specification. Only the
primary family name is used. For more information on active family specification, refer to
"FAMILY Assignment” and "Interrogating Complex Task Attributes” in Section 5.

Change Privileges

You can use the CHANGE statement to change the name of a file or directory if any one
of the following conditions is true:

e You are a privileged user.
e You are the owner of the file or directory.

e You have write access to the file or directory.
Examples
The CHANGE statement changes the name of file X on DISK to Y:
CHANGE X TO Y;
This statement changes the name of file A/B on USERS to C/D:
CHANGE A/B ON USERS TO C/D;

This statement changes the names of all the files under the directory A/= on PACK to

B/= on PACK:
S1:="A/=";
S2:="B/=";

CHANGE #S1 ON PACK TO #S2;

This statement changes the name of file X on MYPACK to Y, changes the name of file
X/X on MYPACK to Y/Y, changes the name of file XX on PACK to YY, and changes the
name of file Z on DISK to ZZ:

CHANGE X TO Y, X/X TO Y/Y FROM MYPACK,

XX TO YY FROM PACK,
Z T0 7Z;

8600 1047-506 6-53

COMPILE or BIND Statement

COMPILE or BIND Statement

<compile or bind statement>

—

COMPILE <object code file title
i

BIND

L [—<task identifier>—] il

-

<compiler name

WITH —<compiler title

L ON —<family name>—

L [—<task identifier>—] J SYNTAX

LIBRARY ———
GO

LIBRARY GO ——

|—<c0mp1’1er‘ task equation 11'st>J

<compiler title>
—<file title

<compiler name>

ALGOL

BINDER —
CC ———
C — |
COBOL74 —
COBOL85 —
DCALGOL —
DMALGOL —
FORTRAN77 —
MODULAZ2 —

Explanation

6-54

The COMPILE statement initiates compilation of a program, and optionally can also
cause the resulting object code file to be executed.

8600 1047-506

COMPILE or BIND Statement

Naming the Object Code File

The object code file title construct specifies the name of the object code file that results
from the compilation. The source file is assumed to be a card reader file named CARD.
However, a file equation can be included in the compiler task equation list to cause a file
with a different title or kind to be used instead.

Example

The following example will cause a source file titled COUNTER to be compiled. The
resulting object code file will be titled OBJECT/COUNTER.

COMPILE OBJECT/COUNTER WITH PASCAL LIBRARY;
COMPILER FILE CARD(TITLE = COUNTER, KIND = DISK);

Choosing a Compiler
The name of the compiler to be used is usually the same as the name of the language
that the program is written in. The phrase WITH compiler title specifies the name of the
compiler desired, as in the previous example which uses the Pascal compiler.
The prefix SYSTEM/is always assumed to precede the first node of the compiler title
(after any usercode or asterisk (*)). Thus the prefix SYSTEM/ should not be explicitly
specified. The compiler title has the same form as a file title, except that the maximum
number of nodes is 11.

Examples

The following statement uses SYSTEM/ALGOL:
COMPILE OBJECT/X WITH ALGOL LIBRARY;
The following statement uses (SITE)SYSTEM/COBOL74 ON PACK:
COMPILE OBJECT/X WITH (SITE)COBOL74 ON PACK LIBRARY;
If the specified compiler is not a compiler object code file, the job is discontinued.
If the compiler is one of the standard compilers recognized by WFL, the word WITH can

be omitted, and the compiler name can be entered by itself. The characters C or CC are
synonyms for the C language compiler name.

8600 1047-506 6-55

COMPILE or BIND Statement

Binding

The Binder is used to combine two or more object code files into one object code file.
The object code files are the result of successful compilations of source files. To use the
Binder, include the word BIND instead of COMPILE at the start of the COMPILE or BIND
statement, and use as the compiler name. Binder uses the following sources of input:

A primary input file titled CARD, which contains directions to the Binder

A host file titled HOST, which is the object code file to which the subprograms are to
be bound

Subprogram files, which contain the subprograms to be bound to the host program

Example

The following is an example of a bind statement:

?BEGIN JOB BIND/RESULT;

BIND COBOL85/EXAMPLE WITH BINDER LIBRARY;

BINDER DATA CARD % This Tocal data specification

?

HOST IS COBOL85/HOST; % replaces the input file CARD.
USE S1 FOR PROG;
BIND S1 FROM COBOL85/PROG;

% End Binder data

?END JOB.

Refer to the Binder Reference Manual for instructions regarding using the Binder
program.

Object Code File Disposition

6-56

A phrase can be included to indicate the disposition of the object code file. The
disposition determines whether the object code file is saved or executed. If no
disposition is included in the COMPILE statement, a disposition of GO is assumed.

The following are the possible dispositions and their meanings.

Disposition Definition

GO The object code file is executed but not saved. If there are syntax errors,
execution does not occur.

LIBRARY The object code file is saved but not executed. If there are syntax errors,
the object code file is not saved.

LIBRARY GO The object code file is saved and also executed. If there are syntax
errors, the object code file is not saved or executed.

SYNTAX The object code file is not saved and not executed. This disposition is

used to check the program for syntax errors only.

8600 1047-506

COMPILE or BIND Statement

Task Variables

Task variables can be included in the COMPILE statement in either of two places. The
position determines whether a task variable is associated with the compilation or the
execution of the program. The same task variable cannot be assigned to both the
compilation and execution, because these are separate tasks.

A task identifier included after the object code file title associates a task variable with the
execution of the object code file. This task identifier is not used if the disposition of the
COMPILE statement does not cause the object code file to be executed. Because this is
usually a programming error, a warning is given to indicate that the task identifier is not
used.

A task identifier included after the compiler name or compiler title associates a task
variable with the compilation of the object code file.

The task state of the task variables included in the COMPILE statement can be
interrogated later to find out if the compilation and execution of the program were
successful.

Example

The following example includes task variables with COMPILE statements:

COMPILE (RAS)OBJECT/ITAL [TRUN] WITH ALGOL [TCOMP] LIBRARY GO;
COMPILER FILE CARD (TITLE = (RAS)ITAL, KIND = DISK);

IF TCOMP ISNT COMPILEDOK THEN
ABORT "UNSUCCESSFUL COMPILE OF OBJECT/ITAL";

IF TRUN ISNT COMPLETEDOK THEN
ABORT "RUN-TIME ERROR IN OBJECT/ITAL";

8600 1047-506 6-57

COMPILE or BIND Statement

Compiler Task Equation List

<compiler task equation list>

IS

task attribute assignment
i: COMPILER <file equation>
<compiler name>— <library equation>

<database equation>

I

|
—L <compiler data spec>—

J—<1ocat1 data specification>J—

J—<1oca1 data specification |

<compiler data specification>

T COMPILER — T <local data specification>
<compiler name> !

Explanation

A compiler task equation list specifies task equations for use either during compilation or

during ex

ecution of a program. Task attribute assignments, file equations, library

equations, database equations, and local data specifications are all defined in Section 5,
"Task Initiation.”

6-58

8600 1047-506

COMPILE or BIND Statement

File, Library, and Database Equations and Task Attributes

Task attributes, file equations, library equations, and database equations are preceded by
the word COMPILER or a compiler name if they are to be applied to the compilation.
Otherwise, they are permanently attached to the resulting object code file. These values
are assigned to the task whenever the compiled program is executed, unless the
attribute values are overridden by run-time task equations.

The MODIFY statement permits task attributes, file equations, library equations, and
database equations that are compiled into an executable object code file to be added to
or changed, without recompiling the source file. For further information, refer to the
description of the MODIFY statement provided later in this section.

Task attributes, file equations, library equations, and database equations that apply to the
compilation can be mixed with ones that apply to the object code file in any order.

All expressions in task attribute assignments and file attribute assignments for the
program are evaluated prior to compilation. The values obtained are stored in the object
code file as if they had been specified as constants.

Typically, the source file to be used by the compiler is specified by a file equation. For an
example, see “"Naming the Object Code File” earlier in this section.

Examples

File equations that change the attributes of the object code file are enabled, but most are
overridden by the compiler and have no effect. However, the security attributes of the
object code file can be set through a file equation, as in the following example:

COMPILE OBJECT/TEST WITH ALGOL LIBRARY;
COMPILER FILE CODE (SECURITYTYPE=PUBLIC,SECURITYUSE=IN);

The resulting object code file has a security of PUBLIC IN. The same effect can be
achieved by using the SECURITY statement to change the security of the object code file
after it is compiled.

Global file equation of the object code file produced by the compiler is not permitted. For
example, if the following statement is specified, a syntax error is given:

COMPILE OBJECT/TEST WITH ALGOL;
COMPILER FILE CODE:=GLOBALFILE; % ITlegal syntax

8600 1047-506 6-59

COMPILE or BIND Statement

Local Data Specifications

Local data specifications in a COMPILE or BIND statement are applied either to the
compilation or the resulting object code file, according to the following rules:

o Alocal data specification that is to be applied to the compilation must be preceded
by the word COMPILER or a compiler name.

o All the local data specifications to be applied to the compilation must precede all the
local data specifications to be applied to the execution of the object code file.

Example

Local data specifications can be applied to the compilation to replace input files used by
the compiler. In the following example, a local data specification takes the place of the
CARD file:

COMPILE OBJECT/RUNNER WITH ALGOL LIBRARY GO;
COMPILER FILE TAPE (TITLE = RUNNER/B);

COMPILER DATA CARD

? % End data CARD

Local data specifications can be applied to the execution of the object code file to replace
input files that would normally be read by the program at run time.

Local data specifications that follow a COMPILE or BIND statement are reread if the
COMPILE or BIND statement is executed more than once.

Run-Time Overriding of Compiler Task Equation

The following example shows how task equations set for a program at compile time can
be overridden at run time:

COMPILE OBJECT/X WITH ALGOL LIBRARY;
COMPILER FILE CARD (TITLE=X,KIND=DISK);
ALGOL PRIORITY=50; % Sets priority of ALGOL compilation.
PRIORITY=60; % Sets priority in object code file X.
RUN OBJECT/X; % Runs at priority 60.
RUN OBJECT/X;
PRIORITY=70; % Overrides compiled-in priority
% and runs at priority 70.

Another example of interaction between compile-time and run-time task equations
appears under “OPTION Assignment” in Section b.

6-60 8600 1047-506

COMPILE or BIND Statement

COMPILE and BIND Statements

The following example illustrates several COMPILE and BIND statements:

COMPILE X/Y WITH COBOL85 LIBRARY GO;
COBOL85 FILE CARD(TITLE = C/D, KIND = DISK);
COBOL85 PRIORITY = 55;

FILE F(TITLE=Y/Z);

COMPILE A WITH C SYNTAX;

COMPILE X ALGOL;

COMPILE B WITH COBOL85 ON PACK GO;

BIND X/Y WITH BINDER LIBRARY GO;

COMPILE A/B WITH COBOL85 LIBRARY;
COMPILER PUNCHLIMIT = 100;
COMPILER PRINTLIMIT = 130;

COMPILER DATA CARD

? % End of CARD data

8600 1047-506 6-61

Compound Statement

Compound Statement

<compound statement>
— BEGIN — <statement 1ist> — END |

Explanation

A compound statement groups one or more statements as a logical entity. Refer to
Section 3, “Job Structure,” for the syntax and explanation of a statement list.

Example
The following is an example job that uses the compound statement:

IF T IS COMPLETEDOK THEN
BEGIN
RUN X;
RUN Y;
END
ELSE
BEGIN
COPY T/INPUT AS T/INPUT/SAVE;
ABORT;
END;

6-62 8600 1047-506

COPY or ADD Statement

COPY or ADD Statement

<copy or add statement>

COPY
L pop | |
& ——/1\— BECOMEOUNER
AND | |—/1\— CATALOG
" BACKUP
- COMPARE
/ _E VERIFY
- DSONERROR ——
L WAITONERROR —]
| /1\— PROPOGATE
| /1\ — REMOVE
| /1\— REPORT ——
[/1\— SKIPEXCLUSIVE —

—>J—<copy request |

L [LE;RZ Eﬁ?‘!ﬂégl service>] : J

L [—<task identifier>—] |

|—L ; —<task attribute assignment>J—

Explanation

The following text describe the various components of the COPY or ADD statement. The
information is organized according to its frequency of use and importance.

The COPY statement copies disk files from disks, tapes, or CD-ROMs to disks, tapes, or
CD-ROMs. Some of the uses of the COPY statement are as follows:

Copying disk files onto tape or CD-ROM volumes or onto other disk families for
safety backup. You can also selectively restore some or all of these files back to disk.

Copying disk files from one disk family to another.

Copying new software and disk files from tape or CD-ROM volumes received from
Unisys and other installations to your disks, or copying files to tape or CD-ROM
volumes for transfer to other installations.

Copying disk files from one host system to another within a network.

Copying CD-ROM images to write-once CD-ROMs.

The ADD statement, like the COPY statement, copies disk files between disks and
tapes. The ADD statement has the following effects based on the specified destination:

For a disk destination, it copies only those files that are not already resident on the
specified destination disk.

For a tape, it is equivalent to a COPY statement with a tape destination. If there were
any files on the destination tape, they are overwritten. The ADD statement copies all
the available requested files to the destination tape or CD-ROM volume.

8600 1047-506 6-63

COPY or ADD Statement

Note: The ADD statement is not valid for CD-ROM volumes.

The ADD statement is particularly useful for adding a directory of files to a disk where
some of the files are already resident and are to be preserved.

See also the MOVE statement, described later in this section, for further information
regarding moving files from one disk to another. Refer to the RESTORE statement for
information regarding copying files from tape to disk.

For all of the following sub-sections, unless otherwise mentioned, explanations about the
COPY statement also apply to the ADD statement.
Special Code for Streamer Tapes

When you copy files from disk to certain tapes, the archive backup process uses special
code to accelerate the copy process to streamer tapes—if all of the following conditions
are met:

o All files to be copied are copied from disk. No files are copied from tape.

e There is one destination only, and the destination is to tape.

e The destination tape unit is one of the following:

IOM Systems
— 2145-01 and 2145-03 tape units

EMS Systems
- 2145-01, 2145-02, and 2145-03 tape units
— B9498 Cipher Streamer tape units

e You do not specify any of the following options:

— & CATALOG
- & DSONERROR
- & WAITONERROR
- &VERIFY
- & REPORT
Note: You can specify the options & COMPARE and & BACKUP.

6-64 8600 1047-506

COPY or ADD Statement

Using Task Variables

The task identifier construct is used to assign a task variable to a COPY statement. The
TASKVALUE attribute can be tested to determine the success or failure of the copy.
When the value of the TASKVALUE attribute is 0, all requests were satisfied, possibly
with retries. When the value of the TASKVALUE attribute is not 0, one or more files were
not copied. A nonzero value is also returned if the copy is discontinued, or in the case of
an RSVP condition, if the failing action is not retried successfully.

Task Attributes

The task attribute assignment construct is used to assign task attributes to the COPY
statement. Task attributes are used to monitor and control the execution of tasks.

For further information regarding task attributes, refer to “Task Attributes” in Section 5.
For more information regarding task attribute assignments, refer to “Task Attribute
Assignment” in Section b.

Copying Files

When you copy files involving disks, tapes, or CD-ROMs on the local host (that is, the
COPY statement does not include any HOSTNAME specifications), the copy process is
done by the internal system program called *LIBRARY/MAINTENANCE which is
described in the following section. When you copy files involving disks, tapes, or
CD-ROMs on other host systems, the copy process is handled by a file transfer service.

The COPY statement can copy files from the following types of media:

e Disks
e Tapes in library maintenance format

e CD-ROMs in library maintenance format

The COPY statement can copy files to the following types of media:

e Disks
e Tapes
e CD-ROMs

Note: The COPY statement cannot copy files from tapes that were written by
programs other than library maintenance, or from CD-ROMs that are not in library
maintenance format. Disks do not have this restriction.

When the COPY or ADD statement operates on a file with a FILEKIND of FIFO, and you
either copy or add files within the same host or you copy or add files using the NFT file
transfer service, then a description of the FIFO is copied. However, any queued data is
not copied.

When the COPY or ADD statement operates on a file with a FILEKIND of FIFO, and the

statement uses other file transfer services such as Host Services, then the FIFO is not
copied and an error occurs.

8600 1047-506 6-65

COPY or ADD Statement

For further information about the features and limitations of the various file transfer
services, see “COPY File Transfer Services” later in this section. Most of the
descriptions of the COPY or ADD statement apply to both library maintenance and file
transfers.

Library Maintenance

6-66

Library maintenance refers to the name of the internal system program that performs the
copy process, called *LIBRARY/MAINTENANCE. When you use the COPY statement to
copy a file to tape or CD, the tape or CD-ROM volume to which a file is copied is marked
as a library maintenance tape or CD-ROM.

To copy files to or from ordinary tapes, use the DUMPALL utility. Normal programs
cannot read files directly from tapes that are written using the library maintenance
program or from CD-ROMs in library maintenance format, nor can they create tape or
CD-ROM volumes in library maintenance format.

To list the names of the files on a library maintenance tape or CD-ROM, use the system
FILEDATA utility program or the TDIR system command. See the System Software
Utilities Operations Reference Manual and the System Commands Reference Manual for
descriptions of the DUMPALL and FILEDATA utilities and the TDIR command.

The library maintenance program checks for errors and discrepancies while copying,
comparing, or verifying files. Whenever library maintenance detects an error, it issues an
error message. Errors can cause library maintenance to do one of the following:

e Stop all copying and terminate.

e Stop copying from a particular source or to a particular destination.

e Stop copying a particular file.

e Issue an RSVP message asking if the file should be recopied.

Certain I/O errors or data discrepancies can generate a message that requires an answer
from the operator before continuing, such as whether a given file should be recopied,
copied with errors as a BADFILE, skipped, or whether a tape with a bad copy of a file
should be purged or the file skipped.

The recopy facility is not available when copying to or from quarter-inch cartridge tapes.

8600 1047-506

COPY or ADD Statement

To check the progress of a COPY or ADD statement, use the HI (Cause Exception Event)
system command. A command of the form <mix number> Hl displays the number of
files already copied and other information.

Note: |n most cases, library maintenance takes special action whenever you attempt to
copy KEYEDIOI! files from disk. Library maintenance waits until the files are no longer
being updated and then blocks usage of the files and any related files, such as audit and
key files, until all the specified files are copied. However, if you use the AX (Accept)
system command on the KEYEDIOII/LIBRARY to set COPYINQONLY to FALSE, library
maintenance immediately copies the KEYEDIOI! files. (See the System Commands
Operations Reference Manual for details on the AX command and the KEYEDIOII
Programming Reference Manual for details on the COPYINQONLY runtime parameter.)

Library maintenance takes special action to ensure that the copies of the various files
making up a KEYEDIOII set are consistent with each other. In general, when you copy a
KEYEDIOII file, it is advisable to copy all the related files in the same COPY statement.

To copy a SYSTEMDIRECTORY file, you must specify its file name in full. For example,
the statement COPY *SYSTEMDIRECTORY/= AS SYSDIR/= FROM . . . does not copy a
system directory file but the following statement does:

COPY *SYSTEMDIRECTORY/001 AS SYSDIR/1 FROM

When library maintenance makes a copy of a SYSTEMDIRECTORY file, it erases the
special system file mark from the copy. System directory files with the system file mark
cannot be removed with the WFL REMOVE statement or be renamed with the WFL
CHANGE statement.

To copy a JOBDESC file, which is a file with a FILEKIND attribute value of
JOBDESCFILE, you must specify the file name in full. For example, the statement COPY
*= FROM ... does not copy a job description file but the following statement does:

COPY *JOBDESC FROM ...

When library maintenance makes a copy of a JOBDESC file, it changes the FILEKIND
attribute value of the copy to DATA.

8600 1047-506 6-67

COPY or ADD Statement

COPY Options

You can specify the following different options in a COPY statement:

e BACKUP e PROPOGATE

e BECOMEOWNER ¢ REMOVE

o CATALOG e REPORT

o COMPARE e SKIPEXCLUSIVE

e DSONERROR e VERIFY

o FROMSTART e WAITONERROR
BACKUP

Description

Places a backup reference in the system catalog directory of the source disk for each
cataloged file that is copied.

Constraints

e Applies only to a cataloging system.

e If you specify AS or ONTO with the BACKUP option, you get a WFL syntax error.
e |f you specify a tape source, you get a WFL syntax error.

e You cannot use this option with CD-ROM sources or destinations.

e The source and destination volumes must be listed in the volume library before the
BACKUP option can be used.

e You cannot use this option with FTAM, FTP, NFT or Host Services File Transfer.

BECOMEOWNER

Description

Controls the ownership of the destination directories and files moved within the
permanent directory namespace and controls the ownership of the destination backup
files in the reserved backup directories. This option causes the OWNER attribute to be
set to the usercode of the task performing the operation rather than having the value
copied from the source.

All other attribute values, including those for GROUP and SECURITYMODE, are copied
from the source. If a nonprivileged user issues a COPY or ADD statement without the
BECOMEOWNER option, only the source directories and files already owned by that
user are included.

6-68 8600 1047-506

COPY or ADD Statement

Constraints
e Supported only on ClearPath HMP NX Series systems.

e Applies only within the permanent directory and reserved backup directory
namespaces.

CATALOG

Description
Marks copied files as cataloged files and lists the source versions as backup copies in the
catalog directory for the destination disk.

If you use the Native File Transfer (NFT) Service to transfer the files between hosts, the
source versions are not marked as backup copies at the destination host, but the
destination files are marked as cataloged files.

The source and destination volumes must be listed in the volume library of the applicable
source or destination host before you can use the CATALOG option.

Constraints

e Applies only to a cataloging system.

e If you specify AS or ONTO with the CATALOG option, you get a WFL syntax error.

e |f you specify a tape destination, you get a WFL syntax error.

e You cannot specify a CD-ROM destination.

e You cannot use this option with FTAM, FTP, or Host Services File Transfer.

COMPARE

Description
Ensures that the new copies of the file are written correctly.

Ensures that the new copies of the files are readable, and that the data in the files
matches the data in the source files.

Compares the copied file and the original file bit by bit, immediately after the file is
copied.

Gives you a chance to approve a recopy if an error occurs while comparing a file.
Constraints

e Not available for quarter-inch cartridge tapes; use the VERIFY option instead.

e Not available with Open Systems Interconnection (OSl), File Transfer, Access, and
Management (FTAM), Transmission Control Protocol/Internet Protocol (TCP/IP) File
Transfer Protocol (FTP), or Host Services File Transfer (HS).

8600 1047-506 6-69

COPY or ADD Statement

DSONERROR

6-70

Description

Causes library maintenance to terminate with a DS response whenever

e Afile or directory to be copied is missing, and library maintenance issues a
"<filename> FILE NOT ON <source volume>" message.

e An error prevents a file from being copied to one or more destinations.

e Library maintenance issues a “RECOPY REQUIRED” RSVP, and the operator replies
with DS, FR, or OF.

If a COPY or ADD statement terminates abnormally when the DSONERROR option is
used, library maintenance purges all of the output tapes it is currently copying.

If a COPY or ADD statement terminates abnormally and multivolume output tapes are
being used, library maintenance purges only the current volume.

In the case of multiple output tapes, an error termination causes all destination volumes
to be purged.

Example 1
COPY & DSONERROR F1 TO T1, TO T2;
An error termination causes both T1 and T2 to be purged.

In the case of multiple copy requests, an error termination causes one of the destination
tapes to be purged.

Example 2
COPY & DSONERROR F1 TO T1, F2 TO T2;

An error termination causes either tape T1 or tape T2 to be purged, but not both tapes.

If a COPY or ADD statement with both the BACKUP and DSONERROR options
terminates abnormally, then in addition to purging any output tapes, library maintenance
erases or deletes any catalog backup information for files that refer to the purged tapes.

In the case of multivolume output tapes, library maintenance erases or deletes the
catalog backup information for files that reference any of the volumes in the specified set
of tapes.

Constraints

You cannot use this option with FTAM, FTP, NFT or Host Services File Transfer.

8600 1047-506

COPY or ADD Statement

FROMSTART

Description

Overrides any file-transfer resumption if the transfer had been previously interrupted, and
instead completely transfers again all of the files, including those already transferred with
the NFT Service before the interruption.

Constraints

This option applies only when NFT is used to transfer files between hosts.

PROPOGATE

Description

Enables copied files and permanent directories to inherit the security of the destination
directory.

Constraints

This option applies only when the destination PROPAGATESECURITYTOFILES or
PROPAGATESECURITYTODIRS attribute of the directory so specifies.

REMOVE

Description
Causes library maintenance to remove files from the source disk being copied. Library
maintenance removes source files even if they are in use by another program.

o |f you specify the VERIFY option when copying to tape, library maintenance verifies
the destination tape before removing the source files.

e If you specify the DSONERROR option, library maintenance delays removing the
source files until all the files have been successfully copied.

e |f a program updates or replaces a source file before library maintenance removes it,
then library maintenance removes the updated or replaced version of the file.

Constraints

You cannot use this option with tape or CD-ROM sources, with NFT specified, or in any
host to host transfer.

REPORT

Description

Causes library maintenance to print a report of the files it copied and any errors
encountered. When & REPORT is specified, library maintenance does not write “file
copied” messages in the job log or the system sumlog.

8600 1047-506 6-71

COPY or ADD Statement

Constraints

You cannot use this option with FTAM, FTP, NFT or Host Services File Transfer.

SKIPEXCLUSIVE

Description

Causes the system to not copy those files from disk that are opened with
EXCLUSIVE=TRUE or that are KEYEDIOII files marked as being updated.

Constraints

You cannot use this option with FTAM, FTP, or Host Services File Transfer.

VERIFY

Description

Ensures that the new copies of the file are written correctly and readable, and the data in
them is not garbled.

Verifies files by calculating the checksums for those files as they are copied, and
compares those values as follows:

6-72

Disk source

No checksum is calculated for files read from disk. Library maintenance does not
verify files read from disk.

Disk destination

Library maintenance calculates a checksum for a file as the file is copied to disk. The
verify process re-reads the file from disk when the copy is completed; calculates the
checksum of the new file; then compares that value with the value calculated while
writing the file to disk. If a mismatch or I/O error occurs, library maintenance issues
an error message, and it might issue a recopy RSVP message.

Tape source

The copy procedure calculates a checksum for the file as it is read from the tape.
That value is compared with the checksum record, at the end of the file, read from
the tape. If the VERIFY option was not specified when the tape was created, there is
no checksum record on the tape and library maintenance issues a warning. If a
mismatch occurs, library maintenance issues an error message; it might also issue
an RSVP message.

8600 1047-506

COPY or ADD Statement

e Tape destinations

The copy procedure calculates a checksum for each file as the file is written to the
tape. After each file an extra record containing a checksum is written on the tape.
When all the files have been written to the tape, the tape is rewound, and the verify
process starts. The verify procedure reads each file from the tape and calculates a
checksum for the file. If that checksum does not match the checksum on the tape,
or if there are 1/O errors while reading from the tape, library maintenance issues an
error message, and it might issue a special RSVP message to check whether the
tape is to be purged or the bad file is to be skipped.

e CD-ROM sources or destinations
Library maintenance does not calculate a checksum when reading from or writing to
CD-ROMs.

Constraints

This option is not available with FTAM, FTP, or Host Services File Transfer.

WAITONERROR

Description

Causes library maintenance to issue an RSVP message whenever an error occurs.
Examples of possible errors include

e Requesting a file or directory that is missing

e Failing an attempt to open a tape

The RSVP message halts library maintenance until the operator or programmer responds
with either OK or DS.

A response of OK causes library maintenance to continue the COPY with other files or
tapes.

A response of DS will terminate the library maintenance program. After investigating the
error which created the RSVP message, you can re-issue the COPY or ADD statement.

Constraints

You cannot use this option with FTAM, FTP, NFT or Host Services File Transfer.

8600 1047-506 6-73

COPY or ADD Statement

COPY Request
<copy request>

— E]
—J—<copy file

J—<copy fror;1 group | |_L

, —<copy fil e>J—

<copy file>

J—/47\— T0 —<destination volumes——

——r—<univ. file name

|—<0\r‘1'g1'n>J L AS —<univ. file name>

L<tape file number

<origin>

— ORIGIN —< volume name

<copy from group>

e E]
—L<copy f1'1e_>—|— FROM —<source volume

<source volume>

—<long dir. name
|—<0\r‘1'g1'n>J L AS —<long dir. name>J i:

—<long file name>—l_—_|— ONTO —<long file name>
<origin>
—<long directory name>—l_—_|— ONTO —<1long directory name>—

<origin>

<FTP>—
<FTAM>—

AS —<univ. file name

ONTO —<file name

—< volume name

. . [
L<source volume attribute Tist>—

<destination volume>

— < volume name>

<tape file number>

— # —<integer constant

Basic Copy Request

. . . . [
<destination volume attribute list> —!

A basic copy request construct consists of a copy file construct or a copy from group
construct that designates the file or files to be copied.

6-74

8600 1047-506

COPY or ADD Statement

COPY FROM

A copy from group includes a FROM source volume phrase that designates from where
the files are to be copied. If you do not specify a FROM source volume construct, the
files are copied from the disk family named DISK.

COPY TO

You can optionally include a TO destination volume phrase that designates where the
files will be copied. If you do not specify a TO destination volume construct, the files are
copied to the disk family named DISK.

Family Substitution

Family substitution occurs for one or more of the source and/or destination disk family
names specified in the COPY statement when either of the following conditions exist:

e The target family name in the FAMILY assignment statement matches the source
and/or destination disk family names specified in the COPY statement.

e You omitted either the FROM source volume or the TO destination volume phrase in
the COPY statement, and the implied family name DISK matches the name DISK in
the FAMILY statement.

Library maintenance never uses the name supplied after OTHERWISE in a family
substitution statement.

COPY Constructs

The copy file, copy from group, source volume, destination volume, and family name
constructs are described in the following material:

<copy file>

Specifies the names of the files or directories to be copied. If you use the AS option,
specifies the names to which the files or directories should be copied. If you do not use
the AS option, the output file names are exactly the same as the input file names. Output
file names might differ from input names. The following conditions also apply when you
use the AS option:

e |f you specify a universal file name, the new copy of the file is given the new name
you specify.

e |f you specify a directory name, then the new copy of each file copied from that
directory is given the new directory name you specified instead of the old directory
name, and the portion of the file name that follows the old directory name is
retained.

o |f you specify a file or directory name, if the copy process runs under a usercode and
you do not include a usercode or an asterisk (*) with the new file name or new
directory name, the new file names will all be prefixed with the usercode under
which the copy process is running. The ONTO option is limited to use with data files
whose integer value of the FILEKIND attribute is greater than or equal to 64.

8600 1047-506 6-75

COPY or ADD Statement

The ONTO option cannot be used for object code files, compilers, or system files. If the
NOCOPYONTO security option is set, then the ONTO option cannot be used for any file.
The NOCOPYONTO option is available only on a system that contains the Security
Accountability Facility package or the InfoGuard security enhancement software.

<copy from group>

Enables you to specify one or more source volumes. The source volume applies to the
entire list of file names and directory names in the copy from group construct. It is best
to group files to be copied from the same tape volume into one copy from group
construct, because the tape is rewound for each copy from group construct operation if
the same tape volume is specified more than once.

<source volume> <destination volume>

Specifies the source volume of the files to copy and the destination volume(s) for those
files. If the source or destination volume is not specified, the volume DISK is assumed. If
all the copy file constructs contain an AS name, you do not have to specify a source or
destination volume. If more than one destination volume is specified, all files are copied
at the same time and in the same order, to all destination volumes, thus creating multiple
copies. In addition, you can indicate certain file attributes and tape volume attributes for
files being copied from a source volume or to a destination volume with the source
volume attribute list and destination volume attribute list constructs.

<volume name>

Indicates the name of the volume from which or onto which the files are copied. If the
volume name is DISK or PACK, the default file kind is DISK; otherwise, the default file
kind is TAPE. If # <string primary> is specified for the volume name, the default file kind
is TAPE.

Family substitution is used if the file kind is DISK and the job or task has an active family
specification. Only the primary substitute family name is used by Library Maintenance
and NFT. (Refer to “FAMILY Assignment” and “Interrogating Complex Task Attributes”
in Section 5.)

<tape file number>

Specifies the position number of the file on the source tape or source CD-ROM. The
position number of the first file on a tape is 1, and so forth. The <tape file number> must
be a positive integer that is greater than zero (0) and has less than 12 digits (counting
leading zeros). You can use <tape file number> only in NFT file transfer copy statements.
You cannot specify ORIGIN <family name> for a <tape file number>.

6-76 8600 1047-506

COPY or ADD Statement

ORIGIN Clause

When copying from tape, you can use the ORIGIN clause to select those files that were
originally copied to tape from the specified disk family. This can be useful if you
previously copied files with the same file names from different disk families to the same
tape. For example, the following form of the statement copies two versions of
SYSTEM/ALGOL to the SA tape:

COPY SYSTEM/ALGOL FROM PACK, SYSTEM/ALGOL FROM SYS (PACK) TO SA;

You could then retrieve the version of the file that was copied from either one of the disk
families by specifying the disk family name as in the following statement:

COPY SYSTEM/ALGOL ORIGIN SYS FROM SA TO NEWSYS (PACK),
TO SYSTAPE;

You can use ORIGIN in the file list for a FROM clause that refers to a tape source. You
cannot, however, use ORIGIN for disk or CD-ROM sources. You cannot use ORIGIN in
file transfer requests.

You cannot use ORIGIN to select files on tapes if the tapes do not have origin
information. Tapes created before SSR 41.2 and tapes created by the NFT file transfer
service do not have origin information. Any file copied from a tape without origin
information to another tape does not have origin information either. You can use the
FILEDATA TAPEDIR report to check which files on a tape have origin information.

ONTO Clause

Note: The ONTO clause was originally intended for copying data to Installation

Allocated Disk (IAD) files. Because IAD files are no longer supported, there is little

reason to use the ONTO clause.

Disk Destinations

The ONTO clause changes the handling of cases where a file of the requested name

already exists at a disk destination. In such a case, library maintenance

1. Opens the existing disk file at the destination. (If no file of the same name exists at
the destination, library maintenance does not perform the copy.)

2. Copies data from the source file to the existing destination file.

By contrast, when ONTO is not specified, library maintenance normally does the
following:

1. Creates a new file on disk.

2. Copies the data and file attributes from the source file to the new file.

3. Locks the new file into the directory. If a permanent file of the same name already
exists at the destination, the system removes that file when the new file is locked.

8600 1047-506 6-77

COPY or ADD Statement

Tape and CD-ROM Destinations

For tape and CD-ROM destinations, the ONTO clause has no effect. Library
maintenance always writes a new file on the tape or CD-ROM.

Caution

When you use the ONTO clause, the integrity of the copy is not assured. If
library maintenance terminates while copying data onto an existing disk file,
the disk file might be left with some data copied from the source file and
some data leftover from the destination file.

Example
COPY F ONTO OLDF, D/= ONTO OLDDD/= FROM DPMAST(PACK) TO UDDOCS (PACK)

Copies file F from DPMAST family to UDDOCS family. Library maintenance copies the
source F contents onto the existing destination file OLDF ON UDDOCS.

All files are copied in directory D/= from DPMAST family to UDDOCS family. For each
file, if a file of the same name already exists on UDDOCS family, the source file contents
are copied onto the existing destination file.

Restrictions
The WFL compiler returns a syntax error if the ONTO clause is used in a COPY &
BACKUP or a COPY & CATALOG statement.

Library maintenance will not copy a file onto an existing disk file if any of the following
restrictions are violated:

Type of Restriction Details

AREAS, AREASIZE, Values for the source and destination file must match.

FILESTRUCTURE

EOFBITS, EOFSEGMENT Values for the source and destination file must match if
the destination file is crunched.

Areas allocated Any allocated area of either the source file or the
destination file must also be allocated in the other.

Destination file usage Cannot be in use by any program.

Destination file characteristics Cannot be

e Object code file

e BADDISK file

e Printer backup file

e File status marked as nonremovable SYSTEMFILE
e Any other special system file

6-78 8600 1047-506

COPY or ADD Statement

Attribute Lists

<source volume attribute list>

— (-L—/1\~ AuTOUNLOAD — - ON) I
OFF
DONTCARE
—/1\— BLOCKSIZE — = —<integer
—/1\— DOMAINNAME — = — " —<domain name>— " —
—/1\— FAMILYOWNER — = o
*
<usercode>
—/1\— HOSTNAME — = —<hostname
—/1\— IPADDRESS — = — " —<IP address>— " —
- /1\ T o
KIND — = CDROM
DISK
PACK
TAPE
KIND — = — # —<string primary>——

—/1\— LIBMAINTDIR

L. —<Boolean Exp>
—/1\— LOCATECAPABLE ON
OFF
DONTCARE

—/1\— OFFSITE B
—<Boolean Exp>
—-<serial number Tist>

L /1\— SERIALNO —

—/1\— UNITNO — = —<integer expression>
—/1\— USERCODE — = —<lo0g-on info>

—/1\— WINDOWSIZE — = —<integer expression>
L/1\— YOURNAME — = —<port number>

8600 1047-506 6-79

COPY or ADD Statement

<destination volume attribute list>

— (—L—/1\= AUTOUNLOAD — = —— ON
OFF
DONTCARE
—/1\— BLOCKSIZE — = —<integer
—/1\— CDCOPIES — = —<integer
—/1\— COMPRESSIONCONTROL — = T USER
SYSTEM
—/1\— COMPRESSIONREQUESTED B
= —<Boolean expression>—
—/1\— CYCLE — = —<integer expression
—/1\— DENSITY — = — BPI800
— BPI1250
— BPI1600
— BPI6250
— BPI11000
— BPI38000
— FMT36TRK
— FMTAIT
— FMTAIT2
— FMTDDS
— FMTDDS?2
— FMTDDS3
— FMTDLT10
— FMTDLT20
— FMTDLT35
— FMTQIC1000
— FMTST9840
—/1\— FAMILYINDEX — = —<integer expression>
—/1\— FAMILYOWNER — = "
*
<usercode
—/1\— HOSTNAME — = —<hostname
—/1\ n CD
KIND — = CDROM
DISK
PACK
TAPE
m KIND — = — # —<string primary
—/1\— LIBMAINTAPPEND NO
L TOEND il
—/1\— LIBMAINTDIR
L. —=<Boolean expression>
—/1\— LOCATECAPABLE ON
OFF
DONTCARE
—/1\— LOCKEDFILE
L. —<Boolean expression>
—/1\— MULTIVOLUME
L. —<Boolean Exp
—/1\— OFFSITE
L - —<Boolean Exp
—/1\— PACKETWRITE
L. —<Boolean Exp
—/1\— SAVEFACTOR — = —<integer expression>
—/1\—|: SCRATCHPOOL — = —<scratch pool name>
SERIALNO — = —<serial number list>
(Continued)

6-80

8600 1047-506

COPY or ADD Statement

—/1\— SECURITYGUARD — = —<file title
—/1\— SECURITYTYPE — = —<file mnemonic primary>
—/1\— SECURITYUSE — = —<file mnemonic primary>
—/1\— SENSITIVEDATA

L - —<Boolean expression>
—/1\— SINGLEUNIT B

= —<Boolean expression>
—/1\— UNITNO — = —<integer expression
—/1\— USECATALOG — = B

= —<Boolean expression>

—/1\— USERCODE — = —<lo0g-on info
—/1\— VERSION — = —<integer expression
—/1\— WINDOWSIZE — = —<integer expression>
L/1\— YOURNAME — = —=<port number

>—) |

<log-on info>

—<Tlog-on usercode I
L / —<log-on password B ;

—<Tog-on account>—

<log-on usercode>
<log-on password>
<log-on account>

<name constant> ——
<interchange name constant> —
— <string parameter>

Explanation

When you use the COPY statement, you can indicate certain file attributes for files being
copied and certain file attributes for each source volume or destination volume. For more
specific information on an attribute, refer to the File Attributes Reference Manual.

You can specify the following file attributes for either the source volume attribute list or
the destination volume attribute list:

e AUTOUNLOAD e |PADDRESS e SERIALNO

e BLOCKSIZE e KIND e UNITNO

e CYCLE e LIBMAINTDIR e USERCODE

e DOMAINNAME e LOCATECAPABLE e WINDOWSIZE
e FAMILYOWNER e OFFSITE

e HOSTNAME e SCRATCHPOOL

8600 1047-506 6-81

COPY or ADD Statement

6-82

AUTOUNLOAD

Determines whether or not a tape is unloaded when it is released by the system during a
reel switch or a file close operation. If the value is ON, the tape is rewound and unloaded.
If the value is OFF, the tape is not unloaded. If the value is DONTCARE, or if this value is
not specified, the tape behavior is controlled by the setting of the AUTOUNLOAD option
of the MODE (Unit Mode) system command. Refer to the System Operations Guide for
further information. If a reel is switched during a COPY and COMPARE operation,
intermediate reels are not unloaded, regardless of the AUTOUNLOAD value, until the
COMPARE phase is finished.

BLOCKSIZE

Specifies the blocksize in words that library maintenance uses when copying files to or
from disk or tape volume. Library maintenance automatically rounds the value you
specify up to an integer multiple of 900 words. If you specify a value larger than

64800 words, library maintenance uses 64800 instead. If you specify a value greater than
4500 words for a tape destination, then library maintenance automatically uses that
blocksize for all disks involved in the operation.

Using the same block size for the source and all the destinations greatly improves the
performance of the copy task. Using a larger blocksize increases the amount of data that
can be stored on any given tape volume.

Notes:

e (Certain magnetic tape devices have limits on the maximum length I/O they can
process. If you specify a block size larger than the limit for a tape device, library
maintenance automatically reduces the blocksize to a valid value for that tape
destination.

e [fyou do not specify BLOCKSIZE for a tape, library maintenance uses the default
value established by the SYSOPS LMBLOCKSIZE system command, or if the default
is zero (0), library maintenance uses a small default blocksize that it selects for each
tape and disk.

o Whenever you copy from a tape or CD-ROM, library maintenance will use the
BLOCKSIZE that was used when the tape or CD-ROM was created, and ignore the
value that is specified.

8600 1047-506

COPY or ADD Statement

The following table lists the maximum blocksizes for the specified tape drives.

Maximum Library Maintenance
Tape Drive Name Density Blocksize
2145-01, 02, 03 1600, 6250 10800 words
CLU9710-DLT4 FMTDLT10, 64800 words
FMTDLT20
CLU9710-DLT7 FMTDLT10, 64800 words
FMTDLT20,
FMTDLT35
CTS5136 (1/2-inch cartridge) FMT36TRK 42300 words
CTS5136, OST5136, FMT36TRK 42300 words
CTS5236, CLU9710-36T
(1/2-inch cartridge)
CTS9840 FMTST9840 42300 words
ALP430 FMTDDS, 10800 words
FMTDDS2,
FMTDDS3
ALP920 FMTAIT, 64800 words
FMTAIT2
FIPS 5073 (1/2-inch cartridge) 38000 21600 words
HS8500(C) (8mm) 11000 40500 words
MA150T(U), QIC1000 1250 10800 words
0OST5136 (1/2-inch cartridge) FMT36TRK 42300 words
QIC1000 FMTQIC1000 10800 words
USR5073 (1/2-inch cartridge) 38000 42300 words
USD440 (4mm) 38000 42300 words

In addition to these limits, any tape connected to the system through a “soft” or
“emulated” SCSI DLP has a library maintenance blocksize limit of 10800 words.

Library maintenance automatically limits the blocksize it uses when writing to tape
volumes on these tape units so that it will not exceed their blocksize limits.

Library maintenance complies with these limits even if you specify a SYSOPS
LMBLOCKSIZE that exceeds these limits. If you are going to be copying files to a tape
volume on a unit that does not have limits, but might someday need to be read on a tape
unit that has limits, then you should ensure that library maintenance writes the tape with
a blocksize that can be read on the target tape unit.

8600 1047-506 6-83

COPY or ADD Statement

6-84

CYCLE

Designates the specific generation of a tape volume family. This file attribute is used in
conjunction with the VERSION attribute. The default value is 1.

DOMAINNAME

Indicates the domain name of the remote host where the source or destination volume is
located. Can be used for FTP only.

FAMILYOWNER

Indicates the usercode of the owner of a tape volume. If you specify a usercode with the
FAMILYOWNER attribute, the usercode becomes the owner. If you do not use the
FAMILYOWNER attribute or you specify a null string ("), the usercode of the copy
process is used. If you specify an asterisk (*) with the FAMILYOWNER attribute, the
tape volume becomes a nonusercoded volume.

The FAMILYOWNER attribute can be used only if the InfoGuard security enhancement
software or the Security Accountability Facility package is installed, and the TAPECHECK
option of the SECOPT system command is set to AUTOMATIC. This attribute is ignored
if the SECOPT TAPECHECK attribute is set to NONE.

HOSTNAME

Indicates the host name of the remote host where the source or destination volume is
located. The default value is the name of the local host. The HOSTNAME attribute can be
specified for the source or destination volume to copy files from or to a remote host; or it
can be specified for both source and destination volumes to enable files to be copied
from one foreign host to another.

IPADDRESS

Indicates the numerical designator that uniquely identifies remote host where the source
or destination volume is located.

KIND

Describes the peripheral unit associated with the logical file. The default value is TAPE,
unless the volume name is DISK, PACK, or CD. If you want to indicate the kind of tape to
be used, use the DENSITY attribute.

LIBMAINTDIR

Determines, on destination tapes, whether library maintenance should create a tape
directory disk file on the DL LIBMAINTDIR disk family. The LIBMAINTDIR tape directory
disk file describes the destination tape and the files copied to it. Library maintenance
gives tape directory disk files names of the form LIBMAINTDIR/<tape
name>/<date>/<tape serialno>. It also puts them under the usercode that library
maintenance is running under, or * if there is no usercode.

8600 1047-506

COPY or ADD Statement

Library maintenance stores the following information in these files:

e Serial numbers of the tapes used
o Names of the files copied to those tapes

e Certain other attributes of those files

You receive a report of the information in tape directory disk files by running the
SYSTEM/FILEDATA utility program using the following syntax:

<filedata modifier> LIBMAINTDIR = <disk file name>

Note: When you specify LIBMAINTDIR = TRUE library maintenance writes the tape
with ANSI87 labels.

On source tapes, if you

o Specify LIBMAINTDIR = FALSE, library maintenance uses the tape directory on the
tape volume itself to determine what files are on the tape.

o Specify LIBMAINTDIR = TRUE on a tape that was originally created with
LIBMAINTDIR = FALSE or without any LIBMAINTDIR specification, library
maintenance uses the directory on the tape to determine what files are on the tape
and where the files are located on the tape.

o Specify LIBMAINTDIR = TRUE on a tape that was originally created with
LIBMAINTDIR = TRUE, library maintenance uses the LIBMAINTDIR disk file instead
of the directory on the tape to determine what files are on the tape and where the
files are located on the tape.

e Do not specify LIBMAINTDIR on a tape that was originally created with
LIBMAINTDIR = TRUE, library maintenance attempts to use the LIBMAINTDIR disk
file. If the LIBMAINTDIR file is missing or if library maintenance encounters an error
while reading records from it, library maintenance reverts to using the directory on
the tape to determine what files are on the tape and where the files are on the tape.

Library maintenance may access the tape directory disk file for source tapes that library
maintenance originally generated with LIBMAINTDIR = TRUE, if the file is resident on the
disk family specified by the DL LIBMAINTDIR system command. If you specify TRUE for
a source tape that was originally generated with LIBMAINTDIR = TRUE, the tape
directory disk file for the tape must be resident on the disk family specified by the DL
LIBMAINTDIR system command, or library maintenance will wait with a “NO FILE"”
RSVP.

Any attempt to purge a library maintenance tape for which there is a tape directory disk
file resident on the DL LIBMAINTDIR disk family requires approval by the operator.
Whenever a program or library maintenance overwrites a tape for which there is a
resident LIBMAINTDIR tape directory disk file the system removes that file from the
disk.

8600 1047-506 6-85

COPY or ADD Statement

6-86

LOCATECAPABLE

Indicates that the file requires a tape drive capable of processing the READ POSITION
and LOCATE BLOCK ID tape commands for fast tape access.

If the assigned tape drive is locate capable, then library maintenance automatically takes
advantage of this feature to do high-speed spacing in the following situations:

e COMPARE Option

Library maintenance uses the LOCATE BLOCK ID tape command to backspace to
compare the file. If you receive a RECOPY REQUIRED message and respond “OK,”
library maintenance uses LOCATE BLOCK ID to backspace to the beginning of that
file to recopy the file. If you respond with "OF,"” the file is erased.

e L[IBMAINTDIR for Destination Tapes

For a tape that is locate capable, library maintenance stores the BLOCK ID of the
start of each file it copies in the LIBMAINTDIR directory.

e LIBMAINTDIR for Source Tapes

If the original tape was created on a locate capable tape drive, and a LIBMAINTDIR
directory was created for the tape, then library maintenance uses the LOCATE
BLOCK ID information found in the LIBMAINTDIR directory to rapidly space up to
each of the files to be copied.

OFFSITE

When you specify OFFSITE for a tape destination, library maintenance updates the
onsite/offsite status of that tape in the volume library or in the volume directory.

If library maintenance does not successfully copy a file to a destination tape, it purges
the tape and does not update the onsite/offsite status for the tape.

If library maintenance successfully copies the files and OFFSITE is TRUE, then, when
library maintenance closes the tape, it updates the entry for the tape in the volume library
or in the volume directory to indicate that the volume or volumes are “offsite.” If library
maintenance successfully copies the files and OFFSITE is false, then, when library
maintenance closes the tape, it updates the entry for the tape in the volume library or in
the volume directory to indicate that the volume or volumes are "“onsite.”

Note: [ibrary maintenance performs these actions only when the tape volume is listed
in either the Volume Library, at sites that use the OP + CATALOGING option, or the
Volume Directory, at sites that use the SECOPT TAPECHECK = AUTOMATIC option.

SCRATCHPOOL

Indicates the scratch pool that the tape is retrieved from when files are copied. The
scratch pool name is a 17-character identifier. There is no default value.

8600 1047-506

COPY or ADD Statement

SERIALNO

Identifies the specific disk or tape volumes to be used when copying files. To copy a few
specific files from a multi-reel library maintenance tape set, you can use this attribute to
skip directly to the reel holding the file or files you need. If you know which reel contains
the file you want (or the first reel that contains one of the files you want), use the serial
number of that tape volume for the value of the SERIALNO attribute. The SERIALNO
attribute does not have a default value. For more information, refer to “Serial Number
Assignment” in Section b.

UNITNO

Designates the assigned hardware unit number of the tape volume to be used when
copying files. In the case of a multi-volume tape set, UNITNO is applied only to the first
volume.

USERCODE

Passes log-on information, which consists of a usercode, password, and charge account,
to the remote host specified with the HOSTNAME attribute. The default value is a null
string (" "). The log-on information has a maximum length of 255 characters, which
include all quotation marks ("), single quotation marks or apostrophes ('), and slashes (/).
The USERCODE attribute is ignored if the HOSTNAME attribute is not specified, if Host
Services File Transfer is used, or if NFT is used.

YOURUSERCODE is an acceptable synonym for USERCODE.

WINDOWSIZE

Indicates the maximum amount of data, in octets, that can be outstanding between the
source and the destination processes involved in an NFT transfer. An octet is a unit of
data that is 8 bits in length.

Note: The WINDOWSIZE attribute is applicable only if an NFT transfer is executed. For
more information, refer to the Distributed Systems Services Operations Guide.
YOURNAME

Overrides the default value for the control port number. When you copy from a remote
system, specify YOURNAME in the <source volume> attributes. When you copy to a
remote system, specify YOURNAME in the <destination volume> attributes.

The following example copies a file to a remote system with an IP address of 1.1.1.1 and
assigns a port number of 123435:

COPY [FTP] A FILE AS 'a.txt' TO DISK
(IPADDRESS = "1.1.1.1", YOURNAME = "12345")

Note: The control port number used by the Batch Client is determined in the following
order:

e The default value: 21

e The value from the Configuration File, if specified

e The value of the YOURNAME volume attribute, if specified

8600 1047-506 6-87

COPY or ADD Statement

Examples

The following statements illustrate various aspects of the COPY statement with the
AUTOUNLOAD and SCRATCHPOOL file attributes.

The following statement will copy file X as A/B from disk PACK to tape T. Since the value
of AUTOUNLOAD file attribute is ON, the tape will be unloaded when the operation is
completed.

COPY X AS A/B FROM PACK TO T(KIND=TAPE, AUTOUNLOAD=ON);

The following statement will copy the file X as A/B from disk PACK to tape T in the TEST
scratch pool:

COPY X AS A/B FROM PACK TO T(KIND=TAPE, SCRATCHPOOL=TEST);

Additional File Attributes

You can specify the following additional file attributes for the destination volume attribute

list:
e CDCOPIES e PACKETWRITE
e COMPRESSIONCONTROL e SAVEFACTOR
e COMPRESSIONREQUESTED e SECURITYGUARD
e DENSITY e SECURITYTYPE
e FAMILYINDEX e SECURITYUSE
e LIBMAINTAPPEND e SENSITIVEDATA
e LIBMAINTDIR e SINGLEUNIT
e LOCKEDFILE e USECATALOG
e MULTIVOLUME e VERSION
Notes:

o These file attributes cannot be specified for the source volume attribute list
construct.

e The tape attributes SECURITYGUARD, SECURITYTYPE, and SECURITYUSE only
work if the InfoGuard security enhancement software or the Security Accountability
Facility is installed and the TAPECHECK option of the SECOPT system command is
set to AUTOMATIC. If the TAPECHECK option of the SECOPT command is set to
NONE, these three attributes are ignored for disk and tape destination volumes.

6-88 8600 1047-506

COPY or ADD Statement

CDCOPIES

You can specify how many copies of a CD-R disc are to be burned with the attribute
CDCOPIES. The default value of CDCOPIES is 1.

When data is copied to a CD-R disk, it is first copied from the source media to a
temporary disk file. The data in the temporary disk file is formatted exactly as it is to
appear on the CD-ROM. The temporary disk file is then copied to a CD-R drive.
CDCOPIES causes the disk file to be copied to the CD-R drive as many times as you
specify, without having to recopy the data from the source media.

CONMPRESSIONCONTROL
Determines whether data compression will occur for a specific tape volume. This

attribute must be selected before a tape volume is assigned.

When the value USER is selected, the value of the attribute
COMPRESSIONREQUESTED will determine whether compression will occur. When the
value SYSTEM is selected, compression will occur based upon the value of the
compression flag in the tape label.

For further information, refer to the File Attributes Reference Manual.

COMPRESSIONREQUESTED
This attribute only has significance for tape files if the COMPRESSIONCONTROL
attribute is set to a value of USER.

If COMPRESSIONCONTROL = USER, COMPRESSIONREQUESTED will determine
whether compression will occur for a tape file.

Compression will only occur if COMPRESSIONCONTROL = USER and
COMPRESSIONREQUESTED = TRUE.

For further information, refer to the File Attributes Programming Reference Manual.

DENSITY

Indicates the recording density of a magnetic tape volume. The default value for output
files is the density setting of the tape unit selected.

FAMILYINDEX

Designates a specific physical volume within a disk family. If you do not specify the
FAMILYINDEX attribute, the FAMILYINDEX value of each source file is used (if that file
has had explicit values specified for FAMILYINDEX). By specifying this attribute, you can
alter or erase the FAMILYINDEX attribute of the new copies. If you specify a value of 0
or an integer expression that equals 0 for the FAMILYINDEX attribute, the disk areas will
be allocated in the normal rotational order of the system.

8600 1047-506 6-89

COPY or ADD Statement

6-90

LIBMAINTAPPEND

This attribute is used by library maintenance in the copy procedure.

Notes:

e [ijbrary maintenance does not update the tape directories on any reels already copied
with the file names of the files being added. Library maintenance only updates the
LIBMAINTDIR tape directory disk files with the names of the new files.

e The message BACKUP START ON: data and time appears in the PD display for files
that have archive backups. This message refers to the time of the original task that
started the tape. It does not refer to the start time of the task with
LIBMAINTAPPEND = TOEND specified.

LIBMAINTAPPEND = NO

If you specify LIBMAINTAPPEND = NO, or do not specify LIBMAINTAPPEND, the copy
procedure copies to a new tape.

LIBMAINTAPPEND = TOEND

If you specify LIBMAINTAPPEND = TOEND, library maintenance searches for an existing
library maintenance tape with the name and serial number you specify. The tape you
specify must be a tape created with the LIBMAINTDIR = TRUE specification. Library
maintenance checks the LIBMAINTDIR tape directory disk file for that tape to determine
the serial number of the last tape in that set of tapes. (Even if the tape contains no tape
directory, it does contain a pointer to the LIBMAINTDIR file on disk, which is used to find
the location of the end of the last file on the final tape.)

If necessary, library maintenance searches for that tape. Then library maintenance skips
to the end of the last file copied to that tape and copies the files that you specified. The
copy procedure expands the LIBMAINTDIR tape directory disk file for the tape with the
names and status of all files copied to the LIBMAINTDIR file.

The following conditions must be met to use LIBMAINTAPPEND = TOEND:

e The destination tape must have been created by a COPY or ARCHIVE statement that
specifies LIBMAINTDIR = TRUE for that tape.

e You must specify & VERIFY for the append operation if the & VERIFY option was
specified when the tape was originally created.

e You must not specify & VERIFY for the append operation if the & VERIFY option was
not specified when the tape was originally created.

When library maintenance copies files to a tape with LIBMAINTAPPEND = TOEND, it
does not add the names of those files to the tape directory for the tape. You cannot use
the TDIR system command or the FILEDATA utility TAPEDIR request to view the names
of files copied to tape with LIBMAINTAPPEND = TOEND. Instead, use the FILEDATA
utility LIBMAINTDIR modifier to view the names of all the files copied to a tape.

If you specify a list of tape serial numbers for the SERIALNO attribute, library
maintenance takes special action. Library maintenance uses the first serial number in
the list to locate any existing tapes in the set of tapes to which the files are to be added
or appended. Library maintenance then reads the LIBMAINTDIR file for that tape to

8600 1047-506

COPY or ADD Statement

determine the serial number of the last tape volume in the set. Library maintenance
immediately opens that tape, if necessary, then uses the other serial numbers you
supplied when it reaches the end of that tape.

Example

The original tapes have the serial number 111111, 222222, and 333333, and the following
COPY statement is specified:

COPY . . . TO <tape name> (LIBMAINTAPPEND = TOEND,
SERIALNQ = (222222, "AAAAAA"));

The preceding COPY statement is processed as follows:

1. The tape with serial number 222222 opens and the LIBMAINTDIR file is read. It is
determined that the tape 333333 is the last tape in the set.

2. Tape 222222 closes.

3. Tape 333333 opens.

4. Library maintenance moves to the end of the last file on tape 333333.

5. Library maintenance appends three new files to the end of tape 333333.

6. If tape 333333 fills before the copy operation completes, tape AAAAAA opens and
the additional data is appended to tape AAAAAA.

LIBMAINTDIR

Determines whether library maintenance should create a tape directory disk file on the
DL LIBMAINTDIR disk family. The DL LIBMAINTDIR disk family describes the destination
tape and the files copied to it. Library maintenance gives these files names of the form,
LIBMAINTDIR/<tape name>/<date>/<tape serialno>. It also puts them under the
usercode that library maintenance is running under, or * if there is no usercode.

Library maintenance stores the following information in these files:

e Serial numbers of the tapes used
e Names of the files copied to those tapes

e Certain other attributes of those files

You get a report of the information in tape directory disk files with the
SYSTEM/FILEDATA utility program.

If the HOSTNAME volume attribute is also specified for the destination volume of the

COPY or ADD statement, the LIBMAINTDIR file is created on the host with the
destination tape.

8600 1047-506 6-91

COPY or ADD Statement

6-92

LOCKEDFILE

When used in the COPY statement, this file attribute can be set for files copied to tape
only. It has no effect on disk files. If this file attribute is set to TRUE for a file, the entire
content of the specified destination library tape has locked file protection, and cannot be
purged without operator confirmation.

MULTIVOLUME

Causes a multivolume set of CD-ROMSs to be written when the data to be copied
overflows a single CD-ROM. (If MULTIVOLUME is FALSE when a data overflow occurs,
the copy is terminated with an error.)

When a multivolume set is written, data for a given CD-ROM is written to a temporary
disk file, the CD-ROM is burned, and the temporary disk file is removed, all before the
data for the next CD-ROM is written to a temporary disk file. In this way, the system
ascertains whether storage capacity equal to or less than CD-ROM is needed.

In a multivolume copy, the system splits files across CD-ROM boundaries. This capability
makes it possible to copy to a set of CD-ROMs files that are much larger than the
capacity of a single CD-ROM.

Each CD-ROM in a multivolume set has a complete library maintenance directory listing
all files on the entire set. As a result, you can use the TDIR system command on any of
the CD-ROMs to list all files on the set.

The directory of a given CD-ROM (volume N) of a multivolume set contains the correct
locations for the file data of all files located on previous CD-ROMs in the set (volumes 1
thru N). However, the directory records the location of all subsequent files as volume
N+1. For example, if volume 1 of a multivolume set is mounted and you enter a COPY
command specifying a file that happens to be on volume 3, the system asks for volume
2. If volume 2 is then mounted, the system asks for volume 3. If volume 3 is mounted,
the COPY is then carried out.

PACKETWRITE

Packet write recording is used to back up and restore files and is selected by specifying
the PACKETWRITE attribute. When set to TRUE, packet write recording is used when
the CD-ROM is written. PACKETWRITE causes the data to be written to the CD-ROM in
relatively small packets.

Packet write recording has the following advantages and disadvantages compared with
track-at-once:

Advantages Disadvantages
The risk of buffer underrun is eliminated. The resulting disc can be read only in CD-R drives.
Less save memory is used for output The resulting disc cannot be used as a master to

buffers—130,390 words of output buffers be sent to a CD-ROM factory for replication.
are used for packet write versus 651,950 Track-at-once output must be used for this
words for track-at-once. purpose.

The burn runs at normal priority. The capacity of the disc is reduced by 3.6% and
throughput is reduced when writing to the disk.

8600 1047-506

COPY or ADD Statement

When PACKETWRITE is FALSE (the default),track-at-once recording is used.
Track-at-once causes the data to be written to the CD-ROM an entire track at a time.
Track-at-once is the default recording mode and is normally used to create CD-ROMs to
be read in CD-ROM drives or to create master CD-ROMs for replication.

However, this mode carries a potential risk of “buffer underrun.” Buffer underrun occurs
when CD-ROM drive buffers become empty in the middle of a track, subsequently
ruining the disc. To reduce this risk, track-at-once recording uses ten output buffers of
391,168 bytes and permits the implementation to run at MCP priority while writing to the
CD-ROM drive.

The following events cause buffer underrun:

e Memory dump

e Path failure or path reconfiguration anywhere on the paths to the CD-ROM drive or
the CD-ROM image disk file

e Heavy contention for the disk drives containing the CD_ROM image disk file
e Very long stack searches

Due to the limitations of packet write, it is currently used only to backup and restore files.

SAVEFACTOR

Indicates the expiration date of a tape volume in terms of the number of days past the
creation date. The default value when a COPY statement creates a tape is 30 days.
(When a library maintenance tape expires, the system does not automatically mark the
tape as a scratch tape. The system uses the SAVEFACTOR value of the library
maintenance tapes for reporting purposes such as in the reports generated by the
LISTVOLUME utility program.)

SECURITYGUARD

Identifies the guard file to be invoked for the tape volume if the SECURITYTYPE attribute
is assigned GUARDED or CONTROLLED. The default value is a null string (" "). For more
information about guard files, refer to the Security Features Guide.

SECURITYTYPE

Specifies how a usercode, other than that of the owner of a file can access a tape
volume. The SECURITYTYPE attribute can have a value of PRIVATE (default), PUBLIC,
GUARDED, or CONTROLLED. PRIVATE tape volumes can be accessed or overwritten
only by their owners and privileged users. PUBLIC tape volumes can be accessed by
tasks with any usercode, as limited by the setting of the SECURITYUSE attribute. The
security of GUARDED and CONTROLLED tape volumes is determined by the guard file
referenced by the SECURITYGUARD attribute.

SECURITYUSE

Specifies how a tape volume that is to be protected by the SECURITYTYPE attribute can
be accessed by nonprivileged users using nonprivileged programs. This attribute can
have a value of 10 (default), IN, or OUT.

8600 1047-506 6-93

COPY or ADD Statement

When a PUBLIC tape volume is accessed by a task with a usercode that differs from the
FAMILYOWNER attribute value, the SECURITYUSE attribute can be used for the
following actions based on its value:

e A value of 10 permits reading, writing, overwriting, and purging.

e Avalue of IN permits reading but not writing, overwriting, or purging.

e A value of OUT permits writing, overwriting, or purging, but not reading.

SENSITIVEDATA

When the file is removed, causes the disk or pack areas assigned for a file to be
overwritten with an arbitrary pattern before the disk space is returned to the system for
reallocation.

SINGLEUNIT

Indicates whether areas for a disk file are to be allocated from a single family member.
The default value is FALSE.

USECATALOG

If true, indicates that a tape listed in the volume library should be used. Library
maintenance uses this attribute at cataloging installations only.

VERSION

Designates the successive iteration of the same generation of a tape volume. This file
attribute is used in conjunction with the CYCLE attribute. The default value is O.

6-94 8600 1047-506

COPY or ADD Statement

Copying Files from Tape or CD-ROM

No single file on a tape or CD-ROM can be copied more than once from the same tape or
CD-ROM in the same<copy from group>.

Examples

The following COPY statement causes the library maintenance to issue an
"MT<unit number>X NOT ON T" error message for the second request unless there are
two files named X on T:

COPY X, X AS Y FROM T
However, the following COPY statement copies X twice:

COPY X FROM T, X AS Y FROM T
For a COPY statement that includes a directory name and a file name that belongs under
that directory name, library maintenance issues a “<unit> <file name> NOT ON <volume
name>" error message, depending on whether the matching directory name or file name

appears first in the COPY statement.

In the following example, the COPY statement causes library maintenance to issue an
"MT<unit number> A/B NOT ON T" error message:

COPY A/=, A/B FROM T
However, the following statement ,might cause library maintenance to issue an
"MT<unit number> A NOT ON T" error message, depending on whether there are files
other than A/B under the A directory on tape T:

COPY A/B, A/= FROM T
When copying directories from tape or CD-ROM, if you specify two directories with the
same name in the same FROM clause, library maintenance issues a “<unit> <directory
name> NOT ON < volume name>" error message for the specified second directory.
For example, the following statement copies once only the files under X:

COPY X/=, X/= FROM T
However, the following statement copies the files under X twice:

COPY X/= FROM T, X/= FROM T
When copying directories from tape or CD-ROM, if you specify two directories in the
same FROM clause and one directory subsumes the other, then library maintenance

issues a “<unit> <directory name> NOT ON < volume name>" error message,
depending on which directory appears first in the list.

8600 1047-506 6-95

COPY or ADD Statement

For example, the following statement causes library maintenance to issue the error
message “CD <unit number> X/Y NOT ON C":

COPY X/=, X/Y/= FROM C(CD)
However, the following statement might cause library maintenance to issue an “CD
<unit number> X NOT ON C” error message, depending on whether there are any files

on the tape under the X directory that are not under the X/Y directory:

COPY X/Y/=, X/= FROM C(CD)

6-96 8600 1047-506

COPY or ADD Statement

Copying Files with or without Usercodes

Library maintenance selects usercoded and unusercode files differently when you copy
files from tape, depending on whether the task is running with a usercode.

Running without a Usercode

The following list shows how library maintenance determines how to select files when
the task is unusercoded. Files without usercodes are indicated by an asterisk (¥).

e COPY = FROM TAPE
COPY = FROM C(CD)

Conditions: Task running without a usercode.
Result: Selects all files on source volume.

e COPY *= FROM TAPE
COPY *=FROM C(CD)

Conditions: Task running without a usercode.
Result: Selects all files on source volume.

e COPY D/=FROM TAPE
COPY D/=FROM C(CD)

Conditions: Task running without a usercode and copying files from a directory
without specifying a usercode.

Result: Selects all files that match the specified directory.

e COPY *D/=FROM TAPE
COPY *D/= FROM C(CD)

Conditions: Task running without a usercode and copying files from a directory with
an asterisk (*).

Result: Selects all files from the directory under the asterisk (*) directory.

Running under a Privileged Usercode

The following list shows how library maintenance determines how to select files when
the task is running under a privileged usercode. Files without usercodes are indicated by
an asterisk (*).

e COPY * = FROM TAPE
COPY * = FROM C(CD)

Conditions: Privileged task running with a usercode and copying files from an
asterisk (*) directory.

Result: Selects all files on source volume.

e COPY = FROM TAPE
COPY = FROM C(CD)

Conditions: Privileged task running with a specific usercode and copying files without
indicating a usercode.

Result: Selects files either from the asterisk (*) directory or from the task
usercode, but not from both. The first file the system finds on the source

8600 1047-506 6-97

COPY or ADD Statement

6-98

volume that matches either the asterisk (*) directory or the usercode
determines the location from which files are copied.

Example: If the first matching file is an asterisk (*) directory file, only matching
asterisk (*) directory files are copied. If the first matching file is a file
under the task usercode, the system copies only files that match that
usercode.

COPY D/= FROM TAPE
COPY D/= FROM C(CD)

Conditions: Privileged task running with a usercode and copying files from a
directory without an asterisk (*) directory or specific usercode.

Result: Selects files either from the asterisk (*) directory or from the task
usercode, but not from both. The first file the system finds on the source
volume that matches either the asterisk (*) directory or the usercode
determines the location from which files are copied.

Example: If the first matching file is an asterisk (*) directory file, the system copies
only matching asterisk (*) directory files. If the first matching file is a file
under the task usercode, the system copies only files that match that
usercode.

Running under a Nonprivileged Usercode

The following list shows how library maintenance determines how to select files when
the task is running under a nonprivileged usercode. Files without usercodes are indicated
by an asterisk (*).

COPY *=FROM TAPE
COPY *=FROM C(CD)

Conditions: Nonprivileged task running with a specific usercode and copying files
from an asterisk (*) directory.

Result: Does not select any files for copying.

COPY D/= FROM TAPE
COPY D/= FROM C(CD)

Conditions: Nonprivileged task running with a specific usercode and copying files
from a directory that does not indicate an asterisk (*) directory or specific
usercode.

Result: Selects only those files under the task usercode that match the directory
specification.

COPY = AS ... FROM TAPE
COPY = AS ... FROM C(CD)
COPY = ONTO...FROM TAPE
COPY = ONTO...FROM C(CD)
COPY D/= AS...FROM TAPE
COPY D/= AS...FROM C(CD)
COPY D/= ONTO...FROM TAPE
COPY D/= ONTO...FROM C(CD)

Conditions: Using the AS or ONTO option with a nonprivileged task running with a
specific usercode and copying files from a directory that does not
indicate an asterisk (*) or specific usercode.

8600 1047-506

COPY or ADD Statement

Result:

Example:

8600 1047-506

Selects files either from the asterisk (*) directory or from the task
usercode, but not from both. The first file the system finds that matches
either the asterisk (*) directory or the usercode determines which files
are copied.

If the first matching file is an asterisk (*) directory file, the system copies
only matching asterisk (*) directory files. If the first matching file is a file
under the task usercode, the system copies only files that match that
usercode.

6-99

COPY or ADD Statement

Copying Files to CD-ROMs

6-100

COPY to KIND=CD writes an image of a library maintenance format CD-ROM to a
temporary disk file. The image is then transferred to a blank CD-R disc that is mounted
on a CD-R drive connected directly to a SCSI channel adapter.

Note: CD-R drives function as CD-ROM drives when reading CD-ROMs, however,
CD-R drives can also write to blank write-once CD-R media, creating a CD-ROM.

When you write to a library maintenance CD-ROM, you can specify the SERIALNO
attribute for the destination volume. The specified serial number is assigned to the
CD-ROM as it is written. However, you can specify only a single serial number. If you
create a multiple-volume set of CD-ROMs, all are assigned the same serial number.

When you read a library maintenance CD-ROM, if you do not specify the SERIALNO
attribute for the source volume, a source CD-ROM is used whether has a serial number
or not. However, if you do specify the SERIALNO attribute for the source volume, a
source CD-ROM is used only if it has a matching serial number.

Track-at-once is the default recording mode. If you specify the attribute PACKETWRITE,
“packet write"” recording is used when the CD-ROM is written. Additionally, you can
specify how many copies of the disc are to be burned with the attribute CDCOPIES.
Refer to the explanations for each of these settings in the following paragraphs.

Before the CD-ROM disc is finalized with the CLOSE SESSION SCSI command, the
entire data track is read and compared with the image file to ensure that no media
defects affected the burn.

Note: Except during this compare operation, the MCP refuses to read a CD-ROM disc
that is not finalized. Discs that fail the compare operation cannot be read by mistake
thereafter.

The family used for the temporary disk file must have room for the entire image. Also, for
track-at-once recording, you cannot use a family that is heavily used by other programs.
The temporary disk file is created on the default family of the task executing the COPY
statement, unless you set the TASKSTRING attribute of that task to

FAMILYNAME = <family name>

Restrictions

e The capabilities of KIND=CD apply only to the COPY statement and are not valid with
the ADD statement.

e The only "& options” are COMPARE, DSONERROR, WAITONERROR, and REPORT.

e There can be only one destination volume and the destination volume cannot require
quotes.

e The source and destination volumes must both be on the local host. NFT is not
supported.

8600 1047-506

COPY or ADD Statement

e The data must fit on a single CD-ROM.

— For track-at-once output, a single CD-ROM holds 681984000 bytes or 333000
CD-ROM sectors of 2048 bytes each.

— For packet write output, a single CD-ROM holds 657553408 bytes or 321071
CD-ROM sectors of 2048 bytes each.

e All errors except skipped files are fatal and cause the task executing the COPY
statement to terminate with a failure.
Example 1:
COPY TEST1, TEST2 TO GGG(CD);

An A Series library maintenance CD-ROM named GGG is created. The disk contains files
TEST1 and TEST2.

Example 2:

BEGIN JOB J;
TASK T;

T(TASKSTRING= "FAMILYNAME = BLUE");

COPY *SYSTEM/PRINT/= TO SYSTEM PRINT(CD) [T];
END JOB

An A Series library maintenance CD-ROM named SYSTEM_PRINT is created. The disc
contains all the files from *SYSTEM/PRINT/=.

The temporary disk file used to hold the CD-ROM image is placed on family BLUE.

Example 3:

COPY (USER9)= FROM GREEN(PACK),
=FROM TEST4 (SERIALNO= "123321"),
*SYSTEM/PRINT/= FROM SYSTEM_45123(CD) TO
SYSTEM_012(CD) ;

An A Series library maintenance CD-ROM named SYSTEM_012 is created. The disc

contains all the files from (USER9)= on family GREEN, from tape TEST4 (with serial
number 123321), and from *SYSTEM/PRINT/= on CD SYSTEM_45123.

8600 1047-506 6-101

COPY or ADD Statement

COPY = AS and COPY *= AS

The COPY = AS . . . and COPY *= AS . . . statements initiate one of the following
actions:

6-102

Select all files to be copied from the source volume.

Select all files under the usercode of the task, and copy the files from the input
volume.

Select all files under the global *directory, but will not select any files under
usercodes to be copied from the input volume.

Select no files for copying.

When either statement is used to select input files with usercodes in their file names,
the output file name is formatted in one of the following ways:

The output file names contains the same usercode as the input file names.

The output file name does not contain the usercode. The output files are copied to
the global *directory.

The usercode of the output file name is changed to an ordinary node name.

The outcome of specifying a simple directory such as = or *= for the input files, followed
by AS and an output directory specification, varies depending on whether

You specify COPY = AS ... or COPY *=AS

The task is run with or without a usercode, and the task is a privileged or a
nonprivileged task.

The source is a disk or a tape.

8600 1047-506

COPY or ADD Statement

The following table is a description of using the COPY statements COPY = AS . . . and
COPY *= AS . . . to copy files running without a usercode, with a usercode, or with a

privileged usercode.

COPY
Statement

Conditions

Result

COPY = AS...
COPY *=AS...

Task running
without a usercode
with a disk or tape
input volume

Selects all files on the input disk or tape
volume and changes the usercode node of
any input file to an ordinary node in the
output file name.

COPY = AS...

Task running under
a privileged or a
nonprivileged
usercode with a
disk input

Selects only the files under the usercode of
the task.

COPY = AS...

Task running under
a privileged or a
nonprivileged
usercode with a
tape input volume

Selects files under the usercode of the task
or files without usercodes . The file order on
the tape determines which files are copied.
If a file with the usercode of the task is
found on the tape before a file without a
usercode, only files under the usercode of
the task are copied. If a file without a
usercode is found on the tape before a file
with the usercode, of the task, only files
without usercodes are copied. All output file
names correspond to the name specified
after the word AS in the COPY statement.

COPY *=AS...

Task running under
a privileged
usercode

Selects all files on the input volume for
copying and changes the usercode node of
any input file name to an ordinary node in
the output file name.

Note: A task running with a nonprivileged
usercode is not permitted to use this
construct and will receive a run time
security error.

Examples

Tasks running without a usercode:

e This example copies the input file *X as *ABC/X and copies the input file (UC)Y as

*ABC/UC/Y:

COPY = AS ABC/=

o These examples copy the input file *X as *X and copies the input file (UC) Y as

*UC/Y:
COPY = AS =
COPY *= AS =
COPY *= AS *=

8600 1047-506

6-103

COPY or ADD Statement

Tasks running under a privileged or a nonprivileged usercode with a disk input volume:
e This example copies all the files under the usercode of the task UC without changing
their names. This statement is equivalent to the following statement:
USER=UC
COPY = AS = FROM DISK...
e This example copies the input file (UC)X as (UC)X. Files such as *Y or (XUSER)FILE
are not copied.
COPY = FROM DISK...

e This example copies the input file (UC)X as *X.
USER=UC
COPY = AS *= FROM DISK...
(Files such as *Y or (XUSER)FILE are not copied.)

Tasks running under a privileged or a nonprivileged usercode with a tape input volume:

e This example copies the file (UC)X as (UC)P/X.
USER=UC
COPY = AS P/= FROM TAPE...

e This example copies the file (UC)X as *Q/X.
USER=UC
COPY = AS *Q/= FROM TAPE...

Note: [f this statement is used to copy to a disk, a nonprivileged user would get a
security error and no files would be copied.

Tasks running under a privileged usercode:

e This example copies the input file *X as *ABC/X and copies (UC)Y as *ABC/UC/Y.
USER=PRIV
COPY *= AS *ABC/=

e This example copies the input file *X as *X and copies (UC)Y as *UC/Y.
USER=PRIV
COPY *= AS *=

e This example copies the input file *X as (PRIV)X and copies (UC)Y as (PRIV)UC/Y.

USER=PRIV
COPY *= AS =

6-104 8600 1047-506

COPY or ADD Statement

COPY and ADD Statement Examples

COPY Statement Examples

The following examples illustrate various aspects of using COPY to copy files locally
using library maintenance.

For information regarding file transfer services for copying to remote hosts, refer to the
end of this section that discusses the particular type of file transfer service you are
interested in.

This statement copies the files DATA/HOLD and PROG/SUMMARY from the family
DISK to tape. The tape will be named XFER.

COPY DATA/HOLD, PROG/SUMMARY TO XFER;

e This statement copies the file PROG/SUMMARY from the tape XFER to the family
PACK. The COMPARE option double-checks the copy.

COPY & COMPARE PROG/SUMMARY FROM XFER TO PACK;

e These statements copy the files (UC)OBJECT/C/PROG and (UC)C/PROG from the
disk family USERPACK to the disk family SYSPACK.

USER = UC;
FAMILY DISK = USERPACK OTHERWISE DISK;
COPY OBJECT/C/PROG, C/PROG TO SYSPACK (PACK);

e These statements simultaneously copy all files under the usercode UC on the disk
family USERPACK to one backup tape (or set of tapes if the files fill up more than
one tape volume), which will be named UCUSERPACK, and all files under the
usercode UC from the disk family PACK to another backup tape (or set of tapes),
which will be named UCPACK. The VERIFY option double-checks the copies.

USER = UC;

FAMILY DISK = USERPACK OTHERWISE DISK;
PROCESS COPY & VERIFY = TO UCUSERPACK;
COPY & VERIFY = FROM PACK TO UCPACK;

e |f these statements run under a privileged usercode or without a usercode in a job
started from an ODT, they copy all the files from the family USERPACK to a backup
tape (or set of backup tapes if all the files do not fit on one tape volume). The tape or
tapes will be named USERPACK030891. The VERIFY option double-checks the
copies. A task variable, T, is used to check the success of the copy.

TASK T;

RECOPY:

COPY & VERIFY *= FROM USERPACK (PACK) TO USERPACK030891 [T];
IF T(VALUE) NEQ O THEN

BEGIN

DISPLAY "RETRYING BACKUP OF USERPACK.";

GO RECOPY;

END;

8600 1047-506 6-105

COPY or ADD Statement

6-106

This statement copies and compares all files under the usercode UC from the tape
USERPACK030891 to another backup tape. The new tape will be named UCSAVE.
Immediately after each file is copied to tape UCSAVE, it is compared with the original
file on tape USERPACK030891.

COPY & COMPARE (UC)= FROM USERSPACK030891 TO UCSAVE;

This statement, if run under a privileged usercode or run without a usercode in a job
started from an ODT, makes two backup copies of every file on the family DISK onto
two sets of backup tapes. One tape (or set of tapes if all the files will not fit on one
tape volume) will be named ADISK, and the other will be named BDISK.

COPY & COMPARE *= FROM DISK TO ADISK, TO BDISK;

These statements copy the file A/B, name the copy X/Y, and copy all of the files
under the directory Z/= from DISK to tape T1:

S1:="A/B";
$2:="X/Y";
$3:="7/=";
S4:="T1";

COPY #S1 AS #S2, #S3 FROM DISK TO #S4(KIND=TAPE);

These statements copy all files under the (UC)OBJECT/= directory on the pack
USERPACK, and put the new copies under the (UC)SAVE/OBJECT= directory on
USERPACK.

USER = UC;
COPY OBJECT/= AS SAVE/OBJECT= FROM USERPACK (PACK)
TO USERPACK (PACK);

These statements copy the file *SYSTEM/FILEDATA on the pack PACK and the new
copy of the file is named (UC)SYSTEM/FILEDATA on the pack USERPACK.

USER = UC;
COPY *SYSTEM/FILEDATA AS SYSTEM/FILEDATA FROM PACK
TO USERPACK (PACK);

This statement copies all files that are under the SYSTEM/= directories on the disk
families DISK, PACK, and SYSPACK to a single tape set that will be named SYS. The
SERIALNO attribute specifies which tape or tapes will be used. Library maintenance
will first request the tape with the serial number X66778. If that tape fills up, library
maintenance will make an additional request for the tape 553322. If that tape fills up,
library maintenance will request any available scratch tape.

COPY SYSTEM/= FROM DISK, SYSTEM/= FROM PACK,
SYSTEM/= FROM SYSPACK (PACK)
TO SYS (SERIALNO = ("X66778", 553322));

This statement copies the file SYSTEM/MCP from the disk family HLPACK to the
disk family named PACK. The FAMILYINDEX=0 specification erases the value of the
FAMILYINDEX attribute in the new copy of the file.

COPY SYSTEM/MCP FROM HLPACK (PACK) TO PACK (FAMILYINDEX=0);

8600 1047-506

COPY or ADD Statement

e This statement copies all the files in the directory SYMBOL/= from the tape REL to
the disk family called DISK and all the files in the directory SYSTEM/= also from the
tape REL, to the disk family PACK. Each new copy will be marked as a cataloged file,
and a backup entry will be added to the catalog for each file. The backup entry will
point to the source tape REL. (This example assumes that a VOLUME ADD has been
done for the tape REL, and for the disk families DISK and PACK.)

COPY & COMPARE & CATALOG SYMBOL/= FROM REL (TAPE) TO DISK,
SYSTEM/= FROM REL (TAPE) TO PACK;

e |f this statement runs under a privileged usercode or without a usercode in a job
started from an ODT, it copies all files from the disk family USERPACK to a backup
tape that will be named USERPACK. For each cataloged file that is copied, library
maintenance adds a backup entry to the catalog record that points to the tape
USERPACK. (This example assumes that a VOLUME ADD has been done for the
tape USERPACK and the disk family USERPACK.)

COPY & VERIFY & BACKUP *= FROM USERPACK (PACK) TO USERPACK;

e At an installation that uses the TAPECHECK security feature, these statements copy
all the files in the (UC)OBJECT/= directory from the pack USERPACK to a tape that
will be named UCOBJECT. This tape will have PUBLIC IN security, so that
nonprivileged users can copy files from it.

USER = UC;
COPY OBJECT/= FROM USERPACK (PACK)
TO UCOBJECT (SECURITYTYPE=PUBLIC, SECURITYUSE=IN);

e This statement, if run under a privileged usercode or run without a usercode in a job
started from an ODT, copies all files from the disk family DISK to a tape that will be
called DISKBACKUP and all files from the disk family PACK to a tape that will be
called PACKBACKUP. This statement is equivalent to two separate COPY
statements. By using this one statement, if the "“first” copy is terminated abnormally
or discontinued (such as with the DS system command), the “second” copy will not
proceed. If you used two separate statements, and if the “first” copy was
terminated abnormally or discontinued, the “second” copy would proceed.

COPY & COMPARE *= FROM DISK TO DISKBACKUP,
*= FROM PACK TO PACKBACKUP;
ADD Statement Examples

e The following statement copies the file X/Y from tape T to DISK, only if no file named
X/Y already resides on DISK.

ADD X/Y FROM T(KIND=TAPE);
e The following statement copies files under the directory Z/= from tape T to disk R
and to DISK. All files already resident on the destination volumes are not copied.

Different files might be copied to R and to DISK, depending on what is already
resident on each destination volume before the ADD statement is executed.

ADD Z/= FROM T(KIND=TAPE) TO R(KIND=DISK), TO DISK;

8600 1047-506 6-107

COPY or ADD Statement

e The following statements restore all the “missing” files for the usercode UC from
the tape UCUSERPACK to the disk family USERPACK. The VERIFY option double-
checks the copy.

USER = UC;
ADD & VERIFY = FROM UCUSERPACK TO USERPACK (PACK);

6-108 8600 1047-506

COPY or ADD Statement

COPY File Transfer Services

<transfer service>

NFT |
HOSTSERVICES —

— FTAM

— FTP

Explanation

The process of copying files between hosts is called a file transfer, and the software
used to copy the files between hosts is called a transfer service. When you initiate a file
transfer, distributed systems services determines which transfer service can be used for
the hosts involved in the transfer. Since distributed systems services selects the most
suitable transfer service, you do not have to specify the transfer service in the COPY
statement. You should specify the transfer service only when you want to override the
automatically selected transfer service.

Note: File transfer services and the transfer service construct do not apply when you
transfer files on a single host. In this case, library maintenance is used to transfer the
files.

Available File Transfer Services

The file transfer services that distributed systems services selects or that you specify in
the COPY statement include the following:

o Native File Transfer (NFT)

NFT enables you to copy files from disk families to disk families and tape volumes,
from library maintenance tape volumes to a disk family or a tape volume, and from
CD-ROM volumes to disk families and tape volumes.

e Host Services File Transfer

Host Services File Transfer enables you to copy disk files between MCP environment
systems, B 1000, V Series, and CP9500 hosts in a BNA network and between MCP
environment systems in an Open Systems Interconnection (OSI) network.

e File Transfer Protocol (FTP)

FTP enables you to copy disk files between hosts connected to a Transmission
Control Protocol/Internet Protocol (TCP/IP) network.

e Open Systems Interconnection (OSI) File Transfer, Access, and Management
(FTAM).

OSI FTAM enables you to copy disk files between hosts in an OSI network.

8600 1047-506 6-109

COPY or ADD Statement

6-110

Principles of Selection

The system selects the file transfer service based on the following conditions:

Whether you specify a particular file transfer service in the COPY statement
Whether you specify options or attributes that require a particular file transfer service
Whether the involved source and destination hosts support the transfer service

Which network or networks (BNA, OSI, or TCP/IP) connect the hosts involved in the
transfer

Order of Selection

The selection proceeds as follows:

1.

If you specify a particular file transfer service in the COPY statement, the system
tries to use it.

If you specify DOMAINNAME or an IPADDRESS, the system selects FTP.
If any of the following conditions is met, the system selects NFT:

e The file names and directory names in the COPY, ADD, or REPLACE statement
exceed 60 to 80 kilobytes of text.

e You use the REPLACE statement instead of COPY or ADD.
e You specify the SKIPEXCLUSIVE option.

e You specify a file copy from tape by file number with an "# <file number>" clause
option.

e You specify a CD-ROM source volume.

The system selects the transfer service based on whether the involved hosts can
support the transfer service.

a. NFT is selected when both local and remote hosts support NFT.

The system tries NFT first, whenever possible, because NFT provides all of the
features that are provided by Host Services File Transfer plus additional features.
These additional features include the resumption of file transfer from the point of
failure, the simultaneous transfer of files to several destinations, and the transfer
of directory copies to and from remote hosts. All features of NFT are explained in
the Distributed Systems Services Operations Guide.

b. If both source and destination hosts are connected by an OSI network,
distributed systems services selects Host Services File Transfer.

c. If both source and destination hosts are connected by a TCP/IP network, the
system tries FTP.

d. If both source and destination hosts are connected by an OSI network and one
of the hosts cannot support Host Services File Transfer, the OSI FTAM transfer
service is selected.

8600 1047-506

COPY or ADD Statement

Additional Considerations

If the COPY statement contains a copy request with multiple hosts, the appropriate
service for each pair of source and destination hosts is selected. Therefore, it is possible
for more than one transfer service to be used to transfer the files specified in a COPY
statement. If a host is offline or does not exist, distributed systems services displays a
message and disregards the copy request to that host. However, copy requests between
other hosts, if valid, are still performed.

If a file is transferred between two remote hosts through the initiating host (rather than
directly between the two remote hosts), all three hosts must use the same transfer
service.

Caution

For file transfers involving files with node names exceeding 17 characters, the
SYSOPS LONGFILENAMES option for both sending and destination hosts
must be set. (For details on the SYSOPS command, see the System
Commands Operations Reference Manual.)

More About the File Transfer Services

Each of the file transfer services has certain features that you should know about and
certain restrictions that you must observe. These features and restrictions are explained
under “NFT File Transfers,” “Host Services File Transfers,” and “OSI| FTAM File
Transfers,” and “FTP File Transfers” found later in this section.

For more extensive information about transferring files between hosts on BNA or OSI
networks, or about using NFT, Host Services File Transfer, or OSI FTAM, refer to the
Distributed Systems Services Operations Guide. For information about using FTP to
transfer files between hosts on TCP/IP networks, refer to the TCF/IP Distributed
Systems Services Operations Guide.

NFT File Transfers

The following section describes NFT file transfers to disk or tape.

Transferring Files to Disk

When you transfer a file to disk by using NFT, the FILENAME and FILEKIND attributes of
the destination file are set aside temporarily while the file is being transferred. The
FILENAME attribute is set to NFTTEMP/<file name>, and the FILEKIND attribute is set to
FTAUDIT. These attributes are set to their original values following the successful
transfer of the entire file.

When a file transfer fails and you reissue the original COPY statement, NFT restarts the
interrupted file transfer. The resumption point depends on the kind of destination volume
and the characteristics of the files being transferred. For more information on file transfer
resumption, refer to the Distributed Systems Services Operations Guide.

8600 1047-506 6-111

COPY or ADD Statement

Transferring Files to Tape

The effectiveness of setting the LABELFORMAT task attribute for an NFT transfer
depends upon the version of the remote source host in a delegated transfer and the
destination host in the transfer. If both of these hosts do not support the LABELFORMAT
attribute with the COPY statement, an RSVP will be issued only if ignoring the attribute
causes the outcome of the transfer to be different from what you requested.

Constraints

The following list describes the constraints for NFT file transfers:

e |f you specify the CATALOG option and the destination host is a cataloging system,
the destination host marks the copied files as cataloged. However, the destination

host does not place a backup entry that references the source file in its system
catalog.

e Do not specify the BACKUP option.
e Do not specify the ONTO option of the <copy file> construct.
e Do not use tapes as destinations, unless you specify only one source volume.

e Do not use tape or CD-ROM volumes as sources, unless you specify only one
destination volume.

e Do not specify the USERCODE or GENERATION attributes in the source volume
attribute list construct or the destination volume attribute list construct.

Examples
The following examples illustrate the COPY statement syntax when NFT is used to
transfer files between host systems.

This statement copies the file A from a tape named ACCTS on the local host to a pack
named PACK on host HOSTB:

COPY [NFT] A FROM ACCTS TO PACK(HOSTNAME=HOSTB);
This statement copies the file A from the family DISK on the local host to a pack named
PACK on host HOSTB. For this example, assume that the COPY statement is part of a
WEFL job that is restarted if the file transfer fails. If the WFL job restarts, file A is
completely re-transferred because the FROMSTART option is specified in the COPY
statement.

COPY [NFT,FROMSTART] A TO PACK(HOSTNAME=HOSTB);

6-112 8600 1047-506

COPY or ADD Statement

This statement copies files from the SYMBOL/= directory on the source CD-ROM
volume SYMCD at host CENTER. It copies only those files under SYMBOL/= for which
there is already a resident version on the SYM disk family:

REPLACE [NFT] SYMBOL/= FROM SYMCD (CD, HOSTNAME=CENTER) TO SYM (PACK);
This statement copies all files from the family HLDISK to tape at the host CENTER:

COPY & SKIPEXCLUSIVE *= FROM HLDISK (PACK) TO HLDISKBACKUP (SERIALNO=555555,
HOSTNAME=CENTER) ;

This WFL job copies the file A from the family DISK on the local host to a pack named
PACK on the host HOSTB, taking advantage of the file transfer resumption feature of
NFT:

BEGIN JOB NFT/RECOVERY;
TASK T;
RESUME:
COPY A TO PACK(HOSTNAME=HOSTB)[T];
IF T(VALUE) NEQ O THEN
BEGIN
WAIT(30);
GO RESUME;
END;
END JOB.

Host Services File Transfer

When you transfer a file by using Host Services File Transfer, you must observe the
following restrictions:

e Do not specify a directory in the copy file construct unless it resides on the local
initiating host.

e Do not specify the COMPARE, CATALOG, BACKUP, or VERIFY option.

e Do not use the ONTO option of the copy file construct.

e Copy only from disk to disk.

e Specify only the attributes KIND and HOSTNAME in the source volume attribute list
and destination volume attribute list constructs.

Examples

The following examples illustrate the COPY statement syntax when Host Services File
Transfer is used to transfer files.

This statement copies the file X from DISK (at the local host) to DISK at host HOSTB, and
names the new file Y. The HOSTSERVICES option is used to designate that Host
Services File Transfer should be used to transfer the file.

COPY [HOSTSERVICES] X AS Y FROM DISK TO DISK(HOSTNAME=HOSTB);

8600 1047-506 6-113

COPY or ADD Statement

This statement copies the file WEEKLY_SUMMARY (from DISK at the local host) to DISK
at host HOSTB, and renames the file as WEEKLY/SUMMARY. In this example, HOSTB
does not support NFT, so Host Services File Transfer is selected automatically.

COPY WEEKLY_ SUMMARY AS WEEKLY/SUMMARY TO DISK(HOSTNAME=HOSTB);

This statement copies the file TIME/SUM from the disk ENGDATA at the host HOSTE as
the file ENG/TIME/SUM on the disk ACCTDATA at the host HOSTA. In this example,
HOSTE supports NFT but HOSTA does not. Therefore, Host Services File Transfer is
automatically selected to copy the files.

COPY TIME/SUM AS ENG/TIME/SUM FROM ENGDATA(KIND=DISK,HOSTNAME=HOSTE)
TO ACCTDATA(KIND=DISK,HOSTNAME=HOSTA);

FTP File Transfers

6-114

<FTP>
— (/1\— APPEND L) '
L. i: TRUE —— !
FALSE
/1\—= FTPSITE — = —<string expression>—
/1\— FTPSTRUCTURE — = T FTPFILE
FTPRECORD —
/1\- FTPTYPE — = ASCIINONPRINT —
EBCDICNONPRINT —
IMAGE ——M8M88——
Explanation

When you transfer a file by using FTP, you should note that FTP does not distinguish
between the ADD and COPY statements. A file existing under the name specified in the
ADD statement is overwritten on a receiving host.

Any ASCII nonprint and EBCDIC nonprint files copied by using FTP reside on disk as
FTPDATA files that are specially formatted. An FTPDATA file is not a standard MCP
environment file kind and must be converted before it can be processed, printed, or
viewed by MCP environment software. The FTP utility program can convert an FTPDATA
file to a conventional MCP environment format with a title and certain other attribute
values that you designate. For more information on converting FTPDATA files with the
FTP utility, refer to the TCP/IP Distributed Systems Services Operations Guide.

When you transfer a file by using FTP, you must observe the following restrictions:

e Do not specify a directory in the copy file construct.

e Do not specify the COMPARE, CATALOG, BACKUP, or VERIFY options.
e Do not use the ONTO option of the copy file construct.

e Copy only from disk to disk.

e Specify only the KIND, HOSTNAME, and USERCODE attributes in the source volume
attribute list and destination volume attribute list constructs.

8600 1047-506

COPY or ADD Statement

e Specify only the volume name DISK in the source volume and destination volume
constructs.

e Depending on the FTP implementation of a receiving non-MCP environment host,
FTPSTRUCTURE=FTPFILE and FTPTYPE=ASCIINONPRINT might be the only file
structure and character code type recognized. Other options for the FTPSTRUCTURE
and FTPTYPE transform attributes might result in an error message from the
non MCP environment host, indicating that the specified FTPSTRUCTURE or
FTPTYPE is not recognized at the remote host.

FTP Transform Attributes for Copying Files

The following FTP transform attributes are used to assign file characteristics to files that
are transferred to a remote host through the FTP file transfer service.

APPEND

Appends the contents of the source file to the destination file. The APPEND attribute
applies only if the destination is not on an MCP environment host.

FTPSITE

Specifies any of several options that are described in detail in the TCP/IP Distributed
Systems Services Operations Guide.

FTPSTRUCTURE

Identifies the structure of the file that is being transferred.

FTPFILE represents the file structure where there is no internal structure. The file is

considered to be a continuous sequence of data bytes. This is the default structure used
when transferring a file if FTPSTRUCTURE is not specified.

FTPRECORD represents a record structure where the file is made up of sequential
records.

FTPTYPE

Identifies the type of code format (either ASCII, EBCDIC, or image) in which the
characters of the file are represented.

ASCIINONPRINT represents the file in ASCII format without vertical format information.
Vertical format control characters provide printer instructions such as carriage return
(CR), line feed (LF), new line (NL), form feed (FF), and so on. The ASCII format is the
default code format type.

EBCDICNONPRINT represents the file in EBCDIC format without vertical format control
information.

IMAGE represents the file in 8-bit transfer bytes. Data is sent as contiguous bits and
must be stored as contiguous bits by the receiving host. If the receiving host must store
the data in a manner such that the file (or record for a record-structured file) necessitates
the padding of the file with O (zeroes) to some convenient boundary such as byte, word,
or block, then the zeroes must be placed at the end of the file or record and the padding
bits must be identifiable.

8600 1047-506 6-115

COPY or ADD Statement

Examples

The following examples illustrate the COPY syntax when FTP is used to transfer files
across a TCP/IP network.

This statement copies the file PAYROLL/TIMECARDS/061490 from DISK at the local host
as the file [PAY735]TC061490.DAT on DISK at the remote host HQSYS1. Log-on
information is passed to the remote host HQSYS1 with the USERCODE attribute.

COPY PAYROLL/TIMECARDS/061490 AS '[PAY735]TC061490.DAT'
TO DISK(KIND=PACK, HOSTNAME=HQSYS1, USERCODE=RMPAYR/MONEY/735);

This statement copies the file [PAY735]90AWARDS.DAT from DISK at the remote host
HQSYS1 as the file PAYROLL/AWARDS/1990 on DISK at the local host.

COPY '[PAY735]90AWARDS.DAT' AS PAYROLL/AWARDS/1990 FROM
DISK(KIND=PACK, HOSTNAME=HQSYS1, USERCODE=RMPAYR/MONEY/735) TO DISK;

The following examples show some uses of the FTP transform attributes.

Transfer by IP Address, with FTPTYPE = IMAGE

The following example transfers a file FILE1 as file 1 from a local MCP environment host
to a remote host 125.32.1.1. The usercode is INV, the password is 4367, and the account
number is 88315.

COPY FILE AS 'filel' (FTPTYPE = IMAGE) TO DISK(IPADDRESS =
"125.32.1.1", USERCODE = INV/4367/88315)

Transfer by Domain Name, with FTPSTRUCTURE = FTPRECORD

The following example transfers a file PARTS.LIST as PARTS/LIST from a remote host
NIC.DDN.MIL to a local MCP environment host. The FTPSTRUCTURE is set to
FTPRECORD.

COPY "PARTS.LIST" AS PARTS/LIST (FTPTYPE = EBCDICNONPRINT,
FTPSTRUCTURE = FTPRECORD) FROM DISK(DOMAINNAME = "NIC.DDN.MIL",
USERCODE = FDR/''/'') TO TCP(PACK)

OSI FTAM File Transfers

6-116

<FTAM>

— /1\— BLOCKSTRUCTURE — = — EXTERNAL |) I
/1\— CREATEPASSWORD — = —<log-on password>—
/1\— DOCUMENTTYPE — = FTAMT —
FTAM2
FTAM3
INTAP1
/1\— EXTMODE — = —E ISOGRAPHICSTRING

ISOVISIBLESTRING
IA5STRING
OCTETSTRING

8600 1047-506

COPY or ADD Statement

Explanation

When you transfer a file by using OSI FTAM, you must observe the following features
and limitations:

e Copy only from disk to disk.

e Do not specify a directory.

e Do not specify the COMPARE, CATALOG, VERIFY, or BACKUP options.
e Do not use the ONTO option of the copy file construct.

e Specify only the DISK or PACK option of the source volume attribute list or
destination volume attribute list constructs for files on the local host.

e Specify only DISK for the family name construct for source or destination volumes of
files on the remote host.

e Specify only the HOSTNAME and USERCODE attributes for the source volume
attribute list and destination volume attribute list constructs for files on the remote
host.

OSI FTAM Transform Attributes for Copying Files

The following FTAM transform attributes can be specified in the copy file construct.
These file attributes apply to those files that are transferred to a remote host when the
FTAM transfer service is used. Because some computer systems have implemented
only the minimal level of support as adopted by the National Institute of Standards and
Technology (NIST), the FTAM transform attributes are provided to enable you to change
the attribute values to the minimal support values.

BLOCKSTRUCTURE

Specifies the string significance of the FTAM file as Not Significant. The mnemonic value
for BLOCKSTRUCTURE must be EXTERNAL. This value indicates that record boundaries
will not be maintained by the system.

CREATEPASSWORD

Specifies the password string to assign to a newly created file. The password provides
additional security information that some computer systems require before the new file
is created. This security information is in addition to the log-on security that is passed to
the remote host through the USERCODE attribute. Refer to the File Attributes Reference
Manual for more information about the USERCODE attribute.

The syntax for the password is the same as for the log-on password, which is shown
earlier in the explanation of the COPY statement. The CREATEPASSWORD attribute is
valid only when creating a new file on a remote host; otherwise, it is ignored.

DOCUMENTTYPE

Specifies the data type of the contents of the file and the structuring information of the
file. A file transferred through FTAM transfer service must first be converted to one of
four FTAM document types with these mnemonics: FTAM1, FTAM2, FTAM3, or INTAP1.

8600 1047-506 6-117

COPY or ADD Statement

6-118

Any MCP environment file that can be transferred by FTAM can be transferred as an
FTAM-3 document. If a remote host does not support FTAM-2 files, the FTAM-2 files are
transferred as FTAM-1 files. Some file characteristics are not retained.

EXTVIODE

Specifies the external or physical character encoding of the file records. The character
encoding used for a file is designated by a universal class value. The universal class
values for the FTAM transform attribute EXTMODE are ISOGRAPHICSTRING,
ISOVISIBLESTRING, IABSTRING, and OCTETSTRING.

The following table identifies the combinations of the file attribute EXTMODE from the
MCP environment source file with the FTAM transform attribute EXTMODE.

FTAM Transform

Attribute EXTMODE Attribute EXTMODE
Any value acceptable to FTAM OCTETSTRING
ASCII IABSTRING

ISOGRAPHICSTRING
ISOVISIBLESTRING
EBCDIC IAGSTRING
ISOGRAPHICSTRING
ISOVISIBLESTRING

IAGSTRING ISOGENERALSTRING
ISOGRAPHICSTRING ISOGENERALSTRING
ISOVISIBLESTRING IAGSTRING

ISOGENERALSTRING
ISOGRAPHICSTRING

If the source file has an EXTMODE mnemonic of ASCII, EBCDIC, or IABSTRING, then specifying a
transformation of the file to ISOGRAPHICSTRING can cause data loss because of the differences
in the character sets. The translation to ISOGRAPHICSTRING is permitted solely to enable files to
be transferred to remote hosts that support only the NIST-defined minimum level of support for
FTAM-2 documents.

If ISOGRAPHICSTRING is requested, the following warning is displayed:
WARNING: DATA MAY BE LOST BY TRANSLATING
FROM <file's INTMODE> TO GRAPHICSTRING.FTAM Transform Attribute

OCTETSTRING is the only universal class value that can be specified for document types
FTAM-3 and INTAP-1, and is excluded from the list of valid universal class values for
FTAM-1 and FTAM-2 document types.

8600 1047-506

COPY or ADD Statement

In general, the only translation permitted from one character set to another is one that
results in a character set that supports the entire character set of the original document.
The intent is to prevent the loss of data due to the translation to the new character set.

Note: If an FTAM transform attribute is specified for a copy from a remote host, the
following warning is displayed and the FTAM transform attribute is ignored:

WARNING: FTAM ONLY SUPPORTS A <FTAM TRANSFORM ATTRIBUTE>FOR COPIES
"TO" A REMOTE HOST.

Examples

The following examples illustrate the COPY statement syntax when FTAM is used to
transfer files across an OSI network.

This statement copies the file FILEA from the MYFAMILY disk to the remote host
OSIHOSTB as the file C:\FILEA.DOC. Log-on information is passed to the remote host
OSIHOSTB with the USERCODE attribute.

COPY FILEA AS 'C:\FILEA.DOC' FROM MYFAMILY (PACK) TO
DISK (HOSTNAME=0SIHOSTB, USERCODE=MYUSERCODE/MYPASSWORD)

This statement copies the file FILEA from the OSIFAMILY disk to the remote host
OSIHOSTA as the file FILEB. The log-on info construct will contain only the usercode
under which the transfer is run, since no usercode attribute was specified.

COPY [FTAM] FILEA AS FILEB FROM OSIFAMILY(PACK) TO
DISK(HOSTNAME=0SIHOSTA)

8600 1047-506 6-119

COPY or ADD Statement

Restarting COPY Interrupted File Transfers

When a host or network failure interrupts a COPY statement, the WFL job containing the
COPY statement automatically restarts if the failure was caused by a halt/load process or
if the job was written to restart after an unsuccessful file transfer.

The results of restarting the COPY statement depend on the type of transfer, as follows:

6-120

If the file transfer is local, all files named in the COPY statement are transferred
again when the job restarts.

If the file transfer is FTAM, FTP, or Host Services File Transfer, and if the COPY
statement contains no more than one source host and one destination host, then all
files are transferred again when the job restarts.

If the file transfer is FTAM, a COPY statement that contains more than one source
host or more than one destination host might be partially skipped during copy
resumption; this skip occurs when a destination host has received all files that are to
be transferred by a given source host.

If the file transfer is remote and the transfer service is Host Service File Transfer or
FTP, then all files transferred by Host Services File Transfer or FTP are transferred
again when the job restarts.

If some of the files were transferred with NFT, it might not be necessary for all files
named in the COPY statement to be retransferred. Those files transferred with NFT
may be transferred again according to the rules for the FROMSTART option, listed in
the following item.

If the file transfer is remote and the transfer service used is NFT, the FROMSTART
option determines how the copying process or processes will be restarted.

— If the FROMSTART option is not specified, NFT automatically resumes the COPY
statement so that data already transferred is not transferred again.

The resumption point depends on the kind of destination volume and the
characteristics of the files being transferred. For more information about

resuming a file transfer in NFT, refer to the Distributed Systems Services
Operations Guide.

— If the FROMSTART option is specified, all files named in the COPY statement are
completely transferred again, whether or not the file transfer in NFT can be
resumed.

Note: \When the FROMSTART option is specified, all previously created
NFTTEMP recovery files that match the COPY request are removed.

8600 1047-506

CREATE LIBMAINTDIR Statement

<create libmaintdir statement>

— CREATE LIBMAINTDIR —<options>— FROM —<tape name

CREATE LIBMAINTDIR Statement

L (—<tape attributes>—)]

<options>

[/1\— REPORT
L anp |—/1\—|: DSONERROR
WAITONERROR

<tape name>

—<string primary
E<1 etter

<digit>— |_L
/16\—=<letter
<digit>
<hyphen>
<underscore>—

<tape attributes>

L\ TAPE | |
L KIND — = il !
—/1\— SERIALNO — = —<serial number Tist>—
—/1\— FAMILYOWNER — = R
*
<usercode>
—/1\— AUTOUNLOAD — = ON
OFF
DONTCARE
—/1\— CYCLE — = —<integer expression>
—/1\— VERSION — = —<integer expression>—

8600 1047-506

6-121

CREATE LIBMAINTDIR Statement

Explanation

6-122

The CREATE LIBMAINTDIR statement is used to recreate the LIBMAINTDIR tape
directory disk file for a tape or set of tapes when the original LIBMAINTDIR file for those
tapes has been accidentally removed or damaged or is not located at the site. When
library maintenance executes the CREATE LIBMAINTDIR statement, it places the new
copy of the LIBMAINTDIR tape directory disk file on the disk family assigned with the DL

LIBMAINTDIR system command.

Note: You cannot use CREATE LIBMAINTDIR to build a LIBMAINTDIR tape directory

disk file for a library maintenance tape that was not originally copied with the tape
attribute LIBMAINTDIR = TRUE.

The following table describes the options available in the CREATE LIBMAINTDIR
statement. No statement options are required. You can specify REPORT with either

DSONERROR or with WAITONERROR, or by itself. You can specify either DSONERROR

or WAITONERROR alone; you cannot specify them together.

Option Description
DSONERROR The DSONERROR option causes library maintenance to terminate
with a DS response if any errors occur. In this case, library
maintenance removes the new LIBMAINTDIR file from the disk.
REPORT The REPORT option causes library maintenance to print a report of
any errors encountered.
WAITONERROR The WAITONERROR option causes library maintenance to issue an

RSVP message whenever an error occurs. Examples of possible
errors include:

e |/O errors reading from the tape
e Errors writing to a LIBMAINTDIR disk file

The RSVP message halts library maintenance until the operator or
programmer responds with OK or DS. A response of OK causes
library maintenance to continue building the LIBMAINTDIR disk file.
A response of DS causes library maintenance to terminate building
the LIBMAINTDIR disk file.

If you specify any file attribute not listed here for a tape used as input to a CREATE
LIBMAINTDIR process, then either the WFL compiler issues a syntax error for that
attribute or library maintenance ignores the value you specified for that attribute.

8600 1047-506

CREATE LIBMAINTDIR Statement

The following table describes the CREATE LIBMAINTDIR tape attributes you can use:

Option Description

SERIALNO Identifies the specific tapes to be read and the order they should be
read. The serial numbers specified and the order in which they are
specified, should be the same as the set of tapes originally created.

FAMILYOWNER Indicates the usercode of the owner of a tape volume. If you specify
a usercode with the FAMILYOWNER attribute, then library
maintenance searches for the named tape owned by that usercode.
If you do not specify the FAMILYOWNER attribute or you specify

the null string (" "), then library maintenance searches for the named
tape owned by the usercode of the library maintenance process.

If you specify an asterisk (*) for the FAMILYOWNER attribute, then
library maintenance searches for the named tape owned by the *
usercode. Library maintenance ignores the FAMILYOWNER
attribute if the InfoGuard security enhancement software or the
Security Accountability Facility is not installed, or the TAPECHECK
option of the SECOPT system command is not set to AUTOMATIC.

AUTOUNLOAD Determines whether a tape is unloaded when it is released by
library maintenance during a reel switch or a file close operation. If
the value is ON, the tape is rewound and unloaded. If the value is
OFF, the tape is not unloaded. If the value is DONTCARE or not
specified, the tape behavior is controlled by the setting of the
AUTOUNLOAD option of the MODE (Unit Mode) system command.

Refer to the System Operations Guide for further information. If a
reel is switched during a COPY AND COMPARE operation,
intermediate reels are not unloaded until the COMPARE phase is
finished regardless of the AUTOUNLOAD value.

CYCLE Designates the specific generation of a tape volume family. This file
attribute is used in conjunction with the VERSION attribute. The
default value is 1.

VERSION Designates the successive iteration of the same generation of a
tape volume. This file attribute is used in conjunction with the
CYCLE attribute. The default value is 0.

Examples

In the following example, a LIBMAINTDIR directory was originally created for the set of
tapes in the following COPY statement:

COPY & COMPARE SYSTEM/=FROM PACK TO TPACK
(SERIALNO=(6623, 6624), LIBMAINTDIR);

The following statement will read those tapes and create a new copy of the original
LIBMAINTDIR tape directory disk file:

CREATE LIBMAINTDIR FROM TPACK (SERIALNO=(6623, 6624));

8600 1047-506 6-123

CRUNCH Statement

CRUNCH Statement

<crunch statement>
— CRUNCH — (—<file identifier>—) |

Explanation
The CRUNCH statement closes and crunches a file. Crunching causes the unused
portion of the last row (beyond the end-of-file indicator) of disk space to be returned to

the system. The file to be crunched must be a disk file. Once a file has been crunched, it
can no longer be expanded.

Examples
The following are examples of the CRUNCH statement:
CRUNCH (LONGFILE)

CRUNCH (BITSFILE)

6-124 8600 1047-506

DISPLAY Statement

DISPLAY Statement

<display statement>

— DISPLAY — <string expression> |

Explanation
The DISPLAY statement displays up to 430 characters of a message on the ODT and

places it in the job log. If the job was initiated from CANDE, the message is also
displayed at the user's terminal. The message must be in the form of a string expression.

Examples

The following examples illustrate the DISPLAY statement:
DISPLAY "HI THERE"
DISPLAY PROGNAME & "DID NOT COMPILE"

The values of integer and real variables can be displayed by first converting them to
string values using the STRING function, as in the following example:

DISPLAY STRING (X,*);
In the preceding example, X could be an integer or real variable. However, if X is a real
variable, any fractional value following the decimal point is rounded off. Refer to “String

Expressions” in Section 7 for a description of the STRING function.

The DISPLAY statement does not display quotation marks (") around the string value it
displays. It also adds a period (.) at the end of the message.

8600 1047-506 6-125

DO Statement

DO Statement

<do statement>

— DO — <statement> UNTIL — <Boolean expression>
T . T p 4|

E]

Explanation

The DO statement enables a job to execute a statement until a condition is TRUE.

The statement is executed and the Boolean expression is evaluated. If the expression is
TRUE, control passes to the next executable statement; otherwise, the statement is
re-executed.

Note: |[f the Boolean expression never evaluates to TRUE, the statement is repeated
forever (or until the task is discontinued by an operator action or discontinued because it
has exceeded queue limits).

If the same PROCESS statement is executed repeatedly by a DO statement, a run-time
error might result. A run-time error can occur if an asynchronous task initiated by an
earlier pass through the DO statement is still running. A given task variable can only be
used by one task at a time.

Example

6-126

Following is a partial job that uses the DO statement:

DO BEGIN
A:=A+1;
RUN X[T];

TASKVALUE=A;
END
UNTIL T(TASKVALUE) GEQ 4;

8600 1047-506

GO Statement

GO Statement
<go statement>

— GO <label identifier>
L TO] '

Explanation
The GO statement causes job execution to pass directly to the point in the job where the
label identifier appears. The label identifier occurs earlier or later in the job than the GO
statement. One or more label identifiers can appear in front of any statement in the job.
Refer to “Statement List” in Section 3 for the syntax of label identifier placement.

Note: A GO statement that returns control to an earlier point in the job can result in an
infinite loop, unless a conditional statement that exits the loop is also included.

If the same PROCESS statement is executed repeatedly by a GO loop, a run-time error
might result. This can occur because the asynchronous task initiated by an earlier pass

through the GO loop might still be running. A given task variable can only be used by one
task at a time.

Example
Following is a partial job that uses the GO statement:

GO TO L;

L: RUN X;

8600 1047-506 6-127

IF Statement

IF Statement

<if statement>

— IF — <Boolean expression> — THEN — <statement>]

E]

L ELSE — <statement> il

Explanation

The IF statement enables a conditional decision to be made based on the evaluation of a
Boolean expression. The statement following THEN is executed if the condition is TRUE.
If the condition is FALSE, control passes to the next executable statement. When the
ELSE option is specified and the condition is FALSE, the statement following ELSE is
executed.

The optional semicolon (;) after the THEN clause does not terminate the IF statement,
and thus does not affect the logic of nested IF statements.

For nested IF statements, the WFL compiler matches the first ELSE clause it encounters
with the innermost IF statement. This matching can result in a logic error when an IF
statement without an ELSE clause is nested within another IF statement that does have
an ELSE clause. To guarantee the correct logic, you can either add an ELSE clause
containing a null statement, or use a compound statement to enclose the inner IF
statement within the reserved words BEGIN and END.

Examples

This first example shows simple IF statements.

IF T(TASKVALUE) = 5 THEN
RUN X;

IF FILE X/Y ISNT RESIDENT THEN
DISPLAY "NO FILE X/Y"

ELSE
RUN X/Y;

In this example, the first ELSE clause that contains a null statement guarantees the
correct logic for the nested IF statements.

?BEGIN JOB NESTEDIFS/LOGIC (BOOLEAN B1, BOOLEAN B2);
IF B1 THEN
IF B2 THEN
DISPLAY "Both expressions are TRUE";
ELSE
; % Null statement to guarantee correct logic.
ELSE
DISPLAY "Expression 1 is FALSE";
?END JOB.

6-128 8600 1047-506

IF Statement

In this example, the compound statement guarantees the correct logic for the nested IF
statements.

?BEGIN JOB NESTEDIFS/TESTER;
TASK TASKVAR1, TASKVARZ;
START NESTEDIFS/LOGIC [TASKVAR1] FOR SYNTAX;
IF TASKVARL IS COMPILEDOK THEN
BEGIN
START NESTEDIFS/LOGIC (Bl := FALSE, B2 := TRUE) [TASKVARZ];
IF TASKVAR2 IS COMPLETEDOK THEN
DISPLAY "NESTEDIFS/LOGIC compiled and completed";
END;
ELSE
ABORT [TASKVAR1] "NESTEDIFS/LOGIC did NOT compile";
?END JOB.

8600 1047-506 6-129

INITIALIZE Statement

INITIALIZE Statement

<initialize statement>
— INITIALIZE — (— <task identifier> —) |

Explanation

The INITIALIZE statement causes the STATUS attribute of the specified task variable to
be assigned a value of NEVERUSED and causes all other task attributes and file
equations associated with the task variable to be returned to their default values.

This statement should be used in cases where successive task initiation statements in a
job make use of the same task variable.

Examples
The following example illustrates such a situation:

?BEGIN JOB EXAMPLE;
TASK T (PRIORITY=80); % Declares task variable with PRIORITY=80

RUN X [T]; % Runs program X with PRIORITY=80

INITIALIZE (T); % Reinitializes task variable

RUN Y [T]; % Runs program Y with default priority
?END JOB.

The INITIALIZE statement has the same effect as using a task assignment statement to
set the STATUS attribute of a task variable to NEVERUSED, as in the following example:

T(STATUS=NEVERUSED); % T is a task variable

Refer to “Using Task Variables” in Section 5 for further information about task variables.

6-130 8600 1047-506

INSTRUCTION Statement

INSTRUCTION Statement

<instruction statement>

— INSTRUCTION —<integer constant primary

—|—/1500\—<str1' ng character | }

Explanation

The INSTRUCTION statement supplies job instructions to operators. The integer
constant primary must be in the range from 1 through 63. If the statement does not
include an integer constant primary, a syntax error occurs.

An INSTRUCTION statement must be terminated by a semicolon (;) or the <i> construct.
The list of string characters cannot include any semicolons.

As a WFL job executes, any INSTRUCTION statements encountered are stored in a
table. As each INSTRUCTION statement is found, it is marked as the most current
instruction until another one is found. At any point during execution of the job, any
individual instruction can be displayed by number through the IB (Instruction Block)
system command. If an instruction number is not specified, the system displays the
most current instruction.

For further information, refer to the System Commands Reference Manual.

Examples

This first example shows simple INSTRUCTION statements:

INSTRUCTION 5 DS MY JOB IF NO FILE A;
INSTRUCTION 2 MOUNT TAPE TEST3;

In this example, the system needs tape TESTTAPE during execution of the COPY
statement. If the operator asks for the most recent instruction, instruction 1 is displayed
to indicate where TESTTAPE can be found. Subsequently, the job needs files T17 and
T17A; an instruction request at that point causes instruction 2 to be displayed with
instructions regarding the action to be taken if T17 and T17A are not present.

?BEGIN JOB COMPILE/TESTS;

FAMILY DISK = USERS OTHERWISE DISK;

INSTRUCTION 1 TESTTAPE IS IN TAPE RACK 3.;

COPY = FROM TESTTAPE TO USERS(DISK);

INSTRUCTION 2 IF T17 OR T17A WERE NOT COPIED FROM TESTTAPE TO
USERS, DS THIS JOB AND LEAVE JK A NOTE.

COMPILE TEST/17 WITH ALGOL LIBRARY;
ALGOL FILE CARD(TITLE=T17, KIND=DISK);
FILE F(TITLE=T17A); ?END JOB.

8600 1047-506 6-131

LOCK Statement

LOCK Statement

<lock statement>
— LOCK — (— <file identifier> —) |

Explanation
The LOCK statement closes and locks the specified file. The file buffer areas are
returned to the system. The logical file is no longer assigned to the physical file. If the file
is a tape file, the tape is rewound and unloaded. If the file is not a disk file, the unit is

made inaccessible to the system and must be readied again manually. If the file is a disk
file, it is retained as a permanent file on disk.

Example
The following is an example of the LOCK statement:

LOCK (F1)

6-132 8600 1047-506

LOG Statement

LOG Statement

<log statement>
— LOG

L <LOGANALYZER options> L [— <task identifier> —] il !
|

L <task equation Tist>]

Explanation
The LOG statement initiates the LOGANALYZER utility with the parameters specified by
the LOGANALYZER options. LOGANALYZER generates a report containing selected
entries from the system log file.

The WFL compiler does not analyze the LOGANALYZER options. This analysis is done by
the LOGANALYZER utility.

The optional task equation list can be used to assign attributes to the LOGANALYZER
task. For details, refer to “Task Equation” in Section 5.

Examples

The following are examples of the LOG statement:
LOG
LOG "SYSTEM/SUMLOG" 2359 07/26/90 ALL [I]

LOG /123 2200 07/27/90 TO 0800 07/28/90 HL [T];
PRINTLIMIT = 50

8600 1047-506 6-133

MKDIR Statement

MKDIR Statement

<mkdir statement>

— MKDIR — <directory name> —— 7 '
ON — <family name>

Explanation

6-134

The MKDIR statement creates directories in the permanent directory namespace. Use
the MKDIR statement to create a *DIR directory and the subdirectories of *DIR. The
directory name specifies the full name of the directory you are creating. If you are
creating a subdirectory, the parent directory must already exist. If the directory does not
exist, an error message displays.

Notes:
o Only privileged users can create a *DIR directory.

e Users with write and traverse permission to an existing permanent directory can
create subdirectories within the existing permanent directory using the MKDIR
Statement.

The OWNER attribute of the directory is set to the usercode of the task. The
SECURITYMODE attribute is set to OWNERRWX=RWX, GROUPRWX=X, and
OTHERRWX=X by default. The NONUSERFILES option has no effect on the security of
newly created permanent directories; however, this option does affect other files created
in the permanent directory name space.

To set SECURITYMODE and other security-related attributes to values other than the
default, use the PROPAGATESECURITYTODIRS file attribute. Setting this attribute on
*DIR or any other permanent directory causes newly created subdirectories to inherit the
security attributes of their parent directory.

8600 1047-506

MODIFY Statement

MODIFY Statement

<modify statement>
— MODIFY — <object code file title> — ;

> <task attribute assignment> !
<file equation> —
<library equation>
<database equation>

Explanation

The MODIFY statement permanently changes the attributes within an object code file.

The MODIFY statement permits task attributes, file equations, library equations, and
database equations that are compiled into an object code file to be added to or changed,
without recompiling the source file. The attributes listed in the MODIFY statement are
permanently stored in the object code file after they have been merged with the previous
attributes. If an attribute specified in a MODIFY statement had previously been assigned
for that object code file, the new value given in the MODIFY statement is used.

The PRINTPARTIAL file attribute and the REQUESTNAME print modifier cannot be
modified.

The file to be modified must be an executable object code file. If you attempt to modify a
nonexecutable object code file, the job or processed subroutine containing the MODIFY
statement is discontinued.

An object code file that is a compiler must be designated as such after being modified,
even if it had previously been designated as a compiler, with the MC (Make Compiler)
system command.

The identity specified in the MP (Mark Program) system command is not preserved after
the code file is modified. The MP system command needs to be re-applied to a code file
that has been altered with the MODIFY statement.

An object code file for which the APL file attribute has the value TRUE cannot be
modified. To modify an APL object code file, you must first disable APL access. Change
the value of APL to FALSE with the ALTER statement and then modify the code file with
the MODIFY statement.

Note: An object code file associated with a data base (for example,
ACCESSROUTINES, DMSUPPORT, and so on) should not be modified with the MODIFY
Statement. A data base open error may occur when a program accessing the data base is
executed.

When the MODIFY statement creates a new copy of an object code file, the value of the
FAMILYINDEX file attribute is not preserved. If you modify a file that should reside on a
particular pack, and MODIFY creates a new copy, you might need to recopy the file and
specify the appropriate FAMILYINDEX in the COPY statement.

8600 1047-506 6-135

MODIFY Statement

The MODIFY statement can be used to assign initial AX entries or to replace an existing
AX entry in a code file. The code file can be assigned multiple initial AX entries by the AX
attribute assignments specified in the MODIFY command. If the MODIFY statement is
used to replace an existing AX entry and the code file contains multiple AX entries, then
the AX entry specified in the MODIFY statement becomes the first in the code file, and
the remaining entries are unaffected. If the MODIFY statement specifies more than one
AX entry for replacement, only the last is used.

Family substitution is used if the job or task has an active family specification. Only the
primary family name is used. Refer to “"FAMILY Assignment” and “Interrogating
Complex Task Attributes” in Section b.

Examples

6-136

This example illustrates how the MODIFY statement changes attributes of the object
code file OBJECT/TEST. The attributes are changed so that subsequent runs of
OBJECT/TEST have a PRIORITY of b5 and have the substitute family USERS when
family substitution is invoked.

MODIFY (JONES)OBJECT/TEST;
PRIORITY = 55;
FAMILY DISK = USERS OTHERWISE DISK;

This example changes the attributes of OBJECT/TEST so that subsequent runs of
OBJECT/PROG?2 use the disk file X for the file INPUT, have a PRIORITY of 45, and have
the Boolean attribute SW1 set to TRUE.

MODIFY OBJECT/PROGZ2;
FILE INPUT (TITLE = X, KIND = DISK);
PRIORITY = 45;
SW1;

8600 1047-506

MOVE Statement

MOVE Statement

<move statement>

— MOVE
Y /1\ — BECOMEOWNER
Lo J 910 — COMPARE

VERIFY —

J1\ —— DSONERROR — |

L AITONERROR —

/1\ — PROPOGATE — |

71\ — REPORT — |

/1\ — SKIPEXCLUSIVE —

»J—[ﬂong file r’1ame |

<long directory name >J L FROM —<family name>J

»— TO0 —<family name C N |
(— FAMILYINDEX — = —<number>—)

Explanation

The MOVE statement causes library maintenance to copy a disk file or files from one
disk family to another disk family, and then remove the original file.

When library maintenance successfully copies a file from a source disk to the destination
disk, it will remove the original file from the source disk. In addition, it will move any
archive backup information for each file copied from the source disk archive directory to
the destination disk directory. On cataloging systems, library maintenance will also move
the catalog backup information for each file successfully from the source family catalog
directory to the destination file catalog directory.

If there already is a file, catalog, or archive information for the file you are copying on the
destination disk, library maintenance will remove the old file from the destination disk
including any archive or catalog information for that file.

The MOVE statement will cause the catalog and/or archive backup information to be
moved even if there is not a resident version of a requested file on the source family.

The MOVE statement cannot be used for a host/file transfer.

In the following cases, when the file and its backup information are copied to the
destination volume, the backup information is purged from the source volume, but the
source file is not removed:

e When LOCKEDFILE = TRUE is set
e When a system file is moved

Family substitution is used if the job or task has an active family specification. Only the
primary family name is used. Refer to “FAMILY Assignment” and “Interrogating
Complex Task Attributes” in Section 5.

8600 1047-506 6-137

MOVE Statement

6-138

You can use the HI (Cause Exception Event) system command to check the progress of
a MOVE statement. A command of the form <mix number> HI displays the number of
files already copied and other information.

To avoid conflict with the MOVE system command, a question mark must precede the
WFL MOVE statement entered at an ODT. The following options are available in the
MOVE statement.

BECOMEOWNER

Controls the ownership of the destination directories and files moved within the
permanent directory namespace. This option causes the OWNER attribute to be set to
the usercode of the task performing the operation rather than having the value copied
from the source.

All other attribute values, including those for GROUP and SECURITYMODE, are copied
from the source. If a nonprivileged user issues a COPY or ADD statement without the
BECOMEOWNER option, only the source directories and files already owned by that
user are included.

Note: Permanent directories are supported only on ClearPath HMP NX Series systems.

COMPARE

Ensures the new copies of the files are written correctly. Ensures the new copies of the

files are readable and the data in the copied files matches the data in the source files.

This option compares the copied file and the original file bit by bit, immediately after the

file is copied.

DSONERROR

Causes library maintenance to terminate with a DS response whenever:

o Afile or directory to be copied is missing and library maintenance issues a “filename
FILE NOT ON source volume” message.

e An error prevents a file from being copied to the destination.

e Library maintenance issues a “RECOPY REQUIRED" RSVP and the operator replies
with DS, FR, or OF.

FAMILYINDEX

Designates a specific physical volume within a disk family. If you do not specify the
FAMILYINDEX attribute, the FAMILYINDEX attribute (if any) of each file being moved is
used. For further information, see the “COPY or ADD Statement” earlier in this section.

PROPOGATE

Enables moved files and permanent directories to inherit the security of the destination
directory. This option applies only when the destination PROPAGATESECURITYTOFILES
or PROPAGATESECURITYTODIRS attribute of the directory so specifies.

8600 1047-506

MOVE Statement

REPORT

Causes library maintenance to print a report of the copied files, including errors. When &
REPORT is specified, library maintenance does not write “file copied” messages in the
job log or in the system sumlog.

SKIPEXCLUSIVE

Causes the system to not move those files from disk that are opened with
EXCLUSIVE=TRUE or that are KEYEDIOII files marked as being updated.

VERIFY

Ensures the new copies of the file were written correctly. Ensures the new copies of the
files are readable and that the data was copied accurately. For further details, see “COPY
or ADD Statement” earlier in this section.

WAITONERROR

Causes library maintenance to issue an RSVP message whenever an error occurs.
Examples of possible errors include:

e Requesting a file or directory that is missing.

e An error prevents a file from being copied to one or more destinations.

e The RSVP message halts library maintenance until the operator or programmer
responds with OK or DS. A response of OK causes library maintenance to continue
the copy with other files or tapes. A response of DS will terminate the library
maintenance program. After investigating the error which created the RSVP
message, you can re-start library maintenance.

8600 1047-506 6-139

Null Statement

Null Statement

Explanation>

The null statement is sometimes used in flow-of-control statements when no action is
desired. A null statement can be generated within certain flow-of-control statements
without using a statement separator, as shown in some of the following examples.

A null statement can also be generated by a statement separator that is preceded only by
blank characters or a statement label identifier. The usual statement separator is a
semicolon (;) appearing at the end of a statement. However, an invalid character at the
start of a line also acts as a statement separator. For details, refer to “Statement List” in

Section 3.

Examples

In this first example, a CASE statement is used to select which update program (if any)
should be run that day. Although no update program should be run on the weekends, the
syntax of the CASE statement requires a statement after the selection expression. This

requirement is satisfied by the null statement (labeled WEEKEND:.).

?BEGIN JOB CASE/EXAMPLE(STRING DAY);
CLASS=2;
CASE DAY OF
BEGIN
("MONDAY",
"TUESDAY",
"WEDNESDAY",
"THURSDAY") :
RUN OBJECT/DAILY/UPDATE;
("FRIDAY"):
RUN OBJECT/WEEKLY/UPDATE;
("SATURDAY",

"SUNDAY") :
WEEKEND: : % No run needed.
ELSE:
ABORT "INVALID INPUT STRING:" & DAY;
END;
?END JOB.

6-140

8600 1047-506

Null Statement

In this example, a null statement (consisting of blank characters after the reserved word
THEN) appears within an IF statement. A semicolon can be inserted after the THEN
clause, but its presence does not terminate the statement and does not affect the logic
of nested IF statements.

IF FILE (SAM)DAILY/TOTALS/DATA IS RESIDENT THEN % Continue job.
ELSE ABORT "Job terminated due to missing data file";

In this example, a null statement is unintentionally generated (after the predefined word
DO) by the invalid character at the beginning of the next line.

?WHILE PRINTCOUNTER LEQ REQCOPIES DO

? BEGIN

? PRINT (VIP)ANNUAL/REPORT;

? PRINTCOUNTER := PRINTCOUNTER + 1;
? END;

8600 1047-506 6-141

ON Statement

ON Statement

<on statement>

— ON TASKFAULT
—E RESTART _IL , — <statement> l !

Explanation

6-142

The ON statement causes the job to execute the specified statement when a task is
abnormally terminated (ON TASKFAULT), or when the job is restarted after a halt/load
(ON RESTART). The statement specified can be a compound statement if multiple
actions are desired.

Only one ON TASKFAULT statement and one ON RESTART statement can be enabled at
a time. Thus, any ON TASKFAULT statement disables any previous ON TASKFAULT
statement, and any ON RESTART statement disables any previous ON RESTART
statement.

If a subroutine executes an ON statement, the ON statement disables any previous ON
statement of the same type until the subroutine is finished or the subroutine ON
condition is disabled.

The ON TASKFAULT, statement; form enables the condition TASKFAULT. If any task is
subsequently terminated abnormally or if a compilation is terminated for syntax errors,
the statement is executed. These termination conditions include operator or
programmatic discontinuation as well as program faults. If any asynchronous tasks are
active when the end of a subroutine or job is reached, the WFL job will automatically wait
for them to complete before continuing. If one of the asynchronous tasks terminates
abnormally while the WFL job is waiting for all of them to complete, the statement
specified with the TASKFAULT option will not be executed until all of the asynchronous
tasks are completed.

If a GO TO out of the ON TASKFAULT statement is not performed, the following actions
occur:

e Any task fault interrupt that occurs during the execution of the ON TASKFAULT
statement is queued.

o When execution of the ON TASKFAULT statement is completed, action is taken on
any task faults that were queued. A task fault is selected, and a new invocation of
the ON TASKFAULT statement is initiated.

e The ON TASKFAULT statement is invoked for each task fault that becomes queued.
Therefore, the ON TASKFAULT statement continues execution until no task faults
remain in the queue and either a GO TO out of the ON TASKFAULT statement is
executed or the end of the ON TASKFAULT statement is reached.

The statement ON TASKFAULT, disables the condition TASKFAULT. While this
statement is in effect, an abnormal task termination has no effect on the job.

8600 1047-506

ON Statement

Similarly, the RESTART condition can be enabled and disabled by using the following
statements:

ON RESTART, <statement>; ON RESTART;

Exiting the subroutine returns the RESTART condition to the condition before the
subroutine was called.

If the enabled ON statement does not execute a GO TO statement, the job resumes
execution at the point where it would have continued if the statement had been disabled.
The enabled ON statement can only be disabled within the same procedure.

If the system is halt/loaded during the execution of a job, the system first checks to
determine if there is a RESTART condition that is enabled. If one is enabled, the
statement specified in the condition is executed when the job is restarted. If one is not
enabled, the job restarts at the most recent point at which no tasks were running. If
there are no asynchronous tasks, this point is just prior to the last task initiation.

One typical use of the ON RESTART statement is to reassign values to the task and file
variables in the job. These variables do not retain their values after a halt/load. Refer to
"Job Restart after a Halt/Load” in Section 2 for further details.

Examples

This first example illustrates the use of the ON TASKFAULT statement:

?BEGIN JOB X;
SUBROUTINE SUBI1;
BEGIN ON TASKFAULT,
BEGIN
DISPLAY "SUB TASKFAULT TAKEN";
GO ERR;
END; % End of ON statement
RUN X; % If X aborts, "SUB TASKFAULT TAKEN" is
% displayed by the ON TASKFAULT.
ON TASKFAULT;
RUN Y; % If Y aborts, "JOB TASKFAULT" is displayed.
END SUB1; % End of subroutine SUB1
RUN A; % If A aborts, no TASKFAULT is executed.
ON TASKFAULT, DISPLAY "JOB TASKFAULT";
RUN B; % If B aborts, "JOB TASKFAULT" is displayed.
SUBL;
ERR:
?END JOB.

8600 1047-506 6-143

ON Statement

6-144

In this example, program P2 is assumed to update a global file (G) created by P1. If a
halt/load occurs while P2 is running, the job does not normally rerun P1 but reruns P2. In
that case, P2 double updates any records that P2 had updated prior to the halt/load.
Therefore, an ON RESTART statement is executed to ensure that P1 is rerun and that
the file is re-created.

?BEGIN JOB X;
FILE G;

ON RESTART, GO TO L;
L: RUN P1; FILE F1:=G;
RUN P2; FILE F2:=G;

?END JOB.

In this example, if a halt/load occurs while program P1 is running, the RESTART condition
that contains the statement RUN R1 is invoked. If a halt/load occurs while program P2 is
running, the RESTART in the outer block that contains the start statement RUN R2 is
invoked. This is because at this point the RESTART condition in the subroutine is
disabled, returning the RESTART condition to the condition before the subroutine was
called.

?BEGIN JOB X;
SUBROUTINE SUBI;
BEGIN

ON RESTART;
RUN R1;
RUN P1;
ON RESTART;
RUN P2;
END;

ON RESTART,
RUN R2;
SUBL;
?END JOB.

In this example, if a halt/load occurs while program P1 or program P2 is running, the
RESTART condition that contains the statement RUN R1 is invoked. In the latter case
(halt/load while program P2 is running), the disabled ON statement within subroutine
SUB1 does not disable the RESTART condition outside of subroutine SUB1.

?BEGIN JOB X;
SUBROUTINE SUB1;
BEGIN

RUN P1;
ON RESTART;
RUN P2;
END;
ON RESTART,
RUN R1;
SUBL;
?END JOB.

8600 1047-506

OPEN Statement

OPEN Statement

<open statement>
— OPEN — (— <file identifier> —) |

Explanation

The OPEN statement is used to explicitly open a file according to the value of the file
attributes. For more information, refer to “File Handling” in Section 1.

Example

The following is an example of the OPEN statement:

OPEN (FILEOUT)

8600 1047-506 6-145

PASSWORD Statement

PASSWORD Statement

<password statement>
— PASSWORD — = — <o1d password> — / — <new password> —|

<old password>
<new password>

— <name constant> |

Explanation
The PASSWORD statement changes the password associated with the current usercode
of the job in the USERDATAFILE. The PASSWORD statement cannot be used to change
a password on a password generating system.
Refer to the discussion of MAKEUSER in the Security Administration Guide for
information about the USERDATAFILE and password generation.

Example

The following is an example of the PASSWORD statement:

PASSWORD = XYZ/ABC

6-146 8600 1047-506

PB Statement

PB Statement

<PB statement>
— PB

L <system/backup parameters>]
|
L [— <task identifier> —] J |_L JJ
<task equation Tist>

Explanation

The PB statement initiates the SYSTEM/BACKUP utility, which can be used to print
backup files. The PB statement passes the system/backup parameters to
SYSTEM/BACKUP; no analysis is done by the WFL compiler. The syntax of the
<system/backup parameters> is described in the Printing Utilities Guide.

When this statement is entered from the ODT, it must be preceded by a question mark
(?) to differentiate it from the PB (Print Backup) system command.

The optional task equation list can be used to assign attributes to the SYSTEM/BACKUP

task. For details, refer to “Task Equation” in Section 5.

Examples

The following are examples of the PB statement:
PB MT113 SAVE [T]

PB D 5723 LP11 COPIES 3 SAVE [T]; PRINTLIMIT=500

8600 1047-506 6-147

PRINT Statement

PRINT Statement

<print statement>

— PRINT u <print spec%ﬁcation> |

L ; — PRINTDEFAULTS — = — (— <printdefault assignment list> —) il

<print specification>

<file title>
L <directory title>

<print attribute phrase>

- L]
(L <print attribute phrase> 4)

<Boolean print attribute>

L._ <Boolean expression> !
<integer print attribute> — = — <integer expression>
<mnemonic print attribute> — = — <file mnemonic primary> —
<string print attribute> — = — <string expression> ——
<title print attribute> — = — <file title>

<printdefaults assignment list>

<print attribute phrase |

<print modifier phrase>—

- <print modifier>—
T

<print attribute>—

<print modifier phrase>

<Boolean print modifier B

<mnemonic print modifier>— = —<mnemonic>
<string print modifier>— = —<string expression>
<integer print modifier>— = —<integer expression>—

Explanation

—<Boolean expression>—

The PRINT statement passes a print request to the Print System for processing.

The print specifications in the PRINT statement specify the files to be printed or
punched. Each print specification can include its own print attribute phrases, which affect

only the specified file or directory.

Various print attribute phrases can be included in the PRINT statement to specify
print-related file attributes that control the creation, routing, and formatting of backup
files. Refer to print-related task and file attributes in the Print System Guide, and to
general file attributes in the File Attributes Reference Manual for more information.

6-148

8600 1047-506

PRINT Statement

The PRINT statement also enables you to print nonbackup files, such as symbol and data
files. Nonbackup files are formatted for printing by the CANDEWRITER transform
function supplied in the PRINTSUPPORT library, unless the PRINTPARTIAL file attribute
includes a column range specification. However, you can use other transform functions
for nonbackup files by specifying them through the TRANSFORM file attribute. The
CANDEWRITER transform function formats the lines from a backup file in a format
similar to that produced by the CANDE WRITE commmand. The actual printed format
depends on the FILEKIND of the file.

The following tables list the print-related file attributes and shows the correspondence
between the types discussed in the File Attributes Reference Manual and those

discussed in this manual.

File Creation

Print Attribute File Attribute Type WFL Type
PRINTCHARGE Pointer <string print attribute>
PRINTDISPOSITION Mnemonic <mnemonic print attribute>
SAVEBACKUPFILE Boolean <Boolean print attribute>
SAVEPRINTFILE Boolean <Boolean print attribute>

SAVEBACKUPFILE affects only printer backup files. SAVEPRINTFILE affects printer backup files
and disk files. When both attributes are specified, SAVEPRINTFILE takes precedence.
SAVEBACKUPFILE will become a synonym for SAVEPRINTFILE in a future release.

Routing
Print Attribute File Attribute Type WFL Type
AFTER Pointer <string print attribute>
DESTINATION Pointer <string print attribute>
PRINTDISPOSITION Mnemonic <mnemonic print attribute>
PRINTERKIND Mnemonic <mnemonic print attribute>
TRAINID Mnemonic <mnemonic print attribute>

AFTER requires a string in the form of a <starttime spec>.

Formatting
Print Attribute File Attribute Type WFL Type
ALIGNFILE Pointer <title print attribute>
ALIGNMENT Boolean <Boolean print attribute>
BANNER Boolean <Boolean print attribute>

8600 1047-506 6-149

PRINT Statement

Print Attribute File Attribute Type WFL Type
CHECKPOINT Boolean <Boolean print attribute>
FORMID Pointer <string print attribute>
NOTE Pointer <string print attribute>
PAGECOMP Pointer <string print attribute>
PRINTCOPIES Integer <integer print attribute>
PRINTPARTIAL Pointer <string print attribute>
TRANSFORM Pointer <string print attribute>

The maximum length of the FORMID string is 100 characters. The maximum number of
PRINTCOPIES is 1000.

Print modifier phrases can be included in a PRINT statement to specify additional requirements for
the processing of a print request. Print modifiers can be used with a PRINT statement only
through the PRINTDEFAULTS task attribute. For more information, see print modifiers in the Print
System Guide.

The print modifiers and their WFL types are listed in the following table.

Print Modifier WFL Type
DOUBLESPACE <Boolean print modifier>
HEADER <mnemonic print modifier>
PRINTPRIORITY <integer print modifier>
REQUESTNAME <string print modifier>
REQUESTNOTE <string print modifier>
SUPPRESS <Boolean print modifier>
TRAILER <mnemonic print modifier>

A PRINTDEFAULTS specification can be included at the end of a PRINT statement to
provide a new set of default values for some print-related file attributes and print
modifiers. These values replace defaults that were inherited from the job or from the
system.

6-150 8600 1047-506

PRINT Statement

The print attribute phrases and print modifier phrases that appear in the printdefaults
assignment list are merged into the current print defaults. The print modifier and print
attribute forms reestablish the system default value for that print modifier or print-related
file attribute.

If a print specification and the PRINTDEFAULTS specification both assign values to the
same print-related file attribute, then the value assigned in the print specification takes
precedence. For details, see the precedence of file attributes and print modifiers in the
Print System Guide.

The PRINTDEFAULTS task attribute can be used to establish default values for print
modifiers and some print-related file attributes used in a job or task. This eliminates the
need to specify values in each PRINT statement. This attribute is described under
"PRINTDEFAULTS Assignment” in Section 5 of this manual, and in the Task Attributes
Reference Manual.

Printing Portions of a File

It is possible to print selected portions of a file by assigning an appropriate string value to
the PRINTPARTIAL file attribute. You can select portions of a file by lines, records, or
sequence numbers. LINES is the default clause, since printing lines of a file is usually the
desired method. Records are zero-relative, and lines are 1-relative, so that record O is
equivalent to line 1.

The keyword END corresponds to the last line or record of the file. If only one number is
specified for a LINE, RECORD, or SEQUENCE clause, only that record or print line is
printed. If two numbers are specified, all records or print lines in that range are printed.
Multiple ranges are permitted in ascending order only.

The SEQUENCE clause is valid only for file types that have real sequence numbers; for
example, nonbackup files such as symbol files and sequential files. The SEQUENCE
clause is not valid for backup files because they do not have sequence numbers. If the
SEQUENCE clause is used with a backup file (or a data file without sequence numbers),
the sequence numbers are assumed to start at 100 and increment by 100, as CANDE
currently does.

You can also select portions of a file by comparing a user-specified text value to a field in
each record. If the comparison is true, the record will print.

You can also print a specified range of columns in a file. The start column and end

column numbers are integers between 1 and the value of the MAXRECSIZE file attribute.
The start column number must be less than or equal to the end column number.

8600 1047-506 6-151

PRINT Statement

Examples

The following are simple PRINT statements that cause the specified files to be printed:
PRINT DRONE/CLONE;
PRINT (JOHNS)ADD/BACK ON THREEPACK, (CAY)INVENTORY/LIST;

The following PRINT statements contain a print attribute phrase as part of the print
specification:

PRINT (WENDY)FREE/CODE (BANNER=TRUE,
NOTE="Review printout for John Smith");

PRINT (JAKE)SCRAG/EXTRAS (SAVEBACKUPFILE,PRINTERKIND=LINEPRINTER);

The following PRINT statement includes individual print specifications, and common print
modifiers as part of the PRINTDEFAULTS specification:

PRINT (LIZA)CAVE/DEPTHS (DESTINATION="LP5",PRINTCHARGE=4328),
(GEORGE)WATER/COMP (DESTINATION="IP7",PRINTCOPIES=3);
PRINTDEFAULTS=(HEADER=SUPPRESSED, TRAILER=UNCONDITIONAL,
PRINTPRIORITY=45);

The following PRINT statements show the use of the PRINTPARTIAL attribute to print
portions of a file:

PRINT F1 (PRINTPARTIAL="1, 25-40, 80-END");

PRINT F1 (PRINTPARTIAL="LINES 1, 25-40, 80-100");
PRINT F1 (PRINTPARTIAL="RECORD 0, 24-39, 79-END");
PRINT F1 (PRINTPARTIAL="COLUMN 1-72 SEQUENCE 100-900");
PRINT F1 (PRINTPARTIAL="SEQ 100-900 @ 1-72");

PRINT F1 (PRINTPARTIAL="WHERE COL 1-5 = 'NAME:'");

6-152 8600 1047-506

PROCESS Statement

PROCESS Statement

<process statement>

— PROCESS —— <add statement> }
— <bind statement>
— <compile statement>
— <copy statement>
— <log statement>
— <PB statement>
— <run statement>
— <start statement>
L <subroutine invocation statement> —

Explanation

The PROCESS statement initiates tasks asynchronously. The job does not terminate until
all asynchronous tasks have terminated. For more information about task variables, see
"Using Task Variables” in Section 5.

A task equation list and a task variable can usually be specified when using PROCESS
with the statements listed in the syntax diagram. Restrictions are summarized in “Task
Equation” in Section 5.

If a task variable is attached, a WAIT statement can be used to cause the job to wait for
the task to terminate, to reach a particular task state, or to have a particular task attribute
value. Refer to “WAIT Statement” in this section for details. Many attributes of a task
can be altered while the task is active by using the task assignment statement. Refer to
"Assignment Statements” earlier in this section for the syntax of the task assignment
statement.

The name of a subroutine task initiated by a PROCESS statement is set by WFL when
the subroutine is invoked. Prior settings of the NAME task attribute are overridden, and
the default name of the subroutine task is the same as the name of the subroutine. The
name of the subroutine task can be changed by specifying a different value for the
NAME task attribute when the subroutine is invoked.

Care should be taken when using global variables in an asynchronous subroutine, or in a
program initiated by a PROCESS RUN with passed-by-reference parameters. This is
because the subroutine or program executes in parallel with the rest of the job, and all of
the parallel processes that are executing can access the variable at the same time. If one
process changes the value of the variable, other processes that interrogate the variable
will get the new value.

Note that a run-time error will result if the PROCESS statement is executed in either of
the following ways:

o Repeatedly with the same task variable, and the previously processed task is still
active.

e Inaloop (one that uses the DO or WHILE statement, for example) with no task
variable and the previously processed task is still active.

8600 1047-506 6-153

PROCESS Statement

Examples

6-154

The following are simple examples of the PROCESS statement:
PROCESS RUN X/Y (3,I) [T]
PROCESS SUB; CORE =100
PROCESS COPY A TO B [T]

This example initiates two copy tasks asynchronously and causes the job to wait for both
of them to finish before continuing:

PROCESS COPY (JAS)= FROM PARTS1 (TAPE) TO DATAPK (DISK) [T1];
PROCESS COPY (JAS)= FROM PARTS2 (TAPE) TO DATAPK (DISK) [T2];
DO

WAIT
UNTIL T1 IS COMPLETED AND T2 IS COMPLETED;

This example runs two programs asynchronously and waits for the first one to complete.
According to the TASKVALUE of the first program, the attributes of the second program
are changed or else it is aborted:

PROCESS RUN PROG/1 [T1];
PROCESS RUN PROG/2 [T2];
WAIT (T1 IS COMPLETED);
IF T2 ISNT COMPLETED THEN
BEGIN
IF T1 (TASKVALUE) = 1 THEN
T2 (SW1=TRUE, OPTION=(ARRAY, DSED))
ELSE
ABORT [T2] "T2 ABORTED";
END;

In this example, the prior value of TESTSUB for the NAME task attribute (set with the
task variable T) is overridden when the subroutine SUB1 is invoked by a PROCESS
statement. The name of the subroutine task is changed from its default value of SUB1 to
the value of TEST1:

SUBROUTINE SUBI;
BEGIN
RUN TEST/1;
END;
T(NAME=TESTSUB) ;
PROCESS SUBL[T];
NAME=TEST1;

8600 1047-506

PTD Statement

PTD Statement

<PTD statement>

— PTD '
L [— <task identifier> —] L <task equation Tist> J

Explanation

The PTD statement initiates a run of the peripheral test driver (PTD), which tests
peripheral equipment on a systOem.

The optional task equation list can be used to assign attributes to the PTD task. For
details, refer to “Task Equation” in Section 5.

Examples

The following are examples of the PTD statement:
PTD; FILE SCODE(TITLE = PTD/MAINT/CP);

PTD [TVBL]; FILE SCODE(TITLE = PTD/MAINT/PE); TASKVALUE = 1

8600 1047-506 6-155

PURGE Statement

PURGE Statement

<purge statement>
— PURGE — (— <file identifier> —) |

Explanation

The PURGE statement closes, purges, and releases the specified file to the system. If
the file is a permanent disk file, it is removed from the disk directory, and the disk space
is returned to the system.

The file to be purged must first be explicitly opened by the OPEN statement.

Examples

The following are examples of the PURGE statement:
PURGE (ALLFILES)

PURGE (ONEFILE)

6-156 8600 1047-506

RELEASE Statement

RELEASE Statement

<release statement>
— RELEASE — (— <file identifier> —) |

Explanation

The RELEASE statement closes and releases the specified file. The file buffer areas are
returned to the system. The logical file is no longer assigned to the physical file. If the file
is a temporary disk file, the disk space is deallocated. If the file is a tape file, it is
rewound.

The tape is unloaded if the AUTOUNLOAD file attribute has the value ON, or, if the

AUTOUNLOAD file attribute has the value DONTCARE and the AUTOUNLOAD mode of
the tape unit is ON.

Examples

The following are examples of the RELEASE statement:
RELEASE (GLOBAL);

RELEASE (FILEA);

8600 1047-506 6-157

REMOVE Statement

REMOVE Statement

<remove statement>
— REMOVE

L [— pestroy — 7

—>—|;jremove list> I | }
E]
<remove from group> | B

, — <remove list> il

<remove list>

4‘—[<long file title> B | {
<long directory title>

<remove from group>

—LI: <long file r’1ame> —J—L FROM — <family name> —|
<long directory name>

Explanation

6-158

The REMOVE statement removes files from disk and marks the archive backup records
(if there are any) indicating that the files are “removed.” The removed files cannot be
restored by the archive AUTORESTORE feature, but they can be restored by using the
WEFL “ARCHIVE RESTORE"” and “ARCHIVE ADDRESTORE" statements. For
information regarding how to remove and restore files using the archive AUTORESTORE
feature, refer to “ARCHIVE RELEASE Statement” earlier this section.

The DESTRQY option causes all catalog and archive directory records for the file(s) to be
purged. In addition, the catalog and archive records will be purged for named files and
directories even if the files are not resident. The REMOVE DESTROQOY statement is
equivalent to a REMOVE statement followed by a CATALOG PURGE statement followed
by an ARCHIVE PURGE statement. Files that are removed with the DESTROY option
cannot be restored with the WFL statement ARCHIVE RESTORE.

If a directory is specified, all files in that directory are removed. The directories *= and =
cannot be used in the REMOVE statement.

If the REMOVE command is used to remove a file whose LOCKEDFILE file attribute is
set to TRUE, that file is not deleted. The system displays the following message to
indicate that the file was not removed:

<file name> NOT REMOVED (LOCKEDFILE).
See the ALTER statement in this section for more information about changing the

LOCKEDFILE file attribute. For more information about the LOCKEDFILE file attribute,
refer to the File Attributes Reference Manual.

8600 1047-506

RENMOVE Statement

The first name in a remove list can be a file title or directory title; that is, it can contain an
ON family name part. Subsequent names in the remove list can only contain an ON
family name part if they contain a string primary as well.

In the remove from group, the FROM clause applies to all the file names and directory
names in that remove from group.

Family substitution is used if the job or task has an active family specification. Only the

primary family name is used. Refer to “"FAMILY Assignment” and “Interrogating
Complex Task Attributes” in Section b.

Examples
The following examples illustrate the REMOVE statement syntax.
This statement removes the file X from DISK:
REMOVE X;
This statement removes the file A/B from USERS:
REMOVE A/B ON USERS;

These statements remove all the files under the directory A/= from USERS, and remove
all the files under the directory B/= from PACK:

S1:="A/= ON USERS";
$2:="B/= ON PACK";
REMOVE #S1, #52;

These statements remove the file X from DISK, and remove all the files under the
directory Y/= from PACK:

S:=IIY/=II;
REMOVE X, #S ON PACK;

These statements remove the file X from DISK, the file Y from MYPACK, the file X/Y
from PACK, and the file Z from DISK:

S:=IIYII;
REMOVE X, #S FROM MYPACK, X/Y FROM PACK, Z;

8600 1047-506 6-159

REPLACE Statement

REPLACE Statement

<replace statement>
— REPLACE

Y /1\—— COMPARE
L anp L Vertry
1\—— CATALOG —

T

/1\— REPORT —
/1\— DSONERROR —
WAITONERROR —

»>—<copy request

L [—<task identifier>—] J

|J— ; —<task attribute assignment>J—

Explanation

The REPLACE statement enables you to replace existing copies of files on disk with new
copies of those files. The REPLACE statement is similar to the COPY statement, except
that REPLACE copies only those files that you specify for which there are already
existing copies on the destination disk or disks.

You cannot use the REPLACE statement with NFT, to copy files to tapes, or to transfer
files to another host.

For a detailed explanation of the <copy request> syntax, refer to the “COPY or ADD
Statement” earlier in this section.

Example

The following example copies files under the directory SYMBOL/= from the tape
SYMTAPE to disk SYMBOLS and to PACK. For each destination, library maintenance
copies only those SYMBOL files from the tape that already have existing versions on the
destination. These existing versions are replaced with new copies from the SYMTAPE.

REPLACE & VERIFY SYMBOL/= FROM SYMTAPE TO PACK,
TO SYMBOLS (PACK);

6-160 8600 1047-506

RERUN Statement

RERUN Statement

<rerun statement>

— RERUN — <integer constant primary> — /
»— <integer constant primary> {

Explanation
The RERUN statement restarts a program at a specified checkpoint. The first integer
constant primary is the job number. The second integer constant primary indicates which
checkpoint files are used for the restart.

Example

The following is an example of the RERUN statement:

RERUN 3555/3

8600 1047-506 6-161

RESTORE Statement

RESTORE Statement

6-162

<restore>
RESTORE
RESTOREADD | ;
RESTOREREPLACE — & 1\—— COMPARE
L anp L Vertry
/1\— REPORT

/1\—— DSONERROR ——
"L WAITONERROR —

»J—[<f1'1e selection | |
<directory selection>

»>— FROM —<source volume name

<file selection>

. |
L (—=<source volume attributes>—) il

<file name>— ORIGIN —<family name
|:<tape file number

L AS —<file name>J

<tape file number>

— # —<integer constant

<directory selection>

—<file name>— ORIGIN —<family name

L AS —<directory name>J

<source volume name>

__{E # —<string primary

<lTetter

<d1'g1't>———| L_L_
/16\——=<letter

<digit>
<hyphen>
<underscore>—

<source volume attributes>

I\ TAPE
o B ——
— /1\ — SERIALN0 — = —<serial number Tist>
— /1\ — FAMILYOWNER — = o
*
<usercode>
— /1\ — AUTOUNLOAD — = ON
OFF
DONTCARE
— /1\ — CYCLE — = —<integer expression>
— /1\ — LIBMAINTDIR
L - —<Boolean expression>—
—/1\— UNITNO — = —<integer expression>
L /1\ — VERSION — = —<integer expression>

8600 1047-506

RESTORE Statement

Explanation

The RESTORE statement is used to copy files from a library maintenance tape or
CD-ROM volume to the disk families from which they were originally copied.

Note: \WFL includes another statement called ARCHIVE RESTORE, rather than simply
RESTORE. The two statements serve different purposes. The ARCHIVE RESTORE
statement reloads files that have archive backup directory entries. The RESTORE
statement reloads files from any library maintenance tape or CD-ROM volume,
regardless of whether or not the files have archive backup directory entries.

The family name you specify after the key word ORIGIN for a given file or directory name
indicates the name of the disk family from which that file was copied when library
maintenance created the input tape or CD-ROM. The input tape or CD-ROM may contain
files which were copied from several different disk families. The family names listed in
the library maintenance tape or CD-ROM directories are the actual disk family names
from which those files were copied. In the case of a library maintenance copy from disk
to tape or CD-ROM that is run under a family substitution statement, the disk family
names stored in the tape or CD-ROM directory are those used after applying the family
substitution.

The RESTORE statement enables you to copy files from tape or CD-ROM to disk when
the tape or CD-ROM contains files copied from several different disk families. You
should use the RESTORE statement if you want to copy all of the specified files and
directories.

The RESTORE statement invokes the *LIBRARY/MAINTENANCE process. If an error
occurs in the restore process, library maintenance sets the TASKVALUE task variable to
a non-zero value; if no errors occur, library maintenance sets the TASKVALUE task
variable to zero.

The RESTOREADD variation enables you to copy specified files that do not have existing
copies on the disk. The RESTOREREPLACE variation enables you to copy and replace
specified files that do already have existing copies on the disk.

If a restore request specifies a file name or directory name that selects one of the files
that does not have an original disk family name listed in the tape or CD-ROM directory,
you will receive the following error message:

MT <unit number> NO ORIGINAL FAMILY NAME FOR <file name>,
FILE WILL NOT BE RESTORED.

The restore process does not copy the named file, but does continue to restore other
files. Family substitution can be used in the job which contains the RESTORE statement
to re-direct the copy for one origin family to a different family. The tape or CD-ROM name
you specify indicates the tape or CD-ROM or set of tapes or CD-ROMs that contain the
files you want to copy back to disk. You can only specify the name of one input in a
RESTORE statement.

You can use the HI (Cause Exception Event) system command to check the progress of

a RESTORE statement. A command of the form <mix number> Hl displays the number
of files already copied and other information.

8600 1047-506 6-163

RESTORE Statement

The <tape file number> option specifies the position number of the file on the source
tape or source CD-ROM. The position number of the first file on a tape is 1, and so forth.
The <tape file number> must be a positive integer that is greater than zero (0) and has
less than 12 digits (counting leading zeros). You cannot use <tape file number> in file
transfer copy statements (copy statements with <transfer service> or HOSTNAME
clauses). You cannot specify ORIGIN <family name> for a <tape file number>.

Library Maintenance

6-164

When you use library maintenance to copy files from one library maintenance tape to a
new library maintenance tape, the disk family names in the directory for the new tape are
the same as those in the original tape directory. The tape directory of a library
maintenance tape created by an NFT file transfer from one host to a tape at another host
will contain the original disk family names, but not the original host name. A restore from
such a tape will attempt to copy the files to the disk families with the proper names at
the host where the restore statement is executed. Any library maintenance tape created
by an MCP version of level 4.0, or earlier, will not have any family names in their
directories. If you attempt to use a RESTORE statement with one of these tapes, you
will receive the following error message and the RESTORE process will terminate:

MT <unit number> TAPE DIRECTORY DOES NOT CONTAIN DISK
FAMILY NAMES, RESTORE TERMINATED

If a library maintenance tape is created by copying files from various sources including
one or more library maintenance tapes, and if some of the input library maintenance
tapes were created by a level 4.0 or earlier MCP version, not all the directory entries for
files on the new tape will contain original disk family names.

8600 1047-506

RESTORE Statement

RESTORE Statement Options

The following options are available in the RESTORE statement.

COMPARE

The COMPARE option compares the copied files and the resident files bit by bit
immediately after the files are copied. You can use the COMPARE option to ensure that
the new copies of the files are readable, and that the data in the new files matches the
data in the source files.

DSONERROR

The DSONERROR option causes the system to discontinue the library maintenance
program if an error is detected. This option will cause library maintenance to terminate
with a DS response whenever:

e Afile or directory to be copied is missing and library maintenance issues a "“filename
FILE NOT ON <source volume>" message.

e An error prevents a file from being copied to its destination.

e Library maintenance issues a “RECOPY REQUIRED" RSVP and the operator replies
with DS, FR, or OF.

REPORT

The REPORT option causes library maintenance to print a report of the files it copied and
any errors encountered. When & REPORT is specified library maintenance does not write
"file copied” or “file not copied” messages in the job log or the system sumlog.
VERIFY

The VERIFY option is similar to the COMPARE option. However, instead of comparing
the copied files bit by bit, the files are read again, and the overall checksum is compared.

Both the COMPARE and the VERIFY options ensure that the new copy of the files is
written correctly.
UNITNO

Designates the assigned hardware unit number of the tape volume to be used.

WAITONERROR

The WAITONERROR option causes library maintenance to issue an RSVP message
whenever an error occurs. Examples of possible errors include:

o Requesting a file or directory that is missing.

e Attempting to open a failed tape. The RSVP message halts library maintenance until
the operator or programmer responds with OK or DS. A response of OK causes
library maintenance to continue restoring other files or tapes. A response of DS will
terminate the library maintenance program. After investigating the error which
created the RSVP message, you can re-start library maintenance.

8600 1047-506 6-165

RESTORE Statement

RESTORE Tape and CD-ROM Attributes

6-166

If you specify any attribute not listed here for a tape or CD-ROM volume used as input to
a RESTORE process, then either the WFL compiler issues a syntax error for that attribute
or library maintenance ignores the value you specified for that attribute.

The following tape and CD-ROM attributes are available for the RESTORE statement.

AUTOUNLOAD

Determines whether or not a tape is unloaded when it is released by library maintenance
during a reel switch or a file close operation. If the value is ON, the tape is rewound and
unloaded. If the value is OFF, the tape is not unloaded.

If the value is DONTCARE, or if this value is not specified, the tape behavior is controlled
by the setting of the AUTOUNLOAD option of the MODE (Unit Mode) system command.
Refer to the System Operations Guide for further information.

If a reel is switched during a COPY AND COMPARE operation, intermediate reels are not
unloaded, regardless of the AUTOUNLOAD value, until the COMPARE phase is finished.

CYCLE

Designates the specific generation of a tape volume family. This file attribute is used in
conjunction with the VERSION attribute. The default value is 1.

FAMILYOWNER

Indicates the usercode of the owner of a tape volume. If you specify a usercode with the
FAMILYOWNER attribute, then library maintenance searches for the named tape owned
by that usercode.

If you do not specify the FAMILYOWNER attribute or if you specify the null string (" "),
then library maintenance searches for the named tape owned by the usercode of the
library maintenance process itself.

If you specify an asterisk (*) for the FAMILYOWNER attribute then library maintenance
searches for the named tape owned by the * usercode. Library maintenance ignores the
FAMILYOWNER attribute if the InfoGuard security enhancement software or the
Security Accountability Facility is not installed, or if the TAPECHECK option of the
SECOPT system command is not set to AUTOMATIC.

LIBMAINTDIR

Determines if library maintenance should use the information in the tape directory disk
file of source tapes to speed up the search for files.

LOCATECAPABLE

Set the LOCATECAPABLE attribute to ON to indicate that the file requires a tape drive
capable of processing the READ POSITION and LOCATE BLOCK ID tape commands for
fast tape access.

8600 1047-506

RESTORE Statement

If the assigned tape drive is locate capable, then library maintenance automatically takes
advantage of this feature to do high-speed spacing in the following situations:

e COMPARE Option

Library maintenance uses the LOCATE BLOCK ID tape command to backspace to
compare the file. If you receive a RECOPY REQUIRED message and respond “OK,”
library maintenance uses LOCATE BLOCK ID to backspace to the beginning of that
file to recopy the file.

e LIBMAINTDIR for Source Tapes

If the original tape was created on a locate capable tape drive, and a LIBMAINTDIR
directory was created for the tape, then library maintenance uses the LOCATE
BLOCK ID information found in the LIBMAINTDIR directory to rapidly space up to
each of the files to be copied.

SERIALNO

ldentifies the specific tape or CD-ROM volumes to be used when copying files.

To copy a few specific files from a multi-reel library maintenance tape set, you can use
this attribute to skip directly to the reel holding the file(s) you need. If you know which
reel contains the file you want (or the first reel that contains one of the files you want),
use the serial number of that tape volume for the value of the SERIALNO attribute.

The SERIALNO attribute does not have a default value. For more information, refer to
“Serial Number Assignment” in Section 5.

VERSION

Designates the successive iteration of the same generation of a tape volume. This file
attribute is used in conjunction with the CYCLE attribute. The default value is O.

Examples

The following example will restore SYSTEM/ALGOL and SYSTEM/COBOLS5 to the disk
family CODE if those files are not currently resident on the family CODE and if the files
were previously copied from the family CODE to a tape name CODETAPE:

RESTOREADD SYSTEM/ALGOL ORIGIN CODE, SYSTEM/COBOL85 ORIGIN
CODE FROM CODETAPE (SERIALNO= (6622, "6622A") , AUTOUNLOAD=ON);

You can use the following form of the RESTORE statement to copy all files from a tape
to their original families. To use the *= construct, the statement must be started from an

ODT, or it must run under a privileged usercode.

RESTORE & COMPARE *= ORIGIN DISK, *= ORIGIN PACK FROM SAVETAPE;

8600 1047-506 6-167

RESTORE Statement

6-168

In the preceding example, any files copied to SAVETAPE from the family DISK are copied
back to DISK, and any files copied to SAVETAPE from the family PACK are copied back
to PACK.

You can use the following WFL statements to copy certain files from CD-ROM to a new
disk family:

FAMILY OLDFAM = NEWFAM ONLY;
RESTORE DATA/= ORIGIN OLDFAM, PROG/=ORIGIN OLDFAM FROM XPORT(CD);

These statements select files under the directories DATA/= and PROG/= that were
originally copied from the family OLDFAM to the CD-ROM XPORT. The selected files are
copied from the CD-ROM XPORT to the disk family NEWFAM.

The following example replaces all the resident SYMBOL files with the backup copies of
those files:

RESTOREREPLACE SYMBOL/= ORIGIN SYSPACK FROM SYSTAPE;

8600 1047-506

RETURN Statement

RETURN Statement

<return statement>
— RETURN |

Explanation

The RETURN statement makes an early return from a subroutine or makes an early
return from the invocation of an ON condition. If a RETURN statement is executed in a
subroutine that was called synchronously, execution passes to the statement following
the subroutine invocation statement. If a RETURN statement is executed in an
asynchronous subroutine, the subroutine terminates normally.

Example
The following is an example job that uses the RETURN statement:

SUBROUTINE COMPSUB;
BEGIN
TASK T;
COMPILE OBJECT/X WITH COBOL74 [T] LIBRARY;
COMPILER FILE CARD(KIND=DISK,TITLE=X);
IF T ISNT COMPILEDOK THEN
RETURN;
RUN OBJECT/X;
END COMPSUB;

8600 1047-506 6-169

REWIND Statement

REWIND Statement

<rewind statement>
— REWIND — (— <file identifier> —) '

Explanation
The REWIND statement closes the specified file. The logical file remains assigned to the
physical file. If the file is a tape file, it is rewound. For disk files, the record pointer is

reset to the first record of the file. The file buffer areas are returned to the system. The
I/O unit remains under program control.

Examples
The following are examples of the REWIND statement:
REWIND (GLOBAL)

REWIND (FILEA)

6-170 8600 1047-506

RUN Statement

RUN Statement

<run statement>

RUN <object code file title>
L] J

EXECUTE L <run parameter Tist> J

L [— <task identifier> —] L <task equation Tist> il

<run parameter list>

— <real expression> B |) |
REFERENCE ——
<integer expression>

L REFERENCE —
<Boolean expression>

L REFERENCE —

<string expression> B
REFERENCE —

Explanation

The RUN statement initiates a previously created object code file. If the object code file
title specified is not an executable object code file, the job or processed subroutine is
discontinued.

Parameter checking is done against the object code file, and any mismatches cause the
job to be discontinued. By default, all parameters are passed by value. The keyword
REFERENCE indicates that the parameter is passed by reference rather than by value.

Note: REFERENCE is valid only if the preceding expression is an identifier.

When a parameter has been passed by reference, the actual parameter is updated
whenever the formal parameter is changed. If the WFL job that initiated the program
inquires the value of a passed-by-reference parameter while the program is running, the
latest value is returned.

Strings consist of EBCDIC characters and are passed as arrays. If a string expression is
passed by value, an extra NUL (48”00") character is added to the end of the string to
enable the object program to determine the length of the string. This string can be up to
1032 characters long. If a string identifier is passed by reference, a real array large
enough to hold the maximum size of the string is passed with NUL characters padded to
the end of the array. The contents of the array can be changed in the object program. If
the task is initiated by a RUN statement, WFL updates the length of the string by locating
the first NUL character in the array.

If the task is initiated by a PROCESS RUN, the length of the string cannot be changed by
the processed task.

A task equation list can be given to override any task attribute assignments, file
equations, and database equations set when the object code file was created. Refer to
“Task Equation” in Section 5, and “Run-Time Overriding of Compiler Task Equation”
earlier in this section.

8600 1047-506 6-171

RUN Statement

Examples

The following are examples of simple RUN statements:
RUN X;
RUN A/B [T];

RUN A/C (1,I,FALSE,3.14,0CTAL ("123"), "HI THERE") [T1];
FILE F(BLOCKSIZE=10, KIND=TAPE);
FILE G(KIND=DISK);

RUN A/D (COUNT REFERENCE, TRUE, STR1 REFERENCE);
RUN A/E; TASKVALUE=I;

The following examples depict different methods of specifying early AXs in a RUN
statement. The ability to supply an early AX command with a RUN statement is always
available. Multiple AXs, however, will be passed to the program by the MCP only if the
QUEUEDAX system option is set (SYSOPS QUEUEDAX SET). If multiple early AXs are
entered for a program while QUEUEDAX is RESET, then only the final AX is actually
passed to the program.

The following job queues a 1-byte AX message, specify a priority of 70, and queues a
13-byte AX message behind the first AX message. All three task assignments are for
task T. When PROGA encounters an ACCEPT statement, it will accept “1" first, and then
accept "MESSAGE THREE" when it encounters the next ACCEPT statement.

?BEGIN JOB EXAMPLE/EARLYAX;
TASK T (AX="1", PRIORITY=70, AX="MESSAGE THREE");

RUN PROGA[T];
?END JOB.

The following job queues a 1-byte AX message, specifies a priority of 70, and queues an
11-byte AX message behind the first AX message. All three task assignments are for
task PROGB. When PROGB encounters an ACCEPT statement, it will accept the "1”
first, and then accept the “MESSAGE TWOQO"” when it encounters the next ACCEPT
statement.

?BEGIN JOB EARLYAX;

STRING S := "MESSAGE TWO";

RUN PROGB;AX="1";PRIORITY=70;AX=S;
?END JOB.

6-172 8600 1047-506

RUN Statement

The following statement is the same as the first example, except that it is a PROCESS
RUN statement:

PROCESS RUN PROGA[T];

Note: AX input relates to the next ACCEPT encountered in the stack, either by library
code or the program's code. This can cause AX messages to be unintentionally routed to
a library when they were intended for the client task.

Be careful when using the AX attribute with a task that will attach an interrupt to the
ACCEPTEVENT. The ACCEPTEVENT will already be in the happened state before the
task can possibly enable the interrupt. For further information, refer to the Task
Management Guide.

The following example shows the use of WFL-provided parameters for a program written
in ALGOL:

?BEGIN JOB EXAMPLE/ALGOL;
INTEGER I;
STRING STR := "WFL STRING";
COMPILE ALG WITH ALGOL LIBRARY;
ALGOL DATA CARD
$ SET LEVEL 2
PROCEDURE D(WFLINTEGER, WFLSTRING, WFLBOOLEAN);
INTEGER WFLINTEGER;
ARRAY WFLSTRING[*];
BOOLEAN WFLBOOLEAN;
BEGIN
ARRAY A[0:49];
WFLINTEGER := 20;
REPLACE POINTER(A) BY "WFLSTRING = ",
POINTER(WFLSTRING) FOR 256 UNTIL=48"00",
48"00";
DISPLAY (POINTER(A));
REPLACE POINTER(WFLSTRING) BY "WFL STRING HAS BEEN CHANGED",
48"00";
END.
? % END OF COMPILER DATA
RUN ALG (I REFERENCE, STR REFERENCE, TRUE);
DISPLAY "I = "& STRING(I, *); % I = 20
DISPLAY "STR = "& STR; % STR = "WFL STRING HAS BEEN CHANGED"
?END JOB.

8600 1047-506 6-173

RUN Statement

6-174

?BEGIN JOB EXAMPLE/COBOL74;

STRING STR := "WFL STRING";

COMPILE COBOL74/EXAMPLE WITH COBOL74 LIBRARY;
COBOL74 DATA CARD

100100IDENTIFICATION DIVISION.
100200ENVIRONMENT DIVISION.

100300DATA DIVISION.

100400WORKING-STORAGE SECTION.

10050077 WFLINTEGER BINARY PIC 9(11) RECEIVED BY REFERENCE.

10060001 WFLSTRING RECEIVED BY REFERENCE.
100700 03 MSG PIC X(30).
10080001 CHARMESSAGE PIC X(30).
100900PROCEDURE DIVISION USING WFLINTEGER, WFLSTRING.
101000P1.
101100 STRING WFLSTRING DELIMITED BY LOW-VALUE
101200 INTO CHARMESSAGE.
101300 DISPLAY "WFLSTRING = ", CHARMESSAGE.
101400 MOVE "WFL STRING HAS BEEN CHANGED" TO WFLSTRING.
101500 STOP RUN.
? % END OF COBOL74 DATA CARD

RUN COBOL74/EXAMPLE (1234, STR REFERENCE);

DISPLAY "STR = "& STR;

% STR = "WFL STRING HAS BEEN CHANGED "

?END JOB.

The following example shows the use of WFL-provided parameters for a program written
in COBOL74. Programs written in COBOL74 cannot specify Boolean parameters.

8600 1047-506

RUN Statement

The following example shows the use of WFL-provided parameters for a program written
in Pascal:

?BEGIN JOB EXAMPLE/PASCAL;
STRING STR := "WFL STRING";
BOOLEAN BOOL := TRUE;
COMPILE PASC WITH PASCAL LIBRARY;
PASCAL DATA CARD
PROGRAM p((VAR WFLInteger:INTEGER; VAR WFLString:WFLStringType;
VAR WFLBoolean: BOOLEAN));
TYPE WFLStringType = RECORD str:PACKED ARRAY [1..30] OF CHAR;
END;
BEGIN
DISPLAY (CONCAT('WFLString = ', WFLString.str));
IF WFLBoolean THEN
DISPLAY ('WFLBoolean
ELSE
DISPLAY ('WFLBoolean FALSE');
WFLString.str := CONCAT('WFL string has been changed', CHR(0));
WFLBoolean := FALSE;
END.
? % End of Pascal Data Card
RUN PASC (23, STR REFERENCE, BOOL REFERENCE);
DISPLAY "STR = " & STR;

TRUE')

% STR = "WFL STRING HAS BEEN CHANGED"
IF BOOL THEN % BOOL = FALSE
DISPLAY "BOOL = TRUE"
ELSE
DISPLAY "BOOL = FALSE";
?END JOB.

8600 1047-506 6-175

RUN Statement

6-176

?BEGIN JOB EXAMPLE/NEWP;
INTEGER I := 10;
BOOLEAN BOOL := FALSE;
COMPILE NEWP/EXAMPLE WITH NEWP LIBRARY;
NEWP DATA CARD
$ SET LEVEL 2
PROCEDURE P(WFLINTEGER, WFLSTRING, WFLBOOLEAN);
INTEGER WFLINTEGER;
ARRAY WFLSTRING[*];
BOOLEAN WFLBOOLEAN;
BEGIN
ARRAY A[0:49];
REPLACE POINTER(A) BY "WFLINTEGER = ",
WFLINTEGER FOR 10 DIGITS,
48"00";
DISPLAY (POINTER(A));
WFLINTEGER := 20;
END.
? % END OF COMPILER DATA
RUN NEWP/EXAMPLE (I REFERENCE, "ABCD", BOOL);
DISPLAY "I = " & STRING(I, *); % I = 20
?END JOB.

The following example shows the use of WFL-provided parameters for a program written
in NEWP:

8600 1047-506

SECURITY Statement

SECURITY Statement

<security statement>

— SECURITY A <file spec%fication> 1 <security specification> J—{

<file specification>

—Esecur‘ity Tist> || |
<security from group> | B

, — <security list> il

<security list>

4‘—[<long file ’Eit]e> B | I
<long directory title>

<security from group>

4‘—[<long file r’1ame> —J—L FROM <family name> {
<long directory name>

8600 1047-506 6-177

SECURITY Statement

6-178

<s

ecurity specification>

<traditional security specification>

_|: (| croup — -

E]
<name constant>

<traditional security specification>

— GUARDED —T <file title>
LED

— CONTROL

<string primary>

— ALTERNATEGROUPS — = — <alternategroups value> —
— PROPAGATESECURITYTODIRS = DONTPROPATE
| PROPAGATESECURITYTOFILES — L PROPAGATE — | |
— CLEAR
— GROUPRWX = — NO
— OTHERRWX — RWX
— OWNERRWX — RW

— RX

— WX

— R

— W

— X

L # <string primary>
— GROUPR
— GROUPW ——— L._ <boolean expression>
— GROUPX ———
— OTHERR ———
— OTHERW ———
— OTHERX ———
— OWNER
— OWNERR ———
— OWNERW ———
— OWNERX ———
— SETGROUPCODE —
— SETUSERCODE —
— USEGUARDFILE —
— GUARDOWNER —
— SECURITYGUARD — = <file title>

—E nn

— SECURITYMODE — = — <integer expression>

J—[/1\ PRIVATE
L pusLic
/1\ 10
N
ouT ——
SECURED —

8600 1047-506

SECURITY Statement

<alternategroups value>

—<string primary

" J—/9\—<name constant>— : RWX "

Explanation

The SECURITY statement changes the security of files on disk. In the <security from
group>, the family name applies to all the file names in that <security from group>.

With the exception of the CLEAR attribute, refer to “ALTER Statement” earlier in this
section for a description of the security attributes listed under <security specification>.

The CLEAR attribute causes all security mode flags to be reset.

Attributes are applied in the order in which they are specified. Specifying a Boolean
security attribute without specifying a value implies a value of TRUE. Specifying a null
string for SECURITYGUARD causes the current SECURITYGUARD value, if any, to be
discarded.

Notes:

e This attribute can be set only within a permanent directory namespace.

o Many security attributes are interrelated, therefore changes to one attribute might
affect another attribute.

o The ENABLEPOSIX system option no longer controls functionality. However, you
still have the ability to control this option, which enables you to switch between the
current MCP and earlier MICP versions.

For descriptions of PRIVATE, PUBLIC, GUARDED, and CONTROLLED, refer to the
description of the SECURITYTYPE file attribute in the File Attributes Reference Manual.

For descriptions of IO, IN, OUT, and SECURED, refer to the description of the
SECURITYUSE file attribute in the File Attributes Reference Manual.

Family substitution is used if the job or task has an active family specification. Only the

primary family name is used. Refer to “FAMILY Assignment” and “Interrogating
Complex Task Attributes” in Section 5.

8600 1047-506 6-179

SECURITY Statement

Examples

6-180

The following examples illustrate the SECURITY statement syntax.

This statement changes the security of file AB/XY on DISK to PRIVATE for input and
output:

SECURITY AB/XY PRIVATE I0;
This statement changes the security of file Z on PACK to PUBLIC for input only:
SECURITY Z ON PACK PUBLIC IN;

This statement changes the security of file A/B on MYPACK to GUARDED. File XYZ is
the guard file.

SECURITY A/B ON MYPACK GUARDED XYZ;

These statements change the security of the files A/B on DISK and C/D on PACK to
PUBLIC for input and output:

S1:="A/B";
$2:="C/D ON PACK";
SECURITY #S1, #S2 PUBLIC I0;

This statement sets the other R and W permission flags for A/B without affecting any
other permission flags:

SECURITY A/B (OTHERRWX = RW);

This statement clears all permission flags, then sets the owner R and W permission flags
and the other user R flag for A/B and C/D:

SECURITY A/B FROM MYPACK, C/D (CLEAR, OWNERRWX = RW, OTHERR);

8600 1047-506

START Statement

START Statement

<start statement>
START <file title
L STARTJOB] L (—=<start parameter list>—) il

L [—<task identifier>—] il T SYNTAX il
— FOR

L ; — STARTTIME — = —E<startt1'me spec>
—<string primary>—

<start parameter list>

<named parameter list }
|:<pos1't1'ona1 parameter list

L , —<named parameter Tist>—

<named parameter list>

E]
<real formal parameter>— := —<real expression | {
<integer formal parameter>— := —<integer expression>
<Boolean formal parameter>— := —<Boolean expression>
<string formal parameter>— := —<string expression>

<positional parameter list>

| ’ | |
<real expression>
<integer expression>—
<Boolean expression>—
<string expression>—

Explanation

The START statement initiates a WFL job stored in a disk file. The file title specified is the
title of the disk file containing the job that is to be initiated.

The started job inherits many of the attributes of the original job, including the values of
the USERCODE and FAMILY task attributes.

The START statement first initiates a synchronous task to compile the job. The job is
then inserted in a job queue and executes independently of the job that initiated it; it is
not considered a task of the originating job.

When FOR SYNTAX is specified, it indicates that the job is to be compiled for syntax
checking only and is not to be executed. In this case, it is not necessary to include a start
parameter list in the START statement, even if the job being initiated includes a job
parameter list. However, WFL does check that the parameters are of the correct type
(real, Boolean, and so on) if they are supplied.

8600 1047-506 6-181

START Statement

The START statement cannot include a STARTTIME specification if the job is to be
started at another host through Host Services. Including a STARTTIME specification in
the START statement results in an error for the started job and is detected before the job
is transferred to the other host.

The STARTTIME = starttime spec form delays execution of the job until the specified
time and date. However, job compilation occurs immediately, and the originating job then
resumes execution at the next statement without waiting for the started job to begin.

The STARTTIME = starttime spec form in the START statement overrides any
STARTTIME specification in the job attribute list of the job being started. Refer to
"STARTTIME Specification” in Section 3 for the syntax of a STARTTIME specification.

The STARTTIME specification is the only job attribute that can be specified in the START
statement. However, it is possible to pass job attribute values to the started job through
the start parameter list if the started job was designed to accept such values.

Parameters

6-182

A start parameter list can be included in the START statement if the job being initiated
includes a job parameter list. Actual parameters can be passed as positional parameters
by listing them in positional order, or as named parameters by explicitly naming the
corresponding formal parameters in the job parameter list. Named parameters can be
given in any order.

An actual parameter need not be passed if the corresponding formal parameter specifies
the keyword OPTIONAL. If an actual parameter is not passed, the default value will be
assigned as follows:

Type Default Value
Boolean FALSE
Integer 0
Real 0
String " " (two double quotation marks)

A default value can also be assigned by using the DEFAULT clause for the corresponding
formal parameter in the job being started.

When a positional parameter list is used, optional parameters can be omitted by
specifying consecutive commas (,) or by specifying fewer actual parameters than formal
parameters. When fewer parameters are passed than are expected by the job, all the
remaining parameters in the job parameter list must be specified as optional.

Named parameters can be used in combination with positional parameters. The
positional parameters are listed first, in their normal position, followed by the named
parameters. Once a named parameter is used, the rest of the parameters must be
named parameters.

8600 1047-506

START Statement

Examples

The following is an example of a simple START statement:
START (SINGA)OBJECT/FIZZCOMP ON GCPACK;

The following examples show various START statements that can be used to start a job
with a parameter list. The job being started has the following job heading:

?BEGIN JOB JOB/1(STRING CODEFILE,
INTEGER JOBQUEUE OPTIONAL DEFAULT=3,
BOOLEAN BIND OPTIONAL);

Using only positional parameters:
START JOB/1("OBJECT/P", 4, TRUE)
START JOB/1("OBJECT/P")
START JOB/1("OBJECT/P", , TRUE)
Using only named parameters:
START JOB/1(BIND := TRUE, CODEFILE := "OBJECT/P")
START JOB/1(JOBQUEUE := 4, CODEFILE := "OBJECT/P",
BIND := FALSE)

Using both positional and named parameters:

START JOB/1("OBJECT/P", BIND :
START JOB/1("OBJECT/P", BIND :

FALSE)
FALSE, JOBQUEUE := 0)

The task identifier associates a task variable with the compilation of the specified job.
(This task variable is not associated with the execution of the job.) The task state
expression can then be used to inquire whether the compile was successful, as in the
following job excerpt:

START TEST/WFLJOB [T];
IF T ISNT COMPILEDOK THEN
ABORT "TEST/WFLJOB HAS SYNTAX ERRORS";

The following job compiles the job EX/1 and then runs the program OBJECT/BLAH.
Execution of EX/1 begins 30 minutes after it is compiled, regardless of whether the job
SR has already completed.

?BEGIN JOB SR;
START EX/1; STARTTIME = + 00:30;
RUN OBJECT/BLAH;

?END JOB.

8600 1047-506 6-183

START Statement

In the following example, the value of the <starttime spec> is supplied through a string
primary. The START statement schedules the job EX/2 to begin execution after 8:00 a.m.
the day after the job EXAMPLE is started.

?BEGIN JOB EXAMPLE;
INTEGER I := 8;
START EX/2;
STARTTIME = # (STRING(I,2) & ":00 ON +1");
?END JOB.

The following job schedules the job EX/3 to begin execution after 2:00 a.m. each of the
next five days after the job EXAMPLE is started:

?BEGIN JOB EXAMPLE;
INTEGER I; I:=1;
WHILE I LEQ 5 DO
BEGIN
START EX/3;
STARTTIME = # ("2:00 ON +" & STRING(I,*));
I:=1+1;
END;
?END JOB.

The following job uses the first two parameters passed to it to assign values to CLASS
and CHARGECODE in the job attribute list. The third parameter is used to pass a file title
for use in file equation.

?BEGIN JOB EXAMPLE (INTEGER CLASSP, STRING CHARGEP, STRING FILEP);
CLASS = CLASSP;
CHARGECODE=#CHARGEP;
COMPILE OBJECT/#FILEP WITH ALGOL LIBRARY GO;
COMPILER FILE CARD(KIND=DISK, TITLE=#FILEP);
?END JOB.

The following job starts the previous job six times with different parameter values:

?BEGIN JOB STARTERINTEGER I;

I1:=0;

WHILE I LEQ 5 DO

BEGIN
START TEST/EXAMPLE(30,"CHARGE" & STRING(I,*),

"TEST" & STRING(I,*));

I:=I+1; END;

?END JOB.

6-184 8600 1047-506

STOP Statement

STOP Statement

<stop statement>

— STOP |
L <string expression> J

Explanation

The STOP statement is used either to terminate a job or to terminate an asynchronous
subroutine. The job or asynchronous subroutine is terminated normally if it has no
asynchronous subtasks being executed at the time of the STOP; otherwise, the parent
and its in use dependent subtasks are terminated abnormally. The in use dependent
subtasks include tasks that are SCHEDULED, ACTIVE, or STOPPED. Refer to “Task
State” in Section 7.

If a string expression is specified in the STOP statement, the value of the string
expression (up to 430 characters) is displayed prior to the STOP

Example
The following is an example job that uses the STOP statement:

?BEGIN JOB STOP/EXAMPLE;
TASK T1,T2;
PROCESS COMPILE Y WITH PASCAL [T1] LIBRARY;
COMPILER FILE CARD(KIND=DISK,TITLE=SYMB/Y,FAMILYNAME=MYDISK) ;

RUN Z [T2];
IF T2 ISNT COMPLETEDOK THEN
STOP; % The job will be terminated normally if the Pascal
% compile is finished; otherwise, it will be
% terminated abnormally.
WAIT(T1);

IF T1 IS COMPILEDOK THEN
STOP "NORMAL JOB TERMINATION" % Normal job termination after
% the message is displayed.
ELSE ABORT "ABNORMAL JOB TERMINATION";
?END JOB.

8600 1047-506 6-185

Subroutine Invocation Statement

Subroutine Invocation Statement

<subroutine invocation statement>

—<subroutine identifier L I
(

E]
<real expression>
<integer expression>—
<Boolean expression>—|
<string expression>—
<task identifier>
<file identifier>

Explanation

6-186

The subroutine invocation statement initiates execution of a subroutine. The subroutine
identifier must be the name of a subroutine that was declared earlier in the job.

The subroutine is normally executed synchronously with the rest of the job. However,
the subroutine can be made to execute as an asynchronous task by placing the
subroutine invocation in a PROCESS statement. Then a task variable and a task equation
list can be specified. Refer to Section 5, “Task Initiation,” for more information.

The name of a subroutine task initiated by a PROCESS statement is set by WFL when
the subroutine is invoked. Prior settings of the NAME task attribute are overridden, and
the default name of the subroutine task is the same as the name of the subroutine. The
name of the subroutine task can be changed by specifying a different value for the
NAME task attribute when the subroutine is invoked.

The order and number of the parameters in the subroutine invocation statement must be
the same as the order and number of the parameters in the matching subroutine
declaration.

If a parameter was specified in the subroutine declaration as VALUE, then the parameter
in the subroutine invocation statement is passed by value. Otherwise, the parameter in
the subroutine invocation statement is passed by reference. For a definition of
call-by-reference and call-by-value parameters, refer to “Subroutines” in Section 4.

Subroutine invocation statements can be included in subroutines. The rules defining
which subroutines can be invoked from a particular subroutine are defined under
“Declaration Syntax” in Section 4.

Note: A subroutine invocation statement can cause the job to enter an infinite loop if
the subroutine invokes itself or a subroutine that is nested within a subroutine. In these
cases, a test should normally be included to cause one of the subroutines involved in the
loop to be exited if some specified condition is met.

8600 1047-506

Subroutine Invocation Statement

When a task is initiated in a subroutine, that subroutine becomes the critical block for the
task. Whether the task variable associated with the task is declared locally or globally
does not affect which block is the critical block for the task.

A subroutine is not exited until all asynchronous tasks initiated within that subroutine
have gone to end of task. An explicit WAIT is not necessary; the subroutine automatically
waits.

A subroutine invocation statement accepts string expressions of up to 1026 characters
as parameters. Within the subroutine, all string length restrictions still apply. Therefore,
the string parameter can not be assigned directly to a string variable, because a string
variable has a maximum length of 256 characters.

Examples

The following is an example of a subroutine:

SUBROUTINE COMPANDGO(FILE FNAME, STRING PARAM1, INTEGER PARAM2);
BEGIN

COMPILE XYZ WITH ALGOL LIBRARY;

COMPILER FILE CARD (TITLE=#FNAME(TITLE),KIND=DISK);

RUN XYZ (PARAM1,PARAM2);

REMOVE XYZ;

PARAMZ := PARAM2+1;
END COMPANDGO;

INTEGER I

FILE F1(TITLE=TEST1);

FILE F2(TITLE=FLOP2);

I:=1;

COMPANDGO(F1, "TEST" & STRING(I,2), I);
COMPANDGO(F2, "FLOP" & STRING(I,2), I);

This example illustrates that a subroutine waits for its asynchronous tasks to complete
before returning. The subroutine SUB waits for the completion of OBJECT/PROG before
returning to the outer block.

?BEGIN JOB PROCESS/TEST;
TASK TSK;
SUBROUTINE SUB;
BEGIN
PROCESS RUN OBJECT/PROG [TSK];
DISPLAY "SUB is waiting for OBJECT/PROG";
END SUB;
SUB;
?END JOB.

8600 1047-506 6-187

Subroutine Invocation Statement

This example runs the subroutine SUB1 and the program OBJECT/TEST2 asynchronously
and waits for the subroutine SUB1 to finish before continuing.

SUBROUTINE SUBI;

BEGIN
COPY MONTHLY/SUMMARY AS CURRENT/SUMMARY FROM USERS(DISK);
RUN OBJECT/ALGOL/1;

END SUBI;

PROCESS SUB1 [TSK];

RUN OBJECT/TEST2;

WAIT (TSK IS COMPLETED);

In this example, the prior value of TESTSUB for the NAME task attribute (set with the
task variable T) is overridden when the subroutine SUB1 is invoked by a PROCESS
statement. The name of the subroutine task is changed from its default value of SUB1 to

the value of TEST1.

SUBROUTINE SUBI;
BEGIN
RUN TEST/1;
END;
T(NAME=TESTSUB) ;
PROCESS SUB1[T];
NAME=TESTI;

6-188 8600 1047-506

UNWRAP Statement

UNWRAP Statement

<unwrap statement>
— UNWRAP

i: unwrap group
& —_|—|: RECOVER

AND DSONERROR

L <unwrap volume> JL [— <task identifier> —] J

|
|J— ; — <task attribute assignment> JJ

<unwrap group>

<unwrap request> | B : N {
, — <simple unwrap request>
<

simple unwrap request>

<simple unwrap request>

L <unwr‘ap’f1'1e> | '

<unwrap request>

L <unwr‘ap’f1'1e> OUTOF — <file name> {

<unwrap file>

<file name>
L AS — <file name> il !

<directory name>

L AS — <directory name> il

<unwrap volume>

TO — <destination> |
E FROM — < source> | !

L T0 — < destination> il

<source>
— <family name> C }
(— /1\)
L KIND — = INE DISK _
— PACK —
— CDROM —

8600 1047-506 6-189

UNWRAP Statement

<destination>
— <family name> — (| J1\ : |)
L ko — = i:DISK B
PACK
/1\ — RESTRICTED
= TRUE ﬁ
—[FALSE
Explanation

6-190

The UNWRAP statement enables users to

e Unwrap files wrapped by the WRAP statement.

e Unwrap all or selected wrapped files from a container.

The unwrap process re-creates the original files from the data contained within the
wrapped files or containers. By default, UNWRAP also marks system files, compilers,
backup files, and code files as restricted. A security administrator on a system running
with the security administrator status enabled or a privileged user can override this
restriction by setting the RESTRICTED attribute to FALSE.

You can also copy unwrapped data files from a CD-ROM as part of an unwrap operation,
by setting the task attribute SW1. The system then tests to see if requested files are
wrapped, then it

e Unwraps wrapped files.
e Copies other files as CDATA files.

If you specify the RECOVER option in the UNWRAP statement, the unwrap process
attempts to recover internal wrapped files whenever it encounters a bad container
whose directory is missing, incomplete, or corrupted. The RECOVER option is applicable
only to container files and cannot be used with the DSONERROR option.

If you specify the DSONERROR option, the unwrap process aborts whenever it
encounters an error.

The TASKVALUE attribute can be tested to determine the success or failure of the wrap
or unwrap of disk files. When the value of the TASKVALUE attribute is 0, all requests
were satisfied. When the value of the TASKVALUE attribute is not 0, one or more files
were not wrapped or unwrapped. A nonzero value is also returned if the wrap or unwrap
operation is discontinued.

To wrap files into a container, use the INTO syntax. To unwrap files out of a container,
use the OUTOF syntax. For details on using the "="and "*=" syntax, refer to the COPY or
ADD statement earlier in this section.

Some wrapped files or wrapped containers might have already been digitally signed by a

private key. Unwrapping such files requires you to obtain a corresponding public key and
specify it through the task attribute TASKSTRING.

8600 1047-506

UNWRAP Statement

Examples
The following examples demonstrate the UNWRAP statement:
UNWRAP = QUTOF CONTAINERL;

UNWRAP FILEC AS NEWFILEC
OUTOF CONTAINERI;

UNWRAP FILEF, FILEB AS NEWFILEB;
The following examples show how to override the RESTRICTED option:

UNWRAP WRAPPED/FILE AS UNWRAPPED/FILE FROM MYCD(CD)
TO MYPACK(RESTRICTED=FALSE);

UNWRAP *= QUTOF MYCONTAINER TO MYPACK(RESTRICTED=FALSE);
The following example demonstrates the RECOVER option:

UNWRAP &RECOVER *= AS UWFILES/= OUTOF (THIEN)CONTAINER
FROM DISK TO MYPACK

The following example demonstrates the DSONERROR option:

UNWRAP &DSONERROR MYSTUFFS/= OUTOF MYCONTAINER FROM MYCD(CD)
TO MYPACK;

The following example shows how to unwrap a digitally signed wrapped file. The public
key is obtained from the person who wrapped the file.

UNWRAP MY/SIGNED/WRAPPED/FILE AS MY/FILE;
TASKSTRING=<the public key's hex string>;

The following example shows how to unwrap a digitally signed wrapped container. The
public key is obtained from the person wrapped the container.

UNWRAP *= QUTOF MY/SIGNED/CONTAINER;
TASKSTRING=<the public key's hex string>;

8600 1047-506 6-191

USER Statement

USER Statement

<user statement>

— USER — = — <usercode name constant>

L / — <password name constant> J

Explanation

The USER statement changes the usercode of the job. This usercode is not retained
across a halt/load. If this statement appears in a subroutine running asynchronously with
the job, it changes the usercode of the subroutine only; the usercode of the job is not
changed.

In addition to changing the job usercode, the USER statement always changes the job
accesscode to a null string. This change occurs even if the existing accesscode is
permitted for the new usercode. Therefore, you might wish to follow the USER
statement with an ACCESS statement that assigns an appropriate accesscode.

Aside from USERCODE and ACCESSCODE, no task attribute values are affected by the
USER statement.

The usercode assignment can be used to assign a usercode to a task, as explained in
Section 5, “Task Initiation.”

The correct password must be given if a password is associated with the usercode. The
password associated with the current usercode cannot be changed by the USER
statement; the PASSWORD statement must be used instead.

If the job was initiated from CANDE, and this statement changes the usercode from the
usercode of the originating CANDE session, then job messages cease being sent to the
originating terminal. (Job messages can be output from DISPLAY statements, ACCEPT
functions, or BOT, EOT, and EOJ messages.) The messages resume if a later USER
statement restores the original usercode.

Examples

The following are examples of the USER statement:

USER

MYCODE

USER

A/B

6-192 8600 1047-506

VOLUME Statement

VOLUME Statement

<volume statement>

— VOLUME ADD ————<volume name
CHANGE ——
DELETE —
DESTROYED —
OFFSITE —
ONSITE
— (—<volume attribute list>—) }

<volume name>

DISK |

PACK

SCRATCH
<family name>—
<tape name>—

<tape name>

—<name {

8600 1047-506 6-193

VOLUME Statement

6-194

<volume attribute list>

L

— /1%\ DISK
KIND — = i: PACK
TAPE
KIND — = — # — <string primary>
— /1*\ — SERIALN0 — = — <serial number 1ist>
— /1\ — FAMILYOWNER — = "
*
<usercode>
—/1\— GROUP — = <name constant>
—E # — <string primary>
—/1\ GROUPRWX =— NO
—E OTHERRWX — RWX
OWNERRWX — RW
— RX
— WX
— R
— W
— X
— # — <string primary>
— /1\ —— GROUPR B
— GROUPW —— = — <Boolean expression> —
— GROUPX ——
— OTHERR
— OTHERW
— OTHERX
— OWNERR
— OWNERW
— OWNERX
— SETGROUPCODE
— SETUSERCODE ———
— USEGUARDFILE
— GUARDOWNER —
— /1\ —— MATCHONLYSERIALNO — =
L._ <Boolean expression> —
— /1\ —— PERMANENTLYOWNED — =
L._ <Boolean expression> —
— /1\ — SECURITYGUARD — = <file title>
—|—_ nn
— /1\ — SECURITYLABELS — =
L._ <Boolean expression> —

— /1\ — SECURITYMODE — = — <integer expression>

— /1\ — SECURITYTYPE —
L /1\ — SECURITYUSE ——

— <file mnemonic primary>
— <file mnemonic primary>

8600 1047-506

VOLUME Statement

Explanation

.The VOLUME statement applies to cataloging systems and systems with the tape
security subsystem activated. It is used to add, modify, or delete a family description in
the cataloging volume library or the tape volume directory.

A cataloging volume library or a tape volume directory is a database containing
information on volumes, with one entry per volume family. The cataloging feature
provides a method for locating where backup files from disk and tape are stored.

Note: Only privileged jobs and jobs started from an ODT can issue a VOLUME
command. (The VOLUME CHANGE command is the only exception to this rule.)

The volume name and the file attributes KIND and SERIALNO are required to identify the
family. If the volume name is DISK or PACK, the KIND attribute defaults to DISK and can
be omitted. When SCRATCH is specified as the volume name in a VOLUME ADD
statement, it indicates that the volume is a scratch volume.

For tapes with two-level names (for example, LMTAPE/FILEOOO), the tape name is the
first name.

Options
The following options are available in the VOLUME statement.

VOLUME ADD

Creates an entry in the cataloging volume library and/or the tape volume directory. When
an entry for a tape volume is created, the system automatically tracks the changing
status of the tape volume. It is not necessary to issue a new VOLUME ADD each time
the status of the tape volume changes. The order of the serial numbers in the statement
coincides with the order of the volumes in the family (reel number).

Only privileged jobs and jobs started from an ODT can issue a VOLUME ADD. The
volume family does not need to be online when the VOLUME ADD is executed.
However, if the volume family is onling, the information in the WFL statement is
supplemented by other information stored in the entry, such as the volume creation date.

Serial numbers added to the volume library must be unique for tapes and for disks. The
VOLUME ADD request is rejected if an entry in the volume library contains a serial
number for a volume (disk or tape) that matches a serial number in the list to be added in
the VOLUME ADD request. Therefore, the entry with the conflicting serial number must
be deleted from the volume library before the VOLUME ADD request can be executed.

VOLUME CHANGE

Changes the tape volume directory entry (but not the cataloging volume library entry) for
a tape family. Only the attributes SECURITYGUARD, SECURITYTYPE, SECURITYUSE,
SECURITYMODE, and the subattributes of SECURITYMODE can be changed.

The VOLUME CHANGE statement for tape files is similar to the SECURITY statement for
disk files.

8600 1047-506 6-195

VOLUME Statement

6-196

VOLUME CHANGE can be used by privileged jobs and for nonprivileged jobs with tapes
owned by the job.

Note: |If the VOLUME CHANGE statement is used to alter the SECURITYMODE
subattributes of a tape volume (for example, OWNERRWX, GROUPRWX, and so on),
then all of the desired attributes must be specified in the CHANGE request similar to
what is required on a VOLUME ADD statement. All SECURITYMODE subattributes that
are omitted from the VOLUME CHANGE request revert back to their default values.

VOLUME DELETE

Deletes entries from the cataloging volume library and/or the tape volume directory. The
order that serial numbers appear in the statement does not need to be the order of
volumes in the family.

The family must not be in use when the VOLUME DELETE is executed.
Note: Only privileged jobs and jobs started from an ODT can issue a VOLUME DELETE.

VOLUME DESTROYED

Changes the entry for one or more tape volumes in the cataloging volume library and/or
the tape volume directory, to show that the volumes are no longer usable. The entry for a
volume remains in the cataloging volume library and/or the tape volume directory and can
be subsequently deleted.

The archive system in the MCP will not request tape volumes that are marked as offsite,
unless there are no other backup copies of the requested file.

VOLUME DESTROYED does not affect cataloging information. To cancel the destroyed
condition, the volume can be deleted and reentered in the cataloging volume library
and/or the tape volume directory.

Note: Only privileged jobs and jobs started from an ODT can issue a VOLUME
DESTROYED statement.

VOLUME OFFSITE

Marks the entry for one or more tape volumes in the cataloging volume library and/or the
tape volume directory. This will show that the tape, or tapes, are offsite.

The file search mechanism in the MCP will not request tape volumes that are marked as
offsite, unless there are no other backup copies of the requested file on tapes that are
not marked as offsite or destroyed.

VOLUME ONSITE

Marks the entry for one or more tape volumes in the volume library and/or volume
directory that are no longer offsite.

Note: The default value for a volume when a VOLUME ADD is completed is ONSITE.

8600 1047-506

VOLUME Statement

The onsite/offsite status is displayed by the PV and TV system commands and the
onsite/offsite status is reported by the SYSTEM/LISTVOLUME and
SYSTEM/LISTVOLUMELIB utility programs.

File Attributes

The following file attributes can be specified in the VOLUME statement:

GROUP

Specifies a group whose members can access the file in the manner defined by the
GROUPRWKX attribute. Any process executing with a task GROUPCODE or
SUPPLEMENTARYGROUPS that matches the GROUP attribute of the file, and that also
does not match as the owner of the file, is granted the access permissions defined by
the GROUPRWX attribute. If the GROUP attribute is not set, then group access is not
granted to any process attempting to access the file.

GROUPR

When set to TRUE, grants group members read-access to the file.

GROUPW

When set to TRUE, grants group members write-access to the file.

GROUPX

Has no effect for tape volumes.

GROUPRWX

Specifies the manner in which members of the group matching the group attribute of the
file are permitted to access the physical file.

GUARDOWNER

Used in conjunction with the USEGUARDFILE attribute to cause the guard file to define
access permissions for the owner of the file.

Note: The GUARDOWNER attribute has no effect if the USEGUARDFILE attribute is
reset.

OTHERR

When set to TRUE, grants other users (excluding the owner and members of the group)
read-access to the file.

OTHERW

When set to TRUE, grants other users (excluding the owner and members of the group)
write-access to the file.

OTHERX

Has no effect for tape volumes.

8600 1047-506 6-197

VOLUME Statement

OTHERRWX

Specifies the manner in which all other users (excluding the owner and members of the
group) are permitted to access the physical file.

OWNERR

When set to TRUE, grants the owner read-access to the file.

OWNERW

When set to TRUE, grants the owner write-access to the file.

OWNERX

Has no effect for tape volumes.

OWNERRWX

Specifies the manner in which the owner of the file is permitted to access the physical
file.

SECURITYLABELS

When set to true, the system stores the security attributes for files in the tape labels on
the tape volume.

A VOLUME statement can be used to set the SECURITYLABELS attribute to TRUE or
the PERMANENTLYOWNED attribute to TRUE, but not both. The system will reject a
VOLUME statement that specifies both SECURITYLABELS=TRUE and
PERMANENTLYOWNED = TRUE.

Note: Only one serial number can be specified in the serial number list of the
SERIALNO attribute when you use either the SECURITYLABELS or the
MATCHONLYSERIALNO attribute.

SECURITYMODE

Specifies the manner in which users are permitted to access the physical file, including
the owner of the file.

SERIALNO

The SERIALNO attribute for disks and packs works in a special manner.

The VOLUME ADD statement for a disk or pack family should specify the serial number
of the disk with the family index number 1. For multipack families, the serial number of
the disk with family index 1 should be specified even if the family has more than one
base pack. The serial number of the disk with family index 1 should be specified even if
that member no longer has a directory or even if that particular disk has disappeared.

Note: Do not use more than one serial number in a list for a disk and pack family
specification.

6-198 8600 1047-506

VOLUME Statement

SETGROUPCODE

Has no effect for tape volumes.

SETUSERCODE

Has no effect for tape volumes.

USEGUARDFILE

When set to TRUE, a guard file in addition to the SECURITYMODE attribute controls
access to the physical file. In order for the guard file to control access to the file
completely, all of the file’s access permission flags OWNERRWX, GROUPRWX, and
OTHERRWX should be set to TRUE.

Tape Volume Security

The tape volume security feature is available through the InfoGuard security
enhancement software and the Security Accountability Facility. When the tape security
subsystem is activated, the system applies security constraints and checks on tape files.
The two main features of the tape security subsystem include: tape volume ownership
and tape file security.

For details, refer to the discussion of controlling tape file access in the Security

Administration Guide, and the discussion of securing tapes in the Security Features
Guide.

8600 1047-506 6-199

VOLUME Statement

VOLUME ADD Statement with Tape Security Subsystem

6-200

The following file attributes can be specified for a VOLUME ADD statement when the
tape security subsystem is activated.
FAMILYOWNER

Indicates the owner of the tape volume. If FAMILYOWNER is not specified, or is
specified as ” ", the owner will be the usercode of the task issuing the VOLUME ADD. If
FAMILYOWNER is specified as *, the tape will be owned by the jobs and tasks running
without a usercode.

GROUP

Specifies a group whose members can access the file in the manner defined by the
GROUPRWKX attribute. Any process executing with a task GROUPCODE or
SUPPLEMENTARYGROUPS that matches the GROUP attribute of the file, and that also
does not match as the owner of the file, is granted the access permissions defined by
the GROUPRWX attribute. If the GROUP attribute is not set, then group access is not
granted to any process attempting to access the file.

GROUPR

When set to TRUE, grants group members read-access to the file.

GROUPW

When set to TRUE, grants group members write-access to the file.

GROUPX

Has no effect for tape volumes.

GROUPRWX

Specifies the manner in which members of the group matching the group attribute of the
file are permitted to access the physical file.

GUARDOWNER

When used in conjunction with the USEGUARDFILE attribute, causes the guard file to
define access permissions for the owner of the file.

Note: The GUARDOWNER attribute has no effect if the USEGUARDFILE attribute is
reset.

MATCHONLYSERIALNO

When set to TRUE, instructs the system not to check the tape names and creation dates
of an entry in the tape volume directory. The volume name is ignored.

OTHERR

When set to TRUE, grants other users (excluding the owner and members of the group)
read-access to the file.

8600 1047-506

VOLUME Statement

OTHERW

When set to TRUE, grants other users (excluding the owner and members of the group)
write-access to the file.

OTHERX

Has no effect for tape volumes.

OTHERRWX

Specifies the manner in which all other users (excluding the owner and members of the
group) are permitted to access the physical file.

OWNERR

When set to TRUE, grants the owner read-access to the file.

OWNERW

When set to TRUE, grants the owner write-access to the file.

OWNERX

Has no effect for tape volumes.

OWNERRWX

Specifies the manner in which the owner of the file is permitted to access the physical
file.

PERMANENTLYOWNED

When set to TRUE, only tape files with a matching FAMILYOWNER can be written on
the tape. If it is set to FALSE, when tape files with a different owner are written on the
tape, the FAMILYOWNER of the tape volume is automatically changed.

SECURITYLABELS

When set to TRUE, maintains security attributes SECURITYTYPE, SECURITYUSE,
SECURITYGUARD, and FAMILYOWNER in the tape volume label. With this information
on the tape itself, a tape can be transferred easily among hosts in a multihost
environment. At volume creation, the system determines the security attribute values of
the first file written to the volume. The tape system then writes those values to the tape
label and to the volume directory.

Each volume of a multivolume file must have a SECURITYLABELS value that matches
the SECURITYLABEL value of the first volume. When a SECURITYLABELS=TRUE comes
onling, the system reads the security attribute values from the tape label and updates the
volume directory accordingly.

Note: A VOLUME statement can set the SECURITYLABELS attribute to TRUE or the
PERMANENTLYOWNED attribute to TRUE but not both. The system will reject a
VOLUME statement that specifies both SECURITYLABELS=TRUE and
PERMANENTLYOWNED=TRUE.

8600 1047-506 6-201

VOLUME Statement

6-202

SECURITYMODE

Specifies the manner in which users are permitted to access the physical file, including
the owner of the file.

SECURITYTYPE

Provides access control over users, other than the owner of a file, to a physical file. This
attribute can have a value of PRIVATE (default), PUBLIC, GUARDED, or CONTROLLED.
PRIVATE files can be accessed or overwritten only by their owners and privileged users.
PUBLIC files can be accessed by tasks with any usercode, as limited by the setting of
the SECURITYUSE attribute. The security of GUARDED and CONTROLLED tape files is
determined by the guard file referenced by the SECURITYGUARD attribute.
SECURITYGUARD

Identifies the guard file to be used if the SECURITYTYPE attribute is set to GUARDED or
CONTROLLED.

SECURITYUSE

Has a value of 10 (default), IN, or OUT. When a PUBLIC file is accessed by a task with a
usercode that differs from the FAMILYOWNER, the SECURITYUSE attribute can be used
for the following actions based on its value:

e A value of 10 permits reading, writing, overwriting, and purging.

e Avalue of IN permits reading but not writing, overwriting, or purging.

e A value of OUT permits writing, overwriting, or purging, but not reading.

SETGROUPCODE

Has no effect for tape volumes.

SETUSERCODE

Has no effect for tape volumes.

USEGUARDFILE

When set to TRUE, then a guard file in addition to the SECURITYMODE attribute controls
access to the physical file. In order for the guard file to control access to the file
completely, all of the file’s access permission flags OWNERRWX, GROUPRWX, and
OTHERRWHX should be set to TRUE.

Notes:

o Many security attributes are interrelated, therefore changes to one attribute might
affect another attribute.

e The ENABLEPOSIX system option no longer controls functionality. However, you
still have the ability to control this option, which enables you to switch between the
current MICP and earlier MICP versions.

For details about these file attributes, refer to the File Attributes Reference Manual.

8600 1047-506

VOLUME Statement

Examples

The following examples illustrate use of the VOLUME statement syntax.

This statement establishes a two-volume tape family with the volume name QFILES;
both volumes are permanently owned by the usercode AEDEPT:

VOLUME ADD QFILES (TAPE, SERIALNO = (111111, 222222),
FAMILYOWNER = AEDEPT, PERMANENTLYOWNED)

This statement establishes a volume directory entry for a tape volume named QFILES
under the usercode AEDEPT:

VOLUME ADD QFILES (TAPE, SERIALNO = (111111),
FAMILYOWNER = AEDEPT,
SECURITYTYPE = GUARDED,
SECURITYGUARD = NEWGUARD)

This statement changes the status of the entry for the tape LPROGS so that the tape is
GUARDED with GUARD FILE A/B:

VOLUME CHANGE LPROGS (TAPE, SERIALNO = "PROGM1",
SECURITYTYPE = GUARDED, SECURITYGUARD = A/B)

This statement deletes the entry for PACK from the cataloging volume library:

VOLUME DELETE PACK (SERIALNO = 333333)
This statement changes the status of the entry for tape ABC to damaged:

VOLUME DESTROYED ABC (TAPE, SERIALNO = 123456)
The following statement establishes a volume directory entry for a scratch tape volume
under the usercode AEDEPT. The security attribute values are stored in the tape volume
label when a file is written to the tape.

VOLUME ADD SCRATCH (TAPE, SERIALNO = (111111),

FAMILYOWNER = AEDEPT,
SECURITYLABELS = TRUE)

8600 1047-506 6-203

WAIT Statement

WAIT Statement

<wait statement>
— WAIT

. . . s . |
L (<string expression>— , —<wait specification>—) J
—E<str‘1' ng expression
<wait specification

<wait specification>

0K |
<real expression
<task identifier
<task state
<simple task relation
<task mnemonic comparision
<task identifier>— (—<Boolean task attribute>—) —

FILE —<file title>— IS — RESIDENT

<simple task relation>

—<task identifier>— (<integer task attribute>)y —m—
—E<rea1 task attm’bute>——|_
—~<real relation>—<real expression {

Explanation

6-204

The WAIT statement enables the job stack to suspend execution until specified
conditions are met. The following t options are available in the WAIT statement.
WAIT and WAIT (<string expression>)

The simple form of the WAIT statement causes the job stack to wait for its own
exception event. If a string expression is used, it is displayed (up to 430 characters) on
the ODT.

WAIT (OK)

The job stack is suspended until an OK is entered from the ODT.

WAIT (<real expression>)

The job stack waits the specified number of seconds and then resumes execution.

WAIT (<task identifier>)

The job stack waits until the task is completed. This statement has no effect on the task
when the value of the STATUS attribute for the task is BADINITIATE, TERMINATED, or
NEVERUSED.

WAIT (<task state>)

The job stack waits until the task is completed or achieves the given state. This
statement has no effect on the task when the value of the STATUS attribute for the task
is BADINITIATE, TERMINATED, or NEVERUSED.

8600 1047-506

WAIT Statement

WAIT (<simple task relation>)

The job stack waits until either the task is completed or the task attribute satisfies the
relation. The job stack waits for its own exception event. The job does not resume
execution until this event is caused and one of the previously mentioned conditions is
met.

The exception event of the job can be caused by the following:

o A task that changes task state

e Entering the HI (Cause Exception Event) system command at the ODT

e Programmatic cause from the task

The real expression in a simple task relation cannot contain another reference to a task
identifier.

WAIT (<task mnemonic comparison>)

The job stack waits until the comparison is satisfied.

WAIT (<task identifier> (<Boolean task attribute>))

The job stack waits either until the task is completed or until the Boolean task attribute is
TRUE.

WAIT (FILE <file title> IS RESIDENT)

The job stack waits until the file is resident. If the file is absent, a "NO FILE" condition
displays.

The exception event of the job need not be caused for this form of the WAIT statement
to be completed.

Note: There is a maximum WAIT time limit of 164925 seconds (approximately 45.8
hours). If the time specified in a WAIT statement is longer than 164925 seconds, the
WAIT time will be truncated to 45.8 hours.

Examples

The following examples illustrate the WAIT statement.

The simple form of the WAIT statement causes the job task to wait for its own exception
event to be caused and then resets the exception event. The WFL job can then wait for a
complex situation, such as that shown in the following example:

DO WAIT UNTIL
(T1(TASKVALUE) = 1 OR
T1(TASKVALUE) = 3 OR
T1(ACCUMPROCTIME) GTR 1000 OR
T1 IS COMPLETED);

8600 1047-506 6-205

WAIT Statement

6-206

The following are examples of WAIT statements:

WAIT

WAIT

WAIT

WAIT

WAIT

WAIT

WAIT

WAIT

WAIT

(0K)

("NEXT EVENT NOT HAPPENED", 0K)
(30)

(TSK)

(TSK IS ACTIVE)

(TSK (TASKVALUE) EQL 9)

(TSK (STATUS) IS TERMINATED)
(TSK (SwW1))

(FILE A IS RESIDENT)

If a WFL job processed an ALGOL task and is waiting, the exception event could be
caused in the ALGOL task. For example, the following WFL statements process an
ALGOL task and then wait for the TASKVALUE of that task to reach a certain value:

PROCESS RUN X[T];

WAIT

(T(TASKVALUE) = 10);

The following ALGOL statements are from the program X, which is referenced in the
previous example. These statements set the TASKVALUE to 10 and then cause the
exception event of the WFL job. By causing the job exception event, the task enables

the job to detect the fact that the TASKVALUE has changed.

MYSELF.TASKVALUE := 10;
CAUSE (MYJOB.EXCEPTIONEVENT) ;

8600 1047-506

WHILE Statement

WHILE Statement

<while statement>

— WHILE — <Boolean expression> — DO — <statement> {

Explanation
The WHILE statement enables you to perform a statement while a condition is TRUE.

The Boolean expression is evaluated; if the result is TRUE, the statement following the
DO is executed. This sequence of events continues until the Boolean expression
becomes FALSE or the statement following the DO transfers control outside itself.

Note: [f the Boolean expression never evaluates to FALSE, and no GO statement is
used to transfer control outside, the WHILE statement can result in an infinite loop.

If the same PROCESS statement is executed repeatedly by a WHILE statement, a run-
time error might result. This can occur because the asynchronous task initiated by an
earlier pass through the WHILE statement might still be running, and a given task
variable can only be used by one task at a time.

Example
The following is an example of the WHILE statement:
WHILE T(TASKVALUE) NEQ 1 DO
BEGIN
INITIALIZE(T);

RUN X[T];
END;

8600 1047-506 6-207

WRAP Statement

WRAP Statement

6-208

<wrap statement>

— WRAP B wrap group B
i: & —— DSONERROR
AND

<wrap volume>]

L [— <task identifier> —] il

|J— ; — <task attribute assignment> JJ

<wrap group>

<wrap request> | B N
, — <simple wrap request>
<simple wrap request>

<simple wrap request>

L <wrap 1”1'1e> |

<wrap request>

L <wra fi i
p file> INTO — <file name>
SEPARATELY —

<wrap file>

<file name>
L AS — <file name> il

<directory name>

<wrap volume>

L AS — <directory name> J

TO — <destination>
E FROM — < source>

L TO — <destination> |
<source>

— <family name>

L _
R

<destination>

DISK ——!
PACK —

CDROM

(O —-

— <family name> — (|L/l\ B ’J i:
KIND — =

/1\ — RESTRICTED

DISK
PACK

_—[

TRUE
FALSE

ﬁ

)

8600 1047-506

WRAP Statement

Explanation

The WRAP statement enables users to

e \Wrap disk files into new files with a FILEKIND value of WRAPPEDDATA.
e Wrap multiple disk files into a single file with a FILEKIND value of CONTAINERDATA.

o Create wrapped files and wrapped containers with digital signatures.

A wrapped file created using the WRAP statement contains the file data and the original
disk file headers. A wrapped container is made up of one or more wrapped files. Both
wrapped files and containers can be transported across an open network and then be
re-created on another A Series or HMP NX Series system using the UNWRAP statement.

If the DSONERROR option is specified, the wrap process aborts whenever it encounters
an error.

The TASKVALUE attribute can be tested to determine the success or failure of the wrap
or unwrap of disk files. When the value of the TASKVALUE attribute is 0, all requests
were satisfied. When the value of the TASKVALUE attribute is not 0, one or more files
were not wrapped or unwrapped. A nonzero value is also returned if the wrap or unwrap
operation is discontinued.

To wrap files into a container, use the INTO syntax. To unwrap files out of a container,
use the OUTOF syntax. For details on using the "="and "*=" syntax, refer to the COPY or
ADD statement earlier in this section.

Although WRAP statement syntax permits the specification of the RESTRICTED
attribute, primarily for consistency with the UNWRAP statement, the attribute has no
meaning upon a wrap operation and is ignored. Refer to the UNWRAP statement earlier
in this section for information on how to use the RESTRICTED attribute.

Digital Signatures

The WRAP statement enables also you to create a wrapped file or wrapped container
with an embedded digital signature. A digital signature is a hash pattern that is created
by applying an industry standard signature algorithm to the file along with a private key.
This hash pattern travels with the file across a network and is used with a public key to
ensure that the file has not been compromised during the transfer process.

8600 1047-506 6-209

WRAP Statement

To wrap files with a digital signature, you must

1. Obtain a public and private key pair for the software level that the files are to be
wrapped against. For information on how to generate digital signature public and
private keys, refer to the procedure MCP_GENERATEDSAKEYS in the Master
Control Program (MCP) System Interfaces Programming Manual.

2. Specify the hex string value of the private key through the task attribute
TASKSTRING. If the files are to be wrapped against a software level other than the
current level, specify that software level through the task attribute TARGET.

Note: A digital signature key pair generated for one software level cannot be used
to wrap files against another software level.

3. Pass on the corresponding public key to the party responsible for unwrapping the
digitally signed wrapped files or wrapped containers.

Digital signatures are optional for most files. However, when wrapping a file whose
FILEKIND attribute value is KEYSFILE, the system requires the file to be digitally signed.
This restriction ensures that sensitive data contained in the keysfile is not being modified
in any way and guarantees the authenticity of the originator of the file.

Examples

6-210

The following example shows how to create the wrapped file WRAPPED/FILEA from
FILEA and WRAPPED/FILEB from FILEB:

WRAP FILEA AS WRAPPED/FILEA,
FILEB AS WRAPPED/FILEB;

The following example shows how to create the wrapped file FILED by overwriting the
original file with the same title:

WRAP FILED;

The following example shows how to create the container CONTAINER1 that includes
FILEE and FILEF:

WRAP FILEE, FILEF INTO CONTAINER;

The following example shows how to create the container CONTAINERZ2 that includes
the renamed files FILEG2 and FILEH2:

WRAP FILEG AS FILEGZ,

FILEH AS FILEH2
INTO CONTAINERZ;

8600 1047-506

WRAP Statement

The following example shows how to create both wrapped files and containers in one
single WRAP statement:

WRAP FILEI AS WRAPPED/FILEI,
FILEJ SEPARATELY,
FILEK, FILEM INTO CONTAINER3,
FILEN AS FILENZ2, FILEO INTO CONTAINER4;

The following example demonstrates the DSONERROR option. If any of the specified
files is missing, the container MYCONTAINER is not created.

WRAP &DSONERROR MYFILE/A, MYFILE/B, MYFILE/C
INTO MYCONTAINER FROM DISK TO PACK;

The following example shows how to create a digitally signed wrapped file against SSR
level 44.2. The private key has already been generated based on SSR level 44.2.

WRAP MY/FILE AS MY/SIGNED/WRAPPED/FILE;
TARGET=442; TASKSTRING=<44.2 private key's hex string>;

The following example shows how to create a digitally signed wrapped container against
the current software level. The private key has already been generated based on the

current software level.

WRAP MY/DIRECTORY/= INTO MY/SIGNED/CONTAINER;
TASKSTRING=<current Tevel private key's hex string>;

8600 1047-506 6-211

WRAP Statement

6-212 8600 1047-506

Section 7
Expressions

Overview
An expression is a combination of basic elements which, on evaluation, yields a result of
a given type (for example, Boolean, real, integer, or string). All variables must be explicitly

declared before they are used in an expression.

The expressions in this section are grouped into Boolean, integer, real, string, and
mnemonic expressions, according to the type of result they return.

Expressions that enable only constant values (no variables) are described under
"Constant Expressions” later in this section.

8600 1047-506 7-1

Boolean Expressions

Boolean Expressions

<Boolean expression>

T e T <Boolean primary>
NOT

- |

| AND
OR
IMP
EQV

Explanation

7-2

<Boolean primary>
#LNOTJ

The relational operators in a Boolean expression have the following meanings.

Operator Meaning

NOT Returns the opposite of the truth value of the Boolean primary it precedes.

AND Returns TRUE if both Boolean primaries are TRUE.

OR Returns TRUE if either or both of the Boolean primaries are TRUE.

IMP Returns TRUE unless the first Boolean primary is TRUE and the second one
is FALSE.

EQV Returns TRUE if both of the Boolean primaries have the same truth value.

The order of priority (highest first) for the execution of Boolean operations is as follows:

Boolean primary

NOT
AND
OR

IMP
EQV

All Boolean primaries are evaluated first; then the NOT operators are applied to the
Boolean primaries that follow them. The other operations are performed in decreasing
order of priority. If two operations are of the same priority, the left operation is performed
first. If a Boolean expression is enclosed in parentheses, it becomes a Boolean primary.

8600 1047-506

Boolean Expressions

Boolean Primary

<Boolean primary>

<Boolean constant>

<Boolean constant identifier>
<Boolean identifier>

<file residence inquiry>
<Boolean file attribute primary> —
<Boolean task attribute primary> —

<task state>
<arithmetic comparison>
<string comparison>

<file mnemonic comparison>
<task mnemonic comparison>

(— <Boolean expression> —) —

Explanation

Syntax for Boolean constants, Boolean constant identifiers, and Boolean identifiers is

given in Section 8, “Basic Constructs.” The other types of Boolean primaries are defined
in the following pages.

8600 1047-506

Boolean Expressions

File Residence Inquiry

7-4

<file residence inquiry>

<file identifier> IS RESIDENT
L FILE — <file title> - L ISNT J !

Explanation

The file inquiry checks to see whether a file is available. If the file was declared in the job,
the file identifier is used in the inquiry.

Examples

The following example illustrates a file residence inquiry expression:
IF INFILE1 IS RESIDENT THEN SUBI;

The residence of files that are not declared in the job can be checked, using the FILE
<file title> form. For example:

FILE (JACOB)OBJECT/LION IS RESIDENT

The file residence inquiry can also be used to check whether or not a tape is available. It
cannot be used to check on the existence of individual files on a tape, however.

The following example is invalid:

?BEGIN JOB;
FILE F (KIND=TAPE, SERIALNO="PAYROL", TITLE=PAYROL/FILE00O0);
IF F IS RESIDENT THEN
DISPLAY"TAPE F IS AVAILABLE"
ELSE
ISPLAY"TAPE F IS NOT AVAILABLE";
?END JOB.

The file residence inquiry can even be used to check on the existence of a global data
specification, because a data specification is read as if it were an input file. For example:

?BEGIN JOB;
FILE G (KIND=READER, TITLE=IN/COUNT);
DATA IN/COUNT
123
?
IF G IS RESIDENT THEN
DISPLAY"GLOBAL DATA IN/COUNT IS PRESENT"
ELSE
DISPLAY"GLOBAL DATA IN/COUNT IS MISSING";
?END JOB.

8600 1047-506

Boolean Expressions

Using File Attributes to Inquire about File Residence

The Boolean file attribute RESIDENT can be used instead of the file residence inquiry to
check on the residence of files at the local host that are declared in the job. For example;

?BEGIN JOB;
FILE F (TITLE=BRANCH/SALES, KIND=DISK);
IF F(RESIDENT) THEN
DISPLAY"FILE F IS RESIDENT"
ELSE
DISPLAY"FILE F IS NOT RESIDENT";
?END JOB.

The file residence inquiry cannot be used to check on files that reside on a remote
system connected through a BNA network. However, this capability is provided by the
AVAILABLE file attribute. AVAILABLE attempts to open a file, and then returns an integer
value indicating a successful open (and thus the existence of the file) or the reason for
failure, without suspending the program or requiring operator intervention. For example:

?BEGIN JOB;
FILE F (TITLE=BRANCH/SALES, KIND=DISK, HOSTNAME=MLM);
IF F(AVAILABLE) = 1 THEN
DISPLAY"FILE F IS RESIDENT AT MLM"
ELSE
DISPLAY"FILE F IS NOT RESIDENT AT MLM";
?END JOB.

Boolean File Attribute Primary

<Boolean file attribute primary>

— <file identifier> — (— <Boolean file attribute> —) 4|

Explanation

The Boolean file attribute primary returns the value of a Boolean file attribute of the
specified file.
Boolean Task Attribute Primary

<Boolean task attribute primary>

— <task identifier> — (— <Boolean task attribute> —) 4|

Explanation

The Boolean task attribute primary returns the value of a Boolean task attribute
associated with the specified task variable.

8600 1047-506 7-5

Boolean Expressions

Task State

7-6

<task state>

— <task identifier> T IS INUSE {

Explanation

ISNT COMPLETED —
SCHEDULED —
ACTIVE
STOPPED ——
ABORTED ——
COMPLETEDOK —
COMPILEDOK —

The state returns information about the status of a task. The task must be associated
with a task variable that has the specified task identifier. The following are the different

task states.

Task State Meaning

INUSE The task is SCHEDULED, ACTIVE, or STOPPED.

COMPLETED The task was initiated and has terminated.

SCHEDULED The task has not yet been initiated by the system.

ACTIVE The task is currently running.

STOPPED The task was stopped by the operator, suspended by the system, or
programmatically suspended.

ABORTED The task faulted or was discontinued.

COMPLETEDOK The task is completed and was terminated without faulting or being
discontinued.

COMPILEDOK The task compiled without syntax errors.

Example

The following example uses the task state expression:

RUN OBJECT/X [TVAR];
IF TVAR IS COMPLETEDOK THEN

SuB1

ELSE IF TVAR IS ABORTED THEN
DISPLAY"UNSUCCESSFUL RUN";

8600 1047-506

Boolean Expressions

Arithmetic Comparison

<arithmetic comparison>

T <real expression> —T <real relation>
<integer expression>

->—|: <real expression> B
<integer expression>

<real relation>
LSS

— LEQ]
— GTR —
— GEQ |
L EQL —
— NEQ]
< —

> —

Explanation

An arithmetic comparison compares the values of two real or integer expressions. If their
values are related in the way specified by the real relation, the arithmetic comparison
returns TRUE; otherwise, it returns FALSE.

The real relations have the following meanings.

Real Relation Meaning
LSS, < Less than
LEQ Less than or equal to
GTR, > Greater than
GEQ Greater than or equal to
EQL, = Equal to
NEQ Not equal to

String Comparison

<string comparison>

— <string expression> —E =

Explanation

<string expression>
EQL
NEQ

A string comparison is a Boolean primary that enables comparison of the values of two
string expressions. Two strings are equal only if all characters in the first string occur in
the same order as in the second string, and the lengths of the two strings are equal.

8600 1047-506

7-7

Boolean Expressions

File Mnemonic Comparison

<file mnemonic comparison>

— <file identifier> — (— <mnemonic file attribute> —) —I)

> IS T <file mnemonic primary>
L ISNT !

Explanation

A file mnemonic comparison is used to inquire about the values of mnemonic file
attributes associated with a file. The file mnemonic comparison returns TRUE if the
specified file attribute has the same value as the file mnemonic primary. Refer to
“Mnemonic Primaries” later in this section and “Interrogating File Attributes” in
Section 5 for related information.

Task Mnemonic Comparison

<task mnemonic comparison>

— <task identifier> — (— <mnemonic task attribute> —) ﬁ

> IS <task mnemonic primary>
L s !

Explanation

A task mnemonic comparison is used to inquire about the values of task attributes
associated with a task variable. The task mnemonic comparison returns TRUE if the
specified task attribute has the same value as the task mnemonic primary.

Example

The following example includes two task mnemonic comparisons that interrogate the
value of the STATUS attribute:

PROCESS RUN OBJECT/X [TVAR1];

PROCESS RUN OBJECT/Y [TVAR2];

DO WAIT UNTIL

TVARL(STATUS) IS TERMINATED AND TVAR2(STATUS) IS TERMINATED;

This example initiates two asynchronous tasks and then waits for both of them to finish
before proceeding.

7-8 8600 1047-506

Integer Expressions

Integer Expressions

<integer expression>
|

—H <integer primary> |
- + <integer primary>

DIV
MOD

Explanation

The plus sign (+) operator gives the sum of the integer primaries; the minus sign (-)
operator gives their difference; the asterisk (*) operator gives their product. The DIV
operator gives a quotient with the fractional part truncated. The MOD operator gives the
remainder after the first integer primary has been divided by the second.

The order of evaluation (highest first) for arithmetic operations is as follows:

e Integer primary
o Prefix + or—
e * DIV, or MOD

e Infix + or—

First, all integer primaries are evaluated; second, the prefix + or — (if any) is applied to the
integer primary that it precedes. Finally, the remaining operations are performed in
decreasing order of priority. If two operations are of the same priority, the left operation
is performed first. When an integer expression is enclosed in parentheses, it becomes an
integer primary.
Example
3+1=4

7 MOD 4 = 3

8600 1047-506 7-9

Integer Expressions

Integer Primary

<integer primary>

<integer constant> |
— <instant constant identifier>
— <integer identifier>

— <decimal function>
— <integer function>
— <length function>
— <integer file attribute primary> —
— <integer task attribute primary> —
L (— <integer expression> —) —

Explanation

Syntax for integer constants, integer constant identifiers, and integer identifiers is given
in Section 8, “Basic Constructs.” The other kinds of integer primaries are defined in the
following pages.

DECIMAL Function

<decimal function>
— DECIMAL — (— <string function> —) }

Explanation

The DECIMAL function returns an integer value equal to the decimal (base 10) number
represented by the value of the string expression. The string expression must contain at
least 1 and not more than 12 characters. All characters included in the value of the string
expression must be within the set of characters “0123456789". A runtime error occurs if
the string expression does not satisfy these requirements.

Examples

The following are examples of the DECIMAL function:
DECIMAL("10") % YIELDS 10 (DECIMAL)

DECIMAL("255") % YIELDS 255 (DECIMAL)

8600 1047-506

Integer Expressions

INTEGER Function

<integer function>

— INTEGER — (— <real expression> —) |

Explanation

The INTEGER function returns a result equal to the real expression but without the
fractional part. Truncation of the fractional part occurs whether the function is invoked
explicitly or implicitly.

Example

The following is an example where | is an INTEGER variable and R is a REAL variable
containing the value “123.673":

I:

INTEGER(123.673); % YIELDS 123 (EXPLICITLY INVOKED)

I:=R; % YIELDS 123 (IMPLICITLY INVOKED)

LENGTH Function

<length function>

— LENGTH — (— <string expression> —) |

Explanation

The LENGTH function returns the number of characters contained in the value of the
string expression. The LENGTH function supports string expressions of up to
1032 characters.

Example
LENGTH("ABCDEF") % YIELDS 6

Integer File Attribute Primary

<integer file attribute primary>

— <file identifier> — (— <integer file attribute> —) 4|

Explanation

The integer file attribute primary returns the value of an integer file attribute associated
with the specified file.

8600 1047-506 7-11

Integer Expressions

Integer Task Attribute Primary

<integer task attribute primary>

— <task identifier> — (— <integer task attribute> —) 4|

Explanation

The integer task attribute primary returns the value of an integer task attribute associated
with the specified task variable.

Example

In the following example, MYJOB(SOURCESTATION) returns the logical station number
(LSN) of the station that originated the job:

RUN (WALLY)NUMB/COUNT;
STATION = MYJOB(SOURCESTATION);

7-12 8600 1047-506

Real Expressions

Real Expressions

<real expression>

—H <real primary> |
- + <real primary>

DIV
MOD

Explanation

The plus sign (+) operator gives the sum of the real primaries; the minus sign (-) operator
gives their difference; the asterisk (*) operator gives their product. The slash (/) operator
gives a quotient that preserves the fractional part; the DIV operator gives a quotient with
the fractional part truncated. The MOD operator gives the remainder after the first real
primary has been divided by the second.

The order of evaluation (highest first) for arithmetic operations is as follows:

e Real primary
e Prefix + or -
o * /[, DIV, or MOD

e Infix + or—

First, all real primaries are evaluated; second, the prefix + or — (if any) is applied to the
real primary that it precedes. Finally, the remaining operations are performed in
decreasing order of priority. If two operations are of the same priority, the left operation
is performed first. When a real expression is enclosed in parentheses, it becomes a real
primary.

8600 1047-506 7-13

Real Expressions

Real Primary

<real primary>

<real constant> |
— <real constant identifier>
— <real identifier>

— <hex function>
— <octal function> ———
— <real file attribute primary> —
— <real task attribute primary> —
— <integer primary> ——
L (— <real expression> —) —

Explanation

Syntax for real constants, real constant identifiers, and real identifiers is given in
Section 8, “Basic Constructs.” The syntax for an integer primary is given earlier in this
section, and the other real primaries are defined in the following pages.

HEX Function

<hex function>

— HEX — (— <string expression> —) |

Explanation

The HEX function returns a real value equal to the hexadecimal (base 16) number
represented by the value of the string expression. The string expression must contain at
least 1 and not more than 12 characters. All characters in the value of the string
expression must be within the set of characters "0123456789ABCDEF". A runtime error
occurs if the string expression does not satisfy these requirements.

Examples

The following examples are HEX functions:
HEX("10") % YIELDS 16 (DECIMAL)

HEX("FF") % YIELDS 255 (DECIMAL)

7-14 8600 1047-506

Real Expressions

OCTAL Function

<octal function>

— OCTAL — (— <string expression> —) |

Explanation

The OCTAL function returns a real value equal to the octal (base 8) number represented
by the value of the string expression. The string expression must contain at least 1 and
not more than 16 characters. All characters in the value of the string expression must be
within the set of characters “01234567". A runtime error occurs if the string expression
does not satisfy these requirements.

Examples

The following examples illustrate OCTAL functions:
OCTAL("10") % YIELDS 8 (DECIMAL)

OCTAL("377") % YIELDS 255 (DECIMAL)

Real File Attribute Primary

<real file attribute primary>

— <file identifier> — (— <real file attribute> —) }

Explanation

The real file attribute primary returns the value of a real file attribute associated with the
specified file.

8600 1047-506 7-15

Real Expressions

Real Task Attribute Primary

<real task attribute primary>

— <task identifier> — (— <real task attribute> —) |

Explanation

The real task attribute primary returns the value of a real task attribute associated with
the specified task variable.

Example

The following example illustrates a real task attribute primary:

RUN STAT/PROG [TV1];

RUN NEW/STAT/PROG [TV2];

IF TV2(ACCUMIOTIME) < TV1(ACCUMIOTIME) THEN
DISPLAY"NEW FEATURE SAVES 10 TIME"

ELSE
DISPLAY"NEW FEATURE IS A FLOP";

In this example, real task attribute primaries are used to return the accumulated I/O time
of two tasks.

7-16 8600 1047-506

String Expressions

String Expressions
<string expression>

<string primary>
T g e enmen

J—[& <string primary> |
/ 1 L /= L ON — <string primary> J

Explanation

The operators in a string expression have the following meanings.

Operator Meaning

* Adds an asterisk (*) prefix to the string primary

& Concatenates two or more strings

/ Concatenates two or more strings and inserts a slash (/)

between each string primary

/= Adds a slash-equal (/=) suffix to the string primary

ON Inserts the string " ON " between two string primaries.

Note: The word ON is preceded and followed by a blank
character.

When the ampersand (&) operator is used to concatenate two or more strings, a new
string is created with a length equal to the sum of the lengths of the original strings. The
new string is formed by joining a copy of the last string to the end of a copy of the
previous string, and so forth, until all strings are concatenated. Therefore, all string
concatenation operations are performed from left to right.

No string containing more than 256 characters can be formed; a runtime error results
from an attempt to do so.

String variables and string constants can only contain up to 256 characters. String
expressions containing at least one string variable can contain up to 1032 characters. A

runtime error results from an attempt to create a larger string than is allowed.

The asterisk (*), slash (/), slash-equal (/=) and ON operators are intended to aid in building
file titles from strings.

When a string expression is enclosed in parentheses, it becomes a string primary.

8600 1047-506 7-17

String Expressions

Examples

The following two examples illustrate how to use these operators to build file titles.
This example creates the file title SALESJANUARY ON PAK.

STR1:="SALES";

STR2:="JANUARY";

PGMNAME:= STR1 & STR2 ON"PAK";
This example creates the file title SALES/JONES/= ON ABC.

STR1:="SALES";

STRZ2:="JONES";
PGMNAME:= STR1/STR2/= ON"ABC";

String Primary

<string primary>

—— <string constant> {
— <string constant identifier>
— <string identifiers ———
— <string file attribute primary> —
— <string task attribute primary> —
— <accept function>
— <head-tail functions>
— <string function>
— <system function>
— <take-drop functions>

— <timedate functions> —
L (— <string expression> —) —

Explanation

Syntax for string constants, string constant identifiers, and string identifiers is given in
Section 8, “Basic Constructs.” The other kinds of string primaries are defined in the
following pages.

8600 1047-506

String Expressions

String File Attribute Primary

<string file attribute primary>

— <file identifier> — (<file name file attribute> —) ———————{
<mnemonic file attribute> —
<name file attribute>
<string file attribute>
<title file attribute>
KIND

Explanation

A string file attribute primary returns the value of an attribute of the file with the specified
file identifier. The file attribute must be of type mnemonic, name, file name, string, or
title.

The KIND attribute returns the kind of device the file resides on.
The file attribute SERIALNO cannot be used as a string primary.
Refer to “Interrogating File Attributes” in Section 5 for related information.

Example

This example yields one of the mnemonic values CONTROLLED, GUARDED, PRIVATE,
or PUBLIC.

TASKA (STATUS)

String Task Attribute Primary

<string task attribute primary>

— <task identifier> — (—— <file name task attribute> —) 4|
— <mnemonic task attribute> —
— <name task attribute>
— <string task attribute>
— <title task attribute>
— ACCESSCODE
— FAMILY
— OPTION
.~ USERCODE

Explanation

A string task attribute primary returns the value of a task attribute associated with the
specified task variable. The task attribute can be of type mnemonic, name, file name,
string, or title.

Additionally, a string task attribute primary can be used to return the value of the

complex task attributes FAMILY, USERCODE, ACCESSCODE, and OPTION. Refer to
“Interrogating Complex Task Attributes” in Section 5 for further information.

8600 1047-506 7-19

String Expressions

Example

The following example returns the current value of the STATUS attribute of task variable
TASKA:

TASKA (STATUS)

Possible values include NEVERUSED, SCHEDULED, and ACTIVE.

ACCEPT Function

7-20

<accept function>

— ACCEPT — (— <string expression> —) |

Explanation

The ACCEPT function displays a string on the ODT and waits for an operator to respond
by way of an AX (Accept) system command. For a description of this command, refer to
the System Commands Reference Manual.

The AX command can also be entered from the MARC Action line, as explained in the
MARC Operations Guide. If the job was initiated through CANDE, the string is also
displayed at the originating terminal, and can be replied to by using CANDE 2AX
command. For details, refer to the control commands in the CANDE Operations
Reference Manual.

The first 430 characters of the AX operator response are returned as the value of the
ACCEPT function.

The response to the ACCEPT function can be entered before the actual execution of that
function.

Example

The following example runs a program and then examines the task state to see whether
the program terminated normally. If it did not, then the value of the HISTORYTYPE
attribute is displayed, and an ACCEPT function asks the user whether they want the job
to continue:

RUN OBJECT/PROG ON ORDSPK [T];

IF T ISNT COMPLETEDOK THEN

BEGIN

DISPLAY"JULY RUN TERMINATED ABNORMALLY DUE TO"

& T(HISTORYTYPE);

IF ACCEPT("DO YOU WISH TO CONTINUE? YES OR NO") NEQ"YES" THEN
ABORT"JOB ABORTED AT YOUR REQUEST";

END;

8600 1047-506

String Expressions

HEAD and TAIL Functions

<head-tail functions>

T HEAD (— <string expression> — , — <character set> —) —|
TAIL :|_

<character set>

T o T <string constant expression> |
NOT ALPHA

Explanation

The character set specifies a collection of characters used to control the action of the
HEAD and TAIL functions. The predefined character set ALPHA consists of the letters A
through Z and the digits 0 through 9. The string constant expression can have characters
in any order. If the character set is of the form NOT string constant expression, then the
character set consists of all EBCDIC characters except those specified in the string
constant expression.

The HEAD function returns a string consisting of a copy of all leading characters in the
string expression that belong to the set of characters in the character set. If the first
character in the string expression is not a member of the character set, a null string (") is
returned.

The TAIL function returns a new string consisting of a copy of all the characters in the
string expression that remain after the removal of all the leading characters belonging to
the character set. If all characters in the string expression are members of the character
set, a null string is returned.

For any string expression S and any character set C, the following relation is always true:

S = HEAD(S,C) & TAIL(S,C)

The HEAD and TAIL functions allow string expressions of up to 1032 characters for the
parameter.

Examples

The following examples illustrate use of the HEAD and TAIL functions:

STR1:=" A B C";

STR2:= HEAD(STR1,""); % RESULT =" "

STR2:= TAIL(STR1,""); % RESULT ="A B C"
STR1:="FILE/NAME";

STR2:= HEAD(STR1,NOT"/"); % RESULT ="FILE"
STR2:= TAIL(STR1,NOT"/"); % RESULT ="/NAME"

8600 1047-506 7-21

String Expressions

STRING Function

7-22

<string function>

— STRING — (— <integer expression> — ,

> <integer expression>
L Jinteser e 7 |

Explanation

The STRING function returns a string that is formed by taking the absolute value of the
first integer expression and converting it to its EBCDIC character representation. The
length of the returned string is specified by the second parameter; if this second
parameter is an integer expression with a value less than or equal to zero, the returned
string is of length zero.

If the value of the second integer expression is greater than the minimum number of
characters needed to represent the first argument, a sufficient number of leading zeros
are provided.

If the value of the second integer expression is less than the number of characters
needed to represent the first integer expression, the right-most characters are returned.

If the second parameter of the STRING function is an asterisk (¥*), the returned string will
be long enough to contain all the digits of the character representation of the first
argument with no leading zeros.

If you use a real expression in place of the first integer expression, the value is rounded
to the nearest integer. However, if you use a real expression in place of the second
integer expression, the fractional part of the value is simply truncated. For example, the
function STRING(433.5, 2.5) returns the value "34". This result occurs because the value
433.5 is rounded up to 434, but the length value of 2.5 is truncated to 2.

Examples

The following examples illustrate the STRING function:

STR1:= STRING(123,*); % RESULT ="123"

STR2:= STRING(123,6); % RESULT ="000123"
STR1:= STRING(123.456, 7); % RESULT ="0000123"
STR2:= STRING(1234,3); % RESULT

8600 1047-506

String Expressions

SYSTEM Function

<system function>

— SYSTEM — (SERIALNUMBER ——) I
TYPE ———
MCPLEVEL ——

Explanation

The SYSTEM function is a string function that returns system identification information.

Examples

The following information can be requested:

SYSTEM (SERIALNUMBER)

Returns the serial number of the system as a string; the length of the string will vary. For
example:

n 1000 n

SYSTEM (TYPE)

Returns the machine type as a string; the length of the string will vary. For example:
IIA7 n

SYSTEM (MCPLEVEL)

Returns the version and cycle of the current MCP as a string of six characters. The first
two characters represent the version of the MCP and the last three characters represent
the cycle of the MCP. A period (.) separates the version and the cycle. For example:

"37.100"

8600 1047-506 7-23

String Expressions

TAKE and DROP Functions

7-24

<take-drop functions>

T TAKE (— <string expression> — , — <integer expression> —|
DROP I

Explanation

The TAKE function returns a string formed by taking the first integer expression number
of characters from the string expression.

The DROP function returns a string with the characters remaining in the string
expression after the first integer expression number of characters have been discarded.

A warning message displays if the compiler detects that the value of the integer
expression is less than O or greater than 256, or is greater than the number of characters
in the string expression.

For any string expression S and any integer expression | in the range 0 LEQ | LEQ
LENGTH(S), the following relation is always true:

S = TAKE(S,I) & DROP(S,I)

If you use a real expression instead of an integer expression, the WFL compiler
automatically truncates the fractional part, rather than rounding off the value. For
example, the function TAKE("ABCDEF", 2.9) returns the value "AB", not "ABC".

The TAKE and DROP functions allow string expressions of up to 1032 characters for the
parameter and the result.

Example
The following example illustrates the TAKE and DROP functions:
STR1:="ABCDEF";

STR2:= TAKE(STR1,2);
STR2:= DROP(STR1,2);

N

ESULT ="AB"
ESULT ="CDEF"

n
o
-~ X

8600 1047-506

String Expressions

TIMEDATE Function

<timedate function>

— TIMEDATE — (—— HHMMSS) |
— YYYYMMDDHHMMSS —

— DISPLAY

— MONTH

— DAY

— DAYNUMBER

— YYDDD

— YYMMDD

— MMDDYY

— DDMMYY

— YYYYDDD

— YYYYMMDD

— MMDDYYYY

L DDMMYYYY

Explanation

The TIMEDATE function is a string function that can be used to obtain the time or date,
or both, in various forms. All strings returned by the TIMEDATE function appear in
uppercase.

Examples

The forms of the TIMEDATE function are described in the following paragraphs. Each
description includes an example that indicates the result that would be returned at
5:09 p.m., Wednesday, July 4, 2001.

TIMEDATE (HHMMSS)

Returns the time as a string of six characters. The first two characters represent the
hours on a 24-hour clock, the next two characters represent the minutes, and the last
two characters represent the seconds. For example:

*170900"

TIMEDATE (YYYYMMDDHHMMSS)

Returns the time and date as a string of 14 characters. The first eight characters
represent the date: four characters for the year, two characters for the month, and two
characters for the day of the month. The last six characters represent the time: two
characters for the hours on a 24-hour clock, two characters for the minutes, and two
characters for the seconds. For example:

"20010704170900"

TIMEDATE (DISPLAY)

Returns the time, day of the week, and date in a display-type format. The length of the
string varies from 27 to 38 characters. For example:

"5:09 PM WEDNESDAY, JULY 4, 2001"

8600 1047-506 7-25

String Expressions

7-26

TIMEDATE (MONTH)

Returns the name of the month as a string. The length of the string varies from three to
nine characters. For example:

"JuLy"

TIMEDATE (DAY)

Returns the name of the day of the week as a string. The length of the string varies from
six to nine characters. For example:

"WEDNESDAY"

TIMEDATE (DAYNUMBER)

Returns the number of the day of the week as a string of one character. The days of the
week are numbered as follows: Sunday=0, Monday=1, Tuesday=2, Wednesday=3,
Thursday=4, Friday=>b, Saturday=6. For example:

II3II

TIMEDATE (YYDDD)

Returns the date as a string of five characters. The first two characters represent the
year (modulo 100). The last three characters represent the day of the year. For example:

"01185"

TIMEDATE (YYMMDD)

Returns the date as a string of six characters. The first two characters represent the year
(modulo 100). The following two characters represent the month, and the last two
characters represent the day of the month. For example:

"010704"

TIMEDATE (MVIDDYY)

Returns the date as a string of six characters. The first two characters represent the
month. The following two characters represent the day of the month, and the last two
characters represent the year (modulo 100). For example:

"070401"

TIMEDATE (DDMMYY)

Returns the date as a string of six characters. The first two characters represent the day
of the month. The following two characters represent the month, and the last two
characters represent the year (modulo 100). For example:

"040701"

8600 1047-506

String Expressions

TIMEDATE (YYYYDDD)

Returns the date as a string of seven characters. The first four characters represent the
year. The last three characters represent the day of the year. For example:

"2001185"

TIMEDATE (YYYYMMDD)

Returns the date as a string of eight characters. The first four characters represent the
year. The following two characters represent the month, and the last two characters
represent the day of the month. For example:

"20010704"

TIMEDATE (MMDDYYYY)

Returns the date as a string of eight characters. The first two characters represent the
month. The following two characters represent the day of the month, and the last four
characters represent the year. For example:

"07042001"

TIMEDATE (DDNVIMYYYY)

Returns the date as a string of eight characters. The first two characters represent the
day of the month. The following two characters represent the month, and the last four
characters represent the year. For example:

"04072001"

8600 1047-506 7-27

Mnemonic Primaries

Mnemonic Primaries

<file mnemonic primary>

<file mnemonic> }
E <file identifier> — (— <mnemonic file attribute> —) —
— <string policy>

<task mnemonic primary>

<task mnemonic> {
E <task identifier> — (— <mnemonic task attribute> —) —
— <string primary>

The following table defines the mnemonic syntax elements.

Mnemonic Description

<file mnemonic> Any mnemonic value that can be assigned to a file attribute of type
mnemonic. The mnemonic values available for each mnemonic file
attribute are listed in the File Attributes Reference Manual.

<task Any mnemonic value that can be assigned to a task attribute of type
mnemonic> mnemonic. The mnemonic values available for each mnemonic task
attribute are listed in the Task Attributes Reference Manual.

Explanation

File mnemonic primaries and task mnemonic primaries enable mnemonic-valued
attributes to be used in comparisons and assignments.

In mnemonic attribute comparisons and assignments, the specific attributes and
mnemonics must be compatible. For example, the MYUSE attribute of one file (or one of
the MYUSE mnemonics CLOSED, IN, OUT, or |O) can be compared with or assigned to
the MYUSE attribute of another file. However, the values of the MYUSE and KIND
attributes cannot be compared or assigned to each other, because they are different
attributes. If the # string primary form is used, it must also represent a compatible
mnemonic.

Example

7-28

In the following example, F is a file identifier, T is a task identifier, and S is a string
identifier:

S:="ALGOL";

IF F(FILEKIND) IS #(S&"SYMBOL") THEN...

S:="NEVERUSED";

T(STATUS=#S) ;

STRING DISK;

DISK:="PRINTER";

F(KIND=#DISK); % Yields KIND = PRINTER

8600 1047-506

Constant Expressions

Constant Expressions

A constant expression is a combination of basic elements with values that can be
determined at compile time. These basic elements can be Boolean constants, integer
constants, real constants, string constants, or job parameters that appeared in the job
parameter list.

The constant expressions allowed by WFL are a subset of the various types of
expressions that have been described earlier in this section. For example, Boolean
constant expressions are a subset of Boolean expressions. The difference is that
variables are not allowed in constant expressions.

A constant expression can be used anywhere an expression of the same type is allowed.
Constant expressions can also be assigned as values in variable declarations, where
expressions that use variables are not permitted.

The following pages give the formal syntax of Boolean constant expressions, integer
constant expressions, real constant expressions, and string constant expressions.

Example

The following example illustrates constant expressions:

?BEGIN JOB PARAMPASS (BOOLEAN TF1, INTEGER X, STRING S);
BOOLEAN BOOL1:= NOT TFl; % Boolean declaration
INTEGER INT1:= X * 2; % Integer declaration
RUN (DEVA)OBJECT/POOCH(BOOL1,INT1);
RUN (NATTY)OBJECT/FREE(TAKE(S,2));
?END JOB.

The Boolean declaration in this example uses a Boolean constant expression to initialize
the variable. TF1 is a Boolean constant identifier that was passed in as a job parameter.
The integer declaration uses an integer constant expression. X is an integer constant
identifier that was passed in as a job parameter.

8600 1047-506 7-29

Constant Expressions

Boolean Constant Expression

<Boolean constant expression>

__I:_____:I_ <Boolean constant primary>
NOT

EQV

| AND <B i
oolean constant primary>
EORj L not
IMP

<Boolean constant primary>

=i

<Boolean constant>
<Boolean constant identifier>

<arithmetic constant comparison>
<string constant comparison> ——
(— <Boolean constant expression> —) —

<arithmetic constant comparison>

T <real constant expression —T <real relation>
<integer constant expression>

»—I: <real constant expression B
<integer constant expression>

<string constant comparison>

— <string constant expression> =
EQL :‘
NEQ

»— <string constant expression>

Explanation

7-30

Refer to “Boolean Expressions” earlier in this section for explanations of the various

kinds of Boolean expressions.

8600 1047-506

Constant Expressions

Integer Constant Expression

<integer constant expression>

<integer constant primary>
-+ —

+ <integer constant primary> JJ
*

DIV

MOD

<integer constant primary>

<integer constant primary>
<integer constant> '
<integer constant identifier>
DECIMAL — (— <string constant expression> —) —
INTEGER — (— <string constant expression> —) —
LENGTH — (— <string constant expression> —) —
(— <integer constant expression> —) —————

Explanation

Refer to “Integer Expressions” earlier in this section for explanations of the various kinds
of integer expressions.

8600 1047-506 7-31

Constant Expressions

Real Constant Expression

<real constant expression>

<real constant primary>
— + —

<real constant primary> JJ

* | +

~

DIV
MOD

<real constant primary>

<real constant> }
<real constant identifier>
HEX — (— <string constant expression> —) —
OCTAL — (— <string constant expression> —) —
<integer constant primary>
(— <real constant expression> —)

Explanation

Refer to “Real Expressions” earlier in this section for explanations of the various kinds of
real expressions.

7-32 8600 1047-506

Constant Expressions

String Constant Expression

<string constant expression>

<string constant primary>
T,y SEring constant prinary

N
J—H <string constant primary>
&
/

L ON — <string constant primary>]

<string constant primary>

<string constant>

<string constant identifier>
<head-tail constant functions>
<string constant function>
<take-drop constant functions>
(— <string constant expression> —) —

<head-tail constant functions>

HEAD (— <string constant expression> — ,
L TAIL 1
»— <character set> —) |

<string constant function>

— STRING — (— <integer constant expression> — ,
> <integer constant expression> T) |
*

<take-drop constant function>

T TAKE (— <string constant expressions> — ,
DROP I
»— <integer constant expression> |

Explanation

Refer to “String Expressions” earlier in this section for explanations of the various kinds
of string expressions.

8600 1047-506 7-33

Constant Expressions

7-34 8600 1047-506

Section 8
Basic Constructs

Overview

The basic elements and constructs necessary to use WFL are listed and described in this
section. Some general facts and restrictions regarding WFL elements are discussed in
the following paragraphs, and many of the basic elements and constructs are
syntactically defined on the following pages.

WEFL uses the EBCDIC character set; use of any invalid EBCDIC character is illegal
except in column 1.

Identifiers and numbers are terminated by any nonalphanumeric character (including a
blank).

No identifier, constant, string, or multicharacter delimiter can be broken across a card
boundary. Numeric constants and multicharacter delimiters cannot have embedded blank

characters.

WEFL source records can be terminated by a percent sign (%). The remainder of the WFL
source record is not scanned and can contain any comments.

8600 1047-506 8-1

Invalid and Valid Characters

Invalid and Valid Characters

An invalid character is a question mark (?) appearing in the first column of a record.

Explanation

The <i> construct can precede the BEGIN JOB and END JOB constructs in WFL jobs,
and is a required terminator for global or local data specifications. See “WFL Job
Example” in Section 3.

An <I> construct can also be used instead of a semicolon (;) to separate statements,

declarations, or job attributes. For an example of the use of the <i> construct as a
statement separator, refer to “Statement List” in Section 3.

Valid Character Elements

The valid character elements are syntactically defined in the following table.

Element Definition
<letter> Any one of the 26 uppercase characters A through Z
<digit> Any one of the 10 Arabic numerals 0 through 9
<string Any character except a quotation mark (")
character>
<hyphen> The single character hyphen (-)
<underscore> The single character underscore (_)

8-2 8600 1047-506

Identifiers

Identifiers

<identifier>

— <letter> |_L
/62\ <1e’c’cer>4~,—L
—E <digit>

Explanation

The following is a list of the types of identifiers:

Boolean identifier
Boolean constant identifier
File identifier

Integer identifier

Integer constant identifier
Label identifier

Real identifier

Real constant identifier
String identifier

String constant identifier
Subroutine identifier

Task identifier

Identifiers all share the identifier syntax. Identifiers can serve as names for variables,

constant identifiers, subroutines, and statements.

Some combinations of characters form words that have a special meaning to the WFL
compiler. These words cannot be used as identifiers, or can only be used as identifiers in
certain contexts. Refer to Appendix B, “Reserved Words, Predefined Words, and
Keywords,"” for further information.

Examples

A

7123

ABC123

8600 1047-506

8-3

Constants

Constants

<Boolean constant>

TRUE |
L raLse !

< integer constant>

—L 12\ — <digit> - |

<real constant>

<real constant>

| 12\ — <digit> |
Lo — . / !

<string constant>

<string constant>

|J— 256\ <string constant>
L

Explanation

A constant is a literal that contains information and is not changed by any operation.
Boolean, integer, real, and string constants are defined in the following discussion.

The following constraints apply to string constants:

e A pair of quotation marks (") appearing alone represents a null string (a string of
length zero).

e A pair of quotation marks (") appearing in a string represents one quotation mark (")
within the string.

e A string constant cannot be broken across a card boundary; therefore, the actual
maximum length is usually less than 256 characters.

8-4 8600 1047-506

Constants

Examples

The following are examples of integer constants:
12
750
12345

The following are examples of real constants:
3.1416
.2
1.0

The following are examples of string constants:
"ABC"
npk s

II8_1II

8600 1047-506 8-5

Names

Names

8-6

Each file has a unique name that distinguishes it from every other file. A file name
consists of parts, called nodes, separated by a slash (/). A file name can have from 1 to
12 nodes.

Long file names are available if you set the LONGFILENAMES option of the SYSOPS
command. Long file names are similar to traditional file names, except they can have
from 1 to 20 nodes and a maximum node size of 215 characters.

Not all Unisys software supports long file names. For more information about long file
names, refer to the System Operations Guide.

<name>

<name constant>
. . |
— <string primary> l

<long name>

_E <long name constant> |
— <string primary> l

<name constant>
<letter> |
<digit> — |_L !
/16\ <letter>
<digit>
<hyphen>
<underscore> —

v L /17\ — <nonquote EBCDIC character> .

<long name constant>
<letters |
<digit> — |_L !
/214\ <letter>
<digit>
<hyphen>
<underscore> —

v L /215\ — <nonquote EBCDIC character> .

<nonquote EBCDIC character>
Any EBCDIC character for which the hexadecimal code is greater than or equal to 4'40"
and that is not the EBCDIC character quotation mark (").

<simple name constant>

<simple name constant>

L T <letter> - | |

<digit>

8600 1047-506

Names

<hostname>
<family name>

<hostname> !
_E <simple name constant> |
— <string primary> _

<hostname constant>
<family name constant>

<hostname constant>
— <simple name constant> {

<usercode>
<password>

<usercode>
T <name constant>] |
— <string primary>

<usercode name constant>
<password name constant>

<usercode name constant>
— <name constant> i

Explanation

The # <string primary> syntax can be used to dynamically build names, host names,
family names, usercodes, and passwords. The run-time result must form a valid name
constant, hostname constant, family name constant, usercode name constant, or
password name constant, respectively. Otherwise, a run-time error occurs.

For further information, see "String Primary” in Section 7. Some examples of using this
syntax are given in “File Names, Titles, and Directories” later in this section.

Examples
USERPACK % Simple name constant
6PACK % Simple name constant
OUTPUT-FILE % Name constant

8600 1047-506 8-7

File Names, Titles, and Directories

File Names, Titles, and Directories

8-8

Each file has a unique name that distinguishes it from every other file. A file name
consists of parts, called nodes, separated by a slash (/). A file name can have from 1 to

12 nodes.

Long file names are available if you have set the LONGFILENAMES option of the

SYSOPS command. Long file names are similar to traditional file names, except they can

have from 1 to 20 nodes and a maximum node size of 215 characters.

If long file names are disabled, the long name constructs are redefined as follows.

If SYSOPS LONGFILENAMES is reset,
then . ..

Is equivalent to . . .

<long file name constant>

<file name constant>

<long directory name constant>

<directory name constant>

<long file name>

<file name>

<long file title>

<file title>

<long directory name>

<directory name>

<long directory title>

<directory title>

Not all Unisys software supports long file names. For more information about long file
names, refer to the System Operations Guide.

<node name constant>

—r—<letter
—<d1'g1't>J
[g]
/16\

<letter
<digit>
<hyphen>
<underscore>—

e L /17\ —<nonquote EBCDIC characters—— "

&
L —<nonquote EBCDIC character>— " I —

8600 1047-506

File Names, Titles, and Directories

<long node name constant>
——<letter
-—<d1'g1't>——J !
l— g
/214\ ——<letter
<digit>
<hyphen>
<underscore>—

e /215\ —=<nonquote EBCDIC char‘acter‘>J— "
&
L —<nonquote EBCDIC character>— " I

<file name constant>

i: (— <usercode name constant> —) —
*

/
->J— /12\ — <node name constant> | {

<long file name constant>

i: (— <usercode name constant> —) —
*

/
—>J— /20\ — <long node name constant> | }

<file title constant>

—<file name constant {
L ON —<family name cons’can’c>J

<directory name constant>

— (— <usercode name constant> —) —
*

L /11\ — <node name constant> — / —\J

<long directory name constant>

— (— <usercode name constant> —) —
*

L /19\ — <long node name constant> — / JJ

<directory title constant>

— <directory name constant> B N {
ON — <family name constant>

8600 1047-506 8-9

File Names, Titles, and Directories

<file name>

/
| /12\ T <node name constant> j—‘—{
i: (— <usercode> —) — # — <string primary>
*

<long file name>

i: (— <usercode> —) —
*

/
->J— /20\ T <long node name constant> | {

— <string primary>

<file title>

— <file name> — ON — <family name> {

<long file title>

— <long file name> — ON — <family name> }

<universal file name>

<interchange name constant>
- . |
— <string primary>

<interchange file name>

<interchange name constant>
- . |
— <string primary>

<interchange name constant>

&
[| |

J—|:<nons1'ng1e quote EBCDIC chaur‘atc’celr‘>~|—L

<nonsingle quote EBCDIC character>

Any EBCDIC character for which the hexadecimal code is greater than or equal to 4'40"
and that is not the EBCDIC single quotation mark (').

<directory name>

— (— <usercode> —) —
*

1

L J11\ < name constant> — /
L # — <string primary>

L # — <string primary> l

8-10 8600 1047-506

File Names, Titles, and Directories

<long directory name>

— (— <usercode> —) —
*

L /19\ T <long name constant> T / JJ

— <string primary>

L # — <string primary> il

<directory title>

—<directory name '
Y L ON —<family name>J !

<long directory title>

— <long directory name> '
L ON — <family name> il !

Explanation

In the node name constant and the long node name constant, the ampersand (&)
operator must be on the same line as the preceding text. When the & operator is used to
concatenate two or more names in single quotation marks ('), a new node name is
created within one pair of single quotation marks. If the new concatenated node name
contains more than 250 EBCDIC characters (not counting the single quotation mark
characters), an error message is issued.

If a usercode is not specified for a name or title and the task is running under a usercode,
the file or directory will first be looked for under the usercode of the task and, if not
found, will then be looked for without a usercode.

Note: \When you use the ALTER, CATALOG, CHANGE, DELETE, MODIFY, REMOVE
and SECURITY statements, only the usercode of the task is searched.

If a name or title is preceded by the optional asterisk (*), it indicates that the search for
the file or directory is to be done as if the task were not running under a usercode.

As an alternate syntax for indicating a file associated with a usercode, instead of
preceding the file name with the usercode parentheses, you can precede the file name
with *USERCODE/<usercode>. You can use this alternate form when you refer to either
a file or to a directory of files under the specified usercode. The directory *USERCODE/=
refers to all usercoded files on a given family.

In the interchange name constant, the ampersand (&) operator must be on the same line
as the preceding text. When the & operator is used to concatenate two or more names
in single quotation marks ('), a new name is created within one pair of single quotation
marks. If the new concatenated name contains more than 250 EBCDIC characters (not
counting the single quotation marks), an error message is issued.

8600 1047-506 8-11

File Names, Titles, and Directories

Examples

?BEGIN JOB;
USERCODE=UC;
FAMILY DISK = PRIMARY OTHERWISE ALTERNATE;
RUN OBJECT/TEST;

?END JOB.

In this example, the file OBJECT/TEST will be searched for under different file titles and
family names in the following order:

1. (UC)OBJECT/TEST on the primary family

2. *OBJECT/TEST on the primary family

3. (UC)OBJECT/TEST on the alternate family

4. *OBJECT/TEST on the alternate family

The system will use the first file it finds.

If OBJECT/TEST were changed to *OBJECT/TEST in this example, only the file titles and
family names given in items 2 and 4 in the preceding list would be used in the search.

The statement COPY *= FROM T1(KIND=TAPE) copies all of the files from the tape T1,
whether or not their titles have usercodes, because the usercode of the task is not used
to precede the file names.

An interchange file name is a string of up to 250 characters surrounded by single
quotation marks (‘). A single quotation mark can be embedded in the string by including a
pair of adjacent single quotation marks.

The following CHANGE statement changes the first node of each filename in *X/=into a
usercode:

CHANGE *X/= TO *USERCODE/=
For example, the previous statement would change file *X/A/B to (A)B. Note that a job

must have privileged status to place files under a usercode different from that of the job
itself.

8-12 8600 1047-506

Using String Primaries

Using String Primaries

The # <string primary> syntax can be used to dynamically build file names, file titles,
directory names, and directory titles. The run-time result must form a valid file name
constant, file title constant, directory name constant, or directory title constant
respectively; otherwise, a run-time error occurs.

A string primary can contain an entire file name, file title, directory name, or directory
title. A string primary can also take the place of any part of these names and titles, as
long as the result is of the correct form. The following examples clarify this constraint.

In the following examples, S1 and S2 are string identifiers and F is a file identifier:

S1:="B";

F(TITLE = A/#S1/C); % Resulting title = A/B/C
S1:="(A)B";

F(TITLE = #S1/C); % Resulting title = (A)B/C
F(TITLE = S1/C); % Resulting title = S1/C

S1:="*USERCODE/X";

F(TITLE = #S1/OBJECT/T); % Resulting title = (X)OBJECT/T

S1:="A/B";

S2:="PQ",

F(TITLE = *#(S1 ON S2)); % Resulting title = *A/B ON PQ

S1:="LONG20CHARACTERTITLE";

F(LTITLE = A/#S1); % Resulting long title = AILONG20CHARACTERTITLE
% Assuming SYSOPS LONGFILENAMES is set

Restrictions on the Use of String Primaries
Note that the # <string primary> syntax is used to form an individual file name, file title,
directory name, or directory title. Multiple names cannot be combined into a single string

primary. Also, parameters to an object program cannot be combined in the same string
primary as the object code file title. The following examples illustrate this concept.

8600 1047-506 8-13

Using String Primaries

Passing Parameters to a Task

The following examples show both the correct and incorrect WFL job program for
parameter passing to a task.

Correct

In the following program example, the parameter XYZ is successfully passed to the
object program REPORT/PGM:

The job JOB/WFLRUN:
?BEGIN JOB PROGRAM(STRING PROGTORUN,
STRING PARAMNAME) ;
TASK PROGTASK;
RUN OBJECT/#PROGTORUN(PARAMNAME) [PROGTASK] 3
?END JOB
Started as:
START JOB/WFLRUN("REPORT/PGM", "XYZ")

Incorrect

The following program example is incorrect because the parameter XYZ is not passed
separately from the task name:

The job JOB/WFLRUN:
?BEGIN JOB PROGRAM(STRING PROGTORUN);
TASK PROGTASK;
RUN OBJECT/#PROGTORUN [PROGTASK];
?END JOB.
Started as:

START JOB/WFLRUN("REPORT/PGM(XYZ)");

8-14 8600 1047-506

Using String Primaries

Copying Multiple Files

The following examples show both the correct and incorrect use of a WFL job program
for copying multiple files.

Correct

In the following program, the file name string parameters TEST/A and TEST/B are
successfully passed to the WFL copy job:

The job JOB/WFLCOPY:
?BEGIN JOB WFLCOPY(STRING FNAME1,
STRING FNAME2);
COPY #FNAME1, #FNAME2
FROM DISK TO PACK;
?END JOB.
Started as:
ST JOB/WFLCOPY("TEST/A", "TEST/B")

Incorrect

The following program example is incorrect because the file name string parameters
TEST/A and TEST/B are not passed with their own string parameters:

The job JOB/WFLCOPY:
?BEGIN JOB WFLCOPY(STRING FNAME);
COPY #FNAME
FROM DISK TO PACK;
?END JOB.
Started as:

ST JOB/WFLCOPY("TEST/A, TEST/B")

8600 1047-506 8-15

Using String Primaries

8-16 8600 1047-506

Section 9
WFL Control Options

Overview
WEFL control options affect the way the WFL compiler processes a job.

The control options can appear anywhere in a job. However, if the job is started from a
file, then any line of the job containing control options must begin with a dollar sign ($) in
column 1 or 2. The occurrence of dollar signs in both columns 1 and 2 is equivalent to a
single dollar sign in column 2. The dollar sign can be followed by one or more of the WFL
control options.

If the NEWSOURCE job disposition is specified in the job, then only control options
following a dollar sign in column 2 are written to the new source file. Control options
following a dollar sign in column 1 are not written to the new source file. The position of
the dollar sign also determines whether text specified by the INCLUDE control option is
written to the new source file (refer to “INCLUDE Option” in this section for details).
Refer to “Job Disposition” in Section 3 for information about the NEWSOURCE job
disposition.

If the job is submitted from an ODT, or in array form from a user program, then control
options must still be preceded by a dollar sign. The dollar sign can be in any column, and
can be followed by one or more control options. A semicolon (;) must be included after
the control options.

8600 1047-506 9-1

ERRORLIMIT Option

ERRORLIMIT Option

<errorlimit control option>

ERRORLIMIT — = — <integer constant> |
C § ? |

Explanation

This control option sets the error limit for job compilation to the value of the integer
constant. Job compilation is terminated if the number of errors detected by the WFL
compiler becomes greater than or equal to the error limit. Note that this option affects
compilation, not execution, of a job. A job containing even one error is not executed,
regardless of the error limit setting.

If no ERRORLIMIT option appears, the default error limit is 100 unless the job was
started through CANDE. If the job was started through CANDE, the default error limit
is 6.

More than one ERRORLIMIT option can be included in the job. In this case, the error limit
is changed whenever the option appears, and the next time the compiler encounters an
error, it compares the new error total with the current error limit to determine whether to
terminate compilation.

Example

9-2

Compilation of the following job is terminated if the number of errors detected becomes
greater than or equal to 50:

?BEGIN JOB RUNPROG;
$ERRORLIMIT = 50;

RUN OBJECT/PROG1;
RUN OBJECT/PROG2;

?END JOB.

8600 1047-506

INCLUDE Option

INCLUDE Option

<include control option>

INCLUDE —<file title constant
LT

|—<sequence numbe\r‘>J L TO —E<sequence number>—
END

<sequence number>

—/7\
—L<é1'g1't |

Explanation

This option incorporates card images from another file into the current job during
compilation. An INCLUDE option can appear in a job stored in a disk file and initiated by a
START. The text is included each time the job is initiated. The file title constant is the
name of the file that contains the included text. The FILEKIND of the file is JOBSYMBOL.

If NEWSOURCE is specified and the dollar sign ($) is in column 1, the card images
specified by the INCLUDE control option is written to the new source file where the
option appeared in the old source file. If the dollar sign is in column 2, the INCLUDE
control option is written to the new source file, but the card images specified by that
option is not. The included text is in the WFL job listing in the job summary printout.

If a sequence range is specified, only that portion of the file is included. If the sequence
range is omitted, the entire file is included.

INCLUDE options cannot be nested; for example, the card images included cannot
contain a $ INCLUDE option.

After parsing the job attribute list, WFL runs under the USERCODE and FAMILY job
attribute specifications of the job (if they are supplied).

If an INCLUDE is encountered in the job heading, the usercode and family of the initiator
are used to locate the file and determine access. If an INCLUDE is encountered in the job
body, the usercode and family seen in the job heading (if any are supplied) are used to
locate the file and determine access.

A job started from the ODT without a usercode can also include a file in the same
directory as the started job if the INCLUDE occurs in the job heading.

8600 1047-506 9-3

INCLUDE Option

Example

The following partial job uses the INCLUDE option to incorporate text from the file
CARDLINE/ATTRIBUTES, which is located on the MYPACK pack, into the ZZZ job during
compilation:

?BEGIN JOB Z7Z;
RUN SYSTEM/CARDLINE;
$INCLUDE CARDLINE/ATTRIBUTES ON MYPACK

?END JOB.

9-4 8600 1047-506

LIST Option

LIST Option

<list control option>
$ LIST |
L g5 i: SET ﬂ !
RESET

Explanation

This control option controls the printing of the WFL source file in the job summary. SET is
an optional action indicator that causes the source file to be printed as part of the job

summary. SET is the default value. RESET is an optional action indicator that prevents
the source file from printing.

Examples

In this example, the LIST option is used to prevent the WFL source file from being
printed in the job summary:

$RESET LIST

?BEGIN JOB EXAMPLEL;
RUN OBJECT/PROGI;
RUN OBJECT/PROG2;

?END JOB.

This example prints the first three lines of the WFL source file in the job summary:

?BEGIN JOB EXAMPLE2

(INTEGER DATEL1, %% STARTING DATE
INTEGER DATE2); %% ENDING DATE
$RESET LIST

RUN OBJECT/PROG1; VALUE = DATEL,;
RUN OBJECT/PROG1; VALUE = DATEZ2;
RUN OBJECT/T1;
RUN OBJECT/T2;

?END JOB.

8600 1047-506 9-5

NEWSEGMENT Option

NEWSEGMENT Option

<newsegment control option>

$ NEWSEGMENT
L 55 i: RESET !
SET

Explanation

This control option causes subroutines to be stored in new code segments, which
enables excessively large WFL subroutines to compile. Before you use the
NEWSEGMENT option, you should attempt to reduce the size of a large subroutine so
that WFL compiles without the NEWSEGMENT option.

If you use the NEWSEGMENT option, the option can be set before the subroutine and
reset after the subroutine. The default value is RESET.

Note: You should only use this option if the following message displays while compiling
a large subroutine:

ERROR: CODE SEGMENT CAPACITY EXCEEDED - THE SUBROUTINE <name>
IS TOO LARGE AND MUST BE BROKEN INTO SMALL SUBROUTINES.
%%% COMPILATION ABORTED *#**

9-6 8600 1047-506

NEWSEGMENT Option

Example

In the following job, the NEWSEGMENT option creates a new code segment for each
procedure. This option increases the size of the WFL code file and might cause the WFL
job to execute more slowly. However, it might enable compilation of some excessively
large WFL jobs that otherwise could not compile.

$$SET NEWSEGMENT

BEGIN JOB NEWSEGMENT:

FILE F;

SUBROUTINE SETUP;

BEGIN
F(TITLE=FILE/NAME,KIND=DISK,NEWFILE);

END;

SUBROUTINE MAKEFILE;
BEGIN

OPEN(F) ;

LOCK(F) ;

END MAKEFILE;
SETUP;

MAKEFILE;

END JOB;

8600 1047-506 9-7

NEWSEGMENT Option

9-8 8600 1047-506

Appendix A
Sample WFL Jobs

Overview

This appendix contains three sample jobs that demonstrate how the WFL features
described in this manual are applied to some common situations.

8600 1047-506

Compiling a Program

Compiling a Program

This job applies a patch to a source file, compiles the source file into an executable object
code file, and runs XREFANALYZER to produce cross-reference files.

?BEGIN JOB COMP (STRING PROGRAMNAME);

CLASS=4;

TASK
PATCHTASK, % TASK VARIABLE FOR SYSTEM/PATCH
COMPILETASK; % TASK VARIABLE FOR COMPILE

DATA PATCHINPUT
$# DOLLAR OPTIONS
$ SET MERGE SET NEW SET LINEINFO ERRLIST RESET LIST
$ SET XREF NOXREFLIST
$.PATCHES
$#PATCH 1
$.FILE PATCH/1
? % END OF PATCHINPUT
RUN SYSTEM/PATCH [PATCHTASK];
FILE SOURCE (TITLE=#PROGRAMNAME);
FILE CARD (TITLE=PATCHINPUT,KIND=READER);
FILE PATCH (TITLE=SYSTEMPATCH/#PROGRAMNAME,NEWFILE=TRUE);
IF PATCHTASK(TASKVALUE) = 1 THEN
BEGIN
REMOVE ERRORFILE/#PROGRAMNAME ;
COMPILE OBJECT/#PROGRAMNAME WITH ALGOL [COMPILETASK] LIBRARY;

COMPILER FILE SOURCE (TITLE=#PROGRAMNAME) ;

COMPILER FILE CARD (TITLE=SYSTEMPATCH/#PROGRAMNAME, DISK);
COMPILER FILE NEWSOURCE (TITLE=NEW/#PROGRAMNAME);

COMPILER FILE ERRORS (TITLE=ERRORS/#PROGRAMNAME, NEWFILE,

KIND=DISK, PROTECTION=PROTECTED);
REMOVE SYSTEMPATCH/#PROGRAMNAME ;
END;

IF COMPILETASK IS COMPILEDOK THEN
BEGIN
DISPLAY "COMPILED OK";
IF FILE ERRORS/#PROGRAMNAME IS RESIDENT THEN
DISPLAY "#*** CHECK ERRORS/" & PROGRAMNAME
& " FOR WARNINGS ***";
MYSELF (JOBSUMMARY=SUPPRESSED) ; % DON'T NEED JOBSUMMARY
SECURITY OBJECT/#PROGRAMNAME PUBLIC I0;
IF FILE XREF/OBJECT/#PROGRAMNAME IS RESIDENT THEN
BEGIN
RUN SYSTEM/XREFANALYZER (0);
TASKVALUE = -1; % PRODUCE XREFFILES
FILE XREFFILE(TITLE=XREF/OBJECT/#PROGRAMNAME) ;
SECURITY XREFFILES/OBJECT/#PROGRAMNAME/DECS,
XREFFILES/OBJECT/#PROGRAMNAME /REFS PUBLIC I0;
END;
END

A-2 8600 1047-506

Compiling a Program

ELSE
DISPLAY "#*** SYNTAX ERRORS: LIST ERRORS/" & PROGRAMNAME
& " FOR ERRORS ***'";
?END JOB.

Explanation

Each component of this sample job is explained in the following discussion.

Job Heading
The job accepts a string parameter PROGRAMNAME, which is the name of the program
that is to be compiled.

The CLASS = 4 form is a job attribute specification that causes the job to be initiated
from queue 4.
Declarations

The TASK declaration that follows declares two task variables for use later in the job.

PATCHINPUT Data Specification

The next section of the job is a global data specification named PATCHINPUT. This will
be used as an input file by SYSTEM/PATCH in the next section of the job.

The first three lines of the global data specification provide options that modify the
behavior of SYSTEM/PATCH. Refer to SYSTEM/PATCH in the System Software Utilities
Operations Reference Manual, and to compiling programs in the ALGOL Reference
Manual, Volume 1 for descriptions of the various compiler control options that are used in
this global data specification.

The next three lines of the global data specification specify the names of any patch files
that are to be used. In this case, only one is specified, PATCH/1.

8600 1047-506 A-3

Compiling a Program

SYSTEM/PATCH Run
The next section of the job runs SYSTEM/PATCH. The following file equations are used.

Equation Meaning
FILE SOURCE Specifies the file that is to be patched. In this case, the file whose title
was passed in as the WFL job parameter is used.
FILE CARD Specifies the file to be used as the input to SYSTEM/PATCH. In this
case, the global data specification titled PATCHINPUT is used.
FILE PATCH Specifies the title of the file that SYSTEM/PATCH creates by merging
the patches and compiler control options included in the CARD file.

Compilation

The job verifies that the SYSTEM/PATCH run was successful by checking the
TASKVALUE of the task variable PATCHTASK. This attribute will have a value of 1 if the
run was successful. If the run was successful, then any error file that might have been
generated by an earlier compilation of the program is removed, and the program is
compiled.

The following file equations follow the COMPILE statement.

Equation Meaning
FILE SOURCE Specifies the file to be used as the secondary source input.
FILE CARD Specifies the file to be used as the primary source input. In this

case, the merged patch file produced by the earlier run of
SYSTEM/PATCH is used

FILE NEWSOURCE Specifies the title of the updated source file that is produced by
merging the CARD file and the TAPE file. (This file is produced
because the NEW option was included in the PATCHINPUT file.)

FILE ERRORS Specifies the title of the error file that is produced if errors or
warnings occur during compilation.

Refer to compiling programs in the ALGOL Reference Manual, Volume 1 for further
information about the input and output files used by the ALGOL compiler.

The merged patch file produced by SYSTEM/PATCH is then removed, as it is no longer
needed.

A-4 8600 1047-506

Compiling a Program

SYSTEM/XREFANALYZER Run

Next, the job verifies that the compilation was successful by checking the task state of
the task variable that was attached to the compilation.

If the compilation was successful, the message “COMPILED OK" is displayed. The job
then checks to see if an error file was created by the compilation. If it was, a message is
displayed stating that the error file should be checked for warnings.

At this point, the JOBSUMMARY attribute of the job is set to SUPPRESSED. This
statement is located here so that it will suppress the job summary only if the compile
was successful. If the compile was unsuccessful, the job summary printout might
contain useful information about why it failed.

The security of the object code file is then set to PUBLIC IO, so that it will be available to
users under other usercodes.

The job then runs the XREFANALYZER utility to produce an analysis of where all the
identifiers in the program are declared and used. For a description of this utility, refer to
XREFANALYZER in the System Software Utilities Operations Reference Manual.
XREFANALYZER uses a file called XREF/OBJECT/#PROGRAMNAME, which was created
during the compilation of the program because the compiler control options XREF and
NOXREFLIST were included in the PATCHINPUT global data specification.

XREFANALYZER produces two output files. The next statement sets the security of
these two files to PUBLIC 10, so that they will be available to users under different
usercodes.

If the compilation had not been successful, the job would have skipped these last few

actions and simply displayed a message about syntax errors being present in the
program.

8600 1047-506 A-5

Initiating Other Jobs

Initiating Other Jobs

This job initiates several other jobs and programs on a daily basis. The jobs and programs
perform routine maintenance tasks such as removing unwanted files, updating other files
to the most current version, and setting system options.

?BEGIN JOB DAILY/MAINT;
CLASS=5;
STARTTIME=7:00 ON + 1;
STRING D;
D:=TIMEDATE (MMDDYY);
DISPLAY D;
CASE DECIMAL(D) OF
BEGIN
(010190,
041790,
052590,
070390,
090790,
112690,
112790,
122390,
122490,
122590,
123190):
; % TODAY'S A HOLIDAY, NO RUN NEEDED
ELSE:
BEGIN
START CLEANUP/FILES;
START SFA9E/INITIALIZE;
RUN *SETUP/CANDE/OPTIONS;
START SFA9E/DAILY/UPDATED;
END;
END;
START DAILY/MAINT;
?END JOB.

Explanation

A-6

This job only needs to be initiated by an operator once. After that, it reinitiates itself every
day. It does this with the START DAILY/MAINT statement at the end of the job.
(DAILY/MAINT is the name of the file this job is stored in.) The STARTTIME specification
in the job heading causes job initiation to be delayed until 7:00 a.m. on the following day.

The daily maintenance that this job performs is not needed on holidays. Therefore, the
TIMEDATE function is used to check the current date, and the date value is assigned to
the variable D. The CASE statement compares the value of D with the dates of all the
holidays in the year. If D equals any of these dates, the daily maintenance jobs and
programs are not initiated.

8600 1047-506

Updating Files

Updating Files
This job is a simplified example of a job that updates files used on the system.

?BEGIN JOB UPDATE/FILES;
CLASS=7; %SPECIAL QUEUE FOR OPS JOBS.
JOBSUMMARY=UNCONDITIONAL;
STRING AX;
TASK CTASK;
SUBROUTINE REMOVEFILES;
BEGIN
REMOVE
*SYMBOL/ABE , *SYMBOL/ALGOL , *SYMBOL/ALGOLSUPPLEMENT
*SYMBOL/ALGOLTABLEGEN, *SYMBOL/ATTABLEGEN, *SYMBOL/BACKUP ,
*SYMBOL/BNA , *SYMBOL/BNAV1/= , *SYMBOL/BNAENVIRONMENT,
*SYMBOL/BOOTSTRAP, *SYMBOL/BUFFERMANAGER, *SYMBOL/CANDE ,
*SYMBOL/CARDLINE, *SYMBOL/CCTABLEGEN
FROM DISK;
END REMOVEFILES;
SUBROUTINE COPYFILES;
BEGIN
COPY
*SYMBOL/ABE , *SYMBOL/ALGOL , *SYMBOL/ALGOLSUPPLEMENT
*SYMBOL/ALGOLTABLEGEN, *SYMBOL/ATTABLEGEN, *SYMBOL/BACKUP ,
*SYMBOL/BNA , *SYMBOL/BNAV1/= , *SYMBOL/BNAENVIRONMENT,
*SYMBOL/BOOTSTRAP, *SYMBOL/BUFFERMANAGER, *SYMBOL/CANDE ,
*SYMBOL/CARDLINE, *SYMBOL/CCTABLEGEN
FROM UPTAPE (TAPE) TO DISK (DISK) [CTASK];
IF CTASK (TASKVALUE) = 1 THEN
BEGIN
DISPLAY "COPYFILES DIDN'T WORK";
AX:=ACCEPT ("ENTER YES TO RETRY COPYFILES OR NO TO GO ON");
IF AX = "YES" THEN
BEGIN
INITIALIZE (CTASK);
COPYFILES;
END;
END;
END COPYFILES;

ON RESTART, GO TRYAGAIN;
TRYAGAIN:
REMOVEFILES;
COPYFILES;
?END JOB.

8600 1047-506 A7

Updating Files

Explanation

A-8

The job attributes at the start specify the queue the job will be initiated from and ensure
that a job summary will be printed.

The first subroutine, REMOVEFILES, removes a list of files from DISK. The second
subroutine, COPYFILES, copies the new versions of those files from a tape named
UPTAPE to DISK.

The REMOVEFILES subroutine is not strictly necessary if the system option 5 (AUTORM)
is set, because in that case the COPY statement automatically removes any files on the
destination volume that have the same titles as files that are being copied to that
volume.

However, the COPY statement does not remove each old file until the file that is to
replace it is completely copied over. This can cause a temporary shortage of disk space
that could prevent the COPY from completing. Removing the old files prior to using the
COPY statement ensures that this problem will not occur.

In the COPYFILES subroutine, the COPY is assigned the task variable CTASK. The
TASKVALUE of the task is checked after the COPY completes to ensure that all files
were copied successfully. If one or more of the files were not copied successfully (for
example, because they were not present on the tape), then the TASKVALUE of the
COPY taskis 1.

If the COPY was not successful, messages are displayed asking the operator whether
the COPY should be retried. The ACCEPT function assigns the operator's reply to a
variable AX. If the reply was YES, the task variable CTASK is reinitialized and the
subroutine invokes itself, thus causing the COPY to be tried over again.

The ON RESTART statement causes specified actions to be taken after a job is
interrupted by a halt/load. In this case, both subroutines are rerun after a halt/load.

8600 1047-506

Appendix B
Reserved Words, Predefined Words,
and Keywords

Overview

The WFL compiler recognizes certain words in a WFL job and associates them with
specific meanings. There are three different categories of such words: reserved words,
predefined words, and keywords.

Reserved words can never be used as identifiers. Predefined words can be used as
identifiers, but lose their original meanings for the scope of the declaration. Keywords
can be used as identifiers, and will be interpreted either as identifiers or keywords
according to the context in which they are used.

Reserved words, predefined words, and keywords can all be used as names and will be
interpreted as names where the context implies it.

File attributes and task attributes are treated as keywords in WFL.

8600 1047-506 B-1

Reserved Words

Reserved Words

These words cannot be used identifiers in WFL:

BEGIN
BINARY
BOOLEAN
CONSTANT
DATA

EBCDIC INTEGER
ELSE JOB

END REAL

FALSE STRING

FILE SUBROUTINE

Predefined Words

The following words have predefined meanings in WFL. They can be declared as
identifiers; however, they lose their predefined meanings for the scope of the

declaration.

ABORT
ACCEPT
ACCESS
ALPHA
BIND
CASE
COMPILE
COPY
CRUNCH
DATABASE
DECIMAL
DECK
DROP

B-2

EXECUTE
HEAD
HEX

IF
INITIALIZE
INSTRUCTION
LENGTH
LOCK
LOG
MODIFY
MYJOB
MYSELF
NOT

TASK

THEN
TRUE
UNTIL

OCTAL
OK
OPEN

PB
PRINT
PROCESS
PTD
REMOVE
RERUN
RETURN
REWIND
RUN
SECURITY

START
STARTJOB
STOP
SYSTEM
TAIL
TAKE
TIMEDATE
USER
WAIT
WHILE

8600 1047-506

Predefined Words

The following words are predefined when they are used as statements; however, in
some cases they can also be context-sensitive. The following table lists each word that
falls into this category and explains the cases when the word is context-sensitive.

8600 1047-506

Word Cases When Context-Sensitive
ADD VOLUME statement
CATALOG statement
CATALOG COPY statement
ADD statement
CHANGE VOLUME statement
DISPLAY TIMEDATE function
DO WHILE statement
GO COMPILE statement
BIND statement
ON COMPILE statement
BIND statement
PASSWORD ACCESS statement
PURGE CATALOG statement
RELEASE ARCHIVE statement
RESTORE ARCHIVE statement

Keywords

Keywords

Any words used in the syntax but not listed as reserved words or predefined words are
keywords. Keywords are context-sensitive. If they appear in the correct context, their
predetermined meanings are used; otherwise, they are assumed to be identifiers.

All file and task attributes and associated mnemonic values are keywords. File attributes
and their mnemonics are described in the File Attributes Reference Manual. Task
attributes and their mnemonics are described in the Task Attributes Reference Manual.

ABORTED
ACTIVE
ALGOL

AND
ARCHIVE

AS

AT

BACKUP
BASE
BDBASE
BINDER

CcC

C

CDROM
CLASS
COBOL74
COBOLSb5
COMPARE
COMPILEDOK
COMPILER
COMPLETED
COMPLETEDOK
CONTROLLED
DAY
DAYNUMBER
DCALGOL
DDMMYY

DDMMYYYY
DEFAULT
DELETE
DESTROYED
DISK

DIV
DMALGOL
EQL

EQV
ERRORLIMIT
FETCH

FOR
FORTRAN77
FROM
FROMSTART
FTP

GEQ

GTR
GUARDED
HHMMSS
HOSTSERVICES
HS

IMP

IN

INCLUDE
INUSE

10

IS

ISNT

LEQ
LIBRARY
LIST

LSS
MCPLEVEL
MMDDYY
MMDDYYY
MOD
MODULA2
MONTH
NDLII

NEQ
NEWP
NEWSOURCE
NFT

OF

ONLY
ONTO
OPTIONAL
OR
OTHERWISE
ouTt

PACK
PASCAL
PRIVATE

PUBLIC
REFERENCE
RESET
RESIDENT
RESTART
RPG
SCHEDULED
SCRATCH
SECURED
SERIALNUMBER
SET

SORT
STARTTIME
STOPPED
SYNTAX
TASKFAULT
TO

TYPE
VOLUME
WITH
YYDDD
YYMMDD
YYYYDDD
YYYYMMDD
YYYYMMDDHHMMSS

8600 1047-506

Appendix C
Understanding Railroad Diagrams

This appendix explains railroad diagrams, including the following concepts:

e Paths of a railroad diagram
e (Constants and variables
e Constraints

The text describes the elements of the diagrams and provides examples.

Railroad Diagram Concepts

Paths

Railroad diagrams are diagrams that show you the standards for combining words and
symbols into commands and statements. These diagrams consist of a series of paths
that show the allowable structures of the command or statement.

Paths show the order in which the command or statement is constructed and are
represented by horizontal and vertical lines. Many commands and statements have a
number of options so the railroad diagram has a number of different paths you can take.

The following example has three paths:

SOURCE

— REMOVE t: |
OBJECT

The three paths in the previous example show the following three possible commands:

e REMOVE
e REMOVE SOURCE
e REMOVE OBJECT

A railroad diagram is as complex as a command or statement requires. Regardless of the
level of complexity, all railroad diagrams are visual representations of commands and
statements.

8600 1047-506 C-1

Understanding Railroad Diagrams

Railroad diagrams are intended to show

e Mandatory items

o User-selected items

e Order in which the items must appear

e Number of times an item can be repeated

e Necessary punctuation

Follow the railroad diagrams to understand the correct syntax for commands and

statements. The diagrams serve as quick references to the commands and statements.

The following table introduces the elements of a railroad diagram:

Table C-1. Elements of a Railroad Diagram

The diagram element . . . Indicates an item that . ..

Constant Must be entered in full or as a specific abbreviation
Variable Represents data

Constraint Controls progression through the diagram path

Constants and Variables

A constant is an item that must be entered as it appears in the diagram, either in full or
as an allowable abbreviation. If part of a constant appears in boldface, you can abbreviate
the constant by

e Entering only the boldfaced letters

e Entering the boldfaced letters plus any of the remaining letters

If no part of the constant appears in boldface, the constant cannot be abbreviated.
Constants are never enclosed in angle brackets (< >) and are in uppercase letters.

A variable is an item that represents data. You can replace the variable with data that
meets the requirements of the particular command or statement. When replacing a
variable with data, you must follow the rules defined for the particular command or
statement.

In railroad diagrams, variables are enclosed in angle brackets.

In the following example, BEGIN and END are constants, whereas <statement list> is a
variable. The constant BEGIN can be abbreviated, since part of it appears in boldface.

— BEGIN —<statement list>— END |

8600 1047-506

Understanding Railroad Diagrams

Valid abbreviations for BEGIN are

e BE

e BEG

e BEGI
Constraints

Constraints are used in a railroad diagram to control progression through the diagram.
Constraints consist of symbols and unique railroad diagram line paths. They include

o Vertical bars

e Percent signs

e Right arrows

e Required items

e User-selected items

e Loops

e Bridges

A description of each item follows.

Vertical Bar

The vertical bar symbol (l) represents the end of a railroad diagram and indicates the
command or statement can be followed by another command or statement.

— SECONDWORD — (—=<arithmetic expression>—) }

Percent Sign

The percent sign (%) represents the end of a railroad diagram and indicates the
command or statement must be on a line by itself.

— STOP %

Right Arrow

The right arrow symbol (>)

e |s used when the railroad diagram is too long to fit on one line and must continue on
the next

e Appears at the end of the first line, and again at the beginning of the next line

— SCALERIGHT — (—=<arithmetic expression>— ,

s—<arithmetic expression>—) {

8600 1047-506 C-3

Understanding Railroad Diagrams

Required Item

A required item can be

e A constant

e Avariable

e Punctuation

If the path you are following contains a required item, you must enter the item in the

command or statement; the required item cannot be omitted.

A required item appears on a horizontal line as a single entry or with other items.
Required items can also exist on horizontal lines within alternate paths, or nested
(lower-level) diagrams.

In the following example, the word EVENT is a required constant and <identifier> is a
required variable:

— EVENT —<identifier |

User-Selected Item

A user-selected item can be

e A constant
e Avariable
e Punctuation

User-selected items appear one below the other in a vertical list. You can choose any
one of the items from the list. If the list also contains an empty path (solid line) above the
other items, none of the choices are required.

In the following railroad diagram, either the plus sign (+) or the minus sign (-) can be

entered before the required variable <arithmetic expression>, or the symbols can be
disregarded because the diagram also contains an empty path.

—m—qri thmetic expression |
+

Loop

A loop represents an item or a group of items that you can repeat. A loop can span all or
part of a railroad diagram. It always consists of at least two horizontal lines, one below
the other, connected on both sides by vertical lines. The top line is a right-to-left path
that contains information about repeating the loop.

Some loops include a return character. A return character is a character—often a
comma (,) or semicolon (;)—that is required before each repetition of a loop. If no return
character is included, the items must be separated by one or more spaces.

— 1 <field values- |

8600 1047-506

Understanding Railroad Diagrams

Bridge

A loop can also include a bridge. A bridge is an integer enclosed in sloping lines (/\) that

e Shows the maximum number of times the loop can be repeated

e Indicates the number of times you can cross that point in the diagram

The bridge can precede both the contents of the loop and the return character (if any) on
the upper line of the loop.

Not all loops have bridges. Those that do not can be repeated any number of times until
all valid entries have been used.

In the first bridge example, you can enter LINKAGE or RUNTIME no more than two
times. In the second bridge example, you can enter LINKAGE or RUNTIME no more than
three times.

J—[INKAGE — |
RUNTIME —]

In some bridges an asterisk (*) follows the number. The asterisk means that you must

cross that point in the diagram at least once. The maximum number of times that you
can cross that point is indicated by the number in the bridge.

__l_Ii/Z*_ LINKAGE — |
RUNTIME — !

In the previous bridge example, you must enter LINKAGE at least once but no more than
twice, and you can enter RUNTIME any number of times.

8600 1047-506 C-5

Understanding Railroad Diagrams

Following the Paths of a Railroad Diagram

The paths of a railroad diagram lead you through the command or statement from
beginning to end. Some railroad diagrams have only one path; others have several
alternate paths that provide choices in the commands or statements.

The following railroad diagram indicates only one path that requires the constant
LINKAGE and the variable <linkage mnemonic>:

— LINKAGE —<1linkage mnemonic I
Alternate paths are provided by

e Loops

e User-selected items

e A combination of loops and user-selected items

More complex railroad diagrams can consist of many alternate paths, or nested

(lower-level) diagrams, that show a further level of detail.

For example, the following railroad diagram consists of a top path and two alternate
paths. The top path includes
e Anampersand (&)
e Constants that are user-selected items
These constants are within a loop that can be repeated any number of times until all

options have been selected.

The first alternative path requires the ampersand and the required constant ADDRESS.
The second alternative path requires the ampersand followed by the required constant
ALTER and the required variable <new value>.

— &L Tvee | |
ASCIT —
BCL —
DECIMAL —
EBCDIC —
HEX —
OCTAL —

— ADDRESS

— ALTER —<new value>—

C-6 8600 1047-506

Understanding Railroad Diagrams

Railroad Diagram Examples with Sample Input

The following examples show five railroad diagrams and possible command and
statement constructions based on the paths of these diagrams.
Example 1

<lock statement>
— LOCK — (— <file identifier> —) |

Sample Input Explanation

LOCK (FILE4) LOCK is a constant and cannot be altered. Because no part of
the word appears in boldface, the entire word must be entered.

The parentheses are required punctuation, and FILE4 is a
sample file identifier.

Example 2
<open statement>
— OPEN database name }
E INQUIRY
UPDATE
Sample Input Explanation
OPEN DATABASE1 The constant OPEN is followed by the variable DATABASET,

which is a database name.

The railroad diagram shows two user-selected items, INQUIRY
and UPDATE. However, because an empty path (solid line) is
included, these entries are not required.

OPEN INQUIRY The constant OPEN is followed by the user-selected constant
DATABASE1 INQUIRY and the variable DATABASE1.
OPEN UPDATE The constant OPEN is followed by the user-selected constant
DATABASE1 UPDATE and the variable DATABASE1.

8600 1047-506 C-7

Understanding Railroad Diagrams

Example 3
<generate statement>
— GENERATE —<subset>— = —— NULL |

<subset
AND <subset>—
+

Sample Input Explanation
GENERATE Z = NULL The GENERATE constant is followed by the variable Z,
an equal sign (=), and the user-selected constant NULL.
GENERATE Z =X The GENERATE constant is followed by the variable Z,
an equal sign, and the user-selected variable X.
GENERATE Z =X AND B The GENERATE constant is followed by the variable Z,

an equal sign, the user-selected variable X, the AND
command (from the list of user-selected items in the
nested path), and a third variable, B.

GENERATEZ=X+B The GENERATE constant is followed by the variable Z,
an equal sign, the user-selected variable X, the plus sign
(from the list of user-selected items in the nested path),
and a third variable, B.

Example 4

<entity reference declaration>

— ENTITY REFERENCE J—<ent1’ty ref ID>— (’—<c1ass ID>—) J—‘

Sample Input Explanation
ENTITY REFERENCE ADVISOR1 The required item ENTITY REFERENCE is
(INSTRUCTOR) followed by the variable ADVISOR1 and

the variable INSTRUCTOR. The
parentheses are required.

ENTITY REFERENCE ADVISOR1 Because the diagram contains a loop, the
(INSTRUCTOR), ADVISOR2 pair of variables can be repeated any
(ASST_INSTRUCTOR) number of times.

C-8 8600 1047-506

Understanding Railroad Diagrams

Example 5

<PS MODIFY command>
— PS — MODIFY

’ |

> <request number
<request number>— — —<request number>J
ALL

L ExceprIons

|] file att;‘ibute ph\r‘asei:|—L
<print modifier phrase
R g

Sample Input

Explanation

PS MODIFY 11159

The constants PS and MODIFY are followed by the
variable 11159, which is a request number.

PS MODIFY
111569,11160,11163

Because the diagram contains a loop, the variable 11159
can be followed by a comma, the variable 11160,
another comma, and the final variable 11163.

PS MOD 11159-11161
DESTINATION = "LP7"

The constants PS and MODIFY are followed by the
user-selected variables 11159-11161, which are request
numbers, and the user-selected variable DESTINATION
= "LP7", which is a file attribute phrase. Note that the
constant MODIFY has been abbreviated to its minimum
allowable form.

PS MOD ALL EXCEPTIONS

The constants PS and MODIFY are followed by the
user-selected constants ALL and EXCEPTIONS.

8600 1047-506

C-9

Understanding Railroad Diagrams

C-10 8600 1047-506

Appendix D
Related Product Information

The following documents provide information that is directly related to the primary
subject of this reference manual.

MCP/AS Binder Programming Reference Manual (3600 0304)

The shortened title for this document is the Binder Reference Manual.

This manual describes the functions and applications of the Binder, an efficiency tool that
reduces the need to recompile an entire program when only a portion of the program has
been modified. This manual is written for programmers who are familiar with
programming language concepts and terms.

MCP/AS Menu-Assisted Resource Control (MARC) Operations Guide
(8600 0403)

The shortened title for this document is the MARC Operations Guide.

This guide provides an overview of MARC, a description of the menu structure, and
information on how to use help text, commands, security features, and Communications
Management System (COMS) windows from MARC. The guide also explains how to run
programs from MARC, how to customize MARC to meet user needs, and how to use
MARC in a multinational environment. This guide is written for a wide audience, ranging
from experienced system administrators to end users with no previous knowledge of
MARC.

MCP/AS Message Translation (MISGTRANS) Utility Operations Guide
(8600 0106)

The shortened title for this document is the MSGTRANS Operations Guide.

This guide describes how to use the Message Translation Utility (MSGTRANS) to
translate compiled program messages from any natural language to any other natural
language. It provides complete instructions for running and using the screen and batch
interfaces of MSGTRANS. This guide is written for programmers and translators who
create and translate program messages in a MultiLingual System (MLS) environment.

MCP/AS Printing Utilities Operations Guide (3600 0692)

The shortened title for this document is the Printing Utilities Guide.

This guide describes how to use the Print System utilities: Backup Processor,
SYSTEM/BACKUP, and LTTABLEGEN. This guide is written for programmers, system
administrators, and interactive users of Menu-Assisted Resource Control (MARC) and
CANDE who are familiar with the concepts and use of the Print System.

8600 1047-506 D-1

Related Product Information

D-2

MCP/AS Security Features Operations and Programming Guide (3600 0528)

The shortened title for this document is the Security Features Guide.

This guide describes the security features available to users and provides instructions for
their use. This guide is written for users who are responsible for maintaining the security
of their individual programs and data.

MCP/AS System Administration Guide (8600 0437)

This guide provides the reader with information required to make decisions about

system configuration, peripheral configuration, file management, resource use, and other
matters related to system administration. This guide is written for users with some, little,
or no experience who are responsible for making decisions about system administration.

Unisys e-@ction Application Development Solutions ALGOL Programming
Reference Manual, Volume 1: Basic Implementation (8600 0098)

The shortened title for this document is the ALGOL Reference Manual, Vol. 1.

This manual describes the basic features of the Extended ALGOL programming
language. This manual is written for the applications programmer or systems analyst
who is experienced in developing, maintaining, and reading ALGOL programs.

Unisys e-@ction Application Development Solutions Programmer's
Workbench for ClearPath MCP Installation and Operations Guide
(8808 0049)

The shortened title for this document is the Programmer's Workbench Installation and
Operations Guide.

This guide provides a description of the basic concept of file editing and patching using
Programmer's Workbench. Instructions are provided for an operator or administrator to
use Programmer's Workbench system commands for querying and controlling the
operation of the Programmer's Workbench server component. The user is referred to
the Programmer's Workbench online help of the Programmer's Workbench client
component for detailed information and steps to edit an MCP file. This guide is written
for system administrators and operators.

Unisys e-@ction ClearPath Enterprise Servers Distributed Systems
Services Operations Guide (3600 0122)

The shortened title for this document is the Distributed Systems Services Operations
Guide.

This guide describes the capabilities and features of distributed systems services and
how to use them. It is intended for system operators, system administrators, and
general computer users.

Unisys e-@ction ClearPath Enterprise Servers File Attributes Programming
Reference Manual (3600 0064)

The shortened title for this document is the File Attributes Reference Manual.

8600 1047-506

Related Product Information

This manual contains information about each file attribute and each direct I/0O buffer
attribute. The manual is written for programmers and operations personnel who need to
understand the functionality of a given attribute. The I/O Subsystem Programming Guide
is a companion manual.

Unisys e-@ction ClearPath Enterprise Servers I/O Subsystem Programming
Guide (83600 0056)

This guide contains information about how to program for various types of peripheral
files and how to program for interprocess communication, using port files. This guide is
written for programmers who need to understand how to describe the characteristics of
a file in a program. The File Attributes Programming Reference Manual is a companion
manual.

Unisys e-@ction ClearPath Enterprise Servers MultiLingual System
Administration, Operations, and Programming Guide (3600 0288)

The shortened title for this document is the MLS Guide.

This guide describes how to use the MLS environment, which encompasses many
products. The MLS environment includes a collection of operating system features,
productivity tools, utilities, and compiler extensions. The guide explains how these
products are used to create application systems tailored to meet the needs of usersin a
multilingual or multicultural business environment. It explains, for example, the
procedures for translating system and application output messages, help text, and user
interface screens from one natural language to one or more other languages; for
instance, from English to French and Spanish. This guide is written for international
vendors, branch systems personnel, system managers, programmers, and customers
who wish to create customized application systems.

Unisys e-@ction ClearPath Enterprise Servers Print System and Remote
Print System Administration, Operations, and Programming Guide
(8600 1039)

The shortened title for this document is the Print System Guide.

This guide describes the features of the Print System and provides a complete
description of its command syntax. This guide is written for programmers, operators,
system administrators, and other interactive users of Menu-Assisted Resource Control
(MARC) and CANDE.

Unisys e-@ction ClearPath Enterprise Servers Security Administration
Guide (8600 0973)

This guide describes system-level security features and suggests how to use them. It
provides administrators with the information necessary to set and implement effective
security policy. This guide is written for system administrators, security administrators,
and those responsible for establishing and implementing security policy.

Unisys e-@ction ClearPath Enterprise Servers System Commands
Operations Reference Manual (3600 0395)

The shortened title for this document is the System Commands Reference Manual.

8600 1047-506 D-3

Related Product Information

D—4

This manual gives a complete description of the system commands used to control
system resources and work flow. This manual is written for systems operators and
administrators.

Unisys e-@ction ClearPath Enterprise Servers System Operations Guide
(8600 0387)

This guide describes concepts and procedures required to operate most Unisys systems.
Sections 1 and 2 contain information and procedures that can be done by novice
operators. Section 3 contains operations and procedures that require more advanced
operations experience. This guide is written for operators responsible for operating the
enterprise server, especially operators with little or no experience.

Unisys e-@ction ClearPath Enterprise Servers System Software Utilities
Operations Reference Manual (3600 0460)

This manual provides information on the system utilities BARS, CARDLINE, CDFORMAT,
COMPARE, DCAUDITOR, DCSTATUS, DUMPALL, DUMPANALYZER, FILECOPY,
FILEDATA, HARDCOPY, INTERACTIVEXREF, ISTUTILITY, LOGANALYZER, LOGGER,
PATCH, PCDRIVER, PRINTCOPY, RLTABLEGEN, SORT, XREFANALYZER, and the V
Series conversion utilities. It also provides information on KEYEDIO support, Peripheral
Test Driver (PTD), and mathematical functions. This manual is written for applications
programmers, system support personnel, and operators.

Unisys e-@ction ClearPath Enterprise Servers Task Attributes
Programming Reference Manual (3600 0502)

The shortened title for this document is the Task Attributes Reference Manual.

This manual describes all the available task attributes. It also gives examples of
statements for reading and assigning task attributes in various programming languages.
The Task Management Programming Guide is a companion manual.

Unisys e-@ction ClearPath Enterprise Servers Task Management
Programming Guide (3600 0494)

The shortened title for this document is the Task Management Guide.

This guide explains how to initiate, monitor, and control processes on an enterprise
server. |t describes process structures and process family relationships, introduces the
uses of many task attributes, and gives an overview of interprocess communication
techniques. The Task Attributes Programming Reference Manual is a companion manual.

Unisys e-@ction ClearPath Enterprise Servers TCP/IP Distributed Systems
Services Operations Guide (3307 6385)

The shortened title for this document is the TCP/IP DSS Operations Guide.

This guide explains how to use most of the TCP/IP services provided by the DSS
products. These products include File Transfer Protocol (FTP), Telnet, Domain Name
Services (DNS), and Time Synchronization. The guide also explains how to use the
TCP/IP DSS debugging tools. This guide is written for system planners, system
programmers, application programmers, and computer operators who use TCP/IP DSSs

8600 1047-506

Related Product Information

Unisys e-@ction ClearPath Enterprise Servers Work Flow Language (WFL)
Made Simple (3307 7391)

This manual uses examples to teach the basics of Work Flow Language (WFL) for
copying files, compiling programs, and running tasks. The audience includes operators
and programmers.

Unisys e-@ction Transaction Server for ClearPath MCP Configuration
Guide (3600 0312)

This manual describes the commands used to perform CANDE control functions and
data communications network control functions. It also describes how to configure
CANDE to meet the resource requirements of the installation. This manual is written for
system administrators and operators.

Unisys e-@ction Transaction Server for ClearPath MICP Operations Guide
(8600 0833)

This manual describes how CANDE operates to allow generalized file preparation and
updating in an interactive, terminal-oriented environment. This manual is written for a
wide range of computer users who work with text and program files.

Unisys e-@ction Transaction Server for ClearPath MICP Programming
Guide (8600 0650)

The guide explains how to write online, interactive, and batch application programs that
run under the Transaction Server. This guide is written for experienced applications
programmers with knowledge of data communication subsystems.

8600 1047-506 D-5

Related Product Information

D-6 8600 1047-506

Index

A group attribute, 6-11
groupr attribute, 6-11
grouprwx attribute, 6-11

abort statement, 1-13, 6-5 groupw attribute, 6-11

ABORTED fosk state 76 groupx tiibute, 611
absolute pathname ' guardovv_ner attribute, 6-12
in currentdirectory assignment, 5-14 label at‘_frlbute_, 6-12
accept function, 1-20, 7-20 lockedfile attribute, 6-12
example, 1-21 note attribute, 6-12
in string 'primary 718 otherr attribute, 6-12
access statement ,6-6 otherrwx attribute, 6-12
example, 6-6 ' otherw attribute, 6-12
explanati'on 6-6 otherx attribute, 6-12
' owner attribute, 6-13

aci}easssscvsgred 6-6 ownerr attribute, 6-13
syntax 512 ownerrwx attribute, 6-13
task attribute, 5-31 ownerw attrioute, €-13

ACTIVE task sta'te, 7.6 ownerx attribute, 6-13

pagecomp attribute, 6-14

printerkind attribute, 6-14

product attribute, 6-14
propagatesecuritytodirs attribute, 6-14
propatatesecuritytofiles attribute, 6-14
releaseid attribute, 6-14

savefactor attribute, 6-14

add command
in CANDE, 2-4
in MARC, 2-7
add or copy statement, 6-63
add statement, 1-18, 5-1, 6-7
copying FIFOs, 6-65
ﬁ}ﬁggi; slz?’ée?n7e’n§[,1gj 53 securityguard attribute, 6-14

ALGOL programs, initiating WFL jobs secur!tymode at‘_trlbute, 6-14
from, 2-9 securitytype attribute, 6-15

securityuse attribute, 6-15

sensitivedata attribute, 6-15

setgroupcode attribute, 6-15

setusercode attribute, 6-15

trainid attribute, 6-15

transform attribute, 6-15

useguardfile attribute, 6-16

userinfo attribute, 6-16
alternate family name, 5-15

in family specification, 5-15
alternategroups attribute

in alter statement, 6-10
alternategroups value, 6-179

in alter attribute statement, 6-8

in security specification, 6-178
ampersand (&), as a string operator, 7-17

alignfile attribute
in alter statement, 6-9
alignment attribute
in alter statement, 6-10
alter attribute statement, 6-8
in alter statement, 6-8
alter statement, 6-8, 6-9
alignfile attribute, 6-9
alignment attribute, 6-10
alternategroups attribute, 6-10
APL attribute, 6-10
banner attribute, 6-10
ccsversion attribute, 6-10
example, 6-16
extmode attribute, 6-10
formid attribute, 6-11

8600 1047-506 Index—1

Index

AND, as a Boolean operator, 7-2
APL attribute
in alter statement, 6-10
append attribute
in FTP transform, 6-115
archive backup statement, 6-19
accelerating the copy process, 6-20, 6-64
example, 6-21
archive differential statement, 6-18
archive disk volume, 6-23
attribute list, 6-24
attribute list in, 6-23
familyindex attribute, 6-24
in archive backup statement, 6-19
in archive merge statement, 6-38
in archive purge statement, 6-39
in archive restore statement, 6-41
kind attribute, 6-24
serialno attribute, 6-24
archive full statement, 6-18
archive incremental statement, 6-18
archive merge statement, 6-18, 6-38
example, 6-38
archive options, 6-22
in archive backup statement, 6-19
in archive merge statement, 6-38
in archive restore statement, 6-41
in archive rollout statement, 6-43
archive purge statement, 6-18, 6-39
example, 6-39
archive release statement, 6-18, 6-40
archive restore statement, 6-18, 6-41
example, 6-42
archive restoreadd statement, 6-18
example, 6-42
archive rollout statement, 6-18, 6-43
DRC option, 6-44
example, 6-45
sectors option, 6-44
using the DRC option with, 6-44
archive statement, 5-1, 6-17
archive differential, 6-18
archive full, 6-18
archive incremental, 6-18
archive merge, 6-18
archive purge, 6-18
archive release, 6-18
archive restore, 6-18
archive restoreadd, 6-18
archive rollout, 6-18
compare option, 6-22
dsonerror option, 6-22
options, 6-22

Index—2

release option, 6-22
report option, 6-22
skipexclusive option, 6-22
specifying different, 6-18
waitonerror option, 6-22
archive subsystem, 6-17
autounload attribute, 6-27
blocksize attribute, 6-27
compressioncontrol attribute, 6-28
density attribute, 6-28
different types, 6-18
familyowner attribute, 6-29
kind attribute, 6-29
libmaintappend attribute, 6-29
locatecapable attribute, 6-31
offsite attribute, 6-32
savefactor attribute, 6-32
scratchpool attribute, 6-33
securityguard attribute, 6-32
securitytype attribute, 6-32
securityuse attribute, 6-33
serialno attribute, 6-33
usecatalog attribute, 6-33
archive Subsystem
libmaintdir attribute, 6-30
archive tape volume, 6-25
attribute list, 6-25, 6-26
attribute list in, 6-25
attributes, 6-27, 6-35
autounload attribute, 6-27
blocksize attribute, 6-27
compressioncontrol attribute, 6-28
compressionrequested attribute, 6-28
density attribute, 6-28
example, 6-25
familyowner attribute, 6-29
in archive backup statement, 6-19
in archive merge statement, 6-38
in archive rollout statement, 6-43
kind attribute, 6-29
libmaintappend attribute, 6-29
libmaintdir attribute, 6-30
locatecapable attribute, 6-31
offsite attribute, 6-32
savefactor attribute, 6-32
scratchpool attribute, 6-33
securityguard attribute, 6-32
securitytype attribute, 6-32
securityuse attribute, 6-33
serialno attribute, 6-33
usecatalog attribute, 6-33
archive tape volume attributes
archive task equation

8600 1047-506

Index

library equation, 6-37
task attribute assignment, 6-37
archive task equation list, 6-37
in archive backup statement, 6-19
in archive merge statement, 6-38
in archive restore statement, 6-41
in archive rollout statement, 6-43
arithmetic comparison, 7-7
arithmetic constant comparison, 7-30
in Boolean constant primary, 7-30
assigning values
to task attributes, 5-8
assignment statement, 6-2, 6-46
example, 6-47
asterisk (¥*)
as a real operator, 7-13
as a string operator, 7-17
as an integer operator, 7-9
copy statement, 6-102
in library equation, 5-49
asynchronous processing with process
statement, 6-153
asynchronous task initiation, 5-2
asynchronous tasks, 5-2
AT <hostname constant>, 3-3
AT specification, example, 2-8
attribute lists, 6-79
destination volume, 6-80
source volume, 6-79
autounload attribute, 6-82, 6-123
archive tape volume, 6-27
in restore statement, 6-166
available file attribute, inquiring file
residence, 7-5
AX examples in a run statement, 6-172

backup option

in copy statement, 6-68
backup utility, 6-147
banner attribute

in alter statement, 6-10
basic constructs, 8-1
becomeowner option

in copy statement, 6-68
begin job construct, 3-2
bind option

compile or bind statement, 6-56
bind statement, 5-1, 6-48

example, 6-48

8600 1047-506

in process statement, 6-153
binder title, 6-48

in bind statement, 6-48
blocksize attribute, 6-82

archive tape volume attributes, 6-27
blockstructure attribute

OSI FTAM transform, 6-117
Boolean assignment

example, 5-9
Boolean assignment statement, 6-46
Boolean constant, 8-4

in Boolean constant primary, 7-30
Boolean constant expression, 4-3, 7-30

in Boolean constant primary, 7-30

in Boolean declaration, 4-4
Boolean constant identifier, 4-3, 8-3

in Boolean constant primary, 7-30
Boolean constant primary, 7-30

in Boolean constant expression, 7-30
Boolean declaration, 4-1, 4-4
Boolean expression, 7-2

in alter attribute statement, 6-8

in archive tape volume attribute list, 6-26

in Boolean assignment statement, 6-46

in do statement, 6-126

in file attribute assignment, 5-39

in if statement, 6-128

in named parameter list, 6-181

in positional parameter list, 6-181

in print attribute phrase, 6-148

in print modifier phrase, 6-148

in run parameter list, 6-171

in security specification, 6-178

in subroutine invocation statements, 6-186

in tape attributes, 6-162

in task attribute assignment, 5-8

in volume attribute list, 6-194

in while statement, 6-207
Boolean file attribute, 5-42

in Boolean file attribute primary, 7-5

in file attribute assignment, 5-39

primary, 7-5
Boolean formal parameter, 3-5

in named parameter list, 6-181
Boolean format parameter, 3-5
Boolean identifier, 8-3

in Boolean assignment statement, 6-46

in Boolean declaration, 4-4

in subroutine parameters, 4-10
Boolean operators

AND, 7-2

EQV, 7-2

IMP, 7-2

Index-3

Index

NOT, 7-2
OR, 7-2
Boolean parameter declaration, 3-5
Boolean primary, 7-3
Boolean print attribute
in print attribute phrase, 6-148
Boolean print modifier
in print modifier phrase, 6-148
Boolean relational operators, 7-2
Boolean task attribute
in Boolean task attribute primary, 7-5
in task attribute assignment, 5-8
in wait specification, 6-204
primary, 7-5
wait statement options, 6-205
Boolean variables, 4-4
buffer underrun, 6-93

C

call-by-reference parameters, 4-11
call-by-value parameters, 4-11
CANDE

add command, 2-4

commands, 2-4

copy statement, 2-4

initiating WFL jobs from, 2-2

limitations, 2-2

make command, 2-3

start command, 2-3

WFL command, 2-2
case constant expression, 6-49

in case statement, 6-49
case expression, 6-49

in case statement, 6-49
case statement, 1-7, 6-49

example, 6-49
catalog option in copy statement, 6-69
catalog statement, 6-50

add, 6-50

delete, 6-50

example, 6-51

purge, 6-50

serialno option, 6-51
cataloging

statement, 6-4

volume library, 6-195
cataloging statements

catalog, 6-50

volume, 6-195

Index—4

cause exception event system
command, 6-20, 6-45
ccsversion attribute
in alter statement, 6-10
CD-ROMs and copy statement, 6-63, 6-66
change from group, 6-52
in change statement, 6-52
change list, 6-52
in change statement, 6-52
change statement, 1-18, 6-52
entering individually from ODT, 2-6
example, 1-19, 6-563
changing
a password, 6-6
file attributes, 5-35
character elements, 8-2
character set, 7-21, 8-1
in head-tail constant function, 7-33
in head-tail function, 7-21
checkpoint, restarting a job at, 6-161
choosing a compiler, 6-55
class job attribute, 3-12
class specification, 3-12
clauses, onto, 6-77
closing files, 1-16
example, 1-17
COBOL74 programs, initiating WFL jobs
from, 2-9
COBOLS85 programs, initiating WFL jobs
from, 2-9
code core, 5-13
in core assignment, 5-13
comment delimiter, percent sign (%), 3-2
comments, 1-22
jobs, 1-22
communication statement, 1-20, 6-3
display, 6-3
instruction, 6-3
compact discs and copy statement, 6-66
compare files, 6-22
compare option
in archive statement, 6-22
in copy statement, 6-69, 6-73
in move statement, 6-138
in restore statement, 6-165
compile or bind statement, 6-54
bind option, 6-56
example, 6-56
compiler name, 6-55
example, 6-55
example, 6-61
local data specifications, 6-60
example, 6-60

8600 1047-506

Index

object code file disposition, 6-56
go option, 6-56
library go option, 6-56
library option, 6-56
syntax option, 6-56
object code file title, 6-55
example, 6-55
compile statement, 5-1
example, 1-4
in process statement, 6-153
task variables, 6-57
example, 6-57
COMPILEDOK task state, 7-6
compiler data specification, 6-58
in compiler task equation list, 6-58
compiler name, 6-54
in compile or bind statement, 6-54
in compiler data specification, 6-58
in compiler task equation list, 6-58
compiler task equation
overriding at run time, example, 6-60
compiler task equation list, 6-58
example, 6-59
file equations, 6-59
in bind statement, 6-48
in compile or bind statement, 6-54
in database equations, 6-59
library equations, 6-59
task attributes, 6-59
compiler title, 6-54
compiling WFL jobs for syntax, 3-8
COMPLETED task state, 7-6
COMPLETEDOK task state, 7-6
complex task attribute assignment
core, 5-13
currentdirectory, 5-14
family, 5-15
in task attribute assignment, 5-8
option, 5-17
printdefaults assignment, 5-19
resource, 5-21
usercode, 5-23
complex task attributes
interrogating value of, 5-31
compound statement, 6-2, 6-62
example, 6-62
compressioncontrol attribute, 6-89
archive tape volume attributes, 6-28
compressionrequested attribute
archive tape volume attributes, 6-28
concatenation operators, 7-17
constant declaration, 4-3
constant declaration element, 4-3

8600 1047-506

constant expressions, 7-29
constant identifiers, 4-3
declaring, 3-6
example, 4-3
constants, 8-4
declaring, 4-3
context-sensitive words, B-3
control options, 9-1
controller, 2-6
copy * = AS, 6-102
copy = AS, 6-102
copy file, 6-74, 6-75
in copy or add statement, 6-74
copy file transfer services, 6-109
copy files, 6-18
copy from group, 6-76
in copy or add statement, 6-74
copy options
backup, 6-68
becomeowner, 6-68
catalog, 6-69
compare, 6-69
dsonerror, 6-70
fromstart, 6-71
remove, 6-71
report, 6-71
skipexclusive, 6-72
verify, 6-72
waitonerror, 6-73
copy or add statement, 6-63
example, 6-105
copy request, 6-74
in add statement, 6-7
in copy or add statement, 6-63
in copy statement, 6-74
onto clause, 6-77
copy statement, 1-18, 5-1
CD-ROMs, 6-63, 6-66
copying FIFOs, 6-65
example, 1-19, 6-88
file attributes, 6-81, 6-88
file transfer services, 6-109
format type, 6-65
FTAM transform attributes, 6-117
FTP transform attributes, 6-115
host services, 6-113
in CANDE, 2-4
in MARC, 2-7
in process statement, 6-153
library maintenance, 6-66
multiple copies by multiple destination
volumes, 6-76
NFT transfer, 6-111

Index-5

Index

OSI FTAM transform attributes, 6-117
restarting interrupted file transfers, 6-120
restrictions, 6-111
special cases, 6-102
specifying copy options, 6-68
specifying file attributes, 6-74
transfer services, 6-109
copying
CD-ROM images, 6-63
files, 6-63, 6-65
copying files, 6-18, 8-15
from tape, 6-95
KEYEDIOII, 6-67
locally
library maintenance program, 6-66
to remote hosts
file transfer service, 6-66
with usercodes, 6-97
without usercodes, 6-97
core assignment, 5-13
core task attribute, assigning value to, 5-13
create libmaintdir statement, 6-121, 6-122
autounload attribute, 6-123
cycle attribute, 6-123
familyowner attribute, 6-123
file attributes, 6-123
options, 6-122
serialno attribute, 6-123
version attribute, 6-123
createpassword attribute
OSI FTAM transform, 6-117
creating permanent directories, 6-134
crunch statement, 1-16, 6-124
currentdirectory assignment, 5-14
example, 5-14
cycle attribute, 6-84, 6-123
in restore statement, 6-166

D

data core, 5-13
in core assignment, 5-13
data decks, 4-13
data images, 4-13
in global data specification, 4-13
in local data specification, 5-51
data processing, 1-7
data specifications, 1-6
example, 1-6
global, 4-13
data types

Index—6

DATA, 4-13

EBCDIC, 4-13
DATA, data type, 4-13
database equation, 5-50

example, 5-50

in compiler task equation list, 6-58

in modify statement, 6-135

in task equation list, 5-3
database equations compiler task equation

list, 6-59

database name, 5-50

in database equation, 5-50
database title, 5-50

in database equation, 5-50
date, 3-14

in starttime spec, 3-14
date information, 7-25
date interval

in starttime spec, 3-14
DCALGOL programs, initiating WFL jobs

from, 2-9

dd in date, 3-14
decimal function, 7-10

in integer primary, 7-10
declaration list, 3-16

example, 3-16

in subroutine block, 4-10
declarations, 4-1

Boolean variables, 4-4

constants, 4-3

file variables, 4-8

global data specifications, 4-13

integer variables, 4-5

real variables, 4-6

string variables, 4-7

subroutines, 4-10

task variables, 4-9
default clause, 3-6
delaying job initiation, 3-14
density attribute, 6-89

archive tape volume attributes, 6-28
destination, 6-190, 6-208

in unwrap volume, 6-189

in wrap volume, 6-208
destination volume

attribute list, 6-80

in copy or add statement, 6-74
destination volume attribute list, 6-80
destination volume file, 6-76
device kind assignment, 5-40

in file attribute assignment, 5-39
device kind attribute

example, 5-40

8600 1047-506

Index

device mnemonic, 5-40

in device kind assignment, 5-40
digit, 8-2

in date, 3-14

in identifier, 8-3

in integer constant, 8-4

in long name constant, 8-6

in name constant, 8-6

in real constant, 8-4

in sequence number, 9-3

in simple name constant, 8-6

in tape name, 6-162

in time, 3-14

inyy, 3-14

inyyyy, 3-14
digital signatures

wrapping files with, 6-209
directories, 8-8
directory name, 8-10

in archive restore statement, 6-41

in directory selection, 6-162

in directory title, 8-11

in mkdir statement, 6-134

in remove from group, 6-40

in remove list, 6-40

in unwrap file, 6-189

in wrap file, 6-208
directory name constant, 8-9

in catalog statement, 6-50

in directory title constant, 8-9
directory selection, 6-162

in restore statement, 6-162
directory title, 8-11

in print specification, 6-148
directory title constant, 8-9
discontinuing a task, 6-5
disk, transferring files to, 6-111
display statement, 1-8, 1-20, 6-125

example, 1-21
displaying messages, 6-125
distributed systems services (DSS), 2-7

in file transfers, 6-109
DIV

as a real operator, 7-13

as an integer operator, 7-9
do statement, 1-7, 6-126

example, 1-9
documenttype attribute

OSI FTAM transform, 6-117
dollar sign ($)

in compiler control options, 9-1
domainname attribute, 6-84
DRC option

8600 1047-506

archive rollout statement, 6-44
drop constant function, 7-33
drop function, 7-24
dsonerror option
in archive statement, 6-22
in copy statement, 6-70
in create libmaintdir statement, 6-122
in move statement, 6-138
in restore statement, 6-165
in unwrap statement, 6-189
with wrap statement, 6-209
DSS (See distributed system services)
dummy files
storing information about job
execution, 2-15

EBCDIC
character set, 8-1
data type, 4-13
ENABLEPOSIX system option, 6-9, 6-179,
6-202
end job construct, 3-2
ending identifiers
subroutines, 1-22
equations, file, 5-33
EQV, as a Boolean operator, 7-2
errorlimit control option, 9-2
event file attributes, 5-42
examples
abort statement, 1-14
accept function, 1-21, 7-20
add statement, 1-19, 6-107
case statement, 1-8
change statement, 1-19
closing files, 1-17
compile statement, 1-4
constant expressions, 7-29
constant identifiers, 4-3
copy or add statement, 6-105
copy statement, 1-19, 6-88
crunch statement, 6-124
data specification, 1-6
decimal function, 7-10
display statement, 1-21
do statement, 1-9, 6-126
drop function, 7-24
errorlimit control option, 9-2
file mnemonic primary, 7-28
go statement, 6-127

Index-7

Index

head function, 7-21

hex function, 7-14

identifiers, 8-3

if statement, 1-8, 6-128

include control option, 9-4
initialize statement, 6-130
instruction statement, 6-131
integer constants, 8-5

integer function, 7-11

integer task attribute primary, 7-12
job tile, 3-4

length function, 7-11

list control option, 9-5

lock statement, 6-132

log statement, 6-133

modify statement, 6-136

name constant, 8-7
newsegment control option, 9-7
null statement, 6-140

octal function, 7-15

on statement, 6-143

open statement, 6-145

PB statement, 6-147

print statement, 6-152

process statement, 6-154

PTD statement, 6-155

purge statement, 6-156

real constants, 8-5

release statement, 6-157
remove statement, 1-19, 6-159
rerun statement, 6-161

restore statement, 6-167, 6-169
return statement, 1-12

rewind statement, 6-170

run statement, 1-4, 6-172
security statement, 1-19, 6-180
simple name constant, 8-7
start statement, 6-183
starttime specification, 3-15
stop statement, 6-185

string constants, 8-5

string expressions, 7-18

string file attribute primary, 7-19
string function, 7-22
subroutine invocation statement, 6-187
subroutines, 1-10, 1-22

system function, 7-23

tail function, 7-21

take function, 7-24

task attributes, 1-5

task file attribute primary, 7-20
timedate function, 7-25
unwrap statement, 6-191

Index—8

user statement, 1-15, 6-192
volume statement, 6-203
wait statement, 1-14, 6-205
while statement, 6-207
wrap statement, 6-210
expressions, 7-1
constant, 7-29
extmode attribute
in alter statement, 6-10
OSI FTAM transform, 6-118

F

family assignment, 5-15
example, 5-15
family name, 8-7
in alternate family name, 5-15
in bind statement, 6-48
in change from group, 6-52
in destination, 6-190, 6-208
in directory selection, 6-162
in directory title, 8-11
in file title, 8-10
in long directory title, 8-11
in long file title, 8-10
in mkdir statement, 6-134
in move statement, 6-137
in primary family name, 5-15
in remove from group, 6-40, 6-158
in security from group, 6-177
in source, 6-189, 6-208
in target family name, 5-15
in volume name, 6-193
family name constant, 8-7
in catalog statement, 6-50
in directory title constant, 8-9
in file title constant, 8-9
family name file, 6-76
family specification, 5-15
in family assignment, 5-15
family specifications, 6-18
family substitution, 6-18
family task attribute
assigning value to, 5-15
inquiring value of, 5-31
familyindex attribute, 6-89
archive disk volume, 6-24
familyindex option
in move statement, 6-138
familyowner attribute, 6-84, 6-123
archive tape volume attributes, 6-29

8600 1047-506

Index

in restore statement, 6-166
in volume add statement, 6-200
fetch job attribute, 3-13
fetch specification, 1-20
example, 3-13
FIFOs, restrictions when copying files, 6-65
file assignment statement, 6-46
file attribute assignment, 5-39
in file assignment statement, 6-46
in file declaration, 4-8
in file equation, 5-33
file attribute inquiry, 5-31
file attributes, 5-42
assigning, example, 5-35
autounload, 6-82
blocksize, 6-82
Boolean, 5-42
changing, 5-35
compressioncontrol, 6-89
copy statement, 6-81, 6-88
cycle, 6-84
density, 6-89
domainname, 6-84
familyindex, 6-89
familyowner, 6-84
file name, 5-42
hostname, 6-84
inquiring value of, 5-45
integer, 5-42
ipaddress, 6-84
keywords, B-4
kind, 6-84
libmaintdir, 6-84, 6-91
lockedfile, 6-92
long file name, 5-42
long title file, 5-42
mnemonic, 5-42
name, 5-42
offsite, 6-86
real, 5-43
savefactor, 6-93
scratchpool, 6-86
securityguard, 6-93
securitytype, 6-93
securityuse, 6-93
sensitivedata, 6-94
serialno, 6-87
singleunit, 6-94
specifying in copy statement, 6-74
string, 5-43
title, 5-43
unitno, 6-87
usecatalog, 6-94

8600 1047-506

usercode, 6-87
using to check file residence, 7-5
version, 6-94
windowsize, 6-87
yourusercode, 6-87
File Attributes
Locatecapable, 6-86
file declaration, 4-1, 4-8
file equations, 5-33
in compiler task equation list, 6-58
in modify statement, 6-135
in task assignment statement, 6-46
in task declaration, 4-9
in task equation list, 5-3
overriding, 5-35
resolving repeated, 5-36
file handling statements, 1-16, 6-3
changepurge, 6-3
crunch, 6-3
lock, 6-3
open, 6-3
released, 6-3
rewind, 6-3
file identifier, 8-3
in Boolean file attribute primary, 7-5
in crunch statement, 6-124
in file assignment statement, 6-46
in file declaration, 4-8
in file mnemonic comparison, 7-8
in file residence inquiry, 7-4
in global file assignment, 5-37
in integer file attribute primary, 7-11
in lock statement, 6-132
in mnemonic primary, 7-28
in open statement, 6-145
in purge statement, 6-156
in real file attribute primary, 7-15
in release statement, 6-157
in subroutine invocation statements, 6-186
in subroutine parameters, 4-10
file management, 1-18
file management statement, 6-4
alter, 6-4
archive purge, 6-4
archive release, 6-4
change, 6-4
mkdir, 6-4
modify, 6-4
print, 6-4
remove, 6-4
security, 6-4
volume, 6-4
file mnemonic

Index-9

Index

in mnemonic primary, 7-28
file mnemonic comparison, 7-8
file mnemonic primary
in alter attribute statement, 6-8
in archive tape volume attribute list, 6-26
in file attribute assignment, 5-39
in file mnemonic comparison, 7-8
in print attribute phrase, 6-148
in volume attribute list, 6-194
file name, 8-10
in archive restore statement, 6-41
in file attribute assignment, 5-39
in file selection, 6-162
in file title, 8-10
in global data specification, 4-13
in remove from group, 6-40
in remove list, 6-40
in task attribute assignment, 5-8
in unwrap file, 6-189
in unwrap request, 6-189
in wrap file, 6-208
in wrap request, 6-208
file name constant, 8-9
in catalog statement, 6-50
in file title constant, 8-9
in local data specification, 5-51
file name file attribute, 5-42
in file attribute assignment, 5-39
in string file attribute primary, 7-19
file name task attribute
in string task attribute primary, 7-19
in task attribute assignment, 5-8
file names, 8-6, 8-8
file residence
using file attributes to check, 7-5
file residence inquiry, 7-4
file security
attributes, 6-179
changing, 6-179
file selection, 6-162
in restore statement, 6-162
file specification, 6-177
in security statement, 6-177
file title, 8-10
in alter attribute statement, 6-8
in binder title, 6-48
in compiler title, 6-54
in database title, 5-50
in file attribute assignment, 5-39
in file equation, 5-33
in file residence inquiry, 7-4
in print attribute phrase, 6-148
in print specification, 6-148

Index—=10

in security specification, 6-178
in start statement, 6-181
in task attribute assignment, 5-8
in traditional security specification, 6-178
in volume attribute list, 6-194
in wait specification, 6-204
file title constant, 8-9
in include control option, 9-3
File Transfer Protocol (FTP)
in WFL, 6-109
restrictions, 6-114
transferring files with, 6-114
transform attributes for copying
files, 6-115
file transfer restrictions, 6-111
file transfer services, 6-109
File Transfer Protocol (FTP), 6-114
host services file transfer, 6-113
Native File Transfer (NFT), 6-111
Open Systems Interconnection (OSI)
FTAM, 6-117
File Transfer, Access, and Management
(FTAM)
copy statement, examples, 6-119
restrictions, 6-117
transform attributes for copying
files, 6-117
using in WFL, 6-109
file variables, 4-8
filecards, 5-33
files
changing names, 6-52
closing, 1-16
example, 1-17
comparing, 6-22
copying, 6-18, 6-65
between hosts, 6-109
restrictions, 6-111
copying multiple, 8-15
copying with usercodes, 6-97
copying without usercodes, 6-97
declaring, 4-8
inquiring the residence of, 7-4
merging, 6-18
nonresident, 5-46
opening, 1-16
printing portions of, 6-151
removing, 6-18, 6-158
restoring, 6-18
transferring to disk, 6-111
transferring to tape, 6-112
flow-of-control statements, 1-7, 6-2
case, 6-2

8600 1047-506

Index

do, 6-2

go, 6-2

if, 6-2

while, 6-2
formid attribute

in alter statement, 6-11
free formatting

job, 1-22
fromstart option

in copy statement, 6-71, 6-73
FROMSTART option

in copy statement, 6-120
FTAM statement, 6-116
FTAM transform attributes

copy statement, 6-117
FTP file transfers, 6-114
FTP statement, 6-114
FTP transform

append attribute, 6-115

ftpsite attribute, 6-115

ftpstructure attribute, 6-115

ftptype attribute, 6-115
FTP transform attributes

copy statement, 6-115
ftpsite attribute

in FTP transform, 6-115
ftpstructure attribute

in FTP transform, 6-115
ftptype attribute

in FTP transform, 6-115

G

global data specification, 4-1, 4-13

example, 4-14
global file assignment, 5-37
example, 5-37
in file equation, 5-33
global file declaration, 4-8
global variables, 4-2
go option
object code file disposition

compile or bind statement, 6-56

go statement, 6-127
GO statement, 6-127
group attribute

in alter statement, 6-11

in volume add statement, 6-200

in volume statement, 6-197
groupr attribute
in alter statement, 6-11

8600 1047-506

in volume add statement, 6-200

in volume statement, 6-197
grouprwx attribute

in alter statement, 6-11

in volume add statement, 6-200

in volume statement, 6-197
groupw attribute

in alter statement, 6-11

in volume statement, 6-197
groupx attribute

in alter statement, 6-11

in volume add statement, 6-200

in volume statement, 6-197
guard file title

in archive tape volume attribute list, 6-26
guardowner attribute

in alter statement, 6-12

in volume add statement, 6-200

in volume statement, 6-197

H

halt/load
restarting a job after, 2-12
values of variables after, 2-12
head-tail constant functions, 7-33
in string constant primary, 7-33
head-tail functions, 7-21
in string primary, 7-18
hex function, 7-14
in real primary, 7-14
HIl system command, 6-20, 6-45
historycause attribute, 2-11
historytype attribute, 2-11
host name unknown, 3-3
host services
file transfer restrictions, 6-113
in copy statement, 6-113
Host Services file transfer
in WFL, 6-109
host specification, 3-3
hostname, 8-7
hostname attribute, 6-84
hostname constant, 8-7
hosts, copying files between, 6-109
hyphen, 8-2
in long name constant, 8-6
in name constant, 8-6
in tape name, 6-162

Index—11

Index

|, statement separator, 8-2
I/O
file declaration, 4-8
file equation, 5-33
remote files, 5-38
supplying input for a task
global data specification, 4-13
identifier, 8-3
identifying transfer services, 6-109
if statement, 1-7, 6-128
example, 1-8
IMP, as a Boolean operator, 7-2
include control option, 9-3
initialize statement, 6-130
initiating WFL jobs, 2-1
input sources, 2-1
ALGOL programs, 2-9
CANDE, 2-2
COBOL74 programs, 2-9
COBOLS85 programs, 2-9
DCALGOL programs, 2-9
load control tapes, 2-10
MARC, 2-7
ODTs, 2-6
RPG programs, 2-9
start statement, 2-b
input/output, 5-33
instruction statement, 1-20, 6-131
integer
in archive tape volume attribute list, 6-26
integer assignment
example, 5-9
integer assignment statement, 6-46
integer constant, 8-4
in catalog statement, 6-50
in errorlimit control option, 9-2
in integer primary, 7-10
integer constant expression, 4-3, 4-5, 7-31
in arithmetic constant comparison, 7-30
in case constant expression, 6-49
in resource assignment, 5-21
in string constant function, 7-33
in take-drop constant function, 7-33
integer constant identifier, 4-3, 8-3
in integer primary, 7-10
integer constant primary
in instruction statement, 6-131
in integer constant expression, 7-31
in real constant primary, 7-32
in rerun statement, 6-161

Index—12

integer declaration, 4-1, 4-5
integer expression, 7-9

in alter attribute statement, 6-8

in archive disk volume attribute list, 6-24
in archive rollout statement, 6-43

in archive tape volume attribute list, 6-26
in arithmetic comparison, 7-7

in case expression, 6-49

in code core, 5-13

in data core, 5-13

in file attribute assignment, 5-39

in integer assignment statement, 6-46
in integer primary, 7-10

in named parameter list, 6-181

in positional parameter list, 6-181

in print attribute phrase, 6-148

in print modifier phrase, 6-148

in run parameter list, 6-171

in security specification, 6-178

in serial number, 5-41

in string function, 7-22

in subroutine invocation statements, 6-186
in take-drop functions, 7-24

in tape attributes, 6-162

in task attribute assignment, 5-8

in total core, 5-13

in volume attribute list, 6-194

integer file attribute, 5-42

in file attribute assignment, 5-39
in integer file attribute primary, 7-11

integer file attribute primary, 7-11

in integer primary, 7-10

integer formal parameter, 3-5

in named parameter list, 6-181

integer function, 7-11

in integer primary, 7-10

integer identifier, 8-3

in integer assignment statement, 6-46
in integer declaration, 4-5

in integer primary, 7-10

in subroutine parameters, 4-10

integer operators, 7-9
integer parameter declaration, 3-5
integer primary, 7-10

in integer expression, 7-9
in real primary, 7-14

integer print attribute

in print attribute phrase, 6-148

integer print modifier

in print modifier phrase, 6-148

integer task attribute

in integer task attribute primary, 7-12
in simple task relation, 6-204

8600 1047-506

Index

in task attribute assignment, 5-8

integer task attribute primary, 7-12

in integer primary, 7-10

integer variables, 4-5
interchange file name, 8-10
interchange name constant, 8-10

interpretively executing statements, 2-1

in interchange file name, 8-10
in universal file name, 8-10

intname, 5-33, 5-48

example, 5-34
in file equation, 5-33
in library equation, 5-48

INUSE task state, 7-6
invalid and valid characters, 8-2

problems in text entry, 2-3

invalid character, 8-2
ipaddress attribute, 6-84

J

job, 3-1

attributes associated with, 3-9
changing the usercode, 6-192
comments, 1-22
compiling for syntax, 3-8
continuing after a task fails, 2-11
delaying initiation, 3-14
disposition, 3-8
format, 1-22, 3-2
free formatting, 1-22
initiation, 2-1

from CANDE, 2-2

from MARC, 2-7

from user programs, 2-9
instructions to operators, 6-131
parameter list, 3-6
passing string parameters, 8-14
restarting

after a halt/load, 2-12

at a checkpoint, 6-161
running on a remote host, 2-7
samples, A-1
storing in disk file, 2-3
syntax, 3-1
terminating, 6-185

job attribute list, 3-9
job attributes

assigning, 3-9
example, 3-11
fetch specification, 3-13

8600 1047-506

starttime specification, 3-14
job disposition, 3-8
job format, 3-2
job instructions, supplying to operators, 6-131
job parameter list, 3-5
job title, 3-4
example, 3-4

K

KEYEDIOII files, copying, 6-67
keywords, B-4
kind attribute, 5-40, 6-84
archive disk volume, 6-24
archive tape volume attributes, 6-29
copying CDs
creating multiple copies, 6-89
packet write recording, 6-92
restrictions, 6-100

L

label attribute
in alter statement, 6-12
label identifier, 8-3
for statements, 3-17
in go statement, 6-127
laissezfile, CANDE option, 5-38
length function, 7-11
in integer primary, 7-10
letter, 8-2
in identifier, 8-3
in long name constant, 8-6
in name constant, 8-6
in simple name constant, 8-6
in tape name, 6-162
libmaintappend attribute
archive tape volume attributes, 6-29
example, 6-30, 6-91
libmaintdir attribute, 6-84, 6-91
archive tape volume attributes, 6-30
restore statement, 6-166
library attribute assignment, 5-48
in library equation, 5-48
library attribute value
in library attribute assignment, 5-48
library equations, 5-48
example, 5-48
in archive task equation list, 6-37
in compiler task equation list, 6-58, 6-59

Index-13

Index

in modify statement, 6-135
in task equation list, 5-3
overriding, 5-48
resolving repeated, 5-49
library go option
object code file disposition
compile or bind statement, 6-56
library maintenance, 6-65, 6-66
restore statement, 6-164
library maintenance statements, 1-18
copy statement, 6-66
library option
object code file disposition
compile or bind statement, 6-56
list control option, 9-5
load control tapes, initiating WFL jobs
from, 2-10
local data specification, 5-51
example, 5-52
in compiler task equation list, 6-58
in task equation list, 5-3
local data specifications
compile or bind statement, 6-60
local variables, 4-2
locatecapable attribute, 6-86, 6-166
archive tape volume attributes, 6-31
lock statement, 1-16, 6-132
lockedfile attribute, 6-92
in alter statement, 6-12
log statement, 5-1, 6-133
in process statement, 6-153
loganalyzer options
in log statement, 6-133
loganalyzer utility, initiating, 6-133
log-on account, 6-81
log-on info, 6-81
log-on password, 6-81
copy statement, 6-63
log-on usercode, 6-81
long directory name, 8-11
in archive backup statement, 6-19
in change from group, 6-52
in change list, 6-52
in copy or add statement, 6-74
in long directory title, 8-11
in move statement, 6-137
in remove from group, 6-158
in security from group, 6-177
long directory name constant, 8-9
in archive purge statement, 6-39
long directory title, 8-11
in alter statement, 6-8
in change list, 6-52

Index—-14

in remove list, 6-158
in security list, 6-177
long file name, 8-10
in archive backup statement, 6-19
in change from group, 6-52
in change list, 6-52
in copy or add statement, 6-74
in file attribute assignment, 5-39
in long file title, 8-10
in move statement, 6-137
in remove from group, 6-158
in security from group, 6-177
long file name attribute
in file attribute assignment, 5-39
long file name constant, 8-9
in archive purge statement, 6-39
long file name file attribute, 5-42
long file names, 8-6, 8-8
disabled, 8-8
long file title, 8-10
in alter statement, 6-8
in change list, 6-52
in file attribute assignment, 5-39
in remove list, 6-158
in security list, 6-177
long name, 8-6
long name constant, 8-6
in long directory name, 8-11
in long directory name constant, 8-9
in long file name, 8-10
in long file name constant, 8-9
in long name, 8-6
long title file attribute
in file attribute assignment, 5-39
long title file file attribute, 5-42

maintenance, library, 6-66
MARC

add command, 2-7

copy command, 2-7

initiating WFL jobs from, 2-7

start command, 2-7
matchonlyserialno attribute

in volume add statement, 6-200
maximum blocksize

tape drives, 6-83
MCP

compatible release level with

WEFLSupport, 1-3

8600 1047-506

Index

merge files, 6-18
messages, displaying, 6-125
minus sign (-)
as a real operator, 7-13
as an integer operator, 7-9
mkdir statement, 6-134
MLS (MultiLingual System), 1-2
mm in date, 3-14
mnemonic
in print modifier phrase, 6-148
mnemonic assignment, example, 5-10
mnemonic file attribute, 5-42
in file attribute assignment, 5-39
in file mnemonic comparison, 7-8
in mnemonic primary, 7-28
in string file attribute primary, 7-19
mnemonic primary, 7-28
mnemonic print attribute
in print attribute phrase, 6-148
mnemonic print modifier
in print modifier phrase, 6-148
mnemonic task attribute
in string task attribute primary, 7-19
in task attribute assignment, 5-8
in task mnemonic comparison, 7-8
mnemonic task identifier
in task mnemonic primary, 7-28
MOD
as a real operator, 7-13
as an integer operator, 7-9
modify statement, 6-135
move statement, 6-137
options, 6-138
MultiLingual System (MLS), 1-2
myjob predeclared task variable, 5-32
example, 5-32
myself predeclared task variable, 5-32
example, 5-32

name, 8-6
in file attribute assignment, 5-39
in scratch pool name, 6-26
in task attribute assignment, 5-8
name constant, 8-6
name constant, 8-6
in alter attribute statement, 6-8
in database name, 5-50
in directory name, 8-10
in directory name constant, 8-9

8600 1047-506

in file name, 8-10

in file name constant, 8-9

in global file assignment, 5-37

in intname, 5-33, 5-48

in name, 8-6

in new accesscode password, 6-6

in new password, 6-146

in old password, 6-146

in password, 8-7

in password name constant, 8-7

in security specification, 6-178

in usercode, 8-7

in usercode name constant, 8-7

in volume attribute list, 6-194
name file attribute, 5-42

in file attribute assignment, 5-39

in string file attribute primary, 7-19
name task attribute

in string task attribute primary, 7-19

in task attribute assignment, 5-8
named parameter list, 6-181

in start parameter list, 6-181
names, 8-6
naming the object code file, 6-55
Native File Transfer (NFT)

in WFL, 6-109

recovery files, 6-111

restrictions, 6-112
nesting

statements, 6-1

subroutines, 4-11
new password, 6-146

in access statement, 6-6
new password in password statement, 6-146
newsegment control option, 9-6
NFT, 6-109
NFT file transfers

in copy statement, 6-111
nonguote EBCDIC character, 8-6

in long name constant, 8-6

in name constant, 8-6
nonresident files, 5-46
nonsingle quote EBCDIC character, 8-10

in interchange name constant, 8-10
NOT, as a Boolean operator, 7-2
note attribute

in alter statement, 6-12
null character, 3-3
null statement, 6-2, 6-140
number

in move statement, 6-137

Index—-15

Index

o

object code file disposition
compile or bind statement, 6-56
object code file title
compile or bind statement, 6-55
in bind statement, 6-43
in compile or bind statement, 6-54
in modify statement, 6-135
in run statement, 6-171
octal function, 7-15
in real primary, 7-14
OCTAL function, 7-15
ODT (See operator display terminal)
offsite
archive tape volume attributes, 6-32
offsite attribute, 6-86
OK, wait statement options, 6-204
old password, 6-146
old password in password statement, 6-146
on restart statement
job interruption by a halt/load, 2-15
on statement, 6-142
on taskfault statement, 2-11
ON, as a string operator, 7-17
onto clause, 6-77
of copy statement, 6-77
open file attribute, implicit setting of, 5-44
open statement, 1-16, 6-145
Open Systems Interconnection (OSI) FTAM
file transfers, 6-117
opening files, 1-16
operator display terminal (ODT), 2-6
initiating WFL jobs from, 2-6
option assignment, 5-17
option statement, 6-121
option task attribute
assigning values to, 5-17
inquiring value of, 5-31
options
in archive statement, 6-22
in create libmaintdir statement, 6-121
options statement, 6-121
OR, as a Boolean operator, 7-2
OSI File Transfer, Access, and Management
(FTAM), 6-109
OSI| FTAM file transfers, 6-117
OSI FTAM transform
blockstructure attribute, 6-117
createpassword attribute, 6-117
documenttype attribute, 6-117
extmode attribute, 6-118

Index—16

other attribute

in volume statement, 6-197
otherr attribute

in alter statement, 6-12

in volume add statement, 6-200
otherrwx attribute

in alter statement, 6-12

in volume add statement, 6-201

in volume statement, 6-198
otherw attribute

in alter statement, 6-12

in volume statement, 6-197

volume add statement, 6-201
otherx attribute

in alter statement, 6-12

in volume add statement, 6-201

in volume statement, 6-197
overriding

file equations, 5-35

library equations, 5-48

run-time compiler task equation

example, 6-60

owner attribute

in alter statement, 6-13
ownerr attribute

in alter statement, 6-13

in volume add statement, 6-201

in volume statement, 6-198
ownerrwx attribute

in alter statement, 6-13

in volume add statement, 6-201

in volume statement, 6-198
ownerw attribute

in alter statement, 6-13

in volume add statement, 6-201

in volume statement, 6-198
ownerx attribute

in alter statement, 6-13

in volume statement, 6-198

volume add statement, 6-201

P

packet write recording, 6-92
pagecomp attribute
in alter statement, 6-14
parameters
call by reference, 4-11
call by value, 4-11
start statement, 6-182
subroutine, 4-11

8600 1047-506

Index

password, 5-12, 8-7

aging feature, 5-23

changing, 6-6

in usercode assignment, 5-23
password name constant, 8-7

in user statement, 6-192
password statement, 6-146
password-aging feature, 5-12, 5-23
patching, A-3
PB statement, 5-1, 6-147

in process statement, 6-153
PB statements, 6-147
percent sign (%), as a comment delimiter, 3-2
permanent directories

creating, 6-134
permanentlyowned attribute

in volume add statement, 6-201
plus sign (+)

as a real operator, 7-13

as an integer operator, 7-9
positional parameter list, 6-181

in start parameter list, 6-181
predefined words, B-2
primary family name, 5-15

in family specification, 5-15
primary string

in database name, 5-50
prindefault assignment list

in print statement, 6-148
print attribute

in printdefaults assignment list, 6-148
print attribute phrase, 6-148

in print specification, 6-148

in printdefaults assignment list, 6-148
print modifier phrase, 6-148

in printdefaults assignment list, 6-148
print routing

printdefaults assignment, 5-19
print specification, 6-148

in print statement, 6-148
print statement, 6-148
printdefaults, 5-19
printdefaults assignment, 5-19
printdefaults assignment list, 6-148

in printdefaults assignment, 5-19
printdefaults attribute, 5-19
Printer Backup Files

EXTMODE value, 6-10, 6-11
printerkind attribute

in alter statement, 6-14
printing portions of a file, 6-151
process start, 1-3
process statement, 6-153

8600 1047-506

processing data, 1-7

product attribute
in alter statement, 6-14

propagatesecuritytofiles attribute
in alter statement, 6-14

propogatesecuritytodirs attribute
in alter statement, 6-14

PTD statement, 5-1, 6-155

purge statement, 1-16, 6-156

Q

qguestion mark (?), as an invalid character, 8-2
QUEUEDAX system option, 6-172
guotes in a string constant identifier, 8-4

railroad diagrams, explanation of, C-1
real assignment statement, 6-46
real assignment, example, 5-10
real constant, 8-4
in real constant primary, 7-32
in real primary, 7-14
real constant expression, 4-3, 7-32
in arithmetic constant comparison, 7-30
in real constant primary, 7-32
in real declaration, 4-6
real constant identifier, 4-3, 8-3
in real constant primary, 7-32
in real primary, 7-14
real constant primary, 7-32
in real constant expression, 7-32
real declaration, 4-1, 4-6
real expression, 7-13
in arithmetic comparison, 7-7
in file attribute assignment, 5-39
in integer function, 7-11
in named parameter list, 6-181
in positional parameter list, 6-181
in real assignment statement, 6-46
in real primary, 7-14
in run parameter list, 6-171
in simple task relation, 6-204
in subroutine invocation statements, 6-186
in task attribute assignment, 5-8
in wait specification, 6-204
wait statement options, 6-204
real file attribute, 5-43
in file attribute assignment, 5-39

Index-17

Index

in real file attribute primary, 7-15
real file attribute primary, 7-15
in real primary, 7-14
real formal parameter, 3-5
in named parameter list, 6-181
real identifier, 8-3
in real assignment statement, 6-46
in real declaration, 4-6
in real primary, 7-14
in subroutine parameters, 4-10
real parameter declaration, 3-5
real primary, 7-14
in real expression, 7-13
real relation, 7-7
in arithmetic constant comparison, 7-30
in simple task relation, 6-204
real task attribute
in real task attribute primary, 7-16
in simple task relation, 6-204
in task attribute assignment, 5-8
real task attribute primary, 7-16
in real primary, 7-14
real variables, 4-6
relative pathname
in currentdirectory assignment, 5-14
release option
in archive statement, 6-22
release statement, 1-16, 6-157
releaseid attribute
in alter statement, 6-14
remote files, 5-38
remove files, 6-18
remove from group, 6-40, 6-158
in archive release statement, 6-40
in remove statement, 6-158
remove list, 6-40, 6-158
in archive release statement, 6-40
in remove statement, 6-158
remove option
in copy statement, 6-71
remove statement, 1-18, 6-158
entering individually from ODT, 2-6
example, 1-19
removing files, 6-18
replace statement, 6-160
report option
in archive statement, 6-22
in copy statement, 6-71
in create libmaintdir statement, 6-122
in move statement, 6-139
in restore statement, 6-165
Report Program Generator (RPG) programs
initiating WFL jobs from, 2-9

Index-18

rerun statement, 6-161
entering individually from ODT, 2-6
reserved words, B-2
resident file
wait statement options, 6-205
resolving repeated library equations, 5-49
resource assignment, 5-21
resource attribute, example, 5-21
resource task attribute, assigning value
to, 5-21
resource-limiting attributes
in the job attribute list, 3-10
restarting a job, 6-161
after a halt/load, 2-12
restarting interrupted file transfers
copy statement, 6-120
restore files, 6-18
restore statement, 6-162, 6-163, 6-169
autounload attribute, 6-166
compare option, 6-165
cycle attribute, 6-166
dsonerror option, 6-165
familyowner attribute, 6-166
file attributes, 6-166
locatecapable attribute, 6-166
options, 6-165
report option, 6-165
serialno attribute, 6-167
unitno option, 6-165
verify option, 6-165
version attribute, 6-167
waitonerror option, 6-165
restore Statement
libmaintdir attribute, 6-166
restricted attribute
with unwrap statement, 6-190
return statement, 6-169
example, 1-12
reusing task variables, 5-27
example, 5-27
rewind statement, 1-16, 6-170
run parameter list, 6-171
in run statement, 6-171
run statement, 5-2, 6-171
example, 1-4
in process statement, 6-153
running jobs on a remote host, 2-7

S

sample job, A-1

8600 1047-506

Index

applying a patch, A-2
compiling a program, A-2
initiating other jobs, A-6
producing cross-reference files, A-2
updating files, A-7
savefactor attribute, 6-93
archive tape volume attributes, 6-32
in alter statement, 6-14
SCHEDULED task state, 7-6
scope of declarations, 4-2
scratch pool name, 6-26
in archive tape volume attribute list, 6-26
scratchpool attribute, 6-86
archive tape volume attributes, 6-33
sectors option
archive rollout statement, 6-44
security from group, 6-177
in file specification, 6-177
security list, 6-177
in file specification, 6-177
security specification, 6-178
in security statement, 6-177
security statement, 1-18, 6-177, 6-179
entering individually from ODT, 2-6
example, 1-19
security tape volumes, 6-199
securityguard attribute, 6-93
archive tape volume attributes, 6-32
in alter statement, 6-14
in volume add statement, 6-202
securitylabels attribute
in volume add statement, 6-201
in volume statement, 6-198
securitymode attribute
in alter statement, 6-14
in volume add statement, 6-202
volume statement, 6-198
securitytype attribute, 6-93
archive tape volume attributes, 6-32
in alter statement, 6-15
in volume add statement, 6-202
securityuse attribute, 6-93
archive tape volume attributes, 6-33
in alter statement, 6-15
in volume add statement, 6-202
sensitivedata attribute, 6-94
in alter statement, 6-15
sequence number, 9-3
in include control option, 9-3
serial number, 5-41
in serial number list, 5-41
serial number assignment, 5-41
example, 5-41

8600 1047-506

in file attribute assignment, 5-39
serial number list, 5-41

in archive disk volume attribute list, 6-24

in archive tape volume attribute list, 6-26

in catalog statement, 6-50

in serial number assignment, 5-41

in tape attributes, 6-162

in volume attribute list, 6-194
serialno attribute, 5-41, 6-87, 6-123, 6-167

archive disk volume, 6-24

archive tape volume attributes, 6-33

in volume statement, 6-198
serialno option

catalog statement, 6-51
setgroupcode attribute

in alter statement, 6-15

in volume statement, 6-199

volume add statement, 6-202
setusercode attribute

in alter statement, 6-15

in volume statement, 6-199

volume add statement, 6-202
simple name constant, 8-6

in family name, 8-7

in family name constant, 8-7

in hostname, 8-7

in hostname constant, 8-7
simple task relation, 6-204

in wait specification, 6-204

wait statement options, 6-205
simple unwrap request, 6-189

in unwrap group, 6-189
simple wrap request, 6-208

in wrap group, 6-208
singleunit attribute, 6-94
skipexclusive option

in archive statement, 6-22

in copy statement, 6-72

in move statement, 6-139
slash (/)

as a real operator, 7-13

as a string operator, 7-17
slash-equal (/=), as a string operator, 7-17
source, 6-189, 6-208

in unwrap volume, 6-189

in wrap volume, 6-208
source volume

attribute list, 6-79
source volume attribute list, 6-79
source volume file, 6-76
specifications, family, 6-18
specifying copy options, 6-68
specifying file attributes

Index-19

Index

in copy statement, 6-74
start command, 2-2
CANDE, 2-3
MARC, 2-7
start parameter list, 6-181
in start statement, 6-181
start statement, 1-3, 1-8, 5-2, 6-181
entering individually from ODT, 2-6
in process statement, 6-153
initiating jobs through, 2-5
starttime job attribute, 3-14
starttime spec, 3-14
in start statement, 6-181
in starttime specification, 3-14
starttime specification, 2-15, 3-14
example, 3-15
statement list, 3-17
example, 3-17
in compound statement, 6-62
in subroutine block, 4-10
statements
abort, 6-5
access, 6-6
add, 6-7
add or copy, 6-63
alter, 6-9
archive backup, 6-19
archive differential, 6-18
archive full, 6-18
archive incremental, 6-18
archive merge, 6-18, 6-38
archive purge, 6-18, 6-39
archive release, 6-18, 6-40
archive restore, 6-18, 6-41
archive restoreadd, 6-18
archive rollout, 6-18, 6-43
assignment, 6-2, 6-46
bind, 6-48
case, 6-49
catalog, 6-50
catalog add, 6-50
catalog delete, 6-50
catalog purge, 6-50
cataloging, 6-4
cataloging catalog, 6-4
cataloging volume, 6-4
change, 6-52
communication, 1-20, 6-3
display, 6-3
instruction, 6-3
compare option, 6-22
compile or bind, 6-54
compound, 6-2, 6-62

Index—20

copy or add, 6-63
create libmaintdir, 6-121
crunch, 6-124
display, 6-125
do, 6-126
executing interpretively, 2-1
file handling, 1-16, 6-3
changepurge, 6-3
crunch, 6-3
lock, 6-3
open, 6-3
released, 6-3
rewind, 6-3
file management, 1-18, 6-4
alter, 6-4
archive purge, 6-4
archive release, 6-4
change, 6-4
mkdir, 6-4
modify, 6-4
print, 6-4
remove, 6-4
security, 6-4
volume, 6-4
flow-of-control, 1-7, 6-2
case, 6-2
do, 6-2
go, 6-2
if, 6-2
while, 6-2
go, 6-127
groupings, 6-2
if, 6-128
initialize, 6-130
instruction, 6-131
label identifiers, 3-17
library maintenance, 1-18
lock, 6-132
log, 6-133
mkdir, 6-134
modify, 6-135
move, 6-137
nesting, 6-1
null, 6-2, 6-140
on, 6-142
open, 1-16, 6-145
options, 6-121
password, 6-146
PB, 6-147
print, 6-148
process, 6-153
PTD, 6-155
purge, 6-156

8600 1047-506

Index

recognized by the controller, 2-6
release, 6-157
remove, 6-158
replace, 6-160
rerun, 6-161
restore, 6-162, 6-169
rewind, 6-170
run, 6-171
security, 6-177
stop, 6-185
subroutine control, 1-10, 6-2
return, 6-2
subroutine invocation statement, 6-2
subroutine invocation, 6-186
task control, 1-13, 6-2
abort, 6-2
initialize, 6-2
on, 6-2
run, 6-2
stop, 6-2
wait, 6-2
task control statement, 1-13
task initiation, 1-3, 5-1, 6-3
add, 6-3
archive differential, 6-3
archive full, 6-3
archive incremental, 6-3
archive merge, 6-3
archive restore, 6-3
archive rollout, 6-3
bind, 6-3
compile, 6-3
copy, 6-3
log, 6-3
PB, 6-3
PD, 6-3
process, 6-3
restore, 6-3
run, 6-3
start, 6-3
task security, 6-3
access, 6-3
password, 6-3
user, 6-3
volume, 6-3
unwrap, 6-189
user, 6-192
volume, 6-193
wait, 6-204
while, 6-207
wrap, 6-208
station task attribute, remote files, 5-38
stationmaster task attribute

8600 1047-506

and remote files, 5-38
status attribute, 2-11
stop statement, 1-13, 6-185
STOPPED task state, 7-6
storing jobs in disk files, 2-3
string assignment statement, 6-46
string character, 8-2

in instruction statement, 6-131
string comparison, 7-7
string concatenation operators, 7-17
string constant, 8-4

in string constant primary, 7-33

in string primary, 7-18

qguotation marks in, 8-4
string constant comparison, 7-30

in Boolean constant primary, 7-30
string constant expression, 4-3, 7-33

in case constant expression, 6-49

in character set, 7-21

in head-tail constant functions, 7-33

in real constant primary, 7-32

in string constant comparison, 7-30

in string constant primary, 7-33

in string declaration, 4-7

in take-drop constant function, 7-33
string constant function, 7-33

in string constant primary, 7-33
string constant identifier, 4-3, 8-3

in string constant primary, 7-33

in string primary, 7-18
string constant primary, 7-33

in string constant expression, 7-33
string declaration, 4-1, 4-7
string expression, 7-17

in abort statement, 6-5

in accept function, 7-20

in case expression, 6-49

in display statement, 6-125

in family assignment, 5-15

in file attribute assignment, 5-39

in head-tail function, 7-21

in hex function, 7-14

in length function, 7-11

in named parameter list, 6-181

in octal function, 7-15

in positional parameter list, 6-181

in print attribute phrase, 6-148

in print modifier phrase, 6-148

in run parameter list, 6-171

in serial number, 5-41

in stop statement, 6-185

in string assignment statement, 6-46

in string comparison, 7-7

Index-21

Index

in subroutine invocation statements, 6-186

in take-drop functions, 7-24

in task attribute assignment, 5-8

in wait statement, 6-204

wait statement options, 6-204
string expressions

in string primary, 7-18
string file attribute, 5-43

in file attribute assignment, 5-39

in string file attribute primary, 7-19
string file attribute primary, 7-19

in string primary, 7-18
string formal parameter, 3-5

in named parameter list, 6-181
string function, 7-22

in decimal function, 7-10

in string primary, 7-18
string identifier, 8-3

in string assignment statement, 6-46

in string declaration, 4-7

in string primary, 7-18

in subroutine parameters, 4-10
string operators, in string primary, 7-17
string parameter declaration, 3-5
string parameters, 8-13

passing to a job, 8-14

restrictions, 8-13
string policy

in mnemonic primary, 7-28
string primary, 7-18

in alter attribute statement, 6-8

in alternategroups value, 6-179

in device kind assignment, 5-40

in directory name, 8-10

in family name, 8-7

in file name, 8-10

in hostname, 8-7

in interchange file name, 8-10

in intname, 5-33, 5-48

in long directory name, 8-11

in long file name, 8-10

in long name, 8-6

in name, 8-6

in option assignment, 5-17

in password, 8-7

in security specification, 6-178

in start statement, 6-181

in string expression, 7-17

in tape name, 6-162

in task mnemonic primary, 7-28

in universal file name, 8-10

in usercode, 8-7

in usercode assignment, 5-23

Index—22

in volume attribute list, 6-194
string print attribute
in print attribute phrase, 6-148
string print modifier
in print modifier phrase, 6-148
string task attribute
in string task attribute primary, 7-19
in task attribute assignment, 5-8
string task attribute primary, 7-19
in string primary, 7-18
string variables, 4-7
example, 4-7
subroutine block, 4-10
subroutine control statement, 1-10, 6-2
return, 6-2
subroutine invocation statement, 6-2
subroutine declaration, 4-1, 4-10
subroutine identifier, 8-3
in subroutine block, 4-10
in subroutine invocation statements, 6-186
subroutine invocation statement, 6-186
in process statement, 6-153
subroutine invocation statements, 6-186
subroutine parameters, 4-10, 4-11
subroutines, 4-10
declaring, 4-10
ending identifiers, 1-22
example, 1-22
example, 1-10, 4-11
initiating, 6-186
naming, 4-10
nesting, 4-11
parameters, 4-11
scope of declarations, 4-2
substitution, family, 6-18
subsystems, archive, 6-17
suppresswarning assignment, 5-22
example, 5-22
suppresswarning list, 5-22
in suppresswarning assignment, 5-22
synchronous task initiation, 5-2
syntax job disposition, 3-8
example, 3-8
syntax option
object code file disposition
compile or bind statement, 6-56
system function, 7-23
in string primary, 7-18
system identification information, 7-23
system options, ENABLEPOSIX, 6-9, 6-179,
6-202
system/backup parameters
in PB statements, 6-147

8600 1047-506

Index

SYSTEM/BACKUP utility, initiating, 6-147
SYSTEM/FILEDATA utility program, 6-85
SYSTEM/PATCH utility, A-3

T

tail function, 7-21, 7-33
take-drop constant functions, 7-33
in string constant primary, 7-33
take-drop functions, 7-24
in string primary, 7-18
tape
copying files from, 6-95
initiating WFL jobs from, 2-10
transferring files to, 6-112
tape attributes, 6-162
in create libmaintdir statement, 6-121
in restore statement, 6-162
tape directory disk file, 6-30
tape drives
maximum blocksize, 6-83
tape name, 6-162, 6-193
in create libmaintdir statement, 6-121
in restore statement, 6-162
in volume name, 6-193
tape security, 6-195, 6-199
tape security file attributes, 6-200
tape volume directory, 6-195
target family name, 5-15
in family specification, 5-15
task
abnormal termination, effect on a job, 2-11
discontinuing, 6-5
history, inquiring about, 5-30
status, inquiring about, 5-30
task assignment statement, 6-46
task attribute assignment, 5-8
in add statement, 6-7
in archive task equation list, 6-37
in compiler task equation list, 6-58
in copy or add statement, 6-63
in modify statement, 6-135
in replace statement, 6-160
in task assignment statement, 6-46
in task declaration, 4-9
in task equation list, 5-3
in unwrap statement, 6-189
in wrap statement, 6-208
task attributes, 5-4, 6-65
assigning value to, 5-14
compiler task equation list, 6-59

8600 1047-506

example, 1-5
functional groupings, 5-4
inquiring the values of, 5-29
keywords, B-4
task control, 1-13
task control statements, 1-13, 6-2
abort, 6-2
initialize, 6-2
on, 6-2
run, 6-2
stop, 6-2
wait, 6-2
task declaration, 4-1, 4-9
task equation, 5-3
task equation list, 5-3
in log statement, 6-133
in PB statements, 6-147
in PTD statement, 6-155
in run statement, 6-171
task identifier, 8-3
in abort statement, 6-5
in add statement, 6-7
in archive backup statement, 6-19
in archive merge statement, 6-38
in archive restore statement, 6-41
in archive rollout statement, 6-43
in bind statement, 6-48
in Boolean task attribute primary, 7-5
in compile or bind statement, 6-54
in copy or add statement, 6-63
in family assignment, 5-15
in initialize statement, 6-130
in integer task attribute primary, 7-12
in log statement, 6-133
in PB statements, 6-147
in PTD statement, 6-155
in real task attribute primary, 7-16
in replace statement, 6-160
in run statement, 6-171
in simple task relation, 6-204
in start statement, 6-181
in subroutine invocation statements, 6-186
in subroutine parameters, 4-10
in task assignment statement, 6-46
in task declaration, 4-9
in task mnemonic comparison, 7-8
in task mnemonic primary, 7-28
in task state, 7-6
in unwrap statement, 6-189
in wait specification, 6-204
in wrap statement, 6-208
wait statement options, 6-204, 6-205
task identifier assignment, 4-9

Index-23

Index

task initiation statement, 6-3
task initiation statements, 1-3, 5-1
add, 5-1, 6-3
archive, 5-1
archive differential, 6-3
archive full, 6-3
archive incremental, 6-3
archive merge, 6-3
archive restore, 6-3
archive rollout, 6-3
bind, 5-1, 6-3
compile, 5-1, 6-3
copy, b5-1, 6-3
log, 5-1, 6-3
PB, 5-1, 6-3
PD, 6-3
process, 6-3
PTD, 5-1
restore, 6-3
run, 5-2, 6-3
start, 5-2, 6-3
task initiation, example, 5-2
task mnemonic
in task mnemonic primary, 7-28
task mnemonic comparison, 7-8
in wait specification, 6-204
wait statement options, 6-205
task mnemonic primary, 7-28
in task attribute assignment, 5-8
in task mnemonic comparison, 7-8
task security statements, 6-3
access, 6-3
password, 6-3
user, 6-3
volume, 6-3
task specifications, 1-5
task state, 7-6
ABORTED, 7-6
ACTIVE, 7-6
COMPILEDOK, 7-6
COMPLETED, 7-6
COMPLETEDOK, 7-6
in wait specification, 6-204
INUSE, 7-6
SCHEDULED, 7-6
STOPPED, 7-6
wait statement options, 6-204
task variables, 4-9, 6-65
compile statement, 6-57
example, 5-24, 5-27
predeclared myjob, 5-32
predeclared myself, 5-32
reusing, 5-27

Index—24

tasks
using a different input file, 5-34
using a different output file, 5-34
taskvalue attribute
with unwrap statement, 6-190
with wrap statement, 6-190, 6-209
terminating a job or asynchronous
subroutine, 6-185
time, 3-14
in starttime spec, 3-14
time information, 7-25
time interval
in starttime spec, 3-14
timedate function, 7-25
timedate functions
in string primary, 7-18
title assignment, example, 5-10
title file attribute, 5-43
in file attribute assignment, 5-39
in string file attribute primary, 7-19
title print attribute
in print attribute phrase, 6-148
title task attribute
in string task attribute primary, 7-19
in task attribute assignment, 5-8
titles, 8-8
total core, 5-13
example, 5-13
in core assignment, 5-13
traditional security specification, 6-178
in security specification, 6-178
trainid attribute
in alter statement, 6-15
transfer service, 6-109
in add statement, 6-7
in copy or add statement, 6-63
in copy statement, 6-109
transform attribute
in alter statement, 6-15
translatable file attributes, 5-43

U

underscore, 8-2
in long name constant, 8-6
in name constant, 8-6
in tape name, 6-162
unitno attribute, 6-87
unitno option
in restore statement, 6-165
universal file name, 8-10

8600 1047-506

Index

in copy or add statement, 6-74
unknown host name, 3-3
unwrap file, 6-189
in simple unwrap request, 6-189
in unwrap request, 6-189
unwrap group, 6-189
in unwrap statement, 6-189
unwrap request, 6-189
in unwrap group, 6-189
unwrap statement, 6-189
unwrap volume, 6-189
in unwrap statement, 6-189
usecatalog attribute, 6-94
archive tape volume attributes, 6-33
useguardfile attribute
in alter statement, 6-16
user statement, 1-14, 6-192
example, 1-15
user, synonym for usercode task
attribute, 3-10
usercode, 8-7
changing, 6-192
copying files with, 6-97
copying files without, 6-97
in archive rollout statement, 6-43
in archive tape volume attribute list, 6-26
in directory name, 8-10
in file name, 8-10
in long directory name, 8-11
in long file name, 8-10
in tape attributes, 6-162
in usercode assignment, 5-23
in volume attribute list, 6-194
usercode assignment, 5-23
example, 5-23
usercode attribute, 6-87
usercode name constant, 8-7
in directory name constant, 8-9
in file name constant, 8-9
in long directory name constant, 8-9
in long file name constant, 8-9
in user statement, 6-192
usercode password, changing, 6-146
usercode task attribute
inquiring value of, 5-31
usercode task attributes
assigning value to, 5-23
userguardfile attribute
in volume add statement, 6-202
in volume statement, 6-199
userinfo attribute
in alter statement, 6-16
utility programs

8600 1047-506

SYSTEM/FILEDATA, 6-85

variables

file, 4-8

global data specification, 4-13
global versus local, 4-2
initialization, 4-2

integer, 4-5

real, 4-6

scope of declarations, 4-2
string, 4-7

subroutines, 4-10

task, 4-9

values after a halt/load, 2-12

verify option

in archive statement, 6-23
in copy statement, 6-72

in move statement, 6-139
in restore statement, 6-165

version attribute, 6-94, 6-123

in restore statement, 6-167

volume add option

in volume statement, 6-195

volume add statement

file attributes
familyowner, 6-200
group, 6-200
groupr, 6-200
grouprwx, 6-200
groupw, 6-200
groupx, 6-200
guardowner, 6-200
matchonlyserialno, 6-200
otherr, 6-200
otherrwx, 6-201
otherw, 6-201
otherx, 6-201
ownerr, 6-201
ownerrwx, 6-201
ownerw, 6-201
ownerx, 6-201
permanentlyowned, 6-201
securityguard, 6-202
securitylabels, 6-201
securitymode, 6-202
securitytype, 6-202
securityuse, 6-202
setgroupcode, 6-202
setusercode, 6-202

Index—25

Index

userguardfile, 6-202

volume attribute list, 6-194

in volume statement, 6-193

volume change option

in volume statement, 6-195

volume delete option

in volume statement, 6-196

volume destroyed option

in volume statement, 6-196

volume directory, 6-195

volume library, 6-195
volume name, 6-193

in volume statement, 6-193, 6-195

volume offsite option

in volume statement, 6-196

volume onsite option

volume statement, 6-196
volume statement, 6-193, 6-195

file attributes

group, 6-197

groupr, 6-197
grouprwyx, 6-197
groupw, 6-197
groupx, 6-197
guardowner, 6-197
otherr, 6-197
otherrwx, 6-198
otherw, 6-197
otherx, 6-197
ownerr, 6-198
ownerrwx, 6-198
ownerw, 6-198
ownerx, 6-198
securitylabels, 6-198
securitymode, 6-198
serialno, 6-198
setgroupcode, 6-199
setusercode, 6-199
userguardfile, 6-199

options

W

volume add, 6-195

volume change, 6-195

volume delete, 6-196

volume destroyed, 6-196

volume offsite, 6-196
volume onsite, 6-196

wait specification, 6-204
in wait statement, 6-204

Index—26

wait statement, 1-13, 6-204

example, 1-14

wait statement options
Boolean task attribute, 6-205

OK, 6-204

real expression, 6-204

resident file, 6-205

simple task relation, 6-205
string expression, 6-204
task identifier, 6-204, 6-205

task mnemonic comparison, 6-205

task state, 6-204

waitonerror option

in archive statement, 6-22
in copy statement, 6-73

in create libmaintdir statement, 6-122

in move statement, 6-139
in restore statement, 6-165

warning number
in suppresswarning list, 5-22
WFL command, 2-2

in CANDE, 2-2

WFL job, 1-2

example, 3-19

WEFLSupport library
compatible release level with MCP, 1-3

while statement, 1-7, 6-207
windowsize attribute, 6-87
word file attributes, 5-43

words, B-1

context-sensitive, B-3
predefined, B-2
reserved, B-2

wrap file, 6-208
in simple wrap request, 6-208

in wrap request, 6-208

wrap group, 6-208

in wrap statement, 6-208

wrap request, 6-208

in wrap group, 6-208

wrap statement, 6-208
wrap volume, 6-208

Y

yourusercode attribute, 6-87

Yy

in wrap statement, 6-208

in date, 3-14

yyyy in date, 3-14

8600 1047-506

Index

Special Characters % (percent), 1-22 -
comment delimiter, 3-2

* (asterisk) option, example, 5-18
*DIR, creating, 6-134
? (question mark), 2-3

$ (dollar sign)
WEFL control option, 3-2

8600 1047-506 Index-27

Index

Index—28 8600 1047-506

86001047-506

	Documentation Notes
	Table of Contents
	Section 1. WFL Capabilities
	About This Manual
	Overview of WFL
	Task Initiation
	Other Task Initiation Statements
	Task Specifications
	Data Specifications
	Flow of Control Statements
	Processing Data

	Subroutine Control
	Task Control
	File Handling
	File Management
	Communication
	Job Format

	Section 2. Job Initiation
	Overview
	Sources for Job Initiation
	START and WFL Commands from CANDE Sessions
	START Statements from Running WFL Jobs
	Operator Display Terminals (ODTs)
	Menu-Assisted Resource Control (MARC)
	Distributed Systems Services
	User Programs in Other Languages
	Magnetic Tapes

	Job Continuation after a Task Fails
	Job Restart after a Halt/Load
	ON RESTART Statement
	Dummy Files

	Section 3. Job Structure
	Overview
	Job Syntax
	Job Structure
	Job Contents
	Job Format
	AT Hostname

	Job Title
	Job Parameter List
	Job Disposition
	Job Attribute List
	Resource-Limiting Attributes

	CLASS Specification
	FETCH Specification
	STARTTIME Specification
	Declaration List
	Statement List
	WFL Job Example

	Section 4. Declarations
	Overview
	Declaration Syntax
	Scope of Declarations
	Variable Initialization

	Constant Identifiers
	Boolean Variables
	Integer Variables
	Real Variables
	String Variables
	File Variables
	Task Variables
	Subroutines
	Subroutine Parameters

	Global Data Specifications

	Section 5. Task Initiation
	Overview
	Task Initiation Statements
	Task Equation
	Task Attributes
	Task Attribute Assignment
	Complex Task Attribute Assignments
	ACCESSCODE Assignment
	CORE Assignment
	CURRENTDIRECTORY Assignment
	FAMILY Assignment
	OPTION Assignment
	PRINTDEFAULTS Assignment
	RESOURCE Assignment
	SUPPRESSWARNING Assignment
	USERCODE Assignment

	Using Task Variables
	Assigning Task Attributes
	Reusing Task Variables
	Interrogating Task Attributes

	Interrogating Task Status
	File Attribute Inquiry
	Interrogating Complex Task Attributes
	MYJOB and MYSELF Predeclared Task Variables
	File Equations
	Causing the Task to Use a Different Input or Output File
	Changing the Attributes of Files Used by the Task
	Causing the Task to Read from a Data Specification
	How the Task Can Override WFL File Equations
	Resolving Repeated File Equations to the Same File

	Global File Assignment
	Using Remote Files
	File Attribute Assignment
	Device Kind Assignment
	Serial Number Assignment
	Using File Attributes
	Assigning File Attributes
	Interrogating File Attributes
	Nonresident Files

	Library Equation
	Overriding WFL Library Equations
	Resolving Repeated Library Equations to the Same Library

	Database Equation
	Local Data Specifications

	Section 6. Statements
	Overview
	WFL Statement Groupings
	ABORT Statement
	ACCESS Statement
	ADD Statement
	ALTER Statement
	Archive Subsystem
	ARCHIVE Backup Statement
	ARCHIVE Statement Options
	ARCHIVE Disk Volume
	ARCHIVE Disk Volume Attribute List
	ARCHIVE Tape Volume
	ARCHIVE Tape Volume Attribute List
	ARCHIVE CD Volume
	ARCHIVE CD Volume Attribute List
	ARCHIVE Task Equation List
	ARCHIVE MERGE Statement
	ARCHIVE PURGE Statement
	ARCHIVE RELEASE Statement
	ARCHIVE RESTORE Statement
	ARCHIVE ROLLOUT Statement

	Assignment Statements
	BIND Statement
	CASE Statement
	CATALOG Statement
	CHANGE Statement
	COMPILE or BIND Statement
	Naming the Object Code File
	Choosing a Compiler
	Binding
	Object Code File Disposition
	Task Variables
	Compiler Task Equation List
	File, Library, and Database Equations and Task Attributes
	Local Data Specifications

	Compound Statement
	COPY or ADD Statement
	Copying Files
	Library Maintenance
	COPY Options
	COPY Request
	Copying Files from Tape or CD-ROM
	COPY and ADD Statement Examples
	COPY File Transfer Services

	CREATE LIBMAINTDIR Statement
	CRUNCH Statement
	DISPLAY Statement
	DO Statement
	GO Statement
	IF Statement
	INITIALIZE Statement
	INSTRUCTION Statement
	LOCK Statement
	LOG Statement
	MKDIR Statement
	MODIFY Statement
	MOVE Statement
	Null Statement
	ON Statement
	OPEN Statement
	PASSWORD Statement
	PB Statement
	PRINT Statement
	Printing Portions of a File

	PROCESS Statement
	PTD Statement
	PURGE Statement
	RELEASE Statement
	REMOVE Statement
	REPLACE Statement
	RERUN Statement
	RESTORE Statement
	Library Maintenance
	RESTORE Statement Options
	RESTORE Tape and CD-ROM Attributes

	RETURN Statement
	REWIND Statement
	RUN Statement
	SECURITY Statement
	START Statement
	STOP Statement
	Subroutine Invocation Statement
	UNWRAP Statement
	USER Statement
	VOLUME Statement
	Tape Volume Security
	VOLUME ADD Statement with Tape Security Subsystem

	WAIT Statement
	WHILE Statement
	WRAP Statement

	Section 7. Expressions
	Overview
	Boolean Expressions
	Boolean Primary

	Integer Expressions
	Integer Primary

	Real Expressions
	Real Primary

	String Expressions
	String Primary

	Mnemonic Primaries
	Constant Expressions
	Boolean Constant Expression
	Integer Constant Expression
	Real Constant Expression
	String Constant Expression

	Section 8. Basic Constructs
	Overview
	Invalid and Valid Characters
	Valid Character Elements

	Identifiers
	Constants
	Names
	File Names, Titles, and Directories
	Using String Primaries
	Restrictions on the Use of String Primaries
	Passing Parameters to a Task
	Copying Multiple Files

	Section 9. WFL Control Options
	Overview
	ERRORLIMIT Option
	INCLUDE Option
	LIST Option
	NEWSEGMENT Option

	Appendix A. Sample WFL Jobs
	Overview
	Compiling a Program
	Initiating Other Jobs
	Updating Files

	Appendix B. Reserved Words, Predefined Words, and Keywords
	Overview
	Reserved Words
	Predefined Words
	Keywords

	Appendix C. Understanding Railroad Diagrams
	Railroad Diagram Concepts
	Paths
	Constants and Variables
	Constraints

	Following the Paths of a Railroad Diagram
	Railroad Diagram Examples with Sample Input

	Appendix D. Related Product Information
	Index
	Master Glossary

