.

: ! R
\)

Burcougbs _Corporation oo oo ,-Ingsﬁ-nliisz In:t:sebndgbgaﬁ

] Corporate Unit : | tocation | Depta -
| Computer Systems Group | Pasadena 1 Prog. Activity S
= mmmm e e e R e |
-T0z:! Naame | bate 1
i Programming Activity SPRITE Users . { March 4, 1933 S
fmm = m o e e I
| From | Dept. & .Location *“mﬂ'|
L_--Belinda_Wilkinsop.___1___Architecture Depactment . _____ ———— i

Subject: New Release of SPRITE

On Monday, March 14, 1983, SPRITX (4601) will become SPRT66., SPRITE. .
(6505) will become SPRT65 and 3 new version of SPRITE will be available.
SPRT65 and SPRT66 will be removed from the system a month tater (April
14, 1983).

The new version of SPRITE f1xes bugs (see Appendvx A and D) and provuaest
new features (see Appendix B, C and E). ‘
This SPRITE is version 6700 and is not MID~conrpatible with version 6601

or earlier versions. This inconvenience is necessary due to the chancesv
within the SYSTEM information. This . requires that your HMIDs be
recoupiled with SPRITE before any of your modules will recompile. ’

The Y===== series of the intrinsics Libraries are compatible only with
SPRT65~emitted ICMs, and the X===== gseries of the intrinsics Llibraries
are compatible only with SPRT66-emitted ICMs. Two new set of .dintrinsics
tibraries., ===== and €=====, are compatible with SFRITE-emitted I(Ms.
However, the E===== series of intrinsics Libraries can only be used with
ICMs produced with $3% EXTENDED (see Appendix B, item 138).

Concurrent with the release of the SPRITE compiler, a2 new version of
XREF and COMPRS will also be available on the system. The new XREF,
program shows the correspondence between the mcdule name and the file
name wused for that wmodule. The old COMPRS program used to bomb when
running on 83900 . The new one will now run on both B3900 and B4800.

Please report any protlems to a member of the Implementation Systems
Section with appropriate Llistings for screening before envoring thenm
into the BUGS system. ALl actual bugs will be entered into the B8UGS
system by.the reporting user. -

Bl o ffilloisson.

Belinda Wilkinson, Manager
Implementation Systems Section
Architecture Department

This release document contzins:
APPENDIX A: BUGS FIXED

- APPENDIX B: GENERAL ENHANCEMEMTS
APPENDIX €C: OMEGA-RELATED ENHANCEMENTS

APPENDIX B: INTRINSICS BUGS FIXED
APPENDIX E: INTRINSICS ENHANCEMENTS

" "APPENDIX A - BUGS FIXED Page 1 of 23

D - — - — D - D - o - - ——-

4.

SMAP option with normal tag fields

The SMAP aption did not Llist the normal tag fields of a
STRUC declaration. €ntries for these will now appear if
SMAP has been set.

Nil pointer values (changed!!?!)

The value of nil no longer changes or causes overflow
when being moved as a 7sn value. (Regular pointers are
7sn for OMEGA programs.) This has been accomplished by
changing nil to “CEEEEEEE" for regular pointers,
*Q000000CEEEEEEE™ for parametric pointers and "OCEEEEEEE"
for procedure pointers. The new values are used for both
OMEGA and non—-OMEGA programs. Pointer kludgers bewaref!!

Logical cperations on hex strings over 100 digits (B2781)

Logical operations on fixed length hex strings over 100
digits ncw work for the entire string (it used to work
only for the first 100 digits).

String comparison

In a relational expression where the teft and right
operands are both stringss SPRITE will now coerce the
shorter one to the length of the longer (it used to
coerce the right operand to the left operand no matter
which one was longer).

‘DISPLAY --=> STRING coercion

SPRITE no longer allows the coercion from DISPLAY to
STRING if the string is bigger. It will put out an error
message if the string 1is fixed length. Ffor variable
tength strings, it puts out a warning and then generates

"optional run time code to make sure that the string is

not bigger than the display integer. SPRITE now puts out
overflow testing code for the coercion from DISPLAY <to
STRING whenever the display integer is or could possibly
be (in the case of variable length strings) bigger than
the string.

/APPENDIX A - BUGS FIXED . | Page 2 of 23

L — - - — . - - -
b
N

6. Conditional subscript'checking

The wvalue of the B0UNDS dollar option is now checked
before generating bounds checking code for array and
subport indices. If BOUNDS has been reset or set to a
vatue less than 4, the subscript checking code will not
be generated,

7. Standard proc VAR parameter checking

Several standard oprocedures now correctly enforce their
VAR access parameter requirements. Alsor, the standard
function translate now requires only that its second
parameter not be a constant (because 3 constant translate
table is not mod 1000). 1t used to require VAR access.

8. File record size > 39996 (B2881)

Peclaring a file with a record size greater than 39,996
digits no longer causes a compiler failure.

”f;9. FOR ... DESCENDING, et al (B2882)

SPRITE no Llonger tries to optimize to MVW or MVA when
either of the operands is a number., It now generates a
MVN as before, which sets the <comparison indicators
properly. This was necessary to produce the right code
for the FOR ... DOESCENDING statement. This bug in turn
had caused the compiler to fail when processing a call to
a procedure with ten parameters. '

10. Pointer coercion (82819)

SPRITE now generates the right code to coerce between a
pointer to a parametric string and a pointer to a fixed
length string. It was generating bad code for a RETURN
statement when the expression is one kind of pointer and
the RETURN type is the other kind.

1. Variable length string to DISPLAY coercion (32581)

SPRITE now generates the rigcht code tc coerce from a

variable .length string to DISPLAY, even when the dollar

card option "S80UNDS™ is reset. Alsc, "$3 BOUNDS"™ no
o longer resets the “BOUNDS™ option. ‘

= APPEND IX A - BUGS, FIXED ' Page

- - D D - - — s e - -

2N

12.

13.

14,

-, 15.

16.

17.

13.

- 19,

Ptr function as parameter (B2701)

SPRITE now generates the right code fcr a3 parameter even
when: the ¢formal parameter 1is either UNIV or a
non—-parametric pointer passed by VALUES, the actual
parameter is a call to the standard function “ptr™; and
the actual parameter to “ptr™ is either a constant, a
data block variabler, or a STATIC variable.

Dereferencing a constant pocinter (82605)

SPRITE now generates the right code to dereference a
constant pointer (defined wusing 2a structure with an
omitted tagfield).

Translating a variable length HEX string (R2324)

SPRITE no longer bombs when processing a call to the

standard function “translate" with a variable length HEX
string as the first parameter.

$$ LISTP (B827383)

SPRITE now ltists all patches when compiling with "33
LISTP», RESET LIST".

finding BIT fields im an array (82713)

SPRITE now puts out an error message if the type of the
find primary in a FIND statement is BIT.

Range check subscripts for array slice (B2681)

SPRITE nosw generates range checking ccde for array slice
subscripts.

Scale_ptr

The standard function scale_ptr (allowed only when
producing assembly code) now generates the right offset
for the destination address.

String concatenation uiph bad "eait_numbter™ (E2893)

String concatenation with bad “edit_number”™ no longer
causes compiler failure.

3 of 23

APPENDIX A - 8UGS FIXED Page

20.

21.

22.

23.

— - - - D . D D =D - -

Macro®s parameter (B82906)

SPRITE now catches the following error: The macro’s
formal parameter is VAR accesss, but the actual parameter
is CONST access.

Mod 1000 flag reset for STATIC blocks

This flag was not being reset. Wwhen a3 STATIC block
contained a TRANSLATE_TABLE, the mod_1000 flag was set
and every STATIC block following it would also have the
mod_1000 flag set. Needless to says this wastes a bit of
memory., so it has been remedied.

Nil to procedure pointer coercion (82878) .

SPRITE no Llonger generates the bac code when compiling
"I1F procedure_pointer = nil”™, and no Llonger bombs when
compiling "IF nil = procedure_pointer™,

FIND with SN key no longer generates tad code

SPRITE no longer tries to optimize the code for FIND

statement if the type of the key 1is SN. It wused to
optimize the SN key.to UA.

4 of 23

aaN
/ .
i]

APPENDIX B - GENERAL ENHANCEFNENTS Page 5 of 23

- - D D - - - DD 4D D D D D D A D D - G D D

Port_io.open_available

A regular ftile identifier is now an acceptable parameter
to the standard procedure port_io.open_available,

PORTRESULTS

An dnquiry to the PORTRESULTS attribute will no Longer
modify the PFIB subport index field. .

FIND with non-statement local pointers

For any of the find statement types, the FIND statement®s
result pocinter may now be either local or external.
LOCAL means a statement-local variable (identifisr) whose
value and scope are availaole only in the THEN part of
the statement; Local is the default. EXTERNAL means an
externally-declared (to the statement) variable (primary)
which is a pointer to the type of the array®s components
and which on a non-hit will receive the nil pointer
value. ‘

find_pointer_spec

| . pointers:
| S e e e e e e e e e e ident o o o
AR Y / / \
v\ ___ Locay ___/ /]
\ painter: / |
\ i __ EXTERNAL _____ primary __/ i

Examples:

X p is local and available in THEN only
%Z no cthange to current syntax

FIND p AND i INTO arrayl WHERE pd.num = 0
%2 g is local and available in THEN only

FIND LOCAL g INTO array?2 WHSERE qg@.char = X"
2 ¢ is externaly previously defined,
% and available in its scope.

FIND EXTERNAL r INTO array3 WHERE rd@.name = current_name

FIND with pointers celimiting array slice bounds

The pointer-to-pointer type of the FIND staterent is now
available. It permits the use of pointers to an array's
components as the delimiters of the FIND statement. The
use of the new reserved word END provides access through
and including the last array element. The pointers must

APPENDIX B8 - " GENERAL ENHANCEMENTS Page 6 of 23

all be pointing to the type of the array®’s component,
The array primary may not be an array slice.

find_statement

___FIND___find_pointer_spec___find_control___
‘ \
___ /
/ .
___WHERE___find_condition___
\
____________________________ /
/
__THEN__statements____ELSE____statements____ONIF____
| S / \
|
find_control
' -
I N e e e e e e e e e e e et INTC__arraysprimary___
} \ index: / A\
| ___AND___identifier___/ ' |
! |
| base pointer: Lirit pointer: array: {
___OVER__primary__ . ___primary____INTO____primary___ |
. \ / \
\ END _/ |
!

Examples:
%2 f and g used the ptr function
Z to point at elements of array1
FIND p OVER f .. g INTO arrayl WHERE pa.num = (
% ptr function itself may be used’
% TND gets last element of array?2
FIND LOCAL g OVER ptrlarrayd [2])..END INTO array?
WHERE ad.char = *X*
X pointer values have been previously
X stored in a global structure
FIND EXTERNAL r OVER global.tbl3_begin .. global.tbl3_end
INTO tbl3 WHERE rd.name = current_name

5. Logical orerations and concatenations enhancement

It is now Legal to do logical operations and
concatenations between hex strings and display integers.
The display integer involved in the operation will be
coerced to 3 string of its own length with the base type
set to the base type of the counterpart string. €Example:
put.string ("dint2 = * + dint2);

2N

APPENDIX g - GENERAL ENHANCEMENTS Page 7 of 23

-

io
MOD

Complex wait enhancement —

The complex wait function now includes four new event
tyoes. They are: stoqgue_parameter_block.STOQGINPUTEVENT,
stoque_parameter_block.STOQCUTPUTEVENT,

prog_name.,CRCRINPUTEVENT and prog_name.CRCROUTPUTEVENT,
where prog_name is a primary of type STRING (4) CHAR

(EBCDIC) ., and stcque_parameter_block is a structure
beginning with a fiald of type STRING (4) <CHAR (€BCDIC)
which {is the STOGUE queue name. It 4Js the user's

responsibility to make sure that the queue_name is a & UA
field STOQUE queue name and the prog_name is a3 6 UA field
program name.

Literal hex string optimization

The code produced for string operations iJnvolving 2
constant hex string has been changed in two respects.
First, if the constant is either 1 or 2 digits Ltong, an
ORR/AND is replaced with a BST/BRT instruction,
Secondly, if the constant is less than 7 digits long, it
is made a literal in the A address field of the ORR/ZAND
instruction,

New file types suppcrted

fFor regular files, DCP and 1ISC are now lLlegal wvalues for
the KIND attribute.

User~-defined buffer.io

For regular files, it is now possible to do input/output
from different buffers. To allow this cirect buffer
accesss five standard procedures
(prepare_user_defined_buffer_jo, write_buffer,
read_buffer, read_random_butfer and write_random_buffer)
under the standard module “io™ have been added.
following is the mocule description that aescribes these
new standard procedures and their parameters.

prepare_user_cefined_buffer_io
PROC (file FILE,
buffer UNIV PARAMETRIC_HEX_STRING),

Ead

Modulo anc size
must be mod 4

»

read_buffer
PROC (file FILE,
buffer UNIV PARAMETRIC_HEX_STRING), % Mcdulo and size
X must be mod 4
read_random_buffer

/// ~ APPENDIX 8- - GENERAL ENHANCEMENTS . Page

.
7

PROC (file

write_buffer

PROC (file
buffer UNIV PARAMETRIC_HEX_STRING), 7% Mcdulo and si

FILE,

buffer UNIV PARAMETRIC_HEX_STRING, % Mcdulo and si
1¢.99969999); %2 must be mod 4
FILE,

£ must be mod 4

write_random_buffer

PROC (file
buffer UNIV PARAMETRIC_HEX_STRING.,

bDOM,

There

FILE,
Modulo and si
must be mod &

b

1..99999999);

five restrictions placed on these

user~defined-buffer—io procedures.

(a)

(b)

(c)

(d)

{e)

fFollowing

Exanmple:

Prepare_user_cefined_buffer_io must te called
before any of the read/write procedures can be
used.

There is cnly one buffer (i.e. only one pair ' of
FIB_AA and FIB_EBE) declared on the file to be
used.

The size anc medulo cf the buffer must be mod 4.
Deferenced psrametric pointerss, variable length
strings and fixed length substrings with varible
offset are the user's reponsibility., The system
will kill you if they are not mod 4.

Once the buffer is used in
prepare_user_defined_buffer_ioc., SPRITE witl
generate optional run time code to make sure that
the same tuffer s used for read_bufte,,
write_buffer, read_random_buffer and
write_random_buffer.

Using both the regular 1/0 procedures and the
direct buffer 1/0 procedures for the same file is
not allowed.

is an example that shows how to use these new standard
procedures.

direct _buffer_io

MOD

8 of 23

ze

zZe

zZe

 /// APPENDIX B - GENERAL ENHANCEMENTS Page 9 of 23

B e b R - D -y D - — D D D D — D

b TYPE
REAL_RECORD = STRUC
reocrd STRING (1000C)
Z takes 20000 digits
CURTS.,

DUMMY_RECORD =,STRUC -
: dummy STRING (2)
~ 4 takes only &4 digits
CURTS,

file_block
FILE
reader [MYUSE = IN, KIND = DISKI]
OF DUMMY_RECORD, % Allocate 4-digit buffer
% instead of 20000-digit buffer
printer [MYUSE = OQUT, KIND = PRINTER]
OF DUMMY_RECORD, % Allocate 4=digit buffer
%X instead of 2000C-digit buffer
buffer_block '
DATA
btk_buf_ptr PTR TO REAL_RECORD,

driver
B PROC

prepare_direct_buffer_io’
do_direct_buffer_dos

CORP? %2 driver
N
prepare_direct_buffer_io
PROC,
SHARES fite_block, buffer_block-
GENERATE EXTERNAL blk_btuf_ptr,
io.prepare_user_cefined_buffer_io (reader, blk_buf_ptra);
ijo.prepare_user_defined_buffer_ic (printer, blk_buf_ptra);
CORP; % prepare_direct_buffer_io
do_direct_buffer_io
PROC»
SHARES file_bolck, buffer_block’;
io.read_buffer (reader, blk_buff_ptra).,
io.write_buffer (printer, blk_buf_ptra).,

CORP, % do_direct_buffer_io

APPENDIX 8 - GENERAL ENHANCEMENTS - Fage 10 of 23

DOM»

10.

11.

%2 direct_buffer_io

CASE statement optimization

The CASE staterment will now use a multiply and indirect
branch to select an alternate, rather than a search and
indirect branch, but only if these conditions are
satisfied:

1. There must ke at least 12 alternates in the CASE
statement. A search 1is faster for 11 or fewer
labels.

2. The selector expression must be unsigned numeric

or unpacked ORDERED or SYMBOLIC.

3. The result of the selector expresswon must have a
length in the range 2..6

4o A certain percentage of the possible alternate
Labels must be specifieds otherwise, the case
table will be much larger. For the lengths 2..6
these percentages are 80X, 67%, 67%, S7?% and S57%.
for example, if the selector expression result
type 1is 100300..100399, then at Least 57% of
{(100399-100300+1) or 57 alternates must be
specified before a multiply will be generated.

fFor Llarge CASE statements, the multiply is more than an
order of magnitude faster than the search. In most cases
(a Little pun there) the compiler will automatically wuse
the multiply, but if a few alternate labels must be
manually added to the CASE statements, the rewards are
worth it.

ICM_TOKEN definition change

Three new ICM_TOKEN fielcs were added for C03CL and
FORTRAN. The "segment_thresholad” field in MCDULE_HEADER
was changed from 4-UN to 2-UN to make rocom for a 2-UN
“version_number®™, Both fields are set to 2eros, as
before. The new BIT field "no_code_Llist™ was added after
“local™ 1in MODULE_HEADER. Alsor, the new BIT field
“fortran_external”™ was added after “returnseg_on_stack™
in PROC_INTERFACE. Both BIT fields are set to false.,
instead of teing "“f"ed out.

APPENDIX B - GENERAL ENHANCEMENTS Page 11 of 23

13.

File buffers ih HIGH DATA

SPRITE no longer marks the tuffer blocks as high data.
The name of the buffer block for a particultar file block
is: “uwa_buff_XXXX_YYYYYY™", where XXXX is a &=digit
block number assigned to the file bloek by SPRITE and
YYYYYY is (the first six characters of) the file block
name. This enhancement allouws the user to put the buffer
block 1in the appropriate overlay when binding together
his progranm. .

Parametric arrays

Parametric one-dimensional arrays parallel parametric
strings in syntax and use. The same capatilities and
restrictions apply. The syntax for a parametric array
type definition is:

parametric array type defn

} upper bound:

__ TYPE __indicant__{(__param:ident___subrange___)_ = _

\

e e o s e e o e e e e o e]
/ Lower bound: params element:

__ ARRAY __ [__constant__ .. __ident__ J __ OF __type_
\ / \

A parametric array must be one-dimensional. The lower
bound constant must be an integer less than or equal to
the lower bound of the upper tound subranges, which must
be an integer range type. :

A parametric array type can be the base type of a pointer
as well as the type of a formal parameter. The standard
operators “upb™ and "Llwb™ <can be used to aiscover vne
upper and lower bounds of the parametric array. The Llwb
function always returns the lLower bound contant used in
the parametric array type definition and the upb function
returns a value which is: the lower bound value + the
number of elements in the corresponding actual array - 1.
Within the procedure, the index type of the parametric
array is lwb..upbr, and the semantics of fixed arrays
appty. Ffor example:

TYPE
VECTOR (upbnd 7..1C0) = ARRAY [4..upbnal OF 0..10000,
VECTCR_PTR = PTR TO VECTQR,

build_vector
PROC,

VAR sum 0..10CCGC0Y .

'

APPEND IX B -

vector
vecter =
sum =
CORP;

14,

sum_vector
PROC (vector

VAR sum
FOR i
Do

sum +:
0D~

RETURN sums

CORP;

To allow the

generate statement

|

\ GENERATE

- - -

\

-

GENERAL ENHANCEMENTS

Page 12 of 23

ARRAY [1..101 0f C..10000/

01, 2+ 3, 44 5+ 6, 74 85 9,

VECTCR)

OVER lwb(vector.,

= yvector [i3];

% sum_vector

101;

sum_vector (vectcr);

%X build_vector

RETURNS 0..10000C007

0..1000000 == 0,

1)e-upb (vectore 1)
A lwb returns 4
%2 upb returns 4 + 10 - 1

13

GENERATE statement to work for parametric
array pointers, the syntax was modified as follows:.

EXTERNAL

LOCAL

integer:
——_pbrimary___ ELEMENTS ___simple_expr___
__! _ LENGTH _/ /7 \
| S /I /7
/
_________________________________ /
/ memory area:
N\ IN ____jgentifier_ _._ o0
\
|

The ELEMENTS tlause is only applicable 1if the ~pointer

references a

parametric

array. The size of the space

generated for a parametric array will be the maximum size

in its rarge, unless an ELEMENTS clause appears.
er expression
ELEMENTS will be the number of elements
provided

taser, the integ

arrays
range.

this

In that
follows the word
in the parametric
of elements is within its

which

number

Optional stack overflow check

The stack overflow check

generated by SPRITE now has

optional code markers (level=bounds_checking_code) around

it.

P

TN
A 15. Conditional compilation
The facilities for conditional compilation that CO80L and
PASCAL have provided are now available in SPRITE. Each
bootean type CCI (except ™“TITLE™ and ™CONTENTS™) have
been implemented on 1its own boolean stack, and $POP
option has teen added. when S$SET or 3RESET is used, the
previous value of each boclean option specified will be
stacked, and the current value will be set according to
the boolean expression or cefault value. There are also
up to 12 user-defined boolean options. The SET syntax
is: '
e —m e —————————
) / \
_ SET ____boolean option name _ _ _ o o e e e /
\ . / \ boolean /7 \
user-defined option/ _ = expr _/ i
' |
boolean expr
|
(|
| W T RUE o e e e e e e e e e e e e e e
\ / \
[Y FALSE o o e e /]
| | |
| -—= OR ___ l
i / \ |
| o AND o\ e e l
I/ \
| Y S boolean option name___/__|I
\ / \ user-defined /
_ NOT _/ | DI aeption______ /
The boolean option name and user~cefined cption name In
the above boolean expression must be declared before they
can be referenced. The $PQOF option discards the current
setting of each option in a list of boolean options, and
restores the immediately previous setting. VYou will get
a syntax error if you hvae too many POPs. The POP syntax
is:
L e eem e
| / \
\ \ o POP________ boolean option name ___/___—____
' \ / \
"¥~ _ user-defined option _/
N t
\ |

APPENDIX B - GENERAL ENHANCEHENTS ' Page 13 of 23

v

.

APPENDIX B - GENERAL ENHANCEMENTS ’ Page 14 of 23

G D s . - - D D D D D) A R) D A S D e R -

-

The RESET syntax is:

i / ‘ \
\ Y RESET___\V oo boolean option name _____ S
\ ’ / \
__ user~-defined option ___/ }
: |
Exanple:
38 SET RELEASEVERSION = FALSE X Change to TRUE, when
- % switch to release version

$$ SET OMIT = RELEASEVERSION % Instead of using “%Z COM;™
dbwrite.string (ceeeeasds

-

dbwrite.string (cecenecals
$$ POP OMIT %2 Instead of using "% MOC.,*™

Debug source can be surrounded with "ZCOM"™ and “ZMOC”".
To delete the debug code from a release version, one
would then change these to ™"COM™ and "MOC“™. With
conditional compilation, one can achieve the same thing
by changing a single Lline, as shown in the above example.

16. Summary of virtual file utilization

Statistics of each wvirtual file's high tound, togical

170, physical 1/0, size (in digits) and overali hit ratio

are now available. To have this information and CPU time
[-]

for each passs, use a3 Lower case "j* in the second progranm
parameter 3 <compiler named/dummy/]j

.

17. Maximum modules

SPRITE now altows a maximum of 250 modules 1in one
program. &

18. EXTENDED option

The EXTENDED cption allows a large program to address
over one million digits. When this option s set, the
internal representation of pointers will be 7 SN (rather
than an address controlter cigits hex "C" and 6 digits of
address).

To take advantage of this new feature, you must set $§%
EXTENDED 1in -your MID and use the SYSTEM file produced to
recompile all the modules for that oprogram. Remember.,
you don't need to set this option when you compile your
modules., Your must bind your program with the E=s====

APPENDIX 8 - GENERAL ENHANCEMENTS Page 15 of 23

- o R D S . D D - D D D - D D O D D D —

series of the intrinsics libraries.

19. Enhancement of one-dimensional array operations

It is now legal to move a one-dimensional array (slice)
to another one-dimensional array (slice) provided that
both arrays (slices) have (1) the same number of
elements, and (2) the equivalent elememt tygpe. 4

Fbr parametric arrays and variable array slicesr, SPRITE
will generate optional run time code to make sure the
number of elements in both arrays is the same.

example:
TYPE .
P_ARRAY (no 1..50) = ARRAY [1..nol OF ELEMENT,
VAR '
arrayl ARRAY [1..10] OF ELEMENT,
array? ARRAY [0..9] OF ELEMENT,

p_array PTR TQO P_ARRAY,

arrayl! [1..5] := array2 [4..8];
p_arraya := arrayl;
p_arraya = array2 [i..§]17

20. FIND statement warning

SPRITE now puts out a warning for the FIND statemenf
under the following two conditions:

(1). When the unit size of the find key is bigger than
that of the find primary.

(2). When the types of the find primary and the find
key are both type subrange and the range of the
find key dis not completely within the range of
the find primary,

This is because SPRITE coerces the find key to the type
of the find primary. Optional overflow testing or range

checking code will be generated under - the above
conditions. This cptional coge will be deleted when you
bind together a non-debug version of your program. This

may produce strange resultss, such as a false match for pa
< keyr, where key is all F's because of the coercion
failure,

i

APPENDIX B - GENERAL ENHANCEMENTS Page 16 of 23

21, MAXRECSIZE

MAXRECSIZE is no Longer a required attribute for port
files at declaration time. Its dgefault value is 19998

bytes, if it is not declared.

22. Direct buffer io0 for PORT files

SPRITE used to allocate a buffer for each port file
declared. Input from and output to the port file was
then done by moving data between the buffer and the
user's record (work area). This approach requires extra
space for the buffer in aacdition to the space for the
user's work area. To save the space for the buffer.,
. SPRITE no longer allocates a buffer for each port file.
Port I/0 is now done directly from the user's work area.

TN

APPENDIX C - OMEGA ENHANCEMENTS Page 17 of 23

Ltinked List FIND statement

The Linked List FIND statement provides the ability to .
search a linked Llist for an etement which satisfies a
specified condition. After the search is performed, one

of the two alternate groups of statements is executed
depending upon whether or not the search was successful.

The syntax is: '

find statement
|
___FIND___find pointer spec______ find control_____
\
__ /
/
_WHERE _______ find condition__________
\
_____________________________________ /
, .
_THEN______ statements___ELSE___statements___DNIF_____
\ / \

The find_pointer_spec clause specifies the statement's
result pointer. It is either local or external. LOCAL
means a statement—-local variable (identifier) whose value
and scope are available only in the THEN part of the
statement. LOCAL 1is the default. EXTERNAL means an
externatly-declared (to the statement) variable (primary)
which is a pointer to the type of the List element and
which on a non-hit will receive the nil pointer. The
syntax is:

find pointer spec

| pointer:

| identifier o e e
VN _LocaAL___/ pointer: / \
V___EXTERNAL __ ______ primary_ _ o o e / }

The find control clause specifies the type of the search
to be performed. The syntax is:

find control

} predecessor pointer:
S wWITH_ ____ identifier______
| W ! \
_______________________________________ /
/ Ltist pointer:
_____ USING___Llink field__________

V__FROM_____ pricary

link field

AéPENDIX C - OMEGA ENHANCEFMENTS | Page 18 of 23

| / field name: \
| S N identifier________ e e e e -

A predecessor pointer mnay optionally be defined. It is
of type PTR TO PTR TO <list element type>. It points to
the Llink field of the element which precedes the elempent
satisfying the find condition. The predecessor pointer
allows the programmer to delink the found element or
perform other manipulations requiring access to the Link
of the preceding element. If- no elerent in the list
satisfies the find condition, the predecessor pointer
points to the Link of the last element. If the Llist is
empty, or the first element satisfies the condition, it
points to the lList head pointer.

The Llist pointer primary 1is a pointer to the first
element in the Llist to be searched (the Llist is
terminated by a nil Link field). The Link field clause
specifies a list of field selections which are to be
applied to the list element to get the field that points
the next element in the Llist (i.e. the Link field).

The find condition specifies the condition which the
element being searched for must meet. The syntax is:

nd conditior

bit mask:

fi
i

.
I\
A
|
|

-- ANY_ONE_BIT_IN ___find primary___MATCHES____expr___

-— NO_ONE_BIT_IN _/ \

i

. key: R

__find primary________ e expression_______._ |
- \

VVAA
f

If the ANY_ONE_BITV_IN or NO_ONE_BIT_IN form is used, all
corresponding bits in each find primary and the specified
bit mask expression are examined wuntil an element is
found which satisfies the match condition. A match
occurs if any (ANY_ONE_BIT_IN) or no (NO_ONE_BIT_IN) pair
of corresponding bits are both set. The bit mask must be
a fixed Llenagth hex string the same size as the find
primary.

If a3 relationatl form of the find condition is used, the
array/list is searched for an element satisfying the
relational condition.

/\\4

AFPENDIX c - OMEGA ENHANCEMENTS Page 19 of 23

Prog.read_timer and mcp.set_timer update

Prog.read_timer's return type and the vparameter for
OMEGA's version of mcp.set_timer were changed to 17-UN.
This complies with the revised specifications for OMEGA's
ROT and STT opcodes.

INT, APE, WHR

The following new standard procedures have been added to
implement OMEGA®s new INT, APE, and WHR opcodes:

mep
MOD
interrupt o X INT
PROC, '
make_page_table_entry_unused X APE 0O
PROC (descriptor UNIV P_STR_B_HEX);
copy_page_table_entry ' ' % APE 01
PROC (source_descriptor,
dest_descriptor UNTIV P_STR_8_HEX),

X user-defined, 8-digit structures

X describing which PTE's are involved

%X (descriptors therselves are not changed)
update_reinstate_Llist_address : % WHR 00

PROC (new_address UN_38)7

update_snap_picture_address . % WHR 01
PROC (new_address UN_3);

update_memory_error_address - % WHR 22
PROC (new_address UN_8);

read_clear_processor_status %Z WHR 03
PROC (status VAR UNIV P_STR_2_HEX),

X user-defineds, 2-cigit structure
DOM;

Prog. lock_conditional

There is now an exception clause for the standard
procedure prog.lock_conditional. It works just like *IF
EOF" for I1/0 standard procs. The syntax and semantics
are as follows:

tock_conditional exception clause

APPENDIX C - = OMEGA ENHANCEMENTS ~ Page 20 of 23

. S
1

- D - - - .- D D —— D e e D W) R S

5.

|
__IF_~“tOeKeED__THEN__statements___ELSE__staterents___FI__

TN NSE | Y /
prog.lock_conditional (lock) Z no semicolon
IF EOEKED TN_(RT
THEN X it was already locked

do_something_else_instead’;

ELSE Z now I have it
do_something_with_it,;
FI,;

MCPCAL and BGOVL calls

when <tcalling an overlay module entry point, SPRITE now
generates a VEN to either MCPCAL or BGOVL, dependina on
where the call is from. 1f the call is from an overlay
module, SPRITE generates a VEN to MCPCAL. Otherwise, it
generates a3 VEN to BGOVL. The overlay modules are
specified in the MID by the overlay statement, as
follows:

overlay statement

\ module: ident

Scale_ptr

The standard function scale_ptr can now be wused to
initialize data block pointer variables at compile time.
Alsor, a call to scale_ptr may now appear wherever the
context clearly defines the resulting pointer type (such
as the actual parameter to another procedurel). (The
above is also true for SSMCPVI.)

INCLUDE markers

The following INCLUDE markers have been added to our MID:
general_and_vf_defn, .
max_image_and_text_Llength,
position_info_type.,
symbol_table_and_token_cgefn,
file_attr_symbolics.,

APPENDIX C

- OMEGA ENHANCEMENTS

O D D - D

id_and_attr_defn.,
vf_file_data,-
icm_defn_one,

iem_defn_two.,

iem_put_module,
symbol _table_module.

Page 21 of 23

APPENDIX D - INTRINSICS EUGS FIXED | Page 22 of 23

D - D D = - e - D - D D Sy D R WD WE D GE> PN A S GD R D

1. put.go_to_col (1)

When called with a parameter of 7 (one), “put.go_to_col”
"now correctly recalculates “pt.char_used” and
"pt.char_Lleft™ in the “put_Lline_info™ DATA area.

2. dbwrite and f_dbwrite Llabels
The dbwrite and f_dbwrite modules use put.string to print
the Llabel fields, causing Llabels 1i{onger than 100

characters to be incorrectly printed.

The MID for these modules has been changed to limit
Labels to a2 maximum of 100 characters.

-

APPENDIX E - INTRINSICS ENHANCEMENTS Page 23 of 23

put.swap_Lline

A nev procedure, “suwap_Lline” has been added to the *"put"
module, This allows a program to construct two or more
lines simultaneously by exchanging all of the information
in the "put_Lline_info"™ DATA area.

The “dbwrite™ module now uses this procedure to create
its output Llines while preserving whatever the rest of
the program has done with the "put® module.

dyrroyahs Corpgoration_ ' ln:gczﬂiiiga_gancgangndgncg

| Corgorats Unit } L.ocation ! Dept.
2 Computer Systems Grouo [Pasadeana I Proa. Activity l
A ' - T R D D D T S D A D e D D WD D D NR W)Y G GD W) Sad AR WD) D --——---+ D - D) D S G D S D S D) W W D —--'
f031 Name Tt Date]
l Procramaning Activity SPRITE Users 1 Harch 26» 1982 1
‘-------——-——o-n—-—_—-—-----n-—----—-cn——-‘—-- D T D > - D - - D -y - o . _ . '
| From | Dept. & Location !
1 1

| Belinda Witkinsen ! Architecturs Deparctment

SuhIQCtS New Release of SPRITE and SPRITX

,

On Tuesdaye April 6» 1982» SPRITX (6505X) will become SPRITE and a new
version of SPRITX will be available. -

The new versiaon of SPRITX fixes buas (see Appendix A) and provides new
features (see Appendices B and C). :

The - new SPRITX is version number 6601 and is pnot MID=compatible with
versinn 6505X or earlier versions. This inconvenience is necessary due
.'to changes within the SYSTEM information, -

Both SPRITE and SPRITX emit Type III Format 7 ICMs. Howevers, ICMs
creatad by SPRITE are ngt compatible with ICMs craated by SPRITX» as the
1nterface to the debug module has chanced. If you wish to use SPRITX,

:u muat reccemoils your MIDs all of your MODe» refilter your BPL=created
.uus with the new version of FILTX» and un—truncate bind=deck names
which are greatar than 24 characters in your progaram source before you
bind your cade file.

The Y===== series of the intrinsics librarjes are compatible only with
SPRITE=emitted ICMs, The X===== series of the intrinsics libraries are
compatible only with SPRITX-emitted ICMs., Intrinsics enhancements and
bug fixes will be only in the X===== series (see Appendices D and E).

Please”report any problens to~aﬁwnpbqr'20? “the. Implementation Systeas
Saction- for screening before eftering ‘thew into the BUGS system. Bring
the aporooriate listinos and whatever else'se might need to determine
that the probltend is truly a SPRITE bug. Atl actual buogs will be éntered
into the BUGS system by the regortina users

Belinda Hilkinsons, Manager '

Imolementation Systems Section
Architectureboeoartment

|
(" is release document contains:
APPENDIX A: BUGS FIXED
APPENCIX B: GENERAL ENHANCEMENTS
APPENDIX C3 - MCP-RELATED ENHANCEMENTS

APPENCIX D: INTRINSICS BUGS FIXED
APPENDIX E: INTRINSICS ENHANCEMENTS

APPENDIX A - BUGS FIXED Page 1 of 17
,‘ LT X X X R LN 1 J D D D A D D R .
’ ‘ N
1. Eliminate unnecessary calls to' the “move™ intrinsic
(B2708) ' ’

Certain special conditions no longer cause the compiler
to cenerate unneeded calls to the move intrinsic.

2. Yariable "prog.bct™ parameters restored after BCT

If you use a variable strina of hex as the parameter to
prog.bcts SPRITE now moves the strina back to your
variable after the BCT has been executed. .Thus you may
naw access any information which has been chaneed by the
MCP as a result of the BCT. :

3. RETURN statements disallowed in MACRO definitions
You may not de fine MACROs which ~contain RETURN
statements, This used to cause SPRITE to oqenerate an
exit from the procedure which "catled” the macro.
ng“_ DATA declarations cause incorrect syntax errors
The Llast variable in a DATA declaration will no longer

cause certain things (such as a FILE declaration) to be
inccrrectly found to have syntax errors in some cases.

Se. Heap overflow detection (82670)
The &ecode SPRITE aenerates to detect heap overflow ncw
checks to see if the next available heap location is >
the hean Llimit (rather than >= the Limit).

6. Bad code for ptr function when destination indirect

SPRITE now gqenerates correct code for the ptr function
even when the destination has indirection involved. :

7o Revised heap/stack collision code for HIGHHEAP (B2717)

i 1If you set the HIGHHEAP dollar <card ootion in vyour

- module, SPRITE now = generates procedure orologue’
@?(;; heap/stack collision code which calls err.error (unless
- the ERRORCALLS opotion is reset, in which case it

agenerates a hex "EC™ oocode to cause a processor error at
run=time). Previously, SPRITE unconditionally agenerated

the hex "EC™ opcode.

APPENDIX A - BUGS FIXED Paage
4‘/ - ey - .
S
’ & s. RESET multiple dollar card ocoticns
If you wuse RESET on a dollar card, it will now aovoly to
all of the followina options on the card (or until you
specify. SET). Previouslys just the first option was
reset while the remainder were set. :
{ -
w4

2 of 17

)

fgéf;

APPENDIX B -~ GENERAL ENHANCEMENTS o Page

D« - D D D - D - A D D D) D D D - D

mfiller™ for unused fields in a structure definition cr a
data declaration .

You may use the word *filler® as an identifier anywhere
in a structure definition or a data declaration. You

.cannot reference the parts of the structure or the fields
in the data declaration thus defined, You may use

"filler®™ any number of times in a given structure
definition or data declaration,

The word "filler™ is now a oredefined identifier in the
SPRITE Llangquage. Use of this Word outside of structure
definitions or data blocks will cause syntax errors.

Examples
TYPE JUNK =
~ STRUC
first_pgart 0..99 »
filler STRING «4) OF HEX »
goodijes BOOLEAN »
filler CHAR ’
filler 0..9999999
CURTS

Remindar: the compiler still generates its own internal
fillers {(or pads) as needed. In the above examplesr it
would allocate | dicit after "goodies™ to put the CHAR at
3 mod 2 addresss» and it would allocate 3 digits after the
tast "filler™ to make the size of the structure mod 4,

Standard functions ~z20one_index_any"™ and "zone_index_none”

These new functijons (each requiring 2 EBCDIC strinas as
parameters) allow you to scan strinas fer particular zone

digitse. They serform in a manner similar to "index_any*®
and "index_none", - save that only EBCDIC strinas are
allowed as parameters. They g@enerate SZE (scan zone

equal) and SZU (scan zone unequal) machine instructions.

Zone_index_any returns the index of the first character
in string 2 which has a zone digit equal to a zone digit
in any character of strinag 1. If none is founds, it
returns a zero.

Zane_index_none returns the index of the first character
in string 2 which has a zone digit not equal tc a zone
digit in any character of strina 1. If none is found,.it
returns a zerc. ' ’

Far exampfé’

k1

-

of 17

" JupreNDIX B - GENERAL ENHANCEMENTS | | Page 4 of 17

N
{ ;
he number_ix := zone_index_any ("0", card_image); % find
I first character "0®™ thru %" (also hex FA, etc.)
I[F zone_indeXx_none ("AJS", wWord) = 0
THEN X there are no uppercase letters in this word
3. MAP dollar card opticon
MAP is a new aption which you may set or reset on a
dallar card. The default value of this opotion is reset.
Within the rangse of SPRITE source code that this aptian
is setsr the output Llistina lines of STRUCture definitions
and. DATA definitions are modified to show the internal
details of the structure or the data block.
The card=image oriain field of these output lines
(normally "EDITOR".» ~INCLUDE"™, “PATCH™» etc.) now
contains 3 columns of “information as follows: '
1. size (if BIT» then "." plus allocated bit)
2. offset '
, 2. block number (only for DATA definitions)
-~ /.
- For examole»
TYPE 01010000 EDITOR
STR1 = STRUC 01011000 EOITOR
a BOOLEAN» 01012000 1 0
bs 01013000 -8 1
¢c BIT» 01014000 «h 1
d HEX» 01015000 1 2
e CHAR 01016000 2 4
’ CURTS? 01017000 EDITOR
TYPE . 01018000 EDITOR
 STR2 = STRUC 0i019000 EDITOR
f 0ee999>» 01020000 3 0
..a STRING (9%9)» 01021000 198 4
h STR1 01022000 8 204 ‘
- CURTS; 01022000 EDITOR
data 01024000 EDITOR
DATA _ 01025000 EDITOR
vl STR1» o 01026000 8 0 54
v2 STRZ») 01027000 212 8 54
vX CHAR:» 01028000 2 220 54
) vi HEXs. - 01029000 1 222 54
L vS BOODLEAN» . 01030000 1 223 54
| Q‘, . ve BIT; 01031000 -8 224 54

D O G D A WD D e e D G V) W G W AN WO W T O WD WD A G Gl D S I TR D N G e D W T WD R G W Y D G WD A e

Note: for you to get the most information from this
ootion» each DATA variable or STRUCture compbonent must be
cn a separate source line.

APPENDIX B - GENERAL ENHANCEMENTS 4 Page

D R w G . R R D - D . D D D D e W D D DD D D e e

Strinas <= 100 characters allowed as VYALUE parameters

You may now Use strings of up to 100 characters as VALUE
parameters to a procedure. The previous Limit was 50
characterse.

3) characters of identifiers and indicants now used

Yoiur identifiers and indicants must now be unique within
the first 30 characterss rather than 24

S of 17

NOTE: Be sure to change your bind decks in those cases’

where you previously had to truncate an identifier to 24
characters. SPRITX and BINDX naw truncate identifiers in
the same manher..

Mcve words or move alpha done where possible

The compiler now cgenerates MVW cr MVA code in certain
cases which used to be handled less efficiently.

Standard procedure “"move_words”

This new standard procedurer which shoyld be used with
extremg caytiogr allows you to force the .compiler to
generate MYWN code in circumstances which it would not

norgally do 30

This procedure takes two UNIV parameters: the source
field. and- the destinatijon field. No compjle-time or
run~-time checks are made ta see if these twgq fields ace
on MO0 4 addressesr» have MOD 4 sizes» and haye the same
size- o ’

It {s YOUR responsibility to insuce that the MVYN will

function correctly when Yyour arogras cuyns! The SPRITE
aroup will react with displeasure if you report T"bugs™

which turn out to be caused Ly misuse of this standard
proceduree.

For example»

move_words (source_fieldr destination_field);

Clarification of SPRITX Release Mewmo
Appendix B» Items 6 and 7
Move Optimizations

Most opeople thinking of usina the new standard function

-move_words will have no need of it. SPRITX ncw cptimizes tc

MVH whenever it <can auarantee at compile time that it will
work, As a auide to those wWho are interested, the exact
corditions under which SPRITX wmakes this optimization are
spelled cut below.

Both operards must have the same size and controller. ~The
size and address of both cperands must be mod 4. (This
includes a mod 4 offset from the begoinning of a data block,
for example.) -Both cperands must be fixed Lenath, Unless an
operand's tyoe is mod 4» it cannot use indexinc (except IX3,
which 1is always mod 4) or indirection, Furthermcres if .
indirection is involveds, the final controller must be UN.

APPENOIX B .= GENERAL ENHANCEMENTS | Page 6 of 17

-\-Ca. Initialization of pointer variables

Variables of type pointer.(but pot pointer to oprocedure)
may now be initialized at compile time. The syntaxs
semantics and rules ares

SYNTAX: ptr_variable PTR (T0] <access> <level>
<any_type> CSTATIC] = ptr (referent);

SEMANTICS: pPtr_variable is initialized to point to
referent.

RULES: (3) Subject to all rules that aoply to the
use of otr function.
(b) The address c¢cf the referent must be
determinable at compile time.
(c) The following table shows the kinds of
of pointers and the valid referents
each kind of the pointer can point toa

: REFERENT KIND
POINTER

KIND (1) «2) (3) (&)~ (5)
«G;“ (A) 1 YES ! YES 4 n/a | nsa 1 nsa |
N\ |=mmmmmmfamam—ma| mmmmama] mmm———a | m—————
¢8) 1 YES) n/a ! YES 1 YES | NO i

l -—_--—-' “-—---. -----‘-’ -—-----' -—--—-—'

(C) & YES | n/a 1 YES t YES 1 YES 1

where

POINTER KIND

. (A): Data block pointer variables
(B): STATIC pointer variables -
(C): Stack pointer variables

REFERENT KIND
(1): .Constants
(2): Data block variables (for the same
. block only) ‘
e {3): Data block¥ varijables (for the shared
blocks aonly)
€4)2 STATIC variables in the same procedure

only
‘ {5): Stack variables in the same procedure
J . anly .
Lgﬁ;; For examole»
VAR junk JUNK »

junk_ptr PTR TO JUNK

= ptr Cjunk)d,
- otr_ten PTR TQ CONST t,.10 ==

ptr (10);

GENERAL ENHANCEMENTS Page

DD DA D D) S T @D D D D D D

ENTS dollar card aoption

fhe CONTENTS option has the same format as the TITLE
ption. Howevers the string you specify aopears only in
‘the table-of=contents at the end of the compile Llistina.
fou. may use this option for easily finding thinas within
your MIOs and modules withcut affecting yYyour present pagde
.headings. For examples

$3 CONTENTS "3.7 Virtual File TYPES"

MODULDO allowed for data types

MODULO allows you to specify the modulo boundary at which
a data object is alianed.

The syntax for the MODULO construct is:

tyoe-
1
o ____ HOOULD ___ integer ____ non-mod-type ___

\ / \

where non-mod=type is an indicant or any type which does
not not start with "MOOULO" <(j.e. VAR junk MODULO 4
MODULD 2 BOOLEAN is incorrect). If non-mod-=type is an
indicant» you may define that indicant either with or
without its own MOOULO requirement,

The integer must be an integer Lliteral in the range
129999, Hhen generatina 1ICMs for use by BINDER, this
inteager will be restricted to 2 or 4 (this restriction
does not apoly when the MCPVI option is set).

Whenever the MOQDULO construct is specifieds the resulting
medulo is the Lleast” common multiple <(LCM) cf the
scecified modulo value and the existina modulo of the
mecdified typne. Thus, the mcdulo for MODULO 3 EBCDIC
would be 6. This means that modulos can never be lowered
by using the MOQULDO construct.

The modulo of an agoregate (a structure or data block) is
the LCM of the medulos of atl its components. For
., axample, the modulo of STRUC x MODULDO 3 HEX» y MOQULO S5
! HEX CURTS would be 60 (don't forget that the default
modulo of 3 STRUC is 4). - This exampte itlustrates that
the user of oddball modulos will pay a space penalty.

It 4s an error §if the uodated modulec value of a
stack-relative itenm exceeds 4s or if the updated medulo
value of any other item exceeds 9999.

7 of 7

12a

/APPENDIX B -

GENERAL ENHANCEMENTS

Page 8 of 17

The tyoe\checking has been changed so that items with the

same STRUC base type» but with different moduless, are
compatible. :
For examples
TYPE BOOLEAN_MOD_4 = MOOQULD & BOOLEAN?
junk
- DATA
strange_bit MOOULO 2 BIT:
TYPE INTERFACE =
STRUC
- first_thinag BOUGLEAN
strange_thina MODULD 4 0..3
other_stuff STRING (8) OF HEX
CURTS?
VAR - x INTERFACE> .
y MOQULO 8 INTERFACE; Z x and y are compatible

Heao overflow check code is now optional

The campares» branchrs and call tc err.error are now marked
as optional code. '

New port file attributes

The followine port file attributes are now available for
your use. They apply gnly to perts (not to subports)s
yet these fields have fresh information available for
your tnquiry after every port or subport operation.
) Port
Attribute Type Get Set
ATTERR - e STRING (2) OF HEX Yes No
MYPORTADDRESS STRING (4) OF HEX Yes No
PORTRESULTS STRING (100) OF HEX Yes No .

»

.

PPENDIX C = MCP ENHANCEMENTS Page 10 of 17

- T an o G O AR o -G D R D D D R) D D D

y O

The following enhancements appoly only if you set the
$ MCpPVI ootion in your MID.

Pointers are 7 SN

The internal reoresentation cf opointers is now 7 SN»
rather than an address controller diaits, hex "C%» and 6

diaits of address.

Pointer arithmetic with standard functions "ptr_add®™ and
"optr_sub® .

Two new standard functionss ptr_add and: ptr_subs, allow
you to perform scme basic oointer operations. These

functions» which should be wused wmith extreme caution-
helo produce better code when stepoina through an array

or a strinog. Their syntaxs semantics and rules are?

SYNTAX: pointer_1 := ptr_add (pointer_2, num);

SEMANTICS: pointer_1 := pointer_2 + num ¢ size {pointer_23);
where size (pointer_23) is the size of the

referenced type rounded up to a
multiple of the modulo of the type.

RULES: (1) Pointer_1 and pointer_2 are pointers with

equivalent referenced tyoes.

(2) Parametric pointers are not al lowed.

(3) Pointers to procedures are not allowed.

(4) num is any numeric expression whose value is
in 049999999

i

IR_SUB
NTAX

(7]

Y pointer_1 := ptr_sub (pointer_2» num);

SEMANTICS: pointer_1 2= pointer_2 = num * size (pointer_23)}

where Size (pointer_23) is the siZe of the
referenced tyne rounded up to a
sultiple of the modulo of the type.

dULEs: same as that of PTR_ADD.

eax WARNING *¢«. No compile-time or run-time checks are
made to protect the intearity of the pointer, It is your
fesponsibility to ensure that these functions will work
oroperly when ycur proaram runs,

GENERAL ENHANCEMENTS Paae

IPPENDI X B -

9 of 17

These port file attributes are now availables but only

fcr the use cf BNA's Port Manager prodram. They apply
only to subports (not ports).
Subport
Attribute Type Get Set
HISCODEFILEFAMILY STRING (6) Yes No
HISCODEFILENAME STRING €6) Yes No
HISCONPRESSIONFLAG STRINCG (1) OF HEX Yes Yes
HISFLOWSTATUS " BOOLEAN No Yes
HISMYNAME STRING (100) Yes No
HISNULLFLAGS STRINCG (1) OF HEX Yes No
HISOPENTYPE 0 «o 99 Yes No
HISPORTADDRESS STRING ¢(4) OF HEX Yes No
HISSUBFILEERROR NCERROR» OISCONNECTEDs No Yes
DATALOST, NOBUFFERe
NOFILEFOUND»
UNREACHABLEHOSTY
HISSUBPORTADDORESS STRING (4) OF HEX Yes No
HISUSERCODE STRINC (17) Yes No
HISYOURNAME STRINE (100) Yes No
, PLMCHARACTERSETS STRINC (1) OF HEX Yes " Yes
§ PLMMATCHRESP BOOLEAN No Yes
PLMMAXMSGTEXTSIZE 2 <o 19998 No - Yes
PLMMYCCDEFILEFAMILY STRINC (6) Yes Yes
PLMMYCODEFILENAME STRINCG (6) Yes Yes
PLMMYHOS TNAME STRINC (17) Yes Yes
PLMMYNAME STRINCG €100) Yes Yes
PLMSECURITYGCUARD STRINCG (o) Yes Yes
PLMSECURITYTYPE GUARDED» PRIVATE, Yes Yes
pPUBLIC
PLMSECURITYUSE 10 Yes Yes
PLHTITLE STRING (17) Yes Yes

APPENDIX C - MCP ENHANCEMENTS

DD CD D) G D D e - -

L

Generates assembly code for MCPSEN

SPRITE <creates for you an 480 blocked 5 disk file
containina card images in ASMBLR format. The internal
name of this file (for lLlabel equaticn) is MCPASM..

The contents of this file is for use ui;h a new flavor of

 MCPGEN (currently named "MCGXbp™.

Procedure painterss calls to SPRITE'Ss intrinsics, and
GENERATE EXTERNAL are not currently supbported. Attempts
taoa use these will cause syntax errors.

SPRITE still produces an ICM file» even though it is
currently useless. ‘ -

ALIAS statement

The ALIAS statement atlows you tao equate SPRITE names
with MCPGEN labels. This statement goes in your MID» and
you may not use a KNOWS list with this statement.

The syntax of the ALIAS statement iss

alias statement
! »

| / ’ assembly name:
\ ALIAS \ sprite name __ = __ string literal

sprite name
|

| alias orimary:
. ident or indicant ____ alias selections ____
\ / \
{
. |
alias selections
{
! / . AN
(I const array or strina selection: '
NN exor Y _____
\ ' /
\ . proc or field:ident _ /

The assembly name cannot be mcre than six characters

laonae.
The alias primary must be either: (a) a modules (b5 a
data variable (or the entire block)» aor €c) an indicant.
Dependina “on which kind of primary is usedr, the ALIAS
statement serves any of three purposes:

\
/

Page 11 of {7

\

APPENDIX C -

@ D D D O WD D B D

MCP ENHANCEMENTS

(a) It specifies the label for SPRITE to
definina and calling a oprocedure (or module).

This

avoids the default “Pmodule#proci™

use

Paae 12 of 7

when

(or

~Mmodule#), Which can changde when a new module or
" procedure {is added (even {if just to a knows
List). '

(b It generates an EQIY (or BIT#) ccmmand to declare
: a label for data

the

default

in a data block. This
»pDblockfaffset™ (using

field)» which can chanae when the blgck

or

a new data

block is added. However,

modules still use the defauit Llabel.

c

avoids

the inc

hanges
SPRITE

(c) It generates an EQIV (or BIT#) command to declare’
indicant <(and 1its setections),

a lLabel for an

This

tabel s

containing the
indicant's type.

For exampler

ALIAS
ALIAS
- ALIAS

ALIAS

ALIAS

OVERLAY statement

used with an index
address of a variable

o)

reaijster

f the

preterm_module.terminate_this_program = “PRETRM"™;
sm_io = “SMN-IO=,
k bo = *"KBO%;
Q_ELEM = *Q=AREA"»
Q_ELEM.next = "Q=LINK"»
Q_ELEM.i0_descr = ®Q=DESC"»
Q_ELEM.io_descr.opcode [1::21 = =Q=0P~ ;
q_elen = "Q/AREA™,
q_elem.next = "Q/LINK",
g_elem.io_descr = "Q/DESCT»
q_elem.io_descr.opcode (1::2] = =~Q/0P"
MASTER_AVAIL = "MST=AV™,
MASTER_AVAIL (01 = "MST=gL",
MASTER_AVAIL (0] .avail_disk_addr = "MST-SS™»
MASTER_AVAIL (0] .avail_disk_addr.eu = "MST-gU-,
MASTER_AVAIL (13 = "MSTSEL";
allows you to specifiy which

' The OVERLAY statement
modules are located

in the MCP's overlay area (as ooposed

tc glcbal or extensicn modules), This statement may only
be used in your MID. SP

procedures

in these m

RITE must handle calls -to
an NTR to

odules by generating

MCPCLL in order to make the overlay present.

entry

ba

JAPPENDIX C = . MCP ENHANCEMENTS ‘ Page 13 of

Y o - D " D "D Dl DT D T D P T D T T

The syntax for this statement is?T

overlay statement

' .
| / \
| ' ! module name: !
___ OVERLAY \ ident /

—— D am— -t b ear © c—)

The modules named in this statement must already have
been defined in a MOD statement. For examples

OVERLAY keyboard_cuts preterminates

MCPCLL cade for calls to procedure in overlay (MCPVI)

Whenever you make a call to a procedure which is an entry
pcint into a module which s in an overlay (known by
means of the OVERLAY statement)» SPRITE will generate an
NTR to MCPCLL with the appropriate parameters required by
MCPCLL.

If the module from which you make the call is not in an
overlays SPRITE will orint a warning, since MCPCLL <calls
froe alobal are usuatly an error.

PROCESS_RUN statement

The PROCESS_RUN statement allows you to initiate an
asynchronous call{ on a procedure in an overlay. The
syntax for this statement is=z

process run stataement
{
i

, . proc cail: string:
__ PROCESS_RUN

primary ___ USINSG simole exor

)

The oprocedure call includes any necessary parameters.
Note that all passed parameters must be VALUE parameterss

that the total size of all parameters may not exceed 26
digitss, and that no function may be called.

The strina is the‘particular entry point into the MCP's
BEGOVL routine which you wish tc call. You will oget a
warning if it is not one of the followina:

BEGOVM BEGOVH BEGOVL BEGCTL

17

g \PPENDIX C. = MCP ENHANCEMENTS ‘ Page 14 of 17

For exampler

PROCESS_RUN pretrm.proa_err (inv_read) USING "BEsOVL™;

8. REMAPS declaration

The REMAPS declaration permits vyou te redefine the say
that a DATA btlock looks» so that you may save space (and
pessibly restrict knaowledge of various redefinitions)
without rescorting to omitted tagfijeld structures,

" You may use this declaration oanly in your MID. The
syntax of this declaration {(simil ar to a DATA
declaraticn) is: ‘

remaps declaration
i o
! remap DATA name: taraet DATA name:

_____ident ________ REMAPs _______ ident ___
\
/ {
: _ /
0 (- ___ variabte tist ___
- \
i

for examples

em_1ia
DATA
basic_definition STRING (200) OF HEX;

sm_io_for_keyboard_outout
REMAPS sm_io®
keyboard_command BOOLEAN,
message_nuaber 0.=999}

To access variables in a REMAPS declaration, use the
remap data name in a SHARES lists just as you would for a
DATA declaratione.

9. Standard function “scale_ptr®

i You may use this standard function tc scale a number by

- some power of ten and convert the result inte a opointer.

w (V, This function may be used only in_an assignment statement

N whose Lleft-hand side is a pointer to a non-parametric

type (note: no other type <checkina 1is done on this
pointer).

"APPENDIX C - MCP ENHANCEMENTS . Page 15 of 17

The scale_ptr function requires 2 parameters. The first
is the number upon Which you wish to cperate, The second,

is a positive integer constant power af ten by which the
first is scaled (for exampler a value of 2 means multioly

by 100).

You will aoet a syntax error if the maximum possible value
of the scaled number exceeds the size of the largest
pcssible pointer address. -

Fecr examples

VAR program_ptr PTR TO STRING (100000) OF HEX;

program_ptr. = scale_ptr (mix.base_addr_in_kd» 3);

‘FFENOIX D = INTRINSICS BUGS FIXED Page 16 of 17

By @ oo =0 a0 i @ > - D D G -) D D D AR R) D GO) W) s

7

“erre.error®™ starts error message on new line

The run—=time error messaae you get from err.error will
now start at the beainninga of the Line» even if your
proaram Uses "put™ module procedures.

Debug prints EXT Lines when "db_monitor_all™ is set

If you proaram sets db_monitor_alls, your outpout Llisting
will now show procedure EXT lines as well as procedure
NTR lines.

Better statistics from statistics version of debuag

You will now aget the correct active time for the proaran
entry procedure. Previously» the active time for this
procedure miaht be off by a bit.

If you had explicit catl to debug.summary in your

programs this buga mioght alsc have affected the active

times of other procedures.

This buo <could also cause processor errors Cinvalid
arithmetic data) on B2900/3900s.

- INTRINSICS ENHANCEMENTS page 17 of 17

- D D D D T T D T D D TP D D D) D D D D

Debug terminates on errcrs in extended input

If you wuse the ™//X"™ option and your extended input to
debug has errors, debug will naow immediately terminate
the execution of your program,

2. Debua checks for NTR / EXT mismatch

Debug now chaecks to see if your obroaram has mismatched
NTR 7/ EXT problems during execution. If sos» it orints
one warnina message the first time that it detects this
problem. '

3. The ™hrtime™ intrinsic has been deleted

Havina received no reaction to cur warning in the Llast
SPRITE release Lletters we have now deleted the "hrtime"
module from the intrinsics which SPRITE suoports.,

,“

Burroughs_Corporation . __________ Inter=-Qffice Correspondence

Subject: Hew Release of SPRITE

| Corporate Unit | Location | Dept.

| Computer Systems Group] Pasadena | Prog. Activity

| m == e o e e e s oo e e frmmm e mm e
TO0:| Name | Date

| Programming Activity SPRITE Users | October 10, 198S

' ———

| From | Dept. & Location

1. __Charclie_Ca_Chan_____ l___Architecture Dopartiment oo oo

O0n Monday, October 14, 1985, a3 new version of SPRITE and

2

new set of S===== 3and E===== gseries of intrinsics

libraries will be released for in-house use.
version fixes bugs (see Appendix A and D) and
new features (see Appendix 8, Cr and E).

This
with
inconvenience

The new
provides

SPRITE is wversion 91000 and is not mid-compatible

version 6700 or earlier versions.

This

is necessry due to changes with the SYSTEM

information. This requires that your MIDs be recompiled
before any of your modules will recompile.

Th

e

format) and type 4 (OMEGA style format) ICMs,

type

L ICMs, you have to compile your MIDs with

and use "“FILE ICM4 = * instead of "FILE ICM = ",

Please report any problems to a member of the

project group for screening before entering them
BUGS system. Bring the appropriate listings and
else we might need to determine that the problem
SPRITE bug. ALl actual bugs should be entered
BUGS system by the reporting user.

a

Fo

ALS"™.

-

r

more

C:&ZuxLCK_,

Charlie €

Chan

Implementation Systems Section
Language Devartment

This release

APPENDIX
APPEND IX
APPENDIX
APPENDIX

"APPENDIX

A:
B:
C:
D:
E:

document contains:

BUGS FIXED

GENEPAL ENHANCEMENTS
OMEGA-RELATED FEATURES
INTRINSICS EUGS FIXED
INTRINSICS ENHANCEMENTS

new version of SPRITE emits both type 3 {old style

To get
$PAGING

SPRITE
into the
whatever
is truly
into the

copies of this memo, do *SYS COMP 83987:RM10 ON

APPENDIX A - BUGS FIXED Page

FIND with a key of type pointer

SPRITZ no longer generates bad code for FIND statement if
1) the key is a field selection through pointer
dereference, (2) the type of the key is pointer or (3)
SPRITE tries to optimize the code by converting the Kkey
from un to ua.

The code for dindexing into arrays and sets (829%6)

(1) The SEA instruction no longer gives 3 false match
when the index type is PACKED ORDERED and over one digit.
(2) SPRITE no longer generates a SDE instruction 1instead
of SEA when the index type is EBCDIC (or PACKED ORDERED
and over 100 digits).

R=digit filler in front of each file buffer (33042)
SPRITE now allocates 8-digit space 1in front of each
puffer for all kinds of files instead of just the first
puffer for PRINTER and PUNCH files.

$XREF

SPRITE no longer gives the message ®DUP LIS sxxtyd DSK"
when you compile your module with S$XREF.

1 of 14

APPENDIX 3 - GENERAL FNHANCEMENTS Page

FIND with OVER and AND clauses

The OVER and AND <c¢clauses in the FIND statement are no
longer nmutually exclusive,

Example:

FIND a_ptr AND a_idx

OVEZR base_ptr .. Limit_ptr INTO array
WHERE a_ptrd := key

DO

007

Division optimization

Currenly, SPRITE optimizes division via truncation (MVN)
when the divisor is a constant power of 10. The new
SPRITE takes another step further by trading a3 ©DBIV
instruction with MPY and MVN instructions if the divisor
is not explicitly a power of 10, but is a factor of a
power of 10. For example, the expression "a/2" is
equivalent to “(ax5)/10". The result would be a HMPY
instruction (t := a*5) followed by a MVN dinstruction (r
= t/710).

Proc_ptr and forward procedure definition in MID

The user ¢an now use proc_ptr function to initialize a
MID data block variable of type PTR TO PROC. The
referenced procedure can be forward defined in MID. The
parameter List and return type defined 1in proc ptr
declaration must match those of the forward defined
referenced procedure,

SPRITE I/0 enhancements

(a) Shared files

It 1is now possible to declare disk or diskpack
files to be shared between different multiple
processors. Shared files are assumed to be
random., The wuser declares shared files by
setting the ACCESSMODE to SHARED. A new file
attribute STALEMATE was added which altows the
user to specify the procedure to be called by MCP
to handle stalemate coditions. It is the user's
reponsibility to make sure that this procedure is

2 of 1¢

APPENDIX 8 - GENERAL ENHANCEMENTS Page 3 of 14

in segment 1

File attribute descriptions for -ACCESSMODE and
STALEMATE are as follows:

ACCESSMODE

DISK/DISKPACk : Read: anytime, Write: closed
Mnemonic: SEQUENTIAL-, RANDOM.,
SHARED
Default : SEQUENTIAL

Specifies the disk access technique.

STALEMATE:

DISK/DISKPACK : Read: never, Write: closed
Address constant: mocd_name.proc_name
pefault: none

Specifies the name of the procedure to be called
by the MCP to handle stalemate condition. It must
be a procedure without any parameters. The only
way to get out of this procedure 1is by calling
jo.exitroutine. ‘

The following standard procedures were added to
allow the user do I/0's from the shared files.

(1) io.open_Llock (file FILE),

X Once the file is opened with “lLock"™, no
% other program will be able to open the
%z file until the locking program closed it

(2) io.open_Llock_access (file FILE),
% Once the file is opened with “lock_access®,

% any other program may open the file as
% input but not output.

(3) io.read_no_unlock (file FILE.,
record VAR RECORDs
key 1..99999999);

% Lock the records, read the record
% and leave the record locked

(4) io.read_with_unlock (file FILE.,

(s)

(6)

"

(8)

(93

10

11)

record VAR RECORD.,
“key 1..99999%99);

% Lock the record, read the record
% unlock the record

io.write_no_unlock (file FILE,
record RECORD,
key 1999999999 ;

%“ Lock the record, write the record
% and leave the record locked

jo.write_with_unlock (file FILE,
record RECORD»
key 1¢-999999969);

% Lock the record write the record
72 and unlock the record

jo.lock (file FILE,
key - 1..999999999);

% Lock the record only, no data transfer.
X If the record is {ocked by another programes
% the program waits until it has been unlocked.

io.unlock (file FILE,
key 1ea999999999);

%2 Unlock the record only, no data transfer
% the program will be terminated if the record
%2 has not been previously locked

io.seek_no_unlock (file FILE,
’ key 1..999999%99);

% Lock the record, request the MCP to make the

% record available in the program buffer and
% leave the record locked.

jo.seek_with_unlock (file FILE,
key 1..99999999);

% Same as seek_no_unlock except it unlock the
% the record at the end

io.exitroutine (file FILE)?

APPENDIX B - GENERAL EMNHANCEMENTS Page 5 of

% The only way to get out the procedure
% which handles the stalemate conditions is
% by calling this procedure.

(3), (&), (s), (6) and (7) may take the “IF INVALID_KEY
THEN" exception clause.
Example:

shared_file_block

FILE
shared_file LMYUSE = IN, KIND = DISKPACK
STALEMATE = mod.stalemate,
ACCESSMODE = SHARED
317
SHARES

shared_file_block;

fo.open_Llock (shared_file);

(b) ioc.open_no_rewind (file FILE),

This procedure is used to open magnetic tape
files without positioning to the beginning of
tape. This is primarily used when opening the
second and all subsequent files on a multi-file
reel of magnetic tape. .- :

(c) io.open_reverse (file FILE)?

This procedure can only be used with single reel,
single file, tape files. When the file is opened
Wwith this procedure, the subsequent read will
make the data records available in the reverse
record order starting with the Llast record.

(c) io.open_get_dhdr (file . FILE,
dhdr VAR UNIV P_STR_40_HEX):

% dhdr must be 40 digits long

\.

APPENDIX B - GENERAL ENHANCEMENTS Page 6 of

- o o -

% for format of header, see Programmer Guide

The iJo.open_get_dhdr standard procedure will (et
the user open the file and get the disk file
header at the same time. Following is the
procedure description.

(d) io.set_buffer_addr (file FILE,

- buffer UNIV PARAMETRIC_HEX_STRING),

% modulo and size of buffer must be mod 4, must be
% called after io.prepare_user_defined_buffer_io

Currently, the .
“"jo.prepare_usepr_defined_buffer_io” adjusts the
blocksize of the file and sets the fib_aa and
fib_bb to point to the buffer location. To avoid
additional code generated each time a different
buffer of the same length 1is used, the
“jo.set_buffer_addr"™ may be wused to set the
fib_sa and fib_bb addresses without generating
the code to adjust the blocksize.

File pointers

file pointers in SPRITE allow the users to make runtinme
determinations about the files used in their program.
The syntax for a file pointer isc

file pointer type defn
|)
|
N PTR 70 o 2 FILE ___OF___.__ type__
____/ _CONST_/ ____/ \
VAR/ |

where type 1is the record type of the file being
pointed to

This syntax has a precedent in SPRITE"'s current
parametric pointers, where one can define a pointer to a
typer, yvyet one can not define a variable of that type.

fFile pointers may be passed as parameters to procedures.
Two file pointers are equivalent to each other if they
have eguivalent file .record types. Equivalent file
pointers may be compared for equality with = and -=.
Just Like regular pointers, file pointers are built by
using the "ptr™ standard functions. No operations (+, -,

14

APPENDIX 3 - GENERAL ENHANCEMENTS Page 7 of 14
-,
i
>, <, eotc.) other than "“:=" are allowed.
Example:
TYPE
FILE_PTR = PTR TO FILE OF RECORD~
VAR
file_ptr FILE_PTR»
file_ntr := ptr (shared_file),
file_ptr.MYUSE 2= IN»
jo.open_Llock (file_ptrald-
6 Return of the RETURN statement in MACRO
Once again, RETURN statement 1in MACRO is back. The
RETURN statement causes an exit from a MACRO and the

control opasses to the instruction f
the body of the MACRO call.

New standard function =-=- search_string

The new standard function, search_s

generalized search routine than
functions {(index, index_any and
following is the description of
function.
"PARAMETERS: # Type Access
1 String_1 CONST
2 D..2 CONST
3 String_2 CONST
4L 1..100 CONST
5 D..2 CONST

oliowing the end of

tring, is more
the <current index
index_inc). The

this new standard

a

Description

Key; can be variable
length or parametric
key_datatype

0 2 un

1 : sn

2 : ua

String to be searched’
Can be variable length
or parametric

Increment between
comparison

search kind

APPENDIX 3

RETURN TYPE

FUNCTION

Examples:

indx ==
indx ==
indx :=
8. SINDEX
The new SINDEX

alphabetized 1in

s identifiers an

7

GENERAL ENHANCEMENTS

Page 8 of 14

0 : search for equal
1 2 search for low
2 : search for Lowest

Ceolength (string_?)

Returns the index of the first occurrence
of string_1 in string_2 where the
occurrence begins on a multiple of the 4th
numeric parameter (1, n+1, 2n+1, etc.) if
the search kind is 0 (EQUAL).

Returns the index of the first occurrence
of string_1 in string_2 which 1is Lless
than string_1 where the ocurrence begins
on a2 multiple of the &4th numeric parameter
(1, nt1, 2n+1, etc.,) if the search kind is
1 (LOW).

Returns the index of the lowest of all the
occurrences of string_1 in string_2 where
the occurrences begin on a multipole of the
4th numeric parameter (1, n+1, 2n+1, etce)
if the search kind if 2 (LOWEST).

Returns 0 if the sesarch condition fails

search_string (key [1::31, keytype’
str [1::poslr, 3, 0);
(key_ptrad [2::incrl, 2,
str [1:2:posl, incr.,
search_kind) >,

search_string

search_string (key, keytype, str_ptrad.,
incr, search_kind)’
CCI allows the user to create an

dex of where all of a module®’s procedures
d types are defined.

APPENDIX B - GENERAL ENHANCZMENTS Page 9 of 14

The syntax of the IMDEX (CI dis:

\ PROCEDURES ____/

\ |
! |
I |
| ___IDENTIFIERS___/ |
| |
!]
| f

The ALL opotion of the INDEX CCI will create an index for
each of the other INDEX option. If the MODULES option is
set in a module, it has no effect (in a MID it indexes
the module descriptions). If the PROCEDURES option is
set in the MID, it <creates an index of where the
procedure descriptions occur. If the PRODEDURES option
is set in a module, then it will <create an index
tontaining both procedures and MACROS.

The INDEX IDENTIFIERS option will produce an index of
where 3all of the <constants, data blocks, data block
variables, file blocks, file names, and 1Llocal wvaraibles
are defined.

The INDEX CCI options can be set anywhere in a moudle (or
MID) and will index the specified item{s) over the entire
module (or MID) and not from the point it was set to the
end of the module (or MID). ALl of the INDEX options
default to being not set and there is no way to reset an
INDEX option once it has been set.
Examples:

$3 SET INDEX PROCEDURES, INDEX IDENTIFIERS

3% INDEX ALL

$% INDEX MIOUDLES, INDEX TYPES

$$ SET INDEX PROCEDURES

ST
. \

APPENDIX B - GENSRAL ENHANCEMENTS

Default MID

Page 10 of 14

Currently, the SPRITE user always has to write a MID and
provide his own bind deck to get the excutable code file
even if the user has only onre module 1in
Wwith the new SPRITE, the user can avoid going through the
hassle of creating the MID and bind deck by using *“8D" or

AN in the first slash parameter.

the »programe.

To use this

convenient feature, the following procedures must be

followed.

(1) To invoke the default MID, you must use

as your system file name.

“DFTHMID™

(2) To invoke the default bind deck, you must use *8D™
or ™BN™ as the first parameter to your program
respectively.

for the debug and non-debug version,

(3) The control card *FILE ICM =" must be

the compile deck.

(4) The name of the module and program

(5) Default name for the created codefile

included in

entry point
procedure must be "main”™ and “driver®, respectively.

is

"CODFIL".

The wuser may use “SCODEFILE"™ to specify the name

of the result codefile.

Example:

Z2 COMPILE ONEMOD WITH SPRIVE/BD
%? FILE SYSTEM = (DFTMID)

%7 FILE ICHM (MODICM)

4Z? DATA CATD

ok

debug version
default SYSTEM
ICM card must

$% CODEFILE "TESTxx"™ %Y codefile name will
% be TEST under<xx
main %2 name of the module
MOD
driver % name of the program entry point
DOM,

NOTE: SPRITE will fire off a bind job for you if there
are no errors on the compilation. The name of the bind

job should be "XXXXXX/3INDER"™, where XXXXXX

of the codefile.

is the name

APPENDIX B8 - GENERAL ENHANCEMENTS Page 11 of 14

10. $XREF enhancement

The crossreference listing from $XREF will now indicate
where an indentifier is modified.

N

APPENDIX C - OMEGA-RELATED FEATURES Page 12 of 14

@ - - o . —— - - - —— D S O G G D D P Tm D R -

For your own COpPYe.

please do

"SYS COMP Z2937<APDL ON ALS".

APPENDIX D - INTRINSICS BUGS FIXED Page 13 of

- - — D D ——D O - - D A R R D - -

Lines lLeft on page when calling print.line
to print before or after advancing

when print.line s called specifying “print before” or
“nrint after”, the Llines left on page is no LlLonger
calculated wrong.

14

APPENDIX E - INTRINSICS ENHANCEMENTS Page 14 of 14

Faster debug

The new version of debug will run considerably faster
than the old versijon. However, you do Llose something.
The cumulative counts for each procedure all no longer
kept. If you count them, you have to use a new option

"cl'.

If you use the "slash option®™ C or “COUNTS"™ in a extended
deck then vyou will get what you used to get. Note that
even Wwithout the “C” option any procedures Yyou mention

"with give you cumulative counts.

Note that wunless vyou want the <counts you can use a
samller version because much less information has to be
kept. Also the old version of debug killed the program
if it ran out of space in its tables. This version will
just switch off the “(C'" option and continue.

v_dbwrite

The new intrinsic, v_dbwrite, has the function identical
to that of the f_dbwrite. The first parameter of
V_dbwrite is VALUE nparameter, This means that when
calling v_dbwrite procedures SPRITE will not put the
constant labels into the CONST pools. :

I¥f you are a heavy user of v_dbwrite.string you may want
to consider that the second parameter has not been
changed to a VALUE parameter and can still be up to 99999
characters long and will go into the CONST pool.

The new intrinsic INCLUDE Llibrary (SINLIB) contains the
moudle description for this new dintrinsic. To include
it, do

$$ INCLUDE *“SINLIP" dbwrite_types
$3% INLCUDE "“SINLIS" v_dbwrite

endix

o

*

L T T T B B |
L] . [.
S e WY -

[B

. .
FO VA RN I

’

-

s 8 BN T B |
] [2 T B 1
]]

¥ 5 & 8 8 8 B 4 &- 8 &
. LI T TR T L T Y
-~ WA AN e
& ¢ 3
WK -

ol sl sl ettt Il el sl el el wll Sl el el el el sl ol el el el il
~JV'ﬂ”JO‘}o‘m\ﬁU1m\3U1b-F#‘#Mhﬁ*LJh#'#-ﬁ¥‘#LNUIWKNVHUPJN«Aaba.AU
MKAU1m-b;~b~bLNnJﬁJd
e a

]
NN -

07343300

TABLE OF CONTENTS

L SPRITE FNR OMEGA

Introduction

Backaround

OMEGA Pointers

Sample MID and Module

peclaring Seaments

Segment Declaration in MID

Seament Declaration in Module

declaring Addressinag Environments
ACCESSES Clause in MID '

ACCESSES Clause in Module

Multiole Seament Zeroes

Multiple Environments Within a Procedure
Pointer SEG Clauser and LINK

pata Mappinag

When Optional or Required

ACCESSES Clsuses on Individual Procedures
toercions

Parameters

Checking Segment the Parameter is In
Checking Pointer(s) in the Parameter®’s Type
Checking LINK{s) in the Parameter's Type
pata in the fode Seagment

Passing Data in the Code Segment by Reference
Pointing to Data in the Lode Segment
Explicitly Declaring Data in the Code Seament
Statements

FIND

GENERATE

ALIAS

OVERLAY

REMAPS

Imolicitly Peclared Data
Program_reserved_memory

Theap

Standard fFunctions and Procedures

Proc Pointer Types

Lock Types

pefinitions

o

PO T S T Y SR

D20 DN O WS] TR -

RO Y B i e

14

24

e

Appendix

L.1

01041000

Page 1

L SPRITE FOR OMEGA

Introduction

Existing programs and code files will continue to
compile and run on P-series machines without <change.
The 7.0 reltease of SPRITE supports writing part of the
operating system (MCPX) in SPRITE, producing OMEGA code
fitles. The 7.1 release will allow others to build
OMEGA code files.

When wWwriting a small OQOMEGA program (defined below).,
there are several differences from non-DMEGA programs.
(With OMEGA, a “small" program can have up to half a
million bvtes of data. Thus practically all existing
programs are considered small., Most users need only
read this list, and will not be affected by the rest of

this aprendix.)

a. A 3% PAGING" card must be added to the MID.
This tells SPRITE to build an OMEGA ICM for the
MID, and all modules compiled with that MID,

b. A pointer variable cannot point to a constant.
If this is needed, just declare (and point to) a
dummy data block variabhle which is initialized to
that constant, (See L.4.5 for the reason this
restriction is necessary.)

c. The internal mappino of pointers is different.
This only affects those who build or manipulate
pointers by hand (see L.4.1).

d. Files and intrinsics are not implemented vyet.
The MOVE dntrinsic is now generated 1in-line for
OMEGA. The standard procedure mcp.move_repeat
should help take the place of the FILL dntrinsic
(see L.7.3).

e. Any BPL modules must be rewritten in SPRITE.
There is no BPL for OMEGA.

f. OMEGA ICMs are bound with LINKER, not RINDER.
BINDER does not support OMEGA ICMs. Alson, LINKER
is much faster.

These differences also apply to large OMEGA programs
(defined below). However, a pointer can point to a

01212000

- Page 2

constant _ if it has the appropriate SEG clause (sce
L.4). Also, several new features were added to allow
the wuser tpn take advantage of the flexibility of
P-series machines. For detajls, read on.

Backaround

These terms are defined within the context of SPRITE.
fFor a more comolete descriptions, see the OMEGA
documentation.

Yith OMEGA, a orogram is divided dinto two or more
segments of up to half a million bytes each which can
be scattered throughout memory. {(Note: the OMEGA
documentation uses the word "area™ rather than
"seament”.) Up to eight menorvy segments are accessible
at any one time. They comprise the current addressing
environment, and are specified by the active memory
area table, The entries in this table (and thus the
corresponding segments) are npumbered zero through
seven. Seament z2ero contains the stack and index
registers (among other things). Seament one contains
the currently executinag code {and its constants, with
SPRITE oprograms). The rest (if they exist) hold
miscellaneous data.

With an OMFEGA programs, LINKER oputs the code and
tconstants in as many code segments as necessary. In a
small program, the remaining data fits into a single
segment (zero). Thus even when there are several code
seaments {and thus several environments), they all
share the same non-constant data, and they always find

it in segment zero. A Llarge program.can have any
number of data segments, with up to seven in each
environment. A given data seqment might apoear as

segment two in some environments, as seament three in
others, and not at atl in the rest.

OMEGA Pointers

Wwith OMEGA, the high-order two diqits in a pointer
include the dimension override of zero to seven. This
is the index into the active memory area table for the
segment containing the object pointed to. The pointer
may not be wvalid outside the environment in which it
was built, however, since the dimension override may no

Longer refer to the same physical segment, This
includes passing narameters by referencer since that is
implemented hy passina a pointer to the actual -

Page 3

parameter.

for Large proaqramss Wwe therefore provide the Ffollowing
constructs: declaring segments., declaring
environments, and pointer 35£G clauses. Together, they
allow the user to declare many different environments,
and still share pointers between them safely. We also
include several other features to allow the usar (but
maintly the MCP writer) to exploit the flexibility of
P-series machines.

Sample MID and Module

These examples should help <clarify the following
explanations. Refer back to them as you read the text.

33 PAGING

proqg

PROG ACCESSES (seg_zero ORIGINAL); 7 use "“prog"” as
% SEG_TABLF name

seq_zero
SEG
prm_seq_zero % program reserved memory
DATA
fitler STRING (40) OF HEX,
topstack D..969999; Z 6 UN

alobal_data

DATA
info_Llist LINK TO SEG seg_zero IMNFO?
GES?
'SEG_TABLE -
Lex_parse_table (seg_zero, » lex_parse_seqg QRIGINMNAL),
sem_table (seq_zero, » sem_seq ORIGINALY ,

code_gen_table (sec_zero, » code_qgen_seg ORIGINAL);

lex
MOD ACCESSES lex_parse_tables
get_token PROC RETURNS TOKEM; % uses lex_parse_table

DOM;

utility

MOD % uses program's SEG_TARLE (prog)
List_info PROC (i INFO); Y uses proag

DOM;

GNRP;

'

02004500

Page 4

Lex
MOD ACCESSES (seg_zeros
Y d
lex_parse_seqs,
lex_seq ORIGINAL)

NS e e
N N - D

lex_sen
S5€6
STATIC; % forces all STATIC wvariables in lex_seg

lex_sea_data

DATA
lex_seg_info INFO?
GES?
Lex % module name forces this into code segment
SEG
code_seg_data
DATA
code_seq_info INFO;
GES;
more_zero_data % no SEG/GES, so gones in seg_zaro
DATA
ntr_to_code_seq PTR TO SEG Llex INFO,
ptr_no_seqg_clause PTR T0O IMFD;

aet_token
PROC RETURNS TOKEN,

SHARES lex_seqg_datar code_seg_data, more_zero_data;

VAR token_starts

token_end 0..80 STATIC 2= 0; % ao in lex_seq
ptr_to_code_seqg 2= ptr (code_seq_info)ls % okay
% ptr_no_sea_clause 2= ptr (code_seq_info)d; %4 illeagal
% utility.list_info (code_seo_info)’; % illeaal
% utility.list_info (lex_seaq_info); % illeaal

Z should change formal param to pass by VALUF

- .-

COR®P;
DOM;

Declaring Segments

In a small program, data is declared as before, SPRITF
puts constants in seament one, and the rest in segment

Page

Zer0.

In 'a large programs, MID data must be explicitly
declared within a specific segment. If module data is
declared as before, SPRITE handles it the same way as
in small programs. If desired, the wuser can force
SPRITE to put module data in a specific segment.

Seagment Declaration in MID

mid seament declaration

I
!

_knows

02204000

“~
o
-3
o
io]
-
D
3
-

seqgments:

e __ident ___SEG____knous
/ \ S / A\
|

component __/ GES

fFor a large proaram, a seament apoears in the MID a3 2
collectinn of data and file blocks (includina port and
nsp Tfiles), each of which can have its own knows Llist
(as lona as §t is a subset of the —segment's knows
List). (As a conveniencer, a3 seament declaration may
actually include anvy program component except a senment
or module declaration.) If two segment declarations use
the same name, their data js simply combined 1into the
same seaqment. This allows decomposition of a segment
into loaically distinct parts.

for lLaraqe proaramse. every data block must be declared
within some segment; free-standing blocks are not
allowed. If declarations within a segment have their
own knows Llists, the Lists must be a subset of the
seaqment's knows Llist. Also, REMAPS declarations can
only remap data blocks in the same segment (see L.5.5).
File "declarations can only apvear in seament zero (see
L.3). Explicitly declared intrinsic data must go 1in
segqment 2ero. finally, when declaring segment zern.,
the stack must not bhe mentioneds it Jis supplied
implicitly by LINKER.

Fitles and dintrinsics are not implemented for OMEGA in
the 7.0 release.

=

Page 6

Segment Declaration in Module

module seament declaration

L.3

03014000

SEG___STATIC_______component___/ ____GES__

—— - — - —— -

If module data is declarasd as before, constants go in
segment one and the rest go in seament zero. In a
Large proaram, a user can override SPRITE's default

allocation with a seament declaration. The declaratinn

may appear in the same place as a normal module data
block declaration. It may either add data to an
2xistina segment (by wusing 2a segment name which has
already been defined), or define a new module locatl
seament.

Declarina a module data or file block in a segment
declaration forces SPRITE to allocate that block within
that seqment. If the segment name is the same as the
module name, the data s put into the current conde
segment (but see L.4.5). The keyword YSTATIC", if
useds, forces all following STATIC variable blocks dinto
the seament beina declared. This remains 1in effect
until overridden by another segment declaration with
"STATIC". ’

As a conveniencer a module segment declaration may
contain any module component except a seam?nt, procs, or
macro declaration. Angain, files can.onlv be declared
in segment zero. {Remember, files are not implemented
in 7.0.)

peclaring Addressing Environments

In a small proaram,. seament zero is always the same’ it
contains all the non-constant data. At any point din
time, seament one contains the currently executing
procedure and Jts constants. Thus each procedure’'s
environment is very simple and obvious; no exnlicit
declaration is needed. ‘

In a3 large proaram, a procedure can access at most
seven of the declared data seagments (in addition to the
code seament). This aroup of data segments is called a

o

Page 7

SEG_TABLE. An ACCESSES clause specifies which
SEG_TABLE a given procedure uses. These constructs are
only allowed in large programs.

A SEG_TABLE that never appears in an ACCESSES clause
represents a dummy memory area table (see the OQOMEGA
documentation). A SEG_TABLE that aopears 1din an
ACCESSFES clauyse directly represents a orocedure's
active memory area table when the procedure starts
executing. (The MCP writer can chanage the table within
the procedure; see L.3.4.) The SEG_TABLE does not
include the code segment, which SPRITE supplies

implicitly.

seq tahle definition

1 P e o

{ seqg table: / \

\ ____ SEG_TABLE _____ ident_____ \ _._seqg table___7J_______
\
|

seq table

J S /99N____

1 L - ! seqs \

| S o __SYSTEM___ C ____ddent___ORIGINAL__/__) __

N . / N \ o ____ / \
accesses

]

\ ____ACCESSFS_____ seq tabler dident _ _ _ o o
\
|

accesses with decl

b \

____ACCESSES_____ seqa table o
\

A block of SEG_TABLE declarations can apvear in a larage
proaram wherever a data block declaration c¢an appear.
The optional SYSTEM «clauses specifies an operating
system table, rather than the default wuser tahle.
(This clause should only be wused 1in the opesrating
system, of <course.) The optional ORIGINAL clause
specifies the original table entry, rather than a copy
of the original elsewhere. Fach segment must apnear as
an ORIGINAL entry exactly once, in the MID or module in
which it is declared. A seament cannot appear twice in
the same SEG_TARLE.

SEG_TASLSs that never appear in an ACCESSES clause are
dummy tables, which may have uo to 100 entries. An

03064000

Page 8

entry is either a seqment jidentifier, or a spot Lleft
emoty by using consecutive commas. Any SEG_TABLE that
appears in an ACCESSES clause 1ds 2 real table
{potentjally active), which can have at most eight
entries. The entries are numbered =zero to seven.
Further, the SEG_TABLFE cannot skip segment zero, and it
must skip seament one (leave it empty)d. SPRITE
supplies the code segment dmplicitly.

Forward-defined seaments are allowed, but not
forward-defined SEG_TABLFEs. At the top of a MID or
module, the "accesses with decl” form must be used (if
any). It allows the programmer to declare and use a
table at the same time. I1f there d4s no such clause
after the word PRDG in a MID, it is a small proaram.
If there is nho such clause after the word MOD din 7
module, SPRITE uses the clause for that module from the
MID. This clause at the too of a module is for adding
module-tocal segments to the MID table.

Le3.1 ACLCESSES Clause in MID

In a larae proqgram, an ACCESSES clause declaring a
SEG_TABLE must appear at the beginninag of the MID
immediately after thes keyword "PROG"™, This specifies
the default addressinag environment., It dis not allowed
in a small proaram.,

nterface descrintion

.i
|
| oproaram:
___ident PROG

e ——_——— e—__brogram tail_____

accesses with decl

N\ /
program tail
P P e —eem
] / \
N o __knows___component __/___GORP___ ;5 _______
N / ___"1
_____comment /

D3112700

Page ©

modules descrintion

r . ;o
{ modulez / procedure \
__jdent__mMOD . ___knows__description_/__DOM_
IN___ 7\ /
]

accesses_

accesses
with decl_/

|
]
_
procedure descripotion

return
value

i
| proc:
__ijdent_

parameters

\

_ENTRY

roc pnointer type

return
val ue

o
!
I
\ PROC

__PTR___TO

__/

parameters

- — - —— -

Each module uses the program's ACCESSES c¢lause, wunless
it has its own as shown above. Each procedure usss its
module?s ACCESSES clause, wunlass it has its own as
shown above.

3

ACCESSES clauses on individual oprocedure declarations
and definitions are not implemented in the 7.0 relesasse,

clause is required in proc vointer types 1in
Large oprograms, and s pot atlowed in small progorams.
The proc pointer ACCESSES clause tells SPRITE +the
environment of the procedure being called when the proc
pointer is dereferenced. SPRITE needs this to verify
that the calling and catled orocedures share the same
segment zero (see L.3.3). SPRITE also needs it to
process the parameters, as in a normal oprocedure call
(see L.4.4).

An ACCESSES

ACCESSES flause in Module

an ACCESSES declaring a
definition
The table

an exact
the module
except that
were

clause
modu le
"MD D".

In Large programs»,
SEG_TASLE may apoear in the actual
immediately after the keyword
specified for the module in the MID must be
subset of the tabhle in the module. That is,
table must be the same as the MID table,

new segments may bhe added in entries which

03209500

empty

- st

Page 10

in the MID table. {The entry for segment one must
remain embty.) This allows for module Llocal segments.
If there dis no ACCESSES clause at the top of the
module, SPRITE just uses the one specified for that
module in the MID,

module

E.

| module: accesses 7 module \
__dident__MOD___with decl_____component__/__DOM___ ; __

—— - — - —— -

procadure header

___PROC___parameters____return value____accesses_______
| W F A U, /N ___ / \
|

macron header
___MACRO____parameters______3CCeSS€S_ _ o @ oo
N\ o ___ / \ / \

|

Fach oprocedure and macro uses the module's ACCESSES
clause, unless it has its own as shown above. The
SEG_TARLE specifiad in the procedure’s tlause
represents its active memory area table at the start of
the procedure. The procedure header is part of both
the forward and " actual procedure definitions in the
module. TIf an ACCESSES clause appears in eijther olace,
the exact same clause must also appear in the other
nplace. If the procedure is a module entry point, its
corresponding SEG_TABLE in the MID must be an exact
suuhset of the SEG_TABLE in the module, as defined
above. Proc pointer ACCESSES clauses are treated the
same way as in the MID.

ACCESSES <clauses on individual procedures and macros
are not dimplemented Jn the 7.0 release. (for
additional restrictions needed to imolement thiss sSee
Lab.2.1 and Lobdab,o2.)

A orocedure or macro uses the SEG_TABLE specified by
its ACCESSES clause. It can access only the data in
the seaments JIn dits SES_TABLE (and segment one).,
regardless of KNOWS lists, (O0f course, it must still
know the data to access 1it.) A macro <can only be
“called” by 2 procedure that uses the same SEG_TABLE,
Also, a procedure can only <call another wuser-defined
proceduyre when they both use the same segment zero (and
thus the same stack). Dtherwise, an dinterrunt or

03249000

i

Page 11

hypercall is required (which are not implemented).

Finally, procedures with matching SEG_TABLEs can go 1in
the same addressing environment. That iss, LINKER can
put their code in the same segment one, if it fits. If
not, LINKER rcan use 3as many segment oness, and thus
environments, as necessary. (If procedures in the same
module are split between different <code segments.,
howevers, the module's CONST and ACON pools must be

duplicated in each seament.) Note that the only
difference between these environments will be seament
one. Thus with special provisions for data in seament

one {see L.4.5),» these environments can b2 considered
the same for everything except the need for a non-local
VEN and VEX hetween them (which LINKER handles

automatically).

Multiple Segment Zeroes

There can be more than one segment zero. Procedures
with different segment zeroes cannot call each other,
however, because they do not share the same stack.
Transfering control between such procedures re2gquires an

‘interrupnt or hypercall, which are not yet implemented

in SPRITEL

Multiole Environments Within a2 Procedure

There are two standard procedures to implement the APE
opcodes mcn.make_paae_table_entry_unusad, and
mep.copy_page_table_entry. They allow the MIL? writer
to change environments by directly altering menmory area
table entries.

WARNING: These procedures must be used with extreme
caution. SPRITE will always make 1iJts <checks and
generate code based on the declared ACCESSES clauses.
SPRITE cannot keep track of changes made to the
environment by calling these standard procedures.

Pointer SEG Clauser, and LINK

SPRITE trjes to make sure that pointers remain valid
when shared between environments. For small programs.,
this means takina two orecautions Wwith constants (sze
L.4.5). Large proagrams ar2 handled as describad below.

Page 12

Declaring each module's addressing environment as above
is sufficient to allow passing varameters by reference

(see L.b4.4.1). To allow sharing pointer variables
between addressing environments., pointer tyope
definitions have an optional SEG clause.

Alternatively, 2 special LINK pointer 1is sometimes
useful, such as with the FIND statement (see L.5.1).
‘(LINKs are also allowed in small oprograms, but then
their only advantage i3 they are two digits smaller.)

pointer type

|
\

’

segment:

SEG__ident_____ CONST____EXTERNAL___type_
V_LINK_Z \N__/ N_______ o] N_VAR_/ N_LOCAL__/
\ / \ /

-——— —. - -

A pointer without 2 SEG clause ¢an point into any
segqmant in the current addressing environment, except
segment, one (see L.4.5). However, 1t cannot be
accessed outside that environment (but see L.4.2.1 and
Lababo2). A pointer with a SEG clause can only point
to objects in the specified seqment. However, it coan
be shared freely between environments.

A LINK with a S€6 clause 1s treated just like 3 pnointer
with a SE6 <clause. A LINK without a2 SEG clause can

“only point to the same seagment it is in. Thus no

04100000

dimension override (see L.1.2) need he stored in the
pointer itself. It can be shared between environments.,
as long as it is not moved to a different segment in
the process {see L.%4.3 aqd Laboeba3)

To dereference a pointer or LINK, SPRITE moves it into
an index register or mobile register, along wWith the
nacessary dimension override. (P-series machines have
four mobile registers, which can be wused Like index
registers one and two. See the OMEGA documentation.)
For a pointer without a SEG clause, SPRITF just moves
the entire pointer (since it already contains the
proper dimension override). Ffor a pointer or LINK with
a SEG clause, SPRITE uses the dimension override for
that seament 1din the current environment. For a LINK
without a SEG <clauses, SPRITE wuses the dimension
override needed to access the LINK, Of course, the
pointer or LINK <cannot be dereferenced unless the
seament it points to is in the current environment.

In a3 module, the SES clause ddentifier can be the
module name. This specifies that the pointer or LIMK
noints to the active code segment. See L.4.S for

‘04204000

Page 13

cautions regarding the use of this feature.

Data Mapping

Pointers still occupy eiaht digitss, or fourteen if the
base type is parametric (six for the length). The
lower six digits contain the offset from the beginning
of the segment (or "EEEEFE™ when nil). The upper two
digits of the pointer contain the HEX wvalue "C",
followed by the dimension override of the segmant for
the environment in which the pointer was built (or if
the pointer is nils, possibly "CE™)., -LINKs occuoy only
six digitss, containing just the offset (or "ZEEEEER"
when nil).

Note that two equivalent pointers with a 5f6 clause may
point to the same place, and vet not compare as saual
in a boolean expression. This would happen if they
were bhuilt dn different environments which wused 3

" different dimension override for the seament in the SEG

clause., Also, if both pointers are set to nil, one
might have the upper twno digits set to "LF” while the
other contains the dimension override. When comparinag
a pointer with the constant "nil”, SPRITE only compares
the low six digits. SPRITE could make similar special
arrangements when comparing some vointer variablas, but
this would be dmpractical when comparinag structuros or
arrays with imbedded pointers {(see L.4.2).

When Optional or Required

SEG clauses are not allowed 1in small programs. In
large programs, they are optional in a module, as well
as when defining indicants and LINK variable types in
the MID. They are required in the types of HID files
and MID data block variables, when these types contain
(non=-LINK) pointers. (If this restriction s Llifted.,
checks wvery similar to those described in L.4.2.71 will
also apply to accessing MID data blocks and files.)
That dncludes 4imbedded pointers, such as a structure
with a pointer field. (That does not dinclude the
parameters to procedure opointers.) They are also
required in the FIND and GENERATE statements (seo L.5.1
and L.S5.2). For the 7.0 release, they are required 1in
pointer types of module entry point parameters. <(for
additicnal parameter checks needed when we Lift this
restriction, see L.4.4.2.)

Leba2.1

04312000

Page 14

These restrictions help to aquarantee that pointers
without a SEG clause cannot be shared between different
environments (but see L.&.2.1 and L.b4.4.2). UNTY
parameters and omitted tagfields can bypass this>
pointer kludgers beware!

ACCESSES Clauses on Individual Procedures

When we allow a procedure or macro to have a different
ACCFSSES clause than 1its module, (non-LINK) pointers
without a SEG clause will reaquire further vrestrictions
for safe use. (For additional checks when varameters
contain such pointerss, see L.4.4.2.)

A pointer without a SEG clause in a2 module file or data
block can only point to segments in the module's
SEG_TABLE. To enforce this restriction, a orocedure
with a different SEG_TABLE than the module cannot have
VAR access to file or data blocks containing a pointer
without a SEG clause. It can have CONST access to such
blocks only if the module®s SEG_TABLE 1is an exact
subset of the orocedure®’s SEG_TARLE (see L.3.2). In
effect, the two—way communication of VAR access forces
each SEG_TABLE to be a subset of the other. That iss
VAR access is only allowed when both SEG_TABLES are the
sAme.

Coercions

Fouivalent pointers have the same SEG clauser access
(CONST or YAR)Y, and level (not implemented), as well as
eauivalent base types. (Having the same SEG clause
here includes neither pointer havina one.) Equivalent
LINKs have the same requirements. Also, if the LINKs
do not have a SEG clauses, they must be in the same
seament to be equivalent.

Compatible pointers also must have equivalent base
types. Coercing from VAR to CONST and/or EXTERNAL to
LOCAL s allowed, but not the other way around. If
both pointers have a SEG clause, they must have the

same clause. If one pointer has a SEG clause and the
other does not, the coercion is Llegal din either
direction. ‘NMote that even for two types to be

compatible, any imbedded pointers and LINKs must be
equivalent, and thus have the same 53EG clause. The
above also anplies to LIMKs, idncluding compatibility
between a LINK and a pointer.

L.b.4.1

04411400

Page 15

When coercing to a pointer without a SEG clause, SPRITE
supplies the oroper dimension override in the current
environment for the segment the source points to. 0f
courses this segment must be in the current
environment. It cannot be the <code segment, however
(see L.4.S).

When coercing to a pointer (or LINK) with a SEG clause,
SPRITE wverifies that the source points to the seament
specified by the destination's SE5 clause.

When coercing to a LIMK without a SEG clause, SPRITE
verifies that the source points to the seament the
destination is in. Note that if the source is also a
LINK without a SEG clauses, they are only compatible if
they are in the same segment. This does not anply to
imbedded LINKs without a SEG clause. {(This is very
much Llike opassing dimbedded LINKs by VALUE; see
Lab.4.3.)

Several of the chacks for LINK coercions are not yet
fully imolemented. Neither is the check when coercing
from a pointer without a SEG clause to a pointer with a
SFf6 clause. UUsers should take <care. Most of the
compila-time checks are imolemented.

Parameters

There are three special concarns when nassinag
parameters for OMEGA. First, the parameter must be in
a segment accessible by the called procedure. Second»
if the nparameter contains any pointers, they must bhe
meaningful to the called procedure. Third, if the
parameter contains a LINK without a SEG clauser, moving
it to a different segment invalidates the L INX.

If the calling and called orocedures have the same
ACCESSES <clause, and segment one is not involved (see
L.4.5), the first two special concerns are satisfied.
The case of a call between different environments is
detailed below. So is the third concern.

Checking Seament the Parameter is In

VALUE parameters are moved to the stack 1in segment
zRro, SO they are not a problem (unless they contain a
pointer or 2 LINK? see below). That lLeaves
pass~bv-reference parameters.

[]

[a¥]
o~

Page 168

1f SPRITE cannot tell at compile time which segment the
actual oparameter s 1in, and the calling orocedure’'s
SEG_TASLE s not an exact subset of the called
procedure®s SEG_TABLE (see L.3.2), SPRITE puts out a
warning. (The code will only work if the seagment turns
out to be in the called procedure’™s SEG_TABLE.) This
includes a parameter which idnvolves dereferencing a
pointer without a SEG <clauser, such as one of the
orocedure’s own bpass-by-reference formal parameters.
An actual parameter in segment one cannot be passed by
reference (see L.4.5). It 3s an error if SPRITE knows
at compile time that the parameter®s seament is not 1in
the called procedure's SEG_TABLE. Otherwisesr SPRITE
builds and passes a pointer (to the actual parameter)
with the proper override for the called environment.

It does not matter which seagment the destination of 2
function result is ins, however, unless the RETURN tyoe
is a LINK without a SE6 clause (see L.4.4.3). If
necessary, SPRITE builds a stack temporary for the
RETURN parameter, passes a pbointer to it with override
zero, and moves the result to the real destination
after the VEN. This 1is only necessary 3if the
destination's seament is segment one, or it is not in

"the called procedure’s SEG_TARLE, or it is not known at

compile time and the calling procedure's SEG_TARLE is
not an exact subset of _ the called procedure's
SEG_TARLE.

Checkinag Pointer(s) in the Parameter's Type

The above <coercion rules and restrictions on formal
parameters are sufficjent even when the called
procedure fs in a different module with a different
ACCESSES clause. Any pointer {including an dimbedded
pointer) in an entry point's formal parameter tyoe must
have a SEG clause. I f the <called procedurse
dareferences the pointer but does not have access 1to
the seament in its SEG clause, SPRITE will report the
error when it is dereferenced. 1If the pointer in the
actual parameter does not point to that segment, SPRITE
will report the error during the coercion from the
actual parameter to the formal.

Again, coercing from a pointer without a S£EG clause to
a pointer with a S8EG clause requires a run-time check.
This check is not made in the 7.0 release, so users

should be careful.

O

~

Lobobl3

044332800

Page 17

When we make pointer SEG clauses optional on module
entry point parameters, or when we allow ACCESSES
clauses on dndividual oprocedures, further parameter

checks will be needed. Wwhen an actual oparameter
contains a pointer without a SEG clause, it may point
anywhere in the <calling procedure's SEG_TABLE. For

this pointer to be meaningful to the called procedure,
the called procedure must have access to every data
seament in the <calling procedure’s SEG_TABLE (if not
more). If the called procedure can change the pointer
and pass it backs, the reverse is also true (that is-
the SEG_TABLEs must be the same.) Even 1if only the
RETURN nparameter <contains a pointer without a SEG
clause {(pass=d just one way), the SEG_TABLEs must still
be the same. This lets SPRITE make the subset check
when the segment the destination is in is not known at
compile~time (see L.4.4.1).

Therefore, if a procedure has a CONST or VALUE
parameter type <containing a pointer without a SEfG
clause, it can only be <called by a procedure whose

"SEG_TABLE s an exact subset of the called procedure’s

SEG_TABLE. Further, if a procedure has such a VAR or
RETURN parameter, it can only be called by another
nrocedure with the same SEG_TABLE., - So SPRITE can
enforce this, 3if an entry pooint has such a VAR or
RETURN parameter, its SEG_TABLE in the MID must be the
same as the one in the module; a subset is no longer
sufficient (see L.3.2).

Checking LINK(s) in the Parameter's Type

A LINK with a SEG clause s handled just like a pointer

with a SEG clause (see L.4.4.2). The problems
involving a LINK without a SEG clause revolve around
the segment the parameter s 1in. Many of these are

covered in sections L.4.3 and L.4.4.1. In addition.
moving such a LINK between seagments invalidates the
LINK. The conseauences of this are detailed below.

First, 14n a Llarge program, a formal VALUE parameter
type cannot be a LINK without a SEG clause. A formal
VALUE parameter is on the stack in segment zero, but
the actual parameter s typically 1in a different
seqment. Rather than wait until processing the call to
report the error, we simply outlaw it even when the
actual parameter is in segment zero. 0of. course, if
passing a LINK in seagment zero by VALUE is desired, the
user can simoly oput a SEG c¢lause on the formal
parameter, specifying segment zero.

L.4.S

04501800

Page 18

Saconds 3f the RETURN type is a LINK without a SEG
clause, the seament containing the actual destination

"must be din the cagted procedure's SEG_TABLE. That 1is»

SPRITE cannot build a stack temporary as it can for
other RETURN types (see L.4.4.1).

Thirds, VALUE and RETURN parameters can contain imbedded
LINKs without 2 SEG clause, and still be moved between
seaments. SPRITE assumes the user is really trying to
pass the non-LINK fields, and will rebuild the LINK
fields by hand. SPRITE may eventually genperate
optional code to fill such LINK fields with "AAAAAAY
(for access error) when the parameter must be moved
petween different seaments. This will catch the error
if the user dereferences them without rebuilding them.

fourth, if the formal CONST or RETURN parameter is 23
LIMK without a SEG clause, the actual parameter must
point to the same segment that the actual paramater is
in. SPRITE does not allow the actual parameter to be 2
pointer Cor LINK) with a StG clause to a different
segment. If it did, to match the formal parameter
tyner SPRITFE would have to build a temporary LINXK
without a 366 clause in the segment specified by the
actual parameter*s SEG clause. This ds impractical.
Ry insistina the actual parameter point to the same
seaqment that it is in, SPRITE <can match the formatl
parameter type by passing along the address of the
offset part of the actual parameter. If processing the
RETURN oparameter and the actual destination 1is a
pointer, SPRITE will set +the dimension override
aporooriately as part of coercing from a LINK to a
pointer.

some of the <checks for LINK parameters ar=2 not yet
fully implemented. Users should take care. Most of
the compile-time checks are implemented.

Data in the Code Segment

A ctode segment contains several procedures and their

constants. It may contain several modules, which may
even use different SEG_TABLEs. Conversely, orocedures
using the same SEG_TARLE wmay be in different code
segmentss, and thus have environments which differ only
in segment one. This is obviously necessary when all
the obprocedures using a particular SEG_TABRLE cannot fit
in a single code seqment.

L.b.51

Lata.5.2

L.4.5.3

N&532500

Page 19

SPRITE is thus designed to verify (as far as possible)
that each orocedure has access to the data it needs.,
while leaving the LINKER free to assiagn orocedures to
code segments in any way it likes (subject to the bind
deck specificationsd. This requires special care with
data in the code segment. That includes constant pools
as well as (in a large proagram) data explicitly
declared in the code segment. (See L.1.3 for some
examples of the following checks.) .

Passing Data in the Code Seqment by Reference

SPRITF will not let data in segment one be oassed by
reference, since there 1{is no qguarantee that both
procedures are 1in the same code segment. Howevar.,
constants are simply moved to the stack first.

SPRITE does not do the same thing with CONST parameters
hecause of possible aliasing problems. That 1diss, the
procedure may also have VAR access to the variable
(such as by sharina its data block directly), aiving
strange results.

Pointing to Data in the Code Seoment

A pointer (pn) without a SE& clause cannot voint to data
in seament one. That even includes constants and small
programs.

This restriction 1is gclosely related to the first. If
we allowed (p) to point to seament ona, then passing
(p?) by reference would violate the first restriction.
SPRITE would not catch this errorr, because it cannot
tell 2at compile time which - segment (pd) is in. B8y
making sure (p) points to one of the data segments.,
(0d) can be passed freely as Long as the calling
procedure®s SEG_TASLE s an exact subset of the called

procedure®s SEG_TARLE (see L.4.4.1).

This restriction also apolies *to a LINK without a SES
clause. Though not strictly necessary, this s safer
and morz consistent.

Explicitly Declaring Data in the Code Segment
SPRITE makes the above checks. In Llarge programs»,

those declaring data in the code segment (or a pointer
or LINK to dt) must wverify that the data and all

Page 20

procedures that share it (or dereference the pointer or
LINK) go in the same segment in the bind deck.

SPRITE helps the user make this check by requiring that
all data in segment one must be declared wusinag the
module name as the segment name (see L.Z2.2). Also,
every pointer to seqament one must have the module name
in Jts tvype (see L.3.2). (UNIV parameters and omitted
taagfields can byoass this; pointer kludgers beware!).
Thus finding all occurrences of the module name should
guickly lead to all olaces where something funny {5
going on with the code seoment.

Statements

Several miscellaneous statements were changed or added
for NMERA and/or HMCPX. These are described below.

FIND

With OMEGA proarams, SPRITE can generate an SLT or STR
for the FIND statement, which provide features not
available with SEA, SLT supports searching over 2
linked Llist. STR supports searching an array with
elements over 100 digits long. In addition to the find
conditions SEA supports, SLT and 578 both support:
finding the maximum value; findino any or no bit
matching a mask (see below); or finding the first value

"with one of the following relations to the key: ~=,

05123000

<=’ >I >>=-

find condition

i

| bit mask:
__ ANY_ONE_SIT_IMN ___find primary___MATCHES____expr____
_ NO_ONE_RIT_IN _/ \

!

1f the ANY_ONE_BIT_IN or NO_ONE_RIT_IN form of FIND
condition is useds, all corresponding bits in each find
primary and the specified bit mask expression are
examined until an element is found which satisfies the
match condition. A match oCcCuUrs if any
(ANY_ONE_RBIT_IN) or no ANO_DONE_BIT_IN) pair of
corresponding bits are both set. The bit mask must be
a fixed lenoth hex strina the same size as the find
primary.

TN

057204000

Page 21

For a linked list FIND in a large program, the types of
the 1Llist head pointer and the Llink field must be
equivalent. If they are not LINXs, they must have a
SEG <clause. Also, if the Llist head pointer (or LINK)
has a SEG clause, it must be in the specified seoment.
These restrictions guarantee that the list head pointer
and every element of the List are in the same seqment.,
wvhich must be true for +the SLT instruction +to work
properly.

LINKs -without a SEG clause were designed specifically
for use with Llinked List FIND statements. This
explains the stranae restrictions on their use (see
Lte4). By definitionr, they point to the ssme segment
they are ins, which is what the SLT instruction neseds.
Since no SEG clause is needed to quarantees this, the
same FIMD statment can be used to search linkad Lists

in several different seaments. The user can simply
pass the Llist head pointer (defined as a LINK) by
referance to the procedure containing the FIND

statement.

GENERATE

"GENERATE LOCAL™ generates space on the stacks, which is
in segment zero. Thus if the pointer or LINK has a SER
clause, it must be segment zero.

“GENERATE EXTERNAL"™ generates space in the heap. In a
small prooram, the heap is in segment zero. In a large
program, each data segment can have its own heap. When
generatina with a LINK without a SEG <clause, SPRITE
generates heap svace 1in the seament the LINK is in. It

~is an error if this segment is not known at compile

time. When agenerating with a pointer din a large
program, it is an error if the pointer does not have a
SEG clauser hecause the SEG clause specifies which
seament *o aenerate in. The seament must be in the
current environment, but not seagment one. Generatino
with a LINK with a SEG clause is handled the same way
as generating with a2 pointer with a SEG clause.

ALIAS

The ALIAS statement allows the user to associate a
given SPRITE name or orimary with an assembly code
Label. This can be useful when combining SPRITE and
assembly modules.

Y

alias statement

——

} / assembly Label: \
___ALIAS______sorite name___ = ______ titeral_______ /-
A
|
sprite name
|
{__module: dident_____ e —__ procedure: jdent___________
{ | / \
}]
I__data blocks, sea, or seq tables ddent_ __ __ _ _________ |
| \
o e !
] / \ !
I__data block variable: ddent_____ __selection__/_____ |
| . 2 VP 7 \
___indicant / |

—— e o ——— - . -

The ALIAS statement appears in the MID, without a KNOWS
list. The assembly code LlLabel dis an EBCDIC string
titeral un to six characters Llong. Only constant
selections are allowed on the sprite name. That is.,
fields and constant indexing are okay, but not varjable
indexino nor vointer dereferencing.

OVERLAY

The ope2rating system includes several overlay modules.,
which are uwritten 1in assembly code. (They cannot be
written in SPRITE, since once they are, they witl no
Ltonger be overlay modules.) UWhen calling an overlay
module entry point, SPRITE outs out a VEN to RGOVL with
the aopprooriate parameters. The operating system
Wwriter can specify which modules are in overlays by
using the OVERLAY statement. It appears in the M™MID,
without a XNOWS {ist.

overlay statement

i / A\

\ o OVERLAY . _ _ o __ \.__module: ddent___/_ e __
A\
|

WARNING: Proc pointers can be initialized to point to

overlay module ontry points, since this dis needed to
supoly procedure addresses to assembly code modules.

05420000

re

!
I
|
!
‘.

n6100000

Page 23

However, these proc pointers must not be dereferenced
in a SPRITE module, since SPRITE will not generate the
necessary 8G0oVL call. SPRITE does not <catch this
jllegal use of these proc pointers.

REMAPS

The REMAPS definition allows the user to redefine the
variables within a DATA blocks, without resorting +to
structures with omitted tagfields.

maps definition

remap target el __ o

DATA DATA / _——— o _ A\

name.: name : 1/ var: \ {
_ident__REMAPS__ddent__ 1+ _______ident__/__type__/__

\
|

The REMAPS definition may appear wherever a DATA
definition may appear, but only in the MTID, If the
target DATA block 1is declared within a segment (see
L.2.1), the REMAPS block must be declared within the
same seqgment. REMAPS block wvariables —cannot be
initialized (but this might be implemented Llater on).
The REMAPS block cannot be bigger than the targst DATA
block bheing redefined. To access REMAPS block
varjables, use the remap DATA name in a3 SHARES ldist.
just as you would for a normal DATA block.

sm_jo
DATA _
hasic_definition STRING (200) OF HEY := "Ov;

sm_jio_for_keyboard_output
REMAPS sm_1Jo0:

message_number 0..999,
keyboard_command,
message_received BOOLEAN,

Imolicitly Declared Data

Proaram_reserved_memory and theap are imolicitly
declared by SPRITE. If the user must have access to
their data, they.must be declared explicitly 4dn the
user's MID. The names are different in large programs.,

La6.1

07104000

Page 24

howevers, 25 shown below.

Program_reserved_memory

Program_reserved_memory is the first fifty bytes in
segment zeror, containing such things =as the index
registers. If it 1is declared explicitly, and the
declared block is bigger than that, the declared size

is used instead.

In a large orogram, there can be more than on=z segment
zero. Since the same name c¢annot be used for tuwo
different MID0 data blocks, oprogram_reserved_memory
ctannot be declared by that name for each segment zero.
Thus Llarges proarams must instead use: *prm_" + <the
seqment name>. This means the segment zero names have
to be unigue in the first 26 characters (30, less & for

“porm_").

Iheao

In small programss, SPRITE maintains the heap with the
imolicit data block iheap.

In Llarge programs, each segment (other than one) can
have dts own heap and iheap. To maintain unique names,

“eacth seament?s dheao is named "Jjheap_" + <th2 segment

name>. Note that the segment names must be unijque in
the first 24 characters (30, lLless 6 for "jheap_"). The
size of each heap can be declared individually in the
bind deck., 1If the program never tries to generate
anything in a particular segment's heaps, that segment’s
heap and iheao are not bound in. ‘

Standard functions and Procedures

The standard function proc_ptr and the type construct
PTR TO PROC work somewhat differently for OMEGA. Also.
OMEGA supports locks, which SPRITE implements with new
standard procedures and types. These and several other
new standard functions and orotedures are described
below.

Proc Pointer Types

Non=-0OMFGCA orocedure pointer types and the standard
function oroc_ptr are described in section 13.5 of the

Page 25

SPRITE Reference Manual. Briefly, proc_ptr returns a
reference to a procedure. Dereferencing the
destinatien oprocedure pointer (followed by any
parameters) calls that procedure.

For OMEGA programs, a procedure pointer 15 stored as a
twenty—-digit non-local environ pointer (ENYP in
assembler). The value nil is represented as
"DO0O0NDO00DODCEEEEEEE™.

For lLlarge OMEGA programs, procedure pointer types must
include an ACCESSES clause. This clause is not allowed

in other programs., SPRITE uses the ALCESSES clause to

verify that the calling and called prncedures share the
same segment zero {(see L.3.3). SPRITE also wuses this
clause to set up the parameters propoerly for the called
environment, just 2as it does with a normal call (se=
Lobdod) .

procedure. peointer type

l
1
A

07200000

seq
return table:
--PTR__TO__PROC__params____value____ACCESSES__ident____
__7 O o

/I N A N /A

To be compatible, procedure pointers must have the same
ACCESSES clause. {They must also have ths same
parameter list and RETURN typer, a5 in non-OMEGA
programs.) A procedure pointer <can only »point to
procedures with the same ACCESSES clause. It cannot be
dereferenced within a procedure which uses a different
segment zero (and thus a different stack).

In a later release, coercions and the proc_ptr function
could relax the ACCESSES clause restriction, as
follows. The ACCESSES <clauses need only be the same
when there is a VAR or RETURN oparameter containing a
pointer without a SEG clause. 1If there is such a3 VALUE
parameter, the destination proc pointer's SEG_TABLE
must be an exact subset of the sources (or
procedure®s) SEG_TABLE. The same subset is reauired
when there are any pass by reference or RETURN
parameters at all, regardless o-f their type.
Dtherwise, the only restriction is that both SEG_TARBLEs
must use the same segment zero. These restrictions are
needed 50 SPRITE can check and process the parameters
(see L.4.4).

- Page 2%

L.7.2 Lock Types
There are two different kinds of lockss, as follows:

Ltock type

TN___Lock_____ Level: constant simple expr_ o o e
|) / \
N\ L EVYENT o e e e ———————— / |

pata block variables, structure fields, and array
elements can be defined as type LOCK (synchronization
tock) or FVENT (event lock). For LOCKs, the level must
he in the range 1..9999., Variables must be initialized
with the onredefined <constant ™init_lock". The only
valid use of these variables is to pass them to the
Lock standard orocs: (orog.)dlocks, Lock_conditionals
unlock, and test_event. LDCKs and EVENTs are tuenty
digits big. ’

data
DATA
info STRUL
flag ROOLEAN,
flan_lock LOCK 3
CURTS 2= Ttrue, init_lockl;
proc
PROCS
SHARES datars
prog.lock_conditional (info.flaa_lock) %4 no ;"
I1F IN_USE
THEN
handle_busy_case;
ELSE
info.flag 1= false;
prog.unlock (info.flag_lock)’
FIs
CORP,

07300000

Pange 27

Le7.3 Definitions

proc_ptr
PROC (proc PROC_NAME)D % (proc) or (mod.proc)
RETURNS PTR TO PROC ...~
% returns proc pointer with same parameters,
% return value, and ACCESSES clause (if any)
% as the passed proc

ptr
PROC {(primary T)
RETURNS PTR_OR_LINK TO T,
% destination must be a PTR or a LINK

ptr_add % to officiently step through an array
PROC {source_pntr PTR TO T. % a pointer into
% an array of T
elems UN_5)
RETURNS PTR TO 7T;
% dest_ptr == source_ptr + (elems * T.SIZE)

% (size rounded up to multiple of T's modulo)
¥ arithmetic on offset part of pointer, with
% dest_ptr getting source_ptr's dimension
% override
ptr_sub
PROC (source_ptr PTR TO T»,
elems UN_5)
RETURNS PTR TO T7
% same as ptr_add except =" dinstead of "+"
scale_otr
PROL (number UN_7., % must dinclude dimension
A override digit!!
exponent Daab) % must be constant

RETURNS PTR TOC T»

% dest_otr := number *
% 10 to the power of exponent
progq
MOD
halt_breakpoint - % HEBK
PROC (break_id, % AF
mask STRING (2) OF.HEX); % BF
¥ both must be constant
read_timer %Y ROT
PROC RETURNS UN_207
DOM;

07312500

Page 28

mep % strictly for MCP use
MOD

% ATE D2
alter_environment_table_entry
PROC {source_descriptor UNIV P_STR_10_HEX,
dest_descriptor UNIV P_STR_D6_HEX)?
% source_descriptor must be 10 digits long
% dest_descriptor must be 6 digits Llong

bind_date % CDAT
PROC RETURNS UN_67 % ddmmyy
bind_time ' % CTIN
PROC RETURNS UN_A? % hhmmss

build_ptr_no_seg
PROC (sizer
offset UN_6,
seg SEGMENT_NAME)
RETURNS PTR TO T; % with seo's D.O.
% Destwnatwon must bhe a PTR
without a SEG clause.
If dest is not a parametric pointer,
fust pass size of zero.
If dest is 2 parametric pointer,
pass size part of pointer
(digit size, but byte size when
parametric CHAR or EBCDIC string).

RS SR U 2

build_otr_seq
PROLC (size.r
offset UN_SH)
RETURNS PTR TO SEG s T»
% destination must be a PTR
% Wwith a SEG clause
% size is same as ahove

context_addr % ACON
PROC (primary UNIV P_ QTR 1_TQO_999299_HEX)
¥ oarametric HEX string
RETURNS STRING (8) OF HE¥X;
% Llike ptr but returns a
¥ context address, with.
% controller and extend digit

(7316300

o

convert_io
PROC (initial_desc UNIV P_STR_&0D_

Page 29

% CI0
HEX »

result_desc VAR UNIV P_STRfBD_HEX);

% exception clause:

% IF INVALID_ADDRESS ...
% params must be exactly

% 40 and 30 digits long

copy_desc
PROC (seq_table SEGMENT_TABLE,
seq SEGMENT_NAME)

RETURNS STRING (8) OF HEYXs
% returns a copy descriptor,
% for COPY TO part of APE.
% use module name as seq_tabl
% name for the module's run
% time environment

copy_page_table_entry
PROC (source_descriptor,

dest_descriptor UNIV P_STR_S8_H
¥ params must be 8 digits lon
env_noptr
PROC (proc PROC_NAME, % (p
reserved STRING (3) OF HEX)

RETURNS PTR T0O PROC ..as
% same as proc_ptr, except it
% lets user specify the eight
% reserved diqgits in the ENVP
% (proc_ptr sets them to zero

halt_branch _

PROC (branch_to_self ROOLEAN);
% must be constant
% false means branch to next
% instruction

hyper_call
PROC {(fucntion_number 0..999,
params UNIV P_STR_1_TO_

073234600

% LEQ

Y PTNM
SEG_TABLE name
segment in seg_table
SEG_TARLE
é6-digit &N,
2=-digit MAN

BB S S 4

e

% ATE 01

EXD;
°]

% ENVP
roc) or (mod.oroc)

)

% HCL

A
A

% must be conAtant

19908_HEX); % size must bhA

¥ be mod 2

A
A

A

Page
initiate_io %2 110
PROC (channel Nea??s
desc UNIV P_STR_G6_TO_3Q_HEX)?

¥ desc must be 6 to 30 digits lonn

% exception clause:

% IF INVALID_IO ... % HIGH
interrupt % INT
PROC {(request RERUEST),

% REOUEST is any user-defined,

% non-packed symbolic with

%Y up to 99 elements
jnterrupt_data % INT
PROC (reauest REQUEST»

data UNTV P_STR_S9_HEX)S

% same as interrupts, except

% allows data to be passed
jo_complete %4 10C
PROC {(channel D..77,

mast UN_b+
digit_count VAR UN_8)3

% exception clauses

% TF INVALID_IO ... % HIGH
tock % LOKI} or
PROC (L_or_e VAR LOCK_OR_EVENT)/ % OWATLT

¥ param must be a LOCK or an EVENT
lock_conditional % LOKC or
PROC (l_or_e VAR LOCK_OR_EVENT): % SETL

% param must be a LOCK or an EVENT

% exception clause: IF IN_USE ...
make_page_table_entry_unused % ATE 00
PROC (descripbtor UNIYV P_STR_B_HEX);

% desc must be R digits lona
move_data % MYD
PROC (source UNIYV P_STR_1_TO_999999_HEX.,

dest VAR UNIYV P_STR_1_TN_999999_HEX)?
move_repeat % MVR
PROC (pattern UNTY P_STR_T1_TD_909999 _HEX.,

dest YAR UNTIY P_STR_1_TO_999999_HEX)>

% dest's size must be an exact

%4 multiole of pattern's size

% if either is variable length,

A only ona ®MyR will be generated

% (with at most 100 repetitions)

07330810

30

f]

mvs
PROC

Page 31

% MYSs
(afbf UNIV P_STR_4_HEX.,
source_descrs .
dest_desc "UNIV P_STR_34_HEX,
padding 0..2)7
% afbf and padding must be constants
% descs must be 34 digits long
¥ padding: O pad with zeroes
% 1 no padding
% ‘ 2 pad with blanks

o ou

offset_ptr % MADR
PROC (nrimary UNIV P_STR_1_TO_299999_HEX)

RETURNS UN_67

% returns just the offset part of
% a pointer to the parameter

read_begin_address % RAD 00
PROC (channel 0..77»

dest VAR UNIV P_STR_4_CHAR)Y; % parametric CHAR
% exception clause: IF BUSY ...
% dest must be MOD 2, 4 bytes long

_ read_end_address % RAD O
(, PROC (channel 0..77,

dast VAR UNIV P_STR_4_CHAR),
% exception clause: IF BUSY ...
% dest must be MOD 2, 4 bytes long

read_result_descriotor % RAD D2
PROC (channel 0..77»
dest VAR UNIV P_STR_4_CHAR)?
% exception clauses IF BUSY ...
% dest must be MOD 2, 4 bytes Llong
reinstate_task % BRY

PROC (addr PTR TO REINSTATE_LIST_ENTRY),

-~

07336760

¥ REINSTATE_LIST_ENTRY is a
% user-defined structure

string

scan_descriotors

%

PROC {(list_head UN_4, 4 AFBF
complete_r_d VAR R_D_PTR); % Ix1
% exception clause:z
% IF IND_COMPLETE ... % NEQ

set_timer

PROC (time

% List_head is address of first
% result descriptor to check
% complete_r_d is PTR (with or
4 without SEG clause) to first
% R_D (user-defined structure)
% found that says I1/0 complete
% (if anyd

CUN_2D)

stack_overflow

PROC (task

UN_4) 7

stop_failure

PROC (condition

UN_b,
fatal BOOQLEAN);
% both must be constant

system_1id

PROC (dest

VAR UNIV P_STR_200_HEX)?
% dest must be 200 digits long

system_status

PROC (dest

VAR UNIV P_STR_Z200_HEX)’
% dest must be 200 digits Llong

test_event

PROC (event

unlock
PROC (l_or_e

07341800

EVENT)

% exception clause: IFf IN_USE ...

VAR LOCK_OR_EVENT)
¥ param must be a LOCKX or an EVENT

e

B

pA

A4
2o

%

b

Page

SRD

STT

HCL 1

FAIL

SST M

38T 0D

UNLK or
SGNL

32

DOM;

v//‘\

-~

uodate_mast_address

PROL (addr UN_9);
update_memory_error_address

PROC (addr UnN_93;
update_reinstate_list_address

PROC (addr UN_9) 7
update_snap_pnicture_address

PROC (addr UN_9)s
write_begin_end_addresses

PROC {(channel DouT7s

source UNIV P_STR_4_CHAR);

% exception clauses IF 2[USY ...
Y dest must be MOD 2, 4 bytes long

N7343800

b4

%4

WHR

WHR

WHR

WHR

RAD

Page 33

03

02

00

m

09

