
~ .. ., ~ .~, .;. (.'" ..

By!:I:JUUlh.J_tgtllgCittjgO _____________ ~ _______ ID~.e1:;::g11i~~_tgCI:I:igQDd.~",it;
I Corporate Ul'lit . I Location"-' i . ·Dept. '. " !', ""I': :
I Computer Systems Group I Pasadena I' Prog. ActivityI' i
1--,----------------------------------~-.~----+---- ... ------------------.. , ," I

---\ . TO:, Naae I Date 'I'
I Progral'lI1Idng Activity SPRITE Users, 'March ~, 1983 I '

I

I-----------~--------------------------------~----------------------1.
I Fro. I Dept. &.LocatJoni
l ___ a~ljD~~_Wjl~jD~gD ___ l ___ At~bjl~'~~£~-RCgjt~~eDt---___________ ~~_l

Subject: New Release of SPRITE

On Monday, March 14, 1983, SPRITX (6601) will becom~ SPRT66, SPRITE
(6505) will become SPRT65 and a new version of SPRITE will be availabl.e.
SPRT6S and SPRT66 will be re.oved from the systeM a month later (April
14, 1983).

The new v e r s ion 0 f S P R I T E fix e s bug s (s e e A p pen d i x A and 0) and pro v i cf e,s, ~,
new features (see Appendix B, C and E).

· /" ,
, ,

This SPRITE 1S version 6700 and is not MID-co~patible with version 6601
or earlier versions. This inconvenience.is necessary. due to the change~
within the SYSTEM infor~ation. This requires that your "IDs b.
recoapiled with SPRITE before any of your .odules will ·ieeo.pile. ~

The Y===:: series ~f the intrinsics libraries are compatibLe only with
, SPRT65-emitted IC~s, and the X===== series of the intrinsics' libraries

are compatible only with SPRT66-emitted ICflts. Two new set of,in~rinsies
libraries, S===== and E=====, are co~patible with SFRITE-emitted ICMs.
However, the E===== series of intrinsics libraries can only be used with
IC~s produced with S$ EXTENOED (see Appendi. 8, item 181.

Concurrent with the release ot the SPRITE cow,piler, a new version of
XREF and COMPRS will also be available on the system. The new XREf.
program shows the correspondence between the ~odule name and the file
na~e used for that module. The old COMPRS program used to bomb when
running on 83900. The new one ~ill now run on both 83900 and 84800.

Please report
Se c;tfon w,it h
into theSUGS
sys't em by" tbe

any proclems to a mew,ber of the Implementation Systems
appropriate listings for screening before en\.,Jring them

system. All actual bugs will be entered into the BUGS
reporting user.

Belinda Wilkinson, Manager
Implementation Systems Section
Architecture Department

This release
APPENDIX A:
APPEND lX B:
APPENDIX C:
APPENDIX D:
APPENDIX e:

document contains:
BUGS FIXED
GENERAL ENHANCEMENTS
OMEGA-RELATED ENHANCE~ENTS
INTRINSICS BUGS fIXED
INTRINSICS ENHANCEMENlS

APPENDIX A BUGS FIXED Page 1 of 23

1. SMAP option ~ith normal tag fields

The SMAP option did not list the normal tag fields of a
STRUt declaration. Entries for these will now appear if
SMAP has been set.

2. Nil pointer values (changed!!!)

The value of nil no longer changes or causes overflow
when being moved as a 7sn value. (Regular pointers are
7sn for OMEGA programs.) This has b~en accomplished by
changing nil to ·CEEEEEEE" for regular pointer~,
·OOOOOOCEEEEEEE" for parametric pointers and "OCEEEEEEE"
for procedure pointers. The new values are used for both
OMEGA and non-OMEGA programs. Pointer kludgers beware!!!

3. Logical operations on hex strings over 100 digits (82781)

Logical operations on fixed length hex strings over 100
digits new work for the entire string (it used to work
only for the first 100 digits).

4. String comparison

In a relational expression where the left and right
operands are both strings, SPRITE will now coerce the
shorter one to the lenqth of the longer (it used to
coerce the right operand to the left operand no matter
which one was longer).

5. DISPLAY ---> STRING coercion

SPRITE no longe~ allows the coercion from DISPLAY to
STRING if the string is bigger. It will put out an error
message if the string is fixed length. For variable
length strings, it puts out a warning and then generates

·optional run time code to make sure that the string is
not bigger than the display integeFG SPR1TE now puts out
overflow testing code for the coercion from DISPLAY to
STRING whenever the display integer is or could possibly
be (in the case of variable length strings) bigger than
the string.

"'"

~"'-'. '

BUGS FIXED Page 2 of 23

6. Conditional subscript checking

The value of the SOUNDS dollar option is now checked
before generating bounds checking code for array and
subport indices. If BOUNDS has been reset or set to a
value less than 4, the subscript checking code will not
be generated.

7. Standard proc VAR parameter checking

Several standard procedures now correctly enforce their
VAR access parameter requirements~ Also, the standard
function translate now requires only that its second
parameter not be a constant (because a constant translate
table is not mod 1000). It used to require VAR access.

8. file record size> 39996 (82881)

9.

Declaring a file with a record size greater than 39,996
digits no longer causes a compiler failure.

FOR ••• DESCENDING, et at (82882)

SPRITE no longer tries to optimize to MVW or MVA when
either of the operands is a number. It now generates a
MVN as before, which sets the comparison indicators
properLy. This was necessary to produce the right code
for the FOR ••• DESCENDING ·state~ent. rhis bug in turn
had caused the compiLer to fail wheri processing a call to
a procedure with ten parameters~

10. Pointer coercion (82819)

SP~ITE now generates the right code to coerce between a
pointer to a parametric string and a pointer to a fixed
length strinq.lt was generating bad code for a RETURN
statement when the expression is one kind of pointer and
the RETURN type is the other kind.

11. Va~iable length string to DISPLAY coercion (82581)

SPRITE now generates the right coae to coerce from a
variable . l~ngth string to DISPLAY, even when the dollar
card option "BOUNDS" is. reset. Also, "$$ BOUNDS" no
longer resets the "80UNDS" option.

, ...

, .
,/ ..

';' APPE NO IX A BUGS. fIXED Page 3 of 23

(1

,r' -

12. Ptr function as parameter (e2701)

SPRITE now generates the right COde for a parameter even
when: the formal parameter is either UNIV or a
non-parametric pointer passed hy VALUE; the actual
parameter is a call to the standard function "ptr"; and
the actual parameter to "ptr" is either a constant, a
data block variable, or a STATIC variable.

13. Dereferenclng a constant pOlnter (82605)

SPRITE now generates the right code
constant pointer (defined using a
omitted tagfield).

to dereference a
structure with an

14. Translating a variable length HEX string (82824)

SPRITE no longer bombs when processing a call to the
standard function "translate" with a variable length HEX
string as the first parameter.

$$ LISTP (82783)

SPRITE now lists all patches when co~piling with "$$
LISTP, RESET LIST".

16. Finding eIT fields in an array (82713)

SPRITE now
find primary

puts out an error message if the type of the
;n a FINO state"ent is 8IT.

17. Range check subscriPts for array slice (82681)

19.

SPRITE now generates range checking cede for array sl;ce
subscripts.

The standard function scale_ptr (allowed only when
producing assembly code) now generates the righ~ offset
for the destination address.

String concaten~tion with bad Heoit_nu~berH (E2!9])

String concatenation with bad "edit_number" no longer
causes compiler failure.

-' .. '

APPENDIX A BUGS fIXED Page 4 of 23

20. Macro's parameter (82906)

SPRITE now catches the following error: The macro's
formal param~ter is VAR access, but the actual parameter
is CONST access.

21. Mod 1000 flag reset for STATIC blocks

Th~s flag wa~ not being reset. When a STATIC block
contained a TRANSLATE_TABLE, the mOd_1000 flag was set
and every STATtC block following it would also have the
mod_1000 flag set. Needless to say, this wastes a bit of
memory, so it has been remedied.

22. Nil to procedure pointer coercion (82878) .

SPRITE no longer generates the bad code when compiling
"IF procedure_pointer = nil", and no longer bombs when
compiling "IF nil = procedure_pointer".

23. FINO with SN key no longer generates tad code

SPRITE no longer tries to
statement if the type of the
optimize the SN key.to UA.

optimize the code for FIND
key is SN. It used to

\, .

..... ,

· :
APPENDIX 8 GENERAL ENHANCE~ENTS Page 5 of 23

A regular file identifier is now an acceptable parameter
to the standard procedure port_io.open_available.

2 • P 0 R T-R E S U l T S

An inquiry to the PORTRESULTS attribute will no longer
modify the PfI8 subpart index field •

. 3. FIND with non-state"ent local pointers

4 •

For any of the find statement typ~s, the fIND sta~ement's
result pointer may now be either local or external.
LOCAL means a statement-local variable (identifi~r) whose
value and scope are availaDl~ only in the THEN part of
the statement; local;s the default. EXTERNAL means an
externally-declared (to the statement) variable (primary)
which is a pointer to the type of the array's components
and which on a non-hit will receive the nit pointer
value.

I pointer: , _________ ~ ________________________ ident ____________ _

\ \ I J \
, \ ___ LOCAL ___ , I I

\ pointer:',
, __ EXTERNAL _____ primary __ , I

Examples:
X p is local and ava;lable in THEN only
X no change to current syntax

fINO p AND i INTO array1 ~HERE p~.num = 0
~ Q is local and available in THEN only

fIND LOCAL q INTO array? WHSRE Q~.char = "X"
% r is ~xternal, previously defined,
r. ana available in its scope.

FINO EXTERNAL r INTO array~ WHERE r@.name = current_nam~

FIND with pointers aelimiting array slice bounds

The point~r-to-pointer type of the FINO state"ent 1S now
available. It permits the use of pointers to an array'S
components as the delimiters of the FIND statement. The
use of the new reserved word END provides access through
and including the last irray element. The pointers ~ust

APPENDIX 8 GENERAL ENHANCE~ENTS Page 6 of 23

al.l be pointing to the type of the array's component.
The array primary may not be an array slice.

I
' ___ F[ND ___ find_pointer_spec ___ tind_control __ _ ,

___ 1

I
' ___ WHERE ___ find_condition __ _ ,
---------------~------ ______ I

I
\ __ THEN __ state~ents ____ ElSE ____ statements ____ DNlf ___ _

,--------------------, \

I 1' ____________________________ ~ ___ lNTO __ array:primary __ _

I \ index: "

I

I ' ___ AND ___ identifier ___ ' I
I I
I base pointer: ll"it pointer: array: I

' ___ OVER __ primary __ •• ___ primary ____ INTO ____ primary ___ I
\ I \ I

, __ END _I I

Examples'!
X f and 9 used the ptr function
% to point at elements of array1

FINO p OVER f •• q INTO array1 WHERE p@.num = C
% ptr function itself may be used;
% END gets last element of array2

FINO LOCAL Q aVER ptr(array2 (21) •• ENO INTO array2
WHERE Q@.char = "X"
% pointer ~alues have been previously
% stored in a global structure

FINO EXTF.RNAL rOVER global.tbl3_begin •• global.tbl3_end
INTO tbl3 WHERE r~.name = current_name

5~ Logical operations and concatenations enhance"-ent

It is now legal to do logical operations and
concatenations between hex strings and display integers.
The display integer involved in the operation will be
coerced to ~ string of its own length with the base type
set to the bas~ ~ype of the counterpart string. Example:
put.string C"dint2 = U + dintZ);

I

\

\

APPENDIX 8 GENERAL ENHANCE~ENTS Page 7 of 23

o
- 6. Comple~ wait enhancement

The complex wait fu"ction now includes four new event
tyo~s_ They are: stoQue_parameter_block.STOQINPUTEVENT,
stoque_parameter_block.STOQCUTPUTEVENT,
pr09_name.CRCRINPUTEVENT and pro9_name.CRCROUTPUTEVENT,
where prog_name is a primary of type STRING (6) CHAR
(EBCDIC), and stcque_parameter_block ;s a structure
beginning with a fi~ld of type STRING (6) CHAR (eeeD!C)
which is the STOQUE Queue name. It is the user's
responsibility to .ake sure that the queue_name is a 6 UA
field STOQUE queue name and the prog_name is a 6 UA field
program na.e.

7. Literal hex string OPtimization

The code produced for string operations involvin~ a
constant hex string has been changed in two respects.
First, if the constant is either 1 or 2 digits long, an
ORR/ANO is replaced with a SST/SRT instruction.
Secondly, if the constant is less than 7 digits long, it
is made a literal in-the A address field of the ORR/AND
instruction.

8. New file types supported

For regular files, DtP and ISC are now legal values for
the KIND attribute.

9. User-defined buffer ;0

10
MOD

For regular files, it is now possible to do input/output
from different buffers. To allow this direct buffer
access, five standard procedures
(prepare_user_defined_buffer_io, writE_buffer,
read_buffer, read_random_butfer and write_random_buffer)
under the st~ndard module "ioN have been added.
Fotlowing is the mocule descriPtion that aescribes these
new standard procedures ana their parameters.

prepare_user_cefined_buffer_lo
PROC <file fILE,

buffer UNIV PARAMETRIC_HEX_STRING); % MOdulo ana size

read_buffer
PROC (file

buffer'

% must be mod 4

fILE,
UNIV PARAMETRIC_HEX_STRI~G); % Mcdulo and size

X must be mod 4

/

- ,..

t,

APPE~OIX 8-

PROt (file
buffer
key

Ge~ERAL ENHANCEMENTS

FILE,.
UNIV PARAMETRIC_HEX_STRI~G,.

1 •• 99999999);

FILE,.

Page 8 of 23

~ Modulo and size
% must be IIIod 4

writ e_buffer
PROt (file

buffer UNIV PARAMETRIC_HEX_STRING); Yo Modulo and size
X must be mod 4

write~random_buffer
PROC (file FILE,.

buffer UNIV PARAMETRIC_HEX_STRING,.
key 1 •• 99999999);

% Modulo and size
X must be mod 4

There are five restrictions placed on these
user-defined-buffer-io procedures.

(a) Prepare_user_cefined_buffer_io must te called
before any of the read/write procedures can be
used.

(b) There is only one buffer (i.e.
FIB_AA and FIB_BS) declared
used.

only one pair of
on the file to be

(c) The size anc modulo of the buffer must be mod 4.
Deferenced parametric pointers,. variable length
strings and fixed length substrings with varible
offset are th~ user's reponsibility. The system
will kill you if they are not mod 4.

(d) Once the buffer is used in
prepare_user_defined_buffer_io, SPRITE will
generate optional run time code to make sure that
the sa.e buffer is used for read_buff~~,.
write_buffer,. read_random_buffer and
write_random_buffer.

(e) Using both the regular I/O procedures and the
direct buffer I/O ~rocedures for the same file is
not allowed.

Following is an example that shows how to use these ne~ standard
pr oc edur es.

Eli.gl~.:
direct_buffer_io
MOD

APPENDIX 8 GENERAL ENHANCEMENTS Page 9 of 23

(1
. TYPE

REAL_RECORD = STRUC
reocrd STRING (10000)

CURTS,

DUMMY_RECORO :~STRUC

dUf!lmy

CURTS;

% takes 20000 digits

STRING CD
X takes only 4 digits

reader (MYUSE = IN, KINO: OISK]
OF DUMMY_RECORD, % Allocate 4-digit buffer

% instead of 20000-digit buffer
printer (MYUSE = OUT, KIND = PRINTER]

OF DUMMY_RECORD; % Allocate 4-digit buffer
% instead of 20DOC-digit buffer

bUffer_block.
DATA

driver
PROC

prp.pare_direct_buffer_io;
do_direct_buffer_io;

4 driver

prepare_direct_buffer_io
PROt;

CORP;

GENERATE EXTEPNAL blk_buf_ptr;
io.prepare_us~r_cefined_buffer_io (reader, blk_buf_ptr@);
io.prepare_user_defined_buffer_io (printer, blk_buf_ptr@);

do_direct_buffer_io
PROC;

CORP;

SHARES

io.read_buffer (reader, blk_buff_ptr@);
io.write_buffer (printer, blk_buf_ptr@);

J!
~ .

\

APPENDIX 8 GENERAL ENHANCE~ENTS Page 10 of 23

DOM;

10. CASE state~ent optimization

The CASE state"ent will now use a multiply and indirect
branch to select an alternate, rather than a search and
indirect branch, but only if these conditions are
satisfied:

1. There must be' at least 12 alternates ;n the CASE
statement. A search is faster for 11 or fewer
labels.

2. The selector expression must be unsigned numer;c
or unpacked ORDERED or SYMBOLIC.

3. The result of the selector expression ~ust have a
length in the range 2 •• 6.

4. A certain percentage of the possible alternate
labels ~ust be specified; otherwise, the case
table will be much larger. For the lengths 2~.6
these percentages are 80~, 67%, 67%, 57X and 57%.
For example, if the selector expression result
type is 100300 •• 100399, then at least 57% of
(100399-100300+1) or 57 alt~rnates must be
specified before a multiply will be generated.

For large CASE statements, the multiply ;s more than an
order of magnitude faster than the search. In most cases
(a little pun there) the compiler will automatically use
the multiply, but if a few alternate labels must be
~anually added to the CASE statement, the rewards are
worth it.

11. ICM_~OKEN definition change

Three new IeM_TOKEN fielcs were added for C03CL anQ
FORTRAN. The "segment_threshold" field in ~COULE_HE~DER
was changed from 4-UN to 2-UN to make room for a 2-UN
·version_number". 80th fields are set to zero, as
before. The new 8IT field "no_code_list" was added after
"local" in ~ODULE_HEADER. Also, the ne~ BIT field
"fortran_external" was added after Hreturnseg_on_stack H

in PROC_I~TEP.FACE. 80th BIT fields are set to false,
instead of heing "F"ed out.

\

,' ..

I

APPENDIX 8 GENERAL ENHANCEMENTS Page 11 of 23

file buffers in HIGH DATA

SPRITE no longer marks the buffer blocks as high data.
The name of the buffer block for a particular file block
is: "uwa_buff_XXXX_YYYYVY", where XXXX is a 4-digit
block number assigned to the file block by SPRITE and
YVVYVY is <the first six characters of) the file block
name. This enhancement allows the user to put the buff~r
block in the appropriate ov~rlay when binding together
his program.

13. Parametric arrays

Parametric one-dimensional arrays parallel parametric
strings in syntax and use. The same capabilities and
restrictions appLy. The syntax for a parametric array
type definition is:

parametric array type defn
I
I upper bound:
, __ TYPE __ indicant __ < __ param:ident ___ subrange ___)_ = ,
___ ~ I

I lower bound: param: element:
, __ ARRAY __ (__ constant __ •• __ ident __] __ Of __ type_

,----, ,
A oarametric array must be one-dimensional~
bound constant must be an ;nteqer less than or
the lower bound of the upper bound subrange,
be an integer range type.

t

The lower
equal to

which must

A parametric array type can be the base type of a pointer
as well as the type of a formal parameter. The siandard
operators "upb" and "lwb" can be used to aiscover tile
upper and lower bounds of the parametr;~ array. The lwb
function always' returns the lowpr bound contant used in
the parametric array type definition and the upb function
returns a value which is: the lower bound value + the
nu~ber of elements in the corresponding actual array - 1.
within the procedure, the index type of the parametric
array is lwb •• upb, and the semantics of fixed arrays
apply. For example:

TYPE
VECTOR (upbnd 7 •• 1CO) = ARRAY [4 •• upbndJ OF 0 •• 10000,
VECTCR_PTR = PTR TO VECTOR;

build_vector
P~OC;

VAR sum O •• 10GOCOI],

APPENDIX t3 GENERAL E~HANCEMENTS Page 12 of 23.

CORPi

vector ARRAY (1 •• 10] OF C •• l0000;

vector := (1, 2, 3, 4, 5, 6, 7, 8, 9, 10J;
sum := sUM_vector (vectcr);

sum_vector
PROC (vector VECTeR) RE1U~NS 0 •• 1000000;

VAR sum 0 •• 1000000:= 0;

fOR i OVER lwbCvector, 1) •• upb (vector, 1)
00 X lwb returns 4

sum +:= vector [i]; % upb returns 4 + 10 - 1 = 13
OD;
~ETURN sum;

CORP;

To allow the GENERATE statement to work for par~~etric

array pointers, the syntax was modified as follows:

gene~ate statement
I integer:
, __ GENERATE EXTERNAL ___ primary ___ ELEMENTS ___ simple_expr __ _

, __ LOCAL __ I ,_ LE~GTH _, , ,

,-----------------------, ,
---------------------------------, I memory area: , ____ IN ____ ioentifier __________ _

The ELEf'1ENTS t:lause is only applicable if the' pointer
references a parametric array. The sile of the SPd~e
generated for a parametric array will be the ~aximum size
in its r~"ge, unless an ELE~ENTS clause appears. In that
case, the integer expression which follows the word
EL€~ENTS will be the number of elements in the parametric
array, provided this number 01 elements is within its
range.

14. Optional stack overflow check

The stack overflow check generated by SPRITE now has
optional code markers Clevel=bcunds_checking_code) around
it.

\
I

I

APPENDIX 8 GENERAL eNHANCE~ENTS Page 13 of 23

\/,,\

~ 15. Conditional compilation

(

\

The facilities for conditional compilation that COSOl and
PASCAL. have provided are now available in SPRITE. Each
boolean type etl (except "TITLE" and "CONTENTS") have
been implemented on its own boolean stack, and $POP
option has been added. when SSET or $RESET is used, the
previous value of each boolean option specified will be
stacked, and the current value will be set according to
the boolean expression or oefault value. There are also
up to 12 user-defined boolean options. The SeT syntax
is:
I ______________________ , ___________________ _

f , ,
, SET _' ___ boolean option name ______________________ ,

, I \ boolean"
'_user-defined option_' ,_ = expr _, I

boolean expr
I
I ,________________ TRUE ___________________________ _ , , ,

"_____________ FALSE ___________________ , I

I 1 I I OR ___ ,

I " I I __________ , ____ AND ___ , ________________ 1
I , , I
,_, _______________ boolean option name ___ ' __ 1

\ I \ user-defined I
,_ NOT _, , _______ option ______ ,

I

The boolean option name and user-oefined option name 3n
the above boolean expression must be declared before they
Can be referencrd. The $POF option discards the current
~etting of each option in a list of boolean options, and
restores the immediately previous setting. You will get
a syntax error if you hvae too ~any POPs. The POP syntax
is:
I ____________ _

, -------------I I ,
, ______ POP ___ , _____ boolean option name ___ , ________ _ , I ,

,_ user-defined option , I
I
I

APPE NO IX B GENERAL ENHANCE~ENTS Page 14 of 23

The RESET syntax is:
I ____________ ,

\ I ,
' _____ RESET ___ ' ______ boolean option n~me _____ , ____ _

\ I \
, __ user-defined option ___ , I

I
!liJlDJ...e.:

$$ SeT RELEASF.VERSION = FAL SE X Change to TRUE, when
X switch to release version

$$ SET OMIT = RELEASEVERSION % Instead of using "'1 COM;"
dbwrite.string (...... ..;);

dbwrite.string (.......);
$$ POP OMIT % Instead of using "% MOe;H

Debug source can be surrounded with "ICOM" and -XMOC".
To delete the debug code from a release version, one
would then change these to "COM" and "~OC·. With
conditional compilation, one can achieve the same thing
by changing a single line, as shown in the above example.

16. Summary of virtual file utilization

Statistics of each virtual file's high bound, logical
I/O, physical I/O, size (in dig~ts) and overall hit ratio
are now available. To have this information and CPU time
for each pass, use a lower case "j- in the second program
parameter: <compiler name>/dummy/j

17. Maximum modules

SPRITE now allows a maxi~um of 250 modules in one
program.

18. eXTENDED option

The EXTENDED option allows a large program to address
over one million digits. When this option is set, the
internal representation of pointers will be 7 SN <rather
than an address controller digit, hex "eN and 6 digits of
address).

To take advantage of this new feature, you must set $$
EXTENDED in -your MID and use the SYSTEM file produced to
recompile all the modules for that program. Remember,
you don't need to set this option when you compile your
modules. Your must bind your program with the E=====

APPENDIX 8 GENERAL ENHANCEMENTS Page 15 of 23

series of the intrinsics libraries.

19. Enhancement of on~-dimensional array operations

It is now legal to move a one-dimensional array (slice)
to another one-dimensional array (slice) provided that
both arrays (slices) have (1) the sa~e number of
elements, and (2) the equivalent elememt type.

For parametric arrays and variable array slices, SPRITE
will generate optional run time code to make sure the
number of elements in both arrays is the same.

example:
TYPE

P_ARRAY (no 1 •• 50) = ARRAY [1e.noJ OF ELEMENT;
VAR

array1
a .. ray2
p_array

array1 (1 •• 5)
p_array@
p_array@

ARRAY (1 •• 10] OF ELEMENT,
ARRAY [0 •• 9) OF ELEMENT,
PTR TO P_ARRAYi

:: array2 [4 •• 8);
:= array1;
:= array2 (i •• j);

20. FIND statement warning

SPRITE now puts out a ~arning for the fIND st~tement
under the following two conditions:

(1) •

(2).

When the unit size of the find key is bigger than
that of the find primary.

When the types of the find primary and
key are both type subrange and the range
find key is not completely within the
the find primary.

the find
of the

range 0f

This is because SPRITE coerces the find key to the type
of the find primary. Optional overflow testing or range
checking code will be generated under the above
conditions~ This OPtional eoce will be deleted when you
bind together a non-d~bug version of your program. This
may produce strange results, such as a false ~atch for p@
< key, where key is all f's because of the coercion
fai lure.

APPENDIX 8 GENERAL ENHANCE~ENTS Page 16 of 23

21. ~AXRECSIZE

MAXRECSIZE is no longer a required attribute for port
files at d~elaration time. Its default value 1s 19998
bytes, if it is not declared.

22. Oirect buffer io for PORT files

SPRITE used to allocate a buffer for each port file
declared. Input from and output to the port file was
t·hen done by moving data between the buffer and the
user's record (work area). This approach requires extra
space for the buffer in aadition to the space for the.
user's work area. To save the space for the buffer,
SPRITE no longer allocates a buffer for ea~h port file.
Port I/O is now done directly from the user's work area.

APPENDIX C OMEGA eNHA~CEMENTS Page 17 of 23

1. linked list FIND state~ent

The linked list FINO ,statement provides the ability to
search a linked list for an element ~hich satisfies a
specified condition. After the search is performed, one
of the two alternate groups of statements is executed
depending upon whether or not the search was successful.
The syntax is:

find statement
I
\ ___ FINO ___ find pointer spec ______ find control ___ ~_

\

--, I
_WHERE _______ find condition _________ _

\

-------------------------------------, I
_THEN ______ statements ___ ELSE ___ statements~ __ DNIF ____ _ , ___________________ , \

I

Thefind_pointer_5pec clause specifies the statement's
result pointer. It is either local or external. LOCAL
means a statement-local variable (identifier) whose value
and scope are available only in the THEN part of the
statement. LOCAL is the default. EXTERNAL means an
~xternally-declared (to the statement) variable (primary)
which is a pointer to the type of the list element and
which on a non-hit will receive the nil pointer. The
syntax is:

find pointer spec
I pointer: , ____________________________ identifier ________________ _

" ___ LOCAL ___ ' pointer: / ,
' ___ EXTERNAL ________ primary ____________ , I

The find control clause specifies the type of the search
to be performed. The syntax is:

find control
I predecessor pointer: \ __________________ ~ITH _____ ldenti1;er _____ _

,----------------------, ,
---------------------------------------, / list pointer:

\ __ FRCM _____ pri~ary _____ USING ___ link field _________ ~

link field

\
I

APPENDIX C OMEGA ENHANCE~ENTS Page 18 of 23

I ____________ - __________ _
I I .field na~e: , , __________ , ________ identifier ________ , ________________ _

\
I

A predecessor pointer way optionally be defined. It is
of type PTR TO PTR TO <list element type>. It points to
the link field of the element which precedes the ele~ent
satisfying the find condition. The predecessor pointer
allows the programmer to delink the found element or
perform other manipulations requiring access to the link
of the preceding element. If· no ele"-ent in the list
satisfies the find condition, the predecessor pointer
points to the link of the last element. If the list is
empty, or the first element satisfies the condition, it
points to the list head.pointer.

The list pointer primary is a pointer to the first
element in the list to be searched (the list is
terminated by a nil link field). The link field clause
specifies a list of field selections which are to be
applied to the list element to get the field that points
the next element in the list (i.e. the link field).

The find condition specifies the condition which the
element being searched for must meet. The syntax is:

find conditior.
I

. I bit mask:
" __ ANY_ONE_BIT_IN ___ find primary ___ MATCHES ____ expr __ _
" __ NO_ONE_BIT_IN _,
1
I .

' __ find primary _______ _

,----
" __ -
" __ -
" __ -
'---

,
I

key: I = __________ express;on ________ I
~= ____ I "

< ___ II I
___ 'I I
___ " I
___ , I

If the ANY_ONE_BIT_IN .or NO_ONE_8IT_IN for~ is used, all
corresponding bits in each find primary and the specified
bit mask expression are examined until an element is
found which satisfies the match condition. A match
occurs if any (ANY_ONE_BIT_IN) or no (NO_ONE_81T_IN) pair
of corresponding bits are both set. The bit mask must be
a fixed length hex string the sam~ size as the find
primary.

If a relational form of the find condition is used, the
array/list is searched for an element satisfying the
relational condition.

(

(

APPENOIX C O~eGA ENHANCEME~TS Page 19 of 23

Prog.read_timer's return type and the parameter for
OMEGA's version of mcp.set_timer were changed to 17-UN.
This complies with the revised specifications for OMEGA's
ROT and STT opcodes.

3. INT, APE, WHR

4.

The following new standard procedures have been added to
implement OMEGA's new INT, APE, and WHR opcodes:

mcp
HOD

interrupt
PROC;

make_page_table_entry_unused
PROC (descriptor UNIV P_STR_B_HEX);

X INT

X APE 00

copy_page_table_entry % APE' 01
PROC (source_descriptor,

dest_descriptor UNIV P_STR_8_HEX);
X user-defined, 8-digit structures
X describing which PTE's are involved
% (descriptors the~selves are not changed)

update_reinstate_list_address
PROC (new_address UN_8);

update_snap_picture_address
PRoe (new_address UN_g);

update_memory_error_address
PROC (new_address UN_B);

read_clear_processor_status
PROC (status VAR UNIV P_STR_2_HEX);

% user-defined, l-cigit structure
DOM;

Prog.lock_conditional

X WHR 00

% WHR 01

X WHR J2

% WHR 03

There is now an excepti~n clause for the standard
procedure prog.lock_conditional. It works jus~ like MIF
EOF" for I/O standard procs. The syntax and semantics
are as follows:

lock_conditional exception clause

APPENDIX C OMEGA 'ENHANCEM~NTS Page 20 of 23

I
I
\ __ If_;t~K&n __ THEN __ state",ents ___ ELSE __ stateNents ___ FI __

tN~8~ \----------------, \

prog.locK_conditional (lock>
If toe I(E D.J:f'I_V"t;
THEN X it was already locked

do_somethin9_else_instead;

ELSE % now I have it
do_somethin9_with_it;

FI;

5. MCPCAL and BGOVL calls

% no sendcolon

When calling an overlay module entry point, SPRITE now
generates a VEN to either MCPCAL or BGOVL, depending on
where the call is from. If the call is from an overlay
module, SPRITE generatp.s a VEN to MCPCAL. Otherwise, it
generates a VEN to 8GOVL. The Dverlay modules ~re
specified in the MID by the overlay statement, as
follows:

overlay statement I ________ ,
I ,
, _____ OVERLAY _____ ' ___ module:

\
ident ___ ' ______ ;

\
I

The standard function scale_ptr can now be used to
initialize data block pointer variables at compile time.
Also, a call to scale_ptr may now appear wherever the
conte.t clearly defines the resulting pointer type (such
as the actual parameter to another procedure). (The
above is also true for $SMCPVI.)

7. INCLUDE ~arkers

The following INCLUDe markers have been added to our MIO:
general_and_vf_defn,
max_image_and_text_length,
position_info_typ~,

symbol_table_and_token_defn,
file_attr_symbol;cs,

I
I

APPENOIX C O~EGA ENHANCEMENTS

id_and_attr_defn,
vf_file_data, .
icm_defn_one,
f c.1'It_d. fn_ two,
iCII9:..put_",odule,
sYll9bol_table_module.

Page 21 of 23

"'- '

APPENDIX 0 INTRINSICS EUGS fIXEO Page 22 of 23

Wh~n called with a parameter of 1 (one), "put.go_to_col"
now correctly recalculates "pt~char_used" and
·pt.char_left" in the "put_Line_info" OATA ar~a.

~. dbwrite and f_dbwrite labels

The dbwrite and f_dbwrite ",odules use put.string to print
the label fields, causing labels longer than 100
characters to be incorrec~ly printed.

The MID for these modules has been changed to limit
labels to a ~aximum of 100 characters.

....

.r-.

~~\ (.
"'"

A'PPE NO IX E INTRINSICS ENHANCEMENTS Page 23 of 23·

A new procedure, "swap_line" has been added to the "put"
module. This allows a progra~ to construct two or .ore
lines simultaneously by exchanging all of the information
in the "put_line_info" DATA area.

The "dbwrite" module now uses this procedure to create
its output lines while preserving whatever the rest of
the program has done with the "put" module.

\

· .
gytt~g]L-~~9~!ligD-____________________ ln1~c=Qi11~~_k~C~~~~QD~n~~
, Corcorat, Unit , locatian 'OeQt. ,
, ComDuter Systems Grcuo I Pasadena I Prop. Activity •
,--~---------------~------~-~----~-----~~---+-----------------------,

Su~ject~ New Release of SPRITE and SPRITX

On Tuesday" Apri l 6, 1962' SPRITX. (65050 w,i II become SPRITE and a new
version of SPRITX ~ill be available.

The new version of SPRITX fixes bu~s (see Appendix A) and provides new
features (see Appendices B and C).

The new SPRITX i~ version number 6601 and is agl HIn-compatible with
version 650SX or earlier ver5ions~ This inconv~nience is necessary due

·to chanpes within the SYSTEM information.

Both SPRITE and SPRITX emit Type III format 7 IeHs. However~ ICMs
creatad by SPRITE are Dg! co~patible with ICMs craated by SPRITX, as the
interface to the debup ~odule has changed. If you wish to use SPRITX,

('U Bust r.ce.oile your HID, all of' your HOOI" refilter your BPl-created
~~Hs' with the new verston of FILTX, and un-truncate bind-deck na~es
which are 9reater than 24 characters in you~ pro9r a • source before you
bind your code file.

The y===== series of the intrinsics libraries are cc~oatible only with
SPRITE-emitted ICMs. The X===== series of the intrinsics libraries are
c'ollpatible only' with SPRITX-ellitted ICHs. Intrinsics enhancements and
bu~ fixes will be only in the X===== series (see Aopendices D and E).

Please.#'repor:t any proble •• tQ.·a:~1tjJb.r,,;o1 t,he I.ote.entatton SYlter,.
Section" fer screening before e",e,,.t"9 'the. into the BUGS syste •• Bring
the aooropriat~ listin9s and wh~t~ve~ .lse'~e mi~ht n~ed to determine
that the orob\::eni is' truly a SPRITE bug. All actual bugs will be entered
into the BUGS. '-systell by the rer1~rting'ti5er;.

Belinda Wilkinson# Manager
Iliolam~ntation Syste~s Sect~on
Architecture Oepartment

/ .
lis relea~e document contains:

APPENOIx A:
APPENCIX B:
APPENOIX C:
APPENCIX 0:
APPENDIX E:

BUGS fI XED
GENERAL ENHANCEMENTS

-MCP-RElATED ENHANCEMENTS
INTRINSICS BUGS FIXED
INTRINSICS ENHANCEMENTS

BUGS FIX~D _-... -...... _-

1.· Elillinate unnecessary calls to' the "move'" intrinsic
(82708)

Certain sDecial conditions no lon~er cause the comoiler
to ~ene-rate unneeded calls to the move intrinsic.

2. Variable "pro~.b,ctR parameters restored after BCT

If you use a. variable strin~ of hex as the parameter to
oro~.bct~ SPRITE nOk ~oves the strin~ Q3~1 to your
variable after the' BCT has been executed .. Thus you may
nOk access any inf~rmation which has been changed by the
Hep as a result of the BCT.,

3. RETURN state.ents disallowed in HACRO definitions

You may not define MACROs which contain RETURN
state.ents. This used to cause SPRITE to generate an
exit from the procedure khich "called" the maCro.

DATA declarations cause incorrect syntax errors

The last variable in a DATA declar.ation kill no longer
cause certain things (such as a FILE declaration) to be
inccrrectly found to have syntax errors in some cases.

5. HeaD overflow detection (B2670)

The eode SPRITE ~enerates to detect heap overflow now
checks to see if the next available heaD location is)
the heap limi.t (rather than)= the limit).

6. Bad code for otr function When destination indirect

SPRITE now ~enerates correct code for the otr function
even when the destination has indirection involved.

1. Revised heaD/stac~ collision code for HIG~~EAP (82717)

If you set the ~IGHrlEAP dollar card ootion in your
~odule, SPRITE nOk generates orocedure orolo9ue·
heaa/stack collision cod~ khich calls err.error (unless
the E"RRORCAlLS option is re5et~ in which case it
~enerates a Il-ex "EC" occode to cause a orocessor error at
run-time). Previously, SPRITE unconditionally ge~erated
the hex "EC" occode.

\

.. 6.

BUGS FIXED Pa~le 2 of 17

RESET multipla dollar eard ootiens

If yoU use RESET on a dollar card~ it will now aooly to
all of the follDwin~ options on the card (or until you
soecify SET). PreviouslY~ just th~ first ootion was
reset while the remainder were set •

. '

APPENOIX B GENERAL ENHANCEMENTS Page 3 of 17
;' ----------
,.(~:
'W,'

1. ~filler" for unused fields in a structur~definition or a
data de~laration

You ~ay use the word -filLer· as an identifier anywhere
in a structure definition or a data declaration. You

,cannot reference the oarts of the structure or the fields
in the data declaration thus defined. You' may use
~filler·' any nu~ber of times in a given structure
definition or data declaration.

The word "filler"' is now a Dredefined ide'ntifier in the
SPRITE language. ' Use of t'his word outside o·f structure
definitions or data blocts will cause syntax errors.

ExallPle:

TYPE JUNr(=
.. S TRUC

first_part
filler
good i es
filler
f iLL 'e r

CURTS;

0 •• 99 ,
STRING (4) OF" HEX II

BOOLEAN ,
CHAR II

o •• 9999999

BJ~jng§£: the c~mpiler still generates its own internal
fillers (or pads) as needed. In the above examole, it
would allocate 1 digit after "g~odies" to out the CHAR at
a mad 2 address, and it would allocate 3 digits after the
last "filler" to ~ake the size af the structure mod ~.

These new functions (each requiring 2 (BCOIC strings as
para.eters) allow you to scan strings for particular zone
digits. They oerfor. in a manner similar to -index_any·
and -index.,:none"II:' save that only EBCDIC strin~s are
allowed as parameters. They ~enerate SZE (scan zone
ecual) and SZU (scan zone uneQual) machine instructions'.

Zene index any returns the index of
in ;trin~-2 which has i zone di~it
in any character of string 1. If
ret u r n~ a z e r 0 ..

the first character
equal to a zone digit

none is found, it

Zone index nane returns the indeX of the first character
in siring. ~ which has a zone di~it not equal to a zone
digit in any character of strin~ 1. If none is found' .. it
returns a zero. '

For example,

, (

,r . APPEN.O I X 8 ~
"

GENERAL ENHANCEMENTS --_ ... - .. _. --_ --. .. -_ ... _--_ -..

nUlllber_i'x := zone:"index_any ("O"~ card_ima~e); % find
% first character "0" thru "9" (also hex FA~ etc.)

IF zone index none ("AJS", word> = 0
THEN - % there are no uopercase letter! in this word ...

3. MAp dolLar Card option

MAp i san e w a pt ion w h ; c h you lit a y set 0 r res e ton a
dolLar card. The .defauLt value of this ootion is reset.

Within the' rang6 of SPRITE source coda that this option
is set, the riutput Listin~ lines of STRUCture definitions
and. DATA· definitions are modified to show the internal
detiils of the structure or the data block •.

The card-ima~e ori~in field of these output lines
(normally "EDITOR"' "INCLUDE", "PATCH-~ etc.> no~
contains 3 col u II n s 0 f· i n for III a t i Q n . as fall bioi s :

1. siZe (if BIT~ then "." olus allocated bit>
2. offset
3. bloc~ nu.ber (only for DATA definitions>

~ For examole,

------------~~~~--~~~---~-----------------~-~---------
TYPE

TYPE

data
DATA

STR1 = STRUC
a BOOLEAN,
b,·
c BIT,
d HEX,
a CHAR

CURTS;

STR2 = STRUC
f 0 •• 999'

. ~ S T R I N G (99) ,.
h 5TR1

CURTS;

v1 STR1,
v2 STR2,
v! C'H AR,
yt., HEX,
v5 BOOLEAN~
v6 BIT;

01010000
01011000
01012000
01013000
01014000
01015000
01016000
01017000
01016000
01019000
01020000
01021000
01022000
01023000
01024000
01025000
01026000
01027000
01028000
01029000

~ 01030000
01031000

E 01 TOR
EDITOR

1
.. 6
.4

1
2

EDITOR
EOI TOR
EDITOR

3
196

6
EOI TO R
EDITOR
EO I TO R

8
212

2
1
1

.6

o
1
1
2
4

o
4

204

o
8

220
222
223
22 It

54
54
54
54
54
54

---------~-~-~~---~-----------~-------~---------------

H~lJ: for you to get the
ootion, each DATA variable
en a seoarate source line.

most information from this
or STRUCture comoonent must be

,
APPENOIX 8 GENERAL ENHANCEMENTS Page 5 of 17 -_ _-----,

Strin~s <= 100 characters allowed as VALUE oarameters

You may n~~ Use st~ings of uo to 100 characters as VALUE
Darameters to a procedure. The Drevious limit was 50
c h a rae t e r s •

5. 30 ct1ar~ters of identif'iers and indicants now. used

Your identifiers and indicants must now· be unique within
the first 30 characters, rathe~ than 24-

H2!£: 8e sure to change your bind dec~s in those cases'
where you oreviously had to truncate an identifier to 24
charactersa SPRlTX and 8INOr now truncate identifiers in
t he· sallie lIanner· •.

6. Move words or lIIova aloha done where oossible

The cORloiler now ~enerates HVW cr HVA Code in certain
cases which used to be handled less efficiently.

7. Standard procedure ·lIIove_word~·

This new standard procedure, kn~h 1~~y!g Q! y!~g ~iln
jU!t.!:!ll .s.!Yl~n' allows you to force the .compiler to
generate MVW code in circulIIstances Which it would not
norl'ally do so •.

Thi~ procedure takes two UNlV parameters: the source
field· and' t'he destination field. ~2 £e~Qil~-!lm~ 2£
!Y1l-!imjl £llill.§. at.!l ms.d~ 1~ ~.a.a i1 !J:t.e..s..!l .t!!2 fltiQ~ 9..C.~
2D ~Q~ ~ j~~~~~.!l~' h~~~ ~QD ~ ~ll~' ~ng h~~~ th~ ~jm~
lll.a •

11 iA !YYH £~~~~lhil1tl ~ jnt~. 1n!1 lh! ~K ~111
1~DS!i2D ~gt~~l1~ ~hAa ~QU~ ~~g4~. tYD~! The SPRITE
9rou~ will react with disDleasure if you reDort "bugi"
whiCh turn out to be caused by misuse of this standard
procedure.

For e:cautple,

~ ..

Clarification of SPRITX Releale Helo
Apoendix B. Itt •• 6 and 7
Hove Ooti.izationl

Mo~t Deople thin~ing of usinp the new standard fUnction
·rrove words ~ill have no ne~d of it. spAITX nc~ optimizes tc

MVW whenever it can ~uarantee at compile time that it wi II
wcr~. As a ~uide to those who are interested, the exact
corditions under ~hich SPRIIX ~a~es thif. optiwization are
spelled cut below.

80th ooerards must have the sarre sile and controller. "The
size and address of both cperands must be mod 4. (This
includes a mod 4 offset from the be~innin9 of a data bloc~,
for example.) ·80th operands ~ust be fixed len~th. Unless an
ooerand's tyoe is mod 4, it cannot use indexin~ (except IX3,
which is always mod 4) or indirection. Furthermore, if
indirection is involved, the final controller must be UN.

r
APPENDIX B GENERAL ENHANCEHENTS Pa~e 6 of 17 ---------..... -... -----_ _--- -...... -

..

, .. (.
1 .. ~lC~>
\ -
.~,

Initialization of pointer variables

Variables of tyee pointer (but n~~ oointer to
may noW be initialized at comoile time •.
semantics and rutes are:

orocedure)
The syntax'

SYNTAX: otr_variable PTR (TOl <access> <level>
<any_.tyoe> (STATIC] := ptr (referent);

SEMANTICS: ptr_variable is initiatized to ooirrt to
referent ..

RULES:

... here

,

(a) Subject to all rUles that aooty to the
use of otr f~nction_

(b.l' The. add res s eft her e fer e n t m us t be
deter'lIIinable at comoi Le tilDe.

(e) The following table shows the ~inds of
of Dointers and the valid referents
each kind of the pointer can point to.

POINTER
I<INo

(A)

(8)

(C)

REFE~ENT lUND

(1) (2) (3) (4-) (5)

~~--~-----------~------~---------------
t YES YES nla n/a n/a

,-------1-------1-------,-------1-------1
YES n/a YES YES NO

YES n/a YES YES YES -----------...--.-. .. ---.. ,...-_ ----------------

POINTER KIND
(A) : Data bloc~ pointer variables

STATIC pointer variables'
Stack pointer variables

(B).:
(Cl:

REFERENT KIND

For exa~ele,

V .. AR

(1): · .. Constants
(2): Data block variables (for the same

block only)
(3)~ Data bloc. variables <for the shared

blocks only)
(4): STATIC variables in the same procedure

only
(5): Stack variables in the sallie procedure

only

junk
junk_ptr
ot r _t en

JUNK,
PTR TO JUN~

PTR TO CONST 1 •• 10
. -. - otr (;un~),

otr (10);

(

GENERAL ENHANCEMENTS Page 7 of 17

CDNTENTS option has the sa~~ format as the TITLE
etian. Howeverp the string y~u sDecify aopears £n!r in

~he tabLe-of-conten~s at the end of the comoile listin9_
You may use t~is option for easily finding thin~s within
your HIDs and IIIcdu!es without affei:ting Ytlur' present oage

,headings.. for exalllpLe,

! S C 0 NT EN T S ""5. 7 Vir~ual fil~ TYPES"

10. MODULO allowed for data types

MODULO allows you. to specify the modulo boundary at which
a data ob j ect is a l ig.ned •.

The syntax for the MODULO cons-truct is':

tyoe
I
\ MODULO __ . integer ____ non-mod-type

,---------------_____ --1
,
I
I

~here non-mod-type is an indicant or anY tyoe which does
net not start with "MODULO· (i.e. VAR jun~ MODULO 4
MODULO 2 BOOLEAN is incorrect). If non-mod-tyoe is an
indicant, you /IIay define that indicant either with or
with(Jut its own HODULO reQuirelllent.

The integer must be an inteaer literal in the range
1 •• 9999. When generating iCHs for use by BINOER, this
inte9~r will be restricted to 2 or 4 (this restriction
does not aoply when the HCPV! oation is set).

Whenever the MODULO construct is specified .. the re-sulting
modulo is the least- co.mon multiole (LCM) cf the
scecified lIIodulo v.alue and the existin9 lIIodulo of the
~odified type. Thus, the modulo for MODULO 3 EBCOIC
would be 6. This means that .odulol. can never be lower~d
by usin9 the MODULO construct.

The Modulo of an ag~regate Ca structure or data bloc~) is
the LCM of the modulos of all its comoonents. for
exa.pte, the Modulo of STRUC .~ MODULO 3 HEX, ~ MODULO 5
HEX CURTS would be 60 (don't forget that the default
II 0 d u lao f a S T RU Cis 4). . T his e x a II p lei l l us t rat est hat

',_ the use .r 0 fad d b all II a d u los will 0 a y a so ace 0 e n a l t Y ..

It ~s an error if the uodated modulo value of a
stac~-relative item exceeds 4~ or if the uodated modulo
value of ari~ other item exceeds 9999.

\ r \~
r;' j A P PEN D I X B GENERAL ENHANCEMENTS Pac;xe 8 0 f 17

.. -----~--- --..... -_ ... --....._- _

/ t 1.

(0

.:;(.{
.~"

12.

The type checking has been changed so that italIIs with the
same SfRUC ba~e type, bu~ with different modules, are
cOIiPatible.

f"or example,·

junk
DATA

TYPE INTERfACE
STRUC

fir s t,_ t hi n c;:t BOOLEAN ,
s tr-ange_t h i ng
ot'h er _s tu ff

MODULO 4· 0 ... 3 ,
STRING (8) Of" HEX

CURTS;

VAR x INTERfACE,
y MODULO 6 INTERfACE; % x and yare comeatible

Heao overflow check 60de is now optional

The compare, branch, and call to err.error are now marked
as ootional code.

New port file att~ibutes

The foltowin9 port file attributes are now available for
your use. They apply gn!~ to pert. (not to subparts)'
yet these fieldS have fre~h information available for
your tnouiry after every port or subpart operation.

Pert
Attribute Type Get Set ----- --.. _-- ----~---- .. --~-----

AT TERR, ,. STRING (2) Of"' HEX Yes No
HY PORT AOOR ESS STRING (4) Of" HEX Yes No
·PORTRESULTS STRING (100) Of" HEX Yes No

Hep ENHANCEMENTS Pa~e 10 of 17

---------------~

, r'

,

The fQllQwin~ enhancements apply only if you set the
S HCPYI,option in your HID.

1. Pointers are 7 SN

The internal reoresentation cf pointers
rather than an address controller di9it, hex
di~its of address.

is now 7 SN,
"C", and 6

z. Pointer arithGetic with standard functions "ptr_add- and
"otr_sub"

(,

Two new standard functions, ptr_add and· ptr_sub, alLow
you to perform ~o.e basic oointer operations. These
functions' ~hi£b ~bQUld h~ y •• ~ ~ilb .!t[I~! S!Y1i2D'
heLD produce better code when stePDin9 throu9h an array
or a string. Their syntax, semantics a~d rules are:

flB_!QQ

SYNTAX:

RUL [S:

.el.B_~Y~

S YN T A X:

~ULES :

where size (pointer_2~) is the size of the
referenced tyP~ rounded up to a
multiple of the modulo of the type.

(1) pointer_l and oointer_z are Dointers with
equivalent referenced types.

(2) Parametric pointers are not allowed.
(3) Pointers to procedures are not allowed.
(4) nUIII is any numeric expression whose value is

in 0 •• 9999999

where size (Dointer_2~) is the size of the
referenced 'type rounded up to a
Multiple of the modulo Df the tyoe.

Same as that of PTR_ADD.

••• ~~BH!~~*.. No compile-time or run-time check! are
made to protect th;-inteQrity of the pointer. It is l£Y!
resDonsibility to ensure that these functions will work
oroperly when .your pro9ram runs.

,

GENERAL ENHANCEMENTS Pape 9 of 17
------~-~-----------

These port file attributes are now available,
fer the use of BNA's Port Hanager pr09ra~.
2D!~ to subport. (not ports).

but only
They apply

Attribute

HISCODEFIlEfAHIlY
HISCODEFIlENAHE
HISCOHPRESSIONfLAG
HISFLOWSTATUS
HISHYNAHE
HISNULlFLAGS
HISOPENTYPE
HISPORTADDRESS
tilSSUBFILEERROR

HISSUBPORTADORESS
HISUSERCODE
HISYOURNAHE
PLHCHARACTERSEls
pLHHATCHRESP
PLHHAXHSGTEXTSIZE
PLMHYCODEFILEFAHILY
PLHHYCODEFILENAHE
PLHHYHOSTNAHE
PLHHYNAHE
PLHSECURITYGUARO
PLHSECURITYTYPE

PLHSECURITYUSE
PUHITLE

Suboort
Type Get Set

STRING (6) Yes
STRING (6) yes
STRING (1) Of HEX Yes
BOOLEAN No
STRING (100) Yes
STRIN~ (1) OF HEX Yes
o •• 99 Ye s
STRING (4) OF HEX yes
NCERROR, DISCONNECTED, No
OATALOST, NOBUFFER,
NOFILEFOUND,
UNREACHABLEHO~T
STRING (4) OF HEX yes
STRIN~ (17) Yes
STRING (100) yes
STRING (1) OF HEX Yes
BOOLEAN No
2 •• 19998 No
STRING (6) Yes
STRING (6) yes
STRING (17) Yes
STRING (100) yes
STRING (6) Yes
GUARDED, PRIVATE, Yes
PUBLIC
10 Yes
STRING (17) Yes

No
No
Yes
Yes
No
No
No
No
Yes

No
No
No
Yes
Yes
Yes
Yes
yes
Yes
Yes
Yes
Yes

Yes
Yes

MCP ENHANCEMENTS PaCile 11 of 17

Generates assembly code for HCPGEN

SPRITE creates for you an 80 bloc~ed 5 disk file
containinCil card i~aCiles in ASMBtR format. The internal
nalle of this fi le (for labet equation) fs HCPASM.,

The contents of this file is for use with a ne~ flavor of
HCPGEN (cu r ren t l y na'lIed .. HC GX bp"') •

procedure poin-tersJt- calls to SPRITE"" intrinsics, and
GENERATE EXTERNAL are not currently sUboorted. Attempts
to use these ~ill cause syntax errors~

SPRITE stilt produces an ICM file, even thou~h it is
currently u~eless_

4_ ALIAS statement

), ...

The ALIAS statement allows you to equate SPRITE names
with MCPGEN labels. This statement goes in your MIa, and
you may not use a ~NOWS list witn this statement.

The syntax of the· ALIAS statement is:

alias state_ent
--------- , I

I 1 assembly name: \

'-- ALIAS __ , __ sprite name __ - __ strinCil literal __ 1 __

sprite nalle
I
'. alias pri_ary:
, __ ident or indicant alias selections ___ _ , _____________ 1'

atias .selecti~ns
I
I ,

I t

const array or'string selection:

• I

.,
I , __ , ____ (_____________ exor ________________ J ____ , __ , , ,

\ ___ • ___ proc or field:ident ________ I I

lhe assembly naMe cannot be mcre than' six characters
lonCil_

The alias primary must be either: Ca) a module, (b) a
data variable (or the entire block), or (C) an indicant.
OependinCil' on which kind of crimary is used, the ALIAS
statement serves any of three purooses:

I

\
I
I

APPE:NDIx C MC? ENHANCEMENTS Pa~e 12 of 17

5.

(a)

c b)

(e)

....... -----... -... --~-----

It specifies the tabel for- SPRITE to use whan
definin~ and calling a Drocedure (or module}.
This avoids the default ·PmodulelDroc#"' (or
·H~odule')' ~hich can change when a new module or
procedure is added (even if just to a knows
list).

It aenerates an EQIV (or BITI) com~and to declare
a label for data in a data block. This avoids
the default "Dbtock'off!et~ (using the inc
field)" which can chanpe when the block changes
or a new data block is added~ Ho~ever, SPRITE
modules still use the default label.

It generates an EQIV'(or" BIT" command to declare"
a label for an indicant (and its selections>.
This label is used with an index register
containing the address of a variable of the
indicant's type.

for example,

ALIAS s~_io = ·SM-IO·,
k bo = "~BO";

"ALIAS Q_ELEM = .. Q-AREA"',
Q_ELEH.next
Q_ElEM.io_descr
Q_ELEH.io_descr.opcode (1::Z)

=
=
=

.. g-LI NK",

.. g"OESC",
It g-Op .. ;

ALIAS q_elell = "Q/AREA",

ALIAS

q_elell.next = "g/LrN~",

q_ele •• io_descr
q_etem.io_descr.opcode (1::2]

= "Q/DESC",
= " Q/OP-

HASTER_AVAIL =
HASTER AVAIL (0] =
HASTER:AVAIL [OJ .avail_dis~_addr =
HASTER_AVAIL (0] .avaiL_dis~_addr~eu =
HASTER_AVAIL' (ll =

. ,
"MST-AV",
"MST-El-,
"HSr-SS·,
"HST-EU",
"HS TiEL -;

OVERLAY state.ent

The OVERLAY statement allows you to soecifiy which
.odules are located in the HCP's overlay area (as oooosed
to 9lcbator extension modules). This state~ent may only
be used 'in your HID. SPRITE must handle calls "to entry
orocedures in these modules by generatin~ an NTR to
HCPCLL in Qrder to ma~e the overlay present.

C t-fCP ENHANCEMENfS Pa~e 13 of 17 ... ~------ --.---.

Tile· syntax for this statement is:"

overlay ,
I

st a t ament·
,. , , , I lIod u len a me : I , OVERLAY _, __ i dent ----,--,

I
I

The lIIodules nailed' in this' statement must already have
been' defined in a: HOD statement.. for' examp le·,

OVERLAY k eyboard_out~· oretermi nate;·

6. HCPCLL cade for calls to procedure in overlay (HCPVI)

,\ .. " ... "

Whenever you ma~e a call to a procedure which is an entry
pcint into a module which is in an ~verlay (known by
~eans of the OVERLAY statement), SPRITE witt ~enerate an
NTR to HCPCLL with the appropriate paramete~s required by
HCPClL.

If the lII.odule froID which you lIa~e the call is not in an
overlay, SPRITE will orint a warnin~, since HCPC[[- calls
frol ~lobal are usually an error.

7~ PROCESS_RUN statement

The PROCESS_RUN statement allows you
asynchronous call on a procedure in an
syntax for this statement is~

process run state~ent ,
I proe call:
, __ PROCESS_RUN ___ primary ___ USING

to initiate an
overlay. The

strin~:
silllPle exor

The procedure call includes any necessary parameters.
Note that atl passed oarameters .ust be VALUE parameters,
that the total siz.e of all oaralll9ters lIIay' not exceed 26
digits, and that no function may be calle~.

The sfrin~ is the particular entry ooint into the HCP's
BEG 0 Y L r 0 uti n e .\oj hie h you w iSh tee all • You w ill pat a
warning if it is not ona of the followi~9:

BEGOYH 8EGOYH BEGOVL BEGCTL

, , ,

HC? ENHANCEl1ENTS P a~e 14 of 17
........ -.....-.-.--- - --_ ...

For example,.·

a~ REMAPS declarati~n

, C

The REMAPS declaration permits you to redefine the ~ay
that a DATA block looks, so that you may save soace (and
D05sibly re~trict knowledge of various redefinitions)
w,ithout resortin!:f to omitted ta9'field struc·tures.

You lIay us~ this declaration only in your'
syn~a~ of this declaration (simila~
declaration) is:

remaps declaration

•

MID.
to a

I remap DATA name: tar~et DATA na~e: , _____ ident _______ _ REMAPS _______ ident ,
-----------~--_--_I

~m_lo
OATA

I
, ___ variable list

basic_definition STRING (200) OF HEX;

sm_io_for_keyboard_outout
REMAPS 5111_ io:

keyboard_command BOOLEAN,
lIIe~5a~e_nuMber 0 •• 999;

,
I
I

The
DATA

To access variables in a REMAPS declaration .. use the
re.ap data nallle in a SHARES list, just as you ,",ould for a'
DATA declaration.

Standard funct~on ftscale_ptr·

i you may use this standard function to scale a number by
someoower of ten and convert the result' into a pointer.
Thi s function lIaY be used only in. an assi gnl1lent 'statelllent
~hose left-hand side is a pointer to a non-oar~~etric
type (note: no other type checking is done en this
DO i n1: e r) •

APPENDIX C Her ENHANCEMENTS· Pa~e 15 of 17

The scale_Dtr function requires 2 oarameters. The fir~t
is the number upon which you ~ish to cperate. The second
is a positive integer constant power of ten by· which the
first is scaled (for examole, a value of 2 means multioly
by lOa> ..

You will pet a syntax error if the maximum Do~sible value
of the scaled number exceeds the size of the largest
possible pointer address.

fer example,

VAR propram_ptr PTR TO STRING (100000) OF HEX;

INTRINSICS BUGS FIXEO Pa~e 1& of 17 ---------.. --_.,. _----

1.· -err.error" starts error lIIessage on new· line

The rUn-time error messa~e you get fron err.error will
nQ~ start at the bepinnin9 of the line, even if your
oro9ra~ uses "out" ~odule procedures.

2. 'Oebu9 orints EXT lines when ~db_ra()nitor_alt"· is set

If you program sets db_raonitor~atl, your outout listin9
will now· sho~ Drocedure EXT lines as well as procedure
NTR lines ..

3. Better st~tistic$ from !tati~tics version of debu9

You will now pet the· correct active time for the oropram
entry procedure. PreYiouslY~ the active time for this
procedure ~ight be oif bY a bit.

If you had explicit call to debup.summary in your
program, this bug might also have affected the active.
ti~es of other pro~edures.

This bup could also cause processor errors (invalid
arithmetic data) on B2900/3900s.

E INTRINSICS ENHANCEMENTS Page 17 of 17 ------ ---------------

1. Oebu!:! terminates on errcrs in e·xtended input

It you use the ·/IX" ootion and your extended inout to
debug has errors, debug will now immediately terminate
the execution of your or o 9raD.

2. Oebu9 checks for NTR I EXT .ismatch

Debug now chec~s to see if your Dro9ram has mismatched
NTR I EXT or~blelJls during execution. If 501 it orints
one warnin~ messa~e the fir~t time tha~ it detects this
o rll b l elll.

3. T h s· ... h r t i III e" i n t r ins' i c has be s n d e Co e ted

Hayin~ received no reaction to cur warnin~ in the last
SPRITE release letter, we have now deleted the "hrtime"
module fro~ the intrinsics which SPRITE supoorts.

l' ' .
. '

o

(

Bu~rgugbs_tg~DgratjgD _____________________ IDt~r=Of1j~~_tg~~~SDgDd~D~~
I c.orporat~ Unit I Location ,Dept. I I Comouter Systems Group I Pasadena I Prog. Activity 1
1---+-----------------------1 (

TO: I Name 1 Date I
I Proqramming Activity SPRITE Users I October 10, 1985 1

1---1
I From I Oept. & Location I
l ___ th~£li~_~&_tban _____ l ___ ~r~bi!~~!~rf_Q!Q~rlm~o! _________________ 1

Subject: New Release of SPRITE

On Monday, October 14, 1985, a new version of SPRITE and
a new set of S===== and E===== series of intrinsics
libraries will be released tor in-house use. The new
version fixes bugs (see Appendix A and D) and provides
new features (see Aopendix 8, C, and E).

This SPRITE is version 1000 and is not mid-compatible
with version 6700 or earlier versions. This
inconvenience is necessry due to changes with the SYSTE~
information. This requires that your "IDs be recompiled
before any of your modules will recompile.

The new version
format) and type 4
type 4 ICMs, you
and use "fILE IeM4

of SPRITE emits both tyoe 3 Cold style
(OMEGA style format) IC~s. To get
have to compile your MIDs with $PAGING
= " instead of "FILE IeM = "

Please report any problems to a member of the SPRITE
project group for screening b~fore entering them into the
BUGS system. 8ring the appropriate listings ~nd whatever
else we might need to determine that the problem is truly
a SPRITE bug~ All actual bugs should be entered into the
BUGS system by the reporting user.

For more copies of this memo, do hSYS COMP 8987:RM10 ON
AlS".

Chad i e C. Chan
Implementation Systems Section
Language Department

nds release
APPENDIX A:
A P PEN b I.X 8:
APPENDIX C:
APPENDIX D:

"APPENDIX E:

document contains:
8UGS FIXED
GENEPAL ENHANCEMENTS
OMEGA-RELATED FEATURES
INTRINSICS BUGS FIXED
INTRINSICS ENHANCEME~TS

- ~ - ----------------

APPENDIX A aUGS FIXED Page 1 of 14

1. FIND with a key of type pointer

SPRITE no longer generates bad code for FINO statement if
(1) the k~y is a field selection through pointer
dereferenc~, (2) th~ type of the key is Do;nter or (3)
SPRITE tries to optimize the code by converting the key
from un to ua.

2. The code for indexing into arrays and sets (82996)

(1) The SEA instruction no longer gives a false match
when the index type is PACKED ORDERED and over one digit.
(2) SPRITE no longer generates a SDE instruction instead
of SEA when the index type is ESCOIC (or PACKED ORDERED
and over 100 digits).

3. ~-digit filler in front of each file buffer (83042)

SPR~TE now allocates a-digit space in front of each
buffer for all kinds of files instead of just the first
puffer for PRINTER and PUNCH files.

4. $XREF

SPRITE no longer gives the message ~OUP LIS sxxtyd DSK"
when you compile your module with SXREF.

(

\

APPENDIX a GENERAL ENHANCEMENTS Page 2 of 14

1. FINO with OVER and AND clauses

The OVER and AND clauses in the FINO statement are no
lonqer mutually exclusive.

Example:

FI~D a_otr AND a_idx
aVER base_otr _. limit_ptr INTO array
WHERE 3_otr@ := key
DO

00;

2. Division optimization

Currenly, SPRITE oPtimizes division via truncation (MVN)
when the divisor is a constant Dower of 10. The new
SPRITE takes another step further by trading a DIV
instruction with MPY and MVN instructions if the divisor
is not explicitly a power of 10, but is a factor of a
power of 10. For example, the expression "a/2" is
equiv~lent to "(a*5)/10". The result would be a MPY
instruction (t := a*5) followed by a MVN instruction (r
:= t/10).

3. Proc_otr an~ forward procedure definition in MID

The user can now use proc_ptr function to initialize a
MID data blOCK. variable of type PTR TO PROC. The
referenced procedure can be forward defined in MID. The
parameter list and return type defined in proc ptr
declaration must match those of the forward defined
referenced proc~dure.

4. SPRITE I/O enhancements

..

(a) Shared files

It is now possible to declare disk or disKoack
files to be shared between different multiple
processors. Shared files are assumed to be
random. The user declares shared files by
setting the ACCESS~ODE to SHARED. A new file
attribute STAL~~ATE was added which allows the
user to soecify the procedure to be called by ~CP

to han1le stalemate coditions. It is the user's
reponsibility to make sure that this procedure is

APPENDIX 8

" !

\

GENERAL ENHANCEM~NTS Page 3 of 14

in s~gment 1

File attribute descriptions for" ACCESS~ODE and
STALEMATE are as follows:

ACCESSMODE

DISK/DISKPACk Read: anytime, Write: closed
Mnemonic: SEQUENTIAL, RANDOM,

SHARED
Default : SEQUENTIAL

Specifies the disk access technique.

STALEMATE:

DISK/DISKPACK : Read: never, Write: closed
Address constant: mod_name.proc_name
Default: none

Specifies the name of the procedure to be called
by the MCP to handle stalemate condition. It must
be a procedure without any parameters. The only
way to get out of this procedure is by calling
io.exitroutine.

The following standard procedures were added to
allow the user do 110's from the shared files.

(1) io.oDen_lock (file FILE);

~ Once the file is opened with "lock", no
r. other program wilt be able to open the
% file until the locking program closed it

FILE);

% Once the file is opened with "lock_access",
r. any other program may open the file as
% input but not output.

(f i l e
record VAR
key

FILE,
RECORD,
1 •• 99999~99);

% Lock the record, read the record
~ and leave the record locked

FILE,

APPENDIX 8

()

\

GENERAL ENHANCEMENTS Pag~ 4 of 14

record VAR RECORD,
key 1 •• 99999999);

% Lock the record, read the record
~ unlock the record

(5) io.write_no_unlock (file
record
key

FILE,
RECORD,
1 •• 999999999);

% Lock the record, write the record
~ and leave the record locked

(6) io.write_with_unlock (file
record
key

FILE,
RECORD,
1 •• 999999999);

~ Lock the record write the record
r. and unlock the record

F I L E, (7) io.lock (file
key 1 •• 999999999);

X Lock the record only, no data transfer.
X If the record is locked by another program,
X the program waits until it has been unlocked.

FILE, (8) io.unlock (file
key 1 •• 999999999);

~ Unlock the record only, no data transfer
% the program will be terminated if the record
X has not been previously locked

(9) io.seek_no_unlock (file
key

FILE,
1 •• 999999999);

r. Lock the recor~, request the Mep to make the
r. record available in the program buffer and
% leave the record locked.

(10) io.seek_with_unlock (file
key

FILE,
1 •• 99999999);

% Same as seek_no_unlock exceot it unlock the
7. t~e record at the end

(11) io.exitroutine (file FILE);

""\

APPENOIX R GENERAL ENHANCEMENTS Page 5 of 14

% The only way to get out the procedure
~ which handles the stalemate conditions is
7. by calling this procedure.

(3), (4), (5), (6) and (7) may take the "IF INVALID_KEY
THE~ .. exception clause.

Example:

shared_file_block
FILE

shared.file [MYUSE = IN, KIND = DlSKPACK
STALEMATE = mod.staLemate,
ACCESSMODE = SHARED

] ;

SHARES
shared_file_block;

..... ".

F ILO ;

This procedure is used to open magnetic tape
files without positioning to the beginning of
tape. This is primarily used when opening the
second and all subsequent files on a multi-file
reel of magnetic ta'pe. ,.'

ec) io.open_reverse (fil~ fILE) ;

This procedure can only be used with) single reel,
single file, tape files. When the file is opened
with this procedure, the subsequent re~d will
make the data records available in the reverse
record order starting with the last record.

FILE, (c) io.open_get_dhdr (file
dhdr VAR UNIV P_STR_40_HEX);

X dhdr ~ust be 40 digits long

/

\

/

'"

APPENDIX B GENERAL ENHANCEMEN~S Page 6 of 1/,

5.

X for format of header, see Programmer Guide

The ;o.open_get_dhdr standard procedure will let
the user open the file and get the disk file
header at the same time. following is the
procedure description.

(d) io.set_buffer_addr (file
buffer

fILE,
UNIV PARAMETRIC_HEX_STRING);

Yo modulo and size of buffer must be mod 4, must be
Z called after io.prepare_user_defined_buffer_io

Currently, the
«io.prepare_user_defined_buffer_io" adjusts the
blocksize of the file and sets the fib_aa and
fib_bb to point to the buffer location. To avoid
additional code generated each time a different
buffer of the ~ame length is used, the
"io.set_buffer_addr" may be used to set the
fib_aa and fib_bb addresses without generating
the code to adjust the blocksize.

file pointers

file pointers in SPRITE allow the users to make runtime
determinations about the files used in their program.
The syntax for a file pointer is:

file pointer type defn
I ,
' ___ PTR ___ TO _________________ FILE ____ OF _____ type __

, I '_CONST~I ' ____ 1 \
VAR' I

where type is the ~rcord ty~e 9i the file being
pointed to

I

This synta~ has a precedent in SPRITEls current
parametric pointers, where one can define a pointer to a
type, yet one can not define a variable of that type.

File pointers may be passed as parameters to proc~dures.
Two file pointers are equivalent to each other if they
have equivalent file .record types. Equivalent file
pointers may be compared for equality with = and ~=.
Just like regular pointers, file pointers are built ~y
using the. "ptr" standard functions. No operations (+, -,

/
i

APPENDIX 8 GENERAL ENHANCEMENTS Page 7 of 14

), (, ~tc.) other than ":=" are allowed.

Example:

TYPE
FILE_PTR = PTR TO fILE OF R=CORO;

VAR

file_otr := ptr (shared_file)i
file_ptr~.MYUSE := IN;

6. Return of the RETURN statement in MACRO

Once again, RETURN statement in MACRO is back. The
RETURN statement causes an exit from a MACRO and the
control passes to the instruction following the end of
the body of the MACRO call.

7. New standard fu~ction -- search_string

The new standard function, search_string, is a more
generalized search routine than the current index
functions (index, index_any and index_inc). The
following is the description of this new standard
function.

PARAMETERS: # Type Access Description

1 Strin9_' CONST Key; can be variable
length or parametric

2 0 •• 2 CONST key_datatype
0 . un .
1 : sn
2 ua

3 Strin9_2 CONST String to be searched;
Can be variable length
or parametric

4 1 •• 100 CONST Increment between
comparison

5 0 •• 2 CO~ST search kind

(

(

APPENDIX 3 GENERAL ENHANCEMENTS Page 8 of 14

o : search for equal
1 : search for low
2 : search for lowest

RETU~N TYPE: D •• length (strin9_2)

FUNCTION : Returns the index of the first occurrence
of strin9_' in strin9_2 where the
occurrence begins on a mUltiple of the 4th
numeric parameter (1, n+1, 2n+1, etc.) if
the search kind is 0 (EQUAL).

Returns the index of the first occurrence
of strin9_1 in string_2 which is less
than string_1 where the ocurrence begins
on a multiple" of the 4th numeric parameter
(1, n+1, 2n+1, etc.) if the search kind is
1 (LOW).

Returns the index of the lowest of all the
occurrences of string_1 in string_2 where
the occurrences begin on a multiple of the
4th numeric parameter (1, n+1, 2n+1, etc)
if the search kind if 2 (LOWEST).

Returns 0 if the search condition fails

Examples:

8. $INDEX

;ndx := search_string (key [1::3J, key type,
str t1::P05], 3, 0);

indx := searCh_string (key_ptr@ C2::incr), 2,
str [1::pos), incr,
search_kind);

indx := search_strinq (key, keytype, str_ptr@@,
incr, search_kind);

The new $INDEX eel allows the user to create an
alphabetized index of where all of a module's procedures
, identifiers and types are defined.

..... ---

(

APPENDIX 8 GENERAL ENHANCEMENTS Page 9 of 14

The syntax of the INDEX eel is:
I ____________________ , _________________ _
I , ,
'_' ___ INDEX ______________ ALL _____________ , ___ _

, I \
I ' ____ PROCEDURES ____ 'I I
I I I
I \ ___ IDENTIFIERS ___ ' I
I I I , ______ TyPES ______ , I
I I

\ ______ "ODULES ______ ,

The ALL ootion of the INDEX CCI will create an index for
each of the other INDEX option. If the MODULES option is
set in a module, it has no effect (in a MID it indexes
the module descriptions). If the PROCEDURES option is
set in th~ MID, it creates an index of where the
procedure descriptions occur. If the PRODEDURES option
fs set in a module, then it will create an index
containing both procedures and MACROS.

The INDEX IDENTIFIERS option will produce an index of
where all of the constants, data blocks, data block
variables, file blocks, file names, and local varaibles
are defined.

The INDEX CeI options can be set anywhere in a moudle (or
MID) and will index the specified item(s) over the entire
module (or MID) and not from the point it was set to the
end of the module (or MID). All of the INDEX options
default to being not set and there is no way to reset an
INDEX option once it has been set.

Examoles:

$$ SET INDEX PROCEDURES, INDEX IDENTIFIERS

$$ INDEX ALL

$$ INDEX M1UDLES, INDEX TYPES

$$ SET INDEX PROCEDURES

o

(
\

APPENDIX 8 GEN~RAL ENHANCEMENTS Page 10 of 14

9. Default MID

Currently, the SPRITE user always has to write a MID and
provide his own bi~d deck to get the excutable code file
eve~ if the user has only one module in the ~roqram.
With the new SPRITE, the user can avoid going through the
hassle of creating the MID and bind deck by using "80" or
"gNU in the first slash parameter. To use this
convenient feature, the following procedures must be
followed.

(1) To invoke the default MID, you must use -DFTMIO­
as your system file name.

(2) To invoke the default bind deck, you must use -BO­
or "BN- as the first parameter to your program
for the debug and non-debug version, respectiveLy.

(3) The control card "FILE ICM =" must be included in
the compile deck.

(4) The name of the
procedure must be

module and program
"main" and "driver",

entry point
respectively.

(5) Default name for the created codefile is "CODFIL".
The user may use "$CODEFILE" to specify the name
of the result codefile.

Example:

%? COMPILE ONEMOO WITH SPRITE/BD
%? FILE SYSTEM = (DFT"ID)
%1 FILE IeM = (MOOICM)
%? DATA CATO
$S CODEFILE "TESTxx" %

main
MOD

r. name of the module
t

debug version
default SYSTEM
ICM card must

codefile name will
be TEST under xx

i. name of the pr09ram entry point

OOM;

NOTE: SPRITE will fire off a bind job for you if there
are no errors on the compilation. The nam~ of the bind
job should b~ ~XXXXXX/3INOER", where XXXXXX is the name
of the codefile.

(

APPENDIX 9 GENERAL ENHANCEMENTS Page 11 of 14

10. $XREF enhancement

The crossreference listing from $XREF will now indicate
where an indentifier is modified.

APPENDIX C OMEGA-RELAT~O FEATURES Page 12 of 14

For your own copy, pLease do "SYS COMP S9S7:APOL ON ALS".

c

APPENDIX D INTRINSICS BUGS fIXED

1. Lines left on oage when callinq printeline
to print before or after advancing

When print.line 's called specifying «print
"print after", the lines left on page is
calculated wrong.

Page 13 of 14

before" or
no longer

c

i

'-..

AP"PENDIX E INTRINSICS ENHANCEMENTS Page 14 of 14

1. Faster debug

2.

Th~ new version of debug will run considerably faster
than the oLd version. However, you do lose something.
The cumulative counts for each procedure all no longer
kept. If you count them, you have to use a new option
"C".

If you use the "slash option" C or "COUNTS" in a extended
deck then you will get what you used to get. Note that
even without the "C" option any procedures you mention

·with give you cumulative counts.

Note that unless you want the counts you can use a
samller version because much less information has to be
k~pt. Also the old version of debug killed the program
if it ran out of space in its tables. This version will
jus t s wit c h 0 f f the· t. C.. 0 p t ; 0 nan d con t ; n u e.

The new intrinsic, v_dbwrite, has the function identical
to that of the f_dbwrite. The first parameter of
V_dbwrite .;s VALUE parameter. This means that when
calling v_dbwrite procedures SPRITE will not put the
constant labels into the CONST pools.

If you are a heavy user of v_dbwrite.string you may want
to consider that the second parameter has not been
changed to a VALUE parameter and can still be UP to 99999
characters long and will go into the CONST pool.

The new intrinsic INCLUDE library (SINLIS) contains the
moudle description for this new intrinsic. To include
it, do

$$ INCLUDE "SINLIP" dbwrite_types
$$ INLCUDE "SINLIS" v_dbwrite

T A8l E OF C Of'JT HITS

Appendix L SPRITE FOR O~'EGA

L.1 Introduction
l.1.1 Backqround
L.1.2 OMEGA Pointers
L.1.3 Sample MID and Module
l.2 Declarinq SeQments
l.2.1 Seqment Declaration in MID
L.2.2 SeQment Declaration in Module
L.3 Declarinq Addressinq Environments
l.3.1 ACCESSES Clause in MID
L~3_2 ACCESSES Clause in Module
L.3.3
L.3.4
L.4
l.4.1
l.4.2
L.4.2.1
l.4.3
L.4.4
L.4.4.1
L.4.4.2
l. 4. 4. 3
l.4.S
l.4.S.1
l.4.S.2
L.;.4.S.3
l .. S
l.S.1
l. s. 2
l.5.3
l.S.4
l.S.S
L.6
l.6.1
l.6.2
t.7
l. 7.1
L. 7 .. 2
l.7.3

07343800

Multiole Seqment Zeroes
Multiple Environments Within a Procedure
Pointer SEG Clause, and LINK
D. a taM a p pin Q

When Ootional or Required
ACCESSES Clauses on Individual Procedures
coercions
Parameters
Checkino Seqment the Parameter is In
Checkinq Pointer(s) in the Parameter's Type
Checkinq LINK(s) in the Parameter's Type
Data in the Code Seqment
Passinq Data in the Code Seqment by Reference
Pointing to Data in the Code Segment
Explicitly Declarinq Data in the Code Seqment
statements
FIND
GENERATE
AllA~
OVERLAY
REMAPS
Implicitly Declared Data
Proqram_reserved_memory
lheao
Standard Functions and Procedures
Proe Pointer Types
Lock Tyoes
Oefinitions

1
1
2
2
3
4
5
6
6
.'1
[)

11
11
11
17,
13
14
1 !t
15
15
16
17
1 :3
19
19
19
20
20
21
21
:.'2
23
23
24
24
24
24
26
27

o
Page 1

Appendix L SPRITE fOR OMEGA

L.1 Introduction

01041000

Existinq proqrams and code files wilt continue to
compile and run on P-ser;es machines without change.
The 7.0 release of SPRITE supports writing part of the
operatinq system (MCPX) in SPRITE, producing OMEGA code
files. The 7.1 release will allow others to build
OMEGA code files.

When writinq a small OMEGA proqram (defined below),
there are s~veral differences from non-OMEGA programs.
(With OMEGA, a "small" program can have up to half a
million bytes of data. Thus practically all existinq
proqrams are considered small. Most users need only
read this list, and will not be affected by the rest" of
this appendix.)

a. A "$$ PAGING" card must be added to the MID.
This tells SPRITE to build an OMEGA ICM for the
MID, and all moduLes compiled with that MID.

b. A pointer variable cannot point to a constant.
If this is needed, iust declare (and point to) a
dummy data block variable which is initialized to
that constant. (See L.4.S for the reason this
restriction is necessary.)

c. The internal mappina of pointers is different.
This pnly affects those who build or manipulat~
pointers by hand (see L.4.1).

d. Fites and intrinsics are not impLemented yet.
The MOVE intrinsic is now qenerated in-l;np for
OMEGA. The standard procedure mcp.move_repeat
should help take the place of the FILL intrinsic
(see L.7.3).

e. Any BPL modules must be rewritten in SPRITE.
There is no BPL for OMEGA.

f. OMEGA ICMs are bound with LINKER, not BINDER.
BINDER does not support OMEGA ICMs. Also, LINKER
;s much faster.

These d;ffere~ces also apply to tarqe 0MEGA oroqrams
(defined below). However, a pointer can point to 3

L.1.1

L.1.2

/

, \.(

01212000

Page 2

constant if it has the appropriate SEG clause (see
L.4). Also, several new featur~s were added to allow
the user to take advantage of the fl~xibility of
P-series machines. For details, read on.

Backqround

These terms are defined within the context
For a more comolete description, see
documentation.

of SPRITE.
thE' OMEGA

With OMEGA, a oroqram is divided into two or more
segments of UP to half a million bytes each which can
be scattered throuqhout memory. (Note: the OMEGA
documentation uses the word "area" rather than
"seqment".) Up to eiqht menorv seqments are acc~ssible
at anyone time. They comprise the current addressing
environment, and are specified by the active memory
area tabl~. The entries in this table (and thus the
correspondinq seqments) ~re numbered zero throuqh
seven. Segment zero contains the stack ~nd index
reqisters (among other thinqs). Seament one contains
the currently executinq code (and its constants, with
SPRITE proqrams).· The rest (if they exist) hold
miscellaneous data.

With an OMEGA program, LINKER puts the co~e and
constants in as many code seqments as necessary. In a
small program, the remaining data fits into a single
seqment (zero). Thus even when there are several code
seaments (and thus several environments), they all
share the same non-constant data, and they always find
it in seqment zero. A targe program. can have any
number of data segments, wi th . up to seven in each
environment. A qiven data seqment miqht apoear as
seqment two in some environm~nts, as se~ment three in
others, and not at all in the rest.

OMEGA Pointers

With OMEGA, the high-order two diaits in a pointer
include the dimension override of zero to seven. This
is the index into the active memory area table for the
seqment containing the object pointed to. The oointer
may not be valid outside the environment in which it
was built, however, since the dimension override may no
lonqer refer to the same physical segment. This
inclUdes pnss;nq nar~meters by reference, since that is
imnl~mpnted by nass;nQ a pointer to the actual

..

Page 3

((

L. 1.3

(

01339000

oarameter.

For larqe proqrams, we therefore provide the followinq
constructs: declaring segments, d~clarinq
environments, and pointer SEG clauses. Together, they
allow the user to declare many different environments,
and still share pointers bet~een them safely. We also
include several other features to allow the user (but
mainly the Mep writer) to exploit the flexibility of
P-series machines.

Sample MID and Module

These examples should help clarify the followinQ
exoLanations. Refer back to them a5 you read the text.

$$ PAGING
oroq
pqbG ACCESSES (seq_zero ORIGIN~L); % use "prog" as

X SEG_ TABLE n::]fl1e

orm_seq_zero
DATA

% proqr~m reserved memory

filter STRING (40) OF HEX,
toostack 0 •• 999999; % 6 UN

GES;

alobal_data
DATA

'SEG_TABLE
le)(_parse_table

lex

sem_table
code_qen_table

LINK TO SEG seq_zero INFO;

(seq_zero, , lex_parse_seg ORIGINAL),
(seq_zero, , sem_seq OQIGINAL),
(seq_zero, , code_gen_seq ORIGINAL);

MOD ACCESSES lex_oarse_table;
qet_token PROC RETURNS TOKEN; ~ uses lex_parse_table

00 r1;

uti tity
MOD % uses orOqram'5 SEn_TABLE (Droq)

List_info PROC (i INFO); % uses prOQ
DO~1 ;
GORP;

(

Paqe 4

lex
MOD J\CCESSES (seQ_zero, % 0

, % 1
lex _parse_seq, % 2
lex_seg ORIGINAL) % 3

STATIC; % forces all STATIC variables in lex_seq

GES;

lex_seq_data
DATA

lex
SEG

% module name forces this into corle segment

GESi

code_seq_data
DATA

more_zero_data
DATA

% no SEG/GES, so goes in seq_Zero

otr_to_codl?_seQ
otr_no_seq_clause

qet_token
PROC RETURN$ TOK~N;

VAR token_start,
token_end

ptr_to_code_seq
% otr_no_seq_clause

PTP TO SEG lex INFO,
PTR TO INfO;

O •• HO STATIC := 0; % qo in lex_seq

0- rtr (code_seq_info);
:= ptr (code_seq_info);

% okay
% HlE'qal

% utility.list_info (code_seq_info); % itleqal
% utility.List_info <lex_seq_info); J. itLer:lal

CORP;
D or4;

,%. shoulr:l chanqe formal param to pass by VALUr:

la2 Oeclarinq Seqments

02004S00

[n a small proqram, data is declared as before. ~PRITF
Duts confitants in seqment one, and the rest in ~eQment

l .. 2.1

Page 5

zero.

In 'a Larqe proqram, MID data must be explicitly
decLared within a specific seqment. If module data is
declared as before, SPRITE handles it the same way ~s
in small proqrams. If desired, the user can force
SPRITE to put module data in a specific segment.

Seqment Declaration in MID

mid s€qment declaration
I ________ ; __________ _
I s e qm e n t : / p r og ram \
_knows ____ ident ___ SEG __ ' __ knows ____ component __ ' ___ GES __

' _____ 1 \ _______ 1 ____________ 1 \

I

For a Large proqram, a seament apoears in the MID as c
collection of data and file blocks (inctudina port and
nso files), each of which can have its own knows list
(as Lonq as it is a subset of the segment's knows
list). (As a convenience, ~ seoment rl~claration may
actuaLLy include any proqram component except a seament
or module declaration.) If two seqment declarations use
the same name, their data ;s simply combin~d i~to the
same seqment. This allows decomoosition of a segment
into toqicatty distinct p~rts.

For larqe proqrams, every data block must be declared
within some seqment; free-standing blocks are not
allowed. If declarations within a seqment have their
own knows lists, the lists must he a subset of th~
seqment's knows list. Also, REMAPS declarations can
only remap data blocks in the same segment (see L.S.S).
file - declarations can only apoear in seqment zero (see
l.3). Exolicitly declared intrinsic data must go in
seqment zero. Finally, when declaring segment zero,
the stack must not be mentioned; it is supplied
imolicitly by LINKER.

Files and intrinsics are not implemented for O~EGA in
the- 7.0 release.

02204000

l. 2.2

Page 6

Segment Declaration in Module

mo d!J l e seq men t dec tar at ion
I ; ------
I seqment: I module , \= ___ ident~ ___ SEG ___ STATIC ____ \ ___ component ___ I ____ GES __

, ______ 1 , _____________ , \

I

If module data is declared as b~fore, constants go in
seqment one and the rest qo in seqment zero. In 3

larqe propram, a user can override SPRITE's default
·allocation with a seament declaration. The declaration
may aPDear in the same place as a normal module data
block declaration. It may either add data to an
existina segment (by using a segment name which has
already heen definedll or define a new module local
seomp.nt.

Declarino a module data or file block in a segment
declaration forces SPRITE to allocate that block within
that seqment. If the segment name is the same as the
module name, the data is put into the current COdA
seqment (but see L.,! .. 5). ThE' keyword "STATIC", if
us~d, forces all following STATIC variable clocks into
the seqment beinq declared. This remains in effect
until overridden by another segment declaration with
"STATIC".

As a convenie~ce, a module
contain any module component
macro declaration. AQ~in,
in seqment zero. (Remember,
in 7.0.)

segment declaration may
except a segm!nt, proc, or
files can.onlv be declared
files are not implemented

l.3 Declarinq Addressing Environments

0301M100

In a small proqram,- segment zero ;s alIJi'lYs the same; it
contains all the non-constant data. At any point in
time, segment one contains the currently executing
procedure and its constants. Thus each procedure's
environment is very simple and obvious; no exolicit
declaration ;s np.eded.

In a Laroe proaram, a procedure can access at mo~t
seven of the 'declared data segments (in addition to th~
code seament). This croup of rlata segments is called a

.(

(

Page 7

SEG_TABLE. An ACCESSES clause specifies which
SEG_TA8LE a qiven procedure uses. These constructs are
only allowed in large orograms.

A SEG_TABLE that never appears in an ACCESSES clause
represents a dummy memory area table (see the OMEGA
documentation). A SEG_TABlE that aooears in an
ACCESSES clause directly represents a orocedure's
active memory area table when the orocedure starts
executinq. (The MCP writer can chanqe the table within
the procedure; see l.3.4.) The SEG_TA8LE does not
include th~ code segment, which SPRITE suppLies
imolicitty.

seq table definition
I ______ _
1 seq tabte~ I
, ____ SEG_TA8LE _____ ident _____ , ___ seq

, ------
\

tahle ___ ' ______ _
\
I

seq table
I ___ , ______ /99' ___ _

1 , s€'q: ,
\ ""., "'YSTOI
------------~ --- (__ ' __ ident ___ ORIGINAL __ I __)

,------, ,-------,----------, \
I'

accesses
I
' ____ ACCESSfS _____ seq table: ident _____________________ _

\
I

accesses with dect ,
' ____ ACCESSES _____ seq table ____________________________ _

03066000

,
I

A block of SEG~TA8L€ declarations can appear in a LAroe
proqram wherever a data block declaration can appear.
The ootional SYSTE~ clause specifies an operatinq
s y s t ~ m tab l'e, rat her t han the de f au l t use r tab l e •
(This clause should only be used in the operatinq
system, of course.) The optional ORIGINflL clause
specifies thp. original table entry, rather than a copy
of the original elsewhere. Each segment must apoear as
an ORIGINAL entry exactly once, in the,MID or module in
which it is declared. A seqment cannot appear twice in
the same S~G_TARLE.

SEr,_t,~8L:::s t~at
dummy tables,

never appe~r in an ACCESSES clause
which may have un to 100 entries.

(

L.3.1

Page 8

entry is either a seqment identifier, or a spot left
emoty by using consecutive commas. Any SEG TARLE that
appears in an ACCESSES clause is a real table
(potentially active), which can have at most eight
entries. The entries are numbered zero to seven.
Further, the SEG_TA8LE cannot skip segment zero, and it
must skip seQment one (leave it empty). SPRIT~
supplies the code segment implicitly.

Forward-defined segments are allowed, but not
forward-defined S5G_TABLEs. At the top of a MID or
module, the "accesses with deel H form must be used Cit
any). It allows the programmer to declare and use a
table at the same time. If there is no such clause
after the word PROG in a MID, it is a small 'program.
If there is no such clause after the word MOD in rt

module, SPRITE uses the clause for that Module from th~
MID. This clause at the too of a module is for adrlinQ
module-local segments to the MID table.

ACCESSf:$ Clause in MID

In a larne proqram, an ACCESSES clause declarin~ a
SEG_TAAlE must appear at the beginninq of the MI~
immediately after th~ keyword "PROG". T~is specifies
the default addressinq environment. It is not allowerl
in a small proqr~m.

interface description
I
, proqram:
' ___ ident ____ PROG ____ 3ccesses with decl ____ proqram tait ____ _

_---~------- ______ I \

proqram tail ,
I I

I

.
, ---------,

, ________________ ' __ knows ___ component __ ' ___ GORP ___ ; ______ _
,_~_~ __ I ____________ I , ___ , \

, _____ comment _____ 1 1

03113700

c

(

L. 3. 2

Page 9

module description I ________ ; _______ _
I module: env 1 procedure ,
' __ ident __ MOD __ 3ccesses ____ deo __ '_knows __ descriotion_' __ DOM_

I 1\ ___ ' , ______ 1 ______________ , \
I accesses I , ____ comment _______ , ,
'_with decl_1 I

,---------, !

procedure descriotion
t
, proc: return
' __ ident ______ PROC ____ oarameters ____ value _____ accesses _____ _ , ,----------, _-----, ,--------'. \ \ __ HIT ~ Y ______________________ F I

proc ~ointer type
I
I return
\ __ PT~ ___ TO ___ PROC ____ parameters ____ value _____ accesses _____ _

' __ I , __________ , , ______ , , ________ , \

Each module uses the proqram ' s ACCESSES clause, unless
it has its own as shown above. Each procedure us~s its
module's ACCESSES clause, unless it has its own 15

shown ahove.

ACCESSES clauses on individual procedure d~clarations
and definitions are not implemented in the 7.0 reteas~.

An ACCESSES clause is required in proe pointer types in
larqe orOQrams, and is not allowed in small programs.
The proc pointer ACCESSES clause tells SPRITE the
environment of the procedure being called when th~ proe
nointer is dereferenced. SPRITE ne~ds this to verify
that the c3llinq and called procedures share the same
seqment zero (see L.~.3). SPRITE also needs it to
proc~ss the parameters, as in a normal procedure call
(set' L.4.4>.

ACCESSES ,-tause in Module

In t a rqe proqrams, an ACCESSES clause declaring a
SEG_TA8LE may appear in the actual module definition
immediatelY aft e r the keyword .. "10 Df

•• The table
specified for the mo du l E.' in the MIl) mus t be an exact
subset of thE' tab l e in the ma du l e. Tha t is, the module
table must be the same as the MID table, except that
ne\.J s~qments may be added in entries which we re empty

I

03209500

II
.~

Paqe10

in the MID table. (The entry for seqment one must
remain emoty.) This allows for module local seqments.
If there is no ACCESSES clause at the top of the
module, SPRITE just uses the one specified for that
module in the MID.

module I _____ ; ____ _
I module: accesses I module \
' __ ident __ MOD ___ with decl __ ~' __ component __ ' __ DOM ___ ;

,---------, ,-----------, ' ___ I \

procedure header
I
' ___ PROC ___ parameters ____ return v~lue ____ accesses ______ _

,----------, ,--~--- ______ I , ________ , \
I

macro header
.1
\~:_MACRO ____ parameters __ ~ ___ accesses __________________ _

03249000

,----------, ,--------, , ,
Each procedure and macro uses the module's ACCESS~S
clause, unless it has its own as shown above. T~e
SEG_TABLE seecified in the proc~dure's clause
r~presents its active m?mory area table at the start of
the procedure. The procedure header is part of both
the fdrward and actual orocedure definitions in the
module. If an ACCESSES clause appears in either olace,
the exact same clause must also appear in the other
olace. If the orocedure is a module entry point, its
corresoondinq SEG_TA8LE in the MID must be an exact
subset of the SEG_TA8LE in the module, as defined
above. Proc pointer ACCESSES clauses are treated the
same way as in the MID.

ACCESSES clauses on individual procedUres and macros
are not imolemented in the 7.0 release. (For
additional restrictions needed to imolement this, see
L.4.2.1 and L.4.4.2.)

A orocedure or macro uses the SEG_TA8LE specified by
its ACCESSES clause. It can access only the data in
the seqments in its SEG_TA8LE (and seqment one),
reqardless of KNOWS lists. (Of course, it must still
know the data to access it.) A macro can only be
"called" by e procedure that uses the same S~G_TABLE.
Also, a procedure can only call another user-iefined
orocedure when they both use the same se~ment zero (and
thus the same st3ck). Otherwise, an interruot or

,
\

o

(

(

L.3.3

L.3.4

j
\

Page 11

hvoercall ;s reouired <which are not implemented).

Finally, procedures with matching SEG_TABLEs can go' in
the same addressinq environment. That is, LINKER can
out their code in the same segment one, if it fits. If
not, LINKER can use as many segment ones, and thus
environments, as necessary. (If procedures in the same
module are split between different code segments,
however, the module's CONST and AeON pools must be
duolicated in each seament.) Note that the only
difference between these environments will be segment
one. Thus with special orovis;ons for data in seament
one (see L.4.'), these environments can be considered
the same for everything except the need for a non-local
VEN and VEX hetween them <which LI~KER handles
automatically).

~ultiple Seqment Zeroes

There can be more than one segment 7ero. Procedures
with different seqment zeroes cannot call each other~
however, because they do not share the same stack.
Transfering control between such procedures requires an
interruot or hvoercalt, ~hich are not yet implemented
in SPRITE.

Multiple Environments Within a Procedur~

There are two standard procedures to implement the 'OE
opcode: mco.make_paae_table_entry_unused, and
mco.coov_paqe_table_entry. They allow the ~c~ writer
to change environments by directly alterinq me~ory area
table entries.

WARNING: These procedures must be used with extreme
caution. SPRITE will always make its checks and
qenerate code based on the declared ACCESSES clauses.
SPRITE cannot keep track of changes made to the
environment by calling these standard procedures.

l.4 Pointer SEG Clause~ and LINK

04007000

SPRITE tries to make sure that pointers remain valid
when shared between environments. For small proqr3ms,
this m~ans takinq two precautions with constants (see
l.4.5). Larqe prOQrams are handled as descrihed below.

/

Page 12

Declarinq each module's addressing environment as above
is sufficient to allow passing oarameters by referenc~
(see L.4.4.1>. To allow sharing pointer variables
between addressinq environments, pointer tyoe
definitions have an optional SEG clause.
Alternatively, a special LINK pointer is sometimes
useful, such as with the FIND statement (see L.S.1).
·(LINKs are aLso allowed in small programs, but then
their onLy advantage is they are two digits smaller.>

pointer tYoe
I seqment:
' __ PTR _____ TO ____ SEG __ ident _____ CONST ____ fXTERNAL ___ type __

04100000

'_LINK_' \ , , ______ ~ ____ I '_VAR_I. '_LOCAL __ ' ,
, ___ , , ______ , I

A Dointer without a SEG clause can pOlnt into any
seqment in the current addressinq environment, except
seqment. one (see L.4.S). However, it cannot be
accessed outside that environment (hut se~ L.4.2.1 and
L.4.4.2). A pointer with a SEG clause can only point
to objects in the specified seqment. However, it can
be shared freely between environments.

A LINK with a SEG clause is treated just like 3 oointer
with a SEG clause. A LINK without a SEG clause can
only point to the same se~ment it is in. Thus no
dimension override (see l.1.2) need he stored in th~
oointer itself. It can be shared between environments,
as lonq as it ;s not moved to a different seqment in
the orocess (see L.4.3 and L~4.4.3).

I

To dereference a pointer or LINK, SPRITE mOves it into
an index reqister or mobile reqister, along with the
necessary dimension override. (P-series machines have
four mobile registers, which can be used like index
registers one and two. See the OMEGA documentation.)
For a pointer without a SEG clause, SPRITE just moves
the entire pointer (since it already contains the
Droper dimension override). For a pointer or LINK with
a SEG clause, SPR1T= uses the dimension override for
that seqment in the current environment. For a LINK
without a SEG clause, SPRITE uses the dimension
override needed to access the LINK. Of course, the
pointer or LINK cannot be dereferenced unless the
seqment it points to ;s in the current environment.

In '3

module
points

module, the SEG cl~use identifier can be the
name. This specifies that the pointer or LINK

to the active code segment. See L.4.S for

l.4.1

C~.

l.4.2

04204000

Page 13

cautions regarding the use of this feature.

Data Nappinq

Pointers stilt OCCUpy eiaht diqits, or fourteen if the
base type is parametric (six for the lenqth'. The
lower six diqits contain the offset from the be~inninq
of the seqment (or "EEEEEE" when nil). The upper two
diaits of the pointer ~ontain the HEX value "e",
followed by the dimension override of the segment for
the environment in which the pointer was built (or if
the pointer is nil, possibly "eE"). -LINKs occuoy only
six diqits, containinq just the offset (or "EEEEEE"
when nil).

Note that two equivalent pointers with a SEG clause may
point to the same place, and yet not compare as eaual
in a boolean expression. This would happen if they
were built in different environments which used ~
different dimension override for the seqment in the SEG
clause. Also, if both pointers are set to nil, one
miqht have the uoper two diqits set to "CE A white the
other contains the dimension override. When comparinq
a oointer with the constant "nil", SPRITE only compare">
the low six di~its. SPRITE could make simit~r special
arranqements when comparinq some pointer variables, but
this would be impractical when comoarinq structures or
arrays with imbedded pointers (see L.4.2).

When Optional or Required

SEG clauses are not allowed in small proqrams. In
Larqe proqrams, they are ootional in a module, as well
as when d~fining indicants and LINK variable types in
the MID. They are required in the types of MID files
and MID data block variables, when these types contain
(non-LINK) pointers. (If this restriction is lifted,
checks very similar to those described in L.4.2.1 will
also apply to accessinq MID data blocks and files.'
That incLudes imbedded pointers, such as a structure
with a pointer field. (That does not include the
parameters to procedure pointers.) They are also
required in the FIND and GENERATE statements (see l.~.1
and L.S.2). For the 7.0 release, they are required in
pointer tyoes of module entry point parameters. (For
additional oarameter checks needed when we lift th~s
restriction, see L.4.4.2.)

\

Page 14

These restrictions help to quarantee that oointers
without a SEG clause cannot be shared between different
environments (but see L.4.2.1 and L.4.4.2). UNIV
parameters and omitted taqfields can bypass this;
pointer ktudgers beware!

L.4.2.1 ACCESSES Clauses on Individual Procedures

L.4.3

04312000

When we allow a orocedure or macro to have a different
ACCESSES clause than its module, (non-LINK) pointers
without a SEG clause will require further restrictions
for safe use. (For additional checks when oar3meters
contain such pointers, see L.4.4.2.)

A pointer without a SEG clause in a module file or data
hlock can only point to seqments in the module's
SEG_TA8LE. To enforce this restriction, a orocedure
with a different SEG_TA8lE than the module cannot have
VAR access to file or data blocks containinq a pointer
without a SEG clause. It can have CONST access to such
blocks only if the module'S SEG_TABLE is an exact
subset of the orocedure's SEG_TA9LE (see L.3.2). In
effect, the two-way communication of V~R access forces
each SE~_TABLE to be a subset of the other. That is,
VAR access is only allowed when both SEG_TARlES are the
s~me.

Coercions

Eouivalent pointers have the same SEG clause, access
(CONST or VAR), and l~vel (not iMPLemented), as welL as
eauivalent base types. (Having the sam~ SEG clause
here includes neither pointer havinq one.) Equivalent
LINKs have the same requirements. Also, if the LINKs
do not have a SEG clause, they must be in the" same
seqment to be equivalent.

Compatible pointers also must hav~ equivalent base
tyoes. Coercinq from VAR to CONST and/or EXTERNAL to
LOCAL is allowed, but not the other way arounn. If
both pointers have a SEG clause, they must have the
same clause. If one pointer has a SEG clause and the
other does ~ot, the coercion is legal in either
direction. Note that even for two types to be
compatible, any imbedded pointers and L!NKs must be
equivalent, and thus h1ve the iame SEG clause. The
above also anplie~ to LINKs, including compatibility
between a LINK anrl a point&r.

(

l.4.4

l.4.4.1

04411400

Page 15

When coercinq to a pointer without a SEG clause, SPRIT~
supplies the proper dimension override in the current
e~vironment for the segment the source points to. Of
course, this segment must be in the current
environment. It cannot be the code seqment, however
(see L.4.5).

When coercinq to a pointer (or LINK) with a SEG clause,
SPRITE verifies that' the source ooints to the seoment
specified by the destination's SEG clause.

When coercinq to a LINK without a ~EG claus~, SPRITE
ver~fies that the source points to the s~1ment the
destination is in. Note that if the source is also a
LINK without a SEG clause, they are only comoatible if
they are in the same seqment. This does not apply to
imbedded LINKs wit~out a SEG clause. (This is very
much like oassinq imbedded LINKs by VALU~; see
L.4.4.3.)

Several of the checks for LINK coercions are not yet
fully implemented. Neither is the check when coercinq
from a pointer without a SEG clause to a pointer with ~
SEG clause. Users should take care. Most of the
compile-time checks are imolemented.

°arameters

There are three special conc~rns when nassinq
oarameters for OMEGA. First, the parameter must be in
a seqment accessible by the called procedurec Second,
if the parameter contains any pointers, they must be
meaninqful to the called procedure. Third, if the
oaramet!r contains a LINK without a SEG clause, moving
it to a different seqment invalidates the LINK.

If the catlinq and called procedures have the same
ACCESSES clause, and segment one is not involved (see
L.4.~), the first two special ·concerns are satisfied.
The case of a call between different environments ;s
detailed below. So is the third concern.

Checkinq Seqment the Parameter is In

VALUE D3rameters are moved to the stack in segment
zero, so they are not a p~oblem (unless they contain 3

oointer or a LINK; see below). That Leaves
P3ss-by-reference oarameters.

(

Page 16

If SPRITE cannot tell at comoile time which seqment the
actual oarameter is in, and the calling orocedure's
SEG_TA8LE is not an exact subset of the called
procedure's SEG_TABLE (see L.3.2), SPRITE puts out a
warninq. (The code will only work if the seqment turns
out to be in the called procedure's SEG_TABLE.> This
includes a parameter which involves dereferencing a
pointer without a SEG cLause, such as one of the
orocedure's own oass-by-reference formal oarameters.
An actuaL parameter in segment one cannot be passed by
reference (see l.4.S). It is an error if SPRITE knows
at comnile time that the parameter's seqment ;s not in
the catled procedure's SfG_TABLE. Otherwise, ~PRITE
buil~s and passes a oointer (to the actual parameter)
with the proner override for the called environment.

It does not matter which seqment the destination of a
function result is in, however, unLess the RETURN tyoe
is a LINK without a SEG clause (see L.4.4.~). If
necessary, SPRITE builds a stack temporary for the
RETURN parameter, passes a pointer to it with override
zero, ~nd moves the result to the reat destination
after the VEN. This is only necessary if the
destination's ~eqment is segment one, or it is not in
the called procedure's SEG_TA8lE, or it is not "known at
compile time and the calling procedure's SEG TA8lE is
not an exact subset of the called procedure's
SEG_TABLE.

L.4.4.2 Checkina PointerCs) in the Parameter's Type

04422410

The above coercion rules and restrictions on formal
parameters are sufficient even when the called
orocedure is in a different module with a different
ACCESSES clause. Any pointer Cincludinq an imbedded
pointer) in an entry point's formal parameter tyoe must
have a ~EG clause. If the called procedure
dereferences the pointer but does not have acc~ss to
the seQment in its SEG clause, SPRITE will report the
error when it is dereferenced. If the pointer in the
actual parameter does not point to that seqment, SPRITE
will reoort the error durinq the coercion from the
actual parameter to the formal.

Aqain, coercinq from a pointer without a SEG clause to
a pointer with a SEG clause requires a run-time check.
This check is not made in the 7.0 release, so users
should be careful.

o

c

Page 17

When we make pointer SEG clauses optional on module
entry point parameters, or when we allo~ ACCESSES
clauses on individual procedures, further parameter
checks will be needed. When an actual parameter
contains a pointer without a SEG clause, it may point
anywhere in the caltinq procedure's SEG_ TABLE. For
this pointer to be meaningful to the called procedure,
the called pr.ocedure must have access to every data
seQment in the calling procedure's SEG_TABLE (if not
more). If the called procedure can change the oOlnter
and pass it back, the reverse is also true (that is,
the SEG_TABLEs must be the same.) Even if only the
RETURN parameter contains a pointer without a SEG
clause (oassed iust one way), the SEG_TA8LEs must still
be the sa~e. This lets SPRITE make the subset check
when the segment the rlestination is in is not known at
compile-time (see L.4.4.1).

Therefore, if a procedure has a CONST or VALUE
parameter type containing a pointer without a SfG
clause, it can only be called by a procedure whose

'SEG_TA8LE is an exact subset of the called procedure's
SEG_TA8LE. Further, if a procedure has such a VAR or
RETURN parameter, it can only be called by another
nrocedure with the same SEG_TA8LE. So SPRITE can
enforce thisl if an entry ooint has such a VAR or
RETUR~ oarameter, its S~G_TA8LE in the MID must be the
same as the one ~n the module; a subset is no longer
sufficient (see L.3.2).

L.4.4.3 Checkinq LINK(s) in the Parameter·s Type

04433800

A LINK with a SE~ clause is handled just like a oointer
with a SEG clause (see L.4.4.2). The problems
involvinq a LINK without a SEG clause revolve around
the seqment the parameter is in. Many of these are
covered in sections L.4.3 and L.4.4.1. In addition,
movinq such a LINK between segments invalidates the
LINK. The conseauenc~s of ihis are detailed below.

First, in a larqe proqram, a formal VALUE parameter
type cannot be a LINK without a SEG clause. A formal
VALUE parameter is on the stack in seqment zero, but
the actual parameter is typically in a different
seqment. Rather than wait until processing the call to
report the error, we simply outlaw it even when the
actual parameter is in seqment zero. Of. cour~~, if
oassing a LINK in seqment zero by VALUE ;s desired, the
user can simoly nut a SEG clausp. on the form~l
Dara~eter, soecifying seqm~ntzero.

l.4.S

/

04501800

Page 18

type is a LINK without a SEG
containinq the actual destination
procedure's SEG_TA8LE. That is,

Second, if the RETUR~
clause, the seQment
must be in the called
SPRITE cannot bJitd
other RETURN types (see

a stack temporary as it can for
L.4.4.1).

Third, VALUE and RETURN parameters can contain imbedded
LINKs without a SEG clause, and still be moved between
seqments. SPRITE assumes the user is reatly tryinq to
pass the non-LINK fields, and will rebuild the LINK
fields hy hand. SPRITE may eventually aenerate
optional code to fill such LINK fields with "AAAAAA"
(for access error) when the parameter must be mov~d
between different seqments. This will catch the error
if the user dereferences them without rebuilding them.

Fourth, if the formal CONST or RETURN parameter ;s a
LINK without a SEG clause, the actual parameter must
point to the same segment that the actual parameter is
in. SPRITE does not altow the actual parameter to be a
pointer (or LINK) with a SEG clause to a different
seqment. If it did, to match the formal parameter
tyoe, SPRITE woutd have to build a temoorary LINK
without a SEG clause in the segment specified by the
actual oarameter's SEG clausp.. This ;s impractical.
Ay insistinq the actual parameter point to the same
seament that it is in, SPRITE can match the formal
parameter type by passing along the address of the
offset part of the ac~ual parameter. If processinq the
RETURN parameter and the actual destination is a
pointer, SPRITE will set the dimension pverride
aporopriately as part of coercinq from a LIMK to a
pointE'r.

So me 0 f the c h e c k s for LIN l(par a me-t e r s are not yet
fully implemented. Users should take care. Most of
the compile-time checks are implemented.

Data in the Code Segment

A code seqment contains several proced~res and their
constants. It may contain several modules, which may
even use different SEG_TA8LEs. Conversely, procedures
usinq the same SEG_TA8lE may be in different corle
seaments, and thus have environments which differ only
;n seqment one. This is obviously necessary when all
the procedures using a particular SEG_TA8L~ cannot fit
in a sinqle code seqment.

(

(

L.4.5.1

Paqe 19

SPRITE is thus designed to verify (as far as possible)
that each procedure has access to the data it needs,
while leavinq the LINKER free to assign proceiures to
code seqments in any way it likes (subject to the bind
deck specifications). This requires special care with
data in the code segment. That includes constant pools
as well as (in a large orogram) data explicitly
declared in the code segment. (See L.1.3 for some
examoles of the following ch~cks.)

Passinq Oata in the Code Segment by Reference

SPRITE wilL not let data in segment one be oassed by
reference, since there is no quarantee that both
procedures are in the same code seqment. However,
constants are simply moved to the stack first.

SPRITE does not do the same thinq with CONST parameters
because of possible aliasing problems. That is, the
procedure may also have VAR access to the variable
(such as by sharing its data block directly), oivinq
stranqe results.

L.4.S.2 Pointino to Data in the Code Se9ment

A pointer (D) without a SEB clause cannot ooint to data
in seqment one. That even includes constants and small
proqrams.

This restriction is closely related to the first. If
we allowed Cp) to point to spqment one, then oassinq
(p~) by reference would violate the first restriction.
SPRITE would not catch this error, because it cannot
tell at compile time which segment (p@) is in. Ry
makinq sure (p) points to one of the data seqments,
(o@) can be passed freely as lonq as the cat ling
procedure·s SEG_TA8LE is an exact subset of the called
orocedure's SEG_TA8lE (see L.4.4.1).

This restriction also applies to a LINK without a SEG
clause. Thouqh not strictly necessary, this is safer
and more consistent.

L.4.5.3 Exolicitly Declarinq Data in the Code Seqment

04532500

SPRITE makes the above checks. In large programs,
those declaring data in the code segment (or a pointer
or LINK to it) must verify that the data and all

Page .20

procedures that share it (or dereference the pointer or
LINK) go in the same segment in the bind deck.

SPRITE helps the user make this check by requirinq that
all data in seqment one must be declared using the
module name as the segment name (see l.2.2). Also,
every pointer to segment one must have the module name
in its type (see l.3.2). (UNIV parameters and omitted
taqfields can bypass this; pointer kludgers beware!).
Thus findinq all occurrences of the module name should
quickly lead to all olaces where something funny i~
qoinq on with the code seament.

l.5 Statements

L.S.1

Several miscellaneous state~ents were changed or added
for OMEGA and/or MCPX. These are described below.

FIND

With OMEGA proqrams, SPRITE can generate an SLT or ST3
for the FINO statement, which provide features not
available with SEA. SlT supports searchinq over a
linked list. STS supports search ina an array with
elements over 100 diqits lonq. In addition to the find
conditions SEA supports, SlT and 5T8 both support:
findinq the maximum value; findina any or no bit
matchinq a mask (see below); or finding the first value

'with one of the following relations to the key: ~=,
<=, >,>=.

find
I

condition

I
_- ANY_ONE_BIT_IN ___ find

bit mask~
primary ___ MATCHES ____ expr ___ _ , NO_ONE_RIT_IN I \

I

~f the ANY_ONE_SIT_IN or NO_ONE_BIT_IN, form of FIND
~ondition is used, all corresoondinq bits in each find
primary and the specified bit mask expression are
examined until an ele~ent is found which satisfies the
match condition. A match occurs if any
(ANY_0NE_8IT_IN) or noCNO_ONE_BIT_IN) pair of
correspon~inq bits are both set. The bit mask must be
a fixed lenqth hex strine the same size as the find
orimary.

05128000

(
L.5.2

\

05306000

?aqe 21

tor a linked list FIND in a large program, the types of
the list head pointer and the link field must be
equivalent. If they are not LINKs, they must have a
SEG ~lause. Also, if the list head pointer (or LINK)
has a SEG clause, it must be in the specified seament.
These restrictions ~uarantee that the list head pointer
and every element of the list are in the same seqment,
which must be true for the SLT instruction to work
properly.

LINKs· without a SEG clause were desiqned sp~cifically
for use with linked list FIND statements. This
exolains the stranqe restrictions on their u~e (see
L.4). By definition, they point to the same seqment
they are in, which is what the SLT instruction needs.
Since no SEG clause is needed to guarantee this, the
same FIND statment can be used to search linked lists
in several different seqments. The user can simply
pass the list head pointer (defined as a LINK) by
reference to the procedure containing the FIND
statement.

GENERATE

"GENERATE LOCAL" generates soace on the stack, which is
in seqment zero. Thus if the pointer or LINK has a SEG
clause, it must be seqment zero.

HGENERATE EXTERNAL" qenerates space in the heap. In a
small proqram, the heap is in seqment zero. In a larqe
proqram, each data segment can have its own heap. When
qeneratinq with a LINK without a SEG clause, SPRIT~
qenerates heao space in the seoment the LINK is in. It
is an errpr if this seq~ent is not known at compile
time. When qeneratinq with a pointer in a large
orogram, it is an error if the pointer does not have a
SEG clause, Decause the SEG clause specifies which
seqmpnt to qenerate in. The seqment must be in the
current environment, but not seqment one. Generatino
with a LINK with a SEG clause is handled the same way
as aeneratinq with a pointer with a SEG ~lause.

ALIAS

The ALIAS statement allows the
qiven SPRITE name or primary
labeL. This can be useful when
assembly moduLes.

user to associate a
with an assembly cod~

combininq SPRITE and

(

L. 5. 4

Page 22

atias statement
I
I , ----------------- , ass e mb 1 y lab e l : ,

= ______ literal _______ , __
\ ,

sprite name ,
" __ module: ident _____ • ___ orocedure: ident __________ _
I , _________________________ , \

I I
l' __ data block, sea, or S~q table: ident _______________ ,
I \ I I _____________ I

1 ,\ I
I' __ data bLOCK variable: ident _____ ' __ selection __ ' _____ I , "-----------------, \ , ' ___ indicant __________________ , I

I

Th~ ALIAS statement appears in the MID, without a KNOWS
list. Th! ~ssembly code label ;s an E8CDIC strinq
literal uo to six characters lonq. Only constant
selections are atlowe~ on the sprite name. That is,
fields and constant indexinq are okay, but not variable
indexino nor oointer dereferencinq.

OVERLAY

The operating system includes several overlay modules,
which are written in assembly code. (They cannot be
written in SPRITE, since once they are, they will no
lonqer be overlay modules.) When calling an overlay
module entry point, SPRITE outs out a VEN to R.GOVL with
the aoprooriate parameters. The operatinq system
writer can specify which modules are in overlays by
usinq the OVERLAY statement. It aopears in the MID,
without a ~NOWS list.

overlay statement
I ________ ,
, I
\ ______ OVERLAY~ _______ \ ___ module:

,
ident ___ ' ____________ _

\ ,
WARNING: Proc pointers can be initialized to point to
o v e r lay mod ute en try poi,..t s, sin c e t his i s nee d edt 0

supoly orocerlure addresses to assembly code modules.

05/t 200flO

l.S.S

l.6

However, these oroc pointers must not
in a SPRITE module, since SPRITE will
necessary 8GOVl call. SPRITE does
ilteqal use of these proc pointers.

REMAPS

Page 23

be dereferenced
not generate the
not catch this

The REMAPS definition allows the user to redefine the
variables within a DATA block, without resorting to
structures with omitted taqfields.

remaps definitio~ ,
, remap tFlrqet
t ~ATA DATA
I name·: name:
' __ ident __ REMAPS __ ident __ :

,
I ___, ___ \

, I var: \ ,
___ ' __ ' __ ident __ I __ tyoe __ I __

\ ,

The REMAPS definition may appear wherever a DATA
definition may apoear, but only in the MID. If the
tarqet DATA block ;s declared within a seqment (see
L.2.1), the REMAPS block must be declared within the
same seqment. REMAPS block variables cannot be
initialized (but thi5 miqht be implemented later on).
The REMAPS bLOCK cannot be biqger than the tarqet DATA
block beinq redefined. To access REMAPS block
variables, use the remap DATA name in a SHARES listl
just as you would for a normal DATA block.

basic_definition $TRING (200) OF HEX := "0";

sm_io_for_keyboard_output
REM A P S s m_ ; 0 :

messaqe_number
keyboard_command,
message_received

Implicitly Declared Data

0 ... 999,

ROOLEAN;

Proqram_reserved_memory and ihe~p are imolicitlv
declared by SPRITE. If the user must have access to
their data, they~must be declared explicitly in the
user's MID. The names are different in large orogramsl

06100000

(

L.6.2

\

Page 24

however, QS shown below.

Proqram_reserved_memory is the first fifty bytes in
segment zero, containing such things as the index
registers. If it is declared explicitly, and the
declared block is biqqer than that, the declared size
is used instead.

In a large proqram, there can be more than one segment
zero. Since the same name cannot be used for tvo
different MID data blocks, prooram_reserved_memory
cannot be declared by that n3me for each seqment zero.
Thus Laroe oroqrams must instead use: "prm_" + <the
segment name>. This means the segment zero names have
to be unique in the first 26 characters (30, less 4 for
"prm_").

Iheao

In small proqrams, SPRITE maintains the heap with the
imolicit data block iheao.

In large proqrams, e~ch segment (other than one) can
have its own heap and iheap. To maintain uniaue names,
each seqmentJs iheap is named "iheap_" + <the seqment
name>. Note that the seqment names must be unique in
the first 24 characters (30, less 6 for "iheap_"). The
sizp. of each heap can be declared individually in the
bind deck. If the oroqram never tries to generate
anything in a particular segment's heap, that seqment's
heap and iheao are not bound in.

l.7 Standard Functions and Procedures

l.7.1

07104000

The standard function proc_ptr and the type ~onstruct
PTR TO PROC work somewhat differently for OMEGA. Also,
OMEGA supports locks, which SPRITE implements with new
standard procedures and types. Th~se and several other
new standard functions and procedures are described
below.

Proc Pointer Typ~s

Non-OMFGA orocedure pointer types and the standard
function oroc_otr are described in section 13.5 of the

c

I,

l \

SPRITE Reference Manual. Briefly,
reference to a procedure.
destination orocedure pointer
parameters) calls that procedure.

Page 25

proc_ptr returns a
Dereferencing the

(followed by any

For OMEGA proqrams, a procedure
twenty-digit non-local environ
assembler). The value niL
"OOOOOOOOOOOOCEEEEEEEff.

pointer is stored as a
pointer (ENVP in
is represented as

For Laroe OMEGA proqrams, procedure pointer types must
include an ACCESSES clause. This cLause ;s not allowed
in other programs. SPRITE uses the ACCESSES clause to'
verify that the callinq and called procedures share the
same seqment zero (see L.3.3). SPRITE also uses this
clause to set UP the parameters prooerly for the calle~
environment, lust as it does with a normal call (see
l.4.4).

procedure pointer type
I seq
t return table:
' __ PTR __ TO __ PROC __ params ____ value ____ ACCESSES __ ident ___ _

'--' ':~: ___ I \: _____ , , ________________ , ,

f

To be compatible, procedure pointers must have the same
ACCESSES clause. (They must also have the sam~
parameter list and RETURN type, as in non-OMEGA
oroqrams.) A procedure pointer can only point to
procedures ~ith the same ACCESSES clause. It cannot be
dereferenced within a procedure which uses a different
seqment zero (and thus a different stack).

In a later release, coercions and the prot_ptr function
could reLax the ACCESSES clause restriction, as
follows. The ACCESSES clauses need only be the same
when there is a VAR or RETURN oarameter cont3ininq a
pointer without a S~G clause. If there is such a VALUE
oarameter, the destination proc po~nterts SEG_TABLE
must be an exact subset of the sourc~1s (or
procedure's) SEG_TABLE. The same subset is required
when there are any pass by reference or RETURN
parameters at all, regardless ~f their type.
Otherwise, the. only re~triction is that both SEG_TA8LEs
must use the same seqment zero. These restrictions are
needed so SPRITE can check and process the parameters
(see L.4.4).

07200000

(

/

L. 7.2

Page 26

Lock Types

There are two different kinds of locks, as follows:

lock type
I f' ___ LOCK _____ level: constant simple expr ______________ _
I _ I \
\ ____ EVENT __________________________________ , ,

I

Oata block variables, structure fields, and array
el~ments can be defined as type LOCK (synchronization
lock) Dr EVENTCevent lock). For LOCKs, the level must
be in the ranqe 1 •• 9999. Variables must be initialized
with the oredefined constant ninit_lock". The only
valid use of these variables ;s to pass them to the
lock standard oraes: (proq.)lock, lock_conditional,
unlock, and test_event. LOCKs and EVENTs are twenty
diqits bio.

data
DATA

proc

info

PROC;
SHARES

STRUC
ftaq BOOLEAN,
ftaq_tock LOCK 3

CURTS .- [true, init_lockJ;

data;

proq.lock_conditional (info.fLag_lock)

tORP;

IF IN_USE
THEN

ELS E
info.flaq := false;
oroq.untock Cinfo.flaq_lock);

% no " • ·ff ,

07300000

(

L.7.3

oroq
MOD

OOM;

Page 27

Oefinitions

proc_ptr
PROC (proc

RETURNS
PROC_NAfrlO % (proc) or (mod.proc)

ot r

PTR TO PROC ••• ;
% returns proe 'pointer t.J;th same parameters,
% return value, and ACCESSES clause (1f any)
% as the passed proe

PRot (primary T)
RETURNS PTR_OR_lINK TO T;

% destination must be a PTR or a LINK

ptr_add % to ~ffieiently step throuqh an array
PROC (source_otr PTR TO T, % a pointer into

% an array of T
elems UN_6)

RETURNS PTR TO T;
% dest_ptr := s6uree_otr + (elems * T.SIIE)
% (size rounded UP to multiple of T's ~odulo)
% arithmetic on offset part of pointer, with
% dest_otr qettinq source_otr's dimension
% override

ptr_sub
PROC (source_ptr PT~ TO T,

etems UN_6)
RETURNS PTR TO T;

X same as ptf_add except I1_n instead of "+ff

scale_otr
PROC (number UM_7, % must include dimension

% override diq;t!!
exponent O •• 6) % must be constant

RETURNS PTR TO T;
% dest_otr := number *
% 10 to the power of exponent

halt_breaKPoint
PROC (break_id,

mask
% both

read_timer

Yo AF
STRING (2) OF HEX); % BF

must be constant

PRO(R~TURNS UN_20;

% H8K

% ROT

07312500

I

Paqe 28

mco % strictly for Mep use
MOD

7. ATE 02
alter_environment_table_entry
PRoe (source_descriptor UNIV P_STR_10_HEXI

dest_descr;ptor UNIV P_STR_06_HEX);
% source_descriptor must be 10 digits tong
% dest_descriotor must be 6 digits long

bind_date % COAT
PROC RETURNS UN_6; % ddmmvy

bi nd_ ti me
PROC RETURNS UN_6;

build_ptr_no_seg
PRoe (size,

offset UN_6,
seq SEGMENT_NAME)

% hhmmss

RETURNS PTR TO ri % with seo1s D.O.
Y. Destination must be a PTR
% without a SEG clause.

% CTH1

% If dest is not a parametric pointer,
% iust pass size of zero.
% If d~st is a parametric pointer,
% pass size Dart of pointer
% (diQit size, but byte size when
% parametric CHAR or E8COIC string).

build_otr_seq
PRoe (5i ze,

offset UN_6)
RETURNS PTR TO SEG s T;

% destination must be a PTR
% with a S~G clause
% size is same as ahove

context_addr % AeON
PROe (primary UNIV P_STR_1_TO_999Q99_HEX)

RETURNS STRING (8) OF HEX;
% like ptr but returns a
Z context address, with.

% parametric HEX strinq

% controller and extend digit

07316800

A
A
A
A
A
p.

,1\

(

(

Paqe29

convert_io y. CI0
PROC (initial_desc UNIV P_STR_40_HEX,

result_desc VAR UNIV P_STR_30_HEX);
% exception clause:
i. IF INVALID_ADORESS ••• % LEQ
Yo params must be exactly
% 40 and 30 diqits long

copy_desc
PROC (seQ_table SEGMENT_TABLE,

seq SEGMENT_NAME)

RETURNS STRING (3) OF HEX;
% return~ a cooy descriptor,
% for COpy TO part of APE.
% use module name as seq_table
% name for the module's run
% time environment

r. PTNM
r. SEG_ TABLE name
% segment in se9_table
% SEG_TA8LE
% 6-digit EN,
% 2-digit r"A"l

cooy_paqe_tabte_entry % ATE 01
PROt (source_descriptor,

dest_descriptor UNlV P_STR_8_HEX);
Yo params must be B diqits long

env_otr % ENVP
PROC (oroc PROC_NAME, % (proc) or (mod.croe)

reserved STRING (8) OF HEX)
RETURNS PTR TO PROC ••• ;

% same as proc_Dtr, except it
% lets user specify the eight
% reserved diqits in the ENVP
X (oroc_ptr sets them to zero)

halt_branch
PROC (branch_to_self BOOLEAN);

% must be constant
% false means b~anch to next
% instruction

hYDer_call

% H8R

% HCL
.4
,4.

c

PROC (fucntion_number
Darams

0 •• 999,
UNIV P_STR_'_TO_1999B_HEX);

7. must he conAtant
7. size must bA
X be mo d 2 A

A

A

07323600

(

initiate_io I. 110
PRoe (channel 0 •• 77,

desc UNIV P_STR_6_TO_30_HEX);
% desc must be 6 to 30 digits lonq
% exception clause:
% IF INVALID_IO ••• % HIGH

interrupt % INT
PROC (request REQUEST);

X REQUEST is any user-defined,
% non-packed symbolic with
% UP to 99 elements

interrupt_data % INT
PROC (reauest REQUEST,

data UNJV P_STR_99_HEX);
% same as interrupt, except
% allows data to be passed

io_complete % roc
PRot (channel 0 •• 77,

mast UN_6,
digit_count VAR UN_B);

% exceotion clause:
% IF INVALID_IO ••• % HIGH

Paqe 30

lock
PROC (l_or_e VAR LOCK_OR_EVENT);

7. LOKIJ or
% WAIT

% param must be a LOCK or an EVeNT

lock_conditional
PROC (l_or_e VAH LOCK_DR_EVENT);

i. param must be a LOCK or an EVENT
% excention clause: IF IN_USE •••

make_paqe_table_entry_unused
PROt (descriptor UNIV P_STR_B_HEX);

% desc must be 8 d;q;ts lonq

% LOKe or
% StTL

% ATE 00

move_data
PROC (source

dest

% MVD
UNIV P_STR_1_TO_999999_HEX,

VAR UNIV P_STR_l_TO_999999_HEX);

move_repeat
PRot (oattern

dest

7. MVR
UNlV P_STR_1_TO_999999_HEX,

VAR UNIV P_STR_1_TO_99999Q _HEX);
% dest's size must be an exact

07330810

% multiole of pattern's size
% if either is variable tenqth,

only one ~VR will be generated
<with at most 100 repetitions)

c

(

/

"

mvs % MVS
PROC (afbf

source_desc,
dest_desc UNIV P_STR_34_HEX,
padding' 0 •• 2);

% afbf and paddinq must be constants
% descs must be 34 dioits tong
% padding: 0 = pad with zeroes
% 1 = no paddinq
% 2 = pad with blanks

offset_ptr
PROC (orimary

RF.TU!HlS UN 6;

% MADR
UNIV P_STR_1_TO_Q99999_HEX)

% returns just the offset part of
% a pointer to the parameter

Paqe 31

read_beqin_address % RAD 00
PROC (channel 0 •• 77,

dest VAR UNIV P_STR_4_CHAR); % parametric CHAR strinq
h exception clause: IF BUSY •••
% dest must be MOD 2, 4 bytes tono

read_end_address ~1. RAT> 01
PRot (channel 0 •• 77,

dest VAR UNlV P_STR_4_CHAR);
% exception clause: IF 8USY •••
% dest must be MOD 2, 4 bytes tonq

read_result_descriotor % RAD 02
PROC (channel 0.e77,

dest VAR UNIV P_STR_4_CHAR);
% exceotion clause: IF BUSY •••
% dest must be MOD 2, 4 bytes long

reinstate_task ~1. 8RV
PROC (addr PTp, TO RFINSTATE_LIST_ENTRY);

% REINSTATE_LIST_ENTRY ;s a
% user-defined structure

OTB6760

(

scan_descriotors % SRD
PROC (list_head UN_4,

complete_r_d VAR R_O_PTR);
% exception clause:

i. AFBF
% IX1

% IF 10_COMPLETE _.. X NEG
% list_head is address of first
% result descriptor to check
i. complete_r_d is PTR (with or
r, without SEG clause) to first
7. R_D (user-defined structure)
% found that says I/O complete
% Cif any)

set_timer
PROC (timt'

i. srT

Paqe 32

5 t a c k _ 0 v e r f t 0'11

PROC (task
% H CL 1

stop_failure
PROC (condition

fatal
% both

system_id

UN_ 6,
BOOLEAN);

must be constant

PROC (dest VAR UNIV P_STR_200_HEX);
% dest must be 200 digits long

system_status
PROC (dest VAR UNIV P_STR_200_HFX);

% dest must be 200 digits long

% FAIL

i. ssr :)1

~~ SST 00

test_event % TEST
PROC (event EVENT);

% exception clause: IF IN_USE _._

unlock % UNLK or
PROC (l_or_e VAR LOCK_OR_EVENT); % SGNL

i. param must be a LOCK or an EVENT

07341800

Page 33

uodate_mast_address % WHR 03
PROC (addr UN_9);

update_memory_error_address Yo WHR 02
PROt (addr UN_9);

uodate_reinstate_list_address Yo WHR 00
PROC (addr UN_9);

update_snap_o;cture_address Yo WHR 01
PROt (addr UN_9);

write_beqin_end_addresses % RAO 09
PROt <channel 0 •• 77,

source UNIV P_STR_4_CHAR);
% exceotion clause: IF 8USY ._.
~ dest must be MOD 2, 4 bytes ton~

(

07343800

