
~~.u~ ________________ ~n~U~D~E~N~T~T~~~T 
Cl503-416M-ST 

I 

Computer Systems Department 

DESCRIPTORS - INPUT/OUTPUT CONTROL FOR BUIC III SYSTEM 

October 1967 

Keesler Technical Training Center 
Keesler Air Force Base, Mississippi 

--------- Designed For ATC Course Use ---------



Computer Systems Department 
KTTC, Mississippi 

study Guide 81 student Text 
October 1967 

DESCRIPTORS, INPUT/OUTPUT CONTROL FOR THE BUIC m SYSTEM 

CONTENTS 

TITLE 

INTRODUCTION 
1. Objective 
2. General 

SOFTWARE DESCRIPTORS 
1. Setup Descriptor 
2. Release Descriptor 
3. Command Descriptor 

HARDWARE GENERATED DESCRIPTORS 
1. In-Process DeSCriptor 
2. Result Descriptor 

PAGE 

1 
1 
1 

3 
3 
5 
6 

8 
8 
9 



DESCRIPTORS, INPUT/OUTPUT CONTROL FOR THE BUIC SYSTEM 

OBJECTIVE 

To explain the basic control for trans­
ferring data between the Terminal Equipment 
and the Core Memory units within the BUIC 
System. 

INTRODUCTION 

This study guide is intended to define 
the format and control functions of the con­
trol words (DESCRIPTORS) that are used in 
the BUIC System to control the transfer of 
data between the Terminal Equipmentandthe 
Core Memory units. These control words 
will be utilized for Input Operations, where 
we transfer data from a selected Terminal 
Device into a Memory unit, and for Output 
Operations, where we transfer data from a 
selected Memory Unit to a Terminal De­
vice. 

GENERAL 

The I/o module in the BUIC System 
works for the computer in much the same 
manner that a "Tool Chaser" works for a 
mechanic. When the mechanic needs a tool 
he sends his "Tool Chaser" after it, when 
the "Tool Chaser" brings it back the me­
chanic uses it. Once the mechanic is finished 
with the tool he has the "Tool Chaser" put 
it back. The program works much the same 
way. In our case when the computer needs 
data it sends the I/o module after it. The 
I/o module will get the data from a terminal 
device such as the Card Reade r or Mag­
netic Tape for Input Operations, or from a 
Core Memory for Output Operations. When 
the I/o gets the data from these units it 
will place it where the computer has speci­
fied. For input operations this will be mem­
ory locations that have been specified by the 
program. For output operations this will be 
stored on magnetic tape units or magnetic 
drum units. Once the I/o module has gotten 
the required data and transferred it to the 
specified location, the I/o will notify the 
computer that the job has been accomplished. 
The computer which has been performing 
other tasks while waiting for the I/o to re-

ceiv~e data, will now come back and check 
to see that the I/o received the correct data 
the program wanted just as the mechanic 
would check to see that the "Tool Chaser" 
got him the correct size and type wrench. 
If everything was received correctly, then 
the computer would utilize the data that the 
I/o had transferred in accomplishing other 
tasks. 

A computer does not have the ability to 
think or know }Vhat is to be accomplished 
like. a human mechanic does. Each action 
that is to be performed by the computer 
system in accomplishing any task must be 
told to the computer by our prog~. This 
includes notifying the computer when to per­
forIn the operation, what terminal equipment 
to use, and what type operation (Input or Out­
put) that is to be performed. 'Ibis is accom­
plished by the use of control words in our 
program which we call DeSCriptors. These 
Descriptors are used to setup (initially 
condition) the equipment, initiate and control 
each operation of the terminal equipment, 
terminate the operation once the required 
operation has been completed, and to termi­
nate the operation at any point in the opera­
tion if a malfunction occurs. 

There are five types of control words 
that are used with the BUIC System. These 
are broken down into two general classifi­
cations. Three descriptors are classified as 
software descriptors (sometimes referred to 
as Program gene rated). This means that these 
three descriptors are physically made up 
by the programmer and placed in the program 
that will be operating the equipment. These 
three descriptors will be sent from the pro­
gram that is stored in a specified memory 
to the I/o module to be used by the I/o in 
controlling the operation with the terminal 
equipment. The three software descriptors 
are the Set-Up descriptor, the Command 
descriptor and the Release descriptor. The 
function and format of each of these will be 
covered later in this study guide. 

The remaining two deSCriptors are labeled 
hardware descriptors (sometimes referred to 

1 



as I/o formed descriptors). These two des­
criptors are formed in the I/o module by 
logic circuits and will be tranSferred to 
a specified memory unit where they are 
stored so that the program can check the 
results of the operation that was to be run. 
The two hardware descriptors are labeled 
the in-process descriptor and the result 
descriptor. The in-process descriptor is 
formed in the I/o module at the start of an 
operation to notify the program if the se­
lected terminal equipment is avai1ab1~ and 
if the operation did start. The result des­
criptor is formed within the I/o module at 
the end of an operation and sent back to a 
specified memory location to notify the pro­
gram of the results of the operation. This 
allows a check of the operation to determine 
just how successful the operation was and if 
there was any malfunction that occurred 
during the operation. In formiJ.lg the hard­
ware deSCriptors, the I/o uses the software 
descriptor it received and modifies or up­
dates the software descriptor and .sends a 
copy of the updated descriptor to a speci­
fied memory location as the hardware des­
criptor. 

Before we take a look at the format and 
function of each of our descriptors there 
are some basic background facts we need to 
establish. 

An operation is initiated by the computer 
utilizing the program which has been stored 
in a specified memory module(s). This pro­
gram is a step-by-step sequence of instruc­
tions that will beperformedduringthe running 
of the program. In the BUIC System, opera­
tions to transfer data between the Terminal 
Equipment and Core Memory is controlled 
by the program utilizing an instruction called 
a TIO (transmit to I/O) instruction. This 
instruction causes a descriptor control word 
to be obtained from a memory location and 
sent to an I/o module on either Bus A or 
Bus B, where the selected I/o will perform 
the required operation. This TIO instruction 
would be the same as our mechanic verbally 
telling the "Tool Chaser" to go get him a 
1" open-end wrench from the tool box. 

2 

The computer in the BUIC System is able 
to go ahead and accomplish other tasks while 
waiting for the I/o module to transfer the 
requested data, once the operation has been 
started by the I/o module. This is much the 
same as the mechanic would do on his job 
while waiting for the "Tool Chaser" to 
return with the wrench. 

There are three different states or con­
ditions tha~ the I/o module can be in: 

1. NON-BUSY: This is a condition where 
the I/o is not performing a data transfer 
operation. This can be compared to a "stand­
by" condition, where the I/o is waiting to 
be told to perform a task much as our "Tool 
Chaser" would be waiting for the mechanic 
to tell him what tool to go get next. 

2. INACTIVE BUSY: In the Inactive Busy 
state an I/o module is not performing a 
data transfer operation and can not be in­
structed to perform an operation. However, 
from all appearance the I/o module looks 
as if it is actually performing an operaion. 
This is much like you have seen individuals 
who looked busy when the supervisor came 
around, yet they were not performing a 
specific task. The reason for the Inactive 
Busy state is for system flexibility and 
will become more apparent later in the 
course. The Inactive Busy state is some­
times refe rred to as a passive busy or just 
busy state. It means the I/o looks busy. 

3. ACTIVE BUSY: In the Active Busy 
state the I/o module is performing a data 
transfer operation between a Terminal De­
vice and a selected Memory Unit. 

First Non-Busy I/O: (FNBI/O) This is 
a term used in the BUIC System to desig­
nate the lowest numbered non-busy I/o 
module on a bus. A bus is the inter-connect­
ing lines between the I/o modules and the 
Core Memory units. In the present BUIC 
System we have two I/o modules on Bus A 
and two I/o modules on Bus B. I/o modules 
#1 and #2 are located on Bus A, while I/o 
modules #3 and H are located on Bus B. 
When we speak of the FNBI/ 0, we are re­
ferring to the lowest numbered I/o module 



on the bus. For example: Assume that on 
Bus A, I/o #1 and I/o #2 are in the Non­
Busy state; then I/o #1 would become the 
FNBI/O. If I/o #1 was busy then I/o #2 
would become the FNBI/O. 

SOFTWARE DESCRIPTORS: The three soft­
ware descriptors which are transferred from 
a memory location to the I/o module as a 
result of the computer executing a TIO in­
struction will contain a 48 bit control word 
and a parity checking bit that is used to in­
sure that a valid control word was trans­
ferred. 

SETUP DESCRIPTOR: The setup descriptor 
is sent to all I/o modules on a bus to per­
form two fUnctions: (1) To initially condition 
the I/O module by putting the I/o in a busy 
state after power has been applied to the sys­
tem. (2) To set the Descriptor Base Address 
Register (DBAR) in each I/o module to 
specify the memory module and memory 
module address that the I/o module will 
send the in-process and result descriptors 
to after each operation is performed. This 
allows the program to check to see that each 
operation started and the results of the 
operation when the operation ends. This tells 
the program if the operation was completed 
successfully or if there was a malfunction 

. during the operation. . 

The setup descriptor will normally be 
transferred after power is applied to the 
system to initially condition the equipment 
and set up the DBAR register. The other 
condition which requires the transmittal 
of a setup descriptor is when the type of 
program being utilized is changed to a 
different program. When the program is 
changed the OBAR for the new address 
specifying the location for the return of the 
in-process and result deSCriptors for the 
new program will be loaded into the DBAR 
register. 

When a setup descriptor is applied to 
one of the I/o buses (A or B) it is re­
ceived by all I/o modules connected to the 
bus. All the I/o modules on the bus (busy 
and non-busy) check the setup deSCriptor for 
the correct parity and take the appropriate 
action as follows: 

1. Setup descriptor received with correct 
parity. 

a. All active busy I/o modules load the 
base address of the descriptor into their 
respective DBAR without interrupting the 
active ope ration. Does not return an in­
process deSCriptor. 

b. Non-busy I/o modules will load the 
base address into the DBAR register and 
are made inactive busy. Will return apartial 
in-process that contains only the DBAR 
setting in bits 1 through 11 and status code 
in bits 17, 18, and 19. 

c. The first non-busy (lowest-numbered 
non-busy) I/o module (FNBI/O) returns a 
full in-process deSCriptor that is identical 
to the setup descriptor except that update 
I/o status is inserted into bits 17, 18, and 
19. The in-process deSCriptors can now be 
examined by the program in control to verify 
the successful receipt of the setup des­
criptor. The in-process will be returned 
to the new DBAR address. 

2. Setup descriptor received with incorrect 
parity (even'number of l's): 

a. All active busy I/o modules on the 
bus ignore the new DBAR setting and do not 
load their DBAR register and continue the 
operation they are performing. 

b. The non-busy and inactive busy I/o 
modules on the.bus will ignore the new DBAR 
address and do not load the new address in 
their DBAR register. However, the non­
busy I/o modules are set· to the inactive 
busy state. The non-busy II 0' s will return 
a partial in-process. 

c. The FNBI/ 0 will return a full . in­
process which is identical to the setup 
deSCriptor with status inserted in bits 17, 
18, and 19 = 111. The in-process will be sent 
back to ,the original DBAR address. The 
format for the Setup Descriptor is shown on 
C1502-416M-SU, Descriptor Code Card. 

The Setup Descriptor contains the 11 bit 
DBAR in bits 1 through 11 of the descriptor. 

3 



These 11 bits are used in conjunction with 
4 bits (pre-wired into each I/o module) 
and the status of the Descriptor Return 
Control nip-nop (DRC) to provide 16 

£SCR ... FTOR BASE ADDRESS REG1STER 

1 - - 4 5 - - - - - - - 11 

BAR 
(1-1,) 

4 bits to 
select a memory 
module 1lUIlIber 

,DBAR Bits 1 through 4 will specify the 
the memory module (08 through 178) 
that the programmer has selected for 
storage of the in-process and result 
descriptors. 

DBAR Bits 5 through 11 make up the 7 
MSB of the 12 bit word location add­
ress. 

DBAR Bits 12 - 15 (pre-wired in I/o module) 
are used in conjunction with DBAR 
bits 5 through 11 to make up the 11 
MSB of the 12 bit word address. BAR 
12 - 15 will be pre-wired to the I/o 
module 4#. For I/o 4#1, Bar 12 - 15 = 
0001. 

DRC The DRC flip-nop will be used with 
BAR 5 - 15 to form the LSB of the 
memory address. When an in-process 
descriptor is being returned the DRC 
will = O. For a result deSCriptor the 
DRC will = 1. 

4 

bits to select the memory and memory 
address location where the in-process 
and re sult desc ripto r will be re­
turned. 

PRE-WIRED I/O BITS ORC FLIP-FLO 

12 - - - - - 15 16 --r----
BAR BAR 

(12-15) (16) 

12 bits to select a 
specified memory address 

BAR 12 - 16 will equal the I/o module 4# X2 
for an in-process descriptor. When I/o 4#1 
is being used BAR 12 - 16 will equal 0010. 
For a result descriptor, BAR 12 - 16 will 
equal the I/o 4# X2 + 1. For I/o 4# 1 this 
means BAR 12 - 16 will equal 0011. 

The 5 LSB of the memory address location 
will always be the same for all programs. 
The 7 MSB can be changed by the programmer 
to specify the location the programmer wishes 
to utilize in his program. 

It should be noted that each I/o module has 
only one location for sending its in-process 
descriptor to and one location for its result 
deSCriptor. After each operation the program 
makes a check of the location and this way 
the next operation can utilize the same 
location for the in-process or result des­
criptors. 

Bits 13 through 31 will be all ~'s. 



Bit 32. of the setup descriptor will always 
be a "l" bit. When the setup descriptor is 
loaded in the I/o module each syllable is 
processed through the control and parity 
checking register where it is checked and 
if the overall word parity is correct the 
DBAR is then loaded into the DBAR register. 
When loading the descriptor into the I/o 
module syllable D is loaded in first, then 
syllable C,' B, A, parity. When syllable D 
is loaded into the control and parity re­
gister bit 44 would set bit position t8 to a 
"l" bit. We utilize bit 32 of setup to 
compliment the "1" bit back to a "0" 
when syllable C comes in so that when syllable 
A is loaded into the 1/ o whatever configuration 
of bit position #8 in the DBAR will be 
loaded into the DBAR register. If bits 1 
through 11 of the DBAR register are not 
O's when the last syllable of the descriptor 
word is entered, the DBAR setting specified 
in the setup descriptor would be modified. 

Bits 33 through 43 will contain all 0' s. 

Bits 44 through 48 will contain the configura­
tion of 10001 which is decoded within the 
I/o module to notify the I/o module that this 
is a setup descriptor. These five bits are 
called order code. 

RELEASE DESCRIPTOR: The release des­
criptor illustrated in C1502 card is used to re­
lease a specified (addressed) busy II 0 module 
from its busy state and set it non-busy. 
The I/o module has two different busy states 
in which it can exist; the "active" busy state, 
in which the I/o module is actively performing 
an operation, and the "inactive" busy state, 
in which the I/o module looks busy but is 
not performing an I/o operation. The release 
deSCriptor, by setting an inactive busy I/o 
module to the non-busy state, allows the I/o 
module to a~cept a new command descriptor 
immediately after receipt of the release 
descriptor iJi order to perform another opera­
tion. It should' be . noted that only one I/o 
module will receive a release descriptor at 
any one time on a bus. 'Ibis makes this 
I/O module become the FNBI/O on the bus 
since all other I/o modules on the bus would 
be "active" busy or "inactive" busy. The 
release descriptor is also used to terminate 

an I/o operation in progress by releasing 
an active busy I/o module and setting it 
non-busy. Normally, a release descriptor 
will not be sent to an active busy I/o 
module as it would stop the operation that 

. is in progress. The exception would be 
where a priority operation is needed to get 
data displayed on the Data Display console 
when all I/O's on the bus were tied up 
performing operations or a program error 
in sending the release descriptor at the 
wrong time. The Release Descriptor format is 
shown on C1502-416M-SU, Descriptor Code 
Card. 

Bits 44 through 48 contain the descriptor 
type code of 10000. 'Ibis is decoded within 
the I/o module as a release descriptor. 

Bits 39 through 42 contain the specified I/o 
module number that will accept and take 
action on the release descriptor to make the 
I/o module non-busy. The remaining bits 
of the release descriptor are not used. 

When a release descriptor is applied 
to one of the I/o buses (A or B), the des­
criptor will be received by the busy ("in­
active" or "active") I/o module whose 
address is contained in bits 39 through 42 
and by the FNBI/O on the bus. All other 
busy and non-busy I/o modules on the I/o 
bus will ignore the release descriptor. The 
addressed I/o module checks the parity 
of the release descriptor; if the parity is 
incorrect (even number of 1 bits), the add­
ressed I/o will ignore the release des­
criptor and remain busy. If the parity is 
correct, the I/o module is made non-busy. 
If the I/o operation is terminated, the I/o 
module is made non-busy, and a result 
descriptor is sent back on the operation that 
was in progress. An in-process would not be 
sent back after the release deSCriptor. 

'!be FNBI/ 0 module also checks the parity 
of the release descriptor word. If the parity 
of the descriptor is incorrect, the FNBI/O 
returns an in-process descriptor which is a 
copy of the release descriptor with up date 
status of 111 in bits 17, 18, and 19 in order 
for the program to check the operation and 
see that there was an error. 

5 



It should be noted that only the FNBI/O 
will return an in-process descriptor fol- ... 
lowing a release descriptor and that the in­
process descriptor will be returned only if 
a parity error is detected. Therefore, if all 
I/O modules on the I/O bus are busy ("in­
active" or "active") when the release is 
sent, no in-process descriptor will be re­
turned to memory (whether a parity error 
exists in the release descriptor or not). 

COMMAND DESCRIPTOR: The command 
descriptor is a coded instructor that is sent 
to the I/o module to initiate and control an 
Input/output operation with a selectedtermi­
nal device. Once the command descriptor has 
been received with correct parity, the I/o 
module will select the specified terminal 
device and will control the data transfer 
operation without the aid of the computer 
module. This will allow the computer module 
to be utilized in performing other tasks within 
the program such as mathematical computa­
tions, performing othe r program routines, 
etc. 

Prior to sending a command descriptor 
to one of the I/o buses (A or B), a release 
descriptor would have been sent to a speci­
fied I/o module to make it non-busy so that 
it would be able to receive the command 
descriptor. The selected I/o module would 
be the only I/o on the bus in a non-busy 
state, thus making it the FNBI/O on the bus. 

When a command descriptor is trans­
mitted to the I/o bus (A or B) it will be 
received by the FNBI/O only; all other I/o 
modules will ignore thecommanddescriptor. 
If all I/o modules on the I/o bus are busy, 
the transmission of the command descriptor 
will be unsuccessful. 

When the FNBI/O receives the command 
deSCriptor, the parity of the command des­
criptor is checked, and the FNBI/O will 
attempt to engage the designated terminal 
device so that the I/o operation is initiated. 
If the parity is incorrect or if the specified 
terminal device is not available, appropriate 
I/O status information is inserted into the 
in-process descriptor before it is returned 
to the descriptor list in memory. If the 

6 

command descriptor is received with cor­
rect parity and the terminal device is avail­
able, an in-process descriptor will be re­
turned to the descriptor list with appropriate 
status so the program can check and see 
that the operation was initiated successfully. 
Whether the command descriptor is received 
satisfactory by the FNBI/O or not, the I/o 
module is placed in the busy state. Once the 
command descriptor is received satisfactory 
and the terminal device is available, the 
FNBI/O will initiate and control the operation 
as specified by the coded information in the 
different sections of the command descriptor. 
(C1502 card). The I/O operation now proceeds 
at a rate determined and controlled by the 
terminal device in use and continues until a 
condition for terminating the operation occurs 
(normal completion, malfunction occurs, or a 
release descriptor). The I/o module then 
releases the terminal device and returns 
a result deSCriptor to the descriptor list 
in memory which contains status bits that 
indicates whether or not the operation was 
completed successfully. The Command Des­
criptor format is shown on C1502-416M-SU, 
DeSCriptor Code Card. 

Bits 1-12, indicates the number of words to 
be transferred. Maximum of 4096 words per 
command deSCriptor. As each word is trans­
ferred the word count is down counted by 1. 
Normal termination of operation in word 
count = O. The signal to down count the word 
counter is developed in the I/o module as 
each word is transferred. 

Bits 13-16, indicates the number of records 
to be transferred. The maximum number of 
records for a command descriptor is 16. 
As each record is transmitted the record 
count is down counted by 1. The record 
count is used on input operations only. When 
the record count is down counted to 0 during 
an input operation, regardless of word count, 
the operation will be terminated. The Signal 
to down count the record count is developed 
in the terminal device and sent to the I/o 
module to down count the record count. 

Bits 17 through 20 of the command des­
criptor are not used. 



Bits 21 through 24 are used to specify the 
memory module where the data will be 
transferred to or taken from. It should be 
noted that the address for the memory 
modules will be address 0 through 7 for 
BUIC m configuration. 

Bits 25 through 36 contains the starting 
word location in the specified memory mod­
ule for the first word to be transferred. As 
each word is transferred through the I/o 
module the word location address is up 
counted by 1 to indicate the new address for 
the next data word to be transferred. 

It should be noted that if the word add­
ress is maximum (77778) and a word is 
transferred, the next word location will be 
address 0000(8) and the memory module 
number would be increased to the next higher 
number module so that the next data transfer 
would go to memory address 0000(8) of the 
next memory module. 

Bit 32 is not used in the command descriptor. 

Bit 38 is used when a priority (A) is needed 
to allow the I/o module a higher priority in 
obtaining access to the bus when simultaneous 
command deSCriptors are made by different 
I/o modules for access to the bus. Priority 
A operations are normally given for only the 
higher speed terminal devices to reduce the 
possibility of I/o terminations due to "data 
too slow" device error status. 

The I/o module has a higher priority access 
to the buses for transfer of data with the 
memories than the central computer modules. 

Bits 39 through 43 designate which terminal 
device is to be used in the I/o operation. 
These five bits, in conjunction with bit 44 of 
the operation type, specify any one of 64 
possible terminal devices. In the maximum 
complement of terminal devices, not more 
than 32 output devices and 32 input devices 
can be utilized within the BUIC nI System. 
The total input or output device can be 
comprised of simple (one-way) and complex 
(two-way) terminal devices. Each simple de­
vice will be assigned a device number. Each 
complex terminal device will have two device 

numbers associated with it, one number for 
input operation and a different number for 
output operation. For example, the "Flexo­
writer" unit is a complex device. When used 
for output operation the device lNmber for 
the Flexowriter is O. (Bits 39 through 44 = 
000000). For an input operation the Flexo­
writer is device number 1. (Bits 39 through 
44 = 000001). 

CI502-416M-SU, Descriptor Code Card con­
tains the device INmber (in decimal) assigned 
for each terminal device and the deSCriptor 
format (in octal) for selecting each terminal 
device in the BUIC NACC System. 

Bit 44 of the command descriptor defines the 
type of operation to be performed (input or 
output). Bit 44 = ~ indicates an output opera­
tion, Bit 44 = 1 indicates an input operation. 

Bit 45 of the command descriptor defines the 
type of device to be used (simplex or complex). 
Bit 45 = ~ indicates a simplex device, Bit 
45 = 1 indicates a complex device. 

The operation type area (bits 44 & 45) of the 
command descriptor deSignate the following 
type of operation: 

a. 00 = output operation with simplex 
device 

b. 01 = output operation with complex 
device 

c. 10 = input operation with simplex 
device 

d. 11 = input' operation with complex 
device 

Bits 46 through 48 of the command descriptor 
indicate the specified operation to be per­
formed. These three bits of tl)e operation 
code enables eight different variations to be 
specified for a device when needed. However, 
most terminal devices do not use all of the 
operation codes, ,and the meanings of the 
different codes, vary with the device as 
pointed out in' CI502-416M-SU, Descriptor 
Code Card. 

7 



Two limitations exist with regard to operation 
codes for simplex input terminal devices. 
The first limitation is that operation codes 

·000 and 001 cannot be used, because together 
with bits 44 and 45 (10) they form the des­
cription type codes of the release descriptor 
(10000 for bits 44 through 48) and the setup 
descriptor (10001 for bits 44 through 48). 
Any other combination in bits 44through 
48 is decoded by the I/o module asa command 
descriptor. The second limitation is that the 
operation code is sent from the I/o module 
to the terminal device over the output data 
lines, and a simplex input device has no 
output data lines from the I/o module to the 
terminal equipment. Operation codes 010, 
100, 101, HO, and HI are all permissable 
for the simplex input device operation and 
will result in the same basic operation to be 
performed. Usually the simplex input device 
operation code is given only as 010. 

At the termination of the operation (normal 
termination of word counter or record counter 
equal 0 or malfunction status termination) 
the I/o module will return a result des­
criptor to the specified memory location in 
order that the program can analyze the 
operation to determine if the operation was 
successful. 

HARDWARE-GENERATED DESCRIPTORS: 
The hardware-generated descriptors, the 
in-process and result deSCriptors, provide 
the program with a means of checking to 
see if the operation specified was initiated 
and if the operation was successfully com­
pleted or if there was a malfunction during 
the operation. 

IN-PROCESS DESCRIPTOR: The in-process 
descriptor is formed by an I/o module after 
the reception of a setup, release or command 
descriptor and is returned to the memory 
module address specified by the setup des­
criptor DBAR bits in conjunction with the 
four pre-wired I/o module bits and the DRe 
flip-flop Within the I/o module. The memory 
address location for the in-process des­
criptor is referred to as the "A" list location 
of the descriptor list in core memory. The 
format of the descriptor list is shown on 
CI502-416M-SU, Descriptor Code Card. 

8 

In-Process DeSCriptors following the receipt 
of setup descriptor are illustrated onC1502-
416M-SU, Descriptor Code Card. 

The FNBI/O will return a full in-process 
descriptor to the appropriate II A" list in 
memory. 'Ibis will be a copy of the setup 
descriptor with I/o module status placed in 
bits 17 through 19: 

a. Bits 17 through 19 = 001 Setup received 
correctly. I/o module is now "inactive" 
busy and will remain until released by a 
release descriptor. . 

b. Bits 17 through 19 = HI Setup received 
with parity error from memory. I/o module 
is "inactive"· busy and will remain until 
released by a release descriptor. 

All other non-busy I/o modules (NBJ/O) will 
return an in-process descriptor that contains 
only the DBAR setting in bits 1 through H 
and I/o module will become "inactive" busy 
and remai:n until released by a release des­
criptor. 

If all I/o modules on the bus a~ busy upon 
receipt of a correct setup descriptor all 
I/o modules will load the new DBAR add­
ress and do not return an in-process des­
criptor. If all I/o modules are busy upon 
receipt of an incorrect setup descriptor, 
all I/o modules ignore the setup descriptor 
and no in-process descriptor is returned 
to the IIA" list in memory. In-process 
Descriptor following receipt of a release 
descriptor is illustrated on CI502-416M­
SU, Descriptor Code Card. 

It should be noted that an in-process des­
criptor following a release c:le'scriptor is 
sent back by the FNBJ/O module only and 
only if a parity error existed. The in­
process will be a copy of the original setup 
descriptor with I/o module status of parity 
error inserted in bits 17 through 19 of HI. 
BitS 20, 37, and 38 will contain 000 which is 
used for inserting status detected by a 
terminal device. 

If all I/o modules are busy upon receipt of 
a release deSCriptor, no in-process des-



criptor will be returned to memory (whether 
a parity error exists in the release des­
criptor or not). When the release descriptor 
is received by the specified I/o module 
("inactive busy") with correct parity, the 
I/o operation is terminated, the I/o module 
is made non-busy, and a result descriptor 
will be returned to the descriptor list. An 
in-process descriptor will not be returned 
from an "active" busy addressed I/o module. 

It should be noted that under normal operation, 
a release descriptor is sent to an "inactive" 
busy I/o module to make the addressed I/o 
module non-busy. If the release descriptor is 
received with correct parity by the addressed 
I/O module there is no in-process descriptor 
returned to the descriptor list in memory. 

IN-PROCESS DESCRIPTOR FOLLOWING 
COMMAND DESCRIPTOR: The in-process 
deSCriptor is formed by an I/o module 
after the receipt of a command descriptor 
and is returned by the I/o module to its 
corresponding "A" list location in memory. 
The I/o module uses a copy of the command 
descriptor and places appropriate status 
information in the copy of the command des­
criptor that is sent to memory as the in­
process descriptor. 

Normally, the I/o module that the command 
descriptor is going to be sent to will be the 
I/o module that just received a release 
descriptor so that this module will be the 
FNBI/O module on the bus. Upon receipt 
of the . command descriptor the FNBI/O 
module is made busy and returns an in­
process deSCriptor to the appropriate "A" 
list in memory. The parity of the command 
deSCriptor is checked by the FNBI/Omodule. 
If parity is correct, the FNBI/O will attempt 
to engage the deSignated terminal device so 
that the operation is initiated. If the specified 
terminal device is not available, or if the 
command descriptor was received with in­
correct parity, approriate I/o status infor­
mation is inserted into the in-process des­
criptor before it is returned to the descriptor 
list. The three possible I/o status codesthat 
can appear in an in-process descriptor fol­
lowing a command descriptor are: 

a. Bit 17, 18 and 19 = 000 Command des­
criptor received satisfactorily and terminal 
device is available so that operation will be 
initiated. 

b. Bit 17, 18 and 19 = 001 Command des­
criptor received satisfactOrily. However, the 
terminal device was not available. Thetermi­
nal couid have been busy with another I/o 
module or not ready. The I/o module will 
become "inactive" busy and remain so until 
released by a release descriptor. 

c. Bits 17, 18 and 19 = 111 Parity error 
in command deSCriptor word received from 
memory. The I/o module will become "in­
active" busy and remain so unW released 
by a release deSCriptor. 

The format for the In-process Descriptor 
following a Command Descriptor is shown 
on C1502-416M-SU, Descriptor Code Card. 

RESULT DESCRIPTOR: The result Des­
criptor is formed in the active busy I/o 
module by updating the original command 
descriptor stored in the I/o module des­
criptor register so that at all times the 
descriptor word shows the extent of com­
pletion of the operation. A result deSCriptor 
is returned to the appropriate "c" list 
location of the descriptor list in memory 
wh.enever an operation is terminated. A 
result descriptor will occur under the fol­
lowing three conditions: 

a. Normal completion of the operation. 
Word counter or Record counter = O. 

b. Existence of an error status condition 
during the operation. Parity error in a data 
word being transferred or equipment mal­
function. 

c. Release of an I/o operation in pro­
gress by a release descriptor. 

The result descriptor codes that can appear 
are illustrated on C1502-416M-SU. Note that 
status can be detected by the I/o module 
and is placed in I/o status bits (17, 18 and 
19) and can be detected by the terminal de­
vice and is placed in T.E. status bits (20, 

9 



37 and 38». When an I/o operation is termi­
nated, the I/o module inserts status infor­
mation into the I/o or T.E. status bits of 
the descriptor word, releases the terminal 
device alui returns the result descriptor 
to the "C" list in memory. 

The format of a result descriptor is basi­
cally the same as the command descriptor 
except for the status bits. If an I/o opera­
tion reaches normal completion or if it is 
released prior to completion, the word count 

10 

and record count areas of the result des­
criptor indicates the extent of completion 
of the operation by specifying the number of 
words and records remaining to be trans­
ferred. '!be memory module address and 
current memory address areas of the result 
descriptor will normally indicate the address. 
in memory where the data word would be 
removed from or stored in when the termi­
nating error occurred. The format of the 
result descriptor following a command des­
criptor is illustrated on C1502-416M-SU, 
Descriptor Code Card. 

ATe Keesler 8- 1028 


