
United States Patent l 191

Schroeder et al.

[54) PROGRAMMABLE MICROPROCESSOR

[7 5 I Inventors: Franklin T. Schroeder, Exton; John
P. McAllister, Wayne, both of Pa.

[73) Assignee: Burroughs Corporation, Detroit,
Mich.

[22) Filed: Mar. 27, 1974

[21) Appl. No.: 455,060

[52] U.S. Cl. ... 340/172.5
[51] Int. Cl.2

........................ G06F 9/20; G06F 9/16
[58] Field of Search 340/172.5; 445/1

[56] References Cited

3,573,851
3,603,936
3,638,199
3,656, I 23
3,689,895
3,696,340
3,736,567
3,742,457
3,745,533
3,766,532
3,766,533

UNITED ST A TES PATENTS
4/1971
9/1971
1/1972
4/1972
9/1972

10/1972
5/1973
6/1973
7/1973

10/1973
10/1973

Watson et al.................... 340/ I 72. 5
Attwood 340/ I 72.5
Kolankowsky et al.. 340/172.5
Carnevale et al. 340/172.5
Kitamura 340/ l 72. 5
Matsushita et al... 340/172.5
Lotan et al. 340/172.5
Calle et al... 340/172.5
Erwin et al. 340/172.5
Liebel 340/172. 5
Black et al 340/172.5

3,786,434
3,786,436
3,859,636
3,916,388

1/1974
7/1974
1/1975

10/1975

[I I) 3,972,024
[451 July 27, 1976

Frye et al... 340/172.5
Zelinski et al. 340/172.5
Cook 340/172.5
Shimp et al. 340/ I 72.5

Primary Examiner-Gareth D. Shaw
Assistant Examiner-Jan E. Rhoads
Attorney, Agent, or Firm-Kevin R. Peterson; Edward
J. Feeney, Jr.; Leonard C. Brenner

[57) ABSTRACT

An improved microinstruction memory addressing
method and apparatus within a serial-bit microinstruc­
tion processor incorporating internal, serial-byte trans­
fer, is provided by addition to and alteration of mem­
ory control circuitry wherein the resulting permissible
microinstruction set for controlling the processor may
be expanded to include a CALL, GO-TO and EXE­
CUTE operations, thus increasing the programmatic
capabilities in the processor. The micro-code needed
to define more complicated program operations, and
thus the time used to perform these operations, may
therefore be greatly reduced. Changes may also be
made in existing timing circuitry.

5 Claims, 17 Drawing Figures

.----------------"'--=18
------'-'(l'-l) DATA IN

I LOGICUNIT(LU)- - - -,
I (I) (I) I
I I
I Al A2 A3 e (8)

I I
I 23 x 25 27 y 2s I
I (I) (I) I
I I
I

(I)
SERIAL ADDER

(I)

I I
31 (4)_1 ---;---

13

LITERAL

MICROINSTRUCTION 19
(8) (12)

MICROPROGRAM MEMORY
(MPMl OPTIOML

15

17

MICROADORESS
(8/16)

MEMORY CONTROL
UNIHMCUl

I. MPM ADDRESSING

2. MPCR INCREMENT

3. AMPCR CONTROL

} AMPCR

CONTROL UNIT
(CU)

I. DECODE INSTRUCTIONS.
PROVIDE COMMANDS
FOR LU AND EXI

(I) 2. CONTROL CONDITION
TESTING ANO SETTING
(LCl,LC2,LC3)

3. DETERMINE
SUCCESSOR

r ..__ __ 'T""" __ _,

INEXT
I INSTRUCTION

JS(LECTION

LST
MST
AOV

(4) ABT

I
I
v21

I
I

(4) I EXTERNAL
CONTROL

I
(I) I EXT

CONDITION

I
I
I
I
I
I

~----------'---------"--.-------.:..:.(1):....iDATAOUT

I
Ml NI-INTERPRETER I EXTERNAL INTERFACE

0 11

I

L
18

(I) I DATA IN
I I LITERAL

'"
LOGICUNIT(LU)- - - -,

~

Al

I
23

w I
I

A2 I A3

....>..

~

x1 25 21
(I)

+

sW
I

,
YI 29 I
m I

I
SERIAL ADDER jJ12t

f I I
-+- - - -;- - -+- _I

13

(8)
MICROINSTRUCTION

(12)1
19

] I
MICROPROGRAM MEMORY

(MPM) OPTIONAL

) ' 15
MICROADDRESS
(8/16)

17
I

' MEMORY CONTROL
UNIT(MCU)

CONTROL UNIT
(CU)

I. DECODE INSTRUCTIONS.
PROVIDE COMMANns
FOR LU AND EXI

,_ill.j 2. CONTROL CONDITION
TESTING AND SETTING
(LCl,LC2,LC3)

3. DETERMINE
SUCCESSOR

I
v21

I
I

~EXTERNAL
I CONTROL -

I
(I) I EXT

McoNDITION

I
I. MPM ADDRESSING

2. MPCR INCREMENT

~ }3 ::::: CONTROL

r L..-.---.,r------- I

~

1 NEXT LST
I INSTRUCTION MST

14-+JSELECTION AOV
(4) ABT

I
I
I
I

L_ _______ __t_ ______ __i._,--______ (1)-.iDATAOUT

20 I
MINI-INTERPRETER I EXTERNAL INTERFACE.., Fig.I

II

I

c .
Vl .
~ a
(b

a

~
t-..)

;--1 -' \0
-.J

°'
en
::r
(ti
(ti
.......
0
"*I -0

w ...
\0
-....)
N ...
0
N
~

,------43-- -! (I) 1DATAIN

I ,\!Li SELECTION : (
4
) JlEXTERNAL CONTROL-75

I 11 411 I TYPES OF MICROINSTRUCTIONS ~~ 2(8EXIOUTIDEV) I _+ .. .-LITERAL r-EXE~I j2(81T9 BITIO)

1 .. SELECTION 1 1-CONDITION := ~~w)
1

).--..J , l

I ~LOGIC
1 23 25 27 1r- 44 ' l t--JUMP v21
I ::\I ·~ I ·~ I/~+~ (8) DECODER (4) _... SUCCESSOR v-51

I
I I µ I ,ill I ~t, tjj, I ~ (8) ,.. SELECT I
I I ~ i.!.SL ___ L (12) ~I) 4 ((:~ IDONOTEXECUTE
I Al A2 A3 B I p (8/16) : IR (I) 4 I ROM ENABLE

I
C i..._ : (3) - CONDITION I

I R (8/16) I ~ ,.. SELECT r--53 I I L.......r-J l._-J 1.....,-.J r- LI....,....... L ___ --~ 49 • (12)

I
(8) ~ (8) (8) (8) 1-l 47 ROM 256 t----15

1
INSTR} EXTERNAL

~ .___. I ~ (8/16) -l MPM
I T F +I LCl-65 ., MPCR MEMORY

•- .. .• •. , I ~ LC2-67 4 (
2) I VOLTAGES

l SELECTION SELECTION I • ~ MPCR ~ LC3-69 (B) 55 • \:! J GROUND
J 4? (3) ~ '\ 4 I MPCR CLEAR

I 33 x y T9 ~ 13 (4) ,.. CONDITION L... (I) EXTERNAL 73(EXT)

I
35~ t-37 3! I +i REGISTER l -

(I) _,..I
I ADDER AND (4) I MST-59 LST-57 (I) ,., DATA OUT

I 31 ----r fU ~8f oN I ABT-63: Aov-s1 Y~~fJ rn. n Ml NG ~ rn _j ~~ ~ N
I (I) I JUMPERS GENERATOR (I) _)PRESET STROBE
·-1-------+----- 16BIT ... / :I (I) ..jcPOUT

• ADDRESS 77
Fiq. 2 JUMPERS 79 MINI-INTERPRETER I EXTERNAL INTERFACE

I (EXD

c
•
tf.l .
~
~
(D
=:s

~
N
-..J
~ -\0
-..J
CJ',

v:i
::r
0
~
N
0
"'<) -0

w
"' \C)
......J
N
"' 0
N
~

U.S. Patent July 27, 1976 Sheet 3 of 10 3,972,024

2
3
4
5
6
7
•
•

19
20
21
22

x x x::J
x x x:J
x x x:r

CALL 19
x x x

•
•
•
•

x x x
x x x:J
x x x:J

JUMP:J

Fiq.3a

29
30

x x x:J
CALL 50

31 . x x x
r-+--32 x x x

• •
• •

40 x x x
• •
• •

50
51
52

x x x
EXECUTE:J

x . x x::J
53 . x x x

"---54 JUMP.:J

Fiq.3c

15 _,,..

49 -

11
12
13
14
15
16
17
18

PROGRAM ~
MEMORY
(12) (8) LST

•
INSTR. REG.

" 7~

LlT OP CODE
(8)MST

1. ~ ..
81- SELECTION

(16)
•

47-1 AMPCR

•
45-- MPCR

Fiq.4 •

CP/IN
I I
I I I I

I ~I I If I RUN _J I I I I ~. I
I •. I

Tl ME STROBE [p I 0 I I I 2 , ,: I p . I 0 I I I 2 I 3 I 4 I 5 I 6 I 7 I :~ ·- I p
I { I 1 I
I I I

CPO UT _ ___.
I I
1 EXECUTION OF A SHORT INSTRUCTION 1 EXECUTION OF A LONG INSTRUCTION
I I

Fiq.10

MPM LIT -AMPCR 1--__, APM LIT -AMPCR .,_____,

INC MPCR

AMPCR-MPCR
MPCR--AMPCR

0 (I) I (2)

-t,

Fiq.5

AMPCR-MPCR

AMPCR-MPCR
MPCR-AMPCR

0 (I) I (2)

-t,

Fiq.6

MPCR-AMPCR

SEQUENCE OF
TWO REPETITIONS

AMPCR-MPCR +-----+-----'

INC MPCR

0 (I) I (2)
(3) -t, (4)

Fiq.7

c .
en

~
(D a
~
N
-...J
~ -~
O'I

IJ'.l
::r
(b
(b -~
~ -0

w
'"

'° -...J
N
'" 0
N
~

CENTERAL CLOCK
SYNCH. PULSES (CP/IN)
(PROVIDED BY USER)

l /PRESET LAST STROBE") rPRESET LAST STROBE')

TIME STROBE J 7 I p I 0 I I I 2 I 3 I 4 I 5 I 6 I 7 I p I 0 I I 2 I 3 I 4 I 5 I 6 I 7 I:
I I I I I I

LOAD INST RG _Il I I n : fl_
I I I I I

FETCH INST N ------., : : I :
I I I I

DECODE INST. N D I : I

EXECUTE INST. NI ! I :
I I

INCREMENT MPCR d I :
I

FETCH INST N+ I :
I

DECODE INST N+I D I
I I

EXECUTE INST. N+I
.___~,---~---~~,

INCREMENT MPCR D I

Fiq.B FETCH INST. N+2

c .
en
•

~
~
0 =s

. f""t.

e:
'<
N
:-J -\0
-..J
O'\

en ::r
OI
OI
VI

0
'"""i -0

w
"' '° -...J
N
"' 0
N
.i::...

CP/IN (FROM USER) _ _ _ _ _ _ _ _ _ _ _ _ _ ~

TIME STROBE : 2 I p I 0 I I I 2 I p I 0 I I I 2 I p I 0 I 0 I I I 2 I ~
LOAD INST REG. _n n n fl_

I I I I

~FETCH INST N ~ : : :
I I I I

DECODE N D I : :

ID : I I
EXECUTE &. UPDATE MPCR I I :

.--~---.' I I
FETCH INST N+I I I l I

I

DECODE N+I D
I

EXECUTE N+I & UPDATE MPCR D
I

FETCH INST N + 2 I I
I

DECODE N+2 D
I

Fig. 9 ~*EXECUTE N+2 & UPDATE MPCR I . I
I

FETCH N+3 [rn-- -]

c:: . en .
;r
G ::s
f"'t-

~
~ -"° -..J
O'I

Cll
g-
o
O'I
0 -.. -0

w ...
\()
.....J
N ...
0
N
~

U.S. Patent July 21, 1976 Sheet 7 of 10 3,972,024

INSTRUCTION REGISTER BITS

I 2 3 4 5 6 7 8 9 10 11 12

X OP + Y DESI 0 I

I
I
I
I
I
I

I I
I I

'---- -- -------,
I

I ---------~
I_ _____ , l

I
I
I
I

X SELECT OPERATION AND Y SELECT@ DESTINATION COMMAND CODE

00 0 0000 X+B+I
0001 X+B

10010 X+Z+I
10011 X+Z

0000
0001
0010
0011
0100
0 I 0 I
0110
0111

B
00 Al Al
10 A2 A2
11 A3 A3

OUT 0
OUT I
OUT 2

NOTE:

0100 X EQV B(XBVXB)
0 I 0 I X XOR B(XBVXB)
0110 X-B(X+B+I)
0111 X-B-l(X+B)
1000 XNORB(XVB)
I 0 0 I X NAN B (X B)

110 I 0 X NOR Z (XVZ)
11 0 I I X NANZ (XZ)

1100 XOR B(XVB)
1101 XANDB(XB)
I I I 0 X RIM B (XV B)
I I I I X NIM B (XB)

#1000
#1001
#1010
#I 011
%1100
o/ol I 0 I
%1110

1111

AMPCR ,OUT 3
B 1 BEX 0
Al,BEX I
A2, BEX 2
A3, BEX 3
B S

Al S
A2 S
A3, AMCPR

I - Z =AMPCR. WHEN AMPCR IS NOT SELECTED AS A DESTINATION. THEN AMPCR
WILL BE "ZERO" (I.E. 1 Z =O) IN ALL OPERATIONS AS A Y-SELECT INPUT.

o-Y-SELECT .. B OR Z AS INDICATED.

#-"BEX" INDICATES SERIAL TRANSFER FROM EXTERNAL REGISTER TO B-REGISTER
WHILE ADDER TRANSFERS TO OTHER SPECIFIED REGISTEROF 81 THEN 2
INPUTS ARE OREO).

%- "S" INDICATES A ONE-BIT RIGHT SHIFT OF THE DESTINATION REGISTER END OFF 1

WITH THE MSB BEING FILLED BY THE ADDER OUTPUT.

Fig.II

LITERAL INSTRUCTIONS rOP CODE
I - ·---1

I I 2 I 3 I 4 l 5 l 6 I 7 l 8 9 10 11 i2
LIT. TO DEV (PORT 0) 0 0 0 0
LIT. TO DEV (PORT I) 0 I 0 0
LIT. TO DEV (PORT 2) I 0 0 0
LIT TO DEV(PORT3) I I 0 0
SPARE 0 0 I 0
SPARE I 0 I 0

CALUMPCR+l-AMPCR,LIT &IR--MPCRl 0 I I 0
GOTQ(LIT &IR-MPCR,AMPCR IS UNCHANGED) I I I 0
LIT. TO IR(MS ADR BYTE FOR 16 BIT GOTO OR CALL) 0 0 I I

LIT TO B I 0 I I

CONDITION TEST INSTRUCTION rOPCODE
I I

I I 2 T 3 4 Is s I 1 a T 9 10 II 12
CONDITION SET TRUE FALSE I I I SELECT CONDITION SUCCESSOR SUCCESSOR

000 MST 00 SETLCI 00 STEP 00 STEP
001 AOV 01 SETLC2 01 JUMP 01 JUMP
010 LST IOSET LC3 10 SKIP 10 SKIP
011 ABT 11 NONE 11 EXEC 11 EXEC
100 LCI
IOI LC2
110 LC3
Ill EXT

LOGIC UNIT INSTRUCTION
I T 2 3T4JsJs

x OPERATION AND
SELECT Y SELECT

00 0 0000 X+B+I
01 Al 0001 X +B
10 A2 0010* X+Z+I
11 A3 0001 .. X+Z

0100 X EQV B(XB v XB)
0101 X EORB(XB" XB)
0110 X-B (X+B+D
0111 X-B-l(X+B)
1000 X NOR B(XvB)
1001 X NAN B (XB)
10101' XNORZ(XvZ)
1011"' X NAN Z(XZ)
1100 XOR B (Xv B)
110 I X AND B(XB)
1110 X RIM B (Xv B)
1111 X NIM B (XB)

*WHEN Z IS NOT
SELECTED AS
DESTINATION,Z=O

Fiq.12

cOP CODE
I I

1 1 a l s I 10 II 12
DEST 0 I SELECT

0000 B
0001 Al
0010 A2
0011 A3
0100 OUT 0
0101 OUT I
0110 OUT2
0111 AMPCR 10UT 3
1000 B1 BEX
1001 Al I BEX
1010 A2, BEX
1011 A3, BEX
1100 B S
1101 Al S
1110 A2 S
Ill I A3 1 AMPCR

c .
(,fl .
~
~
('D

=:s
""""'"

'"""4
e..

'<!
N
....J
~ -'°J

°'

c.n ::r
('ti

~
00

~ -0

w
\a

'° -.....)
N

\a

0
~

U.S. Patent July 21, 1976 Sheet 9 of 10 3,972,024

"N8"---r\ 'NII;~ INST. REG. LIT BITS-
"N9"--; + "Nl2" + MEMORY DATAl
"NIO"---t._:;(89

• /81
107

3 " (PRESET)~ SELECTION 141 LOGIC
LU CLOCK STROBE 2 (PARALLEL LOAD)

~ 13 • CLOCK ZERO I (CLOCK)
8 AMPCR

- 9 74H53
"NIO"-r.'{4Hll * T (PARALLEL LOAD) 47 10 +
"Nl2"- + 6 (CLOCK)

i-83 MPCR
"Nll"--4! RAW CLOCK 5 I

74Hll 7408

91 I-+-r- 4 45

(EXECUTE) •
(GO TO OR CALL)

TIME STROBE ZERO 2
93__ 3 vB5

PRESET + 6
TIME STROBE zrno-=t/ Fig.13 .___, 4 8
"NS" 7400 5 74H53

._____., I
.--- 13

L+----< 10

[\ rr9 "N6"___,
"NT'- "SKIP"
"N8"- +

PRESET STROBE ~ "N9"-..-

f:{4HOO
IOI~ 1 103

D 91- 7404
EXEC. LEVEL 4 7474

105 RUN CLOCK-C I (SKIP OR
EXECUTE)

n 2
RAW CLOCK 3 74HOO 113
"NB" 14

+ti "N9" II + _.
- ...

TIME STROBE ZERO 6 9322 Ill 74HOO
"N6" 13
"N7" 10 12

I--' (JUMP OR 1-i D 9~ J\ -.F"15 15 _.L
9 EXECUTE) 7474

J 81
........, C I 8 I--

"NII" + 1 \09 ti " NIO 74HIO

U.S. Patent · July 27, 1976 Sheet 10 of 10 3,972,024

RAW CLOCK

+V

Fig.14

PROC TIME CODE
LSB

PROC TIME CODE
HB

PROC TIME CODE
MSB

9 3 4 5 6

2
HEX CTR

9316

I 14 ·13 12 II

TCI TC2 TC4

TC I
(FIG.14)

TC2
fflG.14)

TC4
(FIG.14)

"NII"

7408

7408

7408

115

..,.___-PRESET

2
3
4

74H55 8
10 LAST STROBE

11
12 121

13

123

125
AND/OR INVERT CHIP 121fflG.14)
PINS 11l12

74Hll

127

Fiq.15

3,972,024
1

PROGRAMMABLE MICROPROCESSOR

BACKGROUND OF THE INVENTION

2
STEP initiates a step to the next instruction in sequence
from a previous MPCR address. SKIP initiates a skip to
the second next instruction in sequence from a previ­
ous MPCR address. SA VE initiates a step and a save of

The present invention relates to a digital computer
and more particularly to a microprogrammable digital­
processor, memory, logic, and control and addressing
structure, which may be implemented in TfL logic or
as a LSI (large scale integration) chip. Moreover, this
invention particularly relates to an apparatus and
method for handling microinstruction memory address­
ing in such a microprogram processor ro "routine'',
"subroutine", and "iterative-loop" programmatic op­
erations.

5 the current MPCR address in AMPCR. JUMP initiates
a transfer of control to the AMPCR address. However,
with the existing control logic the saving of a return
address until a subroutine is performed for a program
branch and return, or a loop within a subroutine and

10 return, or an execution of a variable instruction exter­
nal to a subroutine as part of the execution of that
subroutine is not readily possible. Such operations as
branch to a subroutine and return, loop within a sub­
routine and return and execution of an instruction

Microinstruction processors in general may have
strings of microinstructions stored in micromemory to
form programs which control the sequence of informa­
tion transfer within the process. Typically, a higher
level operator command is implemented by a sequence
of microinstructions. Micromemory addressing or mi­
croinstruction address accessing is of necessity a func­
tion of the hardware design of the processor.

15 external to subroutine canot be easily handled.
It is therefore an object of this invention to provide a

method of data manipulation within a serial-bit by byte
processor and the timing apparatus to implement this
method to supply direct CALL microprogram capabil-

20 ity.
An additional object of the invention is to similarly

provide a direct GO-TO microprogram capability
which does not alter the previous memory address. Usually the micromemory is addressed by a program

count register. This register, typically, is incremented
after each operation to access each succeeding address
in a microinstruction string. However, as the program
operations to be performed become more complex,
i.e., the inclusion of subroutines and iterative loops,
micromemory addressing becomes more complex.

Similarly, a further object of this invention is to pro-
25 vide an external EXECUTE command, microprogram

capability.

The subject improvement is to a particular type of
microprogrammable unit as embodied in the teachings

The parent invention operates on a nine pulse opera­
tion period, the length of time needed to perform the
longest arithmetic operation. The processor uses nine

30 pulses to implement each instruction regardless of the
length of time actually needed to perform the particu­
lar operation. of Faber in patent application U.S. Ser. No. 307,863,

tiled Nov. 20, 1972 and assigned to the assignee of the
present application. The programmable unit disclosed
therein is a self-contained serial-bit by byte processor
employing a soft machine architecture through micro­
programming. An instruction set, at the microprogram
level is provided for controlling the specific circuitry of
the processor in executing basic computer operations.
Essentially, the specific circuitry represents minimally 40
committed logic or hardward which becomes commit­
ted to a specific task by control signals originating in
the instruction set. Logic, control, and addressing func­
tions are performed by circuitry which includes only
those gates, registers, drivers, and related logic, which 45
are necessary to implement the basic operations.

It is desirable to have the processor oper.ate at the
faster rate. Therefore, a further object of this invention

35 is to provide an apparatus for adjusting the implemen­
tation period of microinstructions and for adjusting
shift register lengths.

SUMMARY OF THE INVENTION

An improved serial-bit microprogrammable proces­
sor wherein the objectives of this invention may be
realized by the mechanization of programmatic CALL,
GO-TO and EXECUTE operations into the machine's
basic instruction capability. Typically, timing and con­
trol circuitry may be introduced into system hardware
to alter the operation of the processor microprogram
memory addressing (MPCR) circuitry, i.e., the opera­
tion of a memory program count register (MPCR) and
an alternate memory program count register
(AMPCR).

Decoders may receive the coded programmatic
CALL, GO-TO and EXECUTE instructions, for decod­
ing the specific instruction to enable logic circuitry to
control the transfer and manipulation of instruction

Such a processing unit may be comprised of five
functional parts: (1) a logic unit which performs shift­
ing, arithmetic and logic functions; (2) a microprogram
memory which stores both literals and control words; 50
(3) a memory control unit which provides the registers
microprogram memory addressing; (4) a control unit
which provides timing and conditional control, succes­
sor determination and instruction decoding; and (5) an
external interface. 55 addresses between MPCR, AMPCR and microprogram

In the microprocessor, cited above, a microprogram
memory (MPM) is addressed by a memory program
count register (MPCR). Feeding this (MPCR) register
is an alternate memory program count register
(AMPCR). The AMPCR receives instructions from 60
microprogram memory as well as from other registers
within the processor.

This parent invention has a fundamental instruction
set which is sufficient to perform most programmatic
operations. More, but not all, sophisticated micropro- 65
gram manipulations are performed by concatenation of
the basic instructions. Included in the basic instruction
set are STEP, SKIP, SAVE, and JUMP instructions.

memory.
A CALL instruction may cause the new address, for

example a subroutine address, to be loaded from mi­
croprogram memory into AMPCR and then into
MPCR while at the same time the preceeding address
of MPCR is incremented and placed into AMPCR as a
return address.

A GO-TO instruction may cause the address in
AMPCR to be transferred into MPCR while the new
address is transferred into AMPCR. The addresses in
AMPCR and MPCR are then swapped so that the new
address is entered into MPCR while maintaining the
original AMPCR address in AMPCR.

3,972,024
3

An EXECUTE instruction may perform the instruc­
tion addressed by AMPCR via an AMPCR-MPCR dou­
ble swap, whereupon both the AMPCR and MPCR are
incremented.

4
a serial adder 31, with inputs from B register 29 and A
registers 23, 2S, 27, and related gating (see FIG. 2). A
registers 23, 2S, 27 and B register 29 are recirculating
shift registers so that information can be transferred
into the adder 31 without changing the contents of the
respective input register. Further functions of the pro-
cessor as illustrated in this FIG. 1 will be brought out in
the discussion below.

A registers 23, 2S and 27 are functionally identical

Instruction implementation time for nonarithmetic 5
instructions may be reduced to the time actually
needed for implementation by generating a last pulse or
end of operation pulse, which terminates !he instruc­
tion, at a predetermined time as decoded frm1i the
instruction format. !O and may be used to temporarily store data within the

logic unit 13. A selection gate network 33 (FIG. 2)
permits the contents of any of A registers 23, 25 or 27
to be loaded as one input, denominated the X input 3S

DESCRIPTION OF THE DRAWINGS

The features of this invention will become more fully
apparent from the following detailed description, at­
tached claims and accompanying drawings in which 15
like characters refer to like parts and in which:

of adder 31.
B register 29 is the primary interface into the proces­

sor. Data from external sources is entered via data
interface 21 and DATA-IN bus 18. The B register 29
(FIG. 2) also serves as a second, or Y, input 37 via a
selection network 39 to the adder 31, and collects
certain side effects of arithmetic operations. A selec­
tion network 41 selects the input to B register 29 from

FIG. 1 is a general block diagram of the processor.
FIG. 2 is a more detailed general purpose block dia­

gram of the processor.
FIG. 3a, 3b, and 3c, are graphic representations of 20

programmatic operations enabled by the improvement.
FIG. 4 is a block diagram of the microprogram mem-

ory addressing circuitry.
FIG. Sis a timing diagram for a CALL operation.
FIG. 6 is a timing diagram for a GO-TO operation.
FIG. 7 is a timing diagram for an EXECUTE opera-

tion.
FIG. 8 is a timing diagram for a logic unit or LIT TO

DEVICE instruction.

DAT A IN, external interface 21, the output of adder 31
via a selection network 43 or a recirculating feedback
loop of the "true" contents of the B register 29 from its

25 "true" output. Selection network 43 also permits the
output of adder 31 to be fed to A registers 23, 2S, 27.
In addition, literal values which are decoded from cer­
tain microinstructions stored in microprogram memory

FIG. 9 is a timing diagram for instructions other than 30
LIT TO DEVICE or LUOPS.

lS are fed directly to the B register 29 from a microin­
struction decoder 44. As implied above, B register 29
has a true-false output which may be selected to be fed

FIG. 10 is a timing analysis of single instruction
mode.

FIG. 11 is a graphic representation of the improved
instruction set for the processor.

FIG. 12 is a graphic detailed representation of the
instruction set.

FIG. 13 is a schematic diagram of the logic to imple­
ment the new program instructions.

FIG. 14 is a schematic diagram of the circuitry affect­
ing instruction process time.

FIG. IS is a logic diagram of the circuitry which may
be added to the process time circuitry of FIG. 14 to
automatically change instruction process times.

DETAILED DESCRIPTION OF INVENTION

The instant invention is an improvement made to a
microprogrammable processing system comprising a
processing unit 11 (FIG. 1). Unit 11 includes a logic
unit 13 (LU) which performs the shifting and arithme­
tic or logic functions required as well as providing
scratch pad memory. A microprogram memory IS
(MPM) is connected to LU 13 which holds micropro­
gram sequences, some words of which have lierals,
others have specific controls, specified by the micro­
programmer. A memory control unit 17 (MCU) ac­
cesses MPM IS by providing the registers for micropro­
gram memory IS addressing. A control unit 19 (CU) is
~onnected to all of the other units and provides timing
md conditional control, successor (next instruction)
fotermination and instruction decoding. An external
interface 21 (EXI) is connected via data busses 18, 20
lo LU 13 and CU 19.

In the preferred embodiment, the logic unit 13 is
:omprises of three 8-bit recirculating shift registers 23,
ZS, and 27 connected in parallel and denominated
registers Al, A2 and A3, respectively, an 8-bit recircu­
lating shift register 29, denominated the B register, and

as the Y input 37 of adder 31 by the selection network
39. The purpose is to provide adder 31 with either the
true value or the one's complement of the value in B

35 register 29.
Adder 31 is a conventional type serial adder as

known in the art.
Microprogram memory lS, as shown also in FIG. 1, is

a 256 word 12 bit read-only memory which may op-
40 tionally be included in the processor hardware configu­

ration or which may be located externally to the pro­
cessor and accessed via external interface 21. In this
latter case an external memory can be expanded to a

45
65k word size.

Memory control unit (MCU) 17 (FIG. 2) comprises
two 8-bit registers, i.e., a microprogram count register
45 (MPCR) and an alternate microprogram count reg­
ister 47 (AMPCR). MPCR 4S is an 8-bit counter which
can be incremented by one or two and is used to ad-

50 dress MPM lS (select each instruction from micropro­
gram memory IS). MPCR 4S may easily be expanded
to 12 or 16 bits by the substitution of a 12 or 16 bit
counter for the 8-bit counter.

AMPCR 47 can hold an alternate address which is
55 needed for microprogram manipulation. When not

required for this purpose, AMPCR 47 can be used by
the logic unit 13 as a scratch pad register. The contents
of AMPCR 47 can be fed to adder 31 as its Y input 37
via selection network 39 or can be clocked directly into

60 MPCR 4S. AMPCR 47 can be loaded by the output
from adder 31 via selection logic 43, or from MPCR 4S
or from microprogram memory lS (MPM) or from an
instruction register 49 which is tied to the output of
microprogram memory IS. When more than 8 bits are

65 to be transferred into AMPCR 47 they may be concate­
nated with the use of instruction register 49.

The programmable processing unit 11 requires a
source of microprogram instructions to define the op-

3,972,024
5

eration of the processing unit. This source is provided
by microprogram memory 15 or external micropro­
gram memory which can either be a RAM or ROM
memory. Memory 15 is a read-only memory (ROM)
that contains the program defining the processing unit's
function when the ROM enable line is true. ROM en­
able line select enables the instruction source to be
from the internal memory 15 in the presence of a true
bit, and from the external source in the presence of a
false bit. In any event the program stored in either
internal memory 15 or external memory characterizes
the processing unit 11 to perform specific tasks in an
optimum manner.

6
Short-instruction jumpers 79, which may be imple­

mented as decoder logic or as manually fixable count­
ers, determine the operation period of each instruction
by determining an end-of-period pulse or last-pulse at

5 an appropriate time for the various instructions. Short
instructions are implemented in shorter operation pe­
riods.

Memory control unit 17 controls the addressing of
microprogram memory 15 for the addressing of micro-

! O instructions to be executed. This control unit 17 in­
cludes the microprogram counter register 45 (MPCR),
which is used to address instruction locations within the
memory 15, and the alternate program counter register
47 (AMPCR), which is used to store new addresses for Presently, for purposes of discussion, only a ROM

memory will be considered. In the preferred embodi­
ment, microprogram memory 15 is comprised of 256
words, each 12 bits in length. The memory 15, contains
only executable instructions and cannot be changed
under program control. Each microinstruction which
comprises the microprogram stored in microprogram 20
memory IS is 12-bits in length and is decoded by the
decoder 44 in control unit 19. The 12-bits of each
instruction are decoded into one of four types, namely

15 feeding MPCR 45. Timing circuitry 77 generates and
gates timing pulses throughout the system to control
the interchange of information. Control unit 19 per­
forms condition selection and testing, successor deter-
mination, and instruction register and decoding.

It is the interaction of the components within these
units (memory control 17, memory 15, timing 77 and
control unit 19) which permits the manipulation of the
microinstructions stored and fetched from memory 15
and thus the implementation of microprograms con-(I) literal, (2) condition, (3) logic and (4) external. A

more thorough discussion of these four instruction
types will be described in detail later.

Control unit 19 (FIG. 2) includes a microinstruction
decoder 44, successor (or next instruction) determina­
tion logic 51, condition selection logic 53, and a condi­
tion register 55. The successor detemination logic 51,
the condition selection logic 53 and the condition regis­
ter 55 are activated by the output of the microinstruc­
tion decoder 44. In addion, the adder 31 feeds four
condition bits to the condition register 55, namely the
least significant bit true (LST) .condition 57, the most
significant bit true (MST) condition 59, the adder over­
flow bit (AOV) 61, and an indicator bit (ABT) 63 (if
all bits of the adder output are true I's). The successor
determination logic 51 determines whether to use the
contents of the MPCR, register 45, incremented by I or
by 2, or to use the contents of AMPCR, register 47 for
addressing the next instruction stored in microprogram
memory 15. Additionally, condition register 55 feeds 8
bits to condition select 53 which in turn selects one bit
to successor select 51.

The condition register 52 stores three resettable local
condition bits (LCl bit 65, LC2 bit 67 and LC3 bit 69,
respectively), and selects one of 8 condition bits (the 4
adder condition bits, MST bit 59, LST bit 57, AOV bit

25 taining program CALL, GO-TO and EXECUTE in­
structions.

With the existing timing and control apparatus asso­
ciated with micromemory addressing in the parent
invention, the parent apparatus possesses a limited

30 capability in the implementation of certain program­
matic operations such as subroutine CALL, GO-TO
and EXECUTE which each require the shifting and
temporary storage of return addresses in their imple­
mentation. The ability to directly handle these opera-

35 tions greatly decreases the total number of program
steps required by the processor.

As part of the hardware mechanization decoders are
needed to decode each new instruction calling for a
CALL, GO-TO, and EXECUTE so that this new code

40 can be included into the microinstruction set. Timing
and control logic is needed to perform each new opera­
tion decoded.

Processor capabilities may also be increased with the
addition of external device registers, a 16 bit micropro-

45 gram address size and a variable microprogram instruc­
tion length.

The instant improvement invention provides these
capabilities by manipulating information within the
hardware structure.

61 and ABT bit 63; an external condition bit EXT 71; 50
and the three local condition bits LCl, LC2 and LC3
stored in condition register 55).

FIGS. 3a, band care graphic illustrations of the three
programmatic operations which are added to the pro­
cessor by the instant invention.

External interface 21 (FIG. 2) connects the program­
mable unit 11 with external elements related to a multi­
processing system. This connection is synchronized by 55
one internally generted clock train available to aid in
performing 8-bit serial transfers into and out of pro­
gramming unit 11. An external asynchronous input
EXT 73 (see FIG. 2) to condition register 55 is avail­
able for signalling from the external environment in the 60
form of the EXT condition bit 71, while the four exter-
nal control lines 75, from decoder 45 are utilized to
control the use of external registers.

Timing circuitry 77 (FIG. 2), including a hexadeci­
mal counter, is interconnected to all components and 65
in addition to generating basic clock pulses generates
control pulses for information transfers within the sys-
tern.

FIG. 3a illustrates a subroutine CALL and return to
the main routine. Implementation of this operation can
be as follows. Beginning with the first instruction the
current memory address is stored in MPCR 45. Proces-
sor 11 performs each instruction in the program in a
sequential manner. After each operation, the MPCR 45
is incremented by one so that the next instruction in the
string may be implemented. When a CALL instruction
(instruction 4) is read from memory and decoded, the
new or CALLED address (instruction 19) is stored in
the MPCR 45. Thus microprogram operation automati­
cally jumps to the new or subroutine address and begins
implementing subroutine microinstructions in sequen­
tial order. Concurrently, the previous MPCR 45 ad-
dress is incremented by 1 and stored in the AMPCR 47
to be loaded into MPCR 45 when a jump instruction

3,972,024
7

(instruction 22) signifying a return to the main routine
is decoded. In this manner implementation of the main
routine is continued after the subroutine is performed.

FIG. 3b is an illustration of a GO-TO operation
wherein the instructions in a microstring are imple- 5
mented sequentially until the GO-TO (instruction 14)
definh1g a new address is read and decoded from mem­
ory. Since the program wishes to begin execution at this
new instruction this new address must be moved into
MPCR 45 without disturbing a return address which 10
happens to be resident in AMPCR 47.

The programmatic EXECUTE is illustrated in FIG. 3.
The EXECUTE instruction may appear in a routine or
in a subroutine as shown in FIG. 3c. The CALL instruc­
tion (instruction 30) calls the subroutine (instruction 15
50 etc.)

When the execute instruction is encountered the
program will perform one instruction (specified by
AMPCAR 47) out of the normal incrementing se­
quence. The EXECUTE operation then requires two 20
instruction periods for completion. The first instruction
period will (I) increment MPCR 45 and then (2) swap
the contents of AMPCR 47 and MPCR 45. The second
instruction period will (3) perform the instruction now
addressed by MPCR 45 (originally the AMPCR 47) 25
and (4) again increment MPCR 45 and (5) swap the
contents of AMPCR 47 and MPCR 45. Jn summary, an
execute will perform the instruction specified by
AMPCR 47 and increment both AMPCR 47 and

8
contents of AMPCR 47. This destroys the old or return
address. Unlike the old operations, the new GO-TO
command initiates (1) loading of AMPCR 47 value
into MPCR 45 and a loading of a new address from
MPM 15 into AMPCR 47 (FIG. 4), and (2) swapping
of the contents of AMPCR 47 and MPCR 45. In this
manner the new GO-TO address is entered into MPCR
45 while the AMPCR 47 address is maintained or
saved. FIG. 6 shows the timing sequence as discussed.

The EXECUTE instruction or operation permits the
implementation of an AMPCR 47 address for one in­
struction and then returns MPM 15 address control to
the address previously stored in MPCR 45, incre­
mented by one. Address values are manipulated be­
tween MPM 15, AMPCR 47 and MPCR 45 (FIG. 4) in
accordance with the timing diagram of FIG. 7 as fol­
lows: (I) increment MPCR 45 (2) swap contents of
AMPCR 47 and MPCR 45 (3) increm'!nt MPCR 45
and (4) swap the contents of AMPCR 47 and MPCR
45. The EXECUTE instruction therefore permits the
performance of an instruction external to the subrou­
tine as specified by AMPCR 47 and then a return to the
next instruction in that subroutine. (Note, the address
of AMPCR 47 was incremented, for specifying the
succeeding instruction, while residing in MPCR 45.)

The transfer of information to and between the mem­
ory control unit 17 registers 45, and 47 is part of, and
subject to the operation of the entire processor.

It is self evident that the information transfer con-
MPCR 45. 30 cerned within the instant invention must occur within a

To better comprehend the manipulation of informa- processor operating cycle. How these operations are
tion within the processor needed to provide the above- implemented in detail is as follows.
discussed programmatic capabilities, a discussion of A processor operation period is nine clock pulses
the operation memory control unit 17 and the control long. The first pulse of the chain is a preset pulse. The
unit 19 is in order. 35 next eight pulses are function pulses, the last one of

FIG. 4 is a block diagram showing the relationship of which is called "last pulse".
the memory control 17 to program memory 15. If the The instruction register 49, FIG. 2, is a 12-bit register
system is operating with 16 bit instructions the literal is and is loaded with the instruction data read from MPM
loaded in two parts. The most significant 8 bits are first 15. The instruction register contains the instruction
entered into the instruction register 49 from memory 40 currently being performed while the next instruction is
15 and then are concatenated through selection logic being fetched from MPM 15, thus providing an exe-
81 with the 8 least significant bits. If the system is oper- cute-fetch overlap feature, i.e., for instruction execu-
ating with 8 bit instruction words this concatenation is tion, while the succeeding instruction is read or fetched
not necessary. Selection logic 81 includes a ganged from memory IS.
"and"-gate, "or"-gate circuit with respective "and"- 45 The instruction decoding logic 45 decodes the con-
gates being enabled to pass selective signals. tents of the instruction register 49 in preparation for

The CALL operation is an improvement over the instruction execution. Instruction decoding is accom-
SA VE operation of the parent processor. In this parent plished in the first clock period following the instruc-
machine, SAVE initiated an (a) increment of MPCR tion register "load".
45 and (b) transfer of the incremented MPCR 45 value 50 FIGS. 8, 9 and 10 illustrate typical timing sequences
into AMPCR. 47. In the instant invention, (FIG. 4) a for various instructions. Basically there are two types of
CALL initiates an (I) increment of MPCR 45 and (2) instructions: those which are performed serially (Type
transfer of the incremented MPCR 45 value into I) and those which are performed in parallel (Type II).
AMPCR 47 and also (3) replacing the incremented Type I instructions include logic unit 13 operations and
content ofMPCR 45 with a new address obtained from 55 LITERAL-TO-DEVICE operations; all other instruc-
program memory 15. A timing diagram of the CALL tions are Type II.
operation (FIG. 5) shows the following steps (1) incre- Type I instructions require nine clock periods for
ment MPCR 45 and simultaneously load a new address completion. Type II instructions require three clock
(literal) from MPM 15 to AMPCR 45 (2) simulta- periods for decoding and execution plus as many addi-
neously transfer the contents of MPCR 45 to AMPCR 60 tional clock pulses as are required to fetch the next
47 and the contents of AMPCR 47 to MPCR 45 (swap- instruction. In a Type I instruction the fetch time of the
ping contents). Having completed this sequence of next instruction is overlapped by the serial execution
operations, the new or subroutine location then resides time of the current instruction.
in MPCR 45 and the return address resides in AMPCR FIG. 8 illustrates the timing for logic unit 13 or exe-
47. 65 cution of LITERAL-TO-DEVICE instructions. At

The GO-TO operation is an improvement to the ex- time-strobe 7 and clock (CPIN), the previous instruc-
isting JUMP operation in the processor which loaded tion is completed and the new instruction is simulta-
both AMPCR 47 and MPCR 45 thus destroying the neously loaded into the instruction register. The inter-

3,972,024
9

val of time-strobe "P" (preset) is used to decode the
contents of the instruction register in preparation for
execution during time strobes 0 through 7. An updating

10

of the program counter (M PCR 45) is accomplished by
the leading edge of preset-strobe. Preset strobe also S
increments (STEP) logic unit 13 for LIT-TO-DEVICE
instructions.

when instruction bits 11 and 12 are both zero. Further
decoding (that of DEVO, 1, 2, or 3) is defined by in­
struction bits 9 and 10. These bits are decoded by the
user to specify the particular register to be loaded.

The LIT-TO-B (literal to B-register) instruction is
decoded when bits 9 through 12 equal binary 1011
respectively. This will result in instruction register 49,
bits I to 8 to be parallel transferred into the B register
29. MPCR 45 is incremented and the instruction is

In single instruction mode, the processor will perform
one instruction each time the "run" is pulsed. The
instruction being performed in suspended in the last
clock period of its execution. Upon reception of the
next "run" pulse the instruction held in suspension is
completed. A new instruction is loaded into the instruc­
tion register, and that instruction is performed up to the
final clock where it is then held in suspension awaiting
the next "run" pulse.

FIG. 9 illustrates the timing for instructions other
than literals to devices or program loops. Execution
time needed for these instructions is much less than a
nine clock pulse processor operating period. Note that
the fetch time marked by a single asterisk (*) in this
FIG. 9 is shown as two clock periods long. The number
of clocks actually required is a function of clock fre­
quency and memory access time. The fetch time is
presettable (manually or by logic gating) from 1 to 8
clock periods.

The double asterisk (* *) denotes a special case in­
struction where additional time is required to update
MPCR 45. This additional time (1 clock) is acquired by
suspending time strobe zero (TSBO) to span two clocks
instead of one.

FIG. 10 illustrates the timing analysis for a single
instruction mode and shows central processor output
for the execution of the short instructions and the long
instructions discussed above.

Processor operations are carried out by the sequen­
tial execution of microinstructions. Each microinstruc­
tion is read from the program memory 15 on the in­
struction cycle preceding its execution. The execution

IO complete.
The LIT-TO-IR (literal to instruction register) in­

struction must precede the CALL or GO-TO instruc­
tion if the AMPCR 47 and MPCR 45 are greater than
8 bits wide. The LIT-TO-IR instruction is used to load

IS the most significant byte of the GO-TO or CALL ad­
dress into the instruction register 49 for temporary
storage while the CALL or GO-TO instruction contain­
ing the least significant address byte is fetched. The
CALL or GO-TO instruction will load only into bits 9

20 through 12 of the instruction register 49, thus leaving
instruction register 49, bits I through 8 (most signifi­
cant address byte) unchanged and thereby permitting
the concatenation of instruction register bits 11
through 8 with memory 15 output bits 1 through 8 to

2S make up a 16-bit CALL or GO-TO address.
A GO-TO instruction of greater than 8 bits is accom­

plished by two successive instructions namely: (1) LIT­
TO-IR and (2) GO-TO. The address bytes of the two
instructions are concatenated and placed 16 bits paral-

30 lei into the MPCR 45. The contents of AMPCR 47 are
not changed.

A LUOP instruction is decoded when instruction
register bits 11 and 12 are a binary 0 and 1 respectively.
A LUOP will always result in a STEP (MPCR 45 incre-

3S ment); no other successor is possible.

of each instruction is begun by loading that instruction 40
into the instruction register 49. In the next clock period
(preset strobe) the newly loaded instruction is de­
coded. The succeeding clock periods of the instruction
cycle will then be used to execute the decoded instruc­
tion. Upon completion of the execution portion the 4S
next instruction will be loaded into the instruction reg­
ister and the sequence described above is repeated.
FIG. 11 defines the instruction set of the improved
processor.

The logic unit 13 instruction specifies the adder 31
inputs, the operation, and the destination specifications
for the adder 31. The X-select to the input of the adder
is either none or one of the three A-registers (specified
by Bits 1, 2). The operation and Y-select to the input of
the adder are specified by bits 3, 4, 5 and 6 and in-
cludes both arithmetic and logic operations on both the
AMPCR 47 and B-register 29 as indicated. The desti­
nations of the adder 31 output as shown are specified
by bits 7, 8, 9 and 10. The output of the adder 31 can
go to registers 23, 25, 27, or 29. The adder 31 output
always goes to the external interface 21 when a logic
operation is selected. But if any "OUT" is selected as a
destination, a special 4-bit code is generated on the

Each instruction (FIG. 11(is broken up into bit
fields. Bits 1 through 8 represent a binary number (lit­
eral) to be loaded into the register as specified by the
decoding. Bits 9 through 12 of the literal instruction are
used to decode the functional operation of the instruc­
tion. More specifically, bits 1 and 2 define the X select
(adder 31, input 35). Bits 3 to 6 define the operation to
be performed and the Y select (adder 31, input 37).
Bits 7 to 10 define the destination select. Bits 11 and 12
define the command code or operator code.

Of the two command code bits, bit 11 defines the
instruction length and is decoded to operate fetch time
adjustment as will be discussed below.

FIG. 12 is a detailed presentation of the processor
instruction set wherein: LIT-TO-DEVICE instructions
(DEVO, 1, 2, 3) occupy the first 8-bit field. The pur­
pose of these instructions is to transfer the literal por­
tion of the instruction to a particular register in the
users logic. A literal-to-device instruction is decoded

SO external control lines to enable gating from the adder
to the particular external register. Of course, this is true
only if the external interface 21 is designed to perform
this function. Note that if any of the " BEX" destina­
tions are selected, a 4-bit selection code is sent out on

SS the external control lines, thus enabling a 8-bit serial
transfer from the selected external register to the B­
register to take place in parallel with the adder output
into the specified register (i.e., Al 23, A2 25, A3 27,
829). If the destination register is "B BEX", then an

60 "or" of the adder output and the external input is per­
formed. Normally, the adder output in this case would
be set to transfer zeros from the adder, thereby allow­
ing a simple external load of the B-register 29.

As noted by"*", if the AMPCR 47 is not selected as
65 the destination register, then the four operations using

AMPCR 47 as a Y-select will have "zero" for a Y­
input. This means operations using AMPCR 47 as a
Y-select can only be transferred back to AMPCR 47 or

3,972,024
11

A3 27, through the use of this feature "O", "0-NOT",
"X", and "X-NOT" can be transferred to any destina­
tion register except the AMPCR.

12
cussed below in connection with the description of
FIGS. 13, 14 and 15. The features of the invention will
readily become apparent from this discussion of the
detailed circuitry.

FIG. 13 is a schematic of the control logic effecting
programmatic transfers of information in micromem­
ory addressing. Processor timing generator 77 provides
basic clocking signals for the circuit. These signals exist
in the parent processor and include a "raw clock"

The destinations with "S" (for SHIFT) allow the
destinations to be shifted right end-off by one bit, and 5
the most significant bit is supplied by the adder operat­
ing on the least significant bit of the "X" and "Y"
selected operands. It should be noted that the adder 31
operation is performed on all 8 bits of the input 0rer­
ands; the adder 31 condition bits (LST, MST, ABT,
AOV) are set accordingly.

! O signal supplied from the base oscillator. Also included
in timing generator 77 are ordinary pulse count logic
circuits for providing "time strobe zero", "clock zero",
"execute level" (or execute present) and "run clock"
pulses. Other input signals to the circuit of FIG. 13 are

If one wishes to perform a right shifts (endoff) of one
bit on the "B" destination, then select (X=''O",
"X+B", "B S") for the instruction (see the command
code FIG. 11). The primary purpose of the shift of the
destination is to achieve right and circular shifts on Al,
A2, an B, but all other allowed functions are valid into
the destinations's most significant bit. If the (X=''AI",
"X+B", "Al S") instruction is used, the addition takes
place on bit 8 of both "A" and "B'', and the resulting
bit is placed into bit 1 (most significant bit) of Al;
thereafter, bit 7 (LSB+ 1) of Al is added to all bits of
"B'', and the side effects on the adder condition bits
result accordingly. The last noteworthy side effect of a
serial implementation of the adder is that the adder
overflow (AOV) condition is actually the initial and
intermediate carry flip-flop for the serial adder. As
such, whenever a"+ I" operation is called for, the initial
carry is set. In fact, the initial carry is set whenever bit
6 of the operation and Y -select field is zero. However,
the initial carry flip-flop is enabled for intermediate
carries only on arithmetic functions. For example, on

l 5 obtained from other units in the system, i.e., LU 13,
memory 15, or instruction register 49 or from new
circuitry to be discussed below.

Three Fairchild type 74H53 and-or-invert compo­
nents 83 and 85 respectively and a Fairchild type 9322

20 data selection component 87 form the heart of the
logic. The output of and-or-invert (AOI) 83, pin 8, is
connected to the clock input of AMPCR 47. The out­
put pin 8, of AOI 85 is connected to the parallel load
enable of MPCR 45. Tied to pin 3 of AOI 83 is the

25 output of 3 input and-gate 89. Gate 89 has its three
inputs tied to the 8th, 9th and 10th bits of instruction
register (IR) 49, respectively.

A three input and-gate 91 with its three inputs tied to
the I 0th, I Ith and 12th converse bits of IR 49 has its

30 output tied to AOI 83, pin 6, and AOI 85, pins 3 and 4.

an "X or B" operation, bit 6 is zero. Therefore," AOV"
is set and remains set until a subsequent logic unit
operation changes it. 35

A two input nand-gate 93, having its inputs from the
time zero strobe and the present pulse, respectively,
has its output connected to AOI 83, pin 4, and AOI 85,
pin 6.

AOI 83 has input 2 connected to the Logic Unit 13
clock strobe, input pin 1 connected to the clock zero
pulse, input pin 5 connected to the raw clock (system
clock) and pins 9 and 10 connected to ground.

As discussed above, the parent processor has a fixed
length period for instruction implementation. Every
instruction within the parent processor takes nine clock
pulses to implement. However, in reality only arithme­ AOI 85 has inputs, pins 1, 2 and 10 connected to the

40 time strobe zero, and pin 5 connected to the 9th bit of
IR 49.

tic instructions need the full nine pulses to imple­
mented. Other instructions, especially those which read
other memory locations take much less time. The in­
stant invention, therefore, provides a method and appa­
ratus for reducing the implementation period for non­
arithmetic instructions. This reduction could be static 45

or dynamic.
In the static case there would be a single, fixed, re­

duction in the implementation period for non-arith­
metic instructions. For a particular machine this would
be a function of memory 15 access time and may be 50

adjusted from one to eight clock pulses per period by
hard-wire resoldering of control unit 19 or by the oper­
ation of automatic selection logic added to unit 19. For
such a single reduced-implementation period, the pe­
riod length would equal the longest non-arithmetic 55
instruction in the processor.

The above mentioned automatic selection logic
could be expanded to include a plurality of shorter
implementation periods of varying time-length.

To control the logic or period selection, pre-desig- 60

nated code bits are included as part of each instruction.
In the instant invention, bit 11, previously designated as
part of the command code, is an indicator or flag bit
defining non-arithmetic word. When Nil= I the pulse
count for the implementation period is truncated to a 65

smaller value.
The invention may be implemented by a number of

equivalent circuits. A preferred mechanization is dis-

Data select 87 has input pins, pins 2 and 3 connected
to the raw clock, pin 5 grounded, pin 6 connected to
the time strobe zero pulse, pin 10 connected to the 7th
bit of IR 47, pin 13 connected to the 6th bit of IR 47,
pin 13 connected to the 9th bit of IR 47 and pin 14
connected to the 8th bit of IR 47.

The output of a three input and-gate 93 connects to
pin 15 of data select 87. Connected to the inputs of
and-gate 95 are the 10th and 11th bits of IR 49 and the
time strobe zero pulse.

A four input and-gate 97 has input connected to the
6th and 8th bits of IR 49 and the converse of the 7th
and 9th bits of IR 49. The output of gate 97 feeds the
input of three input nand-gate 99. A second input to
nand-gate 99 is connected to the preset strobe while
the third input to nand-gate 99 connects from the out­
put (Q or true output) of a D-type latching flip-flop
101. The output of gate 99 clocks MPCR 45.

The D-type tip-flop 101 is reset by the output of nand
gate 99 via an inverter 103. Flip-flop 101 is clocked by
system raw clock and is input from data select 87, pin
12, via and-gate 105, with gate 105 being enabled by
the execute level signal.

AMPCR 47 is parallel-load enabled by the output
signal from an and-gate 107. Gate 107 is a twoinput
and-gate with its inputs connected to the IR 49 bit 11,
converse, and true bit 12 respectively.

3,972,024
13

The output pin 9 of data select 87 is connected to the
input of D-typc flip-flop 109, to one input of two input
and nand-gate 111 and to pin 9 of AOI 85. The other
input to gate 111 is fed from pin 12 of data select 87.

Gate 111 feeds an input of two-input nand-gate 113. 5

The other input of gate 113 is enabled by the Q (con­
verse) output of flip-flop 109.

Flip-flop 109 is reset by the output of nandgate 99 via
inverter 103 and is clocked by the output from pin 2 of
AOI 83. 10

The output of nand gate 113 is connected to input
pin 13 of AOI 83.

The preset signal drives AMPCR 47 to select infor­
mation coming from M PCR 45 for loading into
AMPCR 47. 15

FIG. 14 is a schematic of the logic for adjusting oper­
ator implementation periods. Hexadecimal counter
115, a Fairchild type 9316, is driven on pin 2 by (sys­
tem) raw clock to generate a cyclic count. Pins 1, 3, 4

20 and 5 of counter 115 are tied to plus voltage. The four
bit output of counter 115 appears on pins 11, 12, 13
and 14. The signal on pin 11 of counter 115 is the
preset pulse, having been inverted via inverter 117,
which is sent to the circuitry of FIG. 13. Pin 11 of

25
counter 115 is also connected via inverter 119 to pins
1 and 10 of dual four input and-or-invert component
(AOI) 121.

AOI 121 is of the Fairchild type 74855 and has its
pin 2 connected to pin 12 of counter 115, its pin 3 30
connected to pin 13 of counter 115 and its pin 4, con­
nected to pin 14 of counter 115. The output of AOI
121, pin 8, is the "last strobe" which is fed to other
parts of the processor as well as to the parallel entry,
pin 9, of counter 115 where, in this latter case, it is used 35
to preset the initial count of each instruction period.

Temporary connectors in the form of solid wire clips,
may be attached to the pins 12, 13 and 14 of counter
115 for making hard wire interconnections with pins 11
and 12 of AOI 121. When an enable signal appears on 40
pin 13 of AOI 121, which is connected to the 11th bit
of IR 49, a truncated count will generate the last strobe
output signal so that a short instruction may be pro­
cessed in a shorter period of time. The "enable count"
will depend upon the interconnections between 45
counter 115, pins 12, 13, 14 and AOI 121, pins 11, 12
and will occur according to the following relationship.

50
Last strobe

at pulse
Counter 115 AOI 121 number

Pin 14 connected to Pins 11, 12 1
Pin 13 connected to Pins 11, 12 2
Pin 13 Pin 11 55
Pin 14 connected to Pin 12 3
Pin 12 connected to Pins 11, 12 4
Pin 12 Pin 11
Pin 14 connected to Pin 12
Pin 12 Pin 11
Pin 13 connected to Pin 12 6

60

As an alternative, a three bit code may be entered
which defines the access or implementation time to
drive automatic selection logic connected to AOI 121.
This code may be entered into a logic selection circuit 65
as shown in FIG. 15. Three, two-input and-gates 123,
125, and 127 receive an input from the input code
register with the least significant bit connected to a gate

14
123 input, the middle bit connected to a gate 125 input,
and the most significant bit connected to a gate 127
input. The other input of gates 123, 125, 127 are con­
nected to pins 14, 13, 12 respectively of counter 115.

The outputs of gates 123, 125, 127 are each con­
nected to an input of three-input and-gate 129, and the
output of and-gate 129 is connected to both pins 11
and 12 of AOI 121.

It is intended that all matter contained herein be
interpreted as illustrative and not be taken in the limit­
ing sense, for many different embodiments of this in­
vention could be made without departing from the
scope thereof.

What is claimed is:
1. In a microprocessing apparatus for cyclically pro­

cessing microinstructions addressably stored in a mi­
croprogram memory means, certain ones of said micro­
instructions including address bits, the improvement
comprising:

an incrementable first register for storing address bits
to addressably select microinstructions for retrieval
from said microprogram memory means;

a second register for storing address bits loadable
into said first register;

means, responsive to address bits stored in said first
register and operative during a single process cycle,
for retrieving from said microprogram memory
means a selected one of said certain ones of said
microinstructions and loading the address bits in­
cluded therein into said second register;

means for incrementing within said single process
cycle the contents of said first register; and

means for swapping within said single process cycle
said incremented contents of said first register and
said loaded address bits in said second register.

2. In a microprocessing apparatus for cyclically pro­
cessing microinstructions addressably stored in a mi­
croprogram memory means, certain ones of said micro­
instructions including address bits, the improvement
comprising:

an incrementable first register for storing address bits
to addressably select microinstructions for retrieval
from said microprogram memory means;

a second register for storing address bits loadable
into said first register;

first means, responsive to address bits stored in said
first register and operative during a single process
cycle, for retrieving from said microprogram mem­
ory means a selected one of said certain ones of
said microinstructions and loading the address bits
included therein into said second register;

second means, concurrently operative with said first
means, for transferring to said first register the
address bits stored in said second register immedi­
ately preceding the loading thereof by said first
means; and

third means, operative within said single cycle follow­
ing the operations of said first and said second
means, for swapping the contents of said first and
said second registers.

3. In a microprocessing apparatus for cyclically pro­
cessing microinstructions addressably stored in a mi­
croprogram memory means, certain ones of said micro­
instructions including address bits, the improvement
comprising:

an incrementable first register for storing address bits
to addressably select microinstructions for retrieval
from said microprogram memory means;

3,972,024
15

a second register for storing address bits loadable
into said first register;

·first activatable means for incrementing said first
register;

second activatable means for swapping the contents 5
of said first and second registers;

third activatable means for executing the micropro­
gram memory means microinstruction selected by
the address bits stored in said first register; and

means for activating sequentially within two process 10

cycles said first means, said second means, said
third means, and again said first means, and said
second means.

4. In a microprocessing apparatus for cyclically pro­
cessing microinstructions addressably stored in a mi- 15

croprogram memory means, certain ones of said micro­
instructions requiring a relatively short process cycle
for implementation, each of said certain ones including
coded identifying information, the improvement com-
prising: 20

25

30

35

40

45

50

55

60

65

16
means for generating a periodic process cycle for

sequencing the cyclical processing of said microin­
structions, the process cycle being sufficient in
duration for processing each microinstruction
stored in said microprogram memory means;

activatable short cycle means interacting with said
generating means for producing a relatively short
process cycle, said relatively short process cycle
being sufficient in duration for the processing of
each of said certain ones of said microinstructions;
and

means for decoding said identifying information of
each of said certain ones of said microinstructions
immediately preceding the processing thereof and
for activating said short cycle means upon said
decoding of said identifying information.

S. The apparatus of claim 4 wherein said relatively
short process cycle is presettable in duration. . "' "' "' .

