Burroughs

PCN No.:__1045481-001 Date:_ March 29, 1971 .~ =
Publication Title;:__Burroughs L/TC Basic Assembler Reference Manual ' S

Other Affected Publications: None

Supersedes: __N/A

Description

This PCN provides both replacement and additional pages for the Burroughs L/TC
Basic Assembler Manual, This material includes corrections to existing informa-
tion plus a reorganization of certain sections designed to clarify and improve
the manual. Black bars were not used to indicate revisions in the manual since

the PCN is to a large extent a rearrangement of the sections and appendices of
the original manual,

Replace ‘ Add Delete

Table of Contents Pages J-5, J-6 Section Six
and J-7

Introduction (Appendix J) Appendix L

Section Two
Section Three

Appendices B, C, E,
G and K

Retain this PCN as a record of changes made to this basic publication,

The above replacement pages covering PCN 1045481-001
COPYRIGHT © 1971 BURROUGHS CORPORATION

Printed in U.S. America 1045481-001

TABLE OF CONTENTS
SECTION TITLE o " PAGE

INTRODUCTION X
1 ASSEMBLER CODING FORM « o o oo 11

Program Identification o . o ... 0014
Page Number and Heading 11
Sequence e e e e e oo
Label e s s s s e s 12
OperationCode 000012
Field Length 13
A Parameter — Label 13
A Parameter = Increment 13
BParameter. 14
CParameter. i e e s e e 14
Constant Data (Numeric)« v o v v v o14
Alphanumeric Dataor Print Mask 14
Remarks14

Revised 3-29-71by
PCN 1045481-001 iii

Ref. 1o, ~

2.00
2.01

2.02

2.02.01
2.02.02
2.02.03

203

2.03.01
2.03.02
2.03.03
2.03.04
2.03.05
2.03.06
2.03.07
2.03.08

2.04

2.04.01
2.04.02
2.04.03

2.05

2.05.01
2.05.02
2.05.03
2.05.04
2.05.05
2.05.06

2.06
2.06.01
2.06.02
2.07
2.08

2.09

2.09.01
2.09.02
2.09.03
2.09.04
2.09.05
2.09.06

iv

TABLE OF CONTENTS (continued)
Subject
IMTRODUCTION
ASSEMBLER PSEUDO INSTRUCTIONS

KEYBOARD INSTRUCTIONS

Enable Numeric Keyboard Instructions
Operation Control and Program Keys
Typewriter Keyboard Instructions
PRINT INSTRUCTIONS

Modes for Printing

Load Position Register Instruction

Print Alphanumeric from Memory Instruction
Load Print-Numeric Base Register Instruction
Mask Word

Numeric Printing Instructions

Single Character Print Instructions

Ribbon Shift Instruction

FORMS CONTROL INSTRUCTION

Forms Handler — Open and Close Instruction
Platen Control Register Instructions

Line Advance Instructions

ARITHMETIC INSTRUCTIONS

Addition Instructions

Add Constant to Accumulator Instruction
Clear Instructions

Insert Constant in Accumulator Instruction
Multiplication and Division Instructions
Subtract Instructions

DATA MOVEMENT INSTRUCTIONS
Transfer Instructions

Shift Accumulator Instructions
FLAG INSTRUCTIONS

INDEX REGISTER INSTRUCTIONS

BRANCH AND DECISION INSTRUCTIONS

Branch Unconditional Instruction
Subroutine Jump and Return Instructions
Compare Alphanumeric Instruction
Accumulator Skip and Execute Instructions
Flag Execute and Skip Instructions

Skip and Execute Instructions for TC 700

Ref. No.

2.10
2.1

2.12

2.12.01
2.12.02
2.12.03
2.12.04
2.12.05
2.12.06
2.12.07
2.12.08
2.12.09

213

2.13.01
2.13.02
2.13.03

2.14

2.14.01
2.14.02
2.14.03

2.15

2.15.01
2.15.02

2.16

2.16.01
2.16.02

217

2.17.01
2.17.02
2.17.03

2.18

2.18.01
2.18.02
2.18.03
2.18.04

TABLE OF CONTENTS (continued)
Subject

MISCELLANEOUS INSTRUCTIONS
CHECK DIGIT INSTRUCTIONS

DATA COMMUNICATIONS INSTRUCTIONS

General Description

Establishing Receive/Transmit Record Areas

Transferring Data From One Memory Address to Another
Unpacking Messages Received

Preparing Messages for Transmission

Field Identifier Codes and Variable Length Fields

“D> Flag Group

Send and Receive Address Instructions

Transmission Numbers

POINT-TO-POINT PROGRAMING PROCEDURES

Basic Point-to-Point Line Discipline
Control Registers
Indicator Register Flags

CENTRAL TC CONTROLLER PROGRAMING PROCEDURES

Line Discipline Format Registers
Data Comm Processor Operations
Main Memory Processor

INPUT WITH PUNCHED PAPER TAPE/EDGE PUNCHED CARD READER
Paper Tape Reader Instructions

Paper Tape/Edge Punched Card Input Instructions

OUTPUT WITH PAPER TAPE/EDGE PUNCHED CARD PERFORATOR
Paper Tape/Edge Punched Card Output Instructions

Reader and Punch Flags

80-COLUMN PUNCHED CARD INPUT INSTRUCTIONS

80-Column Card Input Instructions
Input Indicator Lights and Flags
Program Keys

80-COLUMN PUNCHED CARD OUTPUT INSTRUCTIONS

Punching Alphanumeric Data

Punching Numeric Data from the Accumulator

Card Column Synchronization With the Punch Count Register
Output Indicator Lights and Flags

Revised 3-29-71 by
PCN 1045481-001

\4

TABLE OF CONTENTS (continued)
Ref. No. Subject

2.19 MAGNETIC UNIT RECORD INSTRUCTIONS

2.19.01 Magnetic Unit Record Formats

2.19.02 Magnetic Unit Record Pseudo Instructions

2.19.03 Magnetic Unit Record Flags

2.19.04 Write Instructions

2.19.05 Read Instruction

2.19.06 Print Alpha From Magnetic Record Area Instruction
2.19.07 Arithmetic Instructions

2.19.08 Transfer Instructions

2.19.09 Unit Record Alignment Instructions

2.19.10 Record Alignment Errors and Flag Indicators

2.20 MESSAGE UNPACKING ROUTINE

2.20.01 General Description
2.20.02 Position Table

2.20.03 Data Element Codes
2.20.04 Storage Area

2.20.05 Error Conditions

2.20.06 Delimiter

2.20.07 Programing Requirements

2.21 TRANSACTION CODE TRANSLATOR

2.21.01 General Description

2.21.02 Translation Table Format

2.21.03 Automatic Codes

2.21.04 Code Modification

2.21.05 Error Conditions

2.21.06 Machine Code for Transaction Code Translation Instruction
2.21.07 Word 576

2.21.08 User Program Requirements

2.21.09 Programing Example

Vi

TABLE OF CONTENTS (continued)

SECTION TITLE

3 SYMBOLIC PROGRAMING PROCEDURES .

Program Definition .

Program Writing .

Program Debugging .
Data Comm Debugging

4 PROGRAMING EXAMPLE.

Problem

Solution .

Solution Index .
General Systems Flowchart
Program Definition Worksheets .
Program Definition Charts .
Sample Coding Forms .
Assembler III Listing .
Sample Output.
Cross Reference Table .

5 ASSEMBLERS.

Functional Description of Basic Assemblers
Assembler I L/TC Paper Tape Version
Equipment Required .
Phase I. ..
Phase I — Input .
Phase I — Operating Instructlons

Phase I — Condensed Operating Instruct1ons and Reference Llst .

Phase I — Diagnostic Facilities
Phase I — Output

Phase I — Print-out .

Phase I — Output Tape

Phase 11

Phase II — Input .

Phase II — Operating Instructlons .

Phase II — Condensed Operating Instructlons

Phase II — Error Detection .

Phase II — Output .

Phase II — Print-out

Phase II — Output Tape .

Assembler II L/TC 80-column Card I/O

Environment

Input .

Control Cards .

Operating Instructions.
Readying the System .
Pass I
Pass I Errors.

PAGE

.47
. 433
. 469
470

5-1

5-1
5-1
5-1
5-1

. 51
5-2
5-7
59
5-11
5-11
5-11
5-13
5-13
5-13
5-13
5-14
5-16
5-16
5-16
5-17
5-17
5-17
5-17
5-18
5-18
5-18
5-18

Revused 3-29 71 by
PCN 1045481001 vii

SECTION

5 (cont’d)

viii

TABLE OF CONTENTS (continued)

TITLE

Pass IT .
Pass II — Errors .
Assembler III B 3500 Versxon
Environment .
MCP Control Cards .
Option Control Cards .
Operating Instructions.
Error Detection
Output . .
L/TC Assembler IV B 5500 Vers1on .
Environment
MCP Control Cards .
Operating Instructions.
Operation.

Error Detection
Output . .
L/TC Assembler V B 300 Vers1on .
Environment
Input
Output .
Control Cards .
Operating Instructions.
Programed Halts .
Error Detection
Assembler VI Series L 40 Track Vers1on
Equipment Required
Phase I. ..
Phase I — Input .
Phase I — Operating Instructlons

Phase I — Condensed Operating Instructlons and Reference L1st .

Phase 1 — Diagnostic Facilities

Phase I — Output

Phase I — Print-out .

Phase I — Output Tape

Phase 11

Phase II — Input . . .

Phase II — Operating Instructlons . .
Phase II — Condensed Operating Instructlons
Phase II — Error Detection .

Phase II — Output Tape .

PAGE

5-20
5-20
5-22
5-22
5-23
5-23
5-25
5-28
5-32
5-35
5-35
5-35
5-37

5-38

5-38

5-38

5-39
5-39
5-39

5-39

5-39
5-41
5-44
5-45
5-50
5-50
5-50
5-50
5-50
5-57
5-59
5-60
5-60
5-62
5-62
5-62
5-62
5-63
5-63
5-65

TABLE OF CONTENTS (continued)

SECTION TITLE PAGE
APPENDIX A Glossary A
APPENDIX B GP 300 Instructions to Machine Language. B
APPENDIX C Assembler Pseudo InstructionsC1
APPENDIX D Series L/TC Character Sets ... D1
APPENDIX E Tableof Mask CodesE1
APPENDIX F Error Messages for B 3500 Assembly F1
Error Messages for B 5500 Assembly _ F=2
Error Messages for B 300 Assembly F2
APPENDIX G Instructions for Keypunching SymbolicCards G-
Symbolic Card FormatGl
A 142/A 150 Keypunching Instructions. G2
024/026/029 Keypunching Instructions G3
APPENDIX H Character Sets.H1
USASCIIH2
EBCDICH2
APPENDIX I Table of Input Code Assignments I
Input Functions for 6, 7, 8 Channel Tape11
Field Identifier Codes13
Table of Output Code Assignments14
APPENDIX J GP 300 Timings ..., 1
APPENDIX K Series L/TC Object Code R O |
ALPHABETICAL INDEX v . v v One

Revised 3-29-71 by
PCN 1045481-001 ix

INTRODUCTION

This manual will provide the information necessary for the L/TC user to write and assemble symbolic
programs using the GP 300 Basic Language. In Section 1 the coding form is analyzed by column. It is
suggested that the reader remove the coding form sample on page xiv and locate each specific area on
the form as he reads the text. In Section 2 each of the GP 300 series firmware instructions is presented.
Individual instructions are discussed in a narrative section followed by an example which illustrates the
capabilities of the instruction. The instructions (Op Codes) are presented alphabetically by a category
which relates to machine function.

Section 3 defines the rules and techniques used in symbolic program writing and debugging. To the
non-experienced user it is suggested that he read pages 3-1—3-2 of Section 3 before attempting the other
materials contained in this manual.

A typical billing problem is discussed in Section 4. The analysis begins with-the program definition and
carries through to the sample output on an invoice. Section 5 is a functional description of the Basic
Assemblers. Operating instructions are included.

Users are provided a means of quickly referencing selected areas of the manual by coded boxes placed in
the upper corner of key pages. The information contained within the box is indicative of the material
on that page. In Section 2 the symbolic OP code is placed in these boxes along with a symbol to
indicate the type of firmware set to which the instruction applies. These are: CD—check digit add-on
firmware sets, CRD-80—column card firmware sets, DC—data communications firmware sets, and
PT—paper tape firmware sets.

Boxes which do not contain a firmware code apply to the basic instructions which are generally
common to all firmware sets.

The infbrmation provided in this manual applies to the 32-track styles and the 40-track styles of the
Series L/TC.

Revised 3-29-71 by .
PCN 1045481-001 X1

SECTION
GP 300 INSTRUCTIONS

2.00 — INTRODUCTION

General Purpose Language (GP 300) is a programing language, consisting of machine instructions to
control system operation, and is used for Series L/TC. For ease of programing the Series L/TC, the
programmer can write his programs in symbolic language and can convert them to machine language
through the use of an assembler program. By using an assembler program, the programmer is not
burdened with keepmg track of the memory location used, or the actual machine language for the
symbolic instructions being used.

The GP 300 instruction list is implemented in the system by various Firmware Sets; the number of
different instructions implemented is dependent on the particular Firmware Set used in the system.
Firmware is defined as a control program, and is stored in a designated area of the systems memory.
The firmware performs some of the logic and control functions, programmatically, that are usually
performed by hardware electronic circuits in larger computer systems.

Firmware consists of “MICRO-programs” which implement each instruction of GP300. A
MICRO-program consists of a “string” of MICRO instructions, each performing a step to accomplish the
function of the GP 300 instruction (referred to as MACRO instructions). Thus, in the execution of an
applicational program, the firmware identifies each MACRO instruction used by the programmer, and
selects the proper “MICRO string” to perform the function of the instruction.

2.00.01 MEMORY ORGANIZATION

Memory in the L/TC consists of 1,280 words of 64 bits each, and is organized into 5 blocks of 8 tracks
each, or a total of 40 tracks. Each track containing 32 words. Main Memory is subdivided into two
sections: The Control area and the Normal area.

The Control area contains the firmware which determine the system control functions and which
implement the GP 300 instruction list. The Normal area is used to store the user’s programs which are
written with the MACRO instructions. The MACRO instructions are used by the programmer to exercise
all of the capabilities of the L/TC such as arithmetic, logical comparisons, printing, input/output (paper
tape or 80-column cards), and data transmission. The Normal area is also used for storing constant data,
messages, and for accumulating totals. The amount of Normal area available to the user is dependent
upon the firmware in the Control area (some firmware requires more memory than others).

2.00.02 MEMORY WORD ORGANIZATION

Each word of memory contains 16 digits (64 bits) and may be used to store one of the following:

1. NUMERIC WORD - Contains only numeric values plus sign. Each digit within the number
occupies a single digit within the word. Digit position 15 is reserved for flag settings.

FLAGS 14113121110 |9 |8 |7 |6 |5 |4 |3]|]2]1]0

Revised 3-29-71 by
PCN 1045481-001 2.00.02

2. ALPHA WORD - Contains only alphanumeric values, left justified. Each alpha character
requires two digit positions within the word. Eight is the maximum number of alpha
characters that can be contained within a word.

3. PROGRAM WORD - Contains 4 MACRO instructions. Each instruction requires 4 digit
positions (termed a syllable) within the word.

Syllable 3 Syllable 2 Syllable 1 Syllable 0

4. PRINT FORMAT WORD — Contains only print format codes. Each code value occupies a
single digit position within the word. Digit position 15 is reserved for flag settings.

FLAGS 14 1131121111109 181716 |54 }3]2{1]0

The words are addressed by a word number. The word number is an integer which lies between O and
the highest available word to the user. The word number is sometimes referred to as memory address or
memory location. If a word contains program instructions, it is divided into four syllables, each syllable
containing one instruction. The syllables are numbered 0, 1, 2, 3 as shown above within the word.

2.00.03 PROGRAM EXECUTION

When the system is activated and the program mode is entered by depression of the START key,
execution of the program instructions begins in word 0, syllable 0. Execution continues sequentially by
incrementing the syllable value by 1 (certain instructions can modify this procedure, e.g., a branch
instruction). When the syllable value attains 3, the next increment will cause the word number to be
increased by 1 and the syllable counter to be set back to 0. The current word number and syllable value
are contained in the Program Counter.

2.00.03

The following example shows only word numbers and syllable values within those words.' The arrows
show how the values in the program counter are changed.

Syllable O ‘
Word O Syllable 1 *
Syllable 2 ¢
Syllable 3§
Syllable 0§
Word 1 Syllable 1 ¢ M~]
Syllable 2§
Syllable 3 ¢ Syllable 0
Syllable 0§ Word 79 Syllable 1
Word 2 Syllable Il — — — L > Syllable 2 —y
“Branch to 79-2” Syllable 3 ‘
Syllable 0 *
Word 80 Syllable 1 ¢
/\’W"JW Syllable 2 z

WW
Sequential Program Execution and the effect of using the branch instruction

After the “START” key is depressed and program execution begins, the program counter always starts
at word 0, syllable O, it continues to be incremented until the execution of the instruction in word 2,
syllable 1 (Branch instruction). After execution of this instruction causes the program counter to change
value from word 2, syllable 1 to word 79, syllable 2, the program counter continues to increment until
another path is selected. :

2.00.04 ACCUMULATOR

Set aside from the Normal area of memory, is one word called the Accumulator. It, like other numeric
words, contains 15 digits and a flag position. It is not addressed by a word number, but rather, access to
it is a function of certain instructions. It is a working memory location for the movement of data from
one area to another. It receives all numeric data entered through the keyboard including the keys that
set the Accumulator flags [RE(-), C, M]; it must contain any numeric data to be printed; it can sum up
several amounts and store the result in another word; it receives the product or quotient of
computations; it must be used to accumulate one word of data into another; and it can be used to move
alphanumeric information from one word to another.

When the Accumulator contains 0, the minus flag is reset (i.e., the Accumulator is positive).

Certain instructions will destroy the prior contents of the Accumulator (i.e., clear the Accumulator
before the instruction is executed). This frees the programmer from clearing the Accumulator through
instruction before moving data.

2,00.05 FLAGS

Instructions are provided to “test” whether or not certain conditions exist during the execution of the
program, so that alternate paths of program may be selected, depending on the state of the condition

being tested. In GP 300 the user has 28 “Flags” divided into 7 groups, each of which can be tested.
Revised 3-29-71 by
PCN 1045481-001 2.00.05

There are flags for testing the condition of the Accumulator, flags to test the condition of tape or card
readers and tape or card punches, flags for the OCK Keys which the operator will use, flags for forms
limits, index registers used to control loops, plus general purpose flags which the user can assign for his
own particular needs.

Each flag consists of 1 “bit.” When the bit is “ON,” the ﬂag is “Set”; when the bit is “off,” the flag is
“Reset.” The program can interrogate a flag to test whether or not it is set or reset, and select a path of
program accordingly.

A graphic explanation below of the Accumulator which has 4 flags will show how each flag is assigned
one bit.

lglﬁlgrlllullsllzlllllol ol8J7J6lsIul3]2a]1]o
BITS L bits
Accumulator (M) Per Thousand (S) Special
Flags (C) Per Hundred (-) Minus or Negative
If we were to examine the bit configuration for the flags, they would be represented as follows:
8 0 0 0 o
Bi L 0 0 . 0
its 2 (<) o (8) ¢ () o (M) o
1 . o) 0 0

2.00.05 (Cont’d)

ADVL

ALF

2.01 — ASSEMBLER PSEUDO INSTRUCTIONS

Pseudo instructions control the manner of assembly and determine the interpretation of data fed to the
assembler. They generally do not directly produce machine language instructions, except in some cases
where they fill in syllables to increment the program counter to the next word.

The following instructions are valid for this Basic Assembler Language.

2.01.01 ADVANCE LINE INSTRUCTION

OP CODE A
ADVL 1-4

The ADVL pseudo instruction will advance the assembler output form the number of lines specified in
the A parameter. No machine language instruction is assembled.

2.01.02 ALPHA CONSTANT INSTRUCTION
OP CODE
ALF

The ALF pseudo instruction permits alphanumeric data, up to 24 characters, to be stored in memory as
constant data during program loading. Any character on the keyboard, including space, is a valid
character. (Except for Assembler I, a CC in columns 27 and 28 will allow a second line of 24 characters
to be entered.)

If the syllable counter is not O at the beginning of the ALF, “STOP” instructions are inserted until the
counter is 0. The alphanumeric constant is then assembled starting in the next full word.

The alpha data is identified by placing a label in the label field, unless reference will be made by + or —
incrementing from another entry. For assemblers other than Assembler I, the total number of characters

in the ALF constant must appear in the FIELD LENGTH

Example:
PARAMETER
FIELD
LEN- . + OR — 2 <
LABEL OP. CODE GTH LABEL INC/REL

116 |17 118(19|20 (21122| 23|24 | 25|26 (27 [28{ 29|30|31| 32| 33|34 | 35|36 |37|38{39 |40 |41]|42| 43 {4445 a6 |47

IllllPIAJll l”lnﬁ_‘lllll 1t} L 1 |

Revised 3-29-71 by
PCN 1045481001 2.01.02

cDB

CRD
LABEL OP CODE A
PA NAME
NAME ALF JOHN DOE

When the PA instruction is executed, the alphanumeric characters JOHN DOE would be printed
(including the space). '

2.01.03 RESERVE CARD BUFFER INSTRUCTION

OP CODE

CDB

The CDB pseudo instruction inserts the instruction “BRU to word 11, syllable 0” in word 0, syllable O.
This causes the assembler to reserve words 1-10 as the card read-in buffer area. If the assembly word
counter is not at word O, syllable O, an error message will print. (When using Assembler I, the assembly
will halt; with Assembler III or IV it will not halt, but 10 words will not be reserved.)

Accordingly, the CDB instruction must be the first instruction in the program except for pseudo
instructions which do not affect memory allocation such as ‘“Note.”

When the card input data is no longer needed, the 10-word read-in area may be referenced as working .
memory by other parts of a program. This is accomplished by providing the CDB instruction with a
label.

Example:
PARAMETER
FIELD
oy - + OR > <
” -
LABEL OP. CODE GT LABEL INC/REL

16 |17 18| 19|20 |21 |22|23|24 |25| 26|27 |28{ 29 (30|31] 32| 33|34 { 35(36(37{38]39 [40 |41|42] 43 4445 46 |47

CA‘DI Q_B_& 1 J I N N [- 11| T .
I O I I RQLD. 1 | [T L1 | L« | 111
Ll TReM | CARDEN | L &l 1 Lid

LABEL OP CODE A E REMARKS
CARDIN CDB Reserve Card Buffer,
RCD " Read 1 card.
TRM CARDIN+2 Use 3rd word of card

read buffer as a working
memory location.

2.01.03

CDF

CRD

The card input area can be reserved by using the “REG” pseudo instruction. In this circumstance the
programmer must include his own provision to by-pass the 10-word buffer area.

Example:

PARAMETER

FIELD
LEN- A o 8 <
LABEL P. COD GTH -
B OP. CODE LABEL ING) REL

116 {17 118(19{20 (21 {22]23]|24 |25| 26|27 |28 31(32(33(34 35|36 (37(38(39 |40 |41{42| 43 |4445 jac |a7

[N L.RMR l PlMﬂ‘l‘ Lo Ly 1]
N O LPJK.R I PIK'QYISI 11| | 1| [
I Y N LJL-LLARI] '1 | | | [|
I l%gv. L | BEGIN |, |, L1 |
! QJE]QJ»I ! llol 11| L1 L1 L1 1
M RIQDJ 1 1 [11 L1 l_1 1

LABEL OP CODE _Al B REMARKS

LPNR PMASK Assembles in word O

LPKR PKEYS Assembles in word 0O

LLLR 51 Assembles in word 0

BRU BEGIN Assembles in word 0

REG 10 Assembles in words 1-10
BEGIN RCD Assembles in word 11, syl-

lable O

2.01.04 CARD FORMAT INSTRUCTION

OPCODE A B

CDF 1-80 1-80

The CDF pseudo instruction is used to define each field for 80-column card input. The A parameter
denotes the beginning card column of the field. The B parameter indicates the number of card columns
in the field. The values entered are assembled into one syllable as part of the card format table.

The field formats defined in the table may pertain to one or several types of input cards, and may be in
any sequence in relation to the card.

Revised 3-29-71 by
PCN 1045481001 2.01.04

CODE

LABEL OP CODE é. E REMARKS

LCFR FIELDS Load Card Format Register
WORD
FIELDS CDF 1 1 1 - type of card

CDF 2 7 2 - Acct. No.
CDF 9 6 3 - Product Codes
CDF 15 36 4 - Product Description
CDF 51 6 5 - Gross Weight
CDF 57 8 6 - Price No. 1
CDF 65 8 7 - Price No. 2
CDF 73 8 8 - Cost
CDF 9 24 9 - Name
CDF 33 24 10 - Address
CDF 57 24 11 - City-State

2.01.05 CODE INSTRUCTION

OP CODE A
CODE 4 hexadecimal digits

The CODE pseudo instruction permits the insertion of 4 hexadecimal digits into the next available
syllable of a word of memory. The value designated by the 4 digits in the A parameter is assembled into
the word syllable. Other instructions may precede or follow its use in the same word of memory, or it
may be used successively to insert a full word or several words.

Example:
PARAMETER
FIELD
o A B @
LABEL OP. CODE | GTH LABEL TNg?R—EL
16 (17 [18] 19|20 |21 |22{23{24 | 25| 26 |27|28] 29|30|31| 32| 33|34 | 35|36 |37|38{ 39 |40 |41 42| 43 |44|as [a6
) DR I | C DEJ] 6191251 1 [| - L1
T T | I IS | I I T | I TS I I |
OP CODE A REMARKS
CODE C925 Print word 293 as alpha.

2.01.05

DEF

DEFT

C925 is the machine language code for PA Word 293 and would be assembled into the next available
syllable. It may sometimes be convenient to use the CODE instruction in this manner to have access to
memory locations or program routines which have been loaded with another program.

2.01.06 DEFINE INSTRUCTIONS

OP CODE A L]
DEF 0-767
DEFT 0-15 0-15

The DEF pseudo instruction is used to assign a numeric value to a label. This applies to labels which
name something other than a memory location. ‘

Example:
PARAMETER
FIiELD)
. LEN- A T B C
LABEL OP. CODE GTH LABEL INC,/REL

16 |17 118|19120|21122}23|24 |25| 26|27 |28| 29(30(|31(32| 33|34 |35|36{37|38|39 {40 {41|42| 43 44|45 he

IIIIIPI¢ISII Ijﬁzlhtlﬂill 11| (|

I T » | | | [I L1 | [Lt
L1 L1 I N T A N I N NSO [|1
S_MJ_Q_Q.EJGI | 3 354 11 1 11] | [
R I T S T | T I | 1 I N N | 1 11 11 |
LABEL OP CODE A
POS ' SHIPTO
?
SHIPTO DEF 35

The print ball positions at position 35.
The function of the DEFT pseudo instruction is the same as that of the DEF instruction. The DEFT
instruction is used with instructions which require both an A and a B parameter. Values between 0 and

15 are permitted in each parameter.

Example:
PARAMETER
FIELD
o . + OR > <
H -
LABEL OP. CODE GT LABEL INC/REL

30131)32|33|34(35|36(37(38|39 {40 (41|42| 43 |44 (45 U6

16 |17 (18| 19|20 |21 2223]24252627&

I I N I | l&]l |'¢QB§¢J|H || L1

NN D W N N N Lo 11
I Y. N N NN N 11

‘ DlEEll; IzJLllllllall 1

I I I | I N I I | L1111 11 1 1 1 1

Revised 3-29-71 by
PCN 1045481-001 2.01.06

DOC

ESTB
DC
LABEL OP CODE A B
NK ORDER
ORDER DEFT 6 0

The DEF or DEFT instruction must be used in conjunction with a label (in columns 16-21) to denote
the item being defined.

2.01.07 DOCUMENTATION INSTRUCTION (USED ONLY FOR ASSEMBLY ON B 2500/3500/5500.)

OP CODE

DOC

The DOC pseudo instruction permits more extensive narrative to be included in programs and in the
subroutine library. Remarks of up to 49 characters are entered (beginning in card column 29) which
print on the assembly documentation from the B 3500, but which do not punch into the program tape
(or card deck).

2.01.08 ESTABLISH BUFFER INSTRUCTION

OP CODE

ESTB

The ESTB pseudo instruction is used for reserving main memory buffer areas in connection with the
data communications message handling instruction. This is required when it is desired to move a message
from the Data Communications Message Received Buffer into main memory before unpacking the
message, or to build a message in main memory and then transfer it (completely formatted) to the Data
Communications transmit buffer.

The ESTB instruction reserves a 32 word area (256 characters) or 1 track in user memory. It selects the
highest track of user memory that is available, reserving 32 words starting with the first word of that

track.

For example, if 384 words of user memory (0 to 383) are designated in the program assembly, the first
use of ESTB would reserve words 352 through 383; the second use of ESTB would reserve words
320-351. ESTB has no parameters, but it must be labeled.

Example:
PARAMETER
FIELD
LEN- A o 8 C
H . -
LABEL OP. CODE GT LABEL INC/REL

16 |17 (181192021 2223|24 25126127 28| 29|30131]32(33[34|35|36|37(38(39 |40 (41]|42] 43 {44|45

lTl&Jllllllll L1 |
TR | L b b 1

2.01.07

END

EQU
MASK
LABEL OP CODE
RECELV ESTB
SEND ESTB

In the above example, RECEIV would be assembled with a word number of 352 and SEND would be
assembled with a word number of 320.

2.01.09 END INSTRUCTION

OP CODE

END

The END pseudo instruction terminates the assembly program and must be used as the last line of code
in the program.

2.01.10 EQUATE INSTRUCTION

OP CODE

EQU

The EQU pseudo instruction will permit one label to be given the identical value of another label. The
label coded in columns 16-21 will be equated to the label in columns 29-34. The label contamed in the
parameter field (column 29-34) must have been previously used or defined.

2.01.11 MASK INSTRUCTION

OP CODE

MASK

The MASK pseudo instruction is used to enter the table of mask words. An entry of up to 24 print
format characters is accepted.

If the syllable counter is not O at the beginning of the Mask instruction, “Stop” instructions are inserted
until the counter reaches 0. The Mask Characters are then assembled in the next full word.

The appearance of any character other than those listed in the Mask Character Table (see Appendix E)
results in an error condition.

The mask table must be identified by placing its label in the label field (columns 16-21) on the line of
the first mask word entry. For Assemblers other than the Assembler I, the number of mask characters
must appear in the field length.

Revised 3-29-71 by
PCN 1045481.001 2.01.11

NOTE

NUM

Example: See subject 2.03.05.

2.01.12 NOTE INSTRUCTION

OP CODE

NOTE

The NOTE pseudo instruction will permit the entry of up to 25 characters in the REMARKS field
(columns 53-77). No machine language instruction is assembled. No parameter field entry is required. If
one is given, it will be ignored.

Example:
PARAMETER
FIELD
LEN- . + OR— 2 <
OP. CODE GTH | LABEL INC/REL REMARKS

67 (68{69|70[71172173

wWere | |l il] | BEGEN TETAL S RIVTENE,

2223|124 |25126(27 (28| 2930|331} 32} 33{34 | 35|36 |37|38[39 (40 {41(42| 43 53|54 | 55|56 |57 | 58|59]60 |61|62|63|64|65

OP CODE REMARKS
NOTE Begin total routine.

2.01.13 NUMBER INSTRUCTION

OP CODE

NUM

The NUM pseudo instruction permits a word of numeric data to be stored as constant data in memory
during program loading.

A numeric constant of from 0 to 15 digits (Assembler I will allow only 14 digits) consisting of the digits
0-9 is accepted. In addition, the “—,” “C” and “M’’ codes preceding the digit positions of the constant
are accepted, and set their respective flags in the flag positions of the word.

If the syllable counter is not 0, “Stop” instructions are inserted until the counter is 0. The numeric
constant is then assembled in the next full word, right justified.

The number must be identified by placing its name label in the label field (columns 16-21) of the
coding form, unless reference will be made to it by +/— incrementing from another entry.

2.01.12

ORG
PAGE
REG

Example:

PARAMETER
FIELD
A B8
LEN- + OR <
X -
LABEL OP. CODE GT| LABEL INC/REL

16 [17(18{19(20|21|22(23|24 |25|26|27|28{29{30|31| 32| 33|34 |35(36{37|38|39 (40 |41|42] 43 |44/45 |46 |47

lllllwlulLll 1P1I1|| (| [I
[E_Ill L1 bﬁbﬂl L (3 ¥.0,592653589219] 1

LABEL OP CODE i_ _B_ REMARKS
MUL PI Multiply by PI
PI NUM 314159265358979 PI to 14 places.

2.01.14 ORIGIN INSTRUCTION

OP CODE A
ORG 0-767

The ORG pseudo instruction will assemble the next instruction in syllable O of the word specified in the
parameter field. If the specified word has already been assigned by the assembler, an error message will
be printed and entry assignment will start at the same sequence.

No machine language instruction is assembled.

2.01.15 PAGE INSTRUCTION OP CODE
PAGE

The PAGE pseudo instruction will cause the assembler output to be spaced to the top of a new form.

2.01.16 REGION INSTRUCTION

OP CODE A

REG ’ 1-255

The REG pseudo instruction sets aside the number of words of memory specified by the A parameter.
The actual memory address is assigned by the assembler. If the syllable counter is not 0, “Stop”
instructions are inserted until the counter equals zero.

Revised 3-29-71 by
PCN 1045481-001 2.01.16

WORD

The word counter is advanced by the amount in the A parameter field. If the word counter exceeds the
highest order word available, an error message is printed and entry assignment will start at the same
sequence number.

No machine language instruction is assembled. The region must be identified by placing its name label in
the label field (columns 16-21) of the coding form. This region is not cleared.

Example:
PARAMETER
FIELD A B c
LEN-
LABEL OP. CODE | GTH LABEL TNg?R-EL
16 [17 |18 19[20121 | 22| 23|24 | 25| 26|27]|28| 29|30 31| 32| 33|34 | 35|36 |37|38[39 |40 |4 1] 42] 43 |44 |45 a6
| S I | LLK]B_LBI 1 AIZ|E|& 1 [I | ||
Lt (TEM 1S] L
Lt L 211 ! Pl R B | L1
| N | | A L | I T | it] 1 1] 1]
1’21 1“1 I g.f_&;n 1 41 [N N T N I 1+ | I T
LABEL OP CODE i E REMARKS
LKBR AREA Load keyboard
TKM 25 » Type 25
AREA REG 4 Save 4 words

2.01.17 WORD INSTRUCTION

OP CODE

WORD

The WORD pseudo instruction causes the assembler to assign the next instruction at the beginning
syllable of the next word.

If the syllable counter is not 0, it will be incremented and “‘Stop” instruction inserted into each syllable
until the counter reaches 0.

This instruction should immediately precede the entry of a Program Key Table.

2.01.17

Example:

WORD

PARAMETER
1EL.D
- . + OR - 2 <
LABEL OP. CODE GTH LABEL INC/REL
16 17118192021 {22]23|24 |25]26]27 28| 29{30|31]|32|33{34|35|36|37|38|39{40{41|42] 43 |44 46 (47
NI N R L [P REYS, Lo L1 I 1
I O T |1$1| [I S I A | 111 Lo Lt 1
S T O | | A | | I I T [| 1 |
| I T T I | %m | | N T I 11 [| |
Yl‘l ! 12“1]] ii'r;ﬂ&r‘ L1 L1 | 1 1
LABEL OP CODE A B REMARKS
LPKR PKEYS
WORD
PKEYS BRU START

Revised 3-29-71 by
PCN 1045481-001

2.01.17 (Cont’d)

NK ‘ NKCM

NKR NKRCM

2.02 — KEYBOARD INSTRUCTIONS

2.02.01 ENABLE NUMERIC KEYBOARD INSTRUCTIONS

OPCODE A B
NUMERIC KEYBOARD NK 0-15 0-15
NUMERIC KEYBOARD, PERMIT REVERSE ENTRY NKR 0-15 0-15
NUMERIC KEYBOARD, PERMIT C AND M KEYS NKCM 0-15 0-15

NUMERIC KEYBOARD, PERMIT REVERSE ENTRY,

C AND M KEYS NKRCM 0-15 0-15

The four numeric keyboard instructions provide for the entry of a maximum of 15 digits of numeric
information into the Accumulator digit positions 0-14. The Accumulator digit position 15 contains 4
flags designated “minus” (-), “special” (S), “per hundred” (C) and “‘per thousand” (M). These four flags
are always reset at the start of any numeric keyboard or numeric entry instruction. (RE) identifies the
data entered into the Accumulator as negative by setting the minus flag. The C, M Keys set the
appropriate flag when depressed.

The “-” “C,” “M” flags will be set if the particular keyboard instruction enables the use of their related
keys (RE, C, M respectively) and the operator depresses these keys during the instruction. The special
flag “S cannot be set by the depression of any keyboard key. Control of this flag is accomplished by
other means (see flag set/reset instructions).

The settings of the four flags transfer with the data from the Accumulator to memory and from
memory back to the Accumulator and thus can be retained for future use in the program.

The A .field of the instruction specifies the maximum number of digits permitted to the left of the
decimal point. The parameter values range from 0-15.

The B field specifies the maximum number of digits permitted to the right of the decimal point. The
parameter values range from 0-15. The sum of the A and B parameter cannot exceed 15.

When entering data, if either the A or B limits are exceeded, the Keyboard Error Indicator is turned on
and the alarm bell sounds, halting the program. When the Keyboard Error Indicator is lit, all keys are
disabled from performing their functions except the reset or ready push button. The entire entry must
be re-indexed following the use of the reset key.

Other conditions which will cause the Keyboard Error Indicator to turn on:

1. The RE, C, M Keys are depressed during a numeric keyboard instruction that does not permit
their use.

2. A typewriter key is depressed (other than 0-9, open/close key, line advance key or typewriter
OCK’s) during a numeric keyboard instruction.

3. A non-enabled program key has been depressed.

A numeric keyboard instruction is initiated when the capacity of the keyboard buffer has
been exceeded and when the valid codes in the buffer do not terminate the instruction.

2.02.01

NK NKCM

NKR NKRCM

Under control of the A field the programed number of digits enter the Accumulator. Although the B
field specifies how many digits can be entered to the right of the decimal point, it also determines the
digit position where the whole number enters the Accumulator. The entry of each whole number causes
the previously indexed digits to shift left one digit position permitting the newly indexed digit to enter
the vacated digit position. A zero key depression counts as a digit even if used as the most significant
digit entry. Double and triple zero keys act in the same manner counting two or three digits
respectively.

Under control of the B field (following recognition of the decimal point key), the first digit is entered
to the right of the phantom decimal point and the second digit in the second position with the
remaining digits entered accordingly. A zero counts as a digit even if entered as the last digit after the
decimal point key. It is not necessary to depress the Decimal Point Key if there are no decimal entries,
even though the B field permits decimals. When the B field is zero, the error light will not become
activated if the decimal point key is depressed without ensuing digit keys.

Example:

Suppose the Accumulator digit positions 0-14 contain 0. Examine the instruction.

122|23124 | 25| 26127|28] 20|30]31} 32| 33/34 | 35|36 |37|38|39 |40 |41/ 42] 43

mhkl 1 1 | | I N O | [ZJJ |

The operator wishes to index the number 5432.10.

The most significant digit “5” is indexed first and enters the Accumulator at digit position 2. The next
digit “4” is indexed and enters the Accumulator at digit position 2 and shifts the 5 to digit position 3.
This process continues until we have 000000000543200 in the Accumulator.

The decimal key is now used, and the digit 1 enters the first position to the right of the phantom
decimal point. The next digit indexed enters in the next Accumulator digit position to the right of the
previous entry. We now terminate the instruction with an appropriate OCK (i.e., according to program
instructions).

The Accumulator now contains:

1514131211109 |8 7|6]5|4|3]|2]1| 0| Accumulator Digit Position

ojlololo]J]olo]J]o]J]O]J]O}S5|413|2]1]0O0 Content of Accumulator

1
I
Flag Position

Revised 3-29-71 by
PCN 1045481001 2.02.01 (Cont’d-1)

NK NKCM

NKR NKRCM

Example 1: Illustrates the use of the NK instruction.

PARAMETER
FIELD
v . + OR — . <
LABEL OP. CODE GTH LABEL INC/REL
16 (17 (18119120 (2122|2324 |25|26|27 |28/ 29|30|31| 32| 33|34 | 35|36 |37|38]39 |40 (41| 42| 43
I O S jﬁhkl | 1 | 6“ I 11 | :L |

OP CODE A REMARKS
NK 6 Will allow for 11 characters to be entered into the
Accumulator. No printing occurs. 6 to the left of
digit position 5 and 5 to the right of it.

Example 2: Ilustrates the use of the NKR instruction.

PARAMETER
FIELD
LEN- 2 + OR — 2 <
H
LABEL oP. cope | GT LABEL TNOTREL
16 |17 18] 19|20 |21 | 22| 23|24 | 25| 26|27

28{29|30(|31|32|33|34|35|36(37|38

Loy NKR L @1

OP CODE A

39|40 |41{42| 43

L1 1 lllil_ll

REMARKS

B

NKR 6 5

Will permit use of negative numbers (set minus
flag).

Example 3: Illustrates the use of the NKCM instruction.

PARAMETER .
Tgf A B c
LABEL OP. CODE | GTH LABEL Tkg?é;L
16 |17 |18]19|20|21| 22| 23|24 {25| 26|27

28| 29(30(31{32|33|34{35/36(37{38

llIIIMMJQIIII

39140 |41{42| 43

| 6h| |

If the operator indexes 123456789, then the decimal point and 654321, the Accumulator will then contain

in digit positions 0-14

123456789654321

If in addition the operator depresses the C or M key, the C or M flag will be set. Both keys can be used
during the same instruction. Both flags will be set.

2.02.01 (Cont’d-2)

PKA PKC

PKB LPKR

2.02.02 OPERATION CONTROL AND PROGRAM KEYS

Depression of any of the Operation Control Keys (OCK’s, on either the numeric or typewriter
keyboard) terminates the numeric or typewriter keyboard entry, sets the corresponding OCK flag, resets
the other OCK flags, and causes the next instruction in the program to be executed. All program keys
are turned off.

OP CODE A
ENABLE PROGRAM KEY GROUP A PKA 12345678
ENABLE PROGRAM KEY GROUP B PKB 12345678
ENABLE PROGRAM KEY GROUP C PKC 12345678

The function of a Program Key is to select and execute one instruction programed and stored in an area
of memory called a Program Key Table. It also will terminate a keyboard instruction instead of an OCK,
in which case all OCK flags are reset.

Program Key Group A refers to Program Keys A1-A8. Program Key Group B refers to Program Keys
B1-B8. Program Key Group C refers to Program Keys C1-C8. The allowable Program Key Groups are
dependent upon the machine style. The A parameter can include any number of the program keys 1-8
for a specific group (A, B or C).

All PK’s that are desired must be specified by the PK command for that group, as a later command
calling for that group will void the effect of an earlier command for the same group.

When in the ready mode PK: Al, A2, A3 (Start, Load, Utility respectively) have specially assigned
functions and are always enabled. In the ready mode the specially assigned firmware functions take

precedence over any functions programed for these keys.

After an enable program key instruction the program will not stop automatically to allow the operator
time to exercise a decision. This must be done by the programmer with an instruction such as TK or NK.

OP CODE A
LOAD PROGRAM KEY BASE REGISTER LPKR LABEL

The instruction Load Program Key Base Register is used to reference the first word of a Program Key
Table. (4 syllables per word). The A parameter is a label addressing the first word of the table.

The table must begin in syllable 0 of a word. Each PK has one instruction in the table. The Op-Codes
for a 24 PK machine would be arranged as follows:

Revised 3-29-71 by
PCN 1045481-001 2.02.02

LKBR

BASE WORD 0 OP CODE for PKAI BASE WORD +3 0 OP CODE for BS
1 OP CODE for A2 1 OP CODE for B6
3 OP CODE for A3 2 OP CODE for B7

OP CODE for A4 3 OP CODE for B8

4
BASE WORD +1 0 OP CODE for AS BASE WORD +4 0 OP CODE for Cl1

1 OP CODE for A6 1 OP CODE for C2
2 OP CODE for A7 2 OP CODE for C3
3 OP CODE for A8 3 OP CODE for Cc4

BASE WORD +2 0 OP CODE for Bl BASE WORD +5 0 OP CODE for Cs

1 OP CODE for B2 1 OP CODE for Cé6
2 OP CODE for B3 2 OP CODE for C7
3 OP CODE for B4 3 OP CODE for C8

There may be more than one PK table in memory at a time. The LPKR instruction must be used prior
to changing the functions of the PK’s in order to locate the base address of the new table.

Example:

PARAMETER

FIELD
LEN-

ABE P. GTH + OR —
LABEL OP. CODE LABEL ING/REL

116 11711811920 (21 122{23[24 [25]26{27|28|29|30|31| 32{33{34 |35/36|37|38|39 |40 |41|42| 43

lllllPlKlAll 1'1213l|| [[
llll"lL_NIKIl'l I_Oll:ll_l;lOI:I

This example illustrates the use of an NK instruction to halt the program and allow the operator to
select a PK key.

2.02.03 TYPEWRITER KEYBOARD INSTRUCTIONS

OP CODE A

LOAD KEYBOARD BASE REGISTER LKBR LABEL

2.02.03

TK

The LKBR instruction specifies the starting memory location into which information will be transferred
for all succeeding TKM and EAM instructions. That is, until another LKBR instruction is executed. The
A parameter addresses the starting word location in which the alpha characters will be stored.

The keyboard base register contains the location that is loaded into it until a subsequent LKBR
instruction loads a new location into it.

This instruction is somewhat modified in firmware sets containing data communications capability. See
Subject 2.12.03.

Example:
PARAMETER
FIELD
LEN- . + OR — 2 .
H .
LABEL OP. CODE GT LABEL INC/REL

16 |17 |18|19120121|22|23/24 |25/ 2627 [28] 29{30|31| 32| 33|34 | 35|36 |37|38(39 [40 |4 1|42} 43

11111L1K13L&11.IY|P_¢5>1 [I |
|I,ll|T|‘_”-| 1215111 L1 [

The instructions above will allow 25 alpha characters to be stored sequentially beginning in the memory
location addressed by the label TYPE.

OP CODE A
TYPE TK 0-150 15%” forms handler
TK 0-255 26 forms handler

The type instruction provides for typing and printing as a maximum the number of alphanumeric
characters as specified in the A field. The A parameter ranges from O to 150 for 15% inch forms handlers,
while 26 inch forms handler styles provide for a O to 255 range. This instruction is terminated by
depression of an OCK or an enabled PK.

Printing of the first character will begin at the position of the print head. If printing in a specified area
is required, the print head must be prepositioned to the beginning left-hand position of the print area
before the typewriter instruction is reached in the program.

If typing of more than the number of characters specified in the A field is attempted, the Error
Indicator is lit, and further typing is prevented. The error condition can be corrected by depression of
the Reset Key. If the Reset Key is depressed during a TYPE instruction without an error condition, the
instruction will be re-initiated and the print head will return to the beginning typing position.

Example:
PARAMETER
FIELD
LEN- A = 8 C
ABEL . GTH =
LAB OP. CODE LABEL INC/REL

16 (17 [18|19,20 |21 [22]23|24 | 25| 26|27 |28]| 29|30 |31| 32| 33[34 [35|36 |37(38(39 |40 |41|4a2] 43

llIIl‘,T.lKlAl_nlqllll_l [L1 |

The above coding will allow the computer to act as a typewriter for 9 alpha characters.

Revised 3-29-71 by
PCN 1045481-001 2.02.03 (Cont’d-1)

TKM

OP CODE A
TYPE INTO MEMORY PRINT TKM 0-150 15%” forms handler
TKM 0-255 26” forms handler

The Type into Memory instruction differs from the Type instruction in that in addition to printing
alphanumeric information, the characters are also stored in memory. The space character is considered a
print character and stores a code in memory. The codes for Backspace, Open/Close, Line Advance,
OCK’s and Program Keys are not stored in memory.

Example:

PARAMETER
FIELD A B c
' i + OR -
LABEL | oP.CODE | GTH LABEL PO REL

16 |17 (18119120121 |22|23|24 |{25}26|27|28| 29|30|31|32|33|34 | 35(36|37(38(39 [40|41|42] 43

1||11T1K1M1 l31,11|1 I 11|

A maximum of 31 alpha characters can be typed and a maximum of 32 alpha characters (31 alpha
characters plus end of alpha code 0, 0) will be entered into memory. See LKBR instruction Subject
2.02.03 ,

This instruction is somewhat modified in firmware sets containing data communications capability. See
Subject 2.12.03

The code, for each key depressed before instruction termination, is stored in memory with the first
character stored in the most significant character location of the word specified by the keyboard base
register. A single word can store 8 characters.

ALPHA WORD — (8 characters)

The depression of the backspace key effectively removes the last typing key code from memory.
Backspacing will not occur past the first typing position.

On a TKM instruction each word is cleared before any characters are entered. The unused portion of the
word remains clear. If no typing is done and the TKM instruction is terminated by an OCK, the word is
clear. If exactly 8 characters were entered and then an OCK was used, the next sequential word in
memory would be cleared. If a TKM is used again, without another LKBR, the data will enter memory
at the first position of the last LKBR.

Note this is modified when used with Data Comm firmware. See SCP, Subject 2.12.03.

2.02.03 (Cont’d-2)

EAM

OP CODE A
ENTER ALPHA INTO MEMORY EAM 0-150 15%” forms handler
EAM 0-255 26” forms handler

This instruction is identical to the TKM instruction except that printing does not occur. The print head
does not escape.

Revised 3-29-71 by
PCN 1045481-001 2.02.03 (Cont’d-3)

POS

PA

2.03 — PRINT INSTRUCTIONS

2.03.01 MODES FOR PRINTING

Instructions are provided to print in three modes:

1. Alphanumeric printing of data either from keyboard entry or from memory. When printing in
this mode, the field is left justified.

Printing of numeric data from Accumulator. In this mode printing is right justified.

Printing of a single character with the actual character specified by the instruction. A single
character prints in the position indicated.

2.03.02 LOAD POSITION REGISTER INSTRUCTION

OP CODE A
POS 0-150 15%” forms handler
POS 0-255 26 forms handler

The Position Register is loaded with the value of the A field. The A field ranges from 1 to 150 for
15% inch forms handlers and 1-255 for 26 inch forms handlers. The position loaded in the position
register corresponds with the actual position at which the printer will print. The print ball does not
move until the program reaches an instruction which specifies that a character is to be printed, or until
a keyboard instruction is reached. The print head escapes in 1/10 inch increments.

PARAMETER
FIELD
A B C
LEN- + OR
N —
SEQUENCE LABEL OP. CODE GT LABEL INC/REL

11121 13[14| 15116 |17 |18]19|20121|22]|23[24 {25|26|27 |28} 29|30|31|32133|34 |35|36|37{38{39 {40 |41/42| 43 |44 |45 |46 |47

ilolll I I S Pldl‘ll l'lol,lll [L1 L1 1
1012. I T I |Lla|II|||l|||| L1t [

1 10,3, 1111&7|K|1|1Lb|1||1| L1 L1

The above instruction will position at position 101 or 10 inches from position 1.

2.03.03 PRINT ALPHANUMERIC FROM MEMORY INSTRUCTION

OP CODE A
PA LABEL

2.03.01

LPNR

The Print Alphanumeric instruction prints alphanumeric information from memory beginning with the
first character in the memory location specified by the “A” field. Printing continues until an end of
alpha code (0,0) is encountered, regardless of the number of words used.

For the PA instruction, the ribbon will be in the normal (generally black) position, although it can be
changed to the reverse position by other instructions.

Example:

Suppose the alpha characters MESSAGE (and an end alpha code) are stored in memory location SAVE
and we desire to print the contents of this memory location.

Initially, we position the print head. The second step is to provide for the actual printing. These two
steps are programed.

PARAMETER
FIELD
A
LEN- ¥ oR 2 =
GTH -
LABEL OP. CODE LABEL - INC, REL

16 |17 18] 19(20121|22|23(24 {25| 26|27 |28 31|32|33|34{35(36|37{38|39 (40 (41|42] 43 |44|45 |46 (47|48 |

‘lllllPl'd‘Il l?lslllllll | Y S I N |
L1110 P!Aly L SAV.E | FERE N B Lol

The printed message would appear at print position 95, left justified and read MESSAGE.

2,03.04 LOAD PRINT-NUMERIC BASE REGISTER INSTRUCTION

OP CODE

1>

LPNR LABEL

The Print Numeric Base Register is loaded with the value of the base address for the print mask table.
All succeeding print instructions reference this table until another LPNR instruction is executed. The
“A” parameter designates the base address of the print mask table.

Mask words are grouped into a table in memory. A Print Numeric Base Register contains the base

address or starting word of the table. The location of a mask word is specified by using the relative
addresses O thru 15.

Revised 3-29-71 by
PCN 1045481-001 2.03.04

MASK

Example:

PARAMETER
FIELD
A
i "+ OR . <
" -
LABEL OP. CODE GT LABEL INC/REL

16 |17 (18| 19|20 |21 [22]| 23|24 | 25| 26 |27|28] 20|30 |31| 32| 33|34 | 35|36 |37| 38|39 |a0 [a1| 42| a3
L

11111L|P1”IK| l‘lm‘wlll [
] |

|

I I | I T | | S U TR T N A S O | |

Hﬂ KI lplbl°lbll || |
1 ..D L1 Lo

23,22, 222 00l |

The Print-Numeric Base Register is loaded with the word number of the label (FORMAT). Relative
address O would access the mask word in location FORMAT + 0 or DD.D. Mask number 1 would be
Z77.DD, (FORMAT + 1), etc.

A maximum of 16 different masks can be referenced relative to the base address value in the Print
Numeric Base Register. If more than 16 masks are required, the register must be reloaded with a new
value before referencing the masks in the second table (by use of LPNR instruction), and then reloaded
with the original value before reusing any of the first set of 16 masks. If fewer than 16 masks are
required, those words of memory never referenced as mask numbers may be used for any other purpose.

2.03.06 MASK WORD (PRINT FORMAT)

The mask enables printing in varied formats. The mask word consists of control codes and control flags.
The control codes are entered into the mask word in digit positions 0-14. They control the printing (or
non-printing) and punctuation of each corresponding Accumulator digit. Mask flags are entered into digit
position 15 of the mask word, and are used to modify the effects of the control codes.

TABLE OF MASK CONTROL CODES

NAME CODE PRINTING RESULT

Digit D Accumulator Digit prints unconditionally.

Decimal Point and Digit .D Decimal Point and Accumulator Digit
print unconditionally.

Digit and Decimal Point D: Accumulator Digit and Decimal Point
print unconditionally.

Digit and Comma D, Accumulator Digit and Comma print
unconditionally.

Leading Zero Suppress Z Accumulator Digit prints if non-zero, or if

a previous digit to the left was non-zero.

2.03.05

MASK

TABLE OF MASK CONTROL CODES (Continued)

NAME

Leading Zero Suppress
and Decimal Point

Leading Zero Suppress
and Comma

Units of Cents

Tens of Cents

Terminal Zero Suppress

Decimal Point and Terminal
Zero Suppress

Ignore Digit
Ignore Digit End

Single Digit Zero Suppress

CODE

Z:

PRINTING RESULT

Accumulator Digit and Decimal Point
print if digit is non-zero or if previous
digit to the left was non-zero.

Accumulator Digit and Comma print if
digit is non-zero or if previous digit to the
left was non-zero.

Accumulator Digit prints if significant or
if there is a significant digit to the right.

Ignore if digit is zero and if significance is
not established by either a preceding digit
or a digit to the right.

Decimal Point and Digit print if signifi-
cant or if there is a significant digit to the
right.

Ignore if digit is zero and if significance is
not established by either a preceding digit
or a digit to the right.

Accumulator Digit prints if non-zero, or if
any digit to the right in this terminal zero
suppression field is non-zero.

Decimal Point and Digit print if digit or
any succeeding digits in this terminal zero
suppression field are non-zero.

Ignore if the digit and all digits to the
right in the terminal zero suppression field
are zero.

Digit is ignored, printer does not escape.
Digit is ignored, the print instruction is
terminated, printer does not escape.

Digit prints if non-zero. Escape if zero.
Digits to the right and left have no effect.

Revised 3-29-71 by R
PCN 1045481-001 2.03.05 (Cont’d-1)

MASK

TABLE OF MASK FLAGS

NAME CODE
Safeguard F
Suppress Punction +
Punch Leading Zeros P

Print Condensed Numeric —

MASK WORD EXAMPLES:

PRINTING RESULTS

When the Safeguard flag is set, the safe-
guard symbol ($) is printed to the left of
the most significant digit printed.

Print positions where commas or decimal
points would normally be inserted are
replaced by spaces.

No effect on printing, causes preceding
zeros to punch even though they may not
print, starting at the pointer.

Monetary punctuation prints without
causing printer escapement. Requires PIP
hardware.

The examples below illustrate the filtering and control that a mask word and its control codes exert

over the printing of each accumulator digit.

Sample: Printing decimal fractions allowing for a 7-digit whole number and 3 decimal places:
Example 1:

pointer whole number fraction
Instruction: PN 9 1 field = fieldﬁl
Accumulator: 0 00000001 65 Q /1 2 Q
Mask 1: 2272 7221272217 7Z/X XX
Printed Result: 6 5 01 2

Mask 1 provides 1 field for whole numbers and 1 for decimal fractions: The “Z” and “Z,” mask codes
establish a “leading zero suppression field” from digit position 3 through the pointer in position 9, and
the proper comma punctuation for whole numbers; thus, digit positions 7, 8, & 9 are suppressed because
they are not significant. The “X’* and *“.X” mask codes establish a ‘“‘terminal zero suppression field”
from digit position 0 thru 2 and provide the decimal point, thus digit position zerq is suppressed

because it is non-significant.

Example 2:

pointer:
Instruction: PN 9 1
Accumulator: 0O 0 0 0 O ()
Mask 1: 7 7 7,7 7 7

Printed Result:

2.03.05 (Cont’d-2)

whole number

fraction
field

field
0016350000
v 272 7 72°% x X

6 s 0

PN
PNS —
PNS +

Using the same mask word as in example 1, this illustrates the printing effect when there is no
significant fraction value. The printed result being only a whole number. Also, as in example 1, digit
positions 7, 8 & 9 are suppressed for lack of significance. In both examples, digit positions 10 through
14 are ignored due to the pointer having been specified at position 9.

As we will see due to the PN instruction, the mask need not fill the entire mask word.
2.03.06 NUMERIC PRINTING INSTRUCTIONS

Numeric values to be printed must be contained in the Accumulator and can have a maximum of 15
digits. It is not possible to print numeric data directly from memory.

OP CODE A B

PRINT NUMERIC PN 0-14 0-15

The Print Numeric instruction prints the contents of the Accumulator with the ribbon in the normal
(generally black) position regardless of sign. (Unless previously shifted by the RR instruction.)

The “A” field contains the Accumulator digit position number for the most significant digit to be
printed. This is independent of the print mask. All positions higher than the digit position specified are
ignored and lost from printing. Since the Accumulator digit positions start with 0, to print out a
maximum of 5 digits the “A” parameter should contain a 4.

The “B” field of this instruction identifies the print mask to be used during printing. There is a
maximum of 16 print masks per LPNR instruction so the B field contains a value from 0-15. The value
referenced in the B field is a function of the mask table. (See LPNR instruction).

OP CODE A B
PRINT NUMERIC, SHIFT RIBBON PNS— 0-14 0-15
IF MINUS

PRINT NUMERIC, SHIFT RIBBON PNS+ 0-14 0-15
IF PLUS

The PNS— and PNS+ instruction are similar to the PN instruction, the difference being:

1. The PNS— instruction shifts the ribbon if the sign of the Accumulator is negative. The PNS—
instruction also allows for Print in Place Capability. The ability to print in place is actuated by
the insertion of a Dash (—) in digit position 15 of the mask word. This will print the comma
(,) and period (.) without letting the printer actually escape the 1/10 inch normally permitted.

Revised 3-29-71 by
PCN 1045481-001 2.03.06

PN
PNS —
PNS +

2. The PNS+ instruction shifts the ribbon if the sign of the Accumulator is positive.

Example 1:
PARAMETER
T;.D A B C
+ OR -
.Jcop SEQUENCE LABEL OP. CODE GTH LABEL INC/REL

| 11|12} 13} 14| 15|16 |17 [1B|19|20]21|22{23(24 |25|26|27 |28} 29|30 (31| 32| 33|34 [35(36|37|38(39 40 [41|42| 43 [4445 la6 [47

|l01|1 |l|ll~] 4 15111111113111 1 4 1
1012. |Illlt'|N||| 181|||1‘|1|H0||1 L1]

LABEL OP CODE é _B_ REMARKS
NK 5 3 Enable Numeric keys
PN 8 0 Print Accumulator contents

The contents of the Accumulator are printed beginning with digit position 8 and with the format
dictated by print mask O.

Example 2:
PARAMETER
FIELD
o : + OR— . <
GTH .
COl SEQUENCE LABEL OP. CODE LABEL INC/ REL

l 11112 13}14| 1516 |17 18| 19(20{21|22|23|24 |25| 26|27 |28 30(31]32|33{34|35/36|37[38|39 (40(|41{42]| 43 {4445 46 (47

2
1 lolll I I | WJ‘RI | 14_51 I | [| 3L 11 11}
] |0|2‘ I | IPIM‘I.I | 81 I 11| 101 | 11}

1 10,3 Lodo1 L1 I IO N N N B SRR Ll 11
LT TN RS S AN N S A S S SR RN N ST N L1
1 10,5 I R S W S | 1 T N B B | 11 1 L1 .1 L1
LABEL OP CODE A E REMARKS
NKR 5 3 Enable Reverse Entry
PNS- 8 0 Print Shift if negative

Printing will occur as in the above example, but the ribbon will Shift if the Accumulator “minus” flag is
set.

2.03.06 (Cont’d)

PC PC —

PCP PC +
2.03.07 SINGLE CHARACTER PRINT INSTRUCTIONS
OP CODE A
PRINT CHARACTER PC Character to be printed

This instruction unconditionally prints the character specified in the “A” field. If the “A” field is blank,
the instruction causes a single printer space operation. The PC instruction prints with the ribbon in the
normal position (unless previously shifted. See RR instruction).

OP CODE A
PRINT CHARACTER PREVIOUS RIBBON PCP Character to be printed

The PCP instruction will print a character with the same ribbon position that was used on the last print
operation.

OP CODE i_
PRINT CHARACTER IF ACCUMULATOR PC— Character to be printed
MINUS, PREVIOUS RIBBON
PRINT CHARACTER IF ACCUMULATOR PC+ Character to be printed

PLUS, PREVIOUS RIBBON

Printing of these instructions is dependent upon the Accumulator sign flag (+ or —). The character
specified in the “A” field is printed according to the following conditions:

1. PC— Print if Accumulator negative (i.e., sign flag set); do not print if plus.

2. PC+ Print if Accumulator positive (i.e., sign flag reset); do not print if negative.

Example:
PARAMETER
FIELD .
LEN- . + OR . <
N- -
SEQUENCE LABEL OP. CODE GT| LABEL INC/REL

11[12}13[14] 1516 |17 18| 19120 |21|22|23|24 |25|26|27 |28/ 29|30|31| 32| 33|34 { 35|36 373839 [40 [41|42| 43 |a4|45 6 |47

1|01|1 l»llllunxlkll | (& | | | 1 Lll3lll 4 1

g 10121 llllllPlﬂJ__SI’l l llollll L 1 1 Oan 11 |
1 1043, 1|111]PlQ'}11 i S Lo [L1
1014 |1y 0y e O I o O T NN O NN N Ll L1

Revised 3-29-71 by
PCN 1045481-001 2.03.07

RR

LABEL OP CODE A B REMARKS
NKR 8 3 Allow negative entry
PNS— 10 0 Print amount
PC+ + Print if positive
PC—- — Print if negative

If the Accumulator contains a positive quantity, a “+” character will be printed. A negative content
would produce a “—”’ character.

2.03.08 RIBBON SHIFT INSTRUCTION

Printing of data normally is with the ribbon color black, except for certain print instructions that cause
minus amounts to print in red. However, a ribbon shift instruction is also provided to change the normal
color of printing.

OP CODE

RED RIBBON RR

The RR instruction is used to change the ribbon color of only the next printing instruction. The ribbon
color will be opposite to the color normally expected from the data and type of the next print
instruction.

Example 1:
PARAMETER
FIELD
g : + OR . <
H -
CODl SEQUENCE LABEL OP. CODE GT LABEL INC/REL

| 11|12|.13{14| 15|16 |17 |18]19[20 (21 |22{23]24 |25|26}27 28| 29|30 |31/ 32| 33|34 (35|36 (37|38{39 |40 [41|42} 43 |44(45 46 |47

1101|| lllllNI‘RIllllllllll3lll] |
||°|2| llllI]RIRJII 1 A T N U U A AN O L |

L0830 PN I8 1B L1
Ilolulvﬂ llllll!'lMll [4 T 11 31_|| ‘ 11
LABEL OP CODE A _B_ REMARKS

NKR 8 3 Allow negative entry

RR Reverse Ribbon

PN 5 3

PN 5 3

The Accumulator contents would print according to the PN 5 3 instruction but the ribbon would change
to the opposite color. The second PN 5 3 would not be affected by the RR instruction.

2.03.08

RR

Example 2:
PARAMETER
FIELD A B c
o LEn- + OR -
CoDi SEQUENCE LABEL OP. CODE GTH LABEL INC/REL

| 11112113114/ 15/16 |17 {18| 19|20 |21 | 22|23|24 25| 26|27 |28] 20|30|3 1| 32| 33[34 35/36137/38|39 (40 (41{42| 43 4445 l46 |47

l]ol|l lIlIIMIKIRII lelllll ll|3|11 L1 1

] |0|2. [RIRI 11] [.
1 10,3, L d] P ‘1'1 ! '101 L1 L1 1@ I
| ,0,4, | I I glRl 1] | I S A | L1 L | .

1 |0|51 I I I | Pj”lsl+|] '1D| 11 | L1 | 01 1 11]
LABEL OP CODE A B REMARKS
NKR 8 3 Allow negative
RR Reverse Ribbon
PNS— 10 0 Shift Ribbon -
RR Reverse Ribbon
PNS+ 10 0 Shift Ribbon ““+”’

The effects of the PNS— and PNS+ instruction are reversed.

Revised 3-29-71 by
PCN 1045481-001 2.03.08 (Cont’d)

ocC

cC

2.04 — FORMS CONTROL INSTRUCTIONS

2.04.01 FORMS HANDLER — OPEN AND CLOSE INSTRUCTION

OP CODE A
Open Forms Handler oC 0-255 rear feed handler
oC - BLANK front feed handler

The OC instruction is used to open the forms handler mechanism in order to permit the insertion or
removal of a completed unit document. The A parameter is blank for front feed styles. For rear feed
styles of the L/TC the A parameter of the OC instruction specifies the number of lines the left forms
mechanism will advance when the handler mechanism is next closed.

This closing may be from any of the following sources:
1. The execution of a PN or PA instruction of any type.

2. The entering of alpha information at a TK instruction. If a TK instruction were terminated by
an OCK without the entering of alpha data, the handler mechanism would not close.

3. A CC instruction.

Manual depression of the open/close key on the keyboard.

When programing for automatic alignment of rear-fed unit documents, the number that must
be placed in the OC parameter must be 3 greater than the line number of the first actual line
of print.

To align a unit document to line number 14

OP CODE A REMARKS
oC 17 Will align to 14

Although the form aligns to line 14, the Count Register contains 17. Thus, it may be desirable
to reload the Count Register with 14 before any further vertical spacing is performed.

OP CODE

Close Forms Handler | CC

The CC instruction closes the forms handler. This instruction generally is not required since execution of
any print instruction or depression of a typing key during a type instruction will automatically close the
forms handler

.If the handler is open as the result of executing an OC instruction, when the CC instruction is executed,
the Left Forms mechanism will advance the number of times specified by the OC instruction.

2.04.01

LLCR LRCR LLLR LRLR

AL AR ALR ALTO ARTO

2.04.02 PLATEN CONTROL REGISTER INSTRUCTIONS

OP CODE A
LOAD LEFT PLATEN COUNT REGISTER LLCR 0-255
LOAD LEFT PLATEN LIMIT REGISTER LLLR 0-255
LOAD RIGHT PLATEN COUNT REGISTER LRCR 0-255
LOAD RIGHT PLATEN LIMIT REGISTER LRLR 0-255

The programmer is provided with four platen control registers to control vertical spacing. These are the
Left and Right Forms Count Registers, and the Left and Right Limit Registers. In addition, there is a
Forms Limit Flag.

A forms count register is associated with each platen advance mechanism. This register is automatically
incremented by 1 each time the respective (left or right) platen is advanced a line either program-
matically or by use of the Line Advance Key.

A forms limit register is also associated with each platen advance mechanism. This register contains a
limit to which the forms count register can be compared.

The LLLR and LRLR preset the forms limit registers to a specified line. The count register will be set
to 1 (not 0) on the next line advance after the respective limit and count registers are equal.

On the line advance following when the count register equals the corresponding limit register, the forms
limit flag is set. The limit flag becomes reset on the next line advance.

LLLR = 50
LLCR 50

On the next line advance the left count register equals 1 and the Forms Limit Flag will be set.
The next line advance (2nd after LLCR = LLLR) resets the flag.

The execution of a LLCR or LRCR will reload the appropriate count register. The count register is not
incremented when the platen is advanced by the platen twirlers.

The LLLR and LRLR instructions load the Left and Right Platen Limit Registers respectively with the
contents of the “A” field.

2.04.03 LINE ADVANCE INSTRUCTIONS

OP CODE A
ADVANCE LEFT PLATEN AL 0-255
ADVANCE RIGHT PLATEN AR 0-255
ADVANCE BOTH PLATENS ALR 0-255
ADVANCE LEFT PLATEN TO ALTO 1-255
ADVANCE RIGHT PLATEN TO ARTO 1-255

Revised 3-29-71 by
PCN 1045481-001 2.04.03

LLCR LLLR LRCR LRLR

AL AR ALR ALTO ARTO

The AL, AR, and ALR instructions advance the form the number of lines specified by the “A”
parameter. These provide a single line advance with a maximum advance of 255 lines. The vertical spaces
occur in the 1/6 inch increments. The respective count register is incremented by 1 for each single line
advance.

OP CODE A
AL 1

The form will advance 1 line. The Count Register will be incremented by 1.

The ALTO and ARTO instructions advance a form until the associated count register is equal to the
value of the “A” field. If the Count Register equals the line number specified in the ALTO or ARTO
instruction prior to its execution, no advance occurs. Specifying “0” or an integer larger than the
contents of the Limit Register in the “A” parameter of the ALTO/ARTO instruction is a programing
error. This will result in a continuous search for a line number that does not exist.

1. To determine the number of lines which will be advanced, subtract the Count Register from
the value of the “A’ parameter in the ALTO or ARTO instruction. If positive, this will be the
number of lines advanced. If negative, assume this number is positive, then subtract from the
value of the Limit Register to ascertain the number of lines advanced.

a. OP CODE A REMARKS
LLLR 255 Load Left Limit Register
LLCR 20 Load Left Count Register
ALTO 3 Advance to line 3

Value of ALTO parameter — Value of Count Register
3 — 20 = -17

Since negative assume positive (i.e., —17 = 17)

Value of Limit Register — 17 =

255 - 17 = 238
There will be an advance of 238 lines.
b. OP CODE A REMARKS
LLLR 255 Load Left Limit Register
LLCR 20 : Load Left Count Register
ALTO 25 Advance to Line 25
Value of ALTO parameter — Value of Count Register =
25 — 20 = 5

Since resultant is positive, there will be 5 line advance.

2.04.03 (Cont’d-1)

LLCR LLLR LRCR LRLR

AL AR ALR ALTO ARTO

2. OP CODE A
LLLR 30
ALTO S

Assume contents of Left Count Register = 20, when ALTO command is executed. This is an example of
the type of programing employed when using pin fed continuous forms with the requirement that the
program automatically advance from the last line on one form to the first line of a new form.

The form advances 10 lines, then the LLLR = LLCR, on the next line advance the Count Register is set
to 1. Advancing continues for 4 more lines to line 5 of the new form. In this case, the last line on the
form would be line 30.

Another method of continuous forms programing utilizes the forms limit flag.
Example: .

Suppose we have the following form:

WP e S Y T T W T
4 1
Line 1 I
First Print Line 14
Last Print Line Yo
Last Line on Form o . . _ L
A AAAAAAAAA,

The following programing will advance the form automatically when the forms limit flag is set.

OP CODE

A L] L
LLLR 40
LLCR 0
AL 1
EX T
ALTO 17
6

LLLR

The following illustrates the use of the Limit Register to enable the program to know when 40 lines
have been filled on the invoice. The total length of the invoice is 8% inches (8.5 x 6 = 51 lines). The
first print line is 14 as measured from the top of the form.

Revised 3-29-71 b
PON 1045481001 2.04.03 (Cont’d-2)

LLCR LLLR LRCR LRLR

AL AR ALR ALTO ARTO

OP CODE A
LLLR 40
LLCR 37

oC 17
TK 10

When the forms handler is closed, the form will advance 17 lines. The first three lines increment the
Count Register to 40, the next advance will set the Count Register to 1. After an advance of the

remaining 13 lines, the Count Register will be at 14. This is the actual first print line, and the number
wanted in the Count Register.

2.04.03 (Cont’d-3)

ADA

ADM
2.05 — ARITHMETIC INSTRUCTIONS
2.0501 ADDITION INSTRUCTION
OP CODE A
ADD TO ACCUMULATOR ADA LABEL
ADD TO MEMORY ADM LABEL

The ADA instruction provides for adding the contents of a memory location, specified by the A field to

the contents of the Accumulator. The resultant sum is placed in the Accumulator leaving the memory
location undisturbed.

The ADM instruction provides for adding the contents of the Accumulator to the contents of the

memory location specified in the A field. The resultant sum is placed in memory location A leaving the
Accumulator undisturbed.

The overflow flag is set if an overflow occurs and reset if there is no overflow.

The ADA and ADM commands cannot be used to move alpha data, even if the receiving location is
clear.

Example 1:
PARAMETER
FIE&LD
LEN- . + OR-— 2 <
LABEL OP. CODE GTH . LABEL INC/REL
16 {17 (18(19120121 |22{23|24 {25|26{27]28| 29|30|31| 32| 33(34 351363738139 (40{41142] 43 |44]45 ld6
lllIlAlDIAll 1A1R|§1ﬂ11 IS N T VO N I | 1 1
OP CODE A B REMARKS
ADA AREA Add to Accumulator the contents of Area, content
of Area is unchanged.
Example 2:
PARAMETER
FIELD
LEN- 2 + OR - > <
LABEL OP. CODE GTH . LABEL INC/REL

116 [17]18{ 19120 |21 2223[24 25(26127128129|30[31| 32| 33|34 | 35|36 |37]38|39 |40 |41|4a2| 43 |a4(a5 ke

“lllllLAIDIMl 1,_A|R|§|ﬂ|,| L1 11| L1

OP CODE A B REMARKS
ADM AREA Add to memory location Area contents of

Accumulator leaving Accumulator unchanged.

Revised 3-29-71 by
PCN 1045481-001 2.05.01

ADK
CLM
CLA

2.05.02 ADD CONSTANT TO ACCUMULATOR INSTRUCTION

OP CODE A B

ADK 0-14 0-9

The ADK instruction provides algebraic addition of the digit contained in the B field to the digit in the
Accumulator position specified by the A field, with carries propagated in succeeding high order digits.

The Special (S), per thousand (M) and per hundred (C) flags are unconditionally reset.
The sign flag is reset (+) if the result is positive or set (—) if negative.

The overflow flag is set if an overflow occurs and reset if there is no overflow.

Example:
PARAMETER
f_‘g—f’ A B c
LABEL OP. CODE | GTH LABEL TN?/?R_EL
16 |17 {18(19(20 |21 |22|23(24 |25|26{27|28| 29|30|31|32|33(34 |35(36|37(38139 |40 {41|42]| 43 {4445 46 (47
11111A¢“K|1 |‘||1||s;|3|1|411|'
OP CODE A B REMARKS
ADK 6 3 Add 3 to digit position 6 in the Accumulator.
2.05.03 CLEAR INSTRUCTIONS
OP CODE i_ E
CLEAR MEMORY WORD CLM LABEL
CLEAR ACCUMULATOR AND INSERT CONSTANT CLA 0-15 0-15

The CLM instruction will clear the 16 digits of the memory location specified in the A field.

The CLA instruction sets all 16 digits of the Accumulator to zero, thus resetting the four Accumulator
flags (M, C, special, and sign); it places the digit specified by the B field in the digit position of the
Accumulator specified by the A field.

It is important to notice that the B parameter although expressed as 0-15 on the coding form, is placed
in the Accumulator as a hexadecimal digit (0-F) rather than two decimal digits.

Arithmetic operations can only use the values from 0-9 in any digit position. Any values over 9 will not
arithmetically combine.

2.05.02

INK

Example 1:
PARAMETER
FIELD
LEN- A T B C
LABEL OP. CODE GTH LABEL INC/REL
16 {17 18]19[20 21222324 |25{26|27 (28} 29|30{31| 32| 33|34 |35|3637|38|39 a0 (41|42| 43 |4a4|a5 6 |47
L] 1,1__[£JL|M1] AIR!‘[_AI I 11 L1 | 1 1}
OP CODE A B REMARKS
CLM AREA The Memory location called Area will contain all
Zeros.
Example 2:
PARAMETER
FIELD
LEN- A o 8 C
LABEL OP. CODE GTH LABEL INC/REL
16 (17 {18{19]20 |21 |22(23|24 |25|26|27 (28] 29(30|31|32{ 33|34 [35|36{37|38(|39 {40 |41{42| 43 |44{45 46 |47
ll_lllClLlAll I_ollllllllolll R I
OP CODE A B REMARKS
CLA 0 0

The Accumulator contains zeros in positions 0-15.

2.05.04 INSERT CONSTANT IN ACCUMULATOR INSTRUCTION

OP CODE A B
INSERT CONSTANT IN ACCUMULATOR INK 0-15 0-15

The INK instruction inserts the digit specified by the B field in the digit position of the Accumulator
specified by the A field. The remaining digit positions are unaffected.

Similar to the CLA instruction the B parameter field in this instruction also permits entry of a value
from 0-15. Again this is a hexadecimal value rather than a decimal value.

Arithmetic operations can only use the values 0-9 in any digit position. Any values over 9 (i.e., A-F) will
not arithmetically combine.

Example:

PARAMETER
FIELD
e : + OR . <
E P. GTH -
LABEL OP. CODE LABEL NG/ REL

16 |17 18| 19120 |21 | 22|23|24 [25| 26|27 (28| 29|30 (31| 32| 33|34 | 35|36 (37|38{39 |40 [41|42| 43 |44]|45 446 |47

lllllxukll loll_llllllsill

L 1 1

Revised 3-29-71 by
PCN 1045481001 2.05.04

LSR

OP CODE A E REMARKS
INK 0 3 The digit 3 will be placed in Accumulator digit

position O replacing the previous contents of
Accumulator digit position O.

2.05.05 MULTIPLICATION AND DIVISION INSTRUCTIONS

OPCODE A
LOAD SHIFT REGISTER LSR 0-15.

The LSR instruction provides for loading the multiply-divide shift register with the contents of the A
field. The shift register must be loaded prior to the execution of a Multiply or Divide instruction. The
shift register will contain the value loaded until a subsequent load shift register command is executed.
For multiplication, the shift register designates the number of places the product is shifted right after
multiplication. The shifted off digits are lost, the remaining digits set in the Accumulator as the product.
Division will be carried out to the number of places specified in the shift register. These operations take
into account the shift register even though it is not loaded immediately preceding each MUL or DIV

instruction. The contents of the shift register must be changed only when the shift requirements are
changed.

PARAMETER
FIELD
A
LEN- ¥ OR 2 <
LABE . GTH -
BEL OP. CODE LABEL INC/REL

16 |17 |18 19|20 |21 |22{23|24 |25|26}27 28] 29|30(31] 32| 33134 | 35|36 |37(38{39 |40 |41{42| 43 {44145 U6 |47

|‘||I1_L1_SIR1'1 13I|1|>1 1l 11| 111

OP CODE
LSR

A REMARKS
3 Load shift register with 3

Computing the Value of the Shift Register

FOR MULTIPLICATION—TO compute the value which must be loaded in the shift register, subtract the
desired number of decimal places in the final result from the sum of decimal places in the multiplier and
multiplicand.

Number of places + Number of places _ Desired Number _ Value of
in multiplier in multiplicand of places Shift Register
100.00 25
2 + 2 - 1 = 3

Accumulator contains 250 in digit positions 0-2, when printed with one decimal this becomes 25.0.

2.05.05

MUL

FOR DIVISION—The value to be loaded into the Shift Register can be determined with a knowledge of
the assumed decimal places needed in the quotient as well as the divisor and dividend.

Assumed decimal + Assumed decimal _ Assumed decimal = _ Value of
places in divisor places quotient places dividends Shift Register
.25 100.00 25.0
2 + 2 - 1 = 3
o cope A
MULTIPLY MUL LABEL

The multiply instruction provides for multiplying the contents of the Accumulator by the contents of
the memory location specified in the A parameter. The product is shifted right the number of places
specified in the multiply — divide shift register, causing the shifted off digits to be lost. The next 15 low
order digits are placed in the Accumulator as the product.

If the Accumulator and the memory location in the A parameter have identical signs, the sign of the
product is positive [Accumulator sign flag is reset (+)]. With unlike signs, the product is assigned a
negative sign [Accumulator sign flag is set (—)].

Both the Accumulator and the memory location can contain a maximum of 15 digits each. If the
product contains more than 15 digits after shifting occurs, the excess number of digits are lost and the
overflow flag is set. The flag is reset otherwise. (In the event of an overflow there is not an indication
light).

If the possibility of an overflow condition exists, the program should provide for interrogating the flag
to determine if a corrective routine should be employed.

The number of significant digits in the multiplier (memory location in the A field) determines the length
of time for the execution of the multiplication instruction. The number of digits in the multiplicand
(Accumulator) has no effect on the timing.

Example:

PARAMETER
FIELD
LEN- A — B c
LABEL OP. CODE GTH R =
LABEL INC/REL

16 |17 181920 |21 2223]24 25(26127 (28] 29(30(31}32(33{34 | 35|36 |37|38|39 (40 [41|42| 43 |44 |45 a6 |47

.« ' S PIR}‘!‘L@J Lo L L1
OP CODE A REMARKS
MUL PRICE Multiply Accumulator by PRICE

Revised 3-29-71 by
PCN 1045481-001 2.05.05 (Cont’d-1)

MULR

DIV

OP CODE A
MULTIPLY AND ROUND MULR LABEL

The MULR instruction is the same as the MUL instruction except that a 5 is added to the last digit
which was shifted off in the product. The product contained in the Accumulator is increased by 1
(decreased if —) if the last digit shifted off was greater than or equal to 5. If the shift register value is
zero, there will be no rounding.

OP CODE A
DIVIDE DIV LABEL

The DIV instruction divides the contents of the Accumulator by the contents of the memory location
specified in the A field. The quotient is placed in the Accumulator. After division has been carried out,
the number of decimal places specified in the shift register, any remainder is placed in working memory
(in the control area). (See REM instruction.)

Example:

PARAMETER
FIELD
A c
LEN- + OR - 2
H
LABEL oP. CODE | GT LABEL R aEL

16 |17 |18(19{20 |21 | 22| 23|24 | 25|26 |27 |28| 29|30|31| 32| 33(34 | 35(36|37|38{39 |40 (41[42} 43 |44 (45 146 |47]|48 149

L1 |0ZV | Tlﬁﬂﬁjll-y“ RN BNE IR

OP CODE A REMARKS
DIV TOTAL Divide Accumulator by TOTAL

Both the Dividend and the Divisor may contain up to 15 digits. If the signs of the operands are alike,
the sign of the quotient is positive (accumulator sign flag is reset +): if the signs are unlike, the sign of
the quotient is negative (accumulator sign flag is set —). The remainder is always positive.

Example 1:
OP CODE A

LSR 5

DIV 200
Accumulator (dividend) = 100
Memory location 200 (divisor) = 3
Multiply-Divide Shift Register = 5
Accumulator (quotient) = 3333333 = printed with decimal = 33.33333
Remainder = 1 printing of decimal provided by

print mask.

2.05.05 (Cont’d-2)

DIV

The division process treats the contents of the Accumulator and the specified memory location as whole
numbers, even though they may have “assumed” decimal points; for example: 6 A 25+ 5 5 00 produces
a quotient of 1 and a remainder of 125 if the shift register has a zero value:

Accumulator (dividend) = 625

Memory location 200 (divisor) = 500

Shift register = 0

Accumulator (quotient) = 1 = , could be printed as “1” or ““1.”. Since
Remainder = 125 it is in first digit position, any other

decimal places shown in printing would
require shifting it left such as to permit
“1.0000”

Thus, since division halts once the dividend can no longer be divided, the shift register must contain a
value equal to the number of decimal places desired beyond what the “whole numbers” themselves
would provide. In the above example, by giving the shift register a value of 4, the quotient reflects the
“assumed” decimal values:

Accumulator (dividend) = 625
Memory location 200 (divisor) = 500
Shift register = 4
Accumulator (quotient) = 12500 (printed with decimal = 1.2500)
Remainder = 0

The value to be loaded into the shift register can be determined in the following manner with a
knowledge of the “assumed” decimal places needed in the quotient as well as the dividend and divisor:

assumed decimal assumed decimal assumed decimal Value of
{ places in } PLUS { places in } LESS {places in } SHIFT

DIVISOR QUOTIENT DIVIDEND - REGISTER
Ex: 5 00 1 2500 6 5 25
2 + 4 2 = 4

If the quotient after final shift exceeds 15 digits, the overflow flag is set, otherwise the flag is reset. The
size of the quotient can be estimated and a prediction of possible overflow made if the following rule is
used:

“Add the MAXIMUM size DIVIDEND to the Value of the SHIFT REGISTER plus
1, subtract the MINIMUM size DIVISOR and that equals the MAXIMUM size
Quotient possible.”

The rule is in terms of the number of significant digits expected in each operand including intervening
and terminal zeros, and without regard to “assumed” decimal places.

Revised 3-29-71 by ,
PCN 1045481-001 2.05.05 (Cont’d-3)

SUA

SUK
Example 2:
Maximum size Value of Minimum size Maximum size
DIVIDEND + 1 + SHIFT REG. — DIVISOR = QUOTIENT

Ex: (9999) 2) (1) (999900)

4 + 1 + 2 — 1 = 6
Ex: (9999) 3) (100) (99990)

4 + 1 + 3 — 3 = 5

When an overflow occurs, the division is halted and the result in the Accumulator is meaningless
(reflects some stage of partial quotient development).

2.05.06 SUBTRACT INSTRUCTIONS

OPCODE A B
SUBTRACT FROM ACCUMULATOR SUA LABEL
SUBTRACT CONSTANT FROM ACCUMULATOR SUK 0-14 0-9

The SUA instruction provides for subtracting the contents of the memory location specified by the A

field from the contents of the Accumulator. The difference is placed in the Accumulator leaving
memory location A undisturbed.

The SUK instruction provides algebraic subtraction of the digit contained in the B field from the digit in
the Accumulator position stated in the A field with carries propagated in succeeding high order digits. (
The special (S), per thousand (M), and per hundred (C) flags are unconditionally reset.) The overflow
flag is set if an overflow occurs and reset if there is no overflow.

Example 1:
PARAMETER
FIELD
LEN- . + OR - . <
LABEL OP. CODE (?TH LABEL INC/REL
16 |17 (18(19]20121|22|23{24 | 25|26 |27 28] 29|30|31| 32| 33/34 35|36(37(38(|39{40 [41|42| 43 |44|45 l46 |47
lllllslulAII I‘nlE|ELA11 | 1ot [
OP CODE A B REMARKS
SUA AREA Subtract the contents of the memory location
called Area from the Accumulator.
Example 2:
PARAMETER
FIELD
LEN- . + OR - . <
LABEL OP. CODE GTH LABEL INC/REL

16 (1718|1920 (21| 22|23[24 | 25| 26|27 |28] 29|30 |31 32(33{34 | 35(36 |37|38(39 |40 41| 42| 43 |4a4|as la6 |47

L1 | SuK 1 1@ o R g

2.05.06

SUM

OP CODE A B REMARKS
SUK 0 2 Algebraic subtraction of the integer 2 from the O
digit position in the Accumulator
OP CODE _é_
SUBTRACT FROM MEMORY SUM LABEL

The SUM instruction provides for subtracting the contents of the Accumulator from the contents of the
memory location specified in the A parameter.

The difference is placed in the given memory location, leaving the Accumulator unchanged.

Example:
PARAMETER
FIELD

- A B8 c

LABEL OP. CODE GTH LABEL TNS?R;L
16 |17 (18 19(20 |21 |22]|23(24 [25| 26|27 |28} 29(30]31]{32{33(34[35|36(|37[38{33|40{41|42] 43 14445 46 |47
| T | $1u|H|] 1 A:‘.‘xﬂl | L1 | Lt | 1 4
OP CODE A_ B REMARKS
SUM AREA Subtract the contents of the Accumulator from

the memory location called Area.

Revised 3-29-71 by
PCN 1045481-001 2.05.06 (Cont’d)

TRA

TRM

2.06 - DATA MOVEMENT INSTRUCTIONS

2.06.01 TRANSFER INSTRUCTIONS

OP CODE A

TRANSFER TO THE ACCUMULATOR TRA LABEL
TRANSFER TO MEMORY TRM LABEL

The TRA instruction provides for transferring the contents of the memory location specified in the A
field to the Accumulator, keeping the contents of the memory location unchanged.

The TRM instruction provides for transferring the contents of the Accumulator to the memory location
specified by the A field. There is no change in the contents of the Accumulator.

Example 1:
PARAMETER
FIELD ’
LEN- . + OR— > <
LABEL OP. CODE GTH LABEL INC/REL
16 1711819120121]22]23|24 |25{ 26|27 (28| 29|30 (31| 32{33(34 (35|36 |37|38|39 (40 |a1| 42| 43 |44]|a5 as |a7
1111.1’.&&.“._4;2&“,..1 L1 L1
OP CODE A B REMARKS
TRA AREA Transfer the contents of memory location Area to
Accumulator. Memory location unchanged.
Example 2:
PARAMETER
FIELD
LEN- . + OR - . <
LABEL OP. CODE GTH LABEL INC/REL
116 {17 [18|19|20 121 |22]23|24 |25{26(27 |28/ 29|30|31|32{33]3435|36{37|38(39 (40|41{42] 43 |44{45 a6
11111T|R|M(| |A|g|£|‘|1 | N J ||
N VO Y T (S T T N T T T N T Y A O L1]
OP CODE A B REMARKS
TRM AREA

Transfer the contents of Accumulator to memory
location addressed by label area.

2.06.01

REM

SLRO

OP CODE
TRANSFER REMAINDER TO ACCUMULATOR REM

The REM instruction transfers the remainder of a division operation to the Accumulator from the
control area. The transfer will reset all Accumulator flags.

Example:
PARAMETER
FIELD
LEn- > + OR 2 <
GTH . .
LABEL OP. CODE LABEL INC/REL

16 {17 [18{19{20|21]|22{23|24 |25] 26|27 (28] 29|30 313233134 (35|36137|38|39 |40 |41|42| 43 4445146

lllllR_lgL"Jl | I AN N TR N Y Y B | L1 1 [

[T 1N N (N N O N N O T T S N T S A A 1]
2.06.02 SHIFT ACCUMULATOR INSTRUCTIONS

OP CODE A B

SHIFT OFF SLRO 0-14 0-14

The SLRO instruction first causes the 15 digits of the Accumulator to be shifted left the number of

positions specified by the A field. Any non-zero digits shifted off causes the overflow flag to be set. If
the digits shifted off are zero, the flag is reset.

The 15 Accumulator digit positions are then shifted right the number of positions specified by the B

field. Any non-zero digit shifted off does not set the overflow flag. Rounding is not performed. The
shifted off digits are lost.

Example:

The Accumulator contains

15114113]|12(11]10}9 |8 |7 |6 |5]4]3|2|1]0|ACCUMULATOR DIGIT POSITION

1121314561718 19]8|7]6}15]14}]3 VALUE
l-—Flag Position

Examine the results when we execute the following instruction:

PARAMETER
FIELD
o : + OR . :
H | -
LABEL OP. CODE | GT LABEL INC/REL

16 |17 {18| 19|20 |21 |22]23|24 |25{ 26{27|28| 29|30|31| 32| 33(34 | 35|36 |37(38|39 |40 {41|42] 43 |44 (45 @6 |47

IIIIISILIRIQlSlLl|||1|b||| S

OP CODE A B

SLRO 5 6

Revised 3-29-71 by
PCN 1045481-001 2.06.02

SLROS

After the 5 in the A parameter is executed the Accumulator contains

1514113 112|11|10}9 |8 |7 |6 |5 |4 |3]2|1|0|ACCUMULATOR DIGIT POSITION

617]1819]|8|7|6|5|4]3|0]J0o}o]oOo}]oO VALUE

L

Flag Position

The overflow flag is set.

Then the contents are shifted right

15114113 |12|11]10)9 |8 |7 |6 |5]|4 |3 |2 |1 |0|ACCUMULATOR DIGIT POSITION

0OjoJojJojJofjole6|7]|8|9|8|7]l6]|5]|4 VALUE
l_ Flag Position
OPCODE A B
SHIFT OFF WITH SIGN SLROS 0-15 0-15

The SLROS instruction is the same as the SLRO instruction except that the sign position is also shifted.

This instruction may be used to shift alpha information.

2.06.02 (Cont’d)

CHG

LOD
2.07 — FLAG INSTRUCTIONS
2.07.01 CHANGE FLAGS INSTRUCTION
OP CODE A B
CHG AKX 1234
YRP -SCM

The CHG instruction reverses the condition (set or reset) of selected flags of any one flag group. A set
flag is reset, a reset flag is set.

The flag group is designated in the A field and represented as:
DESIGNATION FLAG GROUP

Accumulator Flags (—, S, C, M)

Operation Control Key Flags (1, 2, 3, 4)
General Purpose Flags (1, 2, 3, 4)

General Purpose Flags (1, 2, 3, 4)

Reader (Paper Tape or Card) Flags (1, 2, 3, 4)
Punch (Paper Tape or Card) Flags (1, 2, 3, 4)

o R < KR

The flags to be changed are represented as symbols or numbers in the B field. Any or all of the four
flags of a flag group may be changed; all other flags in the group not changed are left unaltered.

Example:

PARAMETER
FIELD
A
- LEN- T on B c
H . -
LABEL OP. CODE GT| LABEL INC/REL

16 {17 [18]19]20121]22|23|24 {25| 26127 |28| 29|30 |31| 32(33{34 |35|36|37|38|39 |40 {4142 43 44|45 46 (47

lllll'é_dgll lkllllllll'lz_l;l I 11

2.07.02 LOAD FLAGS INSTRUCTION

OP CODE A B
LOD AKX 1234
YRP -SCM

The LOD instruction provides for setting selected flags of any one flag group. The A field designates the
flag group to be set (refer to CHG instruction). The flags to be set are designated by numbers or
symbols in the B field. Any or all of the four flags in a group may be set. All other flags in the group
not set, are reset.

Revised 3-29-71 by
PCN 1045481-001 2.07.02

RST

SET
Example:
PARAMETER
FIELD
e A e B c
LABEL OP. CODE GTH LABEL INC/REL
16 |17 |18 192021 2223|124 |125|26127[28|29130]31132|33{34{35{36[37|138|39|40(41|42| 43 {4445 }46 |47
_lIIIl‘DlQDIl IXIILLI |1|Z|31L. 1
OP CODE A B REMARKS
LOD X 2,3 General purpose (group X) flags 2,3 are set, the

other X flags are reset.

2.07.03 RESET FLAGS INSTRUCTION

OP CODE A B
RST AKX 1234
YRP -SCM

An RST instruction resets selected flags of any one flag group. The flag group is designated in the A
field. (See CHG instructions for flag group designation.) The flags to be reset are specified by numbers

or symbols in the B field. Any or all of the four flags may be reset. All other flags not reset are left
unaltered.

Example:
PARAMETER

FIELD

LEN- 2 + OR — 2 =

LABEL OP. CODE GTH LABEL INC/REL
16 |17 [18|19(20 |21 | 22| 23|24 |25|26{27]28| 29(30|31}32|33|34 |35(36|37|38(39 |40 (41|42| 43 (4445 W6 (47
||111R15|r|1 V(AL IR I b BN O |
OP CODE A B REMARKS
RST A — The “minus™ flag of the Accumulator flag group

is reset. ALL others are left unaltered.

2.07.04 SET FLAGS INSTRUCTIONS

OP_CODE A B
SET AKX 1234
YRP -SCM

The SET instructions sets selected flags of any one flag group. The flag group is designated in the A
field. (Ref. to CHG instruction for flag group and designation.) The flags to be set are designated by
number or symbols in the B field. Any or all of the four flags of a group may be set. All other flags in
the group not set, are left unaltered.

2.07.03

SET

Example:
PARAMETER
FIELD
LEN- . ¥ OR - > <
LABEL OP. CODE GTH LABEL INC/REL
16 |17 18] 19|20 |21 | 22| 23|24 |25| 26|27 |28 20|30 |31| 32| 33|34 | 35| 36| 37| 38|39 |40 |4 1| 42| a3 [aa[a5 a6 |a7
I N | |§|r|1>|KI|11111|3411 |
OP CODE A B REMARKS
SET K 3

The OCK flag 3 is set, other flags are unaltered

Revised 3-29-71 by
PCN 1045481-001 2.07.04

LIR
ADIR
DIR

2.08 - INDEX REGISTER INSTRUCTIONS

2.08.01 LOAD INDEX REGISTER INSTRUCTION

OP CODE A B
LIR 1-4 0-255

The LIR instruction loads the value contained in the B field into the index register indicated in the A

parameter (1, 2, 3 or 4). The B parameter can be any positive value from O to 255. The prior contents
of the index register are destroyed.

2.08.02 ADD TO INDEX REGISTER INSTRUCTION

OPCODE A B

ADIR 1-4 0-255

The number contained in the B field is added to the contents of the index register (1, 2, 3 or 4)
indicated by the A parameter. The B field contents and the index register contents are always positive.
If the sum of the index register contents and the B field number equal 256, the register is reset to 0. If
the sum is greater than 256, only the overflow is retained in the index register. In both cases, the
overflow causes the Index Register Flag to be set. If the sum is less than 256, the flag is reset.

Example: Index Register 1 contains 225.

PARAMETER
FIELD
A B
LEN- + OR — =
W
LABEL OP. CODE | GT LABEL o aEL

16 {17 (1811920 |21 |22|23|24 |25|26|27{28| 29|30131{32|33{34|35|36{37|38|39 |40 {41{42| 43 {4445 [46(47

lllllvhlblrlkl 1'11111.|1|31511 I -

OP CODE A

|m

ADIR - 1 35

After execution of the above command, the contents of Index Register 1 is equal to 4 (225 + 35 —
256 = 4). The Index Register Flag is set.

2.08.03 DECREMENT INDEX REGISTER INSTRUCTION

OPCODE A B

DECREMENT INDEX REGISTER DIR 1-4 0-255

The DIR instruction decreases by 1, the contents of the index register designated by the A field. If the
2.08.01

IR

TAIR

index register contains 0, a decrement causes the value 255 to be entered into the register. The B field
designates a value which is compared to the contents of the index register.

If the contents of the index register, designated by the A field, is equal to the value of the B field
before decrementing is effected, the Index Register Flag is set after execution. If an unequal condition
exists, the flag is reset after execution. Thus, if the flag is set during one decrementing, it will be reset
during the next. For that reason, it becomes necessary to test this flag after each decrementing.

The value of the B field does not halt decrementing or turn the register back to 0, once decrementing
has reached that limit.

2.08.04 INCREMENT INDEX REGISTER INSTRUCTION

OP CODE A B
IIR 1-4 0-255

The IIR instruction increases by 1, the contents of the index register denoted by the A field. If the
index register contains 255, incrementing causes the register to become 0. The B field designates a value
which is compared to the contents of the index register.

The Index Register Flag is set and reset as in the DIR instruction.

Example: Use of Index Registers to terminate a loop (see SK instruction).

LABEL OP CODE A B C
LIR 2 0

BEGIN MOD 2
TRA TABLE
IIR 2 9
SK T I 1
BRU BEGIN

2.08.05 TRANSFER ACCUMULATOR CONTENTS TO INDEX REGISTER

OP CODE A

TRANSFER ACCUMULATOR TO INDEX REGISTER TAIR 1-4

The TAIR instruction transfers the contents of the Accumulator to the register indicated by the A field.
The prior contents of that index register are destroyed. The value of the Accumulator is treated as an
absolute number, regardless of any “assumed” decimal places during entry in the Accumulator, and
regardless of the setting of the Sign Flag.

Revised 3-29-71 by
PCN 1045481-001 2.08.05

MOD

Since an index register has a capacity of 255, an Accumulator value greater than 255 that is transferred
to an index register will be accepted as that amount that exceeds the nearest multiple of 256 (maximum
of 1024).

Example:
If the Accumulator contains 258, then 2 is transferred (258 — 256 = 2).
If the Accumulator contains 525, then 13 is transferred (525 — (2 x 256)) = 13).
2.08.06 MODIFY BY INDEX REGISTER INSTRUCTION
OP CODE A

MOD 1-4

The MOD instruction provides for adding the value in the index register designated by the A field to the
parameter (or parameters) of the next instruction in program sequence following the MOD instruction.
The instruction following MOD is then executed in accordance with the combined parameter values.

The MOD instruction does not change the instruction stored in memory. Modification occurs during the
execution of the instruction, as the parameter is extracted from the instruction and placed in a special
register. The MOD instruction affects the execution of only the one instruction immediately following.

Example: 1
PARAMETER
FIELD
LEN- . + OR — > .
SEQUENCE LABEL OP. CODE | GTH LABEL INC/REL

11112[13[14| 15|16 {17 {18[19]20 (21| 22| 23|24 |25]26|27|28| 29|30|31| 32| 33[34|35|36|37|38|39 {40 |41}42| 43 |44 45 [46 |47

IIOIII 11111"L¢’ll l'lllll (| L 1! P41
|1O|2. lllllpl¢$|| l7ll|llvlll Lot Lt |

Assume Index Register Number 1 contains 50

OP CODE A
MOD 1
POS 7

The index register value of 50 combined with the value of the A parameter for the POS instruction
causes the printer to position to 57 (7 + 50).

Although the MOD instruction is most generally used to modify those instructions which address word
locations in memory, it may also be used to modify the parameters of most other instructions. The

2.08.06

MOD

contents of the index register are added to the parameter field to modulo 256. Modulo 256 means that
if the index register (maximum capacity of 256) when added to the parameter field (also a maximum
capacity of 256 in machine language), exceeds 256, a “carry” of 1 is generated and the excess value
starts back to O. »

Example: 2

An index register with a value of 150, when added to an AL 200, generates a “carry” of 1 and a
remaining parameter of 94 (350 — 256 = 94). The carry is propagated to machine language operation
code. Because of this, caution must be used in modifying most instructions since a “‘carry” may
improperly modify the Op Code. '

Different types of instructions will have the A parameter, or the B parameter, or both the A and B
parameters modified. Some instructions cannot be modified.

The contents of the index register specified by the MOD instruction are added to the A parameter. If
the combined value exceeds the range shown for each instruction parameter, either a “carry” will
generate a new instruction, or the instruction will otherwise be improperly modified:

Revised 3-29-71 by
PCN 1045481-001 2.08.06 (Cont’d-1)

MOD
TABLE

Instructions in which only the A parameter is modifiable.

OP CODE A OP CODE A
ADA LABEL* LRLR 0-255
ADM LABEL* LSR 0-15

AL 0-255
ALR 0-255 MUL LABEL*
ALTO 0-255 MULR LABEL*
AR 0-255 oC 0-255
ARTO 0-255 PA LABEL*
BRU LABEL* PAB 0-150
CLM LABEL* PBA 1-16
CPA LABEL* POS 1-150
DIV LABEL* RCP 1-255
DUP 1-80 REAM 0-150
EAM 0-150 RTK 0-150
IRCP 0-255 RTKM 0-150
LCD 0-255 RXEAM 0-150
LCFR LABEL* RXTK 0-150
LKBR LABEL* RXTKM 0-150
LLCR 0-255 SCP 1-255
LLLR 0-255 SKP 1-80
LPKR LABEL* SRJ LABEL*
LPNR LABEL* SRR 1-4
LRBR LABEL*
LRCR 0-255

OP CODE

SUA
SUM

TAIR
TK

TKM
TRA
TRAB
TRB
TRBA
TRCA
TRCM
TRF
TRM
TSB
XA
XB
XBA
XEAM
XMOD
XPA
XPBA
XTK
XTKM

*The memory address referenced by the LABEL will be incremented by the value of the index register.

A

LABEL*
LABEL*

1-4
0-150

0-150
LABEL*
0-15
1-15
0-16
1-16
1-16
0-255
LABEL*
1-15
LABEL*
0-255
1-16
0-150

LABEL*
1-16
0-150
0-150

In the following instructions, only the B parameter field is modified; other parameter fields are
unmodified. The contents of the index register is added to the B parameter of the instruction._ If the
combined value exceeds 255, either a “carry” will create a different instruction, or the instruction will

otherwise be improperly modified.

TABLE
Instructions in which only the B parameter can be modified.
OP CODE A
ADIR 1-4
DIR 1-4
IIR 14
LIR 1-4

|w

0-255
0-255
0-255
0-255

2.08.06 (Cont’d-2)

MOD

A. ONE PARAMETER CAN SPECIFY ONE OR MORE ITEMS. For some instructions the A and B
parameters represent a binary pattern to the machine. The PKA, PKB instructions as well as the LOD,
SET, RST and CHG flag instructions are programed by listing the digits 1-8 (in the case of the PK
instructions) and 1-4 (in the case of the flag instructions) in the A, B or A and B parameters for the
desired pattern.

The EX, EXE, SK and SKE instructions are programed by listing the digits 1-4 in the B parameter to
designate the particular flag pattern desired.

To modify this binary pattern, it is necessary to find the decimal equivalent of the pattern desired and
add it to the Index Register used in the MOD instruction. The value table below may be used to
determine the number necessary to obtain the desired pattern.

TABLE
Value Table
Decimal Equivalent
No. in A, B or PKA Flag Instructions
A & B Fields PKB
A & B field | B field only A field
1 1 2 Punch = 0
2 2 4 Read = 16
3 4 8 X = 64
4 8 1 Y = 80
5 16 T = 128
6 32 K = 144
7 64 A = 192
8 128

For PK’s, add together all of the equivalent values for the PK’s specified in the A field, to determine the
total value which must be loaded in the index register.

For Flag instructions (Set/Reset and Skip/Execute), add together the equivalent values for the flags
specified in the B parameter. If the flag group is also to be modified, add its value to the total value for
the individual flags, and the resulting sum is the value to be loaded in the index register.

To modify these instructions it is essential to originate them with O in the parameter fields and the
desired pattern in the index register.

If these instructions are originated with some significant value in the parameter fields, an attempt to
modify the parameters can propagate a carry which will be added to the Op Code, changing it to
another Op Code.

Revised 3-29-71 by
PCN 1045481-001 2.08.06 (Cont’d-3)

MOD

TABLE
Instructions in which A and B parameters can be modified.
ONE PARAMETER CAN SPECIFY ONE OR MORE ITEMS.
OP CODE _A_ B 2
PKA 12345678
PKB 12345678
LOD AKX 1234
YRP
SET AKX 1234
YRP
RST AKX 1234
YRP
CHG AKX 1234
YRP
EX ATKX 1234 1-4
YRP
EXE ATKX 1-4
SK ATKX 1234 1-4
YRP
SKE ATKX 1234 1-4
YRP

B. EACH PARAMETER CAN SPECIFY ONLY ONE ITEM. In these instructions, either or both, the A
or B parameter can be modified. The C parameter, if one exists, is not modified. The A and B
parameters combined cannot exceed 256. The sixteen possibilities in the B parameter requires a value
from O to 15 in the index register for modification. The sixteen possibilities in the A parameter field
require a value expressed in multiples of 16 (reflecting the digit position value of the A parameter in the
instruction format).

The following table illustrates the proper values to be loaded in the index register to achieve the desired
values for the A and B parameters.

2.08.06 (Cont’d-4)

MOD

TABLE FOR VALUES

e n 1
m p
Number desired Value to be Number desired , Value to be
in A field contained in in B field contained in
Index Reg. Index Reg.
0 0 0 0
1 16 1 1
2 32 2 2
3 48 3 3
4 64 4 4
5 80 5 S
6 96 6 6
7 112 7 7
8 128 8 8
9 144 9 9
10 160 10 10
11 176 11 11
12 192 12 12
13 208 13 13
14 224 14 14
15 240 15 15
“m” + “n” = total value to be contained in register.

Example: Modify NK O O to provide 8 whole numbers and 3 decimal fractions:

Parameters required: Index Register value required:
A=28 = 128
B=3 = 3

131 (total value)

Thus: LIR | 131
MOD 1
NK 0 0

The index register value of 131 modifies the NK instruction to permit 8 whole numbers and
3 fractions.

Any time that the modification of the B parameter results in a carry (exceeds 15), the carry will add to
the A parameter changing its specification. A carry resulting from modification of the A parameter
(exceeds 255) will add to the Op Code causing an improper modification.

Revised 3-29-71 by
PCN 1045481-001 2.08.06 (Cont’d-5)

MOD

EACH PARAMETER CAN SPECIFY ONLY ONE ITEM
OP CODE A _B_ 2 OP CODE A E
ADK 0-14 0-9 PN 0-14 0-15
CLA 0-15 0-9 PNS+ 0-14 0-15
EXL 0-15 0-15 1-4 PNS— 0-14 0-15
INK 0-14 0-9 TRCB 0-15 0-15
NK 0-15 0-15 XC 0-15 0-15
NKCM 0-15 0-15 XN 0-14 0-15
NKR 0-15 0-15 XPN 0-14 0-15
NKRCM 0-15 0-15 XPNS+ 0-14 0-15
SKL 0-15 0-15 1-4 XPNS— 0-14 0-15
SLRO 0-14 0-14
SLROS 0-15 0-15
SUK 0-14 0-9
RNK 0-15 0-15
The following instructions cannot be modified:
TABLE
Instructions which are not modifiable.
OP CODE _A_ OP CODE A » OP CODE _A_
ALARM LSN RPR
ALTP LTN RR
CC LXC 1 RRA
EXZ 1-4 NOP RSA
LPF RCD RSN
LPR REL RTH
LRA REM RTN
LSA RPF SKZ 1-4
STOP

The character in the A parameter of a PC instruction may be modified to obtain a different character.
The MOD instruction will add the contents of the index register to the internal code of the character in
the A parameter of the PC instruction.

2.08.06 (Cont’d-6)

MOD

Example:
PARAMETER
FIELD
LEN- 2 + OR — = <
LABEL OP. CODE GTH LABEL INC/REL
16 [17|18{19(20 |21 |22]23|24 25126127 (28| 29(30(31] 32| 33|34 35/3637|38{39 |40 (41|42| 43 {44 |45 46 |a7
l||l|mlllllllllll[[N L1 1
||1|1Pﬁ1111“11411111A|11 1|
OP CODE A
MOD 1
PC A

If PC A (A = index value of 65) is to be modified to print M (M = index value of 77), a value of 12

(77-65 = 12) is loaded into the index register #1. Index values are contained in Appendix D. The above
remarks also apply to PC+, PC— and PCP.

A MOD instruction may be used to modify another modify instruction with the same or different index
register. The total amount of modification equals the sum of the MOD instructions, and should not

exceed 255. When the total exceeds 255, only the difference between the total and 255 remains in the
index register.

Revised 3-29-71 by ,
PCe‘I'\I 1045481001 2.08.06 (Cont’d-7)

BRU

2.09 — BRANCH AND DECISION INSTRUCTIONS

2.09.01 BRANCH UNCONDITIONAL INSTRUCTION

OP CODE A +/— REL
BRU LABEL + N

The BRU instruction provides the ability to branch unconditionally to a different segment of the
program. This instruction does not automatically provide for return to the branched from segment of
the program.

The A parameter contains the label which identifies the memory address to where the program will
branch. The A parameter can be incremented by an integer (N, positive or negative) located in the +/-
REL field. A + increment without a label will branch the program to either an instruction further ahead
(+) or one behind(-) the current (BRU) instruction.

Example:
PARAMETER
FIELD
LEN- A o B C
H
LABEL OP. CODE GTl LABEL INC/REL

16 |17 |18|19{20|21 22| 23|24 [25|26|27(28{ 29|30 |31{32|33[34 |35{36|37(|38{39 |40 |41(42| 43 {44 |45 46 |47|48

lllll_S_J_glrll lellll Illzlll

Lt A R e
Lo 1BRY L ISHIPT@ . 1 | 1,

| T . IIZII IS N NN N VNN O WU N NN TN SO SR O M

Js 1H1£P11'1¢|BQ$. 1 1 NHIAIDI-IP L1 |
I I | TT“ L1 | 31 'J L1 | 1 1 1 |
[I nlLl | | ,1 [B [1|

When the BRU instruction is executed program execution continues with the Op Code contained in the
memory location referenced by the label. In this case the label is SHIPTO and the Op Code is POS.

2.09.01

SRJ

SRR
2.09.02 SUBROUTINE JUMP AND RETURN INSTRUCTIONS
OP CODE A +/— INC
SUBROUTINE JUMP SRJ LABEL +N

SUBROUTINE RETURN SRR 1-4

The SRJ and SRR instruction facilitate branching to, and returning from a subroutine. The A parameter
of the SRJ instruction contains the label of the memory location to where the jump will occur.

The SRJ and SRR instructions utilize the Subroutine Return Stack which appears thusly:

LOCATION ADDRESS
1 MEMORY LOCATION
2 MEMORY LOCATION
3 MEMORY LOCATION
4 MEMORY LOCATION

This example illustrates the use of these instructions and explains the A parameter of the SRR
instruction.

WORD/SYLLABLE LABEL OP CODE A E REMARKS

25 0 NKR 10 4 Allow Numeric Entry.
1 AL 1 Advance 1 line.
2 POS 63 Position to print.
g SRJ I;RNC SRJ to print.

48 0 PRNC PlzIS— 14 0
1 PC— —
2 PC+ +
3 SRJ TKMAD
3 3 3

50 0 TKMAD POS 95 Positions for type.
1 TK 31 . Type 31 characters.
2 SRR 1 Subroutine return.
3

When the SRJ instruction in word 25 syllable 3 is executed, the program counter is increased by 1
syllable. The new program counter content, word 26 syllable O is stored in Subroutine Return Stack
location 1. The value of the A parameter in the SRJ instruction is inserted in the program, execution
now begins at word 48, syllable 0. The Subroutine Return Stack would appear:

Revised 3-29-71 by
PCN 1045481-001 2.09.02

SRJ

SRR
LOCATION ADDRESS
1 26 0
2 UNKNOWN-1
3 UNKNOWN-2
4 UNKNOWN-3

When the SRJ instruction in word 48, syllable 3 is reached, the contents of the Return Stack are shifted
down 1 location. The memory address in location 4 is lost. Execution continues in word 50 syllable 0.
The stack now contains:

LOCATION ADDRESS
1 49 0
2 26 0
3 UNKNOWN-1
4 UNKNOWN-2

If the process is repeated 5 times, the original address entered (word 25 syllable 3) is lost from program
control. Each additional repetition loses another memory address. It is recommended to limit the nesting
of subroutines to 4.

The execution of the SRR instruction in word 50 syllable 2 will cause the program counter to be loaded
with a value from the Subroutine Return Stack. The value loaded is a function of the A parameter for
the SRR instruction.

If the A value is 1, the memory address in location 1 is inserted in the program counter. A value of 2

would select location 2. A value of 3 would select location 3. A value of 4 would select the fourth
location.

Since in our example we have a value of 1, word 49, syllable O is inserted into the program counter.
Program execution begins with that value. The Return Stack would appear:

LOCATION ADDRESS
1 26 0
2 UNKNOWN-1
3 UNKNOWN-2
4 UNKNOWN-4

If the A value had been 2, word 26, syllable 0 would have been inserted in the program counter. All

addresses with location numbers less than the selected location are lost. The remaining values are pushed
to the top of the stack.

2.09.02 (Cont’d)

CPA

In this case the Subroutine Return Stack would appear:

LOCATION ADDRESS
1 UNKNOWN-1
2 UNKNOWN-2
3 UNKNOWN-4
4 UNKNOWN-5

Program execution begins at word 26, syllable 0.

2.09.03 COMPARE ALPHANUMERIC INSTRUCTION

OP CODE A
SKIP AND EXECUTE INSTRUCTIONS CPA LABEL

The CPA instruction compares the contents of the memory word, referenced by the label contained in
the “A” field, to the contents of the Accumulator. The outcome:

1. Execute the next instruction if contents are equal.

2. Execute second if memory word content is less than Accumulator content. Skip the first in
sequence and begin execution.

3. If memory location content is greater than the Accumulator content, skip the first two in
sequence and execute the third.

Refer to Appendix for collating sequence of character set.

Example:
PARAMETER
FIELD
i : + OR . =
. GTH -
LABEL OP. CODE LABEL INC/REL

16 117 |18|19120 121|221 23]24 |25|26{27 |28/ 29|30 |31| 32| 33|34 | 35|36 |37| 38|39 [40|a1] 42| 43 |aa|a5 a6 |47

ﬂ‘llAlx 1 | ﬁ%s 11] 4] I S L1 1 ol Ll 111

N N T I IPIAI 1] TlﬁéLrll 11 1 Lt | |
[I | v PI |] | T N | I L1 | [
L] Blklul T AR - SR < L1
I S T | U|] 1 RN & SO 13 11| -
[T I ALanlM | 1

[
L1 1 |BRY | MAX L1

This routine will allow the operator to index a value less than the value contained in the memory
location TEST.

Revised 3-29-71 by
PCN 1045481-001 2.09.03

EXZ
SKZ

2.09.04 ACCUMULATOR SKIP AND EXECUTE INSTRUCTIONS

OP CODE A
EXECUTE IF ACCUMULATOR ZERO EXZ 1-4

If the content of the Accumulator is zero, the EXZ instruction will cause the number of instructions in
the “A” field to be executed. If it is not zero, the next “A’’ instructions will be skipped.

OP CODE A
SKIP IF ACCUMULATOR ZERO SKZ 1-4

The SKZ instruction will cause the next 1-4 instructions (as specified in the “A” field) to be skipped
when the Accumulator content is zero. Otherwise, the next instruction is executed.

Example: 1 Routine to enforce a non-zero keyboard listing

PARAMETER
FIELD
e : + OR . <
GTH -
LABEL OP. CODE LABEL INC/ REL

16 (17181920121 |22{23{24 |25|26|27 (28] 29|30 |31 32| 33|34 |35|36(37(38|39 (40 [41|42] 43 |44}45 46 |47

v [L1 1 1 51 T Lol ’1 | L1
"llllllglxllxx I L TR NN B AR O AR L1l
I O T B E&x\) L1] “Jv lMﬂ I lc L1 | L1l
I | lPlM‘n'l 1 SI I | 1 1’ o . _ L4

LABEL OP CODE A B REMARKS
NUMRIC NK 5 1 Enable numeric keyboard.
EXZ 1 Execute 1 instruction if
Accumulator zero.
BRU NUMERIC Branch to numeric keyboard.
PNS- 5 0 Print shift ribbon (-).

If an OCK is depressed without a numeric keyboard entry, the Accumulator contains zero. In the above
example, whenever the Accumulator contains zero the BRU instruction is executed and the program
branches to the NK command. This occurs until a numeric keyboard listing is made and the
Accumulator is not zero; the BRU instruction is then skipped.

2.09.04

EXL
SKL
EX

Example 2: Do not print if the Accumulator is zero.

PARAMETER

FIELD
A B
LEN- + OR =
GTH . -
LABEL OP. CODE LABEL INC, REL

116 [17118{19/20]21|22|23]24 |25|26|27 |28 30311321 33|34{35(36{37(38(39 (40 |41{42] 43 |44|45 46 147

lllllr&nll lAlRJElﬂIJ i1 1 11| | -

lllllSlnall l,llllllll L1 | 1 ¢
L1 SRT |_P1¢JMr| N B L1

OP CODE i_ B REMARKS
TRA AREA Transfer to Accumulator.
SKZ 1 Skip 1 instruction if zero.
SRJ PRINT Branch to print routine.
OPCODE A B c
EXECUTE IF DIGIT LESS THAN CONSTANT EXL 0-15 0-15 1-4

The EXL instruction causes the next instruction to be executed if the digit in the Accumulator digit
position specified in the “A” field is less than the constant contained in the “B” field, otherwise the

next “C” are skipped. The Accumulator is undisturbed.

OPCODE A B c
SKIP IF DIGIT LESS THAN CONSTANT SKL 0-15 0-15 1-4

The SKL instruction causes the next 14 instructions (as specified by -the “C” field) to be skipped if the
digit in the Accumulator digit position specified in the ‘A’ parameter is less than -the constant
contained in the “B’’ field. Otherwise, the next instruction is executed. The Accumulator is undisturbed.

2.09.05 FLAG EXECUTE AND SKIP INSTRUCTIONS

OP CODE A B c

EXECUTE IF ANY FLAG EX ATK OLIU 1-4
XYRP 1234
LBDS —-SCM
VW WRF

Revised 3-29-71_ by
PCN 1045481-001 2.09.05

EX

The EX instruction causes the next instruction in sequence to be executed if any of the flags specified
in the “B” field (of the flag group designated in “A” field) are set. Otherwise, the next “C” instructions
are skipped. (See SKE instruction for flags and flag groups.)

Example 1: Use of OCK to choose alternate branch of program

PARAMETER
FIELD A 5 c
LEN- + OR —
H
LABEL OP. CODE GT LLABEL INC/REL

16 (1718|1920 |21 |22|23|24 |25|26]|27|28| 29|30|31|32|33[34 |35|36|37|38|39 |40 |41}42| 43 [444S |46

|||||LKBIR1 JTI"jPLEli IR | P

Ll kM 28 L
Ll L ER LK b A
L1 BRY | S TART | L | L
I | 1?1A1 1| ! 1rfﬂllﬁﬁ] Pl L1 [
OP CODE A E E_ REMARKS
LKBR TYPE Load Base Register.
TKM 25 Type into memory.
EX K 12 1 Execute 1 if OCK 1, 2
BRU START Branch
PA TYPE

In the above example the program will branch if OCK 1 or 2 was used. OCK 3 or 4 would cause a
print.

Example 2: Load the Shift Register with 2 if the C key is used and with 3 if the M key is used

PARAMETER
FIELD
el : + OR . <
: GTH . -
LABEL OP. CODE LABEL INC/REL

16 |17 (18(19{20|21|22|23|24 |25| 26|27 (28

| N S | LISIRI | |
L JBR |
L SR
{ Elxl L] |
[14 1 1 L_énk: I

B
<]

31132|33|3435{36|37{38|39 (40 }41|42| 43 44|45 46

> N > O

L

2.09.05 (Cont’d-1)

EXE

SK
OP CODE _A_ E _(i REMARKS
LSR 0
EX A C 1 Test if “C” key used.
LSR 2 Load shift register with 2.
EX A M 1 Test if “M” key used.
LSR 3 Load shift register with 3.
OP CODE A E _(i
EXECUTE IF EVERY FLAGS EXE ATK OLIU 1-4
XYRP 1234
LBDS -SCM
VW WRF

The EXE instruction causes the next instruction to be executed if all the flags specified in the “B” field
(of flag group designated by the “A’ field) are set. Otherwise, the next ““C” instructions are skipped.

PARAMETER
FIELD
A B c
LEN- + OR —
W
LABEL oP. CODE | GT LABEL o EL

16 |17 (18| 19{20121|22|23|24 |25|26 (27 |28/ 29|30|31(32| 33|34 |35|36|37{38|39 |40 {41|42| 43 |44 45 46’

|l|l|~lK|_‘_|“ls||1||1112111 [
lllllmHJAll;tlLLl M 2]

Lo JACARM 11
llIllBl“‘ull |||||1‘|;13||| P

If the operator indexes both C and M keys, the alarm will sound.

OP CODE A B c

SKIP IF ANY FLAGS SK ATK OLIU 1-4
XYRP 1234
LBDS -SCM
VW WRF

The SK instruction causes the next “C” instructions (1-4) to be skipped if any of the flags specified in
the “B” field, (flag group specified in “A” field) are set. Otherwise, the next instruction is executed.

Revised 3-29-71 by
PCN 1045481-001 2.09.05 (Cont’d-2)

Example: To terminate a loop

PARAMETER
FIELD A B C
LEN- + OR —
LABEL OP. CODE GTH LABEL INC/REL
16 {17|18|19]20 |21 |22|23]24 |25| 26|27 |28] 2913031} 32| 33|34 | 35{36|37|38{39 40 |41{42| 43 4445.4647
INUVMRZI C|LIR, | I L 1@ L1
|ll||~|K_{||12|||l||113L»| 1 14
|||||P|¢$1| YA N T e L1
NNER NI - IY SESE T S k- AT A B B L1
|1|||P1~||1 1q|||11 1||°||| I N
I I T | ;_I_lLRl] 1 'n 111 1 | % L1 1
IS 3 <A I A A I N I
L1 1 BRY, | NuMRTed |] L1
LABEL OP CODE ﬁ B C REMARKS
NUMRIC LIR 1 0 Load Index Register.
NK 2 3 Enable numeric keyboard.
POS 1 2 Position printer.
AL 3 Advance 3 lines.
PN 4 0
IIR 1 4 Increment Index Register.
SK T 1 1 Skip 1 instruction if T set.
BRU NUMRIC +1 Branch to NUMRIC plus 1.
OP CODE A B C
SKIP IF EVERY FLAGS SKE ATK OLIU 1-4
XYRP 1234
LBDS —SCM
VW WRF

The SKE instruction will cause the next “C” instructions to be skipped if all the flags specified in- the
“B” field (of the flag group specified) are set. Otherwise, the next instruction is executed.

2.09.05 (Cont’d-3)

The flags and flag groups are designed thusly:

1. ACCUMULATOR FLAGS 5. L FLAGS (SHIFT REG) 9. TEST FLAGS
— Sign 1 —0 Overflow
S Special L 2 T —| L Forms Limit
C Per Hundred 3 I Index Register
M Per Thousand 4 | U Unassigned
2. KEYBOARD BUFFER FLAGS 6. PUNCH FLAGS 10. TELLER LOCK FLAGS
2 KB Buffer Filled 1 Media Not Present "1 Teller 1
3 KB Buffer Empty P 2 Echo Check Vv 2 Teller 2
| 3 Tape Supply 3 Supervisor
_4 Punch Off 4 Not Used
3. DATA COMM FLAGS 7. READER FLAGS 11. PASSBOOK FLAGS
1 Received TR# Not 1 Reader Condition "1 Passbook Fold
p— Eaual Expected TR # Re—] 2 Message Received w—] 2 Last Print Line
2 Message Received 3 Transmit Ready 3 Not Used
| 3 Transmit Ready | 4 Invalid Code L4 First Print Line
4. OCK FLAGS 8. STRIPE LEDGER FLAG 12, GENERAL PURPOSE FLAGS
1 OCK -1 ® Not Used 1
K — 2 OCK -2 §—dy W Write Error X_1»2
3 OCK -3 R Read Error Y 3
| 4 OCK —- 4 | F Filled Sheet | 4

2.09.06 SKIP AND EXECUTE INSTRUCTIONS FOR THE TC 700

The lock flags and passbook signal flags may be interrogated using the SKIP and EXECUTE instructions

(see Subject 2.09.05). They cannot be referenced with the SET, RESET, LOAD or CHANGE macro
instructions.

Lock Flags (V flag group)

Three flags are provided which test the status of the Teller 1 lock, Teller 2 lock and Supervisor lock.
These are:

Flag V1 for the Teller 1 flag

Flag V2 for the Teller 2 flag

Flag V3 for the Supervisor Override Flag
Flag V4 is not used

When the Teller 1 key is inserted in its lock and turned, the Teller 1 flag will be set. When the key is
removed from its lock, the Teller 1 flag will be reset. The same applies to the Teller 2. key and the
Supervisor key.

INSTRUCTION OP CODE A B c
Skip if any flags SK A" 123 1-4
Skip if every flag SKE A" 123 1-4
Execute if any flags EX \"/ 123 1-4
Execute if every flag EXE \" 123 1-4

Revised 3-29-71 by
PCN 1045481-001 2.09.06

Passbook Signal Flags (W flag group)
Three flags test the sensors in the passbook alignment area. These are:
Flag W4 for 1st Print Line
Flag W1 for Passbook Fold
Flag W2 for Last Line
Flag W3 not used

When the Passbook is inserted to the fixed rear limit, the 1st Print Line Flag will be set. It will be reset
at all other times. When the Passbook is so situated in the alignment area that the current print line will
fall within the passbook fold area, the Passbook Fold Flag will be set. It will be reset when this
condition does not exist.

When the Passbook is so aligned that the current print line is below the last printing line of the
Passbook, the last Print Line Flag will be set. It will be reset when the passbook is aligned to any of the
actual printing lines of the book.

A separate Passbook Present Flag does not exist. This condition can be determined by testing for the
NOT SET condition of the Last Line Flag. This result occurs because if a passbook is present in the
alignment mechanism and is aligned to any of the possible posting lines of the passbook, the Last Line
Flag will be reset. The flag will be set if the passbook is aligned to the line below the last print line or if
there is no passbook in the mechanism at all.

INSTRUCTION OP CODE A B C
Skip if any flags SK W 124 1-4
Skip if every flag SKE W 124 1-4
Execute if any flag EX w 124 1-4
Execute if every flag EXE \' 124 14

Machine language code for V and W flag groups.
Reference the appropriate SKIP or EXECUTE instruction in Appendix B.
Use the weights:

Parameter upper position:

V flags use E
W flags use F
Parameter lower position:
FLAG WEIGHT
W1 or V1 2
W2 or V2 4
W3 or V3 8
W4 or V4 1

2.09.06 Cont’d)

ALARM
NOP

2.10 — MISCELLANEOUS INSTRUCTIONS

2.10.01 ALARM INSTRUCTION
OP CODE
ALARM
The ALARM instruction will sound the Error Alarm once. The system does not go into the error state.

Example: Notify operator an error has been made. See the EXE instruction.
2.10.02 NO OPERATION INSTRUCTION

OP CODE

NOP

The NOP instruction performs no operation, but 10 milliseconds are expended when this instruction is

used. Program execution continues, sequentially, uninterrupted. The NOP instruction is particularly
useful in building the PK table and in conjunction with the CPA instruction.

Example: Use only PKA 4, 6 and 8.

LABEL OP CODE A

PKEYS NOP
NOP
NOP .
BRU TOTAL
NOP
BRU SUBTTL
NOP
BRU START

Example: If the contents of memory word TOTAL are equal to or less than the contents of the
Accumulator, branch to START. If the contents are greater, go to error.

LABEL OP CODE A
CPA TOTAL
NOP
BRU START
BRU ERROR

Revised 3-29-71 by]
PCN 1045481-001 2.10.02

sTOP
OFF

2.10.03 STOP PROGRAM INSTRUCTION
OP CODE
STOP

The STOP instruction halts the execution of a program and returns the computer to the Ready Mode.
2.10.04 POWER OFF

OP CODE
OFF

The OFF instruction provides the ability for the TC to turn itself off by causing the power to the entire
system to be turned off. This instruction permits the data center to notify a TC to shut down, by

sending a reserved character or other unique data (selected by user) to it. Upon testing and recognizing
this character, the TC would branch to the instruction OFF as a part of the user program.

2.10.03

CDC

CD

2.11 — CHECK DIGIT INSTRUCTIONS

Macro instructions to compute and verify check digits are available for use on the L/TC by
incorporating a CDC-CDV Add-On Firmware Set with the Basic Main Memory Firmware Set being
utilized. CDC-CDV Add-On Firmware Sets occupy the highest track of user memory provided by the
main memory firmware set.

2.11.01 CHECK DIGIT COMPUTE INSTRUCTION

OP CODE A B

cDC 1-15 0-9

The CDC instruction, when used in conjunction with a check digit table, will generate a check digit for
a number located in the Accumulator. The check digit will be generated for the number which begins in
the Accumulator digit position indicated by the A parameter and ending in Accumulator digit position
1. The generated check digit will be inserted in Accumulator digit position O, remaining Accumulator
digit positions are not disturbed.

The B parameter specifies the constant remainder that is to be used when computing the check digit.

Example 1:
PARAMETER
FIELD
i . ¥ OR 2 <
” p
LABEL OP. CODE GT LABEL INC/REL

16 !718193)212223IZ4252527288&31323334 35|36(37{38|39 (40 [41]42]| 43 }44(4S 46 |47

_:_1:116:_0__1_&.1‘1&1111 |||,1|| 1 11

OP CODE A

CDC 6 1

If the Accumulator contains:

15{14113|12|11}10|9 | 8|7 |6 |5]|4]|3]|2 |1 |0 |Accumulator Digit Pos,

6|lo|ls|la]2lole]3|8|a]2]9|6]|3]o0 Value

——Flag Position

the check digit will be calculated for the number beginning in Accumulator digit position 6 and ending
in Accumulator digit position 1; in this case 842963.

The remainder factor use_d will be 1.

Revised 3-29-71 by
PCN 1045481-001 2.11.01

cbv

CD
Example 2:

LABEL OP CODE A B

INI;IL LPNR T/?BLE
TRA BAL
SLRO 1 0
EX A —
CDC 8 3
SK A -
CDC 8 2
PNS— 8 2
PNS— 0 3
NOTE
NOTE

TABLE NUM 166009753186420
NUM 066009876543210
MASK 177,7177Z,DDE
MASK +.D

2.11.02 CHECK DIGIT VERIFY INSTRUCTION
OP CODE A B

CDV 1-15 0-9

o

REMARKS
LO/(&D CD &P N?IASK TABLE

RD NEW BALANCE

POSITION FOR CD

TEST IF MINUS BALANCE

COMPUTE CD ON MINUS USING REM 3
SKIP IF MINUS BALANCE

COMPUTE CD ON PLUS USING REM 2
PRINT NEW BALANCE

PRINT CHECK DIGIT

ALTERNATE COL DOUBLE ADD DOUBLE
MOD 10 CD TABLE & P MASKS

1ST WORD CD TABLE

LAST WORD CD TABLE

P MASK BALANCE

P MASK CHECK DIGIT

The CDV instruction will verify the check digit of a number located in the Accumulator. The number
begins in the Accumulator digit position specified by the A parameter and ends in Accumulator digit
position 1. Any significant digits located to the left of the Accumulator digit position specified by the A
parameter are ignored by the CDV instruction.

The check digit must be located in Accumulator digit position 0.

The B parameter specifies the constant remainder that is used in computing the check digit. If the check
digit is not equal to the computed check digit, the Accumulator S Flag is set and a Keyboard Error
Condition occurs at the next keyboard instruction. The programmer should provide the required
instructions to check the S Flag after verification.

The checking method is determined by the table designated in the A parameter of the last executed

LPNR instruction.

2.11.02

Example 1:

cbv

CD

FIELD

PARAMETER

A

LABEL

4 LEn-
OP. CODE GTH

LABEL

+ OR —
INC/REL

16 {17 |18[19]20 21 zzza]za 25| 26(27]28] 20| 3031} 32| 3334 | 35| 36 {37 38| 35 |a0 |a1{ a2 a3 [aalas fas a7
11111&._01‘/11 181111: L 16 L1
OP CODE A B
CbhbV 8 0
If the Accumulator contains:
15 14 (131211]10f9o | 8|7 |65 43|21 |0 |Accumulator Digit Pos.
ololojo|oJof2]|3]|5|6]|8[9]2]|4]5 Value

L— Flag Position
the number to be verified begins in Accumulator digit position 8 and ends in Accumulator d1g1t position

1, in this case 23568924.

The remainder factor is 0. The check digit is 5.

Example 2: The CDV Instruction in conjunction with a Modulus 11 weighted system could be utilized
in the user program in the following manner.

LABEL

OP CODE

INITIL

)
ACCTNO

TABLE

LPNR

NKCM
NOTE
EX
SLRO
INK
CDV
EX

BRU
PN
}

NOTE
NOTE
NUM

MASK

MASK
NUM
NUM

A

TABLE

> oo —

ACCTNO

6
t

355003692581470
+DDDDDD,D

ZLZ2,Z2Z£.DD
455007418529630
055009876543210

B ¢
0
c 2
0
A
0
S 1

—

REMARKS
LOA?D CD &P MASK{ TABLE

INDEX ACCT NO. & CHECK DIGIT
USE “C” FOR C.D. VALUE OF “A.”
TEST FOR “A”

POSITION NUMBER

INSERT CHK DIGIT “A”

VERIFY

EX IF NOT VERIFIED

BR TO REINDEX
PRI(NT ACCT N(O.

1, 3, 7 MODULUS 11 CHK DIGIT
TABLE AND PRINT MASKS

WT. 7 VALUES 1ST WORD CD TABLE
ACCT. NO. PRINT MASK

AMOUNT PRINT MASK
WT. 3 VALUES 2ND WORD CD TABLE
WT. 1 VALUES 3RD WORD CD TABLE

Revised 3-29-71 by

PCN 1045481-001 2.11.02 (Cont’d)

LPNR

CD

2.11.03 LOAD CHECK DIGIT AND PRINT NUMERIC TABLE INSTRUCTION

OP CODE A

LPNR LABEL

The LPNR instruction is used to locate the check digit and print mask tables when check digit firmware
is used. The first entry of the table must be a check digit entry. The table can vary in size from 1 to
256 words. The reader should reference CHECK DIGIT TABLE CONSTRUCTION.

2.11.04 CHECK DIGIT TABLE CONSTRUCTION

The table(s) that are utilized by the CDC-CDV instruction determine the checking method to be used.
The table(s) can be located anywhere within user memory and are referenced by the A Parameter of the

LPNR instruction. The table can vary in size from 1 word to 256 words and the individual entries
within the table do not have to be stored in consecutive order. However, the first entry in the table
must be labeled so that it can be referenced by the LPNR instruction.
Each entry (word) in the table is divided into three sections. These divisions are as follows:

1. Location of the next table entry to be referenced (digit positions 15 & 14).

2. Modulus used (digit positions 13 & 12).

3. Digit values (digit positions 0-9).

The CDC & CDV instructions start with the table entry specified by LPNR. The location of the next
table entry to be referenced by the CDC or CDV instruction is determined by the Hexadecimal value of
digit positions 15 & 14 of the table entry. This location is relative to the base word of the table (the
beginning word of the table which is referenced by the A parameter of the LPNR instruction).

Example:
HEXADECIMAL VALUE RELATIVE LOCATION OF
IN 15 & 14 NEXT TABLE ENTRY
0 1 Base Word + 1 -
0 2 Base Word + 2
1 1 Base Word + 17
0 0 Base Word + 0

Digit positions 13 & 12 specify the modulus to be used in the verification scheme. The values in both
digit positions within the word must be identical and the value in positions 13 & 12 in each table entry
must be identical. The table assumes a base modulus of 16.

2.11.03

Therefore, to determine the entry for positions 13 & 12 the decimal values of the modulus desired must
be subtracted from the base modulus of 16. For example, if a modulus 10 scheme is to be used a 6
would be entered in digit positions 13 & 12 of every fable entry (16-10 = 6).

Each digit position of an integer (to be checked/computed) has 10 possible values (0 to 9). Each table
entry word represents certain digit positions in the integer.

Example: A table with 3 entries (words) is used to check/compute a check digit for a 6-digit integer.

The 1st table entry is used for digit positions 1 and 4
The 2nd table entry is used for digit positions 2 and 5
The 3rd table entry is used for digit positions 3 and 6

The Digit Values section of each table entry contains the weighted or assigned values for the digit
positions that the table entry represents. The weighted or assigned values are located within the digit
values section (Digit Positions 0-9) in order according to the possible value that it represents. For
example, the weighted or assigned values for the possible digit position value of 7 on the integer is
stored in digit position 7 of the table entry.

A simple alternate column Double-Add-Double Check Digit scheme would require a two-word table with
the following values in digit positions 0-9 (Digit Values Section) of the table entries.

Integer Digit Value and

Table Entry Digit Position 9 8 7 6 5 4 3 2 1 O
1st Table Entry Values 9 7 5 3 1 8 6 4 2 O
2nd Table Entry Values 9 8 7 6 5 4 3 2 1 0

Example 1:

Alternate Column, Double-Add-Double

Modulus 10

Remainder O

Integer (Acct No.) 4 3 2 2 5 7

Assigned Values From Table 4 +6 +2 +4 +5 +5 = 26
Remainder 0

Total Sum of Assigned Values 260 = 26
Next High Multiple Of Modulus (10) 30

Check Digit 30-26 = 4

The values assigned in computing the check digit for the above integer (Acct No.) are as follows: The
assigned values for the digits located in positions 1, 3 & 5 of the integer are taken from the 1st table
entry. The assigned values for the digits located in positions 2, 4 & 6 of the integer are taken from the
2nd table entry.

Revised 3-29-71 by
PCN 1045481-001 2.11.04

COMPLETE TABLE

POSITIONS
15 14113 12411 109 8 7 6 5 4 3 2 1 0
Next
Word Mod Digit Values
LOC
TABLE ENTRY 1 0 1 6 6 9 7 5 3 1 8 6 4 0
TABLE ENTRY 2 0 6 6 9 8 7 6 4 3 2 1 0

Example 2:

1, 3, 7 MODULUS 11 METHOD

In this method the assigned value for each digit is obtained by assigning weights of 7, 3, 1, 7,
3, 1,...continuously; starting with the least significant digit of the number. A three-word
table is required.

Integer 4 2 7 17
Assigned Value From Table 4+9+3+2+A+5=33
Remainder 1
Total Sum of Assigned Values 33+ 1 =34
Next Higher Multiple of Modulus 44
Check Digit 44-34 = A
TABLE
POSITIONS
15 14 (13 12|11 10|]9 8 7 6 5 4 3 2 1 0
Next
Word Mod Digit Values
LOC
0O 1]5 5 8 1 5 9 2 6 A 3 7 0
0 215 5 5 A 7 4 1 9 6 0
0 0|5 5 9 8 7 6 5 4 3 2 1 0

2.11.04 (Cont’d-1)

The table for the example of the 1, 3, 7 Modulus 11 Method was derived in the following manner.

1st Table Entry (Weighted 7).

0
1
2
3
Xx 4 =
5
6
7
8
9

W NN NN NN NN
»

63 56 49 42 35 28 21 14 7 0

Minus Next Lowest
Multiple of Modulus -55 =55 44 -33 33 -22 —-11 -1 -0 -0

Ist Table Entry = 8 1 5 9 2 6 A 3 7 0

2nd Table Entry (Weighted 3).

W W W W W wWwWw W W W
>
O 0 N N AW N = O
|

27 24 21 18 15 12 9 6 3 0

Minus Next Lowest
Multiple of Modulus 22

2nd Table Entry = 5 2

0
[\)
|
> I=
|
.
< I=

Revised 3-29-71 by
PCN 1045481-001 2.11.04 (Cont’d-2)

3rd Table Entry (Weighted 1).

»
- O
]

O 0 N N bW
|

Minus Next Lowest
Multiple of Modulus

3rd Table Entry =

]

9 8
o 0
9 8

A check digit can be accurately computed and verified on fixed length alphanumeric fields that do not
exceed 7 characters in length. The check digit would make the 8th character.

Example 3:

The following example illustrates how a check digit could be computed on a 5-character fixed length
alpha field (check digit is entered as the 6th character) using a 1, 3, 7 Modulus 10 Method.

EQ LABEL OP CODE

1 INITAL LPNR
2 CMPCD POS
3 LKBR
4 TKM
5 TRA
6 SLROS
7 INK
8 NOTE
9 NOTE
10 NOTE
10.1 NOTE
11 ADK

2.11.04 (Cont’d-3)

A

TABLE
10
PARTNO
S
PARTNO
0

1

0

w

REMARKS

LOAD CHECK DIGIT TABLE

POSITION PRINTER

SET KB BASE REGISTER

ENTER PART NUMBER

READ ALPHA TO ACCUMULATOR
RIGHT JUSTIFY ALPHA NUMBER
INSERT 3 COL 1

THE 3 IS INSERTED SO THAT THE CD
NUMBER CAN BE ENTERED THROUGH
THE ALPHA KEYBOARD AS A COL 3
USASCII NUMERAL.

**DECIMAL CORRECT ALPHA

SEQ LABEL OP CODE A B C REMARKS
12 CDC 12 3 COMPUTE CD USING REM 3
13 PN 3 PRINT CHECK DIGIT
14 VERCD AL 1 ALIGN FORM
15 POS 10 POSITION PRINTER
16 LKBR PARTNO SET BASE REGISTER POINTER
17 TKM 6 ENTER PART NUMBER & CD
18 TRA PARTNO RD ALPHA TO ACCUMULATOR
19 SLROS 0 4 POSITION CD TO POS 0
20 ADK 0 0 DECIMAL CORRECT
21 CDV 12 3 VERIFY USING REM 3
22 EX A S 2 TEXT IF VERIFIED
23 ALARM SIGNAL OPERATOR IF ERROR
24 BRU VERCD BR TO RE ENTER
25 PA OK PRINT VERIFIED MSG
26 AL 1 ALIGN FORM
27 BRU CMPCD BR FOR NEXT
28 TABLE NUM 16600369258147 FIRST ENTRY 7 WT CD TABLE
29 NUM 26600741852963 SECOND ENTRY 3 WT CD TABLE
30 NUM 06600987654321 LAST ENTRY 1 WT CD TABLE
31 MASK +D PRINT CD ON CDC
32 OK ALF OK VERIFIED MSG
33 END

**NOTE: The eight bit alpha characters stored in the accumulator must be decimal corrected to
eliminate hexadecimal values greater than 9 (A-F).

If a Modulus 11 method is used, the following additional instructions would be required in the VERCD
Routine.

SEQ LABEL OP CODE A B C REMARKS

20.1 SKL 1 4 2 SK IF CHECK DIGIT NOT A
20.2 INK 1 3 RESET DIGIT 1 TO COL. 3
20.3 INK 0 A INSERT A IN COLUMN 0

These instructions are used to test and compensate for a check digit value of A, which is entered as an
“A” (4,1 on the USASCII Chart). The 4,1 must be tested and compensated for or the alphanumeric
number will not verify. The A must be corrected to the Col. 3 USASCII numeral that was derived
during the compute phase (3A).

Revised 3-29-71 by
PCN 1045481-001 2.11.04 (Cont’d-4)

2.12 — DATA COMMUNICATIONS INSTRUCTIONS

2.12.01 GENERAL DESCRIPTION

The Data Communications Procedures and Configurations of the various TC’s are covered in detail in the
Series L/TC Equipment Reference Manual. The Equipment Reference Manual also discusses the basic
characteristics of the Data Communications Processor and the way in which its associated firmware
controls the interaction of the TC with the communications network and devices on that network.

Two tracks of the Data Communications Processor are permanently assigned as communications buffers,
one for receiving messages from the network and one for sending messages to the network. Each buffer
has a capacity of 255 characters of data plus the ETX character.

The Data Communications Processor firmware validates all incoming messages, removes the header infor-
mation and stores the data (text) with the ETX in the receive buffer. Conversely, the Data
Communications Processor firmware attaches the Header, ETX and BCC information to any outgoing
message, the programmer being required to place only data (text, up to 255 characters) into the
Transmit Buffer.

Messages to be transmitted are placed into the Data Communications Transmit buffer by the user
program and the Transmit Ready Flag (R3 or D3) is set — See Subject 2.12.07. The Data
Communications Processor will then handle the transmission of the message leaving the Main Memory
Processor free to continue with the user program.

After the successful transmission of a message the Transmit Ready Flag (R3 and D3) will be reset. The
user program should always examine the R3 flag (or the D3 flag which is the Data Communications
Processor equivalent of R3) prior to placing another message into the Transmit Buffer to determine if
the previous message has been transmitted.

In a data communications environment, the most efficient operation is achieved by using only the “D”
flags.

The Data Communications Processor indicates to the user program that it has sucessfully received a
message by setting the Data Communications Processor Receive Ready Flag (D2) and the Main Memory
Processor Receive Ready Flag (R2) — Refer to Subject 2.12.07. The user program will interrogate one
of these flags to determine when a message has been received.

After removing the data from the Receive buffer, the user program will reset the R2 or D2 flag to
indicate to the Data Communications Processor that the buffer is free to receive another message.

The Data Communications Instructions covered in this section fall into three main groups, all are used in
combination with the normal Main Memory instructions.

1. Send Instructions
These instructions provide for preparing messages to be transmitted from the TC.

2. Receive Instructions
These instructions provide for unpacking and processing messages that have been received by
the TC

2.12.01

ESTB

DC

3. Control Instructions
These instructions provide for accessing and loading the various Terminal Addresses, Trans-

mission Numbers, and other registers of the TC.

All of these instructions are executed as part of the user program. Their combined effect is to provide
the most efficient handling of data communications with the TC.

212,02 ESTABLISHING RECEIVE/TRANSMIT RECORD AREAS

LABEL OP CODE

ESTABLISH RECEIVE RECORD AREA RECEIV ESTB

ESTABLISH SEND RECORD AREA SEND ESTB

It is usually desirable to use a receive record area to unpack messages while freeing the data comm
receive buffer to accept more data. These receive record areas have a counterpart in the send record
area, used to prepare a message for transmission while another message is in the transmit buffer awaiting
a poll from the central processor.

These record areas are always thirty-two words (1 track) in length and are assigned space in memory by
the assembler according to two things:

1. Memory size — as specified by the option “MEMORY NNN”’
2. and by the use of the pseudo instruction ESTB.

The first use of the ESTB pseudo instruction will cause the assembler to assign the record area to the
highest thirty-two words of memory available that fall on a track boundary (as indicated by the memory
size option card) in user memory. The second use of the ESTB instruction will cause the record area to
be established in the next 32 words of user memory available. For example, if user memory is
384 words, (0-383), the first record area will be in words 352-383. The second use of ESTB will
establish the record area in words 320-351.

The ESTB pseudo instruction has no parameter, but it must always be labeled.

So far, we have only established receive and transmit record areas. The use of them will be discussed
later.

NOTE: If the last user word is specified in assembly rather than the total number of user words of user
memory (example: 383 rather than 384), the assembler will select the next lower track available
{example: words 320 to 352). This would cause the last 32 words to be inaccessible to the assembler
for other use.

An alternate, but less frequently used method of reserving main memory buffer areas is to specify a
word value as in the following examples which assume 384 words of memory.

Revised 3-29-71 by
PCN 1045481001 2.12.02

LRBR

RCP
IRCP
DC
LABEL OP CODE A
ORG 352
RECEIV REG 32

In this example, Receive would be assembled with a starting word of 352. The word number must be
the first word of a track. Track O is not a valid entry.

Any number of transmit or receive record areas may be used. The number is determined by system
requirements and memory availability.

2.12.03 TRANSFERRING DATA FROM ONE MEMORY ADDRESS TO ANOTHER MEMORY ADDRESS

The unpacking of messages received and the constructing of messages to be transmitted usually involves
moving data FROM one memory location TO another. The transfer can be from a record area to the
transmit buffer, from the receive buffer to a memory location, or from one memory address to another
memory address. The following instructions deal with this data movement.

LABEL OP CODE A

LOAD RECEIVE BUFFER REGISTER LRBR BLANK OR LABEL

The LRBR instruction designates the starting memory address from which data will be transferred until

the next LRBR is encountered, or the Character Pointer Register is otherwise altered. It is the origin

address. The A parameter is the label of a memory address, often a record area which has already been

established. The A parameter may be blank, however, in which case the data will be transferred directly

from the Receive Buffer. Each time the LRBR instruction is executed, the character pointer for that

record area or buffer is set to 1. This means the first chracter transferred will be the high order "
character of the first word in the designated memory location.

LABEL OP CODE A

SET RECEIVE CHARACTER POINTER RCP 1-255

Each use of the LRBR instruction sets the associated character pointer to one. For each character trans-
ferred or printed from the track, this character pointer is incremented serially. The RCP instruction sets
the pointer to the character position specified by the “A” parameter relative to the last LRBR word
location.

This instruction permits transfer of data starting with the character position designated by the “A”
parameter.

OP CODE A

INCREMENT RECEIVE CHARACTER POINTER IRCP 1-255

The IRCP instruction increments the receive character pointer by the number of character positions
designated in the A field, or until the next field indentifier code is encountered. The pointer is
incremented for the field identifier code also. This instruction permits by-passing a data field in a

2.12.03

LKBR SCP

TRB TRBA

DC

message containing variable length fields. If the RCP is incremented past 255, the Overflow Test Flag
will be set, otherwise it will be reset.

OP CODE A

LOAD KEYBOARD BASE REGISTER LKBR BLANK OR LABEL

The LKBR instruction designates the starting memory address to which data will be transferred, until
the next LKBR is encountered, or the Character Pointer Register is otherwise altered. It is the
destination address. (The A parameter is the label of a memory address, often a record area.) The A
parameter may be blank however, in which case the data will be transferred directly to the transmit
buffer. Fach time the LKBR instruction is executed, the Send Character Pointer for that memory
address, record area or buffer is set to 1. This means the first character transferred will be placed in the
first character position of the designated memory location.
OP CODE A

SET SEND CHARACTER POINTER SCP 1-255

Each use of the LKBR instruction sets the associated character pointer to one. For each character
transferred, the character pointer is incremented serially. The SCP instruction sets the character position
specified-by the “A” parameter relative to the last LKBR word location.

This instruction permits transfer of data starting with the character position designated by the “A”
parameter.

2.12.04 UNPACKING MESSAGES RECEIVED

Normally, when transferring the contents of a word in the Accumulator, the whole word is transferred.
Likewise, when printing the alpha contents of a word, the entire contents (up to an end alpha code) are
printed. The data comm instructions used to unpack messages pay no attention to word boundaries in
the receive buffer or receive record area. In Data Communication programing, it is possible to transfer
any number of digits up to 16 to the Accumulator and it is possible to move alpha characters from one
location to another regardless of the number of word boundaries crossed.

OP CODE A

TRANSFER RECEIVE BUFFER TO RECORD AREA TRB LABEL

The TRB instruction transfers the contents of the Data Communications Receive Buffer to the Normal
Memory Receive Record area (32 words on one track) specified by the “A” parameter. The Receive
Record area must have been established using the ESTB instruction previously described in this section.
This instruction permits the use of one or several Receive Record areas in Normal memory.

OP CODE A
TRANSFER TO ACCUMULATOR AS NUMERIC TRBA 1-16

The TRBA instruction, transfers the number of characters specified in the “A” field from the Receive
Buffer, or working record area, to the Accumulator as Numeric digits. The buffer or Receive Record

Revised 3-29-71 by
PCN 1045481-001 2.12.04

TRBA

DC

area is the one specified by the last LRBR instruction, and the beginning character is determined by the
current position of the RCP. The TRBA instruction is terminated by the transfer of the number of
characters specified or by a field identifier code, whichever comes first. The field identifier code sets a
specified flag pattern (see Subject 2.12.06). The RCP is incremented for each character transferred and
for the field identifier code (which is not transferred into the Accumulator). The Overflow flag will be
set if the RCP is incremented past 255 and the instruction will be terminated; otherwise, the Overflow
flag is reset.

Although alpha numerals occupy 2 digit positions (8 bits) for the character in either the Receive Buffer
or Receive Record area, the TRBA instruction places then in the Accumulator as numeric digits (4 bits).
Thus, up to 16 buffer characters can be transferred to the Accumulator as 16 digits (any data required
for computational purposes must be limited to 15 digits).

Valid codes accepted by TRBA are any codes from column 3 of the USASCII table. These include the
numerals 0 to 9 and : ;< = > ? In addition, the minus (—) and plus (+) codes and any field identifier
codes from columns O and 1 are valid. When used in a numeric field, the minus or plus code may be
any character in the field. After first use in a given numeric field, subsequent plus or minus codes are
invalid. The minus code will set the sign flag in the accumulator; the plus code will reset the sign flag.
The minus or plus code will not be counted as one of the characters transferred as specified by the para-
meter field, however, the RCP will be incremented for this character. The field identifier codes are not
transferred to the Accumulator but do terminate the TRBA instruction. The characters : ; < = > and ?
are transferred to the accumulator as hexadecimal digits (undigits) with binary values of 10, 11, 12, 13,
14 and 15 respectively (values are designated by A, B, C, D, E, and F).

Other characters will be considered as invalid, will cause the “S” flag of the Accumulator to be set, will
count as a code transferred, but the instruction will not be terminated.

Remember that if it is desired to read a terminating FI Code the TRBA parameter must be one more
than maximum numeric field likely to be transfered in order to ensure that the FI Code is transfered
and sets the flag patterns.

EXAMPLES

Instruction Buffer contents Result in accumulator
TRBA 4 — 1234 ABC 10000600000001234
TRBA 5 — 1234 FIABC 1000000000001234
TRBA 5 1234 — FIABC 1000000000001234
TRBA 4 1234 — ABC 0000000000001234

(Sign is lost)

TRBA 5 1234 + ABC 2000000000012341

(S flag is set by transfer of
A an invalid code)

It is important to remember that the TRBA instruction, while designed to transfer one character at a
time into the Accumulator, must “scoop up” two digit positions from the memory location indicated by
the current LRBR and RCP instruction in order to determine the digit being transferred. Look at the
USASCII chart (Appendix H). Every code in the table is represented by a row and column and must
occupy 8 bits. The “numbers” in the table are located in column three. Since there are 16 rows in the

2.12.04 (Cont’d-1)

TRBA

DC

table, column 3 has 16 entries: 0-9 and the hexadecimal digits A through E. This information is useful
when, for instance, an “A” is desired in the Accumulator as a result of a TRBA instruction. The central
processor would send to the TC an USASCII equivalent of a colon (:). In USASCII code, it is “3,A.”
When the TRBA instruction encounters the 8 bit representation of a colon (3,A), the upper four bits are
pared off and the lower four bits are placed in the Accumulator.

Used this way, the TRBA instruction is an instrumental tool for loading programs in the TC using codes
sent from a central processor.

Example:
OP CODE A
TRANSFER TO ACCUMULATOR AS NUMERIC TRBA 16

Result in Accumulator:
E803EEOI1IEBS5SS5EDTU OI!1

1 Digit Pos. 15
Digit Pos. 0

In this instance, the “E’s,” “B’s,” and “D’s” in the Accumulator resulted from a 3,E, and a 3,B, and a
3,D in memory which are valid codes for the TRBA instruction. The “E’’ in the Accumulator is, in
reality, a hexadecimal 14, the ‘B> a hexadecimal 11, and the “D” a hexadecimal 13.

NOTE: Let's say the contents of the Accumulator were moved to a memory location, e.g., word 30.
Word 30 would then look like this:

syllable 0 : EDO1
syllable 1 : EB55
syllable 2 : EEO1
syllable 3 : E803

These are the machine codes for these mnemonics:

LABEL OP CODE A B _C_ REMARKS
AL 1 v Advance left 1
POS 86 Position to 86
AR 1 Advance right
ocC 3 Open handler, advance 3

Revised 3-29-71 by ,
PCN 1045481-001 2.12.04 (Cont’d-2)

TRF

DC

OP CODE A

TRANSFER ALPHA TRF 0-255

The TRF instruction transfers alphanumeric (8 bit) characters from the memory location specified by
the last LRBR instruction beginning at the current RCP position to the memory location specified by
the last LKBR instruction beginning at the current SCP position. The number of characters to be
transferred is specified by the A parameter of the TRF instruction; the instruction is terminated by the
transferring of the exact number of characters specified or by encountering a field identifier code. When
the instruction is terminated, no matter how it is terminated, (by reaching the number of characters
specified or by encountering a field identifier code) an end of alpha code will be inserted in the next
character position of the memory address indicated by the LKBR. The SCP is not incremented for that
code, however.

The following example attempts to show how several product codes, which have come from a central
processor, can be stored in TC user memory:

First word of Receive Buffer:

“ITEM# ~»
419151414|514|D|2]3
f Digit Pos. 15 T
Digit Pos. 0 .
Example:
LABEL OP CODE A

LOAD RECEIVE BUFFER REGISTER LRBR RECELIV
LOAD KEYBOARD BASE REGISTER LKBR STORE
TRANSFER ALPHA TRF 5
RESERVE REGION STORE REG 1

This is what “STORE” would look like after the transfer:

“ITEM# ”
4191514141514 |D|2|3]0]|0]0]0]0O]}O
T Digit Pos. 15 T

Digit Pos. O

The RCP and SCP are incremented for each character transferred; the RCP will also be incremented for
a field identifier code if one is present. The overflow flag will be set if either pointer is incremented past
255, or if ETX is encountered.

2.12.04 (Cont’d-3)

PAB

DC
OP CODE A
PRINT ALPHA RECEIVE BUFFER PAB 0-150

The PAB instruction usually is used with a receive buffer or record area but will print from any memory
location designated by the last LRBR instruction beginning with the current RCP position. The printing
will continue until the exact number of characters have been printed, or until a field identifier code is
encountered. For each character printed, the RCP will be incremented by 1. If the RCP is incremented
past 255, the overflow flag will be set. If printing is attempted beyond 150 on a 15% inch platen, the
system will return to ready mode.

Example:
LABEL OP CODE A
ESTABLISH RECEIVE RECORD AREA RECEIV ESTB
LOAD RECEIVE BUFFER REGISTER LRBR RECEIV
PRINT ALPHA PAB 15

NOTE: It is also possible to print from memory using the PA instruction. The distinction is the
flexibility of the PAB instruction since it allows the programmer to designate a starting character
position within a word {done by setting RCP) and to designate the exact number of characters to be
printed. The PA instruction simply prints from the first character position of the word specified by its
A parameter until it encounters the end alpha code.

2.12.05 PREPARING MESSAGES FOR TRANSMISSION

Remember from the discussion of unpacking messages received that instructions which transferred
characters and printed characters were not limited by word boundaries. The transfer is guided by a
character pointer (RCP). Likewise, in preparing a message for transmission, those instructions dependent
on a character pointer (SCP) and an LKBR instruction are not limited by word boundaries.

If any of these instructions are used to transfer data to the transmit buffer while the transmit ready flag
is set, execution of the instruction is delayed. The transmit ready flag is always interrogated before
information is moved into the transmit buffer.

Revised 3-29-71 by
PCN 1045481-001 2.12.05

TSB
TRAB

DC

A message may be prepared for transmission in a user memory send record area and then be transferred
to the transmit buffer. This transfer will move the entire 32 words of a send record area to the transmit
buffer. The send record area is determined by the A parameter of the TSB instruction. The A parameter
is the label of a record area established by one of the routines using ESTB. The End of Text Character
will be automatically inserted after the last character of the message.

OPCODE A

TRANSFER SEND RECORD AREA TSB LABEL
OPCODE A B
TRANSFER ACCUMULATOR TO “LKBR” TRAB 0-15 Oorl

The TRAB instruction will transfer up to 15 numeric digits (4 bits) from the Accumulator into the
memory location designated by the last LKBR instruction, placing the digits into memory as 8 bit alpha
characters beginning with the current position of the SCP.

The digit position of the Accumulator from which digits are to be transferred is designated by the A
parameter. The B parameter must be either a zero or one: A “1” meaning leading zeros will be
transferred and a “0”’ meaning leading zeros will not be transferred.

Example 1:
LABEL OP CODE A E
LOAD KEYBOARD BASE REGISTER LKBR SEND
TRANSFER ACCUMULATOR TRAB 10 1

If the Accumulator looks like this prior to execution of TRAB:

ojojojojoflolof2[718]9]|1]5]4]|0]|e6

|

—————————Digit Position 15 ‘
Digit Position 0

then the digit O located in position 10 would be transferred to the current position of the SCP as the
character 0 (represented in hexadecimal as 30). The digit O in position 9 of the Accumulator would be
transferred as the character O (represented in hexadecimal as 30); digit 2 would transfer as character 2
(hexadecimal 32); etc. The first and second words of the memory location designated by the last LKBR
would look like this after the execution:

Ist word 3lol3lol3]2]3]7|3|8|3|9]|3]1]|3]5

Digit Position 15
Digit Position 0

2nd word 31413101}3]6

2.12.05 (Cont’d-1)

TRAB

DC
The transfer could also have been directly to the Data Communications Transmit Buffer.
Example 2:
OP CODE _»_A_ E
LOAD KEYBOARD BASE REGISTER LKBR
TRANSFER ACCUMULATOR TO LAST “LKBR” TRAB 10 0

If the Accumulator looked like this prior to execution:

1[8|4|5]12]10]0]|9(6|8|9|1]|5]4|0]6

Digit Position 15
Digit Position O

then the first digit transferred would be the digit 9 in position 8 of the Accumulator, since the B para-
meter indicates zero suppression. It would be transferred to the current position of the SCP as the
character 9 (hexadecimal 39). The digit 6 in position 7 would transfer as character 6 (hexadecimal 36),

etc.

The first and second words of the memory location designated by the last LKBR would look like this:

Ist word 3191316(3(8(3]9]3]1]3|5]314{3]0

Digit Position 15
Digit Position O

2nd word 3]6

Those digits occupying positions in the Accumulator higher than the digit position specified by the A

parameter were ignored.

Example 3: Transferring signed numbers.

OP CODE A B
LOAD KEYBOARD BASE REGISTER LKBR WORK

EX A —

TRANSFER CHARACTER TRCB 2 13

TRANSFER ACCUMULATOR TO LAST “LKBR” TRAB 9 0

Revised 3-29-71 by

PCN 1045481-001 2.12.05 (Cont’d-2)

TRAB
TRF
TRCB

DC

If the Accumulator appears like this prior to execution:

2|IDJ3 1 32|35 |[3[5]3]0
— 1 2 5 5 0

It is necessary to test for the presence of the minus flag in the Accumulator and to insert the actual
. minus character (hexadecimal 2D) into memory, since a minus flag would be converted to the character
1 (hexadecimal 31) by the TRAB instruction.

To insert a plus sign into memory, the following code could be used:

OP CODE A B c
LOAD KEYBOARD BASE REGISTER LKBR \%VORK
SK A - 1
TRANSFER CHARACTER TRCB 2 11
TRANSFER ACCUMULATOR TO MEMORY TRAB 9 0
OP CODE A
TRANSFER ALPHA TRF 0-255

Refer to previous discussion on this instruction under Subject 2.12.04 “Unpacking Messages Received”’.

OP CODE A B

TRANSFER CHARACTER TO BUFFER TRCB 0-7 0-15

The TRCB instruction transfers the USASCII code designated by the decimal value in the “A” and “B”
parameters into the memory address specified by the last LKBR instruction, with the first character
being transferred to the position indicated by the current position of the SCP. For each character
transferred, the SCP is incremented by one.

To use this instruction, it is necessary to know the USASCII row and column designation of the
character to be transferred. The A parameter indicates the column number from the USASCII table, and
the B parameter is the row number.

For example, if an asterisk (*), USASCII column 2, row 10, is to be placed in the buffer, then the
instruction to accomplish this is:

2.12.05 (Cont’d-3)

TRCB

TKM
FI CODES
OP CODE A B
TRANSFER CHARACTER TO BUFFER TRCB 2 10
OP CODE A
TYPE TO MEMORY TKM 0-150

The TKM instruction allows the operator to enter data directly into the memory address specified by
the last LKBR beginning with the current position of the SCP. The SCP will be incremented for each
character entered and an end of alpha code will be placed in memory after the last character ended.
However, the SCP is not incremented for this character.

The use of the backspace key will cause the SCP to be decremented for each depression. However, the
SCP cannot be decremented beyond the position held when the TKM instruction was encountered.

LABEL OP CODE A
LOAD KEYBOARD REGISTER LKBR AREA
TYPE INTO MEMORY TKM 16
ESTABLISH 4 WORD REGION AREA REG 4

The instruction may have been used to enter data into the transmit record area:

LABEL OP CODE A
LOAD KEYBOARD BASE REGISTER LKBR SEND
TYPE INTO LAST “LKBR” TKM 25
ESTABLISH SEND RECORD AREA SEND ESTB

2.12.06 FIELD IDENTIFIER CODES AND VARIABLE LENGTH FIELDS

EXAMPLE:

A customer’s name, street address, city and state are being transmitted to the TC to be printed on 3
different lines of an invoice. The message is in the Receive Buffer and the programmer wishes to use the
PAB instruction to print the name on the ship-to portion of the invoice. If the name is “Acme
Printing,” the A parameter of the PAB instruction should be 13 characters. Names may be of variable
length, and a convention in GP 300 allows for varying length fields. This convention is called a ““field
identifier code.” Whenever a field identifier code is encountered by any of the following data comm
instructions, execution is terminated and the next instruction will begin. These instructions are:

Revised 3-29-71 by
PCN 1045481-001 2.12.06

FI CODES

LABEL OP CODE A B _(_:_ REMARKS
TRBA 0-16 Transfer as numeric
TRF : 0-255 Transfer alpha
PAB 0-150 Print from buffer
IRCP 0-255 Increment receive character
pointer

Valid field identifier codes are in columns O and 1 of the USASCII Chart. The two charts below show
the codes, their 4 bit hexadecimal value and their accompanying flag patterns.

The codes from column O present problems if the ‘Y’ flags are used in the TC user program. After
reading a column O field identifier code, all four Y flags are either set or reset, and the appearance of
these Y flags could seriously upset the logic of the TC program if the Y flags are interrogated and acted
upon without knowledge of these additional flag settings. This same problem could arise when reading
column 1 codes and when interrogating the K flags. Therefore, the use of these field identifier codes
must be given careful consideration and their use must be coordinated with the central processor.

NO FLAGS SET Y FLAGS SET* K FLAGS SET* TEST FLAGS SET
3214 3214 UILO
NUL SOH 0001 DC1 0001 ETX 0001
STX 0010 DC2 0010
DC3 0011
DC4 0100
ENQ 0101 NAK 0101
ACK 0110 SYN 0110
BEL 0111 ETB 0111
BS 1000 CAN 1000
HT 1001 EM 1001
LF 1010 SUB 1010
vI 1011 ESC 1011
FF 1100 FS 1100
CR 1101 GS 1101
SO 1110 RS 1110
SI 1111 Uus 1111

*Y and K flags designated are set if “1” and reset if “0”

It is generally agreed that many of the above USASCII codes should never appear in a text. EOT is
specifically filtered out by the Data Communications Processor. NUL does serve as a field identifier but,
as indicated in the chart above, it terminates the instruction but does not set any flags; neither does it
reset any previous flags. It merely terminates the instruction. ETX has special significance in that when

ETX is detected during a transfer instruction, the Overflow flag will be set and the instruction
terminated.

2.12.06 (Cont’d-1)

FI CODES

The following examples show the proper use of field identifier codes.

Example 1:

An invoice ship-to region has been defined as consisting of from 2 to 4 lines of nof more than 25
characters per line. In addition, the last line of the ship-to address will determine if the sold-to address is
“SAME?” or if it requires a separate address.

PROBLEM: The TC programmer must program for variable length fields and for a variable number of
fields. He must also decide whether to print “SAME” in the sold-to address area or to begin printing a
new sold-to address.

DECISION: After each field or line of ship-to address a field identifier code will be inserted by the
central processor. For example, “DC1,” after each line except for the last line of the ship-to address
which will be “DC2” if the sold-to address is “SAME” or a “DC4” if sold-to address is another distinct
address. A “CAN”’ code will terminate the last line of the sold-to address.

On the following page are some programing suggestions that will accomplish the necessary invoice
addressing routine. (Assume the necessary steps have been taken to establish a receive record area, to
establish alpha constants, etc.)

This routine is very flexible. Each line printed can be of any length up to 25 characters. If the field
(line) is less than 25 characters*, the field identifier will terminate the instruction and set a K flag
pattern. Also, there may be any number of lines to an address since either K1 or K2 will mark the end
of the last line of the address.

*Notice the A parameter of the PAB instruction is 26. The problem definition permits only 25
characters per line. In the event, however, the field is exactly 25 characters long, the extra character in
the A parameter will allow the PAB instruction to pick up the field identifier code. Otherwise, the
character pointer will be pointing at the 26th character at the time of execution of the next PAB

instruction since it is not incremented when reading an F.l. This PAB instruction would read the field
identifier and terminate, instead of reading the next field.

Revised 3-29-71 by
PCN 1045481-001 2.12.06 (Cont’d-2)

LABEL OP CODE i # E _(_:_ REMARKS
PRTLIN LRBR RECEIV Load Receive Buffer Register
AL 1 Advance left 1 line
POS 5 Position to print
PAB 26 Print on address line
EX K 4 K4 — means more lines
BRU PRTLIN +1 Print another line
EX K 1 3 K1 - ship-to = sold-to
ALTO 15 Advance to sold-to area
PA SAME Print “SAME”
BRU RIBBON Exit the routine
EX K 2 2 K2 — means sold-to address
ALTO 15 Advance to sold-to area
BRU PRTLIN +1 Base to print new address
RIBBON ALTO 22 Ribbon Routine

Example 2:

This example shows how field identifier codes may be helpful while constructing messages for
transmission to the central processor.

Assume we are in a file maintenance routine and wish to send the name and number of a customer to
the central processor. Every name has a corresponding number.

2.12.06 (Cont’d-3)

PROBLEM: The TC programmer must allow for several such combinations of names and numbers and
also must distinguish between the names and numbers.

DECISION: Every name will be followed by the field identifier “DC2.” Every customer number will be
identified by a trailing “DC4” if there are more names and numbers to follow or a “CAN” if the
current customer number is the last one. After indexing a name, the operator terminates with OCK 1.
After indexing a number, the operator terminates with OCK 2 if there are more names and numbers and
OCK 3 or OCK 4 if there are no more.

LABEL OP CODE A i# E S REMARKS

LODBUF LKBR XMIT Load transmit buffer
AL 2 Advance to type
POS 5 Position to print
TKM 25 Index name/number
EX K | 1 2 K1 — means name
TRCB 1 1 1,2=DC2 = OCK I
BRU LODBUF #1 Index again
EX K 2 2 K2 — means number
TRCB 1 2 1,4 =DC4 = OCK 2
BRU LODBUF #1 Index again
EX K 34 3 K3,4 — last number
TRCB | 8 1,8 = CAN = OCK 3
SET D 3 Set transmit flag
BRU AWAY Exit routine

The function of the “D” flag group is to provide a method for interrogating and changing the status of
the DCP Transmit and Receive Buffers. The “R” flag group may also be utilized in the same manner as
the “D” flag group. However it is recommended that the “D” flag group be used due to timing and
syllable placement considerations involved in using the “R> flags.

Revised 3-29-71 by
PCN 1045481-001 2.12.06 (Cont’d-4)

D FLAGS

RSA
DC

2.12.07 “D” FLAG GROUP

All versions of the Series L/TC Assemblers which have the capability of assembling a data communica-
tions program have been revised to allow any flag in the D Flag Group to be set (SET) and reset (RST).
Previously the D flags could be interrogated but the status could not be altered. When it was necessary
for the application program to notify the DCP of a change in the status of the Transmit and Receive
buffers, it had to be done via the R2 (Ready to Receive new data) or R3 (message ready for
transmission) flags.

It is suggested that only the D flag group be used when it is required to set, reset or interrogate the
status of the DCP. The previous method of setting or resetting the R flags and interrogating the D flags,
although confusing, will also work.

IMPORTANT: The CHG or LOD instructions can not be used to change or load the R or D flag groups
when the TC is functioning with any Data Communications Main Memory Firmware Set. The CHG or
LOD Instructions may be used to change or load the R flags only when using any non Data
Communication firmware set.

The following flags are available in the Data Communication Flag Group:

D1 - Trouble Flag

D2 - Message Received Flag

D3 - Transmit Ready Flag

D4 - Micro Flag. Not available to the macro programmer.

2.12.08 SEND AND RECEIVE ADDRESS INSTRUCTIONS

GP 300 has a group of instructions, which allow the programmer to assume some firmware responsi-
bilities. An example is the fransmission number that is part of the header portion of a message. This
number is usually calculated by firmware and can be an important programing consideration. There are
two instructions in GP 300 that allow the programmer to transfer the transmission number to the
Accumulator and also to assign any 1, 2, or 3 digit number as the transmission number. The
transmission number must initially be set by the programmer to effectively check for lost messages.

OP CODE

RETRIEVE SEND ADDRESS RSA

This instruction transfers the two-character send machine address from the send address register in the
Data-Communications Processor into the four (4) most significant digit positions of the Accumulator.
The balance of the Accumulator will be zero.

Example: If Send Machine Address is: 1A, Accumulator will be as follows:

15|14 {13 [12(11(10}t9 |81 7|6 |5|4|3|2]|1]0 | ACCUMULATOR DIGIT POSITION
3111410 0j0]0j0[0jO]0]0O}]0|0]O0 VALUE

2.12.07

LSA
RRA
LRA

These two characters may be any characters from columns 2 through 6 of the USASCII set (except cir-
cumflex and underline). With a range of 78 different characters in each of the two positions, the total
machine address range potential would be 6,084 different combinations.

OP CODE

LOAD SEND ADDRESS LSA

This instruction transfers the four most significant digits of the Accumulator into the Send Machine
Address Register in the Data Communications Processor. Only the 4 most significant digits of the
Accumulator may contain significant digits (i.e., 2 characters). The balance of the Accumulator must
contain zeros.

Example for loading Send Address:

LKBR WORK DESIGNATE MEMORY AREA
TKM 2 ENTER 2 CHARACTER ADDRESS
TRA WORK TRANSFER TO ACCUMULATOR
LSA LOAD SEND ADDRESS
WORK REG 1 RESERVE MEMORY AREA
OP CODE
RETRIEVE RECEIVE ADDRESS RRA

This instruction functions in exactly the same fashion as RSA, except it will transfer the machine
address from the Receive Address Register in the Data Communications Processor into the four (4) most
significant digit positions of the Accumulator. The balance of the Accumulator will contain zeros.
Generally the Receive and Send Machine Addresses are alike, however, a condition can exist where they
could be different.

Normally, in addition to the Receive and Send addresses, the TC has a permanent machine address,
located in word 1064. This address is loaded into the Send and Receive register every time power is
turned on or when the program halt button is used. The Ready Button has no effect on Send or
Receive addresses.

The Permanent machine address can be changed by unprotecting block 4, track 4, and using Memory
Modify.

OP CODE
LOAD RECEIVE ADDRESS LRA

This instruction transfers the contents of the accumulator into the Receive Machine Address Register in
the Data Communications Processor. Only the four (4) most significant digit positions of the Accumu-
lator may contain significant characters. The balance of the Accumulator must contain zeros.

Refer to example for loading send machine address.

Revised 3-29-71 by
PCN 1045481-001 2.12.08

RSN
LSN

DC

2.12.09 TRANSMISSION NUMBERS

The TC may maintain a transmission number that accompanies every message it sends to a central
processor. It may be a one, two or three digit number, or no transmission number. A separate trans-
mission number is maintained for normal transmission, group select and broadcast select.

If the transmission number is one digit only, it will return to zero every ten transmissions. If it is a
two-digit number, it will return to zero after each one hundred transmissions, and for a three-digit
number after every thousand transmissions.

The Send Transmission number is included in the header of all data transmissions from the terminal and

is automatically incremented by 1 when transmission has succeeded so that the next message will carry
the next transmission number in sequence.

The Expected Receive Transmission number is maintained by the data communications processor, and

automatically compared with the actual transmission number on all data messages received from the data
center.

If a message is received successfully from the data center, the expected transmission number is
incremented in anticipation of the next message transmission number.

If the transmission number from the data center does not agree with the expected transmission number
in the TC, the transmission failure flag (D1) is set. This flag can be interrogated by the user program for

necessary recovery procedures. The D1 flag will be reset by the next transmission received, unless the
number still does not agree.

OP CODE

RETRIEVE SEND TRANSMISSION NUMBER RSN

This instruction transfers the 1, 2, or 3 digit USASCII Send Transmission Number from its register into
the 2, 4, or 6 most significant digit positions of the Accumulator. The balance of the Accumulator will
contain zeros. The user program will process the send transmission number depending on requirements.

OP CODE

LOAD SEND TRANSMISSION NUMBER | LSN

Execution of this instruction will cause transfer of the Accumulator to the Send Transmission Number
Register. Only the 2, 4, or 6 high order digit positions may contain significant digits. The rest must
contain zeros. (The number of positions in the Accumulator that may contain significant digits is
determined by the length of the Send Transmission Number — 1, 2, or 3 digits.)

NOTE: The Transmission Number must be in the high order positions of a word. IT IS IMPERATIVE
THAT THE SEND TRANSMISSION NUMBER BE SET UP AS USASCII NUMERALS. IF THE
NUMBER IS SET UP IN THE NUMERIC MODE (4 BIT DIGITS), COLUMN 0 USASCII CODES WILL
BE INSERTED IN THE HEADER PORTION OF THE MESSAGE WHICH WILL EVENTUALLY

CAUSE A DATA LOSS WHEN THE TC ATTEMPTS TO TRANSMIT THE MESSAGE AFTER
INCREMENTING THE TRANSMISSION NUMBER. '

2.12.09

RTN LGN
LTN RBN
RGN

DC

As a result of the addition of fast select, group select, and broadcast select three sets of expected
transmission numbers are maintained by 2-1044-006-00 in those processors that use TR numbers. The
following instructions are provided to load and retrieve the three sets of transmission numbers. Standard
Select and Fast Select use the same Expected Transmission number.

OP CODE
RETRIEVE EXPECTED TRANSMISSION NUMBER RTN

" The RTN instruction transfers the 1, 2 or 3 USASCII numeric Character “Expected Transmission

Number” from its appropriate Register into the 2, 4, or 6 most significant digit positions of the
Accumulator. The balance of the Accumulator will contain zeros. This instruction retrieves the Expected
Transmission Number (word 1190) for Select and Fast Select messages.

OP CODE
LOAD EXPECTED TRANSMISSION NUMBER REGISTER LTN

The LTN instruction transfers the contents of the Accumulator into the Expected Transmission Number
Register for messages received. Only the 2, 4, and 6 most significant digit positions of the Accumulator
may have significant characters. The expected Transmission number may be up to 3 USASCII numeric
characters in length. The balance of the Accumulator must contain zeros. This instruction loads the
expected Select and Fast Select Transmission number.

OP CODE
RETRIEVE EXPECTED GROUP TRANSMISSION NUMBER RGN

The RGN instruction transfers the Expected Group Transmission Number from the Expected Group
Transmission Number Register (word 1192) to the Accumulator. The Expected Group Transmission
number may be up to 3 USASCII numerals in length and will oécupy the most significant positions in
the Accumulator. The remaining positions are ignored.

OP CODE
LOAD EXPECTED GROUP TRANSMISSION NUMBER LGN

The LGN instruction transfers the contents of the Accumulator into the Expected Group Transmission
Number Register. The Expected Group Transmission number may be up to 3 USASCII numeric
characters (left justified) in length and although the entire Accumulator is transferred, the remaining
locations are ignored.

OP CODE

RETRIEVE EXPECTED BROADCAST TRANSMISSION NUMBER RBN

The RBN instruction transfers the Expected Broadcast transmission number from its register (word
1193) to the Accumulator. The Expected Broadcast Transmission number may be either 0, 1, 2 or 3
USASCII numeric characters in length and is contained in the most significant digit positions of the
word in the Data Communications Processor and, after the transfer, in the most significant digit
positions of the Accumulator. Any remaining digit positions are ignored.

Revised 3-29-71 by ,
PCN 1045481-001 2.12.09 (Cont’d-1)

LBN

RTH

DC

OP CODE
LOAD EXPECTED BROADCAST TRANSMISSION NUMBER LBN

LBN transfers the contents of the Accumulator into the Expected Broadcast Transmission Number
Register in the Data Communications Processor. The Expected Broadcast Transmission Number may be
0, 1, 2 or 3 USASCII numeric characters located in the most significant positions of the Accumulator.
The remaining positions, although transferred, are ignored.

OP CODE

RETRIEVE TRANSMISSION HEADER RTH

The Retrieve Header Transmission Number (RTH) instruction transfers the Transmission Header Register
(word 1184) into the Accumulator. This register is loaded with the 8 characters following the start of
header (SOH) character of any message received whether by select, fast select, group select, or broadcast
select. Among these 8 characters will be the transmission number of the message received if the DCP
uses TR numbers. The numbers will be in their 8-bit USASCII representation. The format of this register
for each of the four cases (0, 1, 2, or 3 transmission numbers) is shown below. When necessary to
determine the communications procedure used by the data center, a character in the text of the message
can be used to indicate how the message was transmitted. Below is the format of the transmission
header register for 0, 1, 2, and 3 transmission number systems.

3 Transmission Numbers

Character 7 6 5 4 3 2 1 0
Position]ADI [AD?2 TR# I TR# TR# STX TEXT DATA

2 Transmission Numbers

Character 7 6 5 4 3 2 1 0
Position [aD1 | AD2 | TR# | TR# | STX TEXT DATA

1 Transmission Number

Character 7 6 5 4 3 2 1 0
Position (aAD1 | AD2 | TR# | STX | TEXT DATA

0 Transmission Number

Character 7 6 5 4 3 2 1 0
Position |AD1 | AD2 | STX TEXT DATA

2.12.10 SPECIAL PURPOSE REGISTERS

The TC may be connected to a central processor two ways. When opérating in two-wire direct connect
(TDI) or over leased duplex (four-wire) lines, a four-wire mode must be specified. When operating over a
switched line or through half-duplex (two-wire) leased line, two-wire mode must be specified.

2.12.09 (Cont’d-2)

RTF
LTF
RPR

The Data Communications Processor contains a special register to enable two or four wire transmission
mode. One bit in this register is used to determine which mode is active.

OP CODE

RETRIEVE TWO/FOUR WIRE REGISTER RTF

Execution of this instruction will transfer the contents of the two wire/four wire register into the
Accumulator. When the Accumulator M Flag is on, the mode is two wire; when it is off the mode is
four wire. Like other “Retrieve” instructions, the user program must then interrogate the Accumulator
flag and perform according to program requirements.

LABEL OP CODE A B C REMARKS
LTF Load Two/Four Wire Register

Execution of this instruction will transfer the contents of the Accumulator into the Two or Four wire
register. The mode will then be 2 or 4 wire depending upon the status of the Accumulator M flag at
the time of execution.

OP CODE
RETRIEVE POINTER REGISTER RPR

This instruction will transfer the contents of the Character Pointer Register into the Accumulator. All
digits in the Accumulator will be hexadecimal and the format of the Accumulator will be as follows:

Revised 3-29-71 by
PCN 1045481-001 2.12.09 (Cont’d-3)

RPR

Example 1:

B B B B
wow LL WWWW L LWW
00 00 0O0O0O 0000
R R CC RRRR C CRR
D D K K DDDD K KDD
15[1afizfi2fitfio] o (8] 76 {57473 [2]1]0| ACCUMULATOR DIGIT POSITION
6l 2{ofcl 116|143]1|3|1 |1]|A]l VALUE
L RCPA LSCP
| BASE | | BASE
LRBR LKBR

L WORKING LRBR LWORKING LKBR-
BASE LRBR BLOCK 1

WORD 97 (352)
WORKING LRBR BLOCK 1

WORD 98 (353)
RECEIVE CHARACTER POINTER 12
BASE LKBR BLOCK 1

WORD 161 (416)
WORKING LKBR BLOCK 1

WORD 67 (322)
SEND CHARACTER POINTER 19

2.12.09 (Cont’d-4)

LPR

When controlling the loading of a buffer, it is necessary to be able to check the buffer capacity at the
start of each line of the message.

We must establish that we can put another full message line in the buffer.

To do this, we use a technique which examines the SCP

Example 2: Buffer size 255 CH+
Maximum Line 60 CH-
SCP Limit 195 CH

SCP is hexadecimal. Therefore,

195 = C 3 in digit positions 54

RPR RETRIEVE POINTER REGISTER
SKL 5 12 3 TEST FOR UPPER DIGIT < 12
EXL 5 13 1 TEST FOR UPPER DIGIT = 12
SKL 4 4 1 TEST FOR LOWER DIGIT < 4
BRU TRANSMIT IF NO. OF CHARACTERS > 195
BRU CONTINUE IF NO. OF CHARACTERS < 195
Example 3: Buffer Size 255 CH+
Maximum Line 63 CH-
SCP Limit 192 CH

Therefore, SCP = C 0

RPR
EXL 5 12 1 TEXT FOR UPPER DIGIT < 12
BRU CONTINUE IF NO. OF CHARACTERS < 192
BRU TRANSMIT IF NO. OF CHARACTERS > 192
OP CODE
LOAD POINTER REGISTER LPR

Execution of this instruction will transfer the contents of the Accumulator into the Character Pointer
Register.

Revised 3-29-71 by
PCN 1045481-001 2.12.09 (Cont’d-5)

SUBJECT 2.13 — POINT-TO-POINT PROGRAMING PROCEDURES
2.13.01 BASIC POINT-TO-POINT LINE DISCIPLINE

Point-to-Point Firmware provides the TC with a contention type line control procedure which allows
Series TC Computers to communicate on an equal basis with another Data Communications Unit (CPU
or another TC). The basic Point-to-Point line discipline does not provide a terminal addressing scheme
nor a transmission number sequence. Since an address scheme is not provided, only two units can be
listening to the line at any given time. When operating in this mode, the TC can communicate with a
CPU or another TC. When this Line Discipline is implemented, either unit on the line can initiate
transmissions without previously being interrogated (TC does not have to be polled).

In a Point-to-Point environment, the TC must normally contend for control of the line before it can
transmit a message. After a successful transmission is completed, control of the line is given to the
receiving unit. The receiving unit may then, if transmit ready, transmit a message without having to
contend for control. If the receiving unit is not transmit ready, the sequence is terminated.

A TC can operate in a switched line, leased line or a direct connect communication network when
utilizing Point-to-Point Firmware.

Point-to-Point Data Comm Processor (DCP) firmware is compatible with all standard main memory Data
Comm Firmware sets.

2.13.02 CONTROL REGISTERS
Five Control Registers are provided which allow user program control of the functions listed below.

Time Out Limit

Demand Disconnect

Idle Line Disconnect

Line Mode (2 wire or 4 wire)
NAK/NO Response Limit

The Control Registers can be controlled by user program or they can be set manually when the TC is
installed. To avoid the possibility of human error it is recommended that the Control Registers be set by
the user program.

a. Accessing of Control Registers:
The Control Registers are stored in the DCP memory (word 1188) and are accessed via the
RTF and LTF macro instructions. The RTF instruction retrieves the control register word and
stores it in the accumulator for manipulation. The LTF instruction transfers the contents of
the accumulator to the control register word in the DCP memory.

b. Control Word Format:
The five control registers are arranged within the control word in the following manner:

2.13.01

PT TO PT

LINE MODE — Digit Position 15.

NAK/NO RESPONSE LIMIT — Digit positions 7 and 6.
TIMEOUT LIMIT — Digit positions 5 and 4.

DEMAND DISCONNECT — Digit position 2.

IDLE LINE DISCONNECT - Digit positions 1 and 0.

The digit positions within the control word which are not used must be set to zero.

c. Time Out Limit Register:
The length of time which the TC will wait for a response after transmitting is determined by
the value in the Time Out Limit Register.

The Time Out value for the two units must be different to avoid “locking up” the line when
both units are contending for control of the line at the same time. The optimum difference
between timeout values is 500 milliseconds and this difference should be maintained if
possible.

The time out value in the TC can vary from O to 2550 milliseconds. To determine the minimum time
out value double the turn around time of the data set being used and add 100 milliseconds.

EXAMPLE:
If communication is over switched lines, using 202C data sets, the Time Out Limit should be determined
and set as follows:

Minimum Time Out = Time X
Maximum Time Out = Time Y
Turnaround time of 202C data set = 200 milliseconds.

Time X = (200ms) (2) + 100 ms = 500 ms
Time Y = Time X + 500 ms = 1000 ms

The value which is inserted into the Time Out Limit Register to achieve the desired time out
limit is the hexadecimal representation of 1/10 of the desired time out limit.

EXAMPLE:

Using the time out limit for time X computed in the example above, the values which would
be inserted into the Time Out Limit Register would be as follows:

Value for TIME X = 1/10 X 500 = 50.
50 expressed hexadecimally = 32.

A hexadecimal value of 32 would be inserted into the Time Out Limit Register to
achieve a Time Out Limit of 500 milliseconds.

Revised 3-29-71 by
PCN 1045481-001 2.13.02

PT TO PT

When the DCP transmits or Receives a DLE-EOT message the trouble flag (D1) and an
Indicator Register flag are set for user program interrogation.

d. NAK/NO Response Limit:
The number of times that the TC will attempt to transmit an ENQ or TEXT before taking
alternate actions is determined by the value in the NAK/NO Response Limit Register.

When the TC receives a NAK or a time out occurs, the TC will increment the NAK/NO
Response Counter and check the new count against the limit register. If the limit has not been
reached, the TC will return to the Transmit sequence and attempt to transmit the message
again. Upon reaching the NAK/NO Response Limit the Data Comm Processor (DCP) sets the
Trouble Flag (D1) and an Indicator Flag for user program interrogation. The Data Comm
Processor will then delay retransmission of its message for two seconds. During this
transmission delay the DCP is sensitive to the line and can receive a message. This delay is
required to permit the unit with the longer time out limit to gain control of the line if it has
been sending NAK’s due to having its receive buffer loaded and it has a message to send.

The value which is inserted into the NAK/NO Response Limit Register is the hexadecimal
representation of the desired decimal value. For example, if it is desired to set the NAK/NO
Response Limit to 10, a hexadecimal value of A would be inserted into the register.

e. Demand Disconnect:
A Demand Disconnect sequence is provided to allow a TC to programmatically disconnect the
line. When a TC demands a disconnect a DLE-EOT message is automatically transmitted. The
trouble Flag (D1) and an Indicator Register Flag is set when a TC transmits or receives a
DLE-EOT message.

The disconnect sequence is under the control of the user program and is initiated by setting
the Demand Disconnect Register to a value of 1. The Demand Disconnnect Register must be
set to O at all other times. The disconnect sequence can be used by a TC running in the
unattended mode to notify the other unit that it has completed transmission and is going to
turn itself off.

Additional capabilities of the Demand Disconnect feature will be published later.

f. Idle Line Disconnect:
When the line has been inactive for the length of time specified in the Idle Line Disconnect
Register, an Idle Line Timeout is declared and a DLE-EOT message is transmitted by the DCP.
The length of time specified in this register can vary from approximately 1 minute to 42
minutes or it can be set to never declare an Idle Line Timeout. However, the minimum time
allowed by the DCP is 60 seconds regardless of the time specified in the Register.

The number which is inserted into the Idle Line Disconnect Register to achieve the desired
length of time for an Idle Line Timeout is in hexadecimal format and has a weighted value of
10 seconds. The correct value can be determined by dividing the number of seconds desired
for an Idle Line Timeout by a factor of 10 and then converting the resulting quotient to its
corresponding hexadecimal value.

2.13.02 (Cont’d)

PT TO PT

EXAMPLE:

The value to insert in the Idle Line Disconnect Register to declare an Idle Line Timeout after
5 minutes may be computed in the following manner.

5 minutes X 60 = 300 seconds

300 divided by 10 = 30

30 expressed hexadecimally = 1E

1E would be inserted into the register.

el o

If it is desired to never declare an Idle Line Timeout, a value of 00 must be inserted into the
Idle Line Disconnect Register.

Additional capabilities of the Idle Line Disconnect Register will be published at a later date.

g. Line Mode:
The Line mode register is used by the DCP to determine the line configuration in which it is
operating. This register must be set properly to provide the correct timing for the type of line

being used.

The values for the two modes of operation are: If 2 wire mode is used, insert a value of 8 in
the register; if a 4 wire mode is used, insert a O in the register.

EXAMPLE:

The control registers could be set programmatically using the parameters listed below:

PARAMETERS:

LINE MODE — 2 wire

NAK/NO Response Limit — 6
TIMEOUT LIMIT — 500 Milliseconds
IDLE LINE DISCONNECT — 5 minutes.

LABEL INST A B < REMARKS
CTLREG CLA 0 0 CLEAR ACCUMULATOR
SET A M SET 2 WIRE MODE
INK 6 6 SET NAK/NO TO SIX
INK 5 3 SET UPPER TIMEOUT
INK 4 2 SET LOWER TIMEOUT = 500 ms
INK i 1 SET UPPER IDLE LINE
INK 0 E SET LOWER IDLE LINE = 5 min
LTF LOAD CONTROL REGISTERS

2.13.03 INDICATOR REGISTER FLAGS

ovided in the Indicator Register to allow the user program to interrogate the cause of

Eight flags are pr :
e Indicator Register is located in

exception conditions which can occur in the Data Comm Processor. Th
the DCP (word 1197) and is accessed via the RPF and LPF macro instructions.

Revised 3-29-71 by
PCN 1045481-001 2.13.03

PT TO PT

RETRIEVE PROBLEM FLAGS

The RPF instruction transfers the contents of the Indicator Register from the DCP to the Accumulator
where the flags can be tested using the Accumulator flag group (A flags).

LOAD PROBLEM FLAGS

The LPF instruction transfers the contents of the Accumlator to the Indicator Register in the DCP.

The following flags are provided in the Indicator Register. The Flags in Group 1 are located in digit
position 15 of the register (word 1197) and the flags in group 2 are located in digit position 14 of the

Indicator Register.
Group 1:
“A” FLAG

Ao

Group 2:
“A” FLAG

M
C
S

2.13.03 (Cont’d-1)

Exception Item

Received DLE-EOT message
Transmitted DLE-EOT message
Break

NAK/NO Response limit reached.

Exception Item

Received Buffer overload
Transmitted Buffer overload
Parity Error Received
Invalid Character Received

PT TO PT

NOTE: Flag Group 2 must be shifted into digit position 15 of the accumulator before testing.

The Flags in Group 2 are provided mainly as a debugging aid to help in qualifying a data
communications network and/or application programs and normally would not be used in a live
operating environment.

a. Trouble Flag:
When a condition occurs which causes an Indicator Flag to be set, the Trouble Flag (D1) is
also set. The Trouble Flag can only be tested by the user program using skip and execute
instructions: It cannot be set or reset. The Trouble Flag is reset by firmware when it finds
that the Indicator Flags have been reset by the user program.

b. Program Requirements:
The following steps are recommended in handling exception conditions in order to get a valid
test of the Indicator Register Flags and to avoid the possibility of losing an Indicator Flag
setting:

1. Test Trouble Flag (D-1): If set, go to Step 2; if reset, continue mainline program.
2. READ Indicator Flag Register to the Accumulator.

3. Test if any Indicator Flags are set.
1. If set — Go to Step 4.

2. If reset — Return to mainline program (see note below).
4. Process all Flags set (more than one can be set).
5. Reset Indicator Register.

NOTE: It is possible under some circumstances for the User Program to retest D-1 before
Firmware can reset D-1.

Revised 3-29-71 by
PCN 1045481001 2.13.03 (Cont’d-2)

PT TO PT

EXAMPLE:

The Indicator Flags could be tested for in the following manner:

LABEL INST

ere———

EX
Sl}J
TSTERR Ri’F
SK
EXZ
SRR
BRU
EX
SRJ
EX
SRJ
EX
SRJ
EX
SRJ
GP2FLG EXZ
BRU
SLROS
EX
SRJ
EX
SRJ
EX
SRJ
EX
SRJ
RESET CLA
LPF
SRR

2.13.03 (Cont’d-3)

TSTERR

A

1

1
GP2FLG
A

NAK

A
BREAK
A
TRMEOT
A
RECEOT
1

RESET

1

A
STRANG
A
PARITY
A
TROVER
A
RCVOVR
0

-SCM

REMARKS

TEST FOR DATA COMM ERROR

GO TEST ERROR
/

RETRIEVE INDICATOR FLAGS
TEST NEW TROUBLE GRP 1| FLAG
TEST NEW TROUBLE GRP 2 FLAG
RETURN — NOT NEW TROUBLE
TROUBLE IN GROUP 2

TEST NAK/NO LIMIT

GO PROCESS ERROR

TEST BREAK

GO PROCESS ERROR

TEST TRANS DLE-EOT

GO PROCESS — DISCONNECT
TEST RECEIVE DLE-EOT

GO PROCESS — DISCONNECT
TEST TROUBLE THIS GROUP
GO RESET INDICATOR FLAGS
POSITION GP2 FLAGS

TEST STRANGE CHAR

GO PROCESS

TEST PARITY ERROR RECV

GO PROCESS

TEST TRANS OVERLOAD

GO PROCESS

TEST RECV OVERLOAD

GO PROCESS

CLEAR FLAGS

RESET INDICATOR REGISTER
RETURN TO MAINLINE

2.14 — CENTRAL TC CONTROLLER PROGRAMING PROCEDURES

Central TC Controller (CTCC) is a Data Communications Processor (DCP) firmware set which allows a
TC to assume the Data Communication I/O functions of a central processing unit in a polling and
selecting environment. A TC which utilizes the Central Controller DCP Firmware can control from 1 to
16 remote TC’s in an on-line applicational environment.

The Central TC Controller operates in a standard Polling and Selecting line control environment. In
addition to standard selection of remote units the following types of special select formats are provided:

Fast Select, Group Select, and Broadcast Select.

The polling or selecting of the various terminals in a network is controlled by a series of 16 control
words which are stored in the memory of the Data Communications Processor. These control words can
be easily accessed and manipulated as required by macro programing techniques thus giving the user
program positive operational control of the network.

In addition to controlling the polling and selecting operations, the line discipline of the Central TC (the
term used to describe the TC loaded with the CTCC firmware) can also be controlled. This is possible
because the line discipline of a Central TC is not buried in the program codes of the Data Comm
Processor. Instead, it is specified and controlled by a collection of Line Procedure Format Registers. A
degree of flexibility of line discipline is thus achieved because a change of line discipline does not
require a change in the firmware.

The controller will function via a switched, leased or direct connect line configuration.

The following sections discuss in detail: the line disciplines of a Central TC 500 as controlled by the
Format Registers; the Data Comm Processor operations of polling and selecting as controlled by the
Control Registers; and the Main Memory firmware requirements.

2.14.01 LINE DISCIPLINE FORMAT REGISTERS

Several disciplines are made possible through the use of the Central TC Controller firmware. The line
procedures that can be implemented by this new Data Comm firmware are: poll, select, fast select,
group select, and broadcast select.

Each line procedure uses two Format Registers; each register consists of one word or eight (8)
characters. The most significant character position is called the Data Character Counter (DCC) and is
used to specify the number of significant characters contained in the Format Register (this is indicated
in digit position 14) along with other information (digit position 15). The seven (7) remaining character
positions accommodate the necessary format character which must be right justified. Dummy characters
are used as substitute for the address (AD1, AD2, and group address) and the transmission number
(TR1, TR2, and TR3). The actual terminal address and transmission number will be fitted in by the
Controller firmware during the actual transmission.

Revised 3-29-71 by
PCN 1045481-001 2.14.01

CTCC

The dummy characters used in each of the Format Registers are further defined:

Character Dummy Hexadecimal Value
AD1 80
AD?2 81
AD3 (Group) 82
These valués must be TR1 88
used in a three (3) TR2 89
TR # system. TR3 8A
Must be used in a two (2) TR1 89
TR # system. TR2 8A
Value in a one (1) TR # system. TR1 8A

All of the actual characters to be transmitted from each of the Format Registers have their normal
USASCII format with their parity bits equal to zero (0). Their correct parity bits are generated by
hardware as each character goes out on the line.

The succeeding sections specify the formats of the individual pairs of Format Registers used with the
various line disciplines supported by the Central TC Controller.

a. Poll Format Registers
These two registers are the Poll Message Register and the Expected Header Register.

The Poll Message Register is located in word 1155 and consists of the actual (and dummy)
characters, right justified and in their proper sequence, that are used to poll the slave
terminal(s). The Data Character Counter (DCC) in character position eight (8) of the Poll
Register contains a value from zero (0) to six (6) depending on the number of characters in
the poll message. A poll message one (1) character in length would have a DCC value of zero
(0). A poll message seven (7) characters in length would have a DCC value of six (6).

EXAMPLE: Poll Message Register containing the standard TC polling characters.
Character Position 8 7 6 5 4 3 2 1

Word 1155 04 00 00 04 80 81 70 05
DCC EOT AD1 AD2 POL ENQ

The Expected Header Register is located in word 1154 and consists of the actual (and
dummy) characters, right justified and in the sequence desired are in the header portion of the
remote terminals message. A comparison is made using only the first and last character of the
actual received header against the first and last character of the expected header. The DCC in
character position eight (8) of the Expected Header Register again contains a value from zero
(0) to six (6) depending on the number of characters loaded into the register. The BCC is
computed, starting with the second significant character in the Expected Header Register.

2.14.01 (Cont’d-1)

CcTCC

EXAMPLE: Expected Header Register containing the standard TC header for a three-digit
transmission number system.

Character Position 8 7 6 5 4 3 2 1
Word 1154 06 01 80 81 88 89 8A 02
DCC SOH AD! AD2 TR1 TR2 TR3 STX

b. Select Format Registers
There are two select registers; the Select Message Register and the Header Format Register.

The Select Message Register is located in word 1157 and contains the characters (both actual
and dummy) that are used to select the slave terminal(s).

EXAMPLE: Select Message Register with standard TC select characters.

Character Position 8 7 6 5 4 3 2 1
Word 1157 04 00 00 04 80 81 71 05
DCC EOT AD1I AD2 SEL ENQ

The Header Format Register is located in word 1156. It contains the characters (actual and
dummy) that are in the header portion of the Central TC’s message. Depending on the number
of characters in the header, character position eight (8) of the Header Register contains one of
the following hexadecimal values for the DCC.

No. of Characters in Header _ DCC Value
1 08
2 09
3 0A
4 0B
5 04
6 05
7 06

The BCC is computed, starting with the second significant character in the Header Register.

EXAMPLE: Header Format Register containing the standard TC header for a no transmission
number system.

Character Position 8 7 6 5 4 3 2 1
Word 1156 OB 00 00 00 01 80 81 02
DCC SOH ADl1 AD2 STX

c. Fast Select (FSL) Format Registers
The characters used in implementing the fast select line discipline are defined as those

characters that precede the actual message text. They are further defined as consisting of a

Revised 3-29-71 by N
PCN 1045481001 2.14.01 (Cont’d-2)

CTCC

first half (all characters up to and including the SOH) and a second half (all characters
following the SOH up to and including the STX). Each half of the fast select discipline has a
separate format register.

The first half is located in word 1159. Character position eight (8) of word 1159 contains
both the Data Character Counter (in digit position 14) and special information (digit position
15) peculiar to halved line discipline formats. Depending on the number of characters in the
first half register digit position 14 contains one of the following hexadecimal values for the
DCC.

No. of Characters in First Half DCC Value

N N AW N
o U B W B O ®

Digit position 15 contains one of three possible hexadecimal values. A hex 4 indicates there is
no second half. In this case, the actual message text is transmitted immediately after the first
half. A hex 8 indicates the characters in the first half register are not to be transmitted;
proceed to inspect the second half. Hex O implies normal (first and second half) fast select.

The BCC computation does not include any of the characters in the first half register.

EXAMPLE: Fast Select Format Register (first half) indicating no second half.

Character Position 8 7 6 5 4 3 2 1
Word 1159 /44 /00 /00 /04 /80 /8 /73 /01 /
D EOT AD1 AD2 FSL SOH
C
C

The second half of the fast select format is located in word 1158. Again character position
eight (8) contains both the DCC (digit position 14) and special information (digit position 15).
The possible hexadecimal values for the DCC are the same as those outlined for the first half
register. Digit position 15 of the second half register contains one of four possible values.

Hexadecimal 0 — Implies normal mode.

Hexadecimal 2 — Indicates the first half register contains four (4) characters or less.
Hexadecimal 4 — Indicates there is no first half.

Hexadecimal 8 — The characters in this register are not to be transmitted; proceed to

actual message text.

2.14.01 (Cont’d-3)

CTCC

The BCC is computed, starting with the first significant character in the second half register.

EXAMPLE: Fast Select Format Register (second half) indicating first half contained 4 characters

or less.
Character Position 8 7 6 5 4 3 2 1
Word 1158 /25 /oo /8o /81 /8 /8 /sa /02 /
D ADl AD2 TRI TR2 TR3 STX
C
C

d. Group Select (GSL) Format Registers
The GSL Format Registers also specify a first half and a second half. The first half is located
in word 1161, the second half in word 1160. Their structures are identical to those of the
first and second halves respectively, of the Fast Select Format Registers.

Broadcast (BSL)

The Broadcast Format Registers again specify a first half (located in word 1163) and a second
half (located in word 1162). Their structures are also identical to those of the first and second
halves, respectively, of the Fast Select Format Registers.

e. Summary
When the Central TC Controller firmware is first loaded into the machine, all format registers
become initialized to their corresponding standard (3 transmission numbers) TC line disci-
plines. These disciplines can be changed to meet most non-Burroughs standards by altering the
contents of the appropriate Format Register(s).

However, in spite of this scheme to seek flexibility, certain basic structures of line disciplines
have to be adhered to. Refer to charts 1, 2 and 3 at the end of this subject for illustrations of
the basic structures for polls, selects, fast selects, group selects, and broadcast selects.

2.14.02 DATA COMM PROCESSOR OPERATIONS

The operation of the Data Comm Processor of a Central TC is dictated by the contents of sixteen (16)
Control Registers. Since each terminal connected to a Central TC requires the use of only one (1)
Control Register, the CTCC firmware can handle up to sixteen (16) terminals at any one time.

These registers occupy memory words 1184-1199 in the DCP memory. Each register is one (1) word in
length and contains:

1. The address (AD1, AD2, and group address) of its associated terminal. This information is
contained in character positions 8, 7 and 6 respectively.

2. The beginning transmission number of the outgoing message to this terminal in a three (3)
transmission number system, character positions 5, 4 and 3 of the Control Register are used for the
TR numbers. In a two (2) TR number system, character positions 4 and 3 are used. A one (1) TR
number system uses character position 3. In a zero TR number system, character positions 5, 4 and
3 must be cleared.

Revised 3-29-71 by
PCN 1045481-001 2.14.02

CTCC

3. Operation Indicators to service this terminal. These are located in character position 1.

The Control Registers are placed in memory in the form of a list. The Data Comm Processor will
process this list of sixteen (16) Control Registers one at a time, in sequence, beginning at the top.
It will perform the function(s) indicated by the Operation Indicator(s) contained within the
Control Register. Thus, the terminals will be serviced in the sequence in which their corresponding
Control Register is placed. When the 16th Control Register is processed, operation will returmn to
the top of the list. Should less than sixteen terminals be connected to a Central TC, and ADI
hexadecimal value of 00 in the first un-used Control Register causes the Data Comm Processor to
return to the register at the top of the list. Any column O code from the USASCII chart (except
00) or any column 1 code used in place of ADI, causes the current register to be skipped.
Operation then proceeds to the next Control Register in the list.

a. Operation Indication
As mentioned, Operation Indicators occupy the least significant character position of a
Control Register. Their individual bit allocations are shown:

Character 1 8 4 2 1 8 4 2 1
of Control]]])] A_Poll Indicator
Regist

egister L Select Indicator

Firmware use only

Fast Select Indicator

Group Select Indicator

Broadcast Indicator

Unassigned

2 wire/4 wire Indicator

If any of the above operations result in no response, strange response, or inability to transmit
a message, due to some condition at the remote terminal, the Data Comm Processor times out
and goes into an idle state. A special flag (D1) is set and the exact cause of the time out is
contained in a special Time Out Register. This register is available to the macroprogram. (See
section on Data Comm Processor Time Out.)

1. Poll Indicator
The Poll Indicator is normally reset. To poll a terminal, the Main Processor sets the
Poll Indicator of a Control Register, as specified by the macroprogram. The input
buffer of the Data Comm Processor should be empty and D2 should be reset. The
Processor will not poll any terminal unless D2 is reset. After a successful poll, the
Poll Indicator will be reset, and the Message Received Flag (D2) set. A special
register (called the Header Register) containing the received message header, right
justified, is available. This allows the macroprogram to retrieve the address of the
terminal from which the message came, and the transmission number of the message
received. By numbering the terminals sequentially, and organizing the Control
Register list in the same manner, the address in the Header Register serves as a
pointer to its corresponding Control Register. Upon completion of a poll procedure,
the Data Comm Processor will time out and assume the idle state. The other bits in

2.14.02 (Cont’d-1)

CTCC

the Operation Indicators will be interrogated only when the macro programmer
releases the processor from its idle state. This is accomplished through the use of the
RESUME command.

Select Indicator

This indicator is normally reset. To transmit a message to a terminal, the
macroprogram must transfer the message to the output buffer, set the Transmit
Ready Flag, and set the Select Indicator in the appropriate Control Register. The
Data Comm Processor then selects this terminal when its Control Register is
processed. The Select Indicator is reset by firmware after a successful Select.

Fast Select Indicator

This indicator is normally reset. To transmit a message to a terminal via Fast Select,
the macroprogram must set up the output message, set the Transmit Ready Flag,
and set the Fast Select Indicator in the appropriate Control Register. The Data
Comm Processor then Fast Selects this terminal when its Control Register is
processed. The FSL Indicator is reset by the CTCC after a successful Fast Select.

Group Select and Broadcast Indicators
Both of these indicators perform their respective functions in the identical manner
of the Fast Select Indicator.

2 Wire/4 Wire Indicator
This indicator must be set by the macroprogram for a 2 wire system. It must be
reset (0) for a 4 wire system.

The following example illustrates the initial format of the Control Register in a
three (3) terminal, 4 wire, network using a two-digit TR number.

Character Position 8 7 6 5 4 3 2 1
Word 1184 /31 /41 / 31/ 00/ 30 /30 /00/ o1/
AD1 AD2 GSL TRI TR2 POL

Character Position 8 7 6 5 4 3 2 1
Word 18 /31 /42 /31 /00 / 30 /30 /oo / o1/
AD1 AD2 GSL TR1 TR2 POL

Character Position 8 7 6 5 4 3 2 1

Word 1186 /31 /43 /31 /o0 /30 /30 / 00/ 03/
ADl AD2 GSL TR1 TR2 POL and

SEL

Character Position 8 7 6 5 4 3 2 1

‘Word 1187 /00 / 00 /oo /oo / 00 / 00 / 00 / 00

*ADl AD2 GSL

* The ADI1 hexadecimal value of 00 causes the Data Comm Processor to return to
word 1184. ’

Revised 3-29-71 by
PCN 1045481-001 2.14.02 (Cont’d-2)

CTCC

b. Data Comm Flags
Three Data Comm flags are defined to serve as communications between the Data Comm
Processor and the Main Memory Firmware:

D1 — This flag is set by the Data Comm Processor whenever it goes into an idle state.
An idle state occurs when either the Data Comm Processor times out or the
macroprogram issues an Idle Request. (See section on macro instructions under
MAIN MEMORY). D1 is reset when the macroprogram re-activates the Data
Comm Processor to bring it out of the idle state.

D2 — Message Received Flag
D3 — Transmit Ready Flag. It is set by the macroprogram to indicate that the output
buffer contains a message ready for transmission. However, this message will be

transmitted to a terminal only if the Select Indicator in the proper Control
Register is also set.

All three flags are available for interrogation through the regular Skip/Execute instructions.

c. Data Processor Time Out
The following situations cause the Data Comm Processor to time out:

1. The Central TC receives no response from a terminal to any of the following: poll,
select, fast select, group select, or broadcast.”

2. The Central TC receives a strange response from a terminal to any of the following:
poll, select, fast select, group select, or broadcast.

3. Terminal NAKSs a select, fast select, group select or a broadcast.

4. Persistent parity error occurs between the Central TC and the terminal.

As previously discussed, while the Data Comm Processor is in the time out condition, D1 is
set and a register is available for interrogation. This register, called the Time Out Register, is
located in word 1169 and is a replica of the Control Register that is involved at the time,
supplemented by information stored in character position 2 as shown:

Character Position 8 7 6 5 4 3 2 1
Word 1169 AD1 | AD2 |GsL T
Transmission F Operation
Number Indicators
Persistent Parity Error «

Terminal NAKs Message «e—

Strange Response «w—

No Response =

F=0000 POL
F=0001 SEL
F=0010 FSL
F=0011 GSL
F=0100 BSL

2.14.02 (Cont’d-3)

CTCC

When the Data Comm Processor times out and goes into an idle state due to one of the above
conditions, the macroprogram must retrieve the Time Out Register and, after examining its
contents, clear it. This must be done prior to re-initiating the Data Comm Processor to its
normal operation. Re-initiating the Processor also resets the D1 flag.

The Time Out Register serves no purpose if the idle state of the Data Processor is initiated by
the macroprogram as there is no indicator in the register to reflect such a condition.

d. Header Register

If a remote TC makes an affirmative response to a Poll Enquiry (data) the Header portion of
the remote TC’s message is stored in the Header Register (word 1166) for use by the
macroprogramimer.

If a sequencial numeric addressing scheme is utilized, the macroprogrammer can examine the
contents of the Header Register to determine which remote is responding to the POLL and
reload the appropriate control register. The data in the Header Register is right justified and
contains all of the header information up to and including the STX character.

EXAMPLE:

Character Position

8 7 6 5 4 3 2 1
/ / son /ap1 /apz /1Rl /TR2 / TR3 / s1x/

2.14.03 MAIN MEMORY PROCESSOR

Main Memory can not access Data Comm firmware unless the latter is in an idle state. However, the
Main Processor can cause an idle condition by issuing an idle request. A special macroinstruction, IDLE
REQUEST, is implemented to perform this function.

The operation of the IDLE REQUEST instruction involves the setting of the D1 flag. The Data Comm
Processor interrogates D1 at certain convenient'points during its regular operation. Should the flag be
set, any Data Comm procedure previously initiated is allowed to terminate before the Processor goes
into the idle state. When the Processor is re-initiated, D1 is reset.

A situation can arise where the Data Comm Processor encounters one of the previously discussed
conditions that cause a time out after the Main Processor initiates an idle request and before the Data
Comm Processor actually goes into idle. Since the Main Processor was first in initiating the setting of D1,
the Time Out Register is left unchanged if no error conditions are encountered. If the Time Out Regis-
ter has been cleared everytime it was interrogated, the fact that the register is zero (0) is adequate
indication to the macroprogram that the idle state is due to the request and not to any error conditon.
However, since the idle request does leave the register unchanged, it must be cleared everytime so that it
will always reflect to the macroprogram the correct cause of the time out (i.e., error condition or idle
request).

Revised 3-29-71 by
PCN 1045481-001 2.14.03

CTCC

The Central TC Controller firmware will operate with any of the standard GP 300, Data Comm main
memory firmware sets that are supplemented by the CTCC main memory add-on tape. This add-on
implements special macroinstructions described below:

a. Resume

OP CODE LABEL
CODE 1000

This command re-initiates the Data Comm Processor’s normal operation. It should only be
given when the Processor is in an idle state. If the DCP processor is not in an idle state, the
machine will hang on the instruction.

b. Idle Request

OP CODE LABEL
CODE 1100

This command allows the macroprogram to interrupt the normal operation of the Data Comm
Processor and cause an idle state.

c. Retrieve Header Register

OP CODE LABEL
CODE 3C8E

The actual received header is placed into the Accumulator.

d. Retrieve Time Out Register to Accumulator

OP CODE LABEL
CODE 3C91

e. Load Time Out Register from Accumulator

OP CODE LABEL
CODE 3491
f. Retrieve Control Register
OP CODE LABEL _é_
CODE 3CA O-F

The A-field specifies which of the sixteen (16) Control Registers is to be placed into the
Accumulator.

g. Load Control Register

OP CODE LABEL A
CODE 34A O-F

2.14.03 (Cont’d-1)

CTCC

The A-field specifies which of the sixteen (16) Control Registers to load the contents of the
Accumulator into.

Example of controlling one terminal in a normal TC Polling and Selecting environment.

LABEL OP CODE A B c REMARKS
LIR 2 0
CLM ADDR
LKBR ADDR
TKM 2 ENTER REMOTE’S ADDR
TRA ADDR LOAD INTO ACCUM
INK 0 1 LOAD POL OP-INDICATOR
CODE 1100 IDLE REQUEST
CODE 34A0 LOAD 0 CONTROL REGISTER
CLA 0 0
CODE 34A1 LOAD 1 CONTROL REGISTER
CODE 1000 RESUME
LISTEN EX D 1 1
SRJ ERROR
SK B 3 1
BRU SELECT
EX D 2 1
BRU MSGE
BRU LISTEN
ERROR IR 2 10 KEEP ERROR COUNT
CODE 3C91 RETRIEVE ERROR REG
SKL 3 8 4 TEST FOR PARITY
AL 1
POS 50
PA PARMSG
LIR 2 0 RESET COUNTER
SK T I 4
CLA 0 0 CLEAR TIME OUT REG
CODE 3491 RELOAD TIME-OUT REG
CODE 1000 RESUME
SRR 1
LIR 2 0 RESET COUNTER
AL 1
POS 50
EXL 3 2 2 CHECK FOR NO RESPONSE INDICATOR
PA NOMSG
BRU RTNE
EXL 3 3 2 CHECK FOR A STRANGE RESPONSE
PA STRMSG
BRU RTNE
EXL 3 4 2 CHECK FOR INVALID

Revised 3-29-71 by
PCN 1045481-001 2.14.03 (Cont’d-2)

CTCC

LABEL OP CODE

PA
BRU
EXL
PA
BRU
SKL
PA
RTNE CLA
CODE
CODE
SRR
SELECT AL
POS
LKBR
TKM
EX
EX
SRJ
BRU
CODE
CODE
INK
CODE
TSB
CODE
SET
BRU
MSGE CODE
TRB
CODE
INK
CODE
CODE
RST
LRBR
AL
POS
PR
PAB
SK
AL
BRU
BRU

2.14.03 (Cont’d-3)

A

INDIC
RTNE

3
NAKMSG
RTNE

3

INDIC

0

3491
1000

1

2

10
SEND
150

D

D
ERROR
-3

1100
3CAQ

0

34A0
SEND
1000

R
LISTEN
1100
RECEIV
3CAQ

0

34A0
1000

R
RECEIV
2

10

LISTEN

REMARKS

DIGIT IN INDICATOR

CHECK FOR NAK
LIMIT INDICATOR
CHECK FOR INVALID
DIGIT IN INDICATOR
CLEAR REGISTER
LOAD TIME OUT REG
RESUME

IDLE REQUEST

SET POL-SEL INDICATOR
LOAD CONTROL REG 0

RESUME

IDLE REQUEST

TRANSFER TO RECORD AREA
RETRIEVE CONTROL REG
SET POL INDICATOR

LOAD CONTROL REGISTER
RESUME

PRINT
MESSAGE
ROUTINE

SIMULATOR

ANY SEQUENCE OF
POLL MESSAGE
1-7 CHARACTERS

CTCC

TERMINAL

READY
TO SEND
E INVALID
v i o OR
ANY HEADER T NO RESPONSE
[17 CHAR]‘TEXT) T
X

‘+-—— OO W

'

PERSISTENT
PARITY
ERROR

l

TIME OUT —
MICROPROGRAM SHOULD

A0 P> e

UP TO

TIMES

r—x)>2<-—

[[R E-TRANSMIT]]

v

2

DETERMINE NATURE OF
TIMEOUT AND RE-INITIATE
OPERATION

l
E
0
}

Vo

CONTINUE WITH NEXT
OPERATION SPECIFIED
IN THE CONTROL
REGISTER — ETC.

Chart 1. Poll

Revised 3-29-71 by s
PCN 1045481-001 2.14.03 (Cont’d4)

CTCC

SIMULATOR | TERMINAL
|
ANY SEQUENCE OF |
SELECT MESSAGE |
1-7 CHARACTERS |
| NOT READY
READY A
| INVALID N i
OR A o
| NO RESPONSE K <
¥ R
IR |
TIME OUT — |
MACROPROGRAM SHOULD |
DETERMINE NATURE OF
TIMEOUT AND RE-INITIATE l
OPERATION |
l ‘ |
ANY HEADER E B
17 (TEXT) T ¢ |
CHARACTERS X C l
| l
| v I |
| N INVALID A
A OR c
| K NO RESPONSE K
¥
: ¥ |
RE-TRANSMIT AFTER |
n TIMES n
L TIMES l
Y 1
Y

v |

CONTINUE WITH NEXT OPERATION
SPECIFIED IN THE CONTROL l
REGISTER — — ETC.

Chart 2. Select

2.14.03 (Cont’d-5)

CTCC

SIMULATOR | TERMINAL

- |
FIRST HALF
MESSAGE [
C-7 CHARACTERS

2ND HALF
MESSAGE |
0-7 CHARACTERS _|

(TEXT) E

-
OO0 w

-

INVALID

i
|

AOP @——

NO RESPONSE

l

TIME OUT —
MACROPROGRAM SHOULD
DETERMINE NATURE OF
TIMEOUT AND RE-INITIATE
OPERATION

|
I
|
|
Y I
|
|
I
|

| |

CONTINUE WITH NEXT l
OPERATION SPECIFIED
IN THE CONTROL l
REGISTER — — ETC.

Chart 3. Fast Select, Group Select, and Broadcast Select

Revised 3-29-71 by
PCN 1045481-001 2.14.03 (Cont’d-6)

2.15 — INPUT WITH PUNCHED PAPER TAPE/EDGE PUNCHED CARD READER

Instructions are provided to read punched paper tape or edge punched cards, using a Burroughs Style A
581 Paper Tape/Edge Card Reader as the input adjunct. All subsequent reference to “paper tape”
applies both to punched paper tape and to edge punched cards, unless indicated otherwise.

Tape reading is serial, one character at a time, at a speed up to 40 characters per second (when no
printing accompanies it). When reading paper tape and printing, the reading speed is up to 20 characters
per second; when reading and punching only (no printing), reading speed is up to 40 cps.

The Series L/TC internal character code is USASCII; however, any 5, 6, 7, 8 channel paper tape code
can be read and interpreted by utilizing a Table of Input Code Assignments for conversion of the paper
tape code into the internal USASCII code. The functional codes in a code set may be used as field
identifier codes to terminate tape reading and set flag patterns, or may be ignored (refer to the Table of
Input Assignments in Appendix I). The scheme of character parity checking for a particular code set is
also a function of the Table of Code Assignments. Firmware for 5 channel code is different than that
for 6, 7, or 8 channel “table look-up” firmware or for USASCII No Table firmware.

2.15.01 PAPER TAPE READER INSTRUCTIONS

The Paper Tape Reader instructions are designed to function both as ‘“read” instructions and as
“keyboard’ instructions.

When all tape reading conditions exist, i.e., the reader is on, the photo-electric light is on, and media is
present, reading of the paper tape will occur according to the specifications of the instruction.

If any of the above conditions do not exist, then the reader is not operable (a “reader condition™ has
occurred). The read instruction now reverts to its keyboard counterpart®**, and the keyboard buffer is
cleared so that the operator may manually index that data required by the altered read instruction. Note
that any data resident in the keyboard buffer is lost when the read instruction fails to execute. It
follows that the read instruction must be reached before a manual entry is made in its place, because if
the operator anticipates this condition and indexes data before the program halts, the data will be lost.

The mnemonic representations of the read instructions are the same as selected keyboard instructions
with the addition of a prefix letter “R.”

Instructions that involve punching paper tape along with reading of paper tape will inhibit the punch
part of the instruction if the tape perforator is turned off. In addition, the Punch Off Indicator light is
turned on and Punch Off Flag is set (refer to Subject 2.16.02)

** EXCEPTION: RNK reverts to a NKRCM (see Subject 2.02.01)

2.15.01

RTK

RTKM
REAM
PT
2.15.02 PAPER TAPE/EDGE PUNCHED CARD INPUT INSTRUCTIONS
OP CODE A_
READ ALPHA AND PRINT RTK 0-150 15%” forms handler

RTK 0-255 26 forms handler

The RTK instruction reads from tape (i.e., paper tape or edge punched card) and prints the number of
alphanumeric characters specified by the “A” field. The instruction will be terminated upon reading a
field identifier code or after reading the number of alphanumeric characters as denoted by the “A”
parameter.

The flag patterns to be set by the field identifier codes are determined by the Table of Input Code
Assignments (see Appendix I). '

When a “reader condition” exists, the RTK instruction reverts to a TK instruction and the keyboard
buffer is CLEARED in anticipation of manual input.

OP CODE A
READ ALPHA INTO MEMORY AND PRINT RTKM 0-150 15%” forms handler

RTKM 0-255 26 forms handler
The RTKM instruction reads from tape into memory and prints the number of alphanumeric characters
specified by the “A” field. The RTKM should be preceded by an LKBR instruction to indicate the
starting word location in memory for character storage. (See Subject 2.02.03.)

The LKBR is incremented to the next higher word after each eight characters have been read. The
instruction will be terminated upon reading a field identifier code or completion of reading the number
of alphanumeric characters specified in the “A” field. The flag patterns to be set by the field identifier
codes are determined by the table of input code assignments. (See Appendix I).

If a reader condition exists, the RTKM instruction will revert to a TKM instruction. (See RTK
instruction).

OP CODE A
READ ALPHA INTO MEMORY, NON-PRINT REAM 0-150 15%” forms handler
REAM 0-255 26” forms handler

The REAM instruction reads from tape into memory the number of alphanumeric characters specified in
the “A” parameter; no printing occurs. The REAM instruction should be preceded by an LKBR
instruction to denote the starting word location in memory for character storage. The LKBR is
incremented to the next higher order word after each set of eight characters has been read. The
instruction will be terminated upon reading a field identifier code or completion of reading the number
of alphanumeric characters specified in the “A” field. The flag patterns to be set by the field identifier
codes are determined by the Table of Input Code Assignments.

Revised 3-29-71 by
PCN 1045481-001 2.15.02

RXEAM RXTK

RXTKM RNK
: PT

If a reader condition exists, the REAM instruction reverts to an EAM instruction. (See RTK
instruction).

OP CODE A

READ ALPHA INTO MEMORY AND PUNCH, NON-PRINT RXEAM 0-150 15%” forms handler
0-255 26” forms handler

The RXEAM instruction is the same as the REAM instruction, except that punching will also occur.

The RXEAM instruction can revert to an XEAM instruction if the tape reader is not operable, to an
REAM instruction if the tape perforator is turned off, or to an EAM instruction if neither the reader
nor the perforator is operable.

OP CODE __/}_
READ ALPHA, PRINT AND PUNCH RXTK 0-150 15%” forms handle1
RXTK 0-255 26> forms handler

The RXTK instruction reads from tape, and simultaneously prints and punches the number of characters
specified in the A parameter. The instruction is terminated after reading the specified number of
characters or upon reading a field identifier code.

The flag patterns to be set by the field identifier codes are determined by the Table of Input
Assignments. (See table in Appendix I).

The RXTK instruction can revert to an XTK instruction if the tape reader is not operable. If the paper
tape punch is off, the RXTK will revert to a RTK instruction; or to a TK instruction if both a reader
and perforator condition exist. (See RTK instruction).

OP CODE A

READ ALPHA INTO MEMORY, PRINT AND PUNCH RXTKM 0-150 15%” forms handler
RXTKM 0-255 26” forms handler

The RXTKM instruction is the same as the RTKM instruction, except that tape punching occurs
simultaneously.

The RXTKM instruction can revert to an XTKM instruction if the tape reader is not operable. If a
perforator condition exists, the RXTKM will revert to a RTKM instruction; or to a TKM instruction if
both a reader and perforator condition exist.

OPCODE A B

READ NUMERIC INTO ACCUMULATOR RNK 0-15 0-15

The RNK instruction reads from the tape into the Accumulator the total number of characters specified
by the sum (maximum of 15) of the A and B parameters. The instruction is terminated after the total
number of characters specified have been read (fixed field) or upon reading a field identifier code
(variable fields). The paper tape characters enter the Accumulator as digits, from low to high order digit
positions. NOTE: No printing occurs.

2.15.02 (Cont’d-1)

REL

PT

A number may be read into the Accumulator as either a fixed field or a variable field.

With a fixed field, the tape must contain as many codes as the total number of digits required by the
instruction. This may require that preceding zeros be included in the tape in order to obtain the fixed
field size. Because the codes enter the low order position, reading a decimal number into the
Accumulator requires that the maximum number of decimal places to the right of the decimal point be

filled with digits or zeros. Note that the separation of the fields into whole and decimal digits is

provided to permit keyboard flexibility when a reader condition occurs (see use of NK, Subject
2.02.01).

Example 1: Read 12.25 into the Accumulator, allow for 3 decimal places, fixed field of 9.

OP CODE _A_. E
RNK 6 3
Tape must contain: 000012250 (no field I.D. code)

Manual entry must be: 12250 (left to right)

Manual entry format: 1, 2, decimal, 2, 5, and 0

Variable fields eliminate the ‘“preceding zeros” requirement of fixed fields. Instead, a ““field identifier
code” immediately follows the number in the tape causing termination of the RNK. With variable fields,
the A parameter must be 1 greater than the maximum digits allowed for that quantity so that the field
identifier code may be read.

Example 2: Read 12.25 into the Accumulator, allow for 3 decimal places with maximum of 9 digits.

OP CODE A B
RNK 6+FS =7 3
Tape contains 12250 FS (FS denotes field I.D. code)
Example 3: Read 4000 into the Accumulator. Maximum of 4 digits.
OP CODE A E
RNK 5 0
Tape contains 4000FS
OP CODE
RELEASE MEDIA CLAMP REL

The REL instruction will cause the media clamp for paper tape or edge punched cards to open, thus
halting any further reading until the operator places new material in the reader.

Revised 3-29-71 by
PCN 1045481-001 2.15.02 (Cont’d-2)

This instruction is useful when using edge punched cards, to release the card after necessary information
has been read, and to prevent any additional information on the card from enabling the read instruction
for the next entry.

2.15.02 (Cont’d-3)

XTK

PT

2.16 — OUTPUT WITH PAPER TAPE/EDGE PUNCHED CARD PERFORATOR

The instructions described in this section provide the means to output data into punched paper tape
and/or edge punched cards by using a Style A 562 Paper Tape/Edge Punched Card Perforator as the
output adjunct. All subsequent reference to ‘“‘paper tape” applies both to punched paper tape and to
edge punched cards, unless indicated otherwise.

Tape punching is serial at a speed up to 40 characters per second when no printing accompanies it.
When printing- accompanies punching paper tape, the punching speed is up to 20 characters per second.

The Series L/TC internal character code is USASCII and output to paper tape will normally be in this
code. However, any 5, 6, 7, or 8 channel paper tape code can be punched by utilizing a Table of
Output Code Assignments for conversion of the internal code into a different paper tape code (refer to
Appendix I). The firmware for 5 channel code is different than that for 6, 7, or 8 channel “table
look-up” firmware or for USASCII No Table firmware.

The Paper Tape Punch Instructions provide the ability to print and punch data from the Accumulator,
print and punch alphanumeric data from memory, and to type or type into memory while punching. In
addition, a register is provided which counts the number of codes punched. This enables the use of
continuous edge punched cards by making it possible to determine when one continuous card has been
filled or when to fill any unused portion of a continuous card with feed codes before aligning the next
continuous card to the first sprocket hole.

The Paper Tape Punch Instructions are designed to function in three ways:

1. When proper tape punching conditions exist, punching will occur according to the
specifications of the instruction.

2. If the perforator is not connected or is turned off, the punch portion of the instruction is
inhibited and the instruction is executed in accordance with its counterpart keyboard or print
instruction. Thus, although the program may provide for punching, the perforator may be
turned off or discontinued without affecting the operation of the rest of the system.

3. If the perforator is turned on but does not have media loaded, execution of the punch
instruction is held up until the condition is corrected.

The mnemonic representations of the punch instructions are the same as selected keyboard and print
instructions with the addition of a prefix letter “X.”

2.16.01 PAPER TAPE/EDGE PUNCHED CARD OUTPUT INSTRUCTIONS

OPCODE A
TYPE, PUNCH XTK 0-150 15%” forms handler

XTK 0-255 26 forms handler

The XTK instruction allows typing, printing and punching up to the number of characters specified in
the A field. The instruction functions like a TK instruction except that punching occurs with it. The
termination of this instruction with an OCK or PK does not cause a code to punch.

Revised 3-29-71 by
PCN 1045481-001 2.16.01

XTKM XPA

XEAM XA
PT

If the perforator is turned off or disconnected, the XTK instruction will operate only as a TK
instruction.

OP CODE A
TYPE INTO MEMORY, PUNCH AND PRINT XTKM 0-150 15%” forms handler
XTKM 0-255 26 forms-handler

The XTKM instruction allows typing into memory, printing and punching up to the maximum number
of characters specified in the A field. This instruction should be used in conjunction with the LKBR
instruction to denote the entry position in memory for the characters typed. (See Subject 2.02.03.)

The XTKM instruction functions like a TKM instruction except that punching also occurs. The
termination of this instruction with an OCK or PK places an End Alpha code in memory but does not
cause a code punch.

If the perforator is turned off, or disconnected, the XTKM instruction functions as a TKM instruction.

OPCODE A
ENTER INTO MEMORY AND PUNCH XEAM 0-150 15%” forms handler
‘ XEAM 0-255 26 forms handler

The XEAM instruction functions exactly like the XTKM instruction except that printing does not occur.
If the perforator is turned off, or disconnected, XEAM will operate only as an EAM instruction.

OP CODE A

PRINT ALPHA AND PUNCH XPA LABEL

The XPA instruction prints and punches the alphanumeric data stored in the memory location
designated by the A field. The instruction is terminated upon reaching an End of Alpha code in the
data; the End of Alpha code is not punched. This instruction operates like a PA instruction in every
respect except that punching occurs.

With the perforator turned off or disconnected, the XPA will operate as a PA instruction.

OP CODE A
PUNCH ALPHA FROM MEMORY, NON-PRINT XA LABEL

The XA instruction functions exactly as an XPA instruction except that printing does not occur.

If the perforator is turned off or disconnected, the XA functions as a No Operation (NOP) instruction.
When using Data Comm P. T. I/O firmware the XA will terminate on any Col. 0 USASCII Code. Codes
from either column will punch.

2.16.01 (Cont’d-1)

XC

XPN
PT
OP CODE A B
PUNCH CODE XC 0-15 0-15

The XC instruction punches into tape the bit pattern specified by the parameter fields. The A parameter
indicates the decimal value of the high order 4 bits (bg, by, bg, bs, having decimal values of 8, 4, 2, 1
respectively); the B parameter represents the decimal value of the low order 4 bits (by, b3, by, by,
having decimal values of 8, 4, 2, 1 respectively) in the bit configuration of the desired code. The parity
bit must be included in the appropriate bit position when applicable if a table look-up Firmware set is
being utilized. If the standard USASCII I/O firmware set is used, the parity bit will be automatically
inserted when applicable.

In the case of USASCII code the column number of the desired code in the table represents the A field
(parity bit must be added when applicable); the row number of the desired code represents the B field.

Printing does not occur with this instruction. If the perforator is turned off or disconnected, the XC will
function as a “No Operation” (NOP) instruction.

Example: Punch the USASCII code “RS”

bg by bg bs by by by by

Bit pattern (““X” = hole in tape) 0 0 0 X X X X o
Decimal value 8 4 2 1 8 4 2 1
Parameter value A = (0+0+0+1) = 1

B = (8+4+2) = 14

This corresponds to the USASCII table location of RS in column 1, row 14.

OP CODE A E_
PRINT AND PUNCH NUMERIC XPN 0-14 0-15

The XPN instruction prints and punches the contents of the Accumulator, beginning with the high order
digit position specified in the A parameter and with the print mask designated by the B parameter. The
print mask is relative to the mask table established by the last LPNR instruction. (See Subject 2.03.04.)

There will be no affect on the Accumulator flags position or any other data in Accumulator positions to
the left of the digit position specified by the A parameter.

This instruction functions like the PN instruction except that punching occurs.

If the perforator is turned off, or disconnected, the XPN instruction will operate only as a PN
instruction.

Revised 3-29-71 by
PCN 1045481-001 2.16.01 (Cont’d-2)

XPNS— XPNS+
XN LXC

PT

OP CODE A E
PRINT AND PUNCH NUMERIC, SHIFT RIBBON IF MINUS XPNS— 0-14 0-15

PRINT AND PUNCH NUMERIC, SHIFT RIBBON IF PLUS XPNS+ 0-14 0-15

The XPNS— instruction is the same as the XPN instruction except that the ribbon color is changed if
the Accumulator Sign Flag is set (minus).

The XPNS+ instruction is the same as the XPN instruction except that the ribbon color is changed
(opposite to the normal operating color of black, is red) if the Accumulator Sign Flag is reset (plus).

If the perforator is turned off or disconnected, the XPNS— and XPNS+ function as PNS— and PNS+
instructions respectively.

OP CODE A B

PUNCH NUMERIC, NON-PRINT XN 0-14 0-15

The XN instruction is the same as the XPN instruction except that printing does not occur. A mask
word is used with this instruction since it controls the punching. (See Subject 2.03.05.) The mask word
selected may be the same as is used with other Print Numeric Instructions since it would not affect the
non-print function of this instruction. ’

If the perforator is turned off or disconnected, the XN will operate as a “No Operation” (NOP)
instruction.

OP CODE A
LOAD PUNCH COUNT REGISTER LXC 0-255

The Punch Count Register is provided to count the number of holes punched. This enables the use of
continuous edge punched cards by making it possible to determine when one edge punched card has
been filled or to fill any unused portion of a continuous card with feed codes before aligning the next
continuous card to the first sprocket hole.

The LXC instruction will load the number contained in the A field, into the punch count register. The
instruction is normally used at the start of each new continuous edge punched card to reset the count.
The punch count register is incremented by one for each code punched from any punching instruction.
If the register is equal to 255, incrementing causes the register to become 0.

2.16.01 (Cont’d-3)

XMOD XB

OP CODE

MODIFY BY PUNCH COUNT REGISTER XMOD

The XMOD instruction will modify the parameter field of the next instruction by the contents of the
punch count register. This modification occurs as in the MOD instruction. The XMOD cannot be
changed by the Index Register instructions. (i.e., IIR, ADIR, etc.)

OP CODE A
PUNCH FEED CODES XB 0-255

The XB instruction causes feed (sprocket) holes to be punched. The number of codes punched will be
the difference between the number in the A field and 255.

If the perforator is turned off, XB will operate as a “No Operation” (NOP) instruction.

When edge punched cards are the media present, punching of sprocket holes is inhibited. Therefore, the
card is just advanced without sprocket hole punching.

2.16.02 READER AND PUNCH FLAGS

Two reader flags are provided to enable program control over the tape reader.

Reader flag R1 is set when a reader condition exists. A reader condition exists if any of these
contingencies arise:

1. The Paper Tape Reader is not turned on.
Media (paper tape or an edge punched card) must be positioned in the reader.

2.
3. The media clamp must be closed.
4.

The photo-electric device must be illuminated.

When the reader condition exists, along with the R1 flag being set, the keyboard buffer is cleared, and
the instruction is held up from execution pending operator action. The action depends on two
conditions:

1. The reader is intended to be used: Turn on the reader and then depress the Read Key. This
reinitiates the read instruction and causes the media to be read. The R1 flag is reset.

2. The reader is not intended to be used: The operator may make an entry through the
keyboard. (At this point, remember, the reader instruction has reverted to its keyboard
instruction). The Reset Key will reinitiate the tape read instruction, but it must be indexed
prior to the use:of an OCK or PK.

Once the operator has taken either course of action, the indicator light is turned off and reader flag R1
is reset.

NOTE: The keyboard buffer is cleared every time a reader instruction reverts to its keyboard
counterpart. If the operator has anticipated this and indexed data prior to the halt in the program when
the reader instruction becomes a keyboard instruction, then that data will be lost. The operator would
have to index the data again.

Revised 3-29-71 by
PCN 1045481-001 2.16.02

Reader flags R2, R3 are reserved for Data Communication operations.

Reader Flag R4 is set when an invalid tape code is read. Reading is not halted on the invalid tape code.
The next read instruction will reset the R4 flag.

The Reader flag settings can be manipulated by use of the Flag instructions.

Four Punch Flags are provided to alert the operator of the perforator condition.

The Punch Flag Pl is set if media is not present in the perforator and the program attempts to execute
a punch instruction. The instruction is halted. Correction of the situation will cause the system to
resume execution of the punch instruction.

The Punch flag P2 is set if incorrect punching has occurred during a punch instruction. The echo check
indicator light is lit. The punching is not terminated; the flag remains set.

The program should provide for checking flag P2 at least after each line of punching. When the flag is
set, a Skip or Execute instruction would enable performing the necessary instruction to sound the alarm,
punch a tape error code, or to take other corrective action.

The Punch flag P3 is set if reel tape is being used and the supply is nearly exhausted (approximately 20
feet remaining). The Tape Supply indicator is lit. Placing a new roll of tape in the supply reel will turn
off the indicator and reset the flag on the next punch instruction. This condition does not halt program
execution nor inhibit punching.

The Punch Flag P4 is set if the paper tape perforator is “OFF.” The instruction will be executed, but
the punching will be inhibited. Switching the perforator to the “ON’’ condition causes the P4 flag to be
reset on the next instruction. However, the data to be punched on the first “punch” instruction would
be missing from the output tape. Therefore, it is recommended that a punch instruction be used during
the program initialization routine with subsequent testing of the Punch Flags (especially the P4 flag)
since the perforator condition is only apparent once a punch instruction is initiated. All punch flags may
be examined by use of the flag instructions.

2.16.02 (Cont’d)

LCD RCD

CRD

2.17 — 80-COLUMN PUNCHED CARD INPUT INSTRUCTIONS

With the A 595 Card Reader and the A 149 Card Punch used as peripherals to either the Series L or TC,
80-column punched cards can be used as input and 80-column punched cards can be punched as output.
The programing instructions required to use these two peripherals as part of a program will be explained
in two sections. The first section will deal with card input instructions, the second will explain card
output instructions.

2.17.01 80-COLUMN CARD INPUT INSTRUCTIONS

OP CODE A

LOAD MEMORY FROM CARD LCD 0-255

The LCD instruction causes the reading of object program cards and stores the new object program
instructions into memory locations specified in the program cards. The A parameter specifies the
number of cards to be read. This instruction utilizes and requires that the Card Reader Memory Load
Routine be present in the Utility Track.

LCD allows programmatic control of program overlays. After reading the designated number of program
cards, the program execution continues on to the next instruction in accordance with the program
counter. Thus, caution must be exercised to ensure that a program does not overlay the same memory
area occupied by the LCD instruction. The program cards must be of the same format as required for

regular program loading with the Card Reader. (Refer to Appendix K for card format required to load
object program by card.)

After execution of this instruction, a “Hash Total” of the program data read in, is in the Accumulator.

If the specified number of program cards are not read, the instruction is held up, the Reader Condition
light is turned on and the R1 flag is set.

Placing the remaining cards to read in the Card Reader and depressing the Restart switch on the Card
Reader, or depressing the Ready push button to return the machine to Ready mode, are the only two
alternatives available to complete the LCD instruction.

OP CODE

READ CARD RCD

The RCD instruction reads a single 80-column punched card into words 1 through 10 of memory. All
80 columns are read and placed in memory including blank card columns.

During the execution of each RCD instruction, the contents of the Accumulator are destroyed and the
Accumulator is not cleared. Any number in the Accumulator prior to a RCD instruction which is to be

used later in the program, should be transferred to a memory location to save it, else it will be
destroyed in the Accumulator.

If a card is not present in the Card Reader, when a RCD instruction is to be executed, the Reader
Condition indicator light is turned on, flag R1 is set, and the instruction is held up.

Revised 3-29-71 by
PCN 1045481001 2.17.01

LCFR PBA

CRD

Placing a ca\rd in the Card Reader and depressing the Restart switch on the Card Reader will enable the
instruction to be completed and allow the program to continue to the next instruction. The other
alternative would be to depress the Ready push button, to return the machine to Ready mode.

OP CODE A

LOAD CARD FORMAT REGISTER LCFR LABEL

The LCFR instruction loads into the Card Format Register the word number associated with the Label
name. A Card Format Table may contain up to 16 different card field formats. If more than 16 are
required, another table location (i.e., another LCFR instruction with a different label) must be
established before any formats can be referenced in the second table. Only one table can be referenced
at one time, and that table referenced is dependent upon the last LCFR instruction.

The label in the A parameter must reference the beginning of a word. The Pseudo Instruction “WORD”
should be used preceding the label of the first CDF pseudo instruction, so that it starts at the beginning
of a word. (Refer to Subject 2.01 for explanation of Pseudo Instructions.)

Example:
LABEL OP CODE A B
LCFR CRDTAB
WORD
CRDTAB CDF 1 2
CDF 3 5

OP CODE A

PRINT ALPHA FROM CARD READ AREA PBA 1-16

The PBA instruction prints from the card read area, the field, specified by the format number, as
alphanumeric data.

The format number, references the format table last identified by the LCFR instruction.

Example:
LABEL OP CODE A E REMARKS
LCFR CRDTAB
PBA 2 Print second field on card.
NOTE Card cols. 3-10
CRDTAB CDF 1 2 Card cols. 1-2
CDF 3 8 Card cols. 3-10

2.17.01 (Cont’d-1)

XPBA XBA TRCA

CRD

OP CODE A

PRINT & PUNCH ALPHA FROM CARD READ AREA XPBA 1-16

The XPBA instruction prints from the card read area, the field specified by the format number, as
alphanumeric data, and punches the data into an output card in the A 149 Card Punch. The instruction
is terminated after printing and punching the number of characters specified by the field length in the
format. The status of OCK flags is not affected.

If the Punch is off, XPBA is executed as a PBA instruction.
If«there are no cards in the card hopper and the Punch is on and on-line, the XPBA instruction will be
held up until cards are placed in the card hopper and the auto feed button depressed on the Punch.

OP CODE A

PUNCH ALPHA FROM CARD READ AREA, NON-PRINT XBA 1-16

The XBA instruction punches into an output card, from the card read area, the field specified by the
format number, as alphanumeric data. The data is not printed. The instruction is terminated after
punching the number of characters specified by the field length in the format.

If the Punch is off, XBA is executed as a NOP instruction.

If no cards are in the card hopper and the Punch is on line, the XBA instruction will be held up until
cards are placed in the card hopper and the auto feed button depressed on the Punch.

OP CODE A

TRANSFER CARD FIELD TO ACCUMULATOR AS TRCA 1-16
NUMERIC

The TRCA instruction transfers the field of data, specified by the format number in the A parameter,
from the Card Read Area into the Accumulator. The digits in that field are right justified when
transferred into the Accumulator. The instruction is terminated by transferring the number of card
columns specified in the format. The status of the OCK flags is not changed by this instruction.

If an “11” overpunch is present in any of the card columns of the field being transferred (denoting a
negative field), the Minus Flag in the Accumulator is set.

If a “12” or “0” overpunch is present in any of the card columns of the field being transferred, the
Invalid Code Flag (R4) is set and the corresponding indicator light is turned on. An unknown digit will
be transferred to the Accumulator. The flag is reset and the indicator is turned off at the beginning of
the next Card Input Transfer instruction; therefore, this flag must be examined immediately in the
program (with the SK or EX instructions) when it is necessary to detect illegal codes in a given field.
The characters ‘““+ (card codes 12,0) and “&’’ (card code 12) will not affect the Minus flag nor set the
Invalid Code flag, but will transfer as the digit “0” in accordance with their position in the field. The
hyphen character (minus sign) “—"’ (card code 11) and “X” (minus zero — card code 11,0) set the

Revised 3-29-71 by
PCN 1045481-001 2.17.01 (Cont’d-2)

Minus flag, do not set the Invalid Code flag, and are transferred as the digit “0” in accordance with
their position in the field. The letters A through I and S through Z, as well as all other special
characters, will set the Invalid Code flag and a digit will be transferred. The letters J through R are the

same as numerals with an “11” overpunch. The space code (blank card column) is treated as the
numeral “0”.

An invalid code can be used to advantage to indicate special conditions, such as the last card in an input
file. For example, a “12” overpunch with a transaction type number would permit the program to
determine when to stop reading cards. This would not require a separate card column for this purpose
and would not affect the usability of the transaction number.

b

The programing below is an example of minimizing the length of alpha print time by examining certain
positions of a description field in the card read area to determine the amount of significant data, and
selecting a field format length accordingly; thereby eliminating some of the trailing space codes in the
unused portion of the field when printing or transferring to memory.

The diagram below illustrates a card with a description field of 42 characters (col’s. 13 to 54). On the
premise that most descriptions are less than 21 characters, some are less than 29, only a few use the
maximum field capacity, and that no more than 6 consecutive space codes are permitted within the
description, then three formats are defined for the description field to permit the program to select the
shortest length; thus, considerably reducing print time and/or transfer time (42 characters require
approximately 2100 ms print time vs. approximately 1000 ms using a 20 character length format).

13 DESCRIPTION 54
8| 16! 24! 32 40! 48’ 6 6 '4':“' 720 80
[| 1 | [

W\ML—\’\/NWJ\W«WMN-

| 1 | 1 1 1 | |
WORD 1 WORD 2 WORD 3 EWORD 4 :WORD 5 ;WORD 6 :WORD 7 WORD 8 :WORD 9 iWORD 10
|

LABEL INSTR A B REMARKS
FIELDS CDF 13 20 SHORT DESCRIPTION
CDF 13 28 MEDIUM DESCRIPTION
CDF 13 42 MAXIMUM DESCRIPTION

For simplest programing, the positions in the field to be examined for space codes must be defined
taking into account the word boundaries of the card read area. The 21st through 28th positions in the
description field are card columns 32 to 40 and are in word 5 (base word +4). If word 5 contains all
zeros (8 space codes), then significant data is presumed to not extend beyond col. 32 (20th field
position). If word 5 contains any significance, then word 6 is examined. If word 6 has all zeros, then
data does not extend beyond col. 40 (28th position). If word 6 contains data, the infrequency of
occurrence suggests that no further tests should be made and a maximum field size is used. The card
read area is reserved with REG instead of CDB to permit a label for referencing specific words. (Refer
to Subject 2.01 for explanation of Pseudo Instructions.)

2.17.01 (Cont’d-3)

Program Segments:

LABEL INSTR »_4_ _I_B_ M
START LPNR PMASKS
LPKR PKEYS
LLLR 51
BRU BEGIN
CARDIN REG 10 RESERVE CARD READ AREA
BEGIN Note that Card Read area is reserved

with REG to permit labeling; but
must be sequenced to assure assem-
—_— bly in words 1-10.

—_—— T~ ~ ~ T

RCD READ A CARD
LCFR FIELDS SELECT FORMAT TABLE
LKBR DESCRP SELECT DESCRIP TANK
TRA CARDIN + 4 READ COLS 33 TO 40
SLROS 0 2 MOVE FLAG POSITION
EXZ 3 EXAMINE FOR SPACES
a PBA 1 PRINT SHORT FIELD
a TRCM 1 TRANSFER SHORT FLD
a BRU +9 ,
b c TRA CARDIN + 5§ READ COLS 41 TO 48
bc SLROS 0 2 MOVE FLAG POSITION
bec EXZ 2 EXAMINE FOR SPACES
b PBA 2 PRINT MEDIUM FIELD
b TRCM 2 TRANSFER MED FLD
bc SKZ 2 EXAMINE FOR DATA
c PBA 3 PRINT LONG FIELD
c TRCM 3 TRANSFER LONG FLD

____,\/_/_/—\/__/\/'_/—-\/\—»/’__\

DESCRP REG 6 DESCRIPTION WORK AREA

Note: The key along the left margin indicates the program path selected depending on field size; '’ =
short field, b’ = medium field, “’c’’ = long field. Statements without a key are executed by all three
paths.

Revised 3-29-71 by
PCN 1045481-001 2.17.01 (Cont’d-4)

"TRCM

CRD
OP CODE A
TRANSFER CARD COLUMNS TO MEMORY TRCM 1-16

AS ALPHA

The TRCM instruction transfers the field specified by the format number in the A parameter to a
memory location starting with the word designated by the prior use of the LKBR instruction. The
instruction is terminated after transferring the number of characters specified by the field length in the
format. An “End of Alpha” code is placed in memory following the last code transferred. The status of
OCK flags is not affected.

Space codes (blank columns) are transferred and translated as Space Codes; in subsequent printing of
this data from memory (not the card read area) with the PA instruction, the space characters will cause
the printer to escape rather than increment the position register. This condition would be common in
the unused portion of a description field such as name or address, when the card input data has to be
retained for further processing while additional cards are being read. Escaping through space codes can
be reduced, by programmatically examining certain points in the card read field and using a smaller field
format when transferring the field to memory. This may be desirable when the field must be designed
with a large capacity to accommodate all transactions, but which may have many transactions with small
entries of data (see example, above).

An indication of Invalid Code is not provided if an incorrect combination of punches has been read into
the Card Read Area. Invalid Code indication is only included with the TRCA instruction.

2.17.02 INPUT INDICATOR LIGHTS AND FLAGS

The two Series L keyboard input indicator lights advise the operator as to whether the Card Reader is
operable, and, under certain conditions, whether invalid codes have been read. Also, the associated
Reader flags enable the program to provide alternate procedures in the event of a Reader Condition or
invalid code.

INPUT
INVALID READER MESSAGE TRANSMIT
CODE CONDITION RECEIVED READY P

O O O O

Input Indicator Lights

INVALID CODE INDICATOR — The Invalid Code Indicator is turned on and its associated flag (R4) is
set, when, during the execution of the TRCA (Transfer to Accumulator) instruction, a code is sensed
that represents an invalid combination as described in the TRCA instruction. This flag is reset and the
Indicator turned off at the beginning of the next transfer instruction.

2.17.02

READER CONDITION INDICATOR — The Reader Condition Indicator is illuminated and flag R1 set
when a card read instruction (RCD) is being executed and any of the following conditions exist:

1. The reader is not on
2. The reader is out of cards

3. Burned out bulb in reader

The read instruction is held up pending operator action as follows:

1. If the Reader is out of cards, the placing of cards in the feed hopper and depression of the
Restart Switch on the reader will then cause the card read instruction to be executed.

2. If the Reader is not on, the Reader power on switch must first be turned on and then the
Restart switch depressed.

3. The use of the Ready push button, at this point will return the program to the READY
mode.

The R1 flag is set only while waiting to read a card, and is reset when the instruction is executed.
Therefore, only the Indicator light can be used to notify the operator of this condition.

The R2 and R3 flags are set or reset by Data Comm instructions and are not controlled by card
instructions.

FLAG INSTRUCTIONS (LOAD, SET, RESET, CHANGE) — The execution of a LOD, SET, RST, or
CHG Flag instruction involving the Reader Flags will also cause their associated indicator lights to either
be turned on or off depending on the instruction used.

2.17.03 PROGRAM KEYS

Program Keys that have been enabled prior to a Card Read instruction or any of the Card Transfer
instructions will be ignored during those instructions. If a Reader Condition occurs and the Card Read
instruction is held up, use of a PK will have no immediate affect except to place the PK code in the
keyboard buffer pending the next keyboard instruction where it will be recognized.

Revised 3-29-71 by
PCN 1045481-001 2.17.03

2.18 — 80-COLUMN CARD OUTPUT INSTRUCTIONS
2.18.01 PUNCHING ALPHANUMERIC DATA

The following instructions provide for punching alphanumeric data during keyboard entry or directly
from storage in memory. Each use of one of these instructions punches one field, or a portion thereof,
depending on the number of characters and the field size. Therefore the SKP (See Subject 2.18.03)
instruction should normally be used following each of these instructions to by-pass unused trailing
positions in the field and to position the card to the first column in the next field.

OP CODE A

TYPE AND PUNCH XTK 0-150 15%” forms handler
XTK 0-255 26” forms handler

The XTK instruction combines typing, printing and punching up to the maximum number of characters
specified in the A parameter. This instruction functions like a TK instruction in most respects with the
additional function of punching the data into an 80-column card. However, the use of the Backspace
Key is disabled, since a code would already have punched. The termination of this instruction with an
OCK or PK does not cause a code to punch.

If the punch is off-line, XTK will be executed only as a TK instruction.

The use of the Backspace Key has been prohibited; therefore, if it is depressed, an error state occurs
which requires depression of the Reset Key. Caution must be exercised with use of the Reset Key since,
if in the middle of a keyboard entry but not in an error state, use of the Reset Key re-initiates the
instruction and sets the LXC Register back to the start of the field. This puts the card out of step since
part of the field has already punched. These considerations also apply to XTKM and XEAM following.

OP CODE _é.
TYPE INTO MEMORY, PUNCH AND PRINT XTKM 0-150 15%” forms handler
XTKM 0-255 26 forms handler

The XTKM instruction combines typing, printing, entering the data into memory and punching up to
the maximum number of characters specified in the A parameter. The prior use of LKBR designates the
starting word for storing the data. The XTKM instruction functions like the TKM instruction in every
respect with the additional function of punching into an 80-column card. However, the use of the
Backspace Key is disabled (see XTK) since a code would already have punched. The termination of this
instruction with an OCK or PK does not cause a code to punch, but does place an End of Alpha code
in memory.

If the Punch is off-line, XTKM is executed only as a TKM instruction.
OPCODE A
ENTER ALPHA INTO MEMORY AND PUNCH, XEAM 0-150 15%” forms handler

NON-PRINT
XEAM 0-255 26 forms handler

The XEAM instruction functions exactly like the XTKM instruction except that printing does not occur.
If the Punch is off-line, XEAM is executed only as an EAM instruction.

2.18.01

XPA XA

CRD

OP CODE A

PRINT ALPHA AND PUNCH XPA LABEL

The XPA instruction prints and punches the alphanumeric data stored in the memory location
designated by the A parameter. The instruction is terminated upon reaching an End of Alpha code in
the data; the End of Alpha code does not punch. This instruction functions like a PA instruction in
every respect with the additional function of punching into an 80-column card. If the Punch is off-line,
the XPA instruction is executed only as a PA instruction.

OP CODE A

PUNCH ALPHA FROM MEMORY, NON-PRINT XA LABEL

The XA instruction functions exactly like the XPA instruction except that printing does not occur. If
the Punch is off-line, XA is executed as a NOP instruction.

2.18.02 PUNCHING NUMERIC DATA FROM THE ACCUMULATOR

The following instructions provide for printing and punching, or just punching, numeric data from the
Accumulator. The Pointer designates the high order digit position of the Accumulator at which printing
and punching begin; the printing format and punching are controlled by the Mask word selected. The
instruction is terminated after punching and printing through digit position zero or when an “E” (End)
Mask code is encountered in the Mask word. A Mask word is used for all punch numeric instructions
even though printing may not be a function of a given instruction. It serves to right justify the numeric
data in the card field, filling in preceding zeros or blank columns. Therefore, a fixed field length results
and the use of SKP subsequently is not needed.

The Punch Flag (P) in the Mask word, when set, causes leading zeros to punch even though leading zero
suppression Mask codes (Z,Z) prevent their printing. If the Punch Flag is not set, a blank card column
results for each leading zero suppressed by a Z (or Z,) Mask code; however, if the Punch Flag is not set
and if an Unconditional Print Mask code is used (D D, etc.), all leading zeros will punch into the card
(refer to the following table). The Punch Flag has no effect on the print characteristics of the Mask
codes.

Revised 3-29-71 by
PCN 1045481-001 2.18.02

MASK CODE PRINTING PUNCHING
F Print § No Effect
+ Suppress Punctuation No Effect
P No Effect Leading zeros punch if P
flag set, blank card column
if reset
D
D, Print Character regardless
of significance
.D
D:
X Trailing zero suppression Punch Character regardless
of significance
X
C Leading zero & trailing
Zero suppression
.C
Z Print if: Punch if:
(1) Accum digit not (1) P is Set
Z, Zero (2) Accum digit not
(2) A non-zero digit Zero
Z: has been printed (3) A non-zero digit
has been punched
S Print only if Accum digit
not zero
I Ignore Ignore
E Terminate, Non-print Terminate, Non-punch

If an Ignore (I) Mask code is used, the corresponding digit in the Accumulator does not print or punch.
If the End (E) Mask code is used, the corresponding digit neither prints nor punches and the instruction

TABLE

is terminated. All other Mask codes cause the corresponding digit to punch.

The punctuation provided by some of the Mask codes during printing does not punch.

2.18.02 (Cont’d-1)

XPN
XPNS—

CRD

In a numeric field on the output card, if only significant digits are to be interpreted along the top of
the card, then leading zeros of the numeric word in the Accumulator must be represented by blank card
columns in the output card (P Flag must be reset and “Z” mask codes used in order for this to occur).

OP CODE _A_: E
PRINT & PUNCH NUMERIC XPN 0-14 0-15

The XPN instruction prints and punches the contents of the Accumulator, starting at the high order
digit position designated by the A parameter, in accordance with the print mask designated by the B
parameter. The print mask value is relative to the mask table base word established by the last LPNR
instruction. This instruction functions like a PN instruction in every respect with the additional function
of punching.

If the Accumulator Minus Flag is set, an “11”” overpunch is punched with the least significant digit of
the Accumulator (digit 0); if minus, and if the mask word terminates printing/punching prior to digit O
(with an “E”) or ignores digit 0 (with an “I”), an ‘11> overpunch does not punch. If the “11”
overpunch is not desired in the field, the Minus flag must first be reset.

All Accumulator digits of a higher order position than the A parameter are ignored.

(33 ’”

When it is necessary to punch a plus “+’ or minus sign into a separate card column, or when the
value of the other Accumulator flags (S, C, M) must be punched, this can be accomplished by testing
the individual flag settings (SK or EX) and punching an appropriate code in the card column(s) with the
XC (Punch Code) instruction prior to or after punching the numeric field with the XPN instruction. If
the sign column must follow the numeric field, a set Minus flag must first be reset before punching the
data; this usually requires separate program paths, after testing for a minus condition, to both punch the
data and punch the correct sign code.

If the Punch is off-line, XPN is executed only as a PN instruction.

OP CODE A B
PRINT & PUNCH NUMERIC, SHIFT RIBBON IF MINUS XPNS— 0-14 0-15

The XPNS— instruction is the same as the XPN instruction except that the ribbon color is changed if
the Accumulator Sign Flag is set (Minus). If the Punch is off-line, XPNS— is executed only as a PNS—
instruction.

Revised 3-29-71 by
PCN 1045481-001 2.18.02 (Cont’d-2)

XPNS+ XN
XC

CRD

OP CODE A B

PRINT & PUNCH NUMERIC, SHIFT RIBBON IF PLUS XPNS+ 0-14 0-15

The XPNS+ instruction is the same as the XPN instruction except that the ribbon color is changed if the
Accumulator Sign Flag is reset (Plus). If the punch is off-line, XPNS+ is executed only as a PNS+
instruction.

Punch Numeric Data, Non-print
OP CODE A _B_

PUNCH NUMERIC, NON-PRINT XN 0-14 0-15

The XN instruction is the same as the XPN instruction except that no printing occurs. A mask word is
used with this instruction since it controls punching, and may be the same mask word used with other
Print Numeric instructions as there would be no affect on the non-print characteristic of XN. If the
punch is off-line, XN is executed as a NOP instruction.

OP CODE A B
PUNCH CODE XC 0-15 0-15

The XC instruction permits outputting any desired single card code (without it being resident in
memory) or any special punch pattern in a card column (except only one punch can be created in rows
1 to 7 in a card column although any punch combination in the other rows can be obtained). The A
parameter controls punching in card rows 12, 11, 0, and 9; the B parameter controls punching in card
rows 1 through 8.

Printing does not occur with this instruction. If the Punch is off, XC is executed as a NOP instruction.

ROWS ROWS
12,11,0,9 . 1-8
A Parameter Value 8 421
B Parameter Value 1-8

To punch an “A” (Row 12, 1) the XC instruction would be

OP CODE A B
XC 8 1
To punch Rows 12, 11, 0, 8, 6 the XC instruction would be
OP CODE A B
XC 14 14

Refer to Appendix H to find A and B parameter values of various characters to be punched.

2.18.02 (Cont’d-3)

LXC
SKP

CRD

2.18.03 CARD COLUMN SYNCHRONIZATION WITH THE PUNCH COUNT REGISTER

A Punch Count Register is used by firmware to count the card columns either punched or escaped in
order to control the location of the card and maintain synchronization. When the system is turned on,
the value in this register is indeterminable, and therefore it must be loaded with the value “1” at the
start of a program.

OP CODE A

LOAD PUNCH COUNT REGISTER LXC 1

The LXC instruction loads the value specified in the A parameter into the Punch Count Register. The
parameter value must be “1” to synchronize the register with the card in the punch station (card must
be registered in the punch station at card column one).

The LXC instruction is normally used only once in a program, during the initialization routine. Once
into the program, firmware resets the Punch Count Register to 1 whenever a card is released in the
punch and another card registered at column 1. However, it is recommended that a provision be
included in the program for the operator to reset the register to 1 in the event a card becomes out of
step. This condition could occur from the improper use of the keyboard Reset Key during a keyboard
entry, or from inadvertent manipulation of the control keys on the card punch (which should not be
necessary once a program is in operation). Note that if the keyboard Reset Key is used during a
keyboard entry and the system is not in an error state, the keyboard instruction is re-initiated
(repositioning the printer and permitting a complete new entry) and the Punch Count Register is set
back to the beginning column of that field; thus, the card must be backspaced to the same card column,
using the Backspace control on the card punch, to regain synchronization.

OP CODE A

SKIP TO COLUMN SKP 1-80

The SKP instruction causes the card to skip to the card column specified in the A parameter. A skip to
card column 1 causes the card to be released and a new card registered at column 1. This is the
prescribed manner in which the Series L program releases a card. If the card is presently on the card
column specified by the SKP instruction, no skipping occurs. An exception to this is a skip to 1 when
the card is already on column 1; this results in the card being released and another card registered.

Revised 3-29-71 by
PCN 1045481-001 2.18.03

DUP

CRD

Once the skip function has been initiated, the program resumes execution while the skipping is being
completed, except for skips of up to 3 columns. If the program reaches another punch instruction while
skipping is occurring, the program is held up until skipping has been completed. Skips of 3 columns or
less are actually treated as Punch Blanks (XC 00, blank card columns), and in this situation, program
execution is held up until the skip is completed.

A skip to a lesser numbered column than the present card location will cause the release of the card and
the registration of a new card; however, the count register will be in error for the newly registered card.

If the punch is off-line, the SKP instruction is executed as a NOP instruction.

The SKP instruction should normally be used after each punch instruction where unused card columns
could remain, such as with XTK, XTKM, XPA, etc. It is normal for these instructions to be terminated
before punching the total number of characters specified in the parameter; therefore, a SKP instruction
must be used to ensure that the card is properly positioned to the start of the next field.

OP CODE A

DUPLICATE THROUGH COLUMN DUP 1-80

The DUP instruction causes data from the card in the Read Station to be punched (duplicated) into the
corresponding columns of the card in the punch station. The duplication function starts at and includes
the card column at which it is initiated, and continues through the card column specified in the A
parameter. A DUP through 80 will cause the card to be duplicated through column 80, released, and a
new card registered at column 1. A DUP through the same card column number as the present location
of the card results in no duplication.

Once the duplication function has been initiated, the program resumes execution while the duplication is
being completed. If the program reaches another punch instruction while duplication is occurring, the
program is held up until the duplication has been completed.

A DUP through a lesser numbered card column than the present location of the card will cause a
duplication through column 80, release of the card and registration of a new card; however, the count
register will be in error for the newly registered card.

If the punch is off-line, the DUP instruction is executed as a NOP instruction.

Cards are released from the punch station by the Series L program with the use of a Skip to Column 1
instruction (SKP 1) or a Duplicate Through Column 80 instruction (DUP 80). Use of the card punch
manual controls, during program operation, or any other type of program release will in most cases
cause the newly registered card to be out of synchronization with the Punch Count Register.

2.18.03 (Cont’d-1)

ALTP

CRD

The Regular Card Stacker is selected automatically if the program has not specified otherwise for the
card being released. The Alternate Stacker is selected by executing the following instruction:

OP CODE

ALTERNATE STACKING POCKET ALTP

The ALTP instruction causes the card in the Punch Station to be routed to the Alternate Stacking
Pocket after it has been released from both the Punch Station and the Read Station. The ALTP
instruction must be executed while the card is still in the Punch Station, and prior to any instruction
that will cause the card to be released from the Punch Station, in order to affect that card when it is
finally released from the Read Station.

This instruction can be used to advantage in many ways, such as to segregate two groups of transactions,
or to out-sort special information cards from standard transaction cards (such as low quantity alerts,
etc.) or to collect reject cards from error entries.

If the punch is off-line, the ALTP instruction is executed as a NOP instruction.
2.18.04 OUTPUT INDICATOR LIGHTS AND FLAGS

Three of the Output Indicator Lights on the Series L keyboard are used to advise the operator of the
operating status of the card punch.

OUTPUT

PUNCH
OFF MEDIA ERROR

O O O O

Output Indicator Lights

The Punch Off Indicator Light is turned on and Punch Flag P4 is set if the card punch “On-Line”
switch is not on, or if the On/Off switch is not on while a card punching instruction is attempted. The
punch portion of the instruction is inhibited and the instruction is executed in the manner of its
counterpart keyboard or print instruction. The program does not halt. An instruction involving no other
functions but punching is executed as a NOP instruction. The correction of the condition by turning on
the punch and placing it in the On-Line mode will cause the indicator to be turned off and Punch Flag
P4 to be reset on the next punch instruction.

To avoid the possibility of the operator failing to turn on the punch when beginning an operation, it is
recommended that during the program initialization a card be released (SKP 1) and the Punch Off Flag
P4 be examined. If P4 is set, the program can warn the operator (with the Alarm or by printing a
warning message) and in addition may prohibit further processing or halt to allow an operator decision
as to whether the following group of transactions requires card output.

Revised 3-29-71 by
PCN 1045481-001 2.18.04

If the program attempts to execute a punch instruction and a card is not registered in the punch station,
the instruction is held up, the Media Indicator light is turned on, and Punch Flag P1 is set. Correction
of the condition by registering a card in the punch station permits the instruction to be executed, at
which time the Indicator light is turned off and Punch Flag P1 is reset. Only the Indicator light can be
used to notify the operator that a card is not present in the punch station since the P1 flag is set only
while the punching instruction is held up and is reset after the punching instruction is executed.

The Error Indicator Light is turned on and Punch Flag P2 is set if a card punch malfunction or
misoperation occurs. If this condition occurs, the card punch is not operative, the RESET key
(switch-light) on the card punch is turned on, and the program is held up on the punch instruction. A
depression of the RESET key removes the error condition and permits execution of that instruction to
be completed and the program to continue; Punch Flag P2 and the Indicator light are turned off.

Depression of the RESET key does not change the fact that mis-punching may have occurred,or that a
newly registered card may be out of synchronization with the punch count register.

The execution of a LOD, SET, RST, or CHG Flag instruction involving the Punch Flags will also cause
their associated indicator lights to either be turned on or off depending on the instruction used.

Program keys that have been enabled prior to a card punch instruction involving a keyboard entry
(XTK, XTKM, XEAM) may be used to terminate that instruction. If the instruction is terminated with
an OCK, such PK’s as were enabled will be disabled.

2.18.04 (Cont’d-1)

LSFR

MUR

SUBJECT 2.19 — MAGNETIC UNIT RECORD INSTRUCTIONS

The Magnetic Unit Record (MUR) Instructions provide the ability to read data from or write data on, a
single magnetic record on a magnetic record card. These instructions apply to a unit record handling
mechanism integrated into the console of the system with the magnetic unit record option, or an option
magnetic record handling Auto Reader. All reading and writing is from a 22-word section of main
memory used as an input/output buffer. Input Instructions provide the ability to read data from the
magnetic record, to transfer the variable length data fields from the buffer into either memory or the
accumulator, and to process data directly from the buffer. Output Instructions provide the ability to
transfer both numeric and alpha data to the buffer ,and to write the contents of the buffer on the
magnetic record. The location of the buffer is dependent upon, and specified by the type of firmware
used.

A maximum of 349 digits of data, plus 2 line-find digits, and a block check digit, may be stored on the
magnetic record of a standard 117 magnetic unit record. The data is read from, or written on, the
magnetic record in one continuous motion of the record mechanism past the read/write heads. There are
no separation digits or characters written on, or read from, the magnetic record. All data field
formatting is accomplished after the data has been read from the magnetic record into the buffer,
following the read or input mode, and upon entry of data into the buffer prior to the write or output
mode. Formatting of data is accomplished by values stored in a stripe format table.

2.19.01 MAGNETIC UNIT RECORD FORMATS

The Magnetic Record Format specifies the starting digit location and the length of a data field within
the magnetic record input/output area. This allows variable length data fields to be moved from, or
inserted into, the input/output buffer. The values that describe these fields are contained in a Stripe
Format Table. A Stripe Format Register is used to contain the memory location of the first word of the
Stripe Format Table, and it must be loaded in the program before any fields are accessed.

OP CODE A B
LOAD STRIPE FORMAT REGISTER LSFR LABEL

The LSFR instruction provides the ability to establish the location of a Stripe Format Table in memory.
The format instruction loads the Stripe Format Register with the memory location of the label
contained in the A parameter. The Stripe Format Register establishes the base address of the Stripe
Format Table. A format table for the magnetic record is 16 words in length, and may contain up to 64
formats. More than 1 table may be used; however, when replacing a table currently in use, the base
address of the replacement table must be initialized by an LSFR (Load Stripe Format Register)
instruction.

Example:
PARAMETER
FIELD
s A B c
OP. CODE | GTH LABEL + OR ~
INC/REL

22|23]24 |25|26127(28(29|30]31/32| 33|34 |35(|36(37|38{39 |40 [41|42] 43 |44 |45 |46 |47
LS,F&] ?l.x'le'l\'l“l§ L 1 L1 | {1

[Y T T N O T A A T I A B A 14 1

Revised 3-29-71 by
PCN 1045481001 2.19.01

The initial phase of execution will open the handler if closed. The data is written while the magnetic
record is being ejected. ‘

If a write error occurs, the W (write error) flag is set. All error recovery routines are programmatic.

Example: PARAMETER
’;'_‘g—f’ A B c
LABEL OP. CODE | GTH LABEL O
16 {17 18| 19(20|21]22]|23|24 |25{26|27|28;{29{30|31(32{33|34|35{36|37|38|39 (40 (41|42| 43 |44|45 ja6 |47
1 4 1 1t g1&|.xl | | ”LW!:" T - B T | L1 1
[O I | gi JE [i1 1]
1 T T | I S 1 [- 11| Ly 1 [
Mﬂ-q'-rﬁl \'T 1] | 31 [B L1l O L1 4
| I N | 1xl 11 1 s; T T | L1 | !nﬂ 1} 2 L1 1
L1t Ao JI LN L1t L1 L1
L1) RN o B L
"l“lzt"ﬁl\-“\-ﬁ L 1 SO NS N N AR I L1 L1
L O L S e ey (B
N T 1 L1 1 3| || | L1 | |
L1 lb#lcj Ll Oxe 3 = BRY wATETEe
L1 10 O 0 1 1Oy]y Lol L1
Lo [ORMy b [B Lo
T T T | lslp't&t 1 i ‘l P | L1 1 [L 11
I T I 1 I D S L 11 L1 .
LABEL OP CODE A +1- B C REMARKS
S%U WRITEL GO TO WRITE RECORD
WRITE RL g 0 NON-READ AND ALIGN RECORD
EX S R 2 EX IF JAM/READ ERROR
PKA 1 ENABLE RECONSTRUCT PK
BRU -3 GO RETRY
WRITEL WL WRITE MAGNETIC RECORD
EX S W 3 EXECUTE IF WRITE ERROR
PKA 3% PKA 3—~WRITE ERROR ROUTINE
TK 0 HALT FOR PK SELECTION
BRU 2 GO TO SELECT PK.

*PKA 3 — BRU WRITE

2.19.04 (Cont’d)

SLF

MUR

OP CODE A

@

REMARKS

LSFR FIELDS LOAD THE STRIPE FORMAT REGISTER WITH FIELDS,
THE BASE ADDRESS OF THE STRIPE FORMAT TABLE.

2.19.02 MAGNETIC UNIT RECORD PSEUDO INSTRUCTIONS

The Pseudo instructions allow the programmer to communicate both with the assembler program and
the system. These Pseudo instructions do not directly produce machine language instructions for the
object program. They do, however, control the manner of assembly, determine the interpretation of data
input to the assembler and exert control over the system such as forms control and word-syllable
counter control.

OP_CODE A B

MAGNETIC RECORD FORMAT (PSEUDO) SLF 1-349 1-15 (numeric)
1-63 (alphanumeric)

The SLF instruction is used to format the magnetic record data (read from the unit record) during a
transfer from the input area into either memory or the accumulator, or is used to format data transfer
to the output area prior to a magnetic record write instruction.

The A parameter specifies the starting digit location of a data field; the B parameter specifies the length
of that data field within the magnetic record input/output area. Signs for signed numeric data require a
digit. Alpha characters require two digits. The values entered are assembled into one syllable as part of
the Stripe Format Table which begins at the location designated by the use of the LSFR instruction
(Load Stripe Format Register). The table may contain up to 64 field formats if more than 64 are
required, another table must be designated with LSFR. The table must begin with syllable O of the
designated word; therefore, it should be preceded with the “WORD” pseudo instruction to assure proper
assembly.

Example:
PARAMETER
FIEL.D
LEN- A T on g =
N -
LABEL OP. CODE GT! LABEL INC/REL

16 |17 (18(19]20 (21| 22}23]|24 |25(26(27 |28[29[30|31{32(33|34 |35(36|37(38|39 (40 (41|42]| 43 |44 45 446 |47

L1 =S ER | FPEEMNSS| | L1 N

| IDIIIII]IIIIIJIJ [

1 1 1 1 I I W N (N N T T T Y T S T Lt t 111

e by ey bbb e b by [L1 1

I I I U | w|¢|a|v| | Y I I N | | - I | 1 L1
CTrELSSSME | A YRR RS L1 RN L1
g S e L A Ll
Lo b B LN TN L1
L1 (S CNA o TN Lot
B AR b\ \ A R B) AR BN EN N A YA VI [

2.19.02

WL

MUR

LABEL OP CODE A B REMARKS

LSFR FIELDS LOAD STRIPE FORMAT REGISTER

W—v

WORD
FIELDS SLF 1 31 1-ACCOUNT NAME

SLF 63 4 2—CHECK COUNT

SLF 67 7 3—ACCOUNT NUMBER

SLF 74 11 4-BALANCE + SIGN

SLF 85 11 5—LOW MONTHLY BAL. + SIGN

2.19.03 MAGNETIC UNIT RECORD FLAG

Three flags (the “S” group) are included in the system with the Magnetic Record option: the Read
Error Flag (R), the Filled Sheet Flag (F), and the Write Error Flag (W).

READ ERROR FLAG (R) — The Read Error Flag is set if a read error occurs during the record-read
process. Read errors occur because of the following conditions:

1. The data encoded on the magnetic unit record has become corrupted.
2. There is a blank magnetic record in the magnetic unit record mechanism.
3. The magnetic record is prematurely removed from the mechanism.

The “R” flag may be interrogated by the Skip and Execute instructions, but is reset by the initiation of
the next read or write instruction.

FILLED SHEET FLAG (F) — The Filled Sheet Flag is set when the Stripe Count Register is
incremented to a value of 1 greater than the contents of the Stripe Limit Register. The “F” flag may be
interrogated by the Skip and Execute instructions, but it is reset by the initiation of the next read or
write instruction.

WRITE ERROR FLAG (W) — The Write Error Flag is set if a write error occurs during the record-write
process. Write errors occur because of the following conditions:

1. The magnetic record in the mechanism is improperly coded.
2. There is no unit record in the mechanism.
3. The magnetic unit record is prematurely removed from the mechanism.

The “W” flag may be interrogated by the Skip and Execute instructions, but is reset by the initiation of
the next read or write instruction.

2.19.04 WRITE INSTRUCTIONS

OP CODE
WRITE RECORD WL

The WL instruction writes the data from the Magnetic Record Buffer onto the magnetic record on the
unit record. The line number contained in the Stripe Count Register is written in the line-find-digits area
of the magnetic record.

Revised 3-29-71 by
PCN 1045481-001 2.19.04

RL

MUR

2.19.05 READ INSTRUCTION

OP CODE A B

READ RECORD RL 0-5 0-15

The RL instruction provides the ability to read the magnetic record on a unit record either from the
console mechanism, or from the auto reader. This instruction is comprised of two operational phases.
Phase one is a numeric keyboard operation and phase two is a read and/or align operation. (There is not
a numeric phase on a read from auto reader instruction.)

The A parameter specifies the type of read and/or alignment. It also specifies the input device. The
possible entries for the A parameter are:

0 — Read and align to the line number on the magnetic record.

1 — Read and align to the line number contained in the Stripe Count Register.

2 — Read and align to posting line 1 (the first posting line).

3 — Non-read and align to the line number contained in the Stripe Count Register.
4 — Read and eject record.

5 — Read from auto reader.

Parameter 0 — Reads the magnetic record and loads the line number contained on the magnetic record,
automatically, incremented by one by firmware because it is the last posting line number,
into the Stripe Count Register, and aligns the ledger to thecontents of the Stripe Count
Register.

Parameter 1 — Reads the magnetic record, ignores the line-find digits, and aligns the unit record to the
number contained in the Stripe Count Register.

Parameter 2 — Reads the magnetic unit record and aligns the record to posting line 1, the first posting
line. The line-find number read from the magnetic record is incremented by one, since it
is the number of the last posting line, and loaded into the Stripe Count Register. The unit
record may be posted in its current position, or may be aligned to the contents of the
Stripe Count Register, or may be aligned after reloading the register.

Parameter 3 — This parameter provides the ability to insert either a magnetic or Parameter 3 — This
parameter provides the ability to insert either a magnetic or Register. Since this parameter
does not attempt to read the magnetic record, the contents of the Striped Ledger Buffer
are not affected.

Parameter 4 — Reads the contents of the magnetic record into the buffer and ejects the unit record.

Parameter 5 — This parameter specifies an auto reader read. the contents of the magnetic unit record are
read into the buffer. If the auto reader is turned off, or is not connected to the system,
the instruction will change control to the console mechanism and perform a Read and
Eject as described for parameter 4.

The B parameter specifies the number of numeric digits which may be entered into the Accumulator
during the numeric keyboard phase of the RL instruction. This is a standard keyboard operation, except

that the 00,000, Decimal Fraction, RE, C and M keys are not valid.

Revised 3-29-71 by
PCN 1045481-001 2.19.05

RL

MUR

When the instruction is initiated, the numeric keyboard indicator is turned on and the number of digits
specified by the “B” parameter may be entered. If this number is exceeded, a keyboard error results.
The use of the Reset Key will clear the Accumulator and reinitiate the instruction. PK’s may be enabled
prior to the RL instruction, so the entry may be terminated by depressing an activated PK. The entry
may also be terminated by any OCK which will also set the appropriate OCK flag. If the keyboard entry
is in error and has been terminated by an OCK, the depressing of the Ready Button will return the
system to the Ready Mode. When the system is in the Ready Mode, the use of the Reset Key will
reinitiate the RL instruction; however, any PK’s that were enabled, when the RL was originally initiated,
have been eliminated by the OCK termination.

If the numeric keyboard phase of the RL instruction is terminated by a PK, a jump to some specific
subroutine takes precedence.

If the numeric keyboard phase of the RL instruction is terminated by an OCK, the read phase is
initiated, and the system idles waiting for the insertion of a unit record. The insertion of a magnetic
unit record will execute the read phase of the instruction.

The numeric keyboard phase may also be terminated by the insertion of a magnetic record, without
depressing any OCK. It is possible to initiate the RL instruction, enter numeric digits not exceeding the
number specified by the B parameter, and insert a unit record which terminates the numeric keyboard
phase and initiates execution of the read phase. This type of termination of the keyboard phase resets
all OCK flags.

The forms handler is automatically opened during the initiation of the instruction. It is closed by the
first print instruction or a close instruction.

In the read phase, data is transferred to the unit record buffer, destroying the prior contents.

If a magnetic record from a previous operation remains in the mechanism when an RL instruction is
initiated, the “presence” sensor logic requires that it be removed and reinserted, even if it is intended as
the media for the current read operation.

If a read error occurs, either in the console mechanism or the auto reader, the R (read error) flag is set
and magnetic record is ejected. All error recovery routines are programmatic for either reader; however,
provision is made in the presence sensor logic, for the console mechanism, to allow the unit record to be
pushed from the eject position for a programmatic retry of the RL instruction. If a read error occurs
when the auto reader has been selected, the unit record must be moved from the stacking hopper back
to the feed hopper for the programmatic retry of the RL instruction.

If a Filled Sheet is detected during the execution of an RL instruction, the unit record is automatically
ejected and the Filled Sheet Flag is set. Detection of the filled sheet condition, and error recovery, must
be programmatic.

2.19.05 (Cont’d-1)

Example 1:

OP CODE

RL
EX
PKA
BRU

EX
PKA
TK
BRU

RL

MUR

FED PARAMETER
e on - T
22123[24 |25[26|27 |28, 29(30|31|32(33(34|35/36(37(38|39({40|41{42} 43 [44)45 W46 |47
R [09 AL L1
E|X| [J SI ¢+ | [N [2 L1]
Ao\ YRE TN A YR R B L1
RN, | ! | = 3 L1
IEIXI 11 | sl A1 1 Lt 1 Fl [-3 | |
ONA |2 N R L1
W S g I B L1
QAW | L1
A M- B € REMARKS
4 INDEX 4-DIGIT NUMBER AND INSERT RECORD
S R 2 IF READ ERROR OR JAM
1 PKA 1-RECONSTRUCT ROUTINE
-3 BRANCH BACK IF “R” FLAG IS SET AND
ATTEMPT TO READ AGAIN, UNTIL PKA 1 IS
SELECTED.
S F 3 IF FILLED SHEET
2 PKA 2-FILLED SHEET ROUTINE
0 HALT FOR ENFORCED PK SELECTION
-2 BRANCH BACK IF “F” FLAG IS SET TO ENSURE

DEPRESSION OF PKA 2.

If a Filled Sheet is detected during the posting procedure, that is, if during the posting procedure an
OCK or a PK was selected which would advance the magnetic unit record to a line below the last
available posting line (or if the Stripe Count Register is incremented to a value of 1 greater than the
contents of the Stripe Limit Register), the Filled Sheet Flag is set. (The automatic ejection of the record
can be suppressed if desired.) Detection of the filled sheet condition and error recovery, must be

programmatic.

Revised 3-29-71 by

PCN 1045481001 2.19.05 (Cont’d-2)

RL

MUR
Example 2: o APARAMETEF\‘ - -
e o oo |om | e | Ton
16 (17 (18] 19{20|21]22(23|24 |25| 26|27 |28/ 29{3031{32|33|34|35|36|37|38]39 |40 ({41|42] 43 |44 |45 46 |47
ENEITANNSR | AS | L1
S O I T | ? Lo 1 |- |11 L1
L1 1111,17'1111111 Lt L1
[ENENEN RN V.. N AN A VRN AR S SNSRI SR L1
I N T | gl\“! 11 l sl | I | S -\ gl [\ [
L1 BRw 2 =S YR Ly L1
L ogE L NENE de S| AdA NCGE
L1 1 PBC | || FRWARN =NE | L 1
L1 1, *®S, Ao\ R L1y Lot
Ll Ay | SAMNTEDY] L1
L Sesy | kAN EgN] L1
RS i i1 3. O A TR B S A A A YR L1
L1 PNSH P B e g Ll
L BT, | S L1
b Ry | ESTT L .
LABEL OP CODE A +- B ¢ REMARKS
INITAL L;LR 45 LOAD M/}G REC LH%HT REGISTER
AR 1 ALIGN TO NEXT LINE
SK S F 1 TEST LAST LINE
BRU POST GO TO POST NEXT LINE
DOC LINE 46 IS BALANCE
DOC FORWARD LINE
POS BAL POSITION TO BALANCE
PA BALFWD TYPE BALANCE FWD MSG
POS BALCOL POSITION TO BALANCE COLUMN
TSBA 6 1 READ BALANCE
PNS- 4 PRINT BALANCE
SRJ FILLIN GO TO FILLED SHEET
BRU POST GO POST NEXT ENTRY

2.19.05 (Cont’d-3)

PAS

MUR

In this example, when the AR instruction advances the record to line 46 (Limit Register value +1) the
Filled Sheet Flag (F) is set and the system displays a notification message and the Balance. The program
then jumps to a filled sheet routine for heading up the next record and returns to the correct posting
routine.

2.19.06 PRINT ALPHA FROM MAGNETIC RECORD AREA INSTRUCTION
OP CODE A
PRINT ALPHA FROM MAGNETIC RECORD AREA PAS 1-64

The PAS instruction prints alpha characters from the Magnetic Record Read-In Area. The number of
characters printed, and their location in the Magnetic Record Buffer, is determined by the format
selected by the A parameter.

The PAS instruction is terminated by the printing of the number of characters specified by the selected
format, or by the presence of NUL (0,0) codes in the data field.

Example:

N PARAMETER

£

! LABEL OP. CODE I(:'TE::- LABEL i TNgfn'EL - -

16 (17 (18| 19|20 [21] 222324 [25| 26|27 |28} 29]30{31]| 32| 33|34 |35{36(37|38]39 (40 |41|42} 43 {44 45 146 |47
L MY FEEASS) L1 4
I O T | I L 2 T [Lt | | L
AN N 0 W N N O NN N I Z Lo b L1 | L 1
| | PQP‘)SJ] | \1 L1 11 | 1 | 1 |
I Y S T | f 1 [I%J I S R | 1 {1 1 4+ 1 | |
[T | | I | 1 NS I 11 | L1 ¢
L1 MBS | L

FEELSSISVFE | LAV o RN L1 1;
L1 S\ LRy Ay L
Lot SM® g dN Ny L 11
Lo SO A VN Ll
L1 4 [SMW) L &S L N Ll 1 |

Revised 3-29-71 by
PCN 1045481-001 2.19.06

ADB SuB

MUR
LABEL OP CODE A B REMARKS
PAS 1 PRINT 31 ALPHA CHARACTERS FROM THE

MAGNETIC RECORD READ-IN AREA.

WORD
FIELDS SLF 1 31 1-ACCOUNT NAME
SLF 63 4 2—CHECK COUNT
SLF 67 7 3—ACCOUNT NUMBER
SLF 74 11 4—-BALANCE AND SIGN
SLF 85 11 5—LOW MONTHLY BALANCE AND SIGN

2.19.07 ARITHMETIC INSTRUCTIONS

OP .CODE A B
ADD FROM MAGNETIC RECORD AREA ADB 1-64 0-1
TO ACCUMULATOR

SUBTRACT MAGNETIC RECORD AREA SUB 1-64 0-1

FROM ACCUMULATOR
The ADB instruction adds the number of digits specified by the format, which is selected by the A
parameter, to the Accumulator.

The B parameter of the ADB instruction, if 0, specifies an unsigned data field; if 1, a signed data field.
If the field is signed, the least significant digit contains the sign (all Accumulator flags). '

The SUB instruction subtracts the number of digits specified by the format, which is selected by the A
parameter, from the Accumulator. The. B parameter specifications are identical to those described for
the ADB instruction above.

Example: This example utilizes the Stripe Format Table as defined in the PAS instruction example.

PARAMETER
FIELD
A
e _ B8 o
OP. CODE | GTH LABEL + OR

INC/REL

22)23|24 [25|26(27 28| 29|30|31|32{ 33|34 |35|36(37|38|39 |40 |41|42| 43 {4445 [46 |47

A DY S Lo 19y L1

[A (N I U U Y T (RO (N (NS S N L1 ¢ L

2.19.07

TSBA TSBM

MUR

OP CODE A B REMARKS

ADB 2 0 ADD 4 DIGITS (UNSIGNED) TO THE ACCUMULATOR.
2.19.08 TRANSFER INSTRUCTIONS

OP CODE A B
TRANSFER NUMERIC FROM MAGNETIC TSBA 1-64 0-1
AREA TO ACCUMULATOR
TRANSFER ALPHA FROM MAGNETIC TSBM 1-64

AREA TO MEMORY

The TSBA instruction transfers the number of digits specified by the format, which is selected by the A
parameter, into the Accumulator.

The B parameter of the TSBA instruction, if 0, specifies that the field is unsigned. If the B parameter is
1, the field is signed. The sign digit is contained in the least significant digit position of the data field
defined by the format. It is inserted into the sign position of the Accumulator during the transfer
process. The sign digit is considered to occupy a digit position in the field defined by the format. All
Accumulator flags (— S C M) will be transferred.

The TSBM instruction transfers the number of alpha characters, specified by the format selected by the
A parameter, into memory. An LKBR instruction must precede this instruction, since the value
contained is the memory location of the first word of the transfer.

The TSBM instruction is terminated by the transfer of the number of characters specified by the
selected format. NUL (0,0) codes will be inserted into memory following the last character of the
transfer. If the data does not completely occupy the last word of memory addressed in the transfer
process, the balance of the word is filled with NUL (0,0) codes. If data completely fills the last word of

memory addressed in the data transfer process, the next sequential memory word is filled with NUL
(0,0) codes.

Example 1: This example utilizes the Stripe Format Table as defined in the PAS instruction example.

PARAMETER
FIELD
e : + OR . <
P. GTH -
OP. CODE LABEL INC/REL

22123|24 |25|26(27 (28 29{30|31{32|33)34|35|36(3738(39 |40 |41{42]| 43 4445 a6 |47

Tlslglal 1 4! [| I \1 L [
o O | | [I 1.1 [Lt
OP CODE A B REMARKS
TSBA 4 1 TRANSFER 11 DIGITS (INCLUDING THE SIGN) TO THE
ACCUMULATOR.

Revised 3-29-71 by
PCN 1045481-001 2.19.08

TASB TMSB LA

MUR

OP CODE A B
TRANSFER FROM ACCUMULATOR TO TASB 1-64 0-1
MAGNETIC RECORD AREA
TRANSFER ALPHA FROM MEMORY TO TMSB 1-64

MAGNETIC RECORD AREA

The TASB instruction transfers the number of digits specified by the format, which is selected by the
A parameter, from the Accumulator into a data field in the Magnetic Record Buffer. The location of the
data field within the buffer is also specified by the format.

If the B parameter of the TASB instruction is 0, the sign of the Accumulator is ignored. If the
B parameter is 1, the sign of the Accumulator is transferred into the least significant digit position of

the data field. If the sign is included, it is considered a digit transfer. (All Accumulator flags are
transferred.)

The TMSB instruction transfers the number of alpha characters, specified by the format, which is
selected by the A parameter, from memory to a data field in the Magnetic Record Buffer. The location
of the data field within the buffer is also specified by the format. The memory location of the starting
word of the transfer is contained in the Keyboard Base Register. To specify an intended memory
location the TMSB instruction must be preceded by an LKBR instruction. The instruction is terminated

by transferring the number of characters specified by the selected format or upon recognizing an end of
alpha code.

Example 2: This example utilizes the Stripe Format Table as described in the PAS instruction example.

PARAMETER
FIELD
A A - B c
” -
op. cope | GT LABEL TNeyREL

22)23|24 {25|26|27128| 29|30131|32|33|34| 3536373839 |40 (41| 42| 43 {4445 4647

_‘-1 JS &1 1 g.l | | [\1 | L1 1
I I | | [T I L 1| [[
OP CODE _li i REMARKS
TASB 5 1 TRANSFER 11 DIGITS (INCLUDING THE SIGN) FROM
THE ACCUMULATOR TO THE MAGNETIC RECORD
BUFFER.

2.19.09 UNIT RECORD ALIGNMENT INSTRUCTIONS

The Unit Record Alignment instructions provide the ability to control record movement and alignment
in the console mechanism.

OP CODE
RECORD ALIGN LA

The record align instruction provides the ability to move the handling mechanism from its current
position to the line number contained in the Stripe Count Register. The Record Alignment Errors,
“jam” indications, and error recovery procedures are discussed under subject 2.19.10.

2.19.09

Example 1:

OP CODE
LSCR
LA

EL

MUR

PARAMETER
FIELD
e A — B C
OP. CODE GTH LABEL INC/REL
22|23{24 |25 2725830313233343536373839404142 43 {44145 46 |47
\-lslc-lcﬂ | Al's] I | TR L1 1 L4 1
A\x IR B N B B N B A B A B A L1
Li._L.JMJ._. Lt [TR U Y N O W T | (| [T
A B REMARKS
45 LOAD STRIPE COUNT REGISTER

EJECT RECORD

ALIGN RECORD TO LINE 45

OP CODE

EL

The EL instruction ejects the unit record that is in the handling mechanism. This is the only operation
performed. The Magnetic Record Buffer is not affected. See subject 2.19.10 for error conditions and

recovery procedures. If the handler is closed, it is open for the execution of the EL instruction.

Example 2:

OP CODE
EL

PARAMETER
FIELD
LEN- 2 + OR = =
. GTH -
OP. CODE LABEL INC/REL
22|23[24 |125|26|27 28| 29|30{31|32|33(34(35(36|37|38{39 (40 |41{42]| 43 |44(45 46 |47
e 1 [N N AR L L1
[T O T T B B Lo L1
A B

REMARKS

EJECT RECORD

Revised 3-29-71 by
PCN 1045481-001

2.19.09 (Cont’d-1)

RET LSCR

MUR

OP CODE
RETRACT RECORD RET

The magnetic unit record handler travels down and to the rear of the console until a fixed limit is
reached. The RET instruction moves the handler to this fixed limit, with the handler open, to permit
the insertion and manual alignment of a record or form. See subject 2.19.10 for error conditions and
recovery procedures. The handler will remain retracted until an EL, LA, or RL instruction moves it back
to its forward limit. If the handler is in the retracted position when the power is turned on, the
power-on routine will move it to the forward position.

Example 3:
PARAMETER
"L'gf A B c
OP. CODE | GTH LABEL ':"Ng;*R;L

22|23|24 | 25| 26|27 |28 20|30 31| 32{ 33(34 | 35| 36 |37| 38| 30 |ac |a1] 42| 43 {44 |as la6 |47
RET | i B R L1 L L1
N T B | | [T O N A I [T

OP CODE A B REMARKS

RET RETRACT RECORD MECHANISM
OP CODE A
LOAD STRIPE COUNT REGISTER LSCR 1-46

The LSCR instruction loads the Stripe Count Register with the value stored in the “A” parameter. The
“A” parameter value may vary from 1 to 46 (46 is maximum number of posting lines on an 117
Magnetic Record).

The Stripe Count Register and the appropriate Forms Count Register are incremented by the AR, ALR,
and ARTO instruction if a Magnetic Record is in handler. If a Magnetic Record is not present, only the
appropriate Forms Count Register is incremented.

When the Stripe Count Register is incremented one beyond the Stripe Limit Register, the Filled Sheet
Flag (F) is set. The Filled Sheet Flag is reset at all other times.

When a Write Magnetic Record (WL) instruction is executed, the contents of the Stripe Count Register
are written on the magnetic record in the area reserved for the line-find number,

In a Read and Align operation the contents of the Line-Find number on the magnetic record are
incremented by one and stored in the Stripe Count Register.

2.19.09 (Cont’d-2)

LSCR LSLR

MUR
Example 4:
PARAMETER,
FIELD A B c
LEN- + OR -
OP. CODE GTH LABEL INC/REL

22123|24 |25] 26|27 |28} 2930 (31} 32| 33|34 | 35|36|37{38|39 (40 |41} 42} 43 |44 |45 46 |47

_'%Qq\ | \I S T | [J | L1
T | (TR T S (O T M I I | oo I T
OPCODE A B REMARKS
LSCR 1 LOAD THE STRIPE COUNT REGISTER WITH

A VALUE OF 1.

OP CODE A
LOAD STRIPE COUNT REGISTER LSCR 1-46

The LSLR instruction loads the Stripe Limit Register with the value contained in the A parameter.

Example 5:
PARAMETER
FIELD A B c +
LEN- + OR —
OP. CODE GTH LABEL INC/REL
22123|24 |25]26|27128l 29]30131} 32(33134 | 35|36 |37(38|39 (40 {41{ 42| 43 {4445 |46 (47
SR | A% L1
[S Y N T AU T N AN N S S A B 1t |
OP CODE A B REMARKS
LSLR 45 LOAD THE STRIPE LIMIT REGISTER WITH A
VALUE OF 45.

2.19.10 RECORD ALIGNMENT ERRORS AND FLAG INDICATIONS
Record Alignment Errors occur because of the following conditions:

1. The “gripper” jaws in the handler mechanism are not moving or are not at proper speed when
the handler has been activated.

2. When the total number of lines, from the line-find operation, plus the number of program-
matic line advances, does not equal the number of lines the form moves when it travels back
to the limit to prepare for an eject or write operation.

If either of the above conditions occur, a “jam” condition is probable. A jam can also be caused by a
torn or accordioned form. The jam condition will result in the following indications:

Revised 3-29-71 by
PCN 1045481-001 2.19.10

LSCR LSLR

MUR

1. The execution of the instruction in process when the alignment error occurred will not be
terminated.

2. PKA 1 is enabled. Its indicator and the Error indicator are turned on. All other PK’s are
disabled. All keyboard indicators, other than PKA 1 and the Error indicator are turned off.
The alarm is sounded.

Error recovery consists of clearing the alignment condition or record jam by pressing PKA 1 and by
removing the unit record from the handler. The depression of PKA 1 clears the error condition,
terminates the execution of the instruction in process when the error occurred, turns off the PKA 1
indicator and the Error indicator, sets both the R and W flags, and returns to sequential execution of
the program.

It is essential since the instruction in process when the error occurred was terminated, that the Record
Align (AL), Eject Record (EL), Write Record (WL), Read Record (RL), and the line advance
instructions (AR, ALR, ARTO) each are followed by flag interrogation instructions to allow program-
matic recovery from an error condition.

Example:
PARAMETER
';'_‘;—? A B C
e il I
22123124 |25(26|27|28;29(30}31| 32| 33|34 35|36 (37(38(39 {40 [41|42| 43 {4445 {6 |47
S C & LN L1 L] L1
pﬂ\t 11 L3 T | L1 O L1]
X ol S & al
ewey N Log]
hnaﬁ\h 1 ! coer o e B L1
OP CODE A +/- B C REMARKS
LSCR 1 LOAD STRIPE COUNT REGISTER
RL 3 @) NON-READ AND ALIGN RECORD
EX S R 2 IF READ ERROR OR JAM
PKA 1 PKA 1-RECONSTRUCT ROUTINE
BRU -3 BRANCH BACK IF “R” FLAG IS SET AND

ATTEMPT TO READ AGAIN, UNTIL PKA 1
IS SELECTED.

2.19.10 (Cont’d)

2.20 — MESSAGE UNPACKING ROUTINE
2.20.01 GENERAL DESCRIPTION

The message unpacking microstring is used for unpacking numeric information after it has been
transferred from the Data Communications buffer to the accumulator. The use of this macro, as
opposed to a user written routine to accomplish the same results, will on some applications result in a
considerable reduction in the time it takes for the TC to process the data. The message unpack macro
should be used when the following conditions exist: The number and types of data elements in the
message are variable; and like elements in the message are to be grouped for printing, totaling or storing.
Up to 32 different numeric elements may be stored.

To use this Macro the Programmer must set up a Position Table and a Storage Area. The element to be
unpacked is programmatically transferred to the accumulator from the receive buffer. The last two digits
in the accumulator make up the data element code that directs the microstring to a position table which
in turn determines the particular word of the storage area to transfer the item to.

2.20.02 POSITION TABLE

The position table must occupy words 11-14. Its function is to determine whether or not the contents
of the accumulator will be transferred to the storage area and if so, into which word. Each word of the
table contains 8 hexadecimal indicator codes, ending in digit positions 0, 2, 4, 6, 8, 10, 12, 14
respectively.

Digit Position | 15 14 |13 12 |11 10 | 9 7
Word 11 e E|F Flo 6]0 Alo 4lo0

6 | 5 4 | 3
310
In the position table, each indicator code is referenced by its least significant digit position. For

instance, the code in digit position 4 and 5 is referenced by a 4; the code in digits 2 and 3 is referenced
by the 2; etc. There are three different types of codes:

2 |1
710 2

1. A code that indicates which word of the storage area the data is to be transferred to. In the
diagram, indicator code 6 (the two digit values in digit position 6 and 7) would cause the data
to be transferred to word 4 of the storage area. Indicator code 8 would transfer the data to
word 10 of the storage area.

9. FF is a code that indicates the numeric data transmitted to the TC is invalid. The Special (S)
flag of the accumulator is set by this code. FF would be most useful when first developing
and debugging the on-line system.

3. A code of EE indicates that the data in the accumulator is to be ignored. If the central processor
sends a fixed format message to all remotes, some of the fields in that message may pertain to
only certain remotes and should be ignored by all others. In this type situation, the EE code
proves to be most helpful.

2.20.03 DATA ELEMENT CODES

After the data element is transferred to the accumulator from the buffer, the last two digits, which
make up the data element code supplied by the data center, are in accumulator digit positions 1 and O.
The hexadecimal value in digit position 1 refers to a particular position table word i.e., actual position

Revised 3-29-71 by
PCN 1045481-001 2.20.03

table words 11, 12, 13 and 14 are referenced by numbers O, 1, 2 and 3 respectively. The hexadecimal
value in digit position O of the accumulator indicates which code of the position table word is to be
accessed. For example, to reference indicator code 2 in word 11 of the position table, a data element

code of 02 is used.
2.20.04 STORAGE AREA

The storage area starts in word 15. Word 1 of the storage area would be word 15; 2, word 16, etc. The
number of areas used in the program is determined by the programmer, up to a maximum of 32 areas
or words.

2.20.05 ERROR CONDITIONS

If the microstring detects an error the data will not be stored and the accumulator S flag will be set.
The following will result in an error condition:

1. The word designation given in accumulator digit position 1 for the position table is other than
0,1, 2or 3,
2. The digit designation given in accumulator digit position O of the word in the position table is
other than 0, 2, 4, 6, 8, A, C, or E. _
3. An illegal indicator code in the position table. The only valid entries are FF, EE and
hexadecimal values 1 to 20.
2.20.06 DELIMITER

The delimiter is a character transmitted to the TC which is used to determine the status of the message
being transmitted. For example, DC1 may indicate the end of a print line; DC2 may indicate the end of
a buffer but not the end of a message; ETX is used to indicate the end of a message. Each delimiter will
set its appropriate K or Y flags.

2.20.07 PROGRAMING REQUIREMENTS

The instruction B40B accesses the unpacking routine. The data element is transferred to the accumulator
from the buffer by the application program.

Also, the K and Y flags must be reset by the programmer for each data element, since delimiters which
set the flags are used to indicate when to stop unpacking and begin to print the message. The following
group of instructions demonstrate how the message unpacking routine is used.

SYM op A B C
LOC. E% PAR PAR PAR REMARKS
NEWFLD RST K 1 RESET K FLAGS BEFORE MOVING DATA TO THE
ACCUMULATOR.
TRBA 15
CODE B40B ACCESS UNPACKING ROUTINE.
EX A S 1 CHECK FOR INVALID DATA ELEMENT CODE.
BRU ERROR
SK K 1 1 IF K1 IS SET UNPACKING IS FINISHED.
BRU NEWFLD NOT SET SO CONTINUE UNPACKING.

(PRINT ROUTINES)

When printing from the storage area, it is necessary to examine each word to determine whether or not
it contains a numeric value. If an area does contain numeric information, it should be cleared by the

programmer after printing.

2.20.04

2.21 — TRANSACTION CODE TRANSLATOR

2.21.01 GENERAL DESCRIPTION

The Transaction Code Translator is a Firmware Add-On Micro string used for interpreting typewriter
keyboard depressions. As a result, a 2-character abbreviation is stored in memory for printing and a
transaction code is stored in a designated location of the Accumulator for transmission to the Data
Center. The 2-character abbreviation and the transaction code and its location in the accumulator are
determined by a table which is stored in main memory. The Translation table can be of any length;

however, it must be located entirely within block O (words 0-255).

The Transaction Code Translator also provides for the automatic insertion of a predetermined (modular)
2-character abbreviation and transaction code when a key is not depressed in Row 2 of the typewriter

keyboard.

The Transaction Code Translator is primarily designed for use with the TC 700 in a financial application
environment. However, versions of the Transaction Code Translator are available which are compatible

with most GP 300 firmware sets.
2.21.02 TRANSLATION TABLE FORMAT:

a. Work Area
The First five words of the table are reserved as a work area and must be located entirely
within a Track in Block 0 (words 0-31 of a track). The Five word work area is used in the

following manner:

Word 0: The First word of the table must contain the keyboard codes before executing the
Translation instruction. (Maximum of 4 codes, one for each typewriter keyboard
TOW.)

Words 14: After executing the instruction the 2-character abbreviation for the key depressed is
stored in the 4 high order positions of words 1-4 of the 5-word work area. The
exact location of the abbreviation is determined by a code stored in the Translation
Table entry for the key depressed. (See factor 4 below).

One key from each row can be translated each time the instruction is executed;
Multiple key depressions in the same row will cause an error condition.

b. Translation Area:
The Translation area of the table must immediately follow the work area and it can be of any
length depending on the number of key codes being translated. Each word in the translation
area contains the factors necessary for translating 2 keyboard characters. These factors are as

follows:
1. 2-digit hexadecimal USASCII value for key indexed.
2. 4-digit hexadecimal USASCII value of the 2-character abbreviation to be printed.

3. One-digit hexadecimal value (0-F) of transaction code to be stored in the accumu-
lator for later transmission to the data center.

4, One-digit decimal value (0-3) representing the Accumulator digit position where the
transaction code is to be stored and the location in the work area where the

Revised 3-29-71 by
PCN 1045481-001 2.21.02

TCT

abbreviation codes are stored. The location of the abbreviation code in the work area can be determined
by the following chart.

FACTOR 4 ACCUMULATION ABBREVIATION
VALUE DIGIT POSITION TABLE LOCATION
0 0 1
1 1 2
2 2 3
3 3 4

The above factors are located within a table word in the following manner:

Character 1 Character 2
Digit Position 15 14 13 12 11 10 9 8 7 6 5 4 3 2 10
Factor No. o) 1 4 3 2 1 4 3
(See Above)
Example:
Character 1 Character 2-
Digit Positions 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Table Entry 4 5 4 8 4 > 1 2 5 3 5 4 5 71 2 3
Value E H E 1 2 S T w 2 3
Factor No. 2 1 4 3 2 1 4 3
Character 1 Character 2
Key Depressed E w
Stored For Print EH ST
Transaction Code 2
Digit Position in Accum. 1 2

The last entry in the translation table must be 0000FF00. Upon recognizing an FF code, the
search routine halts and the results can be processed by the user program.

The microstring searches the table sequentially beginning with the character stored in digit
position 15-8 of the first table entry following the work area. The table entries can be in any
order within the table. However, since the microstring searches sequentially, the most
frequently used entries should be at the beginning of the table.

2.21.03 AUTOMATIC CODES

The Transaction Code Translator instruction will automatically insert an SV abbreviation into word 4 of
the work area and a transaction code of 1 into Accumulator digit position 3, when a typewriter key in
row 2 is not depressed. Also, when a typewriter key in row 4 is not depressed a transaction code of 9 is

2.21.03

TCT

stored in Accumulator digit position 1. An automatic abbreviation is not provided. These automatic
abbreviations and the transaction codes can be modified as required by the application.

The values which determine what abbreviation and/or transaction codes are to be generated in the
absence of a key depression in Row 2 and/or Row 4 (Transaction Code only), are stored within the
instruction microstring. Hence, care must be taken to ensure that only the desired values in the
microstring are modified.

Since the instruction microstring will be located in various tracks depending on which main memory
firmware set is implemented, all memory locations are relative to the base word of the track (first word
of the track) in which the microstring is stored. The microstring is stored in the highest available track
provided by the main memory firmware set being utilized.

2.21.04 CODE MODIFICATION

Modification of the various “automatic” codes is accomplished by changing the desired codes using the
Memory Modify utility and then punching out the modified firmware using one of the Memory Punch
utility routines.

The bit configuration of the desired abbreviation characters to be printed is determined by each
character’s row (upper bits) and column (lower bits) location in the USASCII chart. The abbreviation
characters are stored in memory in the following manner. (Addresses are relative to the base address of
the microstring).

1st Print Character
1. The lower 4 bits of the first print character are stored in digit position 6 of word 3.

2. The upper 4 bits of the first print characters are stored in digit position 14 of word 3.

2nd Print Character
1. The lower 4 bits of the second print character are stored in digit position 10 of word 5.

2. The upper 4 bits of the second print character are stored in digit position 2 of word 6.

The transaction code which is stored in the Accumulator when a key in row 2 is not depressed is
located in digit position 6 of word 24.

The transaction code which is stored in the accumulator when a key in row 4 is not depressed is located
in digit position 10 of word 31.

Example: The Firmware configuration used is:

Main Memory 2-1021-001 (384 words of user memory), CDC-CDV Firmware Add-On.
Using this configuration, the transaction code translator microstring would be in words
320-351 (Block 1, Track 2). The base word of the microstring is word 320. (CDC-CDV
would occupy words 352 to 383).

The automatic abbreviation to be printed is DR and a transaction code of 4 is to be inserted
in the Accumulator. The keyboard row 4 automatic transaction code is to remain the same

9.

Revised 3-29-71 by
PCN 1045481-001 2.21.04

TCT

USASCII Column and Row locations are:
D=44 R =5,4.

The upper and lower digits of the first print character (D) are stored in word 3 digit position
14 & 6 respectfully of the microstring. The actual memory location is word 323. (Base word
is 320 + 3 = 323).

The printout of the TC using Memory Modify would be as follows:

323 215]A2 4FE2 F{3]|E2 CC38 14 4A24FE2F4
2141A2 4FE?2 F |{4]|E2 CC38
The lower digit (4) of the second print character (R) is located in word § digit position 10
(word 325)
Printout:
325 40E2 8|6|E2 AAl6 9F5B 10 4
40E2 814[E2 AAlé6 9F5B
The upper digit (5) of the second print character (R) is located in word 6 digit position 2.
(word 326)
Printout:
326 7F14 A140 B1E1 D|[5]|]A2 2 5
TF14 Al140 B1E1 D|5]A2

The Row 2 transaction code is located in word 24 digit position 6. (word 344)

Printout:

344 235B 5042 3(1]|E2 9751 6 4
235B 5042 3141E2 9751
When the modification of the microstring is complete, the new microstring is punched out
using one of the Memory Punch utility routines. It is recommended that all firmware
extensions which are used in an installation be incorporated on one tape with the main

memory firmware set. In the above example this would be accomplished by punching words
320-575 and words 608-1023.

2.21.05 ERROR CONDITIONS

The Transaction Code Translator instruction will detect the following two types of errors.

1. No Table entry for'the keyboard character depressed.

2. Multiple depressions on the same typewriter keyboard row.

When one of the above errors is detected, the instruction will set all of the accumulator flags.

2.21.05

TCT

2.21.06 MACHINE CODE FOR TRANSACTION CODE TRANSLATION INSTRUCTION

This instruction is executed by using a machine language code of 104A. This machine language code is
incorporated into the object program by use of a CODE psuedo instruction with an A parameter value

of 104A.

2.21.07 WORD 576

Word 576 of the utility track is used as a link address between the MACRO instruction (104A) and the
microstring. Since the location of the microstring is variable, the content of word 576 will also vary
depending on the location of the microstring. The content of word 576 for the various possible
locations of the microstring can be determined by the following chart.

MICROSTRING LOCATION CONTENTS OF WORD

BLOCK TRACK 576
1 0 F244 0000 31F1 0000
1 1 F344 0000 31F1 0000
1 2 F254 0000 31F1 0000
1 3 F354 0000 31F1 0000
1 4 F264 0000 31F1 0000
1 5 F364 0000 31F1 0000
1 6 F274 0000 31F1 0000
1 7 F374 0000 31F1 0000

2.21.08 USER PROGRAM REQUIREMENTS

1.

Set word 576 during the initialize portion of the user program.

In addition to one track in user memory, the Transaction Code Translator also uses Syllables 1
and 3 of Word 576. Since various Utility Routines also use word 576, the User Program
should set word 576 during the initialize phase of the program.

Clear words 1 and 3 of the work area. These words must be cleared prior to executing the
microstring to ensure that the abbreviation codes from the previous entry are not printed
twice. Words 2 and 4 of the table are cleared automatically.

Set the keyboard base register (LKBR) to the first word of the work area and enter the
keyboard codes to be translated into the first word of the work area using the EAM macro
instruction.

Execute the Translation Instructions: (Code 104A).

NOTE: The Code 104A instruction MUST be executed immediately after the EAM
instruction.

Test for an error condtion (all Accumulator flags set) immediately after executing the
instruction.

Set the LKBR to the Send Buffer or Work area.
Revised 3-29-71 by
PCN 1045481-001 2.21.08

TCT

7.
8.

2.21.09 PROGRAMING EXAMPLE

Transfer the transaction codes stored in Accumulator into the send buffer or send record area.

Print the abbreviation codes stored in words 1-4 of the work area.

Transaction Code Translator could be incorporated into the user Program and utilized in the following

manner.

LABEL
INITIL

TABLE

START

TRANS

2.21.09

INST

CLM
CLM
LPNR
LPKR
BRU
NOTE
NOTE
NOTE

REG

CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
CODE
PKA

LKBR
CLM
CLM
EAM
CODE
EXE
ALARM
RST

A

MCHTOT
OFLNTT
PMASKS
PKEYS
START

4134

4D4F
3101

2031

5527

5452

4637

5353

0000

0000

FF00
0000

13

TABLE
TABLE
TABLE

104A

+1
+3

-SCM2

-SCM2

REMARKS

CLR DAILY TOTAL

CLR OFF-LINE TOTAL
LD PRT MASK REGISTER
LD PK REGISTER

THE FOLLOWING TABLE IS USED BY THE
MICRO-STRING TO TRANSLATE KEYBOARD
ENTRIES.

5 WORD WORK AREA

KB=A, TRANS CODE =4 COL 3
ABBV = MO

KB = 1, TRANS CODE =1 COL 0
ABBV =1

KB = U, TRANS CODE = 7 COL 2
ABBV = TR

KB = F, TRANS CODE = 7 COL 3
ABBV =SS

END OF
TABLE
ENABLE PK KEYS

SET BASE REG POINTER TO TABLE
CLEAR WORK WORD 1

CLEAR WORK WORD 3

ENTER KEYBOARD CODES
TRANSLATE CODES

TEST FOR INVALID ENTRY
SIGNAL OPERATOR

LABEL

MCHTOT
OFLNTT
PKEYS

INST

BRU
LKBR
TRAB
AL
POS
PA
POS
PA
POS
PA
POS
PA
REG
REG
BRU
NOP
BRU

A

TRANS
SENBUF
3

1

10
TABLE
14
TABLE
18
TABLE
22
TABLE

RECV

SEND

+1

+2

+3

+4

TCT

REMARKS

BRANCH TO RE ENTER
SET SCP TO SENBUF
STORE TRANSACTION CODE
ALIGN FOR M

POSITION PRINTER
PRINT ABBREVIATION 1
POSITION PRINTER
PRINT ABBV 2
POSITION PRINTER
PRINT ABBV 3
POSITION PRINTER
PRINT ABBV 4

DAILY TOTAL

OFF LINE TOTAL
PK1-TO PROCESS MSG

TO TRANSMIT MSG

Revised 3-29-71 by
PCN 1045481-001 2.21.09 (Cont’d)

SECTION
SYMBOLIC PROGRAMING PROCEDURES

PROGRAM DEFINITION

A program definition is a set of specifications used for the efficient development of the application
software needed for a machine-oriented data processing system. The program definition procedure is:

1. Systems Analysis.
Defining the output.
Defining the processing.
Defining the input.

Evaluating the system and,

S kv

Defining for programing — or — reanalyzing and repeating the procedure.

When the program definition procedure is used to design an acceptable system, the system specifications
are recorded in the form of:

1. A general systems flow chart of the complete data processing system.

2. Completed Program Definition Worksheets, MKTG 2366, illustrating the required output from
each program in the system.

3. Complete Program Definition Charts, MKTG 2402, explaining the input, processing, and
output requirements of each program in the system.

The necessary applicational software will then be developed from this information.
PROGRAM WRITING

After the program definition specifications are completed and given to the programmer, the process of
writing the program begins. ‘

The first step the programmer should take, is to thoroughly analyze the program definition
specifications. This will serve two basic purposes. First, it will enable the programmer to ask questions
about any area or steps in the definition, that are unclear. This can save later reprograming on steps the
programmer incorrectly understood. Second, it will give the programmer an opportunity to develop a
general idea of what the program will contain when completed, how much memory it is going to take
(this evaluation becomes more accurate with experience) and to look for possible use of any routines,
already written, which can be used in the program.

After the definition is thoroughly analyzed and all questions answered, the writing of symbolic
instruction begins.

Every program generally has three separate sections, initialize, main body, and definition section. Coding
forms should be set aside for each section. This enables the programmer to add pages to any section
without interrupting the order.

An explanation of each section using the programing example in Section 4 follows.

Revised 3-29-71 by
PCN 1045481-001 3-1

The initialize portion of a program is generally the shortest portion of a program (in terms of numbers
of instructions). In its narrowest sense, this portion will be executed before an NK or TK instruction,
halts the internal program execution for the first operator action. In the example Seq. No.’s 20, 30, 40
loads the base register for the PK table, the print mask table, and the line limit register for the form
being used in the machine. Even though its instructions are few in number, without them the
programmer could not control the program. For example program execution stops at Seq. 90, if the
operator selected PKA 5 without having the LPKR instruction at Seq. No. 20, the base register for the
PK Table would contain the word number for the LPKR instruction of the previous program in the
machine. Therefore selecting PKA 5 would not have caused the execution of the BRU INCOST
instruction.

A broader description of the initialize section would be to include routines in the program which are
not part of the main program. Seq. steps 1 through 5 on the Program Definition Chart in Section 4
could be included under this broader definition. These sequence steps are not -concerned with the
mainline function, i.e., creating the invoice, but rather prepare the system for invoice writing.

The second section of a program, the main body, is the area of the program which accomplishes the
task assigned to the program. In the programing example, sequence steps 6 through 32, are concerned
with creating an invoice. Each sequence step should be completely programed before going to the next.
In the example, sequence steps 8 through 14, are accomplished by Sequence Numbers 430 to 570. Since
these sequence steps are concerned with the ribbon line on the invoice, the programmer has labeled
Sequence No. 430 RIBBON. The use of descriptive labels gives the program added readability. This
enables others who read the program documentation to follow the logic with a better understanding.
Using the REMARKS field on each instruction to explain the purpose of the instruction also increases
the readability of a program. These comments in the REMARKS field also help the programmer when
debugging the program.

While programing the sequence steps from the Program Definition Chart, the programmer will generally
make use of three techniques, straight line, loops, and subroutines. The straight line method is exactly as
its name implies, it is a series of instructions, without any branches which solves the given problem.
Sequence numbers 110 through 230 are an example of this method. This sequence accomplishes the task
of storing the page number, positioning the printer, printing the customer name, storing it, advancing
the form, etc., without the use of loops or subroutines. The looping technique uses a counter to execute
the same series of instructions a desired number of times. The routine which clears 11 words of memory
labeled CLRMEN uses the looping technique. An index register value is incremented each time the loop
is executed, up to a maximum number of times, when this limit is reached the program branches out of
the loop. The subroutine technique is like the straight line method except that in the series of
instructions we branch out to execute another series of instructions and when finished with these the
program returns to the instruction following where we left the series. This allows writing a routine,
which is to be executed a number of times during a program, only once; and going to it any time and
returning to where it branched from. An example is sequence number 560 where we leave the straight
line to print the date and invoice number and when finished, return to sequence number 570.

The last section of the program, the define section, is actually written along with the initialize and main
body. This area contains all PK Tables, Print Masks, storage regions, numeric constants, alpha constants,
etc. An example of how this section is completed would be to look at Sequence Number 30. The LPNR
instruction has in its A parameter the label MASKTB. Right after this instruction is written, the
programmer codes the first MASK instruction with the label MASKTB in the definition section. This
process is repeated for all storage locations, numeric constants, alpha descriptions, etc., as the program is
written.

3-2

After the program is written, the last step is to assemble it and debug the program when it is loaded in
the machine.

PROGRAM DEBUGGING

Generally, program debugging is completed in two steps. The first step is to correct Assembler errors,
these are invalid conditions which the Assembler finds in the symbolic instructions, these errors are
corrected by removing the invalid conditions in the symbolic instructions. The second step is to find the
logic errors, i.e., areas of the program which are not giving the desired results.

When the Assembler detects an error in the source program, the invalid instruction is replaced by a
NO-OP instruction. Thus the object program contains the correct instructions and the Assembler inserted
NO-OP’s. It is possible to load the object program and replace the NO-OP’s with the correct machine
language code for the desired instruction, through the use of the Memory Modify service routine.

Logic errors can be found by analyzing the sequence of instructions or by using one of three available
Trace service routines. When a logic error is found, its proposed solution should be tested before
re-assembly. This is accomplished by inserting the appropriate machine language codes for the symbolics
in place of the incorrect codes. If the new solution cannot be placed within the area of the incorrect
codes, a branching out of that area to an area not used by the program (usually starting at the word
location following the last word of the program) placing the rest of codes and then branching back into
the program at the appropriate place. If the new solution is correct, then it can be written in symbolics
and inserted in the program before re-assembly. Once debugging is completed, the corrected program can
be obtained, by the Punch from Memory service routine.

As mentioned before, during debugging the Trace routines will sometimes be used. In general they are
useful for (1) reading the program execution sequence (especially for conditional branches), (2) to check
when the flags are being set or reset, (3) to read the values of the index registers (especially when used
as counters in loops), (4)to read the value in the Accumulator (to debug shift and arithmetic

instructions).
DATA COMM DEBUGGING

Debugging a TC 500 on-line program can be expensive if a central processor remains on demand while
the TC 500 operator is detecting and correcting errors on the TC. It is possible to debug off-line by
using the memory modify utility routine, especially the selective start feature.

The first word of the receive buffer in Data Comm Memory is located in word 1247. The second word
is 1216 and the remaining words follow serially to word 1246. Knowing this, it is possible to access
these words using memory modify and index from the keyboard the USASCII code representation of
the characters of any message the operator is anticipating, thus doing the work of data comm memory
by placing the message in the receive buffer. Then, using the selective start feature of memory modify,
access the word and syllable of the instruction immediately after the receive flag (R2) has been
interrogated and determined to be set. The object program will begin executing from that word and
syllable. This routine allows the operator to proceed as if a message had been received from the central
processor and allows testing of those parts of the object program that unpack messages.

Likewise, the transmission of messages can be tested off-line. The first word of the transmit buffer is
located in word 1249 and the next 30 words proceed serially to word 1279. The last word is 1248.
After programmatically packing a message into the transmit buffer, the operator should depress the

Revised 3-29-71 by
PCN 1045481-001 3-3

program halt button after the transmit ready flag (R3) is set (evidenced by the transmit ready light
being on) and then use memory modify to read these words and determine if the message was assembled

in the buffer correctly.
The word locations of transmit or receive record work areas are determined by the Assembler and would
be accessed accordingly.

MODIFICATIONS NECESSARY TO THIS MANUAL FOR PROGRAMING
THE 40 TRACK STYLE SERIES L

Previously presented information in this manual applies only to 32 Track Styles of the Series L except

for Assembler VI which utilizes the 40 track styles of the Series L. This section details all the additional
information needed to utilize this assembler manual when programing the Extended Memory Styles.
Styles.

An object program which was assembled for a 32 track system will operate on a 40 track system using
40 track firmware, except for the REM instruction. An object program which was assembled for a 40
track system will operate only on a 40 track system.

GP 300 OPERATION CODE MODIFICATIONS

Forty track systems allow the use of any GP 300 instruction explained in this manual except for the
Data Communications Message Handling instructions. All user memory may contain program data or any
other desired data. However, certain instructions do not permit referencing memory locations above
word 511. These instructions are listed in Table 1 below:

INSTRUCTIONS
ADA
CLM
CPA

DIV
MUL
MULR
SUA
XA

Table 1

Instructions which only can reference words 0 to 511 of user memory

It is essential ‘that the instructions contained in Table 1 be borne in mind when moving or accumulating
data in memory. Generally, the machine language codes are the same for either 32 track or 40 track
systems. Examine Appendix B, for the machine language codes of both 32 track and 40 track systems.

PROGRAMING CONSIDERATIONS

Due to the fact that some instructions cannot reference user memory locations above word 511, it is
necessary that all constant data and working data be assembled in memory locations below word S511.
The remaining memory is then used for program instructions.

3-4

SYMBOLIC
PROGRAMING PROCEDURES

The following example illustrates a generally used programing principle

Example:

The three rectangles above illustrate a technique to have the working and storage area of the program
assembled below memory word 511.

Rectangle 1 represents word 0. The first three syllables (0, 1, 2) contain programing. Syllable 4 contains
a branch around rectangle 2 to rectangle 3. '

Rectangle 2 contains the working-storage area.
Rectangle 3 contains further programing as required for data manipulation.

The following sample program illustrates the technique described above.

LABEL OP CODE A B _C_

LLLR 35
LRLR 15
LPKR PKEYS
BRU BEGIN

TOTALS R]llG 200

ZERO NUM 0

STORE REG 150

BEGIN NK 5 1

With the expanded memory size it may become necessary to clear a memory area larger than 255 words.

This cannot be accomplished, easily, in a single loop since Index Registers have a maximum value of
255.

Revised 3-29-71 by
PCN 1045481-001 3-5

SYMBOLIC
PROGRAMING PROCEDURES

The following technique is recommended:

OP CODE

LIR
MOD
CLM
MOD
CLM
IIR
SK
BRU

The above programing clears 400 words of memory beginning with the word number referenced by

TOTAL.

Example:

~ This example illustrates a method to reference an array of memory larger than 255 words. Controlling
such an array of memory must be accomplished by examining the indexing value and changing the base

address for values over 255.

Problem: Accumulate sales by 500 product codes (in words 1 to 500).

The programing segment below utilizes the fact that Index Registers have a capacity of 255. When a
value transferred to an Index Register exceeds 255, only the difference between that value and 256

remains in the Index Register.

LABEL OP CODE

SRJ
LPNR
BRU
TOTAL 1 REG
TOTAL 2 REG
BEGIN AL
POS
NK
SKL
ALARM
BRU
TRM
PN
POS
NKR
PNS-—
TRM
TRA
TAIR

+/— INCREMENT

TOTAL + 200

— 6

A B

CLEAR
PMASKS
BEGIN
255

24

1

10

AMOUNT
CODE
1

REMARKS

Enter Product Code
Valid Code 0-499

Store Valid Code
Print Code

Enter Amount
Print Amount
Store Amount

LABEL

OP CODE

SUA
EX

TRA
MOD
ADM

BRU
TAIR
TRA
MOD
ADM
BRU

A

LIMIT

A
AMOUNT
1

TOTAL 1

BEGIN

1
AMOUNT
1

TOTAL 2
BEGIN

SYMBOLIC
PROGRAMING PROCEDURES

REMARKS
Compare Code to 256

Under 256

Reset 1.R.

Use Base of 257

Reviscd 3-29-71 by
PCN 1045481-001

3-7

APPENDIX B

GP 300 INSTRUCTIONS TO MACHINE LANGUAGE

Appendix B provides the hexadecimal machine language code for each GP 300 instruction and an
alphabetical listing for the GP 300 instruction.

Table C of Appendix B provides hexadecimal values for decimal numbers between O and 767.

If a table is not available, the desired value (for values between 0 and 255) may be calculated with the
following chart and two simple procedures.

If the value is between 0-15, convert by this chart:

0

1121314561789 10|11]12]13]|14]}15 decimal

0

112131415161 718|9|A|B|C]|D]|E]F |hexadecimal

1.

Decimal to hexadecimal conversion:
Divide the decimal value by 16.

Insert the hexadecimal equivalent from above chart as the left most digit of the two digit
number.

Insert the hexadecimal equivalent of the remainder as the right most digit of the two digit
number.

Example: ‘What is the hexadecimal equivalent of the decimal value 255?
255 + 16 = 15 with 15 remainder

So 255 must be represented as FF in hexadecimal notation.
Hexadecimal to decimal conversion:

Multiply the decimal equivalent of the left most digit of the two digit hexadecimal number by
16.

Add the decimal equivalent of the hexadecimal value in the right most position to the
previous sum.

Example: What is the hexadecimal value 2A equivalent to in decimal notation?
2 x 16 = 32

A = 10 (see above chart)

32 + 10 = 42

The machine language code for a GP 300 instruction consists of 4 hexadecimal digits. These digits are
identified as Op Code Upper, Op Code Lower, Parameter Upper, and Parameter Lower.

Example:

The machine language code for AL 5 is EDOS.
E is the Op Code Upper.
D is the Op Code Lower.
0 is the Parameter Upper.

5 is the Parameter Lower.

In some cases the Op Code Lower is incremented by 1 for word locations above 255 (See Table A).

Revised 3-29-71 by
PCN 1045481-001 B-1

APPENDIX B (cont'd)

INSTRUCTION OP CODE A B C

Add to Accumulator ADA LABEL

Add to Index Register ADIR 1-4 0-255

Add Constant to Accumulator ADK 0-14 09

Add to Memory ADM LABEL

Advance Left Platen AL 0-255

Alarm ALARM

Advance both platens ALR 0-255

Advance left platen to ALTO 1-255

Select Alternate Stacker ALTP

Advance right platen AR 0-255

Advance right platen to ARTO 1-255

Branch unconditionally BRU LABEL

Close forms handler cC

Check Digit Compute CDC 1-15 0-9

Check Digit Verify CDhV 1-15 09

Change Flags CHG AK,R,P, 1,2,3,4,-,
XY S,.C.M

Clear Accumulator and insert constant CLA 0-15 0-15

Clear Memory Word CLM LABEL

Compare alphanumeric CPA LABEL

Decrement Index Register DIR 1-4 0-255

Divide DIV LABEL

Duplicate thru column DUP 1-80

Enter Alpha into Memory EAM LABEL

Execute if any Flag EX A:T,K,P,V,B,IL -SCMWRF 1-4

Execute if every Flag EXE {D,R,X,Y,W,S {1234OLIU 1-4

Execute if digit less than constant EXL 0-15 0-15 14

Execute if Accumulator zero EXZ 1-4

Increment Index Register IIR 1-4 0-255

Insert Constant in Accumulator INK 0-15 0-15

Load Index Register LIR 1-4 0-255

Load Memory from Card LCD 0-255

Load Card Format Register LCFR LABEL

Load Keyboard Base Register LKBR LABEL

Load Left Count Register LLCR 0-255

Load Left Limit Register LLLR 0-255

Load Flags LOD AK,R,P, 1,2,3,4,-,
XY S,C.M

Load Program Key Base Register LPKR LABEL

Load Print Numeric Base Register LPNR LABEL

Load Right Count Register LRCR 0-255

Load Right Limit Register LRLR 0-255

Load Shift Register LSR 0-15

B-2

APPENDIX B (cont'd)

INSTRUCTION OP CODE A B C

Load Punch Count Register LXC 1

Load Punch Count Register LXC 0-255

Modify by Index Register MOD 1-4

Multiply MUL LABEL

Multiply and Round MULR LABEL

Numeric Keyboard NK 0-15 0-15

Numeric Keyboard Permit C, M Keys NKCM 0-15 0-15

Numeric Keyboard Permit Reverse Entry NKR 0-15 0-15

Numeric Keyboard Permit Reverse Entry, NKRCM 0-15 0-15

C, M Keys

No-Operation NOP

Open forms transport ocC 0-255

Print Alphanumeric PA LABEL

Print Character PC CHARACTER

Print Character if Accumulator plus, - PC+ CHARACTER

Previous Ribbon

Print Character if Accumulator minus, PC- CHARACTER

Previous Ribbon ’

Print Character Previous Ribbon PCP CHARACTER

Enable Program Key Group A PKA 1-8

Enable Program Key Group B PKB 1-8

Enable Program Key Group C PKC 1-8

Print Numeric PN 0-14 0-15

Print Numeric Shift Ribbon if plus PNS+ 0-14 0-15

Print Numeric Shift Ribbon if minus PNS- 0-14 0-15

Load Position Register POS 1-255

Read Card RCD

Enter Alpha into memory, punch non-print REAM 0-150

Release Media Clamp REL

Transfer Remainder to Accumulator REM

Read Numeric into Accumulator RNK 0-15 0-15

Red Ribbon RR

Reset Flags RST A, K,R,P, 1,2,3,4,-,
X,Y,L,D S,C.M

Read Alpha and Print RTK 0-255

Read Alpha into Memory and Punch, RXEAM 0-255

nén—print

Read Alpha, print and punch RXTK 0-255

Read Alpha into memory, print and punch RXTKM 0-255

Set Flags SET AK,R,P, 1,2,3,4,-,
X,Y,L,D S,CM

Skip if any Flag SK AK,R,P 1,2,34,-W 1-4
S.X,Y,B,L S.C,M,R
T,V.D,W O,C,LUF

Revised 3-29-71 by
PCN 1045481-001

B-3

APPENDIX B (cont'd)

INSTRUCTION OP CODE A B C

Skip if every Flag SKE AK,RPT, 1923334:"W 14
X,Y,L,B S,C,M,R
D,V,W.S 0,CILUF

Skip if digit less than Constant SKL 0-15 0-15 1-4

Skip to card column SKP 1-80

Skip if Accumulator Zero SKZ 1-4

Shift Off SLRO 0-14 0-14

Shift Off with Sign SLROS 0-15 0-15

Subroutine Jump SRJ LABEL

Subroutine Return SRR 1-4

Stop . STOP

Subtract from Accumulato SUA LABEL

Subtract Constant from Accumulator SUK 0-14 0-9

Subtract from Memory SUM LABEL

Transfer Accumulator to Index Register TAIR 1-4

Type TK 0-255

Type into Memory TKM 0-255

Transfer to Accumulator TRA LABEL

Transfer Card Field to Accumulator TRCA 1-16

as Numeric

Transfer Card Column to Memory as TRCM 1-16

Alpha

Transfer to Memory TRM LABEL

Punch Alpha from Memory, Non-Print XA LABEL

Punch Feed Codes XB 0-255

Punch Alpha from Card Read Area, XBA 1-16

Non-Print

Punch Code XC 0-15 0-15

Enter Alpha into Memory and Punch, XEAM LABEL

Non-Print

Modify by Punch Count Register XMOD

Punch Numeric, Non-Print XN 0-14 0-15

Print Alpha and Punch XPA LABEL

Print and Punch Alpha from Card XPBA 1-16

Read Area

Print and Punch Numeric XPN 0-14 0-15

Print and Punch Numeric Shift Ribbon XPNS+ 0-14 0-15

if Plus

Print and Punch Numeric Shift Ribbon XPNS- 0-14 0-15

if Minus

Type Punch and Print XTK 0-255

Type to Memory Punch and Print XTKM 0-255

B4

APPENDIX B (cont’d)

DATA COMMUNICATION INSTRUCTIONS

INSTRUCTIONS OP CODE A B C
Change Flags CHG R 23
Execute if any Flag EX RBD 1234 1-4
Execute if every Flag EXE RBD 1234 1-4
Increment Receive Character Pointer IRCP 0-255
Load Flags LOD R 23
Load Polled Flags Register LPF -
Load Receive Address Register LRA -
Load Receive Buffer Register LRBR LABEL or

BLANK

Load Expected Group Transmission Number | LGN
Load Expected Broadcast Transmission Number LBN

Load Send Address Register LSA -
Load Send Transmission Number LSN -
Load Expected Transmission Number LTN -
Register
Power Off OFF
Print Alpha from Receive Buffer PAB 0-150
Set Receive Character Pointer RCP 1-255
Retrieve Expected Broadcast Transmission
Number RBN
Retrieve Polled Flags RPF -
Retrieve Expected Group Transmission Number RGN
Retrieve Character Pointer Register RPR -
Retrieve Receive Address RRA -
Retrieve Send Address RSA -
Retrieve Send Transmission Number RSN -
Reset Flags ~ RST
Retrieve Header Transmission Number RTH -
Retrieve Expected Transmission Number RTN -
Set Send Character Pointer SCP 1-255
Set Flags SET R 23
Skip if Flag SK RBD 1234 1-4
Skip if every Flag : SKE RBD 1234 1-4
Transfer Accumulator to Send Record Area TRAB 0-15 Oorl '
Transfer Receive Buffer TRB LABEL
Transfer to Accumulator as Numeric TRBA 0-16
Transfer Character TRCB 0-15 0-15
Transfer Alpha TRF 0-255
Transfer Send Record Area TSB LABEL

Revised 3-29-71 by
PCN 1045481-001 B-5

APPENDIX C
ASSEMBLER PSEUDO INSTRUCTIONS

OP CODE A B FUNCTION SUBJECT REFERENCE

ADVL 1-4 To space the Assembler output form 2.01.01
the number of lines specified in the
A parameter.

ALF To store alphanumeric constants. 2.01.02

CDB To reserve words 1-10 as card read- 2.01.03
: in buffer, automatic branch to word
11, syllable 0.

CDF 1-80 1-80 A parameter indicates the beginning’ 2.01.04
card column of a field, B parameter

“defines the number of card columns
in the field.

CODE 4 hexa- To allow insertion of 4 hexadecimal 2.01.05
decimal digits into a syllable of memory.
digits
DEF O-N * To assign a value to a label. 2.01.06
DEFT 0-15 0-15 To assign a value to a label in both 2.01.06
A and B fields.
-DOC For documentation when assem- 2.01.07
bling on B 2500, B 3500, B 5500 49
characters beginning in column 29.
END To terminate the Assembler pro- 2.01.09,
gram, the last line of code in the
program.
EQU To equate the label in label field to 2.01.10
the label in the A parameter.
ESTB To reserve 32 words in high order 2.01.08
memory for receive)send buffer.
MASK Allow entry of mask word 24 print 2.01.11
format characters are accepted.
NOTE For documentation will allow entry 2.01.12
of 25 characters, beginning in col-
umn 53.
NUM To store numeric constants. 2.01.13
ORG O-N** To assemble the instruction follow- 2.01.14

ing ORG in the word location speci-
fied in the A parameter.

Revised 3-29-71 by
PCN 1045481-001 C-1

APPENDIX C (cont'd)

OP CODE A FUNCTION SUBJECT REFERENCE
PAGE To space Assembler output to the 2.01.15
first line of the next page.
REG 1-255 To reserve the number of words 2.01.16
specified in the A parameter for
working-storage.
WORD To cause the Assembler to assign the 2.01.17
next instruction in syllable O of the
next word.

*The upper limit is variable depending upon which Operation Code the label will be used.

**The upper limit is variable depending upon the amount of user memory.

APPENDIX E

TABLES OF MASK CODES

TABLE E-1 MASK CONTROL CODES

CONTROL CODES

PRINT FUNCTION

PUNCH FUNCTION

F | Print $ No effect
+ Suppress Punctuation No effect
P No effect Leading zeros punch in P flag set blank card
column in 80 column card if P flag reset.
— Print Condensed Numeric Monetary punctuation prints without causing
printer escapement. Requires PIP hardware.
TABLE E-2 MASK FLAG CODES
FLAG CODES PRINT FUNCTION PUNCH FUNCTION
D Print digit regardless ofsignif- | Punch character regardless of signif-
icance. icance.
D, Print digit and comma regard-
less of significance.
.D Print decimal point and digit
regardless of significance.
D: Print digit and decimal point
regardless of significance.
Suppress Terminal Zeros
X Decimal point and terminal
Zero suppression.
C Units of cents leading and ter-
minal zero suppress.
.C Tenths of cents decimal point
with leading and terminal zero
suppression.
Z Leading zero suppression. Punch if:
1. P is set.
2. Accumulator digit not zero.
3.A non-zero digit has been
punched.
Z, Leading zero suppression and
comma.
Z: Leading zero suppression and

decimal point.

Revised 3-29-71 by
PCN 1045481-001 E-1

APPENDIX E (cont'd)

FLAG CODES PRINT FUNCTION PUNCH FUNCTION
S Print only if Accumulator digit
non-zero.
I ignore digit Ignore
E Terminate, non-print Terminate, non-print

APPENDIX G

INSTRUCTIONS FOR KEYPUNCHING
SYMBOLIC CARDS

SYMBOLIC CARD FORMAT

CARD COLUMNS DESCRIPTION
5-10 Program ID
11 -15 Sequence
16 - 21 Label
22 - 26 Op Code
27 - 28 Field Length
29 - 34 Label “A” Parameter
29 - 47 Constant Data (Numeric)
29 - 52 Alphanumeric Data or Print Mask
35-38 + or — inc/rel
39-42 “B” Parameter
43 “C” Parameter
55-177 Remarks

//f 1 - i 1 (| FI P 1 |

oo l[l[]ﬂl]ﬂﬂﬂﬂIl!]ﬂﬂlll)llllﬂl]l]lJUl]ﬂﬁllﬂﬂﬂll(]l]ﬂllﬂﬂﬂ000000000000000[lll[ll}lll]llﬂl)ﬂllDlﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂﬂﬂ
123
111

5 6 789101 I2|3!4l5|617lﬂ!5202|1223242526272629303I3233343536373039406142434445464748495051525354555657535950616?6364656657596970" 7273 1475 16 77 78 13 80

CLLLLLRRRRRE L L L L L L L T O O T I T T T e
22220222222222222222222022222222222222202122222122222222222222212222222227222222

0
4
!

3333333333 000M333333333333033333333333MMMM33333333333333333333333333333333333333
A a8t a a0t aaataadaddadddtdaaadaqdintsataddaadd
S55555555556555655556555555555555555565555555555555555555565555555555555555555556555
666666666666666G666666666666666666666656666666666666666666666666666666666665666§6E
TIII I a1 i it i i i I i i i1 1111111711111111171
BBBBB A 8888808888 088888888888888886888880888880868886866866B88836888888888B8B888B6883H

5999999999 99959999999999899999999009947
V23456 7839

109102 13 04 1 16 17 0819 20 20 22 23 24 25 76 27 78 2930 31 12 33 34 3% 36 3/ B4 39 20 40 42 17948 4% 4b 4748 49 50) 52 51 %4 44 50 4 98 59 60 61 62 €3 64 65 66 61 68 69 /0 /1 12 13 74 w0 IG 14 18 19 80
‘ 508! BSC

Drum Card For Burroughs A 149/A 150 Keypunch

Revised 3-29-71 by
PCN 1045481-001 G-1

APPENDIX G (cont'd)

10.
11.
12.

13.

14.

15.

16.
17.

18.

A 149/A 150 KEYPUNCHING INSTRUCTIONS

Insert drum card — position 1.

Lower drum card brushes.

Turn Power switch ON.

Turn PRINTER switch ON.

Turn AUTO FEED switch ON.

Turn Program switch 1 (P1) ON.

First card stops in CC 5. ERR REL light turns on. Depress ERR REL switch.
Must punch Program I.D. CC 5-10 in 1Ist card*. Thereafter, CC 5-10 will automatically duplicate.
CC 11-15. Sequence Number — numeric (right justified).

CC 16-21. Label. If no Label, depress SKIP key.

CC 22-26. Op Code. If OP CODE less than 5 characters, depress SKIP key.

CC 27-28. Field Length (right justified). If no field length, depress SKIP key.

CC 29-34. “A” Parameter. If less than 5 characters, depress SKIP key. If numeric, hold NUMERIC
key down while punching numeric character.

CC35-38. + or — Increment field. If —, enter — in CC 35 (if CC 35 is blank, + is assumed). Enter
numeric in CC 36-38. If no + or — Increment, depress SKIP key.

CC 39-42. “B” Parameter. If numeric, hold NUMERIC key down while punching numeric character.
If no “B” parameter, depress SKIP key.

CC 43. “C” Parameter. Numeric only. If no “C” parameter, depress SKIP key.
CC 53-77. Remarks columns — alphanumeric. If no Remarks, depress SKIP or REL key.

When numeric is to be punched, other than sequence field, hold numeric key down while punching
that field.

*|f Program 1.D. is not required, the user may modify the existing drum card thusly:

G2

1. Eliminate the 2 punch in card column 5. This will allow the detail card to duplicate blank
columns 5 through 10.

or

2. Eliminate the 12 punch in card column 4. This will allow a skip over columns 5-10.

10.

11.

12.

13.
14.
15.

APPENDIX G (cont'd)

024/026/029 KEYPUNCHING INSTRUCTIONS
Insert front drum card — star wheels down.
Turn Power switch ON.
Turn PRINT switch ON.
Turn AUTO DUP-AUTO SKIP switch OFF - first card only.

Must punch Program I.D. CC 5-10*. Turn on AUTO DUP-AUTO SKIP after punch of sequence
field, so that CC 5-10 will automatically duplicate on all subsequent cards.

CC 11-15. Sequence Number — numeric (right justified).

CC 16-21. Label. If no Label, depress SKIP key.

CC 22-26. Op Code. If OP CODE less than 5 characters, depress SKIP key.
CC 27-28. Field Length (right justified). If no field length, depress SKIP key.

CC 29-34. “A” Parameter. If less than 5 characters, depress SKIP key. If numeric, hold NUMERIC
key down while punching numeric character.

CC35-38. + or — Increment field. If —, enter — in CC 35 (if CC 35 is blank, + is assumed). Enter
numeric in CC 36-38. If no + or — Increment, depress SKIP key.

CC39-42. “B” Parameter. If numeric, hold NUMERIC key down while punching numeric character.
If no “B” parameter, depress SKIP key.

CC 43. “C” Parameter. Numeric only. If no “C” parameter, depress SKIP key.
CC 53-77. Remarks columns — alphanumeric. If no Remarks, depress SKIP or REL key.

Whenever numeric punching is required, other than sequence field, numeric key must be held down
while punching that field.

¥ If Program L.D. is not required in detail card, insert a ““12"" punch in CC 5 of program card. This will

allow skip CC 5 through 10 in detail card. AUTO DUP/AUTO SKIP key can be turned on from the

very first card.

Revised 3-29-71 by
PCN 1045481-001 G-3

APPENDIX G (Cont’d)

/// NEE RRNAN DRON DROND NERD B NOOND NOD NOD RNRDANENE RERRRERENRENERNNREEENDEND W
| |

oolMo000500660000000000G00000000000C000000000000000000006000000009000000000000000D
30456 78 3101112131415 16 1718 19 20 21 22:23 26 25 26 27 28 29 30 3¢ 32 33 34 35 36 37 36 39 40 41 42 43 44 454G 47 48 49 50 51 52 53 54 5556 57 58159 60 61 62 63 64 6566 6 68 69 /0 /1 72 13 14 75,76 77 18 19 80
11

LT R L e e e e e LR L LI R
2222222220000 22222222220 022222222202 MM 2222222222222222222222222222222222212122

0o
12
[

333.33333
4444484444444 444444448444 8444444404444 4444484448384 404442004484 44444844444444444444414
505555558555 9535055055595550535080555355558658505509535805585055505505855855855595853553954535
. 6666666666666666666666666666666666666566666666666566666666666666666666656666666666
1111711110111t r it rniniiniiiriinin
I 888588688080688888888800806848688888868088880808830060080806060888080868608868688888838888888838
99?3 9 I99 993

0112 1314 Vo 1718 19 20 2122 2324 25 26 2/ 28 29 30 3132 33 34 35 36 37 38 39 40 41 47 43 43 45 46 47 48 49 S0 51 52 13 94 55 0b 57 H8 55 60 61 62 63 64 64 €6 57 65 69 /0 11 72 3 /4 15 16 77 18 I9 80

96999
v 3 s

6
5081 BSC

i

Front Drum Card for 024/026/029

G4

APPENDIX J (cont’d)

DATA COMM COMMANDS

SCP
RCP
LRBR
LKBR
TRAB
TRCB
TRF
TRBA
IRCP
PAB

TRB
TSB

TKM

NOTE:

50 ms

100 ms + 10 ms/digit transferred
+20 ms/word boundary

140 ms to 180 ms (avg. 150 ms)

120 ms + 10 ms/char transferred
+20 ms/word boundary

50 ms +10 ms/char
+20 ms/word boundary

20 char/sec + 30 ms base time

} 40 ms

can process at keyboard speed

RSA
RRA
LSA
LRA
RTN
RTH
LTN
RSN
LSN
RPR
LPR
RPF
LPF

RTF
LTF

OFF

30 ms

10 ms

The above times do not include the Fetch Il word boundary time of 20 ms. “Word Boundary”’

mentioned above pertains to the actual transferring of data during the execution of a single instruction.

Revised 3-29-71 by
PCN 1045481-001 J-§

APPENDIX J (cont'd)

NOTE 1
Shift Timing
SLRO
SLROS
Base = 30ms
0-3 shifts = 10 ms
4-6 shifts = 20 ms
7-9 shifts = 30 ms
10-12 shifts = 40 ms
13-15 shifts = 50 ms
Compute number of shifts left
and number of shifts right.
NOTE 2
Divide

1. a. Set down dividend (15 digits) followed by 15 zeros.
Subtract divisor from dividend and repeat until dividend is smaller than divisor.

c. Using the number of successful subtractions:

For no. = 0 to 3 set down 10 ms
For no. = 4to 8 ' set down 20 ms
For no. =9,10,11 set down 30 ms

d. Shift divisor one place to the right and repeat steps a, b, ¢, d for 15 times.
e. Add base timing of 70 ms to total obtained above.
Multiply contents of the shift register by 10 ms and add to total obtained in e.

NOTE 3
Multiply

1. Set down the contents of the shift register.

2. When shift register is not equal to zero:
a. Examine the accumulator contents for timing purposes.
b. For each accumulator digit starting least significant digit.
For digit = 0to 6 set down 10 ms
For digit = 6 to 9 set down 20 ms

c. Subtract 1 from shift register and repeat steps 2 a, b, ¢ until register becomes zero.

APPENDIX J (cont'd)

3. When shift register = zero

a. For digit = 0to 3 set down 10 ms
For digit = 4 to 8 set down 20 ms
For digit = 9 set down 30 ms

b. Repeat step 3a for each digit of accumulator until most significant digit of accumulator
~contents is reached.

c. Add base timing of 70 ms to total obtained above.
NOTE 4
Positioning

Carrier positioning time must be added to the following instructions.

TK PA
TKM PC+
PC—
PN
Positioning Timings:
0-6 positions — 300 ms
6-150 positions — 300 ms + 5 ms for each position beyond 6

NOTE 5

When the extension buffers each contain entries, the buffer full flag will be set. When the first
extension buffer word is completely processed, an additional 10 ms is required to reset the buffer
full flag.

NOTE 6

10 ms must be added to the last entry when processed from each of the extension buffers or the
hardware buffer.

J-7

SERIES L/TC OBJECT CODE

PUNCHED PAPER TAPE OBJECT TAPE CODE

APPENDIX K

The paper tape output is in the format illustrated below. Each 16-digit word is compressed into 8
frames of tape. Each frame contains a “lower digit” (channels 1-4) and an “upper digit” (channels 5-8).
This type of punch format is referred to as ‘“compact code” or “compact Hexadecimal code”. Most

object program tapes will be punched in this format.

In the diagram below, “1” represents a punch (bit on) and “0” represents no punch (bit off) in the tape

channel indicated.

Tape Channel 8 7 6 5 4 TF 3 2 1
Bit Value of Tape Channels 8 4 2 1 8 4 2 1
0O 0 O0O 0 o 0O 0 O
N/WW\/\/\N\/W
Start Code 1 0 1 0 (Block No.)
Word Number (Word Number)
(0-255)

(" 1 0

3 2

5 4

Digit Positions < 7 6

of Word 9 8

11 10

13 12

<~ 15 14
End of Word 1 ,1 1 0 (Parity)

L/\/V\/\/\/\/\A/\/\’w

Frame 1

2

39

b3}

2%

b2

b4

2

[=JN=TN0EN Be WY R

k44

[a——y

bl

—
[

etc.

The diagram shown represents a word of program as punched into paper tape. The first word contains
the Start Code-Block Number frame and the Word Number frame. The End of Word Parity frame will
be punched with every word. The End of Word code with the very last word in a sequence is
“O 1 0 1”. Parity (4 bits, as indicated above) is arrived at by exclusively OR’ing each four bit grouping
as shown above with the exception of the Start Code and the End of Word Code. Figures 1 and 2

illustrate the two types of compact object tape.

Revised 3-29-71 by
PCN 1045481-001

K-1

APPENDIX K (Cont’d)

PUNCH PAPER TAPE COMPACT OBJECT CODE

CHANNEL

—
START
MESSAGE

0

SYLOE

8

SYL1F

1

SYL2E

1

SYL3 A
END OF _—
MESSAGE —
START —

MESSAGE

D

SYLO4

0

SYL10

0]

SYyL 27

0

SYL 30

END OF

MESSAGE >

SPROCKET FEtD HOLES

e ——— — —— — —

F

igure 1.

DIRECTION OF

TAPE FEED
BLOCK 1
WORD 5
-

261

A610 EB1B F782 EDO3

<«—— PARITY

< BLOCK 1
WORD 6

262

D405 7505 0900 46D0

<« PARITY

BINARY VALUE

APPENDIX K (Cont’d)

PUNCH PAPER TAPE COMPACT OBJECT CODE

CHANNEL ___

START
MESSAGE

SYLOE

SYL1F

SYL2E

SYL3A

END OF
WORD

syLo04

SYL10

SYL 27

0
SYL30

END OF
MESSAGE —*

SPROCKET FEED HOLES

i~

Figure 2

DIRECTION OF
TAPE FEED

BLOCK 1

- WORD 5
-

261

A610 EB1B F782 EDO3

PARITY

262

5 D405 7505 0900 46D0

4
<—— PARITY

< BINARY VALUE

APPENDIX K (Cont'd)

USASCII OBJECT PROGRAM TAPE FORMAT
B 5500/B 300 OUTPUT

Each program word in tape consists of 21 frames punched in USASCII code.

Tape Frame
1 Block No. (0 to 3)
2-4 Word No. (000 to 255)

5-20 16 Digits:

Frame Digit Position

5 1 Hexadecimal digit Value expressed as code from Column 3 of
6 0 USASCII table:
7 3 Hexadecimal USASCII
8 2 0 | 0
9 > 1 1
10 4))
11 7 3 3
12 6 4 4
13 9 5 5
14 8 6 6
15 11 7 7
16 10 8 8
17 13 9 9
18 12 A .
19 15 B :
20 14 C <
21 Termination Code (1,E) D =
E >
F ?

K-4

APPENDIX K (Cont'd)

Sprocket Feed Holes

o
Channel P76540321
Block Number !___9_!___9 _____ ! 1
Word Number ® o0 o o1l
o0 o© o5 153
LR T |
o0 o 0
] o L
] 90 6000 E
¢ 900606 @D
[80 0o 8
(] e0 o (] 2
000060 0F A610 EB1B F782 EDO3
Program L) o0 o @0 97
Word (] @ e o} ¢ 1
[] ® 9 0o ¢ 9B
¢ 000060 E
[0 Qo0 ® 9B
® e o o1
[] o 0
@9 0o e |A
.88 o0 |6
Termination ® 09
Code o
o
o
o

Revised 3-29-71 by
PCN 1045481-001 K-5

APPENDIX K (Cont’d)

THE SERIES L PROGRAM PUNCH CARD FORMAT (COMPACT HEXADECIMAL)

Card-Column
1- 6 Program Identification (Alpha-in BCL Code)
9 Beginning Word Number (hexadecimal value for word 0 to 255)
10 Number of Program Words on Card (Decimal 1 to 8)
11-15 No significance
16 Block Number
Block 0 = blank card column
Block 1 = decimal 1
17-24
25-32
33-40 Up to 8 program words
41-48 Each word occupies 8 card columns.
49 -56 Each card column contains binary value for 2 of the 16 hexadecimal digits in a word.
57 - 64
65-72
73 - 80

Hardware will cause the 12 bit representation on an 80 Column Card to be compressed into 8 bits in the
Card Read Area during input, and conversely will cause the 8 bit representation in memory to be expanded
into 12 bits on the output punch card in the following manner.

8 bit code representation Card Column Punching
Upper Digit Lower Digit
Bits Bits
4 2 1 8§ 4 2 1
X 12 Upper
X 11 Digit
X 0 Bits
X 1)
X 2
X X 3
X 4 & Lower
X X 5 Digit
X X 6 Bits
X X X 7
X 8

>
©

Upper Digit Bits

A Sample Output Card would appear as follows:

8
UPPER
DIGIT a
BITS
2
(P
u
N
c
H
LOWER
DIGIT
BITS 1
v
A
L
U
E

1
CARD COLUMN

PUNCH VALUE

FOOTNOTE

APPENDIX K (Cont’d)

1 1
0
1
1

0
2
1

—ec ma

--

- ~um

0
5
1

2f2222)22

3333333

L |
olo[@Bofllo

afuofir 12131418
1111

212122222

444444144

555|55#5

66666666

11111

83888888

CEY KX ELEIG
IZJbsl.Tl

jo8i

afalagsas

alalfade4da
5555565
6{6/6 6666
11117
MaslaJ
9199999

hofte 12 13 14 13|
G

D w

offoRooocoociBooooBEMEcRANEANoNocoo kD

ilirissnn22

[IIRRRY B |
212022222
| KEREEER
slaafaalle

6|6666666

LIEED EEE] |

16

55555555

LIARE RRRA

71818202122 2324

MooBoBBojoocoocolo

]]
n
HolBolloo

24|25 26 27 20 20 30 31 32[33 34 35 35 37 33 39 40J41 €2 43 44 45 46 47 4883 50 51 52 53 54 55 56[57 58 50 60 61 62 63 $4J6S 66 67 63 69 70 11 12

L ELE |

3(§3333333)33333333)33333333f§3333303
safBessaafaaasaaBelasasaanalaasaanas

55555555/55555555/55550555(550 05555

6l666666665666666(66666666[666666686

IRRREERERIIRRERERE] RERRRE] IRARRERER]

BallssssssceBocleisscessBellalochi

CER 11 K1 D | EXEEEE] EIE] EX] EXE)

’xznnnswu 32§33 34 35 36 57 38 39 401 42 43 4 45 46 47 4843 50 51 52 53 54 5 56

[57 58 59 80 61 62 63

NIRRT ERRRI BEY EEREILRR] A1 | KifRER] ERRI IRERERRRIINEY RRRE!

2l222222220222222202202222202 0222028

2202222220222214

33333333(33333333
'YYRYYY FI'YYYY XY
5555055555555[055
66666666[]6666666
IRRRARE] [RERRERRE
SENRIIEIRI L] ER
L EL KL EECRY T KD |

65 66 67 63 69 10 /1 12

II

IloBoll
73 74 75 76 71 18 79 80|
22222220
3fsl333s
Besasaals
55555555
66066666
177111111
ssfefless

LEEE] 1 KX

13408 76 11 18 73 008

LBIVRP

E0704851

0} BAC71490

E190D2B3

B4C16000

6033B82B3 | DEC44C32 | ESC2DEE4
10090DC2 70215197 | BASD12BA
5 5)

49C149B0 | 60330FC1
182858C7 | E289CD22
5 5

Revised 3-29-71 by
PCN 1045481-001

K-7

APPENDIX K (Cont'd)

FOOTNOTES

Program I. D. (Alpha BCL Code)

Beginning Word Number (Hexadecimal 0-255)
Number of Program Words on card (Decimal 1-8)
Block Number (Decimal 0-4)

12 Program Words 1-8 (Compact Hexadecimal-2 Hexadecimal digits per card column)

Word No. Syllable 3 2 1 0
1 EBOA 7C07 4184 5910
2 EB14 9CO1 D620 B030
3 6100 3039 BO2D BC32
4 D7E0 C241 45Ct 3927
5 EB5A C52D DIE2 EB4A
6 4198 C218 4598 BCO7
7 6E02 3839 OCFD C212
8 6423 6E03 7810 6422

BCL OBJECT PROGRAM CARD FORMAT

Card Column

1-6 PROGRAM 1. D.

12 Number of words in card (1 to 4)

13-16 Beginning Word Number (0000 to 1023)

17-32 Ist word (digit 15 in cc 17 to digit 0 in cc 32)
33-48 2nd word (digit 15 in cc 33 to digit O in cc 48)
49-64 3rd word (digit 15 in cc 49 to digit 0 in cc 64)
65-80 4th word (digit 15 in cc 65 to digit 0 in cc 80)

	001
	002
	003
	004
	005
	006
	007
	008
	009
	011
	2.00.02
	2.00.03
	2.00.05
	2.00.05a
	2.01.02
	2.01.03
	2.01.04
	2.01.05
	2.01.06
	2.01.07
	2.01.11
	2.01.12
	2.01.16
	2.01.17
	2.01.17a
	2.02.01
	2.02.01a
	2.02.01b
	2.02.02
	2.02.03
	2.02.03a
	2.02.03b
	2.02.03c
	2.03.01
	2.03.04
	2.03.05
	2.03.05a
	2.03.05b
	2.03.06
	2.03.06a
	2.03.07
	2.03.08
	2.03.08a
	2.04.01
	2.04.03
	2.04.03a
	2.04.03b
	2.04.03c
	2.05.01
	2.05.02
	2.05.04
	2.05.05
	2.05.05a
	2.05.05b
	2.05.05c
	2.05.06
	2.05.06a
	2.06.01
	2.06.02
	2.06.02a
	2.07.02
	2.07.03
	2.07.04
	2.08.01
	2.08.05
	2.08.06
	2.08.06a
	2.08.06b
	2.08.06c
	2.08.06d
	2.08.06e
	2.08.06f
	2.08.06g
	2.09.01
	2.09.02
	2.09.02a
	2.09.03
	2.09.04
	2.09.05
	2.09.05a
	2.09.05b
	2.09.05c
	2.09.06
	2.09.06a
	2.10.02
	2.10.03
	2.11.01
	2.11.02
	2.11.02a
	2.11.03
	2.11.04
	2.11.04a
	2.11.04b
	2.11.04c
	2.11.04d
	2.12.01
	2.12.02
	2.12.03
	2.12.04
	2.12.04a
	2.12.04b
	2.12.04c
	2.12.05
	2.12.05a
	2.12.05b
	2.12.05c
	2.12.06
	2.12.06a
	2.12.06b
	2.12.06c
	2.12.06d
	2.12.07
	2.12.08
	2.12.09
	2.12.09a
	2.12.09c
	2.12.09d
	2.12.09e
	2.12.09f
	2.13.01
	2.13.02
	2.13.02a
	2.13.03
	2.13.03a
	2.13.03b
	2.13.03c
	2.14.01
	2.14.01a
	2.14.01b
	2.14.01c
	2.14.02
	2.14.02a
	2.14.02b
	2.14.02c
	2.14.03
	2.14.03a
	2.14.03b
	2.14.03c
	2.14.03d
	2.14.03e
	2.14.03f
	2.15.01
	2.15.02
	2.15.02a
	2.15.02b
	2.15.02c
	2.16.01
	2.16.01a
	2.16.01b
	2.16.01c
	2.16.02
	2.16.02a
	2.17.01
	2.17.01a
	2.17.01b
	2.17.01c
	2.17.01d
	2.17.02
	2.17.03
	2.18.01
	2.18.02
	2.18.02a
	2.18.02b
	2.18.02c
	2.18.03
	2.18.03a
	2.18.04
	2.18.04a
	2.19.01
	2.19.01a
	2.19.02
	2.19.04
	2.19.05
	2.19.05a
	2.19.05b
	2.19.05c
	2.19.06
	2.19.07
	2.19.08
	2.19.09
	2.19.09a
	2.19.09b
	2.19.10
	2.19.10a
	2.20.03
	2.20.04
	2.21.02
	2.21.03
	2.21.04
	2.21.05
	2.21.08
	2.21.09
	2.21.09a
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	B-01
	B-02
	B-03
	B-04
	B-05
	C-01
	C-02
	E-01
	E-02
	G-01
	G-02
	G-03
	G-04
	J-05
	J-06
	J-07
	K-01
	K-02
	K-03
	K-04
	K-05
	K-06
	K-07
	K-08

