
Burroughs

B 700
SYSTEMS

B 720
Systems

REFERENCE MANUAL

Printed in U.S. America

Burroughs

B 700 SYSTEMS

R 720 Sv§tems
~ --~ ~,,~ ---------

REFERENCE MANUAL

Burroughs Corporation
Detroit. Michigan 48232

4-75 1082484

COPYRIGHT ©1975 BURROUGHS CORPORATION

AA615386

Burroughs believes that the information described in this
manual is accurate and reliable, and much care has been
taken in its preparation. However, no responsibility, financial
or otherwise, is accepted for any consequences arising out of
the use of this material. The information contained herein is
subject to change. Revisions may be issued to advise of such
changes and/or additions.

Correspondence regarding this document should be forwarded using the Remarks Fonn at
the back of the manual, or may be addressed directly to Systems Documentation, Technical
Information Organization, Burroughs Corporation, 200 West Lancaster Ave., Wayne,
Pa. 19087.

TABLE OF CONTENTS

Section Title Page Section Title Page

INTRODUCTION v

1 SYSTEM DESCRIPTION 1-1 B Register 3-5

General 1-1 Memory Information Register (MIR) 3-5

System Equipment Configuration and 1-1 Adder 3-5

Characteristics Barrel Switch (BSW) 3-5

Peripheral Device Subsystems 1-2 Memory Control Unit 3-5

Console Subsystem 1-6 Microprogram Count Register 3-5

Magnetic Disk Subsystem 1-6 (MPCR)

Magnetic Tape Subsystem 1-6 Alternate Microprogram Count 3-5

Punched-Card Reader Subsystems 1-6 Register (AMPCR)

Punched Paper Tape/Edge-Punched 1-9 Incrementer 3-5

Card (PPT/EPC) Subsystems Microprogram Address Controls 3-5

Punched-Card Reader/Punch/ 1-9 (MPAD)

Recorder Subsystems Memory Address Register (MAR) 3-5

Line Printer Subsystems 1-9 Base Register 1 (BRl) 3-5

Reader Sorter Subsystem 1-9 Base Register 2 (BR2) 3-5

Data Communications Subsystems 1-10 Output Selection Gates (OS) 3-6

Communications Processor Subsvstem 1-10 Counter (CTR) 3-6

Single-Line Data Communicatio~s 1-11 Literal Register (LIT) 3-6

Subsystem MAR/CTR Input Selection Gates 3-6

2 PROGRAMMING SYSTEM 2-1
Control Register 3-6
Control Unit 3-6

DESCRIPTION Shift Amount Register
General Concetps 2-1

3-6

High-Level Languages 2-1
Condition Register and Select 3-6

Interpreters 2-1
SIGN-SA VE Flip-Flop 3-6
Clock Generator and Clock Driver 3-6

Delayed Binding 2-i
Breakout 2-1

External Uperation Controls (EO) 3-6
Error Detection 3-7

Programming System Structure 2-2 I/O Control Section 3-7
System Software 2-2
Initialization Programs 2-2

Device Addressing 3-8

Interpreters 2-2
Interrupt Handling 3-8

Interpreter Firmware 2-2
Memory Loading 3-9

Utility Programs 2-3
Direct Memory Access 3-9

General Sort Program 2-3 4 DATA COMMUNICATIONS 4-1

COBOL Compiler 2-3 SUBSYSTEMS

RPG Compiler 2-3 General 4-1

NDL Compiler 2-4 Programmable Communications 4-1

Virtual Machine Description 2-4 Processor

Concepts and Structure 2-4 Subsystem Interface 4-1

Memory Organization 2-4 Functional Operation 4-2

Interpreter Memory 2-4 Firmware/Software Considerations 4-3

User Memory 2-4 Interface Communications 4-4

Word Organization 2-6 Operational Indicators 4-5

Instruction Format 2-8 File Inquiry Subsystem (Single-Line 4-5

Virtual Machine Registers 2-11 Data Communications)

Virtual Machine Condition Flags 2-11 System Equipment and Software 4-6

A Group (Accumulator Flags) 2-11 Requirements

C Group (Comparison Flags) 2-12 Firmware Requirements 4-6

T Group (Test Flags) 2-12 Inquiry Interrupt Controller 4-6

K Group (Operator Control Keys) 2-12 Inquiry Controller/Handler 4-6

G Group (I/O Error Recovery) 2-12 Inquiry System Programming 4-7
5 READER SORTER SUBSYSTEM 5-1

3 SYSTEM PROCESSOR 3-1 General 5-1
DESCRIPTION
General 3-1

Reader Sorter Subsystem Operation 5-1
Reader Sorter Characteristics 5-3

Memory Section 3-2
Firmware Store Section 3-2 Apdx ABBREVIATIONS, ACRONYMS, A-I

Data/Program (User) Memory 3-3 A AND TERMS

Section Apdx INSTRUCTION LIST B-1
Shared Memory Controls 3-3 B
S-Level Memory Operation 3-3 Apdx VIRTUAL MACHINE REGISTERS Memory Standby Mode 3-3 C-l

Processor Section 3-3 C

Logic Unit 3-3 Apdx FLAG LIST D-l
A Registers (AI, A2 and A3) 3-3 D

iii

iv

Figure

1-1
1-2
1-3

1-4

2-1
2-2

3-1
3-2

3-3

3-4
4-1

4-2

4-3

5-1

5-2
5-3
5-4

Table

1-1

1-2
3-1

LIST OF ILLUSTRATIONS

Title

Typical B 720 Computer System
B 720 System Interface Configuration
B 720 Peripheral Subsystem
Configura tor
Data Communications Subsystem
Configura tor
Typical Memory Allocation
Typical Program/Data Memory
(CPM/DPM) Allocation
B 720 Central Processing Unit
CPU General Functional Block
Diagram
Microprogram and Nanoprogram
Codes
I/O Device Addressing
Multiline Data Communications
Subsystem Interface
Terminal Station Interface
Configurations
Communications Processor Functional
Block Diagram
Basic System Configuration for
Reader Sorter Operation
Reader Sorter Subsystem Interface
MICR Entry System
A9135 Reader Sorter

LIST OF TABLES

Title

B 720 Equipment Characteristics and
Capabilities
B 720 I/O Controls
Error Descriptor Codes

Page

1-1
1-2
1-7

1-10

2-5
2-6

3-1
3-2

3-4

3-8
4-1

4-2

4-3

5-1

5-2
5-2
5-3

Page

1-3

1-8
3-7

INTRODUCTION

The Burroughs B 720-Series Computer System is a small­
scale, but powerful, system which incorporates the latest state-of­
the art data processing techniques, such as dynamic interpreter,
interpretive structure, and programmable data communications
processor.

This manual provides reference data concerning the major func­
tional, operational, and programming characteristics and
capabilities of the B 720 System. The intent of the presentation
is to provide system-level product information to sales personnel,
prospective customers, and users of the system, while also provid­
ing sufficient systems and programming reference data to aid pro­
grammers in understanding and applying the capabilities of the
System.

Section 1, Equipment System Description, introduces the B 720
System and its physical/functional configuration. Basic operation­
al characteristics ann ~apahi1ities are presented for each major
equipment unit and subsystem.

Section 2, Programming System Description, describes the B 720
programming system structure and the function/application of
each major programming element. Application data, such as mem­
ory allocation and word/data structure, are provided for reference
purposes.

Section 3, System Processor Description, provides a general
functional and operational description of the B 720 Central Proc­
essing Unit.

Section 4, Data Communications Subsystems, provides a general
functional and operational description of the two types of data
communications subsystems: the programmable communications
processor subsystem, and the single-line subsystem (file inquiry
application).

Section 5, Reader Sorter Subsystem, provides a general func­
tional and operational description of the B 720 application of the
reader sorter capability in processing encoded documents.

Appendices are provided for quick reference to such items as
terms and abbreviations, instruction codes, registers, and flags.

~'~~~.~~ ~ ~

I
PAPER TAPE PA PUNCH READER

~
MAGNETIC TA~~
CASSETTE DRI

DISK DRIVE
UNIT

PER TAPE

96-COLUM~ -f:~~CORDER READER/PUNCH/D

80-COLUMN CARD
READER

~ ~ ~COLUMN CARD
96 READER

CENTRAL
PROCESSING UNIT

(CPU)

80 COLU~~T~A~~CORDER READER/PUNCH

1-0

DATA
COMMUNICATIONS

TRAIN PRINTER

LINE PRINTER

TRAIN PRINTER

SECTION 1

SYSTEM DESCRIPTION

GENERAL
The Burroughs B 720 Computer System represents

a significant expansion, in terms of capabilities and
flexibility, to the B 700-Series of small-scale, powerful
computer systems. In addition to retaining most of
the existing B 720 System capabilities, the B 720 pro­
vides the following major enhancements and
capabilities:

• Main memory capacity of up to 96K, 8-bit bytes
(expansible from 16KB to 96KB in 8KB increments).

• Expanded I/O device or subsystem handling (up
to 11 I/O ports; modular I/O expansion capability).

• Programmable data communications subsystem
(communications processor) with enhanced communi­
cations capabilities.

• Direct-memory access for disk and data communi­
cations subsystems.

• Integral photoelectric memory loader.
• Direct entry system console with electronic key­

board.
• MICR/OCR (character recognition) subsystem ca­

pability.
Figure 1-1 illustrates a typical console-based sys­

tem.

SYSTEM EQUIPMENT CONFIGURATION AND
CHARACTERISTICS

The B 720 is a modular system in terms of func­
tional equipment units or subsystems and can be con­
figured within the minimum and maximum restric­
tions to fulfill a customer's requirements. Figure 1-
2 is a functional interface representation of the gener­
al system configuration. Table 1-1 lists the general
characteristics and capabilities of the Central Proces­
sor and each type of peripheral device that can be
used in the system. The basic (or minimum require­
ment System consists of the following:

a. B 720 Central Processing Unit (CPU) with
minimum main-memory capacity of 32K-bytes, pho­
toelectric (paper tape) memory loader, and power sup­
ply group.

h "0 O'lA'l_·QQ ("1n..,~nln (Qa ;,..,,.h fl"\,."-f""rl aA nhn ... nn
u . .L.I VU-:::EU-""""'" ,-,V~~OVJ."'" \'""'V ~J..1\....l.L LV.&. J.J.J.-.L~~U, V-Z \,.;lJ.QL Q"'-

ters) or B 9343-42 Console (26 inch form-feed, 94 char­
acters).

c. B 346 (64-character) or B 346-1 (94-character)
Console Control.

Figure 1-1. Typical B 720 Computer System

1-1

d. B 9480-11/12 (single/dual drive, 100 TPI) or
B 9481-11/12 (single/dual drive, 200 TPI) Disk Car­
tridge Driye.

e. B 489-2 Cartridge Disk Drive Control.
The main-memory capacity can be expanded to 96

K-bytes in 8 K-byte increments (total of 12 B 31-2
memory modules). Up to 11 I/O control ports (Device
Dependent Ports, DDP's) are available in the proces­
sor to accommodate basic and optional peripheral de­
vices or interfaces. An additional port is reserved for
communications processor expansion. ..

Three of the processor IOC ports (DDP1, DDP4,
and DDP12) are dedicated to the data communica­
tions subsystem and basic system controls. Three ad­
ditional controls may be installed in interchangeable
ports in the basic system. Up to five additional con­
trols may be installed by use of the optional I/O ex­
pansion module, which provides five interchangeable
ports. Table 1-2 lists the applicability of the basic sys­
tem I/O controls (lOC's) and those I/O controls avail­
able to interface the various optional peripheral de­
vices.

BASIC/DEDICATED SUBSYSTEMS

PERIPHERAL DEVICE SUBSYSTEMS
As shown in figures 1-2 and 1-3 (peripheral device

subsystem configurator), the minimum system con­
figuration incorporates two dedicated peripheral de­
vice subsystems: the B 9343-22 or B 9343-42 Console
interfaced through the B 346 or B 346-1 Console I/O
Control, and the A 9480-11/12 or A 9481-11/12 Disk
Cartridge Drive Unit interfaced through the B 489-2
Cartridge Disk Drive 1/0 Control. The integral proc­
essor memory loader device is interfaced directly with
the processor main memory and does not require a
dedicated port.

In addition to the basic or required peripheral sub­
systems, the following optional peripheral device sub­
systems are available for use with the system through
their respective I/O controls and the processor inter­
changeable ports:

a. Punched card reader subsystems (80-column
andlor 96-column).

h. Punched Paper Tape Reader/Punch Subsystem.
c. Punched Paper Tape (PPT)/Edge-Punched Card

(EPC) subsystems.

OPTIONAL SUBSYSTEMS

CENTRAL PROCESSING UNIT

MEMORY

~
LOADER

I
N
T

DDP
E
R

12 C
H
A

PORT N
SELECT G

UNIT E
DIRECT (PSU) A

MEMORY B

MAGNETIC DDP ACCESS L

~ 4 '-- E DISK PPT/EPC
SUBSYSTEM D SUBSYSTEMS

D (I P
S

c::::J PROCESSOR \
\

COMMUNICATIONS DDP
PROCESSOR SO; 1

OPTIONAL (MULTILINE
SUBSYSTEM) TAPE

CASSETTE

Figure 1-2. B 720 System Interface Configuration

1-2

Equipment

B 720 Central
Processing Unit
(CPU)

B 9343-22 or B 9343-
42 Console

A 9480-11 or A 9480-
12 Disk Cartridge
Drive

A 9481-11 or A 9481-
12 Disk Cartridge
Drive

Table 1-1. B 720 Equipment Characteristics and Capabilities

Characteristics and Capabilities

Main (semiconductor memory of up to 96K 8-bit bytes (48K-words).

Memory expansion from 32K-bytes (min.) to 96K-bytes (max.) in 8K-byte
increments.

Oper~ting rate of 1 MHz.

I/O interface of up to 11 I/O ports (DDP'S); five interchangeable ports are
provided in basic processor.
Up to eight interchangeable (common) I/O ports (three in basic processor,
five in I/O expansion module)

Integral photoelectric memory loader; optional integral magnetic tape cassette.

Electronic Keyboard.

64 characters (B 9343-22) or 94 characters (Katakana, B 9343-42).

26-in. forms transport (handler).

Optional 64-character sets.

Single (A 9480-11) or dual (A 9480-12) drive capability.

Replaceable disk cartridges with:
... .., !._ _,! _____ L _ __ _ _ _ .L __ 1 _1~ _.1_
1Q-1Il. UlaIIleLer cuaLeu Ut::SK.

200 tracks (plus 3 spares) per surface.
100 tracks per inch (TPI) recording.
32 segments per track (180 bytes per segment).
1,152M-bytes per surface; total of 2.304M-bytes per disk.
4.6M-byte total recording capacity (two disks).
Data access time of 14 msec. (min) to 125 msec. (max).
1.55M-bits per sec. data transfer rate.
1500 ±20 rpm disk rotation speed.
60 msec. average seek time.
20 msec. average latency.

Single (A 9481-11) or dual (A 9481-12) drive capability.

Replaceable disk cartridges with:

14-in. diameter coated disk.
400 tracks (plus 6 spares) per surface.
200 tracks per inch (TPI) recording.

32 segments per track (180 bytes/segment)
2.304M-bytes per surface; total of 4.608M-bytes per disk).
9.216M-byte total recording capacity (two disks).
Data access of 14 msec. (min.) to 125 msec. (max).
1.55M-bits per sec data transfer rate.
1500 ±20 rpm disk rotation speed.
60 msec. average seek time.
20 msec. average latency.

1-3

Table 1-1. B 720 Equipment Characteristics and Capabilities (Cont)

Equipment

A 9247-2/3 or A 9247-
12/13 Line Printer

A 9249-2/3 Line
Printer

Characteristics and Capabilities

400 or 750 line-per-minute printing rate.
120 print position (132 print-position option).

Standard 4S-character set (optional character sets available).

20-IPS paper slew rate.

Two-channel or 12-channel (optional) format control tape.

Self-aligning forms.

S5~ 160, or 250 line-per-minute printing rate.
132 print positions; 10 characters per inch.

Standard 4S-character set (64 or 94 character set optional).

Two-channel or 12-channel (optional) format control tape.

Self-contained 132-character buffer.

A 9114-1 Card Reader SO-column card media.

200~card per minute reading rate.

350-card input hopper capacity.

350-card output stacker capacity.

Table-top mounting.

A 9119-1 Card Reader 96-column card media.

A 9490-21 or A 9490-
25 Magnetic Tape
Cassette Drive Unit

A 9491-2 Magnetic
Tape Unit

1-4

300-card per minute reading rate.

600-card input hopper capacity.

600-card output stacker capacity.

Table-top mounting.
Optional integral (A 9490-21) or external (A 9490-25) installation.

Dual-gap read-write head.

Spindle-controlled, 10 or 30 IPS reel drive.

Photoelectrically controlled tape speed.

Dual-track recording (one data track; one clock track).

Data is NRZI encoded at SOO BPI.

100 characters per inch (bit serial).

2S0-ft. cassette recording capacity.

10-IPS nominal read/write speed.

30-IPS nominal fast forward or rewind speed.

Table-top mounting.
Nine-track tape.

Dual-gap read-write heads.

12.5 IPS read/write speed.

50-IPS rewind speed.

Data is NRZI encoded at SOO BPI.

600-foot tape reel capacity.

10,000 characters per second transfer rate.

Table 1-1. B 720 Equipment Characteristics and Capabilities (Cont)

Equipment

A 9418-2 Card
Reader/Punch/Data
Recorder

A 9419-2/6 Card
Reader/Punch/Data
Recorder

A 9222-1 Paper Tape
Punch

A 9122-1 Paper Tape
Reader

A 9135 or B 9136
Reader Sorter

Characteristics and Capabilities

80-column card media.
200-card per minute reading rate.

45-card per minute card punching and printing rates.
600-card primary input hopper capacity.

400-card secondary input hopper capacity.

Two 400-card capacity output stackers.

96-column card media.
300-card per minute reading rate.

60-card per minute card punching rate.

60-card per minute card printing rate.

600-card primary input hopper capacity.

400-card secondary input hopper capacity.

Two 400-card capacity output stackers.

Punches tape, or edge-punches cards.
Reads 5, 6, 7, or 8 channel coded tape or cards at 40 code-per-second rate.

Photoelectric sensing.

Handles reeled, strip, or fanfold 11/16 in. or I-in. tape.

Handles individual, fanfold, or Mylar-reinforced edge-punched cards.

Supply and rewind mechanism for roll tape.

Punched paper tape or edge-punched card media.

Punches 5, 6, 7, or 8 channel codes at 40 code-per-second rate.

Tape-supply holder with 8-inch roll capacity.

Power-driven take up reel.

Handles card widths from 3 to 5 inches.

250-card supply stacker.

Magnetic-ink or optical character recognition capabilities (MICR/OCR).

Up to 16 document pockets in 4-pocket increments.

Handles 900 documents per minute.

Mis-sort and double-document detection.

17.5-inch input hopper capacity.

3.5-inch capacity stackers.

1-5

d. Line Printer Subsystems.
e. Reader Sorter (Character Recognition) Subsys­

tem.
g. Magnetic-tape unit/cassette sUbsystems.
A mixture of devices, or multiples of types, may

be used in the system; however each separate device
interface requires a separate corresponding device I/
o control. (Refer to Table 1-2.)

Although the interchangeable ports can be allocated
to any device subsystem, certain ports are normally
allocated to certain devices because of I/O service pri­
ority classifications. Also, certain devices (such as the
Reader-Sorter are restricted to installation in an I/
o expansion port).

In typical operational applications, a device subsys­
tem is used and controlled individually (such as mag­
netic tape or reader-sorter), or configured with other
related device subsystems to form low-speed, medi­
um-speed, and/or high-speed subsystems. For exam­
ple, a low-speed subsystem might consist of the fol­
lowing peripheral devices with associated I/O con­
trols:

a. A 9114-1 Card Reader (80-column card media,
200 CPM rate).

b. A 9249-1 Line Printer (90 LPM rate).
c. A 9122-1 Paper Tape Reader (40 code-per-second

rate).
d. A 9222-1 Paper Tape Punch (40 code-per-second

rate).
A medium-speed subsystem might consist of the

A 9418-2 and A 9419-2 Card Reader/Punch/Data Re­
corder devices and their controls. These devices are
80-column/200 CPM and 96-column/300 CPM card de­
vices, respectively.

A high-speed subsystem might consist of the
A 9247-2/12 Line Printer (400 LPM rate) and the
A 9119-1 Card Reader (96-column card media, 300
CPM rate) and their associated controls.

The following paragraphs provide general descrip­
tions of each type of peripheral subsystem.

CONSOLE SUBSYSTEM
The basic or minimum system includes a B 9343-

22 (64-character) or B 9343-42 (Katakana 94-charac­
ter) console which serves as the system operating con­
sole and a direct-entry peripheral. The selected con­
sole is interfaced with the processor through the
B 346 console I/O control (64-character) or the B 346-
1 Console I/O Control (94-character) though dedicated
port 12 (highest service priority).

Each type of console has an electronic keyboard, a
26-inch front-feed forms transport (handler), and a
set of program-select keys. Optional 64-character sets
are available in addition to the standard 64-character
set supplied with the B 9343-22 console.

Only one console subsystem is used in the system.

1-6

MAGNETIC DISK SUBSYSTEM

The basic or minimum system includes an A 9480-
11/12 or A 9481-11/12 Disk Cartridge drive unit inter­
faced with the processor through a B 489-2 Cartridge
Disk Drive Control. Each model is capable of handling
one or two disk cartridges (single drive is 11; dual
drive is 12). A total magnetic disk storage capacity
of 9,216,000 bytes is obtained when the B 9481-12 unit
is used. The B 720 may use a maximum of four disk
units and a total of eight drives (spindles) through a
multiplexer.

Only one disk control, dedicated to processor port
4, can be installed in the system.

MAGNETIC TAPE SUBSYSTEM
Magnetic tape storage capabilities can be added to

the system in a number of optional forms, involving
the use of the A 9490-21 or A 9490-25 Magnetic Tape
Cassette Unit and/or the A 9491-2 Magnetic Tape
Unit. The A 9490-21 is available for installation as an
integral part of the processor cabinet, while the
A 9490-25 is the external desk-top version. Either or
both can be used; however each requires a B 392-1 (in­
ternal) and B 392 Magnetic Tape I/O control in a se­
lected interchangeable port (DDP).

The A 9490-21/25 has a dual-gap read-write head,
dual-track (one data, one clock) recording capability,
and cassette drive speeds of 10 IPS (forward) and 30
IPS (rewind).

The B 9491-2 Magm~tic Tape Unit is an external
reel-type, table-top mounted device that provides a
nine-track recording capability, 12.5-IPS forward
speed, and 50-IPS rewind speed. This unit is inter­
faced through a B 391 Magnetic Tape I/O control -in­
stalled in an interchangeable port. A 10,000 character­
per-second data transfer rate is possible with the
A 9491-2 unit.

PUNCHED-CARD READER SUBSYSTEMS
Either or both 80-column and 96-column punched­

card reader subsystems are available for use in the
system. The A 9114-1 Card Reader is an 80-column
device with a 200 card-per-minute rate and a 350-card
hopper/stacker capacity. This table-top device is in­
terfaced through a BIll Card Reader Control in an
interchangeable DDP and is normally used in low­
speed subsystem applications.

The A 9119-1 Card Reader provides the 96-column
and handling capability and has a 300 card-per-min­
ute rate and 600-card hopper and stacker. This table­
top device is interfaced through a B 311 Card Reader
Control in an interchangeable DDP and is normally
used in high-speed subsystem applications.

(TWO DDP'S)

8346 8346-1
I/O I/O

CONTROL CONTROL

A9480- A9481-
l89343.22 89343-42 11112 11112

CONSOLE CONSOLE DISK DISK
DRIVE DRIVE

(64 CHAR.) (94 CHAR.) (4.6M-8YTES) (9.216M-8YTES)
(KATAKANA).

(UP TO FOUR DISK DRIVES

A9418
RDR/PNCH/

RCDR

(80-COL,
200 CPM)

THROUGH DISK EXCHANGE)

A9419 J RDR/PNCH/
RCDR

A9135
READER
SORTER

(96-COL,
300 CPM)

(THREE DDP'S) CENTRA~ PROCESSING .. ------------,
UNIT

8243
I/O

CONTROL

A9249
LINE

PRINTER

(85, 180, 250,
LPM)

8312 I/O
EXPANSION MODULE
(UP TO FIVE DDP'S)

89136
READER
SORTER

8391 or
8392
I/O

CONTROL

A9490
OR

A9491
TAPE

CASSETTE/
UNIT

8244
I/O

CONTROL

A-9247
LINE

PRINTER

(400 LPM)

NORMAL~
REQUIR{D .~------,

~--.-------

8391
I/O

CONTROL

A9491
MAG.
TAPE
UNIT

02.5/50 IPS)

A9122
PAPER
TAPE

READER

(40 CPM)

G 8392~ [8111 I/O I/O
CONTROL CONTROL

=r::
6A9490 l A911' MAG.

TAPE CARD

C/\SSEHE ~ADER

00/30 IPS) (80-COL,

(INTEGRAL 200 CPM)

OR EXTERNAL)

Figure 1-3. Peripheral Device ~)ubsystem Configurator

J
8311
I/O

CONTR~L

] A9419
CARD

~EADER

(96-COL,
300 CPM)

1/0 Control

B 346 Console Control

B 346-1 Console Control

B 489-2 Cartridge Disk Drive

B 351-1 Single-Line Control
(SLC)

B 352 Communications
Processor

BIll Card Reader Control

B 243 Line Printer Control

B 244 and B 244-X Line Printer
Control

B 391 Magnetic Tape Unit

B 392 Magnetic Tape Cassette
Control

B 392-1 Magnetic Tape Cassette
Control

B 131 Reader Sorter Control

B 121-1 Paper Tape Reader
Control

B 221 Paper Tape Punch
Control

B 311 Card Reader/Punchl
Recorder Control

1-8

Table 1-2. B 720 I/O Controls

Peripheral Interface

B 9343-22 Console

B 9343-42 Console

B 9480-11/12 or B 9481-11/12
Disk Cartridg~ Drive

Single-Line data
communications interface
(direct or through data set!
modem)

Communications Processor
interface (direct of through
data sets/modems).

A 9114-1 Card Reader

A 9249 Line Printers (1, 2, 3)

A 9247 Line Printers (2, 3,
12, 13)

A 9491-2 Magnetic Tape Unit

A 9490-25 Magnetic Tape
Cassette Unit

A 9490-21 Magnetic Tape
Cassette Unit

A 9135 or B 9136
Reader Sorter

A 9122-1 Paper Tape Reader

A 9222-1 Paper Tape Punch

A 9418 RDR/PNCH/RCDR
(80-col), A 9419 RDR/PNCHI
RCDR (96 col), or A 9119
Card Reader (96 col)

Notes

Required for 64-character electronic
keyboard; dedicated to port 12 of
processor.

Required for 94-character
(Katakana) electronic keyboard;
dedicated to port 12 of processor.

Dedicated to processor port 4.

Occupies two interchangeable
processor ports (DDP's).

Dedicated to processor port 1;
must be installed in modular 1/0
expansion rack. (Refer to
description of Data
Communications Subsystem.)

For 80-column card media;
installed in interchangeable
processor port (DDP).

Installed in interchangeable
processor port (DDP).

Installed in interchangeable
processor port (DDP). Optional
EBCDIC and KATAKANA code
sets.)

Installed in interchangeable
processor port (DDP).

Used for external tape unit
installation; installed in
interchangeable processor port

• (DDP).

Used for processor cabinet
(integral) installation of tape unit;
installed in interchangeable
processor port (DDP).

Installed B 312 I/O expansion
module; restricted from installation
in basic system interchangeable
DDP's.

Installed in interchangeable
processor port (DDP).

Installed in interchangeable
processor port (DDP).

Handles 80 or 90 column card
formats; installed in
interchangeable processor port
(DDP)

PUNCHED PAPER TAPE/EDGE-PUNCHED
CARD (PPTIEPC) SUBSYSTEMS

Punched paper tape and edge-punched card reading
and punching capabilities are provided by the A 9122-
1 Paper Tape Reader and A 9222-1 Paper Tape Punch,
respectively. These units are small, compact, desk-top
or free-standing units that read and punch, respec­
tively, 5, 6, 7, or 8 channel coded tapes or cards at
a 40 code-per-second rate.

The A 9122-1 is interfaced with the processor by the
B 121-1 Paper Tape Reader I/O Control, while the
A 9122-1 is interfaced by the B 221 Paper Tape Punch
I/O Control. Each type or control can be installed in
an interchangeable processor DDP. Either, both, or
multiples of these subsystems can be used in low­
speed subsystem applications.

The A 9122-1 Paper Tape Reader has a photoelectric
sensing mechanism and can handle reeled, strip, or
fanfold punched paper tape. The A 9122-1 also han­
dles individual, fanfold, or Mylar reinformed edge­
punched cards. Supply and rewind mechanisms are
provided for roll tape.

The A 9222-1 Paper Tape Punch has a tape-supply
holder with all' 8-inch roll capacity, a power-driven ta­
peup reel, and a 250-card supply stacker. Card widths
from 3 to 5 inches can be handled.

PUNCHED-CARD READER PUl\'CH
RECORDER SUBSYSTEMS

Combination punched-card reading, punching, and
recording capabilities in medium-speed subsystem ap­
plications are provided by the A 9418-2 and A 9419-
2/6 Card Reader/Punch/Data Recorder Units. The
A 9418-2 handles standard 80-column cards and is in­
terfaced with the processor through the B 311 Read­
er/Punch/Recorder I/O control. The A 9418-2 can
read punched cards at a 200 card-per-minute rate
and/or punch and print cards at a 45 card-per-minute
rate. A 600-card primary input hopper, a 400-card sec­
ondary input hopper, and two 400-card output stack­
ers are provided on the A 9418-2.

The A 9419-2/6 (2/6 pocket) Card Reader/Punch/
Data Recorder handles 96-column cards and also is in­
terfaced with the processor by the B 311 I/O control.
The A 9419 has a reading rate of 300 cards-per-minute
and punching/printing rates of 60 cards per minute.
A 600-card primary input hopper, a 400-card secon­
dary input hopper, and two 400-card output stackers
are provided on the A 9419.

LINE PRINTER SUBSYSTEMS
Output printing capabilities of various speeds and

formats are provided by the A 9247 and A 9249 Line
Printers available for use on B 720 Systems. The
A 9247 Line Printer is interfaced through a B 244
Line Printer Control, while the A 9249 Line Printer
is interfaced through a B 243 Line Printer Control.
Both types of controls are installed in interchangeable
I/O ports.

Normally, one line printer subsystem is used in the
B 721 System. The A 9249 Line Printer is used in low­
speed subsystem applications; however, if it is the
only line printer used in the system, it is configured
as a high-speed device. The A 9247 is normally used
in high-speed subsystem applications with the A 9119
Card Reader.

The A 9247-2/3 and A 9247-12/13 Line Printers
have 400 and 750 line-per-minute printing rates, re­
spectively, and provide 120 print positions. (A 132
print-position option is available.) The A 9247 is pro­
vided with a standard 48-character set, but optional
character sets are available. A standard two-channel
(or optional 12-channel) format control tape is pro­
vided. The B 244 I/O control interfaces those printers
using ASCII code. B 244-1 through B 244-6 controhs
provide interfaces with EBCDIC and KATAKANA­
variations.

The A 9249 Line Printer has 85, 160, and 250 line­
per-minute rates and 132 character positions. A
standard 48-character set is provided; optional 64 and
96 character sets are available. A standard two-chan­
nel (or optional 12-channel) format control tape is
provided. The A 9249 has a self-contained 132-charac­
ter buffer.

READER SORTER SUBSYSTEM
The Reader Sorter subsystem is a character-reco­

gnition subsystem designed for sorting and processing
magnetic ink or optically encoded documents (MICR
or OCR). This subsystem consists of the A 9135 or
B 9136 Reader-Sorter interfaced through the B 131
Reader-Sorter Control.

The B 131 Reader-Sorter Control must be installed
in an interchangeable port provided by the B 312 1/
o Expansion Module. That is, an I/O Expansion Mod­
ule, with the required cabling and cooling options,
must be included in the CPU when installing a read­
er-sorter subsystem.

The Reader-Sorter has both magnetic ink and opti­
cal character-recognition capabilities and can handle
900 documents per minute. Up to 16 document sorting
pockets may be installed on the Reader-Sorter (in
four-pocket increments). Mis-sort and double­
document detection capabilities are provided, along
with a 17.5-inch capacity input hopper and 8.5-inch
capacity stackers.

1-9

Only one Reader-Sorter Subsystem may be used on
the system .. A complete system includes a reader­
sorter subsystem, processor and console, disk, and
line printers. Section 5 provides a general description
of the Reader-Sorter Subsystem. Refer to the B 700
Reader-Sorter Subsystem Reference Manual, form
1082500, for a complete description of the system.

DATA COMMUNICATIONS SUBSYSTEMS

There are two types of data communications sub­
systems systems available for B 720 Systems: a pro­
grammable communications processor subsystem,
and a single-line data communications subsystem.
Figure 1-4 is a data communications subsystem confi­
gurator.

OPTIONAL
8352-6

INDICATOR
ASSY

OPTIONAL
8652
ACU

ADAPTER

LINES 1 AND 2

DDPI

1/0
EXPANSION

\
RACK OPTIONS

, (COMMUNICATIONS
\ MODULE)

8352
COMMUNI­
CATIONS

PROCESSOR

8353-1
HALF­

DUPLEX
MEMORY

8353-2
FULL­

DUPLEX
MEMORY

8651 ~
LINE -------- LINE

ADAPTER (UP TO FOUR) ADAPTER

UP TO FOUR FULL
DUPLEX DATA

COMMUNICATIONS LINES

COMMUNICATIONS PROCESSOR
SUBSYSTEM

An optional programmable communications proces­
sor is available for servicing up to four communica­
tions lines in the half-duplex or full-duplex modes.
This subsystem is allocated an entire I/O module in
the CPU I/O expansion rack and consists of basic (re­
quired) and optional elements. Only one communica­
tions processor may be used in the system, and it is
dedicated to I/O port 1 (DDP1).

The major programmable controlling and process­
ing element in the subsystem is the B 352 Communi­
cations Processor. The B 352 consists of an I/O expan­
sion rack module wired and configured to accept the
following required or optional items:

a. Up to four B 651 Line Adapters (one for each
communications line to be serviced).

CENTRAL
PROCESSING

UNIT

6353-3
ACU

MEMORY
OPTION

(8312
. 1/0 EXPANSION J

MODULE

(TWO I NTERCHANGEA8LE DDP'S)

8351-1
SINGLE-LINE

CONTROL

REMOTE FILE INQUIRY
TERMINAL(S) (UP TO NINE)

Figure 1-4. Data Communications Subsystem Configurator

1-10

b. The B 353-1 four-line half-duplex option, or the
B 353-2 four-line full-duplex option. (Installation of
one selected option is required for operation; a B 353-
3 memory option is available for use with the ACU
option.

c. One data set interface cable for each line
adapter-to-data set interface, or a direct-connect kit
for each interface to be directly connected to a termi­
nal (TDI interface).

d. A B 652 ACU (Automatic Calling Unit) option,
which provides the capability of automatic dialing on
two of the four communication lines.

e. The optional B 352-6 Data Communications Con­
sole Indicator Assembly, which provides transmit and
receive monitoring indicators for each communica­
tions line serviced.

The B 352, together with the mentioned options and
cabling, comprise the communications module. The
B 352, unlike the other I/O controls, is programmable
and executes program instructions to control the flow
of data between the system processor and data com­
munications channels. This capability, which normal­
ly is implemented by execution of a firm,vare pro­
gram in the system processor, frees the system proc­
essor to accomplish more useful data processing func­
tions. The system processor only monitors the
operational status of the B 352 in this application.

The subsystem can handle synchronous or asyn­
chronous data transmissions and can accommodate
two basic types of interfaces: data set/modem (RS-

232-C or CCITT) and two-wire direct (unbalanced).
Combinations of interfaces (up to four) may be used;
a B 651 Line Adapter is required for each interface.

All standard data sets/modems may be interfaced
by a B 651 Line Adapter.

A ?omplete functional .descrip~ion ~f the d.ata com­
mUnICatIOns subsystem IS prOVIded In SectIOn 4.

SINGLE-LINE DATA COMMUNICATIONS
SUBSYSTEM

The optional single-line data communications capa­
bility on B 720 Systems is provided for a special and
restricted application of data communications: file in-
9uiry operation. The file inquiry capability, which is
Implemented through the use of a B 351-1 Single-Line
Control (SLC), permits an operator at a remote in­
quiry station to make disk data file inquires under
user programmatic control.

The remote terminals, interfaced by the B 351-1
SLC in this application are TD 700, TD 800, and
TD 801 Terminal Display Units. Only one B 351-1
SLC, which occupies two interchangeable I/O ports in
the B 312 I/O expansion module, may be used in the
system. Up to nine terminals may be interfaced by
the SLC (mixture or types if desired).

The terminals are interfaced with the system proc­
essor over a private (direct-connect), asynchronous,
9600-baud communications lines by the B 351-1 SLC.
A complete functional description of file inquiry oper­
ation is provided in Section 4.

1-11

SECTION 2

PROGRAMMING SYSTEM DESCRIPTION

GENERAL CONCEPTS

The B 720 programming system incorporates the
latest data processing concepts, such as soft (interpre­
tive) structure and dynamic interpreter configurator.
The B 720 Central Processing Unit (CPU) is referred
to as the "host machine." Interpreter and system pro­
grams are loaded into the host machine to form a
"virtual machine." Therefore, there can be many vari­
ations of virtual machines, using one host machine,
if a variety of interpreters are available. An interpre­
ter may be oriented toward general purpose applica­
tions and thus can be used with a variety of pro­
grams. However, some interpreters may be highly
oriented to a particular program application.

HIGH-LEVEL LANGUAGES
ml_ _ Tl MnA _ _ __ L _ _1 __ . ___ ~L __ 1 ... 1 __ J.

1 He D I.GV l:aH ue Ue::ll:rlUeU a::l a ::lY::ll.,eIIl I.,Ilal.,

executes programs under control of "microinstruc­
tions." It is impractical for applications programmers
to write microprograms; therefore, various higher­
level languages have been developed for customer use
on the system. It is not the intent of this reference
manual to describe these higher-level languages, but
to describe the relationship that exists between the
microprogram and the higher-level languages.

S (Secondary)-language instructions are intermedi­
ate instructiorrs which are equivalent to the machine
language of a conventional system. For each S-in­
struction there exists a string of microinstructions
which interpretively executes the function specified
by that S-instruction. It must be remembered that
the S-instruction does not directly cause the hardware
to perform a function.

S-instructions may completely specify a compiler
level language. Burroughs Corporation has defined
the S-instructions and has written the interpreters
and compiler programs for the COBOL, RPG,· and
NDL languages. These compiler programs generate
the S-language instructions to perform the various
operations specified by the higher-level language.

INTERPRETERS
In addition to the S-language program (compiler

user program), another program referred to as an
interpreter is utilized. An interpreter system has been
developed which satisfies each of the higher level S­
languages, as well as utility programs. It is the func­
tion of the interpreter to fetch the S-language instruc­
tions from main memory and to interpret or execute

the instructions. The S-instructions are decoded, and
a series of microinstructions are executed to cause the
hardware to perform the function specified by the S­
language instruction. When the execution of a series
of microinstructions (representing an S-instruction) is
completed, the interpreter fetches the next S-lan­
guage instruction and the operation continues in this
manner. The series of microinstructions used for each
S-language instruction may be stored in main
memory or called from disk.

The S-language programs and the interpreter sys­
tem are located and loaded from disk under control
of the system loader. On completion of the load, the
system loader then passes control to the S-language
program.

DYNAMIC INTERPRETER CONFIGURATOR
The dynamic interpreter configurator is based on

4-~ __ __ __ : _ _+ ,....,c "H.rt.n4""'o.'!,,-_nrt.n '!I,_4-;1 -4-kn nn+"I'1n 1 "",n.nrl
1,11C llVll\.,VUllUlI,U1CUI, V.1. J.C;:'VUJ.\.,C;:' UU"J.J. "ue: a""ucu ue:e:u

for these resources arises. The proper utilization of
resources enables the user to get the maximum sys­
tem throughput per dollar investment.

System configuration occurs at program load (from
disk) time. The system loader is provided with infor­
mation about the required subsystem device control­
lers, subsystem buffers, number of SPM words, and
the actual interpreter structure needed by the S-level
program being loaded. The system loader then con­
structs the required interpreter and allocates the re­
maining memory for the required buffers, SPM, and
user program.

User (S-level space is within the area specified by
the program base-and limit registers and is divided
into two portions: overlayable and nonoverlayable (or
resident) sections. Compiler generated code is com­
pletely independent of absolute memory locations and
consequently is not restricted to particular areas of
memory.

Proper control of input/output resources and a flex­
ible system architecture are other features which pro­
vide for proper utilization of resources on the system.

BREAKOUT
At any time during execution, an S-level program

may be interrupted to enable the loading and execu­
tion of a different program. The interruption is called
"breakout", and the program along with the virtual
machine registers are saved on the disk. After the de­
sired program is executed, execution of the inter­
rupted program may be resumed at the point where
breakout occurred. Only one level of breakout may oc­
cur; that is, only one program can be saved.

2-1

PROGRAMMING SYSTEM STRUCTURE
The elements of the complete programming system

are categorized into the following groups:
a. System Software, which consists of the operat­

ing system programs essential to the primary startup
and operation of the system.

b. Program product development aids (such as
NDL), which facilitate the generation of application
programs by a user.

c. Application programs, which are designed for
specific user functions (such as character recognition
and sorting, production control, and item processing).

SYSTEM SOFTWARE
System software, or operating system programs

consists of initialization programs, interpreters, and
system software functional utility programs. The
B 700 System Software Operation Guide, form
1082492, contains descriptions of the application and
operation of these system software elements.

INITIALIZATION PROGRAMS
Initialization programs, consisting of cold start and

warm start programs, provide the means to bring the
system up to normal operating status. Cold start pro­
grams consist of the following:

~. The Disk Primer/Cold Start (DPCS) program,
whIch prepares a new system disk cartridge copies
a backup cartridge, and loads the system load~r from
disk to main memory.

b. Bootstrap loaders which provide the minimum
control required to load the Disk Primer/Cold Start
program from four types of input media to main
memory.
Whe~ t.he system lo.ader program is loaded by

DPCS, It IS used to defme the I/O environment and
load the interpreter from disk to main memory. At
the conclusion of this process, the system attains the
normal operating status. DPCS consists of the fol­
lowing four routines used in the cold-start process:
. a. INIT, which initializes a disk cartridge to the
mterpreter format by providing a variable number of
protected spaces on disk for system software plus
four protected directory segments. '

b .. LOAD, which loads the interpreter from input
medIa to the protected area on disk and thus creates
a system disk.

. c. COPY, which copies a system disk to a backup
dISk. Only those tracks occupied by the system soft­
ware load are copied.

d. BOOT, which reads the system loader program
from system disk to main memory.

SYSTEM LOADER PROGRAM
The System Loader program is used to define the

system configuration. The definition process occurs in
the following sequence:

a. The peripheral device and system configuration
is defined.

2-2

b. Translation algorithms and associated tables are
defined for those devices that require them.

c. Total memory size is defined.
The System Loader is read from the system disk

under control of the BOOT routine in DPCS, or from
the warm start program during a warm start or re­
start. For a warm start or restart, the System Loader
is already resident on the system disk. In all cases,
the program is stored at the same reserved starting
!ocation on ~isk and is read into main memory, start­
mg at locatIOn 0000, and is given control.

WARM START PROGRAM (WSTRT)
The Warm Start program, identified as WSTRT

provides the minimum controls necessary to transfe;
the system loader program from disk to main
memory. The WSTRT program is contained on
punched paper tape and is loaded to memory by
means of the integral memory loader.

INTERPRETERS
Interpreters are microprograms that comprise the

actual machine instructions to which the equipment
responds. B 720 system interpreters are designed to
emulate the operation of other computer systems at
the user level. Interpreters for COBOL RPG and
NDL ~av~ been developed for use on B 720 systems.

IntrmsIC segments of the interpreter firmware are
provided to. initialize and copy a user disk cartridge
(IN~TD), prmt the contents of machine memory and
regIsters (SYSDUMP), and trace and list each step of
a COBOL or RPG program (TRACE).

INTERPRETER FIR1vfWARE.
The interpreter firmware is comprised of the fol­

lowing segments and routines which form the
minimum inte~preter necessary to load program
memory and brmg the system up to operating status:

a. Common interpreter segments (ACOMMON)
which comprise the interpreter segments common t~
all software elements of the systems. ACOMMON is
always resident in memory.

b. BCOMMON, which contains the elements neces­
sary to perform the operation as specified by the user
COBOL or RPG program. BCOMMON is transferred
to main memory at the time that a program which
requires it is loaded from disk to memory for execu­
tion .

c. CCOMMON, which contains the elements neces­
sary to support the B 700 on board COBOL Compiler
and onboard NDL Compiler. CCOMMON is trans­
ferred to main memory only when required.

~. Interp~eter overlays (OVERLAY), which are re­
tamed on dIsk until required during program execu­
tion. A part of main memory is reserved such that
?nly the singl~ ove:lay actually in use i~ occupying
It. The dynamIC mamtenance of the overlays in main
memory is an automatic function of the system firm­
ware.

e. Intrinsic segments, which are brought into mem­
ory only if actually required by the program to be ex­
ecuted, or if desired by the system operator to be
executed. Memory not filled with relative segments is
made available to the S-level program. Relative seg­
ments include those portions of the interpreter re­
quired for data communication controllers, System
Dump, and Trace.

f. Fatal Error Routine (FATAL), which is used by
the operating system to alert the operator to the exis­
tence of a condition that impairs proper functioning
of the system. Error conditions handled by FATAL
include certain hardware errors, address limit errors.
and I/O errors. .

UTILITY PROGRAMS
The B 720 System is provided with a library of

functional utility programs that perform various util­
ity operations, such as loading files from card devices
to disk, or dumping program/data disk files to mag­
netic tape. These programs are loaded and executed
like any other program. Application of a particular
utility program on a system depends on the peripher­
al device configuration of the system. The available
library of utility programs is as follows:

Designation

CDGEN
CDLST
CRDLD

DDLST
DFLST
DMPPG
DSKTP
INTTP

ODP80

ODP96

08096

PTCPY

SQASH
TPCPY
TPDSK
TPLST

Nome

Check Digit Table Generator
Card List
Load Object Program From Cards
to Disk
Disk Directory List
Disk File List
Disk File Dump and Purge
Dump Disk Files to Tape
Create Cold Start Tape From 80-
Column Cards
Punch Object Program, Disk to 80-
Column, R/P/P
Punch Object Program, Disk to 96-
Column, R/P/P
80-Column to 96-Column Object
Program Conversion
Paper Tape Copy With Verify And
Fancy Punch
Disk Space Reallocation
Copy Tape To Tape And Verify
Dump Tape File To Disk
Tape List

The B 700 System Operating Guide, form 1082492
provides descriptions and operating instructions fo;
each utility program.

GENERAL SORT PROGRAM
Also provided with the system software is the Gen­

eral Sort Program (SORT), which performs all or part
of the operations necessary to provide and control a
sorted tag file associated with a particular master file

and/or sort the master file itself. SORT has the fol­
lowing five selectable modes of operation:

a. Tag sort mode, which creates a tag file from the
master file and sorts the file according to specified
keys.

b. Record sort mode, which sorts the master file ac­
cording to specified keys and purges any deleted mas­
ter records.

c. Full sort mode, which performs combined func­
tions of tag and record sorts.

d. Basic sort mode, which takes an existing un­
sorted tag file and sorts it according to specified keys.

e. Update sort mode, which sorts and merges an ex­
isting overflow tag fHe with an existing sorted tag file
to create a new updated tag file. A new (empty) over­
flow file is opened.

~efer to the B 700 System Software Operation
GUIde, form 1082492, for a complete description and
operating instructions.

COBOL COMPILER
The B 720 may implement the B 700 series onboard

COBOL Compiler, which consists of an input program
(B7CBL) that collects COBOL statements from
various media and uses six separate processing phases
to produce the co:mpiled prugram. If any syntax er­
rors are detected during input operations, certain
phases of the processing sequence are bypassed. The
detected errors are displayed to allow the user to per­
form error correction without requiring code
generation.

The B 700-series COBOL Compiler allows the user
the capability of compiling from 80-column cards, 96-
column cards, disk files, tape files, or system console
input. Source patches may be included from 80- or
96-column cards, or from the system console. The
user may optionally save the resultant source file on
disk, cassette, tape, 80-column cards, or 96-column
cards.

Output listings are available on the wide-line print­
er or the console. The resulting object program is
placed on disk. Refer to the B 700 COBOL Reference
Manual, form 1064391, for a complete description of
B 700 COBOL.

RPG COMPILER
The B 700 RPG (Report Program Generator) Com­

piler is available onboard to the users of B 720 Sys­
tems. The compiler consists of a front-end program
(B7RPG), which collects RPG source from various
media, and six separate programs which are phases
of the RPG Compiler. As each portion of the compiler
completes its program, it automatically calls the next
phase. However, if there are any syntax errors, sever­
al phases will be eliminated, allowing the user to see
the source errors without the expense of code
generation. The time of a compile varies and depends
on the number and type of RPG source submitted.

2-3

The B 700 RPG Compiler provides the user with the
capability of compiling from 80-column cards, 96-col­
umn cards, disk files, tape files or console input. If
either tape or disk is used as input, a merge feature
is available from 80- or 96-column cards, or the con­
sole. When a merge function is used, the user option­
ally may save the resultant source file on disk or tape.
A disk source file is always created for each compile
(reserved name ($$$».

Refer to the B 700 System RPG Reference Manual,
form 1073897, for a complete description of B 700
RPG.
NDL COMPILER

The B 720 Network Definition Language Compiler
(B7NDL) consists of an input phase that collects NDL
statements from various media, and uses several
processing phases to produce a compiled program and
firmware tables. If any syntax errors are detected
during input, certain phases of the processing se­
quence are bypassed and the errors are displayed.
Thus, the user is permitted to perform error correc­
tion before code generation and table building are at­
tempted.

B7NDL allows the user the capability of compiling
from 80-column cards, 96-column cards, disk files,
tape files, cassette files, or the console. If either tape,
cassette, or disk is used as input, source patches may
be included from 80-column or 90-column cards or the
console. At his option, the user may save the result­
ant source file on disk or tape, or he may create a
new card file.

Output listings are available on the line printer or
on the system console. The resulting object program
and tables are placed on disk.

Refer to the B 720 NDL Reference Manual, form
1080868, for a complete description.

VIRTUAL MACHINE DESCRIPTION

CONCEPTS AND STRUCTURE
The use of the term "virtual machine" in describing

the B 720 Computer System is based on the fact that
data and instruction representation, as defined for
the system, is independent of the actual machine
hardware used to effect the implementation of the
system. The typical computer "assembler" produces a
machine code representation of well-defined instruc­
tions which, when properly applied, directly influence
the hardware to produce the desired results. This is
not the case with a virtual machine. The virtual ma­
chine object code does not directly influence the hard­
ware: in fact, it may bear no resemblance to the true
machine code of the host machine. Instead, there ex­
ists an interface (interpreter), which translates the
virtual machine code into host machine code for actu­
al execution of the instructions.

2-4

Normally, the virtual machine programmer need
not be aware of this fact. It suffices to presume that
the virtual machine acts like any other machine in
that its instruction mnemonics exist in one-to-one cor­
respondence with directly executable machine code
parameters. There are important points, however,
which must always be remembered:

a. The program must share memory space on the
system with the interpreter.

b. The interpreter itself may rely on segmentation
in order to free memory for the program.

c. The interpreter is itself a program which is sub­
ject to rules and constraints.

The internal representation of data consists of char­
acter strings of eight-bit ASCII, numeric strings hav­
ing eight-bit ASCII representation, and fixed-sized
fields of signed BCD (four-bit) numeric digits.
Hexadecimal data may be moved and compared as
character strings.

MEMORY ORGANIZATION
The main memory of the processor is functionally

divided into two major areas: interpreter memory
(microprogram memory, MPM) and user memory.
Figure 2-1 shows the general organization and alloca­
tion of main memory.

INTERPRETER MEMORY
Interpreter memory, or Microprogram Memory

(MPM), consists of resident machine code areas, over­
layable areas, and a variable areas as shown in figure
2-1. Additional information about the MPM is pres­
ented in Section 3, System Processor Description.

USER MEMORY
A characteristic of earlier implementations, which

remains central to the language, is the partition of
user memory (program memory) into two distinct
sub-memories having well-defined boundaries.

The first partition is called the scratch pad memory
(SPM). SPM is limited in size (256 X 64-bit words
maximum) and is intended primarily as an I/O work­
space. There is no connotation of speed associated
with its name. It is, in fact, host memory like any
other. No executable instructions occur in SPM. SPM
for a given program is only as large as required (in
some cases no SPM is required), and the unused por­
tion is available as CPM (central processor memory).

The second partition is called central processor
memory, or data-program memory (CPM or DPM).
The size of CPM available to the user is limited by
the total host memory, minus:

a. Interpreter requirements.
b. I/O buffer requirements.
c. SPM requirements.
It is within CPM that the virtual machine program

HOST ADDRESSING
0- 1

INTERPRETER ADDRESSING

IT

(NOTE 1)

c-­
\..

MAX

Notes:

I

RESI DENT AREA

VIRTUAL MACHINE REGISTERS
COMMON CODE
LOADER OVERLAY AREA
INTERPRETER OVERLAY AREA
OPTIONAL CONTROLS
OPTIONAL INSTRUCTIONS

I/O BUFFERS

SCRATCHPAD MEMORY
(SPM)

CENTRAL PROCESSOR
MEMORY (CPM) OR

DATA/PROGRAM MEMORY
(DPM)

(USER MEMORY)

(RESERVED)

I
(NOTE 2)

SPM 0

(NOTE 3)

1~~~ ~l~l! ~
~t'IVI/ Ut'IVI U

(NOTE 4)

CPM LIMIT (USER
• MEMORY LIMIT)

(NOTE 5)

1
1. Each of these boundaries is variable, depending on implementation and program

requirements.
2. Not addressable by interpreter program.
3. Only as large as required.
4. Maximum CPM required for this program.
5. This space may be available to the interpreter program through indexing.

Figure 2-1. Typical Memory Allocation

2-5

UNSEGMENTED
PROGRAM

o

SEGMENTED
PROGRAM

AT LEAST AS MUCH SPACE AS IS
REQUIRED TO CONTROL THE
PROGRAM SEGMENTATION.

-------- _ LIMIT OF MAIN (ALWAYS
RESIDENT) SEGMENT

REQUIRED
CPM ADDRESSES

MAX

AREA AVAILABLE FOR THE OVERLAY
OF PROGRAM SEGMENTS

Figure 2-2. Typical Program/Data Memory (CPM/DPM) Allocation

instructions reside, as well as any non-I/O data areas.
CPM may be segmented so that portions of the pro­
gram may overlay one another and share memory on
a sequential basis. Some minimal amount of always­
resident object code is required in order to control
segmentation.

A typical memory map is shown in Figure 2-1 (Dif­
ferent implementations may vary in configuration.)

The portion of memory assigned to the CPM itself
may be further expanded as shown in Figure 2-2.

SPM contains only data areas and I/O descriptors.
CPM may contain data areas as well as program in­
structions, mixed in any order, subject to the fol­
lowing restrictions:

a. Word address 0 is reserved and always contains
a branch to the first executable instruction.

b. Data and instructions never share the same
word. Each time a switch is made from data
declarations to instruction coding and vice versa, an
update of the location counter is made to the next
word address.

2-6

WORD ORGANIZATION
As stated previously, the virtual machine memory

(both SPM and CPM) is subdivided into fixed-size
units (words). These words form the basis for most
data manipulations within the machine. A word con­
sists of 64 bits which, depending on the circum­
stances, may be thought of as:

a. Eight 8-bit characters.
b. Eight 8-bit hexadecimal bytes.
c. Sixteen 4-bit decimal digits.
d. Sixteen 4-bit hexadecimal digits.
e. One 4-bit sign digit, plus fifteen 4-bit decimal

digits.
f. Two 32-bit half-words, each containing four 8-bit

characters or eight 4-bit digits, and so forth.

In most cases, the smallest unit of data address is
the 32-bit half-word; however, certain instructions
may access characters or digits or bits.

The following position numbering conventions are

very important:
a. All numbering begins with zero.
b. All numbering within a word is right-to-left.
Thus, a full-word is numbered as follows:

I I I

I I I
Digit- 15 14 13 12 11 10 9 8 7 6 5 4

I I I I

I I 1 1

3 2 1 0
Byte 7 6 5 4 3
Bit - 63-----------l ... 32131 t-----------.......

r r

2 1 0 .-01
A half-word is numbered as follows:

S
i
g
n

Digit - 7
Byte - 3
Bit .. 31 a4

6 5 4 3

2 1

2 1 0

o
~ 0

These position numbers are used when referring to
specific components of a word or half-word.

Incrementing and indexing of data addresses follows
these rules:

a. The first element of a group of elements has in­
crement zero.

b. Incrementing is from left-to-right.

Example:

A reference address of character 3 of a word, plus
an increment of five characters is as follows:

Character No·1 410 12 11 I 0 ~ 716151413121

-- Word n .11-- Word n

~. Increment ~1

+ 1

The address ~ after the increment is
points here,) applied, this is the
but ------ designated character

2-7

INSTRUCTION FORMAT
The virtual machine architecture features a

variable-length instruction set consisting of 2-, 3-, 4-,
and 5-byte instructions. The object code is packed into
the CPM words beginning in character 0 of a word
and proceeding from right-to-left. Instruction object
code may cross full-word or half-word boundaries.
This right-to-Ieft packing, if not clearly understood,
could cause much confusion during interpretation of
a program memory dump printout or during decoding
of program object card images.

Example:

Consider the following program:
Instruction

NtDllber

o

1

2

3

4

5

6

It would be packed into CPM as shown:

d

b

d d

e e

g

b b

c c

d d

e e

f f

g g

Size
(bytes)

2

3

2

5

4

2

3

7 6 543 2 1 0

Word 1 d c c b b b a a

Word 2 e e e e d d d d

Word 3 0 0 0 g g g f f

2-8

However, on a memory dump printout, the words are
displayed horizontally as follows:

Word 1 Word 2 Word 3

I d c c b b b a a I Ie e e e
I i I i I I i I I i I

It can be seen that a sort of progressive effect is pro­
duced.

The instructions are made up as follows:

d d d ,d I I 0
I I I I I

Format
Size

(bytes)

I ,

I I

1 I I

I~
Addresses or data~
required by the
instruction

The size of an instruction depends upon the amount
of parametric data required for its execution. Every
instruction requires a one-byte operation code (OP
CODE), which is the right-most byte, and is a unique
bit pattern which identifies the instruction to the
interpreter. Because there are eight bits in a byte, it
can be seen that there is a maximum of 28 = 256
unique executable virtual machine instructions.

Unlike many languages, an operation code is not
unique for a given mnemonic (the four-letter name of
an instruction).

In many instances, a single mnemonic will generate
one of several possible operation codes, depending on
the characteristics of the data involved. Appendix B
provides a complete list of instruction codes and mne­
monics.

2

3

4

5

L l-byte Op Code

The parametric data associated with a given
operation code will vary according to the needs of the
instruction. The most general case of parametric data
is an address. The address may be of a memory loca­
tion which contains data, or it may be the address
of an instruction. There are several similar but dis­
tinct address formats which are defined for the vir­
tual machine:

a. CPM data address: full-word.
b. CPM data address: half-word.
c. CPM data address: character.
d. CPM data address: digit.
e. SPM data address: full-word.
f. SPM data address: half-word.
g. SPM data address: character.
h. SPM data address: digit.
i. CPM instruction address: character.

2-9

All addressing is in binary, and is based ultimately
on the word address of the entity. CPM addresses and
SPM addresses are differentiated by the most
significant digit of the address, which, for SPM ad­
dressing, is all binary ONE'S (hexadecimal F). For
CPM addressing, the digit is any other binary pat­
tern.

A maximum of four digits (16 bits) is available for
addressing. Of these 16 bits, the least-significant two
bits are normally used, on data addresses, to indicate
the optional application of indexing (by adding index
register contents as a positive offset) to the data ad­
dress.

Address formats are denoted in documentation by
a bit-for-bit representation using letters to indicate
the meaning of a particular bit:

Bit Meaning

W Bit is part of the word address.
H Bit is used to indicate a half-word.
X Bit refers to indexing.
C Bit is a character position number bit.
D Bit is a digit position number bit.
I Bit is always true.
o Bit is always false.

Bit value does not enter into the address
(Le., it is a "don't care" bit).

For clarity, the four digits which constitute an ad­
dress are separated by slashes. The typical address
formats of the virtual machine are as follows:

Note
XX is to be interpreted as follows (for
any instruction):

If XX = 00, no indexing is applied. (In rare cases, 00
means apply Index Register 4).

If XX = 01, apply Index Register 1.

If XX = 10, apply Index Register 2.

If XX = 11, apply Index Register 3.

a. CPM Data Address (Full-Word):
IWWWW/WWWW/WWWW/WOXX/

b. CPM Data Address (Half-Word):
IWWWW/WWWW/WWWW/WHXX/

Here bit H specifies which half-word within the given
full-word address, where:

H = 0 = left half-word.
H = 1 = right half-word.

c. CPM Data Address (Character):
IWWWW/WWWW/WWWC/CCXX/ (indexed)

IWWWW/WWWW/WWWW/WCCCI (unindexed)

2-10

Where:CCC is the character position number within
the given full-word address.

d. CPM Data Address (Digit):
IWWWW/WWWW/WWDD/DDXX/ (indexed)

IWWWW/WWWW/WWWW/DDDDI (unindexed)

Where:DDDD is the digit position number within the
given full-word address. (The unindexed format is not
currently used.)

e. SPM Data Address (Full-Word):
111111 -WWWW/WWWW/WOXX/

NOTE
The maximum SPM word address is
255. The most significant digit of all
ONE'S is a logical indication of SPM.
Certain instructions which utilize SPM
will use a short form of SPM full-word
addressing consisting of word bits only:

IWWWW/WWWW/.

f. SPM Data Address (Half-Word):
111111 -WWW/WWWW/WHXX/

Where: bit H meaning is identical with that of the
CPM half-word address.

g. SPM Data Address (Character):
I1111/WWWW IWWWCICCXX/ (indexed)

111111 - WWW/WWWW/WCCCI (unindexed)

Where: bits CCC give the character position number
within the given full-word address.

h. SPM Data Address (Digit):
I1111/WWWW IWWDD/DDXXI (indexed)

I1111/WWWW IWWWW/DDDD/ (unindexed)

Where: DDDD is the digit position number within the
given full-word address. (The unindexed format is not
currently used in the full form; the short form
WWWW/WWWW/DDDD/is utilized.)

i. CPM Instruction Address (Character):
IWWWW IWWWW/WWWW/WCCC/

Where: CCC is the character position number of the
operation code within the given full-word address.

Some instructions require addresses as parameters
which are variations of the above formats. Note also
that other implementations of the virtual architecture
have required that CPM be further subdivided into
"blocks" or "tracks" as well as words. Using such no­
menclature, equivalent addressing is as follows:

IBBBB/TTTX/WWWW IWHXXI = IWWWW/
IWWWW/WWWW/WHXX/

Where: B bits refer to block number and T bits refer
to track number.

Because SPM and CPM are distinguished by a high
order address digit of 1111, it is obvious that the max­
im um CPM word address is:

/1110/1111/1111/1 = hexadecimal 1DFF = 7679
Few host machines, however, provide this much

space for CPM. Because some address formats will
pre-empt word address bits to other purposes, then
not all instructions are able to address all of CPM or
SPM.

VIRTUAL MACHINE REGISTERS
The term "register" usually implies a data storage

device having the capability of influencing the data
stored within it. Thus, registers are used for most of
the special-purpose data manipulations within a com­
puter. Of course, they may also be used to a limited
extent for general storage; however, such usage is
considered insignificant for the purposes of this
document.

The virtual machine architecture includes a number
of registers. Because these registers are few in num­
ber, and their functions are distinct and important,
they are referred to by names rather than by ad­
dresses. The names assigned to some of the registers
may not be used as names by the programmer.

The most important of the virtual machine regis­
ters is the accumulator (ACUM). It serves as a stor­
age device having the capability of:

a. Decimal arithmetic, including multiply and di-
vide.

b. Logical shifting.
c. Field isolation.
d. Communication with the virtual machine control

program.
e. Logical (Boolean) arithmetic.
f. Buffer register for low-volume input from the

operator console.
In format, the accumulator is identical to a full­

word of memory. It may interact, however, with half­
words of memory by using only its least-significant
seven digits, plus its sign digit (digit position 15). Fur­
thermore, specialized instructions can access the accu­
mulator in a digit mode or a character mode.

The next most important set of registers within the
virtual machine is the set of four index registers (lXI,
IX2, IX3, and IX4). Each of these registers is a 16-
bit binary register. The primary function of lXI, IX2,
and IX3 is to contain positive values to be used op­
tionally to increment (offset) a given address (as, for
instance, indexing tables or arrays). These registers
may also have special functions for certain instruc­
tions. IX4 is rarely available for address increment­
ing; generally, it is used as a special purpose counter
by a number of instructions. At times, the index reg­
isters may themselves contain memory addresses. De­
pending on usage, the address format may be:

a. OOWW /WWWW/WWWW/WWWH/(CPM label
literal).

b. 0011/11-W /WWWW/WWWH/(SPM label iit­
eral).

c. OOOO/WWWW /WWWW/DDDD/(SPM digit).
d. WWWW/WWWW/WWWW/WCCC/(CPM

character).
e. 1111/-WWW/WWWW/WCCC/(SPM

character).
1XT1-.~_~ ~ ""~'T~"" .c~_ ~+ ~n +~ ~~~l'T ~+ "T~ll h~ n~ n llCI C a. ~I VCll l.VIl11a. ... I;:' "'v a.1'1'1'y, 1'" VV 111 UC ;:,v

specified for the instruction. When used as an incre­
ment, the content of an index register is generally in
half-words.

Any arithmetic which involves an index register
will be in binary mode. Subtraction is 2's-comple­
ment. Index register contents are defined to be
positive, although arithmetic may generate a comple­
ment (negative) value. The detection of complemented
index register contents must be programmatic.

Other registers within the machine have functions
which are allied with specific instructions or groups
of instructions. A complete list of virtual machine
registers is provided in Appendix C.

VIRTUAL MACHINE CONDITION FLAGS.
The virtual machine contains one 64-bit word which

is dedicated to the use of named single-bit condition
flags. Each digit of the word is called a group, and
contains four single-bit flags with related meanings.
The groups are named by a single letter; the flags
within a group by a single number or letter. A flag
is always referred to by both its group and flag
names.

Several of the flags have predefined meanings.
Most of these are set and reset by the interpreter. The
remainder of the flags are general-purpose flags.
Their meanings are defined by the programmer.

Any flag may be set, reset, changed (comple­
mented), and tested by the S-level program. The pos­
sible values of a single flag, and the synonyms of
these values are:

a. 0 = reset = false = off = F.
b. 1 = set = true = on = T.
A complete list of the flag groups and their flags

is contained in Appendix D. The predefined flags are
described below.

A GROUP (ACCUMULATOR FLAGS)
The accumulator flag group is a picture of the accu­

mulator sign digit (digit 15) which allows bit-for-bit
access to the data stored in the accumulator sign. Any
change to the accumulator sign digit is reflected in
the A group and vice versa. These flags are:

M = per thousand (attribute of the data).
C = per hundred (attribute of the data),
S = special (special purpose indicator, errors, etc.).
- - minus (negative value flag).

2-11

C GROUP (COMPARISON FLAGS)
The comparison flags are set/reset by the various

compare and search instructions to indicate the re­
sults of the operations. These flags are:

H = high flag (greater than)
E = equal flag. (equal to)
L = low flag (less than)
U = reserved (not presently used)

T GROUP (TEST FLAGS)
The test flags are set/reset by various incrementing

instructions to indicate overflow conditions. These
flags are:

P = console out of paper (optional).
I = index register overflow.
L = forms limit exceeded (console printer).
o = arithmetic overflow.

K GROUP (OPERATOR CONTROL KEYS)
The operator control key flags are set/reset by

various console keyboard entry instructions to indi­
cate the operator control key (OCK) with which the
operator terminated the input. These flags are:

1 OCK 1 (OCK I)
2 OCK 2 (OCK II)
3 OCK 3 (OCK III)
4 OCK 4 (OCK 1111)

2-12

G GROUP (110 ERROR RECOVERY)
The 110 error recovery flags are set/reset by the

SKID instruction which is a general-purpose
operator-recoverable error routine. The SKID accepts
only four responses (other than "Abort Program")
which it t.hen reflects in the G group flags. The four
responses are the numeric keys 1,2, 3, or 4, depressed
simultaneously with the shift key (shifted numerics).

These flags are:
1 shifted 1 key.
2 shifted 2 key.
3 shifted 3 key.
4 shifted 4 key.

Note that the actual error recovery procedure must
be programmatic. SKID merely serves as a vehicle for
operator communication.

The remainder of the flag groups are general-pur­
pose flags. The groups are:

S, B, D, E, F, P, R, V, W, X, and Y.
Each group has four flags, accessed by number 1,

2, 3, or 4.

SECTION 3

SYSTEM PROCESSOR DESCRIPTION

GENERAL
This section contains a description of the B 720

Central Processing Unit (CPU), which is the central
operating and controlling element in the system. The
physical features of the B 720 CPU are shown in Fig­
ure 3-1; Figure 3-2 is a general functional block
diagram.

Functionally, the CPU consists of three major sec­
tions:

a. The memory section, which consists of a semi­
conductor main (shared) memory and an integrated­
circuit read-only nanoprogram memory (NPM). The

INTEGRAL
MEMORY
LOADER

main memory provides both data/program memory
(DPM) and microprogram memory (MPM) storage.
The MPM and NPM comprise the firmware storage
area of the CPU.

b. The processor section, which contains the logic
and control circuitry used in performing arithmetic,
processing, I/O interface, memory control, and sys­
tem control functions. This section also supplies the
basic internal and external timing to the CPU.

c. The I/O section, which consists of the circuitry
used in controlling and interfacing I/O subsystem op­
erations. This section also includes the memory loader
and load interface elements.

CONTROL
PANEL

1

LOGIC/MEMORY RACK

Figure 3-1. B 720 Central Processing Unit

3-1

A power supply group provides and controls regu­
lated operating voltages for CPU circuitry and exter­
nal devices (as required). An F.E. (Field Engineering)
control section provides test and monitoring functions
for equipment maintenance purposes.

The CPU is unlike conventional processors in that
the basic logic operations are organized into con­
trolled building blocks external to the processor sec­
tion. The logic in these building blocks is not like the
normal hard-wired control logic used in conventional
processors. Instead, the control logics are replaced by
control signals generated by the firmware store sec­
tion. This approach adds a great deal of flexibility to
the processor and utilizes a minimum amount of
hardware.

The CPU is a word-addressable unit with a semi­
conductor main memory that is expandable, in incre­
ments of 8K bytes, up to 98K bytes. The basic system
uses a minimum of 16K bytes of main memory and
512 words of nanoprogram memory. The main
memory is a Random Access Memory (RAM), while
the nanomemory is a Read Only Memory (ROM).

The internal clock pulse rate of the CPU is 1 MHz.

MEMORY SECTION
The memory section of the CPU is divided into

three functional memories: the data program memory
(DPM), the microprogram memory (MPM), and the
nanoprogram memory (NPM). (See figure 3-2.) The
DPM and MPM share the semiconductor random ac­
cess main memory (RAM), while the NPM resides in
a separate integrated-circuit read-only memory
(ROM). Functionally, the MPM and NPM comprise
the firmware storage area of the CPU. The MPM
stores microinstructions, and the NPM stores nanoin­
structions. The DPM stores data and user programs.
Section 2 describes the memory allocation.

The main (shared) memory is a modular memory
with a capacity of 16 to 96 K-bytes. The minimum
32K capacity may be expanded, in 8K increments, to
96K by installing additional B 31-2 Memory Modules.
A total of 12 B 31-2 modules may be used.

FIRMWARE STORE SECTION
The firm\vare store section, which uses RAM inte­

grated memory for microprogram storage and ROM

MEMORY SECTION I
I PROCESSOR SECTION I/O SECTION

MAl N (SHARED)
MEMORY

DATAl
PROGRAM
MEMORY

(DPM)

MICRO­
PROGRAM
MEMORY

(MPM)

FIRMWARE
STORE

I
I
I
I
I
I
I

NANO I
PROGRAM I
MEMORY I

I (NPN) I
I I L _____________ J

3-2

I

LTIMING
I
I
I
I
I
I
I
I
1
~-
1
I
I

I
1

I -
I
I
I
I
I

!
1
I
I
I"

I
L
I
I

CLOCK GENERATOR
AND

CLOCK DRIVER

t
TIMING

MEMORY
CONTROL

UNIT (MCU)

t
CONTROL UNIT

(CU)

t
LOGIC UNIT

(LU)

EXTERNAL
OPERATION

(EO) CONTROL

TIMING
I

i

i

I

I

1

DDP'S

rnr
-----r

NIA I
I

I 3 I I I

.I 8 1
I U

PORT I I
SELECT 6 [

UNIT -
(PSU) 7

-
8

-
9

t---

10
t---

11
t------

12

i
I
I
I
I
I

I/O
SUB­

SYSTEMS
I

1

I
I
I
I
1

1

I
I

+ ____ J--.

MEMORY 1 LOADER
INTERFACE
CONTROLS LOADER

j

Figure 3-2. CPU General Functional Block Diagram

integrated-circuit memory for nanoprogram storage,
contains the systematic controls required by the proc­
essor section. Because the main RAM memory is also
used for data/program storage, addressing and data
control is accomplished by shared memory controls.
The microprogram memory outputs are called micro­
program codes and are actual 16-bit instructions.
These instructions are classified as either tvoe I for
nanomemory addressing, or type II for loadi~g specif­
ic registers within the processor section.

The nanoprogram memory outputs are called nano­
codes and are actual 55-bit instructions. Figure 3-3
shows the configuration of microprogram and nano­
program codes. Descriptions of the functionals regis~
ters and elements are provided in the processor sec­
tion description.

N anoinstructions have three major classifications:
a. No conditional logic.
b. Conditional logic met.
c. Conditional logic not met.
In MPM storage, correct parity is generated (bit 17)

when writing, and checked when reading. Bit 56 in
NPM storage is used to check parity when reading
nanocodes. Odd parity is used for MPM and NPM va­
lidity.

DATA/PROGRAM (USER) MEMORY SECTION
The Data/Program Memory (DPM) section is that

portion of main memory which contains user type
data and S-level programs and is controlled by shared
memory logic in conjunction with external operations.

SHARED MEMORY CONTROLS
Microprogram memory and S-level memory share

the same physical memory in the CPU. The shared
memory (SM) controls are used for addressing both
segments of memory and for transferring data to and
from memory.

The size of shared memory ranges from a minimum
of 8,192 words (16,384 bytes) to a maximum of 49,152
words (98,304 bytes) when all memory options are
used. Extensions to memory are in physical incre­
ments of 4,096 words (8,192 bytes). The specification
of a memory address in excess of the address limit
results in an error condition.

Because the memory is shared by S-level and MPM,
provisions are made for addressing the two segments
separately. The memory controls contain selection
gating for accepting the memory address from either
the base register (BR), the MAR (for S-level memory),
or from the incrementer (for MPM memory), as deter­
mined by the appropriate memory controls. Up to a
maximum of 16,384 words (32,768 bytes) of the shared
memory may be reserved for MPM, depending on the
requirements of the microprogram. The division be­
tween S-level and MPM is soft, allowing the upper
limit of MPM to be varied at the discretion of the sys­
tem software.

An external (EXT) timer, which is a binary counter,
sets the EXT flip-flop every 125 milliseconds. EXT is
reset by testing and can be used for various applica­
tions by the programmer.

S-LEVEL MEMORY OPERATION
Addressing of S-level memory is accomplished by

use of an external operation command which specifies
a memory read or write operation. In this case the
external operation controls enable the appropriate
control signals, causing the next memory address to
be taken from output select lines 1 through 16. Data
being written to S-level memory is transferred
through the S-memory (SM) controls from the MIR
bus of the processor. Data read from memory goes
only to the B register of the processor through the
SM controls and the external bus. All data transfers
to and from S-level memory are in 16-bit parallel for­
mat. Parity is generated for all words written into
memory and is checked on all words read from
memory.

IvIEl'v[ORY STANDBY AfODE
A standby mode is provided so that, during equip­

ment maintenance operations, power can be main­
tain~d, to the first 8 K-bytes of memory to facilitate
servIcmg.

PROCESSOR SECTION
The processor section is the major section of the

CPU and performs operations defined by the program
stored in the firmware store section, under the con­
trol of microcodes and nanocodes. The processor sec­
tion is subdivided into five functional circuit areas:

a. Logic unit (LU).
b. Memory control unit (MCU).
c. Control unit (CU).
d. Clock generator (CG).
e. External operation controls (EO).

LOGIC UNIT
The Logic Unit (LU) performs the shifting, arith­

metic, and logic functions and provides a set of
scratch-pad registers for temporary storage. The LV
also provides the registers for the data interfaces to
and from the I/O controls and S-level memory (DPM).
The major registers and elements comprising the Log­
ic Unit are the A registers, B register, memory infor­
mation register, adder, and barrel switch.

A REGISTERS (Al, A2 AND A3)
The A registers are 16-bit registers used for the

temporary storage of data being transferred from the
Barrel Switch (BSW) to the adder. Any or all A regis­
ters may be selected for input from the BSW. The
registers serve as a primary input to the adder and
are individually selectable.

3-3

6

NPM 5 3 3
BITS 5 2 3

3-4

MICROPROGRAM CODES

MPM BITS
1 1 1 1 1 1

23456 7 890 1 234 567

0 0 AMPCR P

0 MPCR & INCR A
R

0 MPCR & INCR I

0 o - SAR- -- LIT T

0 1 - SAR-O 000 0 000
y

B
0 000 0 LIT

NANOADDRESS - T

0= UNUSED

NANOPROG RAM CODES

SUCCESSOR
(MPAO)

ARITHMETIC LOGIC

UNIT CONTROLS

8 9 0
1111111
1 234 5 6

1 1 1 2 2 2 2 2 2 2 2 1.2 2 3 3
7 890 1 234 5 6 7 890 1

333
456

B

REGISTER INPUT SELECTION

;g BR /
/

I /
3 3 3 4 4 4 444 4 4 4 4 5
7 890 1 234 5 6 7 890

Figure 3-3. Microprogram and Nanoprogram Codes

5 555
1 2 3 4

i
51

I
6

B REGISTER
The B register is a 16-bit register which provides

the primary interface from both S-level (data/pro­
gram) memory and the I/O controls. It serves as the
secondary input to the adder, and can be used for
temporary storage of certain information resulting
from arithmetic operations. The only destination for
this data is the adder. The nanocode allows the ma­
nipulation of the least significant bit, most
significant, and/or the 14 central bits of the B-regis­
ter contents upon transfer to the adder.

MEMORY INFORMATION REGISTER (MIR)
The MIR is a 16-bit register used primarily to buf­

fer information being written in memory or sent to
a device. MlR is to main memory, an I/O control or
to the B register.

ADDER
The adder performs the arithmetic and Boolean op­

erations on data from the B-register, literal/counter
register(s), alternate microprogram count register, or
base register/memory address register. Output from
the adder goes unconditionally to the barrel switch
but may also be sent to the B-register if so specified.

BARREL SVv7TCH (BSVv)
The Barrel Switch (BSW) is a matrix of gates used

to shift a parallel input data word a number of places
left or right, end-off, or end-around. The shift amount
is specified by the contents of the Shift Amount Reg­
ister (SAR), Data input to the barrel switch is from
the adder. Destinations are the A registers, B regis­
ter, memory information register, alternate micropro­
gram count register, memory address register, either
base register, or the shift amount register.

MEMORY CONTROL UNIT
The Memory Control Unit (MCU) is used primarily

for memory and I/O device addressing. The major
registers and elements comprising the MCU are de­
scribed below.

MICROPROGRAM COUNT REGISTER (MPCR)
The MPCR is a 14-bit register which contains the

instruction address for the microprogram. MPCR con­
tains the current instruction address except when an
"EXECUTE" instruction is performed. MPCR can be
loaded by a type II instruction or with the output of
the incrementer. MPCR output goes to both the incre­
menter and the AMPCR.

ALTERNATE MICROPROGRAM COUNT
REGISTER (AMPCR)

The AMPCR is a 14-bit register which contains the
jump or return address for program jumps and sub­
routine returns within microprograms. The address is
one less than the position to be jumped to and two
less than the position to be returned to. AMPCR can
be loaded from MPCR, from the 14 LSB of the barrel

switch, or by a type II microinstruction fetch from
microprogram memory. AMPCR output goes to the
incrementer.

INCREMENTER
The incrementer adds 0, 1, or 2 to the selected input

from either MPCR or AMPCR. The output of the in­
crementer is the input to the MPCR and also provides
an address to the microprogram memory. The MP AD
address controls select both the input source and the
amount to be incremented.

1tlICROPROGRA11,{ ADDRESS COlvTROLS (MPAD)
The MP AD controls are used to control the loading

of MPCR and AMPCR, the selection of MPCR and
AMPCR input to the incrementer, and the selection
of the value (0, 1, or 2) to be used in incrementing.
The selection of controls and a true or false successor
(testing for alternative actions) is done during phase
1 of the microinstruction and involves the results of
condition testing and successor determination associ­
ated with bits 1 through 16 of the nanoinstruction.
If a type II microinstruction is executed, the controls
for a step successor are forced.

MEMORY ADDRESS REGISTER (MAR)
The MAR is an eight-bit register which holds the

eight LSB of a memory address. MAR is concatenated
to either base register 1 or base register 2 to form
the absolute address. MAR may be loaded from either
the least-significant byte of the barrel switch or from
the literal register. The output is to S-level memory.
The MAR along with the currently selected
concatenated register may also be sent to the adder.

BASE REGISTER 1 (BR1)
Base register 1 is an eight-bit register which holds

a device address or the base address of a 256-word
block of memory data. When used for a memory ad­
dress, BRI is concatenated with MAR to form an ab­
solute memory address that is transferred by the out­
put select gates to S-level memory. The concatenated
registers may also be sent to the adder.

When used to hold a device address, (BRI is inter­
faced by the output select gates to the port select unit,
where it is used to address the lOC to be used. The
input to BRI is from the most significant byte of
BSW. Once placed in the selected mode by a memory/
device command, BRI remains selected until a com­
mand is issued selecting BR2.

BASE REGISTER 2 (BR2)
Base register 2 functions exactly like BRl, thus pro­

viding a second register for holding memory/device
addresses. Once placed in the selected mode by a ma­
mory / device command, BR2 remains selected until a
command is issued to select BRl.

3-5

OUTPUT SELECTION GATES (OS)
The output selection gates select the specific source

(BRI/MAR or BR2/MAR) of S-level memory or de­
vice addresses. A Read/Write "1" command selects
BRI/MAR; whereas, Read/Write "2" selects BR2/
MAR. If no source is specified, the register selection
remains unchanged. OS output is to the port select
unit and/or to the adder.

COUNTER (CTR)
The CTR is an eight-bit counter used for loop con­

trol and other counting functions. CTR is loaded
through the MAR/CTR selection gates from either
the literal register or the least-significant byte of the
barrel switch. CTR can be used as an input to the
most-significant byte of the adder. A counter over­
flow results in setting the Counter Overflow flag
(COV) in the control unit condition register; COV is
reset either by testing the bit or by loading the coun­
ter with a new value.

LITERAL REGISTER (LIT)
The LIT is an eight-bit register used as temporary

storage for literals in the microprogram. LIT is loaded
from microprogram memory using a type II microin­
struction. LIT may be used as an input to the least­
significant byte of the adder, and/or through the
MAR/CTR input selection gates to either the counter
register or the MAR.

MARICTR INPUT SELECTION GATES
The selection gating consists of eight bits and is

used to select an input to the MAR or CTR from ei­
ther the LIT register or the least-significant eight bits
of BSW. These functions are mutually exclusive.

CONTROL REGISTER
The control register is a 40-bit register used to store

all control signals from the nanomemory that are not
used in phase 1. Certain control signals are decoded
before being strobed into the control register while
others are decoded on output. Gate delays introduced
into the control signal sequence determine whether
the coding is done before or after the register. The
register includes both MP AD controls and phase 3
controls and thus contains their respective clock gat­
ing networks. The control register is physically con­
tained in the MCU, CU, and EO registers and pro­
vides nanocontrols to all sections of the processor.

CONTROL UNIT
The Control Unit (CU) performs two main control

functions: shift amount control and storage of condi­
tion indicators, data and status interrupts, and status
indicators. The control register, defined within the
MCU, distributes nanocontrols throughout the proces­
sor. The elements comprising the control unit are de­
scribed below.

3-6

SHIFT AMOUNT REGISTER
The shift amount register and its associated logic

is used to control the loading of shift amounts and
the sequencing of shift operations. (Refer to barrel
switch description.)

CONDITION REGISTER AND SELECT
The condition register has six of the 16 selectable

condition bits, only one of which may be selected and
tested by a nanoinstruction. If an attempt is made to
reset and set a condition bit at the same time, the
set condition is dominant except on counter overflow
(COV), in which case the reset condition is dominant.

SIGN-SA VE FLIP-FLOP
The sign-save flip-flop is used to store either adder

overflow or barrel switch end-off bits.

CLOCK GENERATOR AND CLOCK DRIVER
The Clock Generator (CG) contains a lO-MHz oscil­

lator and a divider which produce the I-MHz system
timing clock (S-clock); that is, a 50-nanosecond pulse
every microsecond. The S-clock is distributed
throughout the processor, except to the logic unit. The
logic unit is clocked by the phase-3 clock (3-clock), de­
rived from the S-clock. The main function of the
phase-3 clock is to inhibit destination register selec­
tion during an extended phase-3 condition; these reg­
isters are clocked upon phase-3 completion. A lO-MHz
clock pulse is also distributed to peripheral device
subsystems that use a miniprocessor. A third set of
controls on the CG board is used for generating the
clear signals to the processor elements. The Clock
Driver (CD) contains drivers for clock pulse buffering
and distribution.

EXTERNAL OPERATION CONTROLS (EO).
Memory and I/O operations are mutually exclusive

due to the fact that both share common input busses.
The selection of either memory or a device is con­
trolled through the decoding of nanobits or from an
I/O subsystem that has a direct memory access chan­
nel (DMAC). The nanobits, which are sent to a control
register in the EO controls, specify whether a
memory operation or an I/O operation is to take
place. The nanobits also define the function that is
to be performed, and select the base register to be
used in the addressing operation. If a memory read
or write operation is indicated, the command is fully
decoded, and the appropriate interface signals are
generated to the memory. An I/O subsystem with a
direct-memory access channel can "steal" a processor
main-memory cycle by inhibiting the MIR register
from the MIR bus and using the MIR bus for memory
access. (Refer to description of DMAC under I/O con­
trol section heading.)

Device read and write operations are decoded be­
fore being sent to the port selector, where they are
buffered and gated so as to cause the device

operations to be terminated at the proper times. How­
ever, the Address/Status Request (ASR) signal is de­
coded directly from the nanobits and sent to the port
selector as a separate signal without gating. This is
to allow immediate enabling of the status word lines
to the external bus since the status word is returned
to the processor in the same clock time.
ERROR DETECTIO."!:

The processor automatically detects error condi­
tions and initiates the following:

a. The system clock is inhibited and the HALT in­
dicator (on EO card edge) is turned on.

b. The microprogram address (to be accessed) is
forced to o. (INCR and MPCR are not cleared.) Loca­
tion 0 must contain a CPCR call instruction to direct
the firmware to the appropriate error-processing rou­
tine and to store the contents of MPCR in AMPCR
for reporting to the operator.

c. The four-bit error descriptor code is displayed by
the E02 card error indicators, which are card-edge in­
dicators visible through the front panel of the proces­
sor. The error descriptor code is also placed on EXT
bus bits 13 through 16, and the exception bit is placed
on EXT bus bit 1. These EXT bits are read by the
error-Drocessin!! routine. 1I.TflrnD - -- nvJ..L:..i

When the EXTI (HALT) bit is turned
on the console ERROR indicator is also
lit' on the system console.

d. The HALT indicator is turned off.
e. When the error processing routine -is executed,

the error indicators and EXT bits are cleared.
f. When the error processing routine is completed,

the initial error condition is reset to permit processing
any subsequent error condition.

If a second error condition occurs prior to the reset­
ting of the first condition, the system locks in the halt
condition (all system clocks are inhibited) and the de­
scriptor code of the second error condition is dis­
played on the E02 indicators.

If the error stop switch is set, or the load mode is
set, the system locks in the halt condition on the first
error.

Table 3-1 shows the configuration of error cot...es
presented on the EXT bus and displayed by the E02
card-edge indicators.
Note: EXT bits 13 thru 16 are indicated by EO bits
8, 4, 2, 1, from top to bottom on EO card.

In general, the error indications have the following
meanings:

a. Memory loader parity read error detected in the
media data during read-in of data from memory
loader to microprogram memory.

b. MPM parity error detected in the MPM portion
of shared memory.

c. Read-after write MPM parity error detected dur­
ing load on microprogram memory read-after-write
check during loading from console paper tape reader.

d. DPM parity error detected in the DPM portion
of shared memory.

e. NPM parity error detected in nanoprogram
memory word.

f. Memory address limit error exceed memory limit
register setting.

Table 3-1. Error Descriptor Codes

EO Indicators (EXT Bits)

Halt 8 4 2

(11 (l3) (14) (15) (16) Error

0 0 0 0 0 None
1 0 0 0 0 Transient
1 0 0 0 1 Loader Error
1 0 0 1 0 Load MPM Parity
1 0 0 1 1 Load Address

1 0 1 0 0 Nano Parity
1 0 1 0 1 Nano Address
1 0 1 1 0 MPM Parity
1 0 1 1 1 MPM Address

1 1 0 0 0 Not Used
1 1 0 0 1 DPM Address, Write
1 1 0 1 0 DPM Parity
1 1 0 1 1 DPM Address, Read

1 1 1 0 0 Not Used
1 1 1 0 1 Steal Address, Write
1 1 1 1 0 Steal Parity
1 1 1 1 1 Steal Address, Read

I/O CONTROL SECTION
The 110 control section of the B 720 CPU is the

interface for control communications and data trans­
fer between the processor section and the various II
o and data communications subsystems. The 110 sec­
tion has four major functional units or areas: the port
select unit, the device-dependent ports, the I/O con­
trols, and the loader interface area. Direct-memory
access circuitry is also implemented for direct access­
ing between certain 110 sUbsystems and the memory
section.

The Port Select Unit (PSU) interfaces all peripheral
device 110 subsystems and data communications sub­
systems and the memory load subsystem. The PSU
maintains input and output control for the various in­
terfaces and establishes service and interrupt
priorities.

The Device-Dependent Ports (DDP's) are the I/O
backplane or module areas that accommodate the var­
ious 110 controls (IDC's) used in the B 720. These
ports are physically and functionally categorized into
two groups: special (or dedicated) DDP's, and inter­
changeable (standard) DDP's. A total of 11 DDP's are
available if the 110 expansion module and communi­
cations subsystem are installed. An IOC is designed

3-7

to interface a particular device or interface by con­
verting levels, interpreting signals, converting for­
mats, synchronizing or timing operations, and buffer­
ing data. (Refer to Section I for a complete description
of the DDP and IOC configuration.)

The allocation of DDP's to IOC's is predicated on
a priority service basis, established during system in­
stallation for the particular 1/0 configuration used.

DEVICE ADDRESSING
The PSU receives device addresses from the base

registers (BRI and BR2) in the processor. The firm­
ware selects a device for access by sending to the PSU
the device address contained in the base register and
pointed to by the readlwrite command. This binary
address, sent through the output select (OS) gates, de­
fines the device IOC to the port selectors, as shown
in figure 3-4.

The most-significant bit of the address is used by
each IOC to specify control or data word format.

NOTE
Control format on a device read
operation is status information.

BASE REGISTER OUTPUTS

Input information to the addressed IOC comes from
the processor section MIR. Output information from
the addressed IOC (EXT lines 1 through 16) is made
available only to the B register in the processor sec­
tion.

INTERRUPT HANDLING
Interrupts are always sent from the IOC's to the

port selector, even though the control may not be ad­
dressed. Interrupts from unaddressed IOC's are an In­
put Request (IRQ) to the processor-section control
unit from the highest priority device and are generat­
ed by either status interrupt or data interrupt signals.
Handling of the interrupt condition is the responsibil­
ity of the firmware store program. The program must
issue an address status request command, placing the
reason for interrupt from the IOC on the EXT lines,
along with the address of the IOC position from the
port selector. Interrupts from addressed IOC's to the
processor-section control unit are an unsoiicited re­
quest (URQ) for a status interrupt and a solicited re­
quest (SRQ) for a data interrupt. Handling of these
interrupts is also the responsibility of the firmware
store program.

OSI OS2 OS3 OS4 OS5 OS6 OS7 OS8
NOT USED

I SELECTS 10C NO.
I • WITHIN PS GROUP L _________________________ -,

: .. SELECTS PS GROUP NO.

PORT SELECTOR (PS) r-- L --- -------,-------- ------..,

r
I

I
I
I
I
I
I
I

..
DDP

1

(00)

+
PSl-l GROUP 00

DDP DDP
2 3

(01) (10)

DDP DDP
4 5

(11) (00)

~---------------~
I

L_ DEFINES WORD TYPE (CONTROL/DATA) - ~

t

PSI-2 GROUP 01

DDP DDP DDP
6 7 8

(01) (10) (11)

Figure 3-4. 1/0 Device Addressing

3-8

+
PSI-3 GROUP 10

DDP DDP DDP
9 10 11

(00) (01) (10)

DDP
12

(11)

MEMORY LOADING
Direct memory loading is facilitated by an integral

photoelectric paper-tape reader mounted in the left­
front section of the CPU cabinet (figure 3-1). Loader
interface (Ll) controls permit data to be transferred
directly from the paper tape coder to microprogram
memory. Data is written into the MPM one word at
a time, including a generated parity bit. These words
are written sequentially up through main memory
when the processor LOAD push button is enabled.

DIRECT MEMORY ACCESS
Direct memory access (DMAC) channels are pro­

vided for the disk and programmable data communi­
cation (PMLC) subsystems to enable transfer of data
and control words between main memory and the
subsystems. Direct memory access is performed with-

out any processor intervention required and thus
frees the processor to perform other tasks.

A process referred to as "stealing" is used in direct
memory transfers; that is, the disk laC or PMLC
"steals" one cycle (clock period) of processor time for
each data/control word transfer. This process is con­
trolled for both DMAC channels by circuits in the
disk laC. The steal control circuits receive steal re­
quest signals from the disk laC and the PMLC and
grant memory access on a service priority basis. The
disk I/O subsystem has top priority. The steal control
circu~ts also receive MPM data outputs directly from
the shared memory control circuits of the processor
and apply the data to the common laC data bus. This
bus handles both memory data retrieved through the
direct-memory access and control words and/or data
sent to an laC under processor logic control.

3-9

SECTION 4

DATA COMMUNICATIONS SUBSYSTEMS
GENERAL

Two types of data communication configurations
are available for use with the B 720 System: program­
mable communications processing and single-line (file
inquiry) data communications. This section provides
a general description of these communications sys­
tems and their operation in the B 720.

The B 352 executes program instructions to control
the flow of data between the system processor and
up to four data communications channels. Up to four
half-duplex or four full-duplex channels may be serv­
iced simultaneously. These four channels operate in­
dependently of each other at all line rates except in
some instances at the highest operating rates.

PROGRAMMABLE COMMUNICATIONS
PROCESSING

SUBSYSTEM INTERFACE
Figure 4-1 shows the interfacing of the subsystem

elements in a configuration for operation on four syn­
chronous and/or asynchronous channels. Asynchro­
nous interface connections are also possible for two­
wire dire"ct station connections. Either direct-connect
method is permissible for any of the four channels,
provided that the interconnecting cable is less than
1,000 feet.

Data communications processing is implemented
in the B 720 by use of the B 352 Communications
Processor and required and optional associated items
which comprise the communications module. Section
I provides a general description of this configuration
which operates as an independent subsystem.

CENTRAL
PROCESSOR

I

SYSTEM CONSOLE

I B352-6
IINDICATOR

I

OPTION
I
COMMUNICATIONS MODULE

rB352COMM~PROCfSSOR--1

II I SCRATCH - II

I
PAD

I MEMORY I
I (SPM) I ~
I r I 1 ~ I 1-,-,--
I I (/)f--

1 5 2
t--

~CO_N_T_R_OL_L_IN_E_S ____________ +--+I ____ ~ ~~t----

I+-E_XT_B_U_S ________________ +--+-I ____ ~ CONTROL. ~ ~ 3

INHIBIT

_

IDIRECT-MEMORyL
MPM BUS (DATA) ACCESS (DMAC) I

l CIRCUITS J

I TI~~~G. I ~ r--- XMT

REQ:UEST STATUS 1.....J"""RE"C-
GRA'NTED FUNCTIONS 4 ~

! r r-- lL ~~5J ~J
I I ADAPTER ~

I DATA MICRO- II I
r------------~---+___~~ MPM PRO

I MDR CESSOR I i
I I I
I I I L _______________ J

Figure 4-1. Multiline Data Communications Subsystem Interface

DATA
COMMUNICATION

LINE
INTERFACE

4-1

All message data that flows between the B 352 on
any channel and a station is bit-serial in strings that
form characters (bytes). Thus, the transmission of a
character to a station requires that it be shifted
serially onto the channel data line. For receive
operations, the serial bits must be assembled by the
B 352 into eight-bit characters or I6-bit words, which
in turn can be stored by the B 352 directly into a buf­
fer area or returned to the processor B register for
subsequent manipulation. The capability for directly
accessing the MPM for reading or writing data is
often referred to as "DMAC" (direct memory access).
Thus the B 352 serves to functionally interface serial
data lines with the I6-bit parallel data requirements
of the system.

Figure 4-2 illustrates the types of terminal device
interfaces. Each configuration is tailored to the termi­
nal station by the firmware/software that drives the
B 352. Except when synchronous data sets are used,
bit rates for transfers are determined by the NDL
program written for the specific installed equipment.
When synchronous interfaces are used, the transmit!
receive clocks are provided by the data set and no
data transfer timing signals are supplied other than
a "replay" of the transmit clock received from the
data set. Because the four-line data set capability is
almost entirely under firmware/software control,
nearly any line procedure requirement can be met.

RS-232-C OR CCITT INTERFACE

/

In summary, the communications module can pro­
vide the following standard or optional capabilities:

a. Synchronous interface in standard configuration
at 75 to 9600 baud rates.

b. Asynchronous interface at 75 +,0 9600 baud rates.
c. Direct-connect two-wire interfaces.
d. Data Set/Modem interface in accordance with

RS-232-C standards, synchronous or asynchronous.
e. Data Set!Modem interface in accordance with

CCITT standard V.24.
f. Half-duplex or full-duplex modes.
g. Data Set!Modem connections over switched or

leased lines.
h. Automatic dial/answer operation on switched

lines.
L Variable code handling capabilities.

FUNCTIONAL OPERATION
Figure 4-3 is a general functional block diagram of

The B 352, which can be controlled to operate instruc­
tions that are fetched from main memory of the sys­
tem processor. This fetch process can be allowed to
occur as an automatic function or can be controlled
by the processor as a single-instruction function. As
a result of executing these instructions, the B 352 is
able to scan each of its four universal line adapters
(line interfaces) and maintain control over their activ­
ities. Data can be either received or transmitted

I LEASED OR DED ICATED L I N_K ___ _

SET STATION § ·1 DtE~A I.
I

~ DATA TERMINAL

~--I. (REMOTE)

4-2

COMMUNI­
CATIONS
MODULE

TWO-WIRE DIRECT (UNBALANCED) INTERFACE

Figure 4-2. Terminal Station Interface Configurations

TERMINAL
STATION
(WITHIN
1000 FT.)

through the adapters and stored or fetched from the
processor main memory without requiring processor
in terven tion.

Because the B 352 is a firmware/software driven
control, its system functions is firmware/software de­
pendent and variable. This is in contrast with other
I/O controls that perform a given system function as
directed by a control word. The specific logic func­
tions, capabilities, or actions that the B 352 accom­
plishes can be understood without a knowledge of the
related firmware/software system; ho\vever, an in­
depth understanding cannot be attained without some
software knowledge.

MICRO- ---..

FIRMWARE/SOFTWARE CONSIDERATIONS
The relationship between the firmware/software el­

ements may be readily understood by viewing two
imaginary systems: each capable of independent oper­
ation by use of independent interpreter firmware and
user software contained within them. One system
(processor A) is assumed to have a peripheral comple­
ment that suits a general processing operating envi­
ronment. The other system (processor B) is assumed
to be structured with I/O controls suited for a multi­
ple data set I/O line servicing environment.

The user software in both processors is an S-level
language requiring interpretation. However, due to
the unique requirements imposed by data set control
variables, the S-level program in processor B is

ADAPTER LOGIC

BAUD RATE SELECTION.
DATA SET CONTROL & STATUS. 111(• PROCESSOR ADAPTER CONTROL & STATUS.

LINE/DATA
SET INTERFACE

XMT AND REG. LOGIC.
; ,~

..-
MICRO PROCESSOR CONTROL
LOGIC

I/O .. • SCRATCH PAD MEMORY .
FUNCTION CRC COMPILATION LOGIC
CONTROL AUTOMATIC FUNCTIONS.

LOGIC

L D!RECT MEMORY

MICRO ACCESS CONTROL
1~

PROGRAM MEMORY ADR. REG. :111(

MEMORY MEMORY DATA REG.

1~

PROCESSOR INTER-...
FACE LOGIC ,. -

(LOAD MODE ONLY)
'"

CONTROL & STATUS.
, LOADER.

Figure 4-3. Communications Processor Functional Block Diagram

-""

CENTRAL
. PROCESSOR

MAIN MEMORY

CENTRAL
PROCESSOR
CONTROL

4-3

modified to handle data network peculiarities in a
convenient manner. The resulting S-level language is
named the Network Definition Language (NDL).
While still an S-level language, NDL is distinguished
from the normal S-level language by the special, en­
hanced S-level NDL language. A follow-on result of
an essentially new language is that a new and/or
modified interpreter is required in order for the new
NDL program constructs to have meaning. Therefore,
the original imaginary systems are arranged as fol­
lows:

Processor A Processor B

S-Level Interpreter NDL Interpreter.

S-Level User Program. NDL User Program.

The function of the processor B system is of little
value unless it can (1) receive data to be transmitted
from a user and (2) allow a user to make use of the
text of data set messages. Therefore, a marriage be­
tween the two processor systems is necessary to per­
mit a dynamic environment to exi~t for enhancement
of user software capabilities. This can be accom­
plished by identifying and allowing the memory stor­
age portions of both systems to be common rather
than independent. By this means, the text of mes­
sages can be stored in a buffer area which is identi­
fied to both processors as the same area. Data enter­
ing through processor B and associated terminals can
now be accessed by processor A for subsequent proc­
essing. The buffer area used in this instance is usual­
ly referred to as the RECEIVE buffer. Conversely,
another buffer area can be used to assemble the text
of outpu.t messages for transmission thru a data set
to a remote station. This buffer is normally referred
to as the TRANSMIT buffer.

The commonality of memory is only part of the an­
swer for providing the enhanced software capability
previously mentioned. The two user programs operat­
ing in processors A and B must be intimately related
and additionally, one must have controlling power
over the other. Processor A is the processor that is
given controlling power because its firmware contains
special control routines. Processor A, in the course of
executing an S-level user program, will probably as­
semble a data file that is to be sent to a remote sta­
tion for additional processing, printout, or storage.

The user program can thus contain an instruction
such as "WRITE file-X TO terminal station destina­
tion" or "READ file-X FROM terminal station." Be­
cause these are not normal S-level type instructions,
a decoder routine in processor A is called upon to im­
plement the instruction or identify an illegal
operation code. This decoder routine has an assigned
area in memory into which key data for the "WRITE
or READ" function is stored. This assigned memory
area is usually referred to as the Job Status Table.

4-4

The NDL program in processor B can scan the Job
Status Table to locate jobs to perform and record the
status of such jobs as not started, in process, or com­
pleted in addition to other pertinent information. The
NDL program in processor B will perform all func­
tions required to accomplish the jobs assigned for it
to do without requiring the aid of processor A. There­
fore, processor A can be performing other computa­
tional rather than communications functions.

The NDL user program is written specifically to
handle a particular configured system and network of
terminal stations. Changes to the terminal station
network usually requires program modifications.
These changes and corresponding NDL program mod­
ification are completely under control of the user. The
types of control information that is written into the
NDL program determines such parameters as: (1) va­
lidity of terminal requests, (2) station busy status, (3)
rate of terminal service required, (4) line frequency
selection, and (5) line selection. Thus, the user pro­
gram of processor A only has to execute a single in­
struction for sending a file or message to terminal
XX; the NDL program and processor B does all the
necessary execution and control generation to imple­
ment the required transmission. In application, proc­
essor A is the central processor. The memory of the
processor contains the S-level interpreter, S-level user
program, and the NDL S-level program. The memory
integral to the B 352 contains the NDL interpreter.
These firmware/software relationships are summa­
rized as follows:

a. The S-level interpreter is a microinstruction-lev­
el program resident in system processor main
memory and used by the processor to decode S-level
program instructions for implementation.

b. The S-level user program is resident in system
processor memory and is interpreted by the S .. level
interpreter.

c. The I/O bu:(fer area is used to store received data
or output data to be transmitted over data lines.

d. The NDL tables are resident in system processor
memory and generated when the NDL program is
compiled. These tables are used as a driver cross-ref­
erence by the NDL object program.

e. The NDL interpreter is resident in the memory
of the B 352 and is similar in nature to the S-level
interpreter, except for NDL object program execution.

INTERFACE COMMUNICATIONS
The initial communication by the processor to the

B 352 is the transmission of a control word. The proc­
essor informs the B 352 that a control word is being
sent to it by also sending control signals. These con­
trol signals are standard processor control signals for
I/O controls. The presence at the B 352 of signals
INST (instruction) and WRITE signify that a control
word is present and should be accepted, decoded, and
executed. The control word is sent to the B 352 over

the MIR bus and is used to place or remove the B 352
from its load mode of operation. The load mode is
used to load the memory of the B 352 with the NDL
interpreter necessary for NDL program execution.
Once loaded, execution of an NDL program is accom­
plished by the running of this NDL interpreter within
the B 352. However, master control of the running of
the NDL interpreter is retained by the firmware of
the central processor. This firmware exerts its control
by sending data words to the B 352. These data words
are actually instruction words which are decoded by
the B 352.

The presence of processor control signal vVRITE
and the absence of the instruction signal INST identi­
fies to the B 352 that a data word is present and
should be accepted. Whereas this data word would be
retransmitted to a terminal device/channel in other
I/O controls, the B 352 decodes the content of the data
and acts upon them as instructions. Data words re­
ceived by the B 352 in this manner are actually an­
other type of control word. Thus the B 352 can be
viewed as receiving two types of control words: one
being called a control word and having limited func­
tional usage and one being called a data word but con­
taining control instructions.

rrnp (>pntr~ 1 nro(>p~~or (>~n rp~r1 ~t~tll~ worr1~ from
~ .. ~ ~~ .. ~.-. £'.~-----' -_ .. ---- ------ .. ---- ------

the B 352 in the same manner that status words are
read from other I/O controls. Certain control signals
cause the B 352 to return a status word. The status
word is a coded 16-bit word which informs the proces­
sor and its firmware of the current status of the
B 352. This transfer takes place via the EXT bus and
the data is placed in the system processor B register.

Another means of communication between the cen­
tral processor and the B 352 is initiated by use of the
special direct memory access circuitry. This means of
communication permits the B 352 to write data into
or read data from the MPM of the system processor.
This capability is shared with the disk I/O control,
which has a higher priority in obtaining direct
memory access. When memory access is required, the
B 352 produces a request signal which, if no other
control is requesting, is returned as a request granted
signal. A granted request inhibits the system proces­
sor for one clock interval and thus allows the request­
ing control to "steal" a memory cycle for either writ­
ing data to or reading data from memory. When the
B 352 accesses system processor main memory to read
data, the supplied address may be of the buffer area,
the NDL table area, or the NDL object program area.
When the NDL object program area is addressed, the
usual reason for access is to fetch the next instruction
to be executed by the B 352. Access to memory for
writing will usually be to the buffer area for storing
of input data received by the B 352 from its data line
interface.

The B 352 can interface with up to four line adapt­
ers that may be terminated by data sets or be directly
connected with some digital device having a
compatible direct connect interface circuit. Certain in­
terface circuit lines are monitored for line status
changes. In this manner the B 352 can record the oc­
currence of key events in a status character formed
in the line adapter portion associated with the inter­
face. Periodically, firmware of the B 352 will cause
this status character to be read, decoded, and appro­
priate response actions result. When more than one
line adapter is used, each adapter is sampled
(scanned) in the same manner. If, for example, an
adapter is scanned and a status character bit is set
specifying input data ready, the presence of a request
to input data for the central processor is signified.
The response to this request is the generation of an
a}Jpropriate sequence of commands for implementing
the line procedure requirements of the interface and
device used. Once the input data character is assem­
bled, another scan of the line adapter returns a status
word with a different bit set to signify input data
character ready.

Upon assembling two such characters, the B 352
stores the two-character word directly in the system
nrOf'P!"\!"\or mHin mpmorv. Thll!"\ t.hp R ~f)2 i!"\ f'on!"\bmt.lv
bu~y- -s-c-anni~g li~-e' -~d~pt~~; . a~d pr~~~s~~~ -~~q~~~ts
for transmitting or receiving data to service any re­
quirements. While actively scanning, any conflicts of
data flow are resolved with regard to simultaneous
occurrences, direction, error flags, and line proce­
dures as may be required. The B 352 thus is a traffic
manager or data handler for the system processor.
Because of its semi-antonomous operating environ­
ment, the B 352 frees the system processor to execute
the calculative/manipulative portions of user pro­
grams.

OPERATIONAL INDICATORS
The B 352 can be optionally equipped with circuitry

for providing signals to light-emitting diode (LED) in­
dicators. These indicators, normally installed on the
system console panel, are for monitoring receive and
transmit data activity. The receive indicator for ei­
ther channel is lit when the B 352 is receiving data
(SPACE condition) over the line. The transmit indica­
tor is lit when a SPACE condition if:l being trans­
mitted and is unlit for a MARK condition.

FILE INQUIRY SUBSYSTEM (SINGLE-LINE
DATA COMMUNICATIONS)

File inquiry operation is a special and restricted
application of data communications provided by use
of the optional single-line data communications capa­
bility of the svstem.

4-5

In this application, the term "inquiry" refers to the
technique by which the contents of a computer's stor­
age is interrogated from a remote terminal device. In­
quiry programs cannot, therefore, cause data to be
stored by a computing system. Hence, "inquiry" can
be thought of as a special and restricted application
of data communications.

The Burroughs B 720 Inquiry System permits an
operator at a remote inquiry station (TD 700 or
TD 800 Terminal Display) attached to the central sys­
tem to make disk data file inquiries under user pro­
grammatic control. The inquiry capability is based on
the use of COBOL programs written by the user ac­
cording to his specific needs. An inquiry program is
run from a remote terminal and may temporarily in­
terrupt a normal system job. The COBOL compiler
provides the protection for existing data files and for
files on other peripheral devices, thus maintaining the
integrity of normal system jobs.

In inquiry programs, the only files that may be se­
lected other than the inquiry file are disk files. These
disk files must be opened INPUT or TAG-FILE and
closed WITH LOCK. The console may also be accessed . . .
m mq Ulry programs.

SYSTEM EQUIPMENT AND SOFrWARE
REQUIREMENTS

The following system equipment and software
elements are required to implement B 700 File In­
quiry operation in a B 720 System:

a. A Central Processing Unit (CPU) with a
minimum main-memory capacity of 32K bytes.

b. A B 9343 Console and B 346/B 346-1 console I/
o control.

c. An A 9480-12 or A 9481-12 Disk Cartridge Drive
with a 4.6M-byte capacity (minimum) and a B 489-2
Disk I/O Control.

d. A B 351-1 Single-Line Control (SLC).
e. One or more TD 700, TD 800, and/or TD 801 Ter­

minal Display Units (maximum of nine individual
types or combination of types).

f. A medium systems COBOL compiler.
g. B 700 S-level Interpreter.
h. A user-supplied Inquiry Program.

Note that only one SLC may be installed in a CPU,
and it requires two ports (DDP's) in the B 312 I/O
expansion module. A maximum of nine terminals
may be connected to the SLC in any combination of
types (TD 700, TD 700 with extended memory,
TD 800, or TD 801). The terminals communicate with
the B 720 over a private (direct-connect), asynchro­
nous, 9600-Baud line interfaced by the SLC.

FIRMWARE REQUIREMENTS
The system firmware required for inquiry

operation has a number of additions and enhance-

4-6

to implement the inquiry capability. The inquiry
firmware consists of two distinct segments: (1) the In­
quiry Interrupt Controller and (2) the Inquiry Con­
troller/Handler. Only one segment can reside in
memory at any given time because of memory size
limitations. The Inquiry Interrupt Controller segment
is resident initially when the Inquiry firmware has
been warmstarted and any later time that the Inquiry
system is idling. The Inquiry Controller/Handler seg­
ment is present only after an Inquiry program load
request has been recognized.

INQUIRY INTERRUPT CONTROLLER
The main functions of the Inquiry Interrupt Con­

troller segment are: (1) to identify an initial inquiry
interrupt, and (2) to periodically poll the terminals for
inquiry activity. The Inquiry Interrupt Controller in­
terfaces directly with the interpreter through the Sys­
tem Loader to load the individual phases and the In­
quiry Controller/Handler. The I/O Manager interface
enables the Interrupt Controller to receive and trans­
mit the control characters of the polling sequence.

To reduce the amount of resident code, the Inquiry
Interrupt Controller is subdivided into three phases;
only one is resident in memory at a given time.

INQUIRY CONTROLLER/HANDLER

The Inquiry Controller/Handler segment of the in­
quiry firmware is much larger and more powerful
than the Inquiry Interrupt Controller. It is comprised
of two parts: the Handler, and the Controller.

The Handler is that portion of code which provides
the system interface when the user program is not
being executed. The Handler performs the following
functions:

a. Accepts the program name from the terminal.
(The presence of a name is ascertained by the fact
that the Interrupt Controller requested that the
Handler be loaded into memory.)

b. Outputs a message (on the console) containing
the terminal address of the active terminal and the
requested program.

c. Checks the name length. If the length is less
than five characters, it informs the terminal and con­
sole operators with the message "ILLEG PROG
NAME".

d. Passes the program name to the System Loader
for action.

The System Loader locates and loads the specified
program. If this process is completed without error,
control is passed on to the program. If there is an er­
ror condition, control is returned to the Handler and
one of the appropriate error messages is displayed on
both the terminal and the console.

Following the display of an error message and/or
at end-of-job of the inquiry program, the Handler
polls the terminals, starting with the terminal imme­
diately following the last active terminal in the poll
table. (This table is assembled at warmstart time in
the order that the terminal addresses are entered and
is the same list used by the Interrupt Controller in
its polling.) If the polling indicates terminal activity,
the Handler accepts the program name and proceeds
as described above.

Polling is terminated when the Handler has com­
pleted one pass through the poll list, including the
last active terminal, without any activity. At this
point the "GO TO CONTENTION" message is issued,
and the "**END INQUIRY**" message is printed on
the console. The Handler now initiates a reload of the
Inquiry Interrupt Controller, and the Inquiry system
goes into the idle state.

The Controller portion of the Inquiry Controller/
Handler operates the same as any other I/O control­
ler in the system, Once an Inquiry program has begun
execution, it attempts to perform a terminal
operation (either a read or a write operation). During
the actual message transfer, it is the Controller which
takes the eharacter~ from the line and places them
in the buffer for the read operation (or performs the
reverse if the operation is a write).

The controller firmware is responsible for indicat­
ing errors when a problem between the terminal and
program buffer sizes exists. Also, the controller ig­
nores the parameters which have been entered with
the program name when no initial parameters are ac­
cepted by the program. The COBOL program, how­
ever, is responsible for recovery when it expects pa­
rameters and the operator has entered none. If the
operator at the terminal fails to enter data, or fails
to allow the program to display data within the time
limit set at Ready-Idle, the Controller timeout en­
trance terminates the operation and reports the con­
dition to the inquiry program. The Controller does a
limited number of retries in the case of garbled trans­
missions.

INQUIRY SYSTEM PROGRAMMING
The inquiry capability implemented in B 720 Sys­

tems is designed to execute inquiry programs written
in COBOL. The following features, capabilities, and
restrictions must be considered when developing in­
quiry programs:

a. An inquiry program can be loaded only by re­
quests from a terminal, not from the console.

b. A non-inquiry program cannot be requested
from a terminal.

c. The inquiry program can control only the indi­
vidual terminal which initiated the program, and op­
erates only in conjunction with the disk (read-only
mode) and the console. All other peripheral activity
is inhibited.

d. If the program expects parameters with the pro­
gram name, and the terminal operator does not enter
them, the program is -responsible for safe recovery
from this condition.

e. The program is responsible for controlling the
positioning of the terminal cursor, clearing the
screen, and generating the control characters for ter­
minal options (such as Forms Mode and Programmat­
ic Mode Control).

f. Additional flexibility in error recover can be pro­
vided by employing "USE" routines.

g. The availability to the program of the terminal
address characters, through the "MOVE" construct,
permits flexibility in providing for the different mem­
ory sizes of the terminals.

h. Because there are several possible buffer sizes~
the buffer size must be passed to the System Loader
when it loads an Inquiry program.

The following list summarizes the inquiry con­
structs of a B 700 COBOL.

a. Attributes.
b. The MODE IS clause of the OBJECT-COMPUT­

ER paragraph of the COBOL Environment Division.
c. The inquiry option of the SELECT statement of

the COBOL Environment Division.
d. The inquiry options of the following seven verbs

used in the Procedure Division of a COBOL program.

1. CLOSE.
2. IF.
3. MOVE.
4. OPEN.
5. READ.
6. USE.
7. WRITE.

NOTE
The use of the ZIP statement is not per­
mitted in inquiry programs.

4-7

SECTION 5

READER SORTER SUBSYSTEM

GENERAL
The capability of sorting and processing encoded

documents is implemented in a B 720 System by use
of a B 700 Reader Sorter Subsystem in an equipment
system consisting of other required units and subsys­
tems. Figure 5-1 shows the minimum B 721 System
configuration required to implement reader sorter op­
eration. The minimum configuration consists of:

a. A Central Processing Unit with a minimum of
32-bytes of user memory.

b. A B 9343 System Console and the B 346 Console
Control.

c. A Reader Sorter Subsystem including the A 9135
or B 9136 Reader Sorter and the B 131 Reader-Sorter
Control.

d. A Magnetic Disk Subsystem including an
A 9480-12 or A 9481-12 Disk Cartridge Drive and a
B 489-2 Disk Control.

e. A Line Printer Subsystem including an A 9247-
2/12 or A 9249-1/2 Line Printer and the B 243 or
B 244 Line Printer Control.

READER SORTER SUBSYSTEM OPERATION
Figure 5-2 shows the general interface configura­

tion of the Reader Sorter Subsystem. In application,
the reader-sorter operates under control of instruc­
tion (control) words sent over the control line from
the processor. These control words specify operations
concerning the feeding and reading of documents by
the reader-sorter (for example: start flow mode and
stop feeding). Signals are transferred from the Proc­
essor to the Reader-Sorter Control over the MIR
(Memory Information Register) Lines, along with
data write information (pocket select or pocket light
data) for the reader-sorter. Subsystem timing is pro­
vided by a I-MHz clock from the processor.

Signals from the reader sorter to the processor con­
sist of data read information, which is a binary-coded
representation of the encoded numbers and symbols
_____ 1 p ______ 1..1 ___ 1 __________ J.._ 1 ____ l' ____ 1_~1 _1~ _~J _1

r~au lrUlll LIl~ UUCUIIl~llL::; ~Ull~ luur-UiL UiglL aL a

time). Status information is also sent to represent the
status of documents in transport (for example:

CENTRAL 32KB
MEMORY PROCESSOR

I
I I I I

PORT 12 PORT 4 PORT 3 PORT 2

CONSOLE DISK READER 851160/250 J 400 LPM

10C 10C SORTER 10C LPM PRINTER 0t PRINTER
10C 10C

I I I I
26" 4.6MB dR

9.2MB TO 1625 DPM 85 LPM 160 LPM 400 LPM
& 16 POCKET LINE LINE LINE

CONSOLE DISK
I

DISK
READER SORTER PRINTER PRINTER PRINTER

Figure 5-1. Basic System Configuration for Reader Sorter Operation

5-1

_ EXT LINES - DATA (READ) -- 80131 - STATUS READER -CENTRAL READER MIR LINES

PROCESSOR -- SORTER DATA (WRITE) SORTER
~

...

TIMING CONTROL CONTROL --- - I ~
~

TIMING
.. ~

Figure 5-2. Reader Sorter Subsystem Interface

MICR

-
I

DATA
.-

FORMATTED_ READER
SORTER _PKT

- SEL.

CENTRAL
PROCESSOR DATA ~ $MICR

5-2

I l I 11 11
---~

I MICRE

TRANSIT FIELD SORTING

TRANSACTION ,II CODE SORTING

ON-US
ITEMS

TRANSIT
ITEMS

Figure 5-3. MICR Entry System

ITEM
FILE

~/ -
POCKET
SELECT

PARAMETER
FILE

PSGEN

document has cleared the read area; document mis­
sort; jam; and sorter not ready). Device address infor­
mation is also sent over the status lines. Both Data
Read and Status information are sent to the processor
over the EXT lines.

The subsystem is controlled by MICRE, which is an
M-Level Program that builds document transaction
files (called $MICR) on disk from items read by the
reader-sorter. Pocket selection of items read is under
control of the MICRE program using pocket select pa­
rameter files built by the use of the S-Level PSGEN
utility program. Pocket selection is limited to the
transit and transaction code fields. MICRE and
PSGEN constitute a MICR Entry system which can
be used to build files for a user written proof and
transit program. The general operation of the MICR

entry system is shown in Figure 5-3.

READER SORTER CHARACTERISTICS
The A 9135 Reader Sorter used with B 720 Sys­

tems is capable of reading MICR-encoded documents
at speeds up to 900 per minute (depending on
document length). Two models are available: the
A 9135-2 has eight sorting pockets, and the A 9135-
3 has twelve sorting pockets (See figure 5-4.) Al­
though offline sortin-g -is available on -these models,
sorting is under control of the central processor when
operating with the B 700 System.

A complete description of the Reader Sorter Sub­
svstem is Drovided in the B 700 Reader Sorter Sub­
system Reference Manual, form 1082500.

~-__ iII _. __ ~~.

')1;;7

Figure 5-4. A 9135 Reader Sorter

5-3

APPENDIX A

ABBREVIATIONS, ACRONYMS, AND TERMS

This appendix defines the unique abbreviations, acronyms, and terms used in this manual.
Abbr, Acronym, or

Term

Breakout

B7CBL

B7NDL

B7RPG

Comm unications
Processor

CPM

CPU

Data
Communications
(System)

Dynamic
Interpreter
Configura tor

DDP

DMA or DMAC

File Inquiry
(Operation)

Firmware

Host Machine

Interpreter

IOC

Line Adapter

M-Language (M­
Level)

MICR

MPM

NDL

Meaning

The interruption of a currently executing program to enable the loading and
execution of another program.

B 700-Series on board COBOL Compiler input program.

B 700-Series Network Definition Language Compiler input program.

B 700-Series Report Program Generator (RPG) Compiler input program

A "front-end" preprocessing module used with the system processor to perform
automatic data communications handling functions.

Central Processor Memory (also Data-Program Memory, DPM). Part of memory
available for user programs and interpreter requirements.

Central Processing Unit (Central Processor).

The combination of all the links, interface equipment, and system software
required to effect transmission of information between communications stations.

The non-commitment of resources until the actual need for these resources arises

Device-Dependent Port (circuit provisions in processor backplane to accommodate
I/O control or interfacing circuitry).

Direct Memory Access. Direct access to main memory be certain I/O controls.
Unburdens processor to perform more useful functions.

The technique by which the contents of computer storage is interrogated from a
remote terminal device.

Combination of stored logic (microprogram) and uncomitted hardware logic.

The physical or basic system that accommodates interpreters and system
programs to form a variation of a virtual machine.

An S-level program that fetches S-language instructions from main memory and
interprets or executes them.

Input/Output (I/O) Control (interfacing device between processor and peripheral
device or sUbsystem).

Circuitry required to interface a particular type of line in a multiline data
communications subsystem.

Low-level programming language that uses microcode or microinstructions.

Magnetic Ink Character Recognition (reader-sorter capability).

Microprogram Memory. Main memory storage area for microinstructions.

Network Definition Language. A high-level language used in data communications
applications.

A-I

Abbr, Acronym, or

Term

NPM

OCR

PPT/EPC

Port

SLC

S-Language (S­
Level)

SM

SPM

System Software

Virtual Machine

A-2

APPENDIX A (Cont)

Meaning

Nanoprogram Memory. Main memory storage area for nanoinstructions.

Optical Character Recognition (reader-sorter capability).

Punched-Paper Tape/Edge-Punched Card media.

A backplane or functional area accommodating input/output interface controls
(also, DDP).

Single-Line Control (B 351-1 Data Communications Control).

An intermediate programming language that uses instructions equivalent to the
machine language of a conventional system. Each S-instruction represents a string
of microinstructions to which the circuitry actually responds.

Shared Memory. Memory shared by microprogram memory and S-level memory.

Scratchpad Memory. Part of user memory used primarily for an 1/0 workspace.

The programming elements comprising the operating system software essential to
the startup' and operation of the system.

The computer system, formed by interpreters and programs loaded into a host
machine, to effect the implementation of the system. Independent of actual
machine hardware.

APPENDIX B

INSTRUCTION LIST

This appendix lists, in operation code (OP CODE)
sequence, the instructions available to the system.

Op Instruction Op Instruction Op Instruction Op Instruction
Code Code Code Code

44 ADD LIT 64
00 ADD ACUM 20 ACUM

IX 45 SUB LIT 65 COMN MEM/2
01 21 ACUM ACUM
02 MVE ACUM 22 46 MVE LIT 66

IX ACUM
03 23 47 COMN LIT 67 SIND
04 24 ACUM
05 25 48 ADD MEM 68 PNS- ACUM
06 MVD 26 ACUM
07 27 49 ADD MEM/ 69 PNS+ ACUM
08 REM/DATE 28 AL 2 ACUM
09 T nn 29 AR 4A ADD ACUM 6A PN ACUM l.;.:)I\

OA INK 2A ALTO MEM
OB 2B ARTO 4B ADD ACUM 6B PC+-
OC RST 2C ALR MEM/2
OD SET 2D OT 4C SUB MEM 6C TK
OE CHG 2E BOIN/BOAL ACUM
OF 2F CPMB 4D SUB MEM/ 6D POS
10 30 SRR 2 ACUM
11 31 PKA 4E SUB ACUM 6E
12 32 PKB MEM
13 33 PKC 4F SUB ACUM 6F
14 34 CLKB, CT, RR, MEM/2

ALRM, STOP, OFF 50 CONV DB 70 SKC LGA
15 35 PC 51 CONV BD 71 SKC LEA
16 36 52 LATA 72 SKC LLA
17 37 RPOS/SPOS 53 COMN 73 SKC LUA
18 NK ACUM 38 (TEST) MEM
19 NKR ACUM 39 ACUM
lA SK 3A SIZE 54 MUL MEM 74 SKC AS
IB SKC AZ 3B KBT ACUM
lC 3C 55 DIV MEM 75 SKC ES
ID LAT 3D ACUM
IE 3E 56 MUL LIT 76 SKC ANS
IF SKID 3F ACUM
40 MVE MEM 60 BRlJ 57 DIV LIT 77 SKC ENS

ACUM ACUM
41 MVE MEM/ 61 SRJ 58 78 DUMP

2 ACUM 59 79 HASH
42 MVE ACUM 62 BRPS 5A 7A BOZP

MEM 5B 7B
43 MVE ACUM 63 BRC AZ 5C 7C TRAC

MEM/2 5D 7D SETB

B-1

APPENDIX B (Cont)

Op Instruction Op Instruction Op Instruction Op Instruction
Code Code Code Code

5E 7E RSTB
5F 7F LOAD C4 MVE FULL E4 TKM
80 BRC LGA AO WORDS
81 BRC LEA Al C5 MVE FULL E5
82 BRC LLA A2 MAMK WORDS
83 BRC LUA A3 C6 SRCH RG E6 SRCH HI
84 BRC AS A4 BRU IA C7 SRCH EQ E7 SRCH LO
85 BRC ES A5 EDIT C8 SEA EQ E8 ADD LIT MEM
86 BRC ANS A6 C9 SEA LW E9 ADD LIT MEM/2
87 BRC ENS A7 CA SEA LS EA SUB LIT MEM
88 ADD MEMI A8 CB EB SUB LIT MEM/2

LIT IX CC MVE MEM EC MVE LIT MEM
89 SUB MEMI A9 MEM

LIT IX CD MVE MEM vn MVE LIT MEM/2 D.L1

8A MVE MEMI AA MEM/2
LIT IX CE MVE MEMI EE MUL LIT MEM IX

8B COM MEMI AB LOGL 2 MEM
LIT IX CF MVE MEMI EF

8C MVE IX AC 2 MEM/2
MEM DO COMN FO ADD MEM MEM

8D AD MEM MEM
8E AE CDC Dl COM MEM Fl ADD MEM MEM/2
8F AF CDV MEM
90 NK MEM BO RETM D2 COMN F2 ADD MEM/2 MEM
91 NKR MEM Bl LODM MEM/2
92 B2 IATM LJ MEM/2
93 B3 IATM RJ D3 F3 ADD MEM/2 MEM/2
94 EAM B4 DATA COMM D4 COMN LIT F4 SUB MEM MEM
95 B5 MEM
96 B6 D5 COMN LIT F5 SUB MEM MEM/2
97 PA B7 MEM/2
98 B8 D6 ADDB LIT F6 SUB MEM/2 MEM
99 B9 MEM
9A BA D7 SUBB LIT F7 SUB MEM/2 MEM/2
9B (TEST) BB MEM
9C BC D8 PNS- MEM F8 BRBS
9D BD D9 PNS+ MEM F9 BRBN
9E BE DA PN MEM FA
9F SCAN BF DB FB MVCH
CO CPRS EO MV4 DC FC SRJS
Cl EXPD El CMCH DD FD READ/WRITEI
C2 (TKM E2 CLC MVBS/MVSB

SPECIAL) DE FE DAC
C3 SPRD E3 CLCS DF FF TBRU

B-2

Name Size

(bits)

ACUM 64

DBR 16

IX1 16

IX2 16

IX3 16

IX4 16

BCPR 16

LLCR 8

LLLR 8

LPKR 16

LPNR 16

LRCR 8

LRLR 8

APPENDIX C

VIRTUAL MACHINE REGISTERS

This appendix lists, in mnemonic name sequence, the func­
tional registers used in the virtual machine. The bit size, full
name, function, and access means is listed for each register.

Ful! Name Function Leed By

Accumulator Arithmetic, shifting, field isolation, Various
communication with system
control, logical arithmetic, console
input.

Descriptor Base I/O descriptor table base address LODM
Register storage.

Index Register Address positive increment. Some Various
One special purposes.

Index Regi~ter ~ame as IX1_ Various
Two

Index Register Same as IXI. Various
Three

Index Register Special purpose counters or Various
Four addresses.

BCP (System Communication from system
Control Program) control program to S-level
Communicate program.
Register

Left Platen Forms control for line count of left LODM
Forms Count platen (L-series console).
Register

Left Platen Forms control for line count limit LODM
Forms Limit of left platen (L-series console).
Register

Program Key Holds base address of active LODM
Table Register program key (PK) table.

Numeric Print Holds base address of active LODM
Mask Address numeric print mask table.
Register

Right Platen Forms control for line count of LODM
Forms Count right platen (L-series console).
Register

Right Platen Forms control for line count limit LODM
Forms Limit of right platen (L-series console.)
Register

Reed By

Various

RETM

Various

Various

Various

Various

RETM

RETM

RETM

R~TM

RETM

RETM

RETM

C-l

APPENDIX C (Cant)

Name Size Full Name Function Load By Read By

(bits)

pas 8 Desired Print L-series console printer positioning. pas;
Position Register various

print
commands

REM 64 Remainder Holds: a. Remainder after DIV MUL, DIV REM
Register b. Scaled-off digits after MUL.

RR 1 Ribbon Register Controls ribbon color of L-series RR; various
console. print

commands

SR 5 Shift (or Scale) Controls scaling and/or rounding LSR
(LSR) Register for MUL and DIV.

SRJC 16 SRJ Stack Points to latest ~ntry in 8-deep SRJ; SRJS; SRR
Pointer Register circular subroutine "return to" TBRU

stack.

SRJS 16 SRJS Stack Points to latest entry in 4-deep SRJS SRR
Pointer Register circular subroutine "return from"

stack.

TDNO 16 Inquiry Terminal Holds two-character identifier of RETM
Identifier active inquiry terminal

C-2

GROUP

APPENDIX D

FLAG LIST

This appendix shows the layout and functions of the flags
avaiiable in the fiag register of the virtual machine.

FLAG GROUP LAYOUT:

i I I I I
P,B

INDEX NUMBER 0 1 2 J 456 7 8 9 A B

!i'LAG LAYOUT

TEST FLAGS
GROUP 0

CONTROL KEY FLAGS
GROUP 1

COMPARISON FLAGS
GROUP 2

T GROUP

~
I~

K GROUP

r I I ' I
3 2 114 I

l I I I

C GROUP

ffi8 H E LID

I I
E F G A . I
C D E F

FLAG WORD

FLAG WORD

P-Console paper
limit exceeded

I-Index overflow
L-Forms limit
O-Overflow

1 - OCK I
2 OCK II
J - OCK III
4 - OCK III I

H - High
E - Equal
L - Low
U - Reserved

D-l

D-2

APPENDIX D (Cant)

General Purpose Groups

S, X, Y, R, P, B, D, V, W, E, F
(meaning assigned by program usage)

SKID - Operator
recoverable error
flags
GROUP 14

Accumulator sign flags
GROUP 15

G GROUP

[i] I I I

A GROUP

I))~I_I
lLLLJ

1 - Shifted 1
2 - Shifted 2
J - Shifted J
4 - Shifted 4

M - Per thousand
C Per hundred
S - Special purpose
- - Negative

-:::l o

I
• !
I
• I
I

• I
I
I
I

BURROUGHS CORPORATION
DATA PROCESSING PUBLICATIONS

REMARKS FORM

TITLE: B 720 SYSTEMS

Reference Maunal

CHECK TYPE OF SUGGESTION:

DADDITION DDElETION DREVISION

FORM: 1082484

DA TE: _4-----.7....;z..5 ___ _

DERROR

GENERAL COMMENTS AND/OR SUGGESTIONS FOR IMPROVEMENT OF PUBLICATION:

FROM: NAME DATE _____ _

TITLE
COMPANY ____________________ _

ADDRESS

STAPLE

FOLD DOWN SECOND FOLD DOWN

~-~----~--~-----------------------~------------------------~--------------------~---~---

Attn: Systems Documentation
TIO EAST

BUSINESS REPLY MAIL
First Class Permit No. 46, Wayne, Pennsylvania

Burroughs Corporation
200 West Lancaster Avenue
Wayne, Pennsylvania 19087

.------------------------------~--

FOLD UP FIRST FOLD UP

G"1.~ "---I', ,,"r:~l •
~, ,t~./

Wherever T~re' s - -" / •
Business There's Burroughs

1082484 4·75 Printed in U.S. America

	000
	001
	002
	003
	004
	005
	1-00
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	5-01
	5-02
	5-03
	A-01
	A-02
	B-01
	B-02
	C-01
	C-02
	D-01
	D-02
	replyA
	replyB
	xBack

