f Burroughs @ X

B30
VICP MEMORY DUMP

INFORMATION
MANUAL

COPYRIGHT © 1979, BURROUGHS MACHINES LIMITED, Hounslow, England
\ COPYRIGHT © 1979, BURROUGHS CORPORATION, Detroit, Michigan 48232 /

Printed in U.S. America September 1979 Form 2015400

Burroughs believes that the software described in this manual is accurate and reliable, and much care
has been taken in its preparation. However, no responsibility, financial or otherwise, can be accepted
for any consequence arising out of the use of this material, including loss of profit, indirect, special,
or consequential damages. There are no warranties which extend beyond the program specification.

The Customer should exercise care to assure that use of the software will be in full compliance with
laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change. Revisions may be issued from time to time to
advise of changes and/or additions.

Correspondence regarding this document should be addressed directly to :

The Manager, Systems Software Support,
Technical Information Organization,
Burroughs Machines Ltd.,

Cumbernauld, G68 0BN,

Glasgow, Scotland.

2015400

LIST OF EFFECTIVE PAGES

Page

Title

i thru iii

iv

v thru xiii

Xiv

1—1 thru 1-2
2—1 thru 2-3
2—4

3—1 tluu 3—13
3-14

4—1 thru 4—4
5—1 thru 5-15
5-16

6—1 thru 6-19
620

7—1 thru 7-24
8—1 thru 8—30
9—1 thru 9—-15
9-16

10—1 thru 10-26
A—1 thru A-2

Issue

Original
Original
Blank
Original
Blank
Original
Original
Blank
Original
Blank
Original
Original
Blank
Original
Blank
Original
Original
Original
Blank
Original
Original

iii

CONTENTS

1. INTRODUCTION

2. TAKING MEMORY DUMPS
2.1 MEMORY DUMP TO CASSETTE
2.2 MEMORY DUMP TO DISK

3. PRINTING MEMORY DUMPS
3.1 PMB8BO AND ITS WORKFILES
3.2 STARTING PMB8O - THE INITIATING MESSAGE
3.3 PMB8O OPTIONS AVAILABLE
3.3.1 HELP

3.3.2 PRINT AND DISPLAY
3.3.3 CHECK

3.3.4 PATCH

3.3.5 SAVE

3.3.6 END AND BYE
3.4 PRINT OPTIONS

w
1=

PRINT MIX

PRINT MEMORY .MAP

PRINT MEMORY .LINKS

PRINT GLOBAL or mep namey
PRINT OL

PRINT PHT

PRINT SLICE

PRINT TASK

PRINT ALL.MEMORY

PRINT HEX

. . .
. .

W wwwwwwww
N NN N N N N NN NS
5 VOOV D WN

4. INITIAL DUMP ANALYSIS
4.1 IDENTIFYING THE PROBLEM

4.1.1 Al PK-lights flashing
i Some PK-lights flashing
Initialisation to PK-lights 1 and 2
No response to keyboard input
No response to Keyboard input (D-lights flickering)
No response to "GO or "DS" input

N N NN
BERCNSNS
oUW

2015400

CONTENTS (cont.)

4. INITIAL DUMP ANALYSIS (CONT.)

4.2 PRELIMINARY INVESTIGATION

4.2.1 Hardware status
4.2.2 Memory organisation and contents
4.2.3 MCP status
4.2.4 User Task status
5. SYSTEM REGISTERS AND TRACE DIAGNOSTICS
5.1 SYSTEM REGISTERS
5.2 THE GT COMMAND

5.3 TRACE DIAGNOSTICS

52
¥
|t

5.3.1 File OPENCLOSE - Class O

Indexed File Handling - Class 1

ACCEPT/DISPLAY/DATE/TIM - Class 2

Intrinsic utilities - Classes 3-7

Automatic Volume Recognition - Classes 8-9

Disk Space Allocation/De-allocation - Class A

Interpreters - Clas
A "

.

ey 3 ~ata

m -~
Communicate Ha

.
o]

wwwwwwwww

H WO OO0, D WN

gttt 0t n;

.10 Task Control (EPAR) - Class E
5.3.11 Input/Output queue Handling - Class F

5.4 FAILURE DIAGNOSTICS
5.4.1 AC, AD (PK patterns 10101100, 10l011l01)

5.4.2 DF (PK patterns 11011111)
5.4.3 EF (PK pattern 11101111)
5.4.4 FF (PK pattern 11111111)

6. MCP STRUCTURE AND MEMORY ORGANISATION
6.1 AREAS OF MEMORY AND THEIR USES
6.2 RESIDENT AREA AND GLOBAL MCP

CONTENTS

6. MCP STRUCTURE AND MEMORY ORGANISATION (CONT.)

6.3

6.4
6.5
6.6

(cont.)

LOCKED AREA AND SLICES
SLICES

.
.

() BN INe) B e N o) o) Mo) W0

wwwwwwww
o .
W g0 U b WwWN -

.

OVERLAYABLE AREA AND SEGMENTS

PERIPHERAL HANDLING TABLE (PHT) AREA

EXTENDED MEMORY

7. GLOBAL MCP - MAPS AND TABLES

7.

N g
Bw N

7.5

7.6

2015400

MCP-INTERPRETER INTERFACE

KEYBOARD VERSION AND SPO TYPE
DIAGNOSTIC INFORMATION

7.4.1 One-Byte Diagnostics
7.4.2 Top of Control Stack

VIRTUAL MEMORY SUBSYSTEM

7.5.1 Memory Links
7.5.2 Virtual Memory I-O
7.5.3 Thrashing Detection

SYSTEM CONTROL

7.6.1 Processor allocation - EPAR
7.6.2 MCP Function Control - Locks
7.6.3 Memory Allocation - BAILIFF

SCL INTERPRETER AND LOADER

Device Dependent Routine (DDR)
Function Dependent Routine (FDR)
Interpreter Control Block (ICB)
Program Control Block (PCB)

Task Control Block (TCB)

Data Segment Table (DST)
Examples of how to locate items

vii

CONTENTS (cont.)

8. TASK RUN STRUCTURES
8.1 TASK ORGANISATION IN MEMORY

8.1.1 Contents of a TCB
8.1.2 Contents of a PCB

8.2 SYSTEM TASKS

8.2.1 BAILIFF
8.2.2 AVR
8.2.3 SCL/LOADER

8.3 USER TASKS

8.3.1 COBOL and RPG tasks
8.3.2 MPLII (BIL) Tasks

8.4 COMMUNICATES AND FETCH VALUES

8.5 FILE PARAMETER BLOCK (FPB)

8.6 FILE INFORMATION BLOCK (FIB)

8.7 INDEXED FILE INFORMATION BLOCK (IFIB)

9.1 COMMUNICATES - MCH AND OPENCLOSE
9.2 PERIPHERAL HANDLING - MIP AND DDRS
9.3 INPUT-OUTPUT OPERATIONS - I-O QUEUE HANDLLI'E

10. CMS DISK ORGANISATION
10.1 DISK AREAS
10.2 TRACK ZERO

10.2.1 Disk label
10.2.2 Bootstrap
10.2.3 Bad Area Log

10.3 DISK DIRECTORY

10.3.1 Available Table
10.3.2 File Directory - Name List
10.3.3 Disk File Header (DFH) List

CONTENTS (cont.)

10.3 DISK DIRECTORY (cont.)
10.3.4 SYSMEM file

10.4 KEY AND TAG FILES

10.5 PROGRAM (S-CODE) FILES

10.6 PROGRAM DUMP FILES

APPENDIX A

2015400

ix

SECTION 1

INTRODUCTION

This manual provides information on the B8O CMS MCP,

with specific reference to the 3.0l release. It is intended
for systems software support personnel, for use when analysing
problems and as a guide to the analysis of memory dumps.

The taking of memory dumps and the use of PMB8O to print out
selected information is explained. The output of PMB80O is
discussed in detail

Section 4 recommends a method of approach to a systems problem
on the CMS B80. The subsequent sections explain the memory
organisation, and the main features of the MCP which help

towards a general understanding of the system. This is
necessary in order to understand a memory dump.

Section 10 presents details on disk organisation which apply to
all CMS systems.

The analysis of datacomm areas and the investigation of problems
in the B80 Stand Alone Utility are not discussed.

The codes used in the tables to specify the format of MCP maps
are explained in Table 1.1.1. The bit numbering convention
followed, is that the most significant bit of a byte is numbered
7 and the least significant bit is numbered O.

The Appendix gives an index of terms used in the body of this manual
manual, and explains the meaning of the commonly-used acronyms.

This information should be used by all persons involved in the

diagnosis of CMS B8O system problems and the support of the
system software.

2015400

1-1

TABLE 1.1.1 - FORMAT CODES USED IN TABLES

ABBREV. FORMAT CODE

A ASCII

E EBCDIC

BCD Bco

B DINARY

R £YTE REVERSED
M ABSOLUTE ADDRESS
RA RELATIVE ADDRESS
R SELF RELATIVE

I INDEX

S SUBSCRIPT

L LABEL

NOTE NOTE n

TABLE TABLE n.n.n

HEANING

information stored in ASCII collating sequence

information stored in EBCDIC collating sequence

information stored in Binary Coded Decimal format

information stored in binary

binary information stored byte reversed

most significant byte at highest memory address (on the right)

field contains an absolute memory address
a memory address relative to some base

a semory address relative to the field

a byte index into a field or map

a subscript in a table

the field name does not reference a field of data
but is used to label a mesory address

refer to the note at the base of the table

refer to the appropriate table in this newsletter

FORMAT CODES USED IN TABLES

CONTENTS - FIGURES

6.1.1
6.2.1
6.3.1
6.4.1
6.5.1

AREAS OF MEMORY
RESIDENT AREA LAYOUT
LOCKED AREA LAYOUT
OVERLAYABLE AREA LAYOUT
PHT AREA LAYOUT
EXTENDED MEMORY LAYOUT

USER TASK COMPONENTS IN MEMORY
COBOL/RPG TCB COMPONENTS
COBOL/RPG PCB COMPONENTS

MPLII (BIL) TCB COMPONENTS

LOGICAL AND PHYSICAL I-O STRUCTURE
CMS DISK ORGANISATION

KEY FILE ORGANISATION

PROGRAM FILE ORGANISATION

PROGRAM DUMP FILE STRUCTURE

CONTENTS - TABLES

1.1.1 CODES USED IN TABLES
2.1.1 MEMORY DUMP TO CASSETTE~ERROR CONDITIONS
2.2.1 MEMORY DUMP TO DISK - ERROR CONDITIONS

w
[
[

SYSTEM REGISTER USERS

.
N
.

TRACE DIAGNOSTIC CLASSES

.
w
.

- FILE OPEN AND CLOSE
- INDEXED FILE I-O

- ACCEPT, DISPLAY, DATE AND TIME

- INTRINSIC UTILITIES

AUTOMATIC VOLUME RECOGNITION (AVR)
DISK SPACE ALLOCATION OR DE-ALLOCATION
- INTERPRETERS

~ COMMUNICATE HANDLING (MCH)

- VIRTUAL MEMORY (VM)

- TASK CONTROL (EPAR)

- INPUT-OUTPUT QUEUE HANDLING

[SARRCA RN |
* & e
wwww
¢« s 4
OWoOoOJOOuUd wNpRE -

.
[
O g
|

.
.

HEUQE M oOowNn—O
1

= O

MEMORY CONTENTS DESTROYED BY BOOTSTRAP

SATM MAP (SLICE ADDRESS TABLE)

RS MAP (SLICE DESCRIPTOR)
SLICE DESCRIPTOR FLAGS

SD MAP (SEGMENT DESCRIPTOR)
SEGMENT DESCRIPTOR FLAGS

INTERGLBL MAP

PHDMP MAP
DEVICE MNEMONICS IN DESCENDING ORDER OF PRIORITY

VERSION.INFO MAP

. . .
b W O H O BRD W N H WWwwWwww

DIAGCBUF MAP
TOP OF CONTROL STACK - RETURN ADDRESS

.

NN N NN N 0000000y Tl

H NHE O NHE O NEFE O NH O R e

VMWA MAP

2015400

CONTENTS - TABLES (CONT.)

GLBLM MAP

TASK-ID, TASK STATUS, MIX NUMBERS
WAIT KEY VALUES

BALIFF FLAGS: VOL,EREADY,EVICT,BFLAG

NH N O R DWN

DWW DN H O N OO0,

SCL BUFFER
CT.INFO
TASK TYPES

TASKTAB MAP
TASK MAP

COBOL.TCB MAP
MTCB MAP

O 0. OO O N N NN

COMMUNICATE VERBS
FETCH VALUES

FPB MAP

DEVICE KINDS

FPB FLAGS
ADVERB FOR OPEN
ADVERB FOF CLOSE

. .
NN FH 9~ OO0 oot s
. . . . e . e . . . e e

.

MFIB MAP
VEST.FIB MAP
FILESTATE
FILETECHNIQUE

. .

.
.

IFIB MAP
IKEYFLAG
IFIBMOREFLAG

CT MAP
CONFIGURATION

PHTH MAP

CHANNEL ADDRESSES
DSKPM MAP

DISK STATUS
CASSETTE STATUS

.
O WNHE N WM dDwdhhFE Udbdh Wb N

.
.

WWOWWOWWOWY YO OO OOoO ©Eoowow

xii

CONTENTS - TABLES (CONT.)

SELF SCAN STATUS
PRINTER STATUS
KEYBOARD STATUS
S-FLAGS

WwWwWwww DD
. .
LENE VSR S I ol Ve B e o BENS Iio)

QHEAD MAP
QUEUE FLAGS
IODESC MAP
I-O DESCRIPTOR FLAGS

W YW WWOW YWY

'—l
°

DISK LABEL
BAD AREA LOG

=
O

BB W Www NN
. . .
WK dwWNDHE N

[

AVAILABLE TABLE BLOCK
NAME LIST BLOCK

DISK FILE HEADER (DFH)
DFH FILETYPES

=

’—l
O 0O0O0

P e

KEY FILE PARAMETER BLOCK (KFPB)
ROUGH TABLE ENTRY
KEY ENTRY (INDEX OR OVERFLOW)

'—l
0.00

.

TSR AL TR WA T e

PROGRAM PARAMETER BLOCK (PPB)
PROGRAM SEGMENT DESCRIPTOR
PROGRAM INTERNAL FILE NAME BLOCK ENTRY

[

[
O OO

’ e
o
w N

=

2015400

SECTION 2

2. TAKING MEMORY DUMPS

It is very important that a memory dump is taken each time
an unexplained failure of the MCP occurs. It is equally
important that the dump is taken properly and contains
useful information. This section clarifies the memory
dump procedures.

Memory dumps may be taken on either cassette or disk.
After the system has initialised (either automatically,

or by using the initialise button inside the cabinet),

the system is in the initial state with PKl and PK2 lit.
If PK2 is pressed, the ROM bootstrap loads the disk
bootstrap to memory. PKs 3, 4, 5 & 6 are then enabled.

If PK4 is pressed, then the contents of memory may be
dumped to cassette; PKS5 will cause the contents of memory
to be dumped to disk.

The contents of a memory dump are only useful if the MCP
had previously been running. Dumps taken after the Stand
Alone Utilities have been running are of no use. Also, if
PKl is pressed when PKl & PK2 are enabled in the initial
state, then memory is cleared and memory dump taken after
this is of no use.

If an error condition arises during the memory dump routine
then a pattern of PK-lights will be 1lit indicating the

error (see tables 2.1.1 and 2.2.1). The error should be
corrected, the system initialised again, and the memory

dump re-attempted. The memory dump routine destroys the
contents of only a very few memory locations (see Table 6.1.1)
and repeated attempts at dumping the contents of memory may
be made without destroying further information.

2.1 MEMORY DUMP TO CASSETTE

If PK4 is pressed while the system is in the bootstrap-
loaded state, then the bootstrap routine attempts to
dump the contents of memory to cassette. "he numeric
keyboard is enabled and a drive number (1-4) must be
keyed. The number 1 indicates the drive referenced by
the mnemonic CTA by the MCP, and so on.

2015400

TAKTNG MEMORY DIIMPS (CONT.)

MEMORY DUMP TO CASSETTE (CONT.)

If the memory dump routine encouters an error condition,
then an indication of the fault is given on the key-board
lights (see Table 2.1.1). The error should be corrected,
the system initialised again, and a second attempt should
be made to dump the contents of memory.

A memory dump cassette has the format of a single file CMS
tape with a label of MEMDUMP/MEMORY and a record and block
size of 256 bytes.

MEMORY DUMP TO DISK

If PK5 is pressed while the system is in the bootstrap-

loaded state, then the bootstrap routine attempts to dump

the contents of memory to disk. The memory dump routine

does not create a file on disk, but uses a file already
present. A search is made on disk for a file called

MEMDUMP and then the contents of memory are written to this
file until either the end of memory is reached or the disk file
is full.

The MEMDUMP file is created on disk by the utility GEN.DUMPFL.
It has a record and block size of 180 bytes, and a default
filesize large enough to hold 65KB of memory. A larger
MEMDUMP file may be created by using an initiating message
with GEN.DUMPFL. For example: "GEN.DUMPFL 128" will create
a MEMDUMP file large enough to hold 128 KB of memory.

If the memory dump routine encounters an error condition, then
an indication of the fault is given on the key-board lights

(see Table 2.2.1). The error should be corrected, the system
initialised again, and a second attempt should be made to dump

e b~ B 1

- Py £ cam
the contents of memory.

If there is more than one disk on the system which
holds a MEMDUMP file, then confusion may arise about
which file contains the latest dump. To avoid this
confusion, it is recommended that a disk is set aside
which contains a MEMDUMP file of the required size.

Before a memory dump is taken, all other disks should
be removed and this disk should be loaded.

Before this disk is re-used, the dump should be analysed
or the MEMDUMP file copied to another disk for subsequent
analysis.

SECTION 2 - TAKING MEHORY DUM

L1

Pg
TABLE 2.1.1 - MEWORY DUMP TO CASSETYE - ERROR COMDITIONS
The following condibions cause the =rror light to be it when a
mesary duap is baiag taken on cassette -
The cassette drive number keyed does not exist
The cassetie drive does not hold a casseotte

The tassetis is not writz enabled

To recover the sitwation, correct the error, hit reset and ratry.

TABLE 2.2,1 - WENMORY DUMP TO DISK - ERROR CONDITIDNS

ERROR b-tights PH-lights
devVice error channei address Plé=of{
nn KENDUMP file on disk 1-8 atl bt Plé=of{
MEMDBUNE Tite too saatl channat addraess 2~B atl an
pressed FKI nob PK4 atl off all off

Channe! address on D-lights :- Di=channel 0, B2=channe! 1 etc.

2015400

MEMORY DUMP TO CASSETTE - ERROR CONDITIONS .and
MEMORY DUMP TO DISK - ERROR CONDITIONS

2-3

SECTION 3

3. PRINTING MEMORY DUMPS

It is possible to list a memory dump file in hexadecimal

and perform the analysis by hand. This however, is a laborious
approach, and is not usually required. 'The CMS B8O system
includes a memory dump analyser called PMBS8O.

PMBBO is a sophisticated ool for selecting and printing infor-
mation from a system dump file. It also performs some dump
analysing functions by highlighting suspected errors, but it is
best to confirm these errors by checking the data.

This section presents the features of PMB8O used in memory dump
analysis.

3.1 PMB8O AND ITS WORKFILES

The system dump analyse utility consists of the program
PMB8O and four reference files PMBHELP, PMBERROR, PMBM.nnnnn
and PMBO.nnnnn.

Each major release of the B80 system contains all of these

3 4 3 3 " mded mem ~AE MDD ol T Ao
files. 1In addition, if the format or location of MCP tables

(known as MCP "maps") changes with a new version of the MCP,
then the Map and Offset files PMBM.nnnnn and PMBO.nnnnn are
re-released with the MCP with a new value of nnnnn to identify
the MCP version.

The PMBHELP file contains the syntax of the PMB80 commands,
and is used to provide the HELP function.

The PMBERROR file contains the messages output by the dump
analyser. It may be listed by the LIST utility to provide
a list of all possible messages.

The PMBM.nnnnn file holds the format and names of the field
of the MCP Maps. The PMBO.nnnnn file holds the memory Offsets
of these maps.

2015400

3. PRINTING MEMORY DUMPS (CONT.)

3.1 PMB8O AND ITS WORKFILES (CONT.)

The nnnnn represents the mark, level and patch numbers

of the corresponding MCP code file. For example with

the 3.01 MCP, the value of nnnnn is 30100. PMB80 can
analyse memory dumps of different levels of the MCpP. It
selects the appropriate Map and Offset files with reference
to the field VERSION of map INTERGLBL (Table 7.1.1).

If an attempt to execute PMB8O results in "NO FILE" messages
for the Map and Offset files with unrecognisable names, the
the VERSION field is likely to be corrupt. This could be

a first indication that the memory dump does not contain
useful information.

3.2 STARTING PMB8O - THE INITIATING MESSAGE

The utility can be executed with a number of options,
selected by the initiating message as follows:

PMB80O F]

1
GET < file-id>
—— ON < disk-id >
AX

The options provide the following features:

GET - This option is used to specify the file-id of a disk
memory dump other than "MEMDUMP" (the default value).

ON - This option is used to specify the disk-id of the disk
containing the memory dump file, if other than the
system disk.

AX ~ This option instructs PMB8O to communicate with
the operator via DISPLAYS and ACCEPTS. If this
option is not specified, then a CONSOLE file is
used.

If a disk file called MEMDUMP and a cassette file labelled

MEMDUMP/MEMORY are both present, then PMB80O takes the disk
file as input.

3-2

3. PRINTING MEMORY DUMPS (CONT.)

-~ -

PMB80O OPTIONS AVAILABLE

w
.
)

The utility does not print or analyse automatically. The
functions of PMB80O are provided on command from the operator.
The options available are as follows:

\%

HELP

.

< PMBB80 option >
— PRINT

< print option >
—DISPLAY
—— CHECK < check option >
— PATCH < patch option >
—— SAVE < save option>
— END
— BYE

3.3.1 THE HELP OPTION

The HELP option of PMB80 lists the PMB80O options
available. If a particular PMB8O option is included
(e.g. HELP PRINT) then the syntax and explanation of
the various functions of that option are given.
Functions can be described in further detail by
specifying other options, (e.g. HELP SLICE will give
details of the PRINT SLICE function).

3.3.2 THE PRINT AND DISPLAY OPTIONS

These options control the printing and analysis of
selected information.

The PRINT option is the most useful option of PMBS8O
and is explained in greater detail in section 3.4.

The DISPLAY option provides the same features as the
PRINT option, but uses the SPO instead of a PRINTER.

2015400

3.

PRINTING MEMORY DUMPS (CONT.)

3.3

PMBSO OPTIONS AVAILABLE (CONT.)

3.3.3

3.

3.4

PATCH

THE CHECK OPTION

This option has the following syntax:

CHECK —E—— MEMORY.LINKS ‘

L—— ALL.MEMORY ——

This command instructs PMB8O to analyse the contents
of the memory dump and report on any errors encountered.

The MEMORY.LINKS option causes PMB80O to check the
structure of overlayable memory (see section 6.4.1).
The ALL.MEMORY option instructs PMB8O to check the
complete memory structure, and some fields are also
checked for valid contents.

It should be noted, however, that it is not feasible
for PMB80 to perform a complete analysis of all
possible faults. Therefore this option may report an
error where no real error exists. Consequently, all
faults reported by PMB80 should be verified by checking
the data concerned.

THE PATCH OPTION

This option has the following syntax:

< hex address > < hex value> —t——
[_(JNE_J

L— NEXT

3. PRINTING MEMORY DUMPS (CONT.)

3.

2015400

3

PMB8O OPTIONS AVAILABLE (CONT.)

3.3.4

3.3.5

SAVE

3.3.6

THE PATCH OPTION (CONT.)

ONE - specifies that the patch is to be
performed on page one (extended memory).

NEXT - specifies that this patch is to follow
directly after the previous patch.

<hex-address) is four hexadecimal digits with no

delimiters.
<hex-value> - 1is from one to 16 hexadecimal digits.

Sometimes a memorv diimn containe carvimtd i nE€avmadd an
B - LLREs 4 JIemory CUllp Contalne Corxupt inIigrmacicn

which limits the extent of useful analysis that can be
performed by PMB8O.

The PATCH option enables the operator to correct invalid
areas of memory, enabling PMBBO to continue its analysis.
The patches are applied to an internal PMB8O work file,
leaving the original dump file unchanged.

The modified dump file may be saved using the SAVE option
(see section 3.3.5). If this action has been taken,

details should be documented when reporting a problem, and
both the original and patched dump files should be submitted.

THE SAVE OPTION

The syntax for this option is:

i |
I—AS — <file-id > J I_ON — <disk-name > J !

AS - This option allows the operator to specify
the file-id of the memory dump file which is
saved. The default value is "MEMDUMP".

ON - This option allows the operator to specify
the disk-id of the disk on which the dump file
is to be saved. If this option is not used, then
the dump file will be saved on the system disk.

THE END AND BYE OPTIONS

Either of these options will cause PMBS8O to go to
end of job (EOJ).

3. PRINTING MEMORY DUMPS (CONT.)

3.4 THE PRINT OPTIONS

The options available within the print command are as follows:

PRINT MIX]l
— MEMORY.MAP
— MEMORY.LINKS
—— < map name >
— GLOBAL
—— OL
— PHT =—————~—— < phtoption>
—— SLICE ———— <slice option>
— TASK «———— < task option>
— ALL.MEMORY
— HEX < hex option>
When starting analysis of a memory dump, it is recommended
that items are printed in the order in which they are given
above.
The MIX option provides information on the tasks that were
running. If a hardware problems is suspected, then the OL
ripheral

and PHT options provide information on the state of pe
configuration. The following sections explain the PRINT
options in more detail.

3.4.1 THE PRINT MIX OPTION

This option provides a selective analysis of information
contained in the global MCP map GLBLM (Table 7.6.1)
and the TASK.TABLE (Tables 8.2.1 and 8.2.2).

A list is given of the tasks running at the time of the
dump, what status these tasks were in, and which tasks

(if any) held locks to non re-entrant MCP code. Since

the TASK.TABLE is an overlayable segment of the Bailiff
Slice (Slice 0) the task names may not be available on

the memory dump.

3. PRINTING MEMORY DUMPS (CONT.)

3.4

2015400

THE PRINT OPTIONS (CONT.)

3.4.2

3.4.3

3.4.4

THE PRINT MEMORY.MAP OPTION

This option provides an analysis of the layout of memory.
The contents of the five sections (RESIDENT, LOCKED,
OVERLAYABLE, PHT, EXTENDED) are listed in the order in
which they occur. If any faults such as overlapping fields
are detected, then a message is printed.

It is always advisable to check such error messages
carefully. Sometimes the overlap is not a real error
(for example: Zero length segments may legally overlap;
sometimes the LOADER (slice 15) locates its segments

within its CONTROIL STACK: the INITIALTISE {elice 18) slice
descriptor may overlap since it is not used;
etc.).

The analysis of the locked and overlayable areas

is performed through the SAT, slice descriptors and
Data Segment Tables (see Section 6.3). Any error
reported in this part of the analysis implies an
error in one of these structures.

THE PRINT MEMORY.LINKS OPTION

This option analyses the layout of the OVERLAYABLE
AREA of memory. The analysis is performed through
the memory link mechanism described in Section 6.4.
Any error reported with this option indicates the
corruption of this structure.

If the system was performing virtual memory operation
when the dqump was taken, then the memory links are
likely to be in a transient state and no conclusion can
be drawn from apparent errors. In this condition, the
PRINT MIX option will show the VMLOCK to be held by a
task.

THE PRINT GLOBAL OR PRINT < map name>> OPTION

This option causes MCP tables to be printed in a map
format. A map is a "template" which the MCP uses to
define its data structures. The <map name>s available
are:

GWA : Global Work Area. See Table 7.1.1 -
INTERGLBL MAP, and Section 7.1.

3.

PRINTINT MEMORY DUMPS (CONT.)

3.

4

THE PRINT OPTIONS (CONT.)

3.4.4 THE PRINT GLOBAL OR PRINT map name OPTION (CONT.)

PHDMP : Peripheral Handling dump area. See
Table 7.2.1 and Section 7.2.

DIAGNOSTICS : See Table 7.4.1 - DIAGCBUF MAP and
Section 7.4.

VMWA . Virtual Memory Work Area. See Table
7.5.1 and Section 7.5.

ESCT . Execution Scan Table. See Table 7.6.1 -
GLBLM MAP, and Section 7.6.

SCL . Slice Address Table. See Table 6.2.1
SATM Map and Section 6.2.

TASK.TABLE . See Tables 8.1.1 and 8.1.2 and Section 8.l.
This table is overlayable and therefore
may not be present in memory.

C.TABLE : Configuration Table. See Table 9.1.1 -

CT MAP, and Section 9.1. This table is
overlayable and therefore may not be present
in memory.

The PRINT GLOBAL option will cause the global MCP tables

(INTERGLBL, PHDMP, VERSIONINFO, DIAGCBUF, VMWA, GLBLM,

SCL, CT.INFO, SAT) to be printed.

3.4.5 THE PRINT OL OPTION

This option provides a selective analysis of information

contained in the C.TABLE (Table 9.1.1). This includes the

peripherals configured on the system,any media loaded on
the peripherals, and the status of the peripherals. The

C.TABLE is overlayable and so this analysis may not be possible.

3.4.6 THE PRINT PHT OPTION

This option enables the printing of the Peripheral

Handling Table for selected device types present

on the system. The syntax is:

PRINT PHT i

< device mnemonic>

3. PRINTING MEMORY DUMPS (CONT.)

2015400

THE P

3.4.6

3.4.7

RINT OPTIONS (CON

THE PRINT PHT OPTION (CONT.)

Valid <device mnemonic®s include:

DF - Fixed Disk

DK - Disk Cartridge

DM - Burroughs Super Mini Disk
Lp - Line Printer

SpP - Serial Printer

SS - Self Scan

KB - Keyboard

CT — Cassette

CX - Channel Expander

DI — Industry Compatible Mini disk
ADC - Async. Data Comm

SDC -~ Sync. Data Comm

For each <device mnemonic) specified, all the PHTs
for devices of that type are printed. If no <device
mnemonic)} is entered, then all the PHTs in the dump
are printed.

In addition to printing the PHTs, this option prints

the I-O queues, queued descriptors, and keyboard, console
and SPO buffers (where applicable). Sections 9.2 and

9.3 discuss these tables in more detail.

THE PRINT SLICE OPTION

This command prints the contents of selected slices
(see section 6.3 for a description of memory slices).

The syntax is:

PRINT SLICE L _J I— —I 1
<slice option> DATA.SEGMENTS

DATA.SEGMENTS - This option prints the contents of
the data segments in the overlayable
area. If this option is not used, then
only the contents of the locked slice will
be printed.

3-10

3.4.

7

THE PRINT OPTIONS

(CONT)

(CONT.)

THE PRINT SLICE OPTION

(CONT.)

Values for <slice option) include:

0-48

SUSN

OPENCLOSE

INITIALISE

SPO

LPDDR

CASSDDR

DISKDDR

SENDDR

KBDDR

SCREENSN

ADCDDR

SDCDDR

DCCH

CONSOLE

PANDDR

INXS

ICMDDDR

CONBUFSN

SCLBUFSN

.

Any number in this range refers to a slice
See Table 6.2.1 - SATM MAP

(Slice 12)

(Slice 17)
(Slice 18)
(Slice 19)
(Slice 20)
(Slice 21)

(Slice 22)

(Slice
(Slice
(Slice 26)
(Slice

(Slice 28)
MCP code.

(Slice 29)
MCP code

(Slice 20)

Super Utility TCB (data)
File Open & Close MCP code
Warmstart MCP code

SPO printing MCP code

Line printer DDR code
Cassette DDR code

Disk DDR code

60 cps Serial Printer DDR
Keyboard DDR code
Self-Scan/CRT DDR code
Async. Data Comm DDR code
Sync. Data Comm DDR codé

Data Comm Communicate Handler

Console Communicate Handler

180 cps and 120 cps Serial

Printer DDR code

(Slice 31)
MCP code

(Slice 33)

Indexed file Comm Handler

ICMD DDR code

(Slice 35) Console Buffer data slice

(Slice 36)

SCL Buffer data slice

3. PRINTING MEMORY DUMPS (CONT.)

3.4.7 THE PRINT SLICE OPTION (CONT.)

If no <slice optiond is specified, then all the slices will
be printed in the order in whichthey reside in the locked
area.

Items which may be included in the analysis of a
loaded slice are:

MAP RS ~ Slice Descriptor (see Table 6.3.1)

FIELD S . T W A, - S—Interpreter Work Area (in program
TCBs only) (see Tables 8.2.1 and
8.3.1).

FIELD CCBPA2 ~ COP table (COBOL/RPG CCBs only)

FIELD CONTROL STACK - TCBs only (see table 7.4.2).

MAP SD - Segment Descriptor (see Table 6.4.1)

If the DATA.SEGMENTS option is selected then further items
discussed in Section 8 may be encountered.

3.4.8 THE PRINT TASK OPTION

This command prints the contents of a Task Control Block
(TCB) (see Section 8). The syntax is:

PRINT TASK l {
__CURRENT:J l— <task type > ——]

— < number>

< task name >

2015400 3-11

3.

3-12

PRINTING MEMORY DUMPS

3.4

THE PRINT OPTIONS

3.4

.8

(CONT.)

(CONT.)

THE PRINT TASK OPTION (CONT.)

Options for (task name) include:

BAILIFF
MCS
NDL
SCL
LOADER

{number) :

CURRENT

¢task type)

Slice O, MCP code

Slice 13, MPLII s-code

Slice 14, NDL s-code

Slice 15, MCP code (including LOADER)
Slice 15, MCP code (including SCL)

must be the mix number of a task in the
range O-15

causes the printing of the task which was
executing prior to the dump being taken.
This is the task referenced by field EICT
of map GLBLM (Table 7.6.1), and may be part
of the cause of the dump.

enables further analysis of the S-Interpreter
Work Area (SIWA). If the option is not
selected then the SIWA is printed as a single
block of data.

Options available include:

COBOL :
RPG :
MPLII

BIL

SORT :
NDL

COBOL S-machine (see Table 8.2.1)

BIL S-machine (see Table 8.3.1)

Sortintrins microcode (refer to MCP listing)

NDI. S-machine

If no option is specified for the PRINT TASK
command, then all tasks in the dump are printed.

In addition

to printing the TCB, the PRINT TASK

option prints the associated Program Control Block
(PCB) and Interpreter Control Block (ICB) , Wherever

applicable.

See section 8 for further details of

these task structures.

3. PRINTING MEMORY DUMPS (CONT.)

2

2015400

.4

THE PRIN

W
W
O

3.4.10

]
[@®)
d
+3
4
2
&)
aQ
Q
=]

THE PRINT.ALL MEMORY OPTION

This option prints the entire contents of the
memory dump. It is printed in a format equivalent to a
command of PRINT GLOBAL PHT SLICE. Memory not in use

is not printed. Although this optio
memory it is not recommended; selective options

considerably reduce the volume of printed output.

51
ko
R
b
=
U
Q
'.
'.
el

Y

£
T
a

=

11

NOTE: It is not sufficient to include only this printout
when submitting problem reports. Useful information may

be contained in memory areas not in use. This is especially
true if memory links are corrupt. When submitting a

problem report containing a memory dump, the complete dump
on cassette, disk or load/dump tape should therefore be
included. An accompanying listing of the PRINT MIX

GLOBAL OL PHT option is useful for initial analysis.

THE PRINT HEX OPTION

This option provides the operator with a printout
of selected areas of the dump file. The option has
the syntax:

PRINT HEX I_ <start>——— <length> _|
ONE ——J

ONE : This option selects page one (extended)
memory for printing.

{start) : This parameter must be four hexadecimal
digits long (no delimiters) and indicates
the memory address of the first byte to be
printed.

{length} : This parameter must also be four hexadecimal
digits long. It indicates the number of bytes
to be printed.

The contents of the memory dump are printed in hexadecimal
and ASCII format.

3-13

SECTION 4

This section discusses the approach to analysing memory dumps.
Firstly, the type of problem must be identified. Once this

is done, some general analysis should be performed which may
lead to deeper analysis of selected parts of the dump.

4.1

2015400

IDENTIFYING THE PROBLEM

Problems can be partially analysed by considering the
symptoms. The operating environment (what tasks/programs
were running), and the configuration environment (what
devices were in use) may indicate the general nature of
the problem. First of all, the following categories
should be differentiated.

4.1.1 ALL PK-LIGHTS FLASHING

This is known as the memory parity condition.

It occurs when the processor fetches a byte from
memory which has a parity error. In this situation

a complete memory dump cannot be taken since the
problem will occur again when the dump is being taken.
However, a memory dump taken to cassette will proceed
up to the bad memory address and therefore locate

the problem.

Note that memory dump files on disk are not initialised
to any specific pattern; consequently, the end of the
dumped information cannot easily be located on a
MEMDUMP file.

The memory parity condition may also be caused by a
system software failure. The ROM at the low address
end of memory contains a deliberate permanent parity
error as a check on interpreter failures when accessing
beyond segment boundaries. Therefore, if no memory

hardware fault can be located, the current task should be

analysed (see Section 4.2.2).

4-2

INITIAL DUMP ANALYSE (CONT.)

4.1

IDENTIFYING THE PROBLEM (CONT.)

4.1.2

SOME PK~LIGHTS FLASHING

When the MCP detects an irrecoverable error
condition, it sets PK-lights 17 to 24 flashing

in a pattern which identifies the problem. Refer
to section 5.4 for details.

If analysis does not reveal faulty hardware or
corrupt media, further analysis may be performed

to isolate the environmental conditions under which
the problem occurred. If more than one dump with
similar symptoms exist, analysis often gives a clue
to the cause.

INITIALISATION TO PK-LIGHTS 1 AND 2

This is caused by the execution of the microcode
@000000@, which passes control to the start of

memory. The first thing to look for in a memory

dump taken after this condition, is corrupted memory.

If there appears to be no corruption, then a general
analysis as discussed in section 4.2 should be followed.

NO RESPONSE TO KEYBOARD INPUT (NO ACTIVITY)

In this condition, the MCP gives no response to
depressing any key, including the Ready Request-Key.
This may be due to a peripheral problem, or the MCP
might be in a tight loop. The global diagnostic area
(see Section 7.4) should distinguish the two cases.

Since the keyboard is associated with the console printer,
a printer jam will cause this symptom. The PHT of the
serial printer should be examined if this is a suspected
cause of the dump.

NO RESPONSE TO KEYBOARD INPUT (D-LIGHTS FLICKERING)

It may not be possible to enter data or obtain a response
from depressing the Ready Request-Key, but the system
may still look "busy" because of D-light activity.

This problem is often caused by system thrashing.

This can result from an attempt to execute too many
programs in insufficient memory, or an attempt to
execute a program with exceptionally large segments.

In this case, the organisation and contents of memory
should be examined.

4. INITIAL DUMP ANALYSIS (CONT.)

4.1

2015400

IDENTIFYING THE PROBLEM (CONT.)

4.1.6 NO PROGRAM RESPONSE TO "GO" OR "DS" INPUT

In this condition, no action appears to be taken by

a program when a "GO" or "DS" message is entered for

that program, although all other activity appears to

be normal. This is usually caused by the program hanging
on a dedicated peripheral (i.e. not disk). In this case
the task status should be examined in the memory dump.

PRELIMINARY INVESTIGATION

4.2.1 HARDWARE STATUS

The OL and PHT options of PMB80 print this information.

It is recommended that a check is always made on the
status of the devices involved in any problem (see

section 9.2). An invalid status may not necessarily cause
a system problem, but unexpected conditions may arise
which cause a failure.

The device status in the CT (PRINT OL option) is

a logical status as seen by the MCP; this may not
exactly correspond with the physical hardware status.
The PHT holds the last status received from the channel
controller.

4,2.2 MEMORY ORGANISATION AND CONTENTS

The PRINT MEMORY.MAP MEMORY.LINKS option of PMB8O
provides a complete analysis of the layout of memory.
Section 6 describes the format of memory with no error
conditions. All reports of overlapping areas in

memory should be investigated. If the Virtual Memory
lock is held by a task (section 7.6.2), then overlayable
memory may contain an invalid link.

4.

4-4

INITIAL DUMP ANALYSIS (CONT.)

4.

2

PRELIMINARY INVESTIGATION (CONT.)

4.2.2

MEMORY ORGANISATION AND CONTENTS (CONT.)

Shortage of overlayable memory may be the cause of a
number of performance problems, especially system
thrashing. If a dump is taken because of poor
performance, then the amount of overlayable memory
should be checked. For a rough guide, at least 10 KB
is required as "free space" to enable virtual memory
to perform efficiently. Large program code or data
segments can cause similar problems. Although it is
not possible to specify an exact limit, as a rough
guide it may be stated that user program segments of
4K bytes are too large, especially on the B8O in a
multi-programming environment.

Section 7 discusses the global maps; these should be
checked for valid contents.

The PRINT PHT option of PMB80 analyses the I-O descriptor
queues. Since the queue heads lie at the high address
end of memory, an incomplete memory dump will provide

an incorrect analysis of this structure.

MCP STATUS

The status of the MCP when the memory dump was

taken can be obtained from an analysis of the global
maps (section 7). The diagnostic area in particular
is designed with this purpose in mind. The analysis
of the GLBIM MAP and TASK.TABLE (PRINT MIX option

of PMB80) provides a general overview of the task
environment.

USER TASK STATUS

Task structure analysis is provided by the PRINT

TASK option of PMB80, and discussed in section 8.

To avoid producing a large amount of printed output
without much relevant information, it is recommended
that the current task is analysed first. The current
task is the task running when the memory dump was
taken. The most important information, other than the
integrity of the task structure, is the communicate
parameter area. This indicates the latest call on

MCP routines (open file, read etc.) that was requested
from the task.

SECTION 5

5. SYSTEM REGISTERS AND TRACE DIAGNOSTICS
The B8O MCP is written in microcode, consequently extensive
reference is made throughout this newsletter to the hardware
registers of the B8O processor. This section documents the
format and usual contents of these registers.
The B8O MCP provides a general trace facility controlled by
the GT command. The trace is used for system fault diagnosis.
Even when the trace is not in operation, a memory dump includes
a historical buffer of one byte containing trace diagnostic
information (see section 7.4). Sections 5.2 through 5.4 describe
trace diagnostics.
5.1 SYSTEM REGISTERS
Table 5.1.1 shows the format of information in the
processor registers, and their possible contents.
Although a memory dump does not necessarily contain
the contents of the registers at the time of the dump,
the following points should be noted.
The PHDMP MAP (Table 7.2.1) stores the current contents
of the registers after two types of event. When a
physical interrupt is received from an I-O channel, the
processor executes the Master Interrupt Processor (MIP)
section of the MCP. The registers are dumped on entry to
the MIP in order that processing can resume, after the
interrupt has been serviced, from the point of interruption.
The registers are also dumped to the PHDMP MAP if the general
trace is running (see section 5.2) or the system failed
with a trace diagnostic (section 5.4).
5.2 THE GT COMMAND
The general trace command is an MCP intrinsic which displays
various diagnostic information either on the system console
printer or on a line printer. The format is:
|
GT 1
ON
OFF
< printer peripheral >
——— < diagnostic class> < switch value >
2015400

5.

5-2

SYSTEM REGISTERS AND TRACE DIAGNOSTICS (CONT.)

5.2

THE GT COMMAND (CONT.)

The ON and OFF options switch the trace on or off
respectively. The <printer peripheral) selects the
device to print any trace messages. If this device

is currently in use, the trace messages are interleaved
with other printed output. Table 5.2.1 shows the
&liagnostic class»es which are further explained in the
sections which follow.

The MCP contains calls to the trace routine throughout
the code. However, trace diagnostics are printed only
when two conditions are fulfilled; (a) when the trace
is switched on, and (b) when the level of the switch
value for that class is less than or equal to the level
of the trace point. The <switch value> consists of two
hexadecimal digits, with the following meanings:

first digit : switch value for register diagnostics
second digit : switch value for memory diagnostics

In addition to providing a printed trace of selected
trace points, the general trace displays a one-byte
diagnostic (the contents of the AD register) on PK lights
17 to 24 (PKl7 corresponding to the most significant bit
and PK24 the least significant bit. If the PK light is
1lit, the corresponding bit value is 1. These lights
display the last trace point encountered if the trace
option is switched on and the keyboard is not enabled
for input.

TRACE DIAGNOSTICS

Trace information provided by the B8O MCP consists of
three parts:

register diagnostics
memory diagnostics
one-byte diagnostics

Register diagnostics are made to a selected printer and
the contents of the registers are entered in PHDMP (table
7.2.1) when the trace is switched on and the switch value
is lower than the trace point value for that class.
Memory diagnostics are made to a selected printer when the
same conditions are satisfied. One-byte diagnostics are
displayed on PK lights 17 to 24 whenever the trace is
switched on and the keyboard is not input enabled. The
most recent one-byte diagnostic processed by the MCP can
be found in the field DIAGCIRC of map DIAGCBUF (Table 7.4.1)
regardless of the state of the trace or switch values.

5. SYSTEM REGISTERS AND TRACE DIAGNOSTICS (CONT.)

5.3

2015400

TRACE DIAGNOSTICS (CONT.)

Printed register diagnostics have the following format:

register AD BO BI1FL B32 J K L
contents XX XX XXXX XXXX XXXX XXXX XXXX

M1 M2 WR X Y AD,ESCT
XXXX XXXX XXXX XXXXXXXX XXXXXXXX XXXX

(the actual print is on one line). AD contains the one-byte
diagnostic consisting of two hexadecimal digits. The first
digit represents the diagnostic class (see Table 5.2.1) the
second digit represents the diagnostic severity value which is
compared with the switch value set by the GT command. ESCT

is the one byte task-id (Table 7.5.2) of the currently

executing task (as displayed on the keyboard D-lights).

A general rule on the interpretation of the diagnostic
severity value is the following:

O (zero) is the least important

B is used when a module is entered (eg: DB.= VM module entry)

E is used when a module is exited (eg: EE= EPAR module exit)

F is associated with an error condition (not necessarily fatal)

Actual details vary according to the coding of the various MCP
modules.

5.3.1 FILE OPEN AND CLOSE - CLASS O

These diagnostics are issued by the OPENCLOSE MCP

slice 17, which performs operations requested by a

task via the communicate mechanism. There are so

many possible interpretations of each severity value

that it is not possible to give a guide to interpretation
of register diagnostics beyond OB = entry and OE = exit.
Memory diagnostics in this class often print a DFH,

an FIB or an FPB.

If class O diagnostics appear in DIAGCIRC it is possible
that the problem is related to opening or closing a file.
Possible faults include media corruption (disk directory,
program S-code files), or memory corruption of the FPB.
These possibilities may be checked from a memory dump or

by running utilities such as KA and CHECK.DISK. The

task which initiated the operation may hold one of the
openclose locks (see section 7.6) and the task's communicate
area (in SIWA) will indicate a verb of Ol = open or

02 = close (see table 8.4.1).

5-3

5.

SYSTEM REGISTERS AND TRACE DIAGNOSTICS (CONT.)

5.3

TRACE DIAGNOSTICS (CONT.)

5.3.2

5.3.3

5.3.5

INDEXED FILE HANDLING - CLASS 1

These diagnostics are issued by the MCP index
communicates slice 31. A value of 1B indicates
slice entry, and lE indicates slice exit. This
slice performs operations requested by a task via
the communicate mechanism.

ACCEPT/DISPLAY/DATE/TIME - CLASS 2

These diagnostics are issued by the MCP SPO slice 19
which processes communicates with a verb in the range
@lo@ - @20@ (see Table 8.4.1).

INTRINSIC UTILITIES - CLASSES 3-7

The SORTINTRINS microcode uses these classes.

AUTOMATIC VOLUME RECOGNITION - CLASSES 8-9

Class 8 diagnostic is used by the general AVR routine
(OPENCLOSE segment 18); class 9 is used specifically

by the routine which "tidies up" a disk directory at

AVR time (OPENCLOSE segment 19). If AVR entries

are found in DIAGCBUF of a memory dump, it is quite

likely that the problem has been caused by faulty hardware
or media. In addition to recognising newly loaded media,
the AVR routine is used when certain exceptional events

g m o PP PR =Y

occur on hardware channels.

DISK SPACE ALLOCATION/DE-ALLOCATION - CLASS A

This class of diagnostics is issued by OPENCLOSE segments
20 and 21 which perform the disk space allocation and
de-allocation functions respectively. (see Table 5.3.6).

INTERPRETERS - CLASS B

This class of diagnostics is reserved for the
interpreter microcode. However, only the BILINTERP
(MPLII program interpreter) uses the facility
extensively.

This class of diagnostics is very useful tracing an

MPL program. See table 5.3.7 for the details. Note
that BB and BE do not indicate interpreter entry and
exit in this case.

5. SYSTEM REGISTERS AND TRACE DIAGNOSTICS (CONT.)

5.3

2015400

TRACE DIAGNOSTICS (CONT.)

5.3.8 COMMUNICATE HANDLING - CLASS C

The global MCP routine for decoding all communicates
from tasks uses this class of diagnostics. See Table
5.3.8.

5.3.9 VIRTUAL MEMORY - CLASS D

The Virtual Memory (VM) routine uses this class of
diagnostics. A trace of the virtual memory operations
is not generally needed as a lot of detailed analysis

is involved. However, when a disk problem occurs the
VM routine is often the first part of the MCP to

detect the error. This is the reason why the DF failure
diagnostic (section 5.4.2) is often encountered.

5.3.10 TASK CONTROL (EPAR) - CLASS E

There are not many trace points with this class. Most
important is the EE diagnostic, issued when the task
schedules are exited. This indicates which task has
been entered and which code is currently executing
(see section 7.4).

5.3.11 INPUT/OUTPUT QUEUE HANDLING - CLASS F

c trace diagnostic shows the queueing

O descriptors, and the waiting of tasks on
these I-O operations. 1In the register diagnostics
the registers hold the fields of the I-O descriptor
being queued. (See Table 5.3.11).

FAILURE DIAGNOSTICS

When the MCP discovers that an irrecoverable error has
occurred, it issues a failure diagnostic. On previous
systems this was a printed trace diagnostic. On release 3.01
a failure diagnostic is a pattern of flashing PK lights.

PK lights 17 to 24 show the one-byte diagnostic of the
failure with PKs 17 to 20 showing the diagnostic class.

When this situation occurs, a memory dump should be taken

(see section 2). The PHDMP MAP (Table 7.2.1) contains the
contents of the processor registers at the time of the failure.
The value of the one-byte diagnostic indicates the rough
nature of the problem; the contents of the registers give
more specific information.

5-5

5.

5-6

SYSTEM REGISTERS AND TRACE DIAGNOSTICS (CONT.)

5.

4

FAILURE DIAGNOSTICS (CONT.)

5.4.1

5.4.4

AC, AD (PK patterns 10101100, 10101101)

AC and AD on PK lights 17-24 indicate a fatal error
detected while allocating or de-allocating disk file
space respectively. The Ml register holds the memory
address of the last disk I-O descriptor and BO holds
IODFL (see Table 9.3.4). This problem is usually
caused by disk hardware or disk media problems.

DF (PK pattern 11011111)

More than one type of error is detected by the VM
subsystem. These are distinguished by the contents
of the Ml register (see Table 5.3.9).

If M1=1111 or 5555, an I-O error has been encountered
on a virtual memory operation. Refer to the VM I-0O
descriptor (field VMIOD of MAP VMWA, Table 7.5.1).

This indicates a problem with the disk drive or disk
media.

If M2=2222, then the MCP has attempted an invalid

"put segment" operation. If M1=FFFF then an unconditional
"get" operation has failed (not caused by an I-O error) .
If either of these problems persists after the system
(including user programs) has been recovered from backup

copies, then a fault may exist in the MCP and should be
reported.

EF (PK pattern 1110111l1l)

Different errors identified by this failure diagnostic
are distinguished by the contents of the ML register
(see Table 5.3.10). If any of these problems persist
after the system has been recovered from backup copies,
then the problems should be reported.

FF (PK pattern 11111111)

This error diagnostic is used to show errors in
peripheral handling. The WR register identifies

the device type involved (see Table 5.3.11). The

PHT entries for the device should be checked for a
bad status condition (section 9.2). This may identify
a hardware fault. If no hardware fault is located,
the problem should be reported.

TABLE 5.1.1 - SYSTEM REGISTER USES
REG FORMAT USE
A 1 BYTE (i) I-D channe! address (see TABLE 9.2.2)
(i1} One byte diagnostic class and caverity value
B 1 BYTE usualy contains a fiag byte according to the situation I-
(i} peripheral status tytﬁ zoe TABLES 9.2.4 to 9.2.8)
(ii} PIR s~flags (see TABLE 2.2.%2
(iii) I-D descriptor flags (ses TABLE 9.3.4)
(iv}) slice descriptor flags (see TAELE 4.3.2)
(v} segment descriphor f!ags {ses TABLE 4.4.2}
BIFL 2 BYTES two (usualy indepandant) bytes used for fiags as 80
B32 2 BYTES a two byts work ar2a or a gemory address
K 2 BYTES wused for storing a memory address
L 2 BYTES 5 megsory address :-
(i} addrass of *he tazk slice descriptor on exit from EPAR (SECT 7.4}
(ii) address of the PHT when MIP is handling an interrupb (SECT 9.2}
M 2 BYTES (i) wmemory addrass of 4 table invotved in data movement
(i1} used in disgnostics as a further indication of the type of error
M2 2 BYTES as #i
W 2 BYTES (1) separabe 1 bybe work areas
(ii) used by the diagnostic roubine as for i
XY B BYTES (i) segasnt dezcripbor far virtual memary opsraticns
(ii)Communicate Parameter Area on entry t: HOH
ESCT 1 EYTE this is not a processor register bub is the last two digits
of a trace diagrostic. It is the task-id byte of the current task
See SECTION 7.4
SYSTEM REGISTER USES
2015400

TABLE 5.2.1 - TRACE DIAGMOSTIC CLASSES

{3 ASS USE
fite DPEN and CLUSE (HMCP stice nuaber 17}

INDEXED file communicabe handling (NCP slice 31}

ACCERT, DISPLAY, DATE and TIME communicats handling (stice 1%}
psed by SORTINTRIMS

futomatic Voluwe Recognibtion (AVR) (HCP task 9; and slice 17}

AVR and BALLIFF (MCP task @)

disk space ALLOCATION and DE-ALLDCAYION (slice 17 segeents 20, 21}
INTERPRETERS {(mostly SILINTERP!

CONRUNICATE handling (MLCH in global MCUP, and BIR slires}

Virtua! Memory cparabians {global HCP)

Task conteol (EFAR in glabal MCP)

I-0 queue handling (glohal HCP)

~4

""im!:’l“JD:'I"ﬂD’J(fif’JP‘-O

TRACE DIAGNOSTIC CLASSES

DIAb INFORMATION

e o e e e o e s e

08 enbry into onz of tha open or close routines
G exit from one of the open or close routines

TABLF S.3.2 - [LAGS 1 - IMBEYED FILE COMNUMII

el WAL

DIAG INFORHATION

10 detsted eatry fourd, or ond of ares eatry found

11 suspending the operation

12 searching through the koys

13 comparing the keys

14 set up overflow region search buffar

15 set up index region search buffer

16 access work area key

17 fill the entry (WAL = key entry s5ize)

18 store the enbry (WRL = key entry siza}

17 end of the free slot stiding the buffer up

1A call HIP to queue the I-D descriptor
BO=I0DDY {E=writs, F=read) (TABLE 9.3.1)

1B entry into the index comms routine
BO=¥Rt=communicate vert, Bi=IFLAGS

I exit from the index comms routine
Ei=FILESTATE (TABLE B.4.3)

2015400

CIASS O - FILE OPEN AND CLOSE and
CLASS 1 - INDEXED FILE COMMUNICATE HANDLING

TAELE 5.3.3 - CLASS 2 ~ ACCEPT, DISPLAY, DATE AND TINE

DIAD INFORMATION

Z1~24 DISPLAY communicate execubios

Z7-28 ACCEPT communicale execultion

2 TIME and DATE communicate execubion

20 entry into the CLASS C Comaunicate handling code

X exit from the roubine

=3 error conditions
BO, R=Fetch Communicate Message (TABLE B.4.2)
B32=FFFF =» fatal error

TABLE 5.3.4 - CLASSES 3-7 - INTRINSIC UTILITIES

o information

CLASS 2 - ACCEPT, DISPIAY, DATE AND TIME and
CLASSES 3-7 - INTRINSIC UTILITIES

5-10

TABLE 5.3.5 - CLASSES §-% AUTOMATIC VOLUME RECOGNITION

DIAG INFORMATION

seb up disk configuration table
XY=HFID

update the I-0 @ head flags in tha PHT
MI-DPHTH, WRL=CIQHDD

PBR found on non-disk AVR
¥=N2=DIR stice number

used in DISK AVR

device not in use

M->8FL

davice in use

ATV 7ANT DEARY aceewa
?“ 1? e Rgnu {{ :\{QT (n(.r.nl.: 1 m’:bbﬁgt

start the VR operatios

Bi=QFL, M1->PHTHD, YRL=PHTMRNO

AVR code enbry, look for the chanmel requiring help
exit from AYR routine

I-0 error during AVR

*RE

&

@ g

9FE 298

77 search Disk File Headers and sob usercounts o zero

Y8 search NAMELIST fur temporary enbriss

M enter final phase of disk directory claanup

8 enter disk directory cleanup routine

YE exit clsanup, relinguish the opeuclose lock and retura to caller

BALLIFF DIAGNOSTICS

o no sliras ¢

A T
ices suappable (SUAPCNT=

)
ARTACI A AR TT) 4 1

M tn GETSLICE operation HRL=SHAPCNT
in PUTSLICE operation BO=SWAPCNT

9 GETSLICE operation after the stice lock has been procured

M PUTSLICE operation aftar the slice lock has beon procured

2015400

CLASSES 8-9 - AUTOMATIC VOLUME RECOGNITION

TABLE 5.3.6 - CLASS & - DISK ALLOCATION AMD DE-ALLOCATION

DIAD INFORMATION

Bi=DBU (dick unit), WR=DDA (disk address)
initiate disk I-0

Bi=DDU, B32=10DFL (I-D descriptor flags), ¥R=LDA
& B32=DFH bitmap

159) B32=size of area

& exit no space, BO=DDU, XY=size reguired

&5 determina the area reguired

s B de-allocate fatal faiturs, BO=IODFL, MI-2IDDFL
& allocate fatal failure, EQ=IDEFL, M1->I0DFL

o exit from the allocate or de-altocaba routine
o allocation or de-allocation failure {ne user disk}

B2

TABLE 5.3.7 - CLASS B - BILINTERP DIAGNOSTICS

DIAG INFORMATION

B8 user generated communicate
associated memory trace prints the CPR
. call of a procedure within the curreat segoent
B32=procedure numberisegmeat number of the called procedurs
By procedure return
Bi2=procedure numberisegment number of the procedure returned ts
WR=byte offseb (byte roversed) in grocedure
BE calt of procedure in another segmont
Bi2=procedure nucberisegaent nunber of the called procedure
B DS/DP error

CLASS A - DISK ALLOCATION AND DE-ALLOCATION -and
CLASS B - BILINTERP DIAGNOSTICS

=

TABLE §.3.8 - CLASS € -~ COMHUNICATE HANDLING DIAGNOSTICS
DIAL INFORMATION
€0 start of class A comm processing
BO=vard (TASLE B.4.13, Bi=FILESTATE (TABLE E.4.3}
WRL=Ffitetechniqua (TAELE B.6.4), BI2-»CPA
i start read-write sequential and stream buffering ahoad
BO=filestale, Xi=verd, E32=buffer teagth, Bi=IDDFL (TABLE 7.3.4)
L2 previous buffer = curreat buffer
€3 full buffer foun on sequeatial read
Bi=file techniqua, N2-}IOLCL (TABLE 9.3.0}
$4 zaro a buffer
03 mark buffers as emply
s Catcuiates the disk address
BO=disk unit; EBl=area numbor, B32=sactor address
£7 return from buffer ssarch
B1=80 (found), Bi=G0 {(not found)
8 conditional failure due to buffer wait
¥ suspemsion of the coma waibing on I-D
€A call on I-0 gusue handier to quess an I-0 descripbor
L8 start of communicate handling code
B32-»0P4, XY=CPA (byle raversed)
b successful tormination of a class A communicabe
K->FIB, and associated memory diagnostic prints FIB and buffer
& exit from HCH nom-class A sequential organisabion communicate
EX2 and ¥R = top of conbrol stack return iafo (TABLE 7.4.2)
OF communicate failure

BL, 4R=Febch Dommunicabe Message (TABLE B.4.2)

2015400

CLASS C - COMMUNICATE HANDLING DIAGNOSTICS

TABLE 5.3.9 - CLASS D - VIRTUAL MEMORY DIAGROSTICS

%

7

IHFORMATION

start to search memary for space

te=start searching address

consider the segnont

Me=current address

space found at last D1 diagnostic

set up the segment descriphor

Mi=start of area, M2=length of the segment, BO=CDFLAL (TABLE £.4.2}
adjust the memory link

eake an area of semory available

Mi=start address; ¥R=langth

start virteal semory I-9

MP=base, K=leagth, MR=disk sactor, Bl=disk unit
BO=opcode (BEYR=urite, @F7@-read)

pore ar=as teft Lo purge

MP=start address, WR=longth, Bl=segment descriptor flags
core to corg aove

ti=oldbase, MP=newbasa, ¥R=length (<2 for stide doun?
entry into the virtwal memory routine

te->Segment deschipbor, XY=8D (TABLE &.4.1)

Ml=2222 implies a segment (not slice) operabion
Getslica failure and thrashiag detection

exit from the virtual semory routine

225D, XY=SB (byte reversed)

=1 implies faitura

virtual memory fatal erros

H2-28B, XY=5B (byte raversed)

Mi=111! virtua! memory I-D error B1=IOBFL

¥t=2222 system error

tl=4444 SDBASE does not point to link+2 (memory link error)
#il=8355 as for Hi=11iit

ML=FFFF system error

5-14

CLASS D - VIRTUAL MEMORY DIAGNOSTICS

TABLE 5.3.10 - CLASS E - TASH COMTROL DIAGNOSTICS

DEAD INFORNATION
B entry into System Contro!l Langsage decoder
L->1C8 of originator
ED stice usarcount overfiow
B exit from epar inton the current tasik
X¥=top of stack (TARLE 7.4.2)
J-raicrocode segasnt base; L-»stice descripbor, M->top of stack
B fatal sreor
Mi=0999 sogment usercount errar datected on PFUTSER
Mi=AAMA atfampt to use an absent siice
Mi=BEEE erraor in ECL intergreter

TABLE 5.3.11 - CLASS F - INPUT-DUTPUY QUEUE HANDLING BIAGNOSTICS

DEAG INFORMATION
for all of these diagnostics except FF the registers hold :-
BO=10DDU, Bi=IDDFL, B32->I0DFL, H1=IODDA, MP=I0BBL (see TAHLE $.3.3)
F2 unconditional wail on exit after call from MCH
K3 conditional waibt on exit after rall from HOHM
1243 no wait on exit after won-disk descriptor insertad
F& unconditional wait after non-disk descriptor inserted
F7 conditional wait after non-disk descripior inserted
B no wait on exit after disk descriptor insert
FA unconditional wait on exit after disk descriptor insert
FB conditional waib on exit afber disk descripfor insart
FF fatal BIR srrar
Mi=0000 invalid disk wnit in I-I descriptor EO=IDDDM
R=BH88 [ata comm DIR error
WR=77%? self scan DR arror
WR=LEEE disk DER error

2015400

CLASS E - TASK CONTROL DIAGNOSTICS and
CLASS F - INPUT-OUTPUT QUEUE HANDLING DIAGNOSTICS

SECTION 6

6. MCP STRUCTURE AND MEMORY ORGANISATION
It is often necessary to know where certain items may be found
in memory. Corruption of memory is one of the more common problems
encountered in an MCP. On some dumps an area of memory is
over-written with invalid information; on other dumps, just
one or two critical bytes holding a memory link (address to
another item) are wrong. PMB80 may be unable to analyse satig-
factorily a MEMDUMP file containing invalid memory links, since
it assumes the memory structure is correct. This section provides
sufficient information to enable a HEX dump to be analysed. A hex
dump is obtained by the PRINT HEX option of PMBS8O.
6.1 AREAS OF MEMORY AND THEIR USES
The six areas of memory used by B8O 3.01 MCP are shown in
Figure 6.1.1.
The Read Only Memory (ROM) which has addressed @0000@ to
@OFFF@ contains interrupt handling routines. It appears
full of binary zeros on a hex dump.
When the bootstrap routine is loaded to memory it destroys
the contents of those areas of memory specified in table
6.1.1. These areas do not contain information which is
important for dump analysis.
The other five areas are discussed in sections 6.2 to 6.6.
6.2 RESIDENT AREA AND GLOBAL MCP
This contains the global MCP code and data, which does not
change location while the system is running (see Figure 6.2.1).
This area of memory contains:
Global tables (discussed in section 7)
Global MCP routines:
Master Interrupt Processor (MIP)
Master Communicate Handler (MCH)
Virtual Memory (VM) Handling code
2015400

6.

6-2

MCP STRUCTURE AND MEMORY ORGANISATION (CONT.)

6.2

o))}

w

RESIDENT AREA AND GLOBAL MCP (CONT.)

Global MCP routines:
Task Structure Switching (EPAR)

Slice Address Table (SAT)

Each item is located at a fixed address and the same

table or code segment can be found at the same address on
all dumps for the same level of MCP. The code routines are
not analysed by PMB80O. The addresses of the tables may be
found from either an MCP listing or a correctly analysed
dump.

6.2.1 SLICE ADDRESS TABLE (SAT)

The SAT is a table of memory address of the next
section of memory. Each memory address is two
bytes long and addresses the first byte of the
Slice Descriptor of a slice in the locked area.
See Table 6.2.1, SATM MAP, and figure 6.3.1 An

.
2 - TSI TATIT on
[le PRILINL oAL

onm 2 P T S -

analysis of the SAT is obtained by
option of PMB8O.

LOCKED AREA AND SLICES

The Locked Area of memory follows directly after the SAT.
The first slice (the BAILIFF) is at the same memory address
on all dumps of the same version of the MCP.

In the locked area, slices are contiguous with no intervening
areas. Slices may be either present or absent (swapped out).
If a slice is swapped out, only the slice descriptor remains
in memory. When a slice is swapped in or out by the BAILIFF,
all other items in the locked area are moved up or down in
memory so that all slices remain contiguous.

An analysis of the layout of memory is obtained by the PRINT
MEMORY .MAP option of PMBS8O.

6. MCP STRUCTURE AND MEMORY ORGANICATION (CONT.)

6.3 LOCKED AREA AND SLICES (Cont'd)

2015400

6.3.1 SLICES

6.3.2

A slice is a body of code or data which provides

a specific function. Examples of slices are:

the MCP routine to handle the SPO (slice 19), the
data comm message buffers (slice 34), the data
associated with a task (program) in the mix

(slices 1-14), or the code associated with a task

in the mix (slices 39-49). A slice does not necessarily
contain its own data, but rather controls access to
its data which is located in the overlayable area of
memory. The different types of slices have several
features in common.

The first ten bytes of each slice is a slice
descriptor (see Table 6.3.1, RS MAP). This descriptor
contains information about the status of the slice
(SDFLAG, SDUSRS), the size and location of the disk
copy (SDLENG, SDDKAD, SDDKSC, and SDUNIT) and the

PINK LINK.

The slices are linked together in the order in which
they reside in memory. This is not in slice number
order, the order of SAT. The PINK LINK is the memory
address of the first byte of the next slice descriptor.
This scheme of linking the slice descriptors is used to
relocate memory slices when slices are swapped in or out.

A slice is either a Code Control Block (CCB) or a Task
Control Block (TCB). A CCB may be a Device Dependent
Routine (DDR), a Function Dependent Routine (FDR), an
Interpreter Control Block (ICB) or a Program Control
Block (PCB). A TCB holds the control information for a
task.

DEVICE DEPENDENT ROUTINE (DDR)

Each hardware device (disk, cassette, line printer,
etc.) supported by the B8O has a section of MCP code
which handles all features unique to the device.

This code is accessed through a DDR slice. Each
different device type has its own DDR with its corres-
ponding slice number, and its entry in the SAT.

For example, the DISKDDR is slice number 22 with an
entry in SAT at offset 44 (@2cQ).

6-3

6.

64

MCP STRUCTURE AND MEMORY ORGANISATION (CONT.)

6.

3

LOCKED AREA AND SLICES (CONT.)

6.3.3

6.3.5

FUNCTION DEPENDENT ROUTINE (FDR)

Part of the MCP code is divided into units each of

which performs a specific set of functions. The code

for each unit is accessed through a slice. Examples of
function dependent routines are the indexed file
communicate handler (slice 31), the open/close communicate
handler (slice 17), and the warmstart slice (slice 18).

In addition to these slices for accessing MCP function-
dependent code, there are slices which hold buffers, for
example: the data comm message buffers (slice 34).

INTERPRETER CONTROL BLOCK (ICB)

The code for an interpreter is also accessed through

the slice mechanism. An interpreter slice, however,

does not have its permanently allocated slice number

and corresponding entry in the SAT. Interpreter slices

are classifed as user slices and take a slice number

from the pool of available entries at the top of the

SAT. Unfortunately, this makes it difficult to distinguish
program code slices from interpreter code slices when
analysing dumps. The task structures, (see section 8),
allow these slices to be distinguished.

It should be noted that if an interpreter is located
in extended memory then it is allocated a permanent
slice from the available pool and the slice is
located directly following the BAILIFF and AVR slices
in the memory map. If the interpreter is not loaded
into extended memory at warmstart time, then its

slice is created and released whenever programs which
require the interpreter are loaded or terminated. In
this case the interpreter slice is loaded after a TCB,
and resides next to the Program Control Block.

PROGRAM CONTROL BLOCK (PCB)

Program code is accessed through the data segment

table located within this locked slice. For COBOL and
RPG programs the COP Table is also located within the
task's PCB. PCB slices are user slices and take a slice
number from the pool of available entries at the top of
the SAT.

6. MCP STRUCTURE AND MEMORY ORGANIZATION (CONT.)

6.3 LOCKED AREA AND SLICES (CONT.)

2015400

'''''

6.3.8

TASK CONTROL BLOCK (TCB)

The TCB is the slice which holds the control information
for a task. 1Its contents are discussed in detail in
section 8.

Each TCB has a slice number which corresponds to the mix

number of its task. It addresses the corresponding PCB and

ICB, and holds the CONTROL STACK which contains MCP
restart information. The data segments for a program
are accessed through the Data Segment Table held within
the TCB.

DATA SEGMENT TABLE (DST)

A locked slice does not usually hold all of the code
or data identified with the slice. Most slices
contain a Data Segment Table (DST). The DST is a
table of segment descriptors (see table 6.4.1 SD MAF)
giving the address of the associated code on disk,
and also the memory address if the segment is present
in main memory.

The absolute memory address of the DST is held in bytes
offset 14 and 15 (reversed) of the locked slice (see
Tables 8.2.1 and 8.3.1). All items in the dump that
locate other information in memory have now been
described.

EXAMPLES OF HOW TO LOCATE ITEMS

Locate data segment 9 of a program running with mix = 4:
a) Find the SAT (Fixed memory address).

b) The address of the TCB slice descriptor is at
byte offset 2 x 4 = 8 and is byte reversed.

c) The address of the DST is in bytes 14 and 15 of
this slice (reversed), (Tables 8.2.1 and 8.3.1).

a) The segment descriptor is located at byte offset
8 x 9 = 72 in the DST, and is 8 bytes long.

e) The first byte of SD determines whether the segment
is in memory, (Table 6.4.2)

£) Bytes offset 1 and 2 (reversed) give the memory
address of the segment, (Table 6.4.1).

65

6.

6—6

MCP STRUCTURE AND MEMORY ORGANISATION (CONT.)

6.

3

LOCKED AREA AND SLICES (CONT.)

6.3.8 EXAMPLES OF HOW TO LOCATE ITEMS (CONT.)

Locate the COP Table of a program running with mix = 3
(COBOL/RPG programs only) :

a) Find the SAT (Fixed memory address)

b) The address of the TCB slice descriptor is at
byte offset 2 x 3 = 6 and is byte reversed.

c) Byte offset 1 of the slice gives the index into
the SAT for the PCB memory address (Table 6.3.1).

d) The COP Table is located in the PCB at the memory

address held in bytes offset 10 and 11 (reversed)
(Table 8.2.1).

OVERLAYABLE AREA AND SEGMENTS

Above the locked memory area is the overlayable area. PTRX of
MAP VMWA (Table 7.5.1) addresses the first byte and PTRZ the
last byte of this area. To obtain an analysis of the structure
of this area use the PRINT MEMORY.LINKS option of PMB8O.

The overlayable area contains code and data segments and may also
contain available memory areas. All segments are accessed through
the slice structure and Data Segment Tables as explained above.
Available areas are also treated as segments and have a segment
descriptor (with flags = @00@) in the first eight bytes of the
area.

The segments in the overlayable area are linked together in
the following manner (see figure 6.4.1). The first two bytes
addressed by PTRX provide the memory address of the segment
descriptor for the first segment in the overlayable area.

This segment descriptor contains the absolute memory address

and length of its segment. Immediately following this segment
in memory, the next two bytes hold the memory address of the
segment descriptor of the second segment in the overlayable area.
This is repeated until the memory addressed by PTRZ is reached.

If an available area is shorter than ten bytes in length (two for
the memory link and eight for the segment descriptor), then it is
filled with binary zeros. A link with the first byte @00Q is
invalid because this would point to ROM, and the virtual memory
algorithms recognise that this byte is a filler, not a memory
link .

6. MCP STRUCTURE AND MEMORY ORGANISATION (CONT.)

©.5 PHT AREA

The Peripheral Handling Table (PHT) area is located at the top

of page zero of memory. The contents are analysed by the PRINT PHT
option of PMB8O. The area contains tables of information used by
the Master Interrupt Processor (MIP) and DDR code. Each table is
loaded into memory at warmstart time and remains at the same

memory address throughout the session. The Tables are addressed
by the field PHT.ADDR.TABLE of MAP PHDMP (Table 7.2.1). The
contents of these tables are discussed in more detail in section 9.

6.6 EXTENDED MEMORY

A

A [Dacas 1)
ExtCuueu a

\rage i) memory may contain only a few selected
items. To determine which items are in extended memory,
use the PRINT MEMORY.MAP option of PMBS8O.

Any or all of the interpreter segments, the index communicate
handler segment, or the data comm message buffer segment may
be held in this memory. If a slice is located in extended

memory, then all segments of that slice are included in the
extended memory.

The segments (excluding data comm buffers) are loaded at
warmstart time as specified by the SYSCONFIG file and subject

to there being sufficient extended memory space. These segments
then remain at their allocated memory locations for the entire
session.

2015400

6—7

6.1.1 AREAS OF MEMORY

@0000@

@1000@

ROM

4KB

(3.01) @32DB@

RESIDENT AREA

13KB

@6000

@
to
@EOQ000

LOCKED AREA

24KB
to floating

< 60KB

OVERLAYABLE AREA
~ @Fcoo0e ~ 63KB
PHT AREA
@FFFF@ 64KB
@0000@
EXTENDED MEMORY
(PAGE 1)
@3FFF 16KB
or or
@7FFF 32KB
or or
@BFFF@ 48KB
or or
@FFFF@ 64KB

68

AREAS OF MEMORY

6.2.1 RESIDENT AREA LAYOUT

@1000@
@100A@
@100E@
@1049@
@10AF@
@10BB@
@10BC@
@10BE@
@1114@
@1120@
@114E@
@117E@
@11DB@

@1316@
@131A@

@3279@
@32DB@

2015400

WM2GLOBAL

MIP.ENTRY

SET UP BY
BOOTSTRAP

DEBUG.GLOBAL

INTERGLBL

DC.SPACES

DC.STUFF

DC.PATCH

PHDMP

L= PHT AREA

VERSIONINFO

DIAGCBUF

VMWA

——> OVERLAYABLE

GLBLM

AREA

SCL BUFFER

SCL IODESC

DSK.RETRIES

CT.INFO

Mip
1-0 Q HANDLER

MCH

READMRITE S

READ//WRITE RANDOM
READ/WRITE STREAM

VM

EPAR

SAT

——> LOCKED AREA

—— —— — —

LOCKED AREA

RESIDENT AREA IAYOUT

6—9

6-10

TOCKED AREA TA

YyouT

BAILIFF

I RESIDENT AREA

TCB1

TCB2

0000

0000

OPENCLOSE

XX X4

DDR

LR]

0000

PCB

0000

SAT

iy
N

CX
22
A

OVERLAYABLE
AREA

LOCKED AREA LAYOUT

6.4.1 OVERLAYABLE AREA ILAYOUT

I LOCKED AREA |

PTRX of VMWA \l l

o /
0
—)
> /
3
4 segment descriptor
5 f_——A—__\
~ |
DST
0 AVAILABLE
1 /1
2
3 <E—____________,—-——--—"”" '
4 ~y
~
5 \
) |
; s
1 L]

PHT AREA I

OVERLAYABLE AREA LAYOUT

2015400 6-11

6.

5.

1 PHT AREA LAYOUT

PHT.ADDR.TABLE
of MAP PHDMP

high address end
of page O

6—12

OVERLAYABLE AREA

KEB.INT.BUFF

DSKPM

DSKPM

PHTXDK

PHTH

QHEAD

@

L]
.

PHTXPANSEP

PHTH

QHEAD

PHTXKEB

PHTH

QHEAD

PHT AREA LAYOUT

one for
each
disk
drive

disk
PHT

serial printer
PHT

keyboard
PHT

6.6.1 EXTENDED MEMORY LAYOUT

DST

@0000@

SAT

INDEX
COMMS

2015400

AVAILABLE

MEMORY

EXTENDED MEMORY LAYQUT

6—13

TABLE 6.i.1 - LOCATIONS IN MEMORY DESTROTED BY BOOTSTRAP

MENORY ADDRESSES

@.000@ - @100ER
@.030@ - @103F8
@0708 - e197re
@000@ - 825358

LOCATIONS IN MEMORY DESTROYED BY BOOTSTRAP

6—-14

TABLE 6.2.1 - GATH MAP (3.01) - SLICE ADDRESS TABLE

OFF LEN

SET GTH FIELD USE

-~ QSRCSN memory addresses of slice descriptars

2 BLFSN BAILIFF Task Control Block (TCB) addess

16 TSK1SN addresses for mix numbers 1-8 (TCBs)

6 AVRSN Automatic Volume Recognition (AUR) TCB address
and utility mix numbers 10-11 TCB addresses

5‘\300

2 2 BUSN SYS-SUPERUTL (mix=12) TCB address
26 2 MCSSN Message Control Systea (MCS mix=13) TCB address
28 2 NDLSH Network control program (mix=14) TCB address
20 2 LDRSN program LOADER (mix=15) TCB address
32 2 SNABS absolute memory address slat
used for entry to global MCP code
% 2 DKapPSIC -

OPCLSN DPEN-CLOSE-AVR code slice address

INITSN WARMSTART-INITIALISE code siice address

BISPSN DISPLAY-SPD code stice address

LPREN LINE PRINTER BDR code slice address

CSTRSN CASSETTE DDR code siice address

DSKRSN DISK BDR code slice address

SEPREN SENNEFFE (40 cps} serial printer DDR address

KEBRSH KEYBOARD DDR address

CCREENSN SELF SCAN(SS1 or 552) and CRT LDR code slice address
ADCRSN ASYNC DATA COMM DDR code slice address

SDLREN SYNC DATA COMM DDR code slice address

DCSLICE DATA COMM COMMUNICATE handling code slice address
CONSN CONSOLE COMMUNICATE hand!ing code slice address
PANRSN PANTIN (120 and 180cps) serial printer DDR address
INXSN INDEXED FILE COMMUNICATE hand!ing code slice address

RTCRSN REAL TIME CLOCK DDR code slice address

JCHSREN ICHD DDR code slice address

HESSSN DATA COMM MESSAGE BUFFER SPACE slice address
CONBUFSN CONSOLE FILE BUFFER (non SCL keyboard input) address
SCLBUFSN SCL (keyboard and ZIP) BUFFER slice address

2
2
2
2 DIAGSN TRACE DIAGNOSTICS MCP code'slice address
2
2

fTUM MmO NN DT MM

OCOM.SN OVERLAYABLE COMMUNICATE handling code siice address
0 FREESN two-byte address slots used as required for
Program Controt Block (PCB) program code slice addresses and
Interpreter Control Block (ICB) interpreter addresses
slices 39-48

ANFNIBRRRBLHLILER RSB HE

FORMAT

LABEL
AA BR
]

= &£ ® B = % 8 g =z T % 8 E ¥ : B X B = % = = | | |

SATM MAP - SLICE ADDRESS TABLE

2015400

6—15

TABLE 4.3.1 RS MAP (3.01) - SLICE DESCRIPTOR

OFF LEN
SET GTH FIELD
¢ - 5D
0 1 SDFL{G
1 1 SDUSRS
i 1 SDPED
1 2 SDADIR
2 1 SDCFBI
2 1 SDIED
3 2 SDLENG
5 2 SDDKAD
SDTKSC
7 1 SDUNIT
8 - SDSEGSZ
8 2 SDPLNK
10 - SDSLESZ
cont..../

Stice Descriptor FLAGs

slice USER count (applies to Code Control Blocks)
Program Environaent Offset (applies only to TCBs)

index in SAT of stice address of PCB of this task’s PCB
genory address of segment

applies anly to single segment DIR slices

Code File Directory Index (applies only to CCBs)

index in the disk directory of the disk copy
Interpreter Environment Offset (applies to TCBs)

index in SAT of the associated Interpreter slice address
LENGth (in bytes) of the disk copy of this slice

DisK ADdress (TracK and SeCtor) of the disk copy

i

disk UNIT on which the disk copy resides

Pink LiNK - memory address of the next slice

FORMAT
LABEL
TABLE 4.3.2
NOTE 1
INDEX

#A BR
INDEX
INDEX

B BR
B BR

TABLE 7.2.1
LABEL

AA BR

NOTE 2

6—16

RS MAP (3.0l1) - SLICE DESCRIPTOR

10
10
12
1
14
14
16

iB
Q0
&
&3
&

MU= Sl U

TAELE 6.3.1 RS MAP (3.01) - SLICE DESCRIPTOR

CCBCSTB
PEP
CCBCSTL
1EP
LCBra2
DETA
DSTLIN
€S58S
C5PA
CELM
101D
SNTHSK
FCH

HOTE

NOTE 2

NOTE 3

(cont.)

(CCB) address of Code Segment Table Base
(TCB) address of related PCB slice descriptor
(CCB) address of Code Segment Table Limit
(TCE) address of relatad ICB slice descriptor
(CCB) start of Preset Area 2

Bata Segment TAble address

DST LIMit address

Controi Stack BaSe address

Control Stack Pointer Address

Control Stack LiMit address

task-id of the originator of this task

HASK for field SINTFLAG of map INTERGLBL
Fetch Communicate Message as returned from the MCP

If bit 4 (B10@) of SDUSRS is set then
the slice may not be swapped out.

If a slice is swapped out only the first 10 bytes
of the-descriptor remain in memory

non HCP CLB stice descriptors

are 14 bytes long (up ta CCBPA2)

TCE slice descriptors are 33 bytes long

and extend into an § Interpreter Work Area (SIWA)

AA BR
AA BR
AA BR
AA BR
NOTE 3
AA BR
AA BR
AA BR
#A BR
AA BR
TABLE
TABLE
TABLE

o~ N
O <
Ny -

2015400

RS MAP (3.0l1) - SLICE DESCRIPTOR (cont.)

UR FLnDS - FIELD SDFLAD OF HAP RS

A
i

BLE 6.3.2 SLICE DESRIF

BITS MASK INTERPRETATION

7 B0 reserved

6,5 40 SLICE STATUS

4 10 reserved

Z-2 0C SLICE TYPE

1 02 HENMORY PAGE NUMBER for all segments associated with this slice
¢ 01 tast entry in PINK LINK chain

S ICE STATUS:

VALUE INTERPRETATION

40 ABSENT from memory (SWAPPED OUT)
20 MAINTAINED and PRESENT in memory
00 ABSENT

SLICE TYPE:

VALUE INTERPRETATION

oC Task Control Block (TCB)
04 Code Control Block (CCB); DDR, FDR, PCB, or ICH
00 single segaent slice

TYPICAL SDFLAG VALUES:

absent single segment slice

maintained single segment siice
maintained CCB with segments in page 0
maintained CCB with segaments in page 1
naintained TCB

suapped out CCB

swapped out TCB

tast eatey in PINK LINK chain

SERNRXRBS

SLICE DESCRIPTOR FLAGS - FIELD SDFLAG OF MAP RS

OFF LEN
SET GTH

00 NI LN =+ O
[I TR

TABLE 6.4.1 - SEGD MAP - SEGMENT DESCRIPTOR

FIELD USE

SGDFL SeGment Descriptor FlLags

S6DSS Segment Start address in memory

S6DSL number of bytes in Lthe segment

SGDDA Disk Address (zero relative sectar) of the disk copy
SeDDY Disk Unit holding the disk copy

SZ.SEG.DESC -

FORMAT
TABLE 4.4.2
fA BR

8 BR

8 B8R

TABLE 7.2.1
LABEL

TABLE 6.4.2 - SEGMENT DESCRIPTOR FLAGS - FIELD SGDFL OF MAP SEGD

BITS HASK INTERPRETATION

80
40
20
10
08
04
02
01

S o= U0 N

1
1
1

segaent USED recently
segment ABSENT from memory (overlayed)
segaent GVERLAYABLE (not locked)

reserved

i=
i=

segment may be updated (READ-WRITE)
segment is not for system use

reserved

{is=

segment has been updated since it was read into memory

TYPICAL VALUES FOR MOST SIGNIFICANT DIGIT:

&, 2 OVERLAYABLE segment PRESENT in memory
8, 0 LOCKED segment (will be located in siice}
&y & ABSENT (overlayed) segaent

TYPICAL VALUES FOR LEAST SIGNIFICANT DIGIT:

WLUE INTERPRETATION

Dy ¢ segment UPDATED
C,8,4 segaent NOT UPDATED

SEGD MAP - SEGMENT DESCRIPTOR and

SEGMENT DESCRIPTOR FLAGS - FIELD SGDFL OF MAP SEGD

2015400

6—19

SECTION 7

GLOBAL MCP MAPS AND TABLES

This section discusses the information held in the Global MCP
maps and tables. These maps should be examined in detail if the
preliminary analysis discussed in section four is insufficient.

On each release of the MCP, these tables are located at a specific
address in memory. As the offset and format of each map may change
between release levels, PMB8O handles this by having different
reference files PMBM.nnnnn and PMBO.nnnnn (see section 3).

The global maps are analysed by PMB8O using the PRINT GLOBAL option.
Single maps may be selected for printing by the appropriate parameter
to the print command (GWA, DIAGNOSTICS, VMWA, ESCT or SCL).

7.1 MCP - INTERPRETER INTERFACE

The interpreter global work area (Table 7.1.1) holds the memory
addresses of various global MCP routines. It also holds the
first link into the memory organisation through SATLINK. A
check should be made that these fields hold valid values.

For example, the Global MCP routines lie below the locked slice
area between @1000@ and @4000@, so the addresses of the global

routines should be in this range

Another interesting field is TOTSICT. This is used in thrashing
detection which is discussed in section 7.5.3.

7.2 PERIPHERAL INTERRUPT HANDLING

The peripheral handling dump area (PHDMP MAP Table 7.2.1)
is used when the MCP is hardling hardware interrupts, and
when printing trace diagnostics.

When a hard interrupt is received from an I-O channel, the ROM
code causes entry to the Master Interrupt Processor (MIP).
This global MCP code stores the contents of the processor
registers in PHDMP, and performs basic interrupt handling.

2015400

7.

GLOBAL MCP MAPS AND TABLES (CONT.)

7.2

7.3

7.4

PERIPHERAL INTERRUPT HANDLING (CONT.)

If the General Trace (GT) facility is switched on

(see section 5) the processor registers are stored

in PHDMP each time a trace point is encountered. If
the system fails and issues a diagnostic on PK-lights
17-24 (sce section 5) the processor registers are also
stored in PHDMP.

Thus, the register dump fields of PHDMP contain the contents
of the processor registers, either at the last I-O interrupt
or the last diagnostic trace point. The latter case can

be distinguished since PHDMPAD will equal the last one byte
diagnostic in DIAGCIRC (Table 7.4.1).

In either case, the contents of these dump areas usually give
the most accurate information on which function the MCP was
performing before the dump was taken. The interpretation of
the registers is explained in section 5.1.

The remaining fields of PHDMP are used by the MIP in
handling I-O interrupts. Ihe field INTMASK gives the I-O
channels on which interrupts may be processed. The field
INT.SCAN.TABLE provides the order in which interrupts should
be processed. The field ISCT gives the channel which was
last serviced; this field points to the PHT associated with
that channel.

KEYBOARD VERSION AND SPO TYPE

The VERSIONINFO MAP (Table 7.3.1) indicates which translation
table the MCP is using for printing characters.

If wrong characters are being printed (£,#; $, etc.) this

field should be checked and an engineer should be asked to

give advice about correct installation of the machine backplane.

DIAGNOSTIC INFORMATION

As its name suggests, the DIAGCBUF MAP (Table 7.4.1)

holds information specifically aimed at assisting problem
diagnosis. It consists of three parts. The circular
buffer of one byte diagnostics (DIAGCIRC) indicates what
the MCP has been doing; that is, which of its global and
slice code has been running. The register save areas give
the task which is running and which microcode this task

is using.

The light switch indicates whether the keyboard was enabled
at the time that the dump was taken.

The PRINT DIAGNOSTICS option of PMB80C causes this map to
be printed.

7. GLOBAL MCP MAPS AND TABLES (CONT.)

7

2015400

4

DI?

7.4.1

7.4.2

GNOSTIC INFORMATION (CONT.)

ST WA RO (L JE Y

ONE BYTE DIAGNOSTICS

Trace diagnostics are discussed in section 5. Each
time a trace point is encountered, the one-byte trace
diagnostic is inserted in DIAGCBUF. This is done
whether or not the MCP trace function has been switched
on using the GT command.

Field DIAGNINDEX of DIAGCBUF is the byte offset (zero
relative) of the position of the next entry to be made
in DIAGCIRC. With the entries in DIAGCIRC and reference
to tables 5.3.1 to 5.3.11, it is usually possible to

determine what the MCP was deing immecdiatcly before
the dump was taken.

No entries are made in DIAGCIRC when peripheral interrupts
occur. This should always be remembered, and reference
made to the PHDMP map to determine when the last interrupt
occurred (see section 7.2)

TOP OF CONTROL STACK

The switching of control between tasks is performed
by the EPAR (section 7.6.1). 'When EPAR exits and

control is passed to a task, a diagnostic with value
@EE@ is entered in DIAGCIRC and the registers XY, L

~ TOATID Mmla -~
and J are saved in XVYSAVE, LSAVE and JSAVE. The

contents of these registers at this time indicates
which task gained control and which microcode was
entered from EPAR.

XYSAVE holds a copy of the top four bytes of the control
stack of the task which was entered, (see table 7.4.2),
and indicates in which microcode segment and at what
offset the entry occurred. LSAVE holds the memory
address (byte reversed) of the task slice descriptor.
JSAVE holds the memory address (byte reversed) of the
microcode segment to be executed.

Only microcode may execute on the B8O processor;
therefore all tasks except microcoded tasks need an
interpreter to be executed. Even microcoded tasks
make heavy use of the MCP routines for peripheral and
file handling. Thus it is very rare to find the entry
code in XYSAVE referring to a task slice. The entry
code usually refers to one of the following (refer

to Table 7.4.2):

7-4

GILORAT, MCP MAPS AND TABLES (CONT.)

7.4

7.5

DIZGNOSTIC INFORMATION (CONT.)

7.4.2 TOP OF CONTROL STACK (CONT.)

INTERPRETER : It is very unusual for problems
to be encountered in an interpreter.
The problem is likely to be related
to a hardware interrupt.

DDR : Many program communicates require
input-output operations. These will
be performed by an MCP DDR slice.

MCP FUNCTION : Some program communicates require the
execution of a Function Dependent
Routine of the MCP. For example,
file open and close, index file commu-
nicates, console file communicates.

ABSOLUTE ADDRESS

.

Global MCP routines are entered at an
absolute address. These addresses are
stored in the INTERGLBL map (see table
7.1.1, and section 7.1).

BAT

LIFF (slice O) - a microcoded MCP task, see Section7.6.3
SCL/LOADER (slice 15) - a microcoded MCP task, see Section 7.7.

NOTE:

Slice numbers in XYSAVE are twice the value expected.

They provide an index into SAT which has entries two bytes
long. For example, if XYSAVE has a value @12220000@, then
the last code entered was slice 17 (=@22@/2), segment 18
offset 0, a segment of the MCP OPEN-CLOSE slice.

VIRTUAL MEMORY SUBSYSTEM

All movement of segments in and out of memory is the ‘responsibility
of the Virtual Memory (VM) subsystem. The VMWA (Table 7.5.1)
is its work area.

The work area contains memory addresses, lengths, an
I-O descriptor for loading and unloading segments, and
a "GETSEG" counter.

7. GLOBAL MCP MAPS AND TABLES (CONT.)

2015400

(€]

TITITSMTIN

7.5.1

7.5.2

7.5.3

MEMORY LINKS

Withcut refernce to the MCP listing it is difficult
to be certain of errors in the VM pointers. If a
virtual memory operation is in process, the pointers
may be in a transient state and be marked on the dump
as "illegal". (The PRINT MEMORY.LINKS option of PMBSO
may produce spurious errors on such a occasion).

If a memory link becomes overwritten by some other
part of the MCP, then the system may continue to run

satisfactorily until the VM subsystem encounters the

. . ,
corruption. For thig reascon it

VM routine to fail due to a fault in another part of
the system. A dump showing a fault in the memory

links may not give the solution to a problem but rather
the symptoms of a completely independent fault.

T mAcadihlA £ 2laa
4o pULwLcLT 10D Tac

VIRTUAL MEMORY I-O

The virtual memory I-O has the standard I-O descriptor
format (see table 9.3.3). The most important field is
the flags IODFL.

Since, in a virtual memory system, disk is an extension
of main memory, a disk "parity error" has very. serious

implications. If the B8O MCP is unable to access any
of its virtual memorv on disk, then execution is halted

and a "DF" diagnostic is displayed. The virtual memory
I-0 descriptor contains further information about the
failure. The flags define the nature of the error (see
table 9.3.4), the disk unit and address fields locate
the area of failure.

THRASHING DETECTION

The virtual memory subsystem is responsible for

thrashing detection. It uses the field GETCNTR, and the
field TOTSICT of map INTERGLBL (table 7.1.1).

GETCNTR 1is set to @l10OO@ and decremented by one each time a
segment is read from disk into memory. At the same time,
TOTSICT is set to zero and incremented by one for each
S-OP processed by an interpreter. GETCNTR provides a
measure of the "wasted" work and TOTSICT measures the
"useful" work. If the ratio (256-GETCNTR): TOTSICT
becomes greater than 1:100, then the MCP takes action

to reduce thrashing. As the fields are periodically reset,
no useful information can be derived if GETCNTR is close
to @100@ and TOTSICT is close to O.

7.

GLOBAL MCP MAPS AND TABLES (CONT.)

7.6

SYSTEM CONTROL

The MCP has three resources to manage; the processor, the

MCP routines used by tasks, and the memory. The processor and
MCP functions are allocated by the Execution Priority Assignment
Routine (EPAR), the task control subsection. The memory is
allocated by the Bailiff, task O.

The global MCP map GLBLM (Table 7.6.1) is the work area used
by these sections of the MCP to control the allocation of these
resources. The PRINT GLBLM option of PMB80O prints the contents
of this map. The PRINT MIX option provides an analysis of some
of the more useful fields of this map.

7.6.1 PROCESSOR ALLOCATION - EPAR

The EPAR manages the control of the processor by a

system of "independent runners". These independent runners
are tasks, each having a task-id and a corresponding

mix number between O and 15 (see table 7.6.2).

At any time, only one of these tasks is the current
task and has control of the processor.

Each task has an entry in the Execution Scan Table
(ESCT). The field EICT of map GLBLM points to the
entry in ESCT for the CURRENT task. This byte, also
called the task-id is displayed on the keyboard
D-lights when control is passed to the task.

Section 7.4.2 describes how to determine the function
that the task is currently performing.

The status of all the tasks in the system is stored

in the Wait Key Table (WAKT). Each entry in the ESCT

has a one byte entry in the WAKT in the corresponding
position. The order in which the task-ids occur in the
ESCT and WAKT reflects the relative priorities of the tasks.

The highest priority tasks occur first. The first six
tasks in the table have specific functions and always occur
first, followed by "user" tasks.

The value of the entry in the WAKT indicates whether the
task is runnable or waiting, plus the cause of waiting
if applicable (see Table 7.6.3).

7. GLOBAL MCP MAPS AND TABLES (CONT.)

7.6 SYSTEM CONTROL (CONT.)

7.6.2 MCP FUNCTION CONTROL - LOCKS

Some MCP routines may not be used by two tasks simultaneously.
Each of these routines has a lock. These locks reside in
the GLBLM map (table 7.6.1). If a task is using one of these

routines (for example: opening a file, or displaying a message
on the SPC) then the lock corresponding to that routine is
set to the task-id. Such a lock and its corresponding

K a
MCP routine may not then be used by another task, which will
have to wait.

There may exist problems with the use of locks

which could cause either a program or the complete
system to hang. If there are two tasks holding
different locks, and both of them are waiting for
the lock which the other task holds, then a deadlock
situation arises. Neither task can proceed.

7.6.3 MEMORY ALLOCATION - BAILIFF

The Bailiff (task O) controls the allocation of memory
to tasks. If there is sufficient memory for all tasks
in the mix, then the virtual memory subsystem will

be overlaying segments in the overlayable area as
required. If however, there is a shortage of memory,
then thrashing will be detected and the Bailiff will
come into operation.

The Bailiff swaps slices in and out of memory. Swapping
should not be confused with the segment overlaying operation
performed by the virtual memory subsystem. Swapping is

an operation performed on a locked slice. When a slice

is swapped out, the entire locked slice (excluding the

first ten bytes of the slice descriptor) is written out

to disk and the other contents of the locked slice area

are moved down in memory. In this way, more overlayable
memory becomes available.

Slices may volunteer for eviction by having no users,
or being long waited, or they may be conscripted as
required.

Volunteers will only be swapped out when either enough
volunteers exist to make it worthwhile (field SWAPCNT
of map GLBLM is small enough), or thrashing has been
detected. If thrashing is detected and no volunteers
exist, then a slice (usually a TCB) will be conscripted.
If a task (TCB) is swapped out then it is no longer
runnable. The task will be restored when more memory
becomes available.

2015400

7.

GLOBAL MCP MAPS AND TABLES (CONT.)

7.6

SYSTEM CONTROL (CONT.)

7.6.3 MEMORY ALLOCATION ~ BAILIFF (CONT.)

If a program is written which has very large segments
(either data or code) then it is possible for thrashing
to be detected when this is the only program running.

In this case, the task will be evicted and never restored
since no more memory becomes available. The operator
must intervene with a GO command.

The work areas used by the Bailiff to make decisions
on swapping can be found in the GLBLM map (table 7.6.1)
with further explanation in table 7.6.4.

SCL INTERPRETER AND LOADER

Task number 15 is reserved for the MCP slice which interprets
the System Control Language (SCL) commands, and loads programs.
When this task is running, the D-lights D4, D5, D6, D7 will all
be on.

The SCLBUFFER map (Table 7.7.1) holds the last SCL input (either
from the keyboard or from a ZIP) and is terminated by @1F@.

TABLE 7.1.1 - INTERGLBL MAP (3.01) - INTERPRETER WORK AREA

OFF LEN
SET GTH FIELD

3 GOSCANMIX
3 GOFINDCOD
2 SATLINK
& TOTSICT

DO~ ND

KDUMP
SINTFLAG

[oe
mn
N o

SICOUNT
GOMCH

oy
o~
[y ¥}

IAMCH
GOYIELD
GOGETSEGL
GOPUTSER
DATEJ
DATEY
DATEM
DATED
DAYOW
GOODTINE
TINE
MIDNITE
RTCEXIST

JEROEHEFEYRNYG
~Su~ummm4~uuum

USE

segory address of glaobal MCP routine

pointer to the Slice Address Table (5AT)

total count of S-Instruckions executed since
field GETNTR of map VHWA was fast initialised
used for THRASHING detection

duap of the K register

S-INTerpreter flag, the interpreter will
release control and the HCP will SCANMIX
when it is non-zero
S-Inbruction count since branch &
60 to Master Comsunicate Handler
when non-zero

aeaory address of giobal HCP routine

Julian day (first three characters)
Year

Month

Day

DAY OFf the Week

TIME inforaation

non-zero if Real Time Clack EXISTs

FORMAT

2015400

INTERGLBL MAP (3.01;

- INTERPRETER WORK AREA (cont.)

7-9

TABLE 7.1.1 - INTERGLBL MAP (3.01) - INTERPRETER WORK AREA (cont.)

B

BRIBYRIIAAIER

é

Od Od O G4 O O G A O O O3 O

VERSION sark, release, and patch level
of last HCP compilation (PHBBO files use this id)
ACTUAL.VERSION wversion of this patched HCP
GOUNWTONE sesory address of global MCP routine
GOYIELDR "
GOPUTSLER "
GOGETSLC "
GOUNMTY u
60STK.J "
GOUNSTK.J "
GOMSPRINTSTKR "
GOMSPRINTSTACK
GOMSPRINTR u
GOMSPRINT "

ASCII

]

ASCII
AA BR

2 = » = =2 N1 =28 =& 3

INTERGLBL MAP (3.01) - INTERPRETER WORK AREA

OFF LEN

SET GTH FIELD

0 1 PHDMPRQ

1 2 PHDMPEX

3 B8 PHDMPST
" PHDMPXY

11 1 PHDWPAD

i2 1 PHDMPRO

i3 1 PHDWPBF

* % PHDMPFL

14 1 PHDMPBI

15 2 PHDMPB32
17 2 PHDMPJ

19 2 PHDMPK

21 2 PHDMPL

23 2 PHDMPMi

25 2 PHDMPWR
22 2 PHDDRRESETJ
"% PHDDRDMPM1
Ji 2 PHDDRREENT
cont..... /

TABLE 7.2.1 - PHDMP MAP (3.01) - PERIFHERAL HANDLING DUMP AREA

USE

I-0 channel last serviced

EXit address stare

top of contral STack, held in
XY processor register dump area
AD [{]

BG *

reaap of

FL processor register dump area
Bl "

B32

J i

K 1}

L w

"1 u

UR "

J duap area for DDR use

Ml 1]

DDR RE-ENTry address

FORMAT
TABLE 9.2.2
A BR

TABLE 7.4.2
TABLE S5.1.1

[

AA BR

2015400

PHDMP MAP (3.01)

— PERIPHERAL HANDLING DUMP AREA

TABLE 7.2.1 - PHDMP HAP (3.01) - PERIPHERAL HANDLING DUMP AREA (cont.)

DISK.RAW.FLAG Read After Write flag

31 Qi Current Queue polled NOTE 1

% 1 415 first Queue polted .

3 ¢ GPRODB Q-Poll exit on failure (address and offset) AA BR,RA BR
32 & GPRODG @-Poli exit on success (address and offset) .

43 1 I0X.SOFT.RER channe! expander soft interrupt flag -

44 1 SOFT.REQUEST bit set indicates soft request o znter DDR -

45 1 SOFT.INT.HASK bit set indicates soft interrupt -

by de-selected device

46 1 SOFT.REQ.CH channel address of soft request TABLE 9.2.2
47 1 INT.MASK.DUMP INTerrupt MASK DUMP area (data coam) TABLE 9.2.2
4B 1 INT.MASK.VM INTerrupt MASK excluding mixed channe! expander .

42 1 INT.MASK.DC INTerrupt MASK including mixed channel expander .

S 1 INTHASK bit set indicates allow interrupt .

woow o INT.HASK remap of above *

S1 8 INT.SCAN.TABLE channel adresses .

in descending order of priority

5 B DISK.UNIT.TABLE disk urit nuambers in the above erder NOTE 2

47 B PHT.ADDR.TABLE PHT addresses in the above order AA BR

8 2 I5C1 set to address of current PHT on interrupt AA BR

85 1 -

NDTE 1 an I-0 queue head is six bytes long, and so
valid queue "numbers" are €008 8048 Q0CR etc.

|

NOTE 2 Non disk channels have value BFF@.
Each disk channel accomodates 2 units, and sa
these unit numbers are @Q0@ Q028 etc.

PHDMP MAP (.301) - PERIPHERAL HANDLING DUMP AREA (cont.)

TABLE 7.2.2 - DEVICE MNEWONICS IN DESCENDING ORDER OF PRIORITY

CODE DEVICE

SOC sync data coma

ADC async data coaa

CT cassette

D cartridge disk

IF 201-1 fixed disk

M Burroughs super mini disk
DI industry compatible mini disk
LP line printer

SP serial printer

KB keyboard

6 self scan

RT real tiae clock

2015400

DEVICE MNEMONICS IN DESCENDING ORDER OF PRIORITY

1ABLE 7.3.1 - VERSIONINFD #AP (3.01) - KEYBOARD AND SPO INFO

OFF LEN

SET GTH FIELD UsSE FORMAT
¢ 1 KBVERSION KeyBoard VERSION (1=US 2=UK I=FRANCE etc.} BINARY
1 1 VERSIONFLAG 0 for 44-character set, 2 for 4-character set -

2 2 DISP.LINE.LENGTH display line length B BR
4 1 DISP.PAGE.HEIGHT display page height (0 for printer) BINARY
S 1 DISP.DVUCK display device kind TABLE 8.5.2
& 2 DISP.PHT semory address of DISPlay PHT AA BR
8 1 DISP.GHID DISPlay Queue HeaD Offset INDEX
? 1 DISP.DDR.SN DISPiay DDR Slice Nueber (index ia SAT) INDEX
10 2 HSEXIT message grinter routine exit inforsation -

VERSIONINFO MAP (3.01) - KEYBOARD AND SPO INFO

TABLE 7.4.1 - DIAGCBUF MAP (3.01) - GLOBAL DIAGNOSTIC INFO

OFF LEN

SET GTH FIELD USE FORMAT

0 1 DIAGINDEX index of next one byte entry in DIAGCIRC INDEX

1 32 DIAGCIRC circular buffer of one-byte DIAGNUSTICS TABLE 5.2.=
33 - DIAGCEND - LABEL

33 B XYSAVE top of control stack on exit from EPAR TABLE 7.4.2
41 2 JSAVE pointer to base of SLICE or CODE SEGHENT AA BR

43 2 LSAVE pointer to base of Task Control Block (TCB) Ad BR

435 1 LIGHTSYH GFF@ indicates that the console lights -

are available for diagnostic information -
i.2. the keyboard is not enabled -

TABLE 7.4.2 - TOP FOUR BYTES OF CONTROL STACK (RESTART ADDRESS)

ENTRY CODE SLICE or SEGMENT OFFSET RESULTING ERANCH

ONE BYTE ONE BYTE TNO BYTES REVERSED

»>=R808 SEGMENT MUMEBER SEGHENT OFFSET T0 INTERPRETER SEGHMENT
=RIFQ (»@20@)INDEX IMN SAT SEGMENT OFFSET TO SINGLE SEGMENT SLICE
=RIFQ (=@20@) ABSOLUTE ADDRESS T0 GLOBAL MCP CODE

<=Q3EQ@) (XG20@)INDEX IN SAT SEGMENT OFFSET T0 MCP SLICE SEGMENT

SEOMENT) (GIE@-R02@) TCB INDEX SEGMENT OFFSET T0 TASK SEGMENT

NUKBER) (=R00®) BAILIFF SEGMENT OFFSET TO BAILIFF SEGHMENT

DIAGCBUF MAP (3.01) - GLOBAL DIAGNOSTIC INFO and
TOP FOUR BYTES OF CONTROL STACK (RESTART ADDRESS)

2015400

TABLE 7.5.1 - VHKA MAP (3.01) - VIRTUAL MEHORY WORK AKEA

OFF LEN

SET GTH FIELD

——— o —— - ————

¢
4
b
8
10
12
14
16
18

Q0
3B
40
42

%

46

LYEOGCEGUEG IR R R o

[>e]

NG RGN T

UHSTK
VHVSD
VMULN
VMSCN
UHLIM
UHLNK
VNRSD
UHRLN

UKIOD
PTRX
PTRY
PTRZ
PTRA
GETCHTR

USE
pseudo control stack for virtual memory restart
{SPA from current task SIVA
address of Victim Segment Descriptor
Victin segment LeNgth
clear memory SCaN pointer
clear memory scan LIMit
gepory LiNK of first victia segnent
address of Requesting Segment Descriptor
first two bytes of I-0 descriptor
equals Requesting segment Lelgth
Virtual Memory I-0 Descriptor (see HAP IOBESC)
start of OVERLAY ARENA
virtual semory work pointer
end of overlay arena (5 bytes past last segment)

count of GETSEG operatians

FORHAT

B BR
TABLE 9.3.3
#A BR
AA ER
Ad BR

B BR

VMWA MAP (3.01) - VIRTUAL MEMORY WORK AREA

<

S%E&'L\",&‘EﬂBGQG\J&m»um

I NFAR A

o
RN

St

OFF LEN
SET GTH FIELD

MMN“MMEH 1 A e od b ek ek e

O 2 T MY e Md bk s pod ped

BLFESCT
AVRESCT
LDRESCT
NDLESCT
MCSESCT
SUESET
FIRSTBC
WAKT
BLFUWAKT
AVRMAKT
VHLOEK
0CLBCK
0CLOCK2
SLECLOCK
MSLOCK
LDRFLAG

LDRLOOSE
DSPFLG
HLPFLG
HLPFLG . AUR
BADI0.LOCK
BADIO.FLAGS
BADI0.LNTH
BADIO. ADDR
BADIO.UNTT
BADIO.DESC

TABLE 7.4.1 - GLBLM MAP (3.01) - EPAR AND BAILIFF GLOBALS

USE
address of current ESCT enbry
Execution SCan Table
task-ids in descending order of griority
BaiLiFf ESCT entry (aix=0)
Automatic Voluge Recognition task (aix=t")
LOADER-SCL task (mix=15)
NBL ESCY (mix=14)
HCS task (mix=13)
Super-Utiltity task (mix=12)
the rest starting with B-priority tasks
WAit Key Table in the same order as the ESCT
BaiLiFf WAit Key
AVR WAit Key followed by the rest
Virtual Memory LOCK
Open-Ciose routine LOCK
Bpen-Close LOCK 2
SLiCe routine (loading and swapping) LOCK
HeSsage printer (SPD) LOCK
LoaDeR-SCL FLAG, set by ZIP or keyboard input
to the task-id
DiSPlay FLab (@FF@=display to be daone)
HelP routine FLab (RFF@=DDR swapped out)
@FFR indicates run the AVR-OPEN-CLOSE help routine
BALiff Descriptor IO information
used by the logging routine

i
"
“

FORNAT

4A BR

TALLE 7.6.2

ABLE 7.4.3

OTE 1

2 = 8 28X 8 s~ = &8 & ©° 3 =

TABLE 7.6.2

2015400

GLBLM MAP (3.0l1) - EPAR AND BAILIFF GLOBALS

TABLE 7.6.1 - GLBLM MAP (3.01) - EPAR AND BALILIFF GLUBALS

72
73
7%
5

x

| S3FRERBRABVREI=A

Mh A B e () et pea b b Bah peh Pek b b b bk el e s

VOL.ID
VoL
EREADY
EVICT
BFLAG
BIOHAT
SHAPIN
SWaPOUT
SHAPCNT
EVICTID
CONSCRIPT
RSTID
LOGFILEFIN
ERRLOGOFF
HBESCT
SCLINIT
XINFLG
XTHSIZE
SUHIDE

NOTE 1

(cont.)

task-id of sole volunteer (BFF®=rot oue)

VDLunteer bailiff flags

there Exist READY-to-restoic tasks

EVIET flags

Bailiff fiags

Bailiff I0 MATured flag (O=not)
task needs SWAPping IN (0=not)

task ready to SWAP OUT exists (Q=not)
-{number of slices with zero users +1)

ID of task selected for EVICTION
id of task conscripted

1D of task selected for ReSTore (swap in)

LOG FILE FINished flag (0=not)

@FF@ = logging not yet switched on (at warastart)

address of first class B task ESCT entry

valid date entered (not=@FF){warastart oaly)

eXTeNded memory FLab (@FF@=none)
eXTeNded aemory size (R0000@=44KB)

Lock bytes equal @008 when they ar
or equal the ESCT (task-id) byte
of the task holding thea

e free;

TABLE 7.6.2
TABLE 7.6.4

-

"IMARY
TABLE 7.4.2

¥

44 BR

B ER

GLBLM MAP (3.01) - EPAR AND BAILIFF GLOBALS (cont.)

TABLE 7.6.2 - TASK-ID, TASK STATUS, MIX NUMBERS

FIELD ESCT OF HAP GLBLM:

BITS MASK INTERPRETATION

7,6 €O TASK STATUS

S 20 PRIORITY FLAG (O=promoted priority)
41 1E MIX NUMBER (shifted left one bit)

¢ 01 EXCHANGEABLE FLAG (1=exchangeable with adjacent tasks iu ESCT}

TASK STATUS (logical AND of TASK-ID with @0C@):

VALUE INTERPRETATION
80 LONG WAITED
40 SHORT WAITED
00 RUNNABLE

MIX NUMBERS (logical AND of TASK-ID with @1E@):

- o o e o o e e e

0C HIX = 0, BAILIFF

(02-10 HIX = 1 to B, USER TASKS

12 HIX = 9, Automatic Volume Recognition (AVR}

14-16 KIX = 10 and 11, UTILITIES

18 MIX = 12, SYS-SUPERUTL

1A HIX = 13, Message Control Systes (MCS)

1€ MIX = 14, NDL

IE HIX = 15, program LOADER and System Control Language (SCL) code
Logical AND of field WAKT of map GLBLM with @iFe:

nn

2015400

TASK-ID, TASK STATUS, MIX NUMBERS

TABLE 7.6.3 - WAIT KEY TABLE (WAKT) VALUES (Logical AND with @1F@)

VALUE INTERPRETATION

¥
1€
b
ic
1B
1A
19
18
17
16
15
14
13
12
11
10

SRREARIRUZIBIEESHS

RUNNABLE (i.e. not waiting)

FREE (correspanding ESCT task is not assigned)
NDL waiting

HCS waiting on MCSQUEUE

waiting on AD command from the operator
waiting on NO DISK FILE

waiting on FILE IN USE

wailing on NO FILE

waiting on DUPLICATE FILE

waiting on NO USER DISK

waiting on OPERATOR INPUT

waiting on DEVICE NOT READY

SYS-SUPERUTIL waiting on SUPER ACCEPT

waiting on RESTORE by bailif

waiting on DISPLAY

waiting on ECHO

waiting on MESSAGE PRINTER (SPD) (field MSLOCK of map GLBLY)
waiting on ZIP

waiting on ACCEPT

HALF DELAYED

waiting on SLICE routine I-0 (field SLCLOCK of map GLBLM)
waiting on PROGRAM LOADER (field LDRFLAG of map GLBLM}
waiting on VIRTUAL HEMORY I-D (field VHLOCK of map GLBLM)
waiting on file DPEN or CLOSE (field OCLOCK of map GLBLM)
waiting on SECONDARY file OPEN or CLOSE (fietd OCLOCK2 of map GLBLE?

7-20

WAIT KEY TABLE (WAKT) VALUES

TABLE 7.6.4 VOL, EREADY, EVICT, BFLAG
BAILIF FLAGS HELD IN MAP GLBLM:
VDL (are there any tasks VOLUNTEERING for EVICTION 9):

BITS MASK INTERPRETATION

7 B0 VOLUNTEER MEWLY CREATED
& 40 VOLUNTEER EXISTS
50 IF always set

VALUE INTERPRETATION

F NO VOLUNTEER to be swapped out exists
L3 f VOLUNTEER exists
FF A NEM VOLUNTEER exists

EREADY (are there any tasks READY to be RESTORED ?):

BITS MASK INTERPRETATION

7 80 there exists more than one task READY TO RESTORE
6 40 there EXISTS ONE task READY TO RESTORE
50 IF always set

VALUE INTERPRETATION

F there exists NO TASK which would be runnable if restored
& there exists ONE TASK *
FF there exists MORE THAN ONE TASK

cont...../

VOL, EREADY, EVICT, BFLAG

2015400 7-21

TABLE 7.4.4 VOL, EREADY, EVICT, BFLAE (cont.)
EVICT (what shall we EVICT)¢

BITS MASK INTERPRETATION

7 80 EVICT CONSCRIPTS
4 40 EVICT VOLUNTEERS
S 20 FORCE EVICT
0 1F aluways set

BFLAG (what is the BAILIFF doing now ?):

MASK INTERPRETATION

g0 -

40 there MAY BE ROOM to RESTORE a task

20 EVICT DONE

10 ANOTHER EVICT is NOT NEEDED

08 -

04 there is an EVICT IN PROGRESS

02 there is a RESTORE IN PROGRESS

01 the TASK BEING RESTORED is FROM the READY QUEUE

OISO 2]
-
[47]

VOL, EREADY, EVICE, BFLAG (cont.)

7-22

TABLE 7.7.1 - SCL BUFFER (3.01) - KEYBDARD/ZIP INPUT

(FF LEX
SET GTH FIELD

STARTOFF
ENDOFF

0
1
2 256 SCLBUF

D s s

USE

START of data OFFset
END of data OFFset
SCL (keybard or zip) input buffer

FORMAT
INDEX
INDEX
ASCII

2015400

SCL BUFFER (3.01) - KEYBOARD/ZIP INPUT

7-23

TABLE 7.8.1 - CT.INFD (3.01) - CONFIGURATION TABLE INFO

OFF LEN

SET GTH FIELD

0 2 CT2NDDKS
2 2 CTLENGTH

11573

2 times the nuaber of disk drives on the systea
length of the Configuration Table (ET)

FORMAT

7-24

CT.INFO (3.0l1) - CONFIGURATION TABLE INFO

SECTION 8

TASK RUN STRUCTURES

This section explains the organisation and content of the
different task structures. If an investigation of global
MCP tables and memory layout reveals no cause of a failure,
analysis of the contents of the task structures should be
made to determine what action the tasks have most recently
been performing.

As explained in section 7.6.1, the MCP maintains a set of
tasks called "independent runners". Only one of these tasks
will have control at a particular time. A task structure
may be printed out using the PRINT TASK option of PMBSO.

The CURRENT parameter causes the task currently in control
to be printed.

8.1 TASK ORGANISATION IN MEMORY

the Task Control Blocks. Slice numbers O, 9 and 15
are reserved for the MCP slices BAILIFF, AVR and
SCL/LOADER discussed in section 8.2. The other
slices in this range accommodate "user" TCBs as
required. The TCB slice number is the same as the
task mix number.

Tasks are accessed through the slices numbered 0-15;

The MCP tasks are single slice tasks, and the slices
contain both data and microcode segments. User tasks
consist of three slices: a data slice (TCB), a program
S-code slice (PCB) and an interpreter microcode slice
(ICB). An exception to this is SORTINTRINS which is

a microcoded program and so does not need an interpreter.

A TCB is set up when a program is executed on the B8O.
The code and interpreter slices (PCB, TCB) for this program
are created only if these slices are not already in memory.

Program s-code and interpreter microcode is re-entrant,
and therefore may be used by more than one task.

2015400

8.

TASK RUN STRUCTURES (CONT.)

8.1

TASK ORGANISATION IN MEMORY (CONT.)

The TCB slice descriptor holds the index in the Slice
Address Table (SAT) of the program and interpreter
slice addresses (fields SDPEO, SDIEO of Table 6.3.1 -
RS MAP). These two links locate the slices in use by
a task, and these slices in turn hold the Data Segment
Tables (DSTs). which locate all overlayable segments
associated with the task.

8.1.1 CONTENTS OF A TCB

A TCB locked slice contains a slice descriptor;

an S-Interpreter Work Area (SIWA); a Control
Stack; a Data Segment Table (DST), and any

locked segments including File Information Blocks.

An interpreter needs a working storage area for
each task which it is executing; this is the SIWA.
The format of an SIWA depends on the interpreter,
but always starts with an extension to the slice
descriptor which provides the interface between
the interpreter and the MCP, and holds the memory
addresses of the items within the locked slice.

S-machine (refer to the CMS MCP Reference Manual
for details of the S-languages). The control stack
is also used by the MCP to store return addresses,
as explained in section 7.4.2

The use of the contrel stack is dependent on the
r

The DST holds the segment descriptors
of data associated with this task. S

SD MAP.

Any data segments which are not overlayable are also
located within the locked TCB slice. Examples of

locked segments are File Information Blocks (FIBs)

for all open files (see section 8.6). The Data Stack

(data segment O) of MPLII programs is also a locked segment.

8.1.2 CONTENTS OF A PCB

A PCB locked slice contains a slice descriptorx

an optional preset area (CCBPA2) and a Data Segment
Table.

For COBOL and RPG programs, the COP table is treated
as part of the S-code (it does not change at run time).
It is included in the PCB, following directly after
the slice descriptor.

The DST contains the segment descriptors of all segments
of s-code for the program.

8. TASK RUN STRUCTUJRES (CONT.)

8.2

8.3

2015400

SYSTEM TASKS

The system tasks are permanently present in the B8O mix
although they are not evident in the response to the MX
command. Detailed information about the contents of these
TCBs is not usually required.

8.2.1 BAILIFF TASK

The Bailiff is task O. The function of this task is
explained in section 7.6.3. Segment 6 of slice O is
the TASK TABLE which contains the names of the tasks
is the mix along with other information (see Tables
8.2.1 and 8.2.2). This information is included in

el mem Ve -t T3 e 410 e MmTNTRTT oseTYr ot -
Llic dligiyols pLOUVIUTU Uy Ll FIXLINL Mia OpLLull OL

PMB8O.

8.2.2 AVR TASK

The Automatic Volume Recognition (AVR) task has

mix number 9. The purpose of this task is to allow

the AVR operation to run efficiently with other

tasks. It is executed when peripherals (especially
disks and cassettes) are brought on-line and made ready.
The MCP AVR code resides in the OPENCLOSE slice (17).

8.2.3 SCL/LOADER TASK

This MCP task has mix number 15. The TCB references

a large number of segments including work areas, FIBs and FPBs
for code files and virtual memory files, and micro-code
segments for performing various functions.

USER TASKS

With the exception of SORTINTRINS all programs create a run
structure including three slices (TCB, PCB and ICB). The TCB
contains the run time information of the program. It is usually
necessary to understand the S-language involved to perform

a detailed analysis of the TCB information. This is not, however,
usually relevant to system dump analysis. The most relevant
information is the exact function that the task was performing
which might have caused the system failure. Consequently,

only the general layout of the task structures is provided here.

8.

8—4

TASK RUN STRUCTURES (CONT.)

8.3

8.4

USER TASKS (CONT.)

8.3.1 COBOL AND RPG TASKS

COBOL and RPG programs both use the same S-interpreter
(COBOLINT), consequently their tasks have identical
run structures.

Each file declared in a program has three segments in
the task structure: one FPB (Table 8.5.1), one FIB

(Table 8.6.1) and one segment to contain the record
work area.

A file with indexed organisation has a larger FIB
which includes an IFIB (Table 8.7.1) All FIBs are
located within the TCB locked slice.

Working storage has segments of size set by the COBOL
dollar option DSSIZE with the limitation that segments
occur on Ol levels.

Program S-code is segmented as specified by the COBOL
SECTION statement.

The COP table is located within the PCB locked slice

b VR SR UE SR JOY S [e o A T T Ve . M1 -
between the slice descriptor and the Data Segment Table.

It is called CCBPA2 on a memory dump.

8.3.2 MPLII (BIL) TASKS

MPLII programs and BIL programs (the CMS compilers)

share the same interpreter (BILINTERP). In MPL, all

data that is not specifically declared within an overlayable
segment resides in the Data Stack (data segment O). This
segment is located in the TCB locked slice of an MPL program.

Each file declared has an FPB segment and an FIB segment

in the task slice, the FIB being located within the locked
TCB.

The PCB (program code slice) contains only a slice
descriptor and a Data Segment Table.

COMMUNICATES AND FETCH VALUES

If the execution of a particular task causes the system to
fail, then the failure is more likely to have occurred while
the MCP was performing a function related to the task, than
while the task's normal S-code was being interpreted.

8. TASK RUN STRUCTURES (CONT.)

8.4 COMMUNICATES AND FETCH VALUES (CONT.)

A task makes a request to the MCP via a "communicate" S-Instruction.
The last communicate can be found in the SIWA located within

the task's TCB (see fields CPA.VERB and CPA of COBOL.TCB MAP

Table 8.3.1, and field CPA of MTCB MAP Table 8.3.2). The value

of the communicate indicates the function that the MCP is

probably performing (see Table 8.4.1). This often directs
attention to a specific Device Dependent Routine or Function
Dependent Routine. This may be a clue to the writing of a small
test program to attempt to create a reproducible occurrence of

the problem.

When the MCP completes a communicate request, it returns control
to the task and puts a value in the TCB called the "fetch value"
or Fetch Communicate Message (field FCM or MAP RS - Table 6.3.1).
The value of this field indicates the result of the operation
(see Table 8.4.2).

8.5 FILE PARAMETER BLOCK (FPB)

This data segment which is present in a program code file contains
the initial values relating to a logical file. It contains
sufficient information to enable a task to locate a physical
file on a specific medium (see Table 8.5.1 - FPB MAP). The
FPB in the code file can be changed with the MODIFY utility.

8.6 FILE INFORMATION BLOCK (FIB)

In addition to an FPB, a logical file has an FIB. If the file
is closed, the information is small enough to reside in a
special segment descriptor with a flags value of @48@ called a
"vestigial FIB" (Table 8.6.2 VEST.FIB MAP). This descriptor
resides in the DST of the TCB. When the logical file is opened,

an FIB segment is created in the locked TCB slice and values
inserted which reference the physical file.

An FIB includes the file buffers with an I-O descriptor for each.
When an I-O operation is to be performed on the file, one of
these I-O descriptors is linked to a queue of descriptors called
an I-O gueue. Pointers to the queue are located in the PHT of
the device involved (see Section 9). The I-O descriptors should
be checked for valid contents, since invalid I-O information
(which may be a result of a hardware fault) is a frequent cause
of system failures.

2015400

8.

TASK RUN STRUCTURES (CONT.)

8.7

INDEXED FILE INFORMATION BLOCK (IFIB)

A logical file with the CMS indexed organisation consists of
two physical files, a key file and a data file. The FIB of
files with indexed organisation contains an IFIB which itself
holds two buffers and I-O descriptors to the keyfile (see
Table 8.7.1, IFIB MAP).

8.3.1

2015400

USER TASK COMPONENTS IN MEMORY

SAT

TCB

TCB

SLICE
DESCRIPTOR

/

A

PCB

SIWA
/

DST

LOCKED
SEGMENTS

ICB

SLICE
DESCRIPTOR

DST

PCB

SLICE
DESCRIPTOR

DST

USER TASK COMPONENTS IN MEMORY

—

pointers

to
overlayable
segments

(disk
and
main
memory
copies)

8-17

8.3.2 CGBOL/RPG TCB COMPONENTS

FROM SAT
/ SLICE DESCRIPTOR
—+— >+toPC
S—INTERPRETER o PCB
WORK AREA] to ICB
for COBOLINT
CONTROL STACK
- > to
DATA SEGMENT ——>overlayable
TABLE data
—} > segments
FIB
IODESCRIPTOR
BUFFER
IODESCRIPTOR
BUFFER
pink
link
FIB
IODESCRIPTOR
BUFFER

COBOL/RPG TCB COMPONENTS

8-8

8.3.3 COBOL/RPG PCB COMPONENTS

FROM SAT
FROM % SLICE DESCRIPTOR
kRO 2 DESCRIPTO
SIWA
COP TABLE
9“)
~+——> overlayable
S—code
pink DATA SEGMENT segments
TABLE i

COBOL/RPG PCB COMPONENTS

2015400

8.3.4 MPLII (BIL) TCB COMPONENTS

L~ SLICE DESCRIPTOR
S—INTERPRETER —[—=>toPCB
WORK AREA ——>1t0ICB
for BILINTERP
CONTROL STACK
/ T verlayabl
overlayable
DATA SEGMENT | ver
pink / segments
link =
DATA STACK
(DATA SEGMENT 0)
FIB
IODESCRIPTOR
BUFFER

MPLII (BIL) TCB -COMPONENTS

8-10

TABLE B.1.1 - TASK TYPES

TASK TYPE 1CB PCR
tP TASK DATA + M-CODE
M-CODE YTILITY BATA H-COBE
S-{OBE UTILITY bata S-CODE
LBGER TASK BATA §-CODE

M-LOBE = gachine aicrocode

1CB

M-CODE
H-LODE

EXAMPLES

BAILIFF, LDABER
SORTINTRINS
EYS-GUPERUTL, CoPY
BCS, DOMAIN, THCS

S-LODE = secondary code executed by one of the virtual sachines :-

MLII(BIL), COBOL/RPG, NDL.

2015400

TASK TYPES

8-11

TABLE B.2.1 - TASKTAE MAP (3.01) - TASK TABLE

OF LEM

ST O6TH O FIELD USE

o - BTSTRT -

¢ 1 BTTOTAL TOTAL number of tasks in the aix

1 i BTTOTUGER Tolal nusber of USER tacks in the mix

2 1 BYHAXUSER KaXisum number of USER tasks allowed in the eix
3 1 BTXSUTIL aumber of UTILitites with a wser task-id (@ix{i®}
4 i BLASTID Task-1ID of the LAST user bask loaded

FORMAT

LABEL
BINARY

TABLE 7.4.2

TABLF 8.2.2 - TASE ¥aP (3.01) - TASK TABLE ENTRY

OFF LEM

ST BTH FIELD Yst

¢ 7 TPKID prograa pack-id

7 12 THLID program {ile-id

2L 3 TFCH pseudo fetch communicate message area (for ZIPs)
% 3 TUNPTR zero relative sector address of the Virtual Hemory
& 1 TREST -

28 - TENIRYSZ -

FORMAT

TABLE 8.4.2
B BR

LABEL

8-12

TASKTAB MAP (3.0l1) - TASK TABLE and
TASK MAP (3.01) - TASK TABLE ENTRY

TAELE 8.3.1 - COBOL.TCE (3.01) - COBOL/RPG INTERPRETER SIWA

OFF LEM

SEY BTH FIELD Use FORMAT

¢ 1 - task stice descriptor TAELE 6.3.1
10 2 LOPPIR address of PCB lockad stice holding COP TABLE AA ER

2 2 ISEGPTR address of intorpreter locked <lice AA EBR

% 2 DSTPIR address of Data Segment Table for this TCB stice N

1& 2 STEBASE address of first byte of the CONTROL STACK *

1B 2 STHPIR currenl poiater in the conbrol stack *

20 2 STHLIN end of the control stack .

2 1 TASK.ID TASK-1D of father (@BOR if not zipped) TADLE 7.4.2
23 2 SINTHASK mask to SINTFLAG TABLE 7.1.1
23 3 FETCHY FETCH VALUE area {updated by HCH) TABLE B.4.2
2 1 PsEb Frogram code SEGment for EDJ BIMNARY

&2 2 PRISP Program segaent DISPlacemant for BOJ B ER

31 2 PARTIAL.ST tength of PARTIAL STack 8 ER

33 VERSION - - ‘
36 1 DUNP.MESSAGE DS/DP MESSAGE numbsr -

37 - IIP.AREA - -

37 - JOB.PACK -

37 - RIX.KUMEER - -

I i iSEh curreat Interpreter SEfmant anumber EINARY

3B 2 FSEGPIR Progras Sthaent table PIR a4 B8

40 2 PSEGBASE current Program SEGment BASE address 44 BR

42 3 LONM.NSB FETCH VALUE store area TABLE £.4.2
% 1 DVERFLOY QUERFLOW s-registar BINARY

4 2 LINE.ONT LINE COURT s-register BINARY

48 2 HALT.PGINT debug HALT tine number BIHARY

50 1 CPA.VERB Communicate Parameter Area VERE TABLE B.4.1
58 2 LA CPA object and first parameter byte -

o B MULTIPLICAND wsed in multiply routine -

“ % XY.REVERSE used in edit routines -

oo XYLSAVE - -

61 & SAVE.DESC ysed in subscripting and indexing -

4 2 ZERD.CALL - -

"' PPUALL used in decoding s-op pafamatars -

& 2 DP.CALL? " -

cont..../

COBOL.TCB (3.0l) - COBOL/RPG INTERPRETER SIWA (cont.)
2015400 8-13

TABLE 8.3.1 - COBOL.TCB (3.01) - COBOL/RPG INTERFRETER SIMA

not
oy 8
13
g2 b
%2
" 113
%2 b
% 8
e 2
0 8
1 4
110 &
i 2
14 2
ité 2
" H
" u
118

(cont.)

MODIFICATION.OK -

CoPEXT
EXT.PIR
SAVE.LPA
MORIFIER
SUE.FACTOR
KULTIFLIER
INDEX.COUNT
ABS . SAVE

XY ponp
SAVE.XY

REAL ABS.RTH
XY.STORE
OPHDZ. SAVE
CAT.LENGTH
REKAINDER
NEGBIVISOR
DPHDI . SAVE
CATZ.BISP
OPND4 . SAVE
CAT.SEL
5.0P.ADDIRESS
DIVISOR
SPACES.CoNT
SOURCE . COUNT
SOURCE.LENGTH
SOURCE JADDR
BEST.LENGTH
BEST.ADBR
DEST.FLAGS

FLAG.SAVE

RESULT.G1bN
BIVISOR. 510N

CRPT.RENAINDER

ZERD.SAVE
SIGN.BIGIT
ZERD.UR.BAVE

ysed to store COP EXTeasions

poiatar to extensions

SAVE communicate Paramater Area

used for holding subscript or index modifier
curreat subscript factor

used in auibiply routine

number of iadices

used for holding the absolutised daescripto
ysed for nuaber reversing

i

where to go if ahsolubtise fails

used in arithnetic operations

i

used in CONCATENATE

used in BIVIDE

i

used in EXARINE

used in DUNCATENATE

used in EXAMINE

used in COMCATENATE

offset of current S-0F within code sagment
used in BIVIDE

used in arithmetic roubirnes

i

11

il

L]

used in EDIT

used in HULTIPLY

used in DIVIDE

uysed in COMPARE REPEAT

814

COBOL.TCB (3.0l1) - COBOL/RPG INTERPRETER SIWA

(cont.)

TABLE 8.3.1 - COBOL.TCE (3.01) - COBOL/RFG INTERPRETER SINA

125
124

i

197
9
261
261
262
263

264
256
267
268

1

ol B i T DR pe =D oz o= e
by & o o

iad
[R*]

MMHMNMI—-‘-MI%

SHVE.SIGN
ERIT.HASK
TESTE.EAVE
SETB.SAVE
ZERD. B0, SAVE
REM.SIEN
DIV.TYFE
FRECL.QUOT
FRECL
FRECL.REN
QUOT.LENGTH
GUOT.ABDR
QUOT.FLARS
DIVD LENGTH
BUOTIENT
RESULY.FIELD
DIVIBEND
END.OF RESUHLT
EDIT.SHTE
AEDIT.SHT8
EDIT.TABLE
PLUS ENTRY
MINUS.ENTRY
ELANK.ENTRY
AST.ENTRY
POINT.ENTRY
COMHAENTRY
BOLLAR.ENTRY
ZERD.ENTRY

-

used in DIVIDE

1)

(cont.)

[
o
Pt
ot

£ £ 2 B 28 = =2 X |

2015400

COBOL.TCB (3.0l) - COBOL/RPG INTERPRETER SIWA (cont.)

8-15

¢

10
12
14
14
18
20
/s
2
23
%5
%
3
3
K2
34

OFf LEX
ST 6TH FIELD

—
[~

mwm»gw»mm»muumu [S I B VI G I VI]

STHA
TASK.ID
SINTHAGK
FETCHY
£54
£.5TACK
ISER
CPAPTR
NG
LRAVE
CPA.DBY
CPALREST
CONMLERR
ERR.ND
COM HESSAGE

TABLE B.3.2 - HTCE M&P - MPLII (BIL) INTERFRETER WORK AREA

Ust

task slice descriptor

Program Sagment Table Address - code DST
Interpreter Segeent Table Address

Data Segesni Table Address

Control Stack Base Address

Control Stack Address {(current pointer)
Control Stack Limit address

TASK ID of the originator (8BOQ if not ZIPped)
nask to SINTFLAG

FETCH communicate Value returned by NCH
S-coda Start Address {(segment + offsel)
Partial STACK length (user part of control skack}
Interprater SEGment number (=G00R on 3.01)
work pointer in CPA

Communicate Parametar Area

{PA Varb

CPA OBdect (adwverh)

COMtunicate s-o, (R4IR=COMNE,R7IR=CONM)

currant Code SEGbment Base address

internal ERRror number

fetch COMHunicate MESSAGE

updated by interprater and accessed by FETCH.VALUE

TABLE 6.3.1
Af BR

44 BR

AA EBR

AA ER

AA BR

#a BR
LABEL
THBLE 7.6.2
TABLE 7.1.1
TABLE B.4.2
E+(hA BR)
B BR
SUESERIPT
A4 BR
TABLE £.4.1

R

A4 BR

TABLE 8.4.2

8-16

MTCB MAP - MPLII (BIL) INTERPRETER WORK AREA

&7
&
&
71

O) NI r e D PO e D U e e D A e s

[I 3 W]
(2%

e

= M oo

LLY
RLM

LEA

REA

PSN

CP

PCA

PRO

KODE

CARRY

MR

NLE

LiL

576

eTL
BIEPLAY
H1DUKEALLR
XYSTORE
BOSTORE
B35V INL
STASTIRE
GETSEG. 1
GETSEG.E32
GETSER. 4P
DATA.SEG.STATS
CODE . SEG.STATS
VN

KSPALE

TACLE 8.2.2 ~ NTCE MAP - HMPLII (BIL) INTERFRETER MORK AREA (cont.)

Lexical Level conbaining most-accessed data
rext-nost-frequently-accessed-data level
DISPLAY valug of LLM

DISPLAY value of RLN

turrent Progrem Segment Mumber

Current Frocedure Mumber (within the segeent)

Program Current Address (offset within code segment)

current offset within PROCedure

@002 = execubion, @018 = remap or declaration
CARRY software register

Nuaber of Message Rofarence bytes used

Next Local Pescriptor (aumber within this procedure)

current fexical LeVel

data Sfarck tase address (daia sezmeat ¢}
data STack Length

16#{14-bit) indexes in the data stack

processor register store areas
W

register informabion for MCP HETSEG operation
1

u

Virtual Segeent Number for BOJ
gaximun size of Mossage reference table

BINARY
BIRARY

BINARY
BINARY
BINARY
gIMaRY

BINARY

an B3
BINARY

B ER

TABLE S.1.1

= = = £ = =

PINARY
b BR

2015400

MTCB MAP - MPLII (BIL) INTERPRETER WORK AREA (cont.)

8-17

TNBLE G.¢.1 - CURhOKRICATE VERES

(LASS VERE BITS COWMUNICATE (byta O = verb, byte 1 = objeclh)
B 06-0F FILE AGSIGNHENT (object = FIB segment ausber)
B 01 - FILE OPEX

B 02 - FILE CLOSt

€ 10-2F FIELE ORIENTED I-0 (ohject = cegment number)
€ N 01 ZIF

€ " 62 DBISPLAY

C “ 04 PAUSE

£ " 05 CONBITIONAL

£ 20 - ACCERT

i 30-3F DaTA COMMUNCATIONS

E 40 - DATE-TINME

E 41 - TERHINATE

E 42 - MAIT

E 43 - SYSTEX STATUS

F 70-7F MACHINE DEPENDEMT (BE0)

F 70 - YIELD

F 71 - BETSEG

F 72 - PUIEEE

F 73 - PYTLP

F 7% - SUSPEND

A e0-9F FILE TYFE I-0 (object = FIB segment nusmber!?
f " 01 CONDITIONAL COMHUNICATE

A 80 - TEET CSTATUS

A g2 - READ (anot CONSOLE)

4] B4 - MRITE {(nnt CONSOLE)

A gé - REWRITE

é 88 - DELETE

A BA - STREAM CONTROL

& et - BTART

f 8E - OVERWRIT

A 20 - READ-MRITE

f 72 - REAB (CONSOLE)

A 4 - WRITE (CONSOLE)

) 24 - GEY

A 96 - M

A ?4 - REDEFINE WORKAREA

COMMUNICATE VERBS

8-18

TABLE B.4.

2 - FETCH VALUES

FTIE BAMRL TME SOMMIMIPATID
-

[P RS

LRSS IR EIOD Rty IR FRE IR HEION S R RTE | & o0V)

(K).. -
10 - -
- -
20 10 -
20 20 00

o
<>
U g W
[l]

2IREBBEEY
I BT SN N VIS I VI V]
(gl e i o B RS R
L
<>

€
P
<

40 XX XX
0 XX XX

RESULTY OF

SHCLESEFUL

BUEUE EXFTY on receive with MO DATA option

FATAL ERROR occyrred during communicate

EXD OF FILE encountered on sequential inpud

INVALTD KEY

INVALIDR KEY - cequence error on output to indexed file
INVALID KEY - duplicate key on indewed file

INVALID KEY - no such record exists

INVALID KEY - boundary violation (e.g. write past £OF)
PERMAMERT ERROR

FERMANENT ERROR - delected on read from data file
PERNANENT ERRGR ~ detected on write to data file
PERMANENT FRROR - datected on read fros key file
FERMANEHT ERROR - detscted on write to key file
CONPITIONAL FAILURE (bytes 1 and 2 = the LHS event number)
FATAL ERROR (bytes ! and 2 = the CHS event nuaber!

ZIP COENMUMICATE

0 XX XX
& 00 10
20 60 20
& 60 30
2 60 40
20 60 50
& 60 &0

20 00 B0
20 00 £0

BsE88
> > D

SUCCESSFUL (bytes 1 and 2 may contain a stop value)
prograa file not found

interpratar file aol found

insufficient memory

no user disk fore virtual sesory file

fult mix

usarcount error

duplicate pack {two packs with same id)

invatid toad regquest

MCS already prezent in aix

disk error

code file error

itegal data comm load reguest

program BS ed (ZIF PAUSE only)

progran BP ed (ZIP PAUSE only}

SUPER UTILIYY busy {CH RM PR etc.)

CONDITIONAL FAILURE (bytes 1 and 2 = the CMS event numbar}
FATAL ERROR (bybos | and 2 = the CHS event number)

2015400

FETCH VALUES (cont.)

8-19

TABLE 8.4.2 - FETCH VALUES

SUCCESSFUL CONGOLE COMMUMCIATE RESULTS

O FO 00
@ ¢6 00
0 04 00
o 62 G0
00 01 60
00 G0 45-68
@ €0 01-24

reset

set

sel if the C-KEY was depressed
set if the H-KEY was pressed
reserved

OCKI to OCKIIII respectively
PK1 to FE24 respectively

8-20

FETCH VALUES

TAELE B.5.1 - FFB MAP (3.01) - FILE PARAMETER ELOCK

FF LEN

SET &TH FIELD INTERPRETATION FORMAT

0 1 FPRILNG Impleneatation tevel (currently=0) BINaRY

1 7 FPEPKID PACK ID, VDLUME ID/MULTIFILE ID ASCII

1 7 FPRENFID " "

g 12 FPEFLID FILE ID ASCII

x$ 1 - space (B208) ASCI

21 2 FPERLMD REEL HD (000-799 iach) ASCII

2 1 FPEFLTP FILE TYRE TABLE 10.3.4
&y 3 FPRHREN Highest Rzcord Mumber writtea to file BINaRY

3 1 FPEDVCK FEVICE KIND TABLE £.5.2
27 1 FPEDSTI Iatas Segment Table Index of record workarea BINARY

I 2 FRRMKAD ¥orK Arsa Offset within above szgment BINARY

3 ¢ FPBROSZ AcLORE SIZE BIMARY

% 2 FPEBFSZ BUFFER (block} SIZE BINARY

I 3 FPEMXSZ Maxinum File Size (in records) EINARY

7 1 FPENDBF Number Of Buffers SIHARY

4G 1 FPBFLAG FLABS TABLE 8.5.3
%1 1 FPBARCL comnunicata adverd for CLOSE TABLE B.5.4
42 2 FFEADDP comaunicate adverd for open TABLE B.5.5
44 2 FPECYCL CYCLE number #5C11

44 2 FPEGNHD BENERATION number BINARY
43§ FPRORDY CREATION DATE (y¢DDD) ASCII

53 5 PFELARY LAST ACCESS DATE (YYERDD) #SCIE

&G 2 FPeSeRY SPARE BYTES inm last stroam record BINARY

&3 3 FPESVFR SAVE FACTOR A5CI1

&3 7 IFFE.DBFPID Indexed Fils Paraceter Block Data File Pack ID #5011

A 12 IFPR.BFFID Fata Fite IR ASCII

7t - space (RZ20E) ASCI1

8 1 - spare {(€008) -

2 IFPB.RYEZ Rough Table Size (sectors) BINARY

B 1 - zero {800H) -

8 1 IFPE.KSZ KEY SIZE (bytes) BINARY

8 2 IFPB.KOFFS KEY OFESEY (bytes!) BINARY

90 4 IFPB.IERDS 2000000002 -

X - IFFZ.END end of indexed file extaansion to FPP LABEL

FPB MAP (3.0l) - FILE PARAMETER BLOCK
2015400 8-21

TABLE E.5.2 - DEVICE KINDS

FARILY VALUE DEVICE

0-GF

i

02
0
04
07
0A

01
02
04
08

33
IF

S3
S
73

01
o2
04

08

£3

£7
£8

€t
eF

PRINTER FAMILY

any Printar

Consate {(Keyboard only)

Serial Printer

Console (Printer?

Line Printer

CARD FAMILY

set = fard Reader

seb = Card Funch

set = B¢ cotumn cards anly
seb = 94 column cards only
SCREEN FARILY

Lonsole (Peinter or Screen)
Console {Scrasn)
IMPLENENTATION DEFEMDANT (BEO?
Async Data Comm

Real Time Clock

Industry Compatible Hini Disk (ICHD)
NRZ or PE MAGNETIC TAPE

PE TAPE

NRZ TAPL

aluays set

set = write permib required
set = Reel tape only

set = Cassette tape oaly

DISK FARILY

Any Bisk with 1B0 byte sectors
Burroughs Super Mini Bisk (BSHD)
Bisk Cartridge

201~ Fixed bisk

Bisk Pack

non

MUEMONIC

AP
Kt
Sp
PL
Le

R?
p?
?8
?9

At
sc

N
RTC
b1

M1
£

B
b
B
BF
pp

8-22

DEVICE KINDS

TABLE 8.5.3 - FPB FLAGS

EXT MASK INTERPRETATION

7

80

40
20
10
08
04
02
01

set for special formas (printer files)

seb if duplicate file atlowsd (indexed files}

set £ use FPB to update last access and creation dabe (close)
sel if no labe! record (magnabic tape and printer files)

seb for conditional open and close

set if single area disk file to be created

set for generation number check on open or update on clpse
set for non-standard transiatz (EBCDIC files)

reservad

2015400

FPB FLAGS

8-23

TASLE B.5.4 - ADVERR FOR OFEN

EITS MASK VALUE IMTERFRETATION

iH 2000 reserved

14 4000 1 apaen EXTEND

13-12 3000 OTHERUSE

" " 11,10 fres accoss (noraatl)

" " 01 tock acress (other wsers may only read)
" “ 00 fock (no other users allowed}

11-10 GCOO HYUSE

Y " 10 output
" " Gt input
" " i1 input-oubput

&6 Q300 reservad
4 0030 ACCESEHODE
" 00 itlegal

" " 01 randon

" “ 10 sequential
" " 11 strean
3-¢ QO0F reserved

TABLE £.5.5 - ADVERE FOR CLOSE

BITS HASK VALUE INTERPRETATION

7 g0 - reserved
& 4 1 cinse with no reyind
A change real leaving {éle opan

53 I8 (00 half close

u " 011 close with lock

“ " 161 close with purgs

" " 111 close with reaove

" " 001 close ¢ith release

" u - all other combinations troated as half-close
z ¢ i crunch

i 02 i gerge overflow region into index region of indexed fite

¢ 01 - raservad

8-24

ADVERB FOR OPEN and
ADVERB FOR CLOSE

TABLE B.6.1 - MFIE MAP (3.01) - FILE INFORMATION BLOCK

FF LEN

ST 6TH FIELD

O - FIb

0 1 FIBFLST
1 1 FIBFPEN
2 2 VUFBRIX
“o" FIBDRIY
3 2 VrCTo

4 2 FIBDR2X
& 1 FIBDSTI
7 P FIBUKAD
¢ 2 FIBTRL
i1 1 FIBTECH
12 1 FIEDTHUSE
i3 1t FIBDPCL
¢ 1 FIBREUF
15 2 FIBCROF
17 2 FIBPIR
17 2 FIBRDST
& 2 FIBEFSZ
23 2 FIBFUTREUF
oo FIBSED
2502 FIBSWA
27 1 FIEBVCK
28 2 FIBPHTA
30 1 FIBQHDO
31 3 FIBCRM
3 - FIBNBDY
cont..... /

INTERPRETATION

LABEL

Fitestate

associated FPB segment number

birectory Index of associated disk file (disk enly)
Configuration Tabie Offsat (vestigial FIE only)
secondary file Birectory Index

Data Segment Table Index for record workarea
Bffsel of the Workarea in the above segment’
transfer {ength

Fite TECHnigue

Fite DTHERUSE

OPEN CLOSE flags

nunber of Racords per Buffer

self relative addrass of current ID dascripter
Buffer Pointer

Record Size

Buffer Siza

number of bytes left in buffer (after PUT)

"

Stream I-0 Mork Area

actual device kind

Peripheral Handling Table address

current I-0 descriptor gqueue head index
Current Record Mumber

end of non-disk non-console FIB

FORMAT

TABLE B.4.3
BINARY
B BR

SUBECRIPY

B BR

IMBEX

B ER

B ER

TABLE 2.4 4

BINARY
SR BR
B ER
b bR
B ER

TABLE B.5.2
fA BR

THBEX

B BR

LABEL

MFIB MAP (3.0l) - FILE INFORMATION BLOCK

2015400

8-25

TAELE £.6.1 - fit1b KAF (30000 -

Fe
i

3
3'/7

1

BN SR S S O
o

i Hmueod

o
I AD 0 b s e Gl G G A M D G e G U

FIECONSIZE
FIENRR
FIBHEPOS
FIBLDEA
FIBLOGICALHRPOS
FIBINBILS
FIBSEL
FIEMRAP
FIBKRY
FIBHRD
FIBARN
FIBPRUN
FI85CUN
FIBILINK
FIBTAE
FIBBEH
FIELAL
FIBDAL

FIBEND

(CONS)
{DISK)
(CONS)
{PISK}
{CONE)
(COHSY
(BISK)
(BISK)
(DISK)
{DISK)
{DISK)
{DISK)
{BISK)
(BIsK)
(CONS)
(DISK)
{DISK)
{(DISK)
(DIGK)
end of

Pitt IHFOREBATIGH GLGCK (cont.)
punber of columns on & console device
Haxt Record to be Read

colugn posibion of peint hoad

tast Disk record Accessed

Logical print Hzad Fosition

Kayboard Indicators (Vights)

Buffer tength in EECtors

Maximium Record Musber in currenb Area
Haxiaon Record Wribben

Haximum Record Dactared

Mumbor of Aress allocatsd

Primary Disk Unit Nuaber (RFFf=ypallocated)
Secondary disk Unit Muaber (GFF@=ynattocated)
tink to indexsd file flags (IKEYELAG)
TAR column number

memory Disk File Header

nuaber of sectors in disk area i
sector addross of disk arsa |

15 more lengih-address pairs

F1B for DISK files

B BR
B bR
BINARY
B BR
B BR

B ER
B ER
B BR
B BR
EINARY

SR ER
B BR
LABEL
B EBR
B ER

LABCL

8-26

MFIB MAP (3.01) — FILE INFORMATION BLOCK

NS U A e S

{FF LEN
7 OTH FIELD

LA™ BAV I S o B

TADLE B8.6.2 - MAP VEST.FIE (3.01) - VESTIGIAL FIB

INTERPRETATION

VLST.FIB.FLAGS segment descriptor flags (=R4B@)

VEST.FIB.BASE segment base {poiats to filestate balow}
VEST.FIB.F5 filastate

VEST.FID.FPB associated FPD cegment number

VEST.FIB.ERX (DISK) Eirectory Indaw of Fite (2 B-bit values)
VEST.FIB.OFFCT (NDN-DIEK) Offsel of Configuration Tabie
VEST.FIB.BU (DISK) Bisk tnit

FORNAT
TARLE 4.4.2
Ah ER

TAELE B.4.3
BINARY
EINARY

R4 ER

TABLE 8.6.3 - FIB FILESTATE

EITS MASK VALUE INTERPRETATIDN
7 B0 80 Sequential Oraganisation (not Indexed)
&3 40 I-0 #asK
Yo &0 40 Output alloued
Y2 20 Input allowad
4-5 18 ACCESS TECHNIGUE
" 00 Streas
" 08 Console
N 10 Randos
" 18 Seguential
2 0+ 0+ End OF File not reached
102 02 File Half Closed
6 0t 00 Streas
MAP VEST.FIB (3.0l) - VESTIGIAL FIB and
FIB FILESTATE
2015400 8-27

TABLE 8.4.4 - FIB FILETECHNIQUE

O AN

BIT MASK IMTERPRETAYION

80
40
20
10
03
04
02
0t

Sort Intrinsic (no daka traasfer)
Excaption

Unit Exhausted

Last Coon was START

Last Comn was WRITE

Last Comm was READ

Last Cosp was nat faited Conditional
Buffaring Ahead Invoked (Dynamic Accass)

8-28

FIB FILETECHNIQUE

Tﬁ%%ﬁ{%j{.l - HAP IFIE (3.01) ~ INDEXED FILE INFORMATION BLOCK
StY 6TH FIELD INTERPRETATION FBREAT
¢ 1 IKEYFLAG status flags T4BLE B.7.2
% TREYALLOC nusher of areas to allocate initiatly BINARY
" IFIRFLAR flags TabBLE B.72.2
1 1 IFIEKsZ actual Key Size in bytes BINARY
2 1 IFIBKEM Key Entry Size in bytss (one of § 14 24 12) BIMARY
3 1 IFIEMOREFLAS sore flags TABLE 8.7.3
4 2 IKEYOFFU close morge autput buffer offset B BR
Yoo TFIBKEYD Key Bffzet from base of data record g Bk
4 2 IKEYBLY tlose merga last disk address output B ER
“ % IFIBFIB retativa address of rejated FIE RA ER
8 2 IKEYSLY close merge sactors left in out arsa B bRt
" IFIFBRN Record Number B BR
10 1t IKEYCAU close merge current area output BIMARY
i1 1 IFIBKEYE -
12 1 IFIESAREAL Start of iadex area BIMARY
13 2 FIBDISKOFFI Sector Offset into first Index Area B Ex
15 2 IFIBDISKOFFD Sector Offset of first Overflow Area "
17 3 IKEYSIZED Size of new Index (sectors) ‘
" IFIBLRN Logical Record Number "
X 2 IFIBSRT disk rough lable start address (8008=unallocated) B ER
2 1 IFIB0SA Bverflow Start Area (8FF@=unallocated) BINARY
23 2 IKEYRTS aitocated Rough Table Size in sectors B BR
& 1 IFIBPARTS nunber of parts in the key BIMARY
26 3 IFIBSIZEOFLON size of the overflow area B ER
27 208 - Index region buffer parametars -
& 1 IFIBCAI Current fArea Index/BINARY
X1 IFIEHAI Haxioum Area Index (GFF@=no index allocated) BINARY
3L 2 IFIBLBI tast disk sector used in index B8R
33 2 IFIBOFFI byte offset into index buffer B ER
I3 18 IFIgpES: I-0 descriptor for index region TABLE 9.3.3
53 1B4 IFIBBUFI index rogion Buffer -
£37 208 - a similar table for the averflow region -
44§ 2 IFIBDRIX Directory Index of IFH of keyfile B ER
447 1 IFIBDUN Disk Unit Mumber of Keyfite BINARY
448 - IFIBDFK memory Disk File Header for the Key file -
448 2 IFIBLAL Lenrgth of first disk Area B BR
450 2 IFIEDAL secbor address of first Disk fdrea B BR
452 40 - 15 more length-address pairs -
512 - IFIBEND - LAREL
MAP IFIB (3.01) -~ INDEXED FILE INFORMATION BLOCK
2015400 8-29

TABLE B.7.2 - IKEYFLAD

BIT MASK INTERPRETATION

o N O] A0S N
<
(el

1 = sequential, & = randoa

hardware search successiul

current record pointer points to last record

read wac the tast operation

overfiow region contaias useful informatioe

1 = record pointer is in index regien, ¢ = in overflow regios
read-next allownd

duplicate keys not allowed

TABLE 8.7.3 - IFIBHOREFLAG

BIT HASK INTERPRETATION

7 80
& &0
5 20
41 1E
¢ 01

need to allocate an area

End OFf File detected on random read-next
reur i be-overvr ite record search
reservad

open/close index flag

8-30

IKEYFLAG and
IFIBMOREFLAG

SECTION 9

LOGICAL AND PHYSICAL I-O

The task file structures (FPBs and FIBs) (see section 8) relate
to the actual input-output media through Peripheral Handling
Tables (PHTs) and queues of I-O descriptors. This section
discusses how I-O operations are achieved by the MCP code
concerned: Master Interrupt Poocessor (MIP), I-O Queue Handler,
Device Dependent Routines (DDRs), Master Communicate Handler (MCH)
and the Openclose slice.

The contents of the PHTs and I-O queues are often important for
solving problems, especially where hardware faults are concerned.
They can be printed using the PRINT PHT option of PMBS8O.

2015400

COMMUNICATES - MCH AND OPEN CLOSE

All input-output operations are performed by the MCP.

A task issues a communicate which is decoded by the Master
Communicate Handler. Not all communicates are I-O oriented,
and I-O communicates do not always initiate a physical
input-output operation.

Although the MCP performs its own I-O operations to devices,
all task I-O is performed through a logical file structure.
This structure is centered on a File Information Block.

All logical I-O operations (open, close, read, write) are
performed by a task through this FIB.

The MCP Openclose slice (slice 17), contains a Configuration
Table (Table 9.1.1 - CT MAP) which contains logical device
information including file-id, multifile-id, and logical
device status.

The CT has an entry for each device on the system. When a
file-open communicate is issued by a task, a link is established
between the FIB and the CT entry. At the same time, a link is
established between the FIB and the PHT (see Section 9.2) for
the channel which accesses the device. The FIB is initialised
with informaton from these tables and space is reserved for file
buffers. These links, which are illustrated in Figure 9.1.1,
should be checked on any dump where a failure in logical I-0O

is suspected.

The CT is maintained by the AVR task. The contents of
the CT are analysed by the PRINT OL option of PMB8O.

9.

9-2

LOGICAL AND PHYSICAL I-O (CONT.)

9.2

PERIPHERAL HANDLING -~ MIP AND DDRS

The actual work of input-output operations is performed
by the Master Interrupt Processor and the Device Dependent
Routines. The MIP performs only the simplest "read-more"
or "write-more" controller commands. Ihe DDR for the
particular controller handles the more complicated I-O
operations, which are usually dependent on the controller
involved.

Information on the physical status of the channel controller
and device, and the logical status of the DDR for that device,
are stored in a Peripheral Handling Table (Table 9.2.1 -

PHTH MAP) and its device dependent extension. The field
PHT.CIRC.BUF is a circular buffer of historical status information.
Each entry is two bytes and the field PHT.CIRC.PTR is the

index of the latest entry. The first byte of each entry is the
device status received from the controller (see Tables 9.2.4

to 9.2.8): the second byte is the S-flags which are used by

the MIP and DDRs to determine the activity which is currently
being performed on the channel.

The interpretation of the device status byte is dependent on

the appropriate hardware controller. S-flags consist of

two parts. The most significant digit defines the type of
operation being performed. The least significant digit is

used, in combination with the channel status, to determine which
MIP or DDR code should be performed. Each DDR contains a switch
table to achieve this analysis; these details are not normally
required, and are not discussed further in this document.

As a general rule, if the most significant bit of the device
status is reset then the cause of the problem may be in this area,
and should be investigated further.

9. LOGICAL AND PHYSICAL I-O

2015400

9.

3

INPUT-QUTPUT OPERATIONS - I-O QUEUE HANDLER

The PHTs are located at the high-address end of page zero
memory. Each PHT holds one or more I-O descriptor queue
heads (Table 9.3.1 - QHEAD MAP).

All I-O operations are performed as specified by the top
I-0 descrlptor on the appropriate channel PHT queue. The
actual I-O descriptor is found at a memory location which
depends upon ita origin (for example, the Virtual Memory
I-O descriptor is located in the global MCP map VMWA, and
descriptors for task-initiated I-O operations are located
within the appropriate FIB in the locked TCB slice.

>w

The descriptor queues are analysed by the PRINT PHT option
of PMB8O, and the queue structure should be checked for
consistency, starting with the queue heads and following
the links to the descriptors.

A queue head contains a flag field (Table 9.3.2) giving the
status of the queue, and current descriptor and final descriptor
memory addresses.

Note that the queue head contained within DISK PHTs does not
point to a queue of 1-0 descriptors but to the disk parameter
area (Table 9.2.3 - DSKPM MAP).

Each I-O descriptor has the same format (Table 9.3.3 - IODESC
MAP). Console I-O however, uses some of the fields in a
different manner

Field IODFL indicates the operation to be performed, and the
result of the I-O operation when completed (see Table 9.3.5).
Field IODPM is the task-id (Table 7.6.2) of the task which
requested the operation.

94

T.OGICAT, AND PHYSTCAL I-O STRUCTURE

FIB 3

410DESCRIPTOR

4 logical
FILE
(task—
BUFFER } related)
file
structure
FPB
/

RECORD WORK AREA

LOGICAL DEVICE TABLE =~
(CT
physical
g
structure
PHYSICAL CHANNEL TABLE
PHT
-0 QUEUE —
o

LOGICAL AND PHYSICAL I-O STRUCTURE

TABLE 9.1.1 - CT MAP (3.01) - COMFIGURATION TABLE

OFF LEM

SET bTH FIELD USE FORKAT

0 1 LTFLAG Lonfiguration Tahle FLAGs TABLE 9.1.2
1 1 LCTFLAG.DISK special disk flags -

2 & L7Tand physical id #ECTE

8 7 LTFLID MULTIFILE, VOLUME, or PACK ID ASCIT

15 1 CTRLAD Reet number for fapes BINARY

15 1 CThOSC Mumber of sectors per track {(disk devices) BINARY

14 1 CTNDOTK Number of TRACKS per CYLIMDER BINARY

17 1 CTBRYL Birectory length BINARY

18 1 CTLYMD Device Number ("4", "B“, “C* etc) ASCIE

1% 1 LTpViK DEVICE YIND (CMS STAMDARD) TABLE 8.5.2
201 LTPHTA PHT address for this device A4 BR

¢ 1 CTgHDO Bucue Head Offset for this device THDEX

22 1 CTR5KN ESCT task-id of task hoiding this device TABLE 7.4.2
23 1 LCTCNTD number of open files on this device {disks only) BINARY

24 2 CT.KB.SS.LIMK LINK of Self-Scan LT entry (Keyboard C1 oniy) R& ER

used for keyboard screen CDNSDLE combinations -

2% 2 CTbHLA bisk sector number of first DFH g B

26 7 LTRESZ Record Size (now disk) B ER

26 2 CT.KB.SP.LINK LINK to Serial Printer CT entry Ra BR

used for keyboard printer CONSOLE file combinations -

24 ¢ CTDDIM Disk directory inforaation -

28 2 CT.DYNAMIC.LINK memory LINK work area RA BR

¥ - LI51ZE LABEL
TABLE 7.1.2 - CONFIGURATION TABLE FLAGS - FIELD CTFLAG OF haP CT

BITS MASK INTERPRETATION

7 8} 1= device POWERED OFF

& 40 1 = device KEWINDING

5 20 1= this entry LIMKED to next entry in T

4 10 1 = device READY

3 18 1 = HULYIFILE MEDIA

2 40 1 = SYSTEMS DISK

1 20 1 = device UNLABELLED

0 01 1 = NOT LAST ENTRY in Lonfiguration Table

-

CT MAP (3.01) - CONFIGURATION TABLE

and

CONFIGURATION TABLE FLAGS - FIELDL CRFLAG OF MApP CT

2015400

9-5

TABLE 9.2.1 - PHTH (3

§1 - PERIFHIFAL HANDLING TABLE

9-6

OFF LEX
ST HTH FIELD USE FORMAT
0 - PHTHD - LABEL
¢ 2 PHTIDR semory address of DR stice descriptor AA BR
QO300E for a CHANMEL EXPANDER -
2 14 FUT.CIRC.OUF historical buffer of two bytz enbries -
status byte and s-flag byle (soe below) -
16 1 PUT.CIRC.PTR index of curreat enbry in buffer above INBEY
17 1 PHISH Status ¥:zk (stored by DDR) NOTE ¢
18 1 PHTSTAT STATUS byte obtained from hardware TABLE 2.2.4
19 1 PHTEMIS BDR S-FLARS {what is the device doing ?) TABLE 2.2.%
20 2 PHTBLIA fength tranzfarred so far B BR
22 2 PHIRCLW record fergth B ER
o 2 FHTEFIR buffer pointer ah BR
26 2 PHTRCLY record iength l2ft to fransfer B ER
28 1 PHIPSZ physical controlier buffer size (transfer length) BIHARY
2 1 PHISFIR accunutation of error coadifions -
to be transferred to I0DESC TABLE 9.3.%
% 1 FHTALDR channe! address {(one bit sat} TABLE 9.2.¢
31 1 PHTSYBCHAM sub~channe! address (channel expander) "
2 1 PHISUBPRI sub-channs| priority -
X3 1 PHIHAXGHD nember of bytes for g-heads NOTE 2
i 1" PHTNQR‘Q " i
1 PHILRND index of g-head ot queus being processed NOTE 2
X - PHTEMD end of PHI LaBEL
BB - GHROFST - NOTE 3
MOTE 1 if PHTSH LDGICAL-OR PHTSTAT is mnot = GFFE
then an exception condition has arisen’
MNOTE 2 a gueye eabry is ¢ bytes tong, sost channels
have ¢ I-0 gqueues giving a maxiqum gueus of 80CE
and possible current queus numbers of Q008 or @Q6E
or @FFR if no gueue is in use
NOTE 3 the remainder of this map is the first I-0 gueue
for this channel, refer to TABLE 9.3.1
PHTE (3.01) - PERIPHERAL HANDLING TABLE

CHANMEL ADDRESS

¢ 01

1 E]

? 04

K1 08

% 8

) 20

b 40

7 80

CHANNEL ADDRESSES
TABLE 2.2.3 - DEKPH MAP (3.01) - PHT LISE FARANETER ARFA
OFF LEM
SET GTH FIELﬁ USE FORHAT
¢ - DEEPST - LESEL
¢ 1 DEEFFL flags uzed by the BISH DR -
i 1 DSEP.RETRY.COUNT count of all retries on the drive BINARY
2 1 DSKPMRITELREADLRETR read-after-write rebry count BINARY
3 2 DSEP.RECORL.SIZE buffer size ‘recerd siza for scebbor-gather) B BR
5 1 DSKpF2 function @ -
& 1 DSKPSF initial value of s-flags TABLE 9.2.9
7 1 DBSKPFi function 1 -
§ 2 DEKPEA Disk tddress (zero rofative sector nughber) E BR
10 2 DSKPD2 initial dick address B BR
12 2 DSKFHA Maximum Disk Address b BER
% 2 DESPHA Current Head address B ER
16 2 DSKRAD fddrass Dffsat BB
B 1 DSEPLH Cylinder Bit wask -
i? 1 [DSKPIS Initial Soctor of this transfer BINARY
€ 1 DBKPPE Primary Status byte TabLE 9.2.4
21 1 DSKPSS Secondary Status hyle !
25 - DSKPED LABEL
DSKPM MAP (3.01) - PHT DISK PARAMETER AREA
2015400

T6ELE 9.2.4 - DISK STATUS EYTE

s

FHIMARY STATUS:

BITS BASK IMIERPRETATION

O o NS G A 0 O N
<>
pes)

Hon o onu

"won

i}

drive HOT O (logical AND of bits 2 & 4}

GEEK INCOWPLETE aftar a seek operation (otherwise I}
drive MOT UPLRATIONAL

refer to SECOMGARY STATUD (see beiow)

SrafcH INCOMPLETE after search operabion {otherwise 1)
END OF CYLIHDER on read, write or search operations
SEEE COMPLETE after seek oporation (otherwise 1)

upper drive, 1 = louer drive

SECURDARY STatys:

BITS MASKE INTERPRETATIGH

¢ = DEVICE ERROR (p.g. switched off)

7 8
4 &0
5 020
4 10
3 0B
¥ 04
i 02
(R

I\
0

< T D

tH

(S H

TLLEGAL COMNAND sequence used

LRC (parity) error

required SELTOR NOT FOUMB

dy fve WRATTE THHIBIT

ILLECAL SEEK aporation (obherwise 1)

hoad MOT DM CYLIMDER required for read, write or search
EQUAL condibion after a search operation {otherwise)

DISK STATUS BYTE

TAGLE 9.2.5 - CASSETTE STATUS BYTE

device OK (refer to the soft controller status valuss)
device MOT Gi (refer to the other bits below)

device HOT AVATLABLE

ENG OF REEL detected

device ERROR

INVALID CORMAND sequence

TAPE HARK detacted

DATA STROLE FalL

WRITE INHIBITED with write type command

04
02
ot

OMv'v;l(»-l-F‘U'lL'h\l\il
-~
<O

e D O Co D e

2 n n 0 n n

TABLE 9.2.4 - SELF SCAN STATUS BYTE

T —————— ———— o e e 2o o

CASSETTE STATUS BYTE and
VALUE INTERPRETATION

2015400

AR

= N0
ekl 7

~n Y
ale -

& cps SERTAL PRINTER:

BITS HASK INTERPRETATION

7 B 0 = MOT OK

4 40 0 = VDLTAGES BAD

5 20 0 = NO FAFER

4 10 aluays set

3 8 0 = FORHMS HOTOR ERROR

2 04 0 = CARRIER ERROR {jammed or invalid position)
-0 03 always set

120/180 cps SERIAL PRINTER:

PITS MASK INTERPRETATION

0¥, ¢ = NOT OK (
COVER OPEN, or R
HERIA ERREDR
HEAD RETRACT FAILED
08 always set
04 G = CARRIER DRROR (jacmed or oubside limits)
2 aluays zet
0 01 1 = set request

rofer to the other bits below)
ETRACT TAPE GROKEW

-
o o non

[y
<
<

LINE PRINTER:

BI1S MASK INTERPRETATION

7 B 0 = NOT OX

& 40 0 = NOT READY
5 20 ¢ =MD PAPER

4 10 0 = ERRBR

3 08 0= END OF PAGE
20 07 always set
cont..... /

9-10

PRINTER STATUS BYTES

TABLE 9.2.7 - PRINTER STATUS EY7ES (cont.)

VALLE INTERPRETATION

Y |

7B (60,120,180) CARRIER JAN

77 {460) FORMS JaN

& (120,180) HEAD RETRACT ERROR
F (60,120, 180,LP) FORMS ERROR
K3 (60,120,150,LP) ERROR

TABLE 9.2.8 - KEYEDARD STATUS BYTE

VALUE INTERFRETATION
oK

& BUFFER OVERFLOM
& DISCONNECTED

PRINTER STATUS BYTES (cont.) ang
KEYBOARD STATUS BYTE

2015400 9-11

TARLE §.5 % - 8-FLAGS - DDR STATHS BYTE

EITS MASY INTERPRETATION

7 &2 0 = READ, 1 = WRITL
&4 70 CONTROLLER TYPE
40 CF CURRENT DDR STATUS

COMTROLLER TYPE (S-FLAGS AND @70@):

VALUE INTERPRETATION

0 K8, DI

1 5p

2 §8

3 c1

b b4, DK, DF
7 Lp

PDR STATUS (B-FLARS hib 80F):

YRLUE THTERPRETATION
& normal arouzzi

1 special arousal

2 waibing on MCH

3 first normal data request
% first special data request
5 special request

& request 1

7 reguest 2

g

g

reguest 3
request &

f request 3

3 request 4

L request 7

D request §

k final request

F rormal data request (handted by MIP)

zosking
special {end of cylinder} sesking

read after write - readless read
last write on cylinder
last transafer

9-12

S-FLAGS - DDR STATUS BYTE

TABLE %.3.1 ~ GQHEAD #AP (3.01) - ID DESCRIPTOR QUEUE HEAD

OFF LEN

SET OTH FIELD UsE FORHAT

¢ 1 gFt fueye Flags TABLE %.3.%
1 2 HCh address of field I0DLK of first IODEST (TABLE 9.3.3) A4 BR

3 2 & address of final ID descriptor on gqueue A4 EBR

5 1 0BA Drive Address (muttidrive coatrotlars) -

& - BHE - LABEL

6 - GHDEZ - LABEL

TABLE 7.3.2 - QUEUE FLAGS -~ FIELD 8FL OF KAP DHEAD

BITS HASK INVERPRETAVION

74 C0 reserved

3 20 1 = queue emply

4 10 1 = gueue not roady

3 08 1 = readiness changed

2 04 1 =return errors if not ready

1 02 1 = dequeue descriptors if not ready
¢ 01 1 = &YR help task wust be runm

QHEAD MAP (3;01),— 10 DESCRIPTOR QUEUE HEAD gang
QUEUE FLAGS - FIELD QFL OF MAP QHEAD

2015400 9-13

TABLE 9.3.3 IDDESC RAP (3.01) - IU DLSLKLIPIUK

SET GTH FIELD

OFF LEM
¢ 2
2 1
3 2
5 2
7

@ 1
¢ 1
1 1
i0 2
il 2
12 1
i3 1
13 4
i4 §
i 1
2 -

CONCHL
I0pCL
CONILKFLG
I0DFL
CONPHLK
10DLK
LONES
10088
CONBL
10B8L
COHPPY
100PH
IR LY
15DP4
CONEOLND
10BRY
I0D.RISK RETRIES
CONCDUPH
10D, CRE
10DSPD
COHSRD
1OBED

UsE

Communicate Handler &omory Link

Descriptor Chain Link (IQDLE of next descriplor)
Interlock FLab

Pescriptor Flags

gemory address of associated FHT

Buffer

"

Buffer Length

Start address in maaory

Print Paralleter

Parakinter (hoids task-id of roquectiag task)
nusker of lines So advance

Bisk tddress(zero relative sector ruaber
column nuaber

Disk Unit - drive nugber

counl of retries on this operation
curzor-head-drive paraneter bytss

ICME ERE

bit settings for seld scan spo

i

FORMAT

TABLE 7.4.2
BINARY

B BR

B BR

EIMARY

LABEL

9-14

IODESC MAP (3.01) - IO DESCRIPTOR

TABLE ¢

3% - I0 DESCRIPTOR INTERLLCK FLAGS

BITS HASK INTERPRETATION

1 3
o
—
(3w

Do I
[l -}
R R0

U~
o
i)
S S

DESCRIPTOR STATUS

0 = split buffer 10, 1 = normal buffer I
I RESULT

1 = buffer not updated by sysbes

1

= buffor oaply

DESCRIPTOR STATUS (I0DFL &ND BCOU):

WL UE

s

[»')
s

40

VALUE
1
18
14
10
o
e
G
w

IMTERPRETATION

nothing waiting {or this I
BAILITE waikbing for this 1D

HE S H 7 e A {0 i
TASK waibing +or this 1D {zes TOBPH of 150D TABLE 9.3.%0)

&

THTERFRETAY IO

0

LRC {parity) ereor

search fatled (disk only)

oheb epror Odiskoanly?

invalid reguest

sector nob found {(disk only)

device syitohad off

neaia is write inhibit fwrite ouiy)

2015400

IO DESCRIPTOR INTERLOCK FLAGS

SECTION 10

b
O

CMS DISK ORGANISATION

The information on all disks used on CMS systems (excluding
Industry Compatible Mini Disk - ICMD) is stored in files
under the same logical structure. The layout and contents
of a disk are sometimes relevant to dump analysis, and so

a description of the CMS disk organisation is included in
this document.

The format of Key files, program files, and program dump
files is described, as this is also relevant to the analysis
of some memory dumps.

The following utilities may be used to examine the information
on a disk:

- PD shows the contents of the disk directory namelist

- KA analyses the disk directory and available table

- LIST may be used to print any sector (e.g. LIST SYSMEM
100 1)

- DA prints and formats various items

Refer to the CMS Software Operational Guide (form number 2007258) for
operating instructions for these utilities.

1o.1 DISK AREAS

Figure 10.1.1 shows the structure of the main elements of

CMS disk organisation, which are: Track zero, a non-file

directory: a file directory consisting of a namelist

and a disk file header list: and the remainder of the disk
which is divided into data areas.

l10.2 TRACK ZERO

Track zero of CMS disks is used for two basic functions:
a disk label which identifies the disk; and a bootstrap
of machine code to enable the CMS system software to be
started using this disk.

2015400

10. CMS DISK ORGANISATION (CONT.)

10.2 TRACK ZERO (CONT.)
10.2.1 DISK LABEL

The disk label is located at sector zerc of all

CMS disks (see Table 10.2.1 for the format). The
contents of many of the fields in this label, especially
pointers to the directory items, must be valid if

the integrity of the information stored on the disk

is to be preserved.

10.2.2 BOOTSTRAP

The bootstrap area lies in sectors 2 to 25 on all
CMS-initialised disks. However, the bootstrap is
written in machine code, which varies with the hardware
used. For example, the B8O bootstrap is different
from the B80OO bootstrap. Only disks initialised on a
CMS B8O system are guaranteed to contain a valid B8O
bootstrap. Also, the bootstrap may change from release
to release to accommodate new features.

Since the bootstrap code performs the memory dump
routine (PK4 or PK5), it is important that the correct
bootstrap is present in this reserved area of the disk
used to bootstrap the system (PK2) when a memory dump
is to be taken.

The bootstrap is written to sectors 2 to 25 by the IN
and RF functions of the Stand-Alone Utility, which
takes the information from the disk file called CMSBOOT.

Disks used to take memory dumps from a system running

a given level of MCP should be initialised using the
same level of Stand-Alone Utility and CMSBOOT file.

10.2.3 BAD AREA LOG

This lies in sectors 30 and 31 of all CMS disks.
It is not however, fully implemented on the B80O
3.01 system. Refer to section 10.3.1 for more
information on bad areas.

10.3 DISK DIRECTORY

Although the three items of the disk directory are addressed
independently by the disk label, the disk directory is
usually a contiguous area on disk. Usually (though not

on fixed disks initialised on the B80O) this area follows
directly after track zero (i.e. sector 32 onwards).

10-2

10. CMS DISK ORGANISATION (CONT.)

2015400

10.3.2

10.3.3

AVAILABLE TABLE

The area is also known as the "non-file directory"”
because it addresses those parts of the disk which
are not allocated to disk files.

This section of the directory references all areas

of the disk which are not assigned (see Table 10.3.1).
When the disk initialise routine discovers a bad

area of disk, an entry is made in the available table
with length zero and start and end addresses reversed.
On some disks, areas are reserved for Field Engineering
purposes; this is achieved by considering the areas

to be "bad". A "ghost entry" is also made in the
available table which has a start address equal to zero
and an end address equal to the last sector address

on the disk +1, and a length of zero.

FILE DIRECTORY -~ NAME LIST

This is a contiguous block of sectors containing

the names of the files on the disk (see Table

10.3.2). The MCP may reserve areas of disk by
inserting a temporary entry with #82 in each byte

of the name field. Unused entries have 81 in

each byte of the name field. Each entry references
an entry in the other part of the disk file directory,
the DFH list, in the same relative position.

DISK FILE HEADER (DFH) LIST

Each sector in this area may contain a Disk File

Header. The disk file header includes the detailed
information about the file which it references. This
information includes the type of file, the number of
tasks using the file, and the location of the file areas.
(See Table 10.3.3).

Allocation and de-allocation of disk space consists

of updating both the non-file directory and the file
directory. If the system fails while this is in
process, then areas of disk may not be assigned, or may
become assigned twice. This symptom may be determined
by executing the KA utility for the disk.

10. CMS NTSK ORGANISATION (CONT.)

10.3 DISK DIRECTORY (CONT.)

10.3.4 SYSMEM FILE

The first file in the directory of all CMS disks is
called SYSMEM. The DFH for this file references the
entire disk from sector O to the end of the disk. This
file may not however be accessed by user programs, and
does not appear in the analysis performed by the system
utilities such as PD.

10.4 KEY AND TAG FILES

CMS files with indexed organisation consist of two files on
disk: the key or tag file, and the data file. The key file
contains the record keys and relative record pointers to

the data file. A tag file (or null key file) does not contain
the record keys, and the indexed "file" may consequently

only be accessed sequentially.

Figure 10.4.1 shows the layout of a key/tag file and Tables
10.4.1 and 10.4.2 describe the formats of the areas concerned.

The first sector of a key file is the Key File Parameter Block
(KFPB). This is followed by a rough table, an index region, and
an overflow region. The length of each entry in the key file

is determined by the length of the key as follows:

key length not > 5 bytes : entry length = 8 bytes

key length not> 13 bytes : entry length = 16 bytes
key length not >21 bytes : entry length = 24 bytes
key length not >28 bytes : entry length = 32 bytes

10.5 PROGRAM (S-CODE) FILES

COBOL, RPG, MPLII and NDL program files all have the same

basic structure (see figure 10.5.1). The file is one
contiguous area on disk and has a Program Parameter Block

(PPB) in the first sector (see table 10.5.1). The PPB contains
reference information about the program and pointers to items
within the code file.

The Program Segment Table (PST) (see Table 10.5.2) contains
descriptors pointing to the S-code segments of the program.
The data Segment Table (DST) (see table 10.5.2) contains
descriptors referencing the data segments of the program.
The CCB Preset Area (CCBPA) contains the COP Table for COBOL
and RPG programs. The Internal File Name Block (IFNB) con-
tains a list of file names of the files used by the program.

When a program is executed, these elements of the code file
are used to build the Task Structure discussed in section 8.

104

10. CMS DISK ORGANISATION (CONT.)

2015400

10.6 PROGRAM DUMP FILES

A program dump file consists of three parts (see figure
10.6.1) which reside in two areas of disk. These three
parts are the PPB, all the data segments (éxcluding FIBs),
and the TCB. All of these items are obtained from the run

structure of the task.

The PPB is obtained from the program code file with by
178-179 updated to contain the logical record number o
start of the TCB in the file. The data segments (excludin
locked segments) are copied from the tasks's virtual memory
file, all segments being updated from the memory copy, if
the segment is present in memory as well as in the Virtual
Memory file. Each segment starts on a sector boundary. The

TCB is a copy of the TCB trom memory, including all locked
segments.

10-5

10.1.1 CMS DISK ORGANISATION

10-6

CMS DISK ORGANISATION

LABEL BOOTSTRAP track0
N\
AVAILABLE :
TABLE DFH
NAMELIST
DFH
DFH
[| |
FILE AREAS

10.4.1 KEY FILE ORGANISATION

KFPB

NN\

ROUGH TABLE

INDEX REGION

OVERFLOW REGION

KEY FILE ORGANISATION

2015400 10—7

10.5.1 PROGRAM FILE ORGANISATION

PCB
/ N S~ ~
h N
A N\
; IFNB
‘ CCBPA
PST
DST
PROGRAM
DATA
‘ SEGMENTS
PROGRAM
S—CODE
SEGMENTS

PROGRAM FILE ORGANISATION

10-8

10.6.1 PROGRAM DUMP FILE STRUCTURE

/ PpB
DATA SEGMENTS
DISK AREA
#1
\
SLICE
/ DESCRIPTOR
TCB
Pink
Link
DISK AREA
#2 N
SPARE

PROGRAM DUMP FILE STRUCTURE

2015400 10-9

TABLE 10.2.1 - DISK LABEL

Pr——

4

BYTE

0-3
4=-9
10
11-20
21-27
28-29
30
31-36
37-50
51-78
79
80-83
84-88
C9-94
95
96-97
98

99

109

101-102

104

CONTENTS

~voLL"

Serial no.

Blank (Access coce)
"SLIINTERNL"

Cartridge identifier

"S9" (System [nterchange code)
Zero (Pack Code)

Reserved scratch

Owner's Identification
Reserved scratch

Blank

"voLz-

Initialisation Date (YYCDD)
Initialising System (eg."BDS"™)
"R* if restrirtec cartricge
No. of Cyliniers

No. of Tracks-Cylinder

No. of Sectors-Track

No- of Sectors for Directory
Name List

Sector Adcress of Directory
Name List

No. of Sectors for Available Table

SIZE

04
06
o1
10
7
02
01

06

28
01
04
es
06
01
u2
01
01

01

03

C1

E£(ECDIC)
E
E

£

ACSCII)

E

BCINARY)

10-10

DISK LABEL

TABLE iO.2.l - DISK LABEL

cont.

BYTE CUNfENTS SIZ¢ DATA CODE
105107 Sector Adcress of Available Table 03 B
108-109 Maximum no. of files 02 B

110 Unit of Allocation(sectors) 01 8
111-113 Sector Address of First File 03 8

Header

114-118 Reserved protectec 05 --

119 Integrity Flag (0 = 0K) 01 £
120-125 Actual Error Cgunt o6 £
126-131 Bad Sector Count 06 £
132135 Reserved for MTR 04 --
136=179 Reserved Scratch KL} --

DISK LABEL cont.
2015400 10-11

TABLE 10.2.2 - BAD AREA LOG

BYTES

0-1

2-31

32=33

34=35

36=359

CONTENTS

Total cf bad allocation units recorded in this log

Binary zero. Reserved for possitle future expansion

Address of first ¢f greup cf contiguous bad allocation units
Nirber of allocation units in group

81 more address/length pairs

10—-12

BAD AREA ILOG

TABLE 10.3.1 - AVAILABLE TABLE BLOCK

BYTE CONTENTS

0-1 Length of available area in
allocation units =+

2-3 Address of first available
allocation ynig =+

4=5 Address.of last available
atlocation unit +1

6=173 28 more 6 byte entries
174-179 Sterile area (aluways zeroes)

** AN unused entry has
allocation unit adcress

D -
(2N 1]

- -

SIZE

02

02

02

DATA COOE

BCINARY)

~
(1)
o
~r

AVAILABLE TABLE BLOCK

2015400

10-13

TARLE 10.3.2 - NAME LIST BLOCK

BYTE
0-11
12

13
14-15
16-175

176=179

CONTENTS S1ZE DATA CODE
File Identifier 12 AC(SCIT)
Reserved (B8lank character) 01 A
Directory Index o1 B(INARY)
Header Sector Address 02 B
Ten more 16 byte entries 160 A or 8
Zero 04 8
Notes

Available directory entries. i.e. entries which do not

at

present correspond to files but could do so in the future
contain #8C in each of the first 12 tytes of the entry.

Bytes 14-15 of such entry contain the disk sddress cf¢
sector hotding this directory entry.

A directory entry whose corresponding file header is

the

that

of a temporary files» i.e. has not been closed with lockes
contains #81 in each of the first 12 bytes of the entry

and the sector acddress of the header in bytes 14-15.

Since each block of the directory name Llist «can

ho Ld

eleven entries ancd the total no. of headers may not be a
aultiple of elevens it is possible that the last sector

of the name list contains unusable entries. Such ert
are marked by #82 in each of the first 12 bytes of
entry and 2zero in bytes 14-15.

The directory index gives the ordinal position of

ries
the

this

ontry wWithin the directory. The number is recorced moculo

256 .

10-14

NAME LIST BLOCK

TABLE 10.3.3 - DISK FILE HEADER (DFH)

BYTe

0-11
12

13
14-17
18=22
23-27
28-29
30-31
32-33
34
35-37
38-40
41
42=43
4445

46-47

48-54%
S5

56=57
58-59
60-61

62-63

CONTENTS

File Identifier

Blank

File Type(see table 6.4.4.2)
Flags

Creation Date (YYDDD)

Last Access Date (YYDDD)
Record size (in bytes)

No« of records per block

No. of sectors per block
Implementation Level No.
Maximum file size (records)
Save factor (0-999)

Maximum area in use (0 = None)
No. of records in last area
Generation No.

No. of spare chars. in last record
(Stream 1-0)

Pack=id of overflow pack
User count

Area Bit Map 1

Area Bit Map 2

Address of 1st File Area

Size of 1st File Area

01
04
05
05
02
02
02
01
03
03
01
02
02

02

c7
01
02
02
02

02

8U

BNM

BN

8s

8BS

2015400

DISK FILE HEADER (DFH)

10-15

TABLE 10.3.3 - DISK FILE HEADER cont.

BYTE

64-123

124-128

129-131

NCTES

PR T KN

CONTENTS SIZE NOTES
15 more address-size pairs 60 B
Reserved for implementatian 05 8

dependant overflow pack pointers

No.

of records in file 03 8
Az ASCII characters
B: Binary number
Fs: Flags.
Bit 0 set = file has been "crunched™
Bit 1 set = rough table valid
Bit 2 set = file has section on overflow pack
Bit 3 set = single area file
Bit 4=31 are currently unassigned
I File identifier

The contents of the file-id field are always the same 3s
the contents of the file=id in the correspondinc entry in
the directory name list (even to being filled with #8C0 or
#81 faor available entry and temporary entry
respectively).

U 3 User counts
Bits 02 = total number of users (7=lcckec)

Bit 3 * spare
Bit & - number of output userse.

Bits 5-7 = number of lock access users

1016

DISK FILE HEADER cont.

TABLE 10.3.3 - DISK FILE HEADER cont.

[

e o
tx Ui

Ares Maps «

Area bit maps are 16 bit fields in which eact bit
represents one of the 16 possible file areas. The nmost
significant bit in the bit map corresponcs to the first
file area and the least significant bit to the 16th area.

The bits in area bit nap 1 have the fol lowing
significancen~

Set = area allocated and on this pack.
Reset = are not allocated
orf on other (overflow) packe
The bits in area bit map 2 have the following

significance.

set = area allocated and on other packe.
reset = area not allocated or on this pack.

S -

Addresses anc sizes of file areas are in terss of the
allocation vunit of this pack which is an integer multiple
of sectors andg fixec at initialisation time.

Addresses for areas on an overflow pack are not
necessarily correct. Sizes for areas on an over flow pack
are correct and are given in terms of the sllocation unit
of this pack.

2015400

DISK FILE HEADER cont.

10-17

TABLE 10.3.4 - DFH FILETYPES

TYPE CO00E
Normal data (7D") 200
Source laenguage 201 = eof
Source {ibrary sOF
Ordinary program (S-code) 110 - 213
Interpreter for BDS s - 217
Interpreter for B700 #18 - #18B
Interpreter for B170C 21C - #1F
Sysmem 20

VM file 20
Indexed ("I™) 280 »»
Key fite ("K™) 181

«+ Value #8C never appears in file header tut is used in
FPB to indicate that an incexed file is being opened.

FILETYPES

10-18

TABLE 10.4.1 - KEY FILE PARAMETER BLOCK (KFPB)

BYTE

0
1-2
3-9

10-21

- 22

2327

28

29-31

32-33
34

35-37

38-40

41-43

44-46 .

Implementation Level No.
Spare

Pack=id of data file
File~id of data file
Blank

Space for implementation cefined
link to data file

KFPB flags - true if bit set

Bit 0 : B80 created rough table

Bit 1 : B700 created rough table

Bit 2 : B1700 created rough table

Bit 5 : Data file is a dual pack file
Bit 7 = Duplicates altowed

Relative record nos at steart
of rough table

Length of rough table in sectors
Spare

Relative record no. of start of
overflow regicn

Size of overflow region in sectors

Relative record no. of start of
index region

Size of index region in sectors

SIZe

01
02
07
12
01

05

01

03

02
01

03

03

03

03

NOTES

B

2015400

KEY FILE PARAMETER BLOCK (KFPB)

10—-19

TARLE 10.4.1 - KEY FILE PARAMETER BLOCK cont.

BYTE CONTENTS SIZE NOTES
&7 Spare 01 h
48-=49 Size of key part in bytes 02 B
50-51 Offset of keypart from base of 02 B
data record in bytes
S2=-55 Zero 04 BD
56-179 Spare 124
NOTES:

Az ASCITI characters

B Binary number

c : Set-Reset by close

KEY FILE PARAMETER BLOCK cont.

10-20

TABLE 10.4.2 - ROUGH TABLE ENIRY

BYTE 0 - Highest key value ir this grcup of index
(ENTRYSZ = &) sectorsrsieft justifiedrbirary zero fillede.
(ENTRYSZ = 3y -~ Lowest sector address in this group of
(ENTRYSZ = 1) sectors.

NB

1) The format of rough table is implementation cependant.
ALl implermentations ares however» required to assign
sufficient disk space to accomodate a rouch tables
formatted as abovesr with 3 group size of 32 sectcrs.

2) The rough table is not wupdated if the record
corresponding to the highest key in a group of sectcrs is
deleted.

ROUGH TABLE ENTRY

2015400 10-21

TABLE 10.4.3

{

VKEY ENTRY (INDEX OR OVERFLOW)

BYTE 9 - Key valuerleft justifiedrebinary zero fillec.
(ENTRYSZ = &)
CENTRYSZ = 3) = Relative record no. within data file of
CENTRYSZ = 1) keyed record.

NB

Deletion of a record

; is indicated by zeroing the key
fielg.

KEY ENTRY (INDEX OR OVERFLOW)

10-22

TABLE 10.5.1 - PROGRAM PARAMETER BLOCK (PPB)

BYTES PURPOSE OF FIELD SIZE REF COMMENT S
o] Implementation level 1 8
No,
1-12 Program nane. 12 A Standarc 12 character
file as in FPB.
13-24 S-tanguage name. 12 A For documentation.
25=31 Interpreter pack=ice. 7 A
32-43 Interpreter name-. 12 A
44-55 Compiler name. 12 A For documentation.
56-61 Cormpilation date. 6 A YYMMDD.
62-63 Priority classe. 2 B See Table 4.2.1.2.
64 Data segment for 1 8 ZFF implies
initiating message. discard message.
65-67 S=program start address. 3 8 Segment\Displacement.
68-69 Program segment 2 B NO. of segments *6
table length.
70-71 PeS.T. tocation. 2 8 Logical recorg no.
within this file.
72-73 Data segment table 2 8 NO. of segrents +6.
74=75 C.S.T. location. 2 B Logical recorc¢ ro.
within this file.
7T6=-77 TCB preset area 2 B In bytes.
length-.
78-79 TCB preset area 2 8 Byte disolacement
address-e within PPB.
8c-81 (Partial)Stack length. 2 8 In bytes.
82-82 CCB preset area e B In bytes.
length.
84-85 CCB preset area 2 B Logical record no.
address. within this file.
PROGRAM PARAMETER BLOCK (PPB)
2015400 10-23

TABLE 10.5.1 - PROGRAM PARAMETER BLOCK (PPB) cont.

10—-24

BYTES PURPOSE OF FIELD SIZE REF COMMENT S

86-87 TCB preset 2 B In bytes.
extension lengthe.

88-89 Internal file nanme 2 B In bytes.
block length.

90-91 Internal file name 2 B Logical record within
block address. this file.

--- TCB preset area values. ==== === Variable length.

PROGRAM PARAMETER BLOCK (PPB) cont.

TABLE 10.5.2 - PROGRAM SEGMENT DESCRIPTOR

Byte 0 TYPE CODE
value = 0 : ordinary code or data Segment
(bytes 2»3 = 0 implies & zero
filled work area)
value = 1 * this read=write data segment
is an FIB
value =.2 ¢ a dummy ertry will be built in the
segment table (bytes 2+¢3»4»5 = 0)
value = 3 : uninitialised (garbage filled) work
segment (bytes 2,3 = 0)
Byvte 1 FLAGS

bit 0,1,2+3+,4,5 used by 0S

bit 6 set lock in main store

bit 7 set = read-write segment

(never set for codes must be set
if bytes 2,3 = 0)

Bytes 2»2 Relative record number within
file at start of segment

Bytes 4,5 Length of segsent in bytes ¢

¢+ For an FIB segment descriptor, byte S5 contains the
segment number of the appropriate FPB segment.

2015400

PROGRAM SEGMENT DESCRIPTOR

10-25

TABLE 10.5.3 - PROGRAM INTERNAL FILE NAME BLOCK ENTRY

Byte 0 DST index of f1IB8
Byte 1 DST Index of FPB8
Bytes 2-29 Internal filte nanme.

Left justified and
blank fille¢

PROGRAM INTERNAL FILE NAME BLOCK' ENTRY

10—-26

APPENDIX A

AVAILABLE TABLE

AVR

BAILIFF

CCB
CPA

CT, C.TABLE

DDR
DFH
DIAGCBUF
DST

EPAR
EsSCT
EVICT

FDR
FIB
FPB

GLBLM
GLOBAL
GwA

ICB

IFIB

IFNB
INTERGLBL
IODESC

KFPB

LOADER
LOCKS

MCH
MIP

NAMELIST

2015400

APPENDIX A

- INDEX OF TERMS

Non disk Directory
Automatic Volume Recognition

MCP Task 0O

Code Control Block

| = ~ - FA T
Communicate Parameter Area

Configuration Table

Device Dependent Routine
Disk File Header

Glokal Diagnostics Buffer
Data Segment Table

Execution Parameter Area
Execution Scan Table
Bailiff operation

Function Dependent Routine
File Information Rlock
File Parameter Block

Global MCP (Bailiff) Map
MCP tables
Global Work Area

Interpreter Control Block
Indexed File Information Block
Internal File Name Block
Interpreter Global Work Area
Input-Output Descriptor

Key File Parmeter Block

MCP task 15
MCP task control

Master Communicate Handler
Master Interrupt Processor

Disk Directory

10.3.2

APPENDIX A

OPENCLOSE
OVERLAY
OVERLAYABLE

PCB

PHDMP

PHT

PINK LINK
PPB

RESTORE
ROUGH TABLE
RS

SAT

SCL

SD
S-FLAGS
S1WA
SLICE
SWAP

TASK
TASK.TABLE
TCB
THRASHING

VERSION. INFO
VM
VMWA

WAKT

INDEX OF TERMS (CONT.)

MCP slice 17
Virtual Memory Operation
Area of Memory

Program Control Block

Peripheral Handling Dump Area

Peripheral Handling Table
Slice Memory Structure
Program Parameter Block

Bailiff Operation
Key File Area
Slice Descriptor

Slice Address Table
System Control Language
Segment Descriptor

DDR status

S-Interpreter Work Area
Area of Memory

Virtual Memory Operation

Independent Runner
Logical Task Information
Task Control Block
System State

Global MCP Table
Virtual Memory

7irtual Memory Work Area

Wait Key Table

Section

	001
	002
	003
	005
	006
	007
	008
	009
	01-01
	01-02
	010
	011
	012
	013
	02-01
	02-02
	02-03
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	04-01
	04-02
	04-03
	04-04
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	A-01
	A-02

