Burroughs @

Computer Management System
(CMS)

Data Communications

Subsystem

REFERENCE MANUAL

PRICED ITEM

Burroughs @

f

Computer Management System
(CMS)

Data Communications
Subsystem

REFERENCE MANUAL

~

PRICED ITEM

“The names used in this publication are not of individuals living or
otherwise. Any similarity or likeness of the names used in this publi-
cation with the names of any individuals, living or otherwise, is purely
coincidental and not intentional.”

Burroughs believes that the software described in this manual is
dccurate and reliable, aid much care has been taken in its preparation.
However, no responsibility, financial or otherwise, can be accepted for
any consequences arising out of the use of this material, including loss
of profit, indirect, spécial, or consequential damages. There are no
warranties which extend beyond the program specification.

The Customer should exercise care to assure that use of the software
will be in full compliance with laws, rules, and regulations of the
jurisdictions with respect to which it is used.

The information contained herein is subject to change. Revisions may
be issued from time to time to advise of changes and/or additions.

This edition includes the information released under the following:
PCN 1090909-001 (February 22, 1979)

Any comments or suggestions regarding this publication should be forwarded to Systems Documentation, Technical
Information Organization, TIO-East, Burroughs Corporation, P.O. Box CB7, Malvern, Pennsylvania 19355.

Section

1

TABLE OF CONTENTS

Title Page

GENERAL INFORMATION
General

Documentation Conventions
System Limitations

Message Control System Interface 1-1

Operator Interface 12
DC Errors 12
Buffer Limiting 14
TASK = MCS 14
STATION —> MCS 14
TASK => STATION 14
STATION => SUBNET QUEUE 15
MCS => SUBNET QUEUE 1-5
MCS > STATION 1-5
Queue References 1-5
Message Declarations 15
Message Space Handling 1-5
Rules of Data Transfer 1-6

Network Error Handling 1-6
MCS FUNCTIONS 2-1
ALLOW.INPUT 2-1
ALLOW.OUTPUT 2-1
CLEAR 2-1
CONTINUE.STATION 2-1
CONTINUE.TASK 22
COPY.TEXT 22
DCP.DESCRIPTION 22
DCP.PROCESSORS 22
DCP.PROGRAM.COUNT 2-2
DCP.PROGRAM.NAMES 22
DCP.PROGRAM.TERMINALS 2-2
DCP.RELOAD 2-3
DEQUEUE 2-3
DISALLOW.INPUT 2-3
DISALLOW.OUTPUT 2-3
EXCHANGE.REFERENCE 2-3
FETCH.MESSAGE 2-3
GET MESSAGE.SPACE 24
LINE.COUNT 24
LINE.DESCRIPTION 24
LINE.NUMBER 24
LINE.STATIONS 24
LINE.STATUS 24
MODEM.COUNT 24
MODEM .DESCRIPTION 24
NULL 24
QUEUE 25
QUEUE.DEPTH 2-5
READ.HEADER 2-5
READ.TEXT 2-5
RECALL 2-6
REDEFINE.LINE 2-6
REDEFINE.STATION 2-6

Section

2

Title

RELEASE MESSAGE.SPACE
ROUTE.INPUT
ROUTE.OUTPUT
SET.INPUT.LIMIT
SET.OUTPUT.LIMIT
SET.QUEUE.LIMIT
STATION.COUNT
STATION.DESCRIPTION
STATION.NUMBER
STATION.STATUS
SUBNET.COUNT
SUBNET.DESCRIPTION
SUBNET.STATIONS
SUBNET.STATUS
SUBNET.NUMBER
TASK.NAME
TASK.NUMBER
TASK.STATUS
TERMINAL.COUNT
TERMINAL.DESCRIPTION
WRITE . HEADER
WRITE.TEXT
INTERROGATE LAYOUTS
DCP.DESCRIPTION
DCP.PROGRAM.TERMINALS
DCP PROGRAM NAMES
LINE .DESCRIPTION
LINE.STATIONS
LINE.STATUS
MODEM.DESCRIPTION
REDEFINE.LINE
REDEFINE.STATION
STATION.DESCRIPTION
STATION.STATUS
SUBNET.DESCRIPTION
SUBNET.STATIONS
SUBNET.STATUS
TASK.STATUS
TERMINAL.DESCRIPTION
NDL TABLES
General
Line Table Layout
Line Descriptor

2 Bytes
Line Tally (1)

1 Byte /Binary
Line Tally (0)

1 Byte/Binary
Max Entries

1 Byte/Binary
Maxstations

1 Byte/Binary
Auxiliary Line Tally (1)

Page

2-6
2-6
2-7
2-7
2-7
2-7
2-8
2-8
2-8
2-8
2-8
2-8
2-8
29
29

29
29
29
29
2-10
2-10
3-1
3-1
3-1
3-1
3-1
31
32
32
32
32
32
33
33
33
33
33
34
4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-1
4-1

iii

Section

4

iv

TABLE OF CONTENTS (CONT)

Title

1 Byte/Binary
Auxiliary Line Tally (0)
1 Byte/Binary
Line Address
2 Bytes/Binary
Logical Line Number
1 Byte/Binary
Modem
1 Byte/Binary
Type
2 Bytes
Aux Line Descriptor
2 Bytes
Station Tallies
1 Byte Each/ Binary
Station Descriptors
1 Byte Each
Station Table Pointers
2 Bytes Each/Binary
Station Table Layout
Logical Line Number
1 Byte/Binary
Relative Station Number
1 Bytg/Binary
End Character
1 Byte/ASCII
Line Delete Character
1 Byte/ASCII
Backspace Character
1 Byte/ASCII
WRU Character
1 Byte/ASCII
Control Character
1 Byte/ASCIL
Station Frequency
1 Byte/Binary
Transmit Address
3 Bytes/ASCII
Run Mode Bits
1 Byte
Receive Address
3 Bytes/ASCII
Receive Transmission Number
2 Bytes
Transmit Transmission Number
2 Bytes
Output Save Queue Head
2 Bytes/Binary
Output Save Queue Tail
2 Bytes/Binary
Logical Station Number
2 Bytes/Binary
Unprocessed Input Limit

Page

4-1
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
42
4.3
43
43
43
4.3
4.3
43
4.3
43
4.3
4.3
4.3
4.3
4.3
43
4.3
4.3
4.3
4.3
44
44
44
44
44
44
44
44
44
44
44
44
44
44
44

Section

4

Title

1 Byte/Binary
Unprocessed Input Count
1 Byte/Binary
Original Retry
1 Byte/Binary
Retry
1 Byte/Binary
Tallies
Three 1-Byte Fields/Binary
Toggles
1 Byte
Options
1 Byte
Events
Bytes
Initiate Receive Delay
2 Bytes/Binary Two’s
Complement
Active Transmit Delay
2 Bytes/Binary Two’s
Complement
Station Queue Head
2 Bytes/Binary
Station Queue Tail
2 Bytes/Binary
Queue Limit
1 Byte/Binary
Queue Count
1 Byte/Binary
Attached Status
2 Bytes
Wait Status
2 Bytes
Subnet Queue Address
2 Bytes/Binary
Line Priority Code
1 Byte/Binary
Type
2 Bytes
Speed
2 Bytes
Modem
1 Byte/Binary
Tally (3) Through Tally (18)
16 Fields, 1 Byte/Binary
Output Save Queue Count
1 Byte/Binary
Input Save Queue Count
1 Byte/Binary
Input Save Queue Head
2 Bytes/Binary
Input Save Queue Tail
2 Bytes/Binasy

Page

44
44
44
44
44
45
4.5
45
4.5
45
4.5
45
45
4.5
4.5
45

4.5
4.5

4.5
4.6
4-6
4.6
4-6
4.6
4.6
46
46
46
46
46
46
46
4.6
46
4.6
4.6
4.6
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
4.7
47
4.7
4.7
4.7

Section

4

TABLE OF CONTENTS (CONT)

Title

Terminal

1 Byte/Binary
Modem Table Layout
Type

2 Bytes
Speed

2 Bytes
Noise Delay

2 Bytes/Binary — Two’s
Complement
Transmit Delay

2 Bytes/Binary — Two’s
Complement
Terminal Table Layout
Run Mode Bits

2 Bytes
TR-Count

1 Byte
SV Queue Limit

1 Byte/Binary
T-AD Count

4 Bits/Binary
R-AD Count

4 Bits/Binary
Sync Character

1 Byte
Parity Mask

1 Byte
Standard Timeout

2 Bytes/Binary Two’s
Complement

Auxiliary Line Control Pointer

2 Bytes/Binary
Turnaround Delay
2 Bytes/Binary Two’s
Complement
Line Control Pointer
2 Bytes/Binary
Receive Request Pointer
2 Bytes/Binary
Transmit Request Pointer
2 Bytes/Binary
Translation Table Pointer
2 Bytes/Binary
Maximum Input Size
2 Bytes/Binary One’s
Complement
Adapter Info
1 Byte
Number of Buffers
1 Byte/Binary One’s
Complement

Type

Page

4.7
4.7
4.7
4.8
4.8
4.8
4.8
4.8

4-8
4-8

4.8
4.8
4.8
4.8
49
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9
4.9

49
4.9
49
4.9

49
49
49
49
4.9

4.10

4-10

4.10

4-10

4-10

4-10
4-10
4-10
4-10

4-10
4-10

Section

4

Title

2 Bytes
Speed
2 Bytes
Stop Bits
2 Bytes
File Table Layout
Index To LFN-X’s LSN-LIST
2 Bytes/Binary
LEN-X Number of Stations
2 Bytes/Binary
LFN-X’s LSN-LIST
Each Entry is 2 Bytes/Binary
Extended Station Table Layout
MCS Data Bits
2 Bytes
Width
1 Byte/Binary
Page
1 Byte/Binary
Digit Count
4 Bits/Binary
Phone Number
15 Four-Bit Binary Coded
Decimal Digits
Extended Terminal Table Layout
MCS Data Bits
2 Bytes
Width
1 Byte/Binary
Page
1 Byte/Binary
Carriage Character
1 Byte/ASCII
Linefeed Character
1 Byte/ASCII
Home Character
1 Byte/ASCII
Clear Character
1 Byte/ASCII
MESSAGE HEADER
Introduction
Message Header Layout
Message Header
Message Link
Buffer Link
Processor
1 Byte/Binary
Line
1 Byte/Binary
Result
1 Byte/Binary
Type
1 Byte/Binary

Page

4-10
4-10
4-10
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-11
4-12
4-12
4-12
4-12
4-12
4-12
4-12

4-12
4-12
4-12
4-12
4-12
4-12
4-12
4-12
4-12
4-12
4-12
4-12
4-12
4-12
4-12
4-12

5-1

5-1
5-1
5-1
5-1
5-1

5-1
5-1
5-1
5-1
52
52

Section

5

TABLE OF CONTENTS (CONT)

Title Page

Task 52
1 Byte/Binary 52
MCS Flag 52
1 Byte 52
Station 52
2 Bytes/Binary 52
Options 52
1 Byte 52
Events 52
3 Bytes 52
Subnet Queue 5-3
1 Byte/Binary 5-3
Text Length 5-3
2 Bytes/Binary 5-3
Message Length 5-3
2 Bytes/Binary 53
Skip Control 53
1 Byte/Binary 5-3
Retry 5-3
1 Byte/Binary 5-3
Transmission Number 5-3
3 Bytes/ASCII 5-3
Tallies 5-3
3 Bytes 5-3
Toggles 54
1 Byte 54
Date 54
3 Bytes 54
Time 54
3 Bytes 54
MCS Data 54
2 Bytes/Binary 54

Valid Message Header Fields 54

Data Communications Message

Types 54

Directive Type Messages 54
INPUT/OUTPUT 54
PRIORITY-OUTPUT 54
ENABLE-INPUT/DISABLE-

INPUT 54
MAKE-STATION-READY 5-7
MAKE-STATION-NOT-READY 5-7
MAKE-LINE-READY 5-7
CALL-RECEIVED 57
MAKE-LINE-NOT-READY 5-8
DIALOUT 5-8
IMMEDIATE-LINE-NOT-READY

(SWITCHED DISCONNECT) 5-8
LINE-ABORT 5-8
RECOVER/DEALLOCATE 59

End Recall from Queue 59

End Recall from Station 59

Maintenance 59

Section

6

Title

NDL PROGRAM FILE
General
NDL Program Parameter Block
NDL Program Segment Table
NDL Program Segment
Descriptions

Control Sets - Format A

Page

6-1
6-1
6-1
6-1

6-1
6-1

Control Displacements - Format A 6-1

Request Sets - Format A

6-1

Request Displacements - Format A 6-2

Control Sets - Format B

Control Displacements - Format B

Request Sets - Format B

6-2
6-2
6-2

Request Displacements - Format B 6-2

NDL Data Segment Table
Preset Data
Bytes 2 and 3 - DC Buffer Size

Bytes 4 and 5 - Minimum Buffer

Count
Bytes 6 and 7 - Station Count
Byte 8 - File Count
Byte 9 - Line Count
Byte 10 - Modem Count
Byte 11 - Terminal Count

Bytes 12-13 - Additional Buffer

Count

Bytes 4243 - Reserved for NDL

Postprocessor
Byte 44 - DCP Count
Byte 45 - Highest DCP Number

Byte 46 - Station Table Maximum

Length

Byte 47 - Reserved

Byte 48 - N - DCP Data List
Line Tables

Line Table Displacement List
Station Tables

Station Table Displacement List

Modem Tables

Terminal Tables

File Table

Extended Station Tables
Extended Terminal Tables
Station Name Table

File Name Table
Translation Tables
Translation Table Displacement
List

Line Priority Chart

Line Speed Table

DCP Terminals Format A
Program File List

Program Terminals List

62
6-3
6-3

6-3
6-3
6-3
6-3
6-3
6-3

6-3

6-3
6-3
6-3

6-3
6-3
6-3
64
64
64
64
64
64
64
6-5
6-5
6-5
6-5
6-5

6-5
6-5
6-5
6-5
6-5
6-6

Section

TABLE OF CONTENTS (CONT)

Title

Source Statement Occurrence
DCP Terminals Format B
DCP Data Directory
DCP Data
Program Terminal Lists

COBOLDATA

COMMUNICATIONS

General
COBOL Communication
Descriptions

Input CD
Symbolic Queue
Symbolic Sub-Queue
Message Date
Message Time
Format of Input CD Area
Symbolic Source
Text Length
End Key
Status Key
Message Count
Queue Number
Station Number
Output CD
Format of Qutput CD Area
Destination Count
Text Length
Status Key
Error Key
Symbolic Destination
Station Number
COBOL Data Comm Statements
Accept
Enable Input
Disable Input
Enable Output
Disable Output
Receive
Send
Skip Control (CPA Bytes 3, 4)
Variant [From Identifier-1]
RECONFIGURATION
General
REDEFINE.LINE
REDEFINE.STATION
Network
Errors
MPLII USER DATA
COMMUNICATIONS
General
DC.ACCEPT
DC.ENABLE.INPUT
DC.ENABLE.OUTPUT

Page

6-6
6-8
6-8
6-8
6-8

7L
7:1

7-1
7-1
7-1
7-1
7-1
7-1
7-1
72
72
7-2
7-2
72
72
7-2
72
7-2
74
74
74
74
74
74
74
74
74
7-5
7-5
7-5
7-6
7-6
7-1
7-7
8-1
8-1

Section

10

11

Title

DC.DISABLE.INPUT
DC.DISABLE.QUTPUT
DC.RECEIVE
DC.SEND
Input Related Functions
DC.NODATA
DC.INPUT.STATUS
DC.ORIGIN
DC.TEXTLENGTH
DC.DATE
DC.TIME
DC.ENDKEY
Output Related Functions
DC.OUTPUT.STATUS
DC.ERRORKEY
B 80-DEPENDENT FEATURES
General
Explanations
B 800-DEPENDENT FEATURES
General
B 800 Scratch Pad Memory
Bytes 0 and 1, M-PTR-L and
M-PTR-M
Byte 2, LINE-NO
Byte 3,ID
Byte 4, DS-DESC
Byte 5, LINE-Q-HEAD
Byte 6, FRWD-LNK
Byte 7, BKWD-LNK
Byte 8 and 9, TIMEOUT-L and
TIMEOUT-M
Bytes 10 and 11, TIMER-L and
TIMER-M
Byte 12 and 13, TRANSLATE-L
and TRANSLATE-M
Bytes 14 and 15, CRC-L/BCC
and CRC-M
Byte 16, CHIP FREQ
Byte 17, DDP-DESC
Byte 18, PARITY MASK
Byte 19, SYNC CHARACTER
Bytes 20 and 21, TIMER 2-L
and TIMER2-M
Bytes 22 and 23, CONTINUE-L
and CONTINUE-M
Bytes 24 - 27, WORK1,
WORK2, WORK3, WORK4
Byte 28, BIU-CHAR4
Byte 29, BIU-CHAR-5
Byte 30, BIU-CHAR-6
Byte 31, BIU-CHAR-7
Byte 0 and 1, S-PTR-L and
S-PTR-M

Page

9-1
9-1
92
9-2
92
9-2
9-2
9-3
9-3
9-3
9-3
93
93
9-3
9-3
10-1
10-1
10-1
11-1
11-1
11-1

11-1
111
11-1
11-1
11-2
112
112

112
112
112
113
113
113

113
114

114
114

114
114
114
114
114

114

vii

Section

11

12

viii

TABLE OF CONTENTS (CONT)

Title Page

Bytes 2 and 3, COMMUNICATE-L

and COMMUNICATE-M 114
Byte 4 and 5, STATION-TAB-L

and STATION-TAB-M 114
Bytes 6 and 7, LINE-TAB-L

and LINE-TAB-M 114
Bytes 8 and 9, MESSAGE-HDR-L

and MESSAGE-HDR-M 114
Bytes 10 and 11, TERM-TAB-L

and TERM-TAB-M 11-5
Bytes 12 and 13, TEXT-SIZE-L

and TEXT-SIZE-M 11-5
Bytes 14 and 15, BUFFER-SIZE-

L and BUFFER-SIZE-M 11-5
Bytes 16 and 17, CUR-BUF-L

and CUR-BUF-M 11-5
Bytes 18 and 19, CUR-ADDR-L

and CUR-ADDR-M 11-5
Byte 20, BUF-CHAR 11-5
Byte 21, IN-CHAR 115
Byte 22, ACTIVE STATION 11-5
Byte 23, LINE-CHAR 11-5

Bytes 24 - 27, SPM-TEMP-1,
SPM-TEMP-2, SPM-TEMP-3,
SPM-TEMP-4 11-5

Bytes 28,29, and 30, BIU-CHAR-

0, BIU-CHAR-1, and BIU-

CHAR-2 11-5
Byte 31, BIU-CHAR3 11-5
CP 9500 IMPLEMENTATION 12-1
Introduction 12-1
System Overview 12-1
Data Comm Loader (DCL) 12-1

Data Comm Activity (DCA) 12-1
Data Comm Processors (DCPs) 12-2

Data Comm Buffer Memory 122
DCS Tables 12-2
DCS Queues 12-2

Implementing CP 9500 Data

Comm 122
Preparation 122
Initialization 12-2
Execution 12-3

System Configuration 12-3
Hardware 12-3
Firmware 12-3
Software 124
CP 9500 Unique Features 124
CP 9500 Preparation 124

SYSCONFIG 124
Data Comm Buffer Memory

Size 124

DCP/TP Assignment 124

Section

12

Title

Warmstart
NDL Compilation
NPC Execution
CP 9500 Data Comm
Initiation
DCL Job Management
Interface
MCS Load
Non-MCS Data Comm
Program Loads
DCL Data Access Interface
DCL Monitor Interface
DCL Process
Data Comm Load Input
NDLSYS File
DCP Firmware Files
Data Comm Load Output
DCP Memory
Buffer Memory
SYSRECON File
Data Comm Load - Flow of
Control
LOAD-ACTION
OPEN-NDLSYS
BUILD-NDL-TABLE
BUILD-DCP-TABLES
CREATE-MCS-TABLES
VALIDATE-MCS
FORMAT-BUFF-MEM
SEND-DCP-FILES
OPEN-DCP-FILE
LOAD-DCP-FILE
SEND-LINE-TABLE
SEND-STATION-TAB
SET-UP-MCS-TAB
SET-UP-SYSRECON-FILE
SET-UP-MRA
START-DCP
DEALLOCATE-LB
Data Comm Execution
Data Comm Interfaces
Processor Interface
Data Access
Monitor
Data Comm Activity
User Jobs
Subnet Info
MCS Table
LSN, LLN Conversion
DCP Conversion
NDL Data
MCS Name
MREF Area

Page

12-6
12-6
12-6

12-6

12-6
12-6

126
12-6
126
12-6
127
12-7
1247
127
127
12-8
129

12:9
12-10
12-10
12-10
12-10
12-10
12-10
12-10
12-10
12-10
12-10
12-11
12-11
12-11
12-11
12-11
12-11
12-11
12-11
12-13
12-13
12-13
12-13
12-13
12-14
12-14
12-14
12-14
12-14
12-14
12-14
12-15

Section

12

TABLE OF CONTENTS (CONT)

Title

DCA Initiation
Action Level Interfaces Within
DCA
MCP Task State - Suspend,
Reinstate
DCA Accesses to DCP Tables
Disallow Input, Disallow
Output
Route Output
Station Routing
Queue Count/Limit
Maintenance
DCA/DCP Communication
Message Communication
NDL Table Accessing
Data Comm Processors (DCPS)
Host Control
Execution In an Idled System
DCP Queue Accessing
Request Function
Request Queue Delinking
LLN Decoding and L Set-Up
Type Decode
DCP Result Queue
PI
Line and Station Relative
Functions
Discarding Message Space
Message Header Transfers
from DCP
Handling Message Buffers
GETSPACE
Character Fetching
Character Storing
LNE.BUFFER.SIZE (Two
Bytes)
LNE.BUFFER.COUNT (Four
Bytes)
LNE.THIS.BUFFER .SIZE
(Two Bytes)
LNE.FLAGS.2 (SPACE.
AVAIL)
LNE.TEXT.SIZE (Two
Bytes
LNE.CURRENT.BUFFER
(Four Bytes)
Transferring Space Ownership
to DCA
Line Management
Single-Line Manager Schemes
DCP Table Maintenance
Station Table
Line Table

Page
17-15
12-15

12-15
12-16

12-16
12-16
12-16

12-17
12-18
12-18
12-19
12-19
12-19
12-19
1221
1221
1222
12-22
1222
12-22
1222

1222
12-22

1223
1223
1223
1224
1224

1224
1224
1224
1224
1224
12:24
1225
1225
1226
12:26

1226
1226

Section

12

Title

Translation Table Space
Allocation
Terminal and Modem Tables
NDL S-Op Handling
Register Conventions
RCV/XMIT Character
Handling (Interrupt Handling)
TRANSMIT
RECEIVE
Subroutines Supporting S-Ops,
Managers, Host Control
Buffer Management
Subsystem Queues
Queue Linking Mechanism
Queue Pointers in Buffer
Memory
Request Queues
Result Queue
Available Buffer Pool (ABP)
Data Comm Buffer Format
MCS Queues
Subnet Queues
Reconfiguration
Data Comm Reload
DATA COMMUNICATIONS
INITIATION AND
TERMINATION
General
Data Communications
Initiation/Termination
Initiation
Termination
DATA COMMUNICATIONS
COMMUNICATES
Introduction
Verb-Adverb CPA Values
CPA Layouts
MCS CPA Layouts
ALLOW.INPUT
ALLOW.OUTPUT
CLEAR
CONTINUE.STATION
CONTINUE.TASK
COPY.TEXT
DCP.DESCRIPTION
DCP.PROCESSORS
DCP.PROGRAM.COUNT
DCP.PROGRAM.NAMES
DCP PROGRAM.TERMINALS
DCP.RELOAD
DEQUEUE
DISALLOW.INPUT
DISALLOW.OUTPUT

Page

1227
12-28
1228
12-28

12-29
1229
12-30

12-30
12-30
12-30
12-30

12-33
12-33
12-33
12-33
12-34
12-35
12-35
12-35
12-35

A-1
A-1

A-1
A-1

B-1
B-1
B-1

B2
B2

B-2
B2

B-3
B-3
B-3
B-3
B-3
B-3
B-3
B-3

B4

ix

TABLE OF CONTENTS (CONT)

Section Title Page Section Title Page
C SAMPLE CMS DATA
B EXCHANGE MESSAGE B4 COMMUNICATION PROGRAMS C-1

FETCH.MESSAGE AND The Model MCS C.1

DEQUEUE B4 Functional Description C-1
GET MESSAGE.SPACE B4 Detailed Description C-1
LINE.COUNT B4 Identifiers C-1
LINE.DESCRIPTION B4
LINE.NUMBER B4 Director C-1
LINE.STATIONS B4 Initialize Routine C-1
LINE.STATUS B4 Take Message from MCS Queue C-2
MODEM.COUNT B4 Log the Message C-2
MODEM.DESCRIPTION B4 Process Non-Zero Results C2
QUEUE B-5 Perform Action Routines C3
QUEUE.DEPTH B-5 Return Message Space C-5
QUEUE.NUMBER B-5 Stop C-5
READ HEADER B-5
READ.TEXT B-5 Sample Data Comm Tasks C-20
RECALL B-5 Functional Description C-20
REDEFINE.LINE B-5 MPLII C-20
REDEFINE.STATION B-5 COBOL C-20
RELEASE MESSAGE.SPACE B-5 Detailed Description C21
ROUTE.INPUT B-5 Program Logic c21
ROUTE.OUTPUT B-6 GET.QUEUE.NAME c21
SET.INPUT.LIMIT B-6 Turnaround C21
SET.OUTPUT.LIMIT B-6 GETMESSAGE Cc21
SET.QUEUE.LIMIT B-6 XMIT Cc21
STATION.COUNT B-6 LOG.IN.CD c22
STATION.DESCRIPTION B-6 LOG.OUT.CD c22
STATION.NUMBER B-6
STATION.STATUS B-6 ANALYZE ERRORS (See
SUBNET.COUNT B-6 MPLII 26800 - 27500, COBOL
SUBNET.DESCRIPTION B-6 25400 - 21600.) c22
SUBNET.STATIONS B-7
SUBNET STATUS B-7 Sample NDL Program C-37
TASK.NAME B-7 The Implementation C-38
TASK.NUMBER B-7 The Host Line C-38
TASK.STATUS B-7 Line Section C-38
TERMINAL.COUNT B-7 Station Section C-38
TERMINAL.DESCRIPTION B-7 Terminal Section C-39
WRITE.HEADER B-7 Control and Request C40
WRITE.TEXT B-7
ACCEPT B-8 The Terminal Line C40
ENABLE INPUT B-8 Line Section C40
DISABLE INPUT B-8 Station Section (8600.xxxx) C40
ENABLE OUTPUT B-8 Terminal Section (8010.xxxx) C41
DISABLE OUTPUT B-8 Modem Section (000 .xxxx) C41
RECEIVE B-8 Control and Request C41
SEND B-8 DCP Section C41

LIST OF ILLUSTRATIONS

Figure Title Page Figure Title
5-1 Messages Initiated by the MCS 5-5 129 Pending States
52 Messages Found in the MCS 12-10 DCP Logical Flow (Multi-Line)
Queue 5-6 12-11 DCP Table and Queue Access
7-1 Status Key Conditions 7-3 12-12 Line Linkage
11-1 Data Comm Processor Scratch 12-13 DCP Memory
Pad Memory Dump 112 12-14 Station Table
112 Scratch Pad Memory Layout 11-3 12-15 General Interrupt Handling
12-1 CP 9500 Firmware 12-3 12-16 Queue Linking
122 CP 9500 Preparation and 12-17 Top Queueing
Initialization 12-5 12-18 Queue Delinking
12-3 DC Buffer Page Linkage 12-8 12-19 Queue Locking
124 SYSRECON File Contents 129 12-20 Queue Pointers in Reserved
12-5 Message/Communicate Flows 12-12 Buffer Memory
12-6 CP 9500 Data Comm Subsystem 12-13 1221 Formats of Data Comm Buffers
12-7 DCA Absolute Data 12-14 1222 Data Comm Buffer/Message
12-8 MCS Tables 12-15 Link Mechanism

LIST OF TABLES

Table Title Page Table Title

6-1 Asynchronous Line Priority 6-2 Synchronous Line Priority
Chart 6-6 Chart

Page

12-17
12-20
12-21
1225
1226
1227
12-29
12-31
12-31
12-32
12-32

12-33
12-34

12-35

Page

6-7

SECTION 1

GENERAL
INFORMATION

GENERAL

This reference manual covers the total data com-
munications network on the Burroughs Computer
Management Systems (CMS). The syntax and se-
mantics of each of the languages (NDL, MPL, and
COBOL) are not extensively documented here;
rather this manual helps explain and define the inter-
faces between the three languages and the data com-
munications subsystem. The specific syntax and se-
mantics may be found in the following reference
manuals:

CMS COBOL Reference Manual, form 2007266
CMS MPL Reference Manual, form 2007563
CMS NDL Reference Manual, form 1090925

DOCUMENTATION CONVENTIONS

Throughout this document, bit 15 is defined as the
most significant bit (2 to the 15th power) and bit 0
as the least significant bit (2 to the Oth power).

Items in the document marked RESERVED are
considered ““don’t cares’ to the user but, in fact, are
unmolested by the DC subsystem.

Items marked as IMPLEMENTATION DEPEND-
ENT are also considered don’t cares to the user but
may be manipulated by some implementation
groups.

For bit flags which denote availability or presence
of some condition;

Available/Present
Unavailable/Absent

Set
Reset

I

meaning is the reset condition; the second meaning
is the set condition. For example,

BIT X = ASCIVEBCDIC = 0/1

All use of the term ‘‘task number’’ within this
document refers to the external mix number of the
| task.
i

SYSTEM LIMITATIONS

The number of stations, lines, queues, and related
items is limited due to the NDLSYS file layout. Cur-
rent limitations within the data comm subsystem are:

1. The number of different terminals must be less
than 128.
2. The number of different modems must be less
‘ than 256.
| 3. The number of lines must be less than 256.
4. The number of subnet queues must be less than
256.
5. The number of stations depends on the type of
station as follows:

l a. If all stations are non-BDLC and do not use

extended tallies, the number of stations must
be less than 1,130.

\ b. If all stations are BDLC or use extended tal-
' lies, there must be less than 820 stations.

MESSAGE CONTROL SYSTEM
INTERFACE

The message control system (MCS) is the central
portion of the data communications system and, as
such, has total control over the operations per-

formed by the system. It has sole responsibility for

allowing or denying accesses by user programs to
portions of the data comm network; message switch-
ing, either on a global basis (automatic message rout-
ing) or on a message-by-message basis (context
switching); error handling; and reconfiguration of the
data comm network. In addition, the MCS may per-
form such functions as auditing and log-in/out valida-
tion, depending on the requirements of the system.

In order to perform data comm functions on a sys-
tem, it is necessary that one, and only one, MCS be

present in the system. The MCS runs as a normal
task (with a few minor exceptlons) under the stand-
ard operating system, and is written in a high-level
language. This language is MPLII, augmented by
certain constructs required to perform MCS-specific
tasks. These language constructs are described in
Section 2.

1-1

OPERATOR INTERFACE

The MCS may receive input from, or send output
to, the system operator’s console using the normal
ACCEPT and DISPLAY constructs. Unsolicited SPO
input messages are preceded with the characters DC.
The system control language recognizes these char-
acters as defining a message intended for the MCS,
and alerts the data communications subsystem. The
message text, after being stripped of the DC charac-
ters, is transferred into a data communications sub-
system message space, which is ultimately placed on
the MCS queue.

The interpretation of the message text is defined
by the particular MCS.

There are two cases in which a DC input message
may be refused by the system. They are:

1. There is no MCS in the mix.

2. There is no available DC message space in
which to transfer the message text.)

The system informs the operator of the appropri-
ate condition by displaying either DC INVALID or
DC NOSPACE on the system operator’s console.

DC ERRORS

Within the MCS communicate descriptions which
appear elsewhere in this document, the phrase ‘‘an
error is monitored’’ is used to indicate a communi-
cate failure. The ultimate effect of such a failure is
determined by the <error option> available to most
communicates, where:

<error option> ::= <empty> |, ERROR

If a communicate is unsuccessful and the <error
option> = empty and event number and a corre-
sponding error message are printed and the MCS
must be discontinued. The vehicles used for discon-
tinuing an MCS are the DS or DP SPO input mes-
sages:

DS <mix> <program name>
DP <mix> <program name>

If a communicate is unsuccessful and the <error
option> = ERROR, the most significant eight bits of
the communicate result field (fetch value) are set
equal to @20@ and the remaining 16 bits are set
equal to the appropriate event number. Fetch value
is then made available for the programmer to interro-
gate.

The event numbers assigned for use by the DC
subsystem range in value from 200 through 299. This
range has been further divided into the following cat-
egories:

12

200-254 Implementation Independent

272-274 Errors

282-284

303-304

255-269 Implementation Dependent
Errors B 80

270-271 Implementation Dependent

279-281‘} Errors B 800/CP 9400

285-299 Implementation Dependent
Errors B 1800

300-302 } Implementation Dependent

305-320 Errors CP 9500

The following is a list of the currently defined
event numbers and the corresponding messages.

Event Message
Number
200 DC ERROR BAD MESSAGE TYPE
The type field in the message header contains a
value > 12. ERROR is returned after:
QUEUE
201 DC ERROR BAD STATION NO

A reference has been made to LSN > STATION
COUNT-1. ERROR is returned after:
ALLOW.OUTPUT

CLEAR

CONTINUE.STATION
DISALLOW.OUTPUT

QUEUE

REDEFINE.STATION
ROUTE.OUTPUT
SET.INPUT.LIMIT
STATION.DESCRIPTION
STATION.STATUS

202 DC ERROR BAD QUEUE REF
A reference has been made to an invalid queue.
Certain communicates are restricted to certain
queues, therefore, the queue referenced may exist
but be invalid in this context. ERROR is returned
after:
CLEAR
DEQUEUE
QUEUE
QUEUE DEPTH
RECALL
ROUTE.INPUT
ROUTE.OUTPUT
SET.QUEUE.LIMIT

203 DC ERROR BAD SUBNET NO
A reference has been made to an <SUBN>
SUBNET COUNT-1. ERROR is returned after:
ALLOW.INPUT
DISALLOW.INPUT
SUBNET.DESCRIPTION
SUBNET.STATIONS

204 DC ERROR TEXT SIZE TOO BIG
The text length field is the message header was
set > message length field. ERROR is returned
after:
WRITE.HEADER

205 DC ERROR NULL MREF
An attempt has been made to perform a function
on a null message reference, in other words, one

206

207

208

209

210

21

212

213

214

which does not refi_ence a message space.
ERROR is returned after:

COPY.TEXT

QUEUE

READ.HEADER

READ.TEXT

WRITE.HEADER

WRITE.TEXT

DC ERROR BYTE INDEX TOO BIG

The starting byte index of a text transfer is
illegal. For the source message the index must be
less than text length. For the destination message,
the index must be less than message length.
ERROR is returned after:

COPY.TEXT

READ.TEXT

WRITE.TEXT

DC ERROR BAD TASK NO

The task number referenced is not currently in
the mix or is outside the range of the mix table.
ERROR is returned after:

ALLOW.INPUT

ALLOW.OUTPUT

CONTINUE.TASK

DISALLOW.INPUT

DISALLOW.OUTPUT

SET.OUTPUT.LIMIT

TASK.NAME

DC ERROR BAD LINE NO

The LLN referenced is greater than
LINE.COUNT-1. ERROR is returned after:
QUEUE

LINE.DESCRIPTION

LINE.STATIONS

LINE.STATUS

REDEFINE.LINE

REDEFINE.STATION

DC ERROR BAD MODEM NO

A reference has been made to an LMN greater

;l;:m MODEM.COUNT-1. ERROR is returned
er:

MODEM.DESCRIPTION

REDEFINE.LINE

REDEFINE.STATION

DC ERROR BAD TERMINAL NO

A reference has been made to LTN greater than
TERMINAL.COUNT-1. ERROR is returned after:
TERMINAL.DESCRIPTION
REDEFINE.STATION

DC ERROR NO SPACE

No message space available to execute the
communicate. ERROR is returned after:
CLEAR

RECALL

DC ERROR STATION NOT ATTACHED
An attempt was made to make an unattached
station ready. ERROR is returned after:
QUEUE

DC ERROR COMM NOT IMPLEMENTED
The last communicate issued is not unimplemented
on this CMS system.

DC ERROR LIMIT NOT ALLOWED

A queue limit of 0 has been specified. ERROR is
returned after:

SET.INPUT.LIMIT

SET.OUTPUT.LIMIT

SET.QUEUE.LIMIT

Event numbers 220-228 occur during configuration.

Even
Number

220

221

222

223

224

225

226

227

228

229

230

Message

DC ERROR STATION ALREADY ATTACHED
The LLN of an attached station has been set to a
value other than @FF@. ERROR is returned
after:

REDEFINE.STATION

DC ERROR ATTRIBUTE MISMATCH

The new attributes of the station or line are
inconsistent with the existing network definition.
ERROR is returned after:
REDEFINE.STATION

REDEFINE.LINE

DC ERROR DIRECT CONNECT LINE

An attempt was made to assign a modem to a
direct-connect line. ERROR is returned after:
REDEFINE.LINE

DC ERROR FULL DUPLEX MISMATCH
Attribute mismatch of full duplex terminal.
ERROR is returned after:
REDEFINE.LINE

REDEFINE.STATION

DC ERROR INCOMPLETE VARIABLE

The length of the parameter area, to be used for
reconfiguration, is insufficient. ERROR is returned
after:

REDEFINE.LINE

REDEFINE.STATION

DC ERROR IMPROPER LINE CONDITION
The line being redefined is not in the required
state of not-ready and, for a switched line, not
switched busy or not connected. ERROR is
returned after:

REDEFINE.LINE

DC ERROR MESSAGES QUEUED

Messages are queued for output to the station
referenced by REDEFINE.STATION. Messages
are queued for output to a station on the line
referenced by REDEFINE.LINE. ERROR is
returned after:

REDEFINE.STATION

REDEFINE.LINE

DC ERROR NO VACANCY ON LINE

The MAXSTATIONS statement in the line section
of NDL defines the maximum number of stations
which may be attached to a particular line. An
attempt has been made to attach a station to a
line which already has MAXSTATIONS.

DC ERROR SPEED MISMATCH

The speed specified for a station, when either
redefining the station or attaching the station to a
line, does not match the speeds of the other
stations on that line.

DC ERROR QUEUE FULL

The MCS has attempted to queue a message
which would cause the queue count field of the
station table or subnet table to overflow.

DC ERROR NDL DCP MISMATCH

The data comm loader has detected an
inconsistancy between the NDL code file and the
DCP code file. Possibly the DCP code file was not
generated from this NDL code file.

1-3

231-248
249

250

251

252

253

254

272

273

274

282

283

284

303

304

14

RESERVED FOR EXPANSION

DC LOAD/EOJ BAD NDL PRIORITY CLASS
The NDLSYS file does not have the correct value
in the priority class field of the PPB @ 3180@.

DC LOAD/EOJ FAILURE DISK ERROR

The NDLSYS or DCP file cannot be read because
of a disk I/O failure.

DC LOAD/EOJ FAILURE NDL DATA ERROR
The NDLSYS file either has a line with address
invalid for the B 800 or specifies an amount of
required memory which is insufficient for the
tables and buffers declared.

DC LOAD/EOJ FAILURE INSUFFICIENT MEMORY
The memory space required field of the preset
data in the NDLSYS file specifies more space

than the MCP can provide.

DC LOAD/EOJ FAILURE CANNOT CLOSE NDL
FILE

Performing the close communicate on the NDLSYS
file has failed.

DC LOAD/EOJ FAILURE CANNOT OPEN NDL
FILE

Performing the open communicate on the NDLSYS
file has failed. For example:

1. The file is not on disk

2. The file has the wrong file type.

DC ERROR PROCESSOR NUMBER INVALID

A Load/Reload specifies an invalid DCP.

DC ERROR PROCESSOR BUSY

A reload specifies a DCP which is busy.

DC ERROR PROGRAM FILE NAME INVALID
The DCP file name specified in a reload is not
defined in the NDLSYS file.

DC LOAD/EOJ FAILURE CANNOT CLOSE DCP
FILE

Performing close communicate on the DCP file has
failed.

DC LOAD/EOJ FAILURE CANNOT OPEN DCP
FILE

Open communicate on DCP file has failed for one of
the following reasons:

1. The file is not on disk.

2. Bad file type.

3. The file is larger than the DCP memory.

DC LOAD/EOJ FAILURE DC* NOT ON SYSTEM
The specified DCP has not been warmstarted.

DC DCP* NOT LOADED

This message will be displayed subsequent to
detection of a DCP related load error, to

indicate the DCP is in error.

DC NO DCPs LOADED

This message is displayed if no DCPs have been
loaded. This condition is fatal to the data comm
load.

BUFFER LIMITING

In order to prevent a task, or group of tasks, from
monopolizing the use of message spaces, the ability
of a task to allocate a message space is limited by
the capacity of the servicing task to process and de-
allocate the message space. This is accomplished by
placing changeable limits on the depth of station and
subnet queues, and also by giving the MCS the abil-
ity to delay or suspend input from a particular task
or station.

Messages may pass through the system by six es-
sentially different routines:

TASK — MCS

These are output messages from user tasks with
the MCS participating. The DC subsystem maintains
an output count and an output limit for each task
whose output is directed to the MCS. If a task at-
tempts to issue an output message and its output
count is greater than, or equal to, its output limit,
message space is not allocated and the task is sus-
pended. The count is incremented with each output
attempt and is decremented when the MCS issues a
CONTINUE.TASK communicate. The limit is
initially set by the DC subsystem, but can be altered
by the MCS by means of the SET.OUTPUT.LIMIT
communicate.

STATION — MCS

These are input messages from DC stations with
the MCS participating. The DC subsystem maintains
an unprocessed input count and an unprocessed in-
put limit for each station whose input is directed to
the MCS. If a station attempts to input a message
and its input count is greater than, or equal to, its
input limit, message space is not allocated and the
input is refused. The count is incremented when the
message space is added to the MCS queue, and de-
cremented when the MCS issues a CONTINUE.ST-
ATION communicate. The limit is initially set to two
by the NDL compiler, but can be altered by the
MCS by means of the SET.INPUT.LIMIT commu-
nicate.

TASK — STATION

These are output messages from user tasks with-
out MCS participation. The DC subsystem maintains
a queue count and a queue limit for each station
queue. If a task attempts to issue an output message
to a station whose queue count is greater than, or
equal to, the queue limit, message space is not allo-
cated and the task is suspended. The count is incre-
mented when an item is added to the queue and de-
cremented when an item is removed. The limit is

initialized to two by the NDL compiler, but can be
altered by the MCS by means of the SET.QUEUE.-
LIMIT communicate.

STATION — SUBNET QUEUE

These are input messages from a DC station with-
out MCS participation. The DC subsystem maintains
a queue count and a queue limit for each subnet
queue. If a station attempts to input a message and
the subnet queue’s count is greater than or equal to
its queue limit, message space is not allocated and
the input is refused. The count is incremented when
an item is added to the subnet queue and decre-
mented when an item is removed. The limit is initial-
ized to two by the DC subsystem, but can be altered
by the MCS by means of the SET.QUEUE.LIMIT
commmunicate.

MCS — SUBNET QUEUE

The MCS may add an item to any subnet queue.
The queue count is automatically incremented each
time an item is added. The only time that the MCS
is denied is when the queue is full. That is, the addi-
tion of the item causes an overflow of the queue
count field.

MCS — STATION

The MCS may add an item to the queue of any
station which is attached to a line. The station queue
count is automatically incremented each time an
item is added. It should be noted that all items in-
tended for a station must be queued to the NDL
queue rather than to a particular station queue. This
is done to provide a common interface to the entire
NDL process. The only time that the MCS is denied
is when the queue is full. That is, the addition of the
item causes an overflow of the queue count field.

QUEUE REFERENCES

<queue reference> ::= <expression>

The 16-bit value of <queue reference> has the
following format in order to identify the MCS, NDL,
subnet, and station queues:

12 BITS |
QUEUE NUMBER

[4 BITS |
QUEUE TYPE

The queue type has these values:

0 (0000) = MCS QUEUE
1 (0001) = NDL QUEUE
2 (0010) = SUBNET QUEUE
3 (0011) = STATION QUEUE

If the queue type indicates the MCS or the NDL
queue, then queue number must be zero.

If the queue type indicates a station queue, then
queue number should contain the appropriate logical
station number.

If the queue type indicates a subnet queue, then
queue number should contain the appropriate logical
subnet number.

MESSAGE DECLARATIONS

Message declarations declare one or more
variables of type message reference which, when
set, hold references to data comm message spaces.

There exists in the machine an area called the
message reference table, which holds references to
message spaces which are accessible by the MCS.
The size of each entry in the message reference table
is four bytes. One unique value must be reserved to
designate a null or unset reference.

MESSAGE SPACE HANDLING

The MCS programmer must use extreme caution
in handling DC message spaces. Carelessness could
seriously affect DC throughput and, in the extreme,
could cause thrashing.

The DC subsystem operates out of a predeter-
mined amount of system memory. However, any
time it senses that all DC message spaces are in use,
it attempts to claim more system memory for its
own. This implies two things:

1. DC input is suspended until message space be-
comes available, and

2. The amount of virtual memory available for
overlayable data segments is decreased.

Repeated occurrences of this situation will eventu-
ally diminish the overlay area to the extent that
thrashing is unavoidable.

To prevent such problems, follow these guidelines:

1. Do not hold message spaces in message refer-
ences or subnet queues unless absolutely necessary.

2. Transfer data out of DC message spaces as
soon as possible.

3. Use the RELEASE.MESSAGE SPACE com-
municate instead of waiting for space to be released
automatically.

4. Do not use a message space that is capable of
holding more text than is necessary (some message
types don’t require any text space at all).

5. Try to keep the MCS queue empty - it may
contain releasable message space and/or important
information concerning the status of a station or a
line.

6. Do not issue an unrestricted number of output
messages - the status of a station or a line may
change before the messages are transmitted.

7. Set reasonable limits on the depth of station
and subnet queues.

8. Monitor the NOSPACE bit of input message
headers.

9. Do not set the message header MCS-flag unless
you are interested in the results of both successful
and unsuccessful output attempts.

RULES OF DATA TRANSFER

Any time the DCSS performs a data move, the fol-
lowing rules apply:

1. Characters are moved in a left to right fashion.

2. The data is left-justified in the destination area.

3. If the size of the source area is larger than the
size of the destination area, the data is right trun-
cated.

4. If the size of the destination area is larger than
the size of the source area, the excess destination
characters are not space filled.

5. For some communicates, the programmer may
specify the length of the move (byte length). How-
ever,

a. If the move is from a DC buffer to a user
data segment, the actual length of the move
is the smallest of:

Byte length.

Message Header Text.Length.

Number of bytes available from the be-
ginning of the data area to the end of the
data segment.

b. If the move is from a user data segment to
a DC buffer, the actual length of the move
is the smallest of:

Byte length.

Message Header Message.Length.

Number of bytes available from the be-
ginning of the data area to the end of the
segment.

1-6

c. If the move is from one DC buffer to an-
other, the actual length of the move is the
smallest of:

Byte length.

(Source) Message Header Text.Length.
(Destination) Message Header Message-
.Length.

6. In any case, no indication of the actual number
of characters moved is returned to the MCS pro-
grammer.

7. The COBOL programmer, on the other hand,
may interrogate the CD area TEXT.LENGTH field
after a receive operation to find out how many text
characters have been moved into his data area.

8. The MPL application programmer may use
DC.TEXTLENGTH to determine how many text
characters have been moved into his data area.

Network Error Handling

The transmission and reception of data comm
messages is performed at the NDL level. NDL is also
responsible for first level error handling, for exam-
ple, retransmission of a message. The NDL usually
retries a message a finite number of times. If, within
this finite number of retries, successful transmission/
reception is not achieved, the error is reported to a
higher level — the MCS. In order to utilize the DC
subsystem effectively, the MCS programmer must be
aware of the events which occur during the reporting
process.

When an error of the above type occurs, a mes-
sage is placed on the MCS input queue by the DC
subsystem. The message header result and event
fields indicate the cause of the error and should al-
ways be examined by the MCS programmer. The
message header type field is dependent on the state
of the NDL process at the time the error was detect-
ed. Input messages result from errors detected in
NDL line control or receive request; output mes-
sages from transmit request. In the case of input
messages, the associated text, if any, represents a
partically received messsage and may usually be dis-
carded. In the case of output messages, the associ-
ated text must be saved in order to preserve the cor-
rect output sequence.

SECTION 2
MCS FUNCTIONS

This section deals with the MCS constructs in
MPL and their use. For more detailed explanations,
refer to the CMS MPLII Reference Manual, form
2007563.

ALLOW.INPUT

ALLOW.INPUT (<queue number>, <task num-
ber> <error option>);

This is a procedure which causes the task refer-
enced by <task number> to become ‘‘attached’’ to
the subnet queue specified by <queue number>.
That is, the task is allowed to reference the subnet
queue for input.

If the task had been waiting for a response to an
attachment request regarding <queue number>, the
appropriate ‘‘attached’’ indicator is set, and the task
is made ready to run.

If the task has not been waiting for a response to
an attachment request regarding <queue number>,
this is a NO-OP.

If the <queue number> specifies an undefined
subnet queue, an error is monitored.

If the task number is 0 or greater than 9, an error
is monitored.

ALLOW.OUTPUT
ALLOW.OUTPUT (<station number>, <task num-
ber> <error option>);

This is a procedure which causes the task refer-
enced by <task number> to become ‘‘attached’’ to
the station specified by <station number>. That is,
the task is allowed to reference the station for out-
put.

If the task had been waiting for a response to an
attachment request regarding <station number>, the
appropriate ‘‘attached’’ indicator is set, and the task
is made ready to run.

If the task had not been waiting for a response to
an attachment request regarding <station number>,
this is a NO-OP.

If the <station number> specifies an undefined
station, an error is monitored.

If the <task number> is 0 or greater than 9, an
error is monitored.

CLEAR

CLEAR (<queue reference> <error option>);

This ia a procedure which performs an automatic
RELEASE.MESSAGE.SPACE on any messages on
the station or subnet queue specified by <queue ref-
erence>.

The system may require a message space to per-
form this procedure. If no message space is avail-
able, the procedure is not executed, the most
significant eight bits of fetch value are set equal to
@40@, and the remaining 16 bits are set equal to the
event number corresponding to nospace.

If the <queue reference> designates the MCS
queue or the NDL queue, an error is monitored (bad
queue reference).

If the <queue reference> designates an undefined
station or subnet queue, an error is monitored (bad
station number or bad subnet number).

If the <queue reference> designates a station
queue for which the corresponding station is not at-
tached to a line, an error is monitored (station not
attached).

CONTINUE.STATION

CONTINUE.STATION (<station number> <error
option>);

This is a procedure which allows the system to
continue accepting input from a station whose input
is routed to the MCS by decrementing the station’s
‘‘unprocessed input count.”

No action is taken if the station’s unprocessed in-
put count is 0.

Issue one CONTINUE.STATION for each such
message processed by the MCS. Otherwise, input at-
tempts from the station are unsuccessful and ‘‘nos-
pace’’ conditions are reported.

If the <station number> specifies an undefined
station, an error is monitored.

2-1

CONTINUE.TASK
CONTINUE.TASK (<task number> <error op-
tion>);

This a procedure which allows a task to continue
issuing ‘‘send’’ messages to a station with output
routed to the MCS, by decrementing the task’s out-
put count.

No action is taken if either the task’s unprocessed
output count is 0 or the referenced task is not a data
comm task.

One CONTINUE.TASK should be issued for each
send message processed by the MCS. Otherwise, the
task may be suspended until one is issued or until
the route indication is changed.

If the task has been suspended for issuing too
many send messages, and the task’s output count is
now less than the output limit, the task is made
ready to run.

If the task number is invalid, (that is, out of range
or not currently executing) an error is monitored
(bad task number).

COPY.TEXT

COPY.TEXT (<message variable>,<starting byte>,
<message variable>,<starting byte>, <byte
length> <error option>);

This is a procedure which causes the text of the
message space referenced by the first specified
<message variable>, starting at the first specified
<starting byte> for a length of <byte length> to be
placed in the text area of the message space refer-
enced by the second specified <message variable>,
starting at the second specified <starting byte>.

If either <message variable> is null, an error is
monitored.

If the source <starting byte> is greater than the
source TEXT.LENGTH, or if the destination <start-
ing byte> is greater than or equal to the destination
MESSAGE.LENGTH, an error is monitored.

The normal rules of data transfer apply.

The contents of the TEXT.LENGTH field of the
message headers are not automatically updated as a
result of this communicate.

DCP.DESCRIPTION
DCP.DESCRIPTION (<processor number>,
<variable> <error option>;

This is a procedure which fills the <variable>
with a list of the program file names and the number

2-2

of terminals associated with each of the program file
names declared for this processor number in the
NDL program. Each entry in the list is a two-byte
number (0-65535) followed by a 12-character (space-
filled) name. The format of the information is de-
scribed in the interrogate layouts section.

An error is monitored when the <processor num-
ber> is invalid or unused by this NDL program.

The <variable> must be of type character.

The normal rules of data transfer apply.

DCP.PROCESSORS

DCP.PROCESSORS

This function returns the highest defined logical
DCP number plus 1. The DCP number is incre-
mented by 1 to make it 1 rather than 0 relative.

DCP.PROGRAM.COUNT
DCP.PROGRAM.COUNT (<processor
number>) A Function

This is a function which returns the number of
program file names declared for this <processor
number> in the NDL program. This number is zero
if the <processor number> is not used in this NDL
program. If the <processor number> is invalid
(greater than 1), a value of @FFFF@ is returned.

This function is used in relation to the DCP.DE-
SCRIPTION procedure.

DCP.PROGRAM.NAMES
DCP.PROGRAM.NAMES (<variable>);

This procedure fills the <data variable> with a list
of the program file names of the program loaded into
each processor. The order of the names is according
to the processor number. If a processor is not used
by this NDL program, its position in the list is
space-filled. Each position is 12 characters long and
space-filled to complete any name which is less than
12 characters.

The <variable> must be of type character.

The normal rules of data transfer apply.

DCP.PROGRAM.TERMINALS
DCP.PROGRAM.TERMINALS (<processor num-
ber>, <variable>,<program name>>,<error op-
tion>);

This is a procedure which fills the <variable>
with a list of the terminals declared for this <proces-
sor number> and <program name> in the NDL

program. Each entry in the list is a two-byte logical
terminal number (0-65535).

The number of items in this list reflects the num-
ber of terminals returned with this <program name>
by the DCP.DESCRIPTION interrogate for this
<processor number>.

If the <processor number> is invalid, an error is
monitored. Likewise, if the <program name> is in-
correct, an error is monitored.

The normal rules of data transfer apply.

DCP.RELOAD

DCP.RELOAD (<processor number>,<program na-
me>><error option>);

This procedure causes the data communications
processor identified by <processor number> to be
loaded with the program file identified by <program
name>.

If the <processor number> is invalid (greater than
1) or is not used by this NDL program, an error is
monitored. Likewise, if the <program name> is in-
correct, an error is monitored.

The <program name> must be of type character.

The <processor number> being reloaded must be
in an idle state, or else an error is monitored.

DEQUEUE

DEQUEUE (<message variable>,<queue refer-
ence> <error option>);

This is a built-in procedure which causes the top
message on the subnet queue specified by <queue
reference> to be unlinked and a reference to it to be
filled into the <message variable>. If the message
variable is not initially null, the message space orig-
inally referenced is ‘‘released’’ before the new mes-
sage is acquired. If the queue is empty, the message
reference is left as null. Any <queue reference>
other than a valid subnet queue causes an error.

DISALLOW.INPUT

DISALLOW.INPUT (<queue number>,<task num-
ber> <error option>);

This is a procedure which causes the task refer-
enced by <task number> to become unattached
from the subnet queue specified by <queue num-
ber>. That is, the task is not allowed to reference
the subnet queue for input. If the task had been sus-
pended because it was necessary for the DC commu-

nicate handler to issue an Attach Queue message to
the MCS regarding the specified <queue number>,
the task is made ready to run.

Unless the <queue number> specifies a valid
subnet queue, an error is monitored.

If the <task number> is 0 or greater than 9, an
error is monitored.

DISALLOW.OUTPUT
DISALLOW.OUTPUT (<station number>,<task
number> <error option>);

This is a procedure which causes the task refer-
enced by <task number> to become unattached
from the station specified by <station number>.
That is, the task is not allowed to reference the sta-
tion for output. If the task had been suspended be-
cause it was necessary for the DC communicate han-
dler to issue an attach station message to the MCS
regarding this station, the task is made ready to run.

If the <station number> specifies an undefined
station, an error is monitored.

If the <task number> is 0 or greater than 9, an
error is monitored.

EXCHANGE.REFERENCE
EXCHANGE.REFERENCE (<message variable>,
<message variable>);

EXCHANGE.REFERENCE causes the contents
of the first specified <message variable> to be ex-
changed with the contents of the second specified
<message variable>.

FETCH.MESSAGE

FETCH.MESSAGE (<message variable> <wait op-
tion>);

<wait option>::= <empty>, NOWAIT

This is a procedure which causes the top message
on the MCS queue to be unlinked and a reference to
it to be filled into the <message variable>. If the
message reference was not initially null, the message
space originally referenced is released (returned to
the free pool and its contents lost) before the new
message is acquired.

If wait option = <empty>, and the MCS queue is
empty, the MCS is suspended until the MCS queue
becomes active.

If wait option = NOWAIT, and the MCS queue is
empty, the <message variable> is left as null and
control is immediately returned to the MCS.

2-3

GET.MESSAGE.SPACE

GET.MESSAGE.SPACE (<message variable>,
<byte length>);

This is a procedure which acquires a message
space capable of holding <byte length> text charac-
ters and fills the <message variable> with a refer-
ence to it.

If the <message variable> is not initially null, the
referenced space is released.

If an insufficient amount of message space is avail-
able, the message variable is left as null.

LINE.COUNT

LINE.COUNT A Function

This is a function which returns the number of
data communication lines defined in the NDL pro-
gram.

LINE.DESCRIPTION
LINE.DESCRIPTION (<line number>,<variable>
<error option>);

This is a procedure which causes the definition of
the line referenced by <line number> to be placed
in the <variable>. The format of the information is
described in the interrogate layouts section of this
document.

If the <line number> designates an undefined
line, an error is monitored.

The <variable> must be of type character.

The normal rules of data transfer apply.

LINE.NUMBER
LINE.NUMBER (<line address>) A Function
<line address> ::= <expression>

This is a function which, given a physical line ad-
dress in <line address>, returns the corresponding
logical line number. If the <line address> is not de-
fined in the NDL program, a value of @FFFF@ is
returned.

LINE.STATIONS
LINE.STATIONS (<line number>,<variable> <er-
ror option>);

This is a procedure which places in the
<variable> the logical station numbers of the sta-
tions attached to the line referenced by <line num-
ber>. The format of the information is described in
the Interrogate Layouts section of this document.

24

NOTE
No more than 100 stations may be at-
tached to a line at any given time.

If the <line number> designates an undefined
line, an error is monitored.

The normal rules of data transfer apply.

LINE.STATUS
LINE STATUS (<line number>, <variable> <er-
ror option>);

This is a procedure which causes the current sta-
tus of the line referenced by <line number> to be
placed in the <variable>. The information format is
described in the Interrogate Layouts section of this
document.

If the <line number> designates an undefined
line, an error is monitored.

The normal rules of data transfer apply.

MODEM.COUNT
MODEM.COUNT A Function

This function returns the number of modems de-
fined in the NDL program.

The NDL compiler always generates two dummy
modem tables for direct connect and BDI lines.
Modem 0 is assigned to any direct connect line.
Modem 1 is assigned to any BDI line. Therefore, the
value returned by MODEM.COUNT is always equal
to : (Number of explicitly defined modems) + 2.

MODEM.DESCRIPTION
MODEM.DESCRIPTION (<modem number>,
<variable> <error option>);

<modem number>::= <expression>

This procedure causes the definition of the modem
referenced by <modem number> to be placed in the
<variable>. The format of the information is de-
scribed in the interrogate layouts section of this doc-
ument.

If the <modem number> designates an undefined
modem, an error is monitored.

The <variable> must be of type character.

The normal rules of data transfer apply.

NULL

NULL (<message variable>) A Function

This is a functional S-OP which returns a true
value if the <message variable> is null, and a false
value otherwise. A <message variable> is null if it
does not reference a valid message space.

QUEUE

QUEUE (<message variable>,<queue reference>
<error option>);

This procedure causes the message referenced by
the <message variable> to be added to the tail of
the queue specified by <queue reference>. The
<message variable> is then set to null.

If the <message variable> was already null, an er-
ror is monitored (NULL MREF).

If the <queue reference> designates any of the
following:

1. A station queue.

2. An undefined subnet queue.

3. The MCS queue with non zero queue number.
4. The NDL queue with non zero queue number.

an error is monitored (BAD QUEUE REF).

If the <queue reference> designates a queue for
which the queue count is equal to 255, an error is
monitored (QUEUE FULL).

If the <queue reference> designates the NDL
queue and the appropriate DCP is in a hardware er-
ror state, the message is returned to the MCS queue
with result field equal to the DC HARDWARE er-
ror. However, if the MCS queue count equals 255,
the message is queued. Instead, an error is
monitored (QUEUE FULL).

If the <queue reference> designates the NDL
queue, the message header must satisfy the following
conditions:

1. MESSAGE.TYPE field must be less than 12
(else, BAD, MSG, TYPE).

2. For the following messages the MESSAGE-
.LINE field must contain a valid logical line num-
ber (else, BAD LINE NUMBER):

MAKE LINE READY/NOT READY
DIALOUT
IMMEDIATE LINE NOT READY

Also, the line must have at least one station attached
(else, BAD MSG TYPE).

3. For the following messages the MESSAGE.ST-
ATION field muust contain a valid logical station
number (else, BAD STATION NUMBER).

OouUTPUT
PRIORITY OUTPUT

ENABLE/DISABLE INPUT
MAKE STATION READY/NOT READY
Also, the designated station must be attached to a
line (else, STATION NOT ATTACHED).
4. If the MESSAGE.TYPE = DIALOUT, the test
length must be non zero (else, BAD MSG TYPE).

If the <queue reference> designates a subnet
queue and the logical station number field of the
message header is invalid, an error is monitored
(BAD STATION NUMBER).

QUEUE.DEPTH
QUEUE.DEPTH (<queue reference>) A Function

This is a function which returns a value indicating
the number of messages on the queue specified by
<queue reference>.

If the <queue reference> designates the NDL
queue, an undefined station, or an undefined subnet
queue, a value of @FFFF@ is returned.

If the <queue reference> designates the MCS
queue, then queue number must be zero or a value
of @FFFF@ is returned.

READ.HEADER

READ.HEADER (<message variable> <variable>
<error option>);

This procedure causes the header information of
the message space referenced by the <message
variable> to be placed in the <variable>.

If the <message variable> is null, an error is
monitored.

The <variable> must be of type character.

The normal rules of data transfer apply.

READ.TEXT

READ.TEXT (<message variable>, <starting
byte>, <byte length>, <variable> <error op-
tion>);

This is a procedure which causes the text con-
tained in the message space referenced by <message
variable> starting at byte <starting byte> for a
length of <byte length> to be placed into the
<variable>.

If the <starting byte> is greater than the TEXT-
.LENGTH given in the message header, an error is
monitored.

If the <message variable> is null, an error is
monitored.

2-5

The <variable> must be of type character.

The normal rules of data transfer apply.

RECALL

RECALL (<queue reference> <error option>);

This is a procedure which causes all messages on
the referenced station queue or subnet queue to be
delinked and placed on the MCS queue, followed by
an end-recall message.

If no message space is available to formulate the
end-recall message, the procedure is not executed,
the most significant eight bits of fetch value are set
equal to @40@, and the remaining 16 bits are set
equal to the event number corresponding to ‘‘nos-
pace.”’

Messages recalled from a station’s (type bits) out-
put save queue are marked with a result field = “‘re-
called from output save queue.”’

Messages recalled from a station queue are
marked with a result byte = ‘‘recalled from station”’
and the end-recall message is of type ‘‘end recall
from station.”

Messages recalled from a subnet queue are
marked with a result byte = ‘‘recalled from subnet
queue’’ and the end-recall message is of type ‘“‘end
recall from queue’’.

If the <queue reference> designates any of the
following, an error is monitored:

1. The MCS queue.

2. The NDL queue.

3. An undefined station queue.

4. An undefined subnet queue.

5. A station queue for which the corresponding
station is not attached to a line.

REDEFINE.LINE
REDEFINE.STATION (<line number>,<variable>
<error option>);

This is a procedure which allows the programmer
to change certain characteristics of the line refer-
enced by <line number>. The format of the infor-
mation supplied in the variable is described in the
Interrogate Layouts section. The variable must be of
type character.

If the <line number> designates an undefined
line, an error is monitored.

If the system cannot perform the redefinition be-
cause of some inconsistency in the data, an error is
monitored.

2-6

REDEFINE.STATION
REDEFINE.STATION (<station number>,<va-
riable> <error option>);

This is a procedure which allows the programmer
to change certain characteristics of the station refer-
enced by <station number>. The format of the in-
formation supplied in the variable is described in the
Interrogate Layouts section of this document. The
variable must be of type character.

If the <station number> designates an undefined
station, an error is monitored.

If the system cannot perform the redefinition be-
cause of some inconsistency in the data, an error is
monitored.

RELEASE.MESSAGE.SPACE
RELEASE.MESSAGE.SPACE (<message
variable>);

This is a procedure which causes the message
space referenced by the <message variable> to be
returned to the available pool, and the <message
variable> to be marked null. If initially it was null,
this is a NO-OP.

ROUTE.INPUT
ROUTE.INPUT (<station number>,<queue refer-
ence> <reroute> <error option>);

<reroute ::= <empty> |, REROUTE

This is a procedure which causes all subsequent
input messages from the station referenced by <sta-
tion number> to be placed onto the queue specified
by <queue reference>.

If the previous and new routing specify the same
queue, then no action is taken.

If the previous routing was to the MCS queue and
the new routing is to a subnet queue, then any and
all “‘non special’”’ input messages from the station
are delinked from the MCS queue and placed on the
subnet queue. A non special input message has a
message header result field of zero.

For each message moved from the MCS queue to
the subnet queue, the station’s unprocessed input
count is decremented and the subnet queue count is
incremented for the destination subnet queue. No
checks are made to prevent the subnet queue count
from exceeding the subnet queue limit.

If the previous routing was to a subnet queue, the
new routing is to a different subnet queue, and the
reroute option was specified, then any and all input
messages from the station are delinked from the first
queue and placed on the second queue.

For each message removed from a subnet queue,
the subnet queue count is decremented. For each
message placed on the MCS queue, that station’s un-
processed input count is incremented, and for mes-
sages placed on another subnet queue, that subnet
queue’s count is incremented. No checks are made
to prevent the subnet queue or unprocessed input
counts from exceeding the limits.

The input order of the messages is always main-
tained.

If the <queue reference> specifies the NDL
queue, any station queue or an undefined subnet
queue, an error is monitored.

If the <queue reference> specifies the MCS
queue but queue number is not zero, an error is
monitored.

If the <station number> specifies an undefined
station, or one which is not attached to a line, an er-
ror is monitored.

Checks are made to prevent the destination queue
from exceeding 255 entries in the process of execu-
ting this communicate. The rerouting is performed
until the destination queue is full; then, rerouting is
discontinued and an error result (QUEUE FULL) is
returned to the MCS. Routing paths are not modified
until the last message is successfully rerouted.

ROUTE.OUTPUT
ROUTE.OUTPUT (<station number>,<queue ref-
erence> <error option>);

This is a procedure which causes all subsequent
output intended for the station referenced by <sta-
tion number> to be placed onto the queue specified
by <queue reference>. If the station’s output is to
be routed to the NDL queue and had been routed to
the MCS queue, the MCS queue is scanned and all
messages of type ‘‘send’’ for the station are delinked
from the MCS queue and linked to the NDL queue
after their message types have been changed to
“‘output’’. The order of the messages is maintained,
and the appropriate queue depths are updated.

For each message rerouted from MCS queue to
the NDL queue, the apppropriate task output count
is decremented and, ultimately, the station queue
count must be incremented. Any SEND messages
that contain an invalid task number are not rerouted.

Checks are made to prevent the destination queue
from exceeding 255 entries in the process of execu-
ting this communicate. The rerouting is performed
until the destination queue is full; then, rerouting is
discontinued and an error result (QUEUE FULL) is
returned to the MCS. Routing paths are not modified
until the last message is successfully rerouted.

In the case when routing is changed from the
NDL queue to the MCS queue, no messages are
rerouted.

If the <queue reference> specifies any station
queue or any subnet queue, an error is monitored.

If the <station number> specifies an undefined
station, or one which is not attached to a line, an er-
ror is monitored.

SET.INPUT.LIMIT
SET.INPUT.LIMIT (<station number>,<limit>
<error option>); limit < 128

This is a procedure which causes the system’s buf-
fer limiting mechanism to restrict the number of in-
put messages accepted from a station, whose input
is routed to the MCS, to be less than the <limit>.
That is, the station’s unprocessed input limit is set
equal to <limit>.

Limiting value is updated regardless of whether
station input is currently directed to the MCS.

If <limit> is greater than 127, the limiting value
is set to 127.

If the <station number> designates an undefined
station, an error is monitored.

SET.OUTPUT.LIMIT
SET.OUTPUT.LIMIT (<task number>,<limit>
<error option>); limit < 128

This is a procedure which causes the system’s buf-
fer limiting mechanism to restrict the number of out-
put messages issued by a user task to any station
whose output is routed to the MCS to be less than
the <limit>. That is, the task’s output limit is set
equal to <limit>.

If the task number is invalid, an error is
monitored. If the <limit> is greater than 127, the
limiting value is set to 127.

If the specified task is not executing, the results of
this communicate are undefined.

If the specified task has been suspended for is-
suing too many SEND messages and the new limjt
is now greater than the output count, the task is
made ready to run.

SET.QUEUE.LIMIT
SET.QUEUE.LIMIT (<queue reference>,<limit>
<error option>); limit < 128

2-7

This is a procedure which causes the system’s buf-
fer limiting mechanism to restrict the number of
items placed on the queue to less than the <limit>.
That is, the appropriate queue limit is set equal to
<limit>.

If the <queue reference> designates the MCS
queue or the NDL queue and the queue number is
zero, SET.QUEUE.LIMIT becomes a NO-OP.

If the <queue reference> designates the MCS
queue or the NDL queue and queue number is non-
zero, an error is monitored.

If the <queue reference> designates an undefined
station or an undefined subnet queue, an error is
monitored.

If <limit> is greater than 127, the limiting value
is set to 127.

If a new limit is set for a station queue, and there
are tasks suspended on output (MCS non-participat-
ing) to that station, and if the new limit is greater
than the old, those tasks are made ready to run.

STATION.COUNT
STATION.COUNT A Function

This is a function which returns the number of sta-
tions defined in the NDL program.

STATION.DESCRIPTION
STATION.DESCRIPTION (<station number>,<va-
riable> <error option>);

This procedure causes the definition of the station
referenced by <station number> to be placed in the
<variable>. The format of the information is de-
scribed in the Interrogate Layouts section of this
document.

If the <station number> designates an undefined
station, an error is monitored.

The <variable> must be of type character.

The normal rules of data transfer apply.

STATION.NUMBER
STATION.NUMBER (<station name>)

<station name> ::= <expression> A Function

This is a function which, given a character string
in <station name>>, returns the corresponding logical
station number.

If the given character string is not a station name
known to the system, a value of @FFFF@ is re-
turned.

2-8

If the given character string is less than 12 charac-
ters in length, spaces are automatically added to pro-
duce a 12 character <station name>.

If the given character string is more than 12 char-
acters in length, only the first 12 characters are used
as the <station name>.

The <expression> must be of type character.

STATION.STATUS
STATION.STATUS (<station number>,<variable>
<error option>);

This is a procedure which causes the current sta-
tus of the station referenced by <station number>
to be placed in the <variable>. The format of the
information is described in the interrogate layouts
section of this document.

If the <station number> designates an undefined
station, an error is monitored.

If the <station number> references an unattached
station, the bit representing STATION READY has
no meaning.

The normal rules of data transfer apply.

SUBNET.COUNT
SUBNET.COUNT A Function

This is a function which returns the number of
files (subnet queues) defined in the NDL program.

SUBNET.DESCRIPTION
SUBNET.DESCRIPTION (<queue number>, <var-
iable> <error option>);

This is a procedure which causes the definition of
the subnet queue referenced by <queue number> to
be placed in the <variable>. The format of the in-
formation is described in the Interrogate Layouts
section of this document.

If the <queue number> designates an undefined
subnet queue, an error is monitored.

The <variable> must be of type character.

The normal rules of data transfer apply.

SUBNET.STATIONS
SUBNET.STATIONS (<queue number>,<va-
riable> <error option>);

This is a procedure which places in the
<variable> the logical station numbers of the sta-
tions defined to be associated with the subnet queue

referenced by <queue number>. The format of the
information is described in the Interrogate Layouts
section of this document.

NOTE
No more than 100 stations may be as-
sociated with a particular subnet queue
at any given time.

If the <queue number> designates an undefined
subnet queue, an error is monitored.

The normal rules of data transfer apply.

SUBNET.STATUS

SUBNET.STATUS (<queue number>, <variable>,
<error option>);

This procedure causes the current status of the
subnet referenced by <queue number> to be placed
in the <variable>. If the <queue number> desig-
nates an undefined subnet queue, an error is
monitored (BAD SUBNET NUMBER).

SUBNET.NUMBER
SUBNET.NUMBER (<subnet name>)
<subnet name> ::= <expression> A Function

This is a function which, given a character string
in <subnet name>, returns the corresponding subnet
queue number.

If the given character string is not a subnet queue
name known to the system, a value of @FFFF@ is
returned.

If the given character string is less than 12 charac-
ters in length, spaces are automatically added to pro-
duce a 12 character <subnet name>.

If the given character string is more than 12 char-
acters in length, only the first 12 characters are used
as the <subnet name>.

The <expression> must be of type character.

TASK.NAME

TASK.NAME (<task number>,<variable> <error
option>);

This is a procedure which, given a <task num-
ber>, places in the <variable> the corresponding
symbolic task name.

If the <task number> is 0 or greater than 9, an
error is monitored.

If the <task number> is within range, but there is
no such task in the mix, the <variable> is space
filled.

The normal rules of data transfer apply.

The <variable> must be of type character.

TASK.NUMBER
TASK.NUMBER (<task name>)

<task name> ::= <expression> A Function

This function returns the lowest task number
found in the mix table that corresponds to the given
<task name>.

If the given character string is not a task name

known to the system, a value of @FFFF@ is re-
turned.

If the given character string is less than 12 charac-
ters in length, spaces are automatically added to pro-
duce a 12 character <task name>.

If the given character string is more than 12 char-
acters in length, only the first 12 characters are used
as the <task name>.

The <expression> must be of type character.

TASK.STATUS
TASK.STATUS (<task number>, <variable>, <er-
ror option>);

This procedure causes the status of the task refer-
enced by <task number> to be placed in the
<variable>.

If the <task number> is invalid, an error is
monitored <BAD TASK NUMBER>.

If the <task number> is valid but is not currently
executing, byte 0 of the variable is set to @FF@.

TERMINAL.COUNT
TERMINAL.COUNT A Function

This is a function which returns the number of ter-
minals defined in the NDL program.

TERMINAL.DESCRIPTION

TERMINAL.DESCRIPTION (<terminal number>,
<variable> <error option>);

This procedure causes the definition of the termi-
nal referenced by <terminal number> to be placed
in the <variable>. The format of the information is
described in the interrogate layouts section of this
document.

If the <terminal number> designates an undefined
terminal, an error is monitored.

29

The <variable> must be of type character.

The normal rules of data transfer apply.

WRITE.HEADER
WRITE.HEADER (<message variable>,<variable>
<error option>);

This procedure causes the data contained in the
<variable> to be placed in the header of the mes-
sage space referenced by <message variable>. Al-
though the ‘‘message.length’’ field is accessible by
the programmer, any attempt to change the contents
of the field is ignored.

If the <message variable> is null, an error is
monitored.

If an attempt is made to set TEXT.LENGTH to
a value greater than MESSAGE.LENGTH, an error
is monitored.

The <variable> must be of type character.

The normal rules of data transfer apply.

2-10

WRITE.TEXT

WRITE.TEXT (<message variable>,<starting
byte>, <byte length>, <variable> <error op-
tion>);

This procedure causes the text contained in the
<variable> to be placed in the message space refer-
enced by <message variable>, starting at <starting
byte> for a length of <byte length>.

If the <message variable> is null, an error is
monitored.

If the <starting byte> is greater than the ‘‘mes-
sage length’’ given in the message header, an error
is monitored.

The <variable> must be of type character.
The normal rules of data transfer apply.

The contents of the TEXT.LENGTH field of the
message header are not automatically updated as a
result of this communicate.

SECTION 3
INTERROGATE LAYOUTS

This section deals with data communications inter-
rogates that are performed by certain MCS commu-
nicates. This section is referenced by Section 2 and
references Section 4. Each line in the layout
diagrams represents two characters unless otherwise
specified.

LOGICAL TERMINAL NUMBER: 2 bytes
The logical terminal number(s) (0-126) associ-
ated with a program file name.

DCP.PROGRAM.NAMES

NAMEO NAMEO
DCP.DESCRIPTION NAMEO NAMEO
NAMEO NAMEO
NAMEO NAMEO
NAME NAME NAMEO NAMEO
NAME NAME NAMEO NAMEO
NAME - NAME
NAME NAME * *
NAME NAME * *
NAME NAME ¢ °
NUMBER _OF TERMINALS NAMEN NAMEN
) ' NAMEN NAME N
NAMEN NAMEN
NAME NAME NAMEN NAMEN
NAME NAME NAMEN NAMEN
NAME NAME NAMEN NAME N
NAME NAME NAME : 12 bytes
NAME NAME DCP program file name. One 12-byte name for
NAME NAME each data comm processor from zero to N.

NUMBER OF TERMINALS

NAME: 12 bytes
Program file name.

NUMBER OF TERMINALS: 2 bytes
The number (0-127) of terminals declared to be
associated with this program file name.

DCP.PROGRAM.TERMINALS

LOGICAL TERMINAL NUMBER
LOGICAL TERMINAL NUMBER

LOGICAL TERMINAL NUMBER

LINE.DESCRIPTION

LINE ADDRESS
TYPE
MAX ENTRIES lMAX STATIONS
MODEM

For an explanation of the items see Line Table
Layout.

LINE.STATIONS

This is a list of the logical station numbers at-
tached to this line. Each logical station number is
two bytes long. The number of items returned is de-
pendent upon the maxstations value of the LINE-

3-1

.DESCRIPTION interrogate. However, maxstations REDEFINE.STATION
never exceeds 100. '

LOGICAL LINE NO RUN MODE BITS

LOGICAL STATION NUMBER END CHARACTER |DELETE CHARACTER

LOGICAL STATION NUMBER BACKSPACE CHAR WRU CHARACTER
LOGICAL STATION NUMBER

CONTROL CHARACTER | STATION FREQUENCY

TRANSMIT ADDR 1 TRANSMIT ADDR 2
LOGICAL STATION NUMBER TRANSMIT ADDR3 | RECEIVE ADDR 1
LINE STATUS RECEIVE ADDR 2 RECEIVE ADDR 3
] TYPE
SPEED
| status |
MODEM TERMINAL
STATUS: 2 Bytes 16 Bits RETRY
15 LINE QUEUED
}‘31 lst_}a:gl})\él;:(D For an explanation of the items, see Station
12 LINE READY Table Layout.
11 RATE SELECT
10 LINE CONNECTED STATION.DESCRIPTION
9 SWITCHED BUSY
8 LINE BUSY
7 AUXILIARY LINE QUEUED NAME NAME
6 RESERVED
5 RESERVED NAME NAME
4 RESERVED NAME NAME
3 RESERVED
2 RESERVED NAME NAME
1 RESERVED
0 AUXILIARY LINE BUSY NAME NAME
NAME NAME
MODEM.DESCRIPTION LOGICAL LINE NO RUN MODE BITS
END CHARACTER LINE DELETE CHARACTER
TYPE BACKSPACE CHARACTER WRU CHARACTER
SPEED CONTROL CHARACTER STATION FREQUENCY
NOISE DELAY. TRANSMIT ADDRESS 1 TRANSMIT ADDRESS 2
TRANSMIT DELAY TRANSMIT ADDRESS 3 RECEIVE ADDRESS 1
. . RECEIVE ADDRESS 2 RECEIVE ADDRESS 3
For an explanation of the items, see Modem Table
Layout. TYPE
. . . . SPEED
Noise delay and transmit delay are in normal bi- ———
nary form (not one’s or two’s complement). MODEM l
MCS DATA BITS
REDEFINE.LINE WIDTH PAGE
DIGIT COUNT PHONE NUMBER
TYPE PHONE NUMBER
MODEM PHONE NUMBER
PHONE NUMBER
For an explanation of the items, see Line Table ORIGINAL RETRY

Layout.

3-2

For an explanation of the items, see Station
Table Layout and Extended Station Table Layout.

STATION.STATUS
INPUT
STATUS QUEUE NUMBER
UNPROCESSED UNPROCESSED
INPUT LIMIT INPUT COUNT
STATION STATION
QUEUE LIMIT QUEUE COUNT

7 STATION QUEUED

6 RESERVED

5 RESERVED

4 RESERVED

3 RESERVED

2 STATION ATTACHED
1 ENABLED INPUT

0 STATION READY

INPUT QUEUE NUMBER -1 BYTE

This contains the subnet number to which input
from the station is to be routed; @FF@ if routing is
to MCS input queue. (If STATION ATTACHED is
false, STATION READY has no meaning.)

SUBNET.DESCRIPTION
NAME NAME
NAME NAME
NAME NAME
NAME NAME
NAME NAME
NAME NAME
NUMBER OF _STATIONS

NAME: 12 bytes

Symbolic subnet (file) queue name, left-justified
with space filler.

NUMBER OF STATIONS: 2 bytes/binary the
number of stations declared to be associated with
this subnet queue.

SUBNET.STATIONS

LOGICAL STATION NUMBER
LOGICAL STATION NUMBER
LOGICAL STATION NUMBER

LOGICAL STATION NUMBER

This is a list of the logical station numbers associ-
ated with this subnet queue. Each logical station
number is two bytes long. The number of items re-
turned depends on the ‘‘number of stations’’ field re-
turned by the SUBNET.DESCRIPTION interrogate.
The number of stations never exceeds 100.

SUBNET.STATUS
SUBNET QUEUE SUBNET QUEUE
LIMIT COUNT

SUBNET QUEUE LIMIT — 1 BYTE

This is the current maximum number of messages
which may be queued on this subnet.

SUBNET QUEUE COUNT — 1 BYTE

This is the number of unprocessed messages on
this subnet queue.

TASK. STATUS

STATUS QUEUE REFERENCE
QUEUE REFERENCE LiMIT
COUNT

STATUS: 5 BYTES — 40 BITS

1. Byte 0 = @FF@ if the specified task is not in
the mix or is not a-user data comm job.
2. Otherwise, byte 0:
= @00@ if task is not waiting.
@01@ if task is waited on QUEUE LIMIT.
@02@ if task is waited on RECEIVE.
@03@ if task is waited on ATTACH.
@04@ if task is waiting for space.
3. Bytes 1, 2:
= QUEUE REFERENCE if waited for LIMIT,
RECEIVE, or ATTACH.
= @FFFF@ if waiting for space.
4. Byte 3 = TASK OUTPUT LIMIT.
5. Byte 4 = TASK OUTPUT COUNT.

3-3

34

TERMINAL.DESCRIPTION

RUN MODE BITS

TR COUNT T-AD COUNT R—AD COUNT

R
SV QUEUE LIMIT

SYNC CHARACTER PARITY MASK

STANDARD TIMEOUT

TURNAROUND DELAY

AUXILIARY LINE CONTROL POINTER

LINE CONTROL POINTER

RECEIVE REQUEST POINTER

TRANSMIT REQUEST POINTER

TRANSLATION TABLE POINTER

MAXIMUM INPUT SIZE
ADAPTER INFO NUMBER OF BUFFERS
TYPE
SPEED
STOP BITS

MCS DATA BITS

WIDTH PAGE

CARRIAGE CHARACTER LINEFEED CHARACTER

HOME CHARACTER CLEAR CHARACTER

For an explanation of the items, see Terminal Ta-
ble Layout and Extended Terminal Table Layout.

Standard timeout, turnaround delay, and
maximum input size are in normal binary form (not
one’s or two’s complement).

SECTION 4
NDL TABLES

GENERAL

This section deals with the tables that are used by
the network definition language to control the
various portions of the data communications subsys-
tem. Some of these tables are also used to obtain in-
formation for the interrogate layouts described in
Section 3. Each line of an NDL table diagram repre-
sents two characters unless otherwise specified.

LINE TABLE LAYOUT

LINE DESCRIPTOR L

LINE TALLY (1) LINE TALLY (0)

MAX ENTRIES 7 MAX STATIONS /f/:

AUX LINE TALLY (1) AUX LINE TALLY (0)
LINE ADDRESS 7
LOGICALLINENO MODEM
TYPE)
AUX LINE DESCRIPTOR
STATION TALLY (0) | STATION DESCRIPTOR (Q)f;‘"{
STATION TABLE POINTER (0) P

f !

STATION TALLY (N-1) !STATION DESCRIPTOR (N-1)

STATION TABLE POINTER (N-1)

LINE DESCRIPTOR
2 Bytes

This field consists of the 16 one-bit flags listed be-
low. Bits 14, 10, 7, 6, 5, 4, and 3 are set according
to information supplied in the NDL program. The re-
maining bits are initialized to zero by the NDL com-
_piler.

15 LINE QUEUED

14 DIALOUT CAPABLE —

13 STANDBY

12 LINE READY

11 RATE SELECT

10 LINE CONNECTED —

9 SWITCHED BUSY

8 LINE BUSY

7 LINE PULSE/ACU DIALOUT
6 SWITCHED -

5 FULL DUPLEX —

4 DISCONNECT ON LOSS OF CARRIER —
3 ASYNCHRONOUS —

2 RESERVED
1 LINE TOG (1)
0 LINE TOG (0)

LINE TALLY (1)
1 Byte/Binary

Contains the NDL byte variable known as LINE
TALLY (1). It is initialized to zero by the NDL
compiler.

LINE TALLY (0)
1 Byte/Binary

Contains the NDL byte variable known as LINE
TALLY (0). It is initialized to zero by the NDL
compiler.

MAX ENTRIES
1 Byte/Binary

Contains the value specified in the NDL program
for MAXSTATIONS. It equals the maximum num-
ber of stations that may be attached to this line at
the same time. MAX ENTRIES can never exceed
100.

MAXSTATIONS

1 Byte/Binary

Contains_the run_time value MAXSTATIONS. It
equals the number of stations currently attached to
this line. It is initialized by the compiler according
to information supplied in the NDL program. Like
MAX ENTRIES. MAXSTATIONS can never exceed
100.

AUXILIARY LINE TALLY (1)

1 Byte/Binary
Contains the NDL byte variable known as AUX

4.1

LINE TALLY (1). It is initialized to zero by the
NDL compiler.

AUXILIARY LINE TALLY (0)
1 Byte/Binary

Contains the NDL byte variable known as AUX
LINE TALLY (0). It is initialized to zero by the
NDL compiler.

LINE ADDRESS
2 Bytes/Binary

initialized by the NDL compiler.

LOGICAL LINE NUMBER
1 Byte/Binary

Contains the logical number that has been as-
signed to this line by the NDL compiler.

MODEM
1 Byte/Binary

Contains the logical number of the modem that is
attached to this line.

TYPE
2 Bytes

Contains the 16 one-bit flags listed below. The
flags are initialized by the compiler according to in-
formation supplied in the NDL program.

15 SPECIAL

14 BITS

13 BDI

12 TELEX

11 STANDBY TRUE

10 STANDBY OPTION

9 LOW/HIGH RATE

8 RATE SELECT

7 MODEM

6 DISCONNECT ON LOSS OF CARRIER
5 LINE PULSE/ACU DIALOUT

4 DIALOUT

3 DIALIN

2 ASCIVEBCDIC SYNC CHARACTER
1 ASYNCHRONOUS

0 FULL DUPLEX

42

AUX LINE DESCRIPTOR
2 Bytes

Contains the 16 one-bit flags listed below. This
field is initialized to zero by the NDL compiler.

15 AUX LINE QUEUED

14 AUX LINE TOG (0)

13 AUX LINE TOG (1)

12 RESERVED

11 RESERVED

10 RESERVED

9 RESERVED

8 AUX LINE BUSY

7 RESERVED

6 RESERVED

5 RESERVED

4 RESERVED

3 RESERVED

2 RESERVED

1 RESERVED

0 RESERVED

STATION TALLIES
1 Byte Each/Binary

For each of the line’s stations, one byte is allo-
cated to contain the NDL byte variable, STATION
TALLY. These bytes are initialized to zero by the
NDL compiler.

STATION DESCRIPTORS

1 Byte Each

For each of the line’s stations, one byte is allo-
cated to_contain the eight one-bit flags listed below.
The NDL compiler sets bits 7 through 4 to zero, bits
3, 2 and 1 according to information supplied in the

NDL program, and bit 0 to binary 1.

7 STATION QUEUED
6 RESERVED

5 RESERVED

4 RESERVED

3 MYUSE OUTPUT —

2 MYUSE INPUT —

1 ENABLED INPUT —
0 STATION READY 41

STATION TABLE POINTERS
2 Bytes Each/Binary

For each of the line’s stations, two bytes are allo-

cal:;ad to contain a pointer to the appropriate station
table.

On disk, this field contains a logical station num-
ber supplied by the NDL compiler.

In memory, it contains the absolute address of a
station table. This value is inserted by the DC loader
at DC initialize time.

LOGICAL LINE NUMBER

STATION TABLE LAYOUT
LOGICAL LINE NO RELATIVE STATION NO
END CHARACTER LINE DELETE CHARACTER
BACKSPACE CHARACTER WRU CHARACTER
CONTROL CHARACTER STATION FREQUENCY

TRANSMIT ADDRESS-2

TRANSMIT ADDRESS-1

1 Byte/Binary

_ Contains_the logical number assigned to_this_sta-
t_}g)g; s line by the NDL compiler. If the station is not
initially attached to a line, this field should contain

all ones.

RELATIVE STATION NUMBER

RUN MODE BITS

TRANSMIT ADDRESS-3

RECEIVE ADDRESS-2

RECEIVE ADDRESS-1

RECEIVED

RECEIVE ADDRESS-3

1 Byte/Binary

Contains_the station’s relative position within the

list of stations in the line table. It is initialized by the

RECEIVE TRANSMISSION NO./OUTPUT SAVE QUEUE HEAD

TRANSMIT TRANSMISSION NO./OUTPUT SAVE QUEUE TAIL

LOGICAL STATION NO

UNPROCESSED INPUT LIMIT

UNPROCESSED INPUT COUNT

ORIGINAL RETRY

RETRY

TALLY (1)

TALLY (0)

TALLY (2)

TOGGLES (7—=0)

OPTIONS

EVENTS

EVENTS

INITIATE RECEIVE DELAY

NDL compiler.

END CHARACTER
1 Byte/ASCII

Contains the ASCII value of the end character
specified in the NDL program.

LINE DELETE CHARACTER
1 Byte/ASCII

Contains the ASCII value of the line delete char-
acter specified in the NDL program.

BACKSPACE CHARACTER

ACTIVE TRANSMIT DELAY

STATION QUEUE HEAD

STATION QUEUE TAIL

QUEUE LIMIT

QUEUE COUNT

ATTACHED STATUS

WAIT STATUS
SUBNET QUEUE ADDRESS
RESERVED J LINE PRIORITY CODE
TYPE
) SPEED
MODEM TERMINAL
TALLY (9 TALLY (3)
TALLY (6) TALLY (5)
TALLY (8) TALLY (7)
TALLY (10) TALLY (9)
TALLY (12) TALLY (11)
TALLY (14) TALLY (13)
TALLY (16) TALLY (15)
TALLY (18) TALLY (17)
OUTPUT SAVE QUEUE COUNT | INPUT SAVE QUEUE COUNT
INPUT SAVE QUEUE HEAD
INPUT SAVE QUEUE TAIL

1 Byte/ASCII

Contains the ASCII value of the backspace char-
acter specified in the NDL program.

WRU CHARACTER
1 Byte/ASCII

Contains the ASCII value of the WRU character
specified in the NDL program.

CONTROL CHARACTER
1 Byte/ASCII

Contains the ASCII value of the control character
specified in the NDL program.

STATION FREQUENCY
1 Byte/Binary

Contains the value specified in the NDL program
for frequency.

TRANSMIT ADDRESS
3 Bytes/ASCII

Contains the transmit address characters as
43

specified in the NDL program. A maximum of three
characters may be used. Zeroes appear for any char-
acter that is not specified.

RUN MODE BITS
1 Byte

Contains the eight one-bit flags listed below. Flags
0 through 3 are initiaiized to zero by the NDL com-
piler while flags 4 through 7 are set according to val-
ues specified in the NDL program. These bits repre-
sent the state of the station at the start of the run.

7 MYUSE OUTPUT —
6 MYUSE INPUT —
5 SECOND STOP BIT —
4 ENABLE INPUT —
3 IMPLEMENTATION DEPENDENT*
2 RESERVED
1 RESERVED
0 RESERVED
*Used by B 800 as the route output indicator (0 = route to MCS).

RECEIVE ADDRESS
3 Bytes/ASCII

Contains the receive address characters as
specified in the NDL program. A maximum of three
characters may be used. Zeros appear for any char-
acter that is not specified.

RECEIVE TRANSMISSION
NUMBER

2 Bytes

Contains the receive transmission number in four-
bit binary coded decimal form. A maximum of three
digits may be used. The entire field is initialized to
zero by the NDL compiler.

NOTE
For input messages, this field is moved
to the message header at NDL termin-
ate time.

TRANSMIT TRANSMISSION
NUMBER

2 Bytes

Contains the transmit transmission number in four-
bit binary coded decimal form. A maximum of three
digits may be used. The entire field is initialized to
zero by the NDL compiler.

44

OUTPUT SAVE QUEUE HEAD
2 Bytes/Binary

For stations of type bits, contains the absolute ad-
dress of the next output or priority output message
still unacknowledged by the remote station. This
field is initialized to zero by the NDL compiler.

Output and priority output messages are queued to
this save queue by the NDL construct, ‘‘terminate
save’’, executed in the transmit request set.

OUTPUT SAVE QUEUE TAIL
2 Bytes/Binary

For stations of type bits, contains the absolute ad-
dress of the most recent message still unacknow-
ledged by the remote station. This field is initialized
to zero.

LOGICAL STATION NUMBER

2 Bytes/Binary

Contains the logical number assigned to this sta-
tion by the NDL compiler.

UNPROCESSED INPUT LIMIT
1 Byte/Binary

Contains the maximum value that unprocessed in-
put count is allowed to have. It is initialized to two
by the NDL compiler.

UNPROCESSED INPUT COUNT
1 Byte/Binary

Contains the number of input messages from this
station, routed to the MCS, that have been accepted
by the DC-firmware, but have not yet been pro-

cessed by the MCS. The field is initialized to zero
by the NDL compiler.

ORIGINAL RETRY
1 Byte/Binary

Contains the retry value specified in the NDL pro-
gram for this station. The maximum value the user
may assign to original retry is 254. The value 255 is
reserved for system use.

RETRY
1 Byte/Binary

Contains_the run time retry count for input mes-
sages to_this station. It is initialized to the retry val-
ue as specified for the original retry.

NOTE
This field is moved to the message
header at NDL terminate time. The
retry value for output messages, how-
ever, is maintained in the message
header, not the station table.

TALLIES
Three 1-Byte Fields/Binary

Each field contains one of the NDL station tally
byte variables. All three bytes are initialized to zero
by the NDL compiler.

TOGGLES
1 Byte

Contains the eight NDL bit variables listed below.
The NDL compiler initializes this byte to zero.

7 TOGGLE (7)
6 TOGGLE (6)
5 TOGGLE (5)
4 TOGGLE 4)
3 TOGGLE (3)
2 TOGGLE (2)
1 TOGGLE (1)
0 TOGGLE (0)

OPTIONS
1 Byte

Contains the NDL options flags for input mes-
sages to this station. The flags are moved to the
message header at NDL terminate time. The NDL
compiler initializes this field to zero.

NOTE
The options flags for output messages
are maintained in the message header.
7 LINEFEED

6 CARRIAGE

5 PAPERMOTION
4 PAGE

3 SKIP

2 TRANSPARENT
1 BLOCK

0 SPACE

EVENTS
Bytes

Contains the NDL events flags for input messages
to this station. The flags are moved to the message
header at NDL terminate time. The NDL compiler
initializes all three bytes to zero.

NOTE
The events flags for output messages
are maintained in the message header.

23 NAK RECEIVED

22 NAK ON SELECT

21 NO SPACE

20 TERMINATE ERROR

19 DISCONNECT

18 TERMINATE NO LABEL

17 ADAPTER FAULT

16 MODEM NOT READY

15 CONTROL CHARACTER RECEIVED

14 WRU CHARACTER RECEIVED

13 TRANSMISSION NUMBER ERROR

12 MESSAGE LENGTH EXCEEDED

11 EVENT 1

10 FORMAT ERROR

9 BCC ERROR

8 ADDRESS ERROR

7 SYNCHRONOUS TRANSMISSION UNDERFLOW
6 BREAK ON TRANSIT

5 LOSS OF CARRIER

4 CHARACTER PARITY ERROR/INVALID FRAME
3 BREAK ON RECEIVE/IDLE

2 BYTE OVERFLOW-SERVICED TOO LATE
1 STOP BIT ERROR/ABORT

0 TIMEOUT

INITIATE RECEIVE DELAY

2 Bytes/Binary Two's
Complement

NDL program for this station’s modem.

ACTIVE TRANSMIT DELAY

2 Bytes/Binary Two's
Complement

Contains the noise delay value specified in the

Contains the greatest of the following values:

Terminal turnaround delay
Station modem noise delay
Line modem transmit delay

It is initialized by the NDL compiler.

4.5

STATION QUEUE HEAD
2 Bytes/Binary

Contains the absolute address of the next
input or output message to be processed by this sta-
tion. It is initialized to zero by the NDL compiler.
The use of this field is implementation dependent.

STATION QUEUE TAIL
2 Bytes/Binary

Contains the absolute address of the final
message that is currently waiting to be processed by
this station. It is initialized to zero by the NDL com-
piler. The use of this field is implementation depend-
ent.

QUEUE LIMIT
1 Byte/Binary

Contains the maximum value that queue count is
allowed to have. It is initialized to two by the NDL
compiler. The use of this field is implementation de-
pendent.

QUEUE COUNT
1 Byte/Binary

Contains the number of message spaces of type
output that are currently linked to the station queue.
It is initialized to zero by the NDL compiler. The
use of this field is implementation dependent.

ATTACHED STATUS
2 Bytes

Contains run time information as to whether or
not this station is attached to a particular task. If it
is, the bit corresponding to the task’s ID is set by
the DC firmware. The field is initialized to zero by
the NDL compiler.

15 TASK ID 15

14 TASK ID 14

13 TASK ID 13

12 TASK ID 12

11 TASK ID 11

10 TASK ID 10

4-6

1 TASK ID 1
0 TASK ID 0
The use of this field is implementation dependent.

WAIT STATUS
2 Bytes

Contains run time information as to whether or
not a particular task is waiting until queue count be-
comes less than queue limit.

If a task is being waited, the bit corresponding to
that task’s ID is set by the DC firmware. The field
is initialized to zero by the NDL compiler.

15 TASK ID 15
14 TASK ID 14
13 TASK ID 13
12 TASK ID 12
11 TASK ID 11
10 TASK ID 10

W
-
>
w
=
Sl EELE
— N W A N0 \O

0 TASK ID 0

The use of this field is implementation dependent.

SUBNET QUEUE ADDRESS
2 Bytes/Binary
Contains a pointer to the subnet queue to which

this station’s input is routed. If input is routed to the
MCS, this field contains all ones.

This field is initialized to all ones by the NDL
compiler and is updated by the DC communicate
handler. The use of this field is implementation de-
pendent.

LINE PRIORITY CODE
1 Byte/Binary

Contains an eight-bit code indicating the speed of
this station’s line. It is initialized by the NDL com-
piler according to the line priority chart.

TYPE
2 Bytes

Contains the 16 one-bit flags listed below which
are set according to information supplied in the NDL
program.

15 SPECIAL
14 BITS
13 BDI

12 TELEX

11 RESERVED

10 RESERVED

9 RESERVED

8 RESERVED

7 MODEM

6 RESERVED

5 RESERVED

4 RESERVED

3 TALLIES

2 ASCIVEBCDIC SYNC CHARACTER
1 ASYNCHRONOUS
0 FULL DUPLEX

SPEED

2 Bytes

Indicates the frequency to be used with this sta-
tion. The valid speeds are listed as follows by bit po-
sition. Note that the bits take on different meanings
for synchronous and asynchronous speeds.

The appropriate bits are set by the NDL compiler.

Asynchronous Synchronous
15-Reserved Reserved
14-38,400 BPS Reserved
13-19,200 BPS Reserved
12-9,600 BPS Reserved
11-4,800 BPS Reserved
10-2,400 BPS Reserved
9-1,800 BPS Reserved
8-1,200 Reserved
4-600 BPS 9,600 BPS
6-300 BPS 7,200 BPS
5-200 BPS 4,800 BPS
4-150 BPS 3,600 BPS
3-110 BPS 2,400 BPS
2-100 BPS 2,000 BPS
1-75 BPS 1,200 BPS
0-50 BPS 600 BPS

BPS=Bits per second.

MODEM _
1 Byte/Binary

Contains the logical number assigned to this sta-
tion’s modem by the NDL compiler.

TALLY (3) THROUGH TALLY (18)
16 Fields, 1 Byte/Binary

Each field contains one of the 16 extra byte
variables required by a station of type bits. The
extra tallies are assigned via the NDL TALLIES

statement. These tallies cannot be stored in the mes-
sage header. All bytes are initialized to zero by the
NDL compiler.

OUTPUT SAVE QUEUE COUNT
1 Byte/Binary

Used only by stations of type bits. Contains the
number of messages currently in the output save
queue. It is initialized to zero by the NDL compiler.

INPUT SAVE QUEUE COUNT
1 Byte Binary

Used only by stations of type bits. Contains the
number of messages currently in the input save
queue. It is initialized to zero by the NDL compiler.

INPUT SAVE QUEUE HEAD
2 Bytes/Binary

For stations of type bits, contains the absolute ad-
dress of the next input message from the station to
be acknowledged. This field is initialized to zero by
the NDL compiler. Input messages are queued to
the input save queue by the NDL instruction TER-
MINATE SAVE when executed in the receive re-
quest set.

INPUT SAVE QUEUE TAIL
2 Bytes/Binary
For station _of type bits, contains the absolute ad-

dress of the latest message still unacknowledged to
the remote station. This field is initialized to zero

by the NDL compiler.
TERMINAL

1 Byte/Binary

Contains the logical number assigned to this sta-
tion’s terminal by the NDL compiler.

MODEM TABLE LAYOUT

TYPE
SPEED
NOISE DELAY
TRANSMIT DELAY

47

TYPE
2 Bytes

Contains the 16 one-bit flags listed below. The
flags are initialized by the compiler according to in-
formation supplied in the NDL program.

15 SPECIAL

14 RESERVED

13 RESERVED

12 RESERVED

11 RESERVED

10 STANDBY OPTION

9 RESERVED

8 RATE SELECT

7 MODEM

6 DISCONNECT ON LOSS OF CARRIER

5 ANSWERTONE NEEDED

4 DIALOUT

3 DIALIN

2 RESERVED

1 ASYNCHRONOUS

0 FULL DUPLEX

SPEED
2 Bytes

Indicates the frequency to be used with this mod-
em. The valid speeds are listed below by bit posi-
tion. Note that the bits take on different meanings
for synchronous and asynchronous speeds.

The appropriate bits are set by the NDL compiler.

Asynchronous Synchronous
15 Reserved Reserved
14 38,400 BPS Reserved
13 19,200 BPS Reserved
12 9,600 BPS Reserved
11 4,800 BPS Reserved
10 2,400 BPS Reserved
9 1,800 BPS Reserved
8 1,200 BPS Reserved
7 600 BPS 9,600 BPS
6 300 BPS 7,200 BPS
5 200 BPS 4,800 BPS
4 150 BPS 3,600 BPS
3 110 BPS 2,400 BPS
2 100 BPS 2,000 BPS
1 75 BPS 1,200 BPS
0 50 BPS 600 BPS

NOISE DELAY

2 Bytes/Binary - Two's
Complement

Contains the noise delay as specified for this mod-
em in the NDL program.

4-8

TRANSMIT DELAY

2 Bytes/Binary - Two's
Complement

Contains the transmit delay as specified for this
modem in the NDL program.

TERMINAL TABLE LAYOUT

RIIN MODE BITS

TR COUNT T-AD COUNT R—-AD COUNT

OR
o SY QUELE LIMIT

SYNC CHARACTER

—=PARITY MASK

e STANDARD TIMEQUT
o TURNARQUND DELAY
| ALXILIARY LINE CONTROIL POINTER

LINE CONTROL POINTER

RECEIVE REQUEST POINTER.

TRANSMIT REQUEST POINTER.

| TRANSLATION TABLE POINTER

| MAXIMUM rru-r SIZE
ADRAPTER INFQ | NUMBER QF BIIFFERS

IYPE

_SPEED

STQP BITS

RUN MODE BITS
2 Bytes

Contains the 16 one-bit flags listed below. Flags 7,
5, and 2 are initialized to zero by the NDL com-
piler. The remaining flags are set according to infor-
mation supplied in the NDL program.

15 VERTICAL

14 HORIZONTAL

13 NO TRANSLATE
12 BCC ONES

11 FULL DUPLEX
10 TRANSPARENT
9 CASESHIFT

8 BCC/CRC

7 RESERVED

6 BITS

5 RESERVED

4 MOD8/MOD128

3 ODD/EVEN PARITY
2 SUMMED PARITY
1 CRC-1/(ECMA)

0 SYNC/ASYNC

TR-COUNT
1 Byte/Binary

Contains the number of digits to be used in the re-
ceive and transmit transmission numbers. It is initial-
ized by the NDL compiler.

SV QUEUE LIMIT
1 Byte/Binary

For terminals of type bits, contains the number of

messages allowed to be queued to the output save

queue. It is initialized to the value specified in the
NDL SAVE statement.

T-AD COUNT
4 Bits/Binary

Contains the number of characters to be used in
the transmit address. It is initialized by the NDL
compiler.

R-AD COUNT
4 Bits/Binary

Contains the number of characters to be used in
the receive address. It is initialized by the NDL
compiler.

SYNC CHARACTER
1 Byte

For terminals not of type bits. Contains the sync
character in either ASCII or EBCDIC form as de-
fined in the NDL. For bits terminals, contains the
flag sequence value of Hex 7E.

PARITY MASK
1 Byte

Contains a mask character that has a binary 1 in
each bit position that contains data (excluding parity)
in a normal data character. The remaining bit posi-
tions contain a binary 0. The field is initialized by
the NDL compiler.

STANDARD TIMEOUT

2 Bytes/Binary Two’s
Complement

Contains the timeout value specified in the NDL
program.

AUXILIARY LINE CONTROL
POINTER

2 Bytes/Binary

On disk, this field contains the logical number of
the control set specified for this terminal’s AUX line
control.

In memory, this field is updated by the DC loader
to contain the absolute address of the appropriate
control set.

If no AUX line control is specified for this termi-
nal, the field contains all ones.

TURNAROUND DELAY

2 Bytes/Binary Two's
Complement

Contains the turnaround time value specified in
the NDL program.

LINE CONTROL POINTER
2 Bytes/Binary

On disk, this field contains the logical number of
the control set specified for this terminal’s line con-
trol.

In memory, this field is updated by the DC loader
to contain the absolute address of the appropriate
control set.

RECEIVE REQUEST POINTER
2 Bytes/Binary

On disk, this field contains the logical number of
the request set specified for this terminal’s receive
request.

In memory, this field is updated by the DC loader
to contain the absolute address of the appropriate re-
quest set.

If no receive request is specified for this terminal,
the field contains all ones.

4.9

TRANSMIT REQUEST POINTER
2 Bytes/Binary

On disk, this field contains the logical number of
the request set specified for this terminal’s receive
request.

In memory, this field is updated by the DC loader
to contain the absolute address of the appropriate re-
quest set.

If no transmit request is specified for this terminal,
the field contains all ones.

TRANSLATION TABLE POINTER
2 Bytes/Binary

On disk, this field contains the logical number of
the translation table specified for this terminal.

In memory, this field is updated by the DC loader
to contain the absolute address of the appropriate ta-
ble.

If no translation table is specified for this terminal,
the field contains all ones.

MAXIMUM INPUT SIZE

2 Bytes/Binary One’s
Complement

Contains the size in bytes of the largest message
that can be inputted from this terminal as specified
in the NDL program.

ADAPTER INFO
1 Byte

Contains information used by the DC firmware to
condition the hardware. The field is initialized by the
NDL compiler from information supplied in the
NDL program.

7 RECEIVE PARITY

6 EVEN PARITY
5 ASYNCHRONOUS

4-10

4 CHARACTER SIZE
3 CHARACTER SIZE
2 TRANSMIT PARITY
1 RESERVED

0 BINARY 1

NOTE
Character size is a two-bit code indicat-
ing the number of bits (including parity)
to be used in a normal data character.
It is specified as follows:

11 FIVE-BIT CHARACTER
10 SIX-BIT CHARACTER

01 SEVEN-BIT CHARACTER
00 EIGHT-BIT CHARACTER

NUMBER OF BUFFERS

1 Byte/Binary One’s Complement

Contains the number of DC buffers needed to hold
a message (header plus text) for this terminal. It is
computed by the NDL compiler as follows:

1. Let Y equal this terminal’s maximum input size

2. Let Z equal 2* (DC-buffer-size-1)

3. Let N equal the integer value (Y + 37)/Z

4. Then ‘‘number of buffers’’ equals the one’s complement of
N.

TYPE
2 Bytes

Contains the 16 one-bit flags listed below. Flags
15, 14, 13, 12, 8, 7, 3, 2, and 1 are set by the com-
piler according to information supplied in the NDL
program. The remaining flags are initialized to zero.

15 SPECIAL

14 BITS

13 BDI

12 TELEX

11 RESERVED

10 RESERVED

9 RESERVED

8 DIRECT

7 MODEM

6 RESERVED

5 RESERVED

4 RESERVED

3 TALLIES

2 ASCIVEBCDIC SYNC CHARACTER
1 ASYNCHRONOUS
0 FULL DUPLEX

SPEED
2 Bytes

Indicates the frequency to be used with this termi-

qal. The valid speeds are listed below by bit posi-
tion. Note that the bits take on different meanings
for synchronous and asynchronous speeds.

For synchronous terminals, only one bit indicating
the maximum speed may be set.

Fgr asynchronous terminals, multiple bits may be
set indicating that several speeds are possible.

The appropriate bits are set by the NDL compiler.

Asynchronous Synchronous
15 RESERVED RESERVED
14 38,400 BPS RESERVED
13 19,200 BPS RESERVED
12 9,600 BPS RESERVED
11 4,800 BPS RESERVED
10 2,400 BPS RESERVED
9 1,800 BPS RESERVED
8 1,200 BPS RESERVED
7 600 BPS 9,600 BPS
6 300 BPS 7,200 BPS

5 200 BPS 4,800 BPS

4 150 BPS 3,600 BPS

3 110 BPS 2,400 BPS

2 100 BPS 2,000 BPS

1 75 BPS 1,200 BPS

0 50 BPS 600 BPS
STOP BITS

2 Bytes

For asynchronous terminals, it is possible to
specify several speeds. For each speed, it is possible
to select either one or two stop bits. This field indi-
cates the number of stop bits associated with each
speed according to the speed’s bit position as de-
fined above. If the bit is reset, one stop bit is used.
If the bit is set, two stop bits are used. This field is
initialized by the NDL compiler.

FILE TABLE LAYOUT

INDEX TO LFN-0’s LSN-LIST

LFN-0 NUMBER OF STATIONS
LFN-0’s LSN-LIST

INDEX TO LFN-(N-1)’s LSN-LIST
LFN-(N-1) NUMBER OF STATIONS
ILFN-(N-1)'s LSN-LIST

INDEX TO LFN-X'S LSN-LIST
2 Bytes/Binary

Contains the index (byte offset divided by 2) from
the base of the file table of the list of logical station
numbers of the stations which are associated with
logical-file-number X.

LFN-X NUMBER OF STATIONS
2 BYTES/BINARY

Contains the number of stations which are associ-
ated with logical-file-number X.

LFN-X’'S LSN-LIST
Each Entry Is 2 Bytes/Binary

Contains the list of the logical station numbers of
the stations which are associated with logical-file-
number X.

EXTENDED STATION TABLE
LAYOUT

MCS DATA BITS
WIDTH PAGE
DIGIT COUNT PHONE NUMBER
PHONE NUMBER
PHONE NUMBER
PHONE NUMBER

MCS DATA BITS
2 Bytes

Contains information specified in the NDL pro-
gram for this station which may be of interest to the
MCS.

15 SPO

14 LOGIN

13 WRAPAROUND
12 RESERVED
11 RESERVED
10 RESERVED
9 RESERVED
8 RESERVED
7 RESERVED
6 RESERVED
5 RESERVED

4-11

4 RESERVED
3 RESERVED
2 RESERVED
1 RESERVED
0 RESERVED

WIDTH
1 Byte/Binary

Contains the station width as specified in the
NDL program.

PAGE
1 Byte/Binary

Contains the station page size as specified in the
NDL program.

DIGIT COUNT
4 Bits/Binary

Contains the number of digits in a given phone
number. Digit count may range from 0 to 15 and is
initialized by the NDL compiler.

PHONE NUMBER
15 Four-Bit Binary Coded Decimal
Digits

Contains the station’s phone number as specified
in the NDL program.

EXTENDED TERMINAL TABLE
LAYOUT

MCS DATA BITS

WIDTH PAGE

CARRIAGE CHARACTER | LINEFEED CHARACTER

HOME CHARACTER CLEAR CHARACTER

MCS DATA BITS
2 Bytes

Contains information specified in the NDL pro-
gram for this station which may be of interest to the
MCS.

4-12

15 RESERVED

14 RESERVED

13 WRAPAROUND
12 SCREEN

11 BLOCKED

10 TRANSPARENT CAPABLE
9 RESERVED

8 RESERVED

7 RESERVED

6 RESERVED

5 RESERVED

4 RESERVED

3 RESERVED

2 RESERVED

1 RESERVED

0 RESERVED

WIDTH
1 Byte/Binary

Contains the value specified in the NDL program
as the terminal’s width.

PAGE
1 BYTE/BINARY

Contains the value specified in the NDL program
as the terminal’s page size.

CARRIAGE CHARACTER
1 Byte/ASCII

Contains the ASCII value of the carriage character
specified in the NDL program.

LINEFEED CHARACTER
1 Byte/ASCII

Contains the ASCII value of the linefeed character
specified in the NDL program.

HOME CHARACTER
1 Byte/ASCII

Contains the ASCII value of the home character
specified in the NDL program.

CLEAR CHARACTER
1 Byte/ASCII

Contains the ASCII value of the clear character
specified in the NDL Program.

SECTION 5
MESSAGE HEADER

INTRODUCTION

This section covers the format and use of the mes-
sage header. The message header is a means of com-
municating status and events between the MCS and
the NDL program.

The layout of the message header below shows
two characters per line. The header that the MCS
sees (the one sent by the MCS and the one received
"by the MCS) is only 35 bytes in length. The first five
bytes are never used or seen by the MCS.

MESSAGE HEADER LAYOUT

MESSAGE LINK *

BUFFER LINK *

PROCESSOR LINE

RESULT TYPE

TASK MCS FLAG

STATION

OPTIONS EVENTS

EVENTS

RESERVED SUBNET QUEUE

TEXT LENGTH

MESSAGE LENGTH

SKIPCONTROL RETRY

RESERVED TRANSMISSION NUMBER

TRANSMISSION NUMBER

TALLY (1)
TALLY (2)

TALLY (0)
TOGGLES (7==-0)

DATE (YEAR) DATE (MONTH)

DATE (DAY) TIME (HOURS)

TIME (MINUTES) TIME SECONDS

MCS DATA

* The size of this field is implementation-dependent.

MESSAGE HEADER

The message header is always the first 40 bytes of
the first buffer associated with each message. All
messages contain all of the message header fields de-
scribed. However, not all fields are meaningful for
all messages. Furthermore, not all fields are read/
write accessible by the user, any such field is
marked as being either NOT ACCESSIBLE BY
USER or READ ONLY BY THE USER. All other
fields are read/write.

Message Link

Not accessible to the user.

Contains the absolute address of the next message
in this queue, or zero if this is the last message in
the queue.

Buffer Link

Not accessible to the user.

Contains the absolute address of the next buffer
used for this message, or zero if this is the only buf-
fer used for this message.

Processor
1 Byte/Binary

Not accessible to the user.

Contains the data communications processor num-
ber associated with this message.

Line
1 Byte/Binary

Contains the logical line number associated with
this message.

Result
1 Byte/Binary

Contains an index value indicating any special
conditions associated with this message. The defined
values for result are:

complete and successful
line not ready

station not ready

control or WRU flag set
recalled from station
recalled from subnet queue

nNhWwWN—O
[l

5-1

6 - station not attached

7 - unable to initiate

8 - invalid network request

9 - DC hardware error

10 - DIALIN received

11 - recalled from output save queue

Type
1 Byte/Binary

Contains a value indicating the message type as
follows:
0 - Maintenance
1 - Input
- Output
Priority output
- Enable input
- Disable input
- Make station ready
7 - Make station not-ready
8 - Make line ready
9 - Make line not-ready
10 - Dialout
11 - Immediate line not-ready
12 - Recover*
13 - Deallocate*
14 - Dialin
15 - SPO input
16 - End recall from queue
17 - End recall from station
18 - Attach queue
19 - Attach station
20 - Enable queue
21 - Enable station
22 - Disable queue
23 - Disable station
24 - send
25 - Task detach
26 - Line Marker *
27 - Deallocate Space *

A bW

*Implementation dependent

Task
1 Byte/Binary

Contains the number of the task in which the mes-
sage originated, valid values for user tasks range
from 1 through 9.

MCS Flag
1 Byte
Indicates by the setting of the least significant bit

that the MCS is to be notified of the results of this
output message:

1. Only if errors occur (bit = 0).
2. Whether or not errors occur (bit = 1).

5-2

Station
2 Bytes/Binary

Contains the logical station number associated
with this message.

Options
1 Byte

Contains the eight, one-bit flags listed here, which
are available for use by the NDL program and the
DC firmware.

7 - LINEFEED
Output a linefeed character
6 - CARRIAGE

Output a carriage return character
S - PAPERMOTION
Move paper before printing
4 - PAGE
Advance page
SKIP
Skip to channel
TRANSPARENT
Message contains transparent text characters
BLOCK
One block (but not the last) of a multi-block
message
0 - SPACE
Advance line(s)

— [\ w
' ' [

These flags are intended to be used in forms con-
trol; however, their actual meaning, if any, is deter-
mined by the NDL programmer.

Events

3 Bytes

Contains 24 one-bit flags listed below, which are
set by the data communications subsystem to indi-
cate conditions which occurred on the line while
processing this message.

23 - NAK RECEIVED

22 - NAK ON SELECT

21 - NO SPACE

20 - TERMINATE ERROR

19 - DISCONNECT

18 - TERMINATE NO LABEL

17 - ADAPTER FAULT

16 - MODEM NOT READY

15 - CONTROL CHARACTER RECEIVED
14 - WRU CHARACTER RECEIVED

13 - TRANSMISSION NUMBER ERROR
12 - MESSAGE LENGTH EXCEEDED

11 - EVENT 1

10 - FORMAT ERROR

9 - BCC ERROR

8 - ADDRESS ERROR

7 - SYNCHRONOUS TRANSMISSION UNDERFLOW
6 - BREAK ON TRANSMIT

5 - LOSS OF CARRIER

4 - CHARACTER PARITY ERROR/INVALID FRAME
3 - BREAK ON RECEIVE/IDLE

2 - BYTE OVERFLOW-SERVICED TOO LATE

1 - STOP BIT ERROR/ABORT

0 - TIMEOUT

If one or more of the following flags is set, the line
associated with this message is implicitly made not-

ready and the appropriate value placed into the re-
sult field:

DISCONNECT
ADAPTER FAULT
MODEM NOT READY

If one or both of the following flags has been set,
the station associated with this message has been im-
plicitly made not-ready and the appropriate value
has been placed into the result field:

TERMINATE ERROR
TERMINATE NO LABEL

Events during DIALOUT

Contains eight, one-bit flags, listed below, which
are set by the data communications subsystem to in-
dicate conditions occurring on the line while pro-
cessing a dialout message.

23 - RESERVED

22 - RESERVED

21 - INVALID OR NO ANSWERTONE AFTER

PULSE DIALING (NON-ACU MODEM)

20 - PREMATURE CONNECTION (U.K.

ONLY)

19- ACR BUT NO DSS AFTER ACU-DIALOUT

18 - FIRST PND WAS SENSED. BUT SUBSE-

QUENT PNDS WERE NOT

17 - ACR WITHOUT FIRST PND OR RING AF-
TER DTR/CRQ IS RAISED

16 - PWI WAS RESET OR DLO WAS SET, AT

START OF ACU-DIALOUT

Subnet Queue

1 Byte/Binary

Contains the subnet queue number associated with
this message.

Text Length
2 Bytes/Binary

Contains the number of text characters present in
this message.

Message Length
2 Bytes/Binary

Read only by the user and contains the total num-
ber of bytes of space available for text in this mes-

sage. Its value is always greater than, or equal to,
the value of text length.

Skip Control
1 Byte/Binary

This contains a value to be used in connection
with the options field. (For example, it may contain
the number of lines that are to be skipped.)

Like options, the actual meaning of skip control is
determined by the NDL programmer.

Retry
1 Byte/Binary

Contains the NDL retry count associated with this
message. The maximum value the user may assign to
retry is 254. The value 255 is reserved for system
use.

Transmission Number

3 Bytes/ASCII

Contains three ASCII characters indicating the
transmission number (000 through 999) received with
this input message.

Tallies

3 Bytes

Three separate eight-bit binary fields, with use and
meaning determined by the NDL programmer in
cooperation with the user.

5-3

Toggles
1 Byte

Eight one-bit flags, with use and meaning deter-
mined by the NDL programmer in cooperation with
the user.

Date
3 Bytes

Contains the data relevant for this message. It is
given as six binary coded decimal digits in the form
YYMMDD (Year, month, day).

For input messages, this field is filled by the DC
firmware when the message is received.

For output messages, it is the user’s responsibility
to fill this field if it is so desired.

Time
3 Bytes

Contains the time of day relevant for this message.
It is given as six binary coded decimal digits in the
form HHMMSS (hours, minutes, seconds).

For input messages, this field is filled by the DC
firmware when the message is received.

For output messages, it is the user’s responsibility
to fill this field if it is so desired.

MCS Data
2 Bytes/Binary

This field is provided for the use and convenience
of the MCS only. It is initialized to zeroes on incom-

ing messages by the DC firmware and is unaltered at
all other times.

VALID MESSAGE HEADER FIELDS

Message header field information is given in fig-
ures 5-1 and 5-2.

DATA COMMUNICATIONS
MESSAGE TYPES

Directive Type Messages

INPUT/OUTPUT

These messages are queued to the bottom of the

station queue which belongs to the station refer-
enced in the message header. Input messages are
only queued to half-duplex stations defined as
MYUSE-INPUT. Output messages are only queued
to stations defined as MYUSE-OUTPUT. A rejected
input/output message is returned to the MCS with
result equal to ‘‘unable to initiate’’.

If a message is queued, the station is marked
queued. If the station is ready and the line is ready,
the line is marked queued. (See also Priority-Output,
Enable-Input, Disable-Input, and Make-Station-
Ready.)

If the station is ready and the line is ready, con-
nected, and not busy (primary), line-control is initi-
ated.

PRIORITY-OUTPUT

This message is treated just like a standard output
message, except that it is queued to the top of the
station queue.

Priority-output messages are used in error han-
dling. If an unrecovered or unrecoverable error oc-
curs while the line is engaged in a write request for
some station, the error is reported in the header of
the output (or priority-output) message when it is re-
turned to the MCS. The line or station is also made
not-ready, whichever is appropriate. In order to
reinitiate the output in its proper sequence before
other output in the station queue, the MCS may re-
submit the message in error as PRIORITY-OUTPUT
before making ready the line or station.

ENABLE-INPUT/DISABLE-INPUT

The messages are queued to the bottom of the sta-
tion queue which belongs to the station referenced in
the message header. ENABLE-INPUT messages are
only queued to stations defined as MYUSE-INPUT.
Otherwise, they are returned to the MCS with result
equal to Unable To Initiate.

If a message is queued, the station is marked
queued. If the station is ready and the line is ready,
the line is also marked queued. If the station is
ready and the line is also ready, connected, and not
busy (primary), line control is initiated.

Like input and output messages, ENABLE-IN-
PUT/DISABLE-INPUT is processed by the initiate-
request statement in line control. At that time, the
station is enabled/disabled and the message is re-
turned to the MCS with result equal to Complete
and Successful.

Messages Initiated by the MCS

MESSAGE
TYPE

FIELD

MAINTENANCE

INPUT

PRIORITY OUT
ENABLE IN
IMMEDIATE LINE NOT READY

MAKE STATION NOT READY
RECOVER

MAKE LINE READY
MAKE LINE NOT READY

OUTPUT

DISABLE IN

MAKE STATION READY
DIALOUT

DEALLOCATE

DIALIN

SPO INPUT

END RECALL QUEUE
END RECALL STATION

ATTACH QUEUE
ATTACH STATION

ENABLE QUEUE

ENABLE STATION
DISABLE QUEUE

DISABLE STATION

SEND

TASK DETACH

LINE

*
*
*
*

RESULT

TYPE

TASK

MCS FLAG

STATION

OPTIONS

EVENTS

SUBNET Q

TEXT LENGTH

*
*
*

MSG LENGTH

SKIPCONTROL

RETRY

TRANS NO

TALLIES

TOGGLES

X[X| X | X

DATE

TIME

MCS DATA

ClCl|C|X|X|X|{X; X|W»n
ClC|lC X[X|X|XIX]|»n

LEGEND: * = Must be supplied by the user.
X = May be supplied by the user (if required by NDL).
U = May be supplied by the user (if he wishes).

S

Supplied by the DC subsystem.

Blank = Don't care.

Figure 5-1. Messages Initiated by the MCS

5-6

Messages Found in the MCS Queue

MESSAGE
TYPE

FIELD

MAINTENANCE

INPUT

OUTPUT

IMMEDIATE LINE NOT READY

MAKE STATION NOT READY
RECOVER

MAKE LINE READY
MAKE LINE NOT READY

PRIORITY OUT

MAKE STATION READY
DIALOUT

END RECALL QUEUE
END RECALL STATION
ATTACH QUEUE
ATTACH STATION
ENABLE QUEUE

ENABLE IN
DEALLOCATE

DIALIN
SPO INPUT

DISABLE IN

ENABLE STATION
DISABLE QUEUE

DISABLE STATION

SEND

TASK DETACH

LINE

*

*
*
*
*
*

RESULT

*

*

*

*
*
-
*
*
,.
*
-
*
.

TYPE

*

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

*

TASK

MCS FLAG

STATION

OPTIONS

EVENTS

SUBNET Q

TEXT LENGTH

*

*
*
*

MSG LENGTH

SKIPCONTROL

xX |

RETRY

TRANS NO

TALLIES

TOGGLES

DATE

TIME

MCS DATA

C|C|C|X|X|X|X|[X]|®n

C|IC|C|X|X|X|X|X|Wwn

uuju U uju

LEGEND: * = Contains valid information.
X = May contain valid information (if it was supplied by NDL).
U = May contain valid information (if it was supplied by the user).
S = Supplied by the DC subsystem.
Blank = Don't care.

Figure 5-2. Messages Found in the MCS Queue

The ENABLE flag for each station, maintained by
the Enable/Disable messages, controls the NDL en-
able-input feature. While the ENABLE flag is on,
‘read request logic can be entered by an Initiate-En-
able-Input statement in line-control or by a Termin-
ate-Enable-Input statement in a write request.

MAKE-STATION-READY

The station referenced in the message is made
ready, and the message is returned to the MCS with
result equal to Complete and Successful.

If the referenced station is actively associated with
a read/write request, the line/primary may have the
STATION-NOT-READY-PENDING flag set from a
previous Make-Station-Not-Ready message for that
same station. If so, the PENDING flag is reset and
the Make-Station-Not-Ready message is thereby
countermanded, never to be returned to the MCS.
Note, however, that the message space of the pend-
ing message has already been returned to the avail-
able buffer pool. (See Make-Station-Not-Ready.)

If the line is ready, the line is marked queued. If
the line is ready, connected, and not busy (primary),
line-control is initiated.

MAKE-STATION-NOT-READY

The station referenced in the message header may
or may not be made not-ready immediately, depend-
ing on whether the station is actively associated with
a read/write request. That is, the station remains
ready if:

1. It is currently referenced by the line/primary
station variable,

2. The line is busy, and

3. The line/primary is executing S-code in a re-
quest set.

If the station is active, the line/primary STATION-
NOT-READY-PENDING flag is set. The message is
passed to the available buffer pool with type equal
to Discard. Later, when pending states are resolved,
(when line busy is reset or during the execution of
certain Terminate S-OPs), message space is allocated
with a header filled with line number, station num-
ber, and type equal to MAKE-STATION-NOT-
READY. Logic then proceeds as follows.

If the station is immediately made not-ready or if
the STATION-NOT-READY-PENDING state is be-
ing resolved, the Make-Station-Not-Ready message
is returned to the MCS with result equal to STA-
TION-NOT-READY. The station is marked not
ready, (primary) and line control is initiated:

1. I the line/primary station is executing S-code in
a request set, and
2. If line busy is reset.

Any message space held by the line/primary is
then queued to the top of the station queue of
the line/primary station. If the auxiliary side of a
full-duplex line is executing S-code in a request set
for that station, AUX space is returned to the avail-
able buffer pool and AUX line-control is initiated.

MAKE-LINE-READY

If the line is switched-busy, the message is re-
turned to the MCS with result equal to UNABLE
TO INITIATE. Otherwise, the message is returned
to the MCS with result equal to COMPLETE AND
SUCCESSFUL.

If the line is already ready and not-busy, the line
is not affected. If the line is ready and busy, the
line’s NOT-READY-PENDING flag is reset, thereby
countermanding a previous Make-Line-Not-Ready
message for that line. (The countermanded MAKE-
LINE-READY may or may not be returned to the
MCS, depending on system implementation.)

If the line is connected and not-ready, the line is
made ready and (primary) line-control is initiated.

If not connected and not-ready, DIALIN logic is
initiated as follows.

The line is made ready. While the line is awaiting
an incoming call, it is kept not-switched-busy to al-
low interruption by a Dialout, Make-Line-Not-
Ready, or Immediate-Line-Not-Ready message.

The line table resident variables, LINE TOG [0]
and LINE TOG [1], are reset when a line (which
was previously not ready) is made ready.

CALL-RECEIVED

As soon as DATASET READY (DSR, CC) is true
and an incoming call is detected, the line is marked
switched-busy. On successful completion of the call,
the line is marked connected and not switched-busy.
Message space is sent to the MCS with a header
filled with line-number, type equal to DIALIN, and
result equal to Complete and Successful.

On an unsuccessful DIALIN (when a LOSS OF
CARRIER EQUAL TO DISCONNECT line fails to
detect carrier), message space is allocated with a
header filled with line-number and type equal to
DIALIN. Disconnect logic is then invoked (see
LINE-ABORT).

MAKE-LINE-NOT-READY

If the line is switched-busy, the Make-Line-Not-
Ready message is returned to the MCS with result
equal to UNABLE TO INITIATE.

If the line is ready and busy, the line’s NOT-
READY-PENDING flag is set, and the message is
returned to the available buffer pool with type equal
to DISCARD. Later, when pending states are re-
solved (see also Make-Station-Not-Ready), message
space is allocated with a header filled with line-num-
ber and type equal to MAKE-LINE-NOT-READY.
Logic then proceeds.

If the line is immediately made not-ready or if the
LINE-NOT-READY-PENDING state is being re-
solved, the Make-Line-Not-Ready message is re-
turned to the MCS with result equal to Line-Not-
Ready.

If the line/primary was executing S-code in a re-
quest set and therefore has message space, that mes-
sage space is queued to the top of the station-queue
of the line/primary’s station. Message space held by
the auxiliary side of a full-duplex line is returned to
the available buffer pool with type equal to DIS-
CARD. The auxiliary is then idled. The line is then
made not-ready.

DIALOUT
For DIALOUT, the line must be:

1. Dialout capable,
2. Not busy,

3. Not switch-busy,
4. Not connected.

If these criteria are not met, the message is re-
turned with result equal to Unable To Initiate.

The line is made ready (if not already), and made
switched-busy for the duration of the DIALOUT.
DATASET READY (DSR,CC) is checked to see if
the line has physically accepted an incoming call due
to a previous Make-Line-Ready message. If the line
is DATASET-READY, the dialout message is re-
turned with result equal to DIALIN-RECEIVED.
Logic then proceeds to CALL-RECEIVED. (See
Make-Line-Ready.)

If an incoming call is not detected, the line goes
off-hook and appropriate dialout logic is selected,
depending on whether the line has an automatic call-
ing unit (ACU) or a modem with dialout capability.
The phone number to be dialed is contained in the

5-8

text of the message. The number of digits to dial is
indicated by the first four-bit, binary digit of the
text. If the operator is dialing to a BPO Telex sta-
tion, the last digit of the phone number must be a
C.

If the call is successfully completed and answered,
the dialout message is returned to the MCS with re-
sult equal to Complete and Successful. The line is
marked connected and (primary) line-control is initi-
ated.

Unsuccessful Dialout

If the call was either not completed or not correct-
ly answered, disconnect logic is invoked (see Line-
Abort).

Call Collision with BPO Telex

The dialout message is returned with result equal
to DIALIN-RECEIVED. Logic then proceeds to
CALL-RECEIVED. (Refer to Make-Line-Ready.)

IMMEDIATE-LINE-NOT-READY
(SWITCHED DISCONNECT)

If the line is switched-busy, the IMMEDIATE-
LINE-NOT-READY message is returned to the
MCS with result equal to Unable to Initiate.

If the line/primary was interrupted while executing
S-code in a request set and therefore has message
space, the space is queued to the top of the station
queue. For the auxiliary side of a full-duplex pair,
the space is returned to the available buffer pool and
the auxiliary is idled.

LINE-ABORT

If the line/primary was executing S-code in a re-
quest set and therefore has message space, that mes-
sage space is queued to the top of the station-queue.
Message space held by the auxiliary side of a full-
duplex line is returned to the available buffer pool
with type equal to DISCARD. The auxiliary is idled.

If the line is switched, the line is physically dis-
connected. The line is made ready and switched-
busy until DATASET-NOT-READY has been

achieved.

Whether the line is switched or leased, it now be-
comes not-ready. The IMMEDIATE-LINE-NOT-
READY (or DIALIN, or DIALOUT) message is re-
turned to the MCS with result equal to Line-Not-
Ready.

RECOVER/DEALLOCATE

For the station referenced in the message header,
the head/tail pointers of the station queue are copied
into the message-header and then are cleared in the
station table. Station-queue is reset. The recover/
deallocate message is returned to the data communi-
cations controller, which discards each formerly
queued message (for deallocate) or forwards each
message to the MCS (for recover). Recover/deallo-
cate misses any space not on the station queue.
Should the station be executing S-OPS of a request
set when the recover/deallocate is received, the
space used by the request set is missed. To coun-
teract this situation, the station should first be made
not-ready.

Messages types RECOVER and DEALLOCATE
are not seen by the user but are used within the data
communications subsystem as a result of the RE-
CALL/CLEAR communicate.

The text of the message contains data entered by
the operator and directed to the MCS.

End Recall From Queue

Having recalled all input (from the subnet queue),
a message of type END RECALL FROM QUEUE is
placed on the MCS queue with result equal to COMPLETE
AND SUCCESSFUL.

End Recall From Station

Having recalled all output (from the station queue),
a message type END RECALL FROM STATION s
placed on the MCS queue with result equal to COMPLETE
AND SUCCESSFUL.

Maintenance
When a data communication hardware error oc-

curs, the CMS subsystem generates a maintenance
message and forwards it to the MCS.

59

SECTION 6
NDL PROGRAM FILE

GENERAL

This section outlines and describes the NDL ob-
ject code file used by the system. This is only a de-
scription of the NDL object file. For a description of
the NDL source, refer to the CMS NDL Reference
Manual, form 1090925.

This section of the document describes the disk
format of the NDL program file. Descriptions and
initial values of individual fields are given where ap-
propriate.

NDL PROGRAM PARAMETER
BLOCK

Bytes Use

Byte 0 (Implementation Level number) - Binary 00

Bytes 1-12 (Program Name) - NDLSYS

Bytes 13-24 (S-Language Name) - NDL S-LANG

Bytes 25-31 (Interpreter Pack-Id) - 0000000

Bytes 32-43 (Interpreter Name) - NDL.INTERP

Bytes 44-55 (Compiler Name) - NDL COMPILER

Bytes 56-61 (Compiler Date) - YYMMDD

Bytes 62-63 (Priority Class) - Binary 3180

Byte 64 (Data Segment For Initiating Message) -
Binary FF

Bytes 65-67 (S-Program Start Address) - Binary 000000

Bytes 68-69 (Program Segment Table Length) - Binary
0030

Bytes 70-71 (PST Location) - Binary 0002

Bytes 72-73 (Data Segment Table Length) - Binary 0066

Bytes 74-75 (DST Location) - Binary 0003

Bytes 76-77 (TCB Present Area Length) - Binary 0000

Bytes 78-79 (TCB Preset Area Address) - Binary 0000

Bytes 80-81 (Stack Length) - Binary 0000

Bytes 82-83 (CCB Preset Area Length) Binary 0000

Bytes 84-85 (CCB Preset Area Address) - Binary 0000

Bytes 86-87 (TCB Preset Extension Length) - Binary
0000

Bytes 88-89 (Internal File Name Block Length) - Binary
0000

Bytes 90-91

(Internal File Name Block Address)- Binary
0000

Bytes 92-179 (TCB Preset Area Values) - All binary

Zeros

NDL PROGRAM SEGMENT TABLE

This segment contains descriptors pointing to the
various program segments. Each descriptor is six
bytes long and is structured as follows:

Bytes 0 and 1 Binary 0 (Indicating an ordinary,

overlayable, read-only code segment)

Bytes 2 and 3 Relative disk address of the program
segment

Bytes 4 and 5 Length in bytes of the program segment

The descriptors are arranged within the segment as
follows:

Descriptor 0
Descriptor 1
Descriptor 2
Descriptor 3
Descriptor 4
Descriptor 5
Descriptor 6
Descriptor 7

Control Sets, Format A
Control Displacements, Format A
Request Sets, Format A
Request Displacements, Format A
Control Sets, Format B
Control Displacements, Format B
Request Sets, Format B
Request Displacements, Format B

NDL PROGRAM SEGMENT
DESCRIPTIONS

Control Sets - Format A

This segment has all of the S-code resulting from
control sets referenced in the NDL program. The
control sets are arranged within the segment by
logical-control-set number.

Logical-control-sets numbers are assigned in the
order in which the control sets are referenced in the
NDL program. Note that each pair of S-code data
bytes is followed by a pair of bytes having the bi-
nary value 8000 if the data is a relative address, and
the value 0000 otherwise. The 8000/0000 byte pair
occupies disk space but not memory space.

Relative addresses are relative to the base of the
(control sets-format A) segment, and are specified in
terms of byte displacement divided by 4.

Control Displacements - Format A

Bytes 0 and 1 contain the number of control sets
referenced in the NDL program.

Bytes 2 and 3 contain the relative address of
logical-control-set 0.

Bytes 4 and 5 contain the relative address of
logical-control-set 1; and so on.

Request Sets - Format A

The segment contains all of the S-code resulting

6-1

from request sets referenced in the NDL program.
The request sets are arranged within the segment by
logical-request-set number.

Logical-request-set numbers are assigned in the
order in which the request sets are referenced in the
NDL program.

Note that each pair of S-code data bytes is fol-
lowed by a pair of bytes having the binary value
8000 if the data is a relative address, and the value
0000 otherwise. The 8000/0000 byte pair occupies
disk space but not memory space.

Relative addresses are relative to the base of the
(request sets-format A) segment, and are specified in
terms of byte displacement divided by 4.

Request Displacements - Format

Bytes 0 and 1 contain the number of request sets
referenced in the NDL program.

Bytes 2 and 3 contain the relative address of
logical-request-set 0.

Bytes 4 and 5 contain the relative address of
logical-request-set 1, and so on.

Control Sets - Format B

This segment contains all of the S-code resulting
from control sets referenced in the NDL program.
The control sets are arranged within the segment by
logical-control-set number.

Logical-control-set numbers are assigned in the or-
der in which the control sets are referenced in the
NDL program.

Relative addresses are specified in terms of byte
displacement from the base of the (control sets -
format B) segment.

Control Displacements - Format B

Bytes 0 and 1 contain the number of control sets
referenced in the NDL program.

Then bytes 2 and 3 contain the relative address of
logical-control-set 0; bytes 4 and 5 contain the
relative address of logical-control-set 1; and so on.

Request Sets - Format B
The segment contains all of the S-code resulting

6-2

from request sets referenced in the NDL program.
The request sets are arranged within the segment by
logical-request-set number.

Logical-request-set numbers are assigned in the
order in which the request sets are referenced in the
NDL program.

Relative address is specified in terms of byte dis-
placement from the base of the (request sets - format
B) segment.

Request Displacements - Format

Bytes 0 and 1 contain the number of request sets
referenced in the NDL program.

Then bytes 2 and 3 contain the relative address of
logical-request-set 0; bytes 4 and 5 contain the
relative address of logical-request-set 1, and so on.

NDL DATA SEGMENT TABLE

This segment contains descriptors pointing to the
various data segments. Each descriptor is six bytes
long and is structured as follows:

Bytes 0 and 1 - Binary O (indicating an ordinary,
overlayable, read-only data segment)

Bytes 2 and 3 - Relative disk address of the data
segment

Bytes 4 and 5 - Length in bytes of the data seg-
ment.

The descriptors are arranged within the segment
as follows:

Descriptor Meaning
Descriptor 0 Preset Data
Descriptor 1 Line Tables
Descriptor 2 Line Table Displacement List
Descriptor 3 Station Tables
Descriptor 4 Station Table Displacement List
Descriptor 5 Modem Tables
Descriptor 6 Terminal Tables
Descriptor 7 File Tables
Descriptor 8 Extended Station Tables
Descriptor 9 Extended Terminal Tables
Descriptor 10 Station Name Table
Descriptor 11 File Name Table
Descriptor 12 Translation Tables
Descriptor 13 Translation Table Displacement List
Descriptor 14 Line Priority Chart

Descriptor 15
Descriptor 16
Descriptor 17
Descriptor 18

Line Speed Table
DCP-terminals Format A
Source Statement Occurrence
DCP-Terminals Format B

PRESET DATA

Bytes 0 and 1 - memory space required - contains
the amount of space (in bytes) required for run time
DC memory structures. It is computed as follows:

MEMORY = 8L + SUM(E) + 29SJ + 40SK + 15T + 5F +
R/4 + C/4 + X/2 + B*N
Where:
L = Number of lines defined in the NDL program
SUM(E) = Sum, over all lines, of 2 times the Max entries value
defined for each line
SJ = Number of stations defined in the NDL program which are
not of type bits or type tallies
SK = Number of stations defined as type bits or type tallies in
the NDL program
T = Number of terminals defined in the NDL program
F = Number of files defined in the NDL program
R = Length in bytes of the (request sets - format A) program seg-
ment

C = Length in bytes of the (control sets - format A) program seg-
ment

X = Length in bytes of the data segment containing translate ta-
bles.

B = DC Buffer size - defined below

N = Mimimum buffer count - defined below

Bytes 2 and 3 - DC Buffer Size

If a buffer value has been specified in the DCP
section of the NDL program, then DC buffer size
equals the integer value (buffer + 1)/2. Otherwise,
the integer value (X + 41)/2 is used, where X equals
the smallest maximum input size specified in the
program.

Bytes 4 and 5 - Minimum Buffer
Count

If a buffer value has been specified in the DCP
section of the NDL program, then minimum buffer
count equals this value. Otherwise, the following al-
gorithm is used:

Let N(X) = Number of buffers needed to hold a
message for terminal (X).

Let S = Sum, over all attached stations, of each
station’s terminal’s N(X) value.

Let L = Number of defined lines.

Then minimum buffer count = 2 * S) + L.

If necessary, the compiler forces this value to be
equal to, or greater than, 4.

Bytes 6 and 7 - Station Count

Contains the number of stations defined in the
NDL program.

Byte 8 - File Count

Contains the number of files defined in the NDL
program.

Byte 9 - Line Count

Contains the number of lines defined in the NDL
program.

Byte 10 - Modem Count

Contains the number of modems defined in the
NDL program.

Byte 11 - Terminal Count

Contains the number of terminals defined in the
NDL program.

Bytes 12-13 - Additional Buffer
Count

Contains the number of additional buffers allowed
to the data comm subsystem, over and above the
minimum buffer count.

Bytes 42-43 - Reserved for NDL
Postprocessor

Byte 44 - DCP Count

Contains the number of data comm processors de-
fined in the NDL program.

Byte 45 - Highest DCP Number

Byte 46 - Station Table
Maximum Length

Byte 47 - Reserved
Byte 48 - N - DCP Data List

This bit contains N 18-byte entries; one entry for
each DCP, from DCP 0 to the highest DCP number
declared. Entries for undefined DCPs within this
range are initialized to spaces.

Each entry consists of the following fields:
1. DCP MEMORY REQUIREMENT

Two bytes/binary
Memory = (SUM(5) * (STL + 4)) + (SLI*L)

6-3

Where:
SUM(S) = Sum of the max entries for each
line on this DCP.
STL = Station table length (maximum).
SLI = Size of a line table with 0 stations.
L = Number of lines defined, in NDL, for
this DCP.

2. DCP MEMORY SIZE
Two bytes/binary
Contains the memory size of this DCP as de-
fined in the DCP(N) memory statement. If no
DCP memory statement is specified, the NDL
compiler supplies the value 6,144. If other than
6,144 is specified, this field is set to all ones.

3. DCP NUMBER OF LINES
One byte/binary
Contains the number of lines on this DCP.

4. DCP NUMBER OF FULL-DUPLEX LINES
One byte/binary
Contains the number of full-duplex lines on the
DCP.

5. DCP LOAD FILE NAME

12 bytes/characters

Contains the program file name to be loaded
into the DCP at data comm load time. If no
DCP TERMINAL statement is specified, either
NDLDCP or BDLDCP is supplied by the NDL
compiler: if memory equals 6144, NDLDCP; if
memory is greater than 6144, BDLDCP.

LINE TABLES

This segment contains the line tables generated by
the compiler on a one-to-one basis with the lines de-
fined in the NDL program. The tables are arranged
within the segment by logical line number.

Logical line numbers are assigned in the order in
which the lines are defined in the NDL program.

Line Table Displacement List

Bytes 0 and 1 contain the number of lines defined
in the NDL program.

Bytes 2 and 3 contain a pointer to logical-line-table
0; bytes 4 and 5 contain a pointer to logical-line-table
1; and so on.

Pointers are relative to the line table segment base
and are specified in terms of byte displacement di-
vided by 2.

64

STATION TABLES

This segment contains the station tables generated
by the compiler on a one-to-one basis with the sta-
tions defined in the NDL program. The tables are ar-
ranged within the segment by logical station number.

Logical station numbers are assigned according to
the alphabetical order of the programmer specified
station names.

Station Table Displacement List

BYTES 0-1 contain the number of stations de-
clared in NDL.

BYTES 2-3 contain a pointer to logical-station-ta-
ble 0. Each succeeding two-byte field contains a
pointer to the next logical station table.

Pointers are relative to the station table segment
base and are specified in terms of byte displacement
divided by 2.

MODEM TABLES

This segment contains the modem tables generated
by the compiler on a one-to-one basis with the mo-
dems defined in the NDL program. The tables are
arranged within the segment by logical modem num-
ber.

NOTE
Two dummy modem tables for direct-
connect are automatically generated by
the compiler to aid in the reconfigura-
tion process.

Logical modem numbers are assigned in the order
in which the modems are defined in the NDL pro-
gram.

TERMINAL TABLES

This segment contains the terminal tables generat-
ed by the compiler on a one-to-one basis with the
terminals defined in the NDL program. The tables
are arranged within the segment by logical terminal
number.

Logical terminal numbers are assigned in the order

in which the terminals are defined in the NDL pro-
gram.

FILE TABLE

This segment contains a table generated by the

compiler comprised of information on the files de-
fined in the NDL program.

Logical file numbers are assigned according to the
alphabetical order of the programmer-specified file
names.

EXTENDED STATION TABLES

This segment contains the extended station tables

which are generated and arranged exactly like the
station tables.

EXTENDED TERMINAL TABLES

This segment contains the extended terminal ta-
bles which are generated and arranged exactly like
the terminal tables.

STATION NAME TABLE

This segment contains a table of the programmer-
specified station names. The names are arranged al-
phabetically within the table, and each entry is 12
bytes long, space filled on the right, if necessary.

FILE NAME TABLE

This segment contains a table of the programmer-
specified file names. The names are arranged alpha-
betically within the table, and each entry is 12 bytes
long, space filled on the right, if necessary.

TRANSLATION TABLES

This segment contains the translation tables refer-
enced and/or defined in the NDL program. The ta-
bles are arranged within the segment by logical-
translation-table number.

Logical-translation tables are referenced in the
NDL program.

TRANSLATION TABLE
DISPLACEMENT LIST

Bytes 0 and 1 contain the number of translation ta-
bles referenced in the NDL program.

Bytes 2 and 3 contain a pointer to logical-transla-
tion-table 0; bytes 4 and 5 contain a pointer to
logical-translation-table 1; and so on.

Pointers are relative to the translation table seg-
ment base, and are specified in terms of byte dis-
placement divided by 2.

LINE PRIORITY CHART

This segment contains the table of constants given

in tables 6-1 and 6-2. Each entry in the table is one
byte long. The left digit contains a line speed code,
and the right digit contains a line priority code.

It is intended that this chart be used at
reconfiguration time to assign proper priority to the
line being redefined.

LINE SPEED TABLE

This segment contains a table of logical line num-
bers arranged by line speed, the higher speed lines
appearing first. Each entry is one byte long.

DCP TERMINALS FORMAT A

This segment contains the program file names and
associated terminal lists for each of two DCPs (DCP
0 and DCP 1). CMS systems with more than two
DCPs reference the segment for DCP Terminals For-
mat B.

Byte 0 - The number of program files defined for
DCP 0.

Byte 1 - The number of program files defined for
DCP 1.

If either field is zero, there are no program file
lists and no program terminals lists for that
particular DCP.

Bytes 2-N - DCP 0 program file list

DCP 1 program file list
DCP 0 program terminals lists
DCP 1 program terminals lists

PROGRAM FILE LIST

NAME NAME
NAME NAME
NAME NAME
NAME NAME
NAME NAME
NAME NAME

NUMBER OF TERMINALS
TERMINALS LIST POINTER

NAME NAME
NAME NAME
NAME NAME
NAME NAME
NAME NAME
NAME NAME

NUMBER OF TERMINALS
TERMINALS LIST POINTER

6-5

Table 6-1. Asynchronous Line Priority Chart
ASYNCHRONOUS BITS PER CHARACTER MILLISECONDS PER TABLE VALUE

SPEED INCLUDING STOPBITS CHARACTER
50 11/10 — 00/00
9/8 -160.00 00/20
7- 140.00/- 20/00
75 11/10 146.67/133.33 10/10
9/8 120.00/106.67 10/10
7/- 93.33/- 11/00
100 11/10 110.00/100.00 2020
9/8 90.00/80.00 21721
7/- 70.00/- 22/00
110 11/10 100.00/90.91 30/31
9/8 81.82/72.73 31/32
7- 63.64/— 32/00
150 11/10 73.33/66.67 42/42
9/8 60.00/53.33 43/43
7- 46.47/- 43/00
200 11/10 55.00/50.00 53/53
9/8 45.00/40.00 54/54
7~ 35.00/- 54/00
300 11/10 36.67/33.33 64/64
9/8 30.00/26.67 65/65
7/- 23.33/- 65/00
600 11/10 18.33/16.67 7575
9/8 15.00/13.33 76/76
7- 11.67/- 76/00
1200 11/10 9.17/8.33 86/86
9/8 7.50/6.67 87/87
71— 5.83/ 87/00
1800 11/10 6.11/5.56 97/97
9/8 5.00/ 4.44 98/98
7- 3.89/ - 99/00
2400 11/10 4.58/ 4.17 AB8/A8
9/8 3.75/ 3.33 A9/A9
7- 292/ - AA/00
4800 11/10 229/ 2.08 BA/BA
9/8 1.87/ 1.67 BB/BB
7- 1.46/ - BB/00
9600 11/10 1.15/ 1.04 Cc/cC
9/8 .94/ .83 CD/CD
7~ 730 - CD/00
19200 11/10 571 .52 DE/DE
9/8 47/ 42 DE/DE
7- 36/ - DE/00
38400 11/10 .29/ .26 EF/EF
9/8 23/ .21 EF/EF
/= 18/ — EF/00

N%I\C'IE ‘pgg“.’;’g Sile name. LOGICAL TERMINAL NUMBER
NUMBER OF TERMINALS: two bytes LOGICAL TERMINAL NUMBER
The number of terminals declared to be associ- . .
ated with the program file.
TERMINALS LIST POINTER: two bytes : :
Self-relative index to list of the terminals associ- LOGICAL TERMINAL NUMBER
ated with the program file.

PROGRAM TERMINALS LIST
SOURCE STATEMENT

LOGICAL TERMINAL NUMBER: two bytes
This list contains the logical numbers for the ter- OCCURRENCE
minals which were declared in NDL for the pro-

gram file which points to this list. There are as This segment within the NDLSYS file is generated
many of these lists for a DCP as there are pro- by the NDL compiler to inform the post-processor
gram files declared for that DCP. program (non-interpretive program file generator) of

Table 6-2. Synchronous Line Priority Chart

SYNCHRONOUS BITS PER CHARACTER MILLISECONDS PER TABLE VALUE
SPEED CHARACTER
600 -8 -13.34 00/06
7/6 11.66/10.00 06/06
5/- 8.34/- 06/00
1200 -8 —-6.67 00/07
7/6 5.83/5.00 07/08
5/ 4.17/- 08/00
2000 -8 —4.00 00/08
7/6 3.50/3.00 09/09
Sl- 2.50/- 0A/00
2400 -8 -3.33 00/09
7/6 2.92/2.50 0A/0A
5/~ 2.08/- 0A/00
3600 -8 -2.22 00/0A
7/6 1.94/1.67 0B/0B
5/- 1.39/- 0B/00
4800 -8 -1.67 00/0B
7/6 1.46/1.25 0B/0C
5/- 1.04/- 0C/00
7200 -8 -1.11 00/0C
7/6 .97/.83 0C/0D
5/- .69/— 0D/00
9600 -8 .83 00/0D
7/6 .73/.63 0D/0D
5/~ .52/~ OE/00

the occurrence of certain source statements within
the NDL program.

POINTER TO 1IST REQUEST SET INFORMATION"

CONTROL SET INFORMATION

CONTROL SET INFORMATION

CONTROL SET INFORMATION

REQUEST SET INFORMATION

REQUEST SET INFORMATION

REQUEST SET INFORMATION

CONTROL/REQUEST set information: two bytes

Each two-byte entry is considered as a set of 16
(1-bit) flags, each indicating the presence/absence of
a particular S-Op within the control/request set.

The flags represent the occurrence of the following
S-Ops. the flags are numbered right to left, flag 15
being the left-most bit position.

15 - LINE BUSY = TRUE/FALSE
14 - LINE BUSY = TOGGLE

13 - AUX LINE BUSY = TRUE/FALSE
12 - AUX LINE BUSY = TOGGLE
11 - BINARY = TRUE/FALSE

10 - TERMINATE BLOCK

9 - SYNCS = TRUE/FALSE

CRC = TRUE/FALSE

SHIFT = UP/DOWN/MIDDLE
STATION = LIT/VARIABLE
USE OF LCHAR

RECEIVE WAIT

RECEIVE TEXT

BACKSPACE

UNUSED

UNUSED

O=NWAUNANDX
'

There are as many information items as there are
control and request sets in the NDL program. The
items are in the order of the logical numbers as-
signed to the control sets and request sets by the
NDL compiler.

6-7

DCP TERMINALS FORMAT B

This request contains information concerning DCP
program files and their associated terminals.

BYTE 0 - DCP COUNT
Contains the number of DCPs defined in NDL.

Byte 1-N - DCP data directory
DCP data
Program terminal lists

DCP Data Directory

Contains T two-byte entries where T is the total
number of DCPs from DCP 0 to the highest DCP
numbers declared. Each two-byte entry is a segment
base relative pointer to the appropriate DCP data
structure. If a DCP is not required by the NDL file,
the directory entry is set to all ones.

DCP Data

One for each DCP specified. This consists of a
one-byte program file count followed by a series of
15-byte entries as follows.

6-8

NAME NAME
NAME NAME
NAME NAMIE
NAME NAME
NAME NAME
NAME NAME
NUMBER TERMINAL LIST
OF TERMINALS POINTER
TERMINAL
LIST POINTER

NAME : 12 Bytes
Contains the DCP program file name.

NUMBER OF TERMINALS: One byte
Contains the number of terminals declared to be
associated with the program file.

TERMINAL LIST POINTER: Two bytes
Contains a segment base relative pointer to the
terminal list associated with this program file.

Note
There is one of the previous entries for
each DCP program file associated with
this DCP.

PROGRAM TERMINAL LISTS

Following DCP data are the various terminal lists
associated with the individual DCP program file.
Each list is an array of two-byte logical terminal
numbers.

SECTION 7

COBOL DATA
COMMUNICATIONS

GENERAL

This section deals with the COBOL constructs for
data communications and their use. For more de-
tailed information on the syntax and semantics of
these communicates, refer to the CMS COBOL Ref-
erence Manual, form 2007266.

COBOL COMMUNICATION
DESCRIPTIONS

A communication description (CD) serves to spec-
ify the interface area between the system, the MCS
and a COBOL program.

Two types of communication descriptions are re-
quired, one for input and one for output.

Input CD

The input communication description defines an
interface area where information relating to input
messages is passed between the data comm subsys-
tem, the MCS, and a COBOL program.

SYMBOLIC QUEUE

This field is used to pass the symbolic name of a
queue to the data communications subsystem and
the MCS. If a queue name which has not been de-
fined to the system is used, it is regarded as an e
and an error code is retumed in the status key field.

filler.

SYMBOLIC SUB-QUEUE < 2 °

~ The system does not support sub-queues and an

.
- error code is returned in the status key if the field §
| contains any character other than spaces. l

MESSAGE DATE

The message date field has the format YYMMDD
(year, month, day). Its contents represent the date_
on which the system recognizes that the message is
complete.

MESSAGE TIME

The message time field has the format

FORMAT OF INPUT CD AREA

DESCRIPTION

01 DATA-NAME

02 DATA-NAME PIC X(12)
02 DATA-NAME PIC X(36)
02 DATA-NAME PIC 9(6)

02 DATA-NAME PIC 9(8)

02 DATA-NAME PIC X(12)
02 DATA-NAME PIC 9(4)

02 DATA-NAME PIC X(1)

02 DATA-NAME PIC X(2)

02 DATA-NAME PIC 9(6)

! STATION NUMBER

f

90-91

COMMENT POSITION

SYMBOLIC QUEUE 1-12

SYMBOLIC SUB-QUEUE 13-48

MESSAGE DATE 49-54

MESSAGE TIME 55-62

SYMBOLIC SOURCE 63-74

TEXT LENGTH 75-78

END KEY 79

STATUS KEY 80-81 ,
MESSAGE COUNT 82-87 o\
QUEUE NUMBER 88-89

7-1

HHMMSSTT (hours, minutes, seconds, hundredths

of a second). Its contents represent the time at‘

which the system recognizes that the _message is
complete The hundredths of a second part of the
field is always 00. If the program is being executed

on a system without a clock, the time is always pres-

ented as 24000000.

The time and date fields are only updated by the
system during the successful execution of a receive
statement and reflect the time and date the incoming
message was accepted by the system and not the
time it was executed.

SYMBOLIC SOURCE

During the execution of a receive statement, the

system places in the symbolic sourceé field
bolic name of the station that is the source of the
message being transferred.

TEXT LENGTH

The system places in the text length field the num-
ber of character positions filled as a result of the ex-
ecution of the receive statement.

END KEY

The contents of the end key field are set during

the execution of a receive statement according to the
following rules:

1. If an end-of-group has been detected, end key
= 3.
2. If an \‘qu-of-messagc has been detected, end
key =
3. If less than a message is transferred, end key
0 gthe message was truncated)

STATUS KEY

The contents of the status key field are set during

the executlon of receive, accept message count, en-

able input, and dlsable ‘input statéments The status

key values are listed in figure 7-1.

MESSAGE COUNT

The contents of the message count field indicate
the number of messages that exist in a queue. The
field is only updated as part of the execution of an
Accept statement with the count phrase.

QUEUE NUMBER

The field queue number is provided to allow the
system to minimize the overhead of name-to-number
translation. Wherever symbolic queue or symbolic
sub-queue are changed by the program, this field is
changed to @FFFF@. ThlS ﬂeld 1s not access1ble to
‘the user. T

STATION NUMBER

The field station number is provided to allow the
system to minimize the overhead of name-to-number
translation. Wherever symbolic source is changed by
the program, this field is changed to @ FFFF@. ThlS
ﬁeld i ot acces51b1e to the user. S

OUTPUT CD

The output communication description (CD) de-
fines an interface area where information relating to
output messages is passed between the COBOL pro-
gram, the MCS, and the data communications sub-
system.

FORMAT OF OUTPUT CD AREA

DESCRIPTION
01 DATA-NAME
02 DATA-NAME PIC 9(4)
02 DATA-NAME PIC 9(4)
02 DATA-NAME PIC X(2)
02 DATA-NAME PIC X(1)
02 DATA-NAME PIC X(12)

COMMENT POSITION
DESTINATION COUNT 1-4
TEXT LENGTH 5-8
STATUS KEY 9-10
ERROR KEY 11
_ SYMBOLIC DESTINATION 1223« 470
STATION NUMBER 2425

7-2

STATUS KEY CONDITIONS

D
E D |
E N ! S
N A S A
A B A B S
B L B L T
L E L E A
R E E T
E A o 0 u
(o c | v | u S
E S Cc N T N T
l E E P P P P K
v N P U u u u E
E D T T T T T Y
X X X X X X X | 00
X X X | 20
X X X X 20
X X X | 30
X 50
X X X X X X X 91

NO ERROR DETECTED.
ACTION COMPLETED.

DESTINATION UNKNOWN OR ACCESS DENIED
BY MCS. NO ACTION TAKEN FOR UNKNOWN

DESTINATION. ERROR KEY INDICATES UNKNOWN.

QUEUE UNKNOWN OR ACCESS DENIED BY MCS.
NO ACTION TAKEN.

CONTENT OF DESTINATION COUNT INVALID.
NO ACTION TAKEN.

CHARACTER COUNT GREATER THAN LENGTH OF
SENDING FIELD. NO ACTION TAKEN.

MCS/DC SUBSYSTEM NOT AVAILABLE.

Figure 7-1. Status Key Conditions

7-3

DESTINATION COUNT

The destination count field indicates the number of

symbollc destinations to be used from the destina-

tion table. (Field error key and symbolic destination’

comprise the destination table).

The system permits only one destination to be
specified and 1f the destlnatlon count has any value
other than 1, an error condition is indicated in the
status key field and execution of the statement is ter-

TEXT LENGTH

The system interprets the text length field as the

number of charac,tguljs; to be sent when executing a _

STATUS KEY

The contents of the status key field are set during
the execution of Send, Enable Output and Disable

ERROR KEY

The error key field, when equal to 1, indicates that
the symbolic destination is unknown or not acce551-
ble by this program. The status key field is set to a
value indicating the appropriate condition. Other-
wise, the error key field is set to 0.

SYMBOLIC DESTINATION

The symbolic destination field is used to pass the
symbolic name of the destination station while
executing Send, Enable Output, and Disable Output

statements.

STATION NUMBER

The station number field allows the system to min-
imize the overhead of name-to-number translation.
Wherever symbolic destination is changed by the
COBOL program, the station number field is

changed to @FFFF@. This field is not accessxble toq

the user.

COBOL DATA COMM
STATEMENTS

To ensure some degree of system integrity, all
COBOL data comm statements cause a check to be

74

performed as to whether this user is currently ‘‘at
tached’’ to a designated symbolic queue (input) and/
or a designated symbolic destination (output).

In the event the COBOL program is not currently
attached to the appropriate queue or destination, an
attach message is formulated and placed on the MCS
queue. The format of these messages is:

For ACCEPT, DISABLE INPUT, ENABLE IN-
PUT AND RECEIVE:

TYPE

TASK

TEXT LENGTH
SUBNET QUEUE

TEXT

“ATTACH QUEUE”

TASK NUMBER

12

SUBNET QUEUE NUMBER

SYMBOLIC QUEUE NAME

I

For DISABLE OUTPUT, ENABLE OUTPUT,
AND SEND:

TYPE = “ATTACH STATION”

TASK = TASK NUMBER

STATION = LOGICAL STATION NUMBER
TEXT LENGTH = 12

TEXT = SYMBOLIC DESTINATION

(STATION NAME)

The COBOL program is waited until the MCS per-
forms an Allow or Disallow communicate.

ACCEPT
ACCEPT <cd-name> MESSAGE COUNT;

Accept causes the depth (number of entries) of the
subnet queue identified by symbolic queue to be in-
serted into MESSAGE.COUNT.

Before this can be done, Accept must check that
the symbolic queue is known, that the symbolic sub-
queue is space-filled, and that the task is attached to
the symbolic queue. If the task is not attached, Ac-
cept attempts to rectify the situation by issuing an
Attach Queue message to the MCS and waiting for
the reply. Any failure causes the STATUS.KEY to
be set to 20.

Successful execution (and therefore a meaningful
MESSAGE.COUNT) is indicated by a STATUS-
.KEY of 00.

ENABLE INPUT

ENABLE INPUT <cd-name> WITH KEY <identifi-
er/literal>;

Enable Input invokes a function defined by the

MCS, by sending an Enable Queue message to the
MCS.

Before this can be done, Enable Input must check
that the symbolic queue is known, that the symbolic
sub-queue is space-filled, and that the task is at-
tached to the symbolic queue. If the task is not at-
tached, enable input attempts to rectify the situation
by issuing an Attach Queue message to the MCS and
waiting for the reply. Any failure causes the STA-
TUS.KEY to be set to 20.

If these tests succeed and the task is attached, sta-
tus key is set to 00 and an Enable Queue message
sent to the MCS. The semantics of Enable Input are
defined by the MCS; in particular, key validation is
performed by the MCS and thus there is no
mechanism which allows for the rejection of the key.
MESSAGE TO MCS:

ENABLE INPUT

TYPE

TASK

Subnet Queue
Text Length
Text

‘‘Enable Queue’’

Task Number

Subnet Queue Number

13-22

12 Characters of Queue Name,
Followed by Information Defined by
“Key’’.

o wonn

DISABLE INPUT

DISABLE INPUT <cd-name> WITH KEY <identifi-
er/literal>;

Disable Input invokes a function defined by the
MCS, by sending a Disable Queue message to the
MCS.

Before this can be done, disable input must check
that the symbolic queue is known, that the symbolic
sub-queue is space filled, and that the task is at-
tached to the symbolic queue. If the task is not at-
tached, disable input attempts to rectify the situation
by issuing an Attach Queue message to the MCS and
waiting for the reply. Any failure causes the STA-
TUS.KEY to be set to 20.

If these tests succeed and the task is attached, sta-
tus key is set to 00 and a Disable Queue message is
sent to the MCS. The semantics of Disable Input are
defined by the MCS; in particular, key validation is
performed by the MCS and thus there is no
mechanism which allows for the rejection of the key.
MESSAGE TO MCS:

DISABLE INPUT

TYPE
Task
Subnet Queue

‘‘Disable Queue’’
Task Number
Subnet Queue Number

o

Text Length
Text

13-22
12 Characters of Queue Name,

Followed by Information Defined by
“Key".

ENABLE OUTPUT

ENABLE OUTPUT <cd-name> WITH KEY <identi-
fier/literal>;

Enable Output invokes a function defined by the
MCS, sending an Enable Station message to the
MCS.

Before this can be done, several checks must be
made:

If the destination count is not equal to 1, then
STATUS.KEY is set to 30.

If the symbolic destination is not known to the
system, then STATUS.KEY is set to 20 and
ERROR.KEY is set to 1.

If the task is not attached to the symbolic destina-
tion, then Enable Output attempts to rectify this
situation by issuing an Attach Station message
to the MCS and waiting for the reply. If attach-
ment is denied, then STATUS.KEY is set to 20
and ERROR.KEY is set to 1.

If these tests succeed and the task is attached, sta-
tus key is set to 00, error key to 0, and an Enable
Station message is sent to the MCS. The semantics
of Enable Output are defined by the MCS; in partic-
ular, key validation is performed by the MCS and
thus there is no mechanism which allows for the re-
jection of the key.

MESSAGE TO MCS:

ENABLE OUTPUT

Type = ‘‘Enable Station’’

Task = Task Number

Station = Logical Station Number

Text Length = 13-22

Text = 12 Characters of Station Name,

Followed by Information Defined by
“Key”.

DISABLE OUTPUT

DISABLE OUTPUT <cd-name> WITH KEY <iden-
tifier/literal>;

Disable Output invokes a function defined by the
MCS, by sending a Disable Station message to the
MCS.

Before this can be done, several checks must be
made:

7-5

If the destination count is not equal to 1, then
STATUS.KEY is set to 30.

If the symbolic destination is not known to the
system, then STATUS.KEY is set to 20 and
ERROR.KEY is set to 1.

If the task is not attached to the symbolic destina-
tion, then disable output attempts to rectify this
situation by issuing an Attach Station message
to the MCS and waiting for the reply. If attach-
ment is denied, then STATUS.KEY is set to 20
and ERROR.KEY is set to 1.

If these tests succeed and the task is attached, sta-
tus key is set to 00, error key to 0, and a Disable
Station message is sent to the MCS. The semantics
of Disable Output are defined by the MCS; in partic-
ular, key validation is performed by the MCS and
thus there is no mechanism which allows for the re-
jection of the key.

MESSAGE TO MCS:

DISABLE OUTPUT

Type = “‘Disable Station’’

Task = Task Number

Station = Logical Station Number

Text Length = 13-22

Text = 12 Characters of Station Name,
Followed by Information Defined by
“Key”.

RECEIVE

RECEIVE <cd-name> MESSAGE INTO
<identifier>{; NO DATA <statement> |

Receive attempts _to read a_message from the

the message text is moved to the data area and infor-
mation about the message is assembled in the input
CD area.

Before this can be done, receive must check that
the symbolic queue is known, that the symbolic sub-
queue is space-filled, and that the task is attached to
the symbolic queue. If the task is not attached, re-
ceive attempts to rectify the situation by issuing an
Attach Queue message to the MCS and waiting for
the reply. Any failure causes the STATUS.KEY to
be set to 20.

If the symbolic queue is empty, and the NO
DATA phrase is specified, then receive sets the
fetch value to @100000@ and exits to allow execu-
tion of the NO DATA statement.

If the symbohc queue is empty, and the NO
DATA phrase is absent, then the task is suspended
until a_message appears on the queue.

7-6

The message text is moved to the data area left-

is set to reﬂect the size of the message. The message
data and message time are updated with the quanti-
ties implied by their names. Symbolic source is up-
dated to the name of the station where the message
or{ggqated If the message exceeds the length of the
data area, the message is truncated and the end key
set to 0. If the message is detected as being the last

of a group, end key is set to 3, otherwise it is a 2.

Status key is set to 00 to indicate successful
execution.

SEND

wiTH EMI|
SEND cdname [FROM idcnlihcp]]{ T ~E—Gl {s
- R with _EGI

31dcntiﬁervlg \ LINE
 BEFORE | b timieger) ones | |

J =Y ADVANCING -
| AFTER { =

| ¢mnemonic name s
1 PAGE

Send attempts to dispatch a message ultlmately to
the station named by symbollc destination in the out-
put CD area. The message is actually sent either to
the MCS or to the appropriate station depending on
the history of routing directives (ROUTE.OUTPUT

communicates) issued by the MCS.

Before this can be done, several checks must be

made:

1. If the destination count is not equal to 1, then
STATUS.KEY is set to 30.

2. If the symbolic destination is not known to the
system, then STATUS.KEY is set to 20 and
ERROR.KEY is set to 1.

3. If the task is not attached to the symbolic desti-
nation, then send attempts to rectify this
situation by issuing an Attach Station message
to the MCS and waiting for the reply. If attach-
ment is denied, then STATUS.KEY is set to 20
and ERROR.KEY is set to 1.

4. If the TEXT.LENGTH exceeds the size of the
data area given by identifier-1, then the mes-
sage is not sent and STATUS. KEY is set to 50.

If insufficent buffer space is available for the
SEND, the task is suspended until space becomes
available.

The amount of space required for the SEND mes-
sage includes the CMS message header. All valid
header fields for this message type are initialized.
The RETRY field is set equal to the value of
ORIGINAL RETRY, found in the station table of
the destination station.

If output is to be directed to the MCS and the
task’s output count is greater than, or equal to, its
output limit, the task is suspended until the MCS is-
sues a CONTINUE.TASK communicate or until the
route indication is changed. Messages directed to the
MCS are marked with TYPE = SEND.

The phrase WITH EMI/EGI indicates that the
contents of identifier-1 are to be associated with an
end of message indicator (EMI) or an end-of-group
indicator (EGI). WITH EMI implies that this mes-
sage is one of a group of messages and that the final
message of the group is sent using the phrase WITH
EGI. The implication is that a single message (not
one of a group) should always be sent using the
phrase WITH EGI. Note that this phrase is eventu-
ally mapped into the block bit of the message header
options field.

The advancing phrase is encoded in the message
header options and SKIP.CONTROL fields. The ul-
timate effect of this action is defined by the MCS
and the associated line procedures.

SKIP CONTROL (CPA BYTES 3, 4)

Encodings of the skip control fields are:

BYTE 3

Bit 7 = 1

Bit 6 = 1

Bit 5 = 0 = Print Before Papermotion
1 = Print After Papermotion

Bit 4 = 0 = Do Not Advance To New Page
1 = Advance To New Page

Bit 3 = 0 = Do Not Skip To Channel
1 = Skip to Channel

Bit 2 = 0

Bit1 =0

Bit 0 = 0 = Do Not Advance Line(s)
1 = Advance Line(s)

If either bit 3 or bit 0 of byte 3 is set, byte 4 con-
tains the line count or channel number as appropri-
ate.

VARIANT [FROM IDENTIFIER-1]

The system is notified of the absence of the
FROM <identifier-1> phrase by the data area size
(CPA bytes 12-13) being zero.

STATUS.KEY is set to 00 to indicate successful
completion.

7-7

SECTION 8
RECONFIGURATION

GENERAL

On CMS systems, reconfiguration means to alter
the NDL descriptions of some characteristics of the
data comm lines and station. Two MPLII data comm
communicates in the MCS program, REDEFINE-
.LINE and REDEFINE.STATION, are used to per-
form these alterations. Thus, in CMS systems, it is
possible for an MCS program to modify the data
comm network which it controls. The reconfigura-
tion changes are made to the temporary NDL tables
used during execution of an MCS program. This
means that the reconfiguration is temporary; that is,
the next time the same NDL program is used, the
network is in the original configuration.

REDEFINE.LINE

TYPE |
MODEM_|

For an explanation of the items, see Line Table
Layout.

The REDEFINE.LINE communicate alters the
description of a line. The line’s logical number and
a data area containing the desired changes are the
parameters of the communicate.

The data variable contains the values to be in-
serted into the alterable fields of the line table. If the
data variable is not at least three bytes long, an error
is monitored.

The characteristics of a line which may be altered
are:

Modem

Transmission Method (type bit 1)
Form of Sync Character (type bit 2)
Dialin Capability (type bit 3)

Dialout Capability (type bit 4)

Dialout Device (type bit 5)

Action on Loss of Carrier (type bit 6)
Rateselect Capability (type bit 8)

Rate (type bit 9)

e Standby Capability (type bit 10)
e Use of Standby Speeds (type bit 11)

Success in redefining these fields does not depend
on their current values, but on the definitions of re-
lated parts of the network. These conditions are de-
scribed in the Network part of this section.

Another factor is that the system cannot be ac-
tively using the line to be redefined. That is, there
can be no messages for that line or any station on
it in the NDL request queue and the line must be
not-ready. Switched lines must also be not-switched-
busy and not-connected. If either of these require-
ments is not met, an error is monitored.

Note that the use of modems characteristics (type
bit 7) may not be altered. Its value in the type word
to be inserted must be the same as its current value.
Also, the current value for the use of modems char-
acteristic must be modems (as opposed to no mo-
giems or direct-connect). If either of these conditions
1s not met, an error is monitored.

If the line can be legally redefined to have the giv-
en values, the line table alterable fields and (for any
station on the line) some station table fields are
reinitialized. The fields in the line table which are
reinitialized are:

e Line Descriptor, including resetting line toggles
0 and 1

e Line Tally (0)

e Line Tally (1)

e Aux Line Tally (0)

e Aux Line Tally (1)

e Aux Line Descriptor

If there are stations on the line, the following
fields are reinitialized in those station tables:

® Active Transmit Delay

® Run Mode (second stop bit)
® Line Priority Code

REDEFINE.STATION

For an explanation of the items, see Station Table
Layout.

8-1

LOGICAL LINE NO
END CHARACTER
BACKSPACE CHARACTER
CONTROL CHARACTER
TRANSMIT ADDR. 1
TRANSMIT ADDR
RECEIVE ADDR. 2

RUN MODE BITS
LINE DELETE CHARACTER
WRU CHARACTER
STATION FREQUENCY
TRANSMIT ADDR._ 2
RECEIVE ADDR. 2
RECEIVE ADDR. 3

TYPE
SPEED

MODEM
ORIGINAL RETRY

TERMINAL

The REDEFINE.STATION communicate alters
the description of one station. The parameters of the
communicate include the station’s logical number
and a data area containing the desired changes.

The data variable contains the values to be in-
serted into the alterable fields of the station table. If
the data variable is not at least 21 bytes long, an er-
ror is monitored.

The characteristics of a station which may be al-
tered are:

Logical Line Number

Myuse Output Capability (run mode bit 7)
Myuse Input Capability (run mode bit 6)
Use of Second Stop Bit (run mode bit 5)
Allowing of Input (run mode bit 4)

End Character

Line Delete Character

Backspace Character

WRU Character

Control Character

Station Frequency

Transmit Address Characters

Receive Address Characters

Form of Duplex (type bit 0)

Use of Modems (type bit 7)

Use of Telex (type bit 12)

BDI Mode (type bit 13)

Speed

Modem

Terminal

Original Retry

‘The actions taken in performing the REDEFINE-
.STATION communicate depend on the value of the
logical line number currently in the station table and
the value of the logical line number to be inserted
into the table. One action is to remove a station
from a line. In this case, no changes are made to the
station table except for the logical line number. This
action is taken when the line number in the table is
a valid logical line number and the line number to be
inserted is @FF@.

Another action is to add a station to a line and up-

82

date all the alterable fields of the station table. This
is done when the line number in the table is @FF@
and the line number to be inserted is a valid logical
line number.

The last action is to change all the alterable fields
of the station table for a station which is on a line.
In this case, the line number in the table and the line
number to be inserted are the same valid logical line
number. If both are valid logical line numbers but
they are different, an error is monitored. In the case
that both the line number in the station table and the
line number to be inserted are @FF@, no action is
taken.

For all other alterable fields, success in redefining
them does not depend on their current definition but
on the definition of related parts of the network.
These conditions are described in the Network sec-
tion.

Another factor in the success of redefining a sta-
tion is that the system cannot be actively using that
station or the line involved in the redefinition. This
means that there can be no messages for that line or
any station on it in the NDL request queue and the
line must be not ready. For this type bits stations,
both save queues must be empty. Also, if the station
is being removed from the line, the station cannot be
in the Queued condition. Additionally, if the station
is being added to a line, there must be room for it;
which means that in the line table the current value
of the Max Stations field is less than the current
value of the Max Entries field. If any of these re-
quirements is not met, an error is monitored.

If the REDEFINE.STATION action requested is
legal, the station table and line table are updated and
reinitialized according to the particular action. When
removing the station from the line, the only alterable
field which is changed is the logical line number.
Also, in the station table, the attached status field is
reinitialized. In the line table, the Max Stations field
is decremented and the station’s entry in the line
vector is removed.

For the actions of adding the station to the line or
changing the station on the line, all the alterable
fields are changed. Also, these Line Table fields are
reinitialized:

e Line Desc (full duplex)
e Station Tally of This Station
e Station Description of This Station

In the station table, these fields are reinitialized:

e Line Priority Code
e Receive Transmission Number

Transmit Transmission Number
Tally (0)

Tally (1)

Tally (2)

Tally (3) through Tally (18)
Toggles

Options

Events

Initiate Receive Delay

Active Transmit Delay

The output routing of the station is also reinitia-
lized.

Some additional reinitialization and updating are
done for the add action. In the line table, the Max
Stations field is incremented and an entry is added
to the station vector. These fields are reinitialized in
the station table:

Relative Station Number
Unprocessed Input Limit
Unprocessed Input Count
Queue Limit

Subnet Queue Address

NETWORK

The conditions which a redefinition must meet
concerning related network -parts are ones which re-
sult in a network description that is legal under the
requirements of CMS NDL. With only one excep-
tion, these conditions exclusively involve the de-
scriptions of the parts of the one line affected by the
specific redefinition. Those descriptions are: the line
description, the description of the line modem, the
descriptions of any stations on the line, the descrip-
tions of those stations’ modems, and the descriptions
of their terminals. Some network conditions are met
automatically because many parts of the network
cannot be redefined. The conditions for which the
redefinition must be validated are:

o All of the descriptions must specify the same
transmission method - Asynchronous or Syn-
chronous

e All of the modem descriptions and the line de-
scription must specify the same action on Loss
of Carrier, Rateselect Capability, and Standby
Capability

o If the line description specifies Dialin, the lines
modem description must specify Dialin

e If the line description specifies Dialout, either
the line description specifies ACU or the Line
Modem Description specifies Dialout, but not
both

o If the line description does not specify Dialout,
it must not specify ACU

If the line description specifies Telex, it must
not specify the Standby Option

If the line description specifies Telex, and if the
station and terminal descriptions specify Telex,
then the line description must not specify the
Rateselect Option

For each station, the station description and its
terminal description must specify the same use
of Telex

All of the terminal descriptions must specify the
same use of Telex

If the station and terminal descriptions specify
Telex, the line description must specify Telex
If the line description specifies BDI, then all of
the station and terminal descriptions must
specify BDI

If a line description specifies Bits, then it must
also specify use of Modems and Synchronous
transmission

All corresponding terminal, station, and line de-
scriptions must specify the same use of BDI
All corresponding terminal, station, and line de-
scriptions must specify the same use of Bits
All modem and station descriptions and line de-
scriptions must specify the same use of Modems
All of the station and terminal descriptions and
the line description must specify the same form
of Sync Characters - ASCII or EBCDIC

All corresponding terminal, station, and line de-
scriptions must specify the same Duplex
Capability

If the station and terminal descriptions specify
Full Duplex, all of the modem descriptions and
the line description must specify Full Duplex

o If the line description specifies BDI, the line de-

scription and all of the modem descriptions must
specify the same Duplex Capability as is
specified by the station and terminal descrip-
tions

If the line description specifies Direct-Connect
and if the line description does not specify BDI,
then, for each terminal, the terminal description
must specify Direct-Connect

If line description specifies Modems, then, for
each terminal, the terminal description must
specify Modem

If a terminal description specifies Tallies, then
each associated station description must specify
Tallies

For each station, the station description must
specify exactly as many non-null Transmit Ad-
dress Characters as the terminal description
specifies in the Transmit Address Count and the
Receive Address Count

For each station, if its terminal description spec-
ifies no Receive Request Set, the station de-
scription must not specify Myuse Input

For each station, if its terminal description spec-

83

84

ifies no Transmit Request Set, the station de-
scription must not specify Myuse Output

For each station, if the station description does
not specify Myuse Input, it must not specify En-
able Input

If the line description specifies Synchronous,
then, for each station, the station description
must not specify Second Stop Bit

If the line description specifies Asynchronous,
then, for each station, the station description
must specify the same number of Stop Bits as
its terminal description specifies for line Speed
If the line description specifies Asynchronous,
all station descriptions must specify the same
number of Stop Bits

If the line description specifies Synchronous,
then, for each station, the station description
must specify one speed within the Synchronous
range

If the line description specifies Synchronous, all
of the modem descriptions must specify the
same Speed or Speeds

If the line description specifies Synchronous,
then, for each station, the station description
must specify a Speed greater than, or equal to,
the highest Speed specified in the modem de-
scriptions

If the line description specifies Synchronous,
then, for each terminal, the terminal description
must specify a Speed greater than, or equal to,
the highest Speed specified in the modem de-
scriptions

If the line description specifies Asynchronous,
and if the line description specifies both the Ra-
teselect and Standby Options, then, for each
station, the station description must specify
three Speeds within the Asynchronous range
If the line description specifies Asynchronous,
and if the line description specifies the Ratese-
lect Option but not the Standby Option, then,
for each station, the station description must
specify two Speeds within the Asynchronous
range

If the line description specifies Asynchronous,
and if the line description does not specify the
Rateselect or Standby Options, then, for each
station, the station description must specify one
Speed within Asynchronous range

If the line description specifies Asynchronous,
then each corresponding station and terminal de-
scription must specify the sameSpeed or Speeds
If the line description specifies Asynchronous,
then all of the station descriptions must specify
the same Speed or Speeds

If the line description specifies Telex, for each
terminal description that does not specify Telex
but specifies Horizontal Parity; CRC, BCC,

Ones, or Summed Parity must not be specified

e If the line description specifies Telex, then, for
each terminal, if the terminal description does
not specify Telex, then if the terminal descrip-
tion has Horizontal Parity (Terminal Run
Mode), then the terminal description must not
specify CRC, BCC, Ones, and Summed Parity

® All of the terminal descriptions must specify the
same use of Vertical Parity (Terminal Run
Mode), Use of Translation (Terminal Run
Mode), Use of Case Shift (Terminal Run Mode),
Transmit Address Count, Receive Address
Count, Sync Character, Parity Mask, Auxiliary
Line Control Set, Line Control Set, Adapter
Info, and Translation Table

e If the line description specifies Asynchronous,
then, at each Speed specified by the station de-
scriptions, all of the terminal descriptions must
specify the same number of Stop Bits

e If a line description specifies Bits, then all corre-
sponding terminal descriptions must specify the
same modulus

e If a station description specifies Bits, then the
transmit and receive address for that station
must be different

The one unusual condition is that not all of the
terminals described in the NDL program are neces-
sarily allowed to communicate with a particular DCP
program file. The possible terminals are those named
for a DCP’s current program file in that DCP’s ter-
minal description. The particular DCP is specified
by the line address in the description of the line in-
volved in the redefinition.

If the redefinition fails to meet these conditions,
an error is monitored.

ERRORS

Below are the events which are reported by un-
successful REDEFINE LINE communicates:

@00D0@ 208 DC ERROR BAD LINE NO

@00D1@ 209 DC ERROR BAD MODEM NO

@00DD@ 221 DC ERROR ATTRIBUTE MISMATCH
@00DE@ 222 DC ERROR DIRECT CONNECT LINE
@O00DF@ 223 DC ERROR FULL DUPLEX MISMATCH
@O00E0@ 224 DC ERROR INCOMPLETE VARIABLE
@O00E1@ 225 DC ERROR IMPROPER LINE CONDITION
@O00E2@ 226 DC ERROR MESSAGES QUEUED
@00E4@ 228 DC ERROR SPEED MISMATCH

These are the events which are reported by unsuc-

cessful REDEFINE STATION communicates:

@00C9@ 201 DC ERROR BAD STATION NO
@00D0@ 208 DC ERROR BAD LINE NO
@00D1@ 209 DC ERROR BAD MODEM NO

@00D2@ 210 DC ERROR BAD TERMINAL NO @0E0@ 224 DC ERROR INCOMPLETE VARIABLE

@00DC@ 220 DC ERROR STATION ALREADY @00E1@ 225 DC ERROR IMPROPER LINE CONDITION

ATTACHED @O00E2@ 226 DC ERROR MESSAGES QUEUED
@00DD@ 221 DC ERROR ATTRIBUTE MISMATCH @O00E3@ 227 DC ERROR NO VACANCY ON LINE
@O00DF@ 223 DC ERROR FULL DUPLEX MISMATCH @O00E4@ 228 DC ERROR SPEED MISMATCH

8-5

SECTION 9
MPLII USER DATA
COMMUNICATIONS

GENERAL

A user data comm interface, similar to COBOL in
nature, is provided within the MPLII language
through a set of built-in procedures and functions.
This interface provides an identical COBOL inter-
face to the data comm subsystem.

DC.ACCEPT

DC.ACCEPT (<queue name>, <result>);

This built-in procedure is used to set the value of
<result> to the fixed value of the count of messages
on the subnet queue specified by <queue name>.

The status key within the input CD can be tested
to determine the validity of the value of <result>.
The <queue name> must be of type characters.

Refer to ACCEPT in the COBOL Data Comm
Statements section.

DC.ENABLE.INPUT
DC.ENABLE.INPUT (<queue name>, <password>);

This built-in procedure invokes an MCS-defined
function by sending an ENABLE QUEUE message
to the MCS.

The <queue name> and <password> must be of
type character.

The success or failure of the operation can be
checked by interrogating the status key of the input
CD area. Only the first 10 characters of <pas-
sword> are significant. Refer to ENABLE INPUT
in the COBOL Data Comm Statements section.

DC.ENABLE.OUTPUT

DC.ENABLE.OUTPUT (<station name>, <pas-
sword>);

This built-in procedure invokes an MCS-defined

function by sending an ENABLE STATION mes-
sage to the MCS.

The <station name> and <password> must be of
type character.

The success or failure of the operation can be
checked by interrogating the status key of the output
CD area. Only the first 10 characters of <pas-
sword> are significant. Refer to ENABLE OUT-
PUT in the COBOL Data Comm Statements section.

DC.DISABLE.INPUT

DC.DISABLE.INPUT (<queue name>, <pas-
sword>);

This built-in procedure invokes an MCS-defined
function by sending a DISABLE QUEUE message
to the MCS.

The <queue name> and <password> must be of
type character.

The success or failure of the operation can be
checked by interrogating the status key of the input
CD area.

Only the first 10 characters of <password> are
significant.

Refer to DISABLE INPUT in the COBOL Data
Comm Statements section.

DC.DISABLE.OUTPUT

DC.DISABLE.OUTPUT (<station name>, <pas-
sword>);

This built-in procedure invokes an MCS-defined
function by sending a DISABLE STATION message
to the MCS.

The <station name> and <password> must be of
type character.

9-1

The success or failure of the operation can be
checked by interrogating the status key of the output
CD area.

Only the first 10 characters of <password> are
significant. Refer to DISABLE OUTPUT in the
COBOL Data Comm Statements section.

DC.RECEIVE

DC.RECEIVE (<queue name>,<destination>,
<char count><wait option>);
<char count> ::= <expression>
<wait option> ::= <empty> |, NOWAIT

This built-in procedure is used to remove the top
message from the queue specified by <queue name>
and copy its text to the data field specified by <des-
tination>. The number of characters moved is the
smaller of the fixed value given by <char count>
and text length of the message.

If the specified queue is empty, the program is
waited until a message is placed on the queue, un-
less the NOWAIT option is specified, in which case,
control passes to the next statement.

The input CD area contains information about the
message and can be interrogated by use of the pro-
vided built-in functions.

The <queue name> and <destination> must be
of type character. Refer to RECEIVE in the
COBOL data comm statements section.

DC.SEND

DC.SEND (<station name>,<source>,<char count>

<eom option> <before/after option> <line control>

< NOWAIT option>);

<eom option> ::=, EMI | <empty>

<before/after option> ::=, BEFORE | <empty>

<line control> ::=, PAGE |, LINE |, LINE (<ex-

pression>) | <empty>

<NOWAIT option> ::=, NOWAIT | <empty>
This built-in procedure is used to send a message

to the station specified by <station name>.

The text of the message is obtained from the data
field specified by <source>. The number of charac-
ters moved is given by the fixed value of <char
count>.

The message is assumed to be the last of a logical
group of messages unless the EMI (end-of-message
indicator) is specified.

If <line control> is specified, the station should
have carriage control capabilities. PAGE specifies an
advance to top of the next page. LINE (<expres-

9-2

sion>) causes N lines to be skipped; where N is the
fixed value of <expression>.

If the before option is specified, the carriage con-
trol information is actioned before the message text
is printed.

The output CD area contains information about
the message and can be interrogated by use of the
built-in functions.

If the <NOWAIT option> is specified, and the
send will exceed a currently active queue limit, con-
trol is returned to the program with a fetch value of
@100001@.

If <NOWAIT option> is specified and the subsys-
tem lacks sufficient buffer space to accommodate the
send, control is returned to the program with a fetch
value of @100000@.

The <source> and <station name> must be of
type character. Refer to SEND in the COBOL Data
Comm Statements section.

INPUT RELATED FUNCTIONS

The input CD is implicity defined by the MPL
interpreter.

DC.NODATA

This built-in function returns a true value if the
FETCH VALUE of the preceeding communicate
was equal to @000000@. It may be used after either
a DC.RECEIVE or a DC.SEND. After a DC.R-
ECEIVE with the NOWAIT option specified, DC.N-
ODATA returns a true value if the specified queue
was empty; otherwise, it returns a false value.

After a DC.SEND with the NOWAIT option spec-
ified a true value, this indicates that the message
was not sent. A false value indicates the SEND was
successful.

The value returned by DC.NODATA is meaning-
less if the last communicate was not either a DC.R-
ECEIVE or a DC.SEND with the NOWAIT option
specified.

DC.INPUT.STATUS

This built-in function returns a fixed value indicat-
ing whether or not there were any abnormal condi-
tions associated with the last input-related data
comm communicate (DC.ACCEPT, DC.ENABLE.-
INPUT, DC.DISABLE.INPUT, or DC.RECEIVE).

The values are:
0 No errors; action completed.
20 Queue unknown or access denied
by MCS; no action taken.
91 MCS/data comm subsystem not
available; no action taken.

DC.ORIGIN

This built-in function returns a descriptor of type
character, size 12 bytes. Its value is the symbolic
source field (station name) of the input CD.

DC.TEXTLENGTH

This built-in function returns a fixed value which
is the binary equivalent of the text length field of the
input CD.

DC.DATE

This built-in function returns a descriptor of type
character, size six bytes. Its value is the message
date field of the input CD.

DC.TIME

This built-in function returns a descriptor of type
character, size eight bytes. Its value is the message
time field of the input CD.

DC.ENDKEY

This built-in function is used to interrogate the end
key field of the input CD.

The fixed value returned is meaningful only if the
last data comm communicate was a DC.RECEIVE.

The values are:

0 The specified text length is less
than the number of text
characters in the message.

2 This message is not the last of a
logical group of messages.

3 This message is the last of a
logical group of messages.

OUTPUT RELATED FUNCTIONS

The output CD is implicitly defined by the MPL
interpreter.

DC.OUTPUT.STATUS

This built-in function returns a fixed value indicat-
ing whether or not there were any abnormal condi-
tions associated with the last output-related data
comm communicate (DC.ENABLE.OUTPUT,
DC.DISABLE.OUTPUT, DC.SEND).

The values are:

0 No errors; action completed

20 Destination unknown or access
denied by MCS. No action taken.

50 Character count greater than
length of sending field. No action

taken.
91 MCS/data comm subsystem not
available.
DC.ERROR.KEY

This built-in function returns the fixed value of the
error key field of the output CD.

9-3

SECTION 10
B 80-DEPENDENT
FEATURES

GENERAL

This section contains a description of those fea-
tures of the CMS data communications subsystem
which are unique to the B 80 series.

B 80 implementation-dependent error messages

are:

255 DC INVALID

256 DC ERROR LOAD FAILURE BAD COMPILATION

257 DC ERROR LOAD FAILURE BAD COMPILATION

258 DC ERROR LOAD FAILURE NOT ENOUGH
MESSAGE SPACE

259 DC ERROR LOAD FAILURE CANNOT EXECUTE
NDL PROGRAM

260 DC ERROR LOAD FAILURE MISSING OR
INVALID CONTROLLER

261 DC ERROR LOAD FAILURE BAD COMPILATION

255 DC INVALID
The operator has entered a DC message when no
MCS is running. This event does not set fetchvalue
or fetchmessage.

256 DC ERROR LOAD FAILURE BAD COMPILATION
This event is returned and data comm load aborted
if:

(SUBNET.COUNT * 16)+1 is greater than 2000.
That is, if there is insufficient space for the number
of subnet queues defined.

257 DC ERROR LOAD FAILURE BAD COMPILATION

This event is returned and the data comm load
aborted if:

(STATION.COUNT * 12) is greater than 2000. That
is, if there is insufficient space for the number of
stations defined.

258

259

260

261

DC ERROR LOAD FAILURE NOT ENOUGH
MESSAGE SPACE

This event is returned and the data comm load
aborted if there is insufficient space declared in the
NDL preset data for the system queue header and at
least one message. Insufficient message space is
declared to be:
<(STATION.COUNT+SUBNET.COUNT+2) x12+176

DC ERROR LOAD FAILURE CANNOT EXECUTE
NDL PROGRAM

This occurs if the load of the NDL interpreter was
not caused by an MCS load.

DC ERROR LOAD FAILURE MISSING OR
INVALID CONTROLLER

This occurs if the system detects that a line
channel/subchannel does not contain a valid data
comm controller, of if the transmission method of the
controller is incompatible with that declared for the
line in NDL (for example, an async controller for a
line declared as sync in NDL). The load of data
comm is aborted.

DC ERROR LOAD FAILURE BAD COMPILATION
Insufficient space has been allocated to the NDL
interpreter by the MCP. Load of data comm is
aborted.

The following error messages are outside the range
of B 80-dependent errors. They refer to restrictions
which will be lifted in the future.

369

379

DC ERROR LOAD FAILURE - FULL DUPLEX
LINE NOT IMPLEMENTED

This event is returned and the load of the data
comm aborted if the NDLSYS contains a full duplex
line.

DC ERROR LOAD FAILURE - TELEX LINE NOT
IMPLEMENTED

This event is returned and the load of data comm
aborted if the NDLSYS contains a Telex line.

10-1

SECTION 11

B 800-DEPENDENT
FEATURES

GENERAL

This section contains a description of the features
of the CMS data communications subsystem which
are unique to the B 800 series.

B 80 implementation-dependent error messages
are:

270 DC ERROR 7PM PARITY DC* XXXX

271 DC ERROR SPM PARITY DC* YYYY

279 DC LOAD/EOJ FAILURE DC* SPM PARITY
ERROR XXXX

280 DC LOAD/EOJ FAILURE DC* 7PM PARITY
ERROR YYYY

281 DC LOAD/EOJ FAILURE DC* NO RESPONSE
(DC* indicates processor in error)
(XXXX = four-digit 7PM address)
(YYYY = four-digit line address)
(7PM indicates DCP micromemory)
(SPM indicates scratchpad memory)

279 DC LOAD/EOJ FAILURE DC* SPM PARITY
ERROR XXXX

280 DC LOAD/EOJ FAILURE DC* 7PM PARITY
ERROR YYYY

281 DC LOAD/EOJ FAILURE DC* NO RESPONSE
(DC* indicates processor in error)
(XXXX = four-digit 7PM address)
(YYYY = four-digit line address)
(7PM indicates DCP micromemory)
(SPM indicates scratchpad memory)

Detailed explanations of the messages follow.
TEXT
270 DC ERROR 7PM PARITY DC* XXXX
The DCP has failed because of a microprogram
memory parity error.

271 DC ERROR SPM PARITY DC* YYYY
The DCP has failed because of a scratchpad memory
parity error.

279 DC LOAD/EOJ FAILURE DC* SPM PARITY
ERROR
Load of DCP has failed because of scratchpad
memory parity error.

280 DC LOAD/EOJ FAILURE DC* 7PM PARITY
ERROR
Load of the specified DCP has failed because of a
DCP microprogram memory parity error.

281 DC LOAD/EOJ FAILURE DC* NO RESPONSE
The DCP specified in a load or reload has failed to
complete handshake after load process.

B 800 SCRATCH PAD MEMORY

A formatted SYSDUMP shows an analysis of the
data comm memory space if an MCS was running at
the time of the clear/start.

The last part of this analysis is a breakout of the
scratch pad memory for each line (figure 11-1).

Pages 0 and 1 of the scratch pad memory dump
are valid for half-duplex memory. Pages 0, 1, 2, and
3 are valid for full-duplex memory.

Columns headed by ‘‘D---"’ are the columns con-
taining the actual data described in the figure. The
columns headed by ‘‘S---’ contain the status word
for the read of the previous data word. This status
word should be 0000 (good status). Any non-zero
status word indicates an error in the DCP.

The following description describes the content of
page 0 of scratch pad memory. Page 2 uses the same
mnemonics, but is for the full-duplex auxiliary line.

These descriptions deal with the individual bytes
shown in figure 11-2.

Bytes 0 and 1, M-PTR-L and
M-PTR-M
This field contains the absolute DCP microaddress

used by the manager to store the nonerror return ad-
dress.

Byte 2, LINE-NO

This field contains the physical address of the
communication line associated with this set of SPM.

Byte 3, ID

This field contains the DCP number associated
with this DCP.

Byte 4, DS-DESC

This field contains the current copy of the data set
descriptor used by hardware. DC-DESC is only

11-1

PFOCESSOR NUMBER: ZERQ
PFOCESSOR PORIz OC
LINE MUMBER: CO

PAGE NUMBERz C/1

ADDR D--==§=== D-=-=§=-= P====§=== D====§=-= P-====§=== D====S=== Qe===§e-== D=-==§---
ocoo 007A COCO 000C COCO 0CO4 0000 0202 0O0CO -FC18 COO0 FFBC COOO FFFF COCD 0071 0OCO
0c10 £710 COCO DB9f COCO 0293 0000 00OC COLO 0C41 COO0 OD3E 00CO ECO6 COCO «CO$ 0OCO
0C 20 000 C0CO 0G6C 00CO DBOB COOO DBAE COCO Ce03 €000 000C 0000 FFD7 COCO FFB1 COCO
0€30 Ce03 CO0CO c616 COCO 000 COOO 8501 COCO CE03 COOO DBV 0OCO 150C COCO CBOC 0OCD

PAGE MNUMBER: 2/8

ADDR D====§=== P==-=§=== DP====§=== p====§=== P=-==-§=== D-=-=§=== D-===§-== D---=§--=
0c00 UC00 €000 000C CUCO FFOO COOO OOFF COCO OCOO COOO 000OC 0OCO OCOO COCO OCOC ©OCO
0c10 0C00 €000 0COC COLO D963 COOO 000G COLO 0COO COCO 0OOC COCO OCOO QOCO OCOC 0OCO
0c20 0C00 COCO 006C COCO 0CO0 COCO DEAE COCO OCOO COOO 000C 0OCO 0COO COCO 0COC 00CO

LINE MNUMBER: C1
PAGE NUMBLR:z C/1

ADDR D-===§=== P====§=== D-====§-== D-===§e=-= De===§=== D---=§=== D-===§e-== D==-=§--=
0600 1€21 C0CU 0001 QuCO 000S COOO OCFF GOLO OCOO COOO 0002 0000 FFFF GCOCO 0COC 0OCO
oc1o 8100 COCO DBB1 GOLO OC16 COOO OCO1 OOLO FC7F CODO 1388 00CO ECO0 COCO 002C 0OCO
0020 0C00 €000 006C COCO ©C12 COVO DBBA COCO CC33 COOO 0COC 0OCO F87F COCO OCOC 0OCO

0C30 0C00 COCO 000C COCDO 0OCOO COOO 0OCOY1 COCO C€c33 CO00 006C OOCO 0400 COCO OCOF COCO

PAGE NUMGSER:z 2/3

ADOR D-===§=-== P==-=§=== P-====§=== P-=-=§=-= D-===§===- D==-=§=== D--==§=-== D-=-=§--=-
0co0 0C00 €000 0001 COCO FFOO GOOO OOFF COLO OCOO COOD 00GC 0OGCO 0COO COCO OGCOC 00CO
0c10 0C00 €000 0COC COCH D9K3 COOO OCOC COCO OCOO COOO 000C 0OCO 0COO COCO 0COC 00CO

oczao 0(0C COCO 006C COCO 0CO0 CNOO DBBA COCO OCOO COOO 00OC 0OCO 0COC COCO OCOC oOOCO

LR

Figure 11-1. Data Comm Processor Scratch Pad Memory Dump

maintained in page 0, not in page 2. Bits and their
purposes are:

Bit Purpose
7 SECOND STOP BIT

6 STANDBY RATE

5 RATE

4 NEW SYNCHRONOUS

3 DATA MODE

2 DATA TERMINAL READY
1 ORIGINATE

0 REQUEST TO SEND

Byte 5, LINE-Q-HEAD

This byts contains the LINE-NO of the highest pri-
ority line currently in the line queue. If there are no
lines in the line queue, this field contains 1’s.

Byte 6, FRWD-LNK

This field contains the LINE-NO of the next lower
priority line currently in the line queue. If it contains
1’s, then the present line is the lowest priority in the
queue. If FRWD-LNK of page 0 contains hex 80, it
points to the auxiliary co-line. Relevent information
is contained in pages 2 and 3. (FRWKD-LNK in
page 2 always contains LINE-NO of the next lower
priority line, or 1’s).

11-2

Byte 7, BKWD-LNK

This field contains the LINE-NO of the next high-
est priority line currently in the line queue. If this is
the highest priority line, the field contains 1’s.

Byte 8 and 9, TIMEOUT-L and
TIMEOUT-M

This field contains the timeout value associated
with the currently executing NDL receive instruc-
tion.

Bytes 10 and 11, TIMER-L and
TIMER-M

This field contains a work area used by the man-
ager timer routine.

Byte 12 and 13, TRANSLATE-L
and TRANSLATE-M

This field contains the absolute D-word address of
the translation table associated with the active sta-
tion on this line or co-line.

PasES /2 Y L PAGES /3

] RN=P IR~ 1] [}) S~ria=-L)
[] (] [] e w-—— [
[} PTR=N 1 1] S=PIR~)
] ' |meecccccnnmcnrmcnnnce—- 1
) LINE MO L] H4 i COMMUNICATE-L]
[-1] -- -- [}
|} 10] 3] COMMUNICATE=N]
'—-—--------———-------.-' ' -- l
[} os DESC] 4] STATION=TAB-L]
'.. ---------------- --. ' —.‘
] Lll(-G-NEAD] S] STATION=TAO=N]
. - ‘ . -—--- '
] FRYD~-LNK) (Y] LINE=-TAB-L '
] [] R T e |
] SKNO-LNE] 7 [} LINE-TAB=N)
.-----.— ----------- -——----f 1 - - -l
[TIREQUT=L] 8] N(SSAG[’NDE’L 1
| *ewt co: cnccnmucccccccvcna] [eremcnccccconncnanan D e |
' T.NEQUT~n 1 1]] H(SSAGE HDR=M]
... --------- m—---——--- L | |orervrnvncnscnccnnsan ——
' TIngRr ‘L] 10] TERN=TAB~L]
|---'- ------------------ ' |.. -..
[} TINER=N] 11) TERR=TAB=n]
l.—-——- ----------------- ‘ . -------------------- —.
] "uSLH[L ' 12 { TEXV-SIZE-L]
. --------------------- ‘ ‘ ----------------------- -'
(] !llltLAl{-l ' 13] TEXT-SIZE~-N]
'---o—-------—--—-;—---——' |~~mwrscraccvecnnscecncns []
] cCRC-L/s8CC 1 14 ' BUFFER-SIZE-L '
'—-------- -------------- ‘ ‘ ------------------------ '
] CRC*n) 15 L] BUFFER-S1ZE~-N 1
|eocncccsascccnns camcenas) |eremccesconcanencccnne -—
] CMLlP=FREQ) 16) CUR=BUF =L]
[] cowee cmcm-] |errcrccncncccnccncee —m--y
! o0P-DESC 1 17 (] CUR=-BUF=-N]
| cvcoccrccrncccccccacsce -y |eemeccccccncncancman e |
LI PARITY=MASK) 18 [] CUR=ADOR=-L]
| e ecrrccamcncccacrecc -——f | —recrccccccccnan T o |
] STNC=CHAR ' 19] CUR=ADDR=N]
‘---md-—--.----------‘-‘ . ------------------------ .
] TIMER2-L ! 20] BUF 'CNAI]
' -—— -] |----- ----------------- c.
] TIMIR2.M] 21] IN= CNAI :
|eocovenconacncncnacena --) |mmemececccccnccnnnmcas -—
] COmTINUE-L ! 22] ACTIVE~- SlA\'lON]
| e ccamcccn e ccmnm e]

] COMTINUE=-N ' 23

|eecemecennareanccccccmea t

] NORK] 1 24

|oreomccoccccccccnncnnamee f

[} WORK2] 25

|eemmemeccncccccecceceman f

] wORK3] 26

jereereccsccccscesccacan -1

] NORKS&] 27

|emmemccccccccanenccccnnn '

' S1U=CHAR=4 [28

‘-- --------------------- .

] BIU=-CHAR-S] 29

e i

1 BIlU=CHAR-S] 30

jemmeeememeccamcmcac e ——- '

! SIU-CHAR~T) 1

Figure 11-2. Scratch Pad Memory Layout

Bytes 14 and 15, CRC-L/BCC and Byte 17, DDP-DESC

CRC-M This field contains the current copy of the DI?P
This field contains a work area used in calculating descriptor used by hardware. DDP-DESC is main-
the BCC or CRC on this line or co-line. tained only in page 0, not in page 2.

Byte 16, CHIP FREQ Byte 18, PARITY MASK

This field indicates the line’s priority. It is main- This field contains a mask used in stripping the
tained only in page 0, not in page 2. parity bit from incoming characters.

11-3

Byte 19, SYNC CHARACTER

This field contains the sync character associated
with the line or co-line.

Bytes 20 and 21, TIMER2-L and
TIMER2-M

This field contains a work area used by the man-
ager gross-timer routine. It is only used in page 0,
not in page 2.

Bytes 22 and 23, CONTINUE-L
and CONTINUE-M

This field contains an absolute D-word address
used in connection with an NDL continue or receive
(continue) instruction.

Bytes 24 - 27, WORK1, WORK2,
WORKS3, WORK4

These field are used as work areas by the S-OP
microstrings.

Byte 28, BIU-CHAR-4

This field contains a set of flags used by DCP in-
ternal routines. Bits and flags are:

Bit Flag
7 AUX-ACTIVE
6 WAIT-FLAG
5 AUX-FLAG
4 IRF
3 XMT-MODE
2 RCV-MODE
1 TIMER-ACTIVE
0 BUFFER-FLAG

Byte 29, BIU-CHAR-5

This field contains a set of flags used by DCP in-
ternal routines. Bits and flags are:

Bit Flag
7 VERTICAL
6 HORIZONTAL
5 NO-TRANSLATE
4 BITS

3 FULL DUPLEX
2 TRANSPARENT
1 CASE-SHIFT

0 BCC/CRC-FLAG

Byte 30, BIU-CHAR-6

This field contains a set of flags used by DCP in-
ternal routines. Bits and flags are:

114

=
=4
-

Flag
INPUT-FLAG
LN-CONTROL-FLAG
RESERVE
MOD-128
SYNCS
HORIZONTAL-ODD
CRC-1
SYNC/ASYNC

O= WA UV

Byte 31, BIU-CHAR-7

g
-

Flag
NORESPONSE
SPACE-AVAIL
TIMER2-ACTIVE
STA-NRY-PENDING
LN-NRY-PENDING
GEN-PURPOSE-C
GEN-PURPOSE-B
GEN-PURPOSE-A

S=NWAEULUA

The following describes the contents of page 1 of
scratch pad memory. Page 3 uses the same mne-
monics but is for the full-duplex auxiliary line.

Byte 0 and 1, S-PTR-L and
S-PTR-M

This field contains the absolute D-word address of
the NDL S-OP in execution on this line or co-line.

Bytes 2 and 3, COMMUNICATE-L
and COMMUNICATE-M

This field contains the absolute D-word address of
the DC-LIT-REGISTERS.

Byte 4 and 5, STATION-TAB-L
and STATION-TAB-M

This field contains the absolute D-word addrpss of
the station table associated with the active station on
this line or co-line.

Bytes 6 and 7, LINE-TAB-L and
LINE-TAB-M

This field contains the absolute D-word address of
the line table associated with this line or co-line.

Bytes 8 and 9, MESSAGE-HDR-L
and MESSAGE-HDR-M

This field contains the absolute D-word address of
the first buffer of the message space currently being
processed.

Bytes 10 and 11, TERM-TAB-L
and TERM-TAB-M

This field has the absolute D-word address of the
terminal table associated with the active station on
this line or co-line.

Bytes 12 and 13, TEXT-SIZE-L
and TEXT-SIZE-M

This field contains a working value used by the
buffer storage routines.

Bytes 14 and 15, BUFFER-SIZE-L
and BUFFER-SIZE-M

This field contains a working value used by the
buffer storage routines.

Bytes 16 and 17, CUR-BUF-L and
CUR-BUF-M

This field has the absolute D-word address of the
DC buffer currently in use.

Bytes 18 and 19, CUR-ADDR-L
and CUR-ADDR-M

This field contains the absolute D-word of the last
used buffer data location.

Byte 20, BUF-CHAR

This field contains a work area used by the buffer
storage routine.

Byte 21, IN-CHAR

This field is equivalent to the NDL character reg-
ister.

Byte 22, ACTIVE STATION

This field contains the line relative station number
of the station currently active on this line or co-line.

Byte 23, LINE-CHAR

This field contains a copy of the last character ex-
actly as it appeared on the line (LCHAR).

Bytes 24 - 27, SPM-TEMP-1,
SPM-TEMP-2, SPM-TEMP-3, SPM-
TEMP-4

Each field is used as a work area by routines com-
mon to both the S-OP and host-control sections of
DCPP firmware.

Bytes 28, 29, and 30, BIU-CHAR-
0, BIU-CHAR-1, and BIU-CHAR-2

Each field is used as a work area, mostly by the
host control routines.

Byte 31, BIU-CHAR3

This field contains a set of flags used by DCP in-
ternal routines. Bits and flags are:
Bit Flag
RESERVED
VERTICAL-EVEN
RESERVED
RESERVED
RESERVED
RESERVED
SHIFTI1
SHIFTO

O=NWHRULUAI

SECTION 12

CP 9500
IMPLEMENTATION

INTRODUCTION

This section describes the implementation of CMS
Data Communications on the CP 9500. This imple-
mentation conforms to all specifications described in
Sections 1 through 10. This section describes the
method by which they are implemented, and those
features unique to the CP 9500.

The following information is intended as instruc-
tions for those involved in design and implementa-
tion of networks containing CP 9500 and for the
interest of those wishing to develop an in-depth
knowledge of CP 9500 Data Communications. Al-
though much of the information contained within this
section has no direct application for the programmer,
a basic understanding will promote efficient system
design and utilization of the CP 9500 in the data
communication environment.

The content of this section assumes a prior knowl-
edge of CMS data communications; therefore, before
continuing, the reader should be fully acquainted
with the information contained in Sections 1 through
10. Information relating to CMS will not, in general,
be repeated in this section. The only exception to
this is when restatement of information is considered
useful for the purpose of clarification.

This section is organized in two major parts. The
first part deals with the steps required to prepare the
CP 9500 for data communications execution. The
second part deals with interface between the various
components during execution.

SYSTEM OVERVIEW

The CP 9500 is a multi-processor system with each
processor being dedicated to a specific function. One
such function is data communication. The Data
Communications Processor (DCP) is dedicated to
this function. Either single or multiple DCPs are sup-
ported by the Master Control Program. In the case
of multiple DCPs, each DCP is assigned control of
a subset of the total data communications network.

Another function, to which a processor is
dedicated, is that of executing applications pro-
grams. This processor is known as the Task Proces-
sor (TP). Data communications programs, written in
either MPLII or COBOL, run on the TP.

TPs and DCPs execute asynchronously, the over-
all co odination being performed by the MCP. The
CP 9500 has one processor, dedicated to the execu-
tion of the MCP, known as the OS processor. The
following are the major components of the CP 9500
Data Communications Subsystem (DCS):

Data Comm Loader.

Data Comm Activity.

DCP Firmware.

Data Comm Buffer Memory.
DCS Tables.

DCS Queues.

QB W~

Data Comm Loader (DCL)

The DCL is the function of MCP which is respon-
sible for:

1. Loading DCP firmware into the DCP’s lo-
cal memory.

2. Creating tables within the OS processors
memory for use by the DCA.

3. Loading the required NDL tables into the
DCP’s local memory.

4. Formatting the preassigned memory space,
known as data comm buffer memory, for use
by the DCA and DCP firmware.

Data Comm Activity (DCA)

The CP 9500’s MCP is comprised of interdepen-
dent modules, known as activities. The DCA is the
activity responsible for providing the interface be-
tween:

1. The data comm user programs and their
supporting MCS.

2. All data comm programs (including MCS)
and the DCPs.

Within these interfaces the DCA must:

1. Validate CMS communicates.

2. Initiate DCP functions.

3. Handle results of DCP execution.

4. Perform housekeeping functions such as ta-
ble maintenance.

12-1

Data Comm Processors (DCPs)

Each DCP executes under control of the firmware
file generated by the NDL post compiler (NPC). All
DCPs execute asynchronously to one another.

The DCP orovides the interface between the DCA
and that subset of network devices which it con-
trols. The DCP must control the physical interface
with each data communications line during the trans-
mission and reception of messages. These messages
are transmitted and received, character by character,
according to the NDL defined protocol.

Data Comm Buffer Memory

This memory is allocated for the use of the DCS.
It consists of the buffers used to hold data comm
messages. Once generated, a message remains in
buffer’s memory until successfully transferred to its
destination. During the transfer, the message may be
linked to a number of different queues. Pointers re-
quired to administer these queues, which may be ac-
cessed by both DCA and DCP, must remain memory
resident. These pointers reside in buffer memory.

DCS Tables

The DCS tables are divided into two categories.
Those created by the DCL and only used by the
DCA. When resident in memory, they are located in
the OS processor’s memory.

The NDL tables, created by the NDL compiler,
define the characteristics of the data communications
network. Of the NDL tables, only line and station
tables reside in memory. These are loaded, by the
DCL, into the DCP’s local memory. Information
contained within all other NDL tables is accessed di-
rectly from disk, as required.

DCS Queues

DCS queues are the major method of communica-
tion between the various modules of the DCS. En-
tries in all queues reside in buffer memory. Gener-
ally, each queue has pointers to the first and last en-
tries in the queue. Pointers to queues manipulated
by the DCP only reside in DCP memory, those ma-
nipulated by the DCA reside in OS memory, and
those manipulated by both DCP and DCA reside in
buffer memory.

12-2

IMPLEMENTING CP 9500 DATA
cCOMM

Using the CMS Data Comm Subsystem on a
CP 9500 system involves three stages:

1. Preparation.
2. Initialization.
3. Execution.

The following paragraphs describe these stages
briefly. (Each stage is described in detail later in this
section.)

Preparation

In the preparation stage, the user defines the phys-
ical resources needed by data comm, and starts up
the CP 9500 system so that these resources are avail-
able. During the preparation stage, the following pro-
grams must be executed:

1. The CP 9500 configurer utility defines the
physical resources that data comm needs (that
is, the amount of buffer memory, number of
DCPs).

2. The CP 9500 Network Definition Language
(NDL) Post Compiler (NPC) generates the mi-
crocode files to be loaded into the DCPs.

3. The CP 9500 Warmstart Utility loads the
CP 9500 system’s firmware into its processors
and starts execution. Warmstart also reserves
the physical resources specified by the confi-
gurer utility in the SYSCONFIG file.

4. The data comm subsystem is not loaded
until a Message Control System (MCS) pro-
gram has been initiated. (NOTE: The actual
loading of the MCS does not take place until
after the data comm load module finishes.)

Initialization

Initiating a Message Control System (MCS) pro-
gram causes the Master Control Program (MCP) to
call upon the DCL module of its DCA to per-
forms the following functions:

1. Load each DCP microcode file to its
physical DCP.

2. Initialize data comm tables in reserved
data comm memory.

3. Return control to the MCP; if the DCL
succeeded in loading data comm, the MCS
that was initiated is now actually loaded.

MCP activities assist DCL in initializing data comm.

Execution

When initialization is complete, the MCS controls
the data comm subsystem by initiating the transfer
of messages through the data comm interfaces pro-
vided by the MCP.

The DCA module is a major component in the
control of message transfer. DCA is a resident MCP
activity that controls the data comm portion of mem-
ory and provides the interface between the DCP(s)
and either a message control system or non-MCS
data comm programs.

DCP’s provide the interface between the terminal
device and DCA. Each DCP is controlled by
resident microcode whose function it is to accept
and deliver messages within the network using non-
interpretive line control and request procedures.

SYSTEM CONFIGURATION

In order to implement CMS data comm on the
CP 9500, the following components are required:

1. Hardware.
2. Firmware
3. Software.

Hardware
Hardware consists of:

1. OS Processor.

2. Data Storage and Maintenance Processor
(DS&M).

3. One DCP.

4. One TP.

In addition to the previous hardware, the DCP
must contain at least one Data Comm Interface
(DCI) adapter. The DS&M must control at least one
disk device. All other peripherals are optional and
depend on application requirements.

Firmware

The firmware that controls a CP 9500 system con-
sists of the following components (see figure 12-1):

1. The Master Control Program (MCP) re-
sides in the OS processor. Its responsibilities
are:

a. Controlling of all peripherals, except
data comm and disk devices.

b. Interfacing with the DSCP, which con-
trols disk devices.

Jos
MANAGEMENT

DATA
comm
ACTIVITY

PROCESSOH
INTERFACE

OPERATING SYSTEM | PROCESSOR

ACTIVITY
MANAGEMENT

OPERATOR
INTERFACE
DATA

ACCESS

DATA STORAGE (DISK) PROCESSOR

/ ‘

ED2035

MEMORY
MANAGEMENT

PROCESSOR
INTERFACE

TASK
PROCESSOR

MANAGLEMENT
(PM)

RESULT
Q

INITIATION

RESULT
. Q
PROCESS
HOST

CONTRHOL

MANDL LR

INTERRUPT
HANDLER

PROCESSOR INTERRUPT
INTERFACE SCHEDULER

LINE
MANAGER

DATA COMM PROCESSOR

|
‘
|

Figure 12-1. CP 9500 Firmware

12-3

c. Assigning user jobs for execution by
interpreter control programs.

d. Serving as the hub of all communications
between processors. The OS processor can
communicate with all other processors on
the system, while it is the only processor
with which any one of the others can com-
municate.

2. Each task processor is controlled by a copy
of the interpreter control program. Each ICP
operates independently of other ICPs on the sys-
tem, and can only communicate with the MCP.
All 1/O required by user jobs is performed by com-
municates issued between the ICP and the MCP.

3. Each ICP supports either the COBOL or

the MPLII interpreter, or both. At least one

ICP must support MPLII.

4. Each active DCP is controlled by a DCP

firmware file generated by the CP 9500 NDL

post compiler.

S. Physical control of disk devices is managed

by the Data Storage Control Program (DSCP),

which resides in the Data Storage and Mainte-

nance (DS&M) Processor.

Software

Certain programs and files must exist before
CP 9500 data comm may be initiated. An MCS pro-
gram is required together with an NDLSYS defining
the communications network. The NDLSYS is used
at load time to locate the firmware file for each
DCP. Data comm application programs are optional
and dependent on system design.

CP 9500 Unique Features

This implementation supports the multiple MCS
facility. Currently this facility is not available in
CMS. Therefore, although many OS tables are de-
signed around this facility, the interface within
CMSNDL is not yet present and the facility may not
be used.

CP 9500 Preparation

In order to prepare for the data comm execution,
the following processes must be undertaken:

1. Create/modify SYSCONFIG entering de-
sired data comm parameters. This requires ex-
ecution of the configurer utility. (See CMS
SOG, form 2007258.)

2. Warmstart the CP 9500.

3. Compile the NDL source file describing
the desired data comm network.

124

4. Execute NPC to produce the DCP firm-
ware files.
5. Execute the MCS program.

NOTE
The above is not necessarily in the ex-
act order in which the steps must be
performed. However, step 1 must pre-
ceed 2, 3 must preceed 4, and all must
preceed 5.

The following paragraphs describe each step in de-
tail. (Refer to figure 12-2 for system states during the
various stages of preparation.)

SYSCONFIG

This file is required by WARMSTART and con-
tains certain fields pertaining to CP 9500 data comm.
These fields may be modified using the configurer
utility. For complete instructions on configurer
execution, refer to the CMS Software Operations
Guide. The following describes the SYSCONFIG
fields relevant to data communications.

Data Comm Buffer Memory Size

Warmstart reserves an area of memory known as
OS buffer memory. This field specifies the amount
of area to be reserved for data comm use. This
amount must be sufficient in size to accommodate
the buffers declared in NDL. The formula for com-
puting this requirement is discussed later in the sec-
tion.

DCP/TP Assignment

In NDL, the programmer refers to DCPs via the
logical DCP number (0-n). SYSCONFIG allows as-
signment of physical processor (processor bus ad-
dress) to logical DCP number. The assignment of
DCPs is related to TP assignment. The following
possibilities exist:

1. The user assigns only TPs. Any processor
not assigned remains unassigned and cannot
be used in this situation. The user may not re-
quire DCPs and may assign them as TPs.
2. The user prefers to leave the assignment of
processors to DEFAULT. In this case, all
processors with DCIs are assigned as DCPs;
all others as TPs. DCP logical-to-physical re-
lationship is produced by allocating the as-
cending order of the logical DCP number to
the descending order of the bus address. For
example: DCP bus address 7 becomes logical
DCP 0, and DCP bus address 6 becomes
logical DCP 1.

DISK 0S PROCESSOR 1 ™
BEFORE WARMSTART [SvSCONFIG
MPLII
DISK MCP IcP DCP
AFTER WARMSTART RESERVED
DATA COMM
BUFFER
MEMORY
RESERVED
FOR
DATA COMM
MPLII .
AFTER NDL DISK MCP icp DC
COMPILATION DCP O RESERVED
AND NPC DCP 1 DATA COMM
EXECUTION BUFFER
DCP 2 MEMORY
NDLSYS DATA COMM REi%RF:' ED
MCS LOAD DATA COMM
MPLII
AFTER DATA COMM
K MCP IcP DCP
INITIALIZATION (MCS LOAD) oIS
SYSRECON SYSTEM DC MCS
NDLSYS TABLES DCPO
RESERVED DC MICROCCDE
BUFFER .
*NOT NECESSARILY IN MEMORY
MCP PROCESSOR. BUFFER LINE &
MEMORY IS A LOGICAL DATA COMM STATION
ENTITY. ACTIVITY TABLES
ED2277

Figure 12-2. CP 9500 Preparation and Initialization

12-5

Warmstart

Warmstart uses the parameters in SYSCONFIG to
reserve data comm resources. If SYSCONFIG is
changed, the CP 9500 must be warmstarted in order
to invoke these changes. Once invoked, all
parameters remain in effect until the next warmstart.

If an error is encountered during warmstart (which
prevents the SYSCONFIG parameters from being
used) the DEFAULT processor assignment as de-
scribed is actioned. Such errors include the fol-
lowing:

1. The processor at bus address N does not
have a DCI or does not exist.
2. No TP was assigned.

After warmstart, all assigned DCPs are reserved
exclusively for data comm use; that is, they cannot
be dynamically loaded with ICP firmware.

NDL Compilation

The major requirement for this phase is related to
the fact that NDL on the CP 9500 is non-interpre-
tive. Therefore, a DCP firmware file must be defined
for each required DCP. The definition of each file is
used by NPC in generating that file. This subject is
covered in detail in the CMS Network Definition
Language Reference Manual.

NPC Execution

This process generates the required DCP firmware
files to be loaded at data initiation. This subject is
covered in detail in the CMS Network Definition
Language Reference Manual. (Form 1090925)

CP 9500 DATA COMM INITIATION

The MCP module responsible for data initiation is
the DCL. As stated previously, MCP is divided into
modules, known as activities. There is a considera-
ble degree of interaction between these activities.
DCL interfaces with the following activities:

1. Job Management (JM).
2. Data Access (DA).
3. Monitor (MN).

The following paragraphs describe how and when
this interaction takes place.

12-6

DCL Job Management Interface
MCS Load

Job management is responsible for loading all
CMS programs, including data comm programs.
Data comm is initiated upon execution of an MCS.
Job management recognizes that the requested pro-
gram is an MCS. After having determined that the
MCS can be accommodated, JM invokes DCL with
wait. The MCS name, task-id, and Message Refer-
ence Area (MRA) size are passed as parameters to
DCL.

After DCL performs its functions, it returns con-
trol to JM which continues the MCS load.

Non-MCS Data Comm Program Loads

DCL is required only when initiating the DCS.
When loading non-MCS data comm programs, JM
invokes an action of the DCA (DC-JOB-LOG). This
action is invoked after the program has been loaded
but before it begins execution. The purpose of this
action is to record the fact that this task-id is now
valid. The task-id is passed as a parameter to DC-
LOG-JOB.

Job management is responsible for invoking the
DC-EOJ when either an MCS or non-MCS data
comm program terminates.

DCL Data Access Interface

DCL uses data access for all disk-to-memory or
memory-to-disk transfers required during the load
process. Also data access is called to allocate the re-
quired portion of buffer memory for data comm use.

DCL Monitor Interface

Monitor is used by DCL to obtain information on
the processor assignments made at warmstart.
Monitor provides DCL with the physical-to-logical
DCP relationships and also the local memory size of
each DCP.

DCL PROCESS

At the most general level, DCL performs the fol-
lowing functions.

1. Loads the DCP firmware files and NDL ta-
bles into their assigned DCP memories.

2. Creates tables in OS processor memory for
use by the DCA.

3. Initializes pointers in buffer memory for
use by DCA and DCP.

4. Formats the remainder of DC buffer mem-
ory into buffers according to NDL specified
parameters.

DCL then starts each DCP via a CLEAR command
followed by an UNFREEZE. (These commands re-
late to the processor interface control hardware.)

DCL invokes monitor to mark each DCP as being
in one of the following states:

1. Loading.
2. Running.
3. Available.

DCL determines whether the buffer space pro-
vided by DA buffer allocation is sufficient for the
data comm subsystem to function. DCL declares a
successful load if sufficient memory space is avail-
able for both the reserved data comm pointer area,
and the minimum number of buffers requested by
the NDL programmer. If the space is insufficient,
DCL aborts the load and issues an error message to
the operator indicating the failure.

Data Comm Load Input
DCL requires the following input files:

1. NDLSYS.
2. DCP Firmware File(s).

Succeeding paragraphs describe these files.

NDLSYS File

NDLSYS contains all tables and microcode file
names needed to load and operate the data comm
subsystem. Once opened by DCL, NDLSYS re-
mains open until the MCS goes to EOJ. Until
closed, none other than the current NDLSYS file
may be used. DCL stores this file’s FIB in the DCA
buffer memory tables.

DCL uses the NDLSYS file to:

1. Determine whether the MCS is allowed
with the particular NDLSYS.

2. Construct a copy of the NDLSYS file’s
Data Segment Table (DST) in DCA memory.
(NOTE: Data segments in NDLSYS are num-
bered beginning at 1; DCA routines consider
the first segment to be segment 0. The DCA’s
copy of the DST is adjusted to compensate.)
3. Reference the list of DCP firmware files
named in NDLSYS to be loaded into the
physical DCPs according to assignments re-
ported by monitor.

4. Load the line and station tables into the
DCP’s memories.

DCP Firmware Files

NPC generates one microcode file for each DCP
specified by the NDL programmer in the DCP termi-
nal statement. DCP microcode files consist of sec-
tions of code which DCL loads into the low order of
DCP memory, and tables and other data variables
which are loaded into the high order area. NPC em-
beds a date stamp, random number, code length, and
data size pointers in the first sector of each code
file. DCL uses the date stamp and random number
to match each file with the NDLSYS file used to
create it.

The DCP firmware files are placed in DCP mem-
ory directly from disk via DA. Tables destined for
the DCP are loaded from MCP memory to DCP
memory.

The following describes DCP firmware file attri-
butes:

FILETYPE: @l7@

RECORD: 180 BYTES

BLOCK: 180 BYTES

FILE NAME: As per DCP Terminal

Statement in NDLSYS.
TRUE

Maximum address of the
generated microcode.

SINGLE AREA:
FILE SIZE:

Data Comm Load Output
DCL produces the following output:
1. Initialized DCP memories.
2. DCA tables.

3. Buffer memory space for pointers.
4. SYSRECON file.

DCP Memory

The following depicts the DCP layout:

@0000@
RESERVED MEMORY
@0160@
MICROCODE
@FFFO@ TABLES

12-7

Data Comm Activity Tables

DCL initializes the following tables in MCP mem-
ory for DCA’s use:

ABSOLUTE |

DC—DATA |

VIRTUAL FILE INFORMATION BLOCK

DCP INFORMATION BLOCK

MCS INFORMATION BLOCK

MCS NAME BLOCK

LINE INFORMATION BLOCK

STATION INFORMATION BLOCK

SUBNET INFORMATION BLOCK

TASK INFORMATION BLOCK

MESSAGE REFERENCE AREA

Buffer Memory

Buffer memory space is contiguous within a page.
If more than one page has been specified, the pages
are linked together. A pointer to the first page of the
data comm buffer area is stored in ABSOLUTE-
DATA area DC-DATA (in the DC-BUFF-MEM-
ADDR field) of DCA memory. The first two bytes
of the buffer area contain the length of this memory
page. The next four consecutive bytes contain the

link address to the next page (if one exists). The link
address of the last page of buffer memory contains
a ““1” in each bit. (See figure 12-3.)

The data comm pointer area can range from a
minimum of 31 bytes to a maximum of
approximately 2,700 bytes. This variability is de-
pendent on the number of subnet queues used by a
given system. The breakdown of the DC-POINTER-
AREA use is as follows:

Minimum Maximum
ABP = 12 bytes => 12 Bytes 12 Bytes
RESULT—Q = 10 Bytes => 10 Bytes 10 Bytes
REQUEST-Q = 9 Bytes Times => 9 Bytes 81 Bytes
Highest Physical
DCP =
SUBNET—Q = 10 Bytes Times => 0 Bytes 2550 Bytes
TOTAL 31 Bytes 2653 Bytes

The size of data comm buffers is defined in NDL.
However, the CP 9500 uses four-byte rather than
two-byte buffer links. In order for the text capacity
of the data comm buffers to equal that of other CMS
systems, DCL creates buffers four bytes larger than
specified in NDL. The buffer size variable in abso-
lute memory reflects this modified size. Depending
on the amount of textual data to be contained within
a message, multiple buffers may be used to accom-
modate a message.

MEMORY MEMORY MEMORY
DC-BUFF-MEM-ADDR PAGE PAGE PAGE
@0000@ @0000@ @0000@
@FFFFFFFF@
DC BUFFERS DC BUFFERS
DC BUFFERS
@FFFF@ @FFFF@ @FFFF@

ED2278

Figure 12-3. DC Buffer Page Linkage

12-8

SYSRECON File

DCL copies all station and line tables from the
NDLSYS file into the SYSRECON file. During
execution, the data comm subsystem references
SYSRECON for the network configuration. If the
configuration should change, SYSRECON is altered.

Figure 124 depicts SYSRECON file contents.

RANDOM NUMBER 2 BYTES
NDLSYS DATE 6 6 BYTES
TEMP/PERM FLAG 1 BYTES
LINE SEG PTR 2 BYTES
LINE SEG LENGTH 2 BYTES
LINE DISPLACEMENT PTR 2 BYTES
LINE DISPLACEMENT LENGTH 2 BYTES
STATION SEG PTR 2 BYTES
STATION SEG LENGTH 2 BYTES
STATION DISPLACEMENT PTR 2 BYTES
STATION DISPLACEMENT LENGTH 2 BYTES
RESERVED 155 BYTES
LINE SEGMENT

LINE DISPLACEMENT SEG

STATION SEGMENT

STATION DISPLACEMENT SEG

Figure 12-4. SYSRECON File Contents

At initial load time, DCL builds a disk file contain-
ing all NDL defined lines and stations, effectively
making a copy of the line table and station table seg-
ments from the NDLSYS file. This SYSRECON file
is initially OPENed, then CLOSED, then OPENed
again. This is to guarantee that in the event of a need
to recover from a system failure, the file has been en-
tered into the disk directory.

The RANDOM NUMBER from NDLSYS is
placed at the beginning of this file. A byte to indi-
cate whether this file is to be saved when the MCS
goes to EOJ is also included. This byte is set when
this SYSRECON file is to be saved. At MCS EOJ
time, the file is either PURGED or CLOSED with
LOCK, depending on this indicator. This implemen-
tation allows the system to recover up to the last
system table configuration. It may be necessary to
do this when:

1. The MCS has made a change to the system
which it wants to save. (Example: without
having to recompile NDL.) In this case, sub-
sequent LOAD should reflect this change.

2. When a DCP table memory parity error oc-
curs and the MCS wishes to recover by re-
loading tables.

3. When the system has been halted because
of a hardware failure and it is necessary to
RESTART.

At initial load time, if a SYSRECON file already
exists on the system drive, and if it matches the
NDLSYS file, the DCL loads from the NDLSYS or
SYSRECON file depending on the RECOVERY in-
dicator. If RECOVERY is not required, a new SYS-
RECON file is created. If, however, the existing
SYSRECON file does not match the NDLSYS file,
DCL purges the existing file, loads the NDLSYS
file, and creates a new SYSRECON file. If no SYS-
RECON file exists at initial load time, DCL simply
loads the NDLSYS file, and creates a new SYRE-
CON file.

Data Comm Load - Flow of
Control

DCL flow of control proceeds as follows:

1. Open NDLSYS, read data, and build NDL
table.

2. Create DCP and DCP-conversion tables,
and determine which DCPs are on the system.
3. Create MCS-ID, MCS name, and MCS ta-
bles in the DCA.

4. Allocate buffer memory space for queue
pointers, and initialize the Available Buffer
Poll (ABP).

5. Build the LLN-conversiomn table in DCA
memory, read the line tables from disk, trans-
fer the line table to the DCP, and build the
line data area.

6. Build the LSN-conversion and LSN-infor-
mation tables in DCA memory, read the sta-
tion tables from disk, and transfer the station
tables to the DCP.

7. Build the subnet information table and the
user jobs table in the DCA.

8. Remove the old SYSRECON file (if one
exists), open a new SYSRECON file, fill in
the file directory, transfer line and station ta-
bles from NDLSYS to SYSRECON, close the
file lock, and open again.

9. Build the MRA link block and place a
pointer in the MCS table.

10. Start the DCP by issuing a CLEAR and
UNFREEZE for each DCP and inform the
monitor.

The following paragraphs describe the individual
DCL procedures.

129

LOAD-ACTION

Store parameters passed from JM. Check MCS-
LOADED (declared in MIDL) to see if this is the
first MCS on the system. If not, call VALIDATE-
MCS and SET-UP-MRA. If it is the first MCS, call
TEST-FOR-RESTART. If this is a restart, execute
RESTART-PROC (permanent) reconfiguration. If
not, execute OPEN-NDLSYS, BUILD-NDL-TA-
BLE, BUILD-DCP-TABLES, CREATE-MCS-TA-
BLES, VALIDATE-MCS, FORMAT-BUFF-MEM,
SEND-DCP-FILES, SET-UP-MRA, and START-
DCP. If the load should fail, cal DEALLOCATE-
LB, and set up the FCM with the appropriate event
number.

OPEN-NDLSYS
Allocate a 19-byte workblock and fill it with
“NDLSYS------ .”> Set pack ID to 000000 and invoke

OPEN-SYSFILE with WAIT. When control returns,
store FIBID. Allocate and freeze a 182-byte buffer
workblock. Read-in the program parameter block.
Check the priority class and store the data segment
table length and address, and the date of
compilation.

BUILD-NDL-TABLE

Read NDL data segment table from disk. Store
line, line displacement, station, station displacement,
preset, MCS line, MCS file, and MCS name pointers
used by DCL. Allocate the NDL data linked block
and store the disk address/length of the modem, ter-
minal, file, extended station, extended terminal, sta-
tion name, file name, and DCP terminal format B ta-
bles. Read the NDL preset area from disk. Put
modem and terminal counts, station table size, and
NDL complete date into the NDL data linked block.
Multiply the buffersize by two and store the result
in an absolute variable. Put DCP limit, station,
subnet, and line counts into ABSOLUTE-DATA
variables. Store the minimum buffer count locally to
DCL.

BUILD-DCP-TABLES

Create/initialize the DCP conversion and DCP
linked blocks to binary ones, and initialize file name
to blanks. Invoke monitor to determine the numbers
of all processors that are physically potential DCPs.
Determine whether NDL has a load file for each
DCP. If so, fill the DCP table with the file name and
physical DCP number. Put the relative DCP number
in the DCP conversion table.

CREATE-MCS-TABLES
Initialize the MCS-ID table in ABSOLUTE-DATA
to binary ones. Get a linked block for the MCS-

NAME table and read it in from disk. Get a linked
block for the MCS-TABLE and initialize it.

12-10

VALIDATE-MCS

Check the MCS-COUNT in MCS-NAME table; if
it is @FF@, then any MCS name is valid, but only
one MCS is allowed. Enter the job name, passed
from JM, in the MCS-NAME table. Assume that
there are always MCS-COUNT (non-zero) names in
the table. If the MCS-COUNT is not binary ones,
compare the MCS-NAME passed from job manage-
ment with each entry in the MCS-NAME table. For
each match, check the entry in the MCS-ID table to
see if this relative MCS number is already being
used. If not, this MCS is valid; enter the relative
MCS number into the MCS-ID table.

FORMAT-BUFF-MEM

Calculate the minimum amount of space needed
by data comm in unattached memory. Compare the
minimum requirement with the amount available
(specified by SYSCONFIG). If the available memory
is equal to or greater than the amount required, con-
tinue the load; otherwise, return an ERROR result
indicating that the DC-LOAD has been aborted. In
buffer memory, create DCP-COUNT request
queues, SUBNET-COUNT subnet queues, and a re-
sult queue. Fill in pointers in DC-POINTER-AREA
memory. Use the remaining space for the available
buffer poll. Fill in the first four bytes of each buffer
link; the rest of the buffer is undefined. Fill in the
HEAD, TAIL, and COUNT pointers in DC-POINT-
ER-AREA of memory.

SEND-DCP-FILES

Test each DCP to see if it is valid. Call OPEN-
DCP-FILE and store NPC-DATA-SIZE. Calculate
the amount of DCP memory needed. If there is
enough physical memory, and if the compiled ran-
dom numbers of the NDL and DCP files match, call
LOAD-DCP-FILE. When finished, check to see if
the DCP has been loaded. If not, generate a message
to Operator Interface (OI); call monitor to mark the
DCP ‘““DEAD’’; delete its entry in the DCP tables.

OPEN-DCP-FILE

Allocate a 19-byte workblock. Invoke OPEN-SYS-
FILE and store the FIBID. Read/store the first sec-
tor of the DCP file (the file pointers).

LOAD-DCP-FILE

Using DA, load the code into DCP memory, then
close the file. Place the MCP processor number, this
processor’s number, a READ and a RWL word,
pointers to the request, result, and available buffer
poll queues, and the starting address of the table into
DCP memory.

SEND-LINE-TABLE

Allocate a linked block for the LLN conversion
table of size (LINE COUNT * bytes per LLN en-
try). Freeze buffer workblock and read into it the
line displacement list from the NDLSYS file. Get a
workblock, freeze it, and read in the NDL segment
containing the logical line states. Allocate a 720-byte
workblock, freeze it, and read the first four sectors
of line tables. For each line table, calculate its
length, check that its logical processor number is
valid, and that its physical line number is in range.
If valid, update the port number within the line table
(adjustment for PI in port #0), calculate the physical
processor number, and place it into the LLN con-
version block. Place the line table into DCP mem-
ory. Put the line table’s address in the LLN conver-
sion table. Put the line data field in DCP memory,

~and adjust its internal addresses. Insert the MCS log-
ical line station into the line data field, and place the
data field’s address into the DCP code. If the line is
full-duplex, place a second line data field into DCP
memory. If the DCP is invalid and if unloaded into
the processor field of the LLN conversion table, en-
ter @FFFE@. When a partial line table remains at
the end of a workblock, move the partial table to the
beginning followed by enough new sectors to fill the
workblock. Continue processing line tables until fin-
ished. Then, free the line table workblock and thaw
the buffer block. Send a dummy line table to each
DCP for port #0. Prefix the dummy line table with
a line data field and set the pointers.

SEND-STATION-TAB

Allocate linked blocks to hold the LSN conversion
and the LSN information tables. Freeze the buffer
block and read in the first sector of the station dis-
placement list. Allocate and freeze a 254-byte
workblock. Read the first sector of station tables
into the workblock. For each station table, initialize
its entry in the LSN information and the LSN con-
version tables, and determine if the station can be
loaded. If the station can be loaded, calculate the ta-
ble size. Transfer MCS information from the station
table to the LSN conversion table. Send the station
table to DCP memory. Change the queue pointers to
binary ones, take the two’s complement of active
transmit and initiate receive delays, and fill-in its ad-
dress in the line table and the LSN conversion table.
If the station cannot be loaded, enter @FFFF@ (if
unattached) or @ FFFE@ (if unloaded) into this sta-
tion’s LSN conversion processor field. Enter the sta-
tion’s SYSRECON disk address into the station ta-
ble address field in the LSN conversion table. If the
bottom of the displacement list is reached, read in a
new sector. If a partial station is left at the end of
the workblock, move the partial station to the be-
ginning of the workblock and read in a new sector
of station tables after it. Continue processing until all
stations are handled, at which time both the station
workblock and buffer block are free.

SET-UP-MCS-TAB

Allocate and zero-out the linked block for the user
job table. Read the MCS file information from the
NDLSYS file, create the subnet table, and insert the
MCS data.

SET-UP-SYSRECON-FILE

Get a workblock to hold the SYSRECON file di-
rectory. Calculate the length desired for the SYSRE-
CON file, and open a file that size. For each seg-
ment, enter the segment address and length in the di-
rectory, then transfer the segment from NDLSYS.
When complete, write the directory to disk and
close, then re-open the file, storing the FIBID into
the NDL table.

SET-UP-MRA

Create MRA linked block of size specified at DC-
LOAD invoke time; zero it out. The MRA size pa-
rameter is not tested to see if it is too large. The
MCS table is updated with the MRA block-ID and
the MCS taskOID.

START-DCP

Scan the DCP table for successfully loaded DCPs.
Clear, unfreeze, and mark as ‘“RUNNING” each
successfully loaded DCP.

DEALLOCATE-LB

If the load fails, determine which MCP linked
blocks have been allocated, and free them.

DATA COMM EXECUTION

When DCL process is completed, the CP 9500 is
ready to begin executing data comm functions. Their
functions are requested by data comm applications
(MCS and non-MCS) and performed by the DCA
and DCP firmware. Figure 12-5 shows the message
flow as controlled by the DCA. Figure 12-6 shows
the distribution of data comm functions and loca-
tions of tables and queues.

The following constitute the major processes in-
volved in data comm execution:

1. Data Comm Interfaces (MCP Activities).
2. Data Comm Activity.

3. Data Comm Processors.

4. Buffer Management.

12-11

12-12

coBOL
PROGRAM

FILE QUEUES

SUBNET
QUEUE

SUBNET
QUEUE

SUBNET
QUEUE

“RECEIVE”

“SEND”

SUBNET
QUEUE

SUBNET
QUEUE

-

MCS “FETCH"”
PROGRAM
“QUEUE”
MCS
QUEUE

“OUTPUT" “ouTPUT
“INPUT"
r ! |
l REQUEST REQUEST | RESULT
QUEVE NDL QUEVE QUEUE QUEUE
l DCPX ocpy I
bCP X DCP Y
STATION STATION
QUEUES QUEUES
“ouTPUT" | “INPUT" “INPUT" “OUTPUT
TERMINAL TERMINAL
ED2280

Figure 12-5. Message/Communicate Flows

MPLII (MCS)
COBOL
ETC.

LINE PROTOCOL
MESSAGE BUILDING

©e0go0 000 LINE ERROR HANDLING

1/0 DEVICES

MEMORY MEMORY 'DATA COMM
FIRMWARE FIRMWARE NDL TABLES SYSTEM REGISTERS
DC LOCAL DATA LINE PROTOCOL LINE INFORMATION VECTOR
SYSTEM INTERFACE LOCAL DATA 1. AVAILABLE BUFFER POOL
MCS QUEUE(S) 2. SUBNET Q'S COUNTER & LIMITS
MESSAGE REFERENCE AREA ADAPTOR CONTROL LINE INFORMATION VECTOR 3. RESULT QUEUE POINTERS
DATA COMM SYSTEM TABLES TRANSLATION TABLES LOCAL DATA 4. REQUEST QUEUE POINTERS
L]
DCP
LINE mrzg::n DATA COMM
0.S. PROCESSOR MANAGEMENT HANDLER BUFFERS
PROCESSOR L]
INTERFACE
REQUEST PROCESSOR
FUNCTION INTERFACE
MCP 1/0 BUFFERS
ACTIVITIES
DATA COMM
ACTIVITY
DCCH (MCS) OUTPUT RESULT
DCCH (NON-MCS) REQUESTS PROCESS
MSG. PROCESSING
DC LOAD
DC EOJ
BYTE PROCES-
A INPUT

REQUESTS

ADAPTOR
CONTROL

ED2281

BIT PROCESSING

AND BUFFERING

Figure 12-6. CP 9500 Data Comm Subsystem

Data Comm Interfaces

The DCA interfaces with the following MCP activ-
ities:

1. Processor Interface.
2. Data Access.
3. Monitor.

Processor Interface
Processor Interface (PI) uses a mailbox technique

to deliver requests/results from one processor to an-
other. PI code exists on all types of processors.

The PI code for DCP is generated by NPC. PI is
not the major method by which the DCP communi-
cates with the OS processor; therefore, DCP PI code
is much simplier than that of other processors.

Data Access

Data access is used, by DCA, for file access, that
is, NDLSYS and SYSRECON.

Monitor

If the firmware executing within the DCP detects
an error, it performs a register dump to the save
state area in DCP reserved memory, then freezes the
processor. The monitor activity periodically tests the
error status of each DCP. When a DCP is frozen,
the monitor performs a dump of DCP memory and
reports the DCP error to the operator.

Data Comm Activity

The following paragraphs describe the MCP’s data
comm activity. DCA controls all message flow
within the CP 9500. All CMS communicates de-
scribed in Sections 1 through 9 are validated and
performed by the actions of the DCA.

The DCA requires access to all NDL tables (both
in memory and on disk) and all queues. The DCA ta-
bles provide this access. A very small area of abso-
lute data (always memory resident) exists for the

12-13

Field Length

Name Bytes
Reload header count 1
MCS loaded 2
DCP limit 1
Buffer size 2
Station count 2
User DC log 4
Subnet count 1
Line count 1
MCS ID table 32
Buffer memory address 4
Buffer queue address 4
EOJ action ID 1

Description

Count of line marks returned by DCP

Number of MCS programs loaded

Highest numbered logical DCP

NDL buffer +4

NDL total stations

Each bit on represents a task-ID (0-31) currently executing
NDL total lines

NDL total lines

Converts task-id to relative MCS number

Pointer to the first page of buffer memory

The start of the queue pointer in buffer memory

The action to be invoked when a data comm program terminates

Figure 12-7. DCA Absolute Data

DCA (see figure 12-7). The majority of DCA data ex-
ists in the form of linked blocks. Each linked block
is a data segment and subject to MCP virtual mem-
ory handling. An action of the DCA wanting to ac-
cess a linked block must call an activity management
routine in order to locate the linked block. The fol-
lowing describes each linked block used by the
DCA.

User Jobs

This linked block contains an entry for each task
runnable on the system. This table is 32 entries in
length. The USER-DC-LOG in absolute memory
identifies which of these tasks are currently active.

Subnet Info

There is one entry for each subnet declared in the
NDLSYS file. If no subnets are declared, this linked
block is not created. The length of this table is
stored in the SUBNET-COUNT field in the ABSO-
LUTE-DATA area.

MCS Table

This table contains an entry for each MCS runna-
ble in the system. It is indexed by relative MCS
number and contains information regarding that
MCS. The length of this table varies and depends on
the number of MCSs declared in NDL.

LSN, LLN Conversion

The LSN conversion table contains the station ta-
ble addresses. The LLN conversion table contains

12-14

the line table addresses. Each address is a four-byte
field consisting of the following:

PROCESSOR
ADDRESS

2 BYTE
2 BYTE

When the table resides in memory, the address is
an absolute address of the table’s location. Unat-
tached stations and lines and those stations associ-
ated with an unloaded DCP, however, reside on disk
rather than in memory. For these, the processor and
address fields have different meanings. The address
field is a word offset of the table location in the
SYSRECON disk file. For stations, the address field
is an offset into the station segment; for lines, the
address field is an offset into the line segment. The
processor field is set to @FFFF@ to indicate an
unattached station, and is set to @FFFE@ to indi-
cate an unloaded line or station.

DCP Conversion

This table contains an entry for each possible
DCP. It is indexed by the physical processor number
and is used to convert to logical DCP number.

NDL Data

This linked block contains information stored from
the NDLSYS file at load time. This area is 47 bytes
in length.

MCS Name

This table is copied at load time from the
NDLSYS file. It contains the count and names of all
the MCSs able to run with this NDLSYS file. The
table is also present for a single MCS system, in
which case it is 20 bytes of @FF@.

MREF Area

One MREF area linked block is created at each
MCS load time, and deallocated with that MCS’s
EOJ. The size of this area is passed to DCL by job
management from the Program Parameter Block
(PPB).

The message reference area for each MCS is set
to all binary ones at MCS load time. When a mes-
sage pointer is released from the message reference
area, the PROC/PAGE fields of the address are set
to @FFFF@. Thus, a null message reference is one
in which at least the first byte is @FF@. Figure 12-
8 shows the relationship between the various MCS
linked blocks and absolute data.

DCA Initiation

When an ICP issues a request for a communicate
to be performed, PI-SEND is INTERRUPTed with
a mailbox containing the Communicate Parameter
Area (CPA) for the requested communicate. PI-

ABSOLUTE

MCs

RELATIVE TABLE

MCS NO.

MCs ID

OS MEMORY VIRTUAL l

TASK NO.

MCS
QUEUE
INFO

SEND interrupts PI-RECEIVE on the MCP. PI-RE-
CEIVE fills its communicate area with the contents
of the mailbox passed, and invokes the action passed
to it by PI-SEND. For a DCA action, this ID is a
NULL-ID. When INVOKE sees the null ACTION-
ID, it decodes the communicate’s verb and com-
pletes the invocation of the verb action specified.
This procedure minimizes the action time devoted to
a possible invalid verb type in the MCP.

Action Level Interfaces Within
DCA

MCP Task State - Suspend, Reinstate

Frequently, DCA actions must wait until some ex-
ternal event occurs (RECEIVE a message), or until
a system resource deficiency has been resolved
(MESSAGE SPACE AVAILABLE,
COUNT/LIMIT, and so on). To ensure that no two
DCA actions either trv to resolve or check for reso-

BUFFER MEMORY

MCS INPUT QUEUE

MRA

7]

MCS NAME

/1]
MESSAGE /

/1|]
. MREFS /

ED2283

Figure 12-8. MCS Tables

12-15

lution of a waited condition, DCA enqueues actions
to one of the following queues, each of which re-
flects a pending state:

DC-WTG-INPUT-Q =>
DC-WTG-COUNT-Q =>
DC-WTG-SPACE-Q =>
DC-WTG-RCV-Q =>
DC-WTG-OUTPUT-Q =>
DC-LOAD-E0J-Q =>
DC-SYSRECON-Q =>

If the condition in question requires the DCA ac-
tion to wait, the DCA action sets a task suspension
flag for the task that initiated the action. The action
then yields the processor, anticipating another DCA
action that will resolve the condition for which it is
WAITed.

When an ICP directs DCA to restore a system re-
source, or receives notification that the required ex-
ternal event has occurred, the DCA action:

1. Enqueues itself to the queue corresponding
to the condition it must resolve, and

2. Checks for any task WAITed on that con-
dition.

If a task has been waited, the DCA action then:

1. Changes the state of the flag(s), indicating
resolution of the condition causing the wait.
2. Determines the particular action suspended
while executing the previously waited task.
3. Reinstates that action.

Figure 12-9 shows the pending states within the
DCA and the associated actions.

DCA Accesses to DCP Tables

DCA uses the LSN conversion table to determine
station table addresses and an LLN conversion table
to determine line table bases.

CP 9500 data comm maintains the station AT-
TACH and WAIT status in two 32-bit fields in the

12-16

For actions concerned with the presence of a message on the MCS queue

For actions concerned with the number of messages a task may send a station
For actions concerned with the presence of message space within the DCA

For actions concerned with the presence of a message on a Subnet Queue

For actions concerned with the number of messages a task may send to the MCS
To ensure that the LOAD and EOJ do not run simultaneously

To prevent any LINE ACCESS while system reconfiguration is in progress

DCA tables (versus the station table as defined for
B 776). The output routing indicator (run mode bits
in B 776) is maintained as a byte field in the DCA
tables.

Disallow Input, Disallow Output

If a task is suspended waiting input from a subnet
queue and the MCS issues a DISALLOW INPUT
for that task and subnet queue, the task is reinstated
when the DISALLOW is done.

If a task is suspended waiting for an output count
to decrement when a DISALLOW OUTPUT com-
municate is issued, the task is reinstated when the
DISALLOW is done.

Route Output

If output routing is changed while a SEND com-
municate is suspended waiting for message space,
the message is sent to the previous routing after
space is obtained.

Station Routing

If routing for a station is changed from a subnet
to the MCS (ROUTE INPUT, DETACH STA, RE-
LEASE STA), a task waiting input from that subnet
is not reinstated even if this was the last station
routed to the subnet. The MCS must either detach
the task from the subnet (DISALLOW INPUT) or
route another station’s input to that subnet (ROUTE
INPUT).

State

WAITING OUTPUT

WAITING SPACE

WAITING ATTACH

WAITING INPUT

WAITING COUNT

WAITING INPUT

Limit Set:

Count Incremented:

Count Decremented:

Location:
Checked:

Set By Suspends Reset By
SEND TASK CONTINUE.TASK
SET.OUTPUT.LIMIT
SEND TASK RELEASE BUFFS
COMMON-HDR CLEAR
ENABLES/ FETCH.MSG
DISABLE GET.MSG.SPACE
ATTACH-Q DISALLOW.OUTPUT
ATTACH-Q TASK ALLOW/DISALLOW
ATTACH-STA INPUT/OUTPUT
FETCH-MSG TASK-ID Q-TO-MCS
FROM MCS QUEUE
TABLE ROUTE.INPUT
ROUTE.OUTPUT
RESULT FUNCTION
SEND TASK SET.QUEUE.LIMIT
RESULT FUNCTION
DISALLOW.OUTPUT
RECEIVE TASK Q-TO-SUBNET
QUEUE
ROUTE.INPUT
DISALLOW.INPUT

Figure 12-9. Pending States

Queue Count/Limit Maintenance

Unprocessed Input Count/Input

Initialized to 2 by the
NDL compiler SET
INPUT LIMIT
communicate.

By the RESULT
function when an input
message is queued to an
MCS queue and by
ROUTE.INPUT when
rerouting messages from
subnet to a new
subnet/MCS queue.

CONTINUE STATION
communicate and by
ROUTE.INPUT when
rerouting input messages
from MCS to a subnet
queue.

Station table.

By DCP during
execution of GETSPACE
function.

Reinstates

TASK-ID
FROM CPA

ALL
TASKS
WAITING

(TASK-ID)

TASK-ID

TASK-ID
FROM MCS
TABLE

ALL TASKS
WAITING
TASK-ID

ALL
TASKS
WAITING
TASK#

Subnet Queue Count/Limit

Limit Set:

Count Incremented:

Count Decremented:

Location:

Checked:

Initialized to 2 by the
NDL compiler SET
QUEUE LIMIT
communicate.

When the result function
queues to a subnet
queue.

When an MCS reroutes
messages to a subnet
queue.

When an MCS queues a
message to the subnet
queue.

Take from subnet queue
(RECEIVE, DEQUEUE).
When an MCS reroutes
from a subnet queue.

Buffer memory.

By DCP during
execution of GETSPACE
function.

12-17

Station Queue Count/Limit

Limit Set: Initialized by 2 by the
NDL compiler SET
QUEUE LIMIT
communicate.

When an output message
is queued to NDL by
either an MCS or data
comm user job.

RESULT function
processes an output
message.

Station table.

Count Incremented:

Count Decremented:

Location:

Checked: Task sent to a station.

Task Output Count/Limit

Limit Set: Initialized to 2 by the
NDL compiler SET
OUTPUT LIMIT
communicate.

DC user job SEND to
MCS.

CONTINUE TASK
Communicate

When an output message
is rerouted from the
MCS Queue to a station
queue via the
ROUTE.OUTPUT
communicate.

User Jobs Table (DCA)
Task sent to MCS.

Count Incremented:

Count Decremented:

Location:
Checked:

DCA/DCP Communication

There are two main areas of communication when
the DCP interfaces with the DCA:

1. Message Communication.
2. NDL Table Access.

Message Communication

Queues provide the message interface between the
DCA and the DCP. These queues are the request
queue for messages to the DCP, and the result queue
for messages to the DCA. These queues are briefly
described and are thoroughly discussed under ‘‘Buf-
fer Management.”’

12-18

Request Queue

Request queue messages are located in buffer
memory. There is a request queue for each DCP. To
link message addresses to a particular DCP’s request
queue, DCA proceeds as follows:

1. Lock the queue.

2. Bottom-link the message to any existing
messages.

3. Change the top and bottom queue pointers
if no previous messages were present.

4. Unlock the request queue.

The lock word and the head and tail of the request
queue reside in remote memory.

The messages passed to the DCP are those defined
for the CMS data comm subsystem with the addition
of a DCA/DCP marker type (type 26) message.

When the DCA transfers a message to a DCP re-
quest queue, certain fields are initialized for use by
the DCP. The message type determines the message
header fields to be initialized. For station type func-
tions:

Output.

Priority output.

Enable input.

Disable input.

Make station ready/not ready.

[R R S

The following fields are initialized:

1. LLN - Used by DCP to find the base of
the line information area.

2. LSN Most Byte - Initialized to the RSN
from the station table. The DCP does not
have access to the LSN conversion table (in
OS memory); therefore, the RSN provides an
easier method to access the station table (in
DCP memory). Once the station table has
been located, the DCP replaces the LSN field.
3. RESULT - Set to zero.

4. RESERVED - Set to the relative MCS
number of the issuing MCS.

For the line oriented functions:
Make line ready/not ready.
Dialout.

LLN.

RESULT.

RESERVED.

“NhAWN -

are initialized in the manner described above.

Result Queue
There is a single result queue for all DCPs.

Result queue messages are located in buffer mem-
ory. To place the addresses of messages sent to the

DCA into the result queue, the DCP proceeds as fol-
lows:

1. Lock the queue.

2. Insert this DCP’s ID in the result queue’s
processor-ID field.

3. Bottom-link the messages to any existing
messages.

4. Change the pointer at the top of queue if
no messages were present.

S. Unlock the link.

6. Notify DCA that a message is on the result
queue by issuing an interrupt (using processor
interface).

The lock word, the head and tail, and the proces-
sor-ID of the queue are located in buffer memory.

All message headers placed in the result queue
contain an LLN and an LSN in the appropriate
fields.

Available Buffer Pool Queue

The available buffer pool queue maintains avail-
able buffer space. Both the DCP and DCA use and
return space from this queue as needed. The ABP
queue is located in buffer memory together with its
lock word, head, tail, and buffer count.

NDL Table Accessing

DCL places all line and station table addresses in
DCA memory, and updates them during reconfigura-
tion. The DCP maintains these tables. When a CMS
interrogate requests DCA to retrieve table informa-
tion from a DCP, DCA reads the data item directly
from DCP memory.

DATA COMM PROCESSORS
(DCPS)

When loaded by DCL, each DCP is responsible
for:

Host Control.

Message/Buffer Handling.

Line Management.

DCP Table Maintenance.

NDL S-Op Handling.

RCV/XMIT Character Handling.

. Subroutines supporting S-Ops, Manager,
and Host Control.

NoUAWN

The logis:al flow of a DCP, on the most general
level, consists of a line manager which constantly ro-

tates control from one line to the next (see figure 12-
10).

As the figures show, a round-robin and a top-
down scheme are used for line switching. The
co ordination of these two schemes are described in
detail under ‘‘Line Management’’.

Line rotation begins when DCL starts-up the DCP
and continues until either the DCP fails or the MCS
goes to EOJ.

Control changes from one line to the next only af-
ter the currently executing line discipline has per-
formed all actions required and/or allowed by its
NDL specifications.

During the rotation cycle, line manager treats host
control as a line. Host control handles all communi-
cates from DCA via the request queue. In a DCP
handling <n> lines, host control is given control af-
ter line <n>. When host control has finished, con-
trol is passed to line 1.

Host Control

Each time host control is entered, a test is per-
formed to determine if host control can run; that is,
host control can function only every <n> times that
it receives control. If host control can run, it per-
forms the following functions in the order given:

1. A single message is dequeued from the re-
quest queue, if the queue is not empty.
a. If this is an output, priority output, or
enable/disable input message, it is placed on
the appropriate station queue.
b. Any other message types (for example,
make line ready) are actioned immediately
by the DCP.
2. Messages on the pseudo-result queue in
DCP memory, if any have accumulated, are
enqueued to the result queue proper. If the re-
sult queue was previously empty, an interrupt
is sent to the result function in DCA by PI.

NOTE
Each time host control executes, only
one of the above functions is per-
formed.

Execution In An Ildled System

In an environment where no lines are active
(ready) the only active process is host control. A
more detailed description of the functions of host
control is provided in the paragraphs that follow.

12-19

:

REQUEST QUEUE
PROCESS
(JOB — DCP)

(A) ROUND-ROBIN LINE SWITCH

LINE n

HOST
INTERFACE

RESULTQUEUE
PROCESS
(DCP - JOB)

LINE

PROCESSOR MANAGER

INTERFACE

LINE 2

MANAGER
ENTRY

™~

INTERRUPT
HANDLER
S—op
HANDLER
(B) TOP-DOWN LINE SWITCH
TOP PRIORITY
NEXT PRIORITY
NOTES:
1. IF MORE THAN ONE LINE HAS TOP
PRIORITY, THOSE LINES ARE TREATED
PRIORITY AS A ROUND-ROBIN.
DECREASING | LINE
PRIORITY CHANGE 2. IN ORDER TO GET TO THE LOWER

PRIORITY LINES, ALL THE HIGHER
PRIORITY LINES MUST HAVE
RELINQUISHED CONTROL TO THE
ROUND-ROBIN LINE SWITCH.

LOWEST PRIORITY

HOSTCONTROL

ED2285 _
Figure 12-10. DCP Logical Flow (Multi-Line)

12-20

DCP Queue Accessing

Figure 12-11 shows the pointers used by the DCP
to access the various system queues. These pointers
are either direct or indirect. Indirect pointers are
initialized by the DCL. Direct pointers are used for
queues solely maintained by the DCP. They are
initialized by the DCP the first time it links an item
into the queue. The only exception to this is the
subnet queue. This indirect pointer is initialized by
the route input function when a particular station’s
input is routed directly into a subnet queue. The
DCP never accesses items within a subnet queue; it
merely uses the subnet table to examine queue count
and limit fields.

Request Function

The request function is responsible for the fol-
lowing:

1. Delinking messages from the request
queue.

2. 1D)ecoding LLN and setting up L (multi-line
only).

3. Decoding type and jumping to line relative
function.

4. Resolving DCP result queue.

5. Executing PI.

BUFFER MEMORY DCP MEMORY
[QUEUES QUEUE
POINTERS
| e =

]‘.__
l | o e B
]g_

{ RESULT QUEUE |
[—{ | REQUEST QUEUE |
le I
r e { bcpREsuLT QuEue |
PHYSICAL
LINE
LINE VECTOR
LINE INFO BASE
LLN
STATION TABLE
i le > STATION QUEUE
r

SUBNET QUEUE

ED2286

LINE INFO
CMS LINE TABLE

Figure 12-11. DCP Table and Queue Access

1221

Request Queue Delinking

In the single-line case, the request function exam-
ines the line relative FUNCTION-IN-PROGRESS
bit. If set, the request function cannot remove any
messages from the request queue and thus goes to
LABEL.RESOLVE.RES.Q. In the multi-line sys-
tem, the request function retrieves the LLN from
the message header and sets up L to point to the
data comm line’s line information area. The request
function then examines the FUNCTION-IN-PROG-
RESS bit and if reset, delinks the message from the
request queue. Otherwise, this function unlocks the
request queue and goes to
LABEL.RESOLVE.RES.Q. Before returning to the
DCP local memory, the request function reads
various fields in the message header and saves them
in machine registers for use in later operations.

LLN Decoding and L Set-Up

The request function uses the LLN from the mes-
sage header to index into the line information base
address table (multi-line only). The address of the in-
dicated line’s line information area base address is
placed into L.

Type Decode

The request function uses the message header type
to index into a branch table to find the address of
the code to perform the required function for this
type. The types are as follows:

Input

Output

Priority Output

Enable Input

Disable Input

Make Station Ready

Make Station Not Ready
Make Line Ready

Make Line Not Ready
Dialout

Make Line Not Ready Immediate
Recover

Deallocate
Reconfigure/Reload Marker

If any type other than those indicated is placed on
the result queue, the request function branches to
the reconfigure/reload marker code to respond.

DCP Result Queue

The RESOLVE RESULT QUEUE routine is
executed whenever there is no action required on
the request queue. The DCP result queue eliminates
the possibility of being locked out of the DCP/DCA
result queue. Any NPC function that calls LINK.R-

12-22

ESULT.QUEUE causes its message to be linked to
a pseudo result queue, whose pointers are located in
reserved memory. The request function examines
the DCP result queue for entries and if it is non-
empty, the request function attempts to link these
messages to the DCP/DCA result queue. If the
DCP/DCA result queue is locked, the request func-
tion gives control to the DCP PI code. The pseudo-
result queue requires additional overhead but does
not impact system throughput.

Pl

The major function of PI within the DCP is to
cause the DCA result function to be invoked when
the system result queue becomes non null, that is,
when the DCP adds a message to a previously empty
queue. The DCP performs this function by creating
and sending a mail box to the OS processor. PI's
other function with the DCP is to receive ownership
of this mail box when MCP returns it.

Line and Station Relative Functions

The following are line relative functions. When en-
countered by the host control, they are actioned im-
mediately.

Make line ready/not ready/immediate not ready
Dialout

Recover

Deallocate

Make station ready/not ready are considered to be
line relative because it would be impossible to action
them as station relative functions. A station relative
function can only be actioned for a ‘‘ready’’ station.

Output
Priority output
Enable/disable input

are station relative and are queued to the relevant
station queue by host control. Output and priority
output are actioned by the NDL transmit request,
enable/disable input by line management.

Discarding Message Space

The DCP discards message space by setting the
message header type of the message space to 27 and
linking the message to the result queue. The DCA
result function decodes the message header type and
returns the space to the available buffer pool. By
this method the result function may cause those
tions waiting on space to be re instated.

Message Header Transfers from DCP

For input messages or function results, the DCP
places the LSN or LLN into the correct portion of
the header. Function headers taken from the request
queue are similarly adjusted (replacing LLN or
LSN) by the DCP request queue handler before
functions are placed into a station queue. Therefore,
when a recall is performed, the DCA result function
need not read the station table for the LSN of each
message in the station queue.

The transmission numbers in the header are
decimal numbers found in the first three digits of the
transmission number field. This field is initialized by
the DCP and converted to ASCII by the result func-
tion for those headers in which the numbers have
been stored.

When the DCP performs a recall, it places the sta-
tion queue head pointer into the
OPTIONS/EVENTS field of the recall header. The
DCA result function places the station queue mes-
sages in the MCS queue after the recall result has
been serviced from the result queue. Each header
from the station queue is given a result field of ‘‘RE-
CALLED” and if the message is an output message,
the station queue count is decremented for that mes-
sage. If a recalled output message is from a DCP
that is now dead, the station queue count is not de-
cremented. If, at a later time, the DCP recovers,
there may be a problem with inconsistent counts.
The DCP cannot clear the station queue count when
a recall is performed because there is no READ
W/LOCK for the count field; the DCA normally
maintains that count.

The DCP queue pointers are four-byte fields (sta-
tion queue, hold queue). The queue pointers access-
ed by the DCA are four-byte fields (MCS queue,
subnet queue, request queue, result queue, ABP).
The DCA code provides for four-byte buffer links.

Handling Message Buffers

The buffer space for all messages is located in buf-
fer memory(s). This section describes how message
space is obtained, characters are fetched and stored,
and control is given to the DCCH.

GETSPACE

The GETSPACE S-Op may be used explicitly
(GETSPACE) or implicitty (RECEIVE TEXT,
INITIALIZE TEXT, STORE). Each GETSPACE,
whether implicit or explicit, obtains space in the re-

mote memory for the DCP’s use. The following pro-
cedure is used:

1. Either a TERMINATE S-Op or a GETS-
PACE S-Op obtains the necessary number of
buffers, as follows:
a. If the space is obtained in order to store
text, the subroutine to perform the GETS-
PACE S-Op is entered with two
parameters:
1) The number of buffers required by the
terminal type that executes the statement
is passed in a register.
2) The number of bytes (MAXINPUT)
required by the terminal type (1’s comple-
ment) is passed in
LNE.MSG.HDR.MSG.LEN.
b. If a TERMINATE obtains space to re-
port a condition, only one buffer is re-
quired.
2. If the Available Buffer Pool (ABP) is
locked (that is, in use by DCCH or another
DCP) upon entry, the state of the line is saved
and the line is paused. When the line regains
control, it again attempts to lock the ABP.
3. The ABP is locked by accessing the ABP
Read-With-Lock (RWL) word. (All available
space is in the ABP.) The DCP’s processor-1ID
is inserted into the ABP as an aid to recovery
in case the particular DCP fails. After locking
the ABP, the DCP checks whether there are
enough buffers in the ABP to perform the
GETSPACE. If not, the ABP is unlocked and
the GETSPACE is aborted via the appropriate
action.

NOTE
Three buffers are reserved in the ABP
to be used for single-buffer GETS-
PACEs and are not accessible by the
normal S-Op-type GETSPACE:s.

a. If there is not enough space when a ter-
minate GETSPACE occurs, the ABP is un-
locked; the line is paused; and when the
line regains control, it tries again to obtain
the space.
b. If the ABP has enough space, the DCP
updates the count of available buffers, de-
links the quantity that it needs, and then
unlocks the ABP.
4. Once space has been obtained, the fol-
lowing fields in the message header are initial-
ized:
a. Address (processor #/line #) with the
values from the address in the line table.
b. Logical Station Number (LSN) with the
LSN of the active station.

12-23

c. Each of the following is initialized to
Zero:

Tally 0

Tally 1

Tally 2

Toggles

MCS Data

d. RESULT/TYPE is initialized to

@0001@.

e. TASK/MCS flag is initialized to zero.
5. All DCP variables that are required to per-
form text storing are also initialized (see sec-
tion on ‘‘Character Storing”’ for a list of these
variables.)

Character Fetching

Individual characters are fetched from output-type
message buffers. The fetch can result from an ex-
plicit FETCH statement, or implicitly through a
TRANSMIT TEXT statement. Either way, the fetch
is performed by a common subroutine; this subrou-
tine is responsible for returning the next sequential
character in the buffer, both in the B0 register and
in the CHAR register (which is a field maintained by
the NDL virtual machine).

First, the routine makes sure that text is still avail-
able in the buffer (if there is none, a value of @FF@
is returned in the Bl register; otherwise, @00@ is
returned in B1).

The routine also checks whether or not the point-
ers to the buffers need to be updated to move into
the next buffer.

Character Storing

Characters are stored individually into input-type
message buffers. The store can be a result of an ex-
plicit STORE instruction, or implicitly through a RE-
CEIVE TEXT statement. In either case, a subrou-
tine performs the actual store. This routine is en-
tered with the character to be stored in the B0 regis-
ter or in the CHAR register. If the amount of avail-
able text space is exhausted, the subroutine is re-
sponsible for returning an indicator to the caller.

A successful store is indicated by returning 0 in
the B1 register, while a value of @FF@ in B1 indi-
cates an unsuccessful store.

Variables associated with storing of textual char-
acters are listed below with a description of their use
as it applies. These variables are located in the line
info area.

1224

LNE.BUFFER.SIZE (Two bytes)

This contains the 2’s complement of the buffer-
size. It is incremented each time a character is
stored/fetched. If an overflow is encountered while
incrementing, the current buffer is full. The variable
takes on special meanings in the following cases:

1. If NO-SPACE-AVAILABLE, the LNE-
.BUFFER.SIZE has a value of @FFFF@.

2. On the first and last buffers of the mes-
sage, the buffer-size is the 2’s complement of
the actual space available in that buffer for
text (possibly less than the declared buffer

size).

LNE.BUFFER.COUNT (Four bytes)

This contains the absolute address in the message
buffer of where the next character is to be
stored/fetched. It is only valid if LNE.BUFFE-
R.SIZE is not equal to @FFFF@. The variable is
incremented with each character stored/fetched.

LNE.THIS.BUFFER.SIZE (Two
bytes)

This contains the true (that is, uncomplemented)
value of the amount of text space available in this
buffer. It is only valid if LNE.BUFFER.SIZE is not
@FFFF@. It normally contains the same value as
BUFFER.SIZE defined in the NDLSYS with the ex-
ception of: 1) the first buffer, at which point it con-
tains the value of BUFFER.SIZE minus MESSAGE-
.HEADER.SIZE; and 2) the last buffer, at which
point it contains the amount of textual character
space available to equal MAX-INPUT(LNE.TE-
XT.SIZE FALSE).

LNE.FLAGS.2 (SPACE.AVAIL)

A flag indicating whether or not space is available.

LNE.TEXT.SIZE (Two bytes)

Contains the 1’s complement of the amount of
characters that can be accumulated (MAX.INPUT).
As characters are stored, the value is incremented
until overflow occurs, indicating END.OF.BUFFER.
The value is only incremented when buffer bound-
aries are crossed (for example, LNE.BUFFER.SIZE

overflows and space is available).

LNE.CURRENT.BUFFER (Four
bytes)

Contains the base address of the current buffer.

LINE 1 HIGHEST

(Y

LINE 1 [FORWARD }1—

tBACKWARD }—-

lPRIORITY l‘—
wee]| [1| [
| T
| l
| |
$ |
LINE N | | | 1 1] L >
coNTROL | — | — | e

Transferring Space Ownership to DCA

Message space ownership is always transferred by

LINES 1 AND 2 EQUAL HIGHEST

| PRIORITY h

C | O |
|
|
—

|
I I FORWARD ["—1

[iACKWARD h

2

I — |

T

Figure 12-12. Line Linkage

the DCP to the DCA. Regardless of the final destina-
tion of the space, it is placed onto the result queue
and passed to the DCA. The DCA is then responsi-

ble for further routing of the space or returning it to
the available buffer pool.

Line Management

Line switching is accomplished by one of two
techniques: 1) a top down line change; and 2) a
round robin line change. Linked lists, which connect
ready lines, control both schemes. When a line is
made ready, host control links the line into the
round robin queue. After determining where it
should fall in the top down queue, host control links
the line into that queue as well.

The top down scheme is used when the line is re-
linguishing control but must regain control in time to
service the next interrupt (for example, transmitting
or receiving). Control is passed to the line refer-
enced by the PRIORITY.POINTER field. The fol-
lowing factors affect a line’s placement in the top
down queue:

1. Priority - When a line is made ready, it is
inserted in the top down queue according to
the priority code in the station table for
relative station 0.

2. Speed - Higher-speed lines have a higher
priority and are at the top of the line queue.

NOTE

Each line in the top down queue has a
pointer to the highest-priority line ex-
cept when several lines all have the
same priority and no ready line has a
higher priority. In this case, a round
robin scheme is used (at the highest
priority only). (See figure 12-12.)

The round robin scheme is used when the line is
relinguishing control at a time when it is not
particularly busy (for example, pause or delay state-
ments). Control is passed to the line referenced by
the NEXT.POINTER field. The round robin line
queue consists of forward and backward pointers.

The primary and auxiliary sides of a full-duplex
line maintain their own line information area; there-
fore, each side is one entry in the line queue.

Host control is linked to the bottom of the round
robin queue. Therefore, when no line is busy (using
top down switching), host control is entered after the
last line and before the first line. Because host con-
trol requires fewer variables than a data comm line,
its variables are placed in a special area of reserved
memory. Variables are positioned so line manager
can treat host control like any other line.

At DCP initialization time, the host control func-
tion is linked to itself. As lines are made ready, the
lines are linked into both queues. When a line goes
not ready, it is delinked from both queues.

As a full-duplex line is made ready, the primary is
linked into both queues, but the auxiliary remains in-
active until the primary executes a FORK instruc-
tion. A subsequent IDLE by the auxiliary causes it
to be delinked.

1225

Single-Line Manager Schemes

In a single-line manager, control passes back and
forth between host control and the one ready line on
that DCP. Interrupt handling routines return control
directly to host control.

NOTE
The presence of one full-duplex line in
a DCP causes NPC to generate a multi-
line manager for that DCP.

DCP Table Maintenance

Figure 12-13 shows DCP memory following DCL
execution. Tables are loaded starting at the high end
of memory. Enough space is reserved above each
line table/line information to accommodate MAX-
STATION station tables. Station vectors within the
CMS line table are initialized at data comm load
time and point to the area reserved for the station ta-
ble. Because of reconfiguration, relative station num-
bers may alter as stations and are attached/detached
to/from a line. As station tables are accessed indi-
rectly via the station vector, the station table should
not be moved during reconfiguration. Only the sta-

tion vectors are moved.
0000

RESERVED AREA

DCP CODE

UNUSED

STATIONTABLES FORLINEN

LINEINFOAREAFORLINEN

CMSLINETABLEFORLINEN

STATION TABLES FORLINE 1

LINEINFO AREAFORLINE 1

CMSLINETABLEFORLINE 1

STATIONTABLES FORLINEO

LINEINFO AREAFORLINEO

CMSLINETABLEFORLINEO

FFFO
UNUSED

FFFF

ED2288
Figure 12-13. DCP Memory

12-26

The top 15 bytes of memory are never used. By
convention, the DCA always accesses remote mem-
ory with the interface control enabled. Access to ad-
dress @FFF8@ through @FFFF@ have a special
meaning in this mode; @FFFO@ is chosen as a con-
venient upper limit for DCP memory.

Station Table

The station table in DCP memory is similar to the
CMS-defined station table. The size of the station ta-
ble is the same for all stations on a system. Conse-
quently, any station that makes use of the extended
tallies causes all station tables in that system to have
space allocated for the extended tallies. DCL loads
all station tables at MCS start-time.

The station table is usually referenced by using the
K-register. This register contains the base address of
the active station for the currently executing line.

When the active station changes, it is validated.
Then, the routine that changes the station number
updates the K-register to point to the new station ta-
ble. If an INVALID STATION occurs (STATION is
greater than or equal to MAX.STATIONS), the
pointers are set to a dummy station table in reserved
memory. Figure 12-14 shows the layout of the sta-
tion table as loaded into DCP memory.

Line Table

The DCP requires more line-relative data than is
available in the CMS-defined line table. Therefore, a
line information area prefixes the CMS-defined line
table. Each CMS-defined line table consists of 16
bytes plus four bytes for each possible station that
can be attached to the line. The maximum number
of attached stations cannot be greater than MA-
X.ENTRIES.

The line table and associated line information area
are always referenced using the L-register. The L-
register points to the base of the line information
area of the currently executing line. The line table
for that line is appended to the end of the line infor-
mation area. The L-register is replaced with the ad-
dress of the base of the line area information area
when the manager switches lines. The address of the
line area is located in the previous line’s line infor-
mation area.

The sequence to change the L-register to point to
the next line appears as:

M1 <« L + NEXT.LINE.POINTER %previ-
ous line

L « I1 %new line

0 LLN RSN
2 END CHARACTER LINE DELETE CHARACTER
4 BACKSPACE CHARACTER WRU CHARACTER
] CONTROL CHARACTER STATION FREQUENCY
8 XMT ADDRESS-2 XMT ADDRESS-1
10 RUN MODE BITS XMT ADDRESS-3
12 RCV ADDRESS-2 RCV ADDRESS-1
14 RESERVED RCV ADDRESS-3
16 RCV TRANSMISSION NO. SAVE QHEAD PAGE
18 XMT TRANSMISSION NO. SAVE QHEAD ADDRESS
20 LSN
22 UNPROCESSED INPUT LIMIT UNPROCESSED INPUT COUNT
24 ORIGINAL RETRY RETRY
26 TALLY(1) TALLY(0)
28 TALLY(2) TOGGLES(7-0)
30 OPTIONS EVENTS (BYTE1)
' 32 EVENTS (BYTES 2-3)
34 INITIATE RCV DELAY
3 ACTIVE XMT DELAY
38 OUTPUT SAVE QTAIL PAGE
«© OUTPUT SAVE QTAIL ADDRESS
42 STATIONQLIMIT STATION QCOUNT
“ RESERVED* RESERVED
48 SUBNET QUEUE PAGE
48 SUBNET QUEUE ADDRESS
50 MCsID I LINE PRIORITY CODE
52 TYPE
54 SPEED
56 MODEM I TERMINAL
58 STA QHEAD PAGE
60 STA QHEAD ADDRESS
62 STA QTAIL PAGE
4 STA QTAIL ADDRESS
TALLY (4,3,6,5,8,7)
72 TALLY(10,9,12,11,14,13)
78 TALLY(16,15,18,17)
82 OUTPUT SAVEQ COUNT]7 INPUT SAVEQ COUNT
84 INPUT SAVE_Q HEAD PAGE
86 INPUT SAVE_Q HEAD ADDRESS
88 INPUT SAVE_QTAIL PAGE
90 INPUT SAVE_QTAIL ADDRESS
ED2289

Figure 12-14. Station Table

The NPC sets a bit on a file basis which indicates
the possibility of full-duplex on this file; that is,
FD.POSSIBLE:=G.TERB
(*FULL.DUPLEX.TYPE) and G.LINEB
(*LINE.FDX). This means that there is at least one
full-duplex line on the DCP and at least one full-du-
plex terminal on the file to activate full-duplex logic.

Each full-duplex line requires the existence of line
information areas for each half of the line but only
one line table. To accommodate this requirement,
the line information areas and line tables for the full-
duplex operation are aligned as follows:

1. The line table is appended to the primary’s
line information area; that is, as in the half-
duplex case.

2. The line information area for the auxiliary
exists in memory, but cannot be conveniently
located to make a direct line table access.
3. Each line information area contains two
fields:

a. LNE.PRI.PTR - Points to the base of the
primary’s line information area in full-du-
plex. Points to the base of its own line in-
formation area in half-duplex.

b. LNE.CO.LINE.PTR = Points to the
base of the co-line’s line information area in
full-duplex. Contains a value of null
(@FFFF@) in half-duplex.

When L is not guaranteed to be addressing a pri-
mary or a half-duplex line, any access to the line ta-
ble must be indirect. The indirect access is accom-
plished by using the 'LNEPRIPTR plus <desired
offset> as an index into memory.

If FD.POSSIBLE = FALSE, all lines are half-du-
plex. A macro generation of the code required to ac-
cess the full-duplex line table is invoked by calling:

INDIRECT.ACCESS (L.DISP, LIT.NM)

Translation Table Space Allocation

The space allocated for translation tables is a max-
imum of 512 bytes per table. If two or more terminal
types require the same translation table, only one
copy of the table is required. The memory allocation
calculation is shown below.

NT *512 = maximum size (in bytes) for
translation tables.

Where NT equals the number of terminals requiring
different translation tables.

1227

To fill translate table space, NPC:

1. Splits the tables, retrieved from NDLSYS,
into a RCV table and an XMT table for each
unique terminal type requiring translation.

2. Creates two separate tables from the CMS
translate table.

The above translation table arrangement enables
increased speed when translating characters, and
simplifies loading the translation table into the line
adaptors which have translation capability.

Since NPC places the translate tables into the
code file, it knows the absolute address of the place-
ment. Consequently, any references to translate ta-
bles are direct.

Terminal and Modem Tables

NPC generates in-line code for the DCP from in-
formation located in the terminal and modem tables.
This eliminates the need to maintain these DCP ta-
bles.

NDL S-Op Handling

The following conventions are observed when han-
dling NDL S-Ops:

1. Each S-Op in the control and request sets
has been converted to microcode by the NDL
Post Compiler (NPC).

2. Each S-instruction’s microcode is treated
as an independent unit. When S-instruction
microcode is entered, the values contained in
a specific register (other than J, K, L) are un-
known. The S-instruction code may pass and
receive values to or from subroutines. Subse-
quently, however, the S-instruction has no ac-
cess to information that had been in the ma-
chine registers.

3. The K and L-registers are loaded with their
respective values at line switch time (MULTI-
.LINE). Thus, all execution on that line can
make use of the values in K and L-register.
Whenever the active station is altered, the K-
register is altered to contain the new station
table address. When host control is activated
(MULTI.LINE), the L-register points to the
base of its work area. This work area is
similar to a line table. Because the single-line
mode would require restoration of K before
returning to the line, the K-register is not
used by host control.

1228

Register Conventions

The NDL process uses certain conventions to in-
dex into the tables located in DCP memory and to
execute the S-Ops. Succeeding paragraphs describe
these mechanisms.

L The L-register (two bytes) contains
the address of the line table
information area of the line
currently being actioned.

K The K-register (two bytes) contains
the address of the station table for
the current active station of the
line being actioned.

J The J-register contains a value of
Zero.
M1 The M1 register is used to point

to the area of memory being
referenced. It is not maintained
either from routine to routine or
from S-Op to S-Op. Consequently,
the executing routine must set-up
this register.

M2 The M2 register is used to point
to the area of memory being
referenced. It is maintained neither
from routine to routine nor from
S-Op to S-Op. Consequently, the
executing routine must set-up this
register.

Bl The B1 register tests bits; namely,
the following:

1. System flags (space available, line
control, output, and so on.)
2. System status.
3. Toggles.
This register is also a work
register when needed.

BO The BO register is a work register;
for example, some byte-variable S-
Ops load the byte variable in
question into BO.

This register is used for paging to
remote memory modules.

This register is used for paging to
remote memory modules.

MXA
MXB

The routine that alters this register
must always restore its contents to
the value of the local DCP

memory page.

MAX

WR,B32 These are general-purpose work

registers (each is two bytes long).

RCV/XMIT Character Handling (Interrupt
Handling)

All interrupts from lines are ‘‘soft’’ interrupts. The
presence of an interrupt is not detected unless the
NDL discipline allows its processing during the cur-
rent control pass.

This discussion will cover the relationships be-
tween S-Ops and the XMIT/RCV interrupt handlers
in very general terms. Note that all character han-
dling managers are ‘‘tuned’’ per terminal. (Refer to
figure 12-15 for general interrupt handling.)

TRANSMIT

In the NDL program a TRANSMIT S-Op is en-
countered. (It is assumed that for this discussion the
adapter has been previously set-up for the transmit
by an initiate transmit.) Assume that a TRANSMIT
CHAR S-Op has been encountered:

S-Op Code
1. Some preliminary set-up.
2. If auxiliary of a full duplex line, abort.

3. Call pre-manager transmit.
4. If break, then go to break addr.

PRE-MANAGER

RECEIVE

Pre-Manager Code
1. Store character to be transmitted in
LNE.IN.CHAR.
2. Translate, if pertinent.
3. Generate vertical parity, if pertinent.
4. Generate horizontal parity.
S. Store translated character with parity to L-
CHAR.
6. Store MANAGER.XMIT in LNE.FUN-
CTION.
7. Give up control to top down manager.

(The DCP is now free to execute code on behalf of
other lines.)

MANAGER.XMIT Code
1. Check transmit exception (read primary
status from adapter).
2. Handle any exceptions:

a. DSR/ = abort.

b. CTS/ = abort.

c. Break = wait for end, return to S-Op.
4. If XMIT.REQ (that is, adapter is ready for
character), then:

a. Write L-CHAR to adapter.

b. Return to S-Op.

c. ELSE, give up control to round robin

TRANSMIT

mZ<rv-oun=o mz—r

manager.

MANAGER INTERRUPT-HANDLERS

PRIORITY
LINE-SWITCH RECEIVE I:

TRANSMIT
DELAY

MANAGER |

LINE-SWITCH i

ED2290

(ROUND-ROBIN) ‘

Figure 12-15. General Interrupt Handling

1229

RECEIVE

In the NDL program a RECEIVE CHAR is en-
countered (assume that the adapter has been prop-
erly initialized via initiate receive).

S-Op Code
1. If primary of a full duplex line, generate
timeout error and go to timeout branch of er-
ror switch. :
2. Set-up timeout value
3. Call pre-manager receive.
4. If receive error, take appropriate branch of
error switch.
5. If a search character is received, take ap-
propriate branch.

Pre-Manager Code
1. Arm timer, if specified by the receive S-
Op.
2. Store MANAGER.RECV.CHAR in LNE-
.FUNCTION.
3. Give up control to top down manager.

(The DCP is now free to execute code on behalf of
the lines.)

Manager Code
4. If RCV.EXCEPTION (contained in pri-
mary status on adapter) then:
a. Set-up interface for error switch.
b. Return to S-Op.
5. If RCV.REQUEST (that is, there is a char-
acter ready on adapter), then:
. Read character.
. Store character in L-CHAR.
. Sum horizontal parity.
. Strip vertical parity, if pertinent.
. Translate character.
Store translated character in IN-HAR.
. Return to S-Op.
6. ELSE (that is, no character is ready on
adapter):
a. If timeout has expired:
1) Set-up interface for error switch.
2) Return to S-Op.
b. If timer is still running:
1) Give up control to round robin man-
ager.

R Mo At op

Subroutines Supporting S-Ops,
Managers, Host Control

The NDL Post Compiler (NPC) generates subrou-
tines on an as-needed basis. That is, if a subroutine
is not needed in a code file, it is not present. Sub-
routines are used when the code is common to all
terminals on the system, and is used frequently.
Subroutines are called via the NBDS ‘‘hard call”

12-30

micro instructions and exited via the ‘‘hard return.”’
If a subroutine must yield before its function is com-
plete, the subroutine is responsible for saving the re-
turn pointer and doing a ‘‘soft return’’ on exit.

BUFFER MANAGEMENT

Subsystem Queues

Host communication between the DCA, the
DCP(s), and whatever MCS and user programs are
present takes place through queues. The queueing
process passes information and parameters between
two or more logically separated routines in the DCA.
Queueing causes the logical passing of data, buffers,
and so on, without physically moving the data.

Each queue contains two addresses, and is stored
in a reserved area of memory known and accessed
by the modules associated with it. Each address in-
dicates the physical location of a message. The first
address in the queue is the ‘*head’’; it points to the
next message to be removed from the queue for pro-
cessing. The second address is the ‘‘tail;”’ it indi-
cates the location of the last message associated with
the queue.

The link mechanism connects the first and last
(head and tail) messages with those between them.

Queue Linking Mechanism

Each data buffer begins with a single link address,
which indicates the location of the message’s next
buffer. In the last buffer of a message, the link is
null.

Following the buffer link, the first buffer of each
message contains a message link. This indicates the
first buffer of the next message.

The head address allows access to the first mes-
sage; the first message’s first buffer contains a link
permitting access to the second, and so on.

Generally, a CP 9500 Data Comm Subsystem
queue is used in the same order as it was built, (that
is, on a FIFO basis). The following algorithms are
used to maintain CP 9500 DCS queues:

1. Queue Linking (figure 12-16). When a mes-
sage is added to the bottom of a queue, the
queue’s tail address is retrieved. It is replaced
by the address of the new message. The old
tail is used to update the message link address
in the message which was previously the last;
this message’s previously null link address is
set to point to the new end message.

HEAD

TAIL

R b

QUEUE

ED2292

| PREVIOUS TAIL

1
MESSAGE LINK ——j

MESSAGE

—
MESSAGE LINK ="

</

MESSAGE PREVIOUSLY NULL LINK
FILLED IN.
(NuLL)
MESSAGE

MESSAGE BEING

LINKED TO QUEUE.

Figure 12-16. Queue Linking

2. Top Queueing (figure 12-17). In certain
cases, such as when a high-priority communi-
cation contains data affecting communications
queued earlier, top queueing is used. The old
head address is retrieved, and replaced by the

address of the new message. The old head ad-
dress is then used to link the new beginning
message to the former head message, which is
now second.

s >

MESSAGE BEING
TOP-QUEUED.

PREVIOUS HEAD

———

HEAD

TAIL

R
QUEUE

ED2293

L.

1
MESSAGE LINK —-—w

MESSAGE ADDRESS PREVIOUSLY
IN HEAD POINTER IS

USED TO ESTABLISH

MESSAGE LINK.

1<
MESSAGE LINK ————

MESSAGE

(NULL)

MESSAGE

Figure 12-17. Top Queueing

12-31

12-32

HEAD

PREVIOUS

TAIL

QUEUE

ED2294

HEAD

(NULL) "—s\
| aopress IN MESSAGE
MESSAGE LINK IS USED TO SET
HEAD POINTER.
l MESSAGE LINK IS
| DISSOLVED.
)
-
MESSAGE mej
MESSAGE
(NULL)
MESSAGE

Figure 12-18. Queue Delinking

3. Queue Delinking (figure 12-18). The head
address indicates the next message to be re-
moved from the queue for processing, so it is
retrieved. The message link address in the
message being removed is used to replace the
head address. The head has been shifted to in-
dicate the message following the one re-

R.W.L.- @ooe

HEAD

TAIL

moved.

4. Queue Lockout (figure 12-19). Queues in a
multiprocessor environment must have their
integrity protected. The request, result, and
ABP queues each use a Read With Lock

(RWL) Word.

NOTE
Any action or processor accessing the
RWL words must have all interrupts
disabled; it is then considered
“muted.”’

The RWL word is subjected to the
RWL hardware instruction; this reads
the value, then replaces it with binary
ones (@FF@) in the same clock cycle.
If the value ready is @FF@, another
action is using the queue, access is not
allowed. If the value read is @00@, the
queue can be accessed by this action
only. (Any other action finds a value of
@00@ to the RWL word just before
terminating.)

ED2295

QUEUE

(A) QUEUE NOT IN USE. CAN
BE ACCESSED BY ANY ACTION.

R.W.L.- @FFe

HEAD

TAIL

QUEUE

(B) ONE ACTION ACCESSES READ
WITH LOCK WORD. READING
RWL VIA READ-WITH-LOCK
INSTRUCTION SETS IT TO
@FF@. NO OTHER ACTION
CAN ACCESS THE QUEUE
UNTIL THIS ONE UNLOCKS
ITS RWL WORD.

Figure 12-19. Queue Locking

Queue Pointers in Buffer Memory

The request, result, ABP, and subnet queues are
stored in a contiguous area of reserved memory,
(DC-DATA-AREA). These queues are described in
the following paragraphs. Each description refers to
figure 12-20 which indicates the format and size of
the DC-POINTER-AREA. A description of MCS
queues is also provided, but no MCS queue resides
in the DC-POINTER-AREA.

Request Queues

Each DCP present on the CP 9500 has a request
queue associated with it. The request queue contains
messages from the DCA for that particular DCP.

Space for eight request queues is reserved in the
contiguous queue storage area (DC-POINTER-
AREA) in reserved memory. This corresponds to the
maximum number of DCPs allowed on the CP 9500.
Each of the request queues contains a RWL word,
(one byte), a four-byte head address, and a four-byte
tail address. Each request queue occupies nine
bytes.

Result Queue

There is one result queue in the data comm sub-
system. It is used by the DCPs to send messages to
the DCA. Since a DCP must lock the result queue
to link a message into it, the PROC-ID byte is set
to identify which processor is using the queue. This
aids in recovery if the DCP fails before releasing the
result queue.

The DCA does not concern itself with setting the
PROC-ID byte. The DCA resides in the operating
system processor. Recovery from an MCP failure is
assumed impossible.

The result queue occupies ten bytes: one for the
RWL word, one for the PROC-ID, four for the head
address, and four for the tail.

Available Buffer Pool (ABP)

The ABP controls the use of message space by the
DCPs. When a DCP gets space for a message, it de-
links the space from the ABP. Message space is
deallocated (relinked to the ABP) only by the DCA.

Note that the ABP also has a RWL word, and a
PROC-ID byte. Any action of processor accessing
the RWL word must be muted (all interrupts dis-
abled). The PROC-ID byte identifies the processor
using the ABP; the ABP is still locked if the DCP
fails.

12

13

14

18

22

(n)
BYTES

ED2291

READ-WITH-LOCK

PROCESSOR-ID

COUNT (NO. OF BUF-
FERS AVAILABLE)

HEAD ADDRESS

TAIL ADDRESS

READ-WITH-LOCK

PROCESSOR-ID

HEAD ADDRESS

TAIL ADDRESS

READ-WITH-LOCK

HEAD ADDRESS

TAIL ADDRESS

LM

COUNT

HEAD ADDRESS

TAIL ADDRESS

AVAILABLE BUFFER POOL (ABP)
TOTALLENGTH: 12BYTES
OCCURRENCES: 1

RESULTQUEUE
> TOTALLENGTH: 10BYTES
OCCURRENCES: 1

REQUEST QUEUE
? TOTALLENGTH: 9 BYTES
OCCURRENCES: 8
(72 BYTES USED BY ALL REQUEST
QUEUES)

SUBNETQUEUE

TOTALLENGTH: 10BYTES
L OCCURRENCES: SUBNET COUNT
(NUMBER OF STATIONS)

BY ALL SUBNET QUEUES)

7/

(n) = TOTAL LENGTHOF DC POINTER AREA = (94 + (10 X SUBNET

COUNT)) BYTES

Figure 12-20. Queue Pointers in Reserved

Buffer Memory

12-33

((10 X SUBNET COUNT) BYTES USED

A DCP does not unlock the ABP until it has all Data Comm Buffer Format

of the space needed for a given message. Space is When a data comm buffer is empty (linked into
only available as buffers; all buffers are the same the ABP), the only use for its link word is to main-
size. This BUFFER-SIZE is generated by NDL, tain the ABP’s integrity. Once the buffer is in a mes-
which records it in the NDLSYS file as a count of sage (delinked from the ABP), there are two kinds
two-byte words. The Data Comm Loader (DCL) of links within the message format.
converts the NDLSYS file’s BUFFER-SIZE as fol-
lows: The first is a link to the next buffer of the
particular message. If a given buffer is last in a mes-
1. DCL doubles the word-count given by the sage, this link is null (@QFFFF@).
NDLSYS file to obtain a byte-count.
~ In the first buffer of each message, the buffer link
is followed by a message link. This indicates the first
2. Since four bytes are used for each message buffer of the next message. (See figure 12-22.) If this
link or buffer link in the CP 9500, while two is the last message, the link is null (@ FFFF@).
bytes are used in the NDLSYS file, BUF-
FER-SIZE is incremented by four. Each message’s initial buffer has 36 bytes of
header information following the message link.

The converted BUFFER-SIZE, which includes Text occupies the remainder of each buffer after
both buffer and message links, is then recorded in the link and/or header information is installed. (See
DCA absolute memory. figure 12-21.)

FIRST BUFFER OF EACH MESSAGE: EACH BUFFER AFTER THE FIRST:
0 0
BUFFER LINK ADDRESS BUFFER LINK ADDRESS
4 4
MESSAGE LINK ADDRESS
8 TEXT
A A~
:d ladl
L]
L]
L]
BUFFER SIZE
HEADER BYTES
INFORMATION
NOTES:
aa 1. BUFFER LINK ADDRESS IS ADDRESS OF
THE NEXT BUFFER IN THE GIVEN
TEXT MESSAGE. NULL IN LAST BUFFER
OF ANY MESSAGE.
J; -~ 2. MESSAGE LINK ADDRESS IS ADDRESS
d . T OF THE FIRST BUFFER IN THE NEXT
. MESSAGE. NULL ONLY IN THE
. LAST MESSAGE.
BUFFER SIZE
BYTES
ED2296

Figure 12-21. Formats of Data Comm Buffers
12-34

MCS Queues

All messages sent to a given MCS program are
placed on its MCS queue. This queue is maintained
by the MCS to which it belongs. It does not reside
in the DC-POINTER-AREA. In a multi-MCS envi-
ronment, each MCS program has its own CMS
queue.

Subnet Queues

Subnet queues are data comm files providing
chronologically ordered messages from data comm
stations (terminals) for processing by user data
comm tasks.

All linking of messages to any subnet queue(s)
must be performed by DCA. However, there are two
ways this can occur. An MCS program, deriving its
input solely from its own MCS queue, may issue a
message to the DCA, directing the DCA to place a
specific message on a subnet queue. Also, the DCA
may route messages directly from the result queue to
some subnet queue(s), bypassing the MCS pro-
gram(s).

Reconfiguration

To redefine a station or line, that line must be in
a ‘‘not ready’’ state. To make this Qetermination,
DCA creates a header (type 26) and links it to the

appropriate DCP’s request queue. In processing the
header (type 26) the DCP returns a result of 0 if the
line is in the required state; otherwise a result of 7
is returned (unable to initiate).

Station tables only remain in DCP memory while
attached to a line. Whenever a station is redefined,
the changes must be made to the memory copy and
the copy in SYSRECON.

Data Comm Reload

To reload a DCP, that DCP must be in an ‘‘idle”’
state (all lines not ready). To make this determin-
ation, a header (type 26) is created by the DCA for
each line defined on the DCP being reloaded and
placed in the appropriate DCP request queue. When
the DCP services this header, it returns a result con-
taining an indication of whether that line on the DCP
is in a ‘‘not ready”’ state. If all the lines on that DCP
are not ready, RELOAD is permitted. A message re-
sult of 7 (unable to initiate) indicates the line is
ready. A result of 0 (complete and successful) indi-
cates the line is not ready.

Processor Interface (PI) code is embedded within
each DCP codefile. At RELOAD time a number of
locations must be saved and re initialized after the
code overlay. Included in these locations are many
of the PI variables.

@FFFF@
MESSAGE 1, MESSAGE 1,
BUFFER 1 BUFFER2
@FFFF@ @FFFF@
MESSAGE?2, MESSAGE 2, MESSAGE 2,
BUFFER1 BUFFER2 BUFFER3
@FFFF@
MESSAGE 3,
MESSAGE 3, BUFFER2
BUFFER1
@FFFF@
MESSAGE 4, MESSAGE 4,
BUFFER1 BUFFER2
ED2297 Figure 12-22. Data Comm Buffer/Message Link Mechanism

12-35

APPENDIX A
DATA
COMMUNICATIONS
INITIATION AND
TERMINATION

GENERAL

This appendix describes the initiation and orderly
termination of the data communications subsystem
and what is involved in these operations.

DATA COMMUNICATIONS
INITIATION/TERMINATION

Initiation

When thé SCL handler recognizes a request to
load/execute a program that involves data comm, the
following occurs:

1. If the program is an MCS and there currently
is no MCS within the system, the data comm
system is loaded and initialized from the pro-
gram file NDLSYS, prior to the execution of
the requested program (MCS). In the event that
an MCS currently exists within the system, the
load/execute of the requested program is
aborted and the error message, LOAD FAIL-
URE MCS ALREADY PRESENT, is displayed
on the SPO.

2. If the program is not an MCS, and an MCS ex-
ists within the system, a normal load/execute of
the program is performed.

Termination

When the system recognizes that a task is termin-

ating or is to be terminated and that this task in-
volves data comm, the following occurs:

1. If the program is an MCS, control is given to

the data comm subsystem which checks tasks
waited by the data comm system, and for those
tasks, sets the status key in the CD area equal
to 91, causing control to be returned to the
task. The data comm system is removed and
the indicator(s) utilized by the master communi-
cate handler and the SCL handler, to indicate
the presence of the data comm system is set/re-
set. The MCP can then remove the MCS.

a. User tasks can continue or go to end-of-job
(EOJ) at their discretion.

b. Any future requests for access to the data
comm system are refused. A value of 91 is
set in the Status Key field of the CD area
and control is immediately returned to the
task. As before, the task can continue or go
to end-of-job.

2. If the program is not an MCS, and the data

comm system is present, control is given to the
data comm system which will:

Detach the task from subnet queues

Detach the task from stations

Send a message of type TASK DETACH to the MCS
Return to the operating system for normal EQJ/DS.

If the data comm system is not present, the nor-
mal EOJ/DS is performed.

APPENDIX B

DATA
COMMUNICATIONS
COMMUNICATES

INTRODUCTION

This appendix describes the subset of CMS com-
municates relevant to data communications. This
subset is known collectively as the Class D commu-
nicates.

A communicate is the process by which an S-pro-
gram requests the MCP to perform a function on its
behalf. Generally, these functions may be requested
by multiple S-programs and manipulate data not di-
rectly accessible by the S-program. Having these
functions within the MCP eliminates the need for du-
plication of code and also insures that the integrity
of the data is maintained. The interface to the MCP
is provided by the S-programs interpreter via the
communicate S-Op. The format of this S-Op may
vary for different languages, but because the MCP
interface is common to all languages, the interpreter
must present the parameters for the communicate in
a fixed format. The data area used to pass
parameters to the MCP is known as the communi-
cate parameter area (CPA). The general format of
the CPA is as follows:

1. Verb. Defines the type of action to be per-
formed.

2. Adverb. Qualifies the verb and defines the spe-
cific actions.

3. Object. Describes the entity on which the ac-
tion is to be performed.

The class D communicates consist of verb values
@30@ through @3F@. Because of the large number
of data communications functions required, the verb
of a class D communicate is used to specify a gener-
al type of function; the adverb defines the actual
function.

This appendix is arranged in two parts. The first
defines all the class D verbs and the meaning of each
adverb value within a given verb. The second de-
fines the CPA layout of each verb/adverb pair.

Sections 7 and 9 describe COBOL and MPLII
user data communications functions. Within this ap-
pendix one set of CPA layouts exist for user data
comm; this being equally applicable to both COBOL
and MPLII. As stated previously, the interface to a
communicate is common,; it is the joint responsibility
of the language compiler and interpreter to provide
the correct interface.

The following are the class D verb values.
Verb Description

@30@ MCS control communicates.
@31@ MCS interrogates.
@32@ MCS redefinition.
@33@ User data comm.
@34@ MCS DCP oriented
communicates.
Verb-Adverb CPA Values
Verb = 30
Communicate Adverb

QUEUE 00
QUEUE.DEPTH 01
SET.INPUT.LIMIT 02
SET.QUEUE.LIMIT 03
EXCHANGE.REFERENCE 04
FETCH.MESSAGE 05
GET.MESSAGE.SPACE 06
RELEASE.MESSAGE.SPACE 07
READ.HEADER 08
WRITE.HEADER 09
READ.TEXT 0A
WRITE.TEXT 0B
COPY.TEXT 0C
CONTINUE.STATION 0D
CONTINUE.TASK OE
ROUTE.INPUT OF
ROUTE.OUTPUT 10
ALLOW.INPUT 11
DISALLOW.INPUT 12
ALLOW.OUTPUT 13
DISALLOW.OUTPUT 14
SET.OUTPUT.LIMIT 15

B-1

Verb = 31
Communicate Adverb
LINE.COUNT 00
STATION.COUNT 01
MODEM.COUNT 02
TERMINAL.COUNT 03
SUBNET.COUNT 04
LINE.NUMBER 05
STATION.NUMBER 06
QUEUE.NUMBER ' 07
LINE.DESCRIPTION 08
STATION.DESCRIPTION 09
MODEM.DESCRIPTION 0A
TERMINAL.DESCRIPTION 0B
SUBNET.DESCRIPTION 0oC
LINE.STATIONS oD
SUBNET.STATIONS OE
LINE.STATUS OF
STATION.STATUS 10
TASK.NAME 11
TASK.NUMBER 12
RECALL 13
CLEAR 14
SUBNET.STATUS 15
TASK.STATUS 16
Verb = 32
Communicate Adverb
REDEFINE.LINE 00
REDEFINE.STATION 01
Verb = 33
Communicate Adverb
ENABLE.INPUT 00
DISABLE.INPUT 01
ENABLE.OUTPUT 02
DISABLE.OUTPUT 03
RECEIVE 04
SEND 05
ACCEPT 06
Verb = 34
Communicate Adverb
DCP.RELOAD 00
DCP.PROGRAM.NAMES 01
DCP.PROGRAM.COUNT 02
DCP.DESCRIPTION 03
DCP.PROGRAM.TERMINALS 04
DCP.PROCESSORS 05

CPA Layouts

The following CPA layouts are divided in two cat-
egories:

B-2

1. Communicates which may only be invoked
by an MCS program.

2. Communicates which may only be invoked
by a user data comm program.

Within each category the CPA layouts are arranged
in alphabetical order of function name.

MCS CPA Layouts

All functions set the most significant eight bits of
FETCHVALUE equal to @00@ and the remaining
sixteen bits to the ‘‘functional result.”” The ‘‘func-
tional result’’ is defined as follows:

1. @0000@ = complete and successful.
2. All other values = CMS event number de-
fining the error encountered.

ALLOW.INPUT
ALLOW.INPUT (<queue number>, <task num-
ber> <error option>);

Byte Value Meaning
0 30 Verb
1 11 Adverb = ALLOW.INPUT
2 * Filter
3 * Queue Number
4 * Task Number
ALLOW.OUTPUT

ALLOW.OUTPUT (<station number>, <task num-
ber> <error option>);

Byte Value Meaning

0 30 Verb

1 13 Adverb = ALLOW.OUTPUT

2-3 * Station Number

4 * Task Number

CLEAR

CLEAR (<queue reference> <error option>);
Byte Value Meaning

0 31 Verb

1 14 Adverb = CLEAR

2-3 * Queue Reference

CONTINUE.STATION
CONTINUE.STATION (<station number> <error
option>);

Byte Value Meaning
0 30 Verb
1 (1)) Adverb =
CONTINUE.STATION
2-3 * Station Number

CONTINUE.TASK
CONTINUE.TASK (<task number> <error op-
tion>);

Byte Value Meaning
0 30 Verb
OE OE Adverb = CONTINUE.TASK
2 * Task Number
COPY.TEXT

COPY.TEXT (<message variable>, <starting
byte>, <byte length> <message variable>, <start-
ing byte> <error option>);

Byte Value Meaning

0 30 Verb

1 0C Adverb = COPY.TEXT

2-3 * Index to Message Reference

4-5 * Starting Byte Within Text
Area

6-7 * Index to Message Reference

8-9 * Starting Byte Within Text
Area

10-11 * Length = NUMBER OF
BYTES

DCP.DESCRIPTION
DCP.DESCRIPTION (<DCP number>, <variable>
<error option>);

Byte Value Meaning

Verb

03 Adverb =
DCP.DESCRIPTION

* DCP Number

* Segment Number of Variable

* Offset of Variable

* Size of Variable

—_—o
W
S

@?WN

DCP.PROCESSORS

DCP.PROCESSORS
Byte Value Meaning
0 34 Verb
1 05 Adverb =
DCP.PROCESSORS

DCP.PROGRAM.COUNT
DCP.PROGRAM.COUNT (<DCP number>)

Byte Value Meaning
0 34 Verb
1 02 Adverb =
DCP.PROGRAM.COUNT
2 * DCP Number

DCP.PROGRAM.NAMES
DCP.PROGRAM.NAMES (<variable>);

Byte Value Meaning
0 34 Verb
1 01 Adverb =
DCP.PROGRAM.NAMES
2 * Filler
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

DCP.PROGRAM.TERMINALS
DCP.PROGRAM.TERMINALS (<DCP number>,
<variable>, <program name> <error option>);

Byte Value Meaning

Verb

Adverb =
DCP.PROGRAM.TERMINALS
DCP Number

Segment Number of Variable
Offset of Variable

Size of Variable

Filler

Segment Number of Program
Name

Offset of Program Name
Size of Program Name

..
$ 3

* Kk X X ¥ ¥

\OOOC'J\AWN
~N W

10-11
12-13 *

DCP.RELOAD

DCP.RELOAD (<DCP number>, <program name>
<error option>);

Byte Value Meaning

0 34 Verb

1 00 Adverb = DCP.RELOAD

2 * DCP Number

3 * Segment Number of Program
Name

4-5 * Offset of Program Name

6-7 * Size of Program Name

DEQUEUE

See FETCH.MESSAGE.

DISALLOW.INPUT

DISALLOW.INPUT (<queue number>, <task
number> <error option>);

Byte Value Meaning
0 30 Verb
1 12 Adverb =
DISALLOW.INPUT
2 Filler
3 Queue Number
4 * Task Number

B-3

DISALLOW.OUTPUT
DISALLOW.OUTPUT (<station number>, <task
number> <error option>);

Byte Value Meaning
0 30 Verb
1 14 Adverb =
DISALLOW.OUTPUT
2-3 * Station Number
4 * Task Number

EXCHANGE.MESSAGE
EXCHANGE.REFERENCE (<message variable>,
<message variable>);

Byte Value Meaning
0 30 Verb
1 04 Adverb =
EXCHANGE.REFERENCE
2-3 * Index to Message Reference
4-5 * Index to Message Reference

FETCH.MESSAGE AND DEQUEUE

FETCH.MESSAGE (<message variable>, <queue
reference> <wait option>);

Byte Value

0 30
1 05

Meaning
Verb
Adverb =
FETCH.MESSAGE/
DQUEUE
Index to Message Reference
Queue Reference
Wait Option
00 = WAIT
01 = DON'T WAIT

GET.MESSAGE.SPACE
GET.MESSAGE.SPACE (<message variable>,
<byte length>);

O\-FN
W W

Byte Value Meaning
0 30 Verb
1 06 Adverb =
GET.MESSAGE.SPACE
2-3 * Index to Message Reference
4-5 * Length = NUMBER OF
BYTES
LINE.COUNT
LINE.COUNT
Byte Value Meaning
0 31 Verb
1 00 Adverb = LINE.COUNT

B4

LINE.DESCRIPTION
LINE.DESCRIPTION (<line number>, <variable>
<error option>);

Byte Value Meaning
0 31 Verb
1 08 Adverb =
LINE.DESCRIPTION'
2 * Line Number
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

LINE.NUMBER
LINE.NUMBER (<line address>)

Byte Value Meaning
0 31 Verb
1 05 Adverb = LINE.NUMBER
2-3 * Line Address

LINE.STATIONS

LINE.STATIONS (<line number>, <variable>
<error option>);

Byte Value Meaning
0 31 Verb
1 0D Adverb = LINE.STATIONS
2 * Logical Line Number
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable
LINE.STATUS

LINE.STATUS (<line number>, <variable> <er-
ror option>);

Byte Value Meaning
0 31 Verb
1 OF Adverb = LINE.STATUS
2 * Logical Line Number
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

MODEM.COUNT
MODEM.COUNT

Byte Value

0 31
1 02

MODEM.DESCRIPTION
MODEM.DESCRIPTION (<modem number>,

<variable> <error option>);
Byte Value

0 31

Meaning

Verb
Adverb = MODEM.COUNT

Meaning
Verb

Byte Value Meaning
1 0A Adverb =
MODEM.DESCRIPTION
2 * Modem Number
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable
QUEUE

QUEUE (<message variable>, <queue reference>
<error option>);

Byte Value Meaning
0 30 Verb
1 00 Adverb = QUEUE
2-3 * Index to Message Reference
4-5 * Queue Reference

QUEUE.DEPTH
QUEUE.DEPTH (<queue reference>)

Byte Value Meaning
0 30 Verb
1 01 Adverb = QUEUE.DEPTH
2-3 * Queue Reference

QUEUE.NUMBER
QUEUE.NUMBER (<queue name>)

Byte Value Meaning
0 31 Verb
1 07 Adverb = QUEUE.NUMBER
2 * Filler
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

READ.HEADER
READ.HEADER (<message variable>, <variable>
<error option>);

Byte Value Meaning
0 30 Verb
1 08 Adverb = READ.HEADER
2-3 * Index to Message Reference
4 * Filler
5 * Segment Number of Variable
6-7 * Offset of Variable
8-9 * Size of Variable
READ.TEXT

READ.TEXT (<message variable>, <starting
byte> <byte length>, <variable> <error option>);

Byte Value

0 30
1 0A

Meaning

Verb
Adverb = READ.TEXT

Byte Value Meaning
2-3 * Index to Message Reference
4-5 * Starting Byte Within Text
Area
6-7 * Length = NUMBER OF
BYTES
8 * Filler
9 * Segment Number of Variable
10-11 * Offset of Variable
RECALL
RECALL (<queue reference> <error option>);
Byte Value Meaning
0 31 Verb
1 13 Adverb = RECALL
2-3 * Queue Reference

REDEFINE.LINE

REDEFINE.LINE (<line number>, <variable>
<error option>);

Byte Value Meaning
0 32 Verb
1 00 Adverb = REDEFINE.LINE
2 * Logical Line Number
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

REDEFINE.STATION
REDEFINE.STATIONS (<station number>,
<variable> <error option>);

Byte Value meaning
0 32 Verb
1 01 Adverb =
REDEFINE.STATION
2-3 * Logical Station Number
4 * Filler
5 * Segment Number of Variable
6-7 * Offset of Variable
8-9 * Size of Variable

RELEASE.MESSAGE.SPACE
RELEASE.MESSAGE.SPACE (<message
variable>);

Byte Value Meaning
0 30 Verb
1 07 Adverb =
RELEASE.MESSAGE.SPACE
2-3 * Index to Message Reference
ROUTE.INPUT

ROUTE.INPUT (<station number>, <queue refer-
ence> <reroute> <error option>);

B-5

Byte Value Meaning
0 30 Verb
1 OF Adverb = ROUTE.INPUT
2-3 * Station Number
4-5 * Queue Reference
6 * Reroute Option
00 = REROUTE
01 = DON'T REROUTE

ROUTE.OUTPUT
ROUTE.OUTPUT (<station number>, <queue ref-
erence> <error option>);

Byte Value Meaning
1 10 Adverb = ROUTE.OUTPUT
2-3 * Station Number
4-5 * Queue Reference

SET.INPUT.LIMIT
SET.INPUT.LIMIT (<station number>, <limit>
<error option>);

Byte Value Meaning
0 30 Verb
1 02 Adverb = SET.INPUT.LIMIT
2-3 * Station Number
4 * Limit

SET.OUTPUT.LIMIT
SET.OUTPUT.LIMIT (<task number>, <limit>
<error option>);

Byte Value Meaning
0 30 Verb
1 15 Adverb =
SET.OUTPUT.LIMIT
2 * Filler
3 * Task Number
4 * Limit

SET.QUEUE.LIMIT
SET.QUEUE.LIMIT (<queue reference>, <limit>
<error option>);

Byte Value Meaning
0 30 Verb
1 03 Adverb =
SET.QUEUE.LIMIT
2-3 * Queue Reference
4 * Limit

STATION.COUNT
STATION.COUNT
Byte Value

0 31
1 01

Meaning

Verb
Adverb = STATION.COUNT

B-6

STATION.DESCRIPTION
STATION.DESCRIPTION (<station number>,
<variable> <eror option>);

Byte Value Meaning
0 31 Verb
1 09 Adverb =
STATION.DESCRIPTION
2-3 * Station Number
4 * Filler
5 * Segment Number of Variable
6-7 * Offset of Variable
8-9 * Size of Variable

STATION.NUMBER
STATION.NUMBER (<station name>>)

Byte Value Meaning

31 Verb

06 Adverb =
STATION.NUMBER

Filler

Segment Number of Variable
Offset of Variable

Size of Variable

=

* X ¥ ¥

AN b WN

-5
-7

STATION.STATUS
STATION.STATUS (<station number>,
<variable> <error option>);

Byte Value Meaning
0 31 Verb
1 10 Adverb = STATION.STATUS
2-3 * Logical Station Number
4 * Filler
5 * Segment Number of Variable
6-7 * Offset of Variable
8-9 * Size of Variable
SUBNET.COUNT
SUBNET.COUNT
Byte Value Meaning
0 31 Verb
1 04 Adverb = SUBNET.COUNT

SUBNET.DESCRIPTION
SUBNET.DESCRIPTION (<queue number>, <var-
iable> <error option>);

Byte Value

0 31 Verb

0C Adverb =
SUBNET.DESCRIPTION
Queue Number

Segment Number of Variable
Offset of Variable

Size of Variable

Meaning

—

* ¥ ¥ ¥

Nh W

SUBNET.STATIONS

SUBNET.STATIONS (<queue number>,
<variable> <error option>);

Byte Value Meaning
0 31 Verb
1 OE Adverb =
SUBNET.STATIONS
2 * Queue Number
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

SUBNET.STATUS

SUBNET.STATUS (<queue number>, <variable>
<error option>);

Byte Value Meaning
0 31 Verb
1 15 Adverb = SUBNET.STATUS
2 * Queue Number
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable
TASK.NAME

TASK.NAME (<task number>, <variable> <error
option>);

Byte Value Meaning
0 31 Verb
1 11 Adverb = TASK.NAME
2 * Task Number
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

TASK.NUMBER
TASK.NUMBER (<task name>)

Byte Value Meaning
0 31 Verb
1 12 Adverb = TASK.NUMBER
2 * Filler
3 * Segment Number of Variable
4-5 * Offset of VAriable
6-7 * Size of Variable

TASK.STATUS
TASK.STATUS (<task number>, <variable> <er-
ror option>);

Byte Value Meaning
0 31 Verb
1 16 Adverb = TASK.STATUS
2 * Task Number
3 * Segment Number of Variable
4-5 * Offset of Variable
6-7 * Size of Variable

TERMINAL.COUNT
TERMINAL.COUNT

Byte Value Meaning
0 31 Verb
1 03 Adverb =
TERMINAL.COUNT

TERMINAL.DESCRIPTION

TERMINAL.DESCRIPTION (<terminal number>,
<variable> <error option>);

Byte Value

0 31 Verb

0B Adverb =
TERMINAL.DESCRIPTION
Terminal Number

Segment Number of Variable
Offset of Variable

Size of Variable

Meaning

—

* ¥ ¥ *

O\l&ul\)

WRITE.HEADER
WRITE.HEADER (<message variable>,
<variable> <error option>);

Byte Value Meaning
0 30 Verb
1 09 Adverb = WRITE.HEADER
2-3 * Index to Message Reference
4 * Filler
5 * Segment Number of Variable
6-7 * Offset of Variable
8-9 * Size of Variable
WRITE.TEXT

WRITE.TEXT (<message variable >, <starting byte >,
<byte length >, <variable><error option >);

Byte Value Meaning

0 30 Verb

1 0B Adverb = WRITE.TEXT

2-3 * Index to Message Reference

4-5 * Starting Byte within Text
Area

6-7 * Length = NUMBER OF
BYTES

8 * Filler

9 * Segment

*

10-11 Offset of Variable

B-7

ACCEPT
Byte Value Meaning
0 33 Verb
1 06 Adverb = ACCEPT
2 * Filler
3 * Segment Number of Input CD
Area
4-5 * Offset of Input CD Area
ENABLE INPUT
Byte Value Meaning
0 33 Verb
1 00 Adverb = ENABLE INPUT
2 * Filler
3 * Segment Number of Input CD
Area
4-5 * Offset of Input CD Area
6 * Filler
7 * Segment Number of KEY
8-9 * Offset of KEY
10-11 * Size of KEY
DISABLE INPUT
Byte Value Meaning
0 33 Verb
1 01 Adverb = DISABLE INPUT
2 * Filler
3 * Segment Number of Input CD
Area
4-5 * Offset of Input CD Area
6 * Filler
7 * Segment Number of KEY
8-9 * Offset of KEY
10-11 * Size of KEY
ENABLE OUTPUT
Byte Value Meaning
0 33 Verb
1 02 Adverb = ENABLE
OUTPUT
2 * Filler
3 * Segment Number of Output
CD Area
4-5 * Offset of Output CD Area
6 * Filler
7 * Segment Number of KEY
8-9 * Offset of KEY
10-11 * Size of KEY
DISABLE OUTPUT
Byte Value Meaning
0 33 Verb

B-8

Byte Value
1 03
2 *
3 *
4-5 *
6 *
7 *
89 *
10-11 *
RECEIVE
Byte Value
0 33
1 04
*
3 *
4-5 *
6 *
7 *
8-9 *
10-11 *
SEND
Byte Value
0 33
1 05
2 *
34 *
5 *
6-7 *
8 *
9 *
10-11 *
12-12 *

Meaning

Adverb = DISABLE
OUTPUT

Filler

Segment Number of Output
CD Area

Offset of Output CD Area
Filler

Segment Number of KEY
Offset of KEY

Size of KEY

Meaning

Verb

Adverb = RECEIVE
Adverb 2 = WAIT IF NO
MESSAGE = 00;

= DO NOT WAIT IF NO
MESSAGE = 01

Segment Number of Input CD
Area

Offset of Input CD Area
Filler

Segment Number of Data
Area

Offset of Data Area

Size of Data Area

Meaning

Verb
Adverb = SEND
Adverb 2:
BIT 7 (MSB) = 0 = WAIT

1 = NOWAIT
BITS 6-1 = 0
BIT 0 (LSB) = 0 = EGI

1 = EMI

Skip Control

Segment Number of Output
CD Area

Offset of Output CD Area
Filler

Segment Number of Data
Area

Offset of Data Area

Size of Data Area

NOTE

* WAIT is used only by MPLII.

APPENDIX C
SAMPLE CMS
DATA COMMUNICATION PROGRAMS

The following describes a model data comm sys-
tem consisting of an MCS, functionally equivalent
COBOL, MPLII, and RPG programs, and an NDL
program. Each program is illustrated by means of a
functional description followed by the program list-
ing. This system is not intended to be used in a pro-
duction environment; it is merely an example of the
possible use of DC subsystem facilities.

By including these sample programs, the interface
between the various levels of the DC subsystem is
illustrated.

THE MODEL MCS

Functional Description

The model MCS is a slightly expanded version of
the MCS published as an example in the MPLII Ref-
erence Manual. It has the following characteristics:

1. When started, the MCS participates for
both input and output for all stations defined
in the network.

2. Each line is made ready.

3. On receiving an input message, the MCS
returns it to the sending station if no control
character was used, or interprets the message
as a command if a control character was used.

4. DC commands may be input from the sys-
tem console.

5. If a user DC task attempts input from a

subnet or output to a station, the MCS allows

such input/output after having performed the

appropriate ROUTE.INPUT or ROUTE.OU-

TPUT operations. (That is, the MCS becomes

non-participating for those stations with which
- the user task communicates.)

6. ENABLE.INPUT, ENABLE.OUTPUT,
DISABLE.INPUT, and DISABLE.OUTPUT
messages have no effect on the MCS.

7. More than one DC task is supported.

8. Any one task may use one subnet at a
time; that subnet must not have more than ten
stations in it. (Note: This is not a system re-
striction but one peculiar to this MCS.)

9. When a task goes to end-of-job, the MCS
again participates for the stations with which
the task was communicating.

Detailed Description

Identifiers

User-defined names are defined as they are en-
countered during the discussion of the functions of
the MCS. However, there are a number of univers-
ally-used identifiers which are described here (see
seq. 1600-16400).

Note the use of defines for various message types
(seq. 1800 -2200); also BEGIN is defined as [DO;[,
CH as [CHARACTER], TRUE as [[@FFFF@], and

FALSE as [@0000@)]. Defining identifiers for queue
references is also useful (seq. 2400 -2700). MSG is a

message reference and MSG.HDR is a data structure
into which message headers are placed (seq. 3500 -
5500). TEXT is used to contain message text of com-
mand messages.

Director

The main driver of the MCS is near the end of the
program starting at seq. 68800. The algorithm used
is:

1. Initialize.

2. Take the next message from the MCS
queue.

3. Log the message.

4. If the message does not have ‘‘complete
and successful”’ in the result field, then
analyze the result and go to step 6.

5. Perform action routines as determined by
message type.

6. Return message space to DC buffer if still
in use. (That is, if pointed to by MSG.)

7. Stop if commanded by the operator.

8. Go to step 2.

Each step in this simple logic flow will be described
in more detail.

Initialize Routine
Name: INITIALIZE. Seq: 66000-68700.

This routine performs the following:

1. Displays program version number.

2. Space-fills print buffer (used for logging).

3. Routes input and output messages to the
MCS queue for all stations.

C-1

4. Sets the MCS queue limit to five messages.
5. Makes all lines ready.

NOTE
1. MAX.STAS and MAX.LINES con-
tain the highest valid logical station
number and logical line number respec-
tively. These are found (seq. 6700 -
6800) using built-in functions.

2. The LINE.PENDING flag is used to
prevent multiple ‘‘make line ready”’
messages being queued to the network
controller, thus saving message space.

3. The basic technique of creating a
message is demonstrated at seq. 67900
-68300.

Take Message from MCS Queue
This is done at seq. 69900 -70000.

The FETCH.MESSAGE built-in procedure points
MSG to the next message in the MCS queue, and
delinks that message from the MCS queue.

The READ.HEADER built-in procedure copies
the message header pointed to by MSG into
MSG.HDR.

NOTE
FETCH.MESSAGE has a NOWAIT
option which allows the MCS to contin-
ue executing, even if no messages were
in the MCS queue. (To check this,
compare MSG with the null value using
the NULL built-in function.) This fea-
ture must be used with acumen as, if
used carelessly, the MCS can get into
a processor-bound loop. This means,
on the B 80, that user tasks do not get
any processor time because the MCS
has a higher priority. However, if used
in conjunction with conditional 1/0, for
example, it can increase the efficiency
of the MCS. The motto here is: BE
CAREFUL.

Log the Message
This is done at seq. 70100 -70300.

It is always useful to write debug-code into a pro-
gram from the start.

Here, compile-time and run-time options set or re-
set the debug code. If the user dollar - option DE-

C2

BUG (seq.300) is set, the debug code is compiled
into the program. When the MCS has been de-

bugged, this code can be excluded from the final
version merely by resetting this option for the final
compile.

The procedure LOGGIT (seq. 64600 - 65600)
prints logical station number, message type, and up
to the first 1200 characters of message text for all
messages taken from the MCS queue. This can be
done only if the flag PRINT.EM is true. (PRINT.EM
is set or reset from the SPO by SD and ED com-
mands.)

Process Non-Zero Results

This is done by calling DO.RESULT (seq. 47200
- 49300) at line 70600.

A non-zero result implies that there is a special
circumstance associated with this message.

The procedure DO.RESULT is not complete in
that is handles only three of the ten defined results.
A production MCS should be coded to handle all
possible results. The three handled are:

1. Line not ready.

2. Station not ready.

3. Control character or WRU character re-
ceived.

The first two of these asks the operator to ready
the line or station as required. If a contro/WRU is
received, the message is handled by the DO.I-
NPUT.MSG routine which is described later.

NOTE

The control/WRU received result indi-
cates that the associated message is an
input message consisting of either the
WRU character or the station’s control
character followed by the message text.
(The actual case can be determined
from the events field in the message
header.) The MCS programmer and the
NDL programmer must agree on the
following:

1. Will control characters be recognized?
2. Will they be passed to the MCS as part of
the text?

In a ‘“‘real’”” MCS, this procedure would be more
comprehensive. It would perform more error han-
dling (analyzing the events field and perhaps logging
the specific error on disk or the SPO).

Perform Action Routines
The code for this is at seq. 70600 - 74900.

A switch is made depending on the value of the
message type field (MSG.TYPE), and a different ac-
tion is taken depending on the type of message. The
only message types which are handled here are:

1 Input (from remote device)

6 Station has been made ready

0 Line has been made ready

15 DC input from SPO

18 Request (from MCP) to attach a task to a
subnet

19 Request (from MCP) to attach a task to a
station

25 Task has gone to end-of-job

It is obvious that a ‘‘real’” MCS would handle the
majority, if not all, of the possible message types.

Each action routine is now described in turn.
Input Message (1)

An input message is handled by DO.INPUT.MSG
(seq. 37100-38900) which is called at seq. 70800. (It
may also be called from DO.RESULT at seq. 4890.)

DO.INPUT.MSG performs the following:

1. Decrements the unprocessed input message
count for the station which sent the message
(CONTINUE.STATION).

2. If the control character received flag is not
set, it sends the message back to the station;
otherwise,

3. Sets SPO.MSG to false (indicating that the
message was not from the SPO); sets TEL-
L.SPO to false (indicating that any reply to
this command is to be returned to the sending
station). Depending on the command, TEL-
L.SPO may be reset to true in the DO.DC.-
INPUT procedure; calls DO.DC.INPUT (seq.
49700 - 57500) to handle this message as a
command text.

NOTE

1. For every input message which ap-
pears on the MCS input queue, the
MCS must issue a

CONTINUE.STATION command to
acknowledge receipt of the message. If
this is not done, the network controller
is prevented from obtaining DC mes-
sage space for a station when the num-
ber of unacknowledged messages
(which have been placed on the MCS

queue from that station) exceed its in-
put limit. The input limit for a station
is set using the SET.INPUT.LIMIT
statement, the default being two.

2. The most efficient way of re-routing
a message is to change the required
fields in the message header and put it
on the network controller queue (or
subnet queue if sending it to a task).
(See seq. 37800 - 38100.)

3. By setting the retry field in the mes-
sage header to @FF@, the MCS is in-
dicating that the retry count is to be
handled completely by the network
controller. Any other value would set
the retry count for the corresponding
station to MSG.RETRY. This facility is
B 80 implementation dependent. How-
ever, if required it may be emulaied on
other CMS systems by inclusion of the
following code between (PTO). Seq
40001500 - 40001600 of REQUEST
UPOLLED and seq 70000500 -
70000600 of REQUEST SELECTIT.
(See sample NDL program.)

IF RETRY = 255 THEN INITIALIZE
RETRY.

Make Station Ready (6)

A message of this type appears in the MCS queue
(with result = 0) as a confirmation that a station has
been made ready. This means that the MCS must
have previously queued a make station ready mes-
sage to the network controller.

This action routine is coded at seq. 71300 - 71900.
The actions taken are:

1. Set STA.PENDING flag for this station to
0, indicating action complete.

2. Inform the operator (at the SPO) that the
station is ready.

Make Line Ready (8)

A message of this type appears in the MCS queue
(with result = 0) as a confirmation that a line has
been made ready. This means that the MCS must
have previously queued a make line ready message
to the network controller.

C-3

This action routine is coded at seq. 72100 - 72700.
The actions taken are:

1. Set LINE.PENDING flag for this line to 0,
indicating action complete.
2. Inform the operator that the line is ready.

Operator Input (15)

A message of this type appears in the MCS queue
as a result of the operator inputting a DC message
at the SPO.

The action routine (DO.DC.INPUT) is called at
seq. 73700 after setting TELL.SPO and SPO.MSG to
true. (This is necessary to distinguish type 15 mes-
sages from type 1 messages when control-flag =
true.)

Procedure DO.DC.INPUT (seq. 49700 - 57500) an-
alyzes messages as command strings and performs
actions accordingly. The available commands are:

END :terminates the MCS

RS <n> :readies station <n>

RL <n> :readies line <n>

TO <n> <text> :sends <text> to station <n>
TO SPO <text> :sends <text> to SPO

SS <n> <text> :see TO
SS SPO <text> :see TO
SS :start debug print
ED :end debug print

QM <n> <text> :queue a message with

<text> on subnet queue <n>

ZIP <text> :pass <text> to SCL/loader
WRU return version message
wM :see WRU

DO.DC.INPUT calls two routines (LOOP.UP and
SCAN) to handle the logical analysis of the com-
mand string. As the functions are not directly related
to data comm, they will not be described in detail,
kvt a brief description is given for completeness.

LOOK.UP (seq. 27500 - 30000) performs a linear
search through the VERB.TABLE (see seq. 8700 -
9700 and 77900 - 79000) looking for a match between
the current token and the name of the verbs in
VERB.TABLE.

SCAN (seq. 16900 - 27100) uses SOURCE as input
and TOKEN as output (seq. 10100 - 13800). After a
call on SCAN, TOKEN contains the next identifier,
and the number of special character from SOURCE.
T.SIZE contains the binary equivalent of TOKEN if
it is a number. WHICH.VERB identifies the verb.

Cc4

The logic of DO.DC.INPUT proceeds as follows:

1. Copy up to 255 characters of the message
text into SOURCE.

2. Set-up variables for SCAN.

3. If the message came from a remote station,
skip over the first token as it is the special
control character. (This assumes that the con-
trol character for any station is not a space
character and is non alpha-numeric, and that
the network controller passes the control
character to the MCS as part of the message
text. This need not be the case, but it is used
here as a convention.) .

4. Search for the verb.

5. Take action appropriate to the verb found.

The logic for each verb is fairly straightforward.
The major points are noted below:

END The quit flag is set, and this is used
to stop the main loop (seq. 52000
and 75100).

RS The READY.STATION procedure

(seq. 32900 -35100) sets
STA.PENDING flag to 1. (This
prevents multiple make station ready
messages existing for a station at any
one time.) It then constructs a make
station ready message and queues it
to the network controller queue. Note
that GET.MESSAGE.SPACE is used
to get a new message header with no
associated message text. This means
that the next space occupied by the
RS message is returned to the DC
message pool. Although trivial in this
case, the technique can save space
when used in a read MCS. This
procedure has no effect if
STA.PENDING is 1 on entry.

RL Uses READY.LINE (seq 35500 -
36700) and is very similar to RS.

The main point of interest in this
command is the use of procedure
TELL (seq. 30400 -35500). This
procedure sends the message TALE
(in its entirety if the second
parameter is either missing or not of
type fixed, or the first TALE.SIZE
characters otherwise) to either the
SPO or a remote station. The logic
proceeds as follows: 1) calculate how
many characters are to be sent; 2) if
the message is for the SPO then
display it; otherwise: 3) compare the
number of characters to be sent +1
(for a form feed character) with the

TD/SS

size of the text area of the message
pointed to by MSG. If the current
text area is too small, the current
message is released and gerted with
the required text size; and 4)
construct the message (placing a form
feed character at the beginning) and
queue it to the network controller
queue.

SD Opens the printer file and writes
heading (seq. 39300 40700). A real
system would use conditional I/O.
(Make sure files have enough

buffers.)

ED Closes printer file. Same comment as
for SD.

QM Constructs an input message with

text as for command and places this
message on a subnet queue.

VALY Passes message to SCL/loader. The
error option in ZIP should be used
as an invalid SCL string following
ZIP, causing the MCS to be aborted
(DS/DP) by the MCP.

Uses TELL to send version message
(seq. 1200).

WRU/WM

If LOOK.UP cannot find the verb, or a verb
which is restricted to SPO, use is entered from a re-
mote device and the last entry in the ‘‘case’ is per-
formed.

Attach Task to Subnet Queue (18)

A message of this type is placed on the MCS
queue as part of the processing of the first input data
communication request from a task which refers to
this subnet queue. The message is processed by
DO.ATTACH.SUBN (seq. 57900 -61700), and the
logic performed is:

1. Determine the number of stations on the

subnet and their logical station numbers (seq.
58600 -59400).

2. Store these in the table TASK.STATIONS
(see comments at seq. 14600 - 15400) unless
the table slot for this task is already in use,
in which case access to the requested subnet
is denied.

3. Route the input for each station in the
subnet to the task. (Note that the MCS must
explicitly route each station in the subnet fam-
ily.)

4. Allow the task to access the subnet queue.

Attach Task to Station (19)

A message of this type is placed on the MCS
queue by the MCP as part of the processing of the
first output data communications request from a task
which refers to this station. The message is pro-
cessed by DO.ATTACH.STA (seq. 63900 - 64200)
which routes output from the task to the network
controller queue and allows the task to communicate
with the station.

Detach Task (25)

A message of this type is placed on the MCS
queue by the MCP when a data comm task goes to
end-of-job. The action taken is a design feature of
the MCS. In this case, DO.TASK.DETACH (seq.
62100 - 63500) is called to re-route input messages
for the stations which were attached to the task back
to the MCS queue. If this re-routing was not per-
formed, then any input messages from these stations
would pile-up on the subnet queue until the unpro-
cessed input count exceeded the queue limit of the
subnet queue. (Note that the task no longer exists
and it is unnecessary to re-route output messages.)

Return Message Space

This is performed at 75000. It is done so that mes-
sage space is returned to the pool of available DC
message space as soon as possible. If, for instance,
a message appears in the MCS queue which is ig-
nored, (for example: enable-input) associated mes-
sage space would become free.

Stop

If the quit flag is set to 1 (seq. 52000), the MCS
prints ‘“MCS HALTED’ and goes to end-of-job
(seq. 75100 - 75400).

NOTE
DO NOT USE THIS MCS IN A PRO-
DUCTION ENVIRONMENT

MODEL.MCS does not perform any serious error-
handling. Should an error occur it is aborted
(DS/DP) by the MCP. This is not desirable in any
data comm system.

It is hoped that the above narrative is of help to
potential MCS authors.

C-5

NN UT SN Y

31U) 1S 0Y e
2(»2!‘3!*8‘0 3

K4

1

.
> 41
~ o~

%0

SYHABEHRHBEY!

~

=~
SN

G

88

RN

SN

R oo}

¢

19043494

SAMPLE MCS PROGRAM

SCONTROL 300 DATA 2000 00000100
$RESET CHECKS 00000200
$CET DEBUGN 00000300
SLIST 00000400
$NOWARNING 00000500
¢HCS & 00000400
R L L LARAAY, bk i kR R i A KL T XKoo 00605
% 200000610
A PROPRIETARY PROGRAM MATERIAL 200000615
S 100000620
% THIS MATERIAL IS PROPRIETARY TD BURRDUGHS CORPORATION AND IS %00000425
% NOT TO BE REPRODUCED, USED DR DISCLOSED EXCEPT IN ACCORDANCE WITH %D00C0430
% PRDGRAM LICENCE OR UPON WRITTEN AUTHORIZATION OF THE PATENT $G0000435
% DIVISION OF BURRDUGHS CORPORATION, DETROIT, MICHIGAN 48232. %00000440
% 100000645
% COPYRIGHT (L) 1979 BURROUGHS CORPORATION %C0000450
% 200000455
T L L L s L L i 020 00660
PROCEDURE GLDWEIRDHAROLD; 00000700

% 40200E00
% THIS SAMPLE MCS SHOULD BE READ IN COMJUNCTION WITH 00000900
% THE NDTES PROVIDED. (FILEID: DCMCSHOTES.) 00000910
1 COG00%20
AARALANLAATIL THIS I8 A SAMNPLE O MNL Y ZMOMmsiiniiuinososes3o
1 60000940
% AND IS5 NOT SUITABLE FOR USE IN A PRODUCTION ENVIRONMENT. 0000950
p 00001000
DEFINE VERSION 00401100
£UMODEL MCS MARK 3.0.2"%} 00001200

4 00001200
00001400

% 00201500
DEFINE 00001400

4 MESSAGE TYPES 00601700
INPUT £1£, 0CO01R00
oUTPUT £2£, 00001500
EMABLE.INPUT £48, 00002000
MAKE.STA.RDY £6£, 00002100
MAKE.LINE.RDY £8f, 00002200

4 QUEUES 00002300
MCSQ £R00008¢, 00002400

NCO £810008%, 00002500

sueq £820000%, 00002600

STAQ £@30008¢, 00002700

A MISCELLANEOUS 20002000
CH £CHARACTERE, 00002900
BEGIN £D0; £, 00003000
TRUE £OFFFFRE, 06007100
FALSE £B0000RE, 00003200

HAX .ERRS £78; 00603200

3 00003400
DECLARE 00003500

MSG MESSAGE.REFERENCE, 00002400

1 HSG.HDR CH(35), 00GCI700

2 MSG.LINE CR(1Y, 00003800

57
3B
=
&0
A1

&3
e
&5

&7

£Y
&
70

FasN

RRREBEZIINHA

ER I B

>

N e

-t

T 2

2 M56.RESULT
2 MSG.TYPE

2 MSG.TSK

2 UMY

2 M56.574A

2 DUMMY

2 HSG.EVENTS

3 DUMMY

3 HSG6.CC.RECVD

3 DUMMY
3 DUMHY
2 ¥56.5U¢8q
2 MSG.LMTH
2 HSh.MAX.LNTH
2 DUMMY
2 HSG.RETRY
2 DUMHY
TEXT
QUIT
LSN
LLN
MAX.SUBRS
HAX.ETAS
MAX.LINES

CH(LY,
CH(D),
CH(LY,
CHED),
FIXED,
CH(1),
CH(Z),
CRLL),
BIT(1),
BIT(7),
CH(LY,
FIXED,
FIXED,
FIXED,
CH(1Y,
CH(1}Y,
CH(18),
CH(253),
FIXED,
FIXED,
FIXED,
FIXED,
FIXED,
FIZED;

KAX.SUBRS s =SUBNET . COUNT-1;
HAX.STAE:=GTATION.COUNT;

MAX.LINES:=LINE.COUNT;

DECLARE

1 STA.TABLE(HAX.ESTAS)

2 STA.PENDING
2 DUMHY

CH(1}Y,
BIT(1),
BIT(7),

1 LINE.TABLE(HAX.LINES). CH(1),

2 LINE.PENDING
2 DUMMY

HAX.STAS:-1;
HAX.LINES:-1;

COMMAND HAMDLING STUFF.

2 VERB CH(4),

2 VERB.NO FIXED,

BIT(1),
BIT(7);

DEFINE V.TAB.SIZE £077£; % 7 % MD. OF VERBS
SEGHMENT VERE.SEG(V.TAB.SIZE);

REMAP VERE.SEG:
1 VERB.TABLE (V.TAB.SIZE) CH(?7),

ANAME OF COHMAND
XWHICH.VERE - ALLDUWS SYNONYHS

2 VERB.SPO.ONLY CH(1}; XTRUE IF VERE RESTRICTED TO SPO USE

(0003900
00004000
00004100
00004200
00024300
00004400
00004500
00004400
00004700
00004800
00004200
4oGeS000
G0005100
00005200
00005300
GCO05400
0005500
00005400
00005700
Q0605800
00005900
00006000
00004100
(0004200
00004300
00004400
BOONESEO
0G0CA600
000046700
0004500
0004900
GO007000
00007100
Q0007200
00CC7300
C¢C007400
00007500
00007400
30007700
00007800
00007900
00008000
00008100
00008200
00608300
00005400
003GE500
00008600
00008700
00008800
00002900
060009000
00009100
00009200
00009300

C-7

C-8

11t
11z
113
114
118
116
117
118
119
120
1M
122
123
124
128
124
127
128
189

30
121
132

7’7
i d

124
135
134
127
138
139
140
141
142
ih
144
143
144
147
168
149
50
151
152
183
154
185
154
57
158
159
160
161
1462
163
164
1635

e

Ea N

R N e

DECLARE
WHICH.VERB FIXED,
SPO.MEG FIXED,
TELL.SPD FIXED;

SCANNER STUFF

SEGMENT TIPE.SEG(128);

XIMDEX TO RECOGNISE CURRENT VERB
XTRUE IF CURRENT MESSAGE FROM SPO
XTRUE IF REPLY IS TO SPO

REMAP TIPE.SEG: TIPE(128) CH(1);

DECLARE

ALL.DOHE FIXED,
SOURCE CH(253),
M.SIZE FIXED,

PTR FIXED,
CHAR CH(1),
C.TIPE FIXED,
TOKEM CHIOY;

SEGHERT TOKEN,SEG(242);
REMAP TOKEN.SEG:
.TYPE FIXED,
.SIZE FIXED,
.VALUE FIXED,
LSTRING CH(25S),
T.DUNMY CH(1);
DEFIHE
IDENTIFIEREQE,
NUMEER £1£,
STRING £28,
SPECIAL.CHAREZE,
TERHINATR £4£,
BLANK £5¢,
RETH £6£,
END.CHAR £@FFQL,
IDENTIFIER.TOKEN
NUMBER. TOKEN
STRING.TOKEN
SPECTAL.CHAR. TOKEN
TERKINATOR. TOKEN
SPACE. TOKEN
RETURN.TOKEN

4~

ATRUE IF HO MORE TO SCAN IMN THIS REC.
ATEXT CURRENTLY BEING SCANNED

ASIZE OF SOURCE

XOFFSET IN SOURCE OF HEXT CHAR.
ZCHARACTER WHAT SCAMMER IS LOCKING AT
#CODE INDICATING TYPE OF "CHAR" :

e 0 = ALPHA

4 1 = HUMERIC

X 5 = SPECIAL CHARACTER

4 & = SPACE

4 9 = NON-GRAPHIC CHARACTER

%POINTS TO CURRENT SYMBOL

2

% TOKEN TYPE

% TOKEN STRING LENGTH

X TOKEN VALUE IF T.TYPE IS NUMEER
% TOKEM STRING

4

£(T.TYPE=IDENTIFIER)E,
£(T.TYPE=NUNEBER) £,
£(T.TYPE=STRING}E,
£(T.TYPE=SPECIAL.CHAR)Z,
£(T.TYPE=TERKINATR}E,
£(T.TYPE=BLANI) £,
£(T.TYPE=RETM)E;

OTHER DECLARATIONS FOR USE OF THE GEMERAL POPULACE

DECLARE

1 TASK.STATIONS CH(199),
2 TSK.STN FIXED;

TASK.STATIONS IS USED TO HOLD LSN OF EACH STATION WHICH
IS CAPABLE OF INFUTING TO A TASK. THERE IS A SLOT IN THIS
TABLE FOR UP TO 9 TASKS. EACH SLOT CONSISTS OF A NUMBER

00009400
00009500
00007400
CO0Ce700
00007200
00009900
00010000
00010100
00010200
00010300
00010400
00010500
00010400
00010700
00010800
00010900
00011000
000111C0
00011200
00011300
00011400
00011500
000115600
000117090
00011800
00011900
00012000
00012100
00012230
00012300
00012400
00012500
00012600
00012700
006012800
00012900
60013000
00013100
000132200
00013300
00013400
00013500
00013400
00013700
00012800
000139200
00014000
00014100
00014200
00014300
00014400
00014500
00014600
00014700
00014800

166
167
148
149
170
171
172
173
174
178
178
177
178
179
180
181
182
183
184
1835

10
RV}

187
168
189
120
191
192
193
19¢
198
126
197
198
199
200
201
202
203
204
203
206
207
208
209
210
211
212
213
214
21

216
217
218
219
220

% (FIXED VALUE) INDICATING THE NUMBER DF STATIONS FOR THIS TASK 00014200
% FOLLOWED BY A LIST OF LSN-S FOR THIS TASK. SINCE EACH SLOT 00015000
% IS 11 NUKEERS LONG THERE IS A RESTRICTION OF 10 STATIONS 00015100
% PER TASK. FURTHERMORE & TASK CAN ONLY COKMUNICATE WITH 1 SUBNET AT 00015200
% ANY GIVEN TIME. THIS TABLE IS USED IM DO.ATTACH.SUBN AND 00015300
% TASK.DETACH. 00015400
% 00015500
DECLARE 00015600

1 P.BUF CH(132), 00015700

2 P.STN CH(S), 00015800

2 DUMMY CH(1), 00015900

2 P.TYP CH(S), 00016000

2 DUHNY CH(1), 00016100

2 P.TXT CH(120), 00014200

PRINT.EM FIXED; sxKn TRUE IF MESSAGES ARE TO BE PRINTED 00016300
FILE P WORK.AREA P.BUF; 00016400
$PAGE 00016490
FORWARD PROCEDURE [0.DC.INPUT; 00014500

A 00014400
T T gL 000146700
% 00016800
PROCEDURE SCAN; 00016900

% 00017000
% 1 EXTRACT THE NEXT TOKEN FROM THE PARAMETER STRING 00017100
% AMD PLACE IT IN T.STRING. THE TYPE, LENGTH, AND (FOR NUMBERS) 00017200
% THE BINARY EQUIVALENT ARE ALSD NOTED. 00017300
% 00017400
DEFINE COPY £ BEGIN ZBIG ON CORE - LOW ON TIME OVERHEAD 00017500

IF ALL.DONE THEN ZEND OF INPUT 00017600
BEGIN 00017700
T.TYPE:=TERMINATR; T.SIZE:=1;T.STRING:=END.CHAR; 00017800

END; ELSE BEGIN 00017500
SUBSTR(T.STRING,T.SIZE,1):=SUBSTR(SOURCE,PTR,1); %COPY 00018000
PTR:+1; T.SIZE:+1; 00018100
ALL.DONE:=(PTR»=M.5IZE); 00018200
END;ENDE; 00018300
DEFINE 00018400
NEXTE 00018500

IF ALL.DONE THEN UMDD EXTRACT; 00018400
CHAR:=5UBSTR(SOURCE, PTR, 1)} 00018700
C.TIPE:=TIPE(CHAR)E, 00018800

ALPHA £(C.TIPE=0)£, 00018900
NUMERIC £ (C.TIPE=1){, 00019000
DDTE(CHAR=",") £, 00019100
CONJUNCTIONE((CHAR="-"))£; 00019200

$IF CHECKS THEM 00019300
DISPLAY("START GET.TOKEN"); 00019400
DISPLAY((IF CONTROL.MODE THEN "TRUE" ELSE "FALSE™)); 00019500
$END 00019400
DD EXTRACT; %T0 PROVIDE COMMON RETURN POINT 00019700

DO SKIP.BLANKS FOREVER; “SKIP LEADING SPACES 00019800

IF PTR»=H.SIZE OR ALL.DONE THEN 00019900

BEGIN ALL.DONE:=TRUE;COPY;UNDD EXTRACT;END; 00020000

NEXT;. 00020100

IF CHAR /= " " THEN UNDD SKIP.BLANKS; 00020200

Cc9

PTR:+1; 00020300

21

%2 END SKIP.BLANKS; 00020400
a3 T.SIZE:=CT.TYPE:=01; 00020500
204 T.STRING:=" "; 00020600
MWy 00020700
226 % HAVING DONE ALL THAT BORING STUFF WE CAMN NOW GD GET A TOKEN 00020800
/7 00020900
20 IF ALPHA THEN ZME HAVE AN IDENTIFIER 00021000
209 BEGIN 00021100
az T.TYPE:=IDENTIFIER; 00021200
231 DO FOREVER; 00021300
232 IF ALPHA THEN %THIS IS TRUE MOST TIMES 00021400
233 BEGIN COPY3NEXT;END;ELSE 00021500
234 % IF NDT (NUMERIC OR CONJUNCTION) 00021400
235 % THEN 00021700
aze UNDD EXTRACT; 000218200
237 % ELSE 00021900
8 % BEGIN 00022000
239 ¥ CoPY; 00022100
2.0 % NEXT; 00022200
S 4 END; 00022300
2.2 END; 00022400
3 END; 00022500
4 % 00022500
265 IF HUMERIC THEN %WE HAVE A NUMBER 00022700
M6 BEGIN 00022600
267 T.TYPE:=NUMBER; 00022900
248 T.VALUE:=0; 00023000
269 D0 FOREYER; %LDOK FOR THE REST 00023100
50 IF NOT MUNCRIC THER KTHATS ALL 00023200
251 UNDO EXTRACT; 00023200
2 COPY; 00022400
3 T.SALUE =T VALUE#16-"0"+CHAR; ZBINARY CONVERT, 00023500
54 NEXT; H0022400
255 EHD; 00022700
Y] END; 00023800
;7% 00022900
58 IF CHAR="""" THEN YUE HAVE A STRING 00024000
259 BEGIN %TD HAMDLE THE STRIMG DRIVEN THINCO024100
260 T.TYPE:=5TRING; 00024200
26 PTR:+1; %GKIP DVER " 00024300
262 B0 FOREVER; 00024400
263 HEXT; 00024500
b4 IF CHAR="""" THEN YWE MIGHT BE FINISHED 00024400
245 BEGIN 00024700
24 IFCPTR:+13»=H.SIZE THEN UNDD EXTRACT; 00024300
267 HEXT; 00024500
268 IF CHAR /= """ THENZWE ARE UNSTRUNG 00025000

249 UHDO EXTRACT; 00025100
270 END; 00025200
a1 % IF 00025300
;2% CHAR=" " OR 00025400
73 % CHAR="/" DR 00025500
e CHAR="=" THEN MASTY.STRING:=TRUE; 00025400
275 CoPY; 00025700

C-10

el
277
278
279
280
21
282
83
B4
285
206
7
268
289
20
21
02
07

-

204

S
296
27
208
29
300
01
302
203
204
05
06
207
08
209
210
1
312
313
3t
315
316
317
218
319
200
31
ol
33
%%
@

)
307
TNO

209

r7
~h?

END; 00025800
END; 00025900

% 00026000
% LET US ASSUME THAT WE HAVE A SPECIAL CHARACTER. (0026100
% COPY CAN LOOK OUT FOR END OF LINE, 00026200
A 00024300
T.TYPE:=SPECIAL.CHAR; 00024400
COPY; 00026500

END EXTRACT; 00026500
SETNAKE (TOKEN, SUBSTR(T.STRING,0,T.SIZE)); 00026700

¢IF CHECKS THEN 00025800
DISPLAY("END OF GET.TOKEN");DISPLAY(TOKEN); 00026900
$END 00027000
END SCAN; 00027100

4 00027200
B LS s 00027300
X 00027400
PROCEDURE LDOK.UP; 00027500

% 00027400
% 1 SEARCH THROUGH THE VERE.TABLE FOR A MATCH WITH THE NEXT 00027700
% TOKEN I SOURCE. WHINH.VERE WILL COMTAIN A VALUE TD INDICATE 00027800
% THE YERD FOUND. IF A VERB IS NGT FOUND OR A VALID 00027500
% VERE IS ENTERED FROM A REMOTE DEVICE BUT IS RESTRICTED TO 00028000
% USC FROM THE SPD THEN WHICH.VERE WILL HAVE THE VALUE @FFFFe, 00028100
4 00020200
DECLARE 1 FIXED; 00028300
WHICH.VERE:=CFFFFQ; ZT0 INDICATE INVALID - KAY BE CHANGED 00028400
¥LATER IF WE GET & VALID VERS 00028500

1:=0; 00028400
SCAN; %TOKEN SHOULD NOW BE A VERS 00028700

DD LOOK FOREVER; 00028800

IF I »= V.TAB.SIZE THEN UNDO LOOK; ZDID HOT GET A MATCH 00028900

IF YERG(I)=TOKEW THEM ZFOUND A HATCH 00029000

BEGIN 00029100

IF MOT SPO.MSG AMD VERB.SPD.OHLY(I) 00029200

THEN; ZLEFT AS INVALID 00029300

ELSE WHICH.VERE:=VERB.NO(I); 00029400

UNDO LODK; #STOP LODKING IN EITHER CASE 00029500

END; 00029400

ELSE 00029700

1:47; 00029800

END LODK; 00029900

END LOOK.UP; 00030000

Y 00026100
A L L Y 00030200
% 00030300
PROCEDURE TELL(TALE,TALE.SIZE); 00020400

% 00030500
» 1 YRITE THE MESCAGE PDIMTED AT BY TALE TO SPD OR 00030400
¥ RENOTE DEVIGE. IF CALLED WITH 1 PARAKETER THEN WRITE ALL OF TALE 00030700
% DTHERWISE WRITE FIRST TALE.SIZE CHARACTERS. 00020800
4 00030900
DECLARE HOW.MAMY FIXED; ZUILL CONTAIN MD. OF CHARS TO WRITE 00021000
DECLARE FF CH(1); ZWILL COMTAIN FORM FEED CHARACTER 00031100
FF:="GOCR"; - JUST LIKE THAT 00031200

C-11

C-12

KN HOW. MeKY :=IF TYPE(TALE.SIZE)=2 THEM TALE.SIZE ELSE SIZE(TALE); 00021300
52 IF TELL.SPD THEN 00021400
73 DISPLAY(SUBSTR(TALE, 0, HOW.MANY))} 00031500
34 tlit 00031400
3335 BEGIN 00031700
KLt %44 WE FIRST SEE IF THE CURRENT KSG HAS BIG ENOUGH 00031800
337 A% TEXT AREA TD TAKE THE TEXT WE WISH TO SEND. 00031500
338 A7 TF MOT THROW IT AWAY AND GET MORE SPACE. 00032000
39 IF MEG.HAX.LKTH < HOW.MANY + 1 THEM 00032100
240 BEGIN 00032200
1 RELEASE .MECCAGE . SPACE (MSH); 00032300
Zh2 GET.HESSAGE . SPACE (MSG, HOW. HANY+1); 60032400
343 END; 00032500
Jak HSG.RETRY:=@FF@; ZLET NC HANDLE IT. 00032700
345 MSG.TYPE:=0UTPUT; 00032800
) WRITE.TEXT(MSG,0,1,FF); ZXINSERT FF 00032900
47 WRITE.TEXT(HSG, 1, HOW. HANY , TALE) ; 00033000
348 HSG.LMTH:=HOW. HANY+1; 60T 70 SAY EXPLICITLY 00032100
369 WRITE.HEADER(MSG, HEG.HDRY; 00033200
50 QUEDE (MSG,NCR) ; #AFTER ALL THAT SURGERY WE WRITE IT 00G33300
KA END; 00023400
52 END TELL; 00033500
T % 00033400
Toh A ST 00023700
S % 00033800
256 PROCEDURE READY.STATIOM(LSN); 00032900
57 IF STA.PENDING(LSN) THEN; AWAIT FOR GOCD RESULT 00034000
258 ELSE 00034100
9 D0; 0034200
360 STA.PENDING(LSHY:=1; XTD SAY WE'VE BEEN HERE 00034300
361 GET.KESSAGE . SPACE(MSG,0); (00344600
362 READ HEADER (HSG,MSG.HDR); 00034500
343 MEG.TYPE:=MAKE.STA.RDY; 00024400
64 HEG.STa:=L5N; 00034700
363 WRITE.HEADER(MSG,MSG.HDR); 00034800
366 QUEUE (HSG,NCQ) ; 00024700
367 END; 00035000
368 END READY.STATION; 000325100
9 ¥ 00335200
T T L v AL sl 00035200
koS U4 006035400
372 PROCEDURE READY.LINE(LLN); 20025500
373 IF LINE.PENDING THEN; %WAIT FOR GOOD RESULT (0035600
374 ELSE 00035700
7% D0; 0025800
76 LINE.PEHDING(LLN):=1; %TD SAY WE'VE BEEN HERE ALREADY 00033700
377 GET.MESSABE .SPACE(MSG,0); 00035000
378 READ.HEALER(MSh,HSG.HPR) ; 00034100
79 MS6.TYPE: =HAKE.LINE.RDY; 00036200
360 MSG.LINEs=LLN; 00035200
K1 WRITE.HEATER(MSG, M55.HDR); 00034400
362 BUELE (KEG, HCQ) 5 00034500
B3 END; 00034400
364 EMD READY.LINE; 00034700
s 2 00034800

Bs
w7
e
39
300
301
32
393
04
w5
06
7
308
309
400
401
402
403
404
408
404
407
408
409
410
411
412
413
414
418
414
417
418
419
420
421
422
423
424
403
424
427
428
429
430
431
432
433
434
453
434
42

438
439
44.0

oo 6034900
A 00037000
PROCEDURE DD.INPUT.HSE; 200Z7100

i , 00037200
% TAKE MSG FROM REMOTE DEVICE. RETURN OR AMNALYSE COMMAND IF CC RECV, Q0037300
YA 00037400
CONTINUE.STATIOH(NSG.5TA); ZALLOWS STATION TD KEEP SEMDING IN ME3GQ00Z7500

IF NOT MSG.CC.RECVD THEM 00037400
BEGIN 00037700
HSG.TYPE:=0UTPUT; 000278060
MSG.RETRY:=BFFQ; 00037900
WRITE.KEALER (MSG, MSG.HDR)Y; 00038000
QUEUE (HSG,NCQ) ; 00022100

END; 00038200
ELSE 00028300
BEGIN 00038400
TELL.SPO:=FALSE; ZASSUME REPLY TD STN - MAY BE CHANGED 00038500
SPO.MSG:=FALSE; 00038600
DO.DC. INPUT; 00038700
END; 000326800

END DO.IMPUT.MSG; 00038200

b 00032000
e L L0002 7 100
A (40039200
PROCEDURE START.LOGGING; 00039300

b3 00039400
% DPEN PRINTER FILE AND SET LOGGING FLAG. 00039500
% 00032400
IF PRINT.EM THEN 000329700
TELL("CANNOT SD: ALREADY LOGGING.™); Qo0I9800
ELSE BEGIN GOOIP200
PRINT.EM:=TRUE; 00040000
OPEN(P); 00040100
P.STN:=" LSN"; 00040200
P.TYP:="TYPE"; 00040300
SUBSTR(P.BUF,40) :="TEXT"; 00040400
WRITE(P); 00040500
END; 000404600

END START.LOGGING; 00040700

A 00040800
T R T R A L A L L LT 00040900
4 00041000
PROCEDURE STDP.LOGGING; 00041100

A 00041200
7 CLOSE PRINT FILE AND RESET LOGGING FLAG. 00041300
YA 00041400
IF NOT PRINT.EM THEN 00041500
TELL("CANNDT ED: NOT LOGGING."); 00041400
ELSE BEGIN 00041700
PRINT.EH:=FALSE; 00041800
CLOSE(P); 0041900
END; 00042000

END STOP.LDGGING; 00042100

4 : 00042200
R A T T W L AR 200042300

C-13

C-14

441
442
443
444
445
4h.6
447
448
449
451
452
453
454
453
456
45
458
459
460
461
462
463
4bk
463
466
467
468
469
470
47
472
473
474
475
476
47
478
579
480
481
482
483
484
4835
464
487
488
469
490
491
4802
463
494

% 00042400
FUNCTION VALID.STA; 00042500

1 (0042400
% IF THE VALUE OF THE CURRENT TOKEN IS BIGGER THAN THE 00042700
% NUMBER OF STATIONS WE HAVE THEMN RETURMN FALSE (AFTER 00042800
Z DISPLAYING A WARHING) DTHERWISE RETURN TRUE. 00042900
A 00043000
IF T.VALUE > MAX.STAS THEN 00043100
BEGIN 00043200
TELL.SPD:=SPO.MSG; ZRETURN TO SENDER 00043300
TELL{"REQUEST ‘DENIED: INVALID STATION HUMBERY); 00043400

RETURN FIX(FALSE); 60043500

END; 00043600
ELSE RETURM FIX(TRUE); 00043700

END VALID.STA; 00043800

A 00043900
S T L K K0 0044000
i 00044100
FUNCTION VALID.LINE; 00044200

X 00044300
e I DD FOR LIMES WHAT VALID.STA DOES FOR STATIONS. 00044400
A 00044500
IF T.VALUE > MAX.LIMES THEN 00044600
8EGIN 00044700
TELL.EPO:=GP0.MEL; XRETURN TO SENDER 00044800
TELL("REQUEST DENIED: INVALID LINE MUNBER"); 00044500

RETURN FIX(FALSE); 00045000

END; 00045100
ELSE RETURN FIX(TRUE}; 00045200

END VALID.LINE; 00045300

A 00045400
A T UL K 0004 5500
2 00045600
FUNCTION VALID.SUBQ; 00645700

A 00045800
% CHECK FOR VALID SUBNET MUMBERS 00045500
% 00046000
IF T.VALUE > MAX.SUBGS THEN 00044100
BEGIN 000446200
TELL.SPO:=SPD.NSG; 00044200
TELL("REQUEST DENIED: IMVALID SUENET HUMBER"); 00046400

RETURN FIX(FALSE}; 000446500

END; 00046400
ELSE RETURN FIX(TRUE); 00344700

END VALID.SUEGQ; 000446800

4 000449200
A A R L A R K G 004 7000
4 00047100
FROCEDURE DO.RESULT; 00047200

i 00047300
A NON-ZERD RESULTS ARE HANDLED HERE 00047400
VA 00047500
CASE MSG.RESULT; 00047500
00047700

495
496
497
498
499
300
301
302
303
S04
308
306
07
08
309
510
Sii
512
513
514
515
Sié
517
ole
519
520
52
522
543
a4
38
526
327
o8
529
330
31
332
333
33
335
53¢
537

538

=Y
~K

S0
S

542
563
544
363
546
37
548
569

DO; XLINE NOT RDY

TEXT:="RL";
CONVERT (0, SUBSTR (TEXT, 2, 1), HS6.LINE);
DISPLAY (SUBSTR(TEXT,0,5));
END;
DO; %STA NOT RDY
TEXT:="RS";
CONVERT (0, SUBSTR(TEXT, 2, 1) ,HS6.5TA);
DISPLAY (SUBSTR(TEXT,0,5));
END;
DO; XCNTL OR WRU
DO. INPUT. HS6;
END;
333313
END CASE;
END DO.RESULT;
z
L L A R S
%
PROCEDURE DO.DC. INPUT;
%
% THIS PROCEDURE.HANDLES COMMANDS FRON THE SPO AND FROM RENOTE
% DEVICES. LOOK.UP GETS THE VERB, SCAN GETS THE PARAHETERS
% AND TELL SENDS THE REPLY (IF ANY).
2
%
% FIRST GET THE TEXT AND SET UP INIT. CONDITIONS FOR SCAN.
%
READ. TEXT (HS6, 0, 255, SOURCE 5
M.SIZE := IF HSG.LNTH <= 255 THEN MSG.LNTH ELSE 255;
PTR:=0;
ALL . DONE3=FALSE;
IF NOT SPO.MSG THEM SCAN; %SKIP OVER CONTROL CHAR
XASSUMES THAT NC SENDS IT TO US.
2
% GET THE VERB
%
LODK.UP;
%
% HANDLE EACH VERE AS NECESSARY
2
CASE WHICH.VERB;
QUIT:=1; % END
BEGIN % RS
SCAN;
IF NUKDER.TOKEN AND VALID.STA THEN
READY.STATION(T.VALUE);
END;
BEGIN % RL
SCAN;
IF NUMBER.TOKEN AND VALID.LINE THEN
READY .LINE (T.VALUE);
END;
BEGIN % T0 OR S8
SCAN;

00047800
000479049
00048000
0043100
00048200
00042300
00046400
00048500
00048400
00048700
00048200
000438200
00049000
00049100
00049200
00049300
00047400

Lun00047500

00049600
00049700
00049800
000499200
30050000
00630100
00050200
00050300
00050400
00050500
00050400
00050700
00050800
00050900
00051000
00051100
(0051200
00051300
00051400
00051500
00051400
00051700
00051800
00051900
00052000
00052100
00052200
00052300
00052400
00052500
00052600
00052700
00052800
00032900
00053000
00053100
00053200

C-15

C-16

oy
wh)

551
552

=107
it

T3
355
L4 ¢ 6

L ahd

e
sk
T
R
-
po

560
561
=62
563
ShHh
565
G6é
547

=y

v

569
570
571
572
573
574
575
576
577
578
579
580
5Bt
592
563
584
565
584
567
558
=

~iwl

590
1
502
53
594
595
574
597
598
599
400
401
£02

A
*

IF TOKEN = “SPQ" THEN TELL.SPO:=TRUE; 00053300

ELSE 00053400

BEGIN 00053500
TELL.SF0:=FALSE; 00053400

IF NUMEER.TOKEN THEN 00052700

BEGIN 00353800

IF VALID.STA THEN 00033500

S0, STA:=T VALUE; 00034000

ELSE UNDO(); 00054100

END; 00034200

ELSE GG054300

BEGIN 00054400

TELL.5P0:=6P0.H36; ZRETURN TO SENDER 00054500

TELL("REQUEST DEWIED: NEEDS VALID DEST."); 00054400

UNDO(%); 00054700

END; 00054800

END; 00034900
TELL(SUESTR(SOURCE, PTR) ; (K.SIZE-PTR)}; 04035000

END; 00035100
START.LDGOING; % 8D 0055200
ST0P.LOGOING; LED 00055200

BEGIN % o 00055400
SCad; 006055500

IF NUMBER.TOKEN AND VALID.SUBG THEN 00055600

BEGIN 00035700
MSG.TYPE:=INPUT; 00055800
HE6.LNTH:=H.SIZE-PTR; 00055900
WRITE.TEXT(H5G, 0, HEG.LNTH, SUBSTR(SOURCE, PTR) }; 00056000
YRITE.HEADER(MSH,H50.HDRY; 00054100

RUEUE (XSG, (SUBB+T.VALUEY); 00054200

END; (0054300

ELSE TELL("REQUEST DENIED: MEEDS VALID sueg"); 00054400

END; 00054300
BEGIN iZIp 00054400
ZIP(2,5UBETR(SOURCE, PTR, (H.EIZE-PTR)}); 00054700
TELL("HESSAGE ZIPPED."); 000354800

END; 000356500
BEGIN % WRU OR WM 00037000
TELL(VERSION); 00057100

END; 00057200
TELL("CANNOT RECOGNISE COMMAND"); XALL OTHER CASES 00057300

EMND CASE; 00057400

END DO.DC.INPUT 00057500

% 00057400
L L L e LT A M L U A X 00057700
4 00057800
PROCEDURE DO.ATTACH.SUEN; 00057700

4 00050000
% 1 KAKE MCS NON-PARTICIPATING FOR EACH STATION IN 00058100
X THE SUBNET THAT THE TASK WAKNTS TO RECEIVE FROM. 00058200
% 00058300
DECLARE 00058400

1 SUB.DESC CH{14), 00058500

2 SUB.NANE CH(12), 00058400

2 SUB.SIZE FIXED, 000S8700

403
06
&07
0B
&9
410
611
&12
4613
ALh
418
616
517
£18
4619
&20
&2
&2
&3
&4
&5
626
&27
428
459
&30
6314
&32
&33
&34
533
&3
&37
438
639
&40
&4l
&2
&5
&hh
&3
&b
&7
&8
&9
&350
651
652
&53
&5
&858
&56
&7
&8
&59

1 FIXED; 00052800
SUBNET.DESCRIPTION(HSG. SUBR, SUB.DESE) ; 00058500
SUB.SIZE:+5UB.SIZE; 00059000
DECLARE 00059100
1 SUB.STAS CH(SUB.SIZEY, %STATIONS OM THIS SUBNET 00059200

2 5UB.STN FIXED; 00059300
SUBNET.STATIONS(4S6.SUBA, SUB.5TAS) ; 00059400
IF TSK.STN((MEG.TSK-1)%223/=0 THEN XALREADY ATTACHED TO A § 00059500
BEGIN 00059400

DISPLAY("CANNOT ATTACH: TASK ALREADY HAS SUBQ™); 00035700

DISALLOW, INPUT (H35. SUBR, ¥SG.TSK) 00059200
END; 00059700
ELSE 00040000
BEGIN 06040100

TSK.STN((HSG.TSK-1)%22):=SUB.SIZE; ZND. OF STHS#2 0u040200

1:=0; 00040200

DO ROUTER FOREVER; 00040400

IF 1 »= SUB.SIZE THEN UNDD ROUTER; 00040500

IF 1 »= 20 THEN 00040400

BEGIN 00040700

DISPLAY ("CANNOT ROUTE MDRE THAN 10 STHS PER @"); 00040800

UNDO ROUTER; 00060900

END; 00061000

ROUTE. INPUT(SUR.STH(IY, (SUDR+HSG.SUBR)); 00061100

TEK.STHU(H55. TSK-1)#22+142) :=SUB.STH(I); 00061200

1:42; 00061300

END ROUTER; 00041400

ALLOY . INPUT(}35.SUBQ, HEG. TSK) 7 00061500

END; 00061600

END DO.ATTACH.SUBN; 0061700

1 00041800
L R s L L U L L E 00061900
00042000

PROCEDURE DO.TASK.DETACH; 00042100

% 00042200

11 MAKE MCS PARTICIPATE FOR THOSE STATIONS IN SUBQ OF 00042300

% THE TASK WHICH HAS JUST GONE TO EOJ. 00042400

% 00042500
DECLARE (I, J)FIXED; 00062400
J:=TSK.STN((MSG.TSK-1)%22); 00062700
1:=0; 00062200
DO FOREVER; 00042900

IF I»=J DR I»=20 THEN UNDO; 00043000

ROUTE. INPUT(TSK.STN((HS6.TSK-1)%224142),MCSQ); 00042100

1:42; 000463200
END; 02043300
TSK.STN((HSG. TSK-1)%28) 1 =0; 00043400
END DO.TASK.DETACH; 00043500

b 00063400

L L L L R S L A A 00063700

p 00063800

PROCEDURE DO.ATTACH.STA; 00063900
ROUTE .DUTPUT (HSG.§TA, HCA); 00064000
ALLOW.OUTPUT (MS6.5TA, HSG. TSK) 00064100
EMD DO.ATTACH.STA; 00044200

C-17

560 X (0064300

& L S R v 00064400
Gh2 % 00064500
&3 $1F DEBUGH THEN (0064600
&bk PROCEDURE LOGGIT; 00064700
&S U DEBUG CODE GOES HERE 00044800
&bt P.BUF:=""; (0044900
567 IF NOT PRINT.EM THEM RETURN; - %NO LOGGING 00043000
448 CONVERT(0;P.STN,H5G.5TA); 00065100
59 CONVERT(Q,P.TYP, HSG.TYPE); 00065200
&70 READ.TEXT(MSG,0,120,P.TXT); 00063200
&1 WRITE(P); 00065400
&72 END LOGGIT; 00065500
673 $EHD 000454600
&7 % 00065700
7S T T A T T A SO L AT 00065800
676 %L 00065200
&7 PROCEDURE INITIALIZE; 00044000
&78 % 00066100
&79 % (0066200
&0 7 MAKE MCS PARTICIPATING. 00066200
481 % READY ALL THE LINES. 00046400
&B2 % SET THE HCS @ LIMIT 10 S. G0044500
B3 % PUT SPACES IN THE PRINT BUFFER (FOR LOGGING); 00064400
&Be % 00064700
&8s DISPLAY(VERSION); 00064800
686 P.BUF:=""; 000669G0
87 LSN:=0; 00047000
&0 DO FOREVER; 00067100
&89 ROUTE. INPUT (LSN, HCE®) 00047200
&80 ROUTE.DUTPUT (LSN, HCSR); 00067200
&1 IF CLSN:41] » MAX.STAS THEN UNDOD; 00067400
4692 END; 00067500
&3 SET.QUEUE.LIMIT((HCSR) ,5); 00067600
&6 LLN:=0; 00047700
693 DD FOREVER; 00047800
&6 LINE.PENDING(LLN):=1; 00047810
&97 GET . HESSAGE.SPACE (HSG,0); 000467900
&8 READ .HEADER (MSG, HE6.HDR) 00048000
&99 MSG.TYPE:=MAKE.LINE.RDY; 00048100
700 M50, LINE:=LLN; 00068200
701 WRITE.HEADER (MSG, 56 HDR) ; 00048300
702 QUEUE (MSG,NCRY; 00068400
703 IF CLLM:+11:MAX.LINES THEN UNDO; 00048500
704 END; 00058600
705 END INITIALIZE; 00048700
706 $PAGE 00068710
O L v R s M T R A T T 0 0068800
708 ¥ Z00068%200
709 % 885 TITIT A RRR TTTTT H H EEEE RRR EEEE 00042000
710 X8 T AA R R T H HE R R E 00069100
711 X 88 T AAA RRR T HHHH EEE RRR EEE %00069200
712 X 8 T A A RR T H HE RR E 100069300
713 % SS8S T A ARR T H H EEEE R R EEEE D 700049400

716 A #00069500

715
716
717
718
719
720
M
702
703
734
7S
el
727
708
729
750
731
7Xe
733
T34
738
736
73

738
729
740
el
742
743
764
743
746
747
748
749
750
7l
752

753
754
753
T5b
757
758
759
760
761
762
763
Thk
763
7646
767
768
769

BRI RINI B IR RN RPN RPN RS NP DY B) By B IR YO T LYY .,
AR A A A A ke A A A e A A A A A e A e e

$END

INITIALIZE;

DO MAIN.LOOP FOREVER;
FETCH.HESSAGE(MSG);
READ.HEADER (MSB,MSG.HIR)

$IF DEBUGN THEN

LOGGIT;

IF MSG.RESULT /= 0 THEN DD.RESULT;

ELSE

CASE MSG.TYPE;
; %0
D0. INPUT.HSG; 11
; i2
; %3
; r A
H Z9

0; 14

END;

i
DO;

END;

3 e e N N e

(=

.
’

TELL.SPD:=TRUE;

LSN: =56, 5TA;
STA.PENDING (LSN) £ =05

TEXT:="SR"}

CONVERT(0, SUBSTR(TEXT, 2, 1),L8N);
DISPLAY (SUBSTR(TEXT,0,5));

-~

7
8

-~

LLM:=HSG.LINE;
LINE.PENDING(LLN) :=0;
TEXT:="LR";
CONVERT(0,SUBSTR(TEXT,2,1),LLNY;
DISPLAY(SUBSTR(TEXT,Q,3));

79

10
11
12
13
16

e e

a2

SPO.HSL:=TRUE;

DO.DC.INPUT; 215
END;
i X 16
7 i 17
DO.ATTACH. SUEN; %18
DO.ATTACH.STA; 119
; 120
i i2
; 122
i 1383
} 124
DO.TASK.DETACH; 123
END CASE;

RELEASE .MESSAGE . SPACE (HSG);

KRRXALLL00069400
00069700
00069800
00069900
00070000
00070100
00070200
C0G70200
00070400
00070500
00070400
60076700
0070200
00070900
00071000
00071100

00071200

00071300
00071400
00071500
02071600
00071700
00071800
00071900
00072000
00472100
00072200
00072300
03072600
00072500
00072400
00072700
00072800
00072700
0073000
00073100
00073200
00073300
00073400

ZASSUME REPLY TO EPO - MAY BE CHANGED 0073500

00073400
00073700
00073800
00073200
00074000
00074100
00074200
(60074300
00074400
00074500
000744600
00074700
00074800
00074900
00075000

C-19

770 IF QUIT THEM UNDO; %SET BY DPZRATOR 00073100

771 END MAIN.LOOP; 00675200
772 DISPLAY("MCS HALTED"); 00075200
773 STOP; 00075400
774 END OLDWEIRDHAROLD; 00075500
773 FINI; 00075600
726 $PAGE 00075610
777 FILE.DEFAULT(P):=TYPEZ; 00075700
778 ND,BUFFERS(P}:=4; 00073800
779 MO.LABEL(P):=1; 00075900
70 FILL TIPE.SEG WITH 00675000
781 9%,94,9%,9%,9%, 0%, 9%, 9%, 9%, 9%, 00074100
94,9%, 5%, 9%, 0%, 04, 0%, 9%, 9%, 94, 00076200

33 Q%,0%,0%,9%,0%,04, 0%, 0%, 0%, 04, 000746300
764 9%,9%, 00076400
785 &%, 00074500
7Bt S#, 5%, 5%, 5%,5%,5%,5%,5%,5%,5%, 000746600
87 0%, 5%, 5%,5%,5%, 00074700
768 13,10, 0%, 1%, 1%, 1%, 1%, 1%, 1%, 1%, 00074800
789 ¥, 5%, 5%,5%,3%,5%, 5%, 00076200
720 0%,0%,0%;0%,0%,0%,0%,0%,0%,0%, 00077000
71 0%,0%,0%,0%,0%,0%;0%,0%,0%,0%, 00077100
792 0%, 0%, 0%, 0%,0%,0%, 00077200
23 5%, 5%, 5%, 5%, 5%, 5%, 00077200
4 0‘3\‘10*;0*}0*10*!0*!0*;0*;0*;0*; 00077400
785 C-*,O*;O*;O*;Oi‘,0%,0*;0*,0*;0*! 00077500
el 0%, 0%,0%,0%,0%,0%, 00077400
707 5%,5%,5%,5%,5%; 00077700
798 00077200
e FILL VERB.SEGC WITH 0007700
200 "END QCOCOFFR", K STOP MCS 00078000
801 "RS BCO01FFE", 4 READY STATION 00078100
802 "RL @QO02FFE", A READY LINE 00078200
803 "T0 @0003G08™, A SEHD A MESSAGE (0078300
804 "§S eolozoce”, A SAME AS TO 00078400
82085 "SD @C00400R", A START DEBUG PRINT 00Q7ES00
204 "ED @OOOS00R", A END DEBUG PRINT 00078400
807 QX 2eo0s00@", A [UEUE MESSAGE 00078700
208 "ZIP @0007008", 4 ZIP MESSAGE TD MCP 0007800
209 "WRU @000800R", %4 WHD ARE YOU 00070900
81.0 "WM @0008008"; X WHAT NMCS - GAME AS WRU 00079000

SAMPLE DATA COMM TASKS MPLII
Three sample data comm tasks are included in this The symbolic queue name is accepted from the

appendix. These tasks are functionally equivalent, SPO.
each being coded in a different language: COBOL,

MPLII, and RPG. Because of the nature of RPG, it COBOL
is not practical to describe the tasks in terms of line

numbers; much of the task is transparent to the user. The symbolic queue name is taken from the initiat-
. L. ing message if present; otherwise, it is accepted from
Functional Description the SPO. The DC task then:
Upon initiation, the DC task opens a printer file 1. Receives a message.
(used for logging messages) and obtains the name of 2. Logs the contents of the input CD.
the subnet queue from which it obtains messages. 3. Prints the message text.

C-20

4. Echoes ‘‘good’’ messages to the originating
station.

S. Logs the output CD if a message was
echoed.

6. Reports any errors on the SPO.

7. Returns to step 1.

Detailed Description

Program Logic

The logic of the program proceeds as follows: (see
MPLII 29400 - 30200, COBOL 23800 - 28200.)

1. Open the printer file.

2. Find the symbolic queue name to be used
for DC input.

3. Turn messages around until end-of-job.

4. Close the printer file.

5. Stop.

GET.QUEUE.NAME

(See MPLII 10500 - 11200, COBOL 10900 -
11600.)

This routine results in the symbolic queue name to
be used to be placed in SYMBOLIC.QUEUE. In the
COBOL version, there is code to check if the
INITIAL CD has been filled form the EX or ZIP of
the task. If the SYMBOLIC-QUEUE field is blank,
then the task waits on an ACCEPT. In the MPLII
version, there are no provisions for handling an initi-
ating message. (There is, of source, no reason why
this could not be done.)

Turnaround

(See MPLII 27600 - 28800, COBOL 26200 -
27100.)

The logic proceeds as follows:

1. Take the next message from the (input)
queue.

2. If the message is good, send it to the ori-
ginating station.

3. Print the contents of the input CD and the
message received.

4. If the input message is good (implying that
it has been sent back), print the contents of
the output CD.

5. Report any errors found in this transaction.

NOTE
If steps 2 and 3 are interchanged, the
program takes longer to turn a message
around. Coded as it is, the program
causes the message to be sent to the re-
mote device in parallel with the printing

of the input CD and message. The rea-
son for this is that the printing
operation requires many communicates,
each causing the program to be short-
waited if the printer buffers are full.
The SEND, however, is only a single
communicate and the program regains
control before the physical data comm
transfer is complete (allowing the print
communicates to be issued).

Program readability has been improved
by the use of DEFINES in MPLII (seq.
8400 - 1010) and condition names in
COBOL (seq. 8800 - 9100 and 9800 -
10300). However, a large amount of S-
code is generated for DC constructs in
MPLII and the result is that the DE-
FINES used in this example cause the
program to be much larger than if
FUNCTION(s) and PROCEDURE(s)
had been used to encode DC con-
structs.

GET.MESSAGE
(See MPLII 11300-12600, COBOL 11700-13300.)

The logic proceeds as follows:

1. Space fill the area used to contain the next
message.

2. Set-up the required fields in the input CD.
3. Take the next message from the subnet
queue.

4. Set the EOJ flag to true if the first three
characters of the message are END.

XMIT

(See MPLII 17800 - 19000, COBOL 16000 -
17000).

The logic proceeds as follows:

1. Set-up the output CD.

2. Send the message.

3. Set a flag (OUTPUT.STATUS.VALID) to
true.

NOTE

This flag is reset in
DISP.ERRORS.OUT after displaying
the output status. The flag is used to
prevent the same output status being
analyzed twice (as would otherwise oc-
cur after an error which would have
prevented the echoing of a message).

C21

LOG.IN.CD

(See MPLII 13600 - 17700, COBOL 14100 -
16800.)

The logic proceeds as follows:
1. Space fill the print buffer.

2. Place the contents of the input CD into the
print buffer.

3. Write the print buffer.

4. If the message is good, print the message
text.

NOTE
In the MPLII program, the sub-queue
fields in the print buffer are set to
spaces and printed in order to preserve
the same print format as the COBOL
program.

LOG.OUT.CD

(See MPLII 19100 - 20300, COBOL 18000 -
19000.)

This procedure copies the contents of the output
CD to the print buffer and then writes this buffer.

ANALYZE.ERRORS (See MPLII 26800 -
27500, COBOL 25400 - 21600.)

This procedure displays errors messages on the
SPO and waits for an operator reply. If no errors
were encountered during this transaction, this proce-
dure is a no-op.

The actual work is done by DISP.ERRORS.IN
(MPLII 20400-22700, COBOL 19100-21600) and DIS-
P.ERRORS.OUT (MPLII 22800-26700, COBOL
21700-25300). If the operator replies with an END in
the next turnaround cycle, the program goes to end
of job.

SAMPLE COBOL PROGRAM

0001004 LINE-CODE OPTCODE

000110x
G00115%
000120
000125

DO NN U N e

000140% DOF THE PATENT DIVISION
10 000145% MICHIGAN 48232,

11 000150%
12 000135%
13 000160%

PROPRIETARY PROGRAM HATERIAL

THIS MATERIAL IS PROPRIETARY TO BURRDUGHS CORPORATION
000130% AND IS NOT TO BE REPRODUCED, USED OR DISCLOSED EXCEPT IN
000135% ACCORDAHCE WITH PROGRAM LICEMCE OR UFON WRITTEN AUTHORIZATION
OF BURRCUGHS CORPORATIDN,

COPYRIGHT (C) 1979 BURROUGHS CORPDRATION

OO0 0S¥ X AR XXMM AL HRRAAFEFENRAH R RN AR B RNRA RN EAXAAFHEAREARRRAANK A

DETROIT,

de N M N W X W W K K W

16 Q00T AN R E RN AR AR AN XA E AR R ARRRA RS EARARENARRAARAAAAR IR AR AR RARRRRRF RN

15 000200 IDEMTIFICATION DIVISION.
16 000300 ENVIRONMENT DIVISION.

7 000400 INPUT-DUTPUT SECTION.
16 060500 FILE-CONTROL.

19 000600

SELECT LNG ASSIGN TD PRINTER.

20 000700 DATA DIVISION.

21 CO0BOO FILE SECTION.

22 000%00 FD LGG.

2% 001000 01 PRINT-LINE PIC X(120).

24 001100%——THE ABGVE LINE IS OMLY FOR SPACE FILLING. e

25001200 01 LP-IN.
26 001300

a7 001408
28 001500
2 001400

02 FILLER PIC X.

02 FILLER PIC X.
C-22

| 02 LP-SYMBOLIC-RUELE PIC X(12).

02 LP-SUB-Q-1 PIC X(12},

|
i
|
|
|
H
i
i

45

43
4y

ALY
ey

&y

s
48
49
0
31
5’,3
33
S
(o
Al

-
)

I.\—;J
~bi
=0
=
&
&1
6"\

&

&

45

&7
48
L0
L™
70
71
7e
73
7'(,.
7S
76
77
i)
i
o0
81
g
a3

84

001700 | 02 LP-SUR-Q-2.PIC X(12),
ocieoe 02 FILLER PIC X.

001900 02 LP-EUB-B-3 PIC X(12).
002000 02 FILLER PIC X.

0c2100 02 LP-MESSAGE-DATE PIC 99/99/99.
002200 02 FILLER PIC X.

002300 | 02 LP-HESSAGE-TIME PIC 99/99/99/99.
002400 02 FILLER PIC X,

002300 02 LP-SYHBOLIC-SOURCE PIC X(12).
002400 02 FILLER PIC X.

002700 02 LP-TEXT-LENGTH-IN PIC 7Z7Z9.
002800 02 FILLER PIC X.

002900 02 LP-END-KEY PIC 9.

002000 | 02 FILLER PIC X

003100 ' 02 LP-STATUS-KEY-IN PIC 99,

003200 02 FILLER PIC X.

00330¢ 07 LP-MESSAGE-COUNT PIC Z

17729,
GGING

.
(03400% —THE ABOVE RECORD ALLOUWS LO
003500 01 BUFFER-LINE PIC X(BQ).
0034600%—— THIS LINE IS TO DISPLAY RECEIVED TEXT ./ — e
003700 01 LP-0UT.

003800 02 LP-DEST-COUNT PIC ZZZZ9.

003700 02 FILLER PIC X.

004060 02 LP-TEXT-LENGTH-OUT PIC ZZZZ9.
004100 02 FILLER PIC X.

004200 02 LP-STATUS-KEY-DUT PIC 99.

004300 02 FILLER PIC X.

004400 02 LP-ERROR-KEY-QUT PIC 9.

004500 02 FILLER PIC X.

004400 102 LP-GYMECLIC-DESTINATION PIC X(12).

THE I?FUT Ch.

004700% — THE ABOVE RECORD ALLOWS LOGGING THE QUTPUT CD.
004800 WORKING-STORAGE SECTION.

004900 01 DC-BUFFER.

005000 lOﬂ DC-SLOT PIC X(20) DCCURS 24 TIMES.
005100x— DC BUFFER FORMATTED AS TD SCREEM.
005200 02 DC-BUF-REDEF RETEFINES DC-SLOT.

i}

005300 | 03 DC-HESSAGE PIC XXX.
005400% ————TD ALLOW ACCESS TO THE "END" MESSAGE.
005500 | 03 DC-REST PIC X(1917).

005600 01 CONK-ERROR. -
005700 |02 TYPE-FIELD PIC X(15). i
00SB00 02 ERROR-FIELD PIC 99. |

005900 |02 COWMENT-FIELD PIC X(45). |
004000 77 PRINT-LINES PIC 99 VALUE 0.

004100 77 SPARE-CHARACTERS PIC 99 VALUE 0.
004200 77 LINE-POINTER PIC 99 VALUE 0.

004300 77 END-FLAG PIC X VALUE "R".

004400 88 EDJ VALUE "S“.

Q04500 77 DUT-STATUS-VALID PIC X VALUE "F".

006400 88 QUTPUT-STATUS-VALID VALUE “T*.

00&700 COMMUMICATION SECTION.

004800 CD INPUT-CD FOR INITIAL INPUT.

0070005 NOTE "INITIAL" CLAUSE.

007100% IF AN INITIATING MESSAGE IS INCLUDED IN THE "EX" OR "ZIP"

C23

C-24

&

@ 2

fa]
bes]
£

g S;J]

=

007200
007300%
007400
007500
007400%

OF THIS TASE,
FIRST 87 CHARACTERS

THEN THIS CD AREA WILL BE DVERWRITTEN WITH THE
DF THE TEXT. THE PROGR&H DOES *NOT* SPACE

FILL THE SUB-GUEUE FIELDS. MCP WILL RETURN STATUS 20 (ACCESS
DENIED) IF SUE-QUEUE FIELDS ARE NON-SPACE.

007700 01
007200
007900
008000
(08100
008200
008300
008400
008500
G0B40D
008700
008800 |8
00BR00C 1E8
007000 (88
009100 JBE

IN-CD.

02 SYHBOLIC-QUEUE PIC X(12).
02 SUB-B-1 PIC X(12) VALUE "
(2 SUB-§-2 PIC X(12) VALUE "
02 SUB-B-3 PIC X(12) VALUE "
02 MESSAGE-DATE PIC 9(é).
02 HESSAGE-TIME PIC 9(8).

% APPROPRIATE NDL "FILE" NAME.

02 SYMBOLIC-SOURCE PIC X(12),

02 TEXT-LENGTH-IN PIC 9(4).

02 END-KEY PIC 9.

02 STATUS-KEY-IN PIC 99.

600D-TNPUT-STATUS VALUE 00.

UNKNOWN-INPUT VALUE 20.

MCS-MISSING VALUE 91.

KNDUK-INPUT-ERRORS VALUES 20 91.

009200
009300 CD
009400 01
009500
008400
009700_

g2
ooeooo £a
o*oooo‘sc
010100 88
010200 88
010200/ 88
010400

010500

010800

02 HESSAGE-COUNT PIC 9(é).

QUTPUT-CD FOR QUTPUT.
OuT-CD.

(2 DESTINATIDN-COUNT PIC 9(4) VALUE 1.
02 TEXT-LENGTH-OUT PIC 9(4).
02 STATUS-KEY-DUT PIC 99.
GOOD-0UTPUT-STATUS VALUE 00.
UNKNOUN-BUTPUT VALUE 20.
CAD-DESTINATION-COUNT VALUE 30.
BAD-TEXT-LENGTH VALUE 50.

NCSS-HISSING VALUE 91.

_KNOWN-OUTPUT-ERRORS VALUES 20 20 S0 91. /

02 ERROR-KEY PIC 9.

02 SYMBOLIC-DESTINATION PIC X(12),
010400 PROCEDURE DIVISIDN,
010700 MAIN.

GO TO START-OF-FROGRAM.

010500 GET-QUEUE-NAME.
0110008 ——— ——
GETS SUBNETOUEUE MAME FROX OPERATOR (IF NOT IN INIT HESSAGE) .

THIS NAME UST BE DEFINED IN THE NDL PROGRAM FILE.
011200%—

011100
011200

011400
011500
011600

IF SYHBOLIC—QUEUE IS EQUAL TO SP&CES Z =

"

/
/

/

ND INIT HESSAGE—

THEN DISPLAY "TYPE INPUT-QUEUE NAME...

ACCEPT &Y

011700 GET-HESSAGE.

HEOLIC-QUEUE.

011800
011900
012000
012100

SPACE FILL DATA-COMM BUFFER, TAKE NEXT M

SET EOJ FLAG IF END RECEIVED.

012200
012300
012400
012500
012400

MO“E cPACES TO
SYMBOLIC-SOURCE
END-KEY
STATUS-KEY-IN.

HOVE O TO

SSAGE FROM SUBKET 8,

7: MPL_LIKE PROGRAM LA‘{DUT‘_ T s o

140
141
142
43
144
143
164
167
148
149
150
151
152
153
154
18
S
157
15
159
160
161
162
163
164
165
166
167
148
169
170
i
172
173
174
175
174
177
178
179
180
101
182
183
184
185
184
167
188
189
190
191
162
193
104

012700 HESSAGE-DATE
012800 MESSAGE-TINE
012900 TEXT-LENGTH-IN
013000 HESSAGE-COUNT.

013100 MOVE SPACES TO DC-BUFFER,
013260 RECEIVE IMPUT-CD MESSAGE INTO DC-BUFFER.

013200 IF DC-HESSAGE = “END" MOVE "S" TQ END-FLAG.
013400 WRITE-LINES.
013500%

012400 WRITE INFORNATIDM FROM LAST MESSAGE RECEIVED TO PRINTER.
013700 B
013300 HOVE SPACES TO PRINT- LINE.

013900 WRITE BUFFER-LINE FROM DC-SLOT(LIME-POINTER) AFTER i.

014000 ADD 1 TD LINE-POINTER,

014100 LOG-IN-CD.

D14200% e - e
014300 URITE CONTENT° DF CURRENR INPU] CD TO PRINTER

014500%— - - -
014300 HOUE SPACES TD PRINT LINE

014400 HOVE SYMBOLIC-QUEUE TO LP-SYMBOLIC-QUEUE.
014700 MOVE SUE-Q@-1 70 LP-SUR-Q-1,

014800 MOVE SUB-R-2 TO LP-SUB-R-2.

014900 MOVE SUB-G-3 TO LP-SUB-B-3.

015000 HOVE MESSAGE-DATE TO LP-HESSARE-DATE.

015100 HOVE MESSAGE-TIME TO LP-MESSAGE-TIME.

015200 MOVE SYMBCLIC-SDURCE TO LP-SYMBOLIC-SOURCE.
015300 MOVE TEXT-LEMGTH-IMN TO LP-TEXT-LENGTH-IN.
015400 MOVE END-KEY TC LP-END-KEY,

015500 MOVE STATUS-KEY-IN TO LP-STATUS-KEY-IN. Textfenght-in

015600 ACCEPT INPUT-CD HESSAGE COUNT. T
015700 MOVE HESSAGE-COUNT TO LP-MESSAGE-COUNT.

[,

015800 WRITE LP-IN AFTER 2. s Prlud-line
015900 IF HOT GOOD-INPUT-STATUS | Rest

016000 GO TO LOG-IN-CD-END. = & <¢ T | pek -
016100 nzuzna BO INTD TEXT-LENGTH-IN GIVING PRINT-LINES | ~Fe7e7Cherdiers.
014200 REMAIMDER SPARC-CHARACTERS.

014300 MOVE 1 TO LINE-POINTER.

016400 PERFORM WRITE-LINES UNTIL LINE-PDINTER » PRINT-LINES.
016500 IF SPARE-CHARACTERS IS NOT =

014600 PERFORM WRITE-LINES.

014700 LOG-IN-CD-END.

014800 EXIT.

014200 XMIT.

0170004 , o e
017100% SEMD CURRENT HESSAGE BACK TO ORIGINATOR.

017200% HARK DUTPUT STATUS AS MOT HAVING BEEN ANALYSED.

017300 e
017400 MOVE TEYT LCNGTH IN TO TEXT- LENGTH-UUT.

017500 YOVE SYMEOLIC-SOURCE TO SYMBOLIC-DESTINATION.

017400 HOVE SPACES TD STATUS-KEY-QUT

017700 ERROR-KEY.

017800 SEND DUTPUT-CD FROM DC-BUFFER WITH EMI.

017900 HOVE "T" TO OUT-STATUS-VALID.

018000 LOG-DUT-CH.

C-25

C-26

EEAS IS I AVINLY]

v

I3 1 N
(23
&~ 02

g (g

04 O3 U Ld N G2 Gl

id
~o

O~ O~ LN

o

Ny e n
o

s

RQRL
A~ Gl O e

R,
o~ ¢n

247

,|
LA

el

8»9
250

018200 WRITE THE- ’DNTEPTS OF THE CURRENT DUTPUT CD TO PRINTER.
0183004 ——— amaae
018400 HOUE EPACES TO PRINT- LINE.
01£500 MDVE DESTIWATION-COUNT TG LP-DEST-COUNT.
018600 MOVE TEXT-LENGTH-CUY TO LP-TEXT-LENGTH-QUT.
018760 MOVE STATUS-KEY-DUT TO LP-STATUS-KEY-OUT.
018800 MOVE ERRCR-KEY TO LP-ERRDR-KEY-OUT.
(18500 MGWE SYMDOLIC-DESTINATION TD LP-SYMBOLIC-DESTINATION.
017000 WRITE LP-DUT AFTER 1.
01%10G DISP-ERRORSE- P
OIQQOO*_.W S — —
019300 REPORT TO UPERATODR ON ERRORS FROM LAST INPUT FROM DATA-COMM.
019400% ——
019300 MOVE "REFEIUE ERPDR " TD TYPE FIELD.
019400 HOVE STATUS-KEY-IN TO ERROR-FIELD.
019700 IF UNKHMDWM-INPUT

019600 MOVE " (QUEUE UNKNDWN DR ACCESS DENIED)"
019900 TO COMHENT-FIELD.

020000 IF HES-MISEING

020100 HOVE " (MCS/DCSS MOT PRESENT)"

020200 TO COMMENT-FIELD.

020300 IF NOT KMOWN-INPUT-ERRORS

020400 HOVE " (UNKNOWN ERROR)"

020500 TO COMMENT-FIELD.

0204600 DISPLAY COMM-ERROR.
020700 IF UNKNDWH-INPUT

020200 MDVE SPACES TD SYMECLIC-QUEUE

020900 PERFORM GET-QUELE-NAME.

¢21000 IF HCS-HIGSING

021100 DISPLAY "INITIATE A SUITABLE HCS THEN ""AX"® THIS TASK"
021200 ACCEPT DC-MESSAGE.

021200 IF NOT ENOWN-INPUT-ERRDRS

021400 DISPLAY “"PROGRAH ERROR - "“DP"" THIS TASK"
021500 ACCEPT DC-MESSAGE

021400 STOP RUN,

021700 DISP cRRDRS OUT

021800 2—

0219004 RCPORT TO OPERATOR ON ERRORS FRON LAST OUTPUT TO DATA-COMM.
022000 ¥

032100 HOVE "TRAMSIT ERRCR" T0 TYPE-FIELD.

022200 MOVE STATUS-KEY-OUT TO ERROR-FIELD.

022300 IF UNKHOWN-OUTPUT

022400 MOVE " (STATION UNKNOWN OR ACCESS DENIED)
022500 TO COMMENT-FIELD.

022600 IF BAL-DESTIMATIOM-COUNT . oue 0 gt

02280 T0 COMMENT-FIELD.

022900 IF BAD-TEXT-LENGTH

023000 MOVE “ (REGUIRED TEXT-LENGTH > DC-BUFFER SIZE)"

023100 TO COMNENT-FIELD.

023200 IF DCSS-HISSING

023200 MOVE " (MCS/DCSS NDT PRESENT)®

023400 TO COMHENT-FIELD.

023500 IF NOT KNOWM-OUTPUT-ERRORS

023400 HOVE " (LMKEHOUN-ERROR) "

023700 TO COMNENT-FIELD.

022800 DISPLAY COMM-ERROR.
023900 IF UNKNOWN-OUTPUT

024000 DISPLAY “CORRECT, THEN ““AX"" THIS TASK"

024100 ACCEPT DC-MESSAGE.

024200 IF BAD-DESTIMATION-COUNT DR NOT KNOWN-OUTPUT-ERRORS
024300 DIGPLAY "PROGRAM ERROR - "“DP"™" THIS TASK"

024400 ACCEPT DC-MESSAGE

024500 STOP RUN.

024600 IF BAD-TEXT-LENGTH

024700 DISPLAY "STATION IS HOT TDEI0 - SELECT AMOTHER QUEUE"
024800 MOVE SPACES TD SYMBOLIC-QUEUE

026900 PERFORM GET-QUEUE-NANE.

025000 IF DCSS-MISSING

025100 DISPLAY "INITIATE & SUITABLE MCS THEN “"AX"" THIS TASGK"
025200 ACCEPT DL-MESSAGE,

025200 HOVE "F" TO DUT-STATUS-VALID.
025400 ANALYSE-ERRORS.
025500%

025400+ REFRT ERRORS IF ANY. *}
025700% — - S A
025800 IF NOT GODOD-INPUT-STATUS

025900 PERFORM DISP-ERRORS-IN,

026000 IF NOT GOOD-DUTPUT-STATUS AND OUTPUT-STATUS-VALID

(26100 PERFORK LISP-ERRORS-OUT.

026200 THURNAROUND.

028300 -

026400% TAKE NEXT MESSAGE AND SEND IT BACK FROM WHENCE IT CAME &
026300% IF ERROR FREE.

024700 PERFORM GET-MESSAGE.

026800 IF GOOD-INPUT-STATUS PERFORM XMIT. ¥ XMIT *BEFOREx LOG ALLOWS—
0246900 PERFORM LDG-IH-CD THRU LDG-IN-CD-EMD. X PRINTER AMND QUTPUT-DL===

027000 IF GOOD-IHPUT-STATUS PERFORM LOG-DUT-CD. % TO INTERLEAYE ==
027100 PERFORM ANALYSE-ERRORS.

027200 START-0OF-PROGRAM.

027300%%%x3

027400%%%%%

027500%%xx33% START OF PROGRAN %X ydyddiiXXeR¥XdaXRXstanerRntess
027500%%x%%

0277005 % x %%

027800 OPEN QUTPUT LOG.

0279200 PERFORM GET-GUEUE-NAME.

026000 PERFORM TURNAROUNT UNTIL EDJ.

028100 CLOSE LOG RELEASE.

028200 STOP RUN.

C-28

py
O NI N O U G e

11

SAMPLE RPG PROGRAM

T e R et PP E T
00002F* 3
GOO03F* PROFRIETARY PROGRAM MATERIAL #
GOO04F* !
GOCOSF# THIS MATERIAL IS PROPRIETARY TO BURROUGHS CORPORATION #
Q000&F* AND IS NOT TO BC REFRODUCED, USED OR DISCLOSED EXCEPT IN #
Q0007F* ACCORDANCE WITH PROGRAM LICENCE OR UPON WRITTEN AUTHORIZATICH #
QBOCEF* OF THE PATENT DIVISION OF BURROUGHS CORPORATION, DETROIT,
000G9F* MICHIGAN 4B232. *
0D010F* *
CO011F COPYRIGHT (C) 1979 BURROUGHS CORPORATION *
00012F *

Q00 LIF ¥ X ¥ ERAXXERXARXFXHARRNNNNNRARHHNA R R IRARRR AR R KR HE RS ERREARRAAN
QO01SFKEY 1P, 80 80 KEYBORD

Q0020F ¥

Q0030F

COO40F FILEQ IS THE SYH2OLIC QUEUE MAHE . THIS MAME MUST BE DEFINED IN THE
0GOS0F» FILE SECTION OF THE NLLSYS FILE TO BE USED.

00040F * THIS FILE IS FURTHER DESCRIBED ON THE T-SPEC,

0G070F* THE FILE IS DEFINED AS COMBINED DEMAND. THIS HEANS THAT A MESSAGE
COOB0F» CAN BE RECEIVED AMD TRANSMITTED IN THE SAME CYCLE.

D00%0F %

GO100F %

O0110FFILED CD 132 132 DATACOM

00L120FOUTPUT O 132 132 FRINTER

001307

0014074

00N150T# THE DATA COMMUNICATION SPECIFICATION (T-SPEC) FURTHER DESCRIBES THE
001407 FILE DEFINED OM THE F-SPEC.

001707 THE EMTRY OF T IN COLUMN 16 DEFINES THAT THE FILE CAN TRANGMIT AND
001807 RECEIVE (MDTE - AN ENTRY OF R WOULD MEAN THE SAHE WHEN THE FILE IS
001907 CORBINED).

002007 THE ENTRY OF § IN COLUMM 40 DEFINES THAT THE FIELD NAME IN COLUMNS
002107+ 41-47 WILL CONTAIN THE STATION NAME. THE STATION NAME IS THE
00220T* SYMBOLIC SOURCE, AND THE STATION NAME MUST BE DEFINED IN THE STATION
002307 SECTION GF THE NDLSYS FILE TD BE USED.

002407 THE ENTRY OF 01 IN COLUMNS 53-54 IS THE ERROR INDICATOR. THIS
(02507 INDICATOR WILL BE SET ON WHEN ANY OF THE ERRDRS LISTED ON THE
002607 0-SPECS HAS OCCURED.

002707 THE ENTRY OF S IM COLUMNS &3 DEFINES THAT THE FIELD NAKE IN COLUMNS
00280T* 64-70 WILL CONTAIN THE MESSAGE LENGTH OF ANY MESSAGES RECEIVED OR
0029074 TRANEMITTED

00300T

007107

0(0320TFILEC T 8STAT 01 EMESS

003301«

003401 %

Q0TS0 THE COMBINED DATA COMMUMICATIONS FILE MUST BE FURTHER DESCRIBED ON
003401 AN I-SPEC.

002701

003801 %

00J90IFILEC NS 05

004001 1 80 ALL

00410C%

004200

b d

73
74
s
7
7
70
7
o0
ol
82

ox
P

£

o

P

M,
<Ry

87
&8

&0

o1
2
oz
4
A
26
o7
3]
op

160

101

102

163

104

108

104

107

108

109

110

004200k
004400
Q04500
004400
00470C
004B0C
004900
0|<WﬁC§
00S10C*
00S20C*
(05300
Q05400
OOJJOL*
005400
00570C*
005800
00SP0Cx
Q04000
004100
004200
00420CH
06400+
004500
00660C
00470C
004B0CH
00L90CH
007000
00710C
00720C¥
00730C
(07400
00750C
00760C#
00770C
00780C
007900
00B0CCH
00B10C#*
00B20C%
(0BI0C
008400
00BS0CH
008400
08700
008200
00R20C
0090GCH
00910Cx
00920C
00930C
00940C*
002300%
009460D%
009700%

01

Nt
HO1

N0t
NG1

THE FIELD NAMES STAT AND MESS KUST BE DEFINED IN THE C-SPECS.
STAT MUST BE DEFINED AS ALPHANUMERIC AND HMESS HUST BE DEFINED AS
NUKERIC.

MOVE - "ETAT 8
Z-ADDO HESS 70

THE DPCODE "READ” IS USED TO RECEIVE MESSAGES FROM AN INPUT OR
COBIHED DEMAND DATA COMMUNICATIONS FILE.

THE INDICATCR NORMALLY SPECIFIED IN COLUMNS S8-59 OF THE C-SPEC IS
IGNORED WHEW THE FILE NAME SPECIFIED IN COLUMNS 33-42 IS A DATA
COMMUNICATIONS FILE.

AFTER THE RECEIVE STAT WILL CONTAIN THE NAME OF THE STATION
WHICH TRANSMITTED THE MESSAGE.

AFTER THE RECEIVE MESS WILL COMTAIN THE MESSAGE LENGTH OF THE
HESSAGE .

IF THE RECEIVE FAILED THEM THE ERROR INDICATOR 01 WILL BE SET ON.
THE INDICATOR 06 IS USED TO INDICATE & RECEIVE ERROR.

SETOF 0104
READ FILED
SETON 06

WHEN THE HESSAGE CONTAINS “END”, THEN THE PROGRAM GDES TO END OF JOB

TENDT COMP ALL LR
KOVE HEES HES 70

THE MEZSSAGE LENGTH OF THE MESSA
MOVED INTG HESS, OTHERWISE THE
MESSAGE WILL BE USED.

\GE TO BE TRANSMITTED BACK MUST BE
MESSAG

£
ESSAGE LENGTH OF THE RECEIVED

NOTE - 80 CHARACTERS ARE EXPECTED TD BE RECEIVED (THE FIELD "ALL" IS
B0 BYTES LOMG). IF THE OPERATOR TRANSMITS 80 CHARACTERS THE FIRST
TIME AMD THEW 70 CHARACTERS THE SECOND TIME THEN THE SECOND MESSAGE
WILL COMTAIN THE LAST 10 CHARACTERS OF THE FIRST MESSAGE. THE BUFFER
CANNDT BE CLEARED, THEREFORE AN ERROR MESSAGE SHOULD BE DISPLAYED IF
THE MEGSAGE TRAMSMITTED IS LESS THAN 80 CHARACTERS LOMG. THE
DPERATOR SHOULD BE DIRECTED TO RE-TRANSHIT B0 CHARACTERS.

THE ALTERNATIVE IS TO TAKE ACCOUNT OF THE HESSAGE LENGTH
PROGRAHMATICALLY AND PROCESS THE MESSAGE ACCORDINGLY.

32 HESS

z 1
COUNT ADD 1 COUNT 50

THE COMBINED DATA COMMUMICATIONS FILE MUST BE FURTHER DESCRIBED ON
#M 0-SPEC.

C-29

C-30

111
112
113
114
115
116
117
118

19
120
121
122
183
124

128
124

[Eey)
FR

128
189
130
121
1Z2
123
134
136
137
138
139
140
161
142
43
14!
145
144
147
148
149
180
181
152
1\.I\J
154
15
154
157
158
159
140
161
162
143
164
163

00980D*
009900%
010000
010100
010200+
010300FILED
010400«
010500%
010400
010700
010800%
010900
011000
011100
011200
011300
011400
011500
011400
011700
011800
011900
012000
012100
012200
012300
0124004
012500%
0126C0%
012700%
0128004
012900+
012000
013100
013200
012300%
013400

IF THE ERROR INDICATOR IS SET OFF THEM THE RECEIVED MESSAGE IS
ECHOED BACK TO THE STATIOM

D NO1 035

Q0C@ IS "CLEAR AND HOME"

ALL
Count

STAT
D N1 03

IF THE ERRDR INM
THESE ERRIORS ©
THE RPG PROGRSH

DCCURED. ALL THE

THAT TRANSMITTED THE MESSAGE.

1
gl
B7
93

119 -

127

2

a1

357

43

87 -

74

NDICATOR IS SET ON TREM
ANHOT BE DETECTED BY THE MCS.

WILL OHLY CGZT DN aM CRRCR IMDICATOR A
CANMDT DETERMIME WHICH OF THE FOSSICLE ERRORE HAVE ACTUALLY
POSSIELE CRRORS ARE THER

- THE SCREEN IS CLEARED OF THE LAST MES

RECEIVED FROM STATION -

WITH MES
&ND SENT TO STATION -

WITH MESSAGE LENGTH OF °

DPERATOR IS DIRECTED TD INVESTIGATE FURTHER.

RECEIVE ERROR.

0135COOUTRUT D 11 04

013400
013700
013E00
013900
014000
014100
014200+
014300+
014400%
014500
014600

TRANSMIT ERROR.

0147000UTPUT D 11 01

014800
014700
015000
015100
015200

Gl NI O) oy
S S O~ MO 4

[OvRRrary

2%

48 7

72
96
120

“#¥% ENROR »#% EITHER -7
“FILE GM F-GPEC DOES MOT
"CORRESPOND 70 FILE SECTIC
“ON OF MDLEYS, OR THERE I°
"5 N0 MCS EXECUTING --- T°
“NVESTIGATE”

“¥x% ERROR *¥x EITHER -~
STATION HAME ON T-SPEC °
“DOCS MOT CORRESPOND TD §°
“TATION GECTIOM OF NDLEYS®
"y DR HESSAGE LEWLTH EXCE”

SAGE LENGTH OF °

A ERROR LIST IS PRIWTED.
D THEREFODRE

EFDRE LISTED AHD THE

SAGE

164
167
168
169
17

171
172
173
174
173
17¢
177
178
179
1680
181
162
1837
18¢
1835
184
167
188
189

015300
015400
015500
012400
015700
015800%
015900
016000%
016100
0146200
0163004
016400
014500
0164600
0146700
014800
016900
017000
017100
017200
017300
017400
017500
017400

123
D11 01
24

48
49

IF THE ERROR INDICATOR IS SET OFF THEN THE RECEIVED MESSAGE IS

PRINTED ON THE LINE PRIMTER.

D2 HOLOS
ALL 80
20
COUMT 95
119
STAT 127
b1 NOL 0§
2
MES 3
55
STAT 63
87
HESS 9%

‘EDS’
"RECORD LENGTH ON F-SPEC,”

* OR THERE IS NO MCS EXEC’
“UTING --- INVESTIGATE®

"MESSAGE ¢

° RECEIVED FROM STATION °

* WITH MESSAGE LENGTH OF -
© AND SENT TO STATION °

* WITH MESSAGE LEMGTH OF ~

C-31

C-32

NI GOSN O U S O D e

[y
-

—
rny

13
14
15
16
17

12

R

Il

d&

SHHAEAREYE

i~

;g:’—x-

pury

Pt 3
o

N

~
n

N

N
=3

Rl

-

Adguaag

$CONTROL 200 DATA 1500
$FORMAT
$NOLIST
$DATACDM
S L
X
- PROPRICTARY PROGRAM MATERIAL
pd
A THIS MATERTAL IS PROPRIETARY TO BURROUGHS CORPORATION AMD IS
X WNOT TD BE REPRODUCED, USED DR DISCLOSED EXCEPT IN ACCORDAMOE WITH
% PROGRAM LICENCE DR UPDN WRITTEN AUTHORIZATION OF THE PATENT
Z DIVISION OF BURRDUGHS CORPORATIOM, DETROIT, MICHIGAN 48232,
X
% COPYRIGHT (C) 1979 BURRDUGHS CORPCRATION
X
S L
PROCEDURE DUTER;
DEFINE CH £CHARACTERE;
DECLARE PRINT.LINE CH(120);
FILE LOG WORK.AREA PRINT.LINE;
p4
% PRINT BUFFER STUFF.
X
REHAP PRINT.LIME:
01 LP.IN,
02 LP,.SYHBOLIC.GUEUE CH(12),
02 DUMMY CH(DY,
02 LP.5UB.0Q.1 CH(12),
02 DUMMY CH(1},
02 LP.SUB.Q.2 CH(12),
02 DUHHY CH(1Y,
42 LP.SUB.Q.3 CH(12),
02 DUMHY CH{L),
02 LP.MESSAGE.DATE CH(8),
02 DUMMY CH{1},
02 LP.HMESSAGE.TINE CH(11},
02 DUMMY CHL),
02 LP.SYMBOLIC.SOURCE CH(12),
02 DUMNY CH(L),
02 LP.TEXT.LENGTH.IN CH(S),
02 DUMHY CH(L),
02 LP.END.KEY CHLY,
02 DUMMY CHLY,
02 LP.ETATUS.KEY.IN CH(2),
02 DUMMY CH(1),
02 "LP.MESSAGE.COUNT CH(?);
REMAP PRINT.LINE:
BUFFER.LINE CH(BO);
REMAP PRINT.LINE:
01 LP.OUT CH(B0),
02 LP.DEST.COUNT CH(S),
02 DUMHY CH(1),
02 LP.TEXT.LENGTH.OUT CH(S),
02 DUMMY CH(1),
02 LP.STATUS.KEY.OUT CH(2),

00001000
(HER Y
0C001200
Ceo01360
Z00001203
AGG00L310
400061313
00001320
Z0C001325
100001330
Z06001333
A00001340
200001343
00001750
200001353
L000013240
00001400
00001500
00001400
Goo01700
00001800
0GLO1IT00
Q02000
20002100
000022090
00062360
00002400
D00G2ER0
000025600
00002700
00002840
00002900
000402000
00003100
00003200
00003700
00003400
00003500
00003400
00003700
CCO03B00
00003700
00004000
GC004100
00004200
00004200
000045400
00004500
00004400
00004700
00004800
00004900
00005000
00005100
00005200

56
57
50
30
d)(\
81
&2
L

S

74

95

97
8

100
101
102
103
104
108
104
107
108
109
110

4

ERE S S

%

e

02 DUMMY CR(1),
02 LP.ERROR.KEY.OUT CH(1Y,
02 DUMMY CH(LY,

02 LP.SYMBOLIC.DESTINATION CH{12);
DATA-COMM BUFFER STUFF

SEGHENT DC.EUFFER(1920);
REMAP DC.BUFFER:

DC.ELOT CH(EQY;
REMAP DC.EUFFER:

DC.MESSAGE CH(3),
LC.REST (1917) CH(1);

OTHER GLOBAL GOODIES

DECLARE
01 COMM.ERRDR,
02 TYPE.FIELD CH(1S),
02 ERRDR.FIELD CH(2),
02 COMMENT.FIELD CH(4S),
PRINT.LINES FIXED,
LINE.POINTER FTXED,
SYMBOLIC.QUEUE CH(12),
END.FLAG CH(1);

DEFINE EQOJ £(EMD.FLAG="S"){;

END.FLAG:="R"}

DECLARE

QUT.ETATUS.VALID CH(1);

DEFINE QUTPUT.STATUS.VALID £(OUT.STATUS.VALID="T")£;
OUT.STATUS.VALID:="F";

DEFINES FOR ERROR HANDLING.... DO NOT DD THIS IN REAL LIFE.
AS IT GENERATES A LOT OF S-CODE.... USED HERE AS ILLUSTRATION ONLY.

DEFINE

LOOD. INPUT.STATUS £(DC.INPUT.STATUS=0)£,

UNKNOUN. INPUT £(DC.INPUT.STATUS=20) £,
HCS.HISSING £(DC.INPUT.STATUS=91)£,

(NOWN. INPUT .ERRORS £(UNKNCUNLINPUT OR HCS.MISSINGYE,
GOOD.OUTPUT.STATUS £(DC.QUTPUT.STATUS=0)E,
UNKNOWN.OUTPUT £(DC.OUTPUT.STATUS=20)£,
BAD.DESTINATION.COUNT £(DC.DUTPUT.STATUS=30)%,
BAD. TEXT.LENGTH £(DC.OUTPUT.STATUE=50)E,
DCSS.MISSING £(DC.OUTPUT.STATUS=91)1£,
KNOWH.OUTPUT .ERRORS £(UNKNOUN.OUTPUT OR
BAD.LESTINATION.COUNT OR
BAD.TEXT.LENGTH OR
DCSS.HISSING)E;

PROCEDURE GET.QUEUE.NAME;

GETS SUBNET QUEUE NAME FROM OPERATOR. THIS MAME MUST BE

00005200
00005400
000050
000035450
0005700
00G0S300
00005900
002C4000
00004100
000046200
GOO04200
00004400
(0004500
CG004400
00004700
CO0CAB00
0004900
00007000
Gooo7100
(0007200
0007200
00047400
00007520
00007400
00007700
(0007800
04007900
¢o008000
00008100
00008200
00008300
00008400
0000E500
00008500
00008700
00008800
00008200
00009000
00009100
00009200
00009200
(0009400
00009500
00002600
00009700
00C0%800
00009900
00010000
00010100
00010200
00010300
00010400
00010500
00010400
00010700

2

C-33

C-34

%

U

A
y

A

e e

DEFINED IN THE NDL PROGRAN FILE SECTION.

DISPLAY("TYPE INPUT QUEUE NAME...");
ACCEPT(SYMBOLIC.QUEUE);

END GET.QUEUE.NAME;

PROCEDURE GET.MESSAGE;

SPACE-FILL DATA-COMM BUFFER, TAKE NEXT MESSAGE FROM SUENET @,
SET EOJ FLAG IF END RECEIVED.

DECLARE I FIXED;
DO MOVE.SPACES.TO.DC.BUFFER FOREVER;
DC.SLOT(IxBO) :="";
IF CI:+13 »= 24 THEN UNDD;
END MOVE.SPACES.TO.DC.BUFFER;
DC.RECEIVE(SYMBOLIC.RUEUE,DC.SLOT,1920);
IF DC.MESSAGE = "END" THEN END.FLAG:="S§";
END GET.MESSAGE;
PROCEDURE WRITE.LINES;

WRITE INFORMATION FROM LAST MESSAGE RECEIVED TO PRINTER

PRINT.LIKE:="";
BUFFER.LINFE:=DC.ELOT(LINE.POINTER);
WRITE(LOG, BEFORE,LINEY;
LINE.FOINTER: +80;

END HRITE.LINES;

PROCEDURE LOG.IN.CD;

WRITE CONTENTS OF CURRENT INPUT CD TO PRINTER

DECLARE
TENP CH(8),
F.TEHP FIXED;

PRINT.LINE:="";

LP.SYMBOLIC.QUEUE:=8YHEOLIC. QUELE;

DO MOVE.DATE;
TEMP:=DC.DATE;
IF TEMP = """ THEM LP.MESSAGE.DATE:="00/00/00";
ELSE
DO;
SUBSTR(LP.HESSAGE.DATE,0,2) :=CUBSTR(TENP,0,2};
SUBSTR(LP.MESSAGE.DATE,2,1):="/";
SUBSTR(LP.MESSAGE .DATE, 3,2) :=CUBSTR(TENP,2,2);
CUSSTRI{LP.HESSAGE DATE, S, 1) e="/";
SUBSTR(LP.HESSAGE.DATE,4,2) s =SUBSTR(TENP, 4,2);
END;

END MOVE.DATE;

DD MOVE.TIME;

TEMP:=DC.TIME;
IF TEMP = " THEN LP.MESSAGE.TIME:="00/00/00/00/";
ELSE
pO;
SUBSTR(LF.MESSAGE.TINE,0,2)
SURETR(LP.KESSAGE.TINE,2,1):

SUBSTR(TEHP,0:2);
ll/

e
7

cocics0e
00010900
00011000
00011100
00011200
00011300
00011400
00011500
00011400
00011709
00011800
00011900
00012000
foe12100
00012200
00012300
00012400
00012400
00012700
00012600
(60012900
(0013000
00013100
(0013200
00013200
00013400
40013500
20013600
00013700
00013800
00013900
00014000
00014100
00014200
(0014300
00014400
00014500
000144600
00014610
00014420
00014430
00014700
00014800
000149200
00015000
00015100
00015110
04015200
00015300
00015400
00015410
00015420
00015430
00015500
00015400

164
167
168
169
170
171
172
173
174
17

17¢
177
176
179
180
181
B2
183
pety
183
1B
167
168
189
190
191
192
193
104
198
194
197
108
199
200
201
202
203
204
205
X4
207
208
209
210
211
212
213
214
215
216
27
218
219
220

Lacay

SN e

B S]

e -2

SUBSTR(LP.MESSAGE.TIME,3,2) :=CURSTR(TEMP,2,2);
SUBSTR(LP.MESSAGE.TIME,S, 1) :="/";
SUBSTR(LP.MESSAGE . TINE, 4,2) :=SUBSTR(TENP, 4,2);
SUBSTR(LP.MESSAGE. TINE,B,1):="/";
SUBSTR(LP.MESSAGE.TIME,S,2) t=CUBSTR(TEMP, 4,2);
END;

END MOVE.TIME;

LP.SYMBOLIC.SOURCE:=DC.ORIGIN;

CONVERT(1,LP.TEXT.LENGTH.IN, DC. TEXTLENGTH) ;

CONVERT(1,LP.END.KEY,DC.ENDKEY);

CONVERT(Q,LP.STATUS.KEY. I, DCLINPUT.STATUS) ;

DC.ACCEPT(SYMBOLIC.QUEUE,F.TEMP);

CONVERT (1,LP.MESSAGE .COUNT,F . TEKP);

WRITE(LOG, BEFORE,LINE(2));

IF KOT GOCD.INPUT.STATUS THEN RETURNM;

LINE.POINTER:=0;

F.TEMP:=DC. TEXTLENGTH;

DD FOREVER;
IF LIME.PDINTER »= F,.TEWP THEN UNDD;
YRITE.LIMES; ’

END;

END LOG.IN.CD;

PROCEDURE XMIT;

SEND CURRENT MESSAGE BACK TO ORIGINATOR,
MARK DUTPUT STATUS AS NOT HAVING BEEM ANALYSED.

DECLARE
SYHEOLIC.DESTINATION CH{12),
TEXT.LENGTH.OUT FIXED:

EYMBOLIC.DESTINATION:=DC.ORIGIN;
TEXT.LENGTH.OUT:=DC.TEXTLENGTH;
DC.SEND(SYMEOLIC.DESTINATION,DC, SLOT, TEXT.LENGTH.OUT,EXI) ;
OUT.STATUS.VALID:="T";

END XMIT;

PROCEDURE LOG.DUT.CD;

WRITE THE CONTENTS OF THE CURRENT DUTPUT LD TD PRINTER
SYMBOLIC SUB.QS AND DEST. COUNT SET BY COMPILER

PRINT.LINE:="";

LP.DEST.COUNT:=" 1';
CONVERT(1,LP.TEXT.LENGTH.OUT,DC. TEXTLENGTH) ;
CONVERT (0, LP.STATUS.KEY.OUT,DC.OQUTPUT,STATUS);
CONVERT(1,LP.ERROR.KEY .BUT,DC.ERRORKEY) ;
LP.GYHBOLIC.DESTINATION:=DC.ORIGIN;

WRITE(LOG, BEFORE,LINE);

END LOG.DUT.CD;

PROCEDURE DISP.ERRORS.IN;

REPORT TO OPERATOR ON ERRGRS FRDM LAST INPUT FROW DATA-COMM
TYPE.FIELD:="RECEIVE ERROR";

CONVERT (0, ERROR.FIELD, DC.INPUT.STATUS);
IF UMKNOWN.INPUT THEN

00015700
00015800
00015900
00014000
000146100
00014110
00016200
00014300
00016400
00014500
00016600
00014700
000146800
00016500
40017000
Q0017100
00017200
00017360
00017400
(0017300
00017400
(0017700
00017800
03017200
00018600
(212100
tooiee00
G0O1E300
00012400
(0010300
00010400
0C018700
00G12200
06618900
04019000
00019100
Go019200
00019300
00019400
00019500
00017400
00019700
00019800
(0019900
00920000
05020100
$0020200
¢002¢200
00020400
00020500
00020400
Co020700
00020000
00020900
00021000

C-35

C-36

1
22
23
206
9%
¢
07
28
09
230
231
et

Lol

233
234
235
334

2x7

238
az9
240
241
262
243
204

5

244
247
248
249
250
251
22
3
254
255
256
257
=8
259
260
261
262
261
264
248
266
a67
268
249
ar
&
aze
273
74
78

</

e e 2

COMMENT.FIELD:=" (QUEUE UNKNOWN OR ACCESS DENIED)";
IF MCS.MISSING THEN
COMMENT.FIELD:=" (MCS/DCES NOT PRESENT)";
IF NOT KMOWM.INPUT.ERRORS THEN
COMMENT.FIELD:=" (UNKNOWN ERROR)";
DISPLAY (COMM.ERROR) ;
IF UNKHDWH. INPUT THEN
Do;
SYMBOLIC.QUEUE:="";
GET.QUEUE.NANE;
END;
IF MCS.MISSING THEN
0o;
DISPLAY{"INITIATE & SUITABLE MCS THEN ""AX"" THIS TASK");
ACCEPT(DC.MESSAGE);
END;
END DISP.ERRDRS.IN;
PROCEDURE DISP.ERRDRS.OUT;

REPORT TO OPERATOR DN ERRDRS FROM LAST DUTPUT TO DATA-COMM

TYPE.FIZLZ:-"TRANSHIT ERROR";
COMVERT (G, ERROR.FIELD, DC.OUTPUT.STATUS)
IF UMENMOWN.DUTPUT THEN
COMMENT.FIELD:=" (STATION UNKNOWN OR ACCESS DENIED)";
IF BAD.DESTINATION.COUNT THEN
COMHENT.FIELD:=" (INVALI DESTINATION COUNT)";
IF BAD.TEXT.LENGTH THEN
COMMENT.FIELD:=" (REQUIRED TEXT LENGTH > DC.BUFFER SIZE)";
IF DCSS.MISSING THEN
COMMENT.FIELD:=" (MCS/DCSS NOT PRESENT)";
IF NOT KMOWM.DUTPUT.ERRORS THEN
COMMEMT ,FIELD:=" (LUMKNOWN ERROR)";
DISPLAY (COIH.ERROR) ;
TF UNKNOWN.DUTPUT THEN
bo; ,
DISPLAY("CORRECT. THEN "“AX"" THIS TASK™);
END;
IF BAD.DESTINATIDN.COUNT THEN
DO;
DISPLAY("PROGRAM ERROR - ""DP"" THIS TASK");
ACCEPT(DC.HESSAGE};
5T0P;
END;
IF BAD.TEXT.LENGTH THEN
bo;
DISPLAY{"STATION IS NOT TDB30 - SELECT ANOTHER QUEUE");
SYNROLIC.QUEUE:="";
GET.QUEUE . NAMES
END;
IF DCSS.MIGSING THEN
DO;
DISPLAY("INITIATE A4 SUITABLE MCS THEN "“AX"" THIS TASK");
ACCEPT(DC.KESSAGE)
END;

00021100
00021200
00021300
00021400
00021300
00021600
00021700
00021800
00021900
00022000
00022100
00022200
00022200
00022400
00022500
00022400
Go022700
0022800
00022900
00623000
(64023100
(0023200
00622200
00022400
(0022500
00023400
G0023700
(0023800
(0022900
00024000
00024100
00024200
00024300
00024400
00024500
00026500
60C24700
00024200
00024900
00025000
00025100
00025200
00023300
40023400
(0025500
00025500
(0025760
40023800
(00259060
00024000
0060246100
000246200
00026300
000246400
00026500

e DUT.STATUS.VALID:="F"; 00024600
a7 END DISP.ERRORS.DUT; 00024700
278 PROCEDURE AMALYSE.ERRORS; 0G026800
7% % 00024900
260 % REPORT ERRORS IF ANY 00027000
a1 % (0027100
a2 IF NOT GOOD.IMPUT.STATUS THEM DISP.ERRORS.IM; 00027200
23 IF NOT GOOD.OUTPUT.STATUS AMD OUTPUT.STATUS.VALID THEN 00027300
28B4 DISP.ERRORS.OUT; 00027400
285 END ANALYSE.ERRORS; 00027500
286 PROCEDURE TURNAROUND; 00027600
267 % ¢0027700
208 % TAKE NEXT MESSAGE AND SEMD IT BACK FROM WHENCE IT CAME IF ERROR FREE00027800
289 % 00027900
220 GET .HESSAGE; 00028000
21 IF GOOD.INPUT.STATUS THEN XNIT; (3028010
2 L0G.IN.CD; 00028100
3 IF GOOD.INPUT.STATUS THEM LOG.OUT.CD; 00028200
¢ ANALYSE.ERRORS; G0028700
223 END TURNAROUND; 00028200
X6 Un 00028500
207 WU 000292000
e START.DF . PROGRAN 00029100
X9 00029200
300 AL 00G29300
201 OPEN(LOG) ; 00029400
an2 GET.QUEUE . NANE; ¢0029500
03 DO FOREVER? 00022400
20k IF ECJ THEM UNDO; 00029800
208 TURNARDUND; 00629900
30é END; 000206000
7 CLOSE(LDGY; 06020100
208 5T0P; 00030200
309 END DUTER; 02020200
210 FINI; 00030400
3t FILE.DEFAULT(LOG) :=TYPEZ; 00030300
312 RECORD(LDO) :=120; 00030600
313 BUFFER(LOG) :=120; 00020700

SAMPLE NDL PROGRAM

The sample NDL program provides control of two
lines, both using Burroughs asynchronous poll/select
line discipline. One line provides ‘‘host poll/select’’
(that is, the channel polls and selects remote termi-
nals to solicit input and route output), and the other
line provides ‘‘terminal poll/select”” (that is, the
channel is polled and selected by a remote host to
control message transfer).

The poll/select line discipline is a multipoint proce-
dure. The central host system solicits input from

(polls). Each remote station in turn uses the fol-
lowing poll message:

EOT AD1 AD2 POL ENQ

where EOT, POL, and ENQ are predefined line con-
trol characters, and AD1 and AD2 are address char-
acters identifying one of the remote stations. The re-
mote station replies with EOT if no message is avail-
able (whereupon the polling system proceeds to the
next station on that line), or sends the message using
the following format:

SOH AD1 AD2 STX <text> ETX BCC
C-37

where SOH, STX, and ETX are line control charac-
ters, and BCC is a block check character computed
from the <text> portion of the message. (The host
system calculates its own BCC when receiving the
message for comparison with the transmitted BCC to
validate the message transfer.) If the message is re-
ceived correctly, the polling system sends ACK, and
the remote station completes the transaction with
EOT. If the message is received incorrectly, the pol-
ling system sends NAK, whereupon a subsequent
poll is needed to retry the message.

The host system directs output to (selects) a re-
mote station using the following select message;

EOT AD1 AD2 SEL ENQ

where EOT, SEL, and ENQ are line control charac-
ters and AD1 and AD2 are address characters identi-
fying one of the remote stations. The remote station
replies ACK or NAK, depending on its ability to re-
ceive the message at that time. If the remote station
sends ACK, the central system sends the message in
the format described for a response to a poll. The re-
mote station then sends ACK or NAK as determined
by the BCC computation. The transaction is then
complete, and is retried by a subsequent select if the
message was NAK’ed. If the remote station was un-
able to receive the message (that is, it sent NAK to
the select message), then a subsequent select is
needed to retry the message.

An alternative method of selecting may be used if
the central system is confident that the remote sta-
tion is capable of receiving a message. This method
is known as fast select, and omits the initial ACK or
NAK response to the select message. The formatted
text message follows immediately after the fast se-
lect message as follows:

EOT AD1 AD2 FSL SOH AD1 AD2 STX
<text> ETX BCC

where FSL is the fast select control character. In all
other respects, the transaction is identical to a nor-
mal select.

NOTE
To improve readability in the following
description, a dot(.) has been included
in references to sequence numbers. For
example, seq. 7001.0300 refers to se-
quence number 70010300.

The Implementation

The sample NDL program provides host
poll/select on physical channel 5 and terminal poll/
select on physical channel 6. (The B 80 was a one-
digit channel number for line address; see CMS

C-38

NDL Manual.) The line descriptions are at seq.
8700.xxxx and 8800.xxxx. The host poll/select line is
described first, starting from the line description,
and then the differences required for the terminal
poll/select line are noted. The host poll/select line is
identified to the system as logical line number zero
(LLNO) since it is the first line declared in the pro-
gram.

The Host Line

The following describes the NDL code for the
host poll/select line.

Line Section
The line address is defined at sequence 8700.0100.

The stations on the line are defined at seq. 45900.
All stations on the line must be defined as terminals
using the same control sets, and have the same com-
munication hardware (sync. or async.). All stations
on a line must communicate at the same speed.

Station Section

Seq. 8200.xxxx - 8500.xxxxx describe the stations
defined for LLNO. Each station description is iden-
tical (except for the address characters); therefore,
only STATIONO (seq. 8200.xxxx) is described. The
use of a DEFAULT station reduces the source file
size (see the NDL Reference Manual).

STATIONO is identified to the system as logical
station number 0 (LSNO) since it has the lowest
identifier in alphabetic order of station identifiers.

Seq. 8200.0100 defines the @ character (HEX 40)
as the control character for the station. The control
character is detected by an input request RECEIVE
statement specifying CONTROL (seq. 6000.2900). If
the character is detected by the RECEIVE, the mes-
sage is routed to the MCS unconditionally.

ENABLEINPUT is set true for this station; other-
wise, the station is not polled. ENABLEINPUT is
set false for an output-only station, unless the MCS
is designed to explicitly set terminals ENABLEIN-
PUT as part of a network startup procedure.

The FREQUENCY statement presets a read-only
value which the NDL programmer may use to con-
trol the frequency at which a station is polled. The
control set POLL (seq. 3000.xxxx) uses this value to
control the relative polling rate of each station.

The LOGIN statement resets bit 14 of the MCS
data field in the message header. If LOGIN is set to
true, then bit 14 of the MCS data field is set. The

use of this flag is entirely at the discretion of the

MCS programmer (for example, to enable the MCS
to enter a log-in routine for the terminal operator).

The mandatory statement MYUSE specifies the
communication requirements of the station. If
MYUSE is not output or INPUT,OUTPUT, then the
system returns an error result to the MCS (UN-
ABLE TO INITIATE) for output messages. Setting
ENABLEINPUT to true causes a syntax error if
MYUSE is OUTPUT only. This station is declared
INPUT,OUTPUT to permit both polling and select-
ing of the station.

The RETRY statement specifies an initial value of
10, to which the run-time variable retry is set (by
data comm load, terminate normal, terminate block,
terminate error, and initialize retry). Note that, in an
output request, the run-time value is set to the retry
value in the message header of the output message,
unless the message header specifies 255 (hex FF). In
this case, the RETRY statement value is used. (This
is B 80 implementation only.) The maintenance of
retry counts and the declaring of errors is the re-
sponsibility of the NDL programmer through the
control and request set logic. The value of RETRY
must be determined empirically, since the configura-
tion, line speed, and type of connection affect the in-
tegrity of messages. A value of zero should be
avoided.

The WIDTH and WRAPAROUND statements de-
fine values which may be interrogated by the MCS,
and have no effect on the NDL program.

The TERMINAL statement associates the station
with a terminal (physical device) description. In this
case, the description is of a TD 830 display terminal
(seq. 8100.xxxx). Corresponding characteristics de-
fined in the STATION and TERMINAL sections
must be compatible.

The actual address characters which identify the
station in message transfers (1A for this station) are
defined in the ADDRESS statement. The number of
characters must correspond to the associated termi-
nal address statement.

The TYPE statement (seq. 8200.1200) selects pa-
rameters from a list provided in the TERMINAL
TYPE statement (seq. 8100.1500). The statement is
not required if the terminal TYPE statement defines
only one set of parameters.

Terminal Section

Seq. 8100.xxxx describes the one terminal which
has been associated with all the stations on LLNO.
It is possible that the network contains physical de-
vices having slightly different characteristics, in
which case, suitable terminal descriptions can be

added to the NDL program. These terminal descrip-
tions can then be associated with the selected sta-
tions via the station TERMINAL statement. Since
all stations on a line must be identical in certain
characteristics (notably SPEED, TYPE, and CON-
TROL), a DEFAULT terminal defining the common
characteristics can be used. Each terminal descrip-
tion then refers to the default terminal for its major
characteristics, leaving only the variants to be de-
scribed individually.

The ADDRESS statement specifies the number of
characters which constitute the terminal address.

The SPEED statement declares a range of speeds
from which the station SPEED statement must select
one value.

The TURNAROUND statement assigns a 12 milli-
second transmit delay to the procedures used for sta-
tions of this type, since the line is direct-connect and
no modem values are available.

The TIMEOUT statement assigns a one second
timeout value which is used when no explicit value
is applied to CONTROL and REQUEST RECEIVE
statements. The one second timeout is used, for ex-
ample, at seq. 6000.2600 and 6000.3200.

The CONTROL statement associates the line con-
trol procedure POLL with stations of this type.

The REQUEST statement associates the receive
and transmit requests POLLIT and SELECTIT with
stations of this type.

The MAXINPUT statement (seq. 37500) defines
the amount of buffer space required by GETSPACE
and RECEIVE TEXT statements in input requests
for stations of this type. A message with a text
length greater than 1920 characters is rejected by the
request POLLIT (see seq. 6000.3100; ENDOF-
BUFFER error action causes excess characters to
be discarded).

The BLOCKED statement informs the DCSS that
this device is not capable of sending or receiving
blocked messages.

END, BACKSPACE, LINEDELETE, and WRU
define the format control characters for this device.
These characters must be specified if referenced in
the associated CONTROL or REQUEST sets. No
action is taken on receipt of these characters unless
the CONTROL or REQUEST set references the
identifier. For example, seq. 6000.3100 compares for
the literal character ETX (a pre-defined constant). If
the possibility exists that different terminals using

C-39

the request POLLIT have alternative end-of-text
characters, then the statement should be recoded:

RECEIVE TEXT [1, END, ENDOF-
BUFFER : 7]

(where [and] are left and right square brackets re-
spectively) which achieve the same result using the
END character defined for each terminal.

The TYPE statement defines the connection re-
quirements for this terminal.

The BYTE statement declares the character size
and parity requirements for this terminal. All sta-
tions on a line must have the same character size.

SCREEN, HOME, CLEAR, CARRIAGE, LINE-
FEED, and WRAPAROUND define values which
may be interrogated by the MCS, and have no effect
on the NDL program.

Control and Request

The line control POLL, receive request POLLIT,
and transmit request SELECTIT are assigned to the
stations on the line through the associated terminal
TD 830. Line execution starts at seq. 3000.4200.
Line control initiates the output request (SELEC-
TIT) at seq. 3000.6100. The INITIATE is not per-
formed (behaves as a no-op) unless a message is
queued for the current station (that is, the station in-
dicated by the current value of the NDL variable
STATION). At the completion of the output request,
line control restarts at sequence 3000.4200.

If no message for output is queued, line control
tests (via FREQUENCY) whether the current sta-
tion is due for polling (seq 3000.6800 - 3001.0100).
The input requests POLLIT is initiated at seq.
3000.9800. Line control restarts at seq. 3000.4200 af-
ter completion of the input request; otherwise, a
branch to seq. 3000.4700 is taken.

Seq. 3001.0600 initializes the station index to
MAXSTATIONS when all stations on the line have
been serviced, allowing the control set to handle dif-
ferent line configurations. Note that the system does
not initialize STATION to any particular value;
therefore, considering this, line control must be
coded. Also, the occurrence of PAUSE and DELAY
statements give processor time to interrupts from
other lines.

Execution of the input request starts at seq.
6000.1100. The transmission of the poll message can
be seen at seq. 6000.1200 - 6000.1300. The request
identifies the receipt of a text message by detection
of SOH at seq. 600.2000. An explicity GETSPACE
is included to allow the use for an error recovery

C40

procedure. Seq. 6000.2800 ensures that the buffer
pointer is set to the beginning of the buffer. Seq
6000.2900 provides for detection of the stations con-
trol character. Note that this character is not implic-
itly stored in the text buffer. This is performed by
seq. 6000.3000. A successfully received message is
passed to the MCP via the TERMINATE NORMAL
statement at 6000.3900. Note that this initializes the
run-time value of RETRY; whereas, the explicit
INITIALIZE RETRY is required on detection of
EOT prior to the TERMINATE NOINPUT (seq.
6000.4300). Seq. 6000.4900 - 6000.5100 maintain the
retry count, and declare an error when the retry
count is exhausted. Seq. 6000.4500 - 6000.4600
“‘flush’ the line when errors are encountered (the
exit from this infinite loop is via the TIMEOUT
coded in error switch 1). Seq. 6000.4700 provides for
the detection of continuous carrier, to prevent infi-
nite flushing of the line.

Execution of the output request set starts at seq.
7000.0600. The select message sequence can be seen
at seq. 7000.0700 - 7000.1200. Seq. 7000.2300 resets
the buffer pointer to the start of the text buffer.
Note that this is an entirely different buffer from the
buffer in the receive request described earlier. A
TERMINATE ENABLEINPUT at this point (initiat-
ing the receive request) causes all text buffer refer-
ences to apply to the input buffer. Successful termi-
nation of the request (7000.3300) causes the output
buffer space to be returned to the data comm buffer
pool. The select sequence is discontinued in favor of
the input request (7000.6500) if a NAK is received to
the select, implying that the terminal is transmit
ready and therefore unable to receive.

The Terminal Line

The coding for the line supporting terminal
poll/select has the following differences from the pre-
viously described line code.

Line Section
The physical line address is channel 6.

The station on the line uses different CONTROL
and REQUEST sets (declared via the associated ter-
minal).

This line is modem connected via a modem (data-
set) whose physical characteristics are defined in the
MODEM TA713 description (seq. 8000.xxxXx).

Station Section (8600.xxxx)

RETRY -The retry value is greater (100) since the
host normally has responsibility for discontinuing the
transaction.

TERMINAL -The station is associated with a ter-

minal using the terminal poll/select control and re-
quest sets.

TYPE.MODEM -The station is connected to the
line using a modem whose physical characteristics

are defined in the MODEM TA713 declaration (seq.
8000.xxxx).

Terminal Section (8010.xxxx)

The line uses terminal poll/select control and re-
quest sets. Note that USELECTED is the receive
request, and UPOLLED is the transmit request.

This is a modem connected terminal.
Modem Section (000.xxxx)
The transmit delay, receive delay, type, and speed

of the modem used (in this case) at both ends of the
line are defined.

Control and Request

The line control UPOLL, receive request USE-
LECTED, and transmit request UPOLLED are as-

signed to the station on the line through the associ-
ated terminal TD830X4.

Line control execution starts at seq. 2000.2000

Line control validates the control message until
the sequence is recognized as a poll, a select, or a
fast select (2000.2300 - 2000.4600) whereupon the re-
ceive (2001.0400) or or transmit (2000.8500) request
is initiated as appropriate. Note that the no-message-
available EOT is transmitted by line control as a re-
sult of INITIATE REQUEST (seq. 200.9300) be-
having as a no-op when the station is not queued.
TOG([O0] is used as a fast select indicator to skip the
portions of code not required when using that proto-
col.

The input and output requests have no significant
differences from the previously described request
sets, except that the inverse side of the procedure is
handled.

DCP Section

The values for BUFFER and BUFFERCOUNT
are selected to give a total buffer allocation of 15
Kb.

1 R K KR R S G R K R K 0 5000109
2 % Z50000200
3 PROFRIETARY PRUGRAN MATERIAL LGH000200
L4 GR000500
S 4 THIS HATERIAL IS PROFRIETARY 7O BURRGUGHS CORPORATION AND IS X00OCOS00
& X KNOT 7O BE REPRODUCED, USED £R DBISCLOSED EXCEPT IN ACCHRDAHCE WITH X00U00400
7 X PROGRAW LICENCE OR UPDN URITTEN AUTHORIZATION OF THE PATZHT 0056700
B X DIVISIDM OF CURROUGHS CORPORATION, DETRDIT, HMICHIGAN 48232, L00H00800
? X 00000900
10 % EOPYRIGHT (L) 1979 BURROUGHS CORPORATION K0G001060
i1 X XG0001109
12 KRR K K R X R K R R KR LR L K LR 30001 200
13 45ET LIST CODE HTCH R01G000
14 CONSTANT - 60510100
i3 EBT = 4%04", 00016200
) Soh = 4"01, 0010300
17 STX = 4%02", 00010400
iB ACK = 404", {0010300
17 HaK = 4713, 00010400
20 ETX = 4"03", Z END OF TEXT 06010700
2i ERR = 405", X ENGQUIRE 60010850
& BS = 4v08", % DBACKSPACE 00010200
3 LF = ¢"0A", X LINE FEED 000611000
2% R = 40D % CARRIAGE RETURH 00G11160
2 BLY = 4"14Y, #4 DEVICE CONTROL 4 00011200
25 DEL = 4“7F%, X DELETE 00011300

C4l1

C42

HREE88Y

REYIYHFANNIGELURGRORE B AGURARNKEGER LG RLDESYHYYEY

4
A
%
4
F4
b4

FF = 4"00%, % FORNS FEED
POL = 47707, % POLL CHARACTER
SEL = 4971, % SELECT CHARACTER
FSL = 4773%,

NOTE THAT THESE REQUESTS DO NOT COMFGRM EXACTLY

TD ANY BURRDUGHS STANDARD AND ALTHOUGH THESE RERUESTS
WILL FURCTION CGRRECTLY THEY SHOULD #0T BE REGARDED
AS THE ONLY OR EVEN THE "BEST" POSSIBLE SETS.

CONTROL UPCLL:

N RN RE RS N 2 T N2 RS

X

»t 2

SE NG N 3N e A i

N R e 2

FRAAARBERIXXXARRXRHREET LR ERFRRAXARA A ERREHR RN NH

I AM A POLLED TERMIMAL
FHHIAN RN I L ENRR NN ORI AR R LA AL RH

TOGLO3
TG

1]

INDICATOR FOR SELECT, FASTSELECT.
USED IN USELECTED FOR NOSPACE COMDITION.

HERNRRXFIRMARERNRANEAARARREARRRERHNER AR AR HHARRAR

ERRORLOY = TINMEOUT:1,%Z STANDARD ERROR MACRD
STOPBIT:3,
BUFOVFL:3,
BREAK:3,
PARITY:¢,
LOSSOFCARRIER:L.

ERARXRENHAXFHNRRTANSN AR XRALRNAXRR IR NANAHERANEAN

1: T06L01 = FALSE.
TOGE11 = FALSE.
2: INITIATE RECEIVE.

RECEIVE (RULLILOI.

ZUAIT FOR SOUETHING TO
ZAPPEAR ON THE LINE

wE HAVE SEEH A CHARACTER

IF CHAR = EOT XIF NOT,ITS HOT FOR US
ZAHD HE FALL THROUGH TO ERRDR
AHANRLING AT LABEL 3

THEN BEGIN
RECEIVE (25 MILLI} ADDRESS [ERRSR{O1, ADDERR:I1.
7H0TE THAT AN ADDERR
AHERELY HEAHS THAT THE
ZPOLL OR SELECT ¥AS NOT
AFORUS

RECEIVE (25 MILLI) EPOL:2Q, 5EL:30, FSL:10,
ERRORLO1].
ZHERE WE USE NDLS BRANCHING
XABILITY TO GO GFF TO THE
Z4PFROFRIATE ROUTINE IF
%A POL SEL GR FSL IS RECEIVED

(0011400
60011500
00011400
00011700
00160000
00100100
GC100200
(0100300
00100400
00109500
206000000
20000100
20000200
200060300
20000400
20000500
200004600
200060700
260060800
206009060
26601000
20001100
20001200
20001300
20001400
20001500
20001400
20001700
20001860
200601900
20002000
20002100
20002200
200062300
20002400
20602500
20002409
20002700
26002500
26002200
26003000
20003100
0003200
20003200
20003404
20003500
26063500
20003700
20003800
26003900
20004000
20006100
20004200
20004300
20004400

S R R FE R L L R A Ak

TR RS RE I R R AR NE ST RS

e

L I oINS I B S 2 T T 2 NP N

RN RE R e

N R

20004500

END. 20004600

, 20004700

HE DONT WANT THIS MESSABE 20004600

80 LGOP ROUND UNTIL LINE 20004500

GOES IDLE. 20003000

20005100

HE ARE PRODABLY HERE BECAUSE THE CHAR YAS HOT AN 206003200

EOT. 20003300

20005400

20003500

20005400

20005700

200038090

32 RECEIVE (25 MILLI) [ERRDRLOII. 20005500
&0 10 3. ZTIMEQUT GETS US OUT OF LOOP 20004000
AT0 LAEEL 1. PARITY (IE JUHK ON 200048100

ZLINE) TO LABEL 4 20004200

200048300

NOW WE LOOP WAITIMG FOR “MARKY 20006400

200046500

4: IF CHAR MER 4“FF™ THEN GO TO 3. 20006400
20004700

ALL QUIET LETS GD AMD LISTEN AGAIN 20004800

20004900

5: 60 70 1. : 20007000
AERRFARREIRRERRREERRNFRAEER AL RAR SR RRRERRARLEARR 20007100
FAST SELECT sevenvsanes 200067200
HHARWRERNREAANNARN AR N HRNREER R ENE XX RHAENEREHHRA 20007300
10: TOGLOT = TRUE. ZFLAG FOR USELECTED 20007400
112 INITIATE ENABLEINPUT. XENTER USELECTIT 200067500
20007400

ME ORLY GET HERE IF ME DIDNT ENTER USELECTED 20007700

THIS NILL ONLY HAPPEN IF THE STATION IS NOT READY 20067800

IN THIS CASE THE “STATION“ IS OUR HODST. 20007700

20003000

60 10 3. 20008100
AERABRERXBRIRERNSFEERNRENSEREE R NREWHH RN IHHAR 20008200
POLLED wvescenunsuee 20008300
RAXFAFARRNERRFREHRNERANARREA XN A I REHRFIAK NN 20008400
20: RECEIVE (25 MILLI) [ENQ:21,CRRORLGII. 20008500
20008500

ANYTHING OTHER THAN AN ENQ IS AN ERROR SO WE WILL IGNGRE2000B700
THIS POL ALTHOUGH IT HAS FOR US. ROTE THAT THE POL/SEL 2000880¢
DISCIPLIHE DDES NOT ALLOW US TO TELL THE HOST THAT 20008700

WE SAW HIS POL BUT DIDNT LIKE THE FORMAT. 20069000

20002100

G0 78 3. 20009204

21: INITIATE REQUEST. X ME WILL ENTER UPOLLED 20009300

AIF BE HAVE A MESSAGE QUEUED 20009400
XAND THE “STATION™ IS READY 20009500

200094600
TUITIATE TRANSHIT. XHOTHING TO SEND 20009700
TRANSNIT EOT. %50 XMIT EOT 20007800
FINISH TRANSHIT. 20009700

C43

c44

137
138
i39
140
141
142
143
i44
145
146
147
148
149
150
151
152
153
156
155
158
157
158
159
1460
141

164
158

148
149
170
171
172
173

175
176
177
178
7

i85

186
187
168
piziy
90
1?1
192
193
19
195
ivé

&0 T0 1.
T EEERRNERRREREEENARRERRRNRAREATARRESERIRARRR AR RARYL
z SELECT AR AR A A AL EEE LR NERERLRER]

7 RREEEREEEOHOHERRRERERERERRRO AR R RR RO RRAR
30: RECEIVE (23 HILLI) LENQ:11,ERRGRIOII.
G0 1 3.
CONTROL POLL:

I POLL THE TERHINALS ...

VARIABLES USED:-

LINE(RUEUED) SET IF WE DID ANYTHING

LINE(TALLYTIOD) N0 OF TIMES ME HAVE ENTERED LINE
CONTROL SINCE WE LAST CHANGED
LINE(TALLYLID).

LINE(TALLY(LD) CURRENT ACCEPTABLE FREQUENRTY.

STATION(FREQUENCY? READ ONLY VALUE

STATION(TALLY) CURRENT FREQUEKCY

ALL OF THESE ARE USED IN THE CODE TO TAKE HOTE OF AMND ACT
UPON THE VARIQUS VALUES DECLARED BY THE USER IN THE STATION
FREQUENCY STATEHENTS.

THE HAIN AIM IS TO ALLOW THE USER YO SPECIFY HoW OFTEN STATIONS
£RE 70 BE POLLED RELATIVE TO EACH DTHER. RDTE THAT SPECIFYING
A FREGUENCY DOES NOT DD ANYTHING OTHER THAN PLACE A VALUE

IN THE STATION TASLE RHICH IS AVAILABLE TO THE REQUEST/CONTROL
SET PROGRAMMER AS STATION(FREGUENCY).

A SIMPLE CONTROL SET MITHOUT FREQUENCY HANDLING FOLLOUS;

THE COMHENTS IN THE ACTUAL CONTROL SET APPLY EQUALLY TO

THIS SINPLER SET.

0: IF STATIOMN >0 THEN
BEGIN
PAUSE, —
STATION = STATION - 1.
INITIATE REQUEST.

INITIATE ENABLEINPUT,
60 10 0.
END.
STATION = MAXSTATIONS.
IDLE.

TE RS R R N RE 22 53 T RE RE R RE INE XD RE 2T RY R RS AT BT XE SR KR RE AT R R RS NP RE ORD R R R

LINE(TALLYL0D) = LINE(TALLYIOD) + 1. X BUMP EﬂTRY‘CCUHTEﬂ
LIRE(QUELED) = TRUE. ZUE DO HANT TO CHANGE FREQUERCY

L XAT THE END OF THIS CYCLE
% ATHROUGH THE STATIONS
F4
0: XCOHE BACK HERE If UE DO
b4 ANOTHING FOR THE CURRENT
4 XSTATION
4
IF STATION » O THEW % &RE HE AT THE END OF CYCLE

ZNDTE THAT DUE YO THE LOGIC
% OF THE LOOP TD LABEL 1 THIS

E

20010000
26010100
20010200
20010300
20010400
20010500
30000000
30000100¢
30000200
30600300
30000400
30600500

30000409

30000700
30000800
30000900
30001000
30001100
30001200
30001360
30001400
30001500
30001400
30001700
30001800
3000190¢
300020600
30002100
30002200
30002300
36002400
30002500
36002600
30002700
30002800
30002900
30003000

30003200
30003300
30003400
30003500
30003400
30003700
20004200
0004300
36004400
33004560
30002400
30004700
30004806
JG004700
30005000
30605100
30005200
306003300

1?7
178
199
00
201
202

04
203
206
X7
208
207
210
2l
212
213
2i4
213
214
217
218
a1

&0

23

R NE 2 e R R e

P2 NT RE T RE R RN

e

PRE I NE NE 2 NP2

BEGIN

PAUSE.
STATION = STATION - 1,
INITIATE REQUEST.

NO OUTPUT FOR THIS TERMINAL.

AMILL ONLY BE THE UASE HHEN THE 30005404

ZLAST GTATIOR HE RANDLED HAS
ASTATION ZERD.

ZGIVE SONEONE ELSE 4 CHANCE
ASET UP NEXT STATIOH

AWILL ENTER SELECTIT IF
XSTATION IS QUEUCD AND READY

Wt HOY DETERMIME IF THIS TERMINAL CAN BE USED FOR IMPUT
AND IF S0 WHETHER ¥E $alT TO POLL HIM.

IF STATION(ENABLED) THEM

BEGIN

IS HE AT THE RIGNT FREQUENCY YET?

NOTE THAT THE LOVER THE FREQUEMCY THE HORE OFTEM

WE WILL POLL THE STATION.

IF STATION(TALLY) 6T LINE(TALLYL13) THEN

BEGIN
PAUSE.

STATION(TALLY) = STATION(TALLY) ~ LINE(TALLYL12).

ZHAVEE REXT TINE

LINE(QUEUED) = TRUE.ZWE HAD A CANDIDATE KHD DIDNT

END

ELSE

BEGIN
PAUSE.

XHAVE A LOW ENOUBH FREQUINCY
450 HE HAD BETTER #AKE SURE
ATHAT BE DONT COURT HIN DOWN
7700 GUICKLY AND UPSET THE
ARELATIVE FREBUENCIES BY
ZCOUNTIRD DOWN IN BIG STEPS
F4

STATION{TALLY) = STATION(FREGUENCY}.XGD BACK TD

INITIATE EHABLEINPUT.

END.
END.
G0 T0 0.

END.
PAUSE.
STATION = MAXSTATIONS.
IF LINE(QUEUED) THEN
BEGIN

XREAL FREGQUENCY TO &IVE OTHER
ASTATIONS SOME KIMD OF CHANCE

KEHTER POLLIT IF STATION
ZIS READY VALID ENADLEIMFUT

ZDIDNT DO ANYTHING FOR THIS
ZSTATION - TRY THE NEXT

ZGIVE ANDTHER LINE A CHANCE
ZEND OF CYCLE
XWE CHANGE TALLY 1

30805500
30025600
26005700
30005200
30005500
20004000
30006160
2004209
30004300
20006400
30004500
30004600
30006700
36006800
30004500
30007000
30007100
30007200
30007200
30007400
30007500
30007600
30607700
30007800
26607900
36008000
30608100
30008200
30008300
30005400
30008500
30008400
30008700
30006800
30008500
30009000
30009109
30009200
30009200
30009400
30209500
30009400
30009700
30009200
30607900
36016000
30010100
30010200
30010300
30010400
30010500
30010400
30010700
30010800

C45

C46

=54
=453
&34
257
8
259
260
261
262
2583
264

267
248
259
270
7

74

LINE(QUEUED) = FALSE. % RESET OUR FLAG 30010900

% KNOTE THAT THE OHLY CYCLE THAT 30011000
rd KWILL 8OT GET LIKNE(BUELED) 30011100
Z XI5 ONE IH WHICH HOBODY HAD 30011200
X ZAN QUTPUT QUEUED AND THERE 30011300
4 ZUERE ND STATIONS READY FOR 30011400
Fd ZIRPUT.IE NOBODY UHD FAILED 30011500
F4 ZBECAUSE OF A TOO HIGH FREGUENCY30011400
% X IF YE DID POLL ANYORE WE 30011700
) ZREENTERED LINE CONTROL AT 30011800
b4 ATHE TOP WHERE WE SET 30011560
% XLINE QUEUED 30012000
IF LINE(TALLYLOI) = & THEN XNC HAVEWT LEFT THE CONTROL 30012104

4 XSINCE NE LAST CHANGED TALLY 1 20012200
F3 XS0 HE MAKE SURE THAT WE DOHT 20012300
X ZOFFEND OUR HIGH PRIDRITY 30012400
A %1E LDY FREQUENCY USERS BY 30012560
X % IGKORING THEH. TD DD THIS 30012400
Z % HE HAKE THE QUALTFYING VALUE 30612700
b4 XONE AND COUNT STATIONS BGEN 30012800
4 ZSLOKWLY WHICH HEANS THAT THE 30012900
F4 ZFIRGT SYATION(S) GET LOTS OF 30013020
|4 XEXTRA POLLS. 30013100
BEGIN 30013208
LINE(TALLYLID) = 1. 30013300

LINE(BUSY) = FALSE. ZALLDY SYSTEM TO REENTER US 30013400

% XFOR THIS LINE IF ANYTHING 30613500
F4 ZHAPPENS 36013400
DELAY(1 SEC}. 460 70 SLEEP 30013700

LINE(BUSY} = TRUE. ZNOBODY WANTED US 50 ON WE GO 30013800

END 30013200

ELSE 30014000

BEGIN 30014100
LINE(TALLYL1D) = LINE(TALLYECO1). ZRAISE OR LDNER FRER 30014200

LINE(TALLYEOD = 0. ZDEPENDING ON HOM LONG SINCE 30014200

4 XWE LAST DIB (IE HOY LONG WE 30014400
F4 ZHAVE DEEM POLLING WITROUT 30014500
2 XSELECTING ANYOME). Je014800
END. 30014700

60 16 1. 30014600

END. 30014700
IDLE. 30013000
) 36015100
Z NE OMLY IDLE THE LINE IF LIKE(QUEUED) IS FALSE 30815200
% THIS WILL ONLY BE THE CASE IF THERE ARE MO OUTPUT MESSAGES 30015200
X QUEUED FOR ANY OF THE STATIONS ON THIS LINE AHD NONE OF 30015400
X THE STATIGHS ARE ENABLED INPUT AND OR READY. 306015500
% IH THIS CASE THE ONLY KAY ANYTHING WILL CHANGE IS WHEN THE MCS 30015400
% DDES SOHETHING OR A HESSAGE IS GUEUED FOR GNE OF THE STATIOMS. 30015700
% IN EITHER CASE NDL.INTERP WILL ETART U5 UP AGAIN 5D UE HAY AS 30015800
% NARK THE LINE ILLE SINCE WE ARE DOIND HOTHING EXCEPT VASTE 36015900
% PROCESSOR REESOURCES. 30014000
F4 ' 36016100
4 NOTE THAT THE FREQUENCY HMANDLING CODE WILL RUN INCFFICIENTLY 30016200
“ IF THERE ARE NO ACTIVE STATIONS MITH LD FREQUENCIES. 306018300

3067

308

302
310
311
32
313
314
3135
36
317
318
319

21
323

K=N)
3%
27
328
Ko
330
33
332

334

328
339
o
Ft
e
3

F3
Fhb
%7
348
H#H?
X0
L
I
=3
K

k)
57
358
359
30

e AR U S R U O

bR B B]

T NY R

i:

i0:

b4
122
20:

THIS WILL LEAD TO LOY POLLING RATES AS THE CODE MILL
60 ROUUND THE CYCLE <LOMEST DECLARED FREQUEMCY> TIMES

EEFORE ACTUALLY ENTERING THE INPUT REQUEST. THIS MOT ONLY
WFECTS THIS LINE BUT ALSO ANY OTHER ON THIS DCP SINCE THE

DCP IS INVOLVED IN TIME CONSUMING USELESS PROCESSING.

THE PEFAULT FREQUENCY IS ZERD (ALWAYS POLL) 50 THIS WILL
ONLY EE A PROBLEN IF SOUMEOME HAKES A MESS OF THE STATION

DECLARATIONS. :

EQUEST UPOLLED:

NHERRNHRBHLXRNRENNNRINH R NA X HE N X NNNHNHNH NN

I uﬁs POLLED IIII}.'.I....I

FERERXXAERXEXRXARARARKESRARRRRR R LAEREREXRERARERHREN XN

ERROREOT = TIMEQUT:20,
STGPBIT:20,
EUFOVFL:20,
PARITY:20,
BREAK:20,
LOSSOFCARRIER:20.

FLXXBEXARAS XX NNNXNHANNNHANHHRZ NSRRI AN NA LS

INITIATE TRANSHIT.
TRANSHIT SOH.
INITIALIZE BCC.
TRANSHIT ADDRESS.
TRAHSHIT TRAN.
TRANSHIT 8TX.
INITIALIZE TEXT.
TRANSHIT TEXT.
TRAKRSHIT ETX.
TRARGHIT BCL.
FINISH TRANSHIT.
INITIATE RECEIVE.
RECEIVE (1 SEC) [ACK:10,MAK:12,ERRORLOI1.
60 T 20.

INCREMENT TRAN,
INITIATE TRANSMIT.
TRANSHIT EOT.
FINISH TRANSHIT.
TERHINATE NORMAL.

NAKFLAG = TRUE.

IF RETRY = 0 THEN TERMINATE ERROR.
RETRY = RETRY - 1.

TERHINATE NDINPUT,

REQUEST USELECTED:

4

Z FRHRRFNRARRNNAAXMRHRNNL LXK HRHE NN AT XN IHH X K%K %

F)

1 HAS SELECTED .vevevevanses

20016400
30016500
30018400
20016700
30016800
30016900
30017000
30017160
30017200
40000000
40000100
£G000200
40000300
40000400
40000500
40000600
40000700
40000800
40000700
40001000
40001100
40001200
40001300
40001400
40001500
40001600
40001700
40001800
40001500
40002000
40002100
40002200
40002300
40002400
40002500
40002600
§0002700
40002800
44002900
40063000
40003100
$0003200
40003300
40003400
40003500
40003400
40003700

40003800

40003900
40004000
506600000
30000100
50000200
50000300

c47

C48

361
342
363

336

K.z}
3%
370
I

3
It
Ko
I
377

K2
400
401
402
03
404
403
406
407
408
40°
410
%11
%12
413
414
413

o IR S S B LB L O X

IR A]

%

RARXRFHARIERARARARRBYIRSSHPAXSEFINRRNRXAANLXFHARRRRRERRK LA

TOR[0Y = O = SELELT.
1 = FAST SELELT.
T65{13 = 1 = KD SPATE, SO TERMINATE NOQINFUT.

EXAFALHRERRFANXAFHFRRARH RSO ENERRRXRAHAN B X RARR AL R RS

ERRORLOT = TIHEQUT:E2Z,
S16P2IT:19,
BUFCVFL:17,
PARITY:21,
LOSEOFCARRIER 222,

FREXRBEARFENARAALRRARFERFLEENFAAARARRER LA RO ERHAAARRNAER

DETSPACEL23T.

IF TGGL0T THEN &0 TO 10. %FSL 50 TEXT HSH FOLLOMS MG
INITIATE TRAMSHIT.

TRANSHIT ACK.

FINISH TRANSHIT.

INITIATE REZCEIVE.

RECEIVE (1 SEC) S0M LERRORIOI,FORNATERR:191.

INITIALIZE BCC. ASTARY BCC ACCUMULATION
RECEIVE ADERESS CERRORLOZ, ADDERR:191.

RECEIVE TRAN [ERRORLOI, TRAMERR:NULLI.

RECEIVE STX [ERRGRLIOT, FORHATERR:191.

i

[

INITIALIZE TEXT. ZS8ET PDINTER TOD FRONT OF TEXT
CONTROLFLAG=FALSE.
RECEIVELO,ETX:18,CONTROLI. XLOOX FOR COMTROL CHAR

STORECEHDOFEUFFER:191,
RECEIVE TEXT LERRORLQ1,ENLOFBUFFER:24,ETX1.
18: RECEIVE BCC LERRORL(I, BCCERR:171.

INCREMERT TRAN.
INITIATE TRAHSHIT.
TRANSHIT ACK.
FINISH TRANGHIT.
TERHINATE RORHAL.

17: RECEIVE {235 MILLI} [01.
Gb T 19.

21 IF CHAR NEB 4“FF" THEM 6D 7D 19.

22 INITIATE TRANSHIT.
TRANSHIT HAK.
FINISH TRANSHIT.
HAKFLAD = TRUE. ZSAY THAT WE NAKED IT
IF TOGL11 THEN TERHIMATE MOIMPUT.XRETRY GETSPACE FOREVER
IF RETRY = O THEN TERMINATE ERROR.ZSTANDARD ERROR HANDLER
RETRY = RETRY - 1,
TERMINATE ¥OINPUT.

SG000400
SGE00E00
50666400
S6C0G700
50600800
S0040T00
50001000
S0C01100
30401200
30001300
50001400
JGR01500
S00CLL00
30001700
S0001800
SR001900
S00H2000
30002100
54042200
56062300
S0302400
50302500
30002600
30802700
30002800

50602709

50203000
36003100
50003200
30063300
50603500
500603500
50003500
50603700
50003800
50003700
50004000
50064100
S0004200
50004300
30004400
30004500
S0004400
30004700
50004800
50004900
54003000
30005100
50005200
300605300
30005400
50005500
50005406
50055700
54003800

414
417
418
419
420
42t
Al
423
44
423
425
47
4B
40P
430
43t
432
453
424
435
436
437
438
437
440
441
442
443
&4k
445
%46
447
448
449
450
461
w52
453
A%
465
06
%57
458
459
440
461
%42
4467
b
463
“hb
467
468
469
470

b4

23: TOGLLY = TRUE.

24: RECEIVE CBARLQ,ETX:1B1.

LBGETSPACE FAILURE
Gh 10 19.

60 TO 24. ACHARS BUT KEEP ON GDING

RERUEST POLLIT:

ERROR £11 = TI#EDUT:S,
STOPBIT:3,
EUFDVFL:3,
PARITY:4,
LOSSOFCARRIER:S.
ERROR {21 = TIHEGUT:2,
SToPRIT:2,
BUFOVFL22,
PARITY: 2,
LOSSDFCARRIER 2.
TO6L07 = FALSE..
THITIATE TRANSMIT.
TRANSHIT EOT.
TRENGHIT ADDRESS.
TRANGHIT POL,
TRANGHIT EXB.
FINISH TRANSHIT.
INITIATE RECEIVE.
RECEIVE (1 SEC) (11,
IF CHAR = SQH THEN
BEGIN
CONTROLFLAS = FALSE,
INITIALIZE ECC,
RECEIVE (1 SEC) ADDRESS L1,ADDERR:3]. ZRIGNT STATION?
GETSPACE -[41. %0K - GET SBHE SPACE
RECEIVE TRAN [1,TRANERR:NULLI.
RECEIVE STXL1,FORMATERR:31.
INITIALIZE TEXT.
RECEIVETL,ETX:1,CONTRBLI.
STGRECERDOFBUFFER: L.
RECEIVE TEXTL1,ETX,ENDOFBUFFER:71.
RECEIVE BCCL1,BCCERR:3I1.
INITIATE TRANSHIT.
TRANSHIT ACK.
FINISH TRAMSHIT.
INITIATE RECEIVE.
RECEIVE (1 SEC) EDT [2,FORMATERR:NULLI.
INCREHENT TRAXN.
TERMINATE NORMAL.
END.
IF CHAR = EOT THEH

BEGIN INITIALIZE RETRY.

TERMINATE NOINPUT.

END.

RECEIVE (25 MILLI) {11,

G0 T0 3. :

IF CHAR MEQ 4"FF“ THEW &0 TO 3.

IF TOGDOJ THER TERMINATE NOINPUT.
IF RETRY = O THEN TERMINATE ERROR.

56005900
50004000
50004100

XKDUZRFLON - JUST DROP REMAINING 50004200

500063060
460G0000
40600100
40000260
40000300
40000400
40000560
40000400
40000700
40000506
60060900
40001000
40001100
40001200
40001300
40001400
66001500
40001400
40001700
40001800
40001900
40062000
40062100
40002200
40002305
40002404
40002500
40002400
40002700
40002500
40002960
40003000
40003100
40002200
40003300
40003400
40003500
40003400
40003700
40003600
40003900
40004000
40004100
400604200
40004300
60004400
40004500
40004400
40004700
40004800
40004900

C49

471 RETRY = RETRY ~ 1. £0005000

472 TERKINATE NOINPUT. 60005100
473 6: STATION(TALLY) = 0. ZN0 SPACE S0 MAKE SURE THAT WE 60005200
474 TOLL01 = TRUE. XPOLL HIM NEXT CYCLE AND DONT 40005300
473 60 10 3. ZDECREHENT HIS RETRY COUNT 60005400
476 7: RECEIVE CHARCI,ETX:13. 40005500
477 60 70 7. 4060054600
78 X 60005700
479 X NOTICE THAT WE NEVER NAK A MESSATE AS WE DON'T WANT HIM 7O 40005500
480 % REXHIT HIS MESSAGE INMEDIATELY - PERHAPS SONME CTHER STATIONS 40005900
6t % HAVE HORK TO DD AND HE DON'T WANT TO HARG THEH UP BHILE &6005000
4 % £ SORT THIS TROUEBLEHAKER OUT. 40004100
423 REQUEST StLECTIT: 70000009
484 ERROR [1] = TINEGUT:4, 70000100
) 51GPRIT:2, 76000200
484 BUFQVFL:2, 70000309
487 PARITY:3, 70050400
488 LOSSOFCARRIER 24, 76000500
439 1 TOGLOI = FALSE. 70000600
470 INITIATE TRANSHIT. 70006700
471 TRANSHIT EOT. 70000809
42 TRANSHIT ADDRESS. 70000960
3 TRANSHIT SEL. 70001000
W TRAMSHIT ERQ. 70001100
473 FINISH TRAMSHIT. 70001200
496 INITIATE RECEIVE, 700013090
7 RECEIVE(L EEC) [11. 70601400
458 Ir EHAR = ACK THEH 70001500
42 BEGIN ‘ 70001400
500 INITIATE TRANGHIT. 70001700
501 TRANGHIT SOH. 70001809
502 INITIALIZE BCC. 700019200
803 TRANSHIT ADERESS. 70002000
5064 TRANSHIT TRAM. 70002100
505 TRANSHIT 57X, 70002260
=06 IHITIALIZE TEXT. 70002300
507 TRANSHIT TEXT. 70002400
508 TRANSHIT ETX. 70002500
509 TRAHSHIT 8CE. 76002600
510 FINISH TRAHIHIT. 70002700
511 INITIATE RECEIVE. 76002800
512 RECEIVE(1 SED) [1iI. 70002900
513 IF CHAR = ACK THEN - 70003000
G514 DEGIN 70003100
515 INCREKENT TRAN. 70003202
514 TERHINATE HORMAL. 70003300
517 END. 700603400
518 IF CHAR = RAK THEM 76063500
519 BEGIN 70003600
520 RARFLAD = TRUE. 70003700
521 IF RETRY = (THEM TERMINATE ERROR. 70003800
522 RETRY = RETRY-1. 706003900
523 60 10 1. ZIE ASK HIM T8 RE XHIT HIS HESSAGE 70004000
5% 2 ZHE HAY GO ROUND THIS LOOP <RETRY> TINES70004100
=5 % X 50 MAYPE THIS SHOULD BE REPLACED 70004200

C-50

326
27
528

530
S3t
532
533
53
535
534
537
538
537
SO
541
%42
3
S
43
kb

48
P
550
i
NS
552

355

=57
558
=P
80
561

m
5S4t
553

557
568
549
570
51
572
573
574
575
976
577

57

% ZWITH A TERMINATE NOINPUT TO ALLOYW
4 ZUS TO TALK TO OTHER STATIONS WHILE
H AUE SORT THIS GUY QUT.
END.
60 10 2.
END.
IF CHAR = NAK THEN
BEGIN
NAKONSELECT = TRUE.
INITIALIZE RETRY. XWE WILL MEVER MARK HIM DOWN IF ME
4 XGET NAK ON SEL.THIS HIGHT NOT EE A
Z ZG00D PLAN. IF MOT THEM REMOVE THIS
Z KIKITIALIZE RETRY AND HE MWILL GET
4 ATHE STANDARD RETRY LOGIC.
TOGCO0I = TRUE.
60 70 4.
END.
2: RECEIVE (25 KILLD) [11.
60 70 2.
J: IF CHAR NER 4"FF" THER GO TO 2.
¢ IF RETRY = O THEN TERHINATE ERROR.
RETRY = RETRY - 1.
IF TOGTO] THEN TERMINATE ENABLEINPUT. XHE MAK'ED US - PRDDASLY
4 AHE IS IN XMIT S0 UE WILL GO
¥4 XAND POLL HIM RIGHT NOY
TERHINATE MOINPUT.
MODEN TA713:

TRENSHITDELAY = 236 HILLI. XTHIS VALUE IS THE TRANSHIT LELAY
ROISEDELAY = 50 MILLI.
TYPE = 8SYNC.
SPEED = 1200.
TERHINAL TDB3OX4:
ADDRESS = 2.
SPEED = 1200. X5SFCZED CONTROLLED SGLELY 3Y ADD
TURRARDURD = 12 HILLI.
TIREQUT = 1 SEC. XRQST YAITS THIS TIME BEFGRE FURTHER ACTIOM
CODE = ASC47.
PARITY = VERTICAL:EVEN,HORIZONTAL:EVEN.
CORTRGL = upOLL.
REGUEST = USELECTED:RECEIVE,UPDLLED: TRANSHIT.
HAXINPUT = 1920,
BLOCRED = FALSE,
END = ETX.
JACKSPACE = BS.
LIKEDELETE = DEL.
HRU = E#Q.
TYPE = ASYHC{MODEM),
BYTE = 7, PARITY.
SEREEN = TRUE.
HOKE = DC4.
CLEAR = FF.
CARRIAGE = LR.
LINEFEED = LF.
UIDTH = 32.
HRAPARGUKRD = TRUE,

720004306
70004400
70004500
70004600
70004700
70004800
70004200
70005002
70005100
70005200
70005300
70005400
70005500
70005600
70005700
70C05800

70603900

706006000
70004100
70606200
70004300
200046500
70064500
700046400
700648700
70626800
BOAGO200
80000100
BOOGO200
B00L0300
BGOC0400
80100000
BO1C0100
BOLIO02GD
BO1GO300
B0160400
£0100500
80100400
BC1GG700
80160800
EG106900
50101000
801011640
£010120¢
80101300
BR101400
80101560
80101409
BO101700
80101800
80101900
£0102000
B0102100
80162200
80102300

C-51

C-52

581 TERMINAL TDB30:

82
83
Bt
=5
588
87
588
<2y
N
/41
72
3
T
L7
574
5
578
s
&0
01
402
&3
&4
&3
&b
07
408
9
410
11
&12
413
&l
)
1)
4617
418
417
&80
&21
&2
&3
&4
423
&26
&2
408
&9
530

ADDRESS = 2.
SPEED = 1200. % SPEED CONTROLLED SOLELY BY ADC.

. TURHSRGUND = 12 MILLI. T THIS VALUE IS THE TRANSHIT DELAY.

81065000
81000100
B1600200
81060300

TIMEBUT = 1 SEC. XROST YAITS THIS YINE BEFORE FURTHER ACTION.E1000400

CODE = AEC47.

PARITY = VERTICAL:EVEN,HORIZDNTAL:EVEN.
CONTROL = POLL.

REBUEST = POLLIT:RECEIVE,SELECTIT:TRANSMIT.
HAXINPUT = 1920.

BLOCKED = FALSE.

END = ETX.

BACKSPACE = BS.

LINEBELETE = DEL.

WRU = ENQ.

TYPE = ASYHC{DIRECT).

BYTE = 7, PARITY.

SCREEN = TRUE.

HOME = DC4.

CLEAR = FF.

CARRIAGE = CR.

LIREFEED = LF.

HIDTH = B0.

HRAPARGUND = TRUE.

STATION STATIONO:

CONTROL = 440",
ENABLEINPUT = TRUE.
FREQUERCY = 0.
LOGIN = FALSE.

MYUSE = IHPUT,OUTPUT.

RETRY = 10.

#IDTH = B0.

WRAPARGUND = TRUE.

TERMINAL = TDB30.

ADDRESS = “14". X CHANGE TO YOUR STATION’S ARDRESS.
SPEER = -1200.

TYPE = ASYRC(DIRECT).

STATION STATIONI:

CONTROL = 4"40".
ENABLEINPUT = TRUE.
FREQUENCY = 0.

LOGIN = FALSE.

MYUSE = INPUT,DUTPUT.
RETRY = 10.

HIDTH = E0.
HR4PARDUND = TRUE.
TERKINAL = TDB30.
ADDRESS = "18", Z CHANGE TO YOUR STATION’S APDRESS.
SPEED = 1200.

TYPE = ASYHC(DIRECT).

631 STATION STATIGNZ:

&32
633
&34
&35

CONTROL = 4"40%.
ENABLEINPUT = TRUE.
FREQUERCY = 0.
LOGIN = FALSE.

8100050¢
81000400
81000700
B10CCBOS
81060900
81061000
81001100
81001200
£1060130¢
81661400
81001500
8106014600
B1601700
B1601800
81001960

81002000
81002100
1002200
£1002300
82000000
82600100
82000200
52000300
82000400
52000500
82000400
82000700
£2000800
82000900
82001008
£2001100
22001200
83000000
£3000104
£3000200
83060300
83000400
83000500
83000400
83000700
23000600
83000900
83001000
83001100
£3001200
84000008
84000100
840600200
£4000200
84000400

&36 HYUSE = INPUT,OUTPUT. 84000500

&37 RETRY = 10. 84600400
4638 RIDTH = 80. B4000OR00
&39 HRAPARGUND = TRUE. EA000E00
& TERHINAL = TDB30. 84000900
it ADDRESS = “1C". X CHAHGE TO YOUR STATION'S ADDRESS. 84001000
&2 SPEED = 1200. 84001100
&3 TYPE = ASYNC(DIRECT). 84001200
&t STATION STATIONI: 85060000
43 CONTROL = 4"40%, 83000100
&b ENABLEINPUT = TRUE. 83606200
&7 FREQUERTY = 0, 85000200
48 LOGIN = FALSE. 83006400
&9 HYUSE = INPUT,ODUTPUT. 83000300
450 RETRY = 10, 85060400
&1 ‘ HIDTH = B0. 85000700
&2 KRAPAROUND = TRUE. 85000500
&53 TERKINAL = TDB30. B3000900
&5¢ ADLRESS = “1D". X CHANGE TO YDUR STATION’S ADDRESS. 001000
4535 SPEED = 1200. B5601100
56 TYPE = ASYNC(DIRECT). 85001200
&57 STATION STATION&: 86000600
&58 CONTROL = &"40%, 86000100
&59 ENABLEINPUT = TRUE. 86000200
&&0 FREQUEHCY = 0, 84000300
&4 LOGIN = FALSE. £46000400
&4 HYUSE = INPUT,DUTPUT, 86000500
&53 RETRY = 100. B6000400
&a¢ HIDTH = 32. 846000700
&85 HRAPARGUND = TRUE. 85000820
bbb TERNINAL = TDB30X4. 86000700
&47 ADDRESS = “1A“. XCHANGE TO ADDRESS BY WHICH YDU’LL BE POLLED 84001000
&48 SPEED = 1200. 86001100
&h9 TYPE = ASYHC(HODEM). 84001200
&70 HODEM = TA7i3. 85001300
471 LINE LINEG: 87600000 .
&72 ADDRESS = S. X CHANGE 7O YOUR PHYSICAL LINE ADDRESS. 87000160
&73 HAXSTATIONS = 4. : 87000200
&7% STATION = STATIONO, STATIONL, STATION2, STATIONS. 87000300
&73 TYPE = DIRELT, B7000400
&74 LINE LINEL: 88004000
&77 ADDRESS = 4. XCHANGE TG YOUR PHYSICAL LINE ADDRESS 88000100
&78 HAXGTATIONS = 1, 88000200
&79 STATION = STATION:. 80000300
&30 TYPE = MODEH. £8000400
£B1 HODEN = TA713. 86000500
&2 DCP DCPEBO: 69000000
&83 BUFFER = 120. 89000100
&84 EUFFERCOUNT = 128. ZT0 SAVE SPACE SOME OVERLAP 82000200
&35 % OF BUFFERS IS ALLOYED FOR. IT IS 87000200
4B % EXPECTED THAT NOT ALL STATIONS HILL HAVEBP000400
87 X ALL BUFFERS LODADED AT THE SAME TIME. £9000500
488 HEMORY = 49152. 87000600
&9 LINIT = 128. 87000700
&70 FILE FILEO: 20000000

C-53

C-54

FARILY = GTATIONO, STATIONi, STATION2,
FILE FILEL: ‘
FAHILY = STATIONO.
FILE FILE?:
FAMILY = STATIONL.
FILE FILE3:
FAMILY = STATION2.
FILE FILE4:
FARILY = STATIOND.
FILE FILES:
FAMILY = STATION4.

STATION3, STATIONG.

20000100
20000200
70000300
90000400
20000500
20000600
20000700
70000800
20000900
96001000
70001100

Documentation Evaluation Form

Title: CMS Data Communications Subsystem Form No: 1090909

Reference Manual Date: July, 1980

Burroughs Corporation is interested in receiving your comments
and suggestions regarding this manual. Comments will be util-
ized in ensuing revisions to improve this manual.

Please check type of Suggestion:

O Addition O Deletion O Revision O Error

Comments:

From:
Name
Title
Company
Address

Phone Number Date

Remove form and mail to:

Documentation Dept, TIO - East
Burroughs Corporation
Box CB7
Malvern, PA 19355

I

g

2" BINDER

=

1%" BINDER
1" BINDER

P

Computer Management System (CMS)

Data Communications Subsystem
REFERENCE MANUAL

1090909

Printed in U.S.A.

1090909

August 1980

Printed in U.S.A.

	0000
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	03-03
	03-04
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	08-01
	08-02
	08-03
	08-04
	08-05
	09-01
	09-02
	09-03
	10-01
	11-01
	11-02
	11-03
	11-04
	11-05
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	12-11
	12-12
	12-13
	12-14
	12-15
	12-16
	12-17
	12-18
	12-19
	12-20
	12-21
	12-22
	12-23
	12-24
	12-25
	12-26
	12-27
	12-28
	12-29
	12-30
	12-31
	12-32
	12-33
	12-34
	12-35
	A-01
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	C-35
	C-36
	C-37
	C-38
	C-39
	C-40
	C-41
	C-42
	C-43
	C-44
	C-45
	C-46
	C-47
	C-48
	C-49
	C-50
	C-51
	C-52
	C-53
	C-54
	replyA
	xBack

