Burroughs

Student Guide

Introduction to A Series and
B 5000/B 6000/B 7000 Concepts
Mark 3.6

EP 4195

Preliminary Material
April 1986

Copyright © 1986 Burroughs Corporaticn. Detroit, Michigan 48232 U.S.A.

Frinted inthe 17 S 0



"The names used in this publication are not of individuals living or otherwise. Any
similarity of likeness of the names used in this publication with the names of any
individual living or otherwise is purely coincidental and not intentional.”

Burroughs believes that the information described in this publication is accurate and
reliable, and much care has been taken in its preparation. However, no responsibility,
financial or otherwise, can be accepted for any consequences arising out of the use of
this material, including loss of profit, indirect, special, or consequential damages. There
are no warranties which extend beyond the program specification.

The customer should exercise care to assure that use of information in this publication
will be in full compliance with laws, rules, and regulations of the jurisdiction with
respect to which itis used.

The information contained herein is subject to change. Revisions may be issued from
time to time to advise of changes and/or additions.

Correspondence regardin
Ccfpcr tian Qr\cm 208 E

LV, NV &V,

60532-3697.

g this document should be forwarded directly to Burroughs
ducation Development, 2611 Corporate West Drive, Lisle, IL

TSt LANIVE, Wit



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

TABLE OF CONTENTS

SECTION 1: Railroad Diagrams Overview

Objectives ... ..
Unit1 Railroad Diagrams
Practice

SECTION 2 : Families, Files and Disk Directories

Objectives .. ... .

Unit 1 Families .. ... . .

Unit 2 File Names ... .. ...
Practice

Unit3 Disk Directories . ........ ... . . . ...

Unit 4 Family Substitution ... ... . . ..
PractiCe .. ...

Units File Attributes ... ... ..
Practice

SECTION 3: InterPro Overview

Objectives .. .. ...
Unit 1 InterPro Introduction
Unit 2 MARC Usage

SECTION 4: System Initialization

Objectives ... ...
Unit 1 System tnitialization ... .. ...
Unit 2 ChangingMCP Files . ......... ... .. ... ... .. . ... . ... ... ... ..

Practice

SECTION 5: Hardware and I/O Overview

Objectives .. ... ...
Unit 1 Hardware

SECTION 6: Data Communications Concepts

Objectives .. ... . ...
Unit 1 Data Communications Hardware ... .. . ... ..
Unit 2 Data Communications Software

Practice

i



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

SECTION 7: MCP and MCP/AS Overview

ODJECLIVES . .ot 7-2
Unit 1 MCP and MCP/AS Differences . ... . ... ... . 7-3
Unit2 MCP MCP/AS Functional Areas . ... ... i 7-10

SECTION 8: Basic CANDE Commands

ObDJECTIVES - .. .ottt 8-2
Unit 1 CANDE OVeIVIEW . . oottt et et e 8-3
Unit 2 CANDE EditingCommands . ... ... 8-6
Unit3 CANDE Control Commands .. ...t 8-16
PractiCe . .o 8-22
Unit4 COMS Windowsand Dialogs . ... 8-23
Unit 5 Additional CANDE Commands .. ......ccuitrieminaaana. 8-26

SECTION 9: Stack Architecture Concepts

ODJECLIVES . ..ttt e 9-2
Unit 1 Object Code FileLayout ... .. ... .o 9-3
Unit2 Memory Structures for Program Execution ...................... 9-7
PrACHICE o ottt et e 9-14
Unit 3 Word Formats and Data Representation ......................... 9-15
Unitd Control Words .. ..o 9-22
PraCliCe . oottt 9-30
Unit5s Display Registers .......... ...t 9-31
Unité Top-Of-Stack Registers ...t e 9-41
PraCtiC . ot 9-53

SECTION 10: SYSTEM/DUMPALL - Listing Disk Files

ODJECUIVES . .o 10-2
Unit 1 SYSTEM/DUMPALL - Listing Disk Files .. ............ ... ... 10-3
PraCtiCE . o 10-8

SECTION 11: Libraries Overview

ObJECHIVES . o 11-2

Unit 1 Libraries OVerview ... ...ttt 11-3
SECTION 12: Memory Management Overview

ODJECTIVES . .ottt 12-2

Unit Memory Management Overview . .................. . .......... 12-3



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

SECTION 13: Work Flow Management System

Objectives ...
Unit 1 Work Flow Management System Overview .....................
Unit 2 AutomaticDisplayMode ... ... ... ... ...l
Practice ... ..
Unit3 Basic WFL Syntax and Statements .............................
Unit 4 WFL File Equationsand Compiling ............................
Practice . e
Unit5 LIBRARY/MAINTENANCE . ... ... .. i
Practice ... e

SECTION 14: Security Overview

O eCtiveS ..o
Unit 1 Security Overview

SECTION 15: Software Products Overview

Objectives .. ..
Unit 1 Printing Subsystem Overview ........ ... . ... ... .. ... .. ... ....
Unit 2 Utilities Overview. . ... ... .. ..
Unit 3 DMS Overview ... ... e
Unit4 Other Software Products . . ... ... ... .. .. ... ... ... ... ..
PractiCe . ..

SECTION 16: Software Installation (Optional)

ObjeCtives . .
Unit 1 Software Installation
Practice

SECTION A 3: A 3 Hardware Overview

O eCtiVeS . .. e
Unit 1 A 3 Hardware Overview
Practice

SECTION A9: A9 Hardware Overview

Objectives ... .
Unit 1 A9 Hardware Overview



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

SECTION A 10: A 10 Hardware Overview

Objectives ... o
Unit 1 A 10 Hardware Overview

SECTION A 15: A 15 Hardware Overview

O eCtiVeS .
Unit 1 A 1S5 Hardware Overview. . . ... .. . e
Practice ... ... .

SECTION B 5900: B 5900 Hardware Overview

ObjeCtives .
Unit 1 B 5900 Hardware Overview. . ...

SECTION B 6900: B 6900 Hardware Overview

O e CtiVES . .
Unit 1 B 6900 Hardware Overview. . .. ... ... ..
Practice .. ..

SECTION B 7900: B 7900 Hardware Overview

O eCtiveS
Unit 1 B 7900 Hardware OVerview. . . . ...
Practice ... . ..

SECTION C: Compile Listings and Program Dumps

Sample ALGOL Payrol! Program used inSection9 ... ... .. .. ... ... ........
Compile LiSting .. ...
DumpatLine2650 .. ... ... ... ... .
Dumpatline1950 ....... ... . .. ..

Sample Payroll Program from Section 9, Converted to COBOL74 .. .. ... ... ...
Compile LiSting . ... ..o
Dumpatline3100 .. ... ... ... L.
Dumpatline3700 ... .. . .

Sample Library Program in ALGOL . ... ... ... ... ... ... .
Compile Listing ......... . .

Sample Library User Program In ALGOL .. ... ... ... ... . .. ... ... .....
CompileListing ... .
Dump of User Program ..
Dump of Library

Vi

B5900-2
B5900-3
B5900-7

B6900-2
B6900-3
B6900-7

B7900-2
B7900-3
B7900-12



Sample Library Program in COBOL74 ... ... .. ... ... . ... ... ... i ... C-33

LAB EXERCISES

BIBLIOGRAPHY

CompileListing ................ ... . . . ... ... ... ........... C-34
Sample Library User Program in COBOL74 .. ... . .. .. . .. B C-36
Compilelisting .......... ... ... . .. ... .. C-37
Dump of UserProgram ... ... ... .. ... . . ... ... ... ... ... ...... .. C-39
ALGOL Program to Illustrate Simple Calculation ............................ C-41
Compilelisting ............ ... ... ... .. ... ... ... ... C-42
DUMp c-44
COBOL74 Program to lllustrate Simple Calculation ............ B C-45
Compilelisting ......... .. ... ... ... . ... C-46
DUMP C-52
DUMPALL ListingofaDataFile ... ... .. ... ... . ... ... ... ... ............ C-53
COBOL74 Program to Show Dump with Disk File Buffers ................ ... .. C-55
CompileListing ......... .. ... . ... C-56
DUMD C-58
ALGOL Program with Procedures for Optional Dumplab .............. ... .. C-64
Compile Listing . ....... ... .. . C-65
DUMP C-67
MARC Lab . Lab-3
CANDE Lab ... Lab-5
CANDE/DUMPALL Lab .. ... ... Lab-9
Dump Lab (Optional) .......... . .. Lab-11
WELLab Lab-13
Resource List Bib-2

Vil



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS

Purpose of the Course

The purpose of this course is to introduce the basic concepts, terms, and software of the A Series
and B 5000/B 6000/8 7000 as preparation for programming and managing the systems.

Course Objectives

On successful completion of the course, the student will be able to:

- Identify the functional use of major hardware and software components of A Series , and B 5000/
B 6000/ B7000 systems

- Create, edit, and compile source files using CANDE

- Write basic WFL jobs using common file attributes

- Compile programs using WFL

- Use standard MARC menus to run programs and do inquiries

- Manage multiple CANDE sessions with COMS windows

- List data files using SYSTEM/DUMPALL

- Recognize data representation formats used in programs and files

- Identify major functions of the MCP

- Identify major characteristics of the stack architecture

Intended Audience

Programmers, analysts, programming managers, and operations managers

Prerequisites

- Six months computer programming experience

Duration

- Flve days

Vil



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

Introduction

The focus of this course is to introduce software concepts for the A Series/B 5000/8 6000/B 7000
Systems. The course begins and ends with software concepts. Some hardware concepts are covered
to enhance the software information presented.

This course is designed in a modular format which allows the material to be presented in different
sequences if necessary.

The topics marked as optional may be omitted at the discretion of the instructor, depending on the
interests and needs of the students.

The student guide is to be used to supplement the class presentations and is not to be used as text
book.

The notation A Series Systems used in the text of the student guide includes the
A Series/B 5000/B 6000/8 7000 Systems, unless otherwise specified.

Throughout the student guide ODT commands have been included when applicable. The course
does not provide details on ODT commands, but emphasizes communicating with the system
through a programmer’s terminal. For detailed information on ODT commands, refer to the A Series
ODT Reference Manual.

Each unit has resource manuals listed for your further research following the completion of the class
Some of these manuals may be available for your use during class. The bibliography at the end of
the Student Guide lists the titles and form numbers for all the resource manuals.



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

This page left blank for formatting.



SECTION 1

RAILROAD DIAGRAMS OVERVIEW



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
RAILROAD DIAGRAMS OVERVIEW

INTRODUCTION

Section Objective

Read railroad diagrams.

Purpose

In order to read A Series documentation, you must be able to read railroad diagrams.

Unit Objectives

Read railroad diagrams

1-2



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
RAILROAD DIAGRAMS OVERVIEW

UNIT 1

RAILROAD DIAGRAMS

Objective

Read railroad diagrams.

Purpose

Resources

A Series Systems An Introduction, Section 7 - Where To Find More Information

A 9 System Software Installation Guide, Appendix B - Railroad Diagram Description
A Series CANDE Reference Manual, Section - Understanding Railroad Diagrams

A Series System Software Site Management Reference Manual, Section - Understanding Railroad
Diagrams

1-3




A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
RAILROAD DIAGRAMS

What is a Railroad Diagram?
Burroughs convention for software documentation is the use of railroad diagrams to show syntax.
A railroad diagram is a graphic representation of the syntax of a statement or command.

A railroad diagram:

Consists of horizontal and vertical lines, keywords, symbols, upper and lower case words, and
‘special characters.

Indicates which items are required or optional.

Shows the order in which the items must appear in the statement or command to be accepted by
the system.

Tells how often items can be repeated.

Indicates the required punctuation.

Valid statements and commands are constructed by following the rules for reading railroad diagrams.

Y ROW Il THE BOAT - DOWN — >

f f |
l— YOUR ——l L GENTLY -

> — STREAM %

THE OLD , MILL TO <city>

Figure 1-1 Sample Railroad Diagram

1-4



A SERIES AND B 5000/B 6000/8B 7000 CONCEPTS
RAILROAD DIAGRAMS

Some valid statements from Figure 1-1 are:

ROW THE BOAT DOWN STR

ROW, ROW, ROW YOUR BOAT GENTLY DOWN THE OLD MILL STREAM

ROW, ROW, ROW THE BOAT GENTLY DOWN THE OLD, MILL STREAM TO CHICAGO

Railroad Diagram Rules:

1. Read left to right except where indicated by arrows pointing right to left.

2. A loop is an item or group of items that can be repeated.

3. A bridge shows the maximum number of times you can take this path.

4. If diagram will not fit on one line, a right arrow (> ) appears at the end of the first line.
Another right arrow will appear at the beginning of the continuation line.

5. The end of the diagram is denoted by a vertical bar (1) or a percent sign (%).

6. A vertical bar means the command can be followed by a semicolon and another
command.

7. A percent sign indicates that nothing else is to follow.

8. Upper case words must be spelled as they appear. You may use the acceptable
abbreviation, which is underlined.

9. At least one blank must appear between words.

10.  Blanks are optional around special characters.

11.  Brackets with lower case words inside indicate that this a user-supplied variable.

12. Brackets are omitted.

13.  Abridge with an integer only indicates the number of times that path can be traveled.

14, Abridge with an integer * indicates that this path must be traveled that number of

times.

1-5



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
RAILROAD DIAGRAMS

Practice

(@)

TNNATV DDANIIATC
iV T INS N 2

ot ———e e T ~.
number> OF THE INTERACTIVEPRCDU >

L ARE —J -——/1\— COMS ——
_ﬁ\ IDC
_/1\ ADDS
_/1\ SDF
_ﬁ\ ERGO
<number>

ONE

TWO

THREE —M8M8M8

FOUR

FIVE

SIX

———— SOME

Figure 1-2 Practice Railroad Diagram

Using the railroad diagram Figure 1-2, indicate if the following statements are Valid or Invalid.

1. ONE OF THE INTERPRO PRODUCTS IS MARC.

2. SOME OF THE INTERPRO PRODUCTS ARE COMS, MARC AND IDC.

3. ONE OF THE INTERPRO PRODUCTS ARE ERGO.

4. FIVE OF THE INTERPRO PRODUCTS ARE MARC, COMS, IDC, SDF ERGO.

5. THREE OF THE INTERPRO PRODUCTS ARE MARC, ADDS AND SDF.

6. ALLOF THE INTERPRO PRODUCTS ARE MARC, COMS, IDC, ADDS, SDF
AND ERGO.

1-6



SECTION 2

FAMILIES, FILES AND DISK
DIRECTORIES



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
FAMILIES, FILES AND DISK DIRECTORIES

INTRODUCTION

Section Objective

Access Files on the system.

Purpose

To access disk files, you must know how families, disk directories and file attributes function.

Unit Objectives

Recognize a Family and related terms.

Identify Mirror Disk.

Specify the file naming convention for the system.
Identify the Disk Directories used by the system.
Write Family Substitution statements.

Recognize some common file attributes.

2-2



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
FAMILIES, FILES AND DISK DIRECTORIES

UNIT 1

FAMILIES

Objective
Recognize a Family and related terms.

Identify Mirror Disk.

Purpose

In order to access disk files, you must be aware of how families and mirror disks function.

Resources
A Series Systems An Introduction, Section 3 - A User’s View of System Functions

A Series Disk Subsystem Software Overview, Section 2 - Disk Subsystem Concepts
Section 7 - Mirrored Disk

A Series I/O Subsystem Reference Manual, Section 1 - Introduction

Section 3 - Device Dependencies
Section - Format of External File Name

2-3



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
FAMILIES

Whatis A Family?

A Family is a single disk device or a collection of disk devices which are logically grouped together,
have the same name and a common file directory (list of all files).

The system treats these physical disks as a single entity and can spread files destined for that family
across all the members of the family. A family can consist of different types of disk hardware.

Most systems will have many families and the family names usually correspond to some function
performed or to a group of users.

> -

-t
— S
N

FAMILY FAMILY

Figure 2-1 Families

Since a family can have many physical packs, all with the same name, each physical pack is assigned
a unique number known as the Family index. To identify a particular pack in the family, you would
use the family name and the family index assigned to that pack.

2-4



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
FAMILIES

Each family must have a single Base Pack. The base pack will always have a family index of 1. It
will also contain the common file directory which is called the Flat Directory. The flat directory
contains the file headers (contains file names, disk addresses, file characteristics) for every file that is
stored on any member of the family. The flat directory itself is a file and is named
SYSTEMDIRECTORY/001.

All other packs that make up the family are known as Continuation Packs. Continuation packs are
optional. The maximum number of continuation packs that a family can have is 254. The family
indexes for continuation packs are 2 through 255.

PK 44 PK 46 PK 45 PK 48
FLAT FLAT FLAT

N~ ~—

BASE PACK BASE PACK CONTINUATION CONTINUATION
FI =1 Fi =1 PACK PACK
Fl =2 FI =3
FAMILY FAMILY

Figure 2-2 Continuation Packs

Since access to all files requires the flat directory, the flat directory located on the base pack can be
duplicated and placed on the continuation packs for that family. The system will allow a maximum of
3 flat directories (1 on base pack, 1 on each of 2 continuation packs). Duplicate flat directories are
created using the ODT command DD (Directory Duplicate).

The DD command requires the family name and family index where the duplicate flat directory is to
be stored. Its file name will be SYSTEMDIRECTORY/ <3 digit familyindex>. The DD command is
also used to remove duplicate flat directories from a family.

2-5



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
FAMILIES

Mirror Disk

The Mirror Disk feature provides you with the ability to have from 2 to 4 disks maintained as exact
copies of each other (Mirrored Set).

Mirror Disk is available for systems that have Data Link Processors (DLP) hardware. For more
information on DLPs, see Section 5 - Hardware Overview.

Mirror Disk Features
Increase System Availability
Backup and audit requirements should be re-evaluated since mirrored sets reduce the
possibility of data loss. Processing time previously used for backup and auditing is now
available for some other type of processing.

Improves Data Integrity

If one copy of the data in a mirrored set is destroyed or has irrecoverable errors, another
set will allow normal functions to proceed.

Possible Improvement of I/0 Throughput

Improvements in /O throughput will vary depending on the individual characteristics of
the installation.

If your system has a high ratio of reads versus writes, your throughput could be
improved. The MCP will distribute reads equally to all mirrored sets. All writes must
be issued to all members of the mirrored set.

Disk mirroring is completely transparent to the application program. Applications will continue
processing normally if an error on one mirror disk occurs. Special programming is not required in the
application to handle mirrored sets. Applications issue only one read or write as they are currently
doing, and the MCP handles the control of the other members of the mirrored set.

Two tables are maintained by the MCP.

OWL - Outstanding Write List keeps track of writes in process to mirrored sets. The OWL is
kept in memory.

MIT - Mirror Information Table contains information concerning all mirrored sets on the
system.

Disk Mirroring is an optional function of the MCP controlled by the ODT command OP iOptionsi and
the MIRRORING option. Once the mirroring option has been turned on, mirrored sets arc
established by the ODT command MTRROR. The MIRROR command allows for creatinn‘deletion
and maintenance of mirrored sets.

2-6



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
FAMILIES

Family Names

An Identifier is 1 to 17 alphanumeric characters. The recommended characters for an identifier are
0thru9and A thruZ.

A Family Name is an identifier.

Many installations establish 2 special purpose families.
DISK

The family named DISK is sometimes called the “System Disk”. This family will
normally contain the Master Control Program (MCP). In addition to the MCP itself,
many files used by the MCP and a special directory called SYSTEM/ACCESS are located
here.

PACK

The family named PACK is sometimes called the “System Resource Pack” because the
files contained here are usually files that are accessed by all users of the system. Some of
these files are compilers, utilities and printer backup files.

This pack family has become less common at installations than in the past. If family
PACK is not present, the files that would have been located on PACK are divided
between DISK and other families on the system.

Your system will have other families for file storage.

The files stored on other families usually are the user data bases, data files and programs (both
source and object code). The family name must be an identifier and should have some meaning
for your installation. The number of physical disk devices that make up vour families will
differ depending on the storage needs for different departments or functions. Your site should
establish some type of family naming convention at the time the system is installed.

2-7



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
FAMILIES

You can use the ODT command PER (Peripheral Status) to examine the family name, serial number,
and family index for disk devices. To use this ODT command and certain other ODT commands, you
are required to enter a unit mnemonic for the disk instead of the family name. PK is the disk drive
mnemonic. All hardware types have mnemonics which are unique. Some examples of mnemonics
are:

PK disk drives
MT magnetic tape drives
LP line printers

Example PER command:

PER PK

Sample Response:

----PK STATUS---
44*B [000100] (MCP) #1 DISK (1)
45*C [002000:001000:46] #2 EDUCATION (24)
46*B [001000] #1 EDUCATION (12)
48*C [002005:001000:46] #3 EDUCATION (10)

The response from PER PK includes a unit number. A Unit Number is a unique number assigned to
a particular peripheral device, used to identify the device.

To distinguish a particular disk drive on your system using mnemonics, you include a unit number
that represents that device.

Examples: PK 46, PK 48.

Certain ODT commands require a mnemonic and a unit number, such as OL (Display Label and
Paths).

Example: OL PK 44

2-8



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

Rows/Areas

FAMILIES

A Row or Area is a contiguous space on disk allocated for a portion of a file.

When a file is created on a family, space for the file is allocated one row at a time. The MCP
determines which member of the family the row is placed on. The MCP uses a rotational manner to
allocate the rows of files. A single file can be spread across all members of the family. The
SINGLEUNIT option can be selected for a file, to force the MCP to place the entire file on one member

of the family.

-

Row 0

Row 3

N

BASE PACK
Fl = 1

B

Row 1 Row 2
Row 4 Row 5
CONTINUATION CONTINUATION
PACK PACK
Fi =2 Fi =3
FAMILY

Figure 2-3 Row Allocation

If a disk becomes checkerboarded, the ODT command SQUASH can be used to correct the problem.

2-9



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
FAMILIES, FILES AND DISK DIRECTORIES

UNIT 2

FILE NAMES

Objective

Specify the file naming convention for the system.

Purpose

In order to access disk files, you must know how files are named.

Resources
A Series Systems An Introduction, Section 3 - A User’s View of System Functions

A Series 1/0 Subsystem Reference Manual, Section 8 - Format of External File Names



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
FILES

File Naming Convention
Each file which is to be stored on media is required to have a name so that it can be identified.

A File Name consists of 1 to 12 identifiers. Each identifier is separated by a slash (/). If the file name
is to have a usercode associated with it, the system will allow the usercode to be a thirteenth
identifier.
Examples: A/B
A/B/C/D/E/FIG/H/I/I/K/L

As for family names, an identifier is 1 to 17 alphanumeric characters. File names will allow special
alphanumeric characters which must be enclosed in quotes, such as ".”.

Each of the 12 identifiers must start with a letter or a digit.
The rest of the characters that make up the identifier, can be letters (A-Z), digits (0-9), hyphenor
underscore without using quotes. Any other characters must have quotes surrounding them.
Examples:
A/ .BYC
1A/2__B/C3
The thirteenth node of the file name is for the usercode specification. The usercode must be placed
before all of the other nodes of the file name, enclosed in parentheses, and not followed by a slash.
The usercode node is either a valid usercode for the system or an * (Non-Usercoded files).
Examples:
(USERDA/.B"/C
(ACCTY1A/2__B/C3
*A/B/C
*SYSTEM/DUMPALL

(PAYROLL)EMPLOYEE/HISTORY

2-1



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
FILES

The use of Usercodes as a node of the file name allows the system to:

Provide for segregation of files by user.
Files can be created with the same name by different users. The usercode will make the
file name unique and allow the system to access the correct file per user.

Establish security boundaries.

Usercodes are associated with a level of system security. Some usercodes are Privileged
and others are Non-Privileged.

Non-Privileged usercodes can access only files that the usercode owns and files
that are non-usercoded. This is the system default.

Privileged usercodes can have access to all users’ files. This includes both
usercoded and non-usercoded files.
Establish the user identity.
To segregate files by user and enforce security restrictions, the system must be able to
identify its users. All users must enter a valid usercode before doing any type of
production. The valid usercodes are stored in a disk file named
SYSTEM/USERDATAFILE which is maintained by the program called
SYSTEM/MAKEUSER.
The ODT is a privileged user and is not required to log on (enter a valid usercode) before

a command can be processed. To access usercoded files, the ODT is required to supply
the usercode as part of the file name.

All files that are stored on a disk pack will have the family name where they are stored associated
with the file name. The family name is appended to the file name following the word ON. When the
file name includes the word ON and the family name, this name is now called a File Title.
Examples:
(STUDENTA/".B”/C ON EDUCATION
(USER2)1A/2__B/C30ON PAYROLL
*A/B/C ON DISK

*SYSTEM/DUMPALL ON DISK

The svstem supplies a familv name of DISK unless it has been explicitly set to another value.



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
FILES

Nodes of a File Name

Each identifier that is part of the file name is also called a Node. The nodes of a file name also have
special titles.

The rightmost node is called the File Header or File Identifier.

When the usercode is present in the file name, it is the leftmost node.

The other nodes are called Directories. Directories are further subdivided.
The first node of the directories is called Directory.

The other nodes of the directory nodes are called Subdirectories.

Since files can be grouped by similarities in the beginning parts of their names, a tree structure can
be established.

The top of the tree is the family name. The next level down is the usercode. The next lower level is
the directory, followed by the subdirectories until you reach the file identifier.

family
(usercode)
T
directory2 directory directory
subdirectory5 subdirectory? subdirectory3
subdirectory6 subdirectory2 subdirectory4
file identifier2 » file identifier file identifier1

Figure 2-4 Tree Structure



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
FILES

Groups of files whose names begin with common nodes can be referred to by using the equal sign (=).

The equal sign (=) must appear after a slash (/) or after the parenthesis of the usercode.
Examples:
(STUDENT) =
(USER2)EMPLOYEES/=

(ACCTS)PAYABLE/JANUARY/= ON ACCTPACK

The ODT command PD (Print Directory) allows you to inquire as to the existence of a file or files.
Your entry depends on the tree structure.
Examples:
PD A/=
PD(USERI1)=
PD(ACCTS)PAYABLE/JANUARY/= ON ACCTPACK
PD(STUDENT)= 2

PD (STUDENT)LAB/TEST/DATA



Practice

Part A:

10.

A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

FILES

Match the terms on the left with the descriptions on the right.

FAMILY

DIRECTORY

FLAT DIRECTORY

USERCODE

FILE NAME

PACK

IDENTIFIER

FAMILYINDEX

MIRROR DISK

DISK

Part B: See next page.

a.

Composed of 1 to 17 alphanumeric characters.

Composed of 1 to 13 identifiers.

An identifier used to establish user identity and can be
either privileged or non-privileged.

An exact copy(ies) of a family.

A file that contains the file headers.

A unique number assigned to each member of a family.

Node of a file name.

Contains the Master Control Program and can be called
the System Disk.

A family normally known as the Svstem Resource Pack.

A collection of disk devices with a common name and file
directory.



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
FILES

Part B: Given the information below, draw the logical tree-structured diagram that represents
the files listed. by placing the correct identifier in the space provided.

a. The usercode is USER1.
b. The family is named EDUCATION.

¢. Thefiles are:
A/C/F/L
A/C/F/K
A/C/E/]
A/C/EN
A/B/D/H
A/B/D/G

Figure 2-5 Tree Structure



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
FAMILIES, FILES AND DISK DIRECTORIES

UNIT 3

DISK DIRECTORIES

Objective

Identify the Disk Directories used by the system

Purpose

You should be aware of what directories are involved and what the role of each directory is when you

access 4 disk file.

Resources
A Series Systems An Introduction, Section 3 - A User’s View of System Functions

A Series Disk Subsytem Software Overview, Section 2 - Disk Subsystem Concepts



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DISK DIRECTORIES

Directories

A directory is a list of files organized into a hierarchy according to similarities in the first parts of the
names. Directories are structures maintained by the MCP that are used to locate files.

SYSTEM/ACCESS Directory

The system has a directory called SYSTEM/ACCESS/ < family index >, located by default on the
family DISK. This directory is maintained for the whole system and is divided into two parts.

PAST (Pack Access STructure)

The PAST contains an entry for every family that is active on the system. Each entry
contains the family name and a pointer into the FAST. The pointer indicates where the
entry for the family’s files are stored in the FAST.

FAST (File Access STructure)

The FAST contains pointers to each disk’s file headers, sorted by tree structure order.
The FAST contains an entry for each file on the system. The entry is a pointer into the
Flat directory (pointer to file header).

SYSTEM/ACCESS
DIRECTORY

PACK 1 past
ACCESS
STRUCTURE

FILE FAST
ACCESS T FILENAME |[<~ =~
STRUCTURE

| FAMILY NAME

e oo wm o cow e e of

Figure 2-6 SYSTEM/ACCESS Directory

2-18



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DISK DIRECTORIES

Flat Directory

The Flat directory is the local directory for the family and is unsorted. It is located on the family’s
base pack. It contains a file header for every file that is stored on some member of the family. It
received its name because the FAST points directly to the desired file header.

SYSTEM/ACCESS
DIRECTORY

PAck | PAsT
ACCESS -
STRUCTURE !
.......................................... SO S
FiLE | FAST E
ACCESS Ig FILE NAME | €~~~

STRUCTURE i |

FILE HEADER

FILE HEADER

I | |

FILE HEADER -

FILE HEADER

FLAT DIRECTORY (ON FAMILY’S BASE PACK)

Figure 2-7 SYSTEM/ACCESS and Flat Directories

2-19



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
DISK DIRECTORIES

File Headers

A File Header is a data structure that contains information about a disk fiie. File headers are part of
the Flat directory. The file header contains the disk addresses of the rows of the file. It also contains
information about the characteristics of the file.

FILE HEADER CONTENTS

FILE ATTRIBUTES

o e e e e - i - = - ————— - ———— === == — =

[ —— e = ——— — =

\\\
\\\\
-y
\\\ \§\\
\\ /—_\\‘\\ //'—\\
~ 3
N N | v
N\
N
"N AT :
=
\* | .

o N N

g ROWS OF FILE (ON FAMILY'S PACKS)

Figure 2-8 File Header Contents

2-20



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DISK DIRECTORIES

Process of Accessing Disk Files

Below are the steps followed by the MCP when a file is requested by file title (file name and family
name)j. Refer to Figure 2-9 which foliows.

1. The MCP uses the PAST to locate the proper family entry in the FAST.

2. The MCP reads the file entries for the family in the FAST and locates the pointer to the
disk file header for the file with that file name.

3 The MCP reads the disk file header in the Flat directory.

4, The MCP obtains from the header the physical disk addresses of the area or areas that
contain the disk file.

5. The MCP accesses the file's data at those physical addresses.

The PAST is not accessed each time a file is to be located. The MCP reads the PAST entries into a
table in main memory when the sytem is initialized. When the PAST is updated, the MCP table is
updated also. When a file is to be located, the MCP reads the table in memory to get the pointer to the
FAST.

2-21



DISK DIRECTORIES

— o —

[SYSTEM/ACCESS
DIRECTORY o=

FAST
| FILE NAME [~*

S on o o= e o e e

1
}
I
1

FILE HEADER CONTENTS:

AU |

/ FILE HEADER - - -

FILE ATTRIBUTES ’

Figure 2-9 Directories Flow

‘\ '\1



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DISK DIRECTORIES

Directory Errors

Since the FAST is logically organized as a tree structure, it is totally unusable if an error is
encountered at the high level of the structure. The FAST can be rebuilt by using the Flat directories
for each family. A rebuild of the FAST will also be done if the ODT command RB (ReBuild Access) is
entered.

LAST

LAST is the Local Access Structure Table. It is a copy of the FAST and is located on the base pack of
the family only.

The LAST eliminates the need for a rebuild of the FAST when a pack is brought on-line. The FAST is
restored by using the LAST. If the LAST is not present or an error occurs when attempting to copy
the LAST, the MCP will cause a rebuild of the FAST to occur.

The LAST is not always present on the base pack.
The LAST is written to the base pack of a family when 1 of the ODT commands CLOSE, FREE

or PO (Power Off) is requested and performed by the MCP. If the pack is manually powered off
the MCP will not attempt to write a LAST to the family.

s

If an error occurs during the MCP’s attempt to write the LAST to the base pack, or the MCP
determines that there is insufficient space on the base pack to place the LAST, the MCP will
discontinue the operation.

If the system is using the MCP cataloging feature, a LAST will not be generated.

If the pack is mirrored, no LAST will be generated when the pack is removed from the system..

The SYSTEM/ACCESS directory is created the first time the system is initialized. Each time a
family is added to the system, the PAST and FAST are updated using the LAST or a rebuild
operation.

2-23



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
FAMILIES, FILES AND DISK DIRECTORIES

UNIT 4

FAMILY SUBSTITUTION

Objective

Write Family Substitution statements.

Purpose

Family substitution is involved when you attempt to access a file. In order to know what information
must be provided to the MCP to have the correct file located, you must know how family substitution
works.

Resources

A Series Disk Subsystem Software Overview, Section 5 - Planning and Installation

2-24



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
FAMILY SUBSTITUTION

What Is Family Substitution?

Family Substitution is an automatic substitution of a user-specified family location for another
family. It causes the system to attempt to locate the requested files on a substitute family or an
alternate family.

Files for a user or group of users (private files) are usually grouped together and stored on one family.
When the usercode is created, the family name is linked with the usercode for ease of the user.

At times it becomes necessary to access system files (compilers, utilities). Family substitution
provides the mechanism so that files can be divided among disk families and still allow access to files
the users need to perform their job.

Family substitution allows you to designate the family name where vour private files are located and
the family name where system files are located.

2-25



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
FAMILY SUBSTITUTION

Family Substitution Parameters

Target Family
System software and some application programs are written so that the system defaults to

family DISK when searching for a file. The target family is the family name where the system
will search for a file.

Substitute Family

Substitute family is the place that you want the system to look for the file instead of the target
family. It is usually the family name assigned to your usercode (location of private files).

Alternate Family

If the files cannot be located on the substitute family, the system will also check the alternate
family to see if the file can be located.

ONLY

Only causes the system to search for files on the substitute family only.

FAMILY — <TARGET - - - <SUBSTITUTE — OTHERWISE — <ALTERNATE — %
FAMILY NAME > FAMILY NAME > FAMILY NAME >

ONLY

Figure 2-10 Family Substitution Syntax

Examples: FAMILY DISK = EDUCATION OTHERWISE DISK
FAMILY DISK = EDUCATION ONLY

FAMILY DISK = PAYPACK OTHERWISE PACK

2-26



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

FAMILY SUBSTITUTION
Family Substitution Chart

Function Substitute Family Alternate Family
Read a File Looks here first Looks here second
Create a File Always creates file

here only
CANDE & WFL:
Remove or Change a File Name Removes or Changes

here

Family Substitution is initially established when the usercode is created. It can also be updated when
the usercode characteristics are updated.

A family substitution statement can be associated with a usercode, system job queues, Work Flow jobs
(job attributes), Work Flow tasks (task attributes) and/or an editing MCS called CANDE. Family
substitution can be changed as needed after creation.

2-27



Practice

Part A:

Part B:

A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
FAMILY SUBSTITUTION

Match the terms on the left with the descriptions on the right.

PAST

SYSTEM/ACCESS

DIRECTORY

FLAT DIRECTORY

FAMILY SUBSTITUTION

LAST

See next page.

o3

A file that contains file headers for each file on the
family.

The ability to easily specify where the system
should search for files.

A file used to update the FAST when a pack is
brought on-line.

A structure that contains an entry for each family
on the system.

An entry containing the row addresses and
characteristics of the file.

A structure containing pointers to file headers.

A file comprised of the PAST and FAST.

2-28



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
FAMILY SUBSTITUTION

Part B: Write the Family Substitution statements necessary to accomplish the following:

1. The system should access files requested from the family EDUCATION. If a file is not located
on this family, the system should not look on any other family.

2. You have been informed that all compilers will be available for your use on family TEST. Your
usercode defaults to the family NEWAP, with no alternate family.

3. Your data files are located on family DBALL. All other files for your use are on family
PRODUCTION.

4, All non-usercoded files are located on DISK. Your private files should be located on
STUDENTPACK.

2-29



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
FAMILIES, FILES AND DISK DIRECTORIES

UNIT 5

FILE ATTRIBUTES

Objective

Recognize some common file attributes.

Purpose

In order to access a disk file, you must be aware of the characteristics of the file.

Resources
A Series Systems An Introduction, Section 3 - A User’s View of System Functions
A Series Disk Subsystem Software Overview, Section 2 - Disk Subsystem Concepts

A Series I/0 Subsystem Reference Manual, Section 1 - Introduction
Section 4 - File Attributes

2-30



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
FILE ATTRIBUTES

What are File Attributes?

File attributes are specifications included with each file that define basic information about that file.
These specifications are control parameters that contain all the information the I/O (Input/Output)
subsystem needs to connect the correct physical file to a logical file and to process the file after the
connection has been made.

Various file attributes are stored in the disk file header located in the Flat directory.

Disk Storage
The basic physical units of disk storage are:
BIT
the smallest unit of data. It has a value of on/off, 1/0, yes/no, or true/false.
BYTE
1 character which contains 8 bits.
WORD
6 bytes or 48 bits of data.
SEGMENT/SECTOR
30 words or 180 bytes or 1440 bits.
The disk devices impose a structure restriction for reading or writing files. Each data transfer to or
from a disk must be done in units of one or more segments or sectors.
The logical units of disk storage are:
CHARACTER
a collection of 8 bits of data.
FIELD
individual pieces ofdat.a which consist of a group of characters.
RECORD
a collection of fields.
FILE

4 collection of records.

2-31



A SERIES AND B 5000/8 6000/8 7000 CONCEPTS
FILE ATTRIBUTES

BLOCK
a whole number ot records or segments.
AREA/ROW

a whole number of blocks.

FILE

AREAS

BLOCKS

RECORDS

FIELDS

ABCD CHARACTERS

Figure 2-11 Disk Structures

2-32



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
FILE ATTRIBUTES

File attributes are used to:

Identify a File.
FILENAME - external file name.
FAMILYNAME - name of the family where file is stored.

FAMILYINDEX - relative number assigned to the member of family where file is
stored (used if not spread among all members of the family).

TITLE - external file name and family name.
INTNAME -internal file name within a program.

KIND - the type of peripheral device where the file is located or to be created.

Indicate the File Structure.
UNITS - how the transfer of data is to be done (in words or characters).
MAXRECSIZE - maximum size of each record in the file in units.
MINRECSIZE - minimum size of a record in the file in units.
BLOCKSIZE - length of a block in units.
AREAS - number of rows a file can allocate.
AREASIZE - number of records in an area of a file.
INTMODE - internal character size of each record.
FILEKIND - internal structure and purpose of a file.
BUFFERS - number of buffers used in processing a file.
FLEXIBLE - file can be allocated more areas when file is full.

DEPENDENTSPECS - the logical file assumes the structure of the physical file when
a file is opened.

2-33



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
FILE ATTRIBUTES

Control File Access (Security).
MYUSE - indicates how the file is to be used (input, output, I/0).

NEWFILE - determines if the system accesses an existing file or creates a new file.

Obtain Status of the File.
CREATIONDATE - returns the date when the file was first opened for creation.
CREATIONTIME - returns the time when the file was first opened during creation.
USEDATE - returns date file was lasted accessed.

RESIDENT - determines if a file exists.

Other file attributes can automatically translate the characters in a file, and return diagnostic
information about attributes consistency and about physical I/0 operations.

2-34



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
FILE ATTRIBUTES

The values of file attributes can be declared in the source program or set dynamically using Work
Flow Language or ODT commands.

The following examples will declare a file with the following attributes.
The name of the file is EMPLOYEES/NAMES, and it is stored on a disk pack.
Each record is 14 words or 84 characters long.
Each block contains 30 records or 420 words.
Each area is 2100 records in size.
Total number of areas that can be used is 50.

The file is given 2 buffers.

ALGOL Program Example

BEGIN
FILE DATAFILE (KIND = DISK, MAXRECSIZE = 14, BLOCKSIZE = 420,

BUFFERS = 2, AREAS = 50, AREASIZE = 2100,
TITLE = “EMPLOYEES/NAMES.”);

END.

COBOL74 Program Example

ENVIRONMENT DIVISION.

® O [T

FILE-CONTROL.
SELECT DATAFILE ASSIGN TO 50 * 2100 DISK.

DATA DIVISION.
FD DATAFILE  BLOCK CONTAINS 30 RECORDS;
RECORD CONTAINS 14 WORDS;
VALUE OF TITLE IS"EMPLOYEES/NAMES”.
°
®
)

STOPRUN.

2-35



Practice

A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

FILE ATTRIBUTES

Match the terms on the left with the descriptions on the right.

1.

AREAS

BLOCKSIZE

AREASIZE

MAXRECSIZE

UNITS

FLEXIBLE

TITLE

INTNAME

0

This attribute specifies the number of logical records in
an area of a disk file.

The value of this attribute is the number of areas (or
rows) a disk file can allocate.

The value of this attribute is the length of a block.

This attribute indicates whether or not a disk file can be
allocated more areas.

This attribute specifies the maximum size of records in
the logical file.

This attribute describes the peripheral unit associated
with the logical file.

This attribute indicates whether the transfer of data in
the file will be word or character oriented.

This attribute can be programmatically changed and is
the internal file name.

This attribute is the external file name which is used to
associate a logical file with a physical or permanent file.

2-36



SECTION 3

INTERPRO OVERVIEW




A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
INTERPRO OVERVIEW

INTRODUCTION

Section Objective

Use MARC.

Purpose

To use MARC, you need an introduction to the InterPro produets.

Unit Objectives
Identify InterPro and its features.
Identify InterPro products.

Use MARC screens to do inquiries.

3-2



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
INTERPRO OVERVIEW

UNIT 1

INTERPRO INTRODUCTION

Objective

Identify InterPro products.

Purpose

To determine if InterPro products can be used at your installation, an overview of InterPro is
necessary.

Resources

A Series System An Introduction, Section 2 - Virtual Memory, Stacks, and Other System Concepts
Section 3 - A User’s View of System Functions

A Series Interactive Datacomm Configurator (IDC) User’s Guide, Section 1 - Introduction
Section 2 - General Concepts

A Series Communications Management System (COMS) Capabilities Manual
A Series Screen Design Facility (SDF) Capabilities Manual

A Series Extended Retrieval with Graphic Output (ERGO) User’s Manual, Section 1 - Introduction
Section 2 - Overview

3-3



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
INTERPROINTRODUCTION

Whatls InterPro?

InterPro is INTERactive software that addresses personnel PROductivity for A Series installations.
InterPro is a group of products that was totally new to Burroughs software family when first released.
The InterPro products are not extensions to Burroughs other software products. InterPro products
are integrated products so that duplication of functions are eliminated, performance is improved and
a higher level of system integrity can be reached.

Features of InterPro

High Performance

Reduced Application Programming

Simplified Installation of System Software

Simplified Maintenance of System Software

Reduced Training

Utilization of the Major Architectural Advances Introduced in the A Series

Menus
A key element of the InterPro products are its use of menus and menu-assisted support. All products

guide the user from one operation to another. The user can request help at any point when questions
arise and receive the help response on the terminal.

3-4



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
INTERPROINTRODUCTION

InterPro Products

The InterPro Products are divided into three categories: Communications, Data Management, and
Operations Control.

The communications grouping includes three InterPro products. These are:

Interactive Datacomm Configurator (IDC)

IDC is an interactive, menu-driven utility. IDC is designed to define the data
communication network for your system. It eliminates the need to use the Network
Definition Language (NDL II) to define the hardware setup of your data communications
network.

IDC will also handle updates to the data communication network, which can be entered
and implemented on-line. This update capability reduces the time required to make
modification to the network.

IDC can be used interactively using IDC commands or can be used in a batch mode.

Communications Management System (COMS)

COMS is a Message Control System (MCS). COMS will control the flow of data in the
communications network. It has many features that are required by users to route
messages from terminals to programs and back to terminals.

COMS provides high performance, is flexible, and is a reliable communications monitor.
It is designed to accommodate particular needs of an installation by allowing new
functions to be specified, in addition to the inbuilt features. COMS Utilitv uses menus

and provides on-line assistance when requested by the operator in order to define and
maintain the system.

Screen Design Facility (SDF)
SDF is an interactive screen form definition and screen painter program. SDF allows a
screen designer to use a terminal to build screens instead of a programming language.
SDF will perform some data validation during data entry, thus eliminating the need for
the application programs to validate the data.

SDF improves screen development and brings on-line systems into production quickly.

It also allows the end user to become involved in the design of screens used in
applications.

3-5



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
INTERPROINTRODUCTION

The data management grouping includes two InterPro products. These are:

Advanced Data Dictionary Systems (ADDS)

ADDS is an interactive, menu-driven program that provides for centralized storage and
retrieval of data definitions. It allows the user to define the physical and logical
databases for the system, conventional files, relationships among data elements, and
screen formats.

ADDS makes it possible to eliminate inconsistencies and redundancies in data and to
control additions, changes, and deletions. These controls and others ensure data
integrity.

Extended Retrieval with Graphic Output (ERGO)

ERGO is a query program that provides quick, on-line access to DMS II databases in
tabular and graphic forms. ERGO produces reports using the input parameters specified
by the user. The reports can contain graphic output in addition to normal data
reporting. ERGO eliminates much of the programming time used to code report
programs.

The operations control grouping includes only one InterPro product.

Menu Assisted Resource Control MARC)

MARC is a menu-guided and command-driven interface to the system. Marc provides
screen after screen to the user, formats the user’s responses so that the MCP will accept
the input, passes input to the MCP and receives responses from the MCP which are
displayed for the user.

MARC can be used by any type of user (ODT operator, programmer, etc.) to interface to

the system. MARC can be used in different modes to allow for the experienced user or
provide assistance for the beginning user.

3-6



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
INTERPRO OVERVIEW

UNIT 2

MARC USAGE

Objective

Use MARC screens to do inquiries.

Purpose

To make operations of the system easier, quicker and more user-friendly, you need to use MARC to
communicate with the system.

Resources
A Series System An Introduction, Section 3 - A User’s View of System Functions

A Series Menu-Assisted Resourced Control User’s Guide, All Sections

3-7



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MARC USAGE

Whatlis Marc?

MARC is Menu Assisted Resource Control. MARC provides a menu-driven interface and a direct
command entry interface to the system.

It was developed for systems operators, programmers, and end users. MARC menus and help facility
make it possible to perform actions on the system without having any knowledge of system
commands. MARC also allows the experienced operator to interface with the system without having
to use all of the MARC menus.

MARC gathers input from users at any number of different stations, translates the input into specific
commands, and passes these commands to COMS or other appropriate components of the system.
MARC then gathers the command output and sends it to the appropriate stations.

Methods of Menu Operation

Menu Directed Path (known as Menu Mode) steps users through a series of menus to the final
response for the request. As each menu is displayed, a choice is made, another menu displayed, a
choice is made or input fields filled in, until MARC has enough information to format a message to
the system.

Direct Menu Selection (known as Choice Field Typeahead) allows users to apply the Menu Directed
Path method but to bypass menus already mastered. It allows you to display only the menus you
need. You supply information for the next logical menu on the current menu along with the current
menu choice and then bypass the next menu. Typeahead allows only menu selection keys and’or form
parameters to be entered in the choice field.

Menu Command Line (known as Command Mode) is used to enter a request in the command
language of the MCP. It allows you to bypass the menus and enter commands directly. These

commands must be entered in the correct syntax as defined by the MCP.

3-8



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MARC USAGE

Basic Menu/Screen Layout

1 <screen name> - <screen title> <time of day> MARC
2 Action: | ]

3 <hst of avan!able actions> (Press SPCFY fOr Help)

<screen-specificinformation and input fields >

20

21| Choice: [ ]

22

23 <error messages, shorthelp information, or short command output>

24

Figure 3-1 Sample MARC Screen

3-9



Actions

A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MARC USAGE

When the MARC screen is displayed, the list of available actions will differ depending on the screen
requested. Actions allowed at some time in MARC are:

GO - must be followed by a screen name. It causes MARC to display the requested
screen next.
HOme - causes MARC to display the home menu next.
PArent - causes MARC to display the screen that is the parent to the screen that you are
viewing.
PRev - causes MARC to display the last screen viewed.
REturn - causes MARC to display the screen that generated the command. Usually you
will be on a screen where the responses from the command are displayed for you.
+ - causes MARC to display the next screen for output or help text. This is used for
scrolling forward process.
- - causes MARC to display the last screen of output or help text. This is the
backward scrolling process.
COmnd - causes MARC to initiate the command mode function and receive input in the
format required by the MCP.
KEys - causes all of the help keywords that are available through MARC to be
displayed
Action Field Typeahead
The action field typeahead feature allows you to make a sequence of entries at once in the action field
rather than merely one entry. The entries are executed one at a time by MARC.

Action field typeahead rules:

1.

First item in the sequence must be a valid action for the displayed screen. If GO is
selected, a screen name must follow.

After the screen action, enter a menu selection or series of menu selections. The
first selection must occur on the screen that the screen action leads to. Other
selections must occur on the menu that the previous menu selection led to.

Following selections, form field values can be entered. Order of the parameters
must match the order on the menu that the selections led to.



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MARC USAGE

Help

All of the InterPro products provide the user with on-line help. Help is available in 2 forms.

ShortHelp Text
ShortHelp displays a 2 line help message, located at the bottom of the screen.

To request ShortHelp, move the cursor to the item for which help is desired and press the

SPCFY key once.

Help Mode
Help mode displays 1 or more screens containing information to assist you . The number
of screens to be displayed depends on the item selected. This can be referred to as Long
Help.

To request help mode, move the cursor to the item for which help is desired and press the
SPCFY key once. Wait for the shorthelp text to be displayed. Then without moving the
cursor, press SPCFY a second time. The first screen of help information will be
displayed.

To view the other screens of help information, you use the scrolling capability
(Action + or-).

The help information displayed for you may vary depending on the system on which you are working.

MARC allows the user to customize the help information. The released MARC product has standard
help screens which can be used or modified by the installation to customize help information.

3-1



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MARC USAGE

MARC Logon/Logoff

MARC will present a logon screen to any terminal that is attached to the COMS MCS. A logon screen
may not be presented if the terminal cannot handle page entry, if the terminal is the ODT or if the
COMS Utility has assigned that terminal to a different program other than MARC.

For a terminal assigned to a program other than MARC, enter 70N MARC to display the logon
screen.

At the ODT, enter ??MARC to receive the logon screen.

Terminals must enter a valid usercode and password.

The only exception is the ODT and a terminal defined as a superuser-capable. A superuser-
capable terminal is a COMS status for a terminal to determine security clearance. The ODT
and superuser-capable can enter an * as a valid usercode. They are allowed access rights to the
system without special identification.

LOGON - Menu-Assisted Resource Control 02:03 PM MARC
Welcome.
Please enter your user code [ ]

...and your password [ ]

The USERCODE or PASSWORD you have entered is not valid.
Please reenter your USERCODE and PASSWORD.

Figure 3-2 MARC Logon Screen

3-12




A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
MARC USAGE

MARC provides three ways to sign off.

BYE

This will end the current MARC session, release print files for printing and log you off
the system.

SPLIT

This will end the current MARC session, release any print files, and immediately start a
new MARC session under the same usercode.

HELLO <usercode>

This will end the current MARC session, release any print files, and immediately start a
new MARC session under the usercode entered.



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

MARC Home Menu Example

MARC USAGE

Once you are logged on, the MARC Home Menu is displayed.

Each usercode can have a different Home Menu.

When a user logs on to MARC, the usercode entered is used to determine what Home menu

should be displayed.

MARC - MENU-ASSISTED RESOURCE CONTROL

HOme PRev GO PArent COmnd

SYS

System Control

CONFIG System Config

PK
DK
MT
LP
1P
CR
cp

HC
PROC
MM

Disk Pack
Head-per-trk Disk
Magnetic Tape
Line Printer
Image Printer
Card Reader

Card Punch

Host Control
Processors
Memory Modules

OTHER Other Devices

Action: [

INTRO Intro to MARC

JdD Job Display

JC Job Control

Q Job Queues

PS Printing System
RUN Run A Task

START Start WFL Job
UTIL  System Utilities
MEM  Memory Management
SP Special Programs
DUMPS  Dumps

LOG  Logging

SWAP  Swapper

Choice: [

User = USER1; Session = 1287.

Burroughs B6900:2372 MARC (version 36.130) SYSEDBGI0O0.

02:39 PM MARC
]
(Press SPCFY for Help)
NEWS  System News
DATE Date and Time
USER  Usercode/Password
FILE File Management
LIBS System Libraries
oC DataComm Control
BNA  BNA Commands
COMS  COMS Displays
cC COMS Control
SEND  Send Messages
< Session Control
ON Change Window
CANDE Cande Window

Figure 3-3 MARC Home Menu Privileged and Systemuser




A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
MARC USAGE

Command Example

To demonstrate the use of MARC screens and command mode, we wish to determine if a file
MARC/FILE/EXAMPLE is present on our system.

Menu Mode

The following steps and screens demonstrate using the Menu Mode to determine if a file is present.

On the Home menu select the choice FILE (File Management).

MARC - MENU-ASSISTED RESOURCE CONTROL 02:04 PM MARC
Action: [ ]

HOme PRev GO PArent COmnd {(Press SPCFY for Help)
INTRO Intro to MARC START Start WFL Job SPLIT Print Backup Fite
J Active Entries BYE Log Off
W Waiting Entries DIR  List My Files PASSWD Change Password
C Completed Entries COPY Copy File LANG Change Language
SHOW  Show Print Queue  CHANGE Change File Name

REMOVE Remove File Other Menus:
Y Task Status SEC  Change Security JOC  Job Disp/Control
TI Task Times INFO  Show File Info PS Printing System
DS Discontinue Task FAMILY Show Family UTIL  System Utilities
ST Suspend Task CHFAM Change Family SYSINF System Info
X Resume Task FILE File Management
WINDOW Current Windows COMS  COMS Displays
SEND  Send Message ON Change Window C Session Control
MSG  Read Message CANDE Cande Window
RUN  Run a Program NEWS  Read News
Choice: [FILE
]

Burroughs B6900:2372 MARC (version 36.130) SYSEDBGS0O.
User = CONCEPTS; Session = 1212.

Figure 3-4 MARC Home Menu Non-Privileged User

3-15



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MARC USAGE

The FILE choice causes the File Management and Disk Directories Screen (File screen) to be
displaved.

On the File Screen, select the choice FDIR (Show Files/Directories).

FILE - FILE MANAGEMENT AND DISK DIRECTORIES 02:05 PM MARC
Action: [ ]
HOme PRev GO PArent COmnd (Press SPCFY for Help)
COPY Copy Or Add A File FAMILY Display/Change Family Specific

cC Copy & Compare A File
CHANGE Change Disk File Name
REMOVE Remove Disk File

SEC Change Disk File Security
START Start A WFL Job

FILES Show My File Directory
FDIR  Show Files/Directories

INFO  Show Key Info About A File

DETAIL Show Details About Files
REPORT Print FILEDATA Disk Report

Choice: [FDIR ]

Figure 3-5 File Management & Disk Directories Screen

3-16




A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MARC USAGE

The FDIR selection causes the File Titles and Directories Screen (FDIR screen) to be displayed.

On this screen you are to fill in parameters instead of filling in the choice line, as in the 2
previous screens.

Enter the file name MARC/FILE/EXAMPLE.

Your usercode will be added by MARC, and family substitution will provide the family name.

FDIR - Display File Titles & Directories 02:06 PM MARC
Action: [ ]
HOme PRev GO PArent COmnd (Press SPCFY for Help)

You may display a 1ist of files and directories in ONE of two ways:

1 By USERCODE (or *). . . .. .. [ ]
FILE TITLE or DIRECTORY. . . [MARC/FILE/EXAMPLE
]
OR
2 Under all USERCODEs (type an X) . . . . . . . .. (]
On the FAMILY (optional) . . . .. .. [ ]
Number of directory LEVELs (optional). . . . . . 1 ]

Figure 3-6 File Tities and Directories Screen

3-17



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MARC USAGE

The output from our request will be displayed:
On the bottom 2 lines of the screen where we entered the parameters.
OR
On the Command Output Screen if the output would not fit on 2 lines.

The Command Output Screen will display the first page of output. Additional
pages can be viewed by using the scrolling action.

OUTPUT - MARC COMMAND OUTPUT 02:08 PM MARC
Action: [REturn ]
HOme GO REturn COmnd + - (Press SPCFY for Help)

Response returned at 02:08 PM:

FILE (CONCEPTS)MARC/FILE/EXAMPLE ON SYSTEMSED (COBOL74SYMBOL)
DATE AND TIME OF CREATION: MONDAY SEP 23,1985 (85266) AT 16:53:08
LAST ACCESS: FRIDAY JAN 31,1986 (86031) AT 19:56:36
LAST ALTER: MONDAY SEP 23,1985 (85266) AT 16:53:08
SIZE IN SEGMENTS: 14

SECURITY: PRIVATE - USAGE: READ/WRITE

FILE MARC/FILE/EXAMPLE

Figure 3-7 MARC Output Command Screen

3-18




A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MARC USAGE

Choice Field Typeahead

The following screens and steps demonstrate using the Choice Field Typeahead to determine if the
file is present.

On the Home menu, select the choice FILE. Follow that by the selection that you want on the
File Management and Disk Directories screen, which would be FDIR. This would cause the

system to bypass the File Management and Disk Directories screen and display the File Titles
and Directories screen.

MARC - MENU-ASSISTED RESOURCE CONTROL 02:08 PM MARC
Action: [ ]

HOme PRev GO PArent COmnd (Press SPCFY for Help)
INTRO Intro to MARC START Start WFL Job SPLIT Print Backup File
J Active Entries BYE  Log Off
W Waiting Entries DIR  List My Files PASSWD Change Password
C Completed Entries COPY Copy File LANG Change Language
SHOW  Show Print Queue  CHANGE Change File Name

REMOVE Remove File Other Menus:

Y Task Status SEC  Change Security JOC  Job Disp/Control
71 Task Times INFO  Show File Info PS Printing System
DS Discontinue Task FAMILY Show Family UTIL  System Utilities
ST Suspend Task CHFAM Change Family SYSINF System Info

oK Resume Task : FILE File Management
WINDOW Current Windows COMS  COMS Displays
SEND  Send Message ON Change Window SC Session Control
MSG  Read Message CANDE Cande Window

RUN Run a Program NEWS  Read News

Choice: [FILE FDIR ]

Figure 3-8 MARC Home Menu Non-Privileged User

3-19




A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MARC USAGE
The FILE FDIR selection causes the File Titles and Directories Screen to be displayed.
On this screen, choices are not allowed. You are to fill in parameters instead.

If vou knew the order of the parameters to enter, the parameters could have been entered
following FILE FDIR on the Home menu.

The output from our request will be displayed on the bottom 2 lines of the screen where we
entered the parameters or on the Command Output Screen if the output requires more than 2
lines.

FDIR - Display File Titles & Directories 02:11 PM MARC
Action: [ ]
HOme PRev GO PArent COmnd (Press SPCFY for Help)

You may display a 1ist of files and directories in ONE of two ways:

1 By USERCODE (or *). . . . . .. [ ]
FILE TITLE or DIRECTORY. . . [MARC/FILE/EXAMPLEL

—J

OrR
2 Under all USERCODEs (type an X) . . . « « « « « . [1]
On the FAMILY (optional) . . . . . .. L ]
Number of directory LEVELs (optional). . . . . . { ]

No file(s) were found on SYSTEMSED

Figure 3-9 File Titles and Directories Screen

3-20




A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

Command Mode

The following steps and screens demonstrate using the Command Mode to determine if the file is

present.

MARC USAGE

On the Home menu select the Action CO (command). CO is then followed by the ODT
command to determine if a file resides on disk. This command is PD (Print Directory).

You must use the syntax of PD as defined in the ODT manual.

Enter CO PD <file name >, for example CO PD MARC/FILE/EXAMPLE.

The output appears on either the Command Qutput Screen or the bottom 2 lines of the

parameter screen (refer to Figure 3-7 for the PD output).

MARC - MENU-ASSISTED RESOURCE CONTROL
Action: [CO PD MARC/FILE/EXAMPLE
HOme PRev GO PArent COmnd

INTRO Intro to MARC

J Active Entries

W Waiting Entries
C Completed Entries
SHOW  Show Print Queue

Y Task Status

TI Task Times

DS Discontinue Task
ST Suspend Task

0K Resume Task

SEND  Send Message
MSG  Read Message
RUN  Run a Program
Choice: [

START Start WFL Job

DIR  List My Files
CoPY  Copy File
CHANGE Change File Name
REMOVE Remove File

SEC  Change Security
INFO  Show File Info
FAMILY Show Family
CHFAM Change Family

WINDOW Current Windows
ON Change Window
CANDE Cande Window
NEWS  Read News

02:12 PM MARC
]

(Press SPCFY for Help)

SPLIT Print Backup File
BYE  Log Off

PASSWD Change Password
LANG Change Language

Other Menus:
JDC  Job Disp/Control
PS Printing System
UTIL  System Utilities
SYSINF System Info
FILE File Management
COMS  COMS Displays
C Session Control

Figure 3-10 MARC Home Menu Non-Privileged User

3-21




A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MARC USAGE

Tasking Mode

In addition to Menu Mode and Command Mode, MARC also has a Tasking Mode, which allows
programs to be run through MARC.

Tasking Mode is initiated from Menu Mode by the COPY or RUN menu selections, or by any of the
system utility menu selections, or from Command Menu when any Work Flow command is entered.

In tasking mode, MARC will display screens for the user to enter all information needed to execute a
program. This may require entries in multiple screens.

When the program is executed, the task status screen will be displayed. This screen displays the mix
number of the program, name of program and the status information about the program. The screen
will be updated as the program executes to keep you informed of the program status.

1250 - (CONCEPTS)"MARC WFL", 02:17 PM MARC
Action: [REturn ]
HOme REturn MSg ON SP1it

Parameter= COPY MARC/FILE/EXAMPLE FROM SYSTEMSED (PACK) TO SYSTEMSED (PACK)
Task status= TERMINATED

Elapsed= 26.913 Processor= 0.487 1/0= 0.403

14:16 1243\1251 BOT  (CONCEPTS)WFLCODE ON SYSTEMSED

14:16 1243\1252 BOT  *LIBRARY/MAINTENANCE

14:17 1252 PK51 (CONCEPTS)MARC/FILE/EXAMPLE REMOVED ON SYSTEMSED

14:17 1252 (CONCEPTS)MARC/FILE/EXAMPLE COPIED FROM SYSTEMSED TO SYSTEMSED
14:17 1243\1252 EQT *LIBRARY/MAINTENANCE

14:17 1243\1251 EQOT (CONCEPTS)WFLCODE ON SYSTEMSED

14:17 1243\1250 EOT (CONCEPTS)MARC WFL

E0J

Figure 3-11 Sample Tasking Screen

3-22



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MARC USAGE

Security
A usercode can have a status of Commandcapable, Systemuser, Privileged, or Non-privileged.

Commandcapable limits the COMS commands that the user can enter. (Allowable commands
WRU, PASS, ON, PURGE, WINDOWS, RESUME, SUSPEND, CLOSE,END, and BYE.)

Systemuser allows access to Controller functions that affect the operations of the system.

Systemusers are given a system-wide view through MARC at a terminal, as if they were at the
ODT.

A terminal can have a status of Superuser.

Superuser allows entry of * as a usercode and gives the user systemuser status but is still
non-privileged. Superuser status has the advantage of allowing users to log on to the system
when no usercodes have been declared in the SYSTEM/USERDATAFILE. The ODT is
automatically considered a superuser.

MARC can be modified to display unique help information and unique menus.
The standard MARC release provides standard menus and help information. Menus can be

modified to users’ specifications. Menus can also be changed to reflect the differences between
usercodes. Modification of menus also includes addition of menus.

The ODT can run MARC.

To receive the logon screen, you enter ??MARC. This will cause the system to treat the ODT as
if it were a terminal. The ODT can now operate as any other terminal attached to the system.

To return the ODT back to ODT mode, sign off from MARC or enter ??0DT.

3-23



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MARC USAGE

This page left blank for formatting.

3-24



SECTION 4

SYSTEM INITIALIZATION CONCEPTS



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SYSTEM INITIALIZATION CONCEPTS

INTRODUCTION

Section Objective

Identify the different levels of system initialization.

Purpose

In order to control the system, you must be able to determine when a system requires initialization
and/or re-initialization. You must also determine what level of initialization is to be performed.

Unit Objectives
Identify the different levels of system initialization.

Identify how to change the MCP file that the system operates under.

4-2



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SYSTEM INITIALIZATION CONCEPTS

UNIT 1

SYSTEM INITIALIZATION

Objective
Identify the different levels of system initialization.
Purpose
In order to control the system, you must be able to determine when a system requires initialization
and/or re-initialization. You must also determine what level of initialization is to be performed.
Resources
A Series Systems An Introduction, Section 4 - Planning for Effective Operations
A Series A 3 System Software Installation Guide, Section 6 - Simple Halt/Loading of Your System
Section 7 - Halt/Loading Using UTILOADER and
LOADER
A 9 System Software Installation Guide, Section 6 - Simple Halt/Loading of Your System
Section 7 - Halt/Loading Using UTILOADER and LOADER

Section 8 - Creating a Halt/Load Pack on a Non-Running
Machine

4-3



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
SYSTEM INITIALIZATION

What s System Initialization?

System initialization is the process used to bring a system to a normal operating condition (available
for intended use). Initialization of the system will cause a new copy of the MCP (Master Control
Program) to be applied to the system from either a system tape or a disk on the system.

Initialization of the system is required:

When the system is first powered up.
When the system develops a fatal error.
When the MCP becomes corrupted.

To install a different level of the MCP.

There are three methods used to initialize a system: Halt/Load, Cold Start, and Cool Start.

4-4



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
SYSTEM INITIALIZATION
Halt/Load Initialization
Halt/Load is the least severe form of system initialization.
Halt/Load initialization is the process of bringing all processing in the system to a stop (halt) and then

loading the MCP into memory from the Halt/Load Pack which is mounted on the Halt/Load Unit and
having the MCP executed.

A Halt/Load Pack (H/L Pack) is a pack which contains an MCP that is the current operative MCP.

A Halt/Load Unit (H/L Unit) is the disk device that the H/L pack is mounted on.
The terms H/L Unit and H/L Pack are used interchangeably.

The H/L Unit is usually family "DISK” Tt is the location of the SYSTEM/ACCESS directory
and the MIT (Mirror Information Table).

The unit number of the H/L Unit is contained in the bootstrap, which is a collection of data and
machine instructions capable of locating, loading, and executing the MCP file .
A Halt/Load may be performed:

To compensate for memory parity errors.

To handle a system thrashing condition.

To compensate for software bugs.

To correct a hung system condition.

At the discretion of the operator.

To reconfigure the system.

4-5




A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
SYSTEM INITIALIZATION

To Halt/Load a system, vou enter ??PHL (Programmatic Halt/Load) at the ODT.

This is a primitive command which bypasses the ordinary handling of ODT commands and
causes an immediate programmatic Halt/Load of the system. When the system has been reset,
the operator is requested to verify or enter the date and time.

On some of the systems, a Halt/Load can be or must be done by depressing the Enable , Halt
and Load buttons on the main cabinet.

The Enable and Halt buttons are depressed simultaneously. You then press the Load
Mode button to illuminate it, followed by the Load button. The system will then request
verification or entry of the date and time.

Files are retained by the system and the MCP option Autorecovery will control the recovery process of
programs that were executing. If necessary, recovery of databases will be performed.

Cold Start Initialization

Cold start is the most severe form of initialization. All files are removed from the H/L unit. A new
copy of the MCP is loaded onto the H/L unit from a system tape.

A Cold Start:
Is done to first bring up the system.
Is done to clean up a cerrupted H/L unit,
May be done to install a new software release.

May be done periodically to clean off the H/L unit.

4-6



A SERIES AND B 5000/8B 6000/B 7000 CONCEPTS
SYSTEM INITIALIZATION

Cold Start Procedure

The UTILOADER and LOADER programs must be used to perform a Cold Start.

Detailed directions for this procedure should be supplied for each site by the field engineer or
the site’s system administrator. Following are some general guidelines for performing a Cold

Start.

The UTILOADER program must be loaded into the system. The load procedure for this
differs depending on which system you are using. See your system reference manual for
detailed directions on loading UTILOADER.

Once UTILOADER is running, select the TAPELOAD UTILOADER command. This
will inform UTILOADER that you wish to load a program from a tape.

UTILOADER will now request the location of the tape drive where the tape is mounted.
Enter the name of the loader program, name of the tape, and the mnemonic and unit
number of the tape drive. Example: SYSTEM/LOADER FROM SYSTEMAS ON MT14

The LOADER program is loaded into memory, executes and displays ODT INPUT
REQUIRED. This message will also be displayed upon the completion of a command.
You enter commands to LOADER in the correct order to complete the Cold Start.

On some systems it is necessary to load the Controlware for controlling the disk
devices and possibly other controllers. If this is necessary for your system, load
the controlware.

Identify the H/L unit. Example: HALTLOADUN

ple: ADUNI

T 44

Enter the largest overlayable array size. Example: OLAYROW 1200. This step
distinguishes a Cold Start from a Cool Start.

Load the MCP file. Example: LOAD MCP SYSTEM/MCP FROM TAPE
SYSTEMAS TO DISKPACK 44 NAME = DISK SERIAL = 190373

LOADER will display COLD START ISREQUESTED PK 44 DISK ENTER OK
TO CONTINUE. You enter OK to continue with the Cold Start. When the OK is
received, the disk is purged and all files on the H/L unit are lost.

Enter the date. Example: 01/01/86

Terminate the LOADER program by entering STOP.

4-7



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SYSTEM INITIALIZATION

The Cold Start should now be complete. To bring the system to an operational state, a Halt/Load
must now be performed. You can use the HALTLOAD UTILOADER command to do this.

The Cold Start will load only the MCP file onto the H/L unit. All other files must be copied to disk
from your backup media following the Halt/Load by using the LIBRARY/MAINTENANCE program.

Norecovery will be performed after a Cold Start. All recovery data located on the H/L unit is lost
during the Cold Start.

Cool Start Initialization

Cool Start is an initialization that falls in severity between a Halt/Load and a Cold Start. It is more
severe than a Halt/Load but less severe than a Cold Start.

Cool Start causes an MCP file to be loaded to the Halt/Load Unit from the system tape. The MCP on
the H/L unit is replaced and the other files on the H/L unit are retained.

A Cool Start is performed when the integrity of the MCP file on the H/L unit is in question.

Cool Start Procedure

The Cool Start procedure is similar to the Cold Start procedure. The procedure is the same except for
the OLAYROW entry, which is omitted for a Cool Start.

Once the MCP is loaded to the H/L unit, a Halt/Load must be performed to load and execute the MCP
and to start the recovery procedure.

Power Failure

A Halt/Load is usually the initialization procedure that is needed following a power failure.

The power failure causes the Controllers to lose the Controlware.
On most systems you are required to load the Controlware for the Controllers. This requires

the UTILOADER program to be used. The Controlware must be loaded before the Halt Load is
attempted.

4-8



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
SYSTEM INITIALIZATION CONCEPTS

UNIT 2

CHANGING MCP FILES
Objective
Identify how to change the MCP file that the system operates under.
Purpose
use.

Resources
A Series A 3 System Software Installation Guide, Section 6 - Simple Halt/Loading of Your System

A Series A 9 System Software Installation Guide, Section 6 - Simple Halt/Loading of Your System

4-9



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CHANGING MCP FILES

Causing A Halt/Load to Change the MCP

Under certain conditions, you will want to load a new MCP code file and designate it as the new MCP
code file to be used by the system. A second copy of the MCP file located on the system can help to
avoid the need to perform a Cold Start.

A Halt/Load is necessary to change the operating system that is be used to control the system. You
must inform the system which MCP file is to be used before the Halt/Load is performed.

New MCP on H/L Unit
The CM (Change MCP) ODT command is used to direct the system as to which MCP file to load into

memory. The CM command is entered before the Halt/Load is performed. When the Halt/Load is
requested, the system will use the MCP file named in the CM command.

Example: CM SYSTEM/MCP36140

For a new release of the MCP, you will want to test that MCP before permanently updating the
system to use the new MCP file. The CM ODT command is still used.

Example: CM

For the next Halt/Load only, the new MCP file will be used. A second Halt/Load will cause the system
to revert back to the original MCP file.

New MCP Noton H/L Unit

If the new MCP file is located on a family other than the H/L unit, you must use the ODT command
HLUNIT (Specify Halt Load Unit) or BOOTUNIT for B 5900/B 6900, to indicate a change of H/L
units. The CM command is entered first to identify the new MCP file (include family name) and the
HLUNIT command follows. When a Halt/Load is performed, the values take effect.

Example: CM SYSTEM/MCP35220 ON TESTPACK

HLUNIT PK 46

4-10



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CHANGING MCP FILES

Primitive Command

A primitive command is a command that is processed directly by the MCP, bypassing the ordinary
handling of ODT commands.

A primitive CM command is available. All processing will be halted immediately and the system
loaded with the new MCP file.

Example: ?2CM SYSTEM/MCP36140

4-11



Practice

A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

CHANGING MCP FILES

Match the terms on the left with the descriptions on the right.

1.

Halt/Load

77PHL

OLAYROW message

Cold Start

CM

Cool Start

a. This is the most severe form of system initialization that
an operator can invoke.

b. This action loads a new MCP to the H/L unit from a
system tape.

¢. Command used to install a new MCP file.

d. Command used to invoke a Halt/Load.

e. This action is the least severe form of system
initialization.

f. A Cold Start is indicated by the operator by entering this
message to SYSTEM/LOADER.



SECTION 5

HARDWARE AND IIO OVERVIEW



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
HARDWARE AND 1/0 OVERVIEW

INTRODUCTION

Section Objective

Identify the major hardware components of the A Series and B 5900, B 6900, and B 7900 systems.

Purpose

Familiarity with the hardware components is essential when performing operations, reading
reference manuals, and making decisions about hardware configurations.

Unit Objectives
Identify the major hardware components of the A Series and B 5900/B 6900/B 7900 systems

Identify the major hardware components of a specific system, as described in the hardware overview
sections.

5-2



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
HARDWARE AND I/0 OVERVIEW

UNIT 1
HARDWARE AND 110 OVERVIEW
Objective
Identify the major hardware components of the A Series and B 5900, B 6900, B 7900 systems.
Purpose
Familiarity with the hardware components is essential when performing operations, reading

reference manuals, and making decisions about hardware configurations.

Resources

A Series Systems An Introduction, Section 1 - What’s in an A Series System

5-3



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
HARDWARE AND i/0 OVERVIEW

Hardware Components

All A Series and B 5000/B 6000/B 7000 systems include simiiar hardware components, aithough they
may be called by different names and have different limits on the various models. This unit describes
the common hardware components and functions. Details about specific models are provided in
Figures 5-2, and in the hardware overview sections.

Processor

The processor performs all the arithmetic and logic in the system. It includes a series of registers,
which are storage locations with designated functions required for executing programs.

Multiprogramming allows many programs to share a single processor. A processor may
execute only one program at any point in time, but when that program is interrupted (for
example, to read from a disk), the processor can execute a portion of another program until it is
interrupted again. Multiprogramming improves throughput by keeping the processor busy
whenever there are programs ready to execute, as shown in Figure 5-1.

The term mix refers to all of the programs that are currently sharing the processor.

Some models may have multiple processors, as deseribed later in this unit.

PROGRAM

NN NN N by
SN AR RN AN
A 1 AT l A
NS, . 3

C lnf\\\\\\\ N

PROCESSOR -
TIME A . C

/O TIME Tl T A

MCP

%?(“%EUTIVE l l l l

w
)
o]
0]

Figure 5-1 Multiprogramming

5-4



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
HARDWARE AND I/0 OVERVIEW
Maintenance Processor
The Maintenance Processor is a separate processor required to initialize the system, and to conduct

maintenance tests. The Maintenance Processor has different names on different models of systems.

The A Series, B 6900, and B 7900 Maintenance Processors allow for Remote Diagnostics, so
that diagnostic programs can be executed against the system by Burroughs personnel located
at remote sites. Remote Diagnostics are not available for B 5900 systems.

Operator Display Terminal
The Operator Display Terminal (ODT) is the computer operator’s interface to the system. The ODT

receives the operator’s commands, and displays the system status.

Most A Series models have 2 ODTs to accommodate 2 operators, and to display 2 screens of
system status information at once.

Additional ODTs can be configured into the system if necessary.

The term SPO (supervisory printed output) is sometimes used to refer to an operator’s
terminal, although ODT is the preferred term.

The ODT is also used in conjunction with the Maintenance Processor to initialize the system
and to perform maintenance functions on most A Series models.

Memory
Memory is temporary storage, which contains data and object programs while they are in use.
Memory is measured in words.
A word is 6 bytes or characters of data.

The maximum amount of memory allowed on specific models is shown in Figures 5-2, and
discussed further in the MCP and MCP/AS Overview in Section 7.

5-5



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
HARDWARE AND I/0 OVERVIEW

MEMORY Max. Max. Max. Max. Max.
1 M Words 1 M Words 1 M Words 1 M Words |16 M Words
(1M Words
per partition)
INPUT/OUTPUT juiO MPX ulo IOM ulo
B 5920: 1 per DP 2-8 10BMs 1-7 4-1010BMs
2-410BMs 20 Channels depending
B 5930: on the
2-510BMs number of
CPMs
PERIPHERALS jMax. Max. Max. Max. Max.
4095 255 4095 255 4095
PROCESSORS JcrPu DP DP cPM CcPM
2-4 with 2-4 with 2-4 with 1-7 1-3
Global Global Global depending
onthe
number of
CPMs
MAINTENANCE jmp MDP BDU AP/AMP
PROCESSORS MIP (B 80) (B 81) B 7800: (B 5900)
MTS-2 MDP
B 7700:
MDU
DATA COMM juio DCP u1lo DCP uto
2 NSPs 4 per DP 4 NSPs Max. 8 4 NSPs
(4 per IOM)
ODT’S MTS-2 . | TD830s MTs TD830s MTS-2
B 5920: 1 2 2 2 2
B 5930: 2
(Soft Display) (SYCON)
(Direct Spo)
OTHER
HDPs
PAC Kt

Figure 5-2a HARDWARE SUMMARY Part i

5-6




A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
HARDWARE AND I/0 OVERVIEW

MEMORY Max. Words | Max. Words | Max. Words | Max. Words | Max. Words
D: 2M B: 1M D: 4M 16M F: 8M
E:2M D: 2Mm F: 8M HIJ: 16 M
F: 4M F: 4M H: 16 M K,L,M,N:
K: 8M 32M
INPUT/OUTPUT jJuio ulo ulo ulo ulo
D: 110BM B: 2i0BMs D: 2-8 4-16 IOBMs 4-32 10BMs
E: 210BMs D: 410BMs IOBMs
F: 2-410BMs |F: 4-610BMs |F: 2-8
K: 4-6 I0OBMs IOBMs
H: 4-16
10BMs
PERIPHERALS JMax Max. Max. Manx. Max.
4095 4095 4095 4095 4095
PROCESSORS |Jcru CPU CPU CPM: 1 CPM
D: 1 B: 1 D: 1 F: 1
F: 1 D: 1 F: 1 H1,J: 2
K: 2 F:1 H: 2 K,L: 3
M,N: 4
MAINTENANCE Juir MP/MIP MIP SMS Il SMP
PROCESSORS ET2000 ET2000 MIP
5% Floppy 5% Floppy ET2000 (Local and
53 Winch. (2) |5+ Winch.(2) | 54 Floppy Remote
5% Winch. (2) | Diagnostics)
DATACOMM juio ulo ulo ulo uio
D: 4DCDLPs | Combination | Combination | Combination | Combination
E: 4DCDLPs, | of 1-4 NSPs of 1-4 NSPs of 1-4 NSPs of 1-4 NSPs
1 NSP and/or DC- and/or DC- and/or DC- and/or DC-
F: 4 DCDLPs, DLPs DLPs DLPs DLPs
1 NSP
K: 4 DC DLPs,
2 NSP’s
OoDT'S ET2000 ET2000 ET2000 ET2000 ET2000
1-2 2 2 ET1100 2
(Softcon)

Figure 5-2b HARDWARE SUMMARY Part 2




A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
HARDWARE AND I/0 OVERVIEW

Input/Output Subsystem

The I/O subsystem controls and communicates with all of the devices attached to the system. All
A Series, B 5900, B 6900, and B 7900 systems use Burroughs Universal I/O (UI0).

This form of I/O is called Universal because it is also used on V Series and
B 2000/B 3000/B 4000 and systems.

Universal I/O also applies to both peripheral and data communications management.

Each peripheral is connected to a Data Link Processor (DLP) which is designed to control that
specific type of device, as shown in Figure 5-3. DLPs are an example of Function Processors, or
microprocessors with specialized functions.

Some peripherals (for example, image printers) can have only 1 device attached to each DLP.

Other peripherals, such as disk pack and tape drives, can have multiple devices attached toa
single DLP through a controller.

A series of packs may be connected to multiple controllers and DLPs, to provide multiple paths
for the system to use in communicating with the packs.

The DLP’s are housed in groups called 'O Base Modules (IOBM), or I/O-Data Comm (I0DC) base
modules.

Each I/O base module can hold a maximum of 8 DLPs, depending on the number of circuit
boards in the various DLPs used.

Different hardware models allow different numbers of I/O base modules, as in Figure 5-3.

Line or Logic Expansion Modules (LEMs) can be added to increase the maximum number of
I/0 base modules on a system.

The 1/O base modules are connected by Message Level Interface (MLI) cables to an /O processor,
which interfaces to main memory and the central system. The I/O processor has different names on
different models.

Svstems designed before the 900 family and A Series (B 6800s, for example) used Multiplexors (MPX)
instead of Universal /0. Some of the manuals make distinctions in operations between UlO and
MPX svstems.

5-8



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
HARDWARE AND I/0 OVERVIEW

CONTROLLER CONTROLLER

DLP DLP DLP DLP | DLP
I/0
I/0 BASE MODULE

P
2/' R M CONTROLLER
M O
o) C
R E
Yy |S M

S Lt

o)

R

/0 BASE MODULE

Figure 5-3 Universal I/O

5-9



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
HARDWARE AND I/0 OVERVIEW
Peripherals

Many types of peripheral devices can be connected to a system. kach type of device is assigned a
mnemonic for use in ODT commands. Some of the more common mnemonics and device types are:

PK Disk Pack Drive

LP Line Printer

1P Image Printer

MT Magnetic Tape Drive
MTP Phase-encoded (PE) Tape
SC System Console (ODT)
CR Card Reader

CP Card Punch

The PER ODT command displays information about all devices of a certain type. For example, PER
MT inquires into the status of all the magnetic tape drives.

When a device is installed, it is assigned a unique number. Many ODT commands reference
peripherals by their device type mnemonics and numbers, such as PK 44 or MT 14.

5-10



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
HARDWARE AND I/0 OVERVIEW

Multiprocessor Systems
Several models of A Series and B 5900/B 6900/B 7900 systems can have multiple Central Processing
Units (CPUs). Different models use these multiple processors in different ways, as described later in
this unit.
Multiprocessing
Multiprocessing occurs when 2 or more CPUs are under the control of a single MCP. It allows

multiple programs to execute at the same time, by executing 1 program in each processor.
Multiprocessing also involves multiprogramming in each processor, as shown in Figure 5-4.

PROGRAM

2 I S\\\WEFEE N\
: 2 SIS D\

o 20 D\IEN )\

PROCESSOR
1 TIME A C B c

PROCESSOR
2 TIME B D A D

/0 TIME A

McCpP

EXECUTIVE
TME IR R B HR &
12 1 2

Figure 5-4 Multiprocessing

5-11



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
HARDWARE AND I/0O OVERVIEW

A Series Multiprocessor Systems

The A 3 model K includes 2 processors. The system can multiprocess, with both processors controlled
by the same MCP, as shown in Figure 5-4. The A 3 K can also be used asa single processor system,
but cannot be split into 2 independent single processor systems.

The A 10 model H is a dual processor system, which can be partitioned into 2 single processor systems
under 2 separate MCPs. The A 10 can also be a monolithic system, a large multiprocessor system
with all resources controlled by a single MCP, as in Figure 5-4.

The A 15 can have a maximum of 4 processors, as shown in Figure 5-2. All of the processors can be
controlled by 1 MCP, to create a large multiprocessing system. Models J, L, and N can be partitioned
into 2 independent systems under 2 separate MCPs, with 1 or 2 processors in each partition.

B 5000/B 6000/B 7000 Multiprocessor Systems

On B 5900, B 6900, and B 6800 systems, 2 to 4 processors can be connected through a special type of
memory called Global Memory. These systems can be dynamically configured in 3 ways:

Independent Mode allows each processor to run independently, under a separate copy of the
MCP. The Global Memory can be used as an extension of main memory.

In Multiprocessor Mode, the system multiprocesses as in Figure 5-4. Thisis sometimes called
tightly coupled, because all the processors and other resources are controlled by 1 MCP,
which resides in Global Memory.

Shared Resources Mode allows each processor to execute its own MCP and control its own
peripherals, but the processors can communicate with each other through shared portions of
Global Memory. This configuration is also called loosely coupled.

Multiple Processor B 7900s may be configured as a large multiprocessor system under a single MCP,
or partitioned into 2 independent systems under 2 MCPs.



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
HARDWARE AND /0 OVERVIEW

Configuration File

Configuration files apply to multiprocessor systems that can be split into independent systems under
separate MCPs.

A configuration file is a disk file that names and defines the different configurations, or
combinations of processors, memory, and peripherals, that are required on the various systems.

The CF (Configuration File) ODT command is used to specify the name of the configuration
file.

The RECONFIGURE ODT command allows the operator to specify the name of the
configuration that will take effect on the next Halt/Load.



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
HARDWARE AND 1/0 OVERVIEW

This page left blank for formatting.



SECTION 6

DATA COMMUNICATIONS CONCEPTS



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DATA COMMUNICATIONS CONCEPTS

INTRODUCTION

Section Objective

Identify the hardware and software that is the Data Communications Subsystem.

Purpose

Familiarity with the data communications hardware and software components is essential when
reading reference manuals, making decisions about the communications network and controlling the
network communications environment.

Unit Objectives
Identify the Data Communications Hardware.

Identify the Data Communications Software.

6-2



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
DATA COMMUNICATIONS CONCEPTS

UNIT 1

DATA COMMUNICATIONS HARDWARE

Objective

Identify the Data Communications Hardware.

Purpose

You must be familiar with the data communications hardware components in order to read reference
manuals, make decisions about the communications network and control the communications
environment.

Resources

A Series Systems An Introduction, Section 3 - A User’s View of System Functions

6-3



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DATA COMMUNICATIONS CONCEPTS

What is the Data Communications Subsystem?

Data Communications is the transmission, reception and validation of data.

The Data Communications Subsystem is the communications link between remote devices, such as
other systems (hosts) and terminals, and the system. It removes communications functions from the
central processor and places these functions in processors specifically designed for data
communications.

The Data Communications Subsystem is modular in design and distributes communication functions
among a series of functional processors which include the Network Support Processor (NSP), Line

Support Processor (LSP), Quad Line Adaptors (QLA), or the Data Communications Data Link
Processors (DCDLP).

Network Support Processor (NSP)
The NSP is a data communications subsystem network controller device. It is located in an IODC
(1/0-Data Comm) Base Module by itself to allow it to be the only device accessing the system from

that IODC base.

The NSP has its own memory, is programmable using the Network Definition Language [ (NDLII)
software, and is responsible for:

Controlling the line disciplines for the lines in the network.

Off-loading the majority of detail data link and line discipline control to the LSP
Selecting the proper line discipline to be off-loaded to the LSP.

Assembling and delivering messages to and from the CPU.

Informing the LSP of any dynamic network reconfigurations.

Line Support Processor (LSP)

The LSP is a processor that controls the lines attached to it. It provides the connection between the
QLA and the NSP. :

The LSP has its own memory, can be programmed using NDL II software and is responsible for:
Controlling each line that transmits or receives data.
Assembling characters into messages.

Delivering me<zages to and from the NSP

6-4



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DATA COMMUNICATIONS CONCEPTS
Quad Line Adaptor (QLA)

The QLA is a set of four Line Adaptors controlled by the LSP.

Line Adaptor (LA)

The LA controls the line that is attached.

The LA has local memory which is used to store translation tables, message buffers, line and station
parameters, the line’s polling sequence, and the code required to control the communication line and

the line discipline.

It is responsible for accumulating bits into characters for the LSP and translating the characters from
or to EBCDIC into the format declared in the NDL II software for that line.

Electrical Interface (El)

The El converts the signa! voltage level from the system to the voltage level required by the data
communications cable. Different types of Els are available for different types of communications
cables, such as TDI (Two-Wire Direct Interface) or RS232.

Data Communications Data Link Processor (DCDLP)

The DCDLP is a special DLP which contains a special micro-coded control program for handling data
communications.

DCDLP is an alternate approach to the NSP/LSP combination.
It is used in place of the NSP, LSP and QLA. The DCDLP has standard protocols
preprogrammed into it to handle the functions of the NSP, LSP, and QLA. This provides for
speed and lower cost but lacks the flexibility and programmability of the NSP/LSP

combination.

The system will identify and treat the DCDLP as un NSP.

6-5



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DATA COMMUNICATIONS CONCEPTS

<mogmg

o

DOVUVMAQODT

N TN 27N
oDT l LP I
CONTROLLER CONTROLLER
DLP DLP DLP DLP
MLI 1/0 BASE MODULE
| | I i
NSP
ML | | 1 |
IODC BASE MODULE
! R LSP Ty
(XX QLA | \ , OLA (XX}
E b } QLA ‘ QLA | b :

IODC BASE MODULE

Terminal >

Figure 6-1 Universal I/0 Including Data Communications NSP/LSP

6-6



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DATA COMMUNICATIONS CONCEPTS

Data Flow Using the NSP/LSP Approach

The following steps transfer a message from the terminal to the host and returns the response back to
the terminal. The data flow is to demonstrate the use of the data communications hardware and does
not include the data communications software necessary. For details on the data communications
software, see unit 2.

-1

10.

A message, entered by the operator, is translated by the terminal into the correct bit
patterns and sent out across the communications lines.

The bits pass through the EI and are received by the QLA.

The QLA assembles the bits into a character. Translation is done here on each character
into EBCDIC format. Once a character is assembled it is passed on to the LSP and the
QLA moves on to the next group of bits.

The LSP receives characters from the QLA one at a time. The LSP assembles those
characters into a message which is then passed to the NSP.

The NSP receives the message from the LSP and performs any editing necessary (as
declared in the NDL) and passes the message to the Host.

The Host will now process the message, formulate a response and pass that response to
the NSP

The NSP will edit the response and pass the message to the LSP.

The LSP will disassemble the message into characters and send 1 character at a time to

The QLA will translate and disassemble each character into bits and send the bits out to
the terminal.

The bits will pass through the EI and be received by the terminal, translated and
displayed for the operator.

6-7



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
DATA COMMUNICATIONS CONCEPTS

K
\‘.’,’ SaN !

CONTROLLER CONTROLLER

DLP

—<::00gm§

11O

TOUNVMAQOXDT

DLP DLP

DLP

I/0 BASE MODULE

MLI
MLI
" DCDLP ' DCDLP
Lo o
R S R | [ B

El

Terminai

Figure 6-2 Universal I/O Including Data Communications DCDLP

6-8

I/0 BASE MODULE




A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
DATA COMMUNICATIONS CONCEPTS

Data Flow Using the DCDLP Approach

The following steps transfer a message from the terminal to the host and returns the response back to
the terminal. The data flow is to demonstrate the use of the data communications hardware and does
not include the data communications software necessary. For details on the data communications
software, see unit 2.

1. A message, entered by the operator, is translated by the terminal into the correct bit
patterns and sent out across the communications lines.

2. The bits pass through the El and are received by the QLA.

3. The QLA assembles the bits into a character. Translation is done here on each character
into EBCDIC format. Once a character is assembled it is passed on to the DCDLP.

4, The DCDLP receives characters from the QLA one at a time. The characters are
assembled into a message, edited if needed and passed to the Host.

5. The Host will now process the message, formulate a response and pass that response to
the DCDLP.
6. The DCDLP will edit and disassemble the message into characters and send 1 character

at atime to the QLA.

7. The QLA will translate and disassemble each character into bits and send the bits out to
the terminal.

8. The bits will pass through the EI and be received by the terminal, translated and
displayed for the operator.

6-9



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DATA COMMUNICATIONS CONCEPTS

UNIT 2

DATA COMMUNICATIONS SOFTWARE

Objective

Identify the Data Communications Software.

Purpose
You must be familiar with the data communications software components in order to read reference

manuals, make decisions about the communications network and control the communications
environment.

Resources
A Series Systems An Introduction Section 3 - A User’s View of System Functions
A Series Communications Management System Capabilities Manual

A Series Interactive Datacomm Configurator User’s Guide

6-10



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DATA COMMUNICATIONS SOFTWARE

Software Components
The data communications system software components consist of the following:
Network Information File (NIF)
A description of the data communications network is written in the Network Definition
Language (NDL II). The NDL II source is compiled using the NDL II Compiler. The

NDLIT Compiler produces the NIF. The NIF contains tables and code generated from
the NDL II source.

DATACOMINFO File

The NTF is used to generate the DATACOMINFO file which is used by the data
communication subsystem to define the network and how the network is to be controlled.

Data Communications Controller (DCC)

The DCC is part of the Master Control Program (MCP) and executes in the CPU. It
provides the MCS and Application Program interface, and initiates and performs
network control functions.

Message Control System (MCS)

An MCSis a program written in DCALGOL that controls the flow of messages between
terminals, application programs, and the operating system.

The MCS is responsible for controlling security (logging the user on), routing of
messages to the proper location, handling recovery of the network, performing control
commands, and performing other functions required or desired by the MCS designers.
The MCS is often referred to as the traffic cop for the Data Communications Subsystem.

Application Program
This is the program that is written by the user to fulfill a particular data processing

need. It is responsible for editing data, building or updating databases and data files,
and screen formatting.

6-11



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DATA COMMUNICATIONS SOFTWARE

Software Data Flow

The following steps take a message from the terminal to the application program and brings the
response back to the terminal from a software viewpoint only.

~1

A message, entered by the operator is translated by the terminal into the correct bit
patterns and sent out across the communications line.

The message is received by the system and is passed to the NSP or DCDLP. For detail
steps on how the message reaches the NSP or DCDLP, see unit 1 under Data Flow Using
the NSP/LSP Approach or Data Flow Using the DCDLP Approach.

The NSP or DCDLP passes the message to the Host. The DCC, which is part of the MCP
receives the message from the NSP or DCDLP, processes it and passes the message to
the MCS.

The MCS receives the message, processes it and passes it on to the application program.

The Application Program receives the message, updates databases and performs any
other processing required, formats a response, and passes it to the MCS.

The MCS receives the response from the Application Program and passes it on to the
DCC.

The NSP/LSP or DCDLP follows the steps as defined in unit 1 and the response is sent to
the terminal.

The terminal receives the response and displays it for the operator.



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DATA COMMUNICATIONS SOFTWARE

NSP/LSP
or DCDLP

i Terminal ’

v
e

DCC

MCS

APPLICATION
PROGRAM

Figure 6-3 Software Data Fiow

6-13

CPU




A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
DATA COMMUNICATIONS SOFTWARE

MCS Products

COmmunications Management System (COMS)

COMS is an MCS and one of the InterPro products. It is a high performance transaction
processing program.

COMS is modular in design. It allows you to select the processing features you need and to use
your own internally developed processing features. COMS is available in 3 versions: COMS
Kernel, COMS (ENTRY) and COMS (Full).

A portion of COMS is integrated with the MCP for performance and handles the log-on control,
station-to-station routing, non-participation, error handling, network control and multiple
views.

COMS provides extended transaction processing by offering extensive standard functions,
using libraries for efficiency, and accommodating user-written modules.

COMS can route transactions to different application programs, depending on a transaction
code (transaction based routing).

COMS provides a window feature that enables you to operate a number of program
environments independently and simultaneously at a station. COMS allows for transaction
routing windows, remote file windows, MCS windows, and command windows. For more
details on windows, see Section 8 Unit 5 - COMS Windows and Dialogs.

COMS supports a simplified header for interfacing with COBOL 74 application programs.
COMS is designed to provide a continuous operating environment. It has a provision to
perform testing on-line and dynamic installation of new or updated modules. Synchronized
recovery for DMS Il databases is also available.

COMS has a special support library interface to support current GEMCOS users.

Diagnostic aids are available in COMS.

GEneralized Message COntrol System (GEMCOS)

GEMCOS is an MCS that provides the standard features that all MCSs must provide. It has
the ability to take options provided by the user and customize the standard MCS features,
providing a tailored MCS which meets the specific transaction processing requirements for the
installation.

GEMCOS has a synchronized recovery feature which interfaces with the DMS II (Database
Management System) software. GEMCOS has its own screen formatter which allows the user
to design screens on the terminal.



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
DATA COMMUNICATIONS SOFTWARE

Remote Job Entry (RJE)

RJE provides users with simple access to distributed resources, including remote database
access, file transfer, remote task initiation and control. A network consisting of a variety of
Burroughs computers may be connected. The users of this network can access any system in
the network and be either a Host or User to another member of the network.

RJE has three major functions.
Remote Job Entry

This feature allows a user who is part of the network to enter an input request at
the user’s location and have the input request processed by the host system. The
output from the request is directed back to the user’s system. This allows the user

of a system to use the resources of another system in the network to do some of the
workload.

File Transfer

Files can be transferred to/from disk and magnetic tape devices. This allows the
user to transfer a file located on a local system to the host system or to have a file
on the host system transferred to the user system.

Virtual Terminals

Virtual terminals is a logical concept based on the actual message path
established between the terminal, ODT, or application program in the user
system. The virtual terminal can control jobs in the host system through the
capabilities of the host system MCS. The host system treats this terminal as if it
were one of its own terminals instead of another system in the network. The
virtual terminal has access to all user and host facilities.

There are 2 different products that correspond to this on CMS and B 1000 systems: RJE provides
remote job entry and control, and SYCOM provides the other capabilities. The A Series has 1 product,
usually called just RJE, which communicates with RJE and SYCOM.

6-15



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DATA COMMUNICATIONS SOFTWARE

Interactive Datacomm Configurator (IDC)

IDC is one of the InterPro Products. IDC is an interactive, menu-driven utility that allows you to
easily create, interrogate, and modify datacomm network configurations from the ODT or from a
datacomm terminal. IDC allows the logical representation of a configuration to be created quickly
and efficiently, with a minimum amount of specialized knowledge. The configuration file is known as
the DATACOMINFO file

IDC uses the existing configuration file or configuration file sent on the release tape as a beginning
for your network. Changes are then made to this configuration file. You can build your network by
example. Examples and help information are available on-line. The need for specialized training in
the network area is greatly reduced.

IDC will create and maintain your network definition as well as recovery of itself if a failure occurs.

IDC can improve the network uptime because modifications can be made on-line. Input is verified
when it is entered, thus identifying errors immediately and allowing for immediate correction. IDC
will implement modifications when you indicate that all changes have been entered.

Data Communications Subsystem Initialization/Termination

The Data Communications Subsystem is initialized and terminated by the ID (Initialize Datacomm)
ODT command.

The NIF and DATACOMINFO files are used to initialize the NSP/LSP or DCDLP. Once the Data
Communications Subsystem is initialized, the MCSs and Application Programs will be executed as
needed.

Example:

ID 108 %Initialize Data Comm

ID:QUIT . %Terminate Data Comm

6-16



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DATA COMMUNICATIONS SOFTWARE

Practice

Match the terms on the left with the descriptions on the right.

1. QLA

2. NSP

3. LSP

4. MT/TD/ET
5. DCC

6. NDLII

7. MCSs

8. NDLII Compiler

9. DATACOMINFO
FILE

10. DCDLP

Continued on next page.

A part of the MCP that controls the physical movement
of information between the central system and the Data
Communications Subsystem.

Accepts keystrokes and converts them into bits and
transmits them to the system.

The source program that describes the Data Comm
network in terms of station names, terminal types, line
speeds and line procedures.

On input, assembles bits into bytes; on output,
disassembles bytes into bits.

Transmits whole messages between itself and the CPU.

This program is an MCS which provides such features as
extensive transaction processing, windows, and a
continuous operating environment.

Receives characters from the QLA and sends messages to
the NSP.

The DCALGOL programs that exist for the purpose of
controlling stations (traffic cop), and provide an interface
between the Data Comm network and the application
programs.

This program compiles the NDL II source and produces
the code for the NSP as well as tables used by the central
system and the Data Communications Subsystem.

The Data Communications Subsystem is initialized by
this command.

6-17



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
DATA COMMUNICATIONS SOFTWARE

11. COMS k. The special DLP used for data communications instead of
an NSP/LSP.
12. IDcommand 1.  The Data Communications Configuration file.

6-18



SECTION 7

MCP AND MCPIAS OVERVIEW




A SERIES AND B 5000/B 6000/8B 7000 CONCEPTS
MCP AND MCP/AS OVERVIEW

INTRODUCTION

Section Objective

Identify the MCP and MCP/AS and their functions.

Purpose

You should be aware of the functions of the MCP and MCP/AS before deciding which operating
system to use on your system.

Unit Objectives

Identify the MCP and MCP/AS.

Explain the ASN and ASD addressing techniques.

Identify the functional areas of the MCP and MCP/AS.

7-2



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
MCP AND MCP/AS OVERVIEW

UNIT 1

MCP AND MCPIAS DIFFERENCES

Objective

Identify the MCP and MCP/AS.

Explain the ASN and ASD addressing techniques.

Purpose

You should be aware of the differences between MCP and MCP/AS before deciding which operating

system to use for your system.

Resources

7-3



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
MCP AND MCP/AS DIFFERENCES

MCP

The Master Control Program (MCP), which is the standard A Series (A/B 5000/B 6000/B 7000)
operating system, provides complete management of all system resources and tasks automatically.
Hardware specifications indicate a system’s power potential, whereas system software determines
how much of that power is usable.

The MCP has ultimate responsibility for:
Assigning memory.
Managing input/output functions.
Communicating with the operator.
Logging system use.
Automatically loading programs.
Maintaining a library of all files.

Supervising numerous other functions.

The MCP makes optimum use of all system resources.
It automatically allocates system resources to meet the needs of executing programs.

It continually and automatically assigns resources, initiates jobs, and monitors their
performance in a multiprogramming environment.

7-4



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
MCP AND MCP/AS DIFFERENCES

MCP ASN Memory Management Addressing

The basic concept of the MCP Address Space Number (ASN) memory management is the Address
Space (AS). An address space is the memory that a program may access at any one time. The
system’s memory is divided into some number of address spaces, each of which contains a maximum
of 1 million words (6MB) of memory and is assigned a unique number (ASN). The B 7000/A 15
systems have a maximum of 2 million words (12MB) of memory per address space.

The MCP is responsible for controlling the entire system’s memory and must be available for all
ASNs on the system. To provide for this, a portion of memory is assigned as being common to all
address spaces so that programs in different address spaces can share code and data. The common
portion is known as the shared component of the address space or memory environment. The non-
shared portion is known as the local component of the address space.

A system can have as many local components as needed or as the hardware permits, but only one
shared component per system is permitted.

The combination of the shared component plus the local components make up 1 address space of 1
million words maximum, (see Figure 7-1). On the B 7000/A 15, an address space of 2 million words is
permitted, and is composed of the shared component, 1 local component for program code only and 1
local component for program data only, (see Figure 7-2).

LOCAL 1 LOCAL 2 LOCAL 3

X ' 7

\ : /
\ : ;
\\ /
ASN 1 ASN 2 ASN 3
\ . /

b : 4
\ : /

\\ : /

SHARED

Figure 7-1 ASN Memory Structure - 1 M\Ws

7-5



A SERIES AND B 5000/8 6000/8 7000 CONCEPTS

MCP AND MCP/AS DIFFERENCES

LOCAL 1
Code Only

A

v
LOCAL 1

LOCAL 2
Code Only

4

v

LOCAL 3
Code Only

LOCAL 2

LOCAL 3

Data Only Data Only Data Only
L 4 «

\ : ’
\ : J

\ . /

ASN 1 ASN 2 ASN 3

N\ 5 ;
\ : //
\ .
X v

SHARED

Figure 7-2 ASN Memory Structure - 2MWs

One or more ASNs form a Subsystem, which is a logical division of physical memory. A user can
specify a subsystem in which a task is to execute.

ASN uses 20 bit words for addressing the memory space.
The ASs or subsvstems are created and maintained by the ODT commands, MS (Make Subsystem)
and EC (Environment Component).

The MS command establishes what subsystems are to exist on the svstem.

The EC command sets the sizes of each component in the different subsvatems

7-6



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MCP AND MCP/AS DIFFERENCES
ASN Advantages:

Large amounts of memory can be configured on the system and all programs are visible to any
processor or I/0 processor.

Additional memory and program visibility significantly improves system performance.
Component sizes can be reconfigured to tailor the system to the needs of the user.

A memory environment can be dedicated to a specified collection of tasks.

ASN Disadvantages:
Workload is generally required to be balanced among the local components.

Programs are not visible to each other unless they are in the same ASN, or in the shared
component,

Sharing of data is limited to the ASN.

Space contention can occur in the shared component.

MCP/AS

Master Control Program/Advanced Systems (MCP/AS) is a new generation of operating system for
the A Series Machines only (it does not apply to B 5000/B 6000/B 7000s). MCP/AS was specifically
designed to complement the innovative architecture and expanded memory capability of the A series
machines.

The standard MCP is still released and supported with all systems, since MCP/AS is a chargeable
product, and on the A 3 and A 15, special hardware is required.

MCP/AS offers all of the essential features of the standard MCP plus the expanded memory
addressing feature. The standard MCP is available for the A machines but MCP/AS will be the
operating system of choice for most A Series machines with more than 1 million words of memory.

7-7




A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MCP AND MCP/AS DIFFERENCES

MCP/AS looks at all memory as one monolithic area, all of which can be directly addressed. This
provides a number of important benefits:

The memory addressing capacity is expanded to 96MB.

MCP/AS supports programs of any size, limited only by availability of hardware resources.
MCP/AS is totally transparent to the operator/programmer.

Special configuring of the system is not required.

Existing application programs can be used without changes or recompiling.

All programs are visible to each other.

System performance is improved by a reduction in “Stack Searching”.

MCP/AS ASD Memory Management Addressing

MCP/AS features a new form of Memory Management called Actual Segment Descriptor (ASD),
which expands the capacity, performance and memory addressability of the A machines. MCP/AS
ASD removes the memory limitations that exist using ASN's, by changing the way that the operating
system views physical memory and the way the processor executes certain instructions.

ASD uses a structure maintained by the MCP/AS called the ASD Table, which handles all allocated
memory areas that have been accessed. The ASD table contains ASDs for each piece of data or code
that has been in memory during the life of a program. An ASD is an actual segment descriptor which
is used to point to the location of a data or code item in memory or on disk. An ASD Number is used as
an index into the ASD Table.

Ss or

All code and data segments are accessed through the ASD table to find the memory addre th
or disk addresses

disk address of the segment, (see Figure 7-3). Memory searching to update memory
of information for all affected programs is reduced by using the ASD table.

ASD uses 32 bit words for addressing memory.

The ASD Table is initially allocated a size proportional to the amount of memory on the system at
Halt/Load time. The ASD (Actual Segment Descriptor) ODT command is used to display the size of
the table and the maximum number of ASD entries used. The ASD command can also be used to
change the size of the ASD Table to tailor it to the installation’s needs. The new size takes effect on
the next Halt/Load.

7-8



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MCP AND MCP/AS DIFFERENCES

PROGRAM

PROGRAM}

2

(Copy)

PROGRAM
3

(Copy)

PROGRAM
4

3 ASD ENTRY
- A
/
/
A ASDENTRY
ASD TABLE

Figure 7-3 ASD TABLE

7-9

Memory
Segment

Points to
Segment on
Disk




A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MCP AND MCP/AS OVERVIEW

UNIT 2
MCP MCPIAS FUNCTIONAL AREAS
Objective
Identify the functional areas of the MCP and MCP/AS.
Purpose
In order to understand the A Series systems, you should be aware of what functions the MCP and

MCP/AS are providing.

Resources

7-10



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MCP MCP/AS FUNCTIONAL AREAS

Functional Areas

The MCP (MCP and MCP/AS) can be divided into functional areas. By looking at each functional
area, you can determine what the operating system is doing for you.

Independent Runners

Independent Runners are procedures or modules of the MCP that execute at the same time with other
procedures or modules. Independent Runners are classified as either visible or invisible independent
runners. Visible independent runners will appear in the mix. Invisible independent runners will
not appear in the mix when they are executing.

There are 3 invisible independent runners that must always run for the system to operate. They are:

ETERNALIR

This independent runner is responsible for looking for tasks to fire up and for checking
the peripherals for changes in their ready status.

ANABOLISM
This independent runner is responsible for firing up independent runners when needed.
CONTROLLER

This independent runner is responsible for handling the operator communications. It is
the maindriver for system communications.

Work Flow
This area controls the Work Flow Language, which is a language used to control and monitor the
execution and flow of jobs and tasks in the system.
A Task is a single, complete unit of work performed by the system. An execution of a single
program is a task.
A Job is one or more related tasks that are grouped together.

The Work Flow Compiler, Controller and Jobformatter are involved in the Work Flow functional
area. More details will be covered in Section 13 - Work Flow Language.



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MCP MCP/AS FUNCTIONAL AREAS

Memory Management

The memory management function of the MCP is responsible for allocation and deallocation of
memory. The system supports three methods of memory management, which are different
implementations of using disk pack as a backup storage device for memory. The different methods of
memory management will be discussed in Section 12 - Memory Management Overview.

Operator Interface
This functional area is responsible for accepting input messages and sending output messages to and

from the operator via the system’s ODTs. Some operator input messages will be passed on to the
Work Flow area and some output messages are sent to the printer.

The independent runner CONTROLLER is responsible for handling messages to and from the ODTs.

Basic Utilities

A utility is a program used for general support of the processes of the system. This area handles the
basic utilities such as LIBRARY/MAINTENANCE, which allows the user to copy files between
media. LIBRARY/MAINTENANCE is a visible independent runner.

Process Control

This area controls the start-up and shut-down of jobs and tasks A determination is made of which
programs can run and when they can run.

This area is also responsible for making system log entries, which maintains the history and status of
the system. Recognizing changes in peripheral device status, existence of new files, new jobs, and

Bt=1L

new tasks is part of this process control area.

7-12



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MCP MCP/AS FUNCTIONAL AREAS

Peripheral Control

This area controls all non-random type devices. The responsibilities include:

Locating input data files.

Assigning output devices to programs.
The program needs only to request the type of output device needed, and an available
unit will be assigned. When a device is no longer required by the program, it becomes
available for use by another program. This allows for dynamic resource management
and true device independence.

Reading labels.
Automatic Volume Recognition (AVR). When a device is placed on-line, the system will
attempt to recognize the device by reading the device label prior to any operator
intervention.

Maintaining a table of available units.
A table of devices that are available is maintained so that the devices can be assigned to
programs when requested. This table is used to provide the response to the PER ODT

command.

Handling the MCP logs, retries, and errors for each unit.

Disk Management

The disk management area is responsible for:

Disk initialization.

Verifving the integrity of files on disk, establishing the disk available tables, and
reconstructing the disk directories are handled under disk initialization.

Disk allocation.
Available space is assigned to new output files and directory entries are made by the
disk allocation process. Included in this area is the controlling of family names (creation
and changes) and the updating of the available table.

File security.

This area handles the security restrictions designed by the user to control which tasks
will be allowed read and /or write access to data files on disk.

-13

~J



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
MCP MCP/AS FUNCTIONAL AREAS

Data Management
Data management performs the interface between the users’ programs and the users’ databases. The

special I/0 requirements of DMS II (Data Management System II) are handled in the data
management functional area.

Data Communications
This function of the MCP provides the interface between user programs, MCSs and the Data

Communications Subsystem. The allocation and deallocation of data communications queues and the
data communications tables is also controlled by the DCC.

MCP /O

The MCP I/O area controls I/O functions such as:
Initiating physical I/O for the user.
Performing 1/0 functions for the MCP itself.
Building control words needed to do the physical I/O.
Handling I/O finishes.

Handling physical /O errors.

These I/O functions are reentrant and used by a!l tasks. MCP I/O is often referred to as Physical I/0.

User /O

This functional area handles the user-defined aspects of data handling. This includes opening and
closing of files and the checking or modifving of file attributes. Special character translation is
controlled here. User I/O is sometimes known as Logical I/O.

7-14



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
MCP MCP/AS FUNCTIONAL AREAS
Diagnostics
The diagnostics area provides the ability to generate dumps.
Memory dumps of programs can be obtained at the request of the operator or by the program

itself.

Full system memory dumps can be generated.

Peripheral Test Driver (PTD)

The PTD area is used by field engineering to check out any peripheral device on the system. It
involves MTRs (Maintenance Test Routines) to handle maintenance and confidence testing.

Sort

The sort verb in compilers calls the sort MCP routine. The compilers generate the code to allow the
user to sort files using a combination of disk, magnetic tape and memory to accomplish the sort. The
combination of resources used by any given sorting task is totally under the control of the
programmer.



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MCP MCP/AS FUNCTIONAL AREAS

Interrupt Handling
This area handles the interrupts that are generated by the system. The A Series systems are
interrupt driven systems. The system performs a function until an interrupt is detected, at which

time the interrupt is handled, and the function request by the interrupt is done until another
interrupt is detected.

The interrupt handling controls are used to interface with the resources handling controls of the
MCP.

There are many interrupts used by the system to make it function. There are 3 types of interrupts of
which you should be.

Data Processor caused:

1. Interval Timer, may cause the MCP to switch to a different task.

o

Presence Bit, causes a request to memory management modules to load data into
memory from disk.

3. Invalid Operand, usually due to bad object code.

4. Invalid Index, due to user program indexing error.

5. Stack Overflow, due to user program needing more working area.
Input/Output caused:

1. Status Change, when a peripheral unit changes status.

2. I/0 Finished, a previously requested I/O is completed.

Software caused:

1. Allows one task to interrupt another task of the same job.

7-16



SECTION 8

BASIC CANDE COMMANDS



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
BASIC CANDE COMMANDS

INTRODUCTION

Section Objective

Identify CANDE commands and files.

Purpose

In order to use the CANDE MCS, you must be familiar with CANDE commands and CANDE files.

Unit Objectives

Identify CANDE files.

Explain the basic CANDE editing commands.
Explain basic CANDE control commands.
Explain additional CANDE commands.

Explain windows and dialogs.

8-2



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
BASIC CANDE COMMANDS

UNIT 1

CANDE OVERVIEW
Objective
Identify CANDE files.

Purpose

In order to use CANDE efficiently, vou should be aware of the files that CANDE nges.

Resources
A Series CANDE Operations, Section 2 - General Information

A Series CANDE Reference, Section 2 - General Information

8-3



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CANDE OVERVIEW

CANDE

The Command AND Edit (CANDE) language is an MCS, written in DCALGOL, that provides normal
MCS capabilities such as message routing, security, inquiries and program execution capabilities and
text editor capabilities such as generalized file preparation and updating capabilities. Programs are
executed in an interactive, terminal-oriented environment.
CANDE allows the users to:

Create and prepare data and program files.

Compile and execute programs.

Edit and maintain files.

Control access to the system and to files.

Obtain information about jobs, the network, and other terminals.

Dynamically alter the system to meet new requirements.

All of these functions are accessed through CANDE commands, which are discussed in the following
units.

CANDE File Structure

CANDE will create a workfile that is a copy of the source file you are going to edit. The workfile is
entirely separate from the original source file. This allows you to update and test the changes before
changing the original file.

. CANDE maintains a tankfile called TANKFILE/SYSTEM/CANDE for Halt/Load recovery purposes.
The tankfile contains CANDE Opth". settings nnqrnnrghnn information. workfile recovery

STLLIIE S, LUNMLIgi iUl JlUiiiialivil, WUl Alllv ey

information, and commands entered by all users to edit their workfiles.

Certain CANDE commands cause the changes in the tankfile to update the workfile, which is located
in a file called CANDE/TEXT <recovery number >. The Update command forces the system to
update the workfile immediately. Other commands such as Save, Run, Reseq, and Write cause the
Update command to be implicitly invoked. The object code associated with the updated workfile is
located in the updated codefile called CANDE/CODE <recovery number >.

When the Save command is entered the CANDE/CODE <recovery number > and
CANDE TEXT, <recovery number > tiles become permanent tiles.

8-4



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CANDE OVERVIEW

The tankfile contains any changes to the active workfile since the last update occurred. The
information about the workfile located in the tankfile is written to the recovery file for retention
following a failure. The recovery files that CANDE creates are named CANDE/RECV <recovery
number >. The <recovery number > consists of the logical station number (LSN) followed by 1 digit
to distinguish multiple recovery files for the same station.

CANDE Commands

TANKFILE/SYSTEM/CANDE

(Current Workfile)

REC <recovery #>

(Updated Workfile) (Updated Codefile)

CANDE/TEXT <recovery# > E CANDE/CODE <recovery# >

(Saved)
(Saved)

<filename > OBJECT/< filename >

Figure 8-1 CANDE Files



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
BASIC CANDE COMMANDS

UNIT 2

CANDE EDITING COMMANDS

Objective

Explain the basic CANDE editing commands.

Purpose

In order to create, compile and execute programs, you must know what editing commands CANDE
provides for acccomplishing these functions.

Resources

A Series CANDE Reference, Section 2 - General Information
Section 4 - CANDE Commands

8-6



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
CANDE EDITING COMMANDS

Editing Commands

CANDE contains a set of commands used for editing of text records in a file. A workfile, which is a
temporary storage space, is always used for updating purposes instead of the original library file.
CANDE displays a # to the operator to signify the completion of a command.

Log On/Off

CANDE requires that all of its users enter a usercode and password for security purposes. This is
done by using the HELLO command.

HELLO <usercode> <password>

Ifa HELLO is entered to a currently running CANDE session, that session is
terminated, and a new session is initiated.

When you are done using CANDE, you should log off. CANDE will hold all print files until you log
off, so that all of your output can be printed together.

BYE
This command ends the current CANDE session and releases all print files for printing.
SPLIT

This command ends the current CANDE session, releases the print files and
immediately starts a new CANDE session with the same usercode.

8-7



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CANDE EDITING COMMANDS

Establishing A Workfile

All editing must be applied to a workfile.

MAKE <workfile name > <file type> <file attributes>

The Make command creates a new workfile where the changes entered will be applied.

The file type should be supplied to ensure that sequence numbers will be located in the
correct positions in the permanent file and that the type is consistent with the file’s
intended use. The default type is SEQ.

Certain file attributes can be specified by you at the workfile creation time, or the file
attributes can be left to default.

Example: MAKE SAMPLE/WORKFILE C74
GET <file name>

The Get command creates a workfile from a currently existing file. The workfile
inherits the type and file attributes of the currently existing file.

Example: GET SOURCE/MYFILE
GET <file name> AS <workfile name >

At times vou will want to create a workfile with a name that is different from the
original file name. This is accomplished by specifying the AS clause.

Example: GET SOURCE/MYFILE ASTEST/SOURCE/MYFILE

8-8



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CANDE EDITING COMMANDS

Single-Line/Page Entry

Once a workfile is present, editing can be performed by using the single-line and/or page entry modes.

Single-line entry mode enters, replaces or deletes a single line in the workfile. The update is
entered on the first line of the terminal starting with a sequence number and is followed by text
not exceeding 80 characters in total length.

Page entry mode allows a full page of text to be entered and edited at one time. Movement back
and forth through the workfile is easily performed in page mode.

Some terminals are restricted to Single-Line entry because of their physical characteristics.

Sequence Numbers

All workfiles require sequence numbers for controlling the data.

SEQ

This command will establish sequence numbers for the workfile. The location of the
sequence numbers on the screen will always be on the left but will be stored in the file in
the correct columns depending on the workfile type.

CANDE provides the sequence numbers for each line to be entered in the workfile in
sequencing mode. In single line entry mode, one line number is presented atatime. In

nAaoca antry nda nalamaon Aafmiimbarad Hemac ic nracan 4nd ML oo b o Lo r

yasc Tiitl ‘ lllUUC Cl V\J.LUI\: Pds(, Ul uuutucx TU 11ITD LD pl TOCIlILCU. 111t uclaull llulllutl ‘llg

scheme starts at 100 and increments each number by 100.

Examples: SEQ

SEQ200 + 10

Sequence numbers are displayed, line after line or page after page, untila CANDE
command other than SEQ is entered.

8-9



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
CANDE EDITING COMMANDS

RESEQ

This command allows you to have CANDE renumber the lines in your workfile, thus
allowing room in the numbering scheme for data insertion. New sequence numbers are
assigned to each line in the workfile without changing the order of the lines.

Examples: RESEQ

RESEQ 200 + 10

Display or Edit Workfile

CANDE provides commands to display the contents and the characteristics of the workfile.

WHAT

LIST

This command provides information about the workfile such as workfile name, type,
number of records, sequence number assigned to the last record, and the status of the
workfile.

The List command displays the contents of the workfile, or of other files

CANDE displays the contents of the file one line after another or one page after another,
until the whole workfile or the requested portion of the workfile is displayed. A page or
line is displayed, and the operator inputs at least 1 blank to signify to CANDE to
continue the display.
Examples: LIST

LIST 1000 - 2500

LIST ACCOUNTS/PAYABLE/TEST/1

When CANDE is in list mode, the list must be completed before another editing
command will be processed. To terminate the list before completion, enter ?BRK or 7DS.
These special Control Commands inform CANDE to discontinue the list.

8-10



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CANDE EDITING COMMANDS

PAGE

This command lists the contents of the workfile and allows the operator to update the
displayed information.

CANDE displays a full page of information, and at the top of the page, the token

NEXT + isdisplayed. To continue on to the next page of the display, transmit NEXT +.
To move backwards in the display one page, transmit NEXT-. The token SAME can be
used to refresh the currently displayed page of information.

When in page mode, changes can be made on the pages of information displayed. If you
have updated any of the information on the page, make sure you transmit from some
point on the page after the last change.

In both page mode and single line entry mode, you can key in a sequence number
followed by the text, and CANDE will update the workfile by using the sequence
number.

The Page command by default starts at the beginning of the file. Page followed by a
sequence number starts at that number and goes forward.

Examples: PAGE

PAGE 1000

DELETE <sequence number(s) >

At times it is necessary to eliminate a line or group of lines from the workfile. The
sequence number and text is removed by using the delete command.

Examples: DELETE 3000

DELETE 100 - 250

8-11



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CANDE EDITING COMMANDS

Compiling Source Language Files

COMPILE

This command invokes a compiler. The simplest form of the command uses the type
attribute of the workfile to know which compiler to invoke, and the workfile as the
source to be compiled.

The object code produced will be named OBJECT/ < workfile name >. For example, if
the workfile is named SOURCE/EMP/UPDATE/PROG, the compiled object will be
named OBJECT/SOURCE/EMP/UPDATE/PROG.

COMPILE <source file name >

This form of the command allows you to compile a source file that is not the workfile.

COMPILE AS $<file name>

This format allows you to name the object file that is produced. The $ informs CANDE
that you do not want the OBJECT/ directory to precede the file name.

Library Files
SAVE

The save command takes the current workfile and object code file if present, and adds
these files to your library. These files are non-permanent files untii they are saved

Changes made to the workfile and the compiled object code are not retained at the
termination of a CANDE session unless a save command is entered.

You have the option of saving both the source and object code or just one of the files,
depending on what your.needs are.

Examples: SAVE
SAVE SOURCE

SAVE ASNEW/SOURCE TEST/PAYROLL



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CANDE EDITING COMMANDS

Program Execution
RUN or
EXECUTE

The Run or Execute commands cause the execution of a program. The object code
associated with the current workfile is executed unless another name is specified.

Examples: RUN
RUN MYPROG/TEST

CANDE will look for an object code file name of OBJECT/ < workfile name > to execute.
For RUN MYPROG/TEST, CANDE searches for a code file named

OBRJECTMYPROG/TEST. Ifthe obiect has a name other than this format. the $ inusi
VDJLULVI/MIT NNV LLO1. 11 U1 0RbjeCl Iidd d HdIle ULt uldil ULLS 1olillal, uie Hiust

be specified so that CANDE does not use the OBJECT directory before the file name.

Example: RUN $MYPROG/PAYROLL/TEST

All line printer output from the program execution is held by CANDE until you log off.
At log off time, the output will be printed.

CANDE Printing
WRITE

The write command produces a line printer listing of all or part of the workfile, or of
other files. The listing is not printed until you log off.

Examples: WRITE
WRITE 105 - 1501

WRITE ACCOUNTS/PAYABLE/TEST/1



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
CANDE EDITING COMMANDS
Discarding a Workfile
REMOVE
The remove command erases the workfile and object code file from disk. You can remove
the workfile only, object code only or other files in your library using different formats of
the remove command.
Examples: REMOVE
REMOVE SOURCE

REMOVE ACCOUNTS/PAYABLE/TEST/1

Workfile Recovery

After a system failure or CANDE failure, CANDE creates recovery files for users logged on at the
time of the failure. The user must log on when CANDE is again operational and CANDE will display
a list of all recovery files created. It is extremely important that yvou log on with the same
usercode/password combination before requesting recovery of your workfile.

RECOVER <recovery number >

This command recovers vour workfile to the time of the failure.
Example: RECOVER 100

DISCARD
This command allows you to remove your unwanted recovery files.
Example: DISCARD 150

SAVE RECOVERY

The Save command can be followed by the word recovery to have CANDE save the
workfile in the form of a recovery file. This workfile must be retrieved at a later time by
using the Recover command.

Save recovery can be very important when disk space problems occur. CANDE does not
update the file during the save recoverv process. CANDE builds a recovery file to retain
the updates and this allows large files to be stored more quickiv than using other forms
of the save command.



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CANDE EDITING COMMANDS

Location of Workfile
CANDE uses the family specification associated with your usercode or established during this
CANDE session to determine the disk family on which to store your files.

FAMILY

The Family command allows you to interrogate or alter your family specification.

FAMILY *

This format of the Family command sets your family specification to the original value
associated with your usercode, as declared in the SYSTEM/USERDATAFILE.

Workfile Names and File Attributes
CANDE allows vou to inquire into the files stored in your library. CANDE executes the utility
SYSTEM FILEDATA to acquire the requested information about your files.
FILES
CANDE will list all file names in your library when Files is entered

FILES < file name > or <file directory >

CANDE will list the file name or group of file names on your screen. You can determine
the existence of a file or group of files using this command.

Example: FILES TEST/PROG/SOURCE

LFILES
LFILES < file name > or <file directory >

This command lists the names and the attributes of one or more files.
Example: LFILESTEST/PROG/SOURCE

When using FILES andLFILES to list groups of files. do not include the / = following the
directory name.

8-15



A SERIES AND B 5000/8 6000/8 7000 CONCEPTS
BASIC CANDE COMMANDS

UNIT 3

CANDE CONTROL COMMANDS

Objective

Explain basic CANDE Control Commands.

Purpose

In order to control and interrogate the CANDE network, you must be able to use CANDE Control
Commands.

Resources
A Series CANDE Reference, Section 5 - Control Commands

A Series CANDE Operations, Section 2 - General Information
Section 3 - Network Control Commands

8-16



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CANDE CONTROL COMMANDS

What Are MCS Control Commands?

A special group of commands, known as Control Commands, provides the ability to control and
interrogate the operating environment.

Control Commands must begin with the defined control character followed by the command. These
commands can be entered from any CANDE station.

The CANDE control command character by default is an ?.

Task Inquiry/Controlling Commands

A group of control commands are used to inquire into the status of a task. Another group of control
commands are used to control the task itself.

WHY/Y

Displays information about the current task or specified task.

?CS
Reports the status of a compile. It displays the sequence number currently being
processed and the number of syntax errors encountered up to this point.
TI
Displays the process time, elapsed time and I/O time of the currently executing task.
7C
Lists the recently completed programs.
2CU
Displays the core utilization for a task.
7JA/MXA

Displays the status of jobs running under the usercode of vour station.



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CANDE CONTROL COMMANDS

7STATUS

Displays the status of the currently running tasks, currently executing command, such
as Find or Replace, or any station on the network.

"MSG

Displays the most recent messages from a program.

?7AX

Passes text from the operator to the executing program. This command is in response to
a program’s Accept statement.

70K

Resumes processing for a suspended task.

DS

Discontinues the current task.
?DUMP

Causes a program dump to be taken for a task.
78T

Suspends the currently executing task or specified task.
?GO

Causes the CANDE session to be resumed with the first entry in the queue.
7FA

Alters the file attributes for a task currently waiting on a no file condition.
7RM

Allows a duplicate library condition to be resolved by removing the old file and retaining
the new file.



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CANDE CONTROL COMMANDS

?70F

Causes an End-Of-File condition for a task waiting on a no file condition where that file
has the attribute of Optional set to true.

7HI

Causes the Exceptionevent interrupt for the task to be set. What happens to the
program when this interrupt is set depends on the logic of the task.

System Inquiries Control Commands

Control Commands (? <command >) are passed to the controlling MCS for your station. A controlling
MCS such as COMS may have a second MCS running under it such as CANDE. IfCANDE is not the

controlling MCS, a CANDE control command can be passed to CANDE by entering ?? <command >.

Control commands that are used to inquire into the system are:

7WRU

Displays the identification of the station and the version of CANDE that is running.

7WHERE

Displays the station names and LSN's of all stations where the specified usercode is
logged on.

Displays information about the currently running MCP,

WT

Displays the current date and time.

TD

Displavs current date and time.

JTIME

Displavs current time and date.

8-19



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CANDE CONTROL COMMANDS

78C

Displays the current system configuration.
7COUNTS

Displays information about the current activity of CANDE. This information includes
the number of active tasks, number of active compiles and the number,of active stations.

?SCHEDULE
Lists each schedule session currently active or scheduled with the same usercode.
Additional Control Commands

7MCS

Causes control of the station to be transferred to another MCS.

788

Sends a message to another CANDE station.

7TO

Sends a message to all logged on stations under a specified usercode.

8-20



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CANDE CONTROL COMMANDS

Network Control Commands

A specialized group of Control Commands are Network Control Commands, which allow you to alter
or determine the status of the CANDE network.

Network Control Commands are restricted commands and must be entered at an authorized station
which is known as a control station.

Some Network Control Commands

?7ABORT

Causes the CANDE MCS to terminate.

7INFO

Displays the current settings of the CANDE operations and parameters.

0P

Allows interrogation, setting or resetting of CANDE options

?READY

Allows you to ready a station.

"WHERE

Displays information about all stations currently logged on to CANDE.

8-21



Practice

A SERIES AND B 5000/8 6000/B 7000 CONCEPTS

CANDE CONTROL COMMANDS

Match the CANDE commands on the left with the descriptions on the right.

1.

10.

DELETE

HELLO

LIST

REMOVE

7AX

?7CS

7DS

?STATUS

7Y

PAGE

a. Determine the status of a task, station, or CANDE
command.

b. Discard the workfile or some other file.

c.  Display and update the contents of the workfile.

d. Display the contents of the workfile.

e. LogontoCANDE.

f Reply to an accept message from a program.

g. Display status of a compile.

h. Remove lines from a workfile.

1. Terminate an executing task.

j. Display information about the current task.

8-22



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CANDE

UNIT 4

COMS WINDOWS AND DIALOGS

Objective

Explain windows and dialogs.

Purpose

In order to establish multiple CANDE sessions and use the CANDE window throu

aT :
..... A CAlila e aa apmis by

should be aware of COMS windows and dialogs and their functions.

Resources
A Series Menu-Assisted Resource Control User’s Guide, Section 8 - COMS Windows and Dialogs

A Series CANDE Operations, Section 2 - General Information

8-23



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
COMS WINDOWS AND DIALOGS

Window/Dialog

COMS has a distinctive feature of supporting multiple windows and dialogs. A Window is an
interface to a program environment (connection between terminal and the program that the terminal
is communicating with). A Dialog is a unique view into a window (each access to a program
environment).

COMS supports one to eight dialogs per program environment or window. To identify which window
and dialog your terminal is currently assigned to, the system will display on the status line of vour
terminal <window name >/<dialog number>.

Examples: MARC/1
MARC/3

CANDE/5

Certain windows in COMS are considered standard windows, and you will probably find these
windows on your system. These windows are CANDE, MARC and GEMCOS. Other windows can be
added to your system by defining the windows to COMS using the COMS Utility. The commands
below can be entered to dispiay the current windows on your system.

YWINDOWS (COMS)

WINDOW (MARC Choice)

The commands below can be entered to determine which window and dialog you are currently
communicating with, if this information is not displayed on your terminal.

?7STATUS (COMS) or

?WRU (MARC) .

8-24



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
COMS WINDOWS AND DIALOGS

Changing Windows/Dialogs
70N <window name >/<dialog number >

The ON command is used to move from one Window/Dialog to another. This isa COMS
command.

If the dialog number is not specified, the default is dialog 1 of the requested window. If
an * is specified as the window name, you are moved to the default window for your
station, which is usually MARC/1.
Examples: 70N MARC/2

70N CANDEN

70N MARC

ON (MARC Action)

When on the MARC window, you can use the 70N command to move from one window to
another, or you can use the MARC Action ON.

If ON is entered without specifving a window, a window screen will be displayed for vou
tofillin. You can bypass this window screen by specifying the window name and dialog
number following ON in the action field.

Example: ON CANDE/1

If you are currently in MARC on the Tasking mode screen, you must use the ON action
to switch to another window or another dialog of MARC to do any other type of work
until the task is completed.

8-25



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
BASIC CANDE COMMANDS

UNIT 5

ADDITIONAL CANDE COMMANDS

Objective

Explain additional CANDE commands.

Purpose

In order to perform more complex editing on files, you need to be aware of the additional commands
available in CANDE.

Resources
A Series CANDE Reference, Section 4 - CANDE Commands

A Series Printing Utilities User’s Guide, Section 2- BACKUP PROCESSOR Utility

8-26



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
ADDITIONAL CANDE COMMANDS

More Commands

In unit 2 of this section, some basic file manipulation commands were discussed. This unit will cover
some additional commands you may need to control your workfiles.

Text/File Movement Commands

CANDE has some commands that are used to move text within a workfile or among workfiles. The
text movement commands are:

INSERT

This command copies lines from one location to another location in the same workfile
and assigns new sequence numbers to the copied lines. Another format of this command
will copy text from a file that is not the workfile into the workfile.

Examples: INSERT 2000 - 2900 ATEND + 10
INSERT COBOL/COPY/SOURCE AT 350

INSERT COBOL/COPY/SOURCE 110 - 300 AT 2010 + 100

MOVE

This command moves lines from one location to another in the workfile and assigns new
sequence numbers to the relocated lines. Lines are moved, not copied as in the Insert
command.

Examples: MOVE 1100-2100TO 3501 + 5

MOVE TO END + 100 4100 - 5000

FIND

This command searches the workfile for the appearances of the specified target text. The
sequence number or sequence number and text are displayed on the screen.

Examples: FIND :EMPNAME;:T

FIND ADDRESS1/ 5000 - 20000

8-27



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
ADDITIONAL CANDE COMMANDS

REPLACE

This command searches the workfile for appearances of the specified target text and
then replaces the target text with the new text.

Examples: REPLACE /EMPNAME/EMPLOYEENAME/:T
REPLACE ;ADDRESS;;EMPADD; 500 - 2450

REPLACE LIT .EMP. EMPLOYEE. :T

The File movement commands are:

MERGE

This command copies the contents of a file into the workfile using the sequence numbers
to order the lines. When a sequence number matches, the record of the workfile is
retained instead of the record in the file.

Examples: MERGE FILE/SOURCE/1

MERGE FILE/NEWSOURCE 10 - 240
REMERGE

This command copies the contents of a file into the workfile using the sequence numbers
to order the lines. When matching sequence numbers are found, the record from the file
replaces the record in the workfile.

Examples: REMERGE FILE/SOURCE/10A 41000 - 51000

REMERGE NEWSOURCE/FILEA

8-28



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
ADDITIONAL CANDE COMMANDS

Miscellaneous Commands

CANDE contains some additional commands that can be very useful for text editing, program
execution, and communications among users.

NEWS

This command displays the contents of the CANDE news file. The news file usually
contains information that the system administrator wishes to pass on to the users.

DO

A vy

command in order. This file is often referred to as a Do File. Do files are very useful for
applying the same patches to multiple workfiles.
Examples: DO DO/FILE/1

DO PRACTICE/DO/FILE

SCHEDULE

This command invokes a file containing CANDE commands as a separate CANDE
session. This session can begin immediately or at a later time.

2 L) MRS, DU PSUP. Y IS ISP S IR I ISP Tt B DN
1ne input ¢ominandas are mergea wiin wuie Outlpulirom eacn Cominana ana a scneauie

output file, which is an image of the information that would have appeared on the
terminal, is produced. This file can be examined at a later time to verify the completion
of each command.

Examples: SCHEDULE SCH/FILE : AFTER 2200

SCHEDULE SCH1/FILE TO SCH1/OUTPUT/FILE

START

This command causes the Work Flow Language compiler to be invoked and a Work Flow
job to be started. The file name or workfile specified must contain Work Flow Language
statements and the file tvpe must be Job.

Example STARTWFL/FILE 1

8-29



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
ADDITIONAL CANDE COMMANDS

BACKUPPROCESS

This command invokes the Backup Processor Utility which allows vou to copy to disk,
print, list on a terminal or remove printer backup files.

This command is very useful to view printer backup files at a terminal before ending the
CANDE session.

The Backup Processor Utility has its own set of commands to control the printer backup
files. The interactive commands include:

COPY Copies a backup file

DIRECTORY Lists the files in the backup file directory
HELP Displays help information

LIST Displays the contents of a backup file
OPTION Specifies the Backup Processor utility options

QUERY or WHAT

Displays information about a backup file

QUIT Terminates the Backup Processor utility
PRINT Sends a print request for a backup file
REMOVE Removes a backup file

SELECT or NEXT Specifies a particular directory or file

FIRST Displays the first page of text in the backup file
LAST Displays the last page of text in the backup file
SAME Redisplays the current page of text

- Displays the previous page of text

+ Displays the next page of text

8-30



SECTION 9

STACK ARCHITECTURE CONCEPTS



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
STACK ARCHITECTURE CONCEPTS

INTRODUCTION

Section Objective

Recognize the major characteristics of the A Series stack architecture.

Purpose

A knowledge of stack architecture concepts is necessary when reading reference manuals, compile
listings, and program dumps.

Unit Objectives

Identify the various elements of an object program as it exists on disk.

Identify the memory structures used in program execution.

Identify the word formats used internally on the A Series systems.

Identify the most common control word formats used internally on the A Series systems
Recognize the functions of the display registers.

Recognize the functions of the top-of-stack registers.

Identify the operators used in basic calculations.

9-2



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
STACKARCHITECTURE CONCEPTS

UNIT 1

OBJECT CODEFILELAYOUT

Objective

Identify the various elements of an object program as it exists on disk.

Purpose

pam;“ar;fv \l?;"h "hﬂ ctriictiiro nfan (\"\;Df‘f nraoram 1C nacscaccarry nkon "OQ!‘;"\H »nmn”or Hch‘nnc Qﬂ!"
Familiarity with the structure of an chject program is necessary when reading compiler listings an d
dumps.

Resources

A Series System Architecture, Volume 2, Section 1 - Data Structures
Section 2 - Stack Concepts and Processor State

9-3



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
OBJECT CODE FILE LAYOUT

Object Code File Layout on a Pack

The object code files that are created by compilers consist of the following elements, which are also
illustrated in Figure 9-1.

Object Code Segments

The object code instructions generated by compilers are grouped into variable-length object code
segments, depending on the size and structure of the source program. This saves memory space when
the program executes by allowing individual segments, rather than the whole program, to be brought
into memory.

COBOL program segmentation

The programmer may use SECTIONSs to divide the program into segments.

ALGOL Program segmentation
Each procedure or block corresponds to an object code segment.

The programmer may also use dollar options to specify segment boundaries .

Automatic Program Segmentation

The compilers allow a maximum of 1500 words of object code per segment. A new
segment is created automatically when this limit is exceeded.

Segment Dictionary

The segment dictionary contains a segment descriptor for each object code segment, to store the
address of the object code segment within the object code file.

9-4



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
OBJECT CODE FILE LAYOUT

SEGO
CONTAINS ENTRY POINT,
SEG DICT ADDRESS,
MEMORY ESTIMATE

FPB

FiILE PARAMETER BLOCK

FPB

FILE PARAMETER BLOCK

DATA POOL

CONTAINS CONSTANTS
COMPILED INTO PROGRAM

OBJECT CODE SEGMENT

OBJECT

CODE
FILE

LINE DICTIONARY

INCLUDED IF $SET LINEINFO

Anhl'l’lﬂhlhl NATA DANI
FTAWs WV 1

INJINMAW WA T UL,

OBJECT CODE SEGMENTS,
LINE DICTIONARY
AS NEEDED

SEGMENT DICTIONARY

PROGRAM PARAMETER
BLOCK
INCLUDED IF TASK
ATTRIBUTES COMPILED IN

Figure 9-1 Object Code File Layout on a Pack

9-5



A SERIES AND B 5000/8 6000/8 7000 CONCEPTS
OBJECT CODE FILE LAYOUT

Segment 0
Segment 0 contains information used by the MCP when the program is executed.

The memory estimate specifies the amount of memory required to begin executing this
program. This estimate is updated each time the program is executed, so that it will become
more accurate over time.

The address of the segment dictionary allows the MCP to locate the segment dictionary
within the object code file.

The entry point indicates which segment, word, and byte contains the first instruction to be
executed.

File Parameter Block(s)

Each file declared in the program will have a File Parameter Block (FPB), containing the file
attributes (for example, BLOCKSIZE, AREASIZE) that were declared in the source program.

Data Pool

The Data Pool consists of literals, such as page headings, that were compiled into the program.

Line Dictionary
If the program is compiled with the dollar option LINEINFO, a line dictionary will be created to
relate object code instructions to sequence numbers in the source file. If the program fauits, the

sequence number of the source statement where the failure occurred will be displayed to aid in
debugging.

Program Parameter Block

If any task attributes (for example, family substitution statement) are compiled into the program, a
program parameter block (PPB) will be created to store them.

9-6



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
STACK ARCHITECTURE CONCEPTS

UNIT 2

MEMORY STRUCTURES FOR PROGRAM EXECUTION

Objective

Identify the memory structures used in program execution.

Purpose

Familiarity with memory structures is necessary when reading dumps and reference manuals.

Resources

A Series System Software Support Reference Manual, Section 8 - Memory Management

9-7



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MEMORY STRUCTURES

Memory Structures for Program Execution
Every executing program has at least three structures in memory, as shown in Figure 9-2.
The Process Stack (often called “the stack”) is a series of words in memory that grows and
shrinks as the program executes, to store the program’s working environment. The term
process refers to a single execution of a program The stack contains:
Temporary data (for example, Cobol 77-level items, Algol real items)
Addresses of data (for example, data in a file)
Addresses of object code
Program history (for example, a procedure invoked another procedure)

The MCP accounting area (a series of words built by the MCP at the bottom, or base, of
each process stack)

The Segment Dictionary contains the addresses of the object code segments (segment
descriptors). This is copied into memory from the object code file on disk.

The Process Information Block holds the task attributes for the program.
Attributes are copied from the Program Parameter Block in the object code file.
Additional attributes are developed and accumulated as the program executes (for

example, ELAPSEDTIME).

There may also be one or more object code segments in memory for the program, as well as file buffers
and other data structures.

9-8



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

MEMORY STRUCTURES
E DISK !
-
SEGDESC | . _- -
R 7
N /7
/ SEGMENT 0
\_\.{
MCP / -~
ACCOUNTING II - CODE SEG
AREA | SEGMENT p
§ DICTIONARY :
\ SEG DICT
PROCESS \\
\
\ PPB
\
\
TASK N
ATTRI- ~ o
BUTES -
H PROCESS
 INFO BLOCK

Figure 9-2 Memory Structures for Program Execution

9-9



A SERIES AND B 5000/8 6000/8 7000 CONCEPTS
MEMORY STRUCTURES

Steps in Program Execution
The MCP performs the following steps when a program is executed:

1. Locates the object code file using the directory structures.

2. Checks the memory estimate in Segment 0 to determine if there is enough memory
available to execute the program at this time. If not, the program will be scheduled until
there is enough memory available.

3. Builds the Process Information Block (PIB) in memory.

4. Uses the address of the segment dictionary in Segment 0 to locate the segment
dictionary in the object file on disk.

5. Copies the segment dictionary into memory.

6. Allocates space for the Process Stack in memory, and sets up the MCP accounting area
in the stack.

7. Obtains the entry point (address of first executable instruction) from Segment 0.

8. Finds the Segment Descriptor for the required object code segment in the Segment
Dictionary.

9. Causes a Presence Bit Interrupt, to bring the required segment into memory.

10. Updates the Segment Descriptor to point to the object code segment in memory, instead

sk, as shown in Figure 9-3.

11.  Executes the object code instructions, beginning at the entry point.

12.  Brings additional object code segments into memory as needed, and updates their
Segment Descriptors to point to memory locations.

13. Updates the memory estimate in Segment 0 at end of task.

14, Frees the memory space occupied by the Pracess Stack. Segment Dictionary. and object
code segments at end of task. Frees the Process Information Block at end of job.



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

OBIJECT
CODE
SEGMENT

MEMORY STRUCTURES
i MEMORY |
SEG DESC . -
SEGDESC  |-«----:

SEGDESC  |..-

SEGMENT
DICTIONARY

CODE FILE

(;

Figure 9-3 Segment Descriptors

9-11



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MEMORY STRUCTURES

Reentrant Code

Reentrant code allows multiple executions of the same program to share some of the memory
structures, conserving memory and pack accesses. Figure 9-4 illustrates reentrant code.

The Segment Dictionary and object code segments in memory are shared.
Each execution of the program has its own Process Stack and Process Information Block.

The Segment Dictionary will not be removed from memory until all of the executions of the
program have ended.



A SERIES AND B 5000/8 6000/8 7000 CONCEPTS

MEMORY STRUCTURES
MEMORY
LAELA LA S OBJECT
CODE
SEGMENT
I
|
|
I
oy
I
I
|
!
: |
Lo OBJECT
L CODE
PROCESS P! SEGMENT
STACK 1 , :
I >
|
I
: t——— 3| SEGDESC
: IR »| SEGDESC
b= === SEGDESC
i I" ....... .’
_____ i
! SEGMENT
; DICTIONARY
--------- 2 OBJECT
CODE
SEGMENT
PROCESS
STACK 2

Figure 9-4 Reentrant Code

9-13



Practice

A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MEMORY STRUCTURES

Match the terms on the left with the descriptions on the right.

1.

Process Information Block

Process Stack

File Parameter Blocks

Scheduled

Presence Bit Interrupt

Segment Dictionary

Segment 0

Object Code Segments

a. This action occurs at program execution time if there

is insufficient memory available.

. This action occurs when a segment descriptor is

accessed for the first time.

. The MCP builds this structure in memory and adds

information from the program’s PPB if it is present.

. The memory estimate is located in this part of the

object file.

. These parts of the object code file contain the file

attributes declared in the source program.

. This structure stores the program’s working

environment.

. These vary in size and number depending on the

structure of the source program.

. This memory structure contains the segment

3 M n ) 1 S i S M . P
descriptors for object code segments on disk and in
memory.



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
STACKARCHITECTURE CONCEPTS

UNIT 3

WORD FORMATS AND DATA REPRESENTATION

Objective

Identify the word formats used internally on the A Series systems.

Purpose

Familiarity with word formats is necessary when reading reference manuals and program dumps.

Resources

A Series System Architecture, Volume 2, Section 1 - Data Structures



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
WORD FORMATS AND DATA REPRESENTATION

Word Formats

A word on an A Series system consists of 6 bytes, or 48 bits, of data. When the word is in memory or in

the processor, 4 additional bits are associated with the word. The parts of a word are described below.
The bits are numbered 0 through 51, as shown in Figure 9-5.
The information field contains the 48 bits of data, in bits 0 through 47 of the word. Bit 0 is the
least significant bit, and bit 47 is the most significant bit. The 48 bits will be redefined to have

various meanings, depending on the type of data in the word.

The tag field indicates the type of information stored in the word (for example, numeric data or
object code), in bits 48 through 50.

The parity bit is bit 51. This bit is used by the system in checking for errors in reading and
writing the word in memory or in the processor.

il Bit Bit Bit Bit Bits Bit
gt 50 49 48 47 46 - 1 0
1IN 158
v
PARITY TAG INFORMATION FIELD

Figure 9-5 Word Layout

Partial Word Notation

Partial word notation is a convention used in the reference manuals, and in ALGOL or COBOL74
programs, to refer to bits or fields within a word. The syntax of partial word notationis [mm:nn].

Lol 13 ~d L O s Aanlaes o oun
i the lielda is speciiieqa beiore tne colon {(mm).

The most significant (left-most) bit o

The length of the field in bits is specified after the colon (nn).
Examples:

[ 47 : 48] refers to the information field.

[ 50 : 3 ]denotes the tag field.

[51:1]isthe parity bit.

[ 38: 6 | refers to 6 bits within the information tield.

9-16



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
WORD FORMATS AND DATA REPRESENTATION

Number Bases
Several number bases are used in the A Series systems.

Decimal (Base 10) is the most common format for numeric data on reports and displays,
because it is the format that humans use daily. Base 10 uses the digits 0 through 9, with each
position representing a power of 10.

Binary (Base 2) is used in memory, in the processor, and on disk to represent all dataas a
series of bits (binary digits). Binary uses the digits 0 and 1, with each position representing a
power of 2.

Octal (Base 8) is used to store numeric data within the processor. Octal uses the digits 0
through 7, with each position representing a power of 8. Each group of 3 bits corresponds to 1
octal digit.

Hexadecimal (Base 16) is used in program dumps and SYSTEM/DUMPALL listings to
represent binary data in a more readable format, since each group of 4 bits corresponds to 1
hexadecimal digit. Base 16 uses the digits 0 through 9, and A through F, with each position
representing a power of 16,

The A Series word format is often illustrated using columns of 4 bits each, as shown in Figure 9-6.

AL L
g7y

P77 7777777,
 parity 3
¥ Parity 4
r 4
PRSP

a7 {43139 {35 {31 {27 23|19 f{15]1}|7 |3

46 | 42 138 130 30326 {22}18}14}1046 {2

B S SIS INFORMATION FIELD S5 REE: caec
e P 49 § 45 | 41 137 {33429 1252111741349 {5 {1

1aa |40 (36 (3228|202 |16}12{8 |4 |o

F.gure 9-6 Worg Format



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WORD FORMATS AND DATA REPRESENTATION

In Figure 9-6, each column of 4 bits correponds to 1 hexadecimal digit. The 12 columns in the
information field represent the 12 hexadecimal digits that will be printed for each word in a program

dump.

A bit may containonly Oor 1.

The values of the bits in each column are 1 (bottom bit), 2, 4, and 8 (top bit).

The values of the bits in a column add to give a hexadecimal digit.

Example: A word in a program dump containing the hexadecimal digits 259400000000
actually has the bit pattern shown in Figure 9-7 (only the 1-bits, not the 0-bits, are shown).

Hex
Digits

7777

A ; Y,
; Parity 2
PRI

Bit
L) 2 5 9 4 0 0 0 0 0 0 Values
51 g 47 {43 139 {35 |31 {27 23119 {15 ] 11 8
7 i
2 1
508 a6 { 42 {38134 130 |26 }|22]18]{1a1]10 4
1 11
a0 a5 | a1 1371331202521 | 17}13]9 5
1
a8 § 44 |40 |36 |32 |28 |24 |20 |16} 12]8 1
1 1 4

Figure 9-7 Word Containing the Hexadecimal Value 259400000000

-
(0]




A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WORD FORMATS AND DATA REPRESENTATION
Sample Control Word Formats

Control Words are specially formatted words placed on the stack during program execution. Two
types of control words are illustrated below. Additional control words will be defined in Unit 4.

Single Precision Operand

A Single Precision Operand is a word that is placed on the stack to store the value of a numeric data
item declared in the program (for example, an ALGOL real variable, or a COBOL 77-level item with
PIC 9(5)v99). A tag field of 0 identifies a word as a Single Precision Operand.

Single Precision Operands use octal (base 8) to represent the value of the variable. The number is
automatically converted from and to decimal for input and output. The value is stored as :

NUMBER * 8 POWER or MANTISSA * 8 EXPONENT
The format of Single Precision Operands is described below and illustrated in Figure 9-8.
[46:1] Sign of Mantissa 0 = Positive, 1 = Negative
f45:1] Sign of Exponent 0 = Positive, 1 = Negative
[44:6] Exponent

[38:39] Mantissa

51
50
0
49
Tag =0 t\
0 R
..... ‘\;\
N
0 R N
k AR N N

Figure 9-8 Single Precision Operand Format
Usually, program dumps print Single Precision Operands both as 12 hexadecimal digits and as a
decimal number. Operands within arrayvs or tables print only the 12 hexadecimal digits.

The word in Figure 9-7 is actually a Single Precision Operand with the value of 10

9-19



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WORD FORMATS AND DATA REPRESENTATION

Segment Descriptors

A Segment Descriptor is a control word that is stored in the Segment Dictionary (described in Units 1
and 2), and contains the address of an object code segment on disk or in memory. Segment Descriptors
are identified by a tag value of 3.

)

Segment Descriptors have the layout described below and illustrated in Figure 9-9.

[47:1]

[46:

[45

[39:

[32:

Tag = 3

1]

6]

7]

13 ]

220 ]

Presence 0=
Bit 1=

Copy Bit 0

1=

Reserved
Must be zero
Segment Length

Segment Address

The object code segment is absent from memory (it is on disk).
The object code segment is present in memory.

This is the original Segment Descriptor, which points directly
to the object code segment.

This is a copy of the original Segment Descriptor, and points to
another Segment Descriptor (eventually to the original).

The number of words in the object code segment.

Address of the object code segment in memory if present, or on
disk if absent.

39 { 35 | 31 2? ,23‘
0 0

SEGMENT Ll SEGMENT
37 | 33 | LENGTH  FR ARES
0 0 |

32 | 28 § 24 | 20

Figure 9-9 Segment Descriptor Format

9-20



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
WORD FORMATS AND DATA REPRESENTATION

Data Representation

Two main character sets are used on the A Series system.

EBCDIC (Extended Binary Coded Decimal Interchange Code) is used to represent character
data on disk and tape, in memory, and in the processor.

Each EBCDIC character contains 8 bits, or 2 hexadecimal digits. Program dumps and
SYSTEM/DUMPALL will print 2 hexadecimal digits per character.

A word can contain 6 characters (6 bytes) of alphabetic data in the 48 information bits.

ASCII (American Standard Code for Information Interchange) is used in the data comm
subsystem, because it is the industry standard for communications.

Data is translated between ASCII and EBCDIC by the line adaptor.

Each ASCII character contains 7 bits, plus a parity bit.

9-21



A SERIES AND B 5000/8 6000/8 7000 CONCEPTS
STACK ARCHITECTURE CONCEPTS

UNIT 4

CONTROL WORDS

Objective

Identify the most common control word formats used internally on the A Series systems.

Purpose

Familiarity with control words is necessary when reading reference manuals and program dumps.

Resources

A Series System Architecture, Volume 2, Section 1 - Data Structures

9-22



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
CONTROL WORDS

Control Words
As defined in unit 3, control words are specially formatted words placed on the stack during program

execution. Two types of control words, Single Precision Operands and Segment Descriptors, were
illustrated in Unit 3. Additional control words will be defined in this unit.

Sample ALGOL Program
The sample ALGOL program in Figures 9-10 will be used in Units 4, 5, and 6 to illustrate various

stack concepts. Selected portions of the program will be discussed in Units 4 and 5, and then the
entire program will be summarized in Unit 6.

This program reads a disk file of employees, calculates the gross pay, taxes, and net pay for an
hourly employee, and prints a paycheck.

Employees are paid an hourly rate for all hours worked. If an employee works more than 40
hours, overtime pay is calculated at an additional one-half the hourly rate for the extra hours
(this is equivalent to time-and-a-half).

Some portions of the program have been shown as comments (following the % symbol), because
the purpose of the program is to present stack topics, not to teach ALGOL.

A compile listing and program dumps for this program are included in Section C.

9-23



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CONTROL WORDS

% Ry
% SAMPLE ALGOL PAYROLL PROGRAM %
% TO ILLUSTRATE STACK CONCEPTS %
% %

% % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % %

1000 BEGIN
1100 REAL HOURS_WORK, HOURLY_RATE, GROSS_PAY,
1200 NET_PAY, TOTAL_TAXES;

1300 FILE EMPLOYEES (KIND = DISK, TITLE = “EMPLOYEES/ACTIVE.");
1400 ARRAY TAX TABLE[0:9];

1500 PROCEDURE CALC_TAXES;
1600 BEGIN

1700 REAL FICA_TAX, FED_TAX;
1800 % CALCULATE TAXES USING GROSS_PAY
1900 TOTAL_TAXES : = FICA_TAX + FED TAX;

2000 END OF CALC_TAXES;

Figure 9-10a Sample ALGOL Program Part 1

9-24



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CONTROL WORDS

2100 PROCEDURE CALC_CHECK;
2200 BEGIN

2300 REALREG_PAY, OT_PAY;

2400 PROCEDURE CALC_OT;

2500 BEGIN

2600 OT_PAY := HOURLY_RATE * .5 * (HOURS_WORK - 40);
2700 END OF CALC_OT;

2800 REG_PAY : = HOURS_WORK * HOURLY RATE;

2900 IF HOURS_WORK GTR 40 THEN CALC_OT;

3000 GROSS_PAY : = REG_PAY + OT_PAY;

3100 CALC_TAXES;

3200 NET_PAY : = GROSS_PAY - TOTAL_TAXES;

3300 END OF CALC_CHECK;

3400 % % % MAIN LOGIC % % %

3500 % READ EMPLOYEE, MOVE VALUES INTO VARIABLES
3600 CALC_CHECK >

3700 %PRINT CHECK; LOOP
3800 END OF PROGRAM.

Figure 9-10b Sample ALGOL Program Part 2

9-25



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
CONTROL WORDS

Mark Stack Control Word

A Mark Stack Control Word (MSCW) is placed on the stack to record that a new procedure has been
executed. The Mark Stack Control Words keep information about the history of the program’s
execution, and about the addressing environment (this will be discussed in Unit 5).

ALGOL puts a MSCW on top of the stack when a procedure is invoked by name.
COBOL places a MSCW on top of the stack when the Procedure Division begins executing.

Since the MCP treats each program as a procedure, an MSCW is placed on the stack when the
program begins executing.

Return Control Word

A Return Control Word (RCW) always appears above a MSCW on the stack, to point to the object code
instruction that the program should return to after finishing the procedure. Figure 9-11 illustrates
the MSCW and RCW that are built on the stack when the sample ALGOL program in Figures 9-10
begins executing.

Single Precision Operand

As described in Unit 3, a Single Precision Operand is placed on the stack to store the value of a
numeric data item declared in the program. Each real variable declared in lines 1100-1200 of the
sample ALGOL program corresponds to a Single Precision Operand which is initialized to 0, as shown

in Figure 9-11.

The maximum integer value of a Single Precision Operand is 549,755,813,887. Depending on the
programming language used, a Single Precision Operand can be 12 digits long, including decimal
places. ALGOL also allows scientific notation (powers of 10), and larger maximum number values.

Double Precision Operand

Double Precision Operands are used to store the values of very large numbers, or numbers that
require many decimal positions. Depending on the programming language, a Double Precision
Operand may store values up to 23 digits long, including decimal places. A Double Precision
Operand occupies 2 words on the stack.

9-26



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CONTROL WORDS

.........................................................................................................................................................

11100 REAL HOURS WORK, HOURLY RATE, GROSS_PAY,
1200 NET_PAY, TOTAL_TAXES;

1300 FILE EMPLOYEES (KIND =DISK, TITLE = “EMPLOYEES/ACTIVE.");
1400 ARRAY TAX_TABLE[0:9];
1500 PROCEDURE CALC_TAXES;
2100 PROCEDURE CALC_CHECK;

.........................................................................................................................................................

(2,B) PCW for CALC_CHECK

(2,A) | PCW for CALC_TAXES /
(2,9) DD TAX_TABLE

(2,8) DD EMPLOYEES

EMPLOYEE FILE INFO

(2,7) SIRW EMPLOYEES

1N N\ cn o~
(2,6) SP Op

(2,5) SPOp NET_PAY =0

(2,4) SPOp GROSS_PAY =0

(2,3) SPOp HOURLY_RATE =0

(2,2) SPOp HOURS WORK = 0

RCW for BOT

MSCW for BOT

Figure 9-11 Control Words in Stack for Declarations in Sample ALGOL Program

9-27



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CONTROL WORDS

Indirect Reference Word

An Indirect Reference Word (IRW) or Normal Indirect Reference Word (NIRW) is the address of a
word in the stack.

An IRW consists of two numbers in the form ( x, y ), sometimes called an “address couple”. The
significance of the two numbers will be discussed in unit 5.

The compiler assigns an IRW to each variable in the program, as the variables are declared.

The Indirect Reference Words for the declarations in lines 1100-1500 and 2100 of the sample
ALGOL program are printed to the left of the stack in Figure 9-11.

A Stuffed Indirect Reference Word (SIRW) is the address of data in this stack, or in another stack. For
example, an SIRW appears on the stack when the program is passing parameters to a procedure or
another program.

Data Descriptor

A Data Descriptor (DD) is the address of a file or data structure that is stored outside the stack. A
Presence Bit indicates whether the data is currently in memory or oi disk.

Each file declared in a program will have a DD in the stack, which will point to the file
attributes and buffers elsewhere in memory. ‘

A Data Descriptor will be placed on the stack for each ALGOL array or COBOL table (with an
OCCURS clause) declared in the program. The DD will point to the table of values, located
outside the stack.

Figure 9-11 shows the Data Descriptors placed on the stack for the declarations in lines 1300-
1400 of the sample ALGOL Program. In addition to the DD, an SIRW has been built for the
EMPLOYEES file, to point to an entry in the Segment Dictionary that is required for file
handling.

9-28



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
CONTROL WORDS

Program Control Word
A Program Control Word (PCW) is the address of the first object code instruction in a paragraph or

procedure. The PCW consists of an object code segment number, and a word and byte number within
that segment.

COBOL places a PCW on top of the stack for each paragraph performed.

ALGOL puts a PCW on the stack for each procedure declared, so that the procedure can be
located when it is invoked by name later.

Figure 9-11 shows the Program Control Words added to the stack for the procedure declaration

at lines 1500 and 2100 in the sample ALGOL program.

Software Control Word

A software control word may be placed on the stack when a procedure is invoked, to indicate that
declarations which refer to memory outside the stack are located below. These declarations will
require the MCP to do additional memory deallocation later when they are removed from the stack.

In the sample ALGOL program, an SCW will be used to indicate that a file and an array were
declared in the program.

9-29



Practice

A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
CONTROL WORDS

Match the terms on the left with the descriptions on the right.

1.

Return Control Word

Indirect Reference Word

Single Precision Operand

Presence Bit

Program Control Word

Segment Descriptor

Tag Field

Mark Stack Control Word

a.

[

A word placed on the stack when a procedure is
invoked, to maintain the program history.

. A word that contains the address of an object code

segment.

A word that specifies the address where control should
return after a procedure has been executed.

. A portion of a word used by the system in checking for

read and write errors.

. A portion of a word that indicates the type of

information contained in the word.

A word that contains the address of an item in the
stack.

. A word that contains the address of data outside the

stack.

. A portion of some descriptors, that indicates whether

the item referenced is in memory or on disk.

A word that contains the address of the first object

code instruction in a paragraph or procedure.

. A word that contains the value of a numeric variable

declared in a program.

9-30



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
STACK ARCHITECTURE CONCEPTS

UNIT S5

DISPLAY REGISTERS

Objective

Recognize the purpose of the display registers.

Purpose

Familiarity with display registers is necessary when reading reference manuals and program dumps.

Resources

A Series System Architecture, Volume 2, Section 1 - Data Structures

9-31



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
DISPLAY REGISTERS

Display Registers
Registers are storage locations in the processor with designated purposes. Depending on their defined

function, registers may contain data, object code, or addresses of data or object code. Units 5and 6
describe some of the major registers and their significance.

The display registers, or D registers, are a series of registers called D[0] through D[15]. Their
functions are described below.

D[0] Register

D[0] always contains the memory address of the segment dictionary for the MCP. The ?SC Cande
command displays this address.

Figure 9-12 illustrates D[0] pointing to the segment dictionary for the MCP.

D[1] Register

The D{1] register usually contains the memory address of the currently active program’s segment
dictionary, as shown in Figure 9-12.

When the MCP is executing in a program stack (for example. producing a program dump), D[ 1] point
to a location in that stack.

wn

D[2] Register

D[2] always contains the memory address of the currently active program’s stack. It points at the
Mark Stack Control Word where the program began executing, just above the MCP accounting area,
as shown in Figure 9-12.

9-32



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

DISPLAY REGISTERS
| MEMORY
¥
1
| MCP SEGMENT
RCW
MSCW
E DISK !
SEG DESC . /,,—
Ve
- ,
RCW / SEGMENT 0
MCP § D[1]
ACCOUNTING w! ’I - CODE SEG
AREA SEGMENT P
g DICTIONARY |
{ SEG DICT
§ PROCESS \
M STACK \
\ PPB
\
\

TASK N <

ATTRI- ~o

BUTES -~-.

F

{ PROCESS

| INFOBLOCK

Figure 9-12 Display Registers used in Program Execution

9-33



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DISPLAY REGISTERS

D[3] - D[15] Registers

D(3] through D{15] point at Mark Stack Control Words in the currently active program’s stack, to
control the addressing environment, or lexicographical level, of the program.

As defined in Unit 4, addresses of items in the stack are specified by Indirect Reference Words or
address couples of the form (x,y).

The left digit, x, indicates the number of a D register, and also specifies the lexicographical
("lex”) level of the referenced item.

The right digit, y, specifies the offset in words from the D Register where the referenced item
can be found in the stack.
Example:

In Figure 9-11, D{2] would point to the MSCW for beginning-of-task.

The operand HOURLY_RATE has address (2,3) because it is 3 words up from D[2] on the
stack.

HOURLY_RATE is declared at lex level 2, or relative to D[2].

ALGOL and COBOL programs use these registers in different ways, as described in the following
text.

COBOL Use of D Registers

The Data Division of a COBOL program is always relative to D{2], so all the data items and files will
have addressesof (2, v ).

When the Procedure Division is entered, an MSCW and RCW are placed on the stack. The D[3]
register points to this MSCW.

COBOL programs do not use D registers above D[3] unless they call MCP procedures such as SORT.

Figure 9-12 illustrates the D registers used when a COBOL program is executing.

9-34



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DISPLAY REGISTERS

ALGOL Use of D Registers

ALGOL is a block-structured language, which means that some variables may be declared within
procedures {local to the procedure), rather than at the beginning of the program. The addresses of
these local variables are assigned when the variables are declared.

ALGOL programs begin executing at D[2], so variables declared immediately after the BEGIN
statement have addresses of (2,y ), as in Figure 9-11.

When a procedure is invoked by mentioning its name, it executes at one lex level higher than
the level where it was declared.

An MSCW and RCW are placed on the stack when the procedure is invoked.

The appropriate D register points to the MSCW.

Any variables declared within the procedure have addresses relative to this D register.

Examples:

In the sample ALGOL program in Figures 9-10, when the procedure CALC_CHECK
is invoked at line 3600, the following words are placed on the stack, as in Figure
9-13.

An MSCW and RCW are placed on the stack. The SCW at (2,C) indicates
that a file and array were declared below, for memory deallocation later.

The procedure executes at D[3], because it was declared at D[2].

The real variables REG__P_A_Y and OT_PAY declared at line 2300 have

LeLialice at LoV

addresses (3,2)and (3,3 i respectively. CALC_OTisat(3,4).

If CALC_OT is invoked at line 2900:
An MSCW and RCW are placed on the stack.

D[4] points to the MSCW, as in figure 9-14.



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DISPLAY REGISTERS

(3.4) PCW for CALC OT i

(3.3) 'SPOp oT_ PAY_O o

(3.2 Espop REG PAY = 0

e e SRS

. RCW forCALC CHECK

'.-\.w.'«.- v < A e A A AT A AR L

(2,B) PCW for CALC_CHECK

(2,A) | PCW for CALC_TAXES

(2,9) DD TAX TABLE

(2,8) DD EMPLOYEES

(2,7) SIRW EMPLOYEES

(2,6) SPOp TOTAL TAXES =0

(2,5) SPOp NET_PAY =0

(2,4) SPOp GROSS PAY =0

(2,3) SPOp HOURLY_RATE = 0

(2,2) SPOp HOURS_WORK =0

RCW for BOT

D[2] » MSCW for BOT

Figure 9-13 Stack after invocation of Procedure CALC_CHECK



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DISPLAY REGISTERS

2900 IF HOURS_WORK GTR 40
THEN CALC_OT;

G4 | p .
(3.3) SPOp OT PAY =0
(3,2) SPOp REG_PAY =0
RCW for CALC_CHECK
D[3] » MSCW for CALC_CHECK
(2,C) | scw
(2,B) PCW for CALC_CHECK
(2,A) | PCW for CALC_TAXES
(2,9) DD TAX TABLE
(2,8) DD EMPLOYEES
(2,7) | SIRW EMPLOYEES
(2,6) | SPOp TOTAL TAXES =0
(2,5) SPOp NET_PAY =0
(2,4) SPOp GROSS PAY =0
(2,3) | SPOp HOURLY_RATE =0
(2,2) | SPOp HOURS WORK = 0
RCW for BOT
D[2] |—»| MSCW for BOT

Figure 9-14 Stack after Invocation of Procecure CALC O7

(A
~



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
DISPLAY REGISTERS

When the end of a procedure is reached, all words that were added to the stack for the
procedure are removed from the stack, and the program returns to the next statement after the
invocation.

Example:

At the end of CALC_OT at line 2700, the MSCW and RCW are removed from the
stack, as in Figure 9-13.

Control returns to line 3000, the next statement after the invocation.

The program is again executing at D{3].

Addressing Environments

Local variables can be referenced only in the procedure where they are declared. The D registers
control the addressing environment, by controlling which variables may be accessed at each point in
the program.

Example:

In the sample ALGOL program in Figures 9-10, the procedure CALC_TAXES is invoked at
line 3100. The stack is built as shown in Figure 9-15.

An MSCW and RCW are placed on the stack.

Tt o

D[3] now points at this MSCW, because the procedure was declared at D[2].

The real variables FICA_TAX and FED_TAX declared at line 1700 have addresses
(3,2)and (3, 3)respectively.

None of the declarations in CALC_CHECK can be referenced while in this
procedure, because they are not in this environment.

At the end of CALC_TAXES, the words that were added to the stack for this
procedure are removed, and D[3] is restored as in Figure 9-13.

9-38



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DISPLAY REGISTERS

Mark Stack Control Word Linkages

Mark Stack Control Words contain two types of linkages that are involved in controlling the
addressing environment and program history.

The history link points back to the previous MSCW on the stack. This is used when words are
removed from the stack at the end of a procedure.

The address environment link, or displacement, points to the previous D register on the
stack. This is used when the program is reactivated after being suspended by the MCP.

Figure 9-15 shows the MSCW linkages when the procedure CALC_TAXES is executing.
F Register
The F register points to the MSCW for the procedure that is eurrently executing.

In ALGOL, the F register points to the same word as the highest D register in use, as in Figure
9-15.

While a COBOL program is executing in the Procedure Division, the F register points to the
same word as D[3], where the Procedure Division was entered.

Top-of-Stack Control Word (TOSCW)
When a stack is inactive, a TOSCW is placed at the base of the stack, to store information needed to

reactivate the program later. The information stored relates to the current top of the stack, such as
the setting of the F register, and the current lex level.

9-39



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DISPLAY REGISTERS

PCW for CALC OT

(3.4)
(3,3) SPOp OT PAY =0
(3,2) SPOp REG PAY =0
- RCW for CALC_CHECK
N
D »| MSCW for CALC_CHECK
7
(2,Q) SCW
(2,B) PCW for CALC_CHECK
(2,A) | PCW for CALC_TAXES
(2,9) DD TAX_TABLE
(2,8) DD EMPLOYEES
(2,7) SIRW EMPLOYEES
(2,6) SPOp TOTAL TAXES =0
(2,5) SPOp NET_PAY =0
(2,4) SPOp GROSS PAY =0
(2,3) SPOp HOURLY RATE =0
(2,2) SPOp HOURS WORK =0
RCW for BOT
—» D[2] »| MSCW for BOT

p~ -~y

<

'
|
|
!
|
|
1
|
)
[}
1
i
1
1
'
i
t
|
t
i
|
i
1
1
]
|
|
'
]
I
1
|
i
|
|
]
I
]
I
i
I
1
f
I
]
t
|
I
t
t
1
1
i
i
|
b
!
|

*---4

MSCW LINKAGES

History Links

—
Address
Environment ---»
Links

Figure 9-15 Stack after Invocation of Procedure CALC_TAXES



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
STACKARCHITECTURE CONCEPTS

UNIT 6

TOP-OF-STACK REGISTERS

Objectives
Recognize the purpose of the top-of-stack registers.

Identify the operators used in basic calculations.

Purpose

Familiarity with top-of-stack registers and operators is necessary when reading reference manuals
compile listings, and program dumps.

Resources

A Series System Architecture Reference Manual, Volume 2, Section 3 - Operator Set and Common
Actions

9-41



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
TOP-OF-STACKREGISTERS

Stack Limit Registers

The Base of Stack Register and Limit of Stack Register are called Stack Limit Registers, because they
define the memory boundaries of the currently active process stack.

Base of Stack Register (BOSR)
The Base of Stack Register contains the memory address of the very first word of the active stack,
below the MCP accounting area. This is illustrated in Figure 9-16, which shows the register settings

for the sample ALGOL program as the level 2 declarations at lines 1100-1200 are being built on the
stack.

Limit of Stack Register (LOSR)

The Limit of Stack Register contains the memory address of the very last (topmost) word allocated for
the active stack, as shown in Figure 9-16.

Top-of-Stack Registers

The top-of-stack registers, named S, A, B, X, and Y, are all related to the currently active process
stack.

S Register

The S register contains the memory address of the last (topmost) valid word in the active stack. The
contents of the S register change as words are added and deleted on the stack.

A and B Registers

Programs are executed in processor registers, not in memory. Most calculations are done in the A
and B registers, as described later in this unit. Logically, the A and B registers are located at the top
of the active stack, as in Figure 9-16. Actually, the A and B registers are in the processor, and the
stack in is memory.

X and Y Registers

If Double Precision Operands are used in calculations, the X register is used in conjunction with the A
register, and the Y register with the B register, to hoid the two words of each operand Thisis
illustrated in Figure 9-16.



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
TOP-OF-STACKREGISTERS

L AREGISTER | |  XREGISTER
{Processor | L R b i

 YREGISTER |

" BREGISTER

Memory

15 Reg L »(2,6) SPOp TOTAL TAXES = 0

L0000 |

(2,5) SPOp NET PAY =0

(2,4) SPOp GROSS PAY = 0

(2,3) SPOp HOURLY _RATE =0

~
LS
w
e
@
o
C
o
0
wn
s
O
plo]
Pay

RCW for BOT

—»ID[2] —»| MSCW for BOT

MCP
ACCOUNTING
AREA

(=

Figure9-16 Top-of-Stack and Stack Limit Registers during Stack Building in Sample ALGOL Program




A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
TOP-OF-STACKREGISTERS

Execution of Calculations
The A Series systems execute calculations by putting the operands (numbers to be operated on) in the

A and B registers, doing the calculation, and leaving the result in the B register. The compilers and
hardware operators are designed to use these registers as described below.

Operators used in Calculations

The object code that compilers generate consists of a series of hardware operators and operands. The
operators used in simple calculations are detailed below.

ADD Adds, subtracts, multiplies, or divides the operands in the Aand B
SUBT registers. Leaves the result in the B register, with the A register not
MULT occupied by an operand.

DIVD

VALC(x,y) Value Call reads the value at the specified stack address, and puts the
value in the A register. If there was an operator in the A register before
this, it is moved to the B register.

NAMC(x,y) Name Call places the specified stack address in the A register. If there was
an operator in the A register before this, it is moved to the B register.

STOD Store Destructive stores the contents of the B register at the address given
by the A register, and then destroys the contents of both A and B.

LT8 These operators generate literal values 8, 16, or 48 bits long as required
LT16 for the calculation. The literal value is placed in register A. If there was
LT48 an operator in register A before this, it is moved to the B register.

9-44



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
TOP-OF-STACKREGISTERS

Reverse Polish Notation

The compilers convert calculations into a form called Reverse Polish Notation, so that the object code
generated will execute efficiently. Reverse Polish Notation is based on the rules of precedence used
in algebra. Its purpose is to rewrite the calculation so that it can be executed from left to right,
without any parentheses to group the operands.

Example from the sample ALGOL program in Figures 9-10:

- SOOI A NN Athltitutasiatas .

HOURS_WORK * HOURLY_RATE;

 AITIINTITITITTHNTT TN TN E@ERM@IAOGE T LU LTLT L RS A LRGSR,

2L

ATH T TN T HIITITHIII T I AL L LA RS AR R W, SN BE
PN HOURS_WORK HOURLY_RATE *

MNNNY ANNNNNN AN\

el

g

e
L

Figure 9-17 Reverse Polish Notation

Execution: Read left to right. When you reach an operator (for example, *), go back to the left
to get the appropriate number of operands (2 for multiplication). Perform the calculation,
which will probably create a new operand. Then continue to the right.

This notation was invented by a Polish logician named Lukasiewicz, and is called reverse because the
operands are stated before the operators.

9-45



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
TOP-OF-STACK REGISTERS

Example : Assume that the sample ALGOL program is processing the paycheck for an employee
whose HOURI Y_RATE i< $8 00. The emplovee had 45 HOURS_WORK this week. Figure 9-18 shows
the stack after executing lines 3500 and 3600, just before the calculation at line 2800.

The object code that is generated by the compiler for the calculation at line 2800 is based on the
Reverse Polish Notation for the ALGOL statement.

ARl AN AN S S S S SN \
ALGOL: 2800 N HOURS_WORK * HOURLY_RATE; N
RPN | HOURS_WORK HOURLY_RATE * NI REG PAY := |
Object Code Action Registers
VALC(2,2) Put the value from (2,2 ) into the A A |45
register. (This is HOURS_WORK, as shown
in Figure 9-18). B
VALC (2, 3) Put the value from ( 2, 3) into the A register A |8
(this is HOURLY_RATE).
Move the value from A into B. B8 145
MULT Multiply the contents of the A and B registers, A
put the result in B, and leave A not occupied.
B |360
NAMC(3,2) Put the address ( 3,2 ) in the A register A [(3,2)
(the address of REG_PAY). :
B |360
STOD Store the contents of B tthe result of the A
calculation) at the address given by A,
to update REG_PAY. Destroy the contents B
of Aand B.

9-46



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

Processor | -

TOP-OF-STACKREGISTERS

[ Refer to page 9-46 for

"~ the contents of A and B

Memory

(3.4)
(3.3)

(3,2)

D([3]

(2,0)
(2,8)
(2,A)
(2,9)
(2,8)
(2,7)
(2,6)
(2,5)
(2,4)
(2,3)

(2,2)

PCW for CALC_OT

SP Op OT_PAY =0

SPOp REG_PAY = ¢'360

RCW for CALC_CHECK

MSCW for CALC_CHECK

SCW

PCW for CALC_CHECK

PCW for CALC_TAXES

DD TAX_TABLE

DD EMPLOYEES

SIRW EMPLOYEES

SPOp TOTAL_TAXES =0

SPOp NET_PAY =0

SPOp GROSS_PAY =0

SPOp HOURLY RATE = 8

SP Op HOURS_WORK =45

RCW for BOT

D[2]

MSCW for BOT

Figure 9-18 Stack during Execution of Calculation atline 2800



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
TOP-OF-STACKREGISTERS

Stack Adjustments
Calculations involving more than 2 operands may require more storage words than just registers A
and B. In these cases, the extra operands are automatically pushed onto the top of the stack, and

popped off later when they are needed.

Example: The calculation at line 2600 of the sample ALGOL program uses several operands. For the
employee who had 45 HOURS_WORK, this calculation would execute as shown below.

ARl NNLA LR LY AN

HOURLY_RATE * .5

D { (HOURS_WORK - 40);

222274

Pl

OSS AR AN AN N\ PR RR AR R RO RESR0RRSARARARRAEERATRReR
RPN: N HOURLY RATE 5 * N | HOURS_WORK40-
Object Code Action Registers
VALC(2,3) Put the value from (2, 3 ) into the A A |8
register. (This is HOURLY_RATE, as shown
in Figure 9-19). B
LT16 for .5 Generate the literal .5, and put it into the A |5
A register. Move the value from A into B.
B |8
MULT Multiply the contents of the A and B registers, A
put the result in B, and leave A not occupied.
B |4
VALC(2,2) Put the value from (2, 2) in the A register A |45
(this is HOURS_WORK).
B |4




A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
TOP-OF-STACKREGISTERS

Object Code Action Registers
LT8 for 40 Generate the literal 40, and put it into the A 140
A register. Move the value from A into B.
At this time the value from B is pushed B8 |45
onto the top of the stack.
SUBT Subtract the contents of the A and B registers, A
put the result in B, and leave A not occupied.
B |5
MULT Multiply requires 2 operands, but only the B A |5
register is occupied. The value that was
pushed onto the stack earlier is popped back B |4
into the B register because it is needed now.
Multiply the contents of the A and B registers, A . '
put the result in B, and leave A not occupied. '
B |20
NAMC(3,3) Put the address (3,3) in the A register. A [(3,3)
B {20
STOD Store the value in B at the address in A, A
and destroy the contents of A and B.
B




A SERIES AND B 5000/8 6000/B 7000 CONCEPTS

Dla] | —»

TOP-OF-STACKREGISTERS

..............

RCW for CALC_OT

MSCW for CALC_OT
(3.4) PCW for CALC_OT
(33) | SPOp OT_PAY =020
(3.2) SPOp REG_PAY = 0360
RCW for CALC_CHECK
D[3] |—| MSCW for CALC_CHECK
(2,0) SCW
(2,8) PCW for CALC_CHECK
(2,A) | PCW for CALC_TAXES
(2,9) DD TAX_TABLE
(2,8) DD EMPLOYEES
(2,7) SIRW EMPLOYEES
(2,6) SPOp TOTAL TAXES =ﬂo
(2,5) SPOp NET PAY =0
(2,4) SPOp GROSS_PAY =0
(2,3) SPOp HOURLY_RATE = 8
(2,2) SP Op HOURS WORK =45
RCW for BOT
D[2] »/ MSCW for BOT

-is pushed from B
“into the next word
‘on the stack, and
:popped back later
:when needed.

Figure 9-19 Stack auring Execution of Caiculation atiine 26060



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
TOP-OF-STACK REGISTERS

The S register is adjusted when the stack is pushed or popped, because a different word is now the
topmost valid word on the stack.

Stack adjustments can sometimes be avoided by rewriting the calculation with the higher priority
algebraic operations on the left.

Example: The calculation at line 2600 could be written to execute more efficiently, without the
push and pop of the stack, by rearranging the statement to read:

2600 OT_PAY := (HOURS_WORK - 40) * HOURLY_RATE * .5;
The Reverse Polish Notation for this calculation would be:

HOURS_WORK 40 - HOURLY_RATE * .5* OTPAY :=

The ohject code for this calculation would be:

VALC (2,2)
LT8 for 40
SUBT
VALC(2,3)
MULT

LT16 for .5
MULT
NAMC (3, 3)
STOD

Push and pop are not required for this calculation, because there are never more than 2
operands to be stored in the A and B registers.

Differences in Top-of-Stack Registers between Systems

Some of the A Series systems improve throughput by using more registers than A and B to hold the
current operands.

The A9 and A 10 systems have a pool of 16 register pairs that correspond to the A and B
registers. The MCP will assign from 1 to 8 register pairs to a task while it is executing, so that
push and pop are not necessary as often as on other systems

The A 15 and B 7900 Central Processor Modules contain a register file called the Central Data
Buffer, which includes 32 registers capable of holding double-precision operands. These
registers will be used to store the current operands, in a manner similar to the A and B
registers.



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
TOP-OF-STACKREGISTERS

Summary of the Sample ALGOL Program

Below is a summary of the execution of the sample ALGOL program shown in Figures 9-10.

1.

10.

11.

13.

14.

15.

16.

17.

At line 1000, BEGIN causes an MSCW and RCW to be placed on the stack above the MCP
accounting area. D[2] points to the MSCW.

Lines 1100-1500, and 2100 contain declarations that cause the stack to be built up as in Figure
9-11.

Line 3500 would read an employee record from the disk file, and move values into
HOURS_WORK, HOURLY_RATE, etc. Assume that the employee worked 45 hours this week.

Line 3600 invokes CALC_CHECK, and the stack is built as in Figure 9-13. The program is now
executing at lex level 3.

Line 2800 calculates REG_PAY, as described on page 9-45.

Line 2900 invokes CALC_OT, and adds to the stack as in Figure 9-14. CALC_OT executes at lex
level 4. -

Line 2600 calculates OT_PAY, as on pages 9-47 and 9-48.

Line 2700 ends CALC_OT, and the stack is cut back as in Figure 9-13. Control returns to line
3000.

Line 3000 calculates GROSS_PAY in the A and B registers. The operators are: VALC (2,4),
VALC (3,3), ADD, NAMC (2,4), STOD.

Line 3100 invokes CALC_TAXES, and the stack is built as in Figure 9-15. CALC_TAXES executes
at lex level 3.

Line 1800 would do the tax calculations in the A and B registers, using GROSS_PAYand
TAX_TABLE.

Line 1900 calculates TOTAL_TAXES in the A and B registers, using the operators: VALC (3,2},
VALC (3,3), ADD, NAMC (2,6), STOD.

Line 2000 ends CALC_TAXES, and the stack is cut back as in Figure 9-13. Control returns to
line 3200.

Line 3200 calculates NET_PAY in the A and B registers: VALC (2,4), VALC (2,6), SUBT,
NAMC (2,5), STOD.

Line 3300 ends CALC_CHECK, and the stack is cut back as in Figure 9-11. Control returnsto
line 3700.

Line 3700 would print the check, and loop back to read and process another employee.

Line 3800 ends the program. The stack will be removed from memory.

9-52



Practice

A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
TOP-OF-STACKREGISTERS

Match the registers on the left with the functions on the right.

1.

BOSR

S Register

LOSR

X and Y Registers

D[2] Register

A and B Registers

D[3-15] Registers

[+¥]

. Contain the operands used by the current operator.

. Contain portions of double-precision operands.

. Control the addressing environment for an ALGOL

program.

. Points to the very first word of the currently active
stack.

. Points to the very last word allocated for the currently

active stack.

Points to the last (topmost) valid word of the currently
active stack.

. Points to the word on the stack where the currently
active program began executing (above the MCP
accounting area).

9-53



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
TOP-OF-STACKREGISTERS

This page left blank for formatting.

9-54



SECTION 10

SYSTEMIDUMPALL - LISTING DISK FILES



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SYSTEM/DUMPALL

INTRODUCTION

Section Objective

List disk files using the system software utility SYSTEM/DUMPALL.

Purpose

You need to know how to use SYSTEM/DUMPALL to verify the integrity of data contained in a disk
file.

Unit Objectives

Identify the system software utility SYSTEM/DUMPALL.

Use the LIST command which is part of SYSTEM/DUMPALL.

10-2



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SYSTEM/DUMPALL

UNIT 1

SYSTEMIDUMPALL - LISTING DISK FILES

Objective
Identify the system software utility SYSTEM/DUMPALL.

Use the LIST command which is part of SYSTEM/DUMPALL.

Purpose

You need to know how to use the utility SYSTEM/DUMPALL in order to determine the integrity of
your data files.

Resources

A Series Systems An Introduction, Section 3 - A User’s View of System Functions

A Series System Software Utilities Reference Manual, Section 4 - DUMPALL

10-3



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SYSTEM/DUMPALL

WhatIs SYSTEM/DUMPALL?

SYSTEM/DUMPALL is a system software utility that performs media conversion. It is often referred
toas DUMPALL.

The main functions of SYSTEM/DUMPALL are to:
Copy files from one medium to another.
Control the dumping of tapes.

Generate printouts of files.

Listing Files Using SYSTEM/DUMPALL

SYSTEM/DUMPALL has a LIST command which allows you to produce a graphic display or printout
of the contents of a file. The file may be labeled or unlabeled.

Simplified Syntax of LIST Command:

LIST <file title> !
LISTAN — —— <directory title> —— — <record range list> ——
L— (AN —— — <skip specification> ——
L— <formatdefinition> ——

Figure 10-1 SYSTEM/DUMPALL Simplified Syntax

LIST or L will list a file or group of files in EBCDIC format.

LISTAN or LAN will list a file or group of files in the format that corresponds to the INTMODE
file attribute of the file.

<record range list > and <skip specification > allows you to specify what portion of a file is to
be printed.

<format definition > allows vou to specifv a particular field within a record along with its
format that vou want printed.

10-4



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SYSTEM/DUMPALL

Examples:

LIST (CSER1)PAYROLL/HOURS/WORKED

LIST (CONCEPTS)STUDENT/FILE1 ON EDUCATION

L *BOOK/MARC/ENGLISH REC 1 THRU 10 SKIP + 2INCL 5

L(USER2)ACCOUNTS/PAYABLE/= ON PAYPACK REC 10 THRU END

LIST (USER1)TESTFILE; LIST (USER1)MYDIRECTORY/NEWFILE

SYSTEM/DUMPALL EXECUTION

SYSTEM/DUMPALL can be executed in a Parameter Mode, Card Mode or an Interactive Mode.
The DUMPALL execution statement can be entered at the ODT through the MARC screens or in
CANDE depending on the mode of execution desired.

Parameter Mode
When executing DUMPALL in a parameter mode, you are required to provide the input specification
for the function DUMPALL is to perform at the time the utility is executed.
ODT Input:
RUN SYSTEM/DUMPALL ("< list command >")
Example:
RUN SYSTEM/DUMPALL ("LIST (CSER1)MYDIRECTORY/MYFILE”)
MARC Input:
MARC Home Menu - select UTIL
On Utility Screen - select DALL
On Dumpall Utility Screen - fill in the necessary parameters for the file you want listed.

Example of parameters for Dumpall Utility Screen (DALL screen;.
LIST (USER1)MYDIRECTORY/MYFILE

10-5




A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SYSTEM/DUMPALL
Card Mode
When executing DUMPALL in a card mode, you place the required parameters in a disk file. When
the utility is executed, it will read the disk file to determine what file(s) are to be listed.
ODT Input:

RUN SYSTEM/DUMPALL (“"CARD”); FILE CARD (TITLE = MYCARDFILE)

Interactive Mode Input
Interactive mode of DUMPALL allows you to enter in DUMPALL commands one at a time and
receive the response to that command at your terminal. DUMPALL runs as an on-line program in
interactive mode.
Froma MARC te;-minal, enter:

Display the Dumpall Utility Screen (DALL screen).

Enter INTER as the requested parameter.

A message PLEASE ENTER DUMPALL COMMAND will appear on vour terminal.

Enter the LIST command.

Example: LIST MYFILE RECORD 10 THRU 30
The file attributes will be displayed on the terminal.

After vou have looked at the file attributes, transmit CONT to inform DUMPALL to
continue the display with the next piece of information.

The first record of the file will be displayed.
Transmit CONT to see the next record of the file.
By transmitting CONT, one record after another will be displayed until the end of file is

reached. You may terminate this listing of this file by entering QUIT.

To end Interactive Dumpall, enter QUIT.

10-6



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SYSTEM/DUMPALL

From a CANDE terminal, enter:
RUN $SYSTEM/DUMPALL ("INTER”)
A message PLEASE ENTER DUMPALL COMMAND will appear on your terminal.

You would enter DUMPALL commands as described for a MARC terminal.

DUMPALL defaults to listing the file on your terminal when running interactively. To request
a hardcopy when running interactively, add the word PRINT to your list command.

Example: LIST MYFILE RECORD 10 THRU 30 PRINT

SYSTEM/DUMPALL has many other capabilities. All of the other Dumpall capabilities, the full
syntax and DUMPALL execution using the Work Flow Language, are covered in the Operations class
and the Work Flow and Utilities class.

10-7



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SYSTEM/DUMPALL

Practice

Write the statement and/or parameters needed for SYSTEM/DUMPALL to perform the following.

1. An operator at the ODT needs to list a file called (PAYROLL)DEPARTMENT/CHECKS ON
PAYPACK.

2. A user signed on to MARC as USER6. The user wishes to list 30 records of a file called
(USER6)DEVELOPMENT/RECEIVES beginning at record 15. The output should be in the
format of the intmode of the file.

3. An ODT operator wishes to list records 1 to 10 of all files that begin with
(TEST)COBOL/APPLICATIONS located on the family DEVELOPMENT.

4. The ODT operator from question 3 has now signed on to MARC. The operator needs to repeat
the listing produced in question 3.

10-8



SECTION 11

LIBRARIES OVERVIEW



A SERIES AND B 5000/8 6000/8 7000 CONCEPTS
LIBRARIES OVERVIEW

INTRODUCTION

Section Objective

Recognize the purpose of libraries, intrinsics, and binding.

Purpose

Libraries are used extensively in the A Series system and environmental software, and can also be
written for applications.

Unit Objectives
Recognize the purpose of libraries.

Use ODT commands associated with libraries and intrinsics.



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
LIBRARIES OVERVIEW

UNIT 1

LIBRARIES OVERVIEW

Objective
Recognize the purpose of libraries.

Use ODT commands associated with libraries and intrinsics.

Purpose

Libraries are used extensively in the A Series system and environmental software, and can also be
written for applications.

Resources
A Series System Software Utilities, Section 9 - Libraries

A Series Systems An Introduction, Section 2 - Virtual Memory, Stack, and Other System Concepts



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
LIBRARIES OVERVIEW

Libraries

A library is a program that provides one or more procedures that can be called by other programs to
perform specific functions.

Libraries simplify program creation and maintenance by providing routines that can be shared
by many programs on the system.

A library is usually a collection of related routines, such as data conversion routines or
mathematical functions, that are required by multiple programs.

The procedures that are provided are called entry points, and the programs that call the
library are called user programs.

User-Written Libraries

Users may write libraries to provide routines that can be accessed by multiple programs. Some of the
features of user-written libraries are:

Standard functions, such as plotting and statistics, can be maintained in one file, rather than
copied and compiled into every user program that requires them.

Individual users can create their own libraries.

Libraries may be written in ALGOL, COBOL, COBOL74, FORTRAN, NEWP, PL/, or
PASCAL, although COBOL or COBOL74 libraries may contain only 1 entry point
corresponding to the Procedure Division.

A user program written in one language may call a library written in another language, if the
parameters are compatible in both languages.

Libraries can contain initialization and termination code.

A library can have its own variables, global files, data bases, etc.

A library can call a procedure in another library, as in Figure 11-1.



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS

LIBRARIES OVERVIEW
B Libraryentry
points
USER
PROGRAM A LIBRARY 1 Library exit
points
PROCEDURE X
LIBRARY 2
'. PROCEDURE 2
USER Yoo L %
PROGRAM B « - f

Figure 11-1 Library Linkages

Library Execution and Stacks
When a user program calls a procedure in a library, the MCP links the program and the library.
The user program is suspended.
If the library is not already in the mix, it is executed.
A separate stack is built to store the library’s variables and history, as in Figure 11-2.

The library’s initialization code is executed, until a FREEZE statement is reached. The
FREEZE makes the procedure entry points available to other programs.

The MCP locates the requested procedure in the library, and links it to the user program.
The procedure executes on top of the user program’s stack.
At the end of the procedure, the words for the procedure are deleted from the stack.

The user program resumes.



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
LIBRARIES OVERVIEW

A library may be written to stay in the mix until all of its user programs have ended, or it may be
frozen permanently. A frozen library avoids repeated initialization by remaining in the mix, even if
it has no user programs linked to it, until a DS (DiScontinue) or THAW ODT command is entered.

The LIBS (Libraries) ODT command displays the names of the libraries currently in the mix.

EXECUTING

ON USER
PROGRAM
STACK

USER LII}&AET(Y
PROGRAM
STACK

-

Figure 11-2 Stacks used during Library Execution



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
LIBRARIES OVERVIEW

System Libraries

The MCP and other system software programs use standard libraries extensively. Some of the
standard libraries are:

SYSTEM/GENERALSUPPORT

Contains common routines such as mathematical functions (for example, square root,
random numbers).

SYSTEM/PLISUPPORT

Contains routines required by PL/I programs, as well as some routines used by
GENERALSUPPORT. Required even if PL/I is not used on the system.

SYSTEM/HELP

Most programs that access user-written libraries have the titles of the library object code files
compiled into them. This is too restrictive for system libraries, because at some sites they may be
located on a family other than DISK, or stored in a file with a non-standard name. In order to make
the system software more flexible, the MCP maintains a table of functions performed by system
libraries, and library titles where the entry points that perform those functions are located.

The SL (System Library) ODT command associates the functions with the libraries, or inquires into
the functions and associated library titles.
Examples:

SL HELPSUPPORT = SYSTEM/HELP ON PACK

SL PLISUPPORT = SYSTEM/PLISUPPORT ON TEST

SL GENERALSUPPORT = SYSTEM/GENERALSUPPORT ON DISK

SL displays the functions and associated library titles
Users may also define their own function names through the SL command, so that user-written

libraries can be accessed by function. The default access to user-written libraries is by the object code
file title.



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
LIBRARIES OVERVIEW
Forerunners of Libraries
Before libraries were developed, other techniques were used to combine programming languages

within a program, and to provide routines that programs could call. These methods are still used to a
limited extent on the A Series systems.

Binding

Binding allows programming languages to be mixed, and individual procedures of programs to be
compiled separately from the rest of the program.

A program can be compiled with the bodies of one or more procedures missing from the source
code (called “external” to the program).

The procedures can be compiled separately.
The main object code file and the procedure object code file(s) are bound together by
SYSTEM/BINDER to form one large object code file, which can be executed.
For user programs, the major advantages of libraries over binding are:
Libraries offer more flexibility in mixing programming languages.
Libraries are easier to maintain, since changes need to be made to the library file only, rather

than bound into several object programs.

The main portion of the MCP is bound together with some of its procedures, such as CONTROLLER.
This allows these procedures to be compiled separately and then bound into the MCP, instead of
compiling the entire MCP just for changes to the procedures.

Py RGPS ) e PN | 3 3 3 3 3
efore libraries implemented, an intrinsics file contained functions that programs could call,

such as square r:(')ifirigonometric functions, an(si ran§om number generation.
Most of these functions are now in the GENERALSUPPORT library.
The intrinsics file is still required to be resident on a pack.
SYSTEM/INTRINSICS is the standard name of this file, although it may be changed.

The SI (System Intrinsics) ODT command specifies or inquires into the name of the intrinsics
file for the system.

Users may write intrinsic functions in ALGOL. and bind them into the standard intrinsics file, but
this is much more restrictive than writing libraries



SECTION 12

MEMORY MANAGEMENT OVERVIEW



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MEMORY MANAGEMENT OVERVIEW

INTRODUCTION

Section Objective

Recognize the memory management methods available on the A Series systems.

Purpose

Familiarity with memory management methods is necessary when reading reference manuals and
managing a system.

Unit Objectives
Identify the purpose of virtual memory.
Identify the memory management methods available on the A Series systems.

Identify the purpose of Memory Disk.

12-2



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MEMORY MANAGEMENT OVERVIEW

UNIT 1

MEMORY MANAGEMENT OVERVIEW

Objective
Identify the purpose of virtual memory.
Identify the memory management methods available on the A Series systems.

Identify the purpose of Memory Disk.

Purpose

Familiarity with memory management concepts is necessary when reading reference manuals and
managing a system.

Resources
A Series Systems An Introduction, Section 2 - Virtual Memory, Stacks, and Other System Concepts

A Series System Software Support Reference Manual, Section 9 - Memory Management
Section 14 - SWAPPER

12-3



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
MEMORY MANAGEMENT OVERVIEW

Virtual Memory

Virtual Memory is a technique that treats disk space as an extension of main memory, giving the
appearance of a larger main memory than actually exists.

As discussed in Section 9, the compilers automatically divide object code programs into
variable-length segments, based on the structure of the program. When the program is
executed, only the object code segments needed at the time are brought into memory, and the
other code segments for the program remain on disk until they are needed.

Data from disk files is also read into memory in variable-length blocks, so that most of the file
remains on disk.

The segment descriptors and data descriptors defined in Section 9 are located in the program’s stack,
and contain the addresses of code and data located elsewhere in memory. Descriptors allow data and
object code segments for the same program to be allocated throughout memory.

Overlayable Memory

Overlayable memory is another aspect of virtual memory. If there is not enough available
(unallocated) memory to bring a required segment into memory, the MCP can overlay to free some
memory space. Overlaying involves writing the contents of memory areas to a disk pack, and then
reallocating those memory areas to store other data. The data that was overlayed to a pack will be
brought back into memory later when it is needed.

Structures that can be deallocated to free memory space, such as object code segments and data
buffers, are called overlayable, or nonsave, memory.

Data areas (for example, file buffers) can be overlayed to a pack as described above and shown
in Figure 12-1.

If the MCP needs to reallocate the memory space occupied by an object code segment, it does not
overlay the segment to a pack, because it can read the segment from the object code file on disk
again later if necessary. The memory space is freed, and the segment descriptor in the segment
dictionary is modified to contain the disk address of the segment, which is now absent from
memory.

The DL (Disk Location) ODT command can be used to specify the family name where overlay files
should be placed.

12-4



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MEMORY MANAGEMENT OVERVIEW

| ettt el e R e |
'  NONSAVE MEMORY :
! FILE !
! BUFFER !
] I
' OBJECT :
! CODE OBJECT |
: SEGMENT CODE !
! SEGMENT :
: X
[} \ 1
| \ |
t . ]
1 \ 1
1 \ i
] ’\ )
] . ]
L

! !
i |

i [}

i ¢

] t

i |

: |

| [

' :

: |

1 i

! % : 4

: SEGMENT ! ¢

: DICTIONARY ! /'

? % l . |

: i I |OVERLAY
; ! | |FILE

e | |

| ! \

! ; \

! | \

| | \

! PROCESS ! \

; INFO ; \

! BLOCK i \

: PROCESS ! No

' STACK | ~
| ! ~ e -
| t

I 1

i [}

| !

i |

: |

____________________________________________

Figure 12-1 Save and Nonsave Memory

12-5



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MEMORY MANAGEMENT OVERVIEW

Save Memory
Save memory areas cannot be overlayed, but are required to be resident in memory until the program

associated with them ends. Process Stacks, Segment Dictionaries, and Process Information Blocks
are examples of structures that are placed in save memory, as shown in Figure 12-1.

The CU (Core Usage) ODT command displays the number of memory words that are available to be
allocated, as well as the number of words currently assigned to nonsave and save memory.

Methods of Memory Management
When there are many programs in the mix, the system may be required to overlay memory frequently
as it requires different memory structures for different programs. Excessive overlays may consume

system resources and degrade performance (this is called thrashing). Several mechanisms are
available on A Series systems to manage memory allocation and overlays.

On Demand

On Demand memory management finds memory space when there is not enough contiguous memory
available to store a required structure.

First the MCP tries to make enough space by rearranging structures within memory to
different locations (core to core overlay).

If memory space must be deallocated to create enough available space, the MCP chooses the
structure to be overlayed.

Object code segments are deallocated, and their segment descriptors updated (core to

1 L L \
Lo vverliayj.

Data is overlayed to an overlay file on a pack (core to disk overlay).

12-6



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
MEMORY MANAGEMENT OVERVIEW
Working Set Sheriff
Working Set Sheriff memory management allows the site manager to specify a constant forced
overlay rate to be achieved by all tasks on the system. WSSHERIFF, an invisible independent

runner, cyclically examines memory and overlays areas until the specified rate is achieved. This
causes overlays to occur in bursts, rather than at random times.

Working Set Sheriff is controlled by factors that are specified by the SF (Set Factors) ODT command.

Factor 1is OLAYGOAL, the percentage of overlayable memory that is to be overlayed per
minute.

The default value of factor 1 is 0, in which case WSSHERIFF is not used.

4

LAYGOAL is greater than §, WSSHERIFF will perform the overlays.

Factor 2is AVAILMIN, the percentage of total memory to be kept available for use on demand.

The lowest priority job in the mix is suspended when the total amount of available
memory drops below one-half AVAILMIN.

AVAILMIN takes effect only if OLAYGOAL is greater than 0.

The default value of factor 21is 0.

Factor 3 is the scheduling factor, which is used to determine if enough memory is available to
initiate the task.

The task’s memory estimate from segment 0 is divided by factor 3, and compared to the
amount of available memory.

The task will be scheduled if there is not enough memory available to execute at this
time, based on this calculation.

The default value of factor 3 is 100%.

12-7



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MEMORY MANAGEMENT OVERVIEW

Factor 4 is the Memory Priority Factor that controls the memory priority algorithm.

Priority is an attribute of each task, which specifies the relative importance of each task
to the MCP. The highest priority is 99, the lowest is 0, and the default is 50.

The default value of factor 4 is 0, which indicates that the memory priority algorithm is
not used.

Factor 4 represents the percentage of one second per increment of priority that a low-
priority job must wait before it can overlay a memory area owned by a higher priority
job.

SWAPPER

SWAPPER is a memory management mechanism designed to service users in a time-sharing
environment. SWAPPER manages only specified tasks, usually data communications tasks, rather
than the entire mix. e

A portion of memory called swapspace is allocated for the tasks running under SWAPPER.
Each task is assigned one or more contiguous areas within swapspace, so that all memory for a
task can be read or written in a single operation.

A disk file called SYSTEM/SWAPDISK contains the overlay areas for all tasks running
under SWAPPER.

Tasks are swapped from memory to disk when they are interrupted or suspended, or when they
have exceeded a specified time-slice.

Tasks that were previously swapped out, but are now ready to run, are swapped from disk to
memory when areas are available within swapspace.

The SW (SWAPPER) ODT command initiates SWAPPER, and specifies the required
parameters.

SWAPPER is not used in conjunction with MCP/AS.

12-8



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
MEMORY MANAGEMENT OVERVIEW

Memory Disk

Memory Disk is a mechanism to improve system performance by designating a portion of the system’s
main memory as a disk unit.

Memory Disk can increase throughput, because the speed of memory access over disk access is
significant.

Each unit of Memory Disk is identified by the unit mnemonic MD, a unit number, and a family
name.

Memory Disk does not require any changes to application programs or WFL jobs. It is accessed
by its family name.

The contents of a Memory Disk unit are vulnerable to power failure and off-line memory
reconfiguration, so files stored here must not require recovery.

PRI ¥ AN N T RPN LIV Ipan Ry - R
Overlay files and sort work files are examples of files that could safely be directed to Memory

Memory Disk is available only on the B 7900 and A Series systems beginning with release 3.6.

12-9



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
MEMORY MANAGEMENT OVERVIEW

This page left blank for formatting.

12-10



SECTION 13

WORK FLOW MANAGEMENT
SYSTEM



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
WORK FLOW MANAGEMENT SYSTEM

INTRODUCTION

Section Objective

Use the Work Flow Management System.

Purpose

In order to control programs in the system, you must be able to use the Work Flow Language.

Unit Objectives

Identify the components of the Work Flow M'anagement System.
Use Automatic Display Mode to monitor Work Flow jobs.
Identify the basic syntax of the Work Flow Language.

Identify the Work Flow Language structure.

Use the Work Flow Language file equations.

Compile programs using the Work Flow Language.

Write LIBRARY/MAINTENANCE statements.

13-2



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WORK FLOW MANAGEMENT SYSTEM

UNIT 1

WORK FLOW MANAGEMENT SYSTEM OVERVIEW

Objective

Identify the components of the Work Flow Management System.

Purpose

In order to use the Work Flow Management System, vou need to be aware of how the Work Flow

Management System functions.

Resources

13-3



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WORK FLOW MANAGEMENT SYSTEM OVERVIEW

Work Flow Management System
The Work Flow Management System is part of the MCP and is responsible for controlling and
monitoring the flow and execution of jobs and tasks in the system (Refer to Figure 13-1).
A task is the execution of a program.
A job is a collection of 1 or more related tasks which are to be run in the sequence specified.
The Work Flow Management System allows tasks to execute in 2 modes.
Synchronous
Tasks execute serially within the job; one task must finish before another task can
begin.
Asynchronous

Tasks within the same job can be run concurrently in a multiprogramming
environment.

The Work Flow Language is used to interface with the Work Flow Management System.
The Work Flow Language is used to:

Write a Work Flow Job.

Test for completion of tasks or errors and take appropriate action.
Handle recovery procedures following a Halt/Load.

Minimize operator involvement.

Handle dvnamic file equation.

Print all joh vutput together

13-4



WORK FLOW MANAGEMENT SYSTEM OVERVIEW

PAYROLL
JOB

Y

UPDATE
ADDRESS

|

EDIT
TIMECARDS

Y

SORT &
PROCESS

\

1325

1325/1334

1325/1340

1325/1341

1325/1351

Y

PRINT
CHECKS

l

l 1325/1350

YTD
TOTALS

l

l

END
OF JOB

Figure 13-1 Sample Work Flow Job

13-5

1325




A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
WORK FLOW MANAGEMENT SYSTEM OVERVIEW

Flow Of A Job Through The System

JOBDESC

WEFL

Statements
and Data

A1 2,,

gt :
777772722 .
Yy ' \
s A/ IYIIII IS S 2.2
JOBFORMATTER
7

A

Job Summary
and Task Output

Shaded areas represent parts of the MCP.

Figure 13-2 Work Flow Management System Organization

A Work Flow job is executed by the START command.

Syntax: START <WFL source file name >

Example: STARTJOB/PAYROLL

13-6



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WORK FLOW MANAGEMENT SYSTEM OVERVIEW

The Work Flow Langauge source statements are passed to the WFL Compiler.

The WFL Compiler:

Checks the syntax of each WFL statement.

Translates source into machine code for the job if syntax errors are not encountered.

Stores the machine code, WFL source, data decks, and space for logging and restart
information in a special file type called a JOBFILE.

After a successful WFL compile, control is passed from the WFL Compiler to the Controller which is
an independent Runner.

The Controller is responsible for:

Controlling the system work load.

Queue level scheduling.

Communicating with the operator

The Controller maintains a Jobfile Description File (JOBDESC), which has the dual roles of
directory for the jobfile disk areas and queue for the scheduling of the Controiler.

The JOBDESC consists of:

File headers for the jobfiles.

Links used by the Controller to organize the jobs by class and priority.

The dotted line in Figure 13-2 represents the pointers that the job queues
maintain to the various jobfiles to order them by queue and priority.

13-7



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WORK FLOW MANAGEMENT SYSTEM OVERVIEW

The Controller procedure ABSTRACT is used to choose the appropriate class or job queue for
the jobfile bv matching requirements of the job with the specifications of the various queues.

A Job Queue is a list of jobs waiting to be executed and is used for scheduling. Refer to
Figure 13-3.

A job queue is created by the MQ (Make or Modify Queue) ODT command. This
command allows you to establish the characteristics of the job queue, some of
which are Mixlimit, Tasklimit, Defaults and Limits for Priority and other system
resources.

A site can define from 1 to 100 queues for a system. You must have at least 1
queue. The DQ (Default Queue) ODT command can be used to designate the
default queue for the system.

The SQ (Show Queue) ODT command can be used to display information
regarding the jobs in one or all of the job queues.

Figure 13-4 is the Job Enqueueing Algorithm that is used by the ABSTRACT
procedure.

13-8



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WORK FLOW MANAGEMENT SYSTEM OVERVIEW

JOB

'

ENQUEUEING
ALGORITHM

Y

v

l

00 01 50 1023
JOB QUEUES
Y
SCHEDULE
WAITING |=—| ACTIVE
MIX

Figure 13-3 General Flow of a Job through the System

13-9




A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WORK FLOW MANAGEMENT SYSTEM OVERVIEW

Any
QUEUES?

Valid Y
QUEUE
?
Set Class or
QUEUE to
Q
Set Set Y
Highest # Default
QUEUEto Q QUEUETo Q

Fit
inthe Q
?

y
w >
ERROR Insert
DS’ED out JOBiInQ
of Q!
4 T
Stop

Figure 13-4 Job Enqueueing Algorithm

The QUEUEINSERT procedure in Controller i used to insert the job at the appropriate
location in the queue through the use of doubly linked lists. The doubly linked lists provided
an efficient way to make sure that jobs ure in the proper place in the waiting line.

13-10



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WORK FLOW MANAGEMENT SYSTEM OVERVIEW

The Controller SELECTION procedure is then used to choose what job is to be started next.

The job is selected using the Job Selection Algorithm in Figure 13-5 and removed from

the job queue.

Has the overall
mix limit been exceeded ?

Have all the queues
exceeded their mixlimits ?

Have any
Hueues exceeded their turnaround tim@
but not exceeded their
mixlimit ?

Select the queue which has the Select the queue with the
highest priority JOB as its top entry. most overdue turnaround
In case of equal priority,select the which has not exceeded

first created of the contending its mixlimit .
queues .
1 T 1

Initiate the top JOB
of the selected queue .

v

Increment the overall mix count.

: v

Increment the mix count
of the selected queue .

Figure 13-5 Job Selection Algorithm

13-11

h 4
v
EXIT



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WORK FLOW MANAGEMENT SYSTEM OVERVIEW

Following the Selection procedure, the Controller presents the job to the MCP JOBSTARTER Routine

for processing.

The standard MCP scheduling algorithms based on memory estimates and priority discussed in
Section 12 - Memory Management Overview take over.

Jobs then become Active or Scheduled depending on availability of system
resources, as in Figure 13-3.

Jobstarter builds part of the Process Information Block (PIB) and transfers the job to
stack structures as discussed in Section 9 -Stack Architecture Concepts.

When the job is completed, the NORMALEOJ Routine is called and places a message in the
Controller’s queue to initiate the printing procedure.

The Controller will interface to Autobackup or the Printing Subsystem and the MCP
JOBFORMATTER routine to print or punch the output from the job that just finished.

The JOBSUMMARY that is printed contains:

WFL source.
Job history.

Output from tasks, in the order that the tasks were executed.

13-12



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WORK FLOW MANAGEMENT SYSTEM OVERVIEW

Flowchart of Job Through the System

Figure 13-6 is a detailed flowchart of a job traveling through the system from the entering of the
START command to the EOQJ of the job.

SYSTEM ENTRY

= = e oem e - = e an ows e - e s == s == - -y - e - - -y

PROGRAM | MCS I
=k -l

WFL COMPILER

WFL NO
COMPILE

0K?

DS SYNTAX

JOB FILE CREATED

v

JOB DESCRIPTION FILE

SELECTION

ELECTION DS'ED OUT OF Q

YES

QUEUE INSERTION

v

SELECTION™**

* For queue insertion details see Figure 13-4
** For job selection details see Figure 13-5

Figure 13-6a Detailed Flowchart from START to BOJ

13-13



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WORK FLOW MANAGEMENT SYSTEM OVERVIEW

NO

MEMORY

AVAILABLE - SCHEDULED
?

YES

READY QUEUE |«

PROCESSOR
AVAILABLE

WAITING

1/0 COMPLETE
JOB OK'ED

ABNORMAL EOJ

Figure 13-6b Detailed Flowchart from BOJ to EOJ

13-14



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WORK FLOW MANAGEMENT SYSTEM

UNIT 2

AUTOMATIC DISPLAY MODE

Obijective

Use Automatic Display Mode to monitor Work Flow jobs.

e T d P B B I Y T T . rt 3 1.1 MArm
HUILILWL YYUL A 1'IUW jUD>, YyOU LHIUSL DEe dawdre 01 NUOw L reaa tne vpul.

Resources

A Series ODT Reference, Section 2 - ODT Commands

13-15



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
AUTOMATIC DISPLAY MODE

Automatic Display Mode

Automatic Display Mode (ADM) is a means of automatically displaying system status information on
the ODTs. The ODTs display can be controlled by the ADM (Automatic Display Mode) ODT
command.

ADM provides the tool for monitoring jobs and tasks.

The ADM command allows you to initiate or stop the automatic display at the ODT.

The ADM command allows vou to declare what status information is to be displayed and how
often the information is to be updated.

Two different ADMs exist.
Event-driven ADM
Any new eveht that occurs will automatically update the display in event-driven ADM.
Time-driven ADM

The display is updated at the specified time interval in time-driven ADM.

The status information is divided into categories. Some of the categories are:
Active
Displavs the active task and jobs.
Waiting
Displays task or jobs that are waiting on an event such as operator input.
Scheduled

Displays jobs that are scheduled for execution because memory is currently unavailable.
These jobs will become active as soon as system resources can be allocated to the job.

Completed

Displays jobs and tasks that have been completed.
Messages

Displays the most recent messages from tasks or jobs.
Per

Displays the status of the peripherals.

13-16



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
AUTOMATIC DISPLAY MODE

----- 5 ACTIVE ENTRIES- - - - -
1225 JOB 60 JOBTWO
e, 1227 60 *ALGOL ON DISK PROG/TEST
552 JOB 50 *SYSTEM/PRINT/ROUTER
551 JOB 80 NSP 108/00

----- 3 WAITING ENTRIES- - - - -

* 1220/1226 50 PAYROLL/WRITER

OPERATOR STOPPED

*1100/1228 40 (USER1)TEST/EMP/HISTORY

NO FILE EMP/MASTER ON EMPACK ELSE DISK (PK)
1197/1198 50 CLASS/UPDATE

ACCEPT: ENTER OPENING DATE MMDDYY

----- 1 SCHEDULED ENTRIES- - - - -
*1230 JOB 65 (STUDENT1)OBJECT/LAB/1

----- COMPLETED ENTRIES- - - - -

*1095/1100 EOT COBOL CLASS/TESTER
1050/1210  SNTX ALGOL ACCTS/REC/UPDATE

----- MESSAGES - - - - -

* 1235 (USER1)DATA REMOVED FROM DISK

* 1200 LP4: (PAY)OUT/FILE ON PAYPK PRINTED
----- MT STATUS - - - - -

14 P [099999] 1600 #1 1:0 BKTAPE/FILEOOO

Figure 13-7 Sample ODT Screen ADM (A5, W7,52, C3, MSG3, PER MT2)

13-17




A SERIES AND B 5000/B 6000/8B 7000 CONCEPTS
AUTOMATIC DISPLAY MODE

Establishing ADM Options

ADM %

ST

oK

l

( <option> <number> )DELAY <number> —J

Figure 13-8 Simple ADM Syntax
ADM

Displays the current ADM options. If there are no current ADM options, invokes the
default ADM.

ADM -
Cancels ADM operations.

ADMST

Stops the ADM but retains the current ADM settings.

ADM OK

Resumes ADM operations following an ADM ST.
<option>
" Category of information to be displayed.

<number >

Number of lines to be used for a category display. This number must include 1 line for
the category heading.

DELAY <number>

Number of secands to wait before refreshing the ODT.

13-18



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
AUTOMATIC DISPLAY MODE

Examples:

ADM (A6, W4,C) DELAY 6

The ODT would display 6 lines of active entries (1 header, 5 active programs), 4
lines of waiting entries, and 12 lines of completed entries. This information will
be refreshed every 6 seconds.

ADM (MSG12,PERMT3,S7) DELAY 10

The ODT would display 12 lines of messages from programs, 3 lines of status
information about the PE tape drives and 7 lines of scheduled entries. The screen
will be refreshed every 10 seconds.

ADM (A10,W 8,C4,S5, MSG) DELAY 5

This format requires 2 screens to display all of the requested information. The
first screen will display 10 lines of active entries, 8 lines of waiting entries, and 4
lines of completed entries. After 5 seconds the second screen containing 5 lines of
scheduled entries and 17 lines of messages will displayed. After 5 seconds, the
display will be the first format of active, waiting and completed entires. ADM will
alternate between the 2 pages of information. The same ADM settings can be
obtained by entering ADM (A10, W8, C4) DELAY 5 (S5, MSG) DELAY 5.

ADM Options as Inquiries

Some of the ADM options can be entered as ODT commands.

A (Active Mix Entries) - Displays active entries.

w (Waiting Mix Entries) - Displays the waiting entries.

S (Scheduled Mix Entries) - Displays the scheduled entries.
C (Completed Mix Entries) - Displays the completed entries.

MSG (Display Messages)

Displays the messages from tasks and jobs.

13-19



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
AUTOMATIC DISPLAY MODE

Practice
Part A: Name the parts of the Work Flow Management System that perform the following

functions.

1. This program checks the syntax of a WFL source file, and translates the WFL statements into
machine code.

2. This file contains object code, WFL source, data decks, log entries, and restart information for
the job.
3. This independent runner coordinates other parts of the WFL system, and handles all

commands entered at the ODT.

4, This procedure places jobs in queues by matching the requirements of the jobs with the
characteristics of the job queues. '

5. The Controller organizes the jobs by class and priority within this file.

6. After a job ends, this procedure formats the printed output and enqueues the job for printing.

Part B: Under what ADM heading would the following information be displayed? (Or, what
ODT command could you enter to display this information?)

1. An initiation message displayed by a program

2. Notification that a task has ended

3. The prompt for an Accept needed by a program

4. The name of a tape mounted on a tape drive
5. The job and task number for an executing task
6. The name of a missing file needed by a program

. Notification that a file has been removed

8. The names of all the scheduled tasks

13-20



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WORK FLOW MANAGEMENT SYSTEM

UNIT 3

BASIC WFL SYNTAX AND STATEMENTS

Objective
Identify the basic syntax of the Work Flow Language.

Identify the Work Flow Language structure.

Purpose

In order to control the system, you must be able to write Work Flow jobs.

Resources

A Series Work Flow Language Reference, Section 3 - Job Structure

13-21



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
BASIC WFL SYNTAX AND COMMANDS

WFL

The Work Flow Language is high-level language in which jobs are written. Work Flow jobs are used
to control the system.

Syntax Rules

The Work Flow Language is a free-format language except for some restrictions.
WFL source files have a file type of JOB.
The source statements must be located in columns 1 through 80 and the sequence numbers are
located in columns 83 through 90.

Each WFL statement must end with a semi-colon (;).

Documentation and comment information can be inserted into the WFL source by using a
percent sign ( % ) at the start of the comment.

A WFL job is composed of statements that are grouped into sections.

The sections must appear in a specified order but the statements within each section can
appear in any order.

Section headers do not appear in the source file. The compiler distinguishes each section
by the syntax.

WFL has some reserved words. For the list of reserved words, refer to the Work Flow Language
Reference Manual.

13-22



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
BASIC WFL SYNTAX AND COMMANDS

WEFL Job Structure

A WFL jobisdivided into 5 sections.
Begin Job Section

This section identifies the beginning of a WFL job, declares the job name and the job
disposition. The begin job statement is also known as the job header. This section is
required.

Syntax: BEGIN JOB <jobtitle> <disposition>;

Example: BEGIN JOB ACCTS/PRINTS FOR SYNTAX;

Job Attributes Section

The characteristics of the job are declared in this section. These characteristics are used
to control the job environment and behavior. This section is optional.

Syntax: <attribute> = <value>:

Example: FAMILY DISK = ACCTSPK ONLY:

Job Declarations Section

This section is the area where variables are defined and the variable’s intended use is
expressed. Any variables to be used in the statement section must be declared here.
This is an optional section.

Syntax: <variable type> <variable name>:

Example: INTEGER I1;

13-23



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
BASIC WFL SYNTAX AND COMMANDS

Statements Section

This section is the working section of the job. The statements in this section initiate a
process or task. This is an optional section, but a job will not perform any function
without any WFL statements.

Syntax: RUN <filetitle>;

Example: RUN PROG/SAVINGS/REPORT,

End Job Section

This section designates the end of the WFL job source. This section is required.

Syntax: END JOB;

13-24



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
BASIC WFL SYNTAX AND COMMANDS

Sample WFL Job

% Begin Job Section 100
BEGIN JOB SAMPLE/MYJOB; 200

% Job Attributes Section 300
USERCODE = CONCEPTS/STUDENT; | 400
FAMILY DISK = EDUCATION OTHERWISE DISK; 500
PRIORITY = 75; 600
QUEUE = 20. 700

% Job Declarations Section 800
INTEGER 11, 12: 900
INTEGER COUNTER.: 1000
REALRI1,R2 R3, 1100

% Statements Section 1200
RUN MYPROG ON EDUCATION; 1300
COUNTER := COUNTER + 1; %Assignment Statement 1400
EXECUTE PRINT/CHECK/PROGRAM; 1500

%End Job Section 1600
ENDJOB. 1700

Figure 13-9 Sample Work Fiow Job

13-25



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WOFK FLOW MANAGEMENT SYSTEM

UNIT 4

WORK FLOW LANGUAGE FILE EQUATIONS AND COMPILING

Objective
Use Work Flow Language file equations.

Compile programs using the Work Flow Language.

Purpose

To provide file use flexibility in executing and compiling programs, you need to use file equations in
your Work Flow job.

Resources

A Series Work Flow Language Reference, Section 5 - Task Initiation
Section 6 - Statements

13-26



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
WFL FILE EQUATIONS AND COMPILING

File Equation

A File Equation provides an easy way of changing various file attributes for this run of a task. The
file equation overrides the file attributes that were declared in the source program.

File equations provide flexibility.

A task is allowed to read from or write to different files from those it normally would use.

A task is allowed to execute using different file attributes.

Some common file attributes that may he changed for different executions of 2 tagk are:

Kind

This attribute specifies the hardware type for the file.

Title

This attribute specifies the external name of the file which includes the file name and
family name. For certain executions of a task, you may wish to use data located in a file
with a different name than was specified in the program’s source.

Familyname

This attribute specifies the family location of the file.

Filename

This attribute specifies the file name.

13-27



A SERIES AND B 5000/8 6000/8 7000 CONCEPTS
WFL FILE EQUATIONS AND COMPILING
Syntax and Placement

File equations require that you specify the internal file name followed by the new values for the file
attributes.

FILE <internal file name> —— - — <filetitle> %

l

L ( <file attribute assignment> ) ——

Figure 13-10 Simple File Equation Syntax

Examples:

FILE EMPFILE (KIND = DISK, TITLE = TEST/EMP/NAMES),

FILE INPUTDATA (KIND = TAPE);

FILE OUTDATA (KIND= PRINTER).

The file equation is placed after the Run statement in the Statement Section.

Syntax: RUN MYPROG;
< file equation>,

Examples:
RUN MYPROG;

FILE DATAIN (TITLE = TEST/DATA/218);

RUN MYPROG;
FILE DATAIN = TEST/DATA/218:

RUN PRINT/REPORT:
FILE OUTREPT {KIND = TAPL):

13-28



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WEFL FILE EQUATIONS AND COMPILING

Sample WFL Job
BEGIN JOB SAMPLE;MYJOB;
USERCODE = CONCEPTS/STUDENT;,
FAMILY DISK = EDUCATION OTHERWISE DISK;
PRIORITY = 75;
QUEUE = 20,
INTEGER 11, 12;
INTEGER COUNTER;
REAL R1, R2, R3;

RUN MYPROG:

% Task Execution Using File Equations

RUN ACCT/REC/DEV/PROG:
FILE BILLREC (TITLE = BILLS/DEV/TEST);

RUN ACCT/REC/DEV/PROG,;
FILE BILLREC (KIND = DISK, TITLE = TEST/DATA/PART/2);
FILE REPT (KIND = DISK);

ENDJOB,

Figure 13-11 Sample Work Flow job Using File Equations

13-29

100

300

400

500

600

700

800

900

1100

1150

1200
1250

1300
1350
1370

1700



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WFL FILE EQUATIONS AND COMPILING

Compiling In WFL

Compiles should be started using WFL:

If you want to compile programs at the ODT.

If you want to apply a patch file to a source file.

If the installation wants to control compiles.

The system can be set up so that all compiles must go through a specified job queue that
will limit the amount of system resources that compiles can use.

If you want to do multiple compiles without monitoring the process.

Compile Statement

Syntax:

COMPILE <object code file name> <compiler> <disposition>;

<disposition >
SYNTAX - Check for syntax errors only.
LIBRARY - Generate and retain object code file.
LIBRARY GO - Generate, retain and execute object code file
blank or GO - Generate and execute object code file. Thisis

the default if no disposition is specified.

Examples:

COMPILE MYPROG/TEST COBOL74 LIBRARY:

COMPILE BILLING/PROG/21 ALGOL SYNTAX:

13-30



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WEFL FILE EQUATIONS AND COMPILING

File Equations for Compile Statement

The primary input file for the different compilers is CARD and is assigned to a card reader device.
Unless the program source will be entered by way of a card reader, a file equation is necessary to
change the file attributes Kind and Title for this file CARD.

Examples:

COMPILE MYPROG/TEST COBOL74 LIBRARY;
COMPILER FILE CARD (KIND = DISK, TITLE = SOURCE/MYPROG/TEST),

COMPILE REPORTS/CLASS ALGOL SYNTAX:
COMPILER FILE CARD (TITLE = SOURCE/REPORTS/1A);

COMPILE PAYROLL/WRITER COBOL LIBRARY GO,
COMPILER FILE CARD (KIND = DISK):

Compiler Dollar Sign Options

The output of the compile can be controlled by specifving dollar sign options in the source file.

This option causes a listing of the source file to be produced from the compile.

$SET STACK CODE

The stack option causes the stack information such as stack addresses to be printed. The
code option causes the machine code information to be printed.

CANDE and WFL will set different dollar sign options automatically when a compile is requested.

13-31



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WFL FILE EQUATIONS AND COMPILING

Practice

Identify the lines of the sample WFL job below by their sequence numbers.

BEGIN JOB SAMPLE, 100
FAMILY DISK = PRODUCTION OTHERWISE DISK; 200
PRIORITY = 75; 300
INTEGER MONTH,; 400
MONTH:= 9; 500
RUN WEEKLY/REPORTS;, 600
FILE WEEK (TITLE = THISSWEEK/DATA ON ACCT), 700
RUN WEEKLY/TOTALS, ' 800
COMPILE MONTHLY/REPORTS COBOL LIBRARY; 900
COMPILER FILE CARD (KIND=DISK, TITLE = 1000
SOURCE/MONTHLY/REPORTYS), 1100
ENDJOB 1200
1. Which lines form the following sections of the job?
a. Job Attributes

b. Job Header

c. Working Section
d End Job Section
e. Job Declarations

2. Which lines illustrate the following types of WFL statements?

a. File Equation
b. Assignment
c. Compiler Initiation
3 Which lines cause tasks to be executed?

13-32



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
WORK FLOW MANAGEMENT SYSTEM

UNIT 5

LIBRARYIMAINTENANCE

Objective

Write LIBRARY/MAINTENANCE statements.

Purpose
In order to maintain files in your library and on the systeim, you must know how
LIBRARY/MAINTENANCE is used

Resources

A Series Work Flow Language Reference, Section 6 - Statements

13-33



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
LIBRARY/MAINTENANCE

File Maintenance

LIBRARY/MAINTENANCE is a program that is used to:
Copy files to/from disk, pack, or tape.
Remove files from disk or pack.
Change file names on disk or pack.

Change security restrictions.

LIBRARY/MAINTENANCE is a WFL function even though the LIBRARY/MAINTENANCE
program can be initiated through WFL, CANDE, MARC, or ODT commands.

The statements Copy, Add, Change, Remove and Security are part of the
LIBRARY/MAINTENANCE program.

13-34



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
LIBRARY/MAINTENANCE

COPY

The copy statement copies files from one location to another. LIBRARY/MAINTENANCE copy
creates a library tape, usually for backup purposes, or reads a library tape.

Syntax:

COPY <filename> FROM <volume name> (<volume kind>)

TO <volume name> (<volume kind>);

<volume name> is the name of a disk, pack or tape.

<volume kind > is the peripheral type such as disk or tape.

Examples:

COPY A/B FROM PRODUCTION (KIND = PACK) TO X (KIND = PACK);

COPY A/B FROM PRODUCTION (PACK) TO X (TAPE):

COPY A/B FROM DISK TO X(PACK):

COPY A/B/= FROM X;

COPY = FROM X TO TEST (PACK):

COPYA/BTOT1, TOT2:

COPY A/B, A/C FROM PACK;

COPY (USER1)A/= FROM EDUCATION (PACK) TO BACKUP (TAPE);

COPY A/= ASC/= TOEDUCATION (PACK);

13-35



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
LIBRARY/MAINTENANCE

LIBRARY/MAINTENANCE DEFAULTS

‘ . . If specify If specify

, If omit FROM Ifomit TO :

Statement specification | specification wiﬂfgu?tw(lND 10 ’\émf[\)out

|

COPY DISK,or | DISK,or | TAPE* TAPE*

| Substitute | Substitute

i

|

- ADD DISK, or DISK,or | TAPE* CAN'T
Substitute | Substitute ADD TO

TAPE

' CHANGE DISK, or N/A Specified N/A

v Substitute Family **

REMOVE | DISK, or N/A Specified N/A

Substitute Family **

SECURITY | DisK, or N/A Specified N/A

| Substitute Family **

*  Unless specify DISK or PACK which are reserved names

** Cannot do change, remove or security on tape

Figure 13-12 LIBRARY/MAINTENANCE Defaults

13-36




A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
LIBRARY/MAINTENANCE

ADD

The add statement copies files from one location to another unless the files already exist on the
destination location. Files cannot be added to a tape.

Syntax:

ADD <filename> FROM <volume name> (<volume kind>)

TO <volume name> (<volume kind>};
<volume name > is the name of a disk, pack or tape.

<volume kind> is the peripheral type such as disk or tape.

Examples:

ADD A/B FROM PRODUCTION (KIND = PACK) TO X (PACK);

ADD A/B FROM PRODUCTION (TAPE) TO X (PACK);

ADD A/B FROM DISK TO X(PACK):

ADD A/= FROM EDBK (TAPE) TO EDUCATION (PACK);

ADD A/= ASC/= TOEDUCATION (PACK);

13-37



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
LIBRARY/MAINTENANCE

CHANGE

The change statement changes names of files on disk or packs. Files names cannot be changed on a
tape. The change statement causes the directory to be updated to reflect the new file name.

Syntax:

CHANGE <filename> TO <file name>
FROM <volume name> (<volume kind>);

<volume name> is the name of a disk, or pack.

<volume kind > is the peripheral type such as disk.

Examples:

CHANGE A/B TO C/D FROM PRODUCTION (KIND = PACK);

CHANGE FILE/1 TO FILE/PAYROLL, FILE/2 TO FILE/TIME/CARDS FROM DISK:

CHANGE A/= TOB/= FROMEDUCATION:

13-38



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
LIBRARY/MAINTENANCE

REMOVE

The remove statement erases files from disk or pack but not from a tape.

Syntax:

REMOVE <file name> FROM <volume name> (<volume kind>):

<volume name > is the name of a disk or pack.

<volume kind> is the peripheral type such as disk.

Examples:
REMOVE A/B FROM PRODUCTION (KIND = PACK);
REMOVE FILE/1, FILE/PAYROLL, FILE/2 FROM DISK;

REMOVE A/=,B/= FROM EDUCATION;

13-39



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
LIBRARY/MAINTENANCE

Practice

Write the LIBRARY/MAINTENANCE statements to accomplish the following.

1. Create a backup tape called BKUPATS containing all files under the ATS directory on the
ACCTS pack.

2. An existing file on the TEST pack called PAYROLL/TEST/DATA is improperly named. The
file name should be TEST/DATA/PAYROLL/CKS.

3. Some files that should be under the (AR) directory are missing from the family PRODUCTION.
A backup of all the (AR) files was made last week on the tape ARBACK. Copy only the missing
files from the tape to the pack.

4, The file TEST/DATA/PAYROLL/CKS is no longer needed on the TEST pack.

5. The ALGOL compiler, called SYSTEM/ALGOL, should be on the family SUPPORT instead of
on DISK.

13-40



SECTION 14

SECURITY OVERVIEW



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SECURITY OVERVIEW

INTRODUCTION

Section Objective

Identify the factors that control access to the system and the disk files.

Purpose

Several different factors control who can access the system through terminals and which disk files
they can use. Programmers and managers should be aware of the most common security controls.

Unit Objectives

Recognize the role of usercodes in security.

Identify the file attributes that control access to disk files.
Recognize the purpose of guardfiles.

Change the security attributes of a disk file through the SECURITY statement.

14-2



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
SECURITY OVERVIEW

UNIT 1

SECURITY OVERVIEW

Objectives

Recognize the role of usercodes in security.

Identify the file attributes that control access to disk files.
Recognize the purpose of guardfiles.

Change the security attributes of a disk file through the SECURITY statement.

Purpose

Several different factors control who can access the system through terminals and which disk files
they can use. Programmers and managers should be aware of the most common security controls.
Resources

A Series I/0 Subsystem Reference Manual, Section 9 - Disk File and System-Access Security

A Series System Software Utilities Reference Manual, Section 7- GUARDFILE

A Series System Software Site Management Reference Manual, Section 10- MAKEUSER

14-3



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SECURITY OVERVIEW

Security Through Usercodes

Usercodes are involved in two types of security:
Access to the system through a terminal is controlled by an MCS, which usually requires
that a valid usercode be entered. The MCS may restrict each usercode to certain terminals,

certain programs, or certain commands.

Access to disk files is controlled by usercodes and file attributes, as described below.

SYSTEM/USERDATAFILE

SYSTEM/USERDATAFILE contains all the usercodes, and their associated characteristics, that
have been defined for the system. Examples of usercode characteristics are:

Password(s)

Family substitution statement
Chargecode

Job queues that the user can or cannot use
Nonprivileged or privileged status

SYSTEM/USERDATAFILE is maintained through the utility SYSTEM/MAKEUSER, which can be
executed by privileged users only.

Types of Usercodes
The status of each usercode is stored in SYSTEM/USERDATAFILE.
Nonprivileged users may access their own files and public files.

Privileged users may access any file, may invoke certain MCP procedures, and may execute
SYSTEM/MAKEUSER.

Systemusers are given a system-wide view through MARC at a terminal. as if they were at
the ODT. The MARC home menu that is displayed when a systemuser logs on includes
additional choices . A systemuser is also either privileged or nonprivileged.

An object code file can be designated as a privileged program through the PP ODT command.

A privileged program always executes as if it were initiated under a priviieged usercode, and
can access any file.

14-4



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SECURITY OVERVIEW
Security Through Disk File Attributes

The three file attributes below control access to disk files.

SECURITYTYPE is a mnemonic-valued attribute that indicates which users may access a
file.

PRIVATE indicates that only the owner or a privileged user may access the file.
PUBLIC allows access by any user.

GUARDED allows access by a user specified in a guardfile (identified by the
SECURITYGUARD attribute), the owner, or a privileged user.

CONTROLLED allows access by a user specified in a guardfile, or a privileged user. If

the owning usercode is nonprivileged, even that usercode 1s subject to the guardfile
named by SECURITYGUARD.

SECURITYUSE is a mnemonic-valued attribute that specifies the manner in which
PRIVATE and PUBLIC files may be accessed.

IN specifies that the file may be used only for input (read-only).
OUT specifies that the file may be used only for output (write-only).
[0 allows input and output (read and write) access to the file.

SECURED allows object code files to be executed, but not accessed in other ways. If
other types of files (for example, data files) are secured, no access is allowed.

SECURITYGUARD attribute specifies the title of the guardfile for guarded and controlled
files.

14-5



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SECURITY OVERVIEW
Security Through Guardfiles

Guardfiles provide flexibility in defining security for individual files or databases by specifying the
access rights allowed:

Usercodes that may or may not access the file or database.

Programs that may or may not access the file or database.

Actions allowed against the file or database (for example, read only or read/write).
DMSII verbs that may be used against the database (for example, FIND and DELETE).

Combinations of usercodes, programs, actions, and DMS II verbs that may be used.

Guardfiles are created and maintained through the utility SYSTEM/GUARDFILE.

LIBRARY/MAINTENANCE SECURITY Statement

The security attributes of a disk file can be changed through a SECURITY statement entered at the
ODT, ina WFL job,orina CANDE or MARC session.

Examples:
SECURITY (USER1)FILE/ONE PUBLIC IN
SECURITY FILE/TWO PRIVATE IO
The SECURITY statement can be used to associate a guardfile with a file. This affects both the
SECURITYTYPE and the SECURITYGUARD attributes.
Examples:
SECURITY FILE/THREE GUARDED WATCH/DOG

SECURITY FILE/FOUR CONTROLLED BODY/GUARD

14-6



SECTION 15

SOFTWARE PRODUCTS OVERVIEW



A SERIES AND B 5000/8 6000/8 7000 CONCEPTS
SOFTWARE PRODUCTS OVERVIEW

INTRODUCTION

Section Objective

Identify the major software products available for the A Series systems.

Purpose

You should be familiar with the functions and capabilities of the software products, for decision
making and planning.

Unit Objectives

Identify the major components of the printing subsystem.

Identifv the major A Series utilities.

Identify the major software components of DMSII.

Identify other major software products available for the A Series systems.

15-2



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SOFTWARE PRODUCTS OVERVIEW

UNIT 1

PRINTING SUBSYSTEM OVERVIEW

Objective

Identify the major components of the printing subsystem.

Purpose

You should be aware of the features and options of the printing software.

Resources
A Series Print System (PrintS/ReprintS) User’s Guide, Entire Manual

A Series Printing Utilities User’s Guide, Section 2 - Backup Processor Utility
Section 3- SYSTEM/BACKUP Utility

15-3



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
PRINTING SUBSYSTEM OVERVIEW

Printer Backup Files
The purpose of printer backup is to spool printer files to disk as the program creates them, and print
them later when a printer is available. This allows many print programs to execute at once, although

there may be only 1 printer on the system, and allows programs to run faster because they are not tied
to the speed of a printer.

Most A Series installations force all printer files to backup disk by setting the LPBDONLY option
with the OP (options) ODT command.

The family name where backup files are placed is specified by a combination of the SB (Substitute
Backup) and DL (Disk Location) ODT commands.

The naming convention for printer backup files is:
BD/000 <job number > /000 < task number > / < modified file name >.

Job and task number refer to the program that created the output.

Modified file name includes three digits, 000 to 999, prefixed to the internal file name, to
prevent duplicate file names if the printer file is repeatedly opened and closed during the
program.

Printer backup files are often called BD files, because they are under the BD directory.

By default, printer backup files under the BD directory on the DL backup family will be printed on an

available printer and removed from the disk, when the job that created them ends. The programmer

and/or operator can specify several file and task attributes to override the defaults.

15-4



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
PRINTING SUBSYSTEM OVERVIEW

File Attributes for Printer Files

Several file attributes provide control over the output of printer files. Some examples of printer file
attributes are:

PRINTCOPIES

Specifies the number of copies to be printed. The default value is 1.
SAVEBACKUPFILE

Indicates whether the backup file should be saved on disk after printing. The possible
values are TRUE and FALSE. The default is FALSE.

Specifies the name of the printer to be used for output. By default, the system uses an
available printer from the default printer pool.

These file attributes can be set through application program statements or WFL file equation.

Example of WFL file equation:
BEGIN JOB MYJOB;

RUN MY/PROGRAM;

ENDJOB

15-5



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
PRINTING SUBSYSTEM OVERVIEW

Job and Task Attributes for Printing

Some job and task attributes also apply to the printing process. Two examples are:

BDNAME job or task attribute
Specifies the prefix to be used for backup file names, instead of BD. The rest of the file
naming convention still applies. This protects backup files created by the job or task

from being printed and removed automatically. They can be printed on request later
(see the PRINT statement below).

JOBSUMMARY job attribute

Indicates whether or not a job summary should be printed. JOBSUMMARY has several
values, such as SUPPRESSED and UNCONDITIONAL.

These job and task attributes can be specified in WFL.
Example:
BEGIN JOB ALPHABET:
JOBSUMMARY = UNCONDITIONAL;
BDNAME = ABC;
RUN XYZ/PROG/1;
RUN XYZ/PROG/2;
ENDJOB
This job will always print a job summary.
Any printer backup files created by the job will be named

ABC/000 <job number >/000 < task number >/ < modified file name >. The backup files
will not be printed automatically.

15-6



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
PRINTING SUBSYSTEM OVERVIEW

Print System (PrintS)

The Print System includes several system software programs, as well as parts of the MCP, that deal
with spooling and printing backup files. The programs included in PrintS are:

SYSTEM/PRINT/ROUTER

This program remains in the mix, to route print files when they are ready to be printed.

SYSTEM/PRINT/SUPPORT

This library freezes in the mix and provides entry points for the other printing programs.

SYSTEM/PRINT/BACKUP/PROCESSOR

This is the program initiated when a BACK command is entered in CANDE to view
printer backup files at the terminal.

Two files are maintained by PrintS:

SYSTEM/BACKUPFILELIST

Stores the current print requests. A print request is created when an operator, a
program, or the system issues a request to print a backup file.

SYSTEM/PRINTERINFO

Contains the characteristics of the printing devices attached to the system.

The PS (Printing System) ODT and MARC commands allow the operator to inquire into the status of
print requests and to modify print requests if necessary. The operations manager can use the PS
command to configure printing the devices on the system.

Example:

PSSHOWREQUESTS displays the current print requests.

15-7



A SERIES AND B 5000/8 6000/8 7000 CONCEPTS
PRINTING SUBSYSTEM OVERVIEW

The PRINT statement can be entered through the ODT, a CANDE session, or a WFL job, to create a
print request. Printer file atiributes can be specified on a PRINT statement.
Examples:
PRINT MYFILE (DESTINATION = "LP4”, PRINTCOPIES = 3);

PRINT ABC/= (SAVEBACKUPFILE = TRUE):

Remote Print System (Reprint$)

ReprintS is an optional extension to the Print System, which sends output to specified remote
printers.

All Print System commands can be used for remote printing, just as for on-site printing.

The DESTINATION attribute is used to specify the name of a station controlled by MARC and
COMS, where the printing is to occur.

ReprintS requires that COMS or COMS (Entry) be installed on the system also.
Example:

PRINT ABC/= (DESTINATION = "STATION LP2032A");

AUTOBACKUP and SYSTEM/BACKUP

PrintS and ReprintS did not exist prior to release 3.6. Instead, an MCP procedure called

AUTOBACKUP handled the default printing of backup files. and a program named

SYSTEM/BACKUP was provided for situations that required more control over printing.
AUTOBACKUP has been replaced by the PrintS programs and the PS ODT command.
SYSTEM/BACKUP still exists because it has some features not found in PrintS (for example,
you can start printing a file from a page where a specified string is found in a specified field of

the print line).

SYSTEM/BACKUP is initiated by a PB statement in a WFL job, or a ?PB command
from the ODT.

Example:

PB "MYFILE” LP4 COPIES 3 SAVE

Prior to release 3.6, a special MCS (for example, RJE) was required for remote printing

15-8



A SERIES AND B 5000/8 6000/8 7000 CONCEPTS
SOFTWARE PRODUCTS OVERVIEW

UNIT 2

UTILITIES OVERVIEW

Objective

Identify the major A Series utilities.

Purpose
You shoulid be familiar with the capabilities of the major utilities so that you can use them when
necessary.
Resources
A Series System Software Utilities Reference Manual, Section 4 -DUMPALL
Section 5 - FILECOPY
Section 6 - FILEDATA

Section 11 - PATCH
Section 12 - SORT

A Series System Software Site Management Reference Manual, Section 7-LOGANALYZER

A Series System Software Support Reference Manual, Section 3 -DCSTATUS
Section 4 - DUMPANALYZER

15-9



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
UTILITIES OVERVIEW

Utilities Overview
The paragraphs below describe the major capabilities of the most frequently used standard utilities.
Details on the operation and syntax of these utilities is covered in the WFL and Utilities course

and/or the Operations course, as appropriate.

Several utilities have been described in previous sections of this Student Guide:

SYSTEM/LOADER Section 4, System Initialization Concepts
SYSTEM/UTILOADER Section 4, System Initialization Concepts
SYSTEM/DUMPALL Section 10, SYSTEM/DUMPALL - Listing Disk Files
SWAPPER Section 12, Memory Management Overview
SYSTEM/MAKEUSER Section 14, Security Overview
SYSTEM/GUARDFILE Section 14, Security Overview

SYSTEM/BACKUP Section 15, Printing Subsystem Overview

Additional Capabilities of SYSTEM/DUMPALL
SYSTEM/DUMPALL is a comprehensive media conversion program.

Producing listings of disk files in various formats, as described in Section 10, is a form of media
conversion.

DUMPALL can also copy files between media such as packs, unlabeled tapes, tapes with non-
standard labels, punched cards, and punched paper tape.

DUMPALL can copy only selected portions of files, or concatenate individual files into a large
file.

File attributes, such as BLOCKSIZE and AREASIZE, can be changed during the DUMPALL

DUMPALL can be executed directly through WFL, CANDE, MARC, or the ODT by specifving
parameters in a RUN statement. DUMPALL can also be executed interactively at a terminal.

SYSTEM/DCSTATUS

This utility produces run-time reports on the data communications subsystem. Reports can be
requested for the entire network, or for specified stations, lines, NSPs, LSPs, etc.

DCSTATUS output can be directed to the line printer or to a terminal.

Interpreting the DCSTATUS reports requires an understanding of NDL I and NSP functions.

15-10



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
UTILITIES OVERVIEW
SYSTEM/DUMPANALYZER

SYSTEM/DUMPANALYZER extracts and analyzes user-specified subsets of information from a full
memory dump.

This utility may be run in batch mode or interactively at a terminal.

SYSTEM/FILECOPY

This utility simplifies the maintenance of pack files, by creating WFL job files to copy files from
packs for backup purposes. FILECOPY is usually executed through WFL, with specifications to:

Consider files from a certain family or directory for copying.
Copy files that were created or updated since a certain date and time.

The files that have been updated can be copied daily, and the entire family can be copied less
frequently.

Another option of FILECOPY is to copy files that have not been accessed since a certain date, and
then remove the files from the pack.

The WFL job created by FILECOPY will execute automatically by default, or it can be saved and
started manually later.

SYSTEM/FILEDATA

SYSTEM/FILEDATA produces reports regarding files. The most common reports are:
Filenames, which is a hierarachical list of files (similar to a PD, but with more information).
Map, which lists all the files on a family, and the addresses of the rows of each file.
Checkerboard , which shows the location and size of all in-use and available disk space.
Attributes, which lists the attributes of 1 or more files.

Tape directory, which lists the names of the files on a library tape.

FILEDATA can be executed in several ways:

Directly through WFL, CANDE, MARC, or the ODT by specifying parameters ina RUN
statement.

Indirectly through the CANDE LFILES command, to display file attributes on the screen.

Indirectly through the DIR (Directory) and TDIR : Tape Directory) ODT commands.

15-11



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
UTILITIES OVERVIEW
SYSTEM/LOGANALYZER

SYSTEM/LOGANALYZER produces reports from the entries in the SYSTEM/SUMLOG file.
Examples of possible reports are:

Log entries for a specified time range.

Log entries for a specified job number.

Log entries for tasks that were DSed (DiScontinued).
Errors on a specified tape drive.

This utility can be executed through a RUN statement with parameters, or through the LOG
command with parameters at the ODT or a CANDE terminal.

The output can be directed to a line printer, or to the terminal or ODT.

SYSTEM/PATCH

This utility merges several individual patch files into a single patch file, which can be input to a
compiler along with the original source file.

SYSTEM/PATCH is the preferred method for making changes to the MCP or other system software,
because the patches are kept in separate files, rather than losing their identity in the source file. This

keeps a record of all the patches made to the file and allows patches to be removed easily if necessary,

SYSTEM/PATCH can also be used to control patches to application software.

SORT

SORT is a procedure in the MCP that sorts a file or set of records into a single file of ordered records,
based on input parameters.

SORT can be activated through application programs written in ALGOL, COBOL, COBOL74, and
PL/I

SORT can also be executed through the SORT compiler, which allows the user to enter SORT

parameters without writing a complete application program. The SORT compiler is a chargeable
program.

15-12



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SOFTWARE PRODUCTS OVERVIEW

UNIT 3

DMS Il OVERVIEW

Objective

Identify the major software components of DMSI1.

Purpose

A large percentage of A Series installations use DMS Il databases. You should be familiar with the
major capabilities and components of DMS II.

Resources

A Series DMSII Data and Structure Definition Language (DASDL), Section 1 - Introduction to
DMSII

A Series DMSII Utilities and Operations Guide, Section 5 - Controlling Data Base Operations
Section 11 - Monitoring the Data Base
Section 12 - Analyzing the Data Base

A Series Advanced Data Dictionary System (ADDS) User’s Guide

A Series Extended Retrieval with Graphic Output (ERGO) User’s Manual

A Series DMSII Inquiry Software Operation Guide

A Series DMSII DataAid User’s Guide

15-13



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DMS Il OVERVIEW

DMS il Batabase Management System

A database is a centralized collection of data placed into one or more files. Multiple application
programs running on-line or in batch mode may all access the database concurrently.

Data Management System (DMSII) is a database management system, the software required to

control and manage the files in the database. Some of the major functions of DMSII are to:

Centralize the definition and organization of the data so that each application program does
not need to redefine the contents of the files.

Assist in the design, development, and maintenance of application systems, by controlling
changes to the database definition.

Insure that all files in the database are current (for example, do not allow an old database file
to be used with other more recently updated files).

Provide programs to copy the database to and from backup tapes.

Provide recovery routines to be used in case of program or system failure.

Database Creation
Creation and maintenance of the database are considered database administration functions.
To create or change the database, the database administrator (DBA) writes the descriptions of the
files and their records in a Data and Structure Definition Language (DASDL) source file, as shown in
Figure 15-1.

The DASDL compiler checks the DASDL source for syntax errors, and creates a file called

DESCRIPTION/<database name >. The description file is not an object code file, but a
translation of the DASDL that can be read by other DMS software programs.

Information from the description file and standard DMS II symbolics, or source files, are compiled
together to produce the tailored software, specifically for this database.

Tailored software includes a library called DMSUPPORT/<database name >, which contains
details needed to access this particular database.

Recovery programs (for example, RECOVERY/<database name >) are also tailored for this
database.

15-14



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
DMS Il OVERVIEW

___________________ DATABASE __ | DATABASE
« DEFINITION *l" ACCESS =
DASDL USER
SOURCE LANGUAGE*
| SOURCE
DASDL
COMPILER
y v
: < BDMS USER
DESCRIPTION DATABASE/
FILE —>  INTERFACE LANGUAGE*
L »| COMPILER
N
DATABASE
SYMBOLICS — ]
v v
DMALGOL
—  COMPILER
A T R i
| A4 v |
: 7 v
\ [ DMSUPPORT SYSTEM/ OBJECT |
! LIBRARY ACCESS- CODE !
| ROUTINES :
* COBOL,
COBOL74,
|,/ RECOVERY ALGOL,
ROUTINES RPG, OR
P/

Figure 15-1 Components of DMSI

15-15



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DMS Il OVERVIEW

DataBase Access

In order to access and update the database, application programs can be written in several user
languages (ALGOL, COBOL, COBOL74, RPG, and PL/1).

The user language compilers are named SYSTEM/BDMSALGOL, SYSTEM/BDMSCOBOL74,
ete.

The user language compilers include extensions to allow special verbs and constructs for
acccessing the database.

The application program invokes the database and the desired files by name. The user
language compiler initiates the DATABASE/INTERFACE program to read the file layout
information from the description file.

When the application program is executed, it communicates with two DMS Il software programs, as
shown in Figure 15-1.

SYSTEM/ACCESSROUTINES is a standard program that receives requests from application
programs to read or write in the database, performs the requests, and returns the results to the
programs. The same SYSTEM/ACCESSROUTINES services all programs running against all
databases.

The DMSUPPORT library that was tailored for this database is in the mix whenever any
application program is using the database. The ACCESSROUTINES call the DMSUPPORT
library to provide details about this particular database.

The standard program SYSTEM/DMUTILITY allows the operators to copy the database to and from
backup, and allows the database administrator to initiate various forms of recovery for the database.

15-16



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
DMS Il OVERVIEW
Software Products Related to DMS I

The products described below extend the capabilities of DMS II.

Advanced Data Dictionary System (ADDS)

The Advanced Data Dictionary System is a menu-driven InterPro product that allows the user to
maintain a DMS Il database to store all the information descriptions used on the system.

Information descriptions can be stored for DSMII databases, conventional files, COBOL74
application programs, and Screen Design Facility (SDF) formats.

The status of each entity is kept in the dictionary: Definitional, Test, Production, or
Historical.

The dictionary maintains a version number for each entity, to control system integrity.

ADDS screens may also be used to describe a new database, and then generate the DASDL from the
information descriptions in the dictionary.

Extended Retrieval with Graphic Output (ERGO)
ERGO is a query program that provides on-line access to DMS Il databases in tabular and graphic
forms. It is intended for use by managers, programmers, analysts, and support personnel involved in

preparing reports from DMS Il databases.

The user can specify parameters for the desired reports through a series of menus, or through
complete commands.

Reports can be produced on the screen, or on the printer.
The output can be formatted in a table, or in a graph such as a bargraph or a histogram.

Information from a database can be extracted into a conventional file, which may be used in
another application, or transferred to a B 20 using Data Transfer System (DTS).

ERGO is not tailored for any database, although it requires a program called
DMINTERPRETER/<database name > to be compiled for each database used in reports.

ERGO can produce a single report from multiple databases and conventional files.

ERGO allows the user to browse through records in the database, and to update records if
DMINTERPRETER was compiled to allow updates.

The database administrator indicates during the DMINTERPRETER compilation process
whether users will be ailowed to update the databasc through ERGO.

15-17



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DMS || OVERVIEW
DMS Il Inquiry

DMS II Inquiry is also an on-line, interactive system that can be used to examine or modify
information in a DMS Il database.

Report specifications are given to Inquiry as complete commands.
Reports can be produced on the screen, or on the printer.
The output is formatted in columns in a table.

Inquiry must be compiled for each specific database. The default name of the object code is
OBJECT/INQUIRY/<database name>.

Inquiry includes data from only 1 database on each report.
Inquiry allows the user to browse through records in the database.

The database administrator indicates during the Inquiry compilation process whether users
will be allowed to update the database through Inquiry.

DataAid

DataAid automates the process of defining, generating, and accessing a database. DataAid menus
provide a linkage between ADDS to define the database, database compilation to create the tailored
software, and ERGO to produce reports. DataAid has 2 basic applications:

DataBase Administration

DataAid could be used in application system design, to create a prototype database,
enter representative data, and produce sampie reports.

DataAid can simplify the execution of SYSTEM/DMUTILITY, by providing menus for
database backup and recovery.

Personal DataBase Usage
DataAid can be used to manage a personal database, containing a small amount of non-

production data. For example, a manager could keep project status records in a personal
database.

15-18



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
DMS Il OVERVIEW

DBANALYZER
DBANALYZER produces statistical reports on the current status of the database (for example, the
number of active and deleted records in each file). This information helps the database administrator

to determine when database attributes should be changed to improve performance, and when
reorganization is needed (for example, to physically remove deleted records).

DBMONITOR

DBMONITOR displays statistics on a terminal about the current usage of the database (for example,
number of user programs, current memory usage). The database administrator could change
specified database parameters dynamically, to see their effect on the performance of the database.

15-19



A SERIES AND B 5000/8 6000/8 7000 CONCEPTS
SOFTWARE PRODUCTS OVERVIEW

UNIT 4

OTHER SOFTWARE PRODUCTS

Objective

Identify other major software products available for the A Series systems.

Purpose

You should be aware of the software products and capabilities available on the A Series systems so
that you can make plans regarding their use.

Resources

SMF II System Resource Management Manual

SMF II Site Management Manual

A Series Site Management Reference Manual, Section 2A - BARS
LINCII Reference Manual

Reporter III Report Language User’s Guide

A Series MultiLingual System User’s Guide

A Series ALGOL Test and Debug System (TADS) User’s Guide

A Series COBOL74 Test and Debug System (TADS) User’s Guide

A Series Burroughs Network Architecture (BNA) User’s Guide

Office Management System (OMS 1) Planning and Installation Guide
A Series Intelligent Distributed Editor (IDE) User’s Guide

A Series Data Transfer System (DTS) User’s Guide

15-20



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
OTHER SOFTWARE PRODUCTS

Other Software Products

Some of the major software products which have not been introduced previously in the course are
grouped by function below.

Performance Evaluation

Site Management Facility Il (SMF 11)

SMF II produces reports on system performance and utilization, using data consolidated from the
system log files and other sources.

Several standard report specifications are provided with the SMF II software.
SMF II users may define their own report specifications using a language called QUERY.
Users may also specify the types of data that should be extracted from multiple log files and
consolidated for reports.

Two modules of SMF I are provided with the standard system software package.
The Hardware module reports on hardware errors in the mainframe or peripherals.
The Availability module reports on the availability of the system, using data entered by an
operator, rather than data from log files (for example, the system was deliberately turned off
for 2 hours because the air conditioning was broken).

Two modules of SMF 1l are chargeable software.
The Workload module produces reports on the work done by various usercodes, chargecodes,
jobs, and tasks, using data from the log files.
The Utilization module reports on the usage of the processor, memory, and I/0 devices.

The Utilization module includes a Sampler program that collects real-time performance
data, and stores it in disk files for subsequent analysis by a QUERY program.

Sampler can also display current system utilization data on a terminal at regular
intervals.

15-21



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
OTHER SOFTWARE PRODUCTS

SYSTEM/BARS

SYSTEM/BARS is a utility that monitors the system performance and displays it periodically in the
form of numeric values and bar graphs.

The user can specify the frequency of the screen updates.

The user can also specify the type of information to be displayed (for example, amount of save
memory, amount of available memory, number of tasks in the mix).

Application Development and Testing Software
Logic and Information Network Compiler Il (LINC II)

LINC Il is a fourth-generation application development language.

LINC II allows application systems to be developed more quickly than traditional programming
methods, and facilitates prototyping in the development process.

From a single set of source specifications, LINC II generates NDL II, parameters for COMS or
GEMCOS, DASDL and tailored database software, and a COBOL74 application program for on-line
file maintenance and transaction posting.

Additional specifications can be written to produce reports on the data in the databases maintained
by LINC II applications.

REPORTER 1l

REPORTER III allows programmers to create reports on data in databases or in conventional files,
without writing application programs.

The user specifies the format and sequence for the report by giving simple English-like specifications.

REPORTER III generates a COBOL74 program to produce the report.

Output can be directed to a printer or to a terminal

15-22



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
OTHER SOFTWARE PRODUCTS
MultiLingual System (MLS)
The MultiLingual System is a mechanism for providing output messages in several languages, for

both application programs and system software.

These messages can inform the computer user or operator about the status of the system, or about the
kind of data to enter, in the translated language.

MLS is used by Burroughs to translate system software output messages for international use.

MLS would be useful to a company with branches and computer users in several countries.

Test and Debug System (TADS)

TADS is an interactive test and debugging system available for the ALGOL, COBOL74, and
FORTRANT7 languages. TADS allows the programmer to:

Control program execution, and suspend the execution of the program at selected points.
Inquire into the values of program variables when the program is suspended.

Change the values of variables when the program is suspended.

Collect program coverage information (for example, 90% of the statements were executed).
Interrogate the history of program execution (for example, procedure A was invoked by
procedure B).

The output from TADS can be directed to a printer or disk file, instead of to a terminal.

TADS also provides on-line help documentation as requested by the programmer.

15-23



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
OTHER SOFTWARE PRODUCTS

Networking Software
Burroughs Network Architecture (BNA)

BN A software is designed to manage distributed networks of Burroughs mainframes. BNA provides
the services similar to NDL Il and MCS capabilities across the network.

BNA considers each mainframe to be a cooperating peer, so there are no host and user restrictions.
Some of the capabilities of BNA are:

File Transfer.

Inter-process Communication between Systems.

Resource Sharing.

Virtual Terminals.

Message Routing.

Office Management System I (OMS 1)

OMS I is an application that can connect an A Series mainframe, B20 microcomputers, and OFIS
Writers in a network.

The goal of OMS II is to reduce paper handling in the office.

OMS Il includes an electronic mail capability, which is implemented through a DMS I database.

Workstation Integration

Intelligent Distributed Editor (IDE)

IDE is an editor that provides editing functions for ALGOL, COBOL74, and FORTRANT77 programs.
IDE can be used on a B 25 or ET 2000 in conjunction with INFOVIEW, to load source files into the
microcomputer, maintain them on the workstation, and then send them back to the host for

compilation and execution.

IDE can also be executed at the host, for use with a standard Burroughs terminal.

Data Transfer System (DTS)

DTS transfers files from an A Series hast to a B 20 microcomputer. The data can then he manipulated
with Multiplan or a word processing utility to produce reports. graphs. and projections.

15-24



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
OTHER SOFTWARE PRODUCTS

Practice

Match the programs and software products on the left with the capabilities on the right.

1. SYSTEM/LOGANALYZER a. Produces user-defined reports on the performance and
utilization of the system.

2. ReprintS b. Produces reports on disk files and their attributes.

3. DASDL ¢. Produces tabular or graphic reports, using the data in
databases or conventional files.

4. SMF i d. Defines the structure of DMS Il databases.

5. SYSTEM/FILEDATA e. Produces reports of selected information from the
system logs, on a printer, terminal, or ODT.

6. LINCII f. Services all requests to read and write DMSII
databases.

7. ERGO g. Prints files on remote printers controlled by COMS
and MARC.

8. SYSTEM/ h. Generates application systems from a single set of

ACCESSROUTINES specifications.

15-25



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
OTHER SOFTWARE PRODUCTS

This page left blank for formatting.

15-26



SECTION 16

SOFTWARE INSTALLATION



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SOFTWARE INSTALLATION

INTRODUCTION

Section Objective

Identify the major steps in A Series software installation.

Purpose

This is an optional section, to be discussed in class if the students are interested in software
installation procedures. It provides a summary of considerations and procedures for installing the
system software.

Unit Objectives

Identify the major steps in A Series software installation.

16-2



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SOFTWARE INSTALLATION

UNIT 1

SOFTWARE INSTALLATION

Objective

Identify the major steps in A Series software installation.

Purpose

You should be aware of the general procedures for installing system software releases.

Resources

A Series Mark 3.6.0 System Software Installation Guide
A 3 System Software 3.6 Installation Guide

A 9 System Seftware 3.6 Installation Guide

A 10 System Software 3.6 Installation Guide

A Series System Software Support Reference Manual, Section 12 - Software Compilation

16-3



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SOFTWARE INSTALLATION

Planning for a New Installation
You should begin making plans for the items below before the hardware is installed.
1. Develop a plan for placement of files on packs. Determine which families will be used for

system software, and which for application program and data files. Allow for printer
backup and overlay files also.

2. Define the job queues that will be needed. Determine the attributes of each queue (for
example, the maximum number of jobs and tasks from each queue that will be allowed
in the mix at a time, the maximum processor time that will be allowed for jobs from each
queue).

3. Define the usercodes that will be needed by individuals and groups. Assign attributes to
the usercodes (for example, family substitution statements, privileged or nonprivileged).

Installing a System Software Release

Perform the following steps when installing software on a new system, or when installing a new
release on an existing system.

1. Consult the documentation provided with the software release for information on
installing or converting to the release.

a. Read the hardcopy Support Release Document enclosed with the release tapes.

o

Execute OBJECT/LISTNOTES to print the Programming and Documentation
(P & D) Notes. If vou are installing a new system, you may order printed P& D
Notes from the Publications Center, or print them on an existing system.

2. Install the Software.

a. Put the MCP on the desired pack. This may be done by a Coldstart , or by COPY if
an MCP has already been loaded to another pack.

If COPY is used, also enter CM for the new MCP, change the BOOTUNIT
(B 5900/B 6900) or HLUNIT (other systems) to be on that pack, and Halt/Load to
the new MCP.

b. Use the TR (Time Reset) and DR (Date Reset) ODT commands to set the system
time and date

16-4



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SOFTWARE INSTALLATION

Use the RC (Reconfigure Disk) ODT command to reconfigure the packs according
to the plan above.

1. For a new installation, the field engineers may have to Initialize and Verify
(IVR) the packs using a Peripheral Test Driver (PTD) function.

2. For an existing system, do not RC a pack containing valuable files. Copy
the files elsewhere, or use the LB (Relabel Disk) to relabel the pack without
destroying its contents.

COPY the compilers, utilities, libraries, traintables, and other system and
environmental software to the desired packs.

Use the SL (System Library) ODT command to specify the titles of the system
libraries that will be required by the system software.

Set and reset the system options as desired through the OP (Options) ODT
command.

Use the DL (Disk Location) ODT command to indicate the families where system
files such as logs, printer backup files, overlay files, USERDATAFILE,
JOBDESC, and SORT work files will be placed.

Use the SB (Substitute Backup) ODT command to set substitute printer backup
destinations as desired.

Use the SI (System Intrinsics) ODT command to specify the title of the
SYSTEM/INTRINSICS file.

3

Use the MQ ODT command to make and/or modify the job queues as desired. The
job queues should be intact on an existing system, unless the pack containing
JOBDESC was RCed.

If desired, set the memory factors through the SF (Set Factors) ODT command.

Initialize the MARC system by entering ??MARC at the ODT.

16-5



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SOFTWARE INSTALLATION

For a new system, run SYSTEM/MAKEUSER through MARC at the ODT to
create some usercodes and specify their attributes.

1. Create at least one privileged usercode.

2, Most sites disable the MU ODT command to prevent additional usercodes
from being created at the ODT.

3. The remaining usercodes can be added by a privileged user at a terminal
later.

Install the data comm software.

1. Copy the required FIRMWARE/NSP and FIRMWARE/LSP files to the
Halt/Load pack.

2. Run IDC through MARC to enter the lines, modems, terminals, and
stations for the system.

3. If necessary, modify and compile the NDL II for the required protocols.

4. If necessary, run COMS UTILITY through MARC to create or update the
configuration file. Enter the windows, programs, and other elements
required for the system.

Create another Halt/Load pack to be used if necessary.

1. COPY the MCP to another pack.

2. Do a CM to establish the link to the MCP on this pack.

COPY all the packs containing system software to tapes for backup.

If you are installing a new release on an existing svstem, refer to the P & D Notes
for instructions on converting the DMS [1 databases to the new level.

16-6



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
SOFTWARE INSTALLATION

Installing a Support Release
A Support Release is an intermediate release of selected system software and/or patch files to be

applied against the original release. A Support Release may or may not contain new features.

If the Support Release includes object code files, copy the new files to your packs and remove the old
files. A new MCP will also require a CM (Change MCP) ODT command.

The Support Release may include patch files called PATCHESFOR/ <software name >, but may not
include the corresponding code files, especially for chargeable software products. If your installation
requires any of these software products, use the following procedure to install the new version.

1. COPY the PATCHESFOR files to a pack that contains some available space.

2. COPY the symbol files for these software products from the original release tapes to the
same pack.

3. Start the job WFL/COMPILE/SOFTWARE. This job will look for any PATCHESFOR
files on the pack, and then patch and compile all the corresponding software.

4. COPY the compiled object files to the desired packs, and also to backup tapes.

5. Remove or change the names of the PATCHESFOR files so they are not used again by
accident later.

16-7



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
SOFTWARE INSTALLATION

Practice

Match the programs and commands on the left with the functions on the right.

1. OBJECT/LISTNOTES a. Reconfigures disk packs.
2. SL b. Specifies the disk locations of special types of files.
3. MQ c. Specifies the file names where certain library entry

points are located.

4. DL d. Prints software documentation such as P & D notes
from tapes.
5. CM e. Makes or modifies job queues.
6. opP f. Applies patches and compiles system software.
7. RC g. Specifies the file title of the MCP.
8. WFL/COMPILE/ h. Sets or resets system options.
SOFTWARE

16-8



SECTION A 3

A 3 HARDWARE OVERVIEW



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
A 3 HARDWARE OVERVIEW

Objective

Identify the major hardware elements that constitute the A 3 system.

Purpose

The A 3 system consists of a series of logical units housed in from 1 to 3 cabinets, and 1 or more
Operator Display Terminals. This unit will introduce you to these elements.

Resources

A 3 System Reference Manual Volume 1

A3-2



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A 3 HARDWARE OVERVIEW

Burroughs A3 System

Figure A3-1 A 3System

A3-3



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
A3 HARDWARE OVERVIEW

Central System Components

The A 3 central system consists of the Central Processing Unit, the Memory Subsystem, the
Maintenance Subsystem, and the Input/Output and Data Communications Subsystem.

Central Processing Unit (CPU)

The A 3 system includes 1 or 2 CPUs, each of which contains the hardware modules described below.

1. Register File

The Register File is a series of 32 1-word registers which store the current processor
state and the primary data items for the current operator.

2. Data Section

The data section includes the Arithmetic/Logic Unit (ALU), which performs all the
logical and arithmetic functions in the system, the Rotate/Merge Logic, which shifts bits
in words, and the Time-of-Day clock.

3. Condition Logic Module
The Condition Logic Module performs four functions:

a. condition logic, to determine if the current operation should be aborted;
b. tag storage and selection, to identify the type of data being operated on;
c. counter and timer implementation, to check for time limits and time-outs on operators

and I/Os;
d. address decoupling, to decode stack addresses from the Data Section.

4. Code-Isolate

The Code-Isolate module is a Program Controller (PC) that manages the object code
stream. It captures object code, decodes the operators and parameters, and passes the
operators to the Micro-Address Module.

5. Micro-Address Module (MAM)

The MAM converts the operator passed from the Code-Isolate Module to the address of
the corresponding Control Store algorithm.

6. Control Store (CS)
The CS is programmable microcode memory which contains algorithms to execute

operators, interrupts, and I/O routines. Because the CSis programmable, its contents
can vary with different software releases as necessary.

A3-4



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A3 HARDWARE OVERVIEW

M-BUS
TO HOP/ > 4
MEMORY T ] ]
V 2& MICRO ADDRESS | _
- MOOULE i
| y Y
Yy
/N—a{ REGISTER FILE CODE ISOLATE
1
iOPND1 kmoz /j CONDITION CONTROL STORE
. 2) N = LOGIC
| CEU——
' I )
DATA SECTION ‘ I I
- Y
REGISTER
RE
b.8US ADDRESS
OATA CARD CONTROL CARD i

J

Figure A3-2 A 3 CPU Block Diagram



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A3 HARDWARE OVERVIEW

Memory Subsystem

The A 3 memory subsystem features 256K RAM chip technology for speed, capacity, and reliability.
The maximum memory size for the various A 3 models ranges from 1 million to 8 million words
(6 million to 48 million bytes), in increments of 1/2 million words (3 million bytes).

Under MCP, the A 3 can address 1 million words of memory at a time. A 3 systems with more than 1
million words of memory are configured via ODT commands into Address Spaces (ASN = Address
Space Number) and Environment Components. Each Address Space consists of a shared component,
which is common to all the Address Spaces, and a local component, which is specific to that address
space. The shared plus the local components of an Address Space may occupy a maximum total of 1
million words. Each program in the mix will be assigned to an Address Space, which will be accessed
while that program has control of the processor.

Under MCP/AS, an A 3 can access all of its memory at any time. Address Spaces are not used with
MCP/AS.

Single processor A 3 systems have a Memory Control Unit (MCU) which interfaces the CPU to the
memory subsystem. The MCU checks the integrity of data read from the memory storage cards, and
logs memory failures.

Dual processor A 3 systems use 2 Shared Access Memory (SAM) controls to interface the 2 central
processors to main memory. The SAMs perform integrity checking functions similar to the MCU
functions in a single processor system. The SAMs exchange data via the SAM bus, and communicate
status via additional control lines.

Maintenance Subsystem

The User Interface Processor (UIP, pronounced "whip”) is the major component of the maintenance
subsystem. The UIP performs system initialization and diagnostic testing for the A 3. System
Initialization can be accomplished by depressing a single button on the A 3 cabinet. The ODT
becomes a Maintenance Diagnostic Terminal (MDT), so that field engineers can interact with the UIP
to execute diagnostic tests.

An RS232 Remote Diagnostic Link to the UIP allows diagnostic programs to be executed by
Burroughs personnel located at remote sites. The remote link can be disabled with a key switchon
the A 3 cabinet.

The Power Control Card (PCC) maintains date and time-of-day information using a real-time clock
with battery backup. This allows the A 3 to be powered on or off automatically at specified times.

A3-6



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A3 HARDWARE OVERVIEW

Input/Output and Data Comm Subsystem

All A Series systems, as well as B 5900s, B 6900s, and B 7900s use Burroughs Universal I/O for both
peripheral and data communications management.

Each peripheral subsystem is connected to a Data Link Processor (DLP) which is designed to control
that specific type of peripheral. Some peripherals (e.g. image printers) can have only 1 device
attached to each DLP, but other peripherals (e.g. disk packs, tapes) can have multiple devices
attached to a single DLP through an exchange and/or controller. The A 3 offers a combination
Printer/Tape DLP which connects to both a line printer and a tape streamer.

A Data Communications DLP is available on the A 3 for small- to-medium size networks. A system
can have 1 to 6 Data Comm DLPs, depending on the model of A 3, with each Data Comm DLP
controlling 4 lines. A 3 systems with larger networks or specialized protocols require two other types
of DLPs: Network Support Processors (NSPs) and Line Support Processors (LSPs).

The DLPs are grouped into I/0-Data Comm (IODC) base modules. Each IODC base can hold up to 8
DLPs, depending on the number of circuit boards in the various types of DLPs used. Different A 3
models allow different numbers of IODC bases and I/O DLPs. The A 3 main cabinet can house 2 10DC
bases; one or two expansion cabinets may be added to hold additional IODC bases.

The internal IODC base module is connected by a Data Link Interface (DLI) to the Host Dependent
Port (HDP); additional IO bases are connected via Message Level Interface (MLI) cables to the HDP.

The HDP provides the system interface to the Universal I/0 subsystem, and checks parity for the data
being transferred.

Data to be output to a device is transferred from memory to the HDP, then through the DLI or MLI to
the IODC base, to the DLP, and finally to the designated device. Data input from peripherals follows
the reverse route.

The A 3 disk subsystem includes at least 1 spindle of 8-inch Winchester disk, with a capacity of 123
million bytes per spindle, built into the main cabinet. Depending on the model of A 3, up to 4
Winchester disks may be integrated into the main cabinet, and 4 more disks may be integrated into
each expansion cabinet.

A3-7



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS

Remote
Support BDI

oDT

A3 HARDWARE OVERVIEW

|
Y YYY

User
Interface
Processor (UIP)

(Maintenance
Processor)

A3l
Processor

HDP

Peripherals

Y

ODT = Operator Display Terminal

BDI = Burroughs Direct Interface

DLI = Data Link Interface

MLI = Message Level Interface

HDP = Host Dependent Port

‘ DLP’s l
lg— DLt I'O
Subsystem
Expansion
ML vo
' Base
I DLP’s |
Peripherals
Memory
Control
Unnt

Storage Boards

Figure A3-3 A 3System Configuration

A3-8




A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A3 HARDWARE OVERVIEW

Practice

Match the A 3 system elements on the left with the descriptions on the right.

1. Control Store a. Interfaces the central system to the /O
Subsystem.

2. Data Link Processor b. Performs system initialization and diagnostic
testing.

3. User Interface Processor c. Interfaces the CPU to the Memory Subsystem.

4. Host Dependent Port d. Contains the Arithmetic Logic Unit.

5. Code-Isolate e. Is hardware designed to control a specific type of

peripheral device.

6. Memory Control Unit f. Stores the operator microcode.

7. Data Section g. Captures object code, and provides input to the
Micro-Address Module.

A3-9



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A3 HARDWARE OVERVIEW

This page left blank for formatting.

A3-10



SECTIONA 9

A 9 HARDWARE OVERVIEW



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A 9 HARDWARE OVERVIEW

Objective

Identify the major hardware elements that constitute the A 9 system.

Purpose

The A 9 system consists of a series of logical units housed in from 3 to 5 cabinets, and 2 Operator
Display Terminals. This unit will introduce you to these elements.

Resources

A 9 System Reference Manual Volume 1

A9-2



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A 9 HARDWARE OVERVIEW

)

éLE_u_\F‘u_l

MEMORY

PROCESSOR

Figure A9-1 A9System

A9-3



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
A 9 HARDWARE OVERVIEW

Centrai System Components

The A 9 central system consists of the Multiple Logical Processor, the Memory Subsystem, the
Maintenance Subsystem, and the Input/Output and Data Communications Subsystem. Modular
power supplies are distributed throughout the A 9 cabinets, with externally accessible power control
switches located on the cabinets.

Multiple Logical Processor (MLP)

The A 9 central processor is called the Processor Element (PE) or the Multiple Logical Processor
(MLP). The MLP considers each hardware operator to be a micro-program or task, and pipelines
these tasks with a hardware operating system based on the Master Control Program (MCP) logic used
in all Burroughs B 5000/B 6000/B 7000 and A Series systems. The pipeline contains 3 logical
processors, which can execute 3 tasks concurrently. The MLP consists of the major modules described
below.

1. Program Controller (PC)

The PC examines the object code stream, determines the tasks necessary to execute the
object code, and establishes the requirements (for example, parameters) and priorities of
the tasks. The PC then forwards the tasks to the Task Controller.

2. Task Controller (TC)

The TC allocates and controls system resources to accomplish tasks forwarded by the PC.
The TC maintains the status of all ready and waiting tasks, selects the next task to be
executed, suspends tasks when necessary, and synchronizes the execution of tasks. The
TC also assigns Top-of-Stack register pairs to tasks which perform operations on data.

3. Data Path (DP)

The DP stores the primary data items for all the operators in progress, and performs the
logical and arithmetic operations on these data items. The DP contains anarray of321-
word registers to store data (the Top-of-Stack register pairs), and a register mapping
device to record the register assignments made by the TC. Utility and Special Purpose
registers are located in the DP as well. The DP also contains the arithmetic/logic unit

(ALU), which performs arithmetic and logical operations on data in the registers.
4. Address and State Unit (ASU)

The ASU converts the relative memory addresses calculated at compilation time to
absolute memory addresses assigned at execution time.

5. Stored Logic Controller (SLC)

The SLC is programmable microcode memory which contains the operator algorithms
used to control the execution of the other parts of the processor. When the SLC receives
and operator and step number from the TC, it locates the algorithm for that operator,
and controls the execution of the requested step.

A9-4



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
A 9 HARDWARE OVERVIEW

E-MODE OPERATOR

FROM MS (MEMORY)
pC OPERATOR PARAMETER(S)
OPERATOR
ENTRY POINT COMMANDS
N DATA
DP >
. SEL TASK
AS ADDR
CONDITIONS
, DATA
TC C
BUN TASK SL CONDITIONS
NXT ADDR ‘ TO/
| FROM
DDR MS
ADD 110
COMMANDS ASU
COMMANDS

CONDITIONS

Figure A9 -2 Processor Block Diagram

AS-5



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
A 9 HARDWARE OVERVIEW

Memory Subsystem

The A 9 memory subsystem is capable of addressing 1, 2, 3, or 4 million words (6, 12, 18, or 24 million
bytes) of memory in a single cabinet. A memory base can contain 1 or 2 million words; a second
memory base is required in a 3 or 4 million word system.

Under MCP, the A 9 can address 1 million words of memory at a time. A 9 systems with more than 1
million words of memory are configured via ODT commands into Address Spaces (ASN = Address
Space Number) and Environment Components (EC). Each Address Space consists of a shared
component, which is common to all the Address Spaces, and a local component, which is specific to
that Address Space, The shared plus the local components of an Address Space may occupy a
maximum total of 1 million words. Each program in the mix will be assigned to an Address Space,
which will be accessed when that program has control of the processor.

Under MCP/AS, the A 9 can access all of its memory at any time. Address Spaces are not used with
MCP/AS.

The memory subsystem interfaces to the A 9 processor through the Memory Controller (MC).

The MC also controls high speed cache memory, which contains redundant copies of recently
addressed blocks in memory. If the required block is present in the cache, memory read requests are
satisfied by reading from the cache, rather than from main memory.

Maintenance Subsystem
The maintenance subsystem includes:

2 - Ergonomic Work Stations (EWS)
1-51/4” removable diskette

2 -5 1/4” Winchester fixed disks

1 - Maintenance Interface Processor (MIP)

The Ergonomic Work Stations are ET 2000s which function as both the system ODTs, and as the
System Control Processor (SCP). The SCP can initialize the system, display the A 9 system state, or
cause execution of maintenance and diagnostic programs.

The Maintenance Interface Processor { MiP) contains built-in maintenance subsystem program
firmware, and a microprocessor. The MIP can execute maintenance programs that test and control
all the other A 9 hardware resources. '

The disks store maintenance and diagnostic programs.

An RS232 communications link via the MIP allows testing and diagnostic programs to be executed by
Burroughs support personnel located at remote sites. The remote link can be disabled with a key
switch on the A 9 cabinet.

The maintenance subsystem interfaces to the A 9 central system through the Host Control Port
(HCP).

A9-6



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A 9 HARDWARE OVERVIEW

PROCESSOR /O SUBSYTEMS
MLP - ML I/0 BASE
HCP

TEST oDT
BUS
MIP EWS
SCP
DISK
CONTROL

L. TO5.25"MMD

L, TO5.25"WINCHESTER DISK

TO 5.25" WINCHESTER DISK

a 1 LA REA ] o ¥ i (KX AN
e

,. REMOTE LINK RS232

MLP = MULTIPLE LOGICAL PROCESSOR

HCP = HOST CONSOLE PORT

MIP = MAINTENANCE INTERFACE PROCESSOR
MLI = MESSAGE LEVEL INTERFACE

SCP = SYSTEM CONTROL PROCESSOR

EWS = ERGONOMIC WORK STATION (ET 2000)

Figure A3-3 System Controi Processor and Maintenance Subsysiem

A9-7



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
A 9 HARDWARE OVERVIEW

Input/Output and Data Comm Subsystem

All A Series systems, as well as B 590Us, B 69UUs, and B 790Us use Burroughs Universal I/ for both
peripheral and data communications management.

Each peripheral subsystem is connected to a Data Link Processor (DLP) which is designed to control
that specific type of peripheral. Some peripherals (e.g. image printers) can have only 1 device
attached to each DLP, but other peripherals (e.g. disk packs, tapes) can have multiple devices
attached to a single DLP through an exchange and/or controller. The data communications
subsystem includes two special types of DLPs: Network Support Processors (NSPs), and Line Support
Processors (LSPs).

The DLPs are grouped into [/0-Data Comm (I0DC) base modules. Each IODC base can hold up to 8
DLPs, depending on the number of circuit boards in the various types of DLPs used. The A 9 system
may include 1 to 3 IODC cabinets, depending on the number of IODC base modules required in the
configuration.

I0DC base modules are connected by Message Level Interface (MLI) cables to the Message Level
Interface Processor (MLIP).

The MLIP is an I/O processor providing the svstem interface to the Universal I/0 subsystem. When
an I/0 operation is to be performed, the Program Controller generates an MLIP operator to be
executed. Other processor operators continue to be executed concurrently with the MLIP operator, so
that instruction execution continues while an I/O is being performed.

Data to be output to a device is transferred from the central system to the MLIP, then through the

MLI to the IODC base, to the DLP, and finally to the designated device. Data input from peripherals
follows the reverse route.

A9-8



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A 9 HARDWARE OVERVIEW

PERIPHERAL
SUBSYSTEM
12M8 ML | 1opc
OF y BASE
MEMORY L
MC PROCESSOR MLIP (UP TO 6)
12 MB A M | 1opc
OF i BASE
MEMORY
HOST CONSOLE PORT
DATA
COMMUNICATIONS
SUBSYSTEM
REMOTE Mmﬁgggﬁ‘g’gE I0DC
Q
SUPPORT PROG e ' ~ TESTBUS
MAINTENANCE SYSTEM
DISK CONTROL
SUBSYSTEM PROCESSOR

Figure AS-4 System Block Diagram

A9-9




Practice

A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
A 9 HARDWARE OVERVIEW

Match the A 9 system elements on the left with the descriptions on the right.

Multiple Logical Processor

Data Link Processor

Maintenance Interface Processor

Message Level Interface Processor

Data Path

Stored Logic Control

Ergonomic Work Station

Program Controller

. Contains the Top-of-Stack register pairs.

. Functions as an ODT, SCP, or maintenance

display.

. Is hardware designed to control a specific type of

peripheral device.

. Stores the operator microcode.

. Contains 3 logical processors, to pipeline

hardware operator tasks.

. Determines the tasks required to execute the

object code.

. Executes maintenance programs initiated on-site

or from a remote site.

. Interfaces the A 9 processor to the I/O subsystem.

A9-10



SECTIONA 10

A 10 HARDWARE OVERVIEW



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A 10 HARDWARE OVERVIEW

Objective

Identify the major hardware elements that constitute the A 10 system.

Purpose

The A 10 system consists of a series of logical units housed in several cabinets, and 2 Operator
Display Terminals. This unit will introduce you to these elements.

Resources

A 10 System Reference Manual Volume 1

A10-2



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A 10 HARDWARE OVERVIEW

Central System Components

The A 10 central system consists of 1 or 2 Multiple Logical Processors, Memory Subsystems,
Maintenance Subsystems, and Input/Output and Data Communications Subsystems. Modular power
supplies are distributed throughout the A 10 cabinets, with externall y accessible power control
switches located on the cabinets.

Multiple Logical Processor (MLP)

The A 10 central processor is called the Processor Element (PE) or the Multiple Logical Processor
(MLP). The MLP considers each hardware operator to be a micro-program or task, and pipelines
these tasks with a hardware operating system based on the Master Control Program (MCP) logic used
in all Burroughs B 5000/B 6000/B 7000 and A Series systems. The pipeline contains 3 logical
processors, which can execute 3 tasks concurrently. The MLP consists of the major modules described
below.

1 Program Controller (PC)

The PC examines the object code stream, determines the tasks necessary to execute the

object code, and establishes the requirements (for example, parameters) and priorities of
the tasks. The PC then forwards the tasks to the Task Controller.

2. Task Controller (TC)

The TC allocates and controls system resources to accomplish tasks forwarded by the PC.
The TC maintains the status of all ready and waiting tasks, selects the next task to be
executed, suspends tasks when necessary, and synchronizes the execution of tasks. The
TC also assigns Top-of-Stack register pairs to tasks which perform operations on data.

3. Data Path (DP)

The DP stores the primary data items for all the operators in progress, and performs the
logical and arithmetic operations on these data items. The DP contains an array of 32 1-
word registers to store data (the Top-of-Stack register pairs), and a register mapping
device to record the register assignments made by the TC. Utility and Special Purpose
registers are located in the DP as well. The DP also contains the arithmetic/logic unit

(ALU), which performs arithmetic and logical operations on data in the registers.
4. Address and State Unit (ASU)

The ASU converts the relative memory addresses calculated at compilation time to
absolute memory addresses assigned at execution time.

5. Stored Logic Controller (SLC)

The SLC is programmable microcode memory which contains the operator algorithms
used to control the execution of the other parts of the processor. When the SLC receives
and operator and step number from the TC, it locates the algorithm for that operator,
and controls the execution of the requested step.

A10-3



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

E-MODE OPERATOR
FROM MS (MEMORY)

l

A 10 HARDWARE OVERVIEW

. OPERATOR PARAMETER(S)
OPERATOR
ENTRY POINT COMMANDS
DATA
DP -
1 SEL TASK
AS ADDR
CONDITIONS oAt
A
TC SLC
RUN TASK CONDITIONS |
NXT ADDR ‘ TO!
| _ FROM
AD MS
DR 10
commanps | A=Y g
COMMANDS
CONDITIONS

Figure A10-1 Processor Block Diagram

A10-4



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A 10 HARDWARE OVERVIEW

A 10 Dual Processor Systems

A 10H Dual Processor Systems can be operated as a single, joined (monolithic) system, or as 2
independent partitions. A partition is a set of resources capable of running as a system under an
MCP. A configuration file controls the division of memory and other resources for a partitioned
system.

The Dual Processor Link (DPL) allows the 2 CPUs to communicate when operating in monolithic
mode.

Memory Subsystem

The A 10 memory subsystem is capable of addressing 2 to 16 million words (12 to 96 million bytes) of
memory in 1 or 2 cabinets.

Under MCP, the A 10 can address 1 million words of memory at a time. A 10 systems with more than
1 million words of memory are configured via ODT commands into Address Spaces (ASN = Address
Space Number) and Environment Components (EC). Each Address Space consists of a shared
component, which is common to all the Address Spaces, and a local component, which is specific to
that Address Space, The shared plus the local components of an Address Space may occupy a
maximum total of 1 million words. Each program in the mix will be assigned to an Address Space,
which will be accessed when that program has control of the processor.

Under MCP/AS, the A 10 can access all of its memory at any time. Address Spaces are not used with
MCP/AS.

The memory subsystem interfaces to the A 10 processor through Dual Port Memory (DPM) Modules,
and through the Memory Controller (MC). Configurations with 10 million words (60 million bytes) of
memory or more have Dual Port Increments (DPI) to store the additional memory.

The MC also controls 8000 bytes of high speed purgeless cache memory, which contains copies of

recently addressed blocks in memory. If the required block is present in the cache, memory read
requests are satisfied by reading from the cache, rather than from main memory.

A10-5



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A 10 HARDWARE OVERVIEW

PERIPHERAL
SUBSTSTEM
B 10DC
y M g BAfE
E >
D|D|D|D - N 3 M .
Mo
P ; ‘3 :1 o1l PROCESSOR o L UP;TO8
M h / - R N P - —» I :
, Y lt———>
? MEMORY L - [ 1opc
o BASE
HOST CONSOLE PORT
A
DATA COMMUNICATIONS
V SUBSYSTEM
| SYSTEM
MIP CONTROL
PROCESSOR
Y
v - .
POWER
NET
MASTER

REMOTE POWER NET

SUPPORT l l l

Figure A10-2 A 10Single Processor Block Diagram

A10-6



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A 10 HARDWARE OVERVIEW

Maintenance Subsystem
The maintenance subsystem includes:

2 - Ergonomic Work Stations (EWS)
1-51/4” removable diskette

2-51/4” Winchester fixed disks

1 - Maintenance Interface Processor (MIP)

The Ergonomic Work Stations are ET 2000s which function as both the system ODTSs, and as the
System Control Processor (SCP). The SCP can initialize the system, display the A 10 system state, or
cause execution of maintenance and diagnostic programs.

The Maintenance Interface Processor ( MIP) contains built-in maintenance subsystem program
firmware, and a microprocessor. The MIP can execute maintenance programs that test and control
all the other A 10 hardware resources.

The disks store maintenance and diagnostic programs.

An RS232 communicatians link via the MIP allows testing and diagnostic programs to be executed by
Burroughs support personnel located at remote sites. The remote link can be disabled with a key

switch on the A 10 cabinet.

The maintenance subsystem interfaces to the A 10 central system through the Host Control Port
(HCP).

A10-7



A SERIES AND B 5000/B 6000/ 7000 CONCEPTS
A 10 HARDWARE OVERVIEW

A10H

DU Al PROCESSOR LINA

- l l ] R
- 1 | l "
- l i ! i i ———
-— | 1 [ -
AMLIP lrkm'essokf we | ! \MC {PROCESSOR,  MLIP
- | . — — ! i l e
-— ‘; i \ . ; i -
} i —-— 1 . — l i -—
" . i o AIFATORY ™ ! ! =
i [ HOST CONTROL PORT E ¢ ‘JL;___TL'___ P HOST CONTROI PORT ‘
: . . ! i ) i - —
. i [DEATL DPL DI DE | ; 4
' | —_— [ v
7T s j 1'\\ ‘ ;:Di>\1; DPI i or ‘ (/\\ m
INTIZR I NI S Sy | 1A 1 ' UL )—"\Fr:suw
. : . M : \\ /’
. Nl o~ : 'y [N N, b
; N / ; —
‘ N / - e
: LN B DISK
! [opowsy !
: i NpC L
! ' MASTER
RINMGTE PONMERNL T

! SUPPORT —_—

LI ) ! 1
! 1O

1 BANt E
——

LPTO I

—_—
! i
1O

BSE

Figure A10-3 A 10 Dual Processor Biock Diagram

A10-8



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A 10 HARDWARE OVERVIEW

Input/Output and Data Comm Subsystem

All A Series systems, as well as B 5900s, B 6900s, and B 7900s use Burroughs Universal I/0 for both
peripheral and data communications management.

Each peripheral subsystem is connected to a Data Link Processor (DLP) which is designed to control
that specific type of peripheral. Some peripherals (e.g. image printers) can have only 1 device
attached to each DLP, but other peripherals (e.g. disk packs, tapes) can have multiple devices
attached to a single DLP through an exchange and/or controller. The data communications
subsystem includes two special types of DLPs: Network Support Processors (NSPs), and Line Support
Processors (LSPs).

The DLPs are grouped into I/0-Data Comm (IODC) base modules. Each I0DC base can hold upto8
DLPs, depending on the number of circuit boards in the various types of DLPs used. The A 10 system
may include 1 to 3 10DC cabinets, depending on the number of IODC base modules required in the
configuration.

ODC base modules arc connected by Message Leve

1
Interface Processor (MLI

X

The MLIP is an I/O processor providing the system interface to the Universal I/O subsystem. When
an I/0 operation is to be performed, the Program Controller generates an MLIP operator to be
executed. Other processor operators continue to be executed concurrently with the MLIP operator, so
that instruction execution continues while an I/O is being performed.

Data to be output to a device is transferred from the central system to the MLIP, then through the

MLI to the IODC base, to the DLP, and finally to the designated device. Data input from peripherals
follows the reverse route.

A10-9



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A 10 HARDWARE OVERVIEW

Practice

Match the A 10 system elements on the left with the descriptions on the right.

1. Multiple Logical Processor a. Contains the Top-of-Stack register pairs.

2. Data Link Processor b. Functions as an ODT, SCP, or maintenance
display.

3. Maintenance Interface Processor c. Is hardware designed to control a specific type of
peripheral device.

4. Message Level Interface Processor d. Stores the operator microcode.

5. Data Path e. Contains 3 logical processors, to pipeline
hardware operator tasks.

6. Stored Logic Control f. Determines the tasks required to execute the
object code.
7. Ergonomic Work Station g. Executes maintenance programs initiated on-site

or from a remote site.

8. Program Controller h. Interfaces the A 10 processor to the /0
subsystem.

A10-10



SECTIONA 15

A 15 HARDWARE OVERVIEW



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A 15 HARDWARE OVERVIEW

Objective

Identify the major hardware elements that constitute the A 15 system.

Purpose

The A 15 system consists of a series of logical units housed in several cabinets, and the system
console. This unit will introduce you to these elements.

Resources
A 15 System Capabilities and Features Manual
A 15 Hardware Operational Guide

A 15 Operating Guide

A15-2



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A 15 HARDWARE OVERVIEW

Central System Components

The A 15 central system includes 1 or more Central Processing Modules, I/O Subsystem Modules,
Memory Subsystem Modules, System Control Cabinets, and System Maintenance Stations.
Additional Central Processing Modules and I/0 Subsystem Modules can be incorporated to build the
required configuration.

Central Processor Module (CPM)

The A 15 system includes 1 to 4 CPMs, each of which includes the hardware modules described below.

1.

Program Control Unit (PCU)

The PCU examines the object code stream, extracts the operators, and builds the
execution string or “pipeline.” The PCU also prepares the required data by assigning
stack locations, and by requesting the Data Reference Unit (DRU) to read data from
memory.

Data Reference Unit-(DRU)

The DRU, upon command from the PCU, fetches data from memory, and places it in the
Central Data Buffer or stack.

Memory Access Unit (MAU)

The MAU interfaces the CPM to main memory. It receives the memory address from the
PCU for code fetches, from the DRU for data fetches, and from the Write Unit for writes
to memory.

Write Unit

The Write Unit reduces traffic to main memory by buffering data before it is sent to the
MAU. Repeated stores to the same address will be performed as one store to main
memory;, stores to adjacent addresses will be grouped into one multi-word store.
Execution Unit (EU)

The EU actually performs all the arithmetic and logical operations in the system, by
executing the pipelines of operators created by the PCU, using the data supplied by the

DRU. The PCU and DRU prepare the operators and data, so that the EU can continue
executing without being interrupted to do memory accesses.

A15-3



T0

e
MEMORY

MEMORY
ACCESS
UNIT

A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A 15 HARDWARE OVERVIEW

ADDRESS/CODE CACHE CODE
[ PROGRAM
CONTROL
UNIT
7 OPERATORS OPERATORS
y LITERALS
- DATA CENTRAL
REFERENCE | DATA DATA DATA ~
ADDRESS/ ENITN <——>| BUFFER | EXEuerI?ON
~ DATA | ______|
B " | DATA CACHE |<
OUTPUT DATA
MEMORY
ADDRESS | WRITE
I UNIT [T
OUTPUT DATA & ADDRESS

Figure A15-1 CPM Block Diagram

A15-4



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A 15 HARDWARE OVERVIEW

Input/Output Subsystem Module (IOSM)

All A 15 systems have at least 1 IOSM cabinet, to house the Host Data Unit, the System Maintenance
Processor, and the IODC base modules (described under I/0-Data Comm Subsystem below).

1. Host Data Unit (HDU)

Each IOSM cabinet has an HDU, to handle all I/0 data transfers between A 15 main
memory and the [/O subsystem. Refer to the I/0-Data Comm Subsystem section for
further information about the HDU.

2. System Maintenance Processor (SMP)

The System Maintenance Processor is a processor housed in the IOSM. The SMP is
intended to operate at all times, although it is not critical for operation or for
Halt/Loading of the A 15. While the A 15 is processing other programs, the SMP can
analyze memory dumps that were transferred from the mainframe, or send dumps to a
Remote Diagnosties Center

Memory Subsystem Module (MSM)

The A 15 memory subsystem can contain a maximum of 32 million words (192 million bytes) of
memory. The MSM cabinet holds a Memory Control, and a maximum of 4 Memory Storage Units
(MSU), with up to 8 million words of memory each. The Memory Control allows a maximum of 8
requestors (CPMs, APs and HDUs) to access memory.

High speed purgeless cache memory keeps recently used information in memory, so that it can be
accessed quickly if needed again. The A 15 has 24,000 bytes of cache memory for object code storage,
and 24,000 bytes for data. The A 15 cache does not purge the contents of cache to main memory
regularly, as was necessary in previous cache implementations (for example, on the B 7900). This
reduces the traffic between memory and the processor, and results in finding the desired data in cache
more often.

Under MCP, the A 15 can address 1 million words of memory at a time. A 15 systems with more than
1 million words of memory are configured via ODT commands into Address Spaces (ASN = Address
Space Number) and Environment Components (EC). Each Address Space consists of a shared
component, which is common to all the Address Spaces, and a local component, which is specific to
that Address Space. The shared plus the local components of an Address Space may occupy a
maximum total of 1 million words. Each program in the mix will be assigned to an Address Space and
its object code to another. When a program has control of the processor, the MCP will access both the
shared component and the local component of the appropriate Address Spaces for that program.

Under MCP/AS, the A 15 can access all of its memory at any time. Address Spaces are not used with
MCP/AS.

A15-5



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
A 15 HARDWARE OVERVIEW

System Modules

CPM Cabinet MSM Memory Cabinet
r———-=" I "l - j
| I | 1
|
l Lot p owmsu | D msu |
| ST L e | g | eoMe |
| | } [ : ' |
| | |
I | Memory |
| CPM : : Control ;| :
| | |
I m—— —— S R 4
s SRR
' |
: SMP HDU :
Maintenance| |Maintenance ' | 10SM
Terminal Terminal { |
q ! UIO Subsystem :
——t ——— L _
I S _
|
5= [ L -
| RN i !
l \\ = o l
| _J MiP ' SMP»: o— @ CPY |
! ' — | | @ MsH, |
i ' l MEX :
NN ] l I : ® Hou |
¢ 2 |
! N ’1 i ; ! @ SMP |
~J
I | L]
NN BSS scc
| | \\ = 5Y" Winchester Disk
| |
bt = 5% Floppy Disk
S 4" Floppy
Remote Support

Figure A15-2 System Modules

A15-6



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A 15 HARDWARE OVERVIEW

System Control Cabinet (SCC)

The SCC is a separate cabinet that contains the Central Power Control, the Master System Clock,
and the Maintenance Exchange. The Central Power Control allows all mainframe components to be
powered up or down from a central location. The Master System Clock supplies clock signals to the
main system. The Maintenance Exchange provides the interface between all possible system
maintenance processors, and all possible mainframe units under test.

System Maintenance Station (SMS)

The System Maintenance Station is a separate cabinet that contains the electronics and storage for
the ET 2000-based soft console. There are 2 ET 2000s, 1 for use as the System Maintenance Processor
(SMP) ODT, and 1 for use as a system ODT. Each ET 2000 has its own Maintenance Interface
Processor (MIP), 2 Winchester disk drives, a disk controller, and a floppy disk drive. At least 1 ofthe
ET 2000s must be available during the Halt/Load process.

SYCON (SYstem CONsole) is a software program which executes on an ET 2000/MIP pair to allow
configuration, initialization, and status checking for the A 15 and its partitions. The operator loads
SYCON into the MIP from the mini-disk drives, and then communicates with SYCON through menu
screens on the ET 2000.

In addition, an RS232 communications link can be used to allow A 15 testing and diagnostic programs
to be executed by Burroughs personnel located at remote sites. The installation may choose to allow
remote access to the SMP, but prevent access to the A 15 mainframe.

Partitions

Multiple processor A 15s may be configured as a single system, or as separate partitions with at least
1 CPM, HDU, and MSM in each partition. The terms “box” and “component” refer to an individual
CPM, HDU, AP, or MS)M, so a partition can be defined as a subset of boxes running under a separate
MCP. The boxes within a partition communicate with each other through the memory subsystem .

Partitioning creates logically separate systems running under separate MCPs, which allows different
workload environments, or both production and test environments, to exist concurrently. Partitions
give additional flexibility by enabling a running partition to act as the maintenance processor for
hardware modules not in that partition.

The SYCON program (see the Maintenance Hardware and Software section) can be used to establish
partitions at Halt/Load time, or a configuration file can be built so that RECONFIGURE commands
can be entered at the ODT while the system is running. The ODT commands FREE and ACQUIRE
are used to add or delete resources for an existing partition. A PC diagram, which is a file that defines
the hardware configuration of the A 15, is also required for partitioning.

A15-7



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

A 15 HARDWARE OVERVIEW

A135 SYSTEM PARTITIONING

MEMORY MEMORY
STORAGE STORAGE
MEMORY MEMORY
CONTROL CONTROL
CPM HDU CPM HDU
1 1 2 2
A3 SINGLE IMAGE SYSTEM
MEMORY MEMORY
STORAGE STORAGE
MEMORY MEMORY
CONTROL CONTROL
|
| |
CPM HDU CPM HDU

o

A15 SYSTEM PARTITION A A15 SYSTEM PARTITION B

A15 PARTITIONED INTO TWO SYSTEMS

Figure A15-3 Partitions

A15-8



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
A 15 HARDWARE OVERVIEW

Input/Output and Data Comm Subsystem

All A Series systems, as well as the B 5900, B 6900, and B 7900, use Burroughs Universal I/0 for both
peripheral and data communications management.

Each peripheral subsystem is connected to a Data Link Processor (DLP) which is designed to control
that specific type of peripheral. Some peripherals (e.g. line printers) can have only 1 device attached
to each DLP, but other peripherals (e.g. disk packs, tapes) can have multiple devices attached to a
single DLP through an exchange and/or controller. The data communications subsystem includes
two special types of DLPs: Network Support Processors (NSPs), and Line Support Processors (LSPs).

The DLPs are grouped into I/0-Data Comm (IODC) base modules. Each IODC base module can hold
up to 8 DLPs, depending on the number of circuit boards in the various DLPs used. The DLPs and
I0DC base modules are located in the IOSM cabinet.

IODC base modules are connected by Message Level Interface (MLI) cables to a Host Dependent Port
HDP). The A 15 can have a maximum of 3 HDPs, each controlling 2 MLIs.

HDPs are components of the Host Data Unit (HDU), which handles all I/O data transfers between
main memory and the I/Q subsystem. HDPs provide the HDU interface to the I/O subsystem; the
Memory Bus Control (MBC) provides the HDU interface to main memory. The Queue Manager (QM),
which is the third major component of the HDU, maintains the I/O queues, and schedules activity for
the HDPs.

Data to be output to a device is transferred from main memory through the MBC to a HDP, then

through a MLI to the IODC base, to the DLP, and finally to the designated device. Data input from
peripherals follows the reverse route.

A15-9



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

Practice

A 15 HARDWARE OVERVIEW

Match the A 15 system elements on the left with the descriptions on the right.

1. Data Link Processor

2. Cache

3. SYCON

4. Execution Unit

5. Program Control Unit

6. Write Unit

7. Host Data Unit

8. Partition

9. SMP

. High speed memory that contains the most

recently used data and object code.

. Buffers data to reduce the number of writes to

memory.

. Performs the logical and arithmetic operators in

the processor.

. Is hardware designed to control a specific type of

peripheral device.

. Functions as a maintenance processor.

. Manages all data transfers between main

memory and the 1/0 subsystem.

. Is a subset of A 15 modules which has been

configured as a separate system.

. Is a program to initialize and configure the A 15

from the console.

i. Builds the operator pipeline.

A15-10



SECTION B 5900

B 5900 HARDWARE OVERVIEW



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
B 5900 HARDWARE OVERVIEW

Objective

Identify the major hardware elements that constitute the B 5900 system.

Purpose
The B 5900 system consists of a series of micro-processors housed in 1 or 2 cabinets. In addition, there

is an operator’s console that houses the Operator Display Terminal and mini-disk drives. This unit
will introduce you to these elements.

Resources

B 5900 System Reference Manual

B 5900-2



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
B 5900 HARDWARE OVERVIEW

Central System Components

The B 5900 central system consists of the Data Processor, the Memory Subsystem, the Maintenance
Subsystem, and the Input/Output and Data Communications Subsystem. The power supply for the
processor and local memory is located in the mainframe cabinet. Power for the console is located in

the console.

Data Processor (DP)

The Data Processor module has the logic to perform all arithmetic and logical functions, as well as
logic to shift data words and extract bits from them. The Arithmetic Logic Units (ALUs) are located
in this module and contain the 16 processor registers.

The DP has several components.

1.

Program Controller (PC) Module

The Program Controller has the main function of fetching code words from local memory
and decoding these words into the various program operators and their parameters. For
each program operator, the PC addresses a location in a microcode memory contained on
another processor module. The microcode word read from the memory then controls the

hardware to cause execution of the program operator.

Stored Logic Control (SLC) Module

The Stored Logic Control is the module containing the microcode memory. This memory
is addressed by the program operator from the PC module. The addressed micro-words
are used to control the other modules in the processor. The SLC also looks at conditions
being returned by the other modules, and uses these conditions to determine which
location of the microcode memory to address for the next micro-word. This continues
until the program operator is executed completely. Then the next program operator
from the PC module addresses the microcode memory and the process is repeated.

The SLC is also called the Micro Master Control Processor (MMCP).
Command (C) Bus

Microcode words are placed on the Command Bus by the SLC module. These microcode
words are the instructions to the other modules in the B 5900 processor.

Memory (M) Bus

Data flows between the memory modules and the B 5900 processor on the bi-directional
Memory Bus.

B5900-3



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
B 5900 HARDWARE OVERVIEW

5. Interrupt/Timer Module

The Interrupt/Timer Module has the timers required by the processor, as well as logic
which detects interrupts that might occur during processor operations. These interrupts
can then be handled by the software or hardware as necessary. If interrupts that cause
the processor to halt occur, logic called snakes may be displayed on the maintenance
ODT for the FE to use when isolating faults.

Memory Subsystem

The Memory Control Module contains the timing logic and control logic required to perform reads and
writes to local memory. It receives its commands from the C Bus, and uses the M Bus both to receive
data to be written to memory and to send data to the other processor modules.

The local memory is contained in the processor cabinet. It is driven by the Memory Control Module.

Global Memory can be used to connect a maximum of 4 B 5900 processors together.

Maintenance Subsystem

The Maintenance Subsystem is used to perform maintenance functions on the processor modules. It
receives its commands via the C Bus or the Host Console Port (HCP), which connects the
Maintenance processor and the console.

The B 5900 has 1 or 2 MTS-2 terminals that are used as both ODTs and maintenance displays. The
console also houses 1 or 2 Industry Compatible Minidisk (ICMD) drives, to provide storage for system
initialization and diagnostic programs.

The Maintenance Interface Processor (MIP) interfaces the MTS-2 maintenance terminals with the
other modules of the maintenance subsystem.

B5900-4



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
B 5900 HARDWARE OVERVIEW

e e c e et e a. -

Figure B5900-1 B 5900 Functional Block Diagram

B5300-5

Teexe
IC MEMORY
110 BASE MODULE M oC
E O
“ N 188K 8
~» — [« §
L MESSAGE MICRO R A
PROGRAM DATA Y o
) LEVEL MASTER TROLLER . by
/0 BASE MODULE INTERFACE CONTROL CoN . oL no‘cs’ssoa t 786K8
ML PORT PROCESSOR a2 0P E
MLIPY (MMCcP) R
ML
b 786K8
1
1/0 BASE MODULE '
[ MeUs l I
S
i
H caus
'
'
' 788K 8
|
1 M
' MAINTENANCE M
' [VIY]
' PROCESSOR o T T86K8
: R R
' Y 0
' t
. t 7868
' H
1
H
' 786K 8
'
' O
'
H .
+ 0
1 )
L] +
t j p T
' ]
' ’ ' '
' ! ' i
S e ccmmmma ; ! y
! 4 1 ' ! ]
H 1 v ] )
\f VOBASE MODULE &= ==~ 4 ! ;
+
) N ' H
' L LT - ' AUXILIARY !
1 ' 1O SUBSYSTEM i OPTIONAL
' ' CABINET L----d GLOBAL MEMORY
: ! INTERFACE
H )
]
' ;
L] 1
) )
1 [
! .
[




A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
B 5900 HARDWARE OVERVIEW

Input/Output and Data Comm Subsystem

B 5900s, as well as B 6900s, and B 7900s, and all A Series systems, use Burroughs Universal 70 for
both peripheral and data communications management.

Each peripheral subsystem is connected to a Data Link Processor (DLP) which is designed to control
that specific type of peripheral. Some peripherals (e.g. image printers) can have only 1 device
attached to each DLP, but other peripherals (e.g. disk packs, tapes) can have multiple devices
attached to a single DLP through an exchange and/or controller. The data communications
subsystem includes two special types of DLPs: Network Support Processors (NSPs), and Line Support
Processors (LSPs).

The DLPs are grouped into [/O-Data Comm (IODC) base modules. Each IODC base can hold up to 8
DLPs, depending on the number of circuit boards in the various types of DLPs used.

10DC base modules are connected by Message Level Interface (MLI) cables to the Message Level
Interface Processor (MLIP).

The MLIP is an /O processor providing the system interface to the Universal /O subsystem. When
an I/0 operation is to be performed, the Program Controller generates an MLIP operator to be
executed. Other processor operators continue to be executed concurrently with the MLIP operator, so
that instruction execution continues while an I/0 is being performed.

Data to be output to a device is transferred from the central system to the MLIP, then through the

MLI to the IODC base, to the DLP, and finally to the designated device. Data input from peripherals
follows the reverse route.

B5900-6



Practice

A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
B 5900 HARDWARE OVERVIEW

Match the B 5900 system elements on the left with the descriptions on the right.

1.

Program Controller

Stored Logic Control

Data Processor

Memory Control Module

Maintenance Processor

Maintenance Interface Processor

Data Link Processor

2

. Develops the timing required to read and write

memory.

. Extracts individual operators and their

parameters from code words fetched from
memory.,

. Is hardware designed to control a specific type of

peripheral device.

. Interfaces the B 5900 processor to the I/0

subsystem.

Serves as an interface between the console and
the Maintenance Processor.

. Contains the logic necessary to perform

arithmetic functions and shift data.

. Performs maintenance functions against

processor modules.

B5900-7



A SERIES AND B 5000/B 6000/8 7000 CONCEPTS
B 5900 HARDWARE OVERVIEW

This page left blank for formatting.

B5900-8



SECTION B 6900

B 6900 HARDWARE OVERVIEW



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
B 6900 HARDWARE OVERVIEW

Objective

Identify the major hardware elements that constitute the B 6900 system.

Purpose
The B 6900 system consists of a series of logical units housed in 5 to 7 cabinets. In addition, there is

an operator’s console that houses the 2 Operator Display Terminals. This unit will introduce you to
these elements.

Resources

B 6900 System Reference Manual

B 6900-2



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
B 6900 HARDWARE OVERVIEW

Central System Components

The B 6900 central system consists of the Data Processor, the Memory Subsystem, the Maintenance
Subsystem, and the Input/Output and Data Communications Subsystem. The power supply for the
processor and local memory is located in the mainframe cabinet.

Data Processor (DP)

The Data Processor module has the logic to perform all arithmetic and logical functions, as well as
logic to shift data words and extract bits from them. The DP contains logic circuits to sense interrupts
from other modules, and to notify the MCP to handle the interrupt.

The B 6900 system also uses look-ahead logic in the DP. This feature fetches words of program code
before the DP is ready to execute the code. This virtually eliminates the need for halting a program to
fetch words of program code. The memory accesses that are performed by the look-ahead logic are
independent of other memory cycles performed for the DP, and do not cause delays in obtaining data
for normal DP functions.

The B 6900 DP makes extensive use of Random Access Memory (RAM) and Programmable Read Only
Memory (PROM) integrated circuit components.

Memory Subsystem

The local memory is stored in modules of 128K or 256K words (1K = 1024 words). The B 6900 may
have a maximum of 1 million words of local memory.

Global Memory can be used to connect a maximum of 4 B 6900 processors together. The B 6900 can
access a total of 1 million words local and global memory at any time

The Memory Control Module operates a memory interface exchange that allows 2 system requestors
to access the memory modules. The first requestor is the look-ahead logic for object code fetches. The
second is the DP or MLIP, which share a requestor path to the memory control.

In addition to controlling the interface paths through the memory exchange, the memory control
module also performs memory retries, and memory read data error corrections.

B6900-3



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
B 6900 HARDWARE OVERVIEW

CENTRAL
p— POWER
CENTRAL PROCESSOR / C(;efNET

CABINET y

/
MAINTENANCE DISPLAY
CABINET

A\

Y

~ 10DC
CABINET

\—— OPERATOR
CONSOLE

Figure B6900-1 B 6900 with Maintenance Display Cabinet

B690C-4



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
B 6900 HARDWARE OVERVIEW

Maintenance Subsystem

The Maintenance Subsystem is used to perform maintenance functions on the processor modules, and
to initialize the B 6900.

The Maintenance Diagnostic Processor (MDP) is sometimes called the Burroughs Diagnostic Unit
(BDU). Itisactually a B 81 built into the B 6900 cabinets.

The (MDP) is contained in a separate cabinet for B 6900s with low serial numbers. B 6900s with
higher serial numbers do not contain an MDP cabinet, but the functions of the MDP cabinet logic
circuits are distributed to other cabinets and modules.

The MDP includes a series of switches and buttons used for maintenance purposes, and a diskette
drive which loads the firmware into the maintenance processor during system initialization.

The Operator Display Terminals (ODT) allow the operator to enter commands during system
initialization and testing.

Input/Output and Data Comm Subsystem

B 6900s, as well as B 5900s, and B 7900s, and all A Series systems, use Burroughs Universal 1/O for
both peripheral and data communications management.

Each peripheral subsystem is connected to a Data Link Processor (DLP) which is designed to control
that specific type of peripheral. Some peripherals (e.g image printers) can have only 1 device
attached to each DLP, but other peripherals (e.g. disk packs, tapes) can have multiple devices
attached to a single DLP through an exchange and/or controller. The data communications
subsystem includes two special types of DLPs: Network Support Processors (NSPs), and Line Support
Processors (LSPs).

The DLPs are grouped into I/O-Data Comm (I0DC) base modules. Each IODC base can hold up to 8
DLPs, depending on the number of circuit boards in the various types of DLPs used.

10DC base modules are connected by Message Level Interface (MLI) cables to the Message Level
Interface Processor (MLIP).

The MLIP is an I/O processor providing the system interface to the Universal I/O subsystem. When
an I/O operation is to be performed, the Program Controller generates an MLIP operator to be
executed. Other processor operators continue to be executed concurrently with the MLIP operator, so
that instruction execution continues while an I/O is being performed.

Data to be output to a device is transferred from the central system to the MLIP, then through the

MLI to the IODC base, to the DLP, and finally to the designated device. Data input from peripherals
follows the reverse route.

B6900-5



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
B 6900 HARDWARE OVERVIEW

PERIPHERAL

LOCAL N
A MEMORY S
LOOK AHEAD UNIT f——— PORT 1
0
HOST DATA PROCESSOR
CONTROL :gxg:g LOCAL
PORT F——— L || memORY |
i PORT
1
LOCAL 6-CABLE
MEMORY INTERFACES
CPU CABINET —1 PORT . TO EXTERNAL
2 MEMORY MODULE
CABINETS
LOCAL
MEMORY
MLIP PORT
3
GLOBAL
] MEMORY —— /
PORT
[V8)
(&)
<
'S
&
- ML MLI ML MLI ML! ML! ML ML
Z PORT | PORT | PORT | PORT | PORT | PORT | PORT | PORT
s 0 1 2 3 4 5 6 ?
R I | l |
2\ 4
'S
c N
e MLI INTERFACES TO OTHER 10DC’'S
giz
opT
DEVICE
— OTHER
PERIPHERAL
UNIT
100¢ — INTERFACES
CABINET S TO/FROM
{1.TO-4 U10-BASE MODULES) U10-DLP
——— CONTROL
MODULES
MLI INTERFACE
MAINT BUS
MAINTENANCE
PROCESSOR AND
FLEXABLE
DISKETTE
MV4503

Figure B69GC-2 B 690C Biock Diagram

B690C-6



Practice

A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
B 6900 HARDWARE OVERVIEW

Match the B 6900 system elements on the left with the descriptions on the right.

Host Control Port
Data Link Processor

Data Processor

Message Level Interface Processor

Memory Control Module

Maintenance Diagnostic Processor

Message Level Interface

lac)

. Controls the paths to memory.
. Performs system initialization and testing.

. Is hardware designed to control a specific type of

peripheral device.

. Connects an IODC base module to the Message

Level Interface Processor.

. Interfaces the B 8900 processor to the I/0

subsystem.

Serves as an interface between the Data
Processor and the Maintenance Diagnostic
Processor.

. Contains the logic necessary to perform

arithmetic functions and shift data.

B63900-7



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
B 6900 HARDWARE OVERVIEW

This page left blank for formatting.

B6900-8



SECTION B 7900

B 7900 HARDWARE OVERVIEW



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
B 7900 HARDWARE OVERVIEW

Objective

Identify the major hardware elements that constitute the B 7900 system.

Purpose

The B 7900 system consists of a series of logical units housed in several cabinets, and the system
console. This unit will introduce you to these elements.

Resources
B 7900 System Operators Guide
B 7900 System Hardware Operational Guide

B 7900 System Capabilities and Features Guide

B7900-2



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
B 7900 HARDWARE OVERVIEW

Central System Components

The B 7900 central system includes 1 or more Central Processing Modules, I/0 Subsystem Modules,
Memory Subsystem Modules, System Control Modules, and System Consoles. Additional Central
Processing Modules, /O Subsystem Modules, Memory Storage Modules, and System Consoles can be
incorporated to build the required configuration.

Central Processor Module (CPM)

The B 7900 system includes 1 or 2 CPMs, each of which includes the hardware modules described
below.

1. Program Control Unit (PCU)

The PCU examines the object code stream, extracts the operators, and builds the
execution string or “pipeline.” The PCU also prepares the required data by assigning
stack locations, and by requesting the Data Reference Unit (DRU) to read data from

memory.
2. Data Reference Unit (DRU)

The DRU, upon command from the PCU, fetches data from memory, and places it in the
Central Data Buffer or stack.

3. Memory Access Unit (MAU)

The MAU interfaces the CPM to main memory. It receives the memory address from the
PCU for code fetches, from the DRU for data fetches, and from the SQ for writes to
memory.

4. Store Queue (SQ?

The SQ reduces traffic to main memory by buffering data before it is sent to the MAU.
Repeated stores to the same address will be performed as one store to main memory;
stores to adjacent addresses will be grouped into one multi-word store.

5. Execution Unit (EU)
The EU actually performs all the arithmetic and logical operations in the system, by
executing the pipelines of operators created by the PCU, using the data supplied by the

DRU. The PCU and DRU prepare the operators and data, so that the EU can continue
executing without being interrupted to do memory accesses.

B7900-3



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
B 7900 HARDWARE OVERVIEW

PROGRAM
CONTROL
UNIT
Operands Literal Operators
Program Dara
Code
] ]
CENTRAL
PRO‘SSE;M REg‘z;iC: DATA EXECUTION
BUTrS i REGISTERS UNIT
(12KB) UNT 32 WORDS;
Data ] l Data
Program Address
Code Inio. DATA STORAGE
BUFFER QUEUE
(6KB) (32 WORDS)
|
Data Data I
‘ | 1

MEMORY ACCESS UNIT

|

MEMORY INTERFACE
{8 WORD PHASED ACCESS;

Figure 37800-7 CPM Block Diagram

B7200-4



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
B 7900 HARDWARE OVERVIEW

Input/Output Subsystem Module (IOSM)

All B 7900 systems have at least 1 IOSM cabinet, to house the Host Data Unit, the Auxiliary
Processor, and the IODC base modules (described in the I/0-Data Comm Subsystem section below).

1. Host Data Unit (HDU)

Each IOSM cabinet has an HDU, to handle all I/0 data transfers between B 7900 main
memory and the I/O subsystem. Refer to the I/0-Data Comm Subsystem section for
further information about the HDU.

2. Auxiliary Processor/Auxiliary Maintenance Processor (AP/AMP)

The AP/AMP is actually a B 5900 processor, which operates in two distinct modes:
Auxiliary and Maintenance.

In the Auxiliary Processor (AP) mode, the AP handles I/O finishes and other routine
functions, which increases throughput by allowing the CPM to continue executing
without those interruptions. If the CPM fails, the AP can either perform the CPM
functions (at a slower rate that the CPM), or execute a user-written shutdown program
to close files and data bases in an orderly fashion, so that recovery is not necessary. Ifa
failure occurs, the ODT operator must select any specific jobs that are to continue
running on the AP only in degraded mode.

In the Auxiliary Maintenance Processor (AMP) mode, the AMP can execute programs to
do testing and diagnostics on hardware in the system.

Memory Subsystem Module (MSM)

The B 7900 memory subsystem can contain a maximum of 16 million words (96 milliions bytes) of
memory, housed in 1 or 2 cabinets. A MSM cabinet holds a Memory Control, and a maximum of 4
Memory Storage Units (MSU), with 1 or 2 million words of memory each. The Memory Control allows

a maximum of 8 requestors (CPMs, APs and HDUs) to access memory.

The techniques of interleaving and phasing enhance the performance of B 7900 memory.

Interleaving is a method in which consecutive words are not written serially to consecutive memory
locations, but are written in parallel to the 8 memory areas of the MSU. Phasing speeds memory
access by reducing the number of processor cycles needed to retrieve words from memory. The B 7900
Memory Controller also has separate read and write buses, so that one requestor can read, and
another can write, simultaneously in the same MSU.

The MCP can address 1 million words of memory at a time. B 7900 systems with more than 1 million
words of memory are configured via ODT commands into Address Spaces (ASN = Address Space
Number) and Environment Components (EC). Each Address Space consists of a shared component,
which is common to all the Address Spaces, and a local component, which is specific to that Address
Space. The shared plus the local components of an Address Space may occupy a maximum total of 1
million words. Each program in the mix will be assigned to an Address Space, or the program’s data
may be assigned to 1 Address Space and its object code to another. When a program has control of the
processor, the MCP will access both the shared component and the local components of the
appropriate Address Spaces for that program.

B7900-5



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
B 7900 HARDWARE OVERVIEW

T T T T T T T T T T l
| r———-- "I T~ vV TT T L
{ MSU (12 MB) :MSU (12MB)  |MSU (12MB)'I IMSU (12MB){ }
| — = J L.___;___ | '
] | | L
' | | s [
g - '
| MEMORY CONTROL (MC) :
=____J___________L ___________ r____
[ l
| l | i 1
|
| |
CPM ; AP HOU I
' :
|
= T
T 7 | !
CPMeT CPM UIO SUBSYSTEM |
) 2 | =] x [TMSM |
APLE-pp | mm e )
NI e J
ISK SCM

Figure B7900-2 Processor Modules

B7900-6

MSM

IOSM



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
B 7900 HARDWARE OVERVIEW

MAIN MLI MLI MLI
MEMORY PORTS PORTS  PORTS
A A I\ A A A A
- |
| |
| | |
| i
! g o Vo ‘
MEMORY HOST HOST HOST QUELE
BUS DEPENDENT | |DEPENDENT| |DEPENDENT MANAGER
CONTROL PORT 0 PORT 1 PORT 2 E
AENARNATNG NNy Oy T
. ] . IR
ol
‘ | . [_caus . IR
|| o | | NN
| MBUS vy
CPM AP

Figure B79C0-3 Host Data Unit

B7900-7




A SERIES AND B 5000/8 6000/B 7000 CONCEPTS

B 7900 HARDWARE OVERVIEW

LOCAL
COMPONENT
ADDRESS
SPACE 1

SHARED COMPONENT

OF ALL ADDRESS SPACES

—_—-——T——_

LOCAL
COMPONENT
ADDRESS
SPACE 2

Figure B7900-4 Address Spaces

B7900-8

LOCAL
COMPONENT
ADDRESS

SPACE 3




A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
B 7900 HARDWARE OVERVIEW

System Control Module (SCM)

The SCM is housed in a separate cabinet, and is comprised of the Card Test Station, the Master
System Clock, and the Maintenance Exchange. The Card Test Station allows field engineers to test
suspect circuit boards from various B 7900 modules. The Master System Clock supplies clock signals
to the main system. The Maintenance Exchange provides the interface between all possible system
maintenance processors, and all possible mainframe units under test.

System Console

The System Console houses 2 Operator Display Terminals (ODTs), 1 maintenance terminal, 2 mini-
disk drives, and the Maintenance Interface Processor. The ODTs are ET 1100s that communicate
with operations personnel by displaying system status messages and receiving input commands.
Refer to the section on maintenance hardware for further information on the maintenance terminal,
the mini-disks, and the Maintenance Interface Processor.

Summary of Maintenance Hardware and Software

B 7900 maintenance hardware includes the Auxiliary Maintenance Processor (AMP), the
Maintenance Exchange (MEX), and the Card Test Station, which were described earlier. Additional
maintenance hardware devices are the Maintenance Interface Processor (MIP), and the maintenance
terminal. The MIP is located in the leg of the B 7900 console, and uses 2 mini-disk drives also located
in the console leg. The maintenance terminal is an ET 2000 or a Modified MTS2 terminal that
provides the operator interface for the MIP.

SYCON (SYstem CONSsole) is a software program which executes on a maintenance terminal/MIP
pair to allow configuration, initialization, and status checking for the B 7900 and its partitions. The
operator loads SYCON into the MIP from the mini-disk drives, and then communicates with SYCON
through menu screens on the maintenance terminal.

IDA (Interactive Diagnostic Access ) is a program which runs under MCP control, and receives
commands from an ODT or data comm terminal. IDA can perform maintenance tests on a running
system, and execute canned procedures in various situations (e.g. generate a state dump in case of a
failure).

BEAM and APCON are software packages for testing the AP/AMP from the MIP or from the AP/AMP
respectively.

In addition, an RS232 communications link can be used to allow B 7900 testing and diagnostic
programs to be executed by Burroughs personnel located at remote sites.

B7900-9



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
B 7900 HARDWARE OVERVIEW

Partitions

Multiple processor B 7900s may be configured as a single system, or as separate partitions with at
least 1 CPM, HDU, and MSM in each partition. The terms "box” and “component” refer to an
individual CPM, HDU, AP, or MSM, so a partition can be defined as a subset of boxes running under a
separate MCP. The boxes within a partition communicate with each other through the memory
subsystem.

Partitioning creates logically separate systems running under separate MCPs, which allows different
workload environments, or both production and test environments, to exist concurrently. Partitions
give additional flexibility by enabling a running partition to act as the maintenance processor for
hardware modules not in that partition.

The SYCON program (see the Maintenance Hardware and Software section) can be used to establish
partitions at Halt/Load time, or a configuration file can be built so that RECONFIGURE commands
can be entered at the ODT while the system is running. The ODT commands FREE and ACQUIRE
are used to add or delete resources for an existing partition. A PC diagram, which is a file that defines
the hardware configuration of the B 7900, is also required for partitioning.

Input/Output and Data Comm Subsystem

The B 7900, like the B 5900, B 6900, and all A Series systems, uses Burroughs Universal I/O for both
peripheral and data communications management.

Each peripheral subsystem is connected to a Data Link Processor (DLP) which is designed to control
that specific type of peripheral. Some peripherals (e.g. line printers) can have only 1 device attached
to each DLP, but other peripherals (e.g. disk packs, tapes) can have multiple devices attached toa
single DLP through an exchange and/or controller. The data communications subsystem includes
two special types of DLPs: Network Support Processors (NSPs), and Line Support Processors (LSPs).

The DLPs are grouped into I/O-Data Comm (I0DC) base modules. Each I0DC base module can hold
up to 8 DLPs, depending on the number of circuit boards in the various DLPs used. The DLPs and
I0DC base modules are located in the [OSM cabinet.

IODC base modules are connected by Message Level Interface (MLI) cables to a Host Dependent Port
HDP). The B 7900 can have a maximum of 3 HDPs, each controlling 2 MLIs.

HDPs are components of the Host Data Unit (HDU), which handles all I/O data transfers between
main memory and the I/O subsystem. HDPs provide the HDU interface to the /O subsystem: the
Memory Bus Control (MBC) provides the HDU interface to main memory. The Queue Manager (QM),
which is the third major component of the HDU, maintains the I/O queues, and schedules activity for
the HDPs. ’

Data to be output to a device is transferred from main memory through the MBC to a HDP, then
through a MLI to the IODC base, to the DLP, and finally to the designated device. Data input from
peripherals follows the reverse route.

B7900-10



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
B 7900 HARDWARE OVERVIEW

MSM . MSM
0 |1
[ RS
H L
MEMORY CONTROL
|
CPM AP CPM
1 3 5

HDU HOU
2 4

B7900 SYSTEM PARTITION, SINGLE SYST=M IMAGE

MSM MSM
0 1
il i
MEMORY CONTROL MEMORY CONTROL
| | | |
CPM AP CPM
1 3 5
HDU HOU
2 4

E750C SYSTEM PARTITION A B7900 SYSTEM PARTITION B
TWO B7900 SYSTEM PARTITIONS

B7900-11



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
B 7900 HARDWARE OVERVIEW

Practice

Match the B 7900 system elements on the left with the descriptions on the right.

1. Data Link Processor

2. Address Space

3. SYCON

4. Execution Unit

5. Program Control Unit

6. Store Queue

7. Host Data Unit

8. Partition

9. AP/AMP

. Includes a local and a shared memory component.

. Buffers data to reduce the number of writes to

memory.

. Performs the logical and arithmetic operators in

the processor.

. Is hardware designed to control a specific type of

peripheral device.

. Functions as a maintenance processor, or as an

auxiliary processor.

. Manages all data transfers between main

memory and the I/0 subsystem.

. Is a subset of B 7900 modules which has been

configured as a separate system.

. Is a program to initialize and configure the

B 7900 from the console.

i. Builds the operator pipeline.

B7900-12



SECTION C

COMPILE LISTINGS AND PROGRAM
DUMPS



D

EP4195/PAYROLL/ALGOL/0T (02/11/86)

9%%%% SAMPLE ALGOL PAYROLL PROGRAM USED IN SECTION 9 %%%%%
$SET LIST STACK CODE $
BEGIN
REAL HOURS WORK, HOURLY RATE, GROSS PAY,
NET PAY, TOTAL TAXES;
FILE EMPLOYEES (KIND=DISK,TITLE="EMPLOYEES/ACTIVE.");
ARRAY TAX TABLE [0:9];
PROCEDURE™ CALC TAXES;
BEGIN -
REAL FICA TAX, FED TAX;
o CALCULATE FICA TAX AND FED TAX
TOTAL TAXES := FTCA TAX + FED TAX;
PROGRAMDUMP (FILES, ARRAYS, BASE, CODE);
END OF CALC TAXES;
PROCEDURE CALC CHECK;
BEGIN -
REAL REG PAY, OT PAY;
PROCEDURE CALC 0T,
BEGIN -
OT PAY := HOURLY RATE * .5 * (HOURS WORK - 40);
PROGRAMDUMP (FILES, ARRAYS); -
‘END OF CALC CT,
REG PAY := HOURS WORK * HOURLY RATE;
IF HOURS WORK GTR O THEN CALC OT;
GROSS PAY := REG PAY + OT PAY;
CALC TAXES; - -
NET PAY := GROSS PAY - TOTAL TAXES;
END OF TALC CHECK; -
%%% MAIN LOGIC %%%
% READ EMPLOYEE, MOVE VALUES INTO VARIABLES
HOURS WORK := 45;
CALC THECK;
% PRTNT CHECK
END OF PROGRAM.

2:49 PM TUESDAY, FEBRUARY 11, 1986

00000050
00000100
00001000
00001100
00001200
00001300
00001400
00001500
00001600
00001700
00001800
00001900
00001950
00002000
00002100
00002200
00002300
00002400
00002500
00002600
00002650
00002700
00002800
00002900
00003000
00003100
00003200
00003300
00003400
00003500
00003550
00003600
00003700
00003800

SdNNA WVYO0YUd ANV SONILLSIT ITdNOD
S1d3DNOD 000Z 8/0009 8/000S 8 ANV S3NY3S V



€D

(01,0002)
(01,0003)

(02,0002)
(02,0003)
(02,0004)

(02,0005)
(02,0006)

(02,0007)
{02,0008)

(02,0009)
(02,000A)

(01,0004)

(03,0002)
{03,0003)

(01,0005)

i

i

(LIt}

Hou

BURROUGHS LARGE SYSTEMS ALGOL COMPILER, VERSION 36.130.175,

OBJECT/EP419S5S/PAYROLL/ALGOL/OT

%%%%% SAMPLE ALGOL PAYROLL PROGRAM USED I[N SECTION 9 %%%%%
$SET LIST STACK CODE $
BEGIN
BLOCK#1
SEGMENT DESCRIPTOR

003:0000:0 NVLD FF
REAL HOURS WORK, HOURLY RATE, GROSS_PAY,
HOURS WORK - B
HOURLY RATE
GROSS PAY
T NET PAY, TOTAL TAXES;
NET PAY - -
TOTAL TAXES
FILE EMPLOYEES (KIND=DISK,TITLE="EMPLOYEES/ACTIVE.");
FUNNY SIRW
EMPLOYEES
DATA POOL AT (02,0008):
0000 010000000000
0001 0D010109C5D4
0002 D7D3D6EBCSCS
0003 E20000000000
0004 031004030801
0005 020011C5D4D7
0006 D3D6EBCS5CSE2
0007 61CI1C3E3COES
0008 (C€54800000000

ARRAY TAX TABLE [0:9];
TAX TABLE -
~ PROCEDURE CALC_TAXES;
CALC TAXES
- BEGIN
REAL FICA TAX, FED_TAX;

= SEGMENT DESCRIPTOR

noi

1"

004:0000:0 NVLD FF
FICA TAX
FED TAX
B % CALCULATE FICA TAX AND FED TAX
TOTAL TAXES := FTCA TAX + FED TAX;
- 004:0000:1" VALC (03,0002) 3002
004:0000:3 VvALC (03,0003) 3003
004:0000:5 ADD 80
004:0001:0 NAMC (02,0006) 5006
004:0001:2 STOD B8
PROGRAMDUMP (FILES, ARRAYS, BASE, CODE);
PROGRAMDUMP
004:0001:3 MKST AE
004:0001:4 NAMC {01,0005) 6005
004:0002:0 LT16 1920 B30780
004:0002:3 CHSN 8t

004:0002:4 ENTR AB

TUESDAY, 02/11/86, 02

00000050
00000100
00001000
BLOCK#1 IS

1 00001100

00001200

00001300

DATA LENGTH IN
00001400

00001500

00001600
00001700

CALC_TAXES 1S

2 00001800
00001900

00001950

:59 PM.

000:0000:0
000:0000:0
000:0000:0
SEGMENT 0003

003:0000:1

003:0000: 1

003:0000:1

WORDS IS 0009
003:0000:1

003:0000:1

003:0000:1
003:0000:1

SEGMENT 0004

004:0000:1
004:0000:1

004:0001:3

SdWNA NVYD0Yd ANV SONILLSIT 3TIdWOD
S1d3DON0D 000Z 8/0009 8/000S 8 ANV SIS V



¥-2

END OF CALC_TAXES;

004:0002:5 EXIT

e ke 3 v 3k T T e ok e s P v ke ke Tk ke e ek sk ke ke ok sk e ke ok ke ko ok ok STACK BU[LDIN

004
004:
004 :
004:
004 :
004:
004:
004 :
004:
004:

PROCEDURE CALC CHECK;
CALC CHECK
~  BEGIN
REAL REG PAY, OT PAY;
SEGMENT DESCRIPTOR  ~ -

(02,0008)

"

(01,0006)

H

006 :
(03,0002)
(03,0003)

REG_PAY
0T _PAY

Hon

PROCEDURE CALC OT;
(03,0004) -

H

CALC OT
- BEGIN

0T PAY := HOURL

- 006 :

006

006:

006:

006:

006:

006:

006:

006

006:

PROGRAMDUMP (FILES,

006:
006:
006:
006
006:
END OF CALC OT,
- 006:

:0003:

0003:
0003:
0003:
0004:
0004:
0004
0004 :
0004 :
0004:

VB WNHHOWMN—O

0000:0

Y RATE
0000:1
0000:
0000:
0001 :
0001:
0001:
0002:
0002:
0002:
0002:

0003:
0003:
0003:
0004:
0004:

= OWHODWUNWRN = UIWAN U W

0004:2

ek e e e K ok kK ek ke gk gk ok sk kK Rk Ak ok ek ke de ok ek ek STACK BU[LDING

REG PAY := HOURS WORK * HOURLY RATE;
- T 006:0004:3 "VALC
006:0004:5 VALC
006:0005:1 MULT
006:0005:2 NAMC
006:0005:4 STOD

IF HOURS~WORK GTR O THEN CALC OT;

006
006:
006:

1
2
006: 0
:0007:1
3
3
Y

006
006
006:
GROSS PAY := REG_PAY +

:0005:5

0006 :
0006 :
0007 :

0007:
0006 :

CODE FOR LEVEL 03

ZERO
ZERO
PUSH
BRUN
NVLD
NVLD
NVLD
NVLD
NVLD
NVLD

NVLD

0000:1

00002000

004:0002:5

**************************************************

B0
BO
B4
A22000
FF
FF
FF
FF
FF
FF
CALC_TAXES(004) LENGTH IN WORDS IS 0005
- 2 00002100 003:0000:1
00002200 003:0000:1
00002300 003:0000: 1
CALC_CHECK IS SEGMENT 0006
FF

* 5 * (HOURS WORK - 40);

VALC
LT8
IS0L
MULT
VALC
LT8
SUBT
MULT
NAMC
STOD
RRAYS) ;
MKST
NAMC
LT16
CHSN
ENTR

EXIT

CODE FOR LEVEL 04

VALC
ZERO
GRTR
MKST
NAMC
ENTR

BRFL-LINK 0000:0

(02,0003)
155

(02,0002)
40

(03,0003)

(01,0005)
1280

(02,0002)
(02,0003)
(03,0002)

(02,0002)

(03,0004)

1003
B298
9A0930
82
1002
B228
81

82
7003
B8

AE
6005
830500
8E

AB

A3

2 00002400
00002500
00002600

3 00002650
00002700

006:0000:1

006:0000:1
006:0000:1

006:0003:0

006:0004:2

3k S e % T K e e g ok ok ok A ok ok e e e ek kR e kR Ak ek ok ke Ak ok kk kok

3 00002800 006:0004:3

1002
1003
82
7002
B8

1002
BO

8A

AE
7004
AB
ANDO0O0

00002900

006 :0005:5

00003000 006:0007:4

SdWNNA NVYYO0Yd ANV SONLLSIT ITIdWNOD
S1d3DNOD 000, 8/0009 8/000S 8 ANV S3H3S V



S-D

3002
3003
80
5004
88
00003100 006:0009:0
AE
500A
AB
00003200 006:0009:4
1004
1006
81
5005
B8
00003300 006:0008:0
A3
A08007

F e F J ke vk v vk ke vk 3 vk vk sk ke sk vk ok sk sk vk vk vk sk ke ke sk e Y e ke o ok ke ok ke ke ek ok

BF
000200012006
84 :
A26004
FF
FF
CALC_CHECK(006) LENGTH IN WORDS IS OOOE
2 00003400 003:0000: 1
00003500 003:0000:1
00003550 003:0000: 1
B22D
5002
B8
00003600 003:0001:0
AE
5008
AB
00003700 003:0001:4
00003800 003:0001:4

AE
6007
AB

K%k ok e e K Aok de A de ko ek kAR A KRR AR KRR KA KRR AR KA KA KKk hkkkkk

BE
270000940001 (3"1160000045000001")
B205S

006:0007:4 VALC (03,0002)
006:0008:0 VALC (03,0003)
006:0008:2 ADD
006:0008:3 NAMC (02,0004)
006:0008:5 STOD
CALC TAXES;
- 006:0009:0 MKST
006:0009:1 NAMC (02,000A)
006:0009:3 ENTR
NET PAY := GROSS PAY - TOTAL TAXES;
- T 006:0009:7 VALC (02,0004)
006:000A:0 VALC (02,0006)
006:000A:2 SUBT
006:000A:3 NAMC {02,0005)
006:000A:5 STOD
ENO OF CALC CHECK;
- 006:0008:0 EXIT
006:0006:3 BRFL 0007:4
e %k F Fe Kk e d Kk ke Kk kK ok gk sk ok sk vk vk sk ok ek s e vk ke g sk ke e ok STACK BUILDING CODE FOR LEVEL 03
006:0008:1 ZERO
006:0008:2 ZERO
(03‘0004) = = = 2 2= = = ¥ = = = = = = = = =T = = = = = = = = = = = = = =
006:0008:3 MPCW
006 :000C 006:0000:1
006:000D:0 PUSH
006:000D:1 BRUN 0004:3
006:000D:4 NVLD
006:000D:5 NVLD
%%% MAIN LOGIC %%%
% READ EMPLOYEE, MOVE VALUES INTO VARIABLES
HOURS WORK := 45,
- 003:0000:1 LT8 45
003:0000:3 NAMC (02,0002)
003:0000:5 STOD
CALC CHECK;
- 003:0001:0 MKST
003:0001:1 NAMC (02,0008)
003:0001:3 ENTR
% PRINT CHECK
END OF PROGRAM.
(01,0007) = BLOCKEXIT
003:0001:4 MXST
003:0001:5 NAMC (01,0007)
003:0002:1 "ENTR
003:0002:2 EXIT
e e ks e e Fe ke ke sk ke e sk vk e ke sk sk vk e sk sk de ok sk ke e ke ke ko ok ok ok STACK BUILD‘ING CODE FOR LEVEL 02
003:0002:3 ZERO
003:0002:4 ZERO
003:0002:5 ZERO
003:0003:0 ZERO
003:0003:1 ZERO
(02’0007) = = = = = = = = = = = = = = =
003:0003:2 NAMC (01,0000)
003:0003:4 STFF
003:0003:5 BSET 13
(02‘0008) -~ = = = = = = = = = = = = = = = = = = = = = = = = =T = = = ¥ = =T T = ¥ = = = =T =T =T T = =T =T = = = = =
003:0004:1 LT48
003:0005
003:0006:0 LT8 5
003:0006:2 STAG

9584

SdNNA NVYO0Ud ANV SONILSITINdNOD
S1d3DNOD 000, 9/0009 8/000S 8 ANV S3IH3AS V



9-2

003:0006:4 LT48 8

E
003:0007 000000A00000 (3"0000000050000000")
003:0008:0 LT8 S B20S
003:0008:2 STAG 9584
(OZ‘OOOA) - = = = = = = = = = = = = = = = = = = = = T = = = T i = = = = =T = = = % = =T = = = I = = == = = ==
003:0008:4 MPCW BF
003:0009 004:0003:0 00000030E004
(OZ’OOOB) e = = = = = = = = = = = = = =T = = = = = = = = = = =T = = = = =T T = = ¥ = = = = = = = = = = = = = ==
003:000A:0 MPCW BF
003:0008 005:0008:1  000200BOE0O6
003:000C:0 PUSH B4
003:000C:1 LT16 10240 B32800
003:000C:4 BSET 47 962F
003:0000:0 LT8 6 B206
003:0000:2 STAG 9584
003:000D0:4 BRUN 0000:1  A22000
003:000E:1 NVLD FF
003:000E:2 NVLD FF
003:000E:3 NVLD FF
003:000E:4 NVLD FF
003:000E:5 NVLD FF

BLOCK#1(003) LENGTH IN WORDS IS 0OOF

NUMBER OF ERRORS DETECTED = 0.

NUMBER OF SEGMENTS = 5. TOTAL SEGMENT SIZE = 43 WORDS. CORE ESTIMATE = 881 WORDS. STACK ESTIMATE = 19
PROGRAM SIZE = 34 CARDS, 123 SYNTACTIC ITEMS, 14 DISK SECTORS.

PROGRAM FILE NAME: OBJECT/EP4195/PAYROLL/ALGOL/OT ON DISK. B5/6000 CODE GENERATED.

COMPILATION TIME = 9.125 SECONDS ELAPSED; 0.728 SECONDS PROCESSING; 0.868 SECONDS 1/0.

SdANNG WVYYD0Ud ANV SONILSIT ITIdINOD
S143DONOD 000Z 8/0009 8/000S 8 ANV SIS V



LD

B6900 PROGRAMDUMP FOR STACK 2F8 (MIX 3014/3020) BOSR=45932
NAME :  (CONCEPTS)OBJECT/EP4195/PAYROLL/ALGOL/OT ON SYSTEMSED.

MCP 36.140.3025: *SYSTEM/MCP36140. INTRINSICS: SYSTEM/INTRINSICS ON DISK. (LOADED)
SYSTEM SERIAL: #2372 HOSTNAME : SYSEDB6900. GROUP 1D: DEFAULT.

CAUSE OF DUMP: PROGRAM REQUESTED @ 006:0004:2, 006:0007:4, 003:0001:4.
PIB HISTORY WORD AT ENTRY TO PROGRAM DUMP: 0 000000 000000.
PROGRAMDUMP OPTIONS: ARRAY(S), FILE(S)

0328 = LOSR (00045C5A)

002A (01,0002) 0 400000 000501 OP: 0CT:20000000 00002401 , EBC: ?7??7, DEC:-1281 -
0029 3 000400 412006 RCW: LL=04, NORML STATE [USER SEGMENT
SEG DESC: 3 800000 EB30E4

TUESDAY, FEBRUARY 11,1986 14:59:30

@ 0006:0004:2]

CODF: 3 093082 100282 3 288182 700388 3 AE6005 B30500 >3 8EABA3 100210< 3 038270 028810

0028 ----D[01]=>3 C12000 804002 *MSCW: PREVIOUS MSCW @ 0026, D[00]=0008 IN STACK 012

0027 3 000800 70E006 RCW: LL=03, NORML STATE [USER SEGMENT
SEG DESC: 3 800000 EB3OE4

@ 0006:0007:4]

CODE: 3 8FABA3 100210 3 038270 028810 3 02BO8A AD8007 >3 AE7004 AB3002< 3 300380 500488

0026 ----D[04]=>3 6F8002 110005 *MSCW: PREVIOUS MSCW @ 0021; D{03]=0021

0025 (03,0004) 7 2F8200 012006 PCW: LL=04, D[1] SEGMENT @ 0006:0000:1, NORML STATE
0024 (03,0003) 0 000000 000000
0023 (03,0002) 0O 000000 000000
0022 3 000800 10A003 RCW: LL=02, NORML STATE [USER SEGMENT
SEG DESC: 3 800000 FC0786
CODE: 3 FFB22D 5002B8 >3 AES500B ABAE60< 3 07ABA3 80BOBO
0021 ----D[03]=>3 6F8001 40CO0D *MSCW: PREVIOUS MSCW @ 0014; D[02]=0014

0020 (02.000C) 6 800000 002800 SCW: (BLOCK BELOW DECLARED FILES, SNGL-DIM ARRAYS)

@ 0003:0001:4]

001F (02,0008) 7 2F8200 BOEQO6 PCW: LL=03, D%IJ SEGMENT @ 0006:000B:1, NORML STATE

001E (02,000A) 7 2F8000 30E004 PCW: LL=03, DL 1] SEGMENT @ 0004:0003:0, NORML STATE

001D (02,0009) 5 000000 AOOOOO DESC EABSENT~MOM%: DATA, LENGTH=10 (UNREFERENCED OLAY SPACE)
001C (02,0008) 5 270000 940001 DESC [ABSENT-MOM]: FILE DESCRIPTION, LENGTH=9  (CODEFILE ADRS=1)
0018 (02,0007) 1 6F9000 402000 SIRW: OFFSET=0004 (0004+0000) IN STACK 2F9

001A (02,0006) O 000000 000000

0019 (02.,0005) O 000000 000000

0018 (02,0004) 0 000000 000000

0017 (02.,0003) O 000000 000000

0016 (02,0002) O 000000 00002D OP: 0CT:00000000 00000055 , EBC:??????, DEC:45

0015 3 00024t E8BFCD RCW: LL=02, CNTRL STATE [MCP SEGMENT

SEG DESC: 3 8800B6 ABCACl

@ OFCD:04EE:1 (16562000) ]

CODE: 3 BEFFFF FFFFFF 3 4A6870 C30C30 3 ABA3AE 400AAB >3 A3B234 B22695< 3 B8B180G 95B9A2

0014 ----b[02]=>3 EF9000 408002 *MSCW: PREVIOUS MSCW @ 0012; D[01]=0004 IN STACK 2F9
0013 3 000000 002000 RCW: DUMMY (RUN)
0012 ----D[02]=>3 F822D0 808011 *MSCW: PREVIOUS MSCW @ 0001; D[01]-2D08 IN STACK 382

0000 = BOSR (00045932)

SdANNG NVYDO0Ud ANV SONILSIT ITIdWNOD
S1d3DNOD 000L 8/0009 9/000S 8 ANV S3|HIS V



8-J

B6900 PROGRAMDUMP FOR STACK 2F8 (MIX 3014/3020) BOSR=45932
NAME :

MCP 36.140.3025:

TUESDAY, FEBRUARY 11,1986 14:59:31

(CONCEPTS)OBJECT/EP4195/PAYROLL/ALGOL/OT ON SYSTEMSED.

SYSTEM SERIAL:

CAUSE OF DUMP:

#2372

*SYSTEM/MCP36140.

INTRINSICS: SYSTEM/INTRINSICS ON DISK. (LOADED)

HOSTNAME : SYSEDB6900. GROUP 1D: DEFAULT.

PROGRAM REQUESTED @ 004:0002:5, 006:0009:4, 003:0001:4.

PIB HISTORY WORD AT ENTRY TO PROGRAM DUMP: O 000000 000000.

PROGRAMDUMP OPTIONS:

0328

0ozC
0028

002A

0029
0028
0027

0026

0025
0024
0023
0022

0021

0020
001F
001E
001D
001C
0018
001A
0019
0018
0017
0016
0015

0014

0013
0012

0011
0010
000F
000E
000D
000C

= LOSR  (00045C5A)
(01,0002) 0 400000
3 000AQ0
----p[01]=>3 €12000
(03,0003) 0 000000
{03,0002) 0 000000
3 000800
----p[03]=>3 6F8001
(03,0004) 7 2F8200
(03,0003) 0 000000
(03,0002) 0 000000
3 000800
----p[03]=>3 6F8001
(02,000C) 6 800000
(02,000B) 7 2F8200
(02,000A) 7 2F8000
(02.0009) 5 000000
(02,0008) 5 270000
(02,0007) 1 6F9000
(02,0006) 0 000000
(02,0005) 0O 000000
(02,0004) 0 000000
(02,0003) 0 000000
{02,0002) 0 000000
3 00024E
----p[02]=>3 EF9000
3 000000
----p[02]=>3 F822D0
5 800004
0 000000
0 000000
0 000000
0 000300
0 000000

000781 OP:
20E004 RCW:

ARRAY(S), BASE, CODE, FILE(S)

0CT: 20000000 00003601 , EBC: 2??7a, DEC:-1921
1.L=03, NORML STATE [USER SEGMENT @ 0004:0002:5]

SEG DESC: 3 800000 583003

CODE :

3 FF300? 300380 3 5006B8 AE6005 >3 B30780 8EABA3<C 3 BOBOB4 A22000

804004 *MSCW: PREVIOUS MSCW @ 0026; D[00]=0008 IN STACK 012

000000
000000
90£006 RCW:

.LL=03, NORML STATE [USER SEGMENT @ 0006:0009:4]

SEG DESC: 3 800000 EB3OE4

CODE:

3 02B08A AO8007 3 AE7004 AB3002 3 300380 500488 >3 AES00A AB1004< 3 100681 500588

40C005 *MSCW: PREVIOUS MSCW @ 0021; D[02]=0014

012006 PCW:
000000
000000
10A003 RCW:

11.=04, D[1) SEGMENT @ 0006:0000:1, NORML STATE

LL=02, NORML STATE [USER SEGMENT @ 0003:0001:4]

SEG DESC: 3 800000 FC0786

CODE :

3 FFB22D 500288 >3 AE500B ABAE60< 3 07ABA3 BOBOBO

40CO0D *MSCW: PREVIOUS MSCW @ 0014; D[02]=0014

002800 SCW: (BLOCK BELOW DECLARED FILES, SNGL-DIM ARRAYS)

BOEOO6 PCW:
30E004 PCW:
A00000 DESC
940001 DESC

E

LL=03, D%l] SEGMENT @ 0006:000B:1, NORML STATE

LL=03, D[1] SEGMENT @ 0004:0003:0, NORML STATE

ABSENT-MOM]: DATA, LENGTH=10 (UNREFERENCED OLAY SPACE)
ABSENT-MOM]: FILE DESCRIPTION, LENGTH=9  (CODEFILE ADRS=1)

402000 SIRW: OFFSET=0004 (0004+0000) IN STACK 2F9

000000
000000
000000
000000
00002D OP:
E88FCD RCW:

0CT : 00000000 00000055 , EBC:??????, DEC:45

LL=02, CNTRL STATE [MCP SEGMENT @ OFCD:04EE:1 (16562000)]

SEG DESC: 3 880086 ABCAC1

CODE :

3 BEFFFF FFFFFF 3 4A6870 C30C30 3 ABA3AE 400AAB >3 A3B234 B22695¢ 3 B8B180 95B9A2

408002 *MSCW: PREVIOUS MSCW @ 0012; D[01]=0004 IN STACK 2F9

002000 RCW:

DUMMY (RUN)

808011 *MSCW: PREVIOUS MSCW @ 0001; D[01]=2D08 IN STACK 382

422090 DESC [PRESENT-MOM]: DATA, LENGTH=68

000000
000000
000000
014000 OP:
001170 OP:

0CT-00001400 00240000 , EBC:??7? ?, DEC:12884983808
0CT - 00000000 00010760 , EBC:??22?0, DEC:4592

SdNNA WVYYO0Yd ANV SONLLSIT ITIdNOD
S1d3DONOD 000 8/0009 8/000S 8 ANV S31¥3IS V



6-2

0008
000A
0009
0008
0007
0006
0005
0004
0003
0002
0001
0000

0000 =

000000 000000

000000 400000 DESC [ABSENT-MOM]: DATA, LENGTH=4 (UNREFERENCED OLAY SPACE)
000000 000000

000000 000000

000000 000000

2F8000 000000 PCW: LL=00, D[O] SEGMENT @ 0000:0000:0, NORML STATE

800000 655A26 DESC [PRESENT-MOM]: DATA, LENGTH=6

800000 000000 SCW:

000000 000000

OOFFFF F020D2 OP: 0CT:00177777 74020322 , EBC:???07?K, DEC:4398038189710.0
6F 8000 000000 *MSCW: DUMMY FOR STACK 2f8

000000 000001 PROCESSOR 1D

QOO UNINOOOUIO

BOSR (00045932)

DUMP OF PROCESS INFORMATION BLOCK (TASK VARIABLE)

3 12000 804001 0 000000 000001 O 000000 0002F9 O 000000 240082 O 400002 575CFB O 000000 .000998
0 000000 000886 0 000000 000000 0 0000NO 000003 0 000000 000000 O 000000 000001 O 000000 000000

0 000000 000000 THRU 21(0015)
S 800000 45C5tB
0(0000) 0 170212 04C4C9 0 E2D209 E2E8E2 0 E3C504 E2C5C4 O 04C4C9 E2D2AL

0( )

6( )

:(ooocg 0 000000 000012 0 000000 000000 O 600AN3 9FCEC2 O 000000 000000 O 000000 0CO00C O 000000 000000
8(

2 )

23(0017) 0 000000 000000 THRU 25(0019)
26(001A) 5 800000 9266E7

27

0(0000) 0 350707 08C3D6 0O D5C3C5 D7E3F2 O 06D6C2 DI1CSC3 O E306C5 D7F4F1 0 F9FE07 D7CIE8 O DID6D3 D305C1
6(0006) 0 D3C/D6 D302D6 O E309E2 E8E2E3 0 C5D4E2 C5C400
(001B) 0 000000 000000 THRU 30(0O01E)

31(001F) 5 800000 2BA132

0(0000) O 09E2E8 E2E3C5 O DAE2CS (40000

32(0020) O 002EBO 000000 5 800000 64A114

0(0000) 0 000000 000000 THRU 5(0005)

34(0022) 0 000000 000000 O 6EBOO1 40000A O 000000 000000 O 000000 000000 O 3EAAS3 CH4898 0 000000 000000

40(0028
46(002E

126(007€

) 0 000000 000000 1 6F9000 400002 O 000000 000000 O 000000 000000 O 000000 0C0000 O 000000 000000
) 0 000000 710075 0 000000 000000 O 000000 000000 0 000000 000000 O 000000 OCOOO0 O 000000 000000
2(0034) 0 2EBO10 00C802 0 000000 000000 O 000030 00000C O 000000 000000 5 800001 Al2F49
0(0000) 0 3F3F03 400000 0 000000 012000 O 000000 000000 O 000000 000000 O 000000 000000 O 600005 000640
6(0006) 0 000000 000000 O 000200 000000 O 000000 003000 O 000000 000000 O 000000 000000 O 000000 000000
12{000C) 0 000000 Q00000 THRU 17(0011)
18(0012) 0 080600 03911F O 000000 000000 O 000000 000000 O 000000 000000 O 000000 000000 0 800000 000000
24(0018) 0 800000 000000 0O 000000 000000
57(0039) 0 000000 000000 O 4002EB 000000 O 000000 Q00000 O 000000 000000 O 000000 000000 2 000000 0CO000
63(003F) 2 000000 000000 O 000000 QOCCOC O Q00000 000000 O 000000 000000 O 000000 000001 O 800200 OCOCOO
69(0045) 0 000000 000000 S 800001 E1C189
0(0000) 0 10CBOC 000C38 O 000000 100005 5 CO0000 80F7B8E S5 CO0001 E1C189 5 EO0001 91C189 5 E00001 B1Ci89
6{0006) 0 000000 GAOOOC O 000000 000000 5 EOOO0C 10F4E2 O 000000 000000 5 EO00O1 5ABOC4 G 000000 000000
12(000C) 0 000000 000000 O 00053C 6EAC31 0 000000 005814 0 0122F8 300003 0 000030 011100 0 000000 000000
18(0012) 0 120000 053725 5 CO0001 5AB0C4 1 6F800D CO00OC G 000000 000000 0 000000 000000 O 000150 000000
24(0018) 0 C00001 500000 O 802000 053725 0 000000 000000 O 000000 000000 0 000000 000000 O 120000 00002E
0047) 0 000000 000001 O 000000 000000 G 000000 000000 O 000000 000000 O 000000 000000 O 000000 000000

-

71(
77(004D) 0 200000 03C235 7 38205F F88EER 1 782200 80004E 0 000000 080000 0 000000 000000 O 200A03 BSEAED
83(0053) O 000000 000001 O 200A03 BYFS52A O 000000 000000 O 200000 01BB10 O 200000 03C235 0 0000600 0C6007
89(0059) 0 000000 O0003E 0 200000 00BD83 O 000000 000003 O 200000 OOOF24 O 000000 000001 O 000000 000000
95(005F) 0 000000 000000 THRU 99(0063)
100(0064) 0 000008 200000 0 000000 000000 O OO7FFF FFFFFF O 000008 000000 0 000000 000108 0 000000 000269
106(006A) 0O 000000 000000 THRU 107(0068)
103(006C) O OO7FFF FFFFFF 0 000000 000000 O 000000 000000 O 0CO000 0000CO 5 E0002E BOBS1E O 000000 000000
111(0072) 5 £0007E BNBS1E O 000000 428072 O 004000 000000 O 0GOOOOC 000032 O 000000 000000 O 000000 0000CO
12020078g 0 2F8008 CH0BCC O 000000 001194 O 800001 300200 0 000000 000000 O Q00000 000000 O 000000 000000
0 0 0 0

) 000010 0000 0 2EBOOO 000000 0 0CO101 0AC3D6 0 NSC3CS D7F 32 0 000000 NO0000 O 000000 000000

SdANNG NVYO0Ud ANV SONILSIT ITIdWOD
S1d3ONOD 000 8/0009 8/000S 8 ANV S31HIS V



oiL-d2

Dump
000D

000D
000C
0008
000A

0009
0008

0007

0006
0005
0004

0003
0002
0001
0000
0000

DUMP

OF SEGMENT DICTIONARY (STACK 2F9)

= LOSR (OO03EEOD)
(01,0009) 1 432001 400032
(01,0008) 5 070000 00008C
(01,0007) 1 412000 8000CA
(01,0006) 3 800000 EB30E4
0{0000) 3 FF1003 B29B9A
6(0006) 3 02BO8A A08007
12(000C) 3 000200 012006
(01,0005) 1 412000 800017
(01,0004) 3 800000 5B30D3
0(0000) 3 FF3002 300380
(01,0003) 3 800000 FCO786
0(0000) 3 FFB22D 5002B8
6(0006) 3 B20595 BABEFF
12(000C) 3 B4B328 00962F
(01.0002) 7 2F9600 20A003
(01,0001) 0 000000 000000
----p[01]=>3 C12000 804003
0 000032 000000
0 OOFFFF F020D2
3 6F9000 000000
3 000000 D84009

= BOSR  {0003EEQ0)

SIRW: OFFSET=0046 (0014+0032) IN STACK 032

DESC [ABSENT-MOM]: INTRINSIC #0,140

SIRW: OFFSET=0012 (0008+000A) IN STACK 012

SEG DESC [PRESENT-MOM]: LENGTH=14
37093082 100282 3 288182 7003B8 3 AE6005 B30500 3 8EABA3 100210 3 038270 028810
3 AE7004 AB3002 3 300380 500488 3 AES00A AB1004 3 100681 500588 3 A3BOBO BFFFFF
3 B4A260 O4FFFF

SIRW: OFFSET=001F (0008+0017) IN STACK 012

SEG DESC [PRESENT-MOM]: LENGTH=5

3 500688 AE6005 3 B30780 8EABA3 3 BOBOB4 A22000 3 FFFFFF FFFFFF

SEG DESC [PRESENT-MOM]: LENGTH=15

3 AES00B ABAE60 3 O7ABA3 BOBOBO 3 BOB0O60 OOAF96 3 ODBEFF FFFFFF 3 270000 940001
3 060000 AODO0O 3 B20595 BABFFF 3 000000 30E0Q04 3 BFFFFF FFFFFF 3 000200 BOEOO6
3 B20695 B4A220 3 OOFFFF FFFFFF

PCW: LL=02, D[1] SEGMENT @ 0003:0002:3, NORML STATE

*MSCW: PREVIOUS MSCW @ 0001; D[00]=0008 IN STACK 012

opP: 0CT: 00000062 00000000 , EBC:???2??, DEC:838860800

oP: 0CT:00177777 74020322 , EBC:???07?K, DEC:4398038189710.0
*MSCW: DUMMY FOR STACK 2F9

TSCW: S @ 000D, F @ 0004, LL=01

OF PROCESS INFORMATION BLOCK (TASK VARIABLE)

0(0000)
6(0006)

0 000000 000075 O 000000 000001 O 000000 0002F9 O 000000 240082 O 400000 939510 O 000000 000040
0 000000 000012 O 000000 00000C O 000000 OOOOAC O 000000 000000 O 000000 000001 O 000000 000000

SdANNA NVYYD0Ud ANV SONILSIT ITIdNOD
S1d3IDNOD 000Z 9/0009 8/000S 8 ANV S3HIS V



)

EP4195/PAYROL

*** SAMPLE PAYROLL PROGRAM FROM SECTION 9, CONVERTED TO COBOL74 **

$

*
*

*
*

*

L/C74/0T (02/11/86)

SET LIST MAP CODE

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT EMPLOYEES ASSIGN TO DISK.
DATA DIVISION.
FILE SECTION.
FD EMPLOYEES
VALUE OF TITLE IS "EMPLOYEES/ACTIVE".

01 EMPLOYEE-RECORD.

03 FILLER PIC X(180).

WORK ING-STORAGE SECTION.

77 HOURS-WORK PIC 9(5)v99 COMP .
77 HOURLY-RATE PIC 9(5)Vv99 COMP .
77 GROSS-PAY PIC 9(5)vI9 COMP .
77 NET-PAY PIC 9(5)v99 COMP..
77 TOTAL-TAXES PIC 9(5)v99 COMP .
77 REG-PAY PIC 9(5)V99 COMP .
77 OT-PAY PIC 9(5)v99 COMP .
77 FICA-TAX PIC 9(5)Vv99 COMP.
77 FED-TAX PIC 9(5)v99 COMP .,
01 TAX-TABLE.

03 TAX-RATE PIC 99v99 OCCURS 10 TIMES.

PROCEDURE DIVISION.
100-MAIN-LOGIC.
OPEN EMPLOYEE FILE.
READ AN EMPLOYEE, AND MOVE VALUES INTO VARIABLES.
MOVE 45 70 HOURS-WORK .
PERFORM 200-CALC-CHECK.
PRINT CHECK.
CLOSE EMPLOYEE FILE.
STOP RUN.
200-CALC-CHECK.
COMPUTE REG-PAY = HOURS-WORK * HOURLY-RATE.

IF HOURS-WORK GREATER THAN 40 THEN PERFORM 300-CALC-OT.

COMPUTE GROSS-PAY = REG-PAY + OT-PAY.

PERFORM 400-CALC-TAXES.

COMPUTE NET-PAY = GROSS-PAY - TOTAL-TAXES.
300-CALC-OT.

COMPUTE OT-PAY = HOURLY-RATE * .5 * (HOURS-WORK - 40).

CALL SYSTEM DUMP.
400-CALC-TAXES.

CALCULATE FICA-TAX AND FED-TAX.

COMPUTE TOTAL-TAXES = FICA-TAX + FED-TAX.

CALL SYSTEM DUMP.

2:49 PM TUESDAY, FEBRUARY 11, 1986

000020
000050
000100
000300
000400
000500
000600
000700
000800
000900
001000
001100
001200
001500
001520
001540
001560
001580
001600
001620
001640
001660
001680
001850
001860
001900
002000
002100
002150
002170
002200
002300
002350
002400
002500
002600
002700
002800
002820
002840
002900
003000
003100
003400
003500
003600
003700

SdANNA NVYO0Ud GNV SONILSIT ITdWOD
S1d3DNOD 000L 8/0009 8/000G 8 ANV S31Y3IS V



LD

VERSION 35.250.

000020*** SAMPLE PAYROLL PROGRAM FROM SECTION 9, CONVERTED TO COBOL7
000100 IDENTIFICATION DIVISION.

000300
000400
000500
000600
000700
000800

000900
001000

001100

001200

001500

001520

001540
001560

001580

001600

001620

001640

001660
001680

001850
001860

283 (09/23/85)

(CONCEPTS)OBJECT/EPA195/PAYROLL/C74/0T ON SYSTEMSED

ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL .

BURROUGHS LARGE SYSTEMS COBOL74 COMPILER

MACRO 0001:06:KBLSM OOAA 0000

SELECT EMPLOYEES ASSIGN TO DISK.

DATA DIVISION.

FILE SECTION.
FD EMPLOYEES

MACRO

0001:11

VALUE OF TITLE IS "EMPLOYEES/ACTIVE".

01 EMPLOYEE-RECORD.
03 FILLER

WORK ING-STORAGE SECTION.

77 HOURS-WORK

77 HOURLY-RATE
77 GROSS-PAY

77 NET-PAY

77 TOTAL-TAXES

77 REG-PAY

77 OT-PAY

77 FICA-TAX
77 FED-TAX

01 TAX TABLE.
03 TAX-PATE

PIC

PIC

PIC
PIC

PIC

PIC

PIC

PIC

PIC

PIC

PIC

MACRO

X(180) .
MACRO

MACRO

MACRO
9(5)va9
MACRO

9(5)v99
MACRO

9(c)vI9
MACRO

9(5)v99
MACRO

9(5)v99
MACRO

9(%)v99
MACRO

9(5)Vv99
MACRO

9(5)v99
MACRO

9(5)v99
MACRO

99v99
MACRO

0001:18:

0001:1D:

0001:20:

0001:21
COMP.

0001:24:

COMP .
0001 :27
COMP.

0001:2A:

Ccomp.,

0001:20:

COMP.

0001:30:

CoMP.

0001:33:

COMP .

0001:36:

COMP .

0001:39:

COMP .

0001:3C:

OCCURS
0001 :41

:SWMCO 0057

FLDEC 0001

LOCRA 0003

FLDEC 0073

:SWMCO 0001

DCL77 0004

:0CL77 0005

pCL77 0006

DCL77 0007

DCL77 0008

DCL77 0009

DCL77 000A

pCL77 0008
pCL77 000C
10 TIMES.

:LOCRA 000D

0001

0002

0003

0002

0000
0000

0000
0000

0000

0000

0000

0000

0000
0000

000N

4 %k

1986 FEBRUARY 11 14:59

0000:0000:0
0000:0000:0

START OF SEGMENT AT (01,002)
0002 :0000:
0002:0000:
0002:0000:
0002 :0000:
0002:0000:

0002:0000:
0002 :0000:
0002:0000:

[N o Y] QOOOO

SIRW T0 D[01]
MYUSE VALUE
EMPLOYEES
0002:0000:0
0002:0000:0

(02,003)
(02,005)
(02,004)

EMPLOYEE-RECORD = (02,006)
0002:0000:0

EMPLOYEES(MAXRECSIZE) = 180
EMPLOYEES(INTMODE) = EBCDIC

0002:0000:0

HOURS-WORK = (02,013)
0002:0000:0

0002:0000:0

GROSS-PAY = (02,008)
0002:0000:0

NET-PAY = (02,00C)
0002:0000:0

TOTAL-TAXES = (02,00D)
0002:0000:0

REG-PAY = (02,00E)
0002:0000:0

0T-PAY = (02,00F)
0002:0000:0

0002:0000:0

0002:0000:0
0002:0000:0

0000(0000:0)

SdNNA WVYYO0Ud ANV SONILSITITIdWOD
S1d3DN0OD 000L 8/0009 8/000S 8 ANV S3HIS V



EL-D

001900 PROCEDURE DIVISION.

002000 100-MAIN-LOGIC.

002100*
002150*

002170

002200
002300*
002350*

002400

OPEN EMPLOYEE FILE.

MACRO 0001:44:SwMCO
MACRO 0001 :45:KBLSM

READ AN EMPLOYEE, AND MOVE VALUES INTO VARIABLES.
MACRO 0001:4C:DEFLM

0002:0000:0  NOOP

MOVE 45 TO HOURS-WORK.

0002:0000:1 L78
0002:0000:1  NAMC
0002:0000:3 LT16
0002:0001:0  STOD

PERFORM 200-CALC-CHECK.
PRINT CHECK.
CLOSE EMPLOYEE FILE.

0002:0001:1  MPCW

0002:0003:0 LT16

0002:0003:3  BRUN
STOP RUN.

0002:0004:0  MKST

0002:0004:1  NAMC
0002:0004:3  ZERO
0002:0004:4  ENTR

002500 200-CALC-CHECK.

002600

* 0002:0003:3  BRUN

0002:0004:5  NAMC

Nn002:0004:5  ZERO

MACRO

MACRO
MACRO
MACRO
MACRO

(02,0009)

MACRO

MACRO
MACRO
MACRO
MACRO
MACRO

0000:0
MACRO
MACRO

MACRO

(01,0003)

MACRO

MACRO
MACRO
0004:5

MACRO
(02,000E)
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO

FE

0001:

4D

0001:50

0001 :
0001 :
0001 :
B?
50

51
52
53
05
09

:DEFLM

:SVNLT
LITCM
:FIXMM
TMVNLT

B34500

B8

0001:54:SNTNC

0001 : 58 : MHPWM
0001:5C:PFTMM
0001 :5D: PFRMM
0001 :5E : XXXXM
0001 : 5F : XXX XM

BF 00000040£002

B30002

*LINK*
0001 :60
0001:61

0001 :
AE

60
BO
AB
0001 :

0001 :
0001:

64

03

65

68
69

: XXXXM
:SNTNC

:STOPM

0057
0109

0000

00OF

0000
002D
0000
0000

040E

000F
00OF
0000
0000
000F

00A3
0321

0134

0000
0000

0000

0000

0000
0800
0000
0004

5.0

17664.0

0000

0000
0000
0000
0000
0000

2.0

0000
0000

0000
Mce

MCP.GOTOSOLVER

:SNTNC

:ENDLM
:DEFLM

A2A004
COMPUTE REG-PAY = HOURS-WORK * HOURLY-RATE.

0001 :

50
0001
0001
0001
0001
0001
0001
0001
0001

BO

6C
OE

:6D:
:6E
:6F
:70:
:71
:72:
273
:74:

:OPERM

000F

000F
0010

0009

REG-PAY

F1XMM
: SWMCO
:EXPRM
TEIDM
:TEIDM
TEOPM
ENDXM
TEVAL

0000
0047
0000
0004
0005
0082
0000
0000

0000

0000
0000

0000

0000
0001
0000
0000
0000
0000
0000
0000

PROCEDURE :

L IBRARY

PCW(002:000:1)

GOTOSOLVER

TAX-TABLE = (02,014)
0002:0000:0

0002:0000:0
0002:0000:0
0002:0000:0

PCW
PCW
DIRECTORY

(02,015)
(02,016)
(02,017)
(02,018)

0002:0000:1

0002:0001:1
0002:0001:1
0002:0001:1

0002:0004:0

= (01,003)

0002:0004:5

0002:0004:5

SdNNG NVYO0Ud ANV SONILSIT ITIdNOD
S1d3DONOD 000, 8/0009 8/000S 8 ANV S31H3IS V



vi-D

0002:0004:5
0002:0005:0
0002:0005:2

002700

0002:
0002:
0002:
0002
0002:

0002:
0002:
0002:
0002:

0002:

WARNING 435 :

0005 :
0005
0006 :
0006 :
0006 :

0006 :
0007 :
0006 :
0007:

0007 :

[Sa] Ao TW

NN =

0002:0008:0
0002:000A:0
0002:000A:3

* 0002:0007:3

002800 COMPUTE GROSS-PAY = REG-PAY + OT-PAY.
MACRO
0002:0008:0 NAMC (02,0008)
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
. MACRO
0002:0008:0 VALC (02,000E)
0002:0008:2 VALC (02,000F)
0002:0008:4 ADD
0002:0008:5 BRST
0002:000C:1 LT48
0002:000E:0  RDIV
0002:000E:1  NTIA
0002:000E:2  NAMC (0z,0008)
0002:000E:4  STOD
MACRO
002820 PERFORM 400-CALC-TAXES.

BURROUGHS EXTENSION EXCEEDS U.S.

ZERO
NAMC (02,000E)
STOD

BO
500E REG-PAY
B8

MACRO 0001:75:SNTNC 043F 0000

IF HOURS-WORK GREATER THAN 40 THEN PERFORM 300-CALC-OT.

MACRO 0001:78:EXPRM 0001
MACRO 0001:79:5wMCO OOAB
MACRO 0001:7A:0PERM 0004

LT8 B205
NAMC (02,0013) 5013 HOURS-WORK
[NDX A6
LT8 B207
ICVD CA

MACRO 0001:7B:L1TCM 0004
LT8 B228

MACRO 0001:7C:RELAM 008A
LT8 B264
LT16 B30FAQ
GRTR 8A

MACRO 0001:7D:BFIXM 0000
FIXup

MACRO 0001:7E:ENDXM 0001

MACRO
MACRO
MACRO
MACRO

MACRO
MACRO
MPCW
LT16
BRUN 0000:0

MACRO
MACRO
BRFL 0008:0

HIGH LEVEL *** THEN

0001:82:DEFPM 0001
0001:83:MHPWM 0010
0001:84:PFTMM 0010
0001:85:PFRMM 0000
0001 :86:XXXXM 0000
0001:87:XXXXM 0010

BFO00000BOEND2
830003
*LINK*

0001:88:XXXXM 00A3
0001:89:BRFPM 0001

A0000B

MACRO 0001:8A:SNTNC 0415

MACRO
MACRO
MACRO

0001:8D:CPERM 0006

5008 GROSS-PAY

0001 :8E:F1XMM 0000
0001 : 8F : SWMCO 0047
0001 :90:EXPRM 0000
0001:91:TEIDM 0009
0001:92:TEIDM QO0DA
0001:93:TEOPM 0080
0001:94:ENDXM 0000
0001:95:TEVAL 0000

100E REG-PAY
100F OT-PAY
80

9E2E
BE0Q00000989680
85

86
500B GROSS-PAY

88
0001:96:SNTNC 040E

0001:99:MHPWM 0011
0001:9A:PFTMM 0011
0001:98:PFRMM 0000

0000
0001
0001

5.0

7.0

0401
40.0

0001
100.0
4000.0

0000
0000

0000
0000
0000
0000
0000
0000

3.0

0000
0000

0000
0000

0000
0001
0000
0000
0000
0000
0000
0000

1.0E+7

0000

0000
0000
0090

0002:0005:3

0002:0008:0

0002:000E :5

<<0001>>

SdANNA NVYO0Ud ANV SONILSIT ITIdNOD
S143DNOD 000 8/0009 8/000S 8 ANV S3IY3IS V



SL-D

002840

0002 : 000E :
0002:0010:
0002:0010:

5
0
3

MPCW
LT16
BRUN

MACRO 0001:9C
MACRO 0001:90

:XXXXM 0000
:XXXXM 0011

BF00000110£002
B30004
0000:0 *LINK*

MACRO 0001 :9E
MACRO 0001:9F

:XXXXM 00A3
:SNTNC 0415

COMPUTE NET-PAY = GROSS-PAY - TOTAL-TAXES.
MACRO 0001:A2:0PERM 0007

0002:0011:

0002:0011:
0002:0011:
0002:0011:
0002:0011:
0002:0012:
0002:0014:
0002:0014:
0002:0014:
0002:0014:

002900 300-CALC-OT.

003000

0002:0014:
0002:0015:
0002:0015:
0002:0015:
0002:0016:
0002:0016:

* 0002:000A:
COMPUTE OT-PAY =

0002:0016:

0002:0016:
0002:0016:
N002:0017:
N002:0017/:

0

ar—,o~RPRMarnO

—_QwNn oW

3

NAMC (02,000C)

500C NET-PAY

MACRO 0001:A3:FI1XMM 0000
MACRO 0001 :A4:SWMCO 0047
MACRO 0001 :A5:EXPRM 0000
MACRO 0001:A6:TEIDM 0006
MACRO 0001:A7:TEIDM 0008
MACRO 0001:A8:TEOPM 0081
MACRO 0001:A9:ENDXM 0000
MACRO 0001:AA:TEVAL 0000

VALC (02,0008B)
VALC (02,000D)
SUBT
BRST
LT48
ROIV
NTIA
NAMC (02,000C)
STOD

100B GROSS-PAY
100D TOTAL-TAXE
81

9E2E
BEQO0000989680
85

86

500C NET-PAY

B8

MACRO 0001:AB:SNTNC 0010

MACRO 0001:AE:ENDLM 0010

DUPL
LT8
SAME
BRFL 0016:2
DLET
DBUN

B7
B202
94
A04016
BS

AA

MACRO 0001 :AF:DEFLM 0011

BRUN 0016:2

A24016

HOURLY-RATE * .5 * (HOURS-WORK - 40).
MACRO 0001:B2:0PERM 0O0OA

2

— O RN

NAMC (02,000F)

500F OT-PAY

MACRO 0001:83:FIXMM 0000
MACRO 0001:B4:SwMCO 0047
MACRO 0001 :85:EXPRM 0000
MACRO 0001:86:TEIDM 0005
MACRO 0001:B7:TECON 0000
MACRO 0001:B8:LITCM 0005
MACRO 0001:B9:TEOPM 0082
MACRO 0001:BA:EXPRM 0000
MACRC 0001:8B:TEIDM 0004
MACRO 0001:BC:TECON 0000
MACRO 0001:BD:LITCM 0004
MACRO 0001 :BE:TEOPM 0081
MACRO 0001 :BF :ENDXM 0000
MACRO 0001:CO:TEOPM 0082
MACRO 0001:C1:ENDXM 0000
MACRO 0001:C2:TEVAL 0000

LTS8
NAMC (02,0013)
INDX
.78

B205

5013 HOURS-WORK
Ab

B207

0000
0000

4.0

0000
0000

0000

0000
0001
0000
0000
0000
0000
0000
0000

S

1.0E+7

0000
0000
2.0

0000

0000

0000
0001
0000
0000
0000
0420
0000
0000
0000
0000
0401
0000
0000
0000
0000
0000

5.0

7.0

0002:0011:0

0002:0014:5

0002:0016:2

SdNNG WVYYD0YUd ANV SONILSIT ITIdNOD
S1d3DONODJ 000 9/0009 8/000S 8 ANV S3HIS V



91-2

003100
WARNING 435 :

0002:0017:
0002:0017:
0002:0017:
0002:0018:
0002:0018:
0002:0018:
0002:0018:
0002:0018:
0002:0019:
0002:0018:
0002:0018:
0002:0018:
0002:0018:

CALL SYSTEM DUMP

0002:0018:
0002:001C:

0002:001C:
0002:001C:
0002:001C:

003400 400-CALC-TAXES.
003500*

0002:001D:
0002:001D:
0002:0010:
0002:001D:
0002:001E:
0002:001E :

* 0002:0010:
003600

0002:001E:

0002:001E:
0002:001E :
0002:001E :
0002:001F :

003700
WARNING 435

CALL SYSTEM DUMP.

0002:001F :
0002:001F :
0002:001F :
0002:0020:
N002:0020:

AR OHUANFOUISW

5

0
2
4
5

1
3
4
1
2
3

3

3
3
4
0

1
2
4
0
1

ICVD CA

ZERO BO

MULT 82

ZERO BO

ADD 80

LT8 B20A 10.0
101V 84

BRST 9E2E

LT48 BEOD0000989680  1.0E+7
RDIV 85

NTIA 86

NAMC (02,000F) 500F
ST0D B8
MACRO 0001:C3

MACRO 0001:C9
MKST AE

NAMC (01,0004) 6004

0T-PAY
:SNTNC 0047 0000

BURROUGHS EXTENSION EXCEEDS U.S. HIGH LEVEL *** SYSTEM

:PROCM 0000 010C

MCP PROCEDURE :

MCP . PROGRAMDUMP

LT8
ENTR
NOOP

DUPL
LT8

SAME
BRFL
DLET
DBUN

BRUN

8202 2.0
AB
FE

MACRO 0001 :CA:SNTNC 0011 0000

CALCULATE FICA-TAX AND FED-TAX.

MACRO 0001 :CF:ENOLM 0011 0000
8203 3.0

0C1E:3 AO601E

BS

AA
MACRO 0001:D0:DEFLM 0012 0000
001E:3 A2601E

COMPUTE TOTAL-TAkES = FICA-TAX + FED-TAX.

MACRO 0001:D3:0PERM 0008 0000

NAMC (02,000D) 5000 TOTAL-TAXES

ZERO
ZERO

MACRO 0001:D4:FIXMM 0000 000C
MACRO 0001:D5:SwMCO 0047 0001
MACRO 0001:D6:EXPRM 0000 0000
MACRO 0001:D7:TEIDM 000B 0000
MACRO 0001:D8:TEIDM 000C 0000
MACRO 0001:09:TEOPM 0080 0000
MACRO 0001:DA:ENDXM 0000 0000
MACRO 0001:DB:TEVAL 0000 0000

BO

BO

NAMC (02,000D) 5000 TOTAL-TAXES

STOD

B8
MACRO 0001:DC:SNTNC 0047 0000

. BURROUGHS EXTENSION EXCEEDS U.S. HIGH LEVEL *** SYSTEM

MACRO 0001:E2:PROCM 0000 010C

MKST At
NAMC (01,0004) 6004 MCP.PROGRAMDUMP
LT8 B202 2.0
ENTR AB
NOOP FE

MACRO 0001:E3:SNTNC 0000 0000
MACRO 00O01:E4:ENDLM 0012 0000

PROGRAMDUMP

0002:0018B:5
002700 <<0002>>

= (01,004)

0002:001D:0
0002:001D:0

0002:001E:3

0002:001F : 1
003100 <<0003>>

SAANNG NVYYO0Ud ANV SONILSIT ITIdINOD
S1d3DNOD 000£ 8/0009 9/000S 8 ANV S3IIH3IS V



L1-D

0002:
0002:
0002:
0002 :
0002:
0002:

0002:

0005:
0005:

0005

0005:

0005

0005:
0005:

0005
0005

0005:

0005
0005

0005:

0005

0005:

0005
0005

0005:
0005:

0005
0005

0005 :
0005 :

0005
0005

0005 :

0005

0005
0005
0005
0005
0005

0005 :
0005:

0005

0005 :
0005:
0005 :
0005:
0005:
0005:
0005 :

0020:
0020:
0020:
0021:
0021:
0021:

0021:

0000:
0000:

-0000:
0001:
:0001:
0001:
0001 :
:0001:
:0002:

0002:
:0002:
:0002:
0003:
:0003:
0003:
:0003:

:0004:
0004:
0004:

:0004:
:0005:
0005 :
0005 :
:0006:
: 0006 :
0006 :
:0006:

:0007:
: 0007 :
10007 :
:0007 :
:0008:
0008:
0008:
:0008:
0009:
0009:
0009:
0006
0009
000A :
000A

AwonuwmN

oONUTN—FO D ~N O

wNO aeanNno e

W N—ROPRNOUVEBNO OO ANO &

DUPL
LT8
SAME
BRFL 0021:5
DLET

DBUN

MACRO
NVLD

MACRO
LT8
RPRR

NAMC (02,0019)
LOAD

EQUL

FIXUP

NVLD

BRFL 0002:0
MKST

NAMC (01,0006)
NAMC (02,0002)
LOAD
LT8
LT8
ENTR
MKST

NAMC (01,0007)
ENTR
EXIT

LT8

RPRR

NAMC (02,001A)
RDLK

ZERO

EQUL

FIXupP

MKST

NAMC (01,0008)
NAMC (02,001B)
STFF

ONE

ENTR

ONE

NAMC (02,001A)
RDLK

ZERO

EQUL

BRFL 0006:5
BRTR 0009:5
LT8

RPRR

NAMC (02,0019)

B7

B204 4.0
94

AOAO21

B5

AA

0001 :ES5:ENDLM 0000 0000

FF

0001 :E6:THEND 0000 0000

235 53.0
9588

5019
BD
8C

FF
A00002
AE

MCP PROCEDURE :

6006 MCP.MUTATE

5002

BD

B20C 12.0
206 6.0

AB

AE

MCP PROCEDURE :

6007 MCP.BLOCKEXIT
AB
A3

B235 53.0
9588

501A

95BA

BO

8C

At

MCP PROCEDURE :

6008 MCP .WAIT
5018

AF

B1

AB

81

501A

958A

BO

8C

ADAQ06

A1A009

B235 53.0
9588

5019

SEGMENT 0002 IS 0022 LONG

START OF SEGMENT AT (01,005)
PCW(005:000:0) = (02,015)

LIBRARY USER = (02,019)

MUTATE = (01,006)
BLOCKEXIT = (01,007)
PCW(005:004:4) = (02,016)
LIBRARY LOCK = (02,01A)
LIBRARY EVENT = (02,01B)

WAIT = (01,008)

SdANNA NVYO0YUd ANV SONILSIT ITIdNOD
S143DNOD 000Z 9/0009 8/000S 8 ANV S31¥3IS V



8L-D

0005:000A:5 STOD B8
0005:0008:0 FIXupP
0005:0008:3  MKST AE
0005:0008B:4 NAMC (01,0007) 6007 MCP .BLOCKEXIT
0005:000C:0 ENTR AB
0005:000C:1  EXIT A3
0005:000C:2 ZERO BO
0005:000C:3  NAMC (02,0019) 5019
0005:000C:5 STOD B8
0005:0000:0  ZERO BO
0005:000D:1 NAMC (02,001A) 501A
0005:000D0:3  ROLK 95BA
0005:0000:5 LT8 B235 53.0
0005:000E :1 RPRR 9588
0005:000¢ : 3 EQUL 8C
0005:000E : 4 FIXUP
0005:000F : 1 MKST AE
MCP PROCEDURE: CAUSEP = (01,009)
0005 : 000F : 2 NAMC (01,0009) 6009 MCP.CAUSEP
0005:000F : 4 NAMC (02,001B) 5018
0005:0010:0  STFF AF
0005:0010:1 ONE Bl
0005:0010:2 ENTR AB
0005:000E€ : 4 BRTR 0010:3 A16010
0005:0010:3 ZERO BO
0005:0010:4 RETN A7
0005:0008:0 BRUN 0010:5 A2A010
0005:0010:5 MPCW BF000600B0E0OS
0005:0012:0 NAMC (03,0002) 7002
0005:0012:2 STFF AF
LIBRARY EXIT PCW = (02,01D)
0005:0012:3 NAMC (02,001D) 5010
0005:0012:5 OVRD BA
0005:0013:0  MPCW BF000400C12005
0005:0015:0 L T48 BE 800000100000 1048576.0
0005:0017:0 LT8 B206 6.0
0005:0017:2 STAG 9584
0005:0017:4 ZERO BO
0005:0017:5 NAMC (02,0018) 5018
0005:0018:1 DBUN AA
SEGMENT 0005 IS 0019 LONG
START OF SEGMENT AT (01,00A)
LIBRARY FIRST EXECUTABLE PCW{0O0A:008:2) = (01,008)
000A:0008:2 MKST AE
MCP PROCEDURE: MYSELF = (01,00C)
000A:0008:3 NAMC (01,000C) 600C MCP._MYSELF
000A:0008:5 ENTR AB
000A:0009:0 FIXUpP
NORMAL FIRST EXECUTABLE PCW(O0O0A:009:3) = (01,00D)
000A:0009:3  ZERO BO
000A:0009:0 BRUN 0009:4 A28009
STKPARAM = (02,002)
000A:0009:4  NAMC (01,0000} 6000
000A:000A:0 STFF AF
000A:000A:1 BSET 960D
STKNAME = (02,003)
000A:000A:3 LT48 BE270000840004 2.68220992439E-6
000A:000C:0 LT8 B205 5.0
000A:000C:2 STAG 9584

STKFILE = (02,004)
000A:000C:4  ZERO B0

SdANA NVYD0Ud ANV SONILSIT ITIdWNOD
S1d3ONOD 000Z 8/0009 8/000S 8 ANV S31Y3S V¥



6L-D

COMPILE 0.K.

000A:
000A:
000A:
000A:

000A:
000A:

000A:

000A:
000A:
000A:
000A:
00O0A:
000A:
000A:

000A:
000A:
000A:
000A:
O00A :
000A:
000A:
000A:
0O00A:
000A:
000A:
000A:
000A:
000A:
000A:
OO00A:
000A:

000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A :
000A:

001D:
001F :
001F :
001F :

001F :
001F :

0020:

0020:
0020:
0021:
0021:
0021:
0021:
0000:

0000:
0000:
0000:
0000:
0001:
0001:
0001 :
0002:
0002:
0002:
0002:
0003:
0003:
0003:
0004:
0004:
0004:

0004:
0004:
0005 :
0005 :
0005:
0005:
0006 :
0006 :
0000:
0006 :
0006 :
0007 :
0007:
0006 :
0007 :
0007 :
0008:
0008:

NUMBER OF WARNINGS DETFCTED = 0003

P AST WARNING AT 002700

o AW

O ANO A~

—ORWRNRFRUOIAMTIROULNO UVTIW N—OANMUNIR_RWHFRUITAENUT.SWN

MPCW
ZERO
ZERO
ZERO

ZERO
JOIN

ZERO

LT16
BSET
LT8
STAG
PUSH
BRUN 0000:0
NAMC (02,0002)

LOAD

LERO

SAME

FIXUP

NAMC (02,0015)
STFF

LT8

NAMC (02,0017)
INDX

OVRD

NAMC (02,0016)
STFF

LT8

NAMC (02,0017)
INDX

OVRD

MKST

NAMC (01,000F)
ONE

NAMC (02,0017)
LOAD

NAMC (02,0000)
STFF

ENTR

FIXUP

BRTR 0006: 4
MKST

NAMC (02,0018)
ZERO

ENTR

BRUN on0n7:3
MKST

NAMC (01,0007)
ENTR

EXIT

BF 0002
BO
BO
BO

BO
9542

BO

B 32800
962F
B206
95B4
B4
A20000
5002

8D
B0
94

5015
AF
B202
5017
A6
BA
5016
AF
B204
5017
A6
BA
AE

600F
B1
5017
BD
5000
AF
AB

A18006
AE
5018
BO

AB
A26007
At
6007
AB

A3

0000E 002
STKPCW
TEMPORARY
STKOP
STKOP
STKOP
TEMPORARY
10240.0
6.0
LIBRARY VARIABLE
2.0
4.0
MCP PROCEDURE: FREEZELIB
MCP .FREEZELIB

MCP .BLOCKEXIT

SEGMENT Q00A IS 0023 LONG

(02,018)
= (02,019)
(02,01A)
(02,018)

(02,01C)
= (02,01D)

= (02,002)

= (01,00F)

SdANNQA WVYO0YHd ANV SONILLSIT ITIdWNOD
S1d3DONOD 000, 8/0009 8/000S 8 ANV S31Y3SV



0Z-d

000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A:
000A:

000A:
000A:

000A:
000A:
000A:

00O0A :

000A:
000A:
000A:

000A:
000A:
000A :
000A:
000A:
000A:

000A:
000A:
000A:

000A:
000A:
000A:

000A:
000A:

000cC:
000E :
000E :

000E -
000E :
000F :
00O0F :
0010:

0010:
0010:
0010:
0010:
0011:
0011:
0011:
0011:
0011:
0011:

0012:
0012:

0012:
0012:
0013:
0013:
0013:
0013:
0013:

0014:
0014:
0014:
0014:
0015:
0015:

0015:
0017:
0017:
0017:
0019:
0018:

0010:
001D:

O H—-Un N oOwt

N

[l ™ B2}

3 rnowv NOA_WHO Nl O_N

NO O o

LT48
LT8
STAG

ZERO
LT8
INSR
LT8
STAG

ZERO
LERO
LERO
ZERO
ZERO
ZERO
ZERO
ZERO
ZERO
ZERO

ZERO
MKST

NAMC
NAMC
STFF
NAMC
STFF
ONE

ENTR

PUSH
NAMC
LOAD
LT8

BSET
INSR

LT748
LT8

STAG
MPCW
MPCW
LT48

LT8
STAG

{01,000E)
(02,0007)

(02,0009)

(02,0007)

BEQ4000B400000
B205
9584
BO
B209
9Cc2714
8205
9584
BO

BO

BO

BO

BO

BO

8O

BO

BO

BO

BO
AE

TEMPORARY
3.166593488E+15
5.0
STKARRAY
9.0
5.0
STKARRAY
TEMPORARY
TEMPORARY
STKOP
STKOP
STKOP
STKOP
STKOP
STKOP
STKOP
STKOP

MCP PROCEDURE: INSTACKARRAYDEC

600E MCP.INSTACKARRAYDEC

5007
AF
5009
AF
Bl
AB

B4
5007
8D
B26C
9615
9C2A17

BE040002A00000
8205
9584
BF00COOOO0OE 005
BF00080040E005
BE00C001040001

B205
9584

2097260.0
STKARRAY
7.3887181386E+14
5.0
STKARRAY
STKPCW
STKPCW
17039361.0
5.0
STKARRAY

(02,005)

(02,006)

02,007)
02,008)
02,009)

(

(

(

(02,00A)
(02,008)
(02,00C)
(02,00D)
(02,00€)
(02,00F)
(02,010)

(02,011)

{01,00€E)

(02,012)

(02,013)
(02,014)
(02,015)

(02,016)

(02,017)

SdANNA NVYO0Ud ANV SONILSIT ITIdNOD
S1d3DNOD 000 9/0009 8/000S 8 ANV S3Y3IS V



LZ-D

TOTAL CARD COUNT: 46

D[01] STACK SIZE: 0016(010) WORDS

D[02] STACK SIZE: 0030(0lE) WORDS

CORE ESTIMATE: 711 WORDS

STACK ESTIMATE: 310 WORDS

CODE FILE SIZE: 10 RECORDS

PROGRAM SIZE: 3 CODE SEGMENTS, 94 TOTAL WORDS

SUBROUTINE NAME: OT, LEVEL 02

COMPILED ON THE B6900 FOR THE LEVELO SERIES

COMPILER COMPILED WITH THE FOLLOWING OPTIONS:

BOMS .

COMPTLE TIMES: ELAPSED CPU [-0 RPM

0020.070 0002.072 0002.269 01332

SdANNG NVYO0Ud ANV SONLLSITITIdWNOD
S1d3DNOD 000£ 8/0009 8/000S 8 ANV S3IY3IS V



gD

B6900 PROGRAMDUMP FOR STACK 2FE (MIX 3014/3023) BOSR=5BA10 TUESDAY,

NAME: (CONCEPTS)OBJECT/EP4195/PAYROLL/C74/0T ON SYSTEMSED.

MCP 36.140.3025: *SYSTEM/MCP36140. INTRINSICS: SYSTEM/INTRINSICS ON DISK. (LOADED)
SYSTEM SERIAL: #2372 HOSTNAME : SYSEDB6900. GROUP ID: DEFAULT.

CAUSE OF DUMP: PROGRAM REQUESTED @ 002:001C:5, 00A:0007:3.
PIB HISTORY WORD AT ENTRY TO PROGRAM DUMP: 0 000000 00G00O0.

PROGRAMDUMP OPTIONS: (DEFAULT)

033A = LOSR (000SBDA4A)

003C (01,0002) O 000000 000001 OP: 0CT: 00000000 00000001 , EBC:??7????, DEC:1
0038 3 200A01 COEQ02 RCW: LL=03, NORML STATE, TRUE [USER SEGMENT
SEG DESC: 3 800002 2AE8C3

FEBRUARY 11,1986 15:00:10

@ 0002:001C:5]

CODE: 3 2EBEFF FFFFFF 3 000000 989680 3 858650 OFBSAE >3 6004B2 02ABFE< 3 B7B203 94A060

003A ----D[01]=>3 C12000 804007 *MSCW: PREVIOUS MSCW @ 0033; D[00]=0008 IN STACK 012

@ 000A:0007:3]

0039 (03,0006) 0 000000 000003 OP:  OCT:00000000 00000003 , EBC:2??7??, DEC: 3
0038 (03.0005) 7 2FEO00 BOEQO2 PCW: LL=03, D[1] SEGMENT @ 0002:0008:0, NORML STATE
0037 (03,0004) O 000000 000002 OP: OCT: 00000000 00000002 , EBC:?2???7, DEC:2
0036 (03.0003) 7 2FEC00 40E002 PCW: LL=03, D[1] SEGMENT @ 0002:0004:0, NORML STATE
0035 (03,0002) O 000000 000000
0034 3 000600 70A00A RCW: LL=02, NORML STATE [USER SEGMENT
SEG DESC: 3 800002 3B3001
CODE: 3 AGBAAE 600FB1 3 5017BD 5000AF 3 ABA260 07AESO >3 18BOAB AE6007< 3 ABA3AE 600CAB
0033 ----D[03]=>3 6FEO01 40CO1F *MSCW: PREVIOUS MSCW @ 0014, D[C2]=0014
0032 (02,001E) 6 800000 002800 SCW: (BLOCK BELOW DECLARED FILES, SNGL-OIM ARRAYS)
0031 (02,001D) 0O 000000 000000
0030 (02,001C) 2 000000 000000 DPOP: OCT:00000000 00000000 , 2ND:0
002F {02.0018) 2 000000 000000 DPOP: OCT:00000000 00000000 , 1ST:0, DBL:0.0
002 (02,001A) 0 000000 000000
0020 (02,0019) 0 000000 000000
002C (02,0018) 7 2FE200 O0E002 PCW: LL=03, D[11 SEGMENT @ 0002:0000:1, NORML STATE
0028 (02.0017) S 000001 040001 DESC [ABSENT-MOM]: DATA, LENGTH=16 (CODEFILE ADRS=1)
002A (02,0016) 7 2FEB00 40EQ05 PCW: LL=03, D%l] SEGMENT @ 0005:0004:4, NORML STATE
0029 (02.0015) 7 2FEO0O0 OOEOOS PCW: LL=03, D[1] SEGMENT @ 0005:0000:0, NORML STATE
0028 (02,0014) 5 040002 AQ0000 DESC [ABSENT-MOM]: STRING (8-BIT), LENGTH=42 (UNREFERENCED OLAY SPACE)
0027 (02.0013) 5 C20006 C5BA2D DESC [PRESENT-COPY]: STRING (4-BIT), LENGTH=108 (POINTS @ OFFSET=0010 IN THIS STACK)
0026 (02.0012) 3 000000 000000 SEG DESC [ABSENT-MOM]: LENGTH=0 (CODEFILE ADRS=0)
0025 (02,0011) 0O 000000 000000
0024 (02,0010) 0 000000 000000
0023 (02,000F) 0O 000000 000000
0022 (02,000E) 0O 000000 000000
0021 (02,0000) O 000000 000000
0020 (02,000C) 0 000000 000000
001F (02,0008) 0O 000000 000000
001E (02,N00A) O 000000 000000
001D (02.0009) O 000000 004500 OP:  OCT:00000000 00042400 , EBC:??22??, DEC: 17664
001C (02,0008) S 400000 15BA2B DESC [ABSENT—COPY]: DATA, LENGTH=1 (MOM @ OFFSET=001B IN THIS STACK)
001B (02.0007) 5 COD0OO 95BA2D DESC [PRESENT-COPY]: DATA, LENGTH=9 (POINTS @ OFFSET=0010 IN THIS STACK)
001A (02.0006) 5 040008 400000 DESC [ABSENT-MOM]: STRING (8-B1T), LENGTH=180 (UNREFERENCED OLAY SPACE)
0019 (02,0005) 0 NN0OOO 000000
0018 (02.0004) 5 270000 B40O04 DFSC [ABSENT-MOM]: FILE DESCRIPTION, LENGTH= 11 (CODEFILE ADRS=4)
0017 (02.0003) 1 AFFO0O0 402000 SIRW: OFFSET=0004 {0004+0000) [N STACK 2FF
0016 (02.0002) 0 0NOCOC 000000
0015 3 000241 E8BFCD  RCW: LL=02, CNTRL STATE [MCP SEGMENT

@ OFCD:04FF :1 (16562000) ]

SdANNA WVYO0Ud ANV SONILSITITIdNOD
S1d43ONO0OD 000£ 8/0009 8/000S 8 ANV S3H3S V



€C-D

SEG DESC: 3 8800B6 ABCAC1
CODE: 3 BEFFFF FFFFFF 3 4A6870 €30C30 3 ABA3AE 400AAB >3 A3B234 B22695< 3 B8B180 95B9A2

0014 ----0[02]=>3 EFFO00 408002 *MSCW: PREVIOUS MSCW @ 0012; D[01]=0004 IN STACK 2FF
0013 3 000000 002000 RCW: DUMMY (RUN)
0012 ----D[02]=>3 F82055 108011 *MSCW: PREVIOUS MSCW @ 0001; D[01]=0551 IN STACK 382

0000 = BOSR (0ODO0SBA10)

SdNNA NVYOD0Ud ANV SONILSITITIdNOD
S1d3DNOD 000L 8/0009 8/000S 8 ANV SINHIS V



vZ->

B6900 PROGRAMDUMP FOR STACK 2FE (MIX 3014/3023) BOSR=58A10
NAME:  (CONCEPTS)OBJECT/EP4195/PAYROLL/C74/0T ON SYSTEMSED.

MCP 36.140.3025: *SYSTEM/MCP36140.
SYSTEM SERIAL: #2372 HOSTNAME : SYSEDB6900.

GROUP ID: DEFAULT.
CAUSE OF DUMP: PROGRAM REQUESTED @ 002:0020:1, 00A:0007:3.
PIB HISTORY WORD AT ENTRY TO PROGRAM DUMP: 0 000000 000000.

PROGRAMDUMP OPTIONS: (DEFAULT)

033A = LOSR  (0005BDA4A)

003C (01,0002) 0O 000000 000001 OP: 0CT: 00000000 00000001 , EBC:222777,
0038 3 200202 00E002 RCW: LL=03, NORML STATE, TRUE

SEG DESC: 3 800002 2AE8C3

CODE: 3 B78203 94A060 3 1EBSAA B0O5000

TUESDAY, FEBRUARY 11,1986 15:00:11

INTRINSICS: SYSTEM/INTRINSICS ON DISK. (LOADED)

DEC:1

[USER SEGMENT @ 0002:0020:1]

3 BBAE60 04B202 >3 ABFEB7 B20494< 3 AOAQ21 BSAAFF

003A ----D[01]=>3 C12000 804007 *MSCW: PREVIOUS MSCW @ 0033, p{00]=0008 IN STACK 012
0039 (03.0006) 0O 000000 000004 OFP: 0CT: 00000000 00000004 , EBC:??22??, DEC:4
0038 (03,0005) 7 2FEQOL 10E002 PCW: LL=03, D[1] SEGMENT @ 0002:0011:0, NORML STATE
0037 (03,0004) 0O 000000 000002 OP: 0CT:00000000 00000002 , EBC:?22227, DEC:2
0036 (03,0003) 7 2FEQ00 40E002 PCW: LL=03, p[1] SEGMENT @ 0002:0004:0, NORML STATE
0035 (03,0002) 0O 000000 000000
0034 3 000600 70A00A RCW: LL=02, NORML STATE [USER SEGMENT @ 000A:0007:3]
SEG DESC: 3 800002 3B3001
CODE: 3 AGBAAE 6OOFB1 3 SO17BD 5000AF 3 ABA260 07AES0 >3 18BOAB AE6007< 3 ABA3AE 600CAB
0033 ----D[03]=>3 6FEOOL 40CO1F *MSCW: PREVIOUS MSCW @ 0014; D[02]-=0014

0032 (02,001F)
0031 (02,001D)
0030 (02.,001C)
002F (02.0018)
002E (02.001A)
002D (02.0019

000000 000000

000000 000000 DPOP: OCT:00000000 00000000 , 2ND:O
000000 000000 DPOP: OCT:00000000 00000000 , 1ST:0, DBL
000000 000000

000000 000000

0021
0020
001F
001E

02.0000)
02,000C)
02,0008)
02 .000A)
001D (02,0009)

000000 000000
000000 000000
000000 000000
000000 000000
000000 004500 OP:  OCT:00000000 00042400 , EBC:????7?7,

800000 002800 SCW: {BLOCK BFLOW DECLARED FILES, SNGL-DIM ARRAYS)

:0.0

NORML STATE

NORML STATE
NORML STATE

PRESENT-COPY]: STRING (4- BIT) LENGTH=108 (POINTS @ OFFSET=0010 IN THIS STACK)

DEC:17664

)

002¢ (02,0018) 2FE200 OOE002 PCW: LL=03, D[l] SEGMENT @ 0002:0000:1,
0028 (02,0017) 000001 040001 DESC [ABSENT-MOM]: DATA, LENGTH=16 (CODEFILE ADRS=1)
002A (02.0016) 2FE800 40EQ05 PCW: LL=03, D{l] SEGMENT @ 0005:0004:4,
0029 (02,0015) 2FEQC0 OOE00S PCW: LL=03, D[1] SEGMENT @ 0005:0000:0,
0028 (02,0014) 040002 A00000 DESC %ABSENT MOM]: STRING (8-BIT), LENGTH=42 (UNREFERENCED OLAY SPACE)
0027 (02,0013) 20006 C5BA2D DESC
0026 (02,0012) 000000 000000 SEG DESC [ABSENT-MOM]: LENGTH=0 (CODEFILE ADRS=0)
0025 (02,0011) 000000 000000
0024 (02,0010) 000000 000000
0023 (
0022 EOZ ,000€) 000000 000000

(

(

(

(

(

00iC (02.0008)
0018 (02,0007)
001A (02.0006

00000 95BA2D DESC

)
0019 (02,0005)
0018 (02,0004)
0017 (02.0003)
0016 (02,0002)
0015

000000 000000

000000 000000

6
0
2
2
0
0
7
5
7
7
5
5
3
0
0
02,000F) 0 000000 000000
0
0
0
0
0
0
5
5
5
0
5
1
0
3 00027E ESBFCD RCW: LL=02, CNTRL STATE

400000 15BA2B DESC [ABSENT-COPY]: DATA, LENGTH 1 (MOM @ OFFSET=001B IN THIS STACK)
PRESENT-COPY]: DATA, LENGTH=9 (POINTS @ OFFSET=001D IN THIS STACK)
040008 400000 DESC [ABSENT-MOM]: STRING (8-BIT), LENGTH=180 (UNREFERENCED OLAY SPACE)

270000 840004 DESC [ABSENT-MOM]: FILE DESCRIPTION, LENGTH=11 (CODEFILE ADRS=4)
6FF000 402000 SIRW: OFFSET=0004 (0004+0000) IN STACK 2FF

[MCP SEGMENT @ OrCD:04EE:1 (16562000) ]

SdANNA NVYO0Ud ANV SONLLSIT ITdWOD
S1d3DONOD 000Z 9/0009 9/000S 8 ANV SIYIS V



SZ-D

SEG DESC: 3 880086 ABCAC!
CODE: 3 BEFFFF FFFFFF 3 4A6870 C30C30 3 ABA3AE 400AAB >3 A3B234 B22695< 3 B8B180 95B9A2

0014 ----D[02]=>3 EFFO00 408002 *MSCW: PREVIOUS MSCW @ 0012; D[01]=0004 IN STACK 2FF
0013 3 000000 002000 RCW: DUMMY (RUN)
0012 ----D{02]=>3 F82055 108011 *MSCW: PREVIOUS MSCW @ 0001, D[01]=0551 IN STACK 382

0000 = BOSR (0005BA10)

SdAING WVYD0¥d ANV SONILSIT ITIdNOD
S1d3DONOD 000£ 9/0009 8/000S 8 ANV S31¥3IS V¥



9¢-D

EP4195/LIBRARY/ALGOL (02/11/86)

%%%%% SAMPLE LIBRARY PROGRAM IN ALGOL %%%%%
$ SET LIST STACK $

BEGIN
PROCEDURE SQUAREIT (X);
REAL X;
BEGIN
X = X * X,
PROGRAMDUMP (LIBRARIES);
END;

% END OF PROCEDURE SQUAREIT
EXPORT SQUAREIT;,
%%% OUTER BLOCK %%%
FREEZE (TEMPORARY);
END.

2:49 PM TUESDAY, FEBRUARY 11, 1986

00001300
00001400
00001500
00001600
00001700
00001750
00001800
00001850
00001870
00001900
00002000
00002100
00002200
00002300

SdWNG WVYO0YUd ANV SONILSIT 3TUdWN0D
S1d3DNOD 000£ 8/0009 8/000S 8 ANV S31H3S V



LZ-D

BURROUGHS LARGE SYSTEMS ALGOL COMPILER, VERSION 36.130.175,  TUESDAY, 02/11/86, 03:00 PM.

OBJECT/EPA4195/LIBRARY/ALGOL ON DISK

%%%%% SAMPLE LIBRARY PROGRAM IN ALGOL %%%%% 00001300 000:0000:0
$ SET LIST STACK $ 00001400 000:0000:0
BEGIN 00001500 000:0000:0
(01,0002) = BLOCK#1
(01,0003) = SEGMENT DESCRIPTOR
BLOCK#1 IS SEGMENT 0003
PROCFDURE SQUAREIT (X); 1 00001600 003:0000:1
(02,0002) = SQUAREIT
REAL X; 00001700 003:0000:1
BEGIN 00001750 003:0000:1
(03,0002) = X
X = X * X, 00001800 " 003:0000:1
PROGRAMDUMP (L IBRARIES); 2 00001850 003:0001:4
(01,0004) = PROGRAMDUMP
END; 00001870 003:0003:0
% END OF PROCEDURE SQUAREIT 2 00001900 003:0003:1
EXPORT SQUAREIT; 00002000 003:0003:1
%%% OUTER BLOCK %%% 00002100 003:0003:1
FREEZE (TEMPORARY); 00002200 003:0003:1
(02,0003) = LIBRARY DIRLCTORY
(01,0005) = FREEZELIB
END. 00002300 003:0006:3

(01,0006) = BLOCKEXIT
DATA LENGTH IN WORDS IS 0OOA

BLOCK#1(003) LENGTH IN WORDS IS OOOE

NUMBER OF ERRORS DETECTED = O.

NUMBFR OF SEGMENTS = 4. TOTAL SEGMENT SIZE = 24 WORDS. CORE ESTIMATE = 31 WORDS. STACK ESTIMATE = 7
PROGRAM SIZE = 14 CARDS, 29 SYNTACTIC ITEMS, 10 DISK SECTORS.

PROGRAM FILE NAME: OBJECT/EP4195/LIBRARY/ALGOL ON DISK. 85/6000 CODE GENERATED.

COMPILATION TIME = 2.856 SECONDS ELAPSED; 0.352 SECONDS PROCESSING; 0.752 SECONDS 1/0.

SdANNG AVYD0YUd ANV SONILSIT ITdWNOD
S1d43DNO0D 000Z 8/0009 8/000S 8 ANV SIIHIS V



EP4195/L IBRARY/ALGOL/USER (02/11/86) 2:49 PM TUESDAY, FEBRUARY 11, 1986

%%%%% SAMPLE LIBRARY USER PROGRAM IN ALGOL %%%%% 00000010
$ SET LIST STACK § 00000050
BEGIN 00000100
LIBRARY MYLIB (TITLE = "OBJECT/EP4195/L IBRARY/ALGOL."); 00000200
PROCEDURE SQUAREIT (X); 00000300
REAL X; 00000400

L IBRARY MYLIB; 00000500
REAL IT; 00000600
%%% OUTER BLOCK %%% 00000700
IT := 9; 00000800
SQUAREIT (IT); : 00000900
DISPLAY (STRING(IT,*)); 00000950
END. 00001000

8¢-D

SdNNA WVYO0YUd ANV SONLLSIT 3TIdNOD
S1d3DONOD 000 9/0009 8/000S 8 ANV SIHIS V



6¢-D

BURROUGHS LARGE SYSTEMS ALGOL COMPILER, VERSION 36.130.175,

%%%%% SAMPLE LIBRARY USER PROGRAM IN ALGOL %%%%%
$ SET LIST STACK §
BEGIN

(01,0002) = BLOCK#1

(01,0003) = SEGMENT DESCRIPTOR

LIBRARY MYLIB (TITLE = "OBJECT/FP4195/LIBRARY/ALGOL.");

(02,0002) = FUNNY SIRW
(02,0003) = MYLIB
(02,0004) = LIBRARY TEMPLATE MARKER

PROCEDURE SQUAREIT (X);
(02,0005) = SQUAREIT
REAL X;
LIBRARY MYLIB,
REAL IT;
(02,0006) = IT
%%% OUTER BLOCK %%%
IT := 9;
SQUAREIT (IT);
DISPLAY (STRING(IT,*));

(01,0004) = DISPLAY
(02,0007) = STRING TEMPORARY
(02,0008) = STRING TEMPORARY.LENGTH
(01,0005) = OUTPUTCONVERT

END.

(01,0006) = BLOCKEXIT
{01,0007) = GETSTRINGAREA

NUMBER OF ERRORS DETECTED = O.
NUMBER OF SEGMENTS = 5. TOTAL SEGMENT SIZE = 52 WORDS. CORE ESTIMATE = 61 WORDS.
PROGRAM SIZE = 13 CARDS, 39 SYNTACTIC ITEMS, 11 DISK SECTORS.

TUESDAY, 02/11/86, 03:00 PM.

00000010 000:0000:0
00000050 000:0000:0
00000100 000:0000:0

BLOCK#1 IS SEGMENT 0003
1 00000200 003:0000:1

00000300 003:0000:1

00000400 003:0000:
00000500 003:0000:
00000600 003:0000:

Pt

00000700 003:0000:
00000800 003:0000:
00000900 003:0001:
00000950 003:0002:

— QO

00001000 003:0008:1
DATA LENGTH IN WORDS IS 0020

BLOCK#1(003) LENGTH IN WORDS IS 0014

STACK ESTIMATE = 9

PROGRAM FILE NAME: OBJECT/EP4195/L1BRARY/ALGOL/USER ON DISK. B5/6000 CODE GENERATED.
COMPTLATION TIME = 3.763 SECONDS ELAPSED; 0.446 SECONDS PROCESSING; 0.825 SECONDS 1/0.

SdANNA AVYO0Ud ANV SONILSIT ITIdNOD
$1d3DNOD 000Z 9/0009 8/000S 8 ANV S3IIYIS V



0€-D

B6900 PROGRAMDUMP FOR STACK 304 (MIX 3014/3026) BOSR=45932 TUESDAY, FEBRUARY 11,1986 15:00:30

NAME: (CONCEPTS)OBJECT/EP4195/LIBRARY/ALGOL/USER ON SYSTEMSED.

MCP 36.140.3025: *SYSTEM/MCP36140. INTRINSICS: SYSTEM/INTRINSICS ON DISK. (LOADED)
SYSTEM SERIAL: #2372 HOSTNAME : SYSEDB6900. GROUP 1D: DEFAULT.

CAUSE OF DUMP: PROGRAM REQUESTED @ 003:0003:0, 003:0002:1.
PIB HISTORY WORD AT ENTRY TO PROGRAM DUMP: 0O 000000 000000.

PROGRAMDUMP OPTIONS: L IBRARIES

0321 = LOSR (00045C53)

0023 (01,0002) 0O 400000 080001 OP: 0CT:20000000 02000001 , EBC: ?????, DEC:-524289
0022 3 000000 30E003 RCW: LL=03, NORML STATE

[STACK 307 SEGMENT @ 0003:0003:0]

SEG DESC: 3 800000 EAD3T7E [(CONCEPTS)OBJECT/EP4195/L IBRARY/ALGOL . ]
CODE: 3 FF7002 AC3002 3 300282 BBAE60 3 04B096 138EAB >3 A35002 AFB202< 3 5003A6 BAAE6D

0021 ----D[01]=>3 C12000 804003 *MSCW: PREVIOUS MSCW @ OOLE; D{00]=0008 IN STACK 012

0020 (03,0002) 1 704001 400006 SIRW: OFFSET=001A (0014+0006) IN THIS STACK
001F 3 000200 20A003 RCW: LL=02, NORML STATE [USER SEGMENT
SEG DESC: 3 800001 4CO5AE

@ 0003:0002:1]

CODE: 3 FFB209 5006B8 3 AES005 5006AF >3 ABAE60 041006< 3 5007BD B7BOA6

001E ----D[03]=>3 FO6001 40CO0A *MSCW: PREVIOUS MSCW @ 0014, D[02]=0014 IN STACK 306

001D (02,0009) 6 800000 080800 SCW: (BLOCK BELOW DECLARED SNGL-DIM ARRAYS, LIB TEMPLATES)

001C (02,0008) 0 000000 000000

001B (02.0007) 5 440008 4682E7 DESC [ABSENT-COPY]: STRING (8-BIT), LENGTH=132 (MOM NOT IN THIS STACK OR SEGDICT)
001A (02,0006) 0 000000 000051 OP: 0CT:00000000 00000121 , €BC:??????, DEC:81

0019 (02,0005) 1 706001 400002 SIRW: OFFSET=0016 (0014+0002) IN STACK 306

0018 (02.0004) 6 8C2000 000000 SCW: (LIBRARY STRUCTURE MARKER)

0017 (02,0003) 5 800003 7AE8AE LIBRARY STRUCTURE DESC [PRESENT-MOM]: DATA, LENGTH=55

-~ HEADER ----
STATUS = 800000 030000, LEVEL = 3, LINKED.
STACK [NFORMATION: IMP AT 0017 IN STK 304 = (*,0003), (*,0) AT 0014.

-~~~ USEINFO ----

LINKED TO STACKS: EXP AT 0017 IN STK 306.
---~ AREAS ----

FREE 002E

USE INFO 002¢

STACKREF 0006

IMPORTS 0008

EXPORTS 0000

TYPES 000E

NAME S 0011

ATTRIBS 0019
-~--  IMPORT OBJECTS ~----
([v] = BY VALUE, [R] = BY REFERENCE, [N] = BY NAME, [RO] = READ ONLY)
SQUAREIT IS A PROCEDURE (1 PARAMETER);
REAL[N];
INDEX = 12, OBJECT = (*,0005).
--—- ATTRIBUTES ~----

VALUE = 1 H 000 0000 00001, INTNAME = MYLIB, TITLE = OBJECT/EP4195/LIBRARY/ALGOL.

0016 (02,0002) 1 705000 402000 SIRW: OFFSET=0004 (0004+0000) IN STACK 305
0015 3 N0024r EBBFCD RCW: LL=02, CNTRL STATE [MCP SEGMENT
SIG DESC: 3 §800B6 ABCACI

CODE: 3 BEFFFF FFFFFF 3 4A6870 C30C30 3 ABA3AE 400AAB >3 A3B234 B22695< 3 B8B180 95B9A2

0014 ----n{02]=>3 1 NS00 408002 *M-CW: PREVIOUS MSCW @ N012:. n[01]=0004 IN STACK 305

@ OFCD:04EE:1 (16562000) ]

SdANNA WVYYD0Ud ANV SONILSIT ITIdWNOD
S1d3DONOD 000 9/0009 8/000S 8 ANV S3I¥3IS V



LE-D

0013 3 000000 002000 RCW: DUMMY (RUN) _
0012 ----n[02]=>3 F82055 108011 *MSCW: PREVIOUS MSCW @ 0001; D[01]=0551 IN STACK 382

0000 = BOSR (00045932)

SdANG WVYOD0Ud ANV SONILSITITIdWOD
S1d3DNOD 000, 8/0009 8/000S 8 ANV S3I¥3S V



gD

DUMP OF LIBRARY (CONCEPTS)OBJECT/EP4195/LIBRARY/ALGOL ON SYSTEMSED. (STACK 306)
002C = LOSR (00044E41)

001A 3 000600 60A003 RCW: LL=02, NORML STATE [USER SEGMENT @ 0003:0006:3]

SEG DESC: 3 800000 EAD37E

CODE: 3 A35002 AFB202 3 5003A6 BAAE60 3 05B050 03BD50 >3 OOAFAB AE6006< 3 ABA3BF FFFFFF
0019 ----D[013=>3 C12000 804005 *MSCW: PREVIOUS MSCW @ 0014; D[00]=0008 IN STACK 012

0018 (02.0004) 6 800000 000800 SCW: (BLOCK BELOW DECLARED SNGL-DIM ARRAYS)
0017 (02.0003) 5 800002 797777 DESC [PRESENT-MOM]: DATA, LENGTH=39
S--- HEADFR ----
STATUS = 000000 030000, LEVEL = 3.
STACK INFORMATION: EXP AT 0017 IN STK 306 = (*,0003), (*,0) AT 0014.

---- USEINFO ----

LINKED TO STACKS: IMP AT 0017 IN STK 304.
~--- AREAS ----

FREE 001E

USEINFO 0o1c
STACKREF 0006

IMPORTS 0000
EXPORTS 000B
TYPES 0010
NAMES 0014

ATTRIBS 0000
---- EXPORT OBJECTS ----
([v] = BY VALUE, [R] = BY REFERENCE, [N] = BY NAME, [RO] = READ ONLY)
SQUAREIT 1S A PROCEDURE (1 PARAMETER) ;

REAL[N];

INDEX = 12, OBJECT = (*,0002),
[SENTINEL] IS NULL;

INDEX = 14, OBJECT = (*,0000).

0016 (02,0002) 7 306200 O0EO03 PCW: LL=03, p[1] SEGMENT @ 0003:0000:1, NORML STATE
0015 3 00024E E8BFCD RCW: LL=02, CNTRL STATE [MCP SEGMENT @ OFCD:04€E:1 (16562000)]
SEG DESC: 3 8800B6 ABCACL
CODE: 3 BEFFFF FFFFFF 3 4A6870 C30C30 3 ABA3AE 400AAB >3 A3B234 B22695¢< 3 B8B180 95B9A2

0014 ----B[02]=>3 FO7000 408002 *MSCW: PREVIOUS MSCW @ 0012; 0[N1]=0004 IN STACK 307
0013 3 000000 002000 RCW: DUMMY (RUN)
0012 ----D[02]=>3 F846A3 308011 *MSCW: PREVIOUS MSCW @ 0001; D[01]=6A33 IN STACK 384

0000 = BOSR  (00044E15)

SdNNG WYHO0Ud ANV SONILSIT ITIdNOD
S1d3DNOD 000, 8/0009 8/000S 8 ANV S31H3S V



£€-D

EP4195/LIBRARY/C74 (02/11/86)

**%** SAMPLE LIBRARY PROGRAM I[N COBQOL74 ****x
$ SET TEMPORARY LIST MAP
IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORK ING-STORAGE SECTION.
77 X PIC 9(11) COMP.
PROCEDURE DIVISION USING X.
100-MAIN-PARA.
COMPUTE X = X * X.
CALL SYSTEM DUMP.
EXIT PROGRAM.

2:49 PM TUESDAY, FEBRUARY 11, 1986

000020
000050
000100
000200
000300
000400
000500
000600
000700
000800
000900
001000

SdANNG NVYOO0YUd ANV SONILSITITIdWNOD
S1d3ONODJ 000Z 9/0009 8/000S 8 ANV SISV



VERSION 35.250.283

veE-D

(09/23/85)

BURROUGHS LARGE SYSTEMS COBOL74 COMPILER

{CONCEPTS)O0BJECT/EP4195/L IBRARY/C74 ON SYSTEMSED

000020***** SAMPLE LIBRARY PROGRAM IN COBOI 74 *****
000100 IDENTIFICATION DIVISION.

000200 ENVIRONMENT DIVISION.

000300 DATA DIVISION.

000400 WORK ING-STORAGE SECTION.

000500 77 X PIC 9(11) COMP.

000600 PROCEDURE DIVISION USING X.

511 - ON 34: WFL INTEGER PARAM NO LONGER CONVERTED *** X
512 TO COMP ITEM; USE BINARY ITEM INSTEAD *** X
000700 100-MAIN-PARA.

000800 COMPUTE X = X * X.
0003900 CALL SYSTEM DUMP.
435 . BURROUGHS EXTENSION EXCEEDS U.S. HIGH LEVEL *** SYSTEM

001000 EXIT PROGRAM.

Mcp

mcp
Mmce
Mcp

MCP
Mcp

Mcp

MCP

MCP PROCEDURE: FREEZELIB

PROCEDURE :

PROCEDURE :
PROCEDURE :
PROCEDURE :

PROCEDURE :
PROCEDURE :

PROCEDURE :
PROCEDURE :

LIBRARY FIRST EXECUTABLE PCW(00C:008:2)
NORMAL FIRST EXECUTABLE PCW(00C:009:4)

1986 FEBRUARY 11 15:00

0000:0000:0
0000:0000:0

START OF SEGMENT AT (01,002)
0002:0000:0
0002:0000:0
0002:0000:0
0002:0000:0

X = (02,002)
0002:0000:0

<<0001>>

000600 <<0002>>
0002:0000:0

PCW

PCW

LIBRARY DIRECTORY

PCW(002:000:1)
0002:0000:1
0002:0004:2

000600 <<0003>>

= (01,003)
0002:0005:3

PCW

(02,004)
(02,005)
(02,006)
(02,007)

{1 TR T}

PROGRAMDUMP

(02,008)
(01,004)
MYSELF (01,005)
CONTINUE (01,006)
SEGMENT 0002 IS 000B LONG
START OF SEGMENT AT (01,007)
PCW(007:000:0) = (02,008)
LIBRARY USER = (02,009)

MUTATE §01.008)
BLOCKEXIT 01,009)
PCW(007:004:4) = (02,005)
LIBRARY LOCK = (02,00A)

L IBRARY EVENT (02,003;

WAIT (01,00A
PCW(007 : 00E : 3) (02.008)
CAUSEP (01.008)
LIBRARY EXIT PCW = (02,000)
SEGMENT 0007 IS 001D LONG
START OF SEGMENT AT (01,00C)
(o1,00D)
(01,00E)
{02,003)
(01,00F)
SEGMENT 000C IS 0017 LONG

UNRAVEL

woaonou

[T T T T T O [ | B A1}

LIBRARY VARIABLE

oo

SdANGA NVYD0YUd ANV SONILSIT ITIdWNOD
S1d3DNOD 000/ 8/0009 8/000S 8 ANV S3HIS V

COMPILE O K.

NUMBER OF WARNINGS DETECTED = 0003
LAST WARNING AT 000900

TOTAL CARD COUNT: 11

D[01] STACK SIZE: 0016(N10) WORDS

D[02] STACK S1ZE: 0N14(00E) WORDS

CORE ESTIMATF : 189 WORDS

STACK ESTIMATE 110 WORDS



S€-D

CODE FILE SIZE: 7 RECORDS

PROGRAM SIZE: 3 CODE SEGMENTS, 63 TOTAL WORDS

SUBROUTINE NAME: (74, LEVEL 02

COMPILED ON THE B6900 FOR THE LEVELO SERIES

COMPILER COMPILED WITH THE FOLLOWING OPTIONS:

BDOMS .

COMPILE TIMES: ELAPSED CPU 1-0 RPM

0007.355 0000.911 0001.054 00724

SdANNG ANVYD0Yd ANV SONILSIT 3TIdINOD
S1d3DONOD 000 8/0009 8/000S 8 ANV S3I¥3S V



9¢-d

EP4195/LIBRARY/C74/USER (02/11/86)

*xkxx SAMPLE LIBRARY USER PROGRAM [N COBOL74 *****
$ SET LIST MAP

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORK ING-STORAGE SECTION.

77 17 PIC 9(11) COMP.

PROCEDURE DIVISION.

100-MAIN-PARA.

MOVE 9 TO IT.

CALL "PROCEDUREDIVISION OF OBJECT/EPA4195/LIBRARY/C74"

USING IT.
DISPLAY IT.
STOP RUN.

2:49 PM TUESDAY, FEBRUARY 11, 1986

000020
000050
000100
000200
000300
000400
000500
000600
000700
000800
000900
000950
000970
001000

SdNNA NVYYO0Ud ANV SONILSIT ITIdINOD
S14d3DNODJ 000/ 8/0009 8/000S 8 ANV SIHIS V



LED

VERSION 35.250.

000020***** SAMPLE LIBRARY USER PROGRAM IN COBOL74 *****

000100
000200
000300
000400
000500

000600
000700

000800

000900
000950

000970
001000

COMPILE O K.

283 (09/23/85)

BURROUGHS LARGE SYSTEMS COBOL74 COMPILER

{CONCEPTS)OBJECT/EP4195/L IBRARY/C74/USER ON SYSTEMSED

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORK ING-STORAGE SECTION.

77 1T PIC 9(11) COMP.

PROCEDURE DIVISION.
100-MAIN-PARA.

MOVE 9 TO IT.

CALL "PROCEDUREDIVISION OF OBJECT/EP4195/LI1BRARY/C74"

USING IT.

DISPLAY IT.
STOP RUN.

TOTAL CARD COUNT: 13
D[Ol% STACK SIZE: 0015(0N0F) WORDS

pfo2
CORE ESTIMATY :
STACK EST'MATE:

STACK 51ZE: 0019(N13) WORDS

594 WIRDS
310 WORDG

mcp
mcp

mcp
mcp

Mmcp
Mmce

LIBRARY FIRST EXECUTABLE PCW(O0O0A:008:2)
MCP PROCEDURE : MYSELF
NORMAL FIRST EXECUTABLE PCW(00A:009:3)

MCP PROCEDURE :

1986 FEBRUARY 11 15:00

0000:0000:0
0000:0000:0

START OF SEGMENT AT (01,002)
0002:0000:0
0002:0000:0

0002:0000:0
0002:0000:0
IT = (02,003)
0002:0000:0
0002:0000:0
PCW = (02,004)
pCcw = {02,005)
LIBRARY DIRECTORY = (02,006)
PCW(002:000:1) = (02,007)

0002:0000:1
TEMPORARY = (02,008)
0002:0002:1
0002:0002:1

SIRW T0 Df{01] = (02,009)

LIBRARY TEMPLATE = (02,00A)

L IBRARY TEMPLATE MARKER = (02,008)
LIBRARY ENTRYPOINT REFERENCE = (02,00C)

PROCEDURE :
PROCEDURE :

PROCEDURE :
PROCEDURE :

PROCEDURE :
PROCEDURE :

0002:0003:2

0002:0003:2

TEMPORARY = (02,00D)
MESSER = (01,003)
GOTOSOLVER = (01,004)

SEGMENT 0002 IS OOOCA LONG
START OF SEGMENT AT (01,005)

PCW(005:000:0) = (02,004)
LIBRARY USER = (02,00E)

MUTATE = (01,006)
BLOCKEXIT = (01,007)
PCW(005:004:4) = (02,005)
LIBRARY LOCK = (02,00F)
LIBRARY EVENT = (02,010)

WAILT = (01,008)
CAUSEP = (01,009)
LIBRARY EXIT PCw = (02,012)

SEGMENT 0005 IS 0019 LONG
START OF SEGMENT-AT (01,00A)

= (01,008)

= (01,00cC)

= (01,00D)

LIBRARY VARIABLE = (02,002)
FREEZELIB = (01,00€E)

SEGMENT 000A IS 0022 LONG

0001(0000:1)
0001(0000:1)

SdANING NVYO0Ud ANV SONILSITITNHdNOD
S1d3DONOD 000 9/0009 8/000S 8 ANV S3IH3IS V



8¢-D

CODE FILE SIZE: 10 RECORDS

PROGRAM SIZE: 3 CODE SEGMENTS, 69 TOTAL WORDS

SUBROUTINE NAME: USER, LEVEL 02

COMPILED ON THE B6900 FOR THE LEVELO SERIES

COMPILER COMPILED WITH THE FOLLOWING OPTIONS:

BDMS .

COMPILE TIMES: ELAPSED CrPU [-0 RPM

0007 .483 0000.931 0001.075 00837

SdNNA NVYO0Ud ANV SONILSIT ITIdWOD
S1d3DNOD 000, 8/0009 8/000S 8 ANV SIHIS V



6&-D

B6300 PROGRAMDUMP FOR STACK 30E (MIX 3014/3031) BOSR=SOEES TUESDAY, FEBRUARY 11,1986 15:01:00
NAME: (CONCEPTS)OBJECT/EP4195/L 1BRARY/C74/USER ON SYSTEMSED.

MCP 36.140.3025: *SYSTEM/MCP36140. INTRINSICS: SYSTEM/INTRINSICS ON DISK. (LOADED)
SYSTEM SERIAL: #2372 HOSTNAME : SYSEDB6900C. GROUP 1D: DEFAULT.

CAUSE OF DUMP: PROGRAM REQUESTED @ 002:0005:2, 002:0003:2, 00A:0007:3.
PIB HISTORY WORD AT ENTRY TO PROGRAM DUMP: 0 000000 000000.
PROGRAMDUMP OPTIONS: (DEFAULT)

0332 = LOSR (0005121A)
0034 (01,0002) 0 000000 000001 OP:  OCT:00000000 00000001 , EBC:??22?2 DEC:1

0033 3 200400 50E002 RCW: Li=03, NORML. STATE, TRUE [STACK 311 SEGMENT @ 0002:0005:2]

SEG DESC: 3 800000 BB2714 [ (CONCEPTS)OBJECT/EP4195/LIBRARY/C74. ]

CODE: 3 BO5002 A6B20B 3 CA8FC6 0BB20B 3 950D1AE 6003B2 >3 02ABFE 5003B0< 3 B094A1 400750
0032 ----D[01]=>3 C12000 804007 *MSCW: PREVIOUS MSCW @ 0028, D[00]-0008 IN STACK 012

0031 (03,0006) 0O 000000 000000
0030 (03,0005) 6 BOOODO 100000 SCW:
002F (03,0004) 7 30E600 D12007 PCW: LL=04, 0{1] SEGMENT @ 0007:000D:3, NORML STATE
002 (03,0003) 7 30E800 COE0O07 PCW: LL=03, D{1] SEGMINT @ 0007 :000C:4, NORML STATE
002D (03,N0002) 5 C20000 C976AE DESC [PRESENT-COPY]: STRING (4-BIT), LENGTH=12 (MOM ® OFFSET=0017 IN THIS STACK)
002c 3 000400 30E002 RCW: LL=03, NORML STATE [USER SEGMENT @ 0002:0003:2]
SEG DESC: 3 800000 AABQ9C
CODE: 3 FEBOSO O8A6B7 3 BDB209 9C2F2C 3 BBAES0 0C5003 >3 BODABBO 500DA6< 3 BOSO03 A6B20B
0028 ----D[03]=>3 F10001 40CO03 *MSCW: PREVIOUS MSCW @ 0028; D[02]=0014 IN STACK 310

002A (03,0002) 0 000000 000000
0029 3 000600 70A00A RCW: LL=02, NORML STATE [USER SEGMENT @ 000A:0007:3]

SEG DESC: 3 800002 2AEEEE

CODE: 3 A6BAAE 600EB1 3 50068D S000AF 3 ABA260 O7AESO >3 07BOAB AE6007< 3 ABA3AE 600CAB
0028 ----D[03]=>3 70E001 40C014 *MSCW: PREVIOUS MSCW @ 0014; 0[02]=0014

0027 (02,0013)

800000 080800 SCW: (BLOCK BELOW DECI ARED SNGL-DIM ARRAYS, LIB TEMPLATES)
0026 (02,0012)

000000 000000

0025 (02,0011) 000000 000000 DPOP: OCT:00000000 00000000 , 2ND:O

0024 (02,0010) 000000 000000 DPOP: OCT:00000000 00NO0000 , 1ST:0, DBL:0.0

0023 (02,000F) 000000 000000

0022 (02,000E) 000000 000000

0021 (02,000D) 040010 500000 DESC [ABSENT-MOM]: STRING (8-BIT), LENGTH=261 (UNREFERENCED OLAY SPACE)
0020 (02,000C) 710001 400005 SIRW: OFFSET=0019 (0014+0005) IN STACK 310

081F gOZ,OOOB) 8C2000 000000 SCW: (LIBRARY STRUCTURE MARKER)

001E

001D (02,0009) 70F000 402000 SIRW: OFFSET=0004 (0004+0000) IN STACK 30F

001C (02,0008)
0018 (02,0007)
001A (02,0006)
0019 (02,0005)
0018 (02,0004)
0017 (02,0003)
0016 (02,0002)

C00000 1976AE DESC [PRESENT-COPY]: DATA, LENGTH=1 (MOM @ OFFSET=0017 IN THIS STACK)
J0E200 00EQ02 PCW: LL=03, D[l] SEGMENT @ 0002:0000:1, NORML STATE

000001 040001 DESC [ABSENT-MOM]: DATA, LENGTH=16 (CODEFILE ADRS=1)

30E800 40E005 PCW: LL=03, 0{1] SEGMENT @ 0005:0004:4, NORML STATE

30E000 Q0EO0S PCW: LL=03, D[1] SEGMENT @ 0005:0000:0, NORML STATE

820000 C976AE DESC [PRESENT-MOM]: STRING (4-BIT), LFNGTH=12

6

0

2

2

0

0

5

1

6

02,000A) 5 800003 99F141 LIBRARY STRUCTURE DESC [PRESENT-MOM]: DATA, LENGTH=57

1

5

7

5

7

7

5

0 000000 000000
3

0015 000241 E8BFCD RCW: LL=02, CNTRL STATE [MCP SEGMENT @ OFCD:04EE:1 (16562000)]

SEG DESC: 3 8800B6 ABCAC1

CODE: 3 BEFFFF FFFFFF 3 4A6870 C30C30 3 ABA3AE 400AAB >3 A3B234 B22695¢ 3 B8B180 9SB9A2
0014 ----n[02]=>3 FOFOON 408002 *MSCW: PREVIOUS MSCW @ 0012 D[01]=0004 IN STACK 30F

0013 3 000009 002000 RCW: DIHMMY (RUN)

SdANNG NVYD0YUd ANV SONILSIT ITIdWOD
S1d3DONOD 000£ 9/0009 8/000S 8 ANV S31¥3S V



ov-2

0012 ----D[02]}=>3 F82055 108011 *MSCW: PREVIOUS MSCW @ 0001; D[01]=0551 IN STACK 382

0000 = BOSR (00050EES8)

SdNNA WVYDO0Ud ANV SONILSIT 3TIdWOD
S143DONO0OD 000 8/0009 8/000S 8 ANV S31H3S V



Lv-D

EP4195/CALC/ALGOL (02/11/86)

%%%%% ALGOL PROGRAM TO ILLUSTRATE SIMPLE CALCULATION %%%%%
$ SET LIST STACK CODE LINEINFO $
BEGIN
REAL X, Y, Z, ANS;
X 1
Y :=5
7 :=7
ANS = (X + Y + 1) / Z;
PROGRAMDUMP ;
END.

PR

wouon

2:50 PM TJESDAY, FEBRUARY 11, 1986

00000050
00000100
00000200
00000300
00000400
00000500
00000600
00000700
00000800
00000900

SdANG NVYD0Yd ANV SONILSITITNdNOD
S1d43DNO0D 000Z 8/0009 8/000S 8 ANV S31¥IS V



v-d

(01,0002)
(01,0003)

W

(02,0002)
(02,0003%
)

[ T |

(02,0004
(02,0005

1

(01,0004)

(01,0005) =

Jo 3 e T de v ok sk kT A Rk Tk Kk ek ek Rk ke ok kR ek ok ok ok keok

BURROUGHS LARGE SYSTEMS ALGOL COMPILER, VERSION 36.130.175,  TUESDAY, 02/11/86, 03:19 PM.

0OBJECT/EPA4195/CALC/ALGOL ON DISK

%%%%% ALGOL PROGRAM TO ILLUSTRATE SIMPLE CALCULATION %%%%%

BEGIN
BLOCK#1
SEGMENT DESCRIPTOR

REAL X, Y, Z, ANS;

X
Y
7
ANS
X :=1;
Y :=5;
7 =7
ANS = (X + Y + 1) / Z;
PROGRAMDUMP ;
PROGRAMDUMP
END.
BLOCKEXIT

003:

003:
003:
003:

003:
003:
003:

003:
003:
003:

003:
003:
003:
003:
003:
003:
003:
003:
003:

003:
003:
003:
003:

003:
003:
003:
003:

003
003

003:
003
003:
003:
003:

0000:

0000:
0000:
0000:

0000:
0001 :
0001:

0001:
0002:
0002:

0002:
0002:
0003:
0003:
0003:
0003:
0004
0004
0004 :

0004:
0004:
0005:
0005 :

0005:
0005:
0006:
0006:
STACK BUILDIN
0006 :
0006 :
0006:
0007:
Q007:
0007 :
0007 -

WHORWN—UTW NO A W= SN -

W= S

W= OUTaWONFUS

NVLD

ONE
NAMC
STOD

LT8
NAMC
STOD

LT8
NAMC
STOD

VALC
VALC
ADD
ONE
ADD
VALC
DIVD
NAMC
STOD

MKST
NAMC
LT8

ENTR

MKST
NAMC
ENTR
EXIT

CODE FOR LEVEL 02

ZERO
ZERO
ZERO
ZERD
PUSH
ZERO
BSET

(02,0002)
5
(02,0003)
7
(02,0004)
{02,0002)

(02,0003)

(02,0004)
(02,0005)

(01,0004)
2

(01,0005)

47

00000050 000:0000:0
00000200 000:0000:0

BLOCK#1 1S SEGMENT 0003
1 00000300 003:0000:1

FF

. 00000400 003:0000:1
B
5002
B8
00000500 003:0000:5
8205
5003
B8
00000600 003:0001:4
B207
5004
88
00000700 003:0002:3
1002
1003
80
Bl
80
1004
83
5005
B8
00000800 003:0004:4

AE
6004
B202
AB
00000900 003:0005:4

AE
6005
AB
A3
Sk FAFEKIHK R K FKAAFAKAFAEK KRR KA KAAERERKKKAAK AR AKX KKK
BO
80
BO
BO
B4
BO
96 2F

SdNNG WVYYO0Ud ANV SONILSIT ITIdNOD
S1d3IDNOD 000L 8/0009 8/000S 8 ANV SIH3IS V



Ev-O0

003:0007:5 LT8 6 8206
003:0008:1 STAG 9584
003:0008:3 BRUN 0000:1  A22000
003:0009:0 NVLD FF
003:0009:1 NVLD FF
003:0009:2 NVLD FF
003:0009:3 NVLD FF
003:0009:4 NVLD FF
003:0009:5 NVLD FF

BLOCK#1(003) LENGTH IN WORDS IS 0OOA

NUMBER OF ERRORS DETECTED = 0.

NUMBER OF SEGMENTS = 3. TOTAL SEGMENT SIZE = 10 WORDS. CORE ESTIMATE = 16 WORDS. STACK ESTIMATE = 6
PROGRAM SIZE = 9 CARDS, 36 SYNTACTIC ITEMS, 9 DISK SECTORS.

PROGRAM FILE NAME: OBJECT/EP4195/CALC/ALGOL ON DISK. B5/6000 CODE GENERATED.

COMPILATION TIME = 2.891 SECONDS ELAPSED; 0.402 SECONDS PROCESSING; 0.746 SECONDS 170.

SdANNQ NVYD0Ud ANV SONILSIT ITIdNOD
S143ONO0OD 000Z 9/0009 8/000S 8 ANV S3I1¥3IS V



vv-2

B6900 PROGRAMDUMP FOR STACK 328 (MIX 3043/3045) BOSR=1746D
NAME: (CONCEPTS)OBJECT/EP4195/CALC/ALGOL ON SYSTEMSED.

MCP 36.140.3025: *SYSTEM/MCP36140. INTRINSICS: SYSTEM/INTRINSICS ON DISK. (LOADED)
SYSTEM SERIAL: #2372 HOSTNAME : SYSEDB6900. GROUP ID: DEFAULT.

CAUSE OF DUMP: PROGRAM REQUESTED @ 003:0005:4 (00000800).
PIB HISTORY WORD AT ENTRY TO PROGRAM DUMP: 0 000000 00000O.

PROGRAMDUMP OPTIONS: (DEFAULT)

031B = LOSR (00017788)

001D (01,0002) 0O 000000 000001 OP: 0CT: 00000000 00000001 , EBC:??????, DEC:1
001C 3 000800 50A003 RCW: LL=02, NORML STATE [USER SEGMENT
SEG DESC: 3 800000 AE3035

TUESDAY, FEBRUARY 11,1986 15:19:08

@ 0003:0005:4 (00000800) ]

CODE: 3 500488 100210 3 0380B1 801004 3 835005 BBAE60 >3 04B202 ABAE60< 3 05ABA3 BOBOBO

0018 ----D[01]=>3 C12000 804007 *MSCW: PREVIOUS MSCW @ 0014; D[00]=0008 IN STACK 012
001A (02,0006) 6 800000 000000 SCW:

0019 (02,0005) O 261000 000000 OP: 0CT:11410000 00000000 , EBC:??????, DEC:1.0
0018 (02,0004) 0 000000 000007 OP: 0CT:00000000 00000007 , EBC:???722?, DEC:7

0017 (02,0003) O 000000 B00005 OP: 0CT:00000000 00000005 , EBC:??????, DEC:5

0016 (02,0002) 0 000000 000001 OP:  OCT:00000000 00000001 , EEC:??27?7, DEC:1

0015 3 00024F EB88FCD RCW: LL=02, CNTRL STATE [MCP SEGMENT

SEG DESC: 3 880086 ABCAC]

@ OFCD:04EE:1 (16562000) ]

CODE: 3 BEFFFF FFFFFF 3 4A6870 C30C30 3 ABA3AE 400AAB >3 A3B234 B22695< 3 B8B180 95B9A2

0014 ----n[02]=>3 F29000 408002 *MSCW: PREVIOUS MSCW @ 0012; D[01]=0004 IN STACK 329

0013 3 000000 002000 RCW: DUMMY (RUN)
0012 ----0[02]=>3 F81B74 E08011 *MSCW: PREVIOUS MSCW @ 0001, D[01]=B74E IN STACK 381

0000 = BOSR (0001746D)

SdWNA WVYD0Ud ANV SONILSIT ITdWNOD
S1d3ONOD 000, 9/0009 8/000S 8 ANV S3I¥IS V



Sv-D

EP4195/CALC/C74 (02/11/86)

*xx*x COBOL74 PROGRAM TO ILLUSTRATE SIMPLE CALCULATION *****
$ SET LIST MAP CODE LINEINFO
IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
77 X PIC 99 COMP.
77 Y PIC 99 COMP.
77 1 PIC 99 COMP.
77 ANS PIC 99 COMP.
PROCEDURE DIVISION.
100-MAIN-PARA.
MOVE 1 7O X.
MOVE S TO Y.
MOVE 7 TO Z.
COMPUTE ANS = (X + Y + 1) / Z.
CALL SYSTEM DUMP.
STOP RUN.

2:50 PM TUESDAY, FEBRUARY 11, 1986

000050
000100
000200
000300
000400
000500
000600
000700
000800
000900
001000
001100
001200
001300
001400
001500
001600
001700

SdANNG INVYD0YUd ANV SONILSITITIdWNOD
S1d43ON0OD 000, 9/0009 8/000S 8 ANV S3IY3IS V



9v-D

VERSION 35.250.283 (09/23/85)

BURROUGHS LARGE SYSTEMS COBOL74 COMPILER

1986 FEBRUARY 11 15:19

(CONCEPTS)OBJECT/EP4195/CAILC/CT74 ON SYSTEMSED

000050***** COBOL74 PROGRAM TO ILLUSTRATE SIMPLE CALCULATION

000200 IDENTIFICATION DIVISION.

000300 ENVIRONMENT DIVISION.

000400 DATA DIVISION.

000500 WORK ING-STORAGE SECTION.

000600 77 X PIC 99 COMP.

000700 77 Y PIC 99 COMP.

000800 77 1 PIC 99 COMP.

000900 77 ANS PIC 99 COMP.

001000 PROCEDURE DIVISION.

001100 100-MAIN-PARA.
0002:0000:0

001200 MOVE 1 TO X.

0002:0000:
0002 :0000:
0002 :0000:
0002 :0000:

B -

001300 MOVE 5 TO Y.

0002:0000:5
0002:0001:1
0002:0001:3

001400 MOVE 7 TO Z.

MACRO 0001:06:KBLSM

MACRO

MACRO

MACRO

MACRO

MACRO

MACRO
MACRO

MACRO
NOOP

MACRO

MACRO
MACRO
MACRO
MACRO
LT8
NAMC (02,0005)
ONE
STOD
MACRO

MACRO
MACRO
MACRO
MACRO
NAMC (02,0006)
LT8
STOD
MACRO

MACRO
MACRO

0001:08

0001:10:

0001:13:

0001:16:

0001:19:

0001:1C:

0001:10:
0001:20:

FE

0001:21:

0001:24:
0001:25:
0001:26:
0001:27:

B20A
5005
Bl
B8

0001:28:

0001:2B:
0001:2C:
0001:20:
0001 :2¢E:

5006

8205

B8
0001:2F

0001:32:
0001:33:

: SWMCO

DCL77

pcL77

DCL77

pcL77

SWMCO

KBLSM
DEFLM

DEFLM

SVNLT
LITCM
F TXMM
MVNLT

SNTNC

SVNLT
LITCM
FIXMM
MVNLT

:SNTNC

SVNLT
LITCM

% dek kK

00AA

0057

0002

0003

0004

0005

0057

0109
0000

0006

0000
0001
0000
0000

0441

0000
0005
0000
0000

0441

0000
0007

0000:0000:0
0000:0000:0
0000
START OF SEGMENT AT (01,002)
0002:0000:C
0002:0000:0
0001
0002:0000:0
0002:0000:0
0000
X = (02,00A)
0002:0000:0
0000
Y = (02,006)
0002:0000:0
0000
Z = (02,007)
0002:0000:0
0000
ANS = (02,008)
0002:0000:0
0000
0000
0002:0000:0
0000
PCW = (02,008)
PCW = (02,00C)
LIBRARY DIRECTORY = (02,00D)
PCW(002:000:1) = (02,00E)
0000
0002:0000:1
0000
0400
0000
0002
10.0
0000
0002:0000:5
0000
0400
0000
0003
5.0
0000
0002:0001:4
0000
0400

SdWNA WVYD0Ud ANV SONILSIT ITIdNOD
S1d3DONOD 000, 9/0009 8/000S 8 ANV SISV



LY-D

MACRO 0001:34:F1XMM 0000 0000
MACRO 0001:35:MVNLT 0000 0004

0002:0001:4  NAMC (02,0007) 5007 ¢
0002:0002:0 L78 B207 7.0
0002:0002:2  STOD B8
MACRO 0001:36:SNTNC 0415 0000
001500 COMPUTE ANS = (X + Y + 1) / Z. 0002:0002:3
MACRO 0001:39:0PERM 0005 0000
0002:0002:3  NAMC (02,0008) 5008 ANS
MACRO 0001:3A:FI1XxMM 0000 0000
MACRO 0001 :3B:SWMCO 0047 0001
MACRO 0001:3C:EXPRM 0000 0000
MACRO 0001:3D:EXPRM 0000 0000
MACRO 0001:3E:TEIDM 0002 0000
MACRO 0001:3F:TEIDM 0003 0000
MACRO 0001:40:TEOPM 0080 0000
MACRO 0001:41:TECON 0000 0000
MACRO 0001:42:L1TCM 0001 0400
MACRO 0001:43:TEOPM 0080 0000
MACRO 0001:44:ENDXM 0000 0000
MACRO 0001:45:TEIDM 0004 0000
MACRO 0001:46:TEOPM 0083 0000
MACRO 0001:47:ENDXM 0000 0000
MACRO 0001:48:TEVAL 0000 0000
0002:0002:3 L78 B20A 10.0
0002:0002:5  NAMC (02,000A) 500A X
0002:0003:1 INDX A6
0002:0003:2 LT8 B202 2.0
0002:0003:4  ICVD CA
0002:0003:5  VALC (02,0006) 1006 Y
0002:0004:1  ADD 80
0002:0004:2  ONE Bl
0002:0004:3  ADD 80
0002:0004:4  VALC (02,0007) 1007 Z
0002:0005:0  IDIV 84
0002:0005:1  BRST 9E2E
0002:0005:3 LT8 B264 100.0
0002:0005:5 RDIV 85
0002:0006:0  NTIA 86
0002:0006:1  NAMC (02,0008) 5008 ANS
0002:0006:3  STOD B8
MACRO 0001:49:SNTNC 0047 0000
001600 CALL SYSTEM DUMP. 0002:0006:4
WARNING 435 : BURROUGHS EXTENSION EXCEEDS U.S. HIGH LEVEL *** SYSTEM <<0001>>
MACRO 0001 :4F :PROCM 0000 010C
0002:0006:4  MKST AE
MCP PROCEDURE: PROGRAMDUMP = (01,003)
0002:0006:5  NAMC (01,0003) 6003 MCP.PROGRAMDUMP
0002:0007:1 LT8 B202 2.0
0002:0007:3  ENTR AB
0002:0007:4  NOOP FE
MACRO 0001:50:SNTNC 0321 0000
001700 STOP RUN. 0002:0007 :5
MACRO 0001:53:STOPM 0134 0000
0002:0007:5  MKST AE
MCP PROCEDURE: GOTOSOLVER = (01,004)
0002:0008:0  NAMC (01,0004) 6004 MCP.GOTOSOLVER
0002:0008:2  ZERO BO
0n02:0008:3  ENTR AB

MACRO 0001:54:SNTNC 0000 0000
MACRO N001:55:ENDLM 0006 0000

SdANNG NVYO0Ud ANV SONILSIT ITIdNOD
S1d3DNOD 000 8/0009 8/000S 8 ANV S3IH3S V



8-

MACRO 0001:56:ENDLM 0000 0000
0002:0008:4  NVLD FF
SEGMENT 0002 IS 0009 LONG
MACRO 0001:57:THEND 0000 0000
START OF SEGMENT AT (01,005)
PCW(005:000:0) = (02,008)

0005:0000:0 LT8 B235 53.0
0005:0000:2  RPRR 9588
LIBRARY USER = (02,00F)
0005:0000:4  NAMC (02,000F) 500F
0005:0001:0  LOAD BD
0005:0001:1  EQUL 8C
0005:0001:2  FIXUP
0005:0001:5  NVLD FF
0005:0001:2  BRFL 0002:0 A00002
0005:0002:0  MKST AE
MCP PROCEDURE: MUTATE = (01,006)
0005:0002:1  NAMC (01,0006) 6006 MCP.MUTATE
0005:0002:3  NAMC (02,0002) 5002
0005:0002:5  LOAD BD
0005:0003:0 L718 B20C 12.0
0005:0003:2 LT8 8206 6.0
0005:0003:4  ENTR AB
0005:0003:5  MKST AE
MCP PROCEDURE : BLOCKEXIT = (01,007)
0005:0004:0  NAMC (01,0007) 6007 MCP.BLOCKEXIT
0005:0004:2  ENTR AB
0005:0004:3  EXIT A3
PCW(005:004:4) = (02,00C)
LIBRARY LOCK = (02,010)
LIBRARY EVENT = (02,011)
0005:0004:4 LT8 8235 53.0
0005:0005:0  RPRR 9588
0005:0005:2  NAMC (02,0010) 5010
0005:0005:4  RDLK 95B8A
0005:0006:0  ZERO BO
0005:0006:1  EQUL 8c
0005:0006:2  FIXUP
0005:0006:5  MKST AE
MCP PROCEDURE: WAIT = (01,008)
0005:0007:0  NAMC (01,0008) 6008 MCP.WAIT
0005:0007:2  NAMC (02,0011) 5011
0005:0007:4  STFF Af
0005:0007:5  ONE Bl
0005:0008:0 ENTR AB
0005:0008:1  ONE 81
0005:0008:2  NAMC (02,0010) 5010
0005:0008:4  ROLK 95BA
0005:0009:0  ZERO B0
0005:0009:1  EQUL 8C
0005:0009:2  BRFL 0006:5 AOA006
0005:0006:2  BRTR 0009:5 A1A009
0005:0009:5 LT8 8235 53.0
0005:000A:1  RPRR 9588
0005:000A:3  NAMC (02,000F) 500F
0005:000A:5  STOD B8
0005:000B:0  FIXUP
0005:0008:3  MKST AE
0005:000B:4  NAMC (01,0007) 6007 MCP.BLOCKEXIT
00N5:000C 0 ENTR AB
00n5:000C 1 EXIT A3

SdANNG WVYYD0dd ANV SONILSIT ITIdNOD
S1d3DNOD 000 8/0009 8/000S 8 ANV S3IHIS V



6v-D

0005 :

0005

0005 :
00065:
0005 :
0005 :

0005

0005:
0005:
0005:

0005

0005 :
0005 :

0005

0005 :
0005 -
0005:
0005 :
0005
0005:

0005

0005:
0005 :

0005:
0005 :
0005:
0005 :

0005

0005 :
0005:
0005 :
0005:

000A:

000A:
000A:
000A:

000A :
000A -

000A :
000A :
000A :
000A -
000A:

000A :

000A

000A:
000A:

000A:

000cC:
:000C:
000cC:
000D :
000D
0000
:000D:
000E :
000E :
0QOE :
- 000F :

Q00F :
000F :
:0010:
0010:
0010:
000E :
0010:
0010:
0008 :
:0010:
0012:
0012:

0012:
0012:
0013:
0015:
:0017:
0017
0017:
0017:
0018:

0008:
0008
0008:
0009:

0009:
0009:

0009:
0009:
000A:
000A:
0008 :
0008 :
: 0008 :
0008 :
0008 :

000C:

— U enNO0OOoOoO UL NOUVOBWwaEN—OAN S, NW—OWNwWN

QO w QU

("9) ~N O

ZERO
NAMC (02,000r)
ST00

ZERO

NAMC (02,0010}
RDLK

LT8

RPRR

EQuUL.

FIXUP

MKST

NAMC (01.,0009)
NAMC (02,0011)
STFF

ONE

ENTR

BRTR 00103
ZERO

RETN

BRUN 0010-5
MPCW

NAMC (03,0002)
STFF

NAMC (02,0013)
OVRD

MPCW

L 748

L8

STAG

ZERO

NAMC (02,000¢)
OBUN

MK ST
NAMC (01,000C)
ENTR

F1xup

ZERO
BRUN 0009:4

ZERO
L8

INSR
LT8

STAG
ZEROD
ZERO
lERO
ZERO

ZERD

80
500F
B8
80
5010
358A
B235
9588
8C

AL

6009 MCP.CAUSEP

5011
AF

B1

AB
A16010
BO

A7
AZA010
BF 000600B0E 005
7002
AF

5013

BA

BF 000400C12005
80 800000100000
B206

9584

BO

500¢

AA

MCP PROCEDURE :

1048576 .0

6.0

CAUSEP

(01,009)

LIBRARY EXIT PCW = (02,013)

SEGMENT 0005 IS 0019 LONG

START OF SEGMENT AT

LIBRARY FIRST EXECUTABLE PCW(0O0A:008:2) =

AE

600C MCP .MYSELF
AB

MCP PROCEDURE: MYSELF

NORMAL FIRST EXECUTABLE PCW(0O0A:009:3)

BO
A28009

B0
B204
9c2714
B20S
9584
80

BO

80

BO

BO

4.0
5.0

STKPARAM

STKARRAY
TEMPORARY
TEMPORARY

STKOP
STKOP

"

"

it

(01,004)
(01,008)

{o1,00¢)

(01,000)

(02,002)

(02,003)
(02,004)
(02,005)
(02,006)
(02,007)

SdANA NVYD0¥d ANV SONILSITITNUdNOD
S1d3DNOJ 000Z 8/0009 8/000S 8 ANV S3IY3IS V



0s-D

000A:
000A:

000A:
000A:
000A:
000A:
000A:
000A:
000A:

000A:
000A:
000A:
00C0A:
000A:
000A:
000A .
000A:
000A:
000A:
000A:
000A:
0C00A:
000A:
000A:

000A:
000A:

000A :

000A:
000A:
000A:
000A:

000A
000A
000A

000A
000A
000A
000A
000A
000A
000A
000A
000A
000A
000A
000A
0N0A

:0000:
:0000:
:0000:
:0000:
:0001:
:0001:
:0001 :
:0002:
:0002:
:0002:
:0002:
-0003:
:0003:

000cC:
000C:

000C:
000C:
0000:
000D:
000D:
000D:
000E :

0O0O0E :
0O0O0E :
000E :
000E :
000F :
000F :

0010:
0012:
0014:
0016:
0016:
0016:
0018:
0018:
0018:

0018:
0018:

0019:

0019:
0019:
001A:
001A:
:001A:
:001A:
:0000:

~N =

L= U BN OUT DN UL

[SEeNeo] o o

—_ o b

QO e N

N WEUTAENUDBWN OO A

ZERO
MKST

NAMC (Q1,000E)
NAMC (02,0003)
STFF

NAMC (C2,0005)
STFF

ONE

ENTR

PUSH
NAMC (02,0003)
LOAD
LT8
BSET
INSR

MPCW
MPCW

LT48
LT8
STAG

MPCW
ZERO
ZERO
ZERO

ZERO
JOIN

ZERO

LT16
BSET
LT8
STAG
PUSH
BRUN 0000:0
NAMC (02,0002)

LOAD

ZERO

SAME

FIXUP

NAMC (02,0008)
STFF

LT8

NAMC (02,000D)
INDX

OVRD

NAMC (02,000C)
STFF

LT8

BO
AE

MCP PROCEDURE :

600E MCP.INSTACKARRAYDEC

5003
AF
5005
AF
B1
AB

B4
5003
BD
8230
9615
9C2A17

BFO0000000E 005
BFO0080040E005

BF000001040001
8205
9584

8F00020000E002
BO
BO
80

B0
9542

BO

830800
962F
B206
9584
84
A20000
5002

BD
BO
94

5008
AF
8202
500D
A6
BA
500C
AF
3204

2097200.0

17039361.0
5.0

2048.0
6.0

2.0

STKOP

INSTACKARRAYDEC

STKARRAY
STKPCW
STKPCW

STKARRAY
STKPCW
TEMPORARY
STKOP
STKOP

STKOP
TEMPORARY

LIBRARY VARIABLE

(02,008)

(01,00€E)

{02,009)

(02,00A)
(02,008)
(02,00C)

(02,00D)
(02,00E)
(02,00F)
(02,010)
(02,011)

(02,012)
(02,013)

(02,002)

SdANNQG WVYYO0Ud ANV SONILSIT ITIdWOD
S1d3DONOD 000Z 8/0009 8/000S 8 ANV SIS V



1S-D

MCP PROCEDURE: FREEZELIB = (01,00F)

000A:0003:4  NAMC (02,000D) 5000
000A:0004:0  INDX A6
000A:0004:1  OVRD BA
000A:0004:2  MKST AE
000A:0004:3  NAMC (01, 000F) 600F MCP.FREEZELIB
000A:0004:5  ONE B1
000A:0005:0  NAMC (02,000D) 5000
000A:0005:2  LOAD BD
000A:0005:3  NAMC (02,0000) 5000
000A:0005:5  STFF AF
000A:0006:0  ENTR AB
000A:0006:1  FIXUP

* 000A:0000:5  BRTR 0006: 4 A18006
000A:0006:4  MKST AE
000A:0006:5  NAMC (02,000E) 500E
000A:0007:1 ZERO 80
000A:0007:2  ENTR AB

* O000A:0006:1  BRUN 0007:3 A26007
000A:0007:3  MKST AE
000A:0007:4  NAMC (01,0007) 6007 MCP.BLOCKEXIT
000A:0008:0  ENTR AB
000A:0008:1  EXIT A3

COMPILE 0.K.

NUMBER OF WARNINGS DETECTED = 0001
LAST WARNING AT 001600

TOTAL CARD COUNT: 17

D[01] STACK SIZE: 0016(010) WORDS

D[02] STACK SIZE: 0020(014) WORDS

CORE ESTIMATE: 604 WORDS

STACK ESTIMATE: 310 WORDS

CODE FILE SIZE: 9 RECORDS

PROGRAM SIZE: 3 CODE SEGMENTS, 62 TOTAL WORDS

SUBROUTINE NAME: C74, LEVEL 02

COMPILED ON THE 86900 FOR THE LEVELO SERIES

COMPILER COMPILED WITH THE FOLLOWING OPTIONS:
BOMS .

COMPILE TIMES: ELAPSED CPU 1-0 RPM

0010.971 0001.457 0001.284 00700

SEGMENT O00A IS 001C LONG
DATA SEGMENT 0001 1S 0010 LONG

SdANG NVYDO0YUd ANV SONILSIT ITIdNOD
S1d3ONOD 000Z 8/0009 8/000S 8 ANV S3I¥3IS V



(43D

B6900 PROGRAMDUMP FOR STACK 32C (MIX 3043/3047) BOSR=29A59 TUESDAY, FEBRUARY 11,1986 15:19:27
NAME: (CONCEPTS)OBJECT/EP4195/CALC/C74 ON SYSTEMSED.

MCP 36.140.3025: *SYSTEM/MCP36140. INTRINSICS: SYSTEM/INTRINSICS ON DISK. (LOADED)
SYSTEM SERIAL: #2372 HOSTNAME : SYSEDB6900. GROUP 1D: DEFAULT.

CAUSE OF DUMP: PROGRAM REQUESTED @ 002:0007:4 (0C1600), 00A:0007:3.
PIB HISTORY WORD AT ENTRY TO PROGRAM DUMP: 0O 000000 00000O.
PROGRAMDUMP OPTIONS: (DEFAULT)

032C = LOSR (00029085)

002E (01,0002) 0 000000 000001 OQFP: 0CT:00000000 00000001 , EBC:??????, DEC:1
002D 3 200800 70E002 RCW: LL=03, NORML STATE, TRUE [USER SEGMENT @ 0002:0007:4 (001600)]

SEG DESC: 3 800000 9C61A0

CODE: 3 068081 801007 3 849E2F B26485 3 865008 BBAE6O >3 03B202 ABFEAEC 3 6004B0 ABFFOO
002¢ ----D[01]=>3 C12000 804003 *MSCW: PREVIOUS MSCW @ 0029; 0[00]=0008 IN STACK 012

0028 (03,0002) 0 000000 000000
002A 3 000600 70A00A RCW: LL=02, NORML STATE [USER SEGMENT @ 000A:0007:3]

SEG DESC: 3 800001 CDE381

CODE: 3 A6BAAE 600FB1 3 S00DBD SOO0AF 3 ABA260 O7AES0 >3 OEBOAB AE6007< 3 ABA3AE 600CAB
0029 ----D[03]=>3 72C001 40C015 *MSCW: PREVIOUS MSCW @ 0014; D[02]=0014

0028 (02,0014) 6 800000 000800 SCW: (BLOCK BELOW DECLARED SNGL-DIM ARRAYS)

0027 (02,0013) 0 000000 000000

0026 (02,0012) 2 000000 000000 ODPOP: OCT:00000000 00000000 , 2ND:O

0025 (02,0011) 2 000000 000000 DPOP: OCT:00000000 00000000 , 1S7:0, DBL:0.0

0024 (02,0010) O 000000 000000

0023 (02,000F) 0O 000000 000000

0022 (02,000E) 7 32C200 OOEQ02 PCW: LL=03, D[l] SEGMENT @ 0002:0000:1, NORML STATE

0021 (02.0000) 5 000001 040001 DESC [ABSENT-MOM]: DATA, LENGTH=16 (CODEFILE ADRS=1)

0020 (02,000C) 7 32C800 40E005 PCW: LL=03, D{l] SEGMENT @ 0005:0004:4, NORML STATE

001F (02,000B) 7 32C000 OOEQ0S PCW: LL=03, D[1] SEGMENT @ 0005:0000:0, NORML STATE

001E (02.000A) 5 C20003 029A72 DESC [PRESENT-COPY]: STRING (4-BIT), LENGTH=48 (POINTS @ OFFSET=0019 IN THIS STACK)
001D (02.0009) 3 000000 000000 SEG DESC [ABSENT-MOM]: LENGTH=0 (CODEFILE ADRS=0)

001C (02,0008) O 000000 000001 OP:  OCT:00000000 00000001 , EBC:??2????, DEC:1

0018 (02,0007) 0 000000 000007 OP:  OCT:00000000 00000007 , EBC:??2???, DEC:7

001A (02,0006) O 000000 000005 OP:  OCT:00000000 00000005 , EBC:??????, DEC:5

0019 (02,0005) 0 000000 000001 OP:  OCT:00000000 00000001 , EBC:??????, DEC:1

0018 (02,0004) 5 400000 129A70 DESC {ABSENT‘COPY]: DATA, LENGTH=1 (MOM @ OFFSET=0017 IN THIS STACK)

0017 (02.0003) 5 CO0000 429A72 DESC [PRESENT-COPY]: DATA, LENGTH=4 (POINTS @ OFFSET=0019 IN THIS STACK)

0016 (02,0002) 0 000000 000000

0015 3 00024f EBBFCD RCW: LL=02, CNTRL STATE [MCP SEGMENT @ OFCD:04EE:1 (16562000)]

SEG DESC: 3 8800B6 ABCAC1
CODE: 3 BEFFFF FFFFEF 3 AA6870 C30C30 3 ABA3AE 400AAB >3 A3B234 B22695¢< 3 B8B180 95B9A2
0014 ----D[02]=>3 F2D000 408002 *MSCW: PREVIOUS MSCW @ 0012; D[01]=0004 IN STACK 320D

0013 3 000000 002000 RCW: DUMMY (RUN)
0012 ----D[02]=>3 FS81B74 E08011 *MSCW: PREVIOUS MSCW @ 0001; D[01]=B74E IN STACK 381

0000 = BOSR (00029A59)

SdANNG NVYO0Ud ANV SONILSIT IT4NOD
S1d3DNOD 000£ 8/0009 8/000S 8 ANV S3¥3IS V



€S-0

B6900:2372 DUMPALL VERSION 36.130.017 TUESDAY, 02/11/86 03:19 PM.

L EP4195/DATA/FILE; LAN EP4195/DATA/FILE

FILE ATTRIBUTES FOR: FIN TITLE=(CONCEPTS)EP4195/DATA/FILE ON SYSTEMSED HOSTNAME=SYSEDB69CO -KIND=PACK INTMODE=EBCDIC

EXTMODE=[BCDIC FILETYPE=0 MINRECSIZE=0 MAXRECSIZE=15

PROTECTION=SAVE POPULATION=1

AREAS=20 AREALENGTH=15000 FLEXIBLE

BLOCKSIZE=60 FRAMESIZE=48 MYUSE=IN BUFFERS=2 TRANSLATE=FULLTRANS

LASTRECORD=6 FILEKINC=DATA ROWSINUSE=1 USERINF0=000000000000

CREATIONDATE=11/22/82(82326) LASTACCESSDATE=02/11/86(86042) CYCLE=1 VERSION=0 SAVEFACTCR=0 SECURITYTYPE=PRIVATE SECURITYUSE=I0
PACKNAME =SYSTEMSED

1E! RECOO1A1234FIRST CUSTOMER {?722272222222722222227272222222222227272272272222222222222 .. .90

2E! RECO02S5432BALANCE IS 342.57 {27222222222222222222222222222222227222222222222222222.. .90

3E! RECO0376789ZERO BALANCE CUSTOMER 222222722222722222222220222022222222°927202222272222222227...90

4E' RECOO4CR333CREDIT

S5E! RECO05B2222BEGINNING OF NEW BLOCK
6E! RECOO6M8765BIG SPENDER
JE! RECOO7T2875SKINFLINT

EOF - FILE CONTAINS 7 RECORDS
7 RECORDS PROCESSED

BALANCE CUSTOMER }?272?22222222222722222222222222222222722722272222222222?2.. .90

SdANNG NVYD0Y¥d ANV SONILSIT ITIdNOD
S1d43ONOD 000Z 8/0009 8/000S 8 ANV S31¥3IS V



L EP4195/DATA/FILE; LAN EP4195/DATA/FILE

FILE ATTRIBUTES FOR: FIN TITLE=(CONCEPTS)EP4195/DATA/FILE ON SYSTEMSED HOSTNAME=SYSEDB6900 KIND=PACK INTMODE=EBCDIC
EXTMODE=EBCDIC FILETYPE=0 MINRECSIZE=0 MAXRECSIZE=15 BLOCKSIZE=60 FRAMESIZE=48 MYUSE=IN BUFFERS=2 TRANSLATE=FULLTRANS

PROTECTION=SAVE
CREATIONDATE=11/22/82(82326)

PACKNAME=SYSTEMSED

POPULATION=1

LASTACCESSDATE=02/11/86(86042)

AREAS=20 AREALENGTH=15000 FLEXIBLE LASTRECORD=6 FILEKIND=DATA ROWSINUSE=1 USERINF0=000000000000
CYCLE=1 VERSION=0 SAVEFACTOR=0 SECURITYTYPE=PRIVATE SECURITYUSE=I0

vS-D

1£! RECOO1 ! A1234F ! IRST C ' USTOME R ! V{27722 ! NN?
H! DICSC3FOFOF1 | CIFIF2F3FA4C6 ! CIDIEZE340C3 ! EAE2E3D6DACS ! 094040404040 ! 404040404040 ! C00000012500 ! 000000000000
(0000048)E1 272777 1 222222 4 ppapnr B V202 4 190

(0000096)H! 000000000000 ! 00000000000C ! 000000000000 ! 000000000000 ! 000000000000 ! 000000000000 ! 000000000000 ! . ..180

SdNNA WVYD0Yd ANV SONILSIT ITIdWOD
S1d3DNOD 000, 8/0009 8/000S 8 ANV S31Y3IS V

2F ! RECO02 ! 554328 ! ALANCE L 1s 34 1 2.57 ! t {22222 1227727 !

H' DICSC3FOFOF2 ! E2FSFAF3F2CZ ! C1D3CIDSC3CS ¢ 40C9E240F3F4 | F24BFS5F74040 ! 404040404040 ! C00000034257 ! 000000000000 !
(0000048)E! 7?7222 1272222 1222727 1222272 1127222 1222222 Prnn 1...90
(0000096 )H! 000000000000 ! 000000000000 ! 000000000000 ! 000000000000 ! 000000000000 ! 000000000000 ! 000000000000 !...180

3£ RECO03 ! 767892 ! ERC BA ! LANCE ! CUSTOM ! ER V{272 ' 2272277 !

H! DICSC3FOFOF3 | E9F6F7FSFIEQ ! C509D640C2C1 ! D3CID5C3IC540 ! C3F4E2E3D6D4 ! C5D940404040 ! C00000000000 ! 000000000000 !
(0000048)1 1 22227 1 a2mam0 1 amm i amn o U 90
(0000096)H! 000000000000 ! 000000000000 ! 000000000000 ! 000000000000 ! 000000000000 ! 000000000000 ! 000000000000 !...180

4F ! RECOO4 ! CR333C ! REDIT ! BALANC ! £ CUST ! OMER 1 )22 17

! D9C5C3IFOFOFA ! C3D9F3F3F3CH ! DICSCACIE340 | C2C1D3CIDSC3 ! CS540C3E4E2E3 ! D6DACS5D94040 ! DO0O0COO05478 ! 000000000000 !
(0000048)F ! 2222727 1222272 v 222277 1222272 1222222 1 2?2227 NN 1...90
{0000096)H! 000000000000 ! 000000000000 ! 00000N00O000 ! 000000000000 ! 000000000000 ! 000000000000 ! 000000000000 !...180

5Ft RECO0S ! B22228 ! EGINNI ! NG OF ! NEW BL ! 0CK 22272 222272

H! DICSC3FOFOFS | C2F2F2F2F2C2 ! CSC7CYD5D5CY ! D5C740D6C640 ! DSCSE640C2D3 ! D6C3D2404040 ! C00000014239 ! 000000000000
(0000048) @ 222227 1277737 v 7m2mmr  t9anmnn B N s 90
(0000096) 1! 000000000000 ! 000000000000 ! 000000000000 ! 000000000000 ! 000000000000 ! 000000000000 ! 000000000000 '...180

6E ! RECO06 ! M87658 ! IG SPE ! NDER ! 1 {229/ IEEEEN

H! DICSC3FOFOF6 ! DAFSF7FB6FSC2 ! CIC740E2D7C5 | DSCAC5D94040 ! 404040404040 ! 404040404040 ! C00054876117 ! 000000000000
(0000048)f ! 2?2222 v 17 ! 272272 1272277 vt 1222222 1...90

(0000096)H! 000000000000 ! 000000000000 ' 000000000000 ! 000000000000 ! 000000000000 ! 000000000000 ! 000000000000 ' . ..180

7€' RECOO7 ! T2875S ! KINFLI ! NT ! ! t{ ! !
H1 DICSC3FOFOF7 | E3F2FBF7FSE2 ! D2CIDSC6D3CY ! D5SE340404040 ! 404040404040 ! 404040404040 ! C00000000025 ! 000000000000 !

(0000048)E! 2?2222 1272772 1 222772 1 222722 1272222 1222272 122727277 L...90

(0000096)H! NOODOONO00DN ! 000000000000 ! 000000000000 ! 000000000000 ! 000000000000 ! 000000000000 ! 000000000000 '...180

EQF - FILF CONTAINS 7 RFCORDS
7 RECORDS PROCESSED



SS-D

EP4195/F11.E/DUMP/C74 (02/11/86)

*%xx%x* COBOL74 PROGRAM TO SHOW DUMP WITH DISK FILE BUFFERS *****

$ SET LIST MAP
IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT DATAFILE ASSIGN TO DISK.
DATA DIVISION.
FILE SECTION.
FD DATAFILE
RECORD CONTAINS 90 CHARACTERS;
BLOCK CONTAINS 360 CHARACTERS,
VALUE OF TITLE IS "EP4195/DATA/FILE".
01 DATA-RECORD.

03 RECNO PIC X(6).
03 ACCTNO PIC X(5).
03 NAME PIC X(25).
03 BALANCE PIC S9(9)V99 COMP.
03 FILLER PIC X(48).
WORK ING-STORAGE SECTION.
77 COUNTER PIC 99 COMP.
77 EOF-SW PIC 9.
88 EOF VALUE 1.

PROCEDURE DIVISION.
100-MAIN-LOGIC.
PERFORM 200-OPEN-FILE.
PERFORM 300-READ-LOOP UNTIL EOF.
PERFORM 400-CLOSE-FILE.
STOP RUN.
200-0PEN-FILE.
OPEN INPUT DATAFILE.
READ DATAFILE AT END MOVE 1 TO EOF-SW.
MOVE 1 TO COUNTER.
300-READ-LOOP.
IF COUNTER EQUAL 4
CALL SYSTEM DUMP.
READ DATAFILE AT END MOVE 1 TO EOF-SW.
ADD 1 TO COUNTER.
400-CLOSE-FILE.
CLOSE DATAFILE WITH LOCK.

2:50 PM TUESDAY, FEBRUARY 11, 1986

000050
000070
000100
000300
000400
000500
000600
000700
000800
000900
000950
000955
001000
001100
001200
001300
001320
001340
001400
001500
001600
001700
001800
001900
002000
002100
002200
002300
002400
002500
002600
002700
002800
002900
003000
003100
003200
003300
003400
003500

SdANING WVYYO0YUd ANV SONILSITITIdWNOD
S1d3ONOJ 000L 8/0009 8/000S 8 ANV S31HIS V



9G8-D

VERSION 35.250.

283 (09/23/85)

BURROUGHS LARGE SYSTEMS COBOL74 COMPILER

(CONCEPTS)OBJECT/EPA195/F ILE/DUMP/C74 ON SYSTEMSED

000050***** COBOL74 PROGRAM TO SHOW DUMP WITH DISK FILE BUFFERS *****

000100

000300
000400
000500
000600
000700
000800
000900
000950

000955
001000
001100
001200

001300
001320
001340
001400

001500

001600
001700

001800
001900
002000

002100
002200
002300
002400

002500
002600

002700
0N2800
AN

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

SELECT DATAFILE ASSIGN TO DISK.

DATA DIVISION.

FILE SECTION.

FD DATAFILE

RECORD CONTAINS 90 CHARACTERS;

BLOCK CONTAINS 360 CHARACTERS;
VALUE OF TITLE IS "EP4195/DATA/FILE".
01 DATA-RETORD.

03 RECNO PIC X(6).
03 ACCTNO PIC X(5).
03 NAME PIC X(Z5).
03 BALANCE PIC S9(9)V99 COMP.
03 FILLER PIC X{(48).

WORK ING-STORAGE SECTION.

77 COUNTER PIC 99 COMP.
77 EOF-SW PIC 9.

88 EOF VALUE 1.
PROCEDURE DIVISION.

100-MAIN-LOGIC.

PERFORM 200-OPEN-FILE.

PERFORM 300-READ-LOOP UNTIL EOF.
PERFORM 400-CLOSE-FILE.

STOP RUN.

200-0PEN-FILE.
OPEN INPUT DATAFILE.

READ DATAFILE AT END MOVE 1 TO EOF-SW.
MOVE 1 TO COUNTFR.
300 READ LOOP.

MCP PROCEDURE :

MCP PROCEDURE :
MCP PROCEDURE :
MCP PROCEDURE :
MCP PROCEDURE :

1986 FEBRUARY 11 15:19

0000:0000:0
0000:0000:0
START OF SEGMENT AT (01,002)
0002:0000:0
0002:0000:0
0002:0000:0
0002:0000:0
0002:0000:0
0002:0000:0
0002:0000:0
0002:0000:0
SIRwW T0 0[01] = (02,003)
MYUSE VALUE = (02,005)
DATAFILE = (02,004)
0002:0000:0
0002:0000:0
0002:0000:0
0002:0000:0
DATA-RECORD = (02,006)
0002:0000:0
0002:0000:0
0002:0000:0
0002:0000:0
BALANCE = (02,007)
0002:0000:0
DATAF ILE(MAXRECSIZE) = 90
DATAF ILE(BLOCKSIZE) = 360
DATAFILE({ INTMODE) = EBCDIC
0002:0000:0
COUNTER = (02,00C)
0002:0000:0
EOF-SW = (02,011)
0002:0000:0
0002:0000:0
0002:0000:0
PCW
PCW
LIBRARY DIRECTORY
PCW(002:000:1)
0002:0000: 1
0002:0003:0
0002:0003:0
0002:000A:0
= (01,003)
0002:000A:5
0002:000A:5
ATTRIBUTEGRABBER
ATTRIBUTEHANDLER
NEWOPEN
HANDLEERROR

0000(0000: )

0006 (0001 :0)
000B(0001:4)
0048(0006:0)

(02,012)
(02,013)
(02,014)
(02,015)

0N

GOTOSOLVER

{01,004)
(01,005)
(01,006)
(01,007)

[ I TR |

0002:0018B:0
0002:0023:1
0002:0023:5

SdANNA WVYD0Ud ANV SONILLSIT 3TIdWOD
S1d3ON0OD 000L 8/0009 8/000S 8 ANV S3IH3S Vv



LSO

WARNING

COMPILE

003000 IF COUNTER EQUAL 4
003100 CALL SYSTEM DUMP.
435 : BURROUGHS EXTENSION EXCEEDS U.S. HIGH LEVEL *** SYSTEM

003200 READ DATAFILE AT END MOVE 1 TO EOF-SW.
003300 ADD 1 TO COUNTER.

003400 400-CLOSE-FILE.

003500 CLOSE DATAFILE WITH LOCK.

0.K.

NUMBER OF WARNINGS DETECTED = 0001
LAST WARNING AT 003100

TOTAL CARD COUNT: 39

D{01] STACK SIZE: 0021(015) WORDS

B[02] STACK SI1ZE: 0027(01B) WORDS

CORE ESTIMATE: 806 WORDS

STACK ESTIMATE: 310 WORDS

CODE FILE SIZE: 10 RECORDS

PROGRAM STZE: 3 CODE SEGMENTS, 124 TOTAL WORDS

SUBROUTINE NAME: (74, LEVEL 02

COMPILED ON THE B6900 FOR THE LEVELO SERIES

COMPILER COMPILED WITH THE FOLLOWING OPTIONS:
BOMS .

COMPILE

TIMES: ELAPSED CPU I-0 RPM
0012.007 0001.234 0001.302 01896

MCP

MCP

mcp
MCP

MCP
MCpP

LIBRARY FIRST EXECUTABLE PCW(OOF:008:2)
MCP PROCEDURE : MYSELF

NORMAL FIRST EXECUTABLE PCW(OOF:009:3)
MCP PROCEDURE :

MCP PROCEDURE: FREEZELIB

PROCEDURE :

PROCEDURE :

PROCEDURE :
PROCE DURE :

PROCEDURE :
PROCEDURE :

0002:0025:2
0002:0027:4
<<0001>>
PROGRAMDUMP = (01,008)
0002:0028:5
0002:0031:0
0002:0033:5
0002:0035:2
NEWCLOSE = (01,009)
SEGMENT 0002 1S 003C LONG
START OF SEGMENT AT (01,00A)
PCW(00A:000:0) = (02,012)
LIBRARY USER = (02,016)
(01,008)
(01,00C)
(02,013)
(02,017)
(02,018)
(01,00D)
CAUSEP (01,00E)
LIBRARY EXIT PCW = (02,01A)
SEGMENT 000A 1S 0019 LONG
START OF SEGMENT AT (01,00F)
(01,010)
(01,011)
(01,012)
(01,013)
(02,002)
(01,014)
SEGMENT OOOF IS 0027 LONG

MUTATE
BILOCKEXIT
PCW(00A:004:4)
LIBRARY LOCK
LIBRARY EVENT
WAIT ,

L T T N { I [ T A [ VR U B [}

INSTACKARRAYDEC
LIBRARY VARIABLE

W onouoanou

SdANNG NWVYD0Ud ANV SONILSIT ITIdWOD
S1d3ONOD 000Z /0009 9/000S 8 ANV S3I¥3IS V



85-D

B6900 PROGRAMDUMP FOR STACK 332 (MIX 3043/3050) BOSR=3CAE4 TUESDAY,
NAME: (CONCEPTS)OBJECT/EP4195/F ILE/DUMP/C74 ON SYSTEMSED.

MCP 36.140.3025: *SYSTEM/MCP36140. INTRINSICS: SYSTEM/INTRINSICS ON DISK. (LOADED)
SYSTEM SERIAL: #2372 HOSTNAME : SYSEDB6900. GROUP 1D: DEFAULT.

CAUSE OF DUMP: PROGRAM REQUESTED @ 002:0028:4, 00F:0007:3.
PIB HISTORY WORD AT ENTRY TO PROGRAM DUMP: O 000000 0G00000.

PROGRAMDUMP OPTIONS: FILE(S)

0335 = LOSR (00O3CE19)

0037 (01,0002) 0 000000 000401 OP: 0CT:00000000 00002001 , EBC:?2????, DEC:1025
0036 3 200802 80£002 RCW: LL=03, NORML STATE, TRUE [USER SEGMENT
SEG DESC: 3 800003 CE 1DAF
CODE: 3 BS5AAB2 0AS00C 3 A6B202 CAB204 3 8CAOAQ 28AE6O
0035 ----D[01]=>3 C12000 804005 *MSCW: PREVIOUS MSCW @ 0030; D[00]=0008 IN STACK 012

0034 (03,0004) 0O 000000 000003 OFP: 0CT:00000000 00000003 , EBC:??772?, DEC:3
0033 (03.0003) 7 332000 70£002 PCW: LL=03, DI1] SEGMENT @ 0002:0007:0, NORML STATE
0032 (03,0002) 0 000000 000000
0031 3 000600 70A00F RCW: LL=02, NORML STATE [USER SEGMENT
SEG DESC: 3 800002 787320
CODE: 3 AG6BAAE 6014B1 3 5014BD SO000AF 3 ABA260 O07AESO
0030 ----D[03]=>3 732001 40C0O1C *MSCW: PREVIOUS MSCW @ 0014; D[02]=0014

FEBRUARY 11,1986 15:19:53

@ 0002:0028:4]
>3 088202 ABFEAE< 3 B05004 A68DB1

@ 000Ff :0007:3]
>3 15B0AB AE600C< 3 ABA3AE 6011AB

OFFSET=0023 IN THIS STACK)

LE., TITLE=EP4195/DATA/FILE.)

INTMODE=EBCDIC, BLOCKED)

002F (02,0018) 6 800000 002800 SCW: (BLOCK BELLOW DECLARED FILES, SNGL-OIM ARRAYS)
002E (02,001A) O 000000 000000
0020 (02.0019) 2 000000 000000 DPOP: OCT:00000000 00000000 , 2ND:0O
002C (02,0018) 2 000000 000000 DPOP: OCT:00000000 00000000 , 15T:0, DBL:0.0
0028 (02,0017) O 000000 000000
002A (02,0016) O 000000 000000
0029 (02,0015) 7 332200 00E002 PCW: LL=03, D[1] SEGMENT @ 0002:0000:1, NORML STATE
0028 (02,0014) 5 000001 040001 DESC [ABSENT-MOM]: DATA, LENGTH=16 (CODEFILE ADRS=1)
0027 (02,0013) 7 332800 40EQ00A PCW: LL=03, D[li SEGMENT @ OOO0A:0004:4, NORML STATE
0076 (02,0012) 7 332000 O0EOOA PCW: LL=03, D[1] SEGMENT @ OOOA:0000:0, NORML STATE
0025 (02,0011) 5 €40000 63CBO7 DESC !PRESENT COPY]: STRING (8-BIT), LENGTH=6 (POINTS @
0024 (02.0010) 3 000000 DOO000 SEG DESC [ABSENT-MOM]: LENGTH=0 (CODEFILE ADRS= 0)
0023 (02,000F) O 000000 000000
0022 (02,000E) 5 400000 13CBOS DESC [ABSENT-COPY]: DATA, LENGTH=1 (MOM @ OFFSET=0021 IN THIS STACK)
0021 (02,000D) 5 COO000 13CBO7 DESC [PRESENT- COPY] DATA, LENGTH=1 (POINTS @ OFFSET=0023 IN THIS STACK)
0020 (02,000C) 5 C20000 C3CBO2 DESC PRESENT copPy STRING (4-BIT), LENGTH=12 (POINTS @ OFFSET=001E IN THIS STACK)
001F (02,0008) 3 000000 000000 SEG DESC [ABSENT-MOM]: LENGTH=0 (CODEFILE ADRS=0)
001E (02,000A) O 000000 000004 OP: 0CT:00000000 00000004 , EBC:???2??, DEC:4
001D (02,0009) 5 400000 13CBOO DESC ABSENT COPY]: DATA, LENGTH=1 (MOM @ OFFSET=001C IN THIS STACK)
001C (02,0008) S C00000 13CBO2 DESC PRESENT COPY]: DATA LENGTH=1 (POINTS @ OFFSET=001E IN THIS STACK)
0018 (02,0007) 5 C2000B 48107 DESC PRESENT CoPY]: STRING (4-BIT), LENGTH=180 (MOM @ OFFSET=001A IN THIS STACK)
001A (02,0006) 5 840005 AE8107 DESC PRESENT MOM]: STRING (8-BIT), LENGTH=90
0019 (02,0005) 0 000000 000001 OP: "0CT:00000000 00000001 , EBC:???2??, DEC:1
0018 (02,0004) 5 800004 42£B801 DESC [PRESENT-MOM]: DATA, LENGTH=68 (FILE INTNAME =DATAF I
0(00) 1 782EBO 200010 SELECTOR
1(01) 3 €12000 804002 F IBMSCW
2(02) 0 000000 000000 FIBLOCK
3{03) 0O 0005SA0 000000 RECORDSTATUS
4(04) 0 011100 466027 FILESTATUS (LEVEL=1,COBOL74, BUFFERS=2, NEWBUFFER, READSERIAL STATE)
5(05) 0 C98000 000000 TANKDATA1  (FILETYPE=0, UNITS=CHARS, EXTMODE=EBCDIC,
6(06) 0 016800 D0DOSA TANKDATA?  (PHYSICAL: BLOCKSIZE=360, MINRECSIZE=0, MAXRECSIZE=90)
/(071 0 002000 400000 DISKBI OCK (SEGPERBLK=2, RECPERBIK=4)

SANNA NVYYO0YUd ANV SONILSIT ITNdWNOD
S1d3DNOD 000Z 8/0009 8/000S 8 ANV S3HIS V



65-D

8(08) 0 000800 000000 PAGESPEC
9(09) 0 130000 000011 IOINFO

10(0A) 5 800003 032F28

LEB

(K IND=PACK)

(LEB

SHOWN BELOW IN HEX)

0{0000)

5(0005)
10(000A)
12(000c)
17(0011)
22(0016)
27(0018)
32(0020)
37(0025)

(SPECIFIED ATTRIBUTES: TI1TLE, KIND, BLOCKSIZE, MAXRECSIZE, MYUSE, BUFFERS, INTMODE, UPDATEFILE,

0 832002
0 016800
0 000000
0 000000
0 000000
0 000000
0 ClE3C1
0 020000
0 000000

400411
00005A
000000
010000
000082
00001D
04C6C9
000000
000000

0 000001 000001 O 000000
0 000000 000000 O 000004
THRU 11(0008)

0 000300 000000 O 000000
0 800000 000000 O 000000
0 000000 O00O1F © 000000
0 D3C500 000000 0 0€0101
0 080101 04C4C9 0 E2D200
THRU 47(002F)

000000
0000C0

000000
000000
000021
08C4C1
000000

INTNAME, UNITS, NEWFILE, FILEUSE, FILEORGANIZATION)

11(0B) 5 C00000 A43BB2
12(0C) 5 €40016 81BBOC
13(0p) 0 000000 000000
14(0E) 5 000001 420001
15(0F) 0 000000 000000
16(10) 0 000000 00733D
17(11) 7 382000 00933D
18(12) 7 38200A 00930C
19(13) 7 382000 00933D
20(14) 7 382000 00936A
21(15) 7 382000 009368
22(16) 1 412000 800378
23(17) 7 38201B 309308
24(18) 7 382000 009328
25(19) 7 382011 809308
26(1A) 7 38200F F0930C
27(18) 7 382010 B0930C
28(1C) 7 382032 709308
29(1D) 7 382000 009373
30(1E) 0 OL1FO0 360042
31(1F) 0 000000 000168
32(20) 0 000000 000003
33(21) 0 000000 000006
34(22) 0 000000 000000
35(23) 0 000000 000002
36(24) 0 000000 00OO5A
37(25) 0 000000 000O5A
38(26) 0 000000 000201
39(27) 0 000000 000000
40(28) 0 000000 000000
41(29) 1 770000 000092

0(0000)

5(0005)

10(000A)

15(000F )

18(0012)

23(0017)

38(0026)

40(0028)

45(002D)

T0AREA
BUFFDESC
SIOAREA
FMTBUFFDE
FMTLOCK
FILIOTIME
PWRITES
PREADS
PWRITEN
PREADN
PSEEK
PINITIATE
PSEARCH
PLOCKER
PRELEASE
PMOVEOQUT
PMOVE IN
PWAIT
PFLOAT
PCWCONTRO
OFFSET
RECORDCOU
BLOCKCOUN
LOWER
UPPER
MINRECSZ
RECSIZE

I

T

AEXP
DHEADER

0 3F3F05
0 630014
0 30263C
0 000000
0 080600
0 000000
0 800000
0 1D0304
0 BDAF44

SC

(54804000)
(54285200)
(54804000)
(56582900)
(56598650)

(55174800)
(54227250)
(55070000)
(54491400)
(54492800)
(55495800)
(56863900)
L (54283600) (54256600) (54657600)

NT
T

(SHOWN BELOW N HEX)
"""""""""" €0042A 0 0010CO 912000 O 040000 000000 0 003C0D 00000F O 335F5D ADIEB6
0 000001 000000 O 000202 EQ0000 O 01D023 008000 O 002000 000003
0 30263C 550157 O 3EAAS5 A41F33 O 000000 000000 O 050003 320092

0001F4
550156
000000
0180FA
000000
000000
08C3D6
0E9588B

THRU 17(0011)

02044)
020203

808308
000000
140103
E3C1C6
000002

000000
001000

240001
000000
06C5D7
€903C5
000000

0 600A21 FFEB34
0 000C00 001000

0 000000 C00000
0 000000 000000
0 FAF1F9 F504C4
0 040102 110000
0 000000 000000

0 000000 000000 O 000000 0O0000 O 0C00O0N 000000 G 000000 000000

THRU 37(0025)
THRU 39(0027)

0 DSC3C5 D7E3EZ O 06C5D7 FAF1F9 O F504C4 C1E3C1 0 04C6C9 D3C500

(FOFU=270, FEOFV=2, LASTRECORD=6)

42(2n) 0 0010FO 000002
43(28) 0 001000 0180rA
44(2¢) 0 00000 0000NOD

FIBEOF
ACTNUM
SBLOCKING

SdANNG WVYD0Ud ANV SONILSIT ITIdWNOD
S1d43DNOJ 000 8/0009 8/000S 8 ANV S3IH3AS V



09-2

45(20) 0 000000 000000 SIDINFO
46(2£) 0 000000 000000 SOFFSET
47(2F) 0 000000 000168 CURRENTBLOCK
48(30) 2 000000 000000 FILEEVENTI
49(31) 2 000000 000000 FIILEEVENT?2
50(32) 0 000000 000000 OUTPUTTRANSLATION
51(33) 0 000000 000000 INPUTTRANSLATION
52(34) 0 000000 000000 USEROUTINES
53(35) 0 000000 000000 FLOPPYMISC (NORMALIOLENGTH=0)
54(36) 0 000000 000000 FIBLOCKSNR
55(37) 5 00001 E1CB2A 10CB
MLIP CNTRL: O 10CBOO 000C28 READ, WORD, CAUSE 10 FINISH
OLP ADDRESS: 0 000000 100005 HDPNO = 1, HDP PORT = 0, LEM PORT = 0, REL LCP =5
CMND QUEUE: 5 COO0CO 80F7CA
SELF PTR: 5 C00001 E1CB2A
COMMAND PTR: 5 E00001 91CB2A
RESULT PTR: 5 E00001 B1CBZA
C/R LENGTHS: 0 000000 0ACOOC
RESULT MASK: O 000000 000000
RSLT QUEUE: S E00000 1CF4E?2
NEXT LINK: O 000000 000000
DATA PTR: 5 EQO0003 C3C506
CURR LENGTH: 0 000000 0CO000
MLIP RESULT: O 000000 000000
START TIME: O 000S55A BAFFAB
FINISH TIME: O 000000 001C80
INFOL WORD: O 332332 040008 UNITNUMBER = 51, OWNER STKNO = 332, INITIATING STKNO = 332,
REQUESTOR = 1 (USERIO)
INFO2 WORD: O 000030 011100 STATE = 1 (INACTIVE), PATHNAME = 03, PROC NO = 1, HOP NO = 1
LOG DESC: 0 000000 000000
10CW: 0 330000 0180FC IOSTANDARDFIELD: ATTENTION, READ, 8-BIT, MEMORY PROTECT
BUFFER DESC: 5 C00003 C3C506
EVENT REF: 5 E10000 243BB2
FIB DESC: 5 C00004 4ZEBO1
10 MASK: 0 000000 000000
LOGICAL RD: O 000000 000003 UNITS XFERRED = 00000 (0), ATTENTION, EXCEPTION
10 INFO: O 800003 COO0O0 WORD, BUFFERINDEX = 00000 (0), IOLENGTH = 0003C (60)
COMMAND1: O 807000 0180FC
COMMANDZ2: 0 000000 000000
RESULT1: O 000000 000000
RESULT2: 0 000000 000000
SAVED INFO: O 330000 000033
56(38) 0 000000 000004 TRANSACTIONCOUNT
57(39) 0 000000 000000 LIBRARYINFO
58(3A) 0 000002 000000 PHYSICALIOCOUNT (READ=2, WRITE=0)
59(38) 0 24B666 6E0455 LOGINTSTARTTIME
60(3C) 5 C00004 42EBO1 SELFDESC
61(30) 0 000000 000201 BUFLINKS
62(3E) 5 800000 22F897 IOMOM (BUFFER #1, IS THE TOP BUFFER, BUFFER POOL SIZE = 2)

(BUFFER POOL DOPE VECTOR) . ..ottt e s it e e e e e et e e ee s
0(0000) S 800000 A2AS503 S5 800000 A43BB2
(BUFFER #0) oottt e e
T0CBDESC: 5 800001 EADI1S
MLIP CNTRL: O 10CBOO 000C28 READ, WORD, CAUSE 10 FINISH
DLP ADDRESS: O 00DD0O 100005 HDPNO = 1, HDP PORT = O, LEM PORT = 0, REL LCP =5
CMND QUEUE: S CO0000 80F 7CA
SELF PTR: 5 C00001 E4DI915
COMMAND PTR: 5 EO0001 94D915
RESULT PTR: 5 EO0D0O1 B4D915
C/R TENGTHS: 0 000000 0ANOOC

SdWNA NVYO0Ud ANV SONILSITITIdNOD
$1d3ONOD 000£ 8/0009 8/000S 8 ANV S3I¥3IS V



L9-2

PIOBUFFDESC:
BFFREVENT:
BFFREVENT2:

ACTUALBLOCK :

ACTUALKEY2:
DUPLCOPY:

USER DATA:‘(SHOWN BELOW IN HEX AND CORRESPONDING GRAPHICS)

RESULT MASK:
RSLT QUEUE:
NEXT LINK:
DATA PTR:
CURR LENGTH:
MLIP RESULT:
START TIME:
FINISH TIME:
INFO1 WORD:

INFO2 WORD:
L0OG DESC:
[0CW:
BUFFER DESC:
EVENT REF:
FIB DESC:
10 MASK:
LOGICAL RD:
10 INFO:
COMMANDI :
COMMAND?2 :
RESULTL:
RESULT2:
SAVED INFO:

QOO0 UMIUNUIOCOO QO COQUIoOUVO

000030
000000 000000
130000 0180FA
C00003 C1880C
£10000 22A503
C00004 421BO1
000000 000000
000000 000201
800003 C00000
807000 0180FA
000000 000000
000000 000000
000000 000000
130000 000033

000000 000000
£00000 10F4E2
000000 000000
EQ0003 C1B80C
000000 000000
000000 000000
00055A B4ABE4
000000 0056BD
332332 040008

0003 C1B80OC
0000 000001
0000 000000
0000 000000
0000 000001
0000 000000
0000 000000
0000 000000
0000 0180FA

5 80

2 00

2 00
[OAW: 0 00
0 40
0 00
0 00
0 00
0

13

JUNK1:
10CWP:

= 51, OWNER STKNO = 332, INITIATING STKNO = 332,

REQUESTOR = 1 (USERIO)
011100 STATE = 1 (INACTIVE), PATHNAME

: 03, PROC NO = 1, HDP NO =1
TOSTANDARDFTELD: READ, 8-BIT, MEMORY PROTECT

UNITS XFERRED = 00000 (0), EOF CR EOP, EXCEPTION
WORD, BUFFERINDEX

= 00000 (0), IOLENGTH = 0003C (60)

0(0000) D9C5C3 FOFOF1 C1F1F2 F3FAC6 C9DIE2 £340C3 EAE2E3 D6DACS D94040 404040
5(0005) 404040 404040 C00000 012500 000000 000000 000000 000000 000000 000GO0

10(000A)
15(000F )
20(0014)
25(0019)
30(001E)
35(0023)
40(0028)
45(002D)
50(0032)
55(0037)

000000
D9C5C3
404040
000000
09C5C3
C50940
000000
D9CS5C3
D6D4CS
000000

000000 000000
FOFQF2 E2FSF4
404040 C00000
000000 000000
FOFOF3 E9F6F7
404040 C00000
000000 000000
FOFOF4 C3D9F3
D94040 DO000O
000000 000000
(BUFFER #1)

MLIP CNTRL:
DLP ADDRESS:
CMND QUEUE:
SELF PTR:
COMMAND PTR:
RESULT PTR:
C/R LENGTHS:
RESULT MASK:
RSLT QUEUE:
NEXT LINK:
DATA PTR:

000000
F3F2C2
034257
000000
F8FIE9
000000
000000
F3F3C3
005478
000000

oo ouving A

0 10CBOO
0 000000
C00000 80OF7CA
C00001 E1CB2A
E00001 91CB2A
EQ0001 B1CB2A
000000 0A0OOC
000000 000000
EQ0000 101 4E?2
000000 001000
E00003 C€31506

000000 000000
C1D3C1 DSC3CS
000000 000000
000000 000000
C509D6 40C2C1
000000 000000
000000 000000
DI9C5C4 C9E 340
000000 000000
000000 000000

000000 000000

40F 3F 4
000000
000000
€3C540
000000
000000
C1D5C3
000000
000000

000000
F24BF5
000000
000000
C3EAE2
000000
000000
€540C3
000000
000000

000000
F74040
000000
000000
E3D6D4
000000
000000
E4E2E3
000000
000000

000C28 READ, WORD, CAUSE IO FINISH
100005 HDPNO = 1, HDP PORT = O, LEM PORT = 0, REL LCP =5

/RECO01A1234F IRST CUSTOMER /
/

/REC002S5432BALANCE 1S 342.57 /
/o {27222222222222222222777

/RECDO4CR333CREDIT BALANCE CUST/
/OMER

SdANA WVYO50Ud ANV SONILLSIT ITIdWOD
S1d3DONOD 000£ 9/0009 9/000S 8 ANV S3IYIS V



290

10(000A)
15( 000F )
20(0014)
25(0019)
30(001E)
35(0023)

(
4550020
(

64(4
65
6

)
)
)
)
63(3F
0
1
(42

)
)
5(41)
6(42)

PIOBUFFDESC: 5

BFFREVENT: 2

BFFREVENT2: 2

10AW: O
ACTUALBLOCK : 0 000000

0

0

0

0

ACTUALKEYZ2:

CURR LENGTH:
MLIP RESULT:
START TIME:

FIN

INFO1 WORD:

INFO2 WORD:
LOG DESC:

BUFFER DESC:
EVENT REF:
FIB DESC:
LOGICAL RD:

COMMAND1 :

SAVED INFO:

ISH TIME:

10CW:

[0 MASK:
10 INFO:
COMMANDZ2 :

RESULTL:
RESULTZ:

OCQOOOCoOOoOUINNUTOOO CoOOOO

000000
000000
00055A
000000
332332

000030
000000
330000
C00003
£10000
€00004
000000
000000
800003
807000
000000
000000
000000
330000

000000
000000
BAFFAB
001C80

040008 UNITNUMBER = 51, OWNER STKNO = 332, INITIATING STKNO = 332,
REQUESTOR = 1 (USERIO)
011100 STATE = 1 (INACTIVE), PATHNAME

000000

03, PROC NO = 1, HOP NO =1

0180FC 10STANDARDFIELD: ATTENTION, READ, 8-BIT, MEMORY PROTECT

€3C506
243882
42rB01
000000

000003 UNITS XFERRED = 00000 (0), ATTENTION, EXCEPTION
€00000 WORD, BUFFERINDEX = 00000 (0), IOLENGTH = 0003C (60)

0180FC
000000
000000
000000
000033

DUPLCO

JUNK1:
T1OCWP :

800003
000000
000000
000000

000000
000000
000000
330000

PY:

C3C506
000001
000000
000000
000002
000000
000000
000000
0180FC

USER DATA: (SHOWN BELOW IN HEX AND CORRESPONDING GRAPHICS)
0(0000) DICSC3 FOFOF5 C2F2F2 F2F2C2 C5C7C9 D5D5CY D5C740 D6C6A0 DSCSES 40C203
5(0005) D6C3D2 404040 CO0000 014239 000000 000000 000000 000000 000000 000000

000000
D9C5C3
404040
000000
DIC5C3
404040
000000
000000
000000
000000

5 800005 5E0B19 FAB™

000000
FOFOF6
404040
000000
FOFOF7
404040
000000
000000
000000
000000

000000 0000
D4F8F7 F6F5
C00054 8761
000000 0000
E3F2F8 F7F5
C00000 0000
000000 0000
000000 0000

00 0000
c2 C9C7
17 0000
00 0000
E2 02C9
25 0000
00 0000
00 0000

000000 000000 0000
00000G 00000C 000000 000000
0 000000 000000 SIOMOM
0 000000 000092 UNITNUMBERS, DISKFILEHEADERS INDEX=146 (DECIMAL)
0 000000 000000 INQ LIST DESC

00 000000
40 E2D7C5
00 000000
00 000000
D5 C6D3C9
00 000000
00 000000
00 000000
00 000000

000000
D5C4CS
000000
000000
D5E 340
000000
000000
000000
000000
000000

(FAB SHOWN BELOW IN HEX)

000000 000000 000000
D94040 404040 404040
000000 000000 000000
000000 000000 000000
404040 404040 404040
000000 000000 000000
000000 000000 000000
000000 000000 000000
000000 000000 000000
000000 000000 000000

/RECO05B82222BEGINNING OF NEW BL/
J0CK  (22772222222722222227227/

0016 (02.0007?) 0 000000 000000

0015 3 000241 ESBFCD  RCW:

LL=02, CNTRL STATE

SIG DESC: 3 8800B6 ABCACI

CODE: 3 BEFFFF FFFFFI

[MCP SEGMENT

0014 ----D[02]=>3 33000 408002 *M5CW: PREVIOYS MSCW @ 0012; D[01]=0004 IN STACK 333

@ OFCD:04EE:1 (16562000) ]
3 4A6870 €30C30 3 ABA3AE 400AAB >3 A3B234 B22695< 3 B8B180 95BIA2

SdNNA NWVYO0YUd ANV SONILSITITJINOD
S1d3IDNOD 000 9/0009 8/000S 8 ANV S31H3IS V



€9-2

0013 3 000000 002000 RCW: DUMMY (RUN)
0012 ----D[02]=>3 F81B74 E£08011 *MSCW: PREVIOUS MSCW @ 0001; D[01]=B74F IN STACK 381

0000 = BOSR (0O0O03CAE4)

SdANNG NVYO0Ud ANV SONILSITITdNOD
S1d3DONOD 000 8/0009 9/000S 8 ANV S3HIS V



¥9-0

EP4195/LAB4/DUMP (02/11/86)

syorsr Al GOL PROGRAM WITH PROCEDURES FOR OPTIONAL LAB 4 %%h%%%
$ SET LIST STACK LINEINFO $
BEGIN
REAL V1, V2,
%%%
PROCEDURE A,
BEGIN
REAL V3,
PROCEDURE 8.
BEGIN
v3 := 3,
V1 := V3/V2 + V2/V3;
END OF PROC B;

il

B,
END OF PROC A;
%%%
PROCEDURE C;

BEGIN
REAL V4,
PROCEDURE D;
BEGIN

REAL V5,
v4q .= 4,
V5 = 5,
AL
V2 := V4,

END OF PROC D,

D,
END OF PROC C;

%%% OUTER BLOCK

C;
END OF PROGRAM.

2:50 PM TUESDAY, FEBRUARY 11, 1986

00000050
00000100
00000200
00000300
00000350
00000400
00000500
00000600
00000700
00000800
00000900
00001000
00001100
00001200
00001300
00001400
00001500
00001600
00001700
00001800
00001900
00002000
00002100
00002200
00002300
00002400
00002500
00002600
00002700
00002800
00002900
00003000

SdWNA WVYD0YUd ANV SONILSIT ITIdWOD
S1d3DNOD 000£ 9/0009 8/000S 8 ANV S31H3IS V



99-3

(01,0002)
(01,0003)

(02,0002)
(02,0003)

mn n

(02,0008) =

(01,0004)
(03,0002)
(03,0003)

(02,0005)

(01,0005)
(03,0002)
(03,0003)

(01,0006)
(04,0002)

(01,0007)

BURROUGHS LARGE SYSTEMS ALGOL

0OBJECT/EP419S5/LABA/DUMP

%%%%% ALGOL PROGRAM WITH PROCEDURES FOR OPTIONAL LAB 4 %%%%%

BEGIN
BLOCK#1
SEGMENT DESCRIPTOR

REAL V1, V2,

vl
V2
%%%
PROCEDURE A;
A
BEGIN
REAL V3,
SEGMENT DESCRIPTOR
V3
PROCEDURE B;
B
BEGIN
V3 = 3;
vVl := V3/V2 + V2/V3;,
END OF PROC B;
B.
END OF PROC A,
%%%
PROCEDURE C;
C
BEGIN
REAL V4,
SEGMENT DESCRIPTOR
V4
PROCEDURE D;
D
BEGIN
REAL V5,
SEGMENT DESCRIPTOR
V5
v4 := 4,
VS5 := 5,
A,
V2 := V4,
END OF PROC D,
D.
END OF PROC C;
%%% OUTFR BLOCK
C;
END OF PROGRAM.
BLOCKEXTT

COMPILER, VERSION 36.130.175,

TUESDAY, 02/11/86, 03:19 PM.

00000050 000:0000:0
00000200 000:0000:0

BLOCK#1 IS SEGMENT 0003
1 00000300 003:0000:1

00000350 003:0000:1
00000400 003:0000:1

00000500 003:0000:1
00000600 003:0000:1

A IS SEGMENT 0004
2 00000700 004:0000:1

00000800 004:0000:
00000900 004:0000:

3 00001000 004:0001:
00001100 004:0003:

3 00001200 004:0003:
00001300 004:0003:

A(004) LENGTH IN WORDS IS
2 00001400 003:0000:
00001500 003:0000:

00001600 003:0000:1
00001700 003:0000:1

e O N O O

C IS SEGMENT 0005
2 00001800 005:0000:1

00001900 005:0000:1
00002000 005:0000:1

D IS SEGMENT 0006

3 00002100 006:0000:
00002200 006 :0001:
00002300 006:0001:
00002400 006:0002:
00002500 006:0003:

D(006) LENGTH IN WORDS 1S

3 00002600 005:0000:

00002700 005 :0000:
C(005) LENGTH TN WORDS IS

2 00002800 003:0000:
00002900 003:0000:
00003000 003:0000:

U'”—"-‘OU‘H—‘gN(NU"Ob—‘
Q
wn

SdANNG WVYD0Y¥d ANV SONILLSIT ITIdNOD
S1d43DNOD 000£ 8/0009 8/000S 8 ANV S3I¥3S V



99-2

NUMBER OF ERRORS DETECTED = O.

NUMBER OF SEGMENTS = 5. TOTAL SEGMENT SIZE = 24 WORDS. CORE ESTIMATE = 37 WORDS.
PROGRAM ST1ZE = 31 CARDS, 70 SYNTACTIC ITEMS, 18& DISK SECTORS.

PROGRAM FILE NAME: OBJECT/EP4195/LAB4/DUMP ON DISK. B5/6000 CODE GENERATED.

BLOCK#1(003) LENGTH IN WORDS IS 0008

STACK ESTIMATE = 13

COMPILATION TIME = 3.198 SECONDS ELAPSED; 0.510 SECONDS PROCESSING; 0.885 SECONDS [/0.

SdANNG WVYO0YUd ANV SONILSIT ITIdNOD
S1d3DNOD 000L 8/0009 8/0005 8 ANV SIIHIS V



£9-D

B6900 PROGRAMDUMP FOR STACK 336 (MIX 3043/3052) BOSR=29A59 TUESDAY, FEBRUARY 11,1986 15:20:07
(CONCEPTS)OBJECT/EP4195/LAB4/DUMP ON SYSTEMSED

NAME :

MCP 36.140.3025:
SYSTEM SERIAL:

CAUSE OF DUMP:

*SYSTEM/MCP36140. INTRINSICS: SYSTEM/INTRINSICS ON DISK. (LOADED)

#2372

FAULT TERMINATION @ 004:0001:2 (00001000), 004:0003:5 (00001200), 006:0002:3 (00002300), 005:0000:5 (00002600) .

HOSTNAME : SYSEDB6900. GROUP [D: DEFAULT.

PIB HISTORY WORD AT ENTRY TO PROGRAM DUMP: 0 000000 010404.

PROGRAMDUMP OPTIONS:

033A

0039
0038
0037
0036
0035
0034
0033
0032

0031

0030
002F
002E
002D
002¢C
0028
002A

0029
0028
0027
0026
0025
0024
0023
0022
0021
0020
001F
001E

001D
001cC

= LOSR

(
(01,0008)
(01,0007)
(01,0006)
(01,0005)
(01,0004)
(01,0003)
(01,0002)

00029093)

—--n[01]=>3

(01,0007)
(01,0006)
(01,0005)
(01 0004)
(01,0003)
(01,0002)

7
0
0
0
0
0
3

----p[01]=>3

(04,0002)

0
3

----p[04]=>3

(03,0003)
(03,0002)

7
0
3

----D[03]=>3

(04,0002)

0
3

----p[04]=>3

(03,0003)
(03,0002)

7
0
3

€00045
000000
000000
000000
000000
FFFFFT
000000
000A25

C12000

336625
000000
000000
000000
334520
000009
000400

C12000
000000
000AQO
736002
336200
000000
000600
736001
000000
000A00
736001
336600

000000
N00AOD

(DEFAULT)

A29A59
000000
000039
00033C
000000
FFFFFF
000002
EB4FA3

804008

608FA3
000001
000001
000000
083020
000004
112004

804003
000003
30E004
210004
012004
000003
212006
40C003
000005
00E005
B10004
312006

000004
00A003

DESC [PRESENT-COPY]: DATA, LENGTH=1114 (POINTS @ OFFSET=0000 IN THIS STACK)

OP: 0CT:00000000 00000071 , EBC:??????, DEC:57
oP: 0CT:00000000 00001474 |, EBC:??2???, DEC:828

opP: OCT:77777777 77777777 , EBC:22?22?, DEC:-7.0064923216E-46

OP: 0CT:00000000 00000002 , EBC:?????2?, DEC:2

RCW: LL=01, CNTRL STATE [MCP SEGMENT @ OFA3:026E:5 (11384800)]

SEG DESC: 3 A00027 0016DF

CODE: 3 61ADAB B23595 3 BB4OCB AS5B261 3 A6B7BD 9E27B6 >3 BSAEAD 3AABBS5< 3 A3A3FF FFFFFF
*MSCW: PREVIOQUS MSCW @ 0029, D[00]=0008 IN STACK 012

PCW: LL=02, D[O] SEGMENT @ OFA3:0256:3, NORML STATE

0oP: 0CT:00000000 00000001 , EBC.?????? DEC:1

OP: 0CT:00000000 00000001 , EBC:???2??, DEC:1

0P: 0CT:14642440 02030040 , EBC:???2??, DEC:1.42947407974E-23

FRIKKKXXKKKKFA* DIVIDE BY ZERQ R KKK kA I kA ko ok ok ok
RCW: LL=04, NORML STATE [USER SEGMENT @ 0004:0001:2 (00001000) ]

SEG DESC: 3 800000 7B1A81
CODE: 3 FFB203 7002B9 >3 100383 100330< 3 028380 5002B8
*MSCW: PREVIOUS MSCW @ 0026, DB[00]=0008 IN STACK 012

OP: 0CT:00000000 00000003 , EBC:?2????, DEC:3

RCW: LL=03, NORML STATE [USER SEGMENT @ 0004:0003:5 (00001200) ]

SEG DESC: 3 800000 7B1A81

CODE: 3 FFB203 7002B9 3 100383 100330 3 028380 5002B8 >2 A3AE70 O3ABA3< 3 BOBFFF FFFFFF
*MSCW: PREVIOUS MSCW @ 0022; D[03]=0022

PCW: LL=04, D[1] SEGMENT @ 0004:0000:1, NORML STATE

OP: 0CT:00000000 00000003 , EBC.?????? DEC:3

RCW: LL=04, NORML STATE [USER SEGMENT ® 0006:0002:3 (00002300) ]
SEG DESC: 3 800000 5CF770D

CODE: 3 FFB204 7002B8 3 B20548 02B8AE >3 5004A8 300250< 3 03B8A3 BOB4A?
*MSCW: PREVIOUS MSCW @ 001F; D{02]=0014

Op:  0CT:00000000 00000005 , EBC:????2?, DEC:5

RCW: LL=03, NORML STATE [USER SEGMENT @ 0005:0000:5 (00002600) ]
SEG DESC: 3 800000 487EBD

CODE: >3 FFAE70 03ABA3< 3 BOBFFF FFFFFF

*MSCW: PREVIOUS MSCW @ 001B; D[03]=0018

PCW: LL=04, D[1] SEGMENT @ 0006:0003:3, NORML STATE

OP:  0CT:00000000 00000004 , EBC.?????? DEC:4

RCW: LL=02, NORML STATE [USER SEGMENT ® 0003:0000:5 (00002900) ]
SIG DESC: 3 800000 8°/777

SdANG NVYO0Ud ANV SONILSIT ITIdWO)D
S1dI3ONOD 000L 8/0009 8/000S 8 ANV SII¥IS V



89-D

0018

001A
0019
0018
0017
0016
0015

0014

0013
0012

0000

----p[03]=>3 736001

(02,0006) 6 800000
(02,0005) 7 336000
(02,0004) 7 336000
(02,0003) 0 000000
{02,0002) 0 000000

3 00024t

----n[02]=>3 F37000

3 000000
----n[02]=>3 F81874

= BOSR  (00029A59)

CODE :

40C007 *MSCW:

000000
10E005
40E004
000000
000000
E88FCD

SCW:
PCW:
PCW:

RCW:

>3 FFAESO OSABAE< 3 6007AB A3BOBO
PREVIOUS MSCW @ 0014; D[02]=0014

LL=03, D[1] SEGMENT @ 0005:0001:0, NORML STATE
LL=03, D[1] SEGMENT @ 0004:0004:0, NORML STATE

LL=02, CNTRL STATE

SEG DESC: 3 8800B6 ABCACI

CODE:

3 BEFFFF FFFFFF 3 4A6870 C30C30

[MCP SEGMENT

3 ABA3AE 400AAB >3 A3B234 B22695< 3 B8B180 95B9A2

408002 *MSCW: PREVIOUS MSCW @ 0012; D[01]=0004 [N STACK 337

002000 RCW:
EO8011 *MSCW: PREVIOUS MSCW @ 0001; D[01]=B74E IN STACK 381

DUMMY (RUN)

@ OFCD:04EE:1 (16562000)]

SANNA ANVYO0Ud ANV SONILSIT 3TIdWOD
S1d3DONOD 000 8/0009 89/000S 8 ANV SIS V



BIBLIOGRAPHY



A SERIES . NI 5 20 50/8 G6G0G/3 7006 LCNCEPTS

BIBLIOGRAPHY

Manual
A Series Syste:mns An Introduction
A Series Ment:-Assisted Resource Contro! (MARC) User’s Guide 3.€
A Series Screen Design Facility (SDF) Capabilites 3.6
A Series Advanced Data Dictionary System (ADDS) Capabilites 3.5
A Series Zammunications Management System (COMS) Cap2ilites 3.6
A Series Interactive Data Comm Configurator (IDC) User’s Guide 3.6
A Series Extended Retrieval With Graphic Output (ERGO) User’s Guide 3.6
A Series Disk Subsystem Software Overview 3.6
A Series Mark 3.5.0 System Software Installation Guide
A Series A& 3 System Software 3.6 Installation Guide
A Series A 9 Systam Software 3.6 Installation Guide

oA A~
!

A Series

-

- [RNY SuPEPRN Iy
AUCH QUIJS

[¥3]

) System Software 2.6 [nstall
A Series I/O Subsystem Reference 3.6

A Series System Software Utilities Refererce 3.6

A Series Work Flow Language (WFL)

A Series S, stem Architecture Reference Volume 2

A Series Print System (PrintS/ReprintS) User's Guide 3.6

A Series Printing Utilities User's Guide 3.6

A Series Operator Display Termina! (ODT) 3.6

A Series 5 stem Software Site Management Reference 2.u

A Series Systerm Software Support Reference 3.6

A Series CANDE 3.6

Bib-2

Form Number

1169562

1169588

1180437

1180569

1180494

1169810

1164027

1169992

1170040

1169679

1170024

1169802

5014954

-1169919

1169950

1169612

1170008

1170016

1169869



A SERIES AND 8 3000/B600078 7009 CORCHPTS

A Series CANDE Operations 3.6
A Series DMS Il Data and Structure Definition Language (DASDL)
A Series DMS Il Utilities and Operations Guide

A Series Advanced Data Dictionary System (ADDS) User's Guide *°

A Series Extended Retrieval with Graphic Output (ERGO) User’s Manual

A Series DMS |l Inquiry Software Operation Guide

A Series DMS |l DataAid User's Guide

SMF 1l System Resource Managerent Manual -

SMF 11 Site Management Marwal -+

LINC Il Reference Manual -

Reporter iii Repo:rt Language User’s Guide

A Series MultiLingual System User's Guide - * -

A Series ALGOL Test and Debug System (TADS) Usér's Guide -
A Series COBOL74 Test and Debug System (TADS) User's Guide™

A Series Burroughs Network Architecture (BNA) User’s Guide™ ¢

Office Management System (OMS 1) Planning and Installation Guide *

ASeries Intelligent Distributed Editor (IDE) User’s Guide-
A Series Data Transfer System (DTS) User’s Guide

A 3 System Reference

A 9 System Reference

A 10 System Reference

A 15 System Capabilities and Features

A 15 System Hardware Operational Guide

A 15 System Operating Guide

Bib-3

1170069
1163805
‘1163839
1180551
1164027
1164035 °
1180544
5015688
-5012016
"1163961
1177185
1169646
1169539
1162901
1169687
1153194
1182474
1180320
" 5013196
5012305
5016579
1182508
1183134

1182516



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS

B 5900 System Reference 5011034

B 6900 System Reference 5010986
B 7900 System Operator’s Guide 1182151
B 7900 System Hardware Operational Guide 1161353

B 7900 System Capabilities and Features Guide 1166170

Bib-4



LAB EXERCISES



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
LAB EXERCISES

This page left blank for formatting.

Lab-2



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
LAB EXERCISES

MARC LAB

Objectives: Use MARC menu choices, actions, and commands.

1.

(5N

Inquire into file existence and family substitution.

Log on to MARC with the usercode and password provided by the instructor:

Observe the Home Menu that is displayed. What is your MARC session number?

Enter INTRO on the Choice line and transmit.

Enter MENUS on the Choice line, to read about MARC menus.
a. Use the + and - Actions to scroll through the Menus information. Read the text

displayed. The Intro screen will appear at the end of the Menus text.

Also read the information displayed for the ACTION, COMND, and TYPE choices. When you are
finished reading, enter HOME on the Action line of the Intro screen to return to the Home
Menu.

Inquire into the existence of the file EP4195/SOURCE/ENROLLMENT, using the FILE menu and
its successors, as illustrated in the Student Guide, Figures 3-4 through 3-7.

a. What is the file creation date?

b.  How

c. What is the complete title of this file?

d. Enter HOME on the Action line to return to the Home Menu.

Inquire into the existence of EP4195/SOURCE/ENROLLMENT again, using Choice Field
Typeahead as shown in the Student Guide, Figures 3-8 and 3-9. Then return to the Home
Menu.

To inquire about the same file in Command Mode, enter CO PD EP4195/SOURCE/ENROLLMENT
onthe Action line. Observe the output, and return to the Home Menu.

Do the inquiry in step 8 again. but omit the CO

Lab-3



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
LAB EXERCISES

MARC LAB, cont.

10.

11.

12.

13.

14.

15.

16,

Enter FAMILY on the Choice line to inquire into the family substitution statement currently in
effect. Write down the family statement and return to the Home Menu.

Use the CHFAM Choice to change your family statement to FAMILY DISK = DISK ONLY.

Inquire into the existence of EP4195/SOURCE/ENROLLMENT using one of the methods from
steps 6,7, 8, or 9 above. What is the response? Why?

Use the CHFAM Choice on the Home Menu to restore the value of the family statement from
step 10.

Determine the purpose of the INFO Choice on the Home Menu by reading the Help information.

a.

Place the cursor over the word INFO, and depress the SPCFY key. Short Help will be
displayed at the bottom of the screen.

Depress SPCFY again to display longer Help information.

Return to the Home Menu.

Use the INFO Choice on the Home Menu to inquire into attributes for the file
EP4195/SOURCE/ENROLLMENT.

Why is the system able to locate the file now?

Enter GO INFO on the Action line, to go directly to the Info screen, and inquire into the
£

1a M

aoras
F¥e = Qsdlll.

Use Typeahead to do the same inquiry again, by entering INFO
EP4195/SOURCE/ENROLLMENT on the Choice line.

Enter the Choice BYE to log off MARC.

Lab-4



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
LAB EXERCISES

CANDE LAB
Objectives: Use basic CANDE commands to enter, edit, compile, and run a program.

Use basic CANDE control commands.
Use COMS windows and dialogs to manage two concurrent CANDE sessions.

A. Basic CANDE commands

1. Log on to CANDE with the usercode and password provided by the instructor:

2. Check to make sure that the family statement associated with your usercode is correct:

3. Make a workfile called <your initials >/CANDELAB. The workfile type should be
ALGOL. Ifanother student has the same initials, agree on a unique naming convention.

4, Enter the ALGOL source below into the workfile using sequence mode.

100 $RESETLIST

200 BEGIN

300 REALR1,R2,R3;

400 FILE OUTFILE (KIND = REMOTE);

500 R4 : = 3}
600 R1:=3;
700 K:=5;

800 R3:= 7;

900 R3:=R1 + K + R3;
1000 WRITE (QUTFILE, <X20, “HOORAY! IDIDIT...R3 = “, X3,R10.2>,R3):
1100 END.

5. Compile the workfile. Are there errors?

6. Add this line to the workfile: 225 INTEGERK:
7. Display the workfile on the terminal.
8. Renumber the lines, starting at 100 and counting by 50. Display the file again.

9. Compile the workfile. Are there errors?

10.  Remove line 350 from the file.

11.  Compile the workfile. Are there errors?

12.  Save the workfiles.

13, Execute the program that yvou compiled. What value is displaved for R37

Lab-5



A SERIES AND B 5000/8 6000/B 7000 CONCEPTS
LAB EXERCISES

CANDE LAB, cont.

14.  What are the names of the files you have created?
15.  What are the values of the file attributes below for the source and object files that you
created?
Attribute Source File Object File
Maxrecsize
Blocksize
Areasize
Lastrecord
Creationdate
B. CANDE Control Commands. Write the control command for each step and the response
displayed.
1. Inquire into the most recent messages displayed for your session.
2. Determine the name of vour station.
3. Determine your CANDE session number.
4. Inquire into the name of the executing MCP.
5. Inquire into the system time and date.
6. Determine the number of actiye tasks, compiles, and stations under CANDE.

Lab-6



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
LAB EXERCISES

CANDE LAB, cont.

C. COMS Windows and Dialogs

1.

2.

10.

11.

12.

13.

14.

15.

Enter 270N MARC to move to the MARC/1 window.

Use the MARC menus as in the MARC Lab to inquire into files under the directory
<your initials>.

Enter 2ON CANDE on the Action line to move back to the CANDE window.

Is the session number the same as before?

Enter 70N CANDE/2 to move to dialog 2 of the CANDE window.

Is the session number the same as before?

P S s |
T sequential daia.

AVASART Q VY Uz iU Caas

Enter your name and business address into the workfile. Use 3 or 4 lines, as if you were
addressing an envelope. Sequence numbers are required.

Save the workfile.
Return to dialog 1 of the CANDE window.

What is the CANDE session number?

What is the name of the workfile now?

Does the file ADDRESS/<your initials > exist on your pack? Why or why not?

Use the WINDOWS command to inquire into the windows available.

a. What is the current window?

b. What is the status of the CANDE/2 window?

Log off both CANDE and MARC. This will end both CANDE sessions.

Lab-7



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
LAB EXERCISES

This page left blank for formatting.

Lab-8



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
LAB EXERCISES

CANDE/DUMPALL LAB

Objectives:

Use additional CANDE commands such as Insert, Move, Find, Replace, Write,
Back, Split, and Do.
Obtain information about a file from DUMPALL.

A. Additional CANDE Commands

1.

Make a data file called <your initials>/ADDRESS/MASTER with the type SEQ.

a.

Insert the individual address files created by all the students during the last lab
into your master file. The individual addresses are under the ADDRESS directory.
Leave a blank line between the addresses for readability.

After you have all the addresses inserted, move them into alphabetical order. If
there are many students in class, this may become tedious. Move a few addresses
for practice, and then continue with the next step.

Save your workfile, and get it again as <your initials>/ADDRESS/PRACTICE.

a.

b.

Use the Find command to locate all records containing the word Burroughs, and
all records containing the word Street.

Use the Replace command to change all occurrences of Street to Avenue (if Street
does not occur, select a word that does occur in your file and replace that word).

Save your workfile.

Make a Do file containing commands to accomplish the following:

Get <your initials>/ADDRESS/PRACTICE
Undo the replacement from step 2b above
Write the workfile

Save the workfile

Do the Do file, and observe the results.

Use the Back command to browse through the printer backup file created by the Write
statement above.

a.

b.

Try options such as Help, First, Last, +, -.

When vou are done browsing, remove the backup file and end the
backupprocessor.

Lab-9



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
LAB EXERCISES

CANDE/DUMPALL LAB, cont.

B. SYSTEM/DUMPALL

1. Run DUMPALL interactively to list records from <your initials >/ADDRESS/MASTER on
the screen. Try options such as Teach, Hex, Record, Skip.

2. Run DUMPALL through MARC to print <your initials>/ADDRESS/MASTER in both alpha
and numeric formats. End or split the session to release the printer backup file.

3. Use the DUMPALL listing printed above to answer the following questions.

a.

b.

£

Which student does record 6 pertain to?

What characters are in the third word of record 67

What is your first name in EBCDIC?

How many words are in each record of the file? How many characters?
How many words are in each block of the file? How many characters?

What is the Filekind of this file?

How many records are in the file?

What is the value of the Lastrecord attribute?

Lab-10



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS
LAB EXERCISES

DUMP LAB (OPTIONAL)

Objective: Identify and interpret portions of a program dump for a program that failed. This
optional exercise is designed for students who are interested in dump reading.

This exercise refers to the program listing on page C-64, the compile listing on pages C-65 and C-66,
and the program dump on pages C-67 and C-68.

1. Name the procedures in which the following variables can be referenced.
A4
V3
V5 _
2. How much memory is required to execute this program?
3. For each of the following variables, give the stack address and value at the time of the dump.
Stack Address Value
V1
V3 -
V5

4. What caused PCWs to be placed at (2,4) and (2,5) on the dump?

5. What is the first executable statement in the program?

Lab-11



A SERIES AND B 5¢00/B 6000/B 7000 CONCEPTS

LAB EXERCISES
DUMP LAB (OPTIONAL), cont.
6. Trace the execution of the program, and compare it to the dump, by completing the chart below
for each procedure invoked.
Sequence Number  Procedure Lex Level Offset in Dump
200 _BOT 2 __ 0014

2900 C

7. Why does D[3] appear at offsets 001B and 0022 both? Where was D[3] pointing at the time of
the dump?

8. a. ‘What is the significance of the numbers 1000, 1200, 2300, 2600 after “Fault
Termination” on page C-67 of the dump?

b. These numbers are not printed on every dump. Why were they printed on this dump?

9. Why did this program fail?

Lab-12



A SERIES AND B 5000/B 6000/B 7000 CONCEPTS:
LAB EXERCISES = - -

WFL LAB

Objectives: Write and execute a simple WFL job.
Use ADM and/or MARC to observe the execution of the job.
Use ODT or MARC commands to inquire into system libraries.

A.  Write and start a WFL job that includes steps 1-9 below. Continue modifying and starting the
job until it executes properly. Save your final job summary to show the instructor.

1. Name the workfile and the job <your initials>/TEST/JOB.

2. The job should be executed under your class usercode and password:

3. The job should use the family substitution statement provided by the instructor:

4. The job should run at priority 50.

5. The file EP4195/SOURCE/ENROLLMENT should be under your usercode on your pack.
Make a copy of this file under the name <your initials >/ROSTER/SOURCE.

6. Compile <your initials>/ROSTER/SOURCE using the ALGOL compiler. The object should
be called <yourinitials>/ROSTER/OBJECT.

7. Execute <your initials>/ROSTER/OBJECT, the program compiled above. This program
reads and prints a file whose internal name is INPUTDATA. For this execution, it should
read and print from <your initials >/ADDRESS/MASTER, the name and address file used
in previous labs.

8. Remove the files <your initials >/ROSTER/SOU RCE and <your initials>/ROSTER/OBJECT
from your pack.

9. Run the object program OBJECT/EP4195/WFLLAB/FINISH, which is already on your pack.

B. Start your job again from your terminal or the ODT, and observe the execution of the job using . .-
ADM at the ODT or at a REMOTESPO, or using MARC at your terminal. Look for the
information displayed when your tasks are active, waiting, and completed. Look for messages
also.

Lab-13



A SERIES AND B 5200/B 5000/B 7000 CONCEPTS
.28 EXERCISES

WEFL LAB, cont.
C. Library Inquiries

1. Use the LIBS command through MARC or the ODT to determine which libraries are in
the mix.

2. Use the SL command to inquire into the function names and associated library names.

Lab-14



	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	08-23
	08-24
	08-25
	08-26
	08-27
	08-28
	08-29
	08-30
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	09-29
	09-30
	09-31
	09-32
	09-33
	09-34
	09-35
	09-36
	09-37
	09-38
	09-39
	09-40
	09-41
	09-42
	09-43
	09-44
	09-45
	09-46
	09-47
	09-48
	09-49
	09-50
	09-51
	09-52
	09-53
	09-54
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	12-01
	12-02
	12-03
	12-04
	12-05
	12-06
	12-07
	12-08
	12-09
	12-10
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	13-13
	13-14
	13-15
	13-16
	13-17
	13-18
	13-19
	13-20
	13-21
	13-22
	13-23
	13-24
	13-25
	13-26
	13-27
	13-28
	13-29
	13-30
	13-31
	13-32
	13-33
	13-34
	13-35
	13-36
	13-37
	13-38
	13-39
	13-40
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	15-01
	15-02
	15-03
	15-04
	15-05
	15-06
	15-07
	15-08
	15-09
	15-10
	15-11
	15-12
	15-13
	15-14
	15-15
	15-16
	15-17
	15-18
	15-19
	15-20
	15-21
	15-22
	15-23
	15-24
	15-25
	15-26
	16-01
	16-02
	16-03
	16-04
	16-05
	16-06
	16-07
	16-08
	17-01_A3
	17-02
	17-03
	17-04
	17-05
	17-06
	17-07
	17-08
	17-09
	17-10
	18-01_A9
	18-02
	18-03
	18-04
	18-05
	18-06
	18-07
	18-08
	18-09
	18-10
	19-01_A10
	19-02
	19-03
	19-04
	19-05
	19-06
	19-07
	19-08
	19-09
	19-10
	20-01_A15
	20-02
	20-03
	20-04
	20-05
	20-06
	20-07
	20-08
	20-09
	20-10
	21-01_B5900
	21-02
	21-03
	21-04
	21-05
	21-06
	21-07
	21-08
	22-01_B6900
	22-02
	22-03
	22-04
	22-05
	22-06
	22-07
	22-08
	23-01_B7900
	23-02
	23-03
	23-04
	23-05
	23-06
	23-07
	23-08
	23-09
	23-10
	23-11
	23-12
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	C-12
	C-13
	C-14
	C-15
	C-16
	C-17
	C-18
	C-19
	C-20
	C-21
	C-22
	C-23
	C-24
	C-25
	C-26
	C-27
	C-28
	C-29
	C-30
	C-31
	C-32
	C-33
	C-34
	C-35
	C-36
	C-37
	C-38
	C-39
	C-40
	C-41
	C-42
	C-43
	C-44
	C-45
	C-46
	C-47
	C-48
	C-49
	C-50
	C-51
	C-52
	C-53
	C-54
	C-55
	C-56
	C-57
	C-58
	C-59
	C-60
	C-61
	C-62
	C-63
	C-64
	C-65
	C-66
	C-67
	C-68
	bib-01
	bib-02
	bib-03
	bib-04
	lab-01
	lab-02
	lab-03
	lab-04
	lab-05
	lab-06
	lab-07
	lab-08
	lab-09
	lab-10
	lab-11
	lab-12
	lab-13
	lab-14

