
o New Release • Revision o Update o New Mail Code

Title

MCP/AS COBOL ANSI-85 Programming Reference Manual, Volume 2: Product Interfaces
(8600 1526–202)

This announces a revision of the MCP/AS COBOL ANSI-85 Programming Reference Manual Volume 2: Product
Interfaces for HMP NX 4.0 and SSR 45.1, dated June 1998.

Previous title: ClearPath HMP NX and A Series COBOL ANSI-85 Programming Reference Manual Volume 2: Product
Interfaces

This manual has been revised to include the following changes:

• Section 2: Addition of service function mnemonics to Table 2–5

• Section 3: Clarification of the syntax for the DMSII SET statement

• Section 3: Addition of double–octet characters in identifiers

• Section 4: Deletion of paragraph, re: changing $DICTIONARY after IDENTIFICATION DIVISION

• Sections 4, 5 and 6: Addition of compiler control images after...FROM DICTIONARY...invocations

• Section 6: Modification of the FORM-KEY function line (COMS_OUT_AGENDA)

Various other technical and editorial changes were made to improve the quality and usability of this manual.

To order a Product Information Library CD-ROM or paper copies of this document

• United States customers, call Unisys Direct at 1-800-448-1424.

• Customers outside the United States, contact your Unisys sales office.

• Unisys personnel, order through the electronic Book Store at http://iwww.bookstore.unisys.com.

Comments about documentation can be sent through e-mail to doc@unisys.com.

Product Information
Announcement

Announcement only: Announcement and attachments: System: MCP/AS
AS194 Release: HMP 4.0 and SSR 45.1

Date: June 1998
Part number: 8600 1526–202

aldsjfl;sdkfj

COBOL ANSI-85
Programming
Reference
Manual
Volume 2
Product Interfaces

MCP/AS

Copyright û 1998 Unisys Corporation.
All rights reserved.
Unisys and ClearPath are registered trademarks of Unisys Corporation.

HMP 4.0 and SSR 45.1 June 1998

Printed in USA
Priced Item 8600 1526–202

The names, places, and/or events used in this publication are not intended to correspond to any
individual, group, or association existing, living, or otherwise. Any similarity or likeness of the names,
places, and/or events with the names of any individual, living or otherwise, or that of any group or
association is purely coincidental and unintentional.

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related
information described herein is only furnished pursuant and subject to the terms and conditions of a
duly executed agreement to purchase or lease equipment or to license software. The only warranties
made by Unisys, if any, with respect to the products described in this document are set forth in such
agreement. Unisys cannot accept any financial or other responsibility that may be the result of your
use of the information in this document or software material, including direct, special, or consequential
damages.

You should be very careful to ensure that the use of this information and/or software material complies
with the laws, rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to
advise of such changes and/or additions.

RESTRICTED – Use, reproduction, or disclosure is restricted by DFARS 252.227–7013 and 252.211–
7015/FAR 52.227–14 & 52.227-19 for commercial computer software.

Correspondence regarding this publication should be forwarded to Unisys Corporation either by using
the Business Reply Mail form at the back of this document or by addressing remarks to Software
Product Information, Unisys Corporation, 25725 Jeronimo Road, Mission Viejo, CA 92691–2792
U.S.A.

Comments about documentation can also be sent through e-mail to doc@unisys.com.

Unisys and ClearPath are registered trademarks and InfoExec, InterPro, Open/OLTP, and TransIT are
trademarks of Unisys Corporation.
All other terms mentioned in this document that are known to be trademarks or service marks have
been appropriately capitalized. Unisys Corporation cannot attest to the accuracy of this information.
Use of a term in this document should not be regarded as affecting the validity of any trademark or
service mark.

8600 1526–202 iii

Contents

About This Manual .. xiii

Section 1. Introduction to COBOL85 Program Interfaces

Using Program Interfaces for Specific Products 1–1
Using Language Extensions for Specific Products 1–1

COMS Extensions ... 1–2
DMSII Extensions ... 1–3
ADDS Extensions ... 1–5
SDF Plus Extensions ... 1–6
SDF Extensions .. 1–8

Section 2. Using the COMS Program Interface

What Does the COMS Program Interface Do? 2–1
Running DMSII with COMS ... 2–2
Using Multiple COMS Language Support Libraries 2–2

Permanently Modifying the COBOL ANSI-85 Compiler .. 2–3
Temporarily Modifying the Support Library Name 2–3

Preparing the Communication Structure 2–4
Declaring a Message Area .. 2–4
Declaring a COMS Interface 2–5

Using COMS Headers ... 2–5
Declaring COMS Headers ... 2–5
Mapping COMS Data Types to COBOL85 2–7
COMS Input Header Fields .. 2–8
COMS Output Header Fields 2–10

Using the VT Flag of the Output Header 2–12
Requesting Delivery Confirmation on Output 2–12

Preparing to Receive and Send Messages 2–12
Linking an Application Program to COMS 2–12

Linking by Function .. 2–13
Linking by Initiator .. 2–15

Initializing an Interface Link 2–15
Using Communication Statements .. 2–17

ACCEPT MESSAGE COUNT Statement 2–17
DISABLE Statement .. 2–19
ENABLE Statement ... 2–21
RECEIVE Statement .. 2–23
SEND Statement .. 2–26

Contents

iv 8600 1526–202

Explanation for Format 1 - Nonsegmented Output
Only .. 2–27

Explanation for Format 2 - Segmented or
Nonsegmented Output 2–27

Segmenting Options 2–28
Advancing Options 2–29

Using Service Functions ... 2–32
Using COMS Designators .. 2–32
Identifying Information with Service Function

Mnemonics .. 2–33
Calling Service Functions .. 2–34

Using the CALL statement 2–35
Using Parameters by Value 2–36

Passing Parameters to Service Functions 2–38
CONVERT_TIMESTAMP Service Function 2–39
GET_DESIGNATOR_ARRAY_USING_DESIGNATOR

Service Function .. 2–40
GET_DESIGNATOR_USING_DESIGNATOR Service

Function .. 2–41
GET_DESIGNATOR_USING_NAME Service

Function .. 2–42
GET_ERRORTEXT_USING_NUMBER Service

Function .. 2–43
GET_INTEGER_ARRAY_USING_DESIGNATOR

Service Function .. 2–44
GET_INTEGER_USING_DESIGNATOR Service

Function .. 2–46
GET_NAME_USING_DESIGNATOR Service

Function .. 2–48
GET_REAL_ARRAY Service Function 2–49
GET_STRING_USING_DESIGNATOR Service

Function .. 2–51
STATION_TABLE_ADD Service Function 2–52
STATION_TABLE_INITIALIZE Service Function 2–52
STATION_TABLE_SEARCH Service Function 2–53
TEST_DESIGNATORS Service Function 2–54

COMS Sample Program with a DMSII Database 2–55
COMS Features Used in the Sample Program 2–55
Data Sets in the Database ... 2–55

Using the Sample Program 2–56

Section 3. Using the DMSII Program Interface

Using Database Items .. 3–1
Naming Database Components 3–1
Using Set and Data Set Names 3–2
Referencing Database Items 3–4

Declaring a Database .. 3–7
Invoking Data Sets ... 3–9

Examples of Invoking Data Sets 3–10

Contents

8600 1526–202 v

Example of Invoking Disjoint Data Sets with a Data Set
Reference ... 3–11

Example of Designating Sets as Visible or Invisible to
User Programs .. 3–12

Using a Database Equation Operation 3–15
Specifying Database Titles at Program Execution 3–15

Using Selection Expressions .. 3–17
Using Data Management Attributes 3–19

COUNT Attribute .. 3–19
RECORD TYPE Attribute .. 3–21
POPULATION Attribute .. 3–22

Manipulating Data in a Database .. 3–23
ABORT-TRANSACTION Statement 3–23
ASSIGN Statement ... 3–25
BEGIN-TRANSACTION Statement 3–29
CANCEL TRANSACTION POINT Statement 3–32
CLOSE Statement .. 3–33
COMPUTE Statement .. 3–35
CREATE Statement ... 3–36
DELETE Statement ... 3–39
DMTERMINATE Statement ... 3–42
END-TRANSACTION Statement 3–43
FIND Statement .. 3–46
FREE Statement ... 3–48
GENERATE Statement .. 3–50
IF Statement .. 3–53
INSERT Statement .. 3–55
LOCK/MODIFY Statement .. 3–57
OPEN Statement .. 3–60
RECREATE Statement ... 3–62
REMOVE Statement .. 3–64
SAVE TRANSACTION POINT Statement 3–67
SECURE Statement .. 3–68
SET Statement ... 3–70
STORE Statement .. 3–72

Processing DMSII Exceptions .. 3–75
DMSTATUS Database Status Word 3–75
DMSTRUCTURE Structure Number Function 3–77
DMSII Exceptions ... 3–78

DMERROR Use Procedure 3–78
ON EXCEPTION/NOT ON EXCEPTION Clause 3–79

Section 4. Using the ADDS Program Interface

Accessing Entities with a Specific Status 4–2
Identifying Specific Entities ... 4–3

VERSION Clause ... 4–3
DIRECTORY Clause ... 4–4

Assigning Alias Identifiers .. 4–4
Identifying a Dictionary .. 4–6
Selecting a File .. 4–8

Contents

vi 8600 1526–202

Invoking File Descriptions .. 4–10
Invoking Data Descriptions in ADDS 4–12
Sample ADDS Program .. 4–15

ADDS Descriptions ... 4–15
COBOL85 Program Using ADDS Interface Syntax 4–17

How ADDS Data Appears in a COBOL85 Listing 4–23

Section 5. Using the SDF Plus Program Interface

Understanding the SDF Plus Interface 5–2
Form Record Libraries .. 5–2
Message Types .. 5–2
Transaction Types .. 5–2

Example .. 5–3
Identifying the Dictionary ... 5–4
Invoking Data Descriptions in SDF Plus 5–5
Using SDF Plus Control Parameters 5–9

SDF Plus COPY Library ... 5–9
Transaction Numbers 5–10
Message Numbers ... 5–11
Form Library Description 5–11
Generating the COPY Library 5–12

Additional SDF Plus Control Parameters 5–12
SDFPLUS-RESULT .. 5–12
SDFPLUS-TRANSNUM 5–14
SDFPLUS-MSGNUM .. 5–14
SDFPLUS-TRANERROR 5–15
SDFPLUS-DEFAULTMSG 5–15
SDFPLUS-TEXTLENGTH 5–15

Run Time Support and Initialization 5–15
WAIT_FOR_TRANSACTION 5–16
SEND_MESSAGE .. 5–17
SEND_TRANSACTION_ERROR 5–17
SEND_TEXT ... 5–18

Remote File .. 5–19
Remote File READ and WRITE 5–19
Multi-User Remote File 5–19

Debugging with TADS ... 5–20
Using SDF Plus with COMS ... 5–21

Using COMS Input/Output Headers 5–21
SDFINFO Field .. 5–21
SDFFORMRECNUM Field 5–23
SDFTRANSNUM Field .. 5–23

Sending and Receiving Messages 5–23
Sending Transaction Errors 5–24
Sending Text Messages .. 5–24

Specific Differences between COBOL74 and COBOL85 5–25
Syntax Applicable to All SDF Plus Programs 5–25
Differences between a COBOL74 Remote File Interface

Program and a COBOL85 CALL Interface Program . 5–27
Sample SDF Plus Programs ... 5–28

Contents

8600 1526–202 vii

Form Record Library .. 5–28

Section 6. Using the SDF Program Interface

Identifying the Dictionary .. 6–2
Declaring the Form Record Library Invocation 6–3
READ FORM Statement ... 6–5
WRITE FORM Statement .. 6–8
FORM-KEY Function ... 6–10
Programmatic Control Flags ... 6–11

Generating Flag Groups .. 6–12
Resetting Control Flags to Zero 6–13

Using SDF with COMS .. 6–14
REDEFINES and SAME RECORD AREA Clauses 6–14
RECEIVE Statement .. 6–14
FORM-KEY Function .. 6–14
Transmitting a Default Form 6–15

Sample COBOL85 Programs That Use SDF 6–15
Code for Remote File Interface and READ Statement ... 6–15
Remote File Interface and READ and WRITE

Statements .. 6–16
Remote File Interface and Programmatic Controls 6–17
Message Keys and Independent Record Area 6–20

Section 7. TransIT Open/OLTP

What is Open/OLTP? .. 7–1
Accessing Open/OLTP ... 7–1

Appendix A. Reserved Words

Appendix B. User-Defined Words

Index ... 1

Contents

viii 8600 1526–202

8600 1526–202 ix

Tables

2–1. COMS Data Types and COBOL85 Usage ... 2–7
2–2. Input Header Fields .. 2–9
2–3. Output Header Fields ... 2–11
2–4. Transmission Indicator Schedule .. 2–28
2–5. Service Functions Mnemonics .. 2–33

5–1. Values and Meaning of SDFPLUS-RESULT Field .. 5–13
5–2. Syntax for Invoking a Form Record Library .. 5–25
5–3. Accessing Message Numbers .. 5–26
5–4. Accessing Transaction Numbers .. 5–26
5–5. Converting a COBOL74 Remote File Program into a COBOL85 CALL

Interface Program ... 5–27

6–1. Default SDF Suffixes for Programmatic Control Flags 6–11
6–2. COBOL85 Picture Representations and Values of Programmatic Control

Flags .. 6–12

Tables

x 8600 1526–202

8600 1526–202 xi

Examples

2–1. Declaring a COMS Message Area ... 2–4
2–2. Declaring COMS Input and Output Headers .. 2–7
2–3. Linking a COMS Application Program by Function 2–14
2–4. Linking a COMS Application Program by Initiator 2–15
2–5. Initializing a COMS Interface ... 2–16
2–6. Updating the Message Count Field of the Input Header Message 2–18
2–7. Using KEY Values with the DISABLE Statement .. 2–20
2–8. Using KEY Values with the ENABLE Statement ... 2–22
2–9. Placing a COMS Message in the Working-Storage Section 2–25
2–10. Using SEND Statements with ESI and EGI Options 2–31
2–11. Calling a COMS Service Function with a CALL Statement 2–36
2–12. Using the VALUE Parameter When Calling a Service Function 2–37
2–13. Using the CONVERT_TIMESTAMP Service Function 2–39
2–14. Using the GET_DESIGNATOR_ARRAY_USING_DESIGNATOR Service

Function ... 2–40
2–15. Using the GET_DESIGNATOR_USING_DESIGNATOR Service Function 2–41
2–16. Using the GET_DESIGNATOR_USING_NAME Service Function 2–42
2–17. Using the GET_ERRORTEXT_USING_NUMBER Service Function 2–43
2–18. Using the GET_INTEGER_ARRAY_USING_DESIGNATOR Service Function 2–45
2–19. Using the GET_INTEGER_USING_DESIGNATOR Service Function 2–47
2–20. Using the GET_NAME_USING_DESIGNATOR Service Function 2–48
2–21. Using the GET_REAL_ARRAY Service Function ... 2–50
2–22. Using the GET_STRING_USING_DESIGNATOR Service Function 2–51
2–23. Using the STATION TABLE Service Functions ... 2–53
2–24. Using the TEST_DESIGNATORS Service Functions 2–54
2–25. COMS Sample Program with a DMSII Database.. 2–63

3–1. Qualifying DMSII Valid and Invalid Names ... 3–3
3–2. Using DMSII Names Requiring Qualification .. 3–4
3–3. Moving a DMSII Group of Database Items .. 3–5
3–4. Receiving Fields of a MOVE CORRESPONDING Statement 3–6
3–5. Creating an Invalid DMSII Index ... 3–6
3–6. Designating DMSII Sets as Visible or Invisible ... 3–13
3–7. Using a Separately Compiled Procedure to Reference a Database with the

GLOBAL Clause ... 3–14
3–8. Declaring a DMSII Host Program to Be Used with the GLOBAL Clause 3–14
3–9. Performing DMSII Database Equation Operations 3–16
3–10. Using a DASDL Description for the COUNT Attribute 3–20
3–11. Using a DASDL Description for the RECORD TYPE Attribute 3–21
3–12. Using a DASDL Description for the POPULATION Attribute 3–22
3–13. Using the ASSIGN Statement .. 3–28
3–14. Using the BEGIN-TRANSACTION Statement .. 3–31
3–15. Using the CLOSE Statement ... 3–34
3–16. Using the CREATE Statement ... 3–38

Examples

xii 8600 1526–202

3–17. Using the DELETE Statement .. 3–41
3–18. Using the DMTERMINATE Statement .. 3–42
3–19. Using the END-TRANSACTION Statement ... 3–45
3–20. Using the FREE Statement .. 3–49
3–21. Using the GENERATE Statement ... 3–52
3–22. Using the INSERT Statement ... 3–56
3–23. Using the LOCK Statement with the ON EXCEPTION Clause 3–59
3–24. Using the MODIFY Statement with the ON EXCEPTION Clause 3–59
3–25. Using the OPEN Statement with the INQUIRY Option 3–61
3–26. Using the RECREATE Statement .. 3–63
3–27. Using the REMOVE Statement ... 3–66
3–28. Using the SET Statement ... 3–71
3–29. Using the STORE Statement ... 3–74
3–30. Declaring the DMERROR Use Procedure .. 3–79
3–31. Handling Exceptions with the ON EXCEPTION Clause 3–81

8600 1526–202 xiii

About This Manual

Purpose
This manual is the second volume of a two-volume reference set. The COBOL ANSI-85

Programming Reference Manual, Volume 1: Basic Implementation provides the syntax
and general usage of standard elements of Unisys COBOL ANSI-85. This manual, Volume
2, contains information on using Unisys COBOL ANSI-85 to write application programs
that interface with the following products:

• Communications Management System (COMS)

• Data Management System II (DMSII)

• Advanced Data Dictionary System (ADDS)

• Screen Design Facility Plus (SDF Plus)

• Screen Design Facility (SDF)

• TransIT Open/OLTP

• Semantic Information Manager (SIM)

SDF is a member of the InterPro (Interactive Productivity) family of products. ADDS and
SIM are members of the InfoExec (Information Executive) family of products.

Scope
For each product, this manual presents information on

• The purposes of COBOL85 interfaces with a product

• The product features and functions that an interface can manipulate

• The uses of the language extensions of a product

• The means by which each language extension is used

• The information necessary for writing COBOL85 programs that need to use the
capabilities of COMS and DMSII

Unisys COBOL ANSI-85 is implemented for use on A Series systems. It is based on, and
compatible with, the American National Standard Programming Language COBOL ANSI
X3.23-1985.

Volume 2 briefly describes how to access Open/OLTP from COBOL85 and provides
references to the Open/OLTP documentation.

About This Manual

xiv 8600 1526–202

Audience
The information in this manual is intended for application programmers and systems
analysts who are programming in COBOL85 and require the capabilities of one or more
Unisys products. The secondary audience consists of technical support personnel and
information systems management.

Prerequisites
To use this manual, you should be familiar with COBOL85, the product or products being
used, and the programming concepts for the products.

How to Use This Manual
The information in this volume complements Volume 1 of the COBOL ANSI-85

Programming Reference Manual and the manuals for the COMS and DMSII products. For
more information about these products, refer to the documentation for each product. (See
“Related Product Information” later in this section.) For information on using Unisys
COBOL ANSI-85 not specific to these products, refer to Volume 1.

This manual discusses each product in a separate section, to allow you to access only the
sections that apply to your needs. The first section is an introduction, containing tables
that summarize the extensions used with each product.

COBOL Coding Examples

Many of the discussions in this volume use COBOL85 code to illustrate an aspect of a
product interface. Most examples do not include line numbers; it is assumed that the first
character of a line of source code is located in the appropriate column. Complete program
examples have line numbers to provide continuity for programs that span several pages.

Document References

Throughout this manual, Volume 1 refers to the COBOL ANSI-85 Programming Reference

Manual, Volume 1: Basic Implementation. Unless otherwise specified, manuals referred
to in the text are for A Series systems.

Acronyms

All acronyms used in this volume appear in the glossary, with their full spellings and
definitions. Acronyms are spelled out the first time they occur in the manual.

COBOL Syntax

The syntax for the language extensions is described in COBOL notation; for a complete
explanation of COBOL format notation, refer to Volume 1.

System Messages

This manual does not contain system messages. You can find system messages for COMS
or DMSII in the respective product manuals; syntax error messages for COBOL85 appear
in Volume 1.

About This Manual

8600 1526–202 xv

Organization
This manual is organized into seven sections and two appendixes. The first section is an
introduction to program interfaces. Each subsequent section describes a program
interface for a specific product. The appendixes provide related information. There is an
index at the end of this volume. A brief description of the contents of the manual follows

Section 1. Introduction to COBOL85 Program Interfaces

Section 1 describes the concept of a COBOL85 interface with a product. It also
alphabetically lists the extensions for each product, with a summarized description of
each extension.

Section 2. Using the COMS Program Interface

Section 2 explains the COMS interface, the extensions and their relationships to the
product features, and information on using COMS with DMSII. This section includes the
syntax and explanation for each extension, and program examples.

Section 3. Using the DMSII Program Interface

Section 3 describes the extensions developed for the DMSII interface that allow you to
invoke a database, use data management statements and database items, and handle
exception conditions. It includes the syntax, explanation, and program examples for each
extension.

Section 4. Using the ADDS Program Interface

Section 4 describes the extensions developed for the ADDS program interface that enable
you to manipulate data, define complex data structures, and update and report on entities
or structures in the data dictionary. It includes the syntax, explanation, and program
examples for each extension.

Section 5. Using the SDF Plus Program Interface

Section 5 describes the SDF Plus user interface management system that enables you to
define a complete form-based user interface for an application program. This section
describes the extensions that enable you to invoke form record library descriptions into
your program as COBOL85 declarations, to send messages and receive transactions, and
to send error transaction messages and send text messages. It includes the syntax,
explanation, and program examples for each extension.

Section 6. Using the SDF Program Interface

Section 6 describes the COBOL85 user interface to SDF, which enables you to define a
complete form-based user interface for an application program. This interface is designed
primarily for users migrating from V Series COBOL74 to A Series COBOL85. Current
A Series users will probably want to use SDF Plus, which is described in Section 5.

About This Manual

xvi 8600 1526–202

Section 7. TransIT Open/OLTP

This section provides a brief description of Open/OLTP. It also contains references to
other manuals for further information about using COBOL74 to create Open/OLTP
applications.

Appendix A. Reserved Words

Appendix A lists COBOL reserved words. A reserved word has a special meaning to
COBOL and cannot be redefined by the programmer. New reserved words that have been
developed for Unisys COBOL ANSI-85 are indicated with a double asterisk (**).

Appendix B. User-Defined Words

Appendix B lists variable words or terms that are required in clauses or statements, for
which you must define names.

Related Product Information
Unless otherwise stated, all documents referred to in this publication are MCP/AS
documents. The titles have been shortened for increased usability and ease of reading.

The following documents are included with the software release documentation and
provide general reference information:

• The Glossary includes definitions of terms used in this document.

• The Documentation Road Map is a pictorial representation of the Product
Information (PI) library. You follow paths through the road map based on tasks you
want to perform. The paths lead to the documents you need for those tasks. The Road
Map is available on the PI Library CD-ROM. If you know what you want to do, but
don't know where to find the information, start with the Documentation Road Map.

• The Information Availability List (IAL) lists all user documents, online help, and
HTML files in the library. The list is sorted by title and by part number.

The following documents provide information that is directly related to the primary
subject of this publication.

COBOL ANSI-85 Programming Reference Manual, Volume 1: Basic

Implementation

This manual describes the basic features of the MCP/AS COBOL ANSI-85 programming
language. This manual is written for programmers who are familiar with programming
concepts.

Communications Management System (COMS) Programming Guide

The guide explains how to write online, interactive, and batch application programs that
run under COMS. This guide is written for experienced applications programmers with
knowledge of data communication subsystems.

About This Manual

8600 1526–202 xvii

DMSII Data and Structure Definition Language (DASDL) Programming

Reference Manual

This manual provides instructions for defining and maintaining a Data Management
System II (DMSII) database using DASDL. This manual is written for database
administrators and staff.

DMSII Application Program Interfaces Programming Guide

This guide explains how to write effective and efficient application programs that access
and manipulate a Data Management System II (DMSII) database using either the DMSII
interpretive interface or the DMSII language extensions. This guide is written for
application programmers and database administrators who are already familiar with the
basic concepts of DMSII.

InfoExec Capabilities Manual

This manual discusses the capabilities and benefits of the InfoExec data management
system. This manual is written for executive and data processing management.

Screen Design Facility Plus (SDF Plus) Capabilities Manual

This manual describes the capabilities and benefits of SDF Plus. It gives a general
introduction to the product and explains the differences between SDF and SDF Plus. This
manual is written for executive and data processing management.

Screen Design Facility Plus (SDF Plus) Installation and Operations Guide

This guide explains how to use SDF Plus to create and maintain a user interface. It gives
specific instructions for installing SDF Plus, using the SDF Plus forms, and installing and
running a user interface created with SDF Plus.

Screen Design Facility Plus (SDF Plus) Technical Overview

This overview provides the conceptual information needed to use SDF Plus effectively to
create user interfaces.

System Software Utilities Operations Reference Manual

This manual provides information on the system utilities BARS, CARDLINE, COMPARE,
DCAUDITOR, DCSTATUS, DUMPALL, DUMPANALYZER, FILECOPY, FILEDATA,
HARDCOPY INTERACTIVEXREF, ISTUTILITY, LOGANALYZER, LOGGER, PATCH,
PRINTCOPY RLTABLEGEN, SORT, XREFANALYZER, and the V Series conversion
utilities. It also provides information on the PL/I Indexed Sequential Access Method
(PLIISAM), KEYEDIO support, Peripheral Test Driver (PTD), and mathematical functions.

This manual is written for applications programmers, system support personnel, and
operators.

Task Attributes Programming Reference Manual

This manual describes all the available task attributes. It also gives examples of
statements for reading and assigning task attributes in various programming languages.

The Task Management Programming Guide is a companion manual.

About This Manual

xviii 8600 1526–202

TransIT Open/OLTP for A Series Programming Guide

This guide provides a conceptual and procedural overview of how to develop TransIT
Open/OLTP application programs on ClearPath and A Series systems, by using ALGOL, C,
COBOL74, and COBOL85 programming languages. Topics covered in this guide include
overviews of the TX and XATMI application program interfaces and programming
concepts related to the client/server model of communication. Extensive programming
examples are also included.

Acknowledgement
COBOL is an industry language and is not the property of any company or group of
companies, or of any organization or group of organizations.

No warranty, expressed or implied, is made by any contributor or by the CODASYL
Programming Language Committee as to the accuracy and functioning of the
programming system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee in connection therewith.

The authors and copyright holders of the copyrighted material used herein have
specifically authorized the use of this material, in whole or in part, in the COBOL
specifications. These authors or copyright holders are the following:

• FLOW-MATIC, programming for the UNIVAC I and II, Data Automation Systems,
copyrighted 1958, by Sperry Rand Corporation

• IBM Commercial Translator, form No. F 28-8013, copyrighted 1959 by IBM

• FACT, DSI 27 A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

Such authorization extends to the reproduction and use of COBOL specifications in
programming manuals or similar publications.

8600 1526–202 1–1

Section 1
Introduction to COBOL85 Program
Interfaces

A program interface comprises the syntax, conventions, and protocols of a programming
language that are used to manipulate a software product. Interfaces are developed to aid
you in writing applications that use the full functionality of enterprise server products.

Using Program Interfaces for Specific Products
COBOL85 program interfaces for specific products are easy to use, flexible, and efficient.
They make it easier to manipulate special product features by making those features
available to an application program written in COBOL85. The COBOL85 program
interfaces consist of the Unisys extensions to COBOL ANSI-85.

COBOL85 program interfaces have been developed for the following products:

• Communications Management System (COMS)

• Data Management System II (DMSII)

• Advanced Data Dictionary System (ADDS)

• Screen Design Facility Plus (SDF Plus)

• Screen Design Facility (SDF)

• TransIT Open/OLTP

Each program interface is described in a section of this manual. Each section includes
suggested ways to implement some of the features in your application of the product,
including any requirements or options for using a combination of interfaces.

Using Language Extensions for Specific Products
The extensions for Unisys COBOL ANSI-85 comprise two groups:

• Extensions used with all Unisys products

• Extensions used only with specific Unisys products

Volume 1 describes the extensions that are used with enterprise server systems. This
volume explains extensions that are used only with specific Unisys products; however, the
general extensions also appear in this volume to provide context and to illustrate their use
with specific products.

Introduction to COBOL85 Program Interfaces

1–2 8600 1526–202

The tables in this section summarize alphabetically the extensions used with COMS,
DMSII, ADDS, SDF Plus, and SDF. Detailed discussions of these extensions are provided
in the appropriate sections of this volume. The COBOL85 syntax for accessing
Open/OLTP is described in Section 7.

COMS Extensions
The following extensions have been developed for the COMS interface. For detailed
information about each extension, refer to Section 2, “Using the COMS Program
Interface.”

Extension Explanation

COMS header declaration Provides information about the message for
input or output. (See “Using COMS Headers” in
Section 2.)

ACCEPT MESSAGE COUNT
statement

Tells how many messages are in a program
application queue.

DISABLE statement Closes a COMS direct window to a station or
disconnects a station reached through a modem
or a CP2000 station.

ENABLE statement Initializes the interface between COMS and a
program, and opens a COMS direct window to a
station not currently attached to COMS.

RECEIVE statement Makes a message and pertinent information
available to the program from a queue
maintained by the message control system.

SEND statement Releases a message or message segment to one
or more output queues maintained by the
message control system.

VALUE clause Accesses COMS service function routines and
allows a mnemonic parameter to be passed to
obtain a numeric result. The VALUE clause uses
the CALL statement. (See “Using Parameters by
Value” in Section 2.)

Introduction to COBOL85 Program Interfaces

8600 1526–202 1–3

DMSII Extensions
The following extensions have been developed for the DMSII interface. For detailed
information on each extension, refer to Section 3, “Using the DMSII Program Interface.”

Extension Explanation

ABORT-TRANSACTION
statement

Discards updates made in a transaction after a
BEGIN-TRANSACTION statement.

ASSIGN statement Establishes a relationship between a record in
one data set and a record in the same or
another data set.

BEGIN-TRANSACTION
statement

Places a program in transaction state. This
statement is used only with audited data bases.

CANCEL TRANSACTION
POINT statement

Discards all updates in a transaction to an
intermediate transaction point or to the
beginning of the transaction.

CLOSE statement Closes a database unconditionally when
further access is no longer required. A
syncpoint is caused in the audit trail, and all
locked records are freed.

COMPUTE statement Assigns a value to a Boolean item in the
current record of a data set.

CREATE statement Initializes the user work area of a data set
record.

Database (DB) declaration Provides information about one or more
databases during compilation.

Database equation Allows the database to be specified at run
time, and allows access to databases under
different usercodes and on packs not visible to
a task.

Data management (DM)
attributes

Allows read-only access to the count, record
type, and population information in a record.

Data set reference entry Specifies which structures are to be invoked
from the declared data base

continued

Introduction to COBOL85 Program Interfaces

1–4 8600 1526–202

Extension Explanation

DELETE statement Finds a specific record, and then locks and
deletes it.

DMERROR Use procedure Handles exception conditions.

DMSTATUS database status
word

Indicates whether an exception condition has
occurred and identifies the exception.

DMSTRUCTURE function Determines the structure number of a data set,
set, or subset programmatically. This data
management structure function can be used to
analyze exception condition results.

DMTERMINATE statement Halts a program with a fault when an
exception occurs that the program does not
handle.

END-TRANSACTION statement Takes a program out of transaction state. It is
used only with audited databases

FIND statement Transfers a record to the work area associated
with a data set or global data.

FREE statement Unlocks the current record.

GENERATE statement Creates a subset in one operation. All subsets
must be disjoint bit vectors.

IF statement Tests an item to determine if it contains a
NULL value.

INSERT statement Places a record into a manual subset.

LOCK/MODIFY statement Finds a record or structure and locks it against
concurrent modification by another user.

ON EXCEPTION clause Handles exception conditions. It is placed
after certain data management statements.

OPEN statement Opens a database for subsequent access and
designates the access mode.

RECREATE statement Partially initializes the user work area.

continued

Introduction to COBOL85 Program Interfaces

8600 1526–202 1–5

Extension Explanation

REMOVE statement Finds a record, and then locks it and removes
it from the subset.

SAVE TRANSACTION POINT
statement

Provides an intermediate point in a transaction
for audit.

SECURE statement Locks a record in such a way that other
programs can read the record but not update it.

Selection expressions Identifies a certain record in a data set.
Selection expressions are used with FIND,
LOCK, MODIFY, and DELETE statements.

SET statement Alters the current path or changes the value of
an item in the current record.

STORE statement Places a new or modified record into a data
set.

ADDS Extensions
 The following extensions have been developed for the ADDS interface. For detailed
information about each extension, refer to Section 4, “Using the ADDS Program Interface.”

Extension Explanation

DICTIONARY clause Specifies the function name of the dictionary
library. The function name is the name equated to
a library code file when using the SL (Support
Library) system command.

DIRECTORY clause Specifies the directory under which the entity is
stored in the data dictionary.

FD statement Invokes all file attributes of the file named in the
SELECT statement. FD refers to file description.

FROM DICTIONARY clause Enables you to obtain an entity from the
dictionary.

INVOKE clause Assigns an alias identifier to an entity name
invoked from the dictionary.

PROGRAM-DIRECTORY
clause

Specifies the directory of the program to be
tracked.

continued

Introduction to COBOL85 Program Interfaces

1–6 8600 1526–202

Extension Explanation

PROGRAM-NAME clause Specifies the name of the entity of type program
that is to be tracked. This clause is needed if the
entity tracking is defined in ADDS.

PROGRAM-VERSION
clause

Specifies the version of the program to be tracked.

SD statement Invokes all file attributes of the file named in the
SELECT statement. SD refers to a sort-merge file
description.

SELECT statement Enables you to include files from the dictionary in
your program.

VERSION clause Identifies the 6-digit numeric literal version
number of the record description.

SDF Plus Extensions
The following COBOL85 extensions are provided for use with the SDF Plus interface.
Refer to Section 5 for detailed information about these extensions.

Extension Explanation

DICTIONARY statement Identifies the dictionary to be used during
compilation.

Form record number
attribute

Provides a means of performing I/O operations on
form record libraries to enable individual form
records to be specified at run time.

FROM DICTIONARY clause Invokes an SDF Plus form record library from the
dictionary.

GLOBAL clause Allows subprograms to reference form record
libraries declared in host programs.

READ FORM statement Causes a form record to be read from a specified
remote file and stored in a specified buffer.

REDEFINES clause Enables multiple form record libraries to have the
same record area.

continued

Introduction to COBOL85 Program Interfaces

8600 1526–202 1–7

Extension Explanation

SAME RECORD AREA
clause

Enables all form record descriptions in the form
record library to be invoked as redefinitions of the
first form record description in the form record
library.

SEPARATE RECORD AREA
clause

Invokes each form record in the form record
library as a separate data description with its own
record area.

Transaction number
attribute

Provides a means of performing I/O operations on
form record libraries to enable individual
transactions to be specified at run time.

WRITE FORM statement Writes the contents of a form record to a specified
remote file.

WRITE FORM TEXT
statement

Causes the contents of a text array to be written to
a remote file.

Introduction to COBOL85 Program Interfaces

1–8 8600 1526–202

SDF Extensions
The following COBOL85 extensions are provided for use with the SDF interface. Refer to
Section 6 for detailed information about each extension.

Extension Explanation

DICTIONARY
statement

Identifies the dictionary to be used during compilation.

FORM-KEY function Enables access to an internal binary number of a form
name for programmatic uses. This function is required
for using SDF with COMS.

FROM DICTIONARY
clause

Invokes a formlibrary from the dictionary.

READ FORM
statement

Reads specific and self-identifying forms.

REDEFINES clause Enables formlibraries invoked into a program to redefine
the same record area as the first formlibrary.

SAME RECORD
AREA clause

Enables all form descriptions in the formlibrary to be
invoked as redefinitions of the first form in the
formlibrary.

WRITE FORM
statement

Writes forms from a station to a program.

8600 1526–202 2–1

Section 2
Using the COMS Program Interface

This section explains how to use extensions within an application program in order to
communicate with COMS through direct windows.

The tasks presented in this section include

• Preparing a communication structure for routing or for describing information about
the message.

• Declaring and using COMS headers when receiving and sending messages.

• Preparing to receive and send messages. This preparation includes linking to COMS
and initializing a program.

• Using communication statements to receive and send messages.

• Using service functions. For an alphabetized list of the extensions developed for
COMS, refer to “COMS Extensions” in Section 1.

What Does the COMS Program Interface Do?
The Communications Management System (COMS) is a general message control system
(MCS) that controls online environments. It supports a network of users and handles a
high volume of transactions from programs, stations, and remote files.

The program interface for COMS allows you to create online, interactive, and batch
programs that take advantage of the features COMS offers for transaction processing
through direct windows. The available features and functions depend on the version of
COMS that is installed. With the full-featured version of COMS, the program interface
allows the program to communicate with COMS using the following COMS functions:

• Message routing by transaction codes (trancodes) and agendas

• Processing message data through processing items

• Security checking of messages

• Service functions

• Dynamic opening of direct windows to terminals not attached to COMS, and dynamic
communication by modem

• Synchronized recovery

You can write processing items using COBOL85 with an ALGOL shell. Instructions on
using the shell, as well as general concepts for programming for COMS, are provided in
the Communications Management System (COMS) Programming Guide.

Using the COMS Program Interface

2–2 8600 1526–202

Running DMSII with COMS
COMS can be used with Data Management System II (DMSII). When you run DMSII with
COMS, use the following DMSII statements to allow a program interfacing with COMS to
support synchronized transactions and recovery:

• ABORT-TRANSACTION

• BEGIN-TRANSACTION

• CLOSE

• DMTERMINATE

• END-TRANSACTION

For information about the syntax and use of these statements and the extensions
developed for DMSII, refer to Section 3, “Using the DMSII Program Interface.”

Using Multiple COMS Language Support Libraries
The COBOL ANSI-85 compiler uses the COMS Language Support library to help it describe
the various service functions and types of header information needed in your program.
The Language Support library is used only during the compilation of programs, unlike the
DCI library (which is also used when your programs are running).

Some sites require separate environments. For example, you may want to maintain your
normal production environment separate from your test environment. To do this, you may
need multiple versions of the COMS Language Support library.

If an environment requires multiple versions of the COMS Language Support library, you
can modify the COBOL ANSI-85 compiler to use a different version of the COMS Language
Support library. You can modify the library used by the compiler in either of two ways:

• Permanently modify the COBOL ANSI-85 compiler so that it is linked to a different
support library

• Temporarily modify the support library name for a single compilation of a program

With either method, you must understand how to use the SL (Support Library) system
command.

For the examples that follow in this discussion, assume the following support libraries are
defined:

SL COMSLANGSUPPORT = *SYSTEM/COMS/LANGUAGE/SUPPORT
SL COMSLANGSUPPORT85 = *SYSTEM/COMS/LANGUAGE/SUPPORT/V41xxx

In these examples, COMSLANGSUPPORT and COMSLANGSUPPORT85 refer to the
function name, and the xxx refers to the release level of the
SYSTEM/COMS/LANGUAGE/SUPPORT/V41 code file.

Using the COMS Program Interface

8600 1526–202 2–3

Permanently Modifying the COBOL ANSI-85 Compiler
A permanent modification changes the function name of the COMS Language Support
library being used by the COBOL ANSI-85 compiler for every compilation done using that
compiler. To make a permanent modification, perform the following steps:

1. Copy the compiler under a different name. For example, use

COPY *SYSTEM/COBOL85 AS *SYSTEM/COBOL85/V41xxx

2. Use the WFL MODIFY command to make a permanent change to the compiler. In this
example, use

WFL MODIFY *SYSTEM/COBOL85;
 LIBRARY COMSLANGSUPPORT
 (LIBACCESS = BYFUNCTION,
 FUNCTIONNAME = COMSLANGSUPPORT85);

3. Use the MC (Make Compiler) system command to re-create the compiler. In this
example, use

MC *SYSTEM/COBOL85

The compiler *SYSTEM/COBOL85/V41xxx will now look for a COMS support library with
a function name of COMSLANGSUPPORT85. The compiler *SYSTEM/COBOL85 will
retain COMSLANGSUPPORT as the function name of its support library.

For information about the SL or MC system commands, refer to the System Commands

Operations Reference Manual.

Temporarily Modifying the Support Library Name
A temporary modification changes the function name of the COMS Language Support
library being used by the COBOL ANSI-85 compiler, but this change only affects a single
compilation of a program. In this case, you would create a WFL job to compile the
program and include the following library equate syntax:

COMPILER LIBRARY COMSLANGSUPPORT
 (LIBACCESS = BYFUNCTION,
 FUNCTIONNAME = COMSLANGSUPPORT85);

For more information about using a WFL job to compile a program, see the Work Flow

Language (WFL) Programming Reference Manual.

Using the COMS Program Interface

2–4 8600 1526–202

Preparing the Communication Structure
The program must provide a communication structure for routing and for descriptive
information about the message. You provide a communication structure by declaring each
of the following in your program:

• An area for the message

• A COMS interface that directs input and output and provides an optional conversation
area for user-defined information

Declaring a Message Area
To receive and send messages, you must declare a message area in the Data Division of
the program. Always declare the message area as a 01-level record.

Declare the message area with a format and size that are appropriate to the data your
program is to receive. If the message area is too small to contain all of the incoming text,
COMS truncates the message.

After a message is received, the Text Length field in the header reflects the number of
characters in the whole message text.

Example

Example 2–1 shows the declaration for a COMS message area. This declaration occurs in
the Data Division.

IDENTIFICATION DIVISION.
PROGRAM-ID. COMSMSG.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 COMS-MESSAGE-AREA.
 02 COMS-MESSAGE PIC X(1920).
 COMMUNICATION SECTION.

Example 2–1. Declaring a COMS Message Area

Using the COMS Program Interface

8600 1526–202 2–5

Declaring a COMS Interface
You declare a COMS interface by using COMS headers for input or output. COMS headers
are dynamically built at compilation time. The compiler requests the header structure
from COMS and constructs the headers.

COMS headers offer the following advantages:

• COMS handles the location of fields in the headers; therefore, you do not need to
know the memory structure.

• COMS identifiers access all fields within the header; therefore, there is no need to
rename the fields in the queue structure.

• You do not have to change your program when new releases of COMS occur.

• Headers can be referenced by bound-in procedures.

Using COMS Headers
There are two types of COMS headers:

• Input headers used to receive messages

• Output headers used to send messages

The fields in the input and output headers can be used to receive or send values that
provide information or instruction for various activities.

For detailed information on the use of the headers and fields, refer to the COMS

Programming Guide.

Declaring COMS Headers
The following discussion explains the COBOL85 syntax, rules, and steps for declaring
COMS headers in your program. Examples are also provided. For information about the
fields of the input and output headers, refer to “COMS Input Header Fields” and “COMS
Output Header Fields” later in this section.

Using the COMS Program Interface

2–6 8600 1526–202

Format

The general format for declaring input and output COMS headers is as follows:

ääINPUT å å
³ãïïïïï â HEADER data-name-1 [GLOBAL] ³
³æOUTPUTç ïïïïïï ïïïïïï ³
³ ïïïïïï ³
ã [data-name-2 IS data-name-3] . . . â . . .
³ ³
³ Ú äIS data-name-4 SIZE IS integer-1å ¿ ³
³ ³ CONVERSATION AREA ã â ³ ³
æ À ïïïïïïïïïïïï ïïïï æ record-description-entry ç Ù ç

Explanation

You can declare input and output headers in the Communication Section of the COBOL85
program. The only syntax items required are the INPUT or OUTPUT HEADER phrase and
data-name-1. The preceding syntax invokes the description of the header and provides
access to all the fields of the input header. If data-name-2 is not unique to the input
header, you can access it with an OF qualification that mentions data-name-1. More
information about using the OF qualification, see “Using Set and Data Set Names” in
Section 3.

Input and output headers described with the GLOBAL clause are considered to be global
headers. A global header can be referenced either from the program in which the global
header is declared or from any other program that is contained in the program that
declares the global header.

Data-name-2 is any identifier retrieved from COMS. The IS clause renames the identifier.

Data-name-3 is not equated; it replaces the name supplied by COMS. However, a field
cannot be renamed with a name that already exists in the header. If renamed, data-name-2
must be referred to by data-name-3.

If you use the CONVERSATION AREA clause, you must also either have data-name-4 and
a SIZE phrase, or else map it with the record-description-entry. If you use data-name-4
and the SIZE phrase, the conversation area is defined as a level 02 data description entry
with the following format:

02 data-name-4 PIC X(integer-1)

The SIZE phrase defines the conversation area as a PIC X representation with the length
indicated by integer-1.

If you use a record-description-entry to define the conversation area, it must start at level
02. The record-description-entry is added to the end of the header.

For more information on the CONVERSATION AREA clause, see “COMS Input Header
Fields” and “COMS Output Header Fields” later in this section.

Using the COMS Program Interface

8600 1526–202 2–7

Example

Example 2–2 shows an example of the declarations for COMS input and output headers.
To see declarations for headers within the context of a complete program, see
Example 2-24, “COMS Sample Program with a DMSII Database,” later in this section.

COMMUNICATION SECTION.
INPUT HEADER COMS-IN;
 PROGRAMDESG IS COMS-IN-PROGRAM.
 CONVERSATION AREA.
 02 CA.
 05 CA-1 PIC X(20).
 05 CA-2 PIC X(30).
OUTPUT HEADER COMS-OUT.

Example 2–2. Declaring COMS Input and Output Headers

Mapping COMS Data Types to COBOL85
Table 2–1 shows the COMS data types and the valid COBOL85 usage. For information on
COMS types and COBOL85 usage for fields in the COMS headers, see “COMS Input Header
Fields” and “COMS Output Header Fields” later in this section.

Table 2–1. COMS Data Types and COBOL85 Usage

COMS Type COBOL85 Usage

Boolean DMS Boolean

Designator Real

Display Display

Mnemonic Binary

Record Display

TIME(6) Real

COMS data types include a COMS designator data type that is used only for specific fields
and with service functions. COMS determines the kind of designator and required name
from the value that is passed. The designator type is compatible with COBOL85 data
items of type real. For more information about COMS designators used with service
functions, see “Using COMS Designators,” later in this section.

Boolean items are similar to DMSII Boolean items; they can be tested with an IF condition
and set with a COMPUTE statement.

Using the COMS Program Interface

2–8 8600 1526–202

Note that when using logical tests against the COMS type TIME(6), you must redefine the
type as a PIC X(6) DISPLAY item to test against it.

COMS Input Header Fields
The fields of the input header are COBOL85 attributes of the header. The Conversation
Area field is not part of the header provided by COMS; it is an optional user-defined field
that is associated with the input header. All other fields of the input header are defined by
either COMS or COBOL85. The structure of COMS input headers is obtained from COMS
at compilation.

COMS places values (designators and integers) in the input header fields when a
RECEIVE, ACCEPT, DISABLE, or ENABLE statement is executed. For information on
specific values used in the input header fields, refer to the COMS Programming Guide.

A service function translates a designator to a name representing a COMS entity. See
“Using Service Functions” later in this section for more information.

COMS uses the input headers of incoming messages for the following tasks:

• Confirming message status

• Passing data in the Conversation Area field

• Detecting queued messages

• Determining message origin

• Processing transaction codes for routing

• Obtaining direct-window notifications

For more information about input headers and fields, refer to the COMS Programming

Guide. For information about data types, see “Mapping COMS Data Types to COBOL85”
and “Using COMS Designators” in this section.

Using the COMS Program Interface

8600 1526–202 2–9

Table 2–2 lists the input header fields in alphabetical order, with the corresponding
COBOL85 field names, the COMS data types, and the COBOL85 usages. For an example of
coding the input header fields, see the COMS sample program (lines 017004 through
017060) in Example 2–24.

Table 2–2. Input Header Fields

COMS Field Name
COBOL85 Field

Name COMS Type`
COBOL85

Usage

Agenda Designator AGENDA Designator Real

Continuator Data Length CONTDATALENGTH Integer Binary

Continuator Data Offset CONTDATAOFFSET Integer Binary

Continuator Data Status CONTDATASTATUS Mnemonic Binary

Continuator Entry
Number

CONTENTRYNUM Integer Binary

Function Index FUNCTIONINDEX Mnemonic Binary

Function Status FUNCTIONSTATUS Mnemonic Binary

Message Count MESSAGECOUNT Integer Binary

Program Designator PROGRAMDESG Designator Real

Restart RESTART Designator Real

Security Designator SECURITYDESG Designator Real

Station Designator STATION Designator Real

Status Value STATUSVALUE Mnemonic Binary

Text Length TEXTLENGTH Integer Binary

Timestamp TIMESTAMP TIME(6) Real

Transparent TRANSPARENT Boolean DMS
Boolean

Usercode Designator USERCODE Designator Real

User-Defined
Conversation Area

User defined User defined User
defined

VT Flag VTFLAG Boolean DMS
Boolean

Using the COMS Program Interface

2–10 8600 1526–202

COMS Output Header Fields
The fields of the output header are COBOL85 attributes of the header. The Conversation
Area field is not a field in the header provided by COMS; it is an optional user-defined field
that is associated with the output header. All other fields in the header are defined by
either COMS or COBOL85. The structure of COMS output headers is obtained from COMS
during compilation.

COMS uses the output header when sending messages. You place designators into the
output header fields to route outgoing messages and describe their characteristics. To
obtain designators, you call service functions to translate names representing COMS
entities to designators. See “Calling Service Functions” later in this section for more
information.

For information about values returned to the output header to indicate errors in
destination routing, refer to the COMS Programming Guide.

COMS uses the output header fields for the following tasks:

• Specifying a destination

• Routing by transaction code (trancode)

• Sending messages using direct windows

• Confirming message delivery

• Checking the status of output messages

For general information on output headers and fields, refer to the COMS Programming

Guide. For information on data types, refer to “Mapping COMS Data Types to COBOL85”
and “Using COMS Designators” in this section.

Using the COMS Program Interface

8600 1526–202 2–11

Table 2–3 lists the fields of the output header. It shows the field name in COMS and in
COBOL85, the COMS data type, and the COBOL85 usage.

Table 2–3. Output Header Fields

COMS Field
Name COBOL85 Field Name COMS Type

COBOL85
Usage

Agenda Designator AGENDA Designator Real

Casual Output CASUALOUTPUT Boolean DMS Boolean

Continuator Mode CONTMODE Mnemonic Binary

Continuator Data
Length

CONTDATALENGTH Integer Binary

Continuator Data
Offset

CONTDATAOFFSET Integer Binary

Continuator Data
Status

CONTDATASTATUS Mnemonic Binary

Continuator Entry
Number

CONTENTRYNUM Integer Binary

Destination Count DESTCOUNT Integer Binary

Destination
Designator

DESTINATIONDESG Designator Real

Delivery
Confirmation Flag

CONFIRMFLAG Boolean DMS Boolean

Delivery
Confirmation Key

CONFIRMKEY Display Display

VT Flag VTFLAG Boolean DMS Boolean

Map Alias Name MAPALIAS Display Display

Next Input Agenda
Designator

NEXTINPUTAGENDA Designator Real

Retain Transaction
Mode

RETAINTRANSACTIONMODE Boolean DMS Boolean

Set Next Input
Agenda

SETNEXTINPUTAGENDA Boolean DMS Boolean

Status Value STATUSVALUE Mnemonic Binary

Text Length TEXTLENGTH Integer Binary

Transparent TRANSPARENT Boolean DMS Boolean

User-Defined
Conversation Area

User Defined User Defined User Defined

Using the COMS Program Interface

2–12 8600 1526–202

Using the VT Flag of the Output Header

You can use the VT (virtual terminal) flag bit of the output header with a COMS direct
window. The window can have a virtual terminal name when it is used within a CP2000
environment. The virtual terminal name describes to BNA how the direct window has
formatted the output.

A direct-window program can set the VT flag before sending output messages, by using the
following syntax:

COMPUTE VTFLAG OF OUTHDR = TRUE

On input, COMS returns the result in the VT Flag field of the input header. You can test
the result directly using the IF statement. For example,

IF VTFLAG OF INHDR . . .

Requesting Delivery Confirmation on Output

Delivery confirmation is available for network support processor (NSP) and CP2000
stations. This feature of COMS lets a direct window program know when a station has
received a particular message the window has sent.

To request delivery confirmation for an output message, place values in the following
fields of the output header before executing the SEND statement:

• Use the COMPUTE statement to set the Delivery Confirmation Flag field. For
example, enter

COMPUTE CONFIRMFLAG OF OUTHDR = TRUE

• Identify a message individually by placing a unique value of your choice into the
Delivery Confirmation Key field. When confirming delivery, COMS uses the default
input agenda to return the unique value in the first three characters of the message
area.

For more information on requesting delivery confirmation on output, see the COMS

Programming Guide. Refer to “Using Communication Statements” later in this section
for information on receiving and sending messages.

Preparing to Receive and Send Messages
Before you can receive or send messages, you must first link to COMS and initialize the
program. The following information explains how to perform these tasks.

Linking an Application Program to COMS
To prepare to receive or send messages, you must link your application program to COMS.
You do this by specifying access to the data communications interface (DCI) library. The
DCI library serves as the programmatic interface with COMS. It enables programs to deal

Using the COMS Program Interface

8600 1526–202 2–13

with symbolic sources and destinations instead of peripherals, and thus avoids
recompilation when the peripherals are changed or rearranged.

The compiler builds references to the DCI library whenever a program uses the ACCEPT,
DISABLE, ENABLE, RECEIVE, or SEND statements; in fact, the DCI library must be
present for a COBOL program to use these verbs. The library reference is built with the
title DCILIBRARY and the library entry point name DCIENTRYPOINT. The
DCIENTRYPOINT library entry point is an untyped procedure within the DCI library.
(DCIENTRYPOINT is also known as a library “object.” An object is any item that is
declared in a program.)

You can access the DCI library in one of these ways:

• By function name of the COMS code file

 This method uses both the BYFUNCTION value of the LIBACCESS library attribute,
and the FUNCTIONNAME library attribute.

• By initiator

 This method uses the BYINITIATOR value of the LIBACCESS library attribute.

• By title

 This method is used by default. It uses the BYTITLE value of the LIBACCESS library
attribute and the TITLE library attribute.

It is recommended that you use the BYFUNCTION value of the LIBACCESS attribute to
link your programs to COMS. If you do not use either of these methods, the compiler will
use the BYTITLE library access method and look for a COMS code file called
SYSTEM/COMS.

Once your program is linked, COMS then provides the functions of the DCI library.

The examples in the following discussions show the syntax for each method.

Linking by Function

COBOL allows you to set up your programs to link to the COMS library by function name
to avoid modifying your programs every time the file title of the COMS code file changes.
You do this by modifying several attributes of the COMS DCI library.

Example 2–3 illustrates the syntax that links to COMS if you have equated the COMS code
file to the function name COMSSUPPORT by using the SL (Support Library) system
command. However, it will be necessary to modify your program if you change the
function name of the COMS code file.

Using the COMS Program Interface

2–14 8600 1526–202

Example

CHANGE ATTRIBUTE LIBACCESS OF "DCILIBRARY"
 TO BYFUNCTION.
CHANGE ATTRIBUTE FUNCTIONNAME OF "DCILIBRARY"
 TO "COMSSUPPORT".

Example 2–3. Linking a COMS Application Program by Function

The LIBACCESS library attribute statement specifies that the function name, not the
object code file title, is used to access the library. The FUNCTIONNAME library attribute
statement designates the function name of the library.

Using the COMS Program Interface

8600 1526–202 2–15

Linking by Initiator

COBOL allows you to set up your programs to link to the COMS library by using the
BYINITIATOR value of the LIBACCESS attribute. The syntax is illustrated in Example 2–
4. If you use the BYINITIATOR file attribute, you will not have to change your programs
every time the file title or function name for the COMS DCI library code file changes.
However, this linkage method is only valid for programs initiated by COMS.

Example

CHANGE ATTRIBUTE LIBACCESS OF "DCILIBRARY"
 TO BYINITIATOR.

Example 2–4. Linking a COMS Application Program by Initiator

For additional information on library attributes, refer to the discussion of libraries in
Volume 1. Refer to the System Software Utilities Manual for a description of the library
attributes.

Initializing an Interface Link
To initialize the interface between COMS and your program, include the following
statement in the Procedure Division:

ENABLE INPUT COMS-IN KEY "ONLINE".

Using the COMS Program Interface

2–16 8600 1526–202

Example

Example 2–5 shows the initialization statement used within the context of code that links
an application program to COMS.

.

.

.
WORKING-STORAGE SECTION.
.
.
.
77 SYSTEM-COMS PIC X(50).
.
.
.
PROCEDURE DIVISION.
.
.
.
START-UP-SECTION.
START-UP.
 CHANGE ATTRIBUTE LIBACCESS OF "DCILIBRARY"
 TO BYFUNCTION.
 CHANGE ATTRIBUTE FUNCTIONNAME OF "DCILIBRARY"
 TO "COMSSUPPORT".
 ENABLE INPUT COMS-IN KEY "ONLINE".

Example 2–5. Initializing a COMS Interface

Using the COMS Program Interface

8600 1526–202 2–17

Using Communication Statements
You code communication statements in the Procedure Division of the COBOL85 program.
The statements include

• ACCEPT MESSAGE COUNT

• DISABLE

• ENABLE

• RECEIVE

• SEND

For general information about using communication statements in a program, refer to the
COMS Programming Guide.

ACCEPT MESSAGE COUNT Statement
The ACCEPT MESSAGE COUNT statement makes available to the user the number of
messages in the application queue of the program.

Format

The general format of the ACCEPT MESSAGE COUNT statement is as follows:

 ACCEPT COMS-header-name-1 MESSAGE COUNT
 ïïïïïï ïïïïï

Explanation

COMS-header-name-1 is the name of the COMS input header.

The ACCEPT MESSAGE COUNT statement updates the Message Count field to indicate
the number of messages present in the queue that COMS maintains for the program.

When the ACCEPT MESSAGE COUNT statement is executed, the Status Value and
Message Count fields of the input header are appropriately updated.

Using the COMS Program Interface

2–18 8600 1526–202

Example

Example 2–6 shows an ACCEPT MESSAGE COUNT statement with a COMS-header-name-
1 called COMS-IN.

.

.

.
COMMUNICATION SECTION.
INPUT HEADER COMS-IN.
OUTPUT HEADER COMS-OUT.
.
.
.
PROCEDURE DIVISION.
.
.
.
 ACCEPT COMS-IN MESSAGE COUNT.

Example 2–6. Updating the Message Count Field of the Input Header Message

Using the COMS Program Interface

8600 1526–202 2–19

DISABLE Statement
The DISABLE statement closes a direct window to a station or disconnects a station
reached through a modem or a CP2000 station.

For information about dynamically detaching a station, refer to the COMS Programming

Guide.

Format

 DISABLE INPUT [TERMINAL]
 ïïïïïïï ïïïïï ïïïïïïïï
 Ú ä identifier-1 å ¿
 COMS-header-name-1 ³ WITH KEY ã â ³
 À ïïïï ïïï æ literal-1 ç Ù

Explanation

COMS-header-name-1 is the name of the COMS input header.

Literal-1 and identifier-1 must be nonnumeric.

For descriptions of the KEY values that COMS provides, refer to the COMS Programming

Guide.

The DISABLE INPUT phrase provides a logical disconnection between the MCS and the
specified sources or destinations. When this logical disconnection has already occurred
or is handled by means external to the program, you do not need to include the DISABLE
statement in the program. The DISABLE statement does not affect the logical path for the
transfer of data between the COBOL85 programs and the MCS.

When the logical disconnection specified by the DISABLE statement has already occurred
or is denied by the MCS, the Status Value field data item is updated.

If you use the TERMINAL option with the DISABLE INPUT phrase, only the Station field
data item is meaningful.

Using the COMS Program Interface

2–20 8600 1526–202

Example

Example 2–7 shows uses of KEY values with the DISABLE statement.

DISABLE INPUT COMS-IN KEY "ONLINE".

DISABLE INPUT COMS-IN KEY "BATCH".

DISABLE INPUT TERMINAL HDR-IN KEY "NOWAIT".

MOVE "WAITNOTBUSY (HOSTNAME = AB10)" TO TEMP.
DISABLE INPUT TERMINAL HDR-IN KEY TEMP.

Example 2–7. Using KEY Values with the DISABLE Statement

Using the COMS Program Interface

8600 1526–202 2–21

ENABLE Statement
The ENABLE statement dynamically opens a direct window to a station not currently
attached to COMS. You can check the status of station attachment by querying values in
the fields of the COMS input header.

For information about the use of this statement to dynamically attach a station, refer to
the COMS Programming Guide.

Format

 ENABLE INPUT [TERMINAL]
 ïïïïïï ïïïïï ïïïïïïïï
 Ú ä identifier-1 å ¿
 COMS-header-name-1 ³ WITH KEY ã â ³
 À ïïïï ïïï æ literal-1 ç Ù

Explanation

COMS-header-name-1 is the name of a COMS output header.

Literal-1 or identifier-1 must be nonnumeric.

For descriptions of the KEY values that COMS provides, refer to the COMS Programming

Guide.

The ENABLE INPUT phrase creates a logical connection between the MCS and the
specified sources or destinations. If this logical connection already exists or is handled by
means external to the program, you do not need to include the ENABLE statement in the
program. The ENABLE statement does not affect the logical path for the transfer of data
between the COBOL85 program and the MCS.

The TERMINAL option dynamically opens a direct window to a station that is not attached
to COMS.

When the logical connection specified by the ENABLE statement already exists or is
denied by the MCS, the Status Value field data item is updated.

Using the COMS Program Interface

2–22 8600 1526–202

Example

Example 2–8 illustrates uses of the KEY values with the ENABLE statement. The first
sample can be seen within the context of a complete program, in line 019100 of the COMS
sample program in Example 2–24 at the end of this section. For more information on the
use of the ENABLE statement to establish communication with the COMS MCS, see
“Initializing an Interface Link” earlier in this section.

ENABLE INPUT COMS-IN KEY "ONLINE".

ENABLE INPUT COMS-IN KEY "BATCH".

ENABLE INPUT TERMINAL HDR-IN KEY "NOWAIT".

MOVE "WAITNOTBUSY (HOSTNAME = AB10)" TO TEMP.
ENABLE INPUT TERMINAL HDR-IN KEY TEMP.

Example 2–8. Using KEY Values with the ENABLE Statement

Using the COMS Program Interface

8600 1526–202 2–23

RECEIVE Statement
The RECEIVE statement makes a message and pertinent information about the data
available to the COBOL85 program from a queue maintained by the MCS. You can use the
RECEIVE statement to execute a specific imperative-statement when you use the NO
DATA syntax, as shown in the following format.

You can use the RECEIVE statement as many times as needed in the Procedure Division
of your program. You can structure your program to receive messages from one or more
stations or programs, but you cannot programmatically limit the reception of messages to
selected stations on the network or to certain types of programs.

Before you can receive or send messages, however, you must link to COMS and initialize
the program. For information, refer to “Preparing to Receive and Send Messages” earlier
in this section.

Caution
Do not use a RECEIVE statement between a BEGIN-TRANSACTION statement and
an END-TRANSACTION statement. Doing so violates the rules of synchronized
recovery and you might lose some of the data in your database.

Format

 RECEIVE COMS-header-name-1 MESSAGE INTO identifier-1
 ïïïïïïï ïïïïïïï
 [NO DATA imperative-statement]
 ïï ïïïï
 [END-RECEIVE]
 ïïïïïïïïïïï

Explanation

COMS-header-name-1 is the name of a COMS input header.

The message is transferred to the receiving character positions of the area referenced by
identifier-1 and is aligned to the left without space fill.

If you specify the NO DATA phrase and the MCS makes data available in identifier-1,
COMS transfers control to the next executable statement when you execute a RECEIVE
statement.

An imperative-statement can consist of a NEXT SENTENCE phrase.

Using the COMS Program Interface

2–24 8600 1526–202

If the MCS does not make data available in the identifier-1 data item, one of the following
actions takes place when you execute a RECEIVE statement:

• If you specify the NO DATA phrase, the RECEIVE statement is terminated, indicating
that action is complete; the imperative-statement is executed.

• If you do not specify the NO DATA phrase, then the object program execution is
suspended until data is made available in identifier-1 or until end-of-task (EOT)
notification.

The following rules apply to the data transfer:

If the message size is . . . Then the message . . .

The same size as identifier-1 Is stored in identifier-1.

Smaller than identifier-1 Is aligned to the leftmost character position of
identifier-1 with no space fill.

Larger than identifier-1 Fills identifier-1 from left to right, starting with
the leftmost character of the message. The
rest of the message is truncated.

Each time the RECEIVE statement executes, the MCS appropriately updates the data
items identified by the COMS input header.

Using the COMS Program Interface

8600 1526–202 2–25

Example

Example 2–9 shows part of an application routine that was written to receive a message
from COMS and place it in the Working-Storage Section. An example of the RECEIVE
statement within the context of a complete program is provided in the COMS sample
program in Example 2–24, beginning at line 019700.

.

.

.
WORKING-STORAGE SECTION.
.
.
.
01 MSG-IN-TEXT PIC X(1920).
.
.
.
COMMUNICATION SECTION.
INPUT HEADER COMS-IN.
OUTPUT HEADER COMS-OUT.
.
.
.
PROCEDURE DIVISION.
.
.
.
RECEIVE-MSG-FROM-COMS.
 RECEIVE COMS-IN MESSAGE INTO MSG-IN-TEXT.
 IF STATUSVALUE OF COMS-IN = 99
 GO TO EOJ-ROUTINE.
* Process the message.
 .
 .
 .
 GO-TO-RECEIVE-MSG-FROM-COMS.
EOJ-ROUTINE.
 STOP RUN.

Example 2–9. Placing a COMS Message in the Working-Storage Section

Using the COMS Program Interface

2–26 8600 1526–202

SEND Statement
The SEND statement releases a message, message segment, or portion of a message to
one or more output queues maintained by the MCS. Before you can send or receive
messages, however, you must link to COMS and initialize the program. For information on
these functions, refer to “Preparing to Receive and Send Messages” earlier in this section.

Caution
Do not use a SEND statement between a BEGIN-TRANSACTION statement and an
END-TRANSACTION statement. Doing so violates the rules of synchronized
recovery and you might lose some of the data in your database.

There are two formats for the SEND statement. Format 1 is for nonsegmented output
only, and Format 2 is for nonsegmented or segmented output.

Format 1 - Nonsegmented Output Only

 SEND COMS-header-name-1 FROM identifier-1
 ïïïï ïïïï

Format 2 - Segmented or Nonsegmented Output

 ä WITH identifier-2å
 ³ ³
 ³ WITH ESI ³
 SEND COMS-header-name-1 [FROM identifier -1] ã ïïï â
 ïïïï ïïïï ³ WITH EMI ³
 ³ ïï ³
 ³ WITH EGI ³
 æ ïïï ç

Ú ä Ú ¿ å ¿
³ ³ ä identifier-3 å ³LINE ³ ³ ³
³ ³ ã â ³ ³ ³ ³
³ ä BEFORE å ³ æ integer ç ³LINES³ ³ ³
³ ã ïïïïïï â ADVANCING ã À Ù â ³
³ æ AFTER ç ³ ä mnemonic-nameå ³ ³
³ ïïïïï ³ ã â ³ ³
³ æ æ PAGE ç ç ³
À ïïïï Ù

Using the COMS Program Interface

8600 1526–202 2–27

Explanation for Format 1 - Nonsegmented Output Only

Format 1 is for nonsegmented output only.

COMS-header-name-1 is the name of a COMS output header.

Identifier-1 is the data-name of the area where the MCS looks for data to be sent.

The message or message segment is moved to the sending character positions of the area
of identifier-1 and aligned to the left with space fill.

When you execute a SEND statement, the MCS interprets the value in the Text Length
field of the output header as the number of leftmost character positions of identifier-1
from which data is to be transferred.

If the value of Text Length is 0 (zero), no characters of identifier-1 are transferred. The
value of Text Length cannot be outside the range 0 through the size of identifier-1. If the
value is outside the range, the message is truncated to the size of identifier-1 and the
Status Value field of the output header is set to 0.

When a SEND statement executes, the MCS updates the Status Value field.

The effect of special control characters within identifier-1 is undefined.

Explanation for Format 2 - Segmented or Nonsegmented Output

Format 2 allows either segmented or nonsegmented output. You can use the WITH option
of the SEND statement to select nonsegmented output or a type of segmented output. The
ESI, EMI, and EGI options are for segmentation. These options are explained in the
following subsection.

Identifier-2 must reference a 1-character integer without an operational sign. For
example,

PIC S9(11) USAGE BINARY

If identifier-2 is 0 (zero), it indicates nonsegmented output.

Identifier-3, if used, must be the name of an elementary integer item.

Integer, and the value of identifier-3, can be 0 (zero).

If you use a mnemonic-name phrase, it is identified with a particular feature specified in
the SPECIAL-NAMES paragraph in the Environment Division.

Using the COMS Program Interface

2–28 8600 1526–202

Segmenting Options

There are three segmenting options: the end-of-segment indicator (ESI), the end-of-
message indicator (EMI), and the end-of-group indicator (EGI). COMS recognizes these
indicators and establishes the appropriate linkage to maintain control over groups,
messages, and segments. For example, the following statement sends output immediately
after values have been moved to the required fields of the output header:

SEND <output header name> FROM <message area> WITH EMI.

The contents of identifier-2 indicate that the contents of identifier-1 are to have an
associated ESI, EMI, or EGI according to the schedule in Table 2–4.

Table 2–4. Transmission Indicator Schedule

Identifier-2 Identifier-1 Explanation

0 No indicator No indicator

1 ESI Message segment complete

2 EMI Message complete

3 EGI Group of messages complete

Any character other than 1, 2, or 3 is interpreted as 0 (zero). If identifier-2 is a number
other than 1, 2, or 3 and if identifier-1 is not specified, the data is transferred and no error
is indicated.

The hierarchy of ending indicators (major to minor) is EGI, EMI, and ESI. An EGI need
not be preceded by an ESI or an EMI, and an EMI need not be preceded by an ESI.

A single execution of a Format 2 SEND statement never releases to the MCS more than
the single message or single message segment that is indicated by the contents of the data
item referenced by identifier-2 or by the specified ESI, EMI, or EGI. However, the MCS
does not transmit any portion of a message to a communications device until the entire
message is placed in the output queue.

During the execution of the run unit, the disposition of a portion of a message not
terminated by an EMI or EGI is undefined. Thus, the message does not logically exist for
the MCS and cannot be sent to a destination.

After the execution of a STOP RUN statement, the system removes any portion of a
message transferred from the run unit as a result of a SEND statement, but not terminated
by an EMI or EGI. Thus, no portion of the message is sent.

Using the COMS Program Interface

8600 1526–202 2–29

Advancing Options

The ADVANCING phrase enables you to control the vertical positioning of each message
or message segment on an output device where this control is possible. If vertical
positioning is not applicable on the device, COMS ignores the specified or implied vertical
positioning.

On a device where vertical positioning applies and the ADVANCING phrase is not
specified, automatic advancing occurs as if you had specified BEFORE ADVANCING 1
LINE.

You can use the BEFORE ADVANCING and AFTER ADVANCING options to specify
whether the text of an output message should be written to the output device before or
after the device advances to the next page, or before or after the device advances a
specified number of lines. If you specify neither of these options, it is assumed that you
are specifying lines. For example, the following code instructs the device to write a
message after advancing one line:

SEND COMS-OUT FROM MSG-OUT-TEXT AFTER ADVANCING 1.

Although COMS supplies a default setting for carriage control, a processing item can alter
carriage control before an output message reaches its destination. For instructions about
this procedure, refer to the COMS Programming Guide.

If you specify identifier-3 and identifier-3 is 0 (zero), the MCS ignores the ADVANCING
phrase.

If you implicitly or explicitly specify the ADVANCING phrase to a device on which you can
control the vertical positioning, the following rules apply:

• If you use the BEFORE ADVANCING phrase, the output device writes the message or
message segment before it repositions the message vertically according to the rules
for identifier-3, integer, and mnemonic-name.

In the following SEND statement, the AFTER ADVANCING phrase instructs the
output device to advance before values have been moved into the appropriate fields of
the output headers:

SEND COMS-OUT FROM COMS-OUT-AREA WITH EMI
 BEFORE ADVANCING 2 LINES.

• If you use the AFTER ADVANCING phrase, the output device writes the message or
message segment after it repositions the message vertically according to the rules for
identifier-3, integer, and mnemonic-name. These rules are

− If you specify identifier-3 or integer, the output device repositions characters
vertically downward by a number of lines equal to the value of identifier-3 or
integer.

− If you specify a mnemonic-name, the output device positions characters according
to the rules for that device.

Using the COMS Program Interface

2–30 8600 1526–202

• If you specify PAGE, the output device writes characters either before or after the
device is repositioned to the next page (depending on the phrase used). For example,
in the following SEND statement, the BEFORE ADVANCING phrase instructs the
output device to advance after values have been moved into the appropriate fields of
the output header:

SEND COMS-OUT FROM COMS-OUT-AREA WITH EMI
 AFTER ADVANCING PAGE.

If you specify PAGE, but PAGE has no meaning in conjunction with a specific device,
then the output device advances as if you had specified a BEFORE ADVANCING 1
LINE or AFTER ADVANCING 1 LINE phrase.

Example

Example 2–10 shows SEND statements that specify segmented output using the WITH ESI
and WITH EGI options. The options are specified to hold output until the message is
complete.

Using the COMS Program Interface

8600 1526–202 2–31

.

.

.
WORKING-STORAGE SECTION.
 01 MESSAGE-1 PIC X(100).
 01 MESSAGE-2 PIC X(100).
 01 MESSAGE-3 PIC X(100).
.
.
.
COMMUNICATION SECTION.
INPUT HEADER INHDR.
OUTPUT HEADER OUTHDR.
.
.
.
PROCEDURE DIVISION.
.
.
.
 MOVE OUTPUT-SIZE1 TO TEXTLENGTH OF OUTHDR.
 MOVE 0 TO STATUSVALUE OF OUTHDR.
 SEND OUTHDR FROM MESSAGE-1 WITH ESI.

 MOVE OUTPUT-SIZE2 TO TEXTLENGTH OF OUTHDR.
 MOVE 0 TO STATUSVALUE OF OUTHDR.
 SEND OUTHDR FROM MESSAGE-2 WITH ESI.

 MOVE OUTPUT-SIZE3 TO TEXTLENGTH OF OUTHDR.
 MOVE 1 TO DESTCOUNT.
 MOVE STATIONDESG OF INHDR TO DESTINATIONDESG OF OUTHDR.
 MOVE 0 TO STATUSVALUE OF OUTHDR.
 SEND OUTHDR FROM MESSAGE-3 WITH EGI.

Example 2–10. Using SEND Statements with ESI and EGI Options

Using the COMS Program Interface

2–32 8600 1526–202

Using Service Functions
This discussion of service functions includes explanations of the following:

• Using COMS designators

• Identifying information with service function mnemonics

• Calling service functions

• Passing parameters to service functions

This discussion also includes an explanation of each service function. COMS uses the
following service functions:

• CONVERT_TIMESTAMP

• GET_DESIGNATOR_ARRAY_USING_DESIGNATOR

• GET_DESIGNATOR_USING_DESIGNATOR

• GET_DESIGNATOR_USING_NAME

• GET_INTEGER_ARRAY_USING_DESIGNATOR

• GET_INTEGER_USING_DESIGNATOR

• GET_NAME_USING_DESIGNATOR

• GET_REAL_ARRAY

• GET_STRING_USING_DESIGNATOR

• STATION_TABLE_ADD

• STATION_TABLE_INITIALIZE

• STATION_TABLE_SEARCH

• TEST_DESIGNATORS

In COBOL85, you can use hyphens (-) rather than underscores (_) in the names of service
functions. The compiler automatically translates hyphens to underscores for use with
COMS.

For a complete discussion of the COMS service functions and their use, refer to the COMS

Programming Guide.

Using COMS Designators
Service functions use numeric designators that are part of an internal code understood by
COMS. You obtain designators from COMS headers or from service functions that allow
you to translate names to designators. Refer to “Mapping COMS Data Types to COBOL85,”
earlier in this section, for information on the COMS designator data type and its use with
COBOL85. See the COMS Programming Guide for information about COMS designators.

Using the COMS Program Interface

8600 1526–202 2–33

Identifying Information with Service Function Mnemonics
The COMS entities have designators that can be used in service function calls. Table 2–5
lists the service function mnemonics that you can use to identify particular data items.
The data items indicate the kinds of information that can be requested in a program.

Table 2–5. Service Functions Mnemonics

Data Item Mnemonic

Agenda AGENDA

Database DATABASE

Device designator DEVICE

Device list DEVICE-LIST

Host Name HOST-NAME

Installation data INSTALLATION-DATA

INSTALLATION-DATA-LINK

INSTALLATION-STRING-1

INSTALLATION-STRING-2

INSTALLATION-STRING-3

INSTALLATION-STRING-4

INSTALLATION-HEX-1

INSTALLATION-HEX-2

INSTALLATION-INTEGER-ALL

INSTALLATION-INTEGER-1

INSTALLATION-INTEGER-2

INSTALLATION-INTEGER-3

INSTALLATION-INTEGER-4

Library LIBRARY

Message date in format MMDDYY DATE

Message time in format HHMMSS TIME

Processing item PROCESSING-ITEM

Processing item list PROCESSING-ITEM-LIST

Program PROGRAM

Using the COMS Program Interface

2–34 8600 1526–202

Table 2–5. Service Functions Mnemonics

Data Item Mnemonic

Program: current input queue depth QUEUE-DEPTH

Program: mix numbers for active copies MIXNUMBERS

Program: response time for last transaction LAST-RESPONSE

Program: aggregate response time AGGREGATE-RESPONSE

Program: security designator SECURITY

Program: total number of input messages
handled

MESSAGE-COUNT

Security category SECURITY-CATEGORY

Security category list CATEGORY-LIST

Station STATION

Station list STATION-LIST

Station: logical station number (LSN) LSN

Station: screen size SCREENSZ

Station: session number SESSION

Station: security designator SECURITY

Station: virtual terminal VIRTUAL-TERMINAL VIRTTERM

Statistics STATISTICS

Transaction code TRANCODE

Window WINDOW

Window: maximum number of users MAXIMUM-USER-COUNT

Window: current number of users CURRENT-USER-COUNT

Window list WINDOW-LIST

Usercode USERCODE

Calling Service Functions
You can call the COMS service functions with application programs and processing items.
When you call a service function, do the following:

• Use the CALL statement syntax for calling library procedures in COBOL85.

• Pass the integer parameters (using unscaled integer values) by name rather than by
value.

Using the COMS Program Interface

8600 1526–202 2–35

Using the CALL statement

Format

 CALL literal-1
 ïïïï
 USING { identifier-1 } . . .
 ïïïïï
 GIVING identifier-2
 ïïïïïï
 [END-CALL]
 ïïïïïïïï

Explanation

Literal-1 is a nonnumeric literal. It contains the service function name, followed by the
qualifying library name. The only name allowed is DCILIBRARY.

Identifier-1 is a set of input and output parameters passed to the procedure described in
literal-1. The passing of parameters by value is described later in this section.

Identifier-2 is the result of a service function call.

The END-CALL phrase delimits the scope of the CALL statement.

Do not perform arithmetic computations on the values returned from the procedure calls.
You can move the values to other locations of a compatible type within your program, and
pass them as parameters when calling other library objects. For information on
compatible types, refer to “Mapping COMS Data Types to COBOL85” earlier in this
section.

Example

Example 2–11 shows a use of the CALL statement to pass an agenda designator to obtain
an agenda name. You must also declare the agenda designator and agenda name used in
the example in the Working-Storage Section of the program.

The service function result value indicates the result of the service function call. The
result value is returned to the parameter specified in the GIVING clause of the CALL
statement. Refer to the COMS Programming Guide for information about the service
function result values. Refer to “Passing Parameters to Service Functions,” later in this
section, for information on valid parameters and examples of the CALL syntax.

Using the COMS Program Interface

2–36 8600 1526–202

For more information on the GET_NAME_USING_DESIGNATOR service function, and for
an example of program code used for the CALL statement with this service function, see
“GET_NAME_USING_DESIGNATOR Service Function” later in this section.

CALL "GET-NAME-USING-DESIGNATOR OF DCILIBRARY"
 USING <agenda designator>,
 <agenda name>
 GIVING <service function result value>

Example 2–11. Calling a COMS Service Function with a CALL Statement

Using Parameters by Value

The VALUE clause is used with the CALL statement for COMS service functions in which a
mnemonic is passed for a numeric result.

Format

 [VALUE mnemonic-1]
 ïïïïï

Explanation

The keyword VALUE indicates that a service function mnemonic is being passed by value
to the service function. Mnemonic-1 is the mnemonic parameter. Refer to “Identifying
Information with Service Function Mnemonics,” earlier in this section, for information on
valid mnemonics.

Note: If the library being called is DCILIBRARY, you must use hyphens (-) in the

mnemonic names. The hyphens are automatically translated to underscores (_)

by the compiler for use with COMS.

Example

Example 2–12 shows an example of using the CALL statement with the VALUE parameter.
The LSN-NUM variable contains the value of the LSN service function mnemonic. SF-
RSLT receives the result of the procedure call. If the result of the procedure call is
successful, SF-RSLT contains a 0 (zero); otherwise, SF-RSLT receives an error code that
the user accesses in another part of the program.

Note that the GET_INTEGER_USING_DESIGNATOR service function has hyphens (-)
between the words in its name because the DCILIBRARY library is the library called.

Using the COMS Program Interface

8600 1526–202 2–37

For information on valid parameters and an example of program code using the
GET_INTEGER_USING_DESIGNATOR service function, see
“GET_INTEGER_USING_DESIGNATOR Service Function” later in this section.

.

.

.
WORKING-STORAGE SECTION.
.
.
.
77 HDR-STATION REAL.
77 LSN-NUM PIC S9(11) USAGE BINARY.
77 SF-RSLT PIC S9(11) USAGE BINARY.
.
.
.
PROCEDURE DIVISION.
.
.
.
CALL "GET-INTEGER-USING-DESIGNATOR OF DCILIBRARY"
 USING HDR-STATION
 VALUE LSN
 LSN-NUM
 GIVING SF-RSLT.

Example 2–12. Using the VALUE Parameter When Calling a Service Function

Using the COMS Program Interface

2–38 8600 1526–202

Passing Parameters to Service Functions
The following parameters can be passed to service functions:

• Designators

• Mnemonics or real values

• Arrays

For general information about passing service function parameters, refer to the COMS

Programming Guide. For information on service function mnemonics used in COBOL85,
refer to “Identifying Information with Service Function Mnemonics” earlier in this section.

You must declare all parameters to be passed, except mnemonics, in the Working-Storage
Section of your COBOL85 program.

You cannot pass header fields as parameters. To pass fields, you must first move them to
a declared temporary parameter, and then pass the values. The temporary parameter
must be declared as a real value.

The service function declarations and valid parameters for passing service functions in a
COBOL85 program are explained in the following discussion. Note the following general
characteristics:

• An entity name is a data item with DISPLAY usage.

• A mnemonic is a COMS mnemonic representing an entity or a designator.

• An array is an EBCDIC or integer array.

• A designator is a data item of type real. Refer to the coded examples of declarations
of designator, integer, and real tables that are provided at the end of the discussion of
each service function.

Using the COMS Program Interface

8600 1526–202 2–39

CONVERT_TIMESTAMP Service Function

The CONVERT_TIMESTAMP service function converts the COMS timestamp TIME(6) to
the date or time in EBCDIC arrays. For information on the COMS TIME(6) type and
COBOL85 usage, refer to “Mapping COMS Data Types to COBOL85” earlier in this section.

The input parameter is a real value that represents the timestamp.

The allowable mnemonics represent the requested function. They include

• DATE, which returns MMDDYY

• TIME, which returns HHMMSS

The result parameter is an EBCDIC array in which the time or date is returned.

Example

Example 2–13 shows an example of coding for the CONVERT_TIMESTAMP service
function.

.

.

.
 WORKING-STORAGE SECTION.
.
.
.
77 WS-TIMESTAMP REAL.
01 WS-TIME PIC X(6).
77 SF-RSLT PIC S9(11) USAGE BINARY.
.
.
.
PROCEDURE DIVISION.
.
.
.
 CALL "CONVERT-TIMESTAMP OF DCILIBRARY"
 USING WS-TIMESTAMP
 VALUE TIME
 WS-TIME
 GIVING SF-RSLT.

Example 2–13. Using the CONVERT_TIMESTAMP Service Function

Using the COMS Program Interface

2–40 8600 1526–202

GET_DESIGNATOR_ARRAY_USING_DESIGNATOR Service Function

The GET_DESIGNATOR_ARRAY_USING_DESIGNATOR service function obtains a
designator array from the structure represented by the designator.

The allowable input parameter is the STATION LIST designator that represents the
structure. STATION LIST returns an array with stations.

The result parameter is an integer that represents the number of designators returned in
the array. The array is a real array containing the designators.

Example

Example 2–14 shows an example of coding for the
GET_DESIGNATOR_ARRAY_USING_DESIGNATOR service function.

.

.

.
WORKING-STORAGE SECTION.
.
.
.
77 WS-TABLE-DESG REAL.
77 WS-DESG-TABLE-MAX-INDEX PIC S9(11) USAGE BINARY.
01 WS-DESG-TABLE REAL.
 05 WS-D-TABLE REAL OCCURS 10 TIMES.

77 SF-RSLT PIC S9(11) USAGE BINARY.
.
.
.
PROCEDURE DIVISION.
.
.
.
 CALL "GET-DESIGNATOR-ARRAY-USING-DESIGNATOR OF DCILIBRARY"
 USING WS-TABLE-DESG
 WS-DESG-TABLE-MAX-INDEX
 WS-DESG-TABLE
 GIVING SF-RSLT.

Example 2–14. Using the GET_DESIGNATOR_ARRAY_USING_DESIGNATOR Service Function

Using the COMS Program Interface

8600 1526–202 2–41

GET_DESIGNATOR_USING_DESIGNATOR Service Function

The GET_DESIGNATOR_USING_DESIGNATOR service function obtains a specific
designator from the structure represented by the designator.

The input parameter is a designator that represents the structure.

The mnemonic for the input parameter describes the requested integer array. The
mnemonics allowed for the designators are

Designator Mnemonic

All INSTALLATION_DATA_LINK

Station, usercode, program SECURITY

Station DEVICE

The result parameter is a designator.

Example

Example 2–15 provides an example of coding for the
GET_DESIGNATOR_USING_DESIGNATOR service function.

.

.

.
WORKING-STORAGE SECTION.
.
.
.
77 WS-DESG REAL.
77 WS-DESG-RSLT REAL.
77 SF-RSLT PIC S9(11) USAGE BINARY.
.
.
.
PROCEDURE DIVISION.
.
.
.
CALL "GET-DESIGNATOR-USING-DESIGNATOR OF DCILIBRARY"
 USING WS-DESG
 VALUE INSTALLATION-DATA-LINK
 WS-DESG-RSLT
 GIVING SF-RSLT.

Example 2–15. Using the GET_DESIGNATOR_USING_DESIGNATOR Service Function

Using the COMS Program Interface

2–42 8600 1526–202

GET_DESIGNATOR_USING_NAME Service Function

The GET_DESIGNATOR_USING_NAME service function converts the COMS name
variable into a designator.

The input parameter is an entity name. The string for the entity name of agenda,
transaction code (trancode), and installation data includes the window name if the
program calling the service function is running in another window or is outside of COMS.
For example, the following input passes the entity name:

<agenda name> of <window name>

For installation data, the installation data with a window value equal to the ALL entity (the
default value) is used if no window is specified, and if the window in which the program is
running does not have an entity of the same name.

The mnemonic for the input parameter is the entity type for the required name.

The result parameter is a designator.

Example

Example 2–16 shows an example of coding for the GET_DESIGNATOR_USING_NAME
service function.

.

.

.
WORKING-STORAGE SECTION.
.
.
.
01 WS-NAME PIC X(30).
77 WS-DESG REAL.
77 SF-RSLT PIC S9(11) USAGE BINARY.
.
.
.
PROCEDURE DIVISION.
.
.
.
 CALL "GET-DESIGNATOR-USING-NAME OF DCILIBRARY"
 USING WS-NAME
 VALUE STATION-LIST
 WS-DESG
 GIVING SF-RSLT.

Example 2–16. Using the GET_DESIGNATOR_USING_NAME Service Function

Using the COMS Program Interface

8600 1526–202 2–43

GET_ERRORTEXT_USING_NUMBER Service Function

The GET_ERRORTEXT_USING_NUMBER service function converts an XATMI function
error code into text representing an error message.

The input parameter is an integer representing an XATMI function result value.

The output parameters are the following:

• An integer representing the length of the text string returned

• A text string representing an error message

If the error text is available in multiple languages, the language attribute of the calling
program determines the language in which the error message is returned.

Example

Example 2–17 shows coding for the GET_ERRORTEXT_USING_NUMBER service.
SF-RSLT receives the result of the call to the service function. If the result of the call is
successful, SF-RSLT contains a 0 (zero); otherwise, SF-RSLT contains an error code.

.

.

.
WORKING-STORAGE SECTION.
.
77 WS-ERROR PIC S9(11) USAGE BINARY.
77 WS-TEXT-LENGTH PIC S9(11) USAGE BINARY
01 WS-ERROR-TEXT PIC X(90).
77 SF-RSLT PIC S9(11) USAGE BINARY
.
.
PROCEDURE DIVISION
.
.
 CALL "GET-ERRORTEXT-USING-NUMBER OF DCILIBRARY"
 USING WS-ERROR
 WS-TEXT-LENGTH
 WS-ERROR-TEXT
 GIVING SF-RSLT.

Example 2–17. Using the GET_ERRORTEXT_USING_NUMBER Service Function

Using the COMS Program Interface

2–44 8600 1526–202

GET_INTEGER_ARRAY_USING_DESIGNATOR Service Function

The GET_INTEGER_ARRAY_USING_DESIGNATOR service function obtains an array of
integers from the structure represented by the designator.

The input parameter is a designator that represents the structure.

The mnemonic for the input parameter describes the requested integer array. The
mnemonics allowed for designators are

Designator Mnemonic

All INSTALLATION_INTEGER_ALL

Program MIXNUMBERS

The result parameters are the following:

• An integer representing the number of integers returned in the array

• An integer array containing the returned information

Using the COMS Program Interface

8600 1526–202 2–45

Example

Example 2–18 shows an example of coding for the
GET_INTEGER_ARRAY_USING_DESIGNATOR service function.

.

.

.
WORKING-STORAGE SECTION.
.
.
.
77 WS-DESG REAL.
77 WS-INT-TABLE-MAX-INDEX PIC S9(11) USAGE BINARY.
77 SF-RSLT PIC S9(11) USAGE BINARY.
01 WS-INT-TABLE USAGE BINARY.
 03 WS-INT-TABLE-DETAIL PIC S9(11) OCCURS 10 TIMES.
.
.
.
PROCEDURE DIVISION.
.
.
.
 CALL "GET-INTEGER-ARRAY-USING-DESIGNATOR OF DCILIBRARY"
 USING WS-DESG
 VALUE INSTALLATION-INTEGER-ALL
 WS-INT-TABLE-MAX-INDEX
 WS-INT-TABLE
 GIVING SF-RSLT.

Example 2–18. Using the GET_INTEGER_ARRAY_USING_DESIGNATOR Service Function

Using the COMS Program Interface

2–46 8600 1526–202

GET_INTEGER_USING_DESIGNATOR Service Function

The GET_INTEGER_USING_DESIGNATOR service function obtains a specific integer
from the structure represented by the designator.

The input parameter is a designator representing the structure.

The mnemonic for the input parameter describes the requested integer. Allowable
mnemonics and designators are

Designator Mnemonic

All INSTALLATION_INTEGER_1, 2, 3, 4

Station LSN, VIRTTERM, SCREENSZ, SESSION

Window MAXIMUM_USER_COUNT and CURRENT_USER_COUNT

Program QUEUE_DEPTH, MESSAGE_COUNT, LAST_RESPONSE, and
AGGREGATE_RESPONSE

The result parameter is an integer.

Using the COMS Program Interface

8600 1526–202 2–47

Example

Example 2–19 provides an example of coding for the
GET_INTEGER_USING_DESIGNATOR service function.

.

.

.
WORKING-STORAGE SECTION.
.
.
.
77 WS-DESG REAL.
77 WS-INT PIC S9(11) USAGE BINARY.
77 SF-RSLT PIC S9(11) USAGE BINARY.
.
.
.
PROCEDURE DIVISION.
.
.
.
 CALL "GET-INTEGER-USING-DESIGNATOR OF DCILIBRARY"
 USING WS-DESG
 VALUE INSTALLATION-INTEGER-1
 WS-INT
 GIVING SF-RSLT.

Example 2–19. Using the GET_INTEGER_USING_DESIGNATOR Service Function

Using the COMS Program Interface

2–48 8600 1526–202

GET_NAME_USING_DESIGNATOR Service Function

The GET_NAME_USING_DESIGNATOR service function converts a COMS designator to
the COMS designator name.

The input parameter is a designator. All designators are allowed.

The result parameter is an entity name.

Example

Example 2–20 shows an example of coding for the GET_NAME_USING_DESIGNATOR
service function.

.

.

.
WORKING-STORAGE SECTION.
.
.
.
77 WS-DESG REAL.
01 WS-NAME PIC X(30).
77 SF-RSLT PIC S9(11) USAGE BINARY.
.
.
.
PROCEDURE DIVISION.
.
.
.
 CALL "GET-NAME-USING-DESIGNATOR OF DCILIBRARY"
 USING WS-DESG
 WS-NAME
 GIVING SF-RSLT.

Example 2–20. Using the GET_NAME_USING_DESIGNATOR Service Function

Using the COMS Program Interface

8600 1526–202 2–49

GET_REAL_ARRAY Service Function

The GET_REAL_ARRAY service function obtains a structure of data with no connection to
any entity.

The input parameter is a mnemonic representing the requested function. The only
allowable mnemonic is STATISTICS, which returns a table. Each table entry has the
following six input parameter items. (The input parameter items that show DCI library in
parentheses are passed from DCI library programs only, not from remote files.)

• Entity designator

• Type of entity:

Entry Code Entity Represented

1 DCI library program

2 Remote file interface

3 MCS window

• Queue depth (DCI library)

• Number of transactions

• Last transaction response in milliseconds (DCI library)

• Aggregate response in milliseconds (DCI library)

The result parameters are the following:

• An integer representing the total number of elements returned in the array

• An array containing the information returned

Using the COMS Program Interface

2–50 8600 1526–202

Example

Example 2–21 shows an example of coding for the GET_REAL_ARRAY service function.

.

.

.
WORKING-STORAGE SECTION.
.
.
.
77 WS-REAL-TABLE-MAX-INDEX PIC S9(11) USAGE BINARY.
01 WS-REAL-TABLE REAL.
 05 WS-R-TABLE REAL OCCURS 500 TIMES.
77 SF-RSLT PIC S9(11) USAGE BINARY.
.
.
.
PROCEDURE DIVISION.
.
.
.
 CALL "GET-REAL-ARRAY OF DCILIBRARY"
 USING VALUE STATISTICS
 WS-REAL-TABLE-MAX-INDEX
 WS-REAL-TABLE
 GIVING SF-RSLT.

Example 2–21. Using the GET_REAL_ARRAY Service Function

Using the COMS Program Interface

8600 1526–202 2–51

GET_STRING_USING_DESIGNATOR Service Function

The GET_STRING_USING_DESIGNATOR service function obtains an EBCDIC string from
the structure represented by the designator.

The input parameter is an entity designator that represents the structure.

The entity mnemonic describes the requested integer vector. All designators are
allowable. The allowable mnemonics are INSTALLATION_STRING_1, 2, 3, 4 and
INSTALLATION_HEX_1, 2.

The result parameters are the following:

• An integer that indicates the number of valid characters in the string

• An EBCDIC array indicating the returned string

Example

Example 2–22 shows an example of coding for the GET_STRING_USING_DESIGNATOR
service function.

.

.

.
WORKING-STORAGE SECTION.
.
.
.
77 WS-DESG REAL.
77 WS-STRING-MAX-CHAR PIC S9(11) USAGE BINARY.
01 WS-STRING PIC X(30).
77 SF-RSLT PIC S9(11) USAGE BINARY.
.
.
.
PROCEDURE DIVISION.
.
.
.
 MOVE SPACES TO WS-STRING.
 CALL "GET-STRING-USING-DESIGNATOR OF DCILIBRARY"
 USING WS-DESG
 VALUE INSTALLATION-STRING-1
 WS-STRING-MAX-CHAR
 WS-STRING
 GIVING SF-RSLT.

Example 2–22. Using the GET_STRING_USING_DESIGNATOR Service Function

Using the COMS Program Interface

2–52 8600 1526–202

STATION_TABLE_ADD Service Function

The STATION_TABLE_ADD service functions allows you to add a station designator to
the list (table) of stations. The table is controlled by the transaction processor.

The input parameters are as follows:

• A real array that contains the table of station designators

• A station designator that is to be added to the table

The output parameter is an index value representing the location of the station in the
station table.

An example of the use of this service function is provided in Example 2–22, at the end of
the explanation of the STATION_TABLE_SEARCH service function.

STATION_TABLE_INITIALIZE Service Function

The STATION_TABLE_INITIALIZE service function initializes the table into which the
station index values are placed. The table is implemented as a hash table. It is
recommended that the size of the table is based on the number of stations that may be
added to the table (or the number of stations that exist).

The input parameters are as follows:

• A real table of station designators

• A table modulus

The table modulus is used to determine the density and access time of the table. If, for
example, you have a table with a sparse population and you desire very fast access time,
select a modulus that is twice the maximum number of table entries. If the table has a
compact population and slower access is acceptable, use a modulus with half the
maximum number of entries.

An example of the use of this service function is provided in Example 2–22, at the end of
the explanation of the STATION_TABLE_SEARCH service function.

Using the COMS Program Interface

8600 1526–202 2–53

STATION_TABLE_SEARCH Service Function

The STATION_TABLE_SEARCH service function searches through a table and locates a
specific station designator.

The input parameters are as follows:

• The name of the real table of designators to be searched

• The name of the station designator to be found

The output parameter is the index value at the point in the table that the designator was
found. If the station designator was not found, a value of 0 (zero) is returned.

Example

Example 2–23 shows the declarations and statements for the station table service
functions. After the execution of the code in the example, STATION-SEARCH-RESULT
will contain the index of the station designator in the table.

.

.

.
WORKING-STORAGE SECTION.
.
.
.
01 STATION-TABLE REAL.
 02 STATION-DESIGNATOR REAL OCCURS 100.
77 STATION-SEARCH-RESULT PIC S9(11) BINARY.
77 STATION-SEARCH-DESIGNATOR REAL.
77 STATION-SEARCH-MODULUS PIC S9(11) BINARY.
.
.
.
PROCEDURE DIVISION.
.
.
.
 CALL "STATION-TABLE-INITIALIZE OF DCILIBRARY"
 USING STATION-TABLE, STATION-SEARCH-MODULUS.
 MOVE STATION OF COMS-IN TO STATION-SEARCH-DESIGNATOR.
 CALL "STATION-TABLE-SEARCH OF DCILIBRARY"
 USING STATION-TABLE, STATION-SEARCH-DESIGNATOR
 GIVING STATION-SEARCH-RESULT.
 IF STATION-SEARCH-RESULT IS EQUAL TO 0
 CALL "STATION-TABLE-ADD OF DCILIBRARY"
 USING STATION-TABLE, STATION-SEARCH-DESIGNATOR
 GIVING STATION-RESULT.

Example 2–23. Using the STATION TABLE Service Functions

Using the COMS Program Interface

2–54 8600 1526–202

TEST_DESIGNATORS Service Function

The TEST_DESIGNATORS service function tests whether a designator is part of a
structure represented by another designator.

The input parameters are two designators representing structures. The order of the
designators does not matter. Allowable designator combinations include an array of
designators using either the mnemonics DEVICE and DEVICE_LIST or the mnemonics
SECURITY and SECURITY_CATEGORY.

Example

Example 2–24 shows an example of coding for the TEST_DESIGNATORS service function.

.

.

.
WORKING-STORAGE SECTION.
.
.
.
77 WS-DESG REAL.
77 WS-DESG-RSLT REAL.
77 SF-RSLT PIC S9(11) USAGE BINARY.
.
.
.
PROCEDURE DIVISION.
.
.
.
 CALL "TEST-DESIGNATORS-OF-DCILIBRARY"
 USING WS-DESG
 WS-DESG-RSLT
 GIVING SF-RSLT.

Example 2–24. Using the TEST_DESIGNATORS Service Functions

Using the COMS Program Interface

8600 1526–202 2–55

COMS Sample Program with a DMSII Database
This sample program, called SAILOLPROG, tracks sailboat races and updates a DMSII
database by using features of the COMS direct-window interface. The program
exemplifies the programming techniques used in writing transaction processors that allow
synchronized recovery.

The SAILOLPROG program maintains the SAILDB database. The program contains three
transactions. Each transaction has a unique trancode and a unique module function index
(MFI). The CRERAC trancode creates a race entry in the database. ADDENT adds a boat
entry to a race. The race must exist for the transaction to be completed. DELENT deletes
a boat from a race.

COMS Features Used in the Sample Program
The following features of the COMS direct-window interface are used in the program:

• Declared COMS input and output headers

• Trancodes

• Synchronized recovery

Information on synchronized recovery when COMS is used with DMSII is provided in the
explanation of the END-CLOSE phrase under “CLOSE Statement” in Section 3.

The SAILOLPROG program runs in a COMS environment that has been configured to
include a DMSII database called SAILDB, and the following COMS entities:

• A direct window called SAIL

• An agenda called SAILAGINOL

• The following three trancodes:

− CRERAC(MFI=1)

− ADDENT(MFI=2)

− DELENT(MFI=3)

All entities must be defined to COMS to allow the program to run.

Data Sets in the Database
The database SAILDB contains three data sets. The data set RACE-CALENDAR contains
one record for every race. The data set ENTRY contains one record for each boat entered
in the race. A boat can have multiple records, depending on the number of races it enters.
The data set RDS is the restart data set (RDS) with the appropriate COMS required fields.
The DMSII option RDSSTORE is not set for the database.

Using the COMS Program Interface

2–56 8600 1526–202

Using the Sample Program

The SAILOLPROG program is shown in Example 2–25. This representation of the program
contains comment lines to indicate what the program is doing at each step.

All transactions in the program are two-phase transactions. In phase 1, all records are
locked. In phase 2, the data is stored in the database and only the END-TRANSACTION
statement unlocks records. All transactions instruct COMS to audit the input message
when the END-TRANSACTION statement takes the program out of transaction state

010200 IDENTIFICATION DIVISION.
010300 PROGRAM-ID. ONLINESAIL.
010400 ENVIRONMENT DIVISION.
010500 CONFIGURATION SECTION.
010600 SOURCE-COMPUTER. Micro A.
010700 OBJECT-COMPUTER. Micro A.
010800 INPUT-OUTPUT SECTION.
010900 FILE-CONTROL.
011000 SELECT RMT ASSIGN TO REMOTE ACCESS SEQUENTIAL.
011100 DATA DIVISION.
011200 FILE SECTION.
011300 FD RMT.
011400 01 REM-REC PIC X(72).
011500 DATA-BASE SECTION.
011600 DB SAILDB ALL.
011700 WORKING-STORAGE SECTION.
011800 77 SCRATCH PIC X(256).
011900
012000**
012100* MESSAGE AREA DECLARATIONS *
012200**
012300
012400 01 MSG-TEXT.
012500 03 MSG-TCODE PIC X(6).

Using the COMS Program Interface

8600 1526–202 2–57

012600 03 MSG-FILLER PIC X.
012700 03 MSG-CREATE-RACE.
012800 05 MSG-CR-ID PIC 9(6).
012900 05 MSG-CR-NAME PIC X(20).
013000 05 MSG-CR-DATE PIC X(6).
013100 05 MSG-CR-TIME PIC X(4).
013200 05 MSG-CR-LOCATION PIC X(20).
013300 05 MSG-CR-SPONSOR PIC X(10).
013350 05 FILLER PIC X(10).
013400 03 MSG-ADD-ENTRY REDEFINES MSG-CREATE-RACE.
013500 05 MSG-AE-RACE-ID PIC 9(6).
013600 05 MSG-AE-ID PIC X(6).
013700 05 MSG-AE-NAME PIC X(20).
013800 05 MSG-AE-RATING PIC 9(3).
013900 05 MSG-AE-OWNER PIC X(20).
014000 05 MSG-AE-CLUB PIC X(15).
014100 05 FILLER PIC X(6).
014200 03 MSG-DELETE-ENTRY REDEFINES MSG-CREATE-RACE.
014300 05 MSG-DE-RACE-ID PIC 9(6).
014400 05 MSG-DE-ID PIC X(6).
014500 05 FILLER PIC X(64).
014600 03 MSG-STATUS PIC X(30).
014700
014710**
014720* COMS INTERFACE DECLARATIONS *
014730**
014800 COMMUNICATION SECTION.
017000
017002 INPUT HEADER COMS-IN;
017004 PROGRAMDESG IS COMS-IN-PROGRAM;
017006 FUNCTIONSTATUS IS COMS-IN-FUNCTION-STATUS;
017008 FUNCTIONINDEX IS COMS-IN-FUNCTION-INDEX;
017010 USERCODE IS COMS-IN-USERCODE;
017012 SECURITYDESG IS COMS-IN-SECURITY-DESG;
017014 TRANSPARENT IS COMS-IN-TRANSPARENT;
017016 VTFLAG IS CONS-IN-VT-FLAG;
017018 TIMESTAMP IS COMS-IN-TIMESTAMP;
017020 STATION IS COMS-IN-STATION;
017022 TEXTLENGTH IS COMS-IN-TEXT-LENGTH;
017024 STATUSVALUE IS COMS-IN-STATUS-KEY;
017026 MESSAGECOUNT IS COMS-IN-MSG-COUNT;
017028 RESTART IS COMS-IN-RST-LOC;
017030 AGENDA IS COMS-IN-AGENDA;
017031 CONVERSATION AREA.
017032 02 CA PIC X(60).
017034
017036 OUTPUT HEADER COMS-OUT;
017038 DESTCOUNT IS COMS-OUT-COUNT;

Using the COMS Program Interface

2–58 8600 1526–202

017040 TEXTLENGTH IS COMS-OUT-TEXT-LENGTH;
017042 STATUSVALUE IS COMS-OUT-STATUS-KEY;
017044 TRANSPARENT IS COMS-OUT-TRANSPARENT;
017046 VTFLAG IS COMS-OUT-VT-FLAG;
017048 CONFIRMFLAG IS COMS-OUT-CONFIRM-FLAG;
017050 CONFIRMKEY IS COMS-OUT-CONFIRM-KEY;
017052 DESTINATIONDESG IS COMS-OUT-DESTINATION;
017054 NEXTINPUTAGENDA IS COMS-OUT-NEXT-INPUT-AGENDA;
017055 CASUALOUTPUT IS COMS-OUT-CASUAL-OUTPUT;
017056 SETNEXTINPUTAGENDA IS COMS-OUT-SET-NEXT-INPUT-AGENDA;
017058 RETAINTRANSACTIONMODE IS COMS-OUT-SAVE-TRANS-MODE;
017060 AGENDA IS COMS-OUT-AGENDA.
017100**
017200 PROCEDURE DIVISION.
017300**
017400 DECLARATIVES.
017500 DMERROR-SECTION SECTION.
017600 USE ON DMERROR.
017700 DMERROR-PARA.
017800
017900 END DECLARATIVES.
018000
018100 005-MAIN SECTION.
018110* Link application program to COMS.
018200 005-MAIN-SN.
018500 CHANGE ATTRIBUTE LIBACCESS OF
018600 "DCILIBRARY" TO BYFUNCTION.
018700 CHANGE ATTRIBUTE FUNCTIONNAME OF
018800 "DCILIBRARY" TO "COMSSUPPORT".
018900 OPEN UPDATE SAILDB.
019000 IF DMSTATUS(DMERROR) CALL SYSTEM DMTERMINATE.
019010* Initialize interface to COMS.
019100 ENABLE INPUT COMS-IN KEY "ONLINE".
019200 CREATE RDS.
019420 PERFORM 007-PROCESS-COMS-INPUT
019440 UNTIL COMS-IN-STATUS-KEY = 99.
019500 005-MAIN-EXIT.
019510 PERFORM 910-CLOSEDOWN.
019520 STOP RUN.
019530
019540***
019550 007-PROCESS-COMS-INPUT SECTION.
019560***
019562* Get the next message from COMS. If it is a 99, go to
019564* end of task (EOT); otherwise, make sure it is a valid
019566* message before processing it.

Using the COMS Program Interface

8600 1526–202 2–59

019568*
019570 007-PROCESS-CI-SN.
019600 MOVE SPACES TO MSG-TEXT.
019700 RECEIVE COMS-IN MESSAGE INTO MSG-TEXT.
019800 IF COMS-IN-STATUS-KEY NOT = 99
020000 PERFORM 920-CHECK-COMS-INPUT-ERRORS
020100 IF (COMS-IN-STATUS-KEY = 0 OR 92) AND
020200 COMS-IN-FUNCTION-STATUS NOT < 0 THEN
020300 PERFORM 100-PROCESS-TRANSACTION.
020400 007-PROCESS-CI-EXIT.
020450 EXIT.
020500
021000**
021100 100-PROCESS-TRANSACTION SECTION.
021200**
021220* Since the transaction type is programmatically based on MFI,
021240* make sure it is within range before doing the GO TO.
021260
021300 100-PROCESS-TRANS-SN.
021400 IF MSG-TCODE = "CRERAC"
021500 PERFORM 200-CREATE-RACE
021600 ELSE
021700 IF MSG-TCODE = "ADDENT"
021800 PERFORM 300-ADD-ENTRY
021900 ELSE
022000 IF MSG-TCODE = "DELENT"
022100 PERFORM 400-DELETE-ENTRY
022200 ELSE
022300 MOVE "INVALID TRANS CODE" TO MSG-STATUS
022320 PERFORM 900-SEND-MSG.
022340
022400 100-PROCESS-TRANS-EXIT.
022500 EXIT.
022600
022700**
022800 200-CREATE-RACE SECTION.
022900**
023000 200-CREATE-RACE-SN.
023020* Enter a new race record in the database.
023030* Because the transaction is done in online mode,
023040* save the restart data set (RDS) in the conversation area
023050* only. If there is an ABORT on BEGIN-TRANSACTION or
023060* END-TRANSACTION, return to the RECEIVE statement.
023080
023100 CREATE RACE-CALENDAR.
023200 MOVE MSG-CR-NAME TO RACE-NAME.
023300 MOVE MSG-CR-ID TO RACE-ID.

Using the COMS Program Interface

2–60 8600 1526–202

023400 MOVE MSG-CR-DATE TO RACE-DATE.
023500 MOVE MSG-CR-TIME TO RACE-TIME.
023600 MOVE MSG-CR-LOCATION TO RACE-LOCATION.
023700 MOVE MSG-CR-SPONSOR TO RACE-SPONSOR.
023800
023950 BEGIN-TRANSACTION COMS-IN NO-AUDIT RDS
024000 ON EXCEPTION
024100 IF DMSTATUS(ABORT)
024150 THEN
024200* Return to the RECEIVE statement.
024300 GO TO 200-CREATE-RACE-EXIT
024400 ELSE
024500 CALL SYSTEM DMTERMINATE.
024700 STORE RACE-CALENDAR.
024800 IF DMSTATUS(DMERROR)
024900 MOVE "STORE ERROR" TO MSG-STATUS
025000 ELSE
025100 MOVE "RACE ADDED" TO MSG-STATUS.
025200 END-TRANSACTION COMS-OUT AUDIT RDS
025300 ON EXCEPTION
025400 IF DMSTATUS(ABORT)
025500 GO TO 200-CREATE-RACE-EXIT
025600 ELSE
025700 CALL SYSTEM DMTERMINATE.
025800 PERFORM 900-SEND-MSG
025900 200-CREATE-RACE-EXIT.
026000 EXIT.
026100
026200***
026300 300-ADD-ENTRY SECTION.
026400**
026500 300-ADD-ENTRY-SN.
026520* Enter a boat in a race. The restart requirements are the same
026540* as for the above transaction.
026560
026600 FIND RACE-SET AT RACE-ID = MSG-AE-RACE-ID
026700 ON EXCEPTION
026800 IF DMSTATUS(NOTFOUND)
026900 MOVE "RACE DOES NOT EXIST" TO MSG-STATUS
027000 PERFORM 900-SEND-MSG
027100 GO TO 300-ADD-ENTRY-EXIT
027200 ELSE
027300 CALL SYSTEM DMTERMINATE.
027400
027500 CREATE ENTRY.

Using the COMS Program Interface

8600 1526–202 2–61

027600 MOVE MSG-AE-NAME TO ENTRY-BOAT-NAME.
027700 MOVE MSG-AE-ID TO ENTRY-BOAT-ID.
027800 MOVE MSG-AE-RATING TO ENTRY-BOAT-RATING.
027900 MOVE MSG-AE-OWNER TO ENTRY-BOAT-OWNER.
028000 MOVE MSG-AE-CLUB TO ENTRY-AFF-Y-CLUB.
028100 MOVE MSG-AE-RACE-ID TO ENTRY-RACE-ID.
028200
028350 BEGIN-TRANSACTION COMS-IN NO-AUDIT RDS
028400 ON EXCEPTION
028500 IF DMSTATUS(ABORT)
028550 THEN
028600* Return to the RECEIVE statement.
028700 GO TO 300-ADD-ENTRY-EXIT
028800 ELSE
028900 CALL SYSTEM DMTERMINATE.
029100 STORE ENTRY.
029200 IF DMSTATUS(DMERROR)
029300 MOVE "STORE ERROR" TO MSG-STATUS
029400 ELSE
029500 MOVE "BOAT ADDED" TO MSG-STATUS.
029600 END-TRANSACTION COMS-OUT AUDIT RDS
029700 ON EXCEPTION
029800 IF DMSTATUS(ABORT)
029900 GO TO 300-ADD-ENTRY-EXIT
030000 ELSE
030100 CALL SYSTEM DMTERMINATE.
030200 PERFORM 900-SEND-MSG.
030300 300-ADD-ENTRY-EXIT.
030400 EXIT.
030500
030600**
030700 400-DELETE-ENTRY SECTION.
030800**
030900 400-DELETE-ENTRY-SN.
030920* Delete a boat from a race. The restart requirements are the
030940* same as for the previous transaction.
030960
031000 LOCK ENTRY-RACE-SET AT
031190 ENTRY-RACE-ID = MSG-DE-RACE-ID AND
031200 ENTRY-BOAT-ID = MSG-DE-ID
031300 ON EXCEPTION
031400 IF DMSTATUS(NOTFOUND) THEN
031500 MOVE "BOAT ENTRY NOT FOUND" TO MSG-STATUS
031600 GO TO DE-SEND-MSG

Using the COMS Program Interface

2–62 8600 1526–202

031700 ELSE
031800 CALL SYSTEM DMTERMINATE.
031900
032050 BEGIN-TRANSACTION COMS-IN NO-AUDIT RDS
032100 ON EXCEPTION
032200 IF DMSTATUS(ABORT)
032250 THEN
032300* Return to the RECEIVE statement.
032400 GO TO 400-DELETE-ENTRY-EXIT
032500 ELSE
032600 CALL SYSTEM DMTERMINATE.
032800 DELETE ENTRY.
032900 IF DMSTATUS(DMERROR)
033000 MOVE "FOUND BUT NOT DELETED" TO MSG-STATUS
033100 ELSE
033200 MOVE "BOAT DELETED" TO MSG-STATUS.
033300 END-TRANSACTION COMS-OUT AUDIT RDS
033400 ON EXCEPTION
033500 IF DMSTATUS(ABORT)
033600 GO TO 400-DELETE-ENTRY-EXIT
033700 ELSE
033800 CALL SYSTEM DMTERMINATE.
033900 DE-SEND-MSG.
034000 PERFORM 900-SEND-MSG.
034100 400-DELETE-ENTRY-EXIT.
034200 EXIT.
034300
034400**
034500 900-SEND-MSG SECTION.
034600**
034700 900-SEND-MSG-SN.
034720* Send the message back to the originating station.
034740* Do not specify an output agenda. Make sure to
034760* test the result of the SEND.
034780*
034800 MOVE 1 TO COMS-OUT-COUNT.
034950 MOVE 0 TO COMS-OUT-DESTINATION.
035000 MOVE 0 TO COMS-OUT-STATUS-KEY.
035100 MOVE 106 TO COMS-OUT-TEXT-LENGTH.
035200 SEND COMS-OUT FROM MSG-TEXT.
035300 IF COMS-OUT-STATUS-KEY = 0 OR 92
035400 NEXT SENTENCE
035500 ELSE
035600 DISPLAY "ONLINE PROGRAM SEND ERROR: " COMS-OUT-STATUS-KEY.
035700 900-SEND-MSG-EXIT.
035800 EXIT.
035900**

036000 910-CLOSEDOWN SECTION.
036100**
036200 910-CLOSEDOWN-SN.
036220* Close the database.

Using the COMS Program Interface

8600 1526–202 2–63

036700 CLOSE SAILDB.
036800 910-CLOSEDOWN-EXIT.
036900 EXIT.
037000**
037100 920-CHECK-COMS-INPUT-ERRORS SECTION.
037200**
037300 920-CHECK-CIE-SN.
037320* Check for COMS control messages.
037340
037400 IF (COMS-IN-STATUS-KEY = 0 OR 92 OR 99)
037450
037500* These codes signify a good message, a recovery message,
037550* and an EOT notification, respectively.
037575*
037600 NEXT SENTENCE
037650
037700 ELSE
037800 IF COMS-IN-STATUS-KEY = 93
037900 MOVE "MSG CAUSES ABORT, PLS DONT RETRY" TO MSG-STATUS
038000 PERFORM 900-SEND-MSG
038100 ELSE
038150
038200* The COMS control message is 20, 100, 101, or 102, which
038300* means the application is manipulating the dynamic
038400* attachment or detachment of stations and receives an error.
038450
038500 MOVE "ERROR IN STA ATTACH/DETACHMENT" TO MSG-STATUS
038600 PERFORM 900-SEND-MSG.
038700
038800 IF COMS-IN-FUNCTION-STATUS < 0 THEN
038850
038900* This means that the application ID is tied to a default
039000* input agenda. MSG-TEXT probably does not contain a valid
039010* transaction.
039020
039100 MOVE "NEGATIVE FUNCTION CODE " TO MSG-STATUS
039200 PERFORM 900-SEND-MSG THRU 900-SEND-MSG-EXIT.
039300
039400 920-CHECK-CIE-EXIT.
039500 EXIT.
039600

Example 2–25. COMS Sample Program with a DMSII Database.

Using the COMS Program Interface

2–64 8600 1526–202

8600 1526–202 3–1

Section 3
Using the DMSII Program Interface

Data Management System II (DMSII) is used to invoke a database and maintain
relationships among the various data elements in the database.

This section explains how to use the extensions developed for the DMSII program
interface. The DMSII extensions allow you to

• Identify, qualify, and reference database items.

• Declare and invoke a database.

• Invoke data sets.

• Use database equation operations to specify and manipulate database titles, and to
override compiled titles.

• Use selection expressions to identify a particular record in a data set.

• Use data management attributes for read-only access to count, record, and population
items.

• Manipulate data through data management statements.

• Process exceptions.

For an alphabetized list of the extensions developed for DMSII, refer to the list of DMSII
extensions in Section 1, “Introduction to COBOL85 Program Interfaces.” Refer to the
DMSII Application Program Interfaces Programming Guide for information on general
programming considerations and concepts.

DMSII can be used with the Communications Management System (COMS). For more
information, refer to Section 2, “Using the COMS Program Interface.”

Using Database Items
This discussion describes the naming conventions for data items in a database (database
items) and explains how to reference them. A data record from a database is accessed
directly by a COBOL85 program.

Naming Database Components
Data and Structure Definition Language (DASDL) naming conventions for database
components follow COBOL85 rules. More specifically, some item or structure names can
require qualification and some can contain hyphens (-). Whenever syntax specifies the
names of database components, these names can be fully qualified names and can contain
hyphens.

Using the DMSII Program Interface

3–2 8600 1526–202

Data item names can be 1 to 30 characters long or 1 to 14 double–byte characters long.
Structure names (dataset, set, and subset names) can be 1 to 17 characters long. When
ALIAS names are specified for structures in the DASDL source file, they can be 1 to 30
characters long or 1 to 14 double–byte characters long. ALIAS names can be specified in a
COBOL85 program to invoke the structure associated with the ALIAS name. The logical
database name and the database name can be 1 to 17 EBCDIC characters long.

Using Set and Data Set Names
You must qualify set and data set names that are used to find records if the names are not
unique. You can declare a variable name with the same name as a database item if the
item can be qualified.

If you invoke a data set more than once (using internal names), you must qualify any
reference to an item or set within that data set. To qualify the reference, use the internal
name associated with the invocation you want. If you use improper or insufficient
qualification, you receive a syntax error. For example, assume a database declared as
follows:

DB PAYROLL.
01 EMP = EMPLOYEES.
01 MGR = EMPLOYEES.

Assume that the data set called EMPLOYEES contains a set named EMP-NBR-SET. You
must qualify any references to this set or items in the data set with an internal name,
either EMP or MGR. The following statements show examples of these qualified
references.

FIND NEXT EMP-NBR-SET OF EMP.

FIND EMP-NBR-SET OF MGR AT EMP-NBR = EMP-MGR-NBR OF EMP.

MOVE EMP-NAME OF EMP TO PR-NAME.

MOVE EMP-NAME OF MGR TO PR-MGR-NAME.

You can use any number of group item names for qualification, as long as the result is
unique. The general format of the statement used to qualify a name is as follows:

Format

identifier-1 [OF identifier-2] . . .
 ïï

Explanation

Identifier-1 and identifier-2 are DASDL identifiers.

Using the DMSII Program Interface

8600 1526–202 3–3

Examples

The following examples show code in which name qualification is needed or in which a
successful or unsuccessful attempt has been made to provide qualification. The applicable
DASDL descriptions are provided.

Qualifying Valid and Invalid Names

Example 3–1 applies to the following DASDL description:

DASDL (compiled as DBASE):
 D1 DATA SET (
 A NUMBER (5););

Example 3–1 shows an example in which the A declared at level 77 is invalid because it
cannot be qualified. However, the A declared at the level 03 is valid because it can be
qualified.

*Invalid DATA DIVISION entry:
 77 A PIC . . .
*Valid DATA DIVISION entry:
 01 Q.
 03 A . . .

Example 3–1. Qualifying DMSII Valid and Invalid Names

Using Names Requiring Qualification

Example 3–2 applies to the following DASDL description:

DASDL (compiled as DBASE):
 D1 DATA SET (
 A NUMBER (5);
 B . . .
 .
 .
 .);
 S1 SET OF D1 KEY A;

Using the DMSII Program Interface

3–4 8600 1526–202

Example 3–2 shows an example in which S1 and A require qualification.

 DB DBASE.
 01 D1.
 01 DA=D1.

 FIND S1 OF D1 AT A=V.
 MOVE A OF D1 TO LA.

Example 3–2. Using DMSII Names Requiring Qualification

Referencing Database Items
You can invoke all or part of a database in the Data-Base Section of your program. When
the description is invoked, the compiler generates the interfaces needed to allocate the
proper record areas when the database is opened.

The record area for a data set is established in two parts: One part contains control items,
and the other contains data items. You set up the part that contains data items like a 01-
level Working-Storage Section entry. This setup enables you to use the data manipulation
statements to move database items, including groups.

Group moves are always considered alphanumeric moves. The arrangement of the data
item record area also enables you to use MOVE CORRESPONDING statements. For more
information on MOVE statements, refer to Volume 1.

Note that aggregate items are read-only. For more information about aggregate items,
refer to the DMSII Data and Structure Definition Language (DASDL) Programming

Reference Manual.

If you use variable-format records in your programs, a group move at the 01 level fills the
receiving area without regard to the individual items contained within either the sending
or receiving area. Using variable-format records can therefore cause unexpected values to
be stored in the receiving area. For MOVE CORRESPONDING statements, only items in
the fixed portion of the record are candidates for the move.

Examples

Examples 3–3 through 3–5 reference database items that contain compiler-produced
listings.

Group Move

Example 3–3 illustrates a group move involving database items. The items T, CT, L, E, and
S are control items and are not affected by moves to or from D.

Using the DMSII Program Interface

8600 1526–202 3–5

The record area for D is the following:

01 D
 02 A
 02 B
 02 C

E1 and E2 are items of the record area for E rather than D; therefore, they are not affected
by moves to or from D.

 01 D DATA SET (#1).
 02 T RECORDTYPE.
 02 CT COUNT.
 02 A PIC X(6) DISPLAY.
 02 B PIC 9(6) COMP.
 02 C PIC 9(6) COMP.
 02 L REFERENCE TO E.
 02 E DATA SET (#2).
 03 E1 . . .
 03 E2 . . .
 02 S SET(#4,MANUAL) OF E.

Example 3–3. Moving a DMSII Group of Database Items

Receiving Fields of a MOVE CORRESPONDING Statement

Example 3–4 describes the effect of a MOVE CORRESPONDING statement that involves
database items. The items contained in the record depend on the value of T as follows:

• If T equals 0, then the record area contains T, A, and B.

• If T equals 1, then the record area contains T, A, B, and X.

• If T equals 2, then the record area contains T, A, B, and Y.

In this example, because A and B are in the fixed portions of the record, they are the only
candidates for a MOVE CORRESPONDING statement on D.

The items X and Y are never moved as a result of a MOVE CORRESPONDING statement. T
is not affected by the MOVE CORRESPONDING statement because it is not in a fixed
portion of the record.

Using the DMSII Program Interface

3–6 8600 1526–202

 01 D
 02 T RECORDTYPE.
 02 A PIC X(6) DISPLAY.
 02 B PIC 9(6) COMP.
 * FORMAT TYPE 1.
 02 X PIC 9(6) COMP.
 * FORMAT TYPE 2.
 02 Y PIC 9(11) COMP.

Example 3–4. Receiving Fields of a MOVE CORRESPONDING Statement

Creating an Invalid DMSII Index

Example 3–5 applies to the following DASDL description:

DASDL:
 C COMPACT DATASET
 (N NUMBER (1);
 O NUMBER (5) OCCURS 9 TIMES DEPENDING ON N);

Example 3–5 shows two lines of COBOL85 code that use MOVE statements. For both
statements, the variable N in the DASDL description equals 5. The first line executes
successfully. The second line, however, creates an invalid index error because the
program attempts to access an occurrence of an OCCURS DEPENDING ON item that is
larger than the current value of the DEPENDING ON item.

 MOVE 123 to O(3).
 MOVE 456 to O(7).

Example 3–5. Creating an Invalid DMSII Index

Using the DMSII Program Interface

8600 1526–202 3–7

Declaring a Database
The Data-Base Section of a COBOL85 program supplies the COBOL85 compiler with a
description of all or selected portions of one or more databases. You place the Data-Base
Section in the Data Division after the File Section and before the Working-Storage Section.

The database declaration supplies information that identifies a given database. The
compiler lists all the invoked descriptions of record formats, items, sets, subsets, and
keys.

The general format for a database declaration is as follows:

Format

 Ú ä INVOKE å ¿
 DB ³ data-name-1 ã ïïïïïï â ³ [data-name-2 OF] data-name-3
 À æ = ç Ù ïï

 Ú GLOBAL ¿
 ³ ïïïïïï ³
 À COMMON Ù
 ïïïïïï

 [ALL]
 ïïï
 [VALUE OF TITLE IS literal-1]
 ïïïïï ïï ïïïïï

Explanation

INVOKE and the equal sign (=) are synonyms.

Data-name-1 specifies the internal name of the database, data sets, sets, or subsets within
the program. When you use the INVOKE clause in your program, you must use the internal
names of renamed structures in all subsequent references to them. A structure using an
alias identifier can be a string literal enclosed in quotation marks (“).

You can invoke a database, data set, set, or subset more than once; however, you must use
the external name to reference only one invocation of each structure. Data-name-1 must
be used to provide unique names for all other invocations of the structures. The default
internal name is the external name of the structure.

You can establish multiple record areas, set paths, or both by specifying data-name-1 with
a data set reference or set reference. In this way, several records of a single data set can
be manipulated simultaneously.

Data-name-2 enables the program to reference a logical database. A program can invoke
structures selectively from a logical database, or it can invoke the entire logical database.
You specify selective invocations like physical databases; however, you can select only
those structures that are included in the logical database.

Using the DMSII Program Interface

3–8 8600 1526–202

Data-name-3 is the name of the database to be invoked. You can use data-name-3 as a
qualifier of a data set, set, or subset. If you use the INVOKE clause, data-name-3 can be a
string literal enclosed in quotation marks.

The COMMON clause declares a database to be common, enabling a separately compiled
procedure or program to reference the database declared in your COBOL85 program. The
database reference in the separately compiled procedure or program must exactly match
the database reference in your COBOL85 program. In addition, the various components to
be bound together must be compiled against the same database description file. Failure to
observe these restrictions results in syntax errors when you attempt to combine the
programs by using Binder.

The GLOBAL clause declares a database to be global. A global database is available to
every program that declares it.

The ALL clause specifies that all structures of the specified database are to be used.

The only mnemonic allowed for the file attribute name in the VALUE OF clause is TITLE.
For more information about the VALUE OF clause, refer to Volume 1.

For a database, the operating system constructs the control file title from the title
specified in the declaration. The default title is the name plus the control file usercode and
family name, if any, from the description file. Refer to the DMSII Data and Structure

Definition Language (DASDL) Programming Reference Manual for a discussion of
control and description files.

Examples

The following examples show different formats you can use to declare the database:

DB DATABASE-1.

DB MY-DB-2 = DATABASE-2.

DB DATABASE-3 GLOBAL.

DB DATABASE-4 VALUE OF TITLE IS "(XYZ)DATABASE/4".

DB DATABASE-5 ALL.

DB DATABASE-6.
 01 DATASET-1.
 01 DATASET-2.

Using the DMSII Program Interface

8600 1526–202 3–9

Invoking Data Sets
The data set reference specifies the structures that are to be invoked from the declared
database. If you do not specify a particular data set to be invoked, all structures are
invoked implicitly.

The general format for the data set reference is as follows:

Format

 Ú ä INVOKE å ¿
 01 ³ data-name-1 ã ïïïïïï â ³
 À æ = ç Ù

 Ú ä NONE å ¿
ä ³ ³ ïïïï ³ ³å
³ ³ ³Ú ¿ ³ ³³
³data-name-2³USING ã³ Ú ä INVOKE å ¿ ³ â ³³
ã ³ïïïïï ³³ ³ data-name-3 ã ïïïïïï â ³ data-name-4 ³ . . .³ ³â
³ ³ ³³ À æ = ç Ù ³ ³ ³³
³ À æÀ Ù ç Ù³
ædata-name-5 ç

Explanation

The data set reference must be written at the 01 level. INVOKE and the equal sign (=) are
synonyms.

If you use the data set reference, only the data sets that you specify are invoked. If you do
not use the data set reference, you implicitly invoke all structures of the specified
database.

You cannot invoke only the global data from a database: you must invoke at least one
structure. You can invoke the structure explicitly in the data set reference, or implicitly by
default or by using the ALL clause in the database (DB) statement.

Data-name-1 is the internal name of the data set or set.

Data-name-2 must be the name of the data set to be used. You can use data-name-2 as a
qualifier of its embedded structures. If the INVOKE clause is used, data-name-2 can be a
string literal enclosed in quotation marks (“).

Data-name-3, data-name-4, and data-name-5 must contain the name of a set.

The USING clause invokes specific sets from the data sets declared in the data set
reference. You can use data-name-3 in your program to reference a synonym for the set
specified by data-name-4. All subsequent references to the set previously specified as data-
name-4 must use data-name-3. If you omit the USING clause, you invoke all sets. If you
specify the USING clause, you invoke no sets (NONE) or only the specified sets.

Using the DMSII Program Interface

3–10 8600 1526–202

When you use data-name-5, data-name-1 must be the name of a set. Data-name-5 becomes
a set reference that is not implicitly associated with any particular record area. You must
specify the data set name VIA option in the selection expression to load a record area
using data-name-5. Additional information on the VIA option is provided in “Using
Selection Expressions” later in this section.

You can explicitly invoke only disjoint structures. Embedded data sets, sets, and subsets
are always implicitly invoked if their master data sets are implicitly or explicitly invoked.
You must reference all implicitly invoked structures by their external names.

To use a path, you must invoke the disjoint data set. You establish a path by invoking a
data set containing either of the following:

• An embedded set associated with a disjoint data set

• A link to another disjoint data set

Multiple invocations of a structure provide multiple record areas, set paths, or both, so
that several records of a single data set can be manipulated simultaneously. Selecting only
needed structures for UPDATE and INQUIRY options provides better use of system
resources.

You invoke remaps declared in the DASDL in the same way that you invoke conventional
data sets.

Examples of Invoking Data Sets
The following examples show code that invokes a data set. Each example is preceded by
an explanation. The following DASDL description applies to the examples:

DASDL (compiled as DB):
D DATA SET (
 K NUMBER (6);
 R NUMBER (5);
);
S1 SET OF D KEY K;
S2 SET OF D KEY R;

• The following example establishes one current record area for the data set D, one
path for the set S1, and one path for the set S2. Executing the FIND S1, MODIFY S1,
FIND S2, or MODIFY S2 statement automatically loads the data to the D record area.

01 D. (S1 and S2 are invoked implicitly.)

• The following example establishes two current record areas (D and X) and two paths
(S1 and S2). The sets S1 and S2 are implicitly associated with the D record area. The
USING NONE option prevents a set from being associated with X. Thus, using the
FIND S1 or FIND S2 statement loads the D record area. The FIND X VIA S1 or FIND X
VIA S2 statement must be executed to load the X record area using a set.

01 D. (S1 and S2 are invoked implicitly.)
01 X=D USING NONE.

Using the DMSII Program Interface

8600 1526–202 3–11

• The following example shows how multiple current record areas and multiple current
paths can be established. Using the FIND S1 OF D statement loads the D record area
without disturbing the path S1 OF X, and using the FIND S1 OF X statement loads the
X record area without disturbing the path S1 OF D. S1 must be qualified.

01 D. (S1 and S2 are invoked implicitly.)
01 X=D. (S1 and S2 are invoked implicitly.)

• The following example shows how to establish more current record areas than paths.
In this example, three record areas (D, X, and Y) are established with only two paths
(S1 OF D and S1 OF X). To load the Y record area, the program must execute the
FIND Y VIA S1 OF D, FIND Y VIA S1 OF X, or FIND Y statement.

01 D USING S1. (S1 is invoked explicitly.)
01 X=D USING S1. (S1 is invoked explicitly.)
01 Y=D USING NONE.

• The following example shows the USING clause syntax explicitly associating a set
with a given work area. Using the FIND S1 statement loads the X record area, and
using the FIND T statement loads the Y record area. Sets S1 and T both use the same
key.

01 X=D USING S1
01 Y=D USING T=S1.

• The following example shows how the set reference can be used to establish a set that
is not implicitly associated with any particular record area. The FIND D VIA SY
statement must be executed to load a record area using the set S1.

01 D.
01 SY=S1.

Example of Invoking Disjoint Data Sets with a Data Set Reference
This example of using data set references to invoke disjoint data sets applies to the
following DASDL description:

DASDL (compiled as DBASE):
 F DATA SET (
 FI NUMBER (4);
);
 E DATA SET (
 EK NUMBER (8);
);
 D DATA SET (
 A NUMBER (6);
 SE SET OF E KEY EK;
 LINK REFERENCE TO F;
);

Using the DMSII Program Interface

3–12 8600 1526–202

In the following example, only data set D is specified. Although the data set references are
not specified to invoke E and F, the paths are established by invoking the embedded set
SE and the link item LINK.

01 D.

These paths, however, cannot be used unless you specify data set references for E and F
to establish record areas for these paths, as shown in the following lines of code:

01 F.
01 E.
01 D.

Example of Designating Sets as Visible or Invisible to User
Programs

Example 3–6 shows how sets can be designated as visible or invisible to user programs.
The example applies to the following DASDL description:

DASDL (compiled as EXAMPLEDB):
D1 DATA SET (
 A REAL;
 B NUMBER (5);
 C ALPHA (10);
);
S1A SET OF D1 KEY IS A;
S1B SET OF D1 KEY IS (A,B,C);
D2 DATA SET (
 X FIELD (8);
 Y NUMBER (2);
 Z REAL;
 E DATA SET (
 V1 REAL;
 V2 ALPHA (2);
);
 SE SET OF E KEY IS V1;
);
S2A SET OF D2 KEY IS X;
S2B SET OF D2 KEY IS (X,Y,Z);
LDB1 DATABASE (D1(NONE), D2(SET S=S2A));
LDB2 DATABASE (D1(SET S1=S1B), D2(SET S2=S2B));
LDB3 DATABASE (D=D2);

Example 3–6 shows the COBOL85 code for designating sets as visible or invisible to user
programs. After you compile this code, the commented code appears in the listing. For
logical database LDB2, the following sets are visible to the user program:

• Data set D1 and its set S1B (referenced as S1)

• Data set D2 and its set S2B (referenced as S2)

Using the DMSII Program Interface

8600 1526–202 3–13

Sets S1A and S2A are invisible to the user program. LDB1 and LDB3 are invisible because
they are not declared in the Data-Base Section.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DBTEST.
 DATA DIVISION.
 DATA-BASE SECTION.
 DB LDB2 OF EXAMPLEDB ALL.
* 01 D1 STANDARD DATA SET(#2).
* S1 SET(#4,AUTO) OF D1 KEYS ARE A,B,C.
* 02 A REAL.
* 02 B PIC 9(5) COMP.
* 02 C PIC X(10) DISPLAY.
* 01 D2 STANDARD DATA SET(#5).
* S2 SET(#9,AUTO) OF D2 KEYS ARE X,Y,Z.
* 02 X FIELD SIZE IS 08 BITS.
* 02 Y PIC 99 COMP.
* 02 Z REAL.
* 02 E STANDARD DATA SET(#6).
* SE SET(#7,AUTO) OF E KEY IS V1.
* 03 V1 REAL.
* 03 V2 PIC XX DISPLAY.
 PROCEDURE DIVISION.
 T.
 STOP RUN.

Example 3–6. Designating DMSII Sets as Visible or Invisible

Examples of Using the GLOBAL Option to Reference a Database

In Example 3–7, a separately compiled procedure, SEP/P, uses the GLOBAL option to
reference the database declared in a COBOL85 program. The database reference in the
separately compiled procedure or program must exactly match the corresponding
database reference in the COBOL85 program, or an error occurs at bind time. This
example applies to the following DASDL description:

DASDL (compiled as TESTDB):
DS DATA SET (
 NAME GROUP (
 LAST ALPHA (10);
 FIRST ALPHA (10);
);
 AGE NUMBER (2);
 SEX ALPHA (1);
 SSNO ALPHA (9);
);
 NAMESET SET OF DS KEY (LAST, FIRST);

Using the DMSII Program Interface

3–14 8600 1526–202

Example 3–7 shows the SEP/P procedure.

 $ LEVEL=3
 .
 .
 .
 DATA-BASE SECTION.
 DB TESTDB GLOBAL ALL.
 PROCEDURE DIVISION.
 P1.
 SET NAMESET TO BEGINNING.
 PERFORM P2 UNTIL (DMSTATUS (NOTFOUND).
 P2.
 FIND NEXT NAMESET AT LAST = "SMITH" AND FIRST = "JOHN".
 * OTHER STATEMENTS
 ?BEGIN JOB BIND/GLOB;
 BIND GLOBDB WITH BINDER LIBRARY;
 BINDER DATA CARD
 HOST IS SEP/HOST;
 BIND P FROM SEP/P;
 ?END JOB.

Example 3–7. Using a Separately Compiled Procedure to Reference a Database with
the GLOBAL Clause

Example 3–8 shows the COBOL85 program declarations for the host program and the
corresponding database reference. The program is compiled as SEP/HOST.

 .
 .
 .
 DATA-BASE SECTION.
 DB TESTDB ALL.
 PROCEDURE DIVISION.
 DECLARATIVES.
 P SECTION. USE EXTERNAL AS PROCEDURE.
 END DECLARATIVES.
 P1.
 OPEN UPDATE TESTDB.
 CALL P.
 CLOSE TESTDB.
 STOP RUN.

Example 3–8. Declaring a DMSII Host Program to Be Used with the GLOBAL Clause

Using the DMSII Program Interface

8600 1526–202 3–15

Using a Database Equation Operation
Database equation is like file equation. It enables access to databases stored under other
usercodes and on pack families not visible to a task. It enables you to change or
manipulate the database title at run time.

Database equation differs from file equation in that a run-time error results if a COBOL85
program attempts to set or examine the TITLE attribute of the database while it is open.

There are three different ways to equate or manipulate database titles, and each of these
operations is done at a different time. They are as follows:

• Specifying database titles in the Data Division when the program is compiled, using
the DB statement.

• Using work flow language (WFL).

WFL equation overrides database titles specified in a language declaration in the Data
Division at compilation time.

• Specifying database titles at program execution, using the MOVE or CHANGE
ATTRIBUTE statement in the Procedure Division.

Modifying database titles at run-time overrides both WFL equation and user language
specifications in the Data Division.

The reentrance capability of the Accessroutines is available only when the title of a
database is specified at run time.

Specifying Database Titles at Program Execution
The MOVE statement and the CHANGE statement manipulate the database TITLE
attribute during program execution. Refer to Volume 1 for information on these
statements and on the TITLE attribute.

The general format of the MOVE and CHANGE statements is as follows:

Format

 ä MOVE å ä OF å
 ã ïïïï â ATTRIBUTE TITLE ã â internal-name
 æ CHANGE ç ïïïïïïïïï ïïïïï æ IN ç
 ïïïïïï
 TO alphanumeric-data-item

Using the DMSII Program Interface

3–16 8600 1526–202

Example

In Example 3–9, the first OPEN statement opens LIVEDB. The data and control files of
LIVEDB are stored under the disk directory of the user. The second OPEN statement
invokes TESTDB. The files for TESTDB are stored on TESTPACK under the usercode UC.

Examples of the MOVE and CHANGE statements within the context of a complete
program are provided in Example 2–25, “COMS Sample Program with a DMSII Database,”
in Section 2.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DBEQUATE
 .
 .
 .
 DATA-BASE SECTION.
 DB MYDB ALL
 VALUE OF TITLE IS "LIVEDB".
 .
 .
 .
 PROCEDURE DIVISION.
 .
 .
 .
 OPEN UPDATE MYDB.
 .
 .
 .
 CLOSE MYDB.
 CHANGE ATTRIBUTE TITLE OF MYDB
 TO "(UC)TESTDB ON TESTPACK".
 OPEN UPDATE MYDB.
 .
 .
 .
 CLOSE MYDB.
 STOP RUN.

Example 3–9. Performing DMSII Database Equation Operations

Using the DMSII Program Interface

8600 1526–202 3–17

Using Selection Expressions
A selection expression is used in FIND, LOCK, MODIFY, and DELETE statements to
identify a particular record in a data set.

The general format for selection expressions is as follows:

Format

ä [data-name-1 VIA] å
³ ïïï ³
³ ä Ú ä FIRST å ¿ å ³
³ ³ ³ ³ ïïïïï ³ ³ ³ ³
³ ³ ³ ³ LAST ³ ³ Ú ä AT å ¿ ³ ³
³ ³ ³ ã ïïïï â ³ data-name-2 ³ ã ïï â condition ³ ³ ³
³ ã ³ ³ NEXT ³ ³ À æ WHERE ç Ù â ³
³ ³ ³ ³ ïïïï ³ ³ ïïïïï ³ ³
³ ³ À æ PRIOR ç Ù ³ ³
³ ³ ïïïïï ³ ³
ã æ data-name-3 ç â
³ ³
³ ³
³ Ú ä FIRST å ¿ ³
³ ³ ³ ïïïïï ³ ³ ³
³ ³ ³ LAST ³ ³ ³
³ ³ ã ïïïï â ³ data-name-4 ³
³ ³ ³ NEXT ³ ³ ³
³ ³ ³ ïïïï ³ ³ ³
³ À æ PRIOR ç Ù ³
æ ïïïïï ç

Explanation

Data-name-1 identifies the record area and the current path that is affected if the desired
record is found. You can use this option for link items and for sets not implicitly
associated with the data set.

Data-name-2 selects the record referred to by the set path. Data-name-2 must be a set or a
subset. DMSII returns a NOTFOUND exception if the record has been deleted or if the
path does not refer to a valid current record.

Data-name-3 specifies a link item defined in the DASDL. DMSII selects the record to which
the link item refers and returns an exception if the link item is NULL.

Data-name-4 must be a data set name. Data-name-4 selects the record referred to by the
data set path. A NOTFOUND exception is returned if the record has been deleted or if the
path does not refer to a valid current record.

The FIRST clause selects the first record in the specified data set, set, or subset. FIRST is
specified by default. If you specify a key condition, DMSII selects the first record that
satisfies the key condition.

Using the DMSII Program Interface

3–18 8600 1526–202

The LAST clause selects the last record in the specified data set, set, or subset. If you
specify a key condition, DMSII selects the last record that satisfies the key condition.

The NEXT clause selects the next record relative to one of the following:

• The set path if you specify a set name or subset name

• The data set path if you specify a data set name

If you specify a key condition, DMSII selects the next record (relative to the current path)
that satisfies the key condition.

The PRIOR clause selects the prior record relative to one of the following:

• The set path if you specify a set name or subset name

• The data set path if you specify a data set name

The AT or WHERE clause indicates that a key condition follows. AT and WHERE are
synonyms.

The condition clause specifies values used to locate specific records in a data set
referenced by a particular set or subset. The condition clause is also referred to as the key
condition. If you specify a key condition, DMSII selects the prior record (relative to the
current path) that satisfies the key condition.

A key condition is made up of DMSII data items, which must precede the following syntax
elements:

• Relational operators

• The relational operator in a relational expression

• Data items and arithmetic expressions against which the DMSII key item is to be
compared

• Left and right parentheses

Key conditions are a proper subset of condition expressions with the following additional
limitations:

• The DMSII item used as the key must precede the relational operator.

• Abbreviated conditions are not allowed.

A key condition ultimately evaluates to TRUE or FALSE.

If the specified data item is not unique, the compiler provides implicit qualification
through the set name or subset name. You can qualify the item by naming the data set that
contains the item; however, the compiler handles this qualification as documentation only.

Using the DMSII Program Interface

8600 1526–202 3–19

Examples

The following examples show selection expressions used in FIND statements. The first
example locates a data set record using the set S where A is equal to 50 and B is equal to
50, or where A is equal to 50 and C is less than 90. The second example also locates a
record using the set S where A is equal to the literal “MYNAME.”

FIND S AT A = 50 AND (B = 50 OR C < 90).

FIND S WHERE A = "MYNAME".

Using Data Management Attributes
Data management (DM) attributes are similar in COBOL85 to file and task attributes. DM
attributes allow read-only access to the following:

• Count field of a record

• Record Type field of a record

• Current population of a structure name

Descriptions of the COUNT, RECORD TYPE, and POPULATION attributes are provided in
the following text.

COUNT Attribute
The value of the COUNT attribute is the number of counted references pointing at the
record in the Count field.

Because the ASSIGN statement updates the count item directly in the database, the value
of the Count field can differ from the actual value in the database, even if the field is
tested immediately after the record containing the Count field is made current.

Format

 data-name-1 (data-name-2)

Explanation

Data-name-1 is the name of the data set.

Data-name-2 is a count name. The use of data-name-2 enables read-only access to the
Count field of a record.

DMSII returns an exception when you attempt to delete a record and the count item is not
0 (zero).

Using the DMSII Program Interface

3–20 8600 1526–202

Example

Example 3–10 provides the DASDL description for code that uses the COUNT attribute.

D DATA SET (
 A ALPHA (3);
 L IS IN E COUNTED;
);

E DATA SET (
 C COUNT;
 N NUMBER (3);
);

Example 3–10. Using a DASDL Description for the COUNT Attribute

The COBOL85 code for the DASDL description is as follows:

IF E(C) = 0 DELETE D ON EXCEPTION PERFORM . . .

Using the DMSII Program Interface

8600 1526–202 3–21

RECORD TYPE Attribute
The value of this attribute represents the type of record in the current record area.

Format

 data-name-1 (record-name-1)

Explanation

Data-name-1 is the name of the data set.

The use of record-name-1 enables read-only access to the Record Type field of a record.

Example

Example 3–11 provides the DASDL description for code that uses of the RECORD TYPE
attribute.

D DATA SET (
 T RECORD TYPE (2);
 A ALPHA (3);
);

2: (
 B BOOLEAN;
 R REAL;
 N NUMBER (3);
) ;

Example 3–11. Using a DASDL Description for the RECORD TYPE Attribute

The COBOL85 code for this description is as follows:

IF D(T) = 2 GO TO . . .

Using the DMSII Program Interface

3–22 8600 1526–202

POPULATION Attribute
The POPULATION attribute enables read-only access to the current population of the
structure name. This value is often inaccurate, however, even if it is tested immediately
after the record that contains it is made current, because other programs running
concurrently on a multiprocessing system can cause the value of the population item in
the database to change.

Format

 data-name-1 (data-name-2)

Explanation

Data-name-1 is the name of the data set.

Data-name-2 is a population item.

Example

Example 3–12 provides the DASDL description for COBOL85 code that uses the
POPULATION attribute. The operation in this example accesses not the population of D,
but the population of the structure embedded in D to which EPOP refers.

 D DATA SET (. . .
 EPOP POPULATION (100) OF E;
 .
 .
 .
 E DATA SET (...);
 .
 .
 .
);

Example 3–12. Using a DASDL Description for the POPULATION Attribute

The COBOL85 code for this description is as follows:

MOVE D (EPOP) TO X.

Using the DMSII Program Interface

8600 1526–202 3–23

Manipulating Data in a Database
You can use the following data management statements to manipulate data in a database.

ABORT-TRANSACTION Statement
The ABORT-TRANSACTION statement discards any updates made in a transaction after a
BEGIN-TRANSACTION statement, and removes a program from transaction state.

Format

ABORT-TRANSACTION [COMS-header-name-1] data-name-1
ïïïïïïïïïïïïïïïïï

Ú ä imperative-statement-1 å ¿
³ ³ ³ ³
³ ON EXCEPTION ã conditional-statement-1 â ³
³ ïïïïïïïïï ³ ³ ³
À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

Ú ä imperative-statement-2 å ¿
³ ³ ³ ³
³ NOT ON EXCEPTION ã conditional-statement-2 â ³
³ ïïïïïïïïï ³ ³ ³
À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

[END-ABORT-TRANSACTION]
 ïïïïïïïïïïïïïïïïïïïïï

Explanation

The ABORT-TRANSACTION statement backs out information that was updated after
execution of the BEGIN-TRANSACTION statement, and removes the program from
transaction state.

The optional COMS-header-name-1 phrase is used only with COMS. You can use COMS-
header-name-1 to call the DCIENTRYPOINT of a data communications interface (DCI)
library when your program detects an exception condition. This feature enables a program
interfacing with COMS to support synchronized transactions and recovery.

Using the DMSII Program Interface

3–24 8600 1526–202

COMS-header-name-1 specifies the COMS header. Your program calls the DCI library
before it executes the exception-handling procedure. Refer to Section 2, “Using the COMS
Program Interface,” for more information on COMS.

Data-name-1 is the name of a restart data set.

The ON EXCEPTION clause specifies an instruction to be performed if an exception
condition occurs. The NOT ON EXCEPTION clause specifies an instruction to be
performed if an exception condition does not occur. For more information about these
clauses, refer to “DMSII Exceptions later in this section.

The END-ABORT-TRANSACTION phrase delimits the scope of the ABORT-
TRANSACTION statement.

Example

The following lines of code provide an example of the uses of the ABORT-TRANSACTION
statement:

BEGIN-TRANSACTION NO-AUDIT RESTART-INFO
 ON EXCEPTION MOVE 6 TO ERROR-FLAG
 PERFORM DM-ERROR-CHECK.
 .
 .
 .
ABORT-TRANSACTION RESTART-INFO
 ON EXCEPTION DISPLAY "ERROR IN ABORT TRANSACTION"
 UPON CONSOLE
 PERFORM DM-ERROR-CHECK.

Using the DMSII Program Interface

8600 1526–202 3–25

ASSIGN Statement
The ASSIGN statement establishes the relationship between a record in a data set and a
record in the same or another data set. The ASSIGN statement is effective immediately, so
the second record does not need to be stored unless data items of this record have been
modified.

Format

 ä data-name-1 å
ASSIGN ã â TO data-name-2
ïïïïïï æ NULL ç ïï
 ïïïï

Ú ä imperative-statement-1 å ¿
³ ³ ³ ³
³ ON EXCEPTION ã conditional-statement-1 â ³
³ ïïïïïïïïï ³ ³ ³
À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

Ú ä imperative-statement-2 å ¿
³ ³ ³ ³
³ NOT ON EXCEPTION ã conditional-statement-2 â ³
³ ïïïïïïïïï ³ ³ ³
À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

[END-ASSIGN]
 ïïïïïïïïïï

Explanation

If data-name-1 is a data set, you must declare it in the DASDL as the object data set of the
link item data-name-2. Data-name-2 is a value that points to the current record in data-
name-1.

The current path of the data set specified by data-name-1 must be valid, but the record
need not be locked. Your program returns an exception if the data set path is not valid.

The NULL option severs the relationship between records by assigning a null value to
data-name-2. If data-name-2 is already null, DMSII ignores this option. Executing a FIND,
MODIFY, or LOCK statement on a null link item results in an exception.

If data-name-1 is a link item, it is assigned to data-name-2. You must declare data-name-1
in the DASDL according to the following requirements:

• It must have the same object data set as data-name-2.

• It must be the same type of link as data-name-2 (a counted link, a self-correcting link,
a symbolic link, an unprotected link, or a verified link).

Using the DMSII Program Interface

3–26 8600 1526–202

If the link item is a counted link, DMSII automatically updates the count item, even if the
referenced record is locked by another program.

When the ASSIGN statement has been executed, data-name-2 points to either

• The current record in the data set specified by data-name-1, if data-name-1 is a data
set

• The record to which data-name-1 points, if data-name-1 is a link item

Links can easily join unrelated records. However, they can also complicate the database
as follows:

• Links must be maintained by a program. Other DMSII structures, such as automatic
subsets, can do what links do but are maintained by the system.

• If you delete a record pointed to by several links, you might forget to remove all the
links pointing to that record. As a result, the links would point to nothing.

• Links are one-way pointers to a record. Although you can find the record that a link is
pointing to, you cannot easily find the record that is pointing to the linked record.

The current path of the data set that contains data-name-2 must be valid, and the record
must be locked. Otherwise the program returns an exception.

If data-name-2 refers to a disjoint data set, data-name-2 can point to any record in the data
set. If data-name-2 refers to an embedded data set, it can reference only certain records in
the data set. In this case, the record being referenced must be owned by the record that
contains data-name-2 or by an ancestor of the record that contains data-name-2. (An
ancestor is the owner of the record, the owner of the owner, and so forth.)

The ON EXCEPTION clause specifies an instruction to be performed if an exception
condition occurs. If the program finds an exception, it terminates the ASSIGN statement,
assigns a null value to data-name-2, and performs the instruction specified by the ON
EXCEPTION clause.

The NOT ON EXCEPTION clause specifies an instruction to be performed if an exception
condition does not occur.

Using the DMSII Program Interface

8600 1526–202 3–27

For more information about the EXCEPTION clauses, refer to “DMSII Exceptions” later in
this section.

The END-ASSIGN phrase delimits the scope of the ASSIGN statement.

Example

The following DASDL description used by the COBOL85 code in Example 3–13 is compiled
with the name DBASE.

D DATA SET (
 A ALPHA (3);
 B BOOLEAN;
 L IS IN E VERIFY ON N;
);
S SET OF D KEY A;
E DATA SET (
 N NUMBER (3);
 R REAL;
);
 T SET OF E KEY N;

Using the DMSII Program Interface

3–28 8600 1526–202

Example 3–13 shows an example of the ASSIGN statement.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXAMPLE.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT TAPE-FILE ASSIGN TO TAPE.
 DATA DIVISION.
 FILE SECTION.
 FD TAPE-FILE.
 01 TAPE-REC.
 02 X PIC XXX.
 02 Y PIC 999.
 DATA-BASE SECTION.
 DB DBASE ALL.
 PROCEDURE DIVISION.
 OPEN-INPUT-FILE.
 OPEN INPUT TAPE-FILE.
 OPEN-DB.
 OPEN UPDATE DBASE.
 START-PRG.
 READ TAPE-FILE AT END
 CLOSE TAPE-FILE
 CLOSE DBASE
 STOP RUN.
 FIND S AT A = X.
 FIND T AT N = Y.
 ASSIGN E TO L.
 FREE D.
 GO TO START-PRG.

Example 3–13. Using the ASSIGN Statement

An example of the ASSIGN statement within the context of a complete program is
provided at line 011000 in Example 2–25, “COMS Sample Program with a DMSII
Database,” in Section 2.

Using the DMSII Program Interface

8600 1526–202 3–29

BEGIN-TRANSACTION Statement
The BEGIN-TRANSACTION statement places a program in transaction state. This
statement can be used only with audited databases.

The BEGIN-TRANSACTION statement performs the following steps in order:

1. Captures the restart data set if the AUDIT clause is specified

2. Places a program in transaction state

Format

BEGIN-TRANSACTION [COMS-header-name-1 [USING identifier-1]]
ïïïïïïïïïïïïïïïïï ïïïïï
 ä AUDIT å
 ã ïïïïï â data-name-1
 æ NO-AUDIT ç
 ïïïïïïïï
 Ú ä imperative-statement-1 å ¿
 ³ ³ ³ ³
 ³ ON EXCEPTION ã conditional-statement-1 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï
 Ú ä imperative-statement-2 å ¿
 ³ ³ ³ ³
 ³ NOT ON EXCEPTION ã conditional-statement-2 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

[END-BEGIN-TRANSACTION]
 ïïïïïïïïïïïïïïïïïïïïï

Explanation

The optional COMS-header-name-1 phrase is used only with COMS. You can use COMS-
header-name-1 to call the DCIENTRYPOINT of a DCI library when your program detects
an exception condition. This feature enables a program interfacing with COMS to support
synchronized transactions and recovery.

Your program calls the DCI library before it performs the exception-handling procedure. If
your program does not detect an exception and you have employed the optional USING
clause, your program calls the DCI library and passes the message area indicated by
identifier-1 to the DCIENTRYPOINT.

COMS-header-name-1 specifies the input COMS header. Identifier-1 specifies the message
area. For information on COMS, refer to Section 2, “Using the COMS Program Interface.”

The AUDIT clause captures the restart area. The path of the restart data set named is not
altered when the restart record is stored. Either the AUDIT or NO-AUDIT clause must be
specified.

The NO-AUDIT clause prevents the restart area from being captured.

Using the DMSII Program Interface

3–30 8600 1526–202

Data-name-1 is the name of the restart data set you want to update.

The ON EXCEPTION clause specifies an instruction to be performed if an exception
condition occurs. Your program returns an exception if you execute a BEGIN-
TRANSACTION statement while the program is already in transaction state. If the
program returns an exception, the program is not placed in transaction state. If the
program returns an ABORT exception, all records that the program has locked are freed.

The NOT ON EXCEPTION clause specifies an instruction to be performed if an exception
condition does not occur. For more information about these clauses, refer to “DMSII
Exceptions” later in this section.

The END-BEGIN-TRANSACTION phrase delimits the scope of the BEGIN-TRANSACTION
statement.

Details

Any attempt to modify an audited database when the program is not in transaction state
results in an audit error. The following data management verbs modify databases:

• ASSIGN

• DELETE

• GENERATE

• INSERT

• REMOVE

• STORE

Example

The following DASDL description used by the COBOL85 code in Example 3–14 is compiled
with the name DBASE:

OPTIONS (AUDIT);
R RESTART DATA SET (
 P ALPHA (10);
 Q ALPHA (100);
);
D DATA SET (
 A ALPHA (3);
 N NUMBER (3);
);
S SET OF D KEY N;

Example 3–14 shows an example of the BEGIN-TRANSACTION statement.

Using the DMSII Program Interface

8600 1526–202 3–31

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXAMPLE.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT TAPE-FILE ASSIGN TO TAPE.
 DATA DIVISION.
 FILE SECTION.
 FD TAPE-FILE.
 01 TAPE-REC.
 02 X PIC 999.
 02 Y PIC XXX.
 DATA-BASE SECTION.
 DB DBASE ALL.
 WORKING-STORAGE SECTION.
 01 CNT PIC 999.
 PROCEDURE DIVISION.
 OPEN-INPUT-FILE.
 OPEN INPUT TAPE-FILE.
 OPEN-DB.
 OPEN UPDATE DBASE.
 CREATE-D.
 CREATE D.
 ADD 1 TO CNT.
 MOVE CNT TO N.
 BEGIN-TRANSACTION AUDIT R.
 STORE D.
 END-TRANSACTION NO-AUDIT R.
 IF CNT < 100
 GO TO CREATE-D.
 START-PRG.
 READ TAPE-FILE AT END
 CLOSE TAPE-FILE
 CLOSE DBASE
 STOP RUN.
 LOCK S AT N = X.
 BEGIN-TRANSACTION AUDIT R
 END-BEGIN-TRANSACTION.
 MOVE Y TO A.
 STORE D.
 END-TRANSACTION NO-AUDIT R.
 GO TO START-PRG.

Example 3–14. Using the BEGIN-TRANSACTION Statement

Examples of the BEGIN-TRANSACTION statement within the context of a complete
program are provided in Example 2–25, “COMS Sample Program with a DMSII Database,”
in Section 2.

Using the DMSII Program Interface

3–32 8600 1526–202

CANCEL TRANSACTION POINT Statement
The CANCEL TRANSACTION POINT statement discards all updates in a transaction back
to an intermediate transaction point or to the beginning of the transaction without
terminating the transaction state. The execution of the program continues with the
statement following the CANCEL TRANSACTION POINT statement.

Format

CANCEL TRANSACTION POINT data-name-1 [arithmetic-expression-1]
ïïïïïï ïïïïïïïïïïï ïïïïï
 Ú ä imperative-statement-1 å ¿
 ³ ³ ³ ³
 ³ ON EXCEPTION ã conditional-statement-1 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

 Ú ä imperative-statement-2 å ¿
 ³ ³ ³ ³
 ³ NOT ON EXCEPTION ã conditional-statement-2 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï
[END-CANCEL]
 ïïïïïïïïïï

Explanation

Data-name-1 is the name of a restart data set.

The CANCEL TRANSACTION POINT statement discards all database changes made
between the current point in the transaction and the point specified by arithmetic-
expression-1.

If you do not specify arithmetic-expression-1, DMSII discards all data updated since the
BEGIN-TRANSACTION statement placed the program in transaction state. For details on
arithmetic expressions, see Volume 1.

The ON EXCEPTION clause specifies an instruction to be performed if an exception
condition occurs. The NOT ON EXCEPTION clause specifies an instruction to be
performed if an exception condition does not occur. For more information about these
clauses, refer to “DMSII Exceptions” later in this section.

The END-CANCEL phrase delimits the scope of the CANCEL TRANSACTION POINT
statement.

Using the DMSII Program Interface

8600 1526–202 3–33

Examples

The following lines of code provide examples of the uses of the CANCEL TRANSACTION
POINT statement:

CANCEL TRANSACTION POINT MY-RESTART MAIN-SAVE-POINT.

CANCEL TRANSACTION POINT MY-RESTART.

CLOSE Statement
The CLOSE statement closes a database when your program requires no further access.
The CLOSE statement is optional because the system closes any open database at the time
the program terminates. A successfully closed database causes a syncpoint in the audit
trail.

The CLOSE statement performs the following steps in order:

1. Closes the database

2. Frees all locked records

Format

CLOSE data-name-1
ïïïïï
 Ú ä imperative-statement-1 å ¿
 ³ ³ ³ ³
 ³ ON EXCEPTION ã conditional-statement-1 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï
 Ú ä imperative-statement-2 å ¿
 ³ ³ ³ ³
 ³ NOT ON EXCEPTION ã conditional-statement-2 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï
[END-CLOSE]
 ïïïïïïïïï

Explanation

Data-name-1 specifies the database you want to close.

The ON EXCEPTION clause specifies an instruction to be performed if an exception
condition occurs. Your program returns an exception if the specified database is not open.

The NOT ON EXCEPTION clause specifies an instruction to be performed if an exception
condition does not occur.

For more information about these clauses, refer to the “DMSII Exceptions” later in this
section. Some specific information about exception handling is provided in the “Details”
portion of this discussion.

Using the DMSII Program Interface

3–34 8600 1526–202

Details

The CLOSE statement is the only statement in which the status word has meaning when
no exception is indicated. Your program should, therefore, examine the status word after
it closes a database and should take appropriate action, whether or not it received an
exception. You can obtain an ABORT exception in this manner.

The CLOSE statement closes the database unconditionally, regardless of exceptions. If
you use just the CLOSE syntax, the program is discontinued on any exceptions that raise
the exception flag.

Your program does not return some exceptions when the CLOSE statement is used. To be
sure your program detects any exceptions that occur during the execution of the CLOSE
statement, do the following in the program code:

• Use the ON EXCEPTION clause to prevent the program from being discontinued if an
exception flag is raised.

• Use an IF statement to check for exceptions that do not raise an exception flag.

The END-CLOSE phrase delimits the scope of the CLOSE statement.

If you are running COMS for synchronized recovery, it is recommended that you do not
use the ON EXCEPTION clause. If DMSII detects a database error during the closing of a
database, it should allow your program to terminate abnormally; otherwise, the database
might abort recursively. If you use the ON EXCEPTION clause, you should ensure that
your program calls the DMTERMINATE statement for those exceptions that your program
does not handle. Use the following syntax, therefore, to close a database when you are
using COMS with DMSII for synchronized recovery:

CLOSE DBASE.

Example

Example 3–15 shows the recommended syntax for the CLOSE statement when the ON
EXCEPTION clause and the IF statement are used.

 CLOSE MYDB
 ON EXCEPTION
 DISPLAY "EXCEPTION WHILE CLOSING MYDB"
 CALL SYSTEM DMTERMINATE
 END-CLOSE.
 IF DMSTATUS(DMERROR)
 OPEN MYDB
 GO TO ABORTED.

Example 3–15. Using the CLOSE Statement

An example of the CLOSE statement within the context of a complete program is provided
at line 036700 in Example 2–25, “COMS Sample Program with a DMSII Database,” in
Section 2.

Using the DMSII Program Interface

8600 1526–202 3–35

COMPUTE Statement
The data management COMPUTE statement assigns a value to a Boolean item in the
current record of a data set. The COMPUTE statement affects only the record area. The
database is not affected until a subsequent STORE statement is executed.

No exceptions are associated with this statement.

Format

 ä condition å
 ³ ³
 COMPUTE data-name-1 = ã TRUE â
 ïïïïïïï ³ ïïïï ³
 æ FALSE ç
 ïïïïï

Explanation

If you specify a condition, DMSII assigns the value of the condition to the specified
Boolean item. The rules for the format of the condition are the same as the standard
COBOL85 rules for the relation conditions.

The TRUE phrase assigns a TRUE value to the specified Boolean item.

The FALSE phrase assigns a FALSE value to the specified Boolean item.

Examples

The following lines of code provide two examples of the uses of the COMPUTE statement:

COMPUTE CLOSEFLAG = TRUE.

COMPUTE CHECKBALANCE = OLD-BALANCE + DEPOSIT EQUAL CURR-BALANCE

Using the DMSII Program Interface

3–36 8600 1526–202

CREATE Statement
The CREATE statement initializes the user work area of a data set record.

The CREATE statement performs the following steps in order:

1. Frees the current record of the specified data set. Note that if the
INDEPENDENTTRANS option in the DASDL is set, and the CREATE statement is
issued during transaction state, the locked record is not freed until an END-
TRANSACTION statement is executed.

For more information on the INDEPENDENTTRANS option, refer to the DMSII
DASDL Reference Manual.

2. Reads the specified expression to determine the format of the record to be created.

3. Initializes data items to one of the following:

• The value of the INITIALVALUE option declared in the DASDL

• The value of the NULL option declared in the DASDL

• The default value of the NULL option, which is hexadecimal Fs

Format

CREATE data-name-1 [(expression)]
ïïïïïï
 Ú ä imperative-statement-1 å ¿
 ³ ³ ³ ³
 ³ ON EXCEPTION ã conditional-statement-1 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

 Ú ä imperative-statement-2 å ¿
 ³ ³ ³ ³
 ³ NOT ON EXCEPTION ã conditional-statement-2 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï
[END-CREATE]
 ïïïïïïïïïï

Explanation

Data-name-1 specifies the data set you want to initialize. The current path of the data set is
unchanged until you execute a STORE statement.

The expression specifies the type of record you want to create. You must use an
expression only to create a variable-format record; otherwise, the expression must not
appear.

Using the DMSII Program Interface

8600 1526–202 3–37

The ON EXCEPTION clause specifies an instruction to be performed if an exception
condition occurs. Your program returns an exception if the expression does not represent
a valid record type.

The NOT ON EXCEPTION clause specifies an instruction to be performed if an exception
condition does not occur.

For more information about these clauses, refer to “DMSII Exceptions” later in this
section.

The END-CREATE phrase delimits the scope of the CREATE statement.

Details

You normally follow a CREATE statement with a STORE statement to place the newly
created record into the data set. However, if you do not want to store the record, you can
nullify the CREATE statement by executing a subsequent FREE statement or by using a
FIND, LOCK, DELETE, CREATE, or RECREATE statement.

The CREATE statement only sets up a record area. If the record contains embedded
structures, you must store the master record before you can create entries in the
embedded structures. If you create only entries in the embedded structure (that is, if you
do not alter items in the master), you need not store the master a second time.

Example

The following DASDL description used by the COBOL85 code in Example 3–16 is compiled
with the name DBASE:

D DATA SET (
 A ALPHA (10) INITIALVALUE BLANKS;
 B BOOLEAN;
 N NUMBER (3) NULL 0;
);
 S SET OF D KEY N;

Using the DMSII Program Interface

3–38 8600 1526–202

Example 3–16 shows an example of the CREATE statement.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXAMPLE.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT TAPE-FILE ASSIGN TO TAPE.
 DATA DIVISION.
 FILE SECTION.
 FD TAPE-FILE.
 01 TAPE-REC.
 02 X PIC X(10).
 02 Y PIC 9.
 02 Z PIC 999.
 DATA-BASE SECTION.
 DB DBASE ALL.
 PROCEDURE DIVISION.
 OPEN-INPUT-FILE.
 OPEN INPUT TAPE-FILE.
 OPEN-DB.
 OPEN UPDATE DBASE.
 START-PRG.
 READ TAPE-FILE AT END
 CLOSE TAPE-FILE
 CLOSE DBASE
 STOP RUN.
 CREATE D.
 MOVE X TO A.
 IF Y = 1
 COMPUTE B = TRUE.
 MOVE Z TO N.
 STORE D.
 GO TO START-PRG.

Example 3–16. Using the CREATE Statement

Examples of the CREATE statement within the context of a complete program are
provided in Example 2–25, “COMS Sample Program with a DMSII Database,” in Section 2.

Using the DMSII Program Interface

8600 1526–202 3–39

DELETE Statement
The DELETE statement finds a record by a method identical to that of the FIND
statement. However, the FIND statement transfers the record to the user work area
associated with a data set or global data, whereas the DELETE statement performs the
following steps in order:

1. Frees the current record, unless the selection expression is the name of the data set
and the current record is locked. In this case, the locked status is not altered.

2. Alters the current path to point to the record specified by the selection expression and
locks this record.

3. Transfers that record to the user work area.

4. Removes the record from all sets and automatic subsets, but not from manual subsets.

5. Removes the record from the data set.

If your program finds a record that cannot be deleted, your program returns an exception
and terminates the DELETE statement, leaving the current path pointing to the record
specified by the selection expression.

If you use a set selection expression and your program cannot find the record, an
exception is returned, and the program changes and invalidates the set path. The selection
expression refers to a location between the last key less than the condition and the first
key greater than the condition. You can execute a set selection expression by using the
NEXT or PRIOR clause from this location, provided keys greater than or less than the
condition exist. The current path of the data set, the current record, and the current paths
of any other sets for that data set remain unchanged.

Format

DELETE selection-expression-1
ïïïïïï
 Ú ä imperative-statement-1 å ¿
 ³ ³ ³ ³
 ³ ON EXCEPTION ã conditional-statement-1 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

 Ú ä imperative-statement-2 å ¿
 ³ ³ ³ ³
 ³ NOT ON EXCEPTION ã conditional-statement-2 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï
[END-DELETE]
 ïïïïïïïïïï

Using the DMSII Program Interface

3–40 8600 1526–202

Explanation

Selection-expression-1 identifies the record you want to delete. Selection expressions are
explained in “Using Selection Expressions” earlier in this section.

The ON EXCEPTION clause specifies an instruction to be performed if an exception
condition occurs. Your program returns an exception and does not delete the record if one
of the following conditions is true:

• The counted links are pointing to the record.

• The record contains a nonnull link or an embedded structure that contains entries.

Your program also returns an exception if the record exists in a manual subset. Refer to
“REMOVE Statement” later in this section.

The NOT ON EXCEPTION clause specifies an instruction to be performed if an exception
condition does not occur.

For more information about the EXCEPTION clauses, refer to “DMSII Exceptions” later in
this section.

The END-DELETE phrase delimits the scope of the DELETE statement.

Details

When the DELETE statement is completed, the current paths still refer to the deleted
record. Although a FIND statement on the current record results in a NOTFOUND
exception, the FIND NEXT and FIND PRIOR statements yield valid results.

Example

The following DASDL description used by the COBOL85 code in Example 3–17 is compiled
with the name DBASE:

D DATA SET (
 A ALPHA (3);
 B BOOLEAN;
 N NUMBER (3);
 R REAL;
);
 S SET OF D KEY N;

Using the DMSII Program Interface

8600 1526–202 3–41

Example 3–17 shows an example of coding for the DELETE statement.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXAMPLE.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT TAPE-FILE ASSIGN TO TAPE.
 DATA DIVISION.
 FILE SECTION.
 FD TAPE-FILE.
 01 TAPE-REC.
 02 X PIC 999.
 DATA-BASE SECTION.
 DB DBASE ALL.
 PROCEDURE DIVISION.
 OPEN-INPUT-FILE.
 OPEN INPUT TAPE-FILE.
 OPEN-DB.
 OPEN UPDATE DBASE.
 START-PRG.
 READ TAPE-FILE AT END
 CLOSE TAPE-FILE
 CLOSE DBASE
 STOP RUN.
 DELETE S AT N = X.

 GO TO START-PRG.

Example 3–17. Using the DELETE Statement

An example of the DELETE statement within the context of a complete program is
provided at line 032800 in Example 2–25, “COMS Sample Program with a DMSII
Database,” in Section 2.

Using the DMSII Program Interface

3–42 8600 1526–202

DMTERMINATE Statement
The DMTERMINATE statement terminates programs. When an exception occurs that the
program does not handle, the DMTERMINATE statement terminates the program with a
fault.

Format

 CALL SYSTEM DMTERMINATE
 ïïïï ïïïïïï ïïïïïïïïïïï

Example

Example 3–18 shows an example of coding for the DMTERMINATE statement. An
example of the DMTERMINATE statement within the context of a complete program is
provided at line 019000 in Example 2–25, “COMS Sample Program with a DMSII
Database,” in Section 2.

 FIND FIRST D
 ON EXCEPTION
 DISPLAY "D IS EMPTY DATA SET"
 CALL SYSTEM DMTERMINATE.

Example 3–18. Using the DMTERMINATE Statement

Using the DMSII Program Interface

8600 1526–202 3–43

END-TRANSACTION Statement
The END-TRANSACTION statement takes a program out of transaction state. You can use
this statement only with audited databases. The END-TRANSACTION statement performs
the following steps in order:

1. Captures the restart area if the AUDIT clause is specified

2. Forces a syncpoint if the SYNC option is specified

3. Implicitly frees all records of the database that the program has locked

If an exception occurs, this transaction is not applied to the database. Exceptions are
discussed under the explanation for this transaction and later in this section under “DMSII
Exceptions.”

Format

END-TRANSACTION [COMS-header-1 [USING identifier-1]]
ïïïïïïïïïïïïïïï ïïïïï
 ä AUDIT å
 ã ïïïïï â data-name-1 [SYNC]
 æ NO-AUDIT ç ïïïï
 ïïïïïïïï
Ú ä imperative-statement-1 å ¿
³ ³ ³ ³
³ ON EXCEPTION ã conditional-statement-1 â ³
³ ïïïïïïïïï ³ ³ ³
À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

Ú ä imperative-statement-2 å ¿
³ ³ ³ ³
³ NOT ON EXCEPTION ã conditional-statement-2 â ³
³ ïïïïïïïïï ³ ³ ³
À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï
[END-END-TRANSACTION]
 ïïïïïïïïïïïïïïïïïïï

Explanation

The optional COMS-header-name phrase is used only with COMS. You can specify COMS-
header-name-1 to call the DCIENTRYPOINT of a DCI library whenever you execute the
statement. This feature enables a program interfacing with COMS to support synchronized
transactions and recovery.

COMS-header-name specifies the COMS output header. For information on COMS, refer to
Section 2, “Using the COMS Program Interface.”

When your program detects an exception condition, your program calls the DCI library
before it performs any exception-handling procedures.

If you employ the optional USING clause, your program calls the DCI library and passes
the message area indicated by identifier-1 to the DCIENTRYPOINT.

Using the DMSII Program Interface

3–44 8600 1526–202

The AUDIT clause captures the restart area. Storing the restart record does not alter the
path of the restart data set. The NO-AUDIT clause prevents the restart area from being
captured. You must specify either AUDIT or NO-AUDIT.

You can use the SYNC option to force a syncpoint.

The ON EXCEPTION clause specifies an instruction to be performed if an exception
condition occurs. Your program returns an exception if you execute an END-
TRANSACTION statement when the program is not in transaction state.

The NOT ON EXCEPTION clause specifies an instruction to be performed if an exception
condition does not occur.

For more information about the EXCEPTION clauses, refer to “DMSII Exceptions” later in
this section.

The END-END-TRANSACTION phrase delimits the scope of the END-TRANSACTION
statement.

Example

The following DASDL description used by the COBOL85 code in Example 3–19 is compiled
with the name DBASE:

 OPTIONS (AUDIT);
 R RESTART DATA SET (
 P ALPHA (10);
 Q ALPHA (100);
);
 D DATA SET (
 A ALPHA (3);
 N NUMBER (3);
);
 S SET OF D KEY N;

Example 3–19 shows two sections of code, each of which begins with a BEGIN-
TRANSACTION statement and ends with an END-TRANSACTION statement. Both
sections of code define a transaction. The transaction becomes an indivisible, logical unit.
During processing, the transactions are audited for recovery. The AUDIT and NO-AUDIT
phrases determine whether the restart record of the data set is captured.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXAMPLE.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT TAPE-FILE ASSIGN TO TAPE.

Using the DMSII Program Interface

8600 1526–202 3–45

DATA DIVISION.
 FILE SECTION.
 FD TAPE-FILE.
 01 TAPE-REC.
 02 X PIC 999.
 02 Y PIC XXX.
 DATA-BASE SECTION.
 DB DBASE ALL.
 WORKING-STORAGE SECTION.
 01 CNT PIC 999.
 PROCEDURE DIVISION.
 OPEN-INPUT-FILE.
 OPEN INPUT TAPE-FILE.
 OPEN-DB.
 OPEN UPDATE DBASE.
 CREATE-D.
 CREATE D.
 ADD 1 TO CNT.
 MOVE CNT TO N.
 BEGIN-TRANSACTION AUDIT R.
 STORE D.
 END-TRANSACTION AUDIT R.
 IF CNT < 100
 GO TO CREATE-D.
 START-PRG.
 READ TAPE-FILE AT END
 CLOSE TAPE-FILE
 CLOSE DBASE
 STOP RUN.
 LOCK S AT N = X.
 BEGIN-TRANSACTION AUDIT R.
 MOVE Y TO A.
 STORE D.
 END-TRANSACTION NO-AUDIT R
 END-END-TRANSACTION.
 GO TO START-PRG.

Example 3–19. Using the END-TRANSACTION Statement

Examples of the END-TRANSACTION statement within the context of a complete
program are provided in Example 2–25, “COMS Sample Program with a DMSII Database,”
in Section 2.

Using the DMSII Program Interface

3–46 8600 1526–202

FIND Statement
The FIND statement transfers a record to the user work area associated with a data set or
global data. Additional information on the use of the FIND statement with the REBLOCK
and READAHEAD options is provided in the DMSII Application Programming Guide.

The FIND statement performs the following steps in order:

1. Frees a locked record in the data set if you specify a data set in the FIND statement.
Specifying a set in the FIND statement frees a locked record in the associated data
set.

2. Alters the current path to point to the record specified by the selection expression or
the database name.

3. Transfers that record to the user work area.

Using the FIND statement does not prevent other transactions from reading the record
before the current update transaction is completed.

Format

ä ä selection-expression-1 å å
³ FIND ã â ³
ã ïïïï æ data-name-1 ç â
³ ³
æ FIND KEY OF selection-expression-2 ç
 ïïïï ïïï ïï
 Ú ä imperative-statement-1 å ¿
 ³ ³ ³ ³
 ³ ON EXCEPTION ã conditional-statement-1 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

 Ú ä imperative-statement-2 å ¿
 ³ ³ ³ ³
 ³ NOT ON EXCEPTION ã conditional-statement-2 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï
[END-FIND]
 ïïïïïïïï

Explanation

Selection-expression-1 specifies the record that you want to transfer to the user work
area.

Data-name-1 specifies the global data record that you want to transfer to the user work
area associated with the global data. If no global data is described in the DASDL, DMSII
returns a syntax error.

Using the DMSII Program Interface

8600 1526–202 3–47

The FIND KEY OF clause moves the key and any associated data (as specified in the
DASDL) from the key entry to the user work area. Your program does not perform a
physical read on the data set; consequently, the value and contents of all items in the
record area that do not appear in the key entry retain whatever value they had before you
executed the FIND KEY OF clause. The FIND statement does not affect the current path
of the data set.

The ON EXCEPTION clause specifies an instruction to be performed if an exception
condition occurs. Your program returns an exception if no record satisfies the selection
expression.

The NOT ON EXCEPTION clause specifies an instruction to be performed if an exception
condition does not occur.

For more information about the EXCEPTION clauses, refer to “DMSII Exceptions” later in
this section.

Details

If you use selection-expression-2 and your program fails to find the record, the program
returns an exception and changes and invalidates the set path. The selection expression
refers to a location in between the last key less than the condition and the first key greater
than the condition. You can execute selection-expression-2 by using NEXT or PRIOR from
this location, provided that the keys greater than or less than the condition exist. The
current path of the data set, the current record, and the current paths of any other sets for
that data set remain unchanged.

The END-FIND phrase delimits the scope of the FIND statement.

Examples

The following examples illustrate options for using the FIND statement. The first example
shows the use of a set selection expression.

FIND FIRST OVER-65 AT DEPT-NO = 1019
ON EXCEPTION
 MOVE 0 TO POP-OVR-65 (1019).

This example shows the FIND statement used with a FIND KEY OF clause.

FIND KEY OF NAME-KEYS AT NAME = "FRED JONES".

An example of the FIND statement within the context of a complete program is provided
at line 026600 in Example 2–25, “COMS Sample Program with a DMSII Database,” in
Section 2.

Using the DMSII Program Interface

3–48 8600 1526–202

FREE Statement
The FREE statement explicitly unlocks the current record or structure. A FREE statement
executed on a record enables other programs to lock that record or structure.

Note that if you set the INDEPENDENTTRANS option in the DASDL for the database, the
program ignores a FREE statement during transaction state. For more information on the
INDEPENDENTTRANS option, refer to the DMSII DASDL Reference Manual.

You can execute a FREE statement after any operation. If the current record or structure
is already free, or if no current record or structure is present, the program ignores the
FREE statement.

You can use the FREE statement to unlock a record or structure that you anticipate will
not be implicitly freed for a long time.

The FREE statement is optional in some situations because the FIND, LOCK, MODIFY,
and DELETE statements can free a record before they execute. Generally, an implicit
FREE operation is performed, if needed, during any operation that establishes a new data
set path.

FIND, LOCK, and MODIFY statements that use sets or subsets free the locked record only
if a new record is retrieved. Other constructs that free data set records are

BEGIN-TRANSACTION RECREATE
CREATE SET-TO-BEGINNING
END-TRANSACTION SET-TO-ENDING

Format

 ä data-name-1 å
FREE ã â
ïïïï æ STRUCTURE data-name-2 ç
 ïïïïïïïïï

 Ú ä imperative-statement-1 å ¿
 ³ ³ ³ ³
 ³ ON EXCEPTION ã conditional-statement-1 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

 Ú ä imperative-statement-2 å ¿
 ³ ³ ³ ³
 ³ NOT ON EXCEPTION ã conditional-statement-2 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï
[END-FREE]
 ïïïïïïïï

Using the DMSII Program Interface

8600 1526–202 3–49

Explanation

Data-name-1 specifies either the data set whose current record is to be unlocked or the
global data record to be unlocked. The data set path and current record area remain
unchanged. You can use the database name as a synonym to free the global data record.

Data-name-2 specifies the structure to be freed. The STRUCTURE option frees all records
in the structure.

The ON EXCEPTION clause specifies an instruction to be performed if an exception
condition occurs. If the program returns an exception, the state of the database remains
unchanged.

The NOT ON EXCEPTION clause specifies an instruction to be performed if an exception
condition does not occur.

For more information about the EXCEPTION clauses, refer to “DMSII Exceptions” later in
this section.

The END-FREE phrase delimits the scope of the FREE statement.

Example

Example 3–20 shows an example of the FREE statement.

LOCK NEXT S
ON EXCEPTION
 GO TO NO-MORE.
IF ITEM-1 NOT = VALID-VALUE
 FREE DS
 GO ERR.

Example 3–20. Using the FREE Statement

Using the DMSII Program Interface

3–50 8600 1526–202

GENERATE Statement
The GENERATE statement creates an entire subset in one operation. All subsets must be
disjoint bit vectors. The GENERATE statement performs the following steps in order:

1. Deletes all records from the subset if the subset is not empty

2. Assigns to the generated subset the records in another subset, a combination of the
records in two other subsets, or null values

Note: It is recommended that you coordinate any subset declaration with other users

because subsets can be used concurrently and altered without your knowledge.

Format

 ä NULL å
 ³ ïïïï ³
 ³ ³
 ³ Ú ä AND å ¿³
 ³ ³ ³ ïïï ³ ³³
GENERATE data-name-1 = ã ³ ³ OR ³ ³â
 ³ data-name-2 ³ ã ïï â data-name-3³³
 ³ ³ ³ + ³ ³³
 ³ ³ ³ ï ³ ³³
 æ À æ - ç Ùç
 ï

 Ú ä imperative-statement-1 å ¿
 ³ ³ ³ ³
 ³ ON EXCEPTION ã conditional-statement-1 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

 Ú ä imperative-statement-2 å ¿
 ³ ³ ³ ³
 ³ NOT ON EXCEPTION ã conditional-statement-2 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï
[END-GENERATE]
 ïïïïïïïïïïïï

Explanation

Data-name-1 is the name of the subset you want to generate. Data-name-1 must refer to a
manual subset and must be a disjoint bit vector.

The NULL option assigns a null value to the generated subset so that the subset remains
empty.

Data-name-2 is the name of the subset you want to assign to data-name-1. The data-name-2
subset must be of the same data set as the data-name-1 subset and must be a disjoint bit
vector.

Using the DMSII Program Interface

8600 1526–202 3–51

Data-name-3 is the name of the subset you want to combine with data-name-2 and
assigned to data-name-1. The data-name-3 subset must be of the same data set as the
data-name-2 subset and must be a disjoint bit vector.

The AND operator assigns the intersection of data-name-2 and data-name-3 to
data-name-1. The intersection is defined to be all the records in data-name-2 that are also
in data-name-3.

The OR operator assigns the union of data-name-2 and data-name-3 to data-name-1. The
union is defined to be all the records that are in either data-name-2 or data-name-3.

The plus (+) operator is the subset-exclusive OR. This operator assigns the records
contained in either data-name-2 or data-name-3 (but not both) to data-name-1.

The minus (-) operator is the subset difference. This operator assigns the records
contained in data-name-2 that are not in data-name-3 to data-name-1.

The ON EXCEPTION clause specifies an instruction to be performed if an exception
condition occurs. The NOT ON EXCEPTION clause specifies an instruction to be
performed if an exception condition does not occur. For more information about the
EXCEPTION clauses, refer to “DMSII Exceptions” later in this section.

The END-GENERATE phrase delimits the scope of the GENERATE statement.

Example

The following DASDL description used by the COBOL85 code in Example 3–21 is compiled
with the name DBASE:

 DASDL (compiled as DBASE):
 D DATA SET (
 A ALPHA (3);
 B BOOLEAN;
 N NUMBER (3);
 R REAL;
);
 X SUBSET OF D WHERE (N GEQ 21 AND NOT B) BIT VECTOR;
 Y SUBSET OF D WHERE (R LSS 1000) BIT VECTOR;
 Z SUBSET OF D BIT VECTOR;

Using the DMSII Program Interface

3–52 8600 1526–202

Example 3–21 shows an example of coding for the GENERATE statement.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXAMPLE.
 ENVIRONMENT DIVISION.
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT TAPE-FILE ASSIGN TO TAPE.
 DATA DIVISION.
 FILE SECTION.
 FD TAPE-FILE.
 01 TAPE-REC.
 02 S PIC XXX.
 02 T PIC 9.
 02 U PIC 999.
 02 V PIC 9(4).
 DATA-BASE SECTION.
 DB DBASE ALL.
 PROCEDURE DIVISION.
 OPEN-INPUT-FILE.
 OPEN INPUT TAPE-FILE.
 OPEN-DB.
 OPEN UPDATE DBASE.
 START-PRG.
 READ TAPE-FILE AT END
 CLOSE TAPE-FILE
 GO TO GENERATE-SUBSET.
 CREATE D.
 MOVE S TO A.
 IF T = 1
 COMPUTE B = TRUE.
 MOVE U TO N.
 MOVE V TO R.
 STORE D.
 GO TO START-PRG.
 GENERATE-SUBSET.
 GENERATE Z = X AND Y.
 CLOSE DBASE.
 STOP RUN.

Example 3–21. Using the GENERATE Statement

Using the DMSII Program Interface

8600 1526–202 3–53

IF Statement
The IF statement for DMSII tests an item to determine if it contains a NULL value.

Format

 ä å
 ³ä data-name-1 [NOT]å ³
 ³ã ïïï â NULL ³
 ³æ NOT data-name-2 IS ç ïïïï ³
IF ã ïïï â imperative-statement-1
 ³ ³
 ³ ä data-name-3 å ³
 ³[NOT] ã â ³
 æ ïïï æ data-name-4 IS NULL ç ç
 ïïïï
 [ELSE imperative-statement-2]
 ïïïï

Explanation

Data-name-1 and data-name-2 are items you want to test. Data-name-3 specifies a Boolean
item declared in the DASDL specification.

Your program executes imperative-statement-1 if the condition you are testing in the IF
statement is satisfied. If the condition is not satisfied, imperative-statement-2 is executed.

The NULL option is the null value defined in the DASDL. The NULL clause specifies a
condition that can also appear in combined conditions. Refer to Volume 1 for information
on complex conditions.

Data-name-4 specifies a link item declared in the DASDL specification. The specified link
item contains a null value if

• The link item does not point to a record.

• No current record is present for the data set that contains the link item. This condition
occurs following OPEN, SET TO BEGINNING, or SET TO ENDING statements, or
when the record containing the link item has been deleted.

• A version error would result from using a DMVERB against the structure into which
the link item points.

Both the structure in which link items are declared and the structure into which they
point are accessed when the link items are tested. If either of the structures have been
reorganized, the program can receive a version error.

With declaration data sets, version errors are usually detected prior to the test for
NULL, because the contents are considered NULL if there is no current record.

However, a data set touched by a DMVERB returns a version error. If this data set is
tested for NULL, the test is considered to be NULL. The data set cannot return a
version error because the NULL test can only return a Boolean value.

Using the DMSII Program Interface

3–54 8600 1526–202

The data-name-4 link item contains a nonnull value if it points to a record, even if that
record has been deleted.

Data items declared in the DASDL, besides being used in the NULL test, can also be used
in standard COBOL85 relation conditions, exactly like data items declared in a COBOL85
program.

Example

The following example illustrates the use of the NULL option with the IF statement:

IF THE-ITEM IS NULL
 PERFORM NEVER-USED.

Examples of the IF statement within the context of a complete program are provided in
Example 2–25, “COMS Sample Program with a DMSII Database,” in Section 2.

Using the DMSII Program Interface

8600 1526–202 3–55

INSERT Statement
The INSERT statement places a record into a manual subset. The statement performs the
following steps in order:

1. Inserts the current record of the specified data set into the specified subset

2. Alters the set path for the specified subset to point to the inserted record

Format

INSERT data-name-1 INTO data-name-2
ïïïïïï ïïïï

 Ú ä imperative-statement-1 å ¿
 ³ ³ ³ ³
 ³ ON EXCEPTION ã conditional-statement-1 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

 Ú ä imperative-statement-2 å ¿
 ³ ³ ³ ³
 ³ NOT ON EXCEPTION ã conditional-statement-2 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï
[END-INSERT]
 ïïïïïïïïïï

Explanation

Data-name-1 identifies the data set whose current record you want to insert into the
subset specified by data-name-2. Data-name-1 must be the object data set of the specified
subset. The path of data-name-1 must refer to a valid record; otherwise, the program
returns an exception.

Data-name-2 must specify a manual subset of the data set specified by data-name-1.

The ON EXCEPTION clause specifies an instruction to be performed if an exception
condition occurs. The program returns an exception if one of the following occurs:

• The subset you specified does not permit duplicates, and the record you want to insert
has a key identical to that of a record currently in the specified subset.

• The specified subset is embedded in a data set, and the data set does not have a valid
current record.

• The LOCK TO MODIFY DETAILS option was specified in the DASDL, and the current
record is not locked.

The NOT ON EXCEPTION clause specifies an instruction to be performed if an exception
condition does not occur.

Using the DMSII Program Interface

3–56 8600 1526–202

For more information about the EXCEPTION clauses, refer to “DMSII Exceptions” later in
this section.

The END-INSERT phrase delimits the scope of the INSERT statement.

Example

The following DASDL description used by the COBOL85 code in Example 3–22 is compiled
with the name DBASE:

D DATA SET (
 A ALPHA (3);
 B BOOLEAN;
 N NUMBER (3);
 R REAL;
);
 X SUBSET OF D BIT VECTOR;

Example 3–22 shows an example of coding for the INSERT statement.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXAMPLE.
 DATA DIVISION.
 DATA-BASE SECTION.
 DB DBASE ALL.
 PROCEDURE DIVISION.
 OPEN-DB.
 OPEN UPDATE DBASE.
 SET D TO BEGINNING.
 START-PRG.
 FIND NEXT D ON EXCEPTION
 CLOSE DBASE
 STOP RUN.
 IF N > 10
 INSERT D INTO X.
 GO TO START-PRG.

Example 3–22. Using the INSERT Statement

Using the DMSII Program Interface

8600 1526–202 3–57

LOCK/MODIFY Statement
The LOCK statement finds a record in a manner identical to that of the FIND statement,
except that a found record is locked against a concurrent modification by another user.
LOCK and MODIFY are synonyms. This statement also provides the STRUCTURE option,
which simultaneously locks all records in a structure.

If the record to be locked has already been locked by another program, the system
performs a contention analysis. The present program waits until the other program
unlocks the record unless the wait would result in a deadlock. If a deadlock would result,
the DMSII access routines unlock all records locked by the program that has the lowest
priority of the programs involved in the deadlock, and returns a DEADLOCK exception to
the program of lower priority whose records were unlocked.

No other user can lock or secure the record once it is locked; therefore, the record must
be freed when locking is no longer required. You can free a record explicitly by using a
FREE statement, or implicitly by executing a subsequent LOCK, FIND, DELETE, CREATE,
or RECREATE statement on the same data set.

The LOCK/MODIFY statement performs the following steps in order:

1. Implicitly frees a locked record. However, if you have set the INDEPENDENTTRANS
option in the DASDL, the LOCK/MODIFY statements do not free the locked record
until you execute an END-TRANSACTION statement.

2. Alters the current path to point to the record specified by the selection expression or
data name included in the statement.

3. Locks the specified record.

4. Transfers that record to the user work area.

Using the DMSII Program Interface

3–58 8600 1526–202

Format

 ä selection-expression-1 å
ä LOCK å ³ ³
ã ïïïï â ã data-name-1 â
æ MODIFY ç ³ ³
 ïïïïïï æ STRUCTURE data-name-2 ç
 ïïïïïïïïï

Ú ä imperative-statement-1 å ¿
³ ³ ³ ³
³ ON EXCEPTION ã conditional-statement-1 â ³
³ ïïïïïïïïï ³ ³ ³
À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

Ú ä imperative-statement-2 å ¿
³ ³ ³ ³
³ NOT ON EXCEPTION ã conditional-statement-2 â ³
³ ïïïïïïïïï ³ ³ ³
À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï
Ú END-LOCK ¿
³ ïïïïïïïï ³
À END-MODIFY Ù
 ïïïïïïïïïï

Explanation

Selection-expression-1 specifies the record you want to lock. Data-name-1 specifies the
global data record you want to lock. If you specify the STRUCTURE option, data-name-2
must be a data set.

The STRUCTURE option locks or secures all records in the structure simultaneously. If
other users have locked or secured the structure, or records in the structure, you must
wait until those users free the records or the structure, or end their transactions. A
deadlock occurs when other users attempt to lock or secure more records while you are
locking the structure. Once you have locked a structure, you must continue to lock
individual records. Each new lock implicitly frees the previous record, even if you have set
the INDEPENDENTTRANS option in the DASDL. These freed records continue to be
available only to the user who is securing the structure.

You cannot free structure locks with an END-TRANSACTION statement. You must use a
FREE statement to free structure locks. Information is provided under “FREE Statement
earlier is this section.

The ON EXCEPTION clause specifies an instruction to be performed if an exception
condition occurs. The program returns an exception if no record satisfies the selection
expression. If the program returns an exception, the record is not freed. A DEADLOCK
exception occurs if the program waits on a LOCK statement for a time longer than that
specified in the MAXWAIT task attribute. For more information about the MAXWAIT
attribute, refer to the Task Attributes Programming Reference Manual.

The NOT ON EXCEPTION clause specifies an instruction to be performed if an exception
condition does not occur.

Using the DMSII Program Interface

8600 1526–202 3–59

For more information about the EXCEPTION clauses, refer to “DMSII Exceptions” later in
this section.

An END-LOCK or an END-MODIFY phrase delimits the scope of the LOCK/MODIFY
statement.

If a LOCK statement using a selection expression returns an exception, the program
invalidates the current path of the specified set. However, the current path of the data set,
the current record, and the current paths of any other sets for that data set remain
unaltered.

Examples

The following line of code shows the LOCK statement used with the STRUCTURE option:

LOCK STRUCTURE VENDOR-DATA.

Example 3–23 shows the LOCK statement used with the ON EXCEPTION clause.

 LOCK FIRST EMP AT DEPT-NO = 1019
 ON EXCEPTION
 MOVE 0 TO POP-EMP (1019)
 END-LOCK.

Example 3–23. Using the LOCK Statement with the ON EXCEPTION Clause

Example 3–24 shows the MODIFY statement used with the ON EXCEPTION clause.

MODIFY EMP AT EMP-NO = IN-SSN
 ON EXCEPTION
 MOVE INV-EMP-NO-ERR TO ERR-MSG
 PERFORM ERR-OUT.

Example 3–24. Using the MODIFY Statement with the ON EXCEPTION Clause

An example of the LOCK statement within the context of a complete program is provided
at line 031000 in Example 2–25, “COMS Sample Program with a DMSII Database,” in
Section 2.

Using the DMSII Program Interface

3–60 8600 1526–202

OPEN Statement
The OPEN statement opens a database for subsequent access and specifies the access
mode. You must execute an OPEN statement before the database is first accessed;
otherwise, the program terminates at run time with an invalid operator fault.

The OPEN statement performs the following steps in order:

1. Opens an existing database. If files required for invoked structures are not in the
system directory, DMSII displays an informative message.

2. Performs an implicit CREATE operation on the restart data set.

Format

 ä INQUIRY å
OPEN ã ïïïïïïï â data-name-1
ïïïï æ UPDATE ç
 ïïïïïï

 Ú ä imperative-statement-1 å ¿
 ³ ³ ³ ³
 ³ ON EXCEPTION ã conditional-statement-1 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

 Ú ä imperative-statement-2 å ¿
 ³ ³ ³ ³
 ³ NOT ON EXCEPTION ã conditional-statement-2 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï
[END-OPEN]
 ïïïïïïïï

Explanation

The INQUIRY option enforces read-only access to the database specified by data-name-1.
Use this option when you do not want to update the database. The UPDATE option
enables you to modify the database specified by data-name-1. When you use the following
verbs, the program returns an exception after opening the database with the INQUIRY
option. You must specify UPDATE to use these verbs:

ASSIGN GENERATE
BEGIN-TRANSACTION INSERT
DELETE REMOVE
END-TRANSACTION STORE

DMSII does not open any audit files if OPEN INQUIRY has been specified by all programs
that access the database.

Data-name-1 specifies the database to be opened.

Using the DMSII Program Interface

8600 1526–202 3–61

The ON EXCEPTION clause specifies an instruction to be performed if an exception
condition occurs. The program returns an exception if the database is already open. If the
program returns an exception, the state of the database remains unchanged.

The NOT ON EXCEPTION clause specifies an instruction to be performed if an exception
condition does not occur.

For more information about the EXCEPTION clauses, refer to “DMSII Exceptions” later in
this section.

The END-OPEN phrase delimits the scope of the OPEN statement.

Examples

The following example illustrates the use of the OPEN statement with the INQUIRY
option:

OPEN INQUIRY DBASE.

Example 3–25 shows an example of the OPEN statement with the INQUIRY option and an
ON EXCEPTION clause.

 OPEN INQUIRY MYDB
 ON EXCEPTION
 DISPLAY "EXCEPTION OPENING MYDB"
 CALL SYSTEM DMTERMINATE
 END-OPEN.

Example 3–25. Using the OPEN Statement with the INQUIRY Option

An example of the OPEN statement within the context of a complete program is provided
at line 018900 in Example 2–25, “COMS Sample Program with a DMSII Database,” in
Section 2 .

Using the DMSII Program Interface

3–62 8600 1526–202

RECREATE Statement
The RECREATE statement partially initializes the user work area. Although it does not
alter any data items, the RECREATE statement unconditionally sets control items such as
links, sets, counts, and data sets to null values.

This statement performs the following steps in order:

1. Frees the current record of the specified data set

2. Reads any specified expression to determine the format of the record to be created

3. Unconditionally sets links, sets, counts, and data sets to null values

To re-create variable-format records, you must supply the same record type as that
supplied in the original CREATE statement. If you do not, the subsequent STORE
statement results in a DATAERROR subcategory 4. Refer to the DMSII Application

Programming Guide for more information.

Format

RECREATE data-name-1 [(expression)]
ïïïïïïïï
 Ú ä imperative-statement-1 å ¿
 ³ ³ ³ ³
 ³ ON EXCEPTION ã conditional-statement-1 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

 Ú ä imperative-statement-2 å ¿
 ³ ³ ³ ³
 ³ NOT ON EXCEPTION ã conditional-statement-2 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï
[END-RECREATE]
 ïïïïïïïïïïïï

Explanation

Data-name-1 is the name of the data set you want to initialize.

The expression specifies the value of the type of record you want to create. You must use
an expression to create a variable-format record; otherwise, the expression must not
appear.

The ON EXCEPTION clause specifies an instruction to be performed if an exception
condition occurs. The program returns an exception if the expression does not represent a
valid record type.

The NOT ON EXCEPTION clause specifies an instruction to be performed if an exception
condition does not occur.

Using the DMSII Program Interface

8600 1526–202 3–63

For more information about the EXCEPTION clauses, refer to “DMSII Exceptions” later in
this section.

The END-RECREATE phrase delimits the scope of the RECREATE statement.

Example

The following DASDL description is used by the COBOL85 code in Example 3–26. The
description is compiled with the name DBASE:

D DATA SET (
 A ALPHA (3);
 N NUMBER (3);
);
S SET OF D KEY N;

Example 3–26 shows an example of coding for the RECREATE statement.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXAMPLE.
 DATA DIVISION.
 DATA-BASE SECTION.
 DB DBASE ALL.
 PROCEDURE DIVISION.
 START-PRG.
 OPEN UPDATE DBASE.
 CREATE D.
 MOVE "ABC" TO A.
 MOVE 1 TO N.
 STORE D.
 RECREATE-D.
 RECREATE D.
 ADD 1 TO N.
 STORE D.
 IF N < 500
 GO TO RECREATE-D
 ELSE
 CLOSE DBASE
 STOP RUN.

Example 3–26. Using the RECREATE Statement

Using the DMSII Program Interface

3–64 8600 1526–202

REMOVE Statement
The REMOVE statement is similar to the FIND statement except that a found record is
locked and then removed from the specified subset.

The REMOVE statement performs the following steps in this order:

1. Frees the current record

2. Alters the current path to point to the record specified by the CURRENT phrase or the
data set name

3. Locks the previously found record

4. Removes the record from the specified subset

If the program returns an exception after step 2, the current path is invalid.

If the program returns an exception after step 3, the operation terminates, leaving the
current path pointing to the record specified by CURRENT or by data-name-1.

When the REMOVE statement is completed, the current paths still refer to the deleted
record. As a result, a FIND statement on the current record results in a NOTFOUND
exception, although FIND NEXT and FIND PRIOR statements give valid results.

Format

 ä CURRENT å
REMOVE ã ïïïïïïï â FROM data-name-2
ïïïïïï æ data-name-1 ç ïïïï

 Ú ä imperative-statement-1 å ¿
 ³ ³ ³ ³
 ³ ON EXCEPTION ã conditional-statement-1 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

 Ú ä imperative-statement-2 å ¿
 ³ ³ ³ ³
 ³ NOT ON EXCEPTION ã conditional-statement-2 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï
[END-REMOVE]
 ïïïïïïïïïï

Explanation

The CURRENT option removes the current record from the subset specified by
data-name-2. If you specify this option, the subset must have a valid current record. If it
does not have a valid current record, the program returns an exception.

Using the DMSII Program Interface

8600 1526–202 3–65

Data-name-1 is the name of the data set. Data-name-1 finds the record located by the
current path and removes it from the subset. The program returns an exception if the
record is not in the subset.

Data-name-2 specifies the subset from which you want to remove a record. Data-name-2
must specify a manual subset of the data set specified by data-name-1.

If the subset is embedded in a data set, the data set must have a current record defined
and that record must be locked. If it is not locked, the program returns an exception.

The ON EXCEPTION clause specifies an instruction to be performed if an exception
condition occurs. An exception is returned if one of the following occurs:

• You specify the CURRENT option, and the specified subset does not have a valid
current record.

• You specify data-name-1, and the record is not in the subset.

• The subset you specified is embedded in a data set, and the data set does not have a
current record defined and locked.

The NOT ON EXCEPTION clause specifies an instruction to be performed if an exception
condition does not occur.

For more information about the EXCEPTION clauses, refer to “DMSII Exceptions” later in
this section.

The END-REMOVE phrase delimits the scope of the REMOVE statement.

Example

The following DASDL description used by the COBOL85 code in Example 3–27 is compiled
with the name DBASE:

D DATA SET (
 A ALPHA (3);
 B BOOLEAN;
 N NUMBER (3);
 R REAL;
);
X SUBSET OF D BIT VECTOR;

Using the DMSII Program Interface

3–66 8600 1526–202

Example 3–27 shows an example of coding for the REMOVE statement.

IDENTIFICATION DIVISION.
 PROGRAM-ID. EXAMPLE.
 DATA DIVISION.
 DATA-BASE SECTION.
 DB DBASE ALL.
 PROCEDURE DIVISION.
 OPEN-DB.
 OPEN UPDATE DBASE.
 SET X TO BEGINNING.
 START-PRG.
 FIND NEXT X ON EXCEPTION
 CLOSE DBASE
 STOP RUN.
 IF N > 100
 REMOVE D FROM X.
 GO TO START-PRG.

Example 3–27. Using the REMOVE Statement

Using the DMSII Program Interface

8600 1526–202 3–67

SAVE TRANSACTION POINT Statement
The SAVE TRANSACTION POINT statement provides an intermediate transaction point
record for auditing. The transaction points apply only to the current transaction, and do
not affect halt/load recovery. The system completes halt/load recovery at the end of the
transaction, but not when it encounters a transaction point.

Format

SAVE TRANSACTION POINT data-name-1 [arithmetic-expression-1]
ïïïï ïïïïïïïïïïï ïïïïï

 Ú ä imperative-statement-1 å ¿
 ³ ³ ³ ³
 ³ ON EXCEPTION ã conditional-statement-1 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

 Ú ä imperative-statement-2 å ¿
 ³ ³ ³ ³
 ³ NOT ON EXCEPTION ã conditional-statement-2 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï
[END-SAVE]
 ïïïïïïïï

Explanation

Data-name-1 is the name of a restart data set that identifies the database.

Arithmetic-expression-1 indicates a marker to be assigned to the present execution point
in the transaction. Arithmetic expressions are discussed in Volume 1.

The ON EXCEPTION clause specifies an instruction to be performed if an exception
condition occurs. The NOT ON EXCEPTION clause specifies an instruction to be
performed if an exception condition does not occur. For more information about the
EXCEPTION clauses, refer to “DMSII Exceptions” later in this section.

The END-SAVE phrase delimits the scope of the SAVE TRANSACTION POINT statement.

Example

The following line of code shows an example of the SAVE TRANSACTION POINT
statement:

SAVE TRANSACTION POINT MY-RESTART 3.

Using the DMSII Program Interface

3–68 8600 1526–202

SECURE Statement
The SECURE statement prevents other programs from updating a record by applying a
shared lock. A shared lock allows other users to find or secure a record; however, they
cannot include the record in a LOCK statement.

You can execute a LOCK statement to upgrade secured records to locked records. If two
or more users try to upgrade the records at the same time, however, a deadlock can occur
and cause an exception.

Format

 ä selection-expression-1 å
SECURE ã â
ïïïïïï æ STRUCTURE data-name-1 ç
 ïïïïïïïïï

Ú ä imperative-statement-1 å ¿
³ ³ ³ ³
³ ON EXCEPTION ã conditional-statement-1 â ³
³ ïïïïïïïïï ³ ³ ³
À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

Ú ä imperative-statement-2 å ¿
³ ³ ³ ³
³ NOT ON EXCEPTION ã conditional-statement-2 â ³
³ ïïïïïïïïï ³ ³ ³
À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï
[END-SECURE]
 ïïïïïïïïïï

Explanation

Selection-expression-1 specifies the record you want to secure. For more information, see
“Using Selection Expressions” earlier in this section.

Data-name-1 specifies the global data record you want to secure. If the invoked database
contains a remap of the global data, your program uses the name of the logical database,
not the name of the global data remap, to lock the global data record.

If you use the STRUCTURE option, data-name-1 specifies the structure to be secured. The
structure must be a data set. The STRUCTURE option secures all records in the structure
simultaneously. If other users have locked records in the structure, you must wait until
they free the records or end their transactions before you can secure the structure. A
deadlock can occur if other users attempt to lock more records while you are securing the
structure.

Ending the transaction does not free a secured structure; instead, you must use the FREE
statement. More information on this statement is provided under “FREE Statement”
earlier in this section.

Using the DMSII Program Interface

8600 1526–202 3–69

The ON EXCEPTION clause specifies an instruction to be performed if an exception
condition occurs. The NOT ON EXCEPTION clause specifies an instruction to be
performed if an exception condition does not occur. For more information about the
EXCEPTION clauses, refer to “DMSII Exceptions” later in this section.

Example

The following line of code shows an example of the SECURE statement used with the
STRUCTURE option:

SECURE STRUCTURE VENDOR-DATA.

Using the DMSII Program Interface

3–70 8600 1526–202

SET Statement
The SET statement alters the current path or changes the value of an item in the current
record. The SET statement affects only the record area; it does not affect the data set until
you execute a subsequent STORE statement.

The SET statement performs the following steps in order:

1. Frees the current path of the data set, set, or subset

2. Performs one of the following:

• Alters the current path of a data set, set, or subset to point to the beginning or the
ending of the respective structure

• Alters a set or subset path to point to the current path of a data set

• Assigns a null value to a particular item

A FIND NEXT statement appearing after a SET TO BEGINNING statement is equivalent to
a FIND FIRST statement. A FIND PRIOR statement appearing after a SET TO ENDING
statement is equivalent to a FIND LAST statement.

Format

 ä ä BEGINNING å å
 ³ data-name-1 TO ã ïïïïïïïïï â ³
 ³ ïï æ ENDING ç ³
SET ã ïïïïïï â
ïïï ³ data-name-2 TO data-name-3 ³
 ³ ïï ³
 æ data-name-4 TO NULL ç
 ïï ïïïï

 Ú ä imperative-statement-1 å ¿
 ³ ³ ³ ³
 ³ ON EXCEPTION ã conditional-statement-1 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

 Ú ä imperative-statement-2 å ¿
 ³ ³ ³ ³
 ³ NOT ON EXCEPTION ã conditional-statement-2 â ³
 ³ ïïï ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï
[END-SET]
 ïïïïïïï

Explanation

Data-name-1 specifies the data set, set, or subset whose current path you want to alter to
point to the BEGINNING or ENDING of the data set.

Using the DMSII Program Interface

8600 1526–202 3–71

Data-name-2 specifies the set or subset whose current path you want to alter to point to
the current record of data-name-3.

Data-name-4 specifies an item of the current record that is assigned a null value.
Data-name-4 cannot be a link item, and it cannot be used with the ON EXCEPTION clause
or the NOT ON EXCEPTION clause, or with both clauses.

If you declare a a null value in the DASDL, it is used as the null value in this statement.
Otherwise, the statement uses the system default null value.

The ON EXCEPTION clause specifies an instruction to be performed if an exception
condition occurs. The NOT ON EXCEPTION clause specifies an instruction to be
performed if an exception condition does not occur. For more information about the
EXCEPTION clauses, refer to “DMSII Exceptions” later in this section.

The END-SET phrase delimits the scope of the SET statement.

Example

The following DASDL description used by the COBOL85 code in Example 3–28 is compiled
with the name DBASE:

DS DATA SET
 (A ALPHA (20);
 N NUMBER (2)
);
S SET OF DS
 KEY (A);
SS SUBSET OF DS
 WHERE (N=3);

Example 3–28 shows an example of coding for the SET statement.

 FIND S AT A = "ABC".
 SET SS TO DS
 ON EXCEPTION
 NEXT SENTENCE.
 FIND NEXT SS.
 SET S TO BEGINNING
 ON EXCEPTION
 DISPLAY "NONE"
 END-SET.
 SET SS TO ENDING
 ON EXCEPTION
 DISPLAY "NONE"
 END-SET.

Example 3–28. Using the SET Statement

Using the DMSII Program Interface

3–72 8600 1526–202

STORE Statement
The STORE statement places a new or modified record into a data set. The statement
inserts the data from the user work area for the data set or global record into the data set
or global record area.

After a CREATE or RECREATE statement, the STORE statement performs the following
steps:

• Checks the data in the user work area for validity if you have specified a VERIFY
condition in the DASDL.

• Tests the record for validity before it inserts the record into each set in the data set.
For example, the STORE statement can test the record to determine whether or not
duplicate values for keys are allowed.

• Evaluates the WHERE condition for each automatic subset.

• Inserts the record into all sets and automatic subsets if all conditions are satisfied.

• Locks the new record.

• Alters the data set path to point to the new record.

After a LOCK or MODIFY statement, the STORE statement performs the following steps:

• Checks the data in the user work area for validity if you have specified a VERIFY
condition in the DASDL.

• Depending on the VERIFY condition, performs the following steps:

− If items involved in the insertion conditions have changed, reevaluates the
conditions

− If the condition yields FALSE, removes the record from each automatic subset
that contains the record

− If the condition yields TRUE, inserts the record into each automatic subset that
does not contain the record

• Deletes the record and reinserts it into the proper position if you have modified a key
used in ordering a set or automatic subset so that the record must be moved within
that set or automatic subset.

• Stores the record in a manual subset, but does not reorder that subset. The user is
responsible for maintaining manual subsets. A subsequent reference to the record
using that subset produces undefined results.

Using the DMSII Program Interface

8600 1526–202 3–73

Format

STORE data-name-1
ïïïïï
 Ú ä imperative-statement-1 å ¿
 ³ ³ ³ ³
 ³ ON EXCEPTION ã conditional-statement-1 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï

 Ú ä imperative-statement-2 å ¿
 ³ ³ ³ ³
 ³ NOT ON EXCEPTION ã conditional-statement-2 â ³
 ³ ïïïïïïïïï ³ ³ ³
 À æ NEXT SENTENCE ç Ù
 ïïïï ïïïïïïïï
[END-STORE]
 ïïïïïïïïï

Explanation

Data-name-1 is the name of the data record or data set you want to store. Data-name-1
causes the STORE statement to do one of the following:

• Return the data in the specified data set work area to the data set.

• Return the data in the global data work area to the global data record area.

You must lock the global data record before you execute a STORE statement; otherwise,
the program terminates the STORE statement with an exception. The ON EXCEPTION
clause specifies an instruction to be performed if an exception condition occurs. The
program returns an exception and does not store the record if the record does not meet
any of the validation conditions. The program also returns an exception if

• The data set path is valid and the current record is not locked.

• The global data record is not locked.

The NOT ON EXCEPTION clause specifies an instruction to be performed if an exception
condition does not occur.

For more information about the EXCEPTION clauses, refer to “DMSII Exceptions” later in
this section.

The END-STORE phrase delimits the scope of the STORE statement.

Using the DMSII Program Interface

3–74 8600 1526–202

Example

The following DASDL description used by the COBOL85 code in Example 3–29 is compiled
with the name DBASE:

D DATA SET (
 A ALPHA (3);
 N NUMBER (3);
);
S SET OF D KEY N;

Example 3–29 shows an example of coding for the STORE statement.

 IDENTIFICATION DIVISION.
 PROGRAM-ID. EXAMPLE.
 DATA DIVISION.
 DATA-BASE SECTION.
 DB DBASE ALL.
 PROCEDURE DIVISION.
 START-PRG.
 OPEN UPDATE DBASE.
 CREATE D.
 MOVE "ABC" TO A.
 MOVE 1 TO N.
 STORE D.
 RECREATE-D.
 RECREATE D.
 ADD 1 TO N.
 STORE D.
 IF N < 500
 GO TO RECREATE-D
 ELSE
 CLOSE DBASE
 STOP RUN.

Example 3–29. Using the STORE Statement

An example of the STORE statement within the context of a complete program is provided
at line 024700 in Example 2–25, “COMS Sample Program with a DMSII Database,” in
Section 2.

Using the DMSII Program Interface

8600 1526–202 3–75

Processing DMSII Exceptions
During the execution of data management statements, the program can encounter any one
of several exception conditions. Exception conditions prevent an operation from being
performed as specified. The conditions result if the program encounters a fault or does not
perform the expected actions. For example, execution of the following statement results
in an exception if no entry in S has a value of “JONES” for the key item:

FIND S AT NAME = "JONES"

If the operation terminates normally, the program returns no exception.

A database status word, DMSTATUS, is associated with each COBOL85 program that
accesses a database. The value of DMSTATUS indicates whether an exception has
occurred and specifies the nature of the exception. The data management structure
number function, DMSTRUCTURE, can also be helpful in analyzing the results of
exception conditions.

Information on the exception categories, subcategories, and mnemonics used in exception
processing is provided in the DMSII Application Programming Guide.

DMSTATUS Database Status Word
The system sets the value of DMSTATUS at the completion of each data management
statement. You can use the DMSTATUS entry to discover information about an exception.
When interrogating DMSTATUS, you must include an attribute name in parentheses after
the DMSTATUS entry.

Format

 ä category-mnemonic å
 ³ ³
 ³ DMCATEGORY ³
 ³ ïïïïïïïïïï ³
 ³ DMERRORTYPE ³
 DMSTATUS (ã ïïïïïïïïïïï â)
 ïïïïïïïï ³ DMSTRUCTURE ³
 ³ ïïïïïïïïïïï ³
 ³ DMERROR ³
 ³ ïïïïïïï ³
 æ DMRESULT ç
 ïïïïïïïï

Explanation

Category-mnemonic yields a TRUE value if the major category specified by
category-mnemonic has occurred.

The DMCATEGORY attribute yields a numeric value identifying the major category.

Using the DMSII Program Interface

3–76 8600 1526–202

The DMERRORTYPE attribute yields a numeric value identifying the subcategory of the
major category.

The DMSTRUCTURE function yields a numeric value identifying the structure number of
the structure involved in the exception. See “DMSTRUCTURE Structure Number
Function” in this section for more information.

The DMERROR attribute yields a TRUE value if any error has occurred.

The DMRESULT attribute yields the 48-bit contents of DMSTATUS as a PIC X(6) data
item. If no exception has occurred, the program returns six EBCDIC nulls (that is,
48“000000000000).

Using the DMSII Program Interface

8600 1526–202 3–77

DMSTRUCTURE Structure Number Function
The DMSTRUCTURE function allows a program to determine the structure number of a
data set, set, or subset. The structure numbers of all invoked structures are shown in the
invocation information in the program listing. Your program can use the structure number
to analyze the results of exception conditions.

The DMSTRUCTURE function is most useful when the previous operation on the data set
that is spanned by several data sets yields an exception. The program can determine from
the structure number which structure caused the exception.

When you declare a partitioned structure in DASDL, it is assigned one or more structure
numbers, depending on the following option:

OPEN PARTITIONS = integer

For example, three structure numbers are assigned to the structure when you specify the
following:

OPEN PARTITIONS = 3

The DMSTRUCTURE function returns the lowest structure number assigned to the
structure. However, the value in the result word (DMSTRUCTURE) can be any of the
values assigned by DMSII at run time; it is not necessarily the same value every time.

Format

 data-name-1 (DMSTRUCTURE)
 ïïïïïïïïïïï

Explanation

Data-name-1 returns the structure number of the data set, set, or subset.

Example

The following provides an example of coding for the DMSTRUCTURE structure number
function:

IF D(DMSTRUCTURE) = DMSTATUS(DMSTRUCTURE) DISPLAY "D FAULT".

Using the DMSII Program Interface

3–78 8600 1526–202

DMSII Exceptions
You can use any of the following methods in your program code to handle exceptions:

• Calling the DMERROR Use procedure.

• Specifying the ON EXCEPTION clause with the data management statement.

• If you neither call the DMERROR Use procedure nor specify the ON EXCEPTION
clause, the program returns an exception and terminates the program with an error.
As a result, the values of the DMSTATUS category, subcategory, and structure number
are displayed on the operators console, placed in the system log, and printed with the
job summary output.

An explanation of the DMERROR Use procedure and ON EXCEPTION clause are included
in this discussion of DMSII exceptions. See Volume 1 for information on the USE
statement and Use procedures.

DMERROR Use Procedure

COBOL85 extends the Declaratives Section of the Procedure Division to enable you to
specify a DMERROR Use procedure.

Format

USE [GLOBAL] ON DMERROR
ïïï ïïïïïï ïïïïïïï

Explanation

The program enters the DMERROR Use procedure each time DMSII returns an exception
during the execution of a data management statement, unless the program contains an ON
EXCEPTION clause for that statement. Upon exiting the DMERROR Use procedure,
control is passed to the statement following the data management statement that
encountered the exception.

The DMERROR Use procedure can appear by itself or in any order with other Use
procedures in the Declaratives Section. You can declare only one DMERROR Use
procedure in a COBOL85 program. The DMERROR Use procedure cannot contain GO TO
statements that reference labels outside the procedure. If you use both a DMERROR Use
procedure and an ON EXCEPTION clause, the ON EXCEPTION clause takes precedence,
and the DMERROR Use procedure is not executed.

For NESTED programs, each program can have its own exception routine. As an
alternative, a USE procedure in the main program can be declared as GLOBAL. With the
GLOBAL declaration, any nested program which has no USE routine of its own uses the
next more globally declared USE routine. The declaration of a USE routine in a nested
program overrides the use of any other global USE routine.

Using the DMSII Program Interface

8600 1526–202 3–79

Example

Example 3–30 shows the declaration for the DMERROR Use procedure.

 DECLARATIVES.
 DMERR-SECT SECTION.
 USE ON DMERROR.
 DMERR-PARA.
 IF DMSTATUS(NOTFOUND)...
 END DECLARATIVES.

Example 3–30. Declaring the DMERROR Use Procedure

ON EXCEPTION/NOT ON EXCEPTION Clause

An exception condition is an error result that the data management software returns to a
program to explain why a requested database operation was not performed. You can
include the ON EXCEPTION clause with certain data management statements to specify
an alternate statement to be performed when an exception condition occurs. These
statements also provide a NOT ON EXCEPTION clause to enable you to specify an
additional statement to be performed if an exception condition does not occur. The
following data management statements use the ON EXCEPTION and NOT ON
EXCEPTION clauses:

For more specific information about exception conditions for each statement, refer to the
discussion of the statement earlier in this section.

ABORT-TRANSACTION INSERT
ASSIGN LOCK
BEGIN-TRANSACTION MODIFY
CANCEL-TRANSACTION-POINT OPEN
CLOSE RECREATE
CREATE REMOVE
DELETE SAVE-TRANSACTION-POINT
END-TRANSACTION SECURE
FIND SET
FREE STORE
GENERATE

Using the DMSII Program Interface

3–80 8600 1526–202

Format

 ä imperative-statement-1 å
 ³ ³
 ON EXCEPTION ã conditional-statement-1 â
 ïïïïïïïïï ³ ³
 æ NEXT SENTENCE ç
 ïïïï ïïïïïïïï

 ä imperative-statement-2 å
 ³ ³
 NOT ON EXCEPTION ã conditional-statement-2 â
 ïïïïïïïïï ³ ³
 æ NEXT SENTENCE ç
 ïïïï ïïïïïïïï

Explanation

For the ON EXCEPTION clause, imperative-statement-1, conditional-statement-1, or NEXT
SENTENCE is executed if the program returns an exception.

For the NOT ON EXCEPTION clause, imperative-statement-2, conditional-statement-2, or
NEXT SENTENCE is executed if the program does not return an exception.

If you use both a DMERROR Use procedure and an ON EXCEPTION clause, the ON
EXCEPTION clause takes precedence, and the DMERROR Use procedure is not executed.

Examples

In the following line of code, a branch to LBL1 is executed if a STORE statement
encounters an exception:

STORE D ON EXCEPTION GO TO LBL1.

Using the DMSII Program Interface

8600 1526–202 3–81

Example 3–31 uses the ON EXCEPTION clause and interrogates DMSTATUS.

 MODIFY S AT X = 3 ON EXCEPTION
 IF DMSTATUS (NOTFOUND) GO NOT-FOUND-L ELSE
 IF DMSTATUS (DEADLOCK) GO DEAD-LOCK-L ELSE
 .
 .
 .
 NOT-FOUND-L.
 IF DMSTATUS (DMERRORTYPE) = 1 statement ELSE
 IF DMSTATUS (DMERRORTYPE) = 2 statement ELSE
 .
 .
 .
 DEAD-LOCK-L.
 IF DMSTATUS (DMERRORTYPE) = 1 statement ELSE

Example 3–31. Handling Exceptions with the ON EXCEPTION Clause

Using the DMSII Program Interface

3–82 8600 1526–202

8600 1526–202 4–1

Section 4
Using the ADDS Program Interface

The Advanced Data Dictionary System (ADDS) enables you to centrally create and
maintain data descriptions. ADDS enables you to do the following:

• Manipulate data

• Define complex data structures

• Update and report on entities or structures in the data dictionary

The program interface for ADDS enables you to invoke entities such as files, records, and
record collections. It also provides options for the following:

• Including in your program only entities with a particular status in the dictionary, using
the DICTIONARY compiler control option

• Assigning alias identifiers to file and data names to be used in the program, using the
INVOKE clause

• Tracking entities, data structures, and databases used by a program, using the
PROGRAM clauses of the DICTIONARY statement

You can use ADDS to define Data Management System II (DMSII) databases. For
information on DMSII, refer to Section 3, “Using the DMSII Program Interface.” For
information on using the ADDS product, refer to the InfoExec Administration Guide.

If you have created form record libraries using the Screen Design Facility Plus (SDF Plus)
and stored them in an ADDS dictionary, you can access these form record libraries just as
you would other entities. For more information, refer to Section 5 of this manual, “Using
the SDF Plus Program Interface.”

The information on the following pages explains how to write a program using the
extensions developed for ADDS. Each extension is covered individually, with a
description of its purpose or use, the syntax, an explanation, and an example. A sample
program appears at the end of this section.

Accessing Entities with a Specific Status

4–2 8600 1526–202

Accessing Entities with a Specific Status
The DICTIONARY compiler control option enables you to set up the status value of
entities requested from the data dictionary. The use of this compiler control is optional.

Format

 ä PRODUCTION å
 DICTIONARY = ã ïïïïïïïïïï â
 ïïïïïïïïïï æ TEST ç
 ïïïï

Explanation

PRODUCTION This value ensures that only PRODUCTION status data
dictionary entities are invoked.

TEST This value ensures that only TEST status data dictionary
entities are invoked.

Details

You can define a program entity in ADDS, and use the DICTIONARY compiler control
syntax in your program to restrict the invocation of entities to those with a particular
status.

Entities with an historical status cannot be invoked by the COBOL85 compiler. Refer to
the InfoExec Administration Guide for more information on status and for the rules that
ADDS uses to search for an entity.

The type is value. The default is none. For more information on compiler control options,
refer to the COBOL ANSI-85 Programming Reference Manual, Volume 1: Basic

Implementation.

Example

This example sets the value to PRODUCTION and ensures that only PRODUCTION status
data dictionary entities are invoked.

$SET DICTIONARY = PRODUCTION

Identifying Specific Entities

8600 1526–202 4–3

Identifying Specific Entities
The version and directory are properties that, with the entity name, are used to uniquely
identify an entity in the data dictionary. These attributes are assigned to an entity in an
ADDS session. Refer to the InfoExec Administration Guide for information about the
search rules that ADDS uses to search for entities.

In a program, the VERSION and DIRECTORY clauses are used as follows:

• In the PROGRAM clauses of the DICTIONARY statement to identify a program for
tracking

• In the SELECT statement to identify a particular file in the dictionary

• In the data description FROM DICTIONARY clause to identify a particular lower-level
entity (such as a data item or a record description) in the dictionary

Although the VERSION and DIRECTORY clauses are optional, it is good practice to
provide as much information to identify a particular entity as possible, especially if there
are many duplicate items under different directories in the dictionary.

VERSION Clause
When you create an entity in ADDS, the system assigns the entity a version number. The
VERSION clause in a program identifies the 6-digit numeric literal version number of the
record description.

Format

 [VERSION IS literal-1]
 ïïïïïïï

Explanation

literal-1 This must be a 6-digit numeric literal. It must be a valid VERSION
number of the entity in the data dictionary.

Example

01 SAMPLELIB FROM DICTIONARY
 VERSION IS 1
 DIRECTORY IS "USER1".

See Also

• “Identifying a Dictionary” in this section.

• “Invoking Data Descriptions in ADDS” in this section.

• “Selecting a File” in this section.

Assigning Alias Identifiers

4–4 8600 1526–202

DIRECTORY Clause
The DIRECTORY clause specifies the directory under which the entity is stored in the data
dictionary.

Format

 Ú ä literal-1 å ¿
 ³ DIRECTORY IS ã â ³
 ³ ïïïïïïïïï æ directory-name-1 ç ³
 À Ù

Explanation

literal-1 This must be a nonnumeric literal up to 17 alphanumeric
characters long.

directory-name-1 This must be a name of up to 17 alphanumeric characters long.

Details

Literal-1 and directory-name-1 must describe the directory under which the data or file
description is stored in the dictionary and be specified in the SPECIAL-NAMES paragraph.

Example

SELECT ADDS-FILE FROM DICTIONARY
 VERSION IS 1
 DIRECTORY IS SMITH.

See Also

• “Invoking a Dictionary” in this section.

• “Invoking Data Descriptions in ADDS” in this section.

• “Selecting a File” in this section.

Assigning Alias Identifiers
You can assign an alias identifier to an entity name invoked from the dictionary by using
the INVOKE clause. You can then refer to the entity by its alias identifier throughout the
rest of your program. The use of the INVOKE clause is optional.

Assigning Alias Identifiers

8600 1526–202 4–5

Format

Ú ä INVOKE å ¿
³ data-name-1 ã ïïïïïï â ³
À æ = ç Ù

Explanation

data-name-1 This user-defined identifier names a data item described in a
data description entry or file select entry. Only 01-level data
names or file names are allowed. Once you assign an alias,
any reference to the entity in the program must specify data-
name-1.

Also, all Procedure Division statements must use this alias.

INVOKE clause The INVOKE clause or the equal sign (=) is used before the
FROM DICTIONARY clause to assign an alias in the SELECT
statement to a file. Also, this clause is used in the 01-level data
description entry to assign an alias to an entity such as a
record or a data item.

Details

Assigning an alias is useful when, for example, you want to invoke the same record twice
in your program. Assigning an alias enables you to use a unique qualifier.

In the program, the INVOKE clause is used in the Environment Division and the Data
Division to assign an alias as follows:

• In the SELECT statement, to assign an alias to a file

• In the data description entry FROM DICTIONARY clause, to assign an alias to a
lower-level entity such as a record or a data item

Example

01 MY-INTERNAL-NAME INVOKE ADDS-ENTITY-NAME
 FROM DICTIONARY.

See Also

• “Invoking File Descriptions” in this section.

• “Selecting a File” in this section.

• “Invoking Data Descriptions in ADDS” in this section.

Identifying a Dictionary

4–6 8600 1526–202

Identifying a Dictionary
The dictionary that you use during compilation is identified in the DICTIONARY statement
in the SPECIAL-NAMES paragraph of the program. Optional program clauses also enable
program tracking.

Program tracking is a useful feature of ADDS. When defining a program entity, you can
direct the dictionary to keep track of the data structures and entities that you invoke in
your program. To do this, you identify the program by using the PROGRAM-NAME,
PROGRAM-VERSION, and PROGRAM-DIRECTORY clauses. For more information on
program tracking, refer to the InfoExec Administration Guide.

Format

 Ú ¿
 ³ DICTIONARY IS literal-1 ³
 ³ ïïïïïïïïïï ³
 ³[PROGRAM-NAME IS literal-2] ³
 ³ ïïïïïïïïïïïï ³
 ³[PROGRAM-VERSION IS literal-3] ³
 ³ ïïïïïïïïïïïïïïï ³
 ³[PROGRAM-DIRECTORY IS literal-4] ³
 À ïïïïïïïïïïïïïïïïï Ù

Explanation

literal-1 Literal-1 must be the function name of the
dictionary library.

literal-2 Literal-2 must be a valid program name in the
data dictionary.

literal-3 Literal-3 must be a 6-digit numeric literal.

literal-4 Literal-4 must be a valid data dictionary
directory.

DICTIONARY clause The DICTIONARY clause specifies the
function name of the dictionary library. The
function name is the name equated to a
library code file when using the operator
display terminal (ODT) SL command.

PROGRAM-NAME clause The PROGRAM-NAME clause specifies the
name of the entity of type program that is to
be tracked. This clause is needed if the
entity tracking is defined in ADDS. If the
tracking is not defined, then this clause does
not enforce entity tracking and only program
information is sent.

Identifying a Dictionary

8600 1526–202 4–7

PROGRAM-VERSION clause The PROGRAM-VERSION clause specifies
the version of the program to be tracked.

PROGRAM-DIRECTORY clause The PROGRAM-DIRECTORY clause specifies
the directory of the program to be tracked.

Details

You can identify the dictionary in the SPECIAL-NAMES paragraph. Optional program
clauses enable entity tracking in ADDS. You can invoke only one data dictionary for a
main program and all nested programs contained within it.

If multiple sequential programs exist in one source file, then you must specify the data
dictionary for each sequential, separately compilable program. The dictionary
identification clause can appear only in the main program of a separately compilable
program and cannot appear in a nested program.

The DICTIONARY, PROGRAM-NAME, and PROGRAM-DIRECTORY literals can have an
extra period at the end. The period on DICTIONARY is used for the FUNCTIONNAME
library attribute and is appended if not already specified in the literal.

If you do not specify a dictionary by using the DICTIONARY statement, the compiler uses
the dictionary named DATADICTIONARY by default.

Example

001500 SPECIAL-NAMES.
001600 DICTIONARY IS "DATADICTIONARY"
001700 PROGRAM-NAME IS "EXAMPLE-PROGRAM"
001800 PROGRAM-VERSION IS 1
001900 PROGRAM-DIRECTORY IS "JOHNDOE".

See Also

“Identifying Specific Entities” in this section.

Selecting a File

4–8 8600 1526–202

Selecting a File
The following format for the SELECT statement is used to include files from the dictionary
in your program.

Format

 Ú ä INVOKE å ¿
 SELECT ³ file-name-1 ã ïïïïïï â ³ file-name-2
 ïïïïïï À æ = ç Ù

 FROM DICTIONARY
 ïïïïïïïïïïïïïïï
 [VERSION IS literal-1]
 ïïïïïïï
 Ú ¿
 ³ DIRECTORY IS ä literal-2 å ³
 ³ ïïïïïïïïï ã â ³
 À æ directory-name-1 ç Ù . [;]
 ï

Explanation

file-name-1
file-name-2
FROM DICTIONARY

The optional INVOKE clause specifies an alias for
file-name-2. All subsequent references to this file must
use the file-name-1 alias. File-name-2 is the entity
invoked from the dictionary.

literal-1 Literal-1 must be a numeric literal up to 6 digits long
specifying the version under which the file is stored in the
data dictionary.

literal-2 Literal-2 must be a nonnumeric literal up to 17
alphanumeric characters long specifying the version
under which the file is stored in the data dictionary.

directory-name-1 Directory-name-1 must be a name of up to 17
alphanumeric characters long specifying the directory
under which the file is stored in the data dictionary.

VERSION clause
DIRECTORY clause

Refer to “Identifying Specific Entities” in this section for
information on the VERSION and DIRECTORY clauses.

INVOKE
=

Refer to “Assigning Alias Identifiers” in this section for
information on the INVOKE clause.

Selecting a File

8600 1526–202 4–9

; (Semicolon) The semicolon that follows the ending period can be used
to control the behavior of compiler control records
(CCRs) and the format of listings. This semicolon should
always be separated from the ending period of the
SELECT statement by at least one space.

IF a CCR immediately follows a SELECT ... FROM
DICTIONARY statement, the compiler option changes
might occur before the compiler processes the
information invoked from the dictionary. This situation
can be avoided by using the semicolon after the ending
period. The semicolon ensures that the compiler
processes the invoked information before the option
actually changes.

Details

You can assign an alias identifier to a selected file. You can also use the VERSION and
DIRECTORY clauses to identify the particular file. The SELECT statement is placed in the
File-Control paragraph of the Input-Output section of the program.

Example

002000 INPUT-OUTPUT SECTION.
002100 FILE-CONTROL.
002200 SELECT SORT-FILE INVOKE ADDS-FILE FROM DICTIONARY
002300 VERSION IS 1
002400 DIRECTORY IS "*".
002500 SELECT REMOTE-FILE FROM DICTIONARY.
002600 DATA DIVISION.
002700 FILE SECTION.

See Also

• “Assigning Alias Identifiers” in this section.

• “Identifying Specific Entities” in this section.

Invoking File Descriptions

4–10 8600 1526–202

Invoking File Descriptions
The file description (FD) or sort-merge file description (SD) entry provides information
about the following:

• The physical structure of a file

• The identification of a file

• The record names pertaining to a file

The FD and SD statements invoke all file attributes of the file named in the SELECT
statement. By using the optional INVOKE ALL clause, you can invoke the record
descriptions as well as the file attributes. For information on the File Section and the file
description entry in a program, refer to the COBOL ANSI-85 Programming Reference

Manual, Volume 1: Basic Implementation.

Format 1

 FD file-name INVOKE [ALL] [GLOBAL] [EXTERNAL]. [;]
 ïï ïïï ïïïïïï ïïïïïïïï ï

Explanation

FD The level indicator FD identifies the beginning of a file
description and must precede the file name.

FD refers to file description.

INVOKE ALL clause If you used the SELECT clause to select a file, the INVOKE
ALL clause invokes all record descriptions as well as file
attributes defined in the data dictionary for this file.

If you do not specify the INVOKE ALL clause, then the FD
statement must be followed by one or more record
descriptions, which can be invoked from the dictionary
only when the record is related to the file in the dictionary.

GLOBAL You must specify the GLOBAL option in the main program
if all nested subprograms need access to the file
description.

EXTERNAL You must specify the EXTERNAL option if the file
structure is shared through interprogram communication
(IPC) at run time.

Invoking File Descriptions

8600 1526–202 4–11

Format 2

 SD file-name INVOKE [ALL]. [;]
 ïï ïïï ï

Explanation

SD The level indicator SD identifies the beginning of a file
description and must precede the file name.

SD refers to a sort-merge file description.

INVOKE ALL clause The INVOKE ALL clause specifies that all record
descriptions defined in the data dictionary for this file are
invoked.

If you do not specify the INVOKE ALL clause, then the SD
statement must be followed by one or more record
descriptions, which can be invoked from the dictionary
only when the record is related to the file in the
dictionary.

; (Semicolon) The semicolon that follows the ending period can be used
to control the behavior of compiler control records
(CCRs) and the format of listings. This semicolon should
always be separated from the ending period of the FD or
SD statement referencing a file from the dictionary by at
least one space.

IF a CCR immediately follows an FD or SD invoked from
the dictionary, the compiler option changes might occur
before the compiler processes the information invoked
from the dictionary. This situation can be avoided by
using the semicolon after the ending period. The
semicolon ensures that the compiler processes the
invoked information before the option actually changes.

Details

These file description statements are valid only for files previously invoked using the
SELECT FROM DICTIONARY statement. If you assigned an alias by using the INVOKE
option in the SELECT statement, then you must use that alias identifier for the file name.

If you define the file in the SELECT FROM DICTIONARY statement, then you obtain the
file description from the data dictionary, and all attribute specifications in the source file
(up to the period) are illegal.

Invoking Data Descriptions in ADDS

4–12 8600 1526–202

Examples

The following are examples of the FD and SD statements:

002900 FD REMOTE-FILE.

003000 SD SORT-FILE INVOKE ALL.

See Also

• “Assigning Alias Identifiers” in this section.

• “Selecting a File” in this section.

Invoking Data Descriptions in ADDS
A data description entry specifies the characteristics of a particular data item. You use the
FROM DICTIONARY clause to obtain an entity from the dictionary.

Format

level-number

 ä å
 ³Ú ä INVOKE å ¿ ³
 ³³data-name-1 ã ïïïïïï â ³ data-name-2 ³
 ãÀ æ = ç Ù â
 ³ ³
 ³ group-list-name-1 ³
 æ ç

 FROM DICTIONARY
 ïïïï ïïïïïïïïïï
 [VERSION IS literal-1]
 ïïïïïïï
 Ú ä literal-2 å ¿
 ³DIRECTORY IS ã â ³
 Àïïïïïïïïï æ directory-name-1 ç Ù

 [COMMON]
 ïïïïïï
 [GLOBAL]
 ïïïïïï
 [EXTERNAL]. [;]
 ïïïïïïïï ï

Invoking Data Descriptions in ADDS

8600 1526–202 4–13

Explanation

level-number You can invoke the 01-level data description entry within
the File Section, the Working-Storage Section, the Linkage
Section, or the Local-Storage Section.

The data description entry is used within the File Section
to invoke record descriptions for a file that has not been
declared with the INVOKE ALL option.

data-name-1
data-name-2

The INVOKE data-name-2 clause can be used to invoke
01-record data descriptions so that data-name-1 is an alias
referenced in the program.

group-list-name-1 The group-list-name-1 identifies a record collection of
unrelated descriptions of 77-level or 01-level items and
records to be included in the Working-Storage Section, the
Linkage Section, or the Local-Storage Section.

VERSION clause The VERSION clause imports the exact version of the data
description being requested.

See “VERSION Clause” under “Identifying Specific
Entities” in this section for more information on the
Version clause.

literal-1 Literal-1 must be a numeric literal up to 6 digits long.

DIRECTORY clause The DIRECTORY clause specifies the directory under
which the entity is stored in the data dictionary.

See “DIRECTORY Clause” under “Identifying Specific
Entities” in this section for more information.

literal-2 Literal-2 must be a nonnumeric literal up to 17
alphanumeric characters long.

directory-name-1 Directory-name-1 must be a name of up to 17 alphanumeric
characters long.

COMMON You must specify this attribute in a subprogram for
referencing a data description declared in the host program
when binding.

GLOBAL You must specify this attribute in the main program if all
nested subprograms need access to the data description.

EXTERNAL You must specify this attribute if the data structure is
shared through interprogram communication (IPC) at run
time.

Invoking Data Descriptions in ADDS

4–14 8600 1526–202

; (Semicolon) The semicolon that follows the ending period can be used
to control the behavior of compiler control records (CCRs)
and the format of listings. This semicolon should always
be separated from the ending period of the data invocation
by at least one space.

IF a CCR immediately follows a data item invoked from the
dictionary, the compiler option changes might occur before
the compiler processes the information invoked from the
dictionary. This situation can be avoided by using the
semicolon after the ending period. The semicolon ensures
that the compiler processes the invoked information before
the option actually changes.

Details

When a program or library invokes data from a data dictionary, the COBOL85 compiler
includes a list of the invoked data in the listing file. The data appears immediately after
the invocation. To prevent the invoked data from appearing in the listing, you can reset
the LIST compiler option at the line that invokes the dictionary. For more information,
refer to “How ADDS Data Appears in a COBOL85 Listing” later in this section.

The following rules apply for invoking data descriptions in ADDS:

• You can invoke only a 01-level record or record collection directly from the data
dictionary. You cannot directly invoke an elementary item.

• You can invoke 01-level records within the File Section, the Working-Storage Section,
the Linkage Section, or the Local-Storage Section. However, you cannot invoke
record collections within the File Section. You can invoke record collections only
within the Working-Storage Section, the Linkage Section, or the Local-Storage Section.

• Within the File Section, if you select a file by using the SELECT statement shown for
ADDS, the record must be associated with that file in the data dictionary.

• A record collection cannot be given an alias identifier by means of the INVOKE clause.

• If a file is selected using the SELECT statement for ADDS, then record descriptions
invoked from the dictionary are allowed and record descriptions coded as usual are
allowed.

Example

003300 WORKING-STORAGE SECTION.
003400 01 MY-REC-LIST INVOKE
003500 ADDS-REC-LIST FROM DICTIONARY.
003600 VERSION IS 2
003700 DIRECTORY IS "*".

See Also

• “Assigning Alias Identifiers” in this section.

• “Invoking File Descriptions” in this section.

• “Identifying Specific Entities” in this section.

Sample ADDS Program

8600 1526–202 4–15

Sample ADDS Program
The following sample program uses the ADDS interface syntax. First, a list presents the
data definitions defined in the ADDS dictionary that are used in the program. Then the
COBOL85 program is presented.

ADDS Descriptions
**
* *
* DATA DEFINITIONS IN ADDS *
* *
**
 FILE-CONTROL.
 SELECT UNSORTED-SALES
 ASSIGN TO DISK.
 SELECT SORT-FILE
 ASSIGN TO SORT WITH DISK.
 SELECT SORTED-SALES
 ASSIGN TO DISK.
 SELECT PRINT-OUT
 ASSIGN TO PRINTER.
 SELECT EMPLOYEE-INFO
 ASSIGN TO DISK;
 ORGANIZATION IS INDEXED;
 ACCESS MODE IS RANDOM;
 RECORD KEY IS KEY-EMPNO.
 FILE SECTION.
 FD SORTED-SALES
 LABEL RECORDS ARE STANDARD.
 01 SORTED-REC.
 05 DEPT-IN PIC 99.
 05 SLSNO-IN PIC 9(5).
 05 AMT-OF-SALES-IN PIC 9(4)V99.
 05 FILLER PIC X(67).
 FD EMPLOYEE-INFO
 LABEL RECORDS ARE STANDARD.
 01 EMPLOYEE-REC.
 05 KEY-EMPNO PIC 9(5).
 05 NAME.
 06 FIRSTNAME PIC X(10).
 06 LASTNAME PIC X(10).
 05 PHONE.
 06 AREACODE PIC 999.
 06 PHONENUMBER PIC 9(7).
 05 FILLER PIC X(45).
 SD SORT-FILE.
 01 WORK-REC.
 05 W-DEPT-NO PIC 99.
 05 FILLER PIC X(98).
 FD UNSORTED-SALES.

Sample ADDS Program

4–16 8600 1526–202

 FD PRINT-OUT
 LABEL RECORDS ARE OMITTED.
 01 PRINT-REC PIC X(133).
 WORKING-STORAGE SECTION.
**
* HEADING-1 AND HEADING-2 WILL BE GROUPED UNDER HEADER-LIST *
* IN THE ADDS DICTIONARY *
**
 01 HEADING-1.
 05 FILLER PIC X(50) VALUE SPACES.
 05 FILLER PIC X(21)
 VALUE "MONTHLY STATUS REPORT".
 05 FILLER PIC X(9) VALUE SPACES.
 05 FILLER PIC X(5)
 VALUE "PAGE".
 05 HL-PAGE-NO-OUT PIC 99.
 05 FILLER PIC X(46) VALUE SPACES.
 01 HEADING-2.
 05 FILLER PIC X(11) VALUE SPACES.
 05 FILLER PIC X(10)
 VALUE "DEPT".
 05 FILLER PIC X(20)
 VALUE "SALESPERSON NO".
 05 FILLER PIC X(20)
 VALUE "NAME".
 05 FILLER PIC X(15)
 VALUE "PHONE NUMBER".
 05 FILLER PIC X(12)
 VALUE "AMT OF SALES".
 05 FILLER PIC X(80) VALUE SPACES.

Sample ADDS Program

8600 1526–202 4–17

COBOL85 Program Using ADDS Interface Syntax
**
* *
* ADDS INTERFACE EXAMPLE *
* *
* This is an example showing the proposed ADDS Interface *
* syntax in COBOL85. *
* This program creates a departmental sales report. It *
* first sorts a file containing sales information by *
* department number and then fetches the corresponding *
* salesman information from the salesman-info file. *
* This information is displayed and the total sales for the *
* department are displayed at the end of each department *
* section. *
* *
**
 IDENTIFICATION DIVISION.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SPECIAL-NAMES.
 DICTIONARY IS "DATADICTIONARY"
 PROGRAM-NAME IS "SAMPLE-PROGRAM"
 PROGRAM-VERSION IS 1
 PROGRAM-DIRECTORY IS "SAMPLE".
 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT UNSORTED-SALES
 FROM DICTIONARY
 DIRECTORY IS "SAMPLE".
 SELECT WORK-FILE INVOKE SORT-FILE
 FROM DICTIONARY
 VERSION IS 2
 DIRECTORY IS "SAMPLE".
 SELECT SORTED-SALES
 FROM DICTIONARY
 VERSION IS 1
 DIRECTORY IS "SAMPLE".
 SELECT SALESMAN-INFO INVOKE EMPLOYEE-INFO
 FROM DICTIONARY
 VERSION IS 1
 DIRECTORY IS "SAMPLE".
 SELECT PRINT-OUT
 FROM DICTIONARY
 VERSION IS 1
 DIRECTORY IS "SAMPLE".
 DATA DIVISION.
 FILE SECTION.
 FD SORTED-SALES INVOKE ALL.
 FD SALESMAN-INFO INVOKE ALL.
 SD WORK-FILE INVOKE ALL.

Sample ADDS Program

4–18 8600 1526–202

 FD UNSORTED-SALES.
 01 UNSORTED-REC PIC X(100).
 FD PRINT-OUT.
 01 PRINT-REC
 FROM DICTIONARY
 VERSION IS 1
 DIRECTORY IS "SAMPLE".
 01 DETAIL-LINE.
 05 FILLER PIC X(12).
 05 DL-DEPT-OUT PIC 99.
 05 FILLER PIC X(9).
 05 DL-SLSNO-OUT PIC 9(5).
 05 FILLER PIC X(14).
 05 DL-NAME-OUT PIC X(20).
 05 L-PAREN PIC X.
 05 DL-AREACODE-OUT PIC 999.
 05 R-PAREN PIC X.
 05 DL-PHONENUMBER-OUT PIC 9(7).
 05 FILLER PIC XX.
 05 DL-AMT-OF-SALES-OUT PIC $$,$$$.99.
 05 FILLER PIC X(48).
 01 GROUP-REC.
 05 FILLER PIC X(61).
 05 TOTAL PIC X(18).
 05 DEPT-TOTAL-OUT PIC $$$,$$$.99.
 05 FILLER PIC X(44).
/
**
* *
* WORKING STORAGE *
* *
**
 WORKING-STORAGE SECTION.
 01 WORK-AREAS.
 05 ARE-THERE-MORE-RECORDS PIC X(3) VALUE YES .
 88 MORE-RECORDS VALUE YES .
 88 NO-MORE-RECORDS VALUE NO .
 05 WS-HOLD-DEPT PIC 99 VALUE ZEROS.
 05 WS-DEPT-TOTAL PIC 9(5)V99 VALUE ZEROS.
 05 WS-LINE-CT PIC 99 VALUE ZEROS.
 05 WS-PAGE-CT PIC 99 VALUE ZEROS.
 01 HEADER-LIST
 FROM DICTIONARY
 VERSION IS 1
 DIRECTORY IS "SAMPLE".
/

Sample ADDS Program

8600 1526–202 4–19

**
* *
* MAIN BODY OF PROGRAM *
* *
* Controls the direction of program logic. *
* *
**
 PROCEDURE DIVISION.
 MAIN-MODULE.
 PERFORM INITIALIZATION-RTN.
 PERFORM HEADING-RTN.
 PERFORM DETAIL-RTN
 UNTIL NO-MORE-RECORDS.
 PERFORM END-OF-JOB-RTN.
 STOP RUN.
/
**
* *
* DETAIL-RTN *
* *
* Is performed from the main-module-rtn. It controls depart- *
* ment break, pagination, and reads the next record. It also *
* gets the corresponding salesman information record for each *
* report. *
* *
**
 DETAIL-RTN.
 IF DEPT-IN NOT = WS-HOLD-DEPT
 PERFORM CONTROL-BREAK.
 PERFORM INIT-DETAIL-LINE.
 MOVE DEPT-IN TO DL-DEPT-OUT.
 MOVE SLSNO-IN TO DL-SLSNO-OUT.
 MOVE SLSNO-IN TO KEY-EMPNO.
 READ SALESMAN-INFO
 KEY IS KEY-EMPNO.
 MOVE NAME TO DL-NAME-OUT.
 MOVE AREACODE TO DL-AREACODE-OUT.
 MOVE PHONENUMBER TO DL-PHONENUMBER-OUT.
 MOVE AMT-OF-SALES-IN TO DL-AMT-OF-SALES-OUT.
 IF WS-LINE-CT > 25
 PERFORM HEADING-RTN.
 WRITE DETAIL-LINE
 AFTER ADVANCING 2 LINES.
 ADD AMT-OF-SALES-IN TO WS-DEPT-TOTAL.
 ADD 1 TO WS-LINE-CT.
 READ SORTED-SALES
 AT END MOVE "NO " TO ARE-THERE-MORE-RECORDS.
/

Sample ADDS Program

4–20 8600 1526–202

**
* *
* CONTROL-BREAK *
* *
* Is performed from detail-rtn and prints department *
* totals, resets control fields and totals. *
* *
**
 CONTROL-BREAK.
 PERFORM INIT-GROUP-REC.
 MOVE WS-DEPT-TOTAL TO DEPT-TOTAL-OUT.
 WRITE GROUP-REC
 AFTER ADVANCING 2 LINES.
 MOVE ZEROS TO WS-DEPT-TOTAL.
 MOVE DEPT-IN TO WS-HOLD-DEPT.
 ADD 1 TO WS-LINE-CT.
/
**
* *
* HEADING-RTN *
* *
* Is performed from main-module, detail-rtn, and control- *
* break. It prints out headings and resets line counter. *
* *
**
 HEADING-RTN.
 MOVE SPACES TO PRINT-REC.
 MOVE " THIS IS THE ADDS INTERFACE EXAMPLE AS SEEN IN THE
 " ADDS/SDF PLUS INTERFACE IN COBOL85 DESIGN DOCUMENT"
 TO PRINT-REC.
 WRITE PRINT-REC AFTER ADVANCING PAGE.
 MOVE ALL "*" TO PRINT-REC.
 WRITE PRINT-REC AFTER ADVANCING 2 LINES.
 ADD 1 TO WS-PAGE-CT.
 MOVE WS-PAGE-CT TO HL-PAGE-NO-OUT.
 WRITE PRINT-REC FROM HEADING-1
 AFTER ADVANCING 3 LINES.
 WRITE PRINT-REC FROM HEADING-2
 AFTER ADVANCING 3 LINES.
 MOVE ALL "*" TO PRINT-REC.
 WRITE PRINT-REC AFTER ADVANCING 1 LINE.
 MOVE SPACES TO PRINT-REC.
 MOVE ZEROS TO WS-LINE-CT.
/

Sample ADDS Program

8600 1526–202 4–21

**
* *
* INIT-DETAIL-LINE *
* *
* Is performed from detail-rtn. It initializes the detail *
* line before data is moved in to be printed. *
* *
**
 INIT-DETAIL-LINE.
 MOVE SPACES TO DETAIL-LINE.
 MOVE "(" TO L-PAREN.
 MOVE ")" TO R-PAREN.
/
**
* *
* INIT-GROUP-REC *
* *
* Is performed from control-break. It initializes the *
* total line before data is moved in to be printed. *
* *
**
 INIT-GROUP-REC.
 MOVE SPACES TO GROUP-REC.
 MOVE "TOTAL FOR DEPT IS " TO TOTAL.
/

Sample ADDS Program

4–22 8600 1526–202

**
* *
* INITIALIZATION-RTN *
* *
* Is performed from main-module. It opens files, sorts the *
* sales information by department number, performs the *
* initial read and initializes dept-hold. *
* *
**
 INITIALIZATION-RNT.
 SORT WORK-FILE
 ON ASCENDING KEY W-DEPT-NO
 USING UNSORTED-SALES
 GIVING SORTED-SALES.
 OPEN INPUT SORTED-SALES
 INPUT SALESMAN-INFO
 OUTPUT PRINT-OUT.
 READ SORTED-SALES
 AT END MOVE "NO" TO ARE-THERE-MORE-RECORDS.
 MOVE DEPT-IN TO WS-HOLD-DEPT.
/
**
* *
* END-OF-JOB-RTN *
* *
* Is performed from main-module. It performs end-of-job *
* functions, closes files and returns control to operation *
* system. *
* *
**
 END-OF-JOB-RTN.
 PERFORM INIT-GROUP-REC.
 MOVE WS-DEPT-TOTAL TO DEPT-TOTAL-OUT.
 WRITE GROUP-REC
 AFTER ADVANCING 2 LINES.
 CLOSE SORTED-SALES
 SALESMAN-INFO
 PRINT-OUT.

How ADDS Data Appears in a COBOL85 Listing

8600 1526–202 4–23

How ADDS Data Appears in a COBOL85 Listing
The preceding COBOL85 program invokes several data descriptions from an ADDS
program. Each data invocation is documented in the COBOL listing.
The first line of the COBOL listing names the dictionary directory from which the data was
invoked. The right-hand margin of each line contains the status and version for each
entity invoked. The status is indicated by the first character of the word DEFINEIT,
TEST, PRODUCTION, or HISTORY, or is blank if the status is unspecified. The version
number is printed immediately after the status. Each line ends with the letter D to
indicate that the line contains information invoked from the dictionary.

Example

The following SELECT statement appears in the File Control paragraph of the Input-
Output section of the COBOL program presented earlier in this section. This statement
invokes data from the ADDS data dictionary:

SELECT SALESMAN-INFO INVOKE EMPLOYEE-INFO
FROM DICTIONARY
 VERSION IS 1
 DIRECTORY IS "SAMPLE".

The resultant entry in the COBOL listing for this data invocation looks like the following:

000100*--DICTIONARY DIRECTORY: SAMPLE.
000110* ASSIGN TO DISK;
000120* ORGANIZATION IS INDEXED;
000130* ACCESS MODE IS RANDOM;
000140* RECORD KEY IS KEY-EMPNO.
 *
 000160 FD EMPLOYEE-INFO
 *
000100*--DICTIONARY DIRECTORY: SAMPLE.
000110* LABEL RECORDS ARE STANDARD.
000120 01 EMPLOYEE-REC.
000130 05 KEY-EMPNO PIC 9(5).
000140 05 NAME.
000150 06 FIRSTNAME PIC X(10).
000160 06 LASTNAME PIC X(10).
000170 05 PHONE.
000180 06 AREACODE PIC 999.
000190 06 PHONENUMBER PIC 9(7).
000200 05 FILLER PIC X(45).

Note: To prevent invoked data from appearing in the listing, you can reset the LIST

compiler control option at the line that invokes the dictionary data.

How ADDS Data Appears in a COBOL85 Listing

4–24 8600 1526–202

8600 1526–202 5–1

Section 5
Using the SDF Plus Program
Interface

Screen Design Facility Plus (SDF Plus) is a user interface management system that gives
you the ability to define a complete form-based user interface for an application system. It
is a programming tool for simple and efficient designing and processing of forms. SDF
Plus provides form processing that eliminates the need for complicated format language
or code and that validates data entered on forms by application users.

The program interface for SDF Plus includes the following:

• Extensions that enable you to invoke form record library descriptions of SDF Plus
forms into your program

• Extensions that enable you to send and receive form data

• Extensions that enable you to send transaction error messages and text messages

This section provides information about the extensions developed for SDF Plus. Each
extension is presented with its syntax and examples. A sample program appears at the
end of this section.

For information on defining the concepts and principles of SDF Plus, refer to the Screen

Design Facility Plus (SDF Plus) Capabilities Manual.

For information on general implementation and operation considerations, refer to the
Screen Design Facility Plus (SDF Plus) Installation and Operations Guide.

For information on general programming concepts and considerations, refer to the Screen

Design Facility Plus (SDF Plus) Technical Overview.

You can use SDF Plus with the following:

• The Advanced Data Dictionary System (ADDS)

• The Communications Management System (COMS)

For information on the extensions used with ADDS and COMS, refer to Section 4, “Using
the ADDS Program Interface,” and Section 2, “Using the COMS Program Interface.”

Understanding the SDF Plus Interface

5–2 8600 1526–202

Understanding the SDF Plus Interface
COBOL85 application programs can interact with SDF Plus using either a CALL interface
or a COMS interface. Programs using the CALL interface interact through a set of entry
procedures, and programs using the COMS interface interact through the standard COMS
SEND and RECEIVE verbs. Either interface can be used to interface with SDF Plus
except that certain capabilities, such as COMS windows, require the COMS interface.
Both the CALL interface and the COMS interface are described in this section.

The interface to SDF Plus is based on the concept of form record libraries.

Form Record Libraries
A form record library is a collection of descriptions of each of the message types and
transaction types associated with an SDF Plus form library. The form record library
resides in a data dictionary and is maintained by SDF Plus. It has the same name as the
form library it describes.

A COBOL85 program must have access to the description within the form record library so
that it can properly format data for transfer between the program and SDF Plus.
Declaring the name of a form record library within a program enables the COBOL85
compiler to obtain a copy of the form record library from the data dictionary at
compilation time. You can invoke multiple form record libraries within the same program.

The various elements of the form record library are described in the following pages.

Message Types
Message types represent records of data, either data received from a form or data sent to a
form. Each message type consists of fields of defined length and data type. A form can
have several message types associated with it; therefore, a one-to-one relationship
between forms and messages does not exist. For example, a form might have a prefill
request message type (which is also the prefill response message type), an update request
message type, and an update response message type (also called a standard response),
each having a different data format. In some manuals, the term form record is a synonym
for message type.

With SDF Plus there is a complete separation between the form processing logic and the
application logic. For example, modifying the layout or data validation logic of a form
does not affect the amount or type of data transferred between the form and the
application. Therefore, the message type definitions do not change. You need not
recompile a program unless the message type definitions change.

Transaction Types
For each form, SDF Plus allows two types of transaction, prefill and update. For each
transaction type, there is an associated request message type, response message type, and
a list of transaction errors.

Understanding the SDF Plus Interface

8600 1526–202 5–3

When an application receives data from the user interface, the application uses the
transaction type to determine what data it has received (request message type) and what
data to send in response (response message type), or what errors can be returned (list of
transaction errors).

Example

A form library, MSGKEYS, contains two update-only forms, FORM1 and FORM2.
Therefore, MSGKEYS contains two transaction types: FORM1 update transaction type,
FORM1TT, and FORM2 update transaction type, FORM2TT. FORM1TT contains two
associated message types, a request message type, FORM1, and a response message type,
MSGKEYSSR. FORM2TT also contains two message types, FORM2 and MSGKEYSSR.
The response message type is the same for all update transaction types in the form record
library; it is the standard response (SR) for the form record library, MSGKEYSSR.

The following example shows the general structure, but not the actual record description,
of the form record library obtained from SDF Plus:

FORM RECORD LIBRARY MSGKEYS
TRANSACTION TYPE FORM1TT
MESSAGE TYPE FORM1
MESSAGE TYPE MSGKEYSSR
TRANSACTION TYPE FORM2TT
MESSAGE TYPE FORM2
MESSAGE TYPE MSGKEYSSR

The following example shows what you should do to invoke the form record library from
the dictionary:

01 MSGKEYS FROM DICTIONARY
 DIRECTORY IS "SMITH".

The following example shows how COBOL85 interprets the form record library and
constructs syntax for accessing the information described by the form record library:

01 FORM1.
 04 KEYFIELD PIC X(5).
 04 DATAFIELD PIC X(4).
 04 QUITFIELD PIC X(1).
01 MSGKEYSSR.
 04 MSGKEYSSRF PIC X(1).
01 FORM2.
 04 KEY2FLD PIC X(5).
 04 DATA2FLD PIC 9(4).
 04 QUIT2FLD PIC X(1).

Identifying the Dictionary

5–4 8600 1526–202

Note that in the first example showing the general structure of the form record library,
MSGKEYSSR appears twice. However, in the last example showing how COBOL85
interprets the form record library, MSGKEYSSR appears only once. SDF Plus maintains
the logical structure, as shown in the first example, when processing the user interface.
When coding and designing the program, you also must keep the logical structure of the
form record library in mind.

Identifying the Dictionary
You identify the dictionary that contains the form library you want to use by including a
DICTIONARY statement in the SPECIAL-NAMES paragraph of the Environment Division.
You can use optional program clauses to enable entity tracking in ADDS.

Format

 [DICTIONARY IS literal-1.]
 ïïïïïïïïïï

Explanation

DICTIONARY The DICTIONARY clause specifies the function name of the
dictionary library.

literal-1 Literal-1 is the function name that you can equate to a library
code file by using the SL (Support Library) system command.

Refer to the Screen Design Facility Plus (SDF Plus) Installation and Operations Guide

for instructions on equating these names.

Example

IDENTIFICATION DIVISION.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SPECIAL-NAMES.
 DICTIONARY IS "SDFPLUSDICTIONARY".

Invoking Data Descriptions in SDF Plus

8600 1526–202 5–5

Invoking Data Descriptions in SDF Plus
You use a special data description entry to invoke a form record library from the
dictionary. The syntax for the data description entry is as follows:

Format

level-number form-record-library-name-1
ïïïïïïïïïïïï
 FROM DICTIONARY
 ïïïï ïïïïïïïïïï
 Ú ä SAME RECORD AREA å ¿
 ³ ã ïïïï â ³
 À æ SEPARATE RECORD AREA ç Ù
 ïïïïïïïï
 [VERSION IS literal-1]
 ïïïïïïï
 Ú ä literal-2 å ¿
 ³ DIRECTORY IS ã â ³
 À ïïïïïïïïï æ directory-name-1 ç Ù

 [REDEFINES form-record-library-name-2]
 ïïïïïïïïï
 [COMMON]
 ïïïïïï
 [GLOBAL]
 ïïïïïï
 [EXTERNAL] . [;]
 ïïïïïïïï ï

Explanation

level-number You can invoke the 01-level data description entry within
the File Section, the Working-Storage Section, the Linkage
Section, or the Local-Storage Section.

The level-number must be 01.

form-record-library-
name-1

The form-record-library-name-1 identifies a collection of
record descriptions for message types and transaction
types.

This must immediately follow the level-number. The
REDEFINES clause, if present, must immediately follow
form-record-library-name-1. All other clauses can be
present in any order.

SAME RECORD
AREA clause

The SAME RECORD AREA clause invokes all record
descriptions in the form record library as redefinitions of
the first record description in the form record library.

Invoking Data Descriptions in SDF Plus

5–6 8600 1526–202

SEPARATE RECORD
AREA clause

The SEPARATE RECORD AREA clause is used to invoke
each record in the form record library as a separate data
description, with its own record area.

VERSION clause The VERSION clause invokes a specified version of the
form record library. The most recent version is invoked by
default if the version clause is omitted.

literal-1 This must be a numeric literal up to 6 digits long.

DIRECTORY clause The DIRECTORY clause specifies the directory under
which the form record library is stored in the data
dictionary.

literal-2 This must be a nonnumeric literal up to 17 alphanumeric
characters long.

directory-name-1 This must be a name of up to 17 alphanumeric characters
long.

REDEFINES clause The REDEFINES clause enables the same memory to be
described by different data descriptions. You must have
specified the SAME RECORD AREA clause in the data
description of form-record-library-name-2 so that the
records in form-record-library-name-1 redefine the first
record in form-record-library-name-2. The records in
form-record-library-name-1 redefine the first record in
form-record-library-name-2.

COMMON You must specify this in a subprogram for referencing a
form record library declared in the host program when
binding.

GLOBAL You must specify this in the main program if all nested
subprograms need access to the form record library.

EXTERNAL You must specify this if the data structure is shared through
interprogram communication (IPC) at run time.

; (Semicolon) The semicolon that follows the ending period can be used
to control the behavior of compiler control records (CCRs)
and the format of listings. This semicolon should always be
separated from the ending period of the data invocation by
at least one space.

Invoking Data Descriptions in SDF Plus

8600 1526–202 5–7

IF a CCR immediately follows a data item invoked from the
dictionary, the compiler option changes might occur before
the compiler processes the information invoked from the
dictionary. This situation can be avoided by using the
semicolon after the ending period. The semicolon ensures
that the compiler processes the invoked information before
the option actually changes.

Details

You can include a data description entry for a form record library in any of the following
sections of the Data Division:

• File Section

• Working-Storage Section

• Linkage Section

• Local-Storage Section

Note, however, that you can use the SAME RECORD AREA, SEPARATE RECORD AREA,
and REDEFINES clauses only with data description entries in the Working-Storage
Section, the Linkage Section, and the Local-Storage Section.

If you do not specify the SAME RECORD AREA clause in your data description entry,
separate record areas are assumed.

You cannot use the INVOKE clause to give an alias to a form record library.

You can only invoke a form record library directly from the dictionary. You cannot
directly invoke either a transaction type or a message type.

Examples

In the following example, the form record library SAMPLELIB is imported from the
dictionary:

DATA DIVISION.
WORKING-STORAGE SECTION.
01 SAMPLELIB FROM DICTIONARY.

In the following example, Version 2 of the form record library SAMPLELIB is imported
from the data dictionary. The directory is SMITH.

DATA DIVISION.
WORKING-STORAGE SECTION.
01 SAMPLELIB FROM DICTIONARY
 VERSION IS 2
 DIRECTORY IS "SMITH".

Invoking Data Descriptions in SDF Plus

5–8 8600 1526–202

In the following example, the form record library SAMPLELIB is redefined by
SAMPLELIB3:

DATA DIVISION.
WORKING-STORAGE SECTION.
01 SAMPLELIB FROM DICTIONARY; SAME RECORD AREA.
01 SAMPLELIB3 FROM DICTIONARY;
 REDEFINES SAMPLELIB;
 SAME RECORD AREA.

See Also

• “Assigning Alias Identifiers” in Section 4.

• “Identifying Specific Entities” in Section 4.

• “Using the ADDS Program Interface” in Section 4.

Using SDF Plus Control Parameters

8600 1526–202 5–9

Using SDF Plus Control Parameters
The application program uses a set of control parameters in conjunction with the CALL
statements in order to communicate with SDF Plus at execution time. These control
parameters are contained in a COPY library that must be included in the Working Storage
Section of the application program.

The following paragraphs describe the COPY library and the control parameters.

SDF Plus COPY Library
After defining a form library, the user interface designer will request SDF Plus to generate
a COBOL85 COPY library for the form library. The COPY library must be included in the
application program. The COPY library contains the following types of information:

• Transaction number of each transaction

• Message number of each message

• Form record library description

Ensure that your application program does not modify the COPY library information.

The SDF Plus COPY library has the following layout:

 01 TRANSNUM-<form-record-library-name>.
 02 <transaction-type-name-1>.
 03 TRANSNUM PIC 9(4) COMP VALUE 1.
 02 <transaction-type-name-2>.
 03 TRANSNUM PIC 9(4) COMP VALUE 2.
 .
 .
 .
 01 MSGNUM-<form-record-library-name>.
 02 <message-type-name-1>M.
 03 MSGNUM PIC 9(4) COMP VALUE 1.
 02 <message-type-name-2>M.
 03 MSGNUM PIC 9(4) COMP VALUE 2.
 .
 .
 .
 01 FRLD-<form-record-library-name>.
$ RESET LIST
 02 FILLER PIC X(12) VALUE @<24-hex-digits>@.
 .
 .
 .
 02 FILLER PIC X(12) VALUE @<24-hex-digits>@.
$ POP LIST

Using SDF Plus Control Parameters

5–10 8600 1526–202

The names of the data items in the COPY library cannot exceed 30 characters in length.
Therefore, the names of the data items generated by SDF Plus might not include the full
name of the form record library, as in the following example:

01 TRANSNUM-LONGFORMRECORDLIBRARY.
 .
 .
 .
 01 MSGNUM-LONGFORMRECORDLIBRARYNA.
 .
 .
 .
01 FRLD-LONGFORMRECORDLIBRARYNAME.

To include the COPY library in the program at compile time, you must include the
following statement in the Working-Storage Section of the program:

COPY "SDFPLUS/COBOL/<directory-name>/<form-record-library-name>".

For example, to include the COPY library used by the example program at the end of this
section, the following statement was used:

COPY "SDFPLUS/COBOL/SIMPLE/SIMPLEFL".

If the <form-record-library-name> is more than 17 characters long, the name is divided
into two parts, with the first part containing 17 characters, as shown in the following
example:

COPY "SDFPLUS/COBOL/UC/LONGFORMRECORDLIB/RARYNAME".

You can include more than one COPY library within a program.

Transaction Numbers

A unique transaction number is assigned to each transaction type within a form record
library. The transaction numbers are given by the fields in the record called
TRANSNUM-<form-record-library-name> within the COPY library. When an application
program receives a message, it can use the transaction number to determine the form and
transaction type to which the message applies.

The names of the transaction number fields are the same as the names of the transaction
types defined in the form record library. Transaction type names are formed in SDF Plus
by adding either TT or PTT to the end of the form name. TT is used for the update
transaction type and PTT is used for the prefill transaction type. For example, to refer to
the number of a particular transaction type such as SIMPLEENTRYTT, you would use the
following code fragment in the Procedure Division of the program:

TRANSNUM OF SIMPLEENTRYTT

Using SDF Plus Control Parameters

8600 1526–202 5–11

The transaction number is typically used to determine which transaction type was
received, as in the following example:

IF SDFPLUS-TRANSNUM = TRANSNUM OF SIMPLEENTRYTT
 PERFORM HANDLE-SIMPLEENTRYTT THRU
 HANDLE-SIMPLEENTRYTT-EXIT
ELSE . . .

Message Numbers

A unique message number is assigned to each message type in a form record library. In
some manuals, the term form record number is a synonym for message number.

The names of the message number fields are the same as the names of the message types
defined in the form record library, except that the letter M is appended. Message number
field names are formed in SDF Plus by adding M to the form name for update transaction
request message types, PREM to the form name for prefill transaction message types, or
by adding SRM to the form record library name for standard response message types. An
M is appended to the names of the message numbers in order to distinguish them from the
names of the message types themselves. The names of the message types are
incorporated into the application program when the form record library is invoked.

To refer to the number of a particular message type, such as the standard response
message type SIMPLEFLSR, the following code fragment appears in the Procedure
Division of the program:

MSGNUM OF SIMPLEFLSRM

The message number is typically used to indicate the message type to be sent from the
program to the user interface system. Therefore, this is how the code fragment would
most likely appear in the program:

MOVE MSGNUM OF SIMPLEFLSRM TO SDFPLUS-MSGNUM.

Form Library Description

This description consists of such things as timestamps for the message types and
transaction types, layouts of the message types, and form names for command messages.
Since this information is encoded in binary, the A Series COBOL extension of designating
a hex string by @<hex-characters>@ in the data description VALUE clause is used for this
information.

The form record library description information is only used by SDF Plus; it is not used by
the application program. Since this information can be extensive, RESET and POP of the
LIST compiler control option surround this information.

Using SDF Plus Control Parameters

5–12 8600 1526–202

Generating the COPY Library

The COPY library is generated in a way similar to generating a COMS processing item.
This is accomplished by selecting a form library on the Form Library List form in SDF Plus
and choosing the COBOL operation.

Additional SDF Plus Control Parameters
If a program uses COMS direct windows, then fields within the COMS header are used to
exchange control information with SDF Plus. For a program that uses the CALL interface
rather than the COMS interface, additional data items must be declared to serve a similar
purpose. The following data items are used as parameters in the calls to SDF Plus:

77 SDFPLUS-RESULT PIC S9(11) BINARY.
77 SDFPLUS-TRANSNUM PIC 9(11) BINARY.
77 SDFPLUS-MSGNUM PIC 9(11) BINARY.
77 SDFPLUS-TRANERROR PIC 9(11) BINARY.
77 SDFPLUS-DEFAULTMSG PIC 9(11) BINARY.
77 SDFPLUS-TEXTLENGTH PIC 9(11) BINARY.

Since these parameters are required in every program that calls SDF Plus, they will appear
as part of the COPY library generated for the form record library. Also, since you can
include more than one COPY library in a program, the reserved compiler control option
SDFPLUSPARAMETERS is used to ensure that these control parameters are included only
once in the program.

Each parameter is described in detail in the following pages. Note that not every
parameter is used in every call.

SDFPLUS-RESULT

This parameter is the result parameter and is used in every call. SDF Plus uses this
parameter to indicate the success or failure of the call made.

Using SDF Plus Control Parameters

8600 1526–202 5–13

Table 5–1 provides an interpretation of the values found in the SDFPLUS-RESULT field.
The values and interpretation of this field are the same as the values and interpretation of
the SDFINFO field of a COMS input header.

Table 5–1. Values and Meaning of SDFPLUS-RESULT Field

Result Number Meaning

0 No error.

-100 Timestamp mismatch.

SDF Plus keeps track of the timestamps of the message types
and transaction types within the form library. These timestamps
reflect the time of the last update to the message type or
transaction type.

When the COPY library is generated, timestamps for the
transaction types and message types are placed into the form
record library description record.

Whenever a message or transaction is passed between SDF Plus
and the program, the timestamp in the form library is compared
with the timestamp in the form record library description record.

If they do not match, which might happen if the form library is
changed after the COPY library is generated, this result is
returned.

To obtain the correct timestamps, you should generate the COPY
library and compile the program again.

-200 Invalid message type number.

The message types are numbered from 1 to n, where n is the
number of message types in the form record library. The
program either set the message number to 0 or used a message
number greater than n.

This is most likely the result of a programming error. Correct the
error and recompile the program.

-300 Invalid transaction type number.

The transactions are numbered from 1 to n, where n is the
number of transactions in the form record library. The program
either set the transaction number to 0 or used a transaction
number greater than n. This is most likely the result of a
programming error. Correct the error and recompile the
program.

-400 Invalid message key.

This result is returned if the form library uses message keys and
the last input from the end user did not contain a valid message
key. The raw data received from the end user is placed into the
data buffer. Both the message number and transaction number
are set to 0.

Using SDF Plus Control Parameters

5–14 8600 1526–202

SDFPLUS-TRANSNUM

After an application program receives a message from SDF Plus through the CALL
interface, this parameter contains the transaction number of the data received. The
programs checks the transaction number to determine which transaction type was
received, as shown in the following example:

IF SDFPLUS-TRANSNUM = TRANSNUM OF SIMPLEENTRYTT
 PERFORM HANDLE-SIMPLEENTRYTT THRU
 HANDLE-SIMPLEENTRYTT-EXIT
ELSE IF SDFPLUS-TRANSNUM = TRANSNUM OF SIMPLEDISPLAYPTT
 PERFORM HANDLE-SIMPLEDISPLAYPTT THRU
 HANDLE-SIMPLEDISPLAYPTT-EXIT
ELSE . . .

The transaction number is also used when sending a transaction error. See
“SDFPLUS-TRANERROR” in this section for more details.

SDFPLUS-MSGNUM

When an application program sends data to SDF Plus through the CALL interface, this
parameter is used to indicate which message type the application program is sending. The
program moves the message number of the appropriate message type to this parameter, as
follows:

MOVE MSGNUM OF SIMPLEFLSRM TO SDFPLUS-MSGNUM.

A command message is a request from the application program to SDF Plus to display a
form, allowing the program to control the sequence of forms. An application program can
send a command message to SDF Plus by moving the message number of a command
message to the SDFPLUS-MSGNUM parameter. A command message defined through
SDF Plus has the same name as the form with an M appended. The following statement
sets the message number properly for sending the command message:

MOVE MSGNUM OF SIMPLEDISPLAYM TO SDFPLUS-MSGNUM.

When an application program receives a message from SDF Plus through the CALL
interface, this parameter contains the message number of the message type received.
Although the program could check the message number rather than the transaction
number to determine what was received, this method should be avoided because future
changes to SDF Plus might cause unexpected results.

Using SDF Plus Control Parameters

8600 1526–202 5–15

SDFPLUS-TRANERROR

The application program uses this parameter to indicate to SDF Plus that a transaction
error has occurred. The application program moves a transaction error number to this
field and sends a transaction error message. The SDFPLUS-TRANSNUM parameter is also
required when sending a transaction error; however, it is always set correctly since it
contains the transaction number of the last transaction received.

MOVE SE-ALPHAERROR TO SDFPLUS-TRANERROR.

SDFPLUS-DEFAULTMSG

When an application program sends a message to SDF Plus through the CALL interface,
this parameter indicates whether or not the message contains data. The program sets this
parameter to 0 if data is sent with the message and to 1 if there is no data.

Normally, the program sets this to 0. If the program sets this parameter to 1, the form
library uses the default values for the fields in the message. This flag is set in conjunction
with setting the message number field, as follows:

MOVE 1 TO SDFPLUS-DEFAULTMSG.
MOVE MSGNUM OF SIMPLEFLSRM TO SDFPLUS-MSGNUM.

SDFPLUS-TEXTLENGTH

When the program is sending text to the user interface system, the program sets this
parameter to indicate the number of characters of text to be sent. The program can also
set this to 0 to indicate that all of the text in the text record is to be sent. The text-length
parameter is shown in the following example:

MOVE "Here is some text to display." TO TEXT-RECORD.
MOVE 29 TO SDFPLUS-TEXTLENGTH.

Run Time Support and Initialization
If your program uses COMS direct windows, then your program communicates to SDF
Plus through the use of the SEND and RECEIVE verbs. If your program does not use
COMS direct windows, your program uses the following four entry points to communicate
with SDF Plus:

Your program uses . . . To . . .

WAIT_FOR_TRANSACTION Receive a transaction.

SEND_MESSAGE Send a message.

SEND_TRANSACTION_ERROR Send an error.

SEND_TEXT Send text.

Using SDF Plus Control Parameters

5–16 8600 1526–202

Each entry point is discussed in the following pages, as well as how to link to the SDF
Plus Forms Support library.

COBOL85 programs that do not use COM direct windows access SDF Plus through the
use of the CALL verb. Before calling SDF Plus, the program performs the following
statements during initialization:

CHANGE ATTRIBUTE LIBACCESS OF "SDFPLUS" TO BYFUNCTION.
CHANGE ATTRIBUTE FUNCTIONNAME OF "SDFPLUS" TO "FORMSSUPPORT".

These statements are necessary to properly link the program to the SDF Plus Forms
Support library that is identified through the ODT SL command.

WAIT_FOR_TRANSACTION

This routine is called by the program in order to receive the next transaction from the user
interface system. The syntax is as follows:

CALL "WAIT_FOR_TRANSACTION IN SDFPLUS"
 USING <description-record>,
 <data-structure>,
 SDFPLUS-TRANSNUM,
 SDFPLUS-MSGNUM,
 SDFPLUS-RESULT.

The parameters for the WAIT_FOR_TRANSACTION routine are as follows:

<description-record> This is the form record library description record given
in the COPY library.

<data-structure> This is the working storage area into which the data
sent from the user interface system to the program is
to be placed. Typically this is a 01-level data structure,
large enough to accept all of the data for the largest
message type.

SDFPLUS-TRANSNUM
SDFPLUS-MSGNUM
SDFPLUS-RESULT

These are the SDF Plus control parameters discussed
previously. The program does not set up any of the
parameters before making the call. After the call, the
program can check the SDFPLUS-TRANSNUM,
SDFPLUS-MSGNUM, and SDFPLUS-RESULT
parameters.

The program is waiting for a transaction in the following example:

CALL "WAIT_FOR_TRANSACTION IN SDFPLUS"
 USING FRLD-SIMPLEFL,
 SIMPLEFL-RECORD,
 SDFPLUS-TRANSNUM,

Using SDF Plus Control Parameters

8600 1526–202 5–17

 SDFPLUS-MSGNUM,
 SDFPLUS-RESULT.

SEND_MESSAGE

This routine is called by the program in order to send a message to the user interface
system. The syntax is as follows:

CALL "SEND_MESSAGE IN SDFPLUS"
 USING <description-record>,
 <data-structure>,
 SDFPLUS-MSGNUM,
 SDFPLUS-DEFAULTMSG,
 SDFPLUS-RESULT.

The parameters for the SEND_MESSAGE routine are as follows:

<description-record> This is the form record library description record.

<data-structure> This is the working storage area from which the
data is sent to the user interface system.

SDFPLUS-MSGNUM
SDFPLUS-DEFAULTMSG
SDFPLUS-RESULT

These are the SDF Plus control parameters. The
program must set up parameters for
SDFPLUS-MSGNUM and SDFPLUS-DEFAULTMSG
before making the call. After the call, the program
can check the SDFPLUS-RESULT parameter.

The program is sending a message in the following example:

CALL "SEND_MESSAGE IN SDFPLUS"
 USING FRLD-SIMPLEFL,
 SIMPLEFL-RECORD,
 SDFPLUS-MSGNUM,
 SDFPLUS-DEFAULTMSG,
 SDFPLUS-RESULT.

SEND_TRANSACTION_ERROR

This routine is called by the program in order to send a transaction error number to the
user interface system. The syntax is as follows:

CALL "SEND_TRANSACTION_ERROR IN SDFPLUS"
 USING <description-record>,
 SDFPLUS-TRANSNUM,
 SDFPLUS-TRANERROR,
 SDFPLUS-RESULT.

Using SDF Plus Control Parameters

5–18 8600 1526–202

<description-record> This is the form record library description
record.

SDFPLUS-TRANSNUM
SDFPLUS-TRANERROR
SDFPLUS-RESULT

These are the SDF Plus control
parameters. The program must set up
parameters for SDFPLUS-TRANSNUM and
SDFPLUS-TRANERROR before making
the call. After the call, the program can
check the SDFPLUS-RESULT parameter.

Since no data is sent with a transaction error, <data-structure> does not appear.

Note: The call for SEND_TRANSACTION_ERROR only sends a transaction error

number to SDF Plus; it does not cause SDF Plus to initiate transaction error

processing. SDF Plus stores the transaction error number until the program

calls either SEND_MESSAGE or WAIT_FOR_TRANSACTION. In most cases the

program calls SEND_TRANSACTION_ERROR and then calls SEND_MESSAGE,

to send the standard response, in order to initiate transaction error processing.

The program might call SEND_TRANSACTION_ERROR more than once to

indicate several errors before calling SEND_MESSAGE.

The program is sending a transaction error in the following example:

CALL "SEND_TRANSACTION_ERROR IN SDFPLUS"
 USING FRLD-SIMPLEFL,
 SDFPLUS-TRANSNUM,
 SDFPLUS-TRANERROR,
 SDFPLUS-RESULT.

SEND_TEXT

This routine is called by the program in order to send some text to the user interface
system. The syntax is as follows:

CALL "SEND_TEXT IN SDFPLUS"
 USING <text-data-structure>,
 SDFPLUS-TEXTLENGTH,
 SDFPLUS-RESULT.

The parameters for the SEND_TEXT routine are as follows:

<text-data-structure> This must be a 01-level data structure
that contains the text to be sent. If
SDPLUS-TEXTLENGTH is set to zero,
the entire data-structure is sent.

Using SDF Plus Control Parameters

8600 1526–202 5–19

SDFPLUS-TEXTLENGTH
SDFPLUS-RESULT

These are the SDF Plus control
parameters. The program must set up
the SDFPLUS-TEXTLENGTH
parameter before making the call.
After the call, the program can check
the SDFPLUS-RESULT parameter.

Note: The call for SEND_TEXT only sends a text message to SDF Plus; it does not

cause SDF Plus to display the text. SDF Plus stores the text until the program

calls either SEND_MESSAGE or WAIT_FOR_TRANSACTION. At that point SDF

Plus appends the text message to the form that is displayed as a result of calling

SEND_MESSAGE or WAIT_FOR_TRANSACTION. The program might call

SEND_TEXT more than once before calling SEND_MESSAGE or

SEND_TRANSACTION.

Continuing the example, the program is sending some text contained in a data-structure
called SOME-TEXT, as shown in the following example:

CALL "SEND_TEXT IN SDFPLUS"
 USING SOME-TEXT,
 SDFPLUS-TEXTLENGTH,
 SDFPLUS-RESULT.

Remote File
COBOL85 programs that use the CALL interface, rather than the COMS direct window
interface, use remote files for communication. However, the remote file is not declared in
the application program but in the SDF Plus Forms Support library.

Remote File READ and WRITE

SDF Plus owns the remote file, and that remote file is open for input and output to the end
user. The program can declare a remote file, open it for output only, and send messages
directly to the end user since several remote files can be opened for output only to a single
station. However, sending messages directly to the end user, rather than calling
“SEND_TEXT,” is not recommended.

Only one input-capable remote file can be attached to a station. Since SDF Plus opens its
remote file as input-capable, the program cannot open another input-capable remote file
for that station.

Multi-User Remote File

If the program uses the CALL interface, and can handle multiple users, then the program
should be declared in a COMS remote file window. Multiple users can then attach to the
program by opening the corresponding window. The program cannot attach new stations
to the remote file, since SDF Plus owns the remote file.

Using SDF Plus Control Parameters

5–20 8600 1526–202

Debugging with TADS
COBOL85 application programs that use SDF Plus to manage the user interface can be
debugged by using Test And Debug System (TADS). Although there are different ways
that this might be accomplished, the following steps are suggested:

1. Place the TADS compiler option in your program:

$$SET TADS

 (Do not declare a remote file in your program; TADS declares one for you.)

2. Compile the program.

3. Run the program with or without TADS.

a. You can run the program without TADS by entering

RUN MYPROG

b. You can run the program with TADS, by providing the logical station number
(LSN) of a physical station within your network. You can determine the LSN by
entering the ?WRU command in COMS. Assuming that your physical LSN is 179,
you can start up the program with a TADS session through CANDE as follows:

RUN MYPROG; TADS; STATION=179

 The TADS option starts the TADS session. The STATION option redirects all remote
files to the station with LSN 179. Two remote files are opened, one for the TADS
session and the other for your SDF Plus application.

The requests to open the remote files are rerouted to COMS, which owns the physical
station. You are notified that your MARC window contains a new message for you.
Perform the following steps to access the remote files:

1. Switch to the MARC window.

 This window shows that, for example, window REM0001 is open.

2. Switch to the indicated window, REM0001.

 This gets you into the TADS session.

3. Set up your breakpoints and continue.

 SDF Plus opens its remote file, resulting in another message in the MARC window to
inform you that a second window, REM002, is open.

4. Switch to the second window.

 This window displays the first form for your application.

From this point, you can interact with your application through window REM0002 and
with TADS through window REM0001.

Using SDF Plus with COMS

8600 1526–202 5–21

If you terminate the application, both windows will close.

Refer to the COBOL ANSI-85 Test and Debug System (TADS) Programming Reference

Manual for additional information about TADS procedures and capabilities.

Using SDF Plus with COMS
You can use SDF Plus with COMS to take advantage of COMS direct windows. This
feature gives you enhanced routing capabilities for message types and also enables
preprocessing and postprocessing of message types.

Refer to the Communications Management System (COMS) Programming Guide for
detailed information on the use of the COMS direct window interface.

The procedures for using SDF Plus with COMS are explained in the following pages.

Using COMS Input/Output Headers
SDF Plus supports the use of COMS headers. Three fields are defined within the headers
for use with SDF Plus. These fields are

• SDFINFO

• SDFFORMRECNUM

• SDFTRANSNUM

A description of each field appears in the following paragraphs.

SDFINFO Field

When a program sends a message to SDF Plus, the SDFINFO field identifies the type of
message processing being requested. After a program either sends or receives a message,
this field contains status information indicating the success or failure of the preceding
SEND or RECEIVE.

When the program sends a message, it specifies the type of message processing being
requested by using the following values:

Value Explanation

0 Normal form message processing

100 Transaction error processing (last error)

101 Transaction error processing (more to come)

200 Text message processing

Using SDF Plus with COMS

5–22 8600 1526–202

After the program either sends or receives a message, SDF Plus indicates the success or
failure of the message processing request by placing one of the following values in the
SDFINFO field:

Value Explanation

0 No error

-100 Form message timestamp mismatch

-200 Incorrect form record number specified in the send procedure

-300 Incorrect transaction number specified in the send procedure

-400 Invalid message key

The COMS SEND and RECEIVE verbs are used to simulate the four basic entry points of
the SDF Plus CALL interface as shown in the following table:

The SDF Plus CALL interface entry point . . . Is simulated by the COMS . . .
verb.

WAIT_FOR_TRANSACTION RECEIVE

SEND_MESSAGE SEND

SEND_TRANSACTION_ERROR SEND

SEND_TEXT SEND

The following table shows how the COMS header fields are used in place of the control
parameters used by the SDF Plus CALL interface:

SDF Plus
CALL interface

SDFINFO COMS
 Header Field

SDFFORMRE
CNUM COMS
Header Field

SDFTRANSNUM
COMS Header

Field

WAIT_FOR_TRANSACTION Before RECEIVE:
 Not used

After RECEIVE:
 SDFPLUS-RESULT

SDFPLUS-
MSGNUM

SEND_MESSAGE

SEND_MESSAGE Before SEND:
 0

After SEND:

SDFPLUS_RESULT

SDFPLUS-
MSGNUM

Not used

SEND_TRANSACTION_
ERROR

Before SEND
 101

After SEND:
 SDFPLUS-RESULT

SDFPLUS-
TRANERROR

SDFPLUS-
TRANSNUM

Using SDF Plus with COMS

8600 1526–202 5–23

SDF Plus
CALL interface

SDFINFO COMS
 Header Field

SDFFORMRE
CNUM COMS
Header Field

SDFTRANSNUM
COMS Header

Field

SEND_TEXT Before SEND:
 200

After SEND:
 SDFPLUS-RESULT

Not used Not used

Notes:

The TEXTLENGTH field in the COMS output header can be set to zero (0), which is

equivalent to SDFPLUS_DEFAULTMSG set to 1.

You can use the value 100, however, this value corresponds to

SEND_TRANSACTION_ERROR followed by a SEND_MESSAGE of the response

message for the transaction. This prevents the program from indicated several

transaction errors. It is recommended that you do not use the value 100.

The TEXTLENGTH field in the COMS output header is used in the same way as

SDFPLUS_TEXTLENGTH.

See “SDFPLUS_RESULT” earlier in this section for detailed explanations of the values
found in the SDFINFO field of the COMS header.

SDFFORMRECNUM Field

The SDFFORMRECNUM field is used to specify the message type to be sent (on output)
or the message type that was received (on input).

SDFTRANSNUM Field

The SDFTRANSNUM field is meaningful only on input and contains the number of the
SDF Plus transaction that was received. This field should not be altered by the user
application.

Sending and Receiving Messages
When using SDF Plus and COMS together, you should follow the usual statements for each
product, with the following guidelines:

• For sending messages, the application program must first move the value 0 (zero) into
the SDFINFO field of the output header. The application program must also move the
message number of the form record library into the SDFFORMRECNUM field. The
buffer of the form record library must be passed as the message area in the SEND
statement.

Using SDF Plus with COMS

5–24 8600 1526–202

• To receive a message, the application program must do the following:

− If the SDFINFO field contains a value less than 0 (zero), then this field contains an
error code that indicates a problem with message processing. In addition, the
FUNCTION-INDEX field of the input header will contain the value 100.

− If the SDFINFO field contains the value 0 (zero), then the application program can
query the message number and transaction number attributes for the form record
library from the SDFFORMRECNUM and SDFTRANSNUM fields of the input
header.

Sending Transaction Errors
SDF Plus supports the ability to send error codes in response to incorrect data received by
the user application. These error codes are sent as integer values, which are used by SDF
Plus to process a user-defined error procedure for the form library.

To send transaction errors, the user application must do the following:

• Move the value 101 into the SDFINFO field of the output header.

• Move the value of the transaction error into the SDFFORMRECNUM field of the
output header.

• Move the SDFTRANSNUM field from the input header to the output header.

• Send the output header to display the message.

The user program can send any arbitrary message area along with the output header. SDF
Plus will process only the information within the output header.

Example

In this example, INX is assigned the number of the transaction error. SDF-BUFFER is the
user-defined buffer area.

MOVE 101 TO SDFINFO OF COMS-OUT .
MOVE INX TO SDFFORMRECNUM OF COMS-OUT.
MOVE SDFTRANSNUM OF COMS-IN TO
 SDFTRANSNUM OF COMS-OUT .
SEND COMS-OUT FROM SDF-BUFFER.

Sending Text Messages
SDF Plus supports the ability to send text messages for display on the text area of a form.

To send a text message, your program must do the following:

• Move the value 200 into the SDFINFO field of the output header.

• Move the text message into the message area to be sent through COMS.

• Use the SEND statement to store the text message.

• Move 0 (zero) to the SDFINFO field of the output header.

Specific Differences between COBOL74 and COBOL85

8600 1526–202 5–25

• Send the response message type to display the text message.

For information about the extensions used with COMS, refer to Section 2, “Using the
COMS Program Interface.”

Example

In this example, literal text is moved into the message area.

MOVE 200 TO SDFINFO OF COMS-OUT .
MOVE "This is an example of application text" TO SDF-BUFFER .
SEND COMS-OUT FROM SDF-BUFFER .
MOVE 0 TO SDFINFO OF COMS-OUT .
MOVE MSGNUM OF EXAMPLEFLSRM TO
 SDFFORMRECNUM OF COMS-OUT .
SEND COMS-OUT FROM SDF-BUFFER.

Specific Differences between COBOL74 and
COBOL85

The following tables compare the COBOL74 and COBOL85 programmatic interfaces to
SDF Plus. The first table shows the differences in the syntax when converting COBOL74
programs that use the remote file interface or the COMS interface into COBOL85
programs that use the CALL interface or the COMS interface. The second table compares
only the differences between COBOL74 programs that used the remote file interface and
COBOL85 programs that now use the CALL interface.

Syntax Applicable to All SDF Plus Programs
Tables 5–2 through 5–4 show the syntax required to convert a COBOL74 program that uses
either the remote file interface or the COMS interface into a COBOL85 program that uses
the COMS interface or the CALL interface.

Table 5–2. Syntax for Invoking a Form Record Library

COBOL74 Syntax COBOL85 Syntax

DICTIONARY IS DATADICTIONARY DICTIONARY IS DATADICTIONARY

01 SIMPLEFL FROM DICTIONARY. . .

For the COMS interface, this syntax
appears in the Working-Storage Section.

For the remote file interface, this syntax
appears in the File Section.

01 SIMPLEFL FROM DICTIONARY. . .

For the COMS and the CALL interface, this syntax
appears in the Working-Storage Section.

Specific Differences between COBOL74 and COBOL85

5–26 8600 1526–202

Table 5–2. Syntax for Invoking a Form Record Library

COBOL74 Syntax COBOL85 Syntax

Transaction numbers, message numbers,
and the form record library description
are compiled into the program as part of
the invoking of the form record library.

COPY SDFPLUS/COBOL/SIMPLE/SIMPLEFL.

The COBOL85 COPY library contains the
information on transaction numbers, message
numbers, and the form record library description.

Table 5–3. Accessing Message Numbers

COBOL74 Syntax COBOL85 Syntax

ATTRIBUTE FORMRECNUM OF SIMPLEFLSR MSGNUM OF SIMPLEFLSRM

Note that all message number fields
end with M.

CHANGE ATTRIBUTE FORMRECNUM OF SIMPLEFL
TO ATTRIBUTE FORMRECNUM OF SIMPLEFLSR.

 MOVE MSGNUM OF SIMPLEFLSRM
TO SDFPLUS-MSGNUM.

Table 5–4. Accessing Transaction Numbers

COBOL74 Syntax COBOL85 Syntax

ATTRIBUTE TRANSNUM OF SIMPLEENTRYTT TRANSNUM OF SIMPLEENTRYTT

IF ATTRIBUTE TRANSNUM OF SIMPLEFL
 = ATTRIBUTE TRANSNUM OF SIMPLEENTRYTT
 PERFORM HANDLE-SIMPLEENTRYTT
 ELSE . . .

IF SDFPLUS-TRANSNUM
 = TRANSNUM OF SIMPLEENTRYTT
 PERFORM HANDLE-
SIMPLEENTRYTT
 ELSE...

For SDF Plus application programs that use the COMS interface, other than the items
mentioned in the preceding table, there is no difference when using SDF Plus between a
COBOL74 program and a COBOL85 program. However, if the COBOL74 program
originally used SDF for its user interface, and currently uses the FORM-KEY function, you
must change the program to use SDFFORMRECNUM and SDFINFO, as shown in the
following example:

MOVE FORM-KEY(FORM1) TO COMS-OUT-CONVERSATION.

The preceding example becomes

MOVE MSGNUM OF FORM1M TO SDFFORMRECNUM OF COMS-OUT.
MOVE 0 TO SDFINFO OF COMS-OUT.

Specific Differences between COBOL74 and COBOL85

8600 1526–202 5–27

Differences between a COBOL74 Remote File Interface Program
and a COBOL85 CALL Interface Program

Table 5–5 shows the syntax that is applicable when converting a COBOL74 program that
uses the remote file interface into a COBOL85 program that uses the CALL interface.

Table 5–5. Converting a COBOL74 Remote File Program into a COBOL85 CALL
Interface Program

COBOL74 Calls to SDF Plus COBOL85 Calls to SDF Plus

OPEN I-O REMOTEFILENAME. CHANGE ATTRIBUTE LIBACCESS OF "SDFPLUS"
 TO BYFUNCTION.
CHANGE ATTRIBUTE FUNCTIONNAME OF "SDFPLUS"
 TO "FORMSSUPPORT".

READ/WRITE FORM . . . ON ERROR . . .

You have the option of handling errors
within the program.

 CALL . . . USING . . . SDFPLUS-RESULT.

The program must always check the SDFPLUS-RESULT
parameter after making a CALL. This is similar to declaring
an ON ERROR parameter.

READ FORM RMT USING SIMPLEFL. CALL "WAIT FOR TRANSACTION IN SDFPLUS"
 USING FRLD-SIMPLEFL
 SIMPLEFL-RECORD
 SDFPLUS-TRANSNUM
 SDFPLUS-MSGNUM
 SDFPLUS-RESULT.

WRITE FORM SIMPLEFL CALL "SEND MESSAGE IN SDFPLUS"
 USING FRLD-SIMPLEFL
 SIMPLEFL-RECORD
 SDFPLUS-MSGNUM
 SDFPLUS-DEFAULTMSG
 SDFPLUS-RESULT.

WRITE FORM SIMPLEENTRY
 FOR ERROR MESSAGE 1.

MOVE 1 TO SDFPLUS-TRANERROR.
 CALL "SEND TRANSACTION ERROR IN SDFPLUS"
 USING FRLD-SIMPLEFL
 SDFPLUS-TRANSNUM
 SDFPLUS-TRANERROR
 SDFPLUS-RESULT.

WRITE FORM SIMPLEENTRY
 USING TEXT BIG-NUMBER
 FOR 40 CHARACTERS.

The FOR <integer> CHARACTERS
parameter is optional. If not given, the
length of record-name-1 is used.

MOVE 40 TO SDFPLUS-TEXTLENGTH.
CALL "SEND TEXT IN SDFPLUS"
 USING BIG-NUMBER
 SDFPLUS-TEXTLENGTH
 SDFPLUS-RESULT.

To use the length of the <text-data-structure> parameter,
use MOVE 0 to SDFPLUS-TEXTLENGTH.

Sample SDF Plus Programs

5–28 8600 1526–202

Sample SDF Plus Programs
The following sample programs use the SDF Plus interface syntax. Listings of the form
record library that was invoked from the dictionary and the SDF Plus COPY library are
shown, followed by a program using the CALL interface and a program using the COMS
interface.

Form Record Library
*--DICTIONARY DIRECTORY : SIMPLE.
*--DICTIONARY FORMLIST< SIMPLEFL >.
*--SDF TRANSACTION(SIMPLEDISPLAYPTT).
 01 SIMPLEDISPLAYPRE.
 04 SIMPLEALPHA1 PIC X(40)
 04 SIMPLENUMERIC1 REAL.
 04 SIMPLEBOOLEAN1 PIC 9(1) COMP.
 04 SIMPLEDATE1 PIC 9(8) COMP.
 04 SIMPLETIME1 PIC 9(6).
*01 SIMPLEDISPLAYPRE REDEFINES SIMPLEDISPLAYPRE.
*--SDF TRANSACTION(SIMPLEDISPLAYTT).
 01 SIMPLEDISPLAY REDEFINES SIMPLEDISPLAYPRE.
 04 SIMPLEALPHA1 PIC X(40).
 04 SIMPLENUMERIC1 REAL.
 04 SIMPLEBOOLEAN1 PIC 9(1) COMP.
 04 SIMPLEDATE1 PIC 9(8) COMP.
 04 SIMPLETIME1 PIC 9(6).
 01 SIMPLEFLSR REDEFINES SIMPLEDISPLAYPRE.
 04 SIMPLEFLSRF PIC X(1).
*--SDF TRANSACTION(SIMPLEENTRYTT).
 01 SIMPLEENTRY REDEFINES SIMPLEDISPLAYPRE.
 04 SIMPLEALPHA PIC X(40).
 04 SIMPLENUMERIC REAL.
 04 SIMPLEBOOLEAN PIC 9(1) COMP.
 04 SIMPLEDATE PIC 9(8) COMP.
 04 SIMPLETIME PIC 9(6).
*01 SIMPLEFLSR REDEFINES SIMPLEDISPLAYPRE.
*--SDF TRANSACTION(SIMPLEQUITTT).
 01 SIMPLEQUIT REDEFINES SIMPLEDISPLAYPRE.
 04 SIMPLESTUPIDFIELDFORCOBOL PIC X(1).
*01 SIMPLEFLSR REDEFINES SIMPLEDISPLAYPRE.
*01 SIMPLEDISPLAY REDEFINES SIMPLEDISPLAYPRE.
*01 SIMPLEENTRY REDEFINES SIMPLEDISPLAYPRE.
01 SIMPLEQUIT REDEFINES SIMPLEDISPLAYPRE.

Sample SDF Plus Programs

8600 1526–202 5–29

COPY Library

*==> The SDF Plus control parameters:
$ SET OMIT = SDFPLUSPARAMETERS
 77 SDFPLUS-RESULT PIC S9(11) BINARY.
 88 SDFPLUS-RESULT-OK VALUE 0.
 88 SDFPLUS-RESULT-TSMISMATCH VALUE -100.
 88 SDFPLUS-RESULT-INVALIDMSGNUM VALUE -200.
 88 SDFPLUS-RESULT-INVALIDTRANSNUM VALUE -300.
 88 SDFPLUS-RESULT-INVALIDMSGKEY VALUE -400.
 77 SDFPLUS-TRANSNUM PIC S9(11) BINARY.
 77 SDFPLUS-MSGNUM PIC S9(11) BINARY.
 77 SDFPLUS-TRANERROR PIC S9(11) BINARY.
 77 SDFPLUS-DEFAULTMSG PIC S9(11) BINARY.
 77 SDFPLUS-TEXTLENGTH PIC S9(11) BINARY.
$ POP OMIT
$ SET SDFPLUSPARAMETERS
 *==> The transaction number enumeration:
 01 TRANSNUM-SIMPLEFL.
 02 SIMPLEDISPLAYPTT.
 03 TRANSNUM PIC 9(4) COMP VALUE 1.
 02 SIMPLEDISPLAYTT.
 03 TRANSNUM PIC 9(4) COMP VALUE 2.
 02 SIMPLEENTRYTT.
 03 TRANSNUM PIC 9(4) COMP VALUE 3.
 02 SIMPLEQUITTT.
 03 TRANSNUM PIC 9(4) COMP VALUE 4.
*==> The message number enumeration:
 01 MSGNUM-SIMPLEFL.
 02 SIMPLEDISPLAYPREM.
 03 MSGNUM PIC 9(4) COMP VALUE 1.
 02 SIMPLEDISPLAYM.
 03 MSGNUM PIC 9(4) COMP VALUE 2.
 02 SIMPLEFLSRM.
 03 MSGNUM PIC 9(4) COMP VALUE 3.
 02 SIMPLEENTRYM.
 03 MSGNUM PIC 9(4) COMP VALUE 4.
 02 SIMPLEQUITM.
 03 MSGNUM PIC 9(4) COMP VALUE 5.
*==> The form record library description record:
 01 FRLD-SIMPLEFL.
$ RESET LIST
 02 FILLER PIC X(12) VALUE @0000000400054E5540EB3922@.
 02 FILLER PIC X(12) VALUE @4E5540F0974B4E5540F34FB6@.
* ... <many more FILLER entries>
 02 FILLER PIC X(12) VALUE @100A3008100C204E100C3006@.
$ POP LIST

Sample SDF Plus Programs

5–30 8600 1526–202

COBOL85 CALL Interface Program

$$ SET LIST WARNSUPR
**
* *
* COBOL85 EXAMPLE *
* *
* This is an example showing the SDF Plus Interface in *
* COBOL85. *
* *
**
 IDENTIFICATION DIVISION.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SPECIAL-NAMES.
 DICTIONARY IS "SDFPLUSDICTIONARY".
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 BOOLEANS.
 02 BFALSE PIC 9 COMP VALUE 0.
 02 BTRUE PIC 9 COMP VALUE 1.
 02 ALL-DONE-FLAG PIC 9 COMP.
 88 ALL-DONE VALUE 1.
 01 BIG-NUMBER.
 02 FILLER PIC X(40)
 VALUE "A really big number was entered!".
 77 DISP1 PIC -ZZZ9.
 77 DISP2 PIC -ZZZ9.
 01 SAVE-LAST-DATA.
 02 SAVE-ALPHA.
 03 SAVE-ALPHA-CHAR OCCURS 40 TIMES PIC X.
 02 SAVE-NUMERIC REAL.
 02 SAVE-BOOLEAN PIC 9 COMP.
 02 SAVE-DATE PIC 9(8) COMP.
 02 SAVE-TIME PIC 9(6).
/
**
* *
* FORM LIBRARY INFO *
* *
**
*==> This is information imported from the dictionary. This
* consists of the layouts of the messages:
 01 SIMPLEFL FROM DICTIONARY
 SAME RECORD AREA
 DIRECTORY IS "SIMPLE".
 01 SIMPLEFL-RECORD PIC X(100).
*==> This is information supplied by SDF Plus regarding the
* same form library:
 COPY "SDFPLUS/COBOL/SIMPLE/SIMPLEFL".
*==> These are the transaction errors:
 01 TRANERR-SIMPLEENTRYTT.

Sample SDF Plus Programs

8600 1526–202 5–31

 02 SE-ALPHAERROR PIC 9(4) COMP VALUE 1.
/
**
* *
* MAIN BODY OF PROGRAM *
* *
**
 PROCEDURE DIVISION.
 MAIN-BODY-OF-PROGRAM.
*==> Set up the linkage to the SDF Plus runtime support library:
 CHANGE ATTRIBUTE LIBACCESS OF "SDFPLUS" TO BYFUNCTION.
 CHANGE ATTRIBUTE FUNCTIONNAME OF "SDFPLUS" TO "FORMSSUPPORT".
*==> Now we are ready to accept transactions from the form
* library. We will do this until told to stop:
 MOVE BFALSE TO ALL-DONE-FLAG.
 PERFORM WAIT-FOR-TRANSACTION THRU
 WAIT-FOR-TRANSACTION-EXIT
 UNTIL ALL-DONE.
*==> All done:
 END-OF-TASK.
 STOP RUN.
/
**
* *
* WAIT FOR TRANSACTION *
* *
**
 WAIT-FOR-TRANSACTION.
*==> Get the transaction:
 CALL "WAIT_FOR_TRANSACTION IN SDFPLUS"
 USING FRLD-SIMPLEFL,
 SIMPLEFL-RECORD,
 SDFPLUS-TRANSNUM,
 SDFPLUS-MSGNUM,
 SDFPLUS-RESULT.
*==> After any CALL to SDF Plus, you should check the result:
 IF NOT SDFPLUS-RESULT-OK
 PERFORM CHECK-SDFPLUS-RESULT THRU
 CHECK-SDFPLUS-RESULT-EXIT.
*==> Determine which transaction this is and call a routine
* to handle that specific transaction:
 IF SDFPLUS-TRANSNUM = TRANSNUM OF SIMPLEENTRYTT
 PERFORM SIMPLEENTRY-TRANSACTION THRU
 SIMPLEENTRY-TRANSACTION-EXIT
 ELSE IF SDFPLUS-TRANSNUM = TRANSNUM OF SIMPLEDISPLAYPTT
 PERFORM SIMPLEDISPLAY-TRANSACTION THRU
 SIMPLEDISPLAY-TRANSACTION-EXIT
*==> If this is the Quit transaction, we do not send back any
* response. Rather, we just set the flag to indicate that
* we are done:
 ELSE IF SDFPLUS-TRANSNUM = TRANSNUM OF SIMPLEQUITTT
 MOVE BTRUE TO ALL-DONE-FLAG

Sample SDF Plus Programs

5–32 8600 1526–202

*==> If it is not a recognized transaction, just respond with the
* standard response message. DefaultMsg is set to 1 to
* indicate that no data is being sent for the message:
 ELSE
 MOVE MSGNUM OF SIMPLEFLSRM TO SDFPLUS-MSGNUM
 MOVE BTRUE TO SDFPLUS-DEFAULTMSG
 CALL "SEND_MESSAGE IN SDFPLUS"
 USING FRLD-SIMPLEFL,
 SIMPLEFL-RECORD,
 SDFPLUS-MSGNUM,
 SDFPLUS-DEFAULTMSG,
 SDFPLUS-RESULT
 IF NOT SDFPLUS-RESULT-OK
 PERFORM CHECK-SDFPLUS-RESULT THRU
 CHECK-SDFPLUS-RESULT-EXIT.
 WAIT-FOR-TRANSACTION-EXIT.
 EXIT.
/
**
* *
* SIMPLE ENTRY TRANSACTION *
* *
* The update transaction for the Simple Entry form has been *
* received. The data in the message will be written to *
* disk and also saved. *
* *
**
 SIMPLEENTRY-TRANSACTION.
*==> Save the data, but only if the alpha field is not blank.
* A blank alpha field signifies to the form that it is to
* terminate. In such a case, the data is not valid:
 MOVE SIMPLEFL-RECORD TO SIMPLEENTRY.
 IF SIMPLEALPHA NOT = SPACES
 MOVE SIMPLEALPHA TO SAVE-ALPHA
 MOVE SIMPLENUMERIC TO SAVE-NUMERIC
 MOVE SIMPLEBOOLEAN TO SAVE-BOOLEAN
 MOVE SIMPLEDATE TO SAVE-DATE
 MOVE SIMPLETIME TO SAVE-TIME.
*==> If the first and last characters of the alpha field do
* not match, send a transaction error. For a transaction
* error, both transnum and tranerror must be set, but
* we know that transnum is already set so we will not
* set it again:
 IF SAVE-ALPHA-CHAR (1) NOT = SAVE-ALPHA-CHAR (40)
 MOVE SE-ALPHAERROR TO SDFPLUS-TRANERROR
 CALL "SEND_TRANSACTION_ERROR IN SDFPLUS"
 USING FRLD-SIMPLEFL,
 SDFPLUS-TRANSNUM,
 SDFPLUS-TRANERROR,
 SDFPLUS-RESULT
 IF NOT SDFPLUS-RESULT-OK
 PERFORM CHECK-SDFPLUS-RESULT THRU

Sample SDF Plus Programs

8600 1526–202 5–33

 CHECK-SDFPLUS-RESULT-EXIT.
*==> If the numeric field is too big, send a text message:
 IF SAVE-NUMERIC > 500000.00
 MOVE 0 TO SDFPLUS-TEXTLENGTH
 CALL "SEND_TEXT IN SDFPLUS"
 USING BIG-NUMBER,
 SDFPLUS-TEXTLENGTH
 SDFPLUS-RESULT
 IF NOT SDFPLUS-RESULT-OK
 PERFORM CHECK-SDFPLUS-RESULT THRU
 CHECK-SDFPLUS-RESULT-EXIT.
*==> All update transactions expect the standard response
* message as a response. The form waits until this
* response message, or a command message, is sent by the
* program. If the alpha field begins with the backslash (\)
* character, we will do a command write of the display form.
* If not, we just send the standard response. Either way,
* only the message header is sent (no data):
 IF SAVE-ALPHA-CHAR (1) = "\"
 MOVE MSGNUM OF SIMPLEDISPLAYM TO SDFPLUS-MSGNUM
 ELSE
 MOVE MSGNUM OF SIMPLEFLSRM TO SDFPLUS-MSGNUM.
 MOVE BTRUE TO SDFPLUS-DEFAULTMSG.
 CALL "SEND_MESSAGE IN SDFPLUS"
 USING FRLD-SIMPLEFL,
 SIMPLEFL-RECORD,
 SDFPLUS-MSGNUM,
 SDFPLUS-DEFAULTMSG,
 SDFPLUS-RESULT.
 IF NOT SDFPLUS-RESULT-OK
 PERFORM CHECK-SDFPLUS-RESULT THRU
 CHECK-SDFPLUS-RESULT-EXIT.
 SIMPLEENTRY-TRANSACTION-EXIT.
 EXIT.
/
**
* *
* SIMPLE DISPLAY TRANSACTION *
* *
* The prefill transaction for the Simple Display form has *
* been received. The saved data from the last data entry *
* transaction will be returned to the form. *
* *
**
 SIMPLEDISPLAY-TRANSACTION.
*==> Move the saved data to the prefill response message:
 MOVE SAVE-ALPHA TO SIMPLEALPHA1 OF SIMPLEDISPLAYPRE.
 MOVE SAVE-NUMERIC TO SIMPLENUMERIC1 OF SIMPLEDISPLAYPRE.
 MOVE SAVE-BOOLEAN TO SIMPLEBOOLEAN1 OF SIMPLEDISPLAYPRE.
 MOVE SAVE-DATE TO SIMPLEDATE1 OF SIMPLEDISPLAYPRE.
 MOVE SAVE-TIME TO SIMPLETIME1 OF SIMPLEDISPLAYPRE.
 MOVE SIMPLEDISPLAYPRE TO SIMPLEFL-RECORD.

Sample SDF Plus Programs

5–34 8600 1526–202

*==> For a prefill transaction, the request and response
* messages are the same. Therefore, we do not need
* the MOVE since SDFPLUS-MSGNUM already contains the
* message number for SIMPLEDISPLAYPRE:
* MOVE MSGNUM OF SIMPLEDISPLAYPREM TO SDFPLUS-MSGNUM.
*==> Send the prefill message with data:
* MOVE BFALSE TO SDFPLUS-DEFAULTMSG.
 CALL "SEND_MESSAGE IN SDFPLUS"
 USING FRLD-SIMPLEFL,
 SIMPLEFL-RECORD,
 SDFPLUS-MSGNUM,
 SDFPLUS-DEFAULTMSG,
 SDFPLUS-RESULT
 IF NOT SDFPLUS-RESULT-OK
 PERFORM CHECK-SDFPLUS-RESULT THRU
 CHECK-SDFPLUS-RESULT-EXIT.
 SIMPLEDISPLAY-TRANSACTION-EXIT.
 EXIT.
/
**
* *
* CHECK SDF PLUS RESULT *
* *
* This routine is called if there is an error indicated *
* by the last call to SDF Plus. This routine simply *
* displays a message regarding the error indicated. *
* *
**
 CHECK-SDFPLUS-RESULT.
*==> See what the SDF Plus result is and display appropriate message:
 IF SDFPLUS-RESULT-TSMISMATCH
 MOVE SDFPLUS-TRANSNUM TO DISP1
 MOVE SDFPLUS-MSGNUM TO DISP2
 DISPLAY "Time stamp mismatch, "
 "TransNum = " DISP1,
 ", MsgNum = " DISP2 "."
 MOVE BTRUE TO ALL-DONE-FLAG
 ELSE IF SDFPLUS-RESULT-INVALIDMSGNUM
 MOVE SDFPLUS-MSGNUM TO DISP1
 DISPLAY "Invalid message type number "
 DISP1 "."
 ELSE IF SDFPLUS-RESULT-INVALIDTRANSNUM
 MOVE SDFPLUS-TRANSNUM TO DISP1
 DISPLAY "Invalid transaction type number "
 DISP1 "."
 ELSE IF SDFPLUS-RESULT-INVALIDMSGKEY
 DISPLAY "Invalid message key."
 ELSE
 MOVE SDFPLUS-RESULT TO DISP1
 DISPLAY "Unknown SDF Plus result "
 DISP1 ".".
 CHECK-SDFPLUS-RESULT-EXIT.

Sample SDF Plus Programs

8600 1526–202 5–35

 EXIT.

COBOL85 COMS Interface Program

$$ SET LIST WARNSUPR
**
* *
* COBOL85 EXAMPLE *
* *
* This is an example COBOL85 program which uses the COMS *
* interface to SDF Plus. *
* *
**
 IDENTIFICATION DIVISION.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SPECIAL-NAMES.
 DICTIONARY IS "SDFPLUSDICTIONARY".
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 01 BOOLEANS.
 02 BFALSE PIC 9 COMP VALUE 0.
 02 BTRUE PIC 9 COMP VALUE 1.
 02 ALL-DONE-FLAG PIC 9 COMP.
 88 ALL-DONE VALUE 1.
 01 BIG-NUMBER.
 02 FILLER PIC X(40)
 VALUE "A really big number was entered!".
 77 DISP1 PIC -ZZZ9.
 77 DISP2 PIC -ZZZ9.
 01 SAVE-LAST-DATA.
 02 SAVE-ALPHA.
 03 SAVE-ALPHA-CHAR OCCURS 40 TIMES PIC X.
 02 SAVE-NUMERIC REAL.
 02 SAVE-BOOLEAN PIC 9 COMP.
 02 SAVE-DATE PIC 9(8) COMP.
 02 SAVE-TIME PIC 9(6).
/
**
* *
* SDF PLUS RELATED INFORMATION *
* *
**
 01 SIMPLEFL FROM DICTIONARY
 ; SAME RECORD AREA
 ; DIRECTORY "SIMPLE".
 01 FRL-RECORD REDEFINES SIMPLEDISPLAY
 PIC X(100).
 77 FRL-RECORD-SIZE PIC 9(4) COMP VALUE 100.
*==> This is the COPY library containing SDF Plus specific
* information extracted from the data dictionary:

Sample SDF Plus Programs

5–36 8600 1526–202

 COPY "SDFPLUS/COBOL/SIMPLE/SIMPLEFL".
*==> Transaction errors:
 77 SE-ALPHAERROR PIC S9(11) BINARY VALUE 1.
*==> Used to determine if we received a transaction that
* needs to be processed:
 77 TRANSACTION-RECEIVED-FLAG PIC 9 COMP.
 88 TRANSACTION-RECEIVED VALUE 1.
*==> Used to determine if we may continue to process a message
* even if the an error was encountered:
 77 CONTINUE-PROCESSING-FLAG PIC 9 COMP.
 88 CONTINUE-PROCESSING VALUE 1.
*==> These values are used by the program to indicate
* what is being sent:
 01 SDFPLUS-INFO.
 02 SDFPLUS-INFO-MSG PIC S9(3) COMP VALUE 0.
 02 SDFPLUS-INFO-LAST-TRAN-ERR PIC S9(3) COMP VALUE 100.
 02 SDFPLUS-INFO-TRAN-ERR PIC S9(3) COMP VALUE 101.
 02 SDFPLUS-INFO-TEXT-MSG PIC S9(3) COMP VALUE 200.
/
**
* *
* COMS RELATED INFORMATION *
* *
**
 77 COMS-NAME PIC X(72) VALUE "COMSSUPPORT".
 77 COMS-CALL-ERROR PIC S9(11) USAGE IS BINARY.
*==> Our agenda name, and its designator (which we will get
* from COMS during initialization):
 01 COMS-AGENDA PIC X(17) VALUE "SIMPLE".
 77 COMS-AGENDA-DESIGNATOR USAGE IS REAL.
*==> Used to display error messages:
 01 COMS-RECORD.
 02 COMS-TYPE PIC X(20).
 02 COMS-NBR PIC S9(5).
 02 COMS-DASH PIC X(2).
 02 COMS-TEXT PIC X(40).
*==> The various COMS input status key values:
 77 COMS-INPUT-STATUS PIC S9(3) COMP.
 88 COMS-IS-OK VALUE 0.
 88 COMS-IS-CONTINUE VALUE 89, 92, 93, 99.
 88 COMS-IS-UNKNOWN-STATION VALUE 20.
 88 COMS-IS-MSG-TRUNC VALUE 89.
 88 COMS-IS-RECOVERY-MSG VALUE 92.
 88 COMS-IS-LAST-MSG-ABORT VALUE 93.
 88 COMS-IS-INVALID-PROG-STATION VALUE 94.
 88 COMS-IS-INVALID-AGENDA VALUE 95.
 88 COMS-IS-TERMINATE VALUE 99.
 88 COMS-IS-ATTACHED VALUE 100.
*==> The various COMS input function values:
 77 COMS-INPUT-FUNCTION PIC S9(3) COMP.
 88 COMS-IF-OK VALUE 0.
 88 COMS-IF-BADTCODE VALUE -4.

Sample SDF Plus Programs

8600 1526–202 5–37

 88 COMS-IF-NOTCODE VALUE -5.
 88 COMS-IF-NOITEM VALUE -10.
 88 COMS-IF-OPEN VALUE -16.
 88 COMS-IF-ON VALUE -17.
 88 COMS-IF-CLOSE VALUE -50.
 88 COMS-IF-EOJ VALUE -60.
 88 COMS-IF-DISABLE VALUE -61.
 88 COMS-IF-REDUCED VALUE -62.
 88 COMS-IF-BADMKEY VALUE -100.
*==> The various COMS output status key values:
 77 COMS-OUTPUT-STATUS PIC S9(3) COMP.
 88 COMS-OS-OK VALUE 0.
 88 COMS-OS-MSG-TRUNC VALUE 89.
 88 COMS-OS-RECOVERY-MSG VALUE 92.
 88 COMS-OS-INVALID-PROG-STATION VALUE 94.
 88 COMS-OS-INVALID-AGENDA VALUE 95.
 88 COMS-OS-PROC-ITEM VALUE 96.
/
**
* *
* COMS HEADERS *
* *
**
 COMMUNICATION SECTION.
 INPUT HEADER COMS-IN;
 PROGRAMDESG IS COMS-IN-PROGRAM;
 FUNCTIONSTATUS IS COMS-IN-FUNCTION-STATUS;
 FUNCTIONINDEX IS COMS-IN-FUNCTION-INDEX;
 USERCODE IS COMS-IN-USERCODE;
 SECURITYDESG IS COMS-IN-SECURITY-DESG;
 TRANSPARENT IS COMS-IN-TRANSPARENT;
 VTFLAG IS COMS-IN-VT-FLAG;
 TIMESTAMP IS COMS-IN-TIMESTAMP;
 STATION IS COMS-IN-STATION;
 TEXTLENGTH IS COMS-IN-TEXT-LENGTH;
 STATUSVALUE IS COMS-IN-STATUS-KEY;
 MESSAGECOUNT IS COMS-IN-MESSAGE-COUNT;
 RESTART IS COMS-IN-RESTART;
 AGENDA IS COMS-IN-AGENDA;
 SDFINFO IS COMS-IN-SDFPLUS-INFO;
 SDFTRANSNUM IS COMS-IN-SDFPLUS-TRANSNUM;
 SDFFORMRECNUM IS COMS-IN-SDFPLUS-MSGNUM.
 OUTPUT HEADER COMS-OUT;
 DESTCOUNT IS COMS-OUT-COUNT;
 TEXTLENGTH IS COMS-OUT-TEXT-LENGTH;
 STATUSVALUE IS COMS-OUT-STATUS-KEY;
 TRANSPARENT IS COMS-OUT-TRANSPARENT;
 VTFLAG IS COMS-OUT-VT-FLAG;
 CONFIRMFLAG IS COMS-OUT-CONFIRM-FLAG;
 CONFIRMKEY IS COMS-OUT-CONFIRM-KEY;
 DESTINATIONDESG IS COMS-OUT-STATION;
 NEXTINPUTAGENDA IS COMS-OUT-NEXT-IN-AGENDA;

Sample SDF Plus Programs

5–38 8600 1526–202

 SETNEXTINPUTAGENDA IS COMS-OUT-SET-NEXT-IN-AGENDA;
 RETAINTRANSACTIONMODE IS COMS-OUT-RETAIN-TRANS-MODE;
 AGENDA IS COMS-OUT-AGENDA;
 SDFINFO IS COMS-OUT-SDFPLUS-INFO;
 SDFTRANSNUM IS COMS-OUT-SDFPLUS-TRANSNUM;
 SDFFORMRECNUM IS COMS-OUT-SDFPLUS-MSGNUM.
/
**
* *
* MAIN BODY OF PROGRAM *
* *
**
 PROCEDURE DIVISION.
 MAIN-BODY-OF-PROGRAM.
*==> Sign on to COMS:
 PERFORM INITIALIZATION THRU
 INITIALIZATION-EXIT.
*==> Now we are ready to accept transactions from the form
* library. We will do this until told to stop:
 MOVE BFALSE TO ALL-DONE-FLAG.
 PERFORM HANDLE-TRANSACTIONS THRU
 HANDLE-TRANSACTIONS-EXIT
 UNTIL ALL-DONE.
*==> All done:
 END-OF-TASK.
 STOP RUN.
/
**
* *
* HANDLE TRANSACTIONS *
* *
**
 HANDLE-TRANSACTIONS.
*==> Get the transaction:
 PERFORM WAIT-FOR-TRANSACTION THRU
 WAIT-FOR-TRANSACTION-EXIT.
*==> Determine which transaction this is, and call a routine
* to handle that specific transaction:
 IF SDFPLUS-TRANSNUM = TRANSNUM OF SIMPLEENTRYTT
 PERFORM SIMPLEENTRY-TRANSACTION THRU
 SIMPLEENTRY-TRANSACTION-EXIT
 ELSE IF SDFPLUS-TRANSNUM = TRANSNUM OF SIMPLEDISPLAYPTT
 PERFORM SIMPLEDISPLAY-TRANSACTION THRU
 SIMPLEDISPLAY-TRANSACTION-EXIT
*==> If the Quit transaction is received, we will send back
* the standard response:
 ELSE IF SDFPLUS-TRANSNUM = TRANSNUM OF SIMPLEQUITTT
 MOVE MSGNUM OF SIMPLEFLSRM TO SDFPLUS-MSGNUM
 MOVE BTRUE TO SDFPLUS-DEFAULTMSG
 PERFORM SEND-MESSAGE THRU
 SEND-MESSAGE-EXIT
*==> If it is not a recognized transaction, just respond with the

Sample SDF Plus Programs

8600 1526–202 5–39

* standard response message. DefaultMsg is set to 1 to
* indicate that no data is being sent for the message
 ELSE
 MOVE MSGNUM OF SIMPLEFLSRM TO SDFPLUS-MSGNUM
 MOVE BTRUE TO SDFPLUS-DEFAULTMSG
 PERFORM SEND-MESSAGE THRU
 SEND-MESSAGE-EXIT.
 HANDLE-TRANSACTIONS-EXIT.
 EXIT.
/
**
* *
* SIMPLE ENTRY TRANSACTION *
* *
* The update transaction for the Simple Entry form has been *
* received. The data in the message will be saved. *
* *
**
 SIMPLEENTRY-TRANSACTION.
*==> Save the data, but only if the alpha field is not blank.
* A blank alpha field signifies to the form that it is to
* terminate. In such a case, the data is not valid:
 IF SIMPLEALPHA NOT = SPACES
 MOVE SIMPLEALPHA TO SAVE-ALPHA
 MOVE SIMPLENUMERIC TO SAVE-NUMERIC
 MOVE SIMPLEBOOLEAN TO SAVE-BOOLEAN
 MOVE SIMPLEDATE TO SAVE-DATE
 MOVE SIMPLETIME TO SAVE-TIME.
*==> If the first and last characters of the alpha field do
* not match, send a transaction error. For a transaction
* error, both TransNum and TranError must be set, but we
* know that TransNum is already set so we will not set it
* again:
 IF SAVE-ALPHA-CHAR (1) NOT = SAVE-ALPHA-CHAR (40)
 MOVE SE-ALPHAERROR TO SDFPLUS-TRANERROR
 PERFORM SEND-TRANSACTION-ERROR THRU
 SEND-TRANSACTION-ERROR-EXIT.
*==> If the numeric field is too big, send a text message:
 IF SAVE-NUMERIC > 500000.00
 MOVE 40 TO SDFPLUS-TEXTLENGTH
 MOVE BIG-NUMBER TO FRL-RECORD
 PERFORM SEND-TEXT THRU
 SEND-TEXT-EXIT.
*==> All update transactions expect the standard response
* message as a response. The form waits until this
* response message, or a command message, is sent by the
* program. If the alpha field begins with the backslash (\)
* character, we will do a command write of the display form.
* If not, we just send the standard response. Either way,
* only the message header is sent (no data):
 IF SAVE-ALPHA-CHAR (1) = "(\)"
 MOVE MSGNUM OF SIMPLEDISPLAYM TO SDFPLUS-MSGNUM

Sample SDF Plus Programs

5–40 8600 1526–202

 ELSE
 MOVE MSGNUM OF SIMPLEFLSRM TO SDFPLUS-MSGNUM.
 MOVE BTRUE TO SDFPLUS-DEFAULTMSG.
 PERFORM SEND-MESSAGE THRU
 SEND-MESSAGE-EXIT.
 SIMPLEENTRY-TRANSACTION-EXIT.
 EXIT.
/
**
* *
* SIMPLE DISPLAY TRANSACTION *
* *
* The prefill transaction for the Simple Display form has *
* been received. The saved data from the last data entry *
* transaction will be returned to the form. *
* *
**
 SIMPLEDISPLAY-TRANSACTION.
*==> Move the saved data to the prefill response message:
 MOVE SAVE-ALPHA TO SIMPLEALPHA1 OF SIMPLEDISPLAYPRE.
 MOVE SAVE-NUMERIC TO SIMPLENUMERIC1 OF SIMPLEDISPLAYPRE.
 MOVE SAVE-BOOLEAN TO SIMPLEBOOLEAN1 OF SIMPLEDISPLAYPRE.
 MOVE SAVE-DATE TO SIMPLEDATE1 OF SIMPLEDISPLAYPRE.
 MOVE SAVE-TIME TO SIMPLETIME1 OF SIMPLEDISPLAYPRE.
*==> For a prefill transaction, the request and response
* messages are the same. Therefore, we do not need the
* following MOVE since MsgNum is already set to the
* message number for SimpleEntryPre:
* MOVE MSGNUM OF SIMPLEENTRYPREM TO SDFPLUS-MSGNUM.
*==> Send the prefill message with data:
 PERFORM SEND-MESSAGE THRU
 SEND-MESSAGE-EXIT.
 SIMPLEDISPLAY-TRANSACTION-EXIT.
 EXIT.
/
**
* *
* INITIALIZATION *
* *
**
 INITIALIZATION.
*==> Let's "sign on" to COMS:
 CHANGE ATTRIBUTE LIBACCESS OF "DCILIBRARY" TO BYFUNCTION.
 CHANGE ATTRIBUTE FUNCTIONNAME OF "DCILIBRARY" TO COMS-NAME.
 ENABLE INPUT COMS-IN KEY "ONLINE".
*==> We need to know the output agenda designator:
 CALL "GET_DESIGNATOR_USING_NAME IN DCILIBRARY"
 USING COMS-AGENDA
 VALUE AGENDA
 COMS-AGENDA-DESIGNATOR
 GIVING COMS-CALL-ERROR.
 IF COMS-CALL-ERROR NOT = 0

Sample SDF Plus Programs

8600 1526–202 5–41

*======> There is a problem with getting the agenda designator.
* Give up:
 DISPLAY "Invalid agenda name: '"
 COMS-AGENDA
 "'"
 STOP RUN.
 INITIALIZATION-EXIT.
 EXIT.
/
**
* *
* WAIT FOR TRANSACTION *
* *
* This routine is called on to get the next transaction *
* from the user interface. *
* *
**
 WAIT-FOR-TRANSACTION.
*==> Have mixed feeling regarding what will happen:
 MOVE BFALSE TO TRANSACTION-RECEIVED-FLAG.
 MOVE BTRUE TO CONTINUE-PROCESSING-FLAG.
*==> Wait for some input:
 RECEIVE COMS-IN MESSAGE INTO FRL-RECORD.
*==> Check the status key to see if the receive was good:
 MOVE COMS-IN-STATUS-KEY TO COMS-INPUT-STATUS.
 IF NOT COMS-IS-OK
 PERFORM HANDLE-COMS-IN-STATUS THRU
 HANDLE-COMS-IN-STATUS-EXIT.
*==> Check the function status/index:
 MOVE COMS-IN-FUNCTION-STATUS TO COMS-INPUT-FUNCTION.
 IF NOT COMS-IF-OK
 PERFORM HANDLE-COMS-IN-FUNCTION THRU
 HANDLE-COMS-IN-FUNCTION-EXIT.
*==> Get the SDF Plus information out of the header:
 MOVE COMS-IN-SDFPLUS-INFO TO SDFPLUS-RESULT.
 MOVE COMS-IN-SDFPLUS-TRANSNUM TO SDFPLUS-TRANSNUM.
 MOVE COMS-IN-SDFPLUS-MSGNUM TO SDFPLUS-MSGNUM.
*==> Check the SDF Plus result to see if there was an error:
 IF NOT SDFPLUS-RESULT-OK
 PERFORM CHECK-SDFPLUS-RESULT THRU
 CHECK-SDFPLUS-RESULT-EXIT.
*==> Should we process this transaction:
 IF CONTINUE-PROCESSING
 MOVE BTRUE TO TRANSACTION-RECEIVED-FLAG.
 WAIT-FOR-TRANSACTION-EXIT.
 EXIT.

Sample SDF Plus Programs

5–42 8600 1526–202

/
**
* *
* SEND MESSAGE *
* *
* This routine is called on to send the response message, *
* which has been set up by the calling routine, to the *
* user interface. *
* *
**
 SEND-MESSAGE.
*==> Send the response message:
 IF SDFPLUS-DEFAULTMSG = 1
 MOVE 0 TO COMS-OUT-TEXT-LENGTH
 ELSE
 MOVE FRL-RECORD-SIZE TO COMS-OUT-TEXT-LENGTH.
 MOVE SDFPLUS-INFO-MSG TO COMS-OUT-SDFPLUS-INFO.
 MOVE SDFPLUS-MSGNUM TO COMS-OUT-SDFPLUS-MSGNUM.
 PERFORM SEND-COMS-MESSAGE THRU
 SEND-COMS-MESSAGE-EXIT.
*==> See if SDF Plus gave us an error:
 IF NOT SDFPLUS-RESULT-OK
 PERFORM CHECK-SDFPLUS-RESULT THRU
 CHECK-SDFPLUS-RESULT-EXIT.
*==> Assume that the next message will be sent with text:
 MOVE BFALSE TO SDFPLUS-DEFAULTMSG.
 SEND-MESSAGE-EXIT.
 EXIT.
/
**
* *
* SEND TRANSACTION ERROR *
* *
* This routine is called on to return a transaction error *
* to the user interface. *
* *
**
 SEND-TRANSACTION-ERROR.
*==> Send the transaction error:
 MOVE 0 TO COMS-OUT-TEXT-LENGTH.
 MOVE SDFPLUS-INFO-TRAN-ERR TO COMS-OUT-SDFPLUS-INFO.
 MOVE SDFPLUS-TRANERROR TO COMS-OUT-SDFPLUS-MSGNUM.
 MOVE SDFPLUS-TRANSNUM TO COMS-OUT-SDFPLUS-TRANSNUM.
 PERFORM SEND-COMS-MESSAGE THRU
 SEND-COMS-MESSAGE-EXIT.
*==> See if SDF Plus gave us an error:
 IF NOT SDFPLUS-RESULT-OK
 PERFORM CHECK-SDFPLUS-RESULT THRU
 CHECK-SDFPLUS-RESULT-EXIT.
 SEND-TRANSACTION-ERROR-EXIT.
 EXIT.

Sample SDF Plus Programs

8600 1526–202 5–43

/
**
* *
* SEND TEXT *
* *
* This routine is called on to return a text message to the *
* user interface. *
* *
**
 SEND-TEXT.
*==> Send the text message:
 MOVE SDFPLUS-TEXTLENGTH TO COMS-OUT-TEXT-LENGTH.
 MOVE SDFPLUS-INFO-TEXT-MSG TO COMS-OUT-SDFPLUS-INFO.
 PERFORM SEND-COMS-MESSAGE THRU
 SEND-COMS-MESSAGE-EXIT.
*==> See if SDF Plus gave us an error:
 IF NOT SDFPLUS-RESULT-OK
 PERFORM CHECK-SDFPLUS-RESULT THRU
 CHECK-SDFPLUS-RESULT-EXIT.
 SEND-TEXT-EXIT.
 EXIT.
/
**
* *
* SEND COMS MESSAGE *
* *
* The routine sends the message to COMS. *
* *
**
 SEND-COMS-MESSAGE.
*==> Fill in the generic COMS header info and send the message:
 MOVE 1 TO COMS-OUT-COUNT.
 MOVE COMS-IN-STATION TO COMS-OUT-STATION.
 MOVE COMS-AGENDA-DESIGNATOR TO COMS-OUT-AGENDA.
 SEND COMS-OUT FROM FRL-RECORD.
*==> See if COMS gave us an error:
 MOVE COMS-OUT-STATUS-KEY TO COMS-OUTPUT-STATUS.
 IF NOT COMS-OS-OK
 PERFORM HANDLE-COMS-OUT-STATUS THRU
 HANDLE-COMS-OUT-STATUS-EXIT.
*==> Get the SDF Plus result out of the header:
 MOVE COMS-OUT-SDFPLUS-INFO TO SDFPLUS-RESULT.
 SEND-COMS-MESSAGE-EXIT.
 EXIT.

Sample SDF Plus Programs

5–44 8600 1526–202

/
**
* *
* CHECK SDF PLUS RESULT *
* *
* This routine is called if there is an error indicated *
* by the last call to SDF Plus. This routine simply *
* displays a message regarding the error indicated. *
* *
**
 CHECK-SDFPLUS-RESULT.
*==> See what the SDF Plus result is, print appropriate message:
 IF SDFPLUS-RESULT-TSMISMATCH
 MOVE SDFPLUS-TRANSNUM TO DISP1
 MOVE SDFPLUS-MSGNUM TO DISP2
 DISPLAY "Time stamp mismatch, TransNum = "
 DISP1
 ", MsgNum = "
 DISP2
 "."
 MOVE BTRUE TO ALL-DONE-FLAG
 ELSE IF SDFPLUS-RESULT-INVALIDMSGNUM
 MOVE SDFPLUS-MSGNUM TO DISP1
 DISPLAY "Invalid message type number "
 DISP1
 "."
 ELSE IF SDFPLUS-RESULT-INVALIDTRANSNUM
 MOVE SDFPLUS-TRANSNUM TO DISP1
 DISPLAY "Invalid transaction type number "
 DISP1
 "."
 ELSE IF SDFPLUS-RESULT-INVALIDMSGKEY
 DISPLAY "Invalid message key."
 ELSE
 MOVE SDFPLUS-RESULT TO DISP1
 DISPLAY "Unknown SDF Plus result "
 DISP1
 ".".
 CHECK-SDFPLUS-RESULT-EXIT.
 EXIT.

Sample SDF Plus Programs

8600 1526–202 5–45

/
**
* *
* HANDLE COMS IN STATUS *
* *
* The message just received had a status of other than 0. *
* This routine determines what the status was and displays *
* an appropriate message. *
* *
**
 HANDLE-COMS-IN-STATUS.
*==> Can we continue to process the transaction:
 IF COMS-IS-CONTINUE
 MOVE BTRUE TO CONTINUE-PROCESSING-FLAG
 ELSE
 MOVE BFALSE TO CONTINUE-PROCESSING-FLAG.
*==> Get the status number ready:
 MOVE SPACES TO COMS-RECORD.
 MOVE "COMS In Status" TO COMS-TYPE.
 MOVE COMS-INPUT-STATUS TO COMS-NBR.
 MOVE ": " TO COMS-DASH.
*==> See what the status is, give appropriate message:
 IF COMS-IS-UNKNOWN-STATION
 MOVE "Unknown station" TO COMS-TEXT
 ELSE IF COMS-IS-MSG-TRUNC
 MOVE "Message truncated" TO COMS-TEXT
 ELSE IF COMS-IS-RECOVERY-MSG
 MOVE "Recovery message" TO COMS-TEXT
 ELSE IF COMS-IS-LAST-MSG-ABORT
 MOVE "Last message caused abort" TO COMS-TEXT
 ELSE IF COMS-IS-INVALID-PROG-STATION
 MOVE "Invalid program or station designator"
 TO COMS-TEXT
 ELSE IF COMS-IS-INVALID-AGENDA
 MOVE "Invalid agenda designator" TO COMS-TEXT
 ELSE IF COMS-IS-TERMINATE
 MOVE BTRUE TO ALL-DONE-FLAG
 MOVE "COMS requests us to go down" TO COMS-TEXT
 ELSE IF COMS-IS-ATTACHED
 MOVE "Station already attached to another program"
 TO COMS-TEXT
 ELSE
 MOVE "Unknown COMS error" TO COMS-TEXT.
 DISPLAY COMS-RECORD.
 HANDLE-COMS-IN-STATUS-EXIT.
 EXIT.

Sample SDF Plus Programs

5–46 8600 1526–202

/
**
* *
* HANDLE COMS IN FUNCTION *
* *
* The message just received had a function status of other *
* than 0. This means that either COMS sent an error status, *
* or this message has a function index. *
* *
**
 HANDLE-COMS-IN-FUNCTION.
*==> Check the function status:
 IF COMS-INPUT-FUNCTION < -5
 MOVE BFALSE TO CONTINUE-PROCESSING-FLAG
 ELSE
 MOVE BTRUE TO CONTINUE-PROCESSING-FLAG
 IF COMS-INPUT-FUNCTION NOT < 0
 GO TO HANDLE-COMS-IN-FUNCTION-EXIT.
*==> Get the function number ready:
 MOVE SPACES TO COMS-RECORD.
 MOVE "COMS In Function" TO COMS-TYPE.
 MOVE COMS-INPUT-FUNCTION TO COMS-NBR.
 MOVE ": " TO COMS-DASH.
*==> See what the status is, give appropriate message:
 IF COMS-IF-BADTCODE
 MOVE "Undefined trancode" TO COMS-TEXT
 ELSE IF COMS-IF-NOTCODE
 MOVE "Invalid trancode" TO COMS-TEXT
 ELSE IF COMS-IF-NOITEM
 MOVE "No processing item" TO COMS-TEXT
 ELSE IF COMS-IF-OPEN
 MOVE "Open notification" TO COMS-TEXT
 MOVE BTRUE TO CONTINUE-PROCESSING-FLAG
 ELSE IF COMS-IF-ON
 MOVE "On notification" TO COMS-TEXT
 ELSE IF COMS-IF-CLOSE
 MOVE "Close notification" TO COMS-TEXT
 ELSE IF COMS-IF-EOJ
 MOVE "COMS is shutting down" TO COMS-TEXT
 MOVE BTRUE TO ALL-DONE-FLAG
 ELSE IF COMS-IF-DISABLE
 MOVE "Program has been disabled" TO COMS-TEXT
 MOVE BTRUE TO ALL-DONE-FLAG
 ELSE IF COMS-IF-REDUCED
 MOVE "Activity reduced, mincopies exceeded"
 TO COMS-TEXT
 MOVE BTRUE TO ALL-DONE-FLAG
 ELSE IF COMS-IF-BADMKEY
 MOVE "COMS detected invalid message key"
 TO COMS-TEXT
 MOVE BTRUE TO CONTINUE-PROCESSING-FLAG
 ELSE

Sample SDF Plus Programs

8600 1526–202 5–47

 MOVE "Unknown COMS function status" TO COMS-TEXT.
 DISPLAY COMS-RECORD.
 HANDLE-COMS-IN-FUNCTION-EXIT.
 EXIT.
/
**
* *
* HANDLE COMS OUT STATUS *
* *
* The message just sent had a status key of other than 0. *
* This routine determines what the status was, and handles *
* it accordingly. *
* *
**
 HANDLE-COMS-OUT-STATUS.
*==> Get the status number ready:
 MOVE SPACES TO COMS-RECORD.
 MOVE "COMS Out Status" TO COMS-TYPE.
 MOVE COMS-OUTPUT-STATUS TO COMS-NBR.
 MOVE ": " TO COMS-DASH.
*==> See what the status is, give appropriate message:
 IF COMS-OS-MSG-TRUNC
 MOVE "Message truncated" TO COMS-TEXT
 ELSE IF COMS-OS-RECOVERY-MSG
 MOVE "Message discarded due to recovery"
 TO COMS-TEXT
 ELSE IF COMS-OS-INVALID-PROG-STATION
 MOVE "Invalid program or station designator"
 TO COMS-TEXT
 ELSE IF COMS-OS-INVALID-AGENDA
 MOVE "Invalid agenda designator" TO COMS-TEXT
 ELSE IF COMS-OS-PROC-ITEM
 MOVE "Message prematurely stopped by proc item"
 TO COMS-TEXT
 ELSE
 MOVE "Unknown COMS error" TO COMS-TEXT.
 DISPLAY COMS-RECORD.
 HANDLE-COMS-OUT-STATUS-EXIT.
 EXIT.

Sample SDF Plus Programs

5–48 8600 1526–202

8600 1526–202 6–1

Section 6
Using the SDF Program Interface

The Screen Design Facility (SDF) is a tool to help programmers design and process forms
for applications. SDF provides form processing that eliminates the need for complicated
format language or code, and it enables you to provide validation for data entered on
forms by application users.

The COBOL85 program interface developed for SDF includes the following:

• Extensions that enable you to easily read and write forms

• Ability to invoke form data into your program as COBOL85 declarations

• Message keys for form processing

• Programmatic control over data manipulation and display on a form image

This section provides information about the extensions developed for SDF and explains
the syntax for using message keys and programmatic controls in an application. Each
extension is presented with its syntax and an example. Sample programs are included at
the end of the section.

You can use SDF with the Advanced Data Dictionary System (ADDS) and with the
Communications Management System (COMS). When you use SDF with ADDS, you can
take advantage of the following ADDS capabilities:

• Defining prefixes for entities such as DMSII database elements, COBOL85 data
description items, and fields on SDF and SDF Plus forms

• Defining a synonym, which means referring to an entity by another name

Related Information

The following table indicates the section in this manual or the title of the document in
which you can find additional information about using SDF with COBOL85:

For Information About . . . Refer to . . .

COBOL85 extensions for SDF Section 1.

Defining prefixes and synonyms for entities The InfoExec Advanced Data Dictionary
System (ADDS) Operations Guide.

SDF concepts and programming
considerations

The Screen Design Facility (SDF) Operations
and Programming Guide.

Identifying the Dictionary

6–2 8600 1526–202

Identifying the Dictionary
You identify the dictionary that contains the SDF form library you want to use by
including a DICTIONARY clause in the SPECIAL-NAMES paragraph of the Environment
Division of your COBOL85 program.

Note that a program can invoke only one dictionary. Thus, if a program accesses both a
SIM database (from a dictionary) and SDF forms, both the database and the forms must be
in the same dictionary.

Format

 { DICTIONARY IS literal-1 }
 ïïïïïïïïïï

Explanation

Literal-1 is the value of the library attribute FUNCTIONNAME. This is the same function
name that you specified on the SDF DICTIONARY SELECTION screen during the SDF
session. Note that this function name is determined when you install SDF. You can
equate the function name to a library code file by using the SL (Support Library) system
command. For instructions on equating these file names, see the SDF Operations and

Programming Guide.

Example

The following example specifies a dictionary whose function name is SCREENDESIGN:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SPECIAL-NAMES.
 DICTIONARY IS "SCREENDESIGN".

Declaring the Form Record Library Invocation

8600 1526–202 6–3

Declaring the Form Record Library Invocation
You must use a special data description entry to identify which form record library you
want to invoke and to specify certain characteristics of that form record library. You can
place the data description entry in any section of the Data Division except the following:

• Program-Library Section

• DATA-BASE Section

• COMMUNICATIONS Section

Format

 level-number-1 form-record-library-name-1

 FROM DICTIONARY
 ïïïï ïïïïïïïïïï
 [; VERSION IS literal-1]
 ïïïïïïï
 [; DIRECTORY IS literal-2]
 ïïïïïïïïï
 [; SAME RECORD AREA]
 ïïïï
 [; REDEFINES form-record-library-name-2] [;]
 ïïïïïïïïï ï

Explanation

level-number-1 This must be the level number 01.

form-record-library-name-1 This is the name of the form record library that
contains the descriptions of each of the message
types and transaction types associated with an SDF
formlibrary. You cannot use the INVOKE clause to
assign an alias to form-record-library-name-1.

VERSION IS literal-1 This clause specifies a numeric literal that identifies
a version of the file. This clause is valid only if you
are using ADDS.

DIRECTORY IS literal-2 This clause specifies a nonnumeric literal that
identifies the directory of the data dictionary in
which the file is stored.

Declaring the Form Record Library Invocation

6–4 8600 1526–202

SAME-RECORD-AREA This clause invokes all form record descriptions in
the form library as redefinitions of the first form
record in the library. You can use this clause only
with data description entries declared in the
Working-Storage, Linkage, and Local Storage
Sections of the Data Division. Using this clause in
any other section results in a syntax error.

REDEFINES
form-record-library-name-2

This clause redefines a form record library whose
data description entry uses the SAME RECORD
AREA clause. You can use the REDEFINES clause
only with formlibrary invocations declared in the
Working-Storage, Linkage, and Local Storage
Sections of the Data Division. Using the
REDEFINES clause in any other section results in a
syntax error.

; (Semicolon) The semicolon that follows the ending period can be
used to control the behavior of compiler control
records (CCRs) and the format of listings. This
semicolon should always be separated from the
ending period of the data invocation by at least one
space.

If a CCR immediately follows a data item invoked
from the dictionary, the compiler option changes
might occur before the compiler processes the
information invoked from the dictionary. This
situation can be avoided by using the semicolon
after the ending period. The semicolon ensures that
the compiler processes the invoked information
before the option actually changes.

Details

The data item described by an SDF data description entry must be declared as COMMON,
GLOBAL, or EXTERNAL in the following situations:

The SDF data item must be
declared . . . When it is declared in a . . .

COMMON A subprogram that references a formlibrary declared in the
host program during binding.

GLOBAL A host program that has nested subprograms that must
access the form library.

EXTERNAL A data structure that is shared through interprogram
communication at run time.

READ FORM Statement

8600 1526–202 6–5

READ FORM Statement
The READ FORM statement is used in the Procedure Division to read the input on a form
from a user terminal to a program.

Format

 READ FORM file-name-1
 ïïïï ïïïï
 äform-name-1 [FROM DEFAULT FORM] å
 USING ã ïïïï ïïïïïïï â
 ïïïïï æformlibrary-name-1 ç

 [INTO identifier-1]
 ïïïï
 [ON ERROR imperative-statement-1]
 ïï ïïïïï

Explanation

filename-1 This is the name of a remote file from which the data is to
be read. The file must be opened as INPUT or I/O at the
time this statement is executed. The storage area
associated with file-name-1 and identifier-1 cannot be the
same area.

form-name-1 This is the name of a specific form that you want to read.

FROM DEFAULT
FORM

This phrase causes the fields on the form to be completed
with default values before read operations and record
validations are performed.

formlibrary-name-1 This name indicates the name of a form library that
contains self-identifying forms, which are forms for which
you have defined a Message Key field. For details about
defining message keys on forms, refer to the SDF

Operations and Programming Guide.

READ FORM Statement

6–6 8600 1526–202

INTO identifier-1 You can use the INTO phrase only if you invoked the
associated formlibrary in the file description entry
associated with file-name-1 in the File Section. The
storage area associated with identifier-1 and the record
area associated with file-name-1 cannot be the same area.

The INTO phrase moves the record being read from the
record area into the area specified by identifier-1.

Identifier-1 is a data item declared in the Working-Storage
Section that is used to store the information received as a
result of the READ FORM statement.

The move occurs according to the rules for the MOVE
statement. (Refer to “MOVE Statement” in Volume 1 of the
COBOL85 Programming Reference Manual for these
rules.) The sending area is considered to be a group item
equal in size to the maximum record size for this file. Any
subscripting or indexing associated with the identifier is
evaluated after the record is read and immediately before
the record is moved to the data item.

The record is available in both the input record area and
the data area associated with the identifier.

The move does not occur if the READ FORM operation is
unsuccessful.

imperative-statement-1 This statement is executed if an error condition occurs.
For details about error conditions, refer to “Error
Conditions” under the heading of “Details.”

Details

When the READ FORM statement is executed, the system

1. Reads the specified form

2. Validates the record

3. Performs error screen handling

4. Passes the valid record (in the record storage area associated with file-name-1) or the
detected error condition back to the program

5. Updates the value of the file status data item associated with filename-1

 The message code 82 is returned in the file status data item when either of the
following errors occurs:

• A read operation is executed for a form that is not present in the form library.

• The compile-time version of the form does not equal the run-time version of the
form.

READ FORM Statement

8600 1526–202 6–7

Defining a File Status Data Item

You define a file status data item as a two-character, alphanumeric data item in the Data
Division of your COBOL85 program. (For details about declaring a data item, refer to
Volume 1 of the COBOL85 Programming Reference Manual.) You link this data item with
a file by specifying its data name in the FILE STATUS clause in the Input-Output Section
of the Environment Division. (For details about the FILE STATUS clause, refer to Section
3 in Volume 1 of the COBOL85 Programming Reference Manual.)

Avoiding Truncation of Trailing Characters

When a form is invoked in a section other than the File Section, the data is read into the
file-name-1 record area and is then transferred to the forms record area. To avoid
truncation of trailing characters in the message, make the record description entry for
file-name-1 as large as the largest form to be used with the file.

Multiple Record Descriptions for a File

When the logical records of a file are described with more than one record description
entry, the records automatically share the same storage area. This sharing is equivalent to
an implicit redefinition of the area. The contents of any data item that is beyond the range
of the current data record is undefined after the READ FORM statement is executed.

Error Conditions

When an error condition is recognized, the READ FORM statement is unsuccessful. A
value is placed in the FILE STATUS data item (if you specified that data item for the file)
and the following action occurs:

If the ON ERROR
clause . . . And . . . Then . . .

Is specified Control is transferred to imperative-
statement-1. Any USE procedure
specified for this file is not executed

Is not specified No USE procedure is
specified

The program is terminated.

Is not specified A USE procedure is
specified

The USE procedure is executed

For general information on error handling with remote files, refer to the SDF Operations

and Programming Guide.

WRITE FORM Statement

6–8 8600 1526–202

WRITE FORM Statement
The WRITE FORM statement is used to write a form and its data from the program to a
user terminal.

Format

 ä form-name-1 å
 WRITE FORM ã â
 ïïïïï ïïïï æ record-name-1 USING form-name-2 ç
 ïïïïïï
 Ú ä identifier-1 å ¿
 ³ FROM ã â ³
 À ïïïï æ DEFAULT FORM ç Ù
 ïïïïïïï
 [ON ERROR imperative-statement-1]
 ïï ïïïïï

Explanation

form-name-1 This is the name of a form in the formlibrary.

record-name-1 This is the name of a logical record for a remote file. This
file name can have a qualifier. (Qualification is discussed in
Section 4 of Volume 1 of this manual.) Record-name-1 and
identifier-1 cannot reference the same storage area.

USING form-name-2 The USING clause enables the writing of forms from a
formlibrary declared in the Working Storage Section. The
normal record area of the file is ignored, and the record area
for form-name-2 is written.

FROM
identifier-1
DEFAULT FORM

A WRITE FORM statement with the FROM phrase is
equivalent to the statement “MOVE identifier-1 TO
record-name” followed by the WRITE FORM statement
without the FROM phrase. When the DEFAULT FORM
clause is used, the form library inserts default values in the
fields on the form.

Details

The execution of the WRITE FORM statement releases a logical record to a REMOTE file.
The remote file must be opened as OUTPUT, IO, or EXTEND at the time this statement is
executed.

The execution of a WRITE FORM statement does not affect the contents or accessibility
of the record area of the remote file. In addition, the current record pointer is unaffected
by the WRITE FORM statement.

WRITE FORM Statement

8600 1526–202 6–9

Effect of SAME RECORD AREA Clause

If the file associated with record-name-1 has the SAME RECORD AREA clause in its data
description entry, the logical record is also available as a record of other files referenced
in that SAME RECORD AREA clause.

Error Conditions

When an error condition is recognized, the WRITE FORM statement is unsuccessful. A
value is placed in the FILE STATUS data item (if you specified that data item for the file)
and the following action occurs:

If the ON ERROR clause . . . And . . . Then . . .

Is specified Control is transferred to
imperative-statement-1. Any
USE procedure specified for
this file is not executed.

Is not specified No USE procedure is
specified

The program is terminated.

Is not specified A USE procedure is
specified

The USE procedure is
executed.

You can use the FILE STATUS clause in the Input-Output Section of the Environment
Division to enable a form error message code to be returned. The message code 82 is
returned when either of the following errors occurs:

• A write operation is executed for a form that is not present in the formlibrary.

• The compile-time version of the form does not equal the run-time version of the form.

For details about the FILE STATUS clause, refer to the discussion of the Environment
Division in Volume 1 of the COBOL85 manual.

FORM-KEY Function

6–10 8600 1526–202

FORM-KEY Function
The FORM-KEY function enables the compiler to access the unique internal binary form
number of the specified form. The FORM-KEY function is required for using SDF with
COMS. This function is used with the MOVE statement.

Format

 FORM-KEY (form-name-1)
 ïïïïïïïï

Example

MOVE FORM-KEY(SDFFORM) TO COMS-OUT-CONVERSATION.

This example shows how to use the FORM-KEY function syntax within a MOVE statement.

Details

When using SDF with COMS (which is required for users migrating from V Series
COBOL74 to A Series COBOL85), you must use the FORM-KEY function to move the form
key into the first word of the output conversation area before executing a SEND
statement.

Programmatic Control Flags

8600 1526–202 6–11

Programmatic Control Flags
Programmatic control flags are provided at both the form level and the field level to cause
extra data items to be generated into the COBOL85 program record description.

The symbolic name for a programmatic control flag is either

• Form-name-flag suffix

• Field-name-flag suffix

Table 6–1 lists the default SDF suffixes. If you choose not to use the default SDF suffixes,
you must specify unique suffixes for each form. The entire name for the programmatic
control flag cannot contain more than 30 characters.

Flags are set by the formlibrary when a read operation is performed or by the program
when a write operation is performed, depending upon the type of flag (see Table 6–1).
Flags set by the program are set before the first write operation and retain those values
throughout the program, unless you reset them.

Table 6–2 lists the COBOL85 picture representation of the programmatic control flags
along with their valid values.

Table 6–1. Default SDF Suffixes for Programmatic Control Flags

Flag Name Suffix

Form or
Field
Level When Set

Cursor -CURSOR Field Before a write operation

Data Only -DATA Both Before a write operation

Flag groups -FLAGS Form Before a write operation

Highlight -HIGHLIGHT Field Before a write operation

Input/Output -IOTYPE Field Before a write operation

No input -NOINPUT Field By the formlibrary (checked by
the program after a read
operation)

Page -PAGE Form Before a write operation

Specify -SPECIFY Both By the formlibrary when a read
operation occurs

Field suppress -SUPPRESS Field Before a write operation

Programmatic Control Flags

6–12 8600 1526–202

Table 6–2. COBOL85 Picture Representations and Values of Programmatic
Control Flags

Flag Name COBOL85 Picture Valid Values

Cursor PIC 9 (1) COMP 0 - No cursor positioning
1 - Cursor positioning

Data only PIC 9(1) COMP 0 - No data only
1 - Data only

Field suppress PIC 9(1) COMP 0 - Not suppressed
1 - Suppressed

Flag groups Not applicable Not applicable

Highlight PIC 9(1) COMP Fixed highlighting:

 0 - Not specified
>0 - Specified

Variable highlighting

0 - None
1 - Bright
2 - Reverse
3 - Secure
4 - Underline
5 - Blink

Input/Output PIC 9(1) COMP 1 - Input
2 - Input only
3 - Output
4 - Output transmittable

No input PIC 9(1) COMP 0 - Data input
1 - No data input

Page PIC 9(1) COMP Terminal page 1 through 9

Specify PIC 9(4) COMP 0 - Not specified
>0 - Specified

Generating Flag Groups
You can create a flag group through SDF, which enables you to reset all generated flags.
You provide a group name for all the flags in the form, and individual group names for
each type of flag. The names of the flag groups must follow COBOL85 naming
conventions and must be unique for each field or form.

The group name for the form has the following syntax:

<form name>-<group flag suffix>

The group name for each type of flag has the following syntax:

<form name>-<flag suffix>-<group flag suffix>

Programmatic Control Flags

8600 1526–202 6–13

At the group level, you can use hexadecimal values for zero. You can set individual flags
to hex 0 by using the figurative constant LOW-VALUES. LOW-VALUES used at the group
level causes spaces to be moved rather than hex zeroes, because the destination is
considered to be alphanumeric.

Resetting Control Flags to Zero
The following sample COBOL85 code assumes that FORM-1 has two fields, FIELD-1 and
FIELD-2. If the form and each field had all the possible programmatic control flags set,
the COBOL85 01 record would appear as shown.

01 FORM-1.
 02 FIELD-1 PIC X(10).
 02 FIELD-2 PIC 9(6) V9(2).
 02 FORM-1-FLAGS.
 03 FORM-1-PAGE-FLAGS.
 04 FORM-1-PAGE PIC 9 COMP.
 03 FORM-1-SPECIFY-FLAGS.
 04 FORM-1-SPECIFY PIC 9(4) COMP.
 04 FIELD-1-SPECIFY PIC 9(4) COMP.
 04 FIELD-2-SPECIFY PIC 9(4) COMP.
 03 FORM-1-IOTYPE-FLAGS.
 04 FIELD-1-IOTYPE PIC 9 COMP.
 04 FIELD-2-IOTYPE PIC 9 COMP.
 03 FORM-1-CURSOR-FLAGS.
 04 FIELD-1-CURSOR PIC 9 COMP.
 04 FIELD-2-CURSOR PIC 9 COMP.
 03 FORM-1-SUPPRESS-FLAGS.
 04 FIELD-1-SUPPRESS PIC 9 COMP.
 04 FIELD-2-SUPPRESS PIC 9 COMP.
 03 FORM-1-HIGHLIGHT-FLAGS.
 04 FIELD-1-HIGHLIGHT PIC 9 COMP.
 04 FIELD-2-HIGHLIGHT PIC 9 COMP.
 03 FORM-1-DATA-FLAGS.
 04 FORM-1-DATA PIC 9 COMP.
 04 FIELD-1-DATA PIC 9 COMP.
 04 FIELD-2-DATA PIC 9 COMP.
 03 FORM-1-NOINPUT-FLAGS.
 04 FIELD-1-NOINPUT PIC 9 COMP.
 04 FIELD-2-NOINPUT PIC 9 COMP.

To reset all the flags declared in the preceding data description entry to zero, you would
use the following statement:

MOVE ALL @00@ TO FORM-1-FLAGS.

Using SDF with COMS

6–14 8600 1526–202

Using SDF with COMS
You can use SDF with COMS to take advantage of COMS direct windows, which give you
enhanced routing capabilities for forms and also allow preprocessing and postprocessing
of forms. When using SDF and COMS together, follow the instructions for using each
product as documented in the appropriate user manuals, except as noted in the following
paragraphs.

REDEFINES and SAME RECORD AREA Clauses
When using the COMS direct-window interface, you can use the REDEFINES and the
SAME RECORD AREA clauses in the data description entry for a formlibrary in the
Working-Storage Section. The following example illustrates the use of the SAME
RECORD AREA clause in a COBOL85 program that uses both SDF and COMS:

001800 WORKING-STORAGE SECTION.
002000 01 COMS-NAME PIC X(072).
002500 01 COMS-MESSAGE-AREA.
002600 02 COMS-MESSAGE PIC X(1920).
002620 01 SDFFORMLIBRARY FROM DICTIONARY;
002625 SMAE RECORD AREA.

RECEIVE Statement
In the main processing loop, the RECEIVE statement uses the SDF form as the message
area, as shown in the following example:

006300 RECEIVE COMS-IN MESSAGE INTO SDFFORM.

In this example, COMS-IN is the name of the COMS header. SDFFORM is the name of the
form in the formlibrary named SDFFORMLIBRARY.

FORM-KEY Function
The FORM-KEY function moves the form key into the first word of the output
conversation area. The FORM-KEY function syntax must precede a SEND statement.
Sample code that uses this function is as follows:

006355
006360 MOVE 1 TO COMS-OUT-COUNT.
006400 MOVE COMS-IN-STATION TO COMS-OUT-DESTINATION.
006700 MOVE 60 TO COMS-OUT-TEXT-LENGTH.
006720 MOVE SDF-AGENDA-DESIGNATOR TO COMS-OUT-AGENDA.
006740 MOVE FORM-KEY(SDFFORM) TO COMS-OUT-CONVERSATION.
006800 SEND COMS-OUT FROM SDFFORM.
007100 END-OF-JOB.

Sample COBOL85 Programs That Use SDF

8600 1526–202 6–15

Transmitting a Default Form
To transmit a form with default values, you can perform one of the following actions:

Move . . . To . . .

Spaces Display items.

Zeroes Numeric items.

Sample COBOL85 Programs That Use SDF
The following are sample programs that illustrate the different uses of the SDF program
interface within COBOL85. Comment lines explain the various sections of the program.
For information about how to handle remote file errors in an application program, refer to
the SDF Operations and Programming Guide.

Code for Remote File Interface and READ Statement
The following sample program uses a remote file and specific forms. The program
contains a READ FORM statement for a default form. The form record library was created
with SDF.

 IDENTIFICATION DIVISION.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.

* The following lines specify the dictionary that stores *
* the form record library. *

 SPECIAL-NAMES.
 DICTIONARY IS "SCREENDESIGN".

* The following lines specify the remote file. *

 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT REMFILE
 ASSIGN TO REMOTE.

* The following lines invoke the form library in the File *
* Section and associate it with the file. Invoking the *
* form library also causes the proper maximum record size *
* (MAXRECSIZE) to be designated for the file. *

Sample COBOL85 Programs That Use SDF

6–16 8600 1526–202

 DATA DIVISION.
 FILE SECTION.
 FD REMFILE.
 01 SAMPLELIB FROM DICTIONARY.

* The following lines include program record descriptions *
* for all forms in the form library that are *
* automatically invoked and copied into the program *
* during compilation (see the following dictionary lines *
* identified with the D flag). *

*-DICTIONARY D
*-DICTIONARY FORMLIST <SAMPLELIB>. D
 01 SAMPLEFORM1. D
 02 ACTION PIC X(10). D
 02 ACCOUNT-NO PIC (9). D
 02 NAME PIC X(15). D
 02 STREET PIC X(25). D
 02 CITY PIC X(15). D
 02 STATE PIC X(2). D
 02 ZIPCODE PIC 9(9). D
 PROCEDURE DIVISION.
 MAIN-PARA.

* The following line opens the remote file in I/O mode. *

 OPEN I-O REMFILE.

* The following READ statement writes the form named *
* SAMPLEFORM1 with its default values and then reads the *
* form. Note that the WRITE FORM statement is not *
* required to send a form with default values to a *
* station. *

 READ FORM REMFILE USING SAMPLEFORM1 FROM DEFAULT FORM.
 STOP RUN.

Remote File Interface and READ and WRITE Statements
The following sample code shows how the WRITE and READ statements could be used in
the Procedure Division of the program shown in the preceding subsection.

 PROCEDURE DIVISION.
 MAIN-PARA.

* The following line opens the remote file in I/O mode. *

 OPEN I-O REMFILE.

Sample COBOL85 Programs That Use SDF

8600 1526–202 6–17

* The following WRITE FORM statement writes the form *
* named SAMPLEFORM1 to the station. *

 WRITE FORM SAMPLEFORM1.

* The following READ FORM statement relays the data that *
* the user entered on SAMPLEFORM1 to the program when the *
* user transmits the form. *

 READ FORM REMFILE USING SAMPLEFORM1.
 STOP RUN.

Remote File Interface and Programmatic Controls
The following sample code is a COBOL85 program that uses SDF, a remote file, specific
forms, and programmatic controls. As you read this example, remember the following
information about programming flags:

• If your forms use either SPECIFY or NO INPUT flags, design your program to verify
that these flags are set after a READ operation before processing data from the fields
on the forms. If you use both SPECIFY and NO INPUT flags, direct your program to
check the SPECIFY flag first.

• If the value in any SPECIFY flag field is greater than zero, the values in the data fields
of the form are unchanged from the previous operation.

 IDENTIFICATION DIVISION.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.

* The following lines specify the dictionary that stores *
* the form record library. *

 SPECIAL-NAMES.
 DICTIONARY IS "SCREENDESIGN";
 ALPHABET XXX IS EBCDIC.

* The following lines declare the remote and disk files. *

 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT MITERM
 ASSIGN TO REMOTE.
 SELECT DISK-FILE
 ASSIGN TO DISK.
 DATA DIVISION.
 FILE SECTION.

Sample COBOL85 Programs That Use SDF

6–18 8600 1526–202

* The following line specifies the file that will be *
* associated with the form library specified in this *
* section. *

 FD MITERM

* The following lines specify file attributes to ensure *
* the correct record size for write operations in which *
* the form record can be longer than 80 characters. *

 BLOCK CONTAINS 2200 CHARACTERS
 RECORD CONTAINS 2200 CHARACTERS
 VALUE OF MAXRECSIZE IS 2200
 VALUE OF FILETYPE IS 3
 VALUE OF MYUSE IS IO
 CODE-SET IS XXX.

* The following line invokes the form library. *

 01 VOTERLIB FROM DICTIONARY.

* The following lines include record descriptions for *
* all of the forms in the form library that are *
* automatically invoked and copied into the program *
* during compilation (see the following dictionary data *
* lines identified by the D flag). *

*-DICTIONARY D
*-DICTIONARY FORMLIST <VOTERLIB>. D
 01 VRFORM. D
 02 PRECINCT PIC 9(4). D
 02 LOCATION PIC X(28). D
 02 VRNAME PIC X(54). D
 02 ADDRESS PIC X(54). D
 02 CITY PIC X(24). D
 02 COUNTY PIC X(24). D
 02 CONGRESSDIS PIC 9(4). D
 02 REPRESDIS PIC 9(4). D
 02 SENATEDIS PIC 9(4). D
 02 COMMISSDIS PIC 9(4). D
 02 VRDATE PIC 9(6). D
 02 CLERK PIC X(29). D
 02 VRNAME-CURSOR PIC 9(1) COMP. D
 02 VRNAME-HIGHLIGHT PIC 9(1) COMP. D
 FD DISK-FILE.
 01 DATA-RECORD PIC X(300).
 WORKING-STORAGE SECTION.
 PROCEDURE DIVISION.
 MAIN-PARA.

Sample COBOL85 Programs That Use SDF

8600 1526–202 6–19

**
* The following lines open the remote file and the disk *
* file. *
**
 OPEN I-O MITERM.
 OPEN OUTPUT DISK-FILE.

* The following lines move values to the fields of the *
* form so that the form can be written with those values. *

 MOVE SPACES TO VRFORM.
 MOVE ZEROS TO VRDATE.

* The following lines prevent highlighting from being *
* incorrectly set. *

 MOVE 0 TO VRNAME-CURSOR.
 MOVE 0 TO VRNAME-HIGHLIGHT.

* The following lines create a loop that enters and *
* stores data in a disk file. *

 PERFORM DATA-ENTRY UNTIL CLERK = "DONE".
 END-MAIN-PARA.
 STOP RUN.

* The following lines signify the beginning of the data *
* entry loop. These lines move values to the indicated *
* fields. *

 DATA-ENTRY.
 MOVE SPACES TO VRNAME.
 MOVE SPACES TO ADDRESS.
 MOVE SPACES TO CITY.
 MOVE SPACES TO COUNTY.

* The following WRITE FORM statement writes the form *
* name. The READ statement reads the form from the *
* terminal. The MOVE and WRITE statements store the form *
* in a record file. *

 WRITE FORM VRFORM
 ON ERROR STOP RUN.
 READ FORM MITERM USING VRFORM
 ON ERROR STOP RUN.
 MOVE VRFORM TO DATA-RECORD.
 WRITE DATA-RECORD.

Sample COBOL85 Programs That Use SDF

6–20 8600 1526–202

* The following lines use programmatic control to *
* position the cursor (VRNAME-CURSOR) and place the *
* cursor in the VRNAME field when the form is displayed. *
* Note that station users can tab back to the first *
* field to enter data if they desire. *

 MOVE 1 TO VRNAME-CURSOR.
 END-DATA-ENTRY.

Message Keys and Independent Record Area
The following code shows the use of message keys and an independent record area in a
COBOL85 program that uses SDF. In this example, the SDF formlibrary is named
SAMPLELIB, and the forms are named SAMPLEFORM1 and SAMPLEFORM2. The Action
field is defined as the Message Key field.

 IDENTIFICATION DIVISION.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.

* The following lines specify the dictionary that stores *
* the form record library. *

 SPECIAL-NAMES.
 DICTIONARY IS "SCREENDESIGN";
 ALPHABET XXX IS EBCDIC.

* The following lines declare the remote file. *

 INPUT-OUTPUT SECTION.
 FILE-CONTROL.
 SELECT REMFILE
 ASSIGN TO REMOTE.
 DATA DIVISION.
 FILE SECTION.

* The following line specifies the file that will be *
* associated with the form library. *

 FD REMFILE

* The following lines specify file attributes to ensure *
* the correct record size for write operations in which *
* the form record can be longer than 80 characters. *

 BLOCK CONTAINS 2500 CHARACTERS
 RECORD CONTAINS 2500 CHARACTERS
 VALUE OF FILETYPE IS 3
 VALUE OF MYUSE IS IO

Sample COBOL85 Programs That Use SDF

8600 1526–202 6–21

 CODE-SET IS XXX.

* The following line invokes the form library. *

 01 SAMPLELIB FROM DICTIONARY.

* The following lines include record descriptions for *
* all of the forms in the form library that are *
* automatically invoked and copied into the program *
* during compilation (see the following dictionary data *
* lines identified by the D flag). *

*-DICTIONARY D
*-DICTIONARY FORMLIST <SAMPLELIB>. D
 01 SAMPLEFORM1. D
 02 ACTION PIC X(11). D
 02 ACCOUNT-NO PIC 9(9). D
 02 NAME PIC X(15). D
 02 STREET PIC X(25). D
 02 CITY PIC X(15). D
 02 STATE PIC X(2). D
 02 ZIPCODE PIC 9(9). D
 01 SAMPLEFORM2. D
 02 ACTION PIC X(11). D
 02 ACCOUNT-BALANCE PIC 9(9). D
 02 PAYMENT-DUE-DATE PIC X(6). D
 02 DATE-LAST-PAYMENT PIC X(6). D
 02 FINANCE-CHARGE PIC 9(5). D

* The following lines specify the SDF message key. The *
* size of the SDF message key must be the same size as *
* the input message key. The total message area size *
* must be large enough to hold any SDF input message. *

 WORKING-STORAGE SECTION.
 01 SDF-MESSAGE-AREA.
 02 SDF-MESSAGE-KEY PIC X(011).
 02 SDF-MESSAGE PIC X(2500).

* Program the main processing loop so that the RECEIVE *
* uses a working storage area, SDF-MESSAGE-AREA, for the *
* the input message. Messages or errors might arrive for *
* program from your formlibrary. *

 PROCEDURE DIVISION.
 MAIN-PARA.

* Open remote file I/O. *

 OPEN I-O REMFILE.

Sample COBOL85 Programs That Use SDF

6–22 8600 1526–202

* Move values to the fields of the form so that a write *
* can be done to display the form with those values. *

 MOVE SPACES TO NAME.
 MOVE SPACES TO STREET.
 MOVE SPACES TO CITY.
 MOVE SPACES TO STATE.
 MOVE ZEROS TO ACCOUNT-NO.
 MOVE ZEROS TO ZIPCODE.

* These are WRITE FORM and READ FORM statements that *
* explicitly state the form name. Use the WRITE FORM *
* statement to write the form from the formlibrary to the *
* terminal with the changed values. The READ FORM *
* statement uses the form name. The form name can be used *
 * even if message keys have been defined for the forms in*
 * the formlibrary. *

 WRITE FORM SAMPLEFORM1
 ON ERROR STOP RUN.
 READ FORM REMFILE USING SAMPLEFORM1
 ON ERROR STOP RUN.

* The forms in the formlibrary contain message keys; *
* therefore, they are self-identifying forms. Note the *
* syntax of the READ FORM statement. *
* *
* Use the WRITE FORM statement to write the specific form *
* when using message keys to identify input forms. The *
* READ FORM statement uses the formlibrary name and a *
* separate working storage area instead of the form name. *
* The program examines the field SDF-MESSAGE-KEY that *
* contains the message key to identify the form. *

 READ FORM REMFILE USING SAMPLELIB
 INTO SDF-MESSAGE-AREA
 ON ERROR STOP RUN.

Sample COBOL85 Programs That Use SDF

8600 1526–202 6–23

* The value of the Message Key field SDF-MESSAGE-KEY *
* determines the conditional function to be performed. *
* *
* Once the program determines that a valid input has been *
* received from a form in your formlibrary, you can *
* process the data received. The example uses the STOP *
* RUN statement to handle any error. *
* *
* After the SDF errors have been processed, you can *
* determine which form was used for input and move the *
* data in the SDF-MESSAGE-AREA to the SDF form record for *
* further processing. In the following example, *
* SDF-MESSAGE-KEY is checked for the form message key and *
* then the SDF form SAMPLEFORM1 or SAMPLEFORM2 is *
* processed. *
* *
*Move the data in SDF-MESSAGE-AREA to the SDF form *
*record before further processing. *

 IF SDF-MESSAGE-KEY = "ADD-ITEM"
 MOVE SDF-MESSAGE-AREA TO SAMPLEFORM1
 PERFORM ADD-ITEM
 ELSE
 IF SDF-MESSAGE-KEY = "MODIFY-ITEM"
 MOVE SDF-MESSAGE-AREA TO SAMPLEFORM2
 PERFORM MODIFY-ITEM.

* First process all Specify programmatic control data for *
* form before checking for No input programmatic control *
* data and processing other input data. *

 ADD-ITEM.

* Insert code to add an item. *

 MODIFY-ITEM.

* Insert code to modify an existing item. *

 STOP RUN.

Sample COBOL85 Programs That Use SDF

6–24 8600 1526–202

8600 1526–202 7–1

Section 7
TransIT Open/OLTP

What is Open/OLTP?
Traditional online transaction processing (OLTP) enables an application program to
update databases, but leaves the responsibility of coordinating the updates and recovering
from errors to the application program. With the advent of Open/OLTP, the application
program is relieved of these duties. Open/OLTP ensures that transactions are committed
after services have been successfully completed or rolled back to the previous version if
the services have not been successfully completed. Open/OLTP is based on the X/Open
Distributed Transaction Processing (DTP) model, which is specified in standards
developed by the X/Open Company, Ltd.

Open/OLTP also implements a client/server model. Clients invoke database services, but
do not directly update the databases. Servers provide multiple services including a service
to update a DMSII database. The client/server model applies only to COMS online
programs, because the implementation of services is provided by COMS.

Accessing Open/OLTP
You can access Open/OLTP from COBOL85 through the TX and XATMI interfaces. These
interfaces have entry points that you access by using the COBOL85 CALL statement. To
assist you in accessing these interfaces, you are provided with a COBOL85 include file on
the release media. For instructions on using the include file, refer to the Open/OLTP

Programming Guide.

Example

The following example shows the logic for a client:

Open databases.

Start global transaction.
Call Service 1 to debit savings account.
Call Service 2 to credit mutual fund account.
If services completed successfully then
 Commit global transaction
Else
 Rollback global transaction.

Close Databases.

TransIT Open/OLTP

7–2 8600 1526–202

For More Information

For complete information about creating applications that use Open/OLTP, refer to the
TransIT Open/OLTP Programming Guide.

Section 3 of this manual describes the following COMS service functions, which are
related to the XATMI interface:

• GET_BUFFER_DESIGNATOR

• GET_DESIGNATOR_USING_DESIGNATOR

• GET_ERRORTEXT_USING_NUMBER

• GET_INTEGER_USING_DESIGNATOR

8600 1526–202 A–1

Appendix A
Reserved Words

The following is a list of reserved words. It includes all reserved words from the complete
American National Standard (ANSI-85), and additions used with Unisys extensions.
Reserved words that are new to the ANSI-85 standard are marked with a double asterisk
(**). Reserved words that are in the ANSI-85 standard but were also in the ANSI-74
standard are not marked.

Unisys does not use all of these words at the present time, but they are all in the reserved
word list for the A Series COBOL ANSI-85 compiler. The use of any of these words as a
user-defined word causes an error.

A

ABORT-TRANSACTION ALPHABETIC-LOWER AREAS
ACCEPT ALPHABETIC-UPPER** AS
ACCESS ALPHANUMERIC** ASCENDING
ACTUAL ALPHANUMERIC-EDITED** ASCII
ADD ALSO ASSIGN
ADVANCING ALTER AT
AFTER ALTERNATE ATTACH
ALL AND ATTRIBUTE
ALLOW ANY** AUDIT
ALPHABET** ARE AUTHOR
ALPHABETIC AREA AVAILABLE

B

BACKUP BEGINNING BLOCK
BEFORE BINARY** BOTTOM
BEGIN-TRANSACTION BLANK BY

C

CALL CODE-SET CONTROL
CANCEL COLLATING CONTROL-POINT
CARDS COLUMN CONTROLS
CASSETTE COLUMNS CONVERSATION
CAUSE COMMA CONVERTING**
CD COMMON** COPY
CF COMMUNICATION CORR
CH COMP CORRESPONDING
CHANGE COMP-5 COUNT

Reserved Words

A–2 8600 1526–202

C (cont.)

CHANNEL COMPUTATIONAL CRCR-INPUT
CHARACTER COMPUTATIONAL-5 CRCR-OUTPUT
CHARACTERS COMPUTE CREATE
CLASS** CONFIGURATION CRUNCH
CLOCK-UNITS CONTAINS CURRENCY
CLOSE CONTENT** CURRENT
COBOL CONTINUE** CYLINDER
CODE

D

DATA DECIMAL-POINT DIVIDE
DATA-BASE DECLARATIVES DIVISION
DATE DEFAULT DMCANCEL
DATE-COMPILED DELETE DMCLOSE
DATE-WRITTEN DELIMITED DMDELETE
DAY DELIMITER DMERROR
DAY-OF-WEEK** DEPENDING DMOPEN
DB DESCENDING DMREMOVE
DE DESTINATION DMSAVE
DEADLOCK DETACH DMSET
DEBUG-CONTENTS DETAIL DMSTATUS
DEBUG-ITEM DICTIONARY DMSTRUCTURE
DEBUG-LINE DISABLE DMTERMINATE
DEBUG-NAME DISALLOW DOUBLE
DEBUG-SUB-1 DISK DOWN
DEBUG-SUB-2 DISPACK DUMP
DEBUG-SUB-3 DISMISS DUPLICATES
DEBUGGNG DISPLAY DYNAMIC

E

EBCDIC END-GENEREATE END-STRING**
EGI END-IF** END-SUBTRACT**
ELSE END-INSERT END-TRANSACTION
EMI END-LOCK END-UNSTRING**
ENABLE END-MODIFY END-WRITE**
END END-MULTIPY** ENDING
END-ABORT-TRANSACTION END-OF-PAGE ENTER
END-ADD** END-OPEN ENTRY
END-ASSIGN END-PERFORM** ENVIRONMENT
END-BEGIN-TRANSACTION END-READ** EOP
END-CALL** END-RECEIVE** EQUAL
END-CANCEL END-RECREATE ERROR
END-CLOSE END-REMOVE ESI
END-COMPUTE** END-RETURN** EVALUATE**
END-CREATE END-REWRITE** EVENT
END-DELETE** END-SAVE EVERY
END-DIVIDE** END-SEARCH** EXCEPTION
END-END-TRANSACTION END-SECURE EXIT
END-EVALUATE** END-SET EXTEND

Reserved Words

8600 1526–202 A–3

E (cont.)

END-FIND END-START** EXTERNAL**
END-FREE END-STORE EXTERNAL-FORMAT

F

FALSE** FINAL FORM-KEY
FD FIND FORMS
FIELD FIRST FREE
FILE FOOTING FROM
FILE-CONTROL FOR FUNCTION
FILLER FORM

G

GCR GLOBAL** GREATER
GENERATE GO GROUP
GIVING

H

HEADING HIGH-VALUE HIGH-VALUES

I

I-O INITIAL INSTALLATION
I-O-CONTROL INITIALIZE** INTEGER
IDENTIFICATION INITIATE INTERROGATE
IF INPUT INTERRUPT
IN INPUT-OUTPUT INTO
INDEX INQUIRY INVALID
INDEXED INSERT INVOKE
INDICATE INSPECT IS

J

JUST JUSTIFIED

K

KANJI KEY

L

LABEL LIMIT LOCAL
LAST LIMITS LOCAL-STORAGE
LB LINAGE LOCK
LD LINAGE-COUNTER LOCKED
LEADING LINE LOW-VALUE
LEFT LINE-COUNTER LOW-VALUES
LENGTH LINES LOWER-BOUND
LESS LINKAGE LOWER-BOUNDS

Reserved Words

A–4 8600 1526–202

M

MEMORY MODE MOVE
MERGE MODIFY MULTIPLE
MESSAGE MODULE MULTIPLY
MID-TRANSACTION MODULES

N

NATIONAL NO NULL
NATIONAL-EDITED NO-AUDIT NUMBER
NATIVE NONE NUMERIC
NEGATIVE NOT NUMERIC-EDITED**
NEXT

O

OBJECT-COMPUTER OFFSET ORDER**
OCCURS OMITTED ORGANIZATION
ODT ON OTHER**
ODT-INPUT-PRESENT OPEN OUTPUT
OF OPTIONAL OVERFLOW
OFF OR OWN
OFFER

P

PACKED-DECIMAL** PICTURE PROCEDURE
PADDING** PLUS PROCEDURES
PAGE POINT PROCEED
PAGE-COUNTER POINTER PROCESS
PAPERTAPE PORT PROGRAM
PERFORM POSITION PROGRAM-ID
PF POSITIVE PROGRAM-LIBRARY
PH PRINTER PUNCH
PHASE-ENCODED PRINTING PURGE**
PIC PRIOR

Q

QUEUE QUOTE QUOTES

R

RANDOM REFERENCE** REPORTS
RD REFERENCES RERUN
READ RELATIVE RESERVE
READ-OK RELEASE RESET
READER REMAINDER RE-START
RECEIVE REMOTE RETURN
RECEIVED REMOVAL REVERSED
RECORD REMOVE REWIND
RECORDS RENAMES REWRITE
RECREATE REPLACE** RF

Reserved Words

8600 1526–202 A–5

R (cont.)

RH REF RIGHT
REDEFINES REPLACING ROUNDED
REAL REPORT RUN
REEL REPORTING

S

SAME SIZE SUB-QUEUE-1
SAVE SORT SUB-QUEUE-2
SD SORT-MERGE SUB-QUEUE-3
SEARCH SOURCE SUBTRACT
SECTION SOURCE-COMPUTER SUM
SECURE SPACE SUPPRESS
SECURITY SPACES SW1
SEEK SPECIAL-NAMES SW2
SEGMENT STACK SW3
SEGMENT-LIMIT STANDARD SW4
SELECT STANDARD-1 SW5
SEND STANDARD-2** SW6
SENTENCE START SW7
SEPARATE STATUS SW8
SEQUENCE STOP SYMBOLIC
SEQUENTIAL STOQ-INPUT SYNC
SET STOQ-OUTPUT SYNCHRONIZED
SIGN STORE SYSTEM
SINGLE STRING SYSTEMERROR

T

TABLE TEXT TODAYS-NAME
TAG-KEY THAN TOP
TAG-SEARCH THEN** TRACE-OFF
TALLYING THROUGH TRACE-ON
TAPE THRU TRAILING
TAPES TIME TRANSACTION
TASK TIMER TRANSCEIVE
TERMINAL TIMES TRUE**
TERMINATE TO TYPE
TEST** TODAYS-DATE

U

UNIT UP USAGE
UNLOCK UPDATE USE
UNSTRING UPON USING
UNTIL

V

VALUE VARYING VIA
VALUES

Reserved Words

A–6 8600 1526–202

W

WAIT WITH WRITE
WHEN WORDS WRITE-OK
WHERE WORKING-STORAGE

Z

ZERO ZEROS ZEROS
ZEROES

Special Characters

+ - *
/ ** >
< = >=
<=

8600 1526–202 B–1

Appendix B
User-Defined Words

A user-defined word is a COBOL85 word that you must supply to satisfy the format of a
clause or statement. Each character of a user-defined word is selected from the set of
characters A through Z, a through z, 0 (zero) through 9, and the hyphen (-). The hyphen
cannot appear as the first or last character of a word. The words that you can define are
shown in the following list, for reference. Detailed information about user-defined words
is provided in Volume 1.

alphabet-name
class-name
COMS-header-name
condition-name
data-name
family-name
file-name
formlibrary-name
form-name
group-list-name
index-name
level-number

library-name
mnemonic-name
paragraph-name
program-name
record-name
report-name
routine-name
section-name
segment-number
symbolic-character
system-name
text-name

User-Defined Words

B–2 8600 1526–202

8600 1526–202 Index–1

Index

A

ABORT-TRANSACTION statement
DMSII, 1-3, 3-23
DMSII with COMS, 2-2

ACCEPT MESSAGE COUNT statement
in COMS, 1-2, 2-17

Accessroutines in DMSII databases, 3-15
Advanced Data Dictionary System (ADDS)

accessing entities, 4-2
assigning alias identifiers, 4-4
DICTIONARY statement, 4-6
DIRECTORY clause, 4-4
extensions, list of, 1-5
identifying a dictionary, 4-6
identifying entities in data dictionary, 4-3
invocations in the COBOL85 listing, 4-24
INVOKE clause, 4-5
invoking data descriptions, 4-12
invoking file descriptions, 4-10
overview of, 4-1
program tracking, 4-6
repository, 4-1
selecting a file, 4-8
VERSION clause, 4-3

ADVANCING options, in SEND statement in
COMS, 2-29

AFTER ADVANCING phrase
SEND statement, Format 2, in COMS, 2-26,

2-27, 2-29
aggregate items in DMSII, 3-4
ALL clause in DMSII database

declarations, 3-7
AND operator

GENERATE statement in DMSII, 3-50
application program, linking to COMS, 2-12
array parameters

passing to service functions, 2-38
ASSIGN statement

DM attributes, 3-19
DMSII, 1-3

description, 3-25
disadvantages of links, 3-26

example of, 3-28
AT clause in DMSII selection expressions, 3-18
ATTRIBUTE TITLE phrase in DMSII database

equation, 3-15

B

BEFORE ADVANCING phrase
SEND statement, Format 2, in COMS, 2-29

BEGINNING option, in SET statement in
DMSII, 3-70

BEGIN-TRANSACTION statement
in DMSII, 1-3

description, 3-29
example of, 3-30
with COMS, 2-2

BYFUNCTION mnemonic value in COMS
initializing an interface, example of, 2-16
linking an application program, example

of, 2-15

C

CALL interface
interacting with SDF Plus, 5-2

CALL statement
COMS, 2-35

example of, 2-36
VALUE parameter, 1-2, 2-36

SDF Plus interface, 5-15
CALL SYSTEM DMTERMINATE statement, in

DMSII, 3-42
CANCEL TRANSACTION POINT statement in

DMSII, 1-3
description, 3-32

carriage control in COMS, 2-29
category-mnemonic

DMSTATUS word in DMSII, 3-75
CHANGE ATTRIBUTE statement in

COMS, 2-15
CHANGE statement

Index

Index–2 8600 1526–202

DMSII database TITLE attributes, 3-15
client/server model, Open/OLTP, 7-1
CLOSE statement

DMSII, 1-3
description, 3-33
example of, 3-34
syntax used with COMS, 3-34

COBOL85
exception handling in DMSII, 3-75
items mapped to in COMS, 2-7
program interfaces, 1-1

COMMON clause
in a database declaration, 3-7

communication statements, using, 2-17
communication structure in COMS, 2-4

constructs used in, 2-17
declaring the message area, 2-4
specifying the interface, 2-5

Communications Management System
(COMS)

ABORT-TRANSACTION statement in, 3-23
ACCEPT MESSAGE COUNT

statement, 2-17
application program, linking to, 2-12
BEGIN-TRANSACTION statement in, 3-29
Boolean items, 2-7
carriage control, 2-29
COBOL85 extensions for, 1-2
communication constructs, 2-17
communications management, 2-4
converting

a designator to a designator name
in, 2-48

a name variable in, 2-42
a timestamp in, 2-39
an XATMI function error code, 2-43

data structure, with no connection, 2-49
designator

array, getting, 2-40
designators

and integer values, 2-8
using, 2-32

DISABLE statement, 2-19
DMSII, and, 2-2

database update, sample program, 2-55
END-TRANSACTION statement in, 3-43

DMTERMINATE statement in, 3-42
ENABLE statement, 2-21
END-RECEIVE phrase, in RECEIVE

statement, 2-23
extensions, list of, 1-2
FROM phrase, in SEND statement

Format 1, 2-26

functions, 2-1
headers, declaring, 2-5
initializing a station table, 2-52
input header

declaring, 2-5
fields in, 2-7, 2-8
tasks, 2-8

INPUT phrase
ENABLE statement, 2-21

interface, declaring, 2-5
to SDF Plus, 5-15, 5-21

sending and receiving messages, 5-23
sending transaction errors, 5-24

with SDF Plus, 5-2
sending text messages, 5-24
use of COMS headers, 5-21

KEY values
ENABLE statement, 2-21

linking program to, 2-12, 2-13
MESSAGE phrase, in RECEIVE

statement, 2-23
messages

delivery confirmation, 2-12
output header fields, 2-10
receiving, 2-12
releasing, 2-26
sending, 2-12

mnemonics, passing by value in service
functions, 2-36

NO DATA phrase, in RECEIVE
statement, 2-23

obtaining
array of integers, 2-44
EBCDIC string, 2-51
specific designator, 2-41
specific integer, 2-46

output headers, 2-10
fields and types, table of, 2-11
fields in, 2-7

OUTPUT phrase
ENABLE statement, 2-21

program interface, 2-1
initialization, example of, 2-15

RECEIVE statement, 2-23
releasing messages, 2-26
representing a structure test, 2-54
sample program, 2-55
searching through a station table, 2-53
segmenting options, 2-28
SEND statement, 2-26

SPECIAL-NAMES paragraph, 2-27
service functions

calling, 2-34

Index

8600 1526–202 Index–3

mnemonics in, table of, 2-33
names, list of, 2-32
parameters in, 2-38
using, 2-8

transferring data with RECEIVE
statement, 2-23

updating input headers, 2-17
using, 2-7
VT flag bit, using, 2-12
windows, using to send messages, 2-10
SDF Plus interface, 5-15
WITH DATA in RECEIVE statement, 2-23

complex conditions
IF statement in DMSII, 3-53

COMPUTE statement
COMS data types, 2-7
DMSII, 1-3

description, 3-35
COMS, (See Communications Management

System)
COMSSUPPORT function name in COMS

initializing an interface, example of, 2-16
linking an application program, example

of, 2-15
condition clause

selection expressions in DMSII, 3-18
conversation area in COMS header

declaration, 2-6
CONVERT_TIMESTAMP service function in

COMS
example of, 2-39
parameters, 2-39

COPY library
contents of, 5-9
use of in SDF Plus, 5-9

COUNT attribute in DMSII
description, 3-19
example of, 3-20

Count field in DMSII, 3-19
CP2000 station, in COMS delivery

confirmation, 2-12
CREATE statement in DMSII, 1-3

description, 3-36
example of, 3-38

CURRENT option
REMOVE statement in DMSII, 3-64

D

DASDL, (See Data and Structure Definition
Language (DASDL) in DMSII), 3-1

Data and Structure Definition Language
(DASDL) in DMSII

data sets, 3-10
examples of invoking with, 3-10

link items, 3-17
naming, 3-1

data communications interface (DCI) library
COMS linking program, 2-15
DMSII

BEGIN-TRANSACTION statement, 3-29
END-TRANSACTION statement, 3-43

function of, 2-13
data description entry

ADDS, 4-12
for an SDF form library, 6-3, 6-4
SDF Plus, 5-5

data dictionary
assigning alias identifiers, 4-4
identifying a dictionary, 4-6
identifying directory of entity, 4-4
identifying entities, 4-3
invoking data descriptions in ADDS, 4-11
setting status value of entities, 4-2
using the SELECT statement, 4-8

data items
qualifying in DMSII, 3-4

valid and invalid names, example of, 3-3
data management (DM) attributes, 1-3, 3-19

COUNT, 3-19
DMSII, 3-19
POPULATION, 3-22
RECORD TYPE, 3-21

data management statements in DMSII, 3-23
Data Management System II (DMSII)

ABORT-TRANSACTION statement, 3-23
accessing an established database, 3-60
Accessroutines, 3-15
ALL clause in database declarations, 3-7
AND operator in GENERATE

statement, 3-50
ASSIGN data management statement, 3-25

effect on Count field, 3-19
AT clause, 3-18
ATTRIBUTE TITLE phrase in database

equation, 3-15
attributes, 3-19
AUDIT clause

BEGIN-TRANSACTION statement, 3-29
BEGINNING option in SET statement, 3-70
BEGIN-TRANSACTION statement, 3-29
Boolean value, assigning, 3-35
CANCEL TRANSACTION POINT

statement, 3-32

Index

Index–4 8600 1526–202

category-mnemonic value
specification, 3-75

closing a database, 3-33
COMMON clause

in database declarations, 3-7
COMPUTE data management

statement, 3-35
COMS

statements used with, 2-2
condition clause, 3-18
Count field in, 3-19
CREATE data management statement, 3-36
creating a subset in one operation, 3-50
CURRENT phrase in REMOVE

statement, 3-64
current record path or value, changing, 3-70
DASDL

invoking data sets with, examples
of, 3-10

link items, 3-17
data set

referencing, 3-9
structure, determining number of, 3-77

database
data and the object code, 3-23
declaration, 1-3, 3-7
equation operation, 3-15, 3-16
items, 3-1, 3-7
referencing with GLOBAL clause,

example of, 3-14
sections and the compiler, 3-7
specifying access mode, 3-60
status word for, 3-75

deleting a record, 3-39
DMERROR attribute for DMSTATUS

format, 3-75
DMERROR Use procedure, 3-78
DMERRORTYPE attribute for DMSTATUS

format, 3-75
DMRESULT attribute for DMSTATUS

format, 3-75
DMSTATUS word, 3-75
DMSTRUCTURE attribute for DMSTATUS

format, 3-75
DMSTRUCTURE function, 3-77
DMTERMINATE statement, 3-42
ELSE statement with IF statement, 3-53
END-ASSIGN phrase in ASSIGN

statement, 3-25
END-BEGIN-TRANSACTION phrase, 3-29
END-CLOSE phrase, 3-33
END-FIND phrase, 3-46
END-FREE phrase, 3-48

END-GENERATE phrase, 3-50
ENDING option in SET statement, 3-70
END-INSERT phrase, 3-55
END-OPEN phrase, 3-60
END-REMOVE phrase, 3-64
END-SAVE phrase in DMSII NEXT

TRANSACTION POINT
statement, 3-67

END-SECURE phrase, 3-68
END-SET phrase, 3-70
END-STORE phrase, 3-72
END-TRANSACTION statement, 3-43
establishing record relationships in, 3-25
exception-handling

ABORT-TRANSACTION statement, 3-24
ASSIGN statement, 3-26
CANCEL TRANSACTION POINT

statement, 3-32
CLOSE statement, 3-34
CREATE statement, 3-37
DEADLOCK exception, 3-57
DELETE statement, 3-40
DMERROR Use procedure, 3-78
DMSTATUS word, 3-75
END-TRANSACTION statement, 3-44
examples of, 3-34
exception categories, 3-75
FIND statement, 3-47
FREE statement, 3-49
GENERATE statement, 3-51
INSERT statement, 3-55, 3-56
INSERT/MODIFY statement, 3-59
OPEN statement, 3-61
RECREATE statement, 3-63
REMOVE statement, 3-65
SAVE TRANSACTION POINT

statement, 3-67
SECURE statement, 3-68, 3-69
SET statement, 3-71
STORE statement, 3-73

extensions, list of, 1-3
FIND data management statement, 3-46
FIND KEY OF clause in FIND

statement, 3-46
FIRST clause for selection

expressions, 3-17
FREE data management statement, 3-48
GENERATE data management

statement, 3-50
GLOBAL clause in database

declarations, 3-7
IF data management statement, 3-53
INDEPENDENTTRANS option

Index

8600 1526–202 Index–5

FREE statement, 3-48
initializing a user work area, 3-62
INQUIRY option in OPEN statement, 3-60
INSERT data management statement, 3-55
invalid index, example of, 3-6
INVOKE clause in data set references, 3-9
invoking data sets, 3-7
LAST clause for selection expression, 3-17
LOCK/MODIFY data management

statements, 3-57
MCP role in constructing a database, 3-8
minus (-) operator in GENERATE

statement, 3-50
MOVE CORRESPONDING statement, 3-4
name qualification, 3-2
naming database items, 3-1
NEXT clause, 3-18
NEXT SENTENCE phrase

ASSIGN statement, 3-25
BEGIN-TRANSACTION statement, 3-29
CLOSE statement, 3-33
FIND statement, 3-46
FREE statement, 3-48
GENERATE statement, 3-50
INSERT statement, 3-55
OPEN statement, 3-60
REMOVE statement, 3-64
SAVE TRANSACTION POINT

statement, 3-67
SECURE statement, 3-68
SET statement, 3-70
STORE statement, 3-72

NO-AUDIT clause
BEGIN-TRANSACTION statement, 3-29

NOT ON EXCEPTION clause, 3-79
ABORT-TRANSACTION statement, 3-24
ASSIGN statement, 3-26
BEGIN-TRANSACTION statement, 3-30
CANCEL TRANSACTION POINT

statement, 3-32
CLOSE statement, 3-33
CREATE statement, 3-37
DELETE statement, 3-40
END-TRANSACTION statement, 3-44
FIND statement, 3-47
FREE statement, 3-49
GENERATE statement, 3-51
INSERT statement, 3-56
INSERT/MODIFY statement, 3-59
OPEN statement, 3-61
RECREATE statement, 3-63
REMOVE statement, 3-65

SAVE TRANSACTION POINT
statement, 3-67

SECURE statement, 3-69
SET statement, 3-71
STORE statement, 3-73

NOT phrase in IF statement, 3-53
NOTFOUND exception, 3-17
NULL option

ASSIGN statement, 3-25
GENERATE statement, 3-50
IF statement, 3-53
SET statement, 3-70

ON EXCEPTION clause, 3-79
ABORT-TRANSACTION statement, 3-24
ASSIGN statement, 3-25, 3-26
BEGIN-TRANSACTION statement, 3-30
CANCEL TRANSACTION POINT

statement, 3-32
CLOSE statement, 3-33
CREATE statement, 3-37
DELETE statement, 3-40
END-TRANSACTION statement, 3-44
FIND statement, 3-47
FREE statement, 3-49
GENERATE statement, 3-51
INSERT statement, 3-56
INSERT/MODIFY statement, 3-59
OPEN statement, 3-61
RECREATE statement, 3-63
REMOVE statement, 3-65
SAVE TRANSACTION POINT

statement, 3-67
SECURE statement, 3-69
SET statement, 3-71
STORE statement, 3-73

OPEN data management statement, 3-60
OR operator in GENERATE statement, 3-50
partitioned structure numbers, 3-77
placing a program in transaction state, 3-29
plus (+) operator in GENERATE

statement, 3-50
POPULATION attribute, 3-22
PRIOR clause for selection expression, 3-17
processing exceptions, 3-75
program interface, 3-1
program, removing from transaction

state, 3-43
qualifying set and data set names, 3-2
record inserting into a manual subset, 3-55
record locking

against modification, 3-57
removing, 3-64

RECORD TYPE attribute, 3-21

Index

Index–6 8600 1526–202

Record Type field, 3-19
RECREATE data management

statement, 3-62
remaps, declaring in DASDL, 3-10
removing current record from a subset, 3-64
sample program with COMS, 2-55
SAVE TRANSACTION POINT data

management statement, 3-67
SECURE data management statement, 3-68
selection expressions, 3-17
set referencing, 3-10
SET statement, 3-70
statements, 3-23
stopping record updates by other

programs, 3-68
storing a record into a data set, 3-72
structure name of population, 3-19
STRUCTURE option

FREE statement, 3-48
LOCK/MODIFY statement, 3-58
SECURE statement, 3-68

synchronizing transaction and recovery
with COMS, 3-24

terminating the program, 3-42
testing for a NULL value, 3-53
TITLE attribute in DMSII, 3-15
transaction point record for audit, 3-67
transaction updates, 3-23

discarding, 3-32
transferring a record to user work

area, 3-46
unlocking

current record, 3-48
current structure, 3-48

UPDATE option in OPEN statement, 3-60
user work area, initializing, 3-36
USING clause, 3-9

data set references, 3-9
using database items, 3-1
VALUE OF TITLE clause in database

declarations, 3-7
variable-format records, using, 3-4
VIA clause for selection expressions, 3-17
WHERE clause, 3-18

data sets in DMSII
invoking, 3-9
qualifying names, 3-2
reference entry, 1-3, 3-7, 3-9

to invoke disjoint data sets, example
of, 3-11

data types
COMS, 2-7

Data-Base Section in DMSII, 3-4

databases in DMSII
Accessroutines, 3-15
declaring, 1-3, 3-7
equation operation, 3-15
identifying database components, 3-1
items

group move, example of, 3-5
using, 3-1

name of logical database in SECURE
statement, 3-68

referencing items from, 3-4
referencing with GLOBAL option, example

of, 3-14
titles of operation, 3-15

data-description entry
in SDF, 1-8, 6-3
in SDF Plus, 1-6

DCI (data communications interface)
library, 2-15

DCIENTRYPOINT library entry point
DCI library, using, 2-13

DCILIBRARY option
naming convention with VALUE

parameter, 2-36
DEADLOCK exception in DMSII, 3-57
declaring

COMS headers, 2-5
DMSII database, 3-7
interface in COMS, 2-5
message area in COMS, 2-4

DELETE statement
DMSII, 1-4

description, 3-39
example of, 3-41

delivery confirmation in COMS
requesting, 2-12

designators
COMS, using, 2-32
COMS, using in, 2-8
passing parameters to service

functions, 2-38
DICTIONARY clause

in ADDS, 1-5
in SDF, 1-8

DICTIONARY statement
identifying a dictionary, 4-6
in SDF, 1-8, 6-2
in SDF Plus, 1-6

dictionary, identifying in SDF, 6-2
DIRECTORY clause

identifying
a directory in a data dictionary, 4-4
a file in the dictionary, 4-3

Index

8600 1526–202 Index–7

a lower-level entity, 4-3
a program for tracking, 4-3

in ADDS, 1-5
in SDF, 1-8

DISABLE statement
COMS, 1-2, 2-19

DMCATEGORY attribute
DMSTATUS format in DMSII, 3-75

DMERROR Use procedure in DMSII, 1-4
declaring, examples of, 3-79
DMSTATUS format in, 3-78
exception-handling, examples of, 3-80

DMERRORTYPE attribute
DMSTATUS format in DMSII, 3-75

DMRESULT attribute
DMSTATUS format in DMSII, 3-75

DMSII, (See Data Management System II)
DMSTATUS, database status word in

DMSII, 1-4, 3-75
DMSTERMINATE statement

example of, 3-42
DMSTRUCTURE, number function in

DMSII, 1-4, 3-77
DMSTATUS format in, 3-75
processing exceptions, 3-75

DMTERMINATE statement in DMSII, 1-4
description, 3-42
with COMS, 2-2

E

ELSE statement in DMSII
with IF statement, 3-53

ENABLE statement
in COMS, 1-2, 2-21

MCS, using, 2-21
key values, examples of, 2-22

END-ASSIGN phrase
DMSII, 3-25

END-BEGIN-TRANSACTION phrase in
DMSII, 3-29

END-CLOSE phrase
DMSII, 3-33

END-FIND phrase
DMSII, 3-46

END-FREE phrase
DMSII, 3-48

END-GENERATE phrase
DMSII, 3-50

ENDING option, in SET statement in
DMSII, 3-70

END-INSERT phrase
DMSII, 3-55

END-OPEN phrase
DMSII, 3-60

END-RECEIVE phrase
RECEIVE statement in COMS, 2-23

END-REMOVE phrase
DMSII, 3-64

END-SAVE phrase
DMSII SAVE TRANSACTION POINT

statement, 3-67
END-SECURE phrase

DMSII, 3-68
END-SET phrase

DMSII, 3-70
END-STORE phrase

DMSII, 3-72
END-TRANSACTION statement

DMSII, 3-43
example of, 3-44
in DMSII, 1-4

with COMS, 2-2
entities

DIRECTORY clause, 4-4
identifying in data dictionary, 4-3
restricting to a particular status, 4-2
setting status value from data

dictionary, 4-2
entry points in COMS, 2-35
equation operations in DMSII, 3-15
examples of COMS application programs

CALL statement with VALUE
parameter, 2-37

complete sample program with DMSII
database, 2-56

input and output header declarations, 2-7
interface initialization, 2-16
linking, 2-15
message area declaration, 2-4
message placement in Working-Storage

Section, 2-25
SEND statements with ESI and EGI

options, 2-30
service functions

CALL statement, 2-36
CONVERT_TIMESTAMP, 2-39
GET_DESIGNATOR_ARRAY, 2-40
GET_DESIGNATOR_USING_

DESIGNATOR, 2-41
GET_DESIGNATOR_USING_

NAME, 2-42
GET_ERRORTEXT_USING_NUMBER, 2-43

Index

Index–8 8600 1526–202

GET_INTEGER_ARRAY_USING_
DESIGNATOR, 2-45

GET_INTEGER_USING_
DESIGNATOR, 2-47

GET_NAME_USING_
DESIGNATOR, 2-48

GET_REAL_ARRAY, 2-50
GET_STRING_USING_

DESIGNATOR, 2-51
STATION_TABLE_SEARCH, 2-53
TEST_DESIGNATORS, 2-54

examples of DMSII application programs
ASSIGN statement, 3-28
BEGIN-TRANSACTION statement, 3-30
CLOSE statement, 3-34
COUNT attribute, 3-20
CREATE statement, 3-38
data set referencing to invoke disjoint data

sets, 3-11
database equation operations, 3-16
DELETE statement, 3-41
designating sets as visible or invisible, 3-13
DMERROR Use procedure

and exception-handling, 3-80
declarations, 3-79

DMTERMINATE statement, 3-42
END-TRANSACTION statement, 3-44
exception-handling, 3-81
FREE statement, 3-49
GENERATE statement, 3-52
group move of database items, 3-5
host program declarations for using

GLOBAL option, 3-14
INSERT statement, 3-56
invalid index, 3-6
LOCK statement with ON EXCEPTION

clause, 3-59
MODIFY statement with ON EXCEPTION

clause, 3-59
MOVE CORRESPONDING statement with

database items, 3-6
names requiring qualification, 3-3
NULL option with IF statement, 3-54
OPEN statement with INQUIRY

option, 3-61
population attribute, 3-22
procedure to reference a database with

GLOBAL clause, 3-14
RECORD TYPE attribute in DMSII, 3-21
RECREATE statement, 3-63
REMOVE statement, 3-66
SET statement, 3-71
STORE statement, 3-74

valid and invalid name qualification, 3-3
exceptions in DMSII, 3-75

categories of, 3-75
COBOL85 exception-handling, 3-75
DMERROR Use procedure, 3-78
DMSTATUS word, 3-75
DMSTRUCTURE function, 3-75
handling, example of, 3-80
ON EXCEPTION clause, 3-78
processing, 3-75

expression in DMSII CREATE statement, 3-36
extensions, 1-2

ADDS, 1-5
COMS, 1-2
DMSII, 1-3

F

FD statement in ADDS, 1-5
file description (FD)

identifying a file, 4-10
physical structure of a file, 4-10
record names of a file, 4-10

FIND KEY OF clause in DMSII, 3-46
FIND statement in DMSII, 1-4, 3-46
FIRST clause in DMSII selection

expressions, 3-17
form libraries (SDF)

alias, restrictions, 6-3
data description entry for, 6-3, 6-4

form record libraries
invocation of, 5-7
SDF Plus interface elements, 5-2

form record number attribute
in SDF Plus, 1-6

FORM-KEY function
in SDF, 1-8

FREE statement in DMSII, 1-4
description of, 3-48
example of, 3-49

freeing data set records, constructs of
(list), 3-48

FROM DICTIONARY clause
in ADDS, 1-5
in SDF, 1-8, 6-3
in SDF Plus, 1-6
obtaining entity from dictionary, 4-12

FROM phrase
SEND statement in COMS

Format 1, 2-26
function of a DCI library, 2-13

Index

8600 1526–202 Index–9

FUNCTIONNAME attribute in COMS
initializing an interface, example of, 2-16
linking an application program, example

of, 2-15

G

GENERATE statement in DMSII, 1-4
description, 3-50
example of, 3-52

GET_DESIGNATOR_ARRAY_USING_
DESIGNATOR service function in
COMS

example of, 2-40
parameters, 2-40

GET_DESIGNATOR_USING_DESIGNATOR
service function in COMS

example of, 2-41
parameters, 2-41

GET_DESIGNATOR_USING_NAME service
function in COMS

example of, 2-42
parameters, 2-42

GET_ERRORTEXT_USING_NUMBER service
function in COMS

example of, 2-43
parameters, 2-43

GET_INTEGER_ARRAY_USING_DESIGNATO
R service function in COMS

example of, 2-45
parameters, 2-44

GET_INTEGER_USING_DESIGNATOR
service function in COMS

example of, 2-47
parameters, 2-46

GET_NAME_USING_DESIGNATOR service
function in COMS

example of, 2-48
parameters, 2-48

GET_REAL_ARRAY service function in COMS
example of, 2-50
parameters, 2-49

GET_STRING_USING_DESIGNATOR service
function in COMS

example of, 2-51
parameters, 2-51

GLOBAL clause
database declarations in DMSII, 3-7
in COMS headers, 2-6
in SDF Plus , 1-6

H

headers
declaring in COMS, 2-5
fields of input header, 2-8
fields of output header, 2-10
using in COMS, 1-2

hyphenation
service function

mnemonic names in COMS, 2-36
names in COMS, 2-32

I

identifier
assigning an alias, 4-4

identifier in DMSII database components, 3-1
identifying records in a data set, 3-16
IF statement in DMSII, 1-4, 3-53
INDEPENDENTTRANS option in DMSII

CREATE statement, 3-36
FREE statement, 3-48

initializing a program in COMS, 2-15
INPUT HEADER phrase in COMS header

declaration, 2-6
input headers in COMS, 2-5, 2-8

fields of (table), 2-9
INPUT TERMINAL phrase in COMS

ENABLE statement, 2-21
INQUIRY option

OPEN statement in DMSII, 3-60
INSERT statement in DMSII, 1-4

description, 3-55
example of, 3-56

integers used in COMS, 2-8
interface initialization, example of, 2-16
INVOKE clause

assigning alias identifiers in ADDS, 4-5
INVOKE clause in DMSII

data set reference entry, 3-9
data set references, using, 3-9
database declaration, 3-7

invoking data descriptions in ADDS, 4-11
invoking structures in a database declaration

explicitly, 3-9
implicitly, 3-9
invoking data sets, 3-9
more than once, 3-7
selectively, 3-7

IS clause in COMS, 2-6

Index

Index–10 8600 1526–202

K

key condition selection expressions in
DMSII, 3-18

KEY values in COMS ENABLE statement, 2-21

L

LAST clause in DMSII selection
expressions, 3-17

LIBACCESS attribute in COMS
linking an application program, example

of, 2-15
library attributes

example used in COMS program link, 2-15
linking

application programs to COMS, examples
of, 2-13

messages from a program to COMS, 2-12
links, DMSII, disadvantages of, 3-26
LIST compiler option, 4-24
listing, COBOL85, ADDS invocations in, 4-24
LOCK/MODIFY statement in DMSII, 1-4

description, 3-57
with ON EXCEPTION clause, example

of, 3-59
locking records in DMSII

LOCK/MODIFY statement, 3-57
SECURE statement, 3-68

M

mapping COMS data types into COBOL85, 2-7
Master Control Program (MCP)

used for constructing a database, 3-8
MCP, (See Master Control Program)
MCS, (See message control system)
message area declaration in COMS

example of, 2-4
message control system (MCS)

ENABLE statement, 2-21
linking application programs to COMS, 2-13
RECEIVE statement, 2-23
SEND statement, 2-27

Message Count field
ACCEPT MESSAGE COUNT statement in

COMS, 2-17
message numbers

SDF Plus interface elements, 5-11

MESSAGE phrase in COMS for RECEIVE
statement, 2-23

message types
SDF Plus interface elements, 5-2

messages in COMS
placement in Working-Storage Section,

example of, 2-25
receiving, 2-12
sending, 2-12

minus (-) operator in DMSII
GENERATE statement, 3-50

mnemonics
for passing parameters to COMS service

functions, 2-38
in COMS SEND statement, 2-29
in COMS service functions (table), 2-33
passing to get a numeric result in

COMS, 2-36
MODIFY statement in DMSII

description, 3-57
with ON EXCEPTION clause, example

of, 3-59
MOVE statement

CORRESPONDING phrase
DMSII database items, 3-4, 3-6

DMSII database TITLE attributes, 3-15
multiple form record libraries

SDF Plus interface elements, 5-2

N

naming database items, 3-1
network support processor (NSP)

delivery confirmation in COMS, 2-12
NEXT clause in DMSII selection

expressions, 3-18
NEXT SENTENCE phrase

DMSII statements
ASSIGN, 3-25
BEGIN-TRANSACTION, 3-29
CLOSE, 3-33
FIND, 3-46
FREE, 3-48
GENERATE, 3-50
INSERT, 3-55
OPEN, 3-60
REMOVE, 3-64
SAVE TRANSACTION POINT, 3-67
SECURE, 3-68
SET, 3-70
STORE, 3-72

Index

8600 1526–202 Index–11

RECEIVE statement in COMS, 2-23
NO DATA phrase in COMS RECEIVE

statement, 2-23
NO-AUDIT clause in DMSII

BEGIN-TRANSACTION statement, 3-29
NOT ON EXCEPTION clause in DMSII, 3-79

ABORT-TRANSACTION statement, 3-24
ASSIGN statement, 3-26
BEGIN-TRANSACTION statement, 3-30
CANCEL TRANSACTION POINT

statement, 3-32
CLOSE statement, 3-33
CREATE statement, 3-37
DELETE statement, 3-40
END-TRANSACTION statement, 3-44
FIND statement, 3-47
FREE statement, 3-49
GENERATE statement, 3-51
INSERT statement, 3-56
INSERT/MODIFY statement, 3-59
OPEN statement, 3-61
RECREATE statement, 3-63
REMOVE statement, 3-65
SAVE TRANSACTION POINT

statement, 3-67
SECURE statement, 3-69
SET statement, 3-71
STORE statement, 3-73

NOT phrase
in DMSII IF statement, 3-53

NOTFOUND exception in DMSII selection
expressions, 3-17

NSP station, (See network support processor)
NULL option in DMSII

ASSIGN statement, 3-25
CREATE statement, 3-36
GENERATE statement, 3-50
IF statement

description, 3-53
example of, 3-54

SET statement, 3-70

O

ON EXCEPTION clause in DMSII, 1-4, 3-79
ABORT-TRANSACTION statement, 3-24
ASSIGN statement, 3-25, 3-26
BEGIN-TRANSACTION statement, 3-30
CANCEL TRANSACTION POINT

statement, 3-32
CLOSE statement, 3-33

CREATE statement, 3-37
DELETE statement, 3-40
END-TRANSACTION statement, 3-44
FIND statement, 3-47
FREE statement, 3-49
GENERATE statement, 3-51
INSERT statement, 3-55, 3-56
INSERT/MODIFY statement, 3-59
OPEN statement, 3-61
RECREATE statement, 3-63
REMOVE statement, 3-65
SAVE TRANSACTION POINT

statement, 3-67
SECURE statement, 3-68, 3-69
SET statement, 3-71
STORE statement, 3-73

OPEN statement
DMSII, 1-4

description, 3-60
with INQUIRY option, example of, 3-61

Open/OLTP
accessing from COBOL85, 7-1
client/server model, 7-1
description, 7-1

operating system
used for constructing a database, 3-8

OR operator in DMSII GENERATE
statement, 3-50

OUTPUT HEADER phrase
in COMS header declaration, 2-6

output headers in COMS, 2-5, 2-10
fields of (table), 2-11

output message in COMS
delivery confirmation in, 2-12
output header field used in, 2-10

OUTPUT TERMINAL phrase in COMS
ENABLE statement, 2-21

P

page specification in COMS SEND
statement, 2-30

parameters
DCIENTRYPOINT library entry point, 2-13

partitioned structure in DMSII, 3-77
peripherals

using symbolic sources and
destinations, 2-13

plus (+) operator in DMSII
GENERATE statement, 3-50

POPULATION attribute in DMSII

Index

Index–12 8600 1526–202

example of, 3-22
structure of, 3-19

PRIOR clause in DMSII selection
expression, 3-17

program interfaces
extensions, by product (list), 1-2
with combined products, 1-1
with COMS, 2-1

program tracking
use of PROGRAM-DIRECTORY clause, 4-6
use of PROGRAM-NAME clause, 4-6
use of PROGRAM-VERSION clause, 4-6

PROGRAM-DIRECTORY clause
in ADDS, 1-5
program tracking, 4-6

PROGRAM-NAME clause
in ADDS, 1-5
program tracking, 4-6

PROGRAM-VERSION clause
in ADDS, 1-5
in SDF, 1-8
program tracking, 4-6

Q

qualification
DMSII set and data set names, 3-2

example of requiring, 3-3
valid and invalid in DMSII, example of, 3-3

R

RDS option
DMSII with COMS, 2-55

READ FORM statement
in SDF, 1-8
in SDF Plus, 1-6

RECEIVE statement in COMS, 2-23
record area setup in DMSII, 3-4
record description version number, 4-3
RECORD TYPE attribute in DMSII

description, 3-21
example of, 3-21

Record Type field in DMSII, 3-19
RECREATE statement in DMSII, 1-4

description, 3-62
example of, 3-63

REDEFINES clause
in SDF, 1-8
in SDF Plus , 1-6

reentrant capability in DMSII
Accessroutines, 3-15

referencing database items, 3-4
remaps in DMSII, 3-10
REMOVE statement in DMSII, 1-5

description, 3-64
example of, 3-66

repository, Advanced Data Dictionary System
(ADDS), 4-1

reserved words
list of, A-1

restart data set in COMS, 2-55
run time

modifying database titles in DMSII, 3-15

S

SAME RECORD AREA clause
in SDF, 6-3
in SDF Plus , 1-7

SAVE TRANSACTION POINT statement
in DMSII, 1-5, 3-67

Screen Design Facility (SDF), 6-1
data description entry for a form

library, 6-3, 6-4
data item characteristics, identifying, 6-3
dictionary identification, 6-2
DICTIONARY statement, 6-2
extensions, list of, 1-8
form libraries

invoking form descriptions in, 6-3
restriction on alias, 6-3

FROM DICTIONARY clause, 6-3
SAME RECORD AREA clause, 6-3

Screen Design Facility Plus (SDF Plus)
CALL interface to, 5-2
COMS interface to, 5-2, 5-15, 5-21

sending and receiving messages, 5-23
sending text messages, 5-24
sending transaction errors, 5-24

COPY library, 5-9
form record libraries, 5-2
identifying the dictionary, 5-4
initialization, 5-15
message numbers, 5-11
message types, 5-2
overview of, 5-1
run time support, 5-15
SDFFORMRECNUM field, 5-23
SDFINFO field, 5-21
SDFTRANSNUM field, 5-23

Index

8600 1526–202 Index–13

Screen Design Facility Plus (SDF Plus)
extensions, list of, 1-6

SD statement
in ADDS, 1-5
in SDF, 1-8

SDF, (See Screen Design Facility)
SDF Plus

(See Screen Design Facility Plus)
SDFFORMRECNUM field

specifying message type in SDF Plus, 5-23
specifying message type receipt in SDF

Plus, 5-23
SDFINFO field

identifying form message processing in SDF
Plus, 5-21

returning form message processing errors
in SDF Plus, 5-21

SDFTRANSNUM field, 5-23
SECURE statement in DMSII, 1-5, 3-68
segmented output in COMS

SEND statement, 2-28
SELECT statement

in ADDS, 1-5
including files from the dictionary, 4-8

selection expressions in DMSII, 1-5, 3-17
AT clause, 3-18
key condition in, 3-18
WHERE clause, 3-18

SEND statement
COMS, 1-2

affecting the MCS, 2-27
description, 2-26
with ESI and EGI options, example

of, 2-30
SEPARATE RECORD AREA clause

in SDF Plus , 1-7
service functions in COMS

calling by name, 2-35
calling by value, 2-36
hyphenation of names, 2-32
mnemonics used in, table of, 2-33
names, list of, 2-32
passing parameters to, 2-38
translating a designator, 2-8, 2-10

SET statement
DMSII, 1-5

description, 3-70
example of, 3-71

sets in DMSII
designating as visible or invisible, example

of, 3-13
qualifying names, 3-2
reference entry, 3-7, 3-10

shared lock in DMSII, 3-68
SIZE phrase in COMS, 2-6
sort-merge file description (SD)

identifying a file, 4-10
physical structure of a file, 4-10
record names of a file, 4-10

space fill, aligning COMS messages
RECEIVE statement, 2-23
SEND statement, 2-27

SPECIAL-NAMES paragraph
SEND statement in COMS, 2-27

station tables in COMS
handling, 2-52
initializing, 2-52
searching, 2-53

STATION_TABLE_ADD service function, 2-52
STATION_TABLE_INITIALIZE service

function, 2-52
STATION_TABLE_SEARCH service function

in COMS, 2-53
Status Value field in COMS SEND

statement, 2-27
status word

CLOSE statement, significance in, 3-34
DMSII exception-handling, 3-75

STORE statement in DMSII, 1-5
description, 3-72
example of, 3-74

structure number in DMSII, 3-77
STRUCTURE option in DMSII

FREE statement, 3-48
LOCK/MODIFY statement, 3-58
SECURE statement, 3-68

SYNC option in DMSII END-TRANSACTION
statement, 3-43

synchronized recovery
COMS with DMSII, 3-34

sample program, 2-55

T

TERMINAL optional word in DISABLE
statement, 2-19

TEST_DESIGNATORS service function in
COMS, 2-54

TIME(6) field in COMS, 2-8, 2-9, 2-39
trancode, (See also transaction

processing), 2-10
transaction numbers attribute in

SDF Plus , 1-7

Index

Index–14 8600 1526–202

transaction processing, using COMS for, 2-1,
2-10

transaction updating in DMSII, 3-23
transmission indicator schedule in COMS

SEND statement, 2-28

U

UPDATE option in DMSII OPEN
statement, 3-60

user-defined words, list of, B-1
USING clause

data set references, 3-9
invoking data sets in DMSII, 3-9

V

VALUE clause in COMS CALL statement, 1-2
VALUE OF clause in DMSII database

declarations, 3-8
VALUE OF TITLE clause

DMSII database declaration, 3-7
VALUE parameter

naming convention with DCILIBRARY, 2-36
in COMS CALL statement, 1-2, 2-36

variable-format records, problem with using in
DMSII, 3-4

VERSION clause
identifying a file in the dictionary, 4-3
identifying a lower-level entity, 4-3
identifying a program for tracking, 4-3
identifying literal version number of record

description, 4-3
in ADDS, 1-5
in SDF, 1-8

VIA clause in DMSII selection
expressions, 3-17

virtual terminal name, assigning to a COMS
direct window, 2-12

VT, (See virtual terminal name)

W

WFL, (See work flow language)
WHERE clause in DMSII selection

expressions, 3-18
WITH DATA phrase in COMS RECEIVE

statement, 2-23
work flow language (WFL)

database equation operations and, 3-15
overriding database titles in, 3-15

WRITE FORM statement
in SDF, 1-8
in SDF Plus , 1-7

WRITE FORM TEXT statement
in SDF Plus , 1-7

X

XATMI function error code, 2-43

	Documentation Notes
	Contents
	About This Manual
	Section 1. Introduction to COBOL85 Program Interfaces
	Using Program Interfaces for Specific Products
	Using Language Extensions for Specific Products
	COMS Extensions
	DMSII Extensions
	ADDS Extensions
	SDF Plus Extensions
	SDF Extensions

	Section 2. Using the COMS Program Interface
	What Does the COMS Program Interface Do?
	Running DMSII with COMS
	Using Multiple COMS Language Support Libraries
	Permanently Modifying the COBOL ANSI-85 Compiler
	Temporarily Modifying the Support Library Name

	Preparing the Communication Structure
	Declaring a Message Area
	Declaring a COMS Interface

	Using COMS Headers
	Declaring COMS Headers
	Mapping COMS Data Types to COBOL85
	COMS Input Header Fields
	COMS Output Header Fields
	Using the VT Flag of the Output Header
	Requesting Delivery Confirmation on Output

	Preparing to Receive and Send Messages
	Linking an Application Program to COMS
	Linking by Function
	Linking by Initiator

	Initializing an Interface Link

	Using Communication Statements
	ACCEPT MESSAGE COUNT Statement
	DISABLE Statement
	ENABLE Statement
	RECEIVE Statement
	SEND Statement
	Explanation for Format 1 - Nonsegmented Output Only
	Explanation for Format 2 - Segmented or Nonsegmented Output
	Segmenting Options
	Advancing Options

	Using Service Functions
	Using COMS Designators
	Identifying Information with Service Function Mnemonics
	Calling Service Functions
	Using the CALL statement
	Using Parameters by Value

	Passing Parameters to Service Functions
	CONVERT_TIMESTAMP Service Function
	GET_DESIGNATOR_ARRAY_USING_DESIGNATOR Service Function
	GET_DESIGNATOR_USING_DESIGNATOR Service Function
	GET_DESIGNATOR_USING_NAME Service Function
	GET_ERRORTEXT_USING_NUMBER Service Function
	GET_INTEGER_ARRAY_USING_DESIGNATOR Service Function
	GET_INTEGER_USING_DESIGNATOR Service Function
	GET_NAME_USING_DESIGNATOR Service Function
	GET_REAL_ARRAY Service Function
	GET_STRING_USING_DESIGNATOR Service Function
	STATION_TABLE_ADD Service Function
	STATION_TABLE_INITIALIZE Service Function
	STATION_TABLE_SEARCH Service Function
	TEST_DESIGNATORS Service Function

	COMS Sample Program with a DMSII Database
	COMS Features Used in the Sample Program
	Data Sets in the Database
	Using the Sample Program

	Section 3. Using the DMSII Program Interface
	Using Database Items
	Naming Database Components
	Using Set and Data Set Names
	Referencing Database Items

	Declaring a Database
	Invoking Data Sets
	Examples of Invoking Data Sets
	Example of Invoking Disjoint Data Sets with a Data Set Reference
	Example of Designating Sets as Visible or Invisible to User Programs

	Using a Database Equation Operation
	Specifying Database Titles at Program Execution

	Using Selection Expressions
	Using Data Management Attributes
	COUNT Attribute
	RECORD TYPE Attribute
	POPULATION Attribute

	Manipulating Data in a Database
	ABORT-TRANSACTION Statement
	ASSIGN Statement
	BEGIN-TRANSACTION Statement
	CANCEL TRANSACTION POINT Statement
	CLOSE Statement
	COMPUTE Statement
	CREATE Statement
	DELETE Statement
	DMTERMINATE Statement
	END-TRANSACTION Statement
	FIND Statement
	FREE Statement
	GENERATE Statement
	IF Statement
	INSERT Statement
	LOCK/MODIFY Statement
	OPEN Statement
	RECREATE Statement
	REMOVE Statement
	SAVE TRANSACTION POINT Statement
	SECURE Statement
	SET Statement
	STORE Statement

	Processing DMSII Exceptions
	DMSTATUS Database Status Word
	DMSTRUCTURE Structure Number Function
	DMSII Exceptions
	DMERROR Use Procedure
	ON EXCEPTION/NOT ON EXCEPTION Clause

	Section 4. Using the ADDS Program Interface
	Accessing Entities with a Specific Status
	Identifying Specific Entities
	VERSION Clause
	DIRECTORY Clause

	Assigning Alias Identifiers
	Identifying a Dictionary
	Selecting a File
	Invoking File Descriptions
	Invoking Data Descriptions in ADDS
	Sample ADDS Program
	ADDS Descriptions
	COBOL85 Program Using ADDS Interface Syntax

	How ADDS Data Appears in a COBOL85 Listing

	Section 5. Using the SDF Plus Program Interface
	Understanding the SDF Plus Interface
	Form Record Libraries
	Message Types
	Transaction Types
	Example

	Identifying the Dictionary
	Invoking Data Descriptions in SDF Plus
	Using SDF Plus Control Parameters
	SDF Plus COPY Library
	Transaction Numbers
	Message Numbers
	Form Library Description
	Generating the COPY Library

	Additional SDF Plus Control Parameters
	SDFPLUS-RESULT
	SDFPLUS-TRANSNUM
	SDFPLUS-MSGNUM
	SDFPLUS-TRANERROR
	SDFPLUS-DEFAULTMSG
	SDFPLUS-TEXTLENGTH

	Run Time Support and Initialization
	WAIT_FOR_TRANSACTION
	SEND_MESSAGE
	SEND_TRANSACTION_ERROR
	SEND_TEXT

	Remote File
	Remote File READ and WRITE
	Multi-User Remote File

	Debugging with TADS

	Using SDF Plus with COMS
	Using COMS Input/Output Headers
	SDFINFO Field
	SDFFORMRECNUM Field
	SDFTRANSNUM Field

	Sending and Receiving Messages
	Sending Transaction Errors
	Sending Text Messages

	Specific Differences between COBOL74 and COBOL85
	Syntax Applicable to All SDF Plus Programs
	Differences between a COBOL74 Remote File Interface Program and a COBOL85 CALL Interface Program

	Sample SDF Plus Programs
	Form Record Library

	Section 6. Using the SDF Program Interface
	Identifying the Dictionary
	Declaring the Form Record Library Invocation
	READ FORM Statement
	WRITE FORM Statement
	FORM-KEY Function
	Programmatic Control Flags
	Generating Flag Groups
	Resetting Control Flags to Zero

	Using SDF with COMS
	REDEFINES and SAME RECORD AREA Clauses
	RECEIVE Statement
	FORM-KEY Function
	Transmitting a Default Form

	Sample COBOL85 Programs That Use SDF
	Code for Remote File Interface and READ Statement
	Remote File Interface and READ and WRITE Statements
	Remote File Interface and Programmatic Controls
	Message Keys and Independent Record Area

	Section 7. TransIT Open/OLTP
	What is Open/OLTP?
	Accessing Open/OLTP

	Appendix A. Reserved Words
	Appendix B. User-Defined Words
	Index
	Master Glossary

