
ClearPath Enterprise

Servers

MCP Sockets Service
Programming Guide

ClearPath MCP Release 8.0

Printed in USA
February 2003 4310 3530–006

ClearPath Enterprise

Servers

MCP Sockets Service
Programming Guide

UNISYS

© 2003 Unisys Corporation.
All rights reserved.

ClearPath MCP Release 8.0

Printed in USA
February 2003 4310 3530–006

NO WARRANTIES OF ANY NATURE ARE EXTENDED BY THIS DOCUMENT. Any product or related information
described herein is only furnished pursuant and subject to the terms and conditions of a duly executed agreement to
purchase or lease equipment or to license software. The only warranties made by Unisys, if any, with respect to the
products described in this document are set forth in such agreement. Unisys cannot accept any financial or other
responsibility that may be the result of your use of the information in this document or software material, including
direct, special, or consequential damages.

You should be very careful to ensure that the use of this information and/or software material complies with the laws,
rules, and regulations of the jurisdictions with respect to which it is used.

The information contained herein is subject to change without notice. Revisions may be issued to advise of such
changes and/or additions.

Notice to Government End Users: This is commercial computer software or hardware documentation developed at
private expense. Use, reproduction, or disclosure by the Government is subject to the terms of Unisys standard
commercial license for the products, and where applicable, the restricted/limited rights provisions of the contract data
rights clauses.

Correspondence regarding this publication can be e-mailed to doc@unisys.com.

Unisys and ClearPath are registered trademarks of Unisys Corporation in the United States and other countries.
All other brands and products referenced in this document are acknowledged to be the trademarks or registered
trademarks of their respective holders.

ClearPath Enterprise
Servers

MCP Sockets Service
Programming Guide

ClearPath MCP Release
8.0

 ClearPath
Enterprise
Servers

MCP Sockets
Service

Programming
Guide

ClearPath MCP
Release 8.0

4310 3530–006 4310 3530–006

Bend here, peel upwards and apply to spine.

4310 3530–006 iii

Contents

Section 1. Introduction

What’s New .. 1–1
What Is a Socket? ... 1–1
Port File Differences.. 1–3
Socket Communication States.. 1–5
Sockets Overview ... 1–7

Section 2. Sockets Library Interface

C Compiler Sockets.h File ... 2–1
SocketSupport Library ... 2–2

Purpose of this Library ... 2–2
Functions.. 2–2
Accessing the Library... 2–5
Common Data Structures .. 2–5
Array Parameters ... 2–5
Using Secure Sockets Layer (SSL) 2–7
Socket Call Errors... 2–7

Section 3. The MCP Sockets API

Purpose of the Sockets Service .. 3–1
Standards and Conformance... 3–1

Out of Band (Urgent) Data ... 3–1
SockLib_Bind ... 3–1
SockLib_IOCtl .. 3–2
SockLib_Select... 3–2
SockLib_Send/SockLib_SendTo... 3–2
SockLib_SetSockOpt/SockLib_GetSockOpt 3–2
SockLib_Socket.. 3–3

Section 4. Declarations to the Sockets API

Programming Declarations .. 4–1
SockLib_Accept ... 4–1
SockLib_Bind ... 4–3
SockLib_Close.. 4–5
SockLib_Connect ... 4–7
SockLib_GetHostByAddr ... 4–9
SockLib_GetHostByName ... 4–12

Contents

iv 4310 3530–006

SockLib_GetHostName ... 4–14
SockLib_GetPeerName ... 4–16
SockLib_GetSockName ... 4–17
SockLib_GetSockOpt... 4–18
SockLib_IOCtl .. 4–20
SockLib_Listen... 4–22
SockLib_Recv .. 4–24
SockLib_RecvFrom.. 4–28
SockLib_Resume... 4–30
SockLib_Select .. 4–31
SockLib_Send .. 4–35
SockLib_SendTo .. 4–38
SockLib_SetSockOpt ... 4–39
SockLib_Shutdown.. 4–47
SockLib_Socket ... 4–49
SockLib_Suspend .. 4–50

4310 3530–006 v

Figures

1–1. Socket Communication Overview.. 1–5

2–1. Overview of the Sockets Library Interface... 2–1

Figures

vi 4310 3530–006

4310 3530–006 vii

Tables

2–1. Error Codes... 2–7
2–2. System Error Codes ... 2–10

Tables

viii 4310 3530–006

4310 3530–006 1–1

Section 1
Introduction

The MCP Sockets Service Programming Guide is a reference for programmers who use
the MCP Sockets Service API. This guide is a reference for programs written in ALGOL,
COBOL, NEWP, and C, and is intended for MCP environment programmers.

What’s New
The following information is new to the MCP 8.0 release of the MCP Sockets Service
API:

• In Section 4 a new function, “SockLib_Select (),”is provided that allows you to wait
for input, open notification, or change in output window on a group of sockets.

• The MCP 8.0 release supports the Transport Level Security (TLS) Internet standard
[RFC 2246].

What Is a Socket?
A socket is a TCP/IP network access point, through which data can be read and written.
Sockets using the TCP protocol offer a virtual two-way pipe across the network to a
specific remote server, while sockets using the UDP (User Datagram Protocol) allow the
user to send and receive messages with other hosts in the network. Before sending
data, the socket must be “bound” to a local IP address and port number, and, in the case
of TCP sockets, must be connected to the remote socket. Data reading and writing to
the socket can either be synchronous, in which the operation does not return until the
data has been sent or received (also known as blocking), or asynchronous, in which the
user has more control over when the operation is returned (also known as non-blocking).
MCP sockets are always blocking (non-blocking sockets are not currently supported); but
a timeout can be specified in order to restrict the duration of the blocking.

Client software using TCP sockets usually follows the standard client algorithm:

1. Establish a socket.

2. Connect to the required server.

3. Communicate with the server through a well-defined protocol.

4. Close the socket.

Introduction

1–2 4310 3530–006

Using socket API calls, this algorithm can be described with the following program flow:

socket()

bind()

connect()

recv()

send()

close()
004

The UDP client algorithm is very similar to the TCP client algorithm.

Server software over TCP sockets operates similarly, but must already be executing and
waiting for client requests on a well-known port number. Server software usually follows
the following algorithm:

1. Establish a socket.

2. Bind to a well-known TCP port number for this service.

3. Tell the socket to look for incoming requests.

4. Receive client requests for service and process them (permanently).

 Introduction

4310 3530–006 1–3

Using the socket API, this algorithm can be shown as:

socket()

bind()

listen()

accept()

send()

recv()

close()

001

The preceding program flow is an example of an iterative TCP server. An iterative server
only handles one client at a time. The other type of TCP server is a concurrent server, in
which a thread, or process, is started to handle client interaction. After a new request is
accepted, control of this socket is transferred to a thread for client communication, while
the main thread waits for new client requests and handles any thread management
issues.

For more information about the actual routines, refer to Sections 3 and 4.

Port File Differences
Sockets provide a very different type of network interface than MCP programmers
familiar with the PORT FILE interface may be accustomed to. The goal of this section is
to describe the major differences between PORT FILES and sockets, specifically
comparing sockets with PORT FILES configured to use the TCPIPNATIVESERVICE.

• EVENT Handling – The socket API has no knowledge of PORT FILE events such
as CHANGEEVENT, OUTPUTEVENT, and INPUTEVENT.

• Client Handling – In concurrent servers, a thread is used to handle
communication with each client. Typically, a thread only waits for input on one
socket. If a thread wants to wait for input on more than one socket, it should use
select().

Introduction

1–4 4310 3530–006

• File Addressing – Address and port numbers are assigned through a SOCKADDR
structure. This structure contains a port number and IPAddress. There is one
SOCKADDR structure for the local endpoint (MYNAME, MYIPADDRESS) and
another for the remote (YOURNAME, YOURIPADDRESS).
Local and remote endpoints are only set through IP addresses (sockets do not
contain attributes for hostname or domain). Utility routines are supplied to help
translate domain names (MYDOMAINNAME and YOURDOMAINNAME) and
hostnames (MYHOSTNAME and YOURHOSTNAME) to IP addresses through
SYSTEM/RESOLVER. Refer to Section 4, GetHostByName(), and other related
routines for more information.

• File Attributes – PORT FILE attributes that specify file attributes (such as
ACTUALMAXRECSIZE, BLOCKEDTIMEOUT, CURRENTRECORDLENGTH,
DIALOGCHECKINTERVAL, FRAMESIZECENSUS, and FRAMESIZE) are not
supported since the socket presents a direct TCP connection, not a file interface.
The state of the socket (presented in PORT FILES through the FILESTATE attribute)
is available as the socket option SO_SocketState. This is an inquiry-only option.

• Urgent Data – All urgent data (referred to as Out of Band or OOB data), is
presented in the TCP data stream (referred to as OOB_INLINE). A program can
inquire if urgent data is present.

• OPEN processing – Initiating an OPEN command in TCP sockets is done through
the connect() procedure call. Performing a passive OPEN (equivalent to an
AWAITOPEN call in PORT FILES) is done through a combination of the listen()
procedure call, which puts the socket in the passive state, and the accept()
procedure call, which accepts the next client request, blocking until one arrives.

• Blocking operation – All calls in sockets are blocking; they do not return control
to the calling program until they have finished their processing. If a non-blocking
read is required by the program the program should check to see if any data is
available, using ioctl() for one socket or select() for multiple sockets, before issuing
the recv() procedure call, or specify a small value for the receive timeout
(RcvTimeO) option. If a non-blocking accept() is required by the program, the
program should check to see if any sockets are waiting for an accept(), using ioctl()
for one socket or select() for multiple sockets, before issuing the accept(). Refer to
Section 4 for more information on ioctl() and setsockopt().

 Introduction

4310 3530–006 1–5

Socket Communication States
As shown in Figure 1-1, sockets operate in states, reacting to programming calls made to
the socket.

Server

Socket

Bind

Listening

Listen

Establishing
(Passive)

Accept

Open
(Send/Rcv)

Shutdown

Declared

Bound

Shutdown

Close

Closed

Shutdown

Shutdown

Close

Closed

Establishing
(Active)

Open
(Send/Rcv)

Shutdown

Connect

Close

Closed

Declared

Shutdown

Client

Socket

Matching

003

Suspended
(for SSL only)

Suspend
Data

Close Protocol

Resume

Figure 1–1. Socket Communication Overview

Introduction

1–6 4310 3530–006

The following list describes the states illustrated in Figure 1-1:

Declared – A virgin socket has been created with a SockLib_Socket call.

Bound – A local IP address has been bound to the socket with a SockLib_Bind call.
Typically, the SockLib_Bind call is only required for server sockets. For client sockets, this is
an optional call; SockLib_Connect will implicitly assign a local IP address and an unused local
port number if SockLib_Bind is not called.

Listening – SockLib_Listen has been called for a server socket.

Establishing – SockLib_Connect has been called (that is, a client socket is in the process
of establishing communication with its corresponding server socket), or SockLib_Listen was
called (that is, a server socket is preparing to accept—SockLib_Accept—corresponding
clients).

Open – Communication with a corresponding socket has been successfully completed
using either a SockLib_Connect (client) or SockLib_Listen/SockLib_Accept (server).

Suspended – Communication with a corresponding socket has been temporarily
terminated.

Resumed – Communication with a corresponding socket may be resumed.

Note: The Suspended and Resumed states are only valid for sockets with SSL enabled.

Shutdown – Communication with the corresponding socket is being terminated. Shutting
down can have various forms based on the input parameter.

SockLib_Shutdown (SD_Send) – The socket user has requested shutdown of the
SockLib_Send interface. The underlying TCP connection is closed. Recv data can still
arrive and be read.

SockLib_Shutdown (SD_Receive) – The socket user has requested shutdown of the
receive interface. No “network” action is taken. If Recv data is waiting or Recv data
arrives, the underlying TCP connection is RESET.

SockLib_Shutdown (SD_Both) – Both of the above have occurred.

tcp_TerminationIndication – The underlying TCP connection has been closed, which
may have been initiated by the corresponding socket.

Closed – Shutdown of the socket has completed.

 Introduction

4310 3530–006 1–7

Sockets Overview

Installing the MCP Sockets Service

The user can install the MCP Sockets API on an MCP system using Simple Installation.
The user can also manually install the Sockets API by issuing the following command:

SL SOCKETSUPPORT = SYSTEM/SOCKETSUPPORT: LINKCLASS=1, TRUSTED

Where the file name “SYSTEM/SOCKETSUPPORT” occurs, substitute the actual file
name and pack where the system software is located.

Samples

There are four files for use by sockets programmers:

SYMBOL/SOCKETS/INCLUDE/SOCKLIB/NEWP is an example of a declaration of the
library in NEWP.

SYMBOL/SOCKETS/INCLUDE/SOCKLIB/ALGOL is an example of a declaration of the
library in ALGOL.

SYMBOL/SOCKETS/INCLUDE/ENUMERATIONS has the declarations for the library
interface.

SYMBOL/SOCKETS/SAMPLE/COBOL is an example of how to call the sockets library in
COBOL.

These files do not need to be present for sockets to run.

Verification

Issue the following command to show that the library is established:

SL SOCKETSUPPORT

Note: The sockets interface requires that TCPIPSUPPORT be running. Use of the
Secure Sockets Layer (SSL) functionality also requires that TCPIPSecurity be running
with SSL configured and enabled. See Appendix J of the ClearPath Enterprise Servers
Security Administration Guide for more detailed information about SSL.

Introduction

1–8 4310 3530–006

4310 3530–006 2–1

Section 2
Sockets Library Interface

This section describes the sockets library interface.

C Compiler Sockets.h File
The following diagram illustrates the design to provide a sockets library interface to C
programs such as the Java Virtual Machine (JVM), COBOL, ALGOL, and NEWP
programs. Specifically, this design provides both TCP and UDP blocking sockets
functionality. For details on the use of the sockets.h file, refer to the ClearPath HMP NX
and A Series C Programming Reference Manual.

ALGOL/NEWP
Application

C Program

socket.h

Socket Socket

Sockets Library

SSL Protocol
A02

COBOL
Application

Socket

TCP COOP CL

TCP/IP

UDP COOP CL SSL COOP CL

Figure 2–1. Overview of the Sockets Library Interface

Sockets Library Interface

2–2 4310 3530–006

SocketSupport Library
The SocketSupport Library is a SHARED library (compiler option SHARING =
SHAREDBYALL) that exports the functions that comprise a Berkeley Software
Distribution (BSD) style sockets interface. These functions are described in more detail in
the following subsections. When this library is initialized, it will attempt to link to the
TCPIP COOP connection libraries in the TCPIPSupport library and then FREEZE
(temporary). If the links are successful, sockets functionality will be available to the client.
If the links are not successful, an error will be returned to the client.

If a user references any SSL attributes, an attempt will be made to link to the SSL COOP
reference library in the TCPIPSupport library. If that link is successful, SSL functionality
will be available.

Although only blocking operations are supported, a program may have multiple
dependent tasks calling the same entry points concurrently for different sockets. A task
using one socket will not interfere with a task using a different socket.

Note: The sockets interface requires that TCPIPSupport be running. Use of the SSL
functionality also requires TCPIPSecurity to be running with SSL configured and enabled.

Purpose of this Library

This library provides sockets functionality directly to programs that are written in COBOL,
ALGOL, or NEWP.

This library provides sockets functionality to the C sockets.h file for programs that are
written in C.

Functions

Library Startup

The TCP/IP SocketSupport Library is initialized when a C program invokes a socket
function from its imported socket.h file, or when a COBOL, ALGOL, or NEWP program
performs a LinkLibrary function with the Sockets library or calls one of the sockets API
routines.

SockLib_Accept

This function accepts an incoming connection on a previously created and bound server
socket and returns the identifier of the newly connected socket. This operation is a
blocking operation, meaning it will not complete until either an incoming connection is
received or the socket closes.

 Sockets Library Interface

4310 3530–006 2–3

SockLib_Bind

This function associates a local name (for example, “My Port”) to a previously created
but not yet named socket.

SockLib_Close

This function destroys a socket. This operation is a blocking operation, meaning it will not
complete until the socket is deallocated.

SockLib_Connect

This function initiates a connect on a previously created client socket. This is a blocking
operation, meaning it will not complete until either the connect completes and the socket
opens, or until the socket closes.

Note: This operation returns an error if SSL is enabled on the socket. (Only the server
side of SSL is supported in the MCP environment.)

SockLib_GetHostByAddr

This function returns the information about the host with the IP address specified.

SockLib_GetHostByName

This function returns the information about the host specified.

SockLib_GetHostName

This function returns the name of the local host.

SockLib_GetPeerName

This function returns the name of the peer (for example, “Your Port”) connected to the
specified socket.

SockLib_GetSockName

This function returns the current name (for example, “My Port”) of the specified socket.

SockLib_GetSockOpt

This function returns the current value of the specified socket option.

Sockets Library Interface

2–4 4310 3530–006

SockLib_IOCtl

This function enables the user to control the mode of the specified socket. The FIONBIO
command used by WinSock, which allows the user to enable or disable blocking mode
for the socket, is not supported by this implementation. See Section 4 for a list of
commands that are supported in this implementation.

SockLib_Listen

This function initiates a listen operation on a previously created and bound socket.

SockLib_Recv

This function initiates a READ with flags operation on a currently connected TCP or UDP
socket. This is a blocking operation, meaning it will not complete until either there is data
to read, the socket closes, or the SO_RcvTimeout (if any) for the socket has expired.

SockLib_RecvFrom

This function initiates a READ with flags operation on a previously created and bound
UDP socket with the specified address, or a TCP socket. This is a blocking operation,
meaning it will not complete until either there is data to read, the socket closes, or the
SO_RcvTimeout (if any) for the socket has expired.

SockLib_Resume

This function allows an application using an SSL socket to resume a suspended session,
opening a new corresponding TCP connection.

SockLib_Select

This function allows an application to wait for data, opens, send window, and exceptions,
with a timeout, on multiple sockets.

SockLib_Send

This function initiates a WRITE operation with flags on a currently connected TCP or UDP
socket. This is a blocking operation, meaning it will not complete until either the data is
accepted for transmission by TCP/IP, the socket closes, or the SO_SndTimeout (if any)
for the socket has expired.

SockLib_SendTo

This function initiates a WRITE operation to the specified address with flags on a
previously created and bound UDP socket, or a WRITE operation to a TCP socket. This is
a blocking operation, meaning it will not complete until either the data is accepted for
transmission by TCP/IP, the socket closes, or the SO_SndTimeout (if any) for the socket
has expired.

 Sockets Library Interface

4310 3530–006 2–5

SockLib_SetSockOpt

This function sets the value of the specified socket option. It is used to configure
attributes such as debugging, multicast, close linger, and SSL.

SockLib_Shutdown

This function disables sends and/or receives on a socket. The socket is not deallocated
until a SockLib_Close is performed.

SockLib_Socket

This function creates a socket endpoint and returns the identifier of the socket.

SockLib_Suspend

This procedure allows an application using an SSL socket to suspend the session, closing
the underlying TCP connection. The session is still allocated until an explicit
SockLib_Close is performed on the socket.

Accessing the Library

This library is accessed implicitly or explicitly by linking to the library and issuing
procedure calls into it.

Common Data Structures

The MCP sockets API functions primarily operate on three types of parameters: integers,
pointers, and an address data structure called a “sockaddr.” A sockaddr is used to pass a
socket “name,” where “name” includes both port number and IP address (a socket pair).
The sockets.h file will transform the C sockaddr structure to an ALGOL sockaddr
structure, which is a real array 3 words long that contains the address family (AF_INET) in
word 0, the port number in word 1, and the IP address in word 2. An IP V4 address will
be 4 bytes, right-justified in a 48-bit word, with each byte representing a node of the IP
V4 address in sequential order left to right. For example, 192.85.16.1 would be
represented as 0000C0551001.

Several additional data structures are passed as parameters. These are described with
the routines that use them.

Array Parameters

Parameters to the sockets library routines that are arrays can be declared in one of two
ways for programs written in ALGOL or NEWP. The first way is to declare them with a
“*” lower bound, as in the sample files. The caller then passes an array to the routine,
which is accessed beginning at the first element.

Sockets Library Interface

2–6 4310 3530–006

For example, in SockLib_Recv, the current declaration in the sample file is:

INTEGER PROCEDURE SockLib_Recv (Socket_Id,
 Buffer,
 Length,
 Flags);
VALUE Socket_Id,
 Length,
 Flags;
INTEGER Socket_Id,
 Length,
 Flags;
EBCDIC ARRAY Buffer [*];
IMPORTED;

Calling example:

INTEGER Result, Socket, InputLength, InputFlags;
EBCDIC ARRAY InputBuffer [0:2000];

Result := SU.SockLib_Recv (Socket, InputBuffer, InputLength, InputFlags);

The second way to declare array parameters is with a “0” lower bound immediately
followed by an integer offset. The caller then passes an array and an offset to the
routine. The array is accessed beginning at the offset.

For example, in SockLib_Recv, a valid modification of the declaration from the sample file
is:

INTEGER PROCEDURE SockLib_Recv (Socket_Id,
 Buffer,
 ByteOffset,
 Length,
 Flags);
VALUE Socket_Id,
 ByteOffset,
 Length,
 Flags;
INTEGER Socket_Id,
 ByteOffset,
 Length,
 Flags;
EBCDIC ARRAY Buffer [0];
IMPORTED;

Calling example:

INTEGER Result, InputOffset, Socket, InputLength, InputFlags;
EBCDIC ARRAY InputBuffer [0:2000];

Result := SU.SockLib_Recv (Socket, InputBuffer, InputOffset, InputLength,
InputFlags);

 Sockets Library Interface

4310 3530–006 2–7

Using Secure Sockets Layer (SSL)

The use of Secure Sockets Layer (SSL) is restricted to server programs (Connect() will
return an error if SSL is enabled on the socket). In order to use SSL, the name of the key
container must be configured using the SetSockOpt() SSL_KEY_CONTAINER option. The
user also has the option to set the version of SSL to be used and the list of SSL ciphers
suites on the socket.

Note: For more information about keys and certificates and how to create and install
them, refer to Appendix J of the Security Administration Guide. For more information on
how to set SSL options, refer to Section 4, “SetSockOpt().”

Socket Call Errors

Calls into the sockets library will generally return a zero or a positive value if there are no
errors and a negative value if there are errors. Table 2-1 lists the error values that may be
returned and their meaning. See the individual interface descriptions to see which errors
a given interface might return.

Note: An asterisk indicates that the error might be a system error and not a sockets
error. See Table 2-2, “System Error Codes,” for details on system errors.

Table 2–1. Error Codes

Error Error
Code

Explanation

EAcces (–24) The socket’s local address is in the
range reserved for system software (1–
1024).

EAddrInUse (–48) The socket’s local address is already in
use.

EAddrListLength (–302) The address list length is longer than
the maximum address list length
allowed for an output parameter.

EAddrNotAvail (–49) The IP address specified is not available
on the system.

EAliasListLength (–301) The alias list length is longer than the
maximum alias list length allowed for an
output parameter.

EConnRefused (–61) The peer socket refused the
connection.

EFault (–114) TCP/IP returned an error.

EHostNameLength (–300) The host name is longer than the
maximum host name length allowed for
an output parameter.

EInProgress (–100) A blocking call is in progress.

Sockets Library Interface

2–8 4310 3530–006

Table 2–1. Error Codes

Error Error
Code

Explanation

EInval (–122) Meaning varies depending on the
interface involved.

EIsConn (–56) The socket is already connected.

EMsgSize (–83) For a DGRAM receive, the message
would not fit in the supplied buffer. For
a send, the size of the send is greater
than 65535 bytes.

ENetReset* (–52) TCP/IP is no longer available.

ENoBufs* (–55) The system ran out of internal buffer
space.

ENoProtoOpt (–50) The option is unknown/unsupported.

ENotConn (–57) The connection has been reset due to
Keep-Alive.

ENotGettable (–401) The option specified is not allowed for
GetSockOpt.

ENotSettable (–400) The option specified is not allowed for
SetSockOpt.

ENotSock (–59) The socket parameter is not a valid
socket id.

EOpNotSupp (–62) Meaning varies depending on the
interface involved.

EProtoNoSupport (–63) The type specified is not supported.

EShutDown (–58) An Accept was done on a socket that
has been Shutdown.

ESSLAttributeNotAvail (–227) The attribute specified has not been
set.

ESSLBadRecordMAC (–232) A message has been received with an
incorrect MAC.

ESSLClientNotSupported (–241) SSL clients are not supported in this
release.

ESSLConnectionClosed (–225) The SSL connection associated with the
socket has closed.

ESSLCryptoNotAvailable* (–217) The cryptography interface is not
available.

ESSLHandshakeFailed (–216) An attempt to connect to the socket
failed due to a bad handshake attempt.

ESSLInvalidAttribute (–215) An invalid attribute id was specified.

 Sockets Library Interface

4310 3530–006 2–9

Table 2–1. Error Codes

Error Error
Code

Explanation

ESSLInvalidAttributeValue (–224) The value associated with an attribute is
invalid.

ESSLInvalidHandle (–202) The SSL session id associated with this
socket is not valid.

ESSLInvalidRecord (–228) A message has been received that is
formatted incorrectly.

ESSLInvalidState* (–212) SSL has been disabled on the system.

ESSLInvalidVersion (–203) A message has been received with an
unsupported version identifier.

ESSLNoCertificate (–205) No certificate was found in the key
container specified for the socket.

ESSLNoKeyDefined (–204) No key has been defined for the socket.

ESSLNoResources* (–222) The maximum number of resources is
already in use.

ESSLNotLinked* (–238) Support for SSL has terminated.

ESSLProtocolError (–231) A message has been received that does
not follow the SSL handshake protocol.

ESSLSecurityViolation (–206) The application is not allowed to use the
specified key container.

ESSLSessionInterrupted* (–200) The cryptography interface aborted an
operation.

ESSLSessionNotConfigured (–230) A message has been received for a
session that is not completely
configured.

ESSLSessionNotResumable (–209) The session has not been configured as
resumable.

ESSLSessionSuspended (–218) The SSL connection is currently in the
suspended state.

ESSLSysErr* (–201) The MCP Crypto API encountered an
error.

ESSLUnexpectedMsgType (–229) A message has been received which is
not allowed in the current state of the
connection.

ETimedOut (-60) A SockLib_Recv or SockLib_RecvFrom
operation timed out.

EWouldBlock (–111) Linger timeout expires before socket
close completes.

Sockets Library Interface

2–10 4310 3530–006

System Call Errors

Some of the available error codes indicate a problem with the system, rather than with
the sockets application. These codes are described in Table 2–2.

Table 2–2. System Error Codes

Error Error Code Explanation

ENetReset (-–52) TCP/IP is no longer available. The system
administrator must issue an NW TCPIP +
and the application must be restarted.

ENoBufs (–55) The system-wide maximum number of
sockets is already in use. The application
needs to try again later when some other
sockets users have terminated.

ESSLCryptoNotAvailable (–217) There are no NT environments with the
specified provider loaded. The system
administrator must check the cryptography
system and ensure that at least one NT
server is available. The application must be
tried again later when a server is available.

ESSLInvalidState (–212) One of the system components required
by SSL is not operational. The system
administrator must issue an NA MCAPI +
and/or an NW TCPIP OPTION + SSL. The
application must be tried again later when
the components are operational.

ESSLNoResources (–222) The TCPIPSecurity library has reached the
system-wide maximum number of entries
on one of its tables (sessions,
connections, etc.). The application must
be tried again later when some other SSL
users have terminated.

ESSLNotLinked (–238) SSL support has terminated. The system
administrator must issue an NW TCPIP
OPTION + SSL. The application must be
tried later when SSL is again available.

ESSLSessionInterrupted (–200) MCAPI has interrupted the session for some
reason. The system administrator needs to
issue an NA MCAPI – and an NA MCAPI +
and the applications must be tried again.

ESSLSysErr (–201) An internal system error has occurred. The
system operator may need to issue an NW
TCPIP OPTION – SSL and an NW TCPIP
OPTION + SSL. The application must be
tried again later when SSL has been
restarted.

4310 3530–006 3–1

Section 3
The MCP Sockets API

Purpose of the Sockets Service
The sockets interface provides a channel for interprocess communication between
programs that communicate across the Internet. Historically, interprocess
communication on an A Series has taken place through the Port File mechanism. When
TCP/IP network capability was initially implemented for an MCP system, the interface
between applications and the TCP/IP protocol stack was also through the port file
mechanism. There is no way to utilize the User Datagram Protocol using the port file
interface or to access SSL functionality.

Standards and Conformance
This implementation is modeled after Berkeley Software Distribution (BSD) sockets, not
Windows sockets. Differences and restrictions between this implementation and the
standard BSD implementation are explained in the following paragraphs.

Blocking sockets and the sending/receiving of multicast datagrams are supported.

Out of Band (Urgent) Data

This implementation is RFC 1122-compatible (the urgent pointer points to the urgent data
byte), rather than BSD-compatible (the urgent pointer points to the byte after the urgent
data byte).

SockLib_Bind

When a socket is bound using INADDR_ANY, the local name (port and IP address) is
assigned to a currently available value. However, there is no guarantee that the value will
still be available when a subsequent SockLib_Connect () or SockLib_Listen () is
performed.

When a socket is bound using a local name, the uniqueness of the name is verified
against those currently in use. However, there is no guarantee that the value will still be
available when a SockLib_Connect () or SockLib_Listen () is performed.

Certain addresses are restricted from use by normal applications (1–1023) SockLib_Bind
() will not return an error when these addresses are used, but a subsequent call to
SockLib_Connect () or SockLib_Accept () will return an error.

The MCP Sockets API

3–2 4310 3530–006

SockLib_IOCtl

Use of the following SockLib_IOCtl commands is not supported and will return an error:

FIONBIO

FIOASync

SIOCSHWat

SIOCGWat

SIOCSLWat

SIOCGLWat

SIOCAtMark

SockLib_Select

Since socket ids can be very large numbers, the arrays passed into SockLib_Select are
not bit arrays as with some implementations, where each bit corresponds to an id.
Instead, they are arrays of socket ids.

The WriteSet array is allowed for compatibility, but it is rare for a socket to not be
available for writing. A socket will only be unavailable for writing if another stack has a
write in progress and it has been put into flow control.

The timeout parameter is a Real variable containing the number of seconds until the
timeout. Note that fractional values are allowed. This differs from other implementations
where it is a structure consisting of seconds and milliseconds.

SockLib_Send/SockLib_SendTo

Use of the following SockLib_Send flag is not supported and will return an error:

Msg_DontRoute

SockLib_SetSockOpt/SockLib_GetSockOpt

Use of the following options is not supported and will return an error:

SO_ReuseAddr

SO_DontRoute

SO_Broadcast

SO_UseLoopBack

 The MCP Sockets API

4310 3530–006 3–3

Use of the following options will not return an error but will have no effect:

SO_Error

TCP_NoDelay

SO_SndBuf

SO_RcvBuf

SockLib_Socket

The following address formats are not supported:

PFFile

PFUnix

The following socket types are not supported:

Sock_Raw

Sock_RDM

Sock_SeqPacket

The following protocols are not supported:

IPProto_ICMP

IPProto_GGP

IPProto_TCP

IPProto_PUP

IPProto_UDP

IPProto_IDP

IPProto_ND

IPProto_RAW

IPProto_MAX

The MCP Sockets API

3–4 4310 3530–006

4310 3530–006 4–1

Section 4
Declarations to the Sockets API

This section details declarations to the sockets API for C, ALGOL, COBOL, and NEWP
programmers. You can refer to samples in the following directory on your system:

*SYMBOL/SOCKETS/

C programmers should include socket.h in their programs:
 #include <socket.h>

ALGOL programmers should include:
 $$INCLUDE SOCKLIB=*SYMBOL/SOCKETS/INCLUDE/SOCKLIB/ALGOL
 $$INCLUDE SOCKLIB=*SYMBOL/SOCKETS/INCLUDE/ENUMERATIONS

NEWP programmers should include:
 $$INCLUDE SOCKLIB=*SYMBOL/SOCKETS/INCLUDE/SOCKLIB/NEWP
 $$INCLUDE SOCKLIB=*SYMBOL/SOCKETS/INCLUDE/ENUMERATIONS

COBOL programmers should insert the lines of code found in
 *SYMBOL/SOCKETS/SAMPLE/COBOL
into the appropriate places in their program.

Programming Declarations

SockLib_Accept

Declaration in C:

int accept(int, sockaddr &, int &);

Declaration in ALGOL/NEWP:

INTEGER PROCEDURE SOCKLIB_ACCEPT (SOCKET, SOCKADDR, ADDRLENGTH);

VALUE SOCKET;

REFERENCE SOCKADDR, ADDRLENGTH;

INTEGER SOCKET, ADDRLENGTH;

REAL ARRAY SOCKADDR [*];

Declarations to the Sockets API

4–2 4310 3530–006

Access in COBOL:

 CALL “SOCKLIB_ACCEPT_CBL OF SOCKETSUPPORT”

 USING SOCKET, SOCKET-SOCKADDR, SOCKET-ADDRLENGTH

 GIVING SOCKET-RESULT.

Input Parameters:

Socket

The identifier of the socket returned by the call to socket ().

Output Parameters:

SockAddr

The port number and IP address used by the remote application.

AddrLength

Must be set to 3 (3 words) in ALGOL/NEWP/COBOL.

Must be set to 18 (18 bytes) in C.

Only AF_INET is supported.

Results:

If positive, the procedure result is the identifier of the newly connected socket. If
negative, it is an error. Zero is not a valid result for this procedure.

EInval

1. The SockAddr structure is not large enough to hold the remote’s address.

2. A SockLib_Listen () has not yet been done on the socket.

ENotSock

The socket id specified is not valid.

EOpNotSupp

1. The socket id is one returned from a SockLib_Accept () call rather than a Socket
() call.

2. The socket is not a Sock_Stream socket.

EShutdown

The socket has been shut down.

 Declarations to the Sockets API

4310 3530–006 4–3

ENetReset

The TCP/IP is no longer available.

ESSLSessionInterrupted

 The cryptography engine aborted the operation.

ESSLCryptoNotAvailable

 The cryptography interface is not available.

ESSLNotLinked

 Support for the SSL has terminated.

ESSLNoCertificate

 No certificate was found in the key container specified for the socket.

ESSLInvalidState

 SSL has been disabled on the system.

ESSLHandshakeFailed

 An attempt to connect to the socket failed due to a bad handshake attempt.

ESSLSecurityViolation

 The application is not allowed to use the specified key container.

Conditions:

The socket specified must be one returned from a socket () call, and a
SockLib_Listen () must have been performed on the socket.

Waits for a passive open to complete.

SockLib_Bind

Declaration in C:

 int bind(int, sockaddr &, int);

Declaration in ALGOL/NEWP:

INTEGER PROCEDURE SOCKLIB_BIND (SOCKET, SOCKADDR, ADDRLENGTH);

VALUE SOCKET, ADDRLENGTH;

Declarations to the Sockets API

4–4 4310 3530–006

REFERENCE SOCKADDR;

INTEGER SOCKET, ADDRLENGTH;

REAL ARRAY SOCKADDR [*];

Access in COBOL:

 CALL “SOCKLIB_BIND_CBL OF SOCKETSUPPORT”

 USING SOCKET, SOCKET-SOCKADDR, SOCKET-ADDRLENGTH

 GIVING SOCKET-RESULT.

Input Parameters:

Socket

The identifier of the socket returned by the call to SockLib_Socket ().

SockAddr

The source port number (“MyName”) and IP address to be associated with this
socket. If the port number in SockAddr is null, the TCPIPSupport library will choose a
unique port number for the socket. The port number may become unavailable before
the connect or listen is complete, in this case an EInval will be returned from the
SockLib_Connect () or SockLib_Listen ().

For stream sockets, if the IP address in SockAddr is null or INADDR_ANY, it will be
filled in when the connection is opened. These values may be retrieved later by
calling SockLib_GetSockName ().

AddrLength

Must be set to 3 (3 words) in ALGOL/NEWP/COBOL.

Must be set to 18 (18 bytes) in C.

Only AF_INET is supported.

Output Parameters:

None.

Results:

If the SockLib_Bind is successful, the result is 0; if an error occurred, a negative error
code is returned.

 Declarations to the Sockets API

4310 3530–006 4–5

EAcces

The application does not have permission to use the local address that was bound to
the socket.

EAddrInUse

 The socket’s local address is already in use.

EAddrNotAvail

 The IP address specified is not available on the system.

ENotSock

The socket id specified is not valid.

EInval

1. The SockAddr structure or AddrLength is invalid.

2. The socket is not in the correct state for a Bind.

EOpNotSupp

The socket id is one returned from a SockLib_Accept () call rather than a Socket ()
call.

ENetReset

The TCP/IP is no longer available.

Conditions:

SockLib_Bind () is an optional call for client sockets.

The socket specified must be one returned from a SockLib_Socket () call, not a
SockLib_Accept () call.

Only valid before a SockLib_Connect () or SockLib_Listen () has been done.

Certain addresses are restricted from use by normal applications. SockLib_Bind () will
return an error when these addresses are used.

If the socket type is Sock_Dgram, an implicit SockLib_Connect will be done to open the
socket when a SockLib_Bind is done.

SockLib_Close

Declaration in C:

 int closesocket(int);

Declarations to the Sockets API

4–6 4310 3530–006

Declaration in ALGOL/NEWP:

INTEGER PROCEDURE SOCKLIB_CLOSE(SOCKET);

VALUE SOCKET;

INTEGER SOCKET;

Access in COBOL:

 CALL “SOCKLIB_CLOSE_CBL OF SOCKETSUPPORT”

 USING SOCKET

 GIVING SOCKET-RESULT.

Input Parameters:

Socket

The identifier of the socket returned by a SockLib_Socket or SockLib_Accept call.

Output Parameters:

None.

Results:

If the SockLib_Close is successful, the result is 0; if an error occurred, a negative error
code is returned:

EInProgress

 A close is already in progress for the socket.

ENotSock

The socket id specified is not valid.

ENetReset

The TCP/IP is no longer available.

Conditions:

SO_Linger is only applicable to stream sockets. If SO_Linger is not set, the socket is
closed immediately but the underlying connection is not closed until all data has been
acknowledged by an "ACK" message.

If SO_Linger is set with a zero timeout, the socket is closed immediately, pending data is
discarded, and the TCP connection is reset.

 Declarations to the Sockets API

4310 3530–006 4–7

If SO_Linger is set with a non-zero timeout, the socket waits for all sent data to be
acknowledged by an “ACK” message until the timeout expires. When all data has been
acknowledged by an "ACK" message, or after the timeout has expired, the socket is
closed.

SockLib_Connect

Declaration in C:

 int connect(int, sockaddr &, int);

Declaration in ALGOL/NEWP:

INTEGER PROCEDURE SOCKLIB_CONNECT (SOCKET, SOCKADDR, ADDRLENGTH);

VALUE SOCKET, ADDRLENGTH;

REFERENCE SOCKADDR;

INTEGER SOCKET, ADDRLENGTH;

REAL ARRAY SOCKADDR [*];

Access in COBOL:

 CALL “SOCKLIB_CONNECT_CBL OF SOCKETSUPPORT”

 USING SOCKET, SOCKET-SOCKETADDR, SOCKET-ADDRLENGTH

 GIVING SOCKET-RESULT.

Input Parameters:

Socket

The identifier of the socket returned by a SockLib_Socket call.

SockAddr

The remote port and IP address that the local Socket is to be connected to. The local
Socket may or may not have been previously bound; if not, a unique local port/IP
address pair is assigned to the Socket and it is considered bound.

AddrLength

Must be set to 3 (3 words) in ALGOL/NEWP/COBOL.

Must be set to 18 (18 bytes) in C.

Only AF_INET is supported.

Declarations to the Sockets API

4–8 4310 3530–006

Output Parameters:

None.

Results:

If the SockLib_Connect is successful, the result is 0; if an error occurred, a negative error
code is returned.

EConnRefused

The remote socket refused the connection.

EFault

 The TCP/IP returned an error.

EInval

1. The SockAddr structure or AddrLength is invalid.

2. The TCPIP Support library returned an error.

3. A Sock_DGram socket is not in a valid state for a Connect.

EIsConn

The socket is already connected.

ENetReset

 TCP/IP is no longer available.

ENotSock

The socket id specified is not valid.

EOptNotSupp

The socket id is one returned from a SockLib_Accept () call rather than a
SockLib_Socket () call.

EAcces

The application does not have permission to use the local address that was bound to
the socket.

ESSLClientNotSupported

 SSL clients are not supported in this release.

Conditions:

The socket must be one returned from a call to SockLib_Socket ().

 Declarations to the Sockets API

4310 3530–006 4–9

If the socket is not already bound, it is bound now.

If the socket type is Sock_Stream:

The socket group must not have been previously connected.

An active open is issued and the SockLib_Connect blocks until it is completed.

If the socket type is Sock_DGram:

The port and IP address in SockAddr are stored for use with future SockLib_Send
operations, replacing any previously stored values.

SockLib_GetHostByAddr

 Declaration in C:

 int gethostbyaddr(int, int, int,

 char (&) [], int &,

 char (&) [], int &, int &,

 float (&) [], int &, int &, int &, int &);

 Declaration in ALGOL/NEWP:

INTEGER PROCEDURE SOCKLIB_GETHOSTBYADDR (NETADDR, NETADDRLENGTH, NETADDRTYPE,
HOSTNAME, MAXHOSTNAMELENGTH, ALIASLIST, MAXALIASLISTLENGTH, NUMALIASES,
ADDRLIST, MAXADDRLISTLENGTH, NUMADDRS, ADDRTYPE, ADDRLENGTH);

VALUE NETADDR, NETADDRLENGTH, NETADDRTYPE;

REFERENCE HOSTNAME, MAXHOSTNAMELENGTH, ALIASLIST, MAXALIASLISTLENGTH,
NUMALIASES, ADDRLIST, MAXADDRLISTLENGTH, NUMADDRS, ADDRTYPE, ADDRLENGTH;

INTEGER NETADDR, NETADDRLENGTH, NETADDRTYPE, MAXHOSTNAMELENGTH,
AXALIASLISTLENGTH, NUMALIASES, MAXADDRLISTLENGTH, NUMADDRS, ADDRTYPE,
ADDRLENGTH;

REAL ARRAY ADDRLIST [*];

EBCDIC ARRAY HOSTNAME [*], ALIASLIST [*];

Access in COBOL:

 CALL “SOCKLIB_GETHOSTBYADDR_CBL OF SOCKETSUPPORT”

USING SOCKET-NETADDR, SOCKET-NETADDRLENGTH, SOCKET-NETADDRTYPE,

 SOCKET-HOSTNAME, SOCKET-MAXHOSTNAMELENGTH,

SOCKET-ALIASLIST, SOCKET-MAXALIASLISTLENGTH, SOCKET-NUMALIASES,

Declarations to the Sockets API

4–10 4310 3530–006

 SOCKET-ADDRLIST, SOCKET-MAXADDRLISTLENGTH, SOCKET-NUMADDRS,

 SOCKET-ADDRTYPE, SOCKET-ADDRLENGTH

GIVING SOCKET-RESULT.

Input Parameters:

NetAddr

The IP address of the desired host information, formatted like the IP address in a
SockAddr structure.

NetAddrLength

The number of bytes in NetAddr—it must be 6.

NetAddrType

The address type of NetAddr—it must be AF_INET.

Input/Output Parameters:

MaxHostNameLength

The maximum number of characters, including the terminating null (h00) that can be
returned in HostName. If EHostNameLength is returned, this parameter returns the
number of characters needed for the host name. Note that the returned length is not
guaranteed to still be correct for a subsequent call to SockLib_GetHostByAddr.

MaxAliasListLength

The maximum number of characters, including the terminating nulls (h00) that can be
returned in AliasList. If EAliasListLength is returned, this parameter returns the
number of characters needed for the alias list. Note that the returned length is not
guaranteed to still be correct for a subsequent call to SockLib_GetHostByAddr.

MaxAddrListLength

The maximum number of words that can be returned in AddrList. If EAddrListLength
is returned, this parameter returns the number of words needed for the address list.
Note that the returned length is not guaranteed to still be correct for a subsequent
call to SockLib_GetHostByAddr.

Output Parameters:

HostName

The host name associated with NetAddr. This is a string of characters up to
MaxHostNameLength long terminated by a null character (h00).

 Declarations to the Sockets API

4310 3530–006 4–11

AliasList

A list of aliases for the NetAddr. This is a series of strings of characters, each
terminated by a null character (h00), up to MaxAliasListLength.

NumAliases

The number of strings of characters returned in AliasList.

AddrList

A series of words, up to MaxAddrListLength, each containing an IP address
associated with NetAddr, formatted like the IP address in a SockAddr structure.

NumAddrs

The number of words in AddrList that contain an IP address.

AddrType

The type of the addresses in AddrList—it will always be AF_INET.

AddrLength

The length of the addresses in AddrList—it will always be 6.

Results:

If SockLib_GetHostByAddr is successful, the result is 0. If an error occurred, a negative
error code is returned and no host information is returned.

EAddrNotAvail

There is no information about the NetAddr specified.

EProtoNoSupport

NetAddrLength or NetAddrType is not supported.

EInval

An array specified for output is not as big as Max…Length implies.

EHostNameLength

The host name is longer than MaxHostNameLength.

EAliasListLength

The alias list length is longer than MaxAliasListLength.

Declarations to the Sockets API

4–12 4310 3530–006

EAddrListLength

The address list length is longer than MaxAddrListLength.

Conditions:

The DNS resolver is invoked for the specified address to obtain the host information.

SockLib_GetHostByName

Declaration in C:

 int gethostbyname(char (&) [], int,

 char (&) [], int &,

 char (&) [], int &, int &,

 float (&) [], int &, int &, int &, int &);

Declaration in ALGOL/NEWP:

INTEGER PROCEDURE SOCKLIB_GETHOSTBYNAME (NETNAME,NETNAMELENGTH, HOSTNAME,
MAXHOSTNAMELENGTH, ALIASLIST, MAXALIASLISTLENGTH, NUMALIASES, ADDRLIST,
MAXADDRLISTLENGTH, NUMADDRS, ADDRTYPE, ADDRLENGTH);

VALUE NETNAMELENGTH;

REFERENCE NETNAME, HOSTNAME, MAXHOSTNAMELENGTH, ALIASLIST, MAXALIASLISTLENGTH,
NUMALIASES, ADDRLIST, MAXADDRLISTLENGTH, NUMADDRS, ADDRTYPE, ADDRLENGTH;

INTEGER NETNAMELENGTH, MAXHOSTNAMELENGTH, MAXALIASLISTLENGTH, NUMALIASES,
MAXADDRLISTLENGTH, NUMADDRS, ADDRTYPE, ADDRLENGTH);

REAL ARRAY ADDRLIST [*];

EBCDIC ARRAY NETNAME [*], HOSTNAME [*], ALIASLIST [*];

Access in COBOL:

 CALL “SOCKETLIB_GETHOSTBYNAME_CBL OF SOCKETSUPPORT”

USING SOCKET-NETNAME, SOCKET-NETNAMELENGTH,

 SOCKET-HOSTNAME, SOCKET-MAXHOSTNAMELENGTH,

 SOCKET-ALIASLIST, SOCKET-MAXALIASLISTLENGTH, SOCKET-NUMALIASES,

 SOCKET-ADDRLIST, SOCKET-MAXADDRLISTLENGTH, SOCKET-NUMADDRS,

 SOCKET-ADDRTYPE, SOCKET-ADDRLENGTH

 GIVING SOCKET RESULT.

 Declarations to the Sockets API

4310 3530–006 4–13

Input Parameters:

NetName

The name of the desired host information.

NetNameLength

The number of bytes in NetName, including a terminating null character (h00).

Input/Output Parameters:

MaxHostNameLength

The maximum number of characters, including the terminating null (h00) that can be
returned in HostName. If EHostNameLength is returned, this parameter returns the
number of characters needed for the host name. Note that the returned length is not
guaranteed to still be correct for a subsequent call to SockLib_GetHostByName.

MaxAliasListLength

The maximum number of characters, including the terminating nulls (h00) that can be
returned in AliasList. If EAliasListLength is returned, this parameter returns the
number of characters needed for the alias list. Note that the returned length is not
guaranteed to still be correct for a subsequent call to SockLib_GetHostByName.

MaxAddrListLength

The maximum number of words that can be returned in AddrList. If EAddrListLength
is returned, this parameter returns the number of words needed for the address list.
Note that the returned length is not guaranteed to still be correct for a subsequent
call to SockLib_GetHostByName.

Output Parameters:

HostName

The host name associated with NetName. This is a string of characters up to
MaxHostNameLength long terminated by a null character (h00).

AliasList

A list of aliases for the NetName. This is a series of strings of characters, each
terminated by a null character (h00), up to MaxAliasListLength.

NumAliases

The number of strings of characters returned in AliasList.

AddrList

A list of words, up to MaxAddrListLength, each containing an IP address associated
with NetName, formatted like the IP address in a SockAddr structure.

Declarations to the Sockets API

4–14 4310 3530–006

NumAddrs

The number of words in AddrList that contain an IP address.

AddrType

The type of the addresses in AddrList—it will always be AF_INET.

AddrLength

The length of the addresses in AddrList—it will always be 6.

Results:

If SockLib_GetHostByName is successful, the result is 0. If an error occurred, a negative
error code is returned and no host information is returned:

ENetReset

 TCP/IP is no longer available.

EAddrNotAvail

There is no information about the NetName specified.

EInval

An array specified for output is not as big as Max…Length implies.

EHostNameLength

The host name is longer than MaxHostNameLength.

EAliasListLength

The alias list length is longer than MaxAliasListLength.

EAddrListLength

The address list length is longer than MaxAddrListLength.

Conditions:

The DNS resolver is invoked for the specified address to obtain the host information.

SockLib_GetHostName

Declaration in C:

 int gethostname(char (&) [], int);

 Declarations to the Sockets API

4310 3530–006 4–15

Declaration in ALGOL/NEWP:

INTEGER PROCEDURE SOCKLIB_GETHOSTNAME (HOSTNAME, MAXHOSTNAMELENGTH);

VALUE MAXHOSTNAMELENGTH;

REFERENCE HOSTNAME;

INTEGER MAXHOSTNAMELENGTH;

EBCDIC ARRAY HOSTNAME [*];

Access in COBOL:

CALL “SOCKLIB_GETHOSTNAME_CBL OF SOCKETSUPPORT”

USING SOCKET-HOSTNAME, SOCKET-MAXHOSTNAMELENGTH

GIVING SOCKET-RESULT.

Input/Output Parameters:

MaxHostNameLength

The maximum number of characters, including the terminating null (h00) that can be
returned in HostName.

Output Parameters:

HostName

The host name associated with the local host. This is a string of characters up to
MaxHostNameLength long terminated by a null character (h00).

Results:

If SockLib_GetHostName is successful, the result is 0. If an error occurred, a negative
error code is returned:

EInval

The HostName array specified for output is not as big as MaxHostNameLength
implies.

Conditions:

The local host name is returned. If the local host name is longer than
MaxHostNameLength, it is truncated to MaxHostNameLength.

Declarations to the Sockets API

4–16 4310 3530–006

SockLib_GetPeerName

Declaration in C:

 int getpeername(int, sockaddr &, int &);

Declaration in ALGOL/NEWP:

INTEGER PROCEDURE SOCKLIB_GETPEERNAME (SOCKET, SOCKADDR, ADDRLENGTH);

VALUE SOCKET;

REFERENCE SOCKADDR, ADDRLENGTH;

INTEGER SOCKET, ADDRLENGTH;

REAL ARRAY SOCKADDR [*];

Access in COBOL:

 CALL “SOCKLIB_GETPEERNAME_CBL OF SOCKETSUPPORT”

 USING SOCKET, SOCKET-SOCKADDR, SOCKET-ADDRLENGTH

 GIVING SOCKET-RESULT.

Input Parameters:

Socket

The identifier of a socket returned by the SockLib_Socket call.

Output Parameters:

SockAddr

The port and IP address of the remote peer.

AddrLength

Must be set to 3 (3 words) in ALGOL/NEWP/COBOL.

Must be set to 18 (18 bytes) in C.

Only AF_INET is supported.

Results:

If the query is successful, the result is 0; if an error occurred, a negative error code is
returned:

 Declarations to the Sockets API

4310 3530–006 4–17

ENotConn

The socket is not connected.

EInval

The SockAddr structure is not large enough to hold the remote’s address.

ENotSock

The socket id specified is not valid.

ENetReset

TCP/IP is no longer available.

Conditions:

The socket must be connected.

SockLib_GetSockName

Declaration in C:

 int getsockname(int, sockaddr &, int &);

Declaration in ALGOL/NEWP:

INTEGER PROCEDURE SOCKLIB_GETSOCKNAME (SOCKET, SOCKADDR, ADDRLENGTH);

VALUE SOCKET;

REFERENCE SOCKADDR, ADDRLENGTH;

INTEGER SOCKET, ADDRLENGTH;

REAL ARRAY SOCKADDR [*];

 Access in COBOL:

CALL “SOCKLIB_GETSOCKNAME_CBL OF SOCKET SUPPORT”

USING SOCKET, SOCKET-SOCKADDR, SOCKET-ADDRLENGTH

GIVING SOCKET-RESULT.

Input Parameters:

Socket

The identifier of a socket returned by the SockLib_Socket call.

Declarations to the Sockets API

4–18 4310 3530–006

Output Parameters:

SockAddr

The local socket’s port number and IP address.

AddrLength

Must be set to 3 (3 words) in ALGOL/NEWP/COBOL.

Must be set to 18 (18 bytes) in C.

Only AF_INET is supported.

Results:

If the query is successful, the result is 0; if an error occurred, a negative error code is
returned:

ENotSock

The socket id specified is not valid.

EInval

1. The SockAddr structure is not large enough to hold the remote’s address.

2. A SockLib_Bind () has not been done, or a SockLib_Bind (Socket, Any_Addr,
Any_Addr) has been done but the socket has not been connected yet.

ENetReset

TCP/IP is no longer available.

Conditions:

The local address for the socket must have been established.

SockLib_GetSockOpt

Declaration in C:

 int getsockopt(int, int, int, char (&) [], int &);

Declaration in ALGOL/NEWP:

INTEGER PROCEDURE SOCKLIB_GETSOCKOPT (SOCKET, LEVEL, OPTION, OPTVAL, OPTLEN);

VALUE SOCKET, LEVEL, OPTION;

REFERENCE OPTVAL, OPTLEN;

 Declarations to the Sockets API

4310 3530–006 4–19

INTEGER SOCKET, LEVEL, OPTION, OPTLEN;

EBCDIC ARRAY OPTVAL[*];

Access in COBOL:

 CALL “SOCKLIB_GETSOCKOPT_CBL OF SOCKETSUPPORT”

 USING SOCKET, SOCKET-LEVEL, SOCKET-OPTION,

 SOCKET-OPTVAL, SOCKET-OPTLEN

 GIVING SOCKET-RESULT.

Input Parameters:

Socket

The identifier of the socket returned by the SockLib_Socket or SockLib_Accept call.

Level

The level associated with the option

Option

The option whose value is being queried

OptLen

The length of OptVal in bytes

See SockLib_SetSockOpt for an enumeration of the input parameters.

Output Parameters:

OptVal

If OptLen > 0, this structure contains the value of the specified option. If OptLen = 0,
then the size of this array was insufficient to contain the option value. If the option is
a Boolean or integer type, the value is returned in a 6-byte field.

OptLen

The length in bytes of the returned option value

Results:

If the query is successful, the result is 0; if an error occurred, a negative error code is
returned.

See SockLib_SetSockOpt for an enumeration of the error codes returned.

Declarations to the Sockets API

4–20 4310 3530–006

SockLib_IOCtl

Declaration in C:

 int ioctlsocket(int, long, unsigned long &);

Declaration in ALGOL/NEWP:

INTEGER PROCEDURE SOCKLIB_IOCTL (SOCKET, CMD, ARGP);

VALUE SOCKET, CMD;

REFERENCE ARGP;

INTEGER SOCKET, CMD;

EBCDIC ARRAY ARGP[*];

Access in COBOL:

 CALL “SOCKLIB_IOCTL_CBL OF SOCKETSUPPORT”

 USING SOCKET, SOCKET-CMD, SOCKET-ARGP

 GIVING SOCKET-RESULT.

Input Parameters:

Socket

The identifier of the socket returned by the SockLib_Socket call.

Cmd

The command to be processed:

 FION_Read (2)

For sockets of type Sock_Stream, returns the total number of bytes available to
be read in ArgP.

For sockets of type Sock_DGram, returns the total number of bytes in all of the
messages in the input stream, plus 16 bytes per message for addressing space
in ArgP.

 SIO_Set_QOS (11)

 Sets the QOS attributes for the socket.

 SIO_Get_QOS (7)

 Returns the QOS attributes for the socket.

 Declarations to the Sockets API

4310 3530–006 4–21

ArgP

Depending on the value of Cmd, this parameter may or may not contain additional
parameters for the command.

 For SIO_Set_QOS, ArgP contains 23 words of information in the following format:

QOSVersion

SendBucketRate

SendBucketDepth

SendPeakRate

SendLatency

SendDelayVariation

SendServiceType

ServiceType_BestEffort (1)

ServiceType_ControlledLoad (2)

SendMaxPacketSize

SendMinPolicedUnit

Filler

Filler

RcvBucketRate

RcvBucketDepth

RcvPeakRate

RcvLatency

RcvDelayVariation

RcvServiceType

RcvMaxPacketSize

RcvMinPolicedUnit

Filler

Filler

Filler

Filler

Declarations to the Sockets API

4–22 4310 3530–006

Output Parameters:

ArgP

Depending on the value of Cmd, this parameter may or may not be updated with a
result value.

For SIO_Get_QOS, ArgP contains 23 words of information; see the preceding
format.

For FION_Read, ArgP contains the following:

 For Sock_Stream sockets, the number of bytes available to be read.

 For Sock_Dgram sockets, the number of bytes in the first datagram.

For a Listening socket, a 1, if there is a pending connection waiting for a
SockLib_Accept.

Results:

If the command was successfully completed, the result is 0; if an error occurred, a
negative error code is returned:

ENotSock

The socket id specified is not valid.

EInval

One of the parameters has an invalid or not supported value.

ENetReset

TCP/IP is no longer available.

Conditions:

This command enables an application to set or interrogate information about the socket.

SockLib_Listen

Declaration in C:

 int listen(int, int);

 Declarations to the Sockets API

4310 3530–006 4–23

Declaration in ALGOL/NEWP:

INTEGER PROCEDURE SOCKLIB_LISTEN (SOCKET, NUMPASSIVES);

VALUE SOCKET, NUMPASSIVES;

INTEGER SOCKET, NUMPASSIVES;

Access in COBOL:

 CALL “SOCKET_LISTEN_CBL OF SOCKETSUPPORT”

 USING SOCKET, SOCKET-NUMPASSIVES

 GIVING SOCKET-RESULT.

Input Parameters:

Socket

The identifier of the socket returned by the SockLib_Socket call. This socket must
have been previously bound.

NumPassives

The number of passives that should be maintained for this socket. The valid range for
the NumPassives input parameter to SockLib_Listen is 1–200. If an application
specifies a NumPassives value outside this range, the SocketSupport library will set
NumPassives to the nearest valid value.

Output Parameters:

None.

Results:

If no error occurred, the procedure returns 0; otherwise, a negative error code is
returned.

EInval

A SockLib_Bind () has not been done on the socket.

ENotSock

The socket id specified is not valid.

Declarations to the Sockets API

4–24 4310 3530–006

EOpNotSupp

1. The socket id is one returned from a SockLib_Accept () call rather than a
SockLib_Socket () call.

2. The socket is not a Sock_Stream socket.

ENetReset

TCP/IP is no longer available.

ESSLNoKeyDefined

 No key has been defined for the socket.

ESSLSessionInterrupted

 The cryptography engine has aborted the operation.

ESSLNotLinked

 Support for the SSL has terminated.

ESSLCryptoNotAvailable

 The cryptography interface is not available.

ESSLSysErr

 The MCP Crypto API encountered an error.

Conditions:

Socket must be one returned from a call to SockLib_Socket (), not a call to
SockLib_Accept ().

The socket’s type must be Sock_Stream.

The socket must be bound.

Issues a passive Open_Request. When the open completes, another passive open is
initiated until the backlog for the group has been reached.

SockLib_Recv

Declaration in C:

 int recv(int, char (&) [], int, int);

 int readsocket(int, void &, int);

 Declarations to the Sockets API

4310 3530–006 4–25

Declaration in ALGOL/NEWP:

INTEGER PROCEDURE SOCKLIB_RECV (SOCKET, BUF, LEN, FLAGS);

VALUE SOCKET, LEN, FLAGS;

REFERENCE BUF;

INTEGER SOCKET, LEN, FLAGS;

EBCDIC ARRAY BUF[*];

Access in COBOL:

 CALL “SOCKLIB_RECV_CBL OF SOCKET SUPPORT”

 USING SOCKET, SOCKET-BUF, SOCKET-LEN, SOCKET-FLAGS

 GIVING SOCKET-RESULT.

Input Parameters:

Socket

The identifier of the socket returned by the SockLib_Accept or SockLib_Socket call.

Buf

The buffer into which the data is to be copied.

Len

The length of the buffer.

Flags

Options for this specific SockLib_Recv.

 Msg_OOB (1)

 Must be FALSE since only socket option SO_OOBInline = TRUE is supported.

 Msg_Peek (2)

 Return data but do not remove it from the input queue.

Output Parameters:

None.

Declarations to the Sockets API

4–26 4310 3530–006

Results:

If positive, the procedure result is the length of data returned. If negative, it is an error.

ENotConn

The socket is not in a valid state for a Recv.

ENotSock

The socket id specified is not valid.

EInval

1. The buffer specified is not large enough to hold the requested amount of data.

2. A receive is already in progress.

EConnAborted

The socket has been closed by the remote side.

EOpNotSupp

The flags parameter is invalid.

ENetReset

 TCP/IP is no longer available.

ESSLSessionSuspended

 The SSL connection is currently in the suspended state.

ESSLSessionInterrupted

 The cryptography engine has aborted the operation.

ESSLNotLinked

 Support for the SSL has terminated.

ESSLCryptoNotAvailable

 The cryptography interface is not available.

ESSLSysErr

 The MCP Crypto API encountered an error.

 Declarations to the Sockets API

4310 3530–006 4–27

ETimedOut

 No data was available after waiting for the amount of time specified by
SO_RcvTimeO.

Conditions:

If the socket has been closed from the remote side and all data has been received,
SockLib_Recv will return zero as the size of the message.

If no data is available after the amount of time specified by SO_RcvTimeO, a result of
ETimedOut will be returned.

If the socket type is Sock_DGram:

It must be bound.

If there is no data available, SockLib_Recv does not return until a complete message
is available.

If it was opened via a SockLib_Connect operation, only messages from the address
specified in the SockLib_Connect will be returned. All other messages received for
this socket will be discarded.

If the next message in the input queue is larger than the Len supplied and the
Msg_Peek flag is not set, Len bytes are returned with no error code, and the
remainder of the message is discarded.

If the next message in the input queue is larger than the Len supplied and the
Msg_Peek flag is set, Len bytes are returned and the result is the size of the entire
message. None of the message is discarded.

If the next message in the input queue is not larger than the Len supplied, the entire
message is returned and the result is the size of the message.

If the socket is type Sock_Stream:

If there is no data available, SockLib_Recv does not return until some data is
available.

Up to LEN bytes are returned and the result is the number of bytes returned.

If out-of-band data is present in the data stream:

If the out-of-band byte is the next available byte, it will be returned and the result
will be one.

If the out-of-band byte is not the next available byte, only data up to but not
including the out-of-band byte will be returned and the result will be the number
of bytes returned.

Declarations to the Sockets API

4–28 4310 3530–006

If the Msg_Peek flag is set, the data is not removed from the input stream. If the flag is
not set the data is removed from the input stream.

SockLib_RecvFrom

Declaration in C:

 int recvfrom(int, char (&) [], int, int, sockaddr &, int &);

Declaration in ALGOL/NEWP:

INTEGER PROCEDURE SOCKLIB_RECVFROM (SOCKET, BUF, LEN, FLAGS, SOCKADDR,
ADDRLENGTH);

VALUE SOCKET, LEN, FLAGS;

REFERENCE BUF, SOCKADDR, ADDRLENGTH;

EBCDIC ARRAY BUF[*];

INTEGER SOCKET, LEN, FLAGS, ADDRLENGTH;

REAL ARRAY SOCKADDR [*];

Access in COBOL:

CALL “SOCKLIB_RECVFROM_CBL OF SOCKETSUPPORT”

USING SOCKET, SOCKET-BUF, SOCKET-LEN, SOCKET-FLAGS,

 SOCKET-SOCKADDR, SOCKET-ADDRLENGTH

GIVING SOCKET-RESULT.

Input Parameters:

Socket

The identifier of a socket returned by the SockLib_Accept or SockLib_Socket call.

Buf

The buffer into which the data is to be copied.

Len

The length of Buf.

Flags

Options for this specific SockLib_RecvFrom. See SockLib_Recv for flag definitions.

 Declarations to the Sockets API

4310 3530–006 4–29

Output Parameters:

SockAddr

The source port and IP address of the application from which the datagram was
received.

AddrLength

Must be set to 3 (3 words) in ALGOL/NEWP/COBOL.

Must be set to 18 (18 bytes) in C.

Only AF_INET is supported.

Results:

If positive, the procedure result is the length of data returned. If negative, it is an error.

EInval

1. The SockAddr structure is not large enough to hold the remote’s address.

2. Receive is already in progress for the specified socket.

Note: See SockLib_Recv for additional error definitions.

Conditions:

If the socket has been closed from the remote side and all data has been received,
SockLib_RecvFrom will return zero as the size of the message.

If no data is available after the amount of time specified by SO_RcvTimeO, a result of
ETimedOut will be returned.

If the socket’s type is Sock_Stream:

If there is no data available, SockLib_RecvFrom does not return until data is available.

The SockAddr parameter is ignored.

Additional Conditions are the same as for SockLib_Recv ().

If the socket’s type is Sock_DGram:

If there is no data available, SockLib_Recv does not return until a complete message
is available.

If a SockLib_Connect () call was done, the SockAddr parameter is ignored.

If there is no data available, SockLib_RecvFrom does not return until a complete
message is available.

Declarations to the Sockets API

4–30 4310 3530–006

If the next message in the input queue is larger than the Len supplied and the
Msg_Peek flag is not set, Len bytes are returned with no error code, and the
remainder of the message is discarded.

If the next message in the input queue is larger than the Len supplied and the
Msg_Peek flag is set, Len bytes are returned and the result is the size of the entire
message. None of the message is discarded.

If the next message in the input queue is not larger than the Len supplied, the entire
message is returned and the result is the size of the message.

 The network address of the sender is copied into the SockAddr parameter.

SockLib_Resume

Declaration in C:

 int resume(int);

Declaration in ALGOL/NEWP:

INTEGER PROCEDURE SOCKLIB_RESUME(SOCKET);

VALUE SOCKET;

INTEGER SOCKET;

Access in COBOL:

 CALL “SOCKLIB_RESUME_CBL OF SOCKETSUPPORT”

 USING SOCKET

 GIVING SOCKET-RESULT.

Input Parameters:

 Socket

 The identifier of the socket returned by the SockLib_Accept call.

Output Parameters:

 None.

Results:

 If the SockLib_Resume is successful, the result is 0; if an error has occurred, a negative
error code is returned.

 Declarations to the Sockets API

4310 3530–006 4–31

ENotSock

 The socket id specified is not valid.

ENetReset

 TCP/IP is no longer available.

ESSLInvalidState

 The SSL connection is not currently in the suspended state or SSL is not available.

ESSLCryptoNotAvailable

 The cryptography subsystem was interrupted during the processing of this request.

ESSLSessionInterrupted

 The cryptography engine has aborted the operation.

ESSLNotLinked

 Support for the SSL has terminated.

ESSLHandshakeFailed

 An attempt to connect to the socket failed due to a bad handshake attempt.

ESSLSysErr

 The MCP Crypto API encountered an error.

Conditions:

 The socket must have been previously suspended.

SockLib_Select

Declaration in C:

Note: The first parameter (the set size) is not actually passed to the sockets library. Instead,
the sockets.h file passes the three size parameters below based on how many socket
ids are in each fd_set.

 int select(int &, fd_set &, fd_set &, fd_set &, float);

Declarations to the Sockets API

4–32 4310 3530–006

Supporting macros in C:

Four macros are provided in C to access the ReadSet, WriteSet, and ExceptSet structures.

void FD_ZERO (fd_set *fdset)

Clears all the entries in fdset

void FD_SET (int SocketId, fd_set *fdset)

Adds SocketId to fdset

void FD_CLR (int SocketId, fd_set *fdset)

Deletes SocketId from fdset

int FD_ISSET (int SocketId, fd_set *fdset)

Returns TRUE if SocketId is in fdset

Also, the constant FD_SETSIZE specifies the default size of an fdset structure.

Declaration in ALGOL:

INTEGER PROCEDURE SOCKLIB_SELECT (READSETSIZE, WRITESETSIZE, EXCEPTSETSIZE,
READSET, WRITESET, EXCEPTSET, TIMEOUT);

VALUE TIMEOUT;

REFERENCE READSETSIZE, WRITESETSIZE, EXCEPTSETSIZE, READSET, WRITESET,
EXCEPTSET;

REAL ARRAY READSET[*], WRITESET[*], EXCEPTSET[*];

INTEGER READSETSIZE, WRITESETSIZE, EXCEPTSETSIZE;

REAL TIMEOUT;

Access in COBOL:

CALL "SOCKLIB_SELECT_CBL OF SOCKETSUPPORT"

USING SOCKET-READSETSIZE,

 SOCKET-WRITESETSIZE, SOCKET-EXCEPTSETSIZE, SOCKET-READSET,

 SOCKET WRITESET, SOCKET EXCEPTSET SOCKET-TIMEOUT

GIVING SOCKET-RESULT.

 Declarations to the Sockets API

4310 3530–006 4–33

Input Parameters:

ReadSetSize

 The size of the ReadSet.

WriteSetSize

 The size of the WriteSet.

ExceptSetSize

 The size of the ExceptSet.

ReadSet

 An array of socket ids, each 6 bytes in length.

WriteSet

 An array of socket ids, each 6 bytes in length.

ExceptSet

 An array of socket ids, each 6 bytes in length.

TimeOut

 The number of seconds before a timeout will occur.

Output Parameters:

ReadSetSize

 The number of sockets in the ReadSet that satisfy the condition.

WriteSetSize

 The number of sockets in the WriteSet that satisfy the condition.

ExceptSetSize

 The number of sockets in the ExceptSize that satisfy the condition.

ReadSet

 The socket ids with data to receive.

WriteSet

 The socket ids that can send.

Declarations to the Sockets API

4–34 4310 3530–006

ExceptSet

 The socket ids with urgent data.

Results:

If negative, an error occurred. The socket id of the socket in error remains in the
ReadSet, WriteSet, or ExceptSet. All other socket ids will have been zeroed out.

Note: Only the first socket in error is identified; additional sockets may have additional
errors.

If zero, the select timed out. Parameters have not been changed.

If positive, the number of selected sockets whose condition was satisfied. Output
parameters identify the sockets whose condition was satisfied. Any socket whose
condition was not satisfied will have been zeroed out.

On return from SockLib_Select, if a time out did not occur, the remaining sockets ids
(only one if an error occurred) are packed to the front of the arrays and the set size
parameters are adjusted to reflect the number of socket ids remaining in the arrays.

EInProgress

 A select is already in progress for one of the specified sockets.

EInval

 SetSize is invalid or the socket is in an invalid state for a Select.

ENetReset

 TCPIP is not linked.

ENotSock

 At least one of the specified sockets ids is invalid.

EShutDown

 At least one of the specified sockets is in an incorrect state for a select.

ENoBufs

 There are no available select events.

ESSLNotLinked

 The select includes an SSL socket, but SSL is not linked.

 Declarations to the Sockets API

4310 3530–006 4–35

Conditions:

The Select interface is provided to allow users to wait on multiple sockets for a read, write,
open, exception, or timeout.

Since this implementation supports large numbers of sockets, the ReadSet, WriteSet, and
ExceptSet structures are arrays of socket ids. This differs from some implementations
where they are bit arrays with each bit representing a file descriptor. Note that the use of
large set sizes will impact performance. It is recommended that socket ids are packed at
the front of the arrays and set sizes are adjusted to reflect only the number of socket ids in
use.

On return from SockLib_Select, if a time out did not occur, the remaining socket ids (only
one if an error occurred) are packed to the front of the arrays and the set size parameters
are adjusted to reflect the number of socket ids remaining in the arrays.

If the same socket id appears in any array more than once it will be counted more than once
when its condition is satisfied.

A null socket id has the value of zero. Any non-zero value in the ReadSet, WriteSet, or
ExceptSet should be a valid socket id for a socket that is either open or listening.

Wait for read on an open socket uses the SO_RcvLoWat setting to determine how much
data must be available before the Select is satisfied. If SO_RcvLoWat is set to zero, the
select will be satisfied when any input arrives, including a zero-length datagram.

Wait for read on a listening socket waits until a client has connected (i.e. a SockLib_Accept
will not block).

Wait for send is provided, but will only wait if another stack is currently sending data on the
socket.

The SO_SndLoWat setting is allowed for compatibility, but is ignored since it has no
relevance to the sockets buffering mechanisms.

Wait for exception will wait until Out-Of-Band data is received.

A negative timeout value will disable the timeout feature.

SockLib_Send

Declaration in C:

 int send(int, const char (&) [], int, int);

 int writesocket(int, const void &, int);

Declaration in ALGOL/NEWP:

INTEGER PROCEDURE SOCKLIB_SEND (SOCKET, BUF, LEN, FLAGS);

Declarations to the Sockets API

4–36 4310 3530–006

VALUE SOCKET, LEN, FLAGS;

REFERENCE BUF;

EBCDIC ARRAY BUF[*];

INTEGER SOCKET, LEN, FLAGS;

Access in COBOL:

 CALL “SOCKLIB_SEND_CBL OF SOCKETSUPPORT”

 USING SOCKET, SOCKET-BUF, SOCKET-LEN, SOCKET-FLAGS

 GIVING SOCKET-RESULT.

Input Parameters:

Socket

The identifier of the socket returned by the SockLib_Accept or SockLib_Socket call

Buf

The buffer from which the data is to be copied

Len

The length of the buffer in bytes

Flags

Options for this specific SockLib_Send

 Msg_OOB (1)

 Send as out-of-band data.

Output Parameters:

None.

Results:

If positive, the procedure result is the length of data sent. If negative, it is an error.

EMsgSize

 The size of the send is greater than 65535 bytes.

 Declarations to the Sockets API

4310 3530–006 4–37

ENotConn

The socket is not in a valid state for a send.

ENotSock

The socket id specified is not valid.

EInval

The buffer specified is not large enough to have the amount of data specified.

ENetReset

 TCP/IP is no longer available.

EOpNotSupp

 The flags specified are not supported.

ESSLSessionSuspended

 The SSL connection is currently in the suspended state.

ESSLSessionInterrupted

 The cryptography engine has aborted the operation.

ESSLNotLinked

 Support for the SSL has terminated.

ESSLCryptoNotAvailable

 The cryptography interface is not available.

ESSLSysErr

 The MCP Crypto API encountered an error.

Conditions:

The socket must be open.

If Msg_OOB is TRUE, the last byte of the buffer will be marked as the out-of-band data
byte.

If SO_SndTimeO has been set and the output operation is put into flow control for longer
than the value specified, the send will return with the procedure result indicating the
number of bytes sent. Note that some, but not all, of the data may have been sent.

Declarations to the Sockets API

4–38 4310 3530–006

SockLib_SendTo

Declaration in C:

 int sendto(int, const char (&) [], int, int, sockaddr &, int);

Declaration in ALGOL/NEWP:

INTEGER PROCEDURE SOCKLIB_SENDTO (SOCKET, BUF, LEN, FLAGS, SOCKADDR,
ADDRLENGTH);

VALUE SOCKET, LEN, FLAGS, ADDRLENGTH;

REFERENCE BUF, SOCKADDR;

EBCDIC ARRAY BUF[*];

INTEGER SOCKET, LEN, FLAGS, ADDRLENGTH;

REAL ARRAY SOCKADDR [*];

Access in COBOL:

 CALL “SOCKLIB_SENDTO_CBL OF SOCKET SUPPORT”

 USING SOCKET, SOCKET-BUF, SOCKET-LEN, SOCKET-FLAGS,

 SOCKET-SOCKADDR, SOCKET-ADDRLENGTH

 GIVING SOCKET-RESULT.

Input Parameters:

Socket

The identifier of the socket returned by the SockLib_Accept or SockLib_Socket call.

Buf

The buffer from which the data is to be copied.

Len

The length of the buffer in bytes.

Flags

Options for this specific SockLib_SendTo. See SockLib_Send for flag definitions.

SockAddr

The destination port and IP address to which the datagram should be sent.

 Declarations to the Sockets API

4310 3530–006 4–39

AddrLength

Must be set to 3 (3 words) in ALGOL/NEWP/COBOL.

Must be set to 18 (18 bytes) in C.

Only AF_INET is supported.

Output Parameters:

None.

Results:

If positive, the procedure result is the length of data sent. If negative, it is an error.

EInval

The SockAddr structure or AddrLength is invalid.

See SockLib_Send for additional error definitions.

Conditions:

If the socket’s type is Sock_Stream:

SockAddr is ignored.

SockLib_SendTo is the equivalent of SockLib_Send.

If the socket’s type is Sock_DGram:

SockAddr overrides any previously connected address for this message only.

SockLib_SetSockOpt

Declaration in C:

 int setsockopt(int, int, int, const char (&) [], int);

Declaration in ALGOL/NEWP:

INTEGER PROCEDURE SOCKLIB_SETSOCKOPT (SOCKET, LEVEL, OPTION, OPTVAL, OPTLEN);

VALUE SOCKET, LEVEL, OPTION, OPTLEN;

REFERENCE OPTVAL;

INTEGER SOCKET, LEVEL, OPTION, OPTLEN;

EBCDIC ARRAY OPTVAL[*];

Declarations to the Sockets API

4–40 4310 3530–006

Access in COBOL:

 CALL “SOCKLIB_SETSOCKOPT_CBL OF SOCKETSUPPORT”

 USING SOCKET, SOCKET-LEVEL, SOCKET-OPTION, SOCKET-OPTVAL,

 SOCKET-OPTLEN

 GIVING SOCKET-RESULT.

Input Parameters:

Note: The options shown below are for both SockLib_SetSockOpt and
SockLib_GetSockOpt. Some options are only valid for one, as noted in their descriptions.

Socket

The identifier of the socket returned by the SockLib_Socket or SockLib_Accept call.

Level

The level associated with the option:

SOL_Socket (hFFFF)

SOL_TCP(h0002) – There are no supported options for this level.

SOL_IP (h0001)

SOL_SSL (h0100)

IPProto_IP (h0000)

IPProto_TCP (h0006)

The following table shows which options belong to which SockLib_SetSockOpt
levels. See the detailed description of each option below for more information.

Level Option

Level SOL_Socket options: SO_AcceptConn
SO_Debug
SO_KeepAlive
SO_Linger
SO_RcvBuf
SO_RcvLoWat
SO_RcvTimeO
SO_SndBuf
SO_SndLoWat
SO_SndTimeO
SO_Type

 Declarations to the Sockets API

4310 3530–006 4–41

Level IPProto_TCP option TCP_NoDelay

Level SOL_IP option IP_Priority

Level IPProto_IP options

IP_TOS
IP_MCast_TTL
IP_Add_Membership
IP_Drop_Membership
IP_MCast_Loop
IP_MCast_IF

Level SOL_SSL options:

SSL_System_Options
SSL_Socket_Options
SSL_System_Versions
SSL_Socket_Version
SSL_System_Ciphers
SSL_Socket_Ciphers
SSL_Key_Container
SSL_Resumable

Option

The option whose value is being set or queried:

SO_Debug (h0001)

This option controls recording of debugging information in the underlying protocol
modules.

Values:

Option_Debug_Socket_On (1)

Enables debugging for the specified socket.

Option_Debug_Socket_Off (-1)

Disables debugging for the specified socket.

Option_Debug_All_On (2)

Enables debugging on all sockets.

Option_Debug_All_Off (-2)

Disables debugging on all sockets.

Declarations to the Sockets API

4–42 4310 3530–006

SO_AcceptConn (h0002)

This option is only valid for SockLib_GetSockOpt ().

The socket has had SockLib_Listen () performed.

SO_KeepAlive (h0008)

This option can only be set before a SockLib_Connect () has been done.

This option controls whether the underlying protocol should periodically transmit
messages on a connected socket. If the peer fails to respond to these
messages, the connection is considered broken. The value is an integer where a
nonzero value means "yes," and is interpreted as the number of minutes to wait
for a peer to respond.

SO_Linger (h0080)

This option specifies what should happen when the socket of a type that
promises reliable delivery still has messages that have not yet been transmitted
when it is closed. The structure is a pair of integers. The first integer is
interpreted as a Boolean. If nonzero, close blocks until the data is transmitted or
the timeout period has expired. The second integer specifies the timeout period
in seconds.

SO_OOBInline (h0100)

This is always set.

Out-of-band data received on the socket is placed in the normal input queue. The
value is an integer where a nonzero value means "yes."

SO_RcvLoWat (h1004)

Select receive low water mark. This option sets the number of bytes that must
be available before a Select terminates its wait for a socket in the ReadSet. The
default value is one byte. This option is available with MCP release 8.0 and later.

SO_RcvTimeO (h1006)

Receive timeout. This option sets the amount of time that a receive will block
waiting for data. The value is a six byte real specifying the number of seconds to
wait. Setting the value to zero disables the timeout function. The default value is
zero. This option is available with MCP release 7.0 SSP1 and later.

SO_SendLoWat (h1003)

Select send low water mark. This option sets the number of bytes that must be
able to be written before a Select terminates its wait for a socket in the
WriteSet. This option is allowed for compatibility, but is ignored since it has no
relevance to the socket’s buffering mechanism. The default value is 2048 bytes.
This option is available with MCP release 8.0 and later.

 Declarations to the Sockets API

4310 3530–006 4–43

SO_SndTimeO (h1005)

Send timeout. This option sets the amount of time that a send will block waiting
to be taken out of flow control. The value is a six byte real specifying the number
of seconds to wait. Setting the value to zero disables the timeout function. Note
that if a send times out, some of the data may have been sent, but not all of it.
The default value is zero. This option is available with MCP release 7.0 SSP1 and
later.

SO_Type (h1008)

This option can be used with SockLib_GetSockOpt only. It is used to get the
socket's communication type. The value is an integer and its value designates a
communication type.

SO_SocketState (h00FF)

This option is only valid for SockLib_GetSockOpt().

This option returns the state of the socket. The enumerations of the state (which
are described in Section 1) are:

 SCBS_Bound = h0001
 SCBS_Declared = h0002
 SCBS_Establishing = h0003
 SCBS_Listening = h0004
 SCBS_NotASocket = h0005
 SCBS_Open = h0006
 SCBS_Shutdown = h0007
 SCBS_ShutdownComplete = h0008
 SCBS_Closed = h0009
 SCBS_Suspended = h000A
 SCBS_Resumed = h000B

IP_Priority (h0001)

This option sets the IP priority field for IP headers. Accepted values are the
numbers 0, 1, and 2.

Note: SOL_SSL options are used to control a secure socket (a given socket can be SSL
or non-SSL, but not both). A socket becomes an SSL socket when any SOL_SSL option
is set through SockLib_SetSockOpt or interrogated through SockLib_GetSockOpt. SSL
options must be set prior to calling SockLib_Listen, as it is the listen that initiates the
opening of sockets. The active security attributes are established at that time.

The only required call to SockLib_SetSockOpt for an SSL socket is to set the
SSL_Key_Container, which establishes a key that has been enabled by the system
administrator for the usercode that the socket was created under. All the other SSL
options have default values that you can use.

Declarations to the Sockets API

4–44 4310 3530–006

SSL_System_Options (h0001)

This option is only valid for SockLib_GetSockOpt (). It returns a bit map indicating
which SSL options are available for use through the sockets interface.

Currently no options are supported.

 SSL_Socket_Options (h0002)

This option is used to set or get the SSL options for a socket. The OptVal
parameter is a bit map indicating the selected options.

By default, no options are set.

 SSL_System_Versions (h0003)

This option is only valid for SockLib_GetSockOpt (). It returns a list of which
protocol versions are available for use through the sockets interface. OptVal has
a count in the first 6 bytes (one word) followed by a list of protocol versions.
Each version is 6 bytes (one word).

 SSL_Socket_Version (h0004)

This option is used to set or to get the protocol version for a socket. The version
field is 6 bytes. The values are:

 SSL 3.0 = Major version = 3
 = Minor version = 0
 TLS = Major version = 3
 = Minor version = 1

Note: As of MCP release 8.0, the default version is TLS (h000031). Previous
releases default to SSL 3.0 (h000030).

SSL_System_Ciphers (h0005)

This option is only valid for SockLib_GetSockOpt (). It returns a list of which
cipher suites are available for a specified protocol. It is formatted as a 6-byte (one
word) count followed by a list of 2-byte cipher ids.

 SSL_Socket_Ciphers (h0006)

This option is used to set the allowed cipher suites (and their order) to be used to
negotiate an SSL handshake before the socket is opened, or to get the
negotiated cipher suite after the socket is opened. OptVal is formatted as in SSL
System Ciphers.

 Declarations to the Sockets API

4310 3530–006 4–45

The following cipher suites are supported (the default is that all installed cipher
suites are available to the user):

V3 Cipher Value

SSL_RSA_With_NULL_MD5 h0001

SSL_RSA_With_NULL_SHA h0002

SSL_RSA_Export_With_RC4_40_MD5 h0003

SSL_RSA_With_RC4_128_MD5 h0004

SSL_RSA_With_RC4_128_SHA h0005

SSL_RSA_Export_With_RC2_CBC_40_MD5 h0006

SSL_RSA_Export_With_DES_40_CBC_SHA h0008

SSL_RSA_With_DES_CBC_SHA h0009

SSL_RSA_With_3DES_EDE_CBC_SHA h000a

TLS_RSA_Export1024_With_DES_CBC_SHA h0062

TLS_RSA_Export1024_With_RC4_56_SHA h0064

 SSL_Key_Container (h0007)

This option is only valid for SockLib_SetSockOpt (). It is used to set the key
container associated with the socket. This is the only option that is required to be
set in order to use an SSL connection. OptVal specifies a string, which is the key
container name.

SSL_Resumable (h0008)

This option is set to TRUE (6 bytes with the least bit set) if the SSL session is
resumable. By default the session is not resumable. For SetSockOpt, any
nonzero value will set the option to TRUE. For GetSockOpt, a zero or one is
returned.

OptVal

The value of the specified option. If the option is a Boolean type, any nonzero
value is interpreted as TRUE.

OptLen

The length in bytes of the specified option value.

Declarations to the Sockets API

4–46 4310 3530–006

Output Parameters:

None.

Results:

If the query is successful, the result is 0; if an error occurred, a negative error code is
returned:

EInVal

The Level parameter and/or the OptVal parameter are invalid.

ENotSock

The socket id specified is not valid.

ENoProtoOpt

The option is unknown or unsupported.

ENotGettable

 The option specified is not allowed for GetSockOpt.

ENotSettable

 The option specified is not allowed for SetSockOpt.

EIsConn

The socket is not in a valid state for setting options.

ENetReset

TCP/IP is no longer available.

ESSLAttributeNotAvail

 The socket has not been configured for SSL.

ESSLSessionInterrupted

 The cryptography engine aborted the operation.

ESSLNotLinked

 Support for SSL has terminated.

ESSLInvalidAttributeValue

 The value in OptVal is invalid.

 Declarations to the Sockets API

4310 3530–006 4–47

ESSLCryptoNotAvailable

 The cryptography interface is not available.

ESSLSysErr

 The MCP Crypto API encountered an error.

ESSLSecurityViolation

 The application is not allowed to use the specific key container.

SockLib_Shutdown

Declaration in C:

 int shutdown(int, int);

Declaration in ALGOL/NEWP:

INTEGER PROCEDURE SOCKLIB_SHUTDOWN (SOCKET, HOW);

VALUE SOCKET, HOW;

INTEGER SOCKET, HOW;

Access in COBOL:

 CALL “SOCKLIB_SHUTDOWN_CBL OF SOCKETSUPPORT”

 USING SOCKET, SOCKET-HOW

 GIVING SOCKET-RESULT.

Input Parameters:

Socket

The identifier of the socket returned by the SockLib_Socket or SockLib_Accept call.

How

Specifies whether to disable sending, receiving, or both on the socket.

SD_Send (1)

Sending is disabled for the socket.

SD_Receive (0)

Receiving is disabled for the socket.

Declarations to the Sockets API

4–48 4310 3530–006

SD_Both (2)

Sending and receiving are disabled for the socket.

Output Parameters:

None.

Results:

If the operation was successful, 0 is returned; otherwise, a negative error code is
returned.

EInval

The How parameter is not valid.

ENotSock

The socket id specified is not valid.

ENetReset

TCP/IP is no longer available.

Conditions:

For sockets of type Sock_Stream:

If How = SD_Send, SockLib_Send () operations are no longer allowed but
SockLib_Recv () operations are. When a SockLib_Recv () returns zero data, a
SockLib_Close () should be done on the socket.

If How = SD_Receive, SockLib_Recv () operations are no longer allowed. If any data
is queued when SockLib_Shutdown is called, or if any data is received after it is
called, the data is discarded and the socket is closed.

If How = SD_Both, the socket is closed and any queued data is discarded.

For sockets of type Sock_DGram:

If How = SD_Receive, there is no effect on the use of SockLib_Send () and
SockLib_Recv () operations.

How = SD_Send and How = SD_Both are equivalent. SockLib_Send () operations are
no longer allowed but SockLib_Recv () operations are.

 Declarations to the Sockets API

4310 3530–006 4–49

SockLib_Socket

Declaration in C:

 int socket(int, int, int);

Declaration in ALGOL/NEWP:

INTEGER PROCEDURE SOCKLIB_SOCKET (ADDRFORMAT, TYPE, PROTOCOL);

VALUE ADDRFORMAT, TYPE, PROTOCOL;

INTEGER ADDRFORMAT, TYPE, PROTOCOL;

Access in COBOL:

 CALL “SOCKLIB_SOCKET_CBL OF SOCKETSUPPORT”

 USING SOCKET-ADDRFORMAT, SOCKET-TYPE, SOCKET-PROTOCOL

 GIVING SOCKET-RESULT.

Input Parameters:

AddrFormat

The address format. Only PFInet is supported.

Type

The type of service to be used:

Sock_Stream (1)

Stream sockets use the TCP interface.

Sock_DGram (2)

Datagram sockets use the UDP interface.

Protocol

The protocol to be used. Only IPProto_IP (0) is supported.

Output Parameters:

None.

Results:

If positive, the procedure result is the identifier of the newly created socket. If negative,
it is an error. Zero is not a valid result for this procedure.

Declarations to the Sockets API

4–50 4310 3530–006

ENoBufs

The socket cannot be created due to lack of system resources.

EProtoNoSupport

The type or protocol specified is not supported.

ENetReset

TCP/IP is no longer available.

Conditions:

A socket data structure is allocated and its id is returned.

SockLib_Suspend

Declaration in C:

 int suspend(int);

Declaration in ALGOL/NEWP:

 INTEGER PROCEDURE SOCKLIB_SUSPEND(SOCKET);

 VALUE SOCKET;

 INTEGER SOCKET;

Access in COBOL:

 INTEGER PROCEDURE SOCKLIB_SUSPEND(SOCKET);

 VALUE SOCKET;

 INTEGER SOCKET;

Input Parameters:

 Socket

 The identifier of the socket returned by the SockLib_Accept call.

Output Parameters:

 None.

 Declarations to the Sockets API

4310 3530–006 4–51

Results:

 If the SockLib_Suspend is successful, the result is 0; if an error occurred, a negative error
code is returned.

 ENotSock

 The socket id specified is not valid.

 ENetReset

 TCP/IP is no longer available.

 ESSLSessionSuspended

 The SSL connection is currently in the suspended state.

 ESSLInvalidState

 The SSL connection is not opened, or SSL has been disabled on the system.

 ESSLSessionInterrupted

 The cryptography engine aborted the operation.

 ESSLNotLinked

 Support for SSL has terminated.

 ESSLSysErr

 The MCP Crypto API encountered an error.

 ESSLSessionNotResumable

 The session has not been configured as resumable.

Conditions:

 If SO_Linger is not set or is set with a zero timeout, the socket is suspended
immediately and any pending data is discarded.

 If SO_Linger is set with a nonzero timeout, the socket waits for all sent data to be
acknowledged by an "ACK" message until the timeout expires. When all data has been
acknowledged by an "ACK" message, or after the timeout has expired, the socket is
suspended.

Declarations to the Sockets API

4–52 4310 3530–006

.

43103530-006
4 3 1 0 3 5 3 0 - 0 0 6

	Table of Contents
	Table of Figures
	Table of Tables
	Section 1. Introduction
	What's New
	What Is a Socket?
	Port File Differences
	Socket Communication States
	Sockets Overview

	Section 2. Sockets Library Interface
	C Compiler Sockets.h File
	SocketSupport Library
	Purpose of this Library
	Functions
	Accessing the Library
	Common Data Structures
	Array Parameters
	Using Secure Sockets Layer (SSL)
	Socket Call Errors

	Section 3. The MCP Sockets API
	Purpose of the Sockets Service
	Standards and Conformance
	Out of Band (Urgent) Data
	SockLib_Bind
	SockLib_IOCtl
	SockLib_Select
	SockLib_Send/SockLib_SendTo
	SockLib_SetSockOpt/SockLib_GetSockOpt
	SockLib_Socket

	Section 4. Declarations to the Sockets API
	Programming Declarations
	SockLib_Accept
	SockLib_Bind
	SockLib_Close
	SockLib_Connect
	SockLib_GetHostByAddr
	SockLib_GetHostByName
	SockLib_GetHostName
	SockLib_GetPeerName
	SockLib_GetSockName
	SockLib_GetSockOpt
	SockLib_IOCtl
	SockLib_Listen
	SockLib_Recv
	SockLib_RecvFrom
	SockLib_Resume
	SockLib_Select
	SockLib_Send
	SockLib_SendTo
	SockLib_SetSockOpt
	SockLib_Shutdown
	SockLib_Socket
	SockLib_Suspend

	Master Glossary

