PUBLICATION
Burroughs @ CHANGE
NOTICE

PCN No.: 1090685-003 Date: November 1982

Publication Title: _B 2000/B 3000/B 4000 Series System Functional Description Manual _ (April 1982)
(Relative to ASR 6.6 Release Level)

Other Affected Publications: None

Supersedes: N/A

Description: This PCN makes changes to the basic publication. In addition, the title of the basic publication .
is changed by this PCN (formerly B 2000/B 3000/B 4000 Series MCPVI System Software Progran';\-‘
mer’s Guide). :

Revisions to the text are indicated by a vertical black bar on the affected pages..

Replace these pages Add these pages

Title Xvil

iii 8-19 thru 8-21

ix thru xv 9-10A thru 9-10D
2-1 10-10A thru 10-10B
2-9 11-1 thru 11-15
2-27

2-83

3-5

3-15 thru 3-17

4-29

5-5

5-21

5-29

5-41

8-1 thru 8-17

9-5 thru 9-11

10-1 thru 109

Copyright © 1982, Burroughs Corporation, Detroit, Michigan 48232

1090685-09?
Printed in U.S. America jii

Page

Title
il
iii thru iv
v thru viii
ix thru xv
XVvi

vil
XVill
I-1 thru 1-2
2-1 thru 2-2
2-3 thru 2-8
2-9 thru 2-10
2-11 thru 2-26
2-27 thru 2-28
2-29 thru 2-82
2-83 thru 2-84
2-85 thru 2-94
3-1 thru 34
3-5 thru 3-6
3-7 thru 3-14
3-15 thru 3-18
3-19 thru 3-21
3-22
4-1 thru 4-28
4-29 thru 4-30
5-1 thru 5-4
5-5 thru 5-6

iv

LIST OF EFFECTIVE PAGES

Issue

PCN-003
PCN-003
PCN-003
Original
PCN-003
Blank
PCN-003
Blank
Original
PCN-003
Original
PCN-003
Original
PCN-003
Original
PCN-003
Original
Original
PCN-003
Original
PCN-003
Original
Blank
Original
PCN-003
Original
PCN-003

Page

5-7 thru 5-20
5-21 thru 5-22
5-23 thru 5-28
5-29 thru 5-30
5-31 thru 540
5-41 thru 5-42
5-43 thru 5-69
5-70

6-1 thru 6-7

6
7-1 thru 7-10

8-1 thru 8-22

9-1 thru 9-4

9-5 thru 9-10
9-10A thru 9-10D
9-11 thru 9-12
9-13 thru 9-34
10-1 thru 10-10
10-10A thru 10-10B
10-11 thru 10-24
11-1 thru11-16
A-1 thru A-7

A-8

B-1 thru B-2

C-1 thru C-3

C-4

7
1
8
1
1
|
5

Issue

Original
PCN-003
Original
PCN-003
Original
PCN-003
Original
Blank
Original
Blank
Original
PCN-003
Original
PCN-003
PCN-003
PCN-003
Original
PCN-003
PCN-003
Original
PCN-003
Original
Blank
Original
Original
Blank

Burroughs

s

B 2000/B 3000/
B 4000 Series

System Functional

Description Manual

.

(RELATIVE TO ASR 6.6 RELEASE)

Copyright © 1982, Burroughs Corporation, Detroit, Michigan 48232

PRICED ITEM

Cover Revised
November, 1982

1090685

The names, places and/or events depicted herein are not
intended to correspond to any individual, group or
association existing, living or otherwise and are purely
fictional. Any similarity or likeness of the names, places
and/or events with the names of any individual, group
or association existing or otherwise is purely
coincidental and unintentional.

You should be very careful to ensure that the use of this
software material and/or information complies with the
}a‘v'v's, rules, and regn‘qfinn: of the jur?cr‘irﬁnn(with

ViGkuiviny VUioou JOOLEILRRLUES N

respect to which it is used.

The information contained herein is subject to change
without notice. Revisions may be issued to advise of
such changes and/or additions.

Correspondence regarding this publication should be forwarded using the
Remarks form at the back of the manual, or may be addressed directly to
TIO West Documentation, Burroughs Corporation, 1300 John Reed Court,
City of Industry, California 91745, U.S.A.

Section

5

1090685-003

TABLE OF CONTENTS (Cont)

Title

EXTERNAL LABEL FORMATS
Burroughs Standard Label
USASI Standard Label
Installation Labels

T T -

Unlabeled Files .
Unreadable Labels
Scratch Tape Files . . .
PROGRAM LABEL DEFINITIONS
Unlabeled Files . e
Standard Labels
USASI Labels
Installation Labels
Special Cases
MIX TABLE . . .
MIX TABLE LAYOUT

SECURITY ATTRIBUTES STORAGE AREA . . .
SECURITY ATTRIBUTES STORAGE AREA LAYOUT

COMPLEX WAIT TABLE . .
OBJECT PROGRAMS ON DISK .
PROGRAM PARAMETER BLOCK

PROGRAM PARAMETER BLOCK LAYOUT

PROGRAM LOADING

MISCELLANEOUS
FILE PARAMETER BLOCK .
PROGRAM CODE

PROGRAM SEGMENT DICTIONARY .
PROGRAM OVERLAY MECHANISM .

HOW TO READ A DUMP
OBTAINING A PROGRAM DUMP .
READING THE DUMP . .
STACK OPERATION

MEMORY DUMP FILE STRUCTURE '.

FILE NAMING
FILE LAYOUT . . .
CONTROL RECORD FORMAT

Page

5-51
5-51
5-52
5-55
5-5
5-56
5-56
5-57
5-57
5-58
5-58
5-59
5-60
5-61
5-61
5-68
5-68
5-69
6-1
6-1
6-1
6-3
64
64
6-5
6-6
6-7
7-1
7-1
7-1
74
79
7-9
79
7-10

ix

Section

TABLE OF CONTENTS

Title

RELATIVE AND INDEXED 170 (COBOL74 AND RPG ONLY)

RELATIVE 10 OVERVIEW
INDEXED I/0 OVERVIEW . . .
RELATIVE FILE IMPLEMENTATION CONSIDERATIONS
RELATIVE FILE FORMATS .
RELATIVE FILE FIB
RELATIVE FILE DATA BLOCK (RF BLOCK) .o
RELATIVE FILE ACCESS ROUTINE INTERFACES
CLOSE .
DELETE
OPEN
READ .
REWRITE
RPG-OPEN
START .
WRITE
INDEXED FILE IMPLEMENTATION CONSIDERATIONS .
INDEXED FILE FORMATS
Indexed Data File Format
Indexed Key File Format .
INDEXED DATA FILE FIB
INDEXED KEY FILE FIBs . . .
INDEXED FILE DATA BLOCK (IF BLOCK)
INDEXED FILE BUFFERS . .
INDEXED FILES ACCESS ROUTINE INTERFACE
CLOSE .
DELETE
OPEN

READ
REWRITE

ANAL VY Anid 2

START .
WRITE .

READER-SORTER DLP I\ITERFACE
DLP OVERVIEW . . .
WRITE-FLIP-READ OPERATION .o
CONTROL STATE USER ROUTINE .
NORMAL STATE ROUTINE
Normal State Processing Routine
Flow Stop Routine
SOFT TANK . . .
FLOW AND DEMAND MODES OF PROCESSING .
MEMORY MAP . . .
MCP READER-SORTER EXTENSIONS
OPEN BCT
CLOSE BCT . . .
MCP MICR MODULE
Reader-Sorter BCTs

L 9-12
912
912

TABLE OF CONTENTS (Cont)

Section Title Page
START FLOW READ BCT .0913
DEMAND FEED READ BCT 914
POCKET LIGHT/BATCH COUNT ADVANCE GENERATE IMAGE COUNT
MARKS BCT . . . 9-15
MICROFILM SLEW BCT . 9-16
STATUS BCT 9-16
CHARACTERISTICS BCT . 917
LOGICAL READ BCT . . 917
Dﬁ(“!{l:’r QEI EPT DEAH ur*'r .. 9-18

FLOW MODE PROCESSING SUMMARY AND USER PROGRAM OUTLINE 9-19
DOCUMENT FLOW DESCRIPTION . . . 9-19
NOTES ON THE RESULT STATUS 922

NOTES ON THE SOFT RESULT DESCRIPTOR . e e e e e o ... L9225
I/0 INVALID TO THE DLP (BIT 1)927
BCT INVALID TO THE MCP BIT 2)927
FLOW CONDITION ERROR (BIT 3) . . e e e e e e e s 927
SYSTEM INTERFACE PARITY ERROR (BIT 4) e e e e e e e 0927
MICROFILM OPERATION NOT COMPLETED (BIT 5) e e e e ..o ...928
NON-PRESENT OPTION (BIT 6) e e e e e ... 928
POCKET SELECT ERROR BIT 8928
BAD INTERFACE INFORMATION (BIT 9) e e e e s 928
TIMEOUT (BIT 10) R« ¥
CAMERA NOT READY (BIT II) T 11
PARITY ERROR (RS - DLP) BIT 12)928
READER-SORTER POWER FAILURE BIT 13) 929
MEMORY OVERFLOW (BIT 14) O A]
DLP ERROR (BIT 15) . . e e e e e s s s s 0929

NON-IMPACT ENDORSEMENT e e e e e e s s s s s 0929

MICROFILMING093

MISCELLANEOUS . . . O e 3 |
B 9138 MERGE ON TEXT OPTION O« M3 |
DLP DELIMITER CHARACTER SET 933
ASSEMBLER CONSTRUCTS . 933

USER Statement v 933

FILE Statement93

UNIT CARD . . . P B 7

10 4A CONTROL APPLICATION PROGRAM INTERFACE S (1S

INTRODUCTION 05 |

COLDSTART/WARMSTART UNIT CARD . 05

USER FILE STATEMENT .101

MEMORY MAP . . . e e e e e e e 10-1

MCP INTERFACE (MI(‘R 4A (‘ONTROL BCT) .. A 10 10B
STANDARD NON-POCKET SELECT/READ BCT VERIFICATION 10-10B
STANDARD POCKET SELECT/READ BCT VERIFICATION10-11
OPEN BCT« 01011
CLOSE BCT v10-11
START FLOW BCT v v o v . .10-11

1090685-003 Xi

Section

11

0wy

Xii

TABLE OF CONTENTS (Cont)

Title

DEMAND FEED AND READ BCT

POCKET LIGHT/GENERATE IMAGE éOUNT MARKS BCT

MICROFILM SLEW BCT
STATUS BCT . . .
CHARACTERISTICS BCT
LOGICAL READ BCT . . .
POCKET SELECT/READ BCT .
B 9138 MERGE ON TEXT OPTION .
CONTROL DELIMITERS . . .
NON-IMPACT ENDORSEMENT
NOTES ON RESULT STATUS
MICROFILMING
PORT FILES
GENERAL
PB-FPF=4 OR 5 CODE FILES ..
PROGRAM PARAMETER BLOCK CHANGE
FILE PARAMETER BLOCK STRUCTURE
PORT FILE PARAMETER BLOCKS .
Location of PFPB Data
PFPB Directory . .
Port File Parameter Block Structure .
PORT FILE INFORMATION BLOCK
PORT FIB STRUCTURE . .
GENERATION OF PORT FIBS
PORT BCTS . .
READ REQUEST
WRITE REQUEST
OPEN REQUEST .

CLOSE REQUEST .
SET ATTRIBUTE REQUEST

24 A s\ (O) (O3 % 3 §

GET ATTRIBUTES REQUEST' .o
EXAMPLE PROGRAM AND MEMORY DUMP
BRANCH COMMUNICATE CHART .

PROGRAM CONSIDERATIONS FOR SHARED FILES

SHARED FILE OPERATIONS

Additional Shared File Programming Con51derat10ns

Figure

\O\I\I\JT.]TI\I\]LA-I}-W
- VI TN SO I

9-2

LIST OF ILLUSTRATIONS

Title

Storage Queue Organization . .

Example Pseudo-Deck Creation Program

Exampies of Tapes Created with Burroughs btandard Label l*ormat
A Stack Containing No Entries

A Stack Containing One Entry

A Stack Containing Two Entries .

Typical Stack Entry .

Stack After NTR A .

Stack After NTR B . . .

Stack After EXT, Routine B .

Processor/R-S DLP Commumcatlons Paths

Memory Map Functions

Document Flow in Control State User and Normal State Routmes
Single Jet Endorser (Usually the Front of the Document)
Three-Jet Endorser (Usually the Back of the Document)

Memory Map Functions e e e

Program Used to Produce a Dump

Dump Produced From Program in Figure A l

Recommended LOCK Sequences — Two Examples

1090685 -003

- 5-53

. 9-21
- 9-29
-9-30
- 10-2
. A-l
- A2
. C2

Page

- 3-17

48

74
7-5
7-5
7-5
7-7
7-7
7-8
9-2
9-5

xiii

W th by h b e

— et e e \D \D \O \O \O \O OO0 00 OO GO

LIST OF TABLES

Table Title Page
-1 Hardware Codes . . . s)]
-1 Pre-terminate Error Codes .. .
-2 Data Communications Descriptor Varrants O X 9]
-3 Data Communications BCT Quick Reference253
-4 Disk File LOAD/DUMP Parameters284
-5 LOADMP Pass File28
-6 LOADMP Type 1 Record .. .286
-7 LOADMP Type 21 Record286
-8 LOADMP Type 22 Record .. .286
-9 LOADMP Data Block287
-10 PACKUP Parameters28
-11 PACKUP Pass File28
-12 PACKUP Type 1 Record28
-13 Control Block 129
-14 Control Block 229
-15 Data Block29
-16 Sort Parameter File A V-
-1 Analogies Between Physical and P udo Cnmponents R e
-2 Pseudo-Reader Card Format . 46
-3 Printer Backup Combinations .419
-4 Backup Print File Label Format42
-5 Punch Backup Options § |
-6 Backup Print File Label Format O I &
-1 Result Descriptor Codes536
-2 I/0 Descriptor Errors e 1%
-3 Burroughs Standard Label Format e .S |
-4 USASI Label Record 1 . . e)
-5 USASI File Header Label Record . . 7"
-6 Installation Label Card Format .555
-7 Basic Label Area . . - Y
-8 Standard Label Format . .1
-9 USASI Label in Program Area .558
-1 Relative File Control Block Format 84
2 RF Block Format . . . 2.
3 Indexed File Control Block Format 3 K
-4 Indexed File Data Block Format . 817
-1 Memory Map Description . . .)
-2 Reader-Sorter BCT Types and Operatrons R . A
-3 Result Status Exception Conditions for Write-Flip- Read e e e e e e 922
-4 Reporting Result Status Exception Conditions922
-5 Soft Result Descriptor Error Locations . . e e e e 0926
-6 Bit Positions for Soft Result Descriptor Exceptlon Condltrons e e oo 0926
0-1 Memory Map . . e e e e e e e e . 10-2
0-2 BCT Type Numbers and Operatrons e e e e e e e 10 10B
0-3 Reporting Result Status Bits l0o22
1-1 File Parameter Block Structure .11=2
1-3 Port FIB Structure1ls6

Xiv

LIST OF TABLES

Table Title
11-4 Function Input Parameters (also includes (PFBSUB)
11.€ Function Ontnut Parameters)
1170 4 ULIVULIVLIE s/ ulpul 2 Qi Qaasvivi o
B-1 Branch Communicates (BCTs) for MCPVI

1090685-003

[a—y

o = —
1
[y

Page

XV

B 2000/B 3000/B 4000 MCPVI Programmer’s Guide

INTRODUCTION

This manual describes the various programmatic interface areas available with MCPVI. The intent of
the information is not to detail the operations of the MCP, but to consolidate the information which
a programmer might need, for example, in reading a dump, or in writing a user-coded utility program.

The user of this manual presumably has some programming knowledge and operating experience with
B 4000/B 3000/B 2000 series MCP. Because of the constructs used in many explanations, a familiarity
with Medium Systems Assembler will be useful.

The reader is also referred to the MCPVI Software Operations Guide, Volume 1 form number 1127529
for specific syntax and semantics of keyboard and controi messages used in this manuai.

The information contained in this manual replaces the information contained in the following Medium

Systems Technical Newsletters: form numbers 1042272-010, —013, —024, —025, —027, and —028.
The information contained in these technical newsletters still applies to MCPV.

1090685-003 Xvii

SECTION 2
PROGRAM INTERFACE

A user program communicates with the MCP using a Branch Communicate instruction (BCT,
OP = 30). With a BCT, a program requests the MCP to perform one of a variety of functions such
as file OPEN, sort calls, or physical 1/0. This section describes the user program Branch Communi-
cates.

Also included are the interface requirements for various system utilities that can be user-written.

PROGRAM BRANCH COMMUNICATE

The BCT instruction is used to transfer control from a user program to the MCP. The address specified
in the BCT is an absolute memory address within the MCP. A BCT address is valid if the first digit
at that address is an undigit @F@. If the first digit is not @F@ a processor interrupt occurs. The
five digits following the @F@ is an address in the MCP which will handle that particular BCT. The
remaining five digits of the address must also be valid.

Each Communicate is headed by the equivalent COBOLV/ COBOLL construct (where such exists).
Following in parentheses, is the BPL term for the communicate.

The Communicate structure is described as follows:

BCT Address
BUN
Pl

The BUN does not imply that the instruction must be an unconditional branch, but rather, a branch
format (8-digit or 10-digit) instruction. However, an unconditional branch is generated by the compilers
for all communicates where BUN is indicated.

All parameters are labelled P1 through Pn, including fillers. ACONs in the parameters must not have
any address controller, extended address, or indexing specifications, and cannot exceed the program
limit register. Addresses of File Information Blocks (FIBs) cannot exceed 399998. (In some cases,
ACONSs in programs compiled prior to MCPV, contain UA address controller specifications. Earlier
MCPs ignored the high-order digit in certain communicates. As this digit is significant for MCPVI,
if the 6-digit address is found to exceed the limit of the program, the MCP ignores the 2-bit of the
high-order digit.) In some cases ACON parameters are optional, signified by a zero value in the field.
End-of-file (EOF) labels are an example. (However, in the case of EOF addresses, one must be present
where needed, namely when EOF is reached.)

1090685-003 2-1

ACCEPT

ACCEPT (ACCEPT)

The ACCEPT BCT requests data from the Operator Control Station (OCS).
The format of this BCT is:

BCT 0254
BUN
P1. ACON (input area, must be mod 2)
P2. CNST 1 UN 0 (flag indicating ACCEPT)
P3. CNST 2 UN XX (size of input area in bytes)
P4. CNST 1 UN 0 Filler

P1 must be MOD 2. P1 cannot exceed 60 bytes. If P3 is equal to zero or greater than 60, 60 is used.

The AX OCS command may be entered and saved prior to a program executing the ACCEPT BCT.
If input text from a previously entered AX command is available, the text is inserted into the input
area and the program is reinstated immediately. If the size of the text exceeds P3, the text is truncated
and no error message is displayed.

If no previous text is available, the program is suspended until an AX command is entered. If the

number of characters entered exceeds P3, the operator is notified with an error message on the OCS
and ACCEPT is repeated.

In either case, if fewer than P3 characters are input, the data is left-justified in the buffer. An ETX
(03) follows the last character input. The buffer contents following the ETX are undefined. If exactly
P3 characters are input, no characters -are inserted.

CLOSE (CLOSE)
The CLOSE BCT closes files and designates their disposition. The format of this BCT is:

BCT 0154
BUN
P1. ACON (FIB)
P2. CNST 1 UN X (type of CLOSE-Parameter 1)
FILE (REWIND)
REEL (REWIND)
FILE NO REWIND
REEL NO REWIND
FILE RELEASE

REEL RELEASE

FILE LOCK

REEL LOCK

FILE PURGE

REEL PURGE

FILE CLOBBER

FILE CLOBBER

Y (type of CLOSE-Parameter 2)
CRUNCH P2 must be 4, 6, C, or E)
NO REWIND RELEASE (P2 must be 4)
COBOL-74 FILE LOCK

NO DISCONNECT

[I | 1

P3. CNST 1 U

I A T T T

RN —ZMO O UL bW — O

CLOSE REEL and NO REWIND operations are defined for magnetic tape and paper tape only.

CLOSE CLOBBER and CRUNCH are defined for output disk files or disk pack only. CRUNCH can
be ignored if more than one area of the file is allocated.

NO DISCONNECT applies only to dialed data communications devices.
CLOSE PURGE applies only to disk and disk pack files, and output magnetic tape files.

COBOL -74 FILE LOCK applies only to COBOL-74 programs. If a program reopens a file that has
been CLOSED with LOCK, it will be terminated with an INVLOCK USE message.

1090685-003 29

COMPLEX WAIT (NO COBOL OR BPL SYNTAX)

The COMPLEX WAIT BCT allows a user to suspend execution until one of the specified events hap-
pens. If any event has happened at the time the BCT is executed, the program is reinstated immediate-

ly.
The COMPLEX WAIT BCT is not allowed to a program which is executing in the shared area.

The format of the BCT is:

BCT 0994
BUN
Pl. CNST 2UN = XX (number of parms in list)
P2. ACON (address of parameter list)
P3. ACON (address of 2 UN using field or 0 if none)
P4. ACON (address of 2 UN giving field or 0 if none)

P2 points to the list of parameters which is defined as follows:

CNST 4UN = XXXX (event type)

0 = time (doze)

1 = ODT input present

2 = output event

3 = input event

4 = change event

5 = ready event
ACON {depends on event iype)
ACON (depends on event type)

If event type = 0, the first ACON points to a 5 UN time field in seconds and the second ACON
is zero. If event type = 1, both ACONs are zero. If event type = 2, 3, 4, or 5, then the first ACON
points to a FIB, and if the file is a port file, then the second ACON points to a 4 UN subport index.
If the subport index is zero, this is a port event.

NOTE
An output event is invalid as a port event.

These three fields are repeated P1 number of times and must be contiguous.

When the BCT is executed, each event is tested to see whether it has already occurred. The order in
which the events are tested is determined by P3. If P3 = 0, the events are tested in the order they
are specified in the list. Otherwise, the first event tested is the one that occupies the P3-rd (1 relative)
position in the list.

When the program is reinstated after executing a COMPLEX WAIT BCT, it has the option of request-
ing an indication of which event has happened. If P4 = 0 no indication is given; otherwise the
(1-relative) position in the original list of the event that occurred is placed in the giving field.

When a program executes a COMPLEX WAIT BCT the MCP builds an entry in the Complex Wait
Table for that program (refer to section 5). If there are not enough entries available in the Complex
Wait table, the program is suspended while waiting for Wait Table space. However, if Wait Table
space does not become available, the BCT is invalid and the program is terminated. The MCP’s 100-
second status routine allows any program waiting for Wait Table space to re-execute the COMPLEX
WAIT BCT if space becomes available. The operator may cause an earlier re-execution of the BCT
by issuing a <mix>O0K command from the OCS.

2-10

MIXTBL

MIXTBL (NO COBOL SYNTAX)

The MIXTBL BCT requests information about current jobs in the mix. Programs running in the time-
share area that execute this BCT will only receive information about jobs in the time-sharing mix. The
format of this BCT is:

BCT 0214
BUN
Pl. ACON (program ID field, table, or unused depending on P3)

P2. CNST 1 UN
P3. CNST 1 UN
P4. CNST 2 UN

6 (specifies PROGRAM request)
X (defines type of request)
YY (holds response)

The values of P1 and P3 can be:

P3 P1 Request

0 Program ID Address Place number of programs in mix with
specified ID in P4.

Filler Place number of programs in mix in P4,
2 Program ID Address Place <mix-no.> of specified program
in P4.
4 Table Address Place mix information in specified table;
also put number of programs in mix in
P4.
8 Filler Place <mix-no.> of caller in P4.
9 Response Area Place caller information in P4.
Following is the table format (P3 = 4).
Header
Reserved 1 UN
Jobs in Mix 2 UN (value also in P4)

Core Available 3 UN (mod 1000; total available memory)

Body (one entry for each program)

MIX ID 6 UA (program name)
MIX-MF 6 UA (multi-program name)
MIX-NO 2 UN (mix number)

1 UN (reserved)
3 UN (memory used by job, base to limit only)

1090685-003 2-27

The progrram ID field (where relevant) must be 6 UA, mod 2, and must contain the name of the pro-
gram in question.

It is the responsibility of the programmer to allocate a table of sufficient size when P3 = 4.

For P3 = 9 the response area contains the following information:
6 UA Program ID
6 UA Multi-program ID
2 UN Mix number
4 UN RLOG number
4 UN RIJE link

6 UN Date compiled (mmddyy)
5 UN Time compoled (hh:mm)

If the requestor has been inititated through RJE, the RJE link should be used when creating pseudo-
decks.

Any program that creates pseudo-decks should execute this BCT with P3 = 9 to obtain an RJE link.

If the link is non-zero, the program should place an @FF@ in column 74 and the link in columns
75-76 of the control cards in the pseudo-decks it builds.

2-28

OTHER USER PROGRAM INTERFACES

In addition to the specific information passed to the MCP in a BCT instruction, other interface areas
are involved during the processing of a BCT. Two particular functions, USE routines and disk/disk
pack file OPENs, modify or examine certain program locations. These additional parameters are
presented here.

USE ROUTINES

When certain USE routines are entered, the MCP passes information to the program which helps define
the processing state at the time of entry. In all cases, the address to which return is made when the
USE routine is exited, is placed in FIBRCW of the first Buffer Status Block following the FIB for
which the USE routine was entered.

The following data is passed when a label USE routine is entered:

BASE: +34:1:UN
BASE: +35:1:UN
BASE: +36:1:UN

FIB-10O (value)
0 for begin label, 1 for end label
0 for file labels, 1 for reel labels

o

The following data is passed when an I/0 error USE routine is entered:

BASE: +34:1:UN = FIBRWT bits :1 and :2
BASE: +37:3:UN = Reel number (MTP)

FILE HANDLING

When an existing disk or disk pack file is OPENed input or 1/0, the program can request that the
MCP present the disk file header (DFH) for the file in memory. This is done by setting certain bit
combinations in the first digit of the FIB for that file (FIBST1). The specifications are:

FIBST1
Value Meaning

.1 Request first 40 digits of header before
modification (due to remapping according
to record and block size specifications)
at BASE: + 100.

:4 Request first 40 digits of header after
modification at BASE: + 100.

:8 Request header addresses at BASE: + 140;
the number of addresses transferred is
determined by the number of areas
specification in the DFH. Bit 1 or 4 will
also be on.

When a new output disk or disk pack file is CLOSEd WITH LOCK, RELEASE, or CLOBBER, the
program can specify that the MCP is to access memory (at BASE: + 100) for the first 40 digits of the
DFH, rather than use the header maintained outside program bounds. This is specified by the 1-bit
in FIBSTI.

1090685-003 283

MCP-UTILITY INTERFACES

The MCP provides several utility programs as intrinsics. Most of these programs can be user written
and employ the standard MCP interface for that intrinsic. It must be understood that the interfaces
for the intrinsics defined in the following are subject to change. This sub-section is intended primarily
for information.

Print/Punch Backup
A complete description of-backup utilities interfaces can be found in Device Alternates, section 4.
Log Programs

The names of the user-coded log analysis programs (initiated by the LNR, LNS, and LNM messages)
must be RLGOUT, SLGOUT, and MLGOUT, respectively. The 2-digit log number (p1-p9) is inserted
at BASE:+32 (p = processor number).

Disk File LOAD/DUMP

The user-coded LOADMP is invoked in lieu of the MCP intrinsic except when the file name specified
in the control syntax is SYSTEM (and /OWN is not specified), or when /MCP is specified.

The parameters passed to the program when it is initiated are shown in table 2-4.

Table 2-4. Disk File LOAD/DUMP Parameters

Location | Length Meaning
BASE:+0 | 1TUN Execution digit

0 = LOAD

1 = DUMP

2 = ADD

3 = UNLOAD

4 = CHECK

5§ = DUMP/CHECK

7 = UNLOAD/CHECK

:8 = LOAD for ALLOCATE card (that is, OPEN files 1/0)

BASE:+1 {1 UN 2 NEWLIST and LIB = 1, or LIST specified in control request

:4 Abort on error
:8 Tape FID = SYSTEM

BASE:+2 |2 UN | Segments per block for 7-track (1-30)

BASE:+2 | 1 UN | High order bits of size field
:4 DISKCHECK on LOAD/ADD
:8 COMPARE on DUMP/UNLOAD

BASE:+4 | 2 UN | Specified EU for LOAD/ADD

In addition to the parameters passed to program memory, the MCP builds a work disk file for
LOADMP. This file, which consists of 100-byte records (20 X 40), contains FIDs and other data
needed for the requested operation. The file name is %nnOp0, where nn is the LOADMP mix number
and p is the system processor number. The record format is shown in table 2-5.

2-84

The FILL...INTO at WAKE-UP is used strictly as a means to interlock with BPLSCN and to alert
the program that a new record is to be obtained. It is possible to have multiple programs using
BPLSCN simultaneously (for example, by making the BPLSCN FILL’s global requests or by passing
the program name with the COBOL FILL INTO).

Observe that asynchronous communications yields considerable benefits for the above example. The
following sub-section examines this exampie further.

ASYNCHRONOUS PROCESSES

Both CRCR and STOQUE provide tools for efficient asynchronous process control; each mechanism
has applicational advantages. The two mechanisms can be distinguished by the fact that CRCR pro-
vides synchronized data transfer while STOQUE permits completely asynchronous exchanges. Programs
using CRCR can process any given transaction asynchronously but must be synchronized at the time
of data transfer. The latter is not necessary when using STOQUE. In addition, each mechanism has
a number of other unique characteristics.

When CRCR is used for asynchronous processing, the PROCEED TO... clause of the FILL...INTO
and FILL...FROM constructs are often employed. This facility allows a process to pursue other
activities while the other program completes processing preparatory to the hook up. This capability is
important in applications requiring a handler program. Such a program can be servicing many users
(peripheral devices and/or programs) and cannot wait for a hook up with one program while other
users require servicing. At a later time the CRCR request can be repeated; this process of executing
the PROCEED TO... clause and later reinitiating the request is called buzzing. Since CRCR requires
that the data transfer be synchronized, only one of the processes involved can specify the PROCEED
TO... clause for a given transfer; otherwise a hook up would never occur. Thus, at times, one process
must be waiting for the other to catch up.

The CRCR requests have another function which is sometimes valuable in asynchronous processing,
usually in conjunction with the normal data transfer facility. If a program attempts to FILL...INTO
or FILL...FROM another program and no process of the specified name is prepared to receive or send
data, but a program of that name is either a WAIT or SLEEP status, the WAITing/SLEEPing pro-
gram is marked ready-to-run. Thus, non-Global CRCR operations can be used to wake up another
program. (A WAIT [UNTIL <time>] or WAIT <time> request, respectively.)

The STOQUE functions of the MCP are performed by the STOQUE extension module of the MCP.
If these facilities are used, they must be loaded into memory by setting the STOQ system option.

The STOQUE module performs the basic functions of transferring data from a data area in a program
to an external memory buffer and retrieving that data upon request. The mechanism can be used simul-
taneously by any number of programs as a means to transfer data between processes, or even as tempo-
rary storage for a single process. The data elements placed into the memory buffer are organized into
one or more program-independent, symbolically-named lists called storage queues (STOQUE).

The STOQUE mechanism differs significantly from CRCR in that no synchronization of the sending
and receiving programs is required. This is due to the fact that STOQUE does not transfer data directly
from one program to another, but instead stores the message in an external memory area until re-
quested. Therefore, multiple transactions can be in the storage queue simultaneously, thus, the use of
STOQUE permits the complete overlap of processing between programs, with no necessity to interlock
for each transaction.

Programs can execute three types of calls on the STOQUE module: store data, retrieve data, and queue
inquiry. Both the storage and retrieval functions have important variations which permit the mechanism

1090685-003 3.5

to be used in many ways. Rather than permitting only simple queuing of data, STOQUE allows
elements to be added to or removed from a list at either the top or bottom yielding the benefits of
both first-in first-out (FIFO) and last-in first-out (LIFO) mechanisms. In addition, queues can optional-
ly be given a substructure to allow priority handling of data elements by associating a name with the
individual elements of a list in addition to the individual name of the queue.

The queue inquiry function provides a rapid means of determining the size of a list without disturbing
any elements.

All requests made of the STOQUE function, reference an area in the user program called the STOQUE
Parameter”Block. This program-maintained area contains the information needed by STOQUE to con-
trol the data elements, and is described as follows:

QUEUE NAME PIC x(g). Identifies indivicdual gqueue
ENTRY NAME LENGTH PIC 9(2) CCMFP. Name LCH in bytes (00=NULL)
ENTRY NAME PIC XUNN). Zntry name (optional)

ENTRY DATA LENGTH PIC 9(4) CCvMP, Data LGH wn bytes

ENTRY DATA PIC XCANNNND. Data field (optional)

The queue name identifies the programmatically assigned symbolic name of the list to which the request
pertains. The entry name length field specifies the size of the optional entry name field. If present,
the entry name specifies the name associated with the individual queue entry. This name can be used
to -provide a substructure to a list and provides the means to access data elements which are at other
than the top or bottom of ihe queue. The entry data length field specifies the size of the entry data
area which contains the transaction to be accessed for a storage request or is the area to which data
is placed in a retrieval operation. The entry data length field functions as a response area for a queue
inquiry request. The entry data field, however, is not applicable to a queue inquiry request. The Stoque
Parameter Block must begin on a mod-4 address.

The following paragraphs provide a brief description of the STOQUE requests as illustrated by the
COBOL language syntax.

To store data in a STOQUE, the COBOL syntax is:

ToP
FILL data-name INTO J, [PROCEED TO paragraph-name] .
l BOTTOM
The keyword INTO specifies that the request is for data storage. If the data element is to be queued
at the head of the queue, TOP is specified; BOTTOM indicates that the entry is to be queued at the
base of the list.

The data-name references the STOQUE Parameter Block described above. This block contains the data
to be stored, and information needed by STOQUE to identify the queue and control the entry.

When the request is completed, the program is resumed at the next instruction.

If sufficient space is not available for the storage request, the sending program is suspended until space
becomes available, unless the optional PROCEED TO clause is specified. In that case, the program
does not WAIT, but resumes at the paragraph-name specified.

3-6

programs WAITing CRCR on this program are in receive mode. For that reason, the WAKE-UP mech-
anism is generally used in conjunction with the other functions of WAIT or SLEEP, or when proper
timing can be assured. Note that the WAKE-UP occurs only on non-Global SEND or RECEIVE re-
quests; the PROCEED TO option can be used or not, as desired.

A program must never buzz without giving up control to another process. If

a program simply loops
on one or more FILL requests, it is always reinstatable; further, as the highest p

rlnrufv lnh on the

system, no other program, mcludmg the one for which the buzzing job is waiting, can ever execute.
Even if it is not the highest priority job, the program would expend less overhead if other tasks could
process between the FILL requests.

STORAGE QUEUE
The following variables must be considered when using STOQUE.

STOQUE Parameter Block

When a program executes a STOQUE request, several parameters must be supplied: the request type,
the name of the queue to which the request pertains, the entry name (if used), and the data area to
be used in conjunction with the storage or retrieval request. The request type parameter is part of the
STOQUE statement. All other elements are constructed by the program in a STOQUE Parameter Block
which is referenced in the STOQUE request. The block must begin at a mod-4 address (for example,
a COBOL 01 level). The first six bytes contain the name of the queue (Stogname) to which the request
pertains; this name must be left justified and blank filled if less than six bytes long. The name can
contain any EBCDIC characters, including embedded blanks and non-graphic combinations, except that
the entire name cannot consist of all NULLs or be MCPQUE (reserved for MCP). The next element
is a 2-digit field containing the size of the entry name in bytes. The field can contain any value from
0 to 99; if no entry name is used, the length should be zero. The entry name field then follows. The
name, which can consist of any EDCDIC characters, can be used to provide a substructure to a queue.
Multiple entries in a queue can have the same entry name.

Retrieval requests need not specify the complete name associated with an entry. If a shorter name is
used, the name acts as a group specifier as described earlier.

The length of the message area is specified in a 4-digit field containing the size of the buffer in bytes.
The length can be any value from 1 to 2300. For a POLL operation, this field is used as the response
area rather than a data length field as no message area exists for this operation.

The message area follows the length field. No restrictions are placed on the content of the field. A
maximum length of 2300 bytes is permitted.

When a storage request is made, all fields from the entry name length field to the end of the entry
data field are moved to the queue. When a retrieval request is made, these fields are moved from the
queue entry to the program STOQUE Parameter Block Area. In certain cases, care must be exercised
in retrieval request using group entry names. For example:

Gl STO0R=-PAR-3LOCK,
03 QNANME PIC X(6) VALLE "3NMANMELT
33 GENT-MAMF=LENGTE PIC 99 COMP VALUE 03.
C3 DENT=-NAME PIC XXX VALUE "ABC".
G3 JENT=-DATA-LENGTA PIC 9C4) COMP VALUE 01090,
03 JENT-DATA PIC X(1(C).

1090685-003 3-15

If an entry in QNAME] has an entry name of ABCD, a retrieval request for ABC can cause an unex-
pectedly large entry to be accessed. For this case, QENT-NAME-LENGTH would contain 04, QENT-
NAME would be a 4-byte field containing ABCD (spilling over into QENT-DATA-LENGTH) and all
other fields would be shifted over one byte.

Proper access of the data can be accomplished with a redefinition of STOQ-PAR-BLK. Retrieval re-
quests using an entry name are slightly less efficient than simple requests. Storage requests are equally
efficient, regardless of type.

Buffer

The memory buffer maintained by STOQUE for the storage of data is allocated in user memory exter-
nal to all programs. The space is allocated as needed and deallocated when possible. The user can con-
trol the amount of memory which STOQUE can use for storage space through Cold Start LIMIT
specifications.

Memory is obtained in variable size blocks (5 to 20KD each) called Stogblocks. The number of these
Stogblocks which can be allocated, up to a maximum of 980, is controlled by two LIMIT specifications
(STOQSIZE and STOQBLOCKS). If it is not possible to get enough memory space for a Stogblock,
the message ** NO MEM FOR STOQ is displayed on the OCS. To minimize the overhead of frequent
memory allocation and deallocation, the MCP checks for empty Stogblocks on a periodic basis rather
than returning them when empty.

Queue Names

Data elements placed into the memory buffer by the STOQUE module carry no information about
the program from which it was sent or destined. Instead, the elements are organized into a queue iden-
tified by the progammatically specified Stogname. The Stogqnames are maintained in a table contiguous
to the STOQUE module. Because the Stogname defines a queue, the capacity of the name table limits
the number of separate queues which can be maintained simultaneously. The STOQUE module pro-
vides a table with a capacity of 10 names by default; a LIMIT STOQNAMES parameter card can be
used to increase the table size beyond the default value up to a maximum of 99 entries. Because
memory for any additional table space is allocated in 1 KD increments, maximum efficiency of memory
utilization occurs when the Stognames table is 10, 43, or 99 entries in size as each entry is 30 digits

T

10118,

A new entry is made in the Stognames table when the first storage or retrieval request is made for
an entry of that name. An entry is not deallocated until the name table is full, a program executes
a request for a new queue name and a queue is completely inactive (no entries exist and no programs
are waiting for entries), or until an RQ keyboard message is entered.

Queue Organization

The queue entries can occur anywhere in the STOQUE buffer space. Inter-element links (addresses)
provide the structure and organization of a queue and thus allow a simple means to access elements
or place new items into a queue. This type of structure is known as a linked list.

The organization of the storage queues is shown graphically in figure 3-1. The entries of the Stoqnames
table provide rapid access to the list at either the head or base. In addition, each list element points
to both the next and previous entry, allowing access to any individual item in the queue through either
the head or base. The list, then, is bi-directional.

3-16

B 2000/B 3000/B 4000 MCPVI Programmer’s Guide
Interprogram Communication

QUEUE NAME TABLE QUEUE | | 1eApPOINTER | TAlLPOINTER | QUEUE

HEAD P TAIl
NAME 1 NAME 2 OINTER L POINTER

‘ 1

ENTRY

I LINK

ENTRY

+ LINK
'

ENTRY

I LINK

ENTRY [@————

P1267
Figure 3-1. Storage Queue Organization

The flexible structure of the queues permits a wide range of applications. The existence of both forward
and backward links allows items to be added to or retrieved from either the head or base and thus
permits a queue to be used as a sequential list (FIFO), or as a push-down stack (LIF0), or both. Ex-
tremely complex queuing and retrieval mechanisms can be developed by combining these operations.
Even more sophisticated designs are possible by using queue entry names as well.

Storage Queue Entries

When a program executes a storage request, STOQUE obtains the necessary buffer space and moves
the program data to the entry. In addition, a number of control fields are established in the entry and
are used to manage the empty space. STOQUE then links the entry into the proper queue in the man-
ner specified by the program.

Similarly, a retrieval request causes data to be moved from an entry to the requestor. The entry is
then returned to the available space list.

The queue entry contains several important components which are used for the following purposes:
Space management

Links to the next and previous physical space in the Stogblock and size specification are used
when entries are retrieved and the space is to be returned to the available list.

1090685-003 3-17

Queue management
Links to the next and previous entries in the queue are maintained to permit access to elements
in either direction.

Entry management
The size of the user portion of the entry and the entry is present.

Filler
Filler may be present to make the entry mod 4 digits in size and/or because the original available
slot was not large enough for both the entry and new available links for the remainder.

The user portion of the entry is simply the program specified STOQUE Parameter Block (except the
queue name portion). The MCP is unconcerned with the contents of this area except at the time of
a retrieval request with an entry name specification. The requested name is checked against a corre-
sponding number of characters of the entry name in the queue entry until a match is found or the
queue is exhausted.

I The user portion of an entry can range from 4 to 2403 bytes in length depending on the size of the
entry name and data area. Retrieval operations are more efficient if the size is an even number of
bytes.

Available Space List

e

n addition to the active gueues, available areas within the buffer space are maintained in a linked
ist. When a storage request is made, the STOQUE module attempts to find the smallest available area
which can contain the entry. If no available space is large enough, a new Stogblock is obtained (subject

to the user-specified block limit and memory availability) and linked into the available space list.

ot

As entries are removed from a queue, the MCP returns the space to the available list, consolidating
the entry with surrounding space as applicable.

If an entire block remains in the available list for 40 seconds, the memory space is returned to the
system, unless this would reduce the number of remaining STOQUE blocks below the minimum
specified on a Cold Start LIMIT card. This mechanism minimizes frequent memory allocation and de-

. 43

allocation operations.
At any given moment, available space can be extensively checker-boarded throughout the Stogblocks;

because of the transient nature of the individual entries, the available list changes rapidly. Thus, no
attempt is made to consolidate the available areas within a block.

LANGUAGE CONSTRUCTS FOR CRCR AND STOQUE
The language constructs for CRCR and STOQUE are presented here.
CORE-TO-CORE CONSTRUCTS

In COBOL ANSI-68, the Core-to-Core construct is

FROM

literal-1
FILL data-name-1 [PROCEED TO paragraph-name].
INTO data-name-2

3-18

PRINTER ALTERNATES

(stacked) tape can be printed (PB <cc/u>) or 2) a specific file can be printed (PB <cc/u> <file-
identifier >).

The operator can include a /OWN or /MCP parameter to require the initiation of either the user-coded
or MCP version of the utility. In the absence of this parameter, the user-coded version is initiated if
present on disk; otherwise, the MCP intrinsic is scheduled.

When the operator initiates printing, restart or skipping can be selected. This is done by a variant of
the PB message: PB <cc/u> * < file-identifier > where the asterisk indicates that the operator wishes
to specify a restart point in the file, or a number of tape records are to be bypassed before printing
begins. (PB <cc/u> * without a file-identifier indicates a restart for all files on the tape.) The next
specification in the PB request can be a 1 or 2-digit integer (0-99) which is passed to the print program.
This number is not currently used by the MCP supplied utility but can be empioyed in any manner
desired in a user-coded PBTOUT (see below). Full syntax for the PB message is:

/OWN
PB <cc/u> [*] [<file-identifier >] [<integer >1 [parameter instructions)

/MCP
The parameter instructions can include any valid program parameter statement such as CHARGE,
LOCK, AFTER, and so on. If the Cold Start CHRG ALL specification has been made, the CHARGE
parameter instruction must be included.

OPERATION AND CONTROL

When the print program begins execution, the tape on the appropriate channel and unit is OPENed.
If the operator has requested the printing of a single file on a stacked printer backup tape, the MCP
multifile search routine finds the appropriate file; otherwise, the first file on the tape is selected. The
label record is accessed to determine if FORMs and/or labels are required for the printer file. If a
restart (*) is specified, the print program requests the necessary data from the operator and positions
the file to the desired point.

After necessary positioning of the file, a printer is OPENed and printing begins. During printing, the
operator can use the SK and QT messages to initiate special actions in the print program as described
above. (When printing a PBT, for the last (or only) file on the tape, QT and QT ALL mean the same
thing; however, if QT is used, PBTOUT may have to space to the end of the current file to determine
if any more files are present.) When printing of the files on the tape is completed, the tape is rewound,
but not purged, to allow multiple printings.

Backup Disk/Disk Pack (PBDOUT)

The following tells how PBDOUT can be used.
INITIATION

PBDOUT is initiated by a keyboard message (PB, PBD, or PBP...) The operator can indicate that
all files are to be printed in sequence according to numeric designations (PB/ , PBD/ , or PBP/),
or that a specific file is to be printed (PB , PBD , or PBP <integer >) where the integer is the numeric
portion-nnnn or pnnnn-of the PBD file name. The pnnnn format can be used to print a file on a pro-
cessor other than its creator.

1090685-003 4-29

PRINTER ALTERNATES

The operator can include a /OWN or /MCP parameter to require the initiation of either the user-coded
or MCP version of the utility. In the absence of this parameter, the user-coded version is initiated if
present on disk; otherwise, the MCP intrinsic is initiated.

Restart or skipping can be specified by typing PB*, PBD*, or PBP*... ; the asterisk indicates that the
operator wishes to specify a restart point or a number of records to be bypassed before printing begins.
PB*/, PBD*/, or PBP*/ indicates restart for all backup disk/pack files.

The operator can also specify that the PBD files are to remain on or off disk after printing by specify-
ing the word SAVE if the files are not to be purged. If no specification is made, the files are not
SAVEd.

The next specification in the PBD request can be a 1 or 2-digit integer (0-99) which is passed to the
print program and indicates the total number of copies of the backup file to be printed. If either a
zero or a one is entered, or if the parameter is omitted, PBDOUT generates one copy of the file. Full
system syntax for the PBD message is

JOWN g / }
[*1 | <file-name > [SAVE] [<integer >]
I < file-number > s

[; <parameter instructions >]

When the printer program is initiated, the MCP passes it the file number (zeros if the message was
PB/, PBP/, or PBD/), flags if *, and/or SAVE were specified and the copy parameter. The MCP
does not establish that the desired file is in the Disk Directory before initiating the print program.

OPERATION AND CONTROL

When the print program begins execution the appropriate disk file is OPENed. If a particular file is

specified, it is accessed; otherwise, the PBD file with the lowest number for that processor is requested
of the MCP

The first record is read to determine if FORMs and/or labels are required for the printer file. If restart
(*) is requested, the print program requests the necessary data from the operator and postions the file
to the desired point.

During the printing the operator can use the SK and QT message to initiate special actions in the print
program as described above.

When a file has been completely printed, it is CLOSEd WITH PURGE unless the operator has
specified SAVE in the PBD or PBP message. (The file is not PURGEd if QT or QT ALL is specified
since the file is not completely printed for these cases.) If the original request was for the printing
of a single file, PBDOUT terminates.

If the operator requests that all files be printed, PBDOUT requests the MCP to OPEN the backup
print file with the next higher number for that processor. The process continues as described above
until all PBD or PBP files on the processor have been printed or the operator terminates the program.
(any PBD files CLOSEd by programs during the processing of a PBD/ request are also accessed and
printed in turn without operator intervention.)

4-30

DISK PACK FILE HEADER

DISK PACK FILE HEADER (ON DISK PACK)

The following descriptions apply to the disk pack version of the Disk File Header.

Relative
Location
Label /Size Content/Meaning
PF-CAD | 0,6 Zeros
PF-SPT | 6,8 Address of this sector
PF-S1Z 14,4 Header size in bytes
PF-TP1 18,1 File type

:8 < < Available> >

:4 File name change in progress

:2 Incomplete file (partially removed)
:1 Split cylinder file

PF-TP2 19,1 File type

:8 Assign by space available file

:4 Assign by area file
:2 Single pack

:2/ Multipack file

:1 Cylinder bound file
PF-TP3 | 20,1 File type

:8 < < Available> >

:4 If APCR is set, RN/ is inhibited
If APBD is set, PBP/ is inhibited
If APCM is set, PCP/ is inhibited

12 < < Available> >

:1 No squash file

21,3 Not used
PF-BEN | 24,8 Block EOF pointer
PF-RSZ | 32,6 Record size in digits
PF-RPB | 38,3 Records per block
PF-BSZ | 41,9 Block size in digits
PF-BPA | 50,6 Blocks per area
PF-SPA | 56,6 Sectors per area
PF-#AR | 62,4 Areas requested
PF-UAR | 66,4 Area counter

PF-EOF | 70,10 EOF pointer

1090685-003 5-5

HEADEK
Relative
Location
Label /Size Content/Meaning
PF-FRM | 80,2 Record format
PF-USH | 82,8 User header link
PF-PPA | 90,3 Partitions per area (split cylinder files)
Material Deleted by PCN 1090685-001
PF-CDT | 94,5 Creation date
PF-LAD | 99,5 Last access date
PF-SAV | 104,5 Save factor
PF-ADB | 109,6 Base pack header address
115,11 Not used
PF-SNS 126,1 Sensitivedata flag
PF-STY | 1271 Security type
:8 Reserved
:4 Guarded
:2 Public
:1 Private
0 None
PF-SUS 128,1 Security use
6 10 (default)
4 IN
2 OUT
1 SECURED
129,1 Reserved
PF-SUC | 130,20 Usercode
PF-GRD | 150,12 Guard file 1D
PF-OTY | 162,1 Open type
PF-PRM | 163,1 Permanent flag
PF-NU1 | 164,2 Number of users processor 0
PF-O01 | 166,2 Number of open out processor 0
PF-NU2 | 168,2 Number of users processor 1
PF-O02 | 170,2 Number of open out processor 1
PF-NU3 | 172,2 Number of users processor 2
PF-O03 | 174,2 Number of open out processor 2

FIB

Relative
Location
Label /Size Content/Meaning
Used as work area to build the absolute
disk address for the current operation.
SEQ DSK:
Used as a work area to build the absolute
disk address during disk positioning.
FIBORG | 110,1 File Type
DSK:
:2 Indexed 1/0 key file.
:4 Indexed 170 data file.
:8 Relative 170 data file.
111,1 Reserved
FIBDKB | 112,8 Relative Block Number (redefines FIBDCF)
RND:
Temporary internal storage for relative
block number of file during READ/WRITE
requests.
FIBKEY 120,6 Actual Key Location (redefines FIBABS,
FIBJAM, FIBMTL)
RND:
Address of actual key (8 UN).
MTP:
Used internally to store first six digits
of 1/0 descriptor during tape position.
FIBSBL 126,1 Buffer Flag
:1 New area OPENed by GETDSK.
:2 DPK:
File is DPK file.
:4 HPT:
File is HPT or backup disk.
:8 All files except RND, DCM, SOR:
Buffer required flag; buffer exhausted
on previous 1/0 request, new buffer
needed for further processing (used for
all work area access files except
variable length).
FIBUNF | 127,1 Random Disk Wait Flag; Tape Position Flag
RND:
Specifies program waiting for RND
processing.
1090685-003

521

FIB

5-22

Label

Relative
Location
/Size

Content/Meaning

1 = Buffer required for current request
(I/0 not yet initiated).

2 = Program waiting I/0O on current request
(READ or implicit SEEK for blocked
WRITE).

3 = Program waiting buffer availability
for next I/O (WRITE in process on
buffer access file).

MTP:
Specifies program waiting for MTP
position.

2 = Waiting for all in process 1/Os to
complete before positioning begins.

4 = Waiting for I7/0 on SPACE operation
when moving tape.

6 = Input file buffer fill in process
after positioning complete.

FIBFLM

128,1

TTTIT A e~ ——

:2 Unused

:4 Ignore channel 12 on printer (RPG).

:8 DMS-II file (MCP only flag).

RND: Each area entered into disk directory
as it is created.

FIBIX2

129,1

IX2 Flag: Breakout Flags

All files:

:1 Directs MCP to move FIBARB to program
IX2 after each READ or WRITE request
(see FIBARB); generally used for
buffer access files.

:2 Save previous breakout disk file.

:4 Use MTP for breakout (rerun every n
records).

:8 Use DSK for breakout (ignored if :4
set).

FIBBCT

130,8

Block Count

All files:
Number of unique blocks of data read or

written during file processing (value for
RLOG taken from IOAT).

1090685-003

Label

Relative
Location
/Size

Content/Meaning

FIBSQI

102,1

Previous I/0 Request Type (redefines
'FIBADR, FIBQAD)

SEQ 1/0 DSK:

Storage of value of FIBRWT for previous 1/0

request; set from FIBSQ2 at each request.

0 = Request was READ; if current request
also a READ, must change pointers to
access proper record.

1 = Request was WRITE; pointers are
correct for current request.

FIBSQ2

103,1

Current I/0 Request Type (redefines
FIBADR, FIBQAD)

Storage of value of FIBRWT for current
170 request.

0 = Request is READ; if previous request
was also a READ, pointers (FIBARB,
FIBCBS) still point at previous
request and must be changed; otherwise,
pointers are correct.

1 = Request is WRITE; must set FIBSQ3:2
to force physical I/0 when block is
completed; advance pointers to nex
record.

FIBSQ3

104,1

Current 170 Request Type (redefines
FIBADR, FIBQAD)

SEQ I/0 DSK:

:1 Internal flag specifying both FIBSQI
and FIBSQ?2 indicates READ and must
cycle back through READ/WRITE to
access correct record; bit reset
during return cycle.

:2 Specifies write activity on current
block and when the block is exhausted,
must be written.
MTP:

:4 Retry short/long records.
:8 Ignore short/long records.

FIBSQL

105,5

Sequential I/0 Record Length (redefines
FIBQAD, FIBADR)

SEQ 1/0 DSK:

FIB

5-29

FiB

5-30

B 2000/B 3000/B 4000 MCPVI Programmer’s Guide

MCPVI Tables

Label

Relative
Location
/Size

Content/Meaning

Storage area for.record length of last
record accessed.

FIBDCF

112,1

DCM FILL Flag (redefines FIBDKB)

DCM:
0 = No FILL given.

1 = FILL initiated.

FIBABS

120,6

DCM actual Key location (redefines FIBKEY,
FIBJAM

DCM (transparent):
Address of field containing record size
for WCRT.

FIBJAM

120,6

Address of Jam/Missort USE routine
(redefines FIBABS, FIBKEY

SOR:
Address of USE routine for handling
jam/missort/EOF (SORTER 5).

FIBPSN

138,5

Redefine FIBPOS

TAPE:
FIBPOS as 4SN.

FIBNAU

138,3

Number of Disk Areas (redefines FIBPOS,
FIBBFF, FIBFFL).

DSK (output only):
Number of disk areas assigned during run.
Used internally during CLOSE.

FIBBFF

Buffer Status Flag (redefines FIBPOS,
FIBNAU)

DCM (stream mode):
Program has initiated 1/0 request (buffer
is ready for data).

FIBFFL

139,1

Stream Mode Flip Flag (redefines FIBPOS,
FIBNAU).

DCM (stream mode):
Specifies operation is WCRC with stream.

FIBDCO

140,1

Stream Mode OP Storage (redefines FIBPOS,
FIBNAU)

Holds low order digit of DCM OP code for
current request.

FIBWTF

141,1

Wait Flag (redefines FIBPOS)

DCM (stream mode):

The following descriptions are for disk.

1090685-003

Relative
Location
Label /Size Content/Meaning
I0-ADR | 68,8 Disk Address Next [/O
IO-AR# | 76,2 Current Area Number
10-FS1 78,2 FPM Slots Assigned
10-FS2 | 80,2 FPM Slots In Use
IO-RBA | 82,7 Remaining blocks in area
I0-DSK | 89,1 OPEN Type
:8 Random
:8/ Sequential
:4 OPENed reverse
:2 COBOL code file
:1 Standard code file
10-DK2 | 90,1
:8 Waiting address block core for file
OPEN
:4 File declared as SHARED (SHRD DISK)
:2 File had breakout
:1 < <Available> >
I0-CLA | 91,1 File Classification
:8 Private
:4 Information
:2 Public
:1 Free
:1/ Control
IO-PK1 | 92,1
:8 Base pack not resident on system
:4 Base pack type restricted
:2 Base pack type master
:1 Reserved
10-PK2 | 93,1
:8 Pack overflow specified
:4 Waiting delayed OPEN (Pack)
:2 Waiting powered off in use pack
:1 < <Available> >
10-HPT | 94,6 Disk File Header Address

IOAT

541

IOAT

The following descriptions are for split cylinder disk pack files.

Label /Size

Relative
Location
Content/Meaning

Material Deleted by PCN 1090685-001

I0-RPA | 79,3

Remaining Partitions in Area

IO-RBP | 82,7

Remaining Blocks in Partition

The following descriptions are for standard devices.

5-42

Label

Relative
Location
/Size

Content/Meaning

10-UST

68,3

Result Descriptor Last Status Update

I0-LKS

71,1

Unit Status

:8 Unit Saved

:4 Unit to be Saved

:2 Saved by MCP (secure or backup)
:1 Unit Locked

IO-LBL

72,1

:8 Label sensed
:4,2,1

0 Omitted label
Burroughs standard label
ANSI standard label

B 6700 ANSI label

ANCQTY lnbel current MCpb
AINO1 1d0C1, CUITCIIL svilrx

B 3500 modified ANSI label,
MCP and CP

6 = B 3500 modified ANSI label,
MCPV

7 = LABELI installation label

W W N =
1 | T R | |

10-MOD

73,1

BINARY card input file
READ with translation
Status change

ENABLE allowed for STATUS and
I/0 error

= N R

74,1

< < Available> >

SECTION 8
RELATIVE AND INDEXED I/O (COBOL74 AND RPG ONLY)

The relative and indexed input/output intrinsics provide random and sequential access to the records
in a mass storage (DISK or DISKPACK) file, and prevent access to unused or deleted record positions.

These intrinsics are each composed of a set of access routines that are automatically bound into any
program that declares one or more files of that type.

Indexed and relative file formats differ from those of other files. Once created with indexed or relative
organization, a file must always be declared to have that organization.

RELATIVE 1I/O OVERVIEW

A Relative File consists of records which are identified by relative record numbers.

The file can be thought of as a serial string of record slots, each capable of holding a logical record.
Each of these record slots is identified by an integer value (relative record number) greater than zero
which specifies its logical position in the file. Records are stored and retrieved based on this number.

For example, record ten is the record associated with relative record number 10. It is stored in the
tenth record slot, whether or not records have been written in the first through ninth record slots.
(Conceptually, RELATIVE organization is similar to RANDOM, but it provides protection against the
accessing of unused or deleted record positions.)

In the SEQUENTIAL access mode, records are accessed in ascending order by relative record number.
Those record slots that do not contain records are skipped over.

In the RANDOM access mode, the order in which records are accessed is controlled by the program-
mer. The desired record is accessed by placing its relative record number in the relative key data item.
In the DYNAMIC access mode, the programmer can read either sequentially or randomly by using
the appropriate form of READ statement. All other relative operations are performed randomly (the
order may be sequential, but the random algorithms are used to perform the operation).

INDEXED 1/0 OVERVIEW

An Indexed File consists of records, each uniquely identified by the value of one or more keys within
that record. The records may be accessed in either a sequential manner or in a random manner by
the value of a chosen key called the Key of Reference.

A record description includes one or more key data items, each associated with a key index. Each key
index provides a logical access path to the data records according to the contents of the associated
key data item within each record.

The PRIME KEY data item in the record description defines the prime key for that file. For the pur-
poses of inserting, updating, and deleting records in a file; each record is identified solely by the value
of its prime record key. This value must therefore be unique, and cannot be changed when updating
the record.

1090685-003 8-1

Any ALTERNATE KEY data items in the record description define alternate keys for that file. The
value of an alternate record key can be non-unique if the DUPLICATES phrase is specified. These
keys provide alternate access paths for retrieval of records from the file.

In the SEQUENTIAL access mode, records are accessed in ascending order by key value of the Key
of Reference. The order of retrieval of records using a key index having duplicate record key values
is the order in which the records were written into the file.

In the RANDOM access mode, the sequence in which records are accessed is controlled by the pro-
grammer. The desired record is accessed by placing the value of one of its record keys into the appro-
priate record key data item before doing the 10.

In the DYNAMIC access mode, the programmer can read either sequentially or randomly by using
the appropriate form of READ statement. All other indexed operations are performed randomly (the
order may be sequential, but the random algorithms are used to perform the operation).

RELATIVE FILE IMPLEMENTATION CONSIDERATIONS

Relative Files differ from conventional files in the B 2000/B 3000/B 4000 systems in that they have an
additional block called a Control Block, and a BCI appended to each data block. In order to interpret
this additional information, a set of compiler-provided intrinsics is bound into all programs that declare
one or more Relative Files. A user-program operation on a Relative File generates a call to the appro-
priate intrinsic routine, and that routine accesses the file.

There are certain considerations for Relative Files:

1. A Relative File can be meaningfully accessed only if it is declared to be of RELATIVE OR-
GANIZATION in a language that supports Relative Files. Currently, only COBOL and RPG
support this file organization,

2. The presence of all the access routines will increase the program size by approximately 18000
digits. Only those routines that are used by the program are bound into the code file, however,
and they are overlayable within the user’s overlay scheme.

3. The block size is larger than the simple product of the record size and the blocking factor
because of the presence of the BCI at the end of each block. It is computed by first multiply-
ing the user work area size by the blocking factor and padding the result to mod 4. Then
the BCI length (14 + blocking factor) is added to this and the final result is arrived at by
padding to mod 4 once again.

4. The first block in the file is a Control Block which contains additional information about the
file beyond that stored in the file header. This block is created when the file is created, ac-
cessed when the file is accessed, and updated when the file is updated.

5. The size of the Control Block is 112 digits (56 bytes). Because it must fit into a single data
block, this is the minimum blocksize the Relative File can have. If the blocksize would other-
wise be less than this, the compiler will pad it out to this size and issue a warning. If this
warning is encountered, space is being wasted in each data block and either the record size
or the blocking factor should be increased in order to avoid this.

6. The presence of the Control Block means that the maximum number of records that can be
stored in the file is “one blocks worth” less than otherwise. If this is significant, it should
be taken into consideration when doing file size calculations.

7. A block is physically written only when it becomes necessary to read in a new block or to
CLOSE the file, and the current block has been modified. Blocks are not necessarily written
after every record modification.

8. A Relative File Data Block (RF Block) is present in the compiled program for each Relative
File declared in the program. This block is 180 digits long and it contains information not
in the FIB that is needed by the access routines to access and maintain the file.

9. Only one buffer is allocated for each Relative File. It is controlled solely by the access routines
via the Buffer Control Structure (BCS) in the RF Block. Its size is the same as the blocksize
as computed above plus up to 404 digits which are used for recovery purposes.

10. The MCP is told that a Relative File is a DMSII audit file for recovery purposes. This causes
it to become a permanent file at OPEN time rather than at CLOSE time as it is for conven-
tional files. It also causes the MCP EOF pointer to always point to the last block in the last
allocated area.

11. Because of the difference between the Control Block EOF pointer and the MCP EOF pointer,
utility programs (such as DMPALL) used to list the file will list all the garbage between the
actual file EOF and the end of the area. This can be prevented by directing them to list only
the number of blocks actually contained in the file.

i2. If a program or system faiiure occurs during an update run, the Reiative Fiie being accessed
may have an incorrect EOF pointer in the Control Block. This will cause the automatic file
recovery package to be called by the next program that OPENs the file and the problem will
be rectified.

13. Simultaneous use of a Relative File by an update program and any other program(s) is a fea-
ture that is not currently supported.

RELATIVE FILE FORMATS

A Relative File is a single physical file of data and control information. The MCP is told that it is
an unblocked random file. The blocks that make up the relative file are of two different formats.

The first block in the file is composed entirely of file control information and is called the Control
Block. The second through last blocks are the Data Blocks. They differ from conventional data blocks
only in that they have block control information (BCI) appended after the data records.

Each data block contains some number of record slots each of which contains either a valid or an
empty data record. The number of slots is specified by the blocking factor in the user file declaration.
Each slot is the same size as the user record area (work area).

Following the last data record slot in the block (on the next mod 4 boundary) is the block control
information (BCI) used by the access routines to store and deblock the data records. This BCI consists
of a reserved area and some presence flags. The reserved area (14 UN) is not used, but is present for
compatability with the Indexed File Data Block format. This field should contain zeros.

Each record slot in the block has a corresponding presence flag (1 UN) in the BCI to indicate whether
or not that slot contains a valid data record. A value of zero indicates that the slot is unused or that
the record has been deleted; a value of one means that a record is present in that slot.

The Relative File Control Block contains file control information that is not in the file header that
must be saved when the file is not in use. It was originally written out to the file using the information
in the RF Block during the CLOSE following the creating OPEN. Subsequent OPENs move this infor-
mation into the RF Block of the opening program. Subsequent CLOSEs map any changes back out
to the Control Block.

1090685-003 8-3

The format of the Relative File Control Block is the same as the first 110 digits of the Indexed File
Control Block. This has been done in order to allow the RELATIVE intrinsics to access INDEXED
files — primarily for recovery purposes. Table 8-1 contains a description of the Relative File Control
Block format :

Table 8-1. Relative File Control Block Format

Usage Size Function

Version Info
2 UN Release used to create file
2 UN Format level of the file
5 UN File creation date
10 UN File creation time
5 UN Last file update date
10 UN Last file update time

Number of Keys 2 UN Number of key indexes
0 — relative file
> 0 — indexed file

Inuse Update Flag I UN Not used in Relative Files
Reserved

&
c
Z

Reserved

File Description
(FD) Pointer to associated FIB

Reserved

BCI offset into block (digits)
Records per block

User record size (digits)

Block size (digits)

MAX number of areas

Blocks per area

EOF block number (Logical EOF)
MAX block number (Physical EOF)
Padding to make CTL BLK mod 4
(if data block size is padded

up to Control Block size)

. CCCCcCCccgccgcqg
272222222 Z7Z

N 0OV WUL L b\ oo
C1
Z

Padding

RELATIVE FILE FIB

There is one FIB created by the host compiler for each Relative File using the information provided
by the user in the file declaration. This FIB is created in the same manner as a FIB for a normal
sequential file, with a few additions. These additions are as follows:

1. The Relative File FIB always has a user work area assigned to it. Its address is put into FIB-
WA. This is the only interface the user has to the Relative File. The size of this user work
area is the same as that specified in the user record description, but it is padded to mod 4
length.

2. The FIB has its block size (FIBMBS) set to the block size as computed above in Implementa-
tion Considerations.

3. The FIB has only onc buffer attached to it. The size of this buffer will be cqual to the block
size as computed above in Implementation Considerations. FIB-AA and FIB-BB are set to its
beginning and ending addresses. The compiler also allocates a certain amount of additional
buffer space immediately behind the allocated buffer in order to allow the intrinsic to
dynamically increase the block size when writing out a stopper pattern for recovery purposes.

4. The FIB will specify buffer access mode (FIB-BA:1 set). This prevents MCP access to the user
work area. The access routines handle all movement of data to and from the user work area.

5. The FIB will specify random access mode (FIB-DA:1 set) regardless of the mode declared in
the file declaration. This allows the intrinsic to access the Control Block whenever necessary
and prevents MCP OPEN buffer fills. The actual access mode declared by the user will be
contained in the RF Block.

6. The FIB will have the key address field (FIBKEY) set to the address of the ACTUAL KEY

field in the RT Block.
7. The FIB has FIBIX2:1 reset and FIBRAD:8 set in order to force physical 1/0, since the access
routines determine when I/Os are to be done.
The FIB has FIBORG:1 set to indicate that this is a Relative File.
The FIB has FIBFLM:8 set dynamically prior to OPEN in order to make the MCP think the

file is a DMSII audit file for recovery purposes. This bit is reset just prior to CLOSE.

0 o

RELATIVE FILE DATA BLOCK (RF BLOCK)

The host compiler creates one Relative File Data Block (RF Block) in the code file for each Relative
File declared in the user program. This block contains all the information not in the FIB that the access
routines require to access and maintain a Relative File. It is the focal point throughout the program
when accessing a Relative File. The address of the RF Block is the first parameter passed on each func-
tion call to an access routine. Table 8-2 is a description of the format of the RF Block.

Fields that are preceded by an * are filled in by the compiler.

Table 8-2. RF Block Format

Usage Size Function
* File Status Pointer 8 UN Pointer to file status word
— all E means not declared
* Open Type 1 UN Relative File open state
0 - input
1 — output

2 — input-output
9 — not open

* Access Type 1 UN Declared access mode
0 — sequential
1 — random

2 — dynamic

1090685003 8-5

Table 8-2. RF Block Format (Cont)

Usage Size Function
Last Function 1 UN Last function on Relative File
0 — unsuccessful
1 — open
2 — start
3 — read
4 — write
5 — rewrite
6 — delete
7 — close
Current Record Info
8 UN Relative record number
8 UN Data block number
4 SN Data record slot number
1 UN State of current record
0 — undefined
1 — undefined
2 — beginning of file
3 — defined
4 — current record deleted
Actual Key 8 UN Read/Write key for Relative file
Buffer Control
Structure (BCS) 8 UN Block presently in buffer
1 UN Block changed flag
0 — not changed
1 — changed
1 UN Reserved
* 6 UN Buffer beginning address
Version Info
2 UN Release used to create file
2 UN Format level of the file
5 UN File creation date

10 UN File creation time
5 UN Last file update date
10 UN Last file update time

Indexed file info
1 UN Indexed file flag
0 — relative file
1 — indexed file
1 UN Indexed inuse update

Relative Key Info

* 1 UN Key type (units)
0 — UN
2 — UA

2 UN Key length (in units)
6 UN Key address

8-6

Table 8-2. RF Block Format (Cont)

Usage Size Function
Stopper Buffer 5 UN Length of buffer when stopper
Length pattern is written (digits)
Reserved 13 UN Reserved
File Description
(FD) 8 UN Pointer to associated FIB

4 UN Reserved

6 UN BCI offset into block (digits)

4 UN Records per block

5 UN User record size (digits)

S UN Block size (digits)

3 UN MAX number of areas

9 UN Blocks per area

8 UN EOF block number (Logical EOF)
8 UN MAX block number (Physical EOF)

* K K K ¥ ¥ X *

RELATIVE FILE ACCESS ROUTINE INTERFACES

The access routines required to access and maintain a Relative File are bound into the user program
by the host compiler. Each program will have at most one set of routines regardless of the number
of Relative Files declared. Each routine is reentrant and is capable of handling any number of Relative
Files.

An access routine is called by the compiled program when it requires that a function be performed
on a Relative File. These calls use the normal program stack and replace the READ, WRITE, OPEN
and CLOSE BCTs that are used for conventional files. They are of the NTR-EXT type and pass call-
by-address parameters. The routines and the specific parameters required by each are outlined in the
following paragraphs.

CLOSE
The CLOSE routine is called to close a Relative File. The required parameters are :

ACON address of Pointer to RF Block (8UN)
ACON address of Exception Branch Address (6UN)
ACON address of Close Type (1UN)

0 — normal
4 — release
6 — lock

8§ — purge
C — remove

1090685003 87

DELETE

The DELETE routine is called to remove an existing record from a Relative File. The required
parameters are :

ACON address of Pointer to RF Block (8UN)
ACON address of Exception Branch Address (6UN)

OPEN

The OPEN routine is called to open a Relative File. The required parameters are :

ACON address of Pointer to RF Block (8UN)
ACON address of Exception Branch Address (6UN)
ACON address of Open Type (1UN)

0 — input

1 — output

2 — input-output
ACON address of Lock Type (1UN)

0 — no lock

4 — lock access

8 — lock

READ

The READ routine is called to retrieve an existing record from a Relative File. The required parameters
are:

ACON address of Pointer to RF Block (8UN)
ACON address of Exception Branch Address (6UN)
ACON address of Access Type (1UN)

0 — sequential, no key supplied

1 — random, key supplied

Access Type indicates whether or not a key phrase was present in the user READ statement.

REWRITE

The REWRITE routine is called to replace an existing record in a Relative File with the contents of
the user work area. The required parameters are:

ACON address of Pointer to RF Block (8UN)
ACON address of Exception Branch Address (6UN)

RPG-OPEN

The RPG-OPEN routine is called only by RPG programs. It is called to open a file whose organization
is unknown (RELATIVE, ISAM, or CONVENTIONAL). The required parameters are :

8-8

ACON address of Pointer to RF Block (8UN)
ACON address of Exception Branch Address (6UN)
ACON address of Open Type (1UN)

0 — input

1 — output

2 — input-output
ACON address of Lock Type (1UN)

0 — no lock

4 — lock access

8 — lock
ACON address of Access Type (1UN)
0 — sequential
1 — random
VAR address of Indexed or Relative Flag (1UN)
0 — conventionai fiie
1 — indexed or relative file

This flag is a return parameter for the RPG program.

START

The START routine is called to position a Relative File to a particular data record for subsequent se-
quential access. The required parameters are :

ACON address of Pointer to RF Block (8UN)
ACON address of Exception Branch Address (6UN)
ACON address of Start Condition (1UN)

2 - at record = actual key

4 — at first record > actual key

6 — at first record > = actual key

Start Condition indicates the logical condition that was specified in the key phrase of the user START
statement. If no key phrase was specified, it contains a 2.

WRITE
The WRITE routine is called to add a new record to a Relative File. The required parameters are :

ACON address of Pointer to RF Block (8UN)
ACON address of Exception Branch Address (6UN)

1090685-003 89

INDEXED FILE IMPLEMENTATION CONSIDERATIONS

Indexed Files differ from conventional files in the B 2000/B 3000/B 4000 systems in that their files
have an additional block called a Control Block and they have a BCI appended to the end of each
block. In order to interpret this additional information, compiler-provided intrinsics are bound into all
programs that declare one or more Indexed Files. A user-program operation on an Indexed File gener-
ates a call to the appropriate intrinsic routine, and that routine accesses the file.

There are certain considerations for Indexed Files:

1.

10.

11.

8-10

An Indexed File can be meaningfully accessed only if it is declared to be of INDEXED
organization in a language that supports Indexed Files. Currently, only COBOL and RPG sup-
port this file organization.

. An Indexed File declared in a program is really a group of files: a data file and one or more

key files. Outside of the code file, these files are not recognized as being related. It is the
user’s responsibility to specify all files in dumps, loads, and so forth.

. Each key declared for each Indexed File causes a key file to be declared to contain the result-

ing key index. A FIB and associated control information is allocated in the program for each
of them. The net effect of this is to increase program size by 440 digits per Indexed File key.

. The presence of all the access routines will increase the program size by approximately 45000

digits. Only those routines that are used by the program are bound into the code file, however,
and they are overlayable within the user’s overlay scheme.

. There are four buffers allocated for each indexed file. They are controlled solely by the access

routines via a Buffer Control Structure (BCS) in the IF Block. The user program is not al-
lowed to access them.

. Only one buffer is allocated for the data file of each Indexed File. Its size is the same as the

data blocksize plus up to 404 digits which are used for recovery purposes.

. Three buffers are allocated to be shared among the key files of each Indexed File. They are

approximately 4500 digits each in size, so the net effect is to increase program size by
approximately 13500 digits per -Indexed File.

. The data blocksize will be larger than the simple product of the record size and the blocking

factor because of the presence of the BCI at the end of each block. It is computed by first
muitiplying the user work area size by the blocking factor and padding the result to mod 4.
Then the BCI length (14 + blocking factor) is added to this and the final result is arrived
at by padding to mod 4 once again.

. The first block of the file is a Control Block, which contains additional information about

the file beyond that stored in the file header. This block is created when the file is created,
accessed when the file is accessed, and updated when the file is updated.

The size of the Control Block is 252 digits plus 100 digits for each ALTERNATE KEY de-
clared for the file. Because it must fit into a single data block, this is the minimum blocksize
the datafile can have. If the blocksize would otherwise be less than this, the compiler will pad
it up to this size and issue a warning. If this warning is encountered, space is being wasted
in each data block and the file is not recoverable in the event of a failure. In order to avoid
these two problems, either the record size or the blocking factor must be increased sufficiently
to make the data blocksize larger than the Control Block size.

The presence of the Control Block means that the maximum number of records that can be
stored in the file is ’one block’s worth’ less than otherwise. If this is significant, it should
be taken into consideration when doing file size calculations.

12. An Indexed File Data Block (IF Block) is present in the compiled program for each Indexed
File declared in the program. This block contains certain information needed by the access
routines to access and maintain the file. Its size is 380 digits plus 100 digits for each ALTER-
NATE KEY declared for the file.

13. A block is physically written only when it becomes necessary to read in a new block or to
close the file, and the current block has been modified. Blocks are not necessarily written after
every record modification.

14. The MCP is told that the Indexed File’s data file is a DMSII audit file for recovery purposes.
This causes it to become a permanent file at OPEN time rather than at CLOSE time as it
is for standard files. It also causes the MCP EOF pointer to always point to the last block
in the last allocated area.

15. Because of the difference between the Control Block EOF pointer and the MCP EOF pointer,
utility programs (such as DMPALL) used to list the data file will list all the garbage between

the actual file EOF and the end of the area. This can be prevented by directing them to list
only the number of blocks actually contained in the file.

16. When an Indexed File is opened IO, the in-use flag in the data file Control Block is set and
the file cannot be opened again until it is successfully closed by the retrieves and returns the

control information to and from this block.

INDEXED FILE FORMATS

Each Indexed File declared in a program results in multiple physical files for data and key information.
The data records are stored in one file whose name is the same as the name in the file declaration.
Each declared key results in the creation of a key file to contain the associated key index. The name
of each key file is composed of the first 4 characters of the data file name plus the two digit key num-
ber.

Indexed Data File Format

An Indexed Data File is a single pyhsical file of data and control information. The MCP is told that
it is an unblocked random file. The blocks that make up the Indexed Data File are of two different
formats.

The first block in the file is composed entirely of file control information and is called the Control
Block. The second through last blocks are the Data Blocks. They differ from conventional data blocks
only in that they have block control information (the BCI) appended after the data records. The Con-
trol Block does not have a BCI.

1090685-003 8-11

Each Data Block contains some number of record slots each of which contains either a valid or an
empty data record. The number of slots is specified by the blocking factor in the user file declaration.
Each slot is the same size as the user record area (work area).

Following the last data record slot in the Data Block (on the next mod 4 boundary) is the block control
information (BCI) used by the access routines to store and deblock the data records. The format of
the Indexed Data File BCI is as follows:

BLOCK TYPE (1 UN).
This field indicates whether or not the Data Block has any unused record slots. The allowed val-
ues are:

2 Block has available space
3 Block is full

NEXT FREE BLOCK (8 UN).
The Data Blocks containing available space are linked together in the data file using a Last In
First Out (LIFO) scheme. Each block with available space points to the block number of the next
free block via this field. The last free block contains zeros, as do full Data Blocks.

RECORD COUNT (4 UN).
The access routines use this field to keep a count of the number of valid records in the block
as an easy way of telling when full blocks become partially filled and vice versa.

PRESENCE FLAGS (1 UN each).
Each record slot in the block has a corresponding presence flag to indicate whether or not that
slot contains a valid data record. The allowed values are:

0 Record not used or was deleted
1 Record is present

The Indexed Data File Control Block contains file control information that is not in the file header
that must be saved when the file is not in use. It was originally written out to the file using the infor-
mation in the IF Block during the CLOSE following the creating OPEN. Subsequent OPENs move
this information into the IF Block of the opening program. Subsequent CLOSEs map any changes back
out to the Control Block.

The Indexed Data File Control Block also contains control information for all of the associated key
files. Each key file has its own Control Block, but it only contains the date and time of its last update.
For this reason, any references to the Indexed File Control Block are referring to the indexed data
file’s Control Block. The size of the Indexed File Control Block is 50 digits plus 100 digits for the
data file FD entry plus 100 digits for each key file FD entry. Table 8-3 contains a description of its
format.

8-12

Table 8-3. Indexed File Control Block Format

Usage

Version Info

Number of Keys

Inuce IIndate Flao
inuse Update Hlag

Reserved

File Descriptions
(FDs)

Padding

1090685-003

Size

2
2
5
10
5
10

2
1

[y
w

— R DNOOCOONOOO\OWULun bhONR OO

—n W

UN
UN
UN
UN
UN
UN

UN
UN

UN

UN
UN
UN
UN
UN
UN
UN
UN
UN
UN

TINT

UN
UN
UN
UN
UN
UN

UN
UN
UN

UN

Function

Release used to create file
Format level of the file
File creation date

File creation time

Last file update date

Last file update time

Number of key indexes (min = 01)

0 — last updater closed OK
1 — last updater died prior to
closing or is still using

Reserved

(One entry per file)

Pointer to associated FIB
Reserved

BCI offset into block (digits)
Records/entries per block
Record/entry size (digits)

Block size (digits)

MAX number of areas

Blocks per area

EOF block number (Logical EOF)
MAX block number (Physical EOF)

4 DT

First block with FREE space
ROOT block number

First FINE block number
Number of ISAM levels
Entries held during block split
Key type (units)

— unsigned numeric (UN)
— signed numeric (SN)

— unsigned alpha (UA)
signed alpha (SA)

— right signed numeric(RSN)
— right signed alpha (RSA)
Key length (units, excl sign)
Key offset into record (digits)
Duplicate keys flag

0 — duplicates not allowed

1 — duplicates allowed

Padding to make CTL BLK mod 4

(if data block size is padded
up to Control Block size)

W h W —O
|

8-13

Indexed Key File Format

An Indexed Key File is a single physical file of key data and control information. The MCP is told
that it is an unblocked random file. The blocks that make up the Indexed Key File are of two different
formats.

The first block in the file is composed of file control information and is called the Control Block.
The second through last blocks are the Data Blocks otherwise known as KEY Tables. They are similar
in structure to the Indexed Data File Blocks except that they contain key entries rather than data rec-
ords and the BCI is somewhat different.

An Indexed Key File conceptually can be described as an inverted tree-like structure with different lev-
els within it. This tree structure has one block or key table at the top level called a ROOT Table.
It also has one or more tables at the lowest level called FINE Tables. The tables at any levels in be-
tween are called COARSE Tables.

Each block (key table) contains some number of key entry slots each of which contains either a valid
or an empty key entry. The number of slots is computed by the host compiler by dividing the entry
size in digits into 4500 which is the target block size.

A key entry consists of a key value whose length is the same as the corresponding key data item in
the data file record, and an 8-digit pointer. The pointer portion of the entries in ROOT and COARSE
Tables contain the block number of a table at the next lower level. The key value portion contains
the highest key value of all the entries in that lower table. The pointer portion of FINE Table entries
contains the relative record number (RRN) of the record slot in the data file that contains the record
whose key value matches the key portion of that key entry. The highest key entry in the last table
on each level is a special entry called the Omega Entry. The key portion of this entry is greater than
the largest user specifyable key value. The Omega Entry is used as an upper bound during table search-
ing.

Immediately following the last key entry slot in each key table (block) is the block control information
(BCI) used by the access routines to access, manipulate and search the key entries. The format of the
Indexed Key File BCI is as follows:

BLOCK TYPE (1 UN).
This field is used to indicate the level of the key table within the tree. The allowed values are:

2 empty key table (zero entries)
4 root table

5 coarse table

6 fine table

7 root-fine table

NEXT TABLE (8 UN).
All key tables on any level of the tree structure point to the next higher table on that level via
this field. The highest table on a level contains zeros in this field.

ENTRY COUNT (4 UN).
The access routines use this field to keep a count of the number of valid key entries in the table
for ease of manipulation.

8-14

START SLOT (4 UN).
Entries in each key table are packed together in a group, but the group may start in any entry
slot. This field indicates the slot number (zero relative) of the slot that contains the first valid
key entry in the table.

The Indexed Key File Control Block contains only version information. Its size is 16 digits and its for-
mat is as follows :

LAST UPDATE DATE (5 UN).
This field contains the date that the key file was last opened IO. It and the Last Update Time
are checked against the corresponding fields in the Indexed Data File Control Block at OPEN
time to insure that the versions of the data and key files all match.

LAST UPDATE TIME (10 UN).
This field contains the time that the key file was last opened 10.

RESERVED (1 UN).
INDEXED DATA FILE FIB

There is one FIB created for the data file of each Indexed File group. This FIB is generated by using
the information provided by the user in the File Control, and FD sections of the COBOL-74 program.
This FIB is created in the same manner as a FIB for a normal sequential file, with a few additions.
These additions are as follows:

1. The Indexed Data File FIB always has a user work area assigned to it. Its address is put into
FIB-WA. This is the only interface the user has to the Indexed File. The size of this user
work area is the same as that specified in the user record description, but it is padded to mod
4 length.

2. The FIB has its block size (FIBMBS) set to the block size as computed above in Implementa-

tion Considerations.

The FIB has only one buffer attached it. The size of this buffer is equal to the block size

as computed above in Implementation Considerations. FIB-AA and FIB-BB are set to its be-

ginning and ending addresses. The compiler also allocates a certain amount of additional buf-
fer space immediately behind the allocated buffer in order to allow the intrinsic to dynamically
increase the block size when writing out a stopper pattern for recovery purposes.

4. The FIB specifies buffer access mode (FIB-BA:1 set). This prevents MCP access to the user
work area. The access routines handle all the movement of data to and from the user work
area.

5. The FIB specifies random access mode (FIB-DA:1 set) regardless of the mode declared in the
file declaration. This allows the intrinsic to access the Control Block whenever necessary and
prevents MCP OPEN buffer fills. The actual access mode declared by the user is contained
in the IF Block.

6. The FIB has the key address field (FIBKEY) set to the address of the ACTUAL KEY field
in the IF Block.

7. The FIB has FIBIX2:1 reset and FIBRAD:8 set in order to force physical I/0, since the access
routines determine when 1/0s are to be done.

8. The FIB has FIBORG:4 set to indicate that this is the data file of an Indexed File group.

9. The FIB has FIBFLM:8 set dynamically prior to OPEN in order to make the MCP treat the
file as a DMSII audit file for recovery purposes. This bit is reset just prior to CLOSE.

(98]

1090685-003 8-15

INDEXED KEY FILE FIBs

The host compiler creates one FIB for each key that is declared for an Indexed File. This is necessary
because each set of key values is contained in a separate physical file. These FIBs are generated based
on the following requirements:

1.

2.

10.

8-16

Key File FIBs never have a user work area assigned to them. Key values to be used in 1/0
functions are always placed in the user work area of the data file prior to keyed function calls.
Each key file’s block size (table size) is computed by the host compiler based on the number
of key entries that will fit into a block size of 4500 digits. This number is a target block size
to prevent excessive memory requirements for the user program. If the number of key entries
per block would have exceeded 300, then the block will be limited to 300 entries to prevent
search times on key blocks from becoming excessive. Likewise, if the number of key entries
per block would have been less than 10, the block will be forced to 10 entries to prevent an
excessive number of levels in the tree structure from occurring. The block size is then com-
puted by taking the number of key entries per block times the key entry size. To this total
the host compiler adds the length of the KEY BCI (18 digits) and then pads to mod 4 length.

. Key File FIBs have their block size (FIBMBS) set to the block size as computed in step 2

above.

The area size for each key file is computed by the host compiler by taking the maximum num-
ber of records in the data file and dividing by the number of key entries per block as com-
puted in step 2 above. This number represents the number of FINE Tables needed in the key
file. The number of blocks in the lowest COARSE level is obtained by dividing the number
of FINE Blocks by the entries per block value. This process continues for each level of the
tree structure until the divide results in one block on a level. The number of blocks on each
level are then added to give the total number of blocks in the key file. One more is added
for the Control Block, and the result is divided by the number of areas allocated to the key
file. This final value is then placed in FIBRPA,

. There are three key file buffers allocated to each Indexed File declared in the user program.

These buffers are not permanently attached to the Key File FIBs but are shared among the
key files in an Indexed File group. This implies that the buffer size must be the maximum
among all key file block sizes. The beginning address of each of the three key buffers is set
in the Buffer Control Structure of the Indexed File Data Block.

Key File FIBs always specify buffer access mode (FIB-BA:1 set), since key files do not have
work areas assigned.

. Key File FIBs specify random access mode (FIB-DA:1 set). This prevents MCP OPEN buffer

fills.

. Key File FIBs have the key address field (FIBKEY) set to the address of the ACTUAL KEY

field in the IF Block.

. Key File FIBs have FIBIX2:1 reset and FIBRAD:8 set in order to force physical 1/0, since

the access routines determine when I/Os are to be done.
Key File FIBs have FIBORG:2 set to indicate that they are the key files of an Indexed File
group.

INDEXED FILE DATA BLOCK (IF BLOCK)

The host compiler creates one Indexed File Data Block (IF Block) in the code file for each Indexed
File declared in the user program. This block contains all the information not in the FIB that the access
routines require to access and maintain an Indexed File. It is the focal point throughout the program
when accessing an Indexed File. The address of the IF Block is the first parameter passed on each
function call to an access routine. Table 8-4 is a description of the format of the IF Block.

Fields that are preceded by an * are filled in by the compiler.

Table 8-4. Indexed File Data Block Format

Function Size Description
* File Status Pointer 8 UN Pointer to file status word
— all E means not declared
* OPEN Type 1 UN Indexed File open state
0 - input
1 — output

2 — input-output
9 — not open

* Access Type 1 UN Declared access mode
0 — sequential
1 — random
2 — dynamic
Last Function 1 UN Last function on Indexed File
0 — unsuccessful
1 — open
2 — start
3 — read
4 — write
5 — rewrite
6 — delete
7 — close
Current Record Info
8 UN Relative record number
8 UN Data block number
4 SN Data record slot number
1 UN State of current record

0 - undefined

1 — undefined

2 beginning of file

3 defined

4 — current record deleted
2 UN Key of reference (key)
8 UN Key table number (block)
4 SN Key entry slot number

1090685 -003 8-17

8-18

¥ K X K ¥ X X ¥

Table 8-4. Inuexe i File Data Block Format (Cont)

Fuaction

Actual Key

Buffer Control
Structures (BCSes)

Version Info

Number of Keys
Increasing Keys

Stopper Buffer
Length

Reserved
File Descriptions
(FDs)

Size

8 UN

2 UN
2 UN
5 UN
10 UN
5 UN
10 UN

2 UN
1 UN

UN

00 00 00 00 00 \O W L Lh A O\ B oo
c
z

CCCcCCcCcCccgcccc
Z222222222ZZ2Z7Z

I
C C
ZZ

Descrijtion

Read/Write key for all files

(One entry per buffer)

File number (FD entry number)
Block in buffer (block)

Buffer changed flag

0 — not changed

1 — changed

Reserved

Buffer beginning address

Release used to create file
Format level of the file
File creation date

File creation time

Last file update date

Last file update time

Number of Keys Defined

Order of key file update
0 — decreasing key order
1 — increasing key order

Length of buffer when stopper
pattern is written (digits)

Reserved

(One entry per file)

Pointer to associated FIB
Reserved

BCI offset into block (digits)
Records/entries per block
Record/entry size (digits)

Block size (digits)

MAX number of areas

Blocks per area

EOF block number (Logical EOF)
MAX block number (Physical EOF)
First block with FREE space
ROOT block number

First FINE block number
Number of ISAM levels

Entries held during block split

Table 8-4. Indexed File Data Block Format (Cont)

Function Size Description

N 1 UN Key type (units)
0 — unsigned numeric (UN)

1 — signed numeric (SA)
2 — unsigned alpha (UA)
3 — signed alpha (SA)
4 — right signed numeric(RSN)
5 — right signed alpha (RSA)
3 UN Key length (units, excl sign)
5 UN Key offset into record (digits)
1 1IN)

uplicate keys flag
0 - duplicates not allowed
1 — duplicates allowed

INDEXED FILE BUFFERS

There are four buffers allocated by the host compiler for each Indexed File. The user program cannot
directly access these buffers at any time and they cannot be shared with any other files. The first buffer
is used exclusively for data file 1/Os. The other three are shared by the key files for their 1/0s. The
data buffer size is determined by the blocking factor and the BCI size. The key buffers size is
approximately 4500 digits. The block size for all key files is as close to this as possible, and the key
buffer size is equal to the largest key file’s block size.

The starting addresses of the Indexed File buffers are put into the BCS table in the IF Block by the
host compiler. The data buffer address is put into element 0. The key buffer addresses are put into
elements 1, 2, and 3.

INDEXED FILES ACCESS ROUTINE INTERFACE

The access routines required to access and maintain an Indexed File are bound into the user program
by the host compiler. Each program will have at most one set of routines regardless of the number
of Indexed Files declared. Each routine is reentrant and is capable of handling any number of Indexed
Files.

An access routine is called by the compiled program when it requires that a function be performed
on an Indexed File. These calls use the normal program stack and replace the normal READ, WRITE,
OPEN and CLOSE BCTs that are used for conventional files. They are of the NTR-EXT type and
pass call-by-address parameters. The routines and the specific parameters required by each are outlined
in the following paragraphs.

1090685-003 8-19

CLOSE

The CLOSE routine is called to close an Indexed File. It updates the control blocks if needed and
then closes the data file and all associated key files. The required parameters are :

ACON address of Pointer to IF Block (8UN)
ACON address of Exception Branch Address (6UN)
ACON address of Close Type (1UN)
0 — normal
4 — release
6 — lock
8 — purge
C — remove

DELETE

The DELETE routine is called to remove an existing record from an Indexed File. It removes the data

record from the data file and the references to it from all associated key files. The required parameters
are :

ACON address of Pointer to IF Block (8UN)
ACON address of Exception Branch Address (6UN)

OPEN

The OPEN routine is called to open an Indexed File. It performs various check

aexca 1 neCeKs ar a¢n opéns tnc

data file and all associated key files. The required parameters are :

ACON address of Pointer to IF Block (8UN)
ACON address of Exception Branch Address (6UN)
ACON address of Open Type (1UN)

0 — input

1 — output

2 — input-output
ACON address of Lock Type (1UN)

0 — no lock

4 — Jock access

8 — lock

READ

The READ routine is called to retrieve an existing data record from an Indexed File using the given
key of reference. The required parameters are :

ACON address of Pointer to IF Block (8UN)
ACON address of Exception Branch Address (6UN)
ACON address of Access Type (1UN)

0 — sequential, no key supplied

1 — random, key supplied

8-20

Access Type indicates whether or not a KEY phrase was present on the user READ statement.

ACON address of Key of Reference 2UN)
00 — use current key
01 — change to prime key
02 — change to 1st alt key
03 — change to 2nd alt key
and so forth

This number indicates which key is to be used as the key of reference for this operation and those
following it. It corresponds to the element number in the FD table.

ACON address of Key Address (6UN)

Kev Addrecc containg the ctartino addrecs of the kev data item in the ncer work area
Key AgQqaress contains the startin g aqqaress of the xey data item 1n the user woryg area.

REWRITE

The REWRITE routine is called to replace an existing record in an Indexed File with the contents of
the user work area. It replaces the data record in the data file and the references to it in each key
file whose associated key was changed in the new record. The required parameters are:

ACON address of Pointer to IF Block (8UN)
ACON address of Exception Branch Address (6UN)

START

The START routine is called to position an Indexed File to a particular data record using the given
key of reference for subsequent sequential access. The required parameters are:

ACON address of Pointer to IF Block (8UN)
ACON address of Exception Branch Address (6UN)
ACON address of Key of Reference (2UN)

00 — use current key

01 — change to prime key

02 — change to Ist alt key

03 — change to 2nd alt key

etc.

This number indicates which key is to be used as the key of reference at the completion of the START
operation. It corresponds to the element number in the FD table.

ACON address of Key Address (6UN)

Key Address contains the starting address of the key data item in the user work area.

ACON address of Key Length (3UN)

1090685-003 8-21

Key Length contains the number of characters or digits (depending on key type) excluding sign that
the START operation will use to compare for the specified condition. It may be less than or equal

to the defined key size because the START operation will do the compare on only the number of posi-
tions specified in this parameter.

ACON address of Start Condition (1UN)
2 — equal
4 — greater
6 — greater than or equal

Start Condition contains the condition that the START will attempt to satisfy. This is the condition
contained in the key phrase. If no key phrase was used, this field contains a 2 (equal).

WRITE

The WRITE routine is called to add a new record to an Indexed File. It adds the data record to the
data file and inserts references to it into each of the associated key files. The required parameters are:

ACON address of Pointer to IF Block (8UN)
ACON address of Exception Branch Address (6UN)

8-22

FLOW AND DEMAND MODES OF PROCESSING

Reading of documents is accomplished either in flow or in Demand mode. In Flow mode, the Reader-
Sorter reads continually until a Stop Flow is programmed or until the Reader-Sorter or the R-S DLP
causes a Stop Flow to occur. In Demand mode the user program requests a single document to be
fed and read.

MEMORY MAP

The user’s program must define two interface areas in the Reader-Sorter file. They are collectively
known as the Memory Map. The first area is called the DLP Interface area. This area is 744 digits
in length and is used for two-way communications between the user program and the DLP. The second
area is called the MCP Interface area. This area is 36 digits in length and is used for two-way commu-
nications between the user program and the MCP. The total size of the Memory Map is 780 digits.

The DLP Interface area is divided into two areas. During the write portion of a Write-Flip-Read
operation, the DLP transfers positions 0 — 347 from the Memory Map to the Reader-Sorter. Then

during the read portion of the I/0. the DLP transfers positions 348 — 744 from its buffers to the
Memory Map. Positions O — 347 contain pocket select, microfilm, and endorsement information. Posi-

tions 348 — 744 contain document and Result Status information.

When a Stop Flow condition occurs after a Write-Flip-Read operation is completed, the DLP will place
the last used microfilm ID number in the document area (beginning at position 358) instead of
document information. If the Stop Flow was caused by a jam or a missort, the DLP will also store
a 2-digit code identifying the fault location of the condition on the Reader-Sorter (beginning at position
356).

The MCP Interface area is used for two-way communications with the user program. After a Reader-
Sorter 1/0 complete, the MCP builds and stores the Soft Result Descriptor before invoking the Control
State user routine. In addition, The MCP will also store status and characteristics information in the
MCP Interface area when requested by a Status or Characteristics BCT. Finally, this area contains in-
formation needed by the MCP to build DLP instructions.

Figure 9-2 describes the functions of the Memory Map during a Pocket Select Read BCT. The diagram
should be read from left to right.

DLP INTERFACE AREA MCP INTERFACE AREA

AT 1/O COMPLETE, THE MCP
PLACES A SOFT R/D IN THE
MCP INTERFACE AREA.

DLP TRANSFERS DATA INTO THIS AREA.
INCLUDES THE RESULT STATUS AND ONE
OR TWO DOCUMENT BUFFERS,

DLP TRANSFERS DATA FROM THIS AREA TO THE READER-SORTER.
INCLUDES POCKET SELECT AND OPTIONAL ENDORSEMENT AND
MICROFILM INFORMATION,

P5492
Figure 9-2. Memory Map Functions

1090685-003 9-5

The user program should zero out all reserved fields in the Memory Map before starting flow or before
issuing a Demand Feed Read BCT.

The Memory Map is described Table 9-1.
Table 9-1. Memory Map Description

Position Size Description
0 780D Memory Map.
0 744D DLP Interface area.
0 16D Format Delimiters for Station A.

The presence of any delimiters indicates

that formatting is to be done. The absence
of delimiters (field filled with eight "NUL”
characters) indicates that no formatting is
done. If less than eight delimiters are used,
then the "NUL” character must be used to
complete the set. This field is used for

Start Flow Reads (OP=62) and Demand Feed
Reads (OP =63).

16 16D Start/Stop Pairs for Station A.
A total of
four pairs are allowed. The first number of
each pair designates the number of increments
(1/10th inch) before reading begins, while the
second number of each pair denotes the number
of increments before reading is stopped. All
pairs are specified with reference to the
right leading edge of the document. If less
than four pairs are specified, “99” must be
used to complete the set. If this option is
not utilized, then this field must be
zero-filled. This field is used for Start Flow
Reads (OP =62) and Demand Feed Reads (OP =63).

32 16D Format Delimiters for Station B.
Same as for Station A.

48 16D Start/Stop Pairs for Station B.
Same as Station A.

64 272D Endorser bands.

Refer to Non-Impact Endorsement, following,
for further explanation of endorser fields.

64 3D Reserved.

67 1D Band identifier number for field 4. Must be a
non-zero value (1 — 4) if this band is being
loaded.

Position

1090685-003

68

132

——
[95)
wn

136

[\ 9]
<
[wb]

203

204

268
271

272

336

340

Size

64D
3D

ID

64D

64D

3D

1D

64D

4D

Table 9-1. Memory Map Description (Cont)

Description

Endorsement text for field 4. 32 bytes of
alphanumeric endorsement text are provided.
Reserved.

Band identifier number for field 3. Must be a

non-zero value (1 — 4) if this band is being
loaded.

Endorsement text for field 3. Thirty-two bytes

of alphanumeric endorsement text are provided.

Reserved.

Band identifier number for field 2. Must be a
non-zero value (1 — 4) if this band is being
loaded.

Endorsement text for field 2. 32 bytes of
alphanumeric endorsement text are provided.

Reserved.

Band identifier number for field 1. Must be a
non-zero value (I — 4) if this band is being
loaded.

Endorsement text for field 1. 32 bytes of
alphanumeric endorsement text are provided.

Reserved. See Non-Impact Endorsement for
details.

of this field.

Pocket select number. The pocket number to
which the item is to be sent. If rejecting a

document this number must be greater than 47.

Used for Pocket Select/Read BCT (op = 29).

9-7

Table 9-1. Memory Map Description (Cont)

Position Size Description

342 1D Endorser band control.
8 bit = 1 spray endorser band no. 1
4 bit = 1 spray endorser band no. 2
2 bit = 1 spray endorser band no. 3
1 bit = 1 spray endorser band no. 4

343 1D Camecra/Stop Flow control.
8 bit = 1 microfilm this document.
4 bit Reserved.
2 bit = 1 impact endorse this document
1 bit = 1 Stop Flow.

344 4D Reserved (all zero).

348 8D Result Status.

348 1D 8 bit = 1 Station A format

error. This condition occurs when document
information overflows in the buffer

(more than 100 bytes). This condition

is reported with the affected

document. (BIT 1)

4 bit = 1 Station A parity error from
sorter. A parity error on the
Reader-Sorter DLP interface was
detected by the Reader-Sorter DLP.

A "DLE” is used by the control to
replace the character in memory.

This condition is reported with the
affected document. (BIT 2)

2 bit = 1 Station A can't read. If the sorter
is unable to read a character, a

"SUB"” is used to repiace that

character. This condition is reported

with the affected document. (BIT 3)

1 bit = | Station A too-late-to-read. If a
Pocket Select Descriptor is received

in time for pocket selection of
document (N) but too late to allow
reading document (N + 3), then
document (N) is correctly pocketed
and this bit is set in the Result
Status. This condition is reported

with the next valid read after (N+3).
Any TLTR causes the feeder and flow
to stop. All documents following
(N+2) are rejected. (BIT 4)

98

Position

1090685-003

349

350

351

352

1D

1D

1D

1D

Table 9-1. Memory Map Description (Cont)

Size

Description

8 bit Reserved (BIT 5).
4 bit Reserved (BIT 6).
2 bit Reserved (BIT 7).
1 bit = 1 Document tracking error (BIT 8).

8 bit = 1 Station B buffer overflow. Same as
for Station A. (BIT 9)

4 bit = 1 Station B parity error. Same as for
Station A. (R-S -> DLP) (BIT 10)

2 bit = 1 Station B can’t read. Same as for
Station A. (BIT 11)

1 bit Reserved (BIT 12).

8 bit Reserved (BIT 13).

4 bit = 1 Interface error (BIT 14).

2 bit = 1 Internal DLP error (BIT 15).

1 bit Reserved (BIT 16).

8 bit = 1 Flow Stopped. When true, the
information following the Result

Status and the jam or missort fault
pocket number in memory is the last
microfilm identification number

(9 bytes) used by the sorter. The
identification number is not

meaningful unless the microfilmer

is present and powered on. (BIT 17)

4 bit = 1 Not Ready. Any one of the following
conditions exists: jam, missort,

empty hopper, full pocket, start/stop

bar depresed, endorser not ready, or

camera not ready. (BIT 18)

2 bit = 1 Black Band. A black band has been
detected exiting the feeder area.

This is reported in conjunction with

the flow-stopped bit when the black

banded document has been

pocket-selected. (BIT 19)

1 bit = 1 Endorser parity error. This condition
indicates that memory transfer of

endorser band data is in error. A

"DLE"” is used for character

substitution, and this condition is

reported with the next valid read.

(BIT 20)

Table 9-1. Memory Map Description (Cont)

Position Size Description

numbers) indicate which pocket was
at fault. (BIT 25)

4 bit = 1 Feeder jam (No Feed). A jam has been
detected at the feeder, the feeder

has been stopped, and all unread

documents are rejected. This

condition is reported after flow is

stopped. The "Flow Stopped” and

"Not Readv” hite are cet in the
Not K Yy~ bis are set 1n the

cas

Result Status. (BIT 26)

2 bit = 1 Jam. A jam has been detected at other
than the feeder area. The feeder is

stopped and all unread documents are

rejected. This condition is reported

after flow is stopped. Following the

Result Status is 7 bits (2 BCD

numbers) of pocket number information

which tell which pocket was at fault.

(BIT 27)

1 bit = 1 Film Advance. This condition
indicates that the end of a film

segment was reached during document
flow. The sorter goes not ready and
advances the film 3 feet. (BIT 28)

355 1D 8 bit = 1 Reserved. (BIT 29)

4 bit = 1 Post-read document error
(mechanical). Document slippage has
been detected after the first read
head. The sorter rejects all fault
items. This condition is reported
with the next valid read. (BIT 30)

2 bit = 1 Post read document error
(electrical). The document tracking
logic in the sorter was in error. The
sorter rejects all fault items. This
condition is reported with the next
valid read. (BIT 31)

1090685-003 9-10A

Position

356

356

358

356
356

358

360

744

9-10B

Table 9-1. Memory Map Description (Cont)

Size

20D

2D

18D

388D
2D

2D

384D

36D

Description

1 bit = 1 Parity error from the Reader-Sorter
DLP. A parity error on the
Reader-Sorter DLP interface was
detected by the sorter. This error
utilizes a "DLE” for character
substitution when endorser
information is being transferred to

the sorter. When pocket select or
other control information is in

error, the Reader-Sorter DLP attempts
to retransmit the information. This
condition is reported with the next
document. (BIT 32)

Flow stop information. Stored with each flow
stop.

Fault location for jam or missort. 2-digit
number specifies beam-of-light or pocket
location.

Microfilm ID number (9 bytes). The last film ID
number used by the sorter. This field is not
meaningful unless the camera is powered on.

Document information.

Read station A Total document length counter.
This field gives the total length of the
document read at station A. Total document
length is given in bytes.

Read station B total document length counter.
Same as for station A.

Read Station A and B document buffers. There
are two buffers each of which may contain up
to 96 bytes of document information. The read
station B document buffer immediately follows
the last character of document information
from the read station A buffer. Unless the
“report feed error’’ option is set (B9138

utility mode) a B9138 feed check will not
cause the Reader-Sorter to stop flow. The user
program is notified of a feed check by a
single can’t read character in the document
buffer. (document buffer = 01003F).

MCP Interface area.

Position

1090685-003

744

752
756

757

758

758

8D

4D
1D

1D

3D

1D

Size

Table 9-1. Memory Map Description (Cont)

Description

IOT/DLP Result Descriptor. Eight digits

of R/D are always reported. The first

four digits of this R/D are generated

by the IOT and are referred to as the IOT
R/D. The second four digits are generated by

the DLP and are referred to as the DLP R/D.

The MCP stores the IOT/DLP R/D in this
location at each I/0 Complete.

Reserved.

Number of endorser text bands to bhe loaded,
This number must be zero through four. The
DLP is capable of accepting from zero
through four bands of endorsement text on
each pocket select operation. (See the

Non-Impact endorsement section of this

document). The MCP uses this field to compute

the beginning address of the ‘‘write’’ portion
of the write flip read operation based on the
number of bands to load.

Status. The MCP places the status of the
Reader-Sorter in this area in response to a
Status BCT. Formatting is as follows:

8 bit 1 Slewing microfilm.

0 Not slewing microfilm.

{1l

4 bit 1 Camera not ready.
0 Camera ready, not present, or not

powered on.

2 bit 1 Endorser not ready.
0 Endorser ready, not present, or not

powered on.

1 bit I Reader-Sorter not ready.

0 Reader-Sorter ready.

Characteristics. The MCP places the
characteristics of its Reader-Sorter in this
area in response to a Characteristics BCT.
Formatting is as follows:

8 bit = 1 Endorser band one present.

= 0 Endorser band one not present.
4 bit = 1 Endorser band two present.

= 0 Endorser band two not present.
2 bit = 1 Endorser band three present.

= 0 Endorser band three not present.
1 bit 1 Endorser band four present.

It

0 Endorser band four not present.

9-10C

9-10D

Position
759 1D
760 1D
761 3D
764 4D

Table 9-1. Memory Map Description (Cont)

Size

8 bit
4 bit

2 bit

1 bit
8 bit

=1

Description

Reader-Sorter is a B9137.

0 Reader-Sorter is a B9138.

=1

Camera present.

0 Camera not present or powered on.

1

R-S DLP interface.

0 4A control interface.

1
=1

Reserved

MCP Soft Result Descriptor. The MCP places
a reformatted IOT/DLP result descriptor in
this field when an 1/0 Complete of a reader-
sorter BCT occurs.

See the ‘“Notes on the MCP Soft
of Soft R/D error conditions.

764 1D
765 1D
766 1D
767 1D

8 bit
4 bit
2 bit

1 bit

1
1
1
i

muu

1

Reader-Sorter power failure.

Impact endorser present

NOTE
Result Descriptor’’ for further explanation

I70 invalid to the DLP (BIT 1).
BCT invalid to the MCP (BIT 2).
Flow condition error. Flow not

stopped on operations requiring
flow to be stopped, or flow not in
process on operations requiring
flow to be started. (BIT 3)

=1

System interface parity error

or descriptor error (BIT 4).

8 bit = 1 Microfilm operation not completed.
(BIT 5).

4 bit

=i

(BIT 6).

2 bit
1 bit
8 bit
4 bit
2 bit
1 bit
8 bit
4 bit
2 bit
1 bit

I
e e S S S G Wy

10T

Non-present option required.

Reserved (BIT 7).

Pocket select error (BIT 8).

Bad interface information (BIT 9).
Timeout (BIT 10).

Camera not ready (BIT 11).

Parity error (R-S — DLP) (BIT 12).
Power failure (BIT 13).

Memory overflow (BIT 14).

DLP error (BIT 15).

R/D error (BIT 16).

9-10

Position

353

354

1D

1D

Table 9-1. Memory Map Description (Cont)

Size

Description

8 bit = 1 Real time too late (Physical too
late to pocket, endorse, or

microfilm). If a pocket-select
descriptor for a particular document
is not received before the document
reaches the time critical area, the
Reader-Sorter DLP stops flow and the
sorter rejects the document. This bit
is set after receipt of the

"Too Late” pocket-selector descriptor
and is reported with the next valid
read. (BIT 21)

4 bit = 1 Multiple Documents. The sorter has
detected the overlapping of multiple
documents. This condition is defined

as occuring before the documents are

read. The fault document is rejected

and this condition is reported with

the affected documents. (BIT 22)

2 bit = 1 Overlength Document. The sorter has
detected an overlength item or

overlapping items. This condition is

also defined as occuring before the

documents are read. The fault item(s)

is rejected, and this condition is

reported with the affected

document(s). (BIT 23

1 bit = 1 Underspaced Document. The sorter has
detected documents too close together

to allow reading and/or pocket

selection of the subsequent document.

Both documents are rejected by the

Reader-Sorter DLP, and this condition

is reported with the affected

documents. (BIT 24)

8 bit = 1 Missort. For a missort condition, the
sorter stops the feeder, and all

non-fault documents in the feed line

are read and pocketed. When flow is

stopped, 7 bits of pocket number

information are stored behind the

Result Status. The 7 bits (2 BCD

Table 9-1. Memory Map Description (Cont)

Position Size Description
768 4D Pocket light/generate image count mark
parameters (NNRB).
768 2D NN = The pocket number for which the light

should be illuminated if B = 0. If B =1,
then NN equals the number of ICMs which
should be generated.

770 1D Reserved.

771 1D B = 0 Pocket light illumination. On the B9138,
if the cutslips/pocket light option is
set on (cutslips), a cutslip will be fed
from the secondary hopper and pocketed
to pocket NN. The document will not be
read.

B = 1 ICM operation.
B = 2 Advance batch number for impact endorser

772 4D Start flow parameters (RHFF).

772 1D Reserved.

773 1D H = 1 Data in the low order nine bytes of
endorser band ! is microfilm header
data.

H = 0 No microfilm header data present.

774 1D F = 1 Read data from read station A.

Il

775 1D F 1 Read data from read station B.

776 4D Demand read parameters (RHFF). Each digit
is used in the same manner as the
corresponding digit in the Start Flow
parameters. Separate areas are used for
Start Flow and demand read parameters in
order to simplify the programming effort
required to use a mixture of the two
techniques.

MCP READER-SORTER EXTENSIONS

The MCP Reader-Sorter extentions include Open BCT, Close BCT, and the MCP MICR Module.
OPEN BCT

When opening a DLP type Reader-Sorter file, the external file identification (device name) value in
the label area is compared to the device names of the unassigned DLP units. When a match is found,
the unit is assigned to the program by the MCP. If a match is not found, the MCP displays NO FILE
and an IL is required.

For Assembler coded programs prior to issuing the Open BCT, the user program must set the 8 bit
in the first digit of the FIB (referred to as FIBST1) to declare use of this DLP interface and require
selection of a B 9137/B 9138 Reader-Sorter.

1090685-003 9-11

B 2000/B 3000/B 4000 MCPVI Programmer’s Guide
Reader/Sorter DLP Interface

CLOSE BCT
A DLP Reader-Sorter file must be closed with Release.

MCP MICR MODULE

The MCP requires that the MICR module be in memory when running Reader-Sorters in an on-line
mode. The MICR module is automatically loaded into memory along with the standard version of the
MCP at Halt/Load time provided the MICR option is set.

The MICR module has primary responsibility for the following:

Reader-Sorter BCT validations.

Building I/0O descriptors to be sent to the R-S DLP.

Interrogating the IOT/DLP R/D at I/O Complete.

Formatting the Soft R/D.

Reinstating the user program at the proper location after a Reader-Sorter I/0 Complete or
after handling a Reader-Sorter BCT.

Reader-Sorter BCTs

el e

All MICR BCTs conform to the following general format:

BCT 374 (absolute memory address 374)
BUN around (next instruction)
P1 = ACON FIB

P2 = NN
P3 = ACON error
P4 = ACON flow stopped

Pl is a pointer to the user program sorter file FIB.

P2 is a 2-digit number which uniquely identifies the MICR BCT type (see Table 9-2).

P3 is not included in all MICR BCTs. It is a pointer to the error label in case the BCT does not pass

3 & plllat

ir
the standard MICR BCT verification (see Table 9-2).

P4 is not included in all MICR BCTs. It is a pointer to the flow stop label.
Table 9-2. Reader-Sorter BCT Types and Operations

Reader-Sorter

BCT Type Operation
42 Start Flow Read.
43 Demand Feed Read.
44 Pocket Light/Generate ICMs.
45 Microfilm Slew.
47 Status.
48 Characteristics.
46 Logical Read.
29 Pocket Select Read.

9-12

SECTION 10
4A CONTROL APPLICATION PROGRAM INTERFACE

INTRODUCTION

A B 9137-3 or B 9138 Reader/Sorter (hereafter referred to as Sorter) is used with B 2000/B 3000/
B 4000 series systems through the 4A Reader/Sorter Control (hereafter referred to as Control). The
Control interfaces to both the Sorter and the system through a set of bidirectional lines. Each of the
lines has two possible logic levels: HIGH or LOW. Communication between the units is accomplished
by changes in the level on a combination of lines. The logic levels of the lines can be viewed by placing
a display monitor on the Control.

COLDSTART/WARMSTART UNIT CARD

Unit card syntax is

UNIT cc/uu <device name> [=] <hardware mnemonic>

The device name is handled in the same manner as a data comm adapter-id, that is, a 1- through
6-character data name the first character of which must be alphabetic. The following five characters
must be alphanumeric.

Hardware mnemonics for Sorters using a 4A Control are:

Sorter Mnemonic

B 9137-3 S4A
B 9138 S4B

USER FILE STATEMENT
In Assembler, the User File statement must conform to the following procedures:

Specify label convention by a blank or S in column 46 of the C address field.

Specify the external file identification (device name) in the A address field.

Contain SOR in columns 34 — 36.

Specify the work area and buffer with a blank, 0 or W in column S55.

Contain a label in column 58. Although the label is not used by the MCP or the 4A Control,
the ASMBLR compiler will give a syntax error without the label.

For BPL syntax see B 2000/B 3000/B 4000 Series BPL Reference Manua! form no. 1113735.
MEMORY MAP

The user program has two interface areas for the Sorter file. They are collectively known as the
Memory Map (see Table 10-1). The first area is called the Control Interface area. This area is 756
digits in length and is used by the Control to communicate with the user program. The second area
is called the MCP Interface area. This area is 24 digits in length and is used by the MCP to pass infor-
mation to the user program. The total size of the Memory Map is 780 digits.

The 4A Control is different from most other device controls in that it reads from the user program
and writes to the user program during the same I/0 operation. The Control Interface area is divided
into two areas. The Control reads from the first area at locations 0 — 347, then during the same 1/0

1090685-003 10-1

operation, writes into the second area at locations 348 — 755. As an example, consider N to be the
current document passing before the Sorter read station. The Control reads the Pocket Select, Micro-
film, and Endorser information for the previous document N — 1, writes the Result Status containing
information for both documents N and N + 1, and writes the current document, N.

When the 1/0 operation is complete, the MCP places a Soft Result Descriptor in the MCP Interface
area.

Figure 10-1 describes the functions of the Memory Map areas for a Pocket Select/Read BCT.

CONTROL INTERFACE AREA MCP INTERFACE AREA

0-347 348 - 755 756 - 780

AT 1/O COMPLETE, THE MCP
PLACES A SOFT R/D IN THE
MCP INTERFACE AREA.

CONTROL WRITES TO THIS AREA. INCLUDES
THE RESULT STATUS AND ONE OR TWO
DOCUMENT BUFFERS.

CONTROL READS POCKET SELECT, ENDORSEMENT, AND MICROFILM
INFORMATION FROM THIS AREA .

P5496

Figure 10-1. Memory Map Functions

NOTE
Construct the user program so as to zero out all reserved fields in the
Memory Map before Start Flow begins.

The Memory Map is described in Table 10-1.

Table 10-1. Memory Map

Position Size Description

0 780D Memory Map.
0 756D Control Interface area.

0 16D Format Delimiters for Station A.
The presence of any delimiters indicates
that formatting is to be done. The absence
of delimiters (field filled with eight "NUL”
characters) indicates that no formatting is
done. If less than eight delimiters are used,
then the "NUL” character must be used to
complete the set. This field is used for
Start Flow Reads (OP =62) and Demand
Feed Reads (OP =63).

10-2

1090685-003

Position

16

32

48

64
64
67

68

132
135

136

200
203

204

268

Table 10-1. Memory Map (Cont)

Size

16D

16D

16D

64D
272D
3D
1D

64D

3D
1D

64D

3D
1D

64D

3D

Description

Start/Stop Pairs for Station A. A total of
four pairs are allowed. The first number of
each pair designates the number of
increments (1/10th inch) before reading

o vhila th And nmhar Af anrh
U\/g‘llo, VVllll\/ Llle Secu“u llulllu\rl vi b(ACA

pair denotes the number of increments
before reading is stopped. All pairs are
specified with reference to the right leading
edge of the document. If less than four
pairs are specified, "99” must be used to
complete the set. If this option is not
utilized, then this field must be zero-filled.
This field is used for Start Flow Reads
(OP =62) and Demand Feed Reads

(OP =63).

Format Delimiters for Station B. Same as
for Station A.

Start/Stop Pairs for Station B. Same as for
Station A.

Reserved.
Endorser Bands (Note 1).
Reserved.

Band Identifier number for field 4. Must
be a value of 1,2,3 or 4 if this band is
being loaded.

Endorsement Text for field 4. 32 bytes of
alphanumeric endorsement text are
provided.

Reserved.

Band Identifier number for field 3. Must
be a value of 1,2,3 or 4 if this band is
being loaded.

Endorsement Text for field 3. 32 bytes of
alphanumeric endorsement text are
provided.

Reserved.

Band Identifier number for field 2. Must
be a value of 1,2,3 or 4 if this band is
being loaded.

Endorsement Text for field 2. 32 bytes of
alphanumeric endorsement text are
provided.

Reserved.

10-3

104

Position

271

272

336

340

342

343

344

Table 10-1. Memory Map (Cont)

Size

1D

64D

4D

2D

1D

ID

Description

Band identifier number for field 1. Must
be a value of 1,2,3 or 4 if this band is
being loaded.

Endorsement text for field 1. 32 bytes of
alphanumeric endorsement text are
provided.

All zero. Indicates to Control that it is at
the end of endorsement text.

Pocket Select number. The pocket number
to which the item is to be sent. If rejecting
a document this number must be greater
than 47. Used for Pocket Select/Read BCT
(OP = 29).

Endorser band control.

8 bit = 1 Spray Endorser Band #1.
4 bit = 1 Spray Endorser Band #2.
2 bit = 1 Spray Endorser Band #3.
1 bit = 1 Spray Endorser Band #4.

Camera/Stop Flow control.

8 bit = 1 microfilm this document.
4 bit Reserved.

2 bit Reserved.

1 bit = 1 Stop Flow.

Reserved.

Result Status.

R hit — 1 Ctatinn A f‘/\rmat

O uviL 1 JlAuviLl Ly 11Ul

This condition occurs when document
information overflows in the buffer (more
than 100 bytes). This condition is reported
with the affected document.

rreaoyr
11Ut

4 bit = 1 Station A parity error from
sorter. A parity error on the sorter-control
interface was detected by the control. A
"DLE” is used by the control to replace
the character in memory. This condition is
reported with the affected document.

2 bit = 1 Station A can’t read. If the
sorter

is unable to read a character, a "SUB” is
used to replace that character. This
condition is reported with the affected
document.

Table 10-1. Memory Map (Cont)

Position
349 1D
350 1D
351 1D
352 1D

1090685-003

Description

1 bit = 1 Station A too-late-to-read. If a
Pocket Select Descriptor is received in time
for pocket selection of document (N) but

+ lata n m

too late to allow reading document (N+3),
+h ™ +

then document (N) is correctly pocketed

A
and this bit is set in the Result Status
This condition is reported with the next
valid read after (N+3). Any TLTR causes
the feeder and flow to stop. All documents
following (N +2) are rejected.

8 bit Reserved.

4 bit = 1 Pocket Select Error (B 9138
only).

2 bit Reserved.
1 bit Reserved.

8 bit = 1 Station B Buffer Overflow.
Same as for station A.

4 bit = 1 Station B Parity Error from
Sorter. Same as for station A.

2 bit = 1 Station B Can’t Read. Same as
for station A.

1 bit = 1 Station B Too l.ate To Read.
Same as for station A.

8 bit Reserved.
4 bit Reserved.
2 bit Reserved.
1 bit Reserved.

8 bit = 1 Flow Stopped. When true, the
information following the Result Status and
the jam or missort fault pocket number in
memory is the last microfilm identification
number (9 bytes) used by the sorter. The
identification number is not meaningful
unless the microfilmer is present and
powered on.

4 bit = 1 Not Ready. Any one of the
following

conditions exists: jam, missort, empty
hopper, full pocket, start/stop bar
depresed, endorser not ready, or camera
not ready.

10-5

10-6

Position

353

Table 10-1. Memory Map (Cont)

1D

Size

Description

2 bit = 1 Black Band. A black band has
been

detected exiting the feeder area. This is
reported in conjunction with the flow-
stopped bit when the black banded
document has been pocket-selected.

1 bit = 1 Failsoft Error. This condition
indicates that memory transfer of endorser

band data is in error. A "DLE” is used
for character substitution, and this
condition is reported with the next valid
read.

8 bit = 1 Real time too late (Physical too
late to pocket, endorse, or microfilm). If a
pocket-select descriptor for a particular
document is not received before the
document reaches the time critical area, the
control stops flow and the sorter rejects the
document. This bit is set after receipt of
the "Too Late” pocket-select descriptor an
is reported with the next valid read.

4 bit = 1 Double Document. The sorter
has

detected the overlapping of multiple
documents. This condition is defined as
occuring before the documents are read.
The fault document is rejected and this
condition is reported with the affected
documents. (Note 2)

2 bit = 1 Overlength Document. The
sorter has

detected an overlength item or overlapping
items. This condition is also defined as
occuring before the documents are read.
The fault item(s) is rejected, and this
condition is reported with the affected
document(s). (Note 2)

1 bit = 1 Underspaced Document. The
sorter has

detected documents too close together to
allow reading and/or pocket selection of
the subsequent document. Both documents
are rejected by the control, and this
condition is reported with the affected
documents. (Note 2)

1090685-003

Position

354

355

Table 10-1. Memory Map (Cont)

Size

1D

1D

Description

8 bit = 1 Missort. For a missort
condition, the

sorter stops the feeder, and all non-fault
documents in the feed line are read and
pocketed. When flow is stopped, 7 bits of
pocket number information are stored
behind the Result Status. The 7 bits (2
BCD numbers) indicate which pocket was
at fault.

4 bit — 1 Feeder jam (No Fecd). A jam
has been

detected at the feeder, the feeder has been
stopped, and all unread documents are
rejected. This condition is reported after
flow is stopped. The "Flow Stopped” and
"Not Ready” bits are set in the Result

Status. (Note 3)

2 bit = 1 Jam. A jam has been detected
at other

than the feeder area. The feeder is stopped
and all unread documents are rejected. This
condition is reported after flow is stopped.
Following the Result Status is 7 bits (2
BCD numbers) of pocket number
information which tell which pocket was at
fault. (Note 3)

NULe

1 bit = 1 Film Advance. This condition
indicates that the end of a film segment
was reached during document flow. The
sorter goes not ready and advances the film
3 feet.

8 bit = 1 Reserved.

4 bit = 1 Post-read document error
(mechanical). Document slippage has been
detected after the first read head. The
sorter rejects all fault items. This condition
is reported with the next valid read.

2 bit = 1 Post read document error
(electrical). The document tracking logic in
the sorter was in error. The sorter rejects
all fault items. This condition is reported
with the next valid read.

10-7

Position

356

358

356
356

358

360

556

10-8

Table 10-1. Memory Map (Cont)

Size

2D

18D

200D
2D

2D

196D

200D

Description

1 bit = 1 Parity error from the control. A
parity error on the sorter-control interface
was detected by the sorter. This error
utilizes a "DLE” for character substitution
when endorser information is being
transferred to the sorter. When pocket
select or other control information is in
error, the control attempts to retransmit the
information. This condition is reported with
the next document.

Fault location for jam or missort. 2 digit
number specifies beam-of-light or pocket
location.

Microfilm ID number(9 bytes). The last
film ID number used by the Sorter. This
field is not meaningful unless the camera is
powered on.

Station A 100 byte document buffer.

Total document length counter. This field
gives the total length of the document read
at station A. The length includes ETX
characters that were inserted by the
Control.

Total document length is given in bytes.

Address pointer to first character. This
field gives the offset, in digits, from the
beginning of the document buffer to the
beginning of text. This pointer is currently
always 04.

Station A buffer. Control inserts one
“BTX’’ character at the beginning and one
“ETX” at the end of the document. If the
document is an odd number of bytes,
another “ETX’’ will be entered at the
beginning of the document. Unless the
“report feed error’’ option is set (B 9138
utility mode) a B 9138 feed check does not
cause the Sorter to stop flow. The program
is notified of a feed check by a single
Can’t Read character item (Station A Total
Document buffer = 040403033F03).

Station B 100 byte document buffer. The
format for station B is the same as for
station A (Note 4).

Table 10-1. Memory Map (Cont)
Position Size Description

756 24D MCP Interface area.

756 1D Number of endorser text bands to be
loaded. This number must be 0,1,2,3 or 4.
The 4A Control is capable of accepting
from zero through four bands of
endorsement text on each Pocket Select
operation. (See the Non-Impact
endorsement section of this document).

757 1D Status. The MCP places the status of the
Sorter 1n this area in response to a Status
BCT. Formatting is as follows:

8 bit = 1 Slewing Microfilm.
4 bit = 1 Camera Not Ready.

= (0 Camera ready, not present, or not
powered on.

2 bit = 1 Endorser Not Ready.

= 0 Endorser ready, not present, or
not powered on.

1 bit = 1 Sorter Not Ready.

758 2D Characteristics. The MCP places the
characteristics of the Sorter in this area in
response to a Characteristics BCT.
Formatting is as follows:

758 1D 8 bit = 1 Endorser Band one present.
4 bit = 1 Endorser Band two present.
2 bit = 1 Endorser Band three present.
1 bit = 1 Endorser Band four present.
759 1D 8 bit = 1 Sorter is a B 9137.
= 0 Sorter is a B 9138.
4 bit = 1 Camera present.

2 bit Reserved.
1 bit = 1 Read station B present.

760 4D Reserved.

764 4D MCP Soft Result Descriptor.

764 1D 8 bit = 1 1/0 invalid to the Control.
4 bit = 1 BCT invalid to the MCP.

1090685003 109

1090685-003

Position

772
772
773

774
7158

776

Table 10-1. Memory Map (Cont)

4D
1D
1D

Description

Start Flow parameters (RHFF).

Reserved.

H = 1 Data in the low order nine
positions of endorser band 1 is microfilm
header data.

H = 0 No microfilm header data present.
F 1 Read data from Read Station A.
F 1 Read data from Read Station B.

Demand Read parameters (RHFF). Each
digit is used in the same manner as the
corresponding digit in the Start Flow
parameters. Separate areas are used for
Start Flow and Demand Read parameters
in order to simplify the programming effort
required to use a mixture of the two
techniques.

10-10A

MCP INTERFACE (MICR 4A CONTROL BCT)
All MICR BCTs conform to the following general format:

BCT 374 (absolute memory address 374)
BUN around (next instruction)

Pl = ACON FIB

P2 = NN

P3 = ACON error

P4 = ACON flow stopped

NOTES
P1 is a pointer to the user program Sorter file FIB.

P2 is a 2-digit number which uniquely identifies the MICR BCT type (refer to Verification). For BCT
Type numbers and their operations, see Table 10-2.

P3 is not included in all MICR BCTs. It is a pointer to the error label in case the BCT does not pass
the standard MICR BCT verification (refer to Verification).

P4 is not included in all MICR BCT. It is a pointer to the flow stop action label.

Table 10-2. BCT Type Numbers and Operations

BCT Type Operation
42 Start Flow
43 Demand Feed and Read
44 Pocket Light/Generate ICM
45 Microfilm Slew
47 Status
48 Characteristics
46 Logical Read
29 Pocket Select/Read

A detailed description of each BCT follows. Comments on Open and Close BCTs for a 4A Control
Sorter file are also included.

There is a BPL syntax for the 4A Control BCT (see B 2000/B 3000/B 4000 Series BPL Reference Man-
ual, form no. 1113735).

STANDARD NON-POCKET SELECT/READ BCT VERIFICATION

With the exception of the Pocket Select/Read BCT which is verified in a separate routine, the Sorter
BCTs are verified by the MCP in the following manner:

1. P2 must be a valid MICR BCT type. If it is not, the result is a DS or DP condition with
the error message INV BCT PARAM displayed.

2. The open Sorter file table is searched by MIX # and FIB address. If an entry is not found,
this results in a DS or DP conditicn with INV (F-N) (ADR) FILE RSTRCTD OR NOT OPEN
error message displayed.

3. P3 must be non-zero, contain no undigits, be within program base/limit, and be mod 2. If
not, the result is a DS or DP condition with INV BCT PARAM error message displayed.

10-10B

10-10

Position

765

766

767

768

768

770
771

Table 10-1. Memory Map (Cont)

1D

1D

1D

4D

2D

1D
1D

Description

2 bit = 1 Flow condition error. Flow not
stopped on operations requiring flow to be
stopped, or flow not in process on
operations requiring flow to be started.

1 bit = 1 System interface parity error
encountered on I/0 initiate.

8 bit = 1 Microfilm operation not
completed.

4 bit = 1 Non-present option required.

2 bit = 1 Failsoft error encountered on
control data or format, start/stop
delimiters.

1 bit = 1 Internal control Data Ram
Parity error on Read Station A.

8 bit = 1 Internal control Data Ram
parity error on Read Station B.

4 bit

2 bit 1 Failsoft error on Control to
memory transfer.

1 Memory Parity error.

1 bit = 1 Parity error detected on Sorter
to control transfer.

8 bit = 1 Power failure.

4 bit = 1 B — address exceeded.

2 bit Reserved.

1 bit Reserved.

Pocket light/gepfia}te image count mark
parameters (NNRB).

NN = If B=0, NN is the pocket number
for which the light will be illuminated. If
B=1, NN equals the number of ICM that
will be generated.

Reserved.

B = 0 Pocket light illumination. On the

B 9138, if the cutslips/pocket light option
is set on (cutslips), a cutslip will be fed
from the secondary hopper and pocketed to
pocket NN. The document will not be
read.

B = 1 ICM operation.

SECTION 11
PORT FILES

GENERAL

The port file interface between the MCP and a user program consists of:

1. The PB-FPF4 or 5 codefile.
2. The Port FIB
3. BCTs to perform the following Port functions:

OPEN

CLOSE

READ

WRITE

GET <attribute >
SET <attribute>

4. Extensions to the event mechanism to support user-accessible Port events.
PB-FPF=4 OR 5 CODE FILES
Programs without Port files produce standard codefiles. When a Port file is declared in a program,
PB-FPF =4 or 5 codefiles are created. Programs without Port files produce standard codefiles. These
codefiles require an MCP release level of 6.6 or greater to function properly.
A PB-FPF=4 or 5 code file differs from the the standard code file

1. By a slight modification to the standard Program Parameter Blocks.

2. By enlarging the standard File Parameter Blocks.

3. By the addition of a Port File Parameter Block.
These differences are discussed in the following paragraphs.

PROGRAM PARAMETER BLOCK CHANGE

Code files created with a Port file declaration must have a value of either 4 or 5 in PB-FPF, the file
parameter block flag.

A value of 4 indicates that:

1. The standard File Parameter Blocks are of the 200-digit format.
2. The code file does not contain a Port File Parameter Block area.

A value of S indicates that:

1. The standard File Parameter Blocks are of the 200-digit format.
2. The code file contains a Port File Parameter Block area.

1090685-003 11-1

FILE PARAMETER BLOCK STRUCTURE

The MCP expects file parameter blocks in the PB-FPF=4 or 5 code file to be 200 digits long. The
structure of the file parameter block is shown in Table 11-1.

Table 11-1. File Parameter Block Structure

Field Rel Loc Size Type Contents

FP-FNM' 0 6 UA Internal File Name
Default = Ist 6 CHAR of
declared name

FP-MFD!' 12 6 UA Multi File ID
Default = spaces
FP-FID' 24 6 UA File ID
Default = same as FP-FNM
FP-HWR' 36 2 UN Hardware type (see FIBHDW)
No default, must be declared
FP-BUP 38 1 UN Backup Flag

0 = Backup Permitted
2 Don’t Backup
4 Must Backup
Default = 0
39 1 UN (reserved, must = 0)
FP-SPF* 40 1 UN Special forms flag (FIBSPF)
.1 Special Forms Required
2 < Reserved >
4 Auto Print
:8 <Reserved>
Default = 0
FP-TRK® 41 1 UN Magnetlc tape track type
Any Tape Type
MT7
MT9

ANADT
vir L

GCR
Default =0
FP-GRD? 42 6 UA Guardfile ID
Default = spaces
FP-STY? 54 1 UN Security type
Default = @QE@
FP-FIB? 55 6 UN FIB address (base relative)
No default, must be declared
FP-SEG? 61 3 UN Segment containing FIB
No default, must be declared
FP-SUS? 64 1 UN Security use
Default = 6
65 12 UN (reserved, must = O0s)
FP-SNS 77 1 UN Sensitive data
Default = 0

itn

(1 T [}

bW —=O
I [l

11-2

Table 11-1. File Parameter Block Structure (Cont)

Field Rel Loc Size Type Contents
FP-FAM!' 78 6 UA Guardfile family name
Default = "DISK”
FP-MAI 90 1 UN Security maintenance
Default = 0
91 1 UN (reserved, must = Os)
FP-YHN! 92 17 UA Name of host system on which

file is physically located
Default = spaces

FP-RPA 126 8 UN Records per area
Default = 2000
FP-AR 134 4 UN Areas per file
Default = 20
138 62 UN (reserved, must = O0s)
NOTES

' Fields which must be initialized by compilers.
? Fields which must be initialized if known.
All other fields should also be initialized if known.

PORT FILE PARAMETER BLOCKS

If programs contain Port files, then compilers or binders must set PB-FPF to 5, and emit a set of
Port File Parameter Blocks (PFPB) in the PB-FPF=4 or 5 code file.

Although these Port File Parameter Blocks are functionally equivalent to the standard File Parameter
Blocks, they are implemented differently. These PFPBs allow the MCP to obtain the initial port and
subport attributes as specified in the source program, or as defaulted by the compiler. This then allows
the attributes to be kept out of the executing program and provides the ability to file equate these
attributes at run time.

Compilers and binders allocate code file space for the following data in a Port File Parameter Block
area:

1. A directory to the port file parameter blocks.
2. Port file parameter blocks; one for each Port file declared in the source program.

Location of PFPB Data

The PFPB directory and PFPBs immediately follow segment zero (global) in the code file. The PFPB
directory starts on a sector boundary, as does each PFPB.

The code file does not contain any explicit size for this area, nor does it contain an explicit disk offset
for it. The MCP determines these from other information as necessary.

1090685-003 11-3

PFPB Directory
The Port File Parameter Block Directory is the first part of the PFPB area.

Because the size of the information required for a port is highly variable, the MCP needs a directory
to facilitate access to the attributes of a particular port.

The Parameter Block Directory consists of contiguous entries that can span disk sector or segment
boundries. The structure of this directory is given in Table 11-2.

Field Rel Loc Size Type Contents

PBD-ID 0 10 UN @FBAABDCFBE@ verify
the identity of the structure.

PBD-LV 10 2 UN 01 — PFPB compatibility
level

PBD-NR 12 4 UN number of port files declared
in program

PBD-AD 16 6 UN relative disk address of port
file number 1 parameter '

22 6 UN relative disk address of port

file number 2 parameters '
... (one disk address entry
for each port declared in
PBD-NR)

NOTE
i The first sector of the code file is relative disk address zero (0).

NOTE
The parameter block directory consists of contiguous entries which may span
disk sector or segment boundries.

114

Port File Parameter Block Structure

Compilers and binders build one Port File Parameter Block for each Port file declared in the source
program (or ICMs). Each PFPB must contain at least the internal Port file name and TITLE (Port-
Name) attribute, so that the Port file can be file-equated at run time. These PFPBs are located in the
PFPB area, following the PFPB directory.

A Port File Parameter Block consists of variable-length strings of port and subport attributes. Each
attribute consists of an attribute-number, an attribute-value-size, and an attribute-value.

Each attribute-number is four digits long and must start on a mod 2 boundary. The length of attribute-
value-size is four digits, specified in the appropriate units, either digits or bytes. Digit or BOOLEAN
field sizes may not exceed 99 digits.

The structure of a PFPR is port attributes followed by zero or more optional subport attribute lists,
followed by the "end-of-attributes” attribute.

Each of the optional subport attribute lists must start with a ”start-of-subport” attribute. If this attri-
bute has a value of ZERO, the subport attributes which follow apply to all subports, unless overridden.

NOTE
This "all subports” list should appear before the specific subport attribute
lists to have the expected effect, since the MCP will always use the last attri-
bute declaration when attributes are duplicated.

1090685-003 11-5

PORT FILE INFORMATION BLOCK

The MCP uses a Port FIB structure to provide an interface area for the status information needed
on each request, both from the program to the MCP and vice-versa.

PORT FIB STRUCTURE

The structure of the 200-digit Port FIB is defined in Tables 11-3 through 11-5. The FIB and associated
buffer must start on a mod 4 address; the minimum FIB address is 100.

Table 11-3. Port FIB Structure

Field Rel Loc Size Type Contents

PFBVAL 0 4 UN @CACA@ - to verify the
identitiy of the structure.

PFBLEV 4 2 UN 01 — compatibility level

PFBIOA 6 6 UN IOAT link

PFBFNM 12 3 UN file number for label equate
15 29 UN (reserved — must be 0s)

Table 11-4. Function Input Parameters (also includes (PFBSUB)

PFBBSZ 44 6 UN buffer size in bytes
PFBBUF 50 6 UN buffer address (mod 4)
56 24 UN (reserved — must be 0s)

Table 11-5. Function Output Parameters

PFBSUB 80 4 UN subport index

PFBMSZ 84 6 UN maximum message size in bytes

PFBERR 90 2 UN error type

PFBSTA 92 1 UN subport state

PFBEOF 93 1 UN EOF flag on read or write

PFBMSG 94 6 UN port input queue size

PFBINQ 100 4 UN subport input queue size

PFBCUR 104 6 UN current record size in bytes

PFBDAT 110 5 UN Julian date of request

PFBTIM 115 10 UN time of day in ms of request
125 75 UN (reserved — must be 0s)

11-6

The fields in the port FIB are used as follows:

PFBVAL
Validity flag used to detect smashed FIBs. It must always be equal to @CACA@

PFBLEV
FIB design level. Currently it must be equal to 01.

Link to MCP port structure while file is open. It must not be changed by the program.

PFBFNM
File number (1 relative) assigned sequentially by the compiler or binder as Port files are encoun-
tered. It is used for file equation, and it must not be changed by the program. The MCP uses
ilis as an index 1nio ihe PFPB direciory. This file number is compieiely separaie from siandard
file numbers.

PFBBSZ
Size in bytes of current work area. For COBOL this should be set equal to the size of the largest
01 record declared in the file on READs and set to the size of the specified 01 record on
WRITEs. Other languages may change this as necessary.

PFBBUF
Address of the work area. For COBOL this will be a constant pointing to the 0ls for the file,
but it may vary in other languages.

PFBSUB
Subport index for this request. It must be set before each request. A value of zero means "all
subports” or "port”, depending on the type of request. This field will be set to the subport return-
ing data on a successful non-directed read.

PFBMSZ
Maximum possible data size in bytes on the last I/O request.

PFBERR
Subport error value from last request. It has the following values:
0 = NO-ERROR
1 = DISCONNECTED
2 = DATA-LOST (on close)
3 = NO-BUFFER (on write no-wait)
4 = NO-FILE-FOUND (on open available)
5 = UNREACHABLE-HOST (on open)
6 = UNSUPPORTED FUNCTION (on open)

1090685-003 11-7

PFBSTA
Contains the subport state at the completion of the last request. It has the following values:

1 = CLOSED

2 = OPEN-PENDING
3 = OPENED

4 = BLOCKED

5 = AWAITING-HOST
6 = DEACTIVATED
7 = CLOSE-PENDING

8 = CLOSE-BLOCKED

)
Il

DEACTIVATION-PENDING
A = ALMOST-OPENED
B = SHUTDOWN-IN-PROCESS

C = NEVER-OPENED

PFBEOF
End-of-File flag — valid as of the completion of the last READ or WRITE request. It has the
values:
0 = FALSE (no EOF detected)

1

TRUE (EOF detected)

EOF = TRUE has several possible meanings:
1. The other program has closed its connected subfile (READ or WRITE request).
2. There is no space in the output queue (WRITE DON'T WAIT request).
3. There is no message available at this time (READ DON'T WAIT) request).

4. An interface error, such as a bad subfile index, has occurred (READ, WRITE, GET, or
SET request).

See the individual function descriptions for more details.
PFBMSG

The total number of input messages remaining to be read in all subports at the completion of
the last request.

118

PFBINQ
The number of input messages remaining to be read from the subport specified by PFBSUB at
the completion of the last request.

PFBCUR
The size in bytes of the current input (or output) record as of the completion of the last read
(or write) request. It cannot exceed the value in PFBBSZ.

PFBDAT
Julian date as of the completion of the last request (first half of a request timestamp).

PFBTIM
Time of day in milliseconds as of the completion of the last request (second half of a request

timestamp).
GENERATION OF PORT FIBS

Compilers or binders must build and maintain Port FIBs in user programs. Some fields in the Port
FIB can be initialized at compile time in the code file. Other fields must be set up by run-time code
before doing various types of run-time requests.

The following Port FIB fields must be initialized before the first run-time request:

PFBVAL
PFBLEV
PFBFNM
PFBBSZ
PFBBUF

NOTE
With PFBBSZ and PFBBUF, this depends on the compiler used.

PFBBUF does not need to be initialized if it is constant, as it is for COBOL programs. This field
is constant if the buffer address is supplied as an attribute in the Port FIB for the appropriate Port.
This is the preferred method of specifying a constant buffer address, because it increases the object
program execution speed.

All other fields should be initialized to zeros before the first request, which can be done in the code
file at compile or bind time, or dynamically at run time.

The following fields will normally be set up before each request:
PFBSUB
PFBBSZ
PFBBUF

NOTE
With PFBBSZ and PFBBUF, this depends on the compiler is use.

Compilers may make the COBOL file status field available to the user, or give the user access to the
output parameters returned by the MCP after each request.

NOTE
A Port FIB must start at address 100 or above.

1090685-003 119

PORT BCTS

The format and functional description of the various BCTs are given in the following paragraphs.

READ REQUEST
The format of the READ Request BCT is as follows:

BCT 614
BUN <NI>
P1 ACON <Port FIB>
P2 ACON <EOF>
P3 CNST = xx 00 = wait
02 = don't wait
P4 CNST = 10

This BCT requests the next message from the subport specified by PFBSUB or, if PFBSUB equals
zero, from any open subport.

Depending on the state of the port and subport, either the program will have a valid message when
it is reinstated, or it will be reinstated at its EOF routine.

The program will be reinstated at its EOF routine for one of the following reasons:

1. The other program is no longer connected to this subport. For example, the other program
has closed iis subport and all input messages have already been read. The only reasonable ac-
tion for this program is to close the subport. This is a real EOF condition.

2. No message is available to be read at this time. This can happen only on a Read Don’t Wait
request. The subport is open and functioning normally, and a new message may come in at
any time.

3. An interface error. The MCP checks some of the fields in the Port FIB, as well as the BCT
parameters. Most of these interface errors will cause the MCP to terminate the program, even

if it has an EOF routine.
The program determines the cause of the EOF as follows:
It is a Real EOF if either

1. The FILE-STATUS attribute is equal to DEACTIVATED.
2. PFBSTA is equal to DEACTIVATED.

No message is available if either

1. The FILE-STATUS attribute is equal to OPEN or DEACTIVATION-PENDING.
2. PFBSTA is equal to OPEN, BLOCKED, or DEACTIVATION-PENDING.

If one of the three conditions occurs when the program’s EOF routine address (P2) is zero, the MCP
terminates the program.

11-10

WRITE REQUEST
The formai of the WRITE Request BCT is as follows:

BCT 614
BUN <NI>
P1 ACON <Port FIB>
P2 ACON <EOF>
P3 CNST = xx 10 = wait
11 = don't wait
P4 CNST = 10

This BCT requests that a message be sent through the specified subport or, if PFBSUB equals zero,
through all open subports.

Depending on the state of the port and subport, either the program writes the message when it is rein-
stated, or it is reinstated at its EOF routine.

The program is reinstated at its EOF routine for one of the following reasons:

1. The other program is no longer connected to this subport. For example, the other program
has closed its subport. This is a real EOF condition.

2. The queue size is equal to the queue limit. This can happen only on a Write Don’t Wait re-
quest. The subport is open and functioning normally, and the message may be successfully
rewritten by the program at a later time, when the queue size goes below the queue limit.

3. An interface error. The MCP checks some of the fields in the Port FIB, as well as the BCT
parameters. Most of these interface errors will cause the MCP to terminate the program, even
if it has an EOF routine.

The program determines the cause of the EOF as follows:
It is a Real EOF if

1. The FILE-STATUS attribute is equal to DEACTIVATED or DEACTIVATION-PENDING.
2. PFBSTA is deactivated or DEACTIVATION-PENDING.

A No Buffer condition exists if

1. The SUBFILE ERROR attribute is equal to NO BUFFER.
2. PFBERR is equal to NO-BUFFER.

If one of the three conditions occurs when the program’s EOF routine address (P2) is zero, the MCP
terminates the program.

1090685-003 11-11

OPEN REQUEST
The format of the OPEN Request BCT is as follows:

BCT 614

BUN <NI>
P1 ACON <Port FIB>
P2 ACON <BASE>
P3 CNST = FE
P4 CNST = 10
P5 ACON <BASE>

P6 CNST = 20

P7 CNST = xx 00 = wait
10 = offer
20 = available

This request attempts to open the specified subport; if PFBSUB equals zero, it opens all supports up
to the maximum number specified. The specified subport must be CLOSEd in order to be OPENed.

If error conditions arise to prevent a successful OPEN, then either the program is terminated, or the
PFBERR and PFBSTA variables are set to indicate the error condition and the program is reinstated,
depending on the type of error.

If no errors occur, the action taken depends on the type of OPEN (P7). These actions are:

Wail
In this case (P6 = 20), the program is suspended until the specified subports have been success-
fully opened.

Available

In this case (P6 = 2F), if no matching subport is currently available for assignment, the OPEN
attempt is aborted; otherwise the OPEN is successful. Either way, the program is reinstated.
PFBSTA and PFBERR must be interrogated to determine if the OPEN was successful. Two
matching subports cannot become connected if both programs issue OPEN Available requests.
At least one program must open its subport in such a manner that the OPEN Available function
can detect that the other subport exists (that is, one program must either OPEN Wait or OPEN
Offer).

Offer
In this case (P6 = 2E), the specified subports are entered into a list of candidates for OPEN,
and the program is reinstated. The actual opening of the specified subports then proceeds asyn-
chronously with the program execution. The program can interrogate the support state of the de-
sired support with either a GET <attribute> or COMPLEX WAIT request to determine when
the specified subport becomes open. To rescind the offer of the subports, a CLOSE request must
be issued for the specified subport.

11-12

CLOSE REQUEST

The format of the CLOSE Request BCT is as follows:

BCT 614

BUN <NI>
P1 ACON <Port FIB>
P2 ACON <BASE>
P3 CNST = FF
P4 CNST = 10
PS ACON <BASE>

P6 CNST = x 0 = retain
4 = release
P7 CNST = x 0 = wait
F = don't waii

P8 CNST = 00

This request terminates processing on the specified subport, or all subports if PFBSUB equals zero.
Any input messages waiting to be read will be discarded, and a message will be sent to the connected
subport which will cause all further WRITEs by the connected subport to get an EOF. After any re-
maining output messages have been transmitted to the connected subport, the subport is marked
CLOSED and any attributes which may have changed as the result of attribute negotiations with the
corresponding subport at open time resume their pre-open values. The only valid operation at this time
is an OPEN.

If this is a CLOSE RETAIN request (P6 = 0), the external port structures are not deallocated and
the Port FIB remains connected to them. However, the subport does not remain connected to the other
process. The only use of this type of close would be to change an attribute such as YOURHOSTNAME
and re-open the subport.

If this is a CLOSE RELEASE request (P6 = 4), the external subport structures are deallocated and,
if this is the last open subport to be closed, the external port structures are also deallocated. After
a CLOSE Release all subport attributes take their default values if an attribute interrogate or subse-
quent OPEN is done.

If this is a CLOSE WAIT request (P7 = 0), the program will not be reinstated unless an error is found
or the CLOSE is successful.

If this is a CLOSE DON'T WAIT request (P7 = F), the program will be reinstated with either an

error condition or with any CLOSE still in process. The program may detect the completion of the
CLOSE by GETing state attributes or by doing a COMPLEX WAIT on the state changing.

1090685-003 11-13

SET ATTRIBUTE REQUEST
The SET Attribute Request BCT has the following format.

BCT 634
BUN <NI> !
P1 ACON <Port FIB>
P2 ACON <Error>
P3 CNST = FD
P4 CNST = xx 12 = pointer to other parameters.
11 = other parameters in-line
PS5 ACON <Error Results>

P4 = 11)

P6A CNST = xx # of Attributes
< Repeat Following Lines for Each Attribute>
P7 CNST = xxxx CSG Attribute #
P8 CNST = xxxx Attribute Value Length
P9 ACON < Attribute Value>

P4 = 12)

P6B ACON <other parameters: P6A thru P9, as above>
(must be MOD 2 address)

This request can be used to set one or more port and subport attributes. When port attributes are to
be set, PFBSUB must have a value of zero. When subport attributes are to be set, the subport number
is specified by the value of PFBSUB. If PFBSUB has a value of zero, the specified subport attributes
are to be set for all subports.

If an error occurs in attempting to set any attribute, the program will be reinstated at the error action
label, if one exists. If no error action label is present, no indication of error will be given. An error
when setting any one attribute will not prevent other valid attributes in the list from being set.

The error-results address (P5) is either zero (No Results Wanted) or points to an array of error results.
This array must have one 2-digit entry for each attribute in the list. Each error result field will have
one of the following values when the program is reinstated:

0 — no error

1 — invalid attribute number
2 — invalid attribute value
3 — attribute cannot ever be set
4 — attribute cannot be set while file is open
5 — invalid subport index
6 — subport not open (PLM-NS only)
7 — port not allocated

8 — invalid file type
9 — file not assigned
10 — system error

11-14

The number of attributes to be set is specified by P6A. This parameter must have a value of 01 to
99. The parameters P7 through P9 must be repeated once for each attribute specified by P6.

Each attribute to be set is specified by P7, and each is of type Numeric, Alphanumeric, Boolean, or
Mnemonic. The values pointed to by P9 are assumed to be in the correct format; alphanumeric attri-
butes are UA data, all others are UN. The attribute value length specified in P8 is assumed to be in
appropriate units, UN or UA, as the case may be.

SET Attribute may be used for standard FIBs; however, the only allowable attribute is HOSTNAME.
The format for the SET attribute is
BCT 634
BUN <NI>
P1 ACON <FIB>
P2 ACON <Error>

P2 CNST = FD

P4 CNST = 01

PS5 ACON <Error Results>

P6 CNST = 01 # of Attributes

P7 CNST = 0096 Attribute #

P8 CNST = xxxx Attribute Value Length

P9 ACON < Attribute Value>
GET ATTRIBUTES REQUEST

The format for the GET Attribute Request BCT is as follows:

BCT 654
BUN <NI>
P1 ACON <Port FIB>
P2 ACON <Error>
P3 CNST = FC
P4 CNST = xx 12 = pointer to other parameters
11 = other parameters in-line
PS5 ACON <Error Results>

(P4 = 11
P6A CNST = xx # of Attributes
< Repeat Following Lines for Each Attribute>
P7 CNST = xxxx Attribute #
P8 CNST = xxxx Attribute Value Length
P9 ACON < Attribute Value>
(P4 = 12)

P6B ACON <other parameters: P6A thru P9, as above>
(must be MOD 2 address)

1090685-003 11-15

The GET Attribute request is used to obtain the current value of any port or subport attribute. Some
port and subport attribute values are also returned in the Port FIB on the completion of each request
referencing the Port FIB. Thus, it is not necessary to do a GET Attribute request for the value of

subport-state following a READ request to that subport since the value is returned as a result of the
READ.

The GET Attribute request must be used to obtain the values of those attributes not returned in the
Port FIB, and also must be used if the attributes returned are "out of date”, such as following a COM-
PLEX WAIT. For practical purposes, this means that in a language such as COBOL, values returned
in the FIB can only be used within a basic block following a Read, Write, Open, or Close request.
All other occurrences would have to generate a GET Attribute request. In other languages, such as
BPL, it is the programmer’s responsibility to determine which source of attribute values should be
used. Syntactically this is a simple choice: one source is a reference to a subfield of the Port FIB,
the other is a function call.

The syntax and pragmatics of the parameters of the GET Attribute request, and of the attributes them-
selves, are identical to those described for the SET Attribute request. The only exception is that GET-
ing subport attributes with a subport index of zero is not allowed.

The GET Attribute may be used for standard FIBs; however, the only allowable attributes are
AREAALLOCATED and HOSTNAME. The format is then:

BCT 654

BUN <NI>
Pl ACON <«<FIB>
P2 ACON <Error>
P3 CNST = FC
P4 CNST = 01
P5 ACON <Error Results>
P6 CNST 01 # of Attributes
P7 CNST = xxxx Attribute #
P8 CNST = xxxx Attribute Value Length
P9 ACON < Attribute Value>

The attribute number for AREAALLOCATED is 0002 and for HOSTNAME is 0096. A GET attribute
of AREAALLOCATED is valid only if the HOSTNAME attribute of the file has been set to a value

which fc st aciio T thia Tooaal hoceoon
whnicii 1S 1ot €quai io inc 10Cai nosinamc.

For AREAALLOCATED, the <attribute value> pointer points to a structure consisting of a 2-digit
copy number (always zero) and a 4-digit area number followed by the result value. The copy number
and area number fields are not included in the attribute value length.

11-16

	00001
	00002
	0001
	0002
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0017
	02-01
	02-02
	02-09
	02-10
	02-27
	02-28
	02-83
	02-84
	03-05
	03-06
	03-15
	03-16
	03-17
	03-18
	04-29
	04-30
	05-05
	05-06
	05-21
	05-22
	05-29
	05-30
	05-41
	05-42
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	08-12
	08-13
	08-14
	08-15
	08-16
	08-17
	08-18
	08-19
	08-20
	08-21
	08-22
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10A
	09-10B
	09-10C
	09-10D
	09-10
	09-11
	09-12
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10A
	10-10B
	10-10
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16

