
-

THE BURROUGHS 0825
MODULAR DATA PROCESSING

SYSTEM

PROGRAMMING MANUAL

31 JANUARY 1962

Contract N. Nonr 3521 (00) (x)

SUBMlmo TO

u.s. NAVAL RESEARCH LAIIRATIRY
WASHINGT8N D.C_

---Burreujhs C rp.rati.n--

CONTENTS

Page

SECTION 1 - INTRODUCTION. 1-1

SYSTEM ORGANIZATION . 1-1
SYSTEM OPERATION . 1-3

Parallel Operations . 1- 3
Operational Structure 1-4
Modes of Operation . 1-5
Automatic Interrupt Capability 1-5

COMPUTER MODULES D825-1 . 1-7

SECTION 2 - THE FEATURES OF D825 PROGRAMMING 2-1

VARIABLE LENGTH INSTRUCTIONS 2-1
OPERAND STACK 2-3
INDEXING . 2-3
RELATIVE ADDRESSING AND INDIRECT ADDRESSING. 2-5
FIELD DEFINED INSTRUCTIONS 2-7
SUBROUTINE CONTROL . 2-8
INTERRUPT SYSTEM . 2-8

SECTION 3 - THE STRUCTURE OF PROGRAM SYLLABLES. 3-1

O-OPERATOR SYLLABLE. 3-1
X-INDEX SYLLABLE 3-2
M-MEMORY ADDRESS SYLLABLE. 3-3
B-BRANCH ADDRESS SYLLABLE . 3-5
T-THIN FILM ADDRESS SYLLABLE . 3-6
Iv-INDEX INCREMENT VARIANT SYLLABLE . 3-6
la-INDEX INCREMENT AMOUNT SYLLABLE 3-6
S-SHIFT SYLLABLE: 3-7
Vt-TRANSMIT VARIANT SYLLABLE . 3-7
L-LOGICAL MACHINE CONDITION SYLLABLE 3-7
F-FIELD DEFINITION SYLLABLE. 3-8
C-CHARACTER SYLLABLE . 3-8
Ja-SUBROUTINE JUMP ADDRESS SYLLABLE . 3-8
Ji-SUBROUTINE JUMP INCREMENT SYLLABLE. 3-9
Rc-REPEAT COlTNT SYLLABLE 3-9

-i ii-

CONTENTS (Cont'd)

SECTION 3 - (continued)
Page

Ri-REPEAT INCREMENT SYLLABLE. 3-9
10-1/0 SYLLABLE • . . . • 3-10
Vs-SPECIAL REGISTER AND COMPUTER INTERRUPr

VARIANT SYLLABLE • . . . • • • . 3 -1 0

SECTION 4 - D825 INSTRUCTIONS . .

FIXED POINT ARITHMETIC INSTRUCTIONS .
FLOATING POINT ARITHMETIC INSTRUCTIONS .
REGISTER MANIPULATION AND DATA MOVING

INSTRUCTIONS • . . . • • • .
UNPACKING AND PARTIAL WORD INSTRUCTIONS .
PROGRAM CONTROL INSTRUCTIONS. .

• . 4-1

· . 4-3
· 4-4

· . 4-9
· . 4-14

· 4-25
INTERRUPT CONTROL INSTRUCTIONS. • . • . . · 4-33

SECTION 5 - INPUT/OUTPUT PROGRAMMING.

DESCRIPTOR TYPES
DESCRIPTOR FUNCTIONS
SETUP DESCRIPTOR FORMAT. •
COMMAND DESCRIPTOR FORMAT

. . . 5-1

· • . . 5-1
· . . . 5-2

· 5-4
· . 5-4

IN-PROCESS DESCRIPTOR FORMAT. • . 5-5
· • 5-6 RESULT DESCRIPTOR FORMAT.. ...

RELEASE DESCRIPTOR FORMAT. . . • . . . 5-7

SECTION 6 - THE D825 INTERRUPT SYSTEM . 6-1

PRIMARY POWER FAILURE . . • • . •. • 6-3
COUNT REAL TIME • 6 - 3
RESTART AFTER PRIMARY POWER FAILURE • . . .6-3
EXTERNAL REQUESTS.••••.• 6-4
I/O TERMINATION. . . . • • • . 6-4
INTERRUPT COMPUTER N • 6-4
REAL-TIME CLOCK OVERFLOW . . . •• •. 6-4
WRITE OUT OF BOUNDS . • . . . 6-4
ILLEGAL INSTRUCTION . .••....• 6-5

-iv-

CONTENTS (Cont'd)

SECTION 6 - (continued)

PARITY ERROR •
ARITHMETIC OVERFLOW
HALT.
PROCESSING OF THE INTERRUPT CONDITIONS.

APPENDIX A - D825 INSTRUCTION EXECUTION TIMES.

APPENDIX B - D825 TIMING ALGORITHMS .

APPENDIX C - MAP OF THIN FILM REGISTERS

APPENDIX D - INDEX TO D825 INSTRUCTIONS.

-v-

Page

6-5
6-5
6-6
6-6

A-1

B-1

C-1

D-1

SECTION 1

INTRODUCTION

This programming manual describes the machine language programming
techniques used with the D825 Modular Data Processing System. This
introduction includes system organization and operation to familiarize
the programmer with the D825, and succeeding sections present the
programming features of the D825, the structure of the instruction
syllables, the operation codes, input/output programming, and the
interrupt system. In addition, there are four appendices; Appendix A
gives the D825 execution times, Appendix B gives the timing algorithms
with an example, Appendix C gives the addressing structure for the
thin film registers. and Appendix D is an index of operation codes.

SYSTEM ORGANIZATION

The Burroughs D825 Modular Processor is organized for a specific
application in an appropriate complement of Computer Modules,
Memory Modules, Input/Output (I/O) Control Modules, and a common
exchange of I/O devices. Physically, a complete system, including
power supplies, is housed in a number of standard cabinets, an
operating console, various input/output equipments, and off-line test
equipment. The general system organization is illustrated in figure
1-1.

The Computer Module arithmetic unit operates in parallel, but re­
ceives data from the switching interlock in serial-parallel form. A
thin-film register storage and operand stack in each Computer Mod­
ule operates at the 3 megacycle clock rate and greatly reduces the
required accesses to Memory Modules. The command list of the
computer includes binary fixed and floating point arithmetic instruc­
tions with the computer organization oriented toward efficient

1-1

PA,.R TAPI

MAGNETIC TAPI
TRANSPOaT

moo

PlRPO:"TOR • • ..

HIGH·SPEED
'RINTER

RIADER

MAGNnlC
DIUMS

(TWO Pli ,-----,

CAIINn) u:r--==_~

AUTOMATIC INPUT/OUTPUT EXCHANGE
(MAXIMUM Of 64 Dll/lCUl

II II \\ \\

MAGNETIC
DISC FIll

SPECIAL
RIAL.TlME CLOCKS

&
SELECTED

DATA CONYERTERS

ww···· w
INPUT/OUTPUT

CONTROL
MODULIS

Figure 1-1. D825 System Organization

1-2

SUPERYISORY
,.INTIR

INTUSYSTEM
DATA LINKS

CAID
READER

floating-point computation. The addressing structure of the com­
puter has been designed to incorporate all of the power of a three­
address machine. (Less than the maximum of three addresses can
be processed with each instruction, with commensurate savings in
instruction time and program storage.)

The Memory Module is a linear-select (word-organized), random­
access, ferrite-core memory which was once available only in com­
puters designed for extreme environments. Each module contains
4096 words of 48 bits plus parity, and a fully expanded system of 16
modules provides 65,536 words of memory.

I/O Control Modules, consist essentially of control and data manipu­
lation registers and associated decoding and timing circuits. Each
is capable of controlling any device of the I/O complement, and there
can be as many simultaneous I/O operations as there are I/O Con­
trol Modules. The I/O exchange automatically connects control mod­
ules with specified I/O devices on command from computer modules.
The console, effectively an I/O device, displays system status to
the operator and permits him to effect inquiries and manual interrupts.

SYSTEM OPERATION

The D825 adapts instantly to real-time influence, to new programs,
to changes in program priorities, and to manual or automatic inter­
rupt signals. Its operational structure permits broad programming
flexibility and efficient operation and program storage. Man/machine
communication is comprehensive.

Parallel Operations

Each D825 Computer Module has exclusive use of a data transfer bus
by which it can communicate, via the switching interlock, with any
memory module in the system. The I/O Control Modules of an I/O
exchange share a single bus, and two excllanges. each on a sep­
arate bus, are available as an option.

Memory may be used concurrently by all computer and I/O exchange
buses. If two or more buses Simultaneously address the same Mem­
ory Module, the switching interlock automatically resolves the

1-3

conflict according to priority and queues the lower priority items.
One functional bus gains immediate access while the other is delayed
only until completion of the first memory transfer.

Operational Structure

The D825 has been designed with a binary data word of sufficient
length (49 bits including sign and parity) for almost all computing
problems, and for really useful binary floating-point computation
(36 bits of mantissa, including sign, and 12 bits of characteristic
or exponent). This provides as much resolution for floating-point
arithmetic as many large-scale computing systems offer in fixed­
point arithmetic. The D825 alphanumeric data word contains eight
characters.

Operands may be called from memory or from a four-position stack
of operand registers within the thin-film storage of the computer.
The results of operations can be stored in memory or in the operand
stack for subsequent processing at the will of the programmer.

The operand stack is a device, extremely useful in arithmetic and
proceSSing operations, which reduces the number of references to
main memory by holding partial or intermediate results of computa­
tion. The stack operates in two modes: normal and hold. The hold
mode is useful for list manipulation and for repeated use of a number.

The first syllable of an instruction supplies the operation code and
three address indicators. The address indicator provides choice
between fetching the operand from the stack or the memory, and in­
dicates whether the stack mode is normal or "hold" and whether the
memory address is to be indexed or not. Address syllables or syll­
able strings follow the operation syllable for each memory accesses
called out. Each memory address syllable contains an eleven-bit
literal address and an indirect address bit. The literal address is
added to the 16-bit base address register in order to refer to an
area of memory known as the direct-address area.

The contents of the direct-address area location may be either an
operand or another memory address. Indirect addressing of any
desired number of levels is available by this technique.

1-4

Any or all of the three operand addresses which can be developed for
each instruction may be modified by three of fifteen thin-film index
registers. This capability, combined with the powerful indirect ad­
dressing capability of this system. provides immensely flexible ad­
dress control. A full discussion of D825 programming features is
presented in Section 2.

Modes of Operation

The D825 Modular Data Processing System has two modes of opera­
tion. normal and control. The control mode has a slightly larger
order code than the normal mode. in that several special control
instructions are necessary in addition to the normal instructions.
The interrupt system provides the means of transposing operation
from the normal mode to the control mode, either by computer in­
struction or by the occurrence of an event internal or external to the
computer. When a computer is in the control mode. it can adjust its
mask register to accept or ignore certain of these events.

Object programs are performed in the normal mode. and control pro­
grams. such as an Automatic Operating and Scheduling Program. are
performed wholly. or in part. in the control mode. Control mode is
always used for transmitting I/O descriptors.

Automatic Interrupt Capability

The interrupt system provides the facility for interrupting the "normal"
data processing mode of operation of the computer system. It recog­
nizes programmed and hardware-generated interrupt conditions caused
by situations arising in the execution of a program; recognizes man­
ually-initiated requests and automated external requests for communi­
cation with the computer system; and also recognizes equipment faults
such as parity errors, illegal operations, and primary power failures.

In general. an interrupt condition causes transfer of control of the in­
terrupted computer from the object progra.m to an Automatic Operating
and Scheduling Program (AOSP). Interpreting the interrupt condition
at hand. the AOSP transfers control to the appropriate routine for
handling the condition. When the interrupt condition has been satisfied.
control is returned to the object program.

1-5

.....
I

en

r

I
I
I
!
!
I

I

THIN FILM REGISTERS SUBCOMIIANDS
ASSEMBLED F-ROM 12-'81T REGISTERS ASSEMSLED FROM 18-81T REGISTERS

\11 PROGRAM STORAGE REGISTER "" (PSRI) 48 BITS I I INTERRUPT STORAGE REGISTER (I SR) 48 BITS I
PROGRAM STORAGE REGISTER #2(PSR2) 488tTS

SUBROUTINE STORAGE REGISTER (SSR) 48 BITS I
INTERRUPT PROGRAM REGISTER (IPR) 48 81TS I

REPEAT PROGRAM REGISTER (RPR) 6. BITS I
REAL TillE CLOCK (RTC) 24 BITSI

INTERRUPT DUMP REGISTER (I DR) .. 81TSI

REPEAT COUNT R£-GISTER (RCR) '2 .,TS I TIMING PULSES SUBCOMMAND
POWER FAILURE DUMP REGISTER (POR) 32 BITS I MATRIX

INOEX INCREMENT REGISTER (Xlft) 12 BITS I
I PROGRAM COUNT REGISTER (PCR) 16 81TS I .---CHARACTER COUNT REGISTER (e-CR) .. BITS I

I BASE PROGRAM REGISTER (BPR) •• BITSI
3 REPEAT INCREMENT REGISTERS (RIR) t2 8ITS EACHI

I BAS. ADDRESS REGISTER 18.RI '.81TSI
THIN filII C REGISTER (TFC) 48 81TS I

I SU8ROUTINE BASE AtJURESS REG. esARI I. B'TSI
STACk 48 BITS

STACK 48 Brrs I INTERRUPT BASE ADDRESS REG (IAR) I. BITSI I THIN FILII ADDRESS GATING I
STACK 48 BITS

STACK 4. alTs I •• INDEX REGISTERS l' BITS EACHI

I ,. LIMIT REGISTERS l' BITS EACH)

SYLLABLE REG. (5) 12 BlTSJ FUNCTION REG IFI 12BITS ,

.

THIN FILII I/O REB. (K8EI 'KREG. 48ITS , E REGISTER

t

I ADDER

I COIIPARATOR I
... f 1 I UPPER LIMIT IXI 8 IITS 1 ~

'L REG. 481TSI II REGISTER

I LOWER LIIIITlY) 8 BITS I

1 t .L

I COMPARATOR I

IIEIIDRY 1I0D. MEMORY DATA FRDM
IIEMORY ADORESS ADDRESS

AND DATA

1
12 BITS J

ARITHIIEnc UNIT

I I REGISTER 48 BITS

I ADDER

I A REGISTER 48 81TS

12 BITS 'IIEIIORY liD REG (L 8111

Figure 1-2. Computer Module Block Diagram

I

I

I

HIIULTIPLY-DIVIOE CDUNTERIDlj

INTERRUPT REG. III 1

~ ,
INTERRUPT
SIGNALS

MASK REGISTER IGI 238ITS 1

I C REG. ltllTS I

COMPUTER MODULES D825-1

The system can accommodate up to four Computer Modules. Each
Computer Module consists of three functional areas. The first area,
the arithmetic unit, is made up of three registers A, B, and C with
associated controls. The second area is a set of 53 registers con­
tained in a small thin-film magnetic storage. The third area is the
control section which includes capability for indexing, address accum­
ulation, indirect addressing, and the command and subcommand mat­
rices. Figure 1-2 is a block diagram of the Computer Module showing
all functional areas.

The memory I/O register (L and M) is a multipurpose register. To
initiate a memory transfer, the memory address is transferred to
the memory I/O register. The portion of this address that is the L re­
gister designates a specific Memory Module and is sent as dc levels
to the switching interlock circuitry of the memory trunk. Address
data for the Memory Module and information words entering the Com­
puter Module from the memory module are transmitted through the
M register 12 bits at a time.

The A register, B register and C register are the working arithmetic
registers of the Computer Module. The A and B registers with assoc­
iated adder circuitry perform the actual arithmetic operations. The
A register is capable of shifting in optimum combinations of 12. 6, arid
1 places to the right and iteratively 1 place to the left.

The function register (F) is a 12-bit register that holds the operator
syllable being executed and provides the dc levels for driving the
command and sub-command matrices.

The Multiply/Divide counter (D) controls the number of add or sub­
tract cycles to be executed during multiply or divide operations. The
counter also controls the number of shifts to be executed during an
instruction.

The five operand registers include four operand stack registers
which make up the thin-film operand stack, and the thin-film C (TFC)
register which is used to store the least Significant half of a double­
length product and the remainder for division"

1-7

The two program-storage registers (PSRI and PSR2) provide storage
for eight instruction syllables and permit overlapped instruction fetch
during long instructions.

The base address register (BAR) holds the base address of the data
direct-address area. The base program register (BPR) holds the
base address of the program address area. The program count re­
gister (PCR) holds the address of the last instruction (most recently
fetched from memory) in the program-storage registers.

There are 15 index registers and 16 comparison limit registers. Any
three of the index registers may be addressed by each index address
syllable and used to modify each operand address. The index regis­
ters may be incremented, decremented, and compared in six different
ways with the comparison limit registers. The index increment re­
gister (XIR) is used by the logic during the execution of the index in­
crement instruction.

The contents of the real-time clock (RTC>' a 24-bit register, is auto­
matically read out and incremented once every 10 milliseconds. The
real-time clock may be sampled and set by the program. An interrupt
is initiated when the count overflows.

The character count register (CCR) is used by the character search
instruction to indicate the character position last examined for the
specified character.

When the repeat instruction is used, the repeat program register (RPR)
provides storage for the four syllables of the program word being re­
peated; the repeat count register (RCR) contains the number of itera­
tions yet to be performed; three repeat increment registers (RIR) con­
tain the increments corresponding to the three addresses of the in­
struction being repeated.

The subroutine base address register (SAR) contains the base address
of a list of subroutine addresses, When a subroutine is executed, the
subroutine storage register (SSR) holds subroutine return information,
i. e., the former contents of the BAR, BPR, and PCR.

The interrupt system registers provide storage for data in the opera­
tional registers in the event of an interrupt. The interrupt base ad­
dress register (IAR) contains the base address of the interrupt rou­
tines; the contents of this thin film register are protected during the

1-8

normal operation mode. The interrupt storage register (ISR) holds
interrupt return information, i. e., the former contents of the BAR,
BPR, and PCR. The interrupt program register (IPR) provides stor­
age for the contents of the presently addressed PSR, during interrupt.
The interrupt dump register (IDR) holds the PSR and repeat controls for
interrupt return. The power failure dump register (PDR) holds the
contents of the control flip-flops and the flip-flop interrupt register
in the event of a power failure.

There is an over-under voltage detector which will detect and signal
excursions of primary power beyond fixed voltage limits. The out-of­
tolerance signal causes the computer module to store sufficient infor­
mation to restart the program without loss of data. Provision is made
for automatic program restart by automatically reloading stored data
back into the flip-flop registers. The power supplies themselves have
a sufficiently long time constant to protect the hardware, program,
and data from all primary power transients and failures, and allows
continuation of the program when stable primary power is restored.

The interrupt system handles interrupts ariSing from such conditions
as arithmetic overflow, running down of the real-time clock. illegal
orders, parity errors, external input-output requests, and I/O result
situations, etc. Each Computer Module has an interrupt register
which can be set through the interrupt mask register. When a parti­
cular condition has set a one at some bit position in the interrupt re­
gister. a program interrupt occurs. This interrupt stops the program
being executed, stores sufficient registers to allow continuation of the
interrupted program at a later time, and transfers control to a routine
in an AOSP to service the interrupt.

1-9

SECTION 2

THE FEA TURES OF D825 PROGRAMMING

The flexibility of D825 machine language programming is a result of
the following programming features which are discussed in this section .

• Variable-Length Instructions

~ A Four Level Operand Stack

t9 Single and Multiple Indexing

• Relative Addressing and Indirect Addressing

(1) Field-Defined Instructions

~ sUbrofine Control

f) A Comprehensive Interrupt System

VARIABLE-LENGTH INSTRUCTIONS

The combination of two unique features - three address programming
and variable length instructions - in the D825 yields new efficiency
and versatility in programming. The three address capability takes
advantage of the fact that many fundamental operations involve three
factors, and therefore may need three storage locations: one each
for the two operands and the result. The typical example is "add A
and B; store the result in C". Single address programming. with
each of the three factors using a separate storage location. requires
three instructions to complete the operation: (1) clear and add A,
(2) add B, and (3) store in C. There is a large group of such opera­
tions readily adaptable to three address programming; but there is

2-1

an equally large group of operations that require fewer than three
addresses. If all instructions were to be of exactly three addresses,
the program would be wasteful, and nothing would be gained by three
address programming over conventional single address programming.
For this reason, variable length instructions are allowed.

The program in memory consists of blocks of 48-bit program words;
program words, in turn, consist of four units of information each.
These four 12-bit units are called "syllables". A syllable can be of
a variety of different formats. and these special formats are deter­
mined by the information that a specific instruction needs, such as
an address or an instruction variant. In fact. the operation code of
the instruction itself occupies one of the syllables. known as the
operator syllable. The formats and uses of the different syllables
will be discussed in Section 3 in more detail.

The variability of the system comes from the fact that the instructions
are considered as "strings of syllables". and these strings can vary
in length from one to seven syllables per instruction. Also, an in­
struction can begin at any syllable location in the memory word. and
end with this or any succeeding syllable of the memory word, or can
continue on into as many as two succeeding memory words.

Although a particular instruction requires certain addresses, the top
of the operand stack may be implied as one (or more) of the addresses
and therefore needs no syllable(s) to identify it. On the other hand,
certain addresses may be indexed and therefore need two syllables to
identify the address. Whatever the case may be it is indicated by
three address tags of two bits each which appear in the operator syl­
lable, along with the operation code of the instruction.

There are two important things to remember about syllable strings.
(1) The first syllable of an instruction is always an operator syllable,
and will identify any syllables that may follow. (2) Individual syllables
are not addressable, although program words are. For this reason
a branch refers to the first syllable of a memory word, and will ex­
ecute that particular syllable as an operator syllable (i. e., the be­
ginning of a syllable string). Therefore when a branch is planned,
the operator syllable of the instruction to be executed must be the
first syllable of the memory word.

2-2

OPERAND STACK

One of the features of the D825 is the fast access operand stack.
Operands which are used again and again can be kept in the stack and
addressed in a shorter time than would be required to get an operand
out of memory .. However, only the top of the stack is accessible at
a given instant. The programmer must keep aware of what values are
in each level of the stack and which level is currently accessible.
The stack is effectively a four-word circular memory with an address­
ing counter. One of the four words is always being "pointed at" or is
under the "read head". This circular concept and the pointer "read
head" at the top of the stack are used in the examples shown in figure
2-1.

Whenever access is made to the stack, there is an option of either
holding the stack or circulating the stack one step. Normal operation
is to step the stack with each stack reference. The stepping opera­
tion follows all fetches from the stack and precedes a deposit made
in the stack. As shown in figure 2-1 this stepping action is counter­
clockwise following a fetch and clockwise preceding a deposit.

In the D825 operation syllable, address tag values 00 and 01 designate
the stack as the intended operand source. Codes 10 and 11 refer to
the memory. Code 00 designates normal stepping of the stack wheel
and 01 designates that the stack be held (not stepped).

Figure 2-1 gives examples showing the resulting condition of the
stack after all the possible combinations of stack operations. Ex­
amples 1 through 9 include one or more memory operands with the
results stored in the stack or memory. In examples 10 through 15,
both operands are from the stack and the results are stored in the
stack. In examples 16, 17, and 18, both operands are taken from
the stack but the results are stored in the memory. The initial con­
dition for all the examples is shown in the up per left-hand corner.

INDEXING

D825 indexing implements two processes: (1) the modification of an
address by adding the contents of one, two or three index registers
to the address in order to obtain the effective address, and (2) the
modification of the contents of an index register, comparing the

2-3

INITIAL CONDITION

BAD 10 1010

h = HOLD STACK
BAD 10 10 00

S1 = STACK LEVEL

M : MEMORY OPERAND

--.. = STORE(IN STACK '1'
OR MEMORY) \!..}

00 = STACK FETCH OR
STORE

01 = HOLD STACK AND
FETCH OR STOR

10,11 = ME~ORt FFflCH M + M - S4

BAD 00 10 00, BAD 10 00 00 BAD 0010 01, BAD 10 00 01

®

BAD 0110 00, BAD 100100 BAD 0110 01, BAD 100101 BAD 0110 to, BAD 10 01 10

®

BMU 01 01 ai, BMU 01 00 00 BMU 01 01 00 BAD 00 0100

@ @

BMU 0100 01 BAD 00 0110,BAD 010010

BAD 10 1001

®

BAD 00 10 10, BAD 10 00 10

BAD 00 00 01

BAD 01 01 10

Figure 2-1. Operation of the D825 Operand Stack

2-4

modified contents of the index register with the contents of a specific
limit register, and, depending on the results of the comparison, trans­
ferring program control to the appropriate location. The first process
is performed automatically within an instruction, if desired, and can
involve any or all of the three possible addresses of the instruction.
The second process is performed by one specific instruction.

A special feature of the D825 is "multiple indexing". i. e., adding the
contents of up to three index registers to the address. This is
especially valuable in multicoordinate systems where it is necessary
to maintain more than one separate index in computing the addresses
of operands in an array.

Other features of the D825 indexing system are: (1) An ample quantity
of index and limit registers (15 of each) is provided. and these are
located in thin film, thus making them independent of program or data
locations in memory. (2) The registers are 16 bits each, and there­
fore can contain an absolute memory address, 1. e., not relative to
any base address. (3) The contents of index and limit registers are
unsigned quantities, but if a "negative address modifier" is desired.
the two's-complement "positive address modifier" will serve the
same purpose.

RELA TIVE ADDRESSING AND INDIREC T ADDRESSING

The addres;:; syllable contains only 12 bits, in order that programs
may be condensed. Sixteen bits, however, are required to specify
an absolute machine address. Several techniques are available to the
programmer to allow flexibility in addressing without the full six­
teen bits.

Normally the program is contained in a block of contiguous memory
locations, and programs for the D825 will in general be loaded this
way. The beginning location of the block may be any location in mem­
ory. The address of this location is placed and retained in a thin film
register called the BPR (Base Program Register). Any transfer of
control in the program adds the literal specified in the branch syllable
to the BPR and places this sum in the PCR (Program Count Register).
another thin film register. In this way, transfers (branches) may be
specified to locations relative to the beginning of the program block.
and the program may be loaded and executed in any position in memory
with no modifications of branch addresses and no wasted indexing.

Examine the
12-bit
M syllable

NO

Fetch the contents
of, or store in,
the location speci­
fied by [BAR + bits
2-12 of the syllable]

Figure 2-2.

Contents of the
location specified
by [BAR + bits
2-12 of the syl­
lable] _
level n address

NO

Fetch the contents
of, or store in,
the location speci­
fied by [bits 33-48
of the level n
address]

YES n + 1 __ n

Flow Chart of Indirect Addressing

Contents of the
location specified
by [bits 33-48 of
the level n-l
address] _
level n address

In the same way that instructions are contained in blocks, the constants
and variable data may be placed together in a block of contiguous
memory locations. 'This is a restriction of memory usage which is
of considerable importance in being able to allocate any available
space in memory to a program to be run. Eleven of the twelve mem­
ory syllable bits are used to specify the location of an operand rela­
tive to the beginning of the data block. The first location of the data
block is placed in the thin film BAR (Base Address Register). When
an operand memory reference is made, the eleven least Significant
bits of the memory syllable are added to the BAR to form the abso­
lute address.

While only the first 2,048 words (direct address area) immediately
following the location specified by the BAR are directly addressable.
this restriction is trival due to the flexible indexing provided and the
ability to indirect address beyond this area.

The most Significant bit of the memory address syllable indicates, if
it is a one, that the address is an indirect one. The 16 least significant
bits of the location specified is then the absolute address of the oper­
and or another indirect address. If the 17th-least significant bit of
the location specified in the direct address area is a one, it indicates
that the indirect address chain is to be continued; that is, the location
specified in the direct address area is, in turn, an indirect address.

This indirect address chaining is prOvided for any number of levels.
If indexing is specified for the operand in the instruction word, it is
performed at the last level (1. e., at the completion of all indirect
addressing). The flow chart (figure 2-2) describes the indirect ad­
dressing chain.

Indirect addressing can also be used to facilitate computer control of
certain areas of the program by using a "snag bit." If the 18th-least
significant bit of any level of addressing after the first is a "ONE";
an interrupt register bit will be set.

FIELD-DEFINED INSTRUCTIONS

A set of field-defined instructions is provided to facilitate code con­
version and multiple use of a memory location. A field is defined to
be a set of physically adjacent 6 -bit characters in fixed locations in a

2-1

word. The ability to perform simple arithmetic, manipulation, and
comparison on such fields is available.

SUBROUTINE CONTROL

The ability to transfer control to a remote subroutine, and to return,
is provided. This transfer of control enters a subroutine indirectly
through a list of all subroutine addresses, and the location of this list
is specified by the SAR (Subroutine Base Address Register). This
feature eases the bookkeeping required to relocate a subroutine. An
index regibte.c is set by the computer logic to allow the addressing of
constants in the subroutine area. The ability to locate the working­
storage area of subroutines in the calling routine's direct address area
is provided by the instruction logic. It is possible to have several
computers independently and simultaneously execute a subroutine through
the use of independent direct :'\ddress areas. The facility of handling
nested and recursive subroutines is cot:lsiderable. The subroutine jump
and return instructions are slightly more complex than those provided
in other types of machines so that their use in a multiple computing
system, with basic relative addressing, is enhanced.

INTERRUPT SYSTEM

A complex and comprehensive interrupt system is provided to facili­
tate the use of the computer in a control system. If an external re­
quest occurs, a computer will be interrupted at the completion of its
current operation. The ability to automatically resume operation is
provided. Computers may be interrupted by external requests, such
as for I/O servicing, by internall\y generated signals such as the run­
ning-down of the clock, and by other computers. A computer which
is interrupted is automatically placed in the control mode, in which
it can execute a special class of instructions which are not available
in the normal mode. The restrictions in the normal mode prevent
changes to an AOSP by overwriting memory unexpectedly, modifica­
tion of the interrupt controls, and initiating input/output for which
the operating system would be unaware. These two modes of opera­
tion allow the operating system program, executed in the control
modp,,, to maintain its monitoring of all other programs.

A special type of interrupt occurs if power fails. All registers and
controls are stored in non-volatile storage, and the system operation
may resume when power is restored.

2-8

SECTION 3

THE STRUCTURE OF PROGRAM SYLLABLES

The structure of the 18 syllable types used in machine language pro­
gramming of the D825 is presented in this section. The operator
syllable, the index syllable and basic address syllables (memory and
branch addresses) are given first, followed by the special-use syll­
ables. The letter symbols preceding the syllable headings are used
in Section 4, D825 Instructions, to represent the syllable structures
given in Section 3. All syllables are 12 bits in length.

O-OPERATOR SYLLABLE

COMMAND A3
CODE

The operator syllable is the only one required for every instruction.
It identifies any syllables that may follow and any stack usage for the
instruction. This type of syllable is not indexable. The A1, A 2, and
A3 codes identify the 3 possible" addresses" of the instrucfion as
sliown on the following page.

3-1

Code

00
01
10
11

Definition

Stack (or no address)
Hold stack
An unindexed syllable follows
An indexed syllable follows (index
syllable followed by any other
syllable, to which it is applied)

In the following example of the use of the operator syllable. the num­
ber contained in the top of the stack is squared. and the results are
stored in the stack.

BMU o 1 o o 0

X-INDEX SYLLABLE

I I 1 I I I I I I
I N D EX REGISTER INDEX REGISTER INDEX REGISTER

ADDRESS ADDRESS ADDRESS

The index syllable can be used with any other syllable except the index
syllable itself, the operator syllable. or any syllable used in a repeated
instruction (see RPT instruction). In all cases it is optional. The
contents of up to 3 index registers can be applied to (added to the con­
tents of) one syllable. If an index register contains the 2' s comple­
ment of a number. use of this index register effectively subtracts the
number from the contents of the syllable to which it is applied. When
a syllable is indexed it is immediately preceded by its index syllable.
An index register address equal to zero means no index. In indexed

3-2

indirect-addressing, the contents of the index registers are applied
to the last-level address only.

In the following example, the index syllable and memory address ayll­
able follow the operator syllable. If index register 15 (1111) contains
b and index register 2 (0010) contains c, then the contents of the mem­
ory location specified by [a + b + c + BAR] is added to the top of the
stack (floating-point in this case) and the results are stored in the
stack.

<D I FAD 1 1 0 0 0 0

® I 1 1 1 1 0 0 0 0 0 0 1 0

I I
I

® 0 RELATIVE ADDRESS (a)

M-MEMORY ADDRESS SYLLABLE

RELATIVE ADDRESS (a)

3-3

The memory address syllable is used to address data words in mem-
0ry. The relative address (a) is added to the contents of the base
address register (BAR) to obtain the effective memory address. If
I = 1 this address is indirect, and the location specified by [a + BAR]
tb-en contains the next level address (the 16 least significant bits,
with the 17th bit as an IA bit). Note that each level of addressing,
after the first, contains an absolute address, and therefore is not
added to the BAR.

In this manual, an underlined memory symbol, M, represents the
store address of the instruction, if any; memorysymbols surrounded
by parentheses, (M), represent optional syllables. If a memory
syllable is omitted, the stack is the implied address; in any case,
the A l , A2, and A3 codes of the operator syllable define the ad­
dress(es). For example, 0 (M) (M) (M) means operate on the con­
tents of the locations specified by the first two addresses and store
the result in the location specified by the third address. All three
memory syllables are optional (i. e., can be replaced by stack re­
ferences).

Since the first bit of the memory address syllable is a ONE in the
example shown below, the memory address specified by [a + BAR]
is indirect and contains the second level addressJif a ZERO appears
in the I A bit of the second level address, the contents of the location
specifiea by the second level address is added to the top of the stack
and the results are stored in the stack. If the IA bit is equal to ONE,
this address also is indirect and contains the.n.m level address;
the indirect addressing chain will continue until an I A bit is equal
to ZERO.

G) 1~ ________ B_A_D ________ ~_1 ____ 0~_O ___ O~~O ___ O __

® 11 I RELATIVE ADDRESS (0)

3-4

Second level (and subsequent level) absolute addresses are stored in
bits 33 through 48 of the 48-bit memory word, and bit 32 is the IA bit.

B-BRANCH ADDRESS SYLLABLE

RELATIVE ADDRESS (0) :

The branch address syllable is used to address program words in
memory. The contents of the relative address (a) is added to the
base program register (BPR) to obtain the effective branch address.

The following example is an unconditional transfer to the program
word stored in the memory location specified by [a + BPR] .

UCT o o o o o

® RELATIVE ADDRESS (0)

In all cases where a branch is used, the first syllable of the 48-bit
memory location thus addressed must be the operator syllable of the
next instruction to be performed. When a branch is made, the pro­
gram count register (PCR) is automatically loaded with the address
of the branch.

3-5

T-THIN FILM ADDRESS SYLLABLE

t?<d VAR.b><j T. F. REGISTER ADDRESS

The thin film address syllable is used for addressing all thin film
registers, and applies only to the STF and LTF instructions described
in Section 4.

lv-INDEX INCREMENT VARIANT SYLLABLE

I I I I I I I I I

VARIANT INDEX REGISTER LIMIT REGISTER
ADDRESS ADDRESS

This syllable is used only with the XLC (index limit compare) instruc­
tion discussed in Section 4.

la-INDEX INCREMENT AMOUNT SYLLABLE

AMOUNT OF INCREMENT

The index increment amount syllable is also used only with the XLC
instruction and contains the amount to be added to, or subtracted
from, the index register.

3-6

S- SHIFT SYLLABLE

VARIANT AMOUNT OF SHIFT

The shift syllable gives the type of shift (variant) and the amount of
shift. and is used only with the SHF instruction discussed in Section
4.

Vt-TRANSMIT VARIANT SYLLABLE

VARIANT

This syllable is used only with the TRM instruction for sign modifica­
tion and rounding.

L-LOGICAL MACHINE CONDITION SYLLABLE

MACHINE CONDITION FLAGS

3-7

The logical machine condition syllable is used with the branch on
condition (BRC) instruction to specify the conditions under which the
branch is made.

F- FIELD DEFINITION SYLLABLE

The field definition syllable is used with field-defined instructions
as described in Section 4.

C-CHARACTERSYLLABLE

I~I CHARACTER

The six-bit character of the character syllable is the actual character
being searched for in the character search instruction, CSE.

Ja-SUBROUTlNE JUMP ADDRESS SYLLABLE

RELATIVE ADDRESS

3-8

The relative address contained in this syllable is added to the SAR to
obtain the effective address of the start of the subroutine in the SRJ
instruction.

Ji-SUBROUTINE JUMP INCREMENT SYLLABLE

t BAR INCREMENT

This syllable is used with the SRJ instruction to increment the base
address register (BAR) when a subroutine jump is made. Both the
Ja and Ji syllables are required for each subroutine jump instruction.

Rc-REPEAT COUNT SYLLABLE

I I

COUNT OF REPETITIONS

The repeat count syllable contains the number of repetitions to be
performed by the repeat instruction. RPT.

Ri-REPEAT INCREMENT SYLLABLE

I I I I I I I I I

S2 INCREMENT S3 INCREMENT S4 INCREMENT

3-9

The repeat increment syllable is also used with the RPT instruction
and gives the amounts by which the 2nd, 3rd, and 4th syllables are to
be incremented with each repetition.

10-1/0 SYLLABLE

The 10 syllable is used with the transmit input/ output instruction,
TIO, to select the I/O bus and to control I/O descriptors.

Vs-SPECIAL REGISTER AND COMPUTER INTERRUPT VARIANT
SYLLABLE

VARtANT

This syllable is used only with the LSR instruction to designate the
Computer Module to be interrupted, or for loading special registers.

3-10

SECTION 4

D825 INSTRUCTIONS

This section contains the D825 instructions and the rules for their use.
They are arranged approximately in the order of importance and usage.
Each instruction heading includes mnemonic code, instruction name.
and octal code on the left. and the syllable layout on the right. Ap­
pendix D is an alphabetical index to the instructions in this section.
D825 word structure is given in figure 4-1 and a glossary of symbols
is given below.

Symbol Glossary

a:b

s

v

®
(~)

1st. 2nd. and 3rd addresses

The contents of the address AN

Store

"as indicated by address AN II

If a is true then branch to b

Stack Counter

Logical AND

Logical OR

Logical EXCLUSIVE OR

Logical (one's) COMPLEMENT the contents of
address AN

4-1

Bit P 1 2 3 - 48 .

Program Word

Alphanumeric Data
Word

Binary Data Word

Binary Floating- Point
Data Word

E-<
I:Q

><
E-<
0:: «
p.,

Program
Syllable
12 bits

Character Character
#0 #1

6 bits 6 bits

±

1
bit

±
Exponent

11 bits

1
bit

LSign of the
Exponent

The conventions used in the above data words are:

"I" = minus
"0" = plus

Numbers are represented in signed magnitude form.

Program Program
Syllable Syllable
12 bits 12 bits

Character Character Character Character
#2 #3 #4 #5

6 bits 6 bits 6 bits 6 bits

Binary Fraction

±

1
bit

L Sign of the
Mantissa

47 bits

(Binary Fraction)
Mantissa

35 bits

Figure 4-1. D825 Word Structure

Program
Syllable
12 bits

Character Character
16 #7

6 bits 6 bits

FIXED-POINT ARITHMETIC INSTRUCTIONS

BAD - Binary Add - 65 o (M) (M) (M)
(A 1) + (A 2) --+ A 3

Algebraically add the contents of the location specified by A 1 to the
contents of the locfation specified by A 2; store the result in the loca­
tion specified by A3 .

NOTE 1: Overflow causes the program overflow flip-flop to be set,
and in any event, the sum will be stored in the location
specified by A 3 . In the case of overflow the correct result
(times 2 -1) can be obtaineq by program. Subtract out the
end -around carry caused by over-flow, shift right 1, and
add in the bit lost by overflow.

NOTE 2: If the result of an addition is zero, the sign is positive.

BSU - Binary Subtract - 64 o (M) (M) (M.)
(Al> - (A2)--+-A 3

Algebraically subtract the contents of the 10cB;tion specified by A2 from
the contents of the location specified by A 1; store the result in the
location specified by A3.

NOTE 1: Overflow causes the program overflow flip-flop to be set;
in any event, the difference will be stored in the location speci­
fied by A:r In the case of overflow the correct result
(times 2 -) can be obtained by program. Subtract out the
end..:.around carry caused by over-flow, shift right I, and
add in the bit 1 lost by overflow.

NOTE 2: If the result of the subtraction is zero, the sign is positive.

BMU - Binary Multiply - 61

4-3

o (M) (M) (M)
(A 1> X (A2)~A3

Multiply the contents of the location specified by At by the contents
of the location specified by A2; store the 47 high-order bits of the
double-precision product, with sign. in the location specified by A3'
and leave the 47 low-order bits of the double-precision product, with
sign. in the TFC register.

NOTE t: If the result (the contents of the location specified by A3)
of a multiplication is zero, the sign is positive. The TFC
register. however, may contain a negative zero.

BDV - Binary Divide - 60 o (M) (M) (M)
(At) -:- (A2)--+A3

Divide the contents of the location specified by At by the contents of
the location specified by A2; store the 47-bit quotient with sign in
the location specified by A3. and store the 47-bit remainder with
sign in the TFC register.

NOTE t: The remainder takes the sign of the dividend.

NOTE 2: At the end of the division process, if the absolute value of
the divisor was not greater than the absolute value of the
dividend. the program overflow flip-flop will be set. in­
dicating quotient overflow.

NOTE 3: If the quotient is zero. the sign is positive. The TFC
register. however. may contain a negative zero.

FLOATING-POINT ARITHMETIC INSTRUCTIONS

CBF - COI)vert Binary to
Floating-Point - 25

o (M) ®
(At)~A2' floating

Convert the contents of the location specified by At from binary to
floating1X>int format. and store the result in the location specified
by A2 •

4-4

NOTE I: If the contents of the location specified by A I is zero,
the operation is immediately terminated by inserting
floating-point zero in the location specified by A2' Float­
ing-point zero is the smallest possible positive number,
o X 2-2047, and appears as a negative exponent of all ones
with a positive mantissa of all zeroes.

NOTE 2: Otherwise, the contents of the location specified by Al is
treated as a 48 -bit signed fractional number with a zero
exponent; the exponent is decreased as the number is
normalized, and after normalization is complete. the 35-
bit mantissa is stored, together with the resulting ex­
ponent, in floating-point format. Floating-point format
is defined, from left to right. as:

• sign of the exponent

• 11-bit exponent

• sign of the mantissa

• 35-bit mantissa

FAD - Floating Add - 67
Floating.

o (~) (~) (~)

(A 1) + (A 2>---..A3

Add the contents of the location specified by A 1 to the contents of
the location specified by A2; store the normalized floating-point sum
in the location specified by A3' Both operands are assumed to be
in floating-point format.

NOTE 1: After the addition is performed, mantissa overflow, if it
occurs, is corrected. as is the exponent. If exponent
overflow then occurs, the operation is terminated and the
program overflow flip-flop is set. In this case the cor­
rect mantissa, with the overflow exponent (+. 0 01),
is inserted in the location specified by A3 .

NOTE 2: If the resulting mantissa (without sign) is zero, floating­
point zero is inserted in the location specified by A3, and
the program under-flow flip-flop is set.

4-5

NOTE g: If the resulting mantissa is not equal to zero, normaliza­
tion is performed until completed except that normaliza­
tion is not performed in the case where the signs of the
exponents of the two operands are different and the abso­
lute value of the sum of the two exponents is greater than
2047. The exponent is then corrected; if exponent under­
flow should occur. the program underflow flip-flop is set
and floating-point zero is inserted in the location specified
by Ag'

NOTE 4: Floating-point zero is the smallest possible positive num­
ber. or 0 X 2-2047, and appears as a negative exponent
of all ones with a positive mantissa of all zeros,

FSU - Floating Subtract - 66
Floating,

o (~) (~) (~)

(A1) - (A 2) -+-Ag

Subtract the contents of the location specified by A2 from the contents
of the location specified by A1; store the normalized floating-point
difference in the location specified by Ag. Both operands are assumed
to be in floating-point format,

NOTE 1: After the subtraction is performed, mantissa overflow, if
it occurs. is corrected. as is the exponent. If exponent
overflow then occurs, the operation is terminated and the
program overflow flip-flop is set, In this case the cor­
rect mantissa, with the overflow exponent (+, 0 01).
is inserted in the location specified by Ag.

NOTE 2: If the resulting mantissa (without sign) is zero, floating­
point zero is inserted in the location specified by Ag. and
and the program underflow flip-flop is set.

NOTE g: If the resulting mantissa is not equal to zero, normaliza­
tion is performed until completed except that normaliza­
tion is not performed in the case where the signs of the
exponents of the two operands are different and the abso­
lute value of the sum of the two exponents is greater than
2047. The exponent is then corrected; if exponent under­
flow should occur, the program underflow flip-flop is set
and floating-point zero is inserted in the location specified
by Ag.

4-6

NOTE 4: Floating-point zero is the smallest possible positive num­
ber, or 0 X 2-2047, and appears as a negative exponent of
all ones with a positive mantissa of all zeros.

FMU - Floating Multiply - 63
Floating,

o (M) (M) (M)
(A l) X (A2)--+-AS

Multiply the contents of the location specified by Al by the contents
of the location specified by A2; store the most significant portion of
the floating-point double-precision product in the location specified
by AS; and store the least significant portion of the floating-point
product in the TFC register (see Note 5). Both operands are assumed
to be in floating-point format.

NOTE 1: If the mantissa of either operand is not normalized, or if
either one contains floating-point zero, the program non­
normalized flip-flop is set and the operation is performed.

NOTE 2: When the exponents of the two operands are added. overflow
or underflow can occur, in which case the FMU instruction
is immediately terminated and the program overflow or
underflow flip-flop is set. In the case of overflow. the
absolute value of the mantissa portion of the location speci­
fied by Al. together with the overflow exponent. is inserted
in the location specified by AS; for underflow. floating­
point zero is inserted in the location specified by AS.

NOTE S: If the resulting mantissa (without sign) is zero. floating­
point zero is inserted in the location specified by AS, and
the program underflow flip-flop is set.

NOTE 4: If the resulting mantissa is not equal to zero, it will be
normalized one bit position. if necessary. and the exponent
will be corrected. In correcting the exponent, underflow
may occur, in which case floating-point zero is inserted in
the location specified by A 3, and the program underflow
flip-flop is set.

NOTE 5: The ,mantissa of the TFC register contains the thirty-five
least significant bits of the product and the sign is the same as
the sign ofthe mantissa of the result. The exponent of the TFC

4-7

register is the same as the exponent of the most significant
portion of the product, except in the case where the result
has been normalized one bit position. In this case, the
exponent of the most significant portion will be one less
than the exponent of the TFC register, and the least signifi­
cant bit of the mantissa of the result will be the same as
the most significant bit of the mantissa of the TFC register.

NOTE 6: Floating-point zero is the smallest possible positive number,
or 0 X 2-2047, and appears as a negative exponent of all
ones with a positive mantissa of all zeroes.

FDV - Floating Divide - 62
Floating,

o (~) (~) (~)

(Al) -7 (A2)-+-A3

Divide the contents of the location specified by A 1 by the contents of
the location specified by A2; store the floating-point quotient in the
location specified by A3, and store the floating-point remainder in
the TFC register. Both operands are assumed to be in floating-point
format.

NOTEl: If the mantissa of either operand is not normalized, or if
either contains floating-point zero, the program non-nor­
malized flip-flop is set and the operation is performed.

NOTE 2: When the exponents of the two operands are subtracted, over­
flow or underflow can occur, in which case the FDV instruc­
tion is immediately terminated and the program overflow
or underflow flip-flop is set. In the case of overflow, the
absolute value of the mantissa portion of the location speci­
fied by A l , together with the overflow exponent, is inserted
in the location specified by A3; for underflow, floating-point
zero is inserted in the location specified by A3'

NOTE 3: If the mantissa of the quotient (without sign) is zero, floating­
point zero is inserted in the location specified by A3,

NOTE 4: Quotient overflow of 1 bit. if it occurs, is automatically
corrected, as is the exponent. If exponent overflow then
occurs, the operation is terminated and the program over­
flow flip-flop is set. In this case the correct mantissa,

4-8

with the overflow exponent (+. 0 01) is inserted in
the location specified by A 3- Quotient overflow resulting
from non-normalized operands will cause the program over­
flow flip-flop to be set. Automatic mantissa and exponent
overflow correction of 1 bit still occurs, but all other over­
flow bits are lost.

NOTE 5: The TFC contains the 35 bit remainder, right justified,
with the sign of the dividend and a zero exponent.

This comparison test can be avoided by using the following
equation: The correct remainder exponent = 2 (dividend
exponent) - (34 + divisor exponent + quotient exponent).

NOTE 6: Floating-point zero is the smallest possible positive num­
ber, or 0 X 2 -2047, and appears as a negative exponent of
all ones with a positive mantissa of all zeroes.

REGISTER MANIPULATION AND DATA MOVING INSTRUC TIONS

I TRS - Transmit - 35 o (M) (M) I
(Al)_A2

Transmit the contents of the location specified by Al to the location
specified by A2'

TRM - Transmit Modified - 34 o (M) V t (M)
(A I). by A2 • ...::;:A3

Transmit the contents of the location specified by AI' modified as
indicated by the contents of A2' to the location specified by A3'

NOTE 1: The transmit variant syllable (A 2). numbering the bits from
left to right. is coded as shown on the following page.

4-9

Bit: 1 - 9 10

Blank

1

11 12 Operation Indicated

0 1 The operation is transmit, with the sign set
to plus.

1 0 The operation is transmit, with the sign set
to minus.

1 1 The operation is transmit, with the sign
changed.

The operation is transmit, with the number
rounded, and can occur with sign modification.

NOTE 2: Rounding is accomplished by testing the most significant
data bit (bit 2) of the TFC register. If it is a one, one is
added to the least significant bit-pOSition of the number con­
tained in the location specified by A 1. If overflow occurs
during round, the program overflow flip-flop is set and the
overflow result is stored in the location specified by A 3•
Rounding is for fixed -point numbers.

STF - Store Thin Film - 15 o T ®
Thin film, (A 1)-.A2

Store the contents of the thin film register (or group of registers)
specified by A1 in the least significant end (or full word) of the loca­
tion specified by A2.

NOTE 1: The thin film syllable, numbering the bits from left to right,
is coded thus:

Bits 1, 2, 4, and 5 are not used.

Bit 3 if "one" indicates that more than one thin film reg­
ister is addressed, and if "zero, " indicates that
one thin film register is addressed.

Bit 6 if "one, " indicates that 12-bit thin film registers
are addressed, and if "zero, " indicates that 16-
bit thin film registers are addressed.

Bits 6 through 12 are the thin film register address.

4-10

NOTE 2: If bit 3 of the thin film syllable is equal to 1. 48 bits. com­
posed of four 12-bit or three 16-bit consecutive registers.
are referenced. In this case, bits 11-12 of the thin film
address are treated as zero. Although the operand stack
registers are located in thin film, they are not normally
addressed via the thin film instructions since they have
special addressing controls associated with taem. (Sae thin
film map, Appendix C.)

NOTE 3: Example

I
I I I I

STF 0 0 0 0 SY L 1 - 0

1><1' C><J 0 I 0 0 0 0 0 SYL2 -T

Store the contents of index register number 4 in the 16 least signifi­
cant bits of the top of the stack. Store the contents of index register
number 5 in the next 16 bits of the top of the stack. Store the contents
of index register number 6 in the 16 IUost significant bits of the top
of the stack.

LTF - Load Thin Film - 30 o (M) T
(A 1)--.A2, thin film

Load the least significant end (or whole word) of the contents of the
location specified by A1 into the thin film register (or group of reg­
isters) specified by A2. (See notes 1 and 2 of STF for the thin film
syllable description.)

NOTE 1: The IAR can only be loaded during control mode operation;
all other thin film registers are accessable in both modes.

I RVS - Reverse Stack - 06

Reverse the direction of the stack counter.

STORE

BEFORE

FETCH/
FETCH I

4-11

o

AFTER

1

I SSU - Step Stack Up - 02 ~
+ 1 .. s I

Step the stack counter one in the fetch direction.

BEFORE AFTER

I SSD - Step Stack Down - 03 o
s - 1 I ... s

Step the stack counter one in the store direction.

BEFORE AFTER

I XLC - Index, Limit - Compare - 12 o Ia Iv B I
Increase or decrease the contents of the index register specified by
bits 5 thru 8 of A2, by the amount specified in At. Then compare
the contents of this index register with the' contents of the limit regis­
ter specified by bits 9 thru 12 of A2 for the condition(s) indicated by
bits 2 thru 4 of A2. If the condition(s) is (are) true, take the next
instruction from the location specified by A3; otherwise, continue
in sequence.

4-12

NOTE 1: The index variant syllable (A 2), numbering the bits from
left to right, is coded thus:

Branch Condition
Bit 1 234 5 - 8 9 - 12

increase if 0 000 none Index Limit
decrease if 1 001 equal register register

010 index > limit number number
011 index > limit (1 thru 15) (0 thru 15)
100 ind ex < limit
101 index < limit
110 index ;r.limit
111 unconditional

NOTE 2: If limit register address zero is used, the contents of the
specified index register is compared with the number "zero".

NOTE 3: If an index register underflows when it is decreased or over­
flows when it is increased, the result is in the modulo 65,
536 form.

NOTE 4: Example:

XLC 0 II 0 0 SYL 1-0

0 0 0 0 0 0 0 0 0 0 SYL 2-la

0 0 0 10 0 0 SYL 3-lv

• a • SYL4-B

Decrease the contents of index register #10 by 3; compare
the new contents of index register # 1 0 with the contents
of limit register #2, and if the contents of the index regis­
ter are > to the contents of the limit register, take the next
instruction from (unconditional transfer to) the location
specified by [a + BPR} otherwise, continue in sequence.

4-13

I SER - Store External Requests - 21 o (M) I
Store the external request lines in the least significant bits of the
location specified by A 1. The external request lines are inputs to
the D825 system whose 0 or 1 state serve to communicate a signal
to a computer regarding external requests for input-output processing
service.

I CLA - Clear - 20 I
,

Make the contents of the location specified by A l' including the sign,
equal to zero.

UNPACKING AND PARTIAL WORD INSTRUCTIONS

I BAF - Binary Add, Field - 43 o (M) F

Strip (extract) first the contents of the location specified by Al and then
the contents of the top of the stack, as indicated by the contents of
A2. Perform a 48-bit unsigned addition on these two quantities and
strip the result as indicated by the contents of A2. Clear a field of
the contents of the location specified by Al. also defined by the con­
tents of A2. Logically OR these two results, and adjust (shift) as in­
dicated by the contents of A2; store this final result in the location
speCified by AS.

NOTE 1: Note that the original contents of the top of the stack and of
the location specified by A 1 remain unchanged unless the
contents of AS specifies the same location as one of these.

NOTE 2: The implied stack address mentioned above cannot be identi­
fied in the command syllable, since the instruction is es­
sentiallya 4-address instruction. The stack will be held,
in order to make repeating of the instruction more useful.
Note that this stack-read is included in the execution time
of the instruction.

4-14

NOTE 3: The special field syllable, numbering the bits from left
to right, is defined thus:

a. A field is composed of from 1 to 8 physically adjacent
6-bit characters; the character positions are numbers
0-7 from left to right.

b. Bits 6-8 of the field syllable contain the length (num­
ber of characters) of the field which is to be stripped.
A length of zero means that the field to be stripped is
a full 8-character word.

c. Bits 10-12 of the field syllable contain the position
number of the left-most character of the field to be
stripped.

d. ,Bits 2-4 of the field syllable contain the number of
character positions through which the stripped field
is to be shifted (adjusted). This shift is a single, right
logical, end-around shift of 0-7 character positions.

NOTE 4: The thin film C register is used to store the contents of AI'

NOTE 5: Example

BAF 0 0 0 I SyLt-O

10 E a .1 SYL2-M

IZ)I 0 0 IZI 0 0 ~ 0 o I SYL3-F

10 E b 3 SYL4-M

INITIALLY LOCATION [a + BAR] CONTAINS:
I 6 7 12 13 18 19 24 25 3031 36 37 4243 48

w
o 2 3 4 5 6 7

4-15

INITIALLY THE TOP OF THE STACK CONTAINS:
67 1213 1819 24 25 3031 3637 4243 48

x x x I X y I z I z I z
o 2 3 4 5 6 7

Extract a field (of length 1 and starting position 4) of the
contents of both the location specified by a + BAR and
the top of the stack (OOOOVOOO and OOOOYOOO. respectively).
Add these two extracted portions, without sign, and from
the result, again extract a field of length 1 and starting po­
sition 4, giving OOOO(V + Y)OOO. Store this field in the
corresponding position of the contents of the location spe­
cified by a + BAR , giving UUUU(V + Y)WWW.shift right
end-around 4 positions, and store the result in the location
specified by b + BAR , giving (V + Y)WWWUUUU.

BSF - Binary Subtract. Field - 42 o (M) F ~)

The operation is a 48-bit unsigned subtraction; the result is the ab­
solute value of the difference of the two operands. See BAF for des­
cription and notes.

I LAF - LOgical AND, Field - 47 o (M) F (M) I
The operation is logical AND. See BAF for description and notes.

I LOF - Logical OR, Field - 44 o (M) F <!!!) I
The operation is logical OR. See BAF for description and notes.

LXF - Logical EXCLUSIVE OR. Field - 45 o (M) F (M)

The operation is logical EXCLUSIVE OR. See BAF for description
and notes.

4-16

LCF - Logical COMPLEMENT Field - 46 o (M) F (M)

Strip (extract) the contents of the location specified by Al as indicated
by the contents of A2. One's COMPLEMENT, and strip the result as
indicated by the contents of A 2• Clear a field of the location specified
by AI; this field is defined by the contents of A2. Logically OR these
two quantities and adjust (shift) the result as indicated by the contents
of A 2; store the final result in the location specified by A3.

NOTE 1: Note that the original contents of the location specified by
A 1 remain unchanged unless the contents of A3 specify the
the same location.

NOTE 2: See BAF Notes 3 and 4.

NOTE 3: Example

LCF 0 0

I 0 I- a

[g1 0 0 [g1 0 0 lJ<Io

INITIALLY LOCATION [0 + BAR] CONTAINS:

(I)

(2)

(3)

(4)

I 67

I A I 8

0

INTERMEDIATE
67

0 0

0 0

A 8

G H

1213 1819

I c I
2

RESULTS:
1213 1819

C

C

C

A

2425 3031

0 I E I
3 4

2425 3031

0 E

0 E

D E

B C

4-17

0 I SYLI-O

.1 SYL2-M

0 I SYL3-F

3637 4243 48

F I G I H I
5 6 7

3637 4243 48

F 0 0

F 0 0

F G H

D E F

(1) Extract a field (of length 4 and starting position 2) of
the contents of the location specified by [a + BAR].

(2) Complement, extract the same field.

(3) Store this field in the corresponding position of the
contents of the location specified by [a + BAR].

(4) Shift right end-around 2 pOSitions, and store the result
in the top of the stack.

SAF - Strip and Adjust Field - 41 o (M) F ~)

Strip (extract) and adjust (shift) the contents of the location specified
by At. as indicated by the contents of A2' and store the result in the
location specified by A3.

NOTE 1: Note that the original contents of the location specified by
A 1 remain unchanged unless A 1 and A3 specify the same
location.

NOTE 2: See BAF for the field syllable definition.

NOTE 3: Example

t SAF 0 0 0 I I SYLI -0

I 0 I~ a »01 SYL2-M

I I 0 0 0 10 I SYL3-F

INITIALLY LOCATION [0 + BAR] CONTAINS:
67 1213 1819 2425 3031 3637 4243 48

x x x y I y z I z I z
o 2 4 5 6 7

4-18

Extract a field (of length 2 and starting position 3) of the
contents of the location specified by [BAR + a]. Shift this
extracted portion (OOOYYOOO) right, end-around, 3 char­
acter positions. Store the result (OOOOOOYY) in the top of
the stack.

I AIF - Adjust and Insert Field - 40 o (M) F (M) I
Clear a field of the contents of the location specified by A 1; this field
is defined by the contents of A2.

Adjust (shift) the contents of the top of the stack, as indicated by the
contents of A2. Logically OR these two quantities and store the result
in the location specified by A3.

NOTE 1: Note that the original contents of the top of the stack and
of the location specified by A 1 remain unchanged unless
the contents of A3 specify the same location as one of these.

NOTE 2: The implied stack address of the second operand can not be
identified in the command syllable, since the instruction is
essentially a 4-address instruction. The stack will be held,
in order to make repeating of the instruction more useful.
The contents of the top of the stack are assumed to contain
an isolated field (a field surrounded by zeroes) since the
inserting in another word is done by ORing.

NOTE 3: See BAF for the field syllable definition.

NOTE 4: Exam pIe

AIF 0 0 0 SYLI-O

lOr a -J SYL 2-M

CXJ I 0 I D<1 0 ~ 000 I SYL3-F

10 E b ·1 SYL 4-M

4-19

INITIALLY LOCATION [a + BAR] CONTAINS:

I 67 1213 1819 2425 3031 3637 4243 48

X X X X X Y Y Y
0 2 3 4 5 6 7

INITIALLY THE TOP OF THE STACK CONTAINS:

I 67 1213 1819 2425 3031 3637 4243 48

[0 0 0 I z I z I z I z z
0 2 3 4 5 6 7

Clear a field (of length 5 and starting position 0) of the
contents of the location specified by [a + BAR], giving
OOOOOYYY. Shift the contents of the top of the stack right,
end-around, 5 character positions, giving ZZZZZOOO. OR
these two quantities and store the result (ZZZZZYYY) in
the location specified by [b + BAR]

CEF - Compare Equal Field - 52
CGF - Compare Greater Field - 51
CLF - Compare Less Field - 50

o (M) F B

Strip (extract) and adjust (shift) the contents of the location specified
by At' as indicated by the contents of A2' Alphanumerically compare
this quantity with the contents of the top of the stack; if the condition
is true (e. g. the 1st quantity greater, equal, or less than the contents
of the top of the stack), take the next instruction from the location
specified A3; otherwise continue in sequence.

NOTE 1: The contents of the top of the stack and of the location
specified by A 1 remain unchanged.

NOTE 2: The implied stack address of the second operand cannot be
identified in the command syllable, since the instruction is
essentially a 4-address instruction. In this case the stack
will be held, in order to make repeating of the instruction
more useful. The contents of the top of the stack are as­
sumed to contain an isolated field (a field surrounded by
zeroes), since the comparison is made on all 48 bits.

4-20

NOTE 3: See BAF for the field syllable definition.

NOTE 4: Example

C EF 0 0 0 SYL 1-0

10 1- a -I SYL2-M

~ 0 ~ 0 ~ 0 I SYL3 -F

I· b 1 SYL4-B

INITIALLY LOCATION [a + BAR] CONTAINS:

61 1213 1819 2425 3032 3637 4243 48

X I X I X I X I X I y I y I y I
0 2 3 4 5 6 7

INITIALLY THE TOP OF THE STACK CONTAINS:

67 1213 1819 2425 3031 3637 4243 48

0 I 0 I 0 I z I z I z I 0 I 0 I
0 2 3 4 5 6 7

Extract a field (of length 3 and starting position 5) of the
contents of the location specified by [a + BAR]. Shift this
extracted portion (OOOOOYYY) right. end-around. 6 char­
acter positions. Compare this (OOOYYYOO) with the contents
of the top of the stack. If equal. take the next instruction
from the location specified by [b + BPR]; otherwise. con­
tinue in sequence.

CSE - Character Search - 32 o (M) C B
Character, (A 1) = A 2 : A3

Compare the 6-bit character specified by bits 7 through 12 of A2 with
successive characters of the contents of the location specified by A1.
The search is begun to the left of the character position indicated by
the character count register (CCR) and continued on to the leftmost
character of the word, or until the character is found. If the CCR, a

4-21

thin film register, contains zero, the search is begun with the right­
most character of the word. The search is controlled by a counter
which is loaded with the contents of the CCR. This counter is first
stepped down, then the character position it indicates is examined, and
then the counter is tested for zero. At the end of the instruction the
contents of the counter is preserved in the CCR. If the character is
found, the l~omputer takes the next instruction from the location speci­
fied by A3' and the CCR indicates the position in which the character
was found. If the character is not found the next instruction in sequence
is executed, and the CCR contains zero.

NOTE 1: The 6 -bit character-positions of the data word are numbered
0-7, from left to right. In order to search at the begin­
ning (rightmost character) of a word, the character count
register must previously be reset (equal to zero).

NOTE 2: A second character search on the same word will take up
the search on the character after (to the left of) the pre­
vious one found.

NOTE 3: Example

CSE 0 0 0 I 0 SYl 1-0

C::::=:= --- 0 0 I SYL 2-C

E a 3 SYL 3-8

Decrease the character counter and, beginning with the
character position indicated by this count, right-to-Ieft
search the contents of the top of the stack for the character,
"101110". Unconditional transfer to the location specified
by [a + BPRJ if found; otherwise continue in sequence. In
either case store the last character count in the character
count register.

4-22

LAN - Logical AND - 56

Logically AND, bit-by- bit, the contents of the location specified by
A 1 with the contents of the location specified by A 2; store the result
in the location specified by A3.

NOTEl: The sign bits are also ANDed.

LOR - Logical OR - 55 o (M) (M) (M)
(Al> V (A2> ~ A3

Logically OR, bit-by-bit, the contents of the location specified by
Al with the contents of the location specified by A2; store the result
in the location specified by A 3•

NOTEl: The sign bits are also ORed.

LXR - Logical EXCLUSIVE OR - 54

Logically EXCLUSIVE OR, bit-by-bit, the contents of the location
specified by Al with the contents of the location specified by A2; store
the result in the location specified by A3'

NOTEl: The sign bits are also EXCLUSIVE ORed.

LCM - Logical COMPLEMENT - 24

Logically (one's) COMPLEMENT, bit-by-bit, the content of the lo­
cation specified by A l ; store the result in the location specified by A 2.

NOTEl: The sign bit is also COMPLEMENTed.

4-23

SHF - Shift - 36 o (M) S (M)
(AI) shifted, A2, A3

Shift the contents of the location specified in A 1. as indicated by the
contents of A2. and store the result in the location specified by A3.

NOTE 1: The shift syllable (A2). numbering the bits from left to
right, is coded thus:

BIT

1
2
3
4
5
6

7 through 12

NOTE 2: Single Shifts

If!

double
right
logical
end-off
amount

If 0

single
left
arithmetic
end-around
amount

a. Arithmetic shifts are performed on bits 2 through 48;
logical shifts are performed on bits 1 through 48.

b. Left shifts are performed 1 bit at a time; right shifts
are automatically performed in optimum combinations
of 1. 6. and 12 bits.

NOTE 3: Double Shifts

a. The" amount" must be < 11 for the left double arith­
metic shifts; for all other double shifts the "amount"
must be < 12.

b. Arithmetic shifts are performed on bits 2 through 48
of the location specified by A 1. as the most significant
half, and on bits 2 through 48 of the TFC register, as
the least significant half; logical shifts are performed
on bits 1 through 48 of the location specified by A1. as

4-24

NOTE 4:

the most significant half" and on bits 1 through 48 of
the TFC register" as the least significant half.

c. All double shifts are performed 1 bit at a time.

Example

SHF I I 0 0 0 I SYL 1-0

10 I- a • I SYL2-M

1><10 0 01 0 0 0 0 0 I SYL3-S

INITIALLY LOCATION [a + BAR] CONTAINS:

010001

Single" right" arithmetic" end-around shift the contents of
the location specified by [a + BAR] 1 position" and store
the result (0110 4 .. 0) in the top of the stack.

PROGRAM CONTROL INSTRUCTIONS

CEQ - Compare Equal - 76 o (M) (M) B
(AI) = (A 2>: A3

Algebraically compare the contents of the location specified by Al
with the contents of the location specified by A2; if equal" take the
next instrucUon from the location specified by A3" otherwise continue
in sequence.

NOTE 1: Positive zero and negative zero are not considered equal.
Negative zero cannot occur as a result of an arithmetic
operation.

4-25

CGR - Compare Greater - 75 o (M) (M)
Algebraic, (A 1) > (A 2>

Algebraically compare the contents of the location specified by A I
with the contents of the location specified by A2; if the contents of the
location specified by A1 are greater .. take the next instruction from
the location specified by A 3• otherwise continue in sequence.

NOTE I: Positive zero is considered greater than negative zero.
Negative zero cannot occur as a result of an arithmetic
operation.

CLS - Compare Less - 74 o (M) (M)
Algebraic, (AI> «A2>

Algebraically compare the contents of the location specified by A1
with the contents of the location specified by A2; if the contents of the
location specified by A I are less, take the next instruction from the
location specified by A3. otherwise continue in sequence.

NOTE 1: Negative zero is considered less than positive zero. Neg­
ative zero cannot occur as a result of an arithmetic operation.

ACE - Alphanumeric Compare Equal - 72 0 (M) (M)
Alphanumeric, (AI) = (A2)

Compare the contents of the location specified by A 1 with the contents
of the location specified by A2; if equal, take the next instruction from
the location specified by A3' otherwise continue in sequence.

NOTE 1: Comparison is made on 48-bit unsigned words.

ACG - Alphanumeric Compare Greater - 71 0 (M) (M) B
Alphanumeric, (A1» (A2> A3

4-26

Compare the contents of the location specified by Al with the contents
of the location specified by A2; if the contents of the location specified
by Al are greater. take the next instruction from the location specified
by A3• otherwise continue in sequence.

NOTE 1: Comparison is made on 48-bit unsigned words.

ACL - Alphanumeric Compare Less - 70 o (M) (M)
(A 1)«A2)

Compare the contents of the location specified by Al with the contents
of the location specified by A2 ; if the contents of the location specified
by A 1 are less. take the next instruction from the location specified
by A3. otherwise continue in sequence.

NOTE 1: Comparison is made on 48-bit unsigned words.

I UCT - Unconditional Transfer - 22

I
Take the next instruction from the location specified by AI.

I BRB - Branch on Bit - 26 o (M) (M)

If the least significant bit of the contents of the location specified by
A 1 is a one. take the next instruction from the location specified by
A3; otherwise continue in sequence. In either case. perform a single.
right. logical. end-around shift of one position. on the contents of the
location specified by AI. and store the result in the location specified
by A2.

I BRC - Branch On Condition - 11

I

4-27

If the condition (s) corresponding to anyone (s) in the contents of Al
is true. take the next instruction from the location specified by A2;
otherwise continue in sequence.

NOTE 1: The conditions occurring are recorded in flip-flops. and
only by testing for the conditions can the corresponding
flip-flops be reset. However. testing is effective only
when the computer mask bit corresponding to arithmetic
overflow is not set; if the bit is set. automatic interrupt
occurs immediately after execution of the instruction
causing the condition.

NOTE 2: The logical machine conditions are program overflow
(POV), program underflow (PUN), and program non­
normalized (PNN). The logical machine condition syl­
lable is coded thus:

Bit 1 - 9 10 11 12

blank if 1 - test PNN if 1 - test PUN if 1 - test POV
flip-flop flip-flop . flip-flop

NOTE 3: The program overflow (POV) flip-flop is set by:

a. Fixed-point arithmetic overflow resulting from addi­
tion. subtraction, or division.

b. Overflow resulting from the round instruction (TRM).

c. Exponent overflow resulting from a floating-point
arithmetic operation. Exponent overflow is defined
as overflow. resulting from the addition of two posi­
tive-signed exponents.

d. Quotient overflow resulting from use of the FDV in­
struction with non-normalized operands.

4-28

NOTE 4: The program underflow (PUN) flip-flop is set by:

a. Floating-point exponent underflow. Exponent under­
flow is defined as overflow, resulting from the addi­
tion of two negative-signed exponents.

b. A zero answer resulting from floating-point addition
or subtraction.

c. A zero answer resulting from floating-point multipli­
cation using non-normalized operands.

NOTE 5: The program non-normalized (PNN) flip-flop is set by the
use of an operand with a leading zero in the mantissa in
floating-point multiplication or division.

NOTE 6: Example

8 R C 0 0 0 0 SYL 1-0

I 0 I SYL 2-L

E a 3 SYL 3-8

If the POV or PUN flip-flops have been set by a previous
operation, reset them and take the next instruction from
the location specified by a [a + BPR]; otherwise continue
in sequence.

I NOP - No Operation - 00 o I
Execute the next instruction in sequence.

I SRJ - Subroutine Jump - 14 o Ja Ji I

4-29

Store the contents of the BAR. BPR, and the PCR in the thin film
subroutine storage register. The low order l6-bits of the memory
location specified by the contents of the subroutine base address
register (SAR) plus Al (the jump address syllable) comprise the
starting address of the subroutine. Load BPR and PCR with the
starting address. Increment the BAR by A2 (the jump increment
syllable), Load index register #15 with the new contents of BPR,
minus the new contents of BAR. Transfer control to the starting
address of the subroutine.

NOTE 1: While in the subroutine, if index register #15 is applied to
the data address, the data thus referred to will be relative
to the new contents of the BPR. If the difference between
the two base registers is negative, it will appear in the two's
complement form, and thus will be applicable as described.

NOTE 2: In nesting subroutines, it is necessary to save the contents
of the subroutine .storage register in memory ,relative to
the BAR of this subroutine, before going to the next sub­
routine and thus destroying the previous contents of the SSR.

NOTE 3: Note that the location specified by [SAR + Ja] is an indirect
address of one level only. If Ja is indexed, the location
specified by [SAR + Ja + X] gives the indirect address, as
opposed to adding the contents of the index register to the
indirect address itself.

NOTE 4: The snag bit of the starting address (bit 31) may be used to
set the snag bit interrupt in either control or normal mode '.
The interrupt will be serviced only in the normal mode.

NOTE 5: Example

SRJ 1 0 1 0 0 01 SYL 1 - 0

[. a • I SYL 2 - Jo

I · b • I SYL 3 - Jj

INITIALLY LOCATION [0 + SAR] CONTAINS:
I 3233 48

4-30

First save the contents of the BAR. BPR. and PCR in the
thin film SSR register. then load the BPR and PCR with
"C". The next instruction executed will be the contents of
the location specified by C. since the PCR now contains
"C". Increment the BAR by "b", and load index register
15 with "C" - (BAR + "b").

I SRR - Subroutine Return - 04 o

Load the BAR.. BPR.. and PCR with the contents of the thin film sub­
routine storage register. Load index register #15 with the new con­
tents of the BPR. minus the new contents of the BAR (see note 1 of the
SRJ instruction for use of index register #15). Take the next instruc­
tion in sequence. specified by the restored PCR. The program will
continue. with its addressing now relative to the restored BAR. BPR
and PCR.

NOTE 1: Since the location specified by the PCR is a 48-bit program
word. the first syllable of the program word must contain
the operator syllable of the instruction to be executed.
This syllable layout requirement. necessary because of the
variable-length instruction capability. is the responsibility
of the coder.

RPT - Repeat - 10 o Rc Ri B
Repeat (A3>. by A2• Al times

Perform the instruction contained in the location specified by A3 the
number of times specified by the contents of Al (the repeat count syl­
lable). Each time the instruction is repeated (after the first time) its
three (or less) "address" syllables are incremented, respectively. by
the 3 4-bit syllable increments contained in A2 (the repeat increment
syllable).

NOTE 1: The first time through. the repeated instruction employs
normal addressing and can therefore contain indirect ad­
dressing, although indexing is not allowed. In this case,
subsequent iterations use the last-level address as the

4-31

I

base address and increment that address each time. Note
that the three syllable increments correspond directly to
the three (or less) syllables following the operator syllable
of the repeated instruction.

NOTE 2: The repeating of an instruction will cease if the instruction
contains a branch which is executed. The repeat count
register (RCR) will retain the repeat count, minus the
number of times the instruction was executed prior to
branching. Since RCR is a lZ-bit register, the maximum
repeat count is 4095.

NOTE 3: Since A3 is a branch syllable, the repeated instruction must
be stored. with its operator syllable as the first syllable of
the location specified by A 3 .

NOTE 4: The RPT instruction itself may not be repeated. Other
instructions which may not be repeated are XLC, SRJ, SRR,
and IRR.

NOTE 5: If the repeat count is ZERO, no execution of the repeated
instruction will occur.

NOTE 6: Example

RPT 0 II 0 0 SYL ,- 0

0 0 0 0 0 0 0 0 0 SYL2- Rc

0 0 0 0 0 0 0
1 0 0 0 0 SYL3 -Rj

II a • SYL4-B

Clear consecutive memory locations G> + BA~ through
[b + 49 + BAR].

4-32 .

Location [a + BPR] contains the instructions:

CLA 0 0 0 0 o I SYL 1-0

0 I- b .. I SYL2- M

NOP 10 0 0 0 0 0 I SYL3-0

NOP I 0 0 0 0 0 0 I SYL4-0

INTERRUPT CONTROL INSTRUCTIONS

I HL T - Halt - 01 0

This instruction has two distinct meanings. depending on which mode
of operation prevails. In the normal mode it causes transfer to the
control mode and involves the interrupt bookkeeping processes des­
cribec! in Section 6. When the halt instruction is used in the control
mode. the computer stops.

I LSR - Load Special Register - 31 o (M)

I

This instruction. operable only in the control mode. has three varia­
tions which permit loading the mask register or memory bounds reg­
isters from the least significant portion of the contents of the location
specified by AI. or interrupting the computer designated by the least
significant bits of the contents of the location specified by AI.

The special register variant syllable. numbering the bits from left
to right .. is coded thus:

Bits 1 through 9 are blank.

Bit 12, if equal to one, indicates that the mask register is to be loaded
as described in Se.ction 6.

4-33

Bit 11 .. if equal to one, indicates that the 8 least significant bits of
the contents of the location specified by A 1 are to be loaded
into the lower memory bounds register, and the next 8 least
significant bits are to be loaded into the upper bounds register.

Bit 10, if equal to one, indicates that the computer designated by the
three least significant bits of the contents of the location spec-
ified by A 1 is to be interrupted, and this interrupt has no cor­
responding mask bit.

NOTE 1: In the normal mode. a computer cannot write in memory
outside the bounds whose eight most significant bits are
specified by the upper and lower limit registers. These
restrictions are removed in the control mode.

NOTE 2: Example

LSR 0 0 0 0

I
] SYL1-0

I 0 r- a .. I SYL2-M

0 0
1

SYL3-Vs

LOCATION [a + BAR] CONTAINS:

12 32 33 4041 48

C ---- J1 10000001100000001

Load the lower memory limit register with 1 0 0 0 0 0 0 O.
Load the upper memory limit register with 1 1 0 0 0 0 0 O.
Thereafter, during normal mode operation, any attempt to
write in a memory location whose address is less than
32, 768 or greater than 49, 407, will be stopped and the
write-out-of- bounds interrupt register bit will be set.
(Provided that the appropriate mask bit is a one.)

4-34

I TIO - Transmit to Input/Output - 16 o 10 M

This instruction can only be given in the control mode. It is employed
to send the Setup Descriptor, Command Descriptor, or Release De­
scriptor, obtained from the memory location specified by A2, to an
I/O Control Module. (See Section 5, Input-Output Programming, for
the use and format of these descriptors.)

The instruction has two variations: the command TIO and the uncon­
ditional TIO. The command variation is used to transmit a Command
Descriptor to an I/O Control Module, if there is one available. If
there is no I/O Control Module available the computer will take its
next instruction from the location specified by A 3• The unconditional
variation is used to transmit a Setup Descriptor or Release Descriptor
for immediate access to the I/O Control Modules. The branch syl­
lable is ignored for the variation, since the descriptor is sent uncon­
ditionally. The descriptor involved will be sent to the I/O Control
Modules associated with the I/O bus designated by Al and called bus
"A" or bus "B".

The special input-output syllable (10), numbering the bits from left
to right, is coded thus:

Bits 1 through 10 are blank.

Bit 11 Bit 12 Variation Bus Use

0 0 Command A Command Descriptor
0 1 Unconditional A Setup or Release Descriptor
1 0 Command B Command Descriptor
1 1 Unconditional B Setup or Release Descriptor

4-35

NOTE 1: Example

I TIO I I .0 o I ° SYL1-0

I ° ° I SYL 2 -10

1° 1_--- a .. I SYL3-M

I .. b ..I SYL4-B

LOCATION [a + BAR] CONTAINS THE COMMAND DESCRIPTOR:
1 12 13 1617 20 21 36 37 3839 43 44 4546 48

100000100000010001\X1 C C><J die I f I
Transmit the Command Descriptor found in memory location [a + BAR]
to the lowest-numbered non-busy I/O Control Module. If no I/O Con­
trol Modules are available. take the next instruction from the location
s'pecified by [b + BPR]. Otherwise. continue in sequence. while the
I/O Control Module takes over execution of the command as follows:

• perform operation "f", type "e",

• on device number "d".

• involving 1 record (bits 13 to 16).

• using mem.ory locations "c" through "c + 63", or 64 words
(bits 1 to 12).

I IRR - Interrupt Return - 05 o I
Restore the contents of the BAR, BPR, and PCR, as well as the con­
tents of the PSR and associated controls. Reset the control-mode
flip-flop. Execute the next instruction contained in the restored PSR;
this automatically continues the object program after interrupt proc­
essing. This instruction is operable only in the control mode.

4-36

SECTION 5

INPUT /OUTPUT PROGRAMMING

In the D825 system, input/output control is provided by the Transmit
to Input/Output instruction (TIO) and a group of descriptors which
are stored in memory. The TIO instruction, described in Section 4,
may be executed only in the control mode, and the memory address
referenced is a descriptor which will control the communications be­
tween the Memory Modules and the I/O exchange (I/O Control Modules
and terminal devices). Externally requested 110 operations are made
known to the system by one of the 16 external request lines (see
Section 6). In the descriptor formats, a record count of zero will be
interpreted as 16.

DESCRIPTOR TYPES

Five descriptor types are used in D825 I/O operations as follows:

• Setup Descriptor

• Command Descriptor

• In- Process Descriptor

• Result Descriptor

• Release Descriptor

5-1

The Command. Release. and Setup Descriptors. are constructed by
program and used in the control mode of operation. The In-Process
and Result Descriptors are gener ated by the logic of the system. The
program-generated descriptors are used for communication to the

. Control Modules. and the logic generated descriptors are used in com­
munication from the Control Modules.

DESCRIPTOR FUNCTIONS

In normal operation the Command Descriptor initiates and controls all
programmed I/O operations, and all other descriptors perform sub­
ordinate functions. The Release Descriptor is used to return an I/O
Control Module to a non-busy status after an I/O operation. The Set­
up Descriptor is used to establish the base address of the descriptor.
list which consists of an In-Process Descriptor and a Result Descrip­
tor for each I/O Control Module. The descriptor list functions as a
permanent indication of the current status of each I/O Control Module.

The sequence of events in a full I/O operation is given below.

1. A TIO instruction, with a Setup Descriptor, is used to
establish the descriptor base address of where the I/O
Control Modules return ~escriptors. The Setup Descrip­
tor is sent at initial loading of the operating system or to
move the descriptor list. I/O Control Modules remain
busy after receipt of a Setup Descriptor.

2. A TIO instruction is used with a Release Descriptor to
release the I/O modules that are used for subsequent
Command Descriptors.

3. A TIO instruction, with a Command Descriptor, is used
to initiate each I/O operation. The Command Descriptor
contains the terminal device number, operation code, rec­
ord count, word count. and memory starting address.

4. At the I/O Control Module which is processing the I/O
operation, certain status bits of the Command Descriptor
may be set, and a copy of this modified Command De­
scriptor is transmitted to the descriptor list as an In­
Process Descriptor.

5. When the I/O operation is completed or terminated, a
second modified copy of the Command Descriptor is
transmitted to the descriptor list as the Result Descriptor.

5-2

5. An I/O termination interrupt is initiated. and the Result
Descriptor is examined by the computer interrupted. An
I/O termination interrupt can only be caused by a Result
Descriptor which was generated by an I/O Control Module.

6. If the I/O operation was successful. a TIO instruction is
used with a Release Descriptor to release the I/O Control
Module for subsequent I/O operations. Only a Release
Descriptor can place a busy I/O Control Module in the non­
busy state.

In a system using two busses for I/O, the I/O exchange being addressed
is selected by the A 1 syllable of the TIO instruction.

All I/O Control Modules examine every descriptor transmitted from
memory. If the descriptor is a Setup Descriptor, the base address of
the descriptor list is accepted by all. If the descriptor is a Command
Descriptor, the I/O operation is initiated by the first non-busy I/O Con­
trol Module. If the descriptor is a Release Descriptor, the I/O Control
Module number is contained in the device address field, and only that
I/O Control Module is releas~d.

If a non-busy I/O Control Module accepts a descriptor, the In-Process
Descriptor returned is sent to the first location in the descriptor list
plus twice the Control Module number. The Result Descriptor is sent
to the following memory location.

In the event that an I/O Control Module cannot return a descriptor to
the specified place, a "one" is inserted in bit 4 of the descriptor base
address and an attempt is made to send the descriptor to the next higher
Memory Module. Because of this feature, the descriptor list base ad­
dress in the original Setup Descriptor should refer to an even numbered
Memory Module. Once bit four is set in the "one" state, it remains in
this state until another Setup Descriptor is sent.

In the event of simultaneous memory requests .. the I/O bus has a higher
priority than any computer requesting at the same time. If more than
one I/O Control Module have simultaneous requests, those with the
priority bit set are serviced in numerical order and then non-priority
requests are processed in numerical order.

5-3

SETUP DESCRIPTOR FORMAT

1 11 12 31 32 33 43 44 48

\DESCRIPTOR LIST 1 ~ 10001\
. BASE ADDRESS ~ ~ .

The descriptor-list base address contains the 11 most significant bits
of the memory address. The remaining five bits are supplied by the
logic in each I/O Control Module. Two descriptor lists, and there­
fore two base addresses, are required with a system having two
I/O busses. In the Setup Descriptor format, bits 12 through 31 and 33
through 43 must be zero.

COMMAND DESCRIPTOR FORMAT

WORD COUNT

37 38

PRIORITY

1213 1617

RECORD COUNT

39

DEVICE
NUMBER

43 44

2021

MEMORY STARTING
ADDRESS

OPERATION
TYPE

4546
OPERATION

CODE

36

48

Programming of word count and record count will vary between I/O
devices. In the case of magnetic tapes, standard tape formats may
be used. Memory starting address is the 1S-bit starting address
of the block being written into memory or read out of memory.
Priority for an I/O operation is indicated by programming bit 38 as
a one. The device number' is programmed in bits 39 to 43. Device
numbers are assigned according to the I/O complement of specific
D825 systems.

Operation type, bits 44 and 45, is programmed as follows:

Bit 44

o
1
o
1

Bit 45

o
o
1
1

Write operation with a one way device.
Read operation with ,a one way device.
Write operation with a two way device.
Read operation with a two way device.

5-4

The operation codes for bits 46. 47 and 48. are given in the publica­
. tions dealing with the specific I/O devices.

Bits 17 to 20 and bit 37 are status bits and are not used in the
Command Descriptor.

IN- PROCESS DESCRIPTOR FORMAT

39

12 13 1617

WORD COUNT RECORD COUNT

43 44

19 20 21 3637 38
MEMORY STARTING

ADDRESS

4546 48

DEVICE NUMBER OPERATION TYPE OPERATION CODE

Except for the bits marked "status" and bits 20. 37. and 38 in the
above diagram. all bits of the In- Process Descriptor are identical
to those of the Command Descriptor which initiated the I/O operation.
In this sense the In-Process Descriptor may be considered a "reflec­
tion" of the Command Descriptor from the I/O Control Module, with
certain significant changes.

The significance of the status-bit coding of the In-Process Descrip­
tor is shown below:

Bits
17 18 19

1 1 1 Parity of the descriptor was incorrect on
arrival at the I/O Control Module.

0 0 1 The I/O device requested by the Command
Descriptor is not available. The device is
either inoperable or connected,by the ex-
change,to another I/O Control Module.

0 0 0 None of the conditions for which status codes
are available have been encountered. A suc-
cessful I/O operation.

5-5

RESULT DESCRIPTOR FORMAT
1 12 13 16 17 20 21

WORD COUNT RECORD COUNT

37 38 39 43 44

NEXT MEMORY
ADDRESS

45 46

36

48

DEVICE NUMBER OPERATION TYPE OPERATION CODE

In the Result Descriptor, the device number, operation type, and opera­
tion code are identical to the Command Descriptor which initiated the
I/O operation. The first 16 bits will contain the word count and record
count of the operation existing at the time the operation ended or was
interrupted by a Release Descriptor. Bits 21 to 36 contain the mem­
ory address following the last address used in the I/O operation.

The significance of the status coding for bits 17, 18 and 19 is shown
below.

Bits
17 18 19

1 1 1 Parity error in data read from memory.
1 1 0 Parity error in data from the I/O device.
1 0 1 Power failure interrupt.
0 1 1 Word count has been reduced to zero.
1 0 0 Access to memory is not available.
0 1 0 Operation not completed when released.
0 0 0 None of the above.

The significance of the status coding for bits 20, 37, and 38 depends
largely 0(1 the I/O device used in the I/O operation, and the actual
coding is g.Lven in publications dealing with the specific I/O devices.
The following codes apply to all devices.

Bits
20 37 38

o o 1 Record count has been reduced to zero.

o o o None of the other conditions.

5-6

RELEASE DESCRIPTOR FORMAT

I 38 39 42 43 4 4 45 48

CONTROL I><:::J.
MODULE
NUMBER

o 0 0 0

The Release Descriptor, used to release an I/O Control Module for
another operation, consists of an operation code of zero, and the
I/O Control Module number in bits 39-42. In the Release Descriptor
format, bit 44 must be a one.

5-7

SECTION 6

THE D825 INTERRUPT SYSTEM

To implement the interrupt system, each computer module contains
a 12-bit interrupt register (including 2 spare bits) and a 23-bit mask
register (including 2 spare bits) (see figure 1-2). Four of the bits
in the interrupt register are set directly by the occurrence of an
interrupt condition; five others are set only if the corresponding mask
bit is in the "1" state when an interrupt condition occurs. One bit
is set during normal mode operation by any or all of sixteen "exter­
nal request" interrupt conditions in coincidence with their individual
mask bits. There are two additional pseudo interrupt conditions
which require neither mask nor interrupt register bits, as they are
of highest priority. A bit in the interrupt register is reset only
when the corresponding interrupt condition is processed. Mask bits
are assigned to the computers by an AOSP (LSR instruction) in order
that; Ca) local interrupt conditions can either be ignored or processed
by the computer in which they occur, and (b) system interrupt condi­
tions can be assigned to any computer in the system, depending on
the work load and urgency of the request.

At the end of each instruction or completed iteration of a repeated
instruction, the computer is available to process an interrupt con­
dition. If either of the two highest priority conditions exists, the
higher one will be processed immediately. If neither of these con­
ditions exists but some bit in the interrupt register is set, the com­
puter will process the existing interrupt condition of highest priority,
provided it is not already processing one (operating in the control
mode). The following table lists the interrupt and pseudo interrupt
conditions and their characteristics:

6-1

Interrupt Number of Mask
Interrupt Condition Register bit Register bits Mode in which

Number Required Recognized

Primary power control or
failure - 0 normal

Count real time control or
clock - 0 normal

Restart after
primary power control or
failure 1 0 normal

16 External requests 2 16 normal

110 Termination 3 1 control or
normal

Interrupt computer N 4 0 control or
normal

RTC overflow 5 1 control or
normal

Write out of bounds 6 0 normal
illegal instructions 7 0 normal
Internal parity error

or no access to
memory 8 0 normal

Arithmetic overflow 9 1 normal
Normal mode halt

instr. or snag bit 10 0 normal
Spare 11 spare
Spare 12 spare

The mask register is loaded by means of the LSR instruction, which
is available during control mode operation only. as follows.

• Bits 21 thru 36 of the location specified by A1 are the mask
for external request lines 1 thru 16 respectively.

• Bit 39 is the mask for I/O termination.

• Bit 41 is the mask for R TC overflow.

6-2

• Bit 45 is the mask for arithmetic overflow.

• Bits 47 and 48 are spares; all others are not used.

Note that an external request line that is "on" will maintain its level
until an I/O control unit is connected to the external device requesting
service.

PRIMARY POWER FAILURE

The primary power failure interrupt condition occurs when the input
ac voltage is detected out-of-tolerance. Storage circuits maintain
dc supply voltages at normal levels for a period following failure de­
tection; during this period, automatic storage of the contents of inter­
rupt registers and control flip-flops necessary for restart is accom­
plished. This interrupt signal bypasses the interrupt register.

COUNT REAL TIME

The real-time clock count signal occurs once every 10 milliseconds.
The count signal also bypasses the interrupt register.

RESTART AFTER PRIMARY POWER FAILURE

When a computer is turned on. bit 14 of the PDR will indicate
whether this is a restart after primary power failure or not. If it
is, the corresponding interrupt bit is set; the interrupt register and
control flip-flops necessary for restarting the program after pri­
mary power failure are automatically loaded with the contents of
the PDR; bit 14 is then reset. The computer will return to the in­
struction after the one during which primary power failure had oc­
curred. If this return point is control mode operation, the interrupt
processing will be completed. Once normal mode operation is in
effect,. however, the restart-after-primary-power-failure interrupt
condition will prevail. and interrupt processing by an AOSP will begin.

6-3

EXTERNAL REQUESTS

External requests are signals to the computer(s) from the terminal
devices. These signals can be examined during control mode opera­
tion by use of the SER instruction. Note that all I/O processing is
handled by an AOSP in order to centralize scheduling problems and
to protect the system from the possibility of data destruction by con­
flicting normal mode programs.

I/O TERMINATION

Input/ output termination, for any reason whatever, is also a signal
to the computer(s) from an I/O Control Unit. In this case a result
descriptor from the I/O Control Unit is transmitted to the memory
location specified by the contents of a register in the I/O Control Unit.

INTERRUPT COMPUTER N

The interrupt computer N signal occurs as the direct result of a var­
iation of the LSR instruction which is available in the control mode
only.

REAL-TIME CLOCK OVERFLOW

Real-time clock overflow can occur after the count real-time clock
interrupt condition is processed. The RTC is loaded by the LTF
instruction.

WRITE OUT OF BOUNDS

The write-out-of-bounds interrupt condition is a method of memory
protection provided for normal mode operation. Its restrictions are:
attempts to write into memory areas outside of the upper and lower
memory limits, and attempts to use the LTF instruction to load the
thin film Interrupt Address Register (IAR). The memory bounds
registers are loaded during control mode operation by the LSR
instruction. When this interrupt condition occurs, the memory write
syllable (M) or the thin film syllable (T) will be skipped.

6-4

ILLEGAL INSTRUCTION

An illegal instruction during normal mode operation is defined as use
of a control mode instruction or of a non-existent operation code. In
the control mode this interrupt condition applies to the use of non-exis­
tent operation codes only and causes the computer to halt. The in­
structions which are forbidden in normal mode operation are LSR.
TIO, and IRR. When this interrupt condition occurs during normal
mode operation only the operator syllable (0) involved will be skipped
before interrupting.

PARITY ERROR

Internal parity is checked every time a data or program word is read
from memory; the parity bit is appended to the word on each instance
of memory write. If the error condition occurs during control mode
operation. the computer will halt. If the error condition occurs during
normal mode operation, no attempt will be made to continue the in­
struction involved. Note that the I/O Control Module has its own parity­
checking circuitry. which is not connected to the interrupt system. Thus.
parity error in any descriptor s or data transmitted between memory
and the I/O Control Module will not cause a halt.

The interrupt register bit corresponding to this interrupt condition
is also utilized to indicate failure to gain access to memory. If two
consecutive count R TC signals are received without servicing the
first one. and if the memory request flip-flop is set indicating an
attempt to gain access to memory. the no-access-to-memory inter­
rupt condition has occurred. If the error condition occurs during
control mode operation, the computer will halt. If the error condi­
tion occurs during normal mode operation. no attempt will be made
to continue the instruction involved.

ARITHMETIC OVERFLOW

Arithmetic overflow results from the following conditions:

1. Fixed- point arithmetic overflow resulting from addition,
subtraction. or division.

6-5

2. Overflow resulting from the round instruction (TRM).

3. Exponent overflow resulting from a floating-point arith­
metic operation.

4. Quotient overflow resulting from use of the FDV instruction
with non-normalized operands.

The occurrence of anyone of these conditions will cause the POV
flip-flop to be set and remain set until the BRC instruction is used
or until the interrupt bit is set. The arithmetic overflow interrupt
bit will be set by the POV flip-flop during normal mode operation if
the corresponding mask bit is set.

HALT

The HLT instruction. employed in the normal mode, causes an in­
terrupt condition and consequent transfer to the control mode of
operation. In the control mode, the HLT instruction will halt the
computer. The interrupt register bit corresponding to this interrupt
condition is also utilized for another purpose: in indirect addressing,
if the 18th least significant bit (the anag bit) of any level of addressing
after the first is a "ONE". the interrupt register bit will be set and
the instruction will be completed. This ~apability, available in both
modes, is employed to facilitate computer control of certain areas
of the program.

PROCESSING OF THE INTERRUPT CONDITIONS

The two highest priority interrupts, primary power failure and count
the real-time clock, are processed automatically, i. e. do not involve
an AOSP or ordinary control mode operation, and are therefore class­
ified as pseudo interrupts.

A primary power failure causes all I/O operations to cease, sending
result descriptors to the memory locations specified by the contents
of registers in the I/O Control Units. There is sufficient time,
between detection of the condition and shut- down of the core memory,
to accomplish this and to complete the execution of the present in­
struction or iteration of a repeated instruction. Once the execution

6-6

of the instruction is completed, the contents of all control flip-flops
necessary for restart are stored in the thin film (non-volatile) Power­
Failure Dump Register (POR). The first sixteen bits of this register
are the same as those loaded into the IDR (see below) with bit 14 set
and bit 13 set if the primary power failure interrupt condition oc­
curred during control mode operation. The next twelve bits are used
to store the contents of the interrupt register (including 2 spare bits),
and the last four bits are blank.

The count real-time clock signal occurs approximately every 10 milli­
seconds. This interrupt condition is processed by the hardware; it
cannot upset the running of any program and can delay it only briefly
(3.67 ,",sec). The processing is a matter of reading the contents of
the RTC from thin film, incrementing it, writing it back into thin
film, and setting the RTC overflow interrupt bit if the overflow con­
dition occurred.

Handling of the ten interrupt conditions recorded by the interrupt re­
gister involves transfer to the control mode of operation, wherein
the appropriate AOSP routine will service the interrupt. Transfer
from the control mode back to the normal mode is the responsbility
of an AOSP, and is accomplished by using the IRR instruction. The
process of transfer from normal mode to control mode is automated
(in order) as follows:

a. The contents of the BAR, BPR, and PCR are stored in the
thin film interrupt storage register (ISR) in that order.
Note that the PCR, which is stored, always contains' the
address of the program word to be used on returning to
normal mode operation. In other words, overlap has been
lost, and the PCR corrected accordingly.

b. The contents of the presently - addressed PSR are stored
in the thin film interrupt program register (IPR). This
is the PSR now containing the next syllable to be read
if either PSR is filled.

c. The contents of certain control flip-flops are stored in the
thin film interrupt dump register (IDR). Numbering the
bits from left to right, the lOR will contain the information
shown on the following page.

6-7

bit

1-3

4

5

6-7

8-10

11-12

13

14

15

16

The address of the next PSR syllable. This syllable
should be an operator syllable, since the transfer to
control mode can occur only at the end of an instruc­
tion. The PSRl syllables are numbered, from the
most significant end, 3-2-1-0, and the PSR2 syllables,
7-6-5-4.

A "one" if a repeated instruction was interrupted.

A "one" if a repeated instruction was interrupted before
execution of the first iteration.

A "one" for each PSR (if any) that is presently filled
(bit 6 for PSR1 and bit 7 for PSR2). If the last syllable
of a PSR was used as the last syllable of the instruction
before interrupt, then this PSR is no longer filled; if
the last syllable was not used, this PSR is filled. If
overlap had occurred, then the other PSR is filled,
otherwise it is not. When these bits are restored, if
both of these are in the "one" state due to overlap, one
of them will be reset since the overlap has been lost.

The contents of the POV, PUN, and PNN flip-flops,
respectiyely.

The address of the top of the stack, numbered 0 thru 3
(the contents of the stack counter).

A "one" if the computer was operating in the control
mode when primary power failure was recognized.

A "one" if the interrupt condition is primary power
failure.

A "one" for reversed counting of the stack counter.

Not used.

6-8

Bits 1 thru 10 are the only ones of bterest to an AOSP rou­
tine and consequently are the only ones whose corresponding
flip-flops are restored as a result of the mR instruction.

d. The control mode flip-flop is set, thus marking transfer to
the control mode, changing the interpretation of certain
instructions and interrupt conditions, and temporarily pre­
venting the processing of other interrupt conditions that
may occur, with the exception of the two highest priority
interrupt conditions.

e. The BAR and BPR are each loaded with the contents of the
IAR. Note that the contents of the IAR can be altered only
during control mode operation.

f. The effective address is computed. by adding the relative
address, associated with the specific interrupt condition

* to be processed, to the contents of the !AR, and is stored
in the peR. The contents of the location specified by this
effective address will be one of a list of instructions, all
unconditional transfers, to facilitate entry to the appropriate
AOSP routine.

g. The bit in the interrupt register, corresponding to the in­
terrupt condition about to be processed, is reset.

h. The POV, PUN, PNN and all other necessary control flip­
flops are reset to allow the control mode program to use
them without first resetting them. In the event of arithmetic
overflow interrupt, the servicing of the overflow is per­
formed by the control mode program. The POV is therefore
reset as soon as the interrupt bit is set, since the control
mode program would of necessity have to reset the corres­
ponding bit from which it is loaded on return to normal
mode, in order to prevent an interrupt loop.

*This relative address is the int,errupt register bit number plus I.
For example, the RTC overflow effective interrupt address is the
contents of the IAR plus 6.

6-9

APPENDIX A

D825 INSTRUCTION EXECUTION TIMES (in /Jsec)

ACE: 0.33

2.33

ACG: 0.33

2.33

ACL: 0.33

2.33

AIF: 3.00 + 0.33 (n-l)

3.00

first bit different

first bit alike

first bit different

first bit alike

first bit different

first bit alike

n = number of adjustments (1 through 7)

if n = 0

AUTOMATIC INTERRUPT JUMP: 7.00

BAD: 1. 33

2.00

BAF: 8.33 + 0.33 (n-l)

8.33

signs alike

signs different

n = number of adjustments (1 through 7)

if n = 0

A-l

BDV: 53.67

BMU: 24.00 + 0.67n

BRB: 0.33

BRC: 0.33

BSF: 8.33 + 0.33 (n-l)

8.33

BSU: 1. 33

2.00

CBF: 1.33 + O. 33n

0.33

CEF: 4.67 + 0.33 (n-1)

4.67

CEQ: 0.33

2.33

CGF: 4.67 + 0.33 (n-l)

4.67

n = number of l' s in the multiplier (AI)'
excluding 1 's in bit positions 1, 12. 24,
36,48.

n = number of adjustments (1 through 7)

ifn=O

signs different

signs alike

n = number of shifts-left needed to
normalize

if the number is zero

n = number of adjustments (1 through 7)

ifn=O

signs different

signs alike

n = number of adjustments (1 through 7)

if n = 0

A-2

CGR: 0.33 signs different

2.33 signs alike

CLA: 0.00

CLF: 4.67 + O. 33 (n-l) n = number of adjustments (1 through 7)

4.67 ifn=O

CLS: 0.33 signs different

2.33 signs alike

CSE: 1. 33 + O. 33n n = number of character positions
examined (1 through 8)

FAD: 6.67 + O. 33 (n+m) n = number of shifts- right needed (in
units of 1, 6, & 12 bits) for lining up the
operands, and m = number of shifts-left
needed to normalize the result. n = 0
if the absolute value of [the (A~) expo-
nent minus the (A2> exponent] 1S !! 35.

2.33 The signs of the exponents of the 2
operands are different, and the absolute
value of the sum of the two exponents is
greater than 2, 047.

FDV: 43.67 No quotient overflow

44.33 Quotient overflow of 1 position has oc-
curred and been corrected.

1. 33 Exponent overflow or underflow has
occurred.

A-3

FMU: 21.00 + 0.67n + 1.33 (if normalization of 1 position is necessary)

1. 67

n = number of l' s in the mantissa of the
multiplier (AI)' excluding l's in bit po­
sitions 1-13, 24, 36, 48.

Exponent overflow or underflow has
occurred.

FSU: 6.67 + 0.33 (n+m) n = number of shifts-right needed (in
units of I, 6, & 12 bits) for lining up

2.33

HLT: 0.00

IRR: 5.67

LAF: 7.00 + 0.33 (n-l)

7.00

LAN: 0.33

LCF: 5.00 + O. 33 (n-l)

5.00

the operands, and m = number of shifts­
left needed to normalize the result.
n = 0 if the absolute value of [the (AI)
exponent minus the (A2) exponent] is
~ 35.

The signs of the exponents of the 2 oper­
ands are different, and the absolute value
of the sum of the two exponents is greater
than 2,047.

n = number of adjustments (1 through 7)

if n = 0

n : number of adjustments (1 through 7)

if n = 0

A-4

LCM: 0.33

LOF: '1. 00 + O. 33 (11-1) 11 = number of adjustments (1 through '1)

'I .. 00 if n = 0

LOR: 0.33

LSR: D .. 33

LTF: 0.1'1

2.00

4.00

LXF: 7.00 + 0.33 (n-1)

7.00

LXR: 0.33

NOP: 0.00

RPT: 1.00

BVS: 0.00

1 register addressed

" l2-bit relisters addressed

3 ll-bit relisters addressed

n = number of adjustments (1 through 7)

ifn=O

A-5

SAF: 1.33 + 0.33 (n-1)

1. 33

SER: 0.00

SHF: 0.67 + O. 33n
(Single)

5.33 + 0.67 (n-l)
(Double)

0.67

SRJ: 5.33

6.00

SRR: 4.00

STF: 2.00

4.33

7.33

SSD: 0.00

SSU 0.00

n = number of adjustments (1 through 7)

if n = 0

n = number of shifts-left. or the number
of shifts- right in units of 1. 6. and 12 bits.

n = number of shifts; n is limited to 11
for the 2 left arithmetic shifts and to 12
for the other 6 double shifts.

shift of zero

no overlap of program word fetch had
occurred

overlap of program word fetch had
occurred

12-bit register(s) addressed

1 l6-bit register addressed

3 16-bit registers addressed

A-6

TID: 0.00

TRM: 0.33

2.67

TRS: 0.00

UCT: 0.00

XLC: 3.33

sign modification

round. with or without sign modification

A-7

APPENDIX B

D825 TIMING ALGORITHMS

Two timing algorithms and a program which illustrates the use of the
algorithms (and D825 programming) are presented in this appendix.
The first algorithm is used to calculate accurate program running
time. and the second algorithm. which is more simple than the first,
may be used to calculate approximate running time.

TIMING ALGORITHM #1

This algorithm can be used to calculate the accurate running time
for D825 programs and is illustrated in tables B-1 and B-2.

Sum of instruction execution times
+ 2. 00 /J sec per stack read *
+ 1. 67 /J sec per stack write
+ 4.33 /Jsec per level of indirect addressing**
+ 1. 67 ,",sec per repeated instruction***
+ the individual processing time for each type of

syllable used:
1. 33 /Jsec per program operator syllable
5.33 /Jsec per memory syllable (read)
4.33 /Jsec per memory syllable (write)
0.33 /Jsec per branch (if executed)
0.67 /Jsec per branch (if not executed)
1. 67 /Jsec per index syllable
1 . 67 /J sec per any other type of syllable

+ 5.00 /Jsec per program word - fetch**
- 5.00 /Jsec per program word - fetch overlap

*0. 33 /Jsec. for a stack read if it immediately follows
a stack write of the preceding instruction.

**Counted only the first time if repeated.

***Not counted the first time.

B-1

(Thin film storage provides enough space for 2 full program words;
if 1 word is empty and the present instruction is lengthy in execution,
the 2nd word can be filled during the execution. This overlap saves
5.00 f.lsec. All floating point instructions, as well as BDV and BMU,
allow overlap.)

TIMING ALGORITHM # 2

This abridged algorithm provides a good estimate of program running time s:

Sum of instruction execution times

+10 f.lsec per program word (each 4 syllables) processed
+ 4 f.lsec per operand or level of indirect addressing
+ 2 f.l sec per operand stack reference
+ 2 f.l sec per indexed address
- 5 f.lsec per overlap

The abridged timing algorithm may be used with confidence for all
tasks where the average instruction execution times are used.

B-2

AN EXAMPLE OF THE APPLICA TION OF ALGORITHM # 1

Given four columns of numbers, each of length "n", which are stored
in floating-point format in 4n consecutive memory words.

Location

BAR + Col 1
BAR + Col 1 + 1

BAR + Col 1 + n-l
BAR + Col 1 + n

BAR + Col 1 + 2n-l
BAR + Col 1 + 2n

BAR + Col 1 + 3n-l
BAR + Col 1 + 3n

BAR + Col 1 + 4n-l

Contains Symbolic Notation

Column l-lst number A 1
Column l-2nd number A2

-
Column l-nth number An
Column 2-lst number Xl

Column 2-nth number Xn
Column 3 -1st number Y 1

Column 3 -nth number Y n
Column 4-1 st number Z 1

Column 4-nth number Zn

Form three product - sums, by summing the products of each number
in column 1 times the corresponding number in another column; the
product - sums are to be stored in absolute memory locations 0, 1,
and 2. Symbolically,

A1 Y 1 + A2 Y 2 + A3 Y 3 + - - - -

A1 Zl + A2 Z2 + A3 Z 3 +----

An Y n ~Location 1

An Z n-+Location 2

It is assumed that program overflow, program underflow, and pro­
gram non-normalized will not occur.

B-3

Octal notation and coding symbols are used in place of binary format.
Constants and storage used are described below.

Location

BAR +a n

Contains

I o~ol o~ol
Use

Index register loader;
indirect address

BAR + b O~O I 3n n I Limit register loader

~~~ +;~~ +Si~-l 
Index and limit register use 

n--.. XR4 
O--..XR5 
O~XR6 

O-+LR4 
3n-+LR5 
n-+ LR6 

(XR 5 increment) 
(column - address increment) 
(number - address increment) 
(not used) 
(XR5 limit) 
(XR6 limit) 

Program coding is given in table B-1, and the timing for the program 
words is shown in table B-2. 

B-4 



Table B-l. Program Coding 

Word Symbolic Program Word 

No. Address Syllable 1 Syllable 2 Syllable 3 Syllable 4 
Comments 

1 Start LTF.220 a XR4. XR5. XR6 LTF.220 Load XR's and LR's. Assume top 
of stack contains zero. 

2 b LR4. LR5. LR6 UCT.200 ® 
3 CD LTF.220 a XR6 CLA.OOO Re-load XR6; clear stack 

4 ® FMU.330 XR6 COL 1 XR4, XR5, XR6 (Col 1 number) (Col 2-4 number) 
_ stack 

COL 1 FAD,OOO XLC.222 0011 .. 01 Add to former sum; address a 
5 new number 

+, f. XR6, LR6 ® XLC.322 XR4 Continue in sequence after n 
6 numbers; address a new column 

7 
0""" ... 0 +. f, XR5, LR5 CD RVS, 000 Continue in sequence after 3 

columns; manipulate stack 

SSU.OOO SSU, 000 RPT,222 o .. ,. 03 Transmit 3 product-sums to 
8 locations 0-2 

9 1. 0, 0 0) UCT,200 EXIT Exit 

0) TRS.020 (1) a (Repeated 3 times; (I) = indirect 
10 address) 

B-5 



Table B-2. Program Timing 

..c: 
CIl s= ~ ~ Instruction 
CJ -g~ Syllables Word .:0: c ... !AI 

Execution CJ CIl CJ !AI 
- CJ '" ~ No. 

111 '" 
<II <II ~ e bill 

Number of Time ... ~ .!:: '" o "CI 
Total til <II "CI"CI 0.- '" '" Times Performed (Average) !Xl .s~ CIl ~ Operator Memory Branch Other Il.~ (,.csec) !Xl .... 

1 1 8.00 2.67 5.33 1.67 5.00 22.67 

2 1 1. 33 5.33 .33 1.67 5.00 13.67 

3 2 0.67 1.67 2.67 5.33 1.67 5.00 34 

4 3n 38.33 1. 67 1.33 5.33 3~ 33 5.00 165 n 

5 3n 15.67 4.00 2.67 5.33 1.67 5.00 103 n 

6 
Branch: 3n-3 .33 1.67 6n - 6 
No Branch: 3 3.33 1.33 .67 3.33 26 

7 
Branch: 2 .33 3.33 5.00 17.33 
No Branch: 1 1.33 .67 3.33 5.00 10.33 

8 1 1. 00 4.00 1.67 5.00 11. 67 

9 1 1. 33 .67 1.67 5.00 8.67 

1st time: 1 2.00 4.00 1.33 4.33 5.00 16.67 
10 Other times: 2 2.00 1. 67 1.33 4.33 18.67 

Total = 274n + 173.67 ,",sec. 

B-6 



APPENDIX C 

MA P OF THIN FILM REGISTERS 

C-l 



MAP OF 16-BIT T. F. REGISTERS 

THIN FILM ADDRESS 
OCTAL 

REGISTER NAME 
CODE 

o 000 0 0 o. o 0 0 not used 
0 0 1 1 1 
0 1 0 2 2 
0 1 1 3 3 
1 0 oe 4 4 
1 0 1 5 5 
1 1 0 6 6 

0 1 1 1 o 7 7 
1 0 0 Oe 1 0 8 Index Registers 1-15 

0 0 1 1 9 
0 1 0 2 10 
0 1 1 3 11 
1 0 oe 4 12 
1 0 1 5 13 
1 1 0 6 14 

0 1 1 1 1 1 7 15 • 
1 0 0 0 oe 2 0 0 Spare 

0 0 1 1 1 
0 1 0 2 2 
0 1 1 3 3 
1 0 oe 4 4 
1 0 1 5 5 
1 1 0 6 6 

0 1 1 1 2 7 7 
1 0 0 oe 0 8 > Limit Relistera 1-15 

0 0 1 1 9 
0 1 0 2 10 
0 1 1 3 11 
1 0 oe 4 12 
1 0 1 5 13 
1 1 0 6 14 

0 1 1 1 1 1 0 3 7 15 
o 1 0 0 0 0 o. 0 4 0 

}SR 
I 

0 0 1 1 - Interrupt Storage Register 
0 1 0 2 
0 1 1 3 Spare 
1 0 oe 4 
1 0 1 5 

r 
- Repeat Program Register 

1 1 0 6 
0 1 1 1 4 7 
1 0 0 oe 5 0 

0 0 1 1 SSR - Subroutine Storage Register 
0 1 0 2 
0 1 1 3 Spare 
1 0 Oe 4 BPR - Base Program Register 
1 0 1 5 BAR - Base Address Register 
1 1 0 6 Spare 

0 1 1 1 1 5 7 PCR - Program Count Register 
1 0 0 0 oe 6 0 SAR - Subroutine Base Address Register 

0 0 1 1 Spare 
0 1 0 2 XIR - Index Increment Relister 
0 1 1 3 IAR - Interrupt Base Address Register 
1 0 Oe 4' lPDR - Power Failure Dump Register 
1 0 1 5 
1 1 0 6 J Spare 

0 1 1 1 6 7 
0 0 oe 7 0 lOR - Interrupt Dump Register 
0 0 1 1 

} 
0 1 0 2 
0 1 1 3 
1 0 oe 4 Spare 
1 0 1 5 
1 1 0 6 

o 1 1 1 1 1 1 o 7 7 

• Starting address for 3-register blocks 

C-2 



MAP OF 12-BIT T. F. REGISTERS 

OCTAL 
THIN FILM ADDRESS CODE 

REGISTER NAME 

1 000 0 0 o. 1 o 0 

} PSaI 0 0 1 1 - Program Storage Register *1 
0 1 0 2 
0 1 1 3 
1 0 O. 4 } .... 1 0 1 5 - Pr~gram Storage Register '2 
1 1 0 6 

0 1 1 1 o 7 
1 0 0 O· 1 0 

}WR 0 0 1 1 - Interrupt Program Register 
0 1 0 2 
0 1 1 3 
1 0 O. 4 r~ - Real Time Clock 
1 0 1 5 
1 1 0 6 Spare 

0 1 1 1 1 1 7 
1 0 0 0 O. 2 0 ReR - Repeat Count RegIster 

0 0 1 1 Spare 
0 1 0 2 Spare 
0 1 1 3 CCR - Character Count Register 
1 0 O. 4 }= 1·0 1 5 - Thin FUm C Register 
1 1 0 6 

0 1 1 1 2 7 
1 o 0 O. 0 

} RIR o 0 1 1 - Repeat Increment Registers 
o 1 0 2 
0 1 1 JI 
1 0 O. 4 
1 0 1 5 Spare 
1 1 0 6 

1 0 1 1 1 1 1 1 3 7 
1 1 0 0 0 O. 1 4 0 

0 0 1 1 STKI 
0 1 0 2 
0 1 1 3 
1 0 O· 4 
1 0 1 5 STK2 
1 1 0 6 

0 1 1 1 4 7 Operand Stack Registers 
1 0 0 0 • 5 0 

0 0 1 1 > STK3 
0 1 0 2 
0 1 1 3 
1 0 O. 4 
1 0 1 5 STK4 
1 1 0 6 

0 1 1 1 1 5 7 
1 0 0 0 0-. 6 0 

0 0 1 1 
0 1 0 2 
0 1 1 3 
1 0 O. 4 
1 0 1 5 
1 1 0 6 

0 1 1 1 6 7 Spare 
1 0 0 o. 7 0 

0 0 1 1 
0 1 0 2 
0 1 1 3 
1 0 0 • 4 
1 0 1 5 
1 1 0 6 

1 1 1 1 1 1 1 1 7 7 

• Starting address for 4-register blocks 

C-3 





APPENDIX D 

INSTRUCTION INDEX 

MNEMONIC INSTRUCTION NAME 
SYLLABLE LAYOUT 

SYMBOLIC DESCRIPTION PAGE 
AND OCTAL Al A2 A3 

ACE-72 Alphanumeric Compare Equal 0 (M) (M) B (AI) = (A2) : A3 (alphanumeric) 4-26 
ACG-71 Alphanumeric Compare Greater 0 (M) (M) B (AI) > (A2) : A3 (alphanumeric) 4-26 
ACL-70 Alphanumeric Compare Less 0 (M) (M) B (AI) < (A2) : A3 (alphanumeric) 4-27 
AIF -40 Adjus t and Insert, Field 0 (M) F (M) - 4-19 
BAD-65 Binary Add 0 (M) (M) (M) (AI) + (A2)~ A3 4- 3 
BAF-43 Binary Add, Field 0 (M) F (M) - 4-14 
BDV-60 Binary Divide 0 (M) (M) (M) (AI) +- (A2)~A3 4- 4 
BMU-61 Binary Multiply 0 (M) (M) (M) (AI) x (A2) ---+-A3 4- 3 
BRB-26 Branch on Bit 0 (M) (M) B- - 4-27 
BRC-ll Branch on Condition 0 L B Al~2 4-27 
BSF-42 Binary Subtract, Field 0 (M) F (M) 4-16 
BSU -64 Binary Subtract 0 (M) (M) (~) (AI) - (A2)~A3 4- 3 
CBF-25 Convert Binary to Floating Point 0 (M) (M) (Al)~ A 2, floating 4- 4 
CEF-52 Compare Equal, Field 0 (M) F- B - 4- 20 
CEQ-76 Compare Equal 0 (M) (M) B (A l ) = (A2) : A3 (algebraic) 4-25 
cu!t'-~l Compare Greater, Field 0 (M) F B - 4-20 
CGR-75 Compare Greater 0 (M) (M) B (AI) > (A2) : A3 (algebraic) 4-26 
CLA-20 Clear 0 (M) zeroes~AI 4-14 
CLF-50 Compare Less, Field 0 (M) F B - 4-20 
CLS-74 Compare Less 0 (M) (M) B (Ar)< (A2): A3 (algebraic) 4-26 
CSE-32 Character Search 0 (M) C B (A = A2 : A 4- 21 
FAD-67 Floating Add 0 (M) (M) (M) float~ng, (A 11 -; (A2) ~ A3 4- 5 
FDV-62 Floating Divide 0 (M) (M) (M) floatmg, (AI);" (A2) ~ A3 4- 8 
FMU-63 Floating Multiply 0 (M) (M) (M) floating, (AI) x (A2) ~ A3 4- 7 
FSU -66 Floating Subtract 0 (M) (M) (~) floating, (AI) - (A2 ) ~ A3 4- 6 
HLT-Ol Halt 0 - 4-33 
lRR -05 Interrupt Return 0 - 4-36 
LAF-47 Logical AND, Field 0 (M) F (M) - 4-16 
LAN-56 Logical AND 0 (M) (M) (M) (A1) • (A2)~ A3 4-23 
LCF-46 Logical COMPLEMENT, Field 0 (M) F (~)- 4-17 
LCM-24 Logical COMPLEMENT 0 (M) (M) 

r--
4-'23 (A1)~,A2 

LOF-44 Logical OR, Field 0 (M) F (M) 4-16 
LOR-55 Logical OR 0 (M) (M) (~) (AI) v (A2 ) ~A3 4-23 
LSR-3l Load Special Register 0 (M) Vs - 4-33 
LTF-30 Load Thin Film 0 (M) T (Al)~A2' thin film 4-11 
LXF-45 Logical EXCLUSIVE OR, Field 0 (M) F (M) - 4-16 
LXR-54 Logical EXCLUSIVE OR 0 (M) (M) (~) (AI) 0 (A2)--+ A3 4-23 
NOP-OO No Operatioll 0 - 4-29 
RPT-I0 Repeat 0 Rc Ri B Repeat (A3), by A2, Al times 4-31 
RVS- 06 Reverse Stack 0 - 4-11 
SAF-41 Strip and Adjust, Field 0 (M) F (!'!p - 4-18 
SER- 21 Store External Requests 0 (M) - 4-14 
SHF-36 Shift 0 (:M) S (!'!p (A2) shifted, by AI' --;0. A3 4-24 
SRJ -14 Subroutine Jump 0 Ja Ji - 4-29 
SRR-04 Subroutine Return 0 4-31 
STF-15 Store Thin Film 0 T (~:) Thin film, (AI) ~A2 4-10 
SSD -03 Step Stack Down 0 s - 1-+ s 4-12 
SSU -02 Step Stack Up 0 s+ l~s 4-12 
TIO-16 Transmit to Input/Output 0 10 M B - 4-35 
TRM-34 Transmit Modified 0 (M) Vt (M) (AI ~2' ---+- A3 4- 9 
TRS-35 Transmit 0 (M) (~) ~Ai~A2 4- 9 
UCT-22 Unconditional Transfer 0 B . 1 4-27 
XLC-12 Index, Limit - Compare 0 Ia Iv B - 4-12 

D-1 


	001
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	A-01
	A-02
	A-03
	A-04
	A-05
	A-06
	A-07
	A-08
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	D-01

