B R S S BN N S . - T S - - - - - - - ..

MODULAR DATA PROCESSING

BC PROGRAMMING FOR THE D851
SYSTEM

TR64-15

PROGRAMMING
FOR THE
D851 MODULAR DATA PROCESSING SYSTEM

Burroughs Corporation

TRG64-15

PROGRAMMING
FOR THE
D851 MODULAR DATA PROCESSING SYSTEM

MARCH 1964

Burroughs Corporation

SECTION 1.

SECTION 2.

DN NNNDNN DN NN
e N O O bk w N~

DN NN DN DN DN NN

.10
.11
.12
.13
.14
.15
.16

CONTENTS

INTRODUCTION
PROGRAMMING TECHNIQUES

ASSEMBLY LANGUAGE NOTATION
INDEXING

ADDRESSING MODES

LITERALS .

D851 ARITHMETIC OPERATIONS
FIELD OPERATIONS

JUMP OPERATIONS.

OPERATIONS INVOLVING LOCAL
DATA BUFFER . .o

STACK MANIPULATION

TAG BITS

ASSEMBLY ERROR INDICATIONS
PSEUDO-OPERATIONS.
MEMORY-BOUNDS REGISTER
NON-COMMUTATIVE OPERATIONS
STORAGE QUEUE

TIMING .

2-3

2-6

2-11
2-31
2-34
2-42
2-45

2-50
2-53
2-58
2-67
2-68
2-69
2-170
2-171
2-172

vi

SECTION 3.

APPENDIX

APPENDIX

APPENDIX

APPENDIX

W W W W w W W Ww e w W w w

© 0 3 O O b W N =

—
N = O

>

o o o

CONTENTS (Cont'd)

INSTRUCTION REPERTOIRE .

ARITHMETIC INSTRUCTIONS

SHIFT INSTRUCTIONS .

LOGICAL INSTRUCTIONS .
BIT-MANIPULATING INSTRUCTIONS .
LITERAL INSTRUCTIONS .

FETCH AND STORE INSTRUCTIONS
INDIRECT ADDRESSING INSTRUCTIONS .
STACK-MANIPULATING INSTRUCTIONS.
INDEX INSTRUCTIONS .

JUMP INSTRUCTIONS .

CONTROL INSTRUCTIONS,
PSEUDO-OPERATIONS.

THE CASE FOR POLISH NOTATION
TABLE OF POWERS OF 2,

NUMERICAL LISTING OF INSTRUCTIONS

ALPHABETICAL LISTING OF INSTRUCTIONS .

3-1

3-4

3-9

3-13
3-21
3-25
3-26
3-32
3-35
3-38
3-40
3-53
3-60

A-1

B-1

C-1

D-1

PREFACE

This publication represents the first formal documentation of the program-
ming techniques, operations, and instructions which have been developed
as part of the software program for the D851 Modular Data Processing
System. This information is presently being augmented and incorporated
into a comprehensive and detailed D851 programming manual.

This document consists of three sections andfour appendices. Sectionl con-
tains an introduction which states the D851 approach to programming, and
summarizes some of the features that aid programmers. Section 2 isa
general discussion of programming techniques that can be used by experi-
enced programmers to better exploit the full possibilities of the D851 sys-
tem. Some background materialisincluded on the implementation of arith-
metic modes and the manipulation of the stack. Section 3 lists the individual
assembly language instructions and their descriptions. Appendix A discusses
the virtues of Polish notation. A table of the powers of 2 comprises Appen-
dix B. Appendix C lists instructions by operation code, and Appendix D lists

them alphabetically.

Descriptors, interrupt capabilities, and other similar software topics are
not discussed inthis document, but appear in the proposal to which this doc-

ument is appended.

The forthcoming programming manual will not only include the above data,
but will present new and important material made available through contin-
uing exploitation of programming possibilities.

SECTION 1

INTRODUCTION

The D851 Modular Data Processing System is designed to incorporate all
reasonable features which simplify programming, yet permit full realiza-
tion of inherent system flexibility, expansibility, and high throughput. The
design philosophy may be simply stated: the more sophisticated the system
becomes, the less painstaking the programming should become. Since pro-
gramming facility, perhaps more than any other single system aspect, is a
prime consideration in determining a system's value to the user, program-
ming has received paramount attention in the design of the D851. And in
areas where hardware and software trade-offs have been involved in regard
to methodology, decision has invariably favored software where high usage
can be expected. To a large degree, programming needs have dictated the
hardware design, and the D851 programmer finds system programming
straightforward.

Burroughs experience on the D825 and D830 modular systems has been used
as a basis for the advanced design of the D851. Experience gained in building
and programming other machines of a classified nature has also been applied
to the D851. Some of the principal features contributing to the flexibility,
ease of coding, ease of debugging, and simulation of other machines are the
D851 arithmetic computational capabilities, the addressing modes and in-
dexing possibilities, and the special provisions made for minimizing and
detecting program errors,

A great deal of attention has been given to the selection and implementation
of the D851 arithmetic operations. As a result, normalized floating point,
fractional fixed point, and integer arithmetic are provided, both because of
their wide usage and for compatibility purposes. A form of uniform repre-
sentation of numbers is built into the D851 Computer Module to facilitate

1-2

automatic conversion between integer and floating-point modes. Specified
point and significant digit are also provided as computational modes.

In addition to these five arithmetic modes of computation, the Computer Mod-
ule incorporates the alphmeric and logical modes of computation. Double
precision, extended double precision, and field-defined operations are in-
cluded to augment the D851 data processing and character manipulating
capabilities.

Four addressing modes are available to the D851 programmer. Self-relative
addressing and addressing relative to either of two base registers provide
for relocation of programs, ease of subroutine coding and loading, and
handling arrays. The modular programming permitted by the D851 design
allows several programmers to work simultaneously on portions or modules
of a program system.

Absolute addressing is provided principally to simplify the inter-program
modular communications monitoring functions of the Executive and Sched-
uling Program (ESP).

In the D851 system, any word in a Memory Module can be used as an index
register. This unusual flexibility provides, for all practical purposes, an
unlimited number of index registers, and facilitates multi-indexing. Nu-
merous indexing instructions also contribute to the indexing and multi-
processing capabilities of the D851. To obtain the most efficient use of the
high speed processing built into the D851 system, each Computer Module
contains its own associative memory. The eight most recently used index
words are always available through the use of a part of the associative
memory.

The D851 system's machine instructions and assembly language are designed
to make programming considerably less tedious than on the older genera-
tions of computers. The D851 features the use of a push-down stack and the
associated Polish notation to further simplify programming, increase opera-
tion speeds, and reduce the possibility of undetected programming errors.

A number of provisions have been made to assist a programmer in debugging
a new program. For example, the operation codes 00 and 77 (octal) auto-
matically interrupt the execution of a program in normal mode. Thus, a
program is likely to be interrupted if it attempts to execute data words as
instructions, and the clearing of unused memory areas to ZERO's causes

an immediate interrupt if an undebugged program executes a jump to an area
outside of itself. One tag bit is set aside just for the purpose of assisting
the programmer in determining which words in a Memory Module have been
used or have not been used by the program. Other tag bit arrangements al-
low tagging instruction or data words to provide interrupts and/or snapshot
dumps at points in the program selected by the programmer. Jumps can
also be initiated by the tag bits, both for debugging and for terminating loops.

SECTION 2

PROGRAMMING TECHNIQUES

This compilation of programming techniques is presented as a guide for ex-
perienced programmers in understanding those areas of the discipline which
are both essential and unique to the D851. It is assumed that the users of

this manual will have a knowledgeable understanding of such elementary areas
as binary notation, computer usage, organization and nomenclature, assembly
language coding, indexing, executive scheduling routines, and debugging.

The discussions in this section utilize language accepted by the D851 assembly
program; actual machine language is discussed only when it aids descriptions
of programming options and techniques or when it facilitates explanations of
results obtained when assembly-language instructions are executed in object
programs.

Most coding for the D851 will probably be in the language of a compiler such
as FORTRAN, ALGOL or JOVIAL. However, information on hand coding the
Burroughs D851 Modular Computer System is included because a discussion
of hand coding describes operations and programming capabilities of the D851
which would be obscured by a discussion of compiler language programming.
In addition, information on hand coding may be useful for special problems.
It will be used for programming the Executive and Scheduling Program (ESP),
as well as the FORTRAN, ALGOL, and JOVIAL compilers.

5 Burroughs Corporation BURROUGHS D851 SYMBOLIC ASSEMBLY FORM PAGE

@/

l|213|4|5|6[7|8 10|n|12|13|14\15 17|18|19]20[21|22|23]24[25|2e\27|2&|29]30[31\32:33\3435‘36]37l33[39]40]41]42]43]44|45|46|47|48|49|50]51152|53154]55|56|57[58]59[60[61|62]63|64|65]66[67|68]69|70 7l|72|73]74‘75]76[77]78]79[80

p ADDRESS, SPECIFICATIONS, VARIANTS, AND REMARKS IDENTIFICATION

—

O | O |~ || | W

|
|
|
|
i
|
|
|
|
|
|
|
|
|
|
|
|
|
10 !
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|

20 1

1]2[3[4]5|6|7|8] [101t12]13]1a[15] |17|t8|19]o0|ot|2l23(24/25(o6(07|28| 20| 30|31 3233 34[35 36|37 |38[30|40]41|42{43|a4|45|as|a7]as|as|50[51 52{53| s4|55|56|57| 58]59|60] 61|62| 63|4le5|66|67|68|6o|10} T1[72| 73|74 | 5{76 771 78|70 80

PROGRAMMER

DATE

PRINTED IN U.S.A. Figure 2-1. D851 Coding Sheet ROUTINE NAME

2.1 ASSEMBLY LANGUAGE NOTATION

Assembly inputs are normally punched on standard 80-column cards, although

other input media are accepted by the program. A specimen assembly-language

coding sheet is shown in Figure 2-1.

2.1.1 LOCATION FIELD

The location field is used for notation of location symbols and program points.

2.1.1.1 Location Symbols

A location symbol must not be coded so that it is equivalent to any of the re-
served mnemonics. Such a symbol will be refused by the assembly program,
and an error will be indicated.

The location-symbol field may be blank, in which case the instruction or data
defined by the card may not be specifically referenced elsewhere in the pro-
gram. Asterisks in columns 1 and 2 denote a remarks or comments card;
the card is printed in the assembly listing but is ignored in the assembly
process.

Columns 1 through 8 of the coding sheets define a location symbol, the name
by which the instruction or data defined by the remainder of the card may be
referenced elsewhere in the program. A location symbol may consist of any
mixture of from one to eight characters, as long as at least one character is
non-numeric, and none of the following is included: asterisk (¥), slash (/),
plus (+) sign, minus (-) sign. Parentheses may not be included as characters
within location symbols.

2.1.1.2 Program Points

A single asterisk in column 1 defines the one to seven characters which may
follow it as a "'program point'', or a reference location symbol. When a
program point is referenced elsewhere in the program, the entire location
symbol except the asterisk is written, followed by either a plus (+) to indicate
a forward reference to a program location not yet defined, or a minus (-) to
indicate a backward reference to a program location already defined by the
assembler. The placing of a + or - sign at the end of a program point denotes
it as a program point, rather than a location symbol.

Parentheses may not be included as characters within program points. How-
ever, a program point may be enclosed in parenthesis to distinguish the
terminating + or - from an operator in address arithmetic,.

A D851 program consists of a string of six-bit syllables, with eight syllables
to an instruction word. Instructions may start any place in a word, and a
single instruction may overlap two words. Jump addresses include syllable
numbers so jumps may occur to instruction starts within words. A location
symbol or program point does not cause the assembly program to start a

new word. Instead, the syllable number is recorded by the assembly program
when a location symbol or program point is defined, and all references to the
defined symbol or point automatically generate the correct syllable number
for a jump. When desirable, instructions may be started at the beginning of

a word by the use of special psuedo-operations. Syllable numbers have no
meaning in data fetches and stores; data-generating pseudo-operations generate
discrete data words.

All words in the D851 Memory Modules are 52 bits in length. Only 48 bits of
the word are available for storage of instructions or data. Three of the re-
maining bits are used as tag bits, and the fourth bit is used as a parity-
checking bit.

Although the assembly program allows address arithmetic to be performed,
the syllable structure of D851 instructions makes it preferable to specify
jump addresses via location symbols and program points, rather than via a
specification such as ''present contents of location counter plus five''. Pro-
grammer-specified relative addressing is ambiguous. In the example given
it is not clear whether 'plus five' means five instruction words, five instruc-
tions, or five syllables.

2.1.2 OPERATIONS (OP) FIELD

Columns 10 through 15 constitute the operations field. This field may include
any of the instructions, system macros, or pseudo-operation symbols defined
for the D851 assembly program; this full list is given in Appendix C. A
programmer-defined macro-instruction may also appear in this field, if
defined previously by a "MACRO'" pseudo-operation.

2.1.3 ADDRESS FIELD

The address field starting in column 17 is interpreted in a manner depending
on the contents of the operations field. The address field may contain infor-
mation other than actual addresses, such as variants or specificacions. Ex-
cept for the HOL (Hollerith) and LHOL (literal Hollerith) pseudo-operations,
the address field is terminated by the first blank column within it; anything
following is interpreted as a remark.

2.1.4 IDENTIFICATION FIELD

Columns 71 through 80 of the coding sheets are reserved for card-numbering
and program-identification codes. These columns are always ignored in
assembly, but the contents are printed in the assembly listing.

2.1.5 FIELD SEPARATION

Columns 9 and 16 on the Burroughs D851 Symbolic Assembly Form must be
blank to indicate field termination, or the assembly program will indicate a
possible error. However, these columns may be used on remark cards.

2.1.6 EXAMPLES OF PROGRAM POINTS

Program points eliminate the need for a programmer to generate numerous
symbols to reference short portions of coding. They may also beused as an
internal reference to short independently-coded subroutines which are to be
assembled with larger programs. The use of program points in this manner
reduces the coordination required among several programmers writing
several sections of a large program.

Program points may be coded without the restrictions placed on location
symbols; the use of a program point clearly designates what it is. The
following is acceptable coding:

1 OP - - -

2 OP - - -
oP 1
OP - 2

Program points may be combined with location symbols and constants in
address arithmetic. There are two acceptable formats for assuring that a
plus or minus following a string of characters is interpreted as designating

a program point rather than being taken as an operator in address arithmetic.
The program-point designation, including the plus or minus, may be enclosed
in parentheses, or the program-point designation may terminate the expres-
sion. As an example, program point ""LGCX+' minus five may be indicated in
either of the following ways:

(LOCX+)-5
-5+ LQCX+

The following would be flagged as an error:

LOCX+ -5

2.2 INDEXING

The index registers used by a D851 Computer-Module program are 52-bit
words in main memory. The number of index registers which may be used
by a program is limited only by the available storage in memory. However,
the Computer Module automatically retains the eight most frequently used
index-register words in local storage; a program is almost never delayed
for a fetch of an index word from a Memory Module.

2.2.1 INDEX WORD FORMAT

The format of an index word is as follows.

BITS CONTENTS

30-47 Index contents

12-29 Limit or Refill Value
1-11 Increment Magnitude
0 Increment Sign

The index-contents field contains the value which may be used to modify an
address; this field corresponds to index registers in most computers, and
may be compared or tested to control conditional jumps.

The limit=field is normally used to provide a value against which the contents
are compared. This comparison may be for less-than, greater-than, equality,
less-than or equal-to, greater-than or equal-to, or inequality. Both the limit
and contents fields are unsigned; negative quantities are represented in 2's
complement form. In this format, two negative quantities or two positive
quantities may be compared without difficulty, but a negative quantity appears
larger than a positive quantity. However, in 2's complement there is only

one representation of zero; there is no minus zero.

A secondary use of the limit field is the refill operation (XRL or JX--RL),
in which the contents field is replaced by the limit field of the same index

word.

The increment, being signed, may also be used as a decrement. It may be
added to the index contents as part of the same instruction which uses the
contents to modify an address, as part of the same instruction which tests
the contents field, or in a separate instruction.

2.2.2 COMPARISON INVOLVING THE STACK

In addition to comparing an index contents with its own limit, the contents may
be compared with zero, or with a limit supplied from the stack. A one may
be subtracted from or added to the contents, the contents may be replaced
from the stack, or an unsigned 18-bit increment may be added or subtracted
from the stack.

In general, the index operations involving the stack are slower than those which
utilize the self-contained limit, the implied limit of zero, the self-contained
increment, or the implied increments of plus or minus one. When the stack

is not involved, the advanced station (ADVAST) executes the instruction fully
and continues without waiting. When the stack is involved, however, the
ADVAST stops until the final station (FINST) has emptied the final processing
queue (FINQ) and has provided the required value from the stack.

2.2.3 DESIGNATION OF INDEX REGISTERS

When a program designates an index register, it does so by number. How-
ever, the "EQU'' pseudo-operation may be used to define a symbol equal to

an index number. The absolute memory address of the designated index word
is the sum of the designated number and the contents of the base index register
(BXR). In other words, BXR contains the absolute memory address of the
word which is currently index register zero. Whenever any address is speci-
fied relative to BXR, either by the use of X" in an address field or by
designation as an index, the absolute address generated is automatically com-
pared with the absolute addresses of words currently held in the associative
memory of the Computer Module. If the address corresponds to one already
in the Computer Module, no access to a Memory Module is made, and the word
is retrieved from the local memory. If access to a Memory Module is re-
quired, the least-recently used word is dropped from the associative memory
to make room for the new word. This newly-specified index word is retained
in the associative memory until room is needed for another word. When a
word is removed from the associative memory, it is returned to its original
address in a Memory Module so it is never lost to the program.

2.2.4 ASSOCIATIVE MEMORY

The Computer Module always holds eight index words and their associated
Memory addresses. The following sequence of operations illustrates how

the associative memory keeps the most recently used index words in the
Computer Module. For this explanation, the eight words initially in the
Computer Module are designated by the letters "A" through "H" in that order,
and index words 'I'" and "J'" are in Memory Modules.

Index Resulting Order Index Index
Used in Computer Module Fetched Stored

ABCDEFGH

D DABCEFGH
H HDABCEFG
I IHDABCEF I G
F FIHDABCE
J JFIHDABC J E

The Computer Module always keeps the last eight words used relative to BXR
in the order of their last use. Most index-words in most programs are used
repeatedly for a while, then a new set is used, and the originally used ones
may then be used again. Thus, the associative memory and the ordered list
of eight index words allow most programs to define as many different index
words as there are different functions for indexes (or subscripts) in the pro-
gram, with the assurance that the hardware will automatically keep the most
likely required index words in fast-access storage.

The interrogation of the associative memory requires less than 0.1 micro-
second; the interrogation time is included in the instruction times listed in
Table 2-8. Whether relative to BXR or not, all fetches and stores have their
addresses compared with associative memory. If a word is stored relative

to BXR and a later fetch not relative to BXR addresses the same absolute
address in a Memory Module, the program fetches the most recent version

of the word, which is the version retained in the Computer Module. If a

word is stored relative to BXR and a later store (not relative to BXR) address-
es the same absolute address in a Memory Module, the version of the word
held in the Computer Module is updated. However, if a store to a Memory
Module is neither relative to BXR nor involves the same absolute address as

a word already in the associative-memory storage within the Computer Module,
no entry is made in associative memory; the word is just transmitted to a
Memory Module. Conversely, when a word is changed in associative memory,
the Memory Module version of the word is not updated until room is required
in associative memory for later insertion.

2.2.5 SUBROUTINES

All entries to subroutines increment BXR, and the return information is
stored in the new index register zero (the word pointed at by the new contents
of BXR). The programmer can control the amount of increment to be added
to BXR on subroutine entry as long as the increment is not zeroi Thus, a
subroutine may use index registers freely since the parent program has
stepped BXR past the set of index registers which the parent program wished
to save. The BXR-stepping may also be used to save local variables via
fetching and storing relative to BXR,

The old setting of BXR is retained in the least significant 18 bits of index
register zero while a subroutine is being executed. This setting corresponds
to the contents field of index register zero. If a subroutine wants to access
an index register or local variable which is retained in the stepped-past por-
tion of memory by the parent program or the next higher level of nested sub-

routines, it may do so by absolute addressing modified by index register zero.

As an example, the following coding would fetch the contents of the memory

word which was index register five before the current subroutine was entered.

FMS 5/0,A

If subroutines are nested, the successive index-register-zero words form
a linked list back to the BXR setting for the parent program. That is, the
current index register zero links to the previous word which was index
register zero; this word links to the previous one, and so on.

2.2,6 ADDRESS INDEXING

The operation of indexing an address is actually accomplished by a separate
set of index instructions, although assembly-language coding will generally
imply these instructions by the use of slash (/) in the address field of another
instruction. Indexing is executed by the addition (2's complement if subtrac-
tion is required) of the contents field of the designated index word to the
previous contents of the address register. Multiple indexing, indicated as

in the following examples, is accomplished by repeated indexing instructions;
each indexing instruction adds the contents of an index word to the previous
sum in the address register.

FMS JQE/1/2/3
SSM LPCX/1/1/2
SJF INPUT/O

As shown by the above examples, multiple indexing by a single index register
is permissible; this method gives indexing by the product of an integer and
the index contents.

It should be noted that the D851 index register zero is a true index register;
the use of zero in an indexing field does not denote lack of indexing.
2.2.7 USE OF SELF-CONTAINED INCREMENT

When the self-contained increment is to be added to the index contents after
an address has been modified by addition of the old contents to the address.

2-10

register, this requirement may be denoted by an asterisk immediately fol-
lowing the slash.

FMS JQE/*1/2/%3

In the above example, index registers 1 and 3 are modified by addition of
their self-contained increments after they are used. Index register 2 is not
modified after its use.

An alternate coding which is closer to the actual machine language uses "X"
as a mnemonic for indexing without modification, and ""XM' as a mnemonic
for indexing with modification. The following coding is an alternate repre-
sentation of the example given above of the use of asterisks in index fields.

XM 1
X 2
XM 3
FMS JQE

2.2.8 INDEXING WITH MODIFICATION OF INDEX WORD

The mnemonics ""X'" and "XM'" each may assemble as either of two actual
octal instructions. The indexing steps shown above would result in the
following string of octal syllables.

05 01 04 02 05 03

The octal op-code syllables 04 and 05 instruct the processor module to use
the next syllable as the index designation; 04 results in simple indexing (X)
and 05 in indexing with modification (XM). Since a single syllable may
reference only 64 words as index registers, there are alternate instructions
provided that permit the use of any word in memory as in index. However,
the assembly program chooses the proper machine instruction as a function
of the number of bits required to designate the index specified. If "X" is
used in coding, or if the asterisk is omitted when indexing is specified in an
address field, octal code 04 results for index registers 0 to 63, and octal
code 06 for index registers 64 to 262143. Similarly, the assembly program
chooses between octal codes 05 and 07 for indexing with modification.

The octal coding shown below the following example of assembly-language
coding is the result of the indexing operations.

FMS JOE/*64/ 65/ %66
07 00 01 00 06 00 01 01 07 00 01 02

For convenience in discussing machine-language operations, the 06 op-code
is sometimes designated as "XA' (index augmented) and 07 as "XAM'" (index
augmented and modify index-word). It is recommended that these mnemonics
be avoided in assembly-language coding. If they are used, the 18-bit index-
designation fields are generated even when they are not required.

An example is given below.

XA 1
XAM 2
XM 3

06 00 00 01 07 00 00 02 05 03

Although the above coding would have the desired result if the object program
were executed, storage would be wasted.

2.3 ADDRESSING MODES

The Burroughs D851 Modular Computer System may have up to sixteen
Memory Modules containing 16, 384 words each. An 18-bit address field is
used to permit direct access to 262, 144 memory words by any Computer
Module. Address arithmetic is performed by having the advanced station of
the instruction processor place results in an 18-bit address register (AR).
This address register may be considered as the accumulator of the ADVAST,

There are four modes of memory addressing provided: self-relative, absolute,
relative to base data register (BDR), and relative to base index register (BXR).
All four modes may be used for transmission of data. Each mode may be

used with indirect addressing, and with single or multiple indexing. Jump
addresses are specified in self-relative and absolute modes only.

2.3.1 SELF-RELATIVE ADDRESSING

Self-relative addressing is defined as addressing relative to the position in
memory of the instruction which is doing the addressing. If a program is
entirely self-contained, assembled, or compiled as a single entity with no
communication outside of itself until completed, self-relative addressing
allows relocation of the program without modification of addresses by a
loading routine or modification of base registers.

2.3.1.1 Normal Mode of Addressing

Self-relative addressing is the normal mode of addressing memory in a D851
program; the assembly program considers all addresses to be self-relative

2-11

except where the coding specifically designates another mode. However,
self-relative assembly does not require programmer specification of self-
relative increment or decrement.

2.3.1.2 Assembly Program Calculation of Self-Relative Address

With self-relative addressing, all programs are assumed to start at a nominal
origin of zero; origin cards are not needed for assembly. When the assembly
program encounters a location symbol, it records the word address relative
to the nominal origin of zero and the syllable number.

Instructions may consist of one or more syllables, and multisyllabic instruc-
tions may overlap adjacent memory words. Both for assembly purposes and
actual machine operation, the location of a multi-syllabic instruction is de-
fined as the location of the first syllable of the instruction. When a location
symbol is used in the address field to refer to another section of the program,
the assembly program subtracts the address of the instruction which makes
the reference from the address recorded for the referred-to symbol. The
resulting difference is inserted in the binary object program string as the
self-relative address.

2.3.2 ABSOLUTE ADDRESSING

The retention of absolute addressing in the D851 concurs with the general
design objective of retaining features available on past-generation computers
while offering new techniques, and of expanding rather than replacing capa-
bilities of older equipment.

2.3.2.1 Uses

Absolute addressing may be used for simplified inter-program communication
such as the specification by ESP of a subroutine location to be used by several
other programs. Absolute addressing is actually used by the D851 in all inter-
module transmissions of data, regardless, of the mode specified by the pro-
gram. For example, if a program fetches a data word from memory by self-
relative addressing, the instruction processor computes the absolute address
before requesting the word from the Memory Module containing the data word.
However, this use of absolute addressing occurs without program intervention
and, in general, " behind the programmer's back'’

2,3.2,2 Method of Specifications

Absolute addressing is specified by the use of the letter "A" in the address
field of an assembly-language subject-program, preceded by a comma and

following the address specification. Some examples of assembly-language
specification of absolute addressing follow:

OP 5, A
OoP 0/1,A
OoP LPCX - LACY + 62000, A

Specification of an addressing mode other than self-relative is always by a
single letter separated from the address symbol by a comma. Indexing is
denoted by a slash (/) following address specification. Both indexing and ad-
dressing mode must be specified after the address. Although it is recom-
mended that the indexing be specified before addressing mode to make coding
uniform, the assembly program will accept and properly handle coding speci-
fying the address mode before indexing. Thus, both of the following assembly
inputs would result in the same binary coding of the object program.

OP LOCX/1,A
OP LPCX,A/1

Although the following coding is not recommended, the assembly program
would accept it to mean ''modify the defined value of LQYCX by index registers
1 and 2 and treat the result as an absolute address'":

OP LPCX/1,A/2

Since absolute addressing is expected to be used primarily when a location
symbol is defined by means other than its position within a program, the
pseudo-operations which define symbols may be used to define the addressing
mode to be used when the symbol is referred to.

JPE EQU 5, A

The above coding defines location symbol "JQE'" as absolute value 5. When
"JPE' is referenced elsewhere, it is treated as though the letter "A" were
appended. The two following examples would now yield the same object
program coding:

OP JOQE

OoP JQE, A
The second example above, although redundant, is not treated as an error.
If the definition of a symbol specifies an addressing mode and the reference

to the same symbol specifies another mode, the mode specified in reference
is accepted but a possible error is indicated. The following coding would

2-14

result in addressing mode ''R'" being used in the second line of coding but with
an error indication.

JQE EQU 5, A
OP JQE, R

2.3.3 INDIRECT ADDRESSING

All arithmetic performed in indirect addressing is performed by the control
arithmetic unit (CAR) in conjunction with the address register in the advanced
station of the instruction processor. Indirect addressing can be programmed
by using an asterisk in the operation field, or by using the three instructions
provided specifically for indirect addressing: Fetch from Memory to Address
Register (FMA), Add from Memory to Address Register (AMA) and Fetch
from Local Data Buffer to Address Register (FLA).

2.3.3.1 Use of Address Register for Indirect Addressing

The use of the address register in the D851 Computer Module may be easily
remembered by considering it as the equivalent of an accumulator for ADVAST
of the instruction processor. ADVAST and CAU perform all address compu-
tations in the Computer Module, and its effective accumulator may be program-
med in a simple manner to allow various mixes of indirect addressing and in-
dexing.

Since indirect addressing is performed by ADVAST which normally runs a
few microseconds ahead of the final station (FINST), most uses of indirect
addressing will not impede execution of the over-all program. Although
ADVAST is delayed while waiting for a pointer to come from a Memory Mod-
ule, in most cases ADVAST will not be delayed sufficiently to affect the speed
of the final station.

2.3.3.2 Use of an Asterisk

In the following example, indirect addressing is designated by having an as-
terisk follow the instruction mnemonic.

ADD#* JQE

This example utilizes self-relative addressing for both the indirect-address
pointer (the word at location JOE) and the pointed-at word to be added (given
by the contents of location JOE). The self-relative indirect addressing is
achieved by the AMA instruction which adds the contents of the addressed

word to the contents of the address register. At the time the AMA is executed,
the address register contains the address of the word which is to be added to
it. Therefore, the contents of the addressed word (JOE in the above example)
give the position of the pointed-at word relative to the position of the pointer.

However, instructions AMA and FMA may utilize any of the addressing modes
permitted elsewhere: self-relative, absolute, relative to BDR, or relative

to BXR. The instruction which utilizes the address generated by AMA or
FMA may also be in any of the modes. The convention adopted by the as-
sembly program isthat if indirect addressing is indicated by an asterisk in

the operations field, the mode of addressing indicated by the coding in the
address field applies to both the fetching of the indirect-addressing pointer
and the use of the fetched address. The address generated by the FMA or
AMA is used unchanged; the instruction which follows and uses the indirect
address has an included address of zero.

2.3.3.3 Use of Indirect-Addressing Instructions

While the use of an asterisk in the operations field is the easiest way to pro-
gram a simple case of indirect addressing, it does not allow the programmer
to use the flexibility inherent in the D851. In particular, it is often desirable
to index the access to a table of pointers and to index, by a different index
register, the access to a pointed-at table, or to access a word displaced by
a known amount from the pointer value. It also may be desirable to use dif-
ferent addressing modes to access the pointer and the pointed-at word.

These and other combinations are programmable by using the actual indirect-
addressing instructions rather than by implying them with asterisks. For
example, the following coding accesses an absolutely addressed table of
pointers, modifying the access by index register 1, and fetches the fifth word
of the pointed-at table relative to the base data register and modified by in-
dex register 2,

FMA PQINTERS/1, A
FMS 5/2, R

2.3.3.4 Addressing the Local Data Buffer Indirectly

The instruction which allows an indirect address to be fetched from the local
data buffer (FLA) is included for subroutines. A parent program can put the
address of a data area in the local data buffer, and a subroutine can use this
to indirectly address the data area.

2-15

If an indirectly addressed instruction denoted by an asterisk uses the letter
"L" in its address field, both the indirect-addressed pointer and pointed-at
operand are fetched from the local data buffer.

2.3.3.5 Standard Methods of Programming Indirect Addressing

Obviously, the methos of indirect addressing discussed so far require pro-
grammer specification of the depth of nested indirect addressing. The index
by top of stack instruction, however, does permit any specified bit or group
of bits to be tested to determine if indirect addressing is to be repeated.
Thus, this instruction allows one of the standard methods of indirect address-
ing to be programmed. There are two other methods available, both of which
allow the processor program to continue with some other operations. Hence
they both tend to be faster than the index by top of stack method.

If a word fetched to the local data buffer was tagged empty in memory (STB
EMPTY or STB 11X), the communication unit treats this word as a request
for the fetch of the word indicated by the least significant 18 bits of the word
(30-47). This pointed-at word which is fetched to the local buffer may also
be "empty, " causing repetition. Care must be taken to avoid initiating a
block transfer to local data buffer.

Another method of indirect addressing uses the linked-list searching ability
of a Memory Module. Since the test for search completion may be the test

of a single bit, this method also provides what has generally been called in-
direct addressing.

The machine-language versions of the instructions which test and/or modify
an index register do not contain the designation of the index register involved.
The Computer Module always operates on the word in associative memory
which was most recently used as an index. When a blank address field is
used in assembly-language coding of an index test and/or modify instruction,
the index operated upon is the one most recently used; it is assembled as a
test and modify instruction without designation of an index. When a non-blank
address field is used, the contents of the address field designate the index
register which is to be the operand. This assembles as an index instruction
preceding the index test and modify. Although the indexing operation always
adds to the address register, the index test and modify clears the address
register; the only net effect of the indexing operation is to move the desig-
nated index word to the most recently used position in associative memory.

In a simple iterative loop in which only one index is designated, a program-
mer may test this index for completion of iteration without specifying its numb-
er. Also, some routines may be simplified by utilizing the most recently-
used index, rather than by having the program determine which index was
most recently used.

Since any word in memory may be used as an index, indexing may be consider-
ed a form of indirect addressing. However, to take advantage of the speed
gained by the use of associative memory, indexing as such must address rel-
ative to BXR. Self-relative, absolute, and relative to base data register
addressing may not be used. Furthermore, indexing of an index designation
may not be performed since repeated use of an index instruction results in
multiple indexing of whatever address follows. Therefore, other means of
indirect addressing are provided which may prove more convenient. How-
ever, the distinction on the D851 between indexing and indirect addressing is
somewhat arbitrary. Any address which may be indexed may be indirectly
addressed, and vice versa.

The instruction called index by top of stack (XS) allows the addition of the

top of the stack directly to the address register. This instruction may be
used for a form of indirect addressing; fetching the pointer to the stack and
then using it as an address. The instruction allows variable-depth indirect
addressing since any test may be performed in the stack to determine if fur-
ther levels of indirect addressing are required. Furthermore, the XS instruc-
tion permits a computed address to be utilized directly without being returned
to main memory. However, for must uses of indirect addressing there are
faster methods available, as the XS instruction forces the advanced station

to stop until the final station is ready to provide the computed address at the
top of the stack.

2.3.4 ADDRESSING RELATIVE TO BASE DATA REGISTER

The use of the letter '""R" following address specification denotes addressing
relative to the base data register (BDR), mnemonically '"relative addressing''.
Addressing relative to the BDR is not permitted for jump-addressing. The
BDR allows ESP to point to a discontiguous data area which may arise when
ESP loads a data block and determines from its contents or header which pro-
gram is required to process it. The required program may already be in
memory and would generally not be contiguous to the independently-loaded
data block. The BDR is used in the D851 FORTRAN compiler to point to
"COMMON!''. In assembly-language coding, BDR would be similarly used for
data areas common to several programs,

2.3.5 ADDRESSING RELATIVE TO BASE INDEX REGISTER

Addressing relative to the base index register (BXR) is denoted by the letter
"X'' following address specification, and is not permitted for jump-addressing.
The BXR contains the absolute address, in main memory, of the word current-
ly designated as index register zero. The following coding means "'store or
set the value of index register 5''.

SMS 5, X

2.3.5.1 Uses

The primary use of BXR-relative addressing is for storing index words, as

in the example above. However, the special features of the D851 which pro-
vide a virtually unlimited set of fast-access index words make BXR-relative
addressing useful for quantities other than indexes.

2.3.5.2 Communications-Limited Programs

The normal functioning of the advanced station (ADVAST) fetches data words
without delaying a program in all cases but those that are ""communications-
limited'. For a D851 program to be delayed by the functioning of the com-
munication unit (COMM), the average time required by the final station must
be less than 0.5 microsecond for each data word that is fetched. This delay
can occur only for non-arithmetic programs such as sorts or searches. How-
ever, in such programs the same small block of words is not usually required
repeatedly, and the addresses are usually determinable in advance. Thus,
other means of speeding communications (see discussion of local data buffer
below) are available when BXR-relative addressing is not effective in speed-
ing program operation.

2.3.5.3 Associative Memory

When BXR-relative addressing is specified, the addressed memory word is
treated as though it were an index word. If the word is not already in the
computer's associative memory, it is fetched from a Memory Module and
put into the associative memory. The word is then retained in the associa-
tive memory for repeated fast-access use while as many as seven 'newer"
words are specified relative to the BXR. When the eighth newer word is put
into the associative memory, the word under discussion is returned to the
Memory Module. Thus the associative memory, which was designed to keep
the eight most recently-used index words in fast-access local memory, may
be used whenever a programmer expects the same memory words to be ac-
cessed repeatedly as data, but the addresses of the repeatedly-accessed
words are not determinable when the program is being written,

2.3.5.4 Subroutines

When a subroutine is entered, the BXR is stepped by an amount specified by
the programmer. BXR stepping is used to permit a subroutine to use index
registers while preserving the index registers being used by the parent pro-
gram. This is further explained in the sections dealing with indexing and
subroutines. However, the stepping of BXR, coupled with BXR-relative

addressing of data, permits a subroutine to have a "personal” storage area in
Memory Modules. Data stored and fetched relative to BXR are in absolute
memory locations which are functions of the processor exercising the sub-
routine and the depth of subroutine nesting. This is particularly useful for
recursive subroutines; BXR-relative stored data may be used for local var-
iables and other modes of addressing for universal variables. The same bi-
nary coding of BXR-relative addressing accesses different memory words as
a function of depth of recursion.

2.3.6 ADDRESSING THE LOCAL DATA BUFFER STORAGE

The letter L' following an address designation denotes storage in the 64-
word local ""scratch-pad'' or local data buffer storage. All addressing of the
local data buffer storage is in absolute; indirect addressing and indexing are
permitted. Any assembly-language instruction in which addressing of mem-
ory is permitted may be designated as operating on the local data buffer stor-
age within the Computer Module by the letter "L'. Local storage also has
parallel data-transfer capabilities, described elsewhere.

Access to the local data buffer is accomplished by machine-language instruc-
tions different from those accessing the Memory Modules. The assembly
program automatically generates these special instructions in response to
the letter ""L". However, the instructions accessing the local data buffer
may be alternately specified in the op-code field of the assembly-language
form. When this is done, an "L in the address field is accepted as a non-
erroneous redundancy. The specification of absolute, relative-to-BDR, or
relative-to-BXR addressing is flagged as an error, and is ignored. A loca-
tion symbol may be defined as a location in local data buffer in a manner

identical with that used for defining symbols in terms of ther addressing modes.

2.3.7 ADDRESSING OF REGISTERS

All registers in a D851 Computer Module can be designated by number or
mnemonic. The mnemonics, corresponding numbers, and descriptions of

the registers are given in Table Whenever one of these mnemonics

is used in the address field of an instruction it is interpreted as the designated
register. Even if the instruction is one which does not normally address a
register it is interpreted as addressing the designated register. For example,
the field register is register number 00 and mnemonic "FR". The following
coding is interpreted as ''fetch the contents of the field register to the stack,
and add to the word previously at the top of the stack''.

ADD FR

2-19

The register mnemonics are reserved for this use; the assembly program
will refuse to define one of the reserved mnemonics for any other use.

A programmer-designated symbol may be defined as a register number
number:

FIELD EQU FR

If the above example is followed by any reference to "FIELD", itisinterpreted
as areferencetothefield register,

2.3.8 OPTIONAL ADDRESSING

2.3.8.1 Compiler-Generated Coding

The following coding shows the machine operations actually performed in
adding the words "A'", '""B", and ''C" from memory when the memory address-
es are modified by index registers 1, 2, and 3 respectively.

X 1 Index by Index Register 1

FMS A Fetch Word "A' from Memory to Stack
X 2 Index by Index Register 2

FMS B Fetch Word ""B" from Memory to Stack
ADD Add Words "A'" and "B"

X 3 Index by Index Register 3

FMS C Fetch Word ""C" from Memory to Stack
ADD Add Word "'C" to Previous Sum

2.3.8.2 Assembly-Language Coding

Although the above coding may be convenient in many cases and is actually
the Polish notation that would be generated by a compiler, most programmers
would prefer to write the above program in the following assembly language.

FMS A/l Fetch Word ""A'", Modified by Index Register 1
ADD B/2 Add Word "B'", Modified by Index Register 2
ADD C/3 Add Word "C'", Modified by Index Register 3

When the assembly program finds coding in the address field of an ADD, it
assembles the address field as though it had been the address field of a fetch
preceding the addition. If the address field of an ADD is blank, it is as-
sembled as an addition of the two top operands in the stack.

2.3.8.3 FORTRAN CODING

Some programmers may prefer coding in Polish notation with no addresses
given for arithmetic instructions, and with operands always obtained from the
stack. However, even if the one-address assembly format is generally pre-
ferred, there are some cases in which the no-address Polish format greatly
simplifies programming. Consider the following equation, written in FOR-
TRAN format.

A = B*C + D*E
The FORTRAN compiler would code the above statement in the following man-

ner, using Polish notation which eliminates the need for temporary storage
anywhere but in the stack,

FMS B Fetch B to Top of Stack

FMS C Fetch C to Top of Stack, Pushing B Down

MUL Generate B*C

FMS D Fetch D to Top of Stack, Pushing B*C Down

FMs E Fetch E to Top of Stack, Pushing E and B*C Down
MUL Generate D*E; B*C Moves Up

ADD Add B*C to D*E

SSM A Store A

2.3.8.4 Hand Coding

To do the same operation as efficiently in hand coding, the following coding
may be used.

FMS B Fetch B to Top of Stack

MUL C Generate B*C in Top of Stack

FMS D Fetch D to Top of Stack, Pushing B*C Down
MUL E Generate D*E in Top of Stack

ADD Add B*C to D*E

SSM A Store A

The above is an example of how the no-address Polish format using intermed-
iate results as operands can be used instead of the wasteful and more complex
technique of placing intermediate resultsin temporary storage.

- 2-21

2. 3.8.5 Use of Address Fields

With respect to the use of address fields, instructions may be placed into three
classes: instructions requiring an address field, instructions in which the use
of the address field is optional, and instructions in which use of an address
field is meaningless.

2. 3.8.5.1 Instructions Requiring an Address Field. The instructions in which
the use of the address field is mandatory are divided into three groups: (1)
instructions which may not be indexed or indirectly addressed, (2) instructions
which may indexed but not indirectly addressed, and (3) instructions which
may be indexed or indirectly addressed. Each group is considered below.

2.3.8.5.1.1 Group (1). The instructions in which the use of the address field
is mandatory, but which are neither indexable or indirectly addressable, are
listed below. The use of the address field for each instruction is placed in
parentheses.

RTS Rearrange Top of Stack {Designation of Rearrangement
Required)

LIT Literal (Literal Value - Not Indexable when Greater than
218)

X Index (Index-Register Number)

XA Index Augmented (Index-Register Number)

XM Index and Modify Index Word (Index-Register Number)

XAM Index Augmented and Modify Index Word (Index-Register
Number)

ESP Enter Executive and Scheduling Program (Entry Number)

SFCN Perform Special Function (Function Number)

The following two pseudo-operations also belong in group (1):
EQU Equate Symbol in Location Field to Coding in Address Field
REP Repeat the Coding between REP and the Next "END'' the

Number of Times Designated

2.3.8.5.1.2 Group (2). The three instructions in which the use of the address

field is mandatory and which are indexable but not indirectly addressable are:

SLIT

FAS

LIiT

Short Literal (Literal Value)

Fetch from Address Register to Stack (Value, when used as
an 18-Bit Literal)

Literal (Literal Value - Indexable when Less than 218)

2.3.8.5.1.3 Group (3). The instructions in which the use of the address field
is mandatory, and which are indexable or indirectly addressable are:

SB
CLB
CHB
INB
SJF
SJT

SJSF

SJST

JCB
JBT
19(0)
10

CCM

Set Bit (Bit Number)

Clear Bit (Bit Number)

Change Bit (Bit Number)

Insert Bit (Bit Number)

Set Up Jump if False (Jump Address)
Set Up Jump of True (Jump Address)

Set Up Jump to Subroutine if False (Jump Address and BXR
Increment)

Set Up Jump to Subroutine if True (Jump Address and BXR
Increment)

Jump on Result of Condition-Bit Test (Bit Number)
Jump on Result of Bit Test (Bit Number)

Interrupt Input/Output Program (Module Number)
Initiate Input/Output Program (Module Number)

Communicate with Computer Module (Module Number)

The following all require a memory register, or LDB address:

FMA

AMA

Fetch from Memory to Address Register

Add from Memory to Address Register

FLA

FMS

FMIL

FBML

FCML

FLS

SSL

SLP

SSM

FAS

FRS

SSR

DLM

LML

DRM

LMR

L

Fetch from LDB to Address Register

Fetch from Memory to Stack

Fetch Single Wofd from Memory to LDB
Fetch Word-Block from Memory to LDB
Fetch Character-Stream from Memory to LDB
Fetch from LDB to Stack

Store from Stack to LDB

Set LDB Pointer

Store from Stack to Memory

Fetch from Address Register to Stack (When Not Used as
an 18-bit Literal)

Fetch from Register to Stack
Store from Stack to Register
Dump LDB to Memory

Load from Memory to LDB
Dump from Registers to Memory

Load from Memory to Registers

2.3.8.5.2 Instructions with Optional Address Fields. The instructions in which

the use of the address field is optional are also divided into three groups, which
are numbered from 4 to 6 to distinguish them from the previous groups. The
groups are (4) those instructions not designating a fetch, and which may not be
indexed or indirectly addressed, (5) instructions not implying a fetch, but
which may be indexed, and (6) instructions implying a fetch operation.

2.3.8.5.2.1 Group 4. Instructionsinwhichanaddressfieldis optional, butdoes
not designate a fetch, and which are not indexable or indirectly addressable

are listed below.
index number.

JXEZ
JXES
JXEL
JXGL
JXGS
JXLL
JXLS
XRS
JX--RS
XAQ
JX--AQ
XAI
JX--Al
XAS
JX--AS
XS@
JX--S¢
XRL
JX--RL
XSS

Jx--SS

In the following, a non-blank address field designates an

Jump on Index Equal Zero Test

Jump on Index Equal Stack Test

Jump on Index Equal Limit Test

Jump on Index Greater than Limit Test

Jump on Index Greater than Stack Test

Jump on Index Less than Limit Test

Jump on Index Less than Stack Test

Replace Index Content by Top of Stack

Test for Jump, and Replace Index Content by Top of Stack
Add one to Index Content

Test for Jump, and Add One to Index Content

Add Index Increment to Index Content

Test for Jump, and Add Index Increment to Index Content
Add Top of Stack to Index Content

Test for Jump, and Add Top of Stack to Index Content
Subtract One from Index Content

Test for Jump, and Subtract One from Index Content
Replace Index Content by Index Limit

Test for Jump, and Replace Index Content by Index Limit
Subtract Top of Stack from Index Content

Test for Jump, and Subtract Top of Stack from Index Content

In the following computational mode instructions a non-blank address-field

2-25

2-26

denotes field definition, double-precision, or alternate field-definition.

INT Integer

SPP Specified-Point
FLT Floating- Point
SIP Significant-Point
FIX Fixed Point
ALPH Alphameric

LQG Logical

2.3.8.5.2.2 Group 5, In the instructions listed below, an address field
specification is optional, However, when the address-field is used, it does
not imply a fetch.

SR Shift Right
SL Shift Left
RR Rotate Right
RL Rotate Left

For the above instructions, a blank address field designates a shift count
already in the top word of the stack. Address-field specification of a shift
count assembles as a literal placing the count in the top of the stack. Indexing
of the shift count assembles as indexing of the literal, An asterisk in the
operations field assembles as a fetch of the addressed word., Indexing, in

this case, is interpreted as indexing of the indirectly-addressed shift-count.

JUMP Unconditional Jump

For the above instruction, a blank address field assembles as a jump to the
address given by the most recently executed set-up jump. A non-blank address
field assembles as a set-up jump followed by a jump, a jump to the location
given by the address field, Indirect addressing of this jump address may be
indicated by an asterisk in the operations field.

2.3.8.5.2.3 Group 6. The instructions listed below imply a fetch operation,
and may be coded with or without specification in the address field. When the
address field is blank, the instruction operates on one or two operands already

in the stack. When the address field is not blank, its contents are interpreted
as the address of an operand. This address may be indexed or specified in

any addressing mode. When any of these instructions is coded with an asterisk
in the operations field, a non-blank address field is mandatory, and its contents
are interpreted as the location of the indirect-addressing pointer designating
the operand. Indexing may not be designated if the asterisk in the operation
field is used. The mode of addressing is assumed to be the same for both
access to the indirect-addressing pointer and the operand pointed at.

ADD Add

SUB Subtract

MUL Multiply

DIV Divide

FLR Float Remainder
SQR Square Root

RND Round

POS Set Positive

NEG Set Negative

CHS Change Sign

INS Insert Sign

AND AND

@R Inclusive OR

@RX Exclusive OR
FILL Set to Full-Scale
CLR Clear to ZERO's
CcCoM Complement

IMP Implication

EXT Extract

INF Insert Field
B0000 Boolean Function Zero
thru

B1111 Boolean Function Fifteen
N@RM Normalize

JUS Justify

UNJ Unjustify

DUP Duplicate in Stack

DUPD Duplicate Double-Precision in Stack
TRIP Triplicate in Stack

QUAD Quadruplicate in Stack

REV Reverse in Stack

CYCU Cycle Stack Up Once

CYCD Cycle Stack Down Once

JGR Jump on Result of Test for Greater

JGA Jump on Result of Test for Absolute-Value Greater
JLS Jump on Result of Test for Less

JLA Jump on Result of Test for Absolute-Value Less
JEQ Jump on Result of Test for Equality

JZE Jump on Result of Test for Zero

JFS Jump on Result of Test for Full-Scale

JSI Jump on Result of Test of Sign

2.3.8.5.3 Instructions Not Requiring an Address Field

The instructions in which an address field never has any meaning are listed

below.
SSH Streaming Shift
STEP Step Stack Up Once
RET Return from Subroutine
RETI Return to Interrupted Program
XS Index By Top of Stack
N@P No Operation
STQP Stop Computer Module
ENM Enter Normal Operational Mode
MEM Initiate Memory-Module Program

WQRD Fill Current Word with NOPs (Pseudo-Operation)
BLQCK Fill Current Block with NOPs (Pseudo-Operation)

2-28

2.3.8.6 Indexing

Any address field which optionally results in a fetch may include indexing.
Any of these instructions may be designated in the operation field as using
indirect addressing by having an asterisk follow the mnemonic for the in-

struction, as follows.

ADD* A
SUB* A
AND* A

If an asterisk is in the operation field but the address field is blank, it is
flagged as an error and asterisk is ignored.

2.3.9 ADDRESS ARITHMETIC PERFORMED BY THE ASSEMBLY PROGRAM

The assembly program performs any address arithmetic that may be required
by instructions for which addressing is permitted. Addition and subtraction
are performed as indicated for symbols that are defined elsewhere, and for
constants.

2.3.9.1 Negative Addresses and Subtraction

The address register, address fields in instructions, and content fields in
index words are 18 bits in magnitude, and are unsigned. Negative self-rela-
tive addresses and all other negative address quantities are represented in

the 2's complement form. This form is defined as the bit-by-bit complement
of the magnitude of a negative binary number, plus 1 in the least significant
bit-position. This form has been chosen instead of the 1's complement (bit-
by-bit complement of magnitude without addition of 1) because the 1's comple-
ment has two valid representations of zero (all ONE's and all ZERO s) which
tends to complicate some operations in which index registers modify addresses.

Effective subtraction in 2's complement arithmetic is accomplished by 18-bit
unsigned addition with overflow bits discarded. This is the manner all address
arithmetic is performed in the D851.

2.3.9.2 Truncation of Addresses

The result of address arithmetic is truncated to the size of the field designat-
ed to hold the result. In other words, an n-bit field will contain the least
significant n bits of the result of address arithmetic. In the case of an in-
struction addressing main memory, an 18-bit field is used. An index des-
ignation may be 6 or 18 bits; the 18-bit designation is used whenever the as-
sembly program determined that truncation to the six bits would eliminate
any non-ZERO bits. The designation of an address in local data buffer or of
a register is always truncated to six bits.

Address arithmetic is also permitted in the address fields of instructions
operating on individual bits. In this case, the least significant six bits of
the result are interpreted as a bit number. If the resulting bit number is
greater than forty-seven, it is treated modulo forty-eight.

2.3.9.3 Coding of Constants

The constants involved in address arithmetic must be integers, and are in-
terpreted as decimal unless specified as octal (or boolean) by having the
letter ""B' terminate a string of digits.

Five examples of how ''constants'' are interpreted are given below:

Case 1: 7

Case 2: 7.7
Case 3: TB7
Case 4: 7B
Case 5: 88B

Case 1 is interpreted as a decimal because there is no terminating ''B"".
Case 2 is invalid in address arithmetic because it is not an integer. Case 3
is interpreted as a location symbol because the ''B" does not terminate it:
this symbol must be defined elsewhere. Case 4 is valid for octal 77. Case
5 is valid as a defined symbol since it obviously can not be octal.

It is invalid to use as a symbol a string of numeric digits which excludes

8's and 9's, and which is terminated by a single letter ""B'", since this is

the designation of an octal constant in address arithmetic. A string of numer-
ic characters terminated by a single "B' is a valid symbol, if the numeric
string contains at least one 8 or 9. However, such a symbol is not recom-
mended.

2.4 LITERALS

A literal is an operand specified in the program string, rather than fetched
from elsewhere in memory from an address specified by the program string.
Any constant appearing in an input statement to the D851 FORTRAN compiler
is compiled as a literal. Assembly language programs may use literals
either by using one of the literal mnemonics in the operations field, or by us-
ing an equal sign (=) in the address field of any instruction for which optional
addressing is permitted. For example, each of the following operations adds
1.5 % 10l , a floating-point number, to the top of the stack. The LIT instruc-
tion is implied in the second example and places the designated constant, in
floating-point format, in the top of the stack.

1. LIT 1. 5E18
ADD
2. ADD =1, 5E18

The assembly program does not maintain a record of the computational mode
being used in various parts of an assembled program. Therefore, the speci-
fication of the format to be used for literals must be supplied by the program-
mer. This is useful when a programmer wants to generate an index-setting
as part of a program run in floating-point mode, and does not want the lit-
eral specifying the index-setting to be converted to floating-point format by
either the assembler or the Computer Module.

2.4.1 DECIMAL LITERALS
Three types of decimal literals are recognized by the D851 FORTRAN compil-
er: decimal integers, floating-point numbers, and fixed point numbers. Dec-

imal literals are specified by the character =; this character is followed by
the decimal literal-type information described in the following paragraphs.

2.4.1.1 Decimal Integers, Literals

Decimal integers consist of a group of digits, from 0 to 9, which represent
quantities 1 up to 2 - 1 for single precision computation, and 2 - 1 for
extended double precision. Decimal integers may be preceded by a plus or
minus sign. The two other forms of decimal literals use the characters E,
B, and a decimal point. Therefore, decimal integers may be identified by
the absence of these characters. Decimal integers are represented by the
following examples:

-9
947683

1

2-32

2.4.1.2 Floating-Point Literals

Floating-point literals have two parts: a principal part (mantissa) and an ex-
ponent, The floating-point number is identified relative to decimal integers
by the presence of character E or a decimal point, and relative to fixed point
numbers by the absence of character B. Floating point numbers are repre-
sented by the following examples:

-9167482, 1E12
= .124

The principal part consists of a decimal number which may include a sign or
contain a decimal point placed at either end or within the decimal number.
The exponent contains the character E and a decimal integer which may be
signed or unsigned. When the principal part of the number contains a dec-
imal point, the exponent is not required. When used, however, the exponent
must follow the principal part.

2.4.1.3 Fixed-Point Literals

Fixed-point literals have three parts: a principal part, an exponent, and a
binary place. The fixed-point number is identified by the presence of the
character B and is represented by the following examples:

6492. 3B9
94B18E6

The principal part consists of a decimal number which may include a sign or
contain a decimal point placed at either end or within the decimal numbers.

The exponent contains the character E and a decimal integer which may be
signed or unsigned. When the principal part of the fixed-point number con-
tains a decimal point the exponent is not required. When used, however, the
exponent must follow the principal part.

The binary-place contains the character B and a decimal integer which may
be signed or unsigned. The binary-place must be present in a fixed-point
number; it is placed after the principal, either before or after the exponent.
If a binary-place contains more than two digits the number is truncated and
only the first two digits recognized.

2.4.2 OCTAL LITERALS

An octal literal is identified by the characters = and (), followed by a string
of digits, 0 through 7. Octal literals may be signed or unsigned and are re-
presented by the following examples:

P147762
@-35 771364122

2.4.3 ALPHAMERIC LITERALS

An alphameric literal is identified by the characters = and H (Hollerith), fol-
lowed by alphameric characters. Each of the six characters is interpreted
as data even though one or more may be a blank or comma. Alphameric lit-
erals are represented by the following examples:

HQ®, TACb (b = blank)
HRZ1276

When the literal is specified in the operations field, the mnemonic op-code
may be any of the following. The rightmost column refers to data-generating
pseudo-operations which are discussed elsewhere. The address-field coding,
in each case, must correspond to the rules described for the designated data -
generating pseudo-operation.

LIT Decimal, Single Precision DEC
LITD Decimal, Double Precision DECD
LQCT Octal @CT
LVFD Variable Field Definition VFD
LXR Literal Specification of Index Register CXR

When any of the above coding is used, the assembly program chooses the ac-
tual literal instruction, of the three described below, which allows the literal
to be generated as specified with minimum storage requirements. For ex-
ample, a zero is always assembled as a short (6-bit) literal.

Indexing of an alphameric literal is permitted if, and only if, the literal speci-
fied is less than 218 If effective indexing of a longer literal is required, it
must be programmed by (1) indexing a short literal zero, which effectively
places the index-contents in the stack, (2) generating the long literal without
indexing, and (3) adding (ADD) the index-contents to the long literal in the
stack. To be meaningful, this addition must be performed in fixed-point,
alphameric or logical computational mode,

2-33

2-34

If a programmer generates a literal integer as an operand in a floating-point
operation, the integer is automatically converted to floating-point when used
as an operand. The result is always correct but time is taken for the con-
version. The reverse is also possible: floating-point operand in an integer
operation. However, conversion of floating-point to integer may result in an
overflow or loss of significance; any fractional portion of a floating-point op-
erand is always lost when used in integer operations.

2.5 D851 ARITHMETIC OPERATIONS

The seven basic computational modes of operation built into the D851 Computer
Module are set up by the computational mode instruction which is described
below. Details of each basic computational mode are given, both for single-
length and double-length operands. The effects of field modification is dis-
cussed, andthe section concludes with the sign conventions that are employed.

2.5.1 COMPUTATIONAL MODE INSTRUCTION

The computational mode instruction (op-code 03--) allows variations to be
made in the way certain logical, arithmetic, shift, and jump instructions are
executed, without requiring changes in the format of these instructions. The
03-- instruction sets up the mode of computation for all of the affected instruc-
tions which follow it, until a different 03-- instruction is used to set up a dif-
ferent computational mode, The 03-- instruction requires 0.1 microsecond

of FINST time and 0.1 microsecond of ADVAST time to set up a computational

mode,

2.5.1.1 Instructions Affected by Computational Mode

The instructions that are affected by the Computer Module's mode of compu-
tation are listed in Table 2-1,

TABLE 2-1
INSTRUCTIONS AFFECTED BY COMPUTATIONAL MODE

LOGICAL ARITHMETIC
24 Implication 50 Add
25 Inclusive OR 51 Subtract
26 AND 52 Multiply
27 Exclusive OR 53 Divide
32 Complement 54 Square Root
33 Set to Full-Scale 55 Round
34 Clear to Zero

SHIEFT JUMP (on result of test for:)
40 Shift Right 64 Greater
41 Shift Left 65 Absolute Value Greater
42 Rotate Right 66 Less
43 Rotate Left 67 Absolute Value Less
44 Normalize 70 Equality
71 Zero

72 Full Scale

2.5.1.2 Format of Computational Mode Instruction Word

The op-code for the computational mode instruction is 03 followed by a two-
digit syllable that specifies the type of mode. The composition of the instruc-
tion word is shown in Figure 2-2.

VARIANT SYLLABLES
.

r \
BITS (0] 1 2 3 q 5 6 7 8 9 10 14
{ 1 T 1 1 1 1 1 |
FIRST SECOND
WORD . O 3 DIGIT DIGIT
1 1 1 L 1 L | L
\ N P)
oSN o~
BASIC MODIFICATION
COMPUTATIONAL OF COMPUTATIONAL
MODE MODE

Figure 2-2. Composition of "'03" Instruction Word

The first digit of the variant syllable determines which of seven basic compu-
tational modes is specified. These basic modes are listed in Table 2-2. The
second digit of the variant syllable determines if the basic computational mode

TABLE 2-2

BASIC COMPUTATIONAL MODES

MNEMONIC BASIC COMPUTATIONAL FIRST DIGIT OF
CODE MODE VARIANT SYLLABLE
INT Integer 0
SPP Specified Point 1
FLT Floating Point 2
SIP Significant Point 3
FIX Fixed-Point (Fractional) 4
ALPH Alphameric 5
LQG Logical 6

(undefined) i
TABLE 2-3

POSSIBLE MODIFICATIONS TO BASIC COMPUTATIONAL MODES

MNEMONIC
CODE COMPUTATIONAL MODE SECOND DIGIT OF
SUFFIX MODIFIED BY VARIANT SYLLABLE
(none) (no modification) 0
D *Double Precision 2
F Field Modified 4
ALT Alternate Field-Defined 6

*
In the alphameric and logical modes, "double precision' refers to '"double
length" operands (96 bits).

is field modified, uses double precision, or both. The possible four variations
of the two modifications are listed in Table 2-3. For reference, a complila-
tion of the op-codes and mnemonic codes for all possible computational modes

is given in Table 2-4.

2.5.2 BASIC COMPUTATIONAL MODES

The way in which the 48-bit operands in the stack are treated is given below
for each of the seven basic computational modes listed in Table 2-2.

2.5.2.1 Integer Mode

In the integer mode of computation, the 48-bit operands consist of a sign
(bit 0) and 35 bits of magnitude. The radix point is to the right of bit 47, as

shown in Figure 2-3.

BIT o 4 12 13 14 46 47
1 b 1 I 1 J\' 1 1
+ | o c o o |MSB LSB
1 | 1 1 1 1
.
. L v j‘
N NS
SIGN MUST BE ZERO 35 BITS OF MAGNITUDE RADIX
BIT POINT

Figure 2-3. Integer Operand, Single Precision

Bit 13 is the most significant bit, and bit 47 is the least significant bit. Bits
1 through 12 must be ZERO's in the integer mode of operation because these
bits contain the exponent of floating-point operands. If bits 1 through 12 are
not all ZERO's, the processor assumes this non-zero condition indicates a
floating-point word, and converts it to an integer word before proceeding.

In extended double precision operation (op-code 0302) the 47 magnitude bits

of a second word are appended to the first word, giving 82 bits of magnitude.
The radix point in this case is to the right of bit 47 in the second word.

2.5.2.2 Specified-Point Mode

Specified-point computation is performed as follows: Retain bits 1 through 12
of the top of the stack as the specified exponent, and step the stack up one.
Enter floating-point operation but adjust any result so its exponent equals the
specified exponernt. If a result is too large to be so represented, floating-point
overflow occurs. If a zero exponent occurs, a wrong-format error is indica-
ted. The operands for specified-point computation are similar to those shown
in Figure 3-3 for floating computation.

2-317

OP

CODE

03

03

03

03

03

03

03

03

03

03

03

03

03

03

03

03

00

02

04

06

10

12

14

16

20

22

24

26

30

32

34

36

MNEMONIC

CODE

INT

INT D

INT F

INT ALT

SPP

SPP D

SPP F

SPP ALT

FLT

FLT D

FLTF

FLT ALT

SIP

SIP D

SIP F

SIP ALT

TABLE 2-4

OP

CODE

03

03

03

03

03

03

03

03

03

03

03

03

03

03

03

03

40

42

44

46

50

52

54

o6

60

62

64

66

70

72

74

76

CODES FOR ALL COMPUTATIONAL MODES

MNEMONIC

CODE
FIX
FIX D
FIX F

FIX ALT

ALPH
ALPH D
ALPHF

ALPH ALT

LOG
LOG D
LOGF

LOG ALT

(undefined)
(undefined)
(undefined)

(undefined)

2.5.2.3 Floating-Point Mode

Operands in the floating-point mode of computation use a sign (bit 0), 12 bits
of exponent, and 35 magnitude bits for the mantissa, as shown in Figure 2-4.
The sign applies to the mantissa.

BIT 0 1 12 13 4 46 47

T - T T T \r T T

+ MSB LSB
1 | 1] A]]

“ v S v J
~— A —~
SIGN 12 BITS OF BINARY 35 BITS OF MAGNITUDE
sIT EXPONENT POINT (MANTISSA)

Figure 2-4. Floating-Point Operand, Single Precision

In extended double-precision computation (op-code 0324) the binary point
remains to the left of bit 13 in the first word, and the 47 magnitude bits of the
second word are appended to the 35 bits of the first word to provide a mantissa

of 82 bits.

The exponent has a maximum value of 7777 (octal), and is interpreted as the
value coded in the floating-point word minus 4000 (octal). Thus the floating-
point operand is treated as

(Magnitude) X 2 (exponent - octal 4000)

Floating-point overflow occurs if the exponent of a result is greater than octal
7777 after automatic normalization. Floating-point underflow occurs if the
exponent of a non-zero result is less than or equal to 0000. A zero result is
converted to have a zero exponent.

A zero mantissa resulting from a floating-point computation is not considered
to be underflow. Only significance that exists but cannot be represented is
underflow, and this is not the case if, for example, a zero mantissa results
from subtracting a number from itself.

2.5.2,.4 Significant-Point Mode

Significant-point computation is performed as follows: Enter the floating-
point mode of computation but, instead of normalizing a result, retain as

many leading ZERO's in the magnitude of the result as there were in the oper-
and with the greater number of leading ZERO's. If a zero exponent occurs,

a wrong-format error is indicated.

2.5.2.5 Fixed-Point Mode

Operands in the fixed-point (or fractional) mode of computation use a sign
(bit 0) and 47 bits of magnitude, as shown in Figure 2-5.

BIT o} 1 2 46 47
T T % t 1
worD | * |MSB LS8
L 1 1 1
\§ v J
t "
SIGN LBINARY 47 BITS OF MAGNITUDE
BIT POINT

Figure 2-5. Fixed-Point Operand, Single Precision

In double-precision computation (op code 0342) the binary point remains at the
left of bit 1 in the first word, and the 47 magnitude bits of the second word are
appended to the first word, thus providing 94 magnitude bits. (Bit 0 in the
second word has no significance in double-precision arithmetic modes where
bit 0 in the first word is the sign bit.

2.5,.2.6 Alphameric Mode

In the alphameric mode bit 0 is not treated as a sign bit, but as a numeric bit
which can be shifted along with the other 47 bits of magnitude. Therefore the
sign is always considered positive. Double -length operands in the alphameric
mode (op-code 03 52) provide 96 bits, designated as "'magnitude' bits. The
binary point is considered to be at the left of bit 0 in the first word, as shown
in Figure 2-6. In the aphameric mode, an overflow is treated as fixed-point
overflow; there is no end-around carry.

BIT (o] 1 2 45 46 47
T T T T T T T
. 1 1 1]]]
‘\ g\ﬁ)
~
BINARY 48 BITS OF MAGNITUDE
POINT

Figure 2-6. Alphameric Operand, Single Length

2.5.2.7 Logical Mode

The logical mode is identical to the alphameric mode except that an overflow
causes end-around carry in the logical mode; there is no overflow indication

given.

2.5.3 FIELD MODIFICATION OF BASIC COMPUTATIONAL MODES

Any of the seven computational modes that were shown in Table 3-1 may or
may not be field-defined. When not field-defined, all bits of all operands are
treated as found in the stack. When a word in the stack is field defined, only
the bits of the operand that correspond to "'ONE-bits'" in the field register are
subjected to the designated operation or instruction. If the operation causes a
result to be returned to the stack, the result can only be put in the portion of
the operand originally selected by the field register. The portion of the oper-
and not selected by the field register remains unchanged in the stack. In the
discussions of single-precision and double-precision field-defined modes
which follow, words "A", "B", ''C'", and "D'" refer to the four top words in
the stack.

2.5.3.1 Field-Defined Modes with Single Length Operands

In field-defined words using one-operand instructions of 48 bits, only the por-
tion of word "A'" defined by "ONE bits'' in the field register is subjected to
the designated operation. The selected portion of the operand is obtained by
"ANDing" (taking the logical product of) the operand together with the field
register.

In two-operand instructions which are field defined the logical product of

word ""A'" and the field register is used as one operand, and the logical product
of word ''B" and the field register is used as the other operand. If a result

is returned to the stack, the ''non-field' bits originally in word "'B' are re-
tained as the non-field bits of the result.

2.5.3.2 Alternate Field-Defined Modes (with Double-Length Operands)

Operations in the field-defined double-precision (double-length) mode using

96 bits of magnitude are essentially the same as operations described above
for single-length (48 bit) operands. However, the field register has only 48
bits and is applied only to the first word of a double-length operand. The
second word is not affected by the "ONE bits' in the field register. Therefore,
only word "A'' is subjected to the designated operation.

In two-operand instructions, the designated operation is only performed on the
field-selected bits of words ""A'' and ''C", since all bits of words "'B'" and ''D"
are not field defined. Thus the combination of field definition with double-
length operands allows a form of operation upon alternate words of the stack.

2.5.4 SIGN CONVENTIONS

In integer, specified-point, (floating point, significant-point, and fixed-point
computational modes, the sign bit of an operand is a true arithmetic sign:

0 = plus and 1 = minus. When these modes are executed in extended double
precision, no use is made of the most significant bit of the least significant
word of an operand. Shift instructions executed in the above computational
modes do not shift or otherwise alter sign bits.

If an addition or subtraction results in a magnitude of zero, the sign bit is
alwasy set to ZERO; a zero result from addition or subtraction is always
positive. In multiplication and division, however, the sign of a zero result
follows the same rules as the sign of a non-zero result. In other words, a
zero result from addition or subtraction is considered to be single-values
and a true zero. When a zero results from multiplication or division, it is
treated as an infinitesimal with a meaningful sign.

Sign bits are ignored inthe logical or boolean operations which are not expec-
ted to be used frequently in these basically arithmetic modes. In comparison-
type instructions, +0 is considered equal to -0 in arithmetic computational
modes.

In logical and alphameric computational modes, there are no sign-bits; all
operands are treated as positive. The most significant bit of a single-length
operand and the most significant bits of each word of a double -length operand
are treated as numeric bits. These leading bits are shifted along with the
other bits, involved in logical or boolean operations, andadded or subtracted
like the other bits. In comparison-type instructions, a leading 1-bit makes a
word larger than one with a leading 0-bit.

2.6 FIELD OPERATIONS

The D851 Computer Module contains a field register with a 48-bit mask which
can be used for both contiguous and non-contiguous operations. The most
important use of the field register is to control character-defined operations.
Each character occupies successive bits in a word, and thus has a contiguous
field. The D851 can also use the field register where non-contiguous or split
fields are necessary, such as in command and control type programs. These
programs may use the state of each bit in a word to denote whether or not a
specific routine is required on the current pass. The setting of these bits is
accomplished by routines which determine the requirements. However, the
same routine is often required as a result of a number of different routines;
each such evaluation recognizes the need for several routines in different
combinations. The capability of using non-contiguous fields in such control
operations is more convenient than being restricted to the insertion of a con-
tiguous field by each evaluation routine.

2.6.1 Rules
The general rules for field definition are:

1. AND each operand of an affected instruction to the field register.

2. Perform the designated operation as though the logical
product(s) had been the full operands.

3. If a result is generated, AND the field register to the result
as normally generated.

4a. For a single-operand instruction, AND the operand to the comple-
ment of the field register, and OR this logical product to the
logical product generated in step 3.

4b. For a two-operand instruction where both operands are obtained
from the stack, AND the operand deeper in the stack to the comple-
ment of the field register, and OR this logical product to the
logical product generated in step 3.

4c. For a two-operand instruction where one operand is obtained from
memory, local data buffer, or a register, AND the operand
originally in the stack to the complement of the field register, and
OR this logical product to the logical product generated in step 3.

It should be noted that the preceding rules cause the result returned to the stack
to have non-field bits (bits corresponding to ZERO's in the FR) equal to the
non-field bits of the original single operand, the non-field bits of the operand
originally deeper in the stack, or the non-field bits of the operand originally

in the stack.

2.6.2 Shifting

When field definition is used with an instruction causing an effective shift,
such as the actual shift instructions, multiply, divide, square root, or any
floating -point operation, there may be the loss of some bits that are of interest.

For example, if a shift is performed with field definition, any bit shifted out
of the field is lost unless it is shifted end-around, through the entire word,
and to the other end of the field. However, field definition is most effectively
used with the logical-type instructions (OR, AND, IMP, ORX, Bnnnn, CLR,
or FILL). With these instructions, the operation is bit-by-bit, and there is
no confusion between bits in the fields of operands and bits retained in the
result that is returned to the stack.

2.6.3 Arithmetic Operations

When add or subtract is performed with field defintion, the processor auto-
matically recognizes overflow out of the field. In logical mode this operation
generates an end-around carry to the right-most bit within the field. In the

2-43

alphameric mode overflow is discarded as usual. In any other computational
mode, either a condition bit is set or an overflow interrupt is caused, depend-
ing on the setting of the mask register.

In addition or subtraction with a non-contiguous field, carry is executed from
bit to bit of the defined field.

If the normalize (NORM) or shift and count (SAC) instruction is used with field
definition, only the bits within the field are examined to determine the most
significant 1-bit., However, this bit is shifted to the most significant bit of the
mantissa or magnitude (as defined by the basic computational mode), and not
to most significant bit within the field. If the most significant bit of the
mantissa or magnitude is not defined withinthe field, the most significant
1-bit is lost. The barrel shift register (BSR) contains the bit position of the
most significant 1-bit within the word, not within the field.

If the field register is set to all ONE's except for bit 0 (the sign-bit), field
definition may be used for one form of absolute-value arithmetic. Consider,
as an example, the following coding performed in field definition with only
the sign bits being excluded from the field.

FMS JQE

ADD TQM

The magnitude of the result is the sum of the magnitudes of JOE and TOM;
the sign of the result is the sign of JOE.

2.6.4 Implementing and Terminating Field Definition

Field defination may be superimposed on any computational mode by the use of
the letter "F'' in the address field of a mode-changing instruction, as in the
following examples.

FLT

INT

ALPH

LOG

FIX

SPP

Mo oo oo

Although field defination may be designated in any mode, it will probably be
used almost exclusively in the logical (LOG) or alphameric (ALPH) modes.
To remain in the same computational mode but eliminate field definition,
the basic mode mnemonic should be repeated in the operations field without
the "F'" in the address field.

As an example, the first of the following two instructions would cause the
Computer Module to enter the logical mode of computation with field definition.
The second instruction would allow the Computer Module to remain in the
logical mode, but without field definition.

LOG F
LQG

Of course, in actual use the two instructions above would be separated by
intervening operations utilizing field definition.

2.7 JUMP OPERATIONS

A jump requires program specification of two items: (1) the address which is
the destination of the jump, and (2) the conditions under which the jump is to
be executed. In the D851 these items are specified by two separate instruc-
tions: the jump address instruction and a jump execution instruction.

2.7.1 Jump Address

There are four instructions which specify the jump address.

SJF Set up Jump if False.
SJT Set up Jump if True.
SJSF Set up Jump to Subroutine if False.
SJST Set up Jump to Subroutine if True.

Each of the above instructions defines a jump address in self-relative or
absolute address form. Indexing and indirect addressing can be applied
conventionally to modify jump addresses. The jump address must precede
the instruction which actually executes the jump in the program string. It
must be remembered that the true or false control of conditional jumps, and
the indication of whether the jump is to a subroutine, is specified by the setup
jump instruction rather than with the jump execution instruction.

The true/false control doubles the effective number of tests that can be perfor-
med without doubling the number of instructions that must be implemented

and remembered. For example, when the "jump on greater" (JGR) instruction
is preceded by SJT, JGR does execute 'jump on greater', however, when
preceded by SJF, JGR executes "jump on less than or equal to''. Similarly,
SJF followed by JEQ means "jump on unequal'; SJF followed by JZE means
jump on non-zero'', and so on. An unconditional jump "JUMP" ignores the
true/false indication used for setting up the jump.

The immediate effect of SJF or SJT is the computation of the jump address, in
the designated computational mode and the transmission of the computed
address to the Jump Control Register (JCR) along with a 0-bit for SJF or a
1-bit for SJT and an indication that the jump is not to a subroutine. The jump
address includes the destination syllable, effectively a twenty-one bit address.
However, the syllable number is not included in the address computation; it

is literally specified in the program string. The following octal coding of an
SJT instruction illustrates this.

20 14 00 02 05

The first syllable, 20 designates the instruction as some variant of set up
jump. The first three bits of the next syllable are 001. The first zero desig-
nates self-relative, rather than absolute, addressing; the second zero desig-
nates a non-subroutine jump; and the 1-bit specifies a jump if the next test
gives a true result. The next octal digit, 4, is the syllable-number of the
addressed word which will be first executed if the jump occurs. The final
three syllables, 00 02 05, give the self-relative jump address. This jump,

if it occurs, is to syllable four of the word 205 (octal) after the instruction
word containing the first syllable of this SJT instruction.

If jump addresses are always designated by location symbols or in program
points, the assembly program properly computes the self-relative jump address
and automatically inserts the correct destination-syllable number. It should

be noted, although not needed for most programming, that the eight syllables

of an instruction word are numbered from 0 through 7, with syllable 0 being

the left-most one, the start of the instruction word. In the example given
above, the jump to syllable 4 is to the fifth syllable of the word.

2.7.2 Jump Execution

When any set up jump instruction is executed, the JCR is changed. This
signals the communication unit to automatically fetch the four-word block
containing the addressed word. Thus, in almost all cases, the jumped to
words are fetched before the words are needed as the result of a jump occur-
ing. These words are held in a "siding' until replaced by another change of
the JCR. If a loop is programmed which includes only one jump (the jump
back to the beginning of the loop) the instruction words at the beginning of
the loop are retained in the Computer Module until after the looping has been
terminated. If a tight loop is programmed (a loop which fits within a four-
word memory block) the instructions constituting the entire loop are retained
in the Computer Module until the loop is terminated.

When a loop is to be iterated many times, its speed may be increased by the
use of the "BLPCK'' pseudo-operation, forcing the loop to begin at the start
of a four-word block. Coding for simple loops may be compressed by speci-
fying the iteration address before looping starts; this may only be done if the
only jump in the loop is the iteration return. For example, the following

coding adds words from memory, indexing the words by index register 1, sub-
tracting one from this index amount on each iteration and iterating if the index
contents are still greater than zero.

SJF LOOP Set up Iteration Return Outside of Loop

BLOCK Start LOOP at Start of New Block by
Filling with NOPs.

LOOPADD WORDS/1 Add WORD from Memory, Indexed by
XR1.

JXEZSO Tterate if XR1 = 0, subtract 1 from XR1.

The index-number need not be specified for the JXE_ZS(D instruction. Since
only index register 1 is used during the loop, it is obviously the last one used
when the index test is performed.

A conditional jump which tests an index and which either does not modify the
index or modifies by the use of the self-contained increment, plus one or
minus one, is executed faster than a conditional jump which requires the use
of an operand from the top of the stack. The higher speed is achieved because,
if the stack is not required, ADVAST of the instruction processor executes

the jump and continues processing past it without waiting for final processing.

2.7.3 Conditional Jump Classifications

There are three classifications of conditional jump instructions, in terms of
the coding in the address field.

Class
1 Specification of Jump Condition Required in Address Field
2 Specification of Jump Condition Optional in Address Field
3 Jump Condition Never Specified in Address Field

The instructions in each class are listed in subsection 2. 3. 8.5.1. Class lincludes
instructions like JBT (Jump on Bit) which requires the specification of a bit-
number in the address field. Class 2 includes all of the jump on index vari-
ants (JX----) in which the address field specification of an index number is
optional. If an index number is omitted the last-used index is tested. Class 3
includes those instructions in which the jump condition is fully specified by

the operations field. For example, when the address field is blank JGR (jump
on greater) means "test for the operand deeper in the stack being greater than
the operand at the top". When the address field is not blank it designates
optional addressing; the fetch of a word is assembled ahead of the jump instruc-
tion. Therefore, the following coding means ''test for the word at the top of
the stack being greater than the word at location JQE."

2-48

JGR JQE

This order was chosen to simplify the use of Polish notation in compilation.
The expression ""A > B'" is changed by the compiler to AB > and is compiled
as:

FMS A
FMS B
JGR

2.7.4 Subroutines

A subroutine may be entered by any of the instructions which may execute a
non-subroutine jump, if the jump instruction is preceded by jump to sub-rou-
tine if false (SJSF) or jump to subroutine if true (SJST) instruction. There
are three differences between jumps to subroutines and other jumps. First,
a jump to subroutine must retain sufficient information to return to the parent
program. Second, the return information is saved in index register zero; the
BXR is stepped to provide a new word defined as index register zero. Third,
a subroutine jump can only be to the beginning of a word. All system subrou-
tines start at the beginning of words; the WQRD pseudo-operation is used to
force the beginning of any subroutine included as part of another program to
the beginning of a word.

The coding for a subroutine jump set-up may include a decimal integer,
representing the desired stepping of BXR, at the end of the address specifica-
tion. If this is omitted, the BSR is stepped by 1. Maximum speed is obtained
by stepping in multiples of four, for example:

1, 4, 8, 12, 16, 20, 24

An asterisk instead of a stepping-count designates the use of a count which the
program has placed in the stack. This is illustrated in the following example.

1. SJST SUBR, 4
2. SJST SUBR

3. SJST SUBR, *
4. SJST SUBR, 5

The first example steps the BSR by 4 when and if the subroutine is entered;

the four is entered in the program string. The second example generates an
increment of 1. The first and second examples step the BXR at maximum
speed because 1 and 4 are used. Examples three and four are performed more
slowly. Theé third example uses the increment the program has placed in the
stack but requires the advanced station (ADVAST) to wait for the final station

(FINST) to supply this value. The fourth example generates 5 as a literal in the
top of the stack and then requires the same delay as the third example. The
numbers given preference are coded in the three bits used by SJT and SJF for
the syllable number. The following table shows the octal coding used for these
three bits.

CODING BXR INCREMENT
0 1
1 4
2 8
3 12
4 16
5 20
6 24
7 Obtained from top of stack.

Any specified increment, except the preferred ones, is assembled as a literal
followed by the last coding in the table.

When a subroutine is entered, the return information is siored in index regis-
ter zero, in the following format.

BITS CONTENTS

30-47 Old BXR Setting

27-29 Syllable Returned To
9-26 Absolute Word Address Returned To
8 Fixed-Point Overflow Condition Bit
7 Floating-Point Overflow Condition Bit
6 Integer Overflow Condition Bit
5 Floating-Point Underflow Condition Bit
0-4 Computational Mode

The overflow and underflow condition bits are cleared when a subroutine is
entered, and are taken from index register zero and re-stored when a sub-
routine returns to the parent program. This permits both the parent program
and the subroutine to each use overflow independently for their internal con-
trol. The saving and restoration of computational mode allows, for example,
a fixed-point subroutine to be executed by a floating-point program without
complication. However, the mode is not changed on entry to a subroutine so
a subroutine can operate in whatever mode it is entered.

2.8 OPERATIONS INVOLVING LOCAL DATA BUFFER

The local data buffer (LDB) is a 64-word buffer within the D851 Computer
Module. It is used as a "scratchpad' memory when a program specifies
"Fetch from Local Data Buffer to Stack'' (FLS) and "Store from Stack to Local
Data Buffer' (SSL), or when the letter "Li" is in the address-field of other in-
structions as described under optional addressing. The final station (FINST)
requires the same time (0.1 microsecond) to accept a word from the LDB as
to accept a word from a Memory Module; however, when the LDB is accessed
the communication unit is not involved. The LDB provides a convenient stor-
age for parameters generated or fetched by a parent program and used by a
subroutine.

2.8.1 Instructions Using Local Data Buffer

The following three instructions use the local data buffer to provide additional
look-ahead capabilities.

FML Fetch from Memory to Local Data Buffer
FBML Fetch Block of Words from Memory to Local Data Buffer
FCML Fetch Characters from Memory to Local Data Buffer

The address fields for these instructions utilize the same rules as the fetches
and stores from and to memory, and the optional addressing. When any one
of these instructions is executed, the computed address is transferred to the
current location in the LDB. The first and second tag: bits of the word in
this location are then set to 11. This "empty' condition signals the commu-
nication unit to fetch the word addressed by the contents of the tagged location
and to replace the word, including the tag bits, by the word fetched from the
Memory Module. This fetch is executed in parallel while the processor con-
tinues to execute the program. If the processor addresses the fetched-to
location with an FLS instruction before the empty word has been replaced,

the program is delayed until the fetch is completed.

2.8.2 Fetch Single Word to LDB

The FML instruction fetches a single word from me moryto the LDB, as
described in the preceding paragraph. Although this fetch occurs in parallel
with program execution, the normal operation of the advanced station almost
always makes this time saving unnecessary. However, when a parent program
is storing parameters for a subroutine, it may store a parameter it already
has in the stack using the SSL instruction, or it may perform indirect address-
ing, using the FML instruction, to specify the main memory address of the
parameter. Since the subroutine is automatically delayed when it attempts

to fetch an indirectly-addressed parameter before it arrives from memory,

the subroutine need not know whether direct or indirect addressing is being
used by the parent program. Therefore, a subroutine may be written which
assumes that the parameters are always in the local data buffer which is en-
tered by using various mixes of indirect and direct addressing without com-
plicating the subroutine.

2.8.3 Fetch Word Block/Character Stream to LDB

The block-transfer (FBML) and the character-streaming (FCML) may permit
considerable time savings in any program which accesses a large number of
data words with little computation per data word, a data processing program
rather than one which performs scientific computation. The words in Memory
Modules are arranged in blocks of four 52-bit words (1 parity, 3 tag, and 48
general bits each). The communication unit, which limits the speed of cer-
tain data-processing programs, is tied up an equal amount of time for a single
word fetch from memory as for a four-word block fetch. Therefore, four-at-
a-time fetching cuts communication time by a factor of four. Four-fetch
operations are not used for fetching words from memory directly to the stack
because of the programming complexity of having four words at a time enter-
ing the central portion of the processor. Block and character transfers to

the local data buffer do effectively utilize the four-fetch; the buffering of LDB
allows the program to process one word at a time while the communication
unit is fetching them four times as fast.

2.8.4 Fetch Word Block to LDB

A four-word memory block is defined as starting with an absolute memory
address ending with two ZERQ bits. The "BLPCK'" pseudo-operation may be
used to instruct the assembly program to start a new four-word block. The
loading portion of ESP starts each program at the start of a four-word block
so that BLQCK pseudo-operation in the assembly program always knows the
proper number of no-operation instructions needed to complete the current
block.

The BLYCK pseudo-operation generates no-operation (N@P) code to complete
the block when preceded by an instruction, and generates ZERO's when pre-
ceded by a data-generating pseudo-op.

The number of words involved in FBML is inserted by the program in the
stack. The ADVAST waits for the final station to provide this value. The
starting address of the block in memory is placed in bits 30-47 of the first-
affected word in the local data buffer, as is the address for a single-word
fetch. The number of words in the block is specified by bits 42-47 of the
top of the stack and inserted in bits 25-29 of the first-affected LLDB location.
For a single-word fetch, the sign-bit (bit 0) of the "empty" word is set
positive. A minus sign designates the start of a block.

51

2-52

Only the first-affected word in LDB is tagged ""empty' when the FBML instruc-
tion is executed. The "empty' tag is moved down as each word is filled so
that the first word yet to be filled is always tagged "empty'. This protects

the program against premature fetch from LDB to the stack if, and only if,

the fetches from LDB are in the same order as the fetches to LDB: the same
as the order of words in Memory Modules.

Bit 1 of the first-affected word, the most-significant magnitude bit, is made
a ZERO when FBML is executed, and a ONE when FCML is executed. Bit 1
is neither affected nor checked on FML because bit 0 is a ZERO, thus speci-
fying a single-word fetch to LDB.

2.8.5 Character Stream Fetch

When a program initiates a character stream to LDB operation, FCML, it
must precede this instruction with the designation in the top of the stack for:
the number of characters, the bit position of the start of the first character,
and the bit length of a character. These items are arranged in the stack in
the following bit positions and transmitted to the first-affected word of the
LDB as shown.

Item Bits in Stack Bits in LDB Word
Count 42-47 24-29
Start 36-41 18-23
Length 30-35 12-17

The count is six bits and therefore cannot exceed 64, the size of the LDB. If
the starting bit position, or the length of a character, is greater than 47, it

is interpreted modulo 48. Full-word characters are recognized, and a charac-
ter may start anywhere in a memory word, and may overlap two consecutive
memory words. However, it is not possible with a single FCML instruction

to fetch any string of characters which are not arranged consecutively in
memory.

Each character, as it arrives in the LLDB, is right-oriented in the receiving
location; unused bits to the left of the character are cleared to ZERO in the
LDB. Thus, the characters are arranged so that, when fetched to the stack,
they are all oriented similarly and operations using two consecutive charac-
ters as operands are simplified.

2.8.6 Local Pointer

Every fetch to LDB initiated by FML, FBML or FCML goes to the LDB loca-
tion given by the setting of the "'local pointer' (LP) at the time of execution

of the initiating instruction. There is a special instruction ''set local pointer"
(SLP) which allows the program to initiate a series of fetches to the LLDB and

to maintain control of the affected LDB locations. Each time FML, FBML or
FCML is executed, LP controls the first word or the only wo rd affected in
the LDB. LP is incremented by the number of words affected by the instruc-
tion: after FML is executed, LP is incremented by 1, after FBML it is incre-
mented by the size of the block, and after FCML it is incremented by the
number of characters. If a programmer wishes to place words from memory
into the LDB, other than into consecutive LDB locations, he may intersperse
successive FML, FBML or FCML instructions with SLP designating the
desired LDB destination for each fetch. This operation must be performed
carefully to prevent overlapping destination blocks if SLP instructions are
interspersed with FBML instructions; there is no way of predicting the result
of accidential overlap.

2.9 STACK MANIPULATION

The RTS instruction permits rapid rearrangement of the top few words of the
stack in any desired order. This instruction facilitates duplicating the top
word so it may be squared, or stored and retained. The top two words may
quickly be reversed (in 0.1 microsecond) preceding a non-commutative oper-
ation such as subtract, divide, or implication. Certain cyclic permutations
for subroutines using a small number of parameters repeatedly are also
facilitated by use of the RTS instruction.

2.9.1 Variant Syllable

In practice, the variant syllable of the RTS instruction word is treated as
three groups of two bits each, as shown in Figure 2-7.

OP CODE VARIANT SYLLABLE

BITS o] 1 2 3 4 5 6 7 8 9 10
T T T T T T T T

WORD 1 @)

1 1 1 1 1 1 | 1

WORD TO BE PUT IN TOP OF STACK———’ |
WORD TO BE PUT NEXT TO TOP OF STACK

WORD TO BE PUT IN THIRD PLACE FROM TOP OF STACK

Figure 2-7. RTS Instruction Word

Each two-bit group can be coded as shown in Table 2-5 so that it will contain
any one of the four words (A, B, C, or D) initially at the top of the stack.
The arrangement of the top eight words of the stack before the RTS instruc-
tion is performed is shown in Figure 2-8.

TABLE 2-5
TWO-BIT CODE FOR GROUPS IN RTS VARIANT SYLLABLE
STATE OF DESIRED WORD FROM STACK ARRANGEMENT
BITS IN
GROUP BEFORE EXECUTION OF RTS INSTRUCTION
00 A
oi B
10 C
ii D

TOP OF STACK ——»= A l@«—— WORD CHANGED BY BITS 687
B «—— WORD CHANGED BY BITS 88&9
c l«—— WORD CHANGED BY BITS 10 &14
D
E
F
G
H
3 3

Figure 2-8. Arrangement of Stack Before RTS Instruction

Each of the three groups in the RTS variant syllable denote the word wanted
in one of the three top stack positions. Any of the top four words not specifi-
ed as being placed in one or more of the top three final positions in pushed
down into the stack. The relative positions of unspecified words are
maintained.

2-54

To illustrate the use of the variant syllable, suppose the stack is to be re-
arranged so that the final position of the top eight words is CABD EFGH. The
word to be moved to the top of the stack is originally in position C, so bits 6
and 7 of the RTS variant syllable will be io (a ONE and a ZERO), as indicated
by Table 2-5. The word to be second from the top of the stack is A, so bits 8
and 9 are both ZERO's. The word to be put third place from the top of the
stack is B, making bits 10 and 11 a ZERO and a ONE respectively. The struc-
ture of this RTS CAB word is given in Figure 2-9 which shows that the the

bits in the variant syllable determine the ''41" in the RTS CAP op-code of 1041.

c A B
— A A

BITS 6 7 8 9 10 1"
T T T T T T H T T LEGEND:
WORD i o [o i iz ONE
1 1 1 1 1 1 L i i o= ZERO
FULL
opP { O 4 1
CODE

Figure 2-9. Word Structure for RTS CAB Instruction

RTS Execution Times

The ADVAST requires 0.1 microsecond for each RTS instruction. The time
required for the FINST depends upon the variant syllable; this time is given
in Table 2-6 for all 64 possible RTS instructions resulting from specifying
the desired three top stack words.

Two additional stack rearrangements that are considered useful are given in
Table 2-7. Each complete rearrangement requires the consecutive execution
of two RTS instructions, and therefore requires a total of 0.2 microsecond
for ADVST. The total execution time for FINST is given in Table 2-T7.

TABLE 2-7.
RTS MACRO-INSTRUCTIONS
FINST FINAL
MNEMONIC 0} EXEC. ARRANGEMENT

CODE CODE TIME OF STACK OPERATION

10 05 Duplicate top
DUPD 10 04 0.2 ABAB CDEF of stack, double

precision

10 00 Quadruplicate

QUAD 10 01 0.3 AAAA BCDE top of stack

TABLE 2-6

RTS (REARRANGE TOP OF STACK) INSTRUCTIONS

FINST FINAL
MNEMONIC OCTAL EXEC. ARRANGEMENT
CODE CODE TIME OF STACK OPERATION
RTS AAA (TRIP) 10 0C 0. 2 AAAB CDEF (Triplicate top word)
RTS AAB (DUP) 10 01 0.1 AABC DEFG (Duplicate top word)
RTS AAC 10 02 0.1 AACB DEFG
RTS AAD 10 03 0.3 AADB CEFG
RTS ABA 10 04 0.1 ABAC DEFG
RTS ABB 10 05 0.1 ABBC DEFG
RTS ABC 10 06 0.1 ABCD EFGH (No rearrangement)
RTS ABD 10 07 0. 2 ABDC EFGH
RTS ACA 10 10 0.1 ACAB DEFG
RTS ACB 10 11 0.1 ACBD EFGH
RTS ACC 10 12 0.1 ACCB DEFG
RTS ACD 10 13 0.2 ACDB EFGH
RTS ADA 10 14 0.3 ADAB CEFG
RTS ADB 10 15 0.2 ADBC EFGH
RTS ADC 10 16 0.2 ADCB EFGH
RTS ADD 10 17 0.3 ADDB CEFG
RTS BAA 10 20 0.1 BAAC DEFG
RTS BAB 10 21 0.1 BABC DEFG
RTS BAC (REV) 10 22 0.1 BACD EFGH (Reverse top 2 words)
RTS BAD 10 23 0.2 BADC EFGH
RTS BBA 10 24 0.1 BBAC DEFG
RTS BBB 10 25 0.2 BBBA CDEF
RTS BBC 10 26 0.1 BBCA DEFG
RTS BBD 10 27 0.3 BBDA CEFG
RTS BCA 10 30 0.1 BCAD EFGH
RTS BCB 10 31 0.1 BCBA DEFG
RTS BCC 10 32 0.1 BCCA DEFG
RTS BCD (CYCU) 10 33 0.2 BCDA EFGH (Cycle top 4 words up one)
RTS BDA 10 34 0,2 BDAC EFGH
RTS BDB 10 35 0.3 BDBA CEFG
RTS BDC 10 36 0.2 BDCA EFGH
RTS BDD 10 37 0. 3 BDDA CEFG

TABLE 2-6 (cont'd)

RTS (REARRANGE TOP OF STACK) INSTRUCTIONS

MNEMONIC

RTS
RTS
RTS
RTS

RTS
RTS
RTS
RTS

RTS
RTS
RTS
RTS

RTS

RTS
RTS
RTS

RTS
RTS

RTS
RTS

RTS
RTS
RTS
RTS

RTS
RTS
RTS
RTS

RTS
RTS
RTS
RTS

CODE

CAA
CAB
CAC
CAD

CBA
CBB
CBC
CBD

CCA
CCB
CCC
CCD

CDA (REVD)

CDB
CDC
CDD

DAA
DAB (CYCD)

DAC
DAD

DBA
DBB
DBC
DBD

DCA
DCB
DCC
DCD

DDA
DDB
DDC
DDD

CODE

10
10
10
10

10
10
10
10

10
10
10
10

10

10
10
10

10
10

10
10

10
10
10
10

10
10
10
10

10
10
10
10

40
41
42
43

44
45
46
47

50
51
52
53

54

55
56
57

60
61

62
63

64
65
66
67

70
71
72
73

74
75
76
i

FINST
OCTAL EXEC. ARRANGEMENT
TIME

eLeere

.

eeep

LLeLePe

e
w

cepop

ceoeo

ceee

DN = = DN =

wW N =

W w NN w N Ww N [\

B> w w w

FINAL

OF STACK

CAAB
CABD
CACB
CADB

CBAD
CBBA
CBCA
CBDA

CCAB
CCBA
CCCA
CCDA

CDAB

CDBA
CDCA
CDDA

DAAB
DABC

DACB
DADB

DBAC
DBBA
DBCA
DBDA

DCAB
DCBA
DCCA
DCDA

DDAB
DDBA
DDCA
DDDA

DEFG
EFGH
DEFG
EFGH

EFGH
DEFG
DEFG
EFGH

DEFG
DEFG
BDEF
BEFG

EFGH

EFGH
BEFG
BEFG

CEFG
EFGH

EFGH
CEFG

EFGH
CEFG
EFGH
CEFG

EFGH
EFGH
BEFG
BEFG

CEFG
CEFG
BEFG
BCEF

OPERATIONS

(Reverse top double-
precision words)

(Cycle top 4 words down
one)

2.10 TAG BITS

All words in a D851 system are 52 bits long; functionally, these word bits may
be grouped: (1) 48 bits for instruction syllables or data sign and magnitude,
(2) 1 bit for parity checking, (3) and 3 bits called "tag bits." The 48 bits com-
prising group (1) above are the only bits shifted, added, multiplied, or other-
wise manipulated in the usual data processing or computation techniques.
When a bit number is specified in a bit manipulation instruction, only these

48 bits are involved. If a bit number is specified greater than 47, it is treated
modulo 48; i.e., the bit number involved is the number specified minus 48.
Access to tag bits require special instructions that are discussed in this
section.

Thep arity bit is never accessible by the program. Parity is automatically
checked on all transmission accessible by the program. Parity is also auto-
matically checked on all transmission between modules and on many trans-
missions within modules. When the content of any word is changed, correct
parity for the new bit pattern is automatically generated. Except for ESP
being automatically entered by an interrupt when a parity error is detected,
no program is ever concerned with the parity bit.

The three tag bits are typical of the many software provisions that will be

found in the D851 system to enhance system control and assist in such opera-
tions as debugging, etc. While tag bits are never referred to by number in a
program, it is convenient to discuss them as the first, second, and third tag
bits; and for convenience of discussion, they shall be considered to be oriented
with the first on the left and the third on the right. Tag bits may be referenced,
in assembly language input, either in terms of this assumed orientation or

in terms of mnemonic designation of the various tag-bit functions. To simpli-
fy the discussion which follows, the function of the third tag bit is explained
before the functions of tag bits one and two are taken up.

2.10.1 THIRD TAG BIT

The third tag bit is used for a variety of functions, e.g., (1) for debugging
information, (2) for providing essential information during two-computer
operation where both modules are working in the same data area, and (3) for
information transmission within a single program.

2.10.1.1 Debugging

The third tag bit is used primarily for providing debugging information. It
has no control function; its use is fundamentally different from the uses of
the second and third tag bits. When a program is being debugged, the
instructions and data for the program are loaded into memory with the

third tag bit set to ZERO in each word. Read-out from memory is destructive,
with automatic regeneration. The third tag bit is always regenerated as a ONE,
regardless of its state when read, and regardless of whether it is being fetched
as data or as instructions.

When a program undergoing debugging is being run, it is often valuable for

the programmer to know the portions of the program which were executed and
those portions which were not. The third tag bit is set to ONE in each instruc-
tion word executed, but remains ZERO for every instruction word not execu-
ted. The debugging portion of the Utility System, running under ESP control,
contains provision for post-mortem examination of a program being debugged
with the print-out indicating which sections were executed. Additionally, the
print-out indicates which portions of the data area were operated upon.

2.10.1.2 Two-Processor Operation

The third tag bit may also be used if two Computer Modules are operating on
the same data area. The first Computer Module to access a Memory Module
word leaves it automatically tagged as "used'"; the second Computer Module
can determine this easily. Since a Memory Module locks out all accesses
until the regeneration cycle has been completed, there is no way for the sec-
ond Computer Module to fetch an already-fetched word before it has been
tagged as used.

2.10.1.3 Information Transmission

The third, as well as the other tag bits can also be used for information trans-
mission within a single program. A Computer Module can generate the setting
of the tag bit as a ZERO or a ONE and store the word, so tagged, into memory.
When a word is stored from a Computer Module to a Memory Module, the
Memory Module accepts and stores the tag bits as the Computer Module had
set them. When a Computer Module fetches a word from memory, the word
is transmitted with the tag bits set as they were in memory, before the re-
generation following the fetch.

2.10.2 FIRST AND SECOND TAG BITS

The first and second tag bits are used together in different configurations to
provide the four independent control functions discussed below. For conven-
ience, the configurations are referred to as: '00X", "01X", "10X", and "1X";
their mnemonic coding is given in the text. The "X" in the configurations
represents the third tag bit.

2.10.2.1 No-Operation (''00X")

The ""00X'" configuration denotes the absence of control information, and is a
tag bit no-operation. The address-field coding may be either "00X" or the
mnemonic "N@P."

2.10.2.2 Empty ("'11X")

The configuration coded as ''11X" or "EMPTY" is ignored by both the advanced
and final stations. Its control function is only effective in the local data buffer
where it causes block or single transfers in parallel with other processing.
This configuration is automatically generated by the instructions initiating
fetches to the local data buffer. When the EMPTY configuration is generated
in the stack and the tagged word is stored in the local data buffer, it causes a

fetch to the local data buffer. When an ""'empty'' word is stored in a Memory Mod-

ule, it allows a type of indirect addressing via the local data buffer. This is
explained in the sections dealing with indirect addressing and the local data
buffer.

2.10.2.3 Interrupt ('01X')

The configuration coded as "01X" or "INT" causes an interrupt when a word
so-tagged is fetched to the top of the stack or when execution of the word as
an instruction is started. Since an interrupt always enters ESP, the inter-
rupt tag bit configuration is mostly used by ESP and must always be used

with ESP cooperation. This configuration is used, among other things, for
snapshot dumps by tagging instructions; it is also used for many of the control
functions associated with snag-bit interrupts. For instance, as a snag-bit
interrupt, it functions as a response to the presence of critical data, and is
used to facilitate computer control of program areas, e.g., to lock out a
second Computer Module from accessing a data area already accessed by
another Computer Module. This configuration also provides a convenient way
of marking the bottom of the stack so that an undebugged program is interrup-
ted if it attempts to store more from the stack than has been placed in it.

2.10.2.4 Jump (''10X'")

The configuration coded as ''10X" or "JUMP'" causes a jump to occur when a
word so-tagged arrives at the top of the stack as data. It is never effective
in words fetched as instructions. The conditions under which a jump tag is
effective are precisely the same as those under which interrupt tagging of
data is effective.

2.10.3 TAG-BIT INSTRUCTIONS

Two instructions are provided for setting tag bits and, after they have been
set, for testing them ; these instructions are briefly described below.

2.10.3.1 STB Instruction

The instruction which sets tag bits in the Computer Module is, mnemonically,
STB (Set Tag Bit). The address field contains information on the tag bit(s)
involved and the setting desired. The tag bits may be designated by their
assumed orientation or their function. Thus, the first two of the following
examples set the third tag bit to ZERO (unused) and the last two, to ONE (used).

STB XXO0

STB UNUSED

STB XX1 X
STB USED

In the first and third of the above examples, the X's denote that the first and
second tag bits are unaffected by the operation. When the operation is denoted
mnemonically by function, the third tag bit is also the only one affected.

2.10.3.2 JTB Instruction

The testing of the tag bits is accomplished in a manner equivalent to that used
for setting them. The mnemonic ope ration is JTB (Jump on Tag Bits), and
the address fleld contents are identical to those used for STB. That 1s
"XX0" means "test the third bit for ZERO, ignore the first and second'’;
"USED'" means "test for the used tag-bit indication", and so on.

2.10.4 CONDITIONS AFFECTING TAG-BIT INTERRUPT AND JUMP FUNCTIONS

This discusses the major considerations and conditions for effective tag-bit
interrupt and jump operations. Essentially, the subject matter is approached
from the standpoints of two basic situations, i.e., (1) situations where the
tag bits exist and (2) situations where tag bits do not exist, and are to be in-
serted. In general, D851 software design provides four ways by which tag-
bit interrupt and jump functions can be simply and effectively performed to
meet the needs of any situation and to derive full value from the tag-bit feature;
these ways are di scussed in some detail. As is often the case in cornplex
systems, there is a ''right'" as well as a "wrong'' way, and since the ' 'wrong''
way is not already immediately apparent to the programmers unfamiliar with
the D851, - in fact, it may initially appear to be feasible, - this discussion of
the ways to effect the tag-bit function also includes an example of the "wrong"

way.

2-61

In the D851, ''The Easiest Way is the Best and the Correct Way." The first
point to note concerning D851 tag-bit interrupts and jumps, is that both are
inoperable in the control mode, and can be made inoperable in the normal
mode through ESP setting of the mask register. This latter feature permits
a routine to examine tag-bit settings without being interrupted. However,

a normal mode program, which has not been properly set via the mask
register to ignore tags bits, would be interrupted before it had an opportunity
to change the "INT'" to "N@P'", or before it had an opportunity to execute a
jump on the state of interrupt tag bits (JTB).

A second point to note is that the execution of a tag-bit interrupt or jump
function by a tagged data word occurs only when the data word is at the top
of the stack. As previously indicated, there are four ways to ensure correct
execution of the tag-bit interrupt or jump, where the tagged data word is
properly at the top of the stack, and further more will meet the needs in
situations where tag bits exist or where they do not exist. These four ways,
described in detail later, may be summed up as follows:

(1) Generating a new word with a tag bit (Case 1)
(2) Tag-bit insertion into word already in the memory (Case 2)
(3) Moving a tagged word up through stack to top (Case 3)
... by stepping stack, or storage of word ahead of
it, or by using word ahead as an operand

(4) Fetching a tagged word from storage to top of stack (Case 4)

To describe the conditions of execution of a tag-bit function by a tagged data
word, it is necessary to consider each case separately.

2.10.4.1 Case 1

When the STB instruction is executed, the effect of the tag-bit function set-
up is locked out until the tagged word has been removed from the top of the
stack. The tagged word, for example, can be stored in memory and the
tag-bit function has no effect until the word is fetched back. Some care
must be exercised by a programmer setting up a tag-bit interrupt if he
wishes to prevent the interrupt from being effective until later. Assume,
for example, that the programmer wishes to store a word containing zero
except for the tag-bit interrupt. Assume further that the wishes to set up
the zero by a literal (LLIT0), and to store the tagged word in LQCX in
memory by a Store from Stack to Memory instruction (SSM LQACX). The
following coding would accomplish the desired result. (This is the correct
and recommended procedure).

LIT 0
STB INT
SSM LGCX

The above coding introduces the tag bits into a word already at the top of the
stack and the interrupt is locked out until after the tagged word is stored.

The following coding, on the other hand, would cause an immediate interrupt.

STB INT
LIT 0
AND

SSM LGCX

While the tag bits in the above situation are inserted into a word already at
the top of the stack, the lock-out, however, is in effect only until the literal
zero is generated, which pushes the tagged word down into the stack. The
AND instruction brings the already-tagged word out of the lower position in
the stack, the lock-out is no longer in effect, and an immediate interrupt
therefore occurs.

2.10.4.2 Case 2

Consider now coding to insert interrupt tag bits into a word already in
memory.

FMS LGCX
STB INT
SSM LOCX

The above coding accomplishes the desired result and is the correct pro-
cedure; no interrupt occurs when the tag bits are inserted and the tagged
word is stored into memory. The following coding would also insert
interrupt tag bits into a word already in memory but would cause an interrupt
before the word is returned to memory.

LIT 0
STB INT

ADD LPCX
SSM LPCX

2-64

The problem in the foregoing coding is that "ADD LOCX" assembles as a
fetch followed by an add. The fetch forces the tagged zero down into the
stack, cancelling the lock-out, with the result that add now causes an
interrupt.

When inserting a tag bit into a word already in memory, the programmer mu
must keep the following firmly in mind:

"When two tagged words are to be used as operands and combined
in a logical or arithmetic instruction, the tag bits of the result will
be the tag bits of one of the operands. If the case is where both
tagged words are in the stack, the tag bits of the deeper word will
be retained; the tag bits of the word ahead will be lost. 1If the
situation involves one tagged word in memory and the other in the
stack, the tag bits of the word in the stack will be retained, and the
tag bits of the newly introduced word will be lost"

With the foregoing clearly understood, the programmer should have no
difficulty when coding, and situations involving the possible loss of a desired
tag function will be avoided. For a more concrete example covering the
foregoing situation, consider the following coding

FMS LPCX
LIT 0

STB INT
ADD

SSM LPCX

In the above example there would be no immediate interrupt, and no storage
of a tagged word in memory. The interrupt is locked out, when the STB is
executed, until after the ADD is executed. But the result of the ADD is
tagged, as was LQCX, and the newly introduced interrupt tag bits are lost.

Since tag bits are never involved in ordinary logical or arithmetic instruc-
tions, any two-operand instruction is non-commutative as far as tag bits are
concerned. The rule for tag bits is the same as that for all operations in
which some bits are not involved; i.e., bits not involved in the operation are
the same in the result as they were in the operand originally in the stack or
in the operand deeper in the stack, whichever is the applicable situation.

2.10.4.3 Case 3

When a tagged word is brought to the top of the stack from a position lower
in the s tack, the tag-bit function is executed only when the tagged word is
used as an operand, not when it arrives at the top of the stack. The word
"operand'' as used here includes any instruction which alters the word, uses
it to generate a result, tests it, compares it with another word or stores it

from the stack to any other place in any module. However, a word tagged
for interrupt or jump may be pushed down from the top of the stack to a
deeper position in the stack without executing the interrupt or jump. When
tag-bit interrupts are used to mark the bottom of the stack, to guard against
stack underflow in an undebugged program, the stack may become empty
without an interrupt. Only when the program attempts to make use of the
words below the bottom of the stack, - words which have no meaning to the
program, - is the program interrupted.

2.10.4.4 Case 4

When a tagged word is fetched from a position, not in the stack, to the top
of the stack, the tag-bit function is executed immediately after the word
arrives at the top of the stack. To interpret this case it is necessary to
differentiate between macro-instructions and individual machine-language
instructions. For example, the following coding is a macro-instruction:

ADD LYCX

The equivalent coding in individual machine-language instructions which are
generated by the assembly program is as follows:

FMS L@CX
ADD

If the word in LOPCX is tagged for interrupt, the interrupt occurs immediately
after the fetch from memory to stack (FMS), before the add. Thus, adding

a tagged word from memory results in interrupt with the fetched word at the
top of the stack with the operand originally in the stack pushed one position
deeper, and without addition having been performed.

2.10.5 JUMP TAG AND INTERRUPT TAG OPERATION

It has been previously explained: (1) that the tag-bit configuration "10X"
causes a jump to occur when a word so tagged arrives at the top of the stack
as data, (2) that it is never effective in words fetched as instructions, and
(3) that conditions for effective jump-tagging are the same as for interrupt-
tagging of data.

Interrupt-tagging is effective regardless of the contents of the non-tag 48 bits
in the tagged word and generates the same interrupt and the same entry to
ESP independent of the non-tag bits. Jump-tagging, on the other hand,
requires the non-tag bits to contain jump-control information. When a
jump-tagged word causes a jump, the contents of the word are transferred
to the jump control register (JCR) and an unconditional jump generated. The
bit position of information in a jump-tagged word is as follows:

2-65

BITS CONTENTS

30-47 Absolute address of jump destination word

The absolute address of the jump-destination word may be obtained, regard-
less of the addressing mode being used in the program, by the ''Fetch
Absolute Address to Stack' instruction (FAS). which computes the absolute
address required and fetches this address to bits 30-47 (right-oriented) of the
top of the stack after pushing the stack down one to make room and clearing
bits 0-29. Thus, the following coding will place a jump-tagged word in the
top of the stack.

FAS LYCX
STB JUMP

The above coding generates a jump to the first syllable (syllable number 0)
of LCX, which in the above example is referenced in self-relative address-
ing. Since it would always beclumsyfor a program to determine the syllable
number of a destination other than the start of a word, 2 "WQRD" pseudo-
operation must be used to force the destination syllable to the beginning of

a word.

Jump-tagging allows termination of a many-iteration loop to occur auto-
matically when a terminating word is fetched from memory and without
termination testing being required in every iteration. It also permits a
programmer to use a special routine to process certain data words without
repeated programmed testing to see if the word being processed requires
some sort of special handling. Although there are expected to be many uses
found for jump-tagging, there are several cautions to be observed in its
use.

First, a jump-tagged word inmemory contains an absolute address. Ifthe pro-
gram is interrupted by ahigher-priority program andis relocated before restarting,
ESP must be informed that jump tagging is being used so that the absolute addresses
may be changed before restart, However, ESPcan easily find the jump-tagged
words by searching through memory with the "JTBJUMP'" instruction, Infact,

the only reasonthat ESP need be informed is that the time required for the search

is wastedif there are no jump tags beingused. Ifaparticular D851 installation

is expected to use jump-tagging at all frequently, the ESP for that installation
will always search for jump-tagging before relocating an interrupted program.

A tag bit interrupt or jump is recognized by the final station when a data
word is tagged. In general, the advanced station will have fully or partially
executed a number of instructions past the instruction which fetched the
tagged data word. Thus, index registers may have been incremented or
refilled and a program must be prepared to either restore the index settings
in effect at the time of the fetch or ignore the indexes which may have been
affected. Obviously, if jump tagging is used to determine termination of an
iterative procedure, the indexes being incremented during the iteration may
be of no further interest after termination.

In the case of a tag bit interrupt, ESP contains a routine which restores all
indexes, except those refilled (XRL), to their values at the time of the fetch
of the tagged data word. This routine is available as a systems macro for any
program using tag bit jumps by the word "REST@RE" in the op field.

A tag-bit interrupt inserted in an instruction word does not cause any prob-
lems since the interrupt is recognized by the advanced station which stops
immediately and waits for the final station to empty the final-processing
queue. Thus, the effect of the interrupt is as though the advanced and final
stations were interrupted together.

2.11 ASSEMBLY ERROR INDICATIONS

All input cards to the assembly program are printed with sequential numbers
assigned by the assembly program. When any input card contains coding that
violates any of the rules given in this manual, the violation is indicated in the
left margin of the assembly print-out, alongside the print-out of the card.
Furthermore, a separate list of errors is printed, giving the card numbers
and descriptions of the errors found.

An attempt will be made to interpret all erroneous coding in terms of what

the programmer intended. For example, an undefined symbol results in the
definition of the symbol, by the assembly program, as the location of an
otherwise unused word in the program's data area. However, there is no way
for the assembly program to determine if two undefined symbols were intended
to be the same, with one mis-spelled or mis-punched. It is recommended
that a programmer adhere to the rules, rather than deliberately violate the
rules to utilize his knowledge of the actions taken when rules are violated.

If the assembly-program error list contains a large number of indications of
deliberate rule violations, some of the accidental or real errors may escape
the programmer,

There are no errors which can cause the assembly program to refuse to
assemble the remainder of the program. Thus, a programmer need not
correct an error if his first debugging runs do not involve execution of the
erroneous portion. Corrections are also unnecessary if the action of the
assembly program happens to be what the programmer intended by his
erroneous coding. However, it is strongly recommended that a program be
corrected to eliminate all apparent errors at the time essential changes are
made. This technique prevents the error output of the assembly program
from becoming confusingly voluminous.

2-68

2.12 PSEUDO-OPERATIONS

The "EQU" and the "BQQL' pseudo-operations are discussed below.

2.12.1 The "EQU" Pseudo-Operation

The mnemonic "EQU" in the op-code field of assembly input is meaningful
only when a location symbol is specified in the symbol field. This pseudo-
operation defines the location symbol as equal to whatever is designated in
the address field. However, to accomodate the special requirements of
addressing-mode specification, the coding in the address field is recorded
as it is found, rather than converted to binary at the point at which the
assembly program encounters the "EQU" pseudo-op. The effect of defini-
tion via "EQU" is to replace a composite address by a single mnemonic
symbol.

In addition to permitting addressing modes to be specified when a symbol
is defined, indexing of a symbolic location may also be specified at the time
of definition. If indexing is indicated both when the symbol is defined and
when it is referenced, the result is multiple indexing. In the following
example, LOCX is indexed for the third time when reference is made to
LOCY.
LPCY EQU LOCX/1/2
0) L@CY/3
Since multiple indexing by a single index register is permitted, the following
coding would result in triple indexing by index register 1.
LPCY EQU LOCX/1
LPCZ EQU LGCY/1
QP LOCZ/1
The assembly program properly sorts the information inserted in an address
field by reference to symbols defined elsewhere, and by direct specification.
As an example, consider the following:
LGPCY EQU LOPCX 1, A
QP LOPCY + 5

The above coding has the same effect as the following:

PP LOCX+5/1,A

Symbolic reference to index registers is permitted, and these symbols may

be defined by ""EQU" pseudo-operations. However, if an addressing mode is
specified in the address field of an "EQU" card, the symbol may not be used
as an index specification.

2.12.2 The "BQQL" Pseudo-Operation

This pseudo-operation is used to define an octal constant, which then may be
used anyplace else in the program. In this case, as opposed to "EQU", a
constant numeric is computed when the assembly program encounters the
"BPQPL'" pseudo-operation. All numeric constants in the address field of-a
"B@@L'" are interpreted as octal integers. The operators are interpreted
as boolean rather than arithmetic, according to the following rules:

+ inclusive OR
AND
- Exclusive OR

/ Complement

2.13 MEMORY-BOUNDS REGISTER

The memory-bounds register specifies the maximum and minimum main
memory addresses a program is permitted to change. The bounds are
ignored in control mode, and ignored in normal mode when the mask register
bit controlling memory-bounds is a ZERO. When a program is set to ob-
serve memory bounds, and when a store, dump or Memory Module program
is initiated by the program, the memory bounds are automatically checked to
determine if any attempt is being made to access any address outside of the
memory bounds; if so the program is interrupted and processed under ESP
control.

The primary purpose of memory bounds is to protect the operating system
(ESP) and the associated debugging aids against inadvertent change by an
undebugged program. The bounds may also be used to protect an opera-
tional program against an undebugged program when they are running
simultaneously on two processors, or when the debugging run starts before

all the output from a previous production run has been removed from memory.

Furthermore, the interrupt on memory-bound violation provides useful
debugging information if the bounds are clamped tightly around the area a
programmer expects to write into. ESP contains provisions for memory-
bound modification upon normal-program request, as long as the requested
bounds do not violate the total allowed area imposed by ESP. Therefore, a
program which uses different data areas at different times may be partially
debugged with the assurance that any violation of the area currently in use
is promptly detected and reported. It is desirable to keep the instruction
area of a program being debugged outside of the program memory bounds.

The memory-bounds register, mnemonically designated ""MBR'', consists of
36 bits which correspond to bits 12-47 of the top of the stack. The

register may be examined by any program at any time by using the following
coding.

FRS MBR
The memory-bounds register may be set by the following coding. (If an
attempt is made to change the MBR in normal mode, when set to interrupt
on bound-violation, an interrupt is generated.)

SSR MBR
The most significant 18 bits designate the lower bound, and the least

significant 18 bits designate the upper bound.

2.14 NON-COMMUTATIVE OPERATIONS

There are five instructions which are non-commutative:

SUB Subtract

DIV Divide

IMP Implication

JGR Jump on Result of Test for Greater
JLS Jump on Result of Test for Less

Also, all field-defined operations on two operands are non-commutative since
the non-field bits of the result are set to equal the non-field bits of one of the

operands.

In all five non-commutative instructions, the operand normally written to the
left in algebraic expressions is the operand deeper in the stack when both
operands are in the stack, or the operand in the stack if orie operand is in
memory. As an example, "A-B' becomes "AB-" in Polish notation and is

coded as follows.

FMS A
FMS B
SUB

or:
FMS A
SUB B

Similarly, the test for "A>B' becomes "AB>'" and is coded as follows.

FMS A
FMS B
JGR

or:
FMS A
JGR B

The convention for field definition is that the non-field bits of the result of a
two-operand operation are always equal to the non-field bits of the operand
deeper in the stack, when both operandsare in the stack, or to the non-field
bits of the operand in the stack when one operand is in memory.

2.15 STORAGE QUEUE

Three separate operations implement a St ore from Stack to Memory
instruction (SSM). First, the advanced station computes the store address
and records it. Second, when the instruction reaches the final station the
word at the top of the stack is stored in the storage queue, and flags are set
to tell the communication unit to store the information from the storage queue
into the absolute Memory Module address recorded by the advanced station.
Finally, the communication unit stores the information from the storage
queue into the Memory Module.

These three operations are always performed sequentially, but asynchron-
ously. In particular, the communication unit stores from storage queue to
a Memory Module as its lowest priority operation. The storage queue
accommodates a maximum of eight words destined for Memory Modules:
this capacity insures that there would rarely be delay of the final station
because of a full storage queue.

Whenever the advanced station computes a Memory Module address for a
store or a fetch operation, this address is compared with the following
addresses: (1) words already awaiting Memory Module storage in the storage
queue, (2) the addresses computed for words to be placed in the storage
queue by SSMs not yet executed by the final station, and (3) the addresses

in associative memory of index words held in the Computer Module. If any
of these addresses is identical to the newly computed address, the designated
operation is automatically modified so the program fetches the newest
version of any word, whether in a Memory Module or elsewhere in the
processor. The following sequence of FORTRAN statements demonstrate
address updating.

2-71

FORTRAN code X = Y*Z

w =X
Machine code FMS Y

FMS Z

MUL

SSM X

FMS X

SSM W

In the above coding, it is certain that the advanced station will have
executed the "FMS X" before the final station had executed the preceding
"SSM X''. Although the compiler could have replaced the SSM - FMS
sequence with a DUP (duplicate) instruction placed before the SSM, this
would have saved no time and would be incorrect if the second source-language
statement were numbered and possibly a jump destination. The automatic
comparison between a newly computed address and previously computed
addresses guarantees that the fetch accesses the word just stored, not the
word the store replaces in memory.

2.16 TIMING

A D851 Processor Module executes programs with several of its units opera-
ting in parallel, but asynchronously. Four of these units directly affect the
execution time of a program; these units are the communication unit (COMM),
the syllable determination unit (SYLD), the advance station (ADVAST), and
the final station (FINST).

2.16.1 Determining Program Execution Time

To determine precise timing, it may be necessary to consider the timing of
each unit individually. However, most programs tend to have their timing
dominated by the execution time of one unit. Therefore a good approxima-
tion to the timing of a program may be obtained by considering only the
dominant unit.

In "'scientific' programs and others requiring a lot of computations, the final
station (FINST) is almost always the dominant unit, because of the arithmetic
performed at this station. Therefore program execution time may be closely
approximated in most cases by merely adding the FINST times given in

Table 2-8. for each instruction that is executed. Times for the ADVAST

and COMM are also in the table, to allow calculation of precise timing.
(Timing requirements for SYLD are given below.)

TABLE 2-8

TIMING FOR TYPICAL INSTRUCTIONS

uSEC REQUIRED
IF NO DELAYS OCCUR
NAME ADVAST COMM FINST

ADD 0.1 0.4
DUP 0.1 0.1
FLT 0.1 0.1
FMS 0.2 (0. 5) 0.1
FRS 0.2 0.1
INST 0.5

JUMP 0.1 0.1
JXELS®) 0.3 (0.1)

>ﬁDelays are listed in Table 2-9.

*
TYPES OF
DELAYS
POSSIBLE

1,2,3

1,2,3

1,2,3

1,2,3,4,5

1,2,3

1,2,3

1,2,3

REMARKS

Add top two words of stack.
Timing assumes single-
precision floating-point
with normalized result.

Duplicate top word of stack.

Enter floating-point com-
putational mode,

Fetch from memory to stack.
COMM is not involved if ad-
dressed word is already in
processor or already being
fetched or stored within
processor.

Fetch from register to stack.

Fetch a four-word block of
instructions. Automatically
executed when ADVAST has
started execution of previous
block or when a new jump
address is given, except that
instructions already in pro-
cessor are not fetched.

Unconditionally jump to ad-
dress previously set up.

Test content of last-used
index for equality to self-
contained limit. Subtract
one from content after test-
ing. Jump to previously
set-up address if test result
agrees with true/false indi-
cation set-up. FINST is in-
volved and delay-types 2 and
3 are possible only if jump
occurs.

2-74

NAME

LIT

MUL

NOP

SJF

SLIT

SQM

SSM

TABLE 2-8 (cont'd)

TIMING FOR TYPICAL INSTRUCTIONS

uSEC REQUIRED TYPES OF
IF NO DELAYS OCCUR DELAYS

ADVAST COMM FINST POSSIBLE REMARKS
0.1 0.1 1,2,3 Transmit full-word literal
from program string to top
of stack.
0.1 0.4 1,2,3 Multiply top two words of
to stack. Timing assumes
1.0 single-precision floating-

point with normalized result.
0.1 1 No operation.

0.2 1 Set up jump address if next
test gives a ''false'’ result
or for an unconditional jump.
INST may follow if the ad-
dressed instructions are not
already in processor. In-
struction words fetched in
response to SJF are retain-
ed until the next set-up jump
instruction,

0.1 0.1 1,2,3 Transmit short (six-bit)
literal from program string
to top of stack.

0.5 6 Store from storage queue to
memory. Automatically
executed when a word has
been placed in the storage
queue by ADVAST or FINST.

0.2 0.1 1,2,3,7 Store from stack to memory
by placing word in storage-
queue for a subsequent SQM
to transmit to memory. In
the timing summaries, the
time for SQM is included
with that for SSM. In step-
by-step timing, the two are
considered separately.

TABLE 2-8 (cont'd)

TIMING FOR TYPICAL INSTRUCTIONS

uSEC REQUIRED TYPES OF
IF NO DELAYS OCCUR DELAYS
NAME ADVAST COMM FINST POSSIBLE REMARKS

SSM (X) 0.2 0.1 1,2,3,7 Store from stack to index
word in memory. Storage
is actually to associative
memory in local storage.
A word is displaced from
associative memory and
sent to main memory if the
index word addressed by
SSM(X) is not already in
associative memory. In
this case only will SQM
follow and is delay-type 7

possible,
SSR 0.2 0.1 1,2,3 Store from stack to register.
SUB 0.1 0.4 1,2,3 Subtract top word of stack

from stack word. Timing
assumes single-precision
floating-point with normalized

result.
TRIP 0.2 0.1 1,2,3 Triplicate top word of stack.
X 0.2 (0. 5) 1,7,8 Modify next address by add-

ing contents of specified index
word to address register,
Alternately used to specify
index to be operated upon

by following instruction.
COMM is not involved if the
specified index is already in
associative memory. Delay-
types 7 and 8 are possible
only if the word is not al-
ready in associative memory.

XAD 0.2 1 Add one to index word most
recently specified.

XM 0.3 (0. 5) 1,7,8 Perform operation "X'".
Then modify index word by
adding self-contained sign-
ed increment to content.

Occasionally the FINST may be delayed by having to wait to receive or store
a word. In this event, one of the other units temporarily becomes the
dominant unit. To understand howthis might occur, a general description
of the way instruction and data words are handled is given bolow. (Delays
and their causes are listed in Table 2-9,)

2.16.2 Instruction Words

In the execution of a program, instruction words (and data words) are fetched
and stored by COMM, which automatically keeps ahead of SYLD on instruc-
tion fetches.

Each instruction is first examined by SYLD, which groups the syllables into
discrete instructions for further processing. SYLD requires 0.1 micro-
second for any instruction which is entirely contained within one instruction
word, and 0.2 microsecond for any instruction overlapping two instruction
words. The time required by SYLD may almost always beignored, and is
not mentioned for individual instructions. However, it should be noted that
SYLD timing for macro-instructions depends upon the number of actual
machine instructions contained within a macro-instruction.

The discrete instructions composed by SYLD are transferred to the ADVAST.
Some of these instructions are completely processed by the ADVAST; such
processing includes address computation, with indexing and indirect
addressing, and the initiation of data fetches.

The remaining instructions are sent to the FIN@ for eventual execution by the
FINST. The FINQ temporarily stores instructions until the FINST can
execute them. The FINQ can hold eight instruction words, which is ordinarily
sufficient to keep the FINST operating without being held up waiting for an
instruction word. When the FINQ is full, the ADVAST is prevented from
sending any more instructions to the FINQ until the FINST can execute one or
more of the stored instructions. The FINST performs all operations involv-
ing the data stack, including all arithmetic operations on data.

2.16.3 Data Words

The COMM fetches all data for the Computer Module, in response to the
ADVAST computation of absolute memory address. If either of these
stations requires a word which has not yet been fetched, the station requir-
ing the word is delayed until the fetch has been completed.

When a word is to be stored from the Computer Module to a Memory Module,
the word is placed in an eight-word storage queue, together with the absolute
memory address it is destined for. The communication unit sends words

for the storage queue to Memory Modules in the same order in which they
are put into the storage queue. If a station attempts to store a word in the
storage queue when the queue if full, the station is delayed and cannot

DELAY

3

5

TABLE 2-9

TYPES OF DELAYS

ABBREVIATION

ADVAST delayed by INST

ADVAST delayed by FINST

FINST delayed by ADVAST

ADVAST delayed by COMM

FINST delayed by COMM

EXPLANATION

The advanced station may be delayed
in its execution of any instruction if
the communication unit has not yet
fetched all syllables of the instruction,

Any instruction requiring the final
station may delay the advanced station
if the eight-instruction queue waiting
final processing is full, This delay
is considered normal since most
programs are limited by the speed of
final processing. This delay, in fact,
serves to prevent the advanced sta-
tion from running too far ahead of

the final station.

The final station may be delayed if it
is ready for an instruction before the
advanced station has passed it into
the final processing queue, if the
queue has become empty. In most
programs this should only occur when
starting before the advanced station
has had an opportunity to get its nor-
mal distance ahead of the final
station.

When the advanced station has comput-
ed a fetch address but the communica-
tion unit is not ready to accept it, the
advanced station waits until commu-
nications is ready to start the fetch.
Data-fetching is the highest priority
operation for the communication unit.

The final station cannot accept a
fetched word to the top of the stack
until the communication unit has
finished fetching the word. This de-
lay is actually caused by the advanced
station starting the fetch too late and
is, therefore, similar to delay type 3.

2-117

TABLE 2-9 (cont'd)

TYPES OF DELAYS

DELAY ABBREVIATION EXPILANATION

6 The communication unit operates in
response to operations previously
performed by the final or advanced
stations. Since COMM always waits
for some other unit to operate, no
delays of COMM are considered. If
a program is limited by communica-
tion speed, this will show up as delays
of other stations by COMM.

7 ADVAST delayed by STQ The storage queue has an eight-word
capacity. When a word is to be plac-
ed in a full queue by a SSM instruc-
tion, the advanced station will wait
until the communication unit has made
room by executing SQM. This delay
may also occur when a word is dis-
placed from associative memory but
the storage queue is full.

8 ADVAST delayed by ASM If an index word is specified which is
not already in associative memory,
the advanced station is delayed until
the word has been fetched from a
Memory Module. Each such fetch
requires the storage of a word from
associative memory to the storage
queue. Hence, a later SQM is re-
quired and delay-type 7 may occur.

continue until the COMM makes room by executing a store from the storage
queue to a Memory Module.

SECTION 3

INSTRUCTION REPERTOIRE

The instructions described in this section are those recognized by the assem-
bly program For convenience and clarity of presentation, theseinstructions
have been categorized as follows:

Arithmetic

Logical

Shift

Stack Manipulation

‘Literal

Bit Manipulation

Jump

Index

Indirect Addressing

Fetch and Store

Control

Pseudo Operations
The above categories of instructions are further broken down on the following

pages to show the individual instructions comprising each category and the
order in which they will be discussed throughout the remainder of this section

It should be noted that Pseudo Operations will be expanded to include such op-
erations as EQU and END.

LIST OF INSTRUCTIONS

Arithmetic

ADD
SUB
MUL
DIV
FLR
SQR
RND

Shift

SR

SL

SAC, NORM
RR

RL

JUS

UNJ

SSH

Logical

AND, SCL, LMP, B0001
@QR, SST, LAD, BO111

@RX, SCM, HAD, BBC, B0110
FILL

CLR

COM, NOT

IMP, B0010

EXT

INF

B0000

B0011

B0100

B0101

B1000

B1001

B1010

B1011

B1100

Logical (cont'd)

B1101
B1110
B1111

Bit Manipulation

SB
CLB
CHB
INB
PGS
NEG
CHS
INS
STB

Literal

LIT
SLIT

Fetch and Store

FMS
FML
FBML
FCML
FLS
SSL
SLP
SSM
FAS
DLM
LML
DRM
LMR
FRS
SSR

LIST OF INSTRUCTIONS

Indirect Addressing Jump (cont'd)
AMA JX__AI
FMA JX__AS
FLA JX__S0@

JX__RL
JX__SS
Stack Manipulation JCB
JGR
RTS JGA
DUP JLS
DUPD JLA
TRIP JEQ
QUAD JZE
REV JES
REVD JBT
CYCU JSI
CYCD JUMP
STEP RET
RETI

Index Control
X STQP
XA

NOQP
XM
ENM
XMA
XS ESP
SFCN
CCM
] 10
ump MEM
SIF (0
CCB
SJT
INT
SJSF
SPP
SJST
FLT
JTB SIP
JXEZ
JXEL FIX
ALPH
JXES LOG
JXGL
JXGS
JXLL Pseudo
JXLS
JX__RS BLOCK
JX__AQ WORD

3.1 ARITHMETIC INSTRUCTIONS

The operation of all arithmetic instructions, except FLR, is affected by the
current computational mode. The formats of operands are given below for
each mode.

Fixed-Point — Single-Precision

Bit 0 Algebraic Sign
Bits 1 - 47 Magnitude (binary point is left of bit 1)

Fixed-Point — Double-Precision

First Word:
"~ Bit 0 Algebraic Sign
Bits 1 - 47 Magnitude (binary point is to left of bit 1)

Second Word:
Bit 0 Ignored
Bits 1 - 47 Continuation of Magnitude

Floating-Point — Single-Precision

Bit 0 Algebraic Sign
Bits 1 - 12 Exponent
Bits 13 - 47 Mantissa

Floating-Point — Double-Precision

First Word:
Bits 0 Algebraic Sign
Bits 1 - 12 Exponent

Bits 13 - 47 Mantissa

Second Word:
Bit 0 Ignored

Bits 1 - 47 Continuation of Mantissa

Integer — Single-Precision

Bit 0 Algebraic
Bits 1 - 12 ZERO
Bits 13 - 47 Integer Magnitude (binary point is to right of bit 47)

Integer — Double-Precision

First Word:
Bit 0 Albegraic Sign
Bits 1 - 12 ZERO

Bits 13 - 47 Magnitude

Second Word:
Bits 0 Ignored

Bits 1 - 47 Continuation of Integer Magnitude
(binary point is to right of bit 47)

Specified-Point

Same format as floating point (see above), but the exponent ofthe result of all
computations is adjusted to agree with the exponent in the specified-point
register.

Significant-Point

Same format as for floating point (see above), except that the exponent of the
result is adjusted to agree with the exponent of the operand which contains the
larger number of leading zeros in the mantissa.

Alphameric — Single-Precision

Bits 0 - 47 Magnitude

Alphameric — Double-Precision

First Word: Second Word:

Bits 0 - 47 Magnitude Bits 0 - 47 Magnitude

NOTE: Alphameric mode ignores overflow; hence, it may be used if the
operand is in unsigned two's complement form.

Logical

Same format as for alphameric mode (see above).

NOTE: Logical mode ignores overflow; hence, it may be used if the op-
erand is in unsigned one's complement form (end-around carry is

propagated).

OPERATION. Add two operands obtained from stack, or add one operand from
stack and one from memory. Place result in stack. Make all zero re-

sults positive.

POSSIBLE CR INDICATIONS. Overflow may occur, andcanbe detected inall modes
except alphameric and logical. Underflow may occur and can be detect-
ed in integer, floating-point, specified-point, significant-point modes.

®ec0c0vccvcecsce

SUB SUBTRACT

5 1

OPERATION. Subtract operand in top of stack from stack operand beneath it, or
subtract operand in memory from operand in top of stack. Place result
in stack. Make all zero results positive.

POSSIBLE CR INDICATIONS. Overflow mayoccur, and can be detected inall modes
except alphameric and logical. Underflow may occurand can be detect-
edininteger, floating-point, specified-point, and significant-point modes.

MUL MULTIPLY

5 2

OPERATION. Multiply two operands obtained from stack, or multiply one oper-

and from stack and one from memory. Place most significant half of
result in stack and the least significant half in discard register.

Derive
sign of result algebraically from signs of operands.

POSSIBLE CR INDICATIONS. Overflow may occur, and can be detected inthe in-

teger, floating-point, specified-point, and significant-point modes. Un-

derflow may occur and can be detected in integer, floating-point, specified-
point, and significant-point modes.

®000000c0000000

DIV DivIDE

5)

OPERATION. Divide operand deeper in stack by operand at top of stack, or di-

vide operand from stack by operand from memory. Place quotientin
stack and remainder in di scard register.

Derive sign of quotient alge-
braically from signs of operands.

POSSIBLE CR INDICATIONS. Overflow may occur in all modes except alphameric

and logical. Underflow may occurininteger, floating-point, significant-
point, and specified-point modes.

e0cec0scscsso0e

FLR FLOAT REMAINDER

5 S}

OPERATION. Convert operand at top of stack or operand from memory, from
fixed-point to floating-point format. Make sign of result agree with sign
of operand deeper in stack; make exponent of result 36 lessthan exponent
of operand deeper in stack. Place result in top of stack.

POSSIBLE CR INDICATIONS. Underflow may occur in the integer, floating-point,
specified-point, or significant-point computational modes as a result of
exponent generation for the result.

SQR SQUARE ROOT

5 4

OPERATION. Compute square root of either an operand from stack or one from
memory. Place result in stack. Make sign of root equal to sign of op-
erand. Place pseudo-remainder in discard register.

POSSIBLE CR INDICATIONS. Illegal operand condition bit set by negative operand.
Overflow and underflow may be detected in the specified-point mode.

XXX RN XY

RND RoOUND

5 5

OPERATION. Add algebraically most significant bit of discard register to magni-
tude or mantissa of operand in top of stack or operand from memory, in
manner specified by current computational mode.

POSSIBLE CR INDICATIONS. Overfloworunderflow may occur in all modes except
alphameric and logical.

3.2 SHIFT INSTRUCTIONS

The computational mode affects only the SR, SL, RR, RL, SAC, and NORM
instructions; the manner in which these instructions are affected is explain-

ed below.

Alphameric and Logical Modes: The sign if shifted as magnitude
All other Modes: The sign is not shifted

The length of the operand to be shifted canbe either single or double length as
determined by the current computational mode.

Field definition can be used to shift onlythelogicalproduct of FR and operand.
The shift result is combined with the non-field bits of the operand.

For SR, SL, RR, and RL, the shift count is obtained from the top of the stack,

and the operand deeper in the stack is shifted. If the shift count is put in the
address field, it assembles as a literal preceding the shift.

SR SHIFT RIGHT

OPERATION. Shift operandin stack right inend-off manner, by amount specified
modulo 128.

POSSIBLE CR INDICATIONS. None

9000000000000

SL SHIFT LEFT

3-9

OPERATION. Shift operand in stack left in end-off manner, by amount specified
modulo 128.

POSSIBLE CR INDICATIONS. None

0000000000000

SAC SHIFT AND COUNT
NORM NORMALIZE

OPERATION. Shift operand in stack left in end-off manneruntil most significant
magnitude or mantissa bit, as specified by current computational mode,
is a ONE. Place number-of-places-shifted countinbarrel shift register.

NOTE: When no shift is required to normalize the operand, the contents
of the barrel shift register after normalization is zero. If the
operand contains no ONES, then the contents of the barrel shift
register contains 127 (octal 177) as the count.

POSSIBLE CR INDICATIONS. None

0000000000000

RR ROTATE RIGHT

4 2

OPERATION. Shift operand in stack right, and end-around by amount specified-
modulo 128.

POSSIBLE CR INDICATIONS. None

% * All mnemonics express same operator

RL

ROTATE LEFT

4 3

OPERATION.

POSSI

Shift operand in stack left, and end-around by amount specified-
modulo 128.

BLE CR INDICATIONS. None

8000000000000

JUS JusTIFy
1 i T 1 1
1 4 1 1 1 6 1
OPERATION. Shift (rotate) operand in stack right, and end-around by amount

POSSIBLE CR INDICATIONS.

equal to number of ZERO's to right of least significant ONE infield reg-
ister. Place shift count in barrel shift register.

None

0000000000000

UNJ UNJUSTIFY
1 4 T T 1 7 1
1 | N | 1
OPERATION. Shift (rotate) operand in stack left and end-around by amount equal
tothe number of ZERO's right of least significant ONE in field register.
Place shift count in the barrel shift register.
POSSIBLE CR INDICATIONS. None

3-12

SSH STREAMING SHIFT

) 1 1 1 1

4 5

1 Il L 1 Il

OPERATION. Shift operand by amount and in manner specified by contents of the
address register. These specifications are given below.

BIT(S) VALUE MEANING
11-17 Any Shift count (0 to 128) which applies to

any shift designated below:

10 ZERO Shift end-around (rotate)

10 ONE Shift end-off

9 ZERO Shift left

9 ONE Shift right

8 ZERO Shift sign bit(s)

8 ONE Do not shift sign bit(s)

7 ONE Shift top of stack (single length)

6 ONE Shift second stack word (single length)

5 ONE Shift third stack word (single length)

4 ONE Shift fourth stack word (single length)

3 ONE Shift first and second stack words
(double length)

2 ONE Shift second and third stack words
(double length)

1 ONE Shift third and fourth stack words
(double length)

0 ONE Shift field register

The list above indicates that more than one shift canbe performed witha given
address register word, and that words in the stack and/or the contents of the
field register can be shifted. If two or more separate shifts are designated,
they are performed sequentially, withthe shift designated by ahigher-numbered
address register bit always preceding a shift designated by a lower-numbered
bit. The capability of shifting either the stack or the field register allows the
character stream to be processed by two techniques. In the first technique
the stream is made to flow by animaginary stationary point of attack by shift-
ing the stack. In the second technique the point of attack is made to pass the
stream by shifting the field register. This Streaming Shift is the only D851 in-
struction which must be preceded by indexing or indirect addressing. As for
the "index" or count word, it may be any word in the system, and may be ad-
dressed in any addressing mode.

POSSIBLE CR INDICATIONS. None

3.3 LOGICAL INSTRUCTIONS

Computational modes affect logical instructions; the effect of these modes is
briefly explained as follows: (1) the length of the operand can be either single
or double lengthas determinedby the current computational mode; (2) the sign

position is included in the logical operations, only in the alphameric and log-
ical modes; (3) field definition may be used to logically affect only certain
field(s) within a word. \

AND AND
SCL SELECTIVE CLEAR *
LMP LOGICAL MULTIPLY N

BOOO| AND EXPRESSION OF BOOLEAN TRUTH TABLE

2 6

OPERATION. AND two operands from stack or AND one from memory and one
from stack. Place result in stack.

Bit of Operand in Bit of Operand in .
) Bit of
Top of Stack or Memory or in Result
Deeper in Stack Top of Stack

0 0 0

0 1 0

1 0 0

1 1 1

POSSIBLE CR INDICATIONS. None

®s0ccncvccescoe

@R OR

SST SELECTIVE SET

LAD LOGICAL ADD * %k
BOIII OR EXPRESSION OF BOOLEAN TRUTH TABLE

2 5

% * All mnemonics express the same operator

OPERATION. OR two operators from stack, or OR one from memory and one
from stack. Place result in stack.

Bit of Operand in Bit of Operand in .
) Bit of
Top of Stack or Memory or in Result
Deeper in Stack Top of Stack v

0 0 0

0 1 1

1 0 1

1 1 1

POSSIBLE CR INDICATIONS. None

0000000000000

@RX EXCLUSIVE OR

SM SELECTIVE COMPLEMENT

HAD HALF-ADD % %
BBC BIT-BY-BIT COMPARE

BOI10 EXCLUSIVE OR EXPRESSED AS BOOLEAN TRUTH TABLE

2 I

OPERATION. Make bit-by-bit comparison between two operands from stack, or
between one from stack and one from memory. PutaONE inthose bitpos-
itions whose operand bit pairs are not alike. Place result in stack.

Bit of Operand in Bit of Operand in .
. Bit of
Top of Stack or Memory or in Result
Deeper in Stack Top of Stack

0 0 0

0 1 1

1 0 1

1 1 0

POSSIBLE CR INDICATIONS. None

* % All mnemonics express the same operator

FILL SET TO FULL SCALE

3 3

OPERATION. Set all bits in operand, either from stack or memory, to ONE.
Place result in stack.

POSSIBLE CR INDICATIONS. None

XXX AR RN X4

CLR CLEAR TO ZERO

3 4

OPERATION. Clear all bits either from operand in memory, or from operand in
stack. Place result in stack.

POSSIBLE CR INDICATIONS. None

0000000000000

-

OOM COMPLEMENT * %
NOT LOGICAL INVERSION

3 2

OPERATION. Logically complement those bits in operand, which may be either
from stack or memory. Place result in stack.

POSSIBLE CR INDICATIONS. None

* % All mnemonics express same operator

|MP IMPLICATION *
BOOI0 IMPLICATION EXPRESSION OF BOOLEAN TRUTH TABLE

OPERATION. Indicate whether operanddeeperinstackimpliesoperandattopof the
stack or whether operandin stack implies operand in memory; seetruthtable.

Bit of Operand in Bit of Operand in

Top of Stack or Memory or in l]%geltsflft
Deeper in Stack Top of Stack

0 0 0

0 1 0

1 0 1

1 1 0

POSSIBLE CR INDICATIONS. None

[EXRE R RN NN NN RN

EXT EXTRACT

3 O

OPERATION. AND field register and operand in stack, or in memory. Place
result in stack.

POSSIBLE CR INDICATIONS. None

®00000000000000

INF INSERT FIELD

3 1

* *x All mnemonics express same operator

3-16

OPERATION. Using the field register as a mask, let the defined field remain
unchanged in operand in memory, or in word at top of stack, if both op-
erands are in stack. Insert non-field portion of operand deepest in stack

into corresponding portion of the word in memory or at top of the stack.

Place result in top of stack.

Example:
Field Register: 0 1 0
Word in Memory: a b c
Word in Stack: d e f
Result in Top of Stack: d b f

POSSIBLE CR INDICATIONS. None

®0c0csescccooen

BO0OO

0CTAL CODE. 11; 34

OPERATION. Assemble this macro as a STEP; follow by a CLEAR. Place re-
sult in top of stack. (Two operandsintop of stack are lost; if anaddress

is used, one operand is lost.)

POSSIBLE CR INDICATIONS. None

BOOIIl "B TRUE"

0CTAL CODE. 11

OPERATION. Assemble instruction as a STEP. Place result, which is equal to
operand deeper in stack, at top of stack.

POSSIBLE CR INDICATIONS. None

BOI10O "REVERSE IMPLICATION"

OCTAL CcoDE. 10; 22; 32

OPERATION. Assemble this macro as a REV; follow by an IMP. Place result
in top of stack.

POSSIBLE CR INDICATIONS. None

eeescssssccssccs

BOIOI "A TRUE"

0CTAL CODE. 10; 22; 11

OPERATION. Assemble this macro as a REV and STEP; result is equal to word
which was in top of stack.

POSSIBLE CR INDICATIONS. None

®e0cess00000000

BIOOO "NOR"

0CTAL CODE. 26; 34

OPERATION. Assemble this macro as an @R; follow by COM. Place result in
top of stack.

POSSIBLE CR INDICATIONS. None

®0000000000000

BIOO! "MATERIAL EQUVALENCE OPERATIONS"

O0CTAL CODE. 25; 34

OPERATION. Assemblethis macro as an @RX; follow by COM.

top of stack.

POSSIBLE CR INDICATIONS. None

®e0cecesvccvsscso

BIOIO "noOT A"

0CTAL CODE. 10; 22; 11; 34

OPERATION. Assemble this macro as: REV, STEP, and COM.

top of stack.

POSSIBLE CR INDICATIONS. None

0000000000

BIOII "REVERSE IMPLICATION NOT"

0CTAL CODE. 10; 22; 32; 34

Place result in

Place result in

OPERATION. Assemble this macro as: REV, IMP, followed by COM. Place

result in top of stack.

POSSIBLE CR INDICATIONS. None

BI1100 "B NOT"

OCTAL CODE. 11; 34

3-19

OPERATION. Assemble this macro as a STEP followedby CQM. Place comple-
ment of operand, which is deeper in stack, at top of stack. (Two oper-
ands in top of stack are lost; if an address is used, one operand is lost)

POSSIBLE CR INDICATIONS. None

e000000000c0000

BIIOI "iIMPLICATION NOT"

OCTAL CODE. 32; 34

OPERATION. Assemble this macro as IMP; follow by C@OM. Place resultintop
of stack.

POSSIBLE CR INDICATIONS. None

ses0ccsscrsesce

BIIIO "NAND"
0CTAL CODE. 26; 34

OPERATION. Assemble this macro as an AND; follow by C@M. Place result in
top of stack.

POSSIBLE CR INDICATIONS. None

ses0s0000000000

CIRRN

OCTAL CODE. 11; 27
OPERATION. Assemble this macro as a STEP; follow by a FILL. Place result

in top of stack. (Two operands in top of stack are lost; if an address is
used, one operand is lost.)

POSSIBLE CR INDICATIONS. None

3.4 BIT-MANIPULATING INSTRUCTIONS

These instructions are not affected by the current computational mode. The
bit numberis specified by the optional addressing feature. Only bits 0 through

47 may be specified. (The address will be interpreted as modulo 48 if a bit
address in excess of 47 is used.)

SB SET BIT

| 1 1 t 1 I T 1 i 1

BIT POSITION

1 1 1 1 1 1 1 1 1 1

—_——
VARIANT SYLLABLE

OPERATION. Set bit in stack operand, as specified by addressing, to ONE.

POSSIBLE CR INDICATIONS. None

CLB CLEAR BIT

1 ¥ 1 1 1 1 T ¥ 1 1

BIT POSITION

1 1 L 1 1 A 1 1 1 I

—_—
VARIANT SYLLABLE

OPERATION. Clear bit in stack operand, as specified by addressing, to ZERO.

POSSIBLE CR INDICATIONS. None

CHB

COMPLEMENT BIT

1 |

)
BIT POSITI

|

1

ON

1

—_—

VARIANT SYLLABLE

OPERATION. Complement bit, as specified by addressing, in stack operand.

POSSIBLE CR INDICATIONS. None

080000000000 000

INB INSERT BIT

| 1 1 1 I I I 1 1 1

i 7 BIT POSITION

1 1 1 1 1 1 1 1 1 1

—_——
VARIANT SYLLABLE

OPERATION. Insertdesignated bit from operandintop of stack into operand deep-
er in stack and place result in top of stack.

POSSIBLE CR INDICATIONS. None

e900000COCOOIOOISS

PAS SET POSITIVE

VARIANT SYLLABLE

OPERATION. Make specified operand positive.

POSSIBLE CR INDICATIONS. None

NEG SET NEGATIVE

~
VARIANT SYLLABLE

OPERATION. Make specified operand negative.

POSSIBLE CR INDICATIONS. None

CHS CHANGE SIGN

VARIANT SYLLABLE

OPERATION. Complement sign of operand.

POSSIBLE CR INDICATIONS. None

INS INSERT SIGN

VARIANT SYLLABLE
OPERATION. Insert sign of operand at top of stack into sign of operand beneath,

or insert sign from operand in memory into stack operand. Place re-
sult in top of stack.

POSSIBLE CR INDICATIONS. None

L Y Y Y Y YY)

STB SET (OR CLEAR) TAG BIT(s)

6 1 O 4

| 1 1 1 1 1 1 1 1 1 1 1 1 L 1

—_—
VARIANT SYLLABLE

3-23

OPERATION. Set up tag bits of top of stack in manner specified by variant syl-
lable. Do not change any other bits in word.

The assembly program address-field coding relating to variant specif-
ication is shown below. Specification of the values of the three tag bits
are as follows: (1) use three-digit positions (analogous to the three tag
bits), (2) in each position, use the following convention:

X - Do not change the bit value
0 - Make the bit = 0
1 - Make the bit = 1

Example: Xo1l
LL: 1 Make the third tag bit = 1
0 Make the second tag bit = 0
X Do not change first tag bit

In addition, mnemonics may be used for variant specification, as indicated in
the chart below.

Variant Specification Variant Syllable Variant Syllable
Mnemonics Value Meaning

CLEAR 70 Clear all tag bits to "0"
(000)

FILL 77 Set all tag bits to ""1"
(111)

USED 44 Set third tag bit to ''1"
(XX1)

UNUSED 40 Set third tag bit to "0"
(XX0)

NQP 30 Set first and second bits
to ''0" (00X)

INT 31 Set first tag bit to "'0'";

Set second tag bit to ''1"";
Tag bit value = (01X)
(Done to cause interrupt)

JUMP 32 Set first tag bit to "'1'";
Set second tag bit to "'0'";
Tag-bit value = (10X)
(Done to cause jump)

EMPTY 33 Set first tag bit to ''1'";
Set second tag bit to "'1'';
Tag bit value = (11X)

POSSIBLE CR INDICATIONS. None

3.5 LITERAL INSTRUCTIONS

Literal instructions permit the use of adataword (or syllable) to be taken from
the program string. In addition to the two specific literal instructions, FAS
(Fetch from AR to Stack), with absolute addressing specified, may be used to
generate an 18 bit literal.

Literal instructions are not affected by the current computational mode.

Any of the following literal expressions may assemble as either LIT, SLIT, or
FAS, depending upon the length of the literal specified. The SLIT is used by
the assembler whenever possible. ZERO s are inserted to the left of the field
specified by SLIT or FAS when entered in the top of the stack.

NOTE: The type of literal to be used may be indicated by the following
mnemonics:

LIT Decimal literal

LHQL Holerith literal

LOCT Octal literal

LVFD Variable field-defined number bits, format/field-defined

LXR Index register expressed as a literal

LBIN Binary literal

LITD Decimal literal, double-precision

LIT ENTER LITERAL WORD IN STACK

o] 47

1 1 1 1

]
3 5 " 8- SYLLABLE LITERAL
A

1 1 1 1

OPERATION. Enter eight program syllables that follow in top of stack asaword.

POSSIBLE CR INDICATIONS. None

e00000000000000

SLIT ENTER SHORT LITERAL IN STACK

42 a7

- SYLLABLE
3 6 CITERAL

3-25

3-26

OPERATION. Enter program syllable that follows into the six least significant
bits of the cleared top of stack.

POSSIBLE CR INDICATIONS. None

se0000000000000

3.6 FETCH AND STORE INSTRUCTIONS

These instructions are not affected by the current computational mode; the
number of words fetched is a function of the fetch instruction.

FMS FETCH FROM MEMORY TO STACK

1 1 1 1 1 I 1 1 L |{
2 2 " 0,2,4,0R 6 0 ADDRESS
1 L |

1 1 1 1 1 'Y 1

—_——
VARIANT SYLLABLE

OPERATION. Fetch from memoryto stack. Push contents of stack down tomake
room for new word.

POSSIBLE CR INDICATIONS. Incorrect parity bit assignment will be detected and
may cause interrupt, *

6000000000000

PML FETCH FROM MEMORY TO LDB

Ll T T 13 T T L] v 1

T
2 2 0,2,4 OR6] ADDRESS
1

1 1 1 1 1 1 1 1 1

|\ J
—_

VARIANT SYLLABLE

OPERATION. Initiate fetch of single word from Memory Module to LLDB location
designated by current contents of LDB pointer. Retain memory address

% Interrupt system explainedin''D851 Modular Data Processor''; pp 3-23t03-31

and single word fetch indication (two most significant bits = 00) in LDB
location until replaced by word from memory. Increment LDB pointer
by one.

POSSIBLE CR INDICATIONS. Incorrect parity will be detected as in FMS.

0000000000000

FBML FETCH BLOCK FROM MEMORY TO LDB

! 1 1 1 1
0,2,4 OR6 2
| 1 1] 1

A J
——

VARIANT SYLLABLE

2 2

ADDRESS

OPERATION. Initiate transfer of (N) words from Memory Module to LDB; make
(N) the six least significant bits of word in top of stack. Transfer block
to LDB beginning at address specified by current setting of LDB pointer.
Set twomost significant bits of LLDB address equal to 01; set bits 24 - 29
equal to the six least significant bits of the top of the stack and the 18
least significant bits equal to the memory address. Continue until first
word of block from memory reaches LDB and overwrites contents. In-
crement LLDB pointer by (N).

POSSIBLE CR INDICATIONS. Incorrect parity will be detected as in FMS.

FOML FETCH CHARACTER STREAM TO LDB

- 1 1 1 T l

0,2,4 OR 6
1 L

2 2

T

1

ADDRESS

.

—

VARIANT SYLLABLE

OPERATION. Initiate transfer of (N) characters of size (M), beginning at char-
acter(P): (N), (M) and (P) are specified by the 18 least significant bits
of the top of the stack. Transfer this information to bits 12 - 29 and set
the two most significant bits to 10 of the addressin LDB currently indi-
cated by LLDB pointer.

3-27

(This information and the empty tag-bit flag are overwritten when the
characters begin streaming in from memory, — characters may over-
lap words.)

Increase the local data pointer by (N).

POSSIBLE CR INDICATIONS. Incorrect parity detected as in FMS.

XX XXX R NN X X1

FLS FETCH FROM LDB TO STACK

1 2

VARIANT SYLLABLE

OPERATION. When tag bits indicate that the word in LDB has been fetched from
memory, fetch word to stack.

If tag bits indicate that the transfer from the Memory Module is not com-
pleted, wait for word to arrive from memory and proceed as above.

POSSIBLE CR INDICATIONS. Incorrect parity detected and condition register bit
set, — may cause interrupt.*

90000000000 0000

SSL STORE FROM STACK TO LDB

1 3

VARIANT SYLLABLE

OPERATION. Store word at top of stack in address of LLDB as specified by var-
iant syllable.

POSSIBLE CR INDICATIONS. None

* Interrupt system explained in ''D851 Modular Data Processor'; pp 3-23t03-31

3-28

SLP SET LDB POINTER

' 3 oo 7 ! " LOCATION_IN
LOCAL DATA BUFFER
N ,

—_——
VARIANT SYLLABLE

| 1 1 1 i

OPERATION. Store variant syllable in LDB pointer, which now points to L.DB
location involved in next FML, FBML or FCML.

POSSIBLE CR INDICATIONS. None

0000000000000

SSM STORE FROM STACK TO MEMORY

T T T T T T T T T T
2 2 0,2,4,0R 6 4 ADDRESS
1 1 1 1 1 i I8 1] 1
N _J
Y
VARIANT SYLLABLE
OPERATION. Store top of stack in memory address specified.
POSSIBLE CR INDICATIONS. None
FAS FETCH ABSOLUTE ADDRESS FROM AR TO STACK
1 1 I | 1 T 1 T T 1
2 2 0,2,4 OR 6 7 ADDRESS
1 I8 1 L 1 1 1 1 1 1
N J
——

VARIANT SYLLABLE

OPERATION. Clear word at top of stack and place contents of address register
in the 18 least significant bits. Clear ASR.

NOTE: When used with absolute address, FAS becomes an 18-
bit indexible literal. FAS is generated by the assembly
program in response to coding of a literal when the val-
ue of the literal is greater than(26 - 1) but lessthan 218.

POSSIBLE CR INDICATIONS. None

3-29

3-30

DM

DUMP LDB INTO MEMORY

2

2

1,3,50R 7
1 1

O

ADDRESS

OPERATION.
at address specified in insiruction address field,

Dump words from local data buffer into Memory Module beginning

— the last address of

local data buffer to be transferred isintop of stack, the first word isal-
ways location zero.

POSSIBLE CR INDICATIONS. Parity errors can be discovered on transfers to the

memory. ¥

LML LOAD DATA BLOCK FROM MEMORY INTO LDB

T i 1 l | 1 T 1

T T
2 2 1,3,50R 7 i
|

A1] i | 1 1 | | 1

ADDRESS

OPERATION. Initiate transfer of a block of (N) words from memory at address
specified to local data buffer, beginning at address zero. (N) is specifi-
ed by the six least significant bits of the top of the stack.

POSSIBLE CR INDICATIONS. Incorrect parity may be detected and interrupt may
occur.

0000000000000 00

DRM DUMP REGISTERS IN MEMORY
T 1 i I 1 1 1 1 |
2 2 1,3,50R 7 ? ADDRESS
1 1 | i 1 1 1 1 1 1
OPERATION. Dump registers intomemory beginning at address specified inthe

instruction address field; the address of the last register to be dumped
isin the top of the stack; the first register transferred is register num-

ber zero.

POSSIBLE CR INDICATIONS.

None

* Interrupt system explainedin ''D851 Modular Data Processor'; pp 3-23t03-31

LMR LOAD MEMORY INTO REGISTERS

L 1 | 1 I T I I | |

2 2 1,3,5 OR 7 3 ADDRESS
1 1

L 1 1

OPERATION. Initiate loading of registers from memory beginning at address
specified and beginning at address zero. (N) is specified by the six least
significant bits of the top of the stack.

POSSIBLE CR INDICATIONS. Incorrect parity may be detected and interrupt may

occur.

FRS FETCH REGISTER TO STACK

S} 1 O 2

VARIANT SYLLABLE

OPERATION. Fetch contents of register designated, mnemonically or numeric-
cally in address field, to top of stack. *

POSSIBLE CR INDICATIONS. None

00000000 cs000 0

SSR STORE FROM STACK TO REGISTER

6 1 O 3

VARIANT SYLLABLE

OPERATION. Store contents of top word of stack to register designated mnem-
onically or numerically in address field.

POSSIBLE CR INDICATIONS. If the designated register is protectable in normal
mode; if the SSR instructionis executed in normal mode; and if the mask
register bit protecting the designated register is set; the changing of the
register is inhibited, and interrupt occurs.

* Interrupt system explainedin''D851 Modular Data Processor'; pp 3-23t03-31

3-32

3.7 INDIRECT ADDRESSING INSTRUCTIONS

The current computational mode has no effect on any of these instructions,
since the arithmetic unit is not used to perform address arithmetic.

AMA ADD MEMORY AND AR

T T 1 | Bl 1 ¥ 1 1)

2 2 0,2,4,0R 6 6

i 1 1 i | 1 1 1

ADDRESS

\ J
—_—

VARIANT SYLLABLE

OPERATION. Add contents of the 18 least significant bits of the memory locat-
ions specified and contents of address register Place sum modulo 218
in address register.

POSSIBLE CR INDICATIONS. None

000000000 COOOIOS

FMA FETCH FROM MEMORY TO AR

T 1 ¥ Ll Ll T 1 1 1 1

2 2 0,2,4,0R 6 5
L 1

L 1 1

ADDRESS

AN _J
—_——

VARIANT SYLLABLE

OPERATION. Replace address register with the 18 least significant bits of mem-
ory location specified.

POSSIBLE CR INDICATIONS. Memory parity failure will be detected and condition
register bit will be set, — may cause interrupt.*

9000000000000 00

FLA FETCH LDB WORD TO AR

2 3

L 1 1 1 1 1 i 1 i 1

VARIANT SYLLABLE

* Interrupt system explained in''D851 Modular Data Processor'’; pp 3-23t03-31

CPERATION. Replace address register with the 18 least significant bits of locat-
ion specified in the LDB.

POSSIBLE CR INDICATIONS. Memory parity failure will be detected and condition
register bit will be set, — may cause interrupt.

®ees00000000000

3.8 STACK-MANIPULATING INSTRUCTIONS

These instructions are not affected by the current computational mode. For
programming ease, two instructions are included for double-precision oper-
ands: DUPD and REVD.

The stack consists of three logically contiguous yet discrete elements, i.e.,

Operand Element
Extension Element

Memory Element

The operand element consists of the four words at the top of the stack, — the
maximum number of words which are required for any instruction.

The extension element consists of the 16 words of stack, immediately beneath
the operand element, and deeper in the stack. Words "pushed down'' from the
operand element are parity checked as they enter this element. Although the
words in this element cannot be specified in the instructions listed below, the
following instructions cause words to be "pushed down'' into this element; i.e.,
DUP, DUPD, TRIP, QUAD, and RTS with certain variants. A word will pass
from the extension element to the operand and the extension element of the
stack are located in the Computer Module to enable the most rapid accessing.
Words which are "pushed down'' through the extension element are passed on
to the memory element automatically.

The memory element of the stack is of program-defined length. The memory
stack element length may most easily be determined by:
Settingthe memory bounds register to define the upper address limit.

Setting the tag bits to interrupt when the lower limit address operand
reaches the top of the stack.

Setting the stack pointer to the address which contains the word tagged
for interrupt.

3-34

The Stack Pointer(SP)is a register containing the memory address of the next
word to be fetched to the extension element or to receive a word from the ex-
tension element. As words are received from the extension element, the con-
tents of this SP are counted up, and counted down when words pass from the
memory to the extension element. If thememoryelement of the stack has been
set up as recommended above, the following error conditions will be detected:

Memory Stack Overflow:

The number of words transferred to memory has exceeded the number
allowed for in programmed specification, — the ""exceed memory bounds"
condition will activate an interrupt.

Memory Stack Underflow:

The operand leaving the top of the stack was designated initially to be
the bottom of the stack, — tag-bit interrupt will be activated.

9060000000000 000

RTS REARRANGE TOP OF STACK

VARIANT SYLLABLE

OPERATION. Rearrange contents of three top stack words as specified by var-
iant syllable. Pushunspecified operands deeperin stack and beneath the
three which may be specified: stack operands, from top down, are

mnemonically denoted by alphabetics: A, B, C, D.

Variant specifications are as follows:

First mnemonic character:

Indicates which of the former stack operands will be at top of stack

Second mnemonic character::

Indicates which of former stack operands will be next positiondeep-
er in stack

Third mnemonic character:

Indicates which of former stack operands will be second position
deeper in stack

For the full repertoire of RTS variant possibilities, refer to subsection
2.9, Stack Manipulation.

POSSIBLE CR INDICATIONS. If one of the topthree wordsin the stack is tagged to
cause a jump or an interrupt; if an RTS instruction is executed which
would move a word from below the tagged word to a position above it;
and if the mask register is set to recognize tag-bit operations, — the
tagged word has the same effect as if it were used as an operand, — and

the RTS operation is inhibited.

DUP DUPLICATE OPERAND IN STACK

OPERATION. Set top two positions of stack equal to operand specified, — may

VARIANT SYLLABLE

be top of stack or word from memory.

POSSIBLE CR INDICATIONS. Same as RTS.

DUPD DUPLICATE DOUBLE LENGTH

OCTAL CODE. 10; 05; 10; 04

OPERATION. Duplicate double-precision format operands in top of stack. Push
operands located deeper in stack further down.

eeeos0s00000000

POSSIBLE CR INDICATIONS. Same as RTS.

s000c0000000000

TRIP TRIPLICATE OPERAND IN STACK

-~
VARIANT SYLLABLE

3-35

OPERATION. Set top three positions of stack equal to operand specified, — may
be top of stack or word from memory.

POSSIBLE CR INDICATIONS. Same as RTS.

eeccescsvccscoce

QUAD QUADRUPLICATE STACK OPERAND

0CTAL CODE. 10; 00; 10; O1

OPERATION. Push three operands next to top of stack down three places. Make
top four positions of stack equal to top of stack, or fetchoperand from
memory and quadruplicate.

POSSIBLE CR INDICATIONS. Same as RTS.

REV REVERSE OPERANDS IN STACK

VARIANT SYLLABLE

OPERATION. Reverse order of two words in top of stack, or fetch word from -
memory and reverse order in stack.

POSSIBLE CR INDICATIONS. Same as RTS,

REVD DOUBLE-LENGTH REVERSE

—~
VARIANT SYLLABLE

3-36

OPERATION.

POSSIBLE CR INDICATIONS. Same as RTS.

®00000000000000

CYCU CYCLE STACK UP

~ "
VARIANT SYLLABLE

OPERATION. Cycle four words in top of stack up one.

at top of stack down beneath other three,

POSSIBLE CR INDICATIONS. Same as RTS.

CYCD CYCLE STACK DOWN

-~
VARIANT SYLLABLE

OPERATION. Push three operands at top of stack down one position.

Reverse two double-precision operands in stack.

Push operand formerly.

Place op-

erand from fourth deepest position in top of stack.

POSSIBLE CR INDICATIONS. Same as RTS.

©00000000000000

STEP STEP STACK UP

OPERATION. Step entire stack and stack extension up one word, — operandpre-
viously at top is lost.

POSSIBLE CR INDICATIONS. Incorrect parity may be detected as the word leaves
the stack extension and enters the position fourth from the top, — an in-
terrupt is possible. ¥

If the word originally at the top of the stack is tagged to cause an inter-
rupt or a jump, and if the mask registeris set to recognize tag bits, the
tagged word has the same effect as ifit were used as an operand and
the STEP is inhibited.

0008000000000

3.9 INDEX INSTRUCTIONS

The index instructions are not affected by the current computational mode.
The address field specifies which index register, relative to the BXR, will be
used. For index modification instructions, see pages 3-45, 3-46.

X INDEX

VARIANT SYLLABLE

OPERATION. Addcontentsfield of designatedindex to address of next instruction.

POSSIBLE CR INDICATIONS. None

XA INDEX AUGMENTED

3 VARIANT SYLLABLES

* Interrupt system explained in ''D851 Modular Data Processor'’; pp 3-23t03-31

OPERATION. Addcontents field of designatedindexto address of next instruction.

POSSIBLE CR INDICATIONS. None

eesssescscscscoe

M INDEX AND MODIFY

O 5

VARIANT SYLLABLE

OPERATION. Addcontents field of designatedindexto address of next instruction.
Add self-contained increment to the content.

POSSIBLE CR INDICATIONS. None

®e0cce0000000000

XMA INDEX AUGMENTED AND MODIFIED

3VARIANT SYLLABLES

OPERATION. Add contents field of designatedindexto address of next instruction.
Add self-contained increment to the content.

POSSIBLE CR INDICATIONS. None

XS INDEX BY TOP OF STACK

5 ’

3-39

3-40

OPERATION. Specifytop of stack to be used in modifying addressed fields of all
following instructions requiring indexing.

POSSIBLE CR INDICATIONS. None

0000000000000

3.10 JUMP INSTRUCTIONS

The jump class instructions which are affected by the current computational
mode are: JGR, JGA, JLS, JLA, JEQ, JZE, and JFS. In each instruction,

the comparisoninvolves only those bits in the operands which are specified by
the computational mode. Operands may be single or double precision,or field-

defined.

If optional addressing is used with any of the jump instructionsexcept JTB, SJF,
SJSF, and SJST, they are assembled as a macro using the setup jump with the
address, followed by the actual jump instruction. The address used with JBT
indicates the bit to be tested in the top word of the stack.

SJF SET UP JUMP IF FALSE

2 O 0oR4 ADDRESS

| 1 1 1 | 1 1 1 I 1

A J
——

VARIANT SYLLABLE

OPERATION. Place address of destinationto which program control may betrans-
ferred; the syllable of destination; and condition false indicator in jump

control register (JCR).

NOTE: Program control continues in normal sequence until jump oper-
ator encountered.

POSSIBLE CR INDICATIONS. None

SJT

SET UP JUMP IF TRUE

T T
{0R5

2

1

T

ADDRESS

—_——
VARIANT SYLLABLE

OPERATION. Placeaddress of destinationtowhichprogram control maybetrans-
ferred; syllable of destination; and condition true indicator in jump con-
trol register.

NOTE: Program control continues in normal sequence until jump oper-

ator encountered.

POSSIBLE CR INDICATIONS. None

0000000000000 00

SJSF SET uP JUMP TO SUBROUTINE I|F FALSE

1 T | I T | 1 | U I

ADDRESS

2 O

20R6

1

1

1

N\

BV

VARIANT SYLLABLE
OPERATION. Place address of destinationto which program control may be trans-
ferred; the syllable of destination; and condition false indicator in jump

control register. Place amount by which base index register (BXR) may
be incremented in JCR.

POSSIBLE CR INDICATIONS. None

sece00000000000e

SJST SET UP JUMP TO SUBROUTINE IF TRUE

T ! L 1 1 I 1 1 1
2 O 30R 7 ADDRESS
1 1 1 1 1 1 1 1 1
AN J
—_
VARIANT SYLLABLE
OPERATION. Place address of destinationtowhichprogram control may be trans-

ferred; syllable of destination; and condition true indicator in jump con-

3-41

trol register. Place the amount that the base index register is to be in-

cremented in the JCR.

POSSIBLE CR INDICATIONS. None

JTB JuMP ON TAG BIT(s)

ﬁ6' | l1 O 5I 1 i 1 1 1

VARIANT SYLLABLE

OPERATION. Test tag bits of word at top of stack with configuration of test bits
specified by variant syllable. If resultof this test agrees with true/false
designation of last setup-jump instruction, jump; if not,continue in norm-
al program sequence. Variant specifications accepted by assembly pro-

gram agree with those for STB.

POSSIBLE CR INDICATIONS. May be jump-trapped or subroutine jump-trapped.

e000c000000000e

JXEZ JUMP ON RESULT OF INDEX EQUAL TO ZERO TEST

I6I 1 l2l 1 | l*l

VARIANT SYLLABLE

OPERATION. If indexregisterdesignated inaddress field orindex register most
recently used in program has content field equal to zero, test result is
true. If test result agrees with true/false indication of last setup-jump,
jump to address setup. The''JXEZ' may be followed, in the operation
field by any of the allowed two-character mnemonics for index modifica-

tion; modification when called for, follows test.

POSSIBLE CR INDICATIONS. May be jumped-trapped or subroutine jump-trapped.

* Refer to pages 3-45, 3-46.

JXEL

JUMP ON RESULT OF INDEX EQUAL TO LIMIT TEST

6 2 2 *

VARIANT SYLLABLE

OPERATION. If index register designated inaddress field orindex register most

recently used in program has content field equal to its limit field, test
result is true. If test result agrees with true/falseindication of the last
setup-jump, jump to address setup. The "JXEL'" may be followed, in
the operation field by any of the allowed two-character mnemonics for
index modification; modification when called for, follows test.

POSSIBLE CR INDICATIONS. May be jumped-trapped or subroutine jump-trapped.

JXES

JUMP ON RESULT OF INDEX EQUAL TO STACK TEST

T 1 1 I I -1 1 1 t

6 2 3 *

1 | 1 1 1 i 1 1 L

. J
VARIANT SYLLABLE

OPERATION. If indexregister designated inaddress field or index register most

recently used in the program has a content field equal to the least signi-

ficant 18 bits of top of stack (bits 30 - 47), test result is true. If test

result agrees with true/false indication of last setup-jump, jump to ad-

dress setup. The "JXES'" may be followed in the operation field by any
of the allowed two-character mnemonics forindex modification; modifi-

cation when called for, follows test.

POSSIBLE CR INDICATIONS. May be jumped-trapped or subroutine jump-trapped.

JXGL

®000s0000000000

JUMP ON RESULT OF INDEX GREATER THAN LIMIT TEST

T T I I ' 1 I T i

6 2 4 *

1 1 1 ul 1 1

VARIANT SYLLABLE

* Refer to pages 3-45, 3-46.

OPERATION. If index register designated in address field orindex register last

used in the program has a content field greater than its limit field, test
result is true. If test result agrees with the true/falseindication of last

setup-jump, jump to address setup. The''JXGL" may be followed in the
operation field by any of the allowed two-character mnemonics for index
modification, modification when called for, follows test.

POSSIBLE CR INDICATIONS. May be jumped-trapped or subroutine jump-trapped.

0000000000000

JXGS JUMP ON RESULT OF INDEX GREATER THAN STACK TEST

I ! T T 1 1 T T 1 L

6

1

1

1

2

VARIANT SYLLABLE

OPERATION. If index register designated in address field orindex register last
used in the program has a content field greater than the least significant
18 bits of thetop of the stack(bits 30 - 47), the test result is true. Ifthe
test result agrees with true/false indication of last setup-jump, jump to
address setup. The '"JXGS'" may be followed in the operation field by
any of the allowed two-character mnemonics for index modification; mod-
ification when called for, follows test.

POSSIBLE CR INDICATIONS. May be jumped-trapped or subroutine jump-trapped.

0000000000000

JXLL JuUMP ON RESULT OF INDEX LESS THAN LIMIT TEST

6 2 6 *

VARIANT SYLLABLE

OPERATION. Ifindexregister designated in address field or index register most
recently used in program has content field less than its limit field, test
result is true. If test result agrees with true/false indication of the last
setup-jump, jump to address setup. The "JXLL' may be followed in the

* Refer to pages 3-45, 3-46.

operation field by any of the allowed two-character mnemonics for index
modification; modification when called for, follows test.

POSSIBLE CR INDICATIONS. May be jumped-trapped or subroutine jump-trapped.

®000ccs000000000

JXLS JUMP ON RESULT OF INDEX LESS THAN STACK TEST

6 2 7 %

VARIANT SYLLABLE

OPERATION. If index register designatedinaddressfield or index register most
recently used in program has content field less than the least significant
18 bits of top of stack (bits 30 - 47), test result is true. If test result
agrees with true/false indication of last setup-jump, jump to address
setup. The "JXLS'" may be followed in the operation field by any of the
allowed two-character mnemonics for index modification; modification

when called for, follows test.

POSSIBLE CR INDICATIONS. May be jumped-trapped or subroutine jump-trapped.

0000000000000 00

Any combination of index test-jump and index modification instructions is pos-
sible. That is to say, any one of the 7 index test-jump instructions may be
combined with any of the 7 index modification instructions, which follow, to
provide 7 possible modifications for each index test-jump instruction, or a
total of 49 possible permutations. To determine the complete value of the var-
iant syllable synthesized in such combinations, replace the * indicated in the
variant syllable block of the individual instruction by the value shown on the

next page.

If only modification is desired, then the first digit of the variant syllable is
zero, i,e.:

Instruction Variant Syllable
XRS 01
XAQ 02

Instruction Variant Syllable

XAl 03
XAS 04
XSQ 05
XRL 06
XSS 07

If no modification is desired, then the second digit of the variant syllable is
zero, i.e.:

Instruction Variant Syllable
JXEZ 10
JXEL 20
JXES 30
JXGL 40
JXGS 50
JXLL 60
JXLS 70

For other combinations see below.

Composite Variant Composite Variant Composite Variant

Instruction Value. Instruction Value Instruction Value

JXESAI 3 3 JXGSRL 5 6

JXEZRS 1 1 JXESAS 3 4 JXGSSS 5 7
JXEZAQ 1 2 JXESSQ 3 5
JXEZAI 1 3 JXESRL 3 6

JXEZAS 1 4 JXESSS 3 7 JXLLRS 6 1

JXEZSQ 1 5 JXLLAQ 6 2

JXEZRL 1 6 JXLLAI 6 3

JXEZSS 1 7 JXGLRS 4 1 JXLLAS 6 4

JXGLAQ 4 2 JXLLS® 6 5

JXGLAI 4 3 JXLLRL 6 6

JXELRS 2 1 JXGLAS 4 4 JXLLSS 6 7
JXELAQ® 2 2 JXGLSQ 4 5
JXELAI 2 3 JXGLRL 4 6

JXELAS 2 4 JXGLSS 4 7 JXLSRS 7 1

JXELSQ 2 5 JXLSAQ 7T 2

JXELRL 2 6 JXI.SAI 7 3

JXELSS 2 1 JX GSRS 5 1 JXLSAS 7T 4

JX GSAQ 5 2 JXLSSO® 7 5

JXGSAI 5 3 JXLSRL 7 6

JXESRS 3 1 JXGSAS 5 4 JXLSSS 7 7
JXESAQ 3 2 JXGSS® 5 5

XRS

REPLACE INDEX BY TOP OF STACK

JX__RS REPLACE INDEX BY TOP OF STACK AFTER TESTING
T 1 T T 1 T 1 ! ! 1
S 2 * 1
i 1 1 1 i A 1 1 1 1
N _J
——
VARIANT SYLL ABLE
OPERATION. Replace contents field of index register designated inaddress field

POSSIBLE CR INDICATIONS.

XAD
JX_ _

orindex register most recentlyused in program by the least significant

18 bits of top of stack (bits 30 - 47).

AD

ADD ONE TO INDEX
ADD ONE TO INDEX AFTER TESTING

None

6

T

2

* 2

VARIANT SYLLABLE

OPERATION. Add one to contents-field of index register designated in address
field or index register most recently used in the program.

POSSIBLE CR INDICATIONS. None

XAl ADD INCREMENT TO INDEX
* %
JX__ Al ADD INCREMENT TO INDEX AFTER TESTING

S} 2 * 3

1 1 1 1 1 1 1 1 1 i

"
VARIANT SYLLABLE

OPERATION. Addself-contained signed increment to contents-field of index reg-
ister designated in address field or index register most recently used
in the program.

POSSIBLE CR INDICATIONS. None

* Refer to pages 3-45, 3-46. % * All mnemonics express same operator.

XAS

ADD STACK TO

INDEX *

JX__AS ADD STACK TO INDEX AFTER TESTING
T T T T T T T T T T
S 2 * 4
1 1 1 1 1 1 1 1 I 1
&
N
VARIANT SYLLABLE
OPERATION. Add the least significant 18 bits of top of stack (bits 30 - 47) to con-
tents field ofindex register designated inaddress field or index register
most recently used in the program.
POSSIBLE CR INDICATIONS. None
XS@ SUBTRACT ONE FROM INDEX
JX__SD SUBTRACT ONE FROM INDEX AFTER TESTING
T T T T T T T ¥ T T
6 2 * 5
1 1 1 i 1 1 1 1 L 1
.
———
VARIANT SYLLABLE
OPERATION. Subtract one from contents-field of index register designated in
address field or index register most recently used in the program.
POSSIBLE CR INDICATIONS. None
XRL REFILL INDEX CONTENT FROM LIMIT FIELD
JX__RL REFILL INDEX CONTENT FROM LIMIT FIELD AFTER TESTING
T) T 1 | i I 1 1 T
6 2 * 6
1 1 1 1 1 i 1 : 1 1
.
——
VARIANT SYLLABLE
OPERATION. Replace contents-fieldof indexregister designatedinaddress field
or index register most recently used in program by its limit field.
POSSIBLE CR INDICATIONS. None

* Refer to pages 3-45, 3-46. * * All mnemonics express same operator.

XSS SUBTRACT TOP OF STACK FROM INDEX x %
JX__SS SUBTRACT TOP OF STACK FROM INDEX AFTER TESTING

6 2 * ’

1 1 1 1 1 1 1 1 1 1

VARIANT SYLLABLE

OPERATION. Subtract the least significant 18 bits of top of stack (bits 30 - 47)
from index register designated in address field or index register most
recently used in program.

POSSIBLE CR INDICATIONS. None

XXX NN NN RN N]

JCB JUMP ON STATE OF CONDITION BIT

S} 3

i 1 1
" CONDITION BITS
Il 1 1]] 1
\ J
——
VARIANT SYLLABLE

OPERATION. If condition register bit designated by contents of address field is
a ONE, test result is true. If bit is ONE, if mask register is not set to
cause interrupt on this condition, or, if condition is overflow or under-
flow, clear condition bit. If condition is overflow or underflow and if,
JCB immediately follows instructions causing overflow or underflow,
inhibit interrupt even if called for by mask register. If true/false re-
sult of test agrees with true/false designation of last setup-jump, jump.

POSSIBLE CR INDICATIONS. May result in the clearing of the designated bit. May
be jump-trapped or subroutine jump-trapped.

JGR JuMP ON RESULT OF TEST FOR GREATER

S} 4

* Refer to pages 3-45, 3-46. * * All mnemonics express same operator.

3-49

3-50

OPERATION. If either operand in stack is greater than operand in memory, or
operand deeper in stack is greater than operand at top of stack, test re-
sult is true; comparison is made ignoring sign bits. If true/false result
of test agrees with true/false designation of last setup-jump, jump.

POSSIBLE CR INDICATIONS. May be jump-trapped or subroutine jump-trapped.

®e0ccececcsecse

JGA JUMP ON RESULT OF TEST FOR ABSOLUTE-VALUE GREATER

1 Ll T 1 I

6 5

1 1] 1 L

OPERATION. If either operand in stack is greater than operand in memory, or
operand deeper in stack is greater than operand at top of stack, test re-
sult is true; comparison is made ignoring sign bits. Iftrue/false result
of test agrees with true/false designation of last setup-jump, jump.

POSSIBLE CR INDICATIONS. May be jump-trapped or subroutine jump-trapped.

00000 0000000000

JLS JUMP ON RESULT OF TEST FOR LESS

1 T ! Ll 1

S} S}

1 1 1 1 |

OPERATION. If either operand in stack is smaller than operand in memory, or
operand deeper in stack is smaller than operand at top of stack, test re-
sult is true. If true/false result of test agrees with true/false designa-
tion of last setup-jump, jump.

POSSIBLE CR INDICATIONS. May be jump-trapped or subroutine jump-trapped.

90000000 0OOCOCGIOIOSS

JLA JUMP ON RESULT OF TEST FOR ABSOLUTE-VALUE LESS

6 I

OPERATION. If either operand in stack is smaller than operand in memory, or
operand deeper in stack is smaller than operand at top of stack, test re-
sult is true; comparison is made ignoring sign bits. If true/false result
of test agrees with true/false designation of last setup-jump, jump.

POSSIBLE CR INDICATIONS. May be jump-trapped or subroutine jump-trapped.

JEQ JUMP ON RESULT OF TEST FOR EQUALITY

I O

OPERATION. If either operand in stack is equal to operand in memory, or two
top operandsin stack are equal, test resultistrue. If true/false result
of test agrees with true/false designation of last setup-jump, jump.

POSSIBLE CR INDICATIONS. May be jump-trapped or subroutine jump-trapped.

JZE JUMP ON RESULT OF TEST FOR ZERO

7 1

OPERATION. If mantissa or magnitude bits, as defined by current computation-
al mode, are all ZERO's for either operand in top of stack or designat-
ed operand in memory, test result is true. If true/false result of test
agrees with true/false designation of last setup-jump, jump.

POSSIBLE CR INDICATIONS. May be jump-trapped or subroutine jump-trapped.

0000000000 s00e

JFS JUMP ON RESULT OF TEST FOR FULL SCALE

7 2

3-51

3-52

OPERATION. If mantissa or magnitude bits, as defined by current computation-
al mode, are all ONE's, for either operand in top of stack or designated
operand in memory, test result is true. If true/false result of the test
agrees with true/false designation of last setup-jump, jump.

POSSIBLE CR INDICATIONS. May be jump-trapped or subroutine jump-trapped.

000000 c0000000

JBT JuMP ON RESULT OF BIT TEST IN TOP OF STACK

1 1 I T L] 1 1 1] 1

7)

—_—
VARIANT SYLLABLE

OPERATION. If designated bit of top word of stack is a ONE, test result is true.
If the true/false result of test agrees with true/false designation of last

setup-jump, jump.

POSSIBLE CR INDICATIONS. May be jump-trapped or subroutine jump-trapped.

®6csccnsscnsnce

JSI JuMP ON RESULT OF SIGN TEST

¥ 1 ¥ T 1 I L T 1 1

I 3 O O

1 1 1 1 L 1 1 1 1 1

VARIANT SYLLABLE

OPERATION. If either sign of word at top of stack or sign of designated word in
memory is negative, the test result is true. If true/false result of test
agrees with true/false designation of last setup-jump, jump.

POSSIBLE CR INDICATIONS. May be jump-trapped or subroutine jump-trapped.

®es0ssssnssccsnce

JUMP JUMP UNCONDITIONALLY

7 4

OPERATION. Unconditionally jump either to jump-address previously set up or
to jump-address designated in address field. .

POSSIBLE CR INDICATIONS. May be jump-trapped or subroutine jump-trapped.

eeecoccs0sssce

RET RETURN FROM SUBROUTINE

1 i 1 T 1

7 5

OPERATION. Return to parent program at syllable following instruction which
entered subroutine. Restore computational mode, overflow and under-
flow bits, and setting of base index register as they were before sub-
routine was entered. Obtain restoring information from index register
zero before BXR is restored.

POSSIBLE CR INDICATIONS. May be jump-trapped. May alter overflow and under-
flow bits.

0000000000000

RETI RETURN TO INTERRUPTED PROGRAM AT POINT OF INTERRUPT

L] Lf T T T

It 6

1 1 1 1 1

OPERATION. Resume interrupted program at point designated by contents of in-
terrupt return register. If in control mode, enter normal mode.

POSSIBLE CR INDICATIONS. If attempted in normal mode with mask register set
to inhibit RETI, inhibit the attempted return, and interrupt.

®000c0cc00covce

3.11 CONTROL INSTRUCTIONS

These instructions are not affected by the current computational mode. Ad-
dressing in the normal usage does not apply; variant addressing is described
for each instruction.

3-54

STOP stop

PROCESSOR

0

1 i

O

J 1 1

OPERATION.

In control mode, this in-

Control mode ONLY: Stop processor.

struction will cause an interrupt.*

POSSIBLE CR

NGP no oP

INDICATIONS. None

0000c0sscssccce

ERATION

O

OPERATION.

POSSIBLE CR

ENM ENTER

None

INDICATIONS. None

XXX AR R X R R

NORMAL OPERATIONAL MODE

oy

1 —1

1 22 T

1 1 i

OPERATION.

rently in control made.

Cause processor toenternormal mode of operation when it is cur-
Prohibit use while.in normal mode. Execute no

jump to a previously interrupted program.

POSSIBLE CR

ESP ENTER

INDICATIONS. None

secvevcscssosce

EXECUTIVE AND SCHEDUL!NG PROGRAM

6

* Interrupt

VARIANT SYLLABLE

system explained in''D851 Modular Data Processor''; pp 3-23to3-31

OPERATION. Interrupt (enter control mode) with jump to location specified by the
setting of the Base Interrupt Address Register (BIAR) and the number
coded in the address field.

POSSIBLE CR INDICATIONS. None

®e00s00cccscee

SFCN EXECUTE SPECIAL FUNCTION

6 1 O 1

e
VARIANT SYLLABLE
OPERATION. If designated special function device is attached to Computer Mod-

ule, execute designated function and continue with program.

POSSIBLE CR INDICATIONS. If designated special functiondevice isnot attached to
the Computer Module, interrupt as a function of the base interrupt ad-
dress register and the designated special function number; when the de-
vice is not attached, SFCN becomes ESP.

XXX YRR N XN NS

COM COMMUNICATE WITH COMPUTER MODULE

6 1 1 1

VARIANT SYLLABLE

OPERATION. Transmit word in top of stack to Computer Module designated by
variant syllable; the receiving computer @OR's the transmitted word to its
condition register.

POSSIBLE CR INDICATIONS. The receiving computer may be interrupted, depend-
ing uponits mask register contents. Sending computer may be interrupt-
ed if not in normal mode.

3-55

3-56

I® INITIATE INPUT/OUTPUT PROGRAM

6 1 1 2)

| 1 L 1 i 1 1 1 1 1 1 1 |

VARIANT SYLLABLE

OPERATION. Transmit top four words of stack as an input/output descriptor to
Input -Output Module designated in address field. The descriptor is ac-
cepted and the input/output program initiated, — if the device required
(as designated in the descriptor), is not busy.

POSSIBLE CR INDICATIONS. If the designated Input-Output Module is inoperable,
or otherwise unable to accept the descriptor, the "'no access to input/
output'' bit inthe condition registeris set. Thisbit isnot set if the Input-
Output Module is able toaccept the descriptorbut the required device is
either inoperable or busy. However, either the initial descriptor or any
descriptor linked within the initiated input/output program can call for
the setting of any condition bit in any processor. If in normal mode, and
if the mask register is set to prohibit input/output, interrupt will occur
without transmission of the descriptors and without changing of the stack

see000c0cccccee

MEM INITIATE MEMORY MODULE PROGRAM

T T 1 1 ¥ 1 1 1 1 ¥

6 1 1 O

1 1 1 1 L 1 1 i 1 'l

OPERATION. Transmit top four words of stack as memory descriptor to Mem-
ory Module which is designated, within descriptor, as first modulein-
volved in memory program so-initiated.

POSSIBLE CR INDICATIONS. When the Memory Module is completed, the 'mem-
ory complete' bit in the condition register is set.

600000000 cs000e

R] INTERRUPT INPUT/OUTPUT PROGRAM

VARIANT SYLLABLE

OPERATION. Transmit top four words of stack asan input/output descriptor to
Input-Output Module designated in address field. The descriptor is ac-
cepted and the input/output program initiated, — if device required (as
designated in descriptor), is operable.

POSSIBLE CR INDICATIONS. If the designated Input-Output Module is inoperable,
or otherwise unable to accept the descriptor, the ''no access to input/
output" bit in the condition register is set. This bit is not set if the
Input-Output Module is able to accept the descriptor but the required de-
vice is inoperable. However, either the initial descriptor or any de-
scriptor link within the initiated input/output program can call for the
setting of any condition bit in any processor. If in normal mode, and if
the mask register is set to prohibit input/output, interrupt will occur
without transmission of the descriptors and without changing ofthe stack

CAUTION: An interrupted input/output program does not leave any us-
able record of a point at which it was interrupted. An in-
terrupted input/output program may have to be reinitiated
from its start.

CCB CLEAR CONDITION BIT

6 O

VARIANT SYLLABLE
OPERATION. Clear designate bit of condition register. Interpret bit number

modulo 48. Operation forbidden for condition bits reserved for ESP; use
when in normal mode and when specified bit is set to cause interrupt.

POSSIBLE CR INDICATIONS. Specified condition bit is clear, if anillegal operation
interrupt is generated.

INT INTEGER MODE

—_——
VARIANT SYLLABLE

* To determine variant syllable value, refer to page 3-60

3-57

OPERATION. Enter integer mode.

POSSIBLE CR INDICATIONS. None

900000000000 00 ¢

SPP SPECIFIED-POINT MODE

O 3 1 *

VARIANT SYLLABLE

OPERATION. Enter specified-point mode.

POSSIBLE CR INDICATIONS. None

0000080000000

FLT FLOATING-POINT MODE

O 3 2 *

—_——
VARIANT SYLLABLE

OPERATION. Enter floating-point mode.

POSSIBLE CR INDICATIONS. None

8800000000000

SIP SIGNIFICANT-POINT MODE

O 3 3 *

VARIANT SYLLABLE

% To determine variant syllable value, refer to page 3-60

3-58

OPERATION. Enter significant-point mode.

POSSIBLE CR INDICATIONS. None

FIX FIXED-POINT MODE

O 3 4 o

—_——
VARIANT SYLLABLE

OPERATION. Enter fixed-point mode.

POSSIBLE CR INDICATIONS. None

0000000000000

ALPH ALPHAMERIC MODE

O 3 5 *

VARIANT SYLLABLE

OPERATION. Enter alphameric mode.

POSSIBLE CR INDICATIONS. None

LOG LoGICAL MODE

O 3 6 *

—_—
VARIANT SYLLABLE

* To determine variant syllable value, refer to page 3-60

3-59

OPERATION. Enter logical mode.

POSSIBLE CR INDICATIONS. None

900000000000 000

Any combination of computational mode instructions and operand format desig-
nators (specified in the address field) may be used. The operand format desig-
nators recognized by the assembler are as follows.

. Variant Syllable
Designator Value - 2nd Digit Use
(blank) 0 Single-precision operands with
no field definition
D 2 Double-precision operands with
no field definition
F 4 Field-defined, single-precision
operands
ALT 6 Field-defined, double-precision

operands (use field definition on
alternate operands)

For a more detailed discussion, refer to subsection 2.5, D851 Arithmetic Op-
erations.

3.12 PSEUDO-OPERATIONS

The use of these assembler-oriented operators is not concerned withthe cur-
rent computational mode or optional addressing.

BLOCK FiLL CURRENT FOUR-WORD MEMORY BLOCK WITH NOP's

0CTAL CODE. 01 01 ... (Generate NQP's as necessary to fill four-word block)

OPERATION. None

POSSIBLE CR INDICATIONS. None

0000000000000

WBRD

FILL CURRENT

O0CTAL CODE. 01 01

OPERATION. None

POSSIBLE CR

INSTRUCTION WORD WiTH NOP's

... (Generate N@®P's as necessary to fill single word)

INDICATIONS. None

0000000000000

APPENDIX A

THE CASE FOR POLISH NOTATION

The rules for writing "correct'' algebraic expressions yield the general form
y = A (operand) B. This form has a direct counterpart in the three address
computer organization, but not in two or one address organizations. In gen-
eral, two objections to the orthodox algebraic form exist. First, the forma-
tion rules permit a number of equivalent forms. The formsy=a+bXc-d,
y = (a+ (b Xc))-d, and y = a+ ((b X ¢c)-d) are considered equivalent by the
reader, but they differ widely in symbol content and perhaps value when
evaluated by a digital processor. Second, the order in which operands and
operators appear does not correspond to the order desirable for machine
evaluation. A typical machine language equivalent for the above is:

Clear Add c
Multiply b
Add

Subtract d
Store y.

This brief example suggests two desirable features for a language to be
interpreted by a machine: freedom from ambiguity and compactness of
representation.

A notation invented by the Polish logician J. Lukasiewicz overcomes these
objections to the orthodox algebraic form. Lukasiewicz demonstrated that the
need for parentheses could be eliminated entirely if the operators were al-
ways written after their operands (suffix Polish notation) instead of between
operands (infix notation). Thus y =a+ b Xc becomes y abc X+ = and y =

(a+ b) X c is written y ab + ¢ X =, No ambiguous forms exist since the degree

of the operator (the number of required operands) and its placement uniquely
define its operands. Further, compactness is achieved by eliminating the
need for extra symbols (i.e., parentheses or other bracket forms). An

additional advantage is gained since the degree of an operator no longer need
be limited to two, as is the case with infix notation.

The desirability of employing the Polish notation as an intermediate repre-
sentation in translating automatic programming languages such as FORTRAN,
ALGOL or COBOL has been recognized. The representation is compact and
unambiguous and retains the correspondence between symbols written by the
programmer and those present in the Polish intermediate form. The trans-
lation of orthodox form in the programming language to Polish is easily ac-
complished with the aid of a pushdown storage (stack) and the recognition of
the usual priority of arithmetic operations. In a pushdown stack, the element
most recently stored is the first element removed. The order typical of a
representative subset of arithmetic operators by increasing weakness is:

t (exponentiation), X, NEG (unary -), +, -, =.

The translation rules for this subset and translation examples are presented
on pages A-4 and A-5.

The translation from Polish to the desired machine language is a simple task
since the operator, operand order to Polish notation more nearly corresponds

to that desirable for machine language.

The advantages of Polish notation take on added significance when it is viewed
as a machine language. If variable names are interpreted as addresses for
fetch instructions which transfer operands from main storage to a pushdown
stack in the arithmetic unit, it is unnecessary to associate addresses with
arithmetic operators. The top one or two locations in the arithmetic push-
down stack are implicitly addressed by an arithmetic operator. Further
intermediate results normally returned to temporary storage in a conventional
machine are held in the top position of the pushdown stack., Thus several
accesses to main storage to recover intermediate results can be saved. A
single address format would demand six storage cycles (including instruction
fetches) for each temporary variable generated, stored, and subsequently
retrieved. The Polish format requires only three.

In summary, the Polish form has several striking advantages over conven-
tional command languages of the single or multiple address types.

1. It provides a unique, compact representation of source language
expressions, and maintains a correspondence between source
language operators and machine language operators.

2. It permits a more compact storage of program since address
specification as part of each instruction is unnecessary. Thus
in comparison with a single address computer of traditional de-
sign, two address parts and one operation part are saved for each

temporary storage cell used in the evaluation of an expression,
In the case of a subroutine parameter, one address part and two
operation parts are saved.

When directly interpreted, Polish notation is intrinsically more
efficient because explicit reference to temporary storage is not
required.

Simple checks may be made during translation from programming
language to prevent syntactically invalid programs. For example,
assign a weight of 1 to operands and a weight of 1 - n to operatorsof
degree n. The cumulative weight of an expression is 1 if it is

well formed.

SIMPLIFIED TRANSLATION RULES

Arithmetic operations in order of decreasing strength are:

?: X; NEGJ +: s T

The translation of the input expression to its (suffix) Polish equivalent out-

put proceeds according to the following rules:

1. Commence scanning the input string symbolwise from the left.
Call the current symbol S; the accessible element in the push-

down store E.

2. If S is an operand, transcribe it directly to the output.

3. If S is a left-hand bracket, enter it into the pushdown store.

4, If S is an operator, compare with E:
If E is not weaker, E is transcribed to output, and Sis
compared with the newly accessible element in the push-
down stack until a left-hand bracket or a weaker operator
or an empty store is encountered.

S is then entered in the pushdown store.

5. If Sis a right-hand bracket, entries are transcribed from the
pushdown stack to the output until a left-hand bracket is encountered;

then the L. H. bracket is deleted.

6. After the last S, remaining entries in the pushdown stack are

transcribed to the output.

EXAMPLE OF TRANSLATION TO POLISH NOTATION

RULE INPUT PUSH DOWN OouTPUT
1 y=(a+b)Xc Empty
2 y y
4 = = y
3 ((y
2 a ya
4 + + ya
(
2 b + y ab
(
5) = yab+
4 X X yab+
2 C X yab+c
6 y ab+ cx =

APPENDIX C

NUMERICAL LISTING OF INSTRUCTIONS

This appendix consists of Tables C-1 and C-2. Table C-1 lists the D851
machine instructions in order of ascending values for the octal codes. The
variant syllables, where specified, are represented in binary by using an
"o'" for a ZERO and an "i'" for a ONE. Where a binary value is not assigned
or need not be assigned, the undefined state of the bit is represented by a
period. The letter "S" in a variant column indicates a syllable containing an
address; in the case of a literal, the number of syllables required to contain
the literal is indicated. The letter ''x" indicates that indexing is possible.

Table C-2 lists instructions and pseudo-operations which may be used in
assembly language programming. The octal code is given for machine in-
structions, while octal codes are given for instructions generated to assemble
macro-instructions. The address field notation indicates what type of address-

ing option is possible for each instruction.,

OCTAL
CODE

00
01
02
03
03

03

03

03

03

03
03
03

03

03

03

04
05
06
07

10

VARIANT

TABLE C-1
D851 MACHINE INSTRUCTIONS

SYLLABLES MNEMONIC

000 ...

00l ...

oio ...

oli .

ioo ...

ioi ..

iio

iii

. 00,

. lo.

. id.

SSS
SSS

00. ..

STQP
NGP
ENM
INT
SPP

FLT
SIP
FIX
ALPH

LGG

ALT

XM
XA
XAM

RTS A--

OPERATION

Stop Processor (Control Mode Only)
No Operation

Enter Normal Operational Mode
Enter Integer Computational Mode

Enter Specified-Point Computational
Mode

Enter Floating-Point Computational
Mode

Enter Significant-Point Computa-
tional Mode

Enter Fixed-Point Computational
Mode

Enter Alphameric Computational
Mode

Enter Logical Computational Mode
Not Defined

Enter Single Precision Non-Field
Defined Mode

Enter Double-Precision Computa-
tional Mode

Enter Field-Defined Single-Precision
Computational Mode

Enter Field-Defined Computational
Mode on Alternate Operands

Index
Index and Modify Index Word
Index Augmented

Index Augmented and Modify Index
Word

Rearrange Top of Stack - Hold Top
Word

OCTAL
CODE

10

10

10

10

10

10

10

10

10

10

10

11
12

13

14
15
16
17
20
20

TABLE C-1 (Cont'd)
D851 MACHINE INSTRUCTIONS

VARIANT
SYLLABLES MNEMONIC OPERATION
oi. ... RTS B Rearrange Top of Stack - Second
Word to Top
io. ... RTS C-- Rearrange Top of Stack - Third
Word to Top
ii. ... RTS D-- Rearrange Top of Stack - Fourth
Word to Top
..00.. RTS -A- Rearrange Top of Stack - Top
Word to Second
..01i.. RTS -B- Rearrange Top of Stack - Hold
Second Word
..1 0., RTS -C- Rearrange Top of Stack - Third
Word to Second
.1 d.. RTS -D- Rearrange Top of Stack - Fourth
Word to Second
ve. .00 RTS --A Rearrange Top of Stack - Top Word
to Third
. .oi RTS --B Rearrange Top of Stack - Second
Word to Third
... Jio RTS --C Rearrange Top of Stack - Hold
Third Word
R b1 RTS --D Rearrange Top of Stack - Fourth
Word to Third
STEP Step Stack Up One
Sx FLS ADDR Fetch from Local Data Buffer to
Stack
Sx SSL ADDR Store from Stack to Local Data
Buffer
Sx CIiB BIT Clear Bit in Top of Stack
Sx SB BIT Set Bit in Top of Stack
Sx CHB BIT Change Bit in Top of Stack
Sx INB BIT Insert Bit in Stack
O.. ... SSSx oP ADDR Self-Relative Addressing
in. ... SSSx OP ADDR, A Absolute Addressing

TABLE C-1 (Cont'd)
D851 MACHINE INSTRUCTIONS

OCTAL VARIANT

CODE SYLLABLES MNEMONIC OPEHRATION

20 .00 ... SSS8x SJF ADDR Set Up Jump if False

20 .0l ... SSSx SJT ADDR Set Up Jump if True

20 .io ... SSSx SJSF ADDR Set Up Jump to Subroutine if False

20 il ... SSSx SJST ADDR Set Up Jump to Subroutine if True

21 Not Defined

22 00. ... SSSx OoP ADDR Self-Relative Addressing

22 oio ... SSSx OP ADDR,R Addressing Relative to Base
Address Register

22 ijo. ... SSS8x OP ADDR, A Absolute Addressing

22 ii, ... SSSx OP ADDR, X Addressing Relative to Base Index
Register

22 . .0 000 SSSx FMS ADDR Fetch from Memory Module to
Stack

22 . .0 00i SSSx FML ADDR Fetch from Memory Module to
Local Data Buffer

22 . .0 oio SSS8x FBML ADDR Fetch Block from Memory Module
to Local Data Buffer

22 . .0 oii SSSx FCML ADDR Fetch Characters from Memory
Module to Local Data Buffer

22 . .0 ioo SSSx SSM ADDR Store from Stack to Memory Module

22 . .0 ioi SSSx FMA ADDR Fetch from Memory Module to
Address Register

22 . .0 iio SSSx AMA ADDR Add from Memory Module to Address
Register

22 .. 0 iii SSSx FAS ADDR Fetch from Address Register to
Stack

22 ..1 000 SSSx DLM ADDR Dump Local Data Buffer into
Memory Module

22 . .1 o001 SSSx LML ADDR Load Block from Memory Module
into Liocal Data Buffer

22 . .1o0io SSSx DRM ADDR Dump Registers into Memory Module

22 ..10ii SSSx LMR ADDR Load Block from Memory Module

into Registers

OCTAL
CODE

23

24
25
26
27
30
31
32
33
34
35
36
37
40

41

42

43

44
45
46
47
50
51
52
53
54

VARIANT

TABLE C-1 (Cont'd)
D851 MACHINE INSTRUCTIONS

SYLLABLES MNEMONIC

Sx

SSSSSSSS
Sx
S

FLA ADDR

IMP
@R

AND

QRX

EXT

INF

CoM

FILL

CLR

LIT WORD
SLIT WORD
SLP ADDR
SR

SL
RR
RL

N@GRM
SSH
JUS
UNJ
ADD
SUB
MUL
DIV
SQR

OPERATION
Fetch from Local Data Buffer to
Address Register
Implication
OR
AND
Exclusive OR
Extract
Insert Field
Complement
Set to Full Scale
Clear to Zero
Literal
Short Literal
Set Local Data Buffer Pointer

Shift Right (by Amount Already in
Stack

Shift Left (by Amount Already in
Stack

Rotate Right (by Amount Already
in Stack)

Rotate Left (by Amount Already in
Stack)

Normalize
Streaming Shift
Justify
Unjustify

Add

Subtract
Multiply

Divide

Square Root

OCTAL
CODE

55
56
57
60
61
61
61
61
61

61

61

61

61

61

61

61
61
61

61

61

VARIANT

TABLE C-1 (Cont'd)
D851 MACHINE INSTRUCTIONS

SYLLABLES MNEMONIC

Sx

01S

015S

02 Sx

03 Sx

04 o.. ...

04 i..

04 1i.. i..

04 .0. ...

050.. 0.0

051i.. o..

051i.. i..

RND
FLR
XS
CCB
ESP
SCFN
FRS
SSR
STB

STB

STB-

STB

STB

STB

STB

STB
STB
JTB

JTB

JTB

BIT

OPERATION

Round

Float Remainder

Index by Top of Stack

Clear Condition Bit

Enter ESP

Enter Special Function
Fetch Register to Stack
Store from Stack to Register

Set Tag Bits - Do Not Change
First Bit

Set Tag Bits - Set First Bit
to ZERO

Set Tag Bits - Set First Bit
to ONE

Set Tag Bits - Do Not Change
Second Bit

Set Tag Bits - Set Second Bit to
ZERO

Set Tag Bits - Set Second Bit to
ONE

Set Tag Bits - Do Not Change Third
Bit

Set Tag Bits - Set Third Bit to ZERO
Set Tag Bits - Set Third Bit to ONE

Jump on Tag Bits - Do Not Test
First Bit

Jump on Tag Bits - Test First Bit
for ZERO

Jump on Tag Bits - Test First Bit
for ONE

OCTAL
CODE

61

61

61

61

61

61

61
61
61
61
62
62

62

62

62

62

62

62

62
62

TABLE C-1 (Cont'd)
D851 MACHINE INSTRUCTIONS

VARIANT

SYLLABLES MNEMONIC OPERATION

05.0. .0. JTB -X- Jump on Tag Bits - Do Not Test
Second Bit

05 .i. .o. JTB -0- Jump on Tag Bits -~ Test Second
Bit for ZERO

05 .i. .1i. JTB -1- Jump on Tag Bits - Test Second
Bit for ONE

05..0..0 JTB --X Jump on Tag Bits - Do Not Test
Third Bit

05..i..0 JTB -=0 Jump on Tag Bits - Test Third
Bit for ZERO

05..1i..1 JTB --1 Jump on Tag Bits - Test Third Bit
for ONE

10 MEM Initiate Memory Module Program

11 Sx CCM MODULE Communicate with Processor Module

12 Sx (0 MODULE Initiate Input-Output Program

13-Sx g MODULE Interrupt Input-Output Program

000 ... X-- Modify Index without Testing

o0l ... JXEZ-- Jump on Result of Index Equal Zero
Test

oio ... JXEL-- Jump on Result of Index Equal Limit
Test

oii ... JXES-- Jump on Result of Index Equal Stack
Test

ioo ... JXGL-- Jump on Result of Index Greater than
Limit Test

ioi... JXGS~- Jump on Result of Index Greater than
Stack Test

iio ... JXLL-- Jump on Result of Index Less than
Limit Test

ijii ... JXLS-- Jump on Result of Index Less than
Stack Test

«.. 000 JX-- Test Index without Modifying Index

. ooi -X--RS Replace Index Content by Top of

Stack

OCTAL
CODE
62
62

62
62
62

62

63
64
65

66
67

70
71
72
73

73

74

79
76
77

TABLE C-1 (Cont'd)
D851 MACHINE INSTRUCTIONS

VARIANT
SYLLABLES MNEMONIC OPERATION
... oio -X--AQ Add One to Index Content
... Oii -X=--Al Add Self-Contained Increment to
Index Content
... 100 -X--AS Add Top of Stack to Index Content
... ioi -X--5¢ Subtract One from Index Content
.. iio -X--RL Refill Index Content from Limit
Field
... did -X--55 Subtract Top of Stack from Index
Content
Sx JCB BIT Jump on State of Condition Bit
JGR Jump on Result of Test for Greater
JGA Jump on Result of Test for Absolute
Value Greater
JLS Jump on Result of Test for less
JLA Jump on Result of Test for Absolute
Value Less
JEQ Jump on Result of Test for Equality
JZE Jump on Result of Test for Zero
JFS Jump on Result of Test for Full Scale
Sx JBT BIT Jump on Result of Bit Test in Top
of Stack
000 000 JSI : Jump on Result of Sign Test in Top
of Stack
JUMP Jump Unconditionally As Previously
Set Up
RET Return from Subroutine
RETI Return to Interrupted Program

-—- Stop Processor (Control Mode Only)

01

01

04
04
05

05

06
06
06
07

07

07

10
22
12

10
22
12

10
22

12

10
10

10
10
22

TABLE C-2

D851 ASSEMBLY LANGUAGE INSTRUCTIONS

OCTAL CODES
AND VARIANT
SYLLABLES

0101 ...

0101 ...

S ---

S ---

sss
sss
$88 ---
sss

SSs
SSS ---

00
..0 000 SSS 10 00
S 1000

01
..0 000 SSS 10 01
S 10 0t

22
..0 000 SSS 10 22

S 10 22

33
54

61
00 10 01
..0 000 SSS 10 0010 01

$1000 10 01

05 10 04

MNEMONIC

WQRD
BLGCK

X

XM

XA

XM

XAM

TRIP
TRIP
TRIP

DUP
DUP
DUP

REV
REV

REV

CYCu
REVD

CYCD
QUAD
QUAD

QUAD

DUPD

ADDRESS FIELD

NUMBER
ADDRESS/NUMBER
NUMBER

ADDRESS/*NUMBER

NUMBER
NUMBER
ADDRESS/NUMBER
NUMBER

NUMBER

ADDRESS/ *NUMBER

ADDRESS
ADDRESS, L

ADDRESS
ADDRESS, L

ADDRESS

ADDRESS, L

ADDRESS

ADDRESS

OPERATION
Generate Enough N@P's to Fill Current
Instruction Word

Generate Enough N@QP's to Fill Current
Four-Word Instruction Block

Index Address Portion of Next Instruction
Index Address Portion of Current Instruction

Index Address Portion of Next Instruction;
Modify Index Word

Index Address Portion of Current Instruction;
Modify Index Word

Index Address Portion of Next Instruction
Index Address Portion of Next Instruction
Index Address Portion of Current Instruction

Index Address Portion of Next Instruction;
Modify Index Word

Index Address Portion of Next Instruction;
Modify Index Word

Index Address Portion of Current Instruction;
Modify Index Word

Triplicate Top Word of Stack
Triplicate Word Fetched from Memory Module

Triplicate Word Fetched from Local Data
Buffer

Duplicate Top Word of Stack
Duplicate Word Fetched from Memory Module

Duplicate Word Fetched from Local
Data Buffer

Reverse Two Top Words of Stack

Reverse Top Word of Stack and Word Fetched
from Memory Module

Reverse Top Word of Stack and Word Fetched
from Local Data Buffer

Cycle Top Four Words of Stack Up One

Reverse Two Top Double-Precision
Operands in Stack

Cycle Top Four Words of Stack Down One
Quadruplicate Top Word of Stack

Quadruplicate Word Fetched from
Memory Module

Quadruplicate Word Fetched from Local
Data Buffer

Duplicate Top Double-Precision Operand
in Stack

OCTAL CODES
AND VARIANT
SYLLABLES
12 Sx
12 S---

13 Sx
14 00
22 ..0 ooo SSS 14 00

12 S14 00

15 00
22 .0 o000 15 00

12 $15 00

16 00
22 ..0 000SSS 16 00
12 516 00

17 00

22 ..0 00017 00

12 S17 00
200.. ... SSSx
20i.. ... SSSx

20 . 0. ooo SSSx
20 .o. ooi SSSx
20 .0. 0io SSSx
20 . 0. oii SSSx
20 . 0. ioo SSx

20 . 0. ioi SSSx
20 ,0. iio SSx

20 ,o. iii SSSx
20 .i. ooo SSSx

20 .i. ooi SSSx
20 .i. oio SSSx
20 .1i. oii SSSx
20 .i. ioo SSSx
20 .i. ioi SSSx

20 .1i. iio SSSx

C-10

MNEMONIC

FMS

SSM
P@s
P@S

NEG
NEG

NEG

CHS
CHS
CHS

INS

INS

INS

TABLE C-2 (Cont'd)
D851 ASSEMBLY LANGUAGE INSTRUCTIONS

ADDRESS FIELD

ADDRESS,
ADDRESS,

ADDRESS,

ADDRESS

ADDRESS,

ADDRESS

ADDRESS,

ADDRESS
ADDRESS,

ADDRESS

ADDRESS,

ADDRESS
ADDRESS,

ADDRESS

ADDRESS,

ADDRESS,

ADDRESS,

ADDRESS,

ADDRESS,

ADDRESS,

L
L

20

24

OPERATION

Fetch from Local Data Buffer to Stack

Use Word Fetched from Local Data Buffer
as Operand in Current Instruction

Store from Stack to Local Data Buffer
Set Top of Stack Positive

Set Word Fetched from Memory Module
Positive

Set Word Fetched from Local Data
Buffer Positive

Set Top of Stack Negative

Set Word Fetched from Memory Module
Negative

Set Word Fetched from Local Data
Buffer Negative

Change SigninTop of Stack
Change Sign in Word Fetched from Memory

Change Sign in Word Fetched from
Local Storage

Insert Sign from Top Word of Stack
into Second Stack Word

Insert Sign from Memory Word into
Top Word of Stack

Insert Sign from Local-Storage Word
into Top Word of Stack

Compute Jump-Address as Self-Relative
Compute Jump-Address as Absolute

Jump to Syllable 0 of Word at Jump Address
Jump to Syllable 1 of Word at Jump Address
Jump to Syllable 2 of Word at Jump Address
Jump to Syllable 3 of Word at Jump Address
Jump to Syllable 4 of Word at Jump Address
Jump to Syllable 5 of Word at Jump Address
Jump to Syllable 6 of Word at Jump Address
Jump to Syllable 7 of Word at Jump Address

Add 1 to Base Index Register on Entry to
Subroutine

Add 4 to Base Index Register on Entry to
Subroutine

Add 8 to Base Index Register on Entry to
Subroutine

Add 12 to Base Index Register on Entry to
Subroutine

Add 16 to Base Index Register on Entry to
Subroutine

Add 20 to Base Index Register on Entry to
Subroutine

Add 24 to Base Index Register on Entry to
Subroutine

22 ..

22

22

22

22

25
25
26
26
27
27
27
36
22
12
61
61
61
61
61

61
61
61

61
61
61
61
61

61
61
61

04
22

12

22

1

N

20 .

TABLE C-2 (Cont'd)
D851 ASSEMBLY LANGUAGE INSTRUCTIONS

OCTAL CODES
AND VARIANT

SYLLABLES MNEMONIC ADDRESS FIELD OPERATION
i, iii SSSx ADDRESS, n Generate Literal ''n" in Stack; Add to BXR
on Entry to Subroutine
.i. iii S8Sx ADDRESS, * Add Quantity Already in Stack to BXR on
Entry to Subroutine
.. 0 000 SSSx ADDRESS Use Word Fetched from Memory Module
as Operand in Current Instruction
ii., SSSx Not Defined
00. ... SSSx ADDRESS Compute Memory Module Address as
Self-Relative
oi. ... SSSx ADDRESS, R Compute Memory Module Relative to
Base Address Register
io ... SSSx ADDRESS, A Compute Memory Module Address as
Absolute
ii. ... SSSx ADDRESS, X Compute Memory Module Address Relative
to Base Index Register
SST Selective Set
LAD Logical Add
SCL Selective Clear
LMP Logical Multiply
SCM Selective Complement
HAD Half-Add
BBC Bit-by-Bit Compare
Sx 40 SR COUNT Shift Right by Amount Given
.. 0 000 S85x 40 SR *ADDRESS Shift Right Indirect
Sx 40 SR *ADDRESS, L Shift Right
04 70 STB CLEAR Clear All Tag Bits
04 60 STB CCB Clear Control Tag Bits
04 11 STB USED Set Tag Bit to Indicate Used Word
04 10 STB UNUSED Set Tag Bit to Indicate Unused Word
04 60 STB N@P Set Tag Bits to Indicate Tag-Bit
No Operation
04 62 STB INT Set Tag Bits to Cause Interrupt
04 64 STB JUMP Set Tag Bits to Cause Jump
04 66 STB EMPTY Set Tag Bits to Indicate Empty in
Local Data Buffer
05 70 JTB CLEAR Jump on All Tag Bits Being Zero
05 60 JTB CCB Jump on All Control Tag Bits Being Zero
05 11 JTB USED Jump on Tag Bit Indicating Used Word
05 10 JTB UNUSED Jump on Tag Bit Indicating Unused Word
05 60 JTB NGP Jump on Tag Bits Indicating Tag Bit
No Operation
05 62 JTB INT Jump on Tag Bits Indicating Interrupt
05 64 JTB JUMP Jump on Tag Bits Indicating Jump
05 66 JTB EMPTY Jump on Tag Bits Indicating Empty in
Local Data Buffer
S 62 000... X-- NUMBER Modify Specified Index Without Testing
. .0 000 SS5x 64 JGR ADDRESS Jump on Result of Test for Greater with
Word Fetched from Memory Module
Sx 64 JGR ADDRESS, L Jump on Result of Test for Greater Word
Fetched from Local Data Buffer
..0 000 SSSx 73 00 JSI ADDRESS Jump on Result of Sign-Test of Word in
Memory Module
Sx 73 00 JSI ADDRESS, L Jump on Result of Sign-Test of Word in
Local Data Buffer
oo ... SSSx 74 JUMP ADDRESS Jump Unconditionally to Specified Address

C-11

Mnemonic

ADD

ALPH
AMA

AND

B0000
B0001
B0010
B0011
B0100
B0101
B0110
BO111
B1000
B1001
B1010
B1011
B1100
B1101
B1110

APPENDIX D

ALPHABETICAL LISTING OF INSTRUCTION REPERTOIRE

Operation

Add

Alphameric Mode
Add Memory and AR
AND

AND Expression
Implication Expression

B True

Reverse Implication

A True

Exclusive OR Expression
OR Expression

NOR

Material Equivalence Operations
Not A

Reverse Implication Not
B Not

Implication Not

NAND

Page

59
32
13
17
13
16
17
18

18

14
13
18
18
19
19
19
20
20

Mnemonic

B1111
BBC
BLQCK
CCB
cCcM
CHB
CHS
CLB
CLR
CcoM
CYCD
CYCU
DIV
DLM
DRM
DUP
DUPD
ENM
ESP
EXT
FAS
FBML
FCML
FILL
FIX
FLA
FLR
FLS
FLT
FMA
FML
FMS

Operation

Bit-By-Bit Compare

Fill Current Four-Word Memory Block with N@P's
Clear Condition Bit

Communicate with Computer Module
Complement Bit

Change Sign

Clear Bit

Clear to Zero

Complement

Cycle Stack Down

Cycle Stack Up

Divide

Dump LDB into Memory

Dump Registers into Memory
Duplicate Operand in Stack
Duplicate Double Length

Enter Normal Operational Mode
Enter Executive and Scheduling Program
Extract

Fetch Absolute Address from AR to Stack
Fetch Block from Memory to LDB
Fetch Character Stream to LDB

Set to Full Scale

Fixed-Point Mode

Fetch LDB Word to AR

Float Remainder

Fetch from LDB to Stack
Floating-Point Mode

Fetch from Memory to AR

Fetch from Memory to LDB

Fetch from Memory to Stack

Page

20
14
60
57
55
21
23
21
15
15
37
37

30
30
35
35
54
54
16
29
27
27
15
59
32

28
58
32
26
26

Mnemonic

FRS
HAD

¢

IMP

INB

INF

INS

INT

19

JBT

JCB

JEQ

JFS

JGA

JGR

JLA

JLS

JSI

JTB
JUMP
JUS
JXEL
JXES
JXEZ
JXGL
JXGS
JXLL
JXLS

JX __AI
JX __AQ
JX —_AS
JX __RL

Operation

Fetch Register to Stack

Half-Add

Interrupt Input/Output Program
Implication

Insert Bit

Insert Field

Insert Sign

Integer Mode

Initiate Input/Output Program

Jump on Result of Bit Test in Top of Stack
Jump on State of Condition Bit

Jump on Result of Test for Equality
Jump on Result of Test for Full Scale

Jump on Result of Test for Absolute-Value Greater

Jump on Result of Test for Greater

Jump on Result of Absolute-Value Less

Jump on Result of Test for Less

Jump on Result of Sign Test

Jump on Tag Bit(s)

Jump Unconditionally

Justify

Jump on Result of Index Equal to Limit Test
Jump on Result of Index Equal to Stack Test
Jump on Result of Index Equal to Zero Test
Jump on Result of Index Greater Than Limit Test
Jump on Result of Index Greater Than Stack Test
Jump on Result of Index Less Than Limit Test
Jump on Result of Index Less Than Stack Test
Add Increment to Index After Testing

Add One to Index After Testing

Add Stack to Index After Testing

Refill Index Content from Limit Field After Testing

Mnemonic

JX __RS
JS __8®
JX __SS
JZE
LAD
LIT
LML
LMP
LMR
LOG
MEM
MUL
NEG
NP
NQRM
NQ@T
@R
QRX
POQS
QUAD
RET
RETI
REV
REVD
RL
RND
RR
RTS
SAC
SB
SCL
SCM

Operation

Replace Index by Top of Stack After Testing
Subtract One from Index After Testing
Subtract Top of Stack from Index After Testing
Jump on Result of Test for Zero

Logical Add

Enter Literal Word in Stack

Load Data Block from Memory into LDB
Logical Multiply

Load Memory into Registers

Logical Mode

Initiate Memory Module Program

Multiply

Set Negative

No Operation

Normalize

Logical Inversion

OR

Exclusive OR

Set Positive

Quadruplicate Stack Operand

Return from Subroutine

Return to Interrupted Program at Point of Interrupt

Reverse Operands in Stack
Double-Length Reverse
Rotate Left

Round

Rotate Right

Rearrange Top of Stack
Shift and Count

Set Bit

Selective Clear

Selective Complement

Page

47
48
49
51
13
25
30
13
31
59
56

22
54
10
15
13
14
22
36
53
53
36
36
11

10
34
10
21
13
14

Mnemonic

SFCN
SIP
SJF
SJSF
SJST
SJT
SL
SLIT
SLP

SPP
SR
SSH
SSL
SSM
SSR
SST
STB
STEP
STQP
SUB
TRIP
UNJ
WQRD

XA
XAI
XAQ
XAS
XM
XMA
XRL

Operation

Execute Special Function
Significant-Point Mode

Set Up Jump If False

Set Up Jump to Subroutine If False
Set Up Jump to Subroutine If True
Set Up Jump If True

Shift Left

Enter Short Literal in Stack
Set LDB Pointer

Square Root

Specified-Point Mode

Shift Right

Streaming Shift

Store from Stack to LDB
Store from Stack to Memory
Store from Stack to Register
Selective Set

Set or Clear Tag Bit

Step Stack Up

Stop Processor

Subtract

Triplicate Operand in Stack
Unjustify

Fill Current Instruction Word with NQP's

Index

Index Augmented

Add Increment to Index

Add One to Index

Add Stack to Index

Index and Modify

Index Augmented and Modified

Refill Index Content from Limit Field

Mnemeonic

XRS
XS

XSG
XSS

Operation
Replace Index by Top of Stack
Index by Top of Stack
Subtract One from Index

Subtract Top of Stack from Index

Burroughs Corporation

. Detroit 32, Michigan

Burroughs

- NEW DIMENSIONS / in computation for military systems

	000
	001
	005
	006
	007
	1-01
	1-02
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	2-57
	2-58
	2-59
	2-60
	2-61
	2-62
	2-63
	2-64
	2-65
	2-66
	2-67
	2-68
	2-69
	2-70
	2-71
	2-72
	2-73
	2-74
	2-75
	2-76
	2-77
	2-78
	2-79
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	3-50
	3-51
	3-52
	3-53
	3-54
	3-55
	3-56
	3-57
	3-58
	3-59
	3-60
	3-61
	A-01
	A-02
	A-03
	A-04
	A-05
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08
	C-09
	C-10
	C-11
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	xBack

