
* STUDENT TEXT 20SR0123-3 -----------------~":":'"~~~
C183-BUIC-ST

Computer Systems Department

BUIC III BASIC PROGRAMMING CONCEPTS AND TECHNIQUES

January 1968

Keesler Technical Training Center
Keesler Air Force Base, Mississippi

------,...--- Designed For ATC Course Use ---------
ATe Keesler 9- 3839

Computer Programmer Branch
Computer Systems Department
JeTTC, Mississippi

CONTENTS

CHAPTER TITLE

1 Introduction to Programming

2 Flow Charting Techniques

3 Information Organization

4 Ordering Schemes

, 5 Basic Methods Of Accessing Information

6 Data Manipulation

7 Subroutine and Subroutine Libraries

8 Input! Output Programming

Student Text
C-183-BUIC-ST
23 January 1968

PAGE

1

11

20

36

42

67

93

101

CHAPTER 1

INTRODUCTION TO PROGRAMMING

Electronic computers are complex machines of thousands, or even millions of electrical
and electronic parts, capable of solving the most complex and intricate problems with extremely
high speeds; yet, an electronic computer is totally incapable of doing anything but routing
electrons through a predetermined path. As incongruous as the above statements may seem,
they are nonetheless true. What is it that gives the electronic computer the capability of
performing meaningful logic operations? 'Ibe answer lies in the ability of the computer to
route signals at electronic speeds in a logical manner predetermined by some person whom
we shall call a PROGRAMMER.

It is the job of the programmer to provide the computer with the logical sequence of
electronic operations necessary to solve a given proglem. However, before a programmer can
specify the necessary operations to be performed by the computer, he must first fully under­
stand the problem and be able to analyze it. Then he can determine a method of solution.

Our immediate concern in providing the logical sequence of operations for a computer
("programming") is to develop the techniques of (1) analyzing a given problem, and (2) deter­
mining a method of obtaining a solution for the problem. Later, we-will learn how to code the
individual operation in a manner that will be understood by the computer.

To illustrate a problem and its logical solution imagine this: An Apache brave with a load
of furs is sent to the corner trading post by his squaw. His instructions are to buy one loaf
of bread, one quart of milk and some toothpaste. If he has enough furs left over, his intentions
are to buy a bottle of fire water.

The probable sequence of events would be:

st~rt
Go to t~ng post

Buy bread

'" Buy~
Buy too~aste

Tra~furs

Yes<E:<~----Any furs left-----~> No

Buy fi~ water 1
Drink it

I >Go home

You can see the breakdown of this problem into a logical sequence of steps.

Let's suppose that one day he goes to the trading post with five furs, and it costs four furs
for the bread, milk and toothpaste. He will then have one fur left for fire water which he will
buy. If, however, the next day the cost of milk goes up one fur and he has only five furs, he will
not have enough to buy fire water, and he will have to go directly home.

1

Notice the same general solution fits both cases. We have arrived at a method of solution
without having to know specific values for a given case. We could store the sequence of events
(set of instructions) in a computer and then operate on data for any specific case (in this
instance, any day) and obtain a solution. The same set of instructions could remain in the
computer and could be used repeatedly for any specific situation.

The concept of a stored program (sequence of operations), which operates on different
sets of input data is important to understand. The methods of problem-solving rely on this
concept.

INFORMA TION CODING

Information must be received, as well as transmitted, internally by the computer in a
Alpha-numeric code or form recognizable to the computer. Alplianumeric 12-bit Hollerith
coding information is used for card input into the computer. Twelve-bit Hollerith information
will have to be converted again into a type of coding (6-bit Hollerith) which lends itself more
readily to internal transfer and manipulation by the computer.

Some computers operate strictly on binary information, where all data manipulation must
be done in pure binary form. For instance, the sum of numbers is obtained by adding them in
their binary form. The sum is generated in binary form. Thus, all input data must be converted
into binary format. Other computers, however, use various internal coding schemes to handle
data. The octal system is an easier method for handling binary information. The computer
still operates in binary, but its output can be in octal. Since only three binary digits are neces­
sary to represent an octal number, the conversion from octal to binary can be made by
inspection. Most computers are designed so that the octal system can be utilized.

Another example is binary coded decimal (BCD). In this instance, each digit of a decimal
number is represented by its binary equivalent. Since the maximum value of any decimal
digit will be 9, the number of binary digits necessary to adequately represent any decimal
digit will be four.

FIXED AND VARIABLE LENGTH COMPUTER WORDS

In core memory of computers, a group of bits treated as a unit is referred to as a "word."
Word lengths are fixed or variable, depending on the particular computer. An example of a
fixed word length computer is the SAGE computer (AN/FSQ-7) which uses a word containing
32 bits. The word length of other computers of this type may differ (18 bits, 24 bits, 48 bits,
etc.), but in each case the word is given a unique numbered "location" or "address" in core
memory which may be specified to gain access to the contents of the word. In Figure 1-1,
four computer words containing binary data (addresses D through 3) are shown. Note that the
contents of the second word, address *1, is the binary equivalent of decimal 31.

ADDRESS CONTENTS OF ADDRESS

~ • • 1 1 • • • 1 • • 1 1 1 • 1 •
_ 1

1 • 1 1 . -1 • • 1 1. 1 •

1 • • • • • • • • · " " " •• • • . " •• . " . " •• • 1 1 1 1 1

2 " . " 1
1 •

1 " • 1
1 j

1 _

" -1 "
1 • 1 1

" 1
1 1 " "

1 _
• 1

3 · " " -" " • 1 " 1
1 •

1 " " " 1 • 1 1
1 "

_ 1
• 1 " . 1 1 • 1

Figure 1-1.

2

An exaxpple of a variable word length computer is the IBM 1410, one of a number of
"character oriented" macbines. '!bese computers are character oriented in the seDSe that a
coded character is cODSidered to be the basic addressable unit. A character is represented
by a specific number of bits (6 in the case of the IBM 1410) and is normally the smallest unit
of data to be manipulated. Each unique address refers to the location of a character rather
than a computer word. Figure 1-2 illustrates characters stored in memory (addresses ~
through 7), but keep in mind that each character shown actually represents a specific number
of bits in the computer. Note that the contents of address #4 is a "C."

A I 6 fA

Charaoter Charaoter Charaoter
Position Position Position

1 2

B

Charaoter
Poeition

3

C 1 J 8

Charaoter Charaoter Charaoter Charaoter
Position Position Position Position

4 5 6 7

Figure 1-2.

In the variable word length machines the number of characters per word is not fixed, but
is determined by the programmer. Each character in the memory of the IBM 1410 bas an extra
bit associated with it which can .be set to signal the beginning of a word. This extra bit will
indicate whether the character bas a "word mark" asso~iated with it. A word mark is repre­
sented in printed form by an inverted circumflex (V) above'a character, for example, the letter
A with an associated work mark is printed·.I. Consider the string of characters in Figure 1-3
and note that here each word boundary is defined by a word mark over the highest order (left-
most character.) .

v v v vv V v
PRILS72M3200~AGBF9
~ -.,J."..~---...--

liDO 11 12 13 14 15 16 17

Figure 1-3.

A word is usually referred to by specifying the address of its lowest order character and
"looking left" until a word mark is encountered.

Speaking generally, the computer word is accepted to be synonymous to register length.
Some computers operateonaregisteratatime (AN/FSQ-7) and are register oriented machines.
A few machines, using a secondary classification, can be considered syllable oriented. These
operate on part, all, or more than one register at a time depending on syllable length and the
number of syllables in any one operation.

'!be BUIC Computer (AN/GSA-51A) is register Oriented in the sense that it has a fixed
length register and is syllable oriented in the seDSe that it can operate on up to seven syllables
in one operation. 'lbese syllables may encompass parts of three contiguous registers. '!be BUIC
computer can be classed as a register oriented machine as opposed to character orientation,
although it does not meet the strict definition of a register oriented machine.

Most of the IBM computers are character oriented as described above.

3

INSTRUCTION SETS AND DATA SETS

1Df0rmation stored within a computer can be classWed into two categories--INSTRUCTION
WORDS' and DATA WORDS. An instruction word is a coded command that tells the computer
what to do for a single operation in a program., Each instruction takes a computer word; the
length of which is dependent upon the type of computer, fixed length or variable length. A
group of instructions that make up a part Of the program or a complte program is referred
to as an INSTRUCTION SET.

A data word contains a value, represented by either numbers or alphabetic information,
which is to be manipulated by the computer in a manner set forth by an instruction word.

Instruction sets are stored in core in a specified sequence determiued by the programmer.
DATA SETS are also stored in core, normally in a different area than instruction sets since
the computer has no way of diStinguishing between an instruction word and a data word. If,
through a fault in program lOgiC, a data word is accessed during the time that the computer
normally expects an instruction word, the computer would attempt to operate the value as an
instruction. This is the main reason instructions aDd data are normally stored in different
areas of data sets at the same time. (See Figure 1-4.)

CORE MEMORY

DATA SETS

INSTRUCTION SETS

DATA SETS

INSTRUCTION SETS

DATA SETS

DATA SETS

Figure 1-4.

INSTRUCTION WORD FORMAT

In the instruction word of a fixed word length computer oue group of bits is termed the
COMMAND PORTION and another group of bits is termed the ADDRESS or DIRECTOR. The
number of bits in the command and director portions is again dependent upon the system being
used. It is important to realize ,the terms "command" and "director" may not be used in
every system, but the concepts are the same in every system. For instance, in some systems
they may be called the "operate" and "operand" portions, respectively. The command portion
of . the instruction word contains a binary-coded command specifyiDg the operation that the

4

computer is to perform. The address portion or director of the instruction word contains a
binary-coded address which identifies a specific location in core memort that contains a value
to be manipulated by the commad. 1be bits which make up the command portion of the word
may be subdivided into groups, each having its own operati,?nal Significance. Figure 1-5
shows one possible configuration for an instruction word.

'" COMMAND ADDRESS(DlRECTOR) ,
,~ 1 2 3 4 5 6 7' 8 9 10 11 12 13 14 15 16 17

III1111I111II11111 j
Figure 1-5.

It should be reiterated that in core storage there is no physical difference between an
instruction word and a data word. Each is a sequence of binary bits, each bit having a value
of "1" or "P.". The distinction between instruction words and data words is determined by
the timing cycle of the computer that extracts the register contents from core. For our purposes
in this text, we will classify all timing cycles in two general categories: an "instruction"
cycle and a "data" cycle. If a register is extracted from memory during an instruction cycle,
the contents of that register are decoded and treated as an instruction. The computer treats
the coded configuration of l's and P's as an ADD, SUBTRACT, DIVIDE, or MULTIPLY, etc.,
instruction. If through some error in the logic of the program, the computer extracts from
core a data word during an instruction cycle, it will go through the normal decoding process.
At this time there are two possible actions for the computer to take, both of which will result
in errors. First the data word might have the configuration of an instruction word and the
computer will execute an instruction which was not intentionally programmed. Or, the computer
will not recognize the word as a command in its repertoire of instructions and will hang-up. *

During a data cycle the computer extracts the contents of a word from memory, brings it
directly into the CPU(CentralProcessingUnit),andoperates on it as data (i.e., adds, subtracts,
multiplies, divideS, etc.). At this point it is stressed that the words brought from memory to be
manipulated may be either a data word or an instruction word. This gives the computer the
capability to modify individual program instructions, a very powerful programming tool.

To illustrate how an instruction may be modified, let us assume a hypothetical system ill
which the command codes are as follows:

238 = ADD 258 = DIVIDE

248 = SUBTRACT 268 = MULTIPLY

During a data cycle, location X containing the instruction code 238 (ADD), is brought into
the CPU and another register containing the value 1 is added to it: 23 + 1 = 24. The sum 24 is
stored into location X. 'Ibe contents of X is DOW a SUBTRACT instruction, and, if the program
ever decoded location X again, it would perform a subtraction.

*Bang-up. A DOn-programmed stop in a routine. It is usually an unforeseen or unwanted
halt in a machine pass. It is most often caused by improper co_ding of a machine instruction or
by the attempted use of a DOn-existent or improper operation code.

5

ADDRESSING TECHNIQUES

DIRECT ADDRESSING

It was mentioned that the address portion of an instruction word contains the location of
the word to be manipulated. 'Ibis is called direct addressing. There are also many ways in
which addressing can be modified.

INDIRECT ADDRESSING

Some computers have the added capability of using INDIRECT ADDRESSING. In indirect
addressing, the address portion of the instruction word contains not the address of the data
word, but rather the address of a word (data or instruction) which contains the address of the
data word. Some indicator must be used in the instruction word to indicate that indirect address­
ing rather than direct addressing is being used.

'!be following discussion is based on a hypothetical register of 18 bits. An instruction was
being executed by a computer and bit'8 is designated as the indirect address indicator. A
value of II~" in bit 18 would indicate direct addressing and a value·of 111" would indicate
indirect addressing.

,. COMMAND -I' ADDRESS -.
0 1 2 3 4 5 6 7 ' 8 9 10 11 12 13 14 15 16 17

,
0 ¢ ¢ ¢ 1 ¢ 1 1 ¢ 1

Figure 1-6. Bit '8 Indicates Direct Addressing

In Figure 1-6, the il)Struction word is using the direct addressing mode and the computer
will perform the specified operation on the contents of the register at location 55(8).

COMMAND ... ADDRESS -.
I ¢ 1 2 3 4 5 6 7

Figure 1-7. Bit '8 Indicates Indirect Addressing

'!be indirect addreSSing mode is illustrated in Figure 1-7 by changing bit 18 to a 111."
The program now recognizes that location 55(8) will contain the address of the operand rather
than the operand itself.

Let's take a look at the difference between direct and indirect addreSSing. Suppose the
computer is about to perform the instruction (Figure 1-8) located at core location 1~.fJ(8). It
has decoded the instruction (23(8» which says to add the specified data (or operand) to a
register in the CPU.

6

EXAMPLE 1

1008

1-COMMAND---Do I <I---DIREC'lOR
I I

I
D.

I I
• f 1 2 3 4 S 6 7 18 9 10 11 12 13 14 15 16 17 I

I ~ /.1.1, ~ ~ I, I, Ix ~ 1.1, 1.1.1, I, /' 1.1
2 3.(8) t S 1

X = i, Direct Addressing
X = 1, Indirect Addressing

Figure 1-8.

, 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16 17

5168 '-1-1-1-1-1-1' 1_1_11 1-1- r /9/1 r 11 /11
t 4 S 3(8)

Figure 1-9.

II 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15 16 17

4538 .

Figure 1-10.

If X = i in Figure 1-8, indicating direct addressing, the DATA to be added (the operand)
will be contained in core location 516(8), which would be the value 453(8). If X = 1 in Figure
1-8, indicatiqg indirect addressing, the address of the operand is located in location 516(8). At
location 516(8)' Bit *8 is a i. Therefore, the program is now in the direct addressing mode.
The operand is located at address 453(8). The operand is then the contents of location 453(8),
which is 63(8).

RELA TIVE ADDRESSING

In the previous mention of direct addressing, the address in the director of an instruction
word specified the absolute core location of the operand. In some modes of operation, however,
the address in the director is not the absolute core location, but must be added to another
reference address to give the actual core location of the operand. This reference address
is usually contained within the Base Address Register (BAR), Figure 1-11, and is added to
the director automatically in all direct and indirect addressing modes to obtain the absolute
core location of the operand. The actual core address is then relative to the base address, which
is located in the CPU in the Base Address Register (BAR).

Figure 1-12 shows an instruction word in the CPU that has just been decoded as the command
(23(8» which is to add the operand to the contents of a register in the CPU •.

7

EXAMPLE 2

- 1 2 3 4 S 6 7 8 9 10 II 12 13 14 15 1.6 17

Figure 1-11. Base Address Register

" 1 2 3 4 S 6 7 8 910 II 12 13 14 15 1.6 17

I" 1- /1 1- I' /1 11 /; r 11 I~ /1 /6 16 /1 /1 /1 I_I
2 3(8) S 1 6(8)

X = ~ for Direct Addressing
X = 1 for Indirect Addressing

Figure 1-12. IDstruction to be Executed

122~(S) BAit
_ +516(81 in CPU
1736(S)

In Relative Addressing the location of the operand is dependent upon two things:

1. The type of addressing used (X = ~, direct addressing and X = 1, indirect addressing,
Figure 1-12).

2. The base address contained in the BAR (Figure 1-11).

-If the indicator bit in Figure 1-12 were a II~," the actual operand would be located at core
location 1736(S) (BAR + DIRECTOR) and have a value of 567(S)' which would then be added to
the register in the CPU. If the indicatorwere a "l" the address of the next register to investi­
gate is 1736(S). Since its indicator bit is II~", its contents, which contain a value of 341(S}I
will be added w the register in the central processing Wlit.

Relative addressing can also be used in accessing program iustructious. In this case a
Base Program Register (BPR) is uWized. The absolute core location is relative to the value
stored in the Base Program Register (BPR). The technique of using a BPR allows locating the
same program in different core locatious each time it is used.

Let's assume a small program is to be loaded into core from tape. Usually it will be located
at the first available core area large enough to hold it. This location may not necessarily be
the same each time the program is loaded into core. Where it will be loaded is dependent
upon the core allocation at the particular instant the program is to be read in.

The usefulness of the BPR can be shown by the following example. Assume the program
was loaded into core at location 2~~~(S) and following. Suppose it has an iustruction that tells
the program to jump to instruction l_,S) within the program. With no BP:a, the program would
go to absolute core location l~~(S) which is not in the program area and obviously incorrect.
With the BPR loaded to the core location of the first iustruction of the program (2~~~(S»' the
computer will branch to the correct location. The addition of the BPR (2~~~(S» and l~.f.I(S) will
cause the computer to jump to the proper core location (21~~(S». The computer will 8lways
get to the correct location in core regardless of where the program is located if the BPR is
properly set.

S

IMMEDIATE ADDRESSING

Another type of addressing often used is called immediate addressing. In this case, the
director portion is the actual operand, rather than the address of the operand. lIn Example #2,
for instance, the datum added would be the actual value of the director, 516(8). To indicate
immediate addressing, either another indicator bit must be used or perhaps the command
portion may use a separate command for immediate addressing.

In the examples of direct, indirect, and immediate addressing, a hypothetical method was
used to indicate the proper method of addressing, which mayor may not be similar to that
used by a given computer. The main point is that when more than one option exists in an address­
ing system, there must be some method of indicating the mode of addressing that is desired.

It was previously mentioned that in variable word length computers instructions are also
variable in length. In some variable word length computers (e.g., the 1410) the first character
of an instruction has a word mark over it. Each instruction has one or more "legal'~ lengths,
the length dependen~ on the number of options selected with that specific command. It can be
seem that this provides for great flexibility and compactness in a computer program.

v
An example of a 1410 instruction would be: ~~5~~~1~~ which means "add the contents of

location ~5~~ to the contents of location ~1~~~ pel store the results in location ~1~~~."
Another version using the same instruction would be ~~5~~hich means "add the contents of
location ~~5~~ to itself arid store the results at location ~~5~~."

This type of computer has the disadvantage, however, of slow speed since data transfer is
serial, transferring only one character at a time. Fixed word length computers can transfer
data in parallel (i.e., a whole word at a time), since the words are all the same length and this
method is physically possible. In a variable word length computer, although each character is
transferred in parallel (i.e., all bits of one character at once), the transfer is serial by char­
acter, one at a time since the computer does not know the length of the word untn it sees a
word mark over a character.

Some computers, although primarily having a fixed word length, have a variable length
instruction capabllity. An example of this is the Burroughs D825 Computer used in the BUIC
System. 1be D825 has a fixed length 48-bit memory register. A single instruction can be a
minimum of 12 bits long or a maximum of 84 bits 10111. Instruction flexibility like this allows
for more power instruction repertoire. In operation, certain allocated bits in the operation
code tell the computer what length or variations the complete instructions will have. USilll
this method of defining instruction length eliminates the need for word marks. In the D825,
although it has a variable length instruction capability, data words are allowed in 48-bit single­
register configuration only. Another example of a computer which operates with the same
philosophy is the RCA, Central Data Processor, used in the AUTODIN Syst~m. Its instructions
may range from 28 bits in length to 140 bits in length. That is, a command with DO directors
to a command with four directors. However, each operand is fixed at a half word (28 bits for
this machine) in length. Data may be manipulated in form of 3,4, 6, or 8 bit addressable
characters, or half words. Note that the instruction words are composed of one or more half
word units, while data may be composed of units varyilll in size from one 3 bit character to
28 bits (a half word).

ADDR~GSYSTE~

As has been mentioned previously, some computers are designed to use two or more
addresses or director fields per instruction word. An ADD instruction in a computer utilizing

9

two directors may contain the location of data to be added to (augend) in one director wnd the
location of the datum to be added (addend) in the other. Either one may be the address of the
register in memory where the sum is to be stored. If the computer uses a three director
instruction word, the third director would be the storage location for the sum. Systems using
more than one director are called MULTIPLE ADDRESSING SYSTEMS. Systems using one
director are single addressing systems. Figure 1-13 is a single addressing system. Figure
1-14 and 1-15 are multiple addressing systems.

COMMAND I DIREC'roR

Figure 1-13. Single Address

COMMAND I DIRECroR I DIRECroR

Figure 1-14. Two Directors

COMMAND I DIRECtoR DIRECtoR DIREctoR

Figure 1-15. Three Directors

10

CHAPTER 2

FLOW CHARTING TECHNIQUES

111e original specifications for a problem usually comes to the programmer in the form of
an English prose statement. It is the responsibility of the programmer to translate this state­
mentinto a solution. After the method of solution is determined, it can then be coded into some
language which is acceptable to a computer.

Problem solution may be accomplished in several different stages, possibly by several
different individuals. It begins with the original statement of the problem to complte, concise
statements of the methods of solution. 111e purpose of this block is to find methods of solving
problems.

111e statement of the problem solution completed by the formulator could very well be a
simple English prose statement of the methods used. In order for it to be clear and conCise, it
could take on the form of an outline, or what is more commonly referred to as OPERATIONAL
SPECIFICA TIONS, where each line is numbered or lettered and describe!!' a single operation,
and the flow is indicated by references to other lines in the operational specifications. '1bat
is, the statement of the solution not only specifies the tasks which must be performed, but also
the sequence in which they must be performed. Outlines of this type, while they do serve a
function, can be difficult to follow, and would certainly increase the task of the coder if he
were required to code from them. The solution to the problem can be stated far more clearly
in a graphic form, so that inspection alone serves to point out the sequence of operations, and
prose is used to describe them. Hence, the FLOW CHART, which is nothing more than a graphic
representation of the method used to solve a problem.

The flow chart is not only a deSign tool, but is also a form of documentation for the final
product, flow program. The flow chart serves to facilitate maintenanc.e of the program and to
clarify any interfacing with other programs in the same system.

FLOW CHART SYMBOLS

Many symbols are available from which a "language" for flow charting can be selected.
The selections made are often programmer-specific, for no standardized set of flow chart
symbols exist. In order for a flow chart to provide maximum communication it would see
advisable to establish a standardized set of meaning at least within a specific organization or
programming group. This is often done, and the conventions to be set down (here) are simply
one such set of meanings ••• perhaps the most widely used.

Basically a flow chart consists of seven elements:

1. FUNCTION BOXES used to enclose the prose description of the operations performed
in the program. A function box has one entrance and one exit.

2. I/o FUNCTION BOXES used to indicate operations pertinent to peripheral equipment
(card reader, mag. drum, line printer, diSC, CRT displays, cart punch etc.). An I/o symbol
is an inverted trapezoid and has one entrance and one exit.

3. A DECISION SYMBOL, which represents a decision, has one entrance and two or more
exits.

11

4. FLOW LINES used to indicate the sequence of operations performed by the program.
Flow lines cormect function boxes, decision symbols and connectors.

5. TEXT is used within symbols to describe data manipulations, data computations and to
ask questions. Outside the function boxes test is used for comments and to describe the cha­
rateristics of a now line.

6. CONNECTORS are used to connect remote portiOns of a now chart. 'Ibey do not indicate
any operations.

7. FLAGS are programmer aids.

FUNCTION BOXES AND I/o SYMBOLS

Function boxes contain descriptions of the operations to be performed by the program.
These operations include data manipulation and computations. Data manipulation includes the
movement of information from one location to another location within core memory and the
CPU. Computational operations include all the arithmetic operations - addition, subtraction,
multiplication, division, and exponentiation.

The function box is represented in a now chart by a rectangle. 'Ibe text within this rectangle
is kept quite brief, while still allowing it to completely specify the operation being performed.
The following list includes the common symbols used in function boxes.

FUNCTION SYMBOL

exchange function: ==

setting function: =

addition: +

subtraction:

multiplication: •
division: /

exponentation: ••
absolute value: Ixi

Some examples of these are as follows:

DESCRIPTION

exchange the contents of the left term with
the contents of the right term

set the left term equal to the contents of the
right term

"plus"

"minus"

"times"

"divided by"

"raised to the power"

"the absolute value of X"

AA=BB

Figure 2-1.

Figure 2-1 shows the transfer of information from location BB in core memory to location AA
in core memory. BB retains its original value. However, the original value in AA is destroyed.

12

Notice that the equal sign (=) does not have its conventioaal meaning but is a setting or storing
function, setting AA equal to the value of BB, so that they are equal after the operation is
completed. If AA had a value of 25 and BB a value of 3, after the setting function, AA would
contaiQ a value of 3 and BB would have a value of 3 •

.. 1 XX=2*AA+BB

Figure 2-2.

Figure 2-2, a function box, indicates both an arithmetic computation and the storage of the
computed value in the location XX. It reads, "Multiply AA by 2, add BB, and store this sum
in location XX', •

\~1~7
Figure 2-3.

Figure 2-3 is an I/o symbol which represents the transfer of information from the card ·reader
into the internal storage location AA.

I yy = Ic' I
Figure 2-4.

Figure 2~4 reads "take the absolute value of CC and store it into YY". Suppose CC had a value
of (-5). After this operation was completed, YY would have a value of (5).

I AA == BB I
Figure 2-5.

Figure 2-5 reads ~Iexcbange the contents of location AA with the contents of location BB". If
AA had a value of Uhllld BBa value of 5, after the exchange AA would contaib 5 and BB a value
of 1;.

,))ECISION SYMBOLS

A decision symbol is represented in a flow chart by a diamond. It is the ONLY flow chart
symbol from which more than one line of flow may exit, and it always contains an operation
which can be stated as a question. '!be following is a list of common symbols which are used
in decision blocks .•

EQ "equal to"
NQ "not equal to"
LS "is less than"
GR "is greater than"
LQ "is less than or equal to"
GQ "is greater than or equal to"

"compared to"

13

Examples of decision symbols are as follows:

>----t.,yES

NO

Figure 2-6.

Figure 2-6 asks if AA is equal to zero. The two now lines leaving the box indicate the direction
of now for the two possible responses to the question.

~ __ YEs

NO

Figure 2-7.

Figure 2-7 asks the question, HIsAAgreaterthan OR equal to BB?" If Yes, AA is either greater
than BB OR equal to BB. If DO, it is less than BB.

c

LS EQ

Figure 2-8 •

GR

. In Figure 2-8 the ~olon is used to indicate comparison of two values, AA and BB. The three
! now lines leaving the symbol indicate the three directions of now, depending on the relationship

which AA has to BB.

Figure 2-9.

Figure 2-9 represents a sequence of code which wW. inspect the item XX to determine its
value. When such an operation is undertaken, the decision symbol must provide exits for all
possible values of the item. 'Ibis type of question is called a SWITCH.

14

FLOW LINES

The lines of flow in a flow chart terminate in an arrowhead and are used to indicate the
sequence of operations in the program. Function boxes have only one line of flow entering
them, and only one leaving them. Decision symbols have only one entry, but two or more flow
lines leaving them.

EXAMPLE 1

Given: Core location AA, BB, and CC.

Required: If the value of AA 1s equal to the value of BB, set CC equal to a value of 1.
Otherwise, set CC equal to a value of ~.

Solution:

YES

CC = ¢

Figure 2-10.

FLAG

A flag is a symbol that appears along a line of flow.

EXAMPLE 2

Some
Function

No Yes

Some
Function

Figure 2-11.

CC 1

Some
Function

15

Comments that appear within a nag are usually "nice to know" information. The comment
never affects the program; it simply informs, or reminds, the programmer of some condition
that exists. It is a programmer-aid to make reading the now chart easier.

TEXT

Text is used within now chart symbols to describe functions and. ask questions. Text may
also appear outside the symbols along the lines of now or within a nag to indicate the meaning
of the line of now or for comments.

Some
Function

Some
Function

A COlll1lent
Could Appear
Here

No

Figure 2-12.

CONNECTIONS AND TERMINAL SYMBOLS

Some
Function

Circles are used in now charts to indicate entry pOints or exit points from programs. A
special non-circle symbol, an off-page connector, is used when an exit is being made to another
page. Since function boxes are entered by only one line of now, and program logic frequently
requires that the same function box be entered from several different exit points, there is a
need to provide for the joining of now lines using connectors.

The connector contains a label and is inserted into the now at a minimum of 2 points--the
exit point and the entry point. There can be only 1 entry point but 1 or more exit points. An
indication of an entry point is simply a now line from a connector. An indication of an exit
point is a now line to a connector. The entry connector and the exit connector(s) contain
identical labels.

The oval is used to indicate the beginning or end of a program and will contain the word
START or END. This symbol is also used to indicate the beginning or end of a subroutine and
will contain the word START or RETURN. Subroutines will be discussed further in Chapter 7.

16

ON-PAGE CONNECTORS

Figure 2-13. Exit Connector

~
I:::tion I •

Figure 2-14. Entrance Connector

OFF-PAGE CONNECTORS _

Figure 2-15. Exit Connector
(to another page)

Figure 2-16. Entrance Connector

Given: The core locations AA, BB, CC, and DD containing values.

Required: If AA is greater than BB, s,t Rl equal to a value of 1; otherwise, set Rl
equal to _. If AA is greater than CC, set R2 equal to 1; otherwise set R2
equal to _. If AA is greater than DD, set R3 equal to 1; otherwise set R3
equal to_.

17

In the following flow chart, (Figure 2-17), notice the use of the oval for the entrance and
final exit from the program. Also, notice the use of circles for connectors .AA, BB, and CC.

NO Rl = ¢

Rl • 1

NO R2 • ¢ t------t~ BB

I------t~ CC

RJ = 1

Figure 2-17.

LEVELS OF FLOW CHARTING

There are two levels of flow charting used in solving a problem.

1. A MACRO flow

2. A MICRO flow

18

A MACRO chart is very general and includes all major areas of the problem. It is used 1n
obtaining a broad overview of the problem and its general solution.

A MICRO flow chart is much more detailed and indicates the precise sequence of events,
step-by-step, that will take place 1n the solution of the problem.

Usually, a macro flow 1s written first and then is used as a guide; the micro flow 1s pre­
pared in the detail that is required.

SUMMARY

The flow chart is simply a graphic representation of the method used to solve a problem.
It is used in conjunction with data descriptions to provide the input to the coding phase of a
program, as well as to provide program documentation for the benefit of those persons whose
responsibility it is to maintain the program.

Certain conventions have been established for the form of a flow chart. Rectangles are used
to represent any internal transfer of information from location to location as well as mathe­
matical computations. The diamond is used to represent decision-making steps within the
program's logic. Circles are used for entries and exits, and for connections between lines of
flow. An I/o symbollsusedtorepresentdata transferred between internal and external storage.
Only one line of flow will enter and leave a function box; the decision symbol has one flow line
entering it, and may have several lines leaving it.

The language within the flow chart symbols will be brief, but will completely describe the
operations being performed. Arithmetic operations are indicated by their normal symbols
except for multiplication and exponentiation which are represented by one or two asterisks,
respectively. Text may also appear outside the symbols along the lines of flow, or within a
flag to indicate the meaning of the line of flow.

19

CBAPTER3

INFORMATION ORGANIZATION

During the operation of a computer program, the main memory of the computer will
contain two types of information. The first of these is the program instructions stored in a
sequence determined by the programmer. '!be second type of information within the computer
memory is the data with which the program works. Data occupies space in memory just as
instructions do, and it cannot be distinguished from instructions by inspection by the computer.

Data in memory is structured to be meaningful and easily handled by the computer program.
Thus structures of information inside the computer serve the same purpose as structures
outside the computer, that is, to organize information for ease of access and use.

ITEMS*

Countless forms of one type or another, contain various items to be filled in; typical of
these is an employment questionnaire. '!bese forms provide space for the items to be filled in,
each item being a single piece of information relating to the person filling in the questionnaire.

''!be items of information used by a computer are similar to these items. Computer items
are single pieces of information relating to a specific object.

'!be items on a form are normally named, that is they have a title to identify what is to be
filled in. The items used by computer programs are also named to identify them. Certain con­
ventions for item names exist and are dependent upon the program language and/or computer
used. One convention that is universally used is that an item name must be unique to the
computer program USing it.

Some items on a questionnaire are allocated more space for data than others. The guiding
principle seems to be to allow sufficient space for the largest amount of information which the
item might be called upon to contain. Items in compute r programming are also allocated space
on the basis of the size of the values they must contain. Items in theory could range in size
from the smallest space available to all of the computer memory.

When referring to information on a questionnaire we distinguish between the name of the
item and the information (value) contained there. Ina similar manner a distinction must be made
in computer programming between the name of an item and its contents. '!be name of an item
in a computer program identifies the location of the information in the computer memory. '!be·
contents (value) of an item is the information contained at the location specified by the item
name.

Definition: '!be NAME of an item refers to its location in memory while the VALUE of an
item refers to the contents of that location.

For example, suppose we have an item name ABeD and its contents, 25. In this instance
the item ABeD has the value 25. ABCD identifies the location in storage which contains the
value 25.

It is important to understand that the name of item is not stored in the item, but only
identifies its location in computer memory.

*A basic unit of information in data processing which is sometimes called an element of data.

20

1

Salary _---"2~ __

3

Figure 3-1.

1. ITEM NAME: Identifies and references
LOCATION of item on form.

2. ITEM VALUE: Information contained in
the item.

3. ITEM LENGTH: Space on the form occu­
pied by an item.

A single piece of information relating to a specific person.

1
1. ITEM NAME: Identifies and references

LOCA TION of item in the computer
2 memory.

3 2. ITEM VALUE: Information contained in
the item.

3. ITEM LENGTH: Space incomputermem-
ory occupied by the item.

Figure 3-2.

A single piece of information in computer memory relating to a specific object.

ITEM TYPES

Since the item is generally the BASIC unit of information in the computer, it must contain
various types of information. 1be various item types describe the way in which information is
represented in the item. 1be most common types of information in computer programs fall
into three general categories: arithmetic, Hollerith, and logical. For each of these categories
there are several ways of representing the information in the computer memory. The fact that
reference is being made'to a binary computer where representation of any kind of information
must be made in binary digit configurations, must be kept in mind. Items are described or
declared so that all users of the items know exactly what a particular item looks like and con­
tains. Documents which describe items in a program are called compools or data dictionaries.
When preparing to write a program to solve a problem, it must be determined what information
is necessary to the solution of the problem. n must then be decided in what form this information
will be stored in the computer memory, in other words the structure must be decided upon.
Part of the statement of the solution to the problem, indeed a vary important part, is the com­
plete description of the items to be used and their meanings.

ARITHMETIC ITEMS

Information which is strictly arithmetic, or numeric in character is represented as an
ARITHMETIC item. The value (contents of an arithmetic item) is represented by its binary
equivalent, which has mathematical meaning. There are two kinds of arithmetic items, fixed
and fioatingpoint. A fixed point arithmetic item is dynamically accounted for by the programmer.
On the other hand, a fioating point arithmetic item represents a coding scheme where the
binary digits have a varying precision that is given as part of the value and which is dynam­
ically accounted for by the computer.

21

Arithmetic items are described or declared in terms of their name, type, location and size
of their field, whether signed or unsigned, any fractional bits, and their units of measurement.

ARITHMETIC EXAMPLE:

Describe an item salary which will hold numbers from 0 to 1500 with a precision of 1/4.
Before describing the item we must determine how many bits are needed. Since the only
values are pOSitive, the item does not need to contain a sign bit. The greatest magnitude
(1500) needs eleven bits and two bits are needed for the fractional part of the value. There­
fore the field for this item requires thirteen bits.

DESCRIPTION:

Item Name
Item Type
Beginning Bit Location1
Item Size2
Signed/Unsigned
Fractional Bits
Units of measurement

SALARY
Arithmetic Fixed Point
1
13
Unsigned
2
Dollar

HOLLERITH ITEMS

Information which represents specific alphabetic, numeric, or special characters is stored
as a HOLLERITH item. Each different character is represented by a unique code. Hollerith
items are used primarily for input/output and involve little or no manipulation.

HOLLERITH EXAMPLE:

Describe an item which will contain an employee name, where the maximum length of any
employee name is eight characters. Assume the code for each letter occupies six bits.
(6-bit Hollerith)

DESCRIPTION:

Item Name
Item Type
Beginning Bit Locationl
Item size3
Coding Scheme

NAME
Hollerith
1
48
6-bit Hollerith

LOGICAL ITEMS

Certain information is neither arithmetic nor Hollerith. Instead its value denotes some
logical meaning. 'Ibis type of information is stored as a logical item. There are two sub­
types of logical items: Bo~ean items and status items.

1 Most significant bit (MSB) which is the left most bit of an item
2ltem length or number of bits
3ltem length in bits

22

BOOLEAN ITEM:

A logical item which is one bit in length is called a BOOLEAN item. It has two logical
states (on or off, yes or DO, etc.) These two states are denoted by the value of the item
(jj or 1).

BOOLEAN EXAMPLE:

Describe an item which will denote\whether or not the line printer is available.

DESCRIPTION:

Item Name
Item Type
Beginning Bit Location
Item Size
Coding Scheme

STATUS ITEM (VALUE):

PRNT
Boolean
1
1
~ = DO; 1 = yes

A logical item which bas more than two logical states (and thus occupies more·than one
bit) is called a STATUS item. Each value assumed by the item is associated with. a particular
logical meaning.

STATUS EXAMPLE:

Describe an item which will denote a certain employee's job. The various jobs are-­
apprentice, journeyman, craftsman, clerk, secretary, and supervisor. Since there are
six possible jobs, the item must have six values. Thus a status item with three bits can
be used as it can contain six values.

DESCmPTION:

BUIC ITEMS

Item Name
Item Type
Beginning Bit Location
Item Size
Coding Scheme

JOB
status 2,
3
~ = Apprentice
1 = Journeyman
2 = Craftsman
3 = Clerk
4 = Secretary
5 = SUpervisor

The BUIC m system for item declarations follows the basic concepts presented. However,
there are specific procedures to follow.

The procedures that follow are for COMPooL sensitive items •• The format prese~ed is
unique to the BUIC m assembler. The examples that follow in this chapter will adhere to

.Compool sensitive items are items that:
1. Have fixed location in a register.
2. Can be accessed and manipulated by any program in core.
3. Can be accessed by item name reference as contrasted with a specific core location
reference.

23

COMPooL sensitivity. 1be other examples throughout this text will follow in format but will
not follow with reference to the number, of letters that compose an item name. The same will
be true for table names.

The standard COMPooL sensitive item format for the BUIC m assembler is as follows:

ITEM NAME
PARENT
TABLE

BLOCK STARTING
NUMBER BIT

ITEM - Specified an item de~laration.

NAME - Name of the item.

PARENT TABLE - Name of table of which item is part.

NUMBER
OF BITS

ITEM
TYPE SCALING

BLOCK NUMBER - Specifies the block number of the table in which the item is located.

STARTING mT - Specifies the starting bit position of the item within the computer word.

NUMBER OF mTS - Specifies the number of bits assigned to the item.

ITEM TYPE - Specifies the item type.

SCALING - Allocates bits for the integral and fractional portion of signed and
unsigned items.

24·

The permissible code for the ITEM TYPE is as follows:

B= BOOLEAN

A one-bit indicator treated as one item.

U = UNSIGNED

Any unsigned number. If the number is an integer, it need not have scaling associated with
it. If it contains fractional bits, then scaling must be associated with it.

S = SIGNED

Any signed number. Again, it mayor may have scaling associated with it.

v = VALUE (STATUS)

The value of each configuration of bits in the item has a specific meaning, i.e.,

M = MIXED

1 = north
2 = east
3 = south
4 = west

Items defined as M type are assumed to include more than one distinct piece of information
grouped as one item for programming convenience.

T = TRACK

Items defined as T type are special items that contain track numbers for the BUIC m
tracking system. The track numbers are coded in 4-bit switch code and the meaningful
bits are 1-16. The item representing the track number is defined as 18 bits to take advantage
of BUIC III coding conventions.

D = BINARY CODED DECIMAL

The item is divided into a series of four bits, each set of four bits representing a decimal
digit.

H = HOLLERITH

Alphanumeric code that is assumed to be in Burrough's format.

C = CBARACTRON

That code which generates symbols on situation or tabular display scope.

EXAMPLE 1

Problem:

Solution:

EXAMPLE 2

Problem;

Solution:

EXAMPLE 3

Problem:

Describe an item which will accommodate numbers ranging from -1~~
to +12~ with a precision of 1/32.

The item will, first of all, be signed, since its possible value include
both positive and negative numbers. The maximum integr:ls value which
the item might have is 12~. Since 12~ is greater than 2 - 1 (63: the
largest value which can be contained in 6 bits) but less than 27 - 1
(127: the largest value which can be contained in 7 bits), seven integral
bits must be allocated. The preciSion called for is 1/32, which will
require 5 fractional bits. The item then, will have a total of 13 bits
allocated. It will be signed, with 7 integral bits and 5 fractional bits.
The name of the item is arbitrary, let us call is NUMB.

ITEM NUMB FOP~l 1 13 S ~7.~5

Describe an item to contain salaries for employees, where the maximum
salary is .1000, and no salaries are specified more precisely than 264.

The required item, MONY, will be unsigned (assuming all Salari~ are
positive); it will have 1~ integral bits, since U~~~ is less than 2 - 1
(1~23),· and 2 fractional bits to represent values no more precise than
1/4. The total number of bits in SALARY is 12.

ITEM MONY FOP~2 1 14 U 12.~2

Describe the item(s) necessary to contain today's date.

25

Solution:

EXAMPLE 4

Problem:

Solution:

EXAMPLE 5

Problem:

Solution:

26

First, one item is used which has a maximum value of 123199, where
the first two digits represent month, the second two digits day, and
the last two digits represent the last two digits of the year, where
the century is implied; second, three items can be set up MO, DA, and
YR, where each has its respective maximum. The first method will
require 17 bits, since the value 123199 is less 217, 131.072. The
second method will require 4 bits for MO (since 12 is less than ~), 5
bits for DA, and 7 bits for Y R, for a total of 16 bits to contain the
required information. The second method seems to have two advantages;
the first is space, if one is concerned about saving a bit, and the second
is the logical format of the information, which is much more appealing
split into the three items than assembled into the one large number.

ITEM DATE TIM.01 1 16 U

Describe an item which will be capable of containing distances over a
range of .0.1 miles to 1,.0.0.0,.0.0.0~.0.0.0,.0.0.0 miles, where order of magnitude
is of more importance than precision.

The integral portion of this value, if it were represented in fixed
point format, would require 4.0 bits. While this is within the range of
possibility for some machines, it is far too large for others. The addi­
tion of the fractional portion of the item would make it still worse.
The obvious solution to the problem is to describe the item as floating
point, occupying one word of computer memory. The item's name might
be DIST.

ITEM DIST MIL.01 1 48 F

Describe an item to contain card suit for a program which will play
bridge.

The suit progression for bridge is from clubs at the lower extreme,
through diamonds and hearts, in that sequence, to spaces at the upper
extreme. This item could be described as Hollerith, but would require
eight characters to accommodate the word diamonds, and therefore
48 bits. If the item is described as a status item, the value zero can
correspond to clubs, I to diamonds, 2 to hearts, and 3 to spaces. The
item will occupy 2 bits, as one advantage, and, from the programming
standpoint it will be possible to inquire of the item whether it is greater
than zero, for example, which is saying "is it greater than clubs 7' The
item SUIT, then, is a 2-bit status item where zero corresponds to clubs,
1 to diamons, 2 to hearts, and 3 to spades.

ITEM SUIT PLY.01 1 2 V(Clubs) V(Diamonds) V(Hearts) V(Spades)

V() - is every possible status. Each status must be enclosed in paren­
thesis and preceded by the letter "V".

Problem:

Solution:

Describe an item which will indicate whether the weather is or is
not rainy.

The item that will fit the problem perfectly is the Boolean type item.
Using the Boolean item RAIN, we can let zero equal false; it is not
raining, or we can let one equal true; it is raining.

ITEM RAIN WET.61 12 1 B

The programmer, preparing to write a program to solve a problem, must first determine
what information is necessary to the solution of the problem. He must also decide the form
in which this information will be stored in computer memory ••• in other words he must
design the required items. Part of the statement of the solution to the problem, indeed a very
important part of it, is the complete description of the items to be used and their meanings.

TABLES

The information required for the computer solution of a problem frequently falls naturally
into a tabular organization, as does information for manual processing. Since the BASIC UNIT
OF INFORMATION is the item, it will also appear in this context. Frequently, several items
will be used to describe an object, and this set of items will be repeated to describe a series of
objects. The structure describes it as a TABLE. A telephone directory is as good an example
of a table as one could hope to find. The items appearing in it are name, address, and telephone
number. They are repeated for as many times as there are objects, people, to describe. The
set of items which describe a specific objectis known, in computer terminology, as an ENTRY.
Thus, one line in a telephone directory, containing one name, one address, and one telephone
number is an entry. The table, then, is a collection of entries describing objects which have
been classified together. In tables constructed for computer usage, entries are generally
numbered, beginning with ZERO by convention. The last entry in a table will, therefore, have
a number one less than the total number of entries in the table (n-1). The space occupied by an
entry is known as a slot. Its size depends on a number of factors which include the number and
size of the items in the entry. Within any one table, the size of the slot will be constant. When
the size of the slot is constant, the entry is referred to as a FIXED LENGTH ENTRY. When
the entries contain identical items, the entries are referred to as FIXED STRUCTURE ENTRIES.

AA I BB

CC I DD I EE

1 AA I BB

CC I DD I EE

2 AA I BB

CC I DD I EE

Figure 3-3. Fixed Length and Fixed Structure Entries

Figure 3-3 is an example of fixed length and fixed structure entries. The size of a slot is
traditionally an integral number of words, one or greater. Tradition is mentioned here because

27

it is certainly not impossible to construct and work with tables which have slot sizes which are
not integral multiples of a word. It is, ~owever, much easier to deal with tables which conform
to this tradition, and many programming languages impose this constraint.

Since tabular information is so greatly used in programming, it is necessary to distinguish
between items which appear in tables andltems, such as those described above, which appear
outside the environment of a table. 'Ibe distinction is made by calling the items in tables
"TABULAR ITEMS," and those outside tables either "NONTABULAR" or "SIMPLE".

TABLE DECLARATION STATEMENT

In the preceding section the format for coding item declaration statements was given.
These formats are used whether an item is non-tabular or tabular. When one or more items
are to be organized as part of a table which is the more typical use, all items within a single
ENTRY of the table are defined consecutively. 'Ibe entire entry is preceded by a table declara­
tion statement to completely define the format of a table. 'Ibe format for definition of a table
is as follows:

TABLE NAME NUMBER WORns NUMBER BLOCKS WORDS/BLOCK TABLE TYPE

TABLE - Specifies a table declaration.

NAME - Name of the table.

NUMBER WORDS - Specifies the number of words in the table. It does not include the control
word for variable length tables.

NUMBER BLOCKS - Specifies the number of blocks comprising the table.

WORDS/BLOCK - Specifies the number of words in .each block of the table. Equal to the
number of entries in the table.

TABLE TYPE - Specifies the table type.

The permissible code for the TABLE TYPE is as follows:

STRUCTURE LENGTH

R = rigid R = rigid
V = variable V = variable

ORGANIZATION

P = parallel
S = serial

BUIC m COMPOOL limits table names to three characters. Item names are limited to four
characters. The rest of this text does not conform to these limitations. With this exception, all
item and table declarations are correct, relative to COMPOOL format.

TABLE DECLARATION EXAMPLES:

Define a table, ADI, that is 48 entries long, serial organization and rigid structure.

TABLE ADI 48 ~1 48 RRS

28

Define a table, GZC, that is 45 entries lcmg, with two blocks, parallel organization, and rigid
structure.

TABLE GZC 45 RRP

Define a table, MBG, that is variable leugth, with two blocks, serial organization and rigid
structure.

TABLE MBG RVS

The above examples are COMPOOL sensitive.

TABLE PACKING

The size of an item is determined by the MAXIMUM VALUE of which the item.is capable.
When items are grouped together into entries, certain problems arise with respecUo their
allocation into words and parts of words. '!'he problem of this arrangement is called packing,
and is one of the factors involved in the DETERMINATION OF SLOT SIZE. It is obvious that,
if a table is to contain three items, AA, BB, and CC, and each of them occupies DO more than
a word of computer storage, these items could be arranged so that each is RIGHT-JUSTIFIED
WITmN A WORD of storage and the leftover bits are not used. In this case, the size of the
slot would be three words. However, it might also be 'possible, depencUng on the exact size of
the items' and on the size of the computer register, to PACK two, or perhaps all three, of the
items into the same wOrd,. thus conserving one or tw,o registers in each slot. The first method
is not entirely without its advantages--true it maywaste considerable SPACE, but, on the other
hand, TIME will no doubt be gained in the processing of the tables·siAce full words can be
referenced and no 'special instructions are needed in order to access an individual item. The
conflict here is one which coritinually confronts the programmer ••• the necessity for a trade­
off of TIME versus SPACE. The deciSion, of course, depends largely on the exact requirements
of the problem ••• in some cases, time is far more valuable than is space. In many cases,
the reverse is true. In most cases, however, both time and space are at a: premium, and the
programmer must try to optimize the use of both.

When items of no more than one word in length are stored separately in registers, they
are called UNPACKED. When some or all of the items in a table are stored together in one
word, the table is called. PACKED,. as are the items in it. In arranging to pack a table, the
programmer need keep in mind only one rule, and that is that NO ITEM IS SPLIT between
two words of computer memory. 'Ibis rule is simply a convention, established because of the
serious problems in processing caUsed by having a single item stored partly in one word and
partly in another.

EXAMPLE 7

Given: The items XX, 7 bits long, YY, 2.6 bits long, and ZZ, 12 bits long are to be
stored in a table.

Required: Show the arrangement of words of a typical entry containing these items if the
computer to be used has a 4S-bit word and space is to be conserved.

29

Solution: Since the total number of bits occupied by the three items is under 48, the entire
group of items can be packed into one word. The arrangement of these items
within the word is arbitrary, in this case, and could be as follows:

1 9 1¢ 16 17 36 37 48

Not

1
xx

1

yy

1
zz I Used

Figure 3-4. A Packed Entry of 3 Items.

The numbers above the diagram in Figure 3-4 are the bit positions allocated to the items,
where the bits are numbered from one at the left.

EXAMPLE 8

Given: The items PT'NO, 45 bits long, MAKE, 3 bits long, QTY'OH, 10 bits long,
YEAR, 14 bits long, and PRICE, 24 bits long, in Figure 3-5 are to be stored
in a table.

Required: Show the arrangement of the words of a typical entry containing these items if
the computer word being used is 48 bits long, for both the cases where storage
space need not be conserved.

Solution: In order to conserve storage space, it is necessary to pack the table containing
these items. Allocating space from left to right within words, and taking the
items in the order in which they are listed, the following arrangement is pro­
duced.

WO~ ~ 1~1 ____________ n_'_No _________________________________ 4_5~r_:' __ ~_48~1

WORD 1 r QTY'OH 19
1
"

24 25 48

YEAR PRICE

Figure 3-5. A Two-Word Entry.

Notice in Figure 3-5, that the listing of the items was quite fortunate. Had they been
listed in a different order, would the same results have been produced? If not, would the
difference have lengthened the slot from two words to three or more?

30

If storage space need not be conserved, the following arrangement of the entry will be
produced:

1 3 4

W~~~
~~--------------------------------~

Pr'NO

1 45 46 4g

WOOD1~~ml

1

1
38

W<RD2 ~ qrr'OI!

1

W<RD3~35
YEAR

1 24 25 43

WORD 4 PRICE

Figure 3-6. Unpacked Entry of 5 Words.

Concern with the question of packing items into tables actually requires, as is obvious from
Figure 3-6, a certain amount of knowledge of the computer to be used. Because this matter
falls into this realm, the topic will not be discussed beyond the level just presented. The topic
which follows will also rely to some extent on reference to the computer register, but it bas,
perhaps, more general applicability than does item packing.

TABLE STRUCTURE

Depending on the SEQUENCE OF THE WORDS oftbe entry and tbe sequence of the ENTRIES
themselves, tables may be categorized in two ways. Althougb this area is one apart from
table packing, tbe two are connected in that table packing determines the size of the slot.

31

The most obvious method for organizing a table will be discussed first, and is called
serial structure. This name is used because tables organized in this way have the words of
an entry in series and the entries in series. The structure will be explained by means of an
example.

EXAMPLE 9

32

Problem: Show the table described in example 8, given that it is 1. entries long, beginning
at register 2SS of computer memory, and that it has a serial structure.

Solution: (1) When the table is packed

REGISTER

2r69J

2iSl

398

399

TABLE

1

Q'l'Y'OH

QTY'OH

QTylOH

Q'lYIOH

QTY'OH

PRO 2

11 25

PTINO

~IEAR I PRICE

Pr'Ne

I YEAR I PRICE

Pr'NO

I YEAR I PRICE

Pr'NO

I YEAR I PRICE

Pr'NO

\
Pr'NO

I YEAR I PRICE

Figure 3-7. Packed Table.

R RS

45 48 BLOOK ENTRY

IruKE -1

Tl-iAKE
1

1

I MAKE
2

1

lMAKE
3

1

I MAKE

Ir-lAKE

Notice that all slots are two words in length, fixed length, and that each entry is identical
to all other entries, fixed structure. Notice also that the table occupies _ registers of mem­
ory ••• the number 01 entries times the number 01 words per entry.

(2)

REGISTER
2~

2{61

2912

2913

2914

2915

~916

2917

2918

2919

695

696

697

698

699

When the table is not packed

TABLE PRO 5IJIJ 5 IIJIJ R RS

BLOCK ENTRY

1

2

3

4

91

1

2 1

:3

4

99

Figure 3-8. Unpacked Serial Table.

Notice in Figure 3-8 that, although the table length has increased considerably due to
the increase in slot Size, the properties of the serial table remain the same. 'lbe ,words 01 an
entry are stored in series in a serial table, and the entries are stored in series. The second
method for organizing tables, called PARALLEL STRUCTURE, divides the entry into SUB­
ENTRIES of one word in le~ These sub-entries are groupe_d together into BLOCKS, where a
block is simply defined to be a set 01 sequential registers, and the blocks are grouped together,

33

to form the table. Once again, the principles can be described most effectively by means of
an example (Figure 3-9).

EXAMPLE 10

Problem: Show the table described in example 8, given that it is u~11 entries long, begin­
ning at register 21111 of compute,r memory, and that it has a parallel structure.

Solution: (1) When the table is packe~

TABLE

REGISTER 1
2¢¢

2¢1

2¢2

299

3¢¢

3¢1

3¢2

399

QTY'OH

QTY'OH

QTY'OH

QTY'OH

PRO

11

Pr'NO

Pr'NO

Pr'NO

Pr'NO

YEAR

YEAR

YEAR

YEAR

26.8 2

25

)
PRICE

PRICE

PRICE

I
I

PRICE

Figure 3-9. Parallel Packed Table.
"

RRP

,5 L.S EN'IRY BLOCK

MAKE ¢

P.AKE 1

iAKE 2

1

MAKE 99

¢

1

2

2

99

Notice in Figure 3-9 that all of the registers in block one contain exactly the same items,
arranged in the same format; the same is true of block two. The table is called parallel
because the RELATIVE LOCATIONS of all of the words of a given entry are equal, where
relative means relative to the beginning of the block. 'The beginning of block one is register
21111; relative to that, the first word of ~entry 4 can be computed by adding four to the beginning
address of block one... namely,' 211i. Thus, in a parallel table all the words of an entry
have the same relative locations with respect to the beginning of their blocks. 'Ibis characteristic
of the parallel table provides ease of manipulation in machine code for some computers.
The difference between processing the two types of tables will not be detected, however, in
flow charting.

34

(2) When the table is not packed.

TABLE PRO 5~~ 5 l~~ RRP

RIDISTER 1 2 8 EN'1RY BLOCK

2~¢ PT'NO ~

S 1

299 99

3¢¢ ¢

2

399 99

4¢¢ ¢

3

499 OTY'OH 99

5¢¢ YEAR ~

4

599 YEAR 99

6¢¢ PRICE ¢

699 99

Figure 3-10. A Parallel Unpacked Table.

Notice that, ·in Figure 3-10, there are five blocks of l~~ registers each, and that, once
again, the relative address of each word of a given entry is the same as the relative address
of each word of the same entry.

SUMMARY

Tables, are composed of.ITEMB grouped together into entries containing information about
the same object. The entries, which occupy SLOTS, contain information about related objects.
The size of the slot is determined by the size and number of the items in the entry, and the
type of PACKING which is used. The size of the table is determined by the number of entries
and. the size of the entry. The table may be organized in either SERIAL STRUCTURE, where
the words of an entry are consecutive and the entries are consecutive, or in PARALLEL
STRUCTURE, where identical one-word sub-entries are grouped together into BLOCKS, and
the blocks are grouped together to form the table; noting that where the entry is one word in
length, DO distinction can be made between serial and parallel structure.

35

CHAPTER 4

ORDEMNG SCHEMES

INTRODUCTION

In addition to table design and item types, the problem of infQrmation organization for com­
puter hancD.ing also includes considerations with respect to the order, or sequence, of the
iDformation stored in the entries of the table.

Most tables will contain more than one item per entry, and one or more of these items
may be chosen as "key" item(s). A KEY ITEM is that item in a table which governs the order
of the entries, and by which entries are normally accessed.

Although the selection of the key item is DOt the topic to which this chapter is addressing
itself, it is appropriate to mention that this selection is amost entirely based upon the need of
the particular processing problem. A personnel table, for example, which contains such items
as MAN' NO, NAME, AGE, SALARY, DEPENDENTS, DEPT, JOB'CODE, SUPERVISOR, etc.,
could be ordered On the basis of almost any one of these items. However, for payroll purposes
MAN'NO or NAME would probably be chosen. For the purpose of keeping track of transfers
from department to department, a table ordered on the basis of DEPT might be the most
efficient.

Once a key item has been chosen, wbatorclerlng schemes are available? Four such schemes
are to be considered here. They are:

1. Ascending order

2. Descending order

3. Unknown order

4. Consecutive order

ASCENDING ORDER

Let us first consider the ascendlngoJ'der.1he reader is familiar with this sequence scheme,
for it is found in many ordinary collections of information. The telephone directory, for example,
is organized in ascending sequeDC}' by name. The dict10aary is organized in ascending alphabetic
sequence. '!be table of contents of any book is organized in ascending sequence by chapter
number or by page number, wb1le the index is in ascending alphabetic sequence.

The essential charaeter1st1c of ascenellDl sequence is simply that the key item increases
by some POSITIVE VALUE from one entry to the next. 'Dlls characteristic does not prohibit
an increase by zero; or, inother.words,the key item from successive entries MAY be identical.

The following examples illustrate asceDCl1Dc order:

38

EXAMPLE 1

Entry Number MAN'NO SALARY

~ ~~ 1~~.~~

1 ~1~ 219.5~

2 ~~2~ 89.75

3 ~~21 15~.~~

999 7463

MAN'NO is the key item in tbis table, which is ordered in ascending sequence. Since
man number is ordinarily unique, no duplicate keys will be found in tbis table.

EXAMPLE 2

Jones Margaret 428~NeoshoAvMN •••••••••••• EX 7 .. 9424

Jones Margaret 1943 21Jth SM ••••••••••••••• EX 4-3893

Jones Margaret B 1742 MalclmAvWLA •••••••• GR 8-2227

'Ib18 eDlDple is ·taken from the telephoae dlrectory. Notice the increase of zero in the key
item, NAME from the first entry to the second. Neitber address IIOr telephone DUIIlber appears
to be an a.ux1liary key in this case, for no increase is apparent in them from the first entry to
the secobd.

EXAMPLE 3

.. try Number DEPT JOB'CODE TEAM ,
'1 • 1

1 'I l' e
2 fll 23 2

3 I" f5 1~

4' 2' 15 1

875 98 12 4

Example '3 18 taken from a persomael table which contains two key items; the item DEPT
18 ~ primary key, wIdle JOB'CODE 18 a secondary key. Within oDe department, the entries of
the table are orpni.d in aaeendibg sequence on the item JOB'CODE. The departments

themselves are in ascending sequence. In this case, it is entirely possible that the combined
key DEPT-JOB'CODE increase by zero, produciDg consecutive entri~s. with the same identi­
fication.

AscendiDg sequence provides ease of access for tables whose key items do not increase in
a rigid pattern, but for which some ordering scheme is desireable clue to the processiDg for
which they are intended. For example, lookiDg up information in a table is a great deal easier
when the table is organized. Can you imagine lookiDg up phone numbers if the telephone directory
has no organization? The same sort of problem exists in computer memory. Furthermore,
additions to a table and deletions from it become a great deal easier if the table is organized in
a logical sequence.

DESCENDING ORDER

Descending order. is simply the reverse of ascending sequence. It is characterized by the
fact that the key item(s) decrease (though the amount of decrease may be zero) from one entry
to the next. The processiDg of a table organized in descending sequence will not differ a great
deal from the processi. of one organized in ascendiDg sequence. It has the same advantages
as does the first type. If this is the case, why will descendiDg sequence .ever be chosen in pre­
ference to ascending? The answer to this question lies solely in specific cases. (Index registers,
which are usually used for these purposes partially govern the choice.) If, for instance, the
higher order values of the key item must be accessed most frequently, AND the equipment
being used functions best when memory locations are accessed from lower to higher, then
descendiDg sequence will indeed be preferable. In short, then, the cboice between these two
methods depends almost entirely on the method of a,ccessiDg and the computer to be used.

UNKNOWN O,RDER

The third scheme. listed is UDknown (random) sequence, or the complete lack of a known
sequence. It seems somewhat paradoxical to state that no sequence is a type of sequence;
however, let us persue rand.Om sequence to determine its advantages, if indeed it has any.

Let us first consider the means by which "organized" tables, that is, those in ascendiDg or
descendiDg sequence, get to be that way. In order for a table to be organized into ascendiDg or
descending sequence, one of two tbiDgS must occur. Either the information beiDg entered
into the table is sorted (either maJUally or by EAM equipment) before it is stored in the
table ••• a long and boriDg process if the table is at all large, but a cheap one •.• or, once
in the table in random sequence, the information must be sorted under program control. The
latter of the two methods constitutes a large area in the scope of programming skills. There
are many ways to sort a table under program control, most of which will be covered later.
SUffice it to state that, at best, when they are concerned with large amounts of data, sortiDg
programs consume a great deal of time. Thus, program time can be cut down appreciably if
sorting is not required.

This leads us to consider when " random" sequence can be effectively employed. There
are many cases in which all the information in a table must be processed and the order in
which it is processed is of no consequence. Let us borrow an example from the BUIC "system,
in which radar returns must be processed and displayed on the consoles of the military person­
nel who will make decisions based on these data. The returns come into the BUIC system from
remote radar locations, arriving and being stored on the drums in random sequence. When the
computer Bystem is ready to process these radar returns and to display them, they must all
be displayed (and processed) and there is no advantage to pickiDg a certain sequence of pro-·
cessing. In this case, therefore, it is certainly not advisable to spend the computer time
necessary to sort these data into any sequence.

38

We might consider that a payroll operation might just as well be completed in random
sequence, since at each processing interval all entries must be processed, and there is no
advantage to the processing system in selecting a sequence. However, in this case, there is,
clearly, a point in time at which the results of. the processing are much more useful if they are
sorted. Distribution of the resulting paychecks can be much enhanced if the paychecks are
already in reasonable sequence. Further, a payroll table, once sorted can remain sorted
unless additions or deletions are necessary. Thus, the sorting operation need not be repeated
often. And, last, the same table which is used for the payroll operation might also be used for
other operations which require an organization scheme. In general, the use of unknown sequence
is advantageous when it occurs naturally and a particular known sequence is not beneficial in
the processing.

CONSECUTIVE ORDER

Finally, we come to the consideration of the consecutive sequencing scheme. This scheme
is bounded by very rigid constrains and is higbly advantageous when it can be used. '!be
consecutive sequence requires that the key item(s) increase BY THE VALUE ONE from one
entry to the next. It is, therefore, a mOdification of the ascending sequence. Its advantage lies
in the ease with which information can be accessed when the key increases in this fashion. In
fact, no "looking" is necessary in order to find a particular entry ••• if the key is known,
the location is also known. If the values of the key do not increase by one, naturally, this scheme
has a disadvantage in the space wasted by meaningless entries.

Examples will best illustrate the possible variations of this scheme:

EXAMPLE 4

Entry Number

1

2

89

ANGLE

1

2

89

SINE

."1745

."349"

.99985

COSINE

.99985

.99939

."1745

In this excerpt from a table of the values of trigonometric functions for angles given in
degrees, it is clear that the key item ANGLE is consecutive in the entries of the table. Further­
more, since the values began at zero, they correspond exactly to the entry numbers for the
entries in which they are stored. In such as case as this, the key item is actually eliminated as
unnecessary material in the entry. Given an item IN' ANGLE for which we would like to find
the sine, we simply refer to the item SINE in the entry whose number is equal to the value in
the item IN' ANGLE. Such tables as those of trigonometric functions are ideally suited to
organization in consecutive format, for none of the values of the key are useless or blank.
When there are large gaps in the sequence of values of the key, such an organization is surely
space-wasting.

39

EXAMPLE 5

Entry Number PART' NO QUAN

~ 1_ 25

1 1~1 1_

2 1~2 2

3 1~3 ~

99 199 57

In example t5 from a parts inventory, the key item PART'NO is consecutive, though it does
not beCin at the value zero. Its value is, IIOnethe1ess, related directly to the value of the entry
nUD1ber of its position ••• clearly, the information for part number 125 is stored in entry 25.
As in the previous case, the key item does not necessarily have to appear in the table, when the
table is consecutive.

The words "CONSECUTIVE" and "SUCCESSIVE" are very closely associated in meaning.
While the former implies a difference of one, as described above, the latter implies a FIXED
DIFFERENCE, not necessarily one.

Because of this Similarity, tables which are, in fact, successive are frequently categorized
with consecutive tables. Successive tables are tables whose key items vary from entry to entry
by a fixed value.

EXAMPLE 6

Entry Number XX leY

~ ~.~ ~.~

1 ~.5 ~.321

2 1.~ 1.285

3 1.5 2.89

32.13

Tbil table of coordinates on a parabola of focal length 28 inches, where x is given in feet
and y in inches, is successive. The key item is XX, which ascends with a fixed value of .5; it
can easUy be seen that if the "unit" were considered to be 1/2, then the difference between
two adjacent values of the key is one "unit".

40

ALGORITHM

The table lends itself to the same sort of immediate referencing as does a consecutive table,
except that an "ALGORITHM" or nale for computation, must be used to determine the entry
number, given the value for x. Clearly, in this case, entry number = 2 • XX or K = 2 • XX
where K is the entry number. It would also be possible to leave out the item XX in this table,
because of this relationship.

EXAMPLE 7

Entry Number MAX'CAP FIXD VAR

5

1

2 15

4 25

In this table, taken from those of a management game, the key item MAX' CAP, increases
by a fixed value oU.1betableis therefore successive, and the item MAX'CAP may be removed
from the table if an algorithm can be devised whereby the entry number can be computer'given
a value for MAX'CAP. In this example, the computation is as follows: I = (MAX' CAP - 5) /6.

SUMMARY

Four major plans for the organization of information in tables have been discussed,
ascending sequence, descending sequence, unknown sequence, and cObSecutive (including
successive) sequence. Each has its particular advantages for specific processing needs, and
no hard and fast nale applies to the choice of method.

41

CHAPTER 5

BASIC METHODS OF ACCESSING INFORMATION

INTRODUCTION

As the programmer plans the organization of the information with which his program will
deal, he does so with the thought in mind, that the items in the table he is creating must
eventually be accessed and the data within the table manipulated. With a given set of data,
then, he must attempt to determine the method of structuring the table so that each item can
be easily accessed.

The considerations influencing the programmer's decision include: entry structure; number
of items per register, and number of registers per entry; table structure: parallel or serial;
table length: fixed or variable; the order of the information in the table: ordered or unordered;
and the possible order of new information input to the table during processing.

It can be said, then, that the organization of a table is based primarily on the nature of the
information in it, and the methods used to access this information.

ITEM IDENTIFICATION

The process of locating or retrieving a specific item of information from a previously
organized table is called information retrieval. In order to determine the location of a specific
item, there must be a means of identifying the item.

Undoubtedly, the most obvious means for identifying a piece of information is by its name.
In fact, when a non-tabular item is accessed, its name designates the complete identification.
The name ALPHA then, given to a non-tabular item, represents the location of ALPHA. This
relationship, of course, can only be true whenthe names given to non-tabular items are unique.

On the other hand, when the item to be used describes a series of objects, and thus occurs
in a table, its name is not sufficient to identify it. The name of this item must be modified in
some way to distinguish one item from the others like it. For example, if the name BETA were
contained in a 5" entry table, reference to the name BETA could mean any one of 5., possible
occurrences of BETA.

SUBSCRIPTS

It can be seen, upon examination of tables, that while the name of an item remains constant
throughout the table, the entry numbers vary from entry to entry. It seems reasonable, then,
to use this variable factor, the entry number, as a means for distinguishing one item from
another in the same table. The combination of item name AND entry number allows the pro­
grammer to determine the specific item of many possible items with which he is concerned,
and constitutes the complete identification of that item.

Since entries in a table containing un" entries are numbered from _ to n-l, the first entry
in a list containing the item BETA could be referenced to as BETA (f'), the fifth as BETA (4),
and the last as BETA (n:"l). The parentheses are simply a convenient means of representing
the relative pOSition of the entry in the table. The numbers within the parentheses are commonly
called indices or subscripts.

42

In order to process all of the entries of a specific table, the programmer must designate
both the item name and the number of the entry from wbleb that item must be taken for each
of the. e~tries in the table. . .

EXAMPLE 1

Given:

Required:

Solution:

TABLE ABC 5 1 5 R R P
ITEM BETA ABC.81 1 8 V

ITEM SUM 1 48 t1
ITEM AA 1 48 U

Find the sum of all the values of BETA and store tbiSauM in the non-tabular
item SUM.

AA=AA+BETA(l)

AA=AA+BETA(2)

AA=AA+BETA(3

AA=AA+BETA(4

SUM = AA

Figure 5-1.

43

The solution in Example 1 requires independent reference to each occurrence of the item
BETA. AA is a CPU register used ·to contain the intermediate results as the operation is
carried out. The solution to the problem can be represented graphically in the following way
as well.

(START

~UM=BETA(~)+BETA(1)+BETA(2)+BETA(3)+BETA(4

END

Figure 5-2.

Although this now chart is far easier for the writer, the first solution actually represents
the machine operations in the solution of the given problem.

EXAMPLE 2

Given:

Required:

Solution:

TABLE
ITEM

ITEM

BBB
BETA
TALLY

515
BBB.81
1 3 U

\

R
1

R
1.8

P
U

Count in the non-tabular item TALLY the number of values of BETA which
are equal to zero.

See Figure 5-3, next page.

The solution to this problem is not as easily simplified as is the solution to example 1.
Notice, however, that beyond the first question, the now chart simply repeats itself, USing
different subscript values for the item BETA.

In both of the preceding examples, it was necessary to access successive values of the item
BETA, for all the occurrences of BETA in the table. In order to represent this, or indeed to
accomplish it on the computer, it was necessary to repeat the same or similar operations
several time, changing only the subscript for an item. 'Ibis is a tedious method indeed, and
seems an unreasonable one as well.

VARIABLE SUBSCRIPTS

The problem of repetitive accesses to items in a table can be easily solved by subsCripting
the item name with a non-tabular item (index word) which will be initialized, updated and tested
under program control. USing this principle, the programmer can make use of a "loop" in
which the named item need be referred to only once for any one operation. The general form
for identifying a tabular item USing this scheme will be NAME(ITEM), where NAME represents

TALLY .. ~

TALLY •

TALLY + 1

TALLY ..

TALLY + 1

TALLY =
TALLY + 1

TALLY ..

TALLY + 1

TALLY ..

TALLY + 1

Figure 5-3.

the name of the item being accessed, andlTEM represents a DOn-tabular ITEM, the index word,
whose value is being used as a subscript.

As an example of the technique mentioned above, one might look at the expression BETA
(INDEX). This expression refers to the item BETA in the entry wbose number is contained in
the non-tabular item INDEX. If the table containing the item BETA were 5" entries long, and
all entries bad to be accessed, the programmer would set up the item INDEX so that it would
contain values from" to 48 inclusive. It is a simple matter to iaitialize the value in INDEX at
,., update it at the proper time by the desired amount (one, in thi8 case), and test it for a final
value lreater than 48. Sim1larly, one could iDitialize INDEX at 48, decrease it by one at the
proper time, and test it for a final value less than zero.

45

EXAMPLE 3

Given:

Required:

Solution:

A 5-entry table containing the item BETA.

Find the sum of all the values of BETA, and store this sum in the non­
. tabular item SUM.

INDEX = ¢

SUM = ¢

SUM = SUM +
BETA(INDEX)

INDEX + 1

Figure 5-4.

This problem, exactly the same as the problem in Example 1, has been solved by using the
technique described above, namely, the variable subscript. Notice that, after the entry to the
program, the first two boxes are "initializing" steps. '!be first of them, set INDEX = ~, is
initializing the variable subsCript. The second is initializing the non-tabular item SUM. This
step is necessary not because of the demands of the problem, but because of the method used
to solve it.

46

The section of the problem which begins at AA is the "body" of the loop. As such, it is
concerned with actually performing the desired operation, in this case, the forming of a sum.

The two boxes· preceding the END in this program account for the updating, or "modifi­
cation" of the loop, and the testing of it, respectively. Notice that in this case the variable
subscript was first modified, then tested. It is also possible to test the subscript first and then
modify it.

EXAMPLE 4

Given:

Required:

A 5-entry table containing the item BETA.

Count in the non-tabular item TALLY the number of values of BETA which
are equal to zero.

The solution for this problem makes use of a decrementing loop, that is, one initialized at
the maximum value and decreasing to the minimum value of the variable subscript. Further,
the abbreviation I is used for the subscript. The use of single letters for variables whose
primary functions are as subscripts is common practice in programining.

Solution:

TALLY - ¢

1~4

1=1-.1

YES TALLY =
TALLY + 1

Figure 5-5.

BB

4'1

FORMULAS AS SUBSCRIPTS (ALGOmTIIMS)

'It ,is quite possible that items in a table have been organized such that the subscripts which
wID complete the identification of an item, and thus establish its location, wID be generated u
a reault of some computation. A rule that is used to compute an entry address is known u an
algorithm. In these cues, it is Dot necessary to usign the computed value to some non-tabular
item which then could be used u a subscript. Rather, it is possible to use the algorithm itself
as the subscript.

EXAMPLE 5

Given:

Required:

Solution:

A 3S,fJ-entry table containing the items SINE, COSINE, and TANGENT, where
the entry number is equal to the angle whose trigouometric functions are
represented in it. '!be non-tabular items ALPHA, BETA, and GAMMA con­
tain values for angles in degrees.

Set item COS, a non-tabular item, to the cosine of an angle computed u
follows:

ALPHA + 2 BETA - 3 (GAMMA/4)

C START

COS = COSlNE(ALPHA+2*BETA-)*(GAMMA!4»

END

Figure 5-8.

Notice that the solution uses the entire algorithm u a subscript, eliminating
the need to make a separate computation of the angle in question, store it in
an item, and use that item u the subscript for the item COSINE.

The discussion of subscripts has thus far taken the reader through the use of constants
as subsCripts, u well u the use of variables and algorithms u subscripts. It becomes
apparent that ANY single valued function may be used u a subscript. The only real restriction
placed upon a subscript is that it must be an integer. This is reasonable since subscripts are
in fact entry numbers, and entry numbers are integers.

48

TABLE SEARCH

In many programming problems, not all entries of a table need be processed, but rather
only selected ones. If the selection is based on the· identification of the entry, no difficulty
exists which cannot be solved using the methods described above. If, however, the basis for
selection of the entries is NOT their locations, but rather one or several of the values stored
within them, then finding a specific record becomes a matter of searching for it. '!be search
consists not only of the determination of location, but also of a value comparison. When an
item compares favorably with the given criterion, the search is terminated.

SLOT-BY -SLOT-SEARCH

Conceptually, the simplest way to conduct a table search is to proceed through the table
entry comparing the key item with the given value and accepting or rejecting it on that basis.
Because of the nature of the information contained therein, some tables must be processed in
this way; however, this technique is one of the more inefficient ones for this purpose.

'!be efficience of a searching technique is generally measured in terms of the number of
memory accesses and comparisons which are necessary to locate an arbitrary entry. Obviously,
this method will, for an "n"-entry table, require an average of n/2 accesses and comparisons
to locate a given entry. IUs possible to improve this average \ slightly by ordering the information
in the table so that the most popular entries are accessed first, but this stul does not provide
what would be judged to be a highly efficient search. .

EXAMPLE 6

Given:

Required:

Solution:

A 49-entry table containing the item XX.

Find the largest value of XX and store it in the non-tabular item LARGE.

In the solution to this example, notice the initializing steps which occur
between the entry to the program and the AA connector. The body of the loop
appears at AA and the follOwing, where each entry. is inspected and compared
with the previous value of LARGE. The area of the program beginning at BB
is the modification and test portion of the program, where subscript I
is first tested, then, if it is within the proper range, it is increased and another
iteration of the 10011 is performed. '!be technique used in this solution is the
slot-by-slot search.

49

EXAMPLE 7

Given:

Required:

50

LARGE = XX(¢)

I = 1

YES LARGE =
XX(I)

END

YES

I = I + 1

AA

Figure 5-7.

TABLE ABC 1.8.8 1 1.8.8 R V P
ITEM ALPHA ABC.81 1 1.8 U

TABLE DEF 1. 1 1.8.8 R V P
ITEM BETA DEF.81 1 1.8 u

I CONTROLS ABC
J CONTROLS DEF

In the table DEF following the last meaningful entry of BETA store all the
values of ALPHA which are greater than zero.

Solution:

NarE:
J = DEF¢¢
could be
used here.

J =

NENT(BETA)

YES
Bl!."'T A (J) ""

ALPHA(I)
J = J + 1

NO BB J----~

NarE:
I LQ AH:¢¢ -1
could be used
here.

NOTE:
DEF¢¢ = J
could be used
here.

I "" I + 1

NENT(BETA) =
J

END

Figure 5-8.

Notice that the solution to the problem, first of all, involves a slot-by-slot
search of the table containing ALPHA for those values of ALPHA which are
greater than zero. The first two steps are, once again, initializing ones, the
first setting up the subscript I for the processing of ALPHA, the second set­
ting up J to store into BETA. Note that J begins at NENT(BETA) since the
last significant entry already in BETA is stored at BETA(NENT(BETA)-l).

51

'!be area of AA and continuing to CC is the body of the loop, where ALPHA
is inspected and stored, if storage is required. Notice that J is increased
only when a new BETA bas been stored.

The area beginning at BB is the increment and test portion of the program,
where I is increased and tested against NENT(ALPHA) since the table
containing ALPHA is also variable length. If the subscript is within the
required range, NENT(BETA), which should be altered since new values have
been added to the table containing BETA, is reset to J, and the program
stops. The student should be convinced that at this point in the program
execution J does contain the correct value for the setting of NENT(BETA).

BINARY SEARCH

If the information in a table can be ordered into some sequence based on the values of one of
the items in the entries, the table then can be handled with more sophisticated methods than the
slot-by-slot search.

Suppose, for example, that a table containing the items AA and BB can be arranged so that
the values contained in the item AA are in ascending sequence; so that the smaller values for
AA are in the lower <p, 1, 2, etc.) entry numbers of the table and the larger values for AA are
in the higher (49, 50, 51, etc.) entry numbers. In this case, if the first value to be examined
is located in the middle entry oftbetable, and it is not the desired value, then the desired entry
will lie in either the upper half of the table or in the lower half (if the desired entry exists at
all). Since the values of AA are ordered, it can always be determined in which half of the table
the entry sought is located.

This procedure halves the size of the table which remains to be searched, hence the term
"binary search". To continue the process, the new table is split again and the middle term is
inspected; this procedure is repeated until either the desired entry is found or until the search
if narrowed down to a single entry (or address).

Although the concept of a binary search is not a particularly difficult one, some of the details
of its programming can become rather trying. For instance, how does one compute the middle
entry number? What if the computation of an entry number produces a fraction? Will the value
be rounded or truncated? How many subscript-like items are required? How will they be used?

Perhaps the best method to resolve some of these problems is to consider an example, and
determine whether the proposed solution will work under the given circumstances.

EXAMPLE 8

52

Consider a table contaJ.ning values for the items XX and YY, where XX is the
key item. Let us say that the table is variable length, and that the current

value for NENT(XX) is 8. Let us coasider the case where the value contains
the foUowiDg values:

1

2

3

4

5

6

7

xx
1

7

13

18

22

25

27

28

II

50

17

22

6

125

9

4

2

Figure 5-9.

UsiDg the binary search techniques, we will look for the entry containiDg XX EQ 25. We will
perform the foilowiDg steps" in conducting the search:

1. Compute the middle entry number. We can coldpute the middle entry with this formula:

n11ddle entlY = (Top Entry f + Bottom Entry f)/2

or

(,fJ + 8)/2 = 4

2. Inspect the middle entry. XX(4) NQ 25; it 18, in fact, less than 25, from which we can
deduce that the desired entry lies ~n the lower half of the table. And entry (4) now becomes the
top entry of the new table.

(4 + 8)
3. Compute the new middle entry number. 2 = 6

4. Inspect the middle entry. XX(6) NQ 25; iUs greater than 25. Thus, the desired entry lies
in the upper half of the table. The bottom entry number 18 now 6.

5. Compute the new middle entry number. Us1ngtheprinciple developed in 1 above, we make
this computation by dividing the ending entry number of the new table plus the beginning entry
number of the new table by two. Thus, (4 + 6)/2 = 5.

6. Inspect the middle entry. XX(5) EQ25. The correct entry has been found; the search is
termiDated.

53

Reviewing this method, let us attempt to construct a now chart of the process. Step 1,
computing the initial middle entry number appears to stand alone, that is, to be an unrepeated
one. Looking, however, at the other steps which involve the computation of a middle entry
number, can we arrive at a general form Which will apply to all of these situations, so that
it can. be reused for the computations? It is possible to consider, in each case, that a sub­
table is being used which has both a beginning and ending entry number. The ouly respect
in which the first case differs from this pattern is that it is not really a sub-table. It does,
however, have beginning and ending entry numbers, namely, zero and NENT(XX). Let us, then,
set up non-tabular items to contain the beginning and ending entry numbers of the sub-table
with which we are presently concerned, and initially set these items to the values zero and
NENT(XX).

We begin, then, with:

Sf ART

I .,. ~

,
K = NENT(XX)

Figure 5-10.

To be used for beginning entry
number.

To be used for ending entry
number.

Continuing then, to the computational use of these Index registers, we can construct a
general computation of middle entry number, through which the program wi11100p:

J = (I+K)!2

Figure 5-11.

54

To be used for middle entry
number.

Steps 2, 4, and 6, above, all involve the inspection of the middle entry. They illustrate the
three possible exits from a comparison of two values; they are equal, the first is larger, or
the first is smaller. The following illustrates this comparison.

c >

=

Figure 5-12.

If the result of the comparison is equality, as in step 6, the search is terminated; thus, we
can add the following.

c >

Figure 5-13.

55

If the result of the comparison is the "less than" case, as in step 3, a new middle entry
number must be computed. Since we intended to reuse the computation at AA, we need only
revise the value for either 1 or K at this point. In this case, the new table is the lower half of
the present table, and it is therefore the beginning entry number, I, which must be changed.
We can add the following flow chart.

c >

I = J

Figure 5-14.

If the result of the comparison is the "greater than" case, we are at step 5 of our solution,
and need only to reset the ending entry number in order to proceed. 'I11us we have:

c >

I" J K = J

Ilgure 5-15.

58

Putting the entire now chart together, we have:

I = ¢

K '=

NENT(XX)

AA

J=

(I + K)/2

< >

I = J K=J

Figure 5-18.

Using this now chart, let us now go back to the sample table, trying to find XX EQ 1. Going
thro~h the now chart, we perform the following operations:

1. Set I to ze roo

2. Set K to 8.

3. Set J to (j + 8)/2, or 4.

4. Compare XX(4) to 1. XX(4) is greater than 1.

5. Set K to J, or 4.

6. Set J to (j + 4)/2, or 2.

7. Compare XX(2) to 1. XX(2) is greater than 1.

8. Set K to J, or 2.

9. Set J to (j + 2)/2, or 1.

10. Compare XX(l) to 1. XX(l) is greater than 1.

11. Set K to J, or 1.

12 •. SetJto (j+l)/2. But at this point, the result is fractional. We must decide, .then, whether
fractions will be rounded or truncated. it is obvious, because of this particular situation, that
rOunding is not a good choice. Rounding, it is clear, would never allow access to entry zero.
Let us, then, specify. at this point that truncation of fractions will occur at step AA of the now
chart.

13. Compare XX(j) to 1. They are equal.

14. stop.

Since we have, by considering this case, introduced a new restriction on the now chart of
the binary search, we ought to consider another of the "end cases" for this now. Let us use
the binary search on the sample table again, this time searching for the value XX EQ 28.

1. Set I to zero.

2. Set K to 8.

3. Set J to (j + 8)/2, or 4.

4. Compare XX(4) to 28. XX(4) is less than 28.

5. Set I to J, or 4.

6. Set J to (4 + 8)/2, or 6.

7. Compare XX(6) to 28. XX(6) is less than 28.

58

8. Set I to J, or 6.

9. Set J to (6 + 8)2, or 7.

10. Compare XX(7) to 28. They are equal.

11. Stop.

The technique of truncation does not seem to prevent access to the last entry in the table.
Let us, before we abandon the sample table, consider one last problem. What will happen,
using this now chart, if we search for a value of XX which does not exist in the table, for
example, XX EQ 4? Clearly, Since, if the value did exist in the table, it would lie between the
1 and the 7, the search will resemble the search for XX EQ 1. In fact, it will be identical to
that search untU step 13, where equality will not be found, but rather, XX(tJ) will be less than
4. Returning to the now chart, we would insert, then, as step 14) the setting of I to~; this
would be followed by step 15) where we would set J to (tJ + 1)/2, truncation indicated, producing
zero again. In other words, we will find ourselves in a never-ending inspection of entry zero
of this table, which is certainly not a desireable situation. It appears that this problem must
be resolved somehow, since we have shown a clear deficiency in the Dow chart.

To restate the problem: the now chart does not provide an "error exit" for the case where
the desired value does not exist in the table. In order to resolve the problem, the programmer
must determine some means of detecting this situation when it has occured. Some possibilities
are: 1. When the same entry has been accessed, or is about to be accessed, more than once in
sequence, the desired entry does not exist (the latter can be determined without the addition of
a counting function; or 2. when I, the top entry number becomes greater than Ie, the bottom
entry number. This condition indicates that the top of the table and the bottom of the table have
by-passed each other.

Figure 5-17.

ERROR
srop

The difficulty arises at the time of the setting of I and/or Ie. Moreover, the problem arises
precisely when the value to which either lor Ie is being set is the same as the value it presently
contains. It should be, and is, rather simple to eliminate this problem by asking a question
before each of the settings in question. The question to be asked is posed above, actually, and
is "IS Ie EQ J? or IS I EQ J?" the yes response to either question indicates an error condition.

59

'lbe modified flow chart, then, has the following form:

I ... rJ

K =

NENT(TABIE)

J =
(I + K)/2

NO

Figure 5-18.

It only remains to insure that the flow chart described above will work equally well on
tables containing an odd number of entries, since all tests have been made on a table con­
tainiog an even IDlDlber of entries. 'Ibis test will be left to the reader.

60

'lbe followiog flow chart is another example of a binary search routine.

T­
Il­
B­
TV -

Top entry number
Middle entry number
Bottom entry number
Test value

T = ¢
B = NENT(TABLE)

- 1

LOOlr ----I~

(T + B)/2

<

END

B = M-l

Figure 5-19.

>

T = M+-l

ERROR STOP

Clearly, the most efficient division point in a binary search is not necessarily the middle
of the table. Evidence of this fact exists in everyday occurrences ••• searching a table of
information arranged alphabetically, the human does not start at the middle of the list if he
is lOOking for something beginning with A. The best division point is that one at which it is
equally probable that either part of the table thus divided will contain the desired value. If
this point can be estimated before comparison with the table, USing some rather simple com­
putation, the binary search can be improved in its average l1Umber of accesses. It is obviOUS,
however, that if the estimation of the division point is highly complicated, the estimation will
itself outweight the advantage in time gained by this technique.

DIRECT LOOK-UP

At various other phases of the discussion of programming techniques, it has been mentioned
that there is the possibility of organizing information so that there is a concrete relationship
between the value in an entry and the entry number. 1111s type of organization is used for the
purposes of direct look-up. A typical case of this form of organization can be found in Example
5 of this chapter. In this case, the entry number is equal to the angle in degrees for which

61

the trigonometric functions are stored. Since the item ANGLE, if i~ _ did appear in the table
would always equal the entry number, it is omitted from the table, thus conserving space.

The relationship. between the entry number of an item and its identification (where the identi­
fication is considered to be the value of the key item, whether that item actually appears or
not) need not be equality in order for the direct look-up scheme to be used. In fact, any
arithmetic relationship (algorithm) will suffice for this purpose. The only requirement being
that the identity of a key item be given so that the entry number of that item can be computed.

EXAMPLE 9

Given:

Required:

Solution:

62

TABLE MESSAGE

ITEM CHAR

ITEM KIND

12" 1 12"

MESSAGE"1

1 1 V

R R P

1 6 H

V (PCODE) V(TCODE)

Table MESSAGE, 12" entries long, contains the item CHAR. CHAR is a 6-
bit item which will contain legal character codes. The table will be loaded
with either typewriter codes, or with line printer codes. An item KIND, non­
tabular, will be set to 1 if MESSAGE contains typewriter codes, and" if
MESSAGE contains printer codes.

If MESSAGE contains typewriter codes, replace each character with the cor­
responding line printer code. If MESSAGE contains line printer codes, replace
each character with the corresponding typewriter code.

1. Organization of Information

It can easily be seen that the solution to this problem will require a table or
tables which will allow the program to find the corresponding typewriter
code, given a line printer code, and vice versa. It is, then, necessary to
organize these tables and to do so with an eye to the way in which they will
be used.

It would be possible to construct a table containing both sets of codes, where
each entry will contain the typewriter code for a given character, and the
corresponding line printer code. If such a table is set up, it will have to be
accessed by a slot-by-slot search in at least ODe of the two cases, since it
is not possible to order the table on the basis of both these items. For the
other case, it would be possible to access the table using a binary search, at
least, or perhaps by direct look-up. 1he requirements of the problem, however,
would be far better satisfied if it were possible to reference the table in the
most efficient manner in both cases.

A solution to this consideration would be to construct two tables, one contain­
ing the typewriter codes in sequence, with their corresponding line printer
codes, and the other containing the line printer codes in sequence, with their
corresponding typewriter codes. These two tables might look like this:

T YPEI PRTI TYPE2 PRT2

'!999W ~flJl¢ 'l~ ~ ...

1 ~l ¢¢lfIJll ~lfIJ¢¢ ~l 1

2 ¢9J¢¢lfIJ 9J9Jll¢¢ ¢In¢¢l m9JlfIJ 2

,

n-l n-l

Figure 5-20.

The reader will observe that, in Figure 5-20, the table containing TYPE1 and PRT1, the
binary values for TYPE1 are equal to the entry numbers. Similarly, in the table containing
TYPE2 and PRT2, the values for PRT2 are equal to the entry numbers. The items TYPE1, and
PRT2 would be removed from their respective tables with no loss in information content. Doing
this will leave us with two tables, one containing the item PRT1, ordered so that in any entry
its value is the printer code for the character for wbich the entry number is the typewriter
code; the other containing the item TYPE2, orderet\ so that in any entry, n, the value of TYPE2
is the code for the character which is represented by the value n in printer code.

Assuming that· the computer with wbich we are dealing has at least a 12-bit word, we can
save memory space by coDibining. these two tables into one table called COMBINE containing
the items TYPE and PRT, ordered as given above, and packed. The table will look like the
following:

TYPF. PRT

l¢¢¢¢¢ ¢¢l¢l¢

1 ¢¢19J9J¢ flJfIJlfIJll

2 ¢¢l¢¢l ¢¢ll¢¢

n-l

Figure 5-21.

63

Given:

64

2. Program Flow Chart

Because of the way in which table COMBINE discussed above has been
organized, it should be clear to the reader that in order to access a type­
writer code which corresponds to a given printer code, we need only address
TYPE subscripted by the printer code. The reverse is, of course, also true.
This is the technique of direct look-up. • • so called because we are able to
go directly to the desired information with no search required. '!be now chart
which follows will use this technique for finding the codes, and will use a slot­
by-slot processing of the table MESSAGE, since all entries must be processed.

TABLE MESSAGE

ITEM CHART

TABLE COMBINE

ITEM TYPE

ITEM PRT

ITEM 1 1 V

YES

CHAR(I) =

PRT(CHAR(I»

END

12.8 1 12.8 R R

MESSAGE.81 1 6

12.8 1 12.8 R R

COMBINE.81 1 6

COMBINESI 1 6

V(PCODE) V(TCODE)

I • ~

NO

CHAR(I) a

TYPE(CHAR(I»

1=1+1

Figure 5-22

P

H

P

B

B

Notice that it is necessary to inspect the item KIND as each occurrence of CHAR is pro­

cessed in order to provide that the correct code will be picked out.

EXAMPLE 10

Given:

Required:

Solution:

1

2

3

4

FlXED VARY

6¢r1¢ 3~ MAX'CAP = 5

12¢r1¢ 22¢¢ MAX'CAP = 1(/$
... --_-

18¢r1¢ 15¢¢ MAX'CAP = 15

24~ 1~ MAX'CAP • 2¢

3¢¢¢¢ 6¢¢ MAX'CAP '= 25

Figure 5-23. Data Base.

A variable length table containing the items MAX'CAP, FIXED and VARY,

wbere MAX' CAP has been set, the other two items are unset.

For each entry in the table containing MAX' CAP, set FIXED to the fixed

cost for that capacity, and set VARY to the variable cost for that capacity.

PROD

ITEM FIXED

ITEM VARY

ITEM MAX'CAP

515

PRODt)1

PRODt)1

PRODt)1

R R P

1 16 u

17 13 u

31 18 u

65

NOTE:

VARY (I) ~
VARY(MAX'CAP(I)-5)/5)

~------~--------~'

FIXED (I) '"
F1XED(MAX'CAP(I)-5)/5

I ." 1+1

I LQ PROD¢~ -1
could be used here.

END

Figure 5-24.

Notice that the solution uses an algorithm for look-up into the given table. Notice, also,
that slot-by-slot processing is used on the second given table.

The technique of direct look-up is a widely used one, and certainly presents great advantages
where it can be used. The student should convince himself of the advantage, perhaps by now
charting a solution to one of the problems above using another technique. The organization of
information for direct look-up is practical only so long as the relationship between the number
of POSSIBLE values of the key and the number of the key and the number of USED values of
they key is near one. As the number of unused values increases, the space wasted becomes
prohibitive. Therefore as you can see, direct look-up can be used efficiently only with con­
secutive or successive tables.

From this point on, NENT will be referenced by using block If~ of the particular table con­
cerned. Instead of USing NENT (table of item name), we will use TABLE~If.

66

CHAPTER 6

DATA MANIPULATION

Computer programs are frequently involved in the processes of arranging or rearranging
information stored in tables, or in files on external devices. These terms are used to indicate
processes which place information in some specific order. The term rearranging refers to
the process of transferring information from one state of order to another state of order,
whereas arranging information implies transferring it from a state of disorder to a state of
order.

It has been pointed out in other chapters that a table is designed in the light of two criteria:

1. The way in which the table is to be used.

2. The way in which the table is to be altered.

The particular considerations made in the determination of a suitable table structure are
discussed in the chapter on information organization.

The student is no doubt aware that the ways of using a table are numerous, and that they
may involve the processing of all the entries in the table or the processing of just a few of the
entries. The choice of a search technique is, of course, dependent on these factors. The student
is also aware of the possibility of arranging the information in a table into a known order, such
as ascending or descending order, in an effort to increase the ease and efficiency of using the
table.

Although using the table can have several different meanings, altering the table most often
refers to the deletion of one or more entries from the table or the insertion of a new entry or
entries into the table. Given that the table is organized in one of the basic structures, namely
parallel or serial structure, the mere possibility of these operatiOns implies that the table is
variable in length. The student will recall that when a table has variable length, the space will
be allocated to contain the maximum number of entries poSSible, and a control word (NENT) will
be created to indicate the current number of entrit!s in the table. Obviously, altering the table
will require altering the control item.

SORTING

The arranging of information into an order is generally referred to as sorting. Although
the entry may contain many items, the table is usually sorted on the basis of one, or perhaps
two of these items. The item which is used to sort the table is called the key item.

The most common techniques of sorting lists can be categorized as either MERGING,
DISTRIBUTIONAL or EXCHANGE techniques. Of these, merging and distributional are generally
the faster methods, although they require the use of extensive additional storage space. While
exchanging is generally slower than these methods, it has the decided advantage of requiring
no additional storage space; in other words, exchange sorting takes place entirely within the
table to be sorted.

Since sorting, along with many of the other techniques to be used in this chapter, requires
that all of the items in one entry be moved to the corresponding items in another entry, it
becomes convenient at this point to provide some means of indicating the movement of the
whole entry on the now chart. 'Ibis is accomplished by USing the name of the table and the

67

subscript attached to that name, which indicates the proper entries. Thus, SAMBO (I) indicates
entry I in table SAMBO. As in the case of NENT. there is no confusion provided by the possi-
1;»Uity of either an item name or the name of a table within the parent1ieses. 'Ib1s is true because
names for items and tables must be unique in each problem. Using this form, entire entries
can be moved into one figure on a flowchart, and the programmer is spared the effort of list­
ing each of the items to be transferred.

EXCHANGE SORTING

The exchange sorting methods, while they are slower than most of the sorting methods, are
carried out entirely within the tables on which they operate. The exchange is of course basic
to the exchange sorting techniques, and can be indicated on a flow chart by the use of the double
equal sign (==) to indicate the double setting which is accomplished by an exchange.

In general, the exchange sorting techniques operate by inspecting the key items from adjacent
entries in the table; the inspection finds them to be either in order (depending on the order
into which the table is being sorted) or out of order. If two adjacent keys are found to be out
of order, the entries containing them are exchanged. When all adjacent pairs of key items have
been examined, a PASS through the table is said to be complete. Various characteristics of
these passes, and the number of them required distinguish the exchange sorting methods from
each other.

One of the more Simple and less efficient methods of exchange sorting involves no concepts
other than the comparison of adjacent pairs of key items, exchanging as required unW a pass
is complte. At the completion of one pass, one of the values in question has been placed in its
correct position in the list. The second pass will also place a single value in its correct posi­
tion. Remaining passes through the table, like the first two, will each place one value in its

- correct position. Since this is the case, and the reader should convince himself that it is, the
maximum number of passes that are required through the table can be determined. If each
pass places one value in its correct position, then the next to the last value is correctly placed
in pass n-l, for an n-entry table. When this value and all others before it have been sorted,
the remaining value must also be sorted. Therefore, for an n-entry table, n-l passes are
required to guarantee that the table is in order. In many cases, depending on the original
condition of the table, not all of these passes are needed; however, if the table is in the reverse
order from the desired order initially, n-l passes will be required. If, then, n-l passes are
always used, the table will be sorted regardless of its initial condition. The SIMPLE EXCHANGE
SORT, then, uses a pass counter to determine when it has finished and halts when this counter
has reached the number of entries in the table minus one.

E-XAMPLE 1

Given:

Required:

68

TABLE LTC

ITEM KEY

ITEM VALUE

ITEM PASS'NO

TLC.fJl

TLC.fJl

1 7 J.A.

R v P

1 6

7 11

Sort the table into ascending sequence on the basis of item KEY.

Solution:

I ,. I+l

PASS'NO = ~

I = ~

NO

YES

TLC(1) ... = TLC
(I + 1)

PASS'NO = PASS'NO + 1

Figure 6-1

YE

END

Example 1 illustrates the simple sort teclUlique described on the previous page. The program
stops on finding that PASS' NO, the pass counter, is equal to TLC~~ - 2. The passes, in the
passes, in the flow chart, are numbered from zero to TLC~~ - 2, a total of TLC~~ - 1 passes.
Notice that when equal keys are found, no exchanging is made. The program could certainly
have been written to exchange in this case, but this would produce an obvious inefficiency.

69

VARIATION OF A SIMPLE EXCHANGE SORT

This sort routine is a slight variation of the simple exchange sort using a pass counter.
It is more efficient in the fact that it orders the top of the table before proceeding on to the
next entry. In other words, immediately after an exchange is made it starts the routine over
again. Obviously this cuts down the number of passes especially when only a few items are out
of order. Only one ~omplete pass will be made which is only after the table is ordered. Upon
the completion of the one pass the routine will end.

EXAMPLE 2

Solution:

Given:

Required:

Solution:

70

TABLE KIP 1~~ 1 1~~ R

ITEM KEY KIP~l 1

ITEM VAL KIP~l 6

WAF to sort table KIP in ascending sequence.

BB

NO

I = I + 1

START

Figure 6-2.

YES

KIP(I) = =

KIP(I + 1)

V P .--
5 P
1~ #

Efficiency in terms of sorting time, as compared in the preceding two examples, leads us

into a nebulous area. '!be condition of the table before it is sorted must be known before an

accurate statement on efficiency of the two flows can be made.

If the original table is in a relatively ordered state, the variation flow is more efficient

in that it handles fewer pieces of data. On the other hand, if the original table is in a relatively

disordered state, the pass counter becomes the more efficient. Each sort had its advantages,

but only at the extremes of disorder.

SINKING SORT

Another type of sort is the sinking sort routine. Since the determination of the end of the

routine is based on the fact that one number is correctly positioned by each pass, would it

not be sensible to ignore that value once it has been sorted, thus shortening the passes? In

order to accomplish this, the program must set up and maintain an item against which the

subscript governing the comparisons can be checked; as each pass is completed, this item is

reduced by one. It is pOSSible, further, to combine the function of the item described above

with that of the pass counter in order to eliminate the need for both items. The sorting technique

which operates in this fashion is called the SINKING SORT, probably because it sinks values

to the bottom of the list and thereafter ignores them.

EXAMPLE 2

Given:

Required:

TABLE GREEK 1';'; 1 1';'; R V P

ITEM ALPHA GREEK.81 1 5 U

ITEM BETA GREEU1 6 15 U

ITEM GAMMA GREEU1 21 7 U

ITEM END 1 8 U

Sort the table into descending sequence on the basis of the value of
GAMMA.

71

Solution:

END c GREEK~ - 2

AA

E)----+I
NO GREEK(I) • •

GREEK(I+1)

14-----!cc

I ". I + 1

END .. END -1

Figure 6-3.

'!be fact that this routine is written to sort into descending sequence alters oaly the decision
at B2. 1be direction is, of course, reversed from that of an ascending sort. Note the use of the
item END TO TERMINATE THE ROUTINE AS WELL AS TO SHORTEN THE PASSES. When
END is equal to zero, the comparison which has Just been made was between entries one and
zero. When these are in order, the entire table is in order. Notice also the use of the double
equal sign to indicate the exchange in the step following the decision at B2.

72

FLOATING SORT

Depending on their design, computers often show a preference for indexing up or for index­

ing down. For those computers whose preference is the latter, that is, starting at a high

value and reducing to zero, the FLOATING SORT is an improvement over the sinking sort.

As its name implies, this method involves floating munbers to the top of the table instead

of sinking them to the bottom.

The exchange indicator, as added to the floating sort, has equal application to the Sinking

sort. Its purpose is one of efficiency. By eliminating unnecessary passes, it lessens the amount:

of data to be manipulated, thereby saving time. It is quite possible that a table could be sorted

before a sufficient number of passes are completed to test the last two values (the function

of item END in the sinking sort). If we assume this possibility occurs, a pass through the

table will generate no exchanges. If, after each pass, we cheCk an exchange indicator, which

had been set prior to each pass, we could determine if an exchange were made and subsequently

if the table happened to be sorted. Once we determine that p.o exchanges were made we know

that the table is sorted and can stop the flow.

EXAMPLE 3

Given: (Floating Sort with Exchange Indicator)

TABLE JOE 5tJ I 5tJ R v P

ITEM KEY JOEtJI I ItJ u

ITEM EXIND JOEtJI 11

Required: Sort table into ascending order based on KEY.

73

Solution:

BB

I '" I - 1

J = J+l

SUBSTITUTE EXCHANGE SORT

EXIND • ¢
I - JOE¢¢ - 2

Figure 6-4.

YES EXIND = 1

JOE(I) = =
JOE(I + 1)

The technique wbich follows could probably be best described as combining the character­
istics of all the preceding methods. It is known as the SHUTTLE EXCHANGE sort, and is
perhaps the best of the exchange sorting methods.

74

EXAMPLE 4

Given:

Required:

Solution:

TABLE POPULACE 1';'; 1 1';.d R V S

ITEM CITY POPULACE';1 1 48 H

ITEM STATE POPULACE,ff1 1 48 H

ITEM POPULATION POPULACE';1 1 3'; U

Sort the list into ascending sequence on the basis of POPULATION.

NO

POPULACE(I) = -
POPULACE (I + 1)

J ,. I

I = ¢

NO

1=1+1

POPULACE(J) • -
POPULACE(J-1)

J = J-1

Figure 6-5.

END

75

As the reader can see, this method of sorting requires only one complete pass through the
table, and it is governed by the subscript I. As many minor passes through the table as there
are numbers out of order are required; they are governed by the subscript J. As each number
which is out of sequence is found, it is not only exchanged, but "shuttled" upwards in the table
unW the entire table above 1 is in sequence.

DISTRIBUTIONAL SORTING

The distributional sorting techniques originate in the methods used to sort cards on EAM
equipment. The number of passes required for sorting techniques of this kind is determined by
the number of digits in the key, rather than the number of entries in the table. As a result,
these methods are ideally suited to applications involving short keys.

Unlike the exchange sorting techniques, the distributional sorts require additional blocks
of storage of the same size as the Original table to be sorted. The number of blocks which
are needed depends on the particular method used and the number base of the values being
sorted, and ranges upward from one. Clearly, the old problem of time versus space is once
again present. When space is available, the distributional methods are used; when it is not,
time must be sacrificed and the exchange methods used.

In general, distributional methods operate by constructing "pockets" to receive the entries
of the table. There must be as many such pockets as there are digits in the number system of
the values being sorted, and each must be of the same length as the original table. The values
of the table are distributed into these pockets on the basis of the values in one digit position.
When this operation is complete, the values are reassembled in order, and the process is
repeated for the next digit position of the value. The repetitions continue untU all digit positions
have been processed, at which time the reassembled table is sorted.

EXAMPLE 5

Problem:

Solution:

Sort the following 'list of decimal values into ascending sequence, using the
distributional method:

25iJ 173 65iJ

Ten .pockets must be constructed, each capable of containing five numbers.
The pockets will be labeled with the values zero through nine. The passes
through the list will begin with the right most digit and continue left until
the third pass is completed, when the list should be sorted. The first pass
produces in the zero pocket the values 25iJ, .fJ9iJ, and 65iJ in that sequence;
the three pocket contains 173; the four pocket contains iJ.fJ4. All other pockets
are empty. The list is now reassembled in order to produce 25iJ, iJ9iJ, 65iJ,
173, and iJ.fJ4. The second pass, operating on the second digit poSition from
the right, produces in the zero pocket iJ.fJ4; in the five pocket 25iJ and 65iJ; in
the seven pocket 173; in the nine pocket iJ9iJ. All other pockets are empty.
Reassembly yields iJ.fJ4, 25iJ, 65iJ, 173, and iJ9iJ. The final pass produces .fJ.fJ4
and iJ9iJ in the zero pocket, 173 in the one pocket, 25iJ in the two pocket,
and 65iJ in the six pocket. When these are reassembled, the list is sorted
and reads iJP4, iJ9iJ, 173, 25iJ, and 65iJ.

While the use of the binary number system reduces the bookkeeping problem considerably,
as well as the additional storage problem, it will, of course, introduce the necessity for many
additional passes, since values represented in binary require more digit positions. The

76

example above was typical of the RADIX DISTRIBUTION sorting method for which a now chart
will be provided in the example which follows.

In order, however, to flowcbartamethodwhich requires access to individual bits of a value,
it is necessary to introduce a method of indicating on a now chart that access is being made to
part of an item. As one might expect, this access is indicated using the word BIT. But, in addi­
tion to BIT, one must specify which bit or bits are being referenced. 'Ibis is accomplished by
using a subscript, which may be eitheraconstant or a variable, to indicate the bit. If more than
one bit is being reference, the first subscript indicates the beginning bit position and the second
the number of bits. The bits in every register- are numbered from one at the left of the item.
And, of course the item itself -mUst be specified, along with its subscript if it has one. This
information is enclosed in parentheses after the bit subscript. Thus BIT(I,2) (ALPHA(A»
indicates 2 bits of the item ALPHA appearing in entry A. The two bit~ begin with bit I and end
with bit I + 1. .

EXAMPLE 6

Given:

Required:

Solution:

TABLE ORIG
I __

I
1 __

R V P

ITEM BEGIN ORI~1 1 15 U

TABLE OZRO
I __

I
1 __

R V P

ITEM JOKER OZRo;l 1 15 U

TABLE ONE
1 __

1 1_.d R V P

ITEM POKER ONE_l 1 15 U

Using the Radix Distribution Method, sort the table into ascending sequence.

1. Data Description

Use the receiving tables, OZRO and ONE, which must be defined prior to
program operation.

S controls table ORIG

A controls table OZ-Re

B and C control table ONE

I controls the bit number and the number of passes

77

78

Solution:

- - - - - - - - .-----.;..-1
I = NUMBER
OF BITS OF
ITEM BmIN-l

s.~

NO

I=-14

A = ~
B=~

S"'~

L.....-~;::::=-_~ DD

YES

B = B + 1
S ~ S + 1

I = I - 1

END

S = S + 1

S = S+l
C .", C+l

Figure 6-6.

During the operation of this program, the table containingthe table, OZRa 'is
used to contain the entries whose digit position under inspection contained a
zero; Similarly one contains those values of VALUE which contained a one

in the bit position. being inspected. 111e subscript I is used to mark off the
digit position being inspected as well as to count the passes, which will
result in the termination of the program's operation. The subscript S is used
to cycle through table ORIG in order to separate them into the two pockets,
as well as to reassem6le the values into the original table at the conclusion
of each pass. 'Ibe A, B, and C, subscripts are responsible, respectively,
for the control of the storage into the tables containing zero and· one.
During the reassem~ly of the values, they control the number of values
which are read out of their respective tables and back into ORIG. '

BUCKET-LINK SORT

A bucket-link: sort works like any other sort. It takes a group of items and sorts them into
homogeneous groups or "buckets" • A simple example of a bucket sort would best explain
its workings. Given - 10010 random numbers ranging from ~ to 99. Required - Sort the 100
numbers so that all numbers ending in zero are grouped together; all numbers ending in one
are grouped together; etc. A bucket sort would sort them based on their last digit (units posi­
tion). Since there are 10 possible last digits ~ - 9), there would be 10 groups or buckets. All
numbers ending in zero would be in bucket ~ ~, 1~ ••• 3~, 4' ... 9~). All numbers ending
in one would be in bucket 1 (1, ••• 51, ••• 81), etc. Each bUcket would be ten registers in
length. The buckets themselves could then be ordered in ascending or descending order. Of
course, ibis would depend on the programmer writing the sort.

Making a bucket sort efficient (not wasting core storage) would require that the programmer
know exactly how many items would be placed in each bucket, so that he could reserve sufficient
registers. However, rarely does a programmer know the exact values of the data his sort will
mainpulate (how many ~'s, l's, 2's, 3's, etc.). 1berefore, he doesn't know how many registers
to reserve for each bucket.

SUppose a bucket sort is going to sort 20010 numbers. To handle the most extreme case
the programmer should make all buckets (and there should be ten) 20010 registers in length.
This would handle the unusual case where all 200 numbers end in the same digit. It would also
handle any other case.' Under these conditions 200010 registers would be reserved' ~ 200
registers for bucket ~, 200 for bucket 1, 200 for bucket 2, etc. As you can see this is an
extremely inefficient sort.

However, a bucket sort can be made efficient if chaining of items is used. Chaining is the
linking together of entries in a table. Figure 6-7 illustrates a parallel table structured around
item BB. As can be see, the table is in ascending order based on BB.

Now look at Figure 6-8. This is also an ascending table structured around item BB. How­
evern, item AA is used as a chaining item. It tells the program processing the table where the
next sequential item can be found. With this type of table, the using program has to be told where
to find the first entry, since it doesn't necessarily appear in entry ~ of the table. This is done
with a control item. 111e table in Figure 6-8 uses entry ~ as the control item. By inspection
of the control item we can see that the first entry (or lowest number) is entry 4. At entry 4,
BB = 6 and AA = 1. AA tells us where to look for the next number - entry 1. BB(l) = 1~ which
is the next sequential number. Now look at AA(l). It says entry 2 will contain the next number.
It does - BB(2) = 12 and AA(2) = 7. You can go through the rest of the table on your own and
verify that it is an ascending table. 111e entire table is held together by chaining. Logically
this table is structured sequentially even though the numbers are scattered randomly. 111ere
must be an indication when the last entry in the table has been accessed. When AA = ~ the
end of the table has been reached. Entry 5 is ,the end of the table.

79

1

2

3

4

5'

6

?

8

BB = 6

BB = 12

BB = 16

BB = 3¢

BB = 31

BB = 32

¢

)
Figure 6-7.

1

2

3

4

5

6

7

8

9

Emol1

AA = 4

BB = 1¢ AA = 2

BB ~ 12 AA = 7

BB = 31 AA = 5

BB = 6 AA = 1

BB = 32 AA = ¢

BB = 3¢ AA ,., 3

BB = 16 AA = 6

J J
Figure 6-8.

'!be Air Defense Program for BUIC m combines the bucket sort and chaining into a very
efficient bucket link sort and uses it as a track number conversion routine. '!be following is a
simplified explanation of the Track Number Conversion routine.

Given: TABLE

ITEM

ITEM

*ITEM

TABLE

TABLE

ITEM

*STNO -

STNJJI -

SDLI -

STRN-

STN 81 1 81 RVP

SOLI STNl 24 7 U

STRN STNI 31 18 T

STNO STNl 1 48 U

LINK I_ I 1_ RRP

TSD 81 1 81 RVP

TREN TSDI 31 18 T

Indicates next available channel in STQ1.

Sorted track number table.

Refers to the channel (entr.y) number of the next track in this
bucket. A value of zero indicates that this is the last track
number in this bucket.

Contains the track number of the sorted track. Track numbers
have the format LL/DD or L/DDD and are coded in unique Track
format. "D" can range from _ to 9. "L" can range from A to z.

*STNO is unique to the STN table, it appears only once and occupies the entire register of the
first register of STN.

80

LNK.Dl - Linkage table. This table contains the address of the first entry
for each bucket in STN.01. LNKtJl~) contains the channel number of
the first track whose last digit is' zero. LNKtJl(l) contains the
channel number of the first track whose last digit is one, etc.

TSolSlS- Contains number of meaningful entries in TSolSl.

TSDlSl - Tracking safe data table. Contains unsorted track numbers.

TTRN - Track numbers. Has identical format as STRN.

Initial Conditions:

TTRN - Contains unsorted tra:ck mlmbers.

LNKtJl - is clear.

STNO - 1 (See Figure 6-9).

STN.01 - is clear except for SOLI (Figure 6-9).

TSD¢(6

1

2

3

4

5

6.

7

TSD LN"K~l

8

TI'HN

A¢21

A3¢9

JH¢l

XK¢4

A21¢

A¢¢3

Pl'14

Al¢5

1

2

4

5

6

7

9

¢

¢

¢

¢

¢

¢

¢

¢

¢

¢

1

2

J

4

5

6

7

8

Figure 6-9.

!':TN

¢ SDLI
2

¢ 3

¢ 4

¢ 5

¢ 6

¢ 7

¢ 8

¢ 9

ST~O

STW

¢

¢

¢

¢

¢

¢

¢

Let's use the first three entries of TSDl to illustrate the bucket sort. The
first track number is A1S21. The last digit in TTRN(l) is a one. The value one
is used as an index value into LNKIS1. The entry that we would inspect in
LNK.Dl would be LNKtJl(1). The entry value is a zero which indicates that no
previOUS track number has been assigned with a last digit of one. Now we
wish to store AIS21 into the proper (or next available) channel in STN.01, and
place this channel number in LNKtJI(1). The value of the control word STNO is
the next available channel in STN.01. STNO equals one. We then set LNKtJl =
STNO. This means that the l's bucket will start in STN.01(1). STRN(1) =
TTRN(l); STN.01S = SOLI(1) set the down link, SOLI, to zero. The 'three tal)les
now appear.

81

82

TSD00

1

2

3

4

5

6

7

TSD

8

A021

A309

JH01

XK04

A21¢

A0¢3

Pl'14

A105

1

2

3

4

5

6

7

8

9

LNK01

0

1

¢

¢

¢

¢

¢

¢

¢

¢

1

2

3

5

6

7

8

Figure 6-10.

STN
. - STNO

2

¢ SDL~ ST~ A 21

¢ 3 ¢

¢ 4 ¢

¢ 5 ¢

¢ 6 ¢

I I

I
I I J

111e next track number in TSDl is A3119. Its last digit is nine. '!be value nine
is used as an index value into LNK.01. Inspection of LNK.01(9) shows that this
entry contains a zero. 1111s indicates that this is the first track IDlmber with
nine as the last digit. A new nine's buckets is now being started. We wish to
save the address of the first entry of the 9's bucket. STNO contains the address
of the next available channel inSTNtJ1. '!be following occurs. LNK1(9) = STNO;
STNO = SDLI(2)' SDLI(2) =11; STRN(2) = TTRN(2). At this point we have set
up a l's bucket and a 9's bucket. 111e three tables now appear.

TSD¢¢

1

2

3

4

5

6

7

Tc:n

8

A¢21

A309

JH¢1

XK¢4

A21¢

A¢¢3

Pl'14

A1¢5

1

2

3

4

5

6

7

8

9

T1\!II'/lI,

¢

1

¢

¢

¢

¢

¢

¢

¢

¢

1

2

3

4

5

6

7

8

Figure 6-11.

STN

ST!O

f6 snW" 5lliN
Af621

¢ ¢ A3f/19

¢ 4 ¢

f/I 5 ¢

¢ 6 ¢

,

, I

I

Track JB,fJ1 is now ready to be sorted. The last digit of the track is one.
'Ibis track belongs in the l's bucket. LNK1(1) is examined to see if it equals
zero - it doesn't. '!be value in LNK1(1) is the first entry in the l's bucket.
Usiug the value in LNK1(1) as an index value into STNjl we inspect SDLI(1)
to see if it is the last entry in the l's bucket. SDLI(l} equals zero which says
this is the last entry in the l' s bucket. sTNj~ is then cbecked for ~ ~ext .
avaialable channel and that value is stored in SDLI(1). STRN{3 'f TT~lIl
STNO = SDL~3)' SDLI(S) = ~. STN.fj1(3) is now the last enfry in the r s
bucket. '!be three tables now appear.

TSD IBKlll STN
TSn;

-
8

·A(621 1

2

(6

1

. ST~O

1 r6
SLlLI ::IHtN

Ar621

1

2

3

4

5

6

7

A3(69

JH(61

XKr64

A21(6

A~3

PT14

.Al(65

3

4

5

6

7

8

9

~ 2

(6 3

(6 4

r6 5

r6 6

r6 7

r6 8

2

Figure 6-12.

3

r6 (6 A3(69

r6 r6 JHr61

r6 5 r6

r6 6 ¢

¢ 7 ¢

(6 8 ¢

(((

Notice that LNK.01 hasn't changed. It chauges only when a new bucket is
started.

On your own you can sort the rest of TSDl.

'!be above discussion has shown ordering a table. A more sophisticated sort could include
uplinks as well as downlinks and could involve deleting track numbers. 'Ib1s sort will be dis­
cussed in class and incorporated into the more advanced areas of the course.

83

DELETION

When a variable length table exists, its control item, NENT, is expected to reflect the cur­

rent number of meaningful entries in the table. Further, these entries are expected to be stored

in the slots numbered from zero to n-1 in every case. If then, it becomes necessary to delete

entries from the table, the process will involve mOving entries around within the table.

The criterion used to bring aoout the deletion of certain entries from a table is, of course,

dependent on the specific requirements of the processing problem; the techniques employed

for the actual moving of the records, however, can be generalized.

Deletion, and REPACKING, which is the moving up of MEANINGFUL entries to fill slots

vacated by deleted entries, is a rather time consuming process, especially if the table is

long. There are numerous methods of accompllshingthetask, as is the case with most standard

processes for computers. Each of the techniques, however, employs the principle of "covering"

an entry which is to be deleted with an entry which is not to be deleted.

EXAMPLE 9

Given: TABLE PERSNL 5~~ 1 R v S

ITEM MAN'NO PERSNL,81 1 2~ U

ITEM HIRE'DATE PERSNL~1 21 2~ U

ITEM SALARY PERSNL,81 1 2~ U 16.tH

Required: Delete entries with MAN'NO =~. Repack the table maintaining original order.

84

YES

J = 1

BB

PERSNL (J) =
PERSNL (J+l)

NO

J = J+1

AA

NO

I = ¢

NO I = 1+1

YES

Figure 6-13.

END

PERSN~¢ =

PERSNL¢¢ - 1

'!be method used in Example 9 is perhaps the most obvious technique for accomplishing a
deletion. When an entry containing MAN'NO equal to zero is found, all subsequent entries are
moved up one slot to cover the meaningless entry which was found. This leaves, at the bottom
of the table, a duplication of the last entry; however, when the last entry has been moved up,
PERSNL.8.8 is reduced by one so that that entry is no longer a part of the table.

In this example, the subscript I is used to cycle through the table inspecting for cases
where MAN'NO is equal to zero. When such an entry is found, the subscript J is set to cycle

85

through the remainder of the table moving entries up. Notice that when the J cycle is completed,
the program returns to step AA without increasing the subscript I. 'Ibis procedure is neces­
sary since it is possible to encounter two entries containing MAN'NO equal to zero in sequence.
It is thus possible that we have moved another entry containing MAN'NO equal to zero into the
slow occupied by the first encountered meaningless entry. We must now inspect the entry moved
into that slot.

This technique for deleting meaningless entries, while it preserves the order of the table,
moves information around a great deal • • • often unnecessarily, as in the case mentioned
above. 'Iberefore, while it is the most obvious method, it is certainly not the most efficient.

EXAMPLE 10

Given:

Required:

Solution:

86

TABLE PARTS

ITEM STK'NO

ITEM PRICE

1

16

v P

15 U

20 U

Delete those entries containing STK'NO equal to zero.

K=K+l

K=~
I .,., ~

YES PARTS~¢ = K

Figure 6-14.

Deletion methods have been presented with varying levels of efficiency based on the criteria

mentioned above. To summarize, the deletion of entries from a table, first of all, requires that

the table have a variable length and the control item which goes along with variable length.

The addition or removal of entries from such a table requires the modification of this control

item. Although this was not expressly pointed out in the examples above, it is important to

notice in all of the routines illustrated the effect that the modification of NENT has on the test­

ing of subscripts throughout the routines. Of course, if NENT has been modified during the

execution of any part of a loop, its most recent value will be used in any test involving it. The

criterion used to determine whether or not an entry is to be deleted depends, of course, on the

specific problem. In most cases, however, the criterion does not involve all of the items in

the entry. Nonetheless, when the entry is deleted, the ENTIRE entry is deleted and replaced by

an entry which is judged to be meaningful. This process can be illustrated on the flow chart

by specifying entry. along with the name of an item or the name of the table and a subscript

which specifies which entry is being referenced.

INSERTION

If an entry must be inserted into a variable length table an insertion method must be used.

The same criteria apply to insertion as do to deletion; that is, the preservation of the original

order of information in the list, the avoidance of unnecessary movement of entries, and the

updating of NENT.

EXAMPLE 11

Given: TABLE ORIG R v P

ITEM KEY 1 48 F

ITEM DATA 1 48 F

Required: Insert item DATA into proper place in table.

87.

I =. ~

1=1+1

ORIG(1) '=

DATA

ORIG~ = OR1G~¢ +1

Figure 6-15.

DATA = =
ORIG(1)

In this insertion routine a slot-by-slot search is made, comparing DATA with KEY(I). As
soon as the properplace is found for DATA it is exchanged with ORIG(I). After that, each follow­
ing ORlG(I) is exchanged with new DATA items being put there by previous exchanges unW the
end of the table is reached. At this point, the new item bas been inserted and the last entry of
the original table is in item DATA. This is then put at the end of the table, NENT is updated
and the insertion routine is complete (note at this point item DATA and the last entry in the
table are identical).

88

MERGING

Merging, since it is a technique which processes tables which are ordered, is perhaps the
simplest of the sorting methods. In general, merging involves the combination of two or more
similarly sorted tables into one larger_ table sorted in the same sequence as the original
tables. It may be used with ascending and/or descending tables, the resultant table being ascend­
'ing or descending.

The technique is based, as are all the sorting techniques, on the comparison of key items
from two entries to determine which belongs first in the sorted table. In the specific case of
merging, the comparison is performed between the "top" entries of the two tables to determine
which belongs first. When the correct entry is found, it is stored in the new table, and the
index for the table from which it came is increased to indicate a new "top" for that table.

Again a comparison is made between the top keys of the two tables to find the one which
belongs next in the new table. 'Ibis process is repeated unW one of the tables is exhaused, when
the remainder of the new table is filled with the remaining entries in the unexhausted table.
When both tables have been exhausted, the process is complete.

EXAMPLE

Problem:

Solution:

Merge the fo11owing tables of sorted values into a third table also sorted into
ascending sequence.

TABLE 1 TABLE 2

12 3;
15 31
45 6;
92 73

81

The first comparison is between the values 12 and 30; 12 is found to be the
smaller, and is therefore the first value in Table 3. The next comparison is
between the values 15 and 30, since the top of Table 1 has now been changed,
while the top of Table 2 is the same. Again, the desired entry comes from
Table 1, causing Table 3 to contain, in sequence, 12 and 15. 111e next com­
parison is between the values 45 and 3;. 111e value in Table 2 is selected,
increasing Table 3 to contain 12, 15, and 3;. The values 45 and 31 are now
compared. Since 31 is chosen, Table 3 will contain 12, 15, 3; and 31. 'Ibis
process is repeated, always selecting the smaller of the two values compared
since the end result is to be in ascending sequence, until both tables are
exhausted, when the following has been produced:

TABLE 3

12
15
3;
31
45
6;
73
81
92

89

Notice that more than once several selections in sequence were made from the same table
for the final table. Refer to Figure 6-16 for the now Chart.

90

Given: TABLE ONE 5.8 1 5.8 R R P

Solution:

ITEM KEY 1 ONE.81 1 1.8 U
TABLE TWO 1.8.8 1 1.8.8 R R P

ITEM KEY 2 TW0.81 1 1.8 U
TABLE THREE 15.8 1 15.8 R R P

ITEM KEY 3 THREE.81 1 16 U

THREE(T)=ONE(F)

T = T+l
F = F+1

THIlEE(T)='l'WO(S)

T2T+1
S = S+l

END

THREE(T) 2
ONE(F)

T = T+l
F = F+1

Figure 6-16.

THREE(T)='l'WO(S)

T = T+1
S = 5+1

SUMMARY

The sorting methods described and now charted in this document are by no means all of
the methods avallable. They have been presented both for their intrinsic values as sorting
methods and as examp~es of data processing techniques. The student is encouraged to look at
them in this light, and to consider the details of them as representative of the problems to be
encountered in data processing.

91

92

CHAPTER 7

SUBROUTINES AND SUBROUTINE LIBRARIES

INTRODUCTION

The computer programmer, when setting down the solution to a problem, often finds
that the same task or several similar tasks must be repeated often in the program. Frequently,
the only variation to be found among these tasks is in the data on which they operate. It's
obvious that both programmer time and program space would be wasted if the sequence of
instructions needed to perform these tasks had to be rewritten every time the occasion arose
to use them. Indeed, if the task to be performed is an often used one, the programmer would
certainly prefer not to write the code at all, but to incorporate into his program a set of
instructions which have been prepared beforehand to perform the desired function.

It is easy to imagine that certan mathematical operations, such as sine or cosine computa­
tion, square root, cube root, or certain data processing functions, such as sorting, deleting,
or merging might readily fall into the category of frequently used functions for which the
compUter instructions could be pre-prepared. The need for such routines is so universal, in
fact, that computer manufacturers frequently provide many of them with the computer when it
is purchased; in addition, individual programmers, when writing such routines, write them so
that they can be used by others, and "users groups" are formed along the owners or users of
individual computers for the express purpose of exchanging information of this kind.

DEFINITION

A subroutine is a set of instructions which may be used and reused by a single program or
by many programs, to perform a well-defined task.

The essential difference between a subroutine and a program designed to perform the same
function is that the subroutine must contain extra instructions within it to link it to the USing
program. This linkage provides (1) that the subroutine can be called and operated by any
program, (2) the values that the subroutine needs to operate, (3) a location for the computed
results, and (4) a return location to the calling program. Subroutines can usually be located
somewhere in memory.

There are two types of subroutines. '!bey are classified on the basis of their availability
to the programmer. An open subroutine is one created by a programmer for specialized use
only by his program. Since the writer of the program and the subroutine are the same person,
the subroutine can be changed and is "open" to modification by the programmer. Keep in mind
that the open subroutine is usually so specialized that its use is limited only to the program of
which it is part.

'!be closed subroutine, on the other hand, is very general in nature with a wide range of
applications. It is written by one programmer for use by other programmers. From the out­
look of the USing programmer, the subroutine is "closed" to modification. Some common
closed subroutines are binary to octal conversions, rewinding of the tape drives, as well as
trigonometric functions. '!be USing programmer must take the-pams to insure that he utilizes
the subroutine within the limitations set forth by the prograDlllier who created the subroutine.

\
,

'!be subroutine is called upon to operate by means of a Jump to its beginning address.
This jump instruction, located in the main routine, is known as the SUBROU'I1NE CALL. For

93

the purposes of the flow chart, the subroutine call as well as the operation of the subroutine
is indicated by the symbol in Figure 7-1, containing the name of the subroutine:

00
CLOSED OPEN

Figure 7-1. Subroutine Linkage Symbols

The operation of the subroutine itself usually is flow charted elsewhere in detail.

When a subroutine has finished operating, itmustlmow the return address for giving control
baekto the calling program. As a result of hardware design, this return address is available to
the subroutine.

The method by which the return instruction(s) is set up is largely dependent ·on specific
computer characteristics, but generally falls into one of two categories.

1. The address of the subroutine call can, under the control of the subroutine, be modified
and stored into the instruction which will be used to. return to the main routine.

2. The computer may recognize the subroutine call as a special instruction which, when
it is encou,ntered, will cause the return instruction to be set up automatically.

This process, though it may take several compUter instructions to accomplish, is seldom
illustrated on the flow chart of the subroutine.

CALLING PARAMETERS

Depending on the functions which they are designed to perform, subroutines may require
no information from the main program, or they may require a great deal of information.
Similarly, they may provide information to the main routine when they return to it, or they
may simply perform a "service", such as rewinding a tape, which requires no return of infor­
mation, or at the most, an indication of successful or unsuccessful completion of the operation.

When information is required by the subroutine, this information must be located at an
address which is. lmown 19 the subroutine or which can be computed by the subroutine. The
information is known as the CALLING PARAMETERS to the subroutine. Where only one calling
parameter is involved, the subroutine might expect it to be located at a fixed place in memory,
or perhaps, in some arithmetic register. Even where more than one calling parameter is
required, it is sometimes possible to locate these data in non-memory registers by making
use of the CPU registers and the index registers. In any case, the locations of the calling
parameters are specified by the writer of the subroutine since, of course, his program must
know where to find the information with which it is to work. The responsibility of the writer
of the main program is simply to insure that the require data is in the correct place when the
subroutine is called.

At the flow charting level of programming, reference is seldom, if ever, made to the
arithmetic registers of the computer or to the addresses of memory registers. Information~
as the student is aware, is handled in items. As a consequence, the transfer of information

94

from the main program to the subroutine must be illustrated in terms of items and their settings.
A subroutine manipulates items which it has defined, but whose values will be supplied by the
main program. The main program, then has the responsibility, as was stated above, for insuring
that the right values are in the right items. If, for example, a square root subroutine manipulated
the item NUMB to produce the square root of its value, the main program would be obliged to
set NUMB. In the main program, the item whose square root is to be taken might be called
anything, perhaps XX. In order to distinguishbetweenthe transfer of information from the main
program to the subroutine and the ordinary main program settings of items, the word ESTAB­
LISH is placed in the function box. Figure 7-2 is used to illustrate such a transfer.

CALLING SEQUENCE

ESTABLISH
NUMB == xx:

Figure 7-2. Setting Function for Parameters

- ..--
When the number of calling parameters to a subroutine becomes so large that it is impossible

or impractical to transmit them via the aritlulietic-registers of the -computer,-the need arises·
to set up the calling input parameters in the form of a CALLING SEQUENCE. It has been pointed
out that the address of the subroutine call is made available to the subroutine in some way.
Based on this fact, and the fact that the addresses immediately follOwing the call may be easUy
computed by the subroutine, it has become common practice to place the calling sequence in the
registers of memory which immediately follow the subroutine call. Once again, the order in
which the parameters will appear in this sequence is determined by the writer of the subroutine,
while the writer of the main program simply supplies them in the specified order.

'Ibis type of information transfer from the main program to the subroutine is illustrated
in the flow chart using the word "establish".

OUTPUT PARAMETERS

The results of the operation of the subroutine must, of course, be made available to the
main program. They, too, may be left in the arithmetic or control registers of the computer,'
or perhaps in memory locations designated by the main program. If the latter is true, the main
program will have had to designate these locations by means of the input (calling) parameters.
For example,. the writer of a square root subroutine might specify that the number whose root
is to be taken will appear in a particular register, and that the address into which the result
should be stored will appear in another register. The subroutine can operate on the data, and,
when finished, store the result in the specified register.

Mention has been made previously of subroutines whose functions do not require that they
transmit any information back to the main routine. In such cases, of course, the subroutine
simply returns to the main routine having set nothing. It is also frequently necessary that the
subroutine have the capacity to indicate error conditions to the main program. This can be done
in a number of ways, one of which is to transmit an output parameter whose value has special
meaning in terms of error codes. Another technique used is to retum to a different location
in the main program when an error occurs.

95

EXAMPLE 1

The following subroutine is designed to convert an unsigned binary integer to its decimal

equivalent, represented in Bollerith code. The subroutine will produce a value with a maximum

of eight Hollerith characters. Zeroes preceding the first significant digit will be replaced by

blanks. The value zero will be indicated by one zero right justified.

96

1. Subroutine data

TABLE BOLE IS 1 IS R R P

ITEM BOLRTB BOLES 1 1 6 H

The table has been loaded with values such that BOLRTH(.d) contains the

Hollerith code for zero, BOLRTH(I) contains the Bollerith code for one,

etc.

Non-t;abular, ITEM ARlTB 1 48 U. It is set up to contain the integer input

parameter to the subroutine.

Non-tabular, ITEM ABC 1 48 H, set up to contain the output parameter from

the subroutine.

Non-tabular, ITEM EFG 1 48 U It is set up to contain intermediate values

for the subroutine.

ITEM EFT'I lIB P S, is set up as an indicator for the internal operations

of the subroutine. It is initially set to zero.

2. Subroutine flow chart.

I = ¢

EFU =

ARITH/(1¢**(7-I)

lES

EFU'I == 1

BY1E(I,l)AEC •

HCT,RTH (EFG)

ARITH =
ARITH = (EFU*1~(7-1»

Figure 7-3.

CC

BY1'!o:n ,1)AEC •

Hfol.J ~HJ '!'H PI A NK

I = I+1

AIK: =

HOLRTH(~)

~------fEE

SET EFU'1
OFF

97

The main program which follows is designed to use the subroutine CONVERT in order to
convert the values in a table containing the item INT to Hol1erith code, and to store the
converted values in a table containing the Hol1erith item OUT for eventual output. Both
tables are variable length.

3. Main program now chart

END

I = ~

AAI-----~

ESTABUSH

ARITH '" INT(I)

OUT(I) -=
ABC

I ~ 1+1

Figure 7-4.

SUBROUTINE LIBRARIES

A means of increasing the efficiency of problem solution and program preparation is the
subroutine library. As its name implies, the subroutine library is a collection of subroutines.
These subroutines are written so that they can be incorporated into any program. Those sub­
routines that constitutes the library are considered closed subroutines~ '!be term external
subroutine can also be applied to them, since they are external to the using program. The
library of subroutines is normally stored with the Utility System on a magnetic tap, or apart
from the Utility System, but on a tape which can be accessed by the System.

98

INCORPORATION OF A SUBROUTINE INTO A PROGRAM

SUbroutines taken from a subroutine libI:ary may be incorporated into a main program in a
numb.er of ways. The most common methods are the following:

1. The subroutine is assembled with the main program. In this case, the symbolic program
makes reference to the subroutine by its symbolic name. '!be assembly program, on recogniz­
ing this name finds the correct subroutine on the subroutine library tape, and attaches it
to the program being assembled. Although the main program may refer to the subroutine more
than once, the assembler is astute enough to attach the subroutine only once, usually at the
end of the program. The binary deck or tape, then, which is produced by the assembler will
include both the program as written and all subroutines used by it.

2. The subroutine is used directly from memory. In this instance, the subroutine is one
which is normally in the computer memory during the operation of any program. Since this
is the case, it is not necessary to repeat the subroutine with the main program, and it is there­
fore accessed directly at its normal address in memory. It is of course necessary, in this
case, that the assembler recognize the subroutine to be one which falls into this category.
When it does so, it will respond to the situation by replacing the symbolic reference to it with
a reference to its fixed memory location.

TYPES OF SUBROUTINES

The programs usually contained in a SUbroutine Library may be grouped according to the
following classification:

1. Mathematical functions and processing procedures

2. Modes of operation

3. Service routines

4. Executive programs

'!be first three groups represent sets of subroutines, whereas the executive routines
control the execution of the subroutines and the main programs which use them.

Examples of mathematical functions are trigonometric functions, matrix operations,
square roots, etc.; processing procedures may include many kinds of file processing such as
sorting, deleting, mergining, etc. Modes of operation include such things as floating point
operations (for a computer which is not equipped with floating point, such that these operations
must be simulated by a subroutine) or double precision operations. Service routines may
perform such operations as input or output, conversions from binary to Hollerith and vice
versa, or testing and checking.

SUMMARY

The purpose of subroutines is to save time and effort in the COding, programming, and test­
ing phases of program production. A subroutine is a program written to perform a well defined
task.

99

100

CHAPTER 8

INTPUT/OUTPUT PROGRAMMING

INTRODUCTION

Communication between the outside world and the central computer is accomplished through
the computer's input-output (I/O) system. The input-output equipment is the means of com­
munications between the user and the machine. Ingeneraf, the I/o system is used to translate
the coder's marks and symbols into internal machine language and vice versa. 111e coder or
operator inserts a series of numbers and/or alphabetic information into an input device, which
results in bits of information being stored in memory. Similarly, information in memory is
converted by an output device to symbols which the user can interpret directly.

Figure 8-1 is a simplified version of the peripheral equipment central computer relation­
ship.

INPUT --~. PROCESS-. --•• OUTPUT,

Figure 8-1.

'!be computer INPUT section 18 capable of acceptidg data in a variety of forms and convert­
ing it to the standard format that 18 used by the Qentral processing unit (CPU). The types of
inputs which constitute the input section for c:l1fferent computers vary a great deal. Some of the
more common types of input devices are ~d card readers, magnetic tapes, paper tapes,
and typewriters, CRT ~splays, teletypes, drums, diSCS, aIld flexowriters. The INPUT section
obtains the information. from punched cards, or other media, and places it in CORE MEMORY.­
Tb1s information may be data required in the solution of a problem, or instructions that tell
the computer what to do. In effect, the input section provides one-way communications between
you and the central computer. You can apply information to the input section, but no data will
be returned to you from that section.

As might be expected, the OUTPUT section has the function of recording the results of
computer processing. Actually, the output section is capable of recording anything located in
core memory. '!be results may be presented in the form of punched cards or printed pages
or CRT displays or drums, or disc, paper or magnetic tapes. '!be term recording, mentioned
above Is usually referred to as writing. Figure 8-2 is a detailed diagram of the exchange of
information between the I/o system and the internal computer.

101

Figure 8-2. Exchange of Information Between the I/o System and the Jnternal Computer

Note that some devices have only output capability, some have only input capability and
while others have the capability for inputting or outputting information.

I/O DEVICES

The programs which make up a computer-based system, as well as the data which the
programs use must be readily available to the operating elements of the computer. Vast amounts
of storage are required by the programs that operate as a system. Therefore an entire
system cannot be stored in core memory at one time. Only those programs needed at any given
instant of time can be stored in core. The rest of the system must be stored external to the
computer and called into core memory as needed.

Although many I/o storage devices are available, punched cards, drums and magnetic tapes
are the most frequently Used, and a major portion of any I/o programming will be concerned
with these devices. Punched cards provide you with an easlly modified card deck which can be
visually examined for possible changes or errors in the program. Magnetic tape and drums,
although not as handy or as alterable as the card decks, provide high-speed data transfers and
minimizes the amount of computer time used in transferring data in and out of core memory.
This chapter will discuss the I/o devices used to store data external to the computer and how
they can be programmed using now charts.

, i . :
There are two basic kinds of I/o storage devices: magnetic and nonmagnetic. Magnetic

I/o devices hold information in the form of magnetized particles which generally represent
binary digits, e.g., magnetic tapes, drums, and discs. Non-magnetic I/o devices represent
information in the form of printed characters, punched holes or light sensitive marks, e.g.,
punched cards and paper tape.

A storage device is nothing more than a place to save something. A library, warehouse,
filing cabinets, or suit pockets are, after all, nothing more than storage devices. To use
these storage devices, one needs to know only two things: what is stored and where it is stored.
These same considerations apply for I/o storage devices. To make use of information stored
in a data storage device, it is necessary to know the form in which the data is stored and the
location at which it is stored.

102

FORMS AND FORMAT

Data are stored in a storage device as a bit, a character, or a word. A bit can be stored as
a magnetized spot on a magnetic medium or it can be stored as a hole or a mark on a non­
magnetic medium. Any medium that can store a bit can be used to store a character. A collection
of characters or bits which has a fixed pre-determined length can be stored as a word on any
medium which will accept a character. To complete this brief review of data-form relationship,
it is necessary to mention fields, records, files, and blocks. A collection of bits which are to
be considered as a logical unit, but whose length can vary, is known as a field. The next level
in the hierachy is that of a record. A related set of words or fields combine to form a record.
The length of a record mayor may not be fixed. Records combine to form a file. A file is a
collection of related sets of information 9records) which can be treated as a logical unit. The
file and record concept of data stratification is particularly useful and important when the data
are stored in a magnetic medium. A block of information, on the other hand, is a general term
used to describe two or more words, fields, or files and is not particular to any specific
device or medium.

Now that we know what can be stored, we should consider where it is stored and how it can
be found. Data are stored by words or fields at an address. An address is the location of a
given word or field. The address may be fixed location pre-determined by the manufacturer
of the storage device, e.g., magnetic drums, and discs; or it may be a location whose pOSition
is relative to the data structure, e.g., magnetic tape. Data are READ from the I/o device
by the read element of the read-write head and stored in memory. '!be read operation is an
input operation performed by the read element of the read-write head. Data are also WRITTEN
from memory onto a storage medium. 'Ibis operation is known as an output operation and is
performed by the write element of the read-write head. When a word is read from.a storage
device and the act of reading destroys the contents of the address, the read operation is known
as destructive read-out. Generally, for I/o devices the read operation is non-destructive.
When a word is written or stored at an address, the Original or previous contents of the address
are destroyed.

The now chart symbol for indicating any I/o operation is shown in Figure 8-3.

Figure 8-3.

103

'Ibis I/O·symbol has one input and one output flow line. When an I/o symbol appears in a
flow chart it means an I/o transfer i,. occurring, i.e., information is being transferred from
memory to the card punch, or drum, or tape drive (TO) or to memory from a drum, card reader,
or tape. The text inside the symbol describes the specific I/o operation.

Figure 8-4.

104

'!be following is an example of a simplified flow using I/o programming.

Sort table
KIt«; into
descending

Figure 8-5.

You will notice in the preceeding example that the programwa&solvedus1ng a MACRO flow.
By this time you should be able to look at the function box that calls for sorting KING and
visualize the micro flow that would be necessary at that point. The following examples of I/o
operations are macro flows but they give special attention to some problems encountered in
I/o programming. Some special considerations for I/o programming involve the following:

1. Testing to see if the I/o device is ready to operate.

2. Determining completion of the I/o operation.

3. Positioning of tape drives before operating them.

105

The next example is a more detailed now that gives attention to specWc I/o limitations.

END

SOME
OPERATION

START

Figure 8-6.

NO WAIT

WAIT

The End of File (EOF) check is made with tape operations to determine the end of the tape
read operation. The check for reader ready condition is not made in the following examples.
Keep in mind, however, that this check is made by the hardware. Usually if an I/o device is
not ready (turned on), the computer will alert the operator to this condition. The hardware
cannot, however, detect an improperly positioned tape.

106

TIle following examples give some insight into the problems involved with specific I/o
functions. TIle "initialize software" step includes steps 1 and 2 as listed for Figure 8-6.

FINALIZE
TAPE

INITIALIZE
SOFTWARE

RESET INDEX
TO~

NO

Figure 8-7.

ADD 8~ TO
INDEX
REGISTER

107

INITIALIZE
SOFTWARE

Figure 8-9. Tape to Card

108

CLOSE
SOFTWARE

FINALIZE
PUNCH

Figure 8-8. Tape to Printer

INITIALIZE
SOFTWARE

BB l--.....

RESET INDEX
TO ZERO

PUNCH
CARD

ADD 8(6
TO INDEX
RmISTER

'lbe following now includes provision for error detection and error halt. It introduces the
necessity of housekeeping to insure that no extraneous data are present to cause the operation
to function improperly. Note also that this example specifies which tape drive is used. 'lbe End
of File (EOF) check is made. '!be determilJ!ltion of the now function is left to the student. 'Ibis
now. ,is generally representative of a finished now that would be sent to a coder for coding.

BB

HOUSEKEEPlOO

AA 1-------.

SET COUNTER \4---=-<'
TO rA

ADD ONE "0
COUNT

MOVE DATA
TO PRINT

MOVING
')--::::=.------..... MESSAGE TO

MOVE X TO
COLUMN s¢

MOVE DATA
TO PUNCH

ADD ONE TO
PUNCH COON'!'

PRINT

RE.WIND TAPE
2

Figure 8-10. MACRO I/o

109

SUMMARY

Due to the limited internal storage available only those programs needed at any given
instant of time are stored in core memory. '!be majority of data for a computer system is
stored on cards, dnlms, tapes, etc. '!be1'efore, programs and data must be constantly read
into· core and operated and/or used and then written back out onto external storage. Learning
to use and program the I/o system effectively is a major part of a programmer's job.

110

	Cover
	Contents
	Introduction to Programming
	Flow Charting Techniques
	Information Organization
	Ordering Schemes
	Basic Methods of Accessing Information
	Data Manipulation
	Subroutines and Subroutine Libraries
	Input/Output Programming

