"
T e cv— —————————— .

Burroughs l./ T c

COBOL

REFERENCE MANUAL

Burroughs
L/ Tc | * INTRODUCTION
COBOL | R N ’.v‘."c;)ome

FORM

REFERENCE MANUAL

R COBO‘f
LANGUAGE
T ELE!\‘II‘ENTS

LN
- IDENTIFICAT'ON
DIVIS'ON

i

‘ 1
. ENVIRONMENT
-+ DIVISION!

LT

ot ’ ‘ . "ng\].\
' DIVISION'

' PROCEDURE
* DIVISION.

» ;=

. SERIESL/TC
COBOL COMPILATION
'B 3600 ENVIRGNMENY.

° w—

A RESOIXY

COPYRIGHT © 1969
Burroughs Corporation
DETROIT, MICHIGAN 48232

Burroughs Corporation believes the program described herein to be
accurate and reliable, and much care has been taken in its preparation.
However, the Corporation cannot accept any responsibility, financial or
otherwise, for any consequences arising out of the use of this material.
The information contained herein is subject to change. Revisions may
be issued to advise of such changes and/ or additions.

TABLE OF CONTENTS

SECTION TITLE

INTRODUCTION
1 COBOL CODING FORM.

General
~ Coding Form Demgnatmn
Margin L .
Margin C .
Margin A .
Margin B .
Margin R .

2 COBOL LANGUAGE ELEMENTS .

General
Character Set . . .
Characters Used for Words .
Punctuation Characters
Characters Used in Editing .
Characters Used in Relations .
Definitions of Words .
Types of Words .
Nouns .
File-Name
Record-Name .
Data-Name .
Procedure-Name .
Literal .
Numeric . . .
Continuation of Numenc
Non-numeric .
Continuation of Non-numenc
Figurative Constant .
Special-Names .
Paragraph-Name .
Table-Name .
Verbs . ..
Reserved Words .
Optional Word .
Key Word
Connective . .
Statement and Sentence Formatlon
Paragraph Formation .

Notation Used in Verb and other Entry Formats .

Key Words .
Optional Words
Lower Case Words .
Braces .

Brackets .

PAGE

. ix

1-1
1-1
1-1
1-3
1-3
1-3
1-3
2-1
2-1
2-1
2-1
2-1
2-1
2-2
2-2
2-2
2-2
2-2
2-2
2-3
23
2-3

. 23

2-3
23
24 -
2-4
2-4
2-4
24 ¢
24
24
2-5
25
2-5
2-5
2-5
2-5
2-6
2-6

2-6
2-6

SECTION

2 (cont’d)

by

TABLE OF CONTENTS (cont'd)

TITLE

Consecutive Periods.

Period . .

Data Names .
Punctuation .

IDENTIFICATION DIVISION .

General .
Syntax Rules . . .
Coding the IDENTIFICATION DIVISION

ENVIRONMENT DIVISION . .

General

Organization

Structure .

Syntax Rules . ..

CONFIGURATION SECTION
SOURCE-COMPUTER.
OBJECT-COMPUTER .
SPECIAL-NAMES

INPUT-OUTPUT SECTION
FILE-CONTROL .
I-O-CONTROL.. .

Coding the ENVIRONMENT DIVISION

DATA DIVISION
General . .
Data Division Orgamzatlon
Data Division Structure .
Record Description Structure .
Level-Number Concept
File Description .
FORMAT.
OCCURS .
PICTURE.
REDEFINES
USE. .
VALUE ..
SUBSCRIPTING .
TABLES .
FILLER
CHECK-DIGIT TABLE .

PROCEDURE DIVISION

General
Rules of Procedures Format1on .
Statements .
Imperative Statements
Conditional Statements .

PAGE

2-6
2-7
2-7
2-7

. 31

. 31
. 32
.. 41
.. 4]
. 41
.o 41
.o 4l
. 42
. 42
. 42
. 42
. 43
. 43
. 44
. 45

5-1
5-1
5-1

5-2
5-2
5-3

. 53
. 54
. 55

5-7

. 59

5-9

5-10
5-11
5-11

. 6-1
. 61

6-1

. 6-1
. 6-1
. 6-1

SECTION

6 (cont’d)

TABLE OF CONTENTS (cont'd)
TITLE

Sentences. .
Imperative Sentences .
Conditional Sentences .

Sentence Punctuation . ..

Execution of Imperative Sentences.

Execution of Conditional Sentences .

Paragraphs .

Control Relationship between Paragraphs .

DECLARATIVES

Procedures .

Conditions .

Relational Operators

Relation Condition .

Comparison of Operands.

Numeric .
Non-numeric .

Internal Program Swrtches .

Arithmetic . . .
Scale Factors for Decunal Ahgnment
Round .

Size Error .

Special Hardware Names

Procedural Constructs .

Part A: Processing; Paper Tape I/O 80-Column Card I/O

ACCEPT .

ADD . . .

ADVANCE .

ALARM .

CLOSE.

CONVERT .

DISPLAY.

DIVIDE

ENABLE .

END-OF-JOB .

EXIT

FILL

GO TO.
Relative Tests .
Accumulator Tests .
Error Condition Tests .
Accumulator Flag Tests .
Switch Tests
OCK Tests .
Check Digit Test .
Sterling Test

PAGE

6-1
6-2
6-2
6-2
6-2
6-3

6-3

6-4

6-4
6-5

6-5
6-5
6-5
6-6

6-6
6-6
6-6
6-7
6-7
6-7
6-7
6-9
6-10
6-11
6-11
6-11
6-12
6-14
6-15
6-15
6-15
6-16

6-16

6-16

6-17

6-17
6-18
6-19
6-20
6-20
6-21

. 621

TABLE OF CONTENTS (cont'd)

SECTION TITLE

6 (cont’d) TC-700 Flag Tests .

vi

MOVE . . .

MULTIPLY .

NO-OP.

NOTE .

OPEN . . .

PERFORM .

POSITION

READ .

RED RIBBON .

ROUND .

SELECT .

STOP RUN .

SUBTRACT.

USE.
Part B: Data Communication.

ACCEPT .

IF. . . .

LOCATE .

MOVE .

READ

STOP MACHINE .

WRITE.

7 SERIES L/TC COBOL COMPILATION B 3500 ENVIRONMENT.

General
Input ..
Compiler Programs .
Assembler Programs.
Output.
MCP Control Cards .
EXECUTE Cards . ..
FILE EQUATE Card . .
DATA Card . .o
DOLLAR SIGN Card .
DATA Deck.
END Card
Option Cards .
Compiler Options
LIST
CODE . .
SYNTAX.
TAPE .
DISK .
NEWT .
NEWD .

.71
. 7-1

. 7-4

.. 7S
.. 15

PAGE

. 6-22
. 6-22
. 6-26
. 6-27
. 6-27

6-28

. 6-29
. 6-29
. 6-29

6-30

. 6-30

6-30

. . 631
. 631
. 6-32
. 6-33

. . 633

. . 634

6-34

. 6-35
. 6-37
. 6-38
. 6-38

. 71

7-1
7-1
7-1

7-4

7-4

7-4
7-5

7-5
7-5
7-5

7-5
7-5
7-5
7-5

SECTION

7 (cont’d)

APPENDIX A

APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F

TABLE OF CONTENTS (cont'd)
TITLE

NEWC .

RESEQ

BLNK .

Identification .

Assembler Options .

SYM-PT .

SYM-CN .

SYM-CD . . .

MEMORY nnn.

OBICD.
Equipment Required
Operating Instructions.
Error Detection

ASCII, EBCDIC, and BCL Reference Tables: Series L/TC Character Set: Field
. A-l

Identifier and Flag Codes
Series L/TC COBOL Syntax
Glossary of Terms . .o
Series L/TC Reserved Word List . .
Series L/TC COBOL Compiler Error Messages
Sample Billing Program .

ALPHABETICAL INDEX .

.15

PAGE

7-5
7-5

7-5
7-5
7-5
7-5
7-5

7-6

7-6

7-6
7-7

B-1

. C1

D-1

. E-1

. One

vii

INTRODUCTION

This manual providés a complete description of COBOL (COMMON BUSINESS QRIENTED LAN-
GUAGE) as implemented for use on the Burroughs Series L/TC Systems.

COBOL’s advantages are derived chiefly from its intrinsic quality of permitting the programmer to state
the problem solution in Enghsh The programing language reads much like ordinary English prose, and
can therefore provide its documentation automatlcally :

The Burroughs L/TC COBOL offers the following major advantages:
1. Accelerated program implementation.
2. Accelerated programmer training and simplified retraining requireménts.
3. Significant ease of program modification.
4. Standardized documentation.
5

Self-documentation which facilitates non-techmcal management part101pat10n in data processmg
activities.

6. A comprehensive source program diagnostic capability.

It is assumed that the reader has a thorough understanding of the hardware of the Series L/TC systems.
Knowledge of the General Purpose 300 (GP 300) Assembler Language is helpful although not necessary.

A program written in L/TC COBOL, called a source program, is accepted as input by the Series L/TC
COBOL Compiler. The compiler verifies that all rules outlined in this manual are satisfied and generates
the symbolic input to the Series L/TC Assembler. The Assembler, in turn, produces an object program
capable of operating on a Series L/TC system. Program changes may be made either on the source
(COBOL) or symbolic (GP 300) level. The source deck, therefore, reflects the operating object program.

A COBOL source program is always divided into four parts or DIVISIONS in the following order:
IDENTIFICATION DIVISION
ENVIRONMENT DIVISION
DATA DIVISION
PROCEDURE DIVISION

The purpose of the IDENTIFICATION DIVISION is to identify the program and to include an overall
description of the program.

The ENVIRONMENT DIVISION consists of two sections. The Configuration Section specifies the
equipment being used. The Input-Output Section associates files with the hardware devices that will be
used for their operation. This Section also furnishes the compiler with information about memory
allocation for those hardware devices.

The DATA DIVISION is used to describe data fields which the object program is to manipulate or
create. These data fields may be files, records, fields within records, work areas, or constants.

The PROCEDURE DIVISION specifies the program steps necessary to accomplish the task desired by
operating on data defined in the DATA DIVISION.

ix

SECTION
CODING FORM

GENERAL

The coding form, which provides a standard method for describing and organizing COBOL source
programs, has been defined by CODASYL specifications and common usage. The Series L/TC COBOL
Compiler accepts this standard coding format, but also allows certain departures from the standard, at
the user’s discretion.

The same coding form is used for all four divisions of the source program. The four divisions must
appear in the following order: IDENTIFICATION DIVISION, ENVIRONMENT DIVISION, DATA
DIVISION, and PROCEDURE DIVISION. Each division must be written according to the rules for the
coding form.

CODING FORM DESIGNATION

The coding format for a line is represented in Figure 1-1.

AREA COLUMNS BEGINNING MARGIN ~ COLUMN
Sequence Number 1-6 L | 1
Continuation 7 C 7
A 8-11 A 8
B 12-72 B 12
Identification 73-80 R 73

Figure 1-1 Coding Format

MARGIN L
Margin L designates‘ the leftmost character position of a line.

The Sequence Number Area occupies the first six character positions of a line beginning at Margin L.
The sequence number field may be used to sequence the source program cards. Six-digit sequence
numbers are usually used. Normally, the first three digits of the sequence number contain the Coding
Form page number and the last three digits contain the line number on that particular page. Succeeding ‘
line numbers are usually incremented by 10 (e.g., the sequence number for the fifth line of page seven
would be 007050). The compiler generates a warning message during compilation time if a sequence
error (other than ascending) occurs. Other than providing this warning, the compiler does not use the
sequence numbers. This is true only when compiling from a card source; when patching tape or disk, a
sequence error is treated as a true error.

WHO4 DNIGOD 10802 sybnoung jo uondnpas aiydesforoyd v z-| 84nbiy

Burroughs COBOL CODING FORM

P:gf REQUESTED 8Y PAGE OF '4
! 3| PROGRAMMER DATE IDENT. 73 80
L 1 | I I |
LINE A B z
NO. A B :
4 617 n2 1né 120 124 128 132 136 140 144 148 152 156 160 164 168 2
&':‘ L1 1 il L L1 1y L1 [[S S U W W O I [T A U A L4 1l L1t
l&zl [1 11 11 PO T B S 11 L1 IR SN I N | [| Pl L1 [|
03: L1 1 11 11 T A I L1 S N N W VAT U G SO0 10 VNN Y IO B B I N | [[| T T W |
4; 111 I 11 | U T B B 11 T N T U W W W I U I B O | | I T [1 1 L4 i1
os: L 11 1 B Lo T I O I [[S N G S T S W O O U B T |) S T 111 T S N U U A |
: S | 11 (| | A I | (I S S T W T S N (Y T Y O I A | | [L1 | I |
°7E L1 1 1| [Lt 1111 |1 Loy g TN S OO O S N N I T I I I 111 11 1.1 11 11
&: 11 1 [Ll N T G | 11 N N T T U T O O O | [I | 1L [U O O B e
l°9.: 111 1 Lt L1 [| L1 [U Y U 1 U O T U N S O B O | [I O 114 | | I
‘°: [i 11 1] [| 11 | | T O T A O O B I llbllll 111 1 1 [
": L1l I L1 11 L1181 L1 TN 00N S A U U O A I T A O O B I I L1 1 11 A
‘7: 111 1 1 L1 L4l I A U WA T T T G W A A WO O A O | I 11141 [
13|‘ L L1 L1 L N I T O U O Y IO WO A0 O O O A O L1l NN EN NN
141 L1] 1 L d L1t 1) L T 0 S T N A A B B Y S A A O | ' A B 1114 L1 LA t1oq
‘5! [1 11 11 T I | I 1 I N T T T T O Y I O I O I T I N T (N IO W Y IO Y O I Y |
'6: 111] L1 I Lt 11 L1 T S T T N VY T O OO T U O Y [[| I
LI A O Ll L1 Ll D T T Y Y I A O A I T 1T N T I A
IB: L1 1 11 L1 [| Ll [| N O T TS T O I I L1111 111 0 U T O I Y B
'9: [I L1 i | I T T T T N T T I O O O Ll g1t I T L O O O B B R B
20:‘ L1 1 11 L1 [I 11 | | 1 Y T O T O O | | T O I | 14t § U S O W Y |
: L] L1 ! Ldoi PR I O O U U O O B B O O Lot R U N O A B B O
: L1y 1 Ll 11 L1111 11 N T T TN U W 0 N A I I | | B | L1 11 [
! Lit L1 | L1 bl b by byl | I
: | 1 11 11 | L1 | TN T T T S O T | T B I T | | I T O O S |
: 1 11] | 1 111 11 | T A N I U N O I I O [O [N I T O N Y O
4 8 12 he 120 124 l28 I 136 140 l44 148 152 I56 lso les les 172

Printed in U. S. America

Form 1020716

MARGIN C
Margin C designates the seventh character position relative to Margin L (column 7).

The Continuation Area occupies one character position beginning at Margin C. A hyphen (-) in the
Continuation Area of the continuation line indicates that the first character in Area B is the
continuation of a word or a literal on the previous line. If a hyphen does not appear, the word or literal
starting in Area B is not a continuation of an entry which started on the previous line and is separated
from the previous entry or line by a space.

An asterisk (*) in column seven indicates that the source line is for documentational purposes only and
can thus be used anywhere within the source program. Documentation may be continued by placing an
asterisk (*) on each subsequent line or documentation. All entries of this type are free form from Area
A through Area B.

MARGIN A

Margin A designates the eighth character position relative to Margin L. Area A occupies four character
positions beginning at Margin A. (Columns 8-11, inclusive.)

The following items must begin in Area A (column 8):

1. Division — Name

2. Section — Name

3. Paragraph — Name

4. FD entry and other unindented entries

5. Record descriptions

6. . Declaratives and End Declaratives
MARGIN B

Margin B designates the twelfth character position relative to Margin L. Area B occupies 61 character
positions beginning at Margin B. (Columns 12-72, inclusive.)

The following items must begin in' Area B (columns 12-72):
1. All sentences.
2. Continued sentences, words, or literals.

3. Any coding which has not been specified to begin in any other area.

MARGIN R

Margin R designates the rightmost character position of a line. The Identification Area occupies eight
character positions beginning with Margin R leftwards (columns 73-80, inclusive). These columns may be
used for any purpose required by the programmer, although they are normally used for card deck
identification. Information in these columns will be ignored by the processor in creating the object
program, although they will be printed on the compiler listing on the line corresponding to the card.

| SECTION
COBOL LANGUAGE ELEMENTS

GENERAL

It has been stated that COBOL is a language based on English to the extent that the language is
composed of words, statements, sentences, paragraphs, etc. This section defines the rules to be followed
in the manipulation of this language. The use of the different constructs formed from the created words
is covered in subsequent sections of this document.

CHARACTER SET

The Series L/TC COBOL character set consists of all characters on the L/TC print ball (Commercial and
USASCII combined). See Character Set (Table A-5 in Appendix A).

CHARACTERS USED FOR WORDS

The character set for words consists of the following 37 characters:
09
A-Z
- (hyphen or minus sign)

PUNCTUATION CHARACTERS |

The following characters may be used for punctuation:
, ~ comma
period

; semicolon
CHARACTERS USED IN EDITING

The L/TC COBOL Compiler. accepts the following characters in editing (masking):
$ dollar sign
, comma

decimal point

numeric digit

punctuation suppress

print compress -

ignore digit

+ =) = 0 -

plus sign

minus sign
ZeTO suppress

punch zero suppress

®oYN

alpha character

CHARACTERS USED IN RELATIONS

The L/TC COBOL Compiler accepts the following characters in conditional relationships:
= equal
< less than
> greater than

DEFINITION OF WORDS
A word is created from a combination of not more than 30 characters, selected from the following:
A through Z |
0 through 9
- (the hyphen)
A word is ended by a space, or by a period, comma, or ‘semicolon.' A word may not begin or end with a
hyphen. (A literal constitutes an exception to these rules, as explained later.)
TYPES OF WORDS
L/TC COBOL contains three types of words. These word types are:
1. Nouns. ' 5
2. Verbs.

3. Reserved words.

NOUNS _
Nouns are divided into nine special categories:

1. File-names

2. Record-names |
3. Data-names
4. Procedure-names
5. Literals
6. Figurative constants
7. Special-names
8. Paragraph-names
9. Table-némes

Since a noun is a word, its length may not exceed thirty characters, and must contain at least one
alphabetic character. (Exception: See literals, page 2-3.) For purposes of readability, a noun may contain
a hyphen, but the hyphen may neither begin nor end the noun. (This does not apply to literals.)

File-Name !

A file-name is a collective name or word assigned to designate a set of data items associated with a
particular input-output device. The contents of a file are divided into logical records that in turn are
made up of any consecutive set of data items.

Record-Name

A record-name is a noun assigned to identify a logical record. A record can be subdivided mto several
data items, each of which is distinguishable by a data-name.

2-2

Data-Name

A data-name is a noun used to refer to an item of data, or to a defined area containing the data. Some
valid data-names are:

MONTHLY-EARNINGS
BALANCE-OF-PAYMENTS
K3457

Procedure-Name

A procedure-name is used to define the name of a subroutine to be PERFORMED. Procedure-names are
declared only in the DECLARATIVES section.

Literal

A literal is an item of data whose value is identical to the characters contained within the item. There
are two types of literals: numeric and non-numeric.

-

NUMERIC LITERAL. A numeric literal in the PROCEDURE DIVISION is an item composed of
characters chosen from the digits O through 9, the plus ‘signA(+) or minus sign (-). Numeric literals are
also used in conjunction with VALUE statements in the DATA DIVISION; in this case the decimal
point character is also allowable. The rules for formation of a numeric literal are: | '

Only one sign character and/or one decimal point may be contained in a numeric literal.
There must be at least one digit in a numeric literal.

The sign of the literal must appear as the leftmost character. If no sign is present, the literal is
defined as positive. '

4. The decimal point may appear anywhere within the literal except for the rightmost character
of a numeric literal. Absence of a decimal point denotes an integer quantity.

5. A numeric literal cannot exceed 15 signed digits.

CONTINUATION OF A NUMERIC LITERAL. When a numeric literal is continued from one line to
another, a hyphen is placed in the Continuation Area (column 7) of the continuation line. This indicates
that the first character of Area B of the continuation line is to follow the last non-blank character of
the continued line without an intervening space.

NON-NUMERIC LITERAL. A non-numeric literal may be composed of any print graphic character
allowable for the L/TC. The beginning and end of a non-numeric literal is denoted by a quotation mark.
All spaces and characters enclosed by quotation marks are considered part of the literal. A quotation
mark may not be imbedded in a literal string; it must be handled separately with the figurative constant
QUOTE. A non-numeric literal cannot exceed 99 characters. Examples of non-numeric literals are: i

LITERAL ON SOURCE PROGRAM LEVEL LITERAL STORED BY COMPILER
“ANNUAL DUES” ‘ ANNUAL DUES
“-1234.789” -1234.789 ,
“QUOTE 98.6 QUOTE” “98.6”

Note: Literals that are to be used for arithmetic computation must be expressed as numeric literals and
‘must not be enclosed in quotation marks.

2-3

CONTINUATION OF NON-NUMERIC LITERAL. When a non-numeric literal is continued from one
line to another, a hyphen is placed in column 7 of the continuation line and a quotation mark is placed
in the first character position of Area B (column 12). The continuation of the non-numeric literal
commences in column 13 of Area B. All spaces at the end of the continued line and any spaces
following the quotation mark of the continuation line and preceding the final quotation mark of the
non-numeric literal are considered part of the literal.

Figurative Constant

A figurative constant is a particular numeric or alpha value that has been assigned a fixed data-name.
When a figurative constant is used to represent the corresponding value, it must never be enclosed in
quotation marks. This does not preclude the use of a figurative constant as part of a non-numeric literal
at which time it is enclosed in quotation marks. The figurative constant names and their meanings are:

ZERO
ZEROS Represent the value 0 (or 00,000, etc.).
ZEROES
- QUOTE Represents ”
ONE Represents the value 1
Special-Names

The SPECIAL-NAMES parégraph of the ENVIRONMENT DIVISION facilitates association between
certain hardware equipment names and problem-oriented mnemonics that the programmer may wish to
use. SPECIAL-NAMES should be used for frequently referenced values such as print positions or line
numbers.

Paragraph-Name

A PARAGRAPH-NAME is used to assign a label to a paragraph (defined on page 2-5). A PARAGRAPH-
NAME consists of a word followed by a period and names the paragraph which immediately follows.
This paragraph is termmated by the next PARAGRAPH—NAME

Table- Name

A TABLE—NAME is used to define a. Program Key table (PK table). It appears only in the
DECLARATIVES section of the PROCEDURE DIVISION.

VERBS

¥

Another type of COBOL word is a verb. A verb in COBOL is a single word that denotes action, such as
ADD, ACCEPT, or MO:VE. All allowable verbs in COBOL, with the exception of the word IF, are truly
English verbs. The usage of the COBOL verbs take place primarily within the PROCEDURE DIVISION.

RESERVED WORDS

The third type of COBOL word is the reserved word (includes verbs). Reserved words have a specific
function in the COBOL language and cannot be used out of context or for any other purpose than the
one for which they were intended. A complete list of reserved words in Series L/TC COBOL for the
compiler is included in Appendlx D. Reserved words are for syntactical purposes and can be divided into
three categories:

1. Optional words

2. Key words

3. Connectives
2-4

Optional Word

Optional words are included in the COBOL language to improve the readability of the statement
formats. These optional words may be included or omitted, as the programmer wishes. For example, IF
A IS GREATER THAN B ... is equivalent to IF A GREATER B Therefore, the inclusion or
omission of the words IS and THAN does not influence the logic of the statement.

Key Word

Another type of reserved word is the key word. The category of key words includes the verbs and
required words needed to complete the meaning of statements and entries. The category also includes

words that have a specific functional meaning. In the example shown in the preceding paragraph, the
words IF and GREATER are key words.

Connective

The third type of reserved word is the connectives. Connectives are used to indicate the presence of a

qualifier or to form compound conditional statements. AND, NOT and OR are used as logical
connectives in conditional statements.

STATEMENT AND SENTENCE FORMATION

Statements are formed by the completion of the various verb constructs and other entries discussed in
the later sections of this manual. A statement may be terminated by a period and thus become a
sentence. A group of statements, terminated by a period, also forms a sentence. An example of a
sentence made up of three statements would be MOVE A TO B, ADD 1 TO COUNTER, DISPLAY
SUMMARY UPON PRNTR.

PARAGRAPH FORMATION

One or more sentences may comprise a paragraph. A paragraph begins with a paragraph name and is
terminated by the paragraph name of the next paragraph. On a coding form the name of a paragraph
starts in Area A of any line following the Division Heading and ends with a period. The last statement
of any paragraph must be terminated with a period. The first sentence in a paragraph begins in Area B
of either the same line as the paragraph name or any succeeding line. Successive sentences either begin
somewhere in Area B of the same line as the preceding sentence or in Area B of the next line.

A paragraph is formed (i.e., a paragraph-name is assigned) in the PROCEDURE DIVISION whenever it is
necessary that program control be transferred to a program segment by means of the GO TO verb
(discussed later).

On a coding form the name of a section starts in Area A (at column 8) of any line except the same line
as the Division Heading. It is followed by a space, then the word SECTION and then a period (e.g.,
WORKING-STORAGE SECTION.). Other text may appear on the same line as the Section Header. A
section consists of data description entries in the DATA DIVISION.

NOTATION USED IN VERB AND OTHER ENTRY FORMATS

The notation conventions that follow enable the reader to interpret the Series L/TC COBOL syntax
present in this manual. ‘

KEY WORDS

All underlined upper case words are key words and are required when the functions of which they are a
part are utilized. Their omission causes error conditions at compilation time. An example of key words
is as follows:

IF data-name IS {‘ZL@ }

NEGATIVE
The key words are: IF, ZERO, and NEGATIVE.

OPTIONAL WORDS

All upper case words not underlined are optional words and are included or excluded in the source
program. In the example above, the optional word is IS.

LOWER CASE WORDS

All lower case words represent generic terms which must be supplied in that format position by the
programmer. Integer is a generic term in the following example:

OCCURS integer TIMES
BRACES

When words or phrases are enclosed in braces { }, a choice of one of the entries must be made. In the
following example, either the word ZERO or NEGATIVE must be included.

IF data-name IS {Z'EE]

NEGATIVE

BRACKETS

Words and phrases enclosed in brackets [], represent optional portions of a statement. If the
programmer wishes to include the optional feature, he may do so by including the entry shown between
brackets. Otherwise, it may be omitted. In the following example, the format enclosed in brackets is
optional.

ENABLE [table-name] PK1 PK2....

CONSECUTIVE PERIODS

The presence of three consecutive periods (...) within any format indicates that the data immediately
preceding the periods may be successively repeated, depending upon the requirements of problem
solving. In the following example any or all of the conditions SW1, SW2, SW3, or SW4 may be tested.

SW1 SW1
SW2 Sw2
= SW3 OR SW3
Sw4 Sw4

In actual use, it might be:
IF SW2 OR SW3 OR SwW4

2-6

PERIOD

When a single period is shdwn in the COBOL syntax discussed in this manual, it must appear in the
same position whenever the source program calls for the use of that particular statement.

DATA NAMES

The normal convention of using “data-name” to indicate user defined items is expanded for the purpose
of clarity as follows:

1.

2
3.
4.
5

data-name. Refers to alpha or numeric data.

alpha-data-name. Refers to alpha data only.

numeric-data-name. Refers to numeric data only.
alpha-file-data-name. Refers to alpha data located only in a file.
numeric-file-data-name. Refers to numeric data located only in a file.

PUNCTUATION

The following rules of punctuation apply to the writing of Series L/TC COBOL programs:

1.

A sentence is terminated by a period. A period may not appear within a sentence unless it is
within a non-numeric literal (within “ *’s).

Two or more names in a series may be separated by a space or a comma.

Semicolons are used for readability and are never required. The semicolon is used for
separating statements within a sentence or clauses within data description entries. It is used
the same way as a space or comma.

The reserved word THEN is also used for readability and can be used to separate two
statements within a sentence. It can also be used between the condition and the first
statement within an IF statement. For example:

IF ... THEN ... THEN ... ELSE ..

Data-names or paragraph-names must always be one continuous string of characters. A space
must never be imbedded in a name; hyphens must be used instead. However, a hyphen may
not start or terminate a name.

Example:
GRAND-TOTAL is a valid data-name or paragraph-name

-GRAND-TOTAL or
-GRAND-TOTAL- or
GRAND-TOTAL- or
GRAND TOTAL are all invalid entries.

GENERAL

| SECTION
IDENTIFICATION DIVISION

The first part or DIVISION of the source program is the IDENTIFICATION DIVISION. This DIVISION
identifies the source program and the output of a compilation. In addition, the date the program is
written, the date of the compilation, and other information desired may be included in the

IDENTIFICATION DIVISION.

The structure of this division is as follows:
IDENTIFICATION DIVISION.
[PROGRAM—ID. Any L/TC COBOL word.]
[AUTHOR. Any entry.]
[INSTALLATION. Any entry.]
[DATE-WRITTEN. Any entry.]

[DATE-COMPILED. Any entry — replaced by the current date as maintained by the MCP.]

[SECURITY. Any entry.]

[REMARKS. Any entry. Continuation lines must be coded in Area B of the coding form.]

678 11z 116 120 124 j28 132 136 140 144 152 156 160
o1 DE'NT'I'F'IC'ATWII Ll L1 L1 14 44 a1 1 4431
02 1 1) b : T L1y N T B S I O A
3 R I T W T T T N Y N T A1 L1 J | T U U W T W |
4 m‘-l—llmm_.lllllll | 1 4t 1 111 1111113
$:mB.LLlElnlnlnlllnlnllllll L) S I I A S A A Y

T

N B I el el Rt il el e

Figure 3-1 Sample Coding for Identification Division

SYNTAX RULES

1

1111 |1)4)

F N T T S U T |

RKS., THIS PRAGRAM ACGEPTS ACTIVITY. DATA . o000y
L4 FM_EAEEBMWMI L
11 | PUNCHES THE DATA ©ON PAPER TAPE.. 1t 1000100000 0ay

The following rules must be observed in the formation of the IDENTIFICATION DIVISION:
1. The IDENTIFICATION DIVISION must begin with the reserved words IDENTIFICATION

DIVISION, followed by a period.

2. The entries must conform to the rules for the creation of words in Series L/TC COBOL.

3. The heading and paragfaph-names must all begin at Margin A.

3-1

Notes:

When DATE-COMPILED is included, the compiler automatically inserts the date of compilation in the
form of MM/DD/YY. : \

With the exception of the DATE-COMPILED baragraph, the entire DIVISION is copied from the input
source program by the compiler and listed on the output listing for documentational purposes only.

The first six characters of the PROGRAM-ID will apbear in the heading of each page of the assembler
listing, and in the summary information at the end of the compiler listing.

CODING TI-]E IDENTIFICATION DIVISION

Figure 3-1 provides an illustrative example of how the IDENTIFICATION DIVISION may be coded in
the source program. Note that continued lines must be indented to the B position of the form, or
beyond. ’ ‘ ‘

3-2

'SECTION
ENVIRONMENT DIVISION

GENERAL

The ENVIRONMENT DIVISION is the second DIVISION of a COBOL source program. Its function is
to specify the computer being used for the program compilation, to specify the computer to be used for
object program execution, to associate files with the computer hardware devices, and to provide to the
compiler information about storage files defined within the program. In addition, this DIVISION can
also be used to specify the mput-output procedures to be utilized. A coded example is provided by
Figure 4-1 at the end of th1s section.

ORGANIZATION

The ENVIRONMENT DIVISION consists of two sections. The Configuration Section contains the
overall specifications of the computer. The Input-Output Section deals with files to be used in the
object program.

STRUCTURE

The structure of this DIVISION is as follows:

ENVIRONMENT DIVISION.
[CONFIGURATION SECTION.]
[SOURCE-COMPUTER.]
[OBJECT-COMPUTER.]
[SPECIAL-NAMES.]
[INPUT-OUTPUT SECTION.]
[FILE-CONTROL.]
[I-O-CONTROL.]

SYNTAX RULES

The following syntax Tules must be observed in the formulation of the ENVIRONMENT DIVISION:

1. The ENVIRONMENT DIVISION must begin with the reserved words ENVIRONMENT
DIVISION followed by a period. -

2. All paragraphs within the ENVIRONMENT DIVISION are optional and except for SPECIAL
-NAMES, FILE-CONTROL, and I-O-CONTROL are for documentational purposes only.
However, if a paragraph is used, its corresponding paragraph name and section name must also
be included. For example, if a FILE-CONTROL entry is used, then INPUT-OUTPUT
SECTION and FILE-CONTROL must appear first.

The specific definitions of the entries for the paragraphs shown are given below.

4-1

SOURCE-COMPUTER
OBJECT-COMPUTER
SPECIAL-NAMES

CONFIGURATION SECTION

The Configuration Section contains information concerning the system to be used for program
compilation (SOURCE-COMPUTER) and the system to be used for program execution (OBJECT-
COMPUTER).

SOURCE-COMPUTER

The function of this paragraph is to allow documentatlon of the configuration used to perform the
COBOL compilation.

The construct of this paragraph is:

[SOURCE-COMPUTER. B-3500]

This paragraph is for documentation only. The actual machine style is optional; any entry may be made
in this area.

OBJECT-COMPUTER

The function of this paragraph is to allow documentation of the configuration used for the object
program. ‘

The construct of this paragraph is:

| TC-500
OBJECT-COMPUTER. 4 TC-700 .
L-2000

This paragraph is for documentation only. The actual machine style is optional; any entry may be made.

Example:

46718 12 _1é _120 124 128 132 136 140 14& 148 152 156 &

| . . -
°‘!_.PE1IE = 8 - el TR W YO T W VAU WS WA U U SN N WY WA TN TN S TUUN W W W Y T
| : .

SPECIAL-NAMES

The function of this paragraph is to allow the programmer to assign a data-name to line numbers, print
positions, and punch card columns which are frequently referenced. This allows snnphclty for later
changes to the program by changing only the single entry for the line number, print position, or card
column, defined with the data-name, rather than all entries in the program using that reference.

4-2

FILE CONTROL

The construct of this paragraph is:

[SPECIAL-NAMES.]
POSITION| .
[data-name IS POS integer. |
[data-name IS LINE integer.]
COLUMN)} .
[data-name IS { COL } 1nteger‘]_
Example:

02 i [| N e e NNl NN N
3: PnE.CLALLL_NAm.lllxlllxllnlnlln.n.;lnlnnllllnnul;llnllx
4 | | .| P D N N T U U U T U U N U U T T T O

i

INPUT-OUTPUT SECTION
The input-output section contains information concerning files to be used by the object program.
FILE-CONTROL

The function of this paragraph is to name each file, to specify the particular input-output hardware
assignment, and to specify alternate work areas and buffers for input and output data.

The construct of this paragraph is:

[FILE-CONTROL.

SELECT file-name ASSIGN TO | SARD-READER {

{DATA-COMM} %‘L_T}

[RESERVE ALTERNATE AREA] [ACCESS MODE IS SEQUENTIAL |

{USE

-~ ORK-AREA.
NO } WORK-AREA.|

Note

The braces around DATA-COMM and IN and OUT are used to indicate that if DATA-COMM is
ASSIGNED, either IN or OUT must be speclfled

Files used in a program must be the subject of only one SELECT statement. That is, a given file-name
may not be ASSIGNed to more than one hardware device. The nature of the Paper Tape Reader, Paper
Tape Punch, and Card Punch peripheral devices exclude them from file control.

The RESERVE ALTERNATE AREA option will cause a working record area to be used for
DATA-COMM IN or DATA-COMM OUT.

4-3

1-O-CONTROL

The ACCESS MODE IS SEQUENTIAL clause is used to specify that a DATA-COMM IN file will be
accessed out of the data communications buffer (or alternate record area if the RESERVE ALTER-
NATE AREA clause was used) in a serial manner. This clause can be used only if the fields of the
buffer are all fixed length. It will prevent the compiler from generating field pointers and therefore save
code. The NO WORK-AREA clause must be used when using this option.

The NO WORK-AREA option is used to specify that the data will be accessed directly into and out of
the data communications buffer or out of the punch card-in buffer.

The USE WORK-AREA option is used to specify that the input and output data will be accessed in
individual main memory fields. The FILL verb (discussed in PROCEDURE DIVISION) is used to
accomplish the transfer to the WORK-AREA. The WORK-AREA would be defined in the FILE
SECTION of the DATA DIVISION.

Note
Only one file of a given hardware type may be SELECTed per program.

Example:

1t 1 lll]lLllllllIlllIllllllllllllllllllllllllllll]lll
IILEM.IIIIlllllllljlllllllllllllllll]llIIJlllIl

SELECT. LLINE-DATA-IN ASSIGN T@ DATA-CZMM IN,
L ‘n.I.ACJQE&&_MM_L&_&QUENLLAL“.HH.“......H.

]
~

l°9 Lot NG WORK-AREA., 11 0o s NN N

11 ¢t 111 111111:11111nnnl|-111:11.1..1111:11111|||l||||1|1
[}

12 | L1l = L0 bbby b1 bbbl L
T .

13 | L1 11|IIASSIEIN_JI&_QABID_BEIADEBtnlannlllxnnalnllnnnnax
| I Y

14) L1t 1111US|EIMBK|_A|BEIAA.IIIIlllllllllllllllllllljllxlll

The first example above ASSIGNS the file-name LINE-DATA-IN to the data communications message
receive record area. The data will still be in character mode since the ACCESS MODE IS SEQUENTIAL
and NO WORK-AREA clauses are used.

The second example ASSIGNS the file-name CARD-DATA-IN to the card reader buffer area in main
memory. The card data will be moved to the WORK-AREA when the FILL verb is used in the
PROCEDURE DIVISION. :

I-0O-CONTROL

The function of this paragraph is to specify the memory area to be shared by different files during
processing.

|:I-0-CONTROL
[SAME AREA FOR file-name-1, file-name-2,]
[SAME WORK-AREA FOR file-name-1, file-name-2,]

4-4

The I-O-CONTROL paragraph name may be omitted from the program if the paragraph does not
contain either of these clause entries.

The SAME AREA clause is used only to specify that DATA-COMM-IN and DATA-COMM-OUT alternate
record area (declared by the RESERVE ALTERNATE AREA clause) will use the same main memory

arca.

The SAME WORK-AREA clause is used to specify that the work areas (declared by the USE
WORK-AREA clause) will use the same main memory area. However, if two or more files share the
same area, only one file may access the area at any given time, and processing of one record must be.
complete before attempting to use the area for another record from either file.

Note

The file requiring the largest memory area (work area) must be declared first in the DATA DIVISION.
CODING THE ENVIRONMENT DIVISION

An example of the ENVIRONMENT DIVISION coding is provided in Figure 4-1.

sl uhe 132 136 140 144 148 152 156 160
Ol! NVIIIMNMENL_MM.I|||l|lLL111|.|1|1|1|1|1alxlllllJ_'“
|;21: .|1|L1|11|||41|1||11|||1||||1||1‘v
IOJ: QE_JMMI‘ER.|B_SlsoohllllllllllllllJlIlllllllll:‘v‘__x_
s | BIECT-COMPUTER., Lm@IO b v 10 v 00 v i g i gt iis
“: BELQIIAd,-Nﬂ‘_‘ES.:|111114111111111lnunnlualnnlln|.||11||n
Q: ,1,WWI.lnnllllllllllll||1l|||:1
07: L - /'S T O O T Y B O Y A A I N
os | 11,Tammwﬁllzl&.lllll|||||1||1|||1||1|1|Ja||
'O’E mmm_m-llxllll||1|1||1||-1||llx1-1111111.
1o ! JIWE-CONTRAL L 0o v 0 0 g g iy
T Ly - - - IN
NN I L1 RESERVE, ALTERNATE AREA USE WORK-AREA.. | 111111,
3t |, SELECT @N-LINE-AUT ASSIGN T& DATA-COMM @UT.. .1 ...,
,,! L i 1JLM§EI_MB&_1ABEAI-1|J||11H|||||||11|||||111:11111
ve | ~A-CANTRA . 0 L i a1t
_;__,5_4_44_14 SAME AREA FGR ON~ L INE~ LN, @N~LINE=@JT. 01 111 (1,
T 11 SAME WORK AREA FOR ON-ILINE-IN, @N-LINE-@UT., . i,
19 | iJ_J__,‘LLl_I.gAlBQlDAlIJALLI_NJIIIlllllflJlllllllllIIllllljlllll

Figure 4-1 Sample Coding for Environment Division

4-5

SECTION
DATA DIVISION

GENERAL

The third part of a COBOL source program is the DATA DIVISION, which describes all data that the

object program is to accept as input, and to manipulate, create, or produce as output. The data to be
processed falls into three categories:

1. Data which is contained in files and enters or leaves the internal memory of the computer
from a specified area or areas.

2. Data which is developed internally and placed into intermediate or: WORKING-STORAGE
(defined below), or placed into specific format for output reporting purposes

3. Constants Wthh are defined by the programmer.

DATA DIVISION ORGANIZATION

The DATA DIVISION is subdivided into two sections:

1. The FILE SECTION which defines the contents of data files which are to be created or used
by an external medium such as punch card. Each file is defined by a file description, followed
by a record description or a series of record descriptions.

2. The WORKING-STORAGE SECTION which describes records, constarits and non-contiguous

data items which are not part of an external data field, but are developed and processed
internally.

DATA DIVISION STRUCTURE

The general structure of the DATA DIVISION is as follows:

DATA DIVISION.
FILE SECTION.
[FD. file-name-1 . .. 1] .
[01 record-name-1 ...] .
[02 data-name-1 ...] .
[02...1.
[03 data-name-2 .. .] .
etc.
[FD filename-2 . ..] .
WORKING-STORAGE SECTION.
[77 data-name-3 ...] .
[77 data-name-4 ...] .
[01 record-name-2 ...] .
[02 data-name-5 ...] .
[02 data-name-6 ...] .
etc.
[01 record-name-3 ...] .
etc. '

RECORD DESCRIPTION STRUCTURE

A Record Description consists of a set of data description entries which describe the characteristics of a
particular record. Each data entry consists of a level-number followed by a data-name, followed by a
series of independent clauses, as required. A Record Description has a hierarchical structure; therefore,

the clauses used with an entry may vary considerably, depending upon whether or not it is followed by
subordinate entries.

LEVEL-NUMBER CONCEPT

The level-number shows the hierarchy of data within a logical record. In addition, it is used to identify
entries for non-contiguous constants, and WORKING-STORAGE items. Each record of a file begins with
the level-number 01. This number is used in the FILE-SECTION for the record-name only, as the
most-inclusive grouping for a record. Less-inclusive groupings are given higher numbers, but not

necessarily successively. The numbers can go as high as 10. Figure 5-1 illustrates the use of level within a
record.

Multiple level 01 entries of a given File Description of the FILE SECTION represent implicit
redefinition of the same area. That is, both record-names will refer to the same file.

For an item to be elementary, it can not have subordinate levels. Therefore, the smallest element of a
data description is called an elementary item. In Figure 5-1, MONTH, DAY, YEAR, MILLING,
FINISHING, ITEM-NO, LOT-NO, STANDARD-COST, ASSEMBLY, INSPECTION, and WARRANTY-
CODE are elementary items. A level that has further subdivisions is called a group item. In Figure 5-1,
ITEM-DATE, PRODUCTION-CODE, and MACHINE-SHOP represent items on a group level. A group is
defined as being composed of -all group and elementary items described under it. A group item ends
when a level-number of equal or lower numeric value than the group item itself is encountered. In
Figure 5-1, group item PRODUCTION-CODE ends with INSPECTION. A group item can consist only of
a level-number and a data-name followed by a period.

One additional level-number exists in Series L/TC COBOL. This number is 77 and is used for

non-contiguous or single items within WORKING-STORAGE only. All 77 items must precede any other
item.

To reiterate, a level-number is the first required element of each record and data description entry. In
value it can range from O1 through 10, plus the special number 77.

4 '67 nh2 _né 120 124 128 132 136 140 144 148 152 156 160
01 ! lll Wm-lllLlLlIllllllllllllll!Illllllll
= |l|Q3| 111[1EM_MEJ_&IMMQB |||ﬂ|111|lll||11||l1111_L
‘: lllOBIIWJI|IIIIIIIIIIIIIllllllll
: |||O5||I|TAEM‘DATE:..||||||1||||||1.11.|||1111||1||||1||1
: L1 JlOSMNLH_EJI_QLUBE_%.i:H1.::.11111111:1.11.1111
! L1 1105DlAlYll:B_LQIﬂBE_Q&.ll::|||1|||1|11||’|||||||11_L
:. | Ll |YM%.I|IL]1.::||||||t4|||11|||1||111|
s ! ..-m-mmamm_ammm....mnm-mu
’: 111031Pmm_m:&hlllll||1|l|l|||||lll||||1||l||1
o ! b 1 O5 MACHINE-SH@P .0 (1 10 00 vt i b v iy
P v b, 06 MILLING PICTURE 999, 0 1 1 v 0 10 1 b 114 a1y
p2 | L1 |lllllww.lllllllllllllIlIllllll
13 | L1 llmmmm.llllllllllllllllljIllllllll
": i) L1 IINWX(IS)I.III[I][IIII]llllIlJ
'SE lllWWM.IIIIIIIIIIlllLlIlIIllIIllI

Figure 5-1 Sample Coding for Data Division

FILE DESCRIPTION
FORMAT

FILE DESCRIPTION

The function of this paragraph is to furnish information concerning the physical structure, identification,
and record names pertaining to a given file.

The construct of this paragraph is:

RECORD IS

FD file-name [DATA {RECORDS ARE

] record-name-1, record-name-2, . ..] .

The level indicator FD identifies the beginning of a File Description and must precede the file-name.
. The DATA RECORD(S) clause is used for documentation only.

Only one period is allowed in the FD entry and it must follow the last used clause.

Example:

17 111 N N T N N 1 T S T e o T T T T T s T T O I B

JDLJ_IMNIIQBICBALlellllAlllIllll||1111111111l11|11|1|||

19

T
l
1
|
]

The above File Description example lists the record-names for INVENTORY-BAY-1. Following this
sentence each record-name would be defined on an 01 level with whatever data-name breakdown is
necessary for each. Additional 01 record descriptions for the records DIODES and TRANSISTORS
would represent implicit redefines of the record area labeled TUBES. Since the File Description is for
documentation only, the implicit redefinition is not accomplished until additional 01 record designations
are made.

FORMAT

The function of this clause is to describe size and scaling factor for numeric input and arithmetic
operations. It specifies the allowable number of digits to the right and to the left of the decimal point
and provides for the enabling of the C, M, and RE keys.

The construct of this clause is:

l FMT

FORM AT} IS (any allowable format characters not to exceed 15 digits)

The FORMAT clause may appear in addition to the PICTURE clause and will determine the decimal
alignment and keyboard entry factors. It may only be used with elementary items.

The FORMAT clause may be used in place of a PICTURE clause if printing of the item will not be
required.

The symbols used to define the category of an elementary item and its functions are explained as
follows:

5-3

OCCURS

1. The letter S in the leftmost position indicate that the “RE” key may be used to enter signed
data through the keyboard.

2. The letter V indicates the decimal position for decimal alignment and keyboard entry
parameters.

3. The number 9 indicates a numeric digit.

The letters CM in the rightmost position indicates that the “C” or “M” key may be used
when entering data through the keyboard.

Example:
! 111 I W T T S T O T Y T S N T T T T T T T T N O U T T OO VOO O W
]
Ll DL QUANTLTY, FORMAT 1S SOG99VOO. 1 1 1 v v v i i
‘1oL PRICE FMT. ©9999VO9CM.: v v v 0 0 o b i
t - .
! 1o TD-NZ | FMT IS 899999, 1 1 v vy

In the example above, the first clause provides for the entry of 4 numbers to the left of the decimal,
the decimal key, two numbers to the right and the RE key. The second allows the decimal key with 4
numbers to the left and 2 to the right as well as the C and M keys. The third clause allows only 6 digits
to be entered on the numeric keyboard. The coding of the FORMAT clause may be shortened by the

use of the 9 (integer) notation. The integer represents the number of numeric digits in a continuous
string of digits.

1 11 TS VOO VN U N U WY I T N N T T S VT A T T N N N T U OO I T T T T Y O O B

L. FACTOR-2 FMT. B(OIVRGS) i v o0 v iy

Example:
46718 npe né 120 124 128 132 136 140 144 148 |52 156 160
bt | DI, FACT@R-I. . FARMAT 1S S99999908VS39CM. .« 111110,
lozi | T AQTMmmlmnlllljlllllllllllIIIIIllIl
: 111 | AN N VO R WA N N O T W O N T Y N N N T T N T N O Y W T T U T Y T Y Y Y T Y O
|l | S (¢ T T N A
I
I
I
]

In the above example FACTOR-1 has equivalent FORMAT in both statements.

The decimal alignment specified in the FORMAT determines the scaling factor when arithmetic is done
with the data item.

OCCURS

The function of this clause is to define a sequence of contiguous data-items and to define a subscripted
item (see page 5-9 for a discussion of subscripting).

The construct of this clause is:

{o_c

OCCURS} integer TIMES

PICTURE

This clause cannot be used in any data description entry whose level-number is 01, and it can be used
only with elementary items.

The integer may not be zero and must not exceed 256. The OCCURS clause may not appear with a
VALUE clause or with an item which is subsequently REDEFINED.

Every item which is being defined by a given OCCURS clause will have the same FORMAT (discussed
on page 5-3) or PICTURE (discussed on page 5-5).

The following illustrates the use of the OCCURS clause.

Example:

- 1 :

_19' A | IlllllllllllllllllllllllllIlllllll'lllllllllllllll
[

20';I02.1
T+

Mlhﬁ"lmm&_ﬂ&&mmhm&&-llmnuun

In the above example, a 20-word sequential storage area is defined, each of which has a format of 9999,
An item in this area must be referenced by appropriately subscripting the data-name DAILY-TOTALS.

PICTURE

The function of this clause is to descrii)e the size, class, general characteristics and the editing
requirements of an elementary item.

The construct of this clause is:

PC
PIC IS (any allowable character string to describe the data).
PICTURE

A maximum of 24 characters and symbols may be used to describe a numeric item, which cannot
exceed 15 digits. An alpha item may not exceed 99 characters.

The PICTURE clause determines the print specifications. It also determines the decimal alignment, and
keyboard entry factors unless a FORMAT clause is used in addition to the PICTURE clause in which
case the FORMAT clause will determine the decimal alignment (for scaling) and keyboard entry factors.

The symbols used to define the category of an elementary item and their functions are explained as
follows:

1. The letter J in the MSD position of a picture indicates suppress punctuation.

2. The letter J to the left of the decimal but not in the MSD position indicates reinitiate zero
suppression and suppress for one digit (single digit zero suppress). The single digit zero
suppress may be continued to the right with the letter Z for each additional character.

3. The letter J to the right of the decimal point indicates initiation of trailing zero suppression.
Zero suppression is re-initiated and may be continued to the right with the letter Z for each
additional character. ’

4. The letter K coded in the MSD position indicates ““print compress” (TC 700 only).
5-5

The letter P coded in the MSD position indicates “punch zero suppress”.
The letter X indicates a single alpha character.

The letter Z indicates zero suppression of number data.

The number 9 indicates numeric data with no zero suppression.

The special character § indicates floating dollar protection.

© ® N

10. The special character comma (,) indicates insertion of a comma.

11. The special character period (.) indicates insertion of a period and the decimal or scaling

factor.

12. The special character plus (+) in the LSD position indicates print with the ribbon reversed if
plus. -

13. The special character minus (-) in the LSD position indicates print with the ribbon reversed if
minus.

14. The character I indicates “Ignore digit™.
Items 2, 3, 6, 7, and 8 above are counted in the length of the data item.

Alpha PICTURES may appear as X (integer) where the integer may have a value of 1-99. This is also
true for numerics, 9 (integer). Likewise, the Z code can be Z (integer).

Example:
«_67ls 1 T3 120 124 128 132 136 140 144 148 152 156 160
i
o1 | DIt CHECGK- AMBUNT. PICGTURE ([,S $ 222, 229,900 1 1 1011111,
o2 | Q[llCWWI.!llllllllllllllllllL
oa':_ oY CHIE&K_AMMMI_B_LMMM_LUM#
04: SN VN (N AN 0 S O U WS TSRS VAN (U T S T N T N T T N T T O I T T s T T T T Y Y Y O
os: Ol HEADING . PC LS XCO385) et 1 000000 it i
6 ! L4 1 (1 VT A O N T W W T T 1 T N O T T N U T T T Y Y Y O O A A O
°7E L TOTAL-d, PG LS Q0@ ar v 0 v v v v
03: VO T Y T T Y T W Y 1 VY T T T T T T T T T Y O O I I O R B B
091' Ol | ACIT&Q&_J_A_W}EMllIl:l;HII11111111111
IO: L4 Y Y T S T T T T N T N T N O O U TS T Y T T T Y Y O A Y |
o O 1. B G~ el L 1l 1 Ll bbbty

This example illustrates the coding of the PICTURE clause.

Example:
DATA PICTURE PRINTED OUTPUT
0000000377431334 J999,99,9999 377 43 1334
0000000008970045 VANAYNNA 897 045
NAME XXXX NAME
CUSTOMER X(8) CUSTOMER
0000000004891723 $27272,2772.99 $48,917.23
0000000000012345 999999 012345

REDEFINES

A data-name may have both a PICTURE and a FORMAT as illustrated in the following example.
Example:

lo2

i TR R YOO T N0 WA N WY U T U W U U T WO N T A N VN U T W U W U Y T U Y WO N N O O Y Y O
i

3 1 Ly
!
|
1

T W W T WU WA U WU YN W WY UHENS T TS U TNUNN WY S U W NS WU U N CH W N W A S O T U TS T W W o

TATALS FSRMAT, 1S 9599999 PICTURE TS A,ZZ&E-O9. 1 111

0 4

It should be noted that although both a PICTURE clause and a FORMAT clause may be used to
determine decimal alignment and keyboard entry factors, the PICTURE clause may generate a print
mask which will occupy one word of memory. Thus, if it is essential that meémory space be conserved
and printing of a numeric data item is not to take.place, a FORMAT clause without a PICTURE clause
is recommended. See Table 5-1 for the FORMAT and PICTURE combinations.

A PICTURE or a FORMAT or both must appear for every elementary numeric item level entry and
cannot be used at group levels. Elementary alpha items must have a PICTURE and may not have a
FORMAT.

Possible Combinations of Format and Picture Clauses

1. FORMAT — NO PICTURE . e. Item can be accepted (numeric keyboard),

a. Item is numeric. / f. Item can be displayed.

b. Scale factor from format. » 4. NO FORMAT — ALPHA PICTURE

c. Input parameters from formaf. a. Item is Alpha.

d. Item can be accepted (numeric keyboard). b. Input parameters from picture.

e. Item cannot be displayed. c. Item can be accepted (Alpha keyboard).
2. FORMAT — ALPHA PICTURE d. Item can be displayed.

a. Error. 5. NO FORMAT — NUMERIC PICTURE

3. FORMAT — NUMERIC PICTURE a. Item is numeric.
a. Item is numeric. b. Scale factor from picture.
b. Scale factor from format. ¢. Mask from picture.
c. Input parameters from format. d. Item can be accepted.
d. Mask from picture. e. Item can be displayed.
Table 5-1
REDEFINES

The function of this clause is to allow an area of memory to be referred to by more than one data-name
with the possibility of different FORMATS and PICTURES. Redefinition here is explicit as opposed to
implicit redefinition of data-records in the FILE-SECTION (see page 5-3).

5-7

USE

The construct of this clause is:

[level-number data-name-1 REDEFINES data-name-2]

The REDEFINES clause must be in the WORKING-STORAGE SECTION only.

The area being redefined (data-name-2) must be the previous item with the same level number (as
data-name-1) which was not redefined.

The redefining name’s (data-name-1) size must be equal to or less than the word size of the area which
is being redefined (data-name-2).

There must be no VALUE clauses (discussed on page 5-9) within the redefined area.

Example:

6 ! 111 1 N T T T T Y T T T U T U T W T T T T Y Y W T U T T S T T v 1
l:7: D1, TAX-CALCULATE | PICTURE .9999., « + 1 1 1t v vy
e ' | o1, rax-PRINT. REDEFINES, TAX-CALCULATE PICTURE Z9.99.. .
ho ! 1 11 ll|||lllllllllJllll||||llllllllllllllllllllllllll
by | T TIVITIES e v 0 e v v vt v v bbbl vad
b2 L 020 ACT -l PIC X(8) VALUE “ASSEMBLE" i1 1011111011
‘3: lllO&MMMMWIsSLMIQIIIIIIIIIIKIIII
“; L1 |2| |A|C|T|"13| PI1C .X.(.&); MALUE PTEST . Mt sy s
lsi 0!, AGTIVITLES-TABLE REDEFINES ACTIVITIES. 11 11111110
e |- L1 - C I Sl L1111

In the first example above, the REDEFINES is used to provide for a printing decimal alignment
different from the arithmetic scaling alignment. In the second example, ACTIVITIES and ACTIVITIES-
TAB each define the same area of memory. The purpose of redefinition here is to allow a VALUE to be
assigned to data which will be referenced (in PROCEDURE DIVISION) by subscripting.

USE

The function of this clause is to specify that a Data Comm field is of variable length. It also specifies
the delimiter to use for Data Comm out.

The construct of this clause is:

[USE @ab@ FOR DELIMITER.]
a, b may be O through F

The delimiter needed can be found on the USASCII Table in Appendix A. The “a” and “b” in the
construct refer to the column number and row number from this table respectively. Since “b” may be
only one digit, the row numbers 10-15 are designated with the letters A-F (10=A, 11=B, 12=C, 13=D,
14=E and 15=F). ‘

5-8

VALUE

SUBSCRIPTING

This clause is optional. However, if it is used, the DELIMITER specified will be inserted after every field
transferred to the transmit buffer. An alternative method of inserting DELIMITER codes is discussed
with the MOVE verb in the Data Communications part of the PROCEDURE DIVISION (Section 6).

Example:

3 T 1 IS NS N N I TS U U T T T T T T N T W T T T T T N U O T T O T Y Y U U T O B IO A B

|
1}
Pl h.INM_WM&‘.uHuMH;H1|||,1|||
i
]
]

Lo W AISE &12® FAR DELIMITER 0 10 0 0 it 0 i i i1

From the USASCII Table in Appendix A, it may be verified that the above clause will provide for the
insertion of a DC2 (which corresponds to the K1 flag) after each field transferred to the transmit buffer.

VALUE
The function of this clause is to define the initial value of WORKING-STORAGE items.

The construct of this clause is:

YA up to 15 numeric digits
IS “up to 99 alpha characters

VALUE enclosed in quotes”

The VALUE clause must be only on elementary items and cannot be assigned to a data-name with an
OCCURS clause. '

Also the VALUE clause may not be used with the REDEFINES clause.

When defining a data-name, the PICTURE or FORMAT must be specified before the VALUE is assigned
and the value must not exceed the size limitation specified by the PICTURE or FORMAT.

An alpha VALUE must be equal to the number of characters specified by the PICTURE.

It is important to note that, unless a VALUE is assigned, the contents of the memory area for any given
data-name is unknown. That is, the memory area will be clear when the program is loaded only if a
VALUE of 0 is assigned.

Example:

18 ! [| |l|||l|lllIIlllllllll‘lllllll"lllll||l'||lllllllll
|’: 11 1. ™, ¢ d

zo! 1., TAX~RATE PC Z9.89 VA 4280 1 v 1134 111t 11
SUBSCRIPTING

When a data-name is declared with an OCCURS clause, indicating an array, the particular element
desired within the array is referred to by using subscripts. The subscripts follow the data-name

5-9

TABLES

representing the array in a COBOL statement. A subscript may be either a numeric literal or a
data-name and must be bounded by parentheses. A data-name being used as a subscript may not be
subscripted and must define a numeric item. It is assumed to be right justified.

It may sometimes be necessary to assign data-names to each item in a group of data items for individual
reference and then REDEFINE the group of data items using the OCCURS clause for subscripting.

When a data-name is subscripted, the subscript value must be greater than zero but not greater than the

value shown in the corresponding OCCURS clause. The value subscripted will not be checked by the
compiler.

When the option INDEXED BY appears in constructs discussed in the PROCEDURE DIVISION, the
entry immediately following the INDEXED BY clause provides the subscripting integer value.

TABLES

Frequently, the need arises to describe data which appears in a table or an array. For example, an
annual sales total record might have to be broken down by months. In order to accomplish this, January
sales would have to be referred to by a given data-name, February sales by another, etc. By using the
OCCURS clause, the same result can be obtained without the need for 12 different data-names. The
example below shows how the OCCURS clause may be used in order to have the compiler build a table
of twelve elements, each having a structure like MONTHLY-TOTALS. The first element will be known
as 1 of the table, the second as 2, etc. The technique of referring to elements within a table or an array
is that of subscripting (discussed above).

Example:
4 617 nh2 e 120 124 128 132 136 140 144 148 152 156 160
]
1! 2 '
The two-part example below will illustrate the use of tables and subscripting
« o7l nha 1ne 120 124 128 132 136 140 144 148 452 156 160
Ol: MMMMIlII:111.11||LI|11111|I||||1
L?il o1 I 3 o Y 0 NN U U U N U N U U N U U T T S U O B
[:: L1 \uaw W T ST SO Y T N T U N U N (O N S Y T N SN W T TS WO MY
)
i
0s ! lI1llllIlllllllllllllllllllllllllllllllllllllIllllLi
: L. T@ATALS. 1 v v ettt v b bbb et e b
07: p o1 - s-llllllltlullll
T

Part 1 above appears in the DATA DIVISION. The data-name AMOUNT appears with the OCCURS
clause. In this case a table AMOUNT(1)) AMOUNT(2) AMOUNT (3) is set into memory. A 99 member
table is developed for TOTAL-1.

Part 2 below illustrates the technique of subscripting. The value in AMOUNT(1) is added to the value in
TOTAL-1 indexed by DISTRIBUTION-CODE. If DISTRIBUTION-CODE equals 25 then add
AMOUNT(1) to TOTAL-1(25).

o ! [PR Y N VNN TN N U U U U W W U N N YOS N (N N I T T W T T T (N T T Y S Y Y A OO |

1 L. ADD. AMAUNT.GI1). T TATAL~ L (DISTRIBUTI@AN~-CADE) w1 1 (11
12) L bLsSPLAY, TATAL~ (CBUNTER) UPAN PRNTR. 1 1 1111101

5-10

FILLER

CHECK-DIGIT TABLE

FILLER

The reserved data-name FILLER is used by the programmer to declare areas which will never be directly
referenced in the program.

Example: This example declares a table whose elements have an initial value of zero.

4 ol7is w2 116 120)24 128 132 136 j40 144 148 152 156 160
lg' Lo Q&_ABE:A('_.L G N W A W O S T W T T Y T Y Y T O W A M W A SN B O G A A I G AR N N AN O AR B U |
0 2 L O3 le LS o RN NI NN N e

3 il 051 FILMLJ_M(L1 1[.51 1 O | P 10 S [O RO T Y T Y S T T D Y Y |
4 111 FILLLLLIEB_LMM 11 |I|S| I D P (N O N N N O Y N Y O O T O A Y |
s L1 Vit

CHECK-DIGIT TABLE

This appears in the WORKING-STORAGE section. It functions to locate the CHECK-DIGIT TABLE in
memory. :

Example:

.
! 1 11 llllllllllllllllllllllllll||||l|l|1»ll|11lllllllll
] o -

? hlTABLE_MIl|1|||lnllnnlrn1.11|||||1141111|1.||1|
[

e ! -
:

1 11 PN S TR T P T T N T T T T TN Y T N Y O |

5-11

SECTION
PROCEDURE DIVISION

GENERAL

The fourth part of the COBOL source program is the PROCEDURE DIVISION. This division contains
the procedures needed to solve a given problem. These procedures are written as sentences which may
be combined to form paragraphs.

RULES OF PROCEDURE FORMATION

COBOL procedures are expressed in a manner similar (but not identical) to normal English prose. The
basic unit of procedure formation is a sentence, or a group of successive sentences. A procedure is a
paragraph, or a group of successive paragraphs, within the PROCEDURE DIVISION. The sentence
structure is not governed by the rules of English grammar, but dictated by the rules and formats
outlined in this manual.

STATEMENTS

There are two types of statements: imperative statements and conditional statements.
IMPERATIVE STATEMENTS

An imperative statement is any statement that is an unconditional execution command to the computer.
The term imperative statement is also used to refer to a sequence of such statements, each separated
from the next by a separator (period, comma, space, or semicolon). A single imperative statement is
made up of a verb followed by its operand. -

CONDITIONAL STATEMENTS

A conditional statement specifies that the truth value of a condition is to be determined and that the
subsequent action of the object program is contingent upon this truth value.

SENTENCES

There are two types of sentences: imperative sentences and conditional sentences. A sentence consists of
a sequence of one or more statements, the last of which is terminated by a period.

4

IMPERATIVE SENTENCES

An imperative sentence consists of one or more imperative statements terminated by a period. An
imperative sentence can contain either a GO TO statement or a STOP RUN statement which, if present,
must be the last statement in the sentence.

Example:

ADD MONTHLY-SALES TO TOTAL SALES.
or ’
SUBTRACT MINUSES FROM PLUSES, ADD NEW-PLUSES TO PLUSES THEN STOP RUN.

6-1

CONDITIONAL SENTENCES

A conditional sentence is a conditional statement terminated by a period. It may be optionally preceded |
by an imperative statement.

Example:

IF SALES EQUAL TO QUOTA THEN ADD NEW TO OLD, ELSE SUBTRACT NEW FROM
MINUSES.

SENTENCE PUNCTUATION

The following rules apply to the punctuation of sentences:
1. A sentence is always terminated by a period.

2. A separator is a word or character used for the purpose of enhancing readability. The use of a
separator is optional. The allowable separators are the semicolon(;), the comma (,), and the
reserved word THEN.

3. Separators may be used in the following places:
a. Between statements.
b. In a conditional statement.
(1) Between the condition and statement-1.
(2) Between statement-1 and ELSE.

4. A separator must be followed by at least one space.
EXECUTION OF IMPERATIVE SENTENCES

An imperative sentence is executed in its entirety and control (sequence of program execution) is passed
to the next applicable procedural sentence.

EXECUTION OF CONDITIONAL SENTENCES

In the conditional sentence:

statement-1

NEXT SENTENCE [ELSE statement-2] »

IF condition THEN [

the condition is an expression which is TRUE or FALSE. If the condition is TRUE, then statement-1 is
executed and control is immediately transferred to the next sentence. If the condition is FALSE,
statement-2 is executed and control passes to the next sentence after statement-2.

If statement-1 is conditional, then the conditional statement must be the last (or only) statement
comprising statement-1. For example, the conditional sentence would then have the form:

IF condition-1 imperative-statement-1 IF condition-2
statement-3 ELSE statement-4 ELSE statement-2.

If condition-1 is TRUE, imperative-statement-1 is executed. Then if condition-2 is TRUE, statement-3 is
executed and control is transferred to the next sentence. If condition-2 is FALSE, statement-4 is
executed and control is transferred to the next sentence. If condition-1 is FALSE, statement-2 is
executed and control is transferred to the next sentence. Statement-3 can in turn be either imperative or
conditional and, if conditional, can in turn contain conditional statements to an arbitrary depth. In an
identical manner, statement-4 can either be imperative or conditional, as can statement-2. The execution

6-2

of the phrase the NEXT SENTENCE clause causes transfer of control to the next sentence written in
order. However, if NEXT SENTENCE is used in the last sentence of a subroutine being PERFORMed
(see PERFORM verb, page 6-29), control is transferred to the sentence in the mainline program to
which control would otherwise be passed when the execution of the subroutine is complete.

PARAGRAPHS

So that the source programmer may group several sentences to convey one idea, paragraphs have been
included in COBOL. The source programmer begins a paragraph with a name. The name consists of a
COBOL word followed by a period, which precedes the paragraph it names. It is necessary that the
statement which immediately precedes a paragraph name end in a period. A paragraph is terminated by
the next paragraph-name. The smallest grouping of the PROCEDURE DIVISION which is named is a
paragraph. The last paragraph in the PROCEDURE DIVISION is the special paragraph-name END-OF-
JOB which must be the last statement in the source program.

CONTROL RELATIONSHIP BETWEEN PARAGRAPHS

In COBOL, imperative and conditional sentences describe the function that is to be accomplished. The
sentences are written successively, according to the rules stated in Section 2 to establish the sequence in
which the object program is to execute. In the PROCEDURE DIVISION, names are used so that one
paragraph can reference another by naming the paragraph to be referenced. In this way, the sequence in
which the object program is to be executed may be varied simply by transferring to a named paragraph.

In executing paragraphs, control is transferred only to the beginning of a paragraph. Centrol is passed to
a sentence within a paragraph only from the sentence written immediately preceding it. If a paragraph is
named, control can be passed to it from any sentence which contains a GO TO, followed by the name
of the paragraph to which control is to be transferred.

Example:

4 6 {7 I8 12 16 120 124 128 132 {36 140 144 148 152 156 160
0'; lllm_Jm_LLMI.'IIITIEM.IIIlIIIIIIlllljllllllllllIlllllll]
l;I b BCMT.IAII.IS-IIILIIIIllllll'llllllljlllxllllllIllllllll
I;J: Lt { : = TlAlL.ISlAlIlllllJlllllllllllllll
o | o O T LAAD-DATE. 000 i b
os: TMALQ@IUTIHH.IIJLlJ_AJll|1||]|111|1111;|||||||.111.|1;
6: 11 ' ISITLnlllllllllllllllL]llllllllllllll
07: I W‘ISQ.IIl|lv|lljlllllllllILIIlllllllllllln
k‘_: 11 0 Y W T N Y T YO T N T T O S s T T T T T T T T N 1 Y T O U A O OO
DECLARATIVES

The DECLARATIVES part of the PROCEDURE DIVISION contains the subroutines and PK-Tables.
Declaratives, if used, must be grouped’ together at the beginning of the PROCEDURE DIVISION. The
group of declaratives must be preceded by the key word DECLARATIVES, and must be followed by
the words END DECLARATIVES. Each DECLARATIVE consists of a single section and must conform
to the rules for procedure formation. There are two statements that are called DECLARATIVE
statements in the L/TC COBOL Compiler. These are the USE FOR PK-TABLE and USE FOR
SUBROUTINE clauses (see page 6-32 for a complete discussion). In declaring the PK Tables and
subroutines, the PK Tables must be declared first.

PROCEDURES

Paragraphs which are grouped together in order to accomplish a subroutine are termed a procedure.

4 6 |7 12 e 420 124 128 132 136 |40 144 148 152 156 1¢
]

01 ! ABA]TII]VIEISI.IIIII}lllllllllllllIILLlLLLlllIlllllllll
| -

|;2| L1t M&MMMKEMS.lllnnulllnllllillx
! - | e -

3 L1 (P 0 N N N W NN SO SN 1O O Y SO N Y OO O Y B |

'

L4 i [N W VAN G N N U U U WU TN TN (NN Y U N SN N (R T N U U W N T T T S N OO U T O Y T OO s e

USE FOR SUBRGUTINE TYPE~SHIP~T@. v it v v a0y

-
o o -~

|

|

! L1l F U Y O Y T U O W N S N SN NN N T N Y WO N (N Y U WS N YO O VU U N O T I 1 W U W SO Y GO OO O |
1 | ,

|

]

111 IR0 W U U NN YOO VN VN VOO WA T N T N U N U N N N T T T O O T T O T Y s

L1l IEMQIIIl][IlII!IIIIIIlII
-

i
]
)
[}
'21' 1.1m||¢|B:LBBQNBQM]|I|NE|.|H|||11|||11|11|1||||
|
]

LA

m__DELQLABlA]TlIIVIEISI.IIIGIl‘lIIIIIIIlllllllll]llllll

13

CONDITIONS

A condition causes the object program to select between alternate paths of control depending upon the
truth value of a test. Conditions are used in IF statements. Conditions may be combined by logical
operators. The logical operators must be preceded by a space and followed by a space. The meaning of

the logical operators is as follows:

LOGICAL OPERATOR MEANING
OR Logical Inclusive OR
AND Logical Conjunction
NOT Logical Negation

Table 6-1 indicates the relationships between the logical operators and conditions A and B.

Relationship of Conditions, Logical Operators, and Truth Values

Condition Condition and Value
A B AandB | AorB
TRUE | TRUE TRUE TRUE
TRUE | FALSE FALSE TRUE
FALSE | TRUE FALSE TRUE
FALSE | FALSE FALSE FALSE
Table 6-1

An éxample of the use of this table would be: Suppose in a program, a test is required to determine if
the SW1 and SW2 flags are set. The following construct could possibly be used:

IF SW1 AND SW2 THEN ADD 1 TO COUNTER ELSE GO TO NUVAL.

In this case, 1 would be added to counter only if both switches are set. The phrase SW1 and SW2 (A
and B column of table) is true only when both switches are Set (that is, true).

RELATIONAL OPERATORS

The relational operators specify the type of comparison to be made in a relation condition (discussed
below). The relational operators must be preceded by a space and followed by a space. The relational
operators are:

1. 1S EQUAL TO
IS =

IS NOT EQUAL TO
IS NOT =

IS GREATER THAN
IS >

IS LESS THAN

IS <

el

RELATION CONDITION

A relation condition causes comparison of two operands, each of which may be a data-name or a literal.
The general format for a relation condition is as follows:

{ data-name-1 data-name—2]

literal-1 } relational-operator [li teral-2

The first operand, data-name-1 or literal-1, is called the subject of the condition. The second operand,
data-name-2 or literal-2, is called the object of the condition.

COMPARISON OF OPERANDS

NUMERIC

For operands that are numeric, a comparison results in the determination that one of them is less than,
equal to, or greater than the other with respect to the algebraic value of the operands. The length of the
operands, in terms of number of digits, is not significant. Zero is considered a unique value regardless of
the sign. Comparison of these operands is permitted regardless of the manner in which their usage is
described. Unsigned numeric operands are considered positive. The signs of signed numeric operands will
be compared as to their algebraic value of being plus (highest) or minus (lowest).

NON-NUMERIC

For non-numeric operands, a comparison will result in the determination that one operand is less than,
equal to, or greater than the other with respect to a specified internal coding sequence of characters (see
Table A-5 in Appendix A). The size of an operand is the total number of characters or digits in the
operand. Relative tests of non-numeric operands require that their sizes (lengths) be the same. When
being tested, characters or digits in corresponding character or digit positions of the two operands are
compared starting from the high-order end through the low-order end. If all pairs of characters or digits
compare equally through the last pair, the operands are considered equal when the low-order end is
reached. The first pair of unequal characters or digits to be encountered is compared to determine their
respective relationship. The operand that contains the character or digit that is positioned higher in the
internal coding sequence (higher value in collating sequence) is considered to be the greater operand.

6-5

INTERNAL PROGRAM SWITCHES

Every program written in Series L/TC COBOL has up to eight general purpose (programable) switches
(often called flags). Moving a numeric 1 to the switch will set it, and moving a numeric 0 to the switch
will reset it. Switches can be referred to in the PROCEDURE DIVISION by the use of the reserved
words SW1, SW2 ... SW8. Each individual switch setting can be changed during operation by a MOVE
command.

Example:
MOVE 0 TO SW4: Resets Switch 4
MOVE 1 TO SW2: Sets Switch 2

The switches will initially be reset (turned off) in the initialization routine of each program which is
automatically provided by the compiler.

ARITHMETIC
SCALE FACTORS FOR DECIMAL ALIGNMENT

The verbs used for arithmetic are the ADD, SUBTRACT, MULTIPLY, and DIVIDE verbs. The respective
PICTURES or FORMATS of the operands will automatically determine the manipulation necessary to
provide the desired decimal alignment for the answer. If both PICTURE and FORMAT are present, the
FORMAT will determine decimal alignment. For example, if a 2 decimal factor is multiplied by a 4
decimal factor and if the product must have 2 decimal places, the necessary shift command is provided
by the compiler. However, if one of the operands is the ACCUMULATOR, the scale factor is unknown
and the shifting must be provided by the source programmer.

ROUND

When it is desirable to have the result of an arithmetic operation rounded, the ROUNDED option may
be used to accomplish this. This is a true arithmetic rounding, and is only applicable when the receiving
field (result field) has fewer decimal places than the source fields.

SIZE ERROR

Whenever the magnitude of the calculated result exceeds 15 digits, a size error condition arises. The
testing for the size error condition occurs only when the ON SIZE ERROR option has been specified.
In the event of a size error condition, one of two possibilities will occur, depending on whether or not
the ON SIZE ERROR option has been specified.

1. In the event that ON SIZE ERROR is not specified and size error conditions arise, the value
of the resultant data-name is unpredictable.

2. If the ON SIZE ERROR option has been specified and size error conditions arise, then the
value of the resultant data-name will not be altered. After determining that there is a size
error condition, the imperative statement associated with (immediately following) the ON
SIZE ERROR option will be executed. If an error occurs when the ACCUMULATOR is one
of the operands in an arithmetic statement with an “ON SIZE ERROR” clause, the
ACCUMULATOR will contain undeterminable results.

ACCEPT

SPECIAL HARDWARE NAMES

Some verbs contain certain Special Hardware Names. These special names and their meanings are:

KEYBOARD REFERS TO ENTERING DATA THROUGH THE KEYBOARD, BUT
NOT PRINTING.
KEYBOARD-PCH REFERS TO ENTERING DATA THROUGH THE KEYBOARD,

PUNCHING SAME, BUT NOT PRINTING.
KEYBOARD-PRNTR REFERS TO ENTERING DATA THROUGH THE KEYBOARD AND

PRINTING.
PCH REFERS TO PUNCHING OUT DATA.
PRNTR REFERS TO PRINTING OUT DATA.
PRNTR-PCH REFERS TO PRINTING AND PUNCHING OUT DATA.
RDR REFERS TO READING OF PAPER TAPE.
RDR-PCH REFERS TO READING AND PUNCHING OF PAPER TAPE.
RDR-PRNTR REFERS TO READING AND PRINTING FROM PAPER TAPE.
RDR-PRNTR-PCH REFERS TO READING, PRINTING, AND PUNCHING OF PAPER
TAPE.

KYBRD-PRNTR-PCH REFERS TO ENTERING DATA THROUGH THE KEYBOARD,
PRINTING, AND PUNCHING SAME.

Note: In cases where the hardware name is optional, the following is assumed if no hardware device is
coded: KEYBOARD for the ACCEPT verb and PRNTR for the DISPLAY verb.

PROCEDURAL CONSTRUCTS

The specific verbs and other constructs, together with a detailed discussion of the restrictions and
limitations associated with their use, appear on the following pages. :

PART A: PROCESSING; PAPER TAPE 1/0; 80-COLUMN CARD I/0

This part of the Procedural Constructs discusses the L/TC COBOL constructs used in processing and
printing data, reading paper tape and 80-column card, and punching paper tape and 80-column card.
Whenever paper tape is referenced, it is understood that the same applies to edge punched card.

Accept

The use of this construct is to allow entry of data through the keyboard or the paper tape reader. The
basic function is to enter data into memory; however, through the use of special hardware names, the
multi-purpose hardware instructions have been included.

The construct has four options:

OPTION 1

KEYBOARD
KEYBOARD-PRNTR
KEYBOARD-PCH

| data-name RDR
ACCER] {INTO ACCUMULATOR data—name} FROM { RDR-PRNTR

RDR-PCH ,
RDR-PRNTR-PCH

KYBRD-PRNTR-PCH
— -

Option 1 is used to ACCEPT alpha or numeric data from one of the hardware devices into the
ACCUMULATOR and store it in memory if specified. If the INTO ACCUMULATOR clause is used, it

must be followed by the data-name associated with the appropriate input FORMAT. In this case only
numeric data will be accepted.

Example:

' J | lllllJlllllIlIllllllllllllllllllllllllllIllllljl
075 L1l “PRNTR w10 v 00 v v v 11
I CQEBL_MQ_A&QQMUL&IQBJMI&E_NUM.HHHUHHJ
OPTION 2

KEYBOARD-PRNTR

o RDR-PRNTR
ACCEPT integer CHARACTERS | FROM 4 ©ro pRNTR.PCH
KYBRD-PRNTR-PCH

Option 2 is used to ACCEPT an integer number of alpha characters but not store it into memory. The
integer may have any value between 1 and 99, inclusive.

Example:

po ! [

[WO VR0 WO T WSS NN TN W NN U WS WO VAN NN U N TN U YOO N N U U N T T W O VN T N T O T N O Y O s v |
1

LA L1l — - wl b L1t
]

t2 | [

|||||||||||lI|Illlllllll|||l|||||-||||||||I|||||.

In this example, a maximum of 8 alpha characters may be typed, printed, and punched.

OPTION 3

ACCEPT FROM KEYS

Option 3 is used to halt the machine so a PK or OCK selection may be made. No data (alpha or
numeric) may be entered.

Example:

13 ! I

llllllllllllIlllllllllllllIlllllllllllllillllllJAL
'

V4 111 N S U TS T NN N NN VRN AN RN VAN WY OO0 YA OO T N O N IO T O Ot |

E L1 LIC]EBI]_EB@MKEIYISI!I|llll|||llllLlll|llIIIlllllllll

15

In the above example, the machine will halt with PK 1, 4, and 6 enabled.
6-8

ADD

OPTION 4

ACCEPT INTO ACCUMULATOR FROM { —————IligYRBOARD}

Option 4 is used to ACCEPT numeric data directly into the ACCUMULATOR when there is no
data-name associated with the data.

Example:
12 'lllllllllIjlllII'lIlIlIllllIIll-lllllltlllllll[llllllll

'.f ...Ilaum.e.m..mmcﬂmmmmm..,..m.........

Note

When accepting a numeric data-name from the keyboard and the keyboard mode is to be terminated by
depression of a PK key, care must be taken not to use a PK which is programed with a GO TO or a
PERFORM. Incorrect results will occur unless the ACCUMULATOR is being addressed (as in Option 1
or 4). That is, the GO TO or PERFORM will cause program control to be transferred before the data is
placed into the memory location specified by the data-name.

Add

The use of this construct is to add two numeric data items together. Refer to Page 6-6 for a discussion
of arithmetic. The construct has three options: The ACCUMULATOR cannot be added to itself.

OPTION 1
data-name-1 data-name-2
ADD ! integer T0 ACCUMULATOR { [ON SIZE ERROR statements]
ACCUMULATOR -

If Option 1 is used, the two operands will be added together and stored in the second operand. See Page
6-6 for an explanation of ON SIZE ERROR.

Example: .
la_¢6l7(8 N2 \[120 124 128 132 _j36__ 140 144 56 60

g

| U N W T Y O T Y T Y T T T N T O T T A S W DA A O B B B SN O B A I N A N N I AN I A |

[' T T VO N T O O

PJ 111 lllﬁﬂ_m_m-llnllln|.1lJIll|Illlll|1||||11
OPTION 2
data-name-1 data-name-2
ADD { integer 2 GIVING data-name-3

ACCUMULATOR | |2C<UMULATOR

[ROUNDED] [ON SIZE ERROR STATEMENTS]

ADVANCE

If Option 2 is used, the first two operands will be added together and stored in the third operand.
ROUNDED generates correct results with Option 2 only when operand 2 has more decimal places than
operand 3 as determined by the respective PICTURESs and/or FORMATS.

Example:

o _slrls uliz e 120 124 128 132 136 140 144 148 {52 156
T

l[gl ! . .1 \ADD 1.4 INCREM-NUM GI1VING NEW-INCREM.: i 111111
1

In both options, automatic decimal alignment is provided if the ACCUMULATOR is not one of the
operands. See page 6-6 for a discussion of this.

OPTION 3

ADD digit TO ACCUMULATOR (integer) [ON SIZE ERROR statements]

If Option 3 is used, the “digit” will be added to the “integer” position of the ACCUMULATOR. For
example, if the ACCUMULATOR reads 0000000000068345 and an ADD 3 TO ACCUMULATOR (6)
instruction is used, the ACCUMULATOR will read 0000000000368345. The ACCUMULATOR digits are
labeled, from right to left, as 1 through 16. Hence the “d1g1t” may be one of 1-9 and the integer” may
be one of 1-16.

, Example

05 111 IlllllllllllIllllllllllllllllllllllllllllllilllll
. -

[L1 ‘ RO O T I Y I
]

oy 'l 1l ADD S T@& ACCUMULATEOR., v vt v
f|

Advance

The use of this construct is to space the forms in the carriage.

LEFT TO special-name
—_— gy 4 ACCUMULATOR
ADVANCE RIGHT TO integer LINE [INDEXED BY { d } :|
Yy _— ata-name
BOTH integer LINES

If the LEFT, RIGHT, or BOTH option is not used, ADVANCE LEFT is assumed. This construct has no
effect on the ACCUMULATOR if the INDEXED BY option is not used. Special names are discussed in

the ENVIRONMENT DIVISION (page 4-2).

Example:

9 ! B lllllIllllllllllllllllllllllIIIllllllIIlllllllIll
T

10

[[TN 10 N WO NN TN YO N N N N O T NN N Y N T N T W T O Ty s O

... IADVANCE RIGHT. T2 LINE-P@S INDEXED BYi ACCUMULAT@R .

R

r——

ALARM
CLOSE
CONVERT

_Alarm

The use of this construct is to provide the ability to ring the alarm. The construct is:

ALARM

‘This construct has no effect on the ACCUMULATOR.
Close

The use of this construct is to provide for closing the forms transport. The construct is as follows:

CLOSE CARRIAGE

This construct has no effect on the ACCUMULATOR.
Convert

The use of this construct is to provide for the conversion of data to the Sterling monetary system, and
to implement the check digit computation and verification commands. This construct has two options:

OPTION 1

SHILLING
FARTHING
ACCUM] o J SPEC-FARTHING
data-name} — POUNDS
PENCE
SPEC-PENCE)

g

CONVERT [

This construct will convert the data in either the accumulator or data-name as specified to the specified
monetary unit.

Example:)
Uk [L b e e v e bbb by v b b bt bbbt Ll
T

st 1, CONVERT, DALLAR-DATA T@ PAUNDS.L, v v 1 010110

OPTION 2

ACCUM data-name

data-name-1 } TO data-name-2 CHECK-DIGIT [(integer)]

CONVERT {

Option 2 of the CONVERT verb will calculate a check digit with the length obtained from the
PICTURE clause to the “data-name” using the table located at the second “data-name” and using the
“integer” as the remainder factor. No “integer” will result in an assumed zero remainder. The
data-name-1 to be used for check digit computation should be right justified (it will be positioned
automatically).

6-11

DISPLAY

Example:

T-..‘. ——— s

03 (1 PENS S5 N 5 U VNS A VU (NN U VAN SN U S WS VAN 10N U5 WS N0 H OO U N VNS WY (O WA N (N S NN U N 0 N Y W W W GG TN o N W |

Lil h = =~) T YNNI

1
1
1
4 |

In this vexample the check digit will automatically be calculated and inserted for ACCOUNT-NO using
CK-TABL-1 with O remainder.

Display

The use of this construct is to provide for printing and/or punching of data from memory or I/O
buffers. The basic function is to print unless specified otherwise by a hardware device.

This construct has six options:

OPTION 1
dataname PRNTR
DISPLAY f‘ ta ‘:i‘T [FROM BUFFER] | UPON { PCH
fter PRNTR-PCH
ACCUMULATOR data-name J

When a non-numeric literal is DISPLAYED, a maximum of 99 characters is allowed. If the
ACCUMULATOR is DISPLAYED, the PICTURE of the specified data-name is used. The FROM
BUFFER portion is valid with alpha data-names located in the card, or data communications input
buffers. Data from the card buffer may be displayed on the PRNTR or the PRNTR-PCH. Data from the
data communications input buffer may be displayed on the PRNTR only.

Example:
‘5: - | lllllllllllllllllllllllll|llll||||||l|illlllllllJ
16 ! . . DISPLAY *SUBT@TAL" UPGN PRNTR-PCH.. (1111101101
|
17 ! . DISPLAY, TATAL. 1y v ey ity bbbty
T LSPLAY, REMARKS FR@GM BUFFER UP@GN PRNTRu1 1 1110100011
OPTION 2
PREVIOUS-RIBBON
“character” data-name NEGATIVE
DISPLAY ‘QUOTE } [{ACCUMULATOR.} {POSITIVE }

Option 2 will display upon the printer the specified character. If the PREVIOUS-RIBBON clause is used,
the character will be printed using the same color ribbon as the last DISPLAY. If the other option is
used, printing will occur only if data-name or the accumulator contents is negative or positive. To
DISPLAY quotation marks, the figurative constant QUOTE must be used.

Example:

[T |o R I L P ne 120 124 128 132 138 140 144 148 152 1 lov__
|ﬁ! 11| IIS.IBI—IA‘YIIQI/I”IALIIIIlIlIlIlllllllll’llllllllllllllllll
02: L1t lIlSlPlLJAIYI IM_MMLBBQN.Il|i|1|1|1111111111111
03 E L1 = TlIlV]EI.Al N O Y W U W W N R U W S W W
04: lll.IIIS]ELLAmgITlEIIIIlllIlllIlllllllllllllllllllllllll
OPTION 3

PRNTR

DISPLAY ACCUMULATOR (integer) data-name | UPON { PCH
PRNTR-PCH

Option 3 will display the “integer” rightmost digits of the ACCUMULATOR accordmg to the PICTURE
for “data-name”.

Example
Ve | IS N A N T T T T T Y S A O A A O A B O B A O B E

,o; s PLSPLAY, ACCUMULATGR (30, ITNV-NUM UPON PRNTRL 11111y

In this example only the low order 3 digits of the ACCUMULATOR will be DISPLAYED on the
PRNTR using the PICTURE of INV-NUM.

OPTION 4

DISPLAY integer SPROCKET-HOLES [INDEXED BY PCH-REG]

Option 4 of the DISPLAY verb is usually used with edge-punched cards. If the “INDEXED BY
PCH-REG” clause is not used, “integer’” sprocket holes will be punched. If the “INDEXED BY” clause
is used, “integer” sprocket holes minus the number contained in the punch register will be punched.
Also, the use of the INDEXED BY clause will result in a routine being generated by the compiler to
provide for the feeding out of a variable number of edge punched cards (provided the number of holes
punched does not exceed 255). The size of the card is indicated by the integer value in the DISPLAY
clause. That is, if an integer value of 70 is used, a routine will be generated to feed out the unpunched
portion (70 minus PCH-REG value) of the last card in the string. There is a 3 card maximum for 7”
cards and a 2 card maximum for 10” cards.

Example:

lﬂ." I T | lllllIllllllilllllllllllllllllllllllllllllllllllll
o7 |

]

[}

]

L1l IS]BLM_]&BM%EI[_H@LESI-III!JIIJ[IIIIIIIllllllllJ
Lo DLSPLAY, (.70 SPRACKET, HALES INDEXED RY PCH-REG.. . . .

OPTION 5

DISPLAY @ab@ UPON PCH

Option 5 provides for punching into paper tape (or edge punched cards) the bit pattern specified by a
and b contained between the @ signs. Any one of 128 possible characters may be punched. The parity
channel must also be included in the bit pattern for the desired code to be punched, when the L/TC
performs paper tape code translation during input. The USASCII table is given in Appendix A. In using

6-13

DIVIDE

this table, “a” represents the column number and “b” represents the row number. Since “b” is only 1
digit in length, the row numbers 10-15 must be designated with its hexadecimal equivalent A-F (10=A,
11=B, 12=C, 13=D, 14=E, 15=F). Also included in Appendix A are tables showing the paper tape value
of field identifier codes, accumulator flag codes, and codes for Switches 5, 6, 7, 8 (Y-flag group).

Example:

}
9: 111 {00 WO TN N U VU Y YU W WS YOS Y NS TS AN G VOO G N VO W N O O NN WV T W O S T W T T W o I |

ho ! J IIISIPLLIAYIQII&__“EM;IPICH.I'IIlIIllllllllllllllllllllll

The example above will provide for the punching of the code for OCK 1 on paper tape. Reading the
wide column of Table A-2 of Appendix A we find the appropriate row; that is, the row where there is a
1 under OCK 1 and zeros under OCK 2, 3, and 4. It is noticed that the code for setting the OCK 1 flag
is DC2 and the paper tape value is 1,2. Thus, the @12@ in the example above. The DC2 code will also
be found on the USASCII table (Table A-1) under column 1, row 2.

OPTION 6

DISPLAY {ACCUM l {FARTHING }

data-name HALF-PENNY

Option 6 provides for the printing of data in the specified unit of the Sterling monetary system.

Example:

P! 111 T T T N U TN N0 U U T YA U0 TN T U YN TN U TN W U S U W T U U N O W o
[}

p2 | L. DISPLAY ACCUM HALF-PENNY.i 0 000 v v ra vt

Divide

The use of this construct is to provide the ability to divide. The construct is as follows:

data-name-1 data-name-2
DIVIDE {in teger } INTO { ACCUMUL ATOR} [GIVING data-name-3]

[ROUNDED] [ON SIZE ERROR statements]

Without a “GIVING” option, this construct divides data-name-1 into data-name-2 storing the quotient in
data-name-2. With a “GIVING” option the quotient is stored into data-name-3.

Automatic decimal alignment is provided if both operands are data-names.

When dividing “data-name INTO ACCUMULATOR” with an “ON SIZE ERROR” clause, the accumu-
lator will contain undeterminable results if an error does occur.

Example:

|&1' L1 [U U U U N AN N U W U T T U YOO N O T U T M O N T T v
07! 1 anlIlDEMMMEnS:|||||1|||1|1|||1|||n|.11u
[g‘: L1 11111|MMLLM_QLMBH_MNQEDM111|||||||>11|1||1|1‘|1LL

A discussion of decimal alignment, ROUNDED, and SIZE ERROR may be found on page 6-6.
6-14

ENABLE

END-OF-JOB

EXIT

Enable
The use of this construct is to provide the ability to enable “PK” keys at the next keyboard operation.

The construct is as follows:

ENABLE [table-name] PK1 PK2....PK8 PK9....PKl6

The use of the ‘“table-name” is for activating multiple PK-tables. If only one table is defined, then it
need not be coded since the compiler generated initialization routine activates the first table defined. If
more than one table is defined, then the ‘“‘table-name” option should be used at that point in the
program when the appropriate table should be activated. The PK Table(s) must be defined in the
DECLARATIVES.

This construct has no effect on the ACCUMULATOR.

PK 1 through PK 8 refer to program key group A (Al through A8). PK 9 through PK 16 refer to
program key group B (Bl through B8).

Example:

'3 | | N T O W N T T T U T T T T N I T T U U T N U N N O N N U U N N U NN S Y O OO OO O
n y

[| P [T W TN O [TN O N N T N N T (N R O O O OO T O Y W O |

L CEPT, FR&M KEYS! 1 1 1 v 100000 10 b i bt i i1

14

1
Vs |
|

In this example the PK-Table TABL-2 is being referenced. PK 8 and PK 12 will be enabled and the
machine will halt on a keyboard instruction. Note that TABL-2 need not be used in subsequent
ENABLE clauses unless another table-name is used in between.

End-of-Job

The use of this construct is to notify the compiler that all source statements within a program have
been read, and must be the last statement in every program.

The construct is as follows:

END-OF-JOB.

It does not affect the ACCUMULATOR.
Exit

The use of this construct is to provide the ability to programmatically transfer control from a
subroutine instead of taking the automatic EXIT provided by the compiler.

The construct is as follows:

EXIT

6-15

FILL
GO TO
IF

Fill

The use of this construct is to cause the input file to be moved and reformatted into the fields of the
designated record. ‘

The format of this construct is as follows:

FILL record-name.

This verb must be used after the READ “file-name” if the USE WORK-AREA clause was used. The
buffer may be interrogated prior to using the FILL verb so the appropriate “record-name” may be
filled. For further explanation see page 4-4 for a discussion of the USE WORK-AREA clause. See page
6-29 for a discussion of READ.

Go To

The use of this construct is to provide an unconditional break in the sequence of program execution.

The construct is as follows:

GO TO paragraph-name.

The paragraph-name can be any paragraph name, but not a subroutine name. The paragraph ‘could be
within a subroutine. However, if execution falls through to the end of the subroutine, the automatic
subroutine EXIT would be executed and incorrect results would appear.

This construct has no effect on the ACCUMULATOR.

Example:

e | [TR NN DRSO N N (N U (N W N N T N N OO T T U T N T T T N T A N T T T T T O Y |
1 N

17: L1 - UITIIINE.IIIIIIIIIIllIIlIlIIlIIIIllIll

If

The funcﬁon of this construct is to control the sequence of commands to be executed depending on
either a condition, the relative value of two items, of the “ON”-“OFF” condition of the various flags,
switches, OCK’s, and error conditions.
The conditions are subdivided into ﬁine major categories:
1. Relative tests.
Accumulator tests.
Error condition tests.
Accumulator flag tests.
Switch tests.
OCK tests.
Check Digit test.

R

6-16

8. Sterling test.
9. TC-700 tests.

See the EXECUTION OF CONDITIONAL SENTENCES discussion (page 6-2).

RELATIVE TESTS. This test is used to compare two data-names or literals with regard to their
numerical value.

The construct is as follows:

"GREATER THAN
>
LESS THAN
‘ data-name-1 ’ IS < l data-name—2}
literal-1 EQUAL TO literal-2
NOT EQUAL TO
NOT =

statements-1

THEN {NEXT SENTENCE

} [ELSE statements-2].

If the condition being tested is true, the}n the statements-1/NEXT SENTENCE option would be
followed. If, however, the condition is not true and the ELSE option is in effect, control is transferred
to statements-2. If the condition is not true and the ELSE option is not used, control is automatically

transferred to the next sentence. For a discussion of the comparison of non-numeric literals, see page
6-5.

Example:

) 0 [. Y I I N W T T N T S T N (N N T el I e [N s T Y S5 T T N N T N O O T T S O |

v |JIF TOTAL IS & MIN-ORDER 6@ T REGRET.: 1+ 11 11 1111413
Lo DR SCSRE LS, 6GREATER THAN MAST.ER NEXT SENTENCE (1
o o BLSE ADD) T8 SCARE G@A T@ START W 1 1 11 11 1111111

11

)2

'
0
|
'
|
1
|
[}

In the first example, program control is transferred to REGRET only if TOTAL is less than
MIN-ORDER. In the second example, the control is transferred to the next sentence only if SCORE is
greater than MASTER. If SCORE is equal to MASTER, then 1 will be added to SCORE and control
transferred to START.

ACCUMULATOR TESTS. These types of IF statements will test the contents of the ACCUMULATOR
for various conditions.

This part of the construct has three options.

OPTION 1

statements
NEXT SENTENCE

IF ACCUMULATOR (integer-1) LESS THAN integer-2 THEN ‘ } [ELSE statements].

Option 1 will determine if a specific digit of the data in the ACCUMULATOR (specified by integer-1) is
less than integer-2 and transfer control accordingly. Integer-1 may be any number from 1 to 15, 1 being

6-17

the rightmost digit of the ACCUMULATOR and 15 specifying the leftmost digit of the ACCUMU-
LATOR. Integer-2 may be any integer from 1 to 9.

Example:
18 ! [| y Lt b e e b e b o bt bttt b bbby el
[}
H: L1y FMMMLMMHENJIIHHHLHH
20 o | NEXT SENTENCE ELSE 6@ T@ STARTL 1 0 i a i1y
OPTION 2
data-name statements
IF { puad ATOR] IS ZERO THEN !,NEXT SENTENCE} [ELSE statements] .

This option tests to see if the data-name or the ACCUMULATOR is zero and transfers control
accordingly.

Example:

LQ [7j§ 12 16 120 124 128 132 136 140 144 148 152 156 160
r ' o

P‘! 1 IF AGCUMULATOR 1S, ZER® GO TE NUCARD., v v v v 0010y
OPTION 3

IF SIZE ERROR THEN statements [ELSE statements] .

Option 3 will test to see if a size error condition exists and transfer control accordingly. A discussion of
size error may be found of page 6-6.

Example:

|°2 Lt TN R W S WA W N 1N U A W N N (N T N T T (N N T N O T Y U AN 0 OO WO TN N O O O A A O A O AN B IR O

l;a 11, IF SLEZE ERRAR THEN 6@ 1@ RECOVERY-RAUTINE. ..\ ...,

ERROR CONDITION TESTS. This category of the IF verb tests for different error conditions that
might exist.

This part of the construct has three options.

OPTION 1
IF RDR-ERR AND {RDR-E_RR l
[RDR-COND] [OR RDR-COND
statements
THEN INEXT SENTENCE] [ELSE statements] .

This clause is discussed in conjunction with Option 2 below.

6-18

'OPTION 2

PCH-ERR PCH-ERR
IF PUNCH-OFF {AND} PUNCH-OFF
NO-MEDIA OR NO-MEDIA
LOW-TAPE LOW-TAPE
THEN statements [ELSE statements]
NEXT SENTENCE } —)

Because of the nature of paper tape, errors in the reading and punching of paper tape can occur. If an
error occurs, a flag is set. The RDR-ERR and PCH-ERR options test to see if these flags are set and
transfer control accordingly.

If a read or punch paper tape command is used and the tape reader or tape punch is not turned on,
then a flag is set. The RDR-cond and PUNCH-OFF options test to see if these flags are set and transfer
control accordingly.

When the output media specified in a program is turned off, a MEDIA flag is set. The NO-MEDIA
option tests to see if the flag is set and transfers control accordingly. The flag is reset when the
condition has been corrected. :

When the punch paper tape is nearing depletion (approximately 20 feet of tape remaining), the Punch
Tape Supply Flag is set. The LOW-TAPE option tests to see if this flag is set and transfers control
accordingly. When the condition has been corrected, the next punch instruction causes the flag to be
reset.

Example:
071‘ [| [U R N VN NN U YO N N N [N IO T N T T Y N T M N Y N O WO A A0 G O A Y O A G AR A O B
T F. RDR-ERR THEN ACCEPT, FRAM KEYB@ARD. | (1 11 i1 111,
i°9: L.IIFIPMNQ&:QEEJBJM:MEQLALQB_LMMEHHHHHH.
lot 1t llllTlHEN_ALAAIRIM.I(I]IIIIlIlllllllllllllllllllllllll
OPTION 3
statements
IF END-OF-PAGE THEN NEXT SENTENCE [ELSE statements] .

Option 3 will test to see if a forms limit flag has been set and will transfer control accordingly.
Although this may not be an error condition, it functions similar to the other clauses of this part and
therefore is included here.

ACCUMULATOR FLAG TESTS. This category of the IF verb tests if one or more of the four
ACCUMULATOR flags are set. The flags are:

1. N Flag — Reverse Entry Flag
2. S Flag — Special Flag

3. C Flag — Per Hundred Flag
4. M Flag — Per Thousand Flag

6-19

| NFLAG NFLAG
IF (data-name SFLAG { AND] SFLAG
ACCUMULATOR CFLAG OR _ CFLAG
MFLAG MFLAG
THEN {Stateme“ts } [ELSE statements]
NEXT SENTENCE | |ELSE :

Example:

LR Lt b o e e bbb b b by g bbb bbb Ll

LF ACCUMULATOR CFLAG @R MFLAG NEXT SENTENCE 1000
Illmmmphlllllllllilllllllllllllllllll

12

13

1
1
|
T
|
[

SWITCH TESTS. This category of the IF verb tests to see if any of the eight internal program switches
(flags) are “on’ (set).

The constructs are as follows:

SW1) SW1)
SW2 AND SW2 statements

IF | Sw3 (OR } Swa (---| THEN [NEXT SENTENCE} [ELSE statements] .
SW4 SW4
SW5) SW5)
SWé6 AND SWe6 statements

F —— —

IF 3 w7 ({ W7 f THEN ‘NEXT SENTEN CE} [ELSE statements] .
SW8 S sj
SW8 | Sw8

Example:

14

| U WY W T D Y N B S B I I N N N N I N N I I

FLMM&M&M_LMTHHIHHHIHH

1 11 [

L 41

|
|
15 1
0
|

16 llIlIlllIlLllllIllIllllllll

In the above example, the condition is true if both SW1 and SW2 are set.

OCK TESTS. This category of the IF verb enables the programmer to test if the OCK flags are set.
When an OCK key is depressed (or code read from external media) a flag for that key is set and the
flags for the other keys are reset. The depression of a “PK” key resets all OCK flags. It is possible to set
multiple OCK flags using the MOVE verb explained on page 6-24. In any flag test AND and OR cannot
be mixed in the same statement.

The construct of the OCK test is as follows:

OCK1 OCK1
OCK2 AND OCK2 statements

IF \ ocKs { OR } OCKs THEN | per SENTENCE} [ELSE statements] .
OCK4 OCK4

6-20

’Example :

n: 111 T S W U N N T U O T U (T A U T T O T e o I

e e [DF @CKIL O THEN NEXT, SENTENCE ELSE 66 T4 NAME-IN. 10

CHECK DIGIT TEST. This use of the IF verb will verify the check digit using the specified table.

The construct is as follows:

ACCUM data-name

data-name CHECK-DIGIT [(integer)] [FROM data-name] [TRUNCATED]

THEN statements [ELSE statements] .

This construct will verify the check digit using the table at the second data-name and the “integer” as
the remainder factor. No “integer” will result in an assumed zero remainder. The data will be left in the
original ACCUMULATOR positions unless the TRUNCATED clause is used, in which case the data will
be shifted one place to the right for later arithmetic operations.

STERLING TEST. The use of this variation of the “IF” construct is to provide for the testing of
keyboard entered data to see if the Sterling keys were used incorrectly.

The construct is as follows:

NON-DECIMAL
IF ACCUMULATOR IS {NON—STERLING} THEN statements [ELSE statements] .
Example:
le 6|78 nliz ne 120 124 128 132 138 140 144 148 152 156 160
¥
F" L1y llllTlHlENWMCIK.Illll.llllllllllllL

Note:

When coding the ‘‘statements” following the “THEN’' or the “ELSE’ in an “IF’ statement, the best
code will be obtained if routines which are common only to the “IF’’ construct itself are coded as the
*'statements’” rather than an unconditional branch (GO TO) to a routine which contains these
statements.

Relative tests of alpha data names require that the sizes of the two items be the same.

The error condition tests and the switch test have no effect on the ACCUMULATOR.

6-21

MOVE

TC-700 FLAG TESTS. These tests are used to check the status of conditions particular to the TC-700.

The construct test whether or not the appropriate flag is set.

TELLER-1
TELLER-2
SUPERVISOR
IF 4 PB-FIRST-LINE o THEN statements [ELSE statements] .
PB-LAST-LINE '

PB-FOLD
PB-PRESENT
Example:
4 617 (8 npe 116 120 124 128 132 136 140 144 148 152 156 160

0 1
o2

3

1| N W Y T TS YO W T R T Y Y W Y Y Y OO W N T T T S TN W0 U S O UG WO O WY (NN N Y NN SN MY WA M NN A N AN AN

L JOFE G TELLER= A o) A 2) .
L1 IlJlllllIlllEILIWmm.llllAIllJJJLI

Move

The use of this construct is to transfer data from one area of memory to another area, to load data into
and clear memory locations, to set forms control limits and counts, to set or reset switches and flags,
and to isolate parts of a word through shifting the ACCUMULATOR.

This construct has thirteen options.

OPTION 1
data-name
integer
data-name
MOVE < ZERO TO
ACCUMULATOR ') ACCUMULATOR
“literal”

Option 1 is used to move data from operand 1 to operand 2. The contents of operand 1 (in the case of
data-name and ACCUMULATOR) remain unchanged.

Example:
'5': 11} N 1 SR T T Y T T (N T T TV T T T N N T T N T O OO N Y O OO Y Y OO

e | 11 P T 1 VOO0 NN U N TN T U N A YOO O N N G I 0 B
]

This will cause the ACCUMULATOR to be cleared.

OPTION 2

MOVE digit TO ACCUMULATOR (integer)

6-22

Option 2 will move the “digit”” (0-9) to the ““integer” position of the ACCUMULATOR (1-15 from right
to left).

Example:

o3 o . TR N (NN NN WU NN U U N NN NN VA NN (N W U S VAN U (NN NN VNN SN0 N SN VU YO W I U N U S Y T T Y N T S A T

)
l94| L1 1((40:.1||1|1|1111111111||11|||

" If the initial contents of the ACCUMULATOR was 000000000012345, this clause will cause it to
become 000000000017345.

OPTION 3

special-name LEFT { LIMIT-REG {ACCUMULATOR]
SIONVE ‘integer l 10 |: RIGHT} COUNT-REG} [INDEXED BY data-name

Option 3 is used to load the forms control registers. The register will be loaded with the “‘special name”,
which must have previously been defined, or “integer”. If the “INDEXED BY” option is used, the
number in the ACCUMULATOR or data-name specified will be added to the value of the special name
or integer and the sum will be moved to the specified register.

Example:
ts' SN T N U Y U W WA U VN W U VU0 YO WO A U N S (N VU U VN N T Y T T O N U T Y O T Y N O Y

)
6 ! L1 =~ -~
1

If LIM-IND contained 10, this clause will provide for a value of 13 being transferred to the left limit
register. ‘

OPTION 4
0 NFLAG NFLAG
: . ZERO SFLAG SFLAG
MOVE 1 (2 crLac CFLAG
ONE MFLAG MFLAG

Option 4 is used to set or reset the ACCUMULATOR flags (O = reset; 1 = set). See Accumulator Flag
Tests of the IF verb for a discussion of the accumulator flags (page 6-19).

Example:
&7: Ll [S U U U NS U U O U N U N N U U W T T T T Y O T T W N N N T Y T Y G S Y O B
}"J: 11 . [N Y N T N U O N U O T N 0 Y B B
OPTION 5
0 SW1 SW1
ZERO SwW2 SwW2
MOVE 1 To SW3 SW3
ONE Sw4 Sw4

Option 5 is used to set or reset internal program switches SW1 through 4 only (0 = reset; 1 = set).

6-23

OPTION 6

0 SW5 SW5

ZERO SW6 SW6

MOVE 1 19 SW7 1)sw7
ONE SW8 SW8

Option 6 is used to set or reset internal program switches SW5 through 8 only.

Example:
vy : [

ho ! L1
1

I T R T N Y W W W T N T W (N T N N T Y U W W T T T N O Y T T T W T

N 4T NN N U N T T U T T U U G T O U O Y B AN

It is incorrect to combine switches from different groups (1-4, 5-8) in a single clause. For example, SW1
and SW6 may not appear in the same MOVE clause.

OPTION 7
0 OCK1 OCK1
ZERO OCK?2 OCK?2
MOVE 1o OCK3 OCK3
ONE OCK4 OCK4

Option 7 is used to set and reset the OCK flags. (For a discussion of the OCK flags, see page 6-20.)

Example:

UL [T SRS U N WS U N U YOO Y N U N U U OO 0% N0 1 W S U O S T T N U TN N O T T S I
]

12 | L1 CK& el 1 0 L e it i

OPTION 8

0 RDR-ERR
MOVE =ZERO} 19 [PCH-ERR]

Option 8 is used to reset the paper tape reader error and punch error flags. These flags are discussed
under the IF construct (page 6-19).

Example:
‘3'I L1 [W W W N O YOO T W U T U NN WO N N N O T T U T I U O YOO Y Y O B O
14 L1 RDR-ERRa 11 v v v v v i i i i i iy
OPTION 9
. . data-name
MOVE ACCUMULATOR - - i -
(integer-1 [integer-2]) TO ‘ ACCUMULATOR [(integer-3)]} [WITH SIGN]

6-24

Option 9 is used to isolate digits in the ACCUMULATOR as specified below and transfer the result to
data-name if indicated.

1. If “integer-1” is used by itself, the computer will right justify the “integer-1” digit of the
ACCUMULATOR.

Example:
'5: L (NN W S N N Y WU UG WO U N S A T O U U O A U T T T T T Y T O

16 | Ll [= Bl v v i
i

If the previous contents of the ACCUMULATOR was 000000000123456, the execution of the
construct in this example would result in data-name PROD-CODE having the value
000000000000012.

2. If “integer-1” and “integer-3”’ are used, the computer will isolate the ‘“‘integer-1”’ digit into the
“integer-3”’ position of the ACCUMULATOR.

: 141 TN I W Y NN T T N T VU N U0 A O O T N T T T T O O R O T Y
10: L1 § 1(|3|)|.1|111|1|||

If the previous contents of the ACCUMULATOR was 000000001234567, the execution of the
construct in this example would cause the ACCUMULATOR to have the value
000000000000200.

3. If “integer-1” and “integer-2”’ are used, the computer will isolate and right justify “integer-2”
digits of the ACCUMULATOR starting at the “integer-1 position.

Example:

4) N T N U 1 N N TN TN T T T T N N T N W T N T T T N N A T (Y T T T T Y I

] L1 T T W 1N ORI [T T T T T T T N N N T Y Y T Y Y O Y |

-
11

4 Ll P | | T T O I O O T I

T | N S S T T N U Y VO Y T T Y T T T Y WA YO T Y T N N Y U T T W W W G0 WO OO B

If the previous contents of the ACCUMULATOR was 000000123456789, the execution of the
construct in this example would cause data-name ITEM-CODE to have as its contents
000000000000023.

4. If all 3 integer options are used, the computer will isolate the first integer-2 digits to the right
of and starting at integer-1 and position them starting at and to the right of integer-3.

0 7
¥

Example:

111 N T T W T N T Y W T N W T N T T T T T W T (N T Ty U U SO O IO OO I W

1
1

9 | 111
T

If the previous contents of the ACCUMULATOR was 003775076951456, the execution of the
construct in this example would cause the accumulator to contain 000000005076900.

The ranges for all three integers is 1 through 15 unless the WITH SIGN option is used, in which case the
range is 1 through 16.

OPTION 10

MOVE integer TO PCH-REG

6-25

MULTIPLY

Option 10 is used to load the Punch Count Register. The integer may be any value from O through 255.

Example:
": Pl e bt e
20 ! L1 PREGL L 1 b b e
OPTION 11
ZERO
ZEROES
MOVE ZEROS TO group-name
0

Option 11 is used to clear all data items in the group specified by the group-name. The group name
must be declared in the WORKING-STORAGE section. In order to conserve code generated by the
compiler, this construct should not be used unless the group-name has 6 or more data-items within it.

OPTION 12
1

MOVE (l‘loﬁ TO PB-REQUIRED
ZERO

This construct applies to the TC-700.

OPTION 13

ACCUMULATOR

MOVE REMAINDER TO
- data-name

Option 13 provides the programmer with the ability to use the REMAINDER resulting from the division
process.

Multiply
The use of this construct is to multiply two items together.

The construct is as follows:

MULTIPLY {data“name-l } data-name-2

literal ACCUMULATOR
[ON SIZE ERROR statements]

BYl

}[GIVING data-name-3] [ROUNDED]

Without the “GIVING” option the product is stored in the second operand. With the “GIVING” option
the product is stored in data-name-3.

6-26

NO-OP

NOTE

Automatic decimal alighment is provided if both operands are data-names.

If a size error occurs, the first two data-name operands would be unchanged. However, if the
ACCUMULATOR was the first operand, it would contain undeterminable results. A discussion of
decimal alignment, ROUNDED, and SIZE ERROR is provided on page 6-6.

Example:

P11 IS N N U NV TN (NS NN N S N U TN TN U I OO T WO U S O U TN N I T T N W T TN N N IO T Y Y iy

\
|
[-

o3 L1 L
i

No-Op

The use of this construct is to provide the ability for the programmer to instruct the compiler to insert
a “NO OPERATION” machine code.

The construct is as follows:

Example:

e | 111 A RS N U DRSS TN S DO WO NN N U A U N U [N N Y T T N TN T T (T T N IS W A (NN O e s [T N O 1 Y O O O |
1 -

s ! L1 - -

1

[L1 - I N N T T T U T Y
' - .

an L1l Ul'rlnlllllllllllllllllllllllllllll‘llll
'

As the example may imply, the most common use of the NO-OP is that of a “filler” in a PK Table in
the DECLARATIVES.

Note

The use of this construct is to allow the programmer to write explanatory statements in his program
which are printed on the program listing, but do not generate object code.

This construct has two options:

OPTION 1

NOTE sentence.

6-27

OPEN

Option 1 is NOTE followed by any comment and terminated by the next period.

Option 1 is coded anywhere in Area B of the coding form.

Example:

Ioa: 111 lllllllllllllllllllllllIlllllllll‘llllllllIlIJllll
[09: L1 1 !

o v Ly b AND MUST BE TERMINATED BY, A PERI@D. . 1 1001
]

OPTION 2

NOTE. paragraph

Option 2 is NOTE followed by any comments or sentences or text. The documentation is terminated by
the next paragraph name, and its coding must start in column 8 of the coding form.

Example:

L S WY N Y Y Y N U W W Y S IO N WO T Y U 1O T U N (Y O Y O N NN N A OO AU A

1
T
[
I
|

13 v | PARAGRAPH. LT WILL, END WITH THE NEXT 11111,
l‘llIPAM&BABHLNA‘.ME&.IIIIIIIIIIIIIIIIIIIIllllvlllll

14

~ Open

This construct is used to provide for opening the paper tape media clamp and for opening the forms
transport.

The construct is as follows:

MEDIA-CLAMP .
OPEN CARRIAGE mteg'er INDEXED BY {ACCUMULATOR}
EEE— special-name —————— ~— | data-name

The MEDIA-CLAMP option will open the paper tape media clamp.

The CARRIAGE option will open the forms transport. If the “integer/special-name” option is used, the
carriage will stay open until a print or a programed close is made, at which time the platen will advance
the specified number of lines. If the INDEXED BY option is used, the specified value will be added to
the number of lines advanced.

Example:

15 lll'lllllllllllllllllllllllllLllliIIIllllllllllllllll

16 119 N (U A R T (T T T T T T T T T Y A O

|
'r7i+|_L_L STARTLINE. v v by vttt b1y

6-28

PERFORM
POSITION
READ

Perform

The use of this construct is to depart from the normal sequence of execution in order to execute a
procedure which was declared as a subroutine in the DECLARATIVES. When the subroutine execution
is complete, control is automatically returned to the next command in sequence in the mainline
program. See discussion of EXIT.

The construct is as follows:

PERFORM procedure-name.

Only subroutines are allowed to be “PERFORMED”’. Attempting to “PERFORM” a paragraph-name will
result in an error at compilation time.

Subroutines may be performed from within a subroutine. However; a hardware limit of four (4) is in
effect. The nested subroutines are “exited” in reverse sequence to that in which they were performed.

This construct has no effect on the ACCUMULATOR.

Example:

LI 1.1 0 O IS SN N IS T T Y NS S SN S S IS S I N T N N N W N T O O T T (S N T T Y N v o Y o O Y|
]

l"' l_l_L,,.PJ.ElBIEﬂBnJ&uBIRIIl_LllnlllIIIIIIllIl|lllllll||IIlIIllllll
]

Position

The use of this construct is to provide for the position of the print ball.

The construct is as follows:

data-name

POSITION TO integer
POS — | special-name

} [INDEXED BY {ACCUMULATOR}]

This construct has no effect on the ACCUMULATOR unless the “INDEXED BY” option is used.

Example:

e | N § S N A S S T [N N N VU Y S S T VU [Y U s U N TN N N N U D VN I U N TN T Y O N O S O O |

|": L L M_MMM_E&MMM

T [

Read

The use of this construct is to provide for the reading of an 80-column card into the card input buffer.

The construct is as follows:

READ file-name

The file-name is the name ASSIGNED to the card file in the SELECT clause of the ENVIRONMENT
DIVISION.

6-29

RED RIBBON

ROUND

SELECT

Red-Ribbon

The use of this construct is to provide for activating the red ribbon feature of the machine for the next
display or print on the printer.

The construct is as follows:

RED-RIBBON

This construct has no effect on the ACCUMULATOR. This command reverses the ribbon for only the
next DISPLAY instruction.

Example:

4 slrs 112 né 120 124 128 132 136 140 144 148 152 156 160
T :

0'3 | 1-RIBMN.1||||111|1I|||111|1||||1111111111Illlll
| 1 n

I"L?' Ll IL&BLAM_.‘l&BlEDLIL_MEﬂN_BBNI;R.HHUHIUHnnuiunu

Round

This construct is used to round to the Sterling unit PENCE data stored in memory or the
ACCUMULATOR. ‘

The construct is as follows:

ROUND { ACCUM } TO PENCE

——— | data-name| —
Example:
lﬂ: . U TS NS W WS NN NS NS W NN NN SN N NS N N (N O NN A NN N U0 N VT S NS VN N (N (N (Y WY (SO T T T TN T Y Y OO O (O O |
04 | L4 Py I N S T W T O YO TN N O G I N N I U O Y Y A
] .
Select

The use of this construct is to provide the ability to:
1. Specify that a card be placed in the alternate stacker.
2. Specify a “SKIP” to a certain card column.
3. Specify “DUPLICATING” of certain card columns.

The construct is as follows:

ALTERNATE STACKER

{ special—name}

SELECT { SKIP FUNCTION TO .
‘ integer

REPEAT FUNCTION THROUGH }

THRU

6-30

STOP RUN
SUBTRACT

“SELECT ALTERNATE STACKER” will cause the card being punched to be stacked in the alternate
stacker when it is stacked.

The “SKIP” option will cause a skip to card column “integer”.

The “REPEAT” option will cause the card being punched to duplicate from the previous card to the
“integer” card column.

This construct has no effect on the accumulator.

Example:
07) | S GO W T T T T Y T T T T T U T N W W U W AN U (N N (O (N N (N T W W W O B O

038 L1 P T S T N AT S B B B O

09

L1 1 P (N U T T T N U S T Y S SN N I O N TR T A O

Stop Run

The use of this construct is to provide the ability to end execution of a job. The execution of this verb
will cause the machine to return to Ready Mode.

The construct is as follows:

STOP RUN.

It is important to note that there must be at least one STOP RUN in every program.
Subtract

The use of this construct is to provide for the subtracting of one item from another.
The ACCUMULATOR cannot be SUBTRACTED from itself.

This construct has two options as follows:

OPTION 1
data-name-1 d ’
SUBTRACT { integer FROM Aacté[‘};’lng Tor { [GIVING data-name-3]
ACCUMULATOR LATOR

[ROUNDED] [ON SIZE ERROR statements]

If no “GIVING” option is coded, the first operand will be subtracted from the second operand and the
results stored into the second operand. If the “GIVING” option is used, the same subtraction will occur
and the results will be stored into data-name-3.

Automatic decimal alignment is provided if both operands are data-names.
“ROUNDED” is only valid with a “GIVING” option and will produce correct results only when the

6-31

USE

second operand has more decimal places than data-name-3.

When subtracting “data-name FROM ACCUMULATOR” or “ACCUMULATOR FROM data-name” with
an “ON SIZE ERROR” clause, the ACCUMULATOR will contain undeterminable results if the error
does occur.

See page 6-6 for a discussion of decimal alighment, ROUNDED and SIZE ERROR.

Example:

4 1 | N (NN U T N NV N T U TN I TN S T (N NS S (N WO (N W VN N W Y T S VN T N N T O (N TS O [N T SO U SO S N OO |

T
13 1 L1 IR NN

“! 111 IIIGIIVIIM_WD.Il|||||1||||llll|l|l||||ll|

OPTION 2

SUBTRACT digit FROM ACCUMULATOR (integer) [ON SIZE ERROR statements]

Option 2 will provide for the subtraction of the digit (0-9) from the integer (1-15 from right to left)
digit of the ACCUMULATOR.

Example:

LllllllLLlllllIlllllllllllllllllllIlIlllllIllllllllll

11 1 l(llisl)llllllllllllllllll
oo @N SIZ2E ERRBR ALARM. oo i

4
T
I

15

16

17

RN NS U Y

Use

The use of this construct is to specify procedures or to define the program key table (PK-table). This
would be used only in the DECLARATIVES.

The construct is as follows:

USE FOR {w procedure-name}

PK-TABLE table-name

With the “SUBROUTINE” option, any combination of sentences and paragraphs may be used.

With the “PK-TABLE” option, the following constructs may be coded as PK table entries:
1. “ADVANCE” left or right with no “indexed by” clause.

2. “Display” options 2, 5, and 4 without the INDEXED BY option.
3. “GOTO”

4. “MOVE” options 4 through 7

5. “NO-OP*’

6. “OPEN CARRIAGE” with no “indexed by” clause.

7. “PERFORM”

6-32

ACCEPT

(Part B)

8. “POSITION TO” with no “indexed by” clause.
9. “RED-RIBBON”

It is important to note that all PK tables must be declared before subroutines are declared, and END
DECLARATIVES must follow the last entry in this part of the PROCEDURE DIVISION.

Example:

102 1 L1 B S W W Y T O S YO O U W YO T N T T T O T Y WA WY WA U W N N S O TS O AN O O O I
J: mAlTlLVIEIS.IIIIllllllllllIllllnllllljllllllllllllllj
]

4: 111 = = PO T T T N A T N S WA A N AN S A O WO OO O A
s: L1 1llﬁmmmm.lt|1||||J|||11|1||||11111111
g ! L1l lllmmh_llllllllllllllllllllllllll]lllll
07E L1l [[[M_m.lllllllllIllllllllllllllllllllll
l: 111mmmm.llllllllllllll1llll||ll
’: 144 llIWEJII_LIJ_JLIIJNEI.IIIllllllllllllllllllllIIJ
lo: L1y 111W11||||||1111||1111||1111|
oo b b ACGCEPT 20 CHARACTERS FRAM KEYROARD-PRNTR. 1

Recall that an EXIT from the subroutine will automatically be provided at the end. See page 6-15 for a
further discussion of EXIT.

PART B: DATA COMMUNICATIONS

This part of the Procedural Constructs deals with the constructs required to activate the data
communications equipment.

The specific verb formats together with a detailed discussion of each, appear on the following pages in
alphabetical sequence.

Note:
The use of any of these verbs requires the presence of Data Communications firmware.

Accept

.

The purpose of the ACCEPT verb is to allow entry of alpha data directly into the DATA COMM output
buffer. -

The construct is:

ACCEPT alpha-file-data-name [FROM KEYBOARD]

This construct has no effect on the ACCUMULATOR.

6-33

IF

LOCATE
(Part B)

If

The purpose of this variation of the “IF” verb is to allow interrogation of the flags associated with the
data communications firmware and the adjunct exchange firmware.

The construct is as follows:

XMT-RDY AND) [XMT-RDY statements
= l R__CV’RDY} U OR } {RCV-RDY}]THEN{ NEXT SENTENCE} [ELSE statements]

(XMT-RDY
RCV-RDY
DC-ERROR
POL-SEL-FLG
BREAK-FLG

| LINE-ACTVY-FLG |

» THEN statements [ELSE statements]

~IF

[BUF-FULL

BUF-EMPTY} THEN statements [ELSE statements]

These constructs have no effect on the ACCUMULATOR, except when the POL-SEL-FLAG, BREAK-
FLG, or LINE-ACTVY-FLG are tested.

Locate

The purpose of this verb is to provide the ability to properly handle the setting of the data
communications buffer flags and pointers.

The format of this construct is as follows:

LOCATE file-name

When working directly with the data communications input buffer (NO WORK-AREA declared and no
RESERVE ALTERNATE AREA declared), this construct must be used when accessing of the input
buffer is complete in order to cause the data communications processor to “receive” the next record.

When working directly with the data communications output buffer (NO WORK-AREA declared), this
construct must be used when accessing the output buffer to determine if the output buffer is available
and to set the buffer pointers.

6-34

MOVE

(Part B)

Move

The following variations of the “MOVE” verb are used for transfer of data to and from the data
communications buffers and the adjunct exchange memory.

This construct has nine options:

OPTION 1

MOVE alpha-file-data-name [FROM BUFFER] TO alpha-data-name

Option 1 is used to move alpha data from the data communications buffer (or alternate buffer if
RESERVE ALTERNATE AREA is declared) to memory.

OPTION 2

alpha-data-name

MOVE { alpha-literal

} TO alpha-file-data-name [IN BUFFER]

Option 2 is used to move alpha data from memory to the data communications buffer or alternate
buffer if RESERVE ALTERNATE AREA is declared.

OPTION 3

_ numeric-data-name
MOVE ! literal TO numeric-file-data-name [IN BUFFER]
ACCUMULATOR :

Option 3 is used to move numeric data directly to the data communications buffer or alternate buffer if
RESERVE ALTERNATE AREA is declared.

OPTION 4

MOVE numeric-file-data-name [FROM BUFFER] TO {ACCUMULATOR]

numeric-data-name

Option 4 is used to move numeric data directly from the data communications buffer (or alternate
buffer if RESERVE ALTERNATE AREA is declared) to the ACCUMULATOR or to memory.

6-35

OPTION 5

SEND-ADR
RCV-ADR
ACCUMULATOR HDR-XMN-NO
MOVE (< alpha-data-name TO < EXP-XMN-NO
alpha-literal T SEND-XMN-NO
GRP-XMN-NO
k BDCST-XMN-NO

Option 5 is used to load the various addresses and transmission numbers into adjunct exchange memory.
See below for an interpretation of the abbreviations.

OPTION 6

(SEND-ADR)
RCV-ADR

J HDR-XMN-NO
MOVE { EXP-XMN-NO ? TO
SEND-XMN-NO
GRP-XMN-NO
\ BDCST-XMN-NO)

[ACCUMULATOR }
alpha-data-name

Option 6 is used to retrieve the various address and transmission numbers from the adjunct exchange
memory.

Options 5 and 6 are referring to the addresses and transmission numbers as follows:
1. SEND-ADR — Send Address Register

RCV-ADR — Receive Address Register

HDR-XMN-NO — Header Transmission Number

EXP-XMN-NO — Expected Transmission Number

SEND-XMN-NO — Send Transmission Number

GRP-XMN-NO — Group Transmission Number

BDCST-XMN-NO — Broadcast Transmission Number

NSV R

6-36

READ

(Part B)

OPTION 7
(1 A
MOVE | QI‘% | TO DC-ERROR
ZERO
\ /)
(1)
ONE RCV-RDY RCV-RDY
MOVE | o (10 {XMT—RDY] { XMT-RDY }
ZERO
\
A
(ONIE POLSEL-FLG POL-SEL-FLG
MOVE | == 1 10 { BREAKFLG BREAK-FLG
LINE-ACTVTY-FLG LINE-ACTVTY-FLG
\ZERO)

Option 7 is used to set or reset the indicated flags.

OPTION 8

TWO-WIRE-CNTL
FOUR-WIRE-CNTL

MOVE l l TO DATA-COMM

Option 8 is used to load the register in the adjunct exchange memory for two wire or four wire control.

OPTION 9

MOVE @2b@ TO DATA-COMM

Option 9 is used to load non-graphic USASCII characters (see USASCII Table in Appendix A) into the
data communications buffer or alternate buffer if USE ALTERNATE AREA was declared. The “a”
represents the column number and “b” represents the row number of the table. Since “b” may be only
one digit, the row numbers 10-15 are designated with the letters A-F (10=A, 11=B, 12=C, 13=D, 14=E,

and 15=F).

Read

The purpose of this construct is to read a file which has been assigned to data communications input.

The format of this construct is as follows:

READ file-name

6-37

STOP

WRITE
(Part B)

This construct will determine if a record has been received into the data communications processor
receive buffer.

If a record has been received and no ALTERNATE AREA was declared, control will be transferred to
the next sentence. If an ALTERNATE AREA was declared, the data will be transferred from the receive
buffer to the alternate buffer, the receive flag will be reset and control w1ll be transferred to the next
sentence.

If no record has been received, the system will hang in a wait loop until a record has been received.

Note:

A test of the RCV-RDY (receive) flag should normally be made before using the READ construct to
prevent hanging in the wait loop.

Example:

13 | 111 'US N W U WS WS W (N U S O U (W T (N VN TN O N I O T W (N W U S T N S T T N [(N W 00 o T ey |
[}

e}, TF RCV~RDY, THEN READ DATA-COMM-MESSAGE .\ 1101y
i

LIS nnlEL.&E_ﬁﬁ_JIﬂ_DES&AﬁE_NQI_BE&ELMEDHHHHHHH

Stop

This construct is used to turn the power off to the system.

This construct is as follows:

STOP MACHINE

Write
The use of this construct is to transmit a record through the data communications network.

This construct is as follows:

WRITE record-name

This construct will cause .the transmit réady (send) flag to be set when NO WORK-AREA and no
ALTERNATE AREA have been declared.

If RESERVE ALTERNATE AREA or USE WORK-AREA is declared, this construct will determine if
the send buffer is clear and then transfer the data from the work area or alternate buffer to the send
buffer and set the transmit ready (send) flag. If the send buffer is not clear, the system will hang in a
wait loop until the send buffer is clear.

Note:

A test of the XMT-RDY (send) flag shouid normally be made before using the WRITE to prevent
hanging in the wait loop.

Example:

"; 1 1 1 lllllllllllllllllllllillll|||ll||||||||llll|||llL
et | Ly TF XMT~RDY. THEN GZ T@ BUFFER-NAT-CLEAR 11110101111
[} .
I 1, ELSE WRITE DATA-CZMM-RECERD, + 111110 11011101

SECTION

SERIES L/'TC COBOL COMPILATION
B 3500 Environment

As stated in the introduction, a program written in Series L/TC COBOL, a source program, is accepted
as input by the B 3500 version of the series “L/TC” COBOL Compiler. The compiler then verifies that
all rules outlined in this manual are satisfied and translates the source program language into an object
program language capable of operating on a Series L/TC Computer. Symbolic program output (for
subsequent input to the Series L/TC Assembler) is available as well as the object program output. This
section deals with the input/output, compilation, and assembly options available with the B 3500.

GENERAL

INPUT

The input for compilation-assembly is the magnetic library tape, the necessary control and option cards,
and the source data which is either a card deck, magnetic tape or disk file that includes the source
program.
The library tape contains the following programs:
COMPILER PROGRAMS:
L57305
Q57305 [These programs are the Compiler programs
M57305
ASSEMBLER PROGRAMS:
ASSEMB)
QCONV
OBJCRD % These are the Assembler programs
LCNVRS |
CRDCVR}
XRFBTC This is the Assembler Cross-reference program

FILES LOADED ONTO DISK. The COND and OPTBL files are loaded onto a disk during the loading
of the master tape and are used internally in the assembler portion of the compiler program. The COND
(condition file) is used in the error detection routines and OPTBL is the operation code file.

TO EXECUTE THE ASSEMBLER ONLY. The specific procedure for executing only those programs
dealing with the assembly process may be found in the discussion of Assembler III of Section 5 in the
Series L/TC Assembler Manual.

OUTPUT

The output of the Series L/TC COBOL compiler may be any, or all, of the output options described
under control options (below).

If only the compiler is used, a syntax check of the COBOL constructs will be executed and the output

7-1

will be a listing of the COBOL statements and any errors present. Figure 7-1 is an example of a

compiler listing.

If the compiler-assembler is used, and if the “CODE” option is elected, a print-out, which lists the
symbolic code, object code developed and any error comments is produced after the source listing. The
symbolic code for each source statement appears under that statement on the source listing (see Figure
7-2). This is in addition to the paper tape or card media produced as output —
of an Assembler listing. The word and syllable of the instruction is listed along with sequence number,
object code, expanded print-out of the source card, and decimal equivalent for each label used within a
source statement.

02319
02320
02401
02402
02403
62404
024045
02405
02406
02407
02408
02409

EACH=TUTAL.,

POSITION TO TALLY=FP(US.

Figure 7-3 is an example

DISPLAY DESCRIPTIUN®PRINT (ITEM=MUDIFIER) UPON PRNTR

ADVANCE RIGHT 1 LINE,
POSITIUN TO TALLY=FUS.

DISPLAY GRAND=TUTALS=FRINT (ITEM=MOOIFLIER) UPON PRNTR
DISPLAY "= GRANU=IGTALS=PRINT (ITEM=MODIFIER) NEGATIVE.

IF ITEM=MODIFIER IS FAUAL TU 6
STGP KUN,
ADVANCE RIGHT 2 LINES,
ADD 1 TOU JTEM=MUDIFIER,
GU TU EACH=TOTAL.

031900 END=UF=J0OB,

1504

01505

01506

015065

Figure 7-1 Source Listing

MULTIPLY ITEM~MODIFIER BY 2.

P ot et
O O OO

- OO0

POSITION TO SO INDEXED BY ITE

i
}

ACCEPT ITEV=QUANTITY~ENTER FROM KEYBOARD
960
81378
ADD ITEM=QUANTITY TO LINE=QUANTITY,

01980
01990

0

0
=MODIFIER

Q

0

0

0

OO0 X o000

33
94
95

Figure 7-2 Source Listing with Code

~“x—
YD

VK ~4~4
O

z

P

DR

o>

X N >

=»

0
1

b

N0O021

50

oo O
0O O
o= O

€L

Jejquisssiy-iejidwo) wouy Bunsi Jejquiessy g-7 ainBiy

WORD

66

67

68

SYL

R) W N = o W N = O

w N - O

UBJECT
CODE

E£B1D
ACO6
EB24
ACOS5

£E828
ACO7
E335
4192

7844
AC13
E349
A440

3010
704cC
A620
3019

SEQ.

NJ.

151
162

163
154

165
166
167
168

159
170
171
172

173
174
175
176

[= I < I o

o o ©C o C

c o O ©

SYM,
LacC.

L.80015

gP FDo
CODE LN,

POS
TK
POS
TK

POS
TK
POS
SK

BRU
TK

POS
NKR

TRM
BRU
NK

TRM

A=PARAMETER B
LABEL INC PAR

030
006
037
005

044
007
054
K 1

+006
019
074
04 00

DNOO11
LBOO134
02 00
DNOO21

¢ LABEL
PAR DEC EQU

68 2

16
76 0

25

MCP CONTROL CARDS

The following MCP (Master Control Program) Control Cards are used in the compiler process:
1
2 indicates an invalid code in card column one.
3

EXECUTE CARD

The execute card initiates program execution. It must be punched in the following formats:
1
2 EXECUTE 57305
3

This is used to initiate the compiler-assembler (unless a SYNTAX option card is used, in which case only
compilation will occur).

FILE EQUATE CARD
If the NEWD option is used to create an updated disk file of the source program, or if the DISK option
is used to specify that the source input is from disk, the control cards —

1

2 FILE SORSE = file-label

3

1

2 FILE SORSD = file-label

3

must be placed between the EXECUTE card and the DATA (or DATAB) SORCE cards. The file-name is
assigned by the operator and must be the same on each card. The FILE SORSE card is used to equate
the file-name with the input disk file and the FILE SORSD card equates the file-name with the output
disk file.

DATA CARD

The Data Card specifies the type source media. It must be punched in the following format:
1 1
2 DATA SORCE or 2 DATAB SORCE
3 3
This tells the system that the source media is cards, punched in either EBCDIC or BCL code,

respectively. BCL does not include some special characters available with EBCDIC. If EBCDIC code is
used, it will be accepted by the compiler only if the 12-0 card code is used for the plus sign (+).

DOLLAR SIGN CARD
The dollar sign card specifies the options which control the input and output during the compilation
and assembly process. It must be punched in the following format:
$ (List option(s) here)
A list of the available options are below.
7-4

DATA DECK

The source or symbolic deck to be compiled and/or assembled.

END CARD

The end card must follow any card deck. It is punched in the following format:

1
2 END
3

It tells the system that the input from the Card Reader is complete.

OPTION CARDS

The following Dollar ($) Options are available to use with the L/TC COBOL Compiler. The Dollar sign
($) must be coded in card column 7. The options are coded free form starting in card column 9. If
more than one non-continued card is used, the last one used will set the various parameters. The others
will be disregarded.

The options are:

COMPILER OPTIONS

L.

LIST — This will cause a listing of the COBOL statements. If no $ options are used, LIST is
automatic.

2. CODE — “CODE” will cause the symbolic code to be listed for each COBOL construct:

VX N oW

10.

11.

SYNTAX — This will cause a compilation for syntax purposes. No code will be generated nor
will the assembler be activated.

TAPE — This will specify that the input is an “LSOLT” (Source Language Tape) magnetic
tape with “patch” cards in the card reader. '

DISK — This will specify that the input is from disk with “patch” cards in the card reader.
NEWT — This will cause an updated LSOLT tape to be created.

NEWD — This will cause an updated disk file to be created.

NEWC — This will cause the compiler to give a BCL source card deck as output.

RESEQ — This will cause the symbolic program to be re-sequenced starting at 100 and
increased by an increment of 100.

BLNK — This will cause all cards with card columns 7 through 72 blank to be purged when a
“NEWT?” is requested.

Identification: Any characters punched in columns 73-80 of the card will be inserted into all
source statements in columns 73-80.

ASSEMBLER OPTIONS

12.
13.

14.

SYM-PT — This will cause the assembler to create a symbolic paper tape.

SYM-CN — This will cause the assembler to create a symbolic card deck punched in
“EBCDIC” card codes.

SYM-CD — This will cause the assembler to create a symbolic card deck punched in “BCL”
card codes.

7-5

15.

16.

MEMORY nnn — This will cause the assembler to limit the generated program to the nnn size

and print error messages if the nnn limit is exceeded.

OBJCD — This will cause the assembler to punch the object program into punched cards
instead of paper tape.

As stated earlier, the assembler will always be activated by the compiler after compilation unless the
“SYNTAX” option is used or unless an error occurs during compilation.

After the assembly process, punching of an object paper tape is always assumed unless the “OBJCD”
option is used.

$ cards may be stacked, however, only the last one will set up the various parameters. Should the
situation arise where all the desired options cannot be punched into a single card, a continuation card
with a “-” in column 7 may be used.

EQUIPMENT REQUIRED

The following system hardware is required for the L/TC Compiler-Assembler Program:

B 3500 — 60 KB Core

1 Module Disk

1 Tape Unit (7 or 9 channel)

Card Reader

Paper Tape Punch (Optional for object or symbolic tape out).

Paper Tape Reader (Optional for symbolic paper tape input)

Card Punch (Optional for symbolic card object card or source card output)

Line Printer

OPERATING INSTRUCTIONS

1.

Magnetic Tape Units
Mount the master tape containing the Series L/TC COBOL Compiler programs.

Card Punch (If symbolic card output is required)
Load the hopper on the card punch with sufficient cards and depress the Start button.

To Load the Tape

a. VIA CARD READER - Load the single card:
? LOAD tape-name, program-name, program-name, etc., in the card reader, depress
the RESET button and then the Start button. This will load the specified programs of
the master tape.

To Execute the Compiler-assembler
The following cards should be placed in the card reader hopper:

a. |1
2 EXECUTE L57305
3
b. 1 1
2 DATA SORCE or 2 DATAB SORCE
3 3

c. $ (option card(s)
($ is coded in column 7)

d. The program source deck
e. 1

2 End
3

Depress the Reset button and then the Start button.

5. To Execute the Assembler Only
The specific procedures for executing only those programs dealing with the assembly process

may be found in the discussion of Assembler III of Section 5 in the Series L/TC Assembler
Manual.

ERROR DETECTION

If an error occurs during compilation, the error will be listed and compilation will continue but
Assembly will not take place. A list of Compiler errors is in Appendix E.

7-7

APPENDIX A

UNITED STATES OF AMERICA
STANDARD CODE FOR INFORMATION INTERCHANGE

(USASCII)
by 0 0 0 |0 1 1 1 1
bs 0 0 1 1 0 0 1 1
B ; ; bg 0 1 0 1 0 1 0 1
S
b4 b3 b2 bl Column 0 1) 3 4 5 6 7
b4l 4§ |Row |
0(0]|]O0]O 0 NUL | DLE SP 0 @ P \ p
0j]0lof1 1 SOH | DC1 1 1 A Q a q
olOoOf1]oO 2 STX | DC2 7 2 B R b r
0|10{1 1 3 ETX | DC3 # 3 C S c s
0Oj]1}0[O0 4 EOT | DC4 $ 4 D T d t
O|1]0f1 5 ENQ | NAK % 5 E U e u
0|1 1 [0 6 ACK | SYN & 6 F \% f v
011 | 1 7 BEL | ETB / 7 G \\ g w
110100 8 BS CAN (8 H X h X
1 {ofo0]1 9 HT EM) 9 I Y i y
110f(1]0 10 LF SUB * : J Z j z
1 101 1 11 VT ESC + ; K [k {
1 1{0]0 12 FF FS , < L N ['
1 110 (1 13 CR GS - = M] m }
1 1 1]0 14 SO RS . > N A n ~
1 1 1 1 15 SI Us / ? (0] — o DEL
Table A-1
USASCII COLUMN 1 FIELD IDENTIFIER CODES USASCII COLUMN 0 FIELD IDENTIFIER CODES**
FLAG PATTERN FLAG PATTERN
PAPER TAPE SET BY CODE* SET BY CODE*
VALUE OCK FLAG NUMBER PAPER TAPE Y FLAG NUMBER
CODE a, b 3 2 1 4 CODE VALUE 3 2 1 4
DLE 9,0 0O 0 0 o NUL 0,0 0O 0 0 O
DC1 I,1 0O 0 o0 1 SOH 8,1 0O 0 o0 1
DC2 1,2 O 0 1 o STX 8,2 O 0 1 o0
DC3 9,3 o 0 1 1 ETX 0,3 0 0 1 1
DC4 1,4 O 1 0 o EOT 8.4 0O 1 0 oO
NAK 9,5 O 1 o0 1 ENQ 0,5 0O 1 0 1
SYN 9,6 0 1 1 O ACK 0,6 0 1 1 O
ETB 1,7 0 1 1 | BEL 8,7 0 1 1 1
CAN 1,8 1 0 0 o0 BS 8,8 1 0 0 O
EM 9,9 1 0 o0 1 HT 0,9 1 0 o0 1
SUB 9,A 1 0 1 0 IF 0,A 1 0 1 O
ESC 1,B 1 0 1 1 VT 8,B 1 0 1 1
FS 9,C 1 1 0 O FF 0,C 1 1 0 O
GS 1,D 1 1 0 1 CR 8,D 1 1 0 1
RS LE 1 1 1 O SO 8.E 1 1 1 0
US 9,F 1 1 1 1 SI OF 1 1 1 1
*0 = flag is reset 1 = flag is set *0 = flag is reset- 1 = flag is set
**Setting depends on firmware set
Table A-2 Table A-3

APPENDIX A (cont’d)

ACCUMULATOR FLAG CODES: The following chart shows the paper tape codes that set the Accumu-
lator Flags during Read Numeric instructions (when code is contained in table of code assignments).

ACCUMULATOR
TAPE CODES FLAGS®

M C S -
A0 C0 5,0 0o 0 0 O
2,1 4,1 D,1 0 0 0 1
2,2 4,2 D,2 o 0 1 O
A3 C3 5,3 0O o 1 1
2,4 4,4 D,4 0o 1 0 O
A5 C,5 5,5 0o 1 0 1
A6 C,6 5,6 o 1 1 0
2,7 4,7 D,7 o 1 1 1
2,8 4,8 D,8 1 0 0 O
A9 C9 5,9 1 0 0 1
AA 3,A CA S,A 1 0 1 O
2,B B,B 4,B D,B 1 0o 1 1
AC 3,C CC 5.C 1 1 0 O
2,D B,D 4,D D,D 1 1 0 1
2,E B,E 4E D,E 7.E 1 1 1 0
AF 3,F CF 5,F 1 1 1 1

* 0 = flag is reset;
1 = flag is set

Table A-4

APPENDIX A (cont'd)

SERIES L/TC CHARACTER SET

The USASCII and Commercial character sets for the Series L/TC Systems are listed below in their
collating sequence in ascending order. Each character set consists of 64 graphic characters, the Space
code, and the End of Alpha code. The USASCII character set consists of the USASCII characters in
columns 2, 3, 4, and 5 of the USASCII table, plus End of Alpha (NUL) and Overline. Those
Commercial characters that differ from the USASCII characters are shown in parentheses.

The internal or machine language code for each character is given; this code consists of two hexadecimal
digits which correspond to the column and row number of the character in the USASCII table (A=row
10, B=11, C=12, D=13, E=14, F=15). In addition, the decimal value of each character is given as
required when using Index Registers for modification.

5 - &9 8) 5 &0 5 —_)
§ g >E< © 2 'g o E © § Fg E © § g o >S< I
5 83 |83 g g3 |21 &§| 238 |32 5 8 8=
5 =S | E5 | © Eo | EF| 86| 53 |E5| & £S5 | &S
End of
Alpha
(NUL) | O O 0
Space 2 0] 32 0 3 0 |48 @{4 0 |64 P 5 0 80
! 2 1 33 1 3 1 49 Al 4 1 65 Q 5 1 81
” 2 21| 34 2 3 2 |50 B4 2|66 R 5 2] 82
2 3 35 3 3 3 51 Ci4 3 67 S 5 3 83
$ 2 4| 36 4 3 4 |52 D |4 4 | 68 T S 4| 84
% 2 5| 37 5 3 5 53 E |4 5 69 U 5 5 85
& 2 6| 38 6 3 6 |54 F |4 6 |70 \"/ 5 6| 86
? 2 71| 39 7 3 7 |55 Gi4 7|7 W 5 7 87
(2 8| 40 8 3 '8 | 56 H|4 8 |72 X 5 8 | 88
) 2 9| 41 9 3 9 | 57 I 4 9 |73 Y S 9| 89
* 2 Al 42 : 3 A | 58 J 4 A | 74 Z 5 A| 9
+ 2 B | 43 ; "3 B | 59 K|4 B |75 [((34) 5 B 91
s 2 C| 44 <(®)| 3 C |60 L4 C |76 \ (¢) 5 C| 92
- 2 D 45 = 3 D (el M (4 D/| 77 J(CR) S Dy 93
. 2 E | 46 >®%)| 3 E |62 Ni4 E |78 A (°) 5 E| 94
/ 2 F | 47 ? 3 F |63 O(4 F |79 — 5 F | 95
~<>)| 7 E |126
DEL 7 F |127
Table A-5

APPENDIX A (cont'd)

EBCIDIC AND BCL CODE

EBCIDIC BCL
L/TC PAPER GRAPHIC K GRAPHIC K
GRAPHIC TAPE CODE CHAR CARD CODE 5 cHAR | CARD CODE 5
@ e @ 8-4 * @ 8-4 *
A i : A 12-1 * A 12-1 *
B e 0 B 12-2 * B 12-2 *
C ee .« oo C 12-3 * C 12-3 *
D ° o D 12-4 * D 12-4 *
E o0 :o o E 12-5 * E 12-5 *
F o o0 F 126 * F 126 *
G o cooe G 127 * G 12-7 *
H e e | H 12-8 * H 12-8 *
I o0 o: o I 12-9 * I 129 *
J ELICER J 11-1 * J 11-1 *
K o o oo K 11-2 * K 11-2 *
L KL 020 ' L 11-3 * L 11-3 *
M e eco o M 11-4 * M 11-4 *
N e ecee N 11-5 * N 11-5 *
0 oo .Eu.‘ o) 11-6 * o) 11-6 *
P o P 11-7 * P 11-7 *
Q (00 o - o Q 11-8 * Q 11-8 *
R 00 0 ¢+ 0 R 119 * | R 11-9 *
S o : oo S 0-2 * S 0-2 *
T ee o oo T 0-3 * T 0-3 *
U oo <o 0 U 0-4 * U 0-4 *
\% e o co0 \% 0-5 * \% 0-5 *
\' 00 o .00 w 0-6 * W 0-6 *
X oo oo- X 0-7 * X 0-7 *
Y o o0s o Y 0-8 * Y 0-8 *
Z ° o0 o Z 0-9 * Z 0-9 *
[or % oo o0: oo [12-8-2 M 12-8-4 M
\ or¢ o eece \ 11-8-7 # \ 11-8-7 M
] orecr 0 0090 o' — 11-8-2 M 0-8-6 M
Aor® oo cocoe + 12-8-6 #
- o coccee - 0-8-5 # - 0-8-2 M
~or <> 000000 I 12-8-7 # -— 12-8-7 M
cecon.eea| DELETE 12-9-7 M

A4

* Keys on 026, 029, 149 and 150 Punch Correct Code.

M Multipunch on 026, 029, 149 and 150.

Keys on 029, and 150 punch correct code; multipunch on 026 and 149.
I Keys on 029 and 150 punch invalid code; multipunch on 026, 029, 149 and 150.

Table A-6

EBCIDIC AND BCL CODE (cont'd)

APPENDIX A (cont'd)

EBCIDIC BCL
L/TC PAPER GRAPHIC K P K
GRI(PHIC TAPE CODE CHAR CARD CODE 5 G?:I‘}IA'::C | CARD CODE 5
SP ¢ e SP BLANK * SP BLANK *
! e o o ! 11-0 I X 11-0 M
» ° s o » 8-7 # » 0-8-7 M
e e # 8-3 * # 8-3 *
$ * $ 11-8-3 * $ 11-8-3 *
% ¢ 6 <00 % 0-8-4 * % 0-8-4 *
& o o :.. & 12 * & 12 *
' ® 000 ! 8-5 # > 8-7 M
(° e (12-8-5 # (12-8-5 #
) ® o 0. o) 11-8-5 #) 11-8-5 #
* © o 0o: 0 * 11-8-4 * * 11-8-4 *
+] o: o0 + 12-0 I + 12-0 I
s e o 0:0 s 0-8-3 * s 0-8-3 %
- e oo o - 11 * - 11 *
. o o0 . 12-8-3 * . 12-8-3 *
/ oo osooo / 0-1 * / 0-1 *
0 oo 0 0 * 0 0 *
1 ® 00 o [J 1 1 * 1 1 *
2 e oo . L 2 2 * 2 2 *
“3 ooo . o0 3 3 * 3 3 *
4 o o0 <o 4 4 * 4 4 *
) oo <0 o 5 5 * 5 5 *
6 oo <00 6 6 * 6 6 *
7 o oo -o0e 7 7 * 7 7 *
8 ® so0s 8 8 * 8 8 *
9. cee: o 9 9 * 9 9 *
: ‘e00: @ : 8-2 # : 8-5 M
; ® cco: oo ; 11-8-6 # ; 11-8-6 #
<or¥% eoece < 12-8-4 # < 12-8-6 M
= e o000 o = 8-6 # = 0-8-5 M
>or% o oco . PYY > 0-8-6 # > 8-6 M
? eee-.000 ? 0-8-7 # ? ALL OTHER |M

Keys on 026, 029, 149 and 150 Punch Correct Code.

Keys on 029, and 150 punch correct code; multipunch on 026 and 149.

£
M Multipunch on 026, 029, 149 and 150.
#
I

Keys on 029 and 150 punch invalid code; multipunch on 026, 029, 149 and 150.

Table A-6 (cont'd)

A-5

APPENDIX B

COBOL SYNTAX

IDENTIFICATION DIVISION

IDENTIFICATION DIVISION.

[PROGRAM-ID. Any entry from 1 to 30 characters.]

[AUTHOR. Any entry including appropriate copyright statement.]

[INSTALLATION. Any entry.]

[DATE-WRITTEN. Any entry.]

[DATE-COMPILED. Any entry — replaced by the current date as maintained by the MCP]

[SECURITY. Any entry.]

[REMARKS. Any entry. Continuation lines must be coded in Area B of the coding form.]

APPENDIX B (cont'd)

ENVIRONMENT DIVISION

ENVIRONMENT DIVISION.

[CONFIGURATION SECTION.]

(SOURCE-COMPUTER. B-3500)

TC-500
OBJECT-COMPUTER. 1 TC-700
L-2000
—
[SPECIAL-NAMES.
POSITION| .
[data-name IS l POS integer.]
[data-name IS LINE integer.)
COLUMN])| .
[data-name IS { COL } mteger.]_

[INPUT-OUTPUT SECTION.]

[FILE-CONTROL.

SELECT file-name ASSIGN To] SARD-READER {

{ DATA-COMM} %‘IUT}

[RESERVE ALTERNATE AREA] [ACCESS MODE IS SEQUENTIAL] {%} WORK-AREA |
[IO-CONTROL.
[SAME AREA FOR file-name-1, file-name-2] .
[SAME WORK-AREA FOR file-name-1, file-name-2, . . .]

DATA DIVISION

APPENDIX B (cont'd)

DATA DIVISION.

RECORD IS

ED file-name [DATA {RECORDS ARE

N

} record-name-1, record-name-2,

{FMT

FORM AT‘ IS (any allowable format characters not to exceed 15 digits)

ocC .
{OCCURS} integer TIMES

PC
PIC IS (any allowable character string to describe the data).
PICTURE

[level-number data-name-1 REDEFINES data-name-2]

[USE @ab@ FOR DELIMITER.}
a, b may be 0 through F

S

up to 15 numeric digits

15 “up to 99 alpha characters |

enclosed in quotes”

<
>

\LUE

APPENDIX B (cont’d)

PROCEDURE DIVISION
PART I. PROCESSING; PAPER TAPE 1/0: 80-COLUMN CARD I1/0.

PROCEDURE DIVISION.

Accept
OPTION 1
B KEYBOARD)
KEYBOARD-PRNTR
KEYBOARD-PCH
data-name RDR
ACCEET {INTO ACCUMULATOR data-name FROM < RDR-PRNTR L
' RDR-PCH
RDR-PRNTR-PCH
KYBRD-PRNTR-PCH }
OPTION 2
KEYBOARD-PRNTR
. - RDR-PRNTR
ACCEPT integer CHARACTERS |EROM RDR-PRNTR.PCH
KYBRD-PRNTR-PCH
OPTION 3
ACCEPT FROM KEYS
OPTION 4
)
ACCEPT INTO ACCUMULATOR FROM { %}Y{BO_A_@ i
Add
OPTION 1
data-name-1 data-name-2
ADD ! integer TO ACCUMULATOR { [ON SIZE ERROR statements]
ACCUMULATOR -

APPENDIX B (cont’d)

OPTION 2
data-name-1 data-name-2
ADD { integer ACCUMULATOR GIVING data-name-3
ACCUMULATOR -
[ROUNDED] [ON SIZE ERROR STATEMENTS]
OPTION 3

ADD digit TO ACCUMULATOR (integer) [ON SIZE ERROR statements]

Advance

LEFT TO special-name
ADVANCE RIGHT TO integer LINE [INDEXED BY g;g{g:fnliLATOR}]
BOTH integer LINES
Alarm
ALARM
Close
CLOSE CARRIAGE
Convert
- OPTION 1
(SHILLING)
FARTHING
ACCUM SPEC-FARTHING
| —— >
LONVERT { data-name} 1o POUNDS
PENCE
SPEC-PENCE)

B-5

APPENDIX B (cont'd)

OPTION 2
CONVERT A—CC-I—JMdata'“ame] TO data-name-2 CHECK-DIGIT [(integer)]
————— | data-name-1 — e
Display
OPTION 1
data-name PRNTR
DISPLAY “literal” [FROM BUFFER] UPON { PCH
PRNTR-PCH
ACCUMULATOR data-name ,
OPTION 2
PREVIOUS-RIBBON
“character” data-name NEGATIVE
DISPLAY {QUOTE } [{ACCUMULATOR} { POSITIVE }
OPTION 3
PRNTR
DISPLAY ACCUMULATOR (integer) data-name | UPON { PCH
PRNTR-PCH
OPTION 4

DISPLAY integer SPROCKET-HOLES [INDEXED BY PCH-REG]

OPTION 35

DISPLAY @ab@ UPON PCH

OPTION 6

DISPLAY {ACCUM l {FARTHING }

data-name HALF-PENNY

B-6

APPENDIX B (cont'd)

Divide

data-name-1 data-name-2
DIV - -3
IVIDE {integer } INTO {ACCUMULATOR] [GIVING data-name-3]

[ROUNDED] [ON SIZE ERROR statements]

Enable

ENABLE [table-name] PK1 'PK2....PK8 PK9....PKI6

End-of-Job

END-OF-JOB.

Exit

Fill

FILL record-name.

Go To

GO TO paragraph-name.

If
A. RELATIVE TESTS

OPTION 1

(GREATER THAN

>
LESS THAN
data-name-1 l IS < data-name-2]
literal-1 EQUAL TO literal-2
NOT EQUAL TO
| NoT =

statements-1

THEN {NEXT SENTENCE

} [ELSE statements-2].

B-7

APPENDIX B (cont'd)

B. ACCUMULATOR TESTS

OPTION 1

IF ACCUMULATOR (integer-1) LESS THAN integer-2 THEN {

statements

NEXT SENTENCE [ELSE statements].

OPTION 2
data-name ' statements
IF ACCUMULATOR { S ZERQO THEN { NEXT SENTENCE} [ELSE statements] .

OPTION 3

IF SIZE ERROR THEN statements [ELSE statements] .

C. ERROR CONDITION TESTS
OPTION 1
- lRDR-ERR AND RDR-ERR
RDR-COND} [{ RDR-COND |
THEN statements [ELSE stat
{NEXT SENTENCE: ELSE statements] .
OPTION 2
PCH-ERR PCH-ERR
- J PUNCIL-OF ‘AND PUNCH-OFF
NO-MEDIA NO-MEDIA
LOW-TAPE LOW-TAPE
THEN statements ELSE st
NEXT SENTENCE | |ELSE statements] .
OPTION 3

IF END-OF-PAGE THEN {

statements

NEXT SENTENCE: [ELSE statements] .

APPENDIX B (cont'd)

D. ACCUMULATOR FLAG TESTS
NFLAG NFLAG
[[data-name SFLAG {AND} SFLAG
ACCUMULATOR CFLAG OR CFLAG
| MELAG MFLAG
THEN [Statements [ELSE statements]
‘ ‘NEXT SENTENCE‘ S0k statements] .
E. SWITCH TESTS
SW1 SWI
SW?2 AND SW?2 statements .)
IF SW3 {_O___R—l SW3 THEN 'NEXT SENTENCE [@ statements] .
SW4 SW4
SW5 SWS
SW6 AND SWé6 statements
IF] 222 AND)) SW6 ,
Swa f OR] W7 THEN [NEXT SENTENCE | [ELSE statements]
SW8 sws
F. OCK TESTS
OCK 1 OCK1
OCK?2 AND 0OCK?2 statements
IF 1 ock3 {% OCK3 THEN ‘ NEXT SENTENCE| (ELSE statements] .
OCK4 OCK4 :
G. CHECK DIGIT TEST
IF [ACCUM data-name | v op niGiT [(integer)] [FROM data-name] [TRUNCATED]
data—name - — -
THEN statements [ELSE statements] .
H. STERLING TESTS

IF ACCUMULATOR IS

NON-DECIMAL
NON-STERLING

] THEN statements [ELSE statements] .

B-9

APPENDIX B (cont'd)

I. TC-700 FLAG TESTS

TELLER-I1
TELLER-2
SUPERVISOR
IE { PB-FIRST-LINE ¢ THEN statements [ELSE statements] .
PB-LAST-LINE
PB-FOLD
PB-PRESENT

Move

OPTION 1

data-name
integer
data-name
MOVE { ZERO TO
ACCUMULATOR ACCUMULATOR

“literal”

OPTION 2

MOVE digit TO ACCUMULATOR (integer)

OPTION 3
special-name LEFT ‘ LIMIT-REG : ACCUMULATOR
MOVE integer , To [{ RIGHT COU‘NT-REG} [INDEXED BY {data-name }
OPTION 4
0 NFLAG NFLAG
ZERO SFLAG SFLAG
MoV _—
HOVE 1 1o CFLAG CFLAG
ONE MFLAG MFLAG
OPTION 5
0 SW1 SW1
ZERO SW2 SwW2
MOVE 1 Io SW3 SW3
ONE Sw4 SW4

B-10

APPENDIX B (cont’'d)

OPTION 6
0 SW5 SW5 |
ZERO SW6 SW6
MOVE 1 (12 \swr SW7
ONE SW8 SW8
OPTION 7
0 0CK1 OCK1
ZERO 0CK?2 0CK2
MOVE T (129 ock3 OCK3
ONE OCK4 OCK4
OPTION 8
0 RDR-ERR
MOVE {ZERO} o ‘PCH-ERR .
OPTION 9

. . data-name) '
MOVE ACCUMULATOR (integer-1 [integer-2]) TO {ACCUMULATOR [(integer-3)]} [WITH SIGN]

OPTION 10

MOVE integer TO PCH-REG
OPTION 11
ZERO
ZEROES
MOVE 7ZEROS TO group-name
0
OPTION 12
1
MOVE Q%E' TO PB-REQUIRED
ZERO

B-11

APPENDIX B (cont’d)

OPTION 13

ACCUMULATOR
data-name

MOVE REMAINDER TO ‘

|

Multiply
(data-name-1 data-name-2
MULTIPLY { literal lgz l ACCUMUL ATOR}[GIVING data-name-3] [ROUNDED]
[ON SIZE ERROR statements]
No-Op
NO-OP.
Note
OPTION 1

NOTE sentence.

OPTION 2

NOTE. paragraph

Open

OPEN

MEDIA-CLAMP .
CARRIAGE f nteger
E—— | special-name

[INDEXED BY [

ACCUMULATOR

data-name

i]

Perform

PERFORM procedure-name.

Position

[POSlTlON To | integer
POS — | special-name

} [INDEXED BY {

ACCUMULATOR

data-name

1

B-12

APPENDIX B (cont’d)

Read

READ file-name

Red-Ribbon
RED-RIBBON
Round
ROUND { ACCUM } TO PENCE
—— | data-name| —
Select
ALTERNATE STACKER
SELECT { SKIP FUNCTION TO__ { fgf:gi:lr’“ame}
REPEAT FUNCTION [0 }
Stop Run
STOP RUN.
Subtract
OPTION 1
data-name-1 data-n 5
SUBTRACT { integer FROM { ¢ C?:U?\dmI;L ATOR ([GLVING data-name-3]
ACCUMULATOR
[ROUNDED] [ON SIZE ERROR statements]
OPTION 2
SUBTRACT digit FROM ACCUMULATOR (integer) [ON SIZE ERROR statements]

Use

SUBROUTINE procedure-name
PK-TABLE table-name

USE FOR {

B-13

APPENDIX B (cont'd)

PART Il. DATA COMMUNICATIONS

Accept

ACCEPT alpha-file-data-name [FROM KEYBOARD]

If
OPTION 1

g [XMT-RDY AND XMT-RDY THEN' statements
“£ 1 RCV-RDY OR RCV-RDY NEXT SENTENCE

[ELSE statements]

OPTION 2

XMT-RDY
RCV-RDY

IF %i%{%L G rTHEN statements [ELSE statements]
BREAK-FLG

LINE-ACTVY-FLG

/

OPTION 3

IF

{ BUF-FULL

BUF-EMPTY} THEN statements [ELSE statements]

Locate

LOCATE file-name

‘Move
OPTION 1

MOVE alpha-file-data-name [FROM BUFFER] TO alpha-data-name

OPTION 2
alpha-data-name
MOVE i TO alpha-file-data-name [IN BUFFER]
alpha-literal —_——
OPTION 3
numeric-data-name
MOVE ! literal TO numeric-file-data-name [IN BUFFER]
ACCUMULATOR

B-14

APPENDIX B (cont’d)
OPTION 4

MOVE numeric-file-data-name [FROM BUFFER] TO

ACCUMULATOR
numeric-data-name ’

OPTION 5
(\
SEND-ADR
RCV-ADR
ACCUMULATOR HDR-XMN-NO
MOVE { alpha-data-name EJ EXP-XMN-NO
alpha-literal SEND-XMN-NO
GRP-XMN-NO
L BDCST-XMN-NO
/
OPTION 6
SEND-ADR
RCV-ADR
HDR-XMN-NO
MOVE { EXP-XMN-NO % TO chi?d“:g;’:igk
SEND-XMN-NO P
GRP-XMN-NO
BDCST-XMN-NO
OPTION 7
(1)
MOVE | —O%E , TO DC-ERROR
ZERO |
(1)
ONE RCV-RDY RCV-RDY
MOVE 1=y (IQ {XMT-RDY} { XMT-RDY }
ZERO
\]
' N
lE POL-SEL-FLG POL-SEL-FLG
move JONE , TO { BREAK-FLG BREAK-FLG
0 LINE-ACTVTY-FLG LINE-ACTVTY-FLG
\.ZE_RO.)

B-15

APPENDIX B (cont'd)

OPTION 8
TWO-WIRECNTL
MOVE | FoUR-WIRECNTL | 1> DATACOMM
OPTION 9

MOVE @ab@ TO DATA-COMM

Read

READ file-name

Stop Machine

STOP MACHINE

Write

WRITE record-name

B-16

ACTUAL
DECIMAL POINT

ALPHABETIC

ALPHANUMERIC
ASSEMBLE
ASSEMBLER

ASSUMED
DECIMAL POINT

BUFFER

CARD HOPPER
CHARACTER
COBOL WORD

COMPILE

COMPILER
COMPILE TIME

CONDITION

CONDITIONAL
EXPRESSION

DATA
DESCRIPTION

DATA ITEM

APPENDIX C

GLOSSARY

A decimal point used for “DISPLAY” purposes. When a numeric value is
listed on a printed report, the decimal point will often appear as an actual
printed character.

With respect to data, consisting of one or more of the letters of the alphabet
and/or one or more spaces, as used in this manual, the term does not include
other non-numeric characters.

Pertaining to a character set that contains both letters and numerals, and
usually other characters.

To prepare a machine language program from a symbolic languagé program
by substituting absolute operation codes for symbolic operation codes.

A program that assembles.

The point within a numeric item at which the decimal point is assumed to
be located. The assumed decimal point of an item is considered by the
computer to be at the right (right-justified) unless otherwise specified by a
FORMAT or PICTURE entry. It is used by the computer to align the value
properly for calculation.

A storage device used to compensate for a difference in rate of flow of data,
or time of occurrence of events, when transmitting data from one device to
another.

A device that holds cards and makes them available to a card feed
mechanism.

One of the set of elementary symbols which are arranged in groups to
express information.

A word is created from a combination of not more than 30 characters,
selected from the following: A through Z, 0 through 9, and the hyphen (-).

To prepare a machine language program from a computer program written in
Series L/TC COBOL by making use of the overall logic structure of the
program, or generating one or more machine instructions for each symbolic
statement or both.

A program that compiles.

The time at which a source program is translated into an object program
through the use of a compiler.

1.) One of a set of specified values that a data item can assume. 2.) A simple
conditional expression.

An expression which, taken as a whole, may be either true or false, in
accordance with the rules given in Section 6 of this manual.

The entry or entries in the DATA DIVISION used to describe the charac-
teristics of a data item. See Section 5.

A unit of information which may be identified by a name or by a
combination of names and subscripts.

APPENDIX C (cont'd)

DATA-NAME

DIGIT
DISPLAY

FIGURATIVE
CONSTANT

FORMAT
HARDWARE
IMPERATIVE
STATEMENT
INTEGER

JUSTIFICATION

KEY WORD

LEVEL

LEVEL INDICATOR

LEVEL NUMBER
LITERAL

LOOP

MACHINE LANGUAGE

MEMORY
NON-NUMERIC
NUMERIC

OBJECT PROGRAM

A name assigned to a data item by the programmer. See the rules for
Data-Name formation in Section 2 of this manual.

One of the numerals 0 through 9.
A visual representation of data.

One of several constants which have been pre-defined in the Series L/TC
compiler and which can be used in a program without description in the
DATA DIVISION. A list of figurative constants will be found in Section 2 of
this manual.

A predetermined arrangement of the types of characters of which a data
item is composed.

Physical equipment e.g., mechanical, magnetic, electrical, or electronic de-
vices.

A statement consisting of a verb and its operand(s) which expresses a
complete unit of procedure.

In Series L/TC COBOL a non-negative whole number €.g., 13 is an integer
while 13.5 is not.

The alignment of characters with respect to the left and right boundaries of
data items.

A word which is essential to the meaning and structure of a Series L/TC
COBOL statement. In this manual key words are indicated in verb constructs
and other entries by underscoring.

In the COBOL system, the status of one data item relative to another,
showing whether one is to be treated as part of the other or whether they
are unrelated, as specified in the rules governing level-numbers in Section 5
of this manual.

In the COBOL system, a symbol or level-number used in a DATA DIVISION
entry to indicate level. For example, FD is a level indicator. (See the
discussion of levels in Section 5 of this manual.)

A numeric level indicator.

A character, or group of characters, used in a program to represent the value
“literally” expressed. Thus, the literal “7” represents the value 7, whereas
SEVEN is a name that could be used to represent the value 7. (See the rules
governing literals in Section 2 of this manual.)

A sequence of instructions that is executed repeatedly until a terminal
condition prevails.

An operation code that a machine can recognize and execute.
Main storage. '

Not having a numeric value.

Having a numeric value.

A program in machine language resulting from the translation of a source
program by an assembler.

OFF-LINE

ON-LINE

OPERAND
OPERATOR
PARAGRAPH

RECORD
RELATIONAL

EXPRESSION
ROUNDED

SECTION

SENTENCE

SOURCE PROGRAM

STATEMENT

SUBSCRIPT

SWITCH

SYNTAX

TRUNCATION

VERB

WORD

WORK AREA

APPENDIX C (cont'd)

Pertaining to equipment or devices not under direct control of the central ‘
processing unit.

Pertaining to equipment or devices under the direct control of the central
processing unit.

That which is operated upon, the object of a verb or an operator.
That which indicates the action to be performed on operands.

A set of one or more sentences which direct the computer to perform some
operation.

A collection of related items of data grouped to be handled by an
input/output device.

An expression that describes a relationship between two terms, e.g., A. is less
than B.

To shorten a number, increasing the least significant remaining digit by 1
when the most significant digit of the part removed is greater than or equal
to 5. -

One of the portions of a program defined as a section in the rules governing
the format of a Series L/TC COBOL program e.g., CONFIGURATION
SECTION and WORKING-STORAGE SECTION.

A series of one or more statements, the last of which is terminated by a
period.

A program written in the source language (i.e., in the Series L/TC COBOL
language).

A group of words which expresses a command. A statement consists of one
or more verbs and their associated operands.

An integer used to identify a particular item in a list or table in accordance
with the rules specified in Section 5 of this manual.

A mechanical, electromechanical or electronic device, built into a unit of
equipment, which can be interrogated in order to select a course of action.

(1) The structure of expressions in a language. (2) The rules governing the
structure of a language.

The process of dropping one or more digits of a number, either at the left or
the right, without altering any of the remaining digits. For example, the
number 384.67 would become 384.6 when truncated one place at the right
while it would become 384.7 when rounded correspondingly. (See Rounded.)

One of a selected list of words that specify one or more operations to be
performed by the Series L/TC computer.

(1) A basic unit of language serving the same general purposes as words in
other languages. (2) A subdivision of storage having a fixed size.

A portion of storage in which a data item may be processed or temporarily
stored. The term often refers to a place in storage used to retain inter-
mediate results of calculation, especially those results which will not appear
directly as output from the program.

G3

ACCEPT
ACCEPTING
ACCESS
ACCUM
ACCUMULATOR
ACUM

ADD
ADVANCE
ALARM

ALIGN

ALPHA
ALTERNATE
AND

ARE

AREA

AREAS

ASSIGN

AT

AUTHOR
AUTO-READER

BDCST-XMN-NO
BOTH
BREAK-FLAG
BUFFER
BUF-EMPTY
BUF-FILL

BY

CARD-PCH
CARD-RDR
CARD-RDR-1
CARD-RDR-2
CARD-READER
CARD-READER-1
CARD-READER-2
CARRIAGE
CFLAG
CHARACTER
CHARACTERS
CHECK-DIGIT
CLOSE
CD-TABLE

COL

COLUMN
COMMA
CONFIGURATION

APPENDIX D

SERIES L/TC RESERVED WORD LIST

CONSOLE
CONTAINS
CONVERT
COUNT-REG
CTL-REG

DATA
DATA-COM
DATA-COMM
DATE-COMPILED
DATE-WRITTEN
D-C
DC-ERROR
DECLARATIVES
DELIMITER
DISPLAY
DIVIDE

- DIVISION

EJECT
ELSE

ENABLE

END
END-OF-JOB
END-OF-LDGR
END-OF-PAGE
ENVIRONMENT
EQUAL
ERROR

EXIT
EXP-XMN-NO

FARTHING

FD

FILE
FILE-CONTROL
FILL

FILLER

FMT

FOR

FORMAT
FOUR-WIRE-CNTL
FROM
FUNCTION

GIVING
GO

GREATER
GRP-XMN-NO

HALF-PENNY
HALT
HDR-XMN-NO
HIGH

IDENTIFICATION
IF

IN

INDEXED

INPUT
INPUT-OUTPUT
INSTALLATION
INTO
[-O-CONTROL

IS

KEYBOARD
KEYBOARD-PCH
KEYBOARD-PRNTR
K-REG
KYBRD-PRNTR-PCH

LDGR-ERR
LEDGER
LEFT
LENGTH
LESS
LIMIT-REG
LINE
LINE-ACTVY-FLG
LINES
LOCATE
LOW
LOW-TAPE

MACHINE
MASK
MEDIA-CLAMP
MFLAG

MODE

MOVE
MULTIPLY

NEGATIVE
NEXT

D-1

APPENDIX D (cont'd)

NFLAG

NO

NO-MEDIA
NON-ALIGN
NON-DECIMAL
NON-READ
NON-STERLING
NO-OP
NORMAL

NOT

NOTE
NUMERIC

OBJECT-COMPUTER
oC

OCCURS
OCK1

OCK?2

OCK3

OCK4

OF

ON

ONE

OPEN

OR
OTHERWISE
ouT
OUTPUT

PB-FIRST-LINE
PB-FOLD
PB-LAST-LINE
PB-PRESENT
PB-REQUIRED
PC

PCH

PCH-ERR
PCH-REG
PENCE
PERFORM

PIC

PICTURE
PK-TABLE
PK1

PK?2

PK3

PK4

PKS5

PK6

D-2

PK7

PK8

PK9

PK10
PK1l1
PK12
PK13
PK14
PK15
PK16
PLACE
PLACES
POL-SEL-FLG
POS
POSITION
POSITIVE
POUNDS
P-REG

PREVIOUS-RIBBON

PRINTER
PRNTR
PRNTR-PCH
PROCEDURE
PROGRAM
PROGRAM-ID
PUNCH
PUNCH-OFF

QUOTE

RCV-ADR
RCV-RDY
RDR
RDR-COND
RDR-ERR
RDR-PCH
RDR-PRNTR
RDR-PRNTR-PCH
READ
READER
RECORD
RECORDING
RECORDS
REDEFINES
RED-RIBBON
REMARKS
REPEAT
RESERVE
RESETTING

RETRACT
RIGHT
ROUND
ROUNDED
RUN

SAME

SECTION
SECURITY
SELECT
SEND-ADR
SEND-XMN-NO
SENTENCE
SEQUENTIAL
SETTING

SFLAG
SHILLING

SIGN

SIZE

SKIP
SOURCE-COMPUTER
SPEC-FARTHING
SPECIAL-NAMES
SPEC-PENCE
SPROCKET-HOLES
STACKER
STANDARD
STOP

STRIPE
SUBROUTINE
SUBTRACT
SUPERVISOR
SW1

SW2

SW3

Sw4

SW5

Swo

SW7

SW8

TELLER-1
TELLER-2

THAN

THEN

TIMES

TO

TRUNCATED
TWO-WIRE-CNTL

UPON
USE

VA
VALUE

WITH

WORD

WORDS

WORK-AREA
WORKING-STORAGE
WRITE

XMT-RDY

ZERO
ZEROES
ZEROS

APPENDIX D (cont'd)

D-3

APPENDIX E
SERIES L/TC COBOL COMPILER ERROR MESSAGES

002 MISSING QUOTE ON CONTINUATION CARD

003 UNIDENTIFIED WORD

004 DUPLICATE NAME

005 DUPLICATE LABEL

006 INVALID VALUE CLAUSE

007 SUBJECT OF SAME AREA NOT PREVIOUSLY SELECTED
008 DUPLICATE DATA NAME

009 MISSING DIVISION HEADER

010 ELEMENT GREATER THAN 99 CHARACTERS

011 INVALID USE OF A RESERVED WORD

013 LITERAL POOL GREATER THAN 1000 CHARACTERS
014 FATAL SEQUENCE ERROR

015 VALUE LENGTH NOT EQUAL TO PICTURE LENGTH
017 MISSING PERIOD

018 FD ENTRY NOT SELECTED

019 VALUE CLAUSE OUT OF RANGE

020 INVALID LEVEL NUMBER

021 VALUE CLAUSE MUST BE PRECEDED BY A PICTURE OR A FORMAT CLAUSE
022 REDEFINED ITEM NOT PREVIOUSLY DEFINED

300 INVALID PICTURE CLAUSE CONSTRUCTION

301 ALPHA PICTURE CLAUSE FOLLOWING FORMAT

302 PICTURE CLAUSE GREATER THAN 15 CHARACTERS
303 FORMAT DECLARED ON ALPHA ITEM

304 INVALID FORMAT CLAUSE CONSTRUCTION

305 FORMAT CLAUSE GREATER THAN 15 CHARACTERS
306 INVALID OCCURS CLAUSE CONSTRUCTION

307 PICTURE TABLE SIZE EXCEEDED

310 DUPLICATE CLAUSE FOR DATA NAME

501 MISSING FILE NAME

502 MISSING RESERVED WORD WORK-AREA

503 MISSING OR INVALID HARDWARE NAME

504 INVALID CONSTRUCT

505 REDEFINES LENGTH EXCEEDED

506 MISSING SECTION HEADER

507 MISPLACED FD

508 MISSING DATA NAME

APPENDIX E (cont'd)

509 - MISSING FD

510 01 LEVEL MUST BE GROUP ITEM

511 INVALID CLAUSE ON CD-TABLE ENTRY

512 MISSING 01 LEVEL

513 INVALID OR MISPLACED LEVEL 77

514 INVALID OCCURS OR REDEFINES ON LEVEL 77

515 INVALID DESCRIPTIVE CLAUSE ON GROUP ITEM

516 LEVEL 77 CANNOT BE GROUP ITEM

519 INVALID VALUE CLAUSE WITH OCCURS CLAUSE

520 VALUE CLAUSE WITH REDEFINES CLAUSE

522 'REDEFINED ITEM CANNOT HAVE OCCURS CLAUSE
523 INVALID REDEFINES CLAUSE

601 INVALID VERB

602 MISSING OR MISSPELLED RESERVED WORD DECLARATIVES
603 INVALID USE STATEMENT

604 INVALID FIRST ARGUMENT

605 INVALID ENABLE STATEMENT UNDECLARED TABLE NAME
606 READ ADDRESS MUST BE FILE NAME

607 WRITE ADDRESS MUST BE RECORD NAME

608 INVALID OPEN/CLOSE STATEMENT

609 PROGRAM HAS NO STOP RUN

610 MISSING RESERVED WORD TO

611 INVALID STOP STATEMENT

612 MISSING RESERVED WORD SENTENCE

613 INVALID PROCEDURE NAME FOR PERFORM STATEMENT
614 MISSING RESERVED WORD FROM

615 INVALID HARDWARE NAME

616 INVALID PARAGRAPH NAME FOR GO TO STATEMENT
617 INVALID SECOND ARGUMENT

618 MISSING OR INVALID COLUMN ON SELECT

619 INVALID POSITION STATEMENT

620 INVALID FUNCTION ON SELECT

621 INVALID DISPLAY STATEMENT

622 MISSING RESERVED WORD EQUAL

623 INVALID REGISTER NAME

624 MISSING OR INVALID ACCUMULATOR SUBSCRIPT

625 INVALID THIRD ARGUMENT

626 INVALID ALPHA COMPARE — LENGTHS NOT EQUAL

E-2

APPENDIX E (cont'd)

627 GROUP ITEM SIZE GREATER THAN 99

628 INVALID STATEMENT TOO MANY DATA NAMES
629 LITERAL SUBSCRIPT GREATER THAN 99

630 VARIABLE MUST HAVE SUBSCRIPT

631 VARIABLE CANNOT HAVE SUBSCRIPT

632 INVALID SUBSCRIPT

634 MISSING PARENTHESIS

635 INVALID STATEMENT

636 INVALID OR MIXED MODE LIST

637 MIXED BOOLEAN OPERATORS

638 LIST LENGTH EXCEEDED

639 INVALID OPERATOR

640 MISSING PICTURE CLAUSE ON DISPLAY ITEM

642 MISPLACED EXIT PARAGRAPH MUST BE SEPARATE
643 MISPLACED EXIT USE ONLY WITH DECLARATIVES
644 MISSING PERIOD OR ELSE FOLLOWING GO TO

645 MISPLACED DECLARATIVES MUST BE FIRST PROCEDURE
646 INVALID STATEMENT IF NOT TERMINATED

647 MISSING RESERVED WORD END DECLARATIVES
648 MISSING RESERVED WORD DECLARATIVES

649 MISSING RESERVED WORD IF

650 INVALID INTEGER

651 INVALID LITERAL MUST BE SINGLE CHARACTER
652 INVALID PK STATEMENT

653 MISPLACED USE STATEMENT

654 INVALID ARGUMENT MUST BE LITERAL

655 PK-TABLE GREATER THAN 16

656 MISSING RESERVED WORD LESS

657 MISSING RESERVED WORD LEFT/RIGHT

658 ALPHA MOVE FIRST ARGUMENT GREATER THAN SECOND-
659 - INVALID LITERAL MUST BE ALPHA NUMERIC

660 MISSING RESERVED WORD BY

661 MISSING RESERVED WORD INTO

662 INVALID

663 PROGRAM MUST BEGIN WITH PARAGRAPH NAME
701 CARD FORMAT TABLE SIZE EXCEEDED

702 INVALID READ OR WRITE STATEMENT

703 FIXED ITEM FOLLOWING VARIABLE ITEM — DATA COMM

APPENDIX E (cont'd)

704
705
706
707
708
709
710
711
712
901
902
903

E-4

RECORD LENGTHS NOT EQUAL

SAME AREA FIRST FD MUST BE LARGEST

INVALID SAME AREA CLAUSE — DATA COMM ONLY
PROGRAM MUST HAVE LOCATE STATEMENT
HARDWARE PREVIOUSLY ASSIGNED

RECORD SIZE GREATER THAN HARDWARE SIZE
RECORD NAME MUST BE GROUP ITEM

SAME AREA MUST HAVE ALTERNATE AREA DECLARED
INVALID SAME WORK-AREA CLAUSE

SEQUENCE WARNING

MISSING WORK-AREA CLAUSE — NO WORK-AREA ASSUMED
INVALID OPTION CONSTRUCTION — SCARD |

APPENDIX F
SAMPLE BILLING PROGRAM

000100 IDENTIFICATION DIVISION,

000200 PROGRAM=ID, LCO3DL=BASIC=BILLING=PROGRAM,

000300 AUTHOR. JDDE.

000400 INSTALLATION. L=c33JL REFERENCE MANUAL.

000500 DATE=WRITTEN, R/29/69,

000600 DATE=COMPILED,., 09/09/69

000700 REMARKS. THIS PROGRAM IS A BASIC BILLING PROGRAM USING A

000800 CONTINUDUS PIN FEED INVOICECFORM NUMBER 1037124)
000900 WRITTEN TD USE THE SERIES L COBOL PROGRAMING
001000 LANGUAGE.

001100***********************t*************************t***********t****
001200 ENVIRONMENT DIVISION.

001300 CONFIGURATION SECTION,

001400 SOURCE=CUOMPUTER. 3=3500,

001500 OBJECT=COMPUTER. L=2000,

001600 SPECIAL=NAMES,

001700 SOLD=TJ=LINE IS LINE 7.
001800 SHIP=TO=LINE IS LINE 13,
001900 RIBBON=| INE IS LINE 19,
002000 FIRST=LINE IS LINE 22,
002100 TYPING=POS IS POSITION 24,
002200 TERMS=POS IS POSITION 17,
002300 ORDER=ND=POS IS POSITION 30,
002400 CUSTOMER=NN=P]S IS POSITION 42,
002500 SOLD=8Y=POS IS POSITION 53,
002600 SHIP=VIA=POS IS POSITION 67,
002700 DATE=POS IS POSITION 78,
002800 INV=NO=POS IS POSITION 91,
002990 cODE=~POS 1S POSITION 17,
003000 aTY=POs IS POSITION 22,
003100 DESC=POS IS POSITION 34,
003200 PRICE=POS IS POSITION 56,
003300 UNIT=PDS IS POSITION 67,

APPENDIX F (cont'd)

003400 GROSS=PD]S IS POSITION 71,
003500 DISCOUNT=PIS IS POSITION 82,
003600 NET=POS =P3S IS POSITION 91,

003700**;***
003800 DATA DIVISION,.

003900 WORKING=STORAGE SECTION,

004000 77 DATE PICTURE IS X(11),

0041009 77 INVODICE=ND PICTURE IS 227,229,

004200 77 INVOICE=TOTAL PICTURE IS Z2Z52ZZ.99=.
004300 77 TOTAL=NET PICTURE IS ZZ,2727.99~-,

004400 77 TOTAL=DISCOUNT PICTURE IS ZZs27Z.99=.
004500 77 TOTAL=TAX PICTURE IS 77Z,227.99-.

004600 77 TOTAL=ADD=0ON PICTURE IS ZZ»ZZZ.99=,
004700 77 TOTAL=A/R PICTURE 1§ ZZ,72Z.99~=,

004800 77 TOTAL=INV=DISCOUNT PICTURE IS ZZ»ZZZ.99=.
004900 01 WORKING=LDCATION=1.

005000 02 CODE PICTURE IS 7Z9.

005100 02 PRICE=IN REDEFINES CODE FORMAT IS 999999CM,

005200 02 PRICE REDEFINES CODE PICTURE IS Z»Z27Z+99.

005300 02 PRICE=C REDEFINES CODE FORMAT IS 99V9999.

005400 02 PRICE=v REDEFINES CODE FORMAT IS 9V99999,

005500 02 DISCOUNT=PERCENT REDEFINES CODE FORMAT S99Vv99 PIC ZZeJZ=.
005600 02 DISCIUNT=FACTOR REDEFINES CODE FORMAT 1S V9999,
005700 02 TAX=PERCENT REDEFINES CODE PICTURE IS ZZ.JZ.

005800 02 TAX=FACTOR REDEFINES CODE FORMAT IS V9999,

005900 01 WORKING=LOCATION=2.

006000 02 QUANTITY FORMAT IS S9999V999 PICTURE IS Z,2ZZ,J71~,
006100 02 GROSS REDEFINES QUANTITY PICTURE IS ZZ»ZZZ.99=.
006200 02 NET REDEFINES QUANTITY PICTURE 1S ZZ»7ZZZ.99=.

006300 02 ADD=0ON REDEFINES QUANTITY FORMAT IS 59999999,

006400 02 ADD=~ON=AMT REDEFINES QUANTITY PICTURE IS ZZ»ZZZ.99=.
006500 01 WORKING=LOCATION®=3.,

006600 02 DISCOUNT PICTURE IS ZZ»ZZZ499~,

006700 02 TAX REDEFINES DISCOUNT PICTURE 1S 2Z»ZZZ+99=,

DO0BRD D hdkhdehhkhkhhhkkhhkhhhhhhhkMhhkhhkdhhhhdbbbbhbhdkhdbbhbhbbbbdhrhbbbbbdhdid

APPENDIX F (cont'd)

006900 PROCEDURE DIVISIAON,
007000 DECLARATIVES,

007109 USE FOR PK=TA3LE PROGRAM=KEYS,

007200 GO TO P<1=INVOICE~RQUTINE,

007300 GO TO P<2~INVOICE=~SyUBTOTAL,

007400 GO TO PK3~CLEAR~TOTALS~LOAD.

007500 GO TO START=INVOICE=|INE,

007600 GO TO PX5=L04aD=DATE=INY~NO,

007700 GO TO P<6=DISCOUNT=ROUTINE.

007800 GO TO PX7=TOTALING=ROUTINE,

007900 GO TO PKB8=TAx=RIUTINE,

008000 GO TO PK9=CONTINUATION=PAGE.

008100 GO TO PX10=INVOICE=TOTAL,

008200 USE FOR SU3ROUTINE TYPE=HEADING.

008300 POSITION T2 TYPING=POS,

008400 ACCEPT 24 CHARACTERS FROM KEYBJARD=PRNTR,
008500 ADVANCE 1 LINE,

008600 IF DCx4 G0 TD RIBBON=ROUTINE,

008700 IF 0CK3 ADVANCE TQ SHIP=TO=LINE

008800 °OSITION TO TYPING=POS

008900 DISPLAY "SAME®™ UPON PRNTR
009000 60 TD RIBBON=ROUTINE,

009100 IF 0C<2 530 7O SHIP=-TO=ROUTINE,

009200 USE FOR SUBROUTINE TYPE=SHIP=TO,.

099300 POSITION T2 TYPING=POS.

009400 ACCEPT 24 CHARACTERS FROM KEYBOARD=PRNTR,
009500 ADVANCE 1 LINE.

009600 IF DCK2 OR 0CK3 OR OCK4 GO TO RIBBON=ROUTINE.

009700 END DECLARATIVES,

WO E TR R R R R R R O g o e A A A RO

009900 START=0F=PROGRAM,

010000 MOVE 51 TO LEFT LIMIT=REG.,
010100 MOVE 18 TO RIGHT LIMIT=REG,
010200 MOVE 1 TO LEFT COUNT=REG.

010300 SELECT=ROUTINE.

F-3

APPENDIX F (cont'd)

010400
010500
010609

ENABLE PX1», PK3» PK5, PKT7,
ACCEPT FROM KEY3JARD,
ALARM» GJ TO SELECT-ROUTINE,

OlOTOO**t****ﬁ***i**ii**

010800
010900«
011000
011100*

PK 1 INVIICE ROUTINE.

PK 3 CLEAR TOTALS, LOAD DATE, INVOICE NO,
P< 5 L0DAD DATE, INVOICE NO.

PK 7 PRINT TOTALS,

*

*

*

*

011200 %k hnhkdhkhkhbkkhhbhhhbbh b hhdhbhbhhhbhhbddhhbhrhbhbhbhhbbhbbkdhhhbhhhhn

011300
011400
011500
011600
011700
011800
011500
012000
012100
012200
0123090
012400
012500
012609
012700
012800
012900
013000
013100
013200
013300
013400
013500
013600
013700
013800

F-4

PK1=INVOICE=ROUTINE.
ADVANCE TO SILD=TO=LINE.
ENABLE PX7.
PERFOIRM TYPE~AFADING,
PERFORM TYPE=HEADING.,
PERFORM TYPE=AFZADING,
PERFORM TYPE=HEADING,
SHIP=TD=ROUTINE,
ADVANCE TO SHIP=TO=LINE,
PERFORM TYRPE=SHIP=TQ,
PERFORM TYPE«SYIP=Tp,
PERFORM TYPE=SHIP=TD,
PERFORM TYPE=SHIP=Tp,
RIBBON=RDUTINE.
ADVANCE TO R1330N=LINE,
POSITION TO TERMS=PDS.
ACCEPT 11 CHARACTERS FROM KEYBOARD=PRNTR,
POSITION TO ORDER=NO=POS,
ACCEPT 10 CHARACTERS FROM KEYBOARD=PRNTR,
POSITION TN CUSTOMER=ND=POS.
ACCEPT 9 CHARACTERS FROM KEYBOARD=PRNTR,
POSITION T) SOLD=B8Y=pOS,
ACCEPT 12 CHARACTERS FROM KEYBOARD=PRNTR,
POSITION TJ SHIP=yIA=PODS, | ‘
ACCEPT 9 CHARACTERS FROM KEYBOARD=PRNTR.
POSITION TH DATE=PUs,

APPENDIX F (cont'd)

013900 DISPLAY DATE UPON PRNTR,
014000 POSITION TO INV=ND=POS,

014100 DISPLAY INVOICE=ND UPON PRNTR,
014200 ADD 1 TO INVOICE=ND.

014300 ADVANCE TO FIRST=LINE.

014400 MOVE 1 TO RIGHT COUNT=REG.,
014500 MOVE ZERD TO SwWi.

D14600%kkdkkhkhkkkkhhkhk kb A bk p bk bk kb kb bk khhhkkh ko hdkkkd kb dek ke

014700 START=INVOICE=LINE,

014800 ENABLE PK2. 1t PK2 SELECTS THE INVOICE TOTALING ROUTINE.
014900 POSITION T3 £3IDE=POS, ACCEPT CODE FROM KEY3QARD.
015000 IF ACCUM ZERD» ALARM, GO TO START=INVOICE=LINE.

015100 DISPLAY CODE UPON PRNTR.

015200 POSITION T3 QTy=P0S, ACCEPT QUANTITY FROM KEYBOARD=PRNTR.,
015300 TYPE=DESCRIPTIAN.

015400 POSITION T3 DESC=POS,

015500 ACCEPT 21 CHARACTERS FROM KEYBOARD=PRNTR.

015600 IF 0CK1, THEN 6D TO INDEX=PRICE,

015700 ELSE ADVANCE BOTH 1 LINE.

015800 IF END=DF=PAGE, ALARM» MOVE ONE TO SWi.

015900 GO TO TYPE=DESCRIPTION.

016000 INDEX=PRICE.

016100 POSITION TN PRICE=POS.

016200 ACCEPT PRICE~IN FROM KEYBOARD.

016300 IF ACCUM CFLAG AND MFLAG» ALARMs GO TO INDEX=PRICE.
016400 DISPLAY ACCUYM PRICE UPON PRNTR.

016500 POSITION TO UNIT=POS,

016600 IF ACCUM CFLAG THEN DISPLAY "C"»

016700 MULTIPLY PRICE=C BY QUANTITY GIVING GROSS ROUNDED,
016800 GO TO PRINT=GROSS,

016900 IF ACCUM MFLAG THEN DISPLAY "M",

017000 MULTIPLY PRICE=M BY QUANTITY GIVING GROSS ROUNDED,
017100 GO TO PRINT=GROSS,

017200 MULTIPLY PRIGCE BY QUANTITY GIVING GROSS ROUNDED.

017300 PRINT=GROSS.

F-5

APPENDIX F (cont'd)

017400 POSITION TD GROSS=POS.

017509 DISPLAY GRISS UPON PRNTR,

0174600 IF 0CKk1 THEN POSITION TO DISCOUNT=POS»

017700 ACCEPT DISCOUNT=PERCENT FROM KEYBOARD=PRNTR,

017800 MULTIPLY DISCOUNT=FACTOR BY GROSS GIVING DISCOUNT ROUNDED,
017900 ADD ACCUM TO TOTAL=DISCOUNTS

018000 SUBTRACT ACCUM FROM GROSS GIVING NET.

018100 POSITIIN TO NET=POS,

018200 DISPLAY NET JPON PRNTR,

018300 ADD ACCUM T3 INVOICE=-TOTAL.

018400 ADD ACCUM TO TOTAL=NET.

018500 ADVANCE R0TH 1 LINE,

018600 IF END=0F=PAGE THEN MOVE ONE TO SWi.

018700 IF SWi THEN GO TO END=OF=PAGE=ROUTINE.

018800 GO TO START=TINVOICE=LINE,
018900********ﬁ***********,*****************t***********ﬁ*t********i*****
019000 INVIICE Su3TOTAL, ADD=ON, DISCOUNT, TAX, TOTAL ROUTINE "

019100**t***

,0,9?00**

019300 PK2=INVOICE=~SU3TNTAL.

019400 ADVANCE LEFT 1 LINE,

019500 POSITION TD 5R0SS=Pps.

019600 DISPLAY "SU3TOTAL" UPON PRNTR,

019700 POSITION TO NET=PDS,

019800 DISPLAY INVOICE=TOTAL UPON PRNTR,

019900 SELECT=TAX=DISC=TOTAL,

020000 ADVANCE LEFT 1 LINE,

020100 POSITION TO DESC=PJS, ENABLE PK6s PKB, PK10.

A LR R R Y N R Ry R e e R R F R S L)
020300# PK6 DISCOUNT=ROUTINE, | .
020400 PK3 TAX=ROUTINE. *
020500+ PK10 INVOICE=TOTAL=ROUTINE. »
020600*************************************t*******t*t**t***t******t***t
020700 ACCEPT 21 CHARACTERS FROM KEYBOARD=PRNTR,

020800 POSITION TH NET=POS,

F-6

020900
021000
021100
021200
021300

021400 % kddedkdekdsekdkkkkkk bk hd kR kR sk ko hh ko ke dd kb kA AR hhh ke ke k k&

APPENDIX F (cont'd)

ACCEPT ADD=0ON FRIM KEYBOARD,

DISPLAY ADD=NN=AMT UPON PRNTR, DISPLAY "=" ACCUM NEGATIVE.

ADD ACCUMULATOR TO TOTAL=ADD=ON,
ADD ACCUMULATIR TO INVOICE~TOTAL,
GO TO SELECT=TAX=DISC=TOTAL.

021500 PK6=DISCAUNT=RIUTINE.

021600
021700
021809
021900
022000
022100
022200
0223090
022400

022500 %k sk kkddeskkkhd ek hhd ek k ko ke ek ke kb ke kkkkk Rk kA h ke kb kb k kb &

DISPLAY "DISCOUNT" yPON PRNTR,
POSITION T2 DISCOUNT=POS, ,
ACCEPT DISCOUNT=PERCENT FROM KEYBOARD=PRNTR, DISPLAY n¥n,

MULTIPLY DISCOUNT=FACTOR BY INVDICE=TOTAL GIVING DISCOUNT.

SUBTRACT ACCUMULATOR FROM INVDICE=TOTAL.
ADD ACCUMULATOR TO TOTAL=INV=DISCOUNT,
POSITION TO NET=PDS,

DISPLAY ACCUMULATOR DISCOUNT UPON PRNTR.
GO TO SELECT=TAX=DISC=TOTAL.

022600 PKB8=TAX=ROUTINE,

022700
022800
022900
023000
023100
023209
023300
023400

023500k khkudkkdkkhhkdkkhhhh ek ke ke k ke k kAR R AR AR A ARk ke kA kAR AR Rk ke h ok

DISPLAY "TAX™ PON PRNTR,

POSITION 70 nISCOUNT=P(QS,

ACCEPT TAX=PERCENT FROM KEYBOARD=PRNTR, DISPLAY ngn,
MULTIPLY TAX~FACTOR BY INVOICE=-TOTAL GIVING TAX.

ADD ACCUMULATIR TO TOTAL=TAX,

ADD ACCUMULATOR TD INVOICE=TOTAL.

POSITION TJ NET=POS, DISPLAY ACCUM TAX UPON PRNTR.,
GO TO SELECT=TAX=DISC~TOTAL.

023600 PK10=INVOICE~TOTAL.

023700
023800
023900
024000
024100
024200
024300

ADVANCE LEFT 1 LINE,

POSITION TO GROSS=POS,.

DISPLAY "TOTAL" UPON PRNTR.

POSITION TO NET=PODS,

DISPLAY INVOICE=TOTAL UPON PRNTR, ADD ACCUM TO TOTAL=A/R,
MOVE ZERDS TO INVOICE=TOTAL.

GO TO PK1=INVOICE=ROUTINE,

F-7

APPENDIX F (cont'd)

024400*****ﬁ**'*******************'

024500 PK7=TOTALING~ROUTINE.

024609 ADVANCE TO FIRST=LINE.

024700 POSITION TO 34,

024800 DISPLAY "TOTAL"™ UPIN PRNTR,
024900 POSITION T9 40,

025000 DISPLAY "NET® UPON PRNTR,

025100 POSITION T3 71,

025200 DISPLAY TOTAL=NET UPON PRNTR.,
025300 ADVANCE LEFT 2 LINES,

025400 POSITION TJ a0,

025500 DISPLAY "DISCOUNT"™ UYPON PRNTR.,
025600 POSITION T2 71,

025700 DISPLAY TOTAL=DISCOUNT UPON PRNTR.,
025809 ADVANCE LEFT 2 LINEs,

025900 POSITION T3 40,

026000 DISPLAY "TAX" UPON PRNTR,

026100 POSITION TO 71,

026200 DISPLAY TOTA{=TAX UPON PRNTR,
026309 ADVANCE LEFT 2 LINES,

026400 POSITION TO 40,

026500 DISPLAY "ADD«ON" UPON PRNTR,
026600 POSITION TO 71.

026700 DISPLAY TOTAL=ADD=ON UPON PRNTR,
026800 ADVANCE LEFT 2 LINES,

026900 POSITION TO 40,

027000 DISPLAY "A/Rm UPON PRNTR,

027100 POSITION TO 71,

027200 DISPLAY TOTAL=A/R UPON PRNTR,
027300 ADVANCE LEFT 2 LINES,

027400 POSITION TJ a0,

0275090 DISPLAY "INV=DISCOUNT™ UPON PRNTR.
027600 POSITION TO 71,

027700 DISPLAY TOTALU=INV=DISCOUNT UPON PRNTR,
027800 ADVANCE TO SOLD=TO=LINE LINE.

APPENDIX F (cont'd)

027900 STOP RuUN,
028000*****t****t**t**********************ii*****t***ﬁ****ti*t*******t*t

028100 PK3=CLEAR=TOTALS=LNAD,

028200 MOVE ZEROS T2 INVOICE=TOTAL.
028300 MOVE ZEROS T0 TOTAL=NET.

028400 MOVE ZERDS TO TOTAL=DISCOUNT.
028500 MOVE ZEROS TO TOTAL=TAX,

028600 MOVE ZEROS T0 TOTAL=ADD=ON,
028700 MOVE ZERDS TO TOTAL=A/R,

028800 MOVE ZERDS T0 TOTAL<INV=DISCOUNT.

W e R R Yy 2 22 I T I T T T I I T Yo

029000 PK5=_ 0AD=DATE~INV=~ND,

029100 ADVANCE TO FIRST=LINE.

029200 POSITION T2 40.

029300 DISPLAY "DATE "

029400 ACCEPT DATE FROM KXEYBOARD=PRNTR,
029500 ADVANCE LEFT 2 LINES,

029600 POSITION TO a0,

029700 DISPLAY "INV NO ™,

029800 ACCEPT INVOICE~ND FROM KEYBOARD=PRNTR.
029900 60 TO PK1=INVOICE~RQUTINE,

O30000 %k mmnhhddkdkdnknhhhh bbbk ek kA Ak k ke kAR AR A R AN R AR AR R ANk b &

030100 END=DF=PAGE=ROUTINE.

030200 ALARM, ENABLE PK2, PK4, PK9» ACCEPT FROM KEYBOARD,

030300 ALARM» GO TO END=OF=PAGE~ROUTINE,

D3040 khahdhh sk ke ke ke kk kR R R ek kA kAR IR R AR RNk R ARk h ke kA bk
030500« PX2 1S NDRVAL INVOICE TOTAL ROUTINE. *
030600+ PK4 TO CONTINUE NEXT LINE, *
030700+ PK9 SyUBTOT INVOICE, GO TO CONTINUATION PAGE. *

o30500***;***********ttt*****t****f********ﬁ************t*t**t*t*****t**

030900 PK9=CONTINUATION=PAGE,

031000 ADVANCE LEFT 1 LINE,
031100 POSITION TD GRDOSS=PQS,
031200 DISPLAY "SUBTOTAL"™,
031300 POSITION TO NET=PODS,

ol-d

031400 DISPLAY INVOICE=TOTAL UPON PRNTR,
031500 ADVANCE TO SOLD=TO=LINE.

031600 POSITION TO 80,

031700 DISPLAY "CONTINUATION=PAGE"™,
031800 G0 TO PX1=INVOICE=ROUTINE.

031900 END=QF=J0B,

TOTAL NUMBER OF WARNINGS IS 0001

COMPILE DATE 02/09/69 15324 USING (DCT 69) SERIES=L COMPILER PROGRAM ID IS LCOBOL
ELAPSED TIME IS 0223 SECONDs,

ELAPSED TIME IS TOTAL CLOCK TIME. NOT TIME CHARGEASLE TO COMPILATION.

0319 SYMBOLIC RECORDS CUMPILED AT 085 RECORDS PER MINUTE,

(PAu0d) 4 XIANIddV

A

Accept — 2-4; 6-7; 6-8; 6-9

Access Mode — 4-4

Accumulator Flags — 6-19
Codes — A-2

Add — 2-4; 6-9; 6-10

Advance — 6-10

Alarm — 6-11

Alternate Area — 4-3

Arithmetic — 6-6

Assembler — 7-1; 7-2; 7-3; 7-6
Options — 7-5

B

BCL Table — A-4; A-5
Braces — 2-6
Brackets — 2-6
Buffers:
Card 1/O — 4-3; 6-16; 6-29

ALPHABETICAL INDEX

Enable — 6-15
End-Of-Job — 6-3; 6-15
Equality — 6-5

Exit - 6-15

F

Figurative Constant — 2-2; 2-4
File — 5-1
File-Control — 4-1;4-3

File Description (FD) — 1-3; 5-1; 5-2; 5-3

File-Names — 2-2; 5-1
Fill - 6-27

Format — 5-3; 5-4; 5-5; 5-7; 59

Formation of:
Paragraphs — 2-5
Sections — 2-5
Sentences — 2-5
Statements — 2-5

G

Data Communications — 4-3; 6-16; 6-33; 6-34; 6-38

<

Carriage — 6-28 .
Character Set — 2-1; A-3
Check-Digit — 6-11; 6-21
Close — 6-11
Compilation — 7-1 to 7-7
Control Cards — 7-4; 7-5
Error Detection — 7-7
Equipment Required — 7-6
Input — 7-1
Operation — 7-6; 7-7
Options — 7-5
Output — 7-1; 7-2
Compiler — 7-1 to 7-7
Error Messages — E-1 to E-4
Conditional Sentences — 6-1
Execution of — 6-2
Conditions — 6-4
Relation ~ 6-5
Configuration Section — ix; 4-1; 4-2
Connectives — 2-5
Continuation:
Area — 1-1;1-3
Character — 1-3
Of Numeric Literals — 2-3
Of Non-numeric Literals — 2-3
Convert — 6-11

D

Data Communications — 4-3; 5-8; 6-33 to 6-38
Data Division — ix; 1-1; 2-5; 4-4; 5-1 to 5-11
Data Name — 5-1; 5-6; 5-7; 5-8; 5-9; 2-2; 2-3; 2-7
Decimal Alignment — 6-6

Declaratives — 1-3; 2-3; 2-4; 6-3

Display — 6-12; 6-13

Divide — 6-14

Documentation Indicator — 1-3

E

EBCDIC Table — A-4; A-5
Editing, Characters Used for — 2-1

Giving — 6-14; 6-26
Go To ~ 6-1; 6-3; 6-16

H

Hardware Names — 6-7

I

Identification Division — ix; 1-1; 3-1; 3-2
If — 2-4; 2-5; 2-7; 6-4; 6-16; 6-34

Imperative Sentences — 6-1
Execution of — 6-2

Input-Output Section — ix; 4-1; 4-3

I-O-Control — 4-1; 4-4
A
X

Key Words — 2-5; 2-6

Je=

Level Number — 5-2
Literals — 2-2; 2-3; 2-4
Locate — 6-34

M

MCP Control Cards — 7-4; 7-5
Media-Clamp — 6-28

Move — 2-4; 5.9; 6-6; 6-22; 6-23; 6-24, 6-25; 6-35; 6-36

Multiply — 6-26

N

Next Sentence — 6-2

No-Op — 6-27

Notation of Constructs —2-5
Note — 6-27

Nouns — 2-2

One

ALPHABETICAL INDEX (cont'd)

o Stop:
Machine — 6-38
Object-Computer — 4-1; 4-2 Run - 6-1;6-31
Object Program — 7-1 Subscripting — §-9
Occurs — 5-4; 5-9 Subtract — 6-31
OCK - 6-20 Switches, Internal Program — 6-6; 6-20
Codes — A-1 Codes — A-1
One — 2-4 Symbolic Program — 7-1
Open — 6-28 Syntax Rules — 3-1; 4-1
Operand, Comparison of — 6-5
Operator: T
Logical — 64 -
Relational — 6-5 Table-Names — 2-2; 2-4
Optional Words — 2-5; 2-6 Tables — 5-10; 6-4
Tests — 6-16
P Accumulator — 6-17
Accumulator Flags — 6-19
Paragraph-Names — 1-3; 2-2; 2-4 Check Digit — 6-21
Paragraphs — 6-3 Error Condition — 6-18
Perform — 2-3; 6-3; 6-29 OCK - 6-20
Picture — 5-3; 5-5; 5-6; 5-7; 5-9 Relative — 6-17
Definition of Symbols — 5-5 Sterling — 6-21
PK’s — 6-15 Switch — 6-20
Position — 6-29
Procedure Division — ix; 1-1; 2-4; 2-5; 4-4; 5-10; 6-1 to 6-38 U
Procedure-Names — 2-2; 2-3
Punctuation — 2-7; 6-2 USASCII Table — A-1
Characters Used for — 2-1 Use:
For Delimiter — 5-8
Q For PK-Table — 6-32
- For Subroutine — 6-32
Quote — 2-4
R
R
Value — 5-8; 5-9
Read — 6-29; 6-37 Verbs — 2-4; 6-7
Record-Description — 1-4; 5-2
Record-Names —2-2; 5-1; 5-3 w
Redefines — 5-7; 5-8; 5-9; 5-10 -
Red Ribbon — 6-30 Words:
Relations: Definition — 2-2
Characters Used for — 2-2 Nouns —-2-2
Reserved Words — 2-4; D-1 Reserved — 2-4; D-1
Key Words — 2-5; 2-6 Verbs ~ 2-2; 244
Optional Words — 2-5; 2-6 Working Storage Section — 5-1; 5-2; 5-8; 5-9
Connectives — 2-§ Write — 6-38
Round - 6-30
Rounded — 6-6; 6-10 _Z(_
s Y
Same Area — 4-§ z

Select — 4-3; 6-30
Sentences — 6-1; 6-2 Zero — 24
Separator — 6-2
Sequence Number — 1-1
Size Error — 6-6
Source — 6-1

Language — 7-1
Source-Computer — 4-1; 4-2
Special-Names — 2-2; 2-4; 4-1; 4-2
Statements:

Conditional — 6-1

Imperative — 6-1
Sterling:

If — 6-21

Two

Seuz
Wherever There's

Business There's | Burroughs

1044781 12-69 Printed in LL.S, America

	000
	001
	002
	003
	004
	005
	006
	007
	009
	1-01
	1-02
	1-03
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	3-01
	3-02
	4-01
	4-02
	4-03
	4-04
	4-05
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	6-10
	6-11
	6-12
	6-13
	6-14
	6-15
	6-16
	6-17
	6-18
	6-19
	6-20
	6-21
	6-22
	6-23
	6-24
	6-25
	6-26
	6-27
	6-28
	6-29
	6-30
	6-31
	6-32
	6-33
	6-34
	6-35
	6-36
	6-37
	6-38
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	A-01
	A-02
	A-03
	A-04
	A-05
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	B-14
	B-15
	B-16
	C-01
	C-02
	C-03
	D-01
	D-02
	D-03
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	F-05
	F-06
	F-07
	F-08
	F-09
	F-10
	I-01
	I-02
	xBack

