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ABSTRACT 

NOVA CPU IMPLEM:E}TTATION WITH 2901 BIT SLICE 

by 

Larry Wayne Abbott 

Master of Science in Engineering 

There are several methods which can be used in the 

design of a digital computer. Each of these approaches 

has its advantages and its disadvantages. To learn the 

trade-offs that apply to the bit slice and microprogram 

methods, a partial build up of a NOVA CPU was done. In 

the build up, special attention was focused on the 

sequencing ~~d central of the CPU. The Project Report 

presents the outcome of the hardware build up and, in 

particular, it addresses the issues involved in microcode 

sequencing and decoding. Two methods of sequencing and 

decoding are presented· in detail. One method relies on 

firmware to do all the sequencing and mode decoding, such 

as address modes. The other method relies on firmware 

and the Mapping PROM to do the sequencing and mode 

decoding. This project Report investigates the 
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implications of both methods on speed and memory 

requirements for the CPU. Finally, this Project Report 

presents technology trends, ~~d investigates the potential 

use of bit slice technology in future systems. 
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1 .0 CEOIC~ Of DS.STGI'T APPRO-ACE 

Tl1e goal of this :pa~:~el~ is to investigate the speed, 

firm·ware, and organizational requirements for a high 

performance minicomputer design. To fulfill this goal a 

computer· central processing unit was constructed '<vi thin 

the constraints of the time and money available to me. 

Several design criteria had to be considered, 

balancing time and money available against firmware and 

hardware goals. The results of this trade-off are as 

follows: 

1. The bit slice approach was chosen. 'I'his approach 

gives ease of interfacing the various elements of 

the computer. Bit slice fabrication technology 

is also capable of providing the speed necessary 

for a high performance minicomputer. 

2. The instruction set chosen was an emulation of 

the Data General NOVA 1200 set. It is relatively 

easy to implement, offers adequate power, and has 

a large expanding software base. In addition, 

at least two software compatible microprocessors 

exist, the Fairchild 9440 and the Data General 

HN601. 

3. Only representative instr~ctions would be micro­

programmed because of the large amount of time 

required to microprogram an instruction. 
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4· Certain sections of the CPU vvould not be 

completely built, and other sections would not be 

built at all because all the information wanted 

could be learned without a full implementation. 

For example, only one of the four Register and 

Pxithmetic Logic Units (RALU) is used because 

only one is needed to verify proper RALU 

operation under the control of the computer 

control unit. In addition, the RALU is an 

expensive element, and any reduction in the 

number of units used reduces the cost greatly. 

5· The sequencer is the heart of the Computer 

Control Unit (CCU), and the CCU is the heart of 

the CPU; therefore the sequencer and the other 

parts of the CCU (such as the microstore and 

the pipeline register) must be fully implemented 

and checked out. 

.Several approaches may ta..~en when designing a 

digital computer. These design approaches center around 

the technique used in the CCU to control various phases of 

the computer operation. The main -techniques used in the 

control of the computer are ring counters, random logic, 

and microprogra"TTming. In this paper the computer was 

designed around a microprogra"TTmed CCU. In conjunction 

with the technique of microprogramming, a :pipelined 

architecture was adopted to increase the computer speed. 



1. 1 HARDWARE ADVANTAGES fu"\JD DISADV MTTAGES 

The choice of the hardware and the architecture can 

make the difference between a successful and a disastrous 

design. Since a computer built up from SSI, MSI, and LSI 

components is much more expensive to build in terms of 

both time and hardware costs than the ubiquitous LSI 

microprocessor, it is imperative that such a computer have 

appreciably higher performance and flexibility than the 

LSI microprocessor. A typical computer built vdth bit 

slice techniques would require between fifty and one 

hundred integrated circuits just for its CPU. The cost of 

components for such a bit slice CPU starts at five hundred 

dollars, as opposed to ten dollars for the LSI micro­

processor. It becomes ob,nous that high hardware costs 

for a bit slice computer are a definite disadvantage and 

that there must be performance geins to offset this 

disadvantage if the bit slice approach is to be used. 

This of course assumes that performance is needed in the 

first place. 

Can the bit slice approach provide the necessary 

performance? One aspect of performance is the speed of 

the technology being used. As can be seen from figure 1.1 

a bit slice computer using a bipolar technology such as 

Schottky, low powered Schottky, or ECL would provide the 

kind of speed that is necessary. 

3 
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Picking the right integrated circuit technology ls 

obviously no insurance that high performance vtill be 

achieved. The architecture of the conmuter is also of 

great importance. A well designed architecture vtill 

simultaneously perform as many computer operations as 

possible. This concurrency is achieved by using a 

pipelined microprogram architecture. In this type of 

architecture, a wide micro-progra.'ll word, usually from 40 to 

60 bits wide, is sent to an equally wide -pipeline 

register. This technique allows one microinstruction, 

the one in the pipeline register, to be executed while 

another microinstruction is fetched from the microprogram 

memory (microstore). 

Additional performance is gained from the width of 

the microinstruction. A vtide microinstruction can command 

many actions at the same time, increasing the apparent 

speed of the computer. 

A microprogram approach provides another advantage. 

Flexibility is a major strength of micro-programming. If 

it is necessary to add or change instructions, the 

microprogram can be easily changed. Most instruction sets 

have many instructions in common, so it may not be 

necessary to change all the microcode. It may be possible 

to simply change the addresses in the Mapping PRON for 

many of the instructions. So microprogramming makes the 

design extremely flexible. 

5 
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Since the bit slice design has the form of an 

iterative array that can be expanded by adding more cells, 

the bit slice approach allows easy expansion of the 

address bus and the data bus while allovring the rest of 

the CCU to remain substantially the same. The expansion 

ability gives the bit slice ap~roach flexibility through 

modularity. 

The advantages and disadvantages of the concepts 

introduced for the bit slice approach to computer design 

are summarized in table 1.1. 

TABLE 1.1 

BIT .SLICE COMPARISONS 

ADVANTAGES DISADVANTAGES 

SPEED: Bipolar COST: ~ime to 

technology and microprogram 

FLEXIBILITY: Hodulari ty 

and micro-

programming 

TI11E: .Reduced hard-

ware design 

due to LSI 
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1. 2 FIRMWARE ADVANTAGBS AND DISADVA1\TTAGES 

The major advantage of firmware is the flexibility 

gained from the microprogramming technique. 'J:he 

disadvantage is the large amount of time it takes to write 

microcode. The Advanced Hicro Devices literature (.AND, 

1977) describing the System 29 microprogramming 

development system gives the following time and cost 

for microprogramming. For manual microprogramming 11 one 

word of microcode per day is allowed on U.S. Government 

contracts. Three to five words of microcode per day 

appears to be a reasonable standard on commercial projects 

11 . . . . . This means that a 1000 word microprogram would 

take one man-year to accomplish, and even using the System 

29 development system, it would take half a man-year to 

develop 1000 w·ords of microcode. It is clear that the 

cost of microprogramming is a disadvantage. It is also 

evident why only representati'Te instructions were micro-

coded for this project~ In essence, the ease of hardware 

design comes at the expense of higher firmv,rare cost. 



2.0 SE::LEGTION OF iflRE PROPER Birr SLICE FANILY 

After the decision has been made to design the 

computer using the combined techniques of bit slicing, 

pipelining, and microprogramming, there is the problem of 

selecting which of the bit slice families to use. One 

important criterion in selecting a de\~ce for a design is 

availability. l"flhi ,.... -.,_ .... _J;:) involYes more than finding out whether 

or not the device is in stock. Availability involves 

consideration of such questions as whether the family 

is available from more than one distributor, and ·whether it 

is available at a competitiYe price vdth good delivery 

time. Without the purchasing power of a company, avail-

ability takes on a new dimension. Distributors are not 

eager to deal with an individual, especially in the small 

quantities required for a one of a kind graduate project. 

This latter consideration made the only practical choice of 

a bit slice the 2900 series. This choice, however, is a 

good one even under the normal commercial meaning of 

avialability, as shown below. 

The available bit slices are sho,;vn in table 2.1. 

From the table one could pick out the reasons that certain 

bit slice families were not chosen. The following sections 

are presented however, to make it clear why certain 

families were not chosen for this project. This is not to 

say that these families are not well designed; actually, 

8 
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some of the families are better suited than the 2900 for 

some applications. 

2. 1 THE IHP BIT SLICE 

Without going into too much detail, the decision not 

to use the IMP was based on the technology and not on the 

functional design of the IMP chips. First, the IMP is 

implemented in PMOS which means it is slow, too slow for 

this application. Additionally, it uses multiple power 

supplies, requires TTL level shifters to be TTL compatible, 

and is not second sourced. There the IMP was not thought 

to be suitable for this application. 

2.2 THE MOTOROLA 10800 F~~ILY 

The 10800, which uses ECL technology, is another 

family that was not chosen because of the technolo~J· In 

this case the family is fast enough; in fact, it is too 

fast. The speed is accompanied by high power consumption, 

small (800 millivolt) logic s-vli.ngs, and by noise created by 

the fast svv.itching speeds. Further, the 10800 is not TTL 

compatible because of the 800 millivolt logic svli.ng. As a 

result of all these disavantages the 10800 family was not 

chosen. ECL is the type of technology that is more 

appropriate for high performance mainframe computers. 

10 



2.3 THE ·rEXAS INSTRUHENTS F.4HILIES 

The two families considered from Texas Instruments 

were implemented with Schottky and integrated injection 

logic (I~). The SN74S481 was the Schottky implementation, 

and the SBP0400 and SBP0401 were the I 2L implementation. 

Neither of the Texas Instruments families were chosen, 

however, each family was rejected for different reasons. 

In both cases the software support is practically non-

existent, and, as has been pointed out earlier, microcoding 

is time consuming and needs to be done on a micro-

programming development system for commercial applications. 

The SBP0400 and SBP0401 were just too slow to be used. 

In fact the shortest microinstruction time was 350 ns and 

the maximum clock frequency was 3.3 MHz. Single chip 16 

bit microprocessors can do as well. 

The SN74S481 is an extremely fast (67ns) and versatile 

integrated circuit, but it does not fit into the architec-

ture of the computer being designed. If the SN74S481 were 

used in this architecture its system speed would be much 

less than the 67ns the inst~~ction time indicates. This 

paradox comes about because of the NOVA architecture. A 

NOVA uses four accumulators in the CPU for working 

registers; the SN74S481, on the other hand, uses 16 

working registers in the main memory. To obtain four 

accumulators, the SN74S481 must locate them in main memory, 

1 • 
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and unless one is willing to accept the higher price and 

complexity of high speed cache memory one must settle for 

the more realistic 300 ns memory speed. This means that 

the cycle time of the computer designed with the SN74S481 

is based on 300 ns cycle times and not on the 67 ns of the 

basic SN74S481. With cycle times approaching 367 ns the 

SN74S481 would appear no better than the SBP0400. The 

SN74S481 was not chosen because of this reason. 

2.4 THE INTEL 3000 

The Intel 3000 series has two problems associated 

with it. First, the slice is only two bits vdde, which 

means that it would require twice as many chips as a four 

bit slice to accomplish the same job. Secondly, the 

sequencer (3001) addresses only 512 words of microprogram 

memory; however vvhat is really difficult to live w:i. th is 

the fact that the sequencer can not go from any location 

in the microprogram store to any arbitrary location. ·rhe 

addressing scheme divides the microprogram store into rows 

and columns. The sequencer can only jump to locations in 

-the row or column of the originating microinstruction. 

This was felt to be an unnecessary restriction, and, as a 

result, the Intel 3000 was not chosen. 

12 



2.5 FAIRCHILD MACROLOGIC 9405 

The Fairchild Hacrologic family comes in two versions, 

Schottky and C.tvlOS. The CNOS version is too slav: for this 

project; however, the Schottky version is quite good. The 

Schottky version, the 9405, is not quite as complex as the 

2901; for instance, it does not offer the two port Rf.J1I so 

the RALU can not write and read the Rill~ at the sa~e time 

or read two Ri1:H locations at the sa~e time. As a 

consequence, the 9405 comes in a smaller 24 pin package and 

costs less than the 2901 ('$12.00 versus $14.70 in 100 

quantity). The complexity of the 2901 allows more to be 

done in a microinstruction; however, it does not have an 

edge in chip count over the 9405. The 9405 does not seem 

to have as many support chips as the 2901, and in this area 

some applications may give the edge in chip count to the 

2901. On the other hand, both groups of support chips seem 

to be well thought out, so a determination would have to 

wait for a preliminary design ;r.ri th both families. 

On a technical basis the tradeoffs between the 9400 

series and the 2900 series would make the choice a 

difficult one; in fact, for this application Fairchild has 

implemented a NOVA 3 emulation with the 9400 series. Even 

on a commercial availability basis the 9400 is acceptable. 

While it is true that the 2900 has more second sources than 

the 9400, the fact remains the 9400 is second sourced. 

13 



Therefore, the only reason for making the choice of the 

2900 was the lack of availability of the 9400 through the 

low· volume distributors that an individual must deal with. 

2.6 MONOLITHIC MEMORIES 6700 

The Monolithic Memories 6700 appears to be the 

forerunner of the 2900 series. As consequence, there is 

nothing the 6700 does that the 2900 cannot do better or 

faster. Even the pinouts are similar so it makes little 

sense to pick the 6700 series. 

2.7 ADVANCED MICRO DEVICES 2900 SERIES 

There were many obvious reasons for selecting the 

2900 series such as availability (the 2900 has many 

sources, including _Lii'1D, Fairchild, Honoli thic Hemories, 

Motorola, National, Raytheon, Sescosem, and Signetics ), 

single power supply, TTL compatibility, and Schottky 

speeds. However, these are the simple and obvious advan­

tages. The important advantages are less ob·vi.ous and more 

complicated. 

The sequencer provides se,reral of these advantages. 

With the 2909 or 2911 sequencers, any address can be 

reached from any other address in the microstore. The next 

address can also be reached via a four word micro-

14 



instruction stack. The 2911 is discussed in greater detail 

in the section on hardware implementation, along •.vith the 

other components of the 2900 chip set. 

Another strong point of the 2900 series is the two 

port RAN in the 2901 RALU. With a two port RA1.'1 several 

RAH operations can occur during one microcycle. For 

instance, the contents of register A14 can be added to the 

contents of register B3 and loaded back into B3 with a left 

shift, all in one microcycle. The resulting throughput of 

the machine is much greater than its clock rate would 

indicate. 

The large selection of support chips, such as the 

AM2930 Program Control Unit (PCU) makes the 2900 an 

especially p~werful set from a total system point of view. 

All the preceding elements are more throughly 

discussed in the section on hardware implementation. 

However, an area that is not discussed in detail elsewhere 

in the paper but is of upmost importance is the 

microprogram development system available for the 2900 

series. It is not the only system available ( see table 

2.1 on bit slice families), but it is coupled with what is 

perhaps the best of all the bit slices. 

Several versions of the development software are 

av-ailable. The first version is the AMDASH microcode 

assembler, which is available on national time sharing. 

Later developments are the System 29 and its implementation 

15 
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via floppy disk on the Intel 8080 development system. 

Since the System 29 runs under the control of an Am9080, 

its softvmre is compatible with other hardware systems that 

use the 8080 or its derivatives. 

The Advanced Micro Devices Microprogramming Handbook 

(ill'ID, 1976a) contains the example shovm as figure 2.1 of the 

use of the ~~1DAS:N microcode assembler with "(\.HD' s CCU design 

in the Hicroprogramming H3.J.'1.dbook). Additional 

information can be obtained from Advanced Micro Devices or 

Raytheon in handbooks describing AHDA.SH or RAY ASH in more 

detail. 

Figure 2.1 contains several microprogramming examples 

done vvith AMDASH. The examples assume AHD' s design for a 

CCU (ill~D,1976a). It should be noted that there is a great 

deal of similarity between Al'v1D 1 s CCU design and the CCU 

designed for this paper • 

.AND's CCU uses 26 of the bits in the 64 bit wide 

microinstruction vJOrd. Table 2.2 describes the 26 bits 

and their functions by dividing the microinstruction into 

five fields. 



; THIS IS AN AMOASM MICROPROGRAM ASSEMBLY EXAMPLE. 
; AMOASM REQUIRES TWO PHASES; DEFINITION AND ASSEMBLY. 

J . . 
; FOLLOWING IS THE DEFINITION PHASE ANO THE DEFINITIONS 
; REFER TO FIGURE 11. 

WORD 64 ; DEFINE A 64 BIT MICROINSTRUCTION 

; THE FIVE MAIN CCU FIELDS ARE AS FOLLOWS: 

MO ~Mll: 

M12-M15: 
M16-M20: 
M21 
M22-M25: 

A 12 BIT NUMERICAL FIELD USED TO 
SUPPLY THE PIPELINE BRANCH AOORESS 
OR COUNTER LOAD VALUE. 
THE AM29811 INSTRUCTION 
CONDITION CODE TEST SELECT & POLARITY CONTROL 
INSTRUCTION REGISTER REAO·IN 
THE AM29803 INSTRUCTION 

; DEFINE THE OEFAUL T PIPELINE BRANCH FIELD. 
; IT Will FORCE THE MICROPROGRAM TO THE HIGHEST 
; MICROPROGRAM MEMORY LOCATION IF LEFT IN DEFAULT FORM. 

NUMS: OEF 52X, 12V%0#7777 

; DEFINE THE CONDITIONAL TEST SELECT FIELD ANO POLARITY CONTROL 
; DEFAULTS ARE: NONINVERTED AND UNCONDITIONAL. 
; TESTS ARE ACTIVE LOW! 

TEST: OEF 43X,. 4V%:D#O; JVB'#O, IGX 

CNTR: EQU 15 ; COUNTER ZERO TEST SELECT 
I NV: EOU 8#1 ;POLARITY CONTROL 

; 
; DEFINE THE AM298l1 NEXT ADORES.> CONTROL UNIT 
; INSTRUCTION MNEMONICS. 

JZ: OEF 
CJS: OEF 
JMAP: . OEF 

CJP: OEF 
PUSH: DEF 
JSRP: OEF 
CJV: OEF 
JRP: OEF 
RFCT: OEF 
RPCT OEF 
CRTN: OEF 
CJPP: OEF 
LOCT: OEF 
LOOP: OEF 
CONT: OEF 
JP: DEF 

FIGURE 2. 1 
From: 1h1vlD, 

48X, H#O, 12X ; .HJMP ZERO 
48X, H#"l, 12X ; CONDITIONAL JUMP SUBROUTINE 
48X, H#2, 12X ; JUMP MAP 
48X, H-#3, 12X ; CONDITIONAL JUMP PIPELINE 
48X, H#4, 12X ; PUSH/CONDITIONAL LOAD COUNTER 
48X, H#5, 12X ; CONO JUMP SUBROUTINE REGISTER/PIPELINE 
48X, H#6, 12X ; CONDITIONAL JUMP VECTOR 
48X, H#7. 12X ; CONOITIONALJUMP REGISTER/PIPELINE 
48X, H#8, 12X ; REPEAT FILE LOOP ON COUNTER .NE. ZERO 
48X, H#9, 12X ; REPEAT PIPELINE ON COUNTER .NE. ZERO 
48X. H#A, 12X ; CONDITIONAL RETURN 
48X, H#B, 12X ; CONOfTIONALJUMP PIPEllNE & POP 
48X, HifC, 12X ; LOAD COUNTER & COriTINUE 
48X, H#O, 12X ; TEST END LOOP (CONDITIONAL LOOP ON FfLEl 
48X, H#E, 12X ; CONTINUE 
48X, H#F, 12X' ; JUMP PIPELINE 

An example of .AJ,1DASM microcode assembly 
1976a page 1-16 
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; THE DEFAULT FOR DATA BUS READ-IN OF INSTRUCTION REGISTER IS DISABLE 

OB: OEF 42X, lVB#l, 2.1X 
IN: EQU Bff'O 
; 
; DEFINE THE AM2980.3 16-WAY BRANCH CONTROL UNIT 
; INSTRUCTION MNEMONICS. 

NOT: OEF 38X, H#O, 22X 
TO: OEF 38X, H#l, 22X. 
Tl: OEF 38X, H#2. 22X 
TOl: OEF 38X, H#3, 22X 
T2: OEF 38X, H#4, 22X 
T02: OEF 38X, H#S, 22X 
Tl2: OEF 38X. H#6, 22X 
T012: OEF 38X, H#7, 22X 
T3: DEF 38X, H#8, 22X 
T03: OEF 38X, H#9, 22X 
T13: OEF 38X, H#A, 22X 
T013: OEF 38X. H#B, 22X 
T23: DEF 38X. H#C, 22X 
T023: OEF 38X. H#O, 22X 
Tl23: OEF 38X, H#E, 22X 
T0123: OEF 38X, H#F, 22X 

END ; END OF DEFINITION PHASE 
; 
; BEGJN ASSEMBLY PHASE 

.. 

FIGURE 2.1 continued 

From: AMD, 1976a page 1-17 



I 
I 
I '; EXAMPLE 1. 

; VISUALIZE A 16-BIT PROCESSOR IN A REAL·TIME ENVIRONMENT 
; GATHERING AND MANIPULATING DATA. PART OF THIS OATA ARRIVES 
; IN 8-BIT BYTES SO SWAPPING IS NECESSARY. ALSO, THERE ARE 
; TWO CONTROL SIGNALS WHICH REQUIRE IMMEDIATE ATTENTION 
; WHEN ACTIVE. ASSUME THAT THESE CONTROL SIGNALS ARE CONNECTED 
; TO T2 AND T3 OF THE AM2980316.WAY BRANCH CONTROL UNIT. FOLLOWING 
; IS THE AMOASM OUTPUT FOR THIS EXAMPLE'S ASSEMBLY PHASE; 
; WHICH INCLUDES THE SOURCE LISTING AND OUTPUT BIT PATTERN. 
; IN THIS EXAMPLE, THE MICROPROGRAM STARTS AT LOCATION 
; 0360 OCTAL. AS MENTIONED EARLIER, THE ALU PORTION OF 
; THESE EXAMPLES IS NOT DEALT WITH. 

0001 0 RG H#OFO 
0002 SWAP: NUMB 0 0 0 6 • & TEST , & PCLC & T0123 
0003 RFCT & TEST CNTR , & T0123 
0004 CJV & TEST , & T0123 

0005 ORG H#OF4 
0006 ORTEST2: TEST , & JPL & NUMB H#1FO ;#2 HANDLER AT LOCATION 1FO 

0007 ORG H#OF8 
0008 ORTEST3: TEST , & JPL & NUMB H#2FO ;#3 HANDLER AT LOCATION 2FO 

0009 ORG H#OFC 
0010 0 RTEST23: TEST , & JPL & NUMB H#3FO ; #2 AN0#3 HANDLER AT LOG JFO 

0011 END 

OOFO xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx XXXXXX1111XOOOOO 0100 1 1 1 1 1 1 1 1 1 0 Q 1 

OOF1 xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx XXXXXX1111X11110 1 OOOXXXXXXXXXXX X 

OOF2 xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxx 1 111 xooooo 0110XXXXXXXXXXXX 

OQF4 xxxxxxxxxxxxxxxx xxxxxxxx~xxxxxxx xxxxxxxxxxxooooo 1111000111110000 

OOF8 XXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxx X XX XX XXX X X XOOOOO 111100101 i 110000 

OOFC XXXXXXXXXXXXXXXX xxxxxxxxxxxxxxxx xxxxxxxxxxxooooo 1111001111110000 

FIGURE 2.1 continued 

From: h~D, 1976a page 1-18 

19 



; EXAMPLE 2. 

; ALIGNMENT CAN BE REAliZED IN ONE MICROINSTRUCTION. ASSUME 
; THAT F3 OF THE MOST SIGNIFICANT ALU SLICE IS CONNECTED TO 
; TEST 13 OF THE CONDITION MULTIPLEXERS. NOTE THAT NEGATIVE 
; NUMBERS CAN BE ALIGNED !N THE SAME MANNER BY SIMPLY 
; OMITTING THE VARIABLE "!NV". ALSO, IF THE COUNTER IS CLEARED 
; BEFORE STARTING ALIGNMENT,IT WILL CONTAIN THE NUMBER OF 
; SHIFTS REQUIRED TO 00 THE ALIGNMENT lOR THE COMPLIMENT 
; IF USING AM25LS169 COUNTERS). 

0001 ORG Q-#0770 
0002 ALIGN: NUMB 0770 & TEST 13, !NV & RPCT ; (ALU TO SHIFT UP) 
0003 END 

01F8 XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXX11011 10010 0 0111111 0 0 0 

; EXAMPLE 3. 

; A OIVIS10N ROUTINE. ASSUME F = 0 OF THE ALU IS CONNECTED TO 
; TEST -12 (AND F3 TO TEST -13 AS BEFORE). AND SIXTEEN 
; DIVISION STEPS ARE REQUIRED. IF THE FINAL.REt ... lAINOER IS NEGATIVE, IT MUST BE 
; RESTORED BY ADDING IT TO Tl-IE DIVISOR. THE VECTOR INPUT IS SET UP 
; FOR THE ERROR ROUTINE. NOTE USAGE OF THE AMOASM CONVENTION 
>"$"TO DENOTE THE CURRENT PROGRAM COUNTER. 

0001 
0002 
0003 
0004 
0005 
0006 

ORG 0#1000 
DIVIDE: LOCT & TEST, !NV & NUMB o.;;-14%. 

TEST 12, !NV & CJV 
RPCT & TEST CNTR, & NUMB S 
TEST 13, !NV & NUMB S+2 & CJP 
TEST, & JMAP 

; (ALU OUTPUTS DIVISOR) 
;IF=O: ERROR 
; LOOP 
; IF R <O. CORRECT 
; EXIT TO MAP 

. 0007 TEST, & JMAP ; ALU AOOS REMAINDER TO DIVISOR, EXIT MAP 
0008 ENO 

0200 xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx XXXXXXXXXXX00001 1100111"111110001 
0201 xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx XXXXXXXXXXX11 001 011 oxxxxxxxxxxxx 
0202 xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx XXXXXXXXXXX11110 1001001000000010 
0203 xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx XXXXXXXXXXX11011 00 11 0 0 1 0 0 0 0 0 0 1 0 1 
0204 xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxooooo 001 oxxxxxxxxxxxx 
0205 xxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxx xxxxxxxxxxxooooo 001 ox xxxxxxx xxxx 

FIGURE 2. 1 continued 

From: ill~D, 1976a page 1-19 

l 
I 
I 
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TABLE 2.2 

CCU ASSD~BLY DEFINITIONS 

22-25 21 16-20 12-15 0-11 BIT NO. 
Am29803 lnst. Test Select•• Am29811 

Instruction$ Register and Polarity Instructions Numerical1'iefd• Fi•ld oe..,.iptian 

TO IN The Test JZ Any4 P3rameten: 
T1 Number CJS Oigit02 ToSe 
T01 (1-14) in JMAP Bit) Octal Used 
T2 Decimal, CJP ·Number 
T02 and: PUSH 
T12 CNTR JSnP 
T3 for Test CJV 
T03 SP.Iect. JRP 
Tl3 (Uncondi· RFCT 

I T013 tiona! by RPCT 
T23 default) I NV CRTN 
T023 for Test CJPP 
T-123 Polarity LOCT 
TOI2 (noninverted LOOP 
TQ123 by default) CONT 
NOT .lP ----

Source: AMD, 1976a, page 1-15 



3. 0 BASIC MICROPROGRJj.lVlMED PIPH'LINE J\..RCHITECTURE 

The computer design in this paper incorporates the 

techniques of microprogramming and pipelining. A basic 

functional block diagram of this type of system is sho\m 

in figure 3.1. The functional blocks perform various 

phases of the computer's operation and are listed below 

along with a brief description of the function of each. A 

more detailed presentation of each element is given in the 

section on the hardware implementation. This section is a 

simple overview to familiarize the reader with the total 

architecture. 

3.1 INSTRUCTION REGISTER 

The instruction is clocked into the instruction 

register from the data bus when the pipeline register 

sends the proper command. The instruction is held in the 

instruction register (IR) until the pipeline register 

commands another IR load. From the instruction register 

the instruction is routed to the Happing PROM, RALU ~ PCU, 

and the input and output (I/O) control. 

3.2 MAPPING PROM 

The Mapping PROM contains the address to the starting 

22 
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FIGURE 3.1 Functional block diagram of microprogram 

type computer. 



points of each instruction's microcode in the microstore. 

By routing the instruction from the instruction register 

to the Happing PRON, the correct starting address for the 

instruction's block of microcode is generated. 

3.3 SEQUENCER 

The sequencer selects the proper source for the next 

microinstruction address. The next address may come from 

the Happing PROH, the pipeline register, the sequencer's 

stack, or the sequencer's R register. The source for the 

next instruction depends upon the situation, as will be 

seen later in the examples of microcode. 

3.4 HICROPROGRAH 

The output of the sequencer is sent to the micro­

program memory and the output of the microprogram memory 

is clocked into the pipeline register on the next cloclt 

pulse. Once in the pipeline register, the instruction is 

executed by sending commands to the RALU, PCU, HAR, HBR, 

sequencer, a.."'ld other computer elements. The microprogram 

sends the sequencer the code for the next address source 

and may also send the branch address if the situation is 

called for. This process allows the prev""ious pipeline 

word to fetch the next microcode while the present code is 

24 



being executed. This parallel operation allovvs the 

computer to run t;,vice as fast as would be possible if the 

system was processing the microcode serially. Figure 3.2 

illustrates how this overlapping operatis. 

ACTION 

FETCH 
INSTRUCTION 
DECODE 
INSTRUCTION 
FETCH BASE 
ADDRESS 
FORM EFFECTIVE 
ADDRESS 
FETCH 
OPERAl\TD 
ADD OP:s:RAND 
AND SAVE RESULT 

HICRO CYCLES 

EFFECTIVE DURATION OF EACH ADD 
DX INSTRUCTION ..,. MICRO = :J 

I' 
A. 

\ 

A B c 

A B 

A B 

A B 

A 

A 

\ 2 3 4::; 6;7 
~----------y------------

ACTUfi...L DURA'J:ION OF EACH 
ADD DX INSTRUCTION = 6 

CYCLES 

B 

8 

c 

c 

B 

9 

FIGURE 3.2 Example of an instruction using pipelining 

and the effective increase in throughput. The 

instruction is a direct-indexed addition. 

From: Muething, 1976 
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3. 5 PIPELINE REGISTER 

The pipeline register is loaded from the microprogram 

and is usually bet;,veen 40 and 60 bits wide. These bits 

are formed into many different fields which control the 

different elements of the computer. For instance, the 

pipeline register has fields to control the next 

microinstruction address sources, the function of the ALU, 

the operation of the I/O unit, the program addressing, and 

all the associated registers. 

3.6 RALU 

The 2901 contains 16 two port registers, a Q register, 

an 8 function ALU, output multiplexer, and shifting 

capability (the more complex 2903 also has provisions 

to do tvm 1 s complement and floating point operations). 

PROGRAJII CONTROL UNIT ( PCU) 

The PCU is a powerful integrated circuit that contains 

a stack, incrementer, and other necessary elements to do 

most forms of addressing, including direct, indirect, 

indexed, and relative. 



4.0 SELECTION 0? THE INSTRUCTION SET 

Deciding on which instruction set to use in the 

computer design was the most agonizing part of the design. 

The goal was an instruction set that was both easy to 

implement and had a large existing software base. The 

choice soon narrowed dovm to either the PDP-11 or NOVA 

1200 instruction set. 

The PDP-11 instruction set (figure 4.1) has one of the 

largest bases of existing software. In addition, Digital 

Equipment Corporation and Western Digital produce a PDP-11 

software compatible microprocessor. The availability of 

the microprocessors would allow the development of software 

on a relatively large and fast system, such as the Am2900, 

and allow total software transfer to a small dedicated 

system later if desired. However, the PDP-11 instruction 

set is particularly difficult to implement because of its 

poorly structured op code field. This op code field 

difficultly would have required expensive Programmable 

Logic Arrays (PLA) to implement the instruction set •. Since 

the PLA's are not reprogrammable, this would have been cost 

prohibitive on a one of a kind system. 

As can be seen from figure 4.2, the NOVA instruction 

set is simpler and more clearly structured than the PDP-11 

instruction set. There are separate fields for the A.LU 
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1. Single Operand Group (CLR,CLRB,COM .COMBJNCJNCB, 
DEC.DECB,NEG,NEG B,ADC,ADCB, 
SBC,SBCB,TST,TSTB,ROR,RORB, 
R OL.RO LB.,ASR,ASRB..ASL,ASLB)M P, 
SWAB,MFPS,MTPS,SXTXOR) 

2. Doub!e Operand Group (BIT,B!TB,SIC.BIC!.I,HIS,J..llSB.t\DD, 
SUB MOV,MOVB,CMP,CMPB) 

ss 
JS 12 It 6 s 

3. Program Control Group 
a. Branch (all branch instructions) 

15 

jo, 

OPCode 

& 7 

b. Jump To Subroutine (JSR) 

0 4 R 

c. Subroutine Retum (RTS) 

0 0 2 

DD 

offset 

DD 

0 

d. Traps (break point, IOT,EMT,TRAP,BPT) 

OPCODE 
I I a· 

e. Mark (MARK) 

Ia 0 6 4 NN 
I 

f. Subtract 1 and branch (if= 0) (SOB) 

0 0 7 R· NN 

4. Operate Group (HALT,WAlT,RTl,RESET,RTT,NOP) 

OPCODE 

R 

5. Condition Code Operators (all condition code instructions) 

0 0 2 

0 

0 

6. Fixed and Floating Point Arithmetic (optional EIS/FIS)(Fi\DD, 
FSUB,FMUL,FDIV",.MUL, 
D!V ,ASH ,ASH C) 

FIGURE 4· 1 

F-rom: DEC, 

OPCODE R 
I 

PDP-11 instruction set 
page 33 
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9440 INSTRUCTIONS 

10 n 12 .. 
I OPCODI! I MOO E. OISPl"ACEMEHT I 

II ~~ 
l 
I 

.:.OORI!.S5:MQ 

OIRfCT Tl ••ct!<"O INOilUCT Q I PC A€tAiJ"'.:: 
l 0 !NOCJEO VIA AC2 
1 1 UIO(Y.(~ \'lA ACJ: 

M€MORY REFt.~f.NCE r A A AC 

• • • • 0 ~~: \ I 0 0 ACO 
0 0 0 0 1 WIIHOUT 0 1 AC1 

• 0 0 1 0 ~~~ J RE'GlSt.:::R 

I 
1 0 AC2 

' • 0 1 1 1 1 ACl 

• 0 1 • • lOA } WllH 

I . 1 • A • S!A REC.ISTEA 

T ~ ~- ~ _.J 
Memory Reference instructions without register are used tor branching (JMP, JSR} without involving accumulators. 
These instructions are also used for modifying memory ( ISZ. DSZ}. Memory Reference instructions with register are used 
to move 16-bit words between the memory and the accumulators. 

10 t1 12 11 1C '5 

• SAC I ••• I fUNCnOH I SHIFT C>AMY jL::;.ol ....... 
. r;:_J I Ill ... c SELECT A~ SELECT 

$XlPCOO( • ' I ACO ., 0 I ACO Q 1 ACt 0 1 AC1 Q . • DONOllflfiiC 
1 Q AC2 1 0 AC2 • • • SKIP AL.WAYS 

1 1 AC3 1 1 A..Cl 0 1 • SI(IP ON ZERO CAA<tl' 

• 1 1 SKIP ON HOft·lERO C'-RRY 
1 0 ' SKI" OH ZE!ti.J AESU\. T 

II 1 ' 1 5J<IP ON HON·ZE,lO 'i.E:Sl.;i.T 
1 1 0 $~1" f1' 'tiTHER c.•.f1~'1 0~ Jii£5ULT zt.~O 
1 1 SKIP lfll BOtH CI,RAY AI'IIO II!(SUl.!' NON-.:tRO 

fUHC110N I rr . • 0 COMPU'MENr 

·~·LC..01~HI01f • ' 1 rtf:CAT( 'SHIFT r:.OOE CA.AAY cooe . 1 0 .... OV:E' 

• 1 1 INCR[MI;'NT • . OON.::OiHING . 
1 
. r\J···N· c.,. •• 1 • 0 ADO COMPlf:r.t[NT 0 1 j:~QTA.Tt t.~Fi ON~( 0 \ i:E~O 

1 • 1 SUll"fAACT 1 • ROT.UE; fUGtfT CN.i:£ 1 0 C>-t£ t 0 II.OAO AUULT IN O.iT AC 
1 1 . ADD 1 1 I!Y1'E SWAP 1 1- -C.0"'Pl.£MEN'f ~URfi!ENT C"AA"T 1 00 HOT !.0.4.0 ~UUL':' IM oJ.ST AC 
1 1 1 AHD 

Arithmetic/Logic instructions pertorm arithmetic(AOD, AOC, INC, NEG. SUB) or Boolean(AND. COM. MOV\ opef'itions 
on the contents ot two registers. The result of each operation togethef with the Carry bit can be rotat~d and tested for skip 
conditions as part of the same arithmetic/logic instruction: loading in the destination register is optional. 

10 11 l:l tl .. 
I OPCODE l Ao~us) TRANSfER I I OE'I'IC£ COC€ .I 

COH1'AOL US(O TO SELECT ONE OF"" 0£VICF.$ 

fffi 
i I 

A.C AOORfSS t;t.'NTROL 

T I ACO 

.

1

., I 00 H,, •.• ., 1 
Q I AC1 0 1 ST AR1 I •.J O£VI..CE 
1 0 A.Cl 1 0 ClU.~·•OLE ItO 0£'11CE 
1 1 4C3 1 1 PUUEiSJI~CIAt. FUNc:TICN 

rUHCTION 

• 0 • '10 110 TAANSFIER 
G 0 1 OATA IN A 

• .1 • CA.TA OUt-' 

• 1 1 OAT-' !H& 

' 0 • OAU OUT I 
1 0 1 OATA INC 
1 1 • OATA OUT e 
1 1 1 .SKIP ON 8U$Y OR OONIE 

lnpuUOutput instructions move data between the 9440 accumulators and three buffers in the peripheral device imer face. 
These instructions also perform control functions in the 1/0 device and test tne status flags in both the peripheral ci:cuitry 
and the central processor. 

FIGURE 4.2 Fairchild 9440 emulation of NOVA 200 

instruction set 

From: Wilnai, 1977, page 6 
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function, shift, and carry. The op code field does not 

have a variety of lengths as the PDP-11 does. This makes 

the implementation of the Napping PROH easy since EPROH' s 

can be used. There is the added plus of a large and 

expanding software base for the NOVA instruction set, and, 

as in the case of the PDP-11, there are microprocessors 

available that are compatible with the NOVA instruction 

set. One microprocessor is from Data General (the rifr.T60 1) 

and the other is from Fairchild (the 9940). 

It should be noted that the NOVA instruction set is 

not a particularly demanding set for the Am2900. For 

instance, the 2900 can easily provide information on 

comparisons such as A greater than B, or A less than B; 

the NOVA instruction set can not use this information and 

must take several steps to arrive at the same decision. 

The NOVA instruction set has access to the four 

accumulators which are present in the NOVA architecture, 

however, since the Am2901 has sixteen registers, twelve of 

which the NOVA cannot use, the NOVA instruction set cannot 

take full advantage of the Am2901 1 s capability. 

When all the factors are considered, the NOVA 

instruction set is an acceptable choice for this project 

because it has adequate power and a straight forward 

structure for its instruction set. Figure 4.2 and figure 

4·3 show the structure of the instruction set and the 

function of each instruction. 
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From: 

r---------~o~c:l:ll------------------------------.., 
Mnemonic code Operation 

Memory reference instruCtiOnS 

OSZ 014000 Decrement lacauon E' by 1 and skip 
it resuft is zero. 

ISZ 010000 Increment location E by 1 ond skip •f 
msult Is zero. 

JMP 000000 Jump to location E 
JSB 004000 Lo~d PC • 1 in AC3 and jump to subrQ~;-

tine at IDC<!tiOn E 
LOA 020000 Load conrcn~s oi location E m:o .:~c 
STA 040000 Store ;..e; 11'1 lvc.atJOn E 

Arithmetic ar'ld logical instruchons 

AOC 102000 Add tr.e com;>lem<::nt of ACS> to ACD> 
ADD 103000 Add ACS to ACD 
AND 103400 AND ACD w•th ACD 
COM 100000 Place the complement of ACS in ACD 
INC 101400 Place ACS.,.f in ACD 

MOV 101000 Move ACS to ACO 
NEG 100400 Place r~gativ~ of ACS in ACD 
SUB 102400 Subtract ACS from ACO 
DIV 073101 If over11ow. set Carty. Otherwtse divide 

ACo-AC1 by AC2. Put q~,.:otient .n 
AC1. remainder in ACO. 

MUL 073301 Multiply AC1 by AC2, add product to 
ACO. put tesult in ACO-AC1 

Input/output instructions 

DIA U60400 Data in, A buffer to AC 
Dl8 061AOO Data in, 8 buffer to AC 
DIC 062400 Qala in. C buffet to AC 
DOA 061000 Data out. AC to A buller 
DOB 062000 Data out, AC to B buffer 
DOC 003000 Data out. AC to C ouller 
NIO 060000 No operatiOn 

SKPBN 063400 Skip if Busy is 1 
SKPBZ 063500 Skip il Busy is 0 
SKPON 063600 s:.:io if Oone is 1 
SKPDZ 063700 Si.ip il Done is 0 

Stack man•ouiation in$tructlons 

MFFP 060201 Move contents of :rame pointer to A(, 
MfSP 061201 Move contents of stack pointet to AC 
MTFP 060001 Move contents cf AC to frame pointer 
MTSP 061001 Move ·contents· of AC to stack pointer 
POPA 061601 Move top word on stack to AC and 

decrement sta~k pointer 
PSHA 061401 l"crement stack .oointer and mQVEt con-

tents of AC to top of stack 
AET 062601 Restore accumulators. program counter 

and cany from last return etock 
on stack 

SAV 062401 Push a five-word return btock on stack 

·MSKO 062077 Set up interrupt-disable nags accora• 
ing to masx in AC 

ATCEN a11on Enable interrupts from CPU reat-time 
clock 

AT COS 065077 OisabEe interrupts from·C?U teal-time 
CiOCic.. 

TAAP 100010 Software interrupt CALC format no-skip, 
no-toad) 

Centr::tl oro~essor controt InS-tructions 

HALT 063077 Halt the processor 
INTA 061477 ,>.cknowledge interr<.~pt by loading COde ot 

nearest device tl"lat tS requesung an inter .. 
rucl into AC bits 10 to t 5 

INTDS 060277 Disa!>le lf•!errupl by cleannq iriletrupt ON 
IN TEN 060177 Enable iotenurt tly setttn'} ;ntemJpt ON 
IOAST 061077 Clear all 110 """'c"" 

~~ • -roc:'"'Gi' f~ Col!'n111nt 1ft. h'M:ai•Q-11. .,.,1!'1 .,_ ...at<fH ~O"'CI~I~ L"tf'9 Ollt..$ 10 t'S 
~~ ftr~ -.q,d ar>d ~'""" 1r.. ~C AC2 0* "'0 

2 ,lC$ #til ACn ~li>f 10 SOWf(ll! an4 .a..t~l"""' aCCLII .. ...UIO. •. O!'K" Ct.""M<I fl1r 
• l·D<t N'ChO" Q'f lf'Ht -lr""loQII 

microNOVA instruction set 

Falkoff, 1977a 
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5.0 STATE TRANSITTON DIAGRM1 

The state transition diagram depicts, in graphical 

form, the sequence of events that the computer can go 

through in each cycle. The state transition diagram, 

shovm as fi~~re 5.1, is presented in the form typical of 

other state diagrams and should be self explanatory. 
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HALT 

FETCH INSTROC.TION 

I HI:HORY F\E.Fi'U\E.NC$: I 

I i f \ ) T 
I eASE Pt.£,& 1'1:. RSW\nVE VIA AC.:t 'iiA ·11c.a 

ARITii/1.-0&ICI\L. 'I/0
1 

STACK, 

EX£ CUTE PRO<;.SSS CoNTI<CL 

£')(E. C,UT!;' 

r::TCII OATA 

I 

0 
' E'tE C. UTE: 

FIGURE 5· 1 CPU state transition diagram 



6.0 HARDW.Y.:RE THPLEMENTATION 

Figure 6.0 shows the system design of the 2900 16 bit 

minicomputer. Figure 6.0 refers to the detailed drawings 

(figure 6.1 through 6.12) of the computer functions. The 

follo~ting sections describe the hardware implementation of 

these functions in detail. 

6. 1 IR AJ."'{D HAPPING PROM 

The computer starts its cycle by loading the instruc­

tion register (figure 6.1 in the system design). The 

instruction register latches the data and sends it on to 

the Happing PROH. In a final design the Happing PROM 

would consist of high speed bipolar PROM, however, for the 

development system relatively slow ultra violet erasable 

EPROM was used because it provided more flexibility and 

was more cost effective than throvring away a set of PROMs 

each time the microcode was cha..11ged. This necessarily 

slowed down the speed of the computer since the EPROMs 

used (the 2708) have access times of 450 ns as compared 

to 50 ns which is typical of microstore speeds. 

The Happing PROM sends the pro per starting address to 

the sequencer( figure 6.2 in the system design) where one 

of several options v.rill be performed depending on the 

contents of the pipeline register. For instance, a micro-
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FIGURE 6.11b Photograph of the physical layout of th e CCU 

-~ 
0 



1'1£M 
Rf F" 

r /o 

I 2 3 4-5G""f8 5 6 -; 8 9 IO II i?...tJ !4 iS 

I o P c.ooc: jMODf I I FUNC jSHtiT !CfiARt/.>:.~l Si<IP I 

1 
FROM 

! PLRE"G 
lOP CODf\ ~% XFcP. J !MOO£ I 

l 
MZ. MO 

l I r 
l [7654H l 2.:3 zz jla 7 6 s 4 3 c. I t.3 2Z 19 

U4-C.'708 I us- 2.116 

20 2.1> 

I ! l-.J. 10 

5EQUE.N 

I r--I I '!'-

B A Go I 9 10 " IJIO 

741.Si39 4 r- Do 

Yo 3t-
l)~51 af--CI 

4 IH 74L.S2:SI 
IS ~ 

I ..--.. 
11 r---1 

CJ~ 7 
13 H 
IZ. 1-'1 2. s ' ~':-y ... 

C>-

SV. I... 

5V 

c; TO BRANCH A D D R ESS f: IE Lf) ~ 6 
. - w-- OF PrPELJNE RE.& 

4 

FIGURE 6.12 MODE implementation circuit 

47 



subroutine may be called or returned from, or a branch to a 

location selected by the pipeline register may be executed, 

or a branch to the location addressed by the mapping PROM 

may be executed. The appropriate action depends upon the 

next address and mode fields of the pipeline register. 

The next address field controls the operation of the 

Am29811 sequencer controller, which will be discussed in 

detail latter. 

Vlhat is important about the Am29811 now is the fact 

that it does not allow for a jump to a subroutine given by 

the address from the mapping PROM. There are many 

variations on the basic NOVA 1200 instructions including 

direct, indirect, relative, and base page addressing 

combined with the shifts and skips that are a part of the 

ADD instruction. To decode these instructions into unique 

microcode routines requires either a large amount of 

memory, or a large amount of time, or a clever compromise 

to keep the amount of mapping PROM and microstore down 

while not slowing the computer dovm too much. 

One of the options, the most memory intensive and the 

fastest, is to microcode each instruction permutation 

and map each variation into its unique block of microcode. 

This approach requires a much large~ mapping PROM and 

microstore, but the computer does not waste time decoding 

instruction permutations with firmware. 

Another method is to determine each permutation by 
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jumping into microcode subroutines to determine the proper 

mode and returning when the determination is complete. 

This method is slow because of the time required to jump 

to a microcode subroutine, do a firmware determination of 

mode, and to return from the subroutine. 

A more practical approach is to use the Mapping PROM 

as a decoder. 'ro do this, the Mapping PROM must be 

available as a mapping function during normal modes, but 

must be converted into an instruction decoder during the 

appropriate modes. In this way, the computer goes to the 

proper instruction microcode without the use of firmware 

subroutines. Since there are several mode types, such as 

addressing, shifting, and skipping, and since the .Am29811 

does not have a HAP subroutine instruction, logic has to 

be added to accomplish calls to the subroutine pointed to 

by the Mapping PROM. 

·rhe vvay to implement the HAP subroutine instruction 

with the least amount of hardware would be to combine the 

next address and mode fields into one field and replace 

the Am29811 with a PROM large enough to decode the combined 

fields. However, the need for the mode field was not 

realized until after the hardware was constructed. 

Besides, I did not have access to the necessary PROf.'! 

programmer. The next best approach was to construct the 

logic needed by using a 74LS251 tri-state eight input 

multiplexer as an universal logic module in combination 
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vdth the unused hc~f of a 74LS139 one of four decoder. 

During the addressing, shifting, and skipping modes the 

logic inverts the pipeline and mapping PROM enable lines 

so the jump to a pipeline subroutine is converted into a 

jump to the NAP subroutine. The circuit is shovm as figure 

6. 12. 

6. 2 SEQUENCER 

The sequencer is the heart of the computer's micro-

programmed architecture. The sequencer controls the 

execution of the microprogram with its ovm instruction set 

(see table 6.1), but the sequencer is, in turn, controlled 

by the sequencer controller, a 29811. 

The sequencer controller is part of the next address 

circuit (see figure 6.3 ). The next address circuit 

performs several functions. First, the next address 

circuit can test up to 16 test inputs and send the results 

to the 29811 sequencer controller which uses the 

information to decide the source of the next sequencer 

address. Secondly, in addition to the test input, the 

next address source for the sequencer is determined by 

the pipeline register commands to the sequencer controller. 

These pipeline register commands are from the sequencer 

controller's ovm instruction set (see tables 6.2, 6.3, 

r , ) 
0. Lt • 
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TABLE 6. 1 

SEQUENCER COMM.LU\TDS 

Address Selection Output Control 

CCTAL s1. So SOURCE FOR Y OUTPUTS svr.moL OR; ZERO OE Y; 

0 L L Micropro9ram Counter ;lPC X X H z 
1 L H -Register REG X L l L 

2 H L Push·Pop stack STKO H H L H 

3 H H Oira-ct inputs 0; L H L Source select~d by So s, 

Z 4 High Impedance 

Synchronous Stack Control 

FE PUP 

H X 
L H 

H ... High 

L • Low L .L 
X • Oon't Care 

f-· 

I CYC!.E s,. S0 • FE. PUP .uPC REG STKO 

N 0 0 0 0 J K Ra 
N+l - J+1 K Rb 

N 0 0 0 1 J K AJ 
N+1 - J+l K J 

N 001 X J K Ra 
N+1 - JH K Ra 

N 0 1 0 0 J K A a 
N+l - K+l K Rb 

N 0 1 0 1 J K Ra 
N+l - K+1 K J 

N 0 I 1 X J K Ra 
N+1 - K-1;1 K Ra 

N 1 0 0 0 J K Ra 
N+l - Ra+l K Rb 

.N I 0 0 1 • J K Ra 
N·t-1 - Ra+1 K J 

N 1 0 1 X J K Ra 
N+l - Ra+1 K Ra 

N 1 1 0 0 J K A a 
N+1 - 0+1 K Rb 

N 1 1 0 1 J K Ra 
N+1 - 0+1 K J 

N 1 1 I X J K Ra 
IH1 - 0+1 K Ra 

X.,.. Oon•t cate,-0 • LOW, 1,. HIGl-t,-Anume Cn ~HIGH 
Note: STKO i.s the tocation addl'll'ls.ed by the srack pointer. 

PUSH-POP STACK CHANGE I 

No change 
lncremenc stack pointer, then 
push current PC onc9 S TKO 

Pop ~tack (de-creml!nt stack pointer) 

STKl STK2 sn<3 Your COMMENT 

Hb I Rc Ad J 
Pop Stack Rc Ad Ra -

I Rb Rc Rd J 
Push J.<PC I Ra Rh Rc -

Rh Rc Ad J 
Continue 

Rb Rc Rd -
Rb Rc I Rd K Pop Stack; 
Rc Ad Ra - lise AR for Addrcs. 

Rb Rc Ad I K Pu•h ,_,pc; 
Ra Rb Rc - Jump to Address in AR 

I 
Rb Rc Au K Juonp to Address in A R 
Rb Rc Ad -
Rh Rc Rd Ha Jumo· to Address in STKO; 
Rc Rd. Ra - Pop Stack 

Rh Ac Ad Ra Jump to Address in STKO; 
I< Ra Rb Rc - Push.uPC 

Rb Ac I Ad I 
A a Jump to /,ddrass in STKO Rb I Rc Rd 
._ 

Ab Rc I Ad 

I· 
D Pop Stack; 

flc Rd Ra - Jump to Address on D 

Rb Rc Rd I D Jump to Address on 0; 
A a Ab Rc Push ~!PC -
Rb Rc Rd D Jump to Address on 0 
All Rc Rd -

Source: AMD, 1976a, page 2-6 

PRINCIPLE 
use 

End 
Loop 

Set·UP 
Loop 

Continue 

End 
Loop 

JSR AR 

--
JMP 1\R 

RTS 

Stack Ref 
(Loop I 

End 
Loop 

I 
JSR D 

JMP 0 

51 



52 

TABLE 6.2 

P~29811 INSTRUCTION SET 

MNEMONIC 13 12 11 10 INSTRUCTION 

JZ L L L L Jump to Address Zero 

CJS L L L H Conditional Jump-to-Subroutine with Jump Address 
in Pipeline Register. 

JMAP .L L H L Jump to Address at Mappi:1g PROM Output. 

CJP L L H H Conditional Jump to Address in Pipeline Reqister 

PUSH L H L L Pt1sh Stuck arTd Conditionally Load C.:-unter 

JSRP L H L H Jump-to-Subroutine with Starting Address Conditioneif'( 
~ele•;ted from Am2911 A-Register or Pipeline Register. 

CJV L H H L Conditional Jump to Vector Address. 
JRP L H H H Jump to Add;css Conditionailv Selected from Am2911 

A-Register or PipP.Iine Regtster. 
RFCT H L L L Repeat Loop if Counter is net Equal to Zero. 
RPCT H L. L H Rep~at Pipeline Address if Counter is not Equal to Zero. 
CRTN H L H L Condi rinnal Return-from-Subroutine. 

CJPP H L H H Conditional Jump to Pipeline Address and Pop Stack. 

LOCT H H L l load Counter and Continue. 

LOOP H H l H Test End of Loop. 
CONT H H H L Continue to Next Address. 
JP H H H H Jump to PirJe!ine Register Address. 

Source: AMD, 1976a, page 2-19 



MNEMONIC 
INSTRUCTION 

u 
CJS 

Jl\o1A.P 

CJP 

PVSH 

JSRP 

CJV 

JRP 

RFCT 

RPCT 

CRTN 

CJPP 

lDCT 

LOOP 

CONT 

JP 

L ~LOW 
H =HIGH 
X = Don't Care 

IJ 

L 

L 

L 

L 

L 

L 

L 

L 

H 

H 

H 

H 

H 

H 

H 

H 

lz ,, Ia 
L L l 

L L H 

L H L 

L H H 

H L L 

II L H 

H H L 

H H H 

L L L 

L I. H 

L H l 

L H H 

H L L 

H L H 

" H L 

H H H 

-

TABLE 6.3 

Am29811 FUNCTION TABLE 

INPUTS OUTPUTS 

FUNCTION 

JUMP ZERO 

CONO JSB PL 

JUMP MAP 

CONO JUMP PL 

PUStltCONO LO CNTR 

CONOJSB~-------

CONO JUMP VECTOR 

CONO JUMP R/Pl 

REPEAT LOOP, CNTR # 0 

REPEAT PL. CNTn -, 0 

CONO FHN 

CONO JUMP PL & POP 

LOAU CNTA & CONTJ.'\IUf. 

TEST ENO LOOP 

CONtiNUE 

JUMP PL. 

DEC= Decrement 
•LL = Special Casa 

TEST 
INPUT 

)( 

L 

H 

X 

L 

H 

L I 
I .. 

L 

H 

L 

H 

L 

H 

L 

H 

I. 
H 

l 

H 

L 

H 

X 

L 

H 

X 

X 

NEXT ADDR 
FILE COUNTER 

SOURCE 

D _l HOLD L L • 

PC 
[_;D 

HOLD 

D " HOLD 
D HOLD HOLO 

PC HOLD HOLD 

0 HO!...D HOLD 

PC PUSH HOLD 
PC PUSH I..OAO 

R PUSH HOLO 

D PUSH HOLO 
PC HOLD HOL.O 

D HOlD HOLD 

R .HOLD HOLD 

0 HOLD HOLD 

F HOLO DEC 

PC POP HOLD 
D HOLD DEC 

PC HOLD HOLD 
PC 

I 
HOLD HOLD 

F POP HOLD 
PC HOLD HOLD 

0 POP HOLD 

PC HOLD LOAD 

F HOt..D HOLD 

PC POP HOLD 

PC HOLD HOLD 

D HOLO HOLD 

Source: AMD, 1976a, page 2-20 

MAP-E Pl-E 

H t-:':-.. l 

>f L 

L H -
H L .. I. 

H l 

H L 

•• L 

" l 

H H 

H H 

H L 
H L 

H L 

H L 

H L 

H L 

H L 

H L 

H L 

H L 

H L 

H L 

H L 

H L 

H L 



TABLE 6.4 

Am29811 TRUTH TABLE 

INPUTS OUTPUTS 

MNEMONIC FUNCTiON 

~------~----~P~I~N~N~0~·~--~~~1~4~1~3 __ 1~2~1~1~1~0·r-·--4--~5~-t-=3--~2~~6~---~7 ~ 
JUMP ZERO L l. L L L H H H H l L H JZ 

f----":::-:::---f-:=:-::-==----f7-L L L l H H H H H L L H 
CJS I CONO J:i_B PL L L l H L L L I HL H H H H 

JMAP 

CJP 

PUSH 

JSRP 

CJV 

JRP 

RFCT 

CRTN 

JUM-P MAP 

CONOJUMfJPL 

PUSH/CO>IO LO CNTR 

CONO JSa R/~L 

CONO JUMP VECTOR 

CONO JUMP RIPL 

LLLHH HH H H HH 

LLHLL HH H HH HL 

ll.HLH HH H HH HL 

Ll.l-iHl LL H HH HH 

LLHHH HH H HH HH 

LHl.LL LL L H·H HH 

LHLLH Ll L HL HH 

LHLHl. l.H L HH HH 

LHLH'H HH L 

l.HHLL l.L H 

LHHLH HH H 

LHHHL LH H 

L H H H H H H H 

H H 
H H 
H H 

H · H 

H H 

H H 
H H 
H H 
H H 
H H 

REPEAT LOOP, CT~ 'I' 0 I ~ L 

L 

L 

L 

L 

H 

H 

L 

H 

L 

H 

H H ' 
AEPEA r PL. CTR ;. 0 HLLHL HH H H H H 

HLLHH LL H H H H H 

CONORTN HLHLL LL H l. H H H 
• 

li 
9 

L 

L 

L 

L 

H 

H 

L 

l. 

l. 

L 
H 

H 

l. 

L 

L 

l. 

l. 

HLHLH Hl L l.H HH l 

CJPP 

I 
H"",. .~. HLH :L LLH HLL H HHL ~H ~L. ~HI :H ~ 

l.OCT LO CNTR & CON fiNUE .., 

~ H -L l H L L H Hj L H H L I LOOP I TEST ENOLOOP I H H L H L H L J. H L I H H H L 

r·~-co;;r- cO.·H•,,u., -it--~ i~; ~ ~-~~--H~- ~- ~-rl ~ -~--r-~==~ 
f--J-:Pc---f-Jc-U:7M::P:-:P:::L-·----- H H H H tl H H H H H H H l 

H H H H HI H H H H H H H L 

L ~LOW 
H= HIGH 

Source: AMD, 1976a, page 2-20 
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The result is rather like pulling yourself up by your 

boot straps. ':rhe sequencer is the heart of the micro-

programmed architecture, but it is controlled by the next 

address circuit. The next address circuit is controlled by 

the pipeline register, which is controlled by the 

microstore. Finally, the microstore is controlled by the 

sequencer &~d the circle is complete. 

6.3 MICROPROGRA}1 M~10RY MID THE PIPELINE REGISTER 

Once the proper address is chosen for the microprogram 

memory (the source of the address may be the mapping PROM, 

the pipeline register, or the sequencer), the address is 

transmitted to the microprogram memory's address lines. 

For the development system the microprogram memory will be 

ultra violet erasable PROM and will require 450 ns before 

the data appears at the output of the microprogra."'!l memory. 

When the data appears at the output of the micro-

program it is loaded into the pipeline register. The 

function of the pipeline register can be seen as a latch 

into which the microprogram v;ord is stored. While the 

microprogram word is stored • -f-1 • ln villS latch t•,iro actions take 

place. .First the current micro·program word, the one in the 

pipeline register, is executed. At the sa"lle time, the 

sequencer is instructed to fetch the next microprogram 

word.. By the time the current microprogram is finished 



executing, the next microinstruction will be waiting at the 

input to the pipeline register. 

As can be seen from the computer design (figure 6.1), 

the microprogram word is rather long. The microprogram 

word is composed of the follovring major fields: 

1. Test Condition Field- This field contains the 

code that selects one of the 16 test inputs .. 

2. Polarity Field - This field determines the 

polarity of the test input chosen. 

3. IR Field - This field is used to load the 

instruction register. 

4· Microprogram Branch Field - This field provides 

the next address for a microprogram branch. 

5. ALU Source Field - This field selects two data 

sources for the ALU function from e~ong the 16 

RALU registers, Q register, data inputs, and zero. 

6. I~U Destination Field - This field selects one of 

the R.4LU 1 s 16 general purpose registers for the 

destination of the results of the current ALU 

operation. 

7. llliU Function Field - This field selects one of the 

eight P~U functions to operate on the source data. 

8. S.ALU Field - This field enables the ALU outputs. 

9. Shift Field - This field determines how the shift 

operation will be performed in the ALIT. 

10. .ALU Carry Field - This field determines how the 
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carry w'ill be used in the ALU. 

11. PCJ Carry Field- This field determines how the 

cc>..rry will be used in the program control unit. 

12. PCU Address Field - This field determines the 

13. 

6.4 RJi.LU 

function of the PCU. 

A.E Field - This field enables the output of the 

PCU to the HAR. 

HODE Field - The mode field determines the mode 

the Happing PROM. It specifies whether the 

Mapping PROM is to be used as a mapping function 

or as one of the decoding functions. 

of 

The output from the various fields of the pipeline 

register drives the functional block9 of the computer. One 

of the blocks is the 2901 RALU which performs all the 

arithmetrical and logical operations required by the 

computer. The RALU contain 16 general purpose registers 

(the registers are implemented vri. th dual port R.AM), a Q 

register (for temporary storage such as required in multi­

plication), an eight function ALU, and data routing 

circuits. The interaction of the various R~~U components 

is controlled by the contents of the ALU source, 

destination, and function fields of the pipeline register. 

·rable 6.5 contains the various R.ALU functions that are 
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TABLE 6.5 

ALU OPERATION 

···-------- -----1 

MICROCODE 
AlU SOlJRCE 
OPERANDS 

'• '• '• 0"'1 • • e ... 

L L -~ • A Q 

L L H t A • 
L H L 1 0 a 
L H H l 0 • H L L • 0 A 
H ~ H • 0 A 
H H L • 0 a 
H " H 1 0 0 

ALU Source Operand C:mtrol. 

MiCROCODE RAM 
FUNCTION .. ., '• 

o.., •• 
Shitt '~" """" 

L L L • X NONE 

l L H , X NONE 

~ H L 7 NONE ·-· 
L H H 3 NONE ·-· 
H L L • """" Fr:t.-• 

H L H • DOWN FIZ-• 

M " L • "' l't:-• 

H M H ' UP lF-1 I 
' 

MICROCOOE 

'• '• '• 

" H 
l H H 
H L l 
H H 
H H l 
H H 

AliJ 

APh.MS 
SMi....,aR 
Au;,..,.$ 
R:CRS • 
RANOS 
AANOS 
R £X-OR$ 
REX~QR S 

A•S 
S-R 

•v• 

. .--,.... ALU Function Control • 

O-REG. RAM a 
FUNCTION v SHIFTIOR SHIFTER 

...... , ... ounvT 
RAMo ...... , Oo a, 

NOME •-a , X X X X 

X NOH£ • • X X X 

j 
X NO~ I! A I X X X X 

X NONE , X X • • 
OOWN =-a • •• IH' j a. .. , 

X NON I • •• ·~ 1 "o X 

... :::a-a . . I 'No ., i 'No a, 
X i NON I( • '"o •• " 

I a, I 

X..., Oon•'!: care. Et.~t.uic.tt,. th• ,n,ft pin ia • T'Tl. inpu_.: lnl:eJ"all¥ r:or.n.ctll""J to • thrH"''1aN outD~t·...,ftt-zh lt in '"• I'WJt'l• 
!n1JWdanC• v.:u:•. 

S • A•ctiS1'1f AddA5Md by 8 lnpua. 
lJD is tOW"-·.-td 11.158, Oc ... n i:~o low;~rQ! l.SS. 

ALU Destination Control.. 

~12100CTAL 0 $ 

CIS~ T SGurc.. 
A. a O,Q o.a D. A D,A o.a o.o A ..C ALU A.B 

L J Funct5on 

Cn• t. .... a ... a " Q+A - 0 
0 RPfusS: 

Cn• H ...... A•fJ•1 Q .. ... ... 0+4•t a..,., .,., 
Cn•l.. Q-A-1 !-~· 0-1 ·-· ·-· •-o-· ~...,_, _,_, 

1 S.Mtnua R 
Cn"' H a-• ·-· Q A •-O 0-0 -0 

Cn• t. A-Q-1 A-8-1 -0-1 -8-1 -A-I 0-A-1 0-Q-1 ..... 
l RMinu-cS 

Cn~ H A-0 ·-· -0 -· -· 0-A Q-(1 0 

3 AOR.S AVQ AVO Q ov .. ova 

RANDS .o\~Q "" OMI a~ a 

RANDS ;l:JlQ lna a .. ~AA QJ'.Q 

• R EX-OA S HQ ... Q A a•• o•a 0 

I 
i 
I 

i 
! 
i 

7 REX·NORS A-:;Q An 0 • I 5Vii: OVil 0 J I 
1> • ~h,.; - • M•"~ll. .J "OA: 1\ • AND; 'f .. EX·OR 

Source Operand and ALU Function Matrhc:~ 

Source: .fu'1D, 1976, page 8 
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commanded by the pipeline register. 

6. 5 PCU 

The Program Control Unit (PCU) is the final block to 

be discussed. The PCU is shovm in figure 6.8. The PCU 

is implemented using a special integrated circuit (Am2930) 

designed for controlling the program addresses. Like so 

many other functional blocks in the 2900 computer, it too 

has a very powerful instruction set ( see table 6.6 ). The 

PCU allows the program counter to be incremented by only 

one control bit. Other addressing modes, such as relative, 

indexed, and base page, can be handled almost as easilya 

In addition, the PCU provides for easy implementation of 

such operations as jump to s~broutine, return from 

subroutine, and the associated stack manipulations. 
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·rABLE 6.6 

PCU INSTRUCTION SET 

Naxt State (olter CP S l t Nate 31 

fMtruction 
Number '4 '3. ~2 

X X 

0 L L 

1 L L 

2 L L 

3 L L 
4 L L 

5 L L 

6 L L 

7 L L 

8 I. H 

9 L li 

10 L H 

11 L H 

12 L H 

13 L H 

14 L H 

15 L H 

16-31 H X 

16 H L 

17 H t.: 
18 H L 

19 H L 

20 H L 
21 H L 

22 H L 

23 H L 

24 H H 

25 H H 

26 H H 

27 H H 

28 H H 

29 H H 

30 H H 

31 H H 

PC - Program Coui'I1.P.f' 

R - A..uKtliary Regiuer 

X 

L 

L 

L 

L 

H 

H 

H 

H 

L 

L 

L 

L 

H 

H 

H 

H 

X 

L 

L 

L 

L 
H 

H 

H 
H 

L 

L 
L 

L 

H 

H 

H 

H 

IJ. 

X 

L 

L 
H 

li 

L 

L 
11 
H 

L 

L 
H 
H 

L 

L 

H 

H 

X 

L 

L 

H 
H 

L 

L 

H 
H 

L 

L 

H 

H 

L 

L 

H 

H 

'o cc lEN Instruction 

X X H ln-strvction 
Oi-sabfe 

L X L RESI:T 

H X L FETCH PC 

L X L FETCH A 

H X L FETCH 0 

L X L FETCH Rta 

H X L FETCH PC+O 

L X L FETCH PC+A 

H X L FETCH S+O 

L X L FETCH PC- A 

H X L fETCH R+O- R 

L X L LOAD R 

H X L PUSH PC 

L X L PUSH 0 

H X L POPS 

L X L POP PC 

H X L HOLD 

X H L FAIL CONO'L 

TEST (FETCH PC) 

L L L JL:MP.R 

H L L JUMPO 

L L L JUMP "0" 

H L L JUMP R+O 

L L L JUMP PC+O 

H L L JUMP PC•R 

l. L L JSB A 

H L L JSB 0 
l. L L JSB "0'' 

H L L JSB R+D 

L L L JSB Pt:+O 

H L L JSB PC+R 

L L L Rf:TUAN S 

H L L RETURN S+O 

L L L HOI..O 

H L L SUSPEND 

SP --Staek Pointet' 
0 - Oitect lnout'l 

A 

Yo·YJ PC RE ~ L REcH 

r.Jote 1 - D -
"0" "O''+C; a -
PC PC+C; 0 -
A PC+C; a -
0 PC+C; 0 -
A+O+Cn PC+C; 0 -
PC+O+C0 PC+C; 0 -
PCtfHCn PC+C; 0 -
S+O+Cn t ?C+C; 0 -
PC i PC+C; PC PC 

A+O+Cn PC+C; R+O+Cn R-+O+Cn 
PC ?C+C; 0 0 
PC PC+C; 0 -
PC PC+C; a -
s PC+C; 0 -
PC PC+C; 0 -
PC - 0 -
PC PC+C; a -

A R+C; 0 -
0 O+C; 0 -
"0" "O"+C; 0 -
R+O+C0 A+O+C0 +C; 0 -
I'C+O+C:n PC+O+Cn+C; 0 -
PC~A+C0 F'C+A+C0 -+C; 0 -
R A+C; 0 -
0 O+C; 0 -
"0" "O"+C; 0 -
R+O+C0 A+OiC0 *-Ci 0 -
PCtO+Cn PC+O+CntC; 0 -
PC+R+Cn PCtR+Cn+C; 0 -
s S+C; 0 -
S-r-O+Cn S+O+C0 +Cj 0 -
PC - a -
Z !Note 2) - 0 -

NotH~ 1. Whr.n i"'E"N is HIGH, the v 0 .v 3 outputs ~;ontain "the "Came dM~ta •s wh4:'n iEN is LOW, as determined bv lo·'4 •nd CC. 
2. Z • High imped•nc:e state (outPUts '"OFF""). 

3. - • No ch.anq• 

Source: AMD, 1977a 
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RAM 
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-
-
-
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PC- Loe SP+1 

0 - Loe 51'+1 

-
-
-
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-
-
-

PC- Loe SP+1 

PC- Loc S:f'+l 

PC- Loc S?-+1 

PC-· Loc SP+1 

PC- Loc SP+l 

PC- Lac Sf'+ I 

-
-
-
-
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7.0 SYSTEf1 TIMING 

As menitioned earlier, this computer was designed with 

high performance as a goal. However, for economy the 

microprogramming was done in ultraviolet erasible EPROH. 

This approach saves money because a new set of PROMs is not 

required each time the microcode is changed, but the 

computer runs rather slow as a result of the 450 ns access 

time of the 2708 EPROM. In order to present a clear 

picture of the system timing, two timing diagrams are 

given. The timing diagrams for the experimental system 

( figure 7.1 ) and for the potentially high performance 

system ( figure 7. 2 ) are presented along with a brief 

discussion of each diagram. 

7. 1 TIHING FOR THE EXPERIMENT.li.L SYSTEM 

In order to establish the timing characteristics of 

the computer, the chain of events that take the longest 

time to complete must be identified. This chain of events 

is the critical timing path for the computer. By 

definition no computer operation can take longer to 

complete than the critical path. The critical path 

is the limiting factor for the speed of the computer. 

In other words, the time of one computer cycle can be no 

longer than the time required for the critical path. 
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The computer cycle begins on the leading edge of the 

clock. On the leading edge the microinstruction is 

clocked into the pipeline register. As can be seen from 

figure 7. 1 (all times are shovm as worst case times), the 

use of the 2708 EFRON for the microstore and again for the 

Happing PROM in the decoder mode causes large delays. 

Fi~~re 7.1 is set up for a 1.4 microsecond cycle, but the 

time could have been shortened by 260 nanoseconds. 

7. 2 HIGH PERFORMANCE SYSTEM 

Since the objective is to design a high performance 

minicomputer, the experience gained from the experimental 

system needs to be examined to gain a reasonable 

expectation of the potential nerformance of the 2900 

system. In the experimental version, 2708 EPROH' s were 

used, and since these devices were so slow, lov.r power 

Schottky registers and counters vvere used to save cost and 

power. How·ever, for the full performance version 

envisioned, 50 ns PROM or ROH and full speed Schottky 

would be required. This is the premise of the timing 

presented in figure 7.2. Figure 7.2 uses the sa~e time 

scale as figure 7.1 to give a better illustration of the 

performance increases gained by these changes. 

The basic cycle time of the high performance computer 

is 270 ns. 'Ni th the overhead for checking for halts and 
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Am 2.981 I 

MAP L$138 

11AP LS86 

MAP PRot"\ 

SEQUENCER 

MICROSTO~E 
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interrupts, an ADD vrithout a shift or skip can be done in 

1 .08 microseconds. While this is representative of 

modern minicomputer performance, it is not as impressive 

as was hoped for when the design started. The fault lies 

in the decoding scheme used for indirect addressing, 

relative addressing, mode 1, and the various other modes 

of operation that are decoded. As mentioned earlier, the 

decoding scheme drastically cuts the amount of Mapping PROM 

and microstore PROM needed, but what are the costs of this 

scheme? ~~en compared to the 1.5 microsecond ADD time of 

Fairchild's 9440 single chip NOVA microprocessor, it is 

not clear that the improvement gain by using a micro­

programmed bit slice technology is worth the cost in time 

and money. 

Tv10 approaches can be taken to increase speed. One 

approach would allow for extra time in the cycle only 'Nhen 

the Happing PROH is called as the next address source. The 

other approach ·would use extra f!Iapping PRONs to provide a 

12 bit address that could directly address 4096 words of 

microstore. In the latter approach, each variation of an 

instruction would be addressed directly. This would 

eliminate the need to decode each instruction, but would 

add to the microprogramming task. As a result, the ADD 

time would drop to about 880 ns, and with newer and faster 

R_t..LUs and sequencers, cycle time less than 800 ns could be 

achieved. This figure is more in the r~1ge of performance 
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that was first envisioned. 

7.3 CO:HP.li.RISOI'I OF THE 2900 SYSTELJ.[ TO ~XISTING SYST}g·1S 

In table 7.1 comparisons are made between some of the 

existing variations of NOVA type machines. In this 

comparison the BLAZE, which is Fairchild's 9400 bit slice 

( see section 2.5) emulation of the NOVA 3, and the NOVA 3 

are in the same class as the 2900 emulation of NOVA. The 

SPJI..RK, FL .. AHE, and NOVA 1200 are marginally slower than the 

2900 emulation. The conclusion is that the design of the 

2900 system is faster tha..YJ.. present single chip :NOVA 

implementations, and is in fact just as fast as other 

bipolar implementations. 
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TABLE 7.1 

NOVA COMPUTN~ COMPARISONS 

.. r-~ 
INSTRUCTION +BLAZE-16 

tal 
--·-· ..... ---·-- ·------

Load Accumulator 1.0 
Store Accumulator 1.0 
ISZ, DSZ 1.4 
Jump 0.6 
Jump to Submutine 1.2 
Add 1.0 
SubtraCt 1.0 
And 1.0 

SPEED IN W.ICHOSECONDS 

--------------~---------------.--------------

NOVA3 
tbl 

9440 
SPARK-16 
FLAME-16 

tel 
NOVA 1200 

-----f------~-1---------------
1.1 - 2.0 2.41 2.55 
1.1 • 2.0 3.66 2.55 
1.6-2.4 ' 3.66 3.15 
0.7- 1.0 1.25 1.35 
1.0- 1.2 1.25 1.35 
c. 7 - 1.0 1.25 1.35 
J./- 1.0 1.25 1.35 
0.7- 1.0 1.25 1.35 

1.o o. 1 - 1.0 1.25 1.35 1 

0 0.3 1.25 1.3S ! 

Move 

1/0 Input 
1/0 OutplJt 

+Skip 
1.6 2.0. 2.2 2.08 2.55 1 
1.6 20-2.2 2.08 3.15 

-----1 --------- '-·---------L·--------···-···_) 

till Oscillil tor lrcquoncy ·- 10 MHz. memory R«ad cycle·-· 400 n:.. 
lhl Minirnu-m lor sr,miconductor :n • .;r,lory, maximum tor 16K CO;\;. 

lcl Oscillawr frequency-- 12 MHz, Memory Busy< 120 ns. 

Source: Suri, 1977, page 10 



8.0 Iv!ICROPROGR.jH 

Because of the amount of time required to write 

microcode only a few of the microinstructions were 

microcoded. The microcode, timing diagrams, and comments 

for these instructions are included in the following 

figures. The microcode is also presented as it appears in 

the microstore memory. 

The following are some of the constraints adopted for 

~Titing microcode: 

1. The code must be as short as possible. 

2. The code must generate the memory address and the 

memory read signal as far in advance as possible. 

This practice allows slower memories to be used. 

3. The microcode must do as much in parallel as 

possible. This '.,'Jill speed up the throughput. 

The application of the first constraint can best be 

illustrated by comparison of the ADD instructions. The 

original ADD instruction ( figure 8. 1 ) was quite slow 

because of the repeated use Of jumps to subroutines to 

accomplish the various modes of the ADD instruction. For 

instance, the ADD instruction jumps to a shift subroutine 

in T1 and then jumps to a skip subroutine in T2. Each of 

these jumps requires at least two steps: the jump and the 

return. As a result, eight micro-cycles are required 

whereas the final ADD instruction (figure 8.2) actually 

68 



uses only four microcycles. Instead of jumping to and 

from a subroutine, the microcode jumps to the shift 

subroutine then jumps directly to the skip subroutine under 

control of the Happing PROM. Finally the microcode jumps 

directly to the fetch subroutine under control of the 

pipeline branch address. 

The second constraint is shovm clearly in the timing 

diagram for the FETCH instruction (figure 8.?). Here one 

can see the MR and LD HJ\..R lines go low during T1. This 

generates the memory read signal and the memory address 

during T1. However, the memory is not needed until the 

IR LOAD in T3 vvhich allows the memory two mtcrocycles for 

set up. At the 270 ns cycle time, even cheap 500 ns memory 

can be used. If the faster, 200 ns cycle time, CCU 

suggested in section 7.2 is used, memory as slow as 400 ns 

can be used. 

The third constraint is shovm in the ADD instruction. 

For instance, in the ADD vrith no shift and no skip, cycle 

TO contains a fetch and increment of the program counter, 

a read from R.~~ ports A and B with a store back into port 

B, and a mode 2 jump to the shift s~broutine. That is a 

lot of work to do in one microinstruction. 
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ADD (original) rriME: 2. 16 microseconds min. LOCNI'ION 024lh 

CYCLE MICHOCODE COMM .E:N rrl 

rro B-A+B, Fetch PC LD CJUWY Add A plus B and load the sum into B ac 
1 ' 

.o 

addressed by the IR. Output the present PC 
and increment by 1 • Load the carry from the 
add into the carry bit. 

rrll l'-'IODE 2 - 1 ' CJS ONE'r MAP Jump to the MODI~ 2 subroutine given by the 
jump address in the Mapping PHOM to get the 
proper shift mode. 

f[l2 MODE 3 - 1 ' ca·s ONET MAP Jump to the MODE 3 subroutine given by the 
jump address in the Mapping PROM to get the 
proper skip mode. 

-rr3 MAR - Y, I"m, J'P F'E1rCH(002) Load the PC into the MAH and send a memory 
read signal. Jump to r1'2 in the FErren 
subroutine. 

rr4 
see FE11CH 

1115 

FIGURl~ 8.1 l<TL and comments for original ADD microcode 



ADD with NO .SHIYr and NO SKIP 

CYCLE MICROCODE 

'1'0 JVIODE 2 +- 1, B - A+l3 

Fetch PC 1 , CJS ONET MAP 

T1 JVIODE 3 - 1, CJ.S ONE'l1 JVIAP 

TIME: 1.08 microseconds LOCA'riON 0281{-, 

COMME:NT 

Add A plus B and load the sum into B as 
addressed by the IH. Output the present PC 
and increment by 1. Jump to the MODE 2 
subroutine given by the jump address in the 
Mapping PROM to get the proper shift mode. 

Jump to the MODE 3 subroutine given by the 
jump address in the MAPPING PROM to get the 
proper skip mode. 

-T2 JP FE'I1CH ( 00 3 ) , MAH - Y, M:R 

HAVI1 C -- 1, IH - DATA BUS 

T 3 see F'E'I'CH 

Send out a memory read signal and load the 
PC into the MAR. Load the Data Bus into the 
IH and check for a HAV11 command. 

E'IGUl~E 8. 2 n':l'L and comments for ADD with NO SHIF'r and NO SKIP microcode 



TIME: 1.62 microseconds LOCNriON 

CYCLE MICROCODE 

TO MO DJ~ 2 ...._ 1 , B - A+ B 

T1 MODI~ 3 - 1, B - SHL B 

B0 -. B15 , MI~, GJS ONE'r MAP 

T2 JP FETCH(OOl), Fetch PC 1 

COMMENT 

Add A plus B and load the sum into B as 
addressed by the IR. Output the present PC 
and increment by 1. Jump to the MODE 2 
subroutine given by the jump address in the 
Happing PROM to get the proper shift mode. 

Jump to the MODE 3 subroutine given by the 
jump address in the Mapping PROM to get the 
proper skip mode. Shift RAM B left one and 
rotate the MSB to the LSB. Send out a memory 
read signal. 

Output the present PC and increment by 1 to 
accomplish a skip. 

FIGURE 8.3 nTL and comments for ADD with LEYr ROTATE and SKIP microcode 



LDA 'I'IME: 2. 16 microseconds min. LOCNI'ION 01CJh 

CYCLE MICl~OCODE COMMEN'r 

TO MODl<:: 1 +- 1 , CJ·s ONE'r MAP Jump to the MODE 1 subroutine given by the 
jump address in the Mapping PROH to get the 
proper addressing mode. 

-'rl MH, MAl~ - y Send out a memory read signal and load the 
effective address into the MAn. 

-T2 MI:(, MBIW - DA'l1A BUS Send out a memory read signal and load the 
DA'rA BUS j_nto the MBRO. 

'r3 ACC - MBBO, JP FETCH(OOO) The MBHO is loaded into the accumulator 
addressed by the IR. Jump to F'ETCH. 

T4 

T5 
see :FE'I'CH 

T6 

'1'7 

FIGURE 8. 4 Rrf.lL and comments for LOAD ACCUHUI,NrOR microcode 
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To TO T! T2. 13 

CU< I I I I 
F: US-13 

f:~ UB-12. 

1"1 0 1z. 

M0(3 

M014 

M0r5 

N A C. 0 U9-l/ 

N.~c, V9-12. 

NAc. 2 U9-13 

NAC 3 V9-14 

Sr u9-4 

So U9-5 

IR L.OAD U45- 5 
-'MR. US0-5 

_, 

LOAD MAR. 050-2 

. MODE1 
• 

A Co 

Acl 
AC2.. 

AC3 

Ae-+ 

FIGURE 8.5 Timing for LDA 



CYCLE MICROCODE 

F'etch PC 1 

T1 M~-Y,MR 

HALTC ...._ 1, Mn 

IH - DNJlA BUS 

JSRP INT MAP INTS 

TIME: 1.08 microseconds LOCNriON 00016 

COMMii1iT 

Output the present PC and increment by 1. 

Load PC into MM~ and send out a memory 
read signal. 

Checks for a HALT command, sends out a 
memory read signal, and loads the IR from 
the DATA BUS. 

If there is an interrupt (INT) then jump to 
the interrupt subroutine (INTS) given by the 
Pipeline Register, else jump to the next 
instruction's microcode which is given by 
the jump address in the Mapping PROM. 

FIGURE: 8. 6 HTL and comments for the F'ETCH microcode 
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To TO Tl I T.! T:J 
I 

CU( l I l I 
F1 U8-l3 

I 

I 
~~ ' I 

uB-12. I I M01z. 
I 

M0 0 

MOti 

HOts I 

Nile. U9-tl ~ 

NACI u 9·12 

NACt V9·1j I .. 
NAC~ V9-14 

. \ 
l 

s, V9-4 ! 
So U9-S r -r 

r 
fR lOf\D I I ' U45-:5 

MR US0-5 I ! 
I j 

' I L.OAD MJIR V50-2 
i 

HALTC U46-/Z 1 
' 

fiCo ' 

A C., 
; 
I 

ACt. i I 

~ I I ' 
llC1 I I -=l 
Jlc.4 

; j 

I : -· 
IC<J 

TC., 
L --I 

TC.l.. I I 1 
l I l TC."J j l 

FIGURE 8.7 Timing for FETCH 
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9. 0 rr:scHNOLOGY TRENDS 

The bit slice computer presented in this paper has an 

add time of 1.08 microseconds. By the use of more 

e.x:tensive hardware, the add time could be reduced to less 

than 800 ns. The question to be answered is as follows: 

given the present trend in technology, is it vmrthwhile to 

spend the time and money developing a bit slice machine? 

If the present one chip 16 bit microprocessors are 

surveyed, as done in figure 9.1, the bit slice is 1.1 times 

faster than the fastest monolithic processor and 3 times 

faster than the slowest. At 800 ns, the bit slice is from 

1.5 to 4 times faster than the monolithic microprocessors. 

If there is to be an improvement in bit slice 

performance it must come in two areas: the sequencer, and 

the memory. The microstore and the Am29811 are PROH. If 

these devices were t•.vice as fast, 128 ns would have been 

cut off the ADD instruction time. If the sequencer were 

tvdce as fast an additional 160 ns could be cut off. This 

would result in an ADD time of 512 ns, and this vmuld be 

accomplished without the use of more advanced strategies 

such as multiple pipelining. 

Are these speed increases reasonable? For the most 

part, these times represent the typical times for the same 

devices used in the 800 ns design (the design was on a 

worst case basis). Coupled with the ne..,v advance in 
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tristate buffers for interfacing ECL and TTL, doubling the 

speed vJithin one year should be no problem. 

There is a limit to how fast a computer can operate,. 

and the limit is established by the physical dimensions of 

the computer and the speed of light. Present bit slice 

technology requires 50 to 100 integrated circuits for the 

CCU. It will be very hard to package such a CCU in less 

than a square foot of area. In this dense configuration, 

the maximum distance would be about tvm feet. Since light 

travels approximately one foot every nanosecond, the time 

delay for a signal to be sent and its reply received would 

be 4 ns. This is equivalent to an extra gate level in the 

circuitry. On the other hand, since distances are 

measured in mils, the speed of light is not a practical 

consideration in the speed of single chip microprocessors. 

It is apparent that the optical limits have or shortly 

will be reached in integrated circuit processing. This can 

be seen in figure 9.2. As figure 9.3 shows, there are two 

techniques being developed to take over where optical 

techniques leave off. The electron beam method promises a 

100 fold density increase over the present density, and the 

x-ray approach offers a 1000 fold increase in density. At 

present the electron beam is the nearest to operational. 

From figure 9.3 the full impact of this technology can be 

seen. Texas Instruments projects a 32 bit microcomputer 

(not microprocessor) by 1983. This microcomputer would 
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have 32 K words of memory on the chip in addition to the 

CPU • 

The 1983 microprocessor vvould require a 20 fold 

increase in density. This increase in density would 

decrease the capacitance of the integrated circuit. Since 

capacitance is the major speed killer in HOS circuitry, 

the decrease in capacitance by about 20 times would 

correspond to a 20 fold increase in speed. To be 

conservative and to tru~e into account the extra carry time 

for a 32 bit machine, assume that the speed increase is 

only by a factor of 10. Since the fastest 16 bit MOS 

microprocessor available today has an instruction time 

range of 1.2 to 29.5 microseconds, the 1983 32 bit machine 

would do an ADD in 120 ns and a divide in 2.95 

microseconds. 

The design of complex circuits with electron beam 

technology will require even heavier dependence on computer 

aided design than present digital LSI designs. With the 

required advances in computer techniques and computer use 

for the 1980's, it is not hard to imagine a highly 

computerized and integrated design and manufacturing system 

for VLSI technology. When compared ·with the cost of 

designing a bit slice machine it may be cheaper to have an 

integrated circuit house design a custom microcomputer. 

That is unless a standard system can be used. After all, 

most applications that exist today can be accomplished with 
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a computer capable of a 120 ns ADD. 

While bit slice has a definite advantage now, the 

advantage v.rill fade over the next decade unless the 

circuitry can be integrated into larger and faster slices. 

The problem is to get a faster technology into a smaller 

area. It is not an easy problem because most technologies 

require more power to go faster. As the size of the chip 

is reduced the power per unit area goes up. In the end, 

the monolithic microprocessor will probably win out, but 

until then the bit slice does offer some definite 

advantages. 
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10.0 SUJv!NP..RY 

There are two broad areas of interest in this computer 

design. One area is cost, and the other area is 

performance. Cost includes the actual hardware cost, 

construction time, hardvvare design time, and firmware cost. 

In the area of performance vie are concerned with the 

aspects of speed and flexibility. 

The design of this system took several months of 

gathering and reading the material on bit slice tec~~ology 

and on the instruction sets for the PDP-11, NOVA, and PACE. 

Then came several design iterations as I tried to 

assimilate all the material. Finally, it took about six 

weeks to design the computer hardware. 

In the construction phase, not counting the time it 

took to strip the vdre ;rrap board, it took about two and a 

half weeks to vdre vr.rap and document the board. An 

additional week was req_uired to find the wiring mistakes 

and other problems \Vi th the 1Nire wrap board. 

As for the limited instruction set reduced to firmware, 

two weeks were required to VvTi te the original RTL programs, 

a.~d two additional weeks were needed to write the binary 

code. Of these instructions only the FETCH, LDA, ADD 

(original), ADD vdthout shifts or skips, and ADD vdth left 

rotate and skip always were checked out. The total time for 

the checkout was probably no more than two weeks, but the 
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problem of programing the PRO:H 1 s at work and checking the 

firmware at home added a great deal of time to the 

procedure. 

In the performance area, the results were not as good 

as hoped for, although new and more innovative approaches 

could significantly reduce the execution time. It has 

become apparent that this is not a one man job. Rather 

the task should be attacked by a well coordinated design 

group. The complete design and construction of this 

computer could well take two man years. To avoid the 

problems of a project of this size, such as the 

demoralization that comes from chipping away at a large 

problem with no apparent progress, at least six people 

should be used. Two people should be used in the hardware 

area. One person should design the CCU and the other 

should design the memory and peripheral interface. Two 

people should be used to design the firmware and one person 

should design the monitors and assemblers so something can 

be done vtith the machine once the design phase is finished. 

Finally, one person is needed to bring the total design 

together into one cohesive effort. This person should be 

able to understand both the hardware and the software 

aspects of the computer so he can coordinate the two 

efforts towards the same goals and provide help in each 

area when it is needed. 
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