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ABSTRACT

NOVA CPU IMPLEMENTATION WITH 2901 BIT SLICE
by
Larry Wayne Abbott

Master of Science in Engineering

There are several methods which can be used in the
design of a digital computer. EZach of these approaches
has 1its advantages and its disadvantages. To learn the
trade=offs that apply to the bit slice and microprogranm
methods, a partizl build up of a NOVA CPU was done. 1In
the build up, special attention was focused on the
sequencing and control of the CPU. The Project Report
vresents the outcome of the hardware build up and, in
particular, it addresses the issues involved in microcode
sequencing and decoding. Two méthods of seguencing and
decoding are presented in detail. One method relies on
firmware to do all the sequencing and mode decoding, such
as address modes. The other method relies on firmware
and the Mapping PROM to do the sequencing and mode

decoding. This project Report investigates the



implications of both methods on speed and memory
requirements for the CPU. [Finally, this Project Report
rresents technology trsnds, and investigates the potential

use of bit slice technology in future systems.
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firmware, and organizational reculrements
performance minicomputer design. To fulfill this goal a
computer central processing unit was constructed within
thé constraints of the time and money availablse t0o mes

Several design criteria had to be considered,

balancing time and money available against firmware and
hardware goals. The results of this trade~off are as
follows:

le The bit slice approach was chosen. This approach
gives ease of interfacing the various elements of
the computer. Bit slice fabrication technology
is also capable of providing the speed necessary
for a high performance minicomputer,

2. The instruction set chosen was an emulation of
the Data General NOVA 1200 sets It is relatively
eésy to implement, offers adequate power, and has
a large expanding software base. In addition,
at least two software compatible microprocessors
exist, the Fairchild 9440 and the Data General
MN6O1.

3« Only representative instructions would be micro-
vrogrammed because of the large amount of time

required to microprogram an instruction.




L. Certain sections of the CPU would not be
completely built, and.other sections would not be
built at all because all the info}mation wanted
could be learned without a full implementation.
For example,. only one of the four Register and
Arithmetic Logic Units (RALU) is used because

only one is need
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operation under the control of the compute
control unit. In addition, the RALU is an
expensive element, and any reduction in the
number of units used reduces the cost greatly.
5. The sequencer 1s the heart of the Computer
Control Unit (CCU), and the CCU is the heart of
the CPU; therefore the sequencer and the other
parts of the CCU (such as the microstore and

the pipeline register) must be fully implemented

the technigue used in the CCU to control various phases of
the computer ogeratioh. The main technigques used in the
control of the computer are ring counters, random logic,
and microprogramming. In this paper the computer was

designed arcund a microprogrammed CCU. In conjunction
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1.1 HARDWARE ADVANTAGES AND DISADVANTAGES

The choice of the hardware and the architecture can
make the difference between a successful and a disastfous
designe. Since a computer built up from SSI, MSI, and L3I
components is much more exXpensive to build in terms of
both time and hardware costs than the ubiquitous LSI
microprocessor, it 1s imperative that such a computer have
appreciably higher performance and flexdibility than the
LSI microprocessor. A typical computer built with bit
slice techniques would require between fifty and one
hundred integrated circuits just for its CPU. The cost of
components for such a bit slice CPU starts at five hundred
dollars, as opposed to ten dollars for the LSI micro-
processor. Lt becomes obvious that high hardware costs
for a bit slice computer are a definite disadvantage and
that there must be performance gains to offset this
disadvantage 1if the bit slice approach is to be used.

This of course assumes that performance is needed in the

Can the bit slice approach provide the necessary
performance? OQne aspect of performance is the speed of -
the technology being useds As can be seen from figuré Tal
a bit slice computer using a bipolar technology such as
Schottky, low powered Schottky, or &CL would provide the

kind of speed that is necessarye.
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DlC&“ﬂﬂ the right integrated circult technology is

01]

obviocusly no insurance that high performance will be
achieved. The architecture of the computer is also of
great importance. 4 well designed architecture will

&S

imultanecusly verform as many computer operations as

[9)]

possible. This concurrency is achieved by using a
ovipelined microprogram architecture. In this type of

architecture, a wide microorogram word, usually from 40 to
60 bits wide, is sent to an equally wide pipeline
register. This technique allowo one microinstruction,

the one in the pipeline register, to be executed while
another microinstruction is fetched from the microprogram
memory (microstore).

Additional performance is gained from the width of
the microinstruction. A wide microinstruction can command
many actions at the same time, ilncreasing the apparent
speed of the computer.

1

A micropregram approach provides another advantage

Flexibility is a major stirength of microrrogramming. 17

it is necessary to add or change instructions, the
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microprogram can be :as¢ly changed. Most instructio
nave many instructions in common, s0 it may not be
necessary to change =2ll the microcode. It may be possible
t0 simply change the addresses in the Mapping PROM for
many of the instructions. So microprogramming makes the

design sxtremely flexible



Since the bit slice design has the form of an
lterative array that can be expanded by adding more cells,
the bit slice approach allows easy expansion of the
address bus and the data bus while allowing the rest of
the CCU to remain substantially the same. The expansion
ability gives the bit slice approach flexibility through
modularity.

The advantages and disadvantages of the concepts
introduced for the bit slice approach to computer design

are summarized in table 1,7

BIT SLICE COMPARISONS

ADVANTAGES __ DISADVANTAGES
SPEED: Bipolar COST: Time to
technology and microprogram

pipelining
FLEXIBILITY: Modularity

and micro-




TRMWARE ADVANTAGES AND DISADVANTAGES

.
o
tuf

The major advantage of firmware i1s the flexibility
gained from the microprogramming techniqué. The
disadvantage is the large amount of time it takes to write
microcode. The Advanced Micro Devices literature (AMD,
1977 ) describing the 3System 29 microvrogramming
development system gives the following time and cost
for microprogramming. For manual microprogramming ''"one
word of microcode per day is allowed on U.S. Government
contracts. Three to five words of microcode per day
appears Lo be a reasonable standard on commercial projects
«»+.""s This means that a 1000 word microprogram would

take one man~year to accomplish, and even using the Systenm

L)

29 development system, 1t would take half a man-ysar to
develop 1000 words of microcode. It is clear that the

cost of microprogramming i1s a disadvantage. It is also

evident why only representative instructions were micro=-
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project. In essence, the csase of hardware

design comes at the expense of higher firmware cost.



2.0 SELECTION OF THE PROPIR BITVSLICE FAMILY

After the decision has been made to design the

computer using the combined techniques of vit slicing,

I..J .

pipelining, and microprogramming, there is the problem of
selecting which of the bit slice families to use. One
important criterion in selecting a device for a design is
avajlability. This involves more than finding out whether
or not the device is in stock.  Availability involves
consideration of such questions as whether the family

is available from more than one distributor, and whether it
is available at a competitive price with good delivery
time. Without the purchasing power of a company, avail-
ability takes on a new dimension. Distributors are not
eager to deal with an individual, especially in the small

quantities required for a one of a kind graduate project.

s

This latter consideration made the only practical choice o

2 bit slice the 2900 series. This choice, however, is a

-
0

good one even under the normal commercial_meaning of
avialability, as shown below.

The available bit slices are shown in table 2.1.
From the table one could pick out the reasons that certain:
bit slice families were not chosen. The following sections
are presented however, to make it clear why certain
families were not chosen for this project. This is not to

say that these families are not well designed; actually,
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PABLE 2.1

SLICE FAMILIES

. ) .= z gﬁ g o1 . = ‘i 15.-:
El.5 a8 ERILE 8 | o155 S 8|z 5l 58123
5| 5y (3B|TEl5E| e| 25|is| Br |ialen i) e | |3l 5 |EN ki
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Compiry i E2| 22 (2R 23| 58 28| 3v|EE] 2% JeR[ESE5 | A% 3% i) 25 (8% &% 43 Comments
Adwsaced Misis Devices 29004 SYIL | 29014 L] 16 o W i 0] 199/ 4 i Y Axa J28/20 | Yes $ Yes | Ves | Yes ) Has widest nvinber of second sousces
SIHL { 2903 4 't} No- 10 i 48 ' ALY has nine mace inghructions Lhan 2901,
. including mulliply aud dinde,
- faiccnila_ Macealagic é%é Wi |4 |6 | n b b e |l ses foad o foefea | (v |8 v | ve | ves | onos vasion 347055 wpenes at 2 M
1004 8-t | EGL ALY 4 ] Yes | 20 i . . . . * b . * =45.~2 11978 | 1978 | 1978 Onty B-bit shice
intel 3000 {311 Jui2 2 [ Na 10 i i3 300 91 Moy H I'E 49 Y |8 Yos | Yes | Yes | Oniy 2ua ALU acaialle
Monzlithic Memores 5100/€200 pSTIL | 5146700 4 kY3 tio ] 13 T w0 6710 8§ W+ ] [} 40 Yes H) Yes 1 No { itas double-addiessag capabihly
Motorola 163001 £CL | 30a00 4 e+ | Yos 20 0 AB | 10804 4 4] 18§ x4 48 Mo | —2,~52 [Yes | Yes | Yes | fastest bt shee avaitaute
Nativaal Striiconducion INB-4 IPRS | 00A/520 4 8 No } A7TI41 20 Wi W 4 1S4 100+ Fin AU Yes 3 48,-12 J¥u | Ves | No fNeed ewternal register fie
‘ ez 3 Fsts 4 3 No | snal %0 b ooz | o8l snal oo tinau ] [ye 4502 fves | ves | Rofuses iMP4 ALUs witn by ROM
INP-LE TGS | GO 3D ] 8 My J 514 0 4] e WS4 100+ [ inAlu ] M4 Yoy | +5-12 s Y;a No | lwo desclopment syshems available
Teass instrumeais SBP‘NGOA‘ LR G0 14 HY4 Ko 3 1 40 745482 4 20 [} AX4 20 Yes | Cumeal  fves | o No { Hau pipeline iegntar
\ SER-3BIA | fSuP 001 | 4 [N te 1Y i 401 245482 4 Y] 64 X4 0 Yoo § Comet fees | No Ko { Does Aot bave pireins oo, sier
138360 510§ 745481 4 cudda Ko 1o [ sal iz 4 P ooy W Yis H Yes | No | Yes fvery fleable insiuclion set

Source:

Electronic Design,

1977,

page 60
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some of the families are better suited than the 2900 for

some applications.

Without going into too much detail, the decision not
to use the IMP was based on the technology and not on the
functional design of the IMP chipse First, the IMP is
implemented in PMOS which means it is slow, too slow for
this application. Additionally, it uses multiple power
supplies, requires TTL level shifters to be TTL compatible,
and is not second sourceds There the IMP was not thought

to be suitable for this applicatione.
2.2 THE MOTCROLA 10800 FAMILY

The 10800, which uses ZCL technology, is another
family that was not chosen because 0f the technology. In
this case the family is fast enough; in fact, it is too
fast. The speed is accompanied by high power consumption,
small (800 millivolt) logic swingsg and by noilse created by
the fast switching speeds. Further, the 10800 is not TTL
compatible because of the 800 millivolt logic swing. As a
result of all these disavantages fhe 10800 family was not
chosen. ECL is the type of technology that is more

appropriate for high performance mainframe computers.

10



2.3 THE TEXAS INSTRUMENTS FAMILIES

The two families considered from Texas Instruments
were implemented with Schottky and integrated injection
logic (IzL). The SN74S481 was the Schottky implementation,
and the SBPO4LOO and SBPOLO1 were the IZL implementation.
Neither of the Texas Instruments families were chosen,
however, each family was rejected for different reasons.

In both cases the software support is practically non-
existent, and, as has been pointed out earlier, microcoding
is time consuming and needs to be done on a micro-
programming development system for commercial applications.

The SBPOLOO and SBPO4O1 were just too slow to be used.
In fact the shortest microinstruction time was 350 ns and
the maximum clock frequency was 3.3 MHz. Single chip 16
bit microprocessors can do as well.

The SN7LS481 is an extremely Fast (67ns) and versatile
integrated circuit, but it does not fit into the architec-
ture of the computer being designed. If the SN7LSLET werse
used in this architecture its system speed would be much
less than the 67ns the instruction time indicates. This
paradox comes about because of the NOVA architecture. A
NOVA uses four accumulators in the CPU for working
registers; the SN74S481, on the other hand, uses 16
working registérs in the main memory. To obtain four

accumulators, the SN74SL81 must locate them in main memory,

——d
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and unless one i1s willing to accept the higher price and
comélexity of high speed cache memory one must settle for
the more realistic 300 né memory speed. This means that
the cycle time of the computer designed with the SN7LS481
is baéed on 300 ns cycle times and not on the 67 ns of the
basic SN74S5481. With cycle times approaching 367 ns the
SN7L4SL81 would appear no better than the SBPO40O0. The

SN74S481 was not chosen because of this reason.
2e4 THE INTEL 3000

The Intel 3000 series has two problems associaied
with it. First, the slice is only two bits wide, which
means that it would require twice as many chips as a four
bit slice to accomplish the same job. Secondly, the
sequencer (3001) addressses only 512 words of microprogram
memory; however what is really difficult to live with is
the fact that the sequencer can not go from any location
in the microprogram store to any arbitrary location. The
‘addressing scheme divides the microprogram store into rows
and columnss The sequencer can only jump to locations in
-the row or column of the originating microinstructione.
This was felt to be an unnecessary restriction, and, as a

result, the Intel 3000 was not chosen.



The Fairchild Macrolcgic family

[¢]

omes in two versions,
Schottky and CMOS. The CMOS version is too slow for this
vroject; however, the Schottky version is quite

Schottky version, the $405, is not quite as complex as the

n

901; for instance, it does not offer the two port RAM so

e

he RALU can not write and read the RAM at the same time

or read two RAM locations at the same time. As a
consequence, the 9405 comes in a smaller 24 pin packags and
costs less than the 2901 (#12.00 versus $14.70 in 100
quantity). The complexity of the 2901 allows mcre to be
done in a microinstruction; however, it does not have an
edge in chip count over the 9405, The 9405 does not seem
to have as many support chips as the 2901, and in this areca

1

hio count to the

some applications may give the edge in

¢}

O

2901. On thes other hand, both groups of support chips seem

+

to be well thought out, so a determination would have to
wadt for a preliminary design with Goth families.

On a technical basis the tradeoffs between the 9400
series and the 2900 séfies would make the choice a
difficult one; in fact, for this application Fairchild has
implemented a NOVA 3 emulation with the 9400 series. FHven
on a commercial availability basis the 9400 is acceptable.
While it is true that the 2900 has more second sources than

the 9400, the fact remains the 9400 is second sourced.



Therefore, the only reason for making the choice of the
2900 was the lack of availability of the 9400 through the

low volume distributors that an individual must deal withe.
2.6 MONOLITHIC MEMORIES 6700

The Monolithic¢ Memories 6700 aprears to be the
forerunner of the 2900 series. As consequence, there is
nothing the 6700 does that the 2900 cannot do better or
faster. Even the pinouts are similar so it makes little

sense to pick the 6700 series.
2.7 ADVANCED MICRO DEVICES 2900 SERIES

There were many obvious reasons for selecting the
2900 series such as availability (the 2900 has manyr
sources, incliuding AMD, Fairchild, Monolithic Memories,
Motorola, National, Raytheon, Sescosem, and Signetics ),
single power supply, TTL compatibility, and Schottky
speeds. However, these are the simple and obvious advan-
tagese The important advantages are less obvious and more
complicated. |

The sequencer provides several of these advantagese.
With the 2909 or 2911 sequencers, any address can be
reached from any other address in the microstore. The next

address can also Dbe reached via a four word amicro-



instruction stacke. The 2911 is discussed in greater detail
in the sectién on hardware implementation, along with the
other components of the 2900 chip set.

Another strong point of the 29OO series 1s the two
vrort RAM in the 2901 RALU. With a two port RAM several
RAM operations can occur during one microcycle. For
instance, the contents of register Al4 can be added to the
contents of register B3 and loaded back into B3 with a left
shift, all in one microcycle. The resulting throughput of
the machine is much greater than its clock rate would
indicate.

The large selection of support chips, such as the
AM2930 Program Control Unit (PCU) makes the 2900 an
especially powerful set from a total system point of view.

All the preceding elements are more throughly
discussed in the sectdon on hardware implementation.
However, an area that is not discussed in detail slsewhere
in the paper but is of upmost importance is the
microprogram develovment system available for the 2900
series. It is not the only system available ( see table
2.1 on bit slice families), but it is coupled with what is
perhaps the best of all the bit slicese.

Several versions of the develoovment software are
~availables The first version is the AMDASM microcode
assembler, which is available on national time sharing.

Later developments are the System 29 and its implementation

15



via floppy disk on the Intel 8080 development system.
Since the System 29 runs under the control of an Am9080,
its software is compatible with other hardwars systems that
use the 8080 or its derivatives.

The Advanced Micro Devices Microprogramming Handbook
(AMD, 1976a) contains the example shown as figure 2.1 of the
use of the AMDASM microcode assembler with AMD!s CCU design
(figure 11 in the Microprogramming Handbook). Additional
information can be obtained from Advanced Micro Devices or
Raytheon in handbooks describing AMDASM or RAYASM in more
detail.

Figure 2.1 contains several microprogramming sxamples
done with AMDASM. The examples assume AMD's design for a
CCU (AMD,1976a). It should be noted that there is a great
deal of gimilarity between AMD's CCU design and the CCU

designed for this paper.

-

AMD'!'s CCU uses 26 of the bits in the 64 bit wide

microinstruction word. Table 2.2 describes the 26 bits
and their functions by dividing the microinstruction into

o,

five fields.



: THIS IS AN AMDASM MICROPROGRAM ASSEMBLY.EXAMPLE!

: AMDASM REQUIRES TWO PHASES; DEFINITION AND ASSEMBLY.
. b B

; FOLLOWING IS THE DEFINITION PHASE AND THE DEFINITIONS
; REFER TO FIGURE 11,

‘INOF(D 64 ;DEFINE A 64 BIT MICROINSTRUCTION

'; THE FIVE MAIN CCU FIELDS ARE-AS FOLLOWS:

: MO —M11: - A 12.8IT NUMERICAL FIELD USED TO
; SUPPLY: THE PIPELINE BRANGH ADDRESS
; QR COUNTER LOAD VALUE,
© M12-M15: THE AM29811INSTRUCTION
M16-M20: CONDYHONCODElESTSELEUT&POLARlTYCONTROL
; M21 : INSTRUCTION REGISTER READ-IN
: M22-M25:  THE AM29803 INSTRUCTION

; DEFINE THE DEFAULT PIPELINE BRANCH FIELD.
; ITWILL FORCE THE MICROPROGRAM TQ THE HIGHEST
: MICROPROGRAM MEMORY LOCATION IF LEFT IN DEFAULT FORM.

NUMB: DEF 52X, 12vuo,77n

: ; DEFINE THE CONDITIONAL TEST SELECT FIELD AND POLARITY CONTROL
; DEFAULTS ARE: NONINVERTED AND UNCDNDITIONAL
TESTS ARE ACTIVE LOW!

TEST: DEF 43X, . 4V%:D#0; 1VB#H0, 16X

'CNTR: EQU 15 ; COUNTER ZERQ TEST SELECT
-~ NV EQU B#1 ;POLARITY CONTROL

DEFINE THE AM29811 NEXT ADDRES3 CONTROL UNIT
; INSTRUCTION MNEMONICS.

.‘JZ: . OEF 48X, 12X ; UMP ZERQ

H&0,
cJs: DEF 48X, H#F1, 12X ;CONDITIONAL JUMP SUBROUTINE
JMAP: " DEF 48X, H¥F2, 12X JJuMP MAP
CJP: OEF 48X, H¥3, 12X ; CONDITIONAL JUMP PIPELINE
PUSH:  ~DEF 48X, H#4, 12X ; PUSH/CONDITIONAL UDAD COUNTER -
JSRP: OEF 48X, H#5, 12X ;CONQ-JUMP SUBROUTINE REGISTER/PIPELINE
Civ: . DEF 48X, H#§, 12X ; CONDITIONAL JUMP VECTOR '
JRP: OEF 48X, H#7, 12X ;CONOITIONAL JUMP REGISTER/PIPELINE
RFCT: OEF 48X, HE8, 12X ; REPEAT FILE LOOP'ON COUNTER .NE. ZERO
RPCT ‘DEF 48X, H£9, 12X ~;AEPEAT PIPELINE ON COUNTER .NE.ZERO
CRTN: DEF 48X,  H#A, 12X ; CONDITIONAL RETURN
cJpp:” DEF 48X, H#8B, 12X ; CONDITIONAL JUMP PIPELINE & POP
LOCT: DEF 48X, H#C, 12X ;LOAD COUNTER & COMTINUE

LO0P: OEF 48X, HF0, 12X ;TEST END LOOP (CONGITIONAL LOOP ON FILE)
CONT: OEF 48X, HFE, 12X ;CONTINUE

JP: DEF 48X, H#F, 12X ;JUMP PIPELINE
FIGURE 2.1 An example of AMDASM microcode assembly
From: AMD, 1976& vage 1-16




1

;THEDEFAULTFOBDATABUSREADJNOFINSTRUCHONREGSTERISDSABLE

n8:
iN:

BEE

EQU

42X,
B#0

1VB#1, 21X

; DEFINE THE AM29803 16—WAY BRANCH CONTROL UNIT
; INSTRUCTION MNEMONICS.

NOT: .
T0:
Ti:
T01:
T2:
T02: .
Tz
T012: .
T3:
703:
T13:
T013:
T23:
T023:
T123:
T0123:

~.. ENO

DEF

DEF
- DEF

OEF

ODEF

DEF
DEF

" DEF

DEF
QFEF

OEF-

DEF
DEF
DEF
DEF
DEF

38X,
38X,
38X,
38X,
38X,
38X,
38X,
38X,
38X,
38X,
38X,
38X,

- 38X,

38X,
38X,
38X,

22X
22X.
22X
22X
22X
. 22X
22X
, 22X
22X
22X
22X
22X
22X
22X
22X
22X

B R T TR T TR LT T R T i | RO i T e { T 1
*\monmpmoo-dmmnf»:\z:-c

ITXTIXTXIXTXIIITIT ITXIXII

. END OF DEFINITION PHASE

* BEGIN ASSEMBLY PHASE

FIGURE 2.1 continued

From: AMD, 1976a Dpage 1-17
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0001
0002
0003
0004

0006

0007
0008

0008
0010

a1

00F0
00F1
00F2
GOF4

0005 -

00F8.
00FC XXXXXXXXXXXXXXXK

Y EXAMPLE 1.

0RG H#OFO
SWAP:

NUMB 0006+ & TEST , & PCLC & TD123

RFCT & TEST CNTR , & T0123
CJV & TEST , & T0123

ORG HE0F4

ORTEST2:  TEST , & JPL & NUMB H#1F0 ;#2 HANDLER AT LOCATION 1FD

QRG H#OF8
ORTEST3:

0RG HFOFC

ORTEST23: TEST , & JPL & NUMB H#3F0 ;

END

XAXRKAXXXXXXKXXXK
(9 9.0.9.999.99.9.9.0.9.9.9
XEXXXXXXXKXXXKXKKX
HXXAXXXKXXXXKXKXX
19999999 896 09,9994

TEST , & JPL & NUMB H#2F0

KXXXXXXXXXKXXXKXX
1 9.9.90.8.9.9.9.9.0 99098
1999909999 9.098.94
AXXXXXAAXLAXXKXXKK
XXKXXXXXXXXXKKKX
XXXXXXKXXXKXXKXXX

; VISUALIZE A 16-BIT PROCESSOR IN A REAL-TIME ENVIRONMENT

: GATHERING AND'MANIPULATING DATA. PART OF THIS OATA ARRIVES

; IN'B-BIT BYTES SO SWAPPING IS NECESSARY. ALSO, THERE ARE

;; TWO CONTROL SIGNALS WHICH REQUIRE IMMEDIATE ATTENTION

; WHEN ACTIVE. ASSUME THAT THESE CONTROL SIGNALS ARE CONNECTED
;T80 72 AND T3 OF THE AM29803 16-WAY BRANCH.CONTROL UNIT, FOLLOWING
;1S THE AMDASM QUTPUT FOR THIS EXAMPLE'S ASSEMBLY PHASE;

; WHICH INCLUDES THE'SOURCE LISTING ANO QUTPUT BIT PATTERN.

; IN THIS EXAMPLE, THE MICROPROGRAM STARTS AT LOCATION

;0360 OCTAL. AS MENTIONED EARLIER, THE ALU PORTION OF

; THESE EXAMPLES IS NOT DEALT WITH.

;#3 HANDLER AT LOCATION 2F0

XXXXXX1111X00000
XXXXXXT111X11110
XXXXXX1111X00000
XXXXXXXKXXXX00000
HXXXXXXXAXKX00009
XUXXXXXKXXXX00030

#2 AND#3 HANDLER AT LOC 3F0

gi1gotritt1111ygat
TO00X XXX XX XXX XXX
B1TTOX XXX XXXXXHUXK
11110001111100400
11110010111100080
111100111 1110000

FIGURE 2.1 continued

From:

AMD, 1976a

page 1-18
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; EXAMPLE 2,

; ALIGNMENT CAN BE REALIZED IN ONE MICROINSTRUCTION: ASSUME
; THAT F3 OF THE MOST SIGNIFICANT ALU SLICE IS CONNECTED TO

; TEST 13 OF THE CONDITION MULTIPLEXERS. NOTE THAT NEGATIVE

; MUMBERS CAN BE ALIGNED IN THE SAME MANNER 8Y SIMPLY

; OMITTING THE VARIABLE "INV”, ALSQ, IF THE COUNTER IS CLEARED
; BEFORE STARTING ALIGNMENT, IT WiLL CONTAIN THE NUMBER OF

; SHIFTS. REQUIRED TO 00 THE ALIGNMENT {OR THE COMPLIMENT

; |F USING AMZ51.5163 COUNTERS).

+

000+

0002
6003

0RG Q#0770
ALIGN:
END

NUMB 0770 & TEST 13, INV & RPCT

ALY TO SHIFT up)

G1FB XXXXXAXKHXAXXXKX XXXXXKAXKXXXXXAKX KAAXXXXXKXXXT1011 - 1001000111111000

; EXAMPLE 3.

: A DIVISION ROUTINE. ASSUME F =0 OF THE ALU IS CONNECTED TO

; TEST-12 (AMD F3TQ TEST =13 AS BEFORE), AND SIXTEEN

; DIVISION STEPS ARE REQUIRED. IF THE FINAL.REMAINDER IS NEGATIVE, IT MUST BE
. ; RESTORED BY ADOING IT TO THE BIVISOR. THE VECTOR INPUT ISSET UP

; FOR THE ERROR ROUTINE. NOTE USAGE OF THE AMDASM CONVENTION

+-“$" T0 OENOTE THE CURRENT PROGRAM COUNTER.

.

0001

ORG Q#1000

0002 OIVIDE: LOCT & TEST, INV & NUMB 0#14%. ; {ALU 'QUTPUTS DIVISOR)
0003 CTEST 12, INV & CJV . ;1F=0: ERROR
0004 - RPCT & TEST CNTR, & NUMB S ;LogP
0005 TEST 13, INV & NUMB $+2- & CJP ;IF R <0, CORRECT
0006 .TEST, & JMAP JEXIT TO MAP
0007 TEST, & JMAP JALU ADOS REMAINDER TO DIVISOR, EXIT MaP -
0008 ENOD - - A
0200 XXX XA XXX XK XXX XXX AXXOOCCXAAX AKX XK XXX XKXXNKO0001T 110011 V111110001
0201 XOOCKXX XXX XHXXH X R XKXXAXXXLHXXKAN XUXXXXKXXXXTI00T GTIDXX XX KX XX XXX
0202 XXXXXXXXXKXK KX KK XXX XXX LN AN KRN X AXAXX XXX XKI1110° 100100100000001C
0203 XXX XXX LAXCLXAAX AR K AXKAL XX LRXXXXX XAKUXXXAXAXKT101T1 007100610000060.101
0204 XXXXXXXXHXAXXXXKXX XXX KX XXXXXXXXKXXK KX XX XXXXXKXX00000 GOIOXX XX XXX KXKXXX
0205 XXAXXXHUXXHAXX LXK XHUXAKXKKXXAKXAKKXKXAX XXX HUXAX KA XKBO000 BOTOXXXXX AKX XKAX
FIGURE 2.1 continued
From: AMD, 1976a page 1-19
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TABLE 2.2
CCU ASSEMBLY DEFINITIONS
22-25 21 16 -20 1215 0—11 BIT NO.
Am29803 inst. Test Select™* Am29811
Instructions | Register and Polarity Instructions | Numerical Field*® | Field Descriprio_rl_
T0 I The Test Jz Any 4 Parameters
T1 Number CcJS Digit {12 To 8e
T0Y {1—-14) in JMAP 8it) Octal Used
T2 Decimat, cJp ‘Number
T02 and: PUSH
T12 CNTR JSAP
T3 for Test civ
i TO3 Select. JRP
1. T3 {Uncondi- RFCT
4 T013 tional by RPCT
1 723 default) INV CRTN
4 TO23 for Test cJPp
7123 Polarity LDCT
012 {noninverted LooP
TO123 by default) CONT. -
NOT P
Source: AMD, 1976a, page 1-15



3.0 RBASIC MICROPROGRAMMED PTPETLINE ARCHITECTURE

The computer design in this paper incorporates the

ot

echniques of microprogramming and pipelining. A basic
functional block diagram of this type of system is shown
in figure 3.7. The functional bvlocks perform wvarious
phases of the computer's operation and are listed below
along with a brief description of the function of each. A
more detalled presentation of each element is given in the
section on the hardware implementation. This section is a
simple overview to familiarize the reader with the total

architecture.

3.1 INSTRUCTION REGISTER

The instruction is clocked into the instruction

register from the data bus when the pipeline r ter

D
10}

gl

Q,

sends the proper command. The instructdon is held in the
instruction register (IR) until the pipeline register

commands ancther IR load. From the instruction register
the instruction is routed to the Mapping PRCM, RALU, PCU,

and the input and output (I/0) control.

3.2 MAPPING PROM

The Mapping PROM contains the address to the starting



<: | DATA BUS N

VJ\JL , _ , .
- .
L\‘ -
luL f 1/0
NDECODE
MAP DPROM v/
'L
k)
o 5171 &
S S 1 2 g |, STATUS
Z FE z |
S PP~ 2 2 |\ REG
=i =3 [ L 7
w2 Cn 0 ool 4 4
|| PIPELINE . N
MICROSTORE |_, /| RALU
“|REGISTER | |
TRI"’ S A
>-STA-E | /
"I BUFFER <
) PCU
k4
ﬁ' MAR

FIGURE 3.1 Functional block diagram of microprogram

type computer.



oints of esach instruction'!s microcode in the microstore.

By routing the instruction from the instruction registe:

]

to the Mapping PROM, the correct starting address for the

instruction's block of microcode 1s generated.
5.3 SEQUENCER

The sequencer selects the proper source for the next
microinstruction address. The next address may come from
the Mapping PROM, the pipeline register, the sequencer's
stack, or the sequencer's R register. The source for the
next instruction depends upon the situation, as will be

seen later in the examples of microcode.
3.4 MICROPROGRAM

The output of the sequencer is sent to the micro-
program memory and the output of the microprogram memory
is clocked into the pipeline register on the next clock
pulse. Once in the pipeline register, the instructicn is
executed by sending commands to the RALU, PCU, MAR, MBER,
sequencer, and other computer elemenfs. The microprogram
sends the sequencer the code for the next address source
snd may also send the branch address if the situation is

called for. This process allows the previous piveline

word to fetch the next microcode while the present code is



being executed. This
computer to run twice

system was processing

varallel operation allows the
as fast as would be possible 1f the

1

the microcode serially. Filgure 3.2

illustrates how this overlapping operates.

EFFECTIVE DURATION OF EACH ADD
DX INSTRUCTION = 3 MICRO CYCLE

ACTION

' I

FETCH
INSTRUCTION

DECODE
INSTRUCTION

FETCH BASE
ADDRESS

FORM EFFECTIVE
ADDRESS

FETCH
OPERAND

ADD OPZRAND

AND SAVE RESULT A

ve)

MICRO CYCLES

(| 2 3 4L 53 6,7 8 9
Y '

ACTUAL DURATION OF EACH

ADD DX INSTRUCTION = 6

FIGURE 3.2 Example of an instruction using pipelining

and the effective increase in throughput. The

instruction is a diresct-indexed addition.

From: Muething,

1976
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The pipeline register is loaded from the microgrogrém
and is usually between 40 and 60 bits wide. These bits
are formed into many different fields which control the
different elements of the computer. For instance, the
pipeline register has fields to control the next
microinstruction address sources, the function of the ALU,

the operation of the I/0 unit, the program addressing, and

all the associated registers.
3.6 RALU

The 2901 contains 16 two port registers, a § register,
an 8 function ALU, output multiplexer, and shifting
apability (the more complex 2903 also has provisions

to do two's complement and floating point operations).
3.7 PROGRAM CONTROL UNIT (PCU)

The PCU is a powerful integrated circuit that contains
a stack, incrementer, and other necessary elements to do
most forms of addressing, including direct, indirect,

indexed, and relative.



4.0 SELECTION OF THH INSTRUCTION SET

Deciding on which instruction set to use in the
computer design was the most agonizing vart of the design.
The goal was an instruction set that was both easy to
implement and had a large existing software base. The
cholce soon narrowed down to =ither the PDP-11 or NOVA
1200 instruction set.

The PDP-11 instruction set (figure 4.1) has one of the
largest bases of existing software. In addition, Digital
FZquipment Corporation and Western Digital produce a PDP~11
software compatible microprocessor. The availability of
the microprocessors would allow the development of software
on a relatively large and fast system, such as the Am2900,
and allow total software transfer to a small dedicated

system later if desirsd. However, the PDP-11 instruction

rr
ct

set is particularly difficul O implement because of its
poorly structured op code fisld. This op code field
difficultly would have required expensive Programmabls
Logic Arrays (PLA) to implement the instruction set.. Since
the PLA's are not reprogrammable, this would nave been cost
vrohibitive on a one of a kind systen,

As can ve seen from figure 4.2, the NOVA instruction

set is simpler and more clearly structured than the PDP-11

instruction set. There ars separate fields for the ALU

27



1. Single Operand Group (CLR/ CLRB LCOM,; CO\ABJNCJNCB
DECDECBNEGNEGBADCADCB,
SBCSBCB,IST,TSTB,RORRORB,

ROL.ROLB,ASR ASRB,ASLASLB JMP,

SWABMFPS MTPSSXT.XOR)

2. Double Operand Group (B{T,BITB BIC BICB BIS BISB.ADD,
SUB MOVMOVE.CMPCMPB)
OP Code T ) DD ]

- A . ] 2

5 6 s 0

3. Program Control Group
a. Branch (all branch instructions)

: r . OP Code ] offset J
3 7 o 0
b. Jump T o Subroutine (JSR): '

0o 4« ] ®r [ oo ]

¢. Subroutine Retum (RTS)
o, o 0 2 o, | R ]

I A ik, N | A 2 e i 2 1,

d. Traps {break point, [OTEMTTRAPBPT)
1 - OP CODE ' |

L X A 1 X, 1 Y L A A A e

e. Mark (MARK)
o, o 6 4 1 . N ]

o "

f. Subtract 1 and branch (if = 0) (SOB)

NN BN B

e d

4. Operate Group (HALTWAITRTIRESETRTTNOP)

. . . . ., oecopE |

5. Cohdilion Code Operators (all condition code instructions)
[0 o o. 2 Jifonn[z]v]c]

6. Fixed and F!oaung Point Arithmetic (optional E1S/FISYFADD,
FSUB FMUL FDIV MUL,
DIV.ASH ASHCO)

U OP CODE 1 R

'

FIGURE 4.1 PDP-11 instruction set

From: DEC, page 33
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9440 INSTRUCTIONS

L) ' ] 3 4 s s 7 [ ) w12 13 15
) opconE ]— uooE l OISPLACEMENT J
: ! L
ANDIRECT ADDRESSING
t o | omect 60| race 2E70
1§ INOIRECT 0§ 1] PCHELATIVE
1] 0§ INDEXED Vid AC2
. 11 11 OLXED VIA ACY
MEMORY REFERENCE —iafalac
afoialafaf me | s {a{aco
clojolo}ltt 3R WITHOUT ¢ §.1 13
ojojoefrjol sz j REGISTIR : 1]0{ac2
ofofof1{1{ osz ) | 141 aca
ofafrjalal woal: wnu
af1f{0afaf sTa [ REGISTER !
—

Lo

Memory Reference instructions without register are used for branching (JMP, JSR) without invalving accumulators.
These instructions-are aiso used for madifying memory (1SZ, DSZ). Memory Reference instructions with register are used
to move 16-bit words between the memory and the accumuiators.

[ 1 2 3 % 5 [ 7 ) 2 W11 12 .13 1 s
1 SRG osT FUNCTION SHIFT canwy  |LOMD . s
T AU SELE -

i v adl SXWP CODE

¢ja|ace e {0 ACD

e ft]act 841 ] act 6 |8 {0 | DONCTHING

110 ac2 1 {0 acz o o1} skieaLwars

1§11 aca 1411 ac 4 |t |0 ] SKIP QN ZERD CARRY

= o |1 [t | 5KiP ON NON-ZERG CARRY
116 |0 | SKrON ZERQ RESULT
. 116 1] SKi® ON NON-ZENOD RESLT
: i 111 10| $XiPF EITRER CAFAY O RESULT 2840
r " 1 131 [ SxiP (P BOTH CARAY AND AESULT NON-IERO
FUNGTION . - " i'— r‘"

8] 0]0] COMPLEMENT { — L
o|nfl| HEGATE i SHIFT 7 00€ ’ CARRY COOE
e tijol MOVE T eannt
(] A} 1 IMCREMENT Q @ § DO NSTHING 918 | CURREN n =
1 {00} ano comPLement 0 | v [ ROTATE LEFT ONCE el )zeRo _— LGAQ miY
1§01 1] susTRACT 119 | RQTATE RIGHT ONSE 110 {ONE 8 | LOAD RESULT IM BST-AG
111 }a{a00 1|1 {uYTE swap 1 |+ |-COMPLEMENT CURAENT CARRY 1| DONQT LOAD KESULT IN ISTAG
1i1d1] AND. .

Arithmetic/Logic instructions perform arithmetic{ADD, ADC, INC, NEG. SUB} or Soolean{ AND. COM, MOV} operstions
on the contents of two registers. The resuit of each operation together with the Carry bit can be rotated and tested for skip
conditions as part of the same arithmetic/logic instruction; loading in the destination register is optional.

1 2 3 . £l £ 3 T 3 ] il ] " 12 13 14 B !5
ac \ oevice cane
9PGODE ]- AODRESS r TRANSFER i CONTROL { USED TO SELECT ONE OF 4 osvn:r.s]

RN il oLt

1O INSTR] [ ac acoress - £oesTRGL
°T‘Y‘ 9] o] ace - 2 ) o] 0o wMai~iNG
a1 | ac1 0 {1 | sranv v oEvicE
- 119§ AC2 1§10} CLERRADLE 11O DEVICE
1114 ac3 1] 1| sulsesspeciaL FUNGTION
FUMCTION
3] 0] 8] HO VO TRANSFER
. cl{a{i1{oaraina
8 {7 6] cataoura
af1{1|oatams
1194 a{oaraours
1|af1]oaramc
14110 oaTaource
i1 1] 1] 559 ON suUSY 08 DONE

fhput/Output instructions move data between the 9440 accumulators and three buffers in the peripheral device intes face.
These instructions also perform controt functions in the 1/0 device and test the status flags in both the peripherai cizcuitry
and the central processor.

FIGURE L.2 Fairchild 9440 emulation of the NOVA 1200

instruction set

o™

Frcm:' Wilnai, 1977, page
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function, shift, and carry. The ov code field does not

have a variety of lengths as the PDP-11 does. This makes

o e

Mapping PROM easy since EPROM's

[

the implementation of th
T

fa)

2

l..).

can be used. There he added plus of a large and
expanding software base for the NOVA instruction set, and,
as in the case of the PDP-11, there are mlcroprocessors
available that are compatible with the NOVA instruction
set. One microprocessor is from Data General (the MN6O1)
and the other is from Fairchild (the 9940).

It should be noted that the NOVA instruction set is

or

rr

not a particularly demanding set for the Am2900.
instance, the 2900 can easily provide information on
comparisons such as A greater than B, or A less than B;
the NOVA instruction set can not use this information and
must take several steps to arrive at the same decision.

The NOVA instruction set has access to the four
accumulators which are present in the NOVA architecture,
however, since the Am2901.has sixteen registers, twelve of
which the NOVA cannot use, the NOVA instruction set cannot
take full advantage of the Am2901's capablility.

fihen all the factors are considered, the NOVA
instruction set is an acceptable choice for this project
because it has adequate power and a straight forward
structure for its instruction set. Figure 4.2 and figure
L+3% show the structure of the instruction set and the

function of each instruction.



Mnemonic ggéf; Operation

Memory reference instructions

08Z 014000 Decrement. location £' by 1 and skip
it resuit is zero.

iISZ . 010000 Increment !ogcation € by 1 and.skip it
rosuit is zero.

JMP 000000 . Jump 10 iocation €

J€8 004000 Load PC*1 in AC3 and jump to'subrni;-
tine at location £
LDA 020000 - Load contenis of (ocation € intg A0

STA G40000  Store AG in location €

Arithmetic and logical instructigns

ADC 102000 - Add the complement of ACS? 19 ACD?

ADD 103000 - Add ACS to ACD .

AND 103400.. AND ACD with ACD

COM 100000 Place the complement of ACS in ACD

ING. 101400 - Place ACS+1 in ACD

MOV 101000 Move ACS 10 ACD

NEG 100400 . Place regative of ACS-in ACD

sus 102400 Subtract ACS from ACD

ow 473101 i overflow, set Carry. Otherwise divide
ACO-AC1 by AC2. Put quotient n
AC1. remainder in ACO.

MUL 073301 Muitiply AC1 by AC2, add product 10
ACO. put result in ACO~AC1

Input/output instructions

DiA Q60400 Data in, A buifer to AC
o8 061400 Data'in, 8 buifer to AC
o1c 062400 ' Data in. C bufler 10 AC
00A 061000 Data out. AC lo A butfer
[s]e}:] 062000 Data out, AC to 8 vulffer -
DoC 063000 Data out, AC o C dutfer
NIO 060000 No operation

SKP8B8N 063400 - Skip if Busy is 1

SKPBZ 463500 - Skip if Busy is Q

SKPON 063600 SwiaitDeneis 1

SKPDZ. =~ 083700 Skipif Doneis0

Stack mamouiation instructions

MFFP 080201 Move contents of ‘rame pointer 10 AC

MFSP 061201 Mave contents of stack pointer 1o AC

MTFP 060001  Move contents cf AC to frame pointer

MTSP 361001 Move contents of AC to stack pointer

POPA Q61601 Move top word on stack t© AC and
decrement stack pointer

PSHA 061401 Increment stack pointer and move con-
tents of AC to top of stack

3 RET 062601 Restore accumulators, program counter
ang  carry- from  last return  diock
on stack

sAvY 062401 Push a five-word return block on stack

-MSKO 062077 Set up interrupt-disable flags accorad-
ing to masx in AC
ATCEN 071077 Enable interrupts from CPU reai-time

clock
ATCOS 065077 Disabie interrupts irom CPU real-time
: clock
TRAP 1G0010 - Softwara interrupt (ALD format no-skip,
no-i0ad)

Cantral processor controt instructions

HALT 063077 Hait the processar

INTA 061477  Acknowledge interrupt by ioading cade of
nearest device that 15 requeslting an- inter-
ruct into AC bits 10 te 15

INTOS 060277 Oisable interrupt by cleanng irterrupt ON -

INTEN 060177~ Enabte mtertupt by setting-interrupt OM

IORST 061077 - Clear all 1/O davices

V€ - “locAton €7 Genming 10 8 MCALGA WA 40 3AAEI% TOMDUIRA UBHg BeIA S (0 15
of 17 woud and s the PC. AC2 or ACT

2ACS. and ACH relor 10 50UICe And CAFLNAION ACEUMMISION, £ach serered by
& 2:0u1 SacTion of e mairudhon

FIGURE 4.3 microNOVA instruction set

'From: Falkoff, 1977a
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5.0 STATE TRANSTTTION DIAGRAM

The state transition diagram depicts, in grapghical
form, the sequence of events that the computer can go
through in each cycle. The state transition diagram,
shown as figure 5.1, is presented in the form typical of

other state diagrams and should be self explanatory.



RESET POVER UP

Ve i 2 HALT
. RUN

FETCH . INSTRUCTION
- \;/ -
MEMORY REFERENCE

1
1 ' R ¥

PASE. PAEE  PC RELATIVE  VIA AC2 YA ALS

N | J

3

Y

ARITHALOBICAL . , I0, $TACk,
EXECUTE PROCESS CONTRGL
, EXECUTE
) FETCH OATA
<
EXECUTE

FIGURE 5.1 CPU state transition diagram




.0 HARDWARE TMPLEMENTATION

on

Figure 6.0 shows the system design of the 2900 16 it
minicomputer. Figure 6.0 refers to the detailed drawings
(figure 6.1 through 6.12) of the computer functions. The
following secticns describe the hardware implementation of

these functions in dstail.
6.1 IR AND MAPPING PROM

The computer starts its cycle by loading the instruc-
tion register (figure 6.1 in the system design). The
instruction register latches the data and sends it on to
the Mapping PROM. In a final design the Mapping PROM
would consist of high speed bipolar PROM, however, for the
development system relatively slow ultra violet erasable
ZPROM was used because 1t provided more flexibility and
was nore cost effective than throwing away a set of PRCMs

cach time the microcode was changed. This necessarily

slowed down the speed of the computer since the EPROM

9]

used (the 2708 ) have access times of 4530 ns as compared
to 50 ns which is typical of microstore speeds.

The Mapping PRCOM sends the proper starting address to
the sequencer( figure 6.2 in the system design) where one

cf several options will be performed depending on the

»

contents of the pipeline register. For instance, a micro-
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l6 BIT DATAR BuUs

{ % 9np RERD DD B00.0,0 0 >
(sl sl 3]gfilecfiqliz atej4171513
INsTRUCTION] 4 BEB | 3451{1314'3‘1 3Heisig| Y
REGISTER g Ul-745175 [ _fouzresna T o U3~ 745174 :
23 71018 [ 285701215 l— 25 7101218
e =) 0 GIEY O B Y T D o B A e A A e
IR LD |/ UBT-4 e ‘ it ‘ '
: - 804]—500!&5 A
& -3} DEST 3
+ 3o
et 1]
? 08
¥ 25
M2mim, T‘i)-—:“_—"—n—pu
| fooE] , i3
FlG 6z <si HIOPELI PL REG
usv—s[:>»-] U57-6 ]
e Figa.l2 ‘ . ‘
W76 543212322 0876549432 123220 ARITH £BOOLEAN
=19 Us-2708 2 Us-2716 12
cev—d24 16 15i—24 1B1%_marriks prom
~v—421 9210 ( 131als 1417 esy =12l glo iz iais 617 T
MEMORY REF, ! ' 1
MODE DECOOE, &
AND LfD 1 1 *
MAPPING PROM

L

»

FO Fi

1
VY¥vy.,

TO SEQUENCER

FIGURE 6.1

Instruction register and Mapping PROM
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FIGURE 6.11b Photograph of the physical layout of the CCU
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subroutine may be called or returned from, or a branch to a

location selected by the pipeline register may be executed,
or a branch to the location addressed by the mapping PROM
may be executed. The appropriate action depends upon the
next address and mode fields of the pipeline register,

The next address field controls the operation of the
Am29811-sequencer controller, which will be discussed in
detadil latter.

What is important about the Am29811 now is the fact
that i1t does not allow for a jump to a subroutine'given by
the address from the mapping PROM. There are many
variations on the basic NOVA 1200 instructions including
direct, indirect, relative, and base page addressing
combined with the shifts and skips that are a part of the
ADD instruction. To decode these instructions into unique
microcode routines requires either a large amount of
memory, or a large amount of time, or a clever compromise
to keep the amount of mapping PROM and microstore down
while not slowing the computer dowvm too much.,

One of the options, the most memory intensive and the
fastest, is to microcode each instruction permutation
and map each variation into its unique block of microcode.
This approach requires a much larger mapping PROM and
microstore, but the computer does not waste time decoding
instruction permutations with firmware.

Another method is to determine each permutaticn by

L8



Jumping into microcode suproutines to determine the proyer

mode and returning when the determination is complete.
This method is slow because 0f the time required to jump
to a microcode subroutine, do a firmware determination of
mode, and to return from the subroutine.

A more practical approach is to use the Mapping PROM
as a decoder., To do this, the Mapping PROM must be
available as a mapping function during normal modes, but
must be converted into an instruction decoder during the
appropriate modes. In this way, the computer goes to the
proper instruction microcode without the use of firmware
subroutines. Since there are several mode types, such as
addressing, shifting, and skipping, and since the Am29811
does not have a MAP subroutine instruction, logic has to
be added to accomplish calls to the subroutine pointed to
by the Mapping PROM.

The way to implement the MAP subroutine instruction
with the least amount of hardware would be to combine the
next address and‘mode fields into one field and replace
the Am29811 with a PRCM large enough to decode the combined
fields. However, the need for the mode field was not
realized until after the hardware was constructed.
Besides, I did not have access to the necessary PROM
programmer. The next best approach was to comstruct the
ic needed by using a 74L5251 tri-state eight input

g
multiplexer as an universal logic module in combination

ct
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with the unused half of a 74LS139 one of four decoder.

During the addressing, shifting, and skipping modes the

logic inverts the pipeline and mapping PROM enable lines

so the jump to a pipeline subroutine is converted into a
jump to the MAP subroutine. The circuii is shown as figure

12

O

6.2 SEQUENCER

The sequencer is the heart of the computer's micro-
vrogrammed architecture. The sequencer controls the
execution of the microprogram with its own instruction set
(see table 6.1), but the sequencer is, in turn, controlled
by the sequencer controller, a 29811,

The sequencer controller is vart of the next address

circuit (see figure 6.3 ). The next address circuit
performs several functions. Flrst, the next address

[¢]

ircuit can test up to 16 test inputs and send the results
to the 29811 sequencer controller which uses the

e next sequencer

D

=

information to decide the source of t
address. Secondly, in addition to the test input, the
next address source for the seauencer is determined by

he pipeline register commands to the seguencer con?roller.
These pipeline register commands are from the sequencer
controller's own instruction set (ses tablesr6.2, 6.3,

691-!-)0



TABLE 6.1

SEQUENCER COMMANDS

Address Selection Qutput Control
CCTAL | 3¢, So| SCURCEFOR Y OUTPUTS |syieor OR; ZERG  OF Yi
Q LoL Microprogram Counter HPC X X H z
1 L H| Register REG X L L L
2 HoL Push-Pop stack STKO H H L H
3 H H Diract inputs [} L H L Source selectad by Sg Sy
i 2 = High Impedance
Synchronous Stack Controf
FE PUP PUSH-POP STACK CHANGE
’ H X No change
L H Inerement stack pointer, then
M = High push current £C onto STKO.
L = Low L r Pop stack {decrément stack pointer}
X = Oan't Cars
= RINCIP
CYCLE | S84, Sq, FE,PUP{ uPC | REG | STKO | STK1{STK2 | STK3{ Your COMMENT ? “fthE LE
N 0000 J K Ra Rb Re Rd J Poo Stack £nd
N+1 - Hi| K Rb | Rc | Rd. | Ra —~ | opsac Loop
N 0001 J K | Ral ”o-l Re | Bd | e Setup
N1 - #1] K J | Ra | &b | Re | =~ [PushwfC Loop
N ga1X 4 K | Ra | B | Re | RA | J . .
N+1 _ Je1 < Ra b Re Rd _ Continue Continua
N 0100 . J K Ra | Rb | Re Ad K . | Pop Stack; End
M+l .- K+1 K Rb Re Rd Ra - Use AR for Address Loop
~ N 0101 J K Ra Rb Re fRd K Push ufC; . JSR AR
- N+ - K+1 K J Ra Rb Rec - Jumg to Address in AR
N 011X J K Ra Rb Re R/d K o
N1 _ ) K Ra Rb Re Rd _ Jump to Address in AR JMP AR
N 10090 J K. Ra Rb Re Rd Ra Jumo to Address in STKO; RTS
N+ - Ra+i| K | Rb | Re | Rd | Ra | - | Pop Stack >
N 1001 L} K Ra fh Re hd Ra Jump 1o Address in STKOQ;
N+t - Ratl| X 4 "Ra | Rb | Rc — | Pushupe
N 101X J K Ra Rb Re Rd Ra . Stack Ref
N+t _ Rat1 K Ra b fie Rd - Jump to Addrass in. STKO {Loop}
N 1100 J K Ra Rb Ae Rd ] Pop Stack; End
N+ ) - 0+1 K Rb Re Ad Ra - Jump 1o Addresson O Loop
N 110t J K Ra /b Re Rd b} Jump to Address on D7 R D
N+1 ] - O+t K J Ra Rb Re - Push uPC o )
N 111X ] K {m |rolge | aa | o i ,
14+ — O+t K Ra R Re- R - Jump to Address on D JMP-D

X = Dan’t care 0 = LOW, 1 = HIGH, Assume Cpy = HIGH
Nota: STKO is the location addressad by the stack pointar,

Source: AMD, 1976a, page 2-6
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CTABLE 6.2

Am29811 INSTRUCTION SET

MNEMONIC { 131211 g INSTRUCTION
3z L L L L |Jumpto Address Zero .
CJs L L L H } Conditional Jump-to-Subroutine with Jump Address
: in Pipeline Register.
JMAP ‘L L H L | Jump to Address at Mapping PROM Qutput.
cJap L L H H | Conditional Jump to Address in Pipeline Register
PUSH L H L L | Push Stack and Conditionally-Load Caunter
JSRP L H L H | Jump-to-Subroutine with Starting Address Conditionaily
Selected from Am2911 8-Register or Pipeline Register,
CJv L H H L | Conditional Jump to Vector Adrdress.
JRP L H H H ! Jump to Address Conditionally Selected from Am2911
] R-Register or Pipeline Register.
RFCT H L L L | Repeat Loop if Counter is not Equai to. Zero.
RPCT H L. L H! Repest Pipeline Address if Counter is not Equal to Zero.
CRTN . H L H L { Condirional Return-fram-Subroutine.
CJPP H . H H} Conditional Jump to Pipeline Address and Pop Stack.
LDCT H H L L | Load Counter and Continue.
t.OOP H H L H | Test End of Loop.
CONT H H H L | Continue to Next Address.
P H H H H | Jump to Pipeline Register Address.
Source: AMD, 1976a, page 2-19
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TABLE 6.3

Am29811 FUNCTION TABLE

INPUTS ouTPyUTS
\ INSTRUCTION TEST NEXT ADDR
MNEMONIC 13 12 4 1g FUNCTION \NPUT souRace FILE | COUNTER | MAP-£ | PL.E
3Z LoLoLoL JUMP ZERO X [ HOLO LT H L
cis L L LM COND JS8 PL L [ HOLD HOLD H L
H [*) PUSH HOLD H L
IMAP LU ML IJUMP AP X o HOLD HOLD T H
CP LU OHoH CONO JUMP PL L PC HOLD HOLD H L
i . - H o] HOLOD HOLOD H X
PUSH LM LL PUSH/COND LD CNTR L rC PUSH HOLD H L
) 2] PC PUSH LOAD o .
ISRP L'H L H COND JSB R/PL. L ] PUSH HOLO " L
H o PUSH HOLD H L
cv L HHL COND JUMP VECTOR L PC HOLD HOLD H H
. H o HOLD HOLD H H
JRP L HHH COND JUMP R/PL L [} .HOLD HOLD H L
H 0 HOLD HOLO H L
RFCT H L Lt REPEAT LOOP, CNTR + 0 L F HOLD OEC H X
~. H PC POP HOLD H L
APCT HL L H REPEAT PL,CNTR = 0 L o HOLOD OEC H [N
H PC HOLD HOLD H 4
CRTN H L H L CONDATN L PC HOLD HOLD T H L
" £ POP HOLD H 8
cipp H L HH COND JUMP PL & POP L PC HOLD HOLO H L
M o) foOP HOLD H L
LoeT H H L U LOAU CNTR & CONTINUE X PC HOLD LOAD H L
Loop H OH L H TEST €MD LOOP - L F HOLD HOLO H L
H ?C POP HOLD H t
CONT HoH AL CONTINDE X #C HOLD HOLD H L
P H H HH JUMP P X ] HOLD HOLO H L
L=tow DEC = Decrement
H = HIGH *LL = Special Case
X = Don’t Care
~
Source: AMD, 1976a, page 2-20
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The result is rather like pulling yourself up by your
oot straps. The sequencer is the nheart of the micro-
programmedAarchitecture, put 1t is controlled by the next
address circuit. The next address circuilt is controlled by
the pipeline register, which is controlled by the
microstore. Finally, the microstore is controlled by the

sequencer and the circle is complete.
6.3 MICROPROGRAM MEMORY AND THE PIPELINE REGISTER

Once the proper address is chosen for the micropfogram
memory (the source of the address may be the mapping PROM,
the pipeline register, or the sequencer), the address is
transmitted to the microprogram memory's address lines.

For the development system the microprogram memory will be

ultra violet erasable PROM and will require 450 ns before

the data appears at the output of the microprogram memery.
fhen the data appears at the output of the micro-

rogram 1t is loaded into the pipeline rsegister. The

e

function of the pipeline register can e seen as a latch
into which the microprogram word is stored. While the
microprogram word is stored in this latch two actions take
place. First the current microprogram word, the one in the
pipeline register, is executed. At the same time, the
sequencer 1s instructed to fetch the next microprogram

word. By the time the current microprogram is finished
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executing, the next microinstruction will be waiting at the

input to

As

can be seen from the computer design (figure 6.1),

the microprogram word is rather long. The microprogram

word is

(X
.

10.

composed of the following major fields:

Test Condition Fleld - This field contains the
code that selects one of the 16 test inputs.
Polarity Field - This field determines the
polarity of the test input chosen.

IR Mield - This field is used to load the
instruction register.

Microprogram Branch Field - This field provides
the next address for a microprogram branch.

ALU Source Field ~ This field selects two data
sources for the ALU function from emong the 16
RALU registers, §Q register, data inputs, and zero.

ATT
ATT

!

Destination Field - This field selscts one of

-

the RALU's 16 general purpose resgisters for the

0
@

i

B

the current ALU

)
O
-y

destination of the resul

o

overation.

ALU Function Field - This field selects one of the
eight ALU functions to operate on the source data.
SALU Field - This field enables the ALU outputs.

determines how the shirft

n
I.J
0]
I.._
0,
F
5
}...I
6)]
iy
}—l
®
}.J
o}

operation will be pverformed in the ALU

ALU Carry field - This field determines how the



carry will be used in the ALU.

17« PCU Carry Field - This field determines how the
carry will be used in the program control unit.

12. PCU Address Field - This field determines the
function of the PCU.

13. AL Field - This field enables the output of the
PCU to the MAR.

14 MODE Field - The mode field determines the mode of
the Mapping PROM. It specifies whether the
Mapping PRCM is to be used as a mapping function

or as one of the decoding functions.

The output from the various fields of the pipeline
register drives the functional blocks of the computer. One
of the blocks is the 2901 RALU which performs all the
arithmetrical and logical operations required by the
computer. The RALU contain 16 general purpose ragisters
(the registers are implemented with dual port RAM), a @

(for temporary storage such as required in multi-
olication), an eight function ALU, and data routing
ircultse The interaction of the wvarious RALU components
is controlled by the contents of the ALU source,
destination, and function fields of the pipeline register.

Table 6.5 contains the various RALU functions that are



TABLE 6.5

ALY OPERATION

ALU SOURCE
MICRQ CODE OPERANDS MICRO CODE Aty .
Acal Ocal | Funetion vt
1. 1 4 1, 4 1.
2 1 e comn | ¥ $ s 43 Cade
L [ [} A ] 8 L L 9 RS As+s
[ T 1 A 8 [ N 1 S Minus R s-R
L H L 2 Qo Q L L] L H Aoy § A3
L M " 3 o 3 15 H L] 3 RORS RV S
H L 8 4 -] A H L T 3 ARANOS RAS
» L L s o A " L » 5 AanDS Ans
HoH L s a a H ML s AEXORS avs
K ® H 7 o o H W = 7 RexNoRS| Avs
e ALU Source Qperand Cantrol. -~ ALU Function Control.
RAM Q-REG. RAM Q
MICRO CODE FUNCTION FUNCTION v SHFTER | sHIFTER
W 4l Gt Shity Load ity tosd  |QUTFUTH ing | mamty] ag | @
Lot 9 % NONE NONE f-a I3 x x x x
[ ] 1 x NONE x -NONE [ x x % x
LMoL 2 NONE Fa x NONME A x % x x
[ 3 NONE Fg X NONE 4 x x x x
oLt 4 DowM Fries ocwN anz-q 2 Fu § Mg | Qg | Ny
K .+ H s ooWN | FZ—8 x NONE * Fo g | 29 | x
owot 0 ue LI ue -a - | kgl £y b oing | 0a
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Ca=L QA= B A=t Q=1 2t A= AnQw1 Q01 ~0-t
1 { SMinus A
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Source: AMD, 1976, page 8




commanded by the pipeline register.
6.5 PCU

The Program Control Unit (PCU) is the final block to
be discussed. The PCU is shown in figure 6.8. The PCU
is implemented using a special integrated circuit (AmZQ}O)‘
designed for controlling the-program addresses. Like so
many other functional blocks in the 2900 computer, it too
has a very powerful instruction set ( see table 6.6 ). The
PCU allows the program counter to be incremented by only
one control bit. Other addressing modes, such as relative,
indexed, and base page, can be handled almost as easily.
In addition, the PCU provides for easy implementation of
such operations as jump to subroutine, return from

subroutine, and the associated stack manipulations.



TABLE 6.6

PCU INSTRUCTION SET

Mext Stata (aiter CP __r) {Nata 3)
instruction a > '
Number 1 13 12 1y 1g EC IEN insteuction Yg-Ya PC RE=tL | RE=<H RAM sp
X X X X X H instruction Note 1 - [»] - - -

Disable

0 LLeLL X L RESET " Bt o - - Reset
1 LLLLH. X FETCHFPC °C PCHC; b] - - -
2 LLLHL X L FETCHR R PCHC; ] - - -
3 L'LLHH X L FETCH D v} PCHC; o - - -
3 LLHLL X L FETCH R#0 R+D4Cy PC+C; D - - -
5 LLHULB X L FETCH PC1D PCHDIC, PCHC; 0 - - -
5 LLHHL X L FETCH PC+R PCHRICH PCHC; o] - - -
7 LLHHKHHX L FETCH S+0 $+D4Cy PCHC; 0 - - . -
8 LHLLL X L FETCHPC - R 1] PCHC; PC PC - -
3 LHLLHX L FETCHR+D—~ R | R+D+Cy PCHC; R+0+Cy | R404Cy - -
10 LHLHL X L LOAD R PC PCHC; o ] - -
1t LUHLHHX L PUSH PC PC PCG; 0 - PC — Loc SP+1 | SP+1
12 LHHLL X PUSH D PC PCHC; o - O - LlocSP+t | $Pr1
13 L'HHLHX L POP S S | PCHG; o - - SP—1
14 LHHHL X L POPPC PC PCHC; 0 - - sP—i

15 LHHHHX L HOLD pC - o - -
18-31 HX XXX H L FAIL CONDL re PC+C; o ~ - -

TEST (FETCH PC) . ’
15 HtLitLt L L JUMP'R R R+C; 5] - - -
17 HLLLHL L JUMP O o] D+C; 0 - - -
18 HL LWL v L Jume o~ “o" i ate ] - - -
19 HLLHH L L JUMP R+0 " R+D+Cq R+Q4C4C; o - - -
20 HiLHULL L L JUNP PC+O PCHD+Cy PC+D+CH#C; o] - - -
7 HtHULH L L JUKIP PC-R BC1R+Cy FCIRHC o - - -
22 HLHHL L L SB R ] R+C; o - PC - Loc SP+1 | SP+1
23 HLHHH L L B D o D+C; 0 - PC - Loc SP+1 | SP+1
23 HHLLLL L S8 “0" “g" QUG o] - PC - Loc§P+1.{ SP+1
25 HHLLH L L S8 R+D R+D4Cq R+D4C, *C; 0 - PC - Loc SP#1 | SP+1
26 H'HULHLL L IS8 PCeo PC+D+Cp PCH0+CntCy 0 - PC — Loc SP+1 | 5P+1
27 HHLHHL L JSB PCHR PCH+R+Cy PCHR+C+Cj 0 - PC - Loc5P+1 | sP+1
28 HHHLL L L RETURN § S S+C; o] - - SP-1
29 HHHLHL L RETURN S+0 S+0+Cp S+OCH+C; ] - - SP—1
30 HHHHL L L HOLD PC - o - - -
3 HHHHH L L SUSPEND Z {Note 2) ~ 0 - - -

PC — Program Counter

R — Auxiiiary Register

Notes: 1. Whrn 1EN is HIGH, the Yg-Y 3 outputs cantain the same data as when 1EN s LOW, as determined by ig-{4 ana C—C.

SP —.Stack Pointer

0O - Oirect inpurs

2. Z = High impadance state {outputs “OFF™).
3, - = No change

Source: AMD,

19772



7.0 SYSTEM TIMIN

As menitioned ecarlier, this computer was designed with
high performance as a goal. However, for economy the
microprogramming was done in ultraviclet erasible LEPROM.
This approach saves money because a new set of PROMs is not
“required each time the microcode is changed, but the
computer runs rather slow as a result of the 450 ns access
time of the 2708 EPRCM. In order to present a clear
picture of the system timing, two timing diagrams are
given. The timing diagrams for the experimental system
( figure 7.1 ) and for the potentially high performance
system ( figure 7.2 ) are presented along with a brief

discussion of each diagram.
7.1 TIMING FOR THE EXPERIMENTAL SYSTEM

In order to establish the timing characteristics of
the computer, the chain of events that take the longest
time to complete must be ldentified. This chain of events
i3 the critical timing path for the computer. By
definition no computer operation can take longer to
complete than the critical path. The critical path
is the limiting factor for the speed of the computer.

In other words, the time of one computer cycle can be no

longer than the time required for the critical path.
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FIGURE 7.1 - Timing diagram for the experimental system



The computer cycle begins on the leading edge of the
clock. On the leading edge the microinstruction is
clocked into the pipeline register. As can be seen from
figure 7.1 (all times are shown as worst case times), the
use of the 2708 EPROM for the microstore and again for the
Mapping PROM in the decoder mocde causes large delays.
Figure 7.1 1s set up for a 1.4 microsecond cycle, but the

time could have been shortened by 260 nanoseconds.

7.2 HIGH PERFORMANCE SYSTEM

Since the objective is to design a high performance
minicomputer, the experience gained from the experimental
system needs t0o be examined to gain a reasonable
expectation of the potential verformance of the 2900
system. In the experimental version, 2708 EPROM's were
used, and since these devices were so slow, Low power
Schottky registers and counters were used to save cost and
vower. However, for the full performance version
envisioned, 50 ns PROM or ROM and full speed Schottky
would be required. This is the premise of the timing
presented in figure 7.2. Figure 7.2 uses the same time

7.1 to give a better illustration of the

verformance increases gained by these changes.

The basic cycle time of the high performance computer

is 270 ns. With the overhead for checking for halts and
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7.2 Timing diagram for the full performance system
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interrupts, an ADD without a shift or skip can be done in
1.08 microseconds. While this is representative of
modern minicomputer verformance, it is not as impressive

-

as was hoped for when the design started. The fault lies

*‘o

5

in the decoding scheme used for indirect addressing,

tive addressing, mode 1, and the various other modes

[0}
[
Q

of operation that are decoded. As mentioned earlier, the
decoding scheme drastically cuts the amount of Mapping PROM
and microstore PROM needed, but what are the costs of this
scheme? When compared to the 1.5 microsecond ADD time of
Fairchild's 9440 single chip NOVA microprocessor, it is

not clear that the improvement gain by using a micro-
programmed bit slice technology is worth the cost in time
and moneye.

Two approaches can be taken to ilncrease speed. One
approach would allow for extra time in the cycle only when
the Mapping PRCM is called as the next address source. The
ot

her approach would use extra Mapping PRCOMs to provide a

5

12 bit address that could directly address 4096 words of
microstore. In the latter approach, sach variation of an
instruction would be addressed directly. This would
eliminate the need to decode each instruction, but would
add to the microprogramming task. As a result, the ADD
time would drop to about 880 ns, and with newer and faster

RAILUs and sequencers, cycle time less than 800 ns could be

|

achieved, his figure is more in the range of performance
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that was first envisioned.
7.3 COMPARISON OF THE 2900 SYSTIM TC EXISTING SYSTEMS

In table 7.1 comparisons are made between some ¢f the
existing variations of NOVA type machines. In this
comparison the BLAZE, which is PFairchild's 9400 bit slice
( see section 2.5) emulation of the NOVA 3, and the NOVA 3
are in the same class as the 2900 emulation of NOVA. The
SPARK, FLAME, and NOVA 1200 are marginally slower than the
2900 emulation. The conclusion is that the design pf the
2900 system is faster than present single chip NOVA
implementations, and is in fact just as fast as other

bipolar implementations,



TABLE 7.1
NOVA COMPUTER COMPARISONS

SPEED IN MICROSECONDS
9440
T SPARK-16
INSTRUCTION - BLAZE-16 NOVA 3 FLAME-18 NOVA 1200
ta) (b) . (¢} : :

Load Accumulator 1.0 t.1-20 2.41 2.55
Store Accumulator 1.0 1.1-20 ) - 3.66 2.55
1ISZ, DSZ 1.4 16-24 * 3.68 3.15
- Jump . 086 0.7-10 1.25 1.35
Jump to Subroutine . 1.2 ’ 1.0-12 1.25 "1.35
Add 1.0 c.7-10 1.25 1.35
Subtract 1.0 +.7-1.0 : 1.25 1.35
And | 1.0 ) 07-1.0 1.25 . 1.35
Move 1.0 ot 0.7-1.0 i 125 1.35
+ Skip 0 03 1.25 1.35

i70 Input 1.6 20-22 2.08 2.55
170 Qutput 1.6 - 20-22 : 2.08 3.15

ta)  Oscillator frequency -- 10 MHz, memory Read cycle -—400 ns.
thi  Minimum tor semiconducior memory, maximum {or 18K coig. |
tcr  Oscillator requency -- 12 Miiz, Memory Busy < 120 ns.

Source: Suri, 1977, page 10



8.0 MICROPROGRAM

Because of the amount of time required to write
microcode only a few of the microinstructions were

microcoded. The microcode, timing diagrams, and comments

)

or these instructions are included in the following

Hh

igures. The microcode is also presented as it appears in
the microstore memory.
The following are some of the constraints adopted for
writing microcode:
1« The code must be as short as possible.
2. The code must generate the memory address and the
memory read signal as far in advance as possible.
This practice allows slower memories to be used.
3. The microcode must do as much in parallel as
possible. This will speed up the throughout.
The applicaticn of the first constraint can best be
illustrated by comparison of the ADD dnstructions. The
original ADD instruction ( figure 8.1 ) was quite slow
because of the repeated use of jumps to subroutines to
accomplish the various modes of the ADD instruction. For
instance, the ADD instruction jumps to a shift subroutine

n T1 and then jumps to a skip subroutine in T2. Each of

‘.J.

0

these jumps requires at least two steps: the jump and the
return. 4s a result, eight micro-cycles are required

whereas the final ADD instruction (figure 8.2) actually



uses only four microcycles. Instead of jumping to and
fronm avsubroutine, the microcode jumps to the shift
subroutine then jumps directly to the skip subroutine under

h

o

<l

control of the Mapping PROM. Finally microcode jumps
directly to the fetch subroutine under control of the
pipeline branch address.

The second constraint is shown clearly in the timing
diagram for the FETCH instruction (figure 8.7). Here one
can see the MR and LD MAR lines go low during T1. This
generates the memory read signal and the memory address
during T1. However, the memory is not needed until the
IR LOAD in T3 which allows the memory two microcycles for
set up. At the 270 ns cycle time, even cheap 500 ns memory
can be used. If the faster, 200 ns cycle time, CCU
suggested in section 7.2 1is used, memory as slow as 400 ns

can be used.

ird constraint is shown in the ADD instruction.

+3
o
0]
o+
i~

For instance, in the ADD with no shift and no skip, cycle

3
O
Bl
o
o
ct
n]
03]
)
iy

fetch and increment of the program counteser,
a read from RAM ports A and B with a store back into port
By, and a mode 2 jump to the shift subroutine. That is a

lot of work to do in one microinstruction.



ADD (original)

TIME: 2.16 microseconds min. LOCATION 024]6

CYCL&?‘

MICROCODE

l

COMMENT

TO

T1

72

T’j

Tbr

IIl 5

Be-A+B, TFetch PC], LD CARRY

MODE 2 =~ 1, CJS ONET MAP

MODE 3 < 1, CJS ONET MAP

MAR < Y, MR, JP FETCH(002)

see ETCH

‘proper shift mode.

Add A plus B and load the sum into B as
addressed by the IR. Output the present PC
and increment by 1. Load the carry from the
add into the carry bit.

Jump to the MODE 2 subroutine given by the
jump address in the Mapping PROM to get the

Jump to the MODE 3 subroutine given by the
jump address in the Mapping PROM to get the
proper skip mode.

Load the PC into the MAR and send a memory
read signal. Jump to T2 in the FETCH
subroutine.

FIGURE 8.1 RTL and comments for original ADD microcode

0l



ADD with NO SHIFT and NO SKIP TIME: 1.08 microseconds: LOCATION 02816 ‘l
CYCLE l MICROCODE COMMENT | J
TO MODE 2 <~ 1, B =~ A+B Add A plus B and load the sum into B as
- ‘ addressed by the IR. Output the present PC
Fetch PC1 » CJS ONKET MAP and increment by 1. Jump to the MODE 2
subroutine given by the jump address in the
Mapping PROM to get the proper shift mode.
T MODE 3 - 1, CJS ONET MAP Jump to the MODE 3 subroutine given by the
’ jump address in the MAPPING PROM to get the
proper skip mode.
T2 JP FETCH(003), MAR =— Y, MR | Send out a memory read signal and load the
‘ PC into the MAR. Load the Data Bus into the
HALTC = 1, IR <~ DATA BUS { IR and check for a HALT command.
T3 see FETCH
- 4
FIGURE

8.2 RTL and comments for ADD with NO SHII and NO SKIP microcode



ADD with LEFT ROTATE and SKIP

TIMI:

1.62 microseconds

LOCATION 02816_

CYCLE

MICROCODE

»F

COMMENT

-TO

T1

T2

TB
Tl{-
™5

fvone 3 - 1,

MODE 2 =~ 1, B = A+B

B - SHL B

By = .Byg » MR, CJS ONET MAP

JP FETCH(001), Fetch PC]

see TETCH

Add A plus B and load the sum into B as

addressed by the IR.
and increment by 1.

Output the present PC
Jump to the MODE 2

subroutine given by the jump address in the
Mapping PROM to get the proper shift mode.

§f Jump to the MODE 3 subroutine given by the

jump address in the Mapping PROM to get the

proper skip mode.
rotate the MSB to the LSB.
read signal.

Shift RAM B left one and

Send out a memory

Output the present PC and increment by 1 to

accomplish a skip.

FIGURE 8.3

RTL and comments for ADD with LEFT ROTATE and SKIP microcode

- 2L



LDA

TIME: 2.16 microseconds min. LOCATION 01016

CYCLL

MICROCODL

wl | COMMENT

TO

T1

T2

TB

T
5
6
-

MODE 1 - 1, CJS ONET MAP

MR, MAR = Y
MR, MBRO =~ DATA BUS

ACG - MBRO, JP FETCH(000)

see [RTCH

Jump to the MODE 1 subroutine given by the
jump address in the Mapping PROM to get the
proper addressing mode.

Send out a memory read signal and load the
effective address into the MER.

Send out a memory read signal and load the
DATA BUS into the MBRO.

The MBRO is loaded into the accumulator
addressed by the IR. Jump to FETCH.

1

FIGURE 8.4 RTL and comments for LOAD ACCUMULATOR microcode
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To

CLK
Fi us-i3
Fo us-i2

Mop
MO .

MOy
MO
NAC, Osﬂl
NAC, U9-i2
NAC, U9-3
NAC, U9-i4
5 Us-4
So Ug-5
IR LOAD U45-5
“MR  U50-5

LOAD MAR U50-2
 MODE!
ACo
~Ac,
ACa
ACs
AC4

TO

T

T2

T3

FIGURE 8.5 Timing for LDA

7L



|

FETCH TIME: 1,08 microseconds LOCATION OOO16
CYCLE l MICROCODE l’ COMMENT
k? TO fretch PC] Output the present PC and increment by 1.
71 JMAR -« ¥, MR Load PC into MAR and send out a memory
' read signal. ‘
72  JHALTC ~ 1, MR Checks for a HALT command, sends out a
Jmemory read signal, and loads the IR from
fJIR = DATA BUS 'the DATA BUS.
T3 JSRP INT MAP INTS If there is an interrupt (INT) then jump to

the interrupt subroutine (INTS) given by the
Pipeline Register, else jump to the next
instruction's microcode which is given by
the jump address in the Mapping PROM.

|

FIGURE 8.6 DRTL and comments for the FETCH microcode
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MOz
MOy
MO14
MO,s
NAC,
NAC,
NAC,
NAC,
S

So

IR LOAD
MR
LORD MAR
HALTC
ACo
Ae,
AC.
AC,
Ac,
TCo
TC,
TCq

TC,

vg-3
Ug-f2

v9-tl
yg-iz
Ug-13
U9-14
v9-4
us-s
045-5
U50-5
Us50-2

v4612-

ToO

TI

T3

FIGURE 8.7 Timing for FETCH
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=

5 =IOk < N g 3 g,
2 —f e~ | QY ~— -~ L' Q s Q
3 =l=l~ig{~} ~ - I~ 9 -{Q
BRANCH [= o e Bt LY Bt ] = ~ S ol =19
5 i~ =] =]ol= =i = 9 Q )
ADDR [ SR = RS el =S
R 7 ~ = O~ -~ - Q Q -qQ
B P P Y — = S Q —Q
-9 o f e} e [ QY - - < Q S
IR LOAD il olalofolQ Q Q ~ < NES
NEXT 12 Ol!llo i= - = = Qe
13 ~[ASl= ! 9 ~ i —=
ADoR: I% ) 3 ) - < P
15 ESH Y ) S aa = o
Nmu T ™ i ! . - ’ ”
19 o T et b ] 9 - - o
HALTC 20 FIS SIS © 0 - Q D)
21 . - ~O
LOARDMAR] 22 PISISERN ~i = S Sl
8 Mg 23 i = {O = < Q SH - ~ -
Mareo 24 QR0 ) D Qi Q V9
MARL 25 NERRE Q S Q) 9 ~|Q
M/ 26 ARIQQ® =) o Q Q Qlo
.M..V o ~ — -~ ~. | -
Pcu [Zg ol=[=[~]° = = = S o/~
NM Qlwf={-{O -~ ~d - (O] Qf~
ADDR [3Fg Sy S ) = = = S o=
‘ ET Sl =a = - - = k] ot N
C: Pay 32 e A QO {= ) Q -~ — - -
 Cy POU 133 SRS = S S 9 SIS
RE 34 B — = ~ = =I=
MAR O 35 Qf =i =}a [S) =) Q Q =]
MAB Je olal Olofe Q = Q Q) <
ALY EE SR e
den....quw 3 I L S . - o<
ALU 1 R
SQURCE 4z = = = S = pu Q=
ALU 43 - — ~ - ~ —|. —]—
44 — — < -~ 0 Q -Q
Udel hwm Q Qi Qi - i Q -4
LD CAA 4.5 - - <l Q QO Q Q0
T0O 57 ~ QI {— Q Qf Q N -0
ALY &9
50
SHIFT [s1
. 52
5 0lol—<| O — — IS Q NS
MODE |54 of~I~ I~ ~ = 0 9 3o
. 55 OiBIG © O 19 Rk ) Qi
4 4 4 4 44 4;.»”.-..@ .;Pn‘nLD/.l..JA....
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4 4 473 4 4 45 4 A3 4 4 4 4 A A 4 A =M 4 4 44 <
< =} ST = ~i = e o
OI23456789A»QCDEFJI&3456789ABCDEF
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FIGURE 8.8b Microcode continued
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9.0 THCHNOLOGY TRINDS

o

The bit slice computer presented in this paper has an
add time of 1.08 microseconds. By the use of more
extensive hardware, the add time could be reduced to less
than 800 ns. The question to be answered is as follows:
given the present trend in technology, is it worthwhile to
spend the time and money developing a bit slice machine?

If the present one chip 16 bit microprocessors are
surveyed, as done in figure 9.1, the bit slice is 1.1 times
faster than the fastest monolithic processor and 3 times
faster than the slowest. At 3800 ns, the bit slice is from
1.5 to L4 times faster than the monolithic microvrocessors.

If there is to be an improvement in bit slice
verformance 1t must come in two areas: the sequencer, and
the memory. The microstore and the Am29811 are PROM. If
these devices were twice as fast, 128 ns would have been

cut off the ADD instruction time. If the sequencer were

i

twice as fast an additional 160 ns could be cut off. his
would result in an ADD time of 512 ns, and this would be
accomplished without the use of more advanced strategies
such as multiple pipelining.

Are these speed increases reasonable? For the most

part, these times represent the typical times for the same
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tristate buffers for interfacing ECL and TTL, doubling the
speed within one year should be no problem.

There is a limit to how fast a computer can operate,
and the limit is established by the physical dimensions of
the computer and the speed of light. Present bit slice
technology requires 50 to 100 integrated circuits for the
CCU. It will be very hard to package such a CCU in less
than a square foot of area. In this dense configuration,
the maximum distance would be about two feet. Since light
travels approximately one foot every nanosecond, the time
delay for a signal to be sent and its reply received would
be 4 ns.e This is equivalent to an extra gate level in the
circuitry. On the other hand, since distances are
measured in mils, the speed of light is not a practical
consideration in the speed of single chip microprocessors.

It is apparent that the optical limits have or shortly
will be reached in integrated circuit processing. This can
be seen in figure 9.2. As figure 9.3 shows, there are two
techniques being developed to taks over where optical
techniques leave off. The electron beam method promises a
100 fold density increase over the present density, and the
x-ray approach offers a 1000 fold increase in density. At
present the electron beam 1s the nearest to operational.
From figure 9.3 the full impact of this technology can be
seen. Texas Instruments projects a 32 bit microcomputer

(not microprocessor) by 1983. This microcomputer would
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have 32 K words of memory on the chip in addition to the
CPJ.

The 1983 microprocessor would require a 20 fold
increase in density. This increase in density would
decrease the capacitance of the integrated circuit. Since
capacitance is the major speed killer in MCS circuitry,
the decrease in capacitance by about 20 times would
cbrrespond to a 20 fold increase in speed. To be
conservative and to take into account the extra carry time
for a 32 bit machine, assume that the speed increase is
only by a factor of 10. S3ince the fastest 16 bit MOS
microprocessor available today has an instruction time
range of 1.2 to 29.5 microseconds, the 1985'32 bit machine
would do an ADD in 120 ns and a divide in 2.95
microsecondse.

The design of complex circuits with electron beam

technology will require even heavier dependence On computer

aided design than present digital LSI designs. With the
required advances in computer technigues and computer use

for the 1980's, it is not hard to imagine a highly

computerized and integrated design and manufacturing system

for VLSI technology. When compared with the cost of
designing a bit slice machine it may be cheaper to have an
integrated circuit house design a custom microcomputer.

That is unless a standard system can be used. After all,

most applications that exist today can be accomplished with
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a computer capable of a 120 ns ADD.

While bit slice has a definite advantage now, the
advantage will fade over the next decade unless the
circuitry can be integrated into larger and faster slices.
The problem is to get a faster technology into a smaller
area. 1t is not an easy problem because most technoiogies
require more power to go faster. As the size of the chip
is reduced the power per unit area goes ups. In the end,
the monolithic microprocessor will probably win out, but
until then the bit slice does offer some definite

advantages.
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10,0 SUMMARY

There are two broad areas of interest in this computer
design. One areca 1s cost, and the other area is
verformance. Cost includes the actual hardware cost,
construction time, hardware design time, and firmware cost.
In the area of performance we are concerned with the
aspects of speed and flexibility.

The design of this system took several months of
gathering and reading the material on bit slice technology
and on the instruction sets for the PDP-11, NOVA, and PACE.
Then came several design iterations‘as I tried to
assimilate all the material. Finally, it took about six
weeks to design the computer hardware.

In the construction phase, not counting the time it
tdok t0 strip the wire wrap board, it took about two and a
half weeks to wire wrap and document the board. Ain
additional week was reguired to find the wiring mistakes
and other problems with therv're wrap board.

As for the 1imited instruction set reduced to firmware,
two weeks were required to write the original RTL programs,
and two additional weeks were needed to write the binary
code. Of these instrﬁctions only the FETCH, LDA, ADD
(original), ADD without shifts or skips, and ADD with left
rotate and skip always were checked out. The total time for

the checkout was probably no more than two weeks, but the



vroblem of programing the PROM's at work and checking the
firmware at home added a great deal of time to the
procedure.

In the performance area, the results were not as good
as hoped for, although new and more innovative approaches
could significantly reduce the execution time. It has
become apparent that this is not a one man job. Rather
the task should be attacked by a well coordinated design
groups The complete design and construction of this
computer could well take two man years. To avoid the
problems of a project of this size, such as the
demoralization that comes from chipping away at a large
problem with no apparent progress, at least six people
should be used. Two people should be used in the hardware
area. One person should design the CCU and the other
should design the memory and peripheral interface. Two
people should 5e used to design the firmware and one person
should design the monitors and assemblers so something can
be done with the machine once the design phase is finished.
Finally, one person is needed to bring the total design
together into one conhesive effort. This person should be
able to understand both the hardware and the softwarse
aspects of the computer so he can coordinate the two
efforts towards the same goals and provide help in each

area when 1t is needed.
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