# CALIFORNIA STATE UNIVERSITY, NORTHRIDGE

NOVA CPU IMPLEMENTATION WITH 2901 BIT SLICE

A project report submitted in partial satisfaction of the requirements for the degree of Master of Science in

Engineering

ру

Larry Wayne Abbott

January, 1980

The Project Report of Larry Wayne Abbott is approved:

C. V. Metzler

R. Pettit

R. A. Davidson

California State University, Northridge

# TABLE OF CONTENTS

| 1.0                             | CHOICE OF DESIGN APPROACH                                                                                                                                                                     | i                                      |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|                                 | HARDWARE ADVANTAGES AND DISADVANTAGES FIRMWARE ADVANTAGES AND DISADVANTAGES                                                                                                                   | 7                                      |
| 2.0                             | SELECTION OF THE PROPER BIT SLICE FAMILY                                                                                                                                                      | 8                                      |
| 2.2<br>2.3<br>2.4<br>2.5<br>2.6 | THE IMP BIT SLICE THE MOTOROLA 10800 FAMILY THE TEXAS INSTRUMENTS FAMILIES THE INTEL 3000 FAIRCHILD MACROLOGIC 9405 MONOLITHIC MEMORIES 6700 ADVANCED MICRO DEVICES 2900 SERIES               | 10<br>10<br>11<br>12<br>12<br>12       |
| 3.0                             | MICROPROGRAMMED PIPELINE ARCHITECTURE                                                                                                                                                         | 22                                     |
| 33333333                        | INSTRUCTION REGISTER MAPPING PROM SEQUENCER MICROPROGRAM PIPELINE REGISTER RALU PROGRAM CONTROL UNIT                                                                                          | 22<br>21<br>21<br>21<br>26<br>26<br>26 |
| 4.0                             | SELECTION OF THE INSTRUCTION SET                                                                                                                                                              | 27                                     |
| 5.0                             | STATE TRANSITION DIAGRAM                                                                                                                                                                      | 32                                     |
|                                 | HARDWARE IMPLEMENTATION                                                                                                                                                                       | 3L                                     |
| 6.0                             |                                                                                                                                                                                               |                                        |
| 6.1<br>6.2<br>6.3               | IR AND MAPPING PROM SEQUENCER MICROPROGRAM MEMORY AND THE PIPELINE REGISTER RALU PCU                                                                                                          | 34<br>50                               |
| 6.1<br>6.2<br>6.4               | SEQUENCER MICROPROGRAM MEMORY AND THE PIPELINE REGISTER RALU                                                                                                                                  | 34<br>55<br>55<br>56                   |
| 6.123.45 7.77.2                 | SEQUENCER MICROPROGRAM MEMORY AND THE PIPELINE REGISTER RALU PCU                                                                                                                              | 34<br>50<br>55<br>55<br>55             |
| 6.123.45 7.77.2                 | SEQUENCER MICROPROGRAM MEMORY AND THE PIPELINE REGISTER RALU PCU  SYSTEM TIMING  TIMING FOR THE EXPERIMENTAL SYSTEM HIGH PERFORMANCE SYSTEM COMPARISON OF THE 2900 SYSTEM TO EXISTING         | 34<br>50<br>55<br>55<br>61<br>61<br>63 |
| 6.123.45 0 123 0                | SEQUENCER MICROPROGRAM MEMORY AND THE PIPELINE REGISTER RALU PCU  SYSTEM TIMING  TIMING FOR THE EXPERIMENTAL SYSTEM HIGH PERFORMANCE SYSTEM COMPARISON OF THE 2900 SYSTEM TO EXISTING SYSTEMS | 34<br>555<br>55<br>61<br>66<br>66      |

# LIST OF ILLUSTRATIONS

| 1.1                                         | Comparison of gate delay versus power consumption                                                                                                                                                                                                                                                                                                                              | 4                           |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 2.1                                         | An example of AMDASM microcode assembly 17-                                                                                                                                                                                                                                                                                                                                    | -20                         |
|                                             | Functional Block diagram of microprogram type computer Example of an instruction using pipelining and the effective increase in throughput                                                                                                                                                                                                                                     | 23°<br>25°                  |
|                                             | PDP-11 instruction set<br>Fairchild 9440 emulation of the NOVA 1200<br>instruction set<br>microNOVA instruction set                                                                                                                                                                                                                                                            | 28<br>29<br>31              |
| 5.1                                         | CPU state diagram                                                                                                                                                                                                                                                                                                                                                              | 33                          |
| 6.2<br>3.4<br>5.6<br>6.7<br>8.9<br>10<br>11 | System architecture for 16 bit computer CPU Instruction Register and Mapping PROM Sequencer Next address control 2901 array Arithmetic and Logic unit ALU holding register Memory Address Register Program Control unit Clock generator Microstore and pipeline register a. Physical layout of CCU b. Photograph of the physical layout of the CCU MODE implementation circuit | 333333444444<br>44444<br>47 |
| 7.1                                         | Timing diagram for the experimental system<br>Timing diagram for the full performance<br>system                                                                                                                                                                                                                                                                                | 62<br>64                    |
| 8.2<br>8.3<br>8.4<br>8.5                    | RTL and comments for original ADD microcode RTL and comments for ADD with NO SHIFT and NO SKIP microcode RTL and comments for ADD with LEFT ROTATE and SKIP microcode RTL and comments for LOAD ACCUMULATOR microcode Timing for LDA RTL and comments for the FETCH microcode                                                                                                  | 70<br>71<br>72<br>73456     |
| 8.7                                         | Timing for FETCH                                                                                                                                                                                                                                                                                                                                                               | 76<br>-78                   |

| 9.1 | A survey of 16 bit | general purpose |    |
|-----|--------------------|-----------------|----|
|     | microprocessors    |                 | 80 |
| 9.2 | Future of electron | beam technology | 82 |
| 9.3 | VLSI techniques    |                 | 82 |

# LIST OF TABLES

| 1.1                      | BIT SLICE COMPARISONS                                                                                                    |                                       | 6                                |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------|
|                          | BIT SLICE FAMILIES<br>CCU ASSEMBLY DEFINITIONS                                                                           |                                       | 21                               |
| 6.2<br>6.3<br>6.4<br>6.5 | SEQUENCER COMMANDS Am29811 INSTRUCTION SET Am29811 FUNCTION TABLE Am29811 TRUTH TABLE ALU OPERATIONS PCU INSTRUCTION SET |                                       | 51<br>52<br>53<br>54<br>56<br>60 |
| 7.1                      | NOVA COMPUTER COMPARISONS                                                                                                | • • • • • • • • • • • • • • • • • • • | 67                               |

#### ABSTRACT

NOVA CPU IMPLEMENTATION WITH 2901 BIT SLICE

bу

Larry Wayne Abbott
Master of Science in Engineering

There are several methods which can be used in the design of a digital computer. Each of these approaches has its advantages and its disadvantages. To learn the trade-offs that apply to the bit slice and microprogram methods, a partial build up of a NOVA CPU was done. In the build up, special attention was focused on the sequencing and control of the CPU. The Project Report presents the outcome of the hardware build up and, in particular, it addresses the issues involved in microcode sequencing and decoding. Two methods of sequencing and decoding are presented in detail. One method relies on firmware to do all the sequencing and mode decoding, such as address modes. The other method relies on firmware and the Mapping PROM to do the sequencing and mode decoding. This project Report investigates the

implications of both methods on speed and memory requirements for the CPU. Finally, this Project Report presents technology trends, and investigates the potential use of bit slice technology in future systems.

# 1.0 CHOICE OF DESIGN APPROACH

The goal of this paper is to investigate the speed, firmware, and organizational requirements for a high performance minicomputer design. To fulfill this goal a computer central processing unit was constructed within the constraints of the time and money available to me.

Several design criteria had to be considered, balancing time and money available against firmware and hardware goals. The results of this trade-off are as follows:

- The bit slice approach was chosen. This approach gives ease of interfacing the various elements of the computer. Bit slice fabrication technology is also capable of providing the speed necessary for a high performance minicomputer.
- 2. The instruction set chosen was an emulation of the Data General NOVA 1200 set. It is relatively easy to implement, offers adequate power, and has a large expanding software base. In addition, at least two software compatible microprocessors exist, the Fairchild 9440 and the Data General MN601.
- Only representative instructions would be microprogrammed because of the large amount of time required to microprogram an instruction.

- 4. Certain sections of the CPU would not be completely built, and other sections would not be built at all because all the information wanted could be learned without a full implementation. For example, only one of the four Register and Arithmetic Logic Units (RALU) is used because only one is needed to verify proper RALU operation under the control of the computer control unit. In addition, the RALU is an expensive element, and any reduction in the number of units used reduces the cost greatly.
- 5. The sequencer is the heart of the Computer Control Unit (CCU), and the CCU is the heart of the CPU; therefore the sequencer and the other parts of the CCU (such as the microstore and the pipeline register) must be fully implemented and checked out.

Several approaches may be taken when designing a digital computer. These design approaches center around the technique used in the CCU to control various phases of the computer operation. The main techniques used in the control of the computer are ring counters, random logic, and microprogramming. In this paper the computer was designed around a microprogrammed CCU. In conjunction with the technique of microprogramming, a pipelined architecture was adopted to increase the computer speed.

# 1.1 HARDWARE ADVANTAGES AND DISADVANTAGES

The choice of the hardware and the architecture can make the difference between a successful and a disastrous design. Since a computer built up from SSI, MSI, and LSI components is much more expensive to build in terms of both time and hardware costs than the ubiquitous LSI microprocessor, it is imperative that such a computer have appreciably higher performance and flexibility than the LSI microprocessor. A typical computer built with bit slice techniques would require between fifty and one hundred integrated circuits just for its CPU. The cost of components for such a bit slice CPU starts at five hundred dollars, as opposed to ten dollars for the LSI microprocessor. It becomes obvious that high hardware costs for a bit slice computer are a definite disadvantage and that there must be performance gains to offset this disadvantage if the bit slice approach is to be used. This of course assumes that performance is needed in the first place.

Can the bit slice approach provide the necessary performance? One aspect of performance is the speed of the technology being used. As can be seen from figure 1.1 a bit slice computer using a bipolar technology such as Schottky, low powered Schottky, or ECL would provide the kind of speed that is necessary.



FIGURE 1.1 Comparison of gate delay verus power consumption for various technologies. Compiled from data books of AMD, Fairchild, and Motorola.

Picking the right integrated circuit technology is obviously no insurance that high performance will be achieved. The architecture of the computer is also of great importance. A well designed architecture will simultaneously perform as many computer operations as possible. This concurrency is achieved by using a pipelined microprogram architecture. In this type of architecture, a wide microprogram word, usually from 40 to 60 bits wide, is sent to an equally wide pipeline register. This technique allows one microinstruction, the one in the pipeline register, to be executed while another microinstruction is fetched from the microprogram memory (microstore).

Additional performance is gained from the width of the microinstruction. A wide microinstruction can command many actions at the same time, increasing the apparent speed of the computer.

A microprogram approach provides another advantage. Flexibility is a major strength of microprogramming. If it is necessary to add or change instructions, the microprogram can be easily changed. Most instruction sets have many instructions in common, so it may not be necessary to change all the microcode. It may be possible to simply change the addresses in the Mapping PROM for many of the instructions. So microprogramming makes the design extremely flexible.

Since the bit slice design has the form of an iterative array that can be expanded by adding more cells, the bit slice approach allows easy expansion of the address bus and the data bus while allowing the rest of the CCU to remain substantially the same. The expansion ability gives the bit slice approach flexibility through modularity.

The advantages and disadvantages of the concepts introduced for the bit slice approach to computer design are summarized in table 1.1.

TABLE 1.1

| BIT SLICE CO            | DMPARISONS    |
|-------------------------|---------------|
| ADVANTAGES              | DISADVANTAGES |
| SPEED: Bipolar          | COST: Time to |
| technology and          | microprogram  |
| pipelining              |               |
| FLEXIBILITY: Modularity |               |
| and micro-              |               |
| programming             |               |
| TIME: Reduced hard-     |               |
| ware design             |               |
| due to LSI              |               |

#### 1.2 FIRMWARE ADVANTAGES AND DISADVANTAGES

The major advantage of firmware is the flexibility gained from the microprogramming technique. disadvantage is the large amount of time it takes to write microcode. The Advanced Micro Devices literature (AMD, 1977) describing the System 29 microprogramming development system gives the following time and cost for microprogramming. For manual microprogramming "one word of microcode per day is allowed on U.S. Government contracts. Three to five words of microcode per day appears to be a reasonable standard on commercial projects This means that a 1000 word microprogram would take one man-year to accomplish, and even using the System 29 development system, it would take half a man-year to develop 1000 words of microcode. It is clear that the cost of microprogramming is a disadvantage. It is also evident why only representative instructions were microcoded for this project. In essence, the ease of hardware design comes at the expense of higher firmware cost.

# 2.0 SELECTION OF THE PROPER BIT SLICE FAMILY

After the decision has been made to design the computer using the combined techniques of bit slicing, pipelining, and microprogramming, there is the problem of selecting which of the bit slice families to use. One important criterion in selecting a device for a design is availability. This involves more than finding out whether or not the device is in stock. Availability involves consideration of such questions as whether the family is available from more than one distributor, and whether it is available at a competitive price with good delivery time. Without the purchasing power of a company, availability takes on a new dimension. Distributors are not eager to deal with an individual, especially in the small quantities required for a one of a kind graduate project. This latter consideration made the only practical choice of a bit slice the 2900 series. This choice, however, is a good one even under the normal commercial meaning of avialability, as shown below.

The available bit slices are shown in table 2.1.

From the table one could pick out the reasons that certain bit slice families were not chosen. The following sections are presented however, to make it clear why certain families were not chosen for this project. This is not to say that these families are not well designed; actually,

TABLE 2.1
BIT SLICE FAMILIES

| Сомрану                                 | Series     | Process<br>technology | ALV part<br>number | ALU word<br>size (bits) | Number of<br>ALU instructions | Con ALV do<br>BCD anthmetic | National ALU<br>clock rate (MHz) | General-purpose<br>registers in ALU | ALV presage<br>size (DIP pins) | Micreprogram<br>sequencer number | Kumber of<br>address bits | Maximum sequencer<br>clock rate (MHz) | Number of<br>Sequencer commands | Sequencer<br>Stack size | Sequence package<br>size (DIP pins) | Are parts<br>Til. compalible | Voltages<br>required (V) | Profotyping<br>system available | Development<br>sollware available | Specialized support circuits available | Communits                                                               |
|-----------------------------------------|------------|-----------------------|--------------------|-------------------------|-------------------------------|-----------------------------|----------------------------------|-------------------------------------|--------------------------------|----------------------------------|---------------------------|---------------------------------------|---------------------------------|-------------------------|-------------------------------------|------------------------------|--------------------------|---------------------------------|-----------------------------------|----------------------------------------|-------------------------------------------------------------------------|
| Advanced Micro Devices                  | 2900       | STIL                  | 2901A              | 4                       | 16                            | No                          | 10                               | 16                                  | 40                             | 2909/11                          | 4                         | 10                                    | 12                              | 4×4                     | 28/20                               | Yes                          | 5                        | Yes                             | Yes                               | Yes                                    | Has widest number of second sources                                     |
|                                         |            | SIIL                  | 2953               | 4                       | 25                            | No.                         | 10                               | 16                                  | 48                             |                                  |                           |                                       |                                 |                         |                                     |                              |                          |                                 |                                   |                                        | ALU has nine more instructions than 290, including multiply and divide. |
| fairchild_                              | Macrologic | 21117<br>21117        | 9405/34705         | 4                       | 64                            | No                          | 10                               | 8                                   | 24                             | 9406                             | 4                         | 16                                    | 4                               | 16×4                    | 24                                  | Yes                          | 5                        | Yes                             | Yes                               | Yes                                    | CMOS version (34705) operates at 2 MHz                                  |
|                                         | 100k 8 b.t | ECL                   | ADIU               | 8                       | 27                            | Yes                         | 20                               | 1                                   | •                              | •                                | •                         | •                                     | ٠                               | •                       | • :                                 | •                            | -4.52                    | 1978                            | 1978                              | 1978                                   | Only 8-bit stice                                                        |
| intel                                   | 3000       | SHL                   | 3002               | 2                       | 40                            | No                          | 10                               | li .                                | 28                             | 3001                             | 9                         | 10+                                   | 11                              | ۵.                      | 40                                  | Yes                          | 5                        | Yes                             | Yes                               | Yes                                    | Only 2 bit ALU available                                                |
| Monolishic Memories                     | 5700/6700  | STIL                  | 57/6701            | 4                       | 32                            | tio                         | 5                                | 16                                  | 40                             | 6310                             | 9                         | 10+                                   | ş                               | 0                       | 40                                  | Yes                          | 5                        | Yes                             | 1                                 | No                                     | Has double addressing capability                                        |
| Motorola                                | 10300      | fCL                   | 10200              | 4                       | 105+                          | Yes                         | 20                               | ٥                                   | 48                             | 10801                            | 4                         | 20                                    | 16                              | 4×4                     | 48                                  | No                           | -2,-5.2                  | Yes                             | Yes                               | Yes                                    | Fastest bit slice available                                             |
| National Semiconductor                  | 148.4      | PMOS                  | 00A/520            | 4                       | 8                             | No                          | 5.714                            | 20                                  | 24                             | 44/521                           | .4                        | 5.714                                 | 100+                            | in ALU                  | 24                                  | Yes                          | + 5, -12,                | Yus                             | Yes                               | No                                     | Need external register file                                             |
|                                         | 4.         |                       | CD#, 520           | 4                       | 8                             | No                          | 5.714                            | 50                                  | 24                             | 8A/521                           | 8                         | 5.714                                 | 100+                            | in ALU                  | 24                                  | Yes                          | +5,-12                   | Yes                             | Yes                               | No                                     | lices IMP 4 ALUs with big 60M                                           |
| 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | 1MP-18     | PMGS                  | 601/520            | 4                       | 8                             | C.K                         | 5.714                            | 20                                  | -24                            | 164/521                          | 16                        | 5.714                                 | 100+                            | in ALU                  | 24                                  | Yes                          | +512                     | Yes                             | Yes                               | Na                                     | Iwo development systems available                                       |
| fexas instruments                       | SBP 0400A  | <i>1</i> 2.           | SEP 3460           | -4                      | 512                           | No                          | 5                                | 10                                  | 40                             | 745482                           | - 4                       | 20                                    | 64                              | 4×4                     | 20                                  | Yes                          | Current                  | Yes                             | No                                | No                                     | Has pipeline register                                                   |
| 1.0                                     | 387-3401A  | 124                   | SBP 6461           | 4                       | 512                           | No                          | 5                                | 10                                  | 40                             | 745482                           | 4                         | 20                                    | 64                              | 4×4                     | 20                                  | Yes .                        | Corrent                  | Yes                             | No                                | No                                     | Does not have pinding expister                                          |
|                                         | 745461     | SIIT                  | 745491             | ٩                       | 24,785                        | Ko.                         | 13                               | ٥                                   | 46                             | 745482                           | 4                         | 20                                    | £1                              | 4%4                     | 20                                  | Yes                          | 5                        | Yes                             | No                                | Yes                                    | Very flexible instruction set                                           |

Source: Electronic Design, 1977, page 60

some of the families are better suited than the 2900 for some applications.

#### 2.1 THE IMP BIT SLICE

Without going into too much detail, the decision not to use the IMP was based on the technology and not on the functional design of the IMP chips. First, the IMP is implemented in PMOS which means it is slow, too slow for this application. Additionally, it uses multiple power supplies, requires TTL level shifters to be TTL compatible, and is not second sourced. There the IMP was not thought to be suitable for this application.

# 2.2 THE MOTOROLA 10800 FAMILY

The 10800, which uses ECL technology, is another family that was not chosen because of the technology. In this case the family is fast enough; in fact, it is too fast. The speed is accompanied by high power consumption, small (800 millivolt) logic swings, and by noise created by the fast switching speeds. Further, the 10800 is not TTL compatible because of the 800 millivolt logic swing. As a result of all these disavantages the 10800 family was not chosen. ECL is the type of technology that is more appropriate for high performance mainframe computers.

### 2.3 THE TEXAS INSTRUMENTS FAMILIES

The two families considered from Texas Instruments were implemented with Schottky and integrated injection logic (I<sup>2</sup>L). The SN74S481 was the Schottky implementation, and the SBPO400 and SBPO401 were the I<sup>2</sup>L implementation. Neither of the Texas Instruments families were chosen, however, each family was rejected for different reasons. In both cases the software support is practically non-existent, and, as has been pointed out earlier, microcoding is time consuming and needs to be done on a micro-programming development system for commercial applications.

The SBP0400 and SBP0401 were just too slow to be used. In fact the shortest microinstruction time was 350 ns and the maximum clock frequency was 3.3 MHz. Single chip 16 bit microprocessors can do as well.

The SN74S481 is an extremely fast (67ns) and versatile integrated circuit, but it does not fit into the architecture of the computer being designed. If the SN74S481 were used in this architecture its system speed would be much less than the 67ns the instruction time indicates. This paradox comes about because of the NOVA architecture. A NOVA uses four accumulators in the CPU for working registers; the SN74S481, on the other hand, uses 16 working registers in the main memory. To obtain four accumulators, the SN74S481 must locate them in main memory,

and unless one is willing to accept the higher price and complexity of high speed cache memory one must settle for the more realistic 300 ns memory speed. This means that the cycle time of the computer designed with the SN74S481 is based on 300 ns cycle times and not on the 67 ns of the basic SN74S481. With cycle times approaching 367 ns the SN74S481 would appear no better than the SBPO400. The SN74S481 was not chosen because of this reason.

# 2.4 THE INTEL 3000

The Intel 3000 series has two problems associated with it. First, the slice is only two bits wide, which means that it would require twice as many chips as a four bit slice to accomplish the same job. Secondly, the sequencer (3001) addresses only 512 words of microprogram memory; however what is really difficult to live with is the fact that the sequencer can not go from any location in the microprogram store to any arbitrary location. The addressing scheme divides the microprogram store into rows and columns. The sequencer can only jump to locations in the row or column of the originating microinstruction. This was felt to be an unnecessary restriction, and, as a result, the Intel 3000 was not chosen.

# 2.5 FAIRCHILD MACROLOGIC 9405

The Fairchild Macrologic family comes in two versions, Schottky and CMOS. The CMOS version is too slow for this project; however, the Schottky version is quite good. Schottky version, the 9405, is not quite as complex as the 2901; for instance, it does not offer the two port RAM so the RALU can not write and read the RAM at the same time or read two RAM locations at the same time. As a consequence, the 9405 comes in a smaller 24 pin package and costs less than the 2901 (\$12.00 versus \$14.70 in 100 quantity). The complexity of the 2901 allows more to be done in a microinstruction; however, it does not have an edge in chip count over the 9405. The 9405 does not seem to have as many support chips as the 2901, and in this area some applications may give the edge in chip count to the 2901. On the other hand, both groups of support chips seem to be well thought out, so a determination would have to wait for a preliminary design with both families.

On a technical basis the tradeoffs between the 9400 series and the 2900 series would make the choice a difficult one; in fact, for this application Fairchild has implemented a NOVA 3 emulation with the 9400 series. Even on a commercial availability basis the 9400 is acceptable. While it is true that the 2900 has more second sources than the 9400, the fact remains the 9400 is second sourced.

Therefore, the only reason for making the choice of the 2900 was the lack of availability of the 9400 through the low volume distributors that an individual must deal with.

### 2.6 MONOLITHIC MEMORIES 6700

The Monolithic Memories 6700 appears to be the forerunner of the 2900 series. As consequence, there is nothing the 6700 does that the 2900 cannot do better or faster. Even the pinouts are similar so it makes little sense to pick the 6700 series.

# 2.7 ADVANCED MICRO DEVICES 2900 SERIES

There were many obvious reasons for selecting the 2900 series such as availability (the 2900 has many sources, including AMD, Fairchild, Monolithic Memories, Motorola, National, Raytheon, Sescosem, and Signetics), single power supply, TTL compatibility, and Schottky speeds. However, these are the simple and obvious advantages. The important advantages are less obvious and more complicated.

The sequencer provides several of these advantages. With the 2909 or 2911 sequencers, any address can be reached from any other address in the microstore. The next address can also be reached via a four word micro-

instruction stack. The 2911 is discussed in greater detail in the section on hardware implementation, along with the other components of the 2900 chip set.

Another strong point of the 2900 series is the two port RAM in the 2901 RALU. With a two port RAM several RAM operations can occur during one microcycle. For instance, the contents of register A14 can be added to the contents of register B3 and loaded back into B3 with a left shift, all in one microcycle. The resulting throughput of the machine is much greater than its clock rate would indicate.

The large selection of support chips, such as the AM2930 Program Control Unit (PCU) makes the 2900 an especially powerful set from a total system point of view.

All the preceding elements are more throughly discussed in the section on hardware implementation. However, an area that is not discussed in detail elsewhere in the paper but is of upmost importance is the microprogram development system available for the 2900 series. It is not the only system available ( see table 2.1 on bit slice families), but it is coupled with what is perhaps the best of all the bit slices.

Several versions of the development software are available. The first version is the AMDASM microcode assembler, which is available on national time sharing.

Later developments are the System 29 and its implementation

via floppy disk on the Intel 8080 development system. Since the System 29 runs under the control of an Am9080, its software is compatible with other hardware systems that use the 8080 or its derivatives.

The Advanced Micro Devices Microprogramming Handbook (AMD,1976a) contains the example shown as figure 2.1 of the use of the AMDASM microcode assembler with AMD's CCU design (figure 11 in the Microprogramming Handbook). Additional information can be obtained from Advanced Micro Devices or Raytheon in handbooks describing AMDASM or RAYASM in more detail.

Figure 2.1 contains several microprogramming examples done with AMDASM. The examples assume AMD's design for a CCU (AMD, 1976a). It should be noted that there is a great deal of similarity between AMD's CCU design and the CCU designed for this paper.

AMD's CCU uses 26 of the bits in the 64 bit wide microinstruction word. Table 2.2 describes the 26 bits and their functions by dividing the microinstruction into five fields.

```
; THIS IS AN AMDASM MICROPROGRAM ASSEMBLY EXAMPLE.
: AMDASM REQUIRES TWO PHASES; DEFINITION AND ASSEMBLY.
FOLLOWING IS THE DEFINITION PHASE AND THE DEFINITIONS
; REFER TO FIGURE 11.
                          ; DEFINE A 64 BIT MICROINSTRUCTION
WORD
: THE FIVE MAIN COU FIELDS ARE AS FOLLOWS:
        MO -M11: A 12 BIT NUMERICAL FIELD USED TO
                   SUPPLY THE PIPELINE BRANCH ADDRESS
                   OR COUNTER LOAD VALUE.
        M12-M15: THE AM29811 INSTRUCTION
        M16-M20: CONDITION CODE TEST SELECT & POLARITY CONTROL
        M21 : INSTRUCTION REGISTER READ-IN
        M22-M25: THE AM29803 INSTRUCTION
. DEFINE THE DEFAULT PIPELINE BRANCH FIELD.
; IT WILL FORCE THE MICROPROGRAM TO THE HIGHEST
: MICROPROGRAM MEMORY LOCATION IF LEFT IN DEFAULT FORM.
NUMB: DEF
                52X, 12V%Q#7777
; DEFINE THE CONDITIONAL TEST SELECT FIELD AND POLARITY CONTROL
: DEFAULTS ARE: NONINVERTED AND UNCONDITIONAL.
: TESTS ARE ACTIVE LOW!
TEST:
         DEF
                43X, 4V%:D#0, 1VB#0, 16X
CNTR:
         EQU
                         ; COUNTER ZERO TEST SELECT
         EOU
                B#1
                         ; POLARITY CONTROL
INV:
; DEFINE THE AM29811 NEXT ADDRESS CONTROL UNIT
: INSTRUCTION MNEMONICS.
JZ:
         DEF
                48X, H#0, 12X
                                  ; JUMP ZERO
                48X, H#1, 12X
                                  ; CONDITIONAL JUMP SUBROUTINE
         DEF
CJS:
JMAP:
         DEF
                48X, H #2, 12X
                                  ; JUMP MAP
CJP:
                48X, H#3, 12X
                                  : CONDITIONAL JUMP PIPELINE
         DEF
                48X, H#4, 12X
48X, H#5, 12X
PUSH:
         DEF
                                  ; PUSH/CONDITIONAL LOAD COUNTER
JSRP:
         DEF
                                  ; CONOJUMP SUBROUTINE REGISTER/PIPELINE
CJV: ,
                48X, H#6, 12X
                                  : CONDITIONAL JUMP VECTOR
         DEF
JRP:
         OEF
                48X, H#7, 12X
                                  ; CONDITIONAL JUMP REGISTER/PIPELINE
RECT:
                48X, H#8, 12X
                                  , REPEAT FILE LOOP ON COUNTER .NE. ZERO
         OEF
RPCT
         DEF
                48X, H#9, 12X
                                  ; REPEAT PIPELINE ON COUNTER .NE. ZERO
                48X, H#A, 12X
                                  CONDITIONAL RETURN
CRTN:
         DEF
                48X, H#8, 12X
CJPP:
         DEF
                                  ; CONDITIONAL JUMP PIPELINE & POP
         DEF
                48X, H#C, 12X
LDCT:
                                  ; LOAD COUNTER & CONTINUE
LOOP:
         DEF
                48X, H#O, 12X
                                  : TEST END LOOP (CONDITIONAL LOOP ON FILE)
                48X, H#E, 12X
CONT:
         OEF
                                  ; CONTINUE
JP:
         DEF
                48X, H#F, 12X
                                  JUMP PIPELINE
```

FIGURE 2.1 An example of AMDASM microcode assembly From: AMD, 1976a page 1-16

```
; THE DEFAULT FOR DATA BUS READ IN OF INSTRUCTION REGISTER IS DISABLE
08:
         DEF
                 42X, 1VB#1, 21X
         EQU
                 B#0
IN:
; DEFINE THE AM29803 16-WAY BRANCH CONTROL UNIT
; INSTRUCTION MNEMONICS.
NOT:
         DEF
                 38X, H#0, 22X
TO:
         DEF
                 38X, H#1, 22X.
                 38X, H#2, 22X
         DEF
                 38X, H#3, 22X
38X, H#4, 22X
38X, H#5, 22X
T01:
         OEF
T2:
         DEF.
T02:
         DEF
T12:
         DEF
                 38X, H#6, 22X
                 38X, H#7, 22X
38X, H#8, 22X
T012: -
         DEF
         DEF
T3:
                 38X, H#9, 22X
T03:
         OEF
         DEF
                 38X, H#A, 22X
T13:
                 38X, H#8, 22X
T013:
         DEF
                 38X, H#C, 22X
         DEF
T23:
                 38X, H#O, 22X
38X, H#E, 22X
T023:
         DEF
T123:
         DEF
T0123:
         DEF
                 38X, H#F, 22X
                        ; END OF DEFINITION PHASE
END
; BEGIN ASSEMBLY PHASE
```

FIGURE 2.1 continued

From: AMD, 1976a page 1-17

```
; VISUALIZE A 16-BIT PROCESSOR IN A REAL-TIME ENVIRONMENT
; GATHERING AND MANIPULATING DATA. PART OF THIS DATA ARRIVES
: IN 8-BIT BYTES SO SWAPPING IS NECESSARY, ALSO, THERE ARE
: TWO CONTROL SIGNALS WHICH REQUIRE IMMEDIATE ATTENTION
; WHEN ACTIVE. ASSUME THAT THESE CONTROL SIGNALS ARE CONNECTED
; TO T2 AND T3 OF THE AM29803 16-WAY BRANCH CONTROL UNIT, FOLLOWING
: IS THE AMOASM OUTPUT FOR THIS EXAMPLE'S ASSEMBLY PHASE.
; WHICH INCLUDES THE SOURCE LISTING AND OUTPUT BIT PATTERN.
; IN THIS EXAMPLE, THE MICROPROGRAM STARTS AT LOCATION
: 0360 OCTAL, AS MENTIONED EARLIER, THE ALU PORTION OF
; THESE EXAMPLES IS NOT DEALT WITH.
0001 ORG H#0F0
0002 SWAP: NUMB 0 0 0 6 * & TEST , & PCLC & T0123
0003
        RFCT & TEST CNTR , & T0123
0004
        CJV & TEST , & T0123
0005
   ORG H#0F4
   ORTEST2: TEST , & JPL & NUMB H#1F0 ; #2 HANDLER AT LOCATION 1F0
0007
    ORG H#OF8
8000
   ORTEST3: TEST , & JPL & NUMB H#2F0 ;#3 HANDLER AT LOCATION 2F0
0009
   ORG H#OFC
0010
   ORTEST23: TEST, & JPL & NUM8 H#3F0; #2 AND#3 HANDLER AT LOC 3F0
0011
```

# FIGURE 2.1 continued

'; EXAMPLE 1.

From: AMD, 1976a page 1-18

#### ; EXAMPLE 2.

; ALIGNMENT CAN BE REALIZED IN ONE MICROINSTRUCTION. ASSUME ; THAT F3 OF THE MOST SIGNIFICANT ALU SLICE IS CONNECTED TO : TEST 13 OF THE CONDITION MULTIPLEXERS, NOTE THAT NEGATIVE : NUMBERS CAN BE ALIGNED IN THE SAME MANNER BY SIMPLY ; OMITTING THE VARIABLE "INV". ALSO, IF THE COUNTER IS CLEARED : BEFORE STARTING ALIGNMENT, IT WILL CONTAIN THE NUMBER OF ; SHIFTS REQUIRED TO DO THE ALIGNMENT (OR THE COMPLIMENT ; IF USING AM25LS169 COUNTERS).

0001 ORG Q#0770

0002 ALIGN: NUMB 0770 & TEST 13, INV & RPCT (ALU TO SHIFT UP)

#### ; EXAMPLE 3.

; A DIVISION ROUTINE. ASSUME F = 0 OF THE ALU IS CONNECTED TO : TEST-12 (AND F3 TO TEST-13 AS BEFORE), AND SIXTEEN DIVISION STEPS ARE REQUIRED. IF THE FINAL REMAINDER IS NEGATIVE, IT MUST BE : RESTORED BY ADDING IT TO THE DIVISOR. THE VECTOR INPUT IS SET UP ; FOR THE ERROR ROUTINE. NOTE USAGE OF THE AMDASM CONVENTION "S" TO DENOTE THE CURRENT PROGRAM COUNTER.

0001 ORG 0#1000

0002 DIVIDE: LDCT & TEST, INV & NUMB 0#14%. ; (ALU OUTPUTS DIVISOR)

; IF = 0: ERROR TEST 12, INV & CJV 0003

RPCT & TEST CNTR, & NUMB S ; LOOP

0004 TEST 13, INV & NUMB \$+2 & CJP ; IF R < 0, CORRECT 0005

0006 TEST, & JMAP : EXIT TO MAP

; ALU ADDS REMAINDER TO DIVISOR, EXIT MAP 0007 TEST, & JMAP

0008 END

#### FIGURE 2.1 continued

From: AMD, 1976a page 1-19

TABLE 2.2
CCU ASSEMBLY DEFINITIONS

| 22-25                   | 21                | 16-20                         | 12-15                   | 0-11             | BIT NO.           |
|-------------------------|-------------------|-------------------------------|-------------------------|------------------|-------------------|
| Am29803<br>Instructions | inst.<br>Register | Test Select**<br>and Polarity | Am29811<br>Instructions | Numerical Field* | Field Description |
| TO                      | IN                | The Test                      | JZ                      | Any 4            | Parameters        |
| T1 -                    |                   | Number                        | CJS                     | Digit (12        | To Se             |
| T01                     |                   | (1 – 14) in                   | JMAP                    | Bit) Octal       | Used              |
| T2                      |                   | Decimal,                      | CJP                     | Number           |                   |
| T02                     |                   | and:                          | PUSH:                   |                  |                   |
| T12                     |                   | CNTR                          | JSRP                    |                  |                   |
| T3'                     |                   | for Test                      | CJV                     |                  |                   |
| T03                     |                   | Select.                       | JRP                     |                  |                   |
| T13                     |                   | (Uncondi-                     | RECT                    |                  | ]<br>}-           |
| T013                    |                   | tional by                     | RPCT                    | •                |                   |
| T23                     |                   | default) INV                  | CRTN                    |                  |                   |
| T023                    |                   | for Test                      | CJPP                    |                  |                   |
| T123                    |                   | Polarity                      | LDCT                    |                  |                   |
| T012                    |                   | (noninverted                  | LOOP                    |                  |                   |
| T0123                   |                   | by default)                   | CONT                    |                  |                   |
| NOT                     |                   |                               | Q;                      |                  |                   |

Source: AMD, 1976a, page 1-15

# 3.0 BASIC MICROPROGRAMMED PIPELINE ARCHITECTURE

The computer design in this paper incorporates the techniques of microprogramming and pipelining. A basic functional block diagram of this type of system is shown in figure 3.1. The functional blocks perform various phases of the computer's operation and are listed below along with a brief description of the function of each. A more detailed presentation of each element is given in the section on the hardware implementation. This section is a simple overview to familiarize the reader with the total architecture.

#### 3.1 INSTRUCTION REGISTER

The instruction is clocked into the instruction register from the data bus when the pipeline register sends the proper command. The instruction is held in the instruction register (IR) until the pipeline register commands another IR load. From the instruction register the instruction is routed to the Mapping PROM, RALU, PCU, and the input and output (I/O) control.

#### 3.2 MAPPING PROM

The Mapping PROM contains the address to the starting



FIGURE 3.1 Functional block diagram of microprogram type computer.

points of each instruction's microcode in the microstore. By routing the instruction from the instruction register to the Mapping PROM, the correct starting address for the instruction's block of microcode is generated.

# 3.3 SEQUENCER

The sequencer selects the proper source for the next microinstruction address. The next address may come from the Mapping PROM, the pipeline register, the sequencer's stack, or the sequencer's R register. The source for the next instruction depends upon the situation, as will be seen later in the examples of microcode.

#### 3.4 MICROPROGRAM

The output of the sequencer is sent to the microprogram memory and the output of the microprogram memory
is clocked into the pipeline register on the next clock
pulse. Once in the pipeline register, the instruction is
executed by sending commands to the RALU, PCU, MAR, MBR,
sequencer, and other computer elements. The microprogram
sends the sequencer the code for the next address source
and may also send the branch address if the situation is
called for. This process allows the previous pipeline
word to fetch the next microcode while the present code is

being executed. This parallel operation allows the computer to run twice as fast as would be possible if the system was processing the microcode serially. Figure 3.2 illustrates how this overlapping operates.

| ACTION          |   |   | • | DURA<br>CTION                           |   |   |   |   |   |
|-----------------|---|---|---|-----------------------------------------|---|---|---|---|---|
| FETCH           |   |   |   |                                         |   |   |   |   |   |
| INSTRUCTION     | A |   |   | В                                       |   |   | C |   |   |
| DECODE          |   |   |   |                                         |   |   |   |   |   |
| INSTRUCTION     |   |   | A |                                         |   | В |   |   | C |
| FETCH BASE      |   |   |   |                                         |   |   |   |   |   |
| ADDRESS         |   |   | A | 1 · · · · · · · · · · · · · · · · · · · |   | В |   |   | C |
| FORM EFFECTIVE  |   |   |   | ·                                       |   |   |   |   |   |
| ADDRESS         |   |   |   | A                                       |   |   | В |   |   |
| FETCH           |   |   |   |                                         |   |   |   |   |   |
| OPERAND         |   |   |   |                                         | A |   |   | В |   |
| ADD OPERAND     |   |   |   |                                         |   |   |   |   |   |
| AND SAVE RESULT |   |   |   |                                         |   | A |   |   | В |
| MICRO CYCLES    | 1 | 2 | 3 | 4                                       | 5 | 6 | 7 | 8 | 9 |
|                 |   |   |   |                                         |   |   |   |   |   |

ACTUAL DURATION OF EACH ADD DX INSTRUCTION = 6

FIGURE 3.2 Example of an instruction using pipelining and the effective increase in throughput. The instruction is a direct-indexed addition.

From: Muething, 1976

### 3.5 PIPELINE REGISTER

The pipeline register is loaded from the microprogram and is usually between 40 and 60 bits wide. These bits are formed into many different fields which control the different elements of the computer. For instance, the pipeline register has fields to control the next microinstruction address sources, the function of the ALU, the operation of the I/O unit, the program addressing, and all the associated registers.

#### 3.6 RALU

The 2901 contains 16 two port registers, a Q register, an 8 function ALU, output multiplexer, and shifting capability (the more complex 2903 also has provisions to do two's complement and floating point operations).

#### 3.7 PROGRAM CONTROL UNIT (PCU)

The PCU is a powerful integrated circuit that contains a stack, incrementer, and other necessary elements to do most forms of addressing, including direct, indirect, indexed, and relative.

# 4.0 SELECTION OF THE INSTRUCTION SET

Deciding on which instruction set to use in the computer design was the most agonizing part of the design. The goal was an instruction set that was both easy to implement and had a large existing software base. The choice soon narrowed down to either the PDP-11 or NOVA 1200 instruction set.

The PDP-11 instruction set (figure 4.1) has one of the largest bases of existing software. In addition, Digital Equipment Corporation and Western Digital produce a PDP-11 software compatible microprocessor. The availability of the microprocessors would allow the development of software on a relatively large and fast system, such as the Am2900, and allow total software transfer to a small dedicated system later if desired. However, the PDP-11 instruction set is particularly difficult to implement because of its poorly structured op code field. This op code field difficultly would have required expensive Programmable Logic Arrays (PLA) to implement the instruction set. Since the PLA's are not reprogrammable, this would have been cost prohibitive on a one of a kind system.

As can be seen from figure 4.2, the NOVA instruction set is simpler and more clearly structured than the PDP-11 instruction set. There are separate fields for the ALU

| OP (                        | Code                    |         | >4.11.10.    | MTPS.S             | DD        | .)<br>——— |
|-----------------------------|-------------------------|---------|--------------|--------------------|-----------|-----------|
| 15                          |                         |         | 6            | 5                  | טט        |           |
|                             |                         |         |              |                    |           | 0         |
| Double Opera                | nd Group                |         |              | C.BICB,F<br>OVB,CM |           |           |
| OP Code                     |                         | SS      |              |                    | DD        |           |
| 15 12                       | 11                      |         | 6            | 5                  |           | 0         |
| . Program Cont<br>a. Branch | roi Group<br>(all branc |         | ructions     | )                  |           |           |
| OP                          | Code                    |         |              | offse              | et        |           |
| 15                          |                         | 8       | 7            | <del></del>        |           | 0         |
| b. Jump                     | Γο Subroι               | itine ( | ISR)         |                    |           |           |
| 0 0                         | 4                       | Т.      | R            | <del></del>        | DD        |           |
| c. Subrou                   | itine Retu              | m (RT   | 'S)          |                    |           |           |
| 0 0                         | 0.                      |         | 2            | 0                  |           | R         |
| d. Traps (                  | break poi               | or, IO  |              | RAPBP              | Γ)        |           |
| e. Mark (                   | MARK)                   |         |              | <del></del>        |           |           |
| 0 0                         | 6                       |         | 4            |                    | NN        |           |
| f Subtrac                   | t I and br              | anch (  | if = 0) (    | SOB)               |           |           |
| i. Subitac                  | . 7                     | T       | R            |                    | NN .      |           |
| 0 0                         |                         |         |              |                    |           |           |
| <del></del>                 | (HALT,                  |         | <del> </del> | SETRT              | T,NOP)    |           |
| 0 0                         | (HALT,                  |         | RTI RE       | SETRT              | T,NOP)    |           |
| 0 0                         |                         | OP      | CODE         |                    |           | ons)      |
| Operate Group               |                         | OP      | CODE         |                    | nstructio | ons)      |

FIGURE 4.1 PDP-11 instruction set From: DEC, page 33



Memory Reference instructions without register are used for branching (JMP, JSR) without involving accumulators. These instructions are also used for modifying memory (ISZ, DSZ). Memory Reference instructions with register are used to move 16-bit words between the memory and the accumulators.



Arithmetic/Logic instructions perform arithmetic(ADD, ADC, INC, NEG, SUB) or Boolean(AND, COM, MOV) operations on the contents of two registers. The result of each operation together with the Carry bit can be rotated and tested for skip conditions as part of the same arithmetic/logic instruction; loading in the destination register is optional.



Input/Output instructions move data between the 9440 accumulators and three buffers in the peripheral device interface. These instructions also perform control functions in the I/O device and test the status flags in both the peripheral circuitry and the central processor.

FIGURE 4.2 Fairchild 9440 emulation of the NOVA 1200

instruction set

From: Wilnai, 1977, page 6

function, shift, and carry. The op code field does not have a variety of lengths as the PDP-11 does. This makes the implementation of the Mapping PROM easy since EPROM's can be used. There is the added plus of a large and expanding software base for the NOVA instruction set, and, as in the case of the PDP-11, there are microprocessors available that are compatible with the NOVA instruction set. One microprocessor is from Data General (the MN6O1) and the other is from Fairchild (the 994O).

It should be noted that the NOVA instruction set is not a particularly demanding set for the Am2900. For instance, the 2900 can easily provide information on comparisons such as A greater than B, or A less than B; the NOVA instruction set can not use this information and must take several steps to arrive at the same decision.

The NOVA instruction set has access to the four accumulators which are present in the NOVA architecture, however, since the Am2901 has sixteen registers, twelve of which the NOVA cannot use, the NOVA instruction set cannot take full advantage of the Am2901's capability.

When all the factors are considered, the NOVA instruction set is an acceptable choice for this project because it has adequate power and a straight forward structure for its instruction set. Figure 4.2 and figure 4.3 show the structure of the instruction set and the function of each instruction.

| Mnemonic     | Octal            | Operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Memory refe  |                  | structions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| osz          | 014000           | Decrement location E1 by 1 and skip if result is zero.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ISZ          | 010000           | Increment location E by 1 and skip i result is zero.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| JMP.         | 000000           | Jump to location E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ารส          | .004000          | Load PC+1 in AC3 and jump to subroutine at location E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| LDA<br>STA   | 020000<br>040000 | Load contents of location E into AC Store AC in location E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Arithmetic a | nd logica        | l instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ADC .        | 102000           | Add the complement of ACS2 to ACD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ADD.         | 103000           | Add ACS to ACD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| AND          | 103400           | AND ACD with ACD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| COM          | 100000           | Place the complement of ACS in ACD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| INC          |                  | Place ACS+1 in ACD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MOV          | 101000           | Move ACS to ACD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NEG          | 100400           | Place regative of ACS in ACD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SUB          | 102400           | Subtract ACS from ACD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DIV          | 073101           | If overflow, set Carry, Otherwise divide AC0-AC1 by AC2; Put quotient in AC1 remainder in AC1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MUL          | 073301           | AC1, remainder in AC0.  Multiply AC1 by AC2, add product to AC0, put result in AC0-AC1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Input/outpu  | instructi        | ons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DIA          | 060400           | Data in, A buffer to AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OIB          | 061400           | Data in, 8 buffer to AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| OIC          | 062400           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DOA          | 061000           | Data out, AC to A buffer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 008          | 062000           | Data out, AC to B buffer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DOC          | 063000           | Data out, AC to C buffer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| NIO          | 060000           | No operation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| SKPBN        | 063400           | Skip if Busy is 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SKPBZ        | 063500           | The state of the s |
| SKPON        | 063600           | Skip if Done is 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SKPDZ        | 063700           | Skip if Oone is 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Stack manie  |                  | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|              |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MFFP         | 060201           | Move contents of frame pointer to AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MESP         | 061201           | Move contents of stack pointer to AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MTFP         | 060001           | Move contents of AC to frame pointer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MTSP         | 061001           | Move contents of AC to stack pointer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| POPA         | 061601           | Move top word on stack to AC and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PSHA         | 061401           | decrement stack pointer<br>increment stack pointer and move con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RET          | 062601           | lents of AC to top of stack. Restore accumulators, program counter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|              |                  | and carry from last return block on stack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| SAV          | 062401           | Push a five-word return block on stack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MSKO         | 062077           | Set up interrupt-disable flags according to mask in AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| RTCEN        | 071077           | Enable interrupts from CPU real-time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RTCDS        | 065 <b>077</b>   | Disable interrupts from CPU real-time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TRAP         | 100010           | Software interrupt (ALC format no-skip no-load)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Central prod | essor cor        | ntrol instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| HALT         | 063077           | Hait the processor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| INTA         | 061477           | Acknowledge interrupt by loading code of nearest device that is requesting an interrupt into AC bits 10 to 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| INTOS        | 060377           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | 060277           | Disable interrupt by cleaning interrupt ON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 14.TT-11     |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| INTEN        | 060177           | Enable interrupt by setting interrupt ON Clear all I/O devices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

<sup>\$ -</sup> Tocation 6" persons to a location with an audiess combuted using bits 5 to 1

FIGURE 4.3 microNOVA instruction set

From: Falkoff, 1977a

of the word and either the PG. ACZ or AC3

<sup>&</sup>lt;sup>2</sup>ACS, and AGΩ refer to source and destination accumulators, each selected by a 2-bit section of the instruction

# 5.0 STATE TRANSITION DIAGRAM

The state transition diagram depicts, in graphical form, the sequence of events that the computer can go through in each cycle. The state transition diagram, shown as figure 5.1, is presented in the form typical of other state diagrams and should be self explanatory.



FIGURE 5.1 CPU state transition diagram

### 6.0 HARDWARE IMPLEMENTATION

Figure 6.0 shows the system design of the 2900 16 bit minicomputer. Figure 6.0 refers to the detailed drawings (figure 6.1 through 6.12) of the computer functions. The following sections describe the hardware implementation of these functions in detail.

#### 6.1 IR AND MAPPING PROM

The computer starts its cycle by loading the instruction register (figure 6.1 in the system design). The instruction register latches the data and sends it on to the Mapping PROM. In a final design the Mapping PROM would consist of high speed bipolar PROM, however, for the development system relatively slow ultra violet erasable EPROM was used because it provided more flexibility and was more cost effective than throwing away a set of PROMs each time the microcode was changed. This necessarily slowed down the speed of the computer since the EPROMs used (the 2708) have access times of 450 ns as compared to 50 ns which is typical of microstore speeds.

The Mapping PROM sends the proper starting address to the sequencer(figure 6.2 in the system design) where one of several options will be performed depending on the contents of the pipeline register. For instance, a micro-



FIGURE 6.0 System architecture for 16 bit computer CPU



FIGURE 6.1 Instruction register and Mapping PROM



FIGURE 6.2 Sequencer



FIGURE 6.3 Next address control



FIGURE 6.4 2901 RALU array



FIGURE 6.5 Arithmetic and logic unit



FIGURE 6.6 ALU holding register



FIGURE 6.7 Memory Address Register



FIGURE 6.8 Program Control Unit



FIGURE 6.9 Clock generator



FIGURE 6.10 Microstore and Pipeline Register



FIGURE 6.11a Physical layout of CCU



FIGURE 6.11b Photograph of the physical layout of the CCU



FIGURE 6.12 MODE implementation circuit

subroutine may be called or returned from, or a branch to a location selected by the pipeline register may be executed, or a branch to the location addressed by the mapping PROM may be executed. The appropriate action depends upon the next address and mode fields of the pipeline register. The next address field controls the operation of the Am29811 sequencer controller, which will be discussed in detail latter.

What is important about the Am29811 now is the fact that it does not allow for a jump to a subroutine given by the address from the mapping PROM. There are many variations on the basic NOVA 1200 instructions including direct, indirect, relative, and base page addressing combined with the shifts and skips that are a part of the ADD instruction. To decode these instructions into unique microcode routines requires either a large amount of memory, or a large amount of time, or a clever compromise to keep the amount of mapping PROM and microstore down while not slowing the computer down too much.

One of the options, the most memory intensive and the fastest, is to microcode each instruction permutation and map each variation into its unique block of microcode. This approach requires a much larger mapping PROM and microstore, but the computer does not waste time decoding instruction permutations with firmware.

Another method is to determine each permutation by

jumping into microcode subroutines to determine the proper mode and returning when the determination is complete. This method is slow because of the time required to jump to a microcode subroutine, do a firmware determination of mode, and to return from the subroutine.

A more practical approach is to use the Mapping PROM as a decoder. To do this, the Mapping PROM must be available as a mapping function during normal modes, but must be converted into an instruction decoder during the appropriate modes. In this way, the computer goes to the proper instruction microcode without the use of firmware subroutines. Since there are several mode types, such as addressing, shifting, and skipping, and since the Am29811 does not have a MAP subroutine instruction, logic has to be added to accomplish calls to the subroutine pointed to by the Mapping PROM.

The way to implement the MAP subroutine instruction with the least amount of hardware would be to combine the next address and mode fields into one field and replace the Am29811 with a PROM large enough to decode the combined fields. However, the need for the mode field was not realized until after the hardware was constructed. Besides, I did not have access to the necessary PROM programmer. The next best approach was to construct the logic needed by using a 74LS251 tri-state eight input multiplexer as an universal logic module in combination

with the unused half of a 74LS139 one of four decoder. During the addressing, shifting, and skipping modes the logic inverts the pipeline and mapping PROM enable lines so the jump to a pipeline subroutine is converted into a jump to the MAP subroutine. The circuit is shown as figure 6.12.

### 6.2 SEQUENCER

The sequencer is the heart of the computer's microprogrammed architecture. The sequencer controls the
execution of the microprogram with its own instruction set
(see table 6.1), but the sequencer is, in turn, controlled
by the sequencer controller, a 29811.

The sequencer controller is part of the next address circuit (see figure 6.3). The next address circuit performs several functions. First, the next address circuit can test up to 16 test inputs and send the results to the 29811 sequencer controller which uses the information to decide the source of the next sequencer address. Secondly, in addition to the test input, the next address source for the sequencer is determined by the pipeline register commands to the sequencer controller. These pipeline register commands are from the sequencer controller's own instruction set (see tables 6.2, 6.3, 6.4).

TABLE 6.1
SEQUENCER COMMANDS

|            | Add                             | ress Sele                                        | ction  |          |                          |                     |                  |                      | Output Control                        |                                    |
|------------|---------------------------------|--------------------------------------------------|--------|----------|--------------------------|---------------------|------------------|----------------------|---------------------------------------|------------------------------------|
| C          | CTAL S1. S0 SOURCE FOR YOUTPUTS |                                                  |        |          | SYMBOL                   | ]                   | OR               | ZEF                  | O OE Yi                               |                                    |
|            | 1 LHR<br>2 HLP                  | icroprogr<br>egister<br>ush-Pop si<br>irect inpu | ack    | iter     | μPC<br>REG<br>STKO<br>D; |                     | X<br>X<br>H<br>L | Х<br>Ц<br>Н          | L<br>L H                              | d by S <sub>0</sub> S <sub>1</sub> |
|            |                                 |                                                  |        | s        | ynchror                  | ious Sta            | ck Cont          | rol                  | Z = Hi                                | gh Impedance                       |
|            |                                 |                                                  | FE     | PUP      |                          | PUSH-P              | OP STAC          | K CHAN               | IGE                                   |                                    |
| H =        | High                            |                                                  | H      | Х<br>Н   | ln.                      | change<br>crement : |                  | nter, thei<br>o STKO |                                       | •                                  |
| L =        | Low<br>Oon't Care               |                                                  | L.     | L        | Po                       | p stack (           | decreme          | ot stack p           | ointer)                               |                                    |
| CYCLI      | E S1, S0, FE, PUP               | μРС                                              | REG    | sтко     | STK1                     | STK2                | STK3             | Your                 | COMMENT                               | PRINCIPLE<br>USE                   |
| N<br>N+1   | 0000                            | J+1                                              | K<br>K | Ra<br>Rb | Rb<br>Rc                 | Rc<br>Rd            | Rd<br>Ra         | J                    | Pop Stack                             | End<br>Loop                        |
| N<br>N+1   | 0001                            | J<br>J+1                                         | K<br>K | Ra       | Rb<br>Ra                 | Rc<br>Rb            | Rd<br>Rc         | J                    | Push µPC                              | Set-up<br>Loop                     |
| N<br>N+1   | 0 0 1 X                         | J<br>J+1                                         | K<br>K | Ra<br>Ra | Rb<br>Rb                 | Rc<br>Rc            | Rd<br>Rd         | J<br>-               | Continue                              | Continue                           |
| N<br>N+1   | 0100                            | J<br>K+1                                         | K<br>K | Ra<br>Rb | Rb<br>Rc                 | Rc<br>Rd            | Rd<br>Ra         | К<br>-               | Pop Stack;<br>Use AR for Address      | End<br>Loop                        |
| N<br>N+1   | 0101                            | J<br>K+1                                         | K<br>K | Ra<br>J  | Rb<br>Ra                 | Rc<br>Rb            | Rd<br>Rc         | к<br>-               | Push μPC;<br>Jump to Address in AR    | JSR AR                             |
| N<br>N+1   | 0 1 1 X                         | J<br>K+1                                         | K      | Ra<br>Ra | Rb<br>Rb                 | Rc<br>Rc            | Rd<br>Rd         | K -                  | Jump to Address in AR                 | JMP AR                             |
| N<br>N+1   | 1000                            | J<br>Ra+1                                        | K<br>K | Ra<br>Rb | Rb<br>Rc                 | Rc<br>Rd            | Rd<br>Ra         | Ra<br>-              | Jump to Address in STKO;<br>Pop Stack | RTS                                |
| . N<br>N+1 | 1001                            | · j<br>Ra+1                                      | K      | Ra<br>J  | Rb<br>Ra                 | Rc<br>Rb            | Rd<br>Rc         | Ra                   | Jump to Address in STKO;<br>Push uPC  |                                    |
| N<br>N+1   | 1 0 1 X                         | J<br>Ra+1                                        | K<br>K | Ra<br>Ra | Rb<br>Rb                 | Rc<br>Rc            | Rd<br>Rd         | Ra                   | Jump to Address in STK0               | Stack Ref<br>(Loop)                |
| N<br>N+1   | 1 1 0 0                         | J<br>Đ+1                                         | K<br>K | Ra<br>Rb | Rb<br>Rc                 | Rc<br>Rd            | Rd<br>Ra         | 0                    | Pop Stack;<br>Jump to Address on D    | End<br>Loop                        |
| N<br>N+1   | 1101                            | J<br>0+1                                         | K<br>K | Ra<br>J  | Rb<br>Ra                 | Rc<br>Rb            | Rd<br>Rc         | D<br>-               | Jump to Address on D;<br>Push µPC     | JSR D                              |
| N<br>/4+1  | 1 1 1 X                         | J<br>D+1                                         | K      | Ra<br>Ra | Rb<br>Rb                 | Rc<br>Rc            | Rd<br>Rd         | Ö                    | Jump to Address on D                  | JMP D                              |

X = Don't care, 0 = LOW, 1 = HIGH; Assume  $C_n = HIGH$ Note: STKO is the location addressed by the stack pointer,

Source: AMD, 1976a, page 2-6

TABLE 6.2
Am29811 INSTRUCTION SET

| MNEMONIC | 13 12 11 10 | INSTRUCTION                                                                                                  |
|----------|-------------|--------------------------------------------------------------------------------------------------------------|
| JZ       | L. L. L. L. | Jump to Address Zero                                                                                         |
| CJS      | LLLH        | Conditional Jump-to-Subroutine with Jump Address in Pipeline Register.                                       |
| JMAP     | LLHL        | Jump to Address at Mapping PROM Output.                                                                      |
| CJP      | LLHH        | Conditional Jump to Address in Pipeline Register                                                             |
| PUSH     | LHLL        | Push Stack and Conditionally Load Counter                                                                    |
| JSRP     | LHLH        | Jump-to-Subroutine with Starting Address Conditionally Selected from Am2911 R-Register or Pipeline Register. |
| C1A      | LHHL        | Conditional Jump to Vector Address.                                                                          |
| JRP      | тннн        | Jump to Address Conditionally Selected from Am2911<br>R-Register or Pipeline Register.                       |
| RFCT     | HLLL        | Repeat Loop if Counter is not Equal to Zero.                                                                 |
| RPCT     | HLLLH       | Repeat Pipeline Address if Counter is not Equal to Zero.                                                     |
| CRTN     | HLHL        | Conditional Return-from-Subroutine.                                                                          |
| CJPP     | нснн        | Conditional Jump to Pipeline Address and Pop Stack.                                                          |
| LDCT     | ннсс        | Load Counter and Continue.                                                                                   |
| LOOP     | ннін        | Test End of Loop.                                                                                            |
| CONT     | нннь        | Continue to Next Address.                                                                                    |
| JP       | ннн         | Jump to Pipeline Register Address.                                                                           |

Source: AMD, 1976a, page 2-19

TABLE 6.3 Am29811 FUNCTION TABLE

|          |              | INPUTS                |               |                     | OL    | STUTTS  |       |      |
|----------|--------------|-----------------------|---------------|---------------------|-------|---------|-------|------|
| MNEMONIC | INSTRUCTION  | FUNCTION              | TEST<br>INPUT | NEXT ADDR<br>SOURCE | FILE  | COUNTER | MAP-E | PL-E |
| JZ       | LLLL         | JUMP ZERO             | ×             | 0                   | HOLO  | L L *   | Н     | L    |
| CJS      | LLLH         | CONO JSB PL           | L             | PC                  | HOLD  | HOLD    | H     | 1    |
|          |              |                       | н             | _0                  | PUSH  | HOLD    | н     | L    |
| JMAP     | LLHL         | JUMP MAP              | ×             | 0                   | ного  | HOLD    | ι     | н    |
| C7b      | ггин         | COND JUMP PL          | L             | PC                  | HOLD  | HOLD    | Н     | L    |
|          |              | •                     | н             | D                   | HOLD  | HOLD    | H.    | ١.   |
| PUSH     | LHLL         | PUSH/COND LD CNTR     | L             | PC                  | PUSH  | HOLD    | н     | L.   |
|          |              |                       | н             | PC                  | PUSH  | LOAD    | H     | 1    |
| JSRP     | LHLH         | COND JSB R/PL         | L             | R                   | PUSH  | HOLD    | н     | L    |
|          |              |                       | н             | 0                   | PUSH  | HOLD    | Н     | Ļ    |
| CTA      | LHHL         | COND JUMP VECTOR      | L             | PC                  | HOLD  | HOLD    | н     | . н  |
|          |              |                       | н             | 0                   | HOLD  | HOLD    | Н     | н    |
| JAP      | <b>т</b> ннн | COND JUMP RIPL        | Ĺ             | R                   | HOLD  | HOLD    | Н     |      |
|          | <u> </u>     |                       | н             | 0                   | HOLD  | HOLD    | н     | L    |
| RFCT     | HILLE        | REPEAT LOOP, CNTR # 0 | L             | F                   | HOLD  | DEC     | н     | L    |
|          |              |                       | н             | PC                  | - POP | HOLD    | H     | L    |
| RPCT     | HLLH         | REPEAT PL, CNTR # 0   |               | . 0                 | HOLD  | DEC     | н     | L    |
|          |              |                       | Н             | PC                  | HOLD  | HOLD    | . н   | ١.   |
| CRTN     | ніні         | COND RTN              |               | PC                  | HOLD  | HOLD    | . н   | L    |
|          |              |                       | н             | F.                  | POP   | HOLD    | н     | 1    |
| CIPP     | ягнн         | COND JUMP PL & POP    | L             | PC                  | HOLD  | HOLD    | н     | L    |
|          |              |                       | Н             | D                   | POP   | HOLD    | Н.    |      |
| LDCT     | ннці         | LOAD COTH & CONTINUE  | х             | PC                  | HOLO  | LOAD    | н     | L    |
| LOOP     | нисн         | TEST END LOOP         | L             | F                   | HOLD  | HOLD    | н     | L    |
|          |              |                       | Н             | PC                  | POP   | HOLD    | н     | L    |
| CONT     | нинс         | CONTINUE              | x             | PC                  | HOLD  | HOLD    | н     | L    |
| JP       | нннн         | JUMP PL               | X             | D                   | HOLD  | HOLO    | Н     | L    |

L = LOW H = HIGH X = Don't Care

DEC = Decrement
\*LL = Special Case

AMD, 1976a, page 2-20 Source:

TABLE 6.4
Am 29811 TRUTH TABLE

|          | 1                    |     | INPUTS |        |         |          |                        | OUTPUTS        |     |          |         |          |       |        |
|----------|----------------------|-----|--------|--------|---------|----------|------------------------|----------------|-----|----------|---------|----------|-------|--------|
| MNEMONIC | FUNCTION             |     |        | -      |         | <u>-</u> | NEXT<br>ADDR<br>SOURCE |                | Fi  | LE       | COUNTER |          | in in | įω     |
|          |                      | 13  | 12     | H      | lo      | TEST     | SUL                    | S <sub>0</sub> | 122 | P.O.     | LOAD    | 12       | MAP   | P.E.   |
|          | PIN NO.              | 14  | 13     | 12     | 11      | 10       | 4                      | 5              | 3   | 2        | 6       | 7        | 1     | 9      |
| 1Z       | JUMP ZERO            | Ĺ   | L<br>L | Ĺ      | į       | L<br>H   | н                      | H              | H   | H        | L       | Ĺ        | x x   | Į.     |
| cus      | CONO ISB PL          | L   | L      | L<br>L | н<br>н  | L<br>H   | L<br>H                 | L.             | H   | Н        | H       | н н      | H     | L      |
| JMAP     | JUMP MAP             | L   | L.     | н<br>н | L       | r<br>L   | н                      | н              | н   | н        | H       | н        | L     | н      |
| CJP      | COND JUMP PL         | L   | į.     | H<br>H | н<br>н  | L<br>H   | L                      | L<br>H         | н   | н        | н       | . н      | H     | L<br>L |
| PUSH     | PUSH/COND LO CNTR    | L   | H      | L      | į.<br>L | r<br>H   | L<br>L                 | L<br>L         | Ĺ   | H-<br>H  | H       | н<br>н   | H     | L<br>L |
| JSRP     | CONO JSB R/PL        | Į.  | H      | L      | H<br>H  | H        | L<br>H                 | н              | L   | н        | H       | Н        | H H   | L<br>L |
| CJV      | COND JUMP VECTOR     | L   | н      | н      | L       | L<br>H   | L                      | L<br>H         | н   | н        | н       | Н        | н     | Н      |
| JRP      | COND JUMP RIPL       | L   | н      | н      | н́      | L<br>H   | L<br>H                 | н              | Н   | н        | н       | н        | H     | L      |
| RFCT     | REPEAT LOOP, CTR → 0 | н   | L      | L      | į.      | į.<br>H  | H                      | L              | H   | Ĺ        | н       | L<br>H   | н     | L      |
| RPCT     | REPEAT PL. CTR + 0   | н   | L      | L      | H.      | L        | H                      | н              | н   | н        | н       | L        | н     | L      |
| CRTN     | COND RTN             | н   | L<br>L | н      | į.      | L<br>H   | L<br>H                 | L              | H   | L<br>L   | н       | н        | н     | L<br>L |
| CJPP     | COND JUMP PL & POP   | H   | į.     | н<br>н | н       | L<br>H   | Н                      | L<br>H         | H   | Ĺ        | Н       | н        | н     | L      |
| LOCT     | LO CNTR & CONTINUE   | H   | H<br>H | į.     | L       | L        | Ĺ                      | L.             | H   | н        | į,      | ; н<br>н | z z   | L<br>L |
| LOOP     | TEST END LOOP        | H   | H      | L      | H ·     | L<br>H   | H<br>Ł                 | Ĺ              | Н   | L<br>L   | H       | н        | H     | L,     |
| CONT     | CONTINUE             | } } | H      | H<br>H | L       | L<br>H   | l.                     | L              | Н   | 13<br>14 | H       | Н        | н     | L<br>L |
| JP.      | JUMP PL              | н   | н      | H      | н       | L<br>H   | . н<br>н               | я<br>н         | н   | н        | H       | н        | H     | L      |

L = LOW H = HIGH

Source: AMD, 1976a, page 2-20

The result is rather like pulling yourself up by your boot straps. The sequencer is the heart of the micro-programmed architecture, but it is controlled by the next address circuit. The next address circuit is controlled by the pipeline register, which is controlled by the microstore. Finally, the microstore is controlled by the sequencer and the circle is complete.

### 6.3 MICROPROGRAM MEMORY AND THE PIPELINE REGISTER

Once the proper address is chosen for the microprogram memory (the source of the address may be the mapping PROM, the pipeline register, or the sequencer), the address is transmitted to the microprogram memory's address lines. For the development system the microprogram memory will be ultra violet erasable PROM and will require 450 ns before the data appears at the output of the microprogram memory.

When the data appears at the output of the microprogram it is loaded into the pipeline register. The
function of the pipeline register can be seen as a latch
into which the microprogram word is stored. While the
microprogram word is stored in this latch two actions take
place. First the current microprogram word, the one in the
pipeline register, is executed. At the same time, the
sequencer is instructed to fetch the next microprogram
word. By the time the current microprogram is finished

executing, the next microinstruction will be waiting at the input to the pipeline register.

As can be seen from the computer design (figure 6.1), the microprogram word is rather long. The microprogram word is composed of the following major fields:

- 1. Test Condition Field This field contains the code that selects one of the 16 test inputs.
- 2. Polarity Field This field determines the polarity of the test input chosen.
- 3. IR Field This field is used to load the instruction register.
- 4. Microprogram Branch Field This field provides the next address for a microprogram branch.
- 5. ALU Source Field This field selects two data sources for the ALU function from among the 16 RALU registers, Q register, data inputs, and zero.
- 6. ALU Destination Field This field selects one of the RALU's 16 general purpose registers for the destination of the results of the current ALU operation.
- 7. ALU Function Field This field selects one of the eight ALU functions to operate on the source data.
- 8. SALU Field This field enables the ALU outputs.
- 9. Shift Field This field determines how the shift operation will be performed in the ALU.
- 10. ALU Carry Field This field determines how the

- carry will be used in the ALU.
- 11. PCU Carry Field This field determines how the carry will be used in the program control unit.
- 12. PCU Address Field This field determines the function of the PCU.
- 13.  $\overline{\text{AE}}$  Field This field enables the output of the PCU to the MAR.
- 14. MODE Field The mode field determines the mode of the Mapping PROM. It specifies whether the Mapping PROM is to be used as a mapping function or as one of the decoding functions.

#### 6.4 RALU

The output from the various fields of the pipeline register drives the functional blocks of the computer. One of the blocks is the 2901 RALU which performs all the arithmetrical and logical operations required by the computer. The RALU contain 16 general purpose registers (the registers are implemented with dual port RAM), a Q register (for temporary storage such as required in multiplication), an eight function ALU, and data routing circuits. The interaction of the various RALU components is controlled by the contents of the ALU source, destination, and function fields of the pipeline register. Table 6.5 contains the various RALU functions that are

TABLE 6.5
ALU OPERATION

| 1      | MICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DOE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RANDS                                |                                                                                   |                                                | Mi                                                                  | CRO CODE                                                        |                                                  | AL               | u T                            |             |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------|------------------|--------------------------------|-------------|
| 12     | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Octal<br>Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$                                   |                                                                                   |                                                | 15 14                                                               | l <sub>3</sub>                                                  | Octol<br>Code                                    | Func             |                                | Symbol      |
| l      | į                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a                                    |                                                                                   |                                                |                                                                     | L                                                               | 0                                                | R Plus           | 5                              | A + \$      |
| ١,     | . L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8                                    |                                                                                   |                                                | LL                                                                  | # .                                                             | 1 2                                              | S Minu           |                                | S R<br>R S  |
|        | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 8                                  |                                                                                   |                                                | l H                                                                 | й                                                               | . 3                                              | B CR             | s ,                            | RVS         |
| Н      | · L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                    |                                                                                   |                                                | HL                                                                  | у.                                                              | . 4                                              | R AND            | 35                             | 2 A R .     |
| н      | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a ·                                  |                                                                                   |                                                | н н                                                                 | L                                                               | 6                                                | R EX-            | OR S.                          | A Y S       |
| н      | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                    | -                                                                                 |                                                | нн                                                                  | ж                                                               | 7                                                | R €X-            | VOR S                          | तर <b>इ</b> |
| ****** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Source C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | perand (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                      |                                                                                   |                                                |                                                                     | ~~ A                                                            | LU Fu                                            |                  | Conti                          | ol.         |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RO CODE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RA<br>FUNC                           | M<br>TION                                                                         | Q-R<br>FUNC                                    | EG.                                                                 | Ψ.                                                              | SHIF                                             | TER              |                                | TER         |
| •      | l <sub>0</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ly.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Shift                                | Loss                                                                              | Shift                                          | Lord                                                                | OUTFUT                                                          | RAMO                                             | RAMS             | 00                             | <b>a</b> 3  |
|        | L.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ×                                    | NONE                                                                              | NONE                                           | F → Q                                                               |                                                                 | ×                                                | X                | ×                              | ×           |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NONE                                 | NONE<br>F-4                                                                       | ×                                              | NONE                                                                | F A                                                             | ×                                                | ×                | ×                              | X           |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | NONE                                 | F → 6                                                                             | x                                              | NONE                                                                | -                                                               | ×                                                | ×                |                                | ×           |
|        | H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DOWN                                 | F/2-6                                                                             | DOWN                                           | 013 → 0                                                             | F                                                               | , <sub>0</sub>                                   | IM3              | ٥                              | IN3         |
|        | . к                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OOMN                                 | F/2 6                                                                             | ×                                              | NONE                                                                | -                                                               | Fo                                               | 174-3            | 30                             | x           |
| Ī      | ж                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | UP -                                 | 25 - 4                                                                            | ا فها                                          | 20.→0                                                               |                                                                 | in.                                              | F3               | :No                            | 03          |
| 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                      |                                                                                   |                                                | <del> </del>                                                        | <del></del>                                                     |                                                  |                  |                                | 1           |
| 5      | H<br>Goo''<br>Imper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H<br>care<br>lance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Я                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7<br>Hy, the si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LSB.                                 | 2F→8                                                                              | ruzeivelja c                                   | NONE                                                                |                                                                 | IN.O                                             | F <sub>3</sub>   | ×                              | 03          |
| 5      | H Con's<br>imper<br>- Regis<br>p is tow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | der A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H Electrica<br>state.<br>ddressed b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7<br>Hy, the si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nift pin is a                        | 2F-8 TTL input                                                                    | ruzeivelja c                                   | <del> </del>                                                        | e threevera                                                     | IN.O                                             | F <sub>3</sub>   | X<br>h is in                   | 03          |
| 8      | H Gon" Imper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | dares (er A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | H . Electrica recase didressed buiss. Down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y & Inpus<br>is toward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nift pin is a                        | 2F→8                                                                              | x<br>internally co                             | on Control                                                          | e three-sta                                                     | ING                                              | Fg<br>ut whiz    | ×                              | 03          |
| 5      | H GOO'S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rance lance and f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H  Constitution  Constitution  H  Constitution  H  H  H  H  H  H  H  H  H  H  H  H  H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y & inpus<br>s is toward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d LSB.                               | 2F-6 TTL input ALL                                                                | X Internally co                                | on Control                                                          | e three-sta                                                     | re outp                                          | Fg<br>ur whiz    | x<br>h is in                   | 03          |
| 8      | H GOO'S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rance lance and f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H  Selectrics  Wates  ddressed b  MSB, Oom  OCTAL  ALU  Source  LU  unction  Cn = L  R Plus S  Cn = H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | y & inputs y & inputs is toward                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LSS.                                 | 2F-8 TTL input ALL 2 0, 0                                                         | J Destinati                                    | onnected to                                                         | s three-sta                                                     | iNg in output                                    | F3<br>ue whis    | x<br>h is in<br>7<br>D, O      | 03          |
| 8      | H GOON'S AND SECOND SEC | care dance for A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H  Selectrics  Wates  GOCTAL  GOCTAL  LU  unction  Cn=L  R Plus S  Cn - H  Cn-L  S Minus A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y & Inputs y & Inputs of its toward  A, Q  A-Q-1  A-Q-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 A, S A+6-1 S-A-1                   | 2F-8 TTL input ALL 2 0, 0 q q+1 Q+1                                               | J Destinati  J O, 8  d+1  S-1                  | On Control  4  O, A  A+1  A-1                                       | 5 D, A O+A O+A+1 A=O+1                                          | 6 D, C                                           | Fg               | 7<br>D, 0                      | 03          |
| 8      | H GOON'S AND SECOND SEC | care dance for A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H  . Electrica state Command of the state | 7  iiiy, the si y & inputs is toward  A, Q  A+Q+1  Q-A-1  Q-A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 LSB. 1 A. S A+6+ S-A-1 S-A         | 2F-8 TTL input ALL 2 0, Q qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq                    | J Destination J Destination J O, 8 John Series | On Control  4  O, A  A+1  A-1  A                                    | 5 D, A O+A+1 A=O=1 A=O                                          | 6 0, 0                                           | Fg<br>ur whiz    | 7<br>D. 0                      | 03          |
| 8      | H Gen" imper Regis p is tow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H carrellance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | H  Selectrics  Wates  GOCTAL  GOCTAL  LU  unction  Cn=L  R Plus S  Cn - H  Cn-L  S Minus A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y & Inputs y & Inputs of its toward  A, Q  A-Q-1  A-Q-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 A, S A+6-1 S-A-1                   | 2F-8 TTL input ALL 2 0, 0 q q+1 Q+1                                               | J Destinati  J O, 8  d+1  S-1                  | On Control  4  O, A  A+1  A-1                                       | 5 D, A O+A O+A+1 A=O+1                                          | 6 D, C                                           | Fg<br>ur whize   | 7<br>D, 0                      | 03          |
| 8      | H Oon's                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | dance ter Al Sand Sand Sand Sand Sand Sand Sand Sand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | H  A. Electrica  Trace.  GOCTAL  ALU  Source  LU  Unction  Ca = L  R Plus S  Ca = L  S Manus A  Ca = L  Ca = L  R Alu  Ca = L  R Alu  S On F  R Ca = L  R Alu  S On F  R Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  Ca = R  R Minus S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7  Jity, the si y 8 Inputs G  A, Q  A-Q-1  Q-A-1  Q-A  A-Q-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1 LSS. 1 A.S A-6 A-8-1 S-A-1 A-8-1   | 2F-8 TTL input ALL 2 0, Q q q+1 q-1 q -q-1                                        | 3 O, 8 8-1 8-1 8 -6-1                          | on Control  4  9,A  A+1  A-1  A                                     | 5 D, A 0+A 0+A+1 A=0-1 A=0 0-A-1                                | 5<br>0,0<br>0+04<br>0-04<br>0-04                 | Fa<br>ure webles | 7<br>D, 0<br>0+1<br>-0-1<br>-0 | 03          |
| 8      | H = Oco.** - Oco.** - Registrone - Registron | H care dance (er A. ard f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H  H  Selectrics  Wate.  ddressed b  MSB. Down  MSB. Down  GOTAL  ALU  Source  LU  LU  LU  LU  LO  LO  Cn = L  R Plus S  Cn - H  Minut S  Cn - H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7  Iffy, the sill, the sil | 1 A. S A-6-1 A-8                     | 2F-8  TTL input  ALL  2  0, Q  q+1  q-1  q-1 -Q-1                                 | 3  O, 8  3  4  4  5-6-1  -6                    | Onnected to On Control  4  0, A  A  A  A  A  A  A  A  A  A  A  A  A | 9 three-ma<br>5 D, A<br>9-A<br>0-A-1<br>A-0-1<br>A-0-1<br>O-A-1 | 6 0, 0 0+0 0+0 0+0 0+0 0+0 0+0 0+0 0+0 0+        | F3               | 7. 0, 0 0+1 -0-1 0             | 03          |
| 8      | H Gan's Congress of Congress o | dance tance  | H  N  Electrica Wate.  ddressed b MSB, Down  down  GOCTAL  ALU  Source  LS  LS  LS  LS  LS  LS  LS  LS  LS  L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 A, B A+6 A+6+1 S-A-1 A-8 A-8-1 A-8 | 2F-8  TTL input  ALL  2  0, Q  Q  Q+1  Q-1  Q  Q  Q  Q  Q  Q  Q  Q  Q  Q  Q  Q  Q | 3  O, 8  3  d+1  3  -6-1  -6                   | 0, A  A  A  A-1  A  A  A  A  A  A  A  A  A                          | 5<br>D, A<br>O+A+1<br>A=O-1<br>A=O-1<br>O-A-1<br>O-A            | 6 0.00 Dec 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | F3               | 7 0,0 0 0+1 -0-1 0 0           | 03          |
| 8      | H Oon's Tagis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Hance our Air State of State o | H  N  Electrica WATE  Oddressed b  MSB, Down  MSB, Down  ODTAL  ALU  Source  L  Source  Cn = L  R Plus S  Cn = H  Cn = L  A Minus A  Cn = H  R On S  R AND S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | y 8 inputs  | 1 A.S A+6 A+6+1 S-A-1 A-8-1 A+8      | 2F-8  TTL input  ALL  2  0, Q  q  q+1  q  -Q-1  -Q  q                             | 3  O, 8  3  d+1  3  -6-1  -6                   | on Control  4  Q,A  A  A  A  A  A  A  A  A  A  A  A                 | 9+A 0+A+1 A-0-1 A-0 0-A-1 0-A 0VA                               | 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.          | F3               | 7 0,0 0 0+1 -0-1 0 0           | 03          |

Source: AMD, 1976, page 8

commanded by the pipeline register.

### 6.5 PCU

The Program Control Unit (PCU) is the final block to be discussed. The PCU is shown in figure 6.8. The PCU is implemented using a special integrated circuit (Am2930) designed for controlling the program addresses. Like so many other functional blocks in the 2900 computer, it too has a very powerful instruction set ( see table 6.6 ). The PCU allows the program counter to be incremented by only one control bit. Other addressing modes, such as relative, indexed, and base page, can be handled almost as easily. In addition, the PCU provides for easy implementation of such operations as jump to subroutine, return from subroutine, and the associated stack manipulations.

TABLE 6.6 PCU INSTRUCTION SET

|             |                       |                        |            |                                    | Next State | (after CP  | ) (Nate 3)     |       |
|-------------|-----------------------|------------------------|------------|------------------------------------|------------|------------|----------------|-------|
| Instruction |                       |                        |            | <del></del>                        | F          |            |                |       |
| Number      | 14 13 12 11 10 CC TEN | Instruction            | Y0-Y3      | PC                                 | RE - L     | RE = H     | RAM            | SP    |
|             | ххххх х               | Instruction<br>Disable | Note 1     |                                    | D          | -          | · <del></del>  | -     |
| 0           | LLLLXL                | RESET                  | 0          | ''0''+C <sub>i</sub>               | 0          | _          | <b>-</b> '     | Reset |
| . 1         | LLLLHXL               | FETCH PC               | PC         | PC+C;                              | ا د        | _          | <u>.</u>       |       |
| 2           | LLLHLX L              | FETCH R                | R          | PC+Ci                              | 0          | _          | -              | -     |
| 3           | ссених с              | FETCH D                | D          | PC+C;                              | 0          | -          | -              | _     |
| 4           | LLHLLX L              | FETCH R+D              | R+D+Cn     | PC+C;                              | 0          |            |                | _     |
| 5           | і інінх і             | FETCH PC+D             | PC+D+Cn    | PC+C;                              | 0          | <b>-</b> . |                | -     |
| 6           | стинсх г              | FETCH PC+R             | PC+R+Ca    | PC+Ci                              | 0          | -          | _              | _     |
| 7           | циння ц               | FETCH S+D              | S+D+Cn     | PC+C                               | 0          | _          |                | -     |
| 8           | LHLLLX                | FETCH PC → R           | PC         | PC+C;                              | PC         | PC         | _              | _     |
| 9           | LHLLHX                | FETCH R+O → R          | R+D+Ca     | PC+C:                              | R+D+Cn     | R+O+Cn     | _              | _     |
| 10          | LHLHLX                | LOAD R                 | PC         | PC+Ci                              | ם "        | ם          | <u> </u>       | _     |
| 11:         | LHLHHX L              | PUSH PC                | PC         | PC+C <sub>i</sub>                  | 0          | _          | PC - Loc SP+1  | SP+1  |
| 12          | LHHLLX                | PUSH D                 | PC         | PC+C;                              | 0          |            | D - Loc SP+1   | SP+1  |
| 13          | LHHLHX L              | POPS                   | s          | PC+C;                              | 0          | _          |                | SP-1  |
| 14          | LHHHLXL               | POPPC                  | PC         | PC+C <sub>i</sub>                  | 0          |            | <b>_</b> .     | SP-1  |
| 15          | LHHHHX L              | HOLD                   | PC         |                                    | 0          | _          | _              | -     |
| ,5          |                       | HOLD                   |            | _                                  |            | _          | _              |       |
| 16-31       | нххххн ь              | FAIL COND'L            | PC         | PC+C;                              | ٥          |            |                | -     |
|             |                       | TEST (FETCH PC)        |            |                                    |            |            |                |       |
| 16          | ньськь                | JUMP R                 | R          | R+Ci                               | D          |            |                | -     |
| 17          | нііінь і              | JUMP D                 | ס          | D+C <sub>i</sub>                   | 0          | -          | -              | _     |
| 18          | HELHEL L              | שיים" אמענ             | "0"        | ""0""+C;                           | 0          | -          | -              | -     |
| 19          | невни с в             | JUMP R+O               | R+D+Cn     | R+D+Cn+Ci                          | ס          | _          | -              | -     |
| 20          | ненесь с              | JUMP PC+D              | PC+D+Cn    | PC+D+Cn+Ci                         | 0          | -          | -              | -     |
| 21          | ненене е              | JUMP PC+R              | PC+R+Cn    | FC+R+Cn+Ci                         | 0          |            | -              | - 1   |
| 22          | иснись с              | JSB R                  | 8          | R+C;                               | 0          | _          | PC - Loe SP+1  | SP+1  |
| 23          | ненние с              | JSB D                  | 0          | D+C;                               | 0          |            | PC - Loc SP+1  | SP+1  |
| 24 .        | ниццец ц              | JSB "0"                | "0"        | "0"+C;                             | 0          | · -        | PC → Loc \$2+1 | SP+1  |
| 25          | нистис с              | JS8 R+0                | R+O+Cn     | R+D+Cn+Ci                          | 0          |            | PC Loc SP+1    | SP+1  |
| 26          | ники с с              | JSS PC+O               | PC+D+Cn    | PC+0+Cn+Ci                         | 0          | ~          | PC - Loc SP+1  | SP+1  |
| 27          | ниснис с              | JSB PC+R               | PC+R+Cn    | PC+R+Cn+Ci                         | ۵          |            | PC - Loc SP+1  | SP+1  |
| 28          | нинсе с               | RETURN S               | s          | S+C,                               | 0          | -          | -              | SP-1  |
| 29          | иниси с               | RETURN S+D             | S+O+Cn     | S+O+C <sub>O</sub> +C <sub>i</sub> | 0          | ·          |                | SP-1  |
| 30          | ннинсь                | HOLD                   | PC         |                                    | 0          | -          | -              | _     |
| 31          | ининиц ц              | SUSPEND                | Z (Note 2) |                                    | n .        | _          |                |       |

PC - Program Counter

SP - Stack Pointer D - Direct Inputs

8 - Auxiliary Register

Notes: 1. When IEN is HIGH, the Y<sub>0</sub>-Y<sub>3</sub> outputs contain the same data as when IEN is LOW, as determined by I<sub>0</sub>-I<sub>4</sub> and CC.

2. Z = High impedance state (outputs "OFF").

3. — = No change

Source: AMD, 1977a

# 7.0 SYSTEM TIMING

As menitioned earlier, this computer was designed with high performance as a goal. However, for economy the microprogramming was done in ultraviolet erasible EPROM. This approach saves money because a new set of PROMs is not required each time the microcode is changed, but the computer runs rather slow as a result of the 450 ns access time of the 2708 EPROM. In order to present a clear picture of the system timing, two timing diagrams are given. The timing diagrams for the experimental system (figure 7.1) and for the potentially high performance system (figure 7.2) are presented along with a brief discussion of each diagram.

### 7.1 TIMING FOR THE EXPERIMENTAL SYSTEM

In order to establish the timing characteristics of the computer, the chain of events that take the longest time to complete must be identified. This chain of events is the critical timing path for the computer. By definition no computer operation can take longer to complete than the critical path. The critical path is the limiting factor for the speed of the computer. In other words, the time of one computer cycle can be no longer than the time required for the critical path.



FIGURE 7.1 Timing diagram for the experimental system

The computer cycle begins on the leading edge of the clock. On the leading edge the microinstruction is clocked into the pipeline register. As can be seen from figure 7.1 (all times are shown as worst case times), the use of the 2708 EPROM for the microstore and again for the Mapping PROM in the decoder mode causes large delays. Figure 7.1 is set up for a 1.4 microsecond cycle, but the time could have been shortened by 260 nanoseconds.

# 7.2 HIGH PERFORMANCE SYSTEM

Since the objective is to design a high performance minicomputer, the experience gained from the experimental system needs to be examined to gain a reasonable expectation of the potential performance of the 2900 system. In the experimental version, 2708 EPROM's were used, and since these devices were so slow, low power Schottky registers and counters were used to save cost and power. However, for the full performance version envisioned, 50 ns PROM or ROM and full speed Schottky would be required. This is the premise of the timing presented in figure 7.2. Figure 7.2 uses the same time scale as figure 7.1 to give a better illustration of the performance increases gained by these changes.

The basic cycle time of the high performance computer is 270 ns. With the overhead for checking for halts and

| CLOCK               | -170n5 D 105                        |  |
|---------------------|-------------------------------------|--|
| PL REG              | DATA VALID                          |  |
| Am 29811            | 155<br>NS NEXT ADDRESS SOURCE VALID |  |
| MAP LS138           | -b  -d                              |  |
| MAP LS86            | 75 1                                |  |
| MAP PROM            | 50  <br>  Ns                        |  |
| 5 EQUENCER          | 30 50  <br>  18  215                |  |
| MICROSTORE          | 50 - 5ns SET UP                     |  |
| 2901 Io-8           | 165                                 |  |
| 2901 LOOK<br>AHEAD  | ns production                       |  |
| 2901 C <sub>N</sub> | 55 18                               |  |
| STATUS REG          | → 55 A                              |  |
| SHIFT OUT           | 20ns -                              |  |
| SHIFT IN            | AT LEAST 30 N.S SET UP              |  |

FIGURE 7.2 Timing diagram for the full performance system

interrupts, an ADD without a shift or skip can be done in 1.08 microseconds. While this is representative of modern minicomputer performance, it is not as impressive as was hoped for when the design started. The fault lies in the decoding scheme used for indirect addressing, relative addressing, mode 1, and the various other modes of operation that are decoded. As mentioned earlier, the decoding scheme drastically cuts the amount of Mapping PROM and microstore PROM needed, but what are the costs of this scheme? When compared to the 1.5 microsecond ADD time of Fairchild's 9440 single chip NOVA microprocessor, it is not clear that the improvement gain by using a microprogrammed bit slice technology is worth the cost in time and money.

Two approaches can be taken to increase speed. One approach would allow for extra time in the cycle only when the Mapping PROM is called as the next address source. The other approach would use extra Mapping PROMs to provide a 12 bit address that could directly address 4096 words of microstore. In the latter approach, each variation of an instruction would be addressed directly. This would eliminate the need to decode each instruction, but would add to the microprogramming task. As a result, the ADD time would drop to about 880 ns, and with newer and faster RALUs and sequencers, cycle time less than 800 ns could be achieved. This figure is more in the range of performance

that was first envisioned.

# 7.3 COMPARISON OF THE 2900 SYSTEM TO EXISTING SYSTEMS

In table 7.1 comparisons are made between some of the existing variations of NOVA type machines. In this comparison the BLAZE, which is Fairchild's 9400 bit slice (see section 2.5) emulation of the NOVA 3, and the NOVA 3 are in the same class as the 2900 emulation of NOVA. The SPARK, FLAME, and NOVA 1200 are marginally slower than the 2900 emulation. The conclusion is that the design of the 2900 system is faster than present single chip NOVA implementations, and is in fact just as fast as other bipolar implementations.

TABLE 7.1

NOVA COMPUTER COMPARISONS

|                    |          | SPEED IN MI | CROSECONDS                          |           |
|--------------------|----------|-------------|-------------------------------------|-----------|
| INSTRUCTION        | BLAZE-16 | NOVA 3      | 9440<br>SPARK-16<br>FLAME-16<br>(c) | NOVA 1200 |
| Load Accumulator   | 1.0      | 1.1 - 2.0   | 2.41                                | 2.55      |
| Store Accumulator  | 1.0      | 1.1 - 2.0   | 3.66                                | 2.55      |
| ISZ, DSZ           | 1.4      | 1.6 - 2.4   | 3.66                                | 3.15      |
| Jump               | 0.6      | 0.7 - 1.0   | 1.25                                | 1.35      |
| Jump to Subroutine | 1.2      | 1.0 - 1.2   | 1.25                                | 1.35      |
| Add                | 1.0      | 0.7 - 1.0   | 1.25                                | 1.35      |
| Subtract           | 1.0      | J.7 1.0     | 1.25                                | 1.35      |
| And                | 1.0      | 0.7 - 1.0   | 1.25                                | 1.35      |
| Move               | 1.0      | 0.7 - 1.0   | 1.25                                | 1.35      |
| + Skip             | 0        | 0.3         | 1.25                                | 1.35      |
| I/O Input          | 1.6      | 2.0 - 2.2   | 2.08                                | 2.55      |
| I/O Output         | 1.6      | 2.0 - 2.2   | 2.08                                | 3.15      |

<sup>(</sup>a) Oscillator frequency -- 10 MHz, memory Read cycle -- 400 ns.

Source: Suri, 1977, page 10

<sup>(</sup>b) Minimum for semiconductor memory, maximum for 16K core.

<sup>(</sup>c) Oscillator frequency -- 12 MHz, Memory Busy < 120 ns.

## 8.0 MICROPROGRAM

Because of the amount of time required to write microcode only a few of the microinstructions were microcoded. The microcode, timing diagrams, and comments for these instructions are included in the following figures. The microcode is also presented as it appears in the microstore memory.

The following are some of the constraints adopted for writing microcode:

- 1. The code must be as short as possible.
- 2. The code must generate the memory address and the memory read signal as far in advance as possible. This practice allows slower memories to be used.
- 3. The microcode must do as much in parallel as possible. This will speed up the throughput.

The application of the first constraint can best be illustrated by comparison of the ADD instructions. The original ADD instruction (figure 8.1) was quite slow because of the repeated use of jumps to subroutines to accomplish the various modes of the ADD instruction. For instance, the ADD instruction jumps to a shift subroutine in T1 and then jumps to a skip subroutine in T2. Each of these jumps requires at least two steps: the jump and the return. As a result, eight micro-cycles are required whereas the final ADD instruction (figure 8.2) actually

uses only four microcycles. Instead of jumping to and from a subroutine, the microcode jumps to the shift subroutine then jumps directly to the skip subroutine under control of the Mapping PROM. Finally the microcode jumps directly to the fetch subroutine under control of the pipeline branch address.

The second constraint is shown clearly in the timing diagram for the FETCH instruction (figure 8.7). Here one can see the  $\overline{\text{MR}}$  and LD MAR lines go low during T1. This generates the memory read signal and the memory address during T1. However, the memory is not needed until the IR LOAD in T3 which allows the memory two microcycles for set up. At the 270 ns cycle time, even cheap 500 ns memory can be used. If the faster, 200 ns cycle time, CCU suggested in section 7.2 is used, memory as slow as 400 ns can be used.

The third constraint is shown in the ADD instruction. For instance, in the ADD with no shift and no skip, cycle TO contains a fetch and increment of the program counter, a read from RAM ports A and B with a store back into port B, and a mode 2 jump to the shift subroutine. That is a lot of work to do in one microinstruction.

| ADD (o   | riginal) TIN               | ME: 2.16 microseconds min. LOCATION 024 <sub>16</sub>                                                                                                  |
|----------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| CYCLE    | MICROCODE                  | COMMENT                                                                                                                                                |
| ТО       | B-A+B, Fetch PC1, LD CARRY | Add A plus B and load the sum into B as addressed by the IR. Output the present PC and increment by 1. Load the carry from the add into the carry bit. |
| Tl       | MODE 2 - 1, CJS ONET MAP   | Jump to the MODE 2 subroutine given by the jump address in the Mapping PROM to get the proper shift mode.                                              |
| T2       | MODE 3 - 1, CJS ONET MAP   | Jump to the MODE 3 subroutine given by the jump address in the Mapping PROM to get the proper skip mode.                                               |
| Т3       | MAR ← Y, MR, JP FETCH(002) | Load the PC into the MAR and send a memory read signal. Jump to T2 in the FETCH subroutine.                                                            |
| T4<br>T5 | see FETCH                  |                                                                                                                                                        |

FIGURE 8.1 RTL and comments for original ADD microcode

| CYCLE    | MICROCODE                                                                                      | COMMENT                                                                                                                                                                                                          |
|----------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TO       | MODE 2 - 1, B - A+B  Fetch PC <sub>1</sub> , CJS ONET MAP                                      | Add A plus B and load the sum into B as addressed by the IR. Output the present PC and increment by 1. Jump to the MODE 2 subroutine given by the jump address in the Mapping PROM to get the proper shift mode. |
| T1<br>T2 | MODE 3 $\leftarrow$ 1, CJS ONET MAP  JP FETCH(003), MAR $\leftarrow$ Y, $\overline{\text{MR}}$ | Jump to the MODE 3 subroutine given by the jump address in the MAPPING PROM to get the proper skip mode.  Send out a memory read signal and load the                                                             |
|          | HALTC - 1, IR - DATA BUS                                                                       | PC into the MAR. Load the Data Bus into the IR and check for a HALT command.                                                                                                                                     |
| Т3       | see FETCH                                                                                      |                                                                                                                                                                                                                  |

FIGURE 8.2 RTL and comments for ADD with NO SHIFT and NO SKIP microcode

| ADD wi | th LEFT ROTATE and SKIP TIM                                                                          | E: 1.62 microseconds LOCATION 028 <sub>16</sub>                                                                                                                                                                  |
|--------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CYCLE  | MICROCODE                                                                                            | COMMENT                                                                                                                                                                                                          |
| TO     | MODE 2 - 1, B - A+B                                                                                  | Add A plus B and load the sum into B as addressed by the IR. Output the present PC and increment by 1. Jump to the MODE 2 subroutine given by the jump address in the Mapping PROM to get the proper shift mode. |
| Т1     | MODE 3 $\leftarrow$ 1, B $\leftarrow$ SHL B $B_0 \leftarrow B_{15}$ , $\overline{MR}$ , CJS ONET MAP | Jump to the MODE 3 subroutine given by the jump address in the Mapping PROM to get the proper skip mode. Shift RAM B left one and rotate the MSB to the LSB. Send out a memory read signal.                      |
| T2     | JP FETCH(001), Fetch PC                                                                              | Output the present PC and increment by 1 to accomplish a skip.                                                                                                                                                   |
|        |                                                                                                      |                                                                                                                                                                                                                  |
| T3     |                                                                                                      |                                                                                                                                                                                                                  |
| T4     | see FETCH                                                                                            |                                                                                                                                                                                                                  |
| Т5     |                                                                                                      |                                                                                                                                                                                                                  |

FIGURE 8.3 RTL and comments for ADD with LEFT ROTATE and SKIP microcode

| LDA      | TIM                       | E: 2.16 microseconds min. LOCATION 01016                                                                       |
|----------|---------------------------|----------------------------------------------------------------------------------------------------------------|
| CYCLE    | MICROCODE                 | COMMENT                                                                                                        |
| TO       | MODE 1 ← 1, CJS ONET MAP  | Jump to the MODE 1 subroutine given by the jump address in the Mapping PROM to get the proper addressing mode. |
| T1       | MR, MAR — Y               | Send out a memory read signal and load the effective address into the MAR.                                     |
| Т2       | MR, MBRO - DATA BUS       | Send out a memory read signal and load the DATA BUS into the MBRO.                                             |
| Т3       | ACC - MBRO, JP FETCH(000) | The MBRO is loaded into the accumulator addressed by the IR. Jump to FETCH.                                    |
| Т4       |                           |                                                                                                                |
| T5       | see FETCH                 |                                                                                                                |
| Т6<br>Т7 |                           |                                                                                                                |
| 17       |                           |                                                                                                                |
|          |                           |                                                                                                                |
|          |                           |                                                                                                                |

FIGURE 8.4 RTL and comments for LOAD ACCUMULATOR microcode



FIGURE 8.5 Timing for LDA

| FETCH |                              | TIME: 1.08 microseconds LOCATION 000 <sub>16</sub>                                                                                                                                                                |
|-------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CYCLE | MICROCODE                    | COMMENT                                                                                                                                                                                                           |
| oT e  | Fetch PC <sub>1</sub>        | Output the present PC and increment by 1.                                                                                                                                                                         |
| T1    | MAR - Y, MR                  | Load PC into MAR and send out a memory read signal.                                                                                                                                                               |
| Т2    | HALTC - 1, MR  IR - DATA BUS | Checks for a HALT command, sends out a memory read signal, and loads the IR from the DATA BUS.                                                                                                                    |
| Т3    | JSRP INT MAP INTS            | If there is an interrupt (INT) then jump to the interrupt subroutine (INTS) given by the Pipeline Register, else jump to the next instruction's microcode which is given by the jump address in the Mapping PROM. |
|       |                              |                                                                                                                                                                                                                   |
|       |                              |                                                                                                                                                                                                                   |
|       |                              |                                                                                                                                                                                                                   |

FIGURE  $8.6\,$  RTL and comments for the FETCH microcode



FIGURE 8.7 Timing for FETCH

|                                                                                         | ببس                                                                                                                                                                                                            | -                                                      | _                                              | ٠.,                                     |                                          | _                                           | -      | <u> </u>    | ,           | -                                        | -                                       |                                                           | }                                       |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                                | <u>.</u>                          | <del>-</del> ,- | <del></del> | 7                                                | -                                       | ,,                                      | -                             |                                       | -                                               |           | -             | _                               | -                                                 | -        | ,,       | -   |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------|-----------------------------------------|------------------------------------------|---------------------------------------------|--------|-------------|-------------|------------------------------------------|-----------------------------------------|-----------------------------------------------------------|-----------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-----------------------------------|-----------------|-------------|--------------------------------------------------|-----------------------------------------|-----------------------------------------|-------------------------------|---------------------------------------|-------------------------------------------------|-----------|---------------|---------------------------------|---------------------------------------------------|----------|----------|-----|
|                                                                                         | 0                                                                                                                                                                                                              | -                                                      |                                                | _                                       |                                          | -                                           | 0      | L_          |             | _                                        | 0                                       |                                                           | _                                       | !                                      | _1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | 1                                 | ユ               | -   -       | 10                                               |                                         |                                         | -                             | 9                                     |                                                 | -         |               | 9                               |                                                   |          |          | _   |
|                                                                                         | 1                                                                                                                                                                                                              | -                                                      | -                                              | -                                       | ۵                                        | -                                           | -      |             |             | -                                        | -,                                      | 0                                                         | 0                                       | -                                      | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | -1.                               | - -             | -           | -                                                | -                                       | -                                       | -                             | ~                                     |                                                 | -         |               | -                               |                                                   |          | _}       | 1   |
|                                                                                         | 2                                                                                                                                                                                                              | 1                                                      |                                                | -                                       | ٥                                        | 1-                                          | 0      |             |             | -                                        | 0                                       | 0                                                         | Ø                                       | -1                                     | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                      |                                   | οſ-             | -1-         | 0                                                | -                                       | -                                       | -1                            | 0                                     |                                                 |           | 1             | 0                               |                                                   |          |          |     |
| 1                                                                                       | 3                                                                                                                                                                                                              |                                                        |                                                |                                         | æ                                        | 1_                                          | 0      | -           |             |                                          |                                         | 0                                                         |                                         | _                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | 1                                 |                 | 1=          | 0                                                |                                         | _1                                      | _                             | _                                     |                                                 |           |               | 0                               |                                                   | -        | Н        |     |
| BRANCH                                                                                  |                                                                                                                                                                                                                | -                                                      | -                                              |                                         | -                                        | -                                           |        | <del></del> |             | -                                        |                                         |                                                           | ≃!                                      | -                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                       | =1,                               |                 |             |                                                  | -                                       |                                         |                               | _                                     |                                                 |           | -             |                                 | _                                                 |          |          |     |
| ן אחמוזיים ן                                                                            | 4                                                                                                                                                                                                              | $\equiv$                                               |                                                |                                         |                                          | <u> </u>                                    | 101    | <del></del> |             |                                          | 0                                       |                                                           | 그                                       | -!                                     | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | -1                                | <u> </u>        | 1           | 0                                                |                                         |                                         | _                             | 0                                     |                                                 | =1        |               | 0                               | _                                                 |          | 1        |     |
|                                                                                         | 5                                                                                                                                                                                                              | -                                                      | -                                              |                                         | -                                        | 1-                                          | 0      |             |             | -                                        | 0                                       | 0                                                         | Oi                                      | -1                                     | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _ [-                                    | -{                                | ગ -             |             | 0                                                | -                                       | -1                                      | -1                            | 0                                     | -                                               | -         | $\exists$     | 0                               |                                                   |          |          | -   |
| ADDR                                                                                    | 6                                                                                                                                                                                                              | -                                                      | 1                                              | -                                       | Z                                        | 1                                           | 0      |             |             | -                                        | 0                                       | व                                                         | 0                                       | -                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1                                      | -40                               | 이-              | -1-         | 0                                                | -                                       |                                         | _                             | 0                                     | Ī                                               | _         |               | 0                               |                                                   |          | _        | _   |
| , , , , , , ,                                                                           | 7                                                                                                                                                                                                              |                                                        | -                                              |                                         | 1                                        | 1_                                          | 0      | 7           | -           |                                          |                                         | 0                                                         |                                         | 寸                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =1                                      | ٥,                                | 51-             | .   _       | 0                                                | -                                       |                                         |                               | 0                                     |                                                 |           |               | 0                               | -                                                 |          | Н        | -   |
|                                                                                         | _                                                                                                                                                                                                              |                                                        |                                                |                                         |                                          |                                             | -      |             |             |                                          | بعميه                                   |                                                           |                                         | -                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                   | ***             |             | _                                                |                                         |                                         | -                             | _                                     | -                                               | _         | _             | -                               | -                                                 | -        |          | _   |
|                                                                                         | 8                                                                                                                                                                                                              | =                                                      | Ι=                                             |                                         |                                          | 1=                                          | 0      |             | -           |                                          | 0                                       |                                                           |                                         | =                                      | _;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =1                                      | 1-                                | <u> </u>        | 1           | 0                                                | =                                       |                                         | _                             | 0                                     |                                                 |           |               | 9                               |                                                   |          | Ц        | _   |
|                                                                                         | 9                                                                                                                                                                                                              | -                                                      |                                                | -                                       |                                          | 1-                                          | 0      | L           |             | -                                        | 0                                       | 9                                                         | 의                                       | -1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L                                       |                                   | 9-              |             | 0                                                |                                         |                                         | -                             | 0                                     | -                                               |           | -             | 0                               |                                                   |          |          | _ { |
| POLARITY                                                                                | 0                                                                                                                                                                                                              | 0                                                      | Q                                              | 0                                       | 1                                        | 0                                           | 0      |             |             | 0                                        | 0                                       | -1                                                        | O.                                      | 0                                      | O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                       | 5                                 | 0 6             | 20          | 0                                                | 0                                       | 0                                       | 0                             | 0                                     | 0                                               | 0         | 0             | 0                               |                                                   |          |          |     |
| IRLOAD                                                                                  | 11                                                                                                                                                                                                             | 0                                                      | 0                                              | 0                                       | -                                        | 0                                           | 0      | Г           |             | C                                        | O                                       | a                                                         | 0                                       | al                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                       | 31                                | olo             | 0           | 0                                                | 0                                       | 0                                       | 0                             | 2                                     | 7                                               | 0         | 0             | 0                               |                                                   |          |          |     |
|                                                                                         |                                                                                                                                                                                                                | -                                                      |                                                | ō                                       |                                          | Ë                                           |        |             |             | ~                                        | _                                       | -                                                         | _                                       | Ť                                      | 긝                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3                                       | žŀ                                |                 | olo         | =                                                |                                         | ō                                       |                               |                                       |                                                 | 0         |               | _                               | -                                                 | -        | Н        |     |
| NEXT                                                                                    | _                                                                                                                                                                                                              | 2                                                      | =                                              | 2                                       | _                                        | 드                                           |        |             | -           | _                                        | -                                       | 긎                                                         |                                         |                                        | 겍                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ~-+                                     |                                   |                 |             | <del>, ,</del>                                   |                                         | 7                                       | 9                             | -                                     |                                                 |           | -             | -                               | -                                                 | -        |          | -   |
| 10-0                                                                                    | 13                                                                                                                                                                                                             | _                                                      |                                                |                                         | 0                                        | 0                                           |        | _           | Ш           | 0                                        |                                         |                                                           |                                         | 이                                      | =1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _]:                                     | -40                               | <u> </u>        | 1-          |                                                  | 0                                       |                                         | 二                             | _                                     | 0                                               |           |               |                                 | _                                                 |          |          | _   |
| ADDR                                                                                    | 14                                                                                                                                                                                                             | -                                                      | -                                              | -                                       | 1                                        | 0                                           | -      |             |             | 0                                        | -                                       | 0                                                         | -1                                      | O                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -                                       | - (                               | ٥l-             | -   -       | -                                                | 0                                       | -                                       | -                             | -                                     | ବା                                              | -         | -             | -                               |                                                   |          |          | - 3 |
|                                                                                         | 15                                                                                                                                                                                                             | _                                                      | _                                              | -                                       | 0                                        | 0                                           |        |             |             | 0                                        | _                                       | 0                                                         | -;                                      | ठ                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _1                                      | ٦,,                               | <del>ol</del> - | 1-          |                                                  | 0                                       |                                         | =1                            | _                                     | Ö                                               | _         |               | _                               |                                                   |          |          | -   |
|                                                                                         | 16                                                                                                                                                                                                             |                                                        | -                                              |                                         | 0                                        | _                                           |        | -           |             | Ž                                        | _                                       | _                                                         | _                                       |                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                       |                                   |                 | -           | <del>                                     </del> | ř                                       |                                         | _                             |                                       | Ž                                               | -         |               | -                               |                                                   | -        | -        | *** |
| TEST                                                                                    |                                                                                                                                                                                                                | =                                                      | -                                              | _                                       | 2                                        | =                                           | Н      | -           | -           |                                          |                                         | -                                                         | -4                                      | =                                      | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>                                | -1                                | 7               | -           | 1-                                               | _                                       | П                                       | =                             | _                                     | =                                               | _         | =             |                                 | -                                                 |          | Н        | _   |
| <b>3</b> 1                                                                              | 17                                                                                                                                                                                                             | =                                                      |                                                |                                         | _                                        | 0                                           | 듸      | _           | L           | 0                                        |                                         | -1                                                        | 4                                       | 의                                      | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | تا                                | _ -             | -1-         | 1=                                               | ٥                                       | 디                                       | _                             | =                                     | 0                                               | _         | ᆸ             | _                               |                                                   |          |          |     |
| COND                                                                                    | 18                                                                                                                                                                                                             | -                                                      | -                                              | -                                       | 0                                        | 0                                           | -      |             |             | 0                                        |                                         | 0                                                         | -1                                      | 0                                      | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                      | -19                               | ၁ -             | - -         | <u> </u> –                                       | 0                                       | _                                       | -1                            | -}                                    | 0                                               | -         | -1            | _}                              |                                                   |          |          |     |
| *****                                                                                   | 19                                                                                                                                                                                                             | -                                                      |                                                |                                         | 0                                        | 0                                           | -1     | -           |             | O                                        |                                         | ठ                                                         | _1                                      | 0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         | - k                               | 51-             | -1-         | -                                                | 0                                       |                                         | _                             | =                                     | ы                                               | _         |               | _                               |                                                   |          | П        |     |
| 400 70                                                                                  |                                                                                                                                                                                                                | 0                                                      | 0                                              | =                                       |                                          | Ö                                           |        | -           |             |                                          |                                         |                                                           |                                         |                                        | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>_</u> †,                             |                                   |                 | 50          | 10                                               |                                         | 긁                                       | _                             | 0                                     | 5                                               | 5         |               | 7                               | -                                                 |          | H        | -   |
| HALTC                                                                                   |                                                                                                                                                                                                                | 2                                                      | $\vdash$                                       | -                                       | ۲                                        | ֈ≃.                                         | M      | -           | -           | ۳                                        | 7                                       | 긱                                                         | 겍                                       | 쒸                                      | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -1                                      | 4                                 | 나)              | 4           | 12                                               | 2                                       | 띡                                       | -1                            |                                       | Н                                               | 2         | 2             | 2                               |                                                   | -4       | $\vdash$ | -4  |
|                                                                                         | 21                                                                                                                                                                                                             | _                                                      |                                                | _                                       | _                                        |                                             | Ш      | L           |             | $\Box$                                   |                                         |                                                           | 1                                       |                                        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                   | ┸               | 1           |                                                  | _                                       | Ш                                       | 1                             |                                       |                                                 |           | LJ            |                                 |                                                   |          |          |     |
| LOADMAR                                                                                 | 22                                                                                                                                                                                                             | 0                                                      |                                                | 0                                       | O                                        | 0                                           | -      |             |             | 0                                        | -                                       | Ō                                                         | 0                                       | 0                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 01                                      | ok                                | 210             | 210         | -                                                | 0                                       | -                                       | ٥١                            | 0                                     | 0                                               | -         | 0             | -                               |                                                   |          |          |     |
| MB                                                                                      | 23                                                                                                                                                                                                             |                                                        |                                                |                                         | 0                                        |                                             | 0      |             |             |                                          | ol                                      | ol                                                        | O                                       | _1                                     | O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Oi                                      | 01-                               | _ <             | 00          | 0                                                |                                         | 0                                       | ठा                            | 0                                     | _                                               | 0         | 0             | 0                               |                                                   |          | П        | 7   |
|                                                                                         | 2+                                                                                                                                                                                                             |                                                        | -                                              | _                                       |                                          |                                             | ō      | -           | -           |                                          |                                         | 둓                                                         | ਨੀ                                      | ᆏ                                      | ਨੀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>~</del>                            | _t,                               | 5/6             | 20          | 10                                               | 5                                       | 7                                       | 금                             | _                                     |                                                 | ō         |               | 0                               |                                                   | -        | 1        | -   |
| MBRO                                                                                    |                                                                                                                                                                                                                |                                                        |                                                |                                         |                                          |                                             |        |             |             |                                          |                                         |                                                           |                                         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                   |                 |             |                                                  |                                         |                                         |                               | =                                     | _                                               |           | $\equiv$      |                                 | -                                                 | $\vdash$ | ├─┤      |     |
| MBRI                                                                                    |                                                                                                                                                                                                                |                                                        |                                                |                                         |                                          | 0                                           | 9      | L           |             |                                          |                                         |                                                           |                                         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0                                       |                                   |                 | :1=         |                                                  |                                         |                                         |                               | 0                                     |                                                 |           |               | 0                               |                                                   |          |          | _   |
| MW.                                                                                     | 26                                                                                                                                                                                                             | 0                                                      | 0                                              | 0                                       | 0                                        | 0                                           | 0      | -           |             | 0                                        | 0                                       | O                                                         | 0                                       | 0                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                       | ole                               | <u>ار</u>       | - -         | 0                                                | 0                                       | 0                                       | 0                             | 0                                     | 0                                               | 0         | 0             | _                               |                                                   |          |          | _ ] |
| h                                                                                       | 27                                                                                                                                                                                                             |                                                        | -                                              | _                                       | -                                        | -                                           | 0      |             |             |                                          | 0                                       | _                                                         | =1                                      |                                        | ol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _                                       | _1.                               | _;-             | -1-         | -                                                |                                         | 0                                       | _                             | _                                     |                                                 | 0         | -             | _                               |                                                   |          | П        |     |
| 1000                                                                                    |                                                                                                                                                                                                                | ~                                                      | -                                              |                                         | -                                        | -                                           |        | -           | -           | -                                        |                                         | -                                                         | 굷                                       | -+                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -+                                      | +                                 | ÷               | +           | 1                                                | -                                       | Ĭ                                       |                               | -                                     |                                                 | -         | $\overline{}$ | -                               | H                                                 |          | -        | ٠,  |
| PCU                                                                                     | 28                                                                                                                                                                                                             | 2                                                      |                                                | _                                       | L_                                       |                                             | 0      |             |             |                                          | 0                                       |                                                           | 의                                       | _                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | _                                 | #               | -10         |                                                  | -                                       |                                         | _                             | _                                     |                                                 | =         | 0             | _                               |                                                   |          | 1        |     |
|                                                                                         | 29                                                                                                                                                                                                             | 0                                                      | -                                              | -                                       | -                                        | -                                           | 0      | l           |             | -                                        | 0                                       | -                                                         | 9                                       |                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1                                      | -1:                               | -1-             | - 0         |                                                  |                                         | 0                                       | _                             |                                       | -                                               | 0         | 0             |                                 |                                                   |          |          | _   |
| ADDR                                                                                    | 30                                                                                                                                                                                                             | 0                                                      | -                                              | -                                       | -                                        | _                                           | 0      | 7           |             | _                                        | 0                                       | -1                                                        | 0                                       | -                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -1                                      | -1.                               | -[-             | - 0         | -                                                | -                                       | 0                                       | -                             | -                                     |                                                 | 0         | O             | -                               |                                                   |          |          |     |
| : AVVA                                                                                  |                                                                                                                                                                                                                |                                                        |                                                |                                         |                                          |                                             | -      |             |             |                                          |                                         |                                                           |                                         |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                   |                 |             | ,                                                | ·- i                                    |                                         |                               |                                       |                                                 |           | _             | _                               | -                                                 |          | -        |     |
| עאטא                                                                                    | -                                                                                                                                                                                                              |                                                        | 1                                              | -                                       | -                                        | 1                                           | -      |             |             |                                          |                                         | _1                                                        | of                                      | _ [                                    | o i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _ [.                                    | _1.                               | _ _             | -io         |                                                  | ŧ                                       | Oi                                      | - 1                           | -                                     | _                                               | O         | _             | -                               | 1                                                 | 1 1      | : (      | - 1 |
|                                                                                         | 31                                                                                                                                                                                                             | 0                                                      |                                                |                                         | -                                        | =                                           | _      |             |             | 71                                       | Ξ                                       |                                                           | <u></u>                                 |                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | =                                       | _                                 | <u>- -</u>      | <u>- 0</u>  |                                                  | -                                       | 9                                       | 귀                             | $\overline{\ }$                       |                                                 | 9         | _             |                                 | _                                                 |          | -        | _   |
| C: PRU                                                                                  | 31                                                                                                                                                                                                             | 0 1                                                    | O                                              | 10                                      | 0                                        | -0                                          | =      |             |             | 0                                        | -0                                      | Ö                                                         |                                         | 0                                      | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                       | 9                                 | <u>- -</u>      | S -         | 0                                                |                                         | 0                                       | 0                             | ٥                                     | 0                                               | 0         |               | 0                               |                                                   |          |          |     |
|                                                                                         | 31                                                                                                                                                                                                             | 0 1                                                    | O                                              | 100                                     | -<br>00                                  | 100                                         |        |             |             | 001                                      | 001                                     | Ö                                                         |                                         | 0                                      | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000                                     | 000                               | 000             |             | 0                                                | 10                                      | 0                                       | 00                            | 00                                    | 0                                               |           | 11 1 0        | 00                              |                                                   | -        |          |     |
| C: Peu<br>CN PCU                                                                        | 31<br>32<br>33                                                                                                                                                                                                 | 0 1                                                    | O                                              | 1001                                    | -00                                      | 1001                                        |        |             |             | 1001                                     | 1001                                    | Ö                                                         |                                         | 0                                      | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 000                                     | 000                               | 000             | S -         | 0                                                | 101                                     | 0                                       | 00                            | 1001                                  | 0                                               | 0         | 1 1 0 1       |                                 |                                                   |          |          |     |
| C: PEU<br>CN PCU<br>RE                                                                  | 31<br>32<br>33<br>34                                                                                                                                                                                           | 01101                                                  | 001                                            | 1001                                    | 1001                                     | 0                                           | 0      |             |             | 0                                        | 0                                       | 00                                                        | 0                                       | 0                                      | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10001                                   | 5 (c                              | 200             | 00          | 001                                              | 10                                      | 001                                     | 0011                          | 10011                                 | 0                                               | 0         | 1 1 0 1 1     | 0 1                             |                                                   |          |          |     |
| C: PCU<br>CN PCU<br>RE<br>MARO                                                          | 31<br>32<br>33<br>34<br>35                                                                                                                                                                                     | 0110110                                                | 0011                                           | 0 1                                     | 0<br>-<br>-                              | 0<br> <br> <br>                             | 0   1  |             |             | 011001                                   | 0                                       | 0011                                                      | 0110                                    | 000                                    | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                       |                                   | 00              | 00-10       | 0010                                             | 010                                     | 0011                                    | 1 0                           | 1110                                  | 0010                                            | 1100      |               | 010                             |                                                   |          |          |     |
| C: PEU<br>CN PCU<br>RE                                                                  | 31<br>32<br>33<br>34<br>35<br>36                                                                                                                                                                               | 0110110                                                | 0011                                           | 0 1                                     | 0<br>-<br>-                              | 0<br> <br> <br>                             | 0   1  |             |             | 0                                        | 0                                       | 0011                                                      | 0110                                    | 000                                    | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                       |                                   | 00              | 00          | 0010                                             | 010                                     | 0011                                    | 1 0                           | 1110                                  | 0010                                            | 1100      |               | 010                             |                                                   |          |          |     |
| C: PEU<br>CN PCU<br>RE<br>MARO<br>MAB                                                   | 31<br>33<br>34<br>35<br>36<br>37                                                                                                                                                                               | 0110110                                                | 0011                                           | 0 1                                     | 0<br>-<br>-                              | 0<br> <br> <br>                             | 0   1  |             |             | 0                                        | 0                                       | 0011                                                      | 0110                                    | 000                                    | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                       |                                   | 00              | 00-10       | 0010                                             | 010                                     | 0011                                    | 1 0                           | 1110                                  | 0010                                            | 1100      |               | 010                             |                                                   |          |          |     |
| C: PEU CN PCU RE MARO MAB ALU                                                           | 31<br>32<br>33<br>34<br>35<br>35<br>37                                                                                                                                                                         | 0110110                                                | 0011                                           | 0 1                                     | 0<br>-<br>-                              | 0<br> <br> <br>                             | 0   1  |             |             | 0                                        | 0                                       | 0011                                                      | 0110                                    | 000                                    | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                       |                                   | 00              | 00-10       | 0010                                             | 010                                     | 0011                                    | 1 0                           | 1110                                  | 0010                                            | 1100      |               | 010                             |                                                   |          |          |     |
| C: PEU<br>CN PCU<br>RE<br>MARO<br>MAB                                                   | 31<br>33<br>34<br>35<br>35<br>37<br>38                                                                                                                                                                         | 0110110                                                | 0011                                           | 0 1                                     | 0<br>-<br>-                              | 0<br> <br> <br>                             | 0   1  |             |             | 0                                        | 0                                       | 0011010                                                   | 0110                                    | 000                                    | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                       |                                   | 00              | 00-10       | 0010                                             | 010                                     | 0011                                    | 1 0                           | 1110                                  | 0010                                            | 1100      |               | 010011                          |                                                   |          |          |     |
| C: PEU CN PCO RE MARO MAB ALU FUNCTION                                                  | 31<br>32<br>33<br>34<br>35<br>35<br>37<br>38<br>39                                                                                                                                                             | 0110110                                                | 0011                                           | 0 1                                     | 0<br>-<br>-                              | 0<br> <br> <br>                             | 0   1  |             |             | 0                                        | 0                                       | 00110100                                                  | 0110                                    | 000                                    | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                       |                                   | 00              | 00-10       | 0010                                             | 010                                     | 0011                                    | 1 0                           | 1110                                  | 0010                                            | 1100      |               | 010                             |                                                   |          |          |     |
| C: PEU CN PCO RE MARO MAB ALU FUNCTION                                                  | 31<br>32<br>33<br>34<br>35<br>35<br>37<br>38<br>39<br>40                                                                                                                                                       | 0110110                                                | 0011                                           | 0 1                                     | 0<br>-<br>-                              | 0<br> <br> <br>                             | 0   1  |             |             | 0                                        | 0                                       | 0011010                                                   | 0110                                    | 000                                    | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                       |                                   | 00              | 00-10       | 0010                                             | 010                                     | 0011                                    | 1 0                           | 1110                                  | 0010                                            | 1100      |               | 010011                          |                                                   |          |          |     |
| C: PEU CM PCO RE MARO MAB ALU FUNCTION                                                  | 31<br>32<br>33<br>34<br>35<br>37<br>38<br>39<br>40<br>41                                                                                                                                                       | 0110110                                                | 0011                                           | 0 1                                     | 0<br>-<br>-                              | 0<br> <br> <br>                             | 0   1  |             |             | 0                                        | 0                                       | 00110100                                                  | 0110                                    | 000                                    | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                       |                                   | 00              | 00-10       | 0010                                             | 010                                     | 0011                                    | 1 0                           | 1110                                  | 0010                                            | 1100      |               | 010011                          |                                                   |          |          |     |
| C: PEU CN PCO RE MARO MAB ALU FUNCTION                                                  | 31<br>32<br>33<br>34<br>35<br>37<br>38<br>39<br>40<br>41                                                                                                                                                       | 0110110                                                | 0011                                           | 0 1                                     | 0<br>-<br>-                              | 0<br> <br> <br>                             | 0   1  |             |             | 0                                        | 0                                       | 100101001                                                 | 0110                                    | 000                                    | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                       |                                   | 00              | 00-10       | 0010                                             | 010                                     | 0011                                    | 1 0                           | 1110                                  | 0010                                            | 1100      |               | 010011                          |                                                   |          |          |     |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION SOURCE                                           | 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42                                                                                                                                           | 0110110                                                | 0011                                           | 0 1                                     | 0<br>-<br>-                              | 0<br> <br> <br>                             | 0   1  |             |             | 0                                        | 0                                       | 00110100                                                  | 0110                                    | 000                                    | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                       |                                   | 00              | 00-10       | 0010                                             | 010                                     | 0011                                    | 1 0                           | 1110                                  | 0010                                            | 1100      |               | 0110011101111                   |                                                   |          |          |     |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION SOURCE ALU                                       | 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43                                                                                                                                     | 0110110                                                | 0011                                           | 0 1                                     | 0<br>-<br>-                              | 0<br> <br> <br>                             | 0   1  |             |             | 0                                        | 0                                       | 100101001                                                 | 0110                                    | 000                                    | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                       |                                   | 00              | 00-10       | 0010                                             | 010                                     | 0011                                    | 1 0                           | 1110                                  | 0010                                            | 1100      |               | 010011                          |                                                   |          |          |     |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION SOURCE ALU                                       | 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43                                                                                                                                     | 0110110                                                | 0011                                           | 0 1                                     | 0<br>-<br>-                              | 0<br> <br> <br>                             | 0   1  |             |             | 0                                        | 0                                       | 100101001                                                 | 0110                                    | 000                                    | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                       |                                   | 00              | 00-10       | 0010                                             | 010                                     | 0011                                    | 1 0                           | 1110                                  | 0010                                            | 1100      |               | 0110011101111011                |                                                   |          |          |     |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION ALU SOURCE ALU DEST                              | 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45                                                                                                                         | 0110110                                                | 0011                                           | 0 1                                     | 0<br>-<br>-                              | 0<br> <br> <br>                             | 0   1  |             |             | 0                                        | 0                                       | 100101001                                                 | 0110                                    | 000                                    | 001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0                                       |                                   | 00              | 00-10       | 0010                                             | 010                                     | 0011                                    | 1 0                           | 1110                                  | 0010                                            | 1100      |               | 0110011101111                   |                                                   |          |          |     |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION ALU SOURCE ALU DEST LD CAA                       | 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45                                                                                                                         | 0110110                                                | 0011                                           | 0 1                                     | 0<br>-<br>-                              | 0<br> <br> <br>                             | 0   1  |             |             | 0 10 11 1 1 1 1 1                        | 0 1 1 0                                 | 001101000                                                 | 10100                                   | 00100                                  | 00100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0     0                                 | 0                                 | 0 0 0           |             | 00000                                            | 0 0 0 0 0                               | 00110                                   | 0 1 1 0                       | 1                                     | 001100                                          | 00111001  |               | 01100111011110110               |                                                   |          |          |     |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION ALU SOURCE ALU DEST LD CAA                       | 31<br>33<br>34<br>35<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>46                                                                                                                                     |                                                        | 001110                                         | 0 1 1 0                                 | 0 0                                      | 0 0 0                                       | 01110  |             |             | 0 10 11 1 1 1 1 1                        | 0 1 1 0                                 | 001101000                                                 | 10100                                   | 00100                                  | 00100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0     0                                 | 0                                 | 0 0 0           |             | 00000                                            | 0 0 0 0 0                               | 00110                                   | 0 1 1 0                       | 1                                     | 001100                                          | 00111001  |               | 01100111011110110               |                                                   |          |          |     |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION ALU SOURCE ALU DEST                              | 31<br>33<br>34<br>35<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>44<br>45<br>46<br>47                                                                                                                         |                                                        | 001110                                         | 0 1 1 0                                 | 0 0                                      | 0 0 0                                       | 01110  |             |             | 0 10 11 1 1 1 1 1                        | 0 1 1 0                                 | 001101000                                                 | 10100                                   | 00100                                  | 00100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0     0                                 | 0                                 | 0 0 0           | 00-10       | 00000                                            | 0 0 0 0 0                               | 00110                                   | 0 1 1 0                       | 1                                     | 001100                                          | 00111001  |               | 01100111011110110               |                                                   |          |          |     |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION SOURCE ALU DEST LD CAA TO                        | 31<br>33<br>34<br>35<br>37<br>38<br>39<br>41<br>43<br>44<br>47<br>44<br>47<br>48                                                                                                                               |                                                        | 001110                                         | 0 1 1 0                                 | 0 0                                      | 0 0 0                                       | 01110  |             |             | 0 10 11 1 1 1 1 1                        | 0 1 1 0                                 | 001101000                                                 | 10100                                   | 00100                                  | 00100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0     0                                 | 0                                 | 0 0 0           |             | 00000                                            | 0 0 0 0 0                               | 00110                                   | 0 1 1 0                       | 1                                     | 001100                                          | 00111001  |               | 01100111011110110               |                                                   |          |          |     |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION ALU SOURCE ALU DEST LD CAA                       | 31<br>32<br>33<br>34<br>35<br>37<br>38<br>39<br>40<br>41<br>43<br>44<br>46<br>47<br>49                                                                                                                         |                                                        | 001110                                         | 0 1 1 0                                 | 0 0                                      | 0 0 0                                       | 01110  |             |             | 0 10 11 1 1 1 1 1                        | 0 1 1 0                                 | 001101000                                                 | 10100                                   | 00100                                  | 00100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0     0                                 | 0                                 | 0 0 0           |             | 00000                                            | 0 0 0 0 0                               | 00110                                   | 0 1 1 0                       | 1                                     | 001100                                          | 00111001  |               | 01100111011110110               |                                                   |          |          |     |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION SOURCE ALU DEST LD CAR TO ALU                    | 31<br>32<br>33<br>34<br>35<br>37<br>38<br>39<br>40<br>41<br>43<br>44<br>46<br>47<br>49                                                                                                                         |                                                        | 001110                                         | 0 1 1 0                                 | 0 0                                      | 0 0 0                                       | 01110  |             |             | 0 10 11 1 1 1 1 1                        | 0 1 1 0                                 | 001101000                                                 | 10100                                   | 00100                                  | 00100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0     0                                 | 0                                 | 0 0 0           |             | 00000                                            | 0 0 0 0 0                               | 00110                                   | 0 1 1 0                       | 1                                     | 001100                                          | 00111001  |               | 01100111011110110               |                                                   |          |          |     |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION SOURCE ALU DEST LD CAR TO ALU                    | 31<br>32<br>33<br>34<br>35<br>36<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>445<br>47<br>49<br>50                                                                                                            |                                                        | 001110                                         | 0 1 1 0                                 | 0 0                                      | 0 0 0                                       | 01110  |             |             | 0 10 11 1 1 1 1 1                        | 0 1 1 0                                 | 001101000                                                 | 10100                                   | 00100                                  | 00100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0     0                                 | 0                                 | 0 0 0           |             | 00000                                            | 0 0 0 0 0                               | 00110                                   | 0 1 1 0                       | 1                                     | 001100                                          | 00111001  |               | 01100111011110110               |                                                   |          |          |     |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION SOURCE ALU DEST LD CAA TO                        | 31<br>32<br>33<br>34<br>35<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>445<br>47<br>49<br>50                                                                                                                  |                                                        | 001110                                         | 0 1 1 0                                 | 0 0                                      | 0 0 0                                       | 01110  |             |             | 0 10 11 1 1 1 1 1                        | 0 1 1 0                                 | 001101000                                                 | 10100                                   | 00100                                  | 00100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0     0                                 | 0                                 | 0 0 0           |             | 00000                                            | 0 0 0 0 0                               | 00110                                   | 0 1 1 0                       | 1                                     | 001100                                          | 00111001  |               | 01100111011110110               |                                                   |          |          |     |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION SOURCE ALU DEST LD CAR TO ALU                    | 31<br>32<br>33<br>34<br>85<br>37<br>38<br>39<br>41<br>42<br>43<br>46<br>47<br>46<br>47<br>49<br>49<br>55<br>51<br>52                                                                                           |                                                        | 001110                                         | 0 1 1 0                                 | 0 - 10                                   |                                             |        |             |             | 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  | 0     0     0                           | 00011000010010                                            | 0 100                                   | 00 100                                 | 00110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0 11 0                                  | 0 0                               | 0   0 0         |             | 00 100                                           |                                         | 00 - 0                                  | 0       0                     | 0   0   0   0   0   0   0   0   0   0 | 001100                                          |           |               | 0100111011110110 011            |                                                   |          |          |     |
| C: PEU CN PCU RE MHRO MAB ALU FUNCTION ALU SOURCE ALU DEST LD CAA TO ALU SHIFT          | 31<br>32<br>33<br>34<br>85<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>46<br>47<br>49<br>49<br>55<br>51<br>52<br>53                                                                                           |                                                        | 001110                                         | 0 1 1 0 1 1 0 1                         | 0 - 10 0                                 |                                             | 01110  | 9           | 0           | 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  | 0     0     0   0   0                   | 001101000010                                              | 0 100 1 0                               | 00 100                                 | 0 0 1 1 0 0 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 1110                                  | 0 0                               |                 |             | 00 100                                           | 0                                       | 001100                                  | 0       0           0       0 | 0                                     | 001100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1          | 000111001 |               | 0110011101110110 01 1 10        | 0                                                 |          |          |     |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION SOURCE ALU DEST LD CAR TO ALU                    | 31<br>32<br>33<br>34<br>85<br>35<br>37<br>38<br>39<br>41<br>42<br>43<br>46<br>47<br>49<br>50<br>51<br>55<br>56<br>47<br>49<br>50<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56 |                                                        |                                                | 0 1 1 0 1 1 0 1 1 0                     | 0 - 10   0 0                             |                                             | 011110 | 000         | 0           | 01101111111110110                        | 0 1 1 0 1 1 0 0 0 0                     | 00110100010                                               | 000100                                  | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 00110110111100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0     0   0   0                         | 0 0 0 0 0                         |                 |             | 00 00 00                                         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 001110                                  | 001110                        | 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0         |                                                 |           | 1110          | 0100111011110110 01 1 1 00      |                                                   | 0        | 0        | 0   |
| C: PEU CN PCO RE MARO MAB ALU FUNCTION SOURCE ALU DEST LD CAA TO ALU SHIFT              | 31<br>32<br>33<br>34<br>85<br>35<br>37<br>38<br>39<br>41<br>42<br>43<br>46<br>47<br>49<br>50<br>51<br>55<br>56<br>47<br>49<br>50<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56 |                                                        |                                                | 0 1 1 0 1 1 0 1 1 0                     | 0 - 10   0 0                             |                                             | 011110 | 000         | 0           | 01101111111110110                        | 0 1 1 0 1 1 0 0 0 0                     | 00110100010                                               | 000100                                  | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 00110110111100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0     0   0   0                         | 0 0 0 0 0                         |                 |             | 00 00 00                                         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 001110                                  | 001110                        | 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0         |                                                 |           | 1110          | 0100111011110110 01 1 1 00      |                                                   | 0        | 0        | 0   |
| C: PEU CN PCO RE MARO MAB ALU FUNCTION SOURCE ALU DEST LD CAA TO ALU SHIFT              | 31<br>32<br>33<br>34<br>85<br>37<br>38<br>39<br>40<br>41<br>42<br>43<br>46<br>47<br>49<br>49<br>55<br>51<br>52<br>53                                                                                           |                                                        |                                                | 0 1 1 0 1 1 0 1 1 0                     | 0 - 10   0 0                             |                                             | 011110 | 000         | 0           | 01101111111110110                        | 0 1 1 0 1 1 0 0 0 0                     | 00110100010                                               | 000100                                  | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 00110110111100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0     0   0   0                         | 0 0 0 0 0                         |                 |             | 00 00 00                                         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 001110                                  | 001110                        | 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0         |                                                 |           | 1110          | 0100111011110110 01 1 1 00      |                                                   | 0        | 0        | 0   |
| C: PEU CN PCO RE MARO MAB ALU FUNCTION SOURCE ALU DEST LD CAA TO ALU SHIFT              | 31<br>32<br>33<br>34<br>85<br>35<br>37<br>38<br>39<br>41<br>42<br>43<br>46<br>47<br>49<br>50<br>51<br>55<br>56<br>47<br>49<br>50<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56<br>56 |                                                        | 0001110                                        | 0 1 1 0 1 1 0 1 1 0                     | 0 - 10   0 0                             |                                             | 011110 | 000         | 0           | 01101111111110110                        | 0 1 1 0 1 1 0 0 0 0                     | 00110100010                                               | 000100                                  | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 00110110111100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0     0   0   0                         | 0 0 0 0 0                         |                 |             | 00 00 00                                         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 001110                                  | 001110                        | 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0         |                                                 |           | 1110          | 0100111011110110 01 1 1 00      |                                                   | 0        | 0        | 0   |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION SOURCE ALU DEST LD CAA TO ALU SHIFT MODE         | 31<br>32<br>33<br>34<br>35<br>35<br>36<br>37<br>37<br>40<br>41<br>42<br>43<br>44<br>47<br>47<br>47<br>47<br>47<br>50<br>51<br>55<br>55<br>55<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57       |                                                        | 0001110                                        | 0 1 1 0 1 1 0 1 1 0                     | 0 - 10   0 0                             |                                             | 011110 | 000         | 0           | 01101111111110110                        | 0 1 1 0 1 1 0 0 0 0                     | 00110100010                                               | 000100                                  | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 00110110111100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0     0   0   0                         | 0 0 0 0 0                         |                 |             | 00 00 00                                         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 001110                                  | 001110                        | 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0         |                                                 |           | 1110          | 0100111011110110 01 1 1 00      |                                                   | 0        | 0        | 0   |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION SOURCE ALU DEST LD CAA TO ALU SHIFT MODE         | 31<br>32<br>33<br>34<br>35<br>35<br>36<br>37<br>37<br>40<br>41<br>42<br>43<br>44<br>47<br>47<br>47<br>47<br>47<br>50<br>51<br>55<br>55<br>55<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57       |                                                        | 0001110                                        | 0 1 1 0 1 1 0 1 1 0                     | 0 - 10 0 0 0 0                           |                                             | 011110 | 000         | 0           | 01101111111110110                        | 0 1 1 0 1 1 0 0 0 0                     | 00110100010                                               | 000100                                  | 00 00 00 00 00 00 00 00 00 00 00 00 00 | 00110110111100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0     0   0   0                         | 0 0 0 0 0                         |                 |             | 00 00 00                                         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 001110                                  | 001110                        | 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0         |                                                 |           | 1110          | 0100111011110110 01 1 1 00      |                                                   | 0        | 0        | 0   |
| C: PEU CN PCU RE MHRO MAB ALU FUNCTION ALU SOURCE ALU DEST LD CAA TO ALU SHIFT          | 31<br>32<br>33<br>34<br>35<br>35<br>36<br>37<br>37<br>40<br>41<br>42<br>43<br>44<br>47<br>47<br>47<br>47<br>47<br>50<br>51<br>55<br>55<br>55<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57       |                                                        | R, 00000 00 00 00 00 00 00 00 00 00 00 00      | 0 1 1 0 1 1 0 0 0                       | 0 - 10 0 0 0 0                           | 0 100 1 1 1 1 1 1 0 0 1 0                   | 011110 | 000         | 0           | R 101011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 0 1 1 0 1 1 0 0 0 0                     | 2 000 1 0 1 0 1 0 1 0 0 0 1 0 1 1 0 0 1                   | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 2. 001 001                             | 00110110111100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0     0   0   0                         | 0 0 0 0 0                         |                 |             | 00 00 00                                         | 2, 10000 1 1 1 1 1 1 00010              | 001110                                  | 001110                        | 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0         |                                                 |           | 1110          | 0100111011110110 01 1 1 00      |                                                   | 0        | 0        | 0   |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION SOURCE ALU DEST LD CAA TO ALU SHIFT MODE         | 31<br>32<br>33<br>34<br>35<br>35<br>36<br>37<br>37<br>40<br>41<br>42<br>43<br>44<br>47<br>47<br>47<br>47<br>47<br>50<br>51<br>55<br>55<br>55<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57       |                                                        | R, 00000 00 00 00 00 00 00 00 00 00 00 00      | 0 1 1 0 1 1 0 1 1 0 0                   | 0 - 10 0 0 0 0                           |                                             | 011110 | 000         | 0           | 01101111111110110                        | 0 1 1 0 1 1 0 0 0 0                     | 5,2, 0000 000 00 00 0000 0000 0000                        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 001000                                 | 00110110111100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0     0   0   0                         | 0 0 0 0 0                         |                 |             | 00 00 00                                         | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 001110                                  | 001110                        | 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0         |                                                 |           | 1110          | 0100111011110110 01 1 1 00      |                                                   | 0        | 0        | 0   |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION SOURCE ALU DEST LD CAR TO ALU SHIFT MODE         | 31<br>32<br>33<br>34<br>35<br>35<br>36<br>37<br>37<br>40<br>41<br>42<br>43<br>44<br>47<br>47<br>47<br>47<br>47<br>50<br>51<br>55<br>55<br>55<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57<br>57       | F.E.T.C. HOLOIO                                        | 0,8, 0,000                                     | 0 1 0 0 1 0 0 1 0 N.T.O.                | 0   10   0   0   0   0                   | J,M,P   0   0   1   1   1   1   0   0   0   |        | 0000        | 00          | 1,5,8                                    | 0 1 1 0 1 1 0 1 1 0 1 1 0               | 0.5,2 0000 000 000 000 000 000                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 1.5.2. 0001 001 00100                  | 000 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 0 100 | 0 1 1 0                                 | 0 0 0 0                           | 0 0 0           |             | 00000                                            | 0,5,2, ,  0 0 0                         | 0000 0000                               |                               | 000 110                               | L.D.A. 10011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1    |           |               | 0110011101110110 0 1 000        | 5, T, A, 0000                                     | 00       | 00       | 00  |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION SOURCE ALU DEST LD CAA TO A LU SHIFT MODE MNEMON | 3123345<br>337385<br>3370<br>4412<br>43445<br>447<br>449<br>5152<br>55<br>645<br>55                                                                                                                            | 01F.E.T.C. HO1010 1 11 11 11 10 10 10 10 10 10 10 10   | 1 0, R, 0,00 0 0 0 0 0 0 0 0 0 0 0 0 0 0       | 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 3                                        | 4 J.M.P   0   0   1   1   1   1   0   0   0 | 5      | 9 0 0 0     | 7 00        | 811,5,18                                 | 9 0 1 0 0 0 0 0 0                       | A 10 5, 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0             | 8                                       | C 1 5 2 00 1 00 1 00 1 00 0            | 0 0 1 10 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | F (0) (0) (1) (0) (1) (1) (1) (1) | 0 0 0           |             | 00000                                            | 0,5,2, ,  0 0 0                         | 0000 0000                               |                               | 000 110                               | L.D.A. 10011 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1    |           |               | 0110011101110110 0 1 000        | 5, T, A, 0000                                     | 00       | 0        | 00  |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION SOURCE ALU DEST LD CAA TO A LU SHIFT MODE MNEMON | 3123345<br>337385<br>3370<br>4412<br>43445<br>447<br>449<br>5152<br>55<br>645<br>55                                                                                                                            | 0 01F.E.T.C. HODO 0 1 1 1 1 1 1 1 1 1 1 10 10 1 10 1 1 | 01 0, R, 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 01110 01110                             | 0 - 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 04/J,M,P, .   00/1                          | 0 6    | 0000        | 0 2 1 1 0 0 | 0811,5,8,00011 11 11 11 11 11 10 110     | 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 | O A 10, 5, 2,   @ 10     0     0   10   0   0   1   0   0 | 08, , , , , , , , , , , , , , , , , , , | 06/1.5.2. 0001 1001 100                | 001100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 1110                                  | 7 F                               |                 | 20000       | 3                                                | 4[0,5, Z, ,  0 0 0                      | 5   000   0   0   0   0   0   0   0   0 |                               | 7                                     | 81, 0, 4, 10,011 11 11 11 11 10,011 0,011 0,011 |           | A             | 011001111011110110 01 1 1 01001 | c 15, T, A, O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00       | 00       | 000 |
| C: PEU CN PCU RE MARO MAB ALU FUNCTION SOURCE ALU DEST LD CAA TO ALU SHIFT MODE         | 3123345<br>337385<br>3370<br>4412<br>43445<br>447<br>449<br>5152<br>55<br>645<br>55                                                                                                                            | 0 01F.E.T.C. HODO 0 1 1 1 1 1 1 1 1 1 1 10 10 1 10 1 1 | 01 0, R, 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 01110 01110                             | 0 - 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 04/J,M,P, .   00/1                          | 0 6    | 0000        | 7 00        | 0811,5,8,00011 11 11 11 11 11 10 110     | 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 | O A 10, 5, 2,   @ 10     0     0   10   0   0   1   0   0 | 08, , , , , , , , , , , , , , , , , , , | 06/1.5.2. 0001 1001 100                | 001100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 1110                                  | 7 F                               |                 |             | 3                                                | 4[0,5, Z, ,  0 0 0                      | 5   000   0   0   0   0   0   0   0   0 |                               | 7                                     | 81, 0, 4, 10,011 11 11 11 11 10,011 0,011 0,011 |           | A             | 011001111011110110 01 1 1 01001 | c 15, T, A, O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 00       | 00       | 000 |

FIGURE 8.8a Microcode

|                 |           |          |        | _        |      |          |          |          |                      | _   |    |          | _ |          |          | _             | - |          | 7        |          | 7        | 7 | Т        | Т  |               |      |        |           | 7        | 1 | 7        | F             | Т                                       | 1   | Т     | Т  |     |            | ·        | 7        |          |          |      | Т   | Т     | 1        |          |           |              |   |         |   |       |         | - |
|-----------------|-----------|----------|--------|----------|------|----------|----------|----------|----------------------|-----|----|----------|---|----------|----------|---------------|---|----------|----------|----------|----------|---|----------|----|---------------|------|--------|-----------|----------|---|----------|---------------|-----------------------------------------|-----|-------|----|-----|------------|----------|----------|----------|----------|------|-----|-------|----------|----------|-----------|--------------|---|---------|---|-------|---------|---|
| PROM            | MNEMONIC  |          | 20     |          | JHIL | 3        | I        | >        | -1                   | 6   | 5  | 777      | Α | 200      | 2027     | Δ             | Ç | またり      | 2        | MΑ       | MARO     |   |          |    | -             | ADDA |        | σ<br>C    | 1        | 2 | M 70 7   | <u>ا</u><br>ا |                                         | 20  | 71-17 |    | 6   |            | H        |          | AUUK     | 2        | NEXT | 13. | 20    | <b>X</b> |          |           | ADDR         |   | DX ANCH | 3 |       |         |   |
| 7               | EY        |          | $\Box$ | 1        | 7    | ì        | HLO      | -,,.     | 0                    | CAA | (  | 2 (      |   | 7        | 9 6      | 3             | 3 | 16       | -        | S        | 6        |   | 200      |    | (             | J.   | `(     | _         | į        | ٤ | 2        | 5 1           | 2                                       | 2   | Ċ     | 1  | 2   | 5 (<br>5 . | 2        |          | ×        | 2        | 7    | 0   | LABIT |          |          | 1         | Ŏ            |   | Z       | > |       |         |   |
|                 | Ş         |          | m      |          | -    | 1        | _        | •        |                      | ^   |    | •        |   | ŀ        | n        |               | Š | ,        |          |          | -        |   | ٦        |    |               | ~    |        |           |          |   |          | 1             | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 4   |       |    |     | ,          | 7        |          |          |          |      | 0   | R     |          |          | ٠         | ريد          | • | ä       |   |       |         |   |
| ADDR            | 100       | S        | on k   | 7        | 75   | U        | 4        | 4        | 7                    | 7   | 4  | 4        | 4 | A        | 4        | 4             | w | ω        | ü        | 3        | اره      | w | w        | 3  | J.            | الد  | N      | U         |          | v | 10       | 70            | V                                       | ٦,  | 3/2   | 上  | .]_ |            | L        | 1        | I        |          |      |     |       | $\vdash$ | П        |           |              | T | Γ       |   | П     | П       | Γ |
|                 |           | 5        | 4      | 3/5      | 9    | 0        | 10       | 90       | $\dot{\mathbb{P}}$   | Q.  | 7  | 4        | w | 12       | Ì        | 9             | 9 | 0        | 기        | 6        | G.       | 4 |          | 13 | 7             | 3    | 9      | اهر       | 7        | 2 | 4        | * K           | 4                                       | 10  | -19   | 4  | 10  | <u>\</u>   | 10       | 14       | 4        | 3        | 3    | 1   | 0     | 9        | 9        | 7         | 6            | ত | 4       | ß | 2     | Ξ       | 3 |
| 20              | A.D.C.    | $\vdash$ | +      | +        | -    | $\vdash$ | $\vdash$ | -        | Н                    | -   | Н  | $\dashv$ |   | Н        | -        |               | - |          | -        |          | $\dashv$ | - | +        | +  | +             | +    | +      | +         | +        | + | $\dashv$ | +             | +                                       | 十   | +     | ╁  | +-  | ╁          | +        | +        | $\vdash$ | -        | -    | -   | -     | -        | Н        | Н         |              | ┢ | -       |   | Н     | -       | - |
| 22              |           |          | 1      | 1        | 1    | L        |          |          |                      |     |    |          |   |          |          |               |   |          |          |          |          | 1 | 1        |    | 1             | 1    | _[     | 1         | I        | 1 |          | $\Box$        | 1                                       | 1   | I     | I  | 1   | I          | I        | L        |          |          |      |     |       |          |          |           |              | _ |         |   |       |         | F |
| 23              | A .D .D . | o        |        | 허        | +    | -        | ╀        | ╀        | -                    | -   | 0  |          | _ | 2        | 2        | $\overline{}$ | 0 |          | 0        | 0        | 0        | , |          | 1  |               | 0    |        | 7         | -        | 2 |          | 0             | 7                                       | +   | +,    | 1  | +,  | +          | +        | -        | -        | +        | 0    | -   |       | -        | -        | 1,002,000 | -            | - | ١-,     | ī | -     | -       | Ī |
| 2 5             | 112121    | 0        | 1      | 0        | 上    |          | 上        |          | 0                    |     | Ĭ  |          | Ì | Ĭ        | Ĭ        |               | Ĭ |          |          | 0        | Ĭ        | L | 2        | 0  | 7             | 7    | 1      | 7         | 7        | 0 | 0        | व             | 710                                     | र्ग | 10    | 10 | 20  | Ó          |          | 0        | 0        | 0        | 17   | 0   | 0     | 1        |          | Ė         | $\dot{\tau}$ | 亡 | İ       | İ | $\pm$ | Í       | - |
| 26              |           | 0        | 4      | 4        | +    | ┞        | -        | -        | 00                   |     | Н  |          |   | Н        | -        | -             | - | -        |          | 0        | 4        |   |          |    | <del>  </del> | -    |        | #         | 11       |   |          | 0             | <del>\</del>                            | 의_  | 0     |    |     |            | 4        | 0        | 0        | 0        | 1    | 0   | 0     | 1        | 7        | _         | 1            | 1 | 1       | 0 | 4     | 4       |   |
|                 | A,D,D     | 0        | 7      | 0        | +    | +        | -        | -        | L                    | 1   | 0  |          | T | Q        | 0        | 1             | ō | o        |          |          | 0        |   |          |    |               |      |        |           |          |   |          | ō             |                                         | 5   |       |    |     | 0 6        | 1        | Ó        |          | 0        |      |     |       |          |          |           |              |   |         | 7 |       |         |   |
| 29              |           |          | -      | 1        | I    |          | L        | L        |                      |     |    |          |   |          |          |               |   |          |          |          |          |   | 4        | 1  | 1             | 1    | $\Box$ | _         |          | _ |          | 1             | 4                                       | T   | T     | Ţ  | Ţ   |            | F        | L        | F        | L        |      |     |       |          |          |           |              | L |         |   |       |         | I |
| 2 A<br>2 B      |           | $\vdash$ | +      | +        | +    | -        | -        | -        | -                    |     |    |          |   | -        |          | -             |   | -        |          | $\vdash$ | $\dashv$ | + | +        | +  | +             | -    | -      | +         | +        | + | $\dashv$ | +             | +                                       | +   | +     | +  | +   | +-         | +        | -        | -        | $\vdash$ | -    | H   | -     | -        | H        |           | -            | - | -       | - |       |         |   |
| 2 C             | NO SHIFT  | 0        | 山      | 7        |      | I        |          |          | 0                    | 0   | 0  | O        | Ī | 1        | I        | I             | I | ī        | I        | D        | 0        | П | 0        | Ŏ, | I             | П    | 7      |           | 7        | 0 | 0        | Ö,            | o,                                      | 1   | 7     | 0  | 93  | 20         | 1        | 0        | 0        | Ö        | 17   | 0   | 1     | 1        | 1        | 7         | 1            | 1 | 1       | 1 | 7     | 1       | 1 |
| 2 D             |           | $\vdash$ | +      | +        | +-   | +        | -        | $\vdash$ | -                    | -   | Н  | -        | - | Н        | $\dashv$ | $\dashv$      | _ | $\dashv$ | $\dashv$ |          | $\dashv$ | - | $\dashv$ | +  | +             | +    | +      | -         | $\dashv$ | + | $\dashv$ | +             | +                                       | -   | +     | +  | +   | ╀          | +        | ╀        | $\vdash$ | -        | -    | -   | -     | -        | Н        | -         |              | - | -       |   |       | -       |   |
| 2 F             |           |          | 1      | 1        | 1    | 上        |          |          |                      |     |    |          |   |          |          |               |   |          |          |          | 士        |   | 1        | 1  | 1             | 1    |        |           |          |   |          | 1             |                                         | 土   | 士     | 1  | 士   |            | -        |          | 上        |          |      |     |       |          |          |           |              |   |         |   |       |         |   |
| 30              | LEFT ROT  | 0        | 4      | 4        | +    | -        | -        |          | 0                    | 0   | 1. | 1        | 1 | 0        | 4        | 4             | 0 | 4        | 1        | 0        | 의        | 1 | 4        | 4  | 4             | 4    | 4      | 4         | 4        | 9 | 의        | 0             | 4                                       | 4   | 10    | 19 | 20  | 0          | 1        | 0        | 0        | 0        | 1    | 0   | 1     | 1        | 1        | 1         | 1            | μ | 1       | 1 | 4     | 1       |   |
| 32              |           |          | 1      | 1        | 1    |          |          |          |                      |     |    |          |   |          |          |               |   |          |          |          |          |   | 1        |    | 1             | 1    | 1      | 1         |          |   |          | 1             | 1                                       | 土   | 土     | İ  |     | İ          | İ        |          | L        |          |      |     |       |          |          |           |              |   | -       |   |       |         |   |
| 33              |           |          |        |          | _    | L        |          |          |                      | Ļ   | 1  |          | _ |          |          |               |   |          |          |          | _        | 4 | _        | 1  | -             | _    | 4      | _         | -        | _ | _        | ō             | -                                       | 4   | -     | 1  | ١.  | 1          | 1        | -        | ļ.,      | ļ.,      | -    | ļ., | -     | <u></u>  | _        |           |              | _ | -       |   |       |         |   |
| <u>34</u><br>35 | NO SKIP   | 0        | 21     |          | 士    |          |          |          | $\stackrel{\circ}{}$ | 0   | 0  | Ü        | _ | 4        | -        | <u>'</u>      | 1 | -        | _        | ပ        | 의        | 1 | 7        | 1  | -             | 1    | 1      | 1         | 1        |   |          |               |                                         | 士   |       | 1  | 1   | $\perp$    | <u>L</u> | Ľ        | 1        | 1        | Ľ    |     | 1     | 0        | $\alpha$ | U         | 0            | ٤ | 0       | 0 | 8     | Ľ       |   |
| 36              |           |          | 1      | $\dashv$ | _    | ļ.       | L        | -        | -                    | _   |    | _        |   |          |          | _             | _ |          | _        |          | -        | - | -        | +  | 4             | -    | 4      | -         | -        | 4 | -        | -             | +                                       | +   | +     | +  | +   | +-         | -        | ┞        | -        | -        | -    | -   | H     | _        |          | Н         | -            | - | -       | - |       | -       | 1 |
|                 | ALL, SKIP | 0        | 5      | न        | ╁    | +        | +        | ┼        | 0                    | 0   | 0  | 0        | - | -        | <b> </b> | ľ             | ī | 1        | 1        | 0        | 0        | 7 | ᆉ        | +  | ot            | 0    | 0      | 0         | 7        | 0 | o        | o             | 1                                       | 0   | -     | 1  | 1   | 1,         | +,       | 1        | 1        | 1        | 1    | 10  | 1     | 0        | 0        | 0         | 0            | 0 | 0       | 0 | 0     | 0       |   |
| 39              |           |          | 1      | 1        | 1    |          | L        |          |                      | Ĺ   |    |          |   |          |          | -             |   |          |          |          |          |   | 1        | 1  | 1             | 7    | 1      | $\exists$ | 耳        | _ |          | 1             | 1                                       | 1   | 1     | ľ  | Ţ   | Ţ          | Ľ        | Ľ        |          | L        | L    | Ĺ   | L     |          |          |           |              |   |         |   |       |         | - |
| 3 A             |           | $\vdash$ | +      | +        | +    | $\vdash$ | -        | -        | $\vdash$             | -   |    | $\vdash$ |   | $\vdash$ | $\vdash$ | -             |   | -        | $\dashv$ | Н        | $\dashv$ | + | +        | +  | +             | +    | +      | -         | +        | + | -        | +             | +                                       | +   | +     | +  | +   | +          | ╀        | -        | +        | $\vdash$ | +    | -   |       | -        | Н        |           |              | - | -       |   |       | -       |   |
| 3 C             | 0,0,A     | 0        | 0      | 0        | 士    | T        | L        |          | 1                    | 0   | 1  | 7        | I |          | T        | 1             | 0 | 1        | ī        |          | 0        | 1 | o        | d  | 0             | 0    | 0      | 0         | 7        | o | 7        | 0             | 7                                       |     | 1 6   |    | 1   | 1          | ī        | tī       | 1        | 1        | ō    | 0   | 0     | ī        |          | ī         | 1            | Ī | 1       | 1 | 7     | 7       |   |
| 3 D             |           | 0        | 0      | 0        | I    | L        |          |          | Ō                    | 0   | 0  | 0        | Ī | I        | 1        | Ţ             | 1 |          | 1        | 0        | 0        | 1 | o[       | Ц  | 1             | 1    | 1      | I         | 1        | 0 | 0        | 0             | 1                                       | 1   | 2 0   | 1  |     | 1          | 1        | I        | I        | 1        | I    | 0   | 0     | 0        | 0        | ō         | 0            | 0 | 0       | 0 | 0     | 0       | 1 |
| 3 E             |           | Ш        |        | 1        | 1    | 1        | _        | 1_       | _                    | 1_  |    |          |   |          |          |               | _ |          | _        | Щ        | _        | _ | 4        | _  | 4             | 4    | 4      | _         | _        | _ | _1       | _1.           | 1                                       |     | _     | 1  |     | 4          | 1        | <b>!</b> | 1_       | 1        | 1_   | L.  | _     | _        |          |           |              | L | L_      |   | -     | <u></u> | l |

FIGURE 8.8b Microcode continued

## 9.0 TECHNOLOGY TRENDS

The bit slice computer presented in this paper has an add time of 1.08 microseconds. By the use of more extensive hardware, the add time could be reduced to less than 800 ns. The question to be answered is as follows: given the present trend in technology, is it worthwhile to spend the time and money developing a bit slice machine?

If the present one chip 16 bit microprocessors are surveyed, as done in figure 9.1, the bit slice is 1.1 times faster than the fastest monolithic processor and 3 times faster than the slowest. At 800 ns, the bit slice is from 1.5 to 4 times faster than the monolithic microprocessors.

If there is to be an improvement in bit slice performance it must come in two areas: the sequencer, and the memory. The microstore and the Am29811 are PROM. If these devices were twice as fast, 128 ns would have been cut off the ADD instruction time. If the sequencer were twice as fast an additional 160 ns could be cut off. This would result in an ADD time of 512 ns, and this would be accomplished without the use of more advanced strategies such as multiple pipelining.

Are these speed increases reasonable? For the most part, these times represent the typical times for the same devices used in the 800 ns design (the design was on a worst case basis). Coupled with the new advance in

| Manufacturer           | Processor    | Process<br>technology | Word size<br>(data/instruction) | Direct addressing range (words) |     | Maximum clock<br>frequency (MHz)/phases | Instruction time shortest/longest? (4.5) | TT.<br>Compatible | BCD<br>anthmetic | On-chip<br>interrupts/leveis |    | Number of<br>Stack registers | On-chip<br>ciock | DWA<br>capability | Specialized memory & 1/0 circuits avail. | Prototyping<br>system avail. | Package<br>size (pins) | Voltages<br>raquired (V) | Assembly lênguage<br>development system | High-leve!<br>Janagasas | Time staring<br>cross software | Comment\$                                  |
|------------------------|--------------|-----------------------|---------------------------------|---------------------------------|-----|-----------------------------------------|------------------------------------------|-------------------|------------------|------------------------------|----|------------------------------|------------------|-------------------|------------------------------------------|------------------------------|------------------------|--------------------------|-----------------------------------------|-------------------------|--------------------------------|--------------------------------------------|
| Outa General           | nN601        | nmos                  | 16/16                           | 32k                             | 42  | 8.33/2                                  | 1.2/29.5                                 | Yes               | No               | Yes/l                        | 4  | RAM                          | Yes              | Yes               | Yes:                                     | No                           | 40                     | 5,10,14,-4.25            | Yes                                     | Yes                     | Yes                            | Emulates HOVA instruction set              |
| Fairchild              | 9440         | <b>1</b> 2L           | 16/15                           | 64k                             | 42  | 10/1                                    |                                          | Yes               | No               | Yes/1                        | 4  | RAM                          | Yes              | Yes               | No4                                      | No                           | 40                     |                          | No                                      | No                      | No                             | Emulates NOVA instruction set              |
| Ferranti :             | F100L        | Bi-<br>polar          | 16/16                           | 32k                             | 28  | 20/1                                    | 1.19/5.75                                | Yes               | No               | Yes/i                        | 0  | RAM                          | flo              | Yes               | Yes                                      | Yes                          | 40                     | 5                        | Yes                                     | Yes                     | Yes                            | Can do double word operations              |
| General Instrument     | CP1600       | NMOS                  | 16/16                           | 64h                             | 87  | 4/2                                     | 1.6/4.8                                  | Yes               | No               | Yes/1                        | 8. | RAM                          | No               | Yes               | Yes                                      | Yes                          | 40                     | 5,12,-3                  | Yes                                     | Yes                     | Yes                            | All internal registers can be accumulators |
| National Semiconductor | INS8900/PACE | NMOS/                 | 16/16                           | 64k                             | 45  | 2/2                                     | 2.5/5                                    | No                | Yes              | Yes/6                        | 4  | 10x16                        | No               | Yes               | Yes                                      | Yes                          | 40                     | 5.8,-12                  | Yes                                     | Yes                     | Yes                            | Architecture intended for data handling    |
| Panaiacena             | WW1610       | SOMA                  | 16/16                           | 64k                             | 33  | 2/2                                     | 2/6                                      | Yesa              | No               | Yes/3                        | 5  | RAIA                         | No               | Yes               | Yes                                      | . No                         | 40                     | 5,12,-3                  | Yes                                     | No                      | No                             |                                            |
| Texas Instruments      | TMS9980      | ROMN                  | 16/16                           | iók                             | 69  | 4/4                                     | 3.2/49.6                                 | Yesa              | No               | Yes/4                        | 18 | RAM                          | Yes              | Yes               | Yes                                      | No                           | 40                     | 5,125                    | Yes                                     | Yes                     | Yes                            | Small version of TMS 9900                  |
| Texas instruments      | 000E6485/SWL | NMOS<br>PL            | 16/16                           | 64k                             | 69  | 4/4                                     | 2/31                                     | Yesa              | No               | Yes/16                       | 16 | RAM                          | No               | Yes               | Yes                                      | No                           | 64                     | 5,12,5                   | Yes                                     | Yes                     | Yes                            | Emplotes 990 mini instructions             |
| Western Digital        | WD-16        | ROMIT                 | 16/16                           | 64h .                           | 116 | 3.3/4                                   | 1,1/780                                  | Yes               | Yes              | Yes/16                       | 6  | RAM                          | No               | Yes               | Yes                                      | Yes                          | 40                     | 5,12,-5                  | Yes                                     | Yes                     | No                             | Very similar to DEC 1SI-11                 |

<sup>1.</sup> Has 8-bit external bases and 16-bit internal bases 2. With maximum clock 3. Except clock lines 4. Standard TTL or MOS circuits will suffice

FIGURE 9.1 A survey of 16 bit general purpose microprocessors

From: Electronic Design, 1977, page 56

tristate buffers for interfacing ECL and TTL, doubling the speed within one year should be no problem.

There is a limit to how fast a computer can operate, and the limit is established by the physical dimensions of the computer and the speed of light. Present bit slice technology requires 50 to 100 integrated circuits for the CCU. It will be very hard to package such a CCU in less than a square foot of area. In this dense configuration, the maximum distance would be about two feet. Since light travels approximately one foot every nanosecond, the time delay for a signal to be sent and its reply received would be 4 ns. This is equivalent to an extra gate level in the circuitry. On the other hand, since distances are measured in mils, the speed of light is not a practical consideration in the speed of single chip microprocessors.

It is apparent that the optical limits have or shortly will be reached in integrated circuit processing. This can be seen in figure 9.2. As figure 9.3 shows, there are two techniques being developed to take over where optical techniques leave off. The electron beam method promises a 100 fold density increase over the present density, and the x-ray approach offers a 1000 fold increase in density. At present the electron beam is the nearest to operational. From figure 9.3 the full impact of this technology can be seen. Texas Instruments projects a 32 bit microcomputer (not microprocessor) by 1983. This microcomputer would



FIGURE 9.2 Future of electron beam technology

From: Altman, 1977



FIGURE 9.3 VLSI techniques

From: Altman, 1977a

have 32 K words of memory on the chip in addition to the CPU.

The 1983 microprocessor would require a 20 fold increase in density. This increase in density would decrease the capacitance of the integrated circuit. Since capacitance is the major speed killer in MOS circuitry, the decrease in capacitance by about 20 times would correspond to a 20 fold increase in speed. To be conservative and to take into account the extra carry time for a 32 bit machine, assume that the speed increase is only by a factor of 10. Since the fastest 16 bit MOS microprocessor available today has an instruction time range of 1.2 to 29.5 microseconds, the 1983 32 bit machine would do an ADD in 120 ns and a divide in 2.95 microseconds.

The design of complex circuits with electron beam technology will require even heavier dependence on computer aided design than present digital LSI designs. With the required advances in computer techniques and computer use for the 1980's, it is not hard to imagine a highly computerized and integrated design and manufacturing system for VLSI technology. When compared with the cost of designing a bit slice machine it may be cheaper to have an integrated circuit house design a custom microcomputer. That is unless a standard system can be used. After all, most applications that exist today can be accomplished with

a computer capable of a 120 ns ADD.

While bit slice has a definite advantage now, the advantage will fade over the next decade unless the circuitry can be integrated into larger and faster slices. The problem is to get a faster technology into a smaller area. It is not an easy problem because most technologies require more power to go faster. As the size of the chip is reduced the power per unit area goes up. In the end, the monolithic microprocessor will probably win out, but until then the bit slice does offer some definite advantages.

## 10.0 SUMMARY

There are two broad areas of interest in this computer design. One area is cost, and the other area is performance. Cost includes the actual hardware cost, construction time, hardware design time, and firmware cost. In the area of performance we are concerned with the aspects of speed and flexibility.

The design of this system took several months of gathering and reading the material on bit slice technology and on the instruction sets for the PDP-11, NOVA, and PACE. Then came several design iterations as I tried to assimilate all the material. Finally, it took about six weeks to design the computer hardware.

In the construction phase, not counting the time it took to strip the wire wrap board, it took about two and a half weeks to wire wrap and document the board. An additional week was required to find the wiring mistakes and other problems with the wire wrap board.

As for the limited instruction set reduced to firmware, two weeks were required to write the original RTL programs, and two additional weeks were needed to write the binary code. Of these instructions only the FETCH, LDA, ADD (original), ADD without shifts or skips, and ADD with left rotate and skip always were checked out. The total time for the checkout was probably no more than two weeks, but the

problem of programing the PROM's at work and checking the firmware at home added a great deal of time to the procedure.

In the performance area, the results were not as good as hoped for, although new and more innovative approaches could significantly reduce the execution time. become apparent that this is not a one man job. Rather the task should be attacked by a well coordinated design group. The complete design and construction of this computer could well take two man years. To avoid the problems of a project of this size, such as the demoralization that comes from chipping away at a large problem with no apparent progress, at least six people should be used. Two people should be used in the hardware area. One person should design the CCU and the other should design the memory and peripheral interface. Two people should be used to design the firmware and one person should design the monitors and assemblers so something can be done with the machine once the design phase is finished. Finally, one person is needed to bring the total design together into one cohesive effort. This person should be able to understand both the hardware and the software aspects of the computer so he can coordinate the two efforts towards the same goals and provide help in each area when it is needed.

#### REFERENCE LIST

| Altman, |       | Laurence Altman and Charles Cohen, "Gathering wave of Japanese technology", Electronics, June 9, 1977 |
|---------|-------|-------------------------------------------------------------------------------------------------------|
| Altman. | 1977a | Laurence Altman, "Five technologies                                                                   |

Altman, 1977a Laurence Altman, "Five technologies squeezing more performance from LSI chips", Electronics, August 18, 1977

AMD, 1976

Am2900 Bipolar Microprocessor Family,
Advanced Micro Devices Corporation,
Sunnyvale, California, June 1976

AMD, 1976a <u>Microprogramming Handbook</u>, Advanced Micro Devices Corporation, Sunnyvale, California, November 1976

AMD, 1977 System 29, AM-PUBO61, Advanced Micro Devices Corporation, Sunnyvale, California, 1977

AMD, 1977a Am2930 (data sheet), Advanced Micro Devices Corporation, Sunnyvale, California, February 1977

DEC <u>LSI-11 microcomputer</u>, Digital Equipment Corporation, digital components group, Marlborough, Massachusetts

Electronic "Microprocessor Data Manual", Electronic Design, 1977 Design, Vol. 25 No. 21, October 11, 1977

Falkoff, 1977a Daniel Falkoff, Natalio Kerilenevich, and Philip Kreiker, "Exploit Existing NOVA software", Electronic Design, Vol. 25 No. 19, September 13, 1977

Muething, 1976 Gerald F. Muething Jr., "Designing the maximum performance into bit-slice minicomputers", Electronics, September 30, 1976

Suri, 1978

Ashok Suri and Dan Wilnai, "The Family Fire", Progress, Fairchild Corporation, Mountain View, California, Vol. 6 No. 2, March-April 1978

Wilnai, 1977 Dan Wilnai, "Mini-Computer CPU packed on One Chip", Progress, Fairchild Corporation, Mountain View, California, Vol. 5 No. 3, May-June 1977