
PER BRINCH HANSEN

Information Science

California Institute of Technology

October 1975

CONCURRENT PASCAL
MACHINE

Summary

CONCURRENT PASCAL MACHINE.
STORE ALLOCATION

Per Brinch Hansen

Information Science
California Institute of Technology

Pasadena, California 91125

October 1975

This describes the allocation of core store among the classes,
monitors, and processes of a Concurrent Pascal program running
on a PDP 11/45 computer.

Key Words and Phrasesl Concurrent Pascal implementation, Virtual
machine, Store allocation, PDP 11/45 computer.

CR Categories I 4.2, 6.2

The development of Concurrent Pascal has been supported by the
National Science Foundation under grant number DCR74-17331.

Copyright ~ 1975 Per Brlnch Hansen

CONCURRENT PASCAL MACHINE

Per Brinch Hansen

InforMation Science
California Institute of Technology

Pasadena. California 91125

October 1975

This is a description of the virtual machine that executes
Concurrent Pascal programs on the PDP 11/45 computer. It contains
four papers entitled.

1. Concurrent Pascal machine. store allocation
2. Concurrent Pascal machinel Code interpretation
3. Concurrent Pascal machine: Kernel
4. The Concurrent Pascal compiler

The development of Concurrent Pascal has been supported by the
National Science foundation under grant number DCR74-17331.

Copyright ~ 1975 Per Brinch Hansen

CONTENTS

1 • INTRODUCTION 1

2. CORE STORE 1

3. VIRTUAL STORE 3

4. DATA SEGMENTS 5
5. PERMANENT VARIABLES 6
6, TEMPORARY VARIABLES 7
7. COMPRomISES 8

REfERENCES 10

1. INTRODUCTION

Concurrent Pascal is a programming language for structured
programming of computer operating systems [1, 2]. The Concurrent
Pascal compiler generates code for a virtual machine that can be
simulated by microprogram or machine code on different computers
[3] .

This paper describes the allocation of core store among the
processes of a Concurrent Pascal program running on a PDP 11/45
computer. The interpreter of the virtual code and the kernel
that controls processor multiplexing are discussed in [4, 5].

2. CORE STORE

A Concurrent Pascal program defines a fixed number of processes.
figure 1 shows the core store during the execution of a Concurrent
Pascal program. It contains code and data segments. The lengths of
these are fixed at compile-time.

code segments

data segments

Fig.1. Core store

The code segments consist of virtual code generated by the
Concurrent Pascal compiler, an interpreter that executes the
virtual code, and a kernel that schedules the execution of
concurrent processes (fig. 2).

2

~------------.---

. kernel

interpreter

virtual code

Fig. 2. Codesegments

The interpreter and kernel are assembly language programs that
implement the virtual machine. These two programs of 1 and 3 K words
are loadad from disk into core by means of the operator's control
panal. They in turn load the virtual code of a Concurrent Pascal
program into core and start executing it as a single process,
called the initial proces!. The latter can now create a fixed
number of child processes. The kernel multiplexes the processor
among these processes.

Each process has a data segment in core (fig. 3). Data segments
have fixed lengths determined during compilation. They exist
forever during execution. This makes store allocation trivial.
segments are allocated contiguously in their order of creation.

The segment length of the initial process and the start address
of its code are defined at the beginning of the virtual code. The
store requirements and code address of child processes are defined
by initprocess instructions.

3

initial process

ch ild process

• • . ill

child process'

Fig. 3, Data segments

3. VIRTUAL STORE

On the PDP 11/45 computer, the storage space of a process consists
of up to B segments of at most 4 K word~ each. These segments can
be placed anywhere in core. An adressing mechanism makes them
appear contiguous to the process.

This mechanism is not used by Concurrent Pascal to enforce
access rights of processes. That is done at compile-time. It is
just a (rather inconvenient) way of extending the addressing
capability of a computer with a short word lengtr by letting each
process see part of a larger core store. It would be unnecessary
on a machine that can address the whole store directly.

The virtual store of a process gives it access to a common
segment shared by all processes and to its own data segment (
called a private segment) (fig. 4.)

4

common segment

private segment

Fig.4. Virtual store

The common segment consists of the interpreter, the virtual
code, and the data segment of the initial process. The latter
contains the monitors through which processes communicate (fig. 5).

interpreter

virtual code

initial process

Fig. 5. Common segment

The initial process has no private data segment. Its data segment
is included in the common segment.

5

4. DATA SEGMENTS

A data segment contains the stack and heap of a process (Figs. 3
and 6).

heap

stack

Fig.6. Data segment

The stack contains the permanent variables (and parameters) of
a process as well as its te.porary variables used within procedures
(Fig. 7).

temporary
variables

permanent
variables

Fig. 7. Stack

The initial process is created by the kernel. It has no parameters.
When a child process is created, its parameters are copied from
the parent's stack (in the common data segment) into the child's
stack (in a private segement).

The heap is only accessible to sequential Pascal programs
executed by a Concurrent Pascal program.

5. PERmANENT VARIABLES

6

figure B shows the representation of the permanent variables and
parameters of a class, monitor, or process.

variables

gate address ~ g (global base)

parameter

fig. 8. Permanent variables

A monitor contains an address of a data structure called a gate.
The gate is stored in the kernel. It is used to give a process
exclusive access to the monitor [5]. (The gete address has no
significance for classes and processes.)

At any time, a process can only operate on a single set of
permanent variables. They are addressed relative to a global base
address g. When a process is created its global base register
points to its own permanent variables. When it cells a monitor
(or class) procedure the current base address is pushed onto its
stack, and the global base register is used to point to the
'permanent variables of that monitor (or class). Upon return from
the procedure the previous base address is popped from the stack.

7

6. TEmpORARY VARIABLES

figure 9 shows the representation of the parameters, variables,
and temporaries of a procedure call. A dynamic link connects the
procedure to the context in which it was called.

4-

temporaries
s (stack top)

variables

--- b (local base)
dynamic link

parameters

Fig.9. Temporary variables

At any time, a process can only operate on a single set of
temporary variables (and parameters). They are addressed relative
to a local base address b. Temporaries are addressed relative to
a stack top s.

The dynamic link defines the stack addresses g, b, and s used
by a process before a procedure call and a return address q in
the virtual code. The link also contains the current line number
within the procedure to facilitate location of run-time errors.

8

When a process is created its global and local base registers
both point to the permanent variables of that process. It is
initialized with no teMporaries and an eMpty heap.

When a process calls one of its own procedures, the local base
register will point to the temporary variables of that procedure.
Its global base address remains unchanged.

When a process calls a monitor (or class) procedure, the global
base register .ill point to the permanent variables of that
monitor (or class), and the local base register will point to
the temporary variables of the monitor (or class) procedure.

Upon return from a procedure its temporary variables are
popped from the stack and the previous values of the bas~
registers are reestablished by means of the dynamic link.

In implementing Concurrent Pascal we followed one simple guideline.
A computer should only do obvious things and should do them well.
Where compromise .. s needed we firmly put Simplicity first,
efficisncy second, and generality third. Like any other design
rule it needs no justification other than the success that it
leads to in practice.

It takes good nervee to follow this advice on a machine that
invites the software designer to optimize register usage and
use sliding addressing windows. We decided to simplify code
generation by ignoring the instruction set.and different registers
of the PDP 11/45 and simulate a simple stack machine.

The virt4al addressing mechanism is more difficult to ignore
since it determines the amount of core store that can be used
by a Concurrent Pascal program. The virtual store of the PDP
11/45 consists of two address spacesl one for machine code and
another for data. Since the only machine code executed by a
process is an interpreter of 1 K words, it is not worth keeping
it in a separate address space. So we let the two address spaces
be identical.

9

One of the main achievements of Concurrent Pascal is to make
it possible to check the access rights of processes at compile­
time. This makes it possible to make monitor calls almost as fast
as simple procedure calls. To gain this efficiency, the virtual
code and data of monitors were included in the address space of
every process (otherwise, it would have been necessary to change
address spaces and copy parameters during monitor calls).

However, by putting simplicity and efficiency first, we have
undoubtedly lost generality. A process must divide its address
space of 32 K words between its private data and the code and
common data of all processes. To avoid fragmentation of the
virtual address space, processes have only a single segment in
common. This is achieved by the following language restrictionl
only the initial process can create other processes and give them
access to common data [2].

Segmentation of address space can be helpful when it supports
the scope rules of a high-level language by associating data
segments with procedures and classes. But when it arbitrarily
cuts physical store into eight parts, segmentation becomes an
obstacle to straightforward language implementation.

Acknowledgement

The development of Concurrent Pascal has been supported by the
National Science foundation under grant number DCR74-17331.

10

References

1. Brinch Hansen, p. The programming language Concurrent Pascal.
IEEE Transactions on Soft.are Engineering 1, 2 (June 1975),
199-207.

2 •. Brinch Hansen, p. Concurrent Pascal report.
Information Science, California Institute of Technology,
June 1975.

3. Hartmann, A.C. A Concurrent Pascal co.piler for minicomputers.
(Ph.D. Thesis). Information Science, California Institute
of Technology, Sept. 1975.

4. Brinch Hansen, p. Concurrent Pascal machine. Code interpreta­
tion. Information Science, California Institute of
Technology, Oct. 1975.

5. Brinch Hansen, P. Concurrent Pascal machine. Kernel.
Information Science, California Institute of Technology,

. Oct. 1975.

Summary

CONCURRENT PASCAL MACHINE,
CODE INTERPRETATION

Per Brinch Hansen

Information Science
California Institute of Technology

Pasadena, California 91125

October 1975

This describes the interpretation on the PDP 11/45 computer of
virtual code generated by the Concurrent Pascal compiler.

Key Words and Phrases: Concurrent Pascal i.plementation, Virtual
machine, Code interpretation, PDP 11/45 computer.

CR Categories. 4.2, 6.2

The development of Concurrent Pascal has been supported by the
National Science foundation under grant number DCR74-17331.

Copyright ~ 1975 Per Brinch Hansen

CONTENTS

1 • INTRODUCTION 1

2. VIRTUAL CODE 1

3. THE INTERPRETER 4

4. REGISTERS 5

REfERENCES 6

1. INTRODUCTION

The Concurrent Pascal compiler generates code for a virtual machine
[1. 2. 3]. At Caltech, the virtual machine is simulated by code on
a PDP 11/45 computer. The processor is multiplexed among a fixed
number of processes. Each of these has a stack of fixed {maximum}
l~ngth [4, 5]. This describes the virtual code which is similar
to the one used by Wirth's group for sequential Pascal [6J. The
programming technique used to interpret the virtual code is
called threaded code [7J.

The use of virtual code designed directly to support a high­
level language makes code generation straightforward and the
compiler portable. (Our sequential Pascal compiler was moved to
another minicomputer in one man-month.)

2. VIRTUAL CODE

We will use a programming example to illustrate the virtual codel
a monitor that defines a send operation on a message buffer.

type page = array (.1 •• 1ength.) of integer,
buffer = monitor

var contents: page, empty: boolean,
sender, receiver: queue,

procedure entry send(messagea page),
begin

if not empty then delay{sender),
contents:= message,
empty:: false,
continue(receiver) ,

end;

.....
end,

(The rest of the monitor can be ignored here.)

2

The virtual code generated for the send procedure iSI

entermonitor(atacklength, para.length, linenumber, varlength)
pushglobal(empty)
not
falsejump(L)
globaladdr(sender)
delay

LI globaladdr(contents)
pushlocal(massage)
copystructure(length)
globaladdr(ampty)
pushconst(false)
copyword
globaladdr(receiver)
continue
exitmonitor

The enter monitor instruction defines the total amount of stack
space needed by the procedure, the length of its parameters and
local variables, and the number of the program line on which it
begins.

The next instruction pushes the global variable empty onto the
stack. The program then performs a ~ operation on it, and J!!E!
to label L if the result is f!!!!' otherwise, it pushes the
address of the global variable sender on the stack and performs a
delay operation on it.

After this, the address of the buffer contents and the message
are pushed onto the stack. (The message parameter is represented
by a !!£!! variable that contains a reference to the actual
argument.) Acopv structure instruction moves the message into
the buffer.

This is followed by an assignment of the constant false to the
global variable empty. The procedure ends with a continue operation
on the global variable receiver followed by an exit monitor
instruction.

An instance of a buffer monitor can be declared and used as
follolllsl

var channell buffer, datal pagel

••••• channel.send(data), • ••••

This monitor call generates the following virtual codel

globaladdr(channel)
field(varlength)
globaladdr(data)
call (send)

The base address of the global variable channel is pushed onto the
stack and incremented by a field instruction (to make it point to
the gate address that separates the permanent variables of the
monitors from its parameters - See [4], fig. 8). Then the address
of the global variable data is pushed onto the stack, and the
monitor procedure send is called.

Variables are identified by their displacements relative to a
local or global base address [4]. Program labels are represented
by their displacements relative to 8 virtual program counter
(making the virtual code relocatable).

There are about SO different virtual instructions. To make the
software interpreter fast, addressing modes (local or global) and
data types (bytes, 1II0rds, reals, or sets) are encoded into the
operation codes. This expands the set of operation codes to 110.

A quarter of these are used by Concurrent Pascal only. The rest
are common to sequential and Concurrent Pascal.

4

This description only tries to explain the overall structure
of the virtual code and its interpreter. The interpreter listing
contains 8 complete definition of all virtual instructions. It
i8 on the di8tribution tape of the Solo operating system [8].
The language constructs of Concurrent Pascal and the corresponding
virtual code are defined by syntax graphs in [3].

3. THE INTERPRETER

The interpreter is an assembly language program of 1 K words. It
consists of code pieces that execute virtual instructions and an
operation table defining the location of these pieces (fig. 1).

operation table

code pieces

Fig. I. Interpreter

A virtual instruction consists of an operation possibly
followed by some arguments. Operations and arguments occupy one
machine .ord each. The interpreter uses a virtual instruction
counter q to point to the next operation or one of its arguments.

As an example, the virtual instructions I

pushconst(false)
copyword

are represented by three machine wordsl

pushconst
false
copyword

5

Upon entry to the push constant code in the interpreter. the
virtual instruction counter q points to the argument of that
instruction (the boolean value false). The interpreter executes
push constant as follows:

S 1- 2, store(s) 1= store(q}, q 1+ 21
*)

first, the stack top s is decremented by one word (2 bytes).
Then the argument is moved from its virtual code location
store(q) to the new stack location store{s). finally, the virtual
instruction counter q is incremented by one word (2 bytes). All
this is done by a single machine instruction on the PDP 11/45.

The virtual instruction counter now points to the next virtual
instruction coPY word. The interpreter uses the operation code
store(q) as an index in the operation table (beginning at address
zero) to jump to the corresponding code piece:

goto store(store(q», q 1+ 2,

This is also done by a single machine instruction.
Every code piece of the interpreter ends with such a jump to

its successor. These three store cycles are the only overhead of
interpretation compared to directly executable code. This
efficient form of interpretation is called threaded code [7J.
Execution times for the virtual code on the PDP 11/45 computer
are included in the Concurrent Pascal Report [2J.

4. REGISTERS

The interpreter uses nine registers to execute the virtual code
of a process. Three of these are scratch registers used during the
execution of a single virtual instruction only. The rest have
fixed functions throughout the execution of a process (fig. 2).

*) The PDP 11 stack grows from high towards low addresses.

6

interpreter p (real program counter)

virtual code .. (virtual program counted

common h (heap top)

I and s (stack top)

private b (local base)

data g (global base)

Fig. 2. Virtual store and register
The real program counter p re .. 1n. within the interpreter. It
use. a virtual program counter q to point to virtual instructions.
The heap top h defines the current extent of the heap. (It is
stored in a store location within the interpreter instead of a
register.) The stack is addressed relative to three registersl
a51lobal base register g, a local base register b, and a ~
top S as explained in [4J.

Acknowledgement

The interpreter was programmed by Tom Zepko. The development of
Concurrent Pascal has been supported by the National Science
foundation under grant number DCR74-17331.

References

1. Brinch Hansen, p. The programming language Concurrent Pascal.
IEEE Transactions on Software Engineering 1. 2 (June 1975),
199-207. .

2. Brinch Hansen, p. Concurrent Pascal report.
Information Science, California Institute of Technology,
June 1975.

3. Hartmann, A.C·. A Concurrl]lnt Pascal compiler for minicomputers,
(Ph.D. Thesis) Information Science, California Institute of
Technology, Sept. 1975.

4. Brinch Hansen, p. Concurren~ Pascal machine! Store
allocation. Info'rmation Science, California Institute
of Technology, Oct. 1975.

5. Brinch Hansen, P. Concurrent Pascal machine! Kernel.

7

Information Science, California Institute of Technology,
Oct. 1975.

6. Nori, K.V •• et al, The Pascal P compiler! Implementation
notes. Technical University, Zurich, Switzerland, Dec.
1974.

7. Bell, J.R. Threaded code.
Comm. ACm 16, 6 (June 1973), 370-72.

8. Brinch Hansen, p. The Solo operating system.
Information Science, California Institute of Technology,
July 1975.

Summary

CONCURRENT PASCAL MACHINE
KERNEL

Per Brinch Hansen

Information Science
California Institute of Technology

Pasadena, California 91125

October 1975

This describes the kernel of Concurrent Pascal on the PDP 11/45
computer. It controls processor multiplexing and scheduling of
monitor calls.

Key Words and Phrases: Concurrent Pascal implementation, Virtual
machine, Process and monitor implementation.

CR Categories: 4.22, 4.32

The development of Concurrent Pascal has been supported by the
National Science Foundation under grant number DCR74-17331.

Copyright ~ 1975 Per Brinch Hansen

CONTENTS

1 • INTRODUCTION 1

2. PROCESSOR mULTIPLEXING 2

3. MONITOR IMPLEMENTATION 6

4. PERIPHERALS B

5, KERNEL CLASSES 9

6. PROGRAMMING AND TESTING 9

7. SIZE AND PERfORMANCE 11

REfERENCES 12

1. INTRODUCTION

This describes the kernel of Concurrent Pascal - an assembly
language program that multiplexes a PDP 11/45 processor among
concurrent processes and gives them exclusive access to
monitors [1-4J.

The kernel was first written in a programming language that
resembles Concurrent Pascal. It consists of a collection of data
structures representing processes, monitors, and peripherals.
Each data structure consists of two parts I one defines how the
data is represented in store, the other what operations one can
perform on the data. This combination of a data representation
and the possible operations on it is usually called a £!!!! or
an abstract data type. (It is abstract because other parts of
the program can ignore the details of data representation and
think of it solely in terms of the meaningful operations defined
on it.)

The abstract vereion of the kernel was translated by hand into
assembly language (retaining the abstract version as comments).
This programming method has several advantagesl

(1) A complex program can be programmed as a sequence of small,
self-containe. components (classes).

(2) These components can be tested one at a time from the
bottom uP.

(3) If the program only accesses a component through procedures
(or macros) associated with it, new (untested) components cannot
make old (tested) components fail.

(4) In the rare cases, where it is necessary to use 'assembly
language, one can still use an abstract programming language as
a thinking tool, and make the production of assembly code a
simple clerical procedure (manual translation).

After an initial test period of one month the Concurrent Pascal
kernel has been used without problems for nine months. So it
seems that this form of programming could be called reliable
machine programming.

2

Tha details of the kernel are simplified in the following
(but most of the simplifications are pointed out). The distribution
tape of ths Solo operating system contains a complete kernel
listing [5].

2. PROCESSOR ~UlTIPlEXING

The computer executes one process at a time. While one process i.
running, other processes must await their turn in a ready queue.
Every 17 msec the computer switches from one process to another to
give the illusion that they are executed simultansously.

A process is represented by a record within the kernel. When a
process is preempted all registers used to interpret its code are
stored in its process record [4J. The register value. are restored
when the execution of the process is resumed.

type registars = record ••• end,
process •• registers,

A process gueue is represented by a sequsnce of references to
process recorde.

type process queue = sequence of process,

The only operations on a process queue area

put
get
any
empty

enters a process in the queue
removes a process from the queue
tells whether the queue contains anything
tells whether the queue is empty

The running process is represented by a class.

5

Again, the picture is simplified: the clock will only preempt
a process when it ha.s used a reasonable amount of processor time;
and it will never interrupt a process inside a monitor procedure.

The class running also contains procedures for process creation.
After system loading, the kernel calls a procedure initparent that
starts execution of the initial processl

procedure initparent(length. integer),
begin

nelll(user),
virtual.defcommon(length),
initialize registers;

end;

A procedure new allocates space for a process record in a heap
inside the kernel. A procedure defcommon within another class
virtual is then called to define the location of the common segment
used by the initial process and its descendants [3J. finally, the
registers are initialized to define the limits of the stack and
the heap within the segment as lIIell as the start address of the
process code [4J.

The initial process can, in turn, call a kernel procedure
initchild to create other processesl

procedure initchild(length. integer),
begin

ready.enter(preempted),
nelll(user) I
virtual.defprivate(length),
initialize registers;

end,

This is similar to the previous procedure, except that the parent
is preempted in favor of its child. Again, details have been
ignored, such as the accounting of processor time spent by processes.

When a process terminates its execution, it is preempted
forever (but its data segment continues to exist),

procedure endprocess,
begin user,= nil end,

6

This leaves the processor idle upon exit from the kernel. To make
it busy again, the following statement is always executed upon
kernel exit,

if running.user = nil then ready.select,

3. MONITOR IMPLEMENTATION

Within the kernel, a monitor variable is represented by a data
structure, called a gate, that only gives one process at a time
access to the monitor:

type gate : class
var openl boolean, waitingl processqueue,

procedure enter,
begin

if open then openl: false
else waiting.put(running.preempted),

procedure leave;
begin

if waiting. empty then open:= true
else ready.enter(waiting.get),

end,

procedure delay(var ql process),
begin ql: running. preempted, leave end,

procedure continue(var ql process),
begin

if q = nil then leave else
begin ready.enter(q), q': nil end;

end,

begin openl= false, waiting.initialize end;

7

A gate is represented by a boolean defining whether it Is open,
and a queue of processes waiting to enter it. Initially, the gate
is open and nobody is waiting outside it.

At the beginning and end of a monitor procedure. a process
executes an enter and a leave operationl

Enterl If the gate is open, the process enters and closes it,
otherwise, it is preempted to wait outside the gate.
~: If nobody is waiting outside the gate, it is left open,

otherwise, a single waiting process is resumed (by transferring it
to the ready queue).

These are the short-term operations that force processes to
enter a monitor one at a time. A monitor can also delay processes
for longer periods of time and resume them again by means of delay
and continue operations on single-process queuesl

Delar: Preempts the running process and enters it in a given
single-process queue. The monitor can now be entered by another
process.

Continue: forces the running process to leave the monitor and
resumes any process that may be waiting in a given single-process
queue.

Details ignoredl When a process is resumed within a monitor it
will preempt the running process (unless the latter is engaged
in nested monitor calls).

When a monitor variable is initialized, the kernel executes a
procedure that allocates its gate in the heap and initializes itl

procedure initgate(var g: agate),
begin new(g), ga.initialize end,

The gate reference is stored in the stack of the calling process
and passed as a parameter to the kernel each time one of the gate
operations are executed [3].

4. PERIPHERALS

A peripheral device is represented by a class:

var peripheral I class(devlce: integer);
var userl process,

procedure start(operatlonl T),
begin

startdevice(device. operation),
user,= running. preempted,

end,

procedure interrupt,
begin

ready.enter(user),
userl= nil,

end,

begin user:= nil end,

8

The class defines the device number of the peripheral and its
current ~ process. An 10 statement In Concurrent Pascal is
translated into a call of a procedure that starts a data transfer
and preempts the calling process. An interrupt resumes the user
process.

Details: The interrupt procedure also returns a status word to
the calling process and (usually) gives it priority over the
running process.

Only one process at a time can use a peripheral. This must be
guaranteed by the operating system written in Concurrent Pascal
(and not by the kernel). The main function of the kernel is to
make peripherals look uniform with respect to simple input/
output operations and exception indications. It does not perform
error recovery.

9

5. KERNEL CLASSES

The kernel consists of a hierarchy of classes (some of which have
already been described) I

Newcore Allocates process records and gates in a heap.

Processqueue Implements process queues.

Signal Implements a queue in which processes can wait
until a timing signal is sent.

TiMe Keeps track of real time.

Timer Measures time intervals.

Clock Delays calling processes for one second.

Core Allocates core store.

Virtual Allocates virtual store.

Running Creates, executes, and preempts processes.

Ready Schedules processes for execution.

Gate Gives processes exclusive access to monitors.

Peripherals Handles simple input/output.

6. PROGRAmmING AND TESTING

The kernel was translated manually line by line into assembly
language using the abstract program as comments. A small example
is sufficient to illustrate this programming techniques

10

gate: .word 1 type gate =
class

open = 0

wait = open

enter:
mov gate,
dec (rO)
beq l'

+ • boolean

rO

var open: boolean;
waitingl processqueue,

procedure enter,
begin

if open
then

clr (rO)+ open:: false
mov
jar
mov

js~

1S, rts

etc.

rO, procq
pc, preempt
preval. elem
pc, put
pc end,

else
waiting.put(running.preempted) ,

The kernel was tested, class by class, by means of test programs
written in Concurrent PascalI

Test 1 I Initialization and process creation
Test 2: Clock interrupt and processor switching
Test :3-4: Monitor gates
Test 5: Teletype
Test 6: Timer and clock
Test 7, Teletype interrupt key

In test 1, clock interrupts were turned off. In tests 2-6 they
were simulated manually by means of the Bell key on the teletype.
Test 7 used normal clock interrupts, The only test output used
was a message on the teletype every time a process arrives in a
queue or departs from one. This technique for testing a
multiprogramming system is explained in [6J.

11

It took 10 test runs to make test 1 work (I) The rest of them
required 18 runs altogether. Finally, the peripherals were tested
by means of Concurrent Pascal programs in normal operation. After
this initial testing the kernel seems to be correct.

7. SIZE AND PERFORMANCE

The classes of the kernel are of the following size:

wordsl

Newcore 560
Process queue 30
Signal 40
Time 20
Timer 10
Clock 60
Core 40
Virtual 160
Running 570
Ready 130
Gate 110
6 Peripherals 1020
In it ializa tion 160

Kernel 2910

Newcore has room for 10 process records and 25 monitor gates.
60 per cent of running is process creation and termination.
Each peripheral is controlled by about 150 words of code.

The most critical execution times are:

empty kernel call
monitor call
dela y. continue
clock interrupt

20 usee
200 usee
600 usec

1000 usee

12

A monitor call causes the interpreter to call the kernel twice,
at the beginning and end of the procedure. The 200 usec assumes
that the process can enter the monitor immediately and continue
its execution when it returns from it. This should be compared
with the execution time of a simple procedure call (60 usec).

The figures for delay and continue (600 usec) illustrate the
cost of switching the processor from one process to another.

Acknowledgement

The kernel was programmed in assembly language by Robert
Deverill. The development of Concurrent Pascal has been supported
by the National Science foundation under grant number DCR74-
17331.

References

1. Brinch Hansen, p. The programming language Concurrent Pascal.
IEEE Transactions on Software Engineering 1, 2 (June 1975),
199-207.

2. Brinch Hansen, p. Concurrent Pascal report.
Information Science, California Institute of Technology,
June 1975.

3. Brinch Hansen, P. Concurrent Pascal machinel Store allocation.
Information Science, California Institute of Technology,
Oct. 1975.

4. Brinch Hansen, p. Concurrent Pascal machine: Code interpreter.
Information Science, California Institute of Technology,
Oct. 1975.

5. Brinch Hansen, p. The Solo operatin9 system.
Information Science, California Institute of Technology,
July 1975.

6. Brinch Hansen, p. Testing a multiprogramming system.
Software 3, 2 (April-June 1973), 145-50.

Summary

THE CONCURRENT PASCAL comPILER

Per Brinch Hansen

Information Science
California Institute of Technology

Paeadena, California 91125

October 1975

This describes a portable saven-pass compiler for the programming
language Concurrent Pascal. The compiler is written in sequential
Pascal and requires 16 K words of core store. The paper summarizes
the passes and their interface to an operating system. It also
explains hoW the compiler was tested and how well it performs on
the PDP 11/45 computer.

Key Words and Phrasesl Concurrent Pascal compiler, Multipass
compilation, Abstract data types, Scope analysis, Testing,
Performance.

CR Categoriesl 4.12, 4.22

The development of Concurrent Pascal has been supported by the
National Science roundation under grant number DCR74-17331.

Copyright (§) 1975 Per Brinch Hansen

CONTENTS

1. INTRODUCTION 1
2. MULTIPASS COMPILATION 1
3. INTERMEDIATE fILES 2
4. PASS SUMMARY 3
5. SCOPE ANALYSIS 5
6. TESTING 5
7. SIZE AND PERfORMANCE 6

REfERENCES 8

1. INTRODUCTION

This describes a portable Concurrent Pascal compiler for mini­
computers. Concurrent Pascal is a programming language that
includes abstract data types for sequential and concurrent
programming (classes, monitors, and processes) [1, 2].

The Concurrent Pascal compiler generates code for a virtual
machine that can be simulated on different minicomputers by
microprogram Dr machine code. At Caltech, it runs on a PDP 11/45
computer [3].

The compiler was designed and programmed by Alfred Hartmann
and myself [4]. It is written in the programming language
sequential Pascal [5]. Its structure is inspired by the Gier
Algol and Siemens Cobol compilers [6, 7]. The compiler is divided
into seven passes. The following describes the overall division
of labor among the passes as well as their size and performance.
The compiler is described in detail i'n [4].

2. ~UlTIPASS COmPILATION

Our goal was to make a compiler that can compile operating systems
on a minicomputer with at least 16 K words of core store and a
slow disk (50 msec/page). To fit into a s .. ll core store, the
compiler was divided into 7 passes.

Pass 1. Symbol analysis
Pass 2. Syntax analysis
Pass 3. Scope analysis
Pass 4. Declaration analysis
Pass 5. Statement analysis
Pass 6. Code selection
Pass 7. Code assembly

2

The .ain efficiency prob1 •• is to avoid random references to
the .10. disk and acce •• it .trict1y .equential1y during
compilation. The co.pi1er is loaded one pa •• at a ti.e. Each
pas. .akes a .ingle .equential scan of the program text and
outputs inter .. diate code on the di.k. This becom •• the input
to the next paa ••

So the compiler can be vie.ed a. a pipeline consisting of
pas.e. connected by disk buffers. Since the available machine is
s.quential only on. pa.s i. executed at a time.

A multipa •• compiler not Dnly aske. store allocation and di.k
access efficient. It al.o simplifie. the progra •• ing task
considerably. In a one-pass compilar, each procedure performs
a variety of compilation tasks at once [8]. Thi. tands to .ake
procedure. and symbol table. large and complicated. In a
.ultipas. compiler, .yntax analysis, ntic analysi., and code
generation can be d.alt with .eparately in ssaller pas.es that
use simpler data structures tailored to their tasks.

Each pa •• is es.entially a .inico.piler that only needs to
know the syntax of its input ~nd output language •• The data
.tructur.s and procedures used by one pa •• are irrelevant to
another. We found it extremely helpful to define the function Df
each pass by syntax graphs of its expected input and output.
These graphs are included in [4].

3. INTERMEDIATE rILES

Tha compiler us.s four files. source text and listing, pass
input and output. The latter are stored on disk, the fDrmer on
any available medium. These files are acce.sed by five procedures
imple.ented within the operating syste. [9J.

read

write

get

put

length

inputs a character from the source text

outputs a character on the source listing

inputs a disk page from the previous pass

outputs a disk page to the next pass

defines the numbar of disk page. output by the
previous pass

After each pass, the disk files exchange rolesl the output file
of the previous pass becomes the input file of the next pass, and
the former input file becomes the next output file.

Disk access tImes are reduced as followsl The pages of the
intermediate files are interleaved on the disk. This makas the
dIsk head sweep slowly across' both files during a pass instead
of moving wildly back and forth between them. The pages that
contain the compiler coda ara arranged on the disk in a manner
that minimizes rotational delay during compiler loading [9J.

A pass can build tables in core store and leave them there
for the next pass. This is done by passing a single heap pointer
as a parameter from each pass to its successor.

The loading and execution of the passes is controlled by a
small Pascal program that also opens and closes all intermediate
files [9].

4. PASS SUMMARY

Symbol analYSis scans the program text character by character and
converts symbols, identifiers, and numeric constants into unique
integers. Identifiers are looked up by hashing. This pass does
not distinguish between different uses of the same identifier in
different contexts.

Syntax analysis checks the program syntax by means of a set of
recursive procedures - one for each language construct [8J.
Syntax errors are handled by erasing part of the program text to
make it look syntactically correct to the rest of the co_pilar.

4

Scope analysis checks the access rights of processes, monitors,
classes, procedures, and with statements. It uses a stack to
handle nested contexts. The top of the stack defines the identifiers
that are declared within the current context. They are popped at
the end of the context. Every identifier referred to by the program
is looked up in the nested name table to see if it is accessible.
Different uses of the saMe identifier in several contexts are
replaced by unique integers. This pass also replaces constant
identifiers by their values or addresses. Apart from this, scope
analysis is only concerned about whether an identifier can be used
within a given context, but does not worry about what kind of
object it refers to.

Declaration analysis checks that declarations of constants,
types, variables, and procedures are consistent and COMputes the
length of types and the addresses of variables. It builds a
table of identifier attributes and distributes them whereever
they are referenced in statements. After this pass, declarations
have disappeared from the intermediate code.

Statament analysis checks that operands and operators are
compatible. This is done by means of a stack that simulates
program execution by operating on data types rather than data
values [6J. In tbis pass and the previous one. semantic errors
are handled by replacing undefined types or incorrect operands
by universal ones that are compatible with anything. This prevents
an avalanche of error messages from a single semantic error.

Code selection selects code pieces to be generated and computes
the length of procedure code and temporary variables. It leaves
a table of program labels, stack requirements, and large constants
in core store.

Code assembly outputs virtual code in which program labels are
replaced by relative addresses. The generation of virtual code is
straightforward, no optimization is attempted. It is interpreted
by machine code on the PDP 11/45 computer [3J. This pass also
prints error messages from the other passes (but does not generate
code. if there are any errors).

5

5. SCOPE ANALYSIS

It is the scope rules more thaA anything else that distinguishes
Concurrent Pascal from other programming languages (such as
sequential Pascal).

A Concurrent Pascal program consists of a hierarchy of abstract
data types (classes, monitors, and processes). An abstract data
type can only be accessed through procedures associated with it.
A procedure can refer to its own temporary variables and to the
permanent variables of the data type it operates on.

Data types and procedures cannot be recursive. This implies
that procedures associated with a data type cannot call one
another.

Te enforce these rules, scope analysis associates an
access attribute with every identifier [4J.

Names with external access may only be referenced outside the
scope in which they are declared. Example: monitor procedures.

Names with internal access may only be referenced inside the
scope in which they are declared. Examplesl monitor variables
and procedure parameters.

Names with incomplete access may not be referenced until their
declaration has been completed. Example. type declarations.

6. TESTING

The compiler was tested by means of a technique invented by Naur
[6J. The passes were tested in their natural order starting with
pass 1. for each pass we used a Concurrent Pascal text to force
the pass to execute all statements at least once.

During testing the compiler lists the source text and the
intermediate code produced by each pass. A comparison of the
input and output of a pass immediately reveals if something is
wrong. The corresponding input operator usually tells in which
procedure the problem Is. After correction of the error the test
is repeated.

6

Thi. test output e.chanlse of about 20 lines is a pereanent
part of the co.pilar and can alway. be turned on to document
compiler arrors revsalad by a particular program text.

The generated code chack. that .ubscripts are within range,
that painters ara initialized, and that references to variant
records are coepatible with their tag values. These checks were
invaluable during testing of the compiler. In a saeple of 64
compiler failures during testing, 50 per cent ware range errors,
20 per cent were painter errors, and 28 per cent variant errors.
All eade the co.piler terminate with a e •• sage of the form
·pa •• 3, line 307, range arror· (or soeathing similar). Only
ana or the failuras mada the compilar go into an endless loop
without any indication of what .. s wrong. Anyone who has tested
compilers written in asse.bly language will recognize the value
of an abstract program.ing language that makes checking at
compile and run time possible.

It took four months to write the coepiler and three months to
test it. It hes been in use since January 1975 without problems.

A sequential Pascal compiler was derived from the concurrent
one in one additional ean-month. It can compile itself in 16 K
words or core store. This compiler was moved from the PDP 11/45
computer to another minicomputer in another man-month.

7. SIZE AND PERfORMANCE

The following shows the storage requirements of the compiler
when it coepiles the Solo operating system - a Concurrent Pascal
program or 1300 lines [9J.

7

virtual code (K words) data (K words)

Common 1000 1300
Pass 1 4000 5600
Pass 2 5600 1200
Pass 3 7800 6200
Pass 4 5800 4800
Pass 5 4000 300
Pass 6 :3000 650
Pass 7 3600 650

Compiler 34800 20700

The compiler runs in 16 K words of core store. This includes
2 K words of common input/output procedures and data buffers.

After a basic loading time of 7 sec the compilation speed is
240 char/sec (or about 10 lines/sec). The compiler is about 60
per cent disk limited.

Acknowledgement

my attitude to computer programming has been deeply influenced
by the years I spent in Peter Naur's group at Regnecentralen in
Denmark. The compilation techniques developed thirteen years by
him are still among the best. The design of the Concurrent
Pascal compiler is the result of daily conversations with my
student Al Hartmann. The programming was done almost entirely
by him. The development of Concurrent Pascal has been supported
by the National Science foundation under grant number DCR74-
17331.

8

References

1. Brinch Hansen, p. The programming language Concurrent Pascal.
IEEE Transactions on Software Engineering 1, 2 (June 1975),
199-207.

2. Brinch Hansen, p. Concurrent Pascal report.
Information Science, California Institute of Technology,
June 1975.

3. Brinch Hansen, p. Concurrent Pascal machine.
Information Science, California Institute of Technology,
Oct. 1975.

4. Hartmann, A.C. A Concurrent Pascal compiler for minicomputers.
(Ph.D. Thesis) Information Science, California Institute of
Technology, Sept. 1975.

5. Wirth, N. The programming language Pascal.
Acta Informatica 1, (1971), 35-63.

6. Naur, P. The design of the Gier Algol compiler.
BIT 3, 2-3 (1963), 124-40 & 145-66.

7. Brinch Hansen, P., and House, R. The Cobol compiler for the
Siemens 3003. BIT 6, 1 (1966), 1-23.

8. Wirth, N. The design of a Pascal compiler.
Software 1, (1971), 309-33.

9. Brinch Hansen, P. The Solo operating system.
Information Science, California Institute of Technology,
July 1975.

