
PER BRINCH HANSEN

Information Science

California Institute of Technology

June 1975

CONCURRENT PASCAL REPORT

Abstract

CONCURRENT PASCAL REPORT

Per Brinch Hansen

Information Science

California Institute of Technology

June 1975

This report defines Concurrent Pascal - an abstract

programming language for structured programming of computer
operating systems. It extends the sequential programming

language Pascal with concurrent processes, monitors, and
classes. Concurrent Pascal has been implemented for the

PDP 11/45 computer at Cal tech.

Key Words and Phrases: Concurrent Pascal, structured
multiprogramming, programming languages, hierarchical

operating systems, concurrent processes, monitors, classes,
abstract data types, access rights, scheduling, job control.

CR Categories: 4.2, 4.3

The development of Concurrent Pascal has been supported by

the National Science Foundation under grant number DCR74-17331.

C~pyright ~ 1975 Per Brinch Hansen

CONTENTS

1 • INTRODUCTION 1

2. SYNTAX GRAPHS 2
3. CHARACTER SET 3
4. BASIC SYMBOLS 5

5. BLOC KS 7

6. CONSTANTS 8

7. TYPES 9

7.1 • Enumeration types 10
7.2. Reals 16

7.3. Array types 17

7.4. R eeor d types 19

7.5. Set types 20
7.6. System types 22

8. VARIABLES 24

8.1 • System components 25
8.2. Variable entries 26

9. EXPRESS IONS 27
10. STATEmENTS 29
11 • ROUTINES 30

12. QUEUES 36

13. SCOPE RULES 37

14. CONCURRENT PROGRAmS 39

A. PDP 11/45 SYSTEm 40

B. ASCII CHARACTER SET 55

INDEX 56

1. INTRODUCTION

This report defines Concurrent Pascal - an abstract programming
language for structured programming of computer operating systems.

It extends the sequential programming language Pascal with
concurrent processes, monitors, and classes.

This is a brief, concise definition of Concurrent Pascal. A
more informal introduction to sequential and Concurrent Pascal
by means of examples is provided by the following reportsl

Jensen, K., and Wirth, N. Pascal - user manual and report.
Lecture Notes in Computer Science 18, Springer-Verlag,
1974.

Brinch Hansen, P. The programming language Concurrent Pascal.
IEEE Transactions on Software Engineering 1, 2 (June 1975).

There are minor differences between the sequential programming
concepts defined in the sequential and Concurrent Pascal reports.

The central part of this report is a chapter on data types. It
is based on the assumption that data and operations on them are
inseparable aspects of computing that should not be dealt with

separately. For each data type we define the constants that
represent its values and the operators and statements that apply
to these values.

Concurrent Pascal has been implemented for the PDP 11/45
~

computer at Caltech. An appendix defines the additional
restrictions and extensions of this implementation.

2. Syntax Graphs 2

2. SYNTAX GRAPHS

The language syntax is defined by means of syntax graphs of
the form:

whi Ie sto tement

--- WHIL E ---expr --- 00--- statement ___

A syntax graph defines the name and syntax of a language
construct. Basic symbols are represented by capitals and special
characters, for example

WHILE DO +

Constructs defined by other graphs are represented by their names
written in small letters, for example

expr statement

Correct sequences of basic symbols and constructs are represented
by arrows.

3, Character Set

3. CHARACTER SET

Concurrent programs are written in a subset of the ASCII

character setl

character

~ graphic character

-~ control character

graphic character

E'ChO~ letter

digit
space

A graphic character is a printable character.

The sEecial characters are

.. # s % &: (* +

/ < = > ? Ii

The letters are

A B C D E f G H I J K

L (YI N 0 P Q R 5 T U V

W X y Z

The digits are

0 1 2 3 4 5 6 7 8 9

3

3. Character Set

control character

--.. {: -.. digits --..:)--.

A control character is an unprintable character. It is
represented by an integer constant called its ordinal value
(Appendix B). The ordinal value must be in the range 0 •• 127.

--"f-"'~.d ig i t ----,r----I~~

4

4. Basic Symbols

4. BASIC SYMBOLS

A program consists of symbols and separators.

symbol

E Pecial sygmOI
word symbol

identifier

constant

The seecial s~mbols are

+ * / & = <> < > <= >=
() (. .) 1=

They have fixed meanings (except within string
comments).

The word s~mbols are

ARRAY BEGIN CASE CLASS
CYCLE DIV DO DOWNTO
END ENTRY fOR fUNCTION
IN INIT MOD MONITOR
Of OR PROCEDURE PROCESS
RECORD REPEAT SET THEN
TYPE UN IV UNTIL VAR
WITH

constants and

CONST
ELSE
If
NOT
PROGRAM
TO
WHILE

They have fixed meanings (except within string constants and
comments). Word symbols cannot be used as identifiers.

5

4. Basic Symbols 6

identifier

-...1 etter --'C--I-e-tt-e-r:=J-. --.--".

Ldi9it.--J

An identifier is introduced by a programmer as the name of a
constant, type, variable, or routine.

identifiers

-.....,t.---t.~ ide n t i fie r --..,..-t_~

L---------1.4.-----~

separator

_ space ----=!---r--t .. ~
L _new line

L-.." --. comment--."

Two constants, identifiers, or word symbols must be separated
by at least one separator or special symbol. There may be an
arbitrary number of separators between two symbols, but separators
may not occur within symbols.

A comment is any sequence of graphic characters (except ")
enclosed in quotes. It has no effect on the execution of a
program.

5. Blocks

5. BLOCKS

The basic program unit is a block:

block

---.. declarations --. compound statement--.

It consists of declarations of computational objects and a

compound statement that operates on them.

declarations

const definitions.--.....

7

--t--------------I--L -. va r decla ra t ions ---1.--,

type definitions • __ ..J ._.1.-__ routines

A declaration defines a constant, type, variable, or routine

and introduces an identifier as its name.

compound statement

--. BEG I N ---"t--t~~ S tat e m e nt ----..--I~~ END --.
L.... ____ ; ... 4 --....

A compound statement defines a sequence of statements to be

executed one at a time from left to right.

6, Constants 8

6 , CONSTANTS

A constant represents a value that can be used as an operand

in an expression,

constant definitions

-- CONSTT identifier--=-- constant--; ...

A constant definition introduces an identifier as the name of

a constant.

constant

E identifier ~
enumera tion constant

real constant

string constant

7. Types

7. TYPES

A data type defines a set of values which a variable or

expression may assume.

type definitions

-- TYPE-tr--4 identifier- = ~ type -- ;

9

A type definition introduces an identifier as the name of a

data type. A data type cannot refer to its own type identifier.

type

--r----I~ ide n t i fie r -----r-­
enumeration type _

1-----1 ... REA L -----1-.1

array t y p e ----.I
record I y pe ---+-I

I--~ se tty p e -----1--1

I-----I ... system type ----I
....... _-Q U E U E ----...I

Enumeration types, reals, and queues can only be operated upon

as a whole. They are simple types.

Arrays, records, sets, and system types are defined in terms of

other types. They are structured types containing component tlpes.

A data type that neither contains system types nor queues is a

passive type. All other types are active tlpes.
An operation can only be performed on two operands if their

data types are compatible (Section 9).

7.1. Enumeration Types

7.1. Enumeration types

An enumeration type consists of a finite. ordered set of

values.

enumeration type

--r--------i~ C HAR ------.......,r--~

t--------I ... BOOLEAN

~----~ INTEGER

~-~(--. identifiers ~) ----II~

~ constant -.... constant-

10

The types char, boolean. and integer are standard enumeration

types.

Anon-standard enumeration type is defined by listing the
identifiers that denote its values in increasing order.

An enumeration type can also be defined as a subrange of

another enumeration type by specifying its min and max values

(separated by a double period). The min value must not exceed
the max value. and they must be compatible enumeration constants

(Section 9).

enumeration constant

E identifier ~
char constant

~oolean constant

Integer constant

7.1. Enumeration Types

The basic operators for enumerations are:·

.- (assignment)

< (less)

= (equal)

> (greater)

<= (less or equal)

<> (not equal)

>= (greater or equal)

The result of a relation is a boolean value.

An enumeration value can be used to select one of several

statements for execution:

case sta tement

11

-..CASE expr-..OF-..labeled statements-'END--....

A case statement defines an enumeration expression and a set

of statements. Each statement is labeled by one or more constants
of the same type as the expression. A case statement executes
the statement which is labeled with the current value of the

expression. (If no such label exists, the effect is unknown.)

labeled statements

----fr-'4I-~ .. ~ enumeratio~ ~onstont ---...-.... ~: --- statement --r--.... ~

•

The case expression and the labels must be of compatible
enumeration types, and the labels must be unique.

7.1. Enumeration Types

The following standard functions apply to enumerations I

succ(x)

pred(x)

The result is the successor value of x (if it
exists).

The resul.t is the predecessor value of x (if

it exists).

An enumeration type can be used to execute a statement
repeatedly for all the enumeration valuesl

for statement

12

--.FOR ~identifier~:= expr r-TO~
~DOWNTO

~ statement.-DO..- expr

A for statement consists of an identifier of a control
variable, two expressions defining a subrange, and a statement
to be executed repeatedly for successive values in the subrange.

The control variable can either be incremented from its min
value TO its max value or decremented from its max value DOWNTO
its min value. If the min value is greater than the max value,
the statement is not executed. The value of the control variable
is undefined after completion of the for statement.

The control variable and the expressions must be of compatible
enumeration types. The control variable may not be a constant
parameter, a record field, a function identifier, or a variable

entry referenced by selection (Sections 7.4, 8.2, 11). The
repeated statement may not change the value of the control
variable.

7.1.1.,Characters 13

7.1.1. Characters

The type CHAR is a standard enumeration type. Its values are

the set of ASCII characters represented by char constants:

char constant

--. I --... character ~' ____

The following standard function applies to characters:

ord(x) The result (of type integer) is the ordinal value
of the character x.

The ordering of characters is defined by their ordinal values

(Appendix 8).

7.1.2. 8001eans

The type BOOLEAN is a standard enumeration type. Its values

are represented by boolean constants:

where fALSE < TRUE.

boolean constant

~FALSE 1"
L-.TRUE~

The following operators are defined for booleans:

&: (and)
or
not

The result is a boolean value.

7.1.2. Booleans 14

A boolean value can be used to select one of two statements

for execution, It can also be used to repeat the execution of

a statement while a condition is true (or until it becomes

true) •

if sta tement

--. IF --.expr -.THEN --. statement -..,.... ... ~~ ELSE -. statement r

An if statement defines a boolean expression and two

statements. If the expression is true then the first statement

is executed, else the second statement is executed. The second

statement may be omitted in which case it has no effect.

The expression value must be a boolean.

while statement

--.WHILE --.expr --. DO --. statement--.

A while statement defines a boolean expression and a

statement. If the expression is false the statement is not

executed; otherwise, it is executed repeatedly until the

expression becomes false.
The expression value must be a boolean.

7.1.3. Integers 15

repeat statement

~ REPEAT --tr-.... ~statement ---,r---t.~ UNTIL --. expr ~

~--------;~.~--j

A repeat statement defines a sequence af statements and a
boolean expression. The statements are executed at least once.
If the expression is false, they are executed repeatedly until
it becomes true.

The expression value must be a boolean.

7.1.3. Integers

The type INTEGER is a standard enumeration type. Its values
are a finite set of successive, whole numbers represented by
integer constants:

integer constant

~digits-..

The following operators are defined for integers:

+ (plus sign or add)
(minus sign or subtract)

* (multiply)
div (divide)
mod (modulo)

The result is an integer value.

7.2. Reals 16

The following standard functions apply to integers:

abs(x) The result (of,type integer) is the absolute value
of the integer x.

chr(x)

conv(x)

The result (of type ~har) is the character with
the ordinal value x.

The result is the real value corresponding to the
integer x.

7.2. Reals

The standard type REAL consists of a finite subset of the real
numbers represented by real constants:

real constant

--. d igi ts -L . --. dig its -~~:':~:_E __ E ___ +_J __ ~_d_ig_i_ts_-_-~"""f,--l.~

The letter E represents the scale factor 10.
The following operators are defined for reals:

:= (assignment)
< (less)

= (equal)
> (greater)
<: (less or equal)
<> (not equal)
>: (greater or equal)

7.3. Array Types

+ (plus sign or add)

(minus sign or subtract)

* (multiply)

/ (divide)

17

The result of a relation is a boolean value. The result of an

arithmetic operation is a real value.
The following standard functions apply to reals:

abs(x)

trunc(x)

The result (of type real) is the absolute value

of the real x.

The result is the (truncated) integer value
corresponding to the real x.

7.3. Array types

An array consists of a fixed number of components of the same
type. An array component is selected by one or more index

expressions.

array type

----.ARRAY---.(. ---rt-".~ enumeration type --.....-i .. ~.) --+-OF ---+-type-....

'-------, 4

The index types must be enumeration types. The component type

can be any type. The number of index types is called the dimension
of the array.

7.3. Array Types 18

array component

--. voriable --. (. --+r--l.~ ex.p~---r-.... ~ .) ---I.~

A component of an n-dimensional array variable is selected by
means of its variable identifier followed by n index expressions
(enclosed in brackets and separated by commaes).

The number of index expressions must equal the number of index
types in the array type definition, and the expressions must be
compatible with the corresponding types.

The basic operators for arrays are:

:= (assignment)
= (equal)
<> (not equal)

The operands must be passive, compatible arrays. The result of a
relation is a boolean value.

A one-dimensional array of m characters is called a string type
of length m. Its values are the string constants of length m:

string constant

-"'T'"-.... ~ C ha ra cte r _....,.--I.~ I ~

t

The ordering of characters defines the ordering of strings.

7.4. Record Types 19

The following operators are defined for strings (in addition

to those defined for all array types);

< (less)
> (greater)

<- (less or equal)

>= (greater or equal)

The operands must be strings of the same length. The result of a
relation is a boolean value.

7.4. Record types

A record consists of a fixed number of components of (possibly)
different types:

record type

~ RECORD --r--"'~~ identifiers ____ : --.type --.,. ___ ~~ END--..
t~ __________ ;~.~ ______ ~

record component

---.vorioble ---. • ---. identifier ~

The components of a record type are called its fields. A field

of a record variable is selected by means of its variable
identifier followed by the field identifier (separated by a period).

7.5. Set Types 20

The basic operators for records are,

:= (assignment)

= (equal)
<> (not equal)

The operands must be passive, compatible records. The result of
a relation is a boolean value.

A with statement can be used to operate on the fields of a
record variable:

wi th sta tement

---- WITH --, - voriable --............. DO ____ statement ____

~-----,~4~----~

A with statement consists of one or more record variables and
a statement. This statement can refer to the record fields by
their identifiers only (without qualifying them with the
identifiers of the record variables).

The statement

wit h v 1, v 2 , ••• , v n do 5

is equivalent to
with v1 do

with v2, • It , vn do S

7.5. Set types

The set type of an enumeration type consists of all the subsets
that can be formed of the enumeration valuesl

set type

--""SET-'OF ____ type---.

7.5. Set Types

The component type of a set type is called its base type. It
must be an enumeration type.

Set values can be constructed as follows:

set constructor

I c expr40j • ~ .J-
,

21

A set constructor consists of one or more expressions enclosed

in brackets and separated by commaes. It computes the set

consisting of the expression values. The set expressions must be
of compatible enumeration types.

The empty set is denoted

(..)
The basic operators for sets are:

:= (assignment)

<= (conta ine d in)

>= (contains)

(difference)
& (intersection)
or (union)

The operands must be compatible sets. The result of a relation
is a boolean value. The result of the other operators is a set
value that is compatible with the operands.

in (membership)

The first operand must be an enumeration type and the second

one must be its set type. The result is a boolean value.

7.6, System Types 22

7.6. System types

A concurrent program consists of three kinds of system types:

system type

-EPROCESSg
MON I TOR ----If----'I-.._. __ .pa ra me t e rs --.; --+L-...... ~b I oc k ______

CLASS

A process type defines a data structure and a sequential
statement that can operate on it.

A monitor type defines a data structure and the operations
that can be performed on it by concurrent processes. These
operations can synchronize processes and exchange data among
them.

A class type defines a data structure and the operations that
can be performed on it by a single process or monitor. These
operations provide controlled access to the data.

A system type consists of the following components:
Parameters that represent constants and other system types on

which the system type can operate. They are called the access
rights of the system type.

Constants, data types, variables, and routines that are
accessible within the system type (but generally not outside it).
(The variable entries defined in Section 8.2 are the only
exception to this rule.)

Routine entries that are accessible outside the system type
(but not within it). These routines define meaningful operations
on the system type that can be performed by other system types.

An initial statement to be executed when a variable of the
system type is initialized.

7.6. System Types 23

In general, a system type parameter must be a constant
parameter of type enumeration, real, set, or monitor (Section 11).
In addition, a class type can be a parameter of another class
type.

A system type can only be declared within another system type
(but not within a record type or routine).

A process type can repeat the execution of a set of statements
forever. This is done by means of the cycle statement:

cycle statement

----. CYCLE -"'Ir,--t .. ~ statement -~--t ... ~ END ~

'------ ; t---....

A cycle statement defines a sequence of statements to be
executed repeatedly forever.

8, Variables 24

8. VARIABLES

A variable is a named store location that can assume values of
a single type. The basic operations on a variable are assignment
of a new value to it and a reference to its current value.

var declarations

---.VA R -'t'---~~~~_E_N_T_R_Y_---J ,---tI~. ide n t i fie rs ----- : type -.;

A variable declaration defines the identifier and type of
a variable.

The meaning of a variable entry is defined in Section 8.2.

The declaration

var v1, v2, ••• , vn: T;

is equivalent to
var v1 I T I v2 IT, ••• I vn IT,

variable

S identifier ~
array component

record component

class component

A variable is referenced by means of its identifier. A
variable component is selected by means af index expressions or
field identifiers (Sections 7.3, 7.4, 8.2).

8.1. System Components 25

assignment

--.. variable --. : = ---. expr --.

An assignment defines the assignment of an expression value

to a variable. The variable and the expression must be

compatible.
The variable must be of passive type. It may not be a constant

parameter or a variable entry referenced by selection (Sections

7, 8.2, 11).

8.1. System components

A variable of system type is called a system component. It is

either a process, a monitor, or a class.
System components are initialized by means of init statements:

init statement

---.1 N IT --r,-....... variable --. arguments --r-.......

~-----------, .• .---------~
An init statement defines the access rights of a system

component (by means of arguments), allocates space for its
variables, and executes its initial statement.

The statement

in it \/1. v2, ... , vn

is equivalent to

in it v1; in it v2, ••• , vn

8.2. Variable Entries 26

The initial statement of a class or monitor is executed as a

nameless routine. The initial statement of a process is
executed as a sequential process. This process is executed
concurrently with all other processes (including the one that

initialized it).
The parameters and variables of a system component exist

forever after initialization. They are permanent variables.
A system component must be declared as a permanent variable
within a system type. It cannot be declared as a temporary

variable within a routine.
A system component can only be initialized once. This must be

done in the initial statement of the system type in which it is
declared.

8.2. Variable entries

A variable prefixed with the word ENTRY is a variable entry:

var entry f: T

It must be declared as a permanent variable of passive type
within a class type.

A class type can refer to one of its own variable entries by
means of its identifier f:

f

Outside the class type, a variable entry f of a class variable
v can be selected either by means of the class identifier v
followed by the entry identifier f (separated by a period):

v.f

or by means of a with statement

with v do begin f ••• end

A class type can make assignment to its variable entries, but
outside it they can only be referenced (but not changed) by
selection. So a variable entry is similar to a function entry
(Section 11).

9. Expressions 27

9. EXPRESSIONS

An expression defines a computation of a value by application of

operators to operands. It is evaluated from left to right using
the following priority rules:

First, factors are evaluated.

Secondly, terms are evaluated.

Thirdly, simple expressions are evaluated.

Fourthly, complete expressions are evaluated.

expr

----.. simple expr

+ + + + + + + = <> < <= > >= IN

t I t t t i t

simple expr

E:J ~ term

f + + +
..

term +

i
OR

t
*

I

term

---. foctor

f +
, ,

+ + foctor * I DIV MOD So

t t t t t I

f
..

simple expr

f

~

9. Expressions 28

factor

-...,.--..... co ns to n t ---.,..---4 ..

t---..... va rio b I e -----II~

1-----4 .. routine coll--'"

(--.....expr--.....)

set constructor ---'

Type compatibility

An operation can only be performed on two operands if their
data types are compatible. They are compatible if one of the
following conditions is satisfiedl

1) Both types are defined by the same type definition Dr
variable declaration (Sections 7, 8).

2) Both types are subranges of a single enumeration type
(Section 7.1).

3) Both types are strings of the same length (Section 7.3).
4) Both types are sets of compatible base types. The empty

set is compatible with any set (Section 7.5).

10. statements

10. STATEMENTS

Statements define operations on constants and variables:

statement

Section

com pou n d stotement 5
case statement 7.1

for statement 7.1

it statement 7.1.2

while statement 7.1.2

repeat statement 7.1.2

wi th statement 7.4

cycle statement 7.6

assignment 8

ini t statement 8.1

routine call II

Empty statements, assignments, and routine calls cannot be

divided into smaller statements. They are simple statements.

All other statements are structured statements formed by

combinations of statements.

An empty statement has no effect.

29

11. Routines 30

11. ROUTINES

A routine defines a set of parameters and a compound statement
that operates on them:

routines

L procedure 4 :3
L ___ fun ct i on ------f

:.. + sequential program

A routine can only be defined within a system type (but not
within another routine).

A system component cannot reference the variables of another
system component (except if they are variable entries of a
class as defined in Section 8.2).

A system component can, however, call routine entries declared
within other system types. There are four kinds of routine entries:

A process entry is a routine entry declared within a process
type. It can only be called by sequential programs executed by a
process of that type (but it cannot be called by system components).

A monitor entry is a routine entry declared within a monitor
type. It can be called simultaneously by one or more system
components that wish to operate on a monitor of that type. A
monitor entry has exclusive access to permanent monitor
variables while it is being executed. If concurrent processes
simultaneously call monitor routines that operate on the same
permanent variables, the calls will be executed strictly one at
a time.

A class entry is a routine entry declared within a class type.
It can only be called by one system component at a time. So a
class entry has also exclusive access to permanent class
variables while it is being executed. But, in contrast to a
monitor entry, the exclusive access of a class entry can be

11. Routines 31

ensured during compilation (and not during execution).
An initial statement of a system type is a nameless routine

entry called by means of the init statement (Section 6.1).
There are three kinds of routines: procedures, functions,

and sequential programs.

procedure

t -. PROCEDURE - -t.~ ENTRY---L--t.~ identifier ~ parameters-"J

4- block4-- i ---'

A procedure consists of a procedure identifier, a parameter
list, and a block to be executed when the procedure is called.

function

+ -. FUNCTION --........ ~ ENTRY - ---t.~ identifier ---. parameters---,
.- block4-- i .. identifier .. : ---~

A function consists of a function identifier, a parameter list,
a function type identifier, and a block to be executed when the
function is called.

A function computes a value. The value e of a function f is
defined by an assignment

fl= e

within the function block.
The function and its value must be of compatible enumeration

types.

11. Routines 32

A process that controls the execution of a compiled sequential
program is called a job process. The process definition must

include a declaration of the sequential program:

sequential program

-PROGRAM - ;deot;fi" - pa,ametm 3
'II * identifiers""'- ENTRY4-- i

A program declaration consists of a program identifier, a
parameter list, and a set of access rights.

Program parameters must be of passive types. The right-most
parameter represents the variable in which the code of the
sequential program is stored. It cannot be referenced by the
sequential program itself.

The access rights of a program is a list of identifiers of
routine entries defined within the job process that contains
the program declaration. The sequential program may call

these routines during its execution.

parameters

1.

A parameter list defines the type of parameters on which a
routine can operate. Each parameter is specified by its parameter

and type identifiers (separated by a colon).

11. Routines 33

A variable parameter represents a variable to which the
routine may assign a value. It is prefixed with the word VAR.
The parameter declaration

var v1, v2, II. , vn: T

is equivalent to

var v1: TI var v2, ••• , vn: T

A constant parameter represents an expression that is
evaluated when the routine is called. Its value cannot be
changed by the routine. A constant parameter is not prefixed
with the word VAR.
The parameter declaration

v1, v2, ••• , vn: T

is equivalent to

v1: TI v2, ••• , vn, T

A parameter is of universal type if its type identifier is
prefixed with the word UNIV. The meaning of universal types is
explained later.

The parameters and variables declared within a routine exist
only while it is being executed. They are temporary variables.

The permanent parameters of a system type define all other
system types with which it can interact. A system type interacts
with another system type when it calls a routine entry declared
within the other system type.

Permanent parameters of system types must be constant parameters
of type enumeration, real, set, or monitor. In addition, a class
type can be a parameter of another class type.

Parameters of routine entries may not contain queues as
components.

Function parameters must be constant.
Program parameters and parameters of universal type must be

passive (Section 7).

11. Routines 34

Universal parameters

The prefix UNIV suppresses compatibility checking of parameter
and argument types in routine calls (Sections 9, 11).

An argument of type T1 is compatible with a parameter of
universal type T2 if both types are passive and represented by
the same number of store locations.

The type checking is only suppressed in routine calls. Inside
the given routine the parameter is considered to be of non­
universal type T2, and outside the routine call the argument is
considered to be of non-universal type T1.

routine call

+ --'---I~~voriable ~. ---"--"~~ identifier ----.. arguments--"""

A routine call specifies the execution of a routine with a
set of arguments. It can either be a function call, a procedure
call, or a program call.

A routine that is not prefixed with the word ENTRY is a
simple routine. A system type can call one of its own simple
routines by means of its identifier P followed by a list of
arguments a1, ••• , an:

P(a1, ••• , an)

A system type can call a routine entry declared within another
system type T by qualifying the call with the identifier v of a
variable of type T:

v.P(a1, ... , an)

or by a with statement

with v do beg!"n ••• P(a1, ••• , an) ••• end

A routine may not call itself, and a system type may not call
its own routine entries.

A routine call used as
function call. A routine
procedure call (Sections

arguments

11. Routines

a factor in an expression must be a
call used as a statement must be a
9, 10).

.. variable ~L_-'-'" 1
I- ..) -.....I+I........t.~

~--~~expr------~

35

An argument list defines the arguments used in a routine call.
The number of arguments must equal the number of parameters
specified in the routine. The arguments are substituted for the
parameters before the routine is executed.

Arguments corresponding to variable and constant parameters
must be variables and expressions, respectively. The selection
of variable arguments and the evaluation of constant arguments
are done once only (before the routine is executed).

The argument types must be compatible with the corresponding
parameter types with the following exceptions:

An argument corresponding to a constant string parameter may
be a string of any length.

An argument corresponding to a universal parameter may be or
any passive type that occupies the same number of store locations
as the parameter type.

12. Queues 36

12. QUEUES

The standard type QUEUE may be used within a monitor type to
delay and resume the execution of a calling process within a
routine entry (Sections 7.6, 11).

At most one process at a time can wait in a single queue. A
queue is either empty or non-empty. Initially, it is empty.

A variable of type queue can only be declared as a permanent
variable within a monitor type.

The following standard function applies to queues:

empty(x) The result is a boolean value defining whether
or not the queue is empty.

The following standard procedures are defined for queues:

delay(x)

continue(x)

The calling process is delayed in the queue x
and looses its exclusive access to the given
monitor variables. The monitor can now be called
by other processes.

The calling process returns from the monitor
routine that performs the continue operation.
If another process is waiting in the queue x
that process will immediately resume its
execution of the monitor routine that delayed
it. The resumed process now again has exclusive
access to the monitor variables.

13. Scope Rules 37

13. SCOPE RULES

A scope is a region of program text in which an identifier is
used with a single meaning. An identifier must be introduced
before it is used. (The only exception to this rule is a sequential
program declaration within a process typel it may refer to routine
entries defined later in the same process type. This allows one to
call sequential programs recursively.)

A scope is either a system type, a routine, or a with state.ent.
A system type or routine introduces identifiers by declaration, a
with statement does it by selection (Sections 5, 7.4, 7.6, 8.2, 11).

When a scope is defined within another scope we have an outer
scope and an inner scope that are nested. An identifier can only
be introduced with one meaning in a scope. It can, however, be
introduced with another meaning in an inner scope. In that case,
the inner meaning applies in the inner scope and the outer meaning
applies in the outer scope.

System types can be nested, but routines cannot, Within a
routine, with statements can be nested. This leads to the
following hierarchy of scopesl

{nested system types
{non-nested routines

(nested with statements»)

A system type can use

(1) all constant and type identifiers introduced in its outer
scopes.

(2) all identifiers introduced within the system type itself
(except its routine entry identifiers).

A routine can use

(1), (2) defined above and

(3) all identifiers introduced within the routine itself
(except the routine identifier).

.13. Scope Rules 38

A with statement can use

(1), (2), (3) defined above and
(4) all identifiers introduced by the with statement itself

and by its outer with statements.

The phrase "all identifiers introduced in its outer scopes"

should be qualified with the phrase "unless these identifiers
are used with different meanings in these scopes. In that case,

the innermost meaning of each identifier applies in the given

scope. "

14. Concurrent Programs 39

14. CONCURRENT PROGRAMS

The outermost scope of a concurrent program is an anonymous,
parameterless process type, called the initial process:

concurrent program

...... block~

An instance of this process is automatically initialized after
program loading. Its purpose is to initialize other system
components.

A. PDP 11/45 SYSTEM 40

A. PDP 11/45 SYSTEM

This appendix defines additional restrictions and extensions

of Concurrent Pascal for the PDP 11/45 computer.

A.1. Language restrictions

A non-standard enumeration type can at most consist of 128

constant identifiers.

The range of integers is -32768 •• 32767.
Integer case labels must be in the range 0 •• 127.
The range of reals is approximately _10 38 •• 1038 • The smallest

absolute real value that is non-zero is approximately 10.38 •

The relative precision of a real is approximately 10.16 •
A string must contain an even number of characters.

Enumeration types and system types cannot be defined within

record types.
A set of integers can only include members in the range 0 •• 127.

A process component can only be declared within the initial
process.

The standard procedure continue can only be called within a
routine entry of a monitor type.

A.2. Store allocation

The compiler dete~mines the store requirements of system
components under the assumption that routine calls are not

recursive. The scope rules prevent recursion within concurrent
programs, but not within sequential programs.

The programmer must estimate an additional data space needed
to execute seguential programs within a job process. The data

space of a sequential program (in bytes) is defined by an
integer constant after the process parameters:

A.3. Process Attributes 41

process type

~PROCESS _ parameters~; + I. + -.... integer constant -_ +.........,

~ bl ock It----'

A.3. Process attributes

The standard function

attribute{x}

defines an attribute x of the calling process. The index and
value of the attribute are universal enumerations.

At present, the attribute index is of the following typel

type attrindex =
(caller, heaptop, progline, progresult, runtime)

The meaning of these attributes is defined in the sequel.
The attribute function can be used to identify the calling

process:

attribute{caller)

A.4. Heap control

The result is an integer that identifies
the calling process. The machine
associates consecutive integers 1, 2, ••
with processes during their initializa­
tion starting with the initial process.

Associated with every process is a heap in which sequential
Pascal programs can allocate semi-permanent data structures (by
means of a standard procedure ~ that is not available in

Concurrent Pascal).

A.S. Program Termination 42

A process can measure the extent of its heap by means of. the
standard function attribute I

attribute(heaptop) The result is an integer defining the
top address of the heap.

The heap top can be reset to a previous value by means of the
standard procedure

setheap(x) The top address of the heap is set
equal to the integer x (defined by a
previous call of attribute),

~:= attribute(heaptop)

This crude mechanism is intended mainly to enable a job process
to measure the initial extent of its heap before it executes a
sequential program and to reset the heap when the program
terminates.

A.S. Program termination

When a sequential program terminates its job process can call
the standard function attribute to determine the line number in
which the program terminated and its result:

attribute(progline)
attribute(progresult)

The line attribute is an integer and the progresult is of the
following type:

type resulttype =
(terminated, overflow, pointererror, rangeerror,
varianterror, heaplimit, stacklimit)

The result values have the following meaningl

terminated

overflow

pointer error

range error

varianterror

heaplimit

stacklimit

A.5. Program Termination 43

Correct termination.

An integer or real is out of range.

A variable is referenced by means of a pointer

with the value nil.

An enumeration value is out of range.

A reference to a field of a variant record is

incompatible with its tag value.

The heap capacity is exceeded.

The stack capacity is exceeded.

The above are standard results of sequential Pascal programs
generated by the machine. A concurrent program may, however,

extend the result type with non-standard values, for example:

type resulttype =
(terminated, overflow, pointererror, rangeerror,
varianterror, heaplimit, stacklimit, codelimit,

timelimit, printlimit)

Non-standard results can be used as arguments to the standard
procedure stop (defined below).

The following standard procedures control program preemption:

start

stop(x, y)

Prevents preemption of a sequential program to

be executed by the calling process.

Preempts a sequential program called by process

x with the result y. The process identity must

have been defined earlier by a call of attribute

x:= attribute(caller)

start should be called before a sequential program is executed.
If stop is called while a sequential program is executing a
routine entry within its job process, preemption is delayed until
the routine call has been completed.

A.6. Real Time Control 44

A.6. Real time control

The standard routines for real time control are:

wait

realtime

The calling process is delayed until
the next 1-second signal from a clock.
(If the waiting is done within a
monitor this will delay other calls of
the same monitor).

The result is an integer defining the

real time (in seconds) since system
initialization.

The standard function attribute can be used to define the
run time of the calling process:

attrlbute(runtime) The result is an integer defining the
processor time (in seconds) used by
the calling process since its initial­
ization. (This is only accurate on a
machine with a readable clock.)

A.? Input/Output 45

A.? Input/output

Input/output is handled by means of the following standard
procedure:

io(x, y, z) Peripheral device z performs the operation y
on variable x. The calling process is delayed
until the operation is completed. (If the io
is done within a monitor, it will delay other
calls of the same monitor.) x and yare
variable parameters of arbitrary passive types.
z is a constant parameter of arbitrary
enumeration type.

At present, the machine assumes that the io device z and the
io parameter yare of the following types:

type iodevice =
(terminal1, disk1, tape1, printer1, reader1)

type ioparam = record

where

operation: iooperation;
result: ioresult,
arg: ioarg

end

type iooperation = (input, output, move, control)

type ioresult =
(complete, intervention, transmission, failure,

endfile, endmedium, startmedium)

The io results have the following meaning:

complete

intervention

transmission

failure

endfile

endmedium

startmedium

A.7. Input/Output 46

The operation succeeded.

The operation failed, the device requires
manual intervention before the operation can
be repeated.

The operation failed; the transmission error
can probably be corrected by repeating the
operation immediately.

The operation failed, the device failure
cannot be corrected by repeating the
operation.

An end of file mark was sensed.

The end of medium mark was sensed.

The start of medium mark was sensed.

The types of the io block x and the io argument within the
io parameter vary from device to device.

A concurrent program must ensure that a device is used by at
most one process at a time (wherever this rule applies).

A.7.1. Terminal

device

block

input

output

control

result

A.7.1. Terminal 47

termina11

A single character (ASCII representation).

Inputs a single character and echoes it back as

output. The character CR is input as LF and

echoed as CR, LF. The character BEL cannot be

input (see below).

Outputs a single character. The character LF is

output as CR, LF.

Delays the calling process until the BEL key is
depressed. The BEL key can be depressed at any

time (whether the terminal is passive, inputting,
or outputting), it has no effect unless one or

more processes are waiting for it.

complete

One or more control operations can be executed simultaneously
with a single input/output operation. A BEL signal continues

the execution of all processes waiting for it.

A.7.2. Disk

device

block

argument

input

output

control

result

A.7.2. Disk 48

disk1

A universal string of 512 characters (called a

disk page).

An integer in the range 0 •. 4799 (called a ~

index).

Inputs a disk page with a given page index.

Outputs a disk page with a given page index.

starts execution of a concurrent program stored

on consecutive disk pages identified by the
first page index.

complete, intervention, transmission, or failure.

A disk can only perform one operation at a time.

The system uses the following algorithm to convert a page index

to a physical disk address consisting of a surface number, cylinder

number, and sector number:

surface:: page_index div 12 mod 2;
cylinder:: page_index div 24;
sector:: page_index mod 12;

A.7.3. Magnetic Tape 49

A.7.3. Magnetic tape

device tape1

block A universal string of 512 characters (called a

tape block).

argument

input

output

move

outeof

rewind

upspace

backspace

result

An enumeration constant defining one of the

following move operations:

(outeof, rewind, upspace, backspace)

Inputs the next block from tape (if any).

Outputs the next block on tape (if there is

room for it).

Moves the tape as defined by the argument:

Outputs an end of file mark (if there is

room for it).

Rewinds the tape.

Moves the tape forward one block (or file

mark), whichever occurs first.

Moves the tape backwards one block (or

file mark), whichever occurs first.

complete, intervention, transmission, failure,

endfile, endmedium, or startmedium.

A tape station can only perform one operation at a time.

A.7.4. Line Printer 50

A.7.4. Line Printer

device

block

output

result

printer1

A string of 132 characters (ASCII representation)
(called a printer line).

Outputs a line of 132 characters (or less). A
line of less than 132 characters must be
terminated by a CR, Lf, or ff character.

complete or intervention.

A line printer can only perform one operation at a time.

A.7.S. Card Reader 51

A.7.S. Card Reader

device

block

input

result

reader1

A string of 80 characters (ASCII representation)

(called a punched card).

Inputs a card of 80 characters. Characters

that have no graphic representation on a key

punch are input as SUB characters.

complete, intervention, transmission, or
failure.

A card reader can only perform one operation at a time.

A.B. Compiler characteristics 52

A.B. Compiler characteristics

The compiler consists of 7 passes. It requires a code space of

9 K words and a data space of 7 K words. After a basic loading

time of 7 sec the compilation speed is 240 char/sec (or about

9 - 10 lines/sec).

The programmer may prefix a program with compiler options
enclosed in parantheses and separated by commaes:

(number. check, test)

The options have the following effect:

number

check

The generated code will only identify line numbers

of the program text at the beginning of routines.
(This reduces the code by about 25 per cent. but

makes error location more difficult.)

The code will not make range checks of constant

enumeration arguments.

test The compiler will print the intermediate output

of all passes. (This facility should be used as a

diagnostic aid to locate compiler errors.)

A.9. Program characteristics

A.9. Program characteristics

The following is the execution times of operand references,

operators, and statements in usec (measured on a PDP 11/45 with

850 nsec core store). They exceed the figures stated in the

computer programming manual by 25 per cent.

constant c

var iable v
field v.f
indexed v(.e.)

:=

= <>

< > <: >:

in
succ pred

&:

or

not

+

*
div mod /
abs

conv

trunc

enumeration real

7

10
27

40

8

12
12

7

10
8

10

9

16
20

7
21

+ e

39

32

40

53 + e

o
32
32

38

45
46

17

22

(n

53

46

54
67

0
67
74

31

82

58

58

set structure

members) (n words)

+ 32 n 17

10

18

+ e 31 + e

10 + 5 n

16 + 6 n

16 + 11 n

53

A.9.Program characteristics

(n iterations)

case e of ••• c: 5; ••• end
for v:= 1 to n do 5

if B then 5 else 5

28 + e +

82 + (69
16 + B +

(20 + B

(13 + B

16 + 5

5

+ 5) n
5

+ 5) n
+ 5) n

while B do 5

repeat 5 until B

with v do 5

cycle 5 end (7 + 5) n
simple routine call
process entry call
class entry call

58
75
80

monitor entry call 200
empty 10

delay, continue (processor switching) 600

clock interrupt (every 17 msec) 900
io 1500

The compiler generates about 5 words of code per program line
(including line numbers and range checks).

The store requirements of data types are:

enumeration
real
set

1 word(s)
4

8

string (m characters) m/2

54

B. ASCII CHARACTER SET 55

B. ASCII CHARACTER SET

0 nul 32 64 II 96

1 soh 33 I 65 A 97 a

2 stx 34 II 66 B 98 b

3 etx 35 II 67 C 99 c

4 eat 36 S 68 D 100 d

5 enq 37 " 69 E 101 e

6 ack 38 &: 70 F 102 f

7 bel 39 , 71 G 103 9

8 bs 40 (72 H 104 h

9 ht 41) 73 I 105 1

10 lf 42 * 74 J 106 j

11 vt 43 + 75 K 107 k

12 ff 44 , 76 L 108 1

13 cr 45 - 77 IYI 109 m

14 so 46 • 78 N 110 n

15 s1 47 / 79 0 111 a

16 dle 48 0 80 P 112 P
17 dc1 49 1 81 Q 113 q

18 dc2 50 2 82 R 114 r

19 dc3 51 3 83 S 115 s

20 dc4 52 4 84 T 116 t

21 nak 53 5 85 U 117 u

22 syn 54 6 86 V 118 v

23 etb 55 7 87 W 119 w

24 can 56 8 88 X 120 x

25 em 57 9 89 y 121 y

26 sub 58 I 90 Z 122 z
27 esc 59 , 91 r. 123 {
28 fs 60 < 92 \ 124 I
29 gs 61 = 93] 125 1
30 rs 62 > 94 ~ 126

.,
31 us 63 ? 95 - 127 del

INDEX 56

INDEX

abs, 16-17
access rights, 22, 25, 32
active type, 9
and, 13, 21, 27
argument, 35
arithmetic, 15-17
array component, 18
array type, 17-18
ascii character set, 55
assignment, 11, 16, 18, 20-21,

25, 29, 31
attribute, 41-42, 44

base type, 21
basic symbol, 2
block, 7
boolean, 13-15

card reader, 51
case statement, 11, 40
character, 3, 13, 55
chr, 16
class, 25
class entry, 30
class parameter, 33
class type, 22
comment, 6
comparison, 11, 13, 16, 18-21,

27
compatible types, 9, 28, 35
compiler, 52
component type, 9
compound statement, 7
concurrent program, 39, 48
constant, 4, 10, 13, 16, 18,

21
constant parameter, 33, 35
const definition, 7-8
continue, 36, 40
control character, 4
conv, 16
cycle statement, 23

declarations, 7
delay, 36
digit, 3-4
dimension, 17
disk, 48
div, 15,27

empty, 36
empty set, 21, 28
empty statement, 29
enumeration constant, 10
enumeration type, 10-16, 40
exclusive access, 30, 36
execution time, 53-54
expression, 27-28

factor, 27, 35
false, 13
field, 19
for statement, 12
function, 31
function call, 34-35

graphic character, 3

heap, 41-42

ident if ier, 6
if statement, 14
in, 21
index expression, 17
index type, 17
initial process, 39-40
initial statement, 22
init statement, 25
input/output, 45-51
integer, 15-16, 40
interaction, 33
io, 45

job process, 12, 40

label, 11, 40
letter, 3
line printer, 50

magnetic tape, 49
mod, 15, 27
monitor, 25
monitor entry, 30
monitor parameter, 33
monitor type, 22

nested scopes, 37
new line, 6, 52
not, 13, 28

operator priority, 27
options, 52
or, 13, 21, 27
or d, 13
ordinal value, 4, 13, 55

parameter, 22, 32-34
passive type, 9
permanent parameter, 33
permanent variable, 26
pred, 12
procedure, 31
procedure call, 34-35
process, 25, 40
process attribute, 41
process entry, 30
process parameter, 33
process type, 22
program, 32, 39-40, 42-43, 48
program call, 34-35
program loading, 32, 48
program parameter, 33
program preemption, 43
program termination, 42-43

queue, 9, 33, 36

range check, 52
real, 16, 40
realtime, 44
record component, 19
record type, 19-20
repeat statement, 15
routine, 30, 37
routine call, 34
routine entry, 22, 30

scale factor, 16
scope rules, 37-38
selection, 18-19, 26
separator, 6
sequential program, 32, 40,

42-43
set constructor, 21
set expression, 21
setheap, 42
set type, 20-21, 28, 40
simple expression, 27
simple routine, 34
simple statement, 29
simple type, 9

INDEX

space, 6
special character, 3
special symbol, 5

57

standard function, 12-13, 16-17,
36, 41

standard procedure, 36, 42-45
standard type, 9-10
start, 43
statement, 29
stop, 43
store allocation, 40, 54
string type, 18, 28, 35, 40
structured statement, 29
structured type, 9
subrange type, 10, 28
succ, 12
symbol, 5
syntax graph, 2
system component, 25-26
system type, 22-23, 37, 40

temporary variable, 33
term, 27
terminal, 47
test output, 52
true, 13
trunc, 17
type, 9
type compatibility, 9, 28, 35
type conversion, 13, 16-17, 34
type definition, 9

universal parameter, 33-35

var declaration, 24
variable, 24-26
variable component, 18-19, 26
variable entry, 26
variable parameter, 33, 35

wait, 44
while statement, 14
with statement, 20, 26, 34, 38
word symbol, 5-6

BIBLIOGRAPHIC DATA ~'SReport No. rl. 3. Recipienes Accession No.
SHEET iF-OCA-DGR74-17331-CPI

14.1 itlc and Suht itle 5. Report !late
June 1975

Concurrent Pascal Report 6.

7. Authods)
Per Brinch Hansen

8. Performipp; Organizat ion Re pt.
No. CIT-IS-TR 17

9. Performing Organiz;.uion Name and Address 10. Project/T"sk/Work lInit No.

Information Science 286-80
California Institute of Technology 11. Contract /Grant No.

Pasadena, California 91125 NSF DCR74-17331
12. Sponsoring Organization Name and Address 13. Type of Report & Period

National Science Foundation Covered

Office of Computing Activities 1. Edition
Washington, D. C. 20550 14.

15. Supplementary Notes

16. Abstracts

This report defines Concurrent Pascal - an abstract programming
language for structured programming of computer operating systems.
It extends the sequential programming language Pascal with
concurrent processes, monitors, and classes. Concurrent Pascal

has been implemented for the PDP 11/45 computer at Caltech.

17. Key Words and Document Analysis. 17a. Descriptors

Concurrent Pascal, structured multiprogramming, programming

languages, hierarchical operating systems, concurrent processes,
monitors, classes, abstract data types, access rights, scheduling,
job control.

17b. Identifiers/Open-Ended Terms

17c. COSA TI Field/Group

18. Availability Statement 19. Security Class (This 21. No. of Pages

Re~~~t(I.ASS1FIFn 60
2u. Security Class (This 22. Price

Page
UNCLASSIFIED

FORM NTlS-35 (REV. 3-721
THIS FORM MAY BE REPRODUCED USCOMM-OC 14952-P7Z

